/src/llvm-project/clang/lib/AST/ExprConstant.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--- ExprConstant.cpp - Expression Constant Evaluator -----------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file implements the Expr constant evaluator. |
10 | | // |
11 | | // Constant expression evaluation produces four main results: |
12 | | // |
13 | | // * A success/failure flag indicating whether constant folding was successful. |
14 | | // This is the 'bool' return value used by most of the code in this file. A |
15 | | // 'false' return value indicates that constant folding has failed, and any |
16 | | // appropriate diagnostic has already been produced. |
17 | | // |
18 | | // * An evaluated result, valid only if constant folding has not failed. |
19 | | // |
20 | | // * A flag indicating if evaluation encountered (unevaluated) side-effects. |
21 | | // These arise in cases such as (sideEffect(), 0) and (sideEffect() || 1), |
22 | | // where it is possible to determine the evaluated result regardless. |
23 | | // |
24 | | // * A set of notes indicating why the evaluation was not a constant expression |
25 | | // (under the C++11 / C++1y rules only, at the moment), or, if folding failed |
26 | | // too, why the expression could not be folded. |
27 | | // |
28 | | // If we are checking for a potential constant expression, failure to constant |
29 | | // fold a potential constant sub-expression will be indicated by a 'false' |
30 | | // return value (the expression could not be folded) and no diagnostic (the |
31 | | // expression is not necessarily non-constant). |
32 | | // |
33 | | //===----------------------------------------------------------------------===// |
34 | | |
35 | | #include "ExprConstShared.h" |
36 | | #include "Interp/Context.h" |
37 | | #include "Interp/Frame.h" |
38 | | #include "Interp/State.h" |
39 | | #include "clang/AST/APValue.h" |
40 | | #include "clang/AST/ASTContext.h" |
41 | | #include "clang/AST/ASTDiagnostic.h" |
42 | | #include "clang/AST/ASTLambda.h" |
43 | | #include "clang/AST/Attr.h" |
44 | | #include "clang/AST/CXXInheritance.h" |
45 | | #include "clang/AST/CharUnits.h" |
46 | | #include "clang/AST/CurrentSourceLocExprScope.h" |
47 | | #include "clang/AST/Expr.h" |
48 | | #include "clang/AST/OSLog.h" |
49 | | #include "clang/AST/OptionalDiagnostic.h" |
50 | | #include "clang/AST/RecordLayout.h" |
51 | | #include "clang/AST/StmtVisitor.h" |
52 | | #include "clang/AST/TypeLoc.h" |
53 | | #include "clang/Basic/Builtins.h" |
54 | | #include "clang/Basic/DiagnosticSema.h" |
55 | | #include "clang/Basic/TargetInfo.h" |
56 | | #include "llvm/ADT/APFixedPoint.h" |
57 | | #include "llvm/ADT/SmallBitVector.h" |
58 | | #include "llvm/ADT/StringExtras.h" |
59 | | #include "llvm/Support/Debug.h" |
60 | | #include "llvm/Support/SaveAndRestore.h" |
61 | | #include "llvm/Support/TimeProfiler.h" |
62 | | #include "llvm/Support/raw_ostream.h" |
63 | | #include <cstring> |
64 | | #include <functional> |
65 | | #include <optional> |
66 | | |
67 | | #define DEBUG_TYPE "exprconstant" |
68 | | |
69 | | using namespace clang; |
70 | | using llvm::APFixedPoint; |
71 | | using llvm::APInt; |
72 | | using llvm::APSInt; |
73 | | using llvm::APFloat; |
74 | | using llvm::FixedPointSemantics; |
75 | | |
76 | | namespace { |
77 | | struct LValue; |
78 | | class CallStackFrame; |
79 | | class EvalInfo; |
80 | | |
81 | | using SourceLocExprScopeGuard = |
82 | | CurrentSourceLocExprScope::SourceLocExprScopeGuard; |
83 | | |
84 | 22 | static QualType getType(APValue::LValueBase B) { |
85 | 22 | return B.getType(); |
86 | 22 | } |
87 | | |
88 | | /// Get an LValue path entry, which is known to not be an array index, as a |
89 | | /// field declaration. |
90 | 0 | static const FieldDecl *getAsField(APValue::LValuePathEntry E) { |
91 | 0 | return dyn_cast_or_null<FieldDecl>(E.getAsBaseOrMember().getPointer()); |
92 | 0 | } |
93 | | /// Get an LValue path entry, which is known to not be an array index, as a |
94 | | /// base class declaration. |
95 | 0 | static const CXXRecordDecl *getAsBaseClass(APValue::LValuePathEntry E) { |
96 | 0 | return dyn_cast_or_null<CXXRecordDecl>(E.getAsBaseOrMember().getPointer()); |
97 | 0 | } |
98 | | /// Determine whether this LValue path entry for a base class names a virtual |
99 | | /// base class. |
100 | 0 | static bool isVirtualBaseClass(APValue::LValuePathEntry E) { |
101 | 0 | return E.getAsBaseOrMember().getInt(); |
102 | 0 | } |
103 | | |
104 | | /// Given an expression, determine the type used to store the result of |
105 | | /// evaluating that expression. |
106 | 0 | static QualType getStorageType(const ASTContext &Ctx, const Expr *E) { |
107 | 0 | if (E->isPRValue()) |
108 | 0 | return E->getType(); |
109 | 0 | return Ctx.getLValueReferenceType(E->getType()); |
110 | 0 | } |
111 | | |
112 | | /// Given a CallExpr, try to get the alloc_size attribute. May return null. |
113 | 0 | static const AllocSizeAttr *getAllocSizeAttr(const CallExpr *CE) { |
114 | 0 | if (const FunctionDecl *DirectCallee = CE->getDirectCallee()) |
115 | 0 | return DirectCallee->getAttr<AllocSizeAttr>(); |
116 | 0 | if (const Decl *IndirectCallee = CE->getCalleeDecl()) |
117 | 0 | return IndirectCallee->getAttr<AllocSizeAttr>(); |
118 | 0 | return nullptr; |
119 | 0 | } |
120 | | |
121 | | /// Attempts to unwrap a CallExpr (with an alloc_size attribute) from an Expr. |
122 | | /// This will look through a single cast. |
123 | | /// |
124 | | /// Returns null if we couldn't unwrap a function with alloc_size. |
125 | 0 | static const CallExpr *tryUnwrapAllocSizeCall(const Expr *E) { |
126 | 0 | if (!E->getType()->isPointerType()) |
127 | 0 | return nullptr; |
128 | | |
129 | 0 | E = E->IgnoreParens(); |
130 | | // If we're doing a variable assignment from e.g. malloc(N), there will |
131 | | // probably be a cast of some kind. In exotic cases, we might also see a |
132 | | // top-level ExprWithCleanups. Ignore them either way. |
133 | 0 | if (const auto *FE = dyn_cast<FullExpr>(E)) |
134 | 0 | E = FE->getSubExpr()->IgnoreParens(); |
135 | |
|
136 | 0 | if (const auto *Cast = dyn_cast<CastExpr>(E)) |
137 | 0 | E = Cast->getSubExpr()->IgnoreParens(); |
138 | |
|
139 | 0 | if (const auto *CE = dyn_cast<CallExpr>(E)) |
140 | 0 | return getAllocSizeAttr(CE) ? CE : nullptr; |
141 | 0 | return nullptr; |
142 | 0 | } |
143 | | |
144 | | /// Determines whether or not the given Base contains a call to a function |
145 | | /// with the alloc_size attribute. |
146 | 4 | static bool isBaseAnAllocSizeCall(APValue::LValueBase Base) { |
147 | 4 | const auto *E = Base.dyn_cast<const Expr *>(); |
148 | 4 | return E && E->getType()->isPointerType() && tryUnwrapAllocSizeCall(E); |
149 | 4 | } |
150 | | |
151 | | /// Determines whether the given kind of constant expression is only ever |
152 | | /// used for name mangling. If so, it's permitted to reference things that we |
153 | | /// can't generate code for (in particular, dllimported functions). |
154 | 0 | static bool isForManglingOnly(ConstantExprKind Kind) { |
155 | 0 | switch (Kind) { |
156 | 0 | case ConstantExprKind::Normal: |
157 | 0 | case ConstantExprKind::ClassTemplateArgument: |
158 | 0 | case ConstantExprKind::ImmediateInvocation: |
159 | | // Note that non-type template arguments of class type are emitted as |
160 | | // template parameter objects. |
161 | 0 | return false; |
162 | | |
163 | 0 | case ConstantExprKind::NonClassTemplateArgument: |
164 | 0 | return true; |
165 | 0 | } |
166 | 0 | llvm_unreachable("unknown ConstantExprKind"); |
167 | 0 | } |
168 | | |
169 | 0 | static bool isTemplateArgument(ConstantExprKind Kind) { |
170 | 0 | switch (Kind) { |
171 | 0 | case ConstantExprKind::Normal: |
172 | 0 | case ConstantExprKind::ImmediateInvocation: |
173 | 0 | return false; |
174 | | |
175 | 0 | case ConstantExprKind::ClassTemplateArgument: |
176 | 0 | case ConstantExprKind::NonClassTemplateArgument: |
177 | 0 | return true; |
178 | 0 | } |
179 | 0 | llvm_unreachable("unknown ConstantExprKind"); |
180 | 0 | } |
181 | | |
182 | | /// The bound to claim that an array of unknown bound has. |
183 | | /// The value in MostDerivedArraySize is undefined in this case. So, set it |
184 | | /// to an arbitrary value that's likely to loudly break things if it's used. |
185 | | static const uint64_t AssumedSizeForUnsizedArray = |
186 | | std::numeric_limits<uint64_t>::max() / 2; |
187 | | |
188 | | /// Determines if an LValue with the given LValueBase will have an unsized |
189 | | /// array in its designator. |
190 | | /// Find the path length and type of the most-derived subobject in the given |
191 | | /// path, and find the size of the containing array, if any. |
192 | | static unsigned |
193 | | findMostDerivedSubobject(ASTContext &Ctx, APValue::LValueBase Base, |
194 | | ArrayRef<APValue::LValuePathEntry> Path, |
195 | | uint64_t &ArraySize, QualType &Type, bool &IsArray, |
196 | 4 | bool &FirstEntryIsUnsizedArray) { |
197 | | // This only accepts LValueBases from APValues, and APValues don't support |
198 | | // arrays that lack size info. |
199 | 4 | assert(!isBaseAnAllocSizeCall(Base) && |
200 | 4 | "Unsized arrays shouldn't appear here"); |
201 | 0 | unsigned MostDerivedLength = 0; |
202 | 4 | Type = getType(Base); |
203 | | |
204 | 4 | for (unsigned I = 0, N = Path.size(); I != N; ++I) { |
205 | 0 | if (Type->isArrayType()) { |
206 | 0 | const ArrayType *AT = Ctx.getAsArrayType(Type); |
207 | 0 | Type = AT->getElementType(); |
208 | 0 | MostDerivedLength = I + 1; |
209 | 0 | IsArray = true; |
210 | |
|
211 | 0 | if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) { |
212 | 0 | ArraySize = CAT->getSize().getZExtValue(); |
213 | 0 | } else { |
214 | 0 | assert(I == 0 && "unexpected unsized array designator"); |
215 | 0 | FirstEntryIsUnsizedArray = true; |
216 | 0 | ArraySize = AssumedSizeForUnsizedArray; |
217 | 0 | } |
218 | 0 | } else if (Type->isAnyComplexType()) { |
219 | 0 | const ComplexType *CT = Type->castAs<ComplexType>(); |
220 | 0 | Type = CT->getElementType(); |
221 | 0 | ArraySize = 2; |
222 | 0 | MostDerivedLength = I + 1; |
223 | 0 | IsArray = true; |
224 | 0 | } else if (const FieldDecl *FD = getAsField(Path[I])) { |
225 | 0 | Type = FD->getType(); |
226 | 0 | ArraySize = 0; |
227 | 0 | MostDerivedLength = I + 1; |
228 | 0 | IsArray = false; |
229 | 0 | } else { |
230 | | // Path[I] describes a base class. |
231 | 0 | ArraySize = 0; |
232 | 0 | IsArray = false; |
233 | 0 | } |
234 | 0 | } |
235 | 4 | return MostDerivedLength; |
236 | 4 | } |
237 | | |
238 | | /// A path from a glvalue to a subobject of that glvalue. |
239 | | struct SubobjectDesignator { |
240 | | /// True if the subobject was named in a manner not supported by C++11. Such |
241 | | /// lvalues can still be folded, but they are not core constant expressions |
242 | | /// and we cannot perform lvalue-to-rvalue conversions on them. |
243 | | unsigned Invalid : 1; |
244 | | |
245 | | /// Is this a pointer one past the end of an object? |
246 | | unsigned IsOnePastTheEnd : 1; |
247 | | |
248 | | /// Indicator of whether the first entry is an unsized array. |
249 | | unsigned FirstEntryIsAnUnsizedArray : 1; |
250 | | |
251 | | /// Indicator of whether the most-derived object is an array element. |
252 | | unsigned MostDerivedIsArrayElement : 1; |
253 | | |
254 | | /// The length of the path to the most-derived object of which this is a |
255 | | /// subobject. |
256 | | unsigned MostDerivedPathLength : 28; |
257 | | |
258 | | /// The size of the array of which the most-derived object is an element. |
259 | | /// This will always be 0 if the most-derived object is not an array |
260 | | /// element. 0 is not an indicator of whether or not the most-derived object |
261 | | /// is an array, however, because 0-length arrays are allowed. |
262 | | /// |
263 | | /// If the current array is an unsized array, the value of this is |
264 | | /// undefined. |
265 | | uint64_t MostDerivedArraySize; |
266 | | |
267 | | /// The type of the most derived object referred to by this address. |
268 | | QualType MostDerivedType; |
269 | | |
270 | | typedef APValue::LValuePathEntry PathEntry; |
271 | | |
272 | | /// The entries on the path from the glvalue to the designated subobject. |
273 | | SmallVector<PathEntry, 8> Entries; |
274 | | |
275 | 14 | SubobjectDesignator() : Invalid(true) {} |
276 | | |
277 | | explicit SubobjectDesignator(QualType T) |
278 | | : Invalid(false), IsOnePastTheEnd(false), |
279 | | FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), |
280 | | MostDerivedPathLength(0), MostDerivedArraySize(0), |
281 | 9 | MostDerivedType(T) {} |
282 | | |
283 | | SubobjectDesignator(ASTContext &Ctx, const APValue &V) |
284 | | : Invalid(!V.isLValue() || !V.hasLValuePath()), IsOnePastTheEnd(false), |
285 | | FirstEntryIsAnUnsizedArray(false), MostDerivedIsArrayElement(false), |
286 | 4 | MostDerivedPathLength(0), MostDerivedArraySize(0) { |
287 | 4 | assert(V.isLValue() && "Non-LValue used to make an LValue designator?"); |
288 | 4 | if (!Invalid) { |
289 | 4 | IsOnePastTheEnd = V.isLValueOnePastTheEnd(); |
290 | 4 | ArrayRef<PathEntry> VEntries = V.getLValuePath(); |
291 | 4 | Entries.insert(Entries.end(), VEntries.begin(), VEntries.end()); |
292 | 4 | if (V.getLValueBase()) { |
293 | 4 | bool IsArray = false; |
294 | 4 | bool FirstIsUnsizedArray = false; |
295 | 4 | MostDerivedPathLength = findMostDerivedSubobject( |
296 | 4 | Ctx, V.getLValueBase(), V.getLValuePath(), MostDerivedArraySize, |
297 | 4 | MostDerivedType, IsArray, FirstIsUnsizedArray); |
298 | 4 | MostDerivedIsArrayElement = IsArray; |
299 | 4 | FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; |
300 | 4 | } |
301 | 4 | } |
302 | 4 | } |
303 | | |
304 | | void truncate(ASTContext &Ctx, APValue::LValueBase Base, |
305 | 0 | unsigned NewLength) { |
306 | 0 | if (Invalid) |
307 | 0 | return; |
308 | | |
309 | 0 | assert(Base && "cannot truncate path for null pointer"); |
310 | 0 | assert(NewLength <= Entries.size() && "not a truncation"); |
311 | | |
312 | 0 | if (NewLength == Entries.size()) |
313 | 0 | return; |
314 | 0 | Entries.resize(NewLength); |
315 | |
|
316 | 0 | bool IsArray = false; |
317 | 0 | bool FirstIsUnsizedArray = false; |
318 | 0 | MostDerivedPathLength = findMostDerivedSubobject( |
319 | 0 | Ctx, Base, Entries, MostDerivedArraySize, MostDerivedType, IsArray, |
320 | 0 | FirstIsUnsizedArray); |
321 | 0 | MostDerivedIsArrayElement = IsArray; |
322 | 0 | FirstEntryIsAnUnsizedArray = FirstIsUnsizedArray; |
323 | 0 | } |
324 | | |
325 | 0 | void setInvalid() { |
326 | 0 | Invalid = true; |
327 | 0 | Entries.clear(); |
328 | 0 | } |
329 | | |
330 | | /// Determine whether the most derived subobject is an array without a |
331 | | /// known bound. |
332 | 0 | bool isMostDerivedAnUnsizedArray() const { |
333 | 0 | assert(!Invalid && "Calling this makes no sense on invalid designators"); |
334 | 0 | return Entries.size() == 1 && FirstEntryIsAnUnsizedArray; |
335 | 0 | } |
336 | | |
337 | | /// Determine what the most derived array's size is. Results in an assertion |
338 | | /// failure if the most derived array lacks a size. |
339 | 0 | uint64_t getMostDerivedArraySize() const { |
340 | 0 | assert(!isMostDerivedAnUnsizedArray() && "Unsized array has no size"); |
341 | 0 | return MostDerivedArraySize; |
342 | 0 | } |
343 | | |
344 | | /// Determine whether this is a one-past-the-end pointer. |
345 | 0 | bool isOnePastTheEnd() const { |
346 | 0 | assert(!Invalid); |
347 | 0 | if (IsOnePastTheEnd) |
348 | 0 | return true; |
349 | 0 | if (!isMostDerivedAnUnsizedArray() && MostDerivedIsArrayElement && |
350 | 0 | Entries[MostDerivedPathLength - 1].getAsArrayIndex() == |
351 | 0 | MostDerivedArraySize) |
352 | 0 | return true; |
353 | 0 | return false; |
354 | 0 | } |
355 | | |
356 | | /// Get the range of valid index adjustments in the form |
357 | | /// {maximum value that can be subtracted from this pointer, |
358 | | /// maximum value that can be added to this pointer} |
359 | 0 | std::pair<uint64_t, uint64_t> validIndexAdjustments() { |
360 | 0 | if (Invalid || isMostDerivedAnUnsizedArray()) |
361 | 0 | return {0, 0}; |
362 | | |
363 | | // [expr.add]p4: For the purposes of these operators, a pointer to a |
364 | | // nonarray object behaves the same as a pointer to the first element of |
365 | | // an array of length one with the type of the object as its element type. |
366 | 0 | bool IsArray = MostDerivedPathLength == Entries.size() && |
367 | 0 | MostDerivedIsArrayElement; |
368 | 0 | uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() |
369 | 0 | : (uint64_t)IsOnePastTheEnd; |
370 | 0 | uint64_t ArraySize = |
371 | 0 | IsArray ? getMostDerivedArraySize() : (uint64_t)1; |
372 | 0 | return {ArrayIndex, ArraySize - ArrayIndex}; |
373 | 0 | } |
374 | | |
375 | | /// Check that this refers to a valid subobject. |
376 | 0 | bool isValidSubobject() const { |
377 | 0 | if (Invalid) |
378 | 0 | return false; |
379 | 0 | return !isOnePastTheEnd(); |
380 | 0 | } |
381 | | /// Check that this refers to a valid subobject, and if not, produce a |
382 | | /// relevant diagnostic and set the designator as invalid. |
383 | | bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK); |
384 | | |
385 | | /// Get the type of the designated object. |
386 | 0 | QualType getType(ASTContext &Ctx) const { |
387 | 0 | assert(!Invalid && "invalid designator has no subobject type"); |
388 | 0 | return MostDerivedPathLength == Entries.size() |
389 | 0 | ? MostDerivedType |
390 | 0 | : Ctx.getRecordType(getAsBaseClass(Entries.back())); |
391 | 0 | } |
392 | | |
393 | | /// Update this designator to refer to the first element within this array. |
394 | 0 | void addArrayUnchecked(const ConstantArrayType *CAT) { |
395 | 0 | Entries.push_back(PathEntry::ArrayIndex(0)); |
396 | | |
397 | | // This is a most-derived object. |
398 | 0 | MostDerivedType = CAT->getElementType(); |
399 | 0 | MostDerivedIsArrayElement = true; |
400 | 0 | MostDerivedArraySize = CAT->getSize().getZExtValue(); |
401 | 0 | MostDerivedPathLength = Entries.size(); |
402 | 0 | } |
403 | | /// Update this designator to refer to the first element within the array of |
404 | | /// elements of type T. This is an array of unknown size. |
405 | 0 | void addUnsizedArrayUnchecked(QualType ElemTy) { |
406 | 0 | Entries.push_back(PathEntry::ArrayIndex(0)); |
407 | |
|
408 | 0 | MostDerivedType = ElemTy; |
409 | 0 | MostDerivedIsArrayElement = true; |
410 | | // The value in MostDerivedArraySize is undefined in this case. So, set it |
411 | | // to an arbitrary value that's likely to loudly break things if it's |
412 | | // used. |
413 | 0 | MostDerivedArraySize = AssumedSizeForUnsizedArray; |
414 | 0 | MostDerivedPathLength = Entries.size(); |
415 | 0 | } |
416 | | /// Update this designator to refer to the given base or member of this |
417 | | /// object. |
418 | 0 | void addDeclUnchecked(const Decl *D, bool Virtual = false) { |
419 | 0 | Entries.push_back(APValue::BaseOrMemberType(D, Virtual)); |
420 | | |
421 | | // If this isn't a base class, it's a new most-derived object. |
422 | 0 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(D)) { |
423 | 0 | MostDerivedType = FD->getType(); |
424 | 0 | MostDerivedIsArrayElement = false; |
425 | 0 | MostDerivedArraySize = 0; |
426 | 0 | MostDerivedPathLength = Entries.size(); |
427 | 0 | } |
428 | 0 | } |
429 | | /// Update this designator to refer to the given complex component. |
430 | 0 | void addComplexUnchecked(QualType EltTy, bool Imag) { |
431 | 0 | Entries.push_back(PathEntry::ArrayIndex(Imag)); |
432 | | |
433 | | // This is technically a most-derived object, though in practice this |
434 | | // is unlikely to matter. |
435 | 0 | MostDerivedType = EltTy; |
436 | 0 | MostDerivedIsArrayElement = true; |
437 | 0 | MostDerivedArraySize = 2; |
438 | 0 | MostDerivedPathLength = Entries.size(); |
439 | 0 | } |
440 | | void diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, const Expr *E); |
441 | | void diagnosePointerArithmetic(EvalInfo &Info, const Expr *E, |
442 | | const APSInt &N); |
443 | | /// Add N to the address of this subobject. |
444 | 0 | void adjustIndex(EvalInfo &Info, const Expr *E, APSInt N) { |
445 | 0 | if (Invalid || !N) return; |
446 | 0 | uint64_t TruncatedN = N.extOrTrunc(64).getZExtValue(); |
447 | 0 | if (isMostDerivedAnUnsizedArray()) { |
448 | 0 | diagnoseUnsizedArrayPointerArithmetic(Info, E); |
449 | | // Can't verify -- trust that the user is doing the right thing (or if |
450 | | // not, trust that the caller will catch the bad behavior). |
451 | | // FIXME: Should we reject if this overflows, at least? |
452 | 0 | Entries.back() = PathEntry::ArrayIndex( |
453 | 0 | Entries.back().getAsArrayIndex() + TruncatedN); |
454 | 0 | return; |
455 | 0 | } |
456 | | |
457 | | // [expr.add]p4: For the purposes of these operators, a pointer to a |
458 | | // nonarray object behaves the same as a pointer to the first element of |
459 | | // an array of length one with the type of the object as its element type. |
460 | 0 | bool IsArray = MostDerivedPathLength == Entries.size() && |
461 | 0 | MostDerivedIsArrayElement; |
462 | 0 | uint64_t ArrayIndex = IsArray ? Entries.back().getAsArrayIndex() |
463 | 0 | : (uint64_t)IsOnePastTheEnd; |
464 | 0 | uint64_t ArraySize = |
465 | 0 | IsArray ? getMostDerivedArraySize() : (uint64_t)1; |
466 | |
|
467 | 0 | if (N < -(int64_t)ArrayIndex || N > ArraySize - ArrayIndex) { |
468 | | // Calculate the actual index in a wide enough type, so we can include |
469 | | // it in the note. |
470 | 0 | N = N.extend(std::max<unsigned>(N.getBitWidth() + 1, 65)); |
471 | 0 | (llvm::APInt&)N += ArrayIndex; |
472 | 0 | assert(N.ugt(ArraySize) && "bounds check failed for in-bounds index"); |
473 | 0 | diagnosePointerArithmetic(Info, E, N); |
474 | 0 | setInvalid(); |
475 | 0 | return; |
476 | 0 | } |
477 | | |
478 | 0 | ArrayIndex += TruncatedN; |
479 | 0 | assert(ArrayIndex <= ArraySize && |
480 | 0 | "bounds check succeeded for out-of-bounds index"); |
481 | | |
482 | 0 | if (IsArray) |
483 | 0 | Entries.back() = PathEntry::ArrayIndex(ArrayIndex); |
484 | 0 | else |
485 | 0 | IsOnePastTheEnd = (ArrayIndex != 0); |
486 | 0 | } |
487 | | }; |
488 | | |
489 | | /// A scope at the end of which an object can need to be destroyed. |
490 | | enum class ScopeKind { |
491 | | Block, |
492 | | FullExpression, |
493 | | Call |
494 | | }; |
495 | | |
496 | | /// A reference to a particular call and its arguments. |
497 | | struct CallRef { |
498 | 18 | CallRef() : OrigCallee(), CallIndex(0), Version() {} |
499 | | CallRef(const FunctionDecl *Callee, unsigned CallIndex, unsigned Version) |
500 | 0 | : OrigCallee(Callee), CallIndex(CallIndex), Version(Version) {} |
501 | | |
502 | 0 | explicit operator bool() const { return OrigCallee; } |
503 | | |
504 | | /// Get the parameter that the caller initialized, corresponding to the |
505 | | /// given parameter in the callee. |
506 | 0 | const ParmVarDecl *getOrigParam(const ParmVarDecl *PVD) const { |
507 | 0 | return OrigCallee ? OrigCallee->getParamDecl(PVD->getFunctionScopeIndex()) |
508 | 0 | : PVD; |
509 | 0 | } |
510 | | |
511 | | /// The callee at the point where the arguments were evaluated. This might |
512 | | /// be different from the actual callee (a different redeclaration, or a |
513 | | /// virtual override), but this function's parameters are the ones that |
514 | | /// appear in the parameter map. |
515 | | const FunctionDecl *OrigCallee; |
516 | | /// The call index of the frame that holds the argument values. |
517 | | unsigned CallIndex; |
518 | | /// The version of the parameters corresponding to this call. |
519 | | unsigned Version; |
520 | | }; |
521 | | |
522 | | /// A stack frame in the constexpr call stack. |
523 | | class CallStackFrame : public interp::Frame { |
524 | | public: |
525 | | EvalInfo &Info; |
526 | | |
527 | | /// Parent - The caller of this stack frame. |
528 | | CallStackFrame *Caller; |
529 | | |
530 | | /// Callee - The function which was called. |
531 | | const FunctionDecl *Callee; |
532 | | |
533 | | /// This - The binding for the this pointer in this call, if any. |
534 | | const LValue *This; |
535 | | |
536 | | /// CallExpr - The syntactical structure of member function calls |
537 | | const Expr *CallExpr; |
538 | | |
539 | | /// Information on how to find the arguments to this call. Our arguments |
540 | | /// are stored in our parent's CallStackFrame, using the ParmVarDecl* as a |
541 | | /// key and this value as the version. |
542 | | CallRef Arguments; |
543 | | |
544 | | /// Source location information about the default argument or default |
545 | | /// initializer expression we're evaluating, if any. |
546 | | CurrentSourceLocExprScope CurSourceLocExprScope; |
547 | | |
548 | | // Note that we intentionally use std::map here so that references to |
549 | | // values are stable. |
550 | | typedef std::pair<const void *, unsigned> MapKeyTy; |
551 | | typedef std::map<MapKeyTy, APValue> MapTy; |
552 | | /// Temporaries - Temporary lvalues materialized within this stack frame. |
553 | | MapTy Temporaries; |
554 | | |
555 | | /// CallRange - The source range of the call expression for this call. |
556 | | SourceRange CallRange; |
557 | | |
558 | | /// Index - The call index of this call. |
559 | | unsigned Index; |
560 | | |
561 | | /// The stack of integers for tracking version numbers for temporaries. |
562 | | SmallVector<unsigned, 2> TempVersionStack = {1}; |
563 | | unsigned CurTempVersion = TempVersionStack.back(); |
564 | | |
565 | 0 | unsigned getTempVersion() const { return TempVersionStack.back(); } |
566 | | |
567 | 0 | void pushTempVersion() { |
568 | 0 | TempVersionStack.push_back(++CurTempVersion); |
569 | 0 | } |
570 | | |
571 | 0 | void popTempVersion() { |
572 | 0 | TempVersionStack.pop_back(); |
573 | 0 | } |
574 | | |
575 | 0 | CallRef createCall(const FunctionDecl *Callee) { |
576 | 0 | return {Callee, Index, ++CurTempVersion}; |
577 | 0 | } |
578 | | |
579 | | // FIXME: Adding this to every 'CallStackFrame' may have a nontrivial impact |
580 | | // on the overall stack usage of deeply-recursing constexpr evaluations. |
581 | | // (We should cache this map rather than recomputing it repeatedly.) |
582 | | // But let's try this and see how it goes; we can look into caching the map |
583 | | // as a later change. |
584 | | |
585 | | /// LambdaCaptureFields - Mapping from captured variables/this to |
586 | | /// corresponding data members in the closure class. |
587 | | llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields; |
588 | | FieldDecl *LambdaThisCaptureField = nullptr; |
589 | | |
590 | | CallStackFrame(EvalInfo &Info, SourceRange CallRange, |
591 | | const FunctionDecl *Callee, const LValue *This, |
592 | | const Expr *CallExpr, CallRef Arguments); |
593 | | ~CallStackFrame(); |
594 | | |
595 | | // Return the temporary for Key whose version number is Version. |
596 | 0 | APValue *getTemporary(const void *Key, unsigned Version) { |
597 | 0 | MapKeyTy KV(Key, Version); |
598 | 0 | auto LB = Temporaries.lower_bound(KV); |
599 | 0 | if (LB != Temporaries.end() && LB->first == KV) |
600 | 0 | return &LB->second; |
601 | 0 | return nullptr; |
602 | 0 | } |
603 | | |
604 | | // Return the current temporary for Key in the map. |
605 | 0 | APValue *getCurrentTemporary(const void *Key) { |
606 | 0 | auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); |
607 | 0 | if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) |
608 | 0 | return &std::prev(UB)->second; |
609 | 0 | return nullptr; |
610 | 0 | } |
611 | | |
612 | | // Return the version number of the current temporary for Key. |
613 | 0 | unsigned getCurrentTemporaryVersion(const void *Key) const { |
614 | 0 | auto UB = Temporaries.upper_bound(MapKeyTy(Key, UINT_MAX)); |
615 | 0 | if (UB != Temporaries.begin() && std::prev(UB)->first.first == Key) |
616 | 0 | return std::prev(UB)->first.second; |
617 | 0 | return 0; |
618 | 0 | } |
619 | | |
620 | | /// Allocate storage for an object of type T in this stack frame. |
621 | | /// Populates LV with a handle to the created object. Key identifies |
622 | | /// the temporary within the stack frame, and must not be reused without |
623 | | /// bumping the temporary version number. |
624 | | template<typename KeyT> |
625 | | APValue &createTemporary(const KeyT *Key, QualType T, |
626 | | ScopeKind Scope, LValue &LV); |
627 | | |
628 | | /// Allocate storage for a parameter of a function call made in this frame. |
629 | | APValue &createParam(CallRef Args, const ParmVarDecl *PVD, LValue &LV); |
630 | | |
631 | | void describe(llvm::raw_ostream &OS) const override; |
632 | | |
633 | 0 | Frame *getCaller() const override { return Caller; } |
634 | 0 | SourceRange getCallRange() const override { return CallRange; } |
635 | 0 | const FunctionDecl *getCallee() const override { return Callee; } |
636 | | |
637 | 0 | bool isStdFunction() const { |
638 | 0 | for (const DeclContext *DC = Callee; DC; DC = DC->getParent()) |
639 | 0 | if (DC->isStdNamespace()) |
640 | 0 | return true; |
641 | 0 | return false; |
642 | 0 | } |
643 | | |
644 | | /// Whether we're in a context where [[msvc::constexpr]] evaluation is |
645 | | /// permitted. See MSConstexprDocs for description of permitted contexts. |
646 | | bool CanEvalMSConstexpr = false; |
647 | | |
648 | | private: |
649 | | APValue &createLocal(APValue::LValueBase Base, const void *Key, QualType T, |
650 | | ScopeKind Scope); |
651 | | }; |
652 | | |
653 | | /// Temporarily override 'this'. |
654 | | class ThisOverrideRAII { |
655 | | public: |
656 | | ThisOverrideRAII(CallStackFrame &Frame, const LValue *NewThis, bool Enable) |
657 | 0 | : Frame(Frame), OldThis(Frame.This) { |
658 | 0 | if (Enable) |
659 | 0 | Frame.This = NewThis; |
660 | 0 | } |
661 | 0 | ~ThisOverrideRAII() { |
662 | 0 | Frame.This = OldThis; |
663 | 0 | } |
664 | | private: |
665 | | CallStackFrame &Frame; |
666 | | const LValue *OldThis; |
667 | | }; |
668 | | |
669 | | // A shorthand time trace scope struct, prints source range, for example |
670 | | // {"name":"EvaluateAsRValue","args":{"detail":"<test.cc:8:21, col:25>"}}} |
671 | | class ExprTimeTraceScope { |
672 | | public: |
673 | | ExprTimeTraceScope(const Expr *E, const ASTContext &Ctx, StringRef Name) |
674 | 0 | : TimeScope(Name, [E, &Ctx] { |
675 | 0 | return E->getSourceRange().printToString(Ctx.getSourceManager()); |
676 | 25 | }) {} |
677 | | |
678 | | private: |
679 | | llvm::TimeTraceScope TimeScope; |
680 | | }; |
681 | | |
682 | | /// RAII object used to change the current ability of |
683 | | /// [[msvc::constexpr]] evaulation. |
684 | | struct MSConstexprContextRAII { |
685 | | CallStackFrame &Frame; |
686 | | bool OldValue; |
687 | | explicit MSConstexprContextRAII(CallStackFrame &Frame, bool Value) |
688 | 0 | : Frame(Frame), OldValue(Frame.CanEvalMSConstexpr) { |
689 | 0 | Frame.CanEvalMSConstexpr = Value; |
690 | 0 | } |
691 | | |
692 | 0 | ~MSConstexprContextRAII() { Frame.CanEvalMSConstexpr = OldValue; } |
693 | | }; |
694 | | } |
695 | | |
696 | | static bool HandleDestruction(EvalInfo &Info, const Expr *E, |
697 | | const LValue &This, QualType ThisType); |
698 | | static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, |
699 | | APValue::LValueBase LVBase, APValue &Value, |
700 | | QualType T); |
701 | | |
702 | | namespace { |
703 | | /// A cleanup, and a flag indicating whether it is lifetime-extended. |
704 | | class Cleanup { |
705 | | llvm::PointerIntPair<APValue*, 2, ScopeKind> Value; |
706 | | APValue::LValueBase Base; |
707 | | QualType T; |
708 | | |
709 | | public: |
710 | | Cleanup(APValue *Val, APValue::LValueBase Base, QualType T, |
711 | | ScopeKind Scope) |
712 | 0 | : Value(Val, Scope), Base(Base), T(T) {} |
713 | | |
714 | | /// Determine whether this cleanup should be performed at the end of the |
715 | | /// given kind of scope. |
716 | 0 | bool isDestroyedAtEndOf(ScopeKind K) const { |
717 | 0 | return (int)Value.getInt() >= (int)K; |
718 | 0 | } |
719 | 0 | bool endLifetime(EvalInfo &Info, bool RunDestructors) { |
720 | 0 | if (RunDestructors) { |
721 | 0 | SourceLocation Loc; |
722 | 0 | if (const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>()) |
723 | 0 | Loc = VD->getLocation(); |
724 | 0 | else if (const Expr *E = Base.dyn_cast<const Expr*>()) |
725 | 0 | Loc = E->getExprLoc(); |
726 | 0 | return HandleDestruction(Info, Loc, Base, *Value.getPointer(), T); |
727 | 0 | } |
728 | 0 | *Value.getPointer() = APValue(); |
729 | 0 | return true; |
730 | 0 | } |
731 | | |
732 | 0 | bool hasSideEffect() { |
733 | 0 | return T.isDestructedType(); |
734 | 0 | } |
735 | | }; |
736 | | |
737 | | /// A reference to an object whose construction we are currently evaluating. |
738 | | struct ObjectUnderConstruction { |
739 | | APValue::LValueBase Base; |
740 | | ArrayRef<APValue::LValuePathEntry> Path; |
741 | | friend bool operator==(const ObjectUnderConstruction &LHS, |
742 | 0 | const ObjectUnderConstruction &RHS) { |
743 | 0 | return LHS.Base == RHS.Base && LHS.Path == RHS.Path; |
744 | 0 | } |
745 | 0 | friend llvm::hash_code hash_value(const ObjectUnderConstruction &Obj) { |
746 | 0 | return llvm::hash_combine(Obj.Base, Obj.Path); |
747 | 0 | } |
748 | | }; |
749 | | enum class ConstructionPhase { |
750 | | None, |
751 | | Bases, |
752 | | AfterBases, |
753 | | AfterFields, |
754 | | Destroying, |
755 | | DestroyingBases |
756 | | }; |
757 | | } |
758 | | |
759 | | namespace llvm { |
760 | | template<> struct DenseMapInfo<ObjectUnderConstruction> { |
761 | | using Base = DenseMapInfo<APValue::LValueBase>; |
762 | 0 | static ObjectUnderConstruction getEmptyKey() { |
763 | 0 | return {Base::getEmptyKey(), {}}; } |
764 | 0 | static ObjectUnderConstruction getTombstoneKey() { |
765 | 0 | return {Base::getTombstoneKey(), {}}; |
766 | 0 | } |
767 | 0 | static unsigned getHashValue(const ObjectUnderConstruction &Object) { |
768 | 0 | return hash_value(Object); |
769 | 0 | } |
770 | | static bool isEqual(const ObjectUnderConstruction &LHS, |
771 | 0 | const ObjectUnderConstruction &RHS) { |
772 | 0 | return LHS == RHS; |
773 | 0 | } |
774 | | }; |
775 | | } |
776 | | |
777 | | namespace { |
778 | | /// A dynamically-allocated heap object. |
779 | | struct DynAlloc { |
780 | | /// The value of this heap-allocated object. |
781 | | APValue Value; |
782 | | /// The allocating expression; used for diagnostics. Either a CXXNewExpr |
783 | | /// or a CallExpr (the latter is for direct calls to operator new inside |
784 | | /// std::allocator<T>::allocate). |
785 | | const Expr *AllocExpr = nullptr; |
786 | | |
787 | | enum Kind { |
788 | | New, |
789 | | ArrayNew, |
790 | | StdAllocator |
791 | | }; |
792 | | |
793 | | /// Get the kind of the allocation. This must match between allocation |
794 | | /// and deallocation. |
795 | 0 | Kind getKind() const { |
796 | 0 | if (auto *NE = dyn_cast<CXXNewExpr>(AllocExpr)) |
797 | 0 | return NE->isArray() ? ArrayNew : New; |
798 | 0 | assert(isa<CallExpr>(AllocExpr)); |
799 | 0 | return StdAllocator; |
800 | 0 | } |
801 | | }; |
802 | | |
803 | | struct DynAllocOrder { |
804 | 0 | bool operator()(DynamicAllocLValue L, DynamicAllocLValue R) const { |
805 | 0 | return L.getIndex() < R.getIndex(); |
806 | 0 | } |
807 | | }; |
808 | | |
809 | | /// EvalInfo - This is a private struct used by the evaluator to capture |
810 | | /// information about a subexpression as it is folded. It retains information |
811 | | /// about the AST context, but also maintains information about the folded |
812 | | /// expression. |
813 | | /// |
814 | | /// If an expression could be evaluated, it is still possible it is not a C |
815 | | /// "integer constant expression" or constant expression. If not, this struct |
816 | | /// captures information about how and why not. |
817 | | /// |
818 | | /// One bit of information passed *into* the request for constant folding |
819 | | /// indicates whether the subexpression is "evaluated" or not according to C |
820 | | /// rules. For example, the RHS of (0 && foo()) is not evaluated. We can |
821 | | /// evaluate the expression regardless of what the RHS is, but C only allows |
822 | | /// certain things in certain situations. |
823 | | class EvalInfo : public interp::State { |
824 | | public: |
825 | | ASTContext &Ctx; |
826 | | |
827 | | /// EvalStatus - Contains information about the evaluation. |
828 | | Expr::EvalStatus &EvalStatus; |
829 | | |
830 | | /// CurrentCall - The top of the constexpr call stack. |
831 | | CallStackFrame *CurrentCall; |
832 | | |
833 | | /// CallStackDepth - The number of calls in the call stack right now. |
834 | | unsigned CallStackDepth; |
835 | | |
836 | | /// NextCallIndex - The next call index to assign. |
837 | | unsigned NextCallIndex; |
838 | | |
839 | | /// StepsLeft - The remaining number of evaluation steps we're permitted |
840 | | /// to perform. This is essentially a limit for the number of statements |
841 | | /// we will evaluate. |
842 | | unsigned StepsLeft; |
843 | | |
844 | | /// Enable the experimental new constant interpreter. If an expression is |
845 | | /// not supported by the interpreter, an error is triggered. |
846 | | bool EnableNewConstInterp; |
847 | | |
848 | | /// BottomFrame - The frame in which evaluation started. This must be |
849 | | /// initialized after CurrentCall and CallStackDepth. |
850 | | CallStackFrame BottomFrame; |
851 | | |
852 | | /// A stack of values whose lifetimes end at the end of some surrounding |
853 | | /// evaluation frame. |
854 | | llvm::SmallVector<Cleanup, 16> CleanupStack; |
855 | | |
856 | | /// EvaluatingDecl - This is the declaration whose initializer is being |
857 | | /// evaluated, if any. |
858 | | APValue::LValueBase EvaluatingDecl; |
859 | | |
860 | | enum class EvaluatingDeclKind { |
861 | | None, |
862 | | /// We're evaluating the construction of EvaluatingDecl. |
863 | | Ctor, |
864 | | /// We're evaluating the destruction of EvaluatingDecl. |
865 | | Dtor, |
866 | | }; |
867 | | EvaluatingDeclKind IsEvaluatingDecl = EvaluatingDeclKind::None; |
868 | | |
869 | | /// EvaluatingDeclValue - This is the value being constructed for the |
870 | | /// declaration whose initializer is being evaluated, if any. |
871 | | APValue *EvaluatingDeclValue; |
872 | | |
873 | | /// Set of objects that are currently being constructed. |
874 | | llvm::DenseMap<ObjectUnderConstruction, ConstructionPhase> |
875 | | ObjectsUnderConstruction; |
876 | | |
877 | | /// Current heap allocations, along with the location where each was |
878 | | /// allocated. We use std::map here because we need stable addresses |
879 | | /// for the stored APValues. |
880 | | std::map<DynamicAllocLValue, DynAlloc, DynAllocOrder> HeapAllocs; |
881 | | |
882 | | /// The number of heap allocations performed so far in this evaluation. |
883 | | unsigned NumHeapAllocs = 0; |
884 | | |
885 | | struct EvaluatingConstructorRAII { |
886 | | EvalInfo &EI; |
887 | | ObjectUnderConstruction Object; |
888 | | bool DidInsert; |
889 | | EvaluatingConstructorRAII(EvalInfo &EI, ObjectUnderConstruction Object, |
890 | | bool HasBases) |
891 | 0 | : EI(EI), Object(Object) { |
892 | 0 | DidInsert = |
893 | 0 | EI.ObjectsUnderConstruction |
894 | 0 | .insert({Object, HasBases ? ConstructionPhase::Bases |
895 | 0 | : ConstructionPhase::AfterBases}) |
896 | 0 | .second; |
897 | 0 | } |
898 | 0 | void finishedConstructingBases() { |
899 | 0 | EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterBases; |
900 | 0 | } |
901 | 0 | void finishedConstructingFields() { |
902 | 0 | EI.ObjectsUnderConstruction[Object] = ConstructionPhase::AfterFields; |
903 | 0 | } |
904 | 0 | ~EvaluatingConstructorRAII() { |
905 | 0 | if (DidInsert) EI.ObjectsUnderConstruction.erase(Object); |
906 | 0 | } |
907 | | }; |
908 | | |
909 | | struct EvaluatingDestructorRAII { |
910 | | EvalInfo &EI; |
911 | | ObjectUnderConstruction Object; |
912 | | bool DidInsert; |
913 | | EvaluatingDestructorRAII(EvalInfo &EI, ObjectUnderConstruction Object) |
914 | 0 | : EI(EI), Object(Object) { |
915 | 0 | DidInsert = EI.ObjectsUnderConstruction |
916 | 0 | .insert({Object, ConstructionPhase::Destroying}) |
917 | 0 | .second; |
918 | 0 | } |
919 | 0 | void startedDestroyingBases() { |
920 | 0 | EI.ObjectsUnderConstruction[Object] = |
921 | 0 | ConstructionPhase::DestroyingBases; |
922 | 0 | } |
923 | 0 | ~EvaluatingDestructorRAII() { |
924 | 0 | if (DidInsert) |
925 | 0 | EI.ObjectsUnderConstruction.erase(Object); |
926 | 0 | } |
927 | | }; |
928 | | |
929 | | ConstructionPhase |
930 | | isEvaluatingCtorDtor(APValue::LValueBase Base, |
931 | 0 | ArrayRef<APValue::LValuePathEntry> Path) { |
932 | 0 | return ObjectsUnderConstruction.lookup({Base, Path}); |
933 | 0 | } |
934 | | |
935 | | /// If we're currently speculatively evaluating, the outermost call stack |
936 | | /// depth at which we can mutate state, otherwise 0. |
937 | | unsigned SpeculativeEvaluationDepth = 0; |
938 | | |
939 | | /// The current array initialization index, if we're performing array |
940 | | /// initialization. |
941 | | uint64_t ArrayInitIndex = -1; |
942 | | |
943 | | /// HasActiveDiagnostic - Was the previous diagnostic stored? If so, further |
944 | | /// notes attached to it will also be stored, otherwise they will not be. |
945 | | bool HasActiveDiagnostic; |
946 | | |
947 | | /// Have we emitted a diagnostic explaining why we couldn't constant |
948 | | /// fold (not just why it's not strictly a constant expression)? |
949 | | bool HasFoldFailureDiagnostic; |
950 | | |
951 | | /// Whether we're checking that an expression is a potential constant |
952 | | /// expression. If so, do not fail on constructs that could become constant |
953 | | /// later on (such as a use of an undefined global). |
954 | | bool CheckingPotentialConstantExpression = false; |
955 | | |
956 | | /// Whether we're checking for an expression that has undefined behavior. |
957 | | /// If so, we will produce warnings if we encounter an operation that is |
958 | | /// always undefined. |
959 | | /// |
960 | | /// Note that we still need to evaluate the expression normally when this |
961 | | /// is set; this is used when evaluating ICEs in C. |
962 | | bool CheckingForUndefinedBehavior = false; |
963 | | |
964 | | enum EvaluationMode { |
965 | | /// Evaluate as a constant expression. Stop if we find that the expression |
966 | | /// is not a constant expression. |
967 | | EM_ConstantExpression, |
968 | | |
969 | | /// Evaluate as a constant expression. Stop if we find that the expression |
970 | | /// is not a constant expression. Some expressions can be retried in the |
971 | | /// optimizer if we don't constant fold them here, but in an unevaluated |
972 | | /// context we try to fold them immediately since the optimizer never |
973 | | /// gets a chance to look at it. |
974 | | EM_ConstantExpressionUnevaluated, |
975 | | |
976 | | /// Fold the expression to a constant. Stop if we hit a side-effect that |
977 | | /// we can't model. |
978 | | EM_ConstantFold, |
979 | | |
980 | | /// Evaluate in any way we know how. Don't worry about side-effects that |
981 | | /// can't be modeled. |
982 | | EM_IgnoreSideEffects, |
983 | | } EvalMode; |
984 | | |
985 | | /// Are we checking whether the expression is a potential constant |
986 | | /// expression? |
987 | 4 | bool checkingPotentialConstantExpression() const override { |
988 | 4 | return CheckingPotentialConstantExpression; |
989 | 4 | } |
990 | | |
991 | | /// Are we checking an expression for overflow? |
992 | | // FIXME: We should check for any kind of undefined or suspicious behavior |
993 | | // in such constructs, not just overflow. |
994 | 0 | bool checkingForUndefinedBehavior() const override { |
995 | 0 | return CheckingForUndefinedBehavior; |
996 | 0 | } |
997 | | |
998 | | EvalInfo(const ASTContext &C, Expr::EvalStatus &S, EvaluationMode Mode) |
999 | | : Ctx(const_cast<ASTContext &>(C)), EvalStatus(S), CurrentCall(nullptr), |
1000 | | CallStackDepth(0), NextCallIndex(1), |
1001 | | StepsLeft(C.getLangOpts().ConstexprStepLimit), |
1002 | | EnableNewConstInterp(C.getLangOpts().EnableNewConstInterp), |
1003 | | BottomFrame(*this, SourceLocation(), /*Callee=*/nullptr, |
1004 | | /*This=*/nullptr, |
1005 | | /*CallExpr=*/nullptr, CallRef()), |
1006 | | EvaluatingDecl((const ValueDecl *)nullptr), |
1007 | | EvaluatingDeclValue(nullptr), HasActiveDiagnostic(false), |
1008 | 18 | HasFoldFailureDiagnostic(false), EvalMode(Mode) {} |
1009 | | |
1010 | 18 | ~EvalInfo() { |
1011 | 18 | discardCleanups(); |
1012 | 18 | } |
1013 | | |
1014 | 19 | ASTContext &getCtx() const override { return Ctx; } |
1015 | | |
1016 | | void setEvaluatingDecl(APValue::LValueBase Base, APValue &Value, |
1017 | 0 | EvaluatingDeclKind EDK = EvaluatingDeclKind::Ctor) { |
1018 | 0 | EvaluatingDecl = Base; |
1019 | 0 | IsEvaluatingDecl = EDK; |
1020 | 0 | EvaluatingDeclValue = &Value; |
1021 | 0 | } |
1022 | | |
1023 | 0 | bool CheckCallLimit(SourceLocation Loc) { |
1024 | | // Don't perform any constexpr calls (other than the call we're checking) |
1025 | | // when checking a potential constant expression. |
1026 | 0 | if (checkingPotentialConstantExpression() && CallStackDepth > 1) |
1027 | 0 | return false; |
1028 | 0 | if (NextCallIndex == 0) { |
1029 | | // NextCallIndex has wrapped around. |
1030 | 0 | FFDiag(Loc, diag::note_constexpr_call_limit_exceeded); |
1031 | 0 | return false; |
1032 | 0 | } |
1033 | 0 | if (CallStackDepth <= getLangOpts().ConstexprCallDepth) |
1034 | 0 | return true; |
1035 | 0 | FFDiag(Loc, diag::note_constexpr_depth_limit_exceeded) |
1036 | 0 | << getLangOpts().ConstexprCallDepth; |
1037 | 0 | return false; |
1038 | 0 | } |
1039 | | |
1040 | | bool CheckArraySize(SourceLocation Loc, unsigned BitWidth, |
1041 | 0 | uint64_t ElemCount, bool Diag) { |
1042 | | // FIXME: GH63562 |
1043 | | // APValue stores array extents as unsigned, |
1044 | | // so anything that is greater that unsigned would overflow when |
1045 | | // constructing the array, we catch this here. |
1046 | 0 | if (BitWidth > ConstantArrayType::getMaxSizeBits(Ctx) || |
1047 | 0 | ElemCount > uint64_t(std::numeric_limits<unsigned>::max())) { |
1048 | 0 | if (Diag) |
1049 | 0 | FFDiag(Loc, diag::note_constexpr_new_too_large) << ElemCount; |
1050 | 0 | return false; |
1051 | 0 | } |
1052 | | |
1053 | | // FIXME: GH63562 |
1054 | | // Arrays allocate an APValue per element. |
1055 | | // We use the number of constexpr steps as a proxy for the maximum size |
1056 | | // of arrays to avoid exhausting the system resources, as initialization |
1057 | | // of each element is likely to take some number of steps anyway. |
1058 | 0 | uint64_t Limit = Ctx.getLangOpts().ConstexprStepLimit; |
1059 | 0 | if (ElemCount > Limit) { |
1060 | 0 | if (Diag) |
1061 | 0 | FFDiag(Loc, diag::note_constexpr_new_exceeds_limits) |
1062 | 0 | << ElemCount << Limit; |
1063 | 0 | return false; |
1064 | 0 | } |
1065 | 0 | return true; |
1066 | 0 | } |
1067 | | |
1068 | | std::pair<CallStackFrame *, unsigned> |
1069 | 0 | getCallFrameAndDepth(unsigned CallIndex) { |
1070 | 0 | assert(CallIndex && "no call index in getCallFrameAndDepth"); |
1071 | | // We will eventually hit BottomFrame, which has Index 1, so Frame can't |
1072 | | // be null in this loop. |
1073 | 0 | unsigned Depth = CallStackDepth; |
1074 | 0 | CallStackFrame *Frame = CurrentCall; |
1075 | 0 | while (Frame->Index > CallIndex) { |
1076 | 0 | Frame = Frame->Caller; |
1077 | 0 | --Depth; |
1078 | 0 | } |
1079 | 0 | if (Frame->Index == CallIndex) |
1080 | 0 | return {Frame, Depth}; |
1081 | 0 | return {nullptr, 0}; |
1082 | 0 | } |
1083 | | |
1084 | 0 | bool nextStep(const Stmt *S) { |
1085 | 0 | if (!StepsLeft) { |
1086 | 0 | FFDiag(S->getBeginLoc(), diag::note_constexpr_step_limit_exceeded); |
1087 | 0 | return false; |
1088 | 0 | } |
1089 | 0 | --StepsLeft; |
1090 | 0 | return true; |
1091 | 0 | } |
1092 | | |
1093 | | APValue *createHeapAlloc(const Expr *E, QualType T, LValue &LV); |
1094 | | |
1095 | 0 | std::optional<DynAlloc *> lookupDynamicAlloc(DynamicAllocLValue DA) { |
1096 | 0 | std::optional<DynAlloc *> Result; |
1097 | 0 | auto It = HeapAllocs.find(DA); |
1098 | 0 | if (It != HeapAllocs.end()) |
1099 | 0 | Result = &It->second; |
1100 | 0 | return Result; |
1101 | 0 | } |
1102 | | |
1103 | | /// Get the allocated storage for the given parameter of the given call. |
1104 | 0 | APValue *getParamSlot(CallRef Call, const ParmVarDecl *PVD) { |
1105 | 0 | CallStackFrame *Frame = getCallFrameAndDepth(Call.CallIndex).first; |
1106 | 0 | return Frame ? Frame->getTemporary(Call.getOrigParam(PVD), Call.Version) |
1107 | 0 | : nullptr; |
1108 | 0 | } |
1109 | | |
1110 | | /// Information about a stack frame for std::allocator<T>::[de]allocate. |
1111 | | struct StdAllocatorCaller { |
1112 | | unsigned FrameIndex; |
1113 | | QualType ElemType; |
1114 | 0 | explicit operator bool() const { return FrameIndex != 0; }; |
1115 | | }; |
1116 | | |
1117 | 0 | StdAllocatorCaller getStdAllocatorCaller(StringRef FnName) const { |
1118 | 0 | for (const CallStackFrame *Call = CurrentCall; Call != &BottomFrame; |
1119 | 0 | Call = Call->Caller) { |
1120 | 0 | const auto *MD = dyn_cast_or_null<CXXMethodDecl>(Call->Callee); |
1121 | 0 | if (!MD) |
1122 | 0 | continue; |
1123 | 0 | const IdentifierInfo *FnII = MD->getIdentifier(); |
1124 | 0 | if (!FnII || !FnII->isStr(FnName)) |
1125 | 0 | continue; |
1126 | | |
1127 | 0 | const auto *CTSD = |
1128 | 0 | dyn_cast<ClassTemplateSpecializationDecl>(MD->getParent()); |
1129 | 0 | if (!CTSD) |
1130 | 0 | continue; |
1131 | | |
1132 | 0 | const IdentifierInfo *ClassII = CTSD->getIdentifier(); |
1133 | 0 | const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); |
1134 | 0 | if (CTSD->isInStdNamespace() && ClassII && |
1135 | 0 | ClassII->isStr("allocator") && TAL.size() >= 1 && |
1136 | 0 | TAL[0].getKind() == TemplateArgument::Type) |
1137 | 0 | return {Call->Index, TAL[0].getAsType()}; |
1138 | 0 | } |
1139 | | |
1140 | 0 | return {}; |
1141 | 0 | } |
1142 | | |
1143 | 0 | void performLifetimeExtension() { |
1144 | | // Disable the cleanups for lifetime-extended temporaries. |
1145 | 0 | llvm::erase_if(CleanupStack, [](Cleanup &C) { |
1146 | 0 | return !C.isDestroyedAtEndOf(ScopeKind::FullExpression); |
1147 | 0 | }); |
1148 | 0 | } |
1149 | | |
1150 | | /// Throw away any remaining cleanups at the end of evaluation. If any |
1151 | | /// cleanups would have had a side-effect, note that as an unmodeled |
1152 | | /// side-effect and return false. Otherwise, return true. |
1153 | 18 | bool discardCleanups() { |
1154 | 18 | for (Cleanup &C : CleanupStack) { |
1155 | 0 | if (C.hasSideEffect() && !noteSideEffect()) { |
1156 | 0 | CleanupStack.clear(); |
1157 | 0 | return false; |
1158 | 0 | } |
1159 | 0 | } |
1160 | 18 | CleanupStack.clear(); |
1161 | 18 | return true; |
1162 | 18 | } |
1163 | | |
1164 | | private: |
1165 | 2 | interp::Frame *getCurrentFrame() override { return CurrentCall; } |
1166 | 2 | const interp::Frame *getBottomFrame() const override { return &BottomFrame; } |
1167 | | |
1168 | 0 | bool hasActiveDiagnostic() override { return HasActiveDiagnostic; } |
1169 | 11 | void setActiveDiagnostic(bool Flag) override { HasActiveDiagnostic = Flag; } |
1170 | | |
1171 | 2 | void setFoldFailureDiagnostic(bool Flag) override { |
1172 | 2 | HasFoldFailureDiagnostic = Flag; |
1173 | 2 | } |
1174 | | |
1175 | 17 | Expr::EvalStatus &getEvalStatus() const override { return EvalStatus; } |
1176 | | |
1177 | | // If we have a prior diagnostic, it will be noting that the expression |
1178 | | // isn't a constant expression. This diagnostic is more important, |
1179 | | // unless we require this evaluation to produce a constant expression. |
1180 | | // |
1181 | | // FIXME: We might want to show both diagnostics to the user in |
1182 | | // EM_ConstantFold mode. |
1183 | 2 | bool hasPriorDiagnostic() override { |
1184 | 2 | if (!EvalStatus.Diag->empty()) { |
1185 | 0 | switch (EvalMode) { |
1186 | 0 | case EM_ConstantFold: |
1187 | 0 | case EM_IgnoreSideEffects: |
1188 | 0 | if (!HasFoldFailureDiagnostic) |
1189 | 0 | break; |
1190 | | // We've already failed to fold something. Keep that diagnostic. |
1191 | 0 | [[fallthrough]]; |
1192 | 0 | case EM_ConstantExpression: |
1193 | 0 | case EM_ConstantExpressionUnevaluated: |
1194 | 0 | setActiveDiagnostic(false); |
1195 | 0 | return true; |
1196 | 0 | } |
1197 | 0 | } |
1198 | 2 | return false; |
1199 | 2 | } |
1200 | | |
1201 | 4 | unsigned getCallStackDepth() override { return CallStackDepth; } |
1202 | | |
1203 | | public: |
1204 | | /// Should we continue evaluation after encountering a side-effect that we |
1205 | | /// couldn't model? |
1206 | 0 | bool keepEvaluatingAfterSideEffect() { |
1207 | 0 | switch (EvalMode) { |
1208 | 0 | case EM_IgnoreSideEffects: |
1209 | 0 | return true; |
1210 | | |
1211 | 0 | case EM_ConstantExpression: |
1212 | 0 | case EM_ConstantExpressionUnevaluated: |
1213 | 0 | case EM_ConstantFold: |
1214 | | // By default, assume any side effect might be valid in some other |
1215 | | // evaluation of this expression from a different context. |
1216 | 0 | return checkingPotentialConstantExpression() || |
1217 | 0 | checkingForUndefinedBehavior(); |
1218 | 0 | } |
1219 | 0 | llvm_unreachable("Missed EvalMode case"); |
1220 | 0 | } |
1221 | | |
1222 | | /// Note that we have had a side-effect, and determine whether we should |
1223 | | /// keep evaluating. |
1224 | 0 | bool noteSideEffect() { |
1225 | 0 | EvalStatus.HasSideEffects = true; |
1226 | 0 | return keepEvaluatingAfterSideEffect(); |
1227 | 0 | } |
1228 | | |
1229 | | /// Should we continue evaluation after encountering undefined behavior? |
1230 | 0 | bool keepEvaluatingAfterUndefinedBehavior() { |
1231 | 0 | switch (EvalMode) { |
1232 | 0 | case EM_IgnoreSideEffects: |
1233 | 0 | case EM_ConstantFold: |
1234 | 0 | return true; |
1235 | | |
1236 | 0 | case EM_ConstantExpression: |
1237 | 0 | case EM_ConstantExpressionUnevaluated: |
1238 | 0 | return checkingForUndefinedBehavior(); |
1239 | 0 | } |
1240 | 0 | llvm_unreachable("Missed EvalMode case"); |
1241 | 0 | } |
1242 | | |
1243 | | /// Note that we hit something that was technically undefined behavior, but |
1244 | | /// that we can evaluate past it (such as signed overflow or floating-point |
1245 | | /// division by zero.) |
1246 | 0 | bool noteUndefinedBehavior() override { |
1247 | 0 | EvalStatus.HasUndefinedBehavior = true; |
1248 | 0 | return keepEvaluatingAfterUndefinedBehavior(); |
1249 | 0 | } |
1250 | | |
1251 | | /// Should we continue evaluation as much as possible after encountering a |
1252 | | /// construct which can't be reduced to a value? |
1253 | 0 | bool keepEvaluatingAfterFailure() const override { |
1254 | 0 | if (!StepsLeft) |
1255 | 0 | return false; |
1256 | | |
1257 | 0 | switch (EvalMode) { |
1258 | 0 | case EM_ConstantExpression: |
1259 | 0 | case EM_ConstantExpressionUnevaluated: |
1260 | 0 | case EM_ConstantFold: |
1261 | 0 | case EM_IgnoreSideEffects: |
1262 | 0 | return checkingPotentialConstantExpression() || |
1263 | 0 | checkingForUndefinedBehavior(); |
1264 | 0 | } |
1265 | 0 | llvm_unreachable("Missed EvalMode case"); |
1266 | 0 | } |
1267 | | |
1268 | | /// Notes that we failed to evaluate an expression that other expressions |
1269 | | /// directly depend on, and determine if we should keep evaluating. This |
1270 | | /// should only be called if we actually intend to keep evaluating. |
1271 | | /// |
1272 | | /// Call noteSideEffect() instead if we may be able to ignore the value that |
1273 | | /// we failed to evaluate, e.g. if we failed to evaluate Foo() in: |
1274 | | /// |
1275 | | /// (Foo(), 1) // use noteSideEffect |
1276 | | /// (Foo() || true) // use noteSideEffect |
1277 | | /// Foo() + 1 // use noteFailure |
1278 | 0 | [[nodiscard]] bool noteFailure() { |
1279 | | // Failure when evaluating some expression often means there is some |
1280 | | // subexpression whose evaluation was skipped. Therefore, (because we |
1281 | | // don't track whether we skipped an expression when unwinding after an |
1282 | | // evaluation failure) every evaluation failure that bubbles up from a |
1283 | | // subexpression implies that a side-effect has potentially happened. We |
1284 | | // skip setting the HasSideEffects flag to true until we decide to |
1285 | | // continue evaluating after that point, which happens here. |
1286 | 0 | bool KeepGoing = keepEvaluatingAfterFailure(); |
1287 | 0 | EvalStatus.HasSideEffects |= KeepGoing; |
1288 | 0 | return KeepGoing; |
1289 | 0 | } |
1290 | | |
1291 | | class ArrayInitLoopIndex { |
1292 | | EvalInfo &Info; |
1293 | | uint64_t OuterIndex; |
1294 | | |
1295 | | public: |
1296 | | ArrayInitLoopIndex(EvalInfo &Info) |
1297 | 0 | : Info(Info), OuterIndex(Info.ArrayInitIndex) { |
1298 | 0 | Info.ArrayInitIndex = 0; |
1299 | 0 | } |
1300 | 0 | ~ArrayInitLoopIndex() { Info.ArrayInitIndex = OuterIndex; } |
1301 | | |
1302 | 0 | operator uint64_t&() { return Info.ArrayInitIndex; } |
1303 | | }; |
1304 | | }; |
1305 | | |
1306 | | /// Object used to treat all foldable expressions as constant expressions. |
1307 | | struct FoldConstant { |
1308 | | EvalInfo &Info; |
1309 | | bool Enabled; |
1310 | | bool HadNoPriorDiags; |
1311 | | EvalInfo::EvaluationMode OldMode; |
1312 | | |
1313 | | explicit FoldConstant(EvalInfo &Info, bool Enabled) |
1314 | | : Info(Info), |
1315 | | Enabled(Enabled), |
1316 | | HadNoPriorDiags(Info.EvalStatus.Diag && |
1317 | | Info.EvalStatus.Diag->empty() && |
1318 | | !Info.EvalStatus.HasSideEffects), |
1319 | 0 | OldMode(Info.EvalMode) { |
1320 | 0 | if (Enabled) |
1321 | 0 | Info.EvalMode = EvalInfo::EM_ConstantFold; |
1322 | 0 | } |
1323 | 0 | void keepDiagnostics() { Enabled = false; } |
1324 | 0 | ~FoldConstant() { |
1325 | 0 | if (Enabled && HadNoPriorDiags && !Info.EvalStatus.Diag->empty() && |
1326 | 0 | !Info.EvalStatus.HasSideEffects) |
1327 | 0 | Info.EvalStatus.Diag->clear(); |
1328 | 0 | Info.EvalMode = OldMode; |
1329 | 0 | } |
1330 | | }; |
1331 | | |
1332 | | /// RAII object used to set the current evaluation mode to ignore |
1333 | | /// side-effects. |
1334 | | struct IgnoreSideEffectsRAII { |
1335 | | EvalInfo &Info; |
1336 | | EvalInfo::EvaluationMode OldMode; |
1337 | | explicit IgnoreSideEffectsRAII(EvalInfo &Info) |
1338 | 0 | : Info(Info), OldMode(Info.EvalMode) { |
1339 | 0 | Info.EvalMode = EvalInfo::EM_IgnoreSideEffects; |
1340 | 0 | } |
1341 | | |
1342 | 0 | ~IgnoreSideEffectsRAII() { Info.EvalMode = OldMode; } |
1343 | | }; |
1344 | | |
1345 | | /// RAII object used to optionally suppress diagnostics and side-effects from |
1346 | | /// a speculative evaluation. |
1347 | | class SpeculativeEvaluationRAII { |
1348 | | EvalInfo *Info = nullptr; |
1349 | | Expr::EvalStatus OldStatus; |
1350 | | unsigned OldSpeculativeEvaluationDepth = 0; |
1351 | | |
1352 | 0 | void moveFromAndCancel(SpeculativeEvaluationRAII &&Other) { |
1353 | 0 | Info = Other.Info; |
1354 | 0 | OldStatus = Other.OldStatus; |
1355 | 0 | OldSpeculativeEvaluationDepth = Other.OldSpeculativeEvaluationDepth; |
1356 | 0 | Other.Info = nullptr; |
1357 | 0 | } |
1358 | | |
1359 | 0 | void maybeRestoreState() { |
1360 | 0 | if (!Info) |
1361 | 0 | return; |
1362 | | |
1363 | 0 | Info->EvalStatus = OldStatus; |
1364 | 0 | Info->SpeculativeEvaluationDepth = OldSpeculativeEvaluationDepth; |
1365 | 0 | } |
1366 | | |
1367 | | public: |
1368 | 0 | SpeculativeEvaluationRAII() = default; |
1369 | | |
1370 | | SpeculativeEvaluationRAII( |
1371 | | EvalInfo &Info, SmallVectorImpl<PartialDiagnosticAt> *NewDiag = nullptr) |
1372 | | : Info(&Info), OldStatus(Info.EvalStatus), |
1373 | 0 | OldSpeculativeEvaluationDepth(Info.SpeculativeEvaluationDepth) { |
1374 | 0 | Info.EvalStatus.Diag = NewDiag; |
1375 | 0 | Info.SpeculativeEvaluationDepth = Info.CallStackDepth + 1; |
1376 | 0 | } |
1377 | | |
1378 | | SpeculativeEvaluationRAII(const SpeculativeEvaluationRAII &Other) = delete; |
1379 | 0 | SpeculativeEvaluationRAII(SpeculativeEvaluationRAII &&Other) { |
1380 | 0 | moveFromAndCancel(std::move(Other)); |
1381 | 0 | } |
1382 | | |
1383 | 0 | SpeculativeEvaluationRAII &operator=(SpeculativeEvaluationRAII &&Other) { |
1384 | 0 | maybeRestoreState(); |
1385 | 0 | moveFromAndCancel(std::move(Other)); |
1386 | 0 | return *this; |
1387 | 0 | } |
1388 | | |
1389 | 0 | ~SpeculativeEvaluationRAII() { maybeRestoreState(); } |
1390 | | }; |
1391 | | |
1392 | | /// RAII object wrapping a full-expression or block scope, and handling |
1393 | | /// the ending of the lifetime of temporaries created within it. |
1394 | | template<ScopeKind Kind> |
1395 | | class ScopeRAII { |
1396 | | EvalInfo &Info; |
1397 | | unsigned OldStackSize; |
1398 | | public: |
1399 | | ScopeRAII(EvalInfo &Info) |
1400 | 0 | : Info(Info), OldStackSize(Info.CleanupStack.size()) { |
1401 | | // Push a new temporary version. This is needed to distinguish between |
1402 | | // temporaries created in different iterations of a loop. |
1403 | 0 | Info.CurrentCall->pushTempVersion(); |
1404 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)0>::ScopeRAII((anonymous namespace)::EvalInfo&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)2>::ScopeRAII((anonymous namespace)::EvalInfo&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)1>::ScopeRAII((anonymous namespace)::EvalInfo&) |
1405 | 0 | bool destroy(bool RunDestructors = true) { |
1406 | 0 | bool OK = cleanup(Info, RunDestructors, OldStackSize); |
1407 | 0 | OldStackSize = -1U; |
1408 | 0 | return OK; |
1409 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)0>::destroy(bool) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)2>::destroy(bool) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)1>::destroy(bool) |
1410 | 0 | ~ScopeRAII() { |
1411 | 0 | if (OldStackSize != -1U) |
1412 | 0 | destroy(false); |
1413 | | // Body moved to a static method to encourage the compiler to inline away |
1414 | | // instances of this class. |
1415 | 0 | Info.CurrentCall->popTempVersion(); |
1416 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)0>::~ScopeRAII() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)2>::~ScopeRAII() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)1>::~ScopeRAII() |
1417 | | private: |
1418 | | static bool cleanup(EvalInfo &Info, bool RunDestructors, |
1419 | 0 | unsigned OldStackSize) { |
1420 | 0 | assert(OldStackSize <= Info.CleanupStack.size() && |
1421 | 0 | "running cleanups out of order?"); |
1422 | | |
1423 | | // Run all cleanups for a block scope, and non-lifetime-extended cleanups |
1424 | | // for a full-expression scope. |
1425 | 0 | bool Success = true; |
1426 | 0 | for (unsigned I = Info.CleanupStack.size(); I > OldStackSize; --I) { |
1427 | 0 | if (Info.CleanupStack[I - 1].isDestroyedAtEndOf(Kind)) { |
1428 | 0 | if (!Info.CleanupStack[I - 1].endLifetime(Info, RunDestructors)) { |
1429 | 0 | Success = false; |
1430 | 0 | break; |
1431 | 0 | } |
1432 | 0 | } |
1433 | 0 | } |
1434 | | |
1435 | | // Compact any retained cleanups. |
1436 | 0 | auto NewEnd = Info.CleanupStack.begin() + OldStackSize; |
1437 | 0 | if (Kind != ScopeKind::Block) |
1438 | 0 | NewEnd = |
1439 | 0 | std::remove_if(NewEnd, Info.CleanupStack.end(), [](Cleanup &C) { |
1440 | 0 | return C.isDestroyedAtEndOf(Kind); |
1441 | 0 | }); Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)2>::cleanup((anonymous namespace)::EvalInfo&, bool, unsigned int)::{lambda((anonymous namespace)::Cleanup&)#1}::operator()((anonymous namespace)::Cleanup&) const Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)1>::cleanup((anonymous namespace)::EvalInfo&, bool, unsigned int)::{lambda((anonymous namespace)::Cleanup&)#1}::operator()((anonymous namespace)::Cleanup&) const |
1442 | 0 | Info.CleanupStack.erase(NewEnd, Info.CleanupStack.end()); |
1443 | 0 | return Success; |
1444 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)0>::cleanup((anonymous namespace)::EvalInfo&, bool, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)2>::cleanup((anonymous namespace)::EvalInfo&, bool, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ScopeRAII<((anonymous namespace)::ScopeKind)1>::cleanup((anonymous namespace)::EvalInfo&, bool, unsigned int) |
1445 | | }; |
1446 | | typedef ScopeRAII<ScopeKind::Block> BlockScopeRAII; |
1447 | | typedef ScopeRAII<ScopeKind::FullExpression> FullExpressionRAII; |
1448 | | typedef ScopeRAII<ScopeKind::Call> CallScopeRAII; |
1449 | | } |
1450 | | |
1451 | | bool SubobjectDesignator::checkSubobject(EvalInfo &Info, const Expr *E, |
1452 | 0 | CheckSubobjectKind CSK) { |
1453 | 0 | if (Invalid) |
1454 | 0 | return false; |
1455 | 0 | if (isOnePastTheEnd()) { |
1456 | 0 | Info.CCEDiag(E, diag::note_constexpr_past_end_subobject) |
1457 | 0 | << CSK; |
1458 | 0 | setInvalid(); |
1459 | 0 | return false; |
1460 | 0 | } |
1461 | | // Note, we do not diagnose if isMostDerivedAnUnsizedArray(), because there |
1462 | | // must actually be at least one array element; even a VLA cannot have a |
1463 | | // bound of zero. And if our index is nonzero, we already had a CCEDiag. |
1464 | 0 | return true; |
1465 | 0 | } |
1466 | | |
1467 | | void SubobjectDesignator::diagnoseUnsizedArrayPointerArithmetic(EvalInfo &Info, |
1468 | 0 | const Expr *E) { |
1469 | 0 | Info.CCEDiag(E, diag::note_constexpr_unsized_array_indexed); |
1470 | | // Do not set the designator as invalid: we can represent this situation, |
1471 | | // and correct handling of __builtin_object_size requires us to do so. |
1472 | 0 | } |
1473 | | |
1474 | | void SubobjectDesignator::diagnosePointerArithmetic(EvalInfo &Info, |
1475 | | const Expr *E, |
1476 | 0 | const APSInt &N) { |
1477 | | // If we're complaining, we must be able to statically determine the size of |
1478 | | // the most derived array. |
1479 | 0 | if (MostDerivedPathLength == Entries.size() && MostDerivedIsArrayElement) |
1480 | 0 | Info.CCEDiag(E, diag::note_constexpr_array_index) |
1481 | 0 | << N << /*array*/ 0 |
1482 | 0 | << static_cast<unsigned>(getMostDerivedArraySize()); |
1483 | 0 | else |
1484 | 0 | Info.CCEDiag(E, diag::note_constexpr_array_index) |
1485 | 0 | << N << /*non-array*/ 1; |
1486 | 0 | setInvalid(); |
1487 | 0 | } |
1488 | | |
1489 | | CallStackFrame::CallStackFrame(EvalInfo &Info, SourceRange CallRange, |
1490 | | const FunctionDecl *Callee, const LValue *This, |
1491 | | const Expr *CallExpr, CallRef Call) |
1492 | | : Info(Info), Caller(Info.CurrentCall), Callee(Callee), This(This), |
1493 | | CallExpr(CallExpr), Arguments(Call), CallRange(CallRange), |
1494 | 18 | Index(Info.NextCallIndex++) { |
1495 | 18 | Info.CurrentCall = this; |
1496 | 18 | ++Info.CallStackDepth; |
1497 | 18 | } |
1498 | | |
1499 | 18 | CallStackFrame::~CallStackFrame() { |
1500 | 18 | assert(Info.CurrentCall == this && "calls retired out of order"); |
1501 | 0 | --Info.CallStackDepth; |
1502 | 18 | Info.CurrentCall = Caller; |
1503 | 18 | } |
1504 | | |
1505 | 18 | static bool isRead(AccessKinds AK) { |
1506 | 18 | return AK == AK_Read || AK == AK_ReadObjectRepresentation; |
1507 | 18 | } |
1508 | | |
1509 | 3 | static bool isModification(AccessKinds AK) { |
1510 | 3 | switch (AK) { |
1511 | 3 | case AK_Read: |
1512 | 3 | case AK_ReadObjectRepresentation: |
1513 | 3 | case AK_MemberCall: |
1514 | 3 | case AK_DynamicCast: |
1515 | 3 | case AK_TypeId: |
1516 | 3 | return false; |
1517 | 0 | case AK_Assign: |
1518 | 0 | case AK_Increment: |
1519 | 0 | case AK_Decrement: |
1520 | 0 | case AK_Construct: |
1521 | 0 | case AK_Destroy: |
1522 | 0 | return true; |
1523 | 3 | } |
1524 | 0 | llvm_unreachable("unknown access kind"); |
1525 | 0 | } |
1526 | | |
1527 | 18 | static bool isAnyAccess(AccessKinds AK) { |
1528 | 18 | return isRead(AK) || isModification(AK); |
1529 | 18 | } |
1530 | | |
1531 | | /// Is this an access per the C++ definition? |
1532 | 9 | static bool isFormalAccess(AccessKinds AK) { |
1533 | 9 | return isAnyAccess(AK) && AK != AK_Construct && AK != AK_Destroy; |
1534 | 9 | } |
1535 | | |
1536 | | /// Is this kind of axcess valid on an indeterminate object value? |
1537 | 0 | static bool isValidIndeterminateAccess(AccessKinds AK) { |
1538 | 0 | switch (AK) { |
1539 | 0 | case AK_Read: |
1540 | 0 | case AK_Increment: |
1541 | 0 | case AK_Decrement: |
1542 | | // These need the object's value. |
1543 | 0 | return false; |
1544 | | |
1545 | 0 | case AK_ReadObjectRepresentation: |
1546 | 0 | case AK_Assign: |
1547 | 0 | case AK_Construct: |
1548 | 0 | case AK_Destroy: |
1549 | | // Construction and destruction don't need the value. |
1550 | 0 | return true; |
1551 | | |
1552 | 0 | case AK_MemberCall: |
1553 | 0 | case AK_DynamicCast: |
1554 | 0 | case AK_TypeId: |
1555 | | // These aren't really meaningful on scalars. |
1556 | 0 | return true; |
1557 | 0 | } |
1558 | 0 | llvm_unreachable("unknown access kind"); |
1559 | 0 | } |
1560 | | |
1561 | | namespace { |
1562 | | struct ComplexValue { |
1563 | | private: |
1564 | | bool IsInt; |
1565 | | |
1566 | | public: |
1567 | | APSInt IntReal, IntImag; |
1568 | | APFloat FloatReal, FloatImag; |
1569 | | |
1570 | 0 | ComplexValue() : FloatReal(APFloat::Bogus()), FloatImag(APFloat::Bogus()) {} |
1571 | | |
1572 | 0 | void makeComplexFloat() { IsInt = false; } |
1573 | 0 | bool isComplexFloat() const { return !IsInt; } |
1574 | 0 | APFloat &getComplexFloatReal() { return FloatReal; } |
1575 | 0 | APFloat &getComplexFloatImag() { return FloatImag; } |
1576 | | |
1577 | 0 | void makeComplexInt() { IsInt = true; } |
1578 | 0 | bool isComplexInt() const { return IsInt; } |
1579 | 0 | APSInt &getComplexIntReal() { return IntReal; } |
1580 | 0 | APSInt &getComplexIntImag() { return IntImag; } |
1581 | | |
1582 | 0 | void moveInto(APValue &v) const { |
1583 | 0 | if (isComplexFloat()) |
1584 | 0 | v = APValue(FloatReal, FloatImag); |
1585 | 0 | else |
1586 | 0 | v = APValue(IntReal, IntImag); |
1587 | 0 | } |
1588 | 0 | void setFrom(const APValue &v) { |
1589 | 0 | assert(v.isComplexFloat() || v.isComplexInt()); |
1590 | 0 | if (v.isComplexFloat()) { |
1591 | 0 | makeComplexFloat(); |
1592 | 0 | FloatReal = v.getComplexFloatReal(); |
1593 | 0 | FloatImag = v.getComplexFloatImag(); |
1594 | 0 | } else { |
1595 | 0 | makeComplexInt(); |
1596 | 0 | IntReal = v.getComplexIntReal(); |
1597 | 0 | IntImag = v.getComplexIntImag(); |
1598 | 0 | } |
1599 | 0 | } |
1600 | | }; |
1601 | | |
1602 | | struct LValue { |
1603 | | APValue::LValueBase Base; |
1604 | | CharUnits Offset; |
1605 | | SubobjectDesignator Designator; |
1606 | | bool IsNullPtr : 1; |
1607 | | bool InvalidBase : 1; |
1608 | | |
1609 | 0 | const APValue::LValueBase getLValueBase() const { return Base; } |
1610 | 0 | CharUnits &getLValueOffset() { return Offset; } |
1611 | 0 | const CharUnits &getLValueOffset() const { return Offset; } |
1612 | 0 | SubobjectDesignator &getLValueDesignator() { return Designator; } |
1613 | 0 | const SubobjectDesignator &getLValueDesignator() const { return Designator;} |
1614 | 0 | bool isNullPointer() const { return IsNullPtr;} |
1615 | | |
1616 | 9 | unsigned getLValueCallIndex() const { return Base.getCallIndex(); } |
1617 | 0 | unsigned getLValueVersion() const { return Base.getVersion(); } |
1618 | | |
1619 | 4 | void moveInto(APValue &V) const { |
1620 | 4 | if (Designator.Invalid) |
1621 | 0 | V = APValue(Base, Offset, APValue::NoLValuePath(), IsNullPtr); |
1622 | 4 | else { |
1623 | 4 | assert(!InvalidBase && "APValues can't handle invalid LValue bases"); |
1624 | 0 | V = APValue(Base, Offset, Designator.Entries, |
1625 | 4 | Designator.IsOnePastTheEnd, IsNullPtr); |
1626 | 4 | } |
1627 | 4 | } |
1628 | 4 | void setFrom(ASTContext &Ctx, const APValue &V) { |
1629 | 4 | assert(V.isLValue() && "Setting LValue from a non-LValue?"); |
1630 | 0 | Base = V.getLValueBase(); |
1631 | 4 | Offset = V.getLValueOffset(); |
1632 | 4 | InvalidBase = false; |
1633 | 4 | Designator = SubobjectDesignator(Ctx, V); |
1634 | 4 | IsNullPtr = V.isNullPointer(); |
1635 | 4 | } |
1636 | | |
1637 | 9 | void set(APValue::LValueBase B, bool BInvalid = false) { |
1638 | 9 | #ifndef NDEBUG |
1639 | | // We only allow a few types of invalid bases. Enforce that here. |
1640 | 9 | if (BInvalid) { |
1641 | 0 | const auto *E = B.get<const Expr *>(); |
1642 | 0 | assert((isa<MemberExpr>(E) || tryUnwrapAllocSizeCall(E)) && |
1643 | 0 | "Unexpected type of invalid base"); |
1644 | 0 | } |
1645 | 0 | #endif |
1646 | | |
1647 | 0 | Base = B; |
1648 | 9 | Offset = CharUnits::fromQuantity(0); |
1649 | 9 | InvalidBase = BInvalid; |
1650 | 9 | Designator = SubobjectDesignator(getType(B)); |
1651 | 9 | IsNullPtr = false; |
1652 | 9 | } |
1653 | | |
1654 | 0 | void setNull(ASTContext &Ctx, QualType PointerTy) { |
1655 | 0 | Base = (const ValueDecl *)nullptr; |
1656 | 0 | Offset = |
1657 | 0 | CharUnits::fromQuantity(Ctx.getTargetNullPointerValue(PointerTy)); |
1658 | 0 | InvalidBase = false; |
1659 | 0 | Designator = SubobjectDesignator(PointerTy->getPointeeType()); |
1660 | 0 | IsNullPtr = true; |
1661 | 0 | } |
1662 | | |
1663 | 0 | void setInvalid(APValue::LValueBase B, unsigned I = 0) { |
1664 | 0 | set(B, true); |
1665 | 0 | } |
1666 | | |
1667 | 0 | std::string toString(ASTContext &Ctx, QualType T) const { |
1668 | 0 | APValue Printable; |
1669 | 0 | moveInto(Printable); |
1670 | 0 | return Printable.getAsString(Ctx, T); |
1671 | 0 | } |
1672 | | |
1673 | | private: |
1674 | | // Check that this LValue is not based on a null pointer. If it is, produce |
1675 | | // a diagnostic and mark the designator as invalid. |
1676 | | template <typename GenDiagType> |
1677 | 0 | bool checkNullPointerDiagnosingWith(const GenDiagType &GenDiag) { |
1678 | 0 | if (Designator.Invalid) |
1679 | 0 | return false; |
1680 | 0 | if (IsNullPtr) { |
1681 | 0 | GenDiag(); |
1682 | 0 | Designator.setInvalid(); |
1683 | 0 | return false; |
1684 | 0 | } |
1685 | 0 | return true; |
1686 | 0 | } Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::LValue::checkNullPointerDiagnosingWith<(anonymous namespace)::LValue::checkNullPointer((anonymous namespace)::EvalInfo&, clang::Expr const*, clang::CheckSubobjectKind)::{lambda()#1}>((anonymous namespace)::LValue::checkNullPointer((anonymous namespace)::EvalInfo&, clang::Expr const*, clang::CheckSubobjectKind)::{lambda()#1} const&) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::LValue::checkNullPointerDiagnosingWith<(anonymous namespace)::LValue::checkNullPointerForFoldAccess((anonymous namespace)::EvalInfo&, clang::Expr const*, clang::AccessKinds)::{lambda()#1}>((anonymous namespace)::LValue::checkNullPointerForFoldAccess((anonymous namespace)::EvalInfo&, clang::Expr const*, clang::AccessKinds)::{lambda()#1} const&) |
1687 | | |
1688 | | public: |
1689 | | bool checkNullPointer(EvalInfo &Info, const Expr *E, |
1690 | 0 | CheckSubobjectKind CSK) { |
1691 | 0 | return checkNullPointerDiagnosingWith([&Info, E, CSK] { |
1692 | 0 | Info.CCEDiag(E, diag::note_constexpr_null_subobject) << CSK; |
1693 | 0 | }); |
1694 | 0 | } |
1695 | | |
1696 | | bool checkNullPointerForFoldAccess(EvalInfo &Info, const Expr *E, |
1697 | 0 | AccessKinds AK) { |
1698 | 0 | return checkNullPointerDiagnosingWith([&Info, E, AK] { |
1699 | 0 | Info.FFDiag(E, diag::note_constexpr_access_null) << AK; |
1700 | 0 | }); |
1701 | 0 | } |
1702 | | |
1703 | | // Check this LValue refers to an object. If not, set the designator to be |
1704 | | // invalid and emit a diagnostic. |
1705 | 0 | bool checkSubobject(EvalInfo &Info, const Expr *E, CheckSubobjectKind CSK) { |
1706 | 0 | return (CSK == CSK_ArrayToPointer || checkNullPointer(Info, E, CSK)) && |
1707 | 0 | Designator.checkSubobject(Info, E, CSK); |
1708 | 0 | } |
1709 | | |
1710 | | void addDecl(EvalInfo &Info, const Expr *E, |
1711 | 0 | const Decl *D, bool Virtual = false) { |
1712 | 0 | if (checkSubobject(Info, E, isa<FieldDecl>(D) ? CSK_Field : CSK_Base)) |
1713 | 0 | Designator.addDeclUnchecked(D, Virtual); |
1714 | 0 | } |
1715 | 0 | void addUnsizedArray(EvalInfo &Info, const Expr *E, QualType ElemTy) { |
1716 | 0 | if (!Designator.Entries.empty()) { |
1717 | 0 | Info.CCEDiag(E, diag::note_constexpr_unsupported_unsized_array); |
1718 | 0 | Designator.setInvalid(); |
1719 | 0 | return; |
1720 | 0 | } |
1721 | 0 | if (checkSubobject(Info, E, CSK_ArrayToPointer)) { |
1722 | 0 | assert(getType(Base)->isPointerType() || getType(Base)->isArrayType()); |
1723 | 0 | Designator.FirstEntryIsAnUnsizedArray = true; |
1724 | 0 | Designator.addUnsizedArrayUnchecked(ElemTy); |
1725 | 0 | } |
1726 | 0 | } |
1727 | 0 | void addArray(EvalInfo &Info, const Expr *E, const ConstantArrayType *CAT) { |
1728 | 0 | if (checkSubobject(Info, E, CSK_ArrayToPointer)) |
1729 | 0 | Designator.addArrayUnchecked(CAT); |
1730 | 0 | } |
1731 | 0 | void addComplex(EvalInfo &Info, const Expr *E, QualType EltTy, bool Imag) { |
1732 | 0 | if (checkSubobject(Info, E, Imag ? CSK_Imag : CSK_Real)) |
1733 | 0 | Designator.addComplexUnchecked(EltTy, Imag); |
1734 | 0 | } |
1735 | 0 | void clearIsNullPointer() { |
1736 | 0 | IsNullPtr = false; |
1737 | 0 | } |
1738 | | void adjustOffsetAndIndex(EvalInfo &Info, const Expr *E, |
1739 | 0 | const APSInt &Index, CharUnits ElementSize) { |
1740 | | // An index of 0 has no effect. (In C, adding 0 to a null pointer is UB, |
1741 | | // but we're not required to diagnose it and it's valid in C++.) |
1742 | 0 | if (!Index) |
1743 | 0 | return; |
1744 | | |
1745 | | // Compute the new offset in the appropriate width, wrapping at 64 bits. |
1746 | | // FIXME: When compiling for a 32-bit target, we should use 32-bit |
1747 | | // offsets. |
1748 | 0 | uint64_t Offset64 = Offset.getQuantity(); |
1749 | 0 | uint64_t ElemSize64 = ElementSize.getQuantity(); |
1750 | 0 | uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); |
1751 | 0 | Offset = CharUnits::fromQuantity(Offset64 + ElemSize64 * Index64); |
1752 | |
|
1753 | 0 | if (checkNullPointer(Info, E, CSK_ArrayIndex)) |
1754 | 0 | Designator.adjustIndex(Info, E, Index); |
1755 | 0 | clearIsNullPointer(); |
1756 | 0 | } |
1757 | 0 | void adjustOffset(CharUnits N) { |
1758 | 0 | Offset += N; |
1759 | 0 | if (N.getQuantity()) |
1760 | 0 | clearIsNullPointer(); |
1761 | 0 | } |
1762 | | }; |
1763 | | |
1764 | | struct MemberPtr { |
1765 | 0 | MemberPtr() {} |
1766 | | explicit MemberPtr(const ValueDecl *Decl) |
1767 | 0 | : DeclAndIsDerivedMember(Decl, false) {} |
1768 | | |
1769 | | /// The member or (direct or indirect) field referred to by this member |
1770 | | /// pointer, or 0 if this is a null member pointer. |
1771 | 0 | const ValueDecl *getDecl() const { |
1772 | 0 | return DeclAndIsDerivedMember.getPointer(); |
1773 | 0 | } |
1774 | | /// Is this actually a member of some type derived from the relevant class? |
1775 | 0 | bool isDerivedMember() const { |
1776 | 0 | return DeclAndIsDerivedMember.getInt(); |
1777 | 0 | } |
1778 | | /// Get the class which the declaration actually lives in. |
1779 | 0 | const CXXRecordDecl *getContainingRecord() const { |
1780 | 0 | return cast<CXXRecordDecl>( |
1781 | 0 | DeclAndIsDerivedMember.getPointer()->getDeclContext()); |
1782 | 0 | } |
1783 | | |
1784 | 0 | void moveInto(APValue &V) const { |
1785 | 0 | V = APValue(getDecl(), isDerivedMember(), Path); |
1786 | 0 | } |
1787 | 0 | void setFrom(const APValue &V) { |
1788 | 0 | assert(V.isMemberPointer()); |
1789 | 0 | DeclAndIsDerivedMember.setPointer(V.getMemberPointerDecl()); |
1790 | 0 | DeclAndIsDerivedMember.setInt(V.isMemberPointerToDerivedMember()); |
1791 | 0 | Path.clear(); |
1792 | 0 | ArrayRef<const CXXRecordDecl*> P = V.getMemberPointerPath(); |
1793 | 0 | Path.insert(Path.end(), P.begin(), P.end()); |
1794 | 0 | } |
1795 | | |
1796 | | /// DeclAndIsDerivedMember - The member declaration, and a flag indicating |
1797 | | /// whether the member is a member of some class derived from the class type |
1798 | | /// of the member pointer. |
1799 | | llvm::PointerIntPair<const ValueDecl*, 1, bool> DeclAndIsDerivedMember; |
1800 | | /// Path - The path of base/derived classes from the member declaration's |
1801 | | /// class (exclusive) to the class type of the member pointer (inclusive). |
1802 | | SmallVector<const CXXRecordDecl*, 4> Path; |
1803 | | |
1804 | | /// Perform a cast towards the class of the Decl (either up or down the |
1805 | | /// hierarchy). |
1806 | 0 | bool castBack(const CXXRecordDecl *Class) { |
1807 | 0 | assert(!Path.empty()); |
1808 | 0 | const CXXRecordDecl *Expected; |
1809 | 0 | if (Path.size() >= 2) |
1810 | 0 | Expected = Path[Path.size() - 2]; |
1811 | 0 | else |
1812 | 0 | Expected = getContainingRecord(); |
1813 | 0 | if (Expected->getCanonicalDecl() != Class->getCanonicalDecl()) { |
1814 | | // C++11 [expr.static.cast]p12: In a conversion from (D::*) to (B::*), |
1815 | | // if B does not contain the original member and is not a base or |
1816 | | // derived class of the class containing the original member, the result |
1817 | | // of the cast is undefined. |
1818 | | // C++11 [conv.mem]p2 does not cover this case for a cast from (B::*) to |
1819 | | // (D::*). We consider that to be a language defect. |
1820 | 0 | return false; |
1821 | 0 | } |
1822 | 0 | Path.pop_back(); |
1823 | 0 | return true; |
1824 | 0 | } |
1825 | | /// Perform a base-to-derived member pointer cast. |
1826 | 0 | bool castToDerived(const CXXRecordDecl *Derived) { |
1827 | 0 | if (!getDecl()) |
1828 | 0 | return true; |
1829 | 0 | if (!isDerivedMember()) { |
1830 | 0 | Path.push_back(Derived); |
1831 | 0 | return true; |
1832 | 0 | } |
1833 | 0 | if (!castBack(Derived)) |
1834 | 0 | return false; |
1835 | 0 | if (Path.empty()) |
1836 | 0 | DeclAndIsDerivedMember.setInt(false); |
1837 | 0 | return true; |
1838 | 0 | } |
1839 | | /// Perform a derived-to-base member pointer cast. |
1840 | 0 | bool castToBase(const CXXRecordDecl *Base) { |
1841 | 0 | if (!getDecl()) |
1842 | 0 | return true; |
1843 | 0 | if (Path.empty()) |
1844 | 0 | DeclAndIsDerivedMember.setInt(true); |
1845 | 0 | if (isDerivedMember()) { |
1846 | 0 | Path.push_back(Base); |
1847 | 0 | return true; |
1848 | 0 | } |
1849 | 0 | return castBack(Base); |
1850 | 0 | } |
1851 | | }; |
1852 | | |
1853 | | /// Compare two member pointers, which are assumed to be of the same type. |
1854 | 0 | static bool operator==(const MemberPtr &LHS, const MemberPtr &RHS) { |
1855 | 0 | if (!LHS.getDecl() || !RHS.getDecl()) |
1856 | 0 | return !LHS.getDecl() && !RHS.getDecl(); |
1857 | 0 | if (LHS.getDecl()->getCanonicalDecl() != RHS.getDecl()->getCanonicalDecl()) |
1858 | 0 | return false; |
1859 | 0 | return LHS.Path == RHS.Path; |
1860 | 0 | } |
1861 | | } |
1862 | | |
1863 | | static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E); |
1864 | | static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, |
1865 | | const LValue &This, const Expr *E, |
1866 | | bool AllowNonLiteralTypes = false); |
1867 | | static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, |
1868 | | bool InvalidBaseOK = false); |
1869 | | static bool EvaluatePointer(const Expr *E, LValue &Result, EvalInfo &Info, |
1870 | | bool InvalidBaseOK = false); |
1871 | | static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, |
1872 | | EvalInfo &Info); |
1873 | | static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info); |
1874 | | static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info); |
1875 | | static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, |
1876 | | EvalInfo &Info); |
1877 | | static bool EvaluateFloat(const Expr *E, APFloat &Result, EvalInfo &Info); |
1878 | | static bool EvaluateComplex(const Expr *E, ComplexValue &Res, EvalInfo &Info); |
1879 | | static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, |
1880 | | EvalInfo &Info); |
1881 | | static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result); |
1882 | | static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, |
1883 | | EvalInfo &Info); |
1884 | | |
1885 | | /// Evaluate an integer or fixed point expression into an APResult. |
1886 | | static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, |
1887 | | EvalInfo &Info); |
1888 | | |
1889 | | /// Evaluate only a fixed point expression into an APResult. |
1890 | | static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, |
1891 | | EvalInfo &Info); |
1892 | | |
1893 | | //===----------------------------------------------------------------------===// |
1894 | | // Misc utilities |
1895 | | //===----------------------------------------------------------------------===// |
1896 | | |
1897 | | /// Negate an APSInt in place, converting it to a signed form if necessary, and |
1898 | | /// preserving its value (by extending by up to one bit as needed). |
1899 | 0 | static void negateAsSigned(APSInt &Int) { |
1900 | 0 | if (Int.isUnsigned() || Int.isMinSignedValue()) { |
1901 | 0 | Int = Int.extend(Int.getBitWidth() + 1); |
1902 | 0 | Int.setIsSigned(true); |
1903 | 0 | } |
1904 | 0 | Int = -Int; |
1905 | 0 | } |
1906 | | |
1907 | | template<typename KeyT> |
1908 | | APValue &CallStackFrame::createTemporary(const KeyT *Key, QualType T, |
1909 | 0 | ScopeKind Scope, LValue &LV) { |
1910 | 0 | unsigned Version = getTempVersion(); |
1911 | 0 | APValue::LValueBase Base(Key, Index, Version); |
1912 | 0 | LV.set(Base); |
1913 | 0 | return createLocal(Base, Key, T, Scope); |
1914 | 0 | } Unexecuted instantiation: ExprConstant.cpp:clang::APValue& (anonymous namespace)::CallStackFrame::createTemporary<clang::VarDecl>(clang::VarDecl const*, clang::QualType, (anonymous namespace)::ScopeKind, (anonymous namespace)::LValue&) Unexecuted instantiation: ExprConstant.cpp:clang::APValue& (anonymous namespace)::CallStackFrame::createTemporary<clang::OpaqueValueExpr>(clang::OpaqueValueExpr const*, clang::QualType, (anonymous namespace)::ScopeKind, (anonymous namespace)::LValue&) Unexecuted instantiation: ExprConstant.cpp:clang::APValue& (anonymous namespace)::CallStackFrame::createTemporary<clang::Expr>(clang::Expr const*, clang::QualType, (anonymous namespace)::ScopeKind, (anonymous namespace)::LValue&) Unexecuted instantiation: ExprConstant.cpp:clang::APValue& (anonymous namespace)::CallStackFrame::createTemporary<clang::MaterializeTemporaryExpr>(clang::MaterializeTemporaryExpr const*, clang::QualType, (anonymous namespace)::ScopeKind, (anonymous namespace)::LValue&) |
1915 | | |
1916 | | /// Allocate storage for a parameter of a function call made in this frame. |
1917 | | APValue &CallStackFrame::createParam(CallRef Args, const ParmVarDecl *PVD, |
1918 | 0 | LValue &LV) { |
1919 | 0 | assert(Args.CallIndex == Index && "creating parameter in wrong frame"); |
1920 | 0 | APValue::LValueBase Base(PVD, Index, Args.Version); |
1921 | 0 | LV.set(Base); |
1922 | | // We always destroy parameters at the end of the call, even if we'd allow |
1923 | | // them to live to the end of the full-expression at runtime, in order to |
1924 | | // give portable results and match other compilers. |
1925 | 0 | return createLocal(Base, PVD, PVD->getType(), ScopeKind::Call); |
1926 | 0 | } |
1927 | | |
1928 | | APValue &CallStackFrame::createLocal(APValue::LValueBase Base, const void *Key, |
1929 | 0 | QualType T, ScopeKind Scope) { |
1930 | 0 | assert(Base.getCallIndex() == Index && "lvalue for wrong frame"); |
1931 | 0 | unsigned Version = Base.getVersion(); |
1932 | 0 | APValue &Result = Temporaries[MapKeyTy(Key, Version)]; |
1933 | 0 | assert(Result.isAbsent() && "local created multiple times"); |
1934 | | |
1935 | | // If we're creating a local immediately in the operand of a speculative |
1936 | | // evaluation, don't register a cleanup to be run outside the speculative |
1937 | | // evaluation context, since we won't actually be able to initialize this |
1938 | | // object. |
1939 | 0 | if (Index <= Info.SpeculativeEvaluationDepth) { |
1940 | 0 | if (T.isDestructedType()) |
1941 | 0 | Info.noteSideEffect(); |
1942 | 0 | } else { |
1943 | 0 | Info.CleanupStack.push_back(Cleanup(&Result, Base, T, Scope)); |
1944 | 0 | } |
1945 | 0 | return Result; |
1946 | 0 | } |
1947 | | |
1948 | 0 | APValue *EvalInfo::createHeapAlloc(const Expr *E, QualType T, LValue &LV) { |
1949 | 0 | if (NumHeapAllocs > DynamicAllocLValue::getMaxIndex()) { |
1950 | 0 | FFDiag(E, diag::note_constexpr_heap_alloc_limit_exceeded); |
1951 | 0 | return nullptr; |
1952 | 0 | } |
1953 | | |
1954 | 0 | DynamicAllocLValue DA(NumHeapAllocs++); |
1955 | 0 | LV.set(APValue::LValueBase::getDynamicAlloc(DA, T)); |
1956 | 0 | auto Result = HeapAllocs.emplace(std::piecewise_construct, |
1957 | 0 | std::forward_as_tuple(DA), std::tuple<>()); |
1958 | 0 | assert(Result.second && "reused a heap alloc index?"); |
1959 | 0 | Result.first->second.AllocExpr = E; |
1960 | 0 | return &Result.first->second.Value; |
1961 | 0 | } |
1962 | | |
1963 | | /// Produce a string describing the given constexpr call. |
1964 | 0 | void CallStackFrame::describe(raw_ostream &Out) const { |
1965 | 0 | unsigned ArgIndex = 0; |
1966 | 0 | bool IsMemberCall = |
1967 | 0 | isa<CXXMethodDecl>(Callee) && !isa<CXXConstructorDecl>(Callee) && |
1968 | 0 | cast<CXXMethodDecl>(Callee)->isImplicitObjectMemberFunction(); |
1969 | |
|
1970 | 0 | if (!IsMemberCall) |
1971 | 0 | Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(), |
1972 | 0 | /*Qualified=*/false); |
1973 | |
|
1974 | 0 | if (This && IsMemberCall) { |
1975 | 0 | if (const auto *MCE = dyn_cast_if_present<CXXMemberCallExpr>(CallExpr)) { |
1976 | 0 | const Expr *Object = MCE->getImplicitObjectArgument(); |
1977 | 0 | Object->printPretty(Out, /*Helper=*/nullptr, Info.Ctx.getPrintingPolicy(), |
1978 | 0 | /*Indentation=*/0); |
1979 | 0 | if (Object->getType()->isPointerType()) |
1980 | 0 | Out << "->"; |
1981 | 0 | else |
1982 | 0 | Out << "."; |
1983 | 0 | } else if (const auto *OCE = |
1984 | 0 | dyn_cast_if_present<CXXOperatorCallExpr>(CallExpr)) { |
1985 | 0 | OCE->getArg(0)->printPretty(Out, /*Helper=*/nullptr, |
1986 | 0 | Info.Ctx.getPrintingPolicy(), |
1987 | 0 | /*Indentation=*/0); |
1988 | 0 | Out << "."; |
1989 | 0 | } else { |
1990 | 0 | APValue Val; |
1991 | 0 | This->moveInto(Val); |
1992 | 0 | Val.printPretty( |
1993 | 0 | Out, Info.Ctx, |
1994 | 0 | Info.Ctx.getLValueReferenceType(This->Designator.MostDerivedType)); |
1995 | 0 | Out << "."; |
1996 | 0 | } |
1997 | 0 | Callee->getNameForDiagnostic(Out, Info.Ctx.getPrintingPolicy(), |
1998 | 0 | /*Qualified=*/false); |
1999 | 0 | IsMemberCall = false; |
2000 | 0 | } |
2001 | |
|
2002 | 0 | Out << '('; |
2003 | |
|
2004 | 0 | for (FunctionDecl::param_const_iterator I = Callee->param_begin(), |
2005 | 0 | E = Callee->param_end(); I != E; ++I, ++ArgIndex) { |
2006 | 0 | if (ArgIndex > (unsigned)IsMemberCall) |
2007 | 0 | Out << ", "; |
2008 | |
|
2009 | 0 | const ParmVarDecl *Param = *I; |
2010 | 0 | APValue *V = Info.getParamSlot(Arguments, Param); |
2011 | 0 | if (V) |
2012 | 0 | V->printPretty(Out, Info.Ctx, Param->getType()); |
2013 | 0 | else |
2014 | 0 | Out << "<...>"; |
2015 | |
|
2016 | 0 | if (ArgIndex == 0 && IsMemberCall) |
2017 | 0 | Out << "->" << *Callee << '('; |
2018 | 0 | } |
2019 | |
|
2020 | 0 | Out << ')'; |
2021 | 0 | } |
2022 | | |
2023 | | /// Evaluate an expression to see if it had side-effects, and discard its |
2024 | | /// result. |
2025 | | /// \return \c true if the caller should keep evaluating. |
2026 | 0 | static bool EvaluateIgnoredValue(EvalInfo &Info, const Expr *E) { |
2027 | 0 | assert(!E->isValueDependent()); |
2028 | 0 | APValue Scratch; |
2029 | 0 | if (!Evaluate(Scratch, Info, E)) |
2030 | | // We don't need the value, but we might have skipped a side effect here. |
2031 | 0 | return Info.noteSideEffect(); |
2032 | 0 | return true; |
2033 | 0 | } |
2034 | | |
2035 | | /// Should this call expression be treated as a no-op? |
2036 | 0 | static bool IsNoOpCall(const CallExpr *E) { |
2037 | 0 | unsigned Builtin = E->getBuiltinCallee(); |
2038 | 0 | return (Builtin == Builtin::BI__builtin___CFStringMakeConstantString || |
2039 | 0 | Builtin == Builtin::BI__builtin___NSStringMakeConstantString || |
2040 | 0 | Builtin == Builtin::BI__builtin_function_start); |
2041 | 0 | } |
2042 | | |
2043 | 0 | static bool IsGlobalLValue(APValue::LValueBase B) { |
2044 | | // C++11 [expr.const]p3 An address constant expression is a prvalue core |
2045 | | // constant expression of pointer type that evaluates to... |
2046 | | |
2047 | | // ... a null pointer value, or a prvalue core constant expression of type |
2048 | | // std::nullptr_t. |
2049 | 0 | if (!B) |
2050 | 0 | return true; |
2051 | | |
2052 | 0 | if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { |
2053 | | // ... the address of an object with static storage duration, |
2054 | 0 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
2055 | 0 | return VD->hasGlobalStorage(); |
2056 | 0 | if (isa<TemplateParamObjectDecl>(D)) |
2057 | 0 | return true; |
2058 | | // ... the address of a function, |
2059 | | // ... the address of a GUID [MS extension], |
2060 | | // ... the address of an unnamed global constant |
2061 | 0 | return isa<FunctionDecl, MSGuidDecl, UnnamedGlobalConstantDecl>(D); |
2062 | 0 | } |
2063 | | |
2064 | 0 | if (B.is<TypeInfoLValue>() || B.is<DynamicAllocLValue>()) |
2065 | 0 | return true; |
2066 | | |
2067 | 0 | const Expr *E = B.get<const Expr*>(); |
2068 | 0 | switch (E->getStmtClass()) { |
2069 | 0 | default: |
2070 | 0 | return false; |
2071 | 0 | case Expr::CompoundLiteralExprClass: { |
2072 | 0 | const CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); |
2073 | 0 | return CLE->isFileScope() && CLE->isLValue(); |
2074 | 0 | } |
2075 | 0 | case Expr::MaterializeTemporaryExprClass: |
2076 | | // A materialized temporary might have been lifetime-extended to static |
2077 | | // storage duration. |
2078 | 0 | return cast<MaterializeTemporaryExpr>(E)->getStorageDuration() == SD_Static; |
2079 | | // A string literal has static storage duration. |
2080 | 0 | case Expr::StringLiteralClass: |
2081 | 0 | case Expr::PredefinedExprClass: |
2082 | 0 | case Expr::ObjCStringLiteralClass: |
2083 | 0 | case Expr::ObjCEncodeExprClass: |
2084 | 0 | return true; |
2085 | 0 | case Expr::ObjCBoxedExprClass: |
2086 | 0 | return cast<ObjCBoxedExpr>(E)->isExpressibleAsConstantInitializer(); |
2087 | 0 | case Expr::CallExprClass: |
2088 | 0 | return IsNoOpCall(cast<CallExpr>(E)); |
2089 | | // For GCC compatibility, &&label has static storage duration. |
2090 | 0 | case Expr::AddrLabelExprClass: |
2091 | 0 | return true; |
2092 | | // A Block literal expression may be used as the initialization value for |
2093 | | // Block variables at global or local static scope. |
2094 | 0 | case Expr::BlockExprClass: |
2095 | 0 | return !cast<BlockExpr>(E)->getBlockDecl()->hasCaptures(); |
2096 | | // The APValue generated from a __builtin_source_location will be emitted as a |
2097 | | // literal. |
2098 | 0 | case Expr::SourceLocExprClass: |
2099 | 0 | return true; |
2100 | 0 | case Expr::ImplicitValueInitExprClass: |
2101 | | // FIXME: |
2102 | | // We can never form an lvalue with an implicit value initialization as its |
2103 | | // base through expression evaluation, so these only appear in one case: the |
2104 | | // implicit variable declaration we invent when checking whether a constexpr |
2105 | | // constructor can produce a constant expression. We must assume that such |
2106 | | // an expression might be a global lvalue. |
2107 | 0 | return true; |
2108 | 0 | } |
2109 | 0 | } |
2110 | | |
2111 | 0 | static const ValueDecl *GetLValueBaseDecl(const LValue &LVal) { |
2112 | 0 | return LVal.Base.dyn_cast<const ValueDecl*>(); |
2113 | 0 | } |
2114 | | |
2115 | 0 | static bool IsLiteralLValue(const LValue &Value) { |
2116 | 0 | if (Value.getLValueCallIndex()) |
2117 | 0 | return false; |
2118 | 0 | const Expr *E = Value.Base.dyn_cast<const Expr*>(); |
2119 | 0 | return E && !isa<MaterializeTemporaryExpr>(E); |
2120 | 0 | } |
2121 | | |
2122 | 0 | static bool IsWeakLValue(const LValue &Value) { |
2123 | 0 | const ValueDecl *Decl = GetLValueBaseDecl(Value); |
2124 | 0 | return Decl && Decl->isWeak(); |
2125 | 0 | } |
2126 | | |
2127 | 0 | static bool isZeroSized(const LValue &Value) { |
2128 | 0 | const ValueDecl *Decl = GetLValueBaseDecl(Value); |
2129 | 0 | if (Decl && isa<VarDecl>(Decl)) { |
2130 | 0 | QualType Ty = Decl->getType(); |
2131 | 0 | if (Ty->isArrayType()) |
2132 | 0 | return Ty->isIncompleteType() || |
2133 | 0 | Decl->getASTContext().getTypeSize(Ty) == 0; |
2134 | 0 | } |
2135 | 0 | return false; |
2136 | 0 | } |
2137 | | |
2138 | 0 | static bool HasSameBase(const LValue &A, const LValue &B) { |
2139 | 0 | if (!A.getLValueBase()) |
2140 | 0 | return !B.getLValueBase(); |
2141 | 0 | if (!B.getLValueBase()) |
2142 | 0 | return false; |
2143 | | |
2144 | 0 | if (A.getLValueBase().getOpaqueValue() != |
2145 | 0 | B.getLValueBase().getOpaqueValue()) |
2146 | 0 | return false; |
2147 | | |
2148 | 0 | return A.getLValueCallIndex() == B.getLValueCallIndex() && |
2149 | 0 | A.getLValueVersion() == B.getLValueVersion(); |
2150 | 0 | } |
2151 | | |
2152 | 0 | static void NoteLValueLocation(EvalInfo &Info, APValue::LValueBase Base) { |
2153 | 0 | assert(Base && "no location for a null lvalue"); |
2154 | 0 | const ValueDecl *VD = Base.dyn_cast<const ValueDecl*>(); |
2155 | | |
2156 | | // For a parameter, find the corresponding call stack frame (if it still |
2157 | | // exists), and point at the parameter of the function definition we actually |
2158 | | // invoked. |
2159 | 0 | if (auto *PVD = dyn_cast_or_null<ParmVarDecl>(VD)) { |
2160 | 0 | unsigned Idx = PVD->getFunctionScopeIndex(); |
2161 | 0 | for (CallStackFrame *F = Info.CurrentCall; F; F = F->Caller) { |
2162 | 0 | if (F->Arguments.CallIndex == Base.getCallIndex() && |
2163 | 0 | F->Arguments.Version == Base.getVersion() && F->Callee && |
2164 | 0 | Idx < F->Callee->getNumParams()) { |
2165 | 0 | VD = F->Callee->getParamDecl(Idx); |
2166 | 0 | break; |
2167 | 0 | } |
2168 | 0 | } |
2169 | 0 | } |
2170 | |
|
2171 | 0 | if (VD) |
2172 | 0 | Info.Note(VD->getLocation(), diag::note_declared_at); |
2173 | 0 | else if (const Expr *E = Base.dyn_cast<const Expr*>()) |
2174 | 0 | Info.Note(E->getExprLoc(), diag::note_constexpr_temporary_here); |
2175 | 0 | else if (DynamicAllocLValue DA = Base.dyn_cast<DynamicAllocLValue>()) { |
2176 | | // FIXME: Produce a note for dangling pointers too. |
2177 | 0 | if (std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA)) |
2178 | 0 | Info.Note((*Alloc)->AllocExpr->getExprLoc(), |
2179 | 0 | diag::note_constexpr_dynamic_alloc_here); |
2180 | 0 | } |
2181 | | |
2182 | | // We have no information to show for a typeid(T) object. |
2183 | 0 | } |
2184 | | |
2185 | | enum class CheckEvaluationResultKind { |
2186 | | ConstantExpression, |
2187 | | FullyInitialized, |
2188 | | }; |
2189 | | |
2190 | | /// Materialized temporaries that we've already checked to determine if they're |
2191 | | /// initializsed by a constant expression. |
2192 | | using CheckedTemporaries = |
2193 | | llvm::SmallPtrSet<const MaterializeTemporaryExpr *, 8>; |
2194 | | |
2195 | | static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, |
2196 | | EvalInfo &Info, SourceLocation DiagLoc, |
2197 | | QualType Type, const APValue &Value, |
2198 | | ConstantExprKind Kind, |
2199 | | const FieldDecl *SubobjectDecl, |
2200 | | CheckedTemporaries &CheckedTemps); |
2201 | | |
2202 | | /// Check that this reference or pointer core constant expression is a valid |
2203 | | /// value for an address or reference constant expression. Return true if we |
2204 | | /// can fold this expression, whether or not it's a constant expression. |
2205 | | static bool CheckLValueConstantExpression(EvalInfo &Info, SourceLocation Loc, |
2206 | | QualType Type, const LValue &LVal, |
2207 | | ConstantExprKind Kind, |
2208 | 0 | CheckedTemporaries &CheckedTemps) { |
2209 | 0 | bool IsReferenceType = Type->isReferenceType(); |
2210 | |
|
2211 | 0 | APValue::LValueBase Base = LVal.getLValueBase(); |
2212 | 0 | const SubobjectDesignator &Designator = LVal.getLValueDesignator(); |
2213 | |
|
2214 | 0 | const Expr *BaseE = Base.dyn_cast<const Expr *>(); |
2215 | 0 | const ValueDecl *BaseVD = Base.dyn_cast<const ValueDecl*>(); |
2216 | | |
2217 | | // Additional restrictions apply in a template argument. We only enforce the |
2218 | | // C++20 restrictions here; additional syntactic and semantic restrictions |
2219 | | // are applied elsewhere. |
2220 | 0 | if (isTemplateArgument(Kind)) { |
2221 | 0 | int InvalidBaseKind = -1; |
2222 | 0 | StringRef Ident; |
2223 | 0 | if (Base.is<TypeInfoLValue>()) |
2224 | 0 | InvalidBaseKind = 0; |
2225 | 0 | else if (isa_and_nonnull<StringLiteral>(BaseE)) |
2226 | 0 | InvalidBaseKind = 1; |
2227 | 0 | else if (isa_and_nonnull<MaterializeTemporaryExpr>(BaseE) || |
2228 | 0 | isa_and_nonnull<LifetimeExtendedTemporaryDecl>(BaseVD)) |
2229 | 0 | InvalidBaseKind = 2; |
2230 | 0 | else if (auto *PE = dyn_cast_or_null<PredefinedExpr>(BaseE)) { |
2231 | 0 | InvalidBaseKind = 3; |
2232 | 0 | Ident = PE->getIdentKindName(); |
2233 | 0 | } |
2234 | |
|
2235 | 0 | if (InvalidBaseKind != -1) { |
2236 | 0 | Info.FFDiag(Loc, diag::note_constexpr_invalid_template_arg) |
2237 | 0 | << IsReferenceType << !Designator.Entries.empty() << InvalidBaseKind |
2238 | 0 | << Ident; |
2239 | 0 | return false; |
2240 | 0 | } |
2241 | 0 | } |
2242 | | |
2243 | 0 | if (auto *FD = dyn_cast_or_null<FunctionDecl>(BaseVD); |
2244 | 0 | FD && FD->isImmediateFunction()) { |
2245 | 0 | Info.FFDiag(Loc, diag::note_consteval_address_accessible) |
2246 | 0 | << !Type->isAnyPointerType(); |
2247 | 0 | Info.Note(FD->getLocation(), diag::note_declared_at); |
2248 | 0 | return false; |
2249 | 0 | } |
2250 | | |
2251 | | // Check that the object is a global. Note that the fake 'this' object we |
2252 | | // manufacture when checking potential constant expressions is conservatively |
2253 | | // assumed to be global here. |
2254 | 0 | if (!IsGlobalLValue(Base)) { |
2255 | 0 | if (Info.getLangOpts().CPlusPlus11) { |
2256 | 0 | Info.FFDiag(Loc, diag::note_constexpr_non_global, 1) |
2257 | 0 | << IsReferenceType << !Designator.Entries.empty() << !!BaseVD |
2258 | 0 | << BaseVD; |
2259 | 0 | auto *VarD = dyn_cast_or_null<VarDecl>(BaseVD); |
2260 | 0 | if (VarD && VarD->isConstexpr()) { |
2261 | | // Non-static local constexpr variables have unintuitive semantics: |
2262 | | // constexpr int a = 1; |
2263 | | // constexpr const int *p = &a; |
2264 | | // ... is invalid because the address of 'a' is not constant. Suggest |
2265 | | // adding a 'static' in this case. |
2266 | 0 | Info.Note(VarD->getLocation(), diag::note_constexpr_not_static) |
2267 | 0 | << VarD |
2268 | 0 | << FixItHint::CreateInsertion(VarD->getBeginLoc(), "static "); |
2269 | 0 | } else { |
2270 | 0 | NoteLValueLocation(Info, Base); |
2271 | 0 | } |
2272 | 0 | } else { |
2273 | 0 | Info.FFDiag(Loc); |
2274 | 0 | } |
2275 | | // Don't allow references to temporaries to escape. |
2276 | 0 | return false; |
2277 | 0 | } |
2278 | 0 | assert((Info.checkingPotentialConstantExpression() || |
2279 | 0 | LVal.getLValueCallIndex() == 0) && |
2280 | 0 | "have call index for global lvalue"); |
2281 | | |
2282 | 0 | if (Base.is<DynamicAllocLValue>()) { |
2283 | 0 | Info.FFDiag(Loc, diag::note_constexpr_dynamic_alloc) |
2284 | 0 | << IsReferenceType << !Designator.Entries.empty(); |
2285 | 0 | NoteLValueLocation(Info, Base); |
2286 | 0 | return false; |
2287 | 0 | } |
2288 | | |
2289 | 0 | if (BaseVD) { |
2290 | 0 | if (const VarDecl *Var = dyn_cast<const VarDecl>(BaseVD)) { |
2291 | | // Check if this is a thread-local variable. |
2292 | 0 | if (Var->getTLSKind()) |
2293 | | // FIXME: Diagnostic! |
2294 | 0 | return false; |
2295 | | |
2296 | | // A dllimport variable never acts like a constant, unless we're |
2297 | | // evaluating a value for use only in name mangling. |
2298 | 0 | if (!isForManglingOnly(Kind) && Var->hasAttr<DLLImportAttr>()) |
2299 | | // FIXME: Diagnostic! |
2300 | 0 | return false; |
2301 | | |
2302 | | // In CUDA/HIP device compilation, only device side variables have |
2303 | | // constant addresses. |
2304 | 0 | if (Info.getCtx().getLangOpts().CUDA && |
2305 | 0 | Info.getCtx().getLangOpts().CUDAIsDevice && |
2306 | 0 | Info.getCtx().CUDAConstantEvalCtx.NoWrongSidedVars) { |
2307 | 0 | if ((!Var->hasAttr<CUDADeviceAttr>() && |
2308 | 0 | !Var->hasAttr<CUDAConstantAttr>() && |
2309 | 0 | !Var->getType()->isCUDADeviceBuiltinSurfaceType() && |
2310 | 0 | !Var->getType()->isCUDADeviceBuiltinTextureType()) || |
2311 | 0 | Var->hasAttr<HIPManagedAttr>()) |
2312 | 0 | return false; |
2313 | 0 | } |
2314 | 0 | } |
2315 | 0 | if (const auto *FD = dyn_cast<const FunctionDecl>(BaseVD)) { |
2316 | | // __declspec(dllimport) must be handled very carefully: |
2317 | | // We must never initialize an expression with the thunk in C++. |
2318 | | // Doing otherwise would allow the same id-expression to yield |
2319 | | // different addresses for the same function in different translation |
2320 | | // units. However, this means that we must dynamically initialize the |
2321 | | // expression with the contents of the import address table at runtime. |
2322 | | // |
2323 | | // The C language has no notion of ODR; furthermore, it has no notion of |
2324 | | // dynamic initialization. This means that we are permitted to |
2325 | | // perform initialization with the address of the thunk. |
2326 | 0 | if (Info.getLangOpts().CPlusPlus && !isForManglingOnly(Kind) && |
2327 | 0 | FD->hasAttr<DLLImportAttr>()) |
2328 | | // FIXME: Diagnostic! |
2329 | 0 | return false; |
2330 | 0 | } |
2331 | 0 | } else if (const auto *MTE = |
2332 | 0 | dyn_cast_or_null<MaterializeTemporaryExpr>(BaseE)) { |
2333 | 0 | if (CheckedTemps.insert(MTE).second) { |
2334 | 0 | QualType TempType = getType(Base); |
2335 | 0 | if (TempType.isDestructedType()) { |
2336 | 0 | Info.FFDiag(MTE->getExprLoc(), |
2337 | 0 | diag::note_constexpr_unsupported_temporary_nontrivial_dtor) |
2338 | 0 | << TempType; |
2339 | 0 | return false; |
2340 | 0 | } |
2341 | | |
2342 | 0 | APValue *V = MTE->getOrCreateValue(false); |
2343 | 0 | assert(V && "evasluation result refers to uninitialised temporary"); |
2344 | 0 | if (!CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, |
2345 | 0 | Info, MTE->getExprLoc(), TempType, *V, Kind, |
2346 | 0 | /*SubobjectDecl=*/nullptr, CheckedTemps)) |
2347 | 0 | return false; |
2348 | 0 | } |
2349 | 0 | } |
2350 | | |
2351 | | // Allow address constant expressions to be past-the-end pointers. This is |
2352 | | // an extension: the standard requires them to point to an object. |
2353 | 0 | if (!IsReferenceType) |
2354 | 0 | return true; |
2355 | | |
2356 | | // A reference constant expression must refer to an object. |
2357 | 0 | if (!Base) { |
2358 | | // FIXME: diagnostic |
2359 | 0 | Info.CCEDiag(Loc); |
2360 | 0 | return true; |
2361 | 0 | } |
2362 | | |
2363 | | // Does this refer one past the end of some object? |
2364 | 0 | if (!Designator.Invalid && Designator.isOnePastTheEnd()) { |
2365 | 0 | Info.FFDiag(Loc, diag::note_constexpr_past_end, 1) |
2366 | 0 | << !Designator.Entries.empty() << !!BaseVD << BaseVD; |
2367 | 0 | NoteLValueLocation(Info, Base); |
2368 | 0 | } |
2369 | |
|
2370 | 0 | return true; |
2371 | 0 | } |
2372 | | |
2373 | | /// Member pointers are constant expressions unless they point to a |
2374 | | /// non-virtual dllimport member function. |
2375 | | static bool CheckMemberPointerConstantExpression(EvalInfo &Info, |
2376 | | SourceLocation Loc, |
2377 | | QualType Type, |
2378 | | const APValue &Value, |
2379 | 0 | ConstantExprKind Kind) { |
2380 | 0 | const ValueDecl *Member = Value.getMemberPointerDecl(); |
2381 | 0 | const auto *FD = dyn_cast_or_null<CXXMethodDecl>(Member); |
2382 | 0 | if (!FD) |
2383 | 0 | return true; |
2384 | 0 | if (FD->isImmediateFunction()) { |
2385 | 0 | Info.FFDiag(Loc, diag::note_consteval_address_accessible) << /*pointer*/ 0; |
2386 | 0 | Info.Note(FD->getLocation(), diag::note_declared_at); |
2387 | 0 | return false; |
2388 | 0 | } |
2389 | 0 | return isForManglingOnly(Kind) || FD->isVirtual() || |
2390 | 0 | !FD->hasAttr<DLLImportAttr>(); |
2391 | 0 | } |
2392 | | |
2393 | | /// Check that this core constant expression is of literal type, and if not, |
2394 | | /// produce an appropriate diagnostic. |
2395 | | static bool CheckLiteralType(EvalInfo &Info, const Expr *E, |
2396 | 14 | const LValue *This = nullptr) { |
2397 | 14 | if (!E->isPRValue() || E->getType()->isLiteralType(Info.Ctx)) |
2398 | 14 | return true; |
2399 | | |
2400 | | // C++1y: A constant initializer for an object o [...] may also invoke |
2401 | | // constexpr constructors for o and its subobjects even if those objects |
2402 | | // are of non-literal class types. |
2403 | | // |
2404 | | // C++11 missed this detail for aggregates, so classes like this: |
2405 | | // struct foo_t { union { int i; volatile int j; } u; }; |
2406 | | // are not (obviously) initializable like so: |
2407 | | // __attribute__((__require_constant_initialization__)) |
2408 | | // static const foo_t x = {{0}}; |
2409 | | // because "i" is a subobject with non-literal initialization (due to the |
2410 | | // volatile member of the union). See: |
2411 | | // http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#1677 |
2412 | | // Therefore, we use the C++1y behavior. |
2413 | 0 | if (This && Info.EvaluatingDecl == This->getLValueBase()) |
2414 | 0 | return true; |
2415 | | |
2416 | | // Prvalue constant expressions must be of literal types. |
2417 | 0 | if (Info.getLangOpts().CPlusPlus11) |
2418 | 0 | Info.FFDiag(E, diag::note_constexpr_nonliteral) |
2419 | 0 | << E->getType(); |
2420 | 0 | else |
2421 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
2422 | 0 | return false; |
2423 | 0 | } |
2424 | | |
2425 | | static bool CheckEvaluationResult(CheckEvaluationResultKind CERK, |
2426 | | EvalInfo &Info, SourceLocation DiagLoc, |
2427 | | QualType Type, const APValue &Value, |
2428 | | ConstantExprKind Kind, |
2429 | | const FieldDecl *SubobjectDecl, |
2430 | 5 | CheckedTemporaries &CheckedTemps) { |
2431 | 5 | if (!Value.hasValue()) { |
2432 | 0 | if (SubobjectDecl) { |
2433 | 0 | Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) |
2434 | 0 | << /*(name)*/ 1 << SubobjectDecl; |
2435 | 0 | Info.Note(SubobjectDecl->getLocation(), |
2436 | 0 | diag::note_constexpr_subobject_declared_here); |
2437 | 0 | } else { |
2438 | 0 | Info.FFDiag(DiagLoc, diag::note_constexpr_uninitialized) |
2439 | 0 | << /*of type*/ 0 << Type; |
2440 | 0 | } |
2441 | 0 | return false; |
2442 | 0 | } |
2443 | | |
2444 | | // We allow _Atomic(T) to be initialized from anything that T can be |
2445 | | // initialized from. |
2446 | 5 | if (const AtomicType *AT = Type->getAs<AtomicType>()) |
2447 | 0 | Type = AT->getValueType(); |
2448 | | |
2449 | | // Core issue 1454: For a literal constant expression of array or class type, |
2450 | | // each subobject of its value shall have been initialized by a constant |
2451 | | // expression. |
2452 | 5 | if (Value.isArray()) { |
2453 | 0 | QualType EltTy = Type->castAsArrayTypeUnsafe()->getElementType(); |
2454 | 0 | for (unsigned I = 0, N = Value.getArrayInitializedElts(); I != N; ++I) { |
2455 | 0 | if (!CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, |
2456 | 0 | Value.getArrayInitializedElt(I), Kind, |
2457 | 0 | SubobjectDecl, CheckedTemps)) |
2458 | 0 | return false; |
2459 | 0 | } |
2460 | 0 | if (!Value.hasArrayFiller()) |
2461 | 0 | return true; |
2462 | 0 | return CheckEvaluationResult(CERK, Info, DiagLoc, EltTy, |
2463 | 0 | Value.getArrayFiller(), Kind, SubobjectDecl, |
2464 | 0 | CheckedTemps); |
2465 | 0 | } |
2466 | 5 | if (Value.isUnion() && Value.getUnionField()) { |
2467 | 0 | return CheckEvaluationResult( |
2468 | 0 | CERK, Info, DiagLoc, Value.getUnionField()->getType(), |
2469 | 0 | Value.getUnionValue(), Kind, Value.getUnionField(), CheckedTemps); |
2470 | 0 | } |
2471 | 5 | if (Value.isStruct()) { |
2472 | 0 | RecordDecl *RD = Type->castAs<RecordType>()->getDecl(); |
2473 | 0 | if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { |
2474 | 0 | unsigned BaseIndex = 0; |
2475 | 0 | for (const CXXBaseSpecifier &BS : CD->bases()) { |
2476 | 0 | const APValue &BaseValue = Value.getStructBase(BaseIndex); |
2477 | 0 | if (!BaseValue.hasValue()) { |
2478 | 0 | SourceLocation TypeBeginLoc = BS.getBaseTypeLoc(); |
2479 | 0 | Info.FFDiag(TypeBeginLoc, diag::note_constexpr_uninitialized_base) |
2480 | 0 | << BS.getType() << SourceRange(TypeBeginLoc, BS.getEndLoc()); |
2481 | 0 | return false; |
2482 | 0 | } |
2483 | 0 | if (!CheckEvaluationResult(CERK, Info, DiagLoc, BS.getType(), BaseValue, |
2484 | 0 | Kind, /*SubobjectDecl=*/nullptr, |
2485 | 0 | CheckedTemps)) |
2486 | 0 | return false; |
2487 | 0 | ++BaseIndex; |
2488 | 0 | } |
2489 | 0 | } |
2490 | 0 | for (const auto *I : RD->fields()) { |
2491 | 0 | if (I->isUnnamedBitfield()) |
2492 | 0 | continue; |
2493 | | |
2494 | 0 | if (!CheckEvaluationResult(CERK, Info, DiagLoc, I->getType(), |
2495 | 0 | Value.getStructField(I->getFieldIndex()), Kind, |
2496 | 0 | I, CheckedTemps)) |
2497 | 0 | return false; |
2498 | 0 | } |
2499 | 0 | } |
2500 | | |
2501 | 5 | if (Value.isLValue() && |
2502 | 5 | CERK == CheckEvaluationResultKind::ConstantExpression) { |
2503 | 0 | LValue LVal; |
2504 | 0 | LVal.setFrom(Info.Ctx, Value); |
2505 | 0 | return CheckLValueConstantExpression(Info, DiagLoc, Type, LVal, Kind, |
2506 | 0 | CheckedTemps); |
2507 | 0 | } |
2508 | | |
2509 | 5 | if (Value.isMemberPointer() && |
2510 | 5 | CERK == CheckEvaluationResultKind::ConstantExpression) |
2511 | 0 | return CheckMemberPointerConstantExpression(Info, DiagLoc, Type, Value, Kind); |
2512 | | |
2513 | | // Everything else is fine. |
2514 | 5 | return true; |
2515 | 5 | } |
2516 | | |
2517 | | /// Check that this core constant expression value is a valid value for a |
2518 | | /// constant expression. If not, report an appropriate diagnostic. Does not |
2519 | | /// check that the expression is of literal type. |
2520 | | static bool CheckConstantExpression(EvalInfo &Info, SourceLocation DiagLoc, |
2521 | | QualType Type, const APValue &Value, |
2522 | 5 | ConstantExprKind Kind) { |
2523 | | // Nothing to check for a constant expression of type 'cv void'. |
2524 | 5 | if (Type->isVoidType()) |
2525 | 0 | return true; |
2526 | | |
2527 | 5 | CheckedTemporaries CheckedTemps; |
2528 | 5 | return CheckEvaluationResult(CheckEvaluationResultKind::ConstantExpression, |
2529 | 5 | Info, DiagLoc, Type, Value, Kind, |
2530 | 5 | /*SubobjectDecl=*/nullptr, CheckedTemps); |
2531 | 5 | } |
2532 | | |
2533 | | /// Check that this evaluated value is fully-initialized and can be loaded by |
2534 | | /// an lvalue-to-rvalue conversion. |
2535 | | static bool CheckFullyInitialized(EvalInfo &Info, SourceLocation DiagLoc, |
2536 | 0 | QualType Type, const APValue &Value) { |
2537 | 0 | CheckedTemporaries CheckedTemps; |
2538 | 0 | return CheckEvaluationResult( |
2539 | 0 | CheckEvaluationResultKind::FullyInitialized, Info, DiagLoc, Type, Value, |
2540 | 0 | ConstantExprKind::Normal, /*SubobjectDecl=*/nullptr, CheckedTemps); |
2541 | 0 | } |
2542 | | |
2543 | | /// Enforce C++2a [expr.const]/4.17, which disallows new-expressions unless |
2544 | | /// "the allocated storage is deallocated within the evaluation". |
2545 | 5 | static bool CheckMemoryLeaks(EvalInfo &Info) { |
2546 | 5 | if (!Info.HeapAllocs.empty()) { |
2547 | | // We can still fold to a constant despite a compile-time memory leak, |
2548 | | // so long as the heap allocation isn't referenced in the result (we check |
2549 | | // that in CheckConstantExpression). |
2550 | 0 | Info.CCEDiag(Info.HeapAllocs.begin()->second.AllocExpr, |
2551 | 0 | diag::note_constexpr_memory_leak) |
2552 | 0 | << unsigned(Info.HeapAllocs.size() - 1); |
2553 | 0 | } |
2554 | 5 | return true; |
2555 | 5 | } |
2556 | | |
2557 | 0 | static bool EvalPointerValueAsBool(const APValue &Value, bool &Result) { |
2558 | | // A null base expression indicates a null pointer. These are always |
2559 | | // evaluatable, and they are false unless the offset is zero. |
2560 | 0 | if (!Value.getLValueBase()) { |
2561 | | // TODO: Should a non-null pointer with an offset of zero evaluate to true? |
2562 | 0 | Result = !Value.getLValueOffset().isZero(); |
2563 | 0 | return true; |
2564 | 0 | } |
2565 | | |
2566 | | // We have a non-null base. These are generally known to be true, but if it's |
2567 | | // a weak declaration it can be null at runtime. |
2568 | 0 | Result = true; |
2569 | 0 | const ValueDecl *Decl = Value.getLValueBase().dyn_cast<const ValueDecl*>(); |
2570 | 0 | return !Decl || !Decl->isWeak(); |
2571 | 0 | } |
2572 | | |
2573 | 0 | static bool HandleConversionToBool(const APValue &Val, bool &Result) { |
2574 | | // TODO: This function should produce notes if it fails. |
2575 | 0 | switch (Val.getKind()) { |
2576 | 0 | case APValue::None: |
2577 | 0 | case APValue::Indeterminate: |
2578 | 0 | return false; |
2579 | 0 | case APValue::Int: |
2580 | 0 | Result = Val.getInt().getBoolValue(); |
2581 | 0 | return true; |
2582 | 0 | case APValue::FixedPoint: |
2583 | 0 | Result = Val.getFixedPoint().getBoolValue(); |
2584 | 0 | return true; |
2585 | 0 | case APValue::Float: |
2586 | 0 | Result = !Val.getFloat().isZero(); |
2587 | 0 | return true; |
2588 | 0 | case APValue::ComplexInt: |
2589 | 0 | Result = Val.getComplexIntReal().getBoolValue() || |
2590 | 0 | Val.getComplexIntImag().getBoolValue(); |
2591 | 0 | return true; |
2592 | 0 | case APValue::ComplexFloat: |
2593 | 0 | Result = !Val.getComplexFloatReal().isZero() || |
2594 | 0 | !Val.getComplexFloatImag().isZero(); |
2595 | 0 | return true; |
2596 | 0 | case APValue::LValue: |
2597 | 0 | return EvalPointerValueAsBool(Val, Result); |
2598 | 0 | case APValue::MemberPointer: |
2599 | 0 | if (Val.getMemberPointerDecl() && Val.getMemberPointerDecl()->isWeak()) { |
2600 | 0 | return false; |
2601 | 0 | } |
2602 | 0 | Result = Val.getMemberPointerDecl(); |
2603 | 0 | return true; |
2604 | 0 | case APValue::Vector: |
2605 | 0 | case APValue::Array: |
2606 | 0 | case APValue::Struct: |
2607 | 0 | case APValue::Union: |
2608 | 0 | case APValue::AddrLabelDiff: |
2609 | 0 | return false; |
2610 | 0 | } |
2611 | | |
2612 | 0 | llvm_unreachable("unknown APValue kind"); |
2613 | 0 | } |
2614 | | |
2615 | | static bool EvaluateAsBooleanCondition(const Expr *E, bool &Result, |
2616 | 0 | EvalInfo &Info) { |
2617 | 0 | assert(!E->isValueDependent()); |
2618 | 0 | assert(E->isPRValue() && "missing lvalue-to-rvalue conv in bool condition"); |
2619 | 0 | APValue Val; |
2620 | 0 | if (!Evaluate(Val, Info, E)) |
2621 | 0 | return false; |
2622 | 0 | return HandleConversionToBool(Val, Result); |
2623 | 0 | } |
2624 | | |
2625 | | template<typename T> |
2626 | | static bool HandleOverflow(EvalInfo &Info, const Expr *E, |
2627 | 0 | const T &SrcValue, QualType DestType) { |
2628 | 0 | Info.CCEDiag(E, diag::note_constexpr_overflow) |
2629 | 0 | << SrcValue << DestType; |
2630 | 0 | return Info.noteUndefinedBehavior(); |
2631 | 0 | } Unexecuted instantiation: ExprConstant.cpp:bool HandleOverflow<llvm::APSInt>((anonymous namespace)::EvalInfo&, clang::Expr const*, llvm::APSInt const&, clang::QualType) Unexecuted instantiation: ExprConstant.cpp:bool HandleOverflow<llvm::APFloat>((anonymous namespace)::EvalInfo&, clang::Expr const*, llvm::APFloat const&, clang::QualType) Unexecuted instantiation: ExprConstant.cpp:bool HandleOverflow<llvm::APFixedPoint>((anonymous namespace)::EvalInfo&, clang::Expr const*, llvm::APFixedPoint const&, clang::QualType) |
2632 | | |
2633 | | static bool HandleFloatToIntCast(EvalInfo &Info, const Expr *E, |
2634 | | QualType SrcType, const APFloat &Value, |
2635 | 0 | QualType DestType, APSInt &Result) { |
2636 | 0 | unsigned DestWidth = Info.Ctx.getIntWidth(DestType); |
2637 | | // Determine whether we are converting to unsigned or signed. |
2638 | 0 | bool DestSigned = DestType->isSignedIntegerOrEnumerationType(); |
2639 | |
|
2640 | 0 | Result = APSInt(DestWidth, !DestSigned); |
2641 | 0 | bool ignored; |
2642 | 0 | if (Value.convertToInteger(Result, llvm::APFloat::rmTowardZero, &ignored) |
2643 | 0 | & APFloat::opInvalidOp) |
2644 | 0 | return HandleOverflow(Info, E, Value, DestType); |
2645 | 0 | return true; |
2646 | 0 | } |
2647 | | |
2648 | | /// Get rounding mode to use in evaluation of the specified expression. |
2649 | | /// |
2650 | | /// If rounding mode is unknown at compile time, still try to evaluate the |
2651 | | /// expression. If the result is exact, it does not depend on rounding mode. |
2652 | | /// So return "tonearest" mode instead of "dynamic". |
2653 | 0 | static llvm::RoundingMode getActiveRoundingMode(EvalInfo &Info, const Expr *E) { |
2654 | 0 | llvm::RoundingMode RM = |
2655 | 0 | E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).getRoundingMode(); |
2656 | 0 | if (RM == llvm::RoundingMode::Dynamic) |
2657 | 0 | RM = llvm::RoundingMode::NearestTiesToEven; |
2658 | 0 | return RM; |
2659 | 0 | } |
2660 | | |
2661 | | /// Check if the given evaluation result is allowed for constant evaluation. |
2662 | | static bool checkFloatingPointResult(EvalInfo &Info, const Expr *E, |
2663 | 0 | APFloat::opStatus St) { |
2664 | | // In a constant context, assume that any dynamic rounding mode or FP |
2665 | | // exception state matches the default floating-point environment. |
2666 | 0 | if (Info.InConstantContext) |
2667 | 0 | return true; |
2668 | | |
2669 | 0 | FPOptions FPO = E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()); |
2670 | 0 | if ((St & APFloat::opInexact) && |
2671 | 0 | FPO.getRoundingMode() == llvm::RoundingMode::Dynamic) { |
2672 | | // Inexact result means that it depends on rounding mode. If the requested |
2673 | | // mode is dynamic, the evaluation cannot be made in compile time. |
2674 | 0 | Info.FFDiag(E, diag::note_constexpr_dynamic_rounding); |
2675 | 0 | return false; |
2676 | 0 | } |
2677 | | |
2678 | 0 | if ((St != APFloat::opOK) && |
2679 | 0 | (FPO.getRoundingMode() == llvm::RoundingMode::Dynamic || |
2680 | 0 | FPO.getExceptionMode() != LangOptions::FPE_Ignore || |
2681 | 0 | FPO.getAllowFEnvAccess())) { |
2682 | 0 | Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); |
2683 | 0 | return false; |
2684 | 0 | } |
2685 | | |
2686 | 0 | if ((St & APFloat::opStatus::opInvalidOp) && |
2687 | 0 | FPO.getExceptionMode() != LangOptions::FPE_Ignore) { |
2688 | | // There is no usefully definable result. |
2689 | 0 | Info.FFDiag(E); |
2690 | 0 | return false; |
2691 | 0 | } |
2692 | | |
2693 | | // FIXME: if: |
2694 | | // - evaluation triggered other FP exception, and |
2695 | | // - exception mode is not "ignore", and |
2696 | | // - the expression being evaluated is not a part of global variable |
2697 | | // initializer, |
2698 | | // the evaluation probably need to be rejected. |
2699 | 0 | return true; |
2700 | 0 | } |
2701 | | |
2702 | | static bool HandleFloatToFloatCast(EvalInfo &Info, const Expr *E, |
2703 | | QualType SrcType, QualType DestType, |
2704 | 0 | APFloat &Result) { |
2705 | 0 | assert(isa<CastExpr>(E) || isa<CompoundAssignOperator>(E)); |
2706 | 0 | llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
2707 | 0 | APFloat::opStatus St; |
2708 | 0 | APFloat Value = Result; |
2709 | 0 | bool ignored; |
2710 | 0 | St = Result.convert(Info.Ctx.getFloatTypeSemantics(DestType), RM, &ignored); |
2711 | 0 | return checkFloatingPointResult(Info, E, St); |
2712 | 0 | } |
2713 | | |
2714 | | static APSInt HandleIntToIntCast(EvalInfo &Info, const Expr *E, |
2715 | | QualType DestType, QualType SrcType, |
2716 | 0 | const APSInt &Value) { |
2717 | 0 | unsigned DestWidth = Info.Ctx.getIntWidth(DestType); |
2718 | | // Figure out if this is a truncate, extend or noop cast. |
2719 | | // If the input is signed, do a sign extend, noop, or truncate. |
2720 | 0 | APSInt Result = Value.extOrTrunc(DestWidth); |
2721 | 0 | Result.setIsUnsigned(DestType->isUnsignedIntegerOrEnumerationType()); |
2722 | 0 | if (DestType->isBooleanType()) |
2723 | 0 | Result = Value.getBoolValue(); |
2724 | 0 | return Result; |
2725 | 0 | } |
2726 | | |
2727 | | static bool HandleIntToFloatCast(EvalInfo &Info, const Expr *E, |
2728 | | const FPOptions FPO, |
2729 | | QualType SrcType, const APSInt &Value, |
2730 | 0 | QualType DestType, APFloat &Result) { |
2731 | 0 | Result = APFloat(Info.Ctx.getFloatTypeSemantics(DestType), 1); |
2732 | 0 | llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
2733 | 0 | APFloat::opStatus St = Result.convertFromAPInt(Value, Value.isSigned(), RM); |
2734 | 0 | return checkFloatingPointResult(Info, E, St); |
2735 | 0 | } |
2736 | | |
2737 | | static bool truncateBitfieldValue(EvalInfo &Info, const Expr *E, |
2738 | 0 | APValue &Value, const FieldDecl *FD) { |
2739 | 0 | assert(FD->isBitField() && "truncateBitfieldValue on non-bitfield"); |
2740 | | |
2741 | 0 | if (!Value.isInt()) { |
2742 | | // Trying to store a pointer-cast-to-integer into a bitfield. |
2743 | | // FIXME: In this case, we should provide the diagnostic for casting |
2744 | | // a pointer to an integer. |
2745 | 0 | assert(Value.isLValue() && "integral value neither int nor lvalue?"); |
2746 | 0 | Info.FFDiag(E); |
2747 | 0 | return false; |
2748 | 0 | } |
2749 | | |
2750 | 0 | APSInt &Int = Value.getInt(); |
2751 | 0 | unsigned OldBitWidth = Int.getBitWidth(); |
2752 | 0 | unsigned NewBitWidth = FD->getBitWidthValue(Info.Ctx); |
2753 | 0 | if (NewBitWidth < OldBitWidth) |
2754 | 0 | Int = Int.trunc(NewBitWidth).extend(OldBitWidth); |
2755 | 0 | return true; |
2756 | 0 | } |
2757 | | |
2758 | | /// Perform the given integer operation, which is known to need at most BitWidth |
2759 | | /// bits, and check for overflow in the original type (if that type was not an |
2760 | | /// unsigned type). |
2761 | | template<typename Operation> |
2762 | | static bool CheckedIntArithmetic(EvalInfo &Info, const Expr *E, |
2763 | | const APSInt &LHS, const APSInt &RHS, |
2764 | | unsigned BitWidth, Operation Op, |
2765 | 0 | APSInt &Result) { |
2766 | 0 | if (LHS.isUnsigned()) { |
2767 | 0 | Result = Op(LHS, RHS); |
2768 | 0 | return true; |
2769 | 0 | } |
2770 | | |
2771 | 0 | APSInt Value(Op(LHS.extend(BitWidth), RHS.extend(BitWidth)), false); |
2772 | 0 | Result = Value.trunc(LHS.getBitWidth()); |
2773 | 0 | if (Result.extend(BitWidth) != Value) { |
2774 | 0 | if (Info.checkingForUndefinedBehavior()) |
2775 | 0 | Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
2776 | 0 | diag::warn_integer_constant_overflow) |
2777 | 0 | << toString(Result, 10) << E->getType() << E->getSourceRange(); |
2778 | 0 | return HandleOverflow(Info, E, Value, E->getType()); |
2779 | 0 | } |
2780 | 0 | return true; |
2781 | 0 | } Unexecuted instantiation: ExprConstant.cpp:bool CheckedIntArithmetic<std::__1::multiplies<llvm::APSInt> >((anonymous namespace)::EvalInfo&, clang::Expr const*, llvm::APSInt const&, llvm::APSInt const&, unsigned int, std::__1::multiplies<llvm::APSInt>, llvm::APSInt&) Unexecuted instantiation: ExprConstant.cpp:bool CheckedIntArithmetic<std::__1::plus<llvm::APSInt> >((anonymous namespace)::EvalInfo&, clang::Expr const*, llvm::APSInt const&, llvm::APSInt const&, unsigned int, std::__1::plus<llvm::APSInt>, llvm::APSInt&) Unexecuted instantiation: ExprConstant.cpp:bool CheckedIntArithmetic<std::__1::minus<llvm::APSInt> >((anonymous namespace)::EvalInfo&, clang::Expr const*, llvm::APSInt const&, llvm::APSInt const&, unsigned int, std::__1::minus<llvm::APSInt>, llvm::APSInt&) |
2782 | | |
2783 | | /// Perform the given binary integer operation. |
2784 | | static bool handleIntIntBinOp(EvalInfo &Info, const BinaryOperator *E, |
2785 | | const APSInt &LHS, BinaryOperatorKind Opcode, |
2786 | 0 | APSInt RHS, APSInt &Result) { |
2787 | 0 | bool HandleOverflowResult = true; |
2788 | 0 | switch (Opcode) { |
2789 | 0 | default: |
2790 | 0 | Info.FFDiag(E); |
2791 | 0 | return false; |
2792 | 0 | case BO_Mul: |
2793 | 0 | return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() * 2, |
2794 | 0 | std::multiplies<APSInt>(), Result); |
2795 | 0 | case BO_Add: |
2796 | 0 | return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, |
2797 | 0 | std::plus<APSInt>(), Result); |
2798 | 0 | case BO_Sub: |
2799 | 0 | return CheckedIntArithmetic(Info, E, LHS, RHS, LHS.getBitWidth() + 1, |
2800 | 0 | std::minus<APSInt>(), Result); |
2801 | 0 | case BO_And: Result = LHS & RHS; return true; |
2802 | 0 | case BO_Xor: Result = LHS ^ RHS; return true; |
2803 | 0 | case BO_Or: Result = LHS | RHS; return true; |
2804 | 0 | case BO_Div: |
2805 | 0 | case BO_Rem: |
2806 | 0 | if (RHS == 0) { |
2807 | 0 | Info.FFDiag(E, diag::note_expr_divide_by_zero) |
2808 | 0 | << E->getRHS()->getSourceRange(); |
2809 | 0 | return false; |
2810 | 0 | } |
2811 | | // Check for overflow case: INT_MIN / -1 or INT_MIN % -1. APSInt supports |
2812 | | // this operation and gives the two's complement result. |
2813 | 0 | if (RHS.isNegative() && RHS.isAllOnes() && LHS.isSigned() && |
2814 | 0 | LHS.isMinSignedValue()) |
2815 | 0 | HandleOverflowResult = HandleOverflow( |
2816 | 0 | Info, E, -LHS.extend(LHS.getBitWidth() + 1), E->getType()); |
2817 | 0 | Result = (Opcode == BO_Rem ? LHS % RHS : LHS / RHS); |
2818 | 0 | return HandleOverflowResult; |
2819 | 0 | case BO_Shl: { |
2820 | 0 | if (Info.getLangOpts().OpenCL) |
2821 | | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
2822 | 0 | RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), |
2823 | 0 | static_cast<uint64_t>(LHS.getBitWidth() - 1)), |
2824 | 0 | RHS.isUnsigned()); |
2825 | 0 | else if (RHS.isSigned() && RHS.isNegative()) { |
2826 | | // During constant-folding, a negative shift is an opposite shift. Such |
2827 | | // a shift is not a constant expression. |
2828 | 0 | Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; |
2829 | 0 | RHS = -RHS; |
2830 | 0 | goto shift_right; |
2831 | 0 | } |
2832 | 0 | shift_left: |
2833 | | // C++11 [expr.shift]p1: Shift width must be less than the bit width of |
2834 | | // the shifted type. |
2835 | 0 | unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); |
2836 | 0 | if (SA != RHS) { |
2837 | 0 | Info.CCEDiag(E, diag::note_constexpr_large_shift) |
2838 | 0 | << RHS << E->getType() << LHS.getBitWidth(); |
2839 | 0 | } else if (LHS.isSigned() && !Info.getLangOpts().CPlusPlus20) { |
2840 | | // C++11 [expr.shift]p2: A signed left shift must have a non-negative |
2841 | | // operand, and must not overflow the corresponding unsigned type. |
2842 | | // C++2a [expr.shift]p2: E1 << E2 is the unique value congruent to |
2843 | | // E1 x 2^E2 module 2^N. |
2844 | 0 | if (LHS.isNegative()) |
2845 | 0 | Info.CCEDiag(E, diag::note_constexpr_lshift_of_negative) << LHS; |
2846 | 0 | else if (LHS.countl_zero() < SA) |
2847 | 0 | Info.CCEDiag(E, diag::note_constexpr_lshift_discards); |
2848 | 0 | } |
2849 | 0 | Result = LHS << SA; |
2850 | 0 | return true; |
2851 | 0 | } |
2852 | 0 | case BO_Shr: { |
2853 | 0 | if (Info.getLangOpts().OpenCL) |
2854 | | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
2855 | 0 | RHS &= APSInt(llvm::APInt(RHS.getBitWidth(), |
2856 | 0 | static_cast<uint64_t>(LHS.getBitWidth() - 1)), |
2857 | 0 | RHS.isUnsigned()); |
2858 | 0 | else if (RHS.isSigned() && RHS.isNegative()) { |
2859 | | // During constant-folding, a negative shift is an opposite shift. Such a |
2860 | | // shift is not a constant expression. |
2861 | 0 | Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHS; |
2862 | 0 | RHS = -RHS; |
2863 | 0 | goto shift_left; |
2864 | 0 | } |
2865 | 0 | shift_right: |
2866 | | // C++11 [expr.shift]p1: Shift width must be less than the bit width of the |
2867 | | // shifted type. |
2868 | 0 | unsigned SA = (unsigned) RHS.getLimitedValue(LHS.getBitWidth()-1); |
2869 | 0 | if (SA != RHS) |
2870 | 0 | Info.CCEDiag(E, diag::note_constexpr_large_shift) |
2871 | 0 | << RHS << E->getType() << LHS.getBitWidth(); |
2872 | 0 | Result = LHS >> SA; |
2873 | 0 | return true; |
2874 | 0 | } |
2875 | | |
2876 | 0 | case BO_LT: Result = LHS < RHS; return true; |
2877 | 0 | case BO_GT: Result = LHS > RHS; return true; |
2878 | 0 | case BO_LE: Result = LHS <= RHS; return true; |
2879 | 0 | case BO_GE: Result = LHS >= RHS; return true; |
2880 | 0 | case BO_EQ: Result = LHS == RHS; return true; |
2881 | 0 | case BO_NE: Result = LHS != RHS; return true; |
2882 | 0 | case BO_Cmp: |
2883 | 0 | llvm_unreachable("BO_Cmp should be handled elsewhere"); |
2884 | 0 | } |
2885 | 0 | } |
2886 | | |
2887 | | /// Perform the given binary floating-point operation, in-place, on LHS. |
2888 | | static bool handleFloatFloatBinOp(EvalInfo &Info, const BinaryOperator *E, |
2889 | | APFloat &LHS, BinaryOperatorKind Opcode, |
2890 | 0 | const APFloat &RHS) { |
2891 | 0 | llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
2892 | 0 | APFloat::opStatus St; |
2893 | 0 | switch (Opcode) { |
2894 | 0 | default: |
2895 | 0 | Info.FFDiag(E); |
2896 | 0 | return false; |
2897 | 0 | case BO_Mul: |
2898 | 0 | St = LHS.multiply(RHS, RM); |
2899 | 0 | break; |
2900 | 0 | case BO_Add: |
2901 | 0 | St = LHS.add(RHS, RM); |
2902 | 0 | break; |
2903 | 0 | case BO_Sub: |
2904 | 0 | St = LHS.subtract(RHS, RM); |
2905 | 0 | break; |
2906 | 0 | case BO_Div: |
2907 | | // [expr.mul]p4: |
2908 | | // If the second operand of / or % is zero the behavior is undefined. |
2909 | 0 | if (RHS.isZero()) |
2910 | 0 | Info.CCEDiag(E, diag::note_expr_divide_by_zero); |
2911 | 0 | St = LHS.divide(RHS, RM); |
2912 | 0 | break; |
2913 | 0 | } |
2914 | | |
2915 | | // [expr.pre]p4: |
2916 | | // If during the evaluation of an expression, the result is not |
2917 | | // mathematically defined [...], the behavior is undefined. |
2918 | | // FIXME: C++ rules require us to not conform to IEEE 754 here. |
2919 | 0 | if (LHS.isNaN()) { |
2920 | 0 | Info.CCEDiag(E, diag::note_constexpr_float_arithmetic) << LHS.isNaN(); |
2921 | 0 | return Info.noteUndefinedBehavior(); |
2922 | 0 | } |
2923 | | |
2924 | 0 | return checkFloatingPointResult(Info, E, St); |
2925 | 0 | } |
2926 | | |
2927 | | static bool handleLogicalOpForVector(const APInt &LHSValue, |
2928 | | BinaryOperatorKind Opcode, |
2929 | 0 | const APInt &RHSValue, APInt &Result) { |
2930 | 0 | bool LHS = (LHSValue != 0); |
2931 | 0 | bool RHS = (RHSValue != 0); |
2932 | |
|
2933 | 0 | if (Opcode == BO_LAnd) |
2934 | 0 | Result = LHS && RHS; |
2935 | 0 | else |
2936 | 0 | Result = LHS || RHS; |
2937 | 0 | return true; |
2938 | 0 | } |
2939 | | static bool handleLogicalOpForVector(const APFloat &LHSValue, |
2940 | | BinaryOperatorKind Opcode, |
2941 | 0 | const APFloat &RHSValue, APInt &Result) { |
2942 | 0 | bool LHS = !LHSValue.isZero(); |
2943 | 0 | bool RHS = !RHSValue.isZero(); |
2944 | |
|
2945 | 0 | if (Opcode == BO_LAnd) |
2946 | 0 | Result = LHS && RHS; |
2947 | 0 | else |
2948 | 0 | Result = LHS || RHS; |
2949 | 0 | return true; |
2950 | 0 | } |
2951 | | |
2952 | | static bool handleLogicalOpForVector(const APValue &LHSValue, |
2953 | | BinaryOperatorKind Opcode, |
2954 | 0 | const APValue &RHSValue, APInt &Result) { |
2955 | | // The result is always an int type, however operands match the first. |
2956 | 0 | if (LHSValue.getKind() == APValue::Int) |
2957 | 0 | return handleLogicalOpForVector(LHSValue.getInt(), Opcode, |
2958 | 0 | RHSValue.getInt(), Result); |
2959 | 0 | assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); |
2960 | 0 | return handleLogicalOpForVector(LHSValue.getFloat(), Opcode, |
2961 | 0 | RHSValue.getFloat(), Result); |
2962 | 0 | } |
2963 | | |
2964 | | template <typename APTy> |
2965 | | static bool |
2966 | | handleCompareOpForVectorHelper(const APTy &LHSValue, BinaryOperatorKind Opcode, |
2967 | 0 | const APTy &RHSValue, APInt &Result) { |
2968 | 0 | switch (Opcode) { |
2969 | 0 | default: |
2970 | 0 | llvm_unreachable("unsupported binary operator"); |
2971 | 0 | case BO_EQ: |
2972 | 0 | Result = (LHSValue == RHSValue); |
2973 | 0 | break; |
2974 | 0 | case BO_NE: |
2975 | 0 | Result = (LHSValue != RHSValue); |
2976 | 0 | break; |
2977 | 0 | case BO_LT: |
2978 | 0 | Result = (LHSValue < RHSValue); |
2979 | 0 | break; |
2980 | 0 | case BO_GT: |
2981 | 0 | Result = (LHSValue > RHSValue); |
2982 | 0 | break; |
2983 | 0 | case BO_LE: |
2984 | 0 | Result = (LHSValue <= RHSValue); |
2985 | 0 | break; |
2986 | 0 | case BO_GE: |
2987 | 0 | Result = (LHSValue >= RHSValue); |
2988 | 0 | break; |
2989 | 0 | } |
2990 | | |
2991 | | // The boolean operations on these vector types use an instruction that |
2992 | | // results in a mask of '-1' for the 'truth' value. Ensure that we negate 1 |
2993 | | // to -1 to make sure that we produce the correct value. |
2994 | 0 | Result.negate(); |
2995 | |
|
2996 | 0 | return true; |
2997 | 0 | } Unexecuted instantiation: ExprConstant.cpp:bool handleCompareOpForVectorHelper<llvm::APSInt>(llvm::APSInt const&, clang::BinaryOperatorKind, llvm::APSInt const&, llvm::APInt&) Unexecuted instantiation: ExprConstant.cpp:bool handleCompareOpForVectorHelper<llvm::APFloat>(llvm::APFloat const&, clang::BinaryOperatorKind, llvm::APFloat const&, llvm::APInt&) |
2998 | | |
2999 | | static bool handleCompareOpForVector(const APValue &LHSValue, |
3000 | | BinaryOperatorKind Opcode, |
3001 | 0 | const APValue &RHSValue, APInt &Result) { |
3002 | | // The result is always an int type, however operands match the first. |
3003 | 0 | if (LHSValue.getKind() == APValue::Int) |
3004 | 0 | return handleCompareOpForVectorHelper(LHSValue.getInt(), Opcode, |
3005 | 0 | RHSValue.getInt(), Result); |
3006 | 0 | assert(LHSValue.getKind() == APValue::Float && "Should be no other options"); |
3007 | 0 | return handleCompareOpForVectorHelper(LHSValue.getFloat(), Opcode, |
3008 | 0 | RHSValue.getFloat(), Result); |
3009 | 0 | } |
3010 | | |
3011 | | // Perform binary operations for vector types, in place on the LHS. |
3012 | | static bool handleVectorVectorBinOp(EvalInfo &Info, const BinaryOperator *E, |
3013 | | BinaryOperatorKind Opcode, |
3014 | | APValue &LHSValue, |
3015 | 0 | const APValue &RHSValue) { |
3016 | 0 | assert(Opcode != BO_PtrMemD && Opcode != BO_PtrMemI && |
3017 | 0 | "Operation not supported on vector types"); |
3018 | | |
3019 | 0 | const auto *VT = E->getType()->castAs<VectorType>(); |
3020 | 0 | unsigned NumElements = VT->getNumElements(); |
3021 | 0 | QualType EltTy = VT->getElementType(); |
3022 | | |
3023 | | // In the cases (typically C as I've observed) where we aren't evaluating |
3024 | | // constexpr but are checking for cases where the LHS isn't yet evaluatable, |
3025 | | // just give up. |
3026 | 0 | if (!LHSValue.isVector()) { |
3027 | 0 | assert(LHSValue.isLValue() && |
3028 | 0 | "A vector result that isn't a vector OR uncalculated LValue"); |
3029 | 0 | Info.FFDiag(E); |
3030 | 0 | return false; |
3031 | 0 | } |
3032 | | |
3033 | 0 | assert(LHSValue.getVectorLength() == NumElements && |
3034 | 0 | RHSValue.getVectorLength() == NumElements && "Different vector sizes"); |
3035 | | |
3036 | 0 | SmallVector<APValue, 4> ResultElements; |
3037 | |
|
3038 | 0 | for (unsigned EltNum = 0; EltNum < NumElements; ++EltNum) { |
3039 | 0 | APValue LHSElt = LHSValue.getVectorElt(EltNum); |
3040 | 0 | APValue RHSElt = RHSValue.getVectorElt(EltNum); |
3041 | |
|
3042 | 0 | if (EltTy->isIntegerType()) { |
3043 | 0 | APSInt EltResult{Info.Ctx.getIntWidth(EltTy), |
3044 | 0 | EltTy->isUnsignedIntegerType()}; |
3045 | 0 | bool Success = true; |
3046 | |
|
3047 | 0 | if (BinaryOperator::isLogicalOp(Opcode)) |
3048 | 0 | Success = handleLogicalOpForVector(LHSElt, Opcode, RHSElt, EltResult); |
3049 | 0 | else if (BinaryOperator::isComparisonOp(Opcode)) |
3050 | 0 | Success = handleCompareOpForVector(LHSElt, Opcode, RHSElt, EltResult); |
3051 | 0 | else |
3052 | 0 | Success = handleIntIntBinOp(Info, E, LHSElt.getInt(), Opcode, |
3053 | 0 | RHSElt.getInt(), EltResult); |
3054 | |
|
3055 | 0 | if (!Success) { |
3056 | 0 | Info.FFDiag(E); |
3057 | 0 | return false; |
3058 | 0 | } |
3059 | 0 | ResultElements.emplace_back(EltResult); |
3060 | |
|
3061 | 0 | } else if (EltTy->isFloatingType()) { |
3062 | 0 | assert(LHSElt.getKind() == APValue::Float && |
3063 | 0 | RHSElt.getKind() == APValue::Float && |
3064 | 0 | "Mismatched LHS/RHS/Result Type"); |
3065 | 0 | APFloat LHSFloat = LHSElt.getFloat(); |
3066 | |
|
3067 | 0 | if (!handleFloatFloatBinOp(Info, E, LHSFloat, Opcode, |
3068 | 0 | RHSElt.getFloat())) { |
3069 | 0 | Info.FFDiag(E); |
3070 | 0 | return false; |
3071 | 0 | } |
3072 | | |
3073 | 0 | ResultElements.emplace_back(LHSFloat); |
3074 | 0 | } |
3075 | 0 | } |
3076 | | |
3077 | 0 | LHSValue = APValue(ResultElements.data(), ResultElements.size()); |
3078 | 0 | return true; |
3079 | 0 | } |
3080 | | |
3081 | | /// Cast an lvalue referring to a base subobject to a derived class, by |
3082 | | /// truncating the lvalue's path to the given length. |
3083 | | static bool CastToDerivedClass(EvalInfo &Info, const Expr *E, LValue &Result, |
3084 | | const RecordDecl *TruncatedType, |
3085 | 0 | unsigned TruncatedElements) { |
3086 | 0 | SubobjectDesignator &D = Result.Designator; |
3087 | | |
3088 | | // Check we actually point to a derived class object. |
3089 | 0 | if (TruncatedElements == D.Entries.size()) |
3090 | 0 | return true; |
3091 | 0 | assert(TruncatedElements >= D.MostDerivedPathLength && |
3092 | 0 | "not casting to a derived class"); |
3093 | 0 | if (!Result.checkSubobject(Info, E, CSK_Derived)) |
3094 | 0 | return false; |
3095 | | |
3096 | | // Truncate the path to the subobject, and remove any derived-to-base offsets. |
3097 | 0 | const RecordDecl *RD = TruncatedType; |
3098 | 0 | for (unsigned I = TruncatedElements, N = D.Entries.size(); I != N; ++I) { |
3099 | 0 | if (RD->isInvalidDecl()) return false; |
3100 | 0 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
3101 | 0 | const CXXRecordDecl *Base = getAsBaseClass(D.Entries[I]); |
3102 | 0 | if (isVirtualBaseClass(D.Entries[I])) |
3103 | 0 | Result.Offset -= Layout.getVBaseClassOffset(Base); |
3104 | 0 | else |
3105 | 0 | Result.Offset -= Layout.getBaseClassOffset(Base); |
3106 | 0 | RD = Base; |
3107 | 0 | } |
3108 | 0 | D.Entries.resize(TruncatedElements); |
3109 | 0 | return true; |
3110 | 0 | } |
3111 | | |
3112 | | static bool HandleLValueDirectBase(EvalInfo &Info, const Expr *E, LValue &Obj, |
3113 | | const CXXRecordDecl *Derived, |
3114 | | const CXXRecordDecl *Base, |
3115 | 0 | const ASTRecordLayout *RL = nullptr) { |
3116 | 0 | if (!RL) { |
3117 | 0 | if (Derived->isInvalidDecl()) return false; |
3118 | 0 | RL = &Info.Ctx.getASTRecordLayout(Derived); |
3119 | 0 | } |
3120 | | |
3121 | 0 | Obj.getLValueOffset() += RL->getBaseClassOffset(Base); |
3122 | 0 | Obj.addDecl(Info, E, Base, /*Virtual*/ false); |
3123 | 0 | return true; |
3124 | 0 | } |
3125 | | |
3126 | | static bool HandleLValueBase(EvalInfo &Info, const Expr *E, LValue &Obj, |
3127 | | const CXXRecordDecl *DerivedDecl, |
3128 | 0 | const CXXBaseSpecifier *Base) { |
3129 | 0 | const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl(); |
3130 | |
|
3131 | 0 | if (!Base->isVirtual()) |
3132 | 0 | return HandleLValueDirectBase(Info, E, Obj, DerivedDecl, BaseDecl); |
3133 | | |
3134 | 0 | SubobjectDesignator &D = Obj.Designator; |
3135 | 0 | if (D.Invalid) |
3136 | 0 | return false; |
3137 | | |
3138 | | // Extract most-derived object and corresponding type. |
3139 | 0 | DerivedDecl = D.MostDerivedType->getAsCXXRecordDecl(); |
3140 | 0 | if (!CastToDerivedClass(Info, E, Obj, DerivedDecl, D.MostDerivedPathLength)) |
3141 | 0 | return false; |
3142 | | |
3143 | | // Find the virtual base class. |
3144 | 0 | if (DerivedDecl->isInvalidDecl()) return false; |
3145 | 0 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(DerivedDecl); |
3146 | 0 | Obj.getLValueOffset() += Layout.getVBaseClassOffset(BaseDecl); |
3147 | 0 | Obj.addDecl(Info, E, BaseDecl, /*Virtual*/ true); |
3148 | 0 | return true; |
3149 | 0 | } |
3150 | | |
3151 | | static bool HandleLValueBasePath(EvalInfo &Info, const CastExpr *E, |
3152 | 0 | QualType Type, LValue &Result) { |
3153 | 0 | for (CastExpr::path_const_iterator PathI = E->path_begin(), |
3154 | 0 | PathE = E->path_end(); |
3155 | 0 | PathI != PathE; ++PathI) { |
3156 | 0 | if (!HandleLValueBase(Info, E, Result, Type->getAsCXXRecordDecl(), |
3157 | 0 | *PathI)) |
3158 | 0 | return false; |
3159 | 0 | Type = (*PathI)->getType(); |
3160 | 0 | } |
3161 | 0 | return true; |
3162 | 0 | } |
3163 | | |
3164 | | /// Cast an lvalue referring to a derived class to a known base subobject. |
3165 | | static bool CastToBaseClass(EvalInfo &Info, const Expr *E, LValue &Result, |
3166 | | const CXXRecordDecl *DerivedRD, |
3167 | 0 | const CXXRecordDecl *BaseRD) { |
3168 | 0 | CXXBasePaths Paths(/*FindAmbiguities=*/false, |
3169 | 0 | /*RecordPaths=*/true, /*DetectVirtual=*/false); |
3170 | 0 | if (!DerivedRD->isDerivedFrom(BaseRD, Paths)) |
3171 | 0 | llvm_unreachable("Class must be derived from the passed in base class!"); |
3172 | |
|
3173 | 0 | for (CXXBasePathElement &Elem : Paths.front()) |
3174 | 0 | if (!HandleLValueBase(Info, E, Result, Elem.Class, Elem.Base)) |
3175 | 0 | return false; |
3176 | 0 | return true; |
3177 | 0 | } |
3178 | | |
3179 | | /// Update LVal to refer to the given field, which must be a member of the type |
3180 | | /// currently described by LVal. |
3181 | | static bool HandleLValueMember(EvalInfo &Info, const Expr *E, LValue &LVal, |
3182 | | const FieldDecl *FD, |
3183 | 0 | const ASTRecordLayout *RL = nullptr) { |
3184 | 0 | if (!RL) { |
3185 | 0 | if (FD->getParent()->isInvalidDecl()) return false; |
3186 | 0 | RL = &Info.Ctx.getASTRecordLayout(FD->getParent()); |
3187 | 0 | } |
3188 | | |
3189 | 0 | unsigned I = FD->getFieldIndex(); |
3190 | 0 | LVal.adjustOffset(Info.Ctx.toCharUnitsFromBits(RL->getFieldOffset(I))); |
3191 | 0 | LVal.addDecl(Info, E, FD); |
3192 | 0 | return true; |
3193 | 0 | } |
3194 | | |
3195 | | /// Update LVal to refer to the given indirect field. |
3196 | | static bool HandleLValueIndirectMember(EvalInfo &Info, const Expr *E, |
3197 | | LValue &LVal, |
3198 | 0 | const IndirectFieldDecl *IFD) { |
3199 | 0 | for (const auto *C : IFD->chain()) |
3200 | 0 | if (!HandleLValueMember(Info, E, LVal, cast<FieldDecl>(C))) |
3201 | 0 | return false; |
3202 | 0 | return true; |
3203 | 0 | } |
3204 | | |
3205 | | enum class SizeOfType { |
3206 | | SizeOf, |
3207 | | DataSizeOf, |
3208 | | }; |
3209 | | |
3210 | | /// Get the size of the given type in char units. |
3211 | | static bool HandleSizeof(EvalInfo &Info, SourceLocation Loc, QualType Type, |
3212 | 0 | CharUnits &Size, SizeOfType SOT = SizeOfType::SizeOf) { |
3213 | | // sizeof(void), __alignof__(void), sizeof(function) = 1 as a gcc |
3214 | | // extension. |
3215 | 0 | if (Type->isVoidType() || Type->isFunctionType()) { |
3216 | 0 | Size = CharUnits::One(); |
3217 | 0 | return true; |
3218 | 0 | } |
3219 | | |
3220 | 0 | if (Type->isDependentType()) { |
3221 | 0 | Info.FFDiag(Loc); |
3222 | 0 | return false; |
3223 | 0 | } |
3224 | | |
3225 | 0 | if (!Type->isConstantSizeType()) { |
3226 | | // sizeof(vla) is not a constantexpr: C99 6.5.3.4p2. |
3227 | | // FIXME: Better diagnostic. |
3228 | 0 | Info.FFDiag(Loc); |
3229 | 0 | return false; |
3230 | 0 | } |
3231 | | |
3232 | 0 | if (SOT == SizeOfType::SizeOf) |
3233 | 0 | Size = Info.Ctx.getTypeSizeInChars(Type); |
3234 | 0 | else |
3235 | 0 | Size = Info.Ctx.getTypeInfoDataSizeInChars(Type).Width; |
3236 | 0 | return true; |
3237 | 0 | } |
3238 | | |
3239 | | /// Update a pointer value to model pointer arithmetic. |
3240 | | /// \param Info - Information about the ongoing evaluation. |
3241 | | /// \param E - The expression being evaluated, for diagnostic purposes. |
3242 | | /// \param LVal - The pointer value to be updated. |
3243 | | /// \param EltTy - The pointee type represented by LVal. |
3244 | | /// \param Adjustment - The adjustment, in objects of type EltTy, to add. |
3245 | | static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, |
3246 | | LValue &LVal, QualType EltTy, |
3247 | 0 | APSInt Adjustment) { |
3248 | 0 | CharUnits SizeOfPointee; |
3249 | 0 | if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfPointee)) |
3250 | 0 | return false; |
3251 | | |
3252 | 0 | LVal.adjustOffsetAndIndex(Info, E, Adjustment, SizeOfPointee); |
3253 | 0 | return true; |
3254 | 0 | } |
3255 | | |
3256 | | static bool HandleLValueArrayAdjustment(EvalInfo &Info, const Expr *E, |
3257 | | LValue &LVal, QualType EltTy, |
3258 | 0 | int64_t Adjustment) { |
3259 | 0 | return HandleLValueArrayAdjustment(Info, E, LVal, EltTy, |
3260 | 0 | APSInt::get(Adjustment)); |
3261 | 0 | } |
3262 | | |
3263 | | /// Update an lvalue to refer to a component of a complex number. |
3264 | | /// \param Info - Information about the ongoing evaluation. |
3265 | | /// \param LVal - The lvalue to be updated. |
3266 | | /// \param EltTy - The complex number's component type. |
3267 | | /// \param Imag - False for the real component, true for the imaginary. |
3268 | | static bool HandleLValueComplexElement(EvalInfo &Info, const Expr *E, |
3269 | | LValue &LVal, QualType EltTy, |
3270 | 0 | bool Imag) { |
3271 | 0 | if (Imag) { |
3272 | 0 | CharUnits SizeOfComponent; |
3273 | 0 | if (!HandleSizeof(Info, E->getExprLoc(), EltTy, SizeOfComponent)) |
3274 | 0 | return false; |
3275 | 0 | LVal.Offset += SizeOfComponent; |
3276 | 0 | } |
3277 | 0 | LVal.addComplex(Info, E, EltTy, Imag); |
3278 | 0 | return true; |
3279 | 0 | } |
3280 | | |
3281 | | /// Try to evaluate the initializer for a variable declaration. |
3282 | | /// |
3283 | | /// \param Info Information about the ongoing evaluation. |
3284 | | /// \param E An expression to be used when printing diagnostics. |
3285 | | /// \param VD The variable whose initializer should be obtained. |
3286 | | /// \param Version The version of the variable within the frame. |
3287 | | /// \param Frame The frame in which the variable was created. Must be null |
3288 | | /// if this variable is not local to the evaluation. |
3289 | | /// \param Result Filled in with a pointer to the value of the variable. |
3290 | | static bool evaluateVarDeclInit(EvalInfo &Info, const Expr *E, |
3291 | | const VarDecl *VD, CallStackFrame *Frame, |
3292 | 0 | unsigned Version, APValue *&Result) { |
3293 | 0 | APValue::LValueBase Base(VD, Frame ? Frame->Index : 0, Version); |
3294 | | |
3295 | | // If this is a local variable, dig out its value. |
3296 | 0 | if (Frame) { |
3297 | 0 | Result = Frame->getTemporary(VD, Version); |
3298 | 0 | if (Result) |
3299 | 0 | return true; |
3300 | | |
3301 | 0 | if (!isa<ParmVarDecl>(VD)) { |
3302 | | // Assume variables referenced within a lambda's call operator that were |
3303 | | // not declared within the call operator are captures and during checking |
3304 | | // of a potential constant expression, assume they are unknown constant |
3305 | | // expressions. |
3306 | 0 | assert(isLambdaCallOperator(Frame->Callee) && |
3307 | 0 | (VD->getDeclContext() != Frame->Callee || VD->isInitCapture()) && |
3308 | 0 | "missing value for local variable"); |
3309 | 0 | if (Info.checkingPotentialConstantExpression()) |
3310 | 0 | return false; |
3311 | | // FIXME: This diagnostic is bogus; we do support captures. Is this code |
3312 | | // still reachable at all? |
3313 | 0 | Info.FFDiag(E->getBeginLoc(), |
3314 | 0 | diag::note_unimplemented_constexpr_lambda_feature_ast) |
3315 | 0 | << "captures not currently allowed"; |
3316 | 0 | return false; |
3317 | 0 | } |
3318 | 0 | } |
3319 | | |
3320 | | // If we're currently evaluating the initializer of this declaration, use that |
3321 | | // in-flight value. |
3322 | 0 | if (Info.EvaluatingDecl == Base) { |
3323 | 0 | Result = Info.EvaluatingDeclValue; |
3324 | 0 | return true; |
3325 | 0 | } |
3326 | | |
3327 | 0 | if (isa<ParmVarDecl>(VD)) { |
3328 | | // Assume parameters of a potential constant expression are usable in |
3329 | | // constant expressions. |
3330 | 0 | if (!Info.checkingPotentialConstantExpression() || |
3331 | 0 | !Info.CurrentCall->Callee || |
3332 | 0 | !Info.CurrentCall->Callee->Equals(VD->getDeclContext())) { |
3333 | 0 | if (Info.getLangOpts().CPlusPlus11) { |
3334 | 0 | Info.FFDiag(E, diag::note_constexpr_function_param_value_unknown) |
3335 | 0 | << VD; |
3336 | 0 | NoteLValueLocation(Info, Base); |
3337 | 0 | } else { |
3338 | 0 | Info.FFDiag(E); |
3339 | 0 | } |
3340 | 0 | } |
3341 | 0 | return false; |
3342 | 0 | } |
3343 | | |
3344 | 0 | if (E->isValueDependent()) |
3345 | 0 | return false; |
3346 | | |
3347 | | // Dig out the initializer, and use the declaration which it's attached to. |
3348 | | // FIXME: We should eventually check whether the variable has a reachable |
3349 | | // initializing declaration. |
3350 | 0 | const Expr *Init = VD->getAnyInitializer(VD); |
3351 | 0 | if (!Init) { |
3352 | | // Don't diagnose during potential constant expression checking; an |
3353 | | // initializer might be added later. |
3354 | 0 | if (!Info.checkingPotentialConstantExpression()) { |
3355 | 0 | Info.FFDiag(E, diag::note_constexpr_var_init_unknown, 1) |
3356 | 0 | << VD; |
3357 | 0 | NoteLValueLocation(Info, Base); |
3358 | 0 | } |
3359 | 0 | return false; |
3360 | 0 | } |
3361 | | |
3362 | 0 | if (Init->isValueDependent()) { |
3363 | | // The DeclRefExpr is not value-dependent, but the variable it refers to |
3364 | | // has a value-dependent initializer. This should only happen in |
3365 | | // constant-folding cases, where the variable is not actually of a suitable |
3366 | | // type for use in a constant expression (otherwise the DeclRefExpr would |
3367 | | // have been value-dependent too), so diagnose that. |
3368 | 0 | assert(!VD->mightBeUsableInConstantExpressions(Info.Ctx)); |
3369 | 0 | if (!Info.checkingPotentialConstantExpression()) { |
3370 | 0 | Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 |
3371 | 0 | ? diag::note_constexpr_ltor_non_constexpr |
3372 | 0 | : diag::note_constexpr_ltor_non_integral, 1) |
3373 | 0 | << VD << VD->getType(); |
3374 | 0 | NoteLValueLocation(Info, Base); |
3375 | 0 | } |
3376 | 0 | return false; |
3377 | 0 | } |
3378 | | |
3379 | | // Check that we can fold the initializer. In C++, we will have already done |
3380 | | // this in the cases where it matters for conformance. |
3381 | 0 | if (!VD->evaluateValue()) { |
3382 | 0 | Info.FFDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; |
3383 | 0 | NoteLValueLocation(Info, Base); |
3384 | 0 | return false; |
3385 | 0 | } |
3386 | | |
3387 | | // Check that the variable is actually usable in constant expressions. For a |
3388 | | // const integral variable or a reference, we might have a non-constant |
3389 | | // initializer that we can nonetheless evaluate the initializer for. Such |
3390 | | // variables are not usable in constant expressions. In C++98, the |
3391 | | // initializer also syntactically needs to be an ICE. |
3392 | | // |
3393 | | // FIXME: We don't diagnose cases that aren't potentially usable in constant |
3394 | | // expressions here; doing so would regress diagnostics for things like |
3395 | | // reading from a volatile constexpr variable. |
3396 | 0 | if ((Info.getLangOpts().CPlusPlus && !VD->hasConstantInitialization() && |
3397 | 0 | VD->mightBeUsableInConstantExpressions(Info.Ctx)) || |
3398 | 0 | ((Info.getLangOpts().CPlusPlus || Info.getLangOpts().OpenCL) && |
3399 | 0 | !Info.getLangOpts().CPlusPlus11 && !VD->hasICEInitializer(Info.Ctx))) { |
3400 | 0 | Info.CCEDiag(E, diag::note_constexpr_var_init_non_constant, 1) << VD; |
3401 | 0 | NoteLValueLocation(Info, Base); |
3402 | 0 | } |
3403 | | |
3404 | | // Never use the initializer of a weak variable, not even for constant |
3405 | | // folding. We can't be sure that this is the definition that will be used. |
3406 | 0 | if (VD->isWeak()) { |
3407 | 0 | Info.FFDiag(E, diag::note_constexpr_var_init_weak) << VD; |
3408 | 0 | NoteLValueLocation(Info, Base); |
3409 | 0 | return false; |
3410 | 0 | } |
3411 | | |
3412 | 0 | Result = VD->getEvaluatedValue(); |
3413 | 0 | return true; |
3414 | 0 | } |
3415 | | |
3416 | | /// Get the base index of the given base class within an APValue representing |
3417 | | /// the given derived class. |
3418 | | static unsigned getBaseIndex(const CXXRecordDecl *Derived, |
3419 | 0 | const CXXRecordDecl *Base) { |
3420 | 0 | Base = Base->getCanonicalDecl(); |
3421 | 0 | unsigned Index = 0; |
3422 | 0 | for (CXXRecordDecl::base_class_const_iterator I = Derived->bases_begin(), |
3423 | 0 | E = Derived->bases_end(); I != E; ++I, ++Index) { |
3424 | 0 | if (I->getType()->getAsCXXRecordDecl()->getCanonicalDecl() == Base) |
3425 | 0 | return Index; |
3426 | 0 | } |
3427 | | |
3428 | 0 | llvm_unreachable("base class missing from derived class's bases list"); |
3429 | 0 | } |
3430 | | |
3431 | | /// Extract the value of a character from a string literal. |
3432 | | static APSInt extractStringLiteralCharacter(EvalInfo &Info, const Expr *Lit, |
3433 | 0 | uint64_t Index) { |
3434 | 0 | assert(!isa<SourceLocExpr>(Lit) && |
3435 | 0 | "SourceLocExpr should have already been converted to a StringLiteral"); |
3436 | | |
3437 | | // FIXME: Support MakeStringConstant |
3438 | 0 | if (const auto *ObjCEnc = dyn_cast<ObjCEncodeExpr>(Lit)) { |
3439 | 0 | std::string Str; |
3440 | 0 | Info.Ctx.getObjCEncodingForType(ObjCEnc->getEncodedType(), Str); |
3441 | 0 | assert(Index <= Str.size() && "Index too large"); |
3442 | 0 | return APSInt::getUnsigned(Str.c_str()[Index]); |
3443 | 0 | } |
3444 | | |
3445 | 0 | if (auto PE = dyn_cast<PredefinedExpr>(Lit)) |
3446 | 0 | Lit = PE->getFunctionName(); |
3447 | 0 | const StringLiteral *S = cast<StringLiteral>(Lit); |
3448 | 0 | const ConstantArrayType *CAT = |
3449 | 0 | Info.Ctx.getAsConstantArrayType(S->getType()); |
3450 | 0 | assert(CAT && "string literal isn't an array"); |
3451 | 0 | QualType CharType = CAT->getElementType(); |
3452 | 0 | assert(CharType->isIntegerType() && "unexpected character type"); |
3453 | 0 | APSInt Value(Info.Ctx.getTypeSize(CharType), |
3454 | 0 | CharType->isUnsignedIntegerType()); |
3455 | 0 | if (Index < S->getLength()) |
3456 | 0 | Value = S->getCodeUnit(Index); |
3457 | 0 | return Value; |
3458 | 0 | } |
3459 | | |
3460 | | // Expand a string literal into an array of characters. |
3461 | | // |
3462 | | // FIXME: This is inefficient; we should probably introduce something similar |
3463 | | // to the LLVM ConstantDataArray to make this cheaper. |
3464 | | static void expandStringLiteral(EvalInfo &Info, const StringLiteral *S, |
3465 | | APValue &Result, |
3466 | 0 | QualType AllocType = QualType()) { |
3467 | 0 | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( |
3468 | 0 | AllocType.isNull() ? S->getType() : AllocType); |
3469 | 0 | assert(CAT && "string literal isn't an array"); |
3470 | 0 | QualType CharType = CAT->getElementType(); |
3471 | 0 | assert(CharType->isIntegerType() && "unexpected character type"); |
3472 | | |
3473 | 0 | unsigned Elts = CAT->getSize().getZExtValue(); |
3474 | 0 | Result = APValue(APValue::UninitArray(), |
3475 | 0 | std::min(S->getLength(), Elts), Elts); |
3476 | 0 | APSInt Value(Info.Ctx.getTypeSize(CharType), |
3477 | 0 | CharType->isUnsignedIntegerType()); |
3478 | 0 | if (Result.hasArrayFiller()) |
3479 | 0 | Result.getArrayFiller() = APValue(Value); |
3480 | 0 | for (unsigned I = 0, N = Result.getArrayInitializedElts(); I != N; ++I) { |
3481 | 0 | Value = S->getCodeUnit(I); |
3482 | 0 | Result.getArrayInitializedElt(I) = APValue(Value); |
3483 | 0 | } |
3484 | 0 | } |
3485 | | |
3486 | | // Expand an array so that it has more than Index filled elements. |
3487 | 0 | static void expandArray(APValue &Array, unsigned Index) { |
3488 | 0 | unsigned Size = Array.getArraySize(); |
3489 | 0 | assert(Index < Size); |
3490 | | |
3491 | | // Always at least double the number of elements for which we store a value. |
3492 | 0 | unsigned OldElts = Array.getArrayInitializedElts(); |
3493 | 0 | unsigned NewElts = std::max(Index+1, OldElts * 2); |
3494 | 0 | NewElts = std::min(Size, std::max(NewElts, 8u)); |
3495 | | |
3496 | | // Copy the data across. |
3497 | 0 | APValue NewValue(APValue::UninitArray(), NewElts, Size); |
3498 | 0 | for (unsigned I = 0; I != OldElts; ++I) |
3499 | 0 | NewValue.getArrayInitializedElt(I).swap(Array.getArrayInitializedElt(I)); |
3500 | 0 | for (unsigned I = OldElts; I != NewElts; ++I) |
3501 | 0 | NewValue.getArrayInitializedElt(I) = Array.getArrayFiller(); |
3502 | 0 | if (NewValue.hasArrayFiller()) |
3503 | 0 | NewValue.getArrayFiller() = Array.getArrayFiller(); |
3504 | 0 | Array.swap(NewValue); |
3505 | 0 | } |
3506 | | |
3507 | | /// Determine whether a type would actually be read by an lvalue-to-rvalue |
3508 | | /// conversion. If it's of class type, we may assume that the copy operation |
3509 | | /// is trivial. Note that this is never true for a union type with fields |
3510 | | /// (because the copy always "reads" the active member) and always true for |
3511 | | /// a non-class type. |
3512 | | static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD); |
3513 | 0 | static bool isReadByLvalueToRvalueConversion(QualType T) { |
3514 | 0 | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
3515 | 0 | return !RD || isReadByLvalueToRvalueConversion(RD); |
3516 | 0 | } |
3517 | 0 | static bool isReadByLvalueToRvalueConversion(const CXXRecordDecl *RD) { |
3518 | | // FIXME: A trivial copy of a union copies the object representation, even if |
3519 | | // the union is empty. |
3520 | 0 | if (RD->isUnion()) |
3521 | 0 | return !RD->field_empty(); |
3522 | 0 | if (RD->isEmpty()) |
3523 | 0 | return false; |
3524 | | |
3525 | 0 | for (auto *Field : RD->fields()) |
3526 | 0 | if (!Field->isUnnamedBitfield() && |
3527 | 0 | isReadByLvalueToRvalueConversion(Field->getType())) |
3528 | 0 | return true; |
3529 | | |
3530 | 0 | for (auto &BaseSpec : RD->bases()) |
3531 | 0 | if (isReadByLvalueToRvalueConversion(BaseSpec.getType())) |
3532 | 0 | return true; |
3533 | | |
3534 | 0 | return false; |
3535 | 0 | } |
3536 | | |
3537 | | /// Diagnose an attempt to read from any unreadable field within the specified |
3538 | | /// type, which might be a class type. |
3539 | | static bool diagnoseMutableFields(EvalInfo &Info, const Expr *E, AccessKinds AK, |
3540 | 0 | QualType T) { |
3541 | 0 | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
3542 | 0 | if (!RD) |
3543 | 0 | return false; |
3544 | | |
3545 | 0 | if (!RD->hasMutableFields()) |
3546 | 0 | return false; |
3547 | | |
3548 | 0 | for (auto *Field : RD->fields()) { |
3549 | | // If we're actually going to read this field in some way, then it can't |
3550 | | // be mutable. If we're in a union, then assigning to a mutable field |
3551 | | // (even an empty one) can change the active member, so that's not OK. |
3552 | | // FIXME: Add core issue number for the union case. |
3553 | 0 | if (Field->isMutable() && |
3554 | 0 | (RD->isUnion() || isReadByLvalueToRvalueConversion(Field->getType()))) { |
3555 | 0 | Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) << AK << Field; |
3556 | 0 | Info.Note(Field->getLocation(), diag::note_declared_at); |
3557 | 0 | return true; |
3558 | 0 | } |
3559 | | |
3560 | 0 | if (diagnoseMutableFields(Info, E, AK, Field->getType())) |
3561 | 0 | return true; |
3562 | 0 | } |
3563 | | |
3564 | 0 | for (auto &BaseSpec : RD->bases()) |
3565 | 0 | if (diagnoseMutableFields(Info, E, AK, BaseSpec.getType())) |
3566 | 0 | return true; |
3567 | | |
3568 | | // All mutable fields were empty, and thus not actually read. |
3569 | 0 | return false; |
3570 | 0 | } |
3571 | | |
3572 | | static bool lifetimeStartedInEvaluation(EvalInfo &Info, |
3573 | | APValue::LValueBase Base, |
3574 | 0 | bool MutableSubobject = false) { |
3575 | | // A temporary or transient heap allocation we created. |
3576 | 0 | if (Base.getCallIndex() || Base.is<DynamicAllocLValue>()) |
3577 | 0 | return true; |
3578 | | |
3579 | 0 | switch (Info.IsEvaluatingDecl) { |
3580 | 0 | case EvalInfo::EvaluatingDeclKind::None: |
3581 | 0 | return false; |
3582 | | |
3583 | 0 | case EvalInfo::EvaluatingDeclKind::Ctor: |
3584 | | // The variable whose initializer we're evaluating. |
3585 | 0 | if (Info.EvaluatingDecl == Base) |
3586 | 0 | return true; |
3587 | | |
3588 | | // A temporary lifetime-extended by the variable whose initializer we're |
3589 | | // evaluating. |
3590 | 0 | if (auto *BaseE = Base.dyn_cast<const Expr *>()) |
3591 | 0 | if (auto *BaseMTE = dyn_cast<MaterializeTemporaryExpr>(BaseE)) |
3592 | 0 | return Info.EvaluatingDecl == BaseMTE->getExtendingDecl(); |
3593 | 0 | return false; |
3594 | | |
3595 | 0 | case EvalInfo::EvaluatingDeclKind::Dtor: |
3596 | | // C++2a [expr.const]p6: |
3597 | | // [during constant destruction] the lifetime of a and its non-mutable |
3598 | | // subobjects (but not its mutable subobjects) [are] considered to start |
3599 | | // within e. |
3600 | 0 | if (MutableSubobject || Base != Info.EvaluatingDecl) |
3601 | 0 | return false; |
3602 | | // FIXME: We can meaningfully extend this to cover non-const objects, but |
3603 | | // we will need special handling: we should be able to access only |
3604 | | // subobjects of such objects that are themselves declared const. |
3605 | 0 | QualType T = getType(Base); |
3606 | 0 | return T.isConstQualified() || T->isReferenceType(); |
3607 | 0 | } |
3608 | | |
3609 | 0 | llvm_unreachable("unknown evaluating decl kind"); |
3610 | 0 | } |
3611 | | |
3612 | | static bool CheckArraySize(EvalInfo &Info, const ConstantArrayType *CAT, |
3613 | 0 | SourceLocation CallLoc = {}) { |
3614 | 0 | return Info.CheckArraySize( |
3615 | 0 | CAT->getSizeExpr() ? CAT->getSizeExpr()->getBeginLoc() : CallLoc, |
3616 | 0 | CAT->getNumAddressingBits(Info.Ctx), CAT->getSize().getZExtValue(), |
3617 | 0 | /*Diag=*/true); |
3618 | 0 | } |
3619 | | |
3620 | | namespace { |
3621 | | /// A handle to a complete object (an object that is not a subobject of |
3622 | | /// another object). |
3623 | | struct CompleteObject { |
3624 | | /// The identity of the object. |
3625 | | APValue::LValueBase Base; |
3626 | | /// The value of the complete object. |
3627 | | APValue *Value; |
3628 | | /// The type of the complete object. |
3629 | | QualType Type; |
3630 | | |
3631 | 9 | CompleteObject() : Value(nullptr) {} |
3632 | | CompleteObject(APValue::LValueBase Base, APValue *Value, QualType Type) |
3633 | 0 | : Base(Base), Value(Value), Type(Type) {} |
3634 | | |
3635 | 0 | bool mayAccessMutableMembers(EvalInfo &Info, AccessKinds AK) const { |
3636 | | // If this isn't a "real" access (eg, if it's just accessing the type |
3637 | | // info), allow it. We assume the type doesn't change dynamically for |
3638 | | // subobjects of constexpr objects (even though we'd hit UB here if it |
3639 | | // did). FIXME: Is this right? |
3640 | 0 | if (!isAnyAccess(AK)) |
3641 | 0 | return true; |
3642 | | |
3643 | | // In C++14 onwards, it is permitted to read a mutable member whose |
3644 | | // lifetime began within the evaluation. |
3645 | | // FIXME: Should we also allow this in C++11? |
3646 | 0 | if (!Info.getLangOpts().CPlusPlus14) |
3647 | 0 | return false; |
3648 | 0 | return lifetimeStartedInEvaluation(Info, Base, /*MutableSubobject*/true); |
3649 | 0 | } |
3650 | | |
3651 | 9 | explicit operator bool() const { return !Type.isNull(); } |
3652 | | }; |
3653 | | } // end anonymous namespace |
3654 | | |
3655 | | static QualType getSubobjectType(QualType ObjType, QualType SubobjType, |
3656 | 0 | bool IsMutable = false) { |
3657 | | // C++ [basic.type.qualifier]p1: |
3658 | | // - A const object is an object of type const T or a non-mutable subobject |
3659 | | // of a const object. |
3660 | 0 | if (ObjType.isConstQualified() && !IsMutable) |
3661 | 0 | SubobjType.addConst(); |
3662 | | // - A volatile object is an object of type const T or a subobject of a |
3663 | | // volatile object. |
3664 | 0 | if (ObjType.isVolatileQualified()) |
3665 | 0 | SubobjType.addVolatile(); |
3666 | 0 | return SubobjType; |
3667 | 0 | } |
3668 | | |
3669 | | /// Find the designated sub-object of an rvalue. |
3670 | | template<typename SubobjectHandler> |
3671 | | typename SubobjectHandler::result_type |
3672 | | findSubobject(EvalInfo &Info, const Expr *E, const CompleteObject &Obj, |
3673 | 0 | const SubobjectDesignator &Sub, SubobjectHandler &handler) { |
3674 | 0 | if (Sub.Invalid) |
3675 | | // A diagnostic will have already been produced. |
3676 | 0 | return handler.failed(); |
3677 | 0 | if (Sub.isOnePastTheEnd() || Sub.isMostDerivedAnUnsizedArray()) { |
3678 | 0 | if (Info.getLangOpts().CPlusPlus11) |
3679 | 0 | Info.FFDiag(E, Sub.isOnePastTheEnd() |
3680 | 0 | ? diag::note_constexpr_access_past_end |
3681 | 0 | : diag::note_constexpr_access_unsized_array) |
3682 | 0 | << handler.AccessKind; |
3683 | 0 | else |
3684 | 0 | Info.FFDiag(E); |
3685 | 0 | return handler.failed(); |
3686 | 0 | } |
3687 | | |
3688 | 0 | APValue *O = Obj.Value; |
3689 | 0 | QualType ObjType = Obj.Type; |
3690 | 0 | const FieldDecl *LastField = nullptr; |
3691 | 0 | const FieldDecl *VolatileField = nullptr; |
3692 | | |
3693 | | // Walk the designator's path to find the subobject. |
3694 | 0 | for (unsigned I = 0, N = Sub.Entries.size(); /**/; ++I) { |
3695 | | // Reading an indeterminate value is undefined, but assigning over one is OK. |
3696 | 0 | if ((O->isAbsent() && !(handler.AccessKind == AK_Construct && I == N)) || |
3697 | 0 | (O->isIndeterminate() && |
3698 | 0 | !isValidIndeterminateAccess(handler.AccessKind))) { |
3699 | 0 | if (!Info.checkingPotentialConstantExpression()) |
3700 | 0 | Info.FFDiag(E, diag::note_constexpr_access_uninit) |
3701 | 0 | << handler.AccessKind << O->isIndeterminate() |
3702 | 0 | << E->getSourceRange(); |
3703 | 0 | return handler.failed(); |
3704 | 0 | } |
3705 | | |
3706 | | // C++ [class.ctor]p5, C++ [class.dtor]p5: |
3707 | | // const and volatile semantics are not applied on an object under |
3708 | | // {con,de}struction. |
3709 | 0 | if ((ObjType.isConstQualified() || ObjType.isVolatileQualified()) && |
3710 | 0 | ObjType->isRecordType() && |
3711 | 0 | Info.isEvaluatingCtorDtor( |
3712 | 0 | Obj.Base, |
3713 | 0 | llvm::ArrayRef(Sub.Entries.begin(), Sub.Entries.begin() + I)) != |
3714 | 0 | ConstructionPhase::None) { |
3715 | 0 | ObjType = Info.Ctx.getCanonicalType(ObjType); |
3716 | 0 | ObjType.removeLocalConst(); |
3717 | 0 | ObjType.removeLocalVolatile(); |
3718 | 0 | } |
3719 | | |
3720 | | // If this is our last pass, check that the final object type is OK. |
3721 | 0 | if (I == N || (I == N - 1 && ObjType->isAnyComplexType())) { |
3722 | | // Accesses to volatile objects are prohibited. |
3723 | 0 | if (ObjType.isVolatileQualified() && isFormalAccess(handler.AccessKind)) { |
3724 | 0 | if (Info.getLangOpts().CPlusPlus) { |
3725 | 0 | int DiagKind; |
3726 | 0 | SourceLocation Loc; |
3727 | 0 | const NamedDecl *Decl = nullptr; |
3728 | 0 | if (VolatileField) { |
3729 | 0 | DiagKind = 2; |
3730 | 0 | Loc = VolatileField->getLocation(); |
3731 | 0 | Decl = VolatileField; |
3732 | 0 | } else if (auto *VD = Obj.Base.dyn_cast<const ValueDecl*>()) { |
3733 | 0 | DiagKind = 1; |
3734 | 0 | Loc = VD->getLocation(); |
3735 | 0 | Decl = VD; |
3736 | 0 | } else { |
3737 | 0 | DiagKind = 0; |
3738 | 0 | if (auto *E = Obj.Base.dyn_cast<const Expr *>()) |
3739 | 0 | Loc = E->getExprLoc(); |
3740 | 0 | } |
3741 | 0 | Info.FFDiag(E, diag::note_constexpr_access_volatile_obj, 1) |
3742 | 0 | << handler.AccessKind << DiagKind << Decl; |
3743 | 0 | Info.Note(Loc, diag::note_constexpr_volatile_here) << DiagKind; |
3744 | 0 | } else { |
3745 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
3746 | 0 | } |
3747 | 0 | return handler.failed(); |
3748 | 0 | } |
3749 | | |
3750 | | // If we are reading an object of class type, there may still be more |
3751 | | // things we need to check: if there are any mutable subobjects, we |
3752 | | // cannot perform this read. (This only happens when performing a trivial |
3753 | | // copy or assignment.) |
3754 | 0 | if (ObjType->isRecordType() && |
3755 | 0 | !Obj.mayAccessMutableMembers(Info, handler.AccessKind) && |
3756 | 0 | diagnoseMutableFields(Info, E, handler.AccessKind, ObjType)) |
3757 | 0 | return handler.failed(); |
3758 | 0 | } |
3759 | | |
3760 | 0 | if (I == N) { |
3761 | 0 | if (!handler.found(*O, ObjType)) |
3762 | 0 | return false; |
3763 | | |
3764 | | // If we modified a bit-field, truncate it to the right width. |
3765 | 0 | if (isModification(handler.AccessKind) && |
3766 | 0 | LastField && LastField->isBitField() && |
3767 | 0 | !truncateBitfieldValue(Info, E, *O, LastField)) |
3768 | 0 | return false; |
3769 | | |
3770 | 0 | return true; |
3771 | 0 | } |
3772 | | |
3773 | 0 | LastField = nullptr; |
3774 | 0 | if (ObjType->isArrayType()) { |
3775 | | // Next subobject is an array element. |
3776 | 0 | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(ObjType); |
3777 | 0 | assert(CAT && "vla in literal type?"); |
3778 | 0 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); |
3779 | 0 | if (CAT->getSize().ule(Index)) { |
3780 | | // Note, it should not be possible to form a pointer with a valid |
3781 | | // designator which points more than one past the end of the array. |
3782 | 0 | if (Info.getLangOpts().CPlusPlus11) |
3783 | 0 | Info.FFDiag(E, diag::note_constexpr_access_past_end) |
3784 | 0 | << handler.AccessKind; |
3785 | 0 | else |
3786 | 0 | Info.FFDiag(E); |
3787 | 0 | return handler.failed(); |
3788 | 0 | } |
3789 | | |
3790 | 0 | ObjType = CAT->getElementType(); |
3791 | |
|
3792 | 0 | if (O->getArrayInitializedElts() > Index) |
3793 | 0 | O = &O->getArrayInitializedElt(Index); |
3794 | 0 | else if (!isRead(handler.AccessKind)) { |
3795 | 0 | if (!CheckArraySize(Info, CAT, E->getExprLoc())) |
3796 | 0 | return handler.failed(); |
3797 | | |
3798 | 0 | expandArray(*O, Index); |
3799 | 0 | O = &O->getArrayInitializedElt(Index); |
3800 | 0 | } else |
3801 | 0 | O = &O->getArrayFiller(); |
3802 | 0 | } else if (ObjType->isAnyComplexType()) { |
3803 | | // Next subobject is a complex number. |
3804 | 0 | uint64_t Index = Sub.Entries[I].getAsArrayIndex(); |
3805 | 0 | if (Index > 1) { |
3806 | 0 | if (Info.getLangOpts().CPlusPlus11) |
3807 | 0 | Info.FFDiag(E, diag::note_constexpr_access_past_end) |
3808 | 0 | << handler.AccessKind; |
3809 | 0 | else |
3810 | 0 | Info.FFDiag(E); |
3811 | 0 | return handler.failed(); |
3812 | 0 | } |
3813 | | |
3814 | 0 | ObjType = getSubobjectType( |
3815 | 0 | ObjType, ObjType->castAs<ComplexType>()->getElementType()); |
3816 | |
|
3817 | 0 | assert(I == N - 1 && "extracting subobject of scalar?"); |
3818 | 0 | if (O->isComplexInt()) { |
3819 | 0 | return handler.found(Index ? O->getComplexIntImag() |
3820 | 0 | : O->getComplexIntReal(), ObjType); |
3821 | 0 | } else { |
3822 | 0 | assert(O->isComplexFloat()); |
3823 | 0 | return handler.found(Index ? O->getComplexFloatImag() |
3824 | 0 | : O->getComplexFloatReal(), ObjType); |
3825 | 0 | } |
3826 | 0 | } else if (const FieldDecl *Field = getAsField(Sub.Entries[I])) { |
3827 | 0 | if (Field->isMutable() && |
3828 | 0 | !Obj.mayAccessMutableMembers(Info, handler.AccessKind)) { |
3829 | 0 | Info.FFDiag(E, diag::note_constexpr_access_mutable, 1) |
3830 | 0 | << handler.AccessKind << Field; |
3831 | 0 | Info.Note(Field->getLocation(), diag::note_declared_at); |
3832 | 0 | return handler.failed(); |
3833 | 0 | } |
3834 | | |
3835 | | // Next subobject is a class, struct or union field. |
3836 | 0 | RecordDecl *RD = ObjType->castAs<RecordType>()->getDecl(); |
3837 | 0 | if (RD->isUnion()) { |
3838 | 0 | const FieldDecl *UnionField = O->getUnionField(); |
3839 | 0 | if (!UnionField || |
3840 | 0 | UnionField->getCanonicalDecl() != Field->getCanonicalDecl()) { |
3841 | 0 | if (I == N - 1 && handler.AccessKind == AK_Construct) { |
3842 | | // Placement new onto an inactive union member makes it active. |
3843 | 0 | O->setUnion(Field, APValue()); |
3844 | 0 | } else { |
3845 | | // FIXME: If O->getUnionValue() is absent, report that there's no |
3846 | | // active union member rather than reporting the prior active union |
3847 | | // member. We'll need to fix nullptr_t to not use APValue() as its |
3848 | | // representation first. |
3849 | 0 | Info.FFDiag(E, diag::note_constexpr_access_inactive_union_member) |
3850 | 0 | << handler.AccessKind << Field << !UnionField << UnionField; |
3851 | 0 | return handler.failed(); |
3852 | 0 | } |
3853 | 0 | } |
3854 | 0 | O = &O->getUnionValue(); |
3855 | 0 | } else |
3856 | 0 | O = &O->getStructField(Field->getFieldIndex()); |
3857 | | |
3858 | 0 | ObjType = getSubobjectType(ObjType, Field->getType(), Field->isMutable()); |
3859 | 0 | LastField = Field; |
3860 | 0 | if (Field->getType().isVolatileQualified()) |
3861 | 0 | VolatileField = Field; |
3862 | 0 | } else { |
3863 | | // Next subobject is a base class. |
3864 | 0 | const CXXRecordDecl *Derived = ObjType->getAsCXXRecordDecl(); |
3865 | 0 | const CXXRecordDecl *Base = getAsBaseClass(Sub.Entries[I]); |
3866 | 0 | O = &O->getStructBase(getBaseIndex(Derived, Base)); |
3867 | |
|
3868 | 0 | ObjType = getSubobjectType(ObjType, Info.Ctx.getRecordType(Base)); |
3869 | 0 | } |
3870 | 0 | } |
3871 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::StartLifetimeOfUnionMemberHandler::result_type findSubobject<(anonymous namespace)::StartLifetimeOfUnionMemberHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::StartLifetimeOfUnionMemberHandler&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ModifySubobjectHandler::result_type findSubobject<(anonymous namespace)::ModifySubobjectHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::ModifySubobjectHandler&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::IncDecSubobjectHandler::result_type findSubobject<(anonymous namespace)::IncDecSubobjectHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::IncDecSubobjectHandler&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExtractSubobjectHandler::result_type findSubobject<(anonymous namespace)::ExtractSubobjectHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::ExtractSubobjectHandler&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::DestroyObjectHandler::result_type findSubobject<(anonymous namespace)::DestroyObjectHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::DestroyObjectHandler&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::CheckDynamicTypeHandler::result_type findSubobject<(anonymous namespace)::CheckDynamicTypeHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::CheckDynamicTypeHandler&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::CompoundAssignSubobjectHandler::result_type findSubobject<(anonymous namespace)::CompoundAssignSubobjectHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::CompoundAssignSubobjectHandler&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::PointerExprEvaluator::VisitCXXNewExpr(clang::CXXNewExpr const*)::FindObjectHandler::result_type findSubobject<(anonymous namespace)::PointerExprEvaluator::VisitCXXNewExpr(clang::CXXNewExpr const*)::FindObjectHandler>((anonymous namespace)::EvalInfo&, clang::Expr const*, (anonymous namespace)::CompleteObject const&, (anonymous namespace)::SubobjectDesignator const&, (anonymous namespace)::PointerExprEvaluator::VisitCXXNewExpr(clang::CXXNewExpr const*)::FindObjectHandler&) |
3872 | | |
3873 | | namespace { |
3874 | | struct ExtractSubobjectHandler { |
3875 | | EvalInfo &Info; |
3876 | | const Expr *E; |
3877 | | APValue &Result; |
3878 | | const AccessKinds AccessKind; |
3879 | | |
3880 | | typedef bool result_type; |
3881 | 0 | bool failed() { return false; } |
3882 | 0 | bool found(APValue &Subobj, QualType SubobjType) { |
3883 | 0 | Result = Subobj; |
3884 | 0 | if (AccessKind == AK_ReadObjectRepresentation) |
3885 | 0 | return true; |
3886 | 0 | return CheckFullyInitialized(Info, E->getExprLoc(), SubobjType, Result); |
3887 | 0 | } |
3888 | 0 | bool found(APSInt &Value, QualType SubobjType) { |
3889 | 0 | Result = APValue(Value); |
3890 | 0 | return true; |
3891 | 0 | } |
3892 | 0 | bool found(APFloat &Value, QualType SubobjType) { |
3893 | 0 | Result = APValue(Value); |
3894 | 0 | return true; |
3895 | 0 | } |
3896 | | }; |
3897 | | } // end anonymous namespace |
3898 | | |
3899 | | /// Extract the designated sub-object of an rvalue. |
3900 | | static bool extractSubobject(EvalInfo &Info, const Expr *E, |
3901 | | const CompleteObject &Obj, |
3902 | | const SubobjectDesignator &Sub, APValue &Result, |
3903 | 0 | AccessKinds AK = AK_Read) { |
3904 | 0 | assert(AK == AK_Read || AK == AK_ReadObjectRepresentation); |
3905 | 0 | ExtractSubobjectHandler Handler = {Info, E, Result, AK}; |
3906 | 0 | return findSubobject(Info, E, Obj, Sub, Handler); |
3907 | 0 | } |
3908 | | |
3909 | | namespace { |
3910 | | struct ModifySubobjectHandler { |
3911 | | EvalInfo &Info; |
3912 | | APValue &NewVal; |
3913 | | const Expr *E; |
3914 | | |
3915 | | typedef bool result_type; |
3916 | | static const AccessKinds AccessKind = AK_Assign; |
3917 | | |
3918 | 0 | bool checkConst(QualType QT) { |
3919 | | // Assigning to a const object has undefined behavior. |
3920 | 0 | if (QT.isConstQualified()) { |
3921 | 0 | Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; |
3922 | 0 | return false; |
3923 | 0 | } |
3924 | 0 | return true; |
3925 | 0 | } |
3926 | | |
3927 | 0 | bool failed() { return false; } |
3928 | 0 | bool found(APValue &Subobj, QualType SubobjType) { |
3929 | 0 | if (!checkConst(SubobjType)) |
3930 | 0 | return false; |
3931 | | // We've been given ownership of NewVal, so just swap it in. |
3932 | 0 | Subobj.swap(NewVal); |
3933 | 0 | return true; |
3934 | 0 | } |
3935 | 0 | bool found(APSInt &Value, QualType SubobjType) { |
3936 | 0 | if (!checkConst(SubobjType)) |
3937 | 0 | return false; |
3938 | 0 | if (!NewVal.isInt()) { |
3939 | | // Maybe trying to write a cast pointer value into a complex? |
3940 | 0 | Info.FFDiag(E); |
3941 | 0 | return false; |
3942 | 0 | } |
3943 | 0 | Value = NewVal.getInt(); |
3944 | 0 | return true; |
3945 | 0 | } |
3946 | 0 | bool found(APFloat &Value, QualType SubobjType) { |
3947 | 0 | if (!checkConst(SubobjType)) |
3948 | 0 | return false; |
3949 | 0 | Value = NewVal.getFloat(); |
3950 | 0 | return true; |
3951 | 0 | } |
3952 | | }; |
3953 | | } // end anonymous namespace |
3954 | | |
3955 | | const AccessKinds ModifySubobjectHandler::AccessKind; |
3956 | | |
3957 | | /// Update the designated sub-object of an rvalue to the given value. |
3958 | | static bool modifySubobject(EvalInfo &Info, const Expr *E, |
3959 | | const CompleteObject &Obj, |
3960 | | const SubobjectDesignator &Sub, |
3961 | 0 | APValue &NewVal) { |
3962 | 0 | ModifySubobjectHandler Handler = { Info, NewVal, E }; |
3963 | 0 | return findSubobject(Info, E, Obj, Sub, Handler); |
3964 | 0 | } |
3965 | | |
3966 | | /// Find the position where two subobject designators diverge, or equivalently |
3967 | | /// the length of the common initial subsequence. |
3968 | | static unsigned FindDesignatorMismatch(QualType ObjType, |
3969 | | const SubobjectDesignator &A, |
3970 | | const SubobjectDesignator &B, |
3971 | 0 | bool &WasArrayIndex) { |
3972 | 0 | unsigned I = 0, N = std::min(A.Entries.size(), B.Entries.size()); |
3973 | 0 | for (/**/; I != N; ++I) { |
3974 | 0 | if (!ObjType.isNull() && |
3975 | 0 | (ObjType->isArrayType() || ObjType->isAnyComplexType())) { |
3976 | | // Next subobject is an array element. |
3977 | 0 | if (A.Entries[I].getAsArrayIndex() != B.Entries[I].getAsArrayIndex()) { |
3978 | 0 | WasArrayIndex = true; |
3979 | 0 | return I; |
3980 | 0 | } |
3981 | 0 | if (ObjType->isAnyComplexType()) |
3982 | 0 | ObjType = ObjType->castAs<ComplexType>()->getElementType(); |
3983 | 0 | else |
3984 | 0 | ObjType = ObjType->castAsArrayTypeUnsafe()->getElementType(); |
3985 | 0 | } else { |
3986 | 0 | if (A.Entries[I].getAsBaseOrMember() != |
3987 | 0 | B.Entries[I].getAsBaseOrMember()) { |
3988 | 0 | WasArrayIndex = false; |
3989 | 0 | return I; |
3990 | 0 | } |
3991 | 0 | if (const FieldDecl *FD = getAsField(A.Entries[I])) |
3992 | | // Next subobject is a field. |
3993 | 0 | ObjType = FD->getType(); |
3994 | 0 | else |
3995 | | // Next subobject is a base class. |
3996 | 0 | ObjType = QualType(); |
3997 | 0 | } |
3998 | 0 | } |
3999 | 0 | WasArrayIndex = false; |
4000 | 0 | return I; |
4001 | 0 | } |
4002 | | |
4003 | | /// Determine whether the given subobject designators refer to elements of the |
4004 | | /// same array object. |
4005 | | static bool AreElementsOfSameArray(QualType ObjType, |
4006 | | const SubobjectDesignator &A, |
4007 | 0 | const SubobjectDesignator &B) { |
4008 | 0 | if (A.Entries.size() != B.Entries.size()) |
4009 | 0 | return false; |
4010 | | |
4011 | 0 | bool IsArray = A.MostDerivedIsArrayElement; |
4012 | 0 | if (IsArray && A.MostDerivedPathLength != A.Entries.size()) |
4013 | | // A is a subobject of the array element. |
4014 | 0 | return false; |
4015 | | |
4016 | | // If A (and B) designates an array element, the last entry will be the array |
4017 | | // index. That doesn't have to match. Otherwise, we're in the 'implicit array |
4018 | | // of length 1' case, and the entire path must match. |
4019 | 0 | bool WasArrayIndex; |
4020 | 0 | unsigned CommonLength = FindDesignatorMismatch(ObjType, A, B, WasArrayIndex); |
4021 | 0 | return CommonLength >= A.Entries.size() - IsArray; |
4022 | 0 | } |
4023 | | |
4024 | | /// Find the complete object to which an LValue refers. |
4025 | | static CompleteObject findCompleteObject(EvalInfo &Info, const Expr *E, |
4026 | | AccessKinds AK, const LValue &LVal, |
4027 | 9 | QualType LValType) { |
4028 | 9 | if (LVal.InvalidBase) { |
4029 | 0 | Info.FFDiag(E); |
4030 | 0 | return CompleteObject(); |
4031 | 0 | } |
4032 | | |
4033 | 9 | if (!LVal.Base) { |
4034 | 0 | Info.FFDiag(E, diag::note_constexpr_access_null) << AK; |
4035 | 0 | return CompleteObject(); |
4036 | 0 | } |
4037 | | |
4038 | 9 | CallStackFrame *Frame = nullptr; |
4039 | 9 | unsigned Depth = 0; |
4040 | 9 | if (LVal.getLValueCallIndex()) { |
4041 | 0 | std::tie(Frame, Depth) = |
4042 | 0 | Info.getCallFrameAndDepth(LVal.getLValueCallIndex()); |
4043 | 0 | if (!Frame) { |
4044 | 0 | Info.FFDiag(E, diag::note_constexpr_lifetime_ended, 1) |
4045 | 0 | << AK << LVal.Base.is<const ValueDecl*>(); |
4046 | 0 | NoteLValueLocation(Info, LVal.Base); |
4047 | 0 | return CompleteObject(); |
4048 | 0 | } |
4049 | 0 | } |
4050 | | |
4051 | 9 | bool IsAccess = isAnyAccess(AK); |
4052 | | |
4053 | | // C++11 DR1311: An lvalue-to-rvalue conversion on a volatile-qualified type |
4054 | | // is not a constant expression (even if the object is non-volatile). We also |
4055 | | // apply this rule to C++98, in order to conform to the expected 'volatile' |
4056 | | // semantics. |
4057 | 9 | if (isFormalAccess(AK) && LValType.isVolatileQualified()) { |
4058 | 0 | if (Info.getLangOpts().CPlusPlus) |
4059 | 0 | Info.FFDiag(E, diag::note_constexpr_access_volatile_type) |
4060 | 0 | << AK << LValType; |
4061 | 0 | else |
4062 | 0 | Info.FFDiag(E); |
4063 | 0 | return CompleteObject(); |
4064 | 0 | } |
4065 | | |
4066 | | // Compute value storage location and type of base object. |
4067 | 9 | APValue *BaseVal = nullptr; |
4068 | 9 | QualType BaseType = getType(LVal.Base); |
4069 | | |
4070 | 9 | if (Info.getLangOpts().CPlusPlus14 && LVal.Base == Info.EvaluatingDecl && |
4071 | 9 | lifetimeStartedInEvaluation(Info, LVal.Base)) { |
4072 | | // This is the object whose initializer we're evaluating, so its lifetime |
4073 | | // started in the current evaluation. |
4074 | 0 | BaseVal = Info.EvaluatingDeclValue; |
4075 | 9 | } else if (const ValueDecl *D = LVal.Base.dyn_cast<const ValueDecl *>()) { |
4076 | | // Allow reading from a GUID declaration. |
4077 | 9 | if (auto *GD = dyn_cast<MSGuidDecl>(D)) { |
4078 | 0 | if (isModification(AK)) { |
4079 | | // All the remaining cases do not permit modification of the object. |
4080 | 0 | Info.FFDiag(E, diag::note_constexpr_modify_global); |
4081 | 0 | return CompleteObject(); |
4082 | 0 | } |
4083 | 0 | APValue &V = GD->getAsAPValue(); |
4084 | 0 | if (V.isAbsent()) { |
4085 | 0 | Info.FFDiag(E, diag::note_constexpr_unsupported_layout) |
4086 | 0 | << GD->getType(); |
4087 | 0 | return CompleteObject(); |
4088 | 0 | } |
4089 | 0 | return CompleteObject(LVal.Base, &V, GD->getType()); |
4090 | 0 | } |
4091 | | |
4092 | | // Allow reading the APValue from an UnnamedGlobalConstantDecl. |
4093 | 9 | if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D)) { |
4094 | 0 | if (isModification(AK)) { |
4095 | 0 | Info.FFDiag(E, diag::note_constexpr_modify_global); |
4096 | 0 | return CompleteObject(); |
4097 | 0 | } |
4098 | 0 | return CompleteObject(LVal.Base, const_cast<APValue *>(&GCD->getValue()), |
4099 | 0 | GCD->getType()); |
4100 | 0 | } |
4101 | | |
4102 | | // Allow reading from template parameter objects. |
4103 | 9 | if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D)) { |
4104 | 0 | if (isModification(AK)) { |
4105 | 0 | Info.FFDiag(E, diag::note_constexpr_modify_global); |
4106 | 0 | return CompleteObject(); |
4107 | 0 | } |
4108 | 0 | return CompleteObject(LVal.Base, const_cast<APValue *>(&TPO->getValue()), |
4109 | 0 | TPO->getType()); |
4110 | 0 | } |
4111 | | |
4112 | | // In C++98, const, non-volatile integers initialized with ICEs are ICEs. |
4113 | | // In C++11, constexpr, non-volatile variables initialized with constant |
4114 | | // expressions are constant expressions too. Inside constexpr functions, |
4115 | | // parameters are constant expressions even if they're non-const. |
4116 | | // In C++1y, objects local to a constant expression (those with a Frame) are |
4117 | | // both readable and writable inside constant expressions. |
4118 | | // In C, such things can also be folded, although they are not ICEs. |
4119 | 9 | const VarDecl *VD = dyn_cast<VarDecl>(D); |
4120 | 9 | if (VD) { |
4121 | 9 | if (const VarDecl *VDef = VD->getDefinition(Info.Ctx)) |
4122 | 1 | VD = VDef; |
4123 | 9 | } |
4124 | 9 | if (!VD || VD->isInvalidDecl()) { |
4125 | 6 | Info.FFDiag(E); |
4126 | 6 | return CompleteObject(); |
4127 | 6 | } |
4128 | | |
4129 | 3 | bool IsConstant = BaseType.isConstant(Info.Ctx); |
4130 | | |
4131 | | // Unless we're looking at a local variable or argument in a constexpr call, |
4132 | | // the variable we're reading must be const. |
4133 | 3 | if (!Frame) { |
4134 | 3 | if (IsAccess && isa<ParmVarDecl>(VD)) { |
4135 | | // Access of a parameter that's not associated with a frame isn't going |
4136 | | // to work out, but we can leave it to evaluateVarDeclInit to provide a |
4137 | | // suitable diagnostic. |
4138 | 3 | } else if (Info.getLangOpts().CPlusPlus14 && |
4139 | 3 | lifetimeStartedInEvaluation(Info, LVal.Base)) { |
4140 | | // OK, we can read and modify an object if we're in the process of |
4141 | | // evaluating its initializer, because its lifetime began in this |
4142 | | // evaluation. |
4143 | 3 | } else if (isModification(AK)) { |
4144 | | // All the remaining cases do not permit modification of the object. |
4145 | 0 | Info.FFDiag(E, diag::note_constexpr_modify_global); |
4146 | 0 | return CompleteObject(); |
4147 | 3 | } else if (VD->isConstexpr()) { |
4148 | | // OK, we can read this variable. |
4149 | 3 | } else if (BaseType->isIntegralOrEnumerationType()) { |
4150 | 2 | if (!IsConstant) { |
4151 | 2 | if (!IsAccess) |
4152 | 0 | return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); |
4153 | 2 | if (Info.getLangOpts().CPlusPlus) { |
4154 | 0 | Info.FFDiag(E, diag::note_constexpr_ltor_non_const_int, 1) << VD; |
4155 | 0 | Info.Note(VD->getLocation(), diag::note_declared_at); |
4156 | 2 | } else { |
4157 | 2 | Info.FFDiag(E); |
4158 | 2 | } |
4159 | 2 | return CompleteObject(); |
4160 | 2 | } |
4161 | 2 | } else if (!IsAccess) { |
4162 | 0 | return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); |
4163 | 1 | } else if (IsConstant && Info.checkingPotentialConstantExpression() && |
4164 | 1 | BaseType->isLiteralType(Info.Ctx) && !VD->hasDefinition()) { |
4165 | | // This variable might end up being constexpr. Don't diagnose it yet. |
4166 | 1 | } else if (IsConstant) { |
4167 | | // Keep evaluating to see what we can do. In particular, we support |
4168 | | // folding of const floating-point types, in order to make static const |
4169 | | // data members of such types (supported as an extension) more useful. |
4170 | 0 | if (Info.getLangOpts().CPlusPlus) { |
4171 | 0 | Info.CCEDiag(E, Info.getLangOpts().CPlusPlus11 |
4172 | 0 | ? diag::note_constexpr_ltor_non_constexpr |
4173 | 0 | : diag::note_constexpr_ltor_non_integral, 1) |
4174 | 0 | << VD << BaseType; |
4175 | 0 | Info.Note(VD->getLocation(), diag::note_declared_at); |
4176 | 0 | } else { |
4177 | 0 | Info.CCEDiag(E); |
4178 | 0 | } |
4179 | 1 | } else { |
4180 | | // Never allow reading a non-const value. |
4181 | 1 | if (Info.getLangOpts().CPlusPlus) { |
4182 | 0 | Info.FFDiag(E, Info.getLangOpts().CPlusPlus11 |
4183 | 0 | ? diag::note_constexpr_ltor_non_constexpr |
4184 | 0 | : diag::note_constexpr_ltor_non_integral, 1) |
4185 | 0 | << VD << BaseType; |
4186 | 0 | Info.Note(VD->getLocation(), diag::note_declared_at); |
4187 | 1 | } else { |
4188 | 1 | Info.FFDiag(E); |
4189 | 1 | } |
4190 | 1 | return CompleteObject(); |
4191 | 1 | } |
4192 | 3 | } |
4193 | | |
4194 | 0 | if (!evaluateVarDeclInit(Info, E, VD, Frame, LVal.getLValueVersion(), BaseVal)) |
4195 | 0 | return CompleteObject(); |
4196 | 0 | } else if (DynamicAllocLValue DA = LVal.Base.dyn_cast<DynamicAllocLValue>()) { |
4197 | 0 | std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); |
4198 | 0 | if (!Alloc) { |
4199 | 0 | Info.FFDiag(E, diag::note_constexpr_access_deleted_object) << AK; |
4200 | 0 | return CompleteObject(); |
4201 | 0 | } |
4202 | 0 | return CompleteObject(LVal.Base, &(*Alloc)->Value, |
4203 | 0 | LVal.Base.getDynamicAllocType()); |
4204 | 0 | } else { |
4205 | 0 | const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); |
4206 | |
|
4207 | 0 | if (!Frame) { |
4208 | 0 | if (const MaterializeTemporaryExpr *MTE = |
4209 | 0 | dyn_cast_or_null<MaterializeTemporaryExpr>(Base)) { |
4210 | 0 | assert(MTE->getStorageDuration() == SD_Static && |
4211 | 0 | "should have a frame for a non-global materialized temporary"); |
4212 | | |
4213 | | // C++20 [expr.const]p4: [DR2126] |
4214 | | // An object or reference is usable in constant expressions if it is |
4215 | | // - a temporary object of non-volatile const-qualified literal type |
4216 | | // whose lifetime is extended to that of a variable that is usable |
4217 | | // in constant expressions |
4218 | | // |
4219 | | // C++20 [expr.const]p5: |
4220 | | // an lvalue-to-rvalue conversion [is not allowed unless it applies to] |
4221 | | // - a non-volatile glvalue that refers to an object that is usable |
4222 | | // in constant expressions, or |
4223 | | // - a non-volatile glvalue of literal type that refers to a |
4224 | | // non-volatile object whose lifetime began within the evaluation |
4225 | | // of E; |
4226 | | // |
4227 | | // C++11 misses the 'began within the evaluation of e' check and |
4228 | | // instead allows all temporaries, including things like: |
4229 | | // int &&r = 1; |
4230 | | // int x = ++r; |
4231 | | // constexpr int k = r; |
4232 | | // Therefore we use the C++14-onwards rules in C++11 too. |
4233 | | // |
4234 | | // Note that temporaries whose lifetimes began while evaluating a |
4235 | | // variable's constructor are not usable while evaluating the |
4236 | | // corresponding destructor, not even if they're of const-qualified |
4237 | | // types. |
4238 | 0 | if (!MTE->isUsableInConstantExpressions(Info.Ctx) && |
4239 | 0 | !lifetimeStartedInEvaluation(Info, LVal.Base)) { |
4240 | 0 | if (!IsAccess) |
4241 | 0 | return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); |
4242 | 0 | Info.FFDiag(E, diag::note_constexpr_access_static_temporary, 1) << AK; |
4243 | 0 | Info.Note(MTE->getExprLoc(), diag::note_constexpr_temporary_here); |
4244 | 0 | return CompleteObject(); |
4245 | 0 | } |
4246 | | |
4247 | 0 | BaseVal = MTE->getOrCreateValue(false); |
4248 | 0 | assert(BaseVal && "got reference to unevaluated temporary"); |
4249 | 0 | } else { |
4250 | 0 | if (!IsAccess) |
4251 | 0 | return CompleteObject(LVal.getLValueBase(), nullptr, BaseType); |
4252 | 0 | APValue Val; |
4253 | 0 | LVal.moveInto(Val); |
4254 | 0 | Info.FFDiag(E, diag::note_constexpr_access_unreadable_object) |
4255 | 0 | << AK |
4256 | 0 | << Val.getAsString(Info.Ctx, |
4257 | 0 | Info.Ctx.getLValueReferenceType(LValType)); |
4258 | 0 | NoteLValueLocation(Info, LVal.Base); |
4259 | 0 | return CompleteObject(); |
4260 | 0 | } |
4261 | 0 | } else { |
4262 | 0 | BaseVal = Frame->getTemporary(Base, LVal.Base.getVersion()); |
4263 | 0 | assert(BaseVal && "missing value for temporary"); |
4264 | 0 | } |
4265 | 0 | } |
4266 | | |
4267 | | // In C++14, we can't safely access any mutable state when we might be |
4268 | | // evaluating after an unmodeled side effect. Parameters are modeled as state |
4269 | | // in the caller, but aren't visible once the call returns, so they can be |
4270 | | // modified in a speculatively-evaluated call. |
4271 | | // |
4272 | | // FIXME: Not all local state is mutable. Allow local constant subobjects |
4273 | | // to be read here (but take care with 'mutable' fields). |
4274 | 0 | unsigned VisibleDepth = Depth; |
4275 | 0 | if (llvm::isa_and_nonnull<ParmVarDecl>( |
4276 | 0 | LVal.Base.dyn_cast<const ValueDecl *>())) |
4277 | 0 | ++VisibleDepth; |
4278 | 0 | if ((Frame && Info.getLangOpts().CPlusPlus14 && |
4279 | 0 | Info.EvalStatus.HasSideEffects) || |
4280 | 0 | (isModification(AK) && VisibleDepth < Info.SpeculativeEvaluationDepth)) |
4281 | 0 | return CompleteObject(); |
4282 | | |
4283 | 0 | return CompleteObject(LVal.getLValueBase(), BaseVal, BaseType); |
4284 | 0 | } |
4285 | | |
4286 | | /// Perform an lvalue-to-rvalue conversion on the given glvalue. This |
4287 | | /// can also be used for 'lvalue-to-lvalue' conversions for looking up the |
4288 | | /// glvalue referred to by an entity of reference type. |
4289 | | /// |
4290 | | /// \param Info - Information about the ongoing evaluation. |
4291 | | /// \param Conv - The expression for which we are performing the conversion. |
4292 | | /// Used for diagnostics. |
4293 | | /// \param Type - The type of the glvalue (before stripping cv-qualifiers in the |
4294 | | /// case of a non-class type). |
4295 | | /// \param LVal - The glvalue on which we are attempting to perform this action. |
4296 | | /// \param RVal - The produced value will be placed here. |
4297 | | /// \param WantObjectRepresentation - If true, we're looking for the object |
4298 | | /// representation rather than the value, and in particular, |
4299 | | /// there is no requirement that the result be fully initialized. |
4300 | | static bool |
4301 | | handleLValueToRValueConversion(EvalInfo &Info, const Expr *Conv, QualType Type, |
4302 | | const LValue &LVal, APValue &RVal, |
4303 | 9 | bool WantObjectRepresentation = false) { |
4304 | 9 | if (LVal.Designator.Invalid) |
4305 | 0 | return false; |
4306 | | |
4307 | | // Check for special cases where there is no existing APValue to look at. |
4308 | 9 | const Expr *Base = LVal.Base.dyn_cast<const Expr*>(); |
4309 | | |
4310 | 9 | AccessKinds AK = |
4311 | 9 | WantObjectRepresentation ? AK_ReadObjectRepresentation : AK_Read; |
4312 | | |
4313 | 9 | if (Base && !LVal.getLValueCallIndex() && !Type.isVolatileQualified()) { |
4314 | 0 | if (const CompoundLiteralExpr *CLE = dyn_cast<CompoundLiteralExpr>(Base)) { |
4315 | | // In C99, a CompoundLiteralExpr is an lvalue, and we defer evaluating the |
4316 | | // initializer until now for such expressions. Such an expression can't be |
4317 | | // an ICE in C, so this only matters for fold. |
4318 | 0 | if (Type.isVolatileQualified()) { |
4319 | 0 | Info.FFDiag(Conv); |
4320 | 0 | return false; |
4321 | 0 | } |
4322 | | |
4323 | 0 | APValue Lit; |
4324 | 0 | if (!Evaluate(Lit, Info, CLE->getInitializer())) |
4325 | 0 | return false; |
4326 | | |
4327 | | // According to GCC info page: |
4328 | | // |
4329 | | // 6.28 Compound Literals |
4330 | | // |
4331 | | // As an optimization, G++ sometimes gives array compound literals longer |
4332 | | // lifetimes: when the array either appears outside a function or has a |
4333 | | // const-qualified type. If foo and its initializer had elements of type |
4334 | | // char *const rather than char *, or if foo were a global variable, the |
4335 | | // array would have static storage duration. But it is probably safest |
4336 | | // just to avoid the use of array compound literals in C++ code. |
4337 | | // |
4338 | | // Obey that rule by checking constness for converted array types. |
4339 | | |
4340 | 0 | QualType CLETy = CLE->getType(); |
4341 | 0 | if (CLETy->isArrayType() && !Type->isArrayType()) { |
4342 | 0 | if (!CLETy.isConstant(Info.Ctx)) { |
4343 | 0 | Info.FFDiag(Conv); |
4344 | 0 | Info.Note(CLE->getExprLoc(), diag::note_declared_at); |
4345 | 0 | return false; |
4346 | 0 | } |
4347 | 0 | } |
4348 | | |
4349 | 0 | CompleteObject LitObj(LVal.Base, &Lit, Base->getType()); |
4350 | 0 | return extractSubobject(Info, Conv, LitObj, LVal.Designator, RVal, AK); |
4351 | 0 | } else if (isa<StringLiteral>(Base) || isa<PredefinedExpr>(Base)) { |
4352 | | // Special-case character extraction so we don't have to construct an |
4353 | | // APValue for the whole string. |
4354 | 0 | assert(LVal.Designator.Entries.size() <= 1 && |
4355 | 0 | "Can only read characters from string literals"); |
4356 | 0 | if (LVal.Designator.Entries.empty()) { |
4357 | | // Fail for now for LValue to RValue conversion of an array. |
4358 | | // (This shouldn't show up in C/C++, but it could be triggered by a |
4359 | | // weird EvaluateAsRValue call from a tool.) |
4360 | 0 | Info.FFDiag(Conv); |
4361 | 0 | return false; |
4362 | 0 | } |
4363 | 0 | if (LVal.Designator.isOnePastTheEnd()) { |
4364 | 0 | if (Info.getLangOpts().CPlusPlus11) |
4365 | 0 | Info.FFDiag(Conv, diag::note_constexpr_access_past_end) << AK; |
4366 | 0 | else |
4367 | 0 | Info.FFDiag(Conv); |
4368 | 0 | return false; |
4369 | 0 | } |
4370 | 0 | uint64_t CharIndex = LVal.Designator.Entries[0].getAsArrayIndex(); |
4371 | 0 | RVal = APValue(extractStringLiteralCharacter(Info, Base, CharIndex)); |
4372 | 0 | return true; |
4373 | 0 | } |
4374 | 0 | } |
4375 | | |
4376 | 9 | CompleteObject Obj = findCompleteObject(Info, Conv, AK, LVal, Type); |
4377 | 9 | return Obj && extractSubobject(Info, Conv, Obj, LVal.Designator, RVal, AK); |
4378 | 9 | } |
4379 | | |
4380 | | /// Perform an assignment of Val to LVal. Takes ownership of Val. |
4381 | | static bool handleAssignment(EvalInfo &Info, const Expr *E, const LValue &LVal, |
4382 | 0 | QualType LValType, APValue &Val) { |
4383 | 0 | if (LVal.Designator.Invalid) |
4384 | 0 | return false; |
4385 | | |
4386 | 0 | if (!Info.getLangOpts().CPlusPlus14) { |
4387 | 0 | Info.FFDiag(E); |
4388 | 0 | return false; |
4389 | 0 | } |
4390 | | |
4391 | 0 | CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); |
4392 | 0 | return Obj && modifySubobject(Info, E, Obj, LVal.Designator, Val); |
4393 | 0 | } |
4394 | | |
4395 | | namespace { |
4396 | | struct CompoundAssignSubobjectHandler { |
4397 | | EvalInfo &Info; |
4398 | | const CompoundAssignOperator *E; |
4399 | | QualType PromotedLHSType; |
4400 | | BinaryOperatorKind Opcode; |
4401 | | const APValue &RHS; |
4402 | | |
4403 | | static const AccessKinds AccessKind = AK_Assign; |
4404 | | |
4405 | | typedef bool result_type; |
4406 | | |
4407 | 0 | bool checkConst(QualType QT) { |
4408 | | // Assigning to a const object has undefined behavior. |
4409 | 0 | if (QT.isConstQualified()) { |
4410 | 0 | Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; |
4411 | 0 | return false; |
4412 | 0 | } |
4413 | 0 | return true; |
4414 | 0 | } |
4415 | | |
4416 | 0 | bool failed() { return false; } |
4417 | 0 | bool found(APValue &Subobj, QualType SubobjType) { |
4418 | 0 | switch (Subobj.getKind()) { |
4419 | 0 | case APValue::Int: |
4420 | 0 | return found(Subobj.getInt(), SubobjType); |
4421 | 0 | case APValue::Float: |
4422 | 0 | return found(Subobj.getFloat(), SubobjType); |
4423 | 0 | case APValue::ComplexInt: |
4424 | 0 | case APValue::ComplexFloat: |
4425 | | // FIXME: Implement complex compound assignment. |
4426 | 0 | Info.FFDiag(E); |
4427 | 0 | return false; |
4428 | 0 | case APValue::LValue: |
4429 | 0 | return foundPointer(Subobj, SubobjType); |
4430 | 0 | case APValue::Vector: |
4431 | 0 | return foundVector(Subobj, SubobjType); |
4432 | 0 | case APValue::Indeterminate: |
4433 | 0 | Info.FFDiag(E, diag::note_constexpr_access_uninit) |
4434 | 0 | << /*read of=*/0 << /*uninitialized object=*/1 |
4435 | 0 | << E->getLHS()->getSourceRange(); |
4436 | 0 | return false; |
4437 | 0 | default: |
4438 | | // FIXME: can this happen? |
4439 | 0 | Info.FFDiag(E); |
4440 | 0 | return false; |
4441 | 0 | } |
4442 | 0 | } |
4443 | | |
4444 | 0 | bool foundVector(APValue &Value, QualType SubobjType) { |
4445 | 0 | if (!checkConst(SubobjType)) |
4446 | 0 | return false; |
4447 | | |
4448 | 0 | if (!SubobjType->isVectorType()) { |
4449 | 0 | Info.FFDiag(E); |
4450 | 0 | return false; |
4451 | 0 | } |
4452 | 0 | return handleVectorVectorBinOp(Info, E, Opcode, Value, RHS); |
4453 | 0 | } |
4454 | | |
4455 | 0 | bool found(APSInt &Value, QualType SubobjType) { |
4456 | 0 | if (!checkConst(SubobjType)) |
4457 | 0 | return false; |
4458 | | |
4459 | 0 | if (!SubobjType->isIntegerType()) { |
4460 | | // We don't support compound assignment on integer-cast-to-pointer |
4461 | | // values. |
4462 | 0 | Info.FFDiag(E); |
4463 | 0 | return false; |
4464 | 0 | } |
4465 | | |
4466 | 0 | if (RHS.isInt()) { |
4467 | 0 | APSInt LHS = |
4468 | 0 | HandleIntToIntCast(Info, E, PromotedLHSType, SubobjType, Value); |
4469 | 0 | if (!handleIntIntBinOp(Info, E, LHS, Opcode, RHS.getInt(), LHS)) |
4470 | 0 | return false; |
4471 | 0 | Value = HandleIntToIntCast(Info, E, SubobjType, PromotedLHSType, LHS); |
4472 | 0 | return true; |
4473 | 0 | } else if (RHS.isFloat()) { |
4474 | 0 | const FPOptions FPO = E->getFPFeaturesInEffect( |
4475 | 0 | Info.Ctx.getLangOpts()); |
4476 | 0 | APFloat FValue(0.0); |
4477 | 0 | return HandleIntToFloatCast(Info, E, FPO, SubobjType, Value, |
4478 | 0 | PromotedLHSType, FValue) && |
4479 | 0 | handleFloatFloatBinOp(Info, E, FValue, Opcode, RHS.getFloat()) && |
4480 | 0 | HandleFloatToIntCast(Info, E, PromotedLHSType, FValue, SubobjType, |
4481 | 0 | Value); |
4482 | 0 | } |
4483 | | |
4484 | 0 | Info.FFDiag(E); |
4485 | 0 | return false; |
4486 | 0 | } |
4487 | 0 | bool found(APFloat &Value, QualType SubobjType) { |
4488 | 0 | return checkConst(SubobjType) && |
4489 | 0 | HandleFloatToFloatCast(Info, E, SubobjType, PromotedLHSType, |
4490 | 0 | Value) && |
4491 | 0 | handleFloatFloatBinOp(Info, E, Value, Opcode, RHS.getFloat()) && |
4492 | 0 | HandleFloatToFloatCast(Info, E, PromotedLHSType, SubobjType, Value); |
4493 | 0 | } |
4494 | 0 | bool foundPointer(APValue &Subobj, QualType SubobjType) { |
4495 | 0 | if (!checkConst(SubobjType)) |
4496 | 0 | return false; |
4497 | | |
4498 | 0 | QualType PointeeType; |
4499 | 0 | if (const PointerType *PT = SubobjType->getAs<PointerType>()) |
4500 | 0 | PointeeType = PT->getPointeeType(); |
4501 | |
|
4502 | 0 | if (PointeeType.isNull() || !RHS.isInt() || |
4503 | 0 | (Opcode != BO_Add && Opcode != BO_Sub)) { |
4504 | 0 | Info.FFDiag(E); |
4505 | 0 | return false; |
4506 | 0 | } |
4507 | | |
4508 | 0 | APSInt Offset = RHS.getInt(); |
4509 | 0 | if (Opcode == BO_Sub) |
4510 | 0 | negateAsSigned(Offset); |
4511 | |
|
4512 | 0 | LValue LVal; |
4513 | 0 | LVal.setFrom(Info.Ctx, Subobj); |
4514 | 0 | if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, Offset)) |
4515 | 0 | return false; |
4516 | 0 | LVal.moveInto(Subobj); |
4517 | 0 | return true; |
4518 | 0 | } |
4519 | | }; |
4520 | | } // end anonymous namespace |
4521 | | |
4522 | | const AccessKinds CompoundAssignSubobjectHandler::AccessKind; |
4523 | | |
4524 | | /// Perform a compound assignment of LVal <op>= RVal. |
4525 | | static bool handleCompoundAssignment(EvalInfo &Info, |
4526 | | const CompoundAssignOperator *E, |
4527 | | const LValue &LVal, QualType LValType, |
4528 | | QualType PromotedLValType, |
4529 | | BinaryOperatorKind Opcode, |
4530 | 0 | const APValue &RVal) { |
4531 | 0 | if (LVal.Designator.Invalid) |
4532 | 0 | return false; |
4533 | | |
4534 | 0 | if (!Info.getLangOpts().CPlusPlus14) { |
4535 | 0 | Info.FFDiag(E); |
4536 | 0 | return false; |
4537 | 0 | } |
4538 | | |
4539 | 0 | CompleteObject Obj = findCompleteObject(Info, E, AK_Assign, LVal, LValType); |
4540 | 0 | CompoundAssignSubobjectHandler Handler = { Info, E, PromotedLValType, Opcode, |
4541 | 0 | RVal }; |
4542 | 0 | return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); |
4543 | 0 | } |
4544 | | |
4545 | | namespace { |
4546 | | struct IncDecSubobjectHandler { |
4547 | | EvalInfo &Info; |
4548 | | const UnaryOperator *E; |
4549 | | AccessKinds AccessKind; |
4550 | | APValue *Old; |
4551 | | |
4552 | | typedef bool result_type; |
4553 | | |
4554 | 0 | bool checkConst(QualType QT) { |
4555 | | // Assigning to a const object has undefined behavior. |
4556 | 0 | if (QT.isConstQualified()) { |
4557 | 0 | Info.FFDiag(E, diag::note_constexpr_modify_const_type) << QT; |
4558 | 0 | return false; |
4559 | 0 | } |
4560 | 0 | return true; |
4561 | 0 | } |
4562 | | |
4563 | 0 | bool failed() { return false; } |
4564 | 0 | bool found(APValue &Subobj, QualType SubobjType) { |
4565 | | // Stash the old value. Also clear Old, so we don't clobber it later |
4566 | | // if we're post-incrementing a complex. |
4567 | 0 | if (Old) { |
4568 | 0 | *Old = Subobj; |
4569 | 0 | Old = nullptr; |
4570 | 0 | } |
4571 | |
|
4572 | 0 | switch (Subobj.getKind()) { |
4573 | 0 | case APValue::Int: |
4574 | 0 | return found(Subobj.getInt(), SubobjType); |
4575 | 0 | case APValue::Float: |
4576 | 0 | return found(Subobj.getFloat(), SubobjType); |
4577 | 0 | case APValue::ComplexInt: |
4578 | 0 | return found(Subobj.getComplexIntReal(), |
4579 | 0 | SubobjType->castAs<ComplexType>()->getElementType() |
4580 | 0 | .withCVRQualifiers(SubobjType.getCVRQualifiers())); |
4581 | 0 | case APValue::ComplexFloat: |
4582 | 0 | return found(Subobj.getComplexFloatReal(), |
4583 | 0 | SubobjType->castAs<ComplexType>()->getElementType() |
4584 | 0 | .withCVRQualifiers(SubobjType.getCVRQualifiers())); |
4585 | 0 | case APValue::LValue: |
4586 | 0 | return foundPointer(Subobj, SubobjType); |
4587 | 0 | default: |
4588 | | // FIXME: can this happen? |
4589 | 0 | Info.FFDiag(E); |
4590 | 0 | return false; |
4591 | 0 | } |
4592 | 0 | } |
4593 | 0 | bool found(APSInt &Value, QualType SubobjType) { |
4594 | 0 | if (!checkConst(SubobjType)) |
4595 | 0 | return false; |
4596 | | |
4597 | 0 | if (!SubobjType->isIntegerType()) { |
4598 | | // We don't support increment / decrement on integer-cast-to-pointer |
4599 | | // values. |
4600 | 0 | Info.FFDiag(E); |
4601 | 0 | return false; |
4602 | 0 | } |
4603 | | |
4604 | 0 | if (Old) *Old = APValue(Value); |
4605 | | |
4606 | | // bool arithmetic promotes to int, and the conversion back to bool |
4607 | | // doesn't reduce mod 2^n, so special-case it. |
4608 | 0 | if (SubobjType->isBooleanType()) { |
4609 | 0 | if (AccessKind == AK_Increment) |
4610 | 0 | Value = 1; |
4611 | 0 | else |
4612 | 0 | Value = !Value; |
4613 | 0 | return true; |
4614 | 0 | } |
4615 | | |
4616 | 0 | bool WasNegative = Value.isNegative(); |
4617 | 0 | if (AccessKind == AK_Increment) { |
4618 | 0 | ++Value; |
4619 | |
|
4620 | 0 | if (!WasNegative && Value.isNegative() && E->canOverflow()) { |
4621 | 0 | APSInt ActualValue(Value, /*IsUnsigned*/true); |
4622 | 0 | return HandleOverflow(Info, E, ActualValue, SubobjType); |
4623 | 0 | } |
4624 | 0 | } else { |
4625 | 0 | --Value; |
4626 | |
|
4627 | 0 | if (WasNegative && !Value.isNegative() && E->canOverflow()) { |
4628 | 0 | unsigned BitWidth = Value.getBitWidth(); |
4629 | 0 | APSInt ActualValue(Value.sext(BitWidth + 1), /*IsUnsigned*/false); |
4630 | 0 | ActualValue.setBit(BitWidth); |
4631 | 0 | return HandleOverflow(Info, E, ActualValue, SubobjType); |
4632 | 0 | } |
4633 | 0 | } |
4634 | 0 | return true; |
4635 | 0 | } |
4636 | 0 | bool found(APFloat &Value, QualType SubobjType) { |
4637 | 0 | if (!checkConst(SubobjType)) |
4638 | 0 | return false; |
4639 | | |
4640 | 0 | if (Old) *Old = APValue(Value); |
4641 | |
|
4642 | 0 | APFloat One(Value.getSemantics(), 1); |
4643 | 0 | llvm::RoundingMode RM = getActiveRoundingMode(Info, E); |
4644 | 0 | APFloat::opStatus St; |
4645 | 0 | if (AccessKind == AK_Increment) |
4646 | 0 | St = Value.add(One, RM); |
4647 | 0 | else |
4648 | 0 | St = Value.subtract(One, RM); |
4649 | 0 | return checkFloatingPointResult(Info, E, St); |
4650 | 0 | } |
4651 | 0 | bool foundPointer(APValue &Subobj, QualType SubobjType) { |
4652 | 0 | if (!checkConst(SubobjType)) |
4653 | 0 | return false; |
4654 | | |
4655 | 0 | QualType PointeeType; |
4656 | 0 | if (const PointerType *PT = SubobjType->getAs<PointerType>()) |
4657 | 0 | PointeeType = PT->getPointeeType(); |
4658 | 0 | else { |
4659 | 0 | Info.FFDiag(E); |
4660 | 0 | return false; |
4661 | 0 | } |
4662 | | |
4663 | 0 | LValue LVal; |
4664 | 0 | LVal.setFrom(Info.Ctx, Subobj); |
4665 | 0 | if (!HandleLValueArrayAdjustment(Info, E, LVal, PointeeType, |
4666 | 0 | AccessKind == AK_Increment ? 1 : -1)) |
4667 | 0 | return false; |
4668 | 0 | LVal.moveInto(Subobj); |
4669 | 0 | return true; |
4670 | 0 | } |
4671 | | }; |
4672 | | } // end anonymous namespace |
4673 | | |
4674 | | /// Perform an increment or decrement on LVal. |
4675 | | static bool handleIncDec(EvalInfo &Info, const Expr *E, const LValue &LVal, |
4676 | 0 | QualType LValType, bool IsIncrement, APValue *Old) { |
4677 | 0 | if (LVal.Designator.Invalid) |
4678 | 0 | return false; |
4679 | | |
4680 | 0 | if (!Info.getLangOpts().CPlusPlus14) { |
4681 | 0 | Info.FFDiag(E); |
4682 | 0 | return false; |
4683 | 0 | } |
4684 | | |
4685 | 0 | AccessKinds AK = IsIncrement ? AK_Increment : AK_Decrement; |
4686 | 0 | CompleteObject Obj = findCompleteObject(Info, E, AK, LVal, LValType); |
4687 | 0 | IncDecSubobjectHandler Handler = {Info, cast<UnaryOperator>(E), AK, Old}; |
4688 | 0 | return Obj && findSubobject(Info, E, Obj, LVal.Designator, Handler); |
4689 | 0 | } |
4690 | | |
4691 | | /// Build an lvalue for the object argument of a member function call. |
4692 | | static bool EvaluateObjectArgument(EvalInfo &Info, const Expr *Object, |
4693 | 0 | LValue &This) { |
4694 | 0 | if (Object->getType()->isPointerType() && Object->isPRValue()) |
4695 | 0 | return EvaluatePointer(Object, This, Info); |
4696 | | |
4697 | 0 | if (Object->isGLValue()) |
4698 | 0 | return EvaluateLValue(Object, This, Info); |
4699 | | |
4700 | 0 | if (Object->getType()->isLiteralType(Info.Ctx)) |
4701 | 0 | return EvaluateTemporary(Object, This, Info); |
4702 | | |
4703 | 0 | if (Object->getType()->isRecordType() && Object->isPRValue()) |
4704 | 0 | return EvaluateTemporary(Object, This, Info); |
4705 | | |
4706 | 0 | Info.FFDiag(Object, diag::note_constexpr_nonliteral) << Object->getType(); |
4707 | 0 | return false; |
4708 | 0 | } |
4709 | | |
4710 | | /// HandleMemberPointerAccess - Evaluate a member access operation and build an |
4711 | | /// lvalue referring to the result. |
4712 | | /// |
4713 | | /// \param Info - Information about the ongoing evaluation. |
4714 | | /// \param LV - An lvalue referring to the base of the member pointer. |
4715 | | /// \param RHS - The member pointer expression. |
4716 | | /// \param IncludeMember - Specifies whether the member itself is included in |
4717 | | /// the resulting LValue subobject designator. This is not possible when |
4718 | | /// creating a bound member function. |
4719 | | /// \return The field or method declaration to which the member pointer refers, |
4720 | | /// or 0 if evaluation fails. |
4721 | | static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, |
4722 | | QualType LVType, |
4723 | | LValue &LV, |
4724 | | const Expr *RHS, |
4725 | 0 | bool IncludeMember = true) { |
4726 | 0 | MemberPtr MemPtr; |
4727 | 0 | if (!EvaluateMemberPointer(RHS, MemPtr, Info)) |
4728 | 0 | return nullptr; |
4729 | | |
4730 | | // C++11 [expr.mptr.oper]p6: If the second operand is the null pointer to |
4731 | | // member value, the behavior is undefined. |
4732 | 0 | if (!MemPtr.getDecl()) { |
4733 | | // FIXME: Specific diagnostic. |
4734 | 0 | Info.FFDiag(RHS); |
4735 | 0 | return nullptr; |
4736 | 0 | } |
4737 | | |
4738 | 0 | if (MemPtr.isDerivedMember()) { |
4739 | | // This is a member of some derived class. Truncate LV appropriately. |
4740 | | // The end of the derived-to-base path for the base object must match the |
4741 | | // derived-to-base path for the member pointer. |
4742 | 0 | if (LV.Designator.MostDerivedPathLength + MemPtr.Path.size() > |
4743 | 0 | LV.Designator.Entries.size()) { |
4744 | 0 | Info.FFDiag(RHS); |
4745 | 0 | return nullptr; |
4746 | 0 | } |
4747 | 0 | unsigned PathLengthToMember = |
4748 | 0 | LV.Designator.Entries.size() - MemPtr.Path.size(); |
4749 | 0 | for (unsigned I = 0, N = MemPtr.Path.size(); I != N; ++I) { |
4750 | 0 | const CXXRecordDecl *LVDecl = getAsBaseClass( |
4751 | 0 | LV.Designator.Entries[PathLengthToMember + I]); |
4752 | 0 | const CXXRecordDecl *MPDecl = MemPtr.Path[I]; |
4753 | 0 | if (LVDecl->getCanonicalDecl() != MPDecl->getCanonicalDecl()) { |
4754 | 0 | Info.FFDiag(RHS); |
4755 | 0 | return nullptr; |
4756 | 0 | } |
4757 | 0 | } |
4758 | | |
4759 | | // Truncate the lvalue to the appropriate derived class. |
4760 | 0 | if (!CastToDerivedClass(Info, RHS, LV, MemPtr.getContainingRecord(), |
4761 | 0 | PathLengthToMember)) |
4762 | 0 | return nullptr; |
4763 | 0 | } else if (!MemPtr.Path.empty()) { |
4764 | | // Extend the LValue path with the member pointer's path. |
4765 | 0 | LV.Designator.Entries.reserve(LV.Designator.Entries.size() + |
4766 | 0 | MemPtr.Path.size() + IncludeMember); |
4767 | | |
4768 | | // Walk down to the appropriate base class. |
4769 | 0 | if (const PointerType *PT = LVType->getAs<PointerType>()) |
4770 | 0 | LVType = PT->getPointeeType(); |
4771 | 0 | const CXXRecordDecl *RD = LVType->getAsCXXRecordDecl(); |
4772 | 0 | assert(RD && "member pointer access on non-class-type expression"); |
4773 | | // The first class in the path is that of the lvalue. |
4774 | 0 | for (unsigned I = 1, N = MemPtr.Path.size(); I != N; ++I) { |
4775 | 0 | const CXXRecordDecl *Base = MemPtr.Path[N - I - 1]; |
4776 | 0 | if (!HandleLValueDirectBase(Info, RHS, LV, RD, Base)) |
4777 | 0 | return nullptr; |
4778 | 0 | RD = Base; |
4779 | 0 | } |
4780 | | // Finally cast to the class containing the member. |
4781 | 0 | if (!HandleLValueDirectBase(Info, RHS, LV, RD, |
4782 | 0 | MemPtr.getContainingRecord())) |
4783 | 0 | return nullptr; |
4784 | 0 | } |
4785 | | |
4786 | | // Add the member. Note that we cannot build bound member functions here. |
4787 | 0 | if (IncludeMember) { |
4788 | 0 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(MemPtr.getDecl())) { |
4789 | 0 | if (!HandleLValueMember(Info, RHS, LV, FD)) |
4790 | 0 | return nullptr; |
4791 | 0 | } else if (const IndirectFieldDecl *IFD = |
4792 | 0 | dyn_cast<IndirectFieldDecl>(MemPtr.getDecl())) { |
4793 | 0 | if (!HandleLValueIndirectMember(Info, RHS, LV, IFD)) |
4794 | 0 | return nullptr; |
4795 | 0 | } else { |
4796 | 0 | llvm_unreachable("can't construct reference to bound member function"); |
4797 | 0 | } |
4798 | 0 | } |
4799 | | |
4800 | 0 | return MemPtr.getDecl(); |
4801 | 0 | } |
4802 | | |
4803 | | static const ValueDecl *HandleMemberPointerAccess(EvalInfo &Info, |
4804 | | const BinaryOperator *BO, |
4805 | | LValue &LV, |
4806 | 0 | bool IncludeMember = true) { |
4807 | 0 | assert(BO->getOpcode() == BO_PtrMemD || BO->getOpcode() == BO_PtrMemI); |
4808 | | |
4809 | 0 | if (!EvaluateObjectArgument(Info, BO->getLHS(), LV)) { |
4810 | 0 | if (Info.noteFailure()) { |
4811 | 0 | MemberPtr MemPtr; |
4812 | 0 | EvaluateMemberPointer(BO->getRHS(), MemPtr, Info); |
4813 | 0 | } |
4814 | 0 | return nullptr; |
4815 | 0 | } |
4816 | | |
4817 | 0 | return HandleMemberPointerAccess(Info, BO->getLHS()->getType(), LV, |
4818 | 0 | BO->getRHS(), IncludeMember); |
4819 | 0 | } |
4820 | | |
4821 | | /// HandleBaseToDerivedCast - Apply the given base-to-derived cast operation on |
4822 | | /// the provided lvalue, which currently refers to the base object. |
4823 | | static bool HandleBaseToDerivedCast(EvalInfo &Info, const CastExpr *E, |
4824 | 0 | LValue &Result) { |
4825 | 0 | SubobjectDesignator &D = Result.Designator; |
4826 | 0 | if (D.Invalid || !Result.checkNullPointer(Info, E, CSK_Derived)) |
4827 | 0 | return false; |
4828 | | |
4829 | 0 | QualType TargetQT = E->getType(); |
4830 | 0 | if (const PointerType *PT = TargetQT->getAs<PointerType>()) |
4831 | 0 | TargetQT = PT->getPointeeType(); |
4832 | | |
4833 | | // Check this cast lands within the final derived-to-base subobject path. |
4834 | 0 | if (D.MostDerivedPathLength + E->path_size() > D.Entries.size()) { |
4835 | 0 | Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) |
4836 | 0 | << D.MostDerivedType << TargetQT; |
4837 | 0 | return false; |
4838 | 0 | } |
4839 | | |
4840 | | // Check the type of the final cast. We don't need to check the path, |
4841 | | // since a cast can only be formed if the path is unique. |
4842 | 0 | unsigned NewEntriesSize = D.Entries.size() - E->path_size(); |
4843 | 0 | const CXXRecordDecl *TargetType = TargetQT->getAsCXXRecordDecl(); |
4844 | 0 | const CXXRecordDecl *FinalType; |
4845 | 0 | if (NewEntriesSize == D.MostDerivedPathLength) |
4846 | 0 | FinalType = D.MostDerivedType->getAsCXXRecordDecl(); |
4847 | 0 | else |
4848 | 0 | FinalType = getAsBaseClass(D.Entries[NewEntriesSize - 1]); |
4849 | 0 | if (FinalType->getCanonicalDecl() != TargetType->getCanonicalDecl()) { |
4850 | 0 | Info.CCEDiag(E, diag::note_constexpr_invalid_downcast) |
4851 | 0 | << D.MostDerivedType << TargetQT; |
4852 | 0 | return false; |
4853 | 0 | } |
4854 | | |
4855 | | // Truncate the lvalue to the appropriate derived class. |
4856 | 0 | return CastToDerivedClass(Info, E, Result, TargetType, NewEntriesSize); |
4857 | 0 | } |
4858 | | |
4859 | | /// Get the value to use for a default-initialized object of type T. |
4860 | | /// Return false if it encounters something invalid. |
4861 | 0 | static bool handleDefaultInitValue(QualType T, APValue &Result) { |
4862 | 0 | bool Success = true; |
4863 | | |
4864 | | // If there is already a value present don't overwrite it. |
4865 | 0 | if (!Result.isAbsent()) |
4866 | 0 | return true; |
4867 | | |
4868 | 0 | if (auto *RD = T->getAsCXXRecordDecl()) { |
4869 | 0 | if (RD->isInvalidDecl()) { |
4870 | 0 | Result = APValue(); |
4871 | 0 | return false; |
4872 | 0 | } |
4873 | 0 | if (RD->isUnion()) { |
4874 | 0 | Result = APValue((const FieldDecl *)nullptr); |
4875 | 0 | return true; |
4876 | 0 | } |
4877 | 0 | Result = APValue(APValue::UninitStruct(), RD->getNumBases(), |
4878 | 0 | std::distance(RD->field_begin(), RD->field_end())); |
4879 | |
|
4880 | 0 | unsigned Index = 0; |
4881 | 0 | for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(), |
4882 | 0 | End = RD->bases_end(); |
4883 | 0 | I != End; ++I, ++Index) |
4884 | 0 | Success &= |
4885 | 0 | handleDefaultInitValue(I->getType(), Result.getStructBase(Index)); |
4886 | |
|
4887 | 0 | for (const auto *I : RD->fields()) { |
4888 | 0 | if (I->isUnnamedBitfield()) |
4889 | 0 | continue; |
4890 | 0 | Success &= handleDefaultInitValue( |
4891 | 0 | I->getType(), Result.getStructField(I->getFieldIndex())); |
4892 | 0 | } |
4893 | 0 | return Success; |
4894 | 0 | } |
4895 | | |
4896 | 0 | if (auto *AT = |
4897 | 0 | dyn_cast_or_null<ConstantArrayType>(T->getAsArrayTypeUnsafe())) { |
4898 | 0 | Result = APValue(APValue::UninitArray(), 0, AT->getSize().getZExtValue()); |
4899 | 0 | if (Result.hasArrayFiller()) |
4900 | 0 | Success &= |
4901 | 0 | handleDefaultInitValue(AT->getElementType(), Result.getArrayFiller()); |
4902 | |
|
4903 | 0 | return Success; |
4904 | 0 | } |
4905 | | |
4906 | 0 | Result = APValue::IndeterminateValue(); |
4907 | 0 | return true; |
4908 | 0 | } |
4909 | | |
4910 | | namespace { |
4911 | | enum EvalStmtResult { |
4912 | | /// Evaluation failed. |
4913 | | ESR_Failed, |
4914 | | /// Hit a 'return' statement. |
4915 | | ESR_Returned, |
4916 | | /// Evaluation succeeded. |
4917 | | ESR_Succeeded, |
4918 | | /// Hit a 'continue' statement. |
4919 | | ESR_Continue, |
4920 | | /// Hit a 'break' statement. |
4921 | | ESR_Break, |
4922 | | /// Still scanning for 'case' or 'default' statement. |
4923 | | ESR_CaseNotFound |
4924 | | }; |
4925 | | } |
4926 | | |
4927 | 0 | static bool EvaluateVarDecl(EvalInfo &Info, const VarDecl *VD) { |
4928 | 0 | if (VD->isInvalidDecl()) |
4929 | 0 | return false; |
4930 | | // We don't need to evaluate the initializer for a static local. |
4931 | 0 | if (!VD->hasLocalStorage()) |
4932 | 0 | return true; |
4933 | | |
4934 | 0 | LValue Result; |
4935 | 0 | APValue &Val = Info.CurrentCall->createTemporary(VD, VD->getType(), |
4936 | 0 | ScopeKind::Block, Result); |
4937 | |
|
4938 | 0 | const Expr *InitE = VD->getInit(); |
4939 | 0 | if (!InitE) { |
4940 | 0 | if (VD->getType()->isDependentType()) |
4941 | 0 | return Info.noteSideEffect(); |
4942 | 0 | return handleDefaultInitValue(VD->getType(), Val); |
4943 | 0 | } |
4944 | 0 | if (InitE->isValueDependent()) |
4945 | 0 | return false; |
4946 | | |
4947 | 0 | if (!EvaluateInPlace(Val, Info, Result, InitE)) { |
4948 | | // Wipe out any partially-computed value, to allow tracking that this |
4949 | | // evaluation failed. |
4950 | 0 | Val = APValue(); |
4951 | 0 | return false; |
4952 | 0 | } |
4953 | | |
4954 | 0 | return true; |
4955 | 0 | } |
4956 | | |
4957 | 0 | static bool EvaluateDecl(EvalInfo &Info, const Decl *D) { |
4958 | 0 | bool OK = true; |
4959 | |
|
4960 | 0 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
4961 | 0 | OK &= EvaluateVarDecl(Info, VD); |
4962 | |
|
4963 | 0 | if (const DecompositionDecl *DD = dyn_cast<DecompositionDecl>(D)) |
4964 | 0 | for (auto *BD : DD->bindings()) |
4965 | 0 | if (auto *VD = BD->getHoldingVar()) |
4966 | 0 | OK &= EvaluateDecl(Info, VD); |
4967 | |
|
4968 | 0 | return OK; |
4969 | 0 | } |
4970 | | |
4971 | 0 | static bool EvaluateDependentExpr(const Expr *E, EvalInfo &Info) { |
4972 | 0 | assert(E->isValueDependent()); |
4973 | 0 | if (Info.noteSideEffect()) |
4974 | 0 | return true; |
4975 | 0 | assert(E->containsErrors() && "valid value-dependent expression should never " |
4976 | 0 | "reach invalid code path."); |
4977 | 0 | return false; |
4978 | 0 | } |
4979 | | |
4980 | | /// Evaluate a condition (either a variable declaration or an expression). |
4981 | | static bool EvaluateCond(EvalInfo &Info, const VarDecl *CondDecl, |
4982 | 0 | const Expr *Cond, bool &Result) { |
4983 | 0 | if (Cond->isValueDependent()) |
4984 | 0 | return false; |
4985 | 0 | FullExpressionRAII Scope(Info); |
4986 | 0 | if (CondDecl && !EvaluateDecl(Info, CondDecl)) |
4987 | 0 | return false; |
4988 | 0 | if (!EvaluateAsBooleanCondition(Cond, Result, Info)) |
4989 | 0 | return false; |
4990 | 0 | return Scope.destroy(); |
4991 | 0 | } |
4992 | | |
4993 | | namespace { |
4994 | | /// A location where the result (returned value) of evaluating a |
4995 | | /// statement should be stored. |
4996 | | struct StmtResult { |
4997 | | /// The APValue that should be filled in with the returned value. |
4998 | | APValue &Value; |
4999 | | /// The location containing the result, if any (used to support RVO). |
5000 | | const LValue *Slot; |
5001 | | }; |
5002 | | |
5003 | | struct TempVersionRAII { |
5004 | | CallStackFrame &Frame; |
5005 | | |
5006 | 0 | TempVersionRAII(CallStackFrame &Frame) : Frame(Frame) { |
5007 | 0 | Frame.pushTempVersion(); |
5008 | 0 | } |
5009 | | |
5010 | 0 | ~TempVersionRAII() { |
5011 | 0 | Frame.popTempVersion(); |
5012 | 0 | } |
5013 | | }; |
5014 | | |
5015 | | } |
5016 | | |
5017 | | static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, |
5018 | | const Stmt *S, |
5019 | | const SwitchCase *SC = nullptr); |
5020 | | |
5021 | | /// Evaluate the body of a loop, and translate the result as appropriate. |
5022 | | static EvalStmtResult EvaluateLoopBody(StmtResult &Result, EvalInfo &Info, |
5023 | | const Stmt *Body, |
5024 | 0 | const SwitchCase *Case = nullptr) { |
5025 | 0 | BlockScopeRAII Scope(Info); |
5026 | |
|
5027 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, Body, Case); |
5028 | 0 | if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) |
5029 | 0 | ESR = ESR_Failed; |
5030 | |
|
5031 | 0 | switch (ESR) { |
5032 | 0 | case ESR_Break: |
5033 | 0 | return ESR_Succeeded; |
5034 | 0 | case ESR_Succeeded: |
5035 | 0 | case ESR_Continue: |
5036 | 0 | return ESR_Continue; |
5037 | 0 | case ESR_Failed: |
5038 | 0 | case ESR_Returned: |
5039 | 0 | case ESR_CaseNotFound: |
5040 | 0 | return ESR; |
5041 | 0 | } |
5042 | 0 | llvm_unreachable("Invalid EvalStmtResult!"); |
5043 | 0 | } |
5044 | | |
5045 | | /// Evaluate a switch statement. |
5046 | | static EvalStmtResult EvaluateSwitch(StmtResult &Result, EvalInfo &Info, |
5047 | 0 | const SwitchStmt *SS) { |
5048 | 0 | BlockScopeRAII Scope(Info); |
5049 | | |
5050 | | // Evaluate the switch condition. |
5051 | 0 | APSInt Value; |
5052 | 0 | { |
5053 | 0 | if (const Stmt *Init = SS->getInit()) { |
5054 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); |
5055 | 0 | if (ESR != ESR_Succeeded) { |
5056 | 0 | if (ESR != ESR_Failed && !Scope.destroy()) |
5057 | 0 | ESR = ESR_Failed; |
5058 | 0 | return ESR; |
5059 | 0 | } |
5060 | 0 | } |
5061 | | |
5062 | 0 | FullExpressionRAII CondScope(Info); |
5063 | 0 | if (SS->getConditionVariable() && |
5064 | 0 | !EvaluateDecl(Info, SS->getConditionVariable())) |
5065 | 0 | return ESR_Failed; |
5066 | 0 | if (SS->getCond()->isValueDependent()) { |
5067 | | // We don't know what the value is, and which branch should jump to. |
5068 | 0 | EvaluateDependentExpr(SS->getCond(), Info); |
5069 | 0 | return ESR_Failed; |
5070 | 0 | } |
5071 | 0 | if (!EvaluateInteger(SS->getCond(), Value, Info)) |
5072 | 0 | return ESR_Failed; |
5073 | | |
5074 | 0 | if (!CondScope.destroy()) |
5075 | 0 | return ESR_Failed; |
5076 | 0 | } |
5077 | | |
5078 | | // Find the switch case corresponding to the value of the condition. |
5079 | | // FIXME: Cache this lookup. |
5080 | 0 | const SwitchCase *Found = nullptr; |
5081 | 0 | for (const SwitchCase *SC = SS->getSwitchCaseList(); SC; |
5082 | 0 | SC = SC->getNextSwitchCase()) { |
5083 | 0 | if (isa<DefaultStmt>(SC)) { |
5084 | 0 | Found = SC; |
5085 | 0 | continue; |
5086 | 0 | } |
5087 | | |
5088 | 0 | const CaseStmt *CS = cast<CaseStmt>(SC); |
5089 | 0 | APSInt LHS = CS->getLHS()->EvaluateKnownConstInt(Info.Ctx); |
5090 | 0 | APSInt RHS = CS->getRHS() ? CS->getRHS()->EvaluateKnownConstInt(Info.Ctx) |
5091 | 0 | : LHS; |
5092 | 0 | if (LHS <= Value && Value <= RHS) { |
5093 | 0 | Found = SC; |
5094 | 0 | break; |
5095 | 0 | } |
5096 | 0 | } |
5097 | |
|
5098 | 0 | if (!Found) |
5099 | 0 | return Scope.destroy() ? ESR_Succeeded : ESR_Failed; |
5100 | | |
5101 | | // Search the switch body for the switch case and evaluate it from there. |
5102 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, SS->getBody(), Found); |
5103 | 0 | if (ESR != ESR_Failed && ESR != ESR_CaseNotFound && !Scope.destroy()) |
5104 | 0 | return ESR_Failed; |
5105 | | |
5106 | 0 | switch (ESR) { |
5107 | 0 | case ESR_Break: |
5108 | 0 | return ESR_Succeeded; |
5109 | 0 | case ESR_Succeeded: |
5110 | 0 | case ESR_Continue: |
5111 | 0 | case ESR_Failed: |
5112 | 0 | case ESR_Returned: |
5113 | 0 | return ESR; |
5114 | 0 | case ESR_CaseNotFound: |
5115 | | // This can only happen if the switch case is nested within a statement |
5116 | | // expression. We have no intention of supporting that. |
5117 | 0 | Info.FFDiag(Found->getBeginLoc(), |
5118 | 0 | diag::note_constexpr_stmt_expr_unsupported); |
5119 | 0 | return ESR_Failed; |
5120 | 0 | } |
5121 | 0 | llvm_unreachable("Invalid EvalStmtResult!"); |
5122 | 0 | } |
5123 | | |
5124 | 0 | static bool CheckLocalVariableDeclaration(EvalInfo &Info, const VarDecl *VD) { |
5125 | | // An expression E is a core constant expression unless the evaluation of E |
5126 | | // would evaluate one of the following: [C++23] - a control flow that passes |
5127 | | // through a declaration of a variable with static or thread storage duration |
5128 | | // unless that variable is usable in constant expressions. |
5129 | 0 | if (VD->isLocalVarDecl() && VD->isStaticLocal() && |
5130 | 0 | !VD->isUsableInConstantExpressions(Info.Ctx)) { |
5131 | 0 | Info.CCEDiag(VD->getLocation(), diag::note_constexpr_static_local) |
5132 | 0 | << (VD->getTSCSpec() == TSCS_unspecified ? 0 : 1) << VD; |
5133 | 0 | return false; |
5134 | 0 | } |
5135 | 0 | return true; |
5136 | 0 | } |
5137 | | |
5138 | | // Evaluate a statement. |
5139 | | static EvalStmtResult EvaluateStmt(StmtResult &Result, EvalInfo &Info, |
5140 | 0 | const Stmt *S, const SwitchCase *Case) { |
5141 | 0 | if (!Info.nextStep(S)) |
5142 | 0 | return ESR_Failed; |
5143 | | |
5144 | | // If we're hunting down a 'case' or 'default' label, recurse through |
5145 | | // substatements until we hit the label. |
5146 | 0 | if (Case) { |
5147 | 0 | switch (S->getStmtClass()) { |
5148 | 0 | case Stmt::CompoundStmtClass: |
5149 | | // FIXME: Precompute which substatement of a compound statement we |
5150 | | // would jump to, and go straight there rather than performing a |
5151 | | // linear scan each time. |
5152 | 0 | case Stmt::LabelStmtClass: |
5153 | 0 | case Stmt::AttributedStmtClass: |
5154 | 0 | case Stmt::DoStmtClass: |
5155 | 0 | break; |
5156 | | |
5157 | 0 | case Stmt::CaseStmtClass: |
5158 | 0 | case Stmt::DefaultStmtClass: |
5159 | 0 | if (Case == S) |
5160 | 0 | Case = nullptr; |
5161 | 0 | break; |
5162 | | |
5163 | 0 | case Stmt::IfStmtClass: { |
5164 | | // FIXME: Precompute which side of an 'if' we would jump to, and go |
5165 | | // straight there rather than scanning both sides. |
5166 | 0 | const IfStmt *IS = cast<IfStmt>(S); |
5167 | | |
5168 | | // Wrap the evaluation in a block scope, in case it's a DeclStmt |
5169 | | // preceded by our switch label. |
5170 | 0 | BlockScopeRAII Scope(Info); |
5171 | | |
5172 | | // Step into the init statement in case it brings an (uninitialized) |
5173 | | // variable into scope. |
5174 | 0 | if (const Stmt *Init = IS->getInit()) { |
5175 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); |
5176 | 0 | if (ESR != ESR_CaseNotFound) { |
5177 | 0 | assert(ESR != ESR_Succeeded); |
5178 | 0 | return ESR; |
5179 | 0 | } |
5180 | 0 | } |
5181 | | |
5182 | | // Condition variable must be initialized if it exists. |
5183 | | // FIXME: We can skip evaluating the body if there's a condition |
5184 | | // variable, as there can't be any case labels within it. |
5185 | | // (The same is true for 'for' statements.) |
5186 | | |
5187 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, IS->getThen(), Case); |
5188 | 0 | if (ESR == ESR_Failed) |
5189 | 0 | return ESR; |
5190 | 0 | if (ESR != ESR_CaseNotFound) |
5191 | 0 | return Scope.destroy() ? ESR : ESR_Failed; |
5192 | 0 | if (!IS->getElse()) |
5193 | 0 | return ESR_CaseNotFound; |
5194 | | |
5195 | 0 | ESR = EvaluateStmt(Result, Info, IS->getElse(), Case); |
5196 | 0 | if (ESR == ESR_Failed) |
5197 | 0 | return ESR; |
5198 | 0 | if (ESR != ESR_CaseNotFound) |
5199 | 0 | return Scope.destroy() ? ESR : ESR_Failed; |
5200 | 0 | return ESR_CaseNotFound; |
5201 | 0 | } |
5202 | | |
5203 | 0 | case Stmt::WhileStmtClass: { |
5204 | 0 | EvalStmtResult ESR = |
5205 | 0 | EvaluateLoopBody(Result, Info, cast<WhileStmt>(S)->getBody(), Case); |
5206 | 0 | if (ESR != ESR_Continue) |
5207 | 0 | return ESR; |
5208 | 0 | break; |
5209 | 0 | } |
5210 | | |
5211 | 0 | case Stmt::ForStmtClass: { |
5212 | 0 | const ForStmt *FS = cast<ForStmt>(S); |
5213 | 0 | BlockScopeRAII Scope(Info); |
5214 | | |
5215 | | // Step into the init statement in case it brings an (uninitialized) |
5216 | | // variable into scope. |
5217 | 0 | if (const Stmt *Init = FS->getInit()) { |
5218 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, Init, Case); |
5219 | 0 | if (ESR != ESR_CaseNotFound) { |
5220 | 0 | assert(ESR != ESR_Succeeded); |
5221 | 0 | return ESR; |
5222 | 0 | } |
5223 | 0 | } |
5224 | | |
5225 | 0 | EvalStmtResult ESR = |
5226 | 0 | EvaluateLoopBody(Result, Info, FS->getBody(), Case); |
5227 | 0 | if (ESR != ESR_Continue) |
5228 | 0 | return ESR; |
5229 | 0 | if (const auto *Inc = FS->getInc()) { |
5230 | 0 | if (Inc->isValueDependent()) { |
5231 | 0 | if (!EvaluateDependentExpr(Inc, Info)) |
5232 | 0 | return ESR_Failed; |
5233 | 0 | } else { |
5234 | 0 | FullExpressionRAII IncScope(Info); |
5235 | 0 | if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) |
5236 | 0 | return ESR_Failed; |
5237 | 0 | } |
5238 | 0 | } |
5239 | 0 | break; |
5240 | 0 | } |
5241 | | |
5242 | 0 | case Stmt::DeclStmtClass: { |
5243 | | // Start the lifetime of any uninitialized variables we encounter. They |
5244 | | // might be used by the selected branch of the switch. |
5245 | 0 | const DeclStmt *DS = cast<DeclStmt>(S); |
5246 | 0 | for (const auto *D : DS->decls()) { |
5247 | 0 | if (const auto *VD = dyn_cast<VarDecl>(D)) { |
5248 | 0 | if (!CheckLocalVariableDeclaration(Info, VD)) |
5249 | 0 | return ESR_Failed; |
5250 | 0 | if (VD->hasLocalStorage() && !VD->getInit()) |
5251 | 0 | if (!EvaluateVarDecl(Info, VD)) |
5252 | 0 | return ESR_Failed; |
5253 | | // FIXME: If the variable has initialization that can't be jumped |
5254 | | // over, bail out of any immediately-surrounding compound-statement |
5255 | | // too. There can't be any case labels here. |
5256 | 0 | } |
5257 | 0 | } |
5258 | 0 | return ESR_CaseNotFound; |
5259 | 0 | } |
5260 | | |
5261 | 0 | default: |
5262 | 0 | return ESR_CaseNotFound; |
5263 | 0 | } |
5264 | 0 | } |
5265 | | |
5266 | 0 | switch (S->getStmtClass()) { |
5267 | 0 | default: |
5268 | 0 | if (const Expr *E = dyn_cast<Expr>(S)) { |
5269 | 0 | if (E->isValueDependent()) { |
5270 | 0 | if (!EvaluateDependentExpr(E, Info)) |
5271 | 0 | return ESR_Failed; |
5272 | 0 | } else { |
5273 | | // Don't bother evaluating beyond an expression-statement which couldn't |
5274 | | // be evaluated. |
5275 | | // FIXME: Do we need the FullExpressionRAII object here? |
5276 | | // VisitExprWithCleanups should create one when necessary. |
5277 | 0 | FullExpressionRAII Scope(Info); |
5278 | 0 | if (!EvaluateIgnoredValue(Info, E) || !Scope.destroy()) |
5279 | 0 | return ESR_Failed; |
5280 | 0 | } |
5281 | 0 | return ESR_Succeeded; |
5282 | 0 | } |
5283 | | |
5284 | 0 | Info.FFDiag(S->getBeginLoc()) << S->getSourceRange(); |
5285 | 0 | return ESR_Failed; |
5286 | | |
5287 | 0 | case Stmt::NullStmtClass: |
5288 | 0 | return ESR_Succeeded; |
5289 | | |
5290 | 0 | case Stmt::DeclStmtClass: { |
5291 | 0 | const DeclStmt *DS = cast<DeclStmt>(S); |
5292 | 0 | for (const auto *D : DS->decls()) { |
5293 | 0 | const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); |
5294 | 0 | if (VD && !CheckLocalVariableDeclaration(Info, VD)) |
5295 | 0 | return ESR_Failed; |
5296 | | // Each declaration initialization is its own full-expression. |
5297 | 0 | FullExpressionRAII Scope(Info); |
5298 | 0 | if (!EvaluateDecl(Info, D) && !Info.noteFailure()) |
5299 | 0 | return ESR_Failed; |
5300 | 0 | if (!Scope.destroy()) |
5301 | 0 | return ESR_Failed; |
5302 | 0 | } |
5303 | 0 | return ESR_Succeeded; |
5304 | 0 | } |
5305 | | |
5306 | 0 | case Stmt::ReturnStmtClass: { |
5307 | 0 | const Expr *RetExpr = cast<ReturnStmt>(S)->getRetValue(); |
5308 | 0 | FullExpressionRAII Scope(Info); |
5309 | 0 | if (RetExpr && RetExpr->isValueDependent()) { |
5310 | 0 | EvaluateDependentExpr(RetExpr, Info); |
5311 | | // We know we returned, but we don't know what the value is. |
5312 | 0 | return ESR_Failed; |
5313 | 0 | } |
5314 | 0 | if (RetExpr && |
5315 | 0 | !(Result.Slot |
5316 | 0 | ? EvaluateInPlace(Result.Value, Info, *Result.Slot, RetExpr) |
5317 | 0 | : Evaluate(Result.Value, Info, RetExpr))) |
5318 | 0 | return ESR_Failed; |
5319 | 0 | return Scope.destroy() ? ESR_Returned : ESR_Failed; |
5320 | 0 | } |
5321 | | |
5322 | 0 | case Stmt::CompoundStmtClass: { |
5323 | 0 | BlockScopeRAII Scope(Info); |
5324 | |
|
5325 | 0 | const CompoundStmt *CS = cast<CompoundStmt>(S); |
5326 | 0 | for (const auto *BI : CS->body()) { |
5327 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, BI, Case); |
5328 | 0 | if (ESR == ESR_Succeeded) |
5329 | 0 | Case = nullptr; |
5330 | 0 | else if (ESR != ESR_CaseNotFound) { |
5331 | 0 | if (ESR != ESR_Failed && !Scope.destroy()) |
5332 | 0 | return ESR_Failed; |
5333 | 0 | return ESR; |
5334 | 0 | } |
5335 | 0 | } |
5336 | 0 | if (Case) |
5337 | 0 | return ESR_CaseNotFound; |
5338 | 0 | return Scope.destroy() ? ESR_Succeeded : ESR_Failed; |
5339 | 0 | } |
5340 | | |
5341 | 0 | case Stmt::IfStmtClass: { |
5342 | 0 | const IfStmt *IS = cast<IfStmt>(S); |
5343 | | |
5344 | | // Evaluate the condition, as either a var decl or as an expression. |
5345 | 0 | BlockScopeRAII Scope(Info); |
5346 | 0 | if (const Stmt *Init = IS->getInit()) { |
5347 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, Init); |
5348 | 0 | if (ESR != ESR_Succeeded) { |
5349 | 0 | if (ESR != ESR_Failed && !Scope.destroy()) |
5350 | 0 | return ESR_Failed; |
5351 | 0 | return ESR; |
5352 | 0 | } |
5353 | 0 | } |
5354 | 0 | bool Cond; |
5355 | 0 | if (IS->isConsteval()) { |
5356 | 0 | Cond = IS->isNonNegatedConsteval(); |
5357 | | // If we are not in a constant context, if consteval should not evaluate |
5358 | | // to true. |
5359 | 0 | if (!Info.InConstantContext) |
5360 | 0 | Cond = !Cond; |
5361 | 0 | } else if (!EvaluateCond(Info, IS->getConditionVariable(), IS->getCond(), |
5362 | 0 | Cond)) |
5363 | 0 | return ESR_Failed; |
5364 | | |
5365 | 0 | if (const Stmt *SubStmt = Cond ? IS->getThen() : IS->getElse()) { |
5366 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, SubStmt); |
5367 | 0 | if (ESR != ESR_Succeeded) { |
5368 | 0 | if (ESR != ESR_Failed && !Scope.destroy()) |
5369 | 0 | return ESR_Failed; |
5370 | 0 | return ESR; |
5371 | 0 | } |
5372 | 0 | } |
5373 | 0 | return Scope.destroy() ? ESR_Succeeded : ESR_Failed; |
5374 | 0 | } |
5375 | | |
5376 | 0 | case Stmt::WhileStmtClass: { |
5377 | 0 | const WhileStmt *WS = cast<WhileStmt>(S); |
5378 | 0 | while (true) { |
5379 | 0 | BlockScopeRAII Scope(Info); |
5380 | 0 | bool Continue; |
5381 | 0 | if (!EvaluateCond(Info, WS->getConditionVariable(), WS->getCond(), |
5382 | 0 | Continue)) |
5383 | 0 | return ESR_Failed; |
5384 | 0 | if (!Continue) |
5385 | 0 | break; |
5386 | | |
5387 | 0 | EvalStmtResult ESR = EvaluateLoopBody(Result, Info, WS->getBody()); |
5388 | 0 | if (ESR != ESR_Continue) { |
5389 | 0 | if (ESR != ESR_Failed && !Scope.destroy()) |
5390 | 0 | return ESR_Failed; |
5391 | 0 | return ESR; |
5392 | 0 | } |
5393 | 0 | if (!Scope.destroy()) |
5394 | 0 | return ESR_Failed; |
5395 | 0 | } |
5396 | 0 | return ESR_Succeeded; |
5397 | 0 | } |
5398 | | |
5399 | 0 | case Stmt::DoStmtClass: { |
5400 | 0 | const DoStmt *DS = cast<DoStmt>(S); |
5401 | 0 | bool Continue; |
5402 | 0 | do { |
5403 | 0 | EvalStmtResult ESR = EvaluateLoopBody(Result, Info, DS->getBody(), Case); |
5404 | 0 | if (ESR != ESR_Continue) |
5405 | 0 | return ESR; |
5406 | 0 | Case = nullptr; |
5407 | |
|
5408 | 0 | if (DS->getCond()->isValueDependent()) { |
5409 | 0 | EvaluateDependentExpr(DS->getCond(), Info); |
5410 | | // Bailout as we don't know whether to keep going or terminate the loop. |
5411 | 0 | return ESR_Failed; |
5412 | 0 | } |
5413 | 0 | FullExpressionRAII CondScope(Info); |
5414 | 0 | if (!EvaluateAsBooleanCondition(DS->getCond(), Continue, Info) || |
5415 | 0 | !CondScope.destroy()) |
5416 | 0 | return ESR_Failed; |
5417 | 0 | } while (Continue); |
5418 | 0 | return ESR_Succeeded; |
5419 | 0 | } |
5420 | | |
5421 | 0 | case Stmt::ForStmtClass: { |
5422 | 0 | const ForStmt *FS = cast<ForStmt>(S); |
5423 | 0 | BlockScopeRAII ForScope(Info); |
5424 | 0 | if (FS->getInit()) { |
5425 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); |
5426 | 0 | if (ESR != ESR_Succeeded) { |
5427 | 0 | if (ESR != ESR_Failed && !ForScope.destroy()) |
5428 | 0 | return ESR_Failed; |
5429 | 0 | return ESR; |
5430 | 0 | } |
5431 | 0 | } |
5432 | 0 | while (true) { |
5433 | 0 | BlockScopeRAII IterScope(Info); |
5434 | 0 | bool Continue = true; |
5435 | 0 | if (FS->getCond() && !EvaluateCond(Info, FS->getConditionVariable(), |
5436 | 0 | FS->getCond(), Continue)) |
5437 | 0 | return ESR_Failed; |
5438 | 0 | if (!Continue) |
5439 | 0 | break; |
5440 | | |
5441 | 0 | EvalStmtResult ESR = EvaluateLoopBody(Result, Info, FS->getBody()); |
5442 | 0 | if (ESR != ESR_Continue) { |
5443 | 0 | if (ESR != ESR_Failed && (!IterScope.destroy() || !ForScope.destroy())) |
5444 | 0 | return ESR_Failed; |
5445 | 0 | return ESR; |
5446 | 0 | } |
5447 | | |
5448 | 0 | if (const auto *Inc = FS->getInc()) { |
5449 | 0 | if (Inc->isValueDependent()) { |
5450 | 0 | if (!EvaluateDependentExpr(Inc, Info)) |
5451 | 0 | return ESR_Failed; |
5452 | 0 | } else { |
5453 | 0 | FullExpressionRAII IncScope(Info); |
5454 | 0 | if (!EvaluateIgnoredValue(Info, Inc) || !IncScope.destroy()) |
5455 | 0 | return ESR_Failed; |
5456 | 0 | } |
5457 | 0 | } |
5458 | | |
5459 | 0 | if (!IterScope.destroy()) |
5460 | 0 | return ESR_Failed; |
5461 | 0 | } |
5462 | 0 | return ForScope.destroy() ? ESR_Succeeded : ESR_Failed; |
5463 | 0 | } |
5464 | | |
5465 | 0 | case Stmt::CXXForRangeStmtClass: { |
5466 | 0 | const CXXForRangeStmt *FS = cast<CXXForRangeStmt>(S); |
5467 | 0 | BlockScopeRAII Scope(Info); |
5468 | | |
5469 | | // Evaluate the init-statement if present. |
5470 | 0 | if (FS->getInit()) { |
5471 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getInit()); |
5472 | 0 | if (ESR != ESR_Succeeded) { |
5473 | 0 | if (ESR != ESR_Failed && !Scope.destroy()) |
5474 | 0 | return ESR_Failed; |
5475 | 0 | return ESR; |
5476 | 0 | } |
5477 | 0 | } |
5478 | | |
5479 | | // Initialize the __range variable. |
5480 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, FS->getRangeStmt()); |
5481 | 0 | if (ESR != ESR_Succeeded) { |
5482 | 0 | if (ESR != ESR_Failed && !Scope.destroy()) |
5483 | 0 | return ESR_Failed; |
5484 | 0 | return ESR; |
5485 | 0 | } |
5486 | | |
5487 | | // In error-recovery cases it's possible to get here even if we failed to |
5488 | | // synthesize the __begin and __end variables. |
5489 | 0 | if (!FS->getBeginStmt() || !FS->getEndStmt() || !FS->getCond()) |
5490 | 0 | return ESR_Failed; |
5491 | | |
5492 | | // Create the __begin and __end iterators. |
5493 | 0 | ESR = EvaluateStmt(Result, Info, FS->getBeginStmt()); |
5494 | 0 | if (ESR != ESR_Succeeded) { |
5495 | 0 | if (ESR != ESR_Failed && !Scope.destroy()) |
5496 | 0 | return ESR_Failed; |
5497 | 0 | return ESR; |
5498 | 0 | } |
5499 | 0 | ESR = EvaluateStmt(Result, Info, FS->getEndStmt()); |
5500 | 0 | if (ESR != ESR_Succeeded) { |
5501 | 0 | if (ESR != ESR_Failed && !Scope.destroy()) |
5502 | 0 | return ESR_Failed; |
5503 | 0 | return ESR; |
5504 | 0 | } |
5505 | | |
5506 | 0 | while (true) { |
5507 | | // Condition: __begin != __end. |
5508 | 0 | { |
5509 | 0 | if (FS->getCond()->isValueDependent()) { |
5510 | 0 | EvaluateDependentExpr(FS->getCond(), Info); |
5511 | | // We don't know whether to keep going or terminate the loop. |
5512 | 0 | return ESR_Failed; |
5513 | 0 | } |
5514 | 0 | bool Continue = true; |
5515 | 0 | FullExpressionRAII CondExpr(Info); |
5516 | 0 | if (!EvaluateAsBooleanCondition(FS->getCond(), Continue, Info)) |
5517 | 0 | return ESR_Failed; |
5518 | 0 | if (!Continue) |
5519 | 0 | break; |
5520 | 0 | } |
5521 | | |
5522 | | // User's variable declaration, initialized by *__begin. |
5523 | 0 | BlockScopeRAII InnerScope(Info); |
5524 | 0 | ESR = EvaluateStmt(Result, Info, FS->getLoopVarStmt()); |
5525 | 0 | if (ESR != ESR_Succeeded) { |
5526 | 0 | if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) |
5527 | 0 | return ESR_Failed; |
5528 | 0 | return ESR; |
5529 | 0 | } |
5530 | | |
5531 | | // Loop body. |
5532 | 0 | ESR = EvaluateLoopBody(Result, Info, FS->getBody()); |
5533 | 0 | if (ESR != ESR_Continue) { |
5534 | 0 | if (ESR != ESR_Failed && (!InnerScope.destroy() || !Scope.destroy())) |
5535 | 0 | return ESR_Failed; |
5536 | 0 | return ESR; |
5537 | 0 | } |
5538 | 0 | if (FS->getInc()->isValueDependent()) { |
5539 | 0 | if (!EvaluateDependentExpr(FS->getInc(), Info)) |
5540 | 0 | return ESR_Failed; |
5541 | 0 | } else { |
5542 | | // Increment: ++__begin |
5543 | 0 | if (!EvaluateIgnoredValue(Info, FS->getInc())) |
5544 | 0 | return ESR_Failed; |
5545 | 0 | } |
5546 | | |
5547 | 0 | if (!InnerScope.destroy()) |
5548 | 0 | return ESR_Failed; |
5549 | 0 | } |
5550 | | |
5551 | 0 | return Scope.destroy() ? ESR_Succeeded : ESR_Failed; |
5552 | 0 | } |
5553 | | |
5554 | 0 | case Stmt::SwitchStmtClass: |
5555 | 0 | return EvaluateSwitch(Result, Info, cast<SwitchStmt>(S)); |
5556 | | |
5557 | 0 | case Stmt::ContinueStmtClass: |
5558 | 0 | return ESR_Continue; |
5559 | | |
5560 | 0 | case Stmt::BreakStmtClass: |
5561 | 0 | return ESR_Break; |
5562 | | |
5563 | 0 | case Stmt::LabelStmtClass: |
5564 | 0 | return EvaluateStmt(Result, Info, cast<LabelStmt>(S)->getSubStmt(), Case); |
5565 | | |
5566 | 0 | case Stmt::AttributedStmtClass: { |
5567 | 0 | const auto *AS = cast<AttributedStmt>(S); |
5568 | 0 | const auto *SS = AS->getSubStmt(); |
5569 | 0 | MSConstexprContextRAII ConstexprContext( |
5570 | 0 | *Info.CurrentCall, hasSpecificAttr<MSConstexprAttr>(AS->getAttrs()) && |
5571 | 0 | isa<ReturnStmt>(SS)); |
5572 | 0 | return EvaluateStmt(Result, Info, SS, Case); |
5573 | 0 | } |
5574 | | |
5575 | 0 | case Stmt::CaseStmtClass: |
5576 | 0 | case Stmt::DefaultStmtClass: |
5577 | 0 | return EvaluateStmt(Result, Info, cast<SwitchCase>(S)->getSubStmt(), Case); |
5578 | 0 | case Stmt::CXXTryStmtClass: |
5579 | | // Evaluate try blocks by evaluating all sub statements. |
5580 | 0 | return EvaluateStmt(Result, Info, cast<CXXTryStmt>(S)->getTryBlock(), Case); |
5581 | 0 | } |
5582 | 0 | } |
5583 | | |
5584 | | /// CheckTrivialDefaultConstructor - Check whether a constructor is a trivial |
5585 | | /// default constructor. If so, we'll fold it whether or not it's marked as |
5586 | | /// constexpr. If it is marked as constexpr, we will never implicitly define it, |
5587 | | /// so we need special handling. |
5588 | | static bool CheckTrivialDefaultConstructor(EvalInfo &Info, SourceLocation Loc, |
5589 | | const CXXConstructorDecl *CD, |
5590 | 0 | bool IsValueInitialization) { |
5591 | 0 | if (!CD->isTrivial() || !CD->isDefaultConstructor()) |
5592 | 0 | return false; |
5593 | | |
5594 | | // Value-initialization does not call a trivial default constructor, so such a |
5595 | | // call is a core constant expression whether or not the constructor is |
5596 | | // constexpr. |
5597 | 0 | if (!CD->isConstexpr() && !IsValueInitialization) { |
5598 | 0 | if (Info.getLangOpts().CPlusPlus11) { |
5599 | | // FIXME: If DiagDecl is an implicitly-declared special member function, |
5600 | | // we should be much more explicit about why it's not constexpr. |
5601 | 0 | Info.CCEDiag(Loc, diag::note_constexpr_invalid_function, 1) |
5602 | 0 | << /*IsConstexpr*/0 << /*IsConstructor*/1 << CD; |
5603 | 0 | Info.Note(CD->getLocation(), diag::note_declared_at); |
5604 | 0 | } else { |
5605 | 0 | Info.CCEDiag(Loc, diag::note_invalid_subexpr_in_const_expr); |
5606 | 0 | } |
5607 | 0 | } |
5608 | 0 | return true; |
5609 | 0 | } |
5610 | | |
5611 | | /// CheckConstexprFunction - Check that a function can be called in a constant |
5612 | | /// expression. |
5613 | | static bool CheckConstexprFunction(EvalInfo &Info, SourceLocation CallLoc, |
5614 | | const FunctionDecl *Declaration, |
5615 | | const FunctionDecl *Definition, |
5616 | 0 | const Stmt *Body) { |
5617 | | // Potential constant expressions can contain calls to declared, but not yet |
5618 | | // defined, constexpr functions. |
5619 | 0 | if (Info.checkingPotentialConstantExpression() && !Definition && |
5620 | 0 | Declaration->isConstexpr()) |
5621 | 0 | return false; |
5622 | | |
5623 | | // Bail out if the function declaration itself is invalid. We will |
5624 | | // have produced a relevant diagnostic while parsing it, so just |
5625 | | // note the problematic sub-expression. |
5626 | 0 | if (Declaration->isInvalidDecl()) { |
5627 | 0 | Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); |
5628 | 0 | return false; |
5629 | 0 | } |
5630 | | |
5631 | | // DR1872: An instantiated virtual constexpr function can't be called in a |
5632 | | // constant expression (prior to C++20). We can still constant-fold such a |
5633 | | // call. |
5634 | 0 | if (!Info.Ctx.getLangOpts().CPlusPlus20 && isa<CXXMethodDecl>(Declaration) && |
5635 | 0 | cast<CXXMethodDecl>(Declaration)->isVirtual()) |
5636 | 0 | Info.CCEDiag(CallLoc, diag::note_constexpr_virtual_call); |
5637 | |
|
5638 | 0 | if (Definition && Definition->isInvalidDecl()) { |
5639 | 0 | Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); |
5640 | 0 | return false; |
5641 | 0 | } |
5642 | | |
5643 | | // Can we evaluate this function call? |
5644 | 0 | if (Definition && Body && |
5645 | 0 | (Definition->isConstexpr() || (Info.CurrentCall->CanEvalMSConstexpr && |
5646 | 0 | Definition->hasAttr<MSConstexprAttr>()))) |
5647 | 0 | return true; |
5648 | | |
5649 | 0 | if (Info.getLangOpts().CPlusPlus11) { |
5650 | 0 | const FunctionDecl *DiagDecl = Definition ? Definition : Declaration; |
5651 | | |
5652 | | // If this function is not constexpr because it is an inherited |
5653 | | // non-constexpr constructor, diagnose that directly. |
5654 | 0 | auto *CD = dyn_cast<CXXConstructorDecl>(DiagDecl); |
5655 | 0 | if (CD && CD->isInheritingConstructor()) { |
5656 | 0 | auto *Inherited = CD->getInheritedConstructor().getConstructor(); |
5657 | 0 | if (!Inherited->isConstexpr()) |
5658 | 0 | DiagDecl = CD = Inherited; |
5659 | 0 | } |
5660 | | |
5661 | | // FIXME: If DiagDecl is an implicitly-declared special member function |
5662 | | // or an inheriting constructor, we should be much more explicit about why |
5663 | | // it's not constexpr. |
5664 | 0 | if (CD && CD->isInheritingConstructor()) |
5665 | 0 | Info.FFDiag(CallLoc, diag::note_constexpr_invalid_inhctor, 1) |
5666 | 0 | << CD->getInheritedConstructor().getConstructor()->getParent(); |
5667 | 0 | else |
5668 | 0 | Info.FFDiag(CallLoc, diag::note_constexpr_invalid_function, 1) |
5669 | 0 | << DiagDecl->isConstexpr() << (bool)CD << DiagDecl; |
5670 | 0 | Info.Note(DiagDecl->getLocation(), diag::note_declared_at); |
5671 | 0 | } else { |
5672 | 0 | Info.FFDiag(CallLoc, diag::note_invalid_subexpr_in_const_expr); |
5673 | 0 | } |
5674 | 0 | return false; |
5675 | 0 | } |
5676 | | |
5677 | | namespace { |
5678 | | struct CheckDynamicTypeHandler { |
5679 | | AccessKinds AccessKind; |
5680 | | typedef bool result_type; |
5681 | 0 | bool failed() { return false; } |
5682 | 0 | bool found(APValue &Subobj, QualType SubobjType) { return true; } |
5683 | 0 | bool found(APSInt &Value, QualType SubobjType) { return true; } |
5684 | 0 | bool found(APFloat &Value, QualType SubobjType) { return true; } |
5685 | | }; |
5686 | | } // end anonymous namespace |
5687 | | |
5688 | | /// Check that we can access the notional vptr of an object / determine its |
5689 | | /// dynamic type. |
5690 | | static bool checkDynamicType(EvalInfo &Info, const Expr *E, const LValue &This, |
5691 | 0 | AccessKinds AK, bool Polymorphic) { |
5692 | 0 | if (This.Designator.Invalid) |
5693 | 0 | return false; |
5694 | | |
5695 | 0 | CompleteObject Obj = findCompleteObject(Info, E, AK, This, QualType()); |
5696 | |
|
5697 | 0 | if (!Obj) |
5698 | 0 | return false; |
5699 | | |
5700 | 0 | if (!Obj.Value) { |
5701 | | // The object is not usable in constant expressions, so we can't inspect |
5702 | | // its value to see if it's in-lifetime or what the active union members |
5703 | | // are. We can still check for a one-past-the-end lvalue. |
5704 | 0 | if (This.Designator.isOnePastTheEnd() || |
5705 | 0 | This.Designator.isMostDerivedAnUnsizedArray()) { |
5706 | 0 | Info.FFDiag(E, This.Designator.isOnePastTheEnd() |
5707 | 0 | ? diag::note_constexpr_access_past_end |
5708 | 0 | : diag::note_constexpr_access_unsized_array) |
5709 | 0 | << AK; |
5710 | 0 | return false; |
5711 | 0 | } else if (Polymorphic) { |
5712 | | // Conservatively refuse to perform a polymorphic operation if we would |
5713 | | // not be able to read a notional 'vptr' value. |
5714 | 0 | APValue Val; |
5715 | 0 | This.moveInto(Val); |
5716 | 0 | QualType StarThisType = |
5717 | 0 | Info.Ctx.getLValueReferenceType(This.Designator.getType(Info.Ctx)); |
5718 | 0 | Info.FFDiag(E, diag::note_constexpr_polymorphic_unknown_dynamic_type) |
5719 | 0 | << AK << Val.getAsString(Info.Ctx, StarThisType); |
5720 | 0 | return false; |
5721 | 0 | } |
5722 | 0 | return true; |
5723 | 0 | } |
5724 | | |
5725 | 0 | CheckDynamicTypeHandler Handler{AK}; |
5726 | 0 | return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); |
5727 | 0 | } |
5728 | | |
5729 | | /// Check that the pointee of the 'this' pointer in a member function call is |
5730 | | /// either within its lifetime or in its period of construction or destruction. |
5731 | | static bool |
5732 | | checkNonVirtualMemberCallThisPointer(EvalInfo &Info, const Expr *E, |
5733 | | const LValue &This, |
5734 | 0 | const CXXMethodDecl *NamedMember) { |
5735 | 0 | return checkDynamicType( |
5736 | 0 | Info, E, This, |
5737 | 0 | isa<CXXDestructorDecl>(NamedMember) ? AK_Destroy : AK_MemberCall, false); |
5738 | 0 | } |
5739 | | |
5740 | | struct DynamicType { |
5741 | | /// The dynamic class type of the object. |
5742 | | const CXXRecordDecl *Type; |
5743 | | /// The corresponding path length in the lvalue. |
5744 | | unsigned PathLength; |
5745 | | }; |
5746 | | |
5747 | | static const CXXRecordDecl *getBaseClassType(SubobjectDesignator &Designator, |
5748 | 0 | unsigned PathLength) { |
5749 | 0 | assert(PathLength >= Designator.MostDerivedPathLength && PathLength <= |
5750 | 0 | Designator.Entries.size() && "invalid path length"); |
5751 | 0 | return (PathLength == Designator.MostDerivedPathLength) |
5752 | 0 | ? Designator.MostDerivedType->getAsCXXRecordDecl() |
5753 | 0 | : getAsBaseClass(Designator.Entries[PathLength - 1]); |
5754 | 0 | } |
5755 | | |
5756 | | /// Determine the dynamic type of an object. |
5757 | | static std::optional<DynamicType> ComputeDynamicType(EvalInfo &Info, |
5758 | | const Expr *E, |
5759 | | LValue &This, |
5760 | 0 | AccessKinds AK) { |
5761 | | // If we don't have an lvalue denoting an object of class type, there is no |
5762 | | // meaningful dynamic type. (We consider objects of non-class type to have no |
5763 | | // dynamic type.) |
5764 | 0 | if (!checkDynamicType(Info, E, This, AK, true)) |
5765 | 0 | return std::nullopt; |
5766 | | |
5767 | | // Refuse to compute a dynamic type in the presence of virtual bases. This |
5768 | | // shouldn't happen other than in constant-folding situations, since literal |
5769 | | // types can't have virtual bases. |
5770 | | // |
5771 | | // Note that consumers of DynamicType assume that the type has no virtual |
5772 | | // bases, and will need modifications if this restriction is relaxed. |
5773 | 0 | const CXXRecordDecl *Class = |
5774 | 0 | This.Designator.MostDerivedType->getAsCXXRecordDecl(); |
5775 | 0 | if (!Class || Class->getNumVBases()) { |
5776 | 0 | Info.FFDiag(E); |
5777 | 0 | return std::nullopt; |
5778 | 0 | } |
5779 | | |
5780 | | // FIXME: For very deep class hierarchies, it might be beneficial to use a |
5781 | | // binary search here instead. But the overwhelmingly common case is that |
5782 | | // we're not in the middle of a constructor, so it probably doesn't matter |
5783 | | // in practice. |
5784 | 0 | ArrayRef<APValue::LValuePathEntry> Path = This.Designator.Entries; |
5785 | 0 | for (unsigned PathLength = This.Designator.MostDerivedPathLength; |
5786 | 0 | PathLength <= Path.size(); ++PathLength) { |
5787 | 0 | switch (Info.isEvaluatingCtorDtor(This.getLValueBase(), |
5788 | 0 | Path.slice(0, PathLength))) { |
5789 | 0 | case ConstructionPhase::Bases: |
5790 | 0 | case ConstructionPhase::DestroyingBases: |
5791 | | // We're constructing or destroying a base class. This is not the dynamic |
5792 | | // type. |
5793 | 0 | break; |
5794 | | |
5795 | 0 | case ConstructionPhase::None: |
5796 | 0 | case ConstructionPhase::AfterBases: |
5797 | 0 | case ConstructionPhase::AfterFields: |
5798 | 0 | case ConstructionPhase::Destroying: |
5799 | | // We've finished constructing the base classes and not yet started |
5800 | | // destroying them again, so this is the dynamic type. |
5801 | 0 | return DynamicType{getBaseClassType(This.Designator, PathLength), |
5802 | 0 | PathLength}; |
5803 | 0 | } |
5804 | 0 | } |
5805 | | |
5806 | | // CWG issue 1517: we're constructing a base class of the object described by |
5807 | | // 'This', so that object has not yet begun its period of construction and |
5808 | | // any polymorphic operation on it results in undefined behavior. |
5809 | 0 | Info.FFDiag(E); |
5810 | 0 | return std::nullopt; |
5811 | 0 | } |
5812 | | |
5813 | | /// Perform virtual dispatch. |
5814 | | static const CXXMethodDecl *HandleVirtualDispatch( |
5815 | | EvalInfo &Info, const Expr *E, LValue &This, const CXXMethodDecl *Found, |
5816 | 0 | llvm::SmallVectorImpl<QualType> &CovariantAdjustmentPath) { |
5817 | 0 | std::optional<DynamicType> DynType = ComputeDynamicType( |
5818 | 0 | Info, E, This, |
5819 | 0 | isa<CXXDestructorDecl>(Found) ? AK_Destroy : AK_MemberCall); |
5820 | 0 | if (!DynType) |
5821 | 0 | return nullptr; |
5822 | | |
5823 | | // Find the final overrider. It must be declared in one of the classes on the |
5824 | | // path from the dynamic type to the static type. |
5825 | | // FIXME: If we ever allow literal types to have virtual base classes, that |
5826 | | // won't be true. |
5827 | 0 | const CXXMethodDecl *Callee = Found; |
5828 | 0 | unsigned PathLength = DynType->PathLength; |
5829 | 0 | for (/**/; PathLength <= This.Designator.Entries.size(); ++PathLength) { |
5830 | 0 | const CXXRecordDecl *Class = getBaseClassType(This.Designator, PathLength); |
5831 | 0 | const CXXMethodDecl *Overrider = |
5832 | 0 | Found->getCorrespondingMethodDeclaredInClass(Class, false); |
5833 | 0 | if (Overrider) { |
5834 | 0 | Callee = Overrider; |
5835 | 0 | break; |
5836 | 0 | } |
5837 | 0 | } |
5838 | | |
5839 | | // C++2a [class.abstract]p6: |
5840 | | // the effect of making a virtual call to a pure virtual function [...] is |
5841 | | // undefined |
5842 | 0 | if (Callee->isPure()) { |
5843 | 0 | Info.FFDiag(E, diag::note_constexpr_pure_virtual_call, 1) << Callee; |
5844 | 0 | Info.Note(Callee->getLocation(), diag::note_declared_at); |
5845 | 0 | return nullptr; |
5846 | 0 | } |
5847 | | |
5848 | | // If necessary, walk the rest of the path to determine the sequence of |
5849 | | // covariant adjustment steps to apply. |
5850 | 0 | if (!Info.Ctx.hasSameUnqualifiedType(Callee->getReturnType(), |
5851 | 0 | Found->getReturnType())) { |
5852 | 0 | CovariantAdjustmentPath.push_back(Callee->getReturnType()); |
5853 | 0 | for (unsigned CovariantPathLength = PathLength + 1; |
5854 | 0 | CovariantPathLength != This.Designator.Entries.size(); |
5855 | 0 | ++CovariantPathLength) { |
5856 | 0 | const CXXRecordDecl *NextClass = |
5857 | 0 | getBaseClassType(This.Designator, CovariantPathLength); |
5858 | 0 | const CXXMethodDecl *Next = |
5859 | 0 | Found->getCorrespondingMethodDeclaredInClass(NextClass, false); |
5860 | 0 | if (Next && !Info.Ctx.hasSameUnqualifiedType( |
5861 | 0 | Next->getReturnType(), CovariantAdjustmentPath.back())) |
5862 | 0 | CovariantAdjustmentPath.push_back(Next->getReturnType()); |
5863 | 0 | } |
5864 | 0 | if (!Info.Ctx.hasSameUnqualifiedType(Found->getReturnType(), |
5865 | 0 | CovariantAdjustmentPath.back())) |
5866 | 0 | CovariantAdjustmentPath.push_back(Found->getReturnType()); |
5867 | 0 | } |
5868 | | |
5869 | | // Perform 'this' adjustment. |
5870 | 0 | if (!CastToDerivedClass(Info, E, This, Callee->getParent(), PathLength)) |
5871 | 0 | return nullptr; |
5872 | | |
5873 | 0 | return Callee; |
5874 | 0 | } |
5875 | | |
5876 | | /// Perform the adjustment from a value returned by a virtual function to |
5877 | | /// a value of the statically expected type, which may be a pointer or |
5878 | | /// reference to a base class of the returned type. |
5879 | | static bool HandleCovariantReturnAdjustment(EvalInfo &Info, const Expr *E, |
5880 | | APValue &Result, |
5881 | 0 | ArrayRef<QualType> Path) { |
5882 | 0 | assert(Result.isLValue() && |
5883 | 0 | "unexpected kind of APValue for covariant return"); |
5884 | 0 | if (Result.isNullPointer()) |
5885 | 0 | return true; |
5886 | | |
5887 | 0 | LValue LVal; |
5888 | 0 | LVal.setFrom(Info.Ctx, Result); |
5889 | |
|
5890 | 0 | const CXXRecordDecl *OldClass = Path[0]->getPointeeCXXRecordDecl(); |
5891 | 0 | for (unsigned I = 1; I != Path.size(); ++I) { |
5892 | 0 | const CXXRecordDecl *NewClass = Path[I]->getPointeeCXXRecordDecl(); |
5893 | 0 | assert(OldClass && NewClass && "unexpected kind of covariant return"); |
5894 | 0 | if (OldClass != NewClass && |
5895 | 0 | !CastToBaseClass(Info, E, LVal, OldClass, NewClass)) |
5896 | 0 | return false; |
5897 | 0 | OldClass = NewClass; |
5898 | 0 | } |
5899 | | |
5900 | 0 | LVal.moveInto(Result); |
5901 | 0 | return true; |
5902 | 0 | } |
5903 | | |
5904 | | /// Determine whether \p Base, which is known to be a direct base class of |
5905 | | /// \p Derived, is a public base class. |
5906 | | static bool isBaseClassPublic(const CXXRecordDecl *Derived, |
5907 | 0 | const CXXRecordDecl *Base) { |
5908 | 0 | for (const CXXBaseSpecifier &BaseSpec : Derived->bases()) { |
5909 | 0 | auto *BaseClass = BaseSpec.getType()->getAsCXXRecordDecl(); |
5910 | 0 | if (BaseClass && declaresSameEntity(BaseClass, Base)) |
5911 | 0 | return BaseSpec.getAccessSpecifier() == AS_public; |
5912 | 0 | } |
5913 | 0 | llvm_unreachable("Base is not a direct base of Derived"); |
5914 | 0 | } |
5915 | | |
5916 | | /// Apply the given dynamic cast operation on the provided lvalue. |
5917 | | /// |
5918 | | /// This implements the hard case of dynamic_cast, requiring a "runtime check" |
5919 | | /// to find a suitable target subobject. |
5920 | | static bool HandleDynamicCast(EvalInfo &Info, const ExplicitCastExpr *E, |
5921 | 0 | LValue &Ptr) { |
5922 | | // We can't do anything with a non-symbolic pointer value. |
5923 | 0 | SubobjectDesignator &D = Ptr.Designator; |
5924 | 0 | if (D.Invalid) |
5925 | 0 | return false; |
5926 | | |
5927 | | // C++ [expr.dynamic.cast]p6: |
5928 | | // If v is a null pointer value, the result is a null pointer value. |
5929 | 0 | if (Ptr.isNullPointer() && !E->isGLValue()) |
5930 | 0 | return true; |
5931 | | |
5932 | | // For all the other cases, we need the pointer to point to an object within |
5933 | | // its lifetime / period of construction / destruction, and we need to know |
5934 | | // its dynamic type. |
5935 | 0 | std::optional<DynamicType> DynType = |
5936 | 0 | ComputeDynamicType(Info, E, Ptr, AK_DynamicCast); |
5937 | 0 | if (!DynType) |
5938 | 0 | return false; |
5939 | | |
5940 | | // C++ [expr.dynamic.cast]p7: |
5941 | | // If T is "pointer to cv void", then the result is a pointer to the most |
5942 | | // derived object |
5943 | 0 | if (E->getType()->isVoidPointerType()) |
5944 | 0 | return CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength); |
5945 | | |
5946 | 0 | const CXXRecordDecl *C = E->getTypeAsWritten()->getPointeeCXXRecordDecl(); |
5947 | 0 | assert(C && "dynamic_cast target is not void pointer nor class"); |
5948 | 0 | CanQualType CQT = Info.Ctx.getCanonicalType(Info.Ctx.getRecordType(C)); |
5949 | |
|
5950 | 0 | auto RuntimeCheckFailed = [&] (CXXBasePaths *Paths) { |
5951 | | // C++ [expr.dynamic.cast]p9: |
5952 | 0 | if (!E->isGLValue()) { |
5953 | | // The value of a failed cast to pointer type is the null pointer value |
5954 | | // of the required result type. |
5955 | 0 | Ptr.setNull(Info.Ctx, E->getType()); |
5956 | 0 | return true; |
5957 | 0 | } |
5958 | | |
5959 | | // A failed cast to reference type throws [...] std::bad_cast. |
5960 | 0 | unsigned DiagKind; |
5961 | 0 | if (!Paths && (declaresSameEntity(DynType->Type, C) || |
5962 | 0 | DynType->Type->isDerivedFrom(C))) |
5963 | 0 | DiagKind = 0; |
5964 | 0 | else if (!Paths || Paths->begin() == Paths->end()) |
5965 | 0 | DiagKind = 1; |
5966 | 0 | else if (Paths->isAmbiguous(CQT)) |
5967 | 0 | DiagKind = 2; |
5968 | 0 | else { |
5969 | 0 | assert(Paths->front().Access != AS_public && "why did the cast fail?"); |
5970 | 0 | DiagKind = 3; |
5971 | 0 | } |
5972 | 0 | Info.FFDiag(E, diag::note_constexpr_dynamic_cast_to_reference_failed) |
5973 | 0 | << DiagKind << Ptr.Designator.getType(Info.Ctx) |
5974 | 0 | << Info.Ctx.getRecordType(DynType->Type) |
5975 | 0 | << E->getType().getUnqualifiedType(); |
5976 | 0 | return false; |
5977 | 0 | }; |
5978 | | |
5979 | | // Runtime check, phase 1: |
5980 | | // Walk from the base subobject towards the derived object looking for the |
5981 | | // target type. |
5982 | 0 | for (int PathLength = Ptr.Designator.Entries.size(); |
5983 | 0 | PathLength >= (int)DynType->PathLength; --PathLength) { |
5984 | 0 | const CXXRecordDecl *Class = getBaseClassType(Ptr.Designator, PathLength); |
5985 | 0 | if (declaresSameEntity(Class, C)) |
5986 | 0 | return CastToDerivedClass(Info, E, Ptr, Class, PathLength); |
5987 | | // We can only walk across public inheritance edges. |
5988 | 0 | if (PathLength > (int)DynType->PathLength && |
5989 | 0 | !isBaseClassPublic(getBaseClassType(Ptr.Designator, PathLength - 1), |
5990 | 0 | Class)) |
5991 | 0 | return RuntimeCheckFailed(nullptr); |
5992 | 0 | } |
5993 | | |
5994 | | // Runtime check, phase 2: |
5995 | | // Search the dynamic type for an unambiguous public base of type C. |
5996 | 0 | CXXBasePaths Paths(/*FindAmbiguities=*/true, |
5997 | 0 | /*RecordPaths=*/true, /*DetectVirtual=*/false); |
5998 | 0 | if (DynType->Type->isDerivedFrom(C, Paths) && !Paths.isAmbiguous(CQT) && |
5999 | 0 | Paths.front().Access == AS_public) { |
6000 | | // Downcast to the dynamic type... |
6001 | 0 | if (!CastToDerivedClass(Info, E, Ptr, DynType->Type, DynType->PathLength)) |
6002 | 0 | return false; |
6003 | | // ... then upcast to the chosen base class subobject. |
6004 | 0 | for (CXXBasePathElement &Elem : Paths.front()) |
6005 | 0 | if (!HandleLValueBase(Info, E, Ptr, Elem.Class, Elem.Base)) |
6006 | 0 | return false; |
6007 | 0 | return true; |
6008 | 0 | } |
6009 | | |
6010 | | // Otherwise, the runtime check fails. |
6011 | 0 | return RuntimeCheckFailed(&Paths); |
6012 | 0 | } |
6013 | | |
6014 | | namespace { |
6015 | | struct StartLifetimeOfUnionMemberHandler { |
6016 | | EvalInfo &Info; |
6017 | | const Expr *LHSExpr; |
6018 | | const FieldDecl *Field; |
6019 | | bool DuringInit; |
6020 | | bool Failed = false; |
6021 | | static const AccessKinds AccessKind = AK_Assign; |
6022 | | |
6023 | | typedef bool result_type; |
6024 | 0 | bool failed() { return Failed; } |
6025 | 0 | bool found(APValue &Subobj, QualType SubobjType) { |
6026 | | // We are supposed to perform no initialization but begin the lifetime of |
6027 | | // the object. We interpret that as meaning to do what default |
6028 | | // initialization of the object would do if all constructors involved were |
6029 | | // trivial: |
6030 | | // * All base, non-variant member, and array element subobjects' lifetimes |
6031 | | // begin |
6032 | | // * No variant members' lifetimes begin |
6033 | | // * All scalar subobjects whose lifetimes begin have indeterminate values |
6034 | 0 | assert(SubobjType->isUnionType()); |
6035 | 0 | if (declaresSameEntity(Subobj.getUnionField(), Field)) { |
6036 | | // This union member is already active. If it's also in-lifetime, there's |
6037 | | // nothing to do. |
6038 | 0 | if (Subobj.getUnionValue().hasValue()) |
6039 | 0 | return true; |
6040 | 0 | } else if (DuringInit) { |
6041 | | // We're currently in the process of initializing a different union |
6042 | | // member. If we carried on, that initialization would attempt to |
6043 | | // store to an inactive union member, resulting in undefined behavior. |
6044 | 0 | Info.FFDiag(LHSExpr, |
6045 | 0 | diag::note_constexpr_union_member_change_during_init); |
6046 | 0 | return false; |
6047 | 0 | } |
6048 | 0 | APValue Result; |
6049 | 0 | Failed = !handleDefaultInitValue(Field->getType(), Result); |
6050 | 0 | Subobj.setUnion(Field, Result); |
6051 | 0 | return true; |
6052 | 0 | } |
6053 | 0 | bool found(APSInt &Value, QualType SubobjType) { |
6054 | 0 | llvm_unreachable("wrong value kind for union object"); |
6055 | 0 | } |
6056 | 0 | bool found(APFloat &Value, QualType SubobjType) { |
6057 | 0 | llvm_unreachable("wrong value kind for union object"); |
6058 | 0 | } |
6059 | | }; |
6060 | | } // end anonymous namespace |
6061 | | |
6062 | | const AccessKinds StartLifetimeOfUnionMemberHandler::AccessKind; |
6063 | | |
6064 | | /// Handle a builtin simple-assignment or a call to a trivial assignment |
6065 | | /// operator whose left-hand side might involve a union member access. If it |
6066 | | /// does, implicitly start the lifetime of any accessed union elements per |
6067 | | /// C++20 [class.union]5. |
6068 | | static bool MaybeHandleUnionActiveMemberChange(EvalInfo &Info, |
6069 | | const Expr *LHSExpr, |
6070 | 0 | const LValue &LHS) { |
6071 | 0 | if (LHS.InvalidBase || LHS.Designator.Invalid) |
6072 | 0 | return false; |
6073 | | |
6074 | 0 | llvm::SmallVector<std::pair<unsigned, const FieldDecl*>, 4> UnionPathLengths; |
6075 | | // C++ [class.union]p5: |
6076 | | // define the set S(E) of subexpressions of E as follows: |
6077 | 0 | unsigned PathLength = LHS.Designator.Entries.size(); |
6078 | 0 | for (const Expr *E = LHSExpr; E != nullptr;) { |
6079 | | // -- If E is of the form A.B, S(E) contains the elements of S(A)... |
6080 | 0 | if (auto *ME = dyn_cast<MemberExpr>(E)) { |
6081 | 0 | auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); |
6082 | | // Note that we can't implicitly start the lifetime of a reference, |
6083 | | // so we don't need to proceed any further if we reach one. |
6084 | 0 | if (!FD || FD->getType()->isReferenceType()) |
6085 | 0 | break; |
6086 | | |
6087 | | // ... and also contains A.B if B names a union member ... |
6088 | 0 | if (FD->getParent()->isUnion()) { |
6089 | | // ... of a non-class, non-array type, or of a class type with a |
6090 | | // trivial default constructor that is not deleted, or an array of |
6091 | | // such types. |
6092 | 0 | auto *RD = |
6093 | 0 | FD->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
6094 | 0 | if (!RD || RD->hasTrivialDefaultConstructor()) |
6095 | 0 | UnionPathLengths.push_back({PathLength - 1, FD}); |
6096 | 0 | } |
6097 | |
|
6098 | 0 | E = ME->getBase(); |
6099 | 0 | --PathLength; |
6100 | 0 | assert(declaresSameEntity(FD, |
6101 | 0 | LHS.Designator.Entries[PathLength] |
6102 | 0 | .getAsBaseOrMember().getPointer())); |
6103 | | |
6104 | | // -- If E is of the form A[B] and is interpreted as a built-in array |
6105 | | // subscripting operator, S(E) is [S(the array operand, if any)]. |
6106 | 0 | } else if (auto *ASE = dyn_cast<ArraySubscriptExpr>(E)) { |
6107 | | // Step over an ArrayToPointerDecay implicit cast. |
6108 | 0 | auto *Base = ASE->getBase()->IgnoreImplicit(); |
6109 | 0 | if (!Base->getType()->isArrayType()) |
6110 | 0 | break; |
6111 | | |
6112 | 0 | E = Base; |
6113 | 0 | --PathLength; |
6114 | |
|
6115 | 0 | } else if (auto *ICE = dyn_cast<ImplicitCastExpr>(E)) { |
6116 | | // Step over a derived-to-base conversion. |
6117 | 0 | E = ICE->getSubExpr(); |
6118 | 0 | if (ICE->getCastKind() == CK_NoOp) |
6119 | 0 | continue; |
6120 | 0 | if (ICE->getCastKind() != CK_DerivedToBase && |
6121 | 0 | ICE->getCastKind() != CK_UncheckedDerivedToBase) |
6122 | 0 | break; |
6123 | | // Walk path backwards as we walk up from the base to the derived class. |
6124 | 0 | for (const CXXBaseSpecifier *Elt : llvm::reverse(ICE->path())) { |
6125 | 0 | if (Elt->isVirtual()) { |
6126 | | // A class with virtual base classes never has a trivial default |
6127 | | // constructor, so S(E) is empty in this case. |
6128 | 0 | E = nullptr; |
6129 | 0 | break; |
6130 | 0 | } |
6131 | | |
6132 | 0 | --PathLength; |
6133 | 0 | assert(declaresSameEntity(Elt->getType()->getAsCXXRecordDecl(), |
6134 | 0 | LHS.Designator.Entries[PathLength] |
6135 | 0 | .getAsBaseOrMember().getPointer())); |
6136 | 0 | } |
6137 | | |
6138 | | // -- Otherwise, S(E) is empty. |
6139 | 0 | } else { |
6140 | 0 | break; |
6141 | 0 | } |
6142 | 0 | } |
6143 | | |
6144 | | // Common case: no unions' lifetimes are started. |
6145 | 0 | if (UnionPathLengths.empty()) |
6146 | 0 | return true; |
6147 | | |
6148 | | // if modification of X [would access an inactive union member], an object |
6149 | | // of the type of X is implicitly created |
6150 | 0 | CompleteObject Obj = |
6151 | 0 | findCompleteObject(Info, LHSExpr, AK_Assign, LHS, LHSExpr->getType()); |
6152 | 0 | if (!Obj) |
6153 | 0 | return false; |
6154 | 0 | for (std::pair<unsigned, const FieldDecl *> LengthAndField : |
6155 | 0 | llvm::reverse(UnionPathLengths)) { |
6156 | | // Form a designator for the union object. |
6157 | 0 | SubobjectDesignator D = LHS.Designator; |
6158 | 0 | D.truncate(Info.Ctx, LHS.Base, LengthAndField.first); |
6159 | |
|
6160 | 0 | bool DuringInit = Info.isEvaluatingCtorDtor(LHS.Base, D.Entries) == |
6161 | 0 | ConstructionPhase::AfterBases; |
6162 | 0 | StartLifetimeOfUnionMemberHandler StartLifetime{ |
6163 | 0 | Info, LHSExpr, LengthAndField.second, DuringInit}; |
6164 | 0 | if (!findSubobject(Info, LHSExpr, Obj, D, StartLifetime)) |
6165 | 0 | return false; |
6166 | 0 | } |
6167 | | |
6168 | 0 | return true; |
6169 | 0 | } |
6170 | | |
6171 | | static bool EvaluateCallArg(const ParmVarDecl *PVD, const Expr *Arg, |
6172 | | CallRef Call, EvalInfo &Info, |
6173 | 0 | bool NonNull = false) { |
6174 | 0 | LValue LV; |
6175 | | // Create the parameter slot and register its destruction. For a vararg |
6176 | | // argument, create a temporary. |
6177 | | // FIXME: For calling conventions that destroy parameters in the callee, |
6178 | | // should we consider performing destruction when the function returns |
6179 | | // instead? |
6180 | 0 | APValue &V = PVD ? Info.CurrentCall->createParam(Call, PVD, LV) |
6181 | 0 | : Info.CurrentCall->createTemporary(Arg, Arg->getType(), |
6182 | 0 | ScopeKind::Call, LV); |
6183 | 0 | if (!EvaluateInPlace(V, Info, LV, Arg)) |
6184 | 0 | return false; |
6185 | | |
6186 | | // Passing a null pointer to an __attribute__((nonnull)) parameter results in |
6187 | | // undefined behavior, so is non-constant. |
6188 | 0 | if (NonNull && V.isLValue() && V.isNullPointer()) { |
6189 | 0 | Info.CCEDiag(Arg, diag::note_non_null_attribute_failed); |
6190 | 0 | return false; |
6191 | 0 | } |
6192 | | |
6193 | 0 | return true; |
6194 | 0 | } |
6195 | | |
6196 | | /// Evaluate the arguments to a function call. |
6197 | | static bool EvaluateArgs(ArrayRef<const Expr *> Args, CallRef Call, |
6198 | | EvalInfo &Info, const FunctionDecl *Callee, |
6199 | 0 | bool RightToLeft = false) { |
6200 | 0 | bool Success = true; |
6201 | 0 | llvm::SmallBitVector ForbiddenNullArgs; |
6202 | 0 | if (Callee->hasAttr<NonNullAttr>()) { |
6203 | 0 | ForbiddenNullArgs.resize(Args.size()); |
6204 | 0 | for (const auto *Attr : Callee->specific_attrs<NonNullAttr>()) { |
6205 | 0 | if (!Attr->args_size()) { |
6206 | 0 | ForbiddenNullArgs.set(); |
6207 | 0 | break; |
6208 | 0 | } else |
6209 | 0 | for (auto Idx : Attr->args()) { |
6210 | 0 | unsigned ASTIdx = Idx.getASTIndex(); |
6211 | 0 | if (ASTIdx >= Args.size()) |
6212 | 0 | continue; |
6213 | 0 | ForbiddenNullArgs[ASTIdx] = true; |
6214 | 0 | } |
6215 | 0 | } |
6216 | 0 | } |
6217 | 0 | for (unsigned I = 0; I < Args.size(); I++) { |
6218 | 0 | unsigned Idx = RightToLeft ? Args.size() - I - 1 : I; |
6219 | 0 | const ParmVarDecl *PVD = |
6220 | 0 | Idx < Callee->getNumParams() ? Callee->getParamDecl(Idx) : nullptr; |
6221 | 0 | bool NonNull = !ForbiddenNullArgs.empty() && ForbiddenNullArgs[Idx]; |
6222 | 0 | if (!EvaluateCallArg(PVD, Args[Idx], Call, Info, NonNull)) { |
6223 | | // If we're checking for a potential constant expression, evaluate all |
6224 | | // initializers even if some of them fail. |
6225 | 0 | if (!Info.noteFailure()) |
6226 | 0 | return false; |
6227 | 0 | Success = false; |
6228 | 0 | } |
6229 | 0 | } |
6230 | 0 | return Success; |
6231 | 0 | } |
6232 | | |
6233 | | /// Perform a trivial copy from Param, which is the parameter of a copy or move |
6234 | | /// constructor or assignment operator. |
6235 | | static bool handleTrivialCopy(EvalInfo &Info, const ParmVarDecl *Param, |
6236 | | const Expr *E, APValue &Result, |
6237 | 0 | bool CopyObjectRepresentation) { |
6238 | | // Find the reference argument. |
6239 | 0 | CallStackFrame *Frame = Info.CurrentCall; |
6240 | 0 | APValue *RefValue = Info.getParamSlot(Frame->Arguments, Param); |
6241 | 0 | if (!RefValue) { |
6242 | 0 | Info.FFDiag(E); |
6243 | 0 | return false; |
6244 | 0 | } |
6245 | | |
6246 | | // Copy out the contents of the RHS object. |
6247 | 0 | LValue RefLValue; |
6248 | 0 | RefLValue.setFrom(Info.Ctx, *RefValue); |
6249 | 0 | return handleLValueToRValueConversion( |
6250 | 0 | Info, E, Param->getType().getNonReferenceType(), RefLValue, Result, |
6251 | 0 | CopyObjectRepresentation); |
6252 | 0 | } |
6253 | | |
6254 | | /// Evaluate a function call. |
6255 | | static bool HandleFunctionCall(SourceLocation CallLoc, |
6256 | | const FunctionDecl *Callee, const LValue *This, |
6257 | | const Expr *E, ArrayRef<const Expr *> Args, |
6258 | | CallRef Call, const Stmt *Body, EvalInfo &Info, |
6259 | 0 | APValue &Result, const LValue *ResultSlot) { |
6260 | 0 | if (!Info.CheckCallLimit(CallLoc)) |
6261 | 0 | return false; |
6262 | | |
6263 | 0 | CallStackFrame Frame(Info, E->getSourceRange(), Callee, This, E, Call); |
6264 | | |
6265 | | // For a trivial copy or move assignment, perform an APValue copy. This is |
6266 | | // essential for unions, where the operations performed by the assignment |
6267 | | // operator cannot be represented as statements. |
6268 | | // |
6269 | | // Skip this for non-union classes with no fields; in that case, the defaulted |
6270 | | // copy/move does not actually read the object. |
6271 | 0 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(Callee); |
6272 | 0 | if (MD && MD->isDefaulted() && |
6273 | 0 | (MD->getParent()->isUnion() || |
6274 | 0 | (MD->isTrivial() && |
6275 | 0 | isReadByLvalueToRvalueConversion(MD->getParent())))) { |
6276 | 0 | assert(This && |
6277 | 0 | (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator())); |
6278 | 0 | APValue RHSValue; |
6279 | 0 | if (!handleTrivialCopy(Info, MD->getParamDecl(0), Args[0], RHSValue, |
6280 | 0 | MD->getParent()->isUnion())) |
6281 | 0 | return false; |
6282 | 0 | if (!handleAssignment(Info, Args[0], *This, MD->getThisType(), |
6283 | 0 | RHSValue)) |
6284 | 0 | return false; |
6285 | 0 | This->moveInto(Result); |
6286 | 0 | return true; |
6287 | 0 | } else if (MD && isLambdaCallOperator(MD)) { |
6288 | | // We're in a lambda; determine the lambda capture field maps unless we're |
6289 | | // just constexpr checking a lambda's call operator. constexpr checking is |
6290 | | // done before the captures have been added to the closure object (unless |
6291 | | // we're inferring constexpr-ness), so we don't have access to them in this |
6292 | | // case. But since we don't need the captures to constexpr check, we can |
6293 | | // just ignore them. |
6294 | 0 | if (!Info.checkingPotentialConstantExpression()) |
6295 | 0 | MD->getParent()->getCaptureFields(Frame.LambdaCaptureFields, |
6296 | 0 | Frame.LambdaThisCaptureField); |
6297 | 0 | } |
6298 | | |
6299 | 0 | StmtResult Ret = {Result, ResultSlot}; |
6300 | 0 | EvalStmtResult ESR = EvaluateStmt(Ret, Info, Body); |
6301 | 0 | if (ESR == ESR_Succeeded) { |
6302 | 0 | if (Callee->getReturnType()->isVoidType()) |
6303 | 0 | return true; |
6304 | 0 | Info.FFDiag(Callee->getEndLoc(), diag::note_constexpr_no_return); |
6305 | 0 | } |
6306 | 0 | return ESR == ESR_Returned; |
6307 | 0 | } |
6308 | | |
6309 | | /// Evaluate a constructor call. |
6310 | | static bool HandleConstructorCall(const Expr *E, const LValue &This, |
6311 | | CallRef Call, |
6312 | | const CXXConstructorDecl *Definition, |
6313 | 0 | EvalInfo &Info, APValue &Result) { |
6314 | 0 | SourceLocation CallLoc = E->getExprLoc(); |
6315 | 0 | if (!Info.CheckCallLimit(CallLoc)) |
6316 | 0 | return false; |
6317 | | |
6318 | 0 | const CXXRecordDecl *RD = Definition->getParent(); |
6319 | 0 | if (RD->getNumVBases()) { |
6320 | 0 | Info.FFDiag(CallLoc, diag::note_constexpr_virtual_base) << RD; |
6321 | 0 | return false; |
6322 | 0 | } |
6323 | | |
6324 | 0 | EvalInfo::EvaluatingConstructorRAII EvalObj( |
6325 | 0 | Info, |
6326 | 0 | ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, |
6327 | 0 | RD->getNumBases()); |
6328 | 0 | CallStackFrame Frame(Info, E->getSourceRange(), Definition, &This, E, Call); |
6329 | | |
6330 | | // FIXME: Creating an APValue just to hold a nonexistent return value is |
6331 | | // wasteful. |
6332 | 0 | APValue RetVal; |
6333 | 0 | StmtResult Ret = {RetVal, nullptr}; |
6334 | | |
6335 | | // If it's a delegating constructor, delegate. |
6336 | 0 | if (Definition->isDelegatingConstructor()) { |
6337 | 0 | CXXConstructorDecl::init_const_iterator I = Definition->init_begin(); |
6338 | 0 | if ((*I)->getInit()->isValueDependent()) { |
6339 | 0 | if (!EvaluateDependentExpr((*I)->getInit(), Info)) |
6340 | 0 | return false; |
6341 | 0 | } else { |
6342 | 0 | FullExpressionRAII InitScope(Info); |
6343 | 0 | if (!EvaluateInPlace(Result, Info, This, (*I)->getInit()) || |
6344 | 0 | !InitScope.destroy()) |
6345 | 0 | return false; |
6346 | 0 | } |
6347 | 0 | return EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed; |
6348 | 0 | } |
6349 | | |
6350 | | // For a trivial copy or move constructor, perform an APValue copy. This is |
6351 | | // essential for unions (or classes with anonymous union members), where the |
6352 | | // operations performed by the constructor cannot be represented by |
6353 | | // ctor-initializers. |
6354 | | // |
6355 | | // Skip this for empty non-union classes; we should not perform an |
6356 | | // lvalue-to-rvalue conversion on them because their copy constructor does not |
6357 | | // actually read them. |
6358 | 0 | if (Definition->isDefaulted() && Definition->isCopyOrMoveConstructor() && |
6359 | 0 | (Definition->getParent()->isUnion() || |
6360 | 0 | (Definition->isTrivial() && |
6361 | 0 | isReadByLvalueToRvalueConversion(Definition->getParent())))) { |
6362 | 0 | return handleTrivialCopy(Info, Definition->getParamDecl(0), E, Result, |
6363 | 0 | Definition->getParent()->isUnion()); |
6364 | 0 | } |
6365 | | |
6366 | | // Reserve space for the struct members. |
6367 | 0 | if (!Result.hasValue()) { |
6368 | 0 | if (!RD->isUnion()) |
6369 | 0 | Result = APValue(APValue::UninitStruct(), RD->getNumBases(), |
6370 | 0 | std::distance(RD->field_begin(), RD->field_end())); |
6371 | 0 | else |
6372 | | // A union starts with no active member. |
6373 | 0 | Result = APValue((const FieldDecl*)nullptr); |
6374 | 0 | } |
6375 | |
|
6376 | 0 | if (RD->isInvalidDecl()) return false; |
6377 | 0 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
6378 | | |
6379 | | // A scope for temporaries lifetime-extended by reference members. |
6380 | 0 | BlockScopeRAII LifetimeExtendedScope(Info); |
6381 | |
|
6382 | 0 | bool Success = true; |
6383 | 0 | unsigned BasesSeen = 0; |
6384 | 0 | #ifndef NDEBUG |
6385 | 0 | CXXRecordDecl::base_class_const_iterator BaseIt = RD->bases_begin(); |
6386 | 0 | #endif |
6387 | 0 | CXXRecordDecl::field_iterator FieldIt = RD->field_begin(); |
6388 | 0 | auto SkipToField = [&](FieldDecl *FD, bool Indirect) { |
6389 | | // We might be initializing the same field again if this is an indirect |
6390 | | // field initialization. |
6391 | 0 | if (FieldIt == RD->field_end() || |
6392 | 0 | FieldIt->getFieldIndex() > FD->getFieldIndex()) { |
6393 | 0 | assert(Indirect && "fields out of order?"); |
6394 | 0 | return; |
6395 | 0 | } |
6396 | | |
6397 | | // Default-initialize any fields with no explicit initializer. |
6398 | 0 | for (; !declaresSameEntity(*FieldIt, FD); ++FieldIt) { |
6399 | 0 | assert(FieldIt != RD->field_end() && "missing field?"); |
6400 | 0 | if (!FieldIt->isUnnamedBitfield()) |
6401 | 0 | Success &= handleDefaultInitValue( |
6402 | 0 | FieldIt->getType(), |
6403 | 0 | Result.getStructField(FieldIt->getFieldIndex())); |
6404 | 0 | } |
6405 | 0 | ++FieldIt; |
6406 | 0 | }; |
6407 | 0 | for (const auto *I : Definition->inits()) { |
6408 | 0 | LValue Subobject = This; |
6409 | 0 | LValue SubobjectParent = This; |
6410 | 0 | APValue *Value = &Result; |
6411 | | |
6412 | | // Determine the subobject to initialize. |
6413 | 0 | FieldDecl *FD = nullptr; |
6414 | 0 | if (I->isBaseInitializer()) { |
6415 | 0 | QualType BaseType(I->getBaseClass(), 0); |
6416 | 0 | #ifndef NDEBUG |
6417 | | // Non-virtual base classes are initialized in the order in the class |
6418 | | // definition. We have already checked for virtual base classes. |
6419 | 0 | assert(!BaseIt->isVirtual() && "virtual base for literal type"); |
6420 | 0 | assert(Info.Ctx.hasSameType(BaseIt->getType(), BaseType) && |
6421 | 0 | "base class initializers not in expected order"); |
6422 | 0 | ++BaseIt; |
6423 | 0 | #endif |
6424 | 0 | if (!HandleLValueDirectBase(Info, I->getInit(), Subobject, RD, |
6425 | 0 | BaseType->getAsCXXRecordDecl(), &Layout)) |
6426 | 0 | return false; |
6427 | 0 | Value = &Result.getStructBase(BasesSeen++); |
6428 | 0 | } else if ((FD = I->getMember())) { |
6429 | 0 | if (!HandleLValueMember(Info, I->getInit(), Subobject, FD, &Layout)) |
6430 | 0 | return false; |
6431 | 0 | if (RD->isUnion()) { |
6432 | 0 | Result = APValue(FD); |
6433 | 0 | Value = &Result.getUnionValue(); |
6434 | 0 | } else { |
6435 | 0 | SkipToField(FD, false); |
6436 | 0 | Value = &Result.getStructField(FD->getFieldIndex()); |
6437 | 0 | } |
6438 | 0 | } else if (IndirectFieldDecl *IFD = I->getIndirectMember()) { |
6439 | | // Walk the indirect field decl's chain to find the object to initialize, |
6440 | | // and make sure we've initialized every step along it. |
6441 | 0 | auto IndirectFieldChain = IFD->chain(); |
6442 | 0 | for (auto *C : IndirectFieldChain) { |
6443 | 0 | FD = cast<FieldDecl>(C); |
6444 | 0 | CXXRecordDecl *CD = cast<CXXRecordDecl>(FD->getParent()); |
6445 | | // Switch the union field if it differs. This happens if we had |
6446 | | // preceding zero-initialization, and we're now initializing a union |
6447 | | // subobject other than the first. |
6448 | | // FIXME: In this case, the values of the other subobjects are |
6449 | | // specified, since zero-initialization sets all padding bits to zero. |
6450 | 0 | if (!Value->hasValue() || |
6451 | 0 | (Value->isUnion() && Value->getUnionField() != FD)) { |
6452 | 0 | if (CD->isUnion()) |
6453 | 0 | *Value = APValue(FD); |
6454 | 0 | else |
6455 | | // FIXME: This immediately starts the lifetime of all members of |
6456 | | // an anonymous struct. It would be preferable to strictly start |
6457 | | // member lifetime in initialization order. |
6458 | 0 | Success &= |
6459 | 0 | handleDefaultInitValue(Info.Ctx.getRecordType(CD), *Value); |
6460 | 0 | } |
6461 | | // Store Subobject as its parent before updating it for the last element |
6462 | | // in the chain. |
6463 | 0 | if (C == IndirectFieldChain.back()) |
6464 | 0 | SubobjectParent = Subobject; |
6465 | 0 | if (!HandleLValueMember(Info, I->getInit(), Subobject, FD)) |
6466 | 0 | return false; |
6467 | 0 | if (CD->isUnion()) |
6468 | 0 | Value = &Value->getUnionValue(); |
6469 | 0 | else { |
6470 | 0 | if (C == IndirectFieldChain.front() && !RD->isUnion()) |
6471 | 0 | SkipToField(FD, true); |
6472 | 0 | Value = &Value->getStructField(FD->getFieldIndex()); |
6473 | 0 | } |
6474 | 0 | } |
6475 | 0 | } else { |
6476 | 0 | llvm_unreachable("unknown base initializer kind"); |
6477 | 0 | } |
6478 | | |
6479 | | // Need to override This for implicit field initializers as in this case |
6480 | | // This refers to innermost anonymous struct/union containing initializer, |
6481 | | // not to currently constructed class. |
6482 | 0 | const Expr *Init = I->getInit(); |
6483 | 0 | if (Init->isValueDependent()) { |
6484 | 0 | if (!EvaluateDependentExpr(Init, Info)) |
6485 | 0 | return false; |
6486 | 0 | } else { |
6487 | 0 | ThisOverrideRAII ThisOverride(*Info.CurrentCall, &SubobjectParent, |
6488 | 0 | isa<CXXDefaultInitExpr>(Init)); |
6489 | 0 | FullExpressionRAII InitScope(Info); |
6490 | 0 | if (!EvaluateInPlace(*Value, Info, Subobject, Init) || |
6491 | 0 | (FD && FD->isBitField() && |
6492 | 0 | !truncateBitfieldValue(Info, Init, *Value, FD))) { |
6493 | | // If we're checking for a potential constant expression, evaluate all |
6494 | | // initializers even if some of them fail. |
6495 | 0 | if (!Info.noteFailure()) |
6496 | 0 | return false; |
6497 | 0 | Success = false; |
6498 | 0 | } |
6499 | 0 | } |
6500 | | |
6501 | | // This is the point at which the dynamic type of the object becomes this |
6502 | | // class type. |
6503 | 0 | if (I->isBaseInitializer() && BasesSeen == RD->getNumBases()) |
6504 | 0 | EvalObj.finishedConstructingBases(); |
6505 | 0 | } |
6506 | | |
6507 | | // Default-initialize any remaining fields. |
6508 | 0 | if (!RD->isUnion()) { |
6509 | 0 | for (; FieldIt != RD->field_end(); ++FieldIt) { |
6510 | 0 | if (!FieldIt->isUnnamedBitfield()) |
6511 | 0 | Success &= handleDefaultInitValue( |
6512 | 0 | FieldIt->getType(), |
6513 | 0 | Result.getStructField(FieldIt->getFieldIndex())); |
6514 | 0 | } |
6515 | 0 | } |
6516 | |
|
6517 | 0 | EvalObj.finishedConstructingFields(); |
6518 | |
|
6519 | 0 | return Success && |
6520 | 0 | EvaluateStmt(Ret, Info, Definition->getBody()) != ESR_Failed && |
6521 | 0 | LifetimeExtendedScope.destroy(); |
6522 | 0 | } |
6523 | | |
6524 | | static bool HandleConstructorCall(const Expr *E, const LValue &This, |
6525 | | ArrayRef<const Expr*> Args, |
6526 | | const CXXConstructorDecl *Definition, |
6527 | 0 | EvalInfo &Info, APValue &Result) { |
6528 | 0 | CallScopeRAII CallScope(Info); |
6529 | 0 | CallRef Call = Info.CurrentCall->createCall(Definition); |
6530 | 0 | if (!EvaluateArgs(Args, Call, Info, Definition)) |
6531 | 0 | return false; |
6532 | | |
6533 | 0 | return HandleConstructorCall(E, This, Call, Definition, Info, Result) && |
6534 | 0 | CallScope.destroy(); |
6535 | 0 | } |
6536 | | |
6537 | | static bool HandleDestructionImpl(EvalInfo &Info, SourceRange CallRange, |
6538 | | const LValue &This, APValue &Value, |
6539 | 0 | QualType T) { |
6540 | | // Objects can only be destroyed while they're within their lifetimes. |
6541 | | // FIXME: We have no representation for whether an object of type nullptr_t |
6542 | | // is in its lifetime; it usually doesn't matter. Perhaps we should model it |
6543 | | // as indeterminate instead? |
6544 | 0 | if (Value.isAbsent() && !T->isNullPtrType()) { |
6545 | 0 | APValue Printable; |
6546 | 0 | This.moveInto(Printable); |
6547 | 0 | Info.FFDiag(CallRange.getBegin(), |
6548 | 0 | diag::note_constexpr_destroy_out_of_lifetime) |
6549 | 0 | << Printable.getAsString(Info.Ctx, Info.Ctx.getLValueReferenceType(T)); |
6550 | 0 | return false; |
6551 | 0 | } |
6552 | | |
6553 | | // Invent an expression for location purposes. |
6554 | | // FIXME: We shouldn't need to do this. |
6555 | 0 | OpaqueValueExpr LocE(CallRange.getBegin(), Info.Ctx.IntTy, VK_PRValue); |
6556 | | |
6557 | | // For arrays, destroy elements right-to-left. |
6558 | 0 | if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(T)) { |
6559 | 0 | uint64_t Size = CAT->getSize().getZExtValue(); |
6560 | 0 | QualType ElemT = CAT->getElementType(); |
6561 | |
|
6562 | 0 | if (!CheckArraySize(Info, CAT, CallRange.getBegin())) |
6563 | 0 | return false; |
6564 | | |
6565 | 0 | LValue ElemLV = This; |
6566 | 0 | ElemLV.addArray(Info, &LocE, CAT); |
6567 | 0 | if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, Size)) |
6568 | 0 | return false; |
6569 | | |
6570 | | // Ensure that we have actual array elements available to destroy; the |
6571 | | // destructors might mutate the value, so we can't run them on the array |
6572 | | // filler. |
6573 | 0 | if (Size && Size > Value.getArrayInitializedElts()) |
6574 | 0 | expandArray(Value, Value.getArraySize() - 1); |
6575 | |
|
6576 | 0 | for (; Size != 0; --Size) { |
6577 | 0 | APValue &Elem = Value.getArrayInitializedElt(Size - 1); |
6578 | 0 | if (!HandleLValueArrayAdjustment(Info, &LocE, ElemLV, ElemT, -1) || |
6579 | 0 | !HandleDestructionImpl(Info, CallRange, ElemLV, Elem, ElemT)) |
6580 | 0 | return false; |
6581 | 0 | } |
6582 | | |
6583 | | // End the lifetime of this array now. |
6584 | 0 | Value = APValue(); |
6585 | 0 | return true; |
6586 | 0 | } |
6587 | | |
6588 | 0 | const CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
6589 | 0 | if (!RD) { |
6590 | 0 | if (T.isDestructedType()) { |
6591 | 0 | Info.FFDiag(CallRange.getBegin(), |
6592 | 0 | diag::note_constexpr_unsupported_destruction) |
6593 | 0 | << T; |
6594 | 0 | return false; |
6595 | 0 | } |
6596 | | |
6597 | 0 | Value = APValue(); |
6598 | 0 | return true; |
6599 | 0 | } |
6600 | | |
6601 | 0 | if (RD->getNumVBases()) { |
6602 | 0 | Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_virtual_base) << RD; |
6603 | 0 | return false; |
6604 | 0 | } |
6605 | | |
6606 | 0 | const CXXDestructorDecl *DD = RD->getDestructor(); |
6607 | 0 | if (!DD && !RD->hasTrivialDestructor()) { |
6608 | 0 | Info.FFDiag(CallRange.getBegin()); |
6609 | 0 | return false; |
6610 | 0 | } |
6611 | | |
6612 | 0 | if (!DD || DD->isTrivial() || |
6613 | 0 | (RD->isAnonymousStructOrUnion() && RD->isUnion())) { |
6614 | | // A trivial destructor just ends the lifetime of the object. Check for |
6615 | | // this case before checking for a body, because we might not bother |
6616 | | // building a body for a trivial destructor. Note that it doesn't matter |
6617 | | // whether the destructor is constexpr in this case; all trivial |
6618 | | // destructors are constexpr. |
6619 | | // |
6620 | | // If an anonymous union would be destroyed, some enclosing destructor must |
6621 | | // have been explicitly defined, and the anonymous union destruction should |
6622 | | // have no effect. |
6623 | 0 | Value = APValue(); |
6624 | 0 | return true; |
6625 | 0 | } |
6626 | | |
6627 | 0 | if (!Info.CheckCallLimit(CallRange.getBegin())) |
6628 | 0 | return false; |
6629 | | |
6630 | 0 | const FunctionDecl *Definition = nullptr; |
6631 | 0 | const Stmt *Body = DD->getBody(Definition); |
6632 | |
|
6633 | 0 | if (!CheckConstexprFunction(Info, CallRange.getBegin(), DD, Definition, Body)) |
6634 | 0 | return false; |
6635 | | |
6636 | 0 | CallStackFrame Frame(Info, CallRange, Definition, &This, /*CallExpr=*/nullptr, |
6637 | 0 | CallRef()); |
6638 | | |
6639 | | // We're now in the period of destruction of this object. |
6640 | 0 | unsigned BasesLeft = RD->getNumBases(); |
6641 | 0 | EvalInfo::EvaluatingDestructorRAII EvalObj( |
6642 | 0 | Info, |
6643 | 0 | ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}); |
6644 | 0 | if (!EvalObj.DidInsert) { |
6645 | | // C++2a [class.dtor]p19: |
6646 | | // the behavior is undefined if the destructor is invoked for an object |
6647 | | // whose lifetime has ended |
6648 | | // (Note that formally the lifetime ends when the period of destruction |
6649 | | // begins, even though certain uses of the object remain valid until the |
6650 | | // period of destruction ends.) |
6651 | 0 | Info.FFDiag(CallRange.getBegin(), diag::note_constexpr_double_destroy); |
6652 | 0 | return false; |
6653 | 0 | } |
6654 | | |
6655 | | // FIXME: Creating an APValue just to hold a nonexistent return value is |
6656 | | // wasteful. |
6657 | 0 | APValue RetVal; |
6658 | 0 | StmtResult Ret = {RetVal, nullptr}; |
6659 | 0 | if (EvaluateStmt(Ret, Info, Definition->getBody()) == ESR_Failed) |
6660 | 0 | return false; |
6661 | | |
6662 | | // A union destructor does not implicitly destroy its members. |
6663 | 0 | if (RD->isUnion()) |
6664 | 0 | return true; |
6665 | | |
6666 | 0 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
6667 | | |
6668 | | // We don't have a good way to iterate fields in reverse, so collect all the |
6669 | | // fields first and then walk them backwards. |
6670 | 0 | SmallVector<FieldDecl*, 16> Fields(RD->fields()); |
6671 | 0 | for (const FieldDecl *FD : llvm::reverse(Fields)) { |
6672 | 0 | if (FD->isUnnamedBitfield()) |
6673 | 0 | continue; |
6674 | | |
6675 | 0 | LValue Subobject = This; |
6676 | 0 | if (!HandleLValueMember(Info, &LocE, Subobject, FD, &Layout)) |
6677 | 0 | return false; |
6678 | | |
6679 | 0 | APValue *SubobjectValue = &Value.getStructField(FD->getFieldIndex()); |
6680 | 0 | if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue, |
6681 | 0 | FD->getType())) |
6682 | 0 | return false; |
6683 | 0 | } |
6684 | | |
6685 | 0 | if (BasesLeft != 0) |
6686 | 0 | EvalObj.startedDestroyingBases(); |
6687 | | |
6688 | | // Destroy base classes in reverse order. |
6689 | 0 | for (const CXXBaseSpecifier &Base : llvm::reverse(RD->bases())) { |
6690 | 0 | --BasesLeft; |
6691 | |
|
6692 | 0 | QualType BaseType = Base.getType(); |
6693 | 0 | LValue Subobject = This; |
6694 | 0 | if (!HandleLValueDirectBase(Info, &LocE, Subobject, RD, |
6695 | 0 | BaseType->getAsCXXRecordDecl(), &Layout)) |
6696 | 0 | return false; |
6697 | | |
6698 | 0 | APValue *SubobjectValue = &Value.getStructBase(BasesLeft); |
6699 | 0 | if (!HandleDestructionImpl(Info, CallRange, Subobject, *SubobjectValue, |
6700 | 0 | BaseType)) |
6701 | 0 | return false; |
6702 | 0 | } |
6703 | 0 | assert(BasesLeft == 0 && "NumBases was wrong?"); |
6704 | | |
6705 | | // The period of destruction ends now. The object is gone. |
6706 | 0 | Value = APValue(); |
6707 | 0 | return true; |
6708 | 0 | } |
6709 | | |
6710 | | namespace { |
6711 | | struct DestroyObjectHandler { |
6712 | | EvalInfo &Info; |
6713 | | const Expr *E; |
6714 | | const LValue &This; |
6715 | | const AccessKinds AccessKind; |
6716 | | |
6717 | | typedef bool result_type; |
6718 | 0 | bool failed() { return false; } |
6719 | 0 | bool found(APValue &Subobj, QualType SubobjType) { |
6720 | 0 | return HandleDestructionImpl(Info, E->getSourceRange(), This, Subobj, |
6721 | 0 | SubobjType); |
6722 | 0 | } |
6723 | 0 | bool found(APSInt &Value, QualType SubobjType) { |
6724 | 0 | Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); |
6725 | 0 | return false; |
6726 | 0 | } |
6727 | 0 | bool found(APFloat &Value, QualType SubobjType) { |
6728 | 0 | Info.FFDiag(E, diag::note_constexpr_destroy_complex_elem); |
6729 | 0 | return false; |
6730 | 0 | } |
6731 | | }; |
6732 | | } |
6733 | | |
6734 | | /// Perform a destructor or pseudo-destructor call on the given object, which |
6735 | | /// might in general not be a complete object. |
6736 | | static bool HandleDestruction(EvalInfo &Info, const Expr *E, |
6737 | 0 | const LValue &This, QualType ThisType) { |
6738 | 0 | CompleteObject Obj = findCompleteObject(Info, E, AK_Destroy, This, ThisType); |
6739 | 0 | DestroyObjectHandler Handler = {Info, E, This, AK_Destroy}; |
6740 | 0 | return Obj && findSubobject(Info, E, Obj, This.Designator, Handler); |
6741 | 0 | } |
6742 | | |
6743 | | /// Destroy and end the lifetime of the given complete object. |
6744 | | static bool HandleDestruction(EvalInfo &Info, SourceLocation Loc, |
6745 | | APValue::LValueBase LVBase, APValue &Value, |
6746 | 0 | QualType T) { |
6747 | | // If we've had an unmodeled side-effect, we can't rely on mutable state |
6748 | | // (such as the object we're about to destroy) being correct. |
6749 | 0 | if (Info.EvalStatus.HasSideEffects) |
6750 | 0 | return false; |
6751 | | |
6752 | 0 | LValue LV; |
6753 | 0 | LV.set({LVBase}); |
6754 | 0 | return HandleDestructionImpl(Info, Loc, LV, Value, T); |
6755 | 0 | } |
6756 | | |
6757 | | /// Perform a call to 'operator new' or to `__builtin_operator_new'. |
6758 | | static bool HandleOperatorNewCall(EvalInfo &Info, const CallExpr *E, |
6759 | 0 | LValue &Result) { |
6760 | 0 | if (Info.checkingPotentialConstantExpression() || |
6761 | 0 | Info.SpeculativeEvaluationDepth) |
6762 | 0 | return false; |
6763 | | |
6764 | | // This is permitted only within a call to std::allocator<T>::allocate. |
6765 | 0 | auto Caller = Info.getStdAllocatorCaller("allocate"); |
6766 | 0 | if (!Caller) { |
6767 | 0 | Info.FFDiag(E->getExprLoc(), Info.getLangOpts().CPlusPlus20 |
6768 | 0 | ? diag::note_constexpr_new_untyped |
6769 | 0 | : diag::note_constexpr_new); |
6770 | 0 | return false; |
6771 | 0 | } |
6772 | | |
6773 | 0 | QualType ElemType = Caller.ElemType; |
6774 | 0 | if (ElemType->isIncompleteType() || ElemType->isFunctionType()) { |
6775 | 0 | Info.FFDiag(E->getExprLoc(), |
6776 | 0 | diag::note_constexpr_new_not_complete_object_type) |
6777 | 0 | << (ElemType->isIncompleteType() ? 0 : 1) << ElemType; |
6778 | 0 | return false; |
6779 | 0 | } |
6780 | | |
6781 | 0 | APSInt ByteSize; |
6782 | 0 | if (!EvaluateInteger(E->getArg(0), ByteSize, Info)) |
6783 | 0 | return false; |
6784 | 0 | bool IsNothrow = false; |
6785 | 0 | for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) { |
6786 | 0 | EvaluateIgnoredValue(Info, E->getArg(I)); |
6787 | 0 | IsNothrow |= E->getType()->isNothrowT(); |
6788 | 0 | } |
6789 | |
|
6790 | 0 | CharUnits ElemSize; |
6791 | 0 | if (!HandleSizeof(Info, E->getExprLoc(), ElemType, ElemSize)) |
6792 | 0 | return false; |
6793 | 0 | APInt Size, Remainder; |
6794 | 0 | APInt ElemSizeAP(ByteSize.getBitWidth(), ElemSize.getQuantity()); |
6795 | 0 | APInt::udivrem(ByteSize, ElemSizeAP, Size, Remainder); |
6796 | 0 | if (Remainder != 0) { |
6797 | | // This likely indicates a bug in the implementation of 'std::allocator'. |
6798 | 0 | Info.FFDiag(E->getExprLoc(), diag::note_constexpr_operator_new_bad_size) |
6799 | 0 | << ByteSize << APSInt(ElemSizeAP, true) << ElemType; |
6800 | 0 | return false; |
6801 | 0 | } |
6802 | | |
6803 | 0 | if (!Info.CheckArraySize(E->getBeginLoc(), ByteSize.getActiveBits(), |
6804 | 0 | Size.getZExtValue(), /*Diag=*/!IsNothrow)) { |
6805 | 0 | if (IsNothrow) { |
6806 | 0 | Result.setNull(Info.Ctx, E->getType()); |
6807 | 0 | return true; |
6808 | 0 | } |
6809 | 0 | return false; |
6810 | 0 | } |
6811 | | |
6812 | 0 | QualType AllocType = Info.Ctx.getConstantArrayType( |
6813 | 0 | ElemType, Size, nullptr, ArraySizeModifier::Normal, 0); |
6814 | 0 | APValue *Val = Info.createHeapAlloc(E, AllocType, Result); |
6815 | 0 | *Val = APValue(APValue::UninitArray(), 0, Size.getZExtValue()); |
6816 | 0 | Result.addArray(Info, E, cast<ConstantArrayType>(AllocType)); |
6817 | 0 | return true; |
6818 | 0 | } |
6819 | | |
6820 | 0 | static bool hasVirtualDestructor(QualType T) { |
6821 | 0 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
6822 | 0 | if (CXXDestructorDecl *DD = RD->getDestructor()) |
6823 | 0 | return DD->isVirtual(); |
6824 | 0 | return false; |
6825 | 0 | } |
6826 | | |
6827 | 0 | static const FunctionDecl *getVirtualOperatorDelete(QualType T) { |
6828 | 0 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
6829 | 0 | if (CXXDestructorDecl *DD = RD->getDestructor()) |
6830 | 0 | return DD->isVirtual() ? DD->getOperatorDelete() : nullptr; |
6831 | 0 | return nullptr; |
6832 | 0 | } |
6833 | | |
6834 | | /// Check that the given object is a suitable pointer to a heap allocation that |
6835 | | /// still exists and is of the right kind for the purpose of a deletion. |
6836 | | /// |
6837 | | /// On success, returns the heap allocation to deallocate. On failure, produces |
6838 | | /// a diagnostic and returns std::nullopt. |
6839 | | static std::optional<DynAlloc *> CheckDeleteKind(EvalInfo &Info, const Expr *E, |
6840 | | const LValue &Pointer, |
6841 | 0 | DynAlloc::Kind DeallocKind) { |
6842 | 0 | auto PointerAsString = [&] { |
6843 | 0 | return Pointer.toString(Info.Ctx, Info.Ctx.VoidPtrTy); |
6844 | 0 | }; |
6845 | |
|
6846 | 0 | DynamicAllocLValue DA = Pointer.Base.dyn_cast<DynamicAllocLValue>(); |
6847 | 0 | if (!DA) { |
6848 | 0 | Info.FFDiag(E, diag::note_constexpr_delete_not_heap_alloc) |
6849 | 0 | << PointerAsString(); |
6850 | 0 | if (Pointer.Base) |
6851 | 0 | NoteLValueLocation(Info, Pointer.Base); |
6852 | 0 | return std::nullopt; |
6853 | 0 | } |
6854 | | |
6855 | 0 | std::optional<DynAlloc *> Alloc = Info.lookupDynamicAlloc(DA); |
6856 | 0 | if (!Alloc) { |
6857 | 0 | Info.FFDiag(E, diag::note_constexpr_double_delete); |
6858 | 0 | return std::nullopt; |
6859 | 0 | } |
6860 | | |
6861 | 0 | if (DeallocKind != (*Alloc)->getKind()) { |
6862 | 0 | QualType AllocType = Pointer.Base.getDynamicAllocType(); |
6863 | 0 | Info.FFDiag(E, diag::note_constexpr_new_delete_mismatch) |
6864 | 0 | << DeallocKind << (*Alloc)->getKind() << AllocType; |
6865 | 0 | NoteLValueLocation(Info, Pointer.Base); |
6866 | 0 | return std::nullopt; |
6867 | 0 | } |
6868 | | |
6869 | 0 | bool Subobject = false; |
6870 | 0 | if (DeallocKind == DynAlloc::New) { |
6871 | 0 | Subobject = Pointer.Designator.MostDerivedPathLength != 0 || |
6872 | 0 | Pointer.Designator.isOnePastTheEnd(); |
6873 | 0 | } else { |
6874 | 0 | Subobject = Pointer.Designator.Entries.size() != 1 || |
6875 | 0 | Pointer.Designator.Entries[0].getAsArrayIndex() != 0; |
6876 | 0 | } |
6877 | 0 | if (Subobject) { |
6878 | 0 | Info.FFDiag(E, diag::note_constexpr_delete_subobject) |
6879 | 0 | << PointerAsString() << Pointer.Designator.isOnePastTheEnd(); |
6880 | 0 | return std::nullopt; |
6881 | 0 | } |
6882 | | |
6883 | 0 | return Alloc; |
6884 | 0 | } |
6885 | | |
6886 | | // Perform a call to 'operator delete' or '__builtin_operator_delete'. |
6887 | 0 | bool HandleOperatorDeleteCall(EvalInfo &Info, const CallExpr *E) { |
6888 | 0 | if (Info.checkingPotentialConstantExpression() || |
6889 | 0 | Info.SpeculativeEvaluationDepth) |
6890 | 0 | return false; |
6891 | | |
6892 | | // This is permitted only within a call to std::allocator<T>::deallocate. |
6893 | 0 | if (!Info.getStdAllocatorCaller("deallocate")) { |
6894 | 0 | Info.FFDiag(E->getExprLoc()); |
6895 | 0 | return true; |
6896 | 0 | } |
6897 | | |
6898 | 0 | LValue Pointer; |
6899 | 0 | if (!EvaluatePointer(E->getArg(0), Pointer, Info)) |
6900 | 0 | return false; |
6901 | 0 | for (unsigned I = 1, N = E->getNumArgs(); I != N; ++I) |
6902 | 0 | EvaluateIgnoredValue(Info, E->getArg(I)); |
6903 | |
|
6904 | 0 | if (Pointer.Designator.Invalid) |
6905 | 0 | return false; |
6906 | | |
6907 | | // Deleting a null pointer would have no effect, but it's not permitted by |
6908 | | // std::allocator<T>::deallocate's contract. |
6909 | 0 | if (Pointer.isNullPointer()) { |
6910 | 0 | Info.CCEDiag(E->getExprLoc(), diag::note_constexpr_deallocate_null); |
6911 | 0 | return true; |
6912 | 0 | } |
6913 | | |
6914 | 0 | if (!CheckDeleteKind(Info, E, Pointer, DynAlloc::StdAllocator)) |
6915 | 0 | return false; |
6916 | | |
6917 | 0 | Info.HeapAllocs.erase(Pointer.Base.get<DynamicAllocLValue>()); |
6918 | 0 | return true; |
6919 | 0 | } |
6920 | | |
6921 | | //===----------------------------------------------------------------------===// |
6922 | | // Generic Evaluation |
6923 | | //===----------------------------------------------------------------------===// |
6924 | | namespace { |
6925 | | |
6926 | | class BitCastBuffer { |
6927 | | // FIXME: We're going to need bit-level granularity when we support |
6928 | | // bit-fields. |
6929 | | // FIXME: Its possible under the C++ standard for 'char' to not be 8 bits, but |
6930 | | // we don't support a host or target where that is the case. Still, we should |
6931 | | // use a more generic type in case we ever do. |
6932 | | SmallVector<std::optional<unsigned char>, 32> Bytes; |
6933 | | |
6934 | | static_assert(std::numeric_limits<unsigned char>::digits >= 8, |
6935 | | "Need at least 8 bit unsigned char"); |
6936 | | |
6937 | | bool TargetIsLittleEndian; |
6938 | | |
6939 | | public: |
6940 | | BitCastBuffer(CharUnits Width, bool TargetIsLittleEndian) |
6941 | | : Bytes(Width.getQuantity()), |
6942 | 0 | TargetIsLittleEndian(TargetIsLittleEndian) {} |
6943 | | |
6944 | | [[nodiscard]] bool readObject(CharUnits Offset, CharUnits Width, |
6945 | 0 | SmallVectorImpl<unsigned char> &Output) const { |
6946 | 0 | for (CharUnits I = Offset, E = Offset + Width; I != E; ++I) { |
6947 | | // If a byte of an integer is uninitialized, then the whole integer is |
6948 | | // uninitialized. |
6949 | 0 | if (!Bytes[I.getQuantity()]) |
6950 | 0 | return false; |
6951 | 0 | Output.push_back(*Bytes[I.getQuantity()]); |
6952 | 0 | } |
6953 | 0 | if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) |
6954 | 0 | std::reverse(Output.begin(), Output.end()); |
6955 | 0 | return true; |
6956 | 0 | } |
6957 | | |
6958 | 0 | void writeObject(CharUnits Offset, SmallVectorImpl<unsigned char> &Input) { |
6959 | 0 | if (llvm::sys::IsLittleEndianHost != TargetIsLittleEndian) |
6960 | 0 | std::reverse(Input.begin(), Input.end()); |
6961 | |
|
6962 | 0 | size_t Index = 0; |
6963 | 0 | for (unsigned char Byte : Input) { |
6964 | 0 | assert(!Bytes[Offset.getQuantity() + Index] && "overwriting a byte?"); |
6965 | 0 | Bytes[Offset.getQuantity() + Index] = Byte; |
6966 | 0 | ++Index; |
6967 | 0 | } |
6968 | 0 | } |
6969 | | |
6970 | 0 | size_t size() { return Bytes.size(); } |
6971 | | }; |
6972 | | |
6973 | | /// Traverse an APValue to produce an BitCastBuffer, emulating how the current |
6974 | | /// target would represent the value at runtime. |
6975 | | class APValueToBufferConverter { |
6976 | | EvalInfo &Info; |
6977 | | BitCastBuffer Buffer; |
6978 | | const CastExpr *BCE; |
6979 | | |
6980 | | APValueToBufferConverter(EvalInfo &Info, CharUnits ObjectWidth, |
6981 | | const CastExpr *BCE) |
6982 | | : Info(Info), |
6983 | | Buffer(ObjectWidth, Info.Ctx.getTargetInfo().isLittleEndian()), |
6984 | 0 | BCE(BCE) {} |
6985 | | |
6986 | 0 | bool visit(const APValue &Val, QualType Ty) { |
6987 | 0 | return visit(Val, Ty, CharUnits::fromQuantity(0)); |
6988 | 0 | } |
6989 | | |
6990 | | // Write out Val with type Ty into Buffer starting at Offset. |
6991 | 0 | bool visit(const APValue &Val, QualType Ty, CharUnits Offset) { |
6992 | 0 | assert((size_t)Offset.getQuantity() <= Buffer.size()); |
6993 | | |
6994 | | // As a special case, nullptr_t has an indeterminate value. |
6995 | 0 | if (Ty->isNullPtrType()) |
6996 | 0 | return true; |
6997 | | |
6998 | | // Dig through Src to find the byte at SrcOffset. |
6999 | 0 | switch (Val.getKind()) { |
7000 | 0 | case APValue::Indeterminate: |
7001 | 0 | case APValue::None: |
7002 | 0 | return true; |
7003 | | |
7004 | 0 | case APValue::Int: |
7005 | 0 | return visitInt(Val.getInt(), Ty, Offset); |
7006 | 0 | case APValue::Float: |
7007 | 0 | return visitFloat(Val.getFloat(), Ty, Offset); |
7008 | 0 | case APValue::Array: |
7009 | 0 | return visitArray(Val, Ty, Offset); |
7010 | 0 | case APValue::Struct: |
7011 | 0 | return visitRecord(Val, Ty, Offset); |
7012 | 0 | case APValue::Vector: |
7013 | 0 | return visitVector(Val, Ty, Offset); |
7014 | | |
7015 | 0 | case APValue::ComplexInt: |
7016 | 0 | case APValue::ComplexFloat: |
7017 | 0 | case APValue::FixedPoint: |
7018 | | // FIXME: We should support these. |
7019 | |
|
7020 | 0 | case APValue::Union: |
7021 | 0 | case APValue::MemberPointer: |
7022 | 0 | case APValue::AddrLabelDiff: { |
7023 | 0 | Info.FFDiag(BCE->getBeginLoc(), |
7024 | 0 | diag::note_constexpr_bit_cast_unsupported_type) |
7025 | 0 | << Ty; |
7026 | 0 | return false; |
7027 | 0 | } |
7028 | | |
7029 | 0 | case APValue::LValue: |
7030 | 0 | llvm_unreachable("LValue subobject in bit_cast?"); |
7031 | 0 | } |
7032 | 0 | llvm_unreachable("Unhandled APValue::ValueKind"); |
7033 | 0 | } |
7034 | | |
7035 | 0 | bool visitRecord(const APValue &Val, QualType Ty, CharUnits Offset) { |
7036 | 0 | const RecordDecl *RD = Ty->getAsRecordDecl(); |
7037 | 0 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
7038 | | |
7039 | | // Visit the base classes. |
7040 | 0 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
7041 | 0 | for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { |
7042 | 0 | const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; |
7043 | 0 | CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); |
7044 | |
|
7045 | 0 | if (!visitRecord(Val.getStructBase(I), BS.getType(), |
7046 | 0 | Layout.getBaseClassOffset(BaseDecl) + Offset)) |
7047 | 0 | return false; |
7048 | 0 | } |
7049 | 0 | } |
7050 | | |
7051 | | // Visit the fields. |
7052 | 0 | unsigned FieldIdx = 0; |
7053 | 0 | for (FieldDecl *FD : RD->fields()) { |
7054 | 0 | if (FD->isBitField()) { |
7055 | 0 | Info.FFDiag(BCE->getBeginLoc(), |
7056 | 0 | diag::note_constexpr_bit_cast_unsupported_bitfield); |
7057 | 0 | return false; |
7058 | 0 | } |
7059 | | |
7060 | 0 | uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); |
7061 | |
|
7062 | 0 | assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0 && |
7063 | 0 | "only bit-fields can have sub-char alignment"); |
7064 | 0 | CharUnits FieldOffset = |
7065 | 0 | Info.Ctx.toCharUnitsFromBits(FieldOffsetBits) + Offset; |
7066 | 0 | QualType FieldTy = FD->getType(); |
7067 | 0 | if (!visit(Val.getStructField(FieldIdx), FieldTy, FieldOffset)) |
7068 | 0 | return false; |
7069 | 0 | ++FieldIdx; |
7070 | 0 | } |
7071 | | |
7072 | 0 | return true; |
7073 | 0 | } |
7074 | | |
7075 | 0 | bool visitArray(const APValue &Val, QualType Ty, CharUnits Offset) { |
7076 | 0 | const auto *CAT = |
7077 | 0 | dyn_cast_or_null<ConstantArrayType>(Ty->getAsArrayTypeUnsafe()); |
7078 | 0 | if (!CAT) |
7079 | 0 | return false; |
7080 | | |
7081 | 0 | CharUnits ElemWidth = Info.Ctx.getTypeSizeInChars(CAT->getElementType()); |
7082 | 0 | unsigned NumInitializedElts = Val.getArrayInitializedElts(); |
7083 | 0 | unsigned ArraySize = Val.getArraySize(); |
7084 | | // First, initialize the initialized elements. |
7085 | 0 | for (unsigned I = 0; I != NumInitializedElts; ++I) { |
7086 | 0 | const APValue &SubObj = Val.getArrayInitializedElt(I); |
7087 | 0 | if (!visit(SubObj, CAT->getElementType(), Offset + I * ElemWidth)) |
7088 | 0 | return false; |
7089 | 0 | } |
7090 | | |
7091 | | // Next, initialize the rest of the array using the filler. |
7092 | 0 | if (Val.hasArrayFiller()) { |
7093 | 0 | const APValue &Filler = Val.getArrayFiller(); |
7094 | 0 | for (unsigned I = NumInitializedElts; I != ArraySize; ++I) { |
7095 | 0 | if (!visit(Filler, CAT->getElementType(), Offset + I * ElemWidth)) |
7096 | 0 | return false; |
7097 | 0 | } |
7098 | 0 | } |
7099 | | |
7100 | 0 | return true; |
7101 | 0 | } |
7102 | | |
7103 | 0 | bool visitVector(const APValue &Val, QualType Ty, CharUnits Offset) { |
7104 | 0 | const VectorType *VTy = Ty->castAs<VectorType>(); |
7105 | 0 | QualType EltTy = VTy->getElementType(); |
7106 | 0 | unsigned NElts = VTy->getNumElements(); |
7107 | 0 | unsigned EltSize = |
7108 | 0 | VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy); |
7109 | |
|
7110 | 0 | if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) { |
7111 | | // The vector's size in bits is not a multiple of the target's byte size, |
7112 | | // so its layout is unspecified. For now, we'll simply treat these cases |
7113 | | // as unsupported (this should only be possible with OpenCL bool vectors |
7114 | | // whose element count isn't a multiple of the byte size). |
7115 | 0 | Info.FFDiag(BCE->getBeginLoc(), |
7116 | 0 | diag::note_constexpr_bit_cast_invalid_vector) |
7117 | 0 | << Ty.getCanonicalType() << EltSize << NElts |
7118 | 0 | << Info.Ctx.getCharWidth(); |
7119 | 0 | return false; |
7120 | 0 | } |
7121 | | |
7122 | 0 | if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(EltTy) == |
7123 | 0 | &APFloat::x87DoubleExtended()) { |
7124 | | // The layout for x86_fp80 vectors seems to be handled very inconsistently |
7125 | | // by both clang and LLVM, so for now we won't allow bit_casts involving |
7126 | | // it in a constexpr context. |
7127 | 0 | Info.FFDiag(BCE->getBeginLoc(), |
7128 | 0 | diag::note_constexpr_bit_cast_unsupported_type) |
7129 | 0 | << EltTy; |
7130 | 0 | return false; |
7131 | 0 | } |
7132 | | |
7133 | 0 | if (VTy->isExtVectorBoolType()) { |
7134 | | // Special handling for OpenCL bool vectors: |
7135 | | // Since these vectors are stored as packed bits, but we can't write |
7136 | | // individual bits to the BitCastBuffer, we'll buffer all of the elements |
7137 | | // together into an appropriately sized APInt and write them all out at |
7138 | | // once. Because we don't accept vectors where NElts * EltSize isn't a |
7139 | | // multiple of the char size, there will be no padding space, so we don't |
7140 | | // have to worry about writing data which should have been left |
7141 | | // uninitialized. |
7142 | 0 | bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); |
7143 | |
|
7144 | 0 | llvm::APInt Res = llvm::APInt::getZero(NElts); |
7145 | 0 | for (unsigned I = 0; I < NElts; ++I) { |
7146 | 0 | const llvm::APSInt &EltAsInt = Val.getVectorElt(I).getInt(); |
7147 | 0 | assert(EltAsInt.isUnsigned() && EltAsInt.getBitWidth() == 1 && |
7148 | 0 | "bool vector element must be 1-bit unsigned integer!"); |
7149 | | |
7150 | 0 | Res.insertBits(EltAsInt, BigEndian ? (NElts - I - 1) : I); |
7151 | 0 | } |
7152 | |
|
7153 | 0 | SmallVector<uint8_t, 8> Bytes(NElts / 8); |
7154 | 0 | llvm::StoreIntToMemory(Res, &*Bytes.begin(), NElts / 8); |
7155 | 0 | Buffer.writeObject(Offset, Bytes); |
7156 | 0 | } else { |
7157 | | // Iterate over each of the elements and write them out to the buffer at |
7158 | | // the appropriate offset. |
7159 | 0 | CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy); |
7160 | 0 | for (unsigned I = 0; I < NElts; ++I) { |
7161 | 0 | if (!visit(Val.getVectorElt(I), EltTy, Offset + I * EltSizeChars)) |
7162 | 0 | return false; |
7163 | 0 | } |
7164 | 0 | } |
7165 | | |
7166 | 0 | return true; |
7167 | 0 | } |
7168 | | |
7169 | 0 | bool visitInt(const APSInt &Val, QualType Ty, CharUnits Offset) { |
7170 | 0 | APSInt AdjustedVal = Val; |
7171 | 0 | unsigned Width = AdjustedVal.getBitWidth(); |
7172 | 0 | if (Ty->isBooleanType()) { |
7173 | 0 | Width = Info.Ctx.getTypeSize(Ty); |
7174 | 0 | AdjustedVal = AdjustedVal.extend(Width); |
7175 | 0 | } |
7176 | |
|
7177 | 0 | SmallVector<uint8_t, 8> Bytes(Width / 8); |
7178 | 0 | llvm::StoreIntToMemory(AdjustedVal, &*Bytes.begin(), Width / 8); |
7179 | 0 | Buffer.writeObject(Offset, Bytes); |
7180 | 0 | return true; |
7181 | 0 | } |
7182 | | |
7183 | 0 | bool visitFloat(const APFloat &Val, QualType Ty, CharUnits Offset) { |
7184 | 0 | APSInt AsInt(Val.bitcastToAPInt()); |
7185 | 0 | return visitInt(AsInt, Ty, Offset); |
7186 | 0 | } |
7187 | | |
7188 | | public: |
7189 | | static std::optional<BitCastBuffer> |
7190 | 0 | convert(EvalInfo &Info, const APValue &Src, const CastExpr *BCE) { |
7191 | 0 | CharUnits DstSize = Info.Ctx.getTypeSizeInChars(BCE->getType()); |
7192 | 0 | APValueToBufferConverter Converter(Info, DstSize, BCE); |
7193 | 0 | if (!Converter.visit(Src, BCE->getSubExpr()->getType())) |
7194 | 0 | return std::nullopt; |
7195 | 0 | return Converter.Buffer; |
7196 | 0 | } |
7197 | | }; |
7198 | | |
7199 | | /// Write an BitCastBuffer into an APValue. |
7200 | | class BufferToAPValueConverter { |
7201 | | EvalInfo &Info; |
7202 | | const BitCastBuffer &Buffer; |
7203 | | const CastExpr *BCE; |
7204 | | |
7205 | | BufferToAPValueConverter(EvalInfo &Info, const BitCastBuffer &Buffer, |
7206 | | const CastExpr *BCE) |
7207 | 0 | : Info(Info), Buffer(Buffer), BCE(BCE) {} |
7208 | | |
7209 | | // Emit an unsupported bit_cast type error. Sema refuses to build a bit_cast |
7210 | | // with an invalid type, so anything left is a deficiency on our part (FIXME). |
7211 | | // Ideally this will be unreachable. |
7212 | 0 | std::nullopt_t unsupportedType(QualType Ty) { |
7213 | 0 | Info.FFDiag(BCE->getBeginLoc(), |
7214 | 0 | diag::note_constexpr_bit_cast_unsupported_type) |
7215 | 0 | << Ty; |
7216 | 0 | return std::nullopt; |
7217 | 0 | } |
7218 | | |
7219 | 0 | std::nullopt_t unrepresentableValue(QualType Ty, const APSInt &Val) { |
7220 | 0 | Info.FFDiag(BCE->getBeginLoc(), |
7221 | 0 | diag::note_constexpr_bit_cast_unrepresentable_value) |
7222 | 0 | << Ty << toString(Val, /*Radix=*/10); |
7223 | 0 | return std::nullopt; |
7224 | 0 | } |
7225 | | |
7226 | | std::optional<APValue> visit(const BuiltinType *T, CharUnits Offset, |
7227 | 0 | const EnumType *EnumSugar = nullptr) { |
7228 | 0 | if (T->isNullPtrType()) { |
7229 | 0 | uint64_t NullValue = Info.Ctx.getTargetNullPointerValue(QualType(T, 0)); |
7230 | 0 | return APValue((Expr *)nullptr, |
7231 | 0 | /*Offset=*/CharUnits::fromQuantity(NullValue), |
7232 | 0 | APValue::NoLValuePath{}, /*IsNullPtr=*/true); |
7233 | 0 | } |
7234 | | |
7235 | 0 | CharUnits SizeOf = Info.Ctx.getTypeSizeInChars(T); |
7236 | | |
7237 | | // Work around floating point types that contain unused padding bytes. This |
7238 | | // is really just `long double` on x86, which is the only fundamental type |
7239 | | // with padding bytes. |
7240 | 0 | if (T->isRealFloatingType()) { |
7241 | 0 | const llvm::fltSemantics &Semantics = |
7242 | 0 | Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); |
7243 | 0 | unsigned NumBits = llvm::APFloatBase::getSizeInBits(Semantics); |
7244 | 0 | assert(NumBits % 8 == 0); |
7245 | 0 | CharUnits NumBytes = CharUnits::fromQuantity(NumBits / 8); |
7246 | 0 | if (NumBytes != SizeOf) |
7247 | 0 | SizeOf = NumBytes; |
7248 | 0 | } |
7249 | | |
7250 | 0 | SmallVector<uint8_t, 8> Bytes; |
7251 | 0 | if (!Buffer.readObject(Offset, SizeOf, Bytes)) { |
7252 | | // If this is std::byte or unsigned char, then its okay to store an |
7253 | | // indeterminate value. |
7254 | 0 | bool IsStdByte = EnumSugar && EnumSugar->isStdByteType(); |
7255 | 0 | bool IsUChar = |
7256 | 0 | !EnumSugar && (T->isSpecificBuiltinType(BuiltinType::UChar) || |
7257 | 0 | T->isSpecificBuiltinType(BuiltinType::Char_U)); |
7258 | 0 | if (!IsStdByte && !IsUChar) { |
7259 | 0 | QualType DisplayType(EnumSugar ? (const Type *)EnumSugar : T, 0); |
7260 | 0 | Info.FFDiag(BCE->getExprLoc(), |
7261 | 0 | diag::note_constexpr_bit_cast_indet_dest) |
7262 | 0 | << DisplayType << Info.Ctx.getLangOpts().CharIsSigned; |
7263 | 0 | return std::nullopt; |
7264 | 0 | } |
7265 | | |
7266 | 0 | return APValue::IndeterminateValue(); |
7267 | 0 | } |
7268 | | |
7269 | 0 | APSInt Val(SizeOf.getQuantity() * Info.Ctx.getCharWidth(), true); |
7270 | 0 | llvm::LoadIntFromMemory(Val, &*Bytes.begin(), Bytes.size()); |
7271 | |
|
7272 | 0 | if (T->isIntegralOrEnumerationType()) { |
7273 | 0 | Val.setIsSigned(T->isSignedIntegerOrEnumerationType()); |
7274 | |
|
7275 | 0 | unsigned IntWidth = Info.Ctx.getIntWidth(QualType(T, 0)); |
7276 | 0 | if (IntWidth != Val.getBitWidth()) { |
7277 | 0 | APSInt Truncated = Val.trunc(IntWidth); |
7278 | 0 | if (Truncated.extend(Val.getBitWidth()) != Val) |
7279 | 0 | return unrepresentableValue(QualType(T, 0), Val); |
7280 | 0 | Val = Truncated; |
7281 | 0 | } |
7282 | | |
7283 | 0 | return APValue(Val); |
7284 | 0 | } |
7285 | | |
7286 | 0 | if (T->isRealFloatingType()) { |
7287 | 0 | const llvm::fltSemantics &Semantics = |
7288 | 0 | Info.Ctx.getFloatTypeSemantics(QualType(T, 0)); |
7289 | 0 | return APValue(APFloat(Semantics, Val)); |
7290 | 0 | } |
7291 | | |
7292 | 0 | return unsupportedType(QualType(T, 0)); |
7293 | 0 | } |
7294 | | |
7295 | 0 | std::optional<APValue> visit(const RecordType *RTy, CharUnits Offset) { |
7296 | 0 | const RecordDecl *RD = RTy->getAsRecordDecl(); |
7297 | 0 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
7298 | |
|
7299 | 0 | unsigned NumBases = 0; |
7300 | 0 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
7301 | 0 | NumBases = CXXRD->getNumBases(); |
7302 | |
|
7303 | 0 | APValue ResultVal(APValue::UninitStruct(), NumBases, |
7304 | 0 | std::distance(RD->field_begin(), RD->field_end())); |
7305 | | |
7306 | | // Visit the base classes. |
7307 | 0 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
7308 | 0 | for (size_t I = 0, E = CXXRD->getNumBases(); I != E; ++I) { |
7309 | 0 | const CXXBaseSpecifier &BS = CXXRD->bases_begin()[I]; |
7310 | 0 | CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); |
7311 | 0 | if (BaseDecl->isEmpty() || |
7312 | 0 | Info.Ctx.getASTRecordLayout(BaseDecl).getNonVirtualSize().isZero()) |
7313 | 0 | continue; |
7314 | | |
7315 | 0 | std::optional<APValue> SubObj = visitType( |
7316 | 0 | BS.getType(), Layout.getBaseClassOffset(BaseDecl) + Offset); |
7317 | 0 | if (!SubObj) |
7318 | 0 | return std::nullopt; |
7319 | 0 | ResultVal.getStructBase(I) = *SubObj; |
7320 | 0 | } |
7321 | 0 | } |
7322 | | |
7323 | | // Visit the fields. |
7324 | 0 | unsigned FieldIdx = 0; |
7325 | 0 | for (FieldDecl *FD : RD->fields()) { |
7326 | | // FIXME: We don't currently support bit-fields. A lot of the logic for |
7327 | | // this is in CodeGen, so we need to factor it around. |
7328 | 0 | if (FD->isBitField()) { |
7329 | 0 | Info.FFDiag(BCE->getBeginLoc(), |
7330 | 0 | diag::note_constexpr_bit_cast_unsupported_bitfield); |
7331 | 0 | return std::nullopt; |
7332 | 0 | } |
7333 | | |
7334 | 0 | uint64_t FieldOffsetBits = Layout.getFieldOffset(FieldIdx); |
7335 | 0 | assert(FieldOffsetBits % Info.Ctx.getCharWidth() == 0); |
7336 | | |
7337 | 0 | CharUnits FieldOffset = |
7338 | 0 | CharUnits::fromQuantity(FieldOffsetBits / Info.Ctx.getCharWidth()) + |
7339 | 0 | Offset; |
7340 | 0 | QualType FieldTy = FD->getType(); |
7341 | 0 | std::optional<APValue> SubObj = visitType(FieldTy, FieldOffset); |
7342 | 0 | if (!SubObj) |
7343 | 0 | return std::nullopt; |
7344 | 0 | ResultVal.getStructField(FieldIdx) = *SubObj; |
7345 | 0 | ++FieldIdx; |
7346 | 0 | } |
7347 | | |
7348 | 0 | return ResultVal; |
7349 | 0 | } |
7350 | | |
7351 | 0 | std::optional<APValue> visit(const EnumType *Ty, CharUnits Offset) { |
7352 | 0 | QualType RepresentationType = Ty->getDecl()->getIntegerType(); |
7353 | 0 | assert(!RepresentationType.isNull() && |
7354 | 0 | "enum forward decl should be caught by Sema"); |
7355 | 0 | const auto *AsBuiltin = |
7356 | 0 | RepresentationType.getCanonicalType()->castAs<BuiltinType>(); |
7357 | | // Recurse into the underlying type. Treat std::byte transparently as |
7358 | | // unsigned char. |
7359 | 0 | return visit(AsBuiltin, Offset, /*EnumTy=*/Ty); |
7360 | 0 | } |
7361 | | |
7362 | 0 | std::optional<APValue> visit(const ConstantArrayType *Ty, CharUnits Offset) { |
7363 | 0 | size_t Size = Ty->getSize().getLimitedValue(); |
7364 | 0 | CharUnits ElementWidth = Info.Ctx.getTypeSizeInChars(Ty->getElementType()); |
7365 | |
|
7366 | 0 | APValue ArrayValue(APValue::UninitArray(), Size, Size); |
7367 | 0 | for (size_t I = 0; I != Size; ++I) { |
7368 | 0 | std::optional<APValue> ElementValue = |
7369 | 0 | visitType(Ty->getElementType(), Offset + I * ElementWidth); |
7370 | 0 | if (!ElementValue) |
7371 | 0 | return std::nullopt; |
7372 | 0 | ArrayValue.getArrayInitializedElt(I) = std::move(*ElementValue); |
7373 | 0 | } |
7374 | | |
7375 | 0 | return ArrayValue; |
7376 | 0 | } |
7377 | | |
7378 | 0 | std::optional<APValue> visit(const VectorType *VTy, CharUnits Offset) { |
7379 | 0 | QualType EltTy = VTy->getElementType(); |
7380 | 0 | unsigned NElts = VTy->getNumElements(); |
7381 | 0 | unsigned EltSize = |
7382 | 0 | VTy->isExtVectorBoolType() ? 1 : Info.Ctx.getTypeSize(EltTy); |
7383 | |
|
7384 | 0 | if ((NElts * EltSize) % Info.Ctx.getCharWidth() != 0) { |
7385 | | // The vector's size in bits is not a multiple of the target's byte size, |
7386 | | // so its layout is unspecified. For now, we'll simply treat these cases |
7387 | | // as unsupported (this should only be possible with OpenCL bool vectors |
7388 | | // whose element count isn't a multiple of the byte size). |
7389 | 0 | Info.FFDiag(BCE->getBeginLoc(), |
7390 | 0 | diag::note_constexpr_bit_cast_invalid_vector) |
7391 | 0 | << QualType(VTy, 0) << EltSize << NElts << Info.Ctx.getCharWidth(); |
7392 | 0 | return std::nullopt; |
7393 | 0 | } |
7394 | | |
7395 | 0 | if (EltTy->isRealFloatingType() && &Info.Ctx.getFloatTypeSemantics(EltTy) == |
7396 | 0 | &APFloat::x87DoubleExtended()) { |
7397 | | // The layout for x86_fp80 vectors seems to be handled very inconsistently |
7398 | | // by both clang and LLVM, so for now we won't allow bit_casts involving |
7399 | | // it in a constexpr context. |
7400 | 0 | Info.FFDiag(BCE->getBeginLoc(), |
7401 | 0 | diag::note_constexpr_bit_cast_unsupported_type) |
7402 | 0 | << EltTy; |
7403 | 0 | return std::nullopt; |
7404 | 0 | } |
7405 | | |
7406 | 0 | SmallVector<APValue, 4> Elts; |
7407 | 0 | Elts.reserve(NElts); |
7408 | 0 | if (VTy->isExtVectorBoolType()) { |
7409 | | // Special handling for OpenCL bool vectors: |
7410 | | // Since these vectors are stored as packed bits, but we can't read |
7411 | | // individual bits from the BitCastBuffer, we'll buffer all of the |
7412 | | // elements together into an appropriately sized APInt and write them all |
7413 | | // out at once. Because we don't accept vectors where NElts * EltSize |
7414 | | // isn't a multiple of the char size, there will be no padding space, so |
7415 | | // we don't have to worry about reading any padding data which didn't |
7416 | | // actually need to be accessed. |
7417 | 0 | bool BigEndian = Info.Ctx.getTargetInfo().isBigEndian(); |
7418 | |
|
7419 | 0 | SmallVector<uint8_t, 8> Bytes; |
7420 | 0 | Bytes.reserve(NElts / 8); |
7421 | 0 | if (!Buffer.readObject(Offset, CharUnits::fromQuantity(NElts / 8), Bytes)) |
7422 | 0 | return std::nullopt; |
7423 | | |
7424 | 0 | APSInt SValInt(NElts, true); |
7425 | 0 | llvm::LoadIntFromMemory(SValInt, &*Bytes.begin(), Bytes.size()); |
7426 | |
|
7427 | 0 | for (unsigned I = 0; I < NElts; ++I) { |
7428 | 0 | llvm::APInt Elt = |
7429 | 0 | SValInt.extractBits(1, (BigEndian ? NElts - I - 1 : I) * EltSize); |
7430 | 0 | Elts.emplace_back( |
7431 | 0 | APSInt(std::move(Elt), !EltTy->isSignedIntegerType())); |
7432 | 0 | } |
7433 | 0 | } else { |
7434 | | // Iterate over each of the elements and read them from the buffer at |
7435 | | // the appropriate offset. |
7436 | 0 | CharUnits EltSizeChars = Info.Ctx.getTypeSizeInChars(EltTy); |
7437 | 0 | for (unsigned I = 0; I < NElts; ++I) { |
7438 | 0 | std::optional<APValue> EltValue = |
7439 | 0 | visitType(EltTy, Offset + I * EltSizeChars); |
7440 | 0 | if (!EltValue) |
7441 | 0 | return std::nullopt; |
7442 | 0 | Elts.push_back(std::move(*EltValue)); |
7443 | 0 | } |
7444 | 0 | } |
7445 | | |
7446 | 0 | return APValue(Elts.data(), Elts.size()); |
7447 | 0 | } |
7448 | | |
7449 | 0 | std::optional<APValue> visit(const Type *Ty, CharUnits Offset) { |
7450 | 0 | return unsupportedType(QualType(Ty, 0)); |
7451 | 0 | } |
7452 | | |
7453 | 0 | std::optional<APValue> visitType(QualType Ty, CharUnits Offset) { |
7454 | 0 | QualType Can = Ty.getCanonicalType(); |
7455 | |
|
7456 | 0 | switch (Can->getTypeClass()) { |
7457 | 0 | #define TYPE(Class, Base) \ |
7458 | 0 | case Type::Class: \ |
7459 | 0 | return visit(cast<Class##Type>(Can.getTypePtr()), Offset); |
7460 | 0 | #define ABSTRACT_TYPE(Class, Base) |
7461 | 0 | #define NON_CANONICAL_TYPE(Class, Base) \ |
7462 | 0 | case Type::Class: \ |
7463 | 0 | llvm_unreachable("non-canonical type should be impossible!"); |
7464 | 0 | #define DEPENDENT_TYPE(Class, Base) \ |
7465 | 0 | case Type::Class: \ |
7466 | 0 | llvm_unreachable( \ |
7467 | 0 | "dependent types aren't supported in the constant evaluator!"); |
7468 | 0 | #define NON_CANONICAL_UNLESS_DEPENDENT(Class, Base) \ |
7469 | 0 | case Type::Class: \ |
7470 | 0 | llvm_unreachable("either dependent or not canonical!"); |
7471 | 0 | #include "clang/AST/TypeNodes.inc" |
7472 | 0 | } |
7473 | 0 | llvm_unreachable("Unhandled Type::TypeClass"); |
7474 | 0 | } |
7475 | | |
7476 | | public: |
7477 | | // Pull out a full value of type DstType. |
7478 | | static std::optional<APValue> convert(EvalInfo &Info, BitCastBuffer &Buffer, |
7479 | 0 | const CastExpr *BCE) { |
7480 | 0 | BufferToAPValueConverter Converter(Info, Buffer, BCE); |
7481 | 0 | return Converter.visitType(BCE->getType(), CharUnits::fromQuantity(0)); |
7482 | 0 | } |
7483 | | }; |
7484 | | |
7485 | | static bool checkBitCastConstexprEligibilityType(SourceLocation Loc, |
7486 | | QualType Ty, EvalInfo *Info, |
7487 | | const ASTContext &Ctx, |
7488 | 0 | bool CheckingDest) { |
7489 | 0 | Ty = Ty.getCanonicalType(); |
7490 | |
|
7491 | 0 | auto diag = [&](int Reason) { |
7492 | 0 | if (Info) |
7493 | 0 | Info->FFDiag(Loc, diag::note_constexpr_bit_cast_invalid_type) |
7494 | 0 | << CheckingDest << (Reason == 4) << Reason; |
7495 | 0 | return false; |
7496 | 0 | }; |
7497 | 0 | auto note = [&](int Construct, QualType NoteTy, SourceLocation NoteLoc) { |
7498 | 0 | if (Info) |
7499 | 0 | Info->Note(NoteLoc, diag::note_constexpr_bit_cast_invalid_subtype) |
7500 | 0 | << NoteTy << Construct << Ty; |
7501 | 0 | return false; |
7502 | 0 | }; |
7503 | |
|
7504 | 0 | if (Ty->isUnionType()) |
7505 | 0 | return diag(0); |
7506 | 0 | if (Ty->isPointerType()) |
7507 | 0 | return diag(1); |
7508 | 0 | if (Ty->isMemberPointerType()) |
7509 | 0 | return diag(2); |
7510 | 0 | if (Ty.isVolatileQualified()) |
7511 | 0 | return diag(3); |
7512 | | |
7513 | 0 | if (RecordDecl *Record = Ty->getAsRecordDecl()) { |
7514 | 0 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(Record)) { |
7515 | 0 | for (CXXBaseSpecifier &BS : CXXRD->bases()) |
7516 | 0 | if (!checkBitCastConstexprEligibilityType(Loc, BS.getType(), Info, Ctx, |
7517 | 0 | CheckingDest)) |
7518 | 0 | return note(1, BS.getType(), BS.getBeginLoc()); |
7519 | 0 | } |
7520 | 0 | for (FieldDecl *FD : Record->fields()) { |
7521 | 0 | if (FD->getType()->isReferenceType()) |
7522 | 0 | return diag(4); |
7523 | 0 | if (!checkBitCastConstexprEligibilityType(Loc, FD->getType(), Info, Ctx, |
7524 | 0 | CheckingDest)) |
7525 | 0 | return note(0, FD->getType(), FD->getBeginLoc()); |
7526 | 0 | } |
7527 | 0 | } |
7528 | | |
7529 | 0 | if (Ty->isArrayType() && |
7530 | 0 | !checkBitCastConstexprEligibilityType(Loc, Ctx.getBaseElementType(Ty), |
7531 | 0 | Info, Ctx, CheckingDest)) |
7532 | 0 | return false; |
7533 | | |
7534 | 0 | return true; |
7535 | 0 | } |
7536 | | |
7537 | | static bool checkBitCastConstexprEligibility(EvalInfo *Info, |
7538 | | const ASTContext &Ctx, |
7539 | 0 | const CastExpr *BCE) { |
7540 | 0 | bool DestOK = checkBitCastConstexprEligibilityType( |
7541 | 0 | BCE->getBeginLoc(), BCE->getType(), Info, Ctx, true); |
7542 | 0 | bool SourceOK = DestOK && checkBitCastConstexprEligibilityType( |
7543 | 0 | BCE->getBeginLoc(), |
7544 | 0 | BCE->getSubExpr()->getType(), Info, Ctx, false); |
7545 | 0 | return SourceOK; |
7546 | 0 | } |
7547 | | |
7548 | | static bool handleRValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, |
7549 | | const APValue &SourceRValue, |
7550 | 0 | const CastExpr *BCE) { |
7551 | 0 | assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && |
7552 | 0 | "no host or target supports non 8-bit chars"); |
7553 | | |
7554 | 0 | if (!checkBitCastConstexprEligibility(&Info, Info.Ctx, BCE)) |
7555 | 0 | return false; |
7556 | | |
7557 | | // Read out SourceValue into a char buffer. |
7558 | 0 | std::optional<BitCastBuffer> Buffer = |
7559 | 0 | APValueToBufferConverter::convert(Info, SourceRValue, BCE); |
7560 | 0 | if (!Buffer) |
7561 | 0 | return false; |
7562 | | |
7563 | | // Write out the buffer into a new APValue. |
7564 | 0 | std::optional<APValue> MaybeDestValue = |
7565 | 0 | BufferToAPValueConverter::convert(Info, *Buffer, BCE); |
7566 | 0 | if (!MaybeDestValue) |
7567 | 0 | return false; |
7568 | | |
7569 | 0 | DestValue = std::move(*MaybeDestValue); |
7570 | 0 | return true; |
7571 | 0 | } |
7572 | | |
7573 | | static bool handleLValueToRValueBitCast(EvalInfo &Info, APValue &DestValue, |
7574 | | APValue &SourceValue, |
7575 | 0 | const CastExpr *BCE) { |
7576 | 0 | assert(CHAR_BIT == 8 && Info.Ctx.getTargetInfo().getCharWidth() == 8 && |
7577 | 0 | "no host or target supports non 8-bit chars"); |
7578 | 0 | assert(SourceValue.isLValue() && |
7579 | 0 | "LValueToRValueBitcast requires an lvalue operand!"); |
7580 | | |
7581 | 0 | LValue SourceLValue; |
7582 | 0 | APValue SourceRValue; |
7583 | 0 | SourceLValue.setFrom(Info.Ctx, SourceValue); |
7584 | 0 | if (!handleLValueToRValueConversion( |
7585 | 0 | Info, BCE, BCE->getSubExpr()->getType().withConst(), SourceLValue, |
7586 | 0 | SourceRValue, /*WantObjectRepresentation=*/true)) |
7587 | 0 | return false; |
7588 | | |
7589 | 0 | return handleRValueToRValueBitCast(Info, DestValue, SourceRValue, BCE); |
7590 | 0 | } |
7591 | | |
7592 | | template <class Derived> |
7593 | | class ExprEvaluatorBase |
7594 | | : public ConstStmtVisitor<Derived, bool> { |
7595 | | private: |
7596 | 0 | Derived &getDerived() { return static_cast<Derived&>(*this); } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::getDerived() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::getDerived() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::getDerived() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::getDerived() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::getDerived() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::getDerived() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::getDerived() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::getDerived() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::getDerived() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::getDerived() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::getDerived() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::getDerived() Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::getDerived() |
7597 | 0 | bool DerivedSuccess(const APValue &V, const Expr *E) { |
7598 | 0 | return getDerived().Success(V, E); |
7599 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::DerivedSuccess(clang::APValue const&, clang::Expr const*) |
7600 | 0 | bool DerivedZeroInitialization(const Expr *E) { |
7601 | 0 | return getDerived().ZeroInitialization(E); |
7602 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::DerivedZeroInitialization(clang::Expr const*) |
7603 | | |
7604 | | // Check whether a conditional operator with a non-constant condition is a |
7605 | | // potential constant expression. If neither arm is a potential constant |
7606 | | // expression, then the conditional operator is not either. |
7607 | | template<typename ConditionalOperator> |
7608 | 0 | void CheckPotentialConstantConditional(const ConditionalOperator *E) { |
7609 | 0 | assert(Info.checkingPotentialConstantExpression()); |
7610 | | |
7611 | | // Speculatively evaluate both arms. |
7612 | 0 | SmallVector<PartialDiagnosticAt, 8> Diag; |
7613 | 0 | { |
7614 | 0 | SpeculativeEvaluationRAII Speculate(Info, &Diag); |
7615 | 0 | StmtVisitorTy::Visit(E->getFalseExpr()); |
7616 | 0 | if (Diag.empty()) |
7617 | 0 | return; |
7618 | 0 | } |
7619 | | |
7620 | 0 | { |
7621 | 0 | SpeculativeEvaluationRAII Speculate(Info, &Diag); |
7622 | 0 | Diag.clear(); |
7623 | 0 | StmtVisitorTy::Visit(E->getTrueExpr()); |
7624 | 0 | if (Diag.empty()) |
7625 | 0 | return; |
7626 | 0 | } |
7627 | | |
7628 | 0 | Error(E, diag::note_constexpr_conditional_never_const); |
7629 | 0 | } Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::CheckPotentialConstantConditional<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:void (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::CheckPotentialConstantConditional<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) |
7630 | | |
7631 | | |
7632 | | template<typename ConditionalOperator> |
7633 | 0 | bool HandleConditionalOperator(const ConditionalOperator *E) { |
7634 | 0 | bool BoolResult; |
7635 | 0 | if (!EvaluateAsBooleanCondition(E->getCond(), BoolResult, Info)) { |
7636 | 0 | if (Info.checkingPotentialConstantExpression() && Info.noteFailure()) { |
7637 | 0 | CheckPotentialConstantConditional(E); |
7638 | 0 | return false; |
7639 | 0 | } |
7640 | 0 | if (Info.noteFailure()) { |
7641 | 0 | StmtVisitorTy::Visit(E->getTrueExpr()); |
7642 | 0 | StmtVisitorTy::Visit(E->getFalseExpr()); |
7643 | 0 | } |
7644 | 0 | return false; |
7645 | 0 | } |
7646 | | |
7647 | 0 | Expr *EvalExpr = BoolResult ? E->getTrueExpr() : E->getFalseExpr(); |
7648 | 0 | return StmtVisitorTy::Visit(EvalExpr); |
7649 | 0 | } Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::HandleConditionalOperator<clang::ConditionalOperator>(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:bool (anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::HandleConditionalOperator<clang::BinaryConditionalOperator>(clang::BinaryConditionalOperator const*) |
7650 | | |
7651 | | protected: |
7652 | | EvalInfo &Info; |
7653 | | typedef ConstStmtVisitor<Derived, bool> StmtVisitorTy; |
7654 | | typedef ExprEvaluatorBase ExprEvaluatorBaseTy; |
7655 | | |
7656 | 1 | OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { |
7657 | 1 | return Info.CCEDiag(E, D); |
7658 | 1 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::CCEDiag(clang::Expr const*, unsigned int) Line | Count | Source | 7656 | 1 | OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { | 7657 | 1 | return Info.CCEDiag(E, D); | 7658 | 1 | } |
|
7659 | | |
7660 | 0 | bool ZeroInitialization(const Expr *E) { return Error(E); } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::ZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::ZeroInitialization(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::ZeroInitialization(clang::Expr const*) |
7661 | | |
7662 | 0 | bool IsConstantEvaluatedBuiltinCall(const CallExpr *E) { |
7663 | 0 | unsigned BuiltinOp = E->getBuiltinCallee(); |
7664 | 0 | return BuiltinOp != 0 && |
7665 | 0 | Info.Ctx.BuiltinInfo.isConstantEvaluated(BuiltinOp); |
7666 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::IsConstantEvaluatedBuiltinCall(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::IsConstantEvaluatedBuiltinCall(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::IsConstantEvaluatedBuiltinCall(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::IsConstantEvaluatedBuiltinCall(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::IsConstantEvaluatedBuiltinCall(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::IsConstantEvaluatedBuiltinCall(clang::CallExpr const*) |
7667 | | |
7668 | | public: |
7669 | 20 | ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) Line | Count | Source | 7669 | 9 | ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} |
Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) Line | Count | Source | 7669 | 10 | ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} |
Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::ExprEvaluatorBase((anonymous namespace)::EvalInfo&) Line | Count | Source | 7669 | 1 | ExprEvaluatorBase(EvalInfo &Info) : Info(Info) {} |
|
7670 | | |
7671 | 0 | EvalInfo &getEvalInfo() { return Info; } |
7672 | | |
7673 | | /// Report an evaluation error. This should only be called when an error is |
7674 | | /// first discovered. When propagating an error, just return false. |
7675 | 1 | bool Error(const Expr *E, diag::kind D) { |
7676 | 1 | Info.FFDiag(E, D) << E->getSourceRange(); |
7677 | 1 | return false; |
7678 | 1 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::Error(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::Error(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::Error(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::Error(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::Error(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::Error(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::Error(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::Error(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::Error(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::Error(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::Error(clang::Expr const*, unsigned int) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::Error(clang::Expr const*, unsigned int) ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::Error(clang::Expr const*, unsigned int) Line | Count | Source | 7675 | 1 | bool Error(const Expr *E, diag::kind D) { | 7676 | 1 | Info.FFDiag(E, D) << E->getSourceRange(); | 7677 | 1 | return false; | 7678 | 1 | } |
|
7679 | 1 | bool Error(const Expr *E) { |
7680 | 1 | return Error(E, diag::note_invalid_subexpr_in_const_expr); |
7681 | 1 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::Error(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::Error(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::Error(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::Error(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::Error(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::Error(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::Error(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::Error(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::Error(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::Error(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::Error(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::Error(clang::Expr const*) ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::Error(clang::Expr const*) Line | Count | Source | 7679 | 1 | bool Error(const Expr *E) { | 7680 | 1 | return Error(E, diag::note_invalid_subexpr_in_const_expr); | 7681 | 1 | } |
|
7682 | | |
7683 | 0 | bool VisitStmt(const Stmt *) { |
7684 | 0 | llvm_unreachable("Expression evaluator should not be called on stmts"); |
7685 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitStmt(clang::Stmt const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitStmt(clang::Stmt const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitStmt(clang::Stmt const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitStmt(clang::Stmt const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitStmt(clang::Stmt const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitStmt(clang::Stmt const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitStmt(clang::Stmt const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitStmt(clang::Stmt const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitStmt(clang::Stmt const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitStmt(clang::Stmt const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitStmt(clang::Stmt const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitStmt(clang::Stmt const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitStmt(clang::Stmt const*) |
7686 | 0 | bool VisitExpr(const Expr *E) { |
7687 | 0 | return Error(E); |
7688 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitExpr(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitExpr(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitExpr(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitExpr(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitExpr(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitExpr(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitExpr(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitExpr(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitExpr(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitExpr(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitExpr(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitExpr(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitExpr(clang::Expr const*) |
7689 | | |
7690 | 0 | bool VisitPredefinedExpr(const PredefinedExpr *E) { |
7691 | 0 | return StmtVisitorTy::Visit(E->getFunctionName()); |
7692 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitPredefinedExpr(clang::PredefinedExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitPredefinedExpr(clang::PredefinedExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitPredefinedExpr(clang::PredefinedExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitPredefinedExpr(clang::PredefinedExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitPredefinedExpr(clang::PredefinedExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitPredefinedExpr(clang::PredefinedExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitPredefinedExpr(clang::PredefinedExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitPredefinedExpr(clang::PredefinedExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitPredefinedExpr(clang::PredefinedExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitPredefinedExpr(clang::PredefinedExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitPredefinedExpr(clang::PredefinedExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitPredefinedExpr(clang::PredefinedExpr const*) |
7693 | 0 | bool VisitConstantExpr(const ConstantExpr *E) { |
7694 | 0 | if (E->hasAPValueResult()) |
7695 | 0 | return DerivedSuccess(E->getAPValueResult(), E); |
7696 | | |
7697 | 0 | return StmtVisitorTy::Visit(E->getSubExpr()); |
7698 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitConstantExpr(clang::ConstantExpr const*) |
7699 | | |
7700 | | bool VisitParenExpr(const ParenExpr *E) |
7701 | 0 | { return StmtVisitorTy::Visit(E->getSubExpr()); } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitParenExpr(clang::ParenExpr const*) |
7702 | | bool VisitUnaryExtension(const UnaryOperator *E) |
7703 | 0 | { return StmtVisitorTy::Visit(E->getSubExpr()); } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitUnaryExtension(clang::UnaryOperator const*) |
7704 | | bool VisitUnaryPlus(const UnaryOperator *E) |
7705 | 0 | { return StmtVisitorTy::Visit(E->getSubExpr()); } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitUnaryPlus(clang::UnaryOperator const*) |
7706 | | bool VisitChooseExpr(const ChooseExpr *E) |
7707 | 0 | { return StmtVisitorTy::Visit(E->getChosenSubExpr()); } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitChooseExpr(clang::ChooseExpr const*) |
7708 | | bool VisitGenericSelectionExpr(const GenericSelectionExpr *E) |
7709 | 0 | { return StmtVisitorTy::Visit(E->getResultExpr()); } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitGenericSelectionExpr(clang::GenericSelectionExpr const*) |
7710 | | bool VisitSubstNonTypeTemplateParmExpr(const SubstNonTypeTemplateParmExpr *E) |
7711 | 0 | { return StmtVisitorTy::Visit(E->getReplacement()); } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitSubstNonTypeTemplateParmExpr(clang::SubstNonTypeTemplateParmExpr const*) |
7712 | 0 | bool VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *E) { |
7713 | 0 | TempVersionRAII RAII(*Info.CurrentCall); |
7714 | 0 | SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); |
7715 | 0 | return StmtVisitorTy::Visit(E->getExpr()); |
7716 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitCXXDefaultArgExpr(clang::CXXDefaultArgExpr const*) |
7717 | 0 | bool VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *E) { |
7718 | 0 | TempVersionRAII RAII(*Info.CurrentCall); |
7719 | | // The initializer may not have been parsed yet, or might be erroneous. |
7720 | 0 | if (!E->getExpr()) |
7721 | 0 | return Error(E); |
7722 | 0 | SourceLocExprScopeGuard Guard(E, Info.CurrentCall->CurSourceLocExprScope); |
7723 | 0 | return StmtVisitorTy::Visit(E->getExpr()); |
7724 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitCXXDefaultInitExpr(clang::CXXDefaultInitExpr const*) |
7725 | | |
7726 | 0 | bool VisitExprWithCleanups(const ExprWithCleanups *E) { |
7727 | 0 | FullExpressionRAII Scope(Info); |
7728 | 0 | return StmtVisitorTy::Visit(E->getSubExpr()) && Scope.destroy(); |
7729 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitExprWithCleanups(clang::ExprWithCleanups const*) |
7730 | | |
7731 | | // Temporaries are registered when created, so we don't care about |
7732 | | // CXXBindTemporaryExpr. |
7733 | 0 | bool VisitCXXBindTemporaryExpr(const CXXBindTemporaryExpr *E) { |
7734 | 0 | return StmtVisitorTy::Visit(E->getSubExpr()); |
7735 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitCXXBindTemporaryExpr(clang::CXXBindTemporaryExpr const*) |
7736 | | |
7737 | 0 | bool VisitCXXReinterpretCastExpr(const CXXReinterpretCastExpr *E) { |
7738 | 0 | CCEDiag(E, diag::note_constexpr_invalid_cast) << 0; |
7739 | 0 | return static_cast<Derived*>(this)->VisitCastExpr(E); |
7740 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitCXXReinterpretCastExpr(clang::CXXReinterpretCastExpr const*) |
7741 | 0 | bool VisitCXXDynamicCastExpr(const CXXDynamicCastExpr *E) { |
7742 | 0 | if (!Info.Ctx.getLangOpts().CPlusPlus20) |
7743 | 0 | CCEDiag(E, diag::note_constexpr_invalid_cast) << 1; |
7744 | 0 | return static_cast<Derived*>(this)->VisitCastExpr(E); |
7745 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitCXXDynamicCastExpr(clang::CXXDynamicCastExpr const*) |
7746 | 0 | bool VisitBuiltinBitCastExpr(const BuiltinBitCastExpr *E) { |
7747 | 0 | return static_cast<Derived*>(this)->VisitCastExpr(E); |
7748 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitBuiltinBitCastExpr(clang::BuiltinBitCastExpr const*) |
7749 | | |
7750 | 0 | bool VisitBinaryOperator(const BinaryOperator *E) { |
7751 | 0 | switch (E->getOpcode()) { |
7752 | 0 | default: |
7753 | 0 | return Error(E); |
7754 | | |
7755 | 0 | case BO_Comma: |
7756 | 0 | VisitIgnoredValue(E->getLHS()); |
7757 | 0 | return StmtVisitorTy::Visit(E->getRHS()); |
7758 | | |
7759 | 0 | case BO_PtrMemD: |
7760 | 0 | case BO_PtrMemI: { |
7761 | 0 | LValue Obj; |
7762 | 0 | if (!HandleMemberPointerAccess(Info, E, Obj)) |
7763 | 0 | return false; |
7764 | 0 | APValue Result; |
7765 | 0 | if (!handleLValueToRValueConversion(Info, E, E->getType(), Obj, Result)) |
7766 | 0 | return false; |
7767 | 0 | return DerivedSuccess(Result, E); |
7768 | 0 | } |
7769 | 0 | } |
7770 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) |
7771 | | |
7772 | 0 | bool VisitCXXRewrittenBinaryOperator(const CXXRewrittenBinaryOperator *E) { |
7773 | 0 | return StmtVisitorTy::Visit(E->getSemanticForm()); |
7774 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitCXXRewrittenBinaryOperator(clang::CXXRewrittenBinaryOperator const*) |
7775 | | |
7776 | 0 | bool VisitBinaryConditionalOperator(const BinaryConditionalOperator *E) { |
7777 | | // Evaluate and cache the common expression. We treat it as a temporary, |
7778 | | // even though it's not quite the same thing. |
7779 | 0 | LValue CommonLV; |
7780 | 0 | if (!Evaluate(Info.CurrentCall->createTemporary( |
7781 | 0 | E->getOpaqueValue(), |
7782 | 0 | getStorageType(Info.Ctx, E->getOpaqueValue()), |
7783 | 0 | ScopeKind::FullExpression, CommonLV), |
7784 | 0 | Info, E->getCommon())) |
7785 | 0 | return false; |
7786 | | |
7787 | 0 | return HandleConditionalOperator(E); |
7788 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitBinaryConditionalOperator(clang::BinaryConditionalOperator const*) |
7789 | | |
7790 | 0 | bool VisitConditionalOperator(const ConditionalOperator *E) { |
7791 | 0 | bool IsBcpCall = false; |
7792 | | // If the condition (ignoring parens) is a __builtin_constant_p call, |
7793 | | // the result is a constant expression if it can be folded without |
7794 | | // side-effects. This is an important GNU extension. See GCC PR38377 |
7795 | | // for discussion. |
7796 | 0 | if (const CallExpr *CallCE = |
7797 | 0 | dyn_cast<CallExpr>(E->getCond()->IgnoreParenCasts())) |
7798 | 0 | if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) |
7799 | 0 | IsBcpCall = true; |
7800 | | |
7801 | | // Always assume __builtin_constant_p(...) ? ... : ... is a potential |
7802 | | // constant expression; we can't check whether it's potentially foldable. |
7803 | | // FIXME: We should instead treat __builtin_constant_p as non-constant if |
7804 | | // it would return 'false' in this mode. |
7805 | 0 | if (Info.checkingPotentialConstantExpression() && IsBcpCall) |
7806 | 0 | return false; |
7807 | | |
7808 | 0 | FoldConstant Fold(Info, IsBcpCall); |
7809 | 0 | if (!HandleConditionalOperator(E)) { |
7810 | 0 | Fold.keepDiagnostics(); |
7811 | 0 | return false; |
7812 | 0 | } |
7813 | | |
7814 | 0 | return true; |
7815 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitConditionalOperator(clang::ConditionalOperator const*) |
7816 | | |
7817 | 0 | bool VisitOpaqueValueExpr(const OpaqueValueExpr *E) { |
7818 | 0 | if (APValue *Value = Info.CurrentCall->getCurrentTemporary(E); |
7819 | 0 | Value && !Value->isAbsent()) |
7820 | 0 | return DerivedSuccess(*Value, E); |
7821 | | |
7822 | 0 | const Expr *Source = E->getSourceExpr(); |
7823 | 0 | if (!Source) |
7824 | 0 | return Error(E); |
7825 | 0 | if (Source == E) { |
7826 | 0 | assert(0 && "OpaqueValueExpr recursively refers to itself"); |
7827 | 0 | return Error(E); |
7828 | 0 | } |
7829 | 0 | return StmtVisitorTy::Visit(Source); |
7830 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitOpaqueValueExpr(clang::OpaqueValueExpr const*) |
7831 | | |
7832 | 0 | bool VisitPseudoObjectExpr(const PseudoObjectExpr *E) { |
7833 | 0 | for (const Expr *SemE : E->semantics()) { |
7834 | 0 | if (auto *OVE = dyn_cast<OpaqueValueExpr>(SemE)) { |
7835 | | // FIXME: We can't handle the case where an OpaqueValueExpr is also the |
7836 | | // result expression: there could be two different LValues that would |
7837 | | // refer to the same object in that case, and we can't model that. |
7838 | 0 | if (SemE == E->getResultExpr()) |
7839 | 0 | return Error(E); |
7840 | | |
7841 | | // Unique OVEs get evaluated if and when we encounter them when |
7842 | | // emitting the rest of the semantic form, rather than eagerly. |
7843 | 0 | if (OVE->isUnique()) |
7844 | 0 | continue; |
7845 | | |
7846 | 0 | LValue LV; |
7847 | 0 | if (!Evaluate(Info.CurrentCall->createTemporary( |
7848 | 0 | OVE, getStorageType(Info.Ctx, OVE), |
7849 | 0 | ScopeKind::FullExpression, LV), |
7850 | 0 | Info, OVE->getSourceExpr())) |
7851 | 0 | return false; |
7852 | 0 | } else if (SemE == E->getResultExpr()) { |
7853 | 0 | if (!StmtVisitorTy::Visit(SemE)) |
7854 | 0 | return false; |
7855 | 0 | } else { |
7856 | 0 | if (!EvaluateIgnoredValue(Info, SemE)) |
7857 | 0 | return false; |
7858 | 0 | } |
7859 | 0 | } |
7860 | 0 | return true; |
7861 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitPseudoObjectExpr(clang::PseudoObjectExpr const*) |
7862 | | |
7863 | 0 | bool VisitCallExpr(const CallExpr *E) { |
7864 | 0 | APValue Result; |
7865 | 0 | if (!handleCallExpr(E, Result, nullptr)) |
7866 | 0 | return false; |
7867 | 0 | return DerivedSuccess(Result, E); |
7868 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitCallExpr(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitCallExpr(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitCallExpr(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitCallExpr(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitCallExpr(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitCallExpr(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitCallExpr(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitCallExpr(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitCallExpr(clang::CallExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitCallExpr(clang::CallExpr const*) |
7869 | | |
7870 | | bool handleCallExpr(const CallExpr *E, APValue &Result, |
7871 | 0 | const LValue *ResultSlot) { |
7872 | 0 | CallScopeRAII CallScope(Info); |
7873 | |
|
7874 | 0 | const Expr *Callee = E->getCallee()->IgnoreParens(); |
7875 | 0 | QualType CalleeType = Callee->getType(); |
7876 | |
|
7877 | 0 | const FunctionDecl *FD = nullptr; |
7878 | 0 | LValue *This = nullptr, ThisVal; |
7879 | 0 | auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); |
7880 | 0 | bool HasQualifier = false; |
7881 | |
|
7882 | 0 | CallRef Call; |
7883 | | |
7884 | | // Extract function decl and 'this' pointer from the callee. |
7885 | 0 | if (CalleeType->isSpecificBuiltinType(BuiltinType::BoundMember)) { |
7886 | 0 | const CXXMethodDecl *Member = nullptr; |
7887 | 0 | if (const MemberExpr *ME = dyn_cast<MemberExpr>(Callee)) { |
7888 | | // Explicit bound member calls, such as x.f() or p->g(); |
7889 | 0 | if (!EvaluateObjectArgument(Info, ME->getBase(), ThisVal)) |
7890 | 0 | return false; |
7891 | 0 | Member = dyn_cast<CXXMethodDecl>(ME->getMemberDecl()); |
7892 | 0 | if (!Member) |
7893 | 0 | return Error(Callee); |
7894 | 0 | This = &ThisVal; |
7895 | 0 | HasQualifier = ME->hasQualifier(); |
7896 | 0 | } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(Callee)) { |
7897 | | // Indirect bound member calls ('.*' or '->*'). |
7898 | 0 | const ValueDecl *D = |
7899 | 0 | HandleMemberPointerAccess(Info, BE, ThisVal, false); |
7900 | 0 | if (!D) |
7901 | 0 | return false; |
7902 | 0 | Member = dyn_cast<CXXMethodDecl>(D); |
7903 | 0 | if (!Member) |
7904 | 0 | return Error(Callee); |
7905 | 0 | This = &ThisVal; |
7906 | 0 | } else if (const auto *PDE = dyn_cast<CXXPseudoDestructorExpr>(Callee)) { |
7907 | 0 | if (!Info.getLangOpts().CPlusPlus20) |
7908 | 0 | Info.CCEDiag(PDE, diag::note_constexpr_pseudo_destructor); |
7909 | 0 | return EvaluateObjectArgument(Info, PDE->getBase(), ThisVal) && |
7910 | 0 | HandleDestruction(Info, PDE, ThisVal, PDE->getDestroyedType()); |
7911 | 0 | } else |
7912 | 0 | return Error(Callee); |
7913 | 0 | FD = Member; |
7914 | 0 | } else if (CalleeType->isFunctionPointerType()) { |
7915 | 0 | LValue CalleeLV; |
7916 | 0 | if (!EvaluatePointer(Callee, CalleeLV, Info)) |
7917 | 0 | return false; |
7918 | | |
7919 | 0 | if (!CalleeLV.getLValueOffset().isZero()) |
7920 | 0 | return Error(Callee); |
7921 | 0 | if (CalleeLV.isNullPointer()) { |
7922 | 0 | Info.FFDiag(Callee, diag::note_constexpr_null_callee) |
7923 | 0 | << const_cast<Expr *>(Callee); |
7924 | 0 | return false; |
7925 | 0 | } |
7926 | 0 | FD = dyn_cast_or_null<FunctionDecl>( |
7927 | 0 | CalleeLV.getLValueBase().dyn_cast<const ValueDecl *>()); |
7928 | 0 | if (!FD) |
7929 | 0 | return Error(Callee); |
7930 | | // Don't call function pointers which have been cast to some other type. |
7931 | | // Per DR (no number yet), the caller and callee can differ in noexcept. |
7932 | 0 | if (!Info.Ctx.hasSameFunctionTypeIgnoringExceptionSpec( |
7933 | 0 | CalleeType->getPointeeType(), FD->getType())) { |
7934 | 0 | return Error(E); |
7935 | 0 | } |
7936 | | |
7937 | | // For an (overloaded) assignment expression, evaluate the RHS before the |
7938 | | // LHS. |
7939 | 0 | auto *OCE = dyn_cast<CXXOperatorCallExpr>(E); |
7940 | 0 | if (OCE && OCE->isAssignmentOp()) { |
7941 | 0 | assert(Args.size() == 2 && "wrong number of arguments in assignment"); |
7942 | 0 | Call = Info.CurrentCall->createCall(FD); |
7943 | 0 | bool HasThis = false; |
7944 | 0 | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
7945 | 0 | HasThis = MD->isImplicitObjectMemberFunction(); |
7946 | 0 | if (!EvaluateArgs(HasThis ? Args.slice(1) : Args, Call, Info, FD, |
7947 | 0 | /*RightToLeft=*/true)) |
7948 | 0 | return false; |
7949 | 0 | } |
7950 | | |
7951 | | // Overloaded operator calls to member functions are represented as normal |
7952 | | // calls with '*this' as the first argument. |
7953 | 0 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
7954 | 0 | if (MD && MD->isImplicitObjectMemberFunction()) { |
7955 | | // FIXME: When selecting an implicit conversion for an overloaded |
7956 | | // operator delete, we sometimes try to evaluate calls to conversion |
7957 | | // operators without a 'this' parameter! |
7958 | 0 | if (Args.empty()) |
7959 | 0 | return Error(E); |
7960 | | |
7961 | 0 | if (!EvaluateObjectArgument(Info, Args[0], ThisVal)) |
7962 | 0 | return false; |
7963 | 0 | This = &ThisVal; |
7964 | | |
7965 | | // If this is syntactically a simple assignment using a trivial |
7966 | | // assignment operator, start the lifetimes of union members as needed, |
7967 | | // per C++20 [class.union]5. |
7968 | 0 | if (Info.getLangOpts().CPlusPlus20 && OCE && |
7969 | 0 | OCE->getOperator() == OO_Equal && MD->isTrivial() && |
7970 | 0 | !MaybeHandleUnionActiveMemberChange(Info, Args[0], ThisVal)) |
7971 | 0 | return false; |
7972 | | |
7973 | 0 | Args = Args.slice(1); |
7974 | 0 | } else if (MD && MD->isLambdaStaticInvoker()) { |
7975 | | // Map the static invoker for the lambda back to the call operator. |
7976 | | // Conveniently, we don't have to slice out the 'this' argument (as is |
7977 | | // being done for the non-static case), since a static member function |
7978 | | // doesn't have an implicit argument passed in. |
7979 | 0 | const CXXRecordDecl *ClosureClass = MD->getParent(); |
7980 | 0 | assert( |
7981 | 0 | ClosureClass->captures_begin() == ClosureClass->captures_end() && |
7982 | 0 | "Number of captures must be zero for conversion to function-ptr"); |
7983 | | |
7984 | 0 | const CXXMethodDecl *LambdaCallOp = |
7985 | 0 | ClosureClass->getLambdaCallOperator(); |
7986 | | |
7987 | | // Set 'FD', the function that will be called below, to the call |
7988 | | // operator. If the closure object represents a generic lambda, find |
7989 | | // the corresponding specialization of the call operator. |
7990 | |
|
7991 | 0 | if (ClosureClass->isGenericLambda()) { |
7992 | 0 | assert(MD->isFunctionTemplateSpecialization() && |
7993 | 0 | "A generic lambda's static-invoker function must be a " |
7994 | 0 | "template specialization"); |
7995 | 0 | const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs(); |
7996 | 0 | FunctionTemplateDecl *CallOpTemplate = |
7997 | 0 | LambdaCallOp->getDescribedFunctionTemplate(); |
7998 | 0 | void *InsertPos = nullptr; |
7999 | 0 | FunctionDecl *CorrespondingCallOpSpecialization = |
8000 | 0 | CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos); |
8001 | 0 | assert(CorrespondingCallOpSpecialization && |
8002 | 0 | "We must always have a function call operator specialization " |
8003 | 0 | "that corresponds to our static invoker specialization"); |
8004 | 0 | FD = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization); |
8005 | 0 | } else |
8006 | 0 | FD = LambdaCallOp; |
8007 | 0 | } else if (FD->isReplaceableGlobalAllocationFunction()) { |
8008 | 0 | if (FD->getDeclName().getCXXOverloadedOperator() == OO_New || |
8009 | 0 | FD->getDeclName().getCXXOverloadedOperator() == OO_Array_New) { |
8010 | 0 | LValue Ptr; |
8011 | 0 | if (!HandleOperatorNewCall(Info, E, Ptr)) |
8012 | 0 | return false; |
8013 | 0 | Ptr.moveInto(Result); |
8014 | 0 | return CallScope.destroy(); |
8015 | 0 | } else { |
8016 | 0 | return HandleOperatorDeleteCall(Info, E) && CallScope.destroy(); |
8017 | 0 | } |
8018 | 0 | } |
8019 | 0 | } else |
8020 | 0 | return Error(E); |
8021 | | |
8022 | | // Evaluate the arguments now if we've not already done so. |
8023 | 0 | if (!Call) { |
8024 | 0 | Call = Info.CurrentCall->createCall(FD); |
8025 | 0 | if (!EvaluateArgs(Args, Call, Info, FD)) |
8026 | 0 | return false; |
8027 | 0 | } |
8028 | | |
8029 | 0 | SmallVector<QualType, 4> CovariantAdjustmentPath; |
8030 | 0 | if (This) { |
8031 | 0 | auto *NamedMember = dyn_cast<CXXMethodDecl>(FD); |
8032 | 0 | if (NamedMember && NamedMember->isVirtual() && !HasQualifier) { |
8033 | | // Perform virtual dispatch, if necessary. |
8034 | 0 | FD = HandleVirtualDispatch(Info, E, *This, NamedMember, |
8035 | 0 | CovariantAdjustmentPath); |
8036 | 0 | if (!FD) |
8037 | 0 | return false; |
8038 | 0 | } else if (NamedMember && NamedMember->isImplicitObjectMemberFunction()) { |
8039 | | // Check that the 'this' pointer points to an object of the right type. |
8040 | | // FIXME: If this is an assignment operator call, we may need to change |
8041 | | // the active union member before we check this. |
8042 | 0 | if (!checkNonVirtualMemberCallThisPointer(Info, E, *This, NamedMember)) |
8043 | 0 | return false; |
8044 | 0 | } |
8045 | 0 | } |
8046 | | |
8047 | | // Destructor calls are different enough that they have their own codepath. |
8048 | 0 | if (auto *DD = dyn_cast<CXXDestructorDecl>(FD)) { |
8049 | 0 | assert(This && "no 'this' pointer for destructor call"); |
8050 | 0 | return HandleDestruction(Info, E, *This, |
8051 | 0 | Info.Ctx.getRecordType(DD->getParent())) && |
8052 | 0 | CallScope.destroy(); |
8053 | 0 | } |
8054 | | |
8055 | 0 | const FunctionDecl *Definition = nullptr; |
8056 | 0 | Stmt *Body = FD->getBody(Definition); |
8057 | |
|
8058 | 0 | if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body) || |
8059 | 0 | !HandleFunctionCall(E->getExprLoc(), Definition, This, E, Args, Call, |
8060 | 0 | Body, Info, Result, ResultSlot)) |
8061 | 0 | return false; |
8062 | | |
8063 | 0 | if (!CovariantAdjustmentPath.empty() && |
8064 | 0 | !HandleCovariantReturnAdjustment(Info, E, Result, |
8065 | 0 | CovariantAdjustmentPath)) |
8066 | 0 | return false; |
8067 | | |
8068 | 0 | return CallScope.destroy(); |
8069 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::handleCallExpr(clang::CallExpr const*, clang::APValue&, (anonymous namespace)::LValue const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::handleCallExpr(clang::CallExpr const*, clang::APValue&, (anonymous namespace)::LValue const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::handleCallExpr(clang::CallExpr const*, clang::APValue&, (anonymous namespace)::LValue const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::handleCallExpr(clang::CallExpr const*, clang::APValue&, (anonymous namespace)::LValue const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::handleCallExpr(clang::CallExpr const*, clang::APValue&, (anonymous namespace)::LValue const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::handleCallExpr(clang::CallExpr const*, clang::APValue&, (anonymous namespace)::LValue const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::handleCallExpr(clang::CallExpr const*, clang::APValue&, (anonymous namespace)::LValue const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::handleCallExpr(clang::CallExpr const*, clang::APValue&, (anonymous namespace)::LValue const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::handleCallExpr(clang::CallExpr const*, clang::APValue&, (anonymous namespace)::LValue const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::handleCallExpr(clang::CallExpr const*, clang::APValue&, (anonymous namespace)::LValue const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::handleCallExpr(clang::CallExpr const*, clang::APValue&, (anonymous namespace)::LValue const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::handleCallExpr(clang::CallExpr const*, clang::APValue&, (anonymous namespace)::LValue const*) |
8070 | | |
8071 | 0 | bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
8072 | 0 | return StmtVisitorTy::Visit(E->getInitializer()); |
8073 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitCompoundLiteralExpr(clang::CompoundLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitCompoundLiteralExpr(clang::CompoundLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitCompoundLiteralExpr(clang::CompoundLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitCompoundLiteralExpr(clang::CompoundLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitCompoundLiteralExpr(clang::CompoundLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitCompoundLiteralExpr(clang::CompoundLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitCompoundLiteralExpr(clang::CompoundLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitCompoundLiteralExpr(clang::CompoundLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitCompoundLiteralExpr(clang::CompoundLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitCompoundLiteralExpr(clang::CompoundLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitCompoundLiteralExpr(clang::CompoundLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitCompoundLiteralExpr(clang::CompoundLiteralExpr const*) |
8074 | 0 | bool VisitInitListExpr(const InitListExpr *E) { |
8075 | 0 | if (E->getNumInits() == 0) |
8076 | 0 | return DerivedZeroInitialization(E); |
8077 | 0 | if (E->getNumInits() == 1) |
8078 | 0 | return StmtVisitorTy::Visit(E->getInit(0)); |
8079 | 0 | return Error(E); |
8080 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitInitListExpr(clang::InitListExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitInitListExpr(clang::InitListExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitInitListExpr(clang::InitListExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitInitListExpr(clang::InitListExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitInitListExpr(clang::InitListExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitInitListExpr(clang::InitListExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitInitListExpr(clang::InitListExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitInitListExpr(clang::InitListExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitInitListExpr(clang::InitListExpr const*) |
8081 | 0 | bool VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { |
8082 | 0 | return DerivedZeroInitialization(E); |
8083 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitImplicitValueInitExpr(clang::ImplicitValueInitExpr const*) |
8084 | 0 | bool VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { |
8085 | 0 | return DerivedZeroInitialization(E); |
8086 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitCXXScalarValueInitExpr(clang::CXXScalarValueInitExpr const*) |
8087 | 0 | bool VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { |
8088 | 0 | return DerivedZeroInitialization(E); |
8089 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitCXXNullPtrLiteralExpr(clang::CXXNullPtrLiteralExpr const*) |
8090 | | |
8091 | | /// A member expression where the object is a prvalue is itself a prvalue. |
8092 | 0 | bool VisitMemberExpr(const MemberExpr *E) { |
8093 | 0 | assert(!Info.Ctx.getLangOpts().CPlusPlus11 && |
8094 | 0 | "missing temporary materialization conversion"); |
8095 | 0 | assert(!E->isArrow() && "missing call to bound member function?"); |
8096 | | |
8097 | 0 | APValue Val; |
8098 | 0 | if (!Evaluate(Val, Info, E->getBase())) |
8099 | 0 | return false; |
8100 | | |
8101 | 0 | QualType BaseTy = E->getBase()->getType(); |
8102 | |
|
8103 | 0 | const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl()); |
8104 | 0 | if (!FD) return Error(E); |
8105 | 0 | assert(!FD->getType()->isReferenceType() && "prvalue reference?"); |
8106 | 0 | assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == |
8107 | 0 | FD->getParent()->getCanonicalDecl() && "record / field mismatch"); |
8108 | | |
8109 | | // Note: there is no lvalue base here. But this case should only ever |
8110 | | // happen in C or in C++98, where we cannot be evaluating a constexpr |
8111 | | // constructor, which is the only case the base matters. |
8112 | 0 | CompleteObject Obj(APValue::LValueBase(), &Val, BaseTy); |
8113 | 0 | SubobjectDesignator Designator(BaseTy); |
8114 | 0 | Designator.addDeclUnchecked(FD); |
8115 | |
|
8116 | 0 | APValue Result; |
8117 | 0 | return extractSubobject(Info, E, Obj, Designator, Result) && |
8118 | 0 | DerivedSuccess(Result, E); |
8119 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) |
8120 | | |
8121 | 0 | bool VisitExtVectorElementExpr(const ExtVectorElementExpr *E) { |
8122 | 0 | APValue Val; |
8123 | 0 | if (!Evaluate(Val, Info, E->getBase())) |
8124 | 0 | return false; |
8125 | | |
8126 | 0 | if (Val.isVector()) { |
8127 | 0 | SmallVector<uint32_t, 4> Indices; |
8128 | 0 | E->getEncodedElementAccess(Indices); |
8129 | 0 | if (Indices.size() == 1) { |
8130 | | // Return scalar. |
8131 | 0 | return DerivedSuccess(Val.getVectorElt(Indices[0]), E); |
8132 | 0 | } else { |
8133 | | // Construct new APValue vector. |
8134 | 0 | SmallVector<APValue, 4> Elts; |
8135 | 0 | for (unsigned I = 0; I < Indices.size(); ++I) { |
8136 | 0 | Elts.push_back(Val.getVectorElt(Indices[I])); |
8137 | 0 | } |
8138 | 0 | APValue VecResult(Elts.data(), Indices.size()); |
8139 | 0 | return DerivedSuccess(VecResult, E); |
8140 | 0 | } |
8141 | 0 | } |
8142 | | |
8143 | 0 | return false; |
8144 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitExtVectorElementExpr(clang::ExtVectorElementExpr const*) |
8145 | | |
8146 | 6 | bool VisitCastExpr(const CastExpr *E) { |
8147 | 6 | switch (E->getCastKind()) { |
8148 | 1 | default: |
8149 | 1 | break; |
8150 | | |
8151 | 1 | case CK_AtomicToNonAtomic: { |
8152 | 0 | APValue AtomicVal; |
8153 | | // This does not need to be done in place even for class/array types: |
8154 | | // atomic-to-non-atomic conversion implies copying the object |
8155 | | // representation. |
8156 | 0 | if (!Evaluate(AtomicVal, Info, E->getSubExpr())) |
8157 | 0 | return false; |
8158 | 0 | return DerivedSuccess(AtomicVal, E); |
8159 | 0 | } |
8160 | | |
8161 | 0 | case CK_NoOp: |
8162 | 0 | case CK_UserDefinedConversion: |
8163 | 0 | return StmtVisitorTy::Visit(E->getSubExpr()); |
8164 | | |
8165 | 5 | case CK_LValueToRValue: { |
8166 | 5 | LValue LVal; |
8167 | 5 | if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) |
8168 | 0 | return false; |
8169 | 5 | APValue RVal; |
8170 | | // Note, we use the subexpression's type in order to retain cv-qualifiers. |
8171 | 5 | if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), |
8172 | 5 | LVal, RVal)) |
8173 | 5 | return false; |
8174 | 0 | return DerivedSuccess(RVal, E); |
8175 | 5 | } |
8176 | 0 | case CK_LValueToRValueBitCast: { |
8177 | 0 | APValue DestValue, SourceValue; |
8178 | 0 | if (!Evaluate(SourceValue, Info, E->getSubExpr())) |
8179 | 0 | return false; |
8180 | 0 | if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E)) |
8181 | 0 | return false; |
8182 | 0 | return DerivedSuccess(DestValue, E); |
8183 | 0 | } |
8184 | | |
8185 | 0 | case CK_AddressSpaceConversion: { |
8186 | 0 | APValue Value; |
8187 | 0 | if (!Evaluate(Value, Info, E->getSubExpr())) |
8188 | 0 | return false; |
8189 | 0 | return DerivedSuccess(Value, E); |
8190 | 0 | } |
8191 | 6 | } |
8192 | | |
8193 | 1 | return Error(E); |
8194 | 6 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitCastExpr(clang::CastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitCastExpr(clang::CastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitCastExpr(clang::CastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitCastExpr(clang::CastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitCastExpr(clang::CastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitCastExpr(clang::CastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitCastExpr(clang::CastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitCastExpr(clang::CastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitCastExpr(clang::CastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitCastExpr(clang::CastExpr const*) ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitCastExpr(clang::CastExpr const*) Line | Count | Source | 8146 | 5 | bool VisitCastExpr(const CastExpr *E) { | 8147 | 5 | switch (E->getCastKind()) { | 8148 | 0 | default: | 8149 | 0 | break; | 8150 | | | 8151 | 0 | case CK_AtomicToNonAtomic: { | 8152 | 0 | APValue AtomicVal; | 8153 | | // This does not need to be done in place even for class/array types: | 8154 | | // atomic-to-non-atomic conversion implies copying the object | 8155 | | // representation. | 8156 | 0 | if (!Evaluate(AtomicVal, Info, E->getSubExpr())) | 8157 | 0 | return false; | 8158 | 0 | return DerivedSuccess(AtomicVal, E); | 8159 | 0 | } | 8160 | | | 8161 | 0 | case CK_NoOp: | 8162 | 0 | case CK_UserDefinedConversion: | 8163 | 0 | return StmtVisitorTy::Visit(E->getSubExpr()); | 8164 | | | 8165 | 5 | case CK_LValueToRValue: { | 8166 | 5 | LValue LVal; | 8167 | 5 | if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) | 8168 | 0 | return false; | 8169 | 5 | APValue RVal; | 8170 | | // Note, we use the subexpression's type in order to retain cv-qualifiers. | 8171 | 5 | if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), | 8172 | 5 | LVal, RVal)) | 8173 | 5 | return false; | 8174 | 0 | return DerivedSuccess(RVal, E); | 8175 | 5 | } | 8176 | 0 | case CK_LValueToRValueBitCast: { | 8177 | 0 | APValue DestValue, SourceValue; | 8178 | 0 | if (!Evaluate(SourceValue, Info, E->getSubExpr())) | 8179 | 0 | return false; | 8180 | 0 | if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E)) | 8181 | 0 | return false; | 8182 | 0 | return DerivedSuccess(DestValue, E); | 8183 | 0 | } | 8184 | | | 8185 | 0 | case CK_AddressSpaceConversion: { | 8186 | 0 | APValue Value; | 8187 | 0 | if (!Evaluate(Value, Info, E->getSubExpr())) | 8188 | 0 | return false; | 8189 | 0 | return DerivedSuccess(Value, E); | 8190 | 0 | } | 8191 | 5 | } | 8192 | | | 8193 | 0 | return Error(E); | 8194 | 5 | } |
Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitCastExpr(clang::CastExpr const*) ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitCastExpr(clang::CastExpr const*) Line | Count | Source | 8146 | 1 | bool VisitCastExpr(const CastExpr *E) { | 8147 | 1 | switch (E->getCastKind()) { | 8148 | 1 | default: | 8149 | 1 | break; | 8150 | | | 8151 | 1 | case CK_AtomicToNonAtomic: { | 8152 | 0 | APValue AtomicVal; | 8153 | | // This does not need to be done in place even for class/array types: | 8154 | | // atomic-to-non-atomic conversion implies copying the object | 8155 | | // representation. | 8156 | 0 | if (!Evaluate(AtomicVal, Info, E->getSubExpr())) | 8157 | 0 | return false; | 8158 | 0 | return DerivedSuccess(AtomicVal, E); | 8159 | 0 | } | 8160 | | | 8161 | 0 | case CK_NoOp: | 8162 | 0 | case CK_UserDefinedConversion: | 8163 | 0 | return StmtVisitorTy::Visit(E->getSubExpr()); | 8164 | | | 8165 | 0 | case CK_LValueToRValue: { | 8166 | 0 | LValue LVal; | 8167 | 0 | if (!EvaluateLValue(E->getSubExpr(), LVal, Info)) | 8168 | 0 | return false; | 8169 | 0 | APValue RVal; | 8170 | | // Note, we use the subexpression's type in order to retain cv-qualifiers. | 8171 | 0 | if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), | 8172 | 0 | LVal, RVal)) | 8173 | 0 | return false; | 8174 | 0 | return DerivedSuccess(RVal, E); | 8175 | 0 | } | 8176 | 0 | case CK_LValueToRValueBitCast: { | 8177 | 0 | APValue DestValue, SourceValue; | 8178 | 0 | if (!Evaluate(SourceValue, Info, E->getSubExpr())) | 8179 | 0 | return false; | 8180 | 0 | if (!handleLValueToRValueBitCast(Info, DestValue, SourceValue, E)) | 8181 | 0 | return false; | 8182 | 0 | return DerivedSuccess(DestValue, E); | 8183 | 0 | } | 8184 | | | 8185 | 0 | case CK_AddressSpaceConversion: { | 8186 | 0 | APValue Value; | 8187 | 0 | if (!Evaluate(Value, Info, E->getSubExpr())) | 8188 | 0 | return false; | 8189 | 0 | return DerivedSuccess(Value, E); | 8190 | 0 | } | 8191 | 1 | } | 8192 | | | 8193 | 1 | return Error(E); | 8194 | 1 | } |
|
8195 | | |
8196 | 0 | bool VisitUnaryPostInc(const UnaryOperator *UO) { |
8197 | 0 | return VisitUnaryPostIncDec(UO); |
8198 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitUnaryPostInc(clang::UnaryOperator const*) |
8199 | 0 | bool VisitUnaryPostDec(const UnaryOperator *UO) { |
8200 | 0 | return VisitUnaryPostIncDec(UO); |
8201 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitUnaryPostDec(clang::UnaryOperator const*) |
8202 | 0 | bool VisitUnaryPostIncDec(const UnaryOperator *UO) { |
8203 | 0 | if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
8204 | 0 | return Error(UO); |
8205 | | |
8206 | 0 | LValue LVal; |
8207 | 0 | if (!EvaluateLValue(UO->getSubExpr(), LVal, Info)) |
8208 | 0 | return false; |
8209 | 0 | APValue RVal; |
8210 | 0 | if (!handleIncDec(this->Info, UO, LVal, UO->getSubExpr()->getType(), |
8211 | 0 | UO->isIncrementOp(), &RVal)) |
8212 | 0 | return false; |
8213 | 0 | return DerivedSuccess(RVal, UO); |
8214 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitUnaryPostIncDec(clang::UnaryOperator const*) |
8215 | | |
8216 | 0 | bool VisitStmtExpr(const StmtExpr *E) { |
8217 | | // We will have checked the full-expressions inside the statement expression |
8218 | | // when they were completed, and don't need to check them again now. |
8219 | 0 | llvm::SaveAndRestore NotCheckingForUB(Info.CheckingForUndefinedBehavior, |
8220 | 0 | false); |
8221 | |
|
8222 | 0 | const CompoundStmt *CS = E->getSubStmt(); |
8223 | 0 | if (CS->body_empty()) |
8224 | 0 | return true; |
8225 | | |
8226 | 0 | BlockScopeRAII Scope(Info); |
8227 | 0 | for (CompoundStmt::const_body_iterator BI = CS->body_begin(), |
8228 | 0 | BE = CS->body_end(); |
8229 | 0 | /**/; ++BI) { |
8230 | 0 | if (BI + 1 == BE) { |
8231 | 0 | const Expr *FinalExpr = dyn_cast<Expr>(*BI); |
8232 | 0 | if (!FinalExpr) { |
8233 | 0 | Info.FFDiag((*BI)->getBeginLoc(), |
8234 | 0 | diag::note_constexpr_stmt_expr_unsupported); |
8235 | 0 | return false; |
8236 | 0 | } |
8237 | 0 | return this->Visit(FinalExpr) && Scope.destroy(); |
8238 | 0 | } |
8239 | | |
8240 | 0 | APValue ReturnValue; |
8241 | 0 | StmtResult Result = { ReturnValue, nullptr }; |
8242 | 0 | EvalStmtResult ESR = EvaluateStmt(Result, Info, *BI); |
8243 | 0 | if (ESR != ESR_Succeeded) { |
8244 | | // FIXME: If the statement-expression terminated due to 'return', |
8245 | | // 'break', or 'continue', it would be nice to propagate that to |
8246 | | // the outer statement evaluation rather than bailing out. |
8247 | 0 | if (ESR != ESR_Failed) |
8248 | 0 | Info.FFDiag((*BI)->getBeginLoc(), |
8249 | 0 | diag::note_constexpr_stmt_expr_unsupported); |
8250 | 0 | return false; |
8251 | 0 | } |
8252 | 0 | } |
8253 | | |
8254 | 0 | llvm_unreachable("Return from function from the loop above."); |
8255 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitStmtExpr(clang::StmtExpr const*) |
8256 | | |
8257 | | /// Visit a value which is evaluated, but whose value is ignored. |
8258 | 0 | void VisitIgnoredValue(const Expr *E) { |
8259 | 0 | EvaluateIgnoredValue(Info, E); |
8260 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitIgnoredValue(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitIgnoredValue(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::MemberPointerExprEvaluator>::VisitIgnoredValue(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FixedPointExprEvaluator>::VisitIgnoredValue(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::FloatExprEvaluator>::VisitIgnoredValue(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ComplexExprEvaluator>::VisitIgnoredValue(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::RecordExprEvaluator>::VisitIgnoredValue(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::ArrayExprEvaluator>::VisitIgnoredValue(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::AtomicExprEvaluator>::VisitIgnoredValue(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VectorExprEvaluator>::VisitIgnoredValue(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitIgnoredValue(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::VoidExprEvaluator>::VisitIgnoredValue(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::PointerExprEvaluator>::VisitIgnoredValue(clang::Expr const*) |
8261 | | |
8262 | | /// Potentially visit a MemberExpr's base expression. |
8263 | 0 | void VisitIgnoredBaseExpression(const Expr *E) { |
8264 | | // While MSVC doesn't evaluate the base expression, it does diagnose the |
8265 | | // presence of side-effecting behavior. |
8266 | 0 | if (Info.getLangOpts().MSVCCompat && !E->HasSideEffects(Info.Ctx)) |
8267 | 0 | return; |
8268 | 0 | VisitIgnoredValue(E); |
8269 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitIgnoredBaseExpression(clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::ExprEvaluatorBase<(anonymous namespace)::IntExprEvaluator>::VisitIgnoredBaseExpression(clang::Expr const*) |
8270 | | }; |
8271 | | |
8272 | | } // namespace |
8273 | | |
8274 | | //===----------------------------------------------------------------------===// |
8275 | | // Common base class for lvalue and temporary evaluation. |
8276 | | //===----------------------------------------------------------------------===// |
8277 | | namespace { |
8278 | | template<class Derived> |
8279 | | class LValueExprEvaluatorBase |
8280 | | : public ExprEvaluatorBase<Derived> { |
8281 | | protected: |
8282 | | LValue &Result; |
8283 | | bool InvalidBaseOK; |
8284 | | typedef LValueExprEvaluatorBase LValueExprEvaluatorBaseTy; |
8285 | | typedef ExprEvaluatorBase<Derived> ExprEvaluatorBaseTy; |
8286 | | |
8287 | 9 | bool Success(APValue::LValueBase B) { |
8288 | 9 | Result.set(B); |
8289 | 9 | return true; |
8290 | 9 | } |
8291 | | |
8292 | 0 | bool evaluatePointer(const Expr *E, LValue &Result) { |
8293 | 0 | return EvaluatePointer(E, Result, this->Info, InvalidBaseOK); |
8294 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::LValueExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::evaluatePointer(clang::Expr const*, (anonymous namespace)::LValue&) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::LValueExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::evaluatePointer(clang::Expr const*, (anonymous namespace)::LValue&) |
8295 | | |
8296 | | public: |
8297 | | LValueExprEvaluatorBase(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) |
8298 | | : ExprEvaluatorBaseTy(Info), Result(Result), |
8299 | 9 | InvalidBaseOK(InvalidBaseOK) {} ExprConstant.cpp:(anonymous namespace)::LValueExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::LValueExprEvaluatorBase((anonymous namespace)::EvalInfo&, (anonymous namespace)::LValue&, bool) Line | Count | Source | 8299 | 9 | InvalidBaseOK(InvalidBaseOK) {} |
Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::LValueExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::LValueExprEvaluatorBase((anonymous namespace)::EvalInfo&, (anonymous namespace)::LValue&, bool) |
8300 | | |
8301 | 0 | bool Success(const APValue &V, const Expr *E) { |
8302 | 0 | Result.setFrom(this->Info.Ctx, V); |
8303 | 0 | return true; |
8304 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::LValueExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::Success(clang::APValue const&, clang::Expr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::LValueExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::Success(clang::APValue const&, clang::Expr const*) |
8305 | | |
8306 | 0 | bool VisitMemberExpr(const MemberExpr *E) { |
8307 | | // Handle non-static data members. |
8308 | 0 | QualType BaseTy; |
8309 | 0 | bool EvalOK; |
8310 | 0 | if (E->isArrow()) { |
8311 | 0 | EvalOK = evaluatePointer(E->getBase(), Result); |
8312 | 0 | BaseTy = E->getBase()->getType()->castAs<PointerType>()->getPointeeType(); |
8313 | 0 | } else if (E->getBase()->isPRValue()) { |
8314 | 0 | assert(E->getBase()->getType()->isRecordType()); |
8315 | 0 | EvalOK = EvaluateTemporary(E->getBase(), Result, this->Info); |
8316 | 0 | BaseTy = E->getBase()->getType(); |
8317 | 0 | } else { |
8318 | 0 | EvalOK = this->Visit(E->getBase()); |
8319 | 0 | BaseTy = E->getBase()->getType(); |
8320 | 0 | } |
8321 | 0 | if (!EvalOK) { |
8322 | 0 | if (!InvalidBaseOK) |
8323 | 0 | return false; |
8324 | 0 | Result.setInvalid(E); |
8325 | 0 | return true; |
8326 | 0 | } |
8327 | | |
8328 | 0 | const ValueDecl *MD = E->getMemberDecl(); |
8329 | 0 | if (const FieldDecl *FD = dyn_cast<FieldDecl>(E->getMemberDecl())) { |
8330 | 0 | assert(BaseTy->castAs<RecordType>()->getDecl()->getCanonicalDecl() == |
8331 | 0 | FD->getParent()->getCanonicalDecl() && "record / field mismatch"); |
8332 | 0 | (void)BaseTy; |
8333 | 0 | if (!HandleLValueMember(this->Info, E, Result, FD)) |
8334 | 0 | return false; |
8335 | 0 | } else if (const IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(MD)) { |
8336 | 0 | if (!HandleLValueIndirectMember(this->Info, E, Result, IFD)) |
8337 | 0 | return false; |
8338 | 0 | } else |
8339 | 0 | return this->Error(E); |
8340 | | |
8341 | 0 | if (MD->getType()->isReferenceType()) { |
8342 | 0 | APValue RefValue; |
8343 | 0 | if (!handleLValueToRValueConversion(this->Info, E, MD->getType(), Result, |
8344 | 0 | RefValue)) |
8345 | 0 | return false; |
8346 | 0 | return Success(RefValue, E); |
8347 | 0 | } |
8348 | 0 | return true; |
8349 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::LValueExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::LValueExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitMemberExpr(clang::MemberExpr const*) |
8350 | | |
8351 | 0 | bool VisitBinaryOperator(const BinaryOperator *E) { |
8352 | 0 | switch (E->getOpcode()) { |
8353 | 0 | default: |
8354 | 0 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
8355 | | |
8356 | 0 | case BO_PtrMemD: |
8357 | 0 | case BO_PtrMemI: |
8358 | 0 | return HandleMemberPointerAccess(this->Info, E, Result); |
8359 | 0 | } |
8360 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::LValueExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::LValueExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitBinaryOperator(clang::BinaryOperator const*) |
8361 | | |
8362 | 0 | bool VisitCastExpr(const CastExpr *E) { |
8363 | 0 | switch (E->getCastKind()) { |
8364 | 0 | default: |
8365 | 0 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
8366 | | |
8367 | 0 | case CK_DerivedToBase: |
8368 | 0 | case CK_UncheckedDerivedToBase: |
8369 | 0 | if (!this->Visit(E->getSubExpr())) |
8370 | 0 | return false; |
8371 | | |
8372 | | // Now figure out the necessary offset to add to the base LV to get from |
8373 | | // the derived class to the base class. |
8374 | 0 | return HandleLValueBasePath(this->Info, E, E->getSubExpr()->getType(), |
8375 | 0 | Result); |
8376 | 0 | } |
8377 | 0 | } Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::LValueExprEvaluatorBase<(anonymous namespace)::TemporaryExprEvaluator>::VisitCastExpr(clang::CastExpr const*) Unexecuted instantiation: ExprConstant.cpp:(anonymous namespace)::LValueExprEvaluatorBase<(anonymous namespace)::LValueExprEvaluator>::VisitCastExpr(clang::CastExpr const*) |
8378 | | }; |
8379 | | } |
8380 | | |
8381 | | //===----------------------------------------------------------------------===// |
8382 | | // LValue Evaluation |
8383 | | // |
8384 | | // This is used for evaluating lvalues (in C and C++), xvalues (in C++11), |
8385 | | // function designators (in C), decl references to void objects (in C), and |
8386 | | // temporaries (if building with -Wno-address-of-temporary). |
8387 | | // |
8388 | | // LValue evaluation produces values comprising a base expression of one of the |
8389 | | // following types: |
8390 | | // - Declarations |
8391 | | // * VarDecl |
8392 | | // * FunctionDecl |
8393 | | // - Literals |
8394 | | // * CompoundLiteralExpr in C (and in global scope in C++) |
8395 | | // * StringLiteral |
8396 | | // * PredefinedExpr |
8397 | | // * ObjCStringLiteralExpr |
8398 | | // * ObjCEncodeExpr |
8399 | | // * AddrLabelExpr |
8400 | | // * BlockExpr |
8401 | | // * CallExpr for a MakeStringConstant builtin |
8402 | | // - typeid(T) expressions, as TypeInfoLValues |
8403 | | // - Locals and temporaries |
8404 | | // * MaterializeTemporaryExpr |
8405 | | // * Any Expr, with a CallIndex indicating the function in which the temporary |
8406 | | // was evaluated, for cases where the MaterializeTemporaryExpr is missing |
8407 | | // from the AST (FIXME). |
8408 | | // * A MaterializeTemporaryExpr that has static storage duration, with no |
8409 | | // CallIndex, for a lifetime-extended temporary. |
8410 | | // * The ConstantExpr that is currently being evaluated during evaluation of an |
8411 | | // immediate invocation. |
8412 | | // plus an offset in bytes. |
8413 | | //===----------------------------------------------------------------------===// |
8414 | | namespace { |
8415 | | class LValueExprEvaluator |
8416 | | : public LValueExprEvaluatorBase<LValueExprEvaluator> { |
8417 | | public: |
8418 | | LValueExprEvaluator(EvalInfo &Info, LValue &Result, bool InvalidBaseOK) : |
8419 | 9 | LValueExprEvaluatorBaseTy(Info, Result, InvalidBaseOK) {} |
8420 | | |
8421 | | bool VisitVarDecl(const Expr *E, const VarDecl *VD); |
8422 | | bool VisitUnaryPreIncDec(const UnaryOperator *UO); |
8423 | | |
8424 | | bool VisitCallExpr(const CallExpr *E); |
8425 | | bool VisitDeclRefExpr(const DeclRefExpr *E); |
8426 | 0 | bool VisitPredefinedExpr(const PredefinedExpr *E) { return Success(E); } |
8427 | | bool VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E); |
8428 | | bool VisitCompoundLiteralExpr(const CompoundLiteralExpr *E); |
8429 | | bool VisitMemberExpr(const MemberExpr *E); |
8430 | 0 | bool VisitStringLiteral(const StringLiteral *E) { return Success(E); } |
8431 | 0 | bool VisitObjCEncodeExpr(const ObjCEncodeExpr *E) { return Success(E); } |
8432 | | bool VisitCXXTypeidExpr(const CXXTypeidExpr *E); |
8433 | | bool VisitCXXUuidofExpr(const CXXUuidofExpr *E); |
8434 | | bool VisitArraySubscriptExpr(const ArraySubscriptExpr *E); |
8435 | | bool VisitUnaryDeref(const UnaryOperator *E); |
8436 | | bool VisitUnaryReal(const UnaryOperator *E); |
8437 | | bool VisitUnaryImag(const UnaryOperator *E); |
8438 | 0 | bool VisitUnaryPreInc(const UnaryOperator *UO) { |
8439 | 0 | return VisitUnaryPreIncDec(UO); |
8440 | 0 | } |
8441 | 0 | bool VisitUnaryPreDec(const UnaryOperator *UO) { |
8442 | 0 | return VisitUnaryPreIncDec(UO); |
8443 | 0 | } |
8444 | | bool VisitBinAssign(const BinaryOperator *BO); |
8445 | | bool VisitCompoundAssignOperator(const CompoundAssignOperator *CAO); |
8446 | | |
8447 | 0 | bool VisitCastExpr(const CastExpr *E) { |
8448 | 0 | switch (E->getCastKind()) { |
8449 | 0 | default: |
8450 | 0 | return LValueExprEvaluatorBaseTy::VisitCastExpr(E); |
8451 | | |
8452 | 0 | case CK_LValueBitCast: |
8453 | 0 | this->CCEDiag(E, diag::note_constexpr_invalid_cast) |
8454 | 0 | << 2 << Info.Ctx.getLangOpts().CPlusPlus; |
8455 | 0 | if (!Visit(E->getSubExpr())) |
8456 | 0 | return false; |
8457 | 0 | Result.Designator.setInvalid(); |
8458 | 0 | return true; |
8459 | | |
8460 | 0 | case CK_BaseToDerived: |
8461 | 0 | if (!Visit(E->getSubExpr())) |
8462 | 0 | return false; |
8463 | 0 | return HandleBaseToDerivedCast(Info, E, Result); |
8464 | | |
8465 | 0 | case CK_Dynamic: |
8466 | 0 | if (!Visit(E->getSubExpr())) |
8467 | 0 | return false; |
8468 | 0 | return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); |
8469 | 0 | } |
8470 | 0 | } |
8471 | | }; |
8472 | | } // end anonymous namespace |
8473 | | |
8474 | | /// Evaluate an expression as an lvalue. This can be legitimately called on |
8475 | | /// expressions which are not glvalues, in three cases: |
8476 | | /// * function designators in C, and |
8477 | | /// * "extern void" objects |
8478 | | /// * @selector() expressions in Objective-C |
8479 | | static bool EvaluateLValue(const Expr *E, LValue &Result, EvalInfo &Info, |
8480 | 9 | bool InvalidBaseOK) { |
8481 | 9 | assert(!E->isValueDependent()); |
8482 | 0 | assert(E->isGLValue() || E->getType()->isFunctionType() || |
8483 | 9 | E->getType()->isVoidType() || isa<ObjCSelectorExpr>(E->IgnoreParens())); |
8484 | 0 | return LValueExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); |
8485 | 9 | } |
8486 | | |
8487 | 9 | bool LValueExprEvaluator::VisitDeclRefExpr(const DeclRefExpr *E) { |
8488 | 9 | const NamedDecl *D = E->getDecl(); |
8489 | 9 | if (isa<FunctionDecl, MSGuidDecl, TemplateParamObjectDecl, |
8490 | 9 | UnnamedGlobalConstantDecl>(D)) |
8491 | 0 | return Success(cast<ValueDecl>(D)); |
8492 | 9 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
8493 | 9 | return VisitVarDecl(E, VD); |
8494 | 0 | if (const BindingDecl *BD = dyn_cast<BindingDecl>(D)) |
8495 | 0 | return Visit(BD->getBinding()); |
8496 | 0 | return Error(E); |
8497 | 0 | } |
8498 | | |
8499 | | |
8500 | 9 | bool LValueExprEvaluator::VisitVarDecl(const Expr *E, const VarDecl *VD) { |
8501 | | |
8502 | | // If we are within a lambda's call operator, check whether the 'VD' referred |
8503 | | // to within 'E' actually represents a lambda-capture that maps to a |
8504 | | // data-member/field within the closure object, and if so, evaluate to the |
8505 | | // field or what the field refers to. |
8506 | 9 | if (Info.CurrentCall && isLambdaCallOperator(Info.CurrentCall->Callee) && |
8507 | 9 | isa<DeclRefExpr>(E) && |
8508 | 9 | cast<DeclRefExpr>(E)->refersToEnclosingVariableOrCapture()) { |
8509 | | // We don't always have a complete capture-map when checking or inferring if |
8510 | | // the function call operator meets the requirements of a constexpr function |
8511 | | // - but we don't need to evaluate the captures to determine constexprness |
8512 | | // (dcl.constexpr C++17). |
8513 | 0 | if (Info.checkingPotentialConstantExpression()) |
8514 | 0 | return false; |
8515 | | |
8516 | 0 | if (auto *FD = Info.CurrentCall->LambdaCaptureFields.lookup(VD)) { |
8517 | 0 | const auto *MD = cast<CXXMethodDecl>(Info.CurrentCall->Callee); |
8518 | | |
8519 | | // Static lambda function call operators can't have captures. We already |
8520 | | // diagnosed this, so bail out here. |
8521 | 0 | if (MD->isStatic()) { |
8522 | 0 | assert(Info.CurrentCall->This == nullptr && |
8523 | 0 | "This should not be set for a static call operator"); |
8524 | 0 | return false; |
8525 | 0 | } |
8526 | | |
8527 | | // Start with 'Result' referring to the complete closure object... |
8528 | 0 | if (MD->isExplicitObjectMemberFunction()) { |
8529 | 0 | APValue *RefValue = |
8530 | 0 | Info.getParamSlot(Info.CurrentCall->Arguments, MD->getParamDecl(0)); |
8531 | 0 | Result.setFrom(Info.Ctx, *RefValue); |
8532 | 0 | } else |
8533 | 0 | Result = *Info.CurrentCall->This; |
8534 | | |
8535 | | // ... then update it to refer to the field of the closure object |
8536 | | // that represents the capture. |
8537 | 0 | if (!HandleLValueMember(Info, E, Result, FD)) |
8538 | 0 | return false; |
8539 | | // And if the field is of reference type, update 'Result' to refer to what |
8540 | | // the field refers to. |
8541 | 0 | if (FD->getType()->isReferenceType()) { |
8542 | 0 | APValue RVal; |
8543 | 0 | if (!handleLValueToRValueConversion(Info, E, FD->getType(), Result, |
8544 | 0 | RVal)) |
8545 | 0 | return false; |
8546 | 0 | Result.setFrom(Info.Ctx, RVal); |
8547 | 0 | } |
8548 | 0 | return true; |
8549 | 0 | } |
8550 | 0 | } |
8551 | | |
8552 | 9 | CallStackFrame *Frame = nullptr; |
8553 | 9 | unsigned Version = 0; |
8554 | 9 | if (VD->hasLocalStorage()) { |
8555 | | // Only if a local variable was declared in the function currently being |
8556 | | // evaluated, do we expect to be able to find its value in the current |
8557 | | // frame. (Otherwise it was likely declared in an enclosing context and |
8558 | | // could either have a valid evaluatable value (for e.g. a constexpr |
8559 | | // variable) or be ill-formed (and trigger an appropriate evaluation |
8560 | | // diagnostic)). |
8561 | 0 | CallStackFrame *CurrFrame = Info.CurrentCall; |
8562 | 0 | if (CurrFrame->Callee && CurrFrame->Callee->Equals(VD->getDeclContext())) { |
8563 | | // Function parameters are stored in some caller's frame. (Usually the |
8564 | | // immediate caller, but for an inherited constructor they may be more |
8565 | | // distant.) |
8566 | 0 | if (auto *PVD = dyn_cast<ParmVarDecl>(VD)) { |
8567 | 0 | if (CurrFrame->Arguments) { |
8568 | 0 | VD = CurrFrame->Arguments.getOrigParam(PVD); |
8569 | 0 | Frame = |
8570 | 0 | Info.getCallFrameAndDepth(CurrFrame->Arguments.CallIndex).first; |
8571 | 0 | Version = CurrFrame->Arguments.Version; |
8572 | 0 | } |
8573 | 0 | } else { |
8574 | 0 | Frame = CurrFrame; |
8575 | 0 | Version = CurrFrame->getCurrentTemporaryVersion(VD); |
8576 | 0 | } |
8577 | 0 | } |
8578 | 0 | } |
8579 | | |
8580 | 9 | if (!VD->getType()->isReferenceType()) { |
8581 | 9 | if (Frame) { |
8582 | 0 | Result.set({VD, Frame->Index, Version}); |
8583 | 0 | return true; |
8584 | 0 | } |
8585 | 9 | return Success(VD); |
8586 | 9 | } |
8587 | | |
8588 | 0 | if (!Info.getLangOpts().CPlusPlus11) { |
8589 | 0 | Info.CCEDiag(E, diag::note_constexpr_ltor_non_integral, 1) |
8590 | 0 | << VD << VD->getType(); |
8591 | 0 | Info.Note(VD->getLocation(), diag::note_declared_at); |
8592 | 0 | } |
8593 | |
|
8594 | 0 | APValue *V; |
8595 | 0 | if (!evaluateVarDeclInit(Info, E, VD, Frame, Version, V)) |
8596 | 0 | return false; |
8597 | 0 | if (!V->hasValue()) { |
8598 | | // FIXME: Is it possible for V to be indeterminate here? If so, we should |
8599 | | // adjust the diagnostic to say that. |
8600 | 0 | if (!Info.checkingPotentialConstantExpression()) |
8601 | 0 | Info.FFDiag(E, diag::note_constexpr_use_uninit_reference); |
8602 | 0 | return false; |
8603 | 0 | } |
8604 | 0 | return Success(*V, E); |
8605 | 0 | } |
8606 | | |
8607 | 0 | bool LValueExprEvaluator::VisitCallExpr(const CallExpr *E) { |
8608 | 0 | if (!IsConstantEvaluatedBuiltinCall(E)) |
8609 | 0 | return ExprEvaluatorBaseTy::VisitCallExpr(E); |
8610 | | |
8611 | 0 | switch (E->getBuiltinCallee()) { |
8612 | 0 | default: |
8613 | 0 | return false; |
8614 | 0 | case Builtin::BIas_const: |
8615 | 0 | case Builtin::BIforward: |
8616 | 0 | case Builtin::BIforward_like: |
8617 | 0 | case Builtin::BImove: |
8618 | 0 | case Builtin::BImove_if_noexcept: |
8619 | 0 | if (cast<FunctionDecl>(E->getCalleeDecl())->isConstexpr()) |
8620 | 0 | return Visit(E->getArg(0)); |
8621 | 0 | break; |
8622 | 0 | } |
8623 | | |
8624 | 0 | return ExprEvaluatorBaseTy::VisitCallExpr(E); |
8625 | 0 | } |
8626 | | |
8627 | | bool LValueExprEvaluator::VisitMaterializeTemporaryExpr( |
8628 | 0 | const MaterializeTemporaryExpr *E) { |
8629 | | // Walk through the expression to find the materialized temporary itself. |
8630 | 0 | SmallVector<const Expr *, 2> CommaLHSs; |
8631 | 0 | SmallVector<SubobjectAdjustment, 2> Adjustments; |
8632 | 0 | const Expr *Inner = |
8633 | 0 | E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); |
8634 | | |
8635 | | // If we passed any comma operators, evaluate their LHSs. |
8636 | 0 | for (const Expr *E : CommaLHSs) |
8637 | 0 | if (!EvaluateIgnoredValue(Info, E)) |
8638 | 0 | return false; |
8639 | | |
8640 | | // A materialized temporary with static storage duration can appear within the |
8641 | | // result of a constant expression evaluation, so we need to preserve its |
8642 | | // value for use outside this evaluation. |
8643 | 0 | APValue *Value; |
8644 | 0 | if (E->getStorageDuration() == SD_Static) { |
8645 | 0 | if (Info.EvalMode == EvalInfo::EM_ConstantFold) |
8646 | 0 | return false; |
8647 | | // FIXME: What about SD_Thread? |
8648 | 0 | Value = E->getOrCreateValue(true); |
8649 | 0 | *Value = APValue(); |
8650 | 0 | Result.set(E); |
8651 | 0 | } else { |
8652 | 0 | Value = &Info.CurrentCall->createTemporary( |
8653 | 0 | E, Inner->getType(), |
8654 | 0 | E->getStorageDuration() == SD_FullExpression ? ScopeKind::FullExpression |
8655 | 0 | : ScopeKind::Block, |
8656 | 0 | Result); |
8657 | 0 | } |
8658 | | |
8659 | 0 | QualType Type = Inner->getType(); |
8660 | | |
8661 | | // Materialize the temporary itself. |
8662 | 0 | if (!EvaluateInPlace(*Value, Info, Result, Inner)) { |
8663 | 0 | *Value = APValue(); |
8664 | 0 | return false; |
8665 | 0 | } |
8666 | | |
8667 | | // Adjust our lvalue to refer to the desired subobject. |
8668 | 0 | for (unsigned I = Adjustments.size(); I != 0; /**/) { |
8669 | 0 | --I; |
8670 | 0 | switch (Adjustments[I].Kind) { |
8671 | 0 | case SubobjectAdjustment::DerivedToBaseAdjustment: |
8672 | 0 | if (!HandleLValueBasePath(Info, Adjustments[I].DerivedToBase.BasePath, |
8673 | 0 | Type, Result)) |
8674 | 0 | return false; |
8675 | 0 | Type = Adjustments[I].DerivedToBase.BasePath->getType(); |
8676 | 0 | break; |
8677 | | |
8678 | 0 | case SubobjectAdjustment::FieldAdjustment: |
8679 | 0 | if (!HandleLValueMember(Info, E, Result, Adjustments[I].Field)) |
8680 | 0 | return false; |
8681 | 0 | Type = Adjustments[I].Field->getType(); |
8682 | 0 | break; |
8683 | | |
8684 | 0 | case SubobjectAdjustment::MemberPointerAdjustment: |
8685 | 0 | if (!HandleMemberPointerAccess(this->Info, Type, Result, |
8686 | 0 | Adjustments[I].Ptr.RHS)) |
8687 | 0 | return false; |
8688 | 0 | Type = Adjustments[I].Ptr.MPT->getPointeeType(); |
8689 | 0 | break; |
8690 | 0 | } |
8691 | 0 | } |
8692 | | |
8693 | 0 | return true; |
8694 | 0 | } |
8695 | | |
8696 | | bool |
8697 | 0 | LValueExprEvaluator::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) { |
8698 | 0 | assert((!Info.getLangOpts().CPlusPlus || E->isFileScope()) && |
8699 | 0 | "lvalue compound literal in c++?"); |
8700 | | // Defer visiting the literal until the lvalue-to-rvalue conversion. We can |
8701 | | // only see this when folding in C, so there's no standard to follow here. |
8702 | 0 | return Success(E); |
8703 | 0 | } |
8704 | | |
8705 | 0 | bool LValueExprEvaluator::VisitCXXTypeidExpr(const CXXTypeidExpr *E) { |
8706 | 0 | TypeInfoLValue TypeInfo; |
8707 | |
|
8708 | 0 | if (!E->isPotentiallyEvaluated()) { |
8709 | 0 | if (E->isTypeOperand()) |
8710 | 0 | TypeInfo = TypeInfoLValue(E->getTypeOperand(Info.Ctx).getTypePtr()); |
8711 | 0 | else |
8712 | 0 | TypeInfo = TypeInfoLValue(E->getExprOperand()->getType().getTypePtr()); |
8713 | 0 | } else { |
8714 | 0 | if (!Info.Ctx.getLangOpts().CPlusPlus20) { |
8715 | 0 | Info.CCEDiag(E, diag::note_constexpr_typeid_polymorphic) |
8716 | 0 | << E->getExprOperand()->getType() |
8717 | 0 | << E->getExprOperand()->getSourceRange(); |
8718 | 0 | } |
8719 | |
|
8720 | 0 | if (!Visit(E->getExprOperand())) |
8721 | 0 | return false; |
8722 | | |
8723 | 0 | std::optional<DynamicType> DynType = |
8724 | 0 | ComputeDynamicType(Info, E, Result, AK_TypeId); |
8725 | 0 | if (!DynType) |
8726 | 0 | return false; |
8727 | | |
8728 | 0 | TypeInfo = |
8729 | 0 | TypeInfoLValue(Info.Ctx.getRecordType(DynType->Type).getTypePtr()); |
8730 | 0 | } |
8731 | | |
8732 | 0 | return Success(APValue::LValueBase::getTypeInfo(TypeInfo, E->getType())); |
8733 | 0 | } |
8734 | | |
8735 | 0 | bool LValueExprEvaluator::VisitCXXUuidofExpr(const CXXUuidofExpr *E) { |
8736 | 0 | return Success(E->getGuidDecl()); |
8737 | 0 | } |
8738 | | |
8739 | 0 | bool LValueExprEvaluator::VisitMemberExpr(const MemberExpr *E) { |
8740 | | // Handle static data members. |
8741 | 0 | if (const VarDecl *VD = dyn_cast<VarDecl>(E->getMemberDecl())) { |
8742 | 0 | VisitIgnoredBaseExpression(E->getBase()); |
8743 | 0 | return VisitVarDecl(E, VD); |
8744 | 0 | } |
8745 | | |
8746 | | // Handle static member functions. |
8747 | 0 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl())) { |
8748 | 0 | if (MD->isStatic()) { |
8749 | 0 | VisitIgnoredBaseExpression(E->getBase()); |
8750 | 0 | return Success(MD); |
8751 | 0 | } |
8752 | 0 | } |
8753 | | |
8754 | | // Handle non-static data members. |
8755 | 0 | return LValueExprEvaluatorBaseTy::VisitMemberExpr(E); |
8756 | 0 | } |
8757 | | |
8758 | 0 | bool LValueExprEvaluator::VisitArraySubscriptExpr(const ArraySubscriptExpr *E) { |
8759 | | // FIXME: Deal with vectors as array subscript bases. |
8760 | 0 | if (E->getBase()->getType()->isVectorType() || |
8761 | 0 | E->getBase()->getType()->isSveVLSBuiltinType()) |
8762 | 0 | return Error(E); |
8763 | | |
8764 | 0 | APSInt Index; |
8765 | 0 | bool Success = true; |
8766 | | |
8767 | | // C++17's rules require us to evaluate the LHS first, regardless of which |
8768 | | // side is the base. |
8769 | 0 | for (const Expr *SubExpr : {E->getLHS(), E->getRHS()}) { |
8770 | 0 | if (SubExpr == E->getBase() ? !evaluatePointer(SubExpr, Result) |
8771 | 0 | : !EvaluateInteger(SubExpr, Index, Info)) { |
8772 | 0 | if (!Info.noteFailure()) |
8773 | 0 | return false; |
8774 | 0 | Success = false; |
8775 | 0 | } |
8776 | 0 | } |
8777 | | |
8778 | 0 | return Success && |
8779 | 0 | HandleLValueArrayAdjustment(Info, E, Result, E->getType(), Index); |
8780 | 0 | } |
8781 | | |
8782 | 0 | bool LValueExprEvaluator::VisitUnaryDeref(const UnaryOperator *E) { |
8783 | 0 | return evaluatePointer(E->getSubExpr(), Result); |
8784 | 0 | } |
8785 | | |
8786 | 0 | bool LValueExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
8787 | 0 | if (!Visit(E->getSubExpr())) |
8788 | 0 | return false; |
8789 | | // __real is a no-op on scalar lvalues. |
8790 | 0 | if (E->getSubExpr()->getType()->isAnyComplexType()) |
8791 | 0 | HandleLValueComplexElement(Info, E, Result, E->getType(), false); |
8792 | 0 | return true; |
8793 | 0 | } |
8794 | | |
8795 | 0 | bool LValueExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
8796 | 0 | assert(E->getSubExpr()->getType()->isAnyComplexType() && |
8797 | 0 | "lvalue __imag__ on scalar?"); |
8798 | 0 | if (!Visit(E->getSubExpr())) |
8799 | 0 | return false; |
8800 | 0 | HandleLValueComplexElement(Info, E, Result, E->getType(), true); |
8801 | 0 | return true; |
8802 | 0 | } |
8803 | | |
8804 | 0 | bool LValueExprEvaluator::VisitUnaryPreIncDec(const UnaryOperator *UO) { |
8805 | 0 | if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
8806 | 0 | return Error(UO); |
8807 | | |
8808 | 0 | if (!this->Visit(UO->getSubExpr())) |
8809 | 0 | return false; |
8810 | | |
8811 | 0 | return handleIncDec( |
8812 | 0 | this->Info, UO, Result, UO->getSubExpr()->getType(), |
8813 | 0 | UO->isIncrementOp(), nullptr); |
8814 | 0 | } |
8815 | | |
8816 | | bool LValueExprEvaluator::VisitCompoundAssignOperator( |
8817 | 0 | const CompoundAssignOperator *CAO) { |
8818 | 0 | if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
8819 | 0 | return Error(CAO); |
8820 | | |
8821 | 0 | bool Success = true; |
8822 | | |
8823 | | // C++17 onwards require that we evaluate the RHS first. |
8824 | 0 | APValue RHS; |
8825 | 0 | if (!Evaluate(RHS, this->Info, CAO->getRHS())) { |
8826 | 0 | if (!Info.noteFailure()) |
8827 | 0 | return false; |
8828 | 0 | Success = false; |
8829 | 0 | } |
8830 | | |
8831 | | // The overall lvalue result is the result of evaluating the LHS. |
8832 | 0 | if (!this->Visit(CAO->getLHS()) || !Success) |
8833 | 0 | return false; |
8834 | | |
8835 | 0 | return handleCompoundAssignment( |
8836 | 0 | this->Info, CAO, |
8837 | 0 | Result, CAO->getLHS()->getType(), CAO->getComputationLHSType(), |
8838 | 0 | CAO->getOpForCompoundAssignment(CAO->getOpcode()), RHS); |
8839 | 0 | } |
8840 | | |
8841 | 0 | bool LValueExprEvaluator::VisitBinAssign(const BinaryOperator *E) { |
8842 | 0 | if (!Info.getLangOpts().CPlusPlus14 && !Info.keepEvaluatingAfterFailure()) |
8843 | 0 | return Error(E); |
8844 | | |
8845 | 0 | bool Success = true; |
8846 | | |
8847 | | // C++17 onwards require that we evaluate the RHS first. |
8848 | 0 | APValue NewVal; |
8849 | 0 | if (!Evaluate(NewVal, this->Info, E->getRHS())) { |
8850 | 0 | if (!Info.noteFailure()) |
8851 | 0 | return false; |
8852 | 0 | Success = false; |
8853 | 0 | } |
8854 | | |
8855 | 0 | if (!this->Visit(E->getLHS()) || !Success) |
8856 | 0 | return false; |
8857 | | |
8858 | 0 | if (Info.getLangOpts().CPlusPlus20 && |
8859 | 0 | !MaybeHandleUnionActiveMemberChange(Info, E->getLHS(), Result)) |
8860 | 0 | return false; |
8861 | | |
8862 | 0 | return handleAssignment(this->Info, E, Result, E->getLHS()->getType(), |
8863 | 0 | NewVal); |
8864 | 0 | } |
8865 | | |
8866 | | //===----------------------------------------------------------------------===// |
8867 | | // Pointer Evaluation |
8868 | | //===----------------------------------------------------------------------===// |
8869 | | |
8870 | | /// Attempts to compute the number of bytes available at the pointer |
8871 | | /// returned by a function with the alloc_size attribute. Returns true if we |
8872 | | /// were successful. Places an unsigned number into `Result`. |
8873 | | /// |
8874 | | /// This expects the given CallExpr to be a call to a function with an |
8875 | | /// alloc_size attribute. |
8876 | | static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, |
8877 | | const CallExpr *Call, |
8878 | 0 | llvm::APInt &Result) { |
8879 | 0 | const AllocSizeAttr *AllocSize = getAllocSizeAttr(Call); |
8880 | |
|
8881 | 0 | assert(AllocSize && AllocSize->getElemSizeParam().isValid()); |
8882 | 0 | unsigned SizeArgNo = AllocSize->getElemSizeParam().getASTIndex(); |
8883 | 0 | unsigned BitsInSizeT = Ctx.getTypeSize(Ctx.getSizeType()); |
8884 | 0 | if (Call->getNumArgs() <= SizeArgNo) |
8885 | 0 | return false; |
8886 | | |
8887 | 0 | auto EvaluateAsSizeT = [&](const Expr *E, APSInt &Into) { |
8888 | 0 | Expr::EvalResult ExprResult; |
8889 | 0 | if (!E->EvaluateAsInt(ExprResult, Ctx, Expr::SE_AllowSideEffects)) |
8890 | 0 | return false; |
8891 | 0 | Into = ExprResult.Val.getInt(); |
8892 | 0 | if (Into.isNegative() || !Into.isIntN(BitsInSizeT)) |
8893 | 0 | return false; |
8894 | 0 | Into = Into.zext(BitsInSizeT); |
8895 | 0 | return true; |
8896 | 0 | }; |
8897 | |
|
8898 | 0 | APSInt SizeOfElem; |
8899 | 0 | if (!EvaluateAsSizeT(Call->getArg(SizeArgNo), SizeOfElem)) |
8900 | 0 | return false; |
8901 | | |
8902 | 0 | if (!AllocSize->getNumElemsParam().isValid()) { |
8903 | 0 | Result = std::move(SizeOfElem); |
8904 | 0 | return true; |
8905 | 0 | } |
8906 | | |
8907 | 0 | APSInt NumberOfElems; |
8908 | 0 | unsigned NumArgNo = AllocSize->getNumElemsParam().getASTIndex(); |
8909 | 0 | if (!EvaluateAsSizeT(Call->getArg(NumArgNo), NumberOfElems)) |
8910 | 0 | return false; |
8911 | | |
8912 | 0 | bool Overflow; |
8913 | 0 | llvm::APInt BytesAvailable = SizeOfElem.umul_ov(NumberOfElems, Overflow); |
8914 | 0 | if (Overflow) |
8915 | 0 | return false; |
8916 | | |
8917 | 0 | Result = std::move(BytesAvailable); |
8918 | 0 | return true; |
8919 | 0 | } |
8920 | | |
8921 | | /// Convenience function. LVal's base must be a call to an alloc_size |
8922 | | /// function. |
8923 | | static bool getBytesReturnedByAllocSizeCall(const ASTContext &Ctx, |
8924 | | const LValue &LVal, |
8925 | 0 | llvm::APInt &Result) { |
8926 | 0 | assert(isBaseAnAllocSizeCall(LVal.getLValueBase()) && |
8927 | 0 | "Can't get the size of a non alloc_size function"); |
8928 | 0 | const auto *Base = LVal.getLValueBase().get<const Expr *>(); |
8929 | 0 | const CallExpr *CE = tryUnwrapAllocSizeCall(Base); |
8930 | 0 | return getBytesReturnedByAllocSizeCall(Ctx, CE, Result); |
8931 | 0 | } |
8932 | | |
8933 | | /// Attempts to evaluate the given LValueBase as the result of a call to |
8934 | | /// a function with the alloc_size attribute. If it was possible to do so, this |
8935 | | /// function will return true, make Result's Base point to said function call, |
8936 | | /// and mark Result's Base as invalid. |
8937 | | static bool evaluateLValueAsAllocSize(EvalInfo &Info, APValue::LValueBase Base, |
8938 | 0 | LValue &Result) { |
8939 | 0 | if (Base.isNull()) |
8940 | 0 | return false; |
8941 | | |
8942 | | // Because we do no form of static analysis, we only support const variables. |
8943 | | // |
8944 | | // Additionally, we can't support parameters, nor can we support static |
8945 | | // variables (in the latter case, use-before-assign isn't UB; in the former, |
8946 | | // we have no clue what they'll be assigned to). |
8947 | 0 | const auto *VD = |
8948 | 0 | dyn_cast_or_null<VarDecl>(Base.dyn_cast<const ValueDecl *>()); |
8949 | 0 | if (!VD || !VD->isLocalVarDecl() || !VD->getType().isConstQualified()) |
8950 | 0 | return false; |
8951 | | |
8952 | 0 | const Expr *Init = VD->getAnyInitializer(); |
8953 | 0 | if (!Init || Init->getType().isNull()) |
8954 | 0 | return false; |
8955 | | |
8956 | 0 | const Expr *E = Init->IgnoreParens(); |
8957 | 0 | if (!tryUnwrapAllocSizeCall(E)) |
8958 | 0 | return false; |
8959 | | |
8960 | | // Store E instead of E unwrapped so that the type of the LValue's base is |
8961 | | // what the user wanted. |
8962 | 0 | Result.setInvalid(E); |
8963 | |
|
8964 | 0 | QualType Pointee = E->getType()->castAs<PointerType>()->getPointeeType(); |
8965 | 0 | Result.addUnsizedArray(Info, E, Pointee); |
8966 | 0 | return true; |
8967 | 0 | } |
8968 | | |
8969 | | namespace { |
8970 | | class PointerExprEvaluator |
8971 | | : public ExprEvaluatorBase<PointerExprEvaluator> { |
8972 | | LValue &Result; |
8973 | | bool InvalidBaseOK; |
8974 | | |
8975 | 0 | bool Success(const Expr *E) { |
8976 | 0 | Result.set(E); |
8977 | 0 | return true; |
8978 | 0 | } |
8979 | | |
8980 | 0 | bool evaluateLValue(const Expr *E, LValue &Result) { |
8981 | 0 | return EvaluateLValue(E, Result, Info, InvalidBaseOK); |
8982 | 0 | } |
8983 | | |
8984 | 0 | bool evaluatePointer(const Expr *E, LValue &Result) { |
8985 | 0 | return EvaluatePointer(E, Result, Info, InvalidBaseOK); |
8986 | 0 | } |
8987 | | |
8988 | | bool visitNonBuiltinCallExpr(const CallExpr *E); |
8989 | | public: |
8990 | | |
8991 | | PointerExprEvaluator(EvalInfo &info, LValue &Result, bool InvalidBaseOK) |
8992 | | : ExprEvaluatorBaseTy(info), Result(Result), |
8993 | 1 | InvalidBaseOK(InvalidBaseOK) {} |
8994 | | |
8995 | 0 | bool Success(const APValue &V, const Expr *E) { |
8996 | 0 | Result.setFrom(Info.Ctx, V); |
8997 | 0 | return true; |
8998 | 0 | } |
8999 | 0 | bool ZeroInitialization(const Expr *E) { |
9000 | 0 | Result.setNull(Info.Ctx, E->getType()); |
9001 | 0 | return true; |
9002 | 0 | } |
9003 | | |
9004 | | bool VisitBinaryOperator(const BinaryOperator *E); |
9005 | | bool VisitCastExpr(const CastExpr* E); |
9006 | | bool VisitUnaryAddrOf(const UnaryOperator *E); |
9007 | | bool VisitObjCStringLiteral(const ObjCStringLiteral *E) |
9008 | 0 | { return Success(E); } |
9009 | 0 | bool VisitObjCBoxedExpr(const ObjCBoxedExpr *E) { |
9010 | 0 | if (E->isExpressibleAsConstantInitializer()) |
9011 | 0 | return Success(E); |
9012 | 0 | if (Info.noteFailure()) |
9013 | 0 | EvaluateIgnoredValue(Info, E->getSubExpr()); |
9014 | 0 | return Error(E); |
9015 | 0 | } |
9016 | | bool VisitAddrLabelExpr(const AddrLabelExpr *E) |
9017 | 0 | { return Success(E); } |
9018 | | bool VisitCallExpr(const CallExpr *E); |
9019 | | bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); |
9020 | 0 | bool VisitBlockExpr(const BlockExpr *E) { |
9021 | 0 | if (!E->getBlockDecl()->hasCaptures()) |
9022 | 0 | return Success(E); |
9023 | 0 | return Error(E); |
9024 | 0 | } |
9025 | 0 | bool VisitCXXThisExpr(const CXXThisExpr *E) { |
9026 | | // Can't look at 'this' when checking a potential constant expression. |
9027 | 0 | if (Info.checkingPotentialConstantExpression()) |
9028 | 0 | return false; |
9029 | 0 | if (!Info.CurrentCall->This) { |
9030 | 0 | if (Info.getLangOpts().CPlusPlus11) |
9031 | 0 | Info.FFDiag(E, diag::note_constexpr_this) << E->isImplicit(); |
9032 | 0 | else |
9033 | 0 | Info.FFDiag(E); |
9034 | 0 | return false; |
9035 | 0 | } |
9036 | 0 | Result = *Info.CurrentCall->This; |
9037 | |
|
9038 | 0 | if (isLambdaCallOperator(Info.CurrentCall->Callee)) { |
9039 | | // Ensure we actually have captured 'this'. If something was wrong with |
9040 | | // 'this' capture, the error would have been previously reported. |
9041 | | // Otherwise we can be inside of a default initialization of an object |
9042 | | // declared by lambda's body, so no need to return false. |
9043 | 0 | if (!Info.CurrentCall->LambdaThisCaptureField) |
9044 | 0 | return true; |
9045 | | |
9046 | | // If we have captured 'this', the 'this' expression refers |
9047 | | // to the enclosing '*this' object (either by value or reference) which is |
9048 | | // either copied into the closure object's field that represents the |
9049 | | // '*this' or refers to '*this'. |
9050 | | // Update 'Result' to refer to the data member/field of the closure object |
9051 | | // that represents the '*this' capture. |
9052 | 0 | if (!HandleLValueMember(Info, E, Result, |
9053 | 0 | Info.CurrentCall->LambdaThisCaptureField)) |
9054 | 0 | return false; |
9055 | | // If we captured '*this' by reference, replace the field with its referent. |
9056 | 0 | if (Info.CurrentCall->LambdaThisCaptureField->getType() |
9057 | 0 | ->isPointerType()) { |
9058 | 0 | APValue RVal; |
9059 | 0 | if (!handleLValueToRValueConversion(Info, E, E->getType(), Result, |
9060 | 0 | RVal)) |
9061 | 0 | return false; |
9062 | | |
9063 | 0 | Result.setFrom(Info.Ctx, RVal); |
9064 | 0 | } |
9065 | 0 | } |
9066 | 0 | return true; |
9067 | 0 | } |
9068 | | |
9069 | | bool VisitCXXNewExpr(const CXXNewExpr *E); |
9070 | | |
9071 | 0 | bool VisitSourceLocExpr(const SourceLocExpr *E) { |
9072 | 0 | assert(!E->isIntType() && "SourceLocExpr isn't a pointer type?"); |
9073 | 0 | APValue LValResult = E->EvaluateInContext( |
9074 | 0 | Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); |
9075 | 0 | Result.setFrom(Info.Ctx, LValResult); |
9076 | 0 | return true; |
9077 | 0 | } |
9078 | | |
9079 | 0 | bool VisitSYCLUniqueStableNameExpr(const SYCLUniqueStableNameExpr *E) { |
9080 | 0 | std::string ResultStr = E->ComputeName(Info.Ctx); |
9081 | |
|
9082 | 0 | QualType CharTy = Info.Ctx.CharTy.withConst(); |
9083 | 0 | APInt Size(Info.Ctx.getTypeSize(Info.Ctx.getSizeType()), |
9084 | 0 | ResultStr.size() + 1); |
9085 | 0 | QualType ArrayTy = Info.Ctx.getConstantArrayType( |
9086 | 0 | CharTy, Size, nullptr, ArraySizeModifier::Normal, 0); |
9087 | |
|
9088 | 0 | StringLiteral *SL = |
9089 | 0 | StringLiteral::Create(Info.Ctx, ResultStr, StringLiteralKind::Ordinary, |
9090 | 0 | /*Pascal*/ false, ArrayTy, E->getLocation()); |
9091 | |
|
9092 | 0 | evaluateLValue(SL, Result); |
9093 | 0 | Result.addArray(Info, E, cast<ConstantArrayType>(ArrayTy)); |
9094 | 0 | return true; |
9095 | 0 | } |
9096 | | |
9097 | | // FIXME: Missing: @protocol, @selector |
9098 | | }; |
9099 | | } // end anonymous namespace |
9100 | | |
9101 | | static bool EvaluatePointer(const Expr* E, LValue& Result, EvalInfo &Info, |
9102 | 1 | bool InvalidBaseOK) { |
9103 | 1 | assert(!E->isValueDependent()); |
9104 | 0 | assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); |
9105 | 0 | return PointerExprEvaluator(Info, Result, InvalidBaseOK).Visit(E); |
9106 | 1 | } |
9107 | | |
9108 | 0 | bool PointerExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
9109 | 0 | if (E->getOpcode() != BO_Add && |
9110 | 0 | E->getOpcode() != BO_Sub) |
9111 | 0 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
9112 | | |
9113 | 0 | const Expr *PExp = E->getLHS(); |
9114 | 0 | const Expr *IExp = E->getRHS(); |
9115 | 0 | if (IExp->getType()->isPointerType()) |
9116 | 0 | std::swap(PExp, IExp); |
9117 | |
|
9118 | 0 | bool EvalPtrOK = evaluatePointer(PExp, Result); |
9119 | 0 | if (!EvalPtrOK && !Info.noteFailure()) |
9120 | 0 | return false; |
9121 | | |
9122 | 0 | llvm::APSInt Offset; |
9123 | 0 | if (!EvaluateInteger(IExp, Offset, Info) || !EvalPtrOK) |
9124 | 0 | return false; |
9125 | | |
9126 | 0 | if (E->getOpcode() == BO_Sub) |
9127 | 0 | negateAsSigned(Offset); |
9128 | |
|
9129 | 0 | QualType Pointee = PExp->getType()->castAs<PointerType>()->getPointeeType(); |
9130 | 0 | return HandleLValueArrayAdjustment(Info, E, Result, Pointee, Offset); |
9131 | 0 | } |
9132 | | |
9133 | 0 | bool PointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { |
9134 | 0 | return evaluateLValue(E->getSubExpr(), Result); |
9135 | 0 | } |
9136 | | |
9137 | | // Is the provided decl 'std::source_location::current'? |
9138 | 0 | static bool IsDeclSourceLocationCurrent(const FunctionDecl *FD) { |
9139 | 0 | if (!FD) |
9140 | 0 | return false; |
9141 | 0 | const IdentifierInfo *FnII = FD->getIdentifier(); |
9142 | 0 | if (!FnII || !FnII->isStr("current")) |
9143 | 0 | return false; |
9144 | | |
9145 | 0 | const auto *RD = dyn_cast<RecordDecl>(FD->getParent()); |
9146 | 0 | if (!RD) |
9147 | 0 | return false; |
9148 | | |
9149 | 0 | const IdentifierInfo *ClassII = RD->getIdentifier(); |
9150 | 0 | return RD->isInStdNamespace() && ClassII && ClassII->isStr("source_location"); |
9151 | 0 | } |
9152 | | |
9153 | 1 | bool PointerExprEvaluator::VisitCastExpr(const CastExpr *E) { |
9154 | 1 | const Expr *SubExpr = E->getSubExpr(); |
9155 | | |
9156 | 1 | switch (E->getCastKind()) { |
9157 | 0 | default: |
9158 | 0 | break; |
9159 | 0 | case CK_BitCast: |
9160 | 0 | case CK_CPointerToObjCPointerCast: |
9161 | 0 | case CK_BlockPointerToObjCPointerCast: |
9162 | 0 | case CK_AnyPointerToBlockPointerCast: |
9163 | 0 | case CK_AddressSpaceConversion: |
9164 | 0 | if (!Visit(SubExpr)) |
9165 | 0 | return false; |
9166 | | // Bitcasts to cv void* are static_casts, not reinterpret_casts, so are |
9167 | | // permitted in constant expressions in C++11. Bitcasts from cv void* are |
9168 | | // also static_casts, but we disallow them as a resolution to DR1312. |
9169 | 0 | if (!E->getType()->isVoidPointerType()) { |
9170 | | // In some circumstances, we permit casting from void* to cv1 T*, when the |
9171 | | // actual pointee object is actually a cv2 T. |
9172 | 0 | bool HasValidResult = !Result.InvalidBase && !Result.Designator.Invalid && |
9173 | 0 | !Result.IsNullPtr; |
9174 | 0 | bool VoidPtrCastMaybeOK = |
9175 | 0 | HasValidResult && |
9176 | 0 | Info.Ctx.hasSameUnqualifiedType(Result.Designator.getType(Info.Ctx), |
9177 | 0 | E->getType()->getPointeeType()); |
9178 | | // 1. We'll allow it in std::allocator::allocate, and anything which that |
9179 | | // calls. |
9180 | | // 2. HACK 2022-03-28: Work around an issue with libstdc++'s |
9181 | | // <source_location> header. Fixed in GCC 12 and later (2022-04-??). |
9182 | | // We'll allow it in the body of std::source_location::current. GCC's |
9183 | | // implementation had a parameter of type `void*`, and casts from |
9184 | | // that back to `const __impl*` in its body. |
9185 | 0 | if (VoidPtrCastMaybeOK && |
9186 | 0 | (Info.getStdAllocatorCaller("allocate") || |
9187 | 0 | IsDeclSourceLocationCurrent(Info.CurrentCall->Callee) || |
9188 | 0 | Info.getLangOpts().CPlusPlus26)) { |
9189 | | // Permitted. |
9190 | 0 | } else { |
9191 | 0 | if (SubExpr->getType()->isVoidPointerType()) { |
9192 | 0 | if (HasValidResult) |
9193 | 0 | CCEDiag(E, diag::note_constexpr_invalid_void_star_cast) |
9194 | 0 | << SubExpr->getType() << Info.getLangOpts().CPlusPlus26 |
9195 | 0 | << Result.Designator.getType(Info.Ctx).getCanonicalType() |
9196 | 0 | << E->getType()->getPointeeType(); |
9197 | 0 | else |
9198 | 0 | CCEDiag(E, diag::note_constexpr_invalid_cast) |
9199 | 0 | << 3 << SubExpr->getType(); |
9200 | 0 | } else |
9201 | 0 | CCEDiag(E, diag::note_constexpr_invalid_cast) |
9202 | 0 | << 2 << Info.Ctx.getLangOpts().CPlusPlus; |
9203 | 0 | Result.Designator.setInvalid(); |
9204 | 0 | } |
9205 | 0 | } |
9206 | 0 | if (E->getCastKind() == CK_AddressSpaceConversion && Result.IsNullPtr) |
9207 | 0 | ZeroInitialization(E); |
9208 | 0 | return true; |
9209 | | |
9210 | 0 | case CK_DerivedToBase: |
9211 | 0 | case CK_UncheckedDerivedToBase: |
9212 | 0 | if (!evaluatePointer(E->getSubExpr(), Result)) |
9213 | 0 | return false; |
9214 | 0 | if (!Result.Base && Result.Offset.isZero()) |
9215 | 0 | return true; |
9216 | | |
9217 | | // Now figure out the necessary offset to add to the base LV to get from |
9218 | | // the derived class to the base class. |
9219 | 0 | return HandleLValueBasePath(Info, E, E->getSubExpr()->getType()-> |
9220 | 0 | castAs<PointerType>()->getPointeeType(), |
9221 | 0 | Result); |
9222 | | |
9223 | 0 | case CK_BaseToDerived: |
9224 | 0 | if (!Visit(E->getSubExpr())) |
9225 | 0 | return false; |
9226 | 0 | if (!Result.Base && Result.Offset.isZero()) |
9227 | 0 | return true; |
9228 | 0 | return HandleBaseToDerivedCast(Info, E, Result); |
9229 | | |
9230 | 0 | case CK_Dynamic: |
9231 | 0 | if (!Visit(E->getSubExpr())) |
9232 | 0 | return false; |
9233 | 0 | return HandleDynamicCast(Info, cast<ExplicitCastExpr>(E), Result); |
9234 | | |
9235 | 0 | case CK_NullToPointer: |
9236 | 0 | VisitIgnoredValue(E->getSubExpr()); |
9237 | 0 | return ZeroInitialization(E); |
9238 | | |
9239 | 1 | case CK_IntegralToPointer: { |
9240 | 1 | CCEDiag(E, diag::note_constexpr_invalid_cast) |
9241 | 1 | << 2 << Info.Ctx.getLangOpts().CPlusPlus; |
9242 | | |
9243 | 1 | APValue Value; |
9244 | 1 | if (!EvaluateIntegerOrLValue(SubExpr, Value, Info)) |
9245 | 1 | break; |
9246 | | |
9247 | 0 | if (Value.isInt()) { |
9248 | 0 | unsigned Size = Info.Ctx.getTypeSize(E->getType()); |
9249 | 0 | uint64_t N = Value.getInt().extOrTrunc(Size).getZExtValue(); |
9250 | 0 | Result.Base = (Expr*)nullptr; |
9251 | 0 | Result.InvalidBase = false; |
9252 | 0 | Result.Offset = CharUnits::fromQuantity(N); |
9253 | 0 | Result.Designator.setInvalid(); |
9254 | 0 | Result.IsNullPtr = false; |
9255 | 0 | return true; |
9256 | 0 | } else { |
9257 | | // Cast is of an lvalue, no need to change value. |
9258 | 0 | Result.setFrom(Info.Ctx, Value); |
9259 | 0 | return true; |
9260 | 0 | } |
9261 | 0 | } |
9262 | | |
9263 | 0 | case CK_ArrayToPointerDecay: { |
9264 | 0 | if (SubExpr->isGLValue()) { |
9265 | 0 | if (!evaluateLValue(SubExpr, Result)) |
9266 | 0 | return false; |
9267 | 0 | } else { |
9268 | 0 | APValue &Value = Info.CurrentCall->createTemporary( |
9269 | 0 | SubExpr, SubExpr->getType(), ScopeKind::FullExpression, Result); |
9270 | 0 | if (!EvaluateInPlace(Value, Info, Result, SubExpr)) |
9271 | 0 | return false; |
9272 | 0 | } |
9273 | | // The result is a pointer to the first element of the array. |
9274 | 0 | auto *AT = Info.Ctx.getAsArrayType(SubExpr->getType()); |
9275 | 0 | if (auto *CAT = dyn_cast<ConstantArrayType>(AT)) |
9276 | 0 | Result.addArray(Info, E, CAT); |
9277 | 0 | else |
9278 | 0 | Result.addUnsizedArray(Info, E, AT->getElementType()); |
9279 | 0 | return true; |
9280 | 0 | } |
9281 | | |
9282 | 0 | case CK_FunctionToPointerDecay: |
9283 | 0 | return evaluateLValue(SubExpr, Result); |
9284 | | |
9285 | 0 | case CK_LValueToRValue: { |
9286 | 0 | LValue LVal; |
9287 | 0 | if (!evaluateLValue(E->getSubExpr(), LVal)) |
9288 | 0 | return false; |
9289 | | |
9290 | 0 | APValue RVal; |
9291 | | // Note, we use the subexpression's type in order to retain cv-qualifiers. |
9292 | 0 | if (!handleLValueToRValueConversion(Info, E, E->getSubExpr()->getType(), |
9293 | 0 | LVal, RVal)) |
9294 | 0 | return InvalidBaseOK && |
9295 | 0 | evaluateLValueAsAllocSize(Info, LVal.Base, Result); |
9296 | 0 | return Success(RVal, E); |
9297 | 0 | } |
9298 | 1 | } |
9299 | | |
9300 | 1 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
9301 | 1 | } |
9302 | | |
9303 | | static CharUnits GetAlignOfType(EvalInfo &Info, QualType T, |
9304 | 0 | UnaryExprOrTypeTrait ExprKind) { |
9305 | | // C++ [expr.alignof]p3: |
9306 | | // When alignof is applied to a reference type, the result is the |
9307 | | // alignment of the referenced type. |
9308 | 0 | T = T.getNonReferenceType(); |
9309 | |
|
9310 | 0 | if (T.getQualifiers().hasUnaligned()) |
9311 | 0 | return CharUnits::One(); |
9312 | | |
9313 | 0 | const bool AlignOfReturnsPreferred = |
9314 | 0 | Info.Ctx.getLangOpts().getClangABICompat() <= LangOptions::ClangABI::Ver7; |
9315 | | |
9316 | | // __alignof is defined to return the preferred alignment. |
9317 | | // Before 8, clang returned the preferred alignment for alignof and _Alignof |
9318 | | // as well. |
9319 | 0 | if (ExprKind == UETT_PreferredAlignOf || AlignOfReturnsPreferred) |
9320 | 0 | return Info.Ctx.toCharUnitsFromBits( |
9321 | 0 | Info.Ctx.getPreferredTypeAlign(T.getTypePtr())); |
9322 | | // alignof and _Alignof are defined to return the ABI alignment. |
9323 | 0 | else if (ExprKind == UETT_AlignOf) |
9324 | 0 | return Info.Ctx.getTypeAlignInChars(T.getTypePtr()); |
9325 | 0 | else |
9326 | 0 | llvm_unreachable("GetAlignOfType on a non-alignment ExprKind"); |
9327 | 0 | } |
9328 | | |
9329 | | static CharUnits GetAlignOfExpr(EvalInfo &Info, const Expr *E, |
9330 | 0 | UnaryExprOrTypeTrait ExprKind) { |
9331 | 0 | E = E->IgnoreParens(); |
9332 | | |
9333 | | // The kinds of expressions that we have special-case logic here for |
9334 | | // should be kept up to date with the special checks for those |
9335 | | // expressions in Sema. |
9336 | | |
9337 | | // alignof decl is always accepted, even if it doesn't make sense: we default |
9338 | | // to 1 in those cases. |
9339 | 0 | if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) |
9340 | 0 | return Info.Ctx.getDeclAlign(DRE->getDecl(), |
9341 | 0 | /*RefAsPointee*/true); |
9342 | | |
9343 | 0 | if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) |
9344 | 0 | return Info.Ctx.getDeclAlign(ME->getMemberDecl(), |
9345 | 0 | /*RefAsPointee*/true); |
9346 | | |
9347 | 0 | return GetAlignOfType(Info, E->getType(), ExprKind); |
9348 | 0 | } |
9349 | | |
9350 | 0 | static CharUnits getBaseAlignment(EvalInfo &Info, const LValue &Value) { |
9351 | 0 | if (const auto *VD = Value.Base.dyn_cast<const ValueDecl *>()) |
9352 | 0 | return Info.Ctx.getDeclAlign(VD); |
9353 | 0 | if (const auto *E = Value.Base.dyn_cast<const Expr *>()) |
9354 | 0 | return GetAlignOfExpr(Info, E, UETT_AlignOf); |
9355 | 0 | return GetAlignOfType(Info, Value.Base.getTypeInfoType(), UETT_AlignOf); |
9356 | 0 | } |
9357 | | |
9358 | | /// Evaluate the value of the alignment argument to __builtin_align_{up,down}, |
9359 | | /// __builtin_is_aligned and __builtin_assume_aligned. |
9360 | | static bool getAlignmentArgument(const Expr *E, QualType ForType, |
9361 | 0 | EvalInfo &Info, APSInt &Alignment) { |
9362 | 0 | if (!EvaluateInteger(E, Alignment, Info)) |
9363 | 0 | return false; |
9364 | 0 | if (Alignment < 0 || !Alignment.isPowerOf2()) { |
9365 | 0 | Info.FFDiag(E, diag::note_constexpr_invalid_alignment) << Alignment; |
9366 | 0 | return false; |
9367 | 0 | } |
9368 | 0 | unsigned SrcWidth = Info.Ctx.getIntWidth(ForType); |
9369 | 0 | APSInt MaxValue(APInt::getOneBitSet(SrcWidth, SrcWidth - 1)); |
9370 | 0 | if (APSInt::compareValues(Alignment, MaxValue) > 0) { |
9371 | 0 | Info.FFDiag(E, diag::note_constexpr_alignment_too_big) |
9372 | 0 | << MaxValue << ForType << Alignment; |
9373 | 0 | return false; |
9374 | 0 | } |
9375 | | // Ensure both alignment and source value have the same bit width so that we |
9376 | | // don't assert when computing the resulting value. |
9377 | 0 | APSInt ExtAlignment = |
9378 | 0 | APSInt(Alignment.zextOrTrunc(SrcWidth), /*isUnsigned=*/true); |
9379 | 0 | assert(APSInt::compareValues(Alignment, ExtAlignment) == 0 && |
9380 | 0 | "Alignment should not be changed by ext/trunc"); |
9381 | 0 | Alignment = ExtAlignment; |
9382 | 0 | assert(Alignment.getBitWidth() == SrcWidth); |
9383 | 0 | return true; |
9384 | 0 | } |
9385 | | |
9386 | | // To be clear: this happily visits unsupported builtins. Better name welcomed. |
9387 | 0 | bool PointerExprEvaluator::visitNonBuiltinCallExpr(const CallExpr *E) { |
9388 | 0 | if (ExprEvaluatorBaseTy::VisitCallExpr(E)) |
9389 | 0 | return true; |
9390 | | |
9391 | 0 | if (!(InvalidBaseOK && getAllocSizeAttr(E))) |
9392 | 0 | return false; |
9393 | | |
9394 | 0 | Result.setInvalid(E); |
9395 | 0 | QualType PointeeTy = E->getType()->castAs<PointerType>()->getPointeeType(); |
9396 | 0 | Result.addUnsizedArray(Info, E, PointeeTy); |
9397 | 0 | return true; |
9398 | 0 | } |
9399 | | |
9400 | 0 | bool PointerExprEvaluator::VisitCallExpr(const CallExpr *E) { |
9401 | 0 | if (!IsConstantEvaluatedBuiltinCall(E)) |
9402 | 0 | return visitNonBuiltinCallExpr(E); |
9403 | 0 | return VisitBuiltinCallExpr(E, E->getBuiltinCallee()); |
9404 | 0 | } |
9405 | | |
9406 | | // Determine if T is a character type for which we guarantee that |
9407 | | // sizeof(T) == 1. |
9408 | 0 | static bool isOneByteCharacterType(QualType T) { |
9409 | 0 | return T->isCharType() || T->isChar8Type(); |
9410 | 0 | } |
9411 | | |
9412 | | bool PointerExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, |
9413 | 0 | unsigned BuiltinOp) { |
9414 | 0 | if (IsNoOpCall(E)) |
9415 | 0 | return Success(E); |
9416 | | |
9417 | 0 | switch (BuiltinOp) { |
9418 | 0 | case Builtin::BIaddressof: |
9419 | 0 | case Builtin::BI__addressof: |
9420 | 0 | case Builtin::BI__builtin_addressof: |
9421 | 0 | return evaluateLValue(E->getArg(0), Result); |
9422 | 0 | case Builtin::BI__builtin_assume_aligned: { |
9423 | | // We need to be very careful here because: if the pointer does not have the |
9424 | | // asserted alignment, then the behavior is undefined, and undefined |
9425 | | // behavior is non-constant. |
9426 | 0 | if (!evaluatePointer(E->getArg(0), Result)) |
9427 | 0 | return false; |
9428 | | |
9429 | 0 | LValue OffsetResult(Result); |
9430 | 0 | APSInt Alignment; |
9431 | 0 | if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, |
9432 | 0 | Alignment)) |
9433 | 0 | return false; |
9434 | 0 | CharUnits Align = CharUnits::fromQuantity(Alignment.getZExtValue()); |
9435 | |
|
9436 | 0 | if (E->getNumArgs() > 2) { |
9437 | 0 | APSInt Offset; |
9438 | 0 | if (!EvaluateInteger(E->getArg(2), Offset, Info)) |
9439 | 0 | return false; |
9440 | | |
9441 | 0 | int64_t AdditionalOffset = -Offset.getZExtValue(); |
9442 | 0 | OffsetResult.Offset += CharUnits::fromQuantity(AdditionalOffset); |
9443 | 0 | } |
9444 | | |
9445 | | // If there is a base object, then it must have the correct alignment. |
9446 | 0 | if (OffsetResult.Base) { |
9447 | 0 | CharUnits BaseAlignment = getBaseAlignment(Info, OffsetResult); |
9448 | |
|
9449 | 0 | if (BaseAlignment < Align) { |
9450 | 0 | Result.Designator.setInvalid(); |
9451 | | // FIXME: Add support to Diagnostic for long / long long. |
9452 | 0 | CCEDiag(E->getArg(0), |
9453 | 0 | diag::note_constexpr_baa_insufficient_alignment) << 0 |
9454 | 0 | << (unsigned)BaseAlignment.getQuantity() |
9455 | 0 | << (unsigned)Align.getQuantity(); |
9456 | 0 | return false; |
9457 | 0 | } |
9458 | 0 | } |
9459 | | |
9460 | | // The offset must also have the correct alignment. |
9461 | 0 | if (OffsetResult.Offset.alignTo(Align) != OffsetResult.Offset) { |
9462 | 0 | Result.Designator.setInvalid(); |
9463 | |
|
9464 | 0 | (OffsetResult.Base |
9465 | 0 | ? CCEDiag(E->getArg(0), |
9466 | 0 | diag::note_constexpr_baa_insufficient_alignment) << 1 |
9467 | 0 | : CCEDiag(E->getArg(0), |
9468 | 0 | diag::note_constexpr_baa_value_insufficient_alignment)) |
9469 | 0 | << (int)OffsetResult.Offset.getQuantity() |
9470 | 0 | << (unsigned)Align.getQuantity(); |
9471 | 0 | return false; |
9472 | 0 | } |
9473 | | |
9474 | 0 | return true; |
9475 | 0 | } |
9476 | 0 | case Builtin::BI__builtin_align_up: |
9477 | 0 | case Builtin::BI__builtin_align_down: { |
9478 | 0 | if (!evaluatePointer(E->getArg(0), Result)) |
9479 | 0 | return false; |
9480 | 0 | APSInt Alignment; |
9481 | 0 | if (!getAlignmentArgument(E->getArg(1), E->getArg(0)->getType(), Info, |
9482 | 0 | Alignment)) |
9483 | 0 | return false; |
9484 | 0 | CharUnits BaseAlignment = getBaseAlignment(Info, Result); |
9485 | 0 | CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Result.Offset); |
9486 | | // For align_up/align_down, we can return the same value if the alignment |
9487 | | // is known to be greater or equal to the requested value. |
9488 | 0 | if (PtrAlign.getQuantity() >= Alignment) |
9489 | 0 | return true; |
9490 | | |
9491 | | // The alignment could be greater than the minimum at run-time, so we cannot |
9492 | | // infer much about the resulting pointer value. One case is possible: |
9493 | | // For `_Alignas(32) char buf[N]; __builtin_align_down(&buf[idx], 32)` we |
9494 | | // can infer the correct index if the requested alignment is smaller than |
9495 | | // the base alignment so we can perform the computation on the offset. |
9496 | 0 | if (BaseAlignment.getQuantity() >= Alignment) { |
9497 | 0 | assert(Alignment.getBitWidth() <= 64 && |
9498 | 0 | "Cannot handle > 64-bit address-space"); |
9499 | 0 | uint64_t Alignment64 = Alignment.getZExtValue(); |
9500 | 0 | CharUnits NewOffset = CharUnits::fromQuantity( |
9501 | 0 | BuiltinOp == Builtin::BI__builtin_align_down |
9502 | 0 | ? llvm::alignDown(Result.Offset.getQuantity(), Alignment64) |
9503 | 0 | : llvm::alignTo(Result.Offset.getQuantity(), Alignment64)); |
9504 | 0 | Result.adjustOffset(NewOffset - Result.Offset); |
9505 | | // TODO: diagnose out-of-bounds values/only allow for arrays? |
9506 | 0 | return true; |
9507 | 0 | } |
9508 | | // Otherwise, we cannot constant-evaluate the result. |
9509 | 0 | Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_adjust) |
9510 | 0 | << Alignment; |
9511 | 0 | return false; |
9512 | 0 | } |
9513 | 0 | case Builtin::BI__builtin_operator_new: |
9514 | 0 | return HandleOperatorNewCall(Info, E, Result); |
9515 | 0 | case Builtin::BI__builtin_launder: |
9516 | 0 | return evaluatePointer(E->getArg(0), Result); |
9517 | 0 | case Builtin::BIstrchr: |
9518 | 0 | case Builtin::BIwcschr: |
9519 | 0 | case Builtin::BImemchr: |
9520 | 0 | case Builtin::BIwmemchr: |
9521 | 0 | if (Info.getLangOpts().CPlusPlus11) |
9522 | 0 | Info.CCEDiag(E, diag::note_constexpr_invalid_function) |
9523 | 0 | << /*isConstexpr*/ 0 << /*isConstructor*/ 0 |
9524 | 0 | << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); |
9525 | 0 | else |
9526 | 0 | Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); |
9527 | 0 | [[fallthrough]]; |
9528 | 0 | case Builtin::BI__builtin_strchr: |
9529 | 0 | case Builtin::BI__builtin_wcschr: |
9530 | 0 | case Builtin::BI__builtin_memchr: |
9531 | 0 | case Builtin::BI__builtin_char_memchr: |
9532 | 0 | case Builtin::BI__builtin_wmemchr: { |
9533 | 0 | if (!Visit(E->getArg(0))) |
9534 | 0 | return false; |
9535 | 0 | APSInt Desired; |
9536 | 0 | if (!EvaluateInteger(E->getArg(1), Desired, Info)) |
9537 | 0 | return false; |
9538 | 0 | uint64_t MaxLength = uint64_t(-1); |
9539 | 0 | if (BuiltinOp != Builtin::BIstrchr && |
9540 | 0 | BuiltinOp != Builtin::BIwcschr && |
9541 | 0 | BuiltinOp != Builtin::BI__builtin_strchr && |
9542 | 0 | BuiltinOp != Builtin::BI__builtin_wcschr) { |
9543 | 0 | APSInt N; |
9544 | 0 | if (!EvaluateInteger(E->getArg(2), N, Info)) |
9545 | 0 | return false; |
9546 | 0 | MaxLength = N.getZExtValue(); |
9547 | 0 | } |
9548 | | // We cannot find the value if there are no candidates to match against. |
9549 | 0 | if (MaxLength == 0u) |
9550 | 0 | return ZeroInitialization(E); |
9551 | 0 | if (!Result.checkNullPointerForFoldAccess(Info, E, AK_Read) || |
9552 | 0 | Result.Designator.Invalid) |
9553 | 0 | return false; |
9554 | 0 | QualType CharTy = Result.Designator.getType(Info.Ctx); |
9555 | 0 | bool IsRawByte = BuiltinOp == Builtin::BImemchr || |
9556 | 0 | BuiltinOp == Builtin::BI__builtin_memchr; |
9557 | 0 | assert(IsRawByte || |
9558 | 0 | Info.Ctx.hasSameUnqualifiedType( |
9559 | 0 | CharTy, E->getArg(0)->getType()->getPointeeType())); |
9560 | | // Pointers to const void may point to objects of incomplete type. |
9561 | 0 | if (IsRawByte && CharTy->isIncompleteType()) { |
9562 | 0 | Info.FFDiag(E, diag::note_constexpr_ltor_incomplete_type) << CharTy; |
9563 | 0 | return false; |
9564 | 0 | } |
9565 | | // Give up on byte-oriented matching against multibyte elements. |
9566 | | // FIXME: We can compare the bytes in the correct order. |
9567 | 0 | if (IsRawByte && !isOneByteCharacterType(CharTy)) { |
9568 | 0 | Info.FFDiag(E, diag::note_constexpr_memchr_unsupported) |
9569 | 0 | << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str() |
9570 | 0 | << CharTy; |
9571 | 0 | return false; |
9572 | 0 | } |
9573 | | // Figure out what value we're actually looking for (after converting to |
9574 | | // the corresponding unsigned type if necessary). |
9575 | 0 | uint64_t DesiredVal; |
9576 | 0 | bool StopAtNull = false; |
9577 | 0 | switch (BuiltinOp) { |
9578 | 0 | case Builtin::BIstrchr: |
9579 | 0 | case Builtin::BI__builtin_strchr: |
9580 | | // strchr compares directly to the passed integer, and therefore |
9581 | | // always fails if given an int that is not a char. |
9582 | 0 | if (!APSInt::isSameValue(HandleIntToIntCast(Info, E, CharTy, |
9583 | 0 | E->getArg(1)->getType(), |
9584 | 0 | Desired), |
9585 | 0 | Desired)) |
9586 | 0 | return ZeroInitialization(E); |
9587 | 0 | StopAtNull = true; |
9588 | 0 | [[fallthrough]]; |
9589 | 0 | case Builtin::BImemchr: |
9590 | 0 | case Builtin::BI__builtin_memchr: |
9591 | 0 | case Builtin::BI__builtin_char_memchr: |
9592 | | // memchr compares by converting both sides to unsigned char. That's also |
9593 | | // correct for strchr if we get this far (to cope with plain char being |
9594 | | // unsigned in the strchr case). |
9595 | 0 | DesiredVal = Desired.trunc(Info.Ctx.getCharWidth()).getZExtValue(); |
9596 | 0 | break; |
9597 | | |
9598 | 0 | case Builtin::BIwcschr: |
9599 | 0 | case Builtin::BI__builtin_wcschr: |
9600 | 0 | StopAtNull = true; |
9601 | 0 | [[fallthrough]]; |
9602 | 0 | case Builtin::BIwmemchr: |
9603 | 0 | case Builtin::BI__builtin_wmemchr: |
9604 | | // wcschr and wmemchr are given a wchar_t to look for. Just use it. |
9605 | 0 | DesiredVal = Desired.getZExtValue(); |
9606 | 0 | break; |
9607 | 0 | } |
9608 | | |
9609 | 0 | for (; MaxLength; --MaxLength) { |
9610 | 0 | APValue Char; |
9611 | 0 | if (!handleLValueToRValueConversion(Info, E, CharTy, Result, Char) || |
9612 | 0 | !Char.isInt()) |
9613 | 0 | return false; |
9614 | 0 | if (Char.getInt().getZExtValue() == DesiredVal) |
9615 | 0 | return true; |
9616 | 0 | if (StopAtNull && !Char.getInt()) |
9617 | 0 | break; |
9618 | 0 | if (!HandleLValueArrayAdjustment(Info, E, Result, CharTy, 1)) |
9619 | 0 | return false; |
9620 | 0 | } |
9621 | | // Not found: return nullptr. |
9622 | 0 | return ZeroInitialization(E); |
9623 | 0 | } |
9624 | | |
9625 | 0 | case Builtin::BImemcpy: |
9626 | 0 | case Builtin::BImemmove: |
9627 | 0 | case Builtin::BIwmemcpy: |
9628 | 0 | case Builtin::BIwmemmove: |
9629 | 0 | if (Info.getLangOpts().CPlusPlus11) |
9630 | 0 | Info.CCEDiag(E, diag::note_constexpr_invalid_function) |
9631 | 0 | << /*isConstexpr*/ 0 << /*isConstructor*/ 0 |
9632 | 0 | << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); |
9633 | 0 | else |
9634 | 0 | Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); |
9635 | 0 | [[fallthrough]]; |
9636 | 0 | case Builtin::BI__builtin_memcpy: |
9637 | 0 | case Builtin::BI__builtin_memmove: |
9638 | 0 | case Builtin::BI__builtin_wmemcpy: |
9639 | 0 | case Builtin::BI__builtin_wmemmove: { |
9640 | 0 | bool WChar = BuiltinOp == Builtin::BIwmemcpy || |
9641 | 0 | BuiltinOp == Builtin::BIwmemmove || |
9642 | 0 | BuiltinOp == Builtin::BI__builtin_wmemcpy || |
9643 | 0 | BuiltinOp == Builtin::BI__builtin_wmemmove; |
9644 | 0 | bool Move = BuiltinOp == Builtin::BImemmove || |
9645 | 0 | BuiltinOp == Builtin::BIwmemmove || |
9646 | 0 | BuiltinOp == Builtin::BI__builtin_memmove || |
9647 | 0 | BuiltinOp == Builtin::BI__builtin_wmemmove; |
9648 | | |
9649 | | // The result of mem* is the first argument. |
9650 | 0 | if (!Visit(E->getArg(0))) |
9651 | 0 | return false; |
9652 | 0 | LValue Dest = Result; |
9653 | |
|
9654 | 0 | LValue Src; |
9655 | 0 | if (!EvaluatePointer(E->getArg(1), Src, Info)) |
9656 | 0 | return false; |
9657 | | |
9658 | 0 | APSInt N; |
9659 | 0 | if (!EvaluateInteger(E->getArg(2), N, Info)) |
9660 | 0 | return false; |
9661 | 0 | assert(!N.isSigned() && "memcpy and friends take an unsigned size"); |
9662 | | |
9663 | | // If the size is zero, we treat this as always being a valid no-op. |
9664 | | // (Even if one of the src and dest pointers is null.) |
9665 | 0 | if (!N) |
9666 | 0 | return true; |
9667 | | |
9668 | | // Otherwise, if either of the operands is null, we can't proceed. Don't |
9669 | | // try to determine the type of the copied objects, because there aren't |
9670 | | // any. |
9671 | 0 | if (!Src.Base || !Dest.Base) { |
9672 | 0 | APValue Val; |
9673 | 0 | (!Src.Base ? Src : Dest).moveInto(Val); |
9674 | 0 | Info.FFDiag(E, diag::note_constexpr_memcpy_null) |
9675 | 0 | << Move << WChar << !!Src.Base |
9676 | 0 | << Val.getAsString(Info.Ctx, E->getArg(0)->getType()); |
9677 | 0 | return false; |
9678 | 0 | } |
9679 | 0 | if (Src.Designator.Invalid || Dest.Designator.Invalid) |
9680 | 0 | return false; |
9681 | | |
9682 | | // We require that Src and Dest are both pointers to arrays of |
9683 | | // trivially-copyable type. (For the wide version, the designator will be |
9684 | | // invalid if the designated object is not a wchar_t.) |
9685 | 0 | QualType T = Dest.Designator.getType(Info.Ctx); |
9686 | 0 | QualType SrcT = Src.Designator.getType(Info.Ctx); |
9687 | 0 | if (!Info.Ctx.hasSameUnqualifiedType(T, SrcT)) { |
9688 | | // FIXME: Consider using our bit_cast implementation to support this. |
9689 | 0 | Info.FFDiag(E, diag::note_constexpr_memcpy_type_pun) << Move << SrcT << T; |
9690 | 0 | return false; |
9691 | 0 | } |
9692 | 0 | if (T->isIncompleteType()) { |
9693 | 0 | Info.FFDiag(E, diag::note_constexpr_memcpy_incomplete_type) << Move << T; |
9694 | 0 | return false; |
9695 | 0 | } |
9696 | 0 | if (!T.isTriviallyCopyableType(Info.Ctx)) { |
9697 | 0 | Info.FFDiag(E, diag::note_constexpr_memcpy_nontrivial) << Move << T; |
9698 | 0 | return false; |
9699 | 0 | } |
9700 | | |
9701 | | // Figure out how many T's we're copying. |
9702 | 0 | uint64_t TSize = Info.Ctx.getTypeSizeInChars(T).getQuantity(); |
9703 | 0 | if (TSize == 0) |
9704 | 0 | return false; |
9705 | 0 | if (!WChar) { |
9706 | 0 | uint64_t Remainder; |
9707 | 0 | llvm::APInt OrigN = N; |
9708 | 0 | llvm::APInt::udivrem(OrigN, TSize, N, Remainder); |
9709 | 0 | if (Remainder) { |
9710 | 0 | Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) |
9711 | 0 | << Move << WChar << 0 << T << toString(OrigN, 10, /*Signed*/false) |
9712 | 0 | << (unsigned)TSize; |
9713 | 0 | return false; |
9714 | 0 | } |
9715 | 0 | } |
9716 | | |
9717 | | // Check that the copying will remain within the arrays, just so that we |
9718 | | // can give a more meaningful diagnostic. This implicitly also checks that |
9719 | | // N fits into 64 bits. |
9720 | 0 | uint64_t RemainingSrcSize = Src.Designator.validIndexAdjustments().second; |
9721 | 0 | uint64_t RemainingDestSize = Dest.Designator.validIndexAdjustments().second; |
9722 | 0 | if (N.ugt(RemainingSrcSize) || N.ugt(RemainingDestSize)) { |
9723 | 0 | Info.FFDiag(E, diag::note_constexpr_memcpy_unsupported) |
9724 | 0 | << Move << WChar << (N.ugt(RemainingSrcSize) ? 1 : 2) << T |
9725 | 0 | << toString(N, 10, /*Signed*/false); |
9726 | 0 | return false; |
9727 | 0 | } |
9728 | 0 | uint64_t NElems = N.getZExtValue(); |
9729 | 0 | uint64_t NBytes = NElems * TSize; |
9730 | | |
9731 | | // Check for overlap. |
9732 | 0 | int Direction = 1; |
9733 | 0 | if (HasSameBase(Src, Dest)) { |
9734 | 0 | uint64_t SrcOffset = Src.getLValueOffset().getQuantity(); |
9735 | 0 | uint64_t DestOffset = Dest.getLValueOffset().getQuantity(); |
9736 | 0 | if (DestOffset >= SrcOffset && DestOffset - SrcOffset < NBytes) { |
9737 | | // Dest is inside the source region. |
9738 | 0 | if (!Move) { |
9739 | 0 | Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; |
9740 | 0 | return false; |
9741 | 0 | } |
9742 | | // For memmove and friends, copy backwards. |
9743 | 0 | if (!HandleLValueArrayAdjustment(Info, E, Src, T, NElems - 1) || |
9744 | 0 | !HandleLValueArrayAdjustment(Info, E, Dest, T, NElems - 1)) |
9745 | 0 | return false; |
9746 | 0 | Direction = -1; |
9747 | 0 | } else if (!Move && SrcOffset >= DestOffset && |
9748 | 0 | SrcOffset - DestOffset < NBytes) { |
9749 | | // Src is inside the destination region for memcpy: invalid. |
9750 | 0 | Info.FFDiag(E, diag::note_constexpr_memcpy_overlap) << WChar; |
9751 | 0 | return false; |
9752 | 0 | } |
9753 | 0 | } |
9754 | | |
9755 | 0 | while (true) { |
9756 | 0 | APValue Val; |
9757 | | // FIXME: Set WantObjectRepresentation to true if we're copying a |
9758 | | // char-like type? |
9759 | 0 | if (!handleLValueToRValueConversion(Info, E, T, Src, Val) || |
9760 | 0 | !handleAssignment(Info, E, Dest, T, Val)) |
9761 | 0 | return false; |
9762 | | // Do not iterate past the last element; if we're copying backwards, that |
9763 | | // might take us off the start of the array. |
9764 | 0 | if (--NElems == 0) |
9765 | 0 | return true; |
9766 | 0 | if (!HandleLValueArrayAdjustment(Info, E, Src, T, Direction) || |
9767 | 0 | !HandleLValueArrayAdjustment(Info, E, Dest, T, Direction)) |
9768 | 0 | return false; |
9769 | 0 | } |
9770 | 0 | } |
9771 | | |
9772 | 0 | default: |
9773 | 0 | return false; |
9774 | 0 | } |
9775 | 0 | } |
9776 | | |
9777 | | static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, |
9778 | | APValue &Result, const InitListExpr *ILE, |
9779 | | QualType AllocType); |
9780 | | static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, |
9781 | | APValue &Result, |
9782 | | const CXXConstructExpr *CCE, |
9783 | | QualType AllocType); |
9784 | | |
9785 | 0 | bool PointerExprEvaluator::VisitCXXNewExpr(const CXXNewExpr *E) { |
9786 | 0 | if (!Info.getLangOpts().CPlusPlus20) |
9787 | 0 | Info.CCEDiag(E, diag::note_constexpr_new); |
9788 | | |
9789 | | // We cannot speculatively evaluate a delete expression. |
9790 | 0 | if (Info.SpeculativeEvaluationDepth) |
9791 | 0 | return false; |
9792 | | |
9793 | 0 | FunctionDecl *OperatorNew = E->getOperatorNew(); |
9794 | |
|
9795 | 0 | bool IsNothrow = false; |
9796 | 0 | bool IsPlacement = false; |
9797 | 0 | if (OperatorNew->isReservedGlobalPlacementOperator() && |
9798 | 0 | Info.CurrentCall->isStdFunction() && !E->isArray()) { |
9799 | | // FIXME Support array placement new. |
9800 | 0 | assert(E->getNumPlacementArgs() == 1); |
9801 | 0 | if (!EvaluatePointer(E->getPlacementArg(0), Result, Info)) |
9802 | 0 | return false; |
9803 | 0 | if (Result.Designator.Invalid) |
9804 | 0 | return false; |
9805 | 0 | IsPlacement = true; |
9806 | 0 | } else if (!OperatorNew->isReplaceableGlobalAllocationFunction()) { |
9807 | 0 | Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) |
9808 | 0 | << isa<CXXMethodDecl>(OperatorNew) << OperatorNew; |
9809 | 0 | return false; |
9810 | 0 | } else if (E->getNumPlacementArgs()) { |
9811 | | // The only new-placement list we support is of the form (std::nothrow). |
9812 | | // |
9813 | | // FIXME: There is no restriction on this, but it's not clear that any |
9814 | | // other form makes any sense. We get here for cases such as: |
9815 | | // |
9816 | | // new (std::align_val_t{N}) X(int) |
9817 | | // |
9818 | | // (which should presumably be valid only if N is a multiple of |
9819 | | // alignof(int), and in any case can't be deallocated unless N is |
9820 | | // alignof(X) and X has new-extended alignment). |
9821 | 0 | if (E->getNumPlacementArgs() != 1 || |
9822 | 0 | !E->getPlacementArg(0)->getType()->isNothrowT()) |
9823 | 0 | return Error(E, diag::note_constexpr_new_placement); |
9824 | | |
9825 | 0 | LValue Nothrow; |
9826 | 0 | if (!EvaluateLValue(E->getPlacementArg(0), Nothrow, Info)) |
9827 | 0 | return false; |
9828 | 0 | IsNothrow = true; |
9829 | 0 | } |
9830 | | |
9831 | 0 | const Expr *Init = E->getInitializer(); |
9832 | 0 | const InitListExpr *ResizedArrayILE = nullptr; |
9833 | 0 | const CXXConstructExpr *ResizedArrayCCE = nullptr; |
9834 | 0 | bool ValueInit = false; |
9835 | |
|
9836 | 0 | QualType AllocType = E->getAllocatedType(); |
9837 | 0 | if (std::optional<const Expr *> ArraySize = E->getArraySize()) { |
9838 | 0 | const Expr *Stripped = *ArraySize; |
9839 | 0 | for (; auto *ICE = dyn_cast<ImplicitCastExpr>(Stripped); |
9840 | 0 | Stripped = ICE->getSubExpr()) |
9841 | 0 | if (ICE->getCastKind() != CK_NoOp && |
9842 | 0 | ICE->getCastKind() != CK_IntegralCast) |
9843 | 0 | break; |
9844 | |
|
9845 | 0 | llvm::APSInt ArrayBound; |
9846 | 0 | if (!EvaluateInteger(Stripped, ArrayBound, Info)) |
9847 | 0 | return false; |
9848 | | |
9849 | | // C++ [expr.new]p9: |
9850 | | // The expression is erroneous if: |
9851 | | // -- [...] its value before converting to size_t [or] applying the |
9852 | | // second standard conversion sequence is less than zero |
9853 | 0 | if (ArrayBound.isSigned() && ArrayBound.isNegative()) { |
9854 | 0 | if (IsNothrow) |
9855 | 0 | return ZeroInitialization(E); |
9856 | | |
9857 | 0 | Info.FFDiag(*ArraySize, diag::note_constexpr_new_negative) |
9858 | 0 | << ArrayBound << (*ArraySize)->getSourceRange(); |
9859 | 0 | return false; |
9860 | 0 | } |
9861 | | |
9862 | | // -- its value is such that the size of the allocated object would |
9863 | | // exceed the implementation-defined limit |
9864 | 0 | if (!Info.CheckArraySize(ArraySize.value()->getExprLoc(), |
9865 | 0 | ConstantArrayType::getNumAddressingBits( |
9866 | 0 | Info.Ctx, AllocType, ArrayBound), |
9867 | 0 | ArrayBound.getZExtValue(), /*Diag=*/!IsNothrow)) { |
9868 | 0 | if (IsNothrow) |
9869 | 0 | return ZeroInitialization(E); |
9870 | 0 | return false; |
9871 | 0 | } |
9872 | | |
9873 | | // -- the new-initializer is a braced-init-list and the number of |
9874 | | // array elements for which initializers are provided [...] |
9875 | | // exceeds the number of elements to initialize |
9876 | 0 | if (!Init) { |
9877 | | // No initialization is performed. |
9878 | 0 | } else if (isa<CXXScalarValueInitExpr>(Init) || |
9879 | 0 | isa<ImplicitValueInitExpr>(Init)) { |
9880 | 0 | ValueInit = true; |
9881 | 0 | } else if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) { |
9882 | 0 | ResizedArrayCCE = CCE; |
9883 | 0 | } else { |
9884 | 0 | auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType()); |
9885 | 0 | assert(CAT && "unexpected type for array initializer"); |
9886 | | |
9887 | 0 | unsigned Bits = |
9888 | 0 | std::max(CAT->getSize().getBitWidth(), ArrayBound.getBitWidth()); |
9889 | 0 | llvm::APInt InitBound = CAT->getSize().zext(Bits); |
9890 | 0 | llvm::APInt AllocBound = ArrayBound.zext(Bits); |
9891 | 0 | if (InitBound.ugt(AllocBound)) { |
9892 | 0 | if (IsNothrow) |
9893 | 0 | return ZeroInitialization(E); |
9894 | | |
9895 | 0 | Info.FFDiag(*ArraySize, diag::note_constexpr_new_too_small) |
9896 | 0 | << toString(AllocBound, 10, /*Signed=*/false) |
9897 | 0 | << toString(InitBound, 10, /*Signed=*/false) |
9898 | 0 | << (*ArraySize)->getSourceRange(); |
9899 | 0 | return false; |
9900 | 0 | } |
9901 | | |
9902 | | // If the sizes differ, we must have an initializer list, and we need |
9903 | | // special handling for this case when we initialize. |
9904 | 0 | if (InitBound != AllocBound) |
9905 | 0 | ResizedArrayILE = cast<InitListExpr>(Init); |
9906 | 0 | } |
9907 | | |
9908 | 0 | AllocType = Info.Ctx.getConstantArrayType(AllocType, ArrayBound, nullptr, |
9909 | 0 | ArraySizeModifier::Normal, 0); |
9910 | 0 | } else { |
9911 | 0 | assert(!AllocType->isArrayType() && |
9912 | 0 | "array allocation with non-array new"); |
9913 | 0 | } |
9914 | | |
9915 | 0 | APValue *Val; |
9916 | 0 | if (IsPlacement) { |
9917 | 0 | AccessKinds AK = AK_Construct; |
9918 | 0 | struct FindObjectHandler { |
9919 | 0 | EvalInfo &Info; |
9920 | 0 | const Expr *E; |
9921 | 0 | QualType AllocType; |
9922 | 0 | const AccessKinds AccessKind; |
9923 | 0 | APValue *Value; |
9924 | |
|
9925 | 0 | typedef bool result_type; |
9926 | 0 | bool failed() { return false; } |
9927 | 0 | bool found(APValue &Subobj, QualType SubobjType) { |
9928 | | // FIXME: Reject the cases where [basic.life]p8 would not permit the |
9929 | | // old name of the object to be used to name the new object. |
9930 | 0 | if (!Info.Ctx.hasSameUnqualifiedType(SubobjType, AllocType)) { |
9931 | 0 | Info.FFDiag(E, diag::note_constexpr_placement_new_wrong_type) << |
9932 | 0 | SubobjType << AllocType; |
9933 | 0 | return false; |
9934 | 0 | } |
9935 | 0 | Value = &Subobj; |
9936 | 0 | return true; |
9937 | 0 | } |
9938 | 0 | bool found(APSInt &Value, QualType SubobjType) { |
9939 | 0 | Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); |
9940 | 0 | return false; |
9941 | 0 | } |
9942 | 0 | bool found(APFloat &Value, QualType SubobjType) { |
9943 | 0 | Info.FFDiag(E, diag::note_constexpr_construct_complex_elem); |
9944 | 0 | return false; |
9945 | 0 | } |
9946 | 0 | } Handler = {Info, E, AllocType, AK, nullptr}; |
9947 | |
|
9948 | 0 | CompleteObject Obj = findCompleteObject(Info, E, AK, Result, AllocType); |
9949 | 0 | if (!Obj || !findSubobject(Info, E, Obj, Result.Designator, Handler)) |
9950 | 0 | return false; |
9951 | | |
9952 | 0 | Val = Handler.Value; |
9953 | | |
9954 | | // [basic.life]p1: |
9955 | | // The lifetime of an object o of type T ends when [...] the storage |
9956 | | // which the object occupies is [...] reused by an object that is not |
9957 | | // nested within o (6.6.2). |
9958 | 0 | *Val = APValue(); |
9959 | 0 | } else { |
9960 | | // Perform the allocation and obtain a pointer to the resulting object. |
9961 | 0 | Val = Info.createHeapAlloc(E, AllocType, Result); |
9962 | 0 | if (!Val) |
9963 | 0 | return false; |
9964 | 0 | } |
9965 | | |
9966 | 0 | if (ValueInit) { |
9967 | 0 | ImplicitValueInitExpr VIE(AllocType); |
9968 | 0 | if (!EvaluateInPlace(*Val, Info, Result, &VIE)) |
9969 | 0 | return false; |
9970 | 0 | } else if (ResizedArrayILE) { |
9971 | 0 | if (!EvaluateArrayNewInitList(Info, Result, *Val, ResizedArrayILE, |
9972 | 0 | AllocType)) |
9973 | 0 | return false; |
9974 | 0 | } else if (ResizedArrayCCE) { |
9975 | 0 | if (!EvaluateArrayNewConstructExpr(Info, Result, *Val, ResizedArrayCCE, |
9976 | 0 | AllocType)) |
9977 | 0 | return false; |
9978 | 0 | } else if (Init) { |
9979 | 0 | if (!EvaluateInPlace(*Val, Info, Result, Init)) |
9980 | 0 | return false; |
9981 | 0 | } else if (!handleDefaultInitValue(AllocType, *Val)) { |
9982 | 0 | return false; |
9983 | 0 | } |
9984 | | |
9985 | | // Array new returns a pointer to the first element, not a pointer to the |
9986 | | // array. |
9987 | 0 | if (auto *AT = AllocType->getAsArrayTypeUnsafe()) |
9988 | 0 | Result.addArray(Info, E, cast<ConstantArrayType>(AT)); |
9989 | |
|
9990 | 0 | return true; |
9991 | 0 | } |
9992 | | //===----------------------------------------------------------------------===// |
9993 | | // Member Pointer Evaluation |
9994 | | //===----------------------------------------------------------------------===// |
9995 | | |
9996 | | namespace { |
9997 | | class MemberPointerExprEvaluator |
9998 | | : public ExprEvaluatorBase<MemberPointerExprEvaluator> { |
9999 | | MemberPtr &Result; |
10000 | | |
10001 | 0 | bool Success(const ValueDecl *D) { |
10002 | 0 | Result = MemberPtr(D); |
10003 | 0 | return true; |
10004 | 0 | } |
10005 | | public: |
10006 | | |
10007 | | MemberPointerExprEvaluator(EvalInfo &Info, MemberPtr &Result) |
10008 | 0 | : ExprEvaluatorBaseTy(Info), Result(Result) {} |
10009 | | |
10010 | 0 | bool Success(const APValue &V, const Expr *E) { |
10011 | 0 | Result.setFrom(V); |
10012 | 0 | return true; |
10013 | 0 | } |
10014 | 0 | bool ZeroInitialization(const Expr *E) { |
10015 | 0 | return Success((const ValueDecl*)nullptr); |
10016 | 0 | } |
10017 | | |
10018 | | bool VisitCastExpr(const CastExpr *E); |
10019 | | bool VisitUnaryAddrOf(const UnaryOperator *E); |
10020 | | }; |
10021 | | } // end anonymous namespace |
10022 | | |
10023 | | static bool EvaluateMemberPointer(const Expr *E, MemberPtr &Result, |
10024 | 0 | EvalInfo &Info) { |
10025 | 0 | assert(!E->isValueDependent()); |
10026 | 0 | assert(E->isPRValue() && E->getType()->isMemberPointerType()); |
10027 | 0 | return MemberPointerExprEvaluator(Info, Result).Visit(E); |
10028 | 0 | } |
10029 | | |
10030 | 0 | bool MemberPointerExprEvaluator::VisitCastExpr(const CastExpr *E) { |
10031 | 0 | switch (E->getCastKind()) { |
10032 | 0 | default: |
10033 | 0 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
10034 | | |
10035 | 0 | case CK_NullToMemberPointer: |
10036 | 0 | VisitIgnoredValue(E->getSubExpr()); |
10037 | 0 | return ZeroInitialization(E); |
10038 | | |
10039 | 0 | case CK_BaseToDerivedMemberPointer: { |
10040 | 0 | if (!Visit(E->getSubExpr())) |
10041 | 0 | return false; |
10042 | 0 | if (E->path_empty()) |
10043 | 0 | return true; |
10044 | | // Base-to-derived member pointer casts store the path in derived-to-base |
10045 | | // order, so iterate backwards. The CXXBaseSpecifier also provides us with |
10046 | | // the wrong end of the derived->base arc, so stagger the path by one class. |
10047 | 0 | typedef std::reverse_iterator<CastExpr::path_const_iterator> ReverseIter; |
10048 | 0 | for (ReverseIter PathI(E->path_end() - 1), PathE(E->path_begin()); |
10049 | 0 | PathI != PathE; ++PathI) { |
10050 | 0 | assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); |
10051 | 0 | const CXXRecordDecl *Derived = (*PathI)->getType()->getAsCXXRecordDecl(); |
10052 | 0 | if (!Result.castToDerived(Derived)) |
10053 | 0 | return Error(E); |
10054 | 0 | } |
10055 | 0 | const Type *FinalTy = E->getType()->castAs<MemberPointerType>()->getClass(); |
10056 | 0 | if (!Result.castToDerived(FinalTy->getAsCXXRecordDecl())) |
10057 | 0 | return Error(E); |
10058 | 0 | return true; |
10059 | 0 | } |
10060 | | |
10061 | 0 | case CK_DerivedToBaseMemberPointer: |
10062 | 0 | if (!Visit(E->getSubExpr())) |
10063 | 0 | return false; |
10064 | 0 | for (CastExpr::path_const_iterator PathI = E->path_begin(), |
10065 | 0 | PathE = E->path_end(); PathI != PathE; ++PathI) { |
10066 | 0 | assert(!(*PathI)->isVirtual() && "memptr cast through vbase"); |
10067 | 0 | const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); |
10068 | 0 | if (!Result.castToBase(Base)) |
10069 | 0 | return Error(E); |
10070 | 0 | } |
10071 | 0 | return true; |
10072 | 0 | } |
10073 | 0 | } |
10074 | | |
10075 | 0 | bool MemberPointerExprEvaluator::VisitUnaryAddrOf(const UnaryOperator *E) { |
10076 | | // C++11 [expr.unary.op]p3 has very strict rules on how the address of a |
10077 | | // member can be formed. |
10078 | 0 | return Success(cast<DeclRefExpr>(E->getSubExpr())->getDecl()); |
10079 | 0 | } |
10080 | | |
10081 | | //===----------------------------------------------------------------------===// |
10082 | | // Record Evaluation |
10083 | | //===----------------------------------------------------------------------===// |
10084 | | |
10085 | | namespace { |
10086 | | class RecordExprEvaluator |
10087 | | : public ExprEvaluatorBase<RecordExprEvaluator> { |
10088 | | const LValue &This; |
10089 | | APValue &Result; |
10090 | | public: |
10091 | | |
10092 | | RecordExprEvaluator(EvalInfo &info, const LValue &This, APValue &Result) |
10093 | 0 | : ExprEvaluatorBaseTy(info), This(This), Result(Result) {} |
10094 | | |
10095 | 0 | bool Success(const APValue &V, const Expr *E) { |
10096 | 0 | Result = V; |
10097 | 0 | return true; |
10098 | 0 | } |
10099 | 0 | bool ZeroInitialization(const Expr *E) { |
10100 | 0 | return ZeroInitialization(E, E->getType()); |
10101 | 0 | } |
10102 | | bool ZeroInitialization(const Expr *E, QualType T); |
10103 | | |
10104 | 0 | bool VisitCallExpr(const CallExpr *E) { |
10105 | 0 | return handleCallExpr(E, Result, &This); |
10106 | 0 | } |
10107 | | bool VisitCastExpr(const CastExpr *E); |
10108 | | bool VisitInitListExpr(const InitListExpr *E); |
10109 | 0 | bool VisitCXXConstructExpr(const CXXConstructExpr *E) { |
10110 | 0 | return VisitCXXConstructExpr(E, E->getType()); |
10111 | 0 | } |
10112 | | bool VisitLambdaExpr(const LambdaExpr *E); |
10113 | | bool VisitCXXInheritedCtorInitExpr(const CXXInheritedCtorInitExpr *E); |
10114 | | bool VisitCXXConstructExpr(const CXXConstructExpr *E, QualType T); |
10115 | | bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E); |
10116 | | bool VisitBinCmp(const BinaryOperator *E); |
10117 | | bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E); |
10118 | | bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit, |
10119 | | ArrayRef<Expr *> Args); |
10120 | | }; |
10121 | | } |
10122 | | |
10123 | | /// Perform zero-initialization on an object of non-union class type. |
10124 | | /// C++11 [dcl.init]p5: |
10125 | | /// To zero-initialize an object or reference of type T means: |
10126 | | /// [...] |
10127 | | /// -- if T is a (possibly cv-qualified) non-union class type, |
10128 | | /// each non-static data member and each base-class subobject is |
10129 | | /// zero-initialized |
10130 | | static bool HandleClassZeroInitialization(EvalInfo &Info, const Expr *E, |
10131 | | const RecordDecl *RD, |
10132 | 0 | const LValue &This, APValue &Result) { |
10133 | 0 | assert(!RD->isUnion() && "Expected non-union class type"); |
10134 | 0 | const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); |
10135 | 0 | Result = APValue(APValue::UninitStruct(), CD ? CD->getNumBases() : 0, |
10136 | 0 | std::distance(RD->field_begin(), RD->field_end())); |
10137 | |
|
10138 | 0 | if (RD->isInvalidDecl()) return false; |
10139 | 0 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
10140 | |
|
10141 | 0 | if (CD) { |
10142 | 0 | unsigned Index = 0; |
10143 | 0 | for (CXXRecordDecl::base_class_const_iterator I = CD->bases_begin(), |
10144 | 0 | End = CD->bases_end(); I != End; ++I, ++Index) { |
10145 | 0 | const CXXRecordDecl *Base = I->getType()->getAsCXXRecordDecl(); |
10146 | 0 | LValue Subobject = This; |
10147 | 0 | if (!HandleLValueDirectBase(Info, E, Subobject, CD, Base, &Layout)) |
10148 | 0 | return false; |
10149 | 0 | if (!HandleClassZeroInitialization(Info, E, Base, Subobject, |
10150 | 0 | Result.getStructBase(Index))) |
10151 | 0 | return false; |
10152 | 0 | } |
10153 | 0 | } |
10154 | | |
10155 | 0 | for (const auto *I : RD->fields()) { |
10156 | | // -- if T is a reference type, no initialization is performed. |
10157 | 0 | if (I->isUnnamedBitfield() || I->getType()->isReferenceType()) |
10158 | 0 | continue; |
10159 | | |
10160 | 0 | LValue Subobject = This; |
10161 | 0 | if (!HandleLValueMember(Info, E, Subobject, I, &Layout)) |
10162 | 0 | return false; |
10163 | | |
10164 | 0 | ImplicitValueInitExpr VIE(I->getType()); |
10165 | 0 | if (!EvaluateInPlace( |
10166 | 0 | Result.getStructField(I->getFieldIndex()), Info, Subobject, &VIE)) |
10167 | 0 | return false; |
10168 | 0 | } |
10169 | | |
10170 | 0 | return true; |
10171 | 0 | } |
10172 | | |
10173 | 0 | bool RecordExprEvaluator::ZeroInitialization(const Expr *E, QualType T) { |
10174 | 0 | const RecordDecl *RD = T->castAs<RecordType>()->getDecl(); |
10175 | 0 | if (RD->isInvalidDecl()) return false; |
10176 | 0 | if (RD->isUnion()) { |
10177 | | // C++11 [dcl.init]p5: If T is a (possibly cv-qualified) union type, the |
10178 | | // object's first non-static named data member is zero-initialized |
10179 | 0 | RecordDecl::field_iterator I = RD->field_begin(); |
10180 | 0 | while (I != RD->field_end() && (*I)->isUnnamedBitfield()) |
10181 | 0 | ++I; |
10182 | 0 | if (I == RD->field_end()) { |
10183 | 0 | Result = APValue((const FieldDecl*)nullptr); |
10184 | 0 | return true; |
10185 | 0 | } |
10186 | | |
10187 | 0 | LValue Subobject = This; |
10188 | 0 | if (!HandleLValueMember(Info, E, Subobject, *I)) |
10189 | 0 | return false; |
10190 | 0 | Result = APValue(*I); |
10191 | 0 | ImplicitValueInitExpr VIE(I->getType()); |
10192 | 0 | return EvaluateInPlace(Result.getUnionValue(), Info, Subobject, &VIE); |
10193 | 0 | } |
10194 | | |
10195 | 0 | if (isa<CXXRecordDecl>(RD) && cast<CXXRecordDecl>(RD)->getNumVBases()) { |
10196 | 0 | Info.FFDiag(E, diag::note_constexpr_virtual_base) << RD; |
10197 | 0 | return false; |
10198 | 0 | } |
10199 | | |
10200 | 0 | return HandleClassZeroInitialization(Info, E, RD, This, Result); |
10201 | 0 | } |
10202 | | |
10203 | 0 | bool RecordExprEvaluator::VisitCastExpr(const CastExpr *E) { |
10204 | 0 | switch (E->getCastKind()) { |
10205 | 0 | default: |
10206 | 0 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
10207 | | |
10208 | 0 | case CK_ConstructorConversion: |
10209 | 0 | return Visit(E->getSubExpr()); |
10210 | | |
10211 | 0 | case CK_DerivedToBase: |
10212 | 0 | case CK_UncheckedDerivedToBase: { |
10213 | 0 | APValue DerivedObject; |
10214 | 0 | if (!Evaluate(DerivedObject, Info, E->getSubExpr())) |
10215 | 0 | return false; |
10216 | 0 | if (!DerivedObject.isStruct()) |
10217 | 0 | return Error(E->getSubExpr()); |
10218 | | |
10219 | | // Derived-to-base rvalue conversion: just slice off the derived part. |
10220 | 0 | APValue *Value = &DerivedObject; |
10221 | 0 | const CXXRecordDecl *RD = E->getSubExpr()->getType()->getAsCXXRecordDecl(); |
10222 | 0 | for (CastExpr::path_const_iterator PathI = E->path_begin(), |
10223 | 0 | PathE = E->path_end(); PathI != PathE; ++PathI) { |
10224 | 0 | assert(!(*PathI)->isVirtual() && "record rvalue with virtual base"); |
10225 | 0 | const CXXRecordDecl *Base = (*PathI)->getType()->getAsCXXRecordDecl(); |
10226 | 0 | Value = &Value->getStructBase(getBaseIndex(RD, Base)); |
10227 | 0 | RD = Base; |
10228 | 0 | } |
10229 | 0 | Result = *Value; |
10230 | 0 | return true; |
10231 | 0 | } |
10232 | 0 | } |
10233 | 0 | } |
10234 | | |
10235 | 0 | bool RecordExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
10236 | 0 | if (E->isTransparent()) |
10237 | 0 | return Visit(E->getInit(0)); |
10238 | 0 | return VisitCXXParenListOrInitListExpr(E, E->inits()); |
10239 | 0 | } |
10240 | | |
10241 | | bool RecordExprEvaluator::VisitCXXParenListOrInitListExpr( |
10242 | 0 | const Expr *ExprToVisit, ArrayRef<Expr *> Args) { |
10243 | 0 | const RecordDecl *RD = |
10244 | 0 | ExprToVisit->getType()->castAs<RecordType>()->getDecl(); |
10245 | 0 | if (RD->isInvalidDecl()) return false; |
10246 | 0 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(RD); |
10247 | 0 | auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); |
10248 | |
|
10249 | 0 | EvalInfo::EvaluatingConstructorRAII EvalObj( |
10250 | 0 | Info, |
10251 | 0 | ObjectUnderConstruction{This.getLValueBase(), This.Designator.Entries}, |
10252 | 0 | CXXRD && CXXRD->getNumBases()); |
10253 | |
|
10254 | 0 | if (RD->isUnion()) { |
10255 | 0 | const FieldDecl *Field; |
10256 | 0 | if (auto *ILE = dyn_cast<InitListExpr>(ExprToVisit)) { |
10257 | 0 | Field = ILE->getInitializedFieldInUnion(); |
10258 | 0 | } else if (auto *PLIE = dyn_cast<CXXParenListInitExpr>(ExprToVisit)) { |
10259 | 0 | Field = PLIE->getInitializedFieldInUnion(); |
10260 | 0 | } else { |
10261 | 0 | llvm_unreachable( |
10262 | 0 | "Expression is neither an init list nor a C++ paren list"); |
10263 | 0 | } |
10264 | |
|
10265 | 0 | Result = APValue(Field); |
10266 | 0 | if (!Field) |
10267 | 0 | return true; |
10268 | | |
10269 | | // If the initializer list for a union does not contain any elements, the |
10270 | | // first element of the union is value-initialized. |
10271 | | // FIXME: The element should be initialized from an initializer list. |
10272 | | // Is this difference ever observable for initializer lists which |
10273 | | // we don't build? |
10274 | 0 | ImplicitValueInitExpr VIE(Field->getType()); |
10275 | 0 | const Expr *InitExpr = Args.empty() ? &VIE : Args[0]; |
10276 | |
|
10277 | 0 | LValue Subobject = This; |
10278 | 0 | if (!HandleLValueMember(Info, InitExpr, Subobject, Field, &Layout)) |
10279 | 0 | return false; |
10280 | | |
10281 | | // Temporarily override This, in case there's a CXXDefaultInitExpr in here. |
10282 | 0 | ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, |
10283 | 0 | isa<CXXDefaultInitExpr>(InitExpr)); |
10284 | |
|
10285 | 0 | if (EvaluateInPlace(Result.getUnionValue(), Info, Subobject, InitExpr)) { |
10286 | 0 | if (Field->isBitField()) |
10287 | 0 | return truncateBitfieldValue(Info, InitExpr, Result.getUnionValue(), |
10288 | 0 | Field); |
10289 | 0 | return true; |
10290 | 0 | } |
10291 | | |
10292 | 0 | return false; |
10293 | 0 | } |
10294 | | |
10295 | 0 | if (!Result.hasValue()) |
10296 | 0 | Result = APValue(APValue::UninitStruct(), CXXRD ? CXXRD->getNumBases() : 0, |
10297 | 0 | std::distance(RD->field_begin(), RD->field_end())); |
10298 | 0 | unsigned ElementNo = 0; |
10299 | 0 | bool Success = true; |
10300 | | |
10301 | | // Initialize base classes. |
10302 | 0 | if (CXXRD && CXXRD->getNumBases()) { |
10303 | 0 | for (const auto &Base : CXXRD->bases()) { |
10304 | 0 | assert(ElementNo < Args.size() && "missing init for base class"); |
10305 | 0 | const Expr *Init = Args[ElementNo]; |
10306 | |
|
10307 | 0 | LValue Subobject = This; |
10308 | 0 | if (!HandleLValueBase(Info, Init, Subobject, CXXRD, &Base)) |
10309 | 0 | return false; |
10310 | | |
10311 | 0 | APValue &FieldVal = Result.getStructBase(ElementNo); |
10312 | 0 | if (!EvaluateInPlace(FieldVal, Info, Subobject, Init)) { |
10313 | 0 | if (!Info.noteFailure()) |
10314 | 0 | return false; |
10315 | 0 | Success = false; |
10316 | 0 | } |
10317 | 0 | ++ElementNo; |
10318 | 0 | } |
10319 | | |
10320 | 0 | EvalObj.finishedConstructingBases(); |
10321 | 0 | } |
10322 | | |
10323 | | // Initialize members. |
10324 | 0 | for (const auto *Field : RD->fields()) { |
10325 | | // Anonymous bit-fields are not considered members of the class for |
10326 | | // purposes of aggregate initialization. |
10327 | 0 | if (Field->isUnnamedBitfield()) |
10328 | 0 | continue; |
10329 | | |
10330 | 0 | LValue Subobject = This; |
10331 | |
|
10332 | 0 | bool HaveInit = ElementNo < Args.size(); |
10333 | | |
10334 | | // FIXME: Diagnostics here should point to the end of the initializer |
10335 | | // list, not the start. |
10336 | 0 | if (!HandleLValueMember(Info, HaveInit ? Args[ElementNo] : ExprToVisit, |
10337 | 0 | Subobject, Field, &Layout)) |
10338 | 0 | return false; |
10339 | | |
10340 | | // Perform an implicit value-initialization for members beyond the end of |
10341 | | // the initializer list. |
10342 | 0 | ImplicitValueInitExpr VIE(HaveInit ? Info.Ctx.IntTy : Field->getType()); |
10343 | 0 | const Expr *Init = HaveInit ? Args[ElementNo++] : &VIE; |
10344 | |
|
10345 | 0 | if (Field->getType()->isIncompleteArrayType()) { |
10346 | 0 | if (auto *CAT = Info.Ctx.getAsConstantArrayType(Init->getType())) { |
10347 | 0 | if (!CAT->getSize().isZero()) { |
10348 | | // Bail out for now. This might sort of "work", but the rest of the |
10349 | | // code isn't really prepared to handle it. |
10350 | 0 | Info.FFDiag(Init, diag::note_constexpr_unsupported_flexible_array); |
10351 | 0 | return false; |
10352 | 0 | } |
10353 | 0 | } |
10354 | 0 | } |
10355 | | |
10356 | | // Temporarily override This, in case there's a CXXDefaultInitExpr in here. |
10357 | 0 | ThisOverrideRAII ThisOverride(*Info.CurrentCall, &This, |
10358 | 0 | isa<CXXDefaultInitExpr>(Init)); |
10359 | |
|
10360 | 0 | APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); |
10361 | 0 | if (!EvaluateInPlace(FieldVal, Info, Subobject, Init) || |
10362 | 0 | (Field->isBitField() && !truncateBitfieldValue(Info, Init, |
10363 | 0 | FieldVal, Field))) { |
10364 | 0 | if (!Info.noteFailure()) |
10365 | 0 | return false; |
10366 | 0 | Success = false; |
10367 | 0 | } |
10368 | 0 | } |
10369 | | |
10370 | 0 | EvalObj.finishedConstructingFields(); |
10371 | |
|
10372 | 0 | return Success; |
10373 | 0 | } |
10374 | | |
10375 | | bool RecordExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, |
10376 | 0 | QualType T) { |
10377 | | // Note that E's type is not necessarily the type of our class here; we might |
10378 | | // be initializing an array element instead. |
10379 | 0 | const CXXConstructorDecl *FD = E->getConstructor(); |
10380 | 0 | if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) return false; |
10381 | | |
10382 | 0 | bool ZeroInit = E->requiresZeroInitialization(); |
10383 | 0 | if (CheckTrivialDefaultConstructor(Info, E->getExprLoc(), FD, ZeroInit)) { |
10384 | | // If we've already performed zero-initialization, we're already done. |
10385 | 0 | if (Result.hasValue()) |
10386 | 0 | return true; |
10387 | | |
10388 | 0 | if (ZeroInit) |
10389 | 0 | return ZeroInitialization(E, T); |
10390 | | |
10391 | 0 | return handleDefaultInitValue(T, Result); |
10392 | 0 | } |
10393 | | |
10394 | 0 | const FunctionDecl *Definition = nullptr; |
10395 | 0 | auto Body = FD->getBody(Definition); |
10396 | |
|
10397 | 0 | if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) |
10398 | 0 | return false; |
10399 | | |
10400 | | // Avoid materializing a temporary for an elidable copy/move constructor. |
10401 | 0 | if (E->isElidable() && !ZeroInit) { |
10402 | | // FIXME: This only handles the simplest case, where the source object |
10403 | | // is passed directly as the first argument to the constructor. |
10404 | | // This should also handle stepping though implicit casts and |
10405 | | // and conversion sequences which involve two steps, with a |
10406 | | // conversion operator followed by a converting constructor. |
10407 | 0 | const Expr *SrcObj = E->getArg(0); |
10408 | 0 | assert(SrcObj->isTemporaryObject(Info.Ctx, FD->getParent())); |
10409 | 0 | assert(Info.Ctx.hasSameUnqualifiedType(E->getType(), SrcObj->getType())); |
10410 | 0 | if (const MaterializeTemporaryExpr *ME = |
10411 | 0 | dyn_cast<MaterializeTemporaryExpr>(SrcObj)) |
10412 | 0 | return Visit(ME->getSubExpr()); |
10413 | 0 | } |
10414 | | |
10415 | 0 | if (ZeroInit && !ZeroInitialization(E, T)) |
10416 | 0 | return false; |
10417 | | |
10418 | 0 | auto Args = llvm::ArrayRef(E->getArgs(), E->getNumArgs()); |
10419 | 0 | return HandleConstructorCall(E, This, Args, |
10420 | 0 | cast<CXXConstructorDecl>(Definition), Info, |
10421 | 0 | Result); |
10422 | 0 | } |
10423 | | |
10424 | | bool RecordExprEvaluator::VisitCXXInheritedCtorInitExpr( |
10425 | 0 | const CXXInheritedCtorInitExpr *E) { |
10426 | 0 | if (!Info.CurrentCall) { |
10427 | 0 | assert(Info.checkingPotentialConstantExpression()); |
10428 | 0 | return false; |
10429 | 0 | } |
10430 | | |
10431 | 0 | const CXXConstructorDecl *FD = E->getConstructor(); |
10432 | 0 | if (FD->isInvalidDecl() || FD->getParent()->isInvalidDecl()) |
10433 | 0 | return false; |
10434 | | |
10435 | 0 | const FunctionDecl *Definition = nullptr; |
10436 | 0 | auto Body = FD->getBody(Definition); |
10437 | |
|
10438 | 0 | if (!CheckConstexprFunction(Info, E->getExprLoc(), FD, Definition, Body)) |
10439 | 0 | return false; |
10440 | | |
10441 | 0 | return HandleConstructorCall(E, This, Info.CurrentCall->Arguments, |
10442 | 0 | cast<CXXConstructorDecl>(Definition), Info, |
10443 | 0 | Result); |
10444 | 0 | } |
10445 | | |
10446 | | bool RecordExprEvaluator::VisitCXXStdInitializerListExpr( |
10447 | 0 | const CXXStdInitializerListExpr *E) { |
10448 | 0 | const ConstantArrayType *ArrayType = |
10449 | 0 | Info.Ctx.getAsConstantArrayType(E->getSubExpr()->getType()); |
10450 | |
|
10451 | 0 | LValue Array; |
10452 | 0 | if (!EvaluateLValue(E->getSubExpr(), Array, Info)) |
10453 | 0 | return false; |
10454 | | |
10455 | 0 | assert(ArrayType && "unexpected type for array initializer"); |
10456 | | |
10457 | | // Get a pointer to the first element of the array. |
10458 | 0 | Array.addArray(Info, E, ArrayType); |
10459 | |
|
10460 | 0 | auto InvalidType = [&] { |
10461 | 0 | Info.FFDiag(E, diag::note_constexpr_unsupported_layout) |
10462 | 0 | << E->getType(); |
10463 | 0 | return false; |
10464 | 0 | }; |
10465 | | |
10466 | | // FIXME: Perform the checks on the field types in SemaInit. |
10467 | 0 | RecordDecl *Record = E->getType()->castAs<RecordType>()->getDecl(); |
10468 | 0 | RecordDecl::field_iterator Field = Record->field_begin(); |
10469 | 0 | if (Field == Record->field_end()) |
10470 | 0 | return InvalidType(); |
10471 | | |
10472 | | // Start pointer. |
10473 | 0 | if (!Field->getType()->isPointerType() || |
10474 | 0 | !Info.Ctx.hasSameType(Field->getType()->getPointeeType(), |
10475 | 0 | ArrayType->getElementType())) |
10476 | 0 | return InvalidType(); |
10477 | | |
10478 | | // FIXME: What if the initializer_list type has base classes, etc? |
10479 | 0 | Result = APValue(APValue::UninitStruct(), 0, 2); |
10480 | 0 | Array.moveInto(Result.getStructField(0)); |
10481 | |
|
10482 | 0 | if (++Field == Record->field_end()) |
10483 | 0 | return InvalidType(); |
10484 | | |
10485 | 0 | if (Field->getType()->isPointerType() && |
10486 | 0 | Info.Ctx.hasSameType(Field->getType()->getPointeeType(), |
10487 | 0 | ArrayType->getElementType())) { |
10488 | | // End pointer. |
10489 | 0 | if (!HandleLValueArrayAdjustment(Info, E, Array, |
10490 | 0 | ArrayType->getElementType(), |
10491 | 0 | ArrayType->getSize().getZExtValue())) |
10492 | 0 | return false; |
10493 | 0 | Array.moveInto(Result.getStructField(1)); |
10494 | 0 | } else if (Info.Ctx.hasSameType(Field->getType(), Info.Ctx.getSizeType())) |
10495 | | // Length. |
10496 | 0 | Result.getStructField(1) = APValue(APSInt(ArrayType->getSize())); |
10497 | 0 | else |
10498 | 0 | return InvalidType(); |
10499 | | |
10500 | 0 | if (++Field != Record->field_end()) |
10501 | 0 | return InvalidType(); |
10502 | | |
10503 | 0 | return true; |
10504 | 0 | } |
10505 | | |
10506 | 0 | bool RecordExprEvaluator::VisitLambdaExpr(const LambdaExpr *E) { |
10507 | 0 | const CXXRecordDecl *ClosureClass = E->getLambdaClass(); |
10508 | 0 | if (ClosureClass->isInvalidDecl()) |
10509 | 0 | return false; |
10510 | | |
10511 | 0 | const size_t NumFields = |
10512 | 0 | std::distance(ClosureClass->field_begin(), ClosureClass->field_end()); |
10513 | |
|
10514 | 0 | assert(NumFields == (size_t)std::distance(E->capture_init_begin(), |
10515 | 0 | E->capture_init_end()) && |
10516 | 0 | "The number of lambda capture initializers should equal the number of " |
10517 | 0 | "fields within the closure type"); |
10518 | | |
10519 | 0 | Result = APValue(APValue::UninitStruct(), /*NumBases*/0, NumFields); |
10520 | | // Iterate through all the lambda's closure object's fields and initialize |
10521 | | // them. |
10522 | 0 | auto *CaptureInitIt = E->capture_init_begin(); |
10523 | 0 | bool Success = true; |
10524 | 0 | const ASTRecordLayout &Layout = Info.Ctx.getASTRecordLayout(ClosureClass); |
10525 | 0 | for (const auto *Field : ClosureClass->fields()) { |
10526 | 0 | assert(CaptureInitIt != E->capture_init_end()); |
10527 | | // Get the initializer for this field |
10528 | 0 | Expr *const CurFieldInit = *CaptureInitIt++; |
10529 | | |
10530 | | // If there is no initializer, either this is a VLA or an error has |
10531 | | // occurred. |
10532 | 0 | if (!CurFieldInit) |
10533 | 0 | return Error(E); |
10534 | | |
10535 | 0 | LValue Subobject = This; |
10536 | |
|
10537 | 0 | if (!HandleLValueMember(Info, E, Subobject, Field, &Layout)) |
10538 | 0 | return false; |
10539 | | |
10540 | 0 | APValue &FieldVal = Result.getStructField(Field->getFieldIndex()); |
10541 | 0 | if (!EvaluateInPlace(FieldVal, Info, Subobject, CurFieldInit)) { |
10542 | 0 | if (!Info.keepEvaluatingAfterFailure()) |
10543 | 0 | return false; |
10544 | 0 | Success = false; |
10545 | 0 | } |
10546 | 0 | } |
10547 | 0 | return Success; |
10548 | 0 | } |
10549 | | |
10550 | | static bool EvaluateRecord(const Expr *E, const LValue &This, |
10551 | 0 | APValue &Result, EvalInfo &Info) { |
10552 | 0 | assert(!E->isValueDependent()); |
10553 | 0 | assert(E->isPRValue() && E->getType()->isRecordType() && |
10554 | 0 | "can't evaluate expression as a record rvalue"); |
10555 | 0 | return RecordExprEvaluator(Info, This, Result).Visit(E); |
10556 | 0 | } |
10557 | | |
10558 | | //===----------------------------------------------------------------------===// |
10559 | | // Temporary Evaluation |
10560 | | // |
10561 | | // Temporaries are represented in the AST as rvalues, but generally behave like |
10562 | | // lvalues. The full-object of which the temporary is a subobject is implicitly |
10563 | | // materialized so that a reference can bind to it. |
10564 | | //===----------------------------------------------------------------------===// |
10565 | | namespace { |
10566 | | class TemporaryExprEvaluator |
10567 | | : public LValueExprEvaluatorBase<TemporaryExprEvaluator> { |
10568 | | public: |
10569 | | TemporaryExprEvaluator(EvalInfo &Info, LValue &Result) : |
10570 | 0 | LValueExprEvaluatorBaseTy(Info, Result, false) {} |
10571 | | |
10572 | | /// Visit an expression which constructs the value of this temporary. |
10573 | 0 | bool VisitConstructExpr(const Expr *E) { |
10574 | 0 | APValue &Value = Info.CurrentCall->createTemporary( |
10575 | 0 | E, E->getType(), ScopeKind::FullExpression, Result); |
10576 | 0 | return EvaluateInPlace(Value, Info, Result, E); |
10577 | 0 | } |
10578 | | |
10579 | 0 | bool VisitCastExpr(const CastExpr *E) { |
10580 | 0 | switch (E->getCastKind()) { |
10581 | 0 | default: |
10582 | 0 | return LValueExprEvaluatorBaseTy::VisitCastExpr(E); |
10583 | | |
10584 | 0 | case CK_ConstructorConversion: |
10585 | 0 | return VisitConstructExpr(E->getSubExpr()); |
10586 | 0 | } |
10587 | 0 | } |
10588 | 0 | bool VisitInitListExpr(const InitListExpr *E) { |
10589 | 0 | return VisitConstructExpr(E); |
10590 | 0 | } |
10591 | 0 | bool VisitCXXConstructExpr(const CXXConstructExpr *E) { |
10592 | 0 | return VisitConstructExpr(E); |
10593 | 0 | } |
10594 | 0 | bool VisitCallExpr(const CallExpr *E) { |
10595 | 0 | return VisitConstructExpr(E); |
10596 | 0 | } |
10597 | 0 | bool VisitCXXStdInitializerListExpr(const CXXStdInitializerListExpr *E) { |
10598 | 0 | return VisitConstructExpr(E); |
10599 | 0 | } |
10600 | 0 | bool VisitLambdaExpr(const LambdaExpr *E) { |
10601 | 0 | return VisitConstructExpr(E); |
10602 | 0 | } |
10603 | | }; |
10604 | | } // end anonymous namespace |
10605 | | |
10606 | | /// Evaluate an expression of record type as a temporary. |
10607 | 0 | static bool EvaluateTemporary(const Expr *E, LValue &Result, EvalInfo &Info) { |
10608 | 0 | assert(!E->isValueDependent()); |
10609 | 0 | assert(E->isPRValue() && E->getType()->isRecordType()); |
10610 | 0 | return TemporaryExprEvaluator(Info, Result).Visit(E); |
10611 | 0 | } |
10612 | | |
10613 | | //===----------------------------------------------------------------------===// |
10614 | | // Vector Evaluation |
10615 | | //===----------------------------------------------------------------------===// |
10616 | | |
10617 | | namespace { |
10618 | | class VectorExprEvaluator |
10619 | | : public ExprEvaluatorBase<VectorExprEvaluator> { |
10620 | | APValue &Result; |
10621 | | public: |
10622 | | |
10623 | | VectorExprEvaluator(EvalInfo &info, APValue &Result) |
10624 | 0 | : ExprEvaluatorBaseTy(info), Result(Result) {} |
10625 | | |
10626 | 0 | bool Success(ArrayRef<APValue> V, const Expr *E) { |
10627 | 0 | assert(V.size() == E->getType()->castAs<VectorType>()->getNumElements()); |
10628 | | // FIXME: remove this APValue copy. |
10629 | 0 | Result = APValue(V.data(), V.size()); |
10630 | 0 | return true; |
10631 | 0 | } |
10632 | 0 | bool Success(const APValue &V, const Expr *E) { |
10633 | 0 | assert(V.isVector()); |
10634 | 0 | Result = V; |
10635 | 0 | return true; |
10636 | 0 | } |
10637 | | bool ZeroInitialization(const Expr *E); |
10638 | | |
10639 | | bool VisitUnaryReal(const UnaryOperator *E) |
10640 | 0 | { return Visit(E->getSubExpr()); } |
10641 | | bool VisitCastExpr(const CastExpr* E); |
10642 | | bool VisitInitListExpr(const InitListExpr *E); |
10643 | | bool VisitUnaryImag(const UnaryOperator *E); |
10644 | | bool VisitBinaryOperator(const BinaryOperator *E); |
10645 | | bool VisitUnaryOperator(const UnaryOperator *E); |
10646 | | // FIXME: Missing: conditional operator (for GNU |
10647 | | // conditional select), shufflevector, ExtVectorElementExpr |
10648 | | }; |
10649 | | } // end anonymous namespace |
10650 | | |
10651 | 0 | static bool EvaluateVector(const Expr* E, APValue& Result, EvalInfo &Info) { |
10652 | 0 | assert(E->isPRValue() && E->getType()->isVectorType() && |
10653 | 0 | "not a vector prvalue"); |
10654 | 0 | return VectorExprEvaluator(Info, Result).Visit(E); |
10655 | 0 | } |
10656 | | |
10657 | 0 | bool VectorExprEvaluator::VisitCastExpr(const CastExpr *E) { |
10658 | 0 | const VectorType *VTy = E->getType()->castAs<VectorType>(); |
10659 | 0 | unsigned NElts = VTy->getNumElements(); |
10660 | |
|
10661 | 0 | const Expr *SE = E->getSubExpr(); |
10662 | 0 | QualType SETy = SE->getType(); |
10663 | |
|
10664 | 0 | switch (E->getCastKind()) { |
10665 | 0 | case CK_VectorSplat: { |
10666 | 0 | APValue Val = APValue(); |
10667 | 0 | if (SETy->isIntegerType()) { |
10668 | 0 | APSInt IntResult; |
10669 | 0 | if (!EvaluateInteger(SE, IntResult, Info)) |
10670 | 0 | return false; |
10671 | 0 | Val = APValue(std::move(IntResult)); |
10672 | 0 | } else if (SETy->isRealFloatingType()) { |
10673 | 0 | APFloat FloatResult(0.0); |
10674 | 0 | if (!EvaluateFloat(SE, FloatResult, Info)) |
10675 | 0 | return false; |
10676 | 0 | Val = APValue(std::move(FloatResult)); |
10677 | 0 | } else { |
10678 | 0 | return Error(E); |
10679 | 0 | } |
10680 | | |
10681 | | // Splat and create vector APValue. |
10682 | 0 | SmallVector<APValue, 4> Elts(NElts, Val); |
10683 | 0 | return Success(Elts, E); |
10684 | 0 | } |
10685 | 0 | case CK_BitCast: { |
10686 | 0 | APValue SVal; |
10687 | 0 | if (!Evaluate(SVal, Info, SE)) |
10688 | 0 | return false; |
10689 | | |
10690 | 0 | if (!SVal.isInt() && !SVal.isFloat() && !SVal.isVector()) { |
10691 | | // Give up if the input isn't an int, float, or vector. For example, we |
10692 | | // reject "(v4i16)(intptr_t)&a". |
10693 | 0 | Info.FFDiag(E, diag::note_constexpr_invalid_cast) |
10694 | 0 | << 2 << Info.Ctx.getLangOpts().CPlusPlus; |
10695 | 0 | return false; |
10696 | 0 | } |
10697 | | |
10698 | 0 | if (!handleRValueToRValueBitCast(Info, Result, SVal, E)) |
10699 | 0 | return false; |
10700 | | |
10701 | 0 | return true; |
10702 | 0 | } |
10703 | 0 | default: |
10704 | 0 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
10705 | 0 | } |
10706 | 0 | } |
10707 | | |
10708 | | bool |
10709 | 0 | VectorExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
10710 | 0 | const VectorType *VT = E->getType()->castAs<VectorType>(); |
10711 | 0 | unsigned NumInits = E->getNumInits(); |
10712 | 0 | unsigned NumElements = VT->getNumElements(); |
10713 | |
|
10714 | 0 | QualType EltTy = VT->getElementType(); |
10715 | 0 | SmallVector<APValue, 4> Elements; |
10716 | | |
10717 | | // The number of initializers can be less than the number of |
10718 | | // vector elements. For OpenCL, this can be due to nested vector |
10719 | | // initialization. For GCC compatibility, missing trailing elements |
10720 | | // should be initialized with zeroes. |
10721 | 0 | unsigned CountInits = 0, CountElts = 0; |
10722 | 0 | while (CountElts < NumElements) { |
10723 | | // Handle nested vector initialization. |
10724 | 0 | if (CountInits < NumInits |
10725 | 0 | && E->getInit(CountInits)->getType()->isVectorType()) { |
10726 | 0 | APValue v; |
10727 | 0 | if (!EvaluateVector(E->getInit(CountInits), v, Info)) |
10728 | 0 | return Error(E); |
10729 | 0 | unsigned vlen = v.getVectorLength(); |
10730 | 0 | for (unsigned j = 0; j < vlen; j++) |
10731 | 0 | Elements.push_back(v.getVectorElt(j)); |
10732 | 0 | CountElts += vlen; |
10733 | 0 | } else if (EltTy->isIntegerType()) { |
10734 | 0 | llvm::APSInt sInt(32); |
10735 | 0 | if (CountInits < NumInits) { |
10736 | 0 | if (!EvaluateInteger(E->getInit(CountInits), sInt, Info)) |
10737 | 0 | return false; |
10738 | 0 | } else // trailing integer zero. |
10739 | 0 | sInt = Info.Ctx.MakeIntValue(0, EltTy); |
10740 | 0 | Elements.push_back(APValue(sInt)); |
10741 | 0 | CountElts++; |
10742 | 0 | } else { |
10743 | 0 | llvm::APFloat f(0.0); |
10744 | 0 | if (CountInits < NumInits) { |
10745 | 0 | if (!EvaluateFloat(E->getInit(CountInits), f, Info)) |
10746 | 0 | return false; |
10747 | 0 | } else // trailing float zero. |
10748 | 0 | f = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy)); |
10749 | 0 | Elements.push_back(APValue(f)); |
10750 | 0 | CountElts++; |
10751 | 0 | } |
10752 | 0 | CountInits++; |
10753 | 0 | } |
10754 | 0 | return Success(Elements, E); |
10755 | 0 | } |
10756 | | |
10757 | | bool |
10758 | 0 | VectorExprEvaluator::ZeroInitialization(const Expr *E) { |
10759 | 0 | const auto *VT = E->getType()->castAs<VectorType>(); |
10760 | 0 | QualType EltTy = VT->getElementType(); |
10761 | 0 | APValue ZeroElement; |
10762 | 0 | if (EltTy->isIntegerType()) |
10763 | 0 | ZeroElement = APValue(Info.Ctx.MakeIntValue(0, EltTy)); |
10764 | 0 | else |
10765 | 0 | ZeroElement = |
10766 | 0 | APValue(APFloat::getZero(Info.Ctx.getFloatTypeSemantics(EltTy))); |
10767 | |
|
10768 | 0 | SmallVector<APValue, 4> Elements(VT->getNumElements(), ZeroElement); |
10769 | 0 | return Success(Elements, E); |
10770 | 0 | } |
10771 | | |
10772 | 0 | bool VectorExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
10773 | 0 | VisitIgnoredValue(E->getSubExpr()); |
10774 | 0 | return ZeroInitialization(E); |
10775 | 0 | } |
10776 | | |
10777 | 0 | bool VectorExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
10778 | 0 | BinaryOperatorKind Op = E->getOpcode(); |
10779 | 0 | assert(Op != BO_PtrMemD && Op != BO_PtrMemI && Op != BO_Cmp && |
10780 | 0 | "Operation not supported on vector types"); |
10781 | | |
10782 | 0 | if (Op == BO_Comma) |
10783 | 0 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
10784 | | |
10785 | 0 | Expr *LHS = E->getLHS(); |
10786 | 0 | Expr *RHS = E->getRHS(); |
10787 | |
|
10788 | 0 | assert(LHS->getType()->isVectorType() && RHS->getType()->isVectorType() && |
10789 | 0 | "Must both be vector types"); |
10790 | | // Checking JUST the types are the same would be fine, except shifts don't |
10791 | | // need to have their types be the same (since you always shift by an int). |
10792 | 0 | assert(LHS->getType()->castAs<VectorType>()->getNumElements() == |
10793 | 0 | E->getType()->castAs<VectorType>()->getNumElements() && |
10794 | 0 | RHS->getType()->castAs<VectorType>()->getNumElements() == |
10795 | 0 | E->getType()->castAs<VectorType>()->getNumElements() && |
10796 | 0 | "All operands must be the same size."); |
10797 | | |
10798 | 0 | APValue LHSValue; |
10799 | 0 | APValue RHSValue; |
10800 | 0 | bool LHSOK = Evaluate(LHSValue, Info, LHS); |
10801 | 0 | if (!LHSOK && !Info.noteFailure()) |
10802 | 0 | return false; |
10803 | 0 | if (!Evaluate(RHSValue, Info, RHS) || !LHSOK) |
10804 | 0 | return false; |
10805 | | |
10806 | 0 | if (!handleVectorVectorBinOp(Info, E, Op, LHSValue, RHSValue)) |
10807 | 0 | return false; |
10808 | | |
10809 | 0 | return Success(LHSValue, E); |
10810 | 0 | } |
10811 | | |
10812 | | static std::optional<APValue> handleVectorUnaryOperator(ASTContext &Ctx, |
10813 | | QualType ResultTy, |
10814 | | UnaryOperatorKind Op, |
10815 | 0 | APValue Elt) { |
10816 | 0 | switch (Op) { |
10817 | 0 | case UO_Plus: |
10818 | | // Nothing to do here. |
10819 | 0 | return Elt; |
10820 | 0 | case UO_Minus: |
10821 | 0 | if (Elt.getKind() == APValue::Int) { |
10822 | 0 | Elt.getInt().negate(); |
10823 | 0 | } else { |
10824 | 0 | assert(Elt.getKind() == APValue::Float && |
10825 | 0 | "Vector can only be int or float type"); |
10826 | 0 | Elt.getFloat().changeSign(); |
10827 | 0 | } |
10828 | 0 | return Elt; |
10829 | 0 | case UO_Not: |
10830 | | // This is only valid for integral types anyway, so we don't have to handle |
10831 | | // float here. |
10832 | 0 | assert(Elt.getKind() == APValue::Int && |
10833 | 0 | "Vector operator ~ can only be int"); |
10834 | 0 | Elt.getInt().flipAllBits(); |
10835 | 0 | return Elt; |
10836 | 0 | case UO_LNot: { |
10837 | 0 | if (Elt.getKind() == APValue::Int) { |
10838 | 0 | Elt.getInt() = !Elt.getInt(); |
10839 | | // operator ! on vectors returns -1 for 'truth', so negate it. |
10840 | 0 | Elt.getInt().negate(); |
10841 | 0 | return Elt; |
10842 | 0 | } |
10843 | 0 | assert(Elt.getKind() == APValue::Float && |
10844 | 0 | "Vector can only be int or float type"); |
10845 | | // Float types result in an int of the same size, but -1 for true, or 0 for |
10846 | | // false. |
10847 | 0 | APSInt EltResult{Ctx.getIntWidth(ResultTy), |
10848 | 0 | ResultTy->isUnsignedIntegerType()}; |
10849 | 0 | if (Elt.getFloat().isZero()) |
10850 | 0 | EltResult.setAllBits(); |
10851 | 0 | else |
10852 | 0 | EltResult.clearAllBits(); |
10853 | |
|
10854 | 0 | return APValue{EltResult}; |
10855 | 0 | } |
10856 | 0 | default: |
10857 | | // FIXME: Implement the rest of the unary operators. |
10858 | 0 | return std::nullopt; |
10859 | 0 | } |
10860 | 0 | } |
10861 | | |
10862 | 0 | bool VectorExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
10863 | 0 | Expr *SubExpr = E->getSubExpr(); |
10864 | 0 | const auto *VD = SubExpr->getType()->castAs<VectorType>(); |
10865 | | // This result element type differs in the case of negating a floating point |
10866 | | // vector, since the result type is the a vector of the equivilant sized |
10867 | | // integer. |
10868 | 0 | const QualType ResultEltTy = VD->getElementType(); |
10869 | 0 | UnaryOperatorKind Op = E->getOpcode(); |
10870 | |
|
10871 | 0 | APValue SubExprValue; |
10872 | 0 | if (!Evaluate(SubExprValue, Info, SubExpr)) |
10873 | 0 | return false; |
10874 | | |
10875 | | // FIXME: This vector evaluator someday needs to be changed to be LValue |
10876 | | // aware/keep LValue information around, rather than dealing with just vector |
10877 | | // types directly. Until then, we cannot handle cases where the operand to |
10878 | | // these unary operators is an LValue. The only case I've been able to see |
10879 | | // cause this is operator++ assigning to a member expression (only valid in |
10880 | | // altivec compilations) in C mode, so this shouldn't limit us too much. |
10881 | 0 | if (SubExprValue.isLValue()) |
10882 | 0 | return false; |
10883 | | |
10884 | 0 | assert(SubExprValue.getVectorLength() == VD->getNumElements() && |
10885 | 0 | "Vector length doesn't match type?"); |
10886 | | |
10887 | 0 | SmallVector<APValue, 4> ResultElements; |
10888 | 0 | for (unsigned EltNum = 0; EltNum < VD->getNumElements(); ++EltNum) { |
10889 | 0 | std::optional<APValue> Elt = handleVectorUnaryOperator( |
10890 | 0 | Info.Ctx, ResultEltTy, Op, SubExprValue.getVectorElt(EltNum)); |
10891 | 0 | if (!Elt) |
10892 | 0 | return false; |
10893 | 0 | ResultElements.push_back(*Elt); |
10894 | 0 | } |
10895 | 0 | return Success(APValue(ResultElements.data(), ResultElements.size()), E); |
10896 | 0 | } |
10897 | | |
10898 | | //===----------------------------------------------------------------------===// |
10899 | | // Array Evaluation |
10900 | | //===----------------------------------------------------------------------===// |
10901 | | |
10902 | | namespace { |
10903 | | class ArrayExprEvaluator |
10904 | | : public ExprEvaluatorBase<ArrayExprEvaluator> { |
10905 | | const LValue &This; |
10906 | | APValue &Result; |
10907 | | public: |
10908 | | |
10909 | | ArrayExprEvaluator(EvalInfo &Info, const LValue &This, APValue &Result) |
10910 | 0 | : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} |
10911 | | |
10912 | 0 | bool Success(const APValue &V, const Expr *E) { |
10913 | 0 | assert(V.isArray() && "expected array"); |
10914 | 0 | Result = V; |
10915 | 0 | return true; |
10916 | 0 | } |
10917 | | |
10918 | 0 | bool ZeroInitialization(const Expr *E) { |
10919 | 0 | const ConstantArrayType *CAT = |
10920 | 0 | Info.Ctx.getAsConstantArrayType(E->getType()); |
10921 | 0 | if (!CAT) { |
10922 | 0 | if (E->getType()->isIncompleteArrayType()) { |
10923 | | // We can be asked to zero-initialize a flexible array member; this |
10924 | | // is represented as an ImplicitValueInitExpr of incomplete array |
10925 | | // type. In this case, the array has zero elements. |
10926 | 0 | Result = APValue(APValue::UninitArray(), 0, 0); |
10927 | 0 | return true; |
10928 | 0 | } |
10929 | | // FIXME: We could handle VLAs here. |
10930 | 0 | return Error(E); |
10931 | 0 | } |
10932 | | |
10933 | 0 | Result = APValue(APValue::UninitArray(), 0, |
10934 | 0 | CAT->getSize().getZExtValue()); |
10935 | 0 | if (!Result.hasArrayFiller()) |
10936 | 0 | return true; |
10937 | | |
10938 | | // Zero-initialize all elements. |
10939 | 0 | LValue Subobject = This; |
10940 | 0 | Subobject.addArray(Info, E, CAT); |
10941 | 0 | ImplicitValueInitExpr VIE(CAT->getElementType()); |
10942 | 0 | return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, &VIE); |
10943 | 0 | } |
10944 | | |
10945 | 0 | bool VisitCallExpr(const CallExpr *E) { |
10946 | 0 | return handleCallExpr(E, Result, &This); |
10947 | 0 | } |
10948 | | bool VisitInitListExpr(const InitListExpr *E, |
10949 | | QualType AllocType = QualType()); |
10950 | | bool VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E); |
10951 | | bool VisitCXXConstructExpr(const CXXConstructExpr *E); |
10952 | | bool VisitCXXConstructExpr(const CXXConstructExpr *E, |
10953 | | const LValue &Subobject, |
10954 | | APValue *Value, QualType Type); |
10955 | | bool VisitStringLiteral(const StringLiteral *E, |
10956 | 0 | QualType AllocType = QualType()) { |
10957 | 0 | expandStringLiteral(Info, E, Result, AllocType); |
10958 | 0 | return true; |
10959 | 0 | } |
10960 | | bool VisitCXXParenListInitExpr(const CXXParenListInitExpr *E); |
10961 | | bool VisitCXXParenListOrInitListExpr(const Expr *ExprToVisit, |
10962 | | ArrayRef<Expr *> Args, |
10963 | | const Expr *ArrayFiller, |
10964 | | QualType AllocType = QualType()); |
10965 | | }; |
10966 | | } // end anonymous namespace |
10967 | | |
10968 | | static bool EvaluateArray(const Expr *E, const LValue &This, |
10969 | 0 | APValue &Result, EvalInfo &Info) { |
10970 | 0 | assert(!E->isValueDependent()); |
10971 | 0 | assert(E->isPRValue() && E->getType()->isArrayType() && |
10972 | 0 | "not an array prvalue"); |
10973 | 0 | return ArrayExprEvaluator(Info, This, Result).Visit(E); |
10974 | 0 | } |
10975 | | |
10976 | | static bool EvaluateArrayNewInitList(EvalInfo &Info, LValue &This, |
10977 | | APValue &Result, const InitListExpr *ILE, |
10978 | 0 | QualType AllocType) { |
10979 | 0 | assert(!ILE->isValueDependent()); |
10980 | 0 | assert(ILE->isPRValue() && ILE->getType()->isArrayType() && |
10981 | 0 | "not an array prvalue"); |
10982 | 0 | return ArrayExprEvaluator(Info, This, Result) |
10983 | 0 | .VisitInitListExpr(ILE, AllocType); |
10984 | 0 | } |
10985 | | |
10986 | | static bool EvaluateArrayNewConstructExpr(EvalInfo &Info, LValue &This, |
10987 | | APValue &Result, |
10988 | | const CXXConstructExpr *CCE, |
10989 | 0 | QualType AllocType) { |
10990 | 0 | assert(!CCE->isValueDependent()); |
10991 | 0 | assert(CCE->isPRValue() && CCE->getType()->isArrayType() && |
10992 | 0 | "not an array prvalue"); |
10993 | 0 | return ArrayExprEvaluator(Info, This, Result) |
10994 | 0 | .VisitCXXConstructExpr(CCE, This, &Result, AllocType); |
10995 | 0 | } |
10996 | | |
10997 | | // Return true iff the given array filler may depend on the element index. |
10998 | 0 | static bool MaybeElementDependentArrayFiller(const Expr *FillerExpr) { |
10999 | | // For now, just allow non-class value-initialization and initialization |
11000 | | // lists comprised of them. |
11001 | 0 | if (isa<ImplicitValueInitExpr>(FillerExpr)) |
11002 | 0 | return false; |
11003 | 0 | if (const InitListExpr *ILE = dyn_cast<InitListExpr>(FillerExpr)) { |
11004 | 0 | for (unsigned I = 0, E = ILE->getNumInits(); I != E; ++I) { |
11005 | 0 | if (MaybeElementDependentArrayFiller(ILE->getInit(I))) |
11006 | 0 | return true; |
11007 | 0 | } |
11008 | | |
11009 | 0 | if (ILE->hasArrayFiller() && |
11010 | 0 | MaybeElementDependentArrayFiller(ILE->getArrayFiller())) |
11011 | 0 | return true; |
11012 | | |
11013 | 0 | return false; |
11014 | 0 | } |
11015 | 0 | return true; |
11016 | 0 | } |
11017 | | |
11018 | | bool ArrayExprEvaluator::VisitInitListExpr(const InitListExpr *E, |
11019 | 0 | QualType AllocType) { |
11020 | 0 | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( |
11021 | 0 | AllocType.isNull() ? E->getType() : AllocType); |
11022 | 0 | if (!CAT) |
11023 | 0 | return Error(E); |
11024 | | |
11025 | | // C++11 [dcl.init.string]p1: A char array [...] can be initialized by [...] |
11026 | | // an appropriately-typed string literal enclosed in braces. |
11027 | 0 | if (E->isStringLiteralInit()) { |
11028 | 0 | auto *SL = dyn_cast<StringLiteral>(E->getInit(0)->IgnoreParenImpCasts()); |
11029 | | // FIXME: Support ObjCEncodeExpr here once we support it in |
11030 | | // ArrayExprEvaluator generally. |
11031 | 0 | if (!SL) |
11032 | 0 | return Error(E); |
11033 | 0 | return VisitStringLiteral(SL, AllocType); |
11034 | 0 | } |
11035 | | // Any other transparent list init will need proper handling of the |
11036 | | // AllocType; we can't just recurse to the inner initializer. |
11037 | 0 | assert(!E->isTransparent() && |
11038 | 0 | "transparent array list initialization is not string literal init?"); |
11039 | | |
11040 | 0 | return VisitCXXParenListOrInitListExpr(E, E->inits(), E->getArrayFiller(), |
11041 | 0 | AllocType); |
11042 | 0 | } |
11043 | | |
11044 | | bool ArrayExprEvaluator::VisitCXXParenListOrInitListExpr( |
11045 | | const Expr *ExprToVisit, ArrayRef<Expr *> Args, const Expr *ArrayFiller, |
11046 | 0 | QualType AllocType) { |
11047 | 0 | const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType( |
11048 | 0 | AllocType.isNull() ? ExprToVisit->getType() : AllocType); |
11049 | |
|
11050 | 0 | bool Success = true; |
11051 | |
|
11052 | 0 | assert((!Result.isArray() || Result.getArrayInitializedElts() == 0) && |
11053 | 0 | "zero-initialized array shouldn't have any initialized elts"); |
11054 | 0 | APValue Filler; |
11055 | 0 | if (Result.isArray() && Result.hasArrayFiller()) |
11056 | 0 | Filler = Result.getArrayFiller(); |
11057 | |
|
11058 | 0 | unsigned NumEltsToInit = Args.size(); |
11059 | 0 | unsigned NumElts = CAT->getSize().getZExtValue(); |
11060 | | |
11061 | | // If the initializer might depend on the array index, run it for each |
11062 | | // array element. |
11063 | 0 | if (NumEltsToInit != NumElts && MaybeElementDependentArrayFiller(ArrayFiller)) |
11064 | 0 | NumEltsToInit = NumElts; |
11065 | |
|
11066 | 0 | LLVM_DEBUG(llvm::dbgs() << "The number of elements to initialize: " |
11067 | 0 | << NumEltsToInit << ".\n"); |
11068 | |
|
11069 | 0 | Result = APValue(APValue::UninitArray(), NumEltsToInit, NumElts); |
11070 | | |
11071 | | // If the array was previously zero-initialized, preserve the |
11072 | | // zero-initialized values. |
11073 | 0 | if (Filler.hasValue()) { |
11074 | 0 | for (unsigned I = 0, E = Result.getArrayInitializedElts(); I != E; ++I) |
11075 | 0 | Result.getArrayInitializedElt(I) = Filler; |
11076 | 0 | if (Result.hasArrayFiller()) |
11077 | 0 | Result.getArrayFiller() = Filler; |
11078 | 0 | } |
11079 | |
|
11080 | 0 | LValue Subobject = This; |
11081 | 0 | Subobject.addArray(Info, ExprToVisit, CAT); |
11082 | 0 | for (unsigned Index = 0; Index != NumEltsToInit; ++Index) { |
11083 | 0 | const Expr *Init = Index < Args.size() ? Args[Index] : ArrayFiller; |
11084 | 0 | if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), |
11085 | 0 | Info, Subobject, Init) || |
11086 | 0 | !HandleLValueArrayAdjustment(Info, Init, Subobject, |
11087 | 0 | CAT->getElementType(), 1)) { |
11088 | 0 | if (!Info.noteFailure()) |
11089 | 0 | return false; |
11090 | 0 | Success = false; |
11091 | 0 | } |
11092 | 0 | } |
11093 | | |
11094 | 0 | if (!Result.hasArrayFiller()) |
11095 | 0 | return Success; |
11096 | | |
11097 | | // If we get here, we have a trivial filler, which we can just evaluate |
11098 | | // once and splat over the rest of the array elements. |
11099 | 0 | assert(ArrayFiller && "no array filler for incomplete init list"); |
11100 | 0 | return EvaluateInPlace(Result.getArrayFiller(), Info, Subobject, |
11101 | 0 | ArrayFiller) && |
11102 | 0 | Success; |
11103 | 0 | } |
11104 | | |
11105 | 0 | bool ArrayExprEvaluator::VisitArrayInitLoopExpr(const ArrayInitLoopExpr *E) { |
11106 | 0 | LValue CommonLV; |
11107 | 0 | if (E->getCommonExpr() && |
11108 | 0 | !Evaluate(Info.CurrentCall->createTemporary( |
11109 | 0 | E->getCommonExpr(), |
11110 | 0 | getStorageType(Info.Ctx, E->getCommonExpr()), |
11111 | 0 | ScopeKind::FullExpression, CommonLV), |
11112 | 0 | Info, E->getCommonExpr()->getSourceExpr())) |
11113 | 0 | return false; |
11114 | | |
11115 | 0 | auto *CAT = cast<ConstantArrayType>(E->getType()->castAsArrayTypeUnsafe()); |
11116 | |
|
11117 | 0 | uint64_t Elements = CAT->getSize().getZExtValue(); |
11118 | 0 | Result = APValue(APValue::UninitArray(), Elements, Elements); |
11119 | |
|
11120 | 0 | LValue Subobject = This; |
11121 | 0 | Subobject.addArray(Info, E, CAT); |
11122 | |
|
11123 | 0 | bool Success = true; |
11124 | 0 | for (EvalInfo::ArrayInitLoopIndex Index(Info); Index != Elements; ++Index) { |
11125 | | // C++ [class.temporary]/5 |
11126 | | // There are four contexts in which temporaries are destroyed at a different |
11127 | | // point than the end of the full-expression. [...] The second context is |
11128 | | // when a copy constructor is called to copy an element of an array while |
11129 | | // the entire array is copied [...]. In either case, if the constructor has |
11130 | | // one or more default arguments, the destruction of every temporary created |
11131 | | // in a default argument is sequenced before the construction of the next |
11132 | | // array element, if any. |
11133 | 0 | FullExpressionRAII Scope(Info); |
11134 | |
|
11135 | 0 | if (!EvaluateInPlace(Result.getArrayInitializedElt(Index), |
11136 | 0 | Info, Subobject, E->getSubExpr()) || |
11137 | 0 | !HandleLValueArrayAdjustment(Info, E, Subobject, |
11138 | 0 | CAT->getElementType(), 1)) { |
11139 | 0 | if (!Info.noteFailure()) |
11140 | 0 | return false; |
11141 | 0 | Success = false; |
11142 | 0 | } |
11143 | | |
11144 | | // Make sure we run the destructors too. |
11145 | 0 | Scope.destroy(); |
11146 | 0 | } |
11147 | | |
11148 | 0 | return Success; |
11149 | 0 | } |
11150 | | |
11151 | 0 | bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E) { |
11152 | 0 | return VisitCXXConstructExpr(E, This, &Result, E->getType()); |
11153 | 0 | } |
11154 | | |
11155 | | bool ArrayExprEvaluator::VisitCXXConstructExpr(const CXXConstructExpr *E, |
11156 | | const LValue &Subobject, |
11157 | | APValue *Value, |
11158 | 0 | QualType Type) { |
11159 | 0 | bool HadZeroInit = Value->hasValue(); |
11160 | |
|
11161 | 0 | if (const ConstantArrayType *CAT = Info.Ctx.getAsConstantArrayType(Type)) { |
11162 | 0 | unsigned FinalSize = CAT->getSize().getZExtValue(); |
11163 | | |
11164 | | // Preserve the array filler if we had prior zero-initialization. |
11165 | 0 | APValue Filler = |
11166 | 0 | HadZeroInit && Value->hasArrayFiller() ? Value->getArrayFiller() |
11167 | 0 | : APValue(); |
11168 | |
|
11169 | 0 | *Value = APValue(APValue::UninitArray(), 0, FinalSize); |
11170 | 0 | if (FinalSize == 0) |
11171 | 0 | return true; |
11172 | | |
11173 | 0 | bool HasTrivialConstructor = CheckTrivialDefaultConstructor( |
11174 | 0 | Info, E->getExprLoc(), E->getConstructor(), |
11175 | 0 | E->requiresZeroInitialization()); |
11176 | 0 | LValue ArrayElt = Subobject; |
11177 | 0 | ArrayElt.addArray(Info, E, CAT); |
11178 | | // We do the whole initialization in two passes, first for just one element, |
11179 | | // then for the whole array. It's possible we may find out we can't do const |
11180 | | // init in the first pass, in which case we avoid allocating a potentially |
11181 | | // large array. We don't do more passes because expanding array requires |
11182 | | // copying the data, which is wasteful. |
11183 | 0 | for (const unsigned N : {1u, FinalSize}) { |
11184 | 0 | unsigned OldElts = Value->getArrayInitializedElts(); |
11185 | 0 | if (OldElts == N) |
11186 | 0 | break; |
11187 | | |
11188 | | // Expand the array to appropriate size. |
11189 | 0 | APValue NewValue(APValue::UninitArray(), N, FinalSize); |
11190 | 0 | for (unsigned I = 0; I < OldElts; ++I) |
11191 | 0 | NewValue.getArrayInitializedElt(I).swap( |
11192 | 0 | Value->getArrayInitializedElt(I)); |
11193 | 0 | Value->swap(NewValue); |
11194 | |
|
11195 | 0 | if (HadZeroInit) |
11196 | 0 | for (unsigned I = OldElts; I < N; ++I) |
11197 | 0 | Value->getArrayInitializedElt(I) = Filler; |
11198 | |
|
11199 | 0 | if (HasTrivialConstructor && N == FinalSize && FinalSize != 1) { |
11200 | | // If we have a trivial constructor, only evaluate it once and copy |
11201 | | // the result into all the array elements. |
11202 | 0 | APValue &FirstResult = Value->getArrayInitializedElt(0); |
11203 | 0 | for (unsigned I = OldElts; I < FinalSize; ++I) |
11204 | 0 | Value->getArrayInitializedElt(I) = FirstResult; |
11205 | 0 | } else { |
11206 | 0 | for (unsigned I = OldElts; I < N; ++I) { |
11207 | 0 | if (!VisitCXXConstructExpr(E, ArrayElt, |
11208 | 0 | &Value->getArrayInitializedElt(I), |
11209 | 0 | CAT->getElementType()) || |
11210 | 0 | !HandleLValueArrayAdjustment(Info, E, ArrayElt, |
11211 | 0 | CAT->getElementType(), 1)) |
11212 | 0 | return false; |
11213 | | // When checking for const initilization any diagnostic is considered |
11214 | | // an error. |
11215 | 0 | if (Info.EvalStatus.Diag && !Info.EvalStatus.Diag->empty() && |
11216 | 0 | !Info.keepEvaluatingAfterFailure()) |
11217 | 0 | return false; |
11218 | 0 | } |
11219 | 0 | } |
11220 | 0 | } |
11221 | | |
11222 | 0 | return true; |
11223 | 0 | } |
11224 | | |
11225 | 0 | if (!Type->isRecordType()) |
11226 | 0 | return Error(E); |
11227 | | |
11228 | 0 | return RecordExprEvaluator(Info, Subobject, *Value) |
11229 | 0 | .VisitCXXConstructExpr(E, Type); |
11230 | 0 | } |
11231 | | |
11232 | | bool ArrayExprEvaluator::VisitCXXParenListInitExpr( |
11233 | 0 | const CXXParenListInitExpr *E) { |
11234 | 0 | assert(dyn_cast<ConstantArrayType>(E->getType()) && |
11235 | 0 | "Expression result is not a constant array type"); |
11236 | | |
11237 | 0 | return VisitCXXParenListOrInitListExpr(E, E->getInitExprs(), |
11238 | 0 | E->getArrayFiller()); |
11239 | 0 | } |
11240 | | |
11241 | | //===----------------------------------------------------------------------===// |
11242 | | // Integer Evaluation |
11243 | | // |
11244 | | // As a GNU extension, we support casting pointers to sufficiently-wide integer |
11245 | | // types and back in constant folding. Integer values are thus represented |
11246 | | // either as an integer-valued APValue, or as an lvalue-valued APValue. |
11247 | | //===----------------------------------------------------------------------===// |
11248 | | |
11249 | | namespace { |
11250 | | class IntExprEvaluator |
11251 | | : public ExprEvaluatorBase<IntExprEvaluator> { |
11252 | | APValue &Result; |
11253 | | public: |
11254 | | IntExprEvaluator(EvalInfo &info, APValue &result) |
11255 | 10 | : ExprEvaluatorBaseTy(info), Result(result) {} |
11256 | | |
11257 | 1 | bool Success(const llvm::APSInt &SI, const Expr *E, APValue &Result) { |
11258 | 1 | assert(E->getType()->isIntegralOrEnumerationType() && |
11259 | 1 | "Invalid evaluation result."); |
11260 | 0 | assert(SI.isSigned() == E->getType()->isSignedIntegerOrEnumerationType() && |
11261 | 1 | "Invalid evaluation result."); |
11262 | 0 | assert(SI.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
11263 | 1 | "Invalid evaluation result."); |
11264 | 0 | Result = APValue(SI); |
11265 | 1 | return true; |
11266 | 1 | } |
11267 | 1 | bool Success(const llvm::APSInt &SI, const Expr *E) { |
11268 | 1 | return Success(SI, E, Result); |
11269 | 1 | } |
11270 | | |
11271 | 5 | bool Success(const llvm::APInt &I, const Expr *E, APValue &Result) { |
11272 | 5 | assert(E->getType()->isIntegralOrEnumerationType() && |
11273 | 5 | "Invalid evaluation result."); |
11274 | 0 | assert(I.getBitWidth() == Info.Ctx.getIntWidth(E->getType()) && |
11275 | 5 | "Invalid evaluation result."); |
11276 | 0 | Result = APValue(APSInt(I)); |
11277 | 5 | Result.getInt().setIsUnsigned( |
11278 | 5 | E->getType()->isUnsignedIntegerOrEnumerationType()); |
11279 | 5 | return true; |
11280 | 5 | } |
11281 | 5 | bool Success(const llvm::APInt &I, const Expr *E) { |
11282 | 5 | return Success(I, E, Result); |
11283 | 5 | } |
11284 | | |
11285 | 0 | bool Success(uint64_t Value, const Expr *E, APValue &Result) { |
11286 | 0 | assert(E->getType()->isIntegralOrEnumerationType() && |
11287 | 0 | "Invalid evaluation result."); |
11288 | 0 | Result = APValue(Info.Ctx.MakeIntValue(Value, E->getType())); |
11289 | 0 | return true; |
11290 | 0 | } |
11291 | 0 | bool Success(uint64_t Value, const Expr *E) { |
11292 | 0 | return Success(Value, E, Result); |
11293 | 0 | } |
11294 | | |
11295 | 0 | bool Success(CharUnits Size, const Expr *E) { |
11296 | 0 | return Success(Size.getQuantity(), E); |
11297 | 0 | } |
11298 | | |
11299 | 0 | bool Success(const APValue &V, const Expr *E) { |
11300 | 0 | if (V.isLValue() || V.isAddrLabelDiff() || V.isIndeterminate()) { |
11301 | 0 | Result = V; |
11302 | 0 | return true; |
11303 | 0 | } |
11304 | 0 | return Success(V.getInt(), E); |
11305 | 0 | } |
11306 | | |
11307 | 0 | bool ZeroInitialization(const Expr *E) { return Success(0, E); } |
11308 | | |
11309 | | //===--------------------------------------------------------------------===// |
11310 | | // Visitor Methods |
11311 | | //===--------------------------------------------------------------------===// |
11312 | | |
11313 | 5 | bool VisitIntegerLiteral(const IntegerLiteral *E) { |
11314 | 5 | return Success(E->getValue(), E); |
11315 | 5 | } |
11316 | 0 | bool VisitCharacterLiteral(const CharacterLiteral *E) { |
11317 | 0 | return Success(E->getValue(), E); |
11318 | 0 | } |
11319 | | |
11320 | | bool CheckReferencedDecl(const Expr *E, const Decl *D); |
11321 | 0 | bool VisitDeclRefExpr(const DeclRefExpr *E) { |
11322 | 0 | if (CheckReferencedDecl(E, E->getDecl())) |
11323 | 0 | return true; |
11324 | | |
11325 | 0 | return ExprEvaluatorBaseTy::VisitDeclRefExpr(E); |
11326 | 0 | } |
11327 | 0 | bool VisitMemberExpr(const MemberExpr *E) { |
11328 | 0 | if (CheckReferencedDecl(E, E->getMemberDecl())) { |
11329 | 0 | VisitIgnoredBaseExpression(E->getBase()); |
11330 | 0 | return true; |
11331 | 0 | } |
11332 | | |
11333 | 0 | return ExprEvaluatorBaseTy::VisitMemberExpr(E); |
11334 | 0 | } |
11335 | | |
11336 | | bool VisitCallExpr(const CallExpr *E); |
11337 | | bool VisitBuiltinCallExpr(const CallExpr *E, unsigned BuiltinOp); |
11338 | | bool VisitBinaryOperator(const BinaryOperator *E); |
11339 | | bool VisitOffsetOfExpr(const OffsetOfExpr *E); |
11340 | | bool VisitUnaryOperator(const UnaryOperator *E); |
11341 | | |
11342 | | bool VisitCastExpr(const CastExpr* E); |
11343 | | bool VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); |
11344 | | |
11345 | 0 | bool VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
11346 | 0 | return Success(E->getValue(), E); |
11347 | 0 | } |
11348 | | |
11349 | 0 | bool VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { |
11350 | 0 | return Success(E->getValue(), E); |
11351 | 0 | } |
11352 | | |
11353 | 0 | bool VisitArrayInitIndexExpr(const ArrayInitIndexExpr *E) { |
11354 | 0 | if (Info.ArrayInitIndex == uint64_t(-1)) { |
11355 | | // We were asked to evaluate this subexpression independent of the |
11356 | | // enclosing ArrayInitLoopExpr. We can't do that. |
11357 | 0 | Info.FFDiag(E); |
11358 | 0 | return false; |
11359 | 0 | } |
11360 | 0 | return Success(Info.ArrayInitIndex, E); |
11361 | 0 | } |
11362 | | |
11363 | | // Note, GNU defines __null as an integer, not a pointer. |
11364 | 0 | bool VisitGNUNullExpr(const GNUNullExpr *E) { |
11365 | 0 | return ZeroInitialization(E); |
11366 | 0 | } |
11367 | | |
11368 | 0 | bool VisitTypeTraitExpr(const TypeTraitExpr *E) { |
11369 | 0 | return Success(E->getValue(), E); |
11370 | 0 | } |
11371 | | |
11372 | 0 | bool VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { |
11373 | 0 | return Success(E->getValue(), E); |
11374 | 0 | } |
11375 | | |
11376 | 0 | bool VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { |
11377 | 0 | return Success(E->getValue(), E); |
11378 | 0 | } |
11379 | | |
11380 | | bool VisitUnaryReal(const UnaryOperator *E); |
11381 | | bool VisitUnaryImag(const UnaryOperator *E); |
11382 | | |
11383 | | bool VisitCXXNoexceptExpr(const CXXNoexceptExpr *E); |
11384 | | bool VisitSizeOfPackExpr(const SizeOfPackExpr *E); |
11385 | | bool VisitSourceLocExpr(const SourceLocExpr *E); |
11386 | | bool VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E); |
11387 | | bool VisitRequiresExpr(const RequiresExpr *E); |
11388 | | // FIXME: Missing: array subscript of vector, member of vector |
11389 | | }; |
11390 | | |
11391 | | class FixedPointExprEvaluator |
11392 | | : public ExprEvaluatorBase<FixedPointExprEvaluator> { |
11393 | | APValue &Result; |
11394 | | |
11395 | | public: |
11396 | | FixedPointExprEvaluator(EvalInfo &info, APValue &result) |
11397 | 0 | : ExprEvaluatorBaseTy(info), Result(result) {} |
11398 | | |
11399 | 0 | bool Success(const llvm::APInt &I, const Expr *E) { |
11400 | 0 | return Success( |
11401 | 0 | APFixedPoint(I, Info.Ctx.getFixedPointSemantics(E->getType())), E); |
11402 | 0 | } |
11403 | | |
11404 | 0 | bool Success(uint64_t Value, const Expr *E) { |
11405 | 0 | return Success( |
11406 | 0 | APFixedPoint(Value, Info.Ctx.getFixedPointSemantics(E->getType())), E); |
11407 | 0 | } |
11408 | | |
11409 | 0 | bool Success(const APValue &V, const Expr *E) { |
11410 | 0 | return Success(V.getFixedPoint(), E); |
11411 | 0 | } |
11412 | | |
11413 | 0 | bool Success(const APFixedPoint &V, const Expr *E) { |
11414 | 0 | assert(E->getType()->isFixedPointType() && "Invalid evaluation result."); |
11415 | 0 | assert(V.getWidth() == Info.Ctx.getIntWidth(E->getType()) && |
11416 | 0 | "Invalid evaluation result."); |
11417 | 0 | Result = APValue(V); |
11418 | 0 | return true; |
11419 | 0 | } |
11420 | | |
11421 | | //===--------------------------------------------------------------------===// |
11422 | | // Visitor Methods |
11423 | | //===--------------------------------------------------------------------===// |
11424 | | |
11425 | 0 | bool VisitFixedPointLiteral(const FixedPointLiteral *E) { |
11426 | 0 | return Success(E->getValue(), E); |
11427 | 0 | } |
11428 | | |
11429 | | bool VisitCastExpr(const CastExpr *E); |
11430 | | bool VisitUnaryOperator(const UnaryOperator *E); |
11431 | | bool VisitBinaryOperator(const BinaryOperator *E); |
11432 | | }; |
11433 | | } // end anonymous namespace |
11434 | | |
11435 | | /// EvaluateIntegerOrLValue - Evaluate an rvalue integral-typed expression, and |
11436 | | /// produce either the integer value or a pointer. |
11437 | | /// |
11438 | | /// GCC has a heinous extension which folds casts between pointer types and |
11439 | | /// pointer-sized integral types. We support this by allowing the evaluation of |
11440 | | /// an integer rvalue to produce a pointer (represented as an lvalue) instead. |
11441 | | /// Some simple arithmetic on such values is supported (they are treated much |
11442 | | /// like char*). |
11443 | | static bool EvaluateIntegerOrLValue(const Expr *E, APValue &Result, |
11444 | 1 | EvalInfo &Info) { |
11445 | 1 | assert(!E->isValueDependent()); |
11446 | 0 | assert(E->isPRValue() && E->getType()->isIntegralOrEnumerationType()); |
11447 | 0 | return IntExprEvaluator(Info, Result).Visit(E); |
11448 | 1 | } |
11449 | | |
11450 | 0 | static bool EvaluateInteger(const Expr *E, APSInt &Result, EvalInfo &Info) { |
11451 | 0 | assert(!E->isValueDependent()); |
11452 | 0 | APValue Val; |
11453 | 0 | if (!EvaluateIntegerOrLValue(E, Val, Info)) |
11454 | 0 | return false; |
11455 | 0 | if (!Val.isInt()) { |
11456 | | // FIXME: It would be better to produce the diagnostic for casting |
11457 | | // a pointer to an integer. |
11458 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
11459 | 0 | return false; |
11460 | 0 | } |
11461 | 0 | Result = Val.getInt(); |
11462 | 0 | return true; |
11463 | 0 | } |
11464 | | |
11465 | 0 | bool IntExprEvaluator::VisitSourceLocExpr(const SourceLocExpr *E) { |
11466 | 0 | APValue Evaluated = E->EvaluateInContext( |
11467 | 0 | Info.Ctx, Info.CurrentCall->CurSourceLocExprScope.getDefaultExpr()); |
11468 | 0 | return Success(Evaluated, E); |
11469 | 0 | } |
11470 | | |
11471 | | static bool EvaluateFixedPoint(const Expr *E, APFixedPoint &Result, |
11472 | 0 | EvalInfo &Info) { |
11473 | 0 | assert(!E->isValueDependent()); |
11474 | 0 | if (E->getType()->isFixedPointType()) { |
11475 | 0 | APValue Val; |
11476 | 0 | if (!FixedPointExprEvaluator(Info, Val).Visit(E)) |
11477 | 0 | return false; |
11478 | 0 | if (!Val.isFixedPoint()) |
11479 | 0 | return false; |
11480 | | |
11481 | 0 | Result = Val.getFixedPoint(); |
11482 | 0 | return true; |
11483 | 0 | } |
11484 | 0 | return false; |
11485 | 0 | } |
11486 | | |
11487 | | static bool EvaluateFixedPointOrInteger(const Expr *E, APFixedPoint &Result, |
11488 | 0 | EvalInfo &Info) { |
11489 | 0 | assert(!E->isValueDependent()); |
11490 | 0 | if (E->getType()->isIntegerType()) { |
11491 | 0 | auto FXSema = Info.Ctx.getFixedPointSemantics(E->getType()); |
11492 | 0 | APSInt Val; |
11493 | 0 | if (!EvaluateInteger(E, Val, Info)) |
11494 | 0 | return false; |
11495 | 0 | Result = APFixedPoint(Val, FXSema); |
11496 | 0 | return true; |
11497 | 0 | } else if (E->getType()->isFixedPointType()) { |
11498 | 0 | return EvaluateFixedPoint(E, Result, Info); |
11499 | 0 | } |
11500 | 0 | return false; |
11501 | 0 | } |
11502 | | |
11503 | | /// Check whether the given declaration can be directly converted to an integral |
11504 | | /// rvalue. If not, no diagnostic is produced; there are other things we can |
11505 | | /// try. |
11506 | 0 | bool IntExprEvaluator::CheckReferencedDecl(const Expr* E, const Decl* D) { |
11507 | | // Enums are integer constant exprs. |
11508 | 0 | if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(D)) { |
11509 | | // Check for signedness/width mismatches between E type and ECD value. |
11510 | 0 | bool SameSign = (ECD->getInitVal().isSigned() |
11511 | 0 | == E->getType()->isSignedIntegerOrEnumerationType()); |
11512 | 0 | bool SameWidth = (ECD->getInitVal().getBitWidth() |
11513 | 0 | == Info.Ctx.getIntWidth(E->getType())); |
11514 | 0 | if (SameSign && SameWidth) |
11515 | 0 | return Success(ECD->getInitVal(), E); |
11516 | 0 | else { |
11517 | | // Get rid of mismatch (otherwise Success assertions will fail) |
11518 | | // by computing a new value matching the type of E. |
11519 | 0 | llvm::APSInt Val = ECD->getInitVal(); |
11520 | 0 | if (!SameSign) |
11521 | 0 | Val.setIsSigned(!ECD->getInitVal().isSigned()); |
11522 | 0 | if (!SameWidth) |
11523 | 0 | Val = Val.extOrTrunc(Info.Ctx.getIntWidth(E->getType())); |
11524 | 0 | return Success(Val, E); |
11525 | 0 | } |
11526 | 0 | } |
11527 | 0 | return false; |
11528 | 0 | } |
11529 | | |
11530 | | /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way |
11531 | | /// as GCC. |
11532 | | GCCTypeClass EvaluateBuiltinClassifyType(QualType T, |
11533 | 0 | const LangOptions &LangOpts) { |
11534 | 0 | assert(!T->isDependentType() && "unexpected dependent type"); |
11535 | | |
11536 | 0 | QualType CanTy = T.getCanonicalType(); |
11537 | |
|
11538 | 0 | switch (CanTy->getTypeClass()) { |
11539 | 0 | #define TYPE(ID, BASE) |
11540 | 0 | #define DEPENDENT_TYPE(ID, BASE) case Type::ID: |
11541 | 0 | #define NON_CANONICAL_TYPE(ID, BASE) case Type::ID: |
11542 | 0 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(ID, BASE) case Type::ID: |
11543 | 0 | #include "clang/AST/TypeNodes.inc" |
11544 | 0 | case Type::Auto: |
11545 | 0 | case Type::DeducedTemplateSpecialization: |
11546 | 0 | llvm_unreachable("unexpected non-canonical or dependent type"); |
11547 | |
|
11548 | 0 | case Type::Builtin: |
11549 | 0 | switch (cast<BuiltinType>(CanTy)->getKind()) { |
11550 | 0 | #define BUILTIN_TYPE(ID, SINGLETON_ID) |
11551 | 0 | #define SIGNED_TYPE(ID, SINGLETON_ID) \ |
11552 | 0 | case BuiltinType::ID: return GCCTypeClass::Integer; |
11553 | 0 | #define FLOATING_TYPE(ID, SINGLETON_ID) \ |
11554 | 0 | case BuiltinType::ID: return GCCTypeClass::RealFloat; |
11555 | 0 | #define PLACEHOLDER_TYPE(ID, SINGLETON_ID) \ |
11556 | 0 | case BuiltinType::ID: break; |
11557 | 0 | #include "clang/AST/BuiltinTypes.def" |
11558 | 0 | case BuiltinType::Void: |
11559 | 0 | return GCCTypeClass::Void; |
11560 | | |
11561 | 0 | case BuiltinType::Bool: |
11562 | 0 | return GCCTypeClass::Bool; |
11563 | | |
11564 | 0 | case BuiltinType::Char_U: |
11565 | 0 | case BuiltinType::UChar: |
11566 | 0 | case BuiltinType::WChar_U: |
11567 | 0 | case BuiltinType::Char8: |
11568 | 0 | case BuiltinType::Char16: |
11569 | 0 | case BuiltinType::Char32: |
11570 | 0 | case BuiltinType::UShort: |
11571 | 0 | case BuiltinType::UInt: |
11572 | 0 | case BuiltinType::ULong: |
11573 | 0 | case BuiltinType::ULongLong: |
11574 | 0 | case BuiltinType::UInt128: |
11575 | 0 | return GCCTypeClass::Integer; |
11576 | | |
11577 | 0 | case BuiltinType::UShortAccum: |
11578 | 0 | case BuiltinType::UAccum: |
11579 | 0 | case BuiltinType::ULongAccum: |
11580 | 0 | case BuiltinType::UShortFract: |
11581 | 0 | case BuiltinType::UFract: |
11582 | 0 | case BuiltinType::ULongFract: |
11583 | 0 | case BuiltinType::SatUShortAccum: |
11584 | 0 | case BuiltinType::SatUAccum: |
11585 | 0 | case BuiltinType::SatULongAccum: |
11586 | 0 | case BuiltinType::SatUShortFract: |
11587 | 0 | case BuiltinType::SatUFract: |
11588 | 0 | case BuiltinType::SatULongFract: |
11589 | 0 | return GCCTypeClass::None; |
11590 | | |
11591 | 0 | case BuiltinType::NullPtr: |
11592 | |
|
11593 | 0 | case BuiltinType::ObjCId: |
11594 | 0 | case BuiltinType::ObjCClass: |
11595 | 0 | case BuiltinType::ObjCSel: |
11596 | 0 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
11597 | 0 | case BuiltinType::Id: |
11598 | 0 | #include "clang/Basic/OpenCLImageTypes.def" |
11599 | 0 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
11600 | 0 | case BuiltinType::Id: |
11601 | 0 | #include "clang/Basic/OpenCLExtensionTypes.def" |
11602 | 0 | case BuiltinType::OCLSampler: |
11603 | 0 | case BuiltinType::OCLEvent: |
11604 | 0 | case BuiltinType::OCLClkEvent: |
11605 | 0 | case BuiltinType::OCLQueue: |
11606 | 0 | case BuiltinType::OCLReserveID: |
11607 | 0 | #define SVE_TYPE(Name, Id, SingletonId) \ |
11608 | 0 | case BuiltinType::Id: |
11609 | 0 | #include "clang/Basic/AArch64SVEACLETypes.def" |
11610 | 0 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
11611 | 0 | case BuiltinType::Id: |
11612 | 0 | #include "clang/Basic/PPCTypes.def" |
11613 | 0 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
11614 | 0 | #include "clang/Basic/RISCVVTypes.def" |
11615 | 0 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
11616 | 0 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
11617 | 0 | return GCCTypeClass::None; |
11618 | | |
11619 | 0 | case BuiltinType::Dependent: |
11620 | 0 | llvm_unreachable("unexpected dependent type"); |
11621 | 0 | }; |
11622 | 0 | llvm_unreachable("unexpected placeholder type"); |
11623 | |
|
11624 | 0 | case Type::Enum: |
11625 | 0 | return LangOpts.CPlusPlus ? GCCTypeClass::Enum : GCCTypeClass::Integer; |
11626 | | |
11627 | 0 | case Type::Pointer: |
11628 | 0 | case Type::ConstantArray: |
11629 | 0 | case Type::VariableArray: |
11630 | 0 | case Type::IncompleteArray: |
11631 | 0 | case Type::FunctionNoProto: |
11632 | 0 | case Type::FunctionProto: |
11633 | 0 | return GCCTypeClass::Pointer; |
11634 | | |
11635 | 0 | case Type::MemberPointer: |
11636 | 0 | return CanTy->isMemberDataPointerType() |
11637 | 0 | ? GCCTypeClass::PointerToDataMember |
11638 | 0 | : GCCTypeClass::PointerToMemberFunction; |
11639 | | |
11640 | 0 | case Type::Complex: |
11641 | 0 | return GCCTypeClass::Complex; |
11642 | | |
11643 | 0 | case Type::Record: |
11644 | 0 | return CanTy->isUnionType() ? GCCTypeClass::Union |
11645 | 0 | : GCCTypeClass::ClassOrStruct; |
11646 | | |
11647 | 0 | case Type::Atomic: |
11648 | | // GCC classifies _Atomic T the same as T. |
11649 | 0 | return EvaluateBuiltinClassifyType( |
11650 | 0 | CanTy->castAs<AtomicType>()->getValueType(), LangOpts); |
11651 | | |
11652 | 0 | case Type::Vector: |
11653 | 0 | case Type::ExtVector: |
11654 | 0 | return GCCTypeClass::Vector; |
11655 | | |
11656 | 0 | case Type::BlockPointer: |
11657 | 0 | case Type::ConstantMatrix: |
11658 | 0 | case Type::ObjCObject: |
11659 | 0 | case Type::ObjCInterface: |
11660 | 0 | case Type::ObjCObjectPointer: |
11661 | 0 | case Type::Pipe: |
11662 | | // Classify all other types that don't fit into the regular |
11663 | | // classification the same way. |
11664 | 0 | return GCCTypeClass::None; |
11665 | | |
11666 | 0 | case Type::BitInt: |
11667 | 0 | return GCCTypeClass::BitInt; |
11668 | | |
11669 | 0 | case Type::LValueReference: |
11670 | 0 | case Type::RValueReference: |
11671 | 0 | llvm_unreachable("invalid type for expression"); |
11672 | 0 | } |
11673 | | |
11674 | 0 | llvm_unreachable("unexpected type class"); |
11675 | 0 | } |
11676 | | |
11677 | | /// EvaluateBuiltinClassifyType - Evaluate __builtin_classify_type the same way |
11678 | | /// as GCC. |
11679 | | static GCCTypeClass |
11680 | 0 | EvaluateBuiltinClassifyType(const CallExpr *E, const LangOptions &LangOpts) { |
11681 | | // If no argument was supplied, default to None. This isn't |
11682 | | // ideal, however it is what gcc does. |
11683 | 0 | if (E->getNumArgs() == 0) |
11684 | 0 | return GCCTypeClass::None; |
11685 | | |
11686 | | // FIXME: Bizarrely, GCC treats a call with more than one argument as not |
11687 | | // being an ICE, but still folds it to a constant using the type of the first |
11688 | | // argument. |
11689 | 0 | return EvaluateBuiltinClassifyType(E->getArg(0)->getType(), LangOpts); |
11690 | 0 | } |
11691 | | |
11692 | | /// EvaluateBuiltinConstantPForLValue - Determine the result of |
11693 | | /// __builtin_constant_p when applied to the given pointer. |
11694 | | /// |
11695 | | /// A pointer is only "constant" if it is null (or a pointer cast to integer) |
11696 | | /// or it points to the first character of a string literal. |
11697 | 0 | static bool EvaluateBuiltinConstantPForLValue(const APValue &LV) { |
11698 | 0 | APValue::LValueBase Base = LV.getLValueBase(); |
11699 | 0 | if (Base.isNull()) { |
11700 | | // A null base is acceptable. |
11701 | 0 | return true; |
11702 | 0 | } else if (const Expr *E = Base.dyn_cast<const Expr *>()) { |
11703 | 0 | if (!isa<StringLiteral>(E)) |
11704 | 0 | return false; |
11705 | 0 | return LV.getLValueOffset().isZero(); |
11706 | 0 | } else if (Base.is<TypeInfoLValue>()) { |
11707 | | // Surprisingly, GCC considers __builtin_constant_p(&typeid(int)) to |
11708 | | // evaluate to true. |
11709 | 0 | return true; |
11710 | 0 | } else { |
11711 | | // Any other base is not constant enough for GCC. |
11712 | 0 | return false; |
11713 | 0 | } |
11714 | 0 | } |
11715 | | |
11716 | | /// EvaluateBuiltinConstantP - Evaluate __builtin_constant_p as similarly to |
11717 | | /// GCC as we can manage. |
11718 | 0 | static bool EvaluateBuiltinConstantP(EvalInfo &Info, const Expr *Arg) { |
11719 | | // This evaluation is not permitted to have side-effects, so evaluate it in |
11720 | | // a speculative evaluation context. |
11721 | 0 | SpeculativeEvaluationRAII SpeculativeEval(Info); |
11722 | | |
11723 | | // Constant-folding is always enabled for the operand of __builtin_constant_p |
11724 | | // (even when the enclosing evaluation context otherwise requires a strict |
11725 | | // language-specific constant expression). |
11726 | 0 | FoldConstant Fold(Info, true); |
11727 | |
|
11728 | 0 | QualType ArgType = Arg->getType(); |
11729 | | |
11730 | | // __builtin_constant_p always has one operand. The rules which gcc follows |
11731 | | // are not precisely documented, but are as follows: |
11732 | | // |
11733 | | // - If the operand is of integral, floating, complex or enumeration type, |
11734 | | // and can be folded to a known value of that type, it returns 1. |
11735 | | // - If the operand can be folded to a pointer to the first character |
11736 | | // of a string literal (or such a pointer cast to an integral type) |
11737 | | // or to a null pointer or an integer cast to a pointer, it returns 1. |
11738 | | // |
11739 | | // Otherwise, it returns 0. |
11740 | | // |
11741 | | // FIXME: GCC also intends to return 1 for literals of aggregate types, but |
11742 | | // its support for this did not work prior to GCC 9 and is not yet well |
11743 | | // understood. |
11744 | 0 | if (ArgType->isIntegralOrEnumerationType() || ArgType->isFloatingType() || |
11745 | 0 | ArgType->isAnyComplexType() || ArgType->isPointerType() || |
11746 | 0 | ArgType->isNullPtrType()) { |
11747 | 0 | APValue V; |
11748 | 0 | if (!::EvaluateAsRValue(Info, Arg, V) || Info.EvalStatus.HasSideEffects) { |
11749 | 0 | Fold.keepDiagnostics(); |
11750 | 0 | return false; |
11751 | 0 | } |
11752 | | |
11753 | | // For a pointer (possibly cast to integer), there are special rules. |
11754 | 0 | if (V.getKind() == APValue::LValue) |
11755 | 0 | return EvaluateBuiltinConstantPForLValue(V); |
11756 | | |
11757 | | // Otherwise, any constant value is good enough. |
11758 | 0 | return V.hasValue(); |
11759 | 0 | } |
11760 | | |
11761 | | // Anything else isn't considered to be sufficiently constant. |
11762 | 0 | return false; |
11763 | 0 | } |
11764 | | |
11765 | | /// Retrieves the "underlying object type" of the given expression, |
11766 | | /// as used by __builtin_object_size. |
11767 | 0 | static QualType getObjectType(APValue::LValueBase B) { |
11768 | 0 | if (const ValueDecl *D = B.dyn_cast<const ValueDecl*>()) { |
11769 | 0 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) |
11770 | 0 | return VD->getType(); |
11771 | 0 | } else if (const Expr *E = B.dyn_cast<const Expr*>()) { |
11772 | 0 | if (isa<CompoundLiteralExpr>(E)) |
11773 | 0 | return E->getType(); |
11774 | 0 | } else if (B.is<TypeInfoLValue>()) { |
11775 | 0 | return B.getTypeInfoType(); |
11776 | 0 | } else if (B.is<DynamicAllocLValue>()) { |
11777 | 0 | return B.getDynamicAllocType(); |
11778 | 0 | } |
11779 | | |
11780 | 0 | return QualType(); |
11781 | 0 | } |
11782 | | |
11783 | | /// A more selective version of E->IgnoreParenCasts for |
11784 | | /// tryEvaluateBuiltinObjectSize. This ignores some casts/parens that serve only |
11785 | | /// to change the type of E. |
11786 | | /// Ex. For E = `(short*)((char*)(&foo))`, returns `&foo` |
11787 | | /// |
11788 | | /// Always returns an RValue with a pointer representation. |
11789 | 0 | static const Expr *ignorePointerCastsAndParens(const Expr *E) { |
11790 | 0 | assert(E->isPRValue() && E->getType()->hasPointerRepresentation()); |
11791 | | |
11792 | 0 | auto *NoParens = E->IgnoreParens(); |
11793 | 0 | auto *Cast = dyn_cast<CastExpr>(NoParens); |
11794 | 0 | if (Cast == nullptr) |
11795 | 0 | return NoParens; |
11796 | | |
11797 | | // We only conservatively allow a few kinds of casts, because this code is |
11798 | | // inherently a simple solution that seeks to support the common case. |
11799 | 0 | auto CastKind = Cast->getCastKind(); |
11800 | 0 | if (CastKind != CK_NoOp && CastKind != CK_BitCast && |
11801 | 0 | CastKind != CK_AddressSpaceConversion) |
11802 | 0 | return NoParens; |
11803 | | |
11804 | 0 | auto *SubExpr = Cast->getSubExpr(); |
11805 | 0 | if (!SubExpr->getType()->hasPointerRepresentation() || !SubExpr->isPRValue()) |
11806 | 0 | return NoParens; |
11807 | 0 | return ignorePointerCastsAndParens(SubExpr); |
11808 | 0 | } |
11809 | | |
11810 | | /// Checks to see if the given LValue's Designator is at the end of the LValue's |
11811 | | /// record layout. e.g. |
11812 | | /// struct { struct { int a, b; } fst, snd; } obj; |
11813 | | /// obj.fst // no |
11814 | | /// obj.snd // yes |
11815 | | /// obj.fst.a // no |
11816 | | /// obj.fst.b // no |
11817 | | /// obj.snd.a // no |
11818 | | /// obj.snd.b // yes |
11819 | | /// |
11820 | | /// Please note: this function is specialized for how __builtin_object_size |
11821 | | /// views "objects". |
11822 | | /// |
11823 | | /// If this encounters an invalid RecordDecl or otherwise cannot determine the |
11824 | | /// correct result, it will always return true. |
11825 | 0 | static bool isDesignatorAtObjectEnd(const ASTContext &Ctx, const LValue &LVal) { |
11826 | 0 | assert(!LVal.Designator.Invalid); |
11827 | | |
11828 | 0 | auto IsLastOrInvalidFieldDecl = [&Ctx](const FieldDecl *FD, bool &Invalid) { |
11829 | 0 | const RecordDecl *Parent = FD->getParent(); |
11830 | 0 | Invalid = Parent->isInvalidDecl(); |
11831 | 0 | if (Invalid || Parent->isUnion()) |
11832 | 0 | return true; |
11833 | 0 | const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(Parent); |
11834 | 0 | return FD->getFieldIndex() + 1 == Layout.getFieldCount(); |
11835 | 0 | }; |
11836 | |
|
11837 | 0 | auto &Base = LVal.getLValueBase(); |
11838 | 0 | if (auto *ME = dyn_cast_or_null<MemberExpr>(Base.dyn_cast<const Expr *>())) { |
11839 | 0 | if (auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl())) { |
11840 | 0 | bool Invalid; |
11841 | 0 | if (!IsLastOrInvalidFieldDecl(FD, Invalid)) |
11842 | 0 | return Invalid; |
11843 | 0 | } else if (auto *IFD = dyn_cast<IndirectFieldDecl>(ME->getMemberDecl())) { |
11844 | 0 | for (auto *FD : IFD->chain()) { |
11845 | 0 | bool Invalid; |
11846 | 0 | if (!IsLastOrInvalidFieldDecl(cast<FieldDecl>(FD), Invalid)) |
11847 | 0 | return Invalid; |
11848 | 0 | } |
11849 | 0 | } |
11850 | 0 | } |
11851 | | |
11852 | 0 | unsigned I = 0; |
11853 | 0 | QualType BaseType = getType(Base); |
11854 | 0 | if (LVal.Designator.FirstEntryIsAnUnsizedArray) { |
11855 | | // If we don't know the array bound, conservatively assume we're looking at |
11856 | | // the final array element. |
11857 | 0 | ++I; |
11858 | 0 | if (BaseType->isIncompleteArrayType()) |
11859 | 0 | BaseType = Ctx.getAsArrayType(BaseType)->getElementType(); |
11860 | 0 | else |
11861 | 0 | BaseType = BaseType->castAs<PointerType>()->getPointeeType(); |
11862 | 0 | } |
11863 | |
|
11864 | 0 | for (unsigned E = LVal.Designator.Entries.size(); I != E; ++I) { |
11865 | 0 | const auto &Entry = LVal.Designator.Entries[I]; |
11866 | 0 | if (BaseType->isArrayType()) { |
11867 | | // Because __builtin_object_size treats arrays as objects, we can ignore |
11868 | | // the index iff this is the last array in the Designator. |
11869 | 0 | if (I + 1 == E) |
11870 | 0 | return true; |
11871 | 0 | const auto *CAT = cast<ConstantArrayType>(Ctx.getAsArrayType(BaseType)); |
11872 | 0 | uint64_t Index = Entry.getAsArrayIndex(); |
11873 | 0 | if (Index + 1 != CAT->getSize()) |
11874 | 0 | return false; |
11875 | 0 | BaseType = CAT->getElementType(); |
11876 | 0 | } else if (BaseType->isAnyComplexType()) { |
11877 | 0 | const auto *CT = BaseType->castAs<ComplexType>(); |
11878 | 0 | uint64_t Index = Entry.getAsArrayIndex(); |
11879 | 0 | if (Index != 1) |
11880 | 0 | return false; |
11881 | 0 | BaseType = CT->getElementType(); |
11882 | 0 | } else if (auto *FD = getAsField(Entry)) { |
11883 | 0 | bool Invalid; |
11884 | 0 | if (!IsLastOrInvalidFieldDecl(FD, Invalid)) |
11885 | 0 | return Invalid; |
11886 | 0 | BaseType = FD->getType(); |
11887 | 0 | } else { |
11888 | 0 | assert(getAsBaseClass(Entry) && "Expecting cast to a base class"); |
11889 | 0 | return false; |
11890 | 0 | } |
11891 | 0 | } |
11892 | 0 | return true; |
11893 | 0 | } |
11894 | | |
11895 | | /// Tests to see if the LValue has a user-specified designator (that isn't |
11896 | | /// necessarily valid). Note that this always returns 'true' if the LValue has |
11897 | | /// an unsized array as its first designator entry, because there's currently no |
11898 | | /// way to tell if the user typed *foo or foo[0]. |
11899 | 0 | static bool refersToCompleteObject(const LValue &LVal) { |
11900 | 0 | if (LVal.Designator.Invalid) |
11901 | 0 | return false; |
11902 | | |
11903 | 0 | if (!LVal.Designator.Entries.empty()) |
11904 | 0 | return LVal.Designator.isMostDerivedAnUnsizedArray(); |
11905 | | |
11906 | 0 | if (!LVal.InvalidBase) |
11907 | 0 | return true; |
11908 | | |
11909 | | // If `E` is a MemberExpr, then the first part of the designator is hiding in |
11910 | | // the LValueBase. |
11911 | 0 | const auto *E = LVal.Base.dyn_cast<const Expr *>(); |
11912 | 0 | return !E || !isa<MemberExpr>(E); |
11913 | 0 | } |
11914 | | |
11915 | | /// Attempts to detect a user writing into a piece of memory that's impossible |
11916 | | /// to figure out the size of by just using types. |
11917 | 0 | static bool isUserWritingOffTheEnd(const ASTContext &Ctx, const LValue &LVal) { |
11918 | 0 | const SubobjectDesignator &Designator = LVal.Designator; |
11919 | | // Notes: |
11920 | | // - Users can only write off of the end when we have an invalid base. Invalid |
11921 | | // bases imply we don't know where the memory came from. |
11922 | | // - We used to be a bit more aggressive here; we'd only be conservative if |
11923 | | // the array at the end was flexible, or if it had 0 or 1 elements. This |
11924 | | // broke some common standard library extensions (PR30346), but was |
11925 | | // otherwise seemingly fine. It may be useful to reintroduce this behavior |
11926 | | // with some sort of list. OTOH, it seems that GCC is always |
11927 | | // conservative with the last element in structs (if it's an array), so our |
11928 | | // current behavior is more compatible than an explicit list approach would |
11929 | | // be. |
11930 | 0 | auto isFlexibleArrayMember = [&] { |
11931 | 0 | using FAMKind = LangOptions::StrictFlexArraysLevelKind; |
11932 | 0 | FAMKind StrictFlexArraysLevel = |
11933 | 0 | Ctx.getLangOpts().getStrictFlexArraysLevel(); |
11934 | |
|
11935 | 0 | if (Designator.isMostDerivedAnUnsizedArray()) |
11936 | 0 | return true; |
11937 | | |
11938 | 0 | if (StrictFlexArraysLevel == FAMKind::Default) |
11939 | 0 | return true; |
11940 | | |
11941 | 0 | if (Designator.getMostDerivedArraySize() == 0 && |
11942 | 0 | StrictFlexArraysLevel != FAMKind::IncompleteOnly) |
11943 | 0 | return true; |
11944 | | |
11945 | 0 | if (Designator.getMostDerivedArraySize() == 1 && |
11946 | 0 | StrictFlexArraysLevel == FAMKind::OneZeroOrIncomplete) |
11947 | 0 | return true; |
11948 | | |
11949 | 0 | return false; |
11950 | 0 | }; |
11951 | |
|
11952 | 0 | return LVal.InvalidBase && |
11953 | 0 | Designator.Entries.size() == Designator.MostDerivedPathLength && |
11954 | 0 | Designator.MostDerivedIsArrayElement && isFlexibleArrayMember() && |
11955 | 0 | isDesignatorAtObjectEnd(Ctx, LVal); |
11956 | 0 | } |
11957 | | |
11958 | | /// Converts the given APInt to CharUnits, assuming the APInt is unsigned. |
11959 | | /// Fails if the conversion would cause loss of precision. |
11960 | | static bool convertUnsignedAPIntToCharUnits(const llvm::APInt &Int, |
11961 | 0 | CharUnits &Result) { |
11962 | 0 | auto CharUnitsMax = std::numeric_limits<CharUnits::QuantityType>::max(); |
11963 | 0 | if (Int.ugt(CharUnitsMax)) |
11964 | 0 | return false; |
11965 | 0 | Result = CharUnits::fromQuantity(Int.getZExtValue()); |
11966 | 0 | return true; |
11967 | 0 | } |
11968 | | |
11969 | | /// If we're evaluating the object size of an instance of a struct that |
11970 | | /// contains a flexible array member, add the size of the initializer. |
11971 | | static void addFlexibleArrayMemberInitSize(EvalInfo &Info, const QualType &T, |
11972 | 0 | const LValue &LV, CharUnits &Size) { |
11973 | 0 | if (!T.isNull() && T->isStructureType() && |
11974 | 0 | T->getAsStructureType()->getDecl()->hasFlexibleArrayMember()) |
11975 | 0 | if (const auto *V = LV.getLValueBase().dyn_cast<const ValueDecl *>()) |
11976 | 0 | if (const auto *VD = dyn_cast<VarDecl>(V)) |
11977 | 0 | if (VD->hasInit()) |
11978 | 0 | Size += VD->getFlexibleArrayInitChars(Info.Ctx); |
11979 | 0 | } |
11980 | | |
11981 | | /// Helper for tryEvaluateBuiltinObjectSize -- Given an LValue, this will |
11982 | | /// determine how many bytes exist from the beginning of the object to either |
11983 | | /// the end of the current subobject, or the end of the object itself, depending |
11984 | | /// on what the LValue looks like + the value of Type. |
11985 | | /// |
11986 | | /// If this returns false, the value of Result is undefined. |
11987 | | static bool determineEndOffset(EvalInfo &Info, SourceLocation ExprLoc, |
11988 | | unsigned Type, const LValue &LVal, |
11989 | 0 | CharUnits &EndOffset) { |
11990 | 0 | bool DetermineForCompleteObject = refersToCompleteObject(LVal); |
11991 | |
|
11992 | 0 | auto CheckedHandleSizeof = [&](QualType Ty, CharUnits &Result) { |
11993 | 0 | if (Ty.isNull() || Ty->isIncompleteType() || Ty->isFunctionType()) |
11994 | 0 | return false; |
11995 | 0 | return HandleSizeof(Info, ExprLoc, Ty, Result); |
11996 | 0 | }; |
11997 | | |
11998 | | // We want to evaluate the size of the entire object. This is a valid fallback |
11999 | | // for when Type=1 and the designator is invalid, because we're asked for an |
12000 | | // upper-bound. |
12001 | 0 | if (!(Type & 1) || LVal.Designator.Invalid || DetermineForCompleteObject) { |
12002 | | // Type=3 wants a lower bound, so we can't fall back to this. |
12003 | 0 | if (Type == 3 && !DetermineForCompleteObject) |
12004 | 0 | return false; |
12005 | | |
12006 | 0 | llvm::APInt APEndOffset; |
12007 | 0 | if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && |
12008 | 0 | getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) |
12009 | 0 | return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); |
12010 | | |
12011 | 0 | if (LVal.InvalidBase) |
12012 | 0 | return false; |
12013 | | |
12014 | 0 | QualType BaseTy = getObjectType(LVal.getLValueBase()); |
12015 | 0 | const bool Ret = CheckedHandleSizeof(BaseTy, EndOffset); |
12016 | 0 | addFlexibleArrayMemberInitSize(Info, BaseTy, LVal, EndOffset); |
12017 | 0 | return Ret; |
12018 | 0 | } |
12019 | | |
12020 | | // We want to evaluate the size of a subobject. |
12021 | 0 | const SubobjectDesignator &Designator = LVal.Designator; |
12022 | | |
12023 | | // The following is a moderately common idiom in C: |
12024 | | // |
12025 | | // struct Foo { int a; char c[1]; }; |
12026 | | // struct Foo *F = (struct Foo *)malloc(sizeof(struct Foo) + strlen(Bar)); |
12027 | | // strcpy(&F->c[0], Bar); |
12028 | | // |
12029 | | // In order to not break too much legacy code, we need to support it. |
12030 | 0 | if (isUserWritingOffTheEnd(Info.Ctx, LVal)) { |
12031 | | // If we can resolve this to an alloc_size call, we can hand that back, |
12032 | | // because we know for certain how many bytes there are to write to. |
12033 | 0 | llvm::APInt APEndOffset; |
12034 | 0 | if (isBaseAnAllocSizeCall(LVal.getLValueBase()) && |
12035 | 0 | getBytesReturnedByAllocSizeCall(Info.Ctx, LVal, APEndOffset)) |
12036 | 0 | return convertUnsignedAPIntToCharUnits(APEndOffset, EndOffset); |
12037 | | |
12038 | | // If we cannot determine the size of the initial allocation, then we can't |
12039 | | // given an accurate upper-bound. However, we are still able to give |
12040 | | // conservative lower-bounds for Type=3. |
12041 | 0 | if (Type == 1) |
12042 | 0 | return false; |
12043 | 0 | } |
12044 | | |
12045 | 0 | CharUnits BytesPerElem; |
12046 | 0 | if (!CheckedHandleSizeof(Designator.MostDerivedType, BytesPerElem)) |
12047 | 0 | return false; |
12048 | | |
12049 | | // According to the GCC documentation, we want the size of the subobject |
12050 | | // denoted by the pointer. But that's not quite right -- what we actually |
12051 | | // want is the size of the immediately-enclosing array, if there is one. |
12052 | 0 | int64_t ElemsRemaining; |
12053 | 0 | if (Designator.MostDerivedIsArrayElement && |
12054 | 0 | Designator.Entries.size() == Designator.MostDerivedPathLength) { |
12055 | 0 | uint64_t ArraySize = Designator.getMostDerivedArraySize(); |
12056 | 0 | uint64_t ArrayIndex = Designator.Entries.back().getAsArrayIndex(); |
12057 | 0 | ElemsRemaining = ArraySize <= ArrayIndex ? 0 : ArraySize - ArrayIndex; |
12058 | 0 | } else { |
12059 | 0 | ElemsRemaining = Designator.isOnePastTheEnd() ? 0 : 1; |
12060 | 0 | } |
12061 | |
|
12062 | 0 | EndOffset = LVal.getLValueOffset() + BytesPerElem * ElemsRemaining; |
12063 | 0 | return true; |
12064 | 0 | } |
12065 | | |
12066 | | /// Tries to evaluate the __builtin_object_size for @p E. If successful, |
12067 | | /// returns true and stores the result in @p Size. |
12068 | | /// |
12069 | | /// If @p WasError is non-null, this will report whether the failure to evaluate |
12070 | | /// is to be treated as an Error in IntExprEvaluator. |
12071 | | static bool tryEvaluateBuiltinObjectSize(const Expr *E, unsigned Type, |
12072 | 0 | EvalInfo &Info, uint64_t &Size) { |
12073 | | // Determine the denoted object. |
12074 | 0 | LValue LVal; |
12075 | 0 | { |
12076 | | // The operand of __builtin_object_size is never evaluated for side-effects. |
12077 | | // If there are any, but we can determine the pointed-to object anyway, then |
12078 | | // ignore the side-effects. |
12079 | 0 | SpeculativeEvaluationRAII SpeculativeEval(Info); |
12080 | 0 | IgnoreSideEffectsRAII Fold(Info); |
12081 | |
|
12082 | 0 | if (E->isGLValue()) { |
12083 | | // It's possible for us to be given GLValues if we're called via |
12084 | | // Expr::tryEvaluateObjectSize. |
12085 | 0 | APValue RVal; |
12086 | 0 | if (!EvaluateAsRValue(Info, E, RVal)) |
12087 | 0 | return false; |
12088 | 0 | LVal.setFrom(Info.Ctx, RVal); |
12089 | 0 | } else if (!EvaluatePointer(ignorePointerCastsAndParens(E), LVal, Info, |
12090 | 0 | /*InvalidBaseOK=*/true)) |
12091 | 0 | return false; |
12092 | 0 | } |
12093 | | |
12094 | | // If we point to before the start of the object, there are no accessible |
12095 | | // bytes. |
12096 | 0 | if (LVal.getLValueOffset().isNegative()) { |
12097 | 0 | Size = 0; |
12098 | 0 | return true; |
12099 | 0 | } |
12100 | | |
12101 | 0 | CharUnits EndOffset; |
12102 | 0 | if (!determineEndOffset(Info, E->getExprLoc(), Type, LVal, EndOffset)) |
12103 | 0 | return false; |
12104 | | |
12105 | | // If we've fallen outside of the end offset, just pretend there's nothing to |
12106 | | // write to/read from. |
12107 | 0 | if (EndOffset <= LVal.getLValueOffset()) |
12108 | 0 | Size = 0; |
12109 | 0 | else |
12110 | 0 | Size = (EndOffset - LVal.getLValueOffset()).getQuantity(); |
12111 | 0 | return true; |
12112 | 0 | } |
12113 | | |
12114 | 0 | bool IntExprEvaluator::VisitCallExpr(const CallExpr *E) { |
12115 | 0 | if (!IsConstantEvaluatedBuiltinCall(E)) |
12116 | 0 | return ExprEvaluatorBaseTy::VisitCallExpr(E); |
12117 | 0 | return VisitBuiltinCallExpr(E, E->getBuiltinCallee()); |
12118 | 0 | } |
12119 | | |
12120 | | static bool getBuiltinAlignArguments(const CallExpr *E, EvalInfo &Info, |
12121 | 0 | APValue &Val, APSInt &Alignment) { |
12122 | 0 | QualType SrcTy = E->getArg(0)->getType(); |
12123 | 0 | if (!getAlignmentArgument(E->getArg(1), SrcTy, Info, Alignment)) |
12124 | 0 | return false; |
12125 | | // Even though we are evaluating integer expressions we could get a pointer |
12126 | | // argument for the __builtin_is_aligned() case. |
12127 | 0 | if (SrcTy->isPointerType()) { |
12128 | 0 | LValue Ptr; |
12129 | 0 | if (!EvaluatePointer(E->getArg(0), Ptr, Info)) |
12130 | 0 | return false; |
12131 | 0 | Ptr.moveInto(Val); |
12132 | 0 | } else if (!SrcTy->isIntegralOrEnumerationType()) { |
12133 | 0 | Info.FFDiag(E->getArg(0)); |
12134 | 0 | return false; |
12135 | 0 | } else { |
12136 | 0 | APSInt SrcInt; |
12137 | 0 | if (!EvaluateInteger(E->getArg(0), SrcInt, Info)) |
12138 | 0 | return false; |
12139 | 0 | assert(SrcInt.getBitWidth() >= Alignment.getBitWidth() && |
12140 | 0 | "Bit widths must be the same"); |
12141 | 0 | Val = APValue(SrcInt); |
12142 | 0 | } |
12143 | 0 | assert(Val.hasValue()); |
12144 | 0 | return true; |
12145 | 0 | } |
12146 | | |
12147 | | bool IntExprEvaluator::VisitBuiltinCallExpr(const CallExpr *E, |
12148 | 0 | unsigned BuiltinOp) { |
12149 | 0 | switch (BuiltinOp) { |
12150 | 0 | default: |
12151 | 0 | return false; |
12152 | | |
12153 | 0 | case Builtin::BI__builtin_dynamic_object_size: |
12154 | 0 | case Builtin::BI__builtin_object_size: { |
12155 | | // The type was checked when we built the expression. |
12156 | 0 | unsigned Type = |
12157 | 0 | E->getArg(1)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); |
12158 | 0 | assert(Type <= 3 && "unexpected type"); |
12159 | | |
12160 | 0 | uint64_t Size; |
12161 | 0 | if (tryEvaluateBuiltinObjectSize(E->getArg(0), Type, Info, Size)) |
12162 | 0 | return Success(Size, E); |
12163 | | |
12164 | 0 | if (E->getArg(0)->HasSideEffects(Info.Ctx)) |
12165 | 0 | return Success((Type & 2) ? 0 : -1, E); |
12166 | | |
12167 | | // Expression had no side effects, but we couldn't statically determine the |
12168 | | // size of the referenced object. |
12169 | 0 | switch (Info.EvalMode) { |
12170 | 0 | case EvalInfo::EM_ConstantExpression: |
12171 | 0 | case EvalInfo::EM_ConstantFold: |
12172 | 0 | case EvalInfo::EM_IgnoreSideEffects: |
12173 | | // Leave it to IR generation. |
12174 | 0 | return Error(E); |
12175 | 0 | case EvalInfo::EM_ConstantExpressionUnevaluated: |
12176 | | // Reduce it to a constant now. |
12177 | 0 | return Success((Type & 2) ? 0 : -1, E); |
12178 | 0 | } |
12179 | | |
12180 | 0 | llvm_unreachable("unexpected EvalMode"); |
12181 | 0 | } |
12182 | | |
12183 | 0 | case Builtin::BI__builtin_os_log_format_buffer_size: { |
12184 | 0 | analyze_os_log::OSLogBufferLayout Layout; |
12185 | 0 | analyze_os_log::computeOSLogBufferLayout(Info.Ctx, E, Layout); |
12186 | 0 | return Success(Layout.size().getQuantity(), E); |
12187 | 0 | } |
12188 | | |
12189 | 0 | case Builtin::BI__builtin_is_aligned: { |
12190 | 0 | APValue Src; |
12191 | 0 | APSInt Alignment; |
12192 | 0 | if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) |
12193 | 0 | return false; |
12194 | 0 | if (Src.isLValue()) { |
12195 | | // If we evaluated a pointer, check the minimum known alignment. |
12196 | 0 | LValue Ptr; |
12197 | 0 | Ptr.setFrom(Info.Ctx, Src); |
12198 | 0 | CharUnits BaseAlignment = getBaseAlignment(Info, Ptr); |
12199 | 0 | CharUnits PtrAlign = BaseAlignment.alignmentAtOffset(Ptr.Offset); |
12200 | | // We can return true if the known alignment at the computed offset is |
12201 | | // greater than the requested alignment. |
12202 | 0 | assert(PtrAlign.isPowerOfTwo()); |
12203 | 0 | assert(Alignment.isPowerOf2()); |
12204 | 0 | if (PtrAlign.getQuantity() >= Alignment) |
12205 | 0 | return Success(1, E); |
12206 | | // If the alignment is not known to be sufficient, some cases could still |
12207 | | // be aligned at run time. However, if the requested alignment is less or |
12208 | | // equal to the base alignment and the offset is not aligned, we know that |
12209 | | // the run-time value can never be aligned. |
12210 | 0 | if (BaseAlignment.getQuantity() >= Alignment && |
12211 | 0 | PtrAlign.getQuantity() < Alignment) |
12212 | 0 | return Success(0, E); |
12213 | | // Otherwise we can't infer whether the value is sufficiently aligned. |
12214 | | // TODO: __builtin_is_aligned(__builtin_align_{down,up{(expr, N), N) |
12215 | | // in cases where we can't fully evaluate the pointer. |
12216 | 0 | Info.FFDiag(E->getArg(0), diag::note_constexpr_alignment_compute) |
12217 | 0 | << Alignment; |
12218 | 0 | return false; |
12219 | 0 | } |
12220 | 0 | assert(Src.isInt()); |
12221 | 0 | return Success((Src.getInt() & (Alignment - 1)) == 0 ? 1 : 0, E); |
12222 | 0 | } |
12223 | 0 | case Builtin::BI__builtin_align_up: { |
12224 | 0 | APValue Src; |
12225 | 0 | APSInt Alignment; |
12226 | 0 | if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) |
12227 | 0 | return false; |
12228 | 0 | if (!Src.isInt()) |
12229 | 0 | return Error(E); |
12230 | 0 | APSInt AlignedVal = |
12231 | 0 | APSInt((Src.getInt() + (Alignment - 1)) & ~(Alignment - 1), |
12232 | 0 | Src.getInt().isUnsigned()); |
12233 | 0 | assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); |
12234 | 0 | return Success(AlignedVal, E); |
12235 | 0 | } |
12236 | 0 | case Builtin::BI__builtin_align_down: { |
12237 | 0 | APValue Src; |
12238 | 0 | APSInt Alignment; |
12239 | 0 | if (!getBuiltinAlignArguments(E, Info, Src, Alignment)) |
12240 | 0 | return false; |
12241 | 0 | if (!Src.isInt()) |
12242 | 0 | return Error(E); |
12243 | 0 | APSInt AlignedVal = |
12244 | 0 | APSInt(Src.getInt() & ~(Alignment - 1), Src.getInt().isUnsigned()); |
12245 | 0 | assert(AlignedVal.getBitWidth() == Src.getInt().getBitWidth()); |
12246 | 0 | return Success(AlignedVal, E); |
12247 | 0 | } |
12248 | | |
12249 | 0 | case Builtin::BI__builtin_bitreverse8: |
12250 | 0 | case Builtin::BI__builtin_bitreverse16: |
12251 | 0 | case Builtin::BI__builtin_bitreverse32: |
12252 | 0 | case Builtin::BI__builtin_bitreverse64: { |
12253 | 0 | APSInt Val; |
12254 | 0 | if (!EvaluateInteger(E->getArg(0), Val, Info)) |
12255 | 0 | return false; |
12256 | | |
12257 | 0 | return Success(Val.reverseBits(), E); |
12258 | 0 | } |
12259 | | |
12260 | 0 | case Builtin::BI__builtin_bswap16: |
12261 | 0 | case Builtin::BI__builtin_bswap32: |
12262 | 0 | case Builtin::BI__builtin_bswap64: { |
12263 | 0 | APSInt Val; |
12264 | 0 | if (!EvaluateInteger(E->getArg(0), Val, Info)) |
12265 | 0 | return false; |
12266 | | |
12267 | 0 | return Success(Val.byteSwap(), E); |
12268 | 0 | } |
12269 | | |
12270 | 0 | case Builtin::BI__builtin_classify_type: |
12271 | 0 | return Success((int)EvaluateBuiltinClassifyType(E, Info.getLangOpts()), E); |
12272 | | |
12273 | 0 | case Builtin::BI__builtin_clrsb: |
12274 | 0 | case Builtin::BI__builtin_clrsbl: |
12275 | 0 | case Builtin::BI__builtin_clrsbll: { |
12276 | 0 | APSInt Val; |
12277 | 0 | if (!EvaluateInteger(E->getArg(0), Val, Info)) |
12278 | 0 | return false; |
12279 | | |
12280 | 0 | return Success(Val.getBitWidth() - Val.getSignificantBits(), E); |
12281 | 0 | } |
12282 | | |
12283 | 0 | case Builtin::BI__builtin_clz: |
12284 | 0 | case Builtin::BI__builtin_clzl: |
12285 | 0 | case Builtin::BI__builtin_clzll: |
12286 | 0 | case Builtin::BI__builtin_clzs: |
12287 | 0 | case Builtin::BI__lzcnt16: // Microsoft variants of count leading-zeroes |
12288 | 0 | case Builtin::BI__lzcnt: |
12289 | 0 | case Builtin::BI__lzcnt64: { |
12290 | 0 | APSInt Val; |
12291 | 0 | if (!EvaluateInteger(E->getArg(0), Val, Info)) |
12292 | 0 | return false; |
12293 | | |
12294 | | // When the argument is 0, the result of GCC builtins is undefined, whereas |
12295 | | // for Microsoft intrinsics, the result is the bit-width of the argument. |
12296 | 0 | bool ZeroIsUndefined = BuiltinOp != Builtin::BI__lzcnt16 && |
12297 | 0 | BuiltinOp != Builtin::BI__lzcnt && |
12298 | 0 | BuiltinOp != Builtin::BI__lzcnt64; |
12299 | |
|
12300 | 0 | if (ZeroIsUndefined && !Val) |
12301 | 0 | return Error(E); |
12302 | | |
12303 | 0 | return Success(Val.countl_zero(), E); |
12304 | 0 | } |
12305 | | |
12306 | 0 | case Builtin::BI__builtin_constant_p: { |
12307 | 0 | const Expr *Arg = E->getArg(0); |
12308 | 0 | if (EvaluateBuiltinConstantP(Info, Arg)) |
12309 | 0 | return Success(true, E); |
12310 | 0 | if (Info.InConstantContext || Arg->HasSideEffects(Info.Ctx)) { |
12311 | | // Outside a constant context, eagerly evaluate to false in the presence |
12312 | | // of side-effects in order to avoid -Wunsequenced false-positives in |
12313 | | // a branch on __builtin_constant_p(expr). |
12314 | 0 | return Success(false, E); |
12315 | 0 | } |
12316 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
12317 | 0 | return false; |
12318 | 0 | } |
12319 | | |
12320 | 0 | case Builtin::BI__builtin_is_constant_evaluated: { |
12321 | 0 | const auto *Callee = Info.CurrentCall->getCallee(); |
12322 | 0 | if (Info.InConstantContext && !Info.CheckingPotentialConstantExpression && |
12323 | 0 | (Info.CallStackDepth == 1 || |
12324 | 0 | (Info.CallStackDepth == 2 && Callee->isInStdNamespace() && |
12325 | 0 | Callee->getIdentifier() && |
12326 | 0 | Callee->getIdentifier()->isStr("is_constant_evaluated")))) { |
12327 | | // FIXME: Find a better way to avoid duplicated diagnostics. |
12328 | 0 | if (Info.EvalStatus.Diag) |
12329 | 0 | Info.report((Info.CallStackDepth == 1) |
12330 | 0 | ? E->getExprLoc() |
12331 | 0 | : Info.CurrentCall->getCallRange().getBegin(), |
12332 | 0 | diag::warn_is_constant_evaluated_always_true_constexpr) |
12333 | 0 | << (Info.CallStackDepth == 1 ? "__builtin_is_constant_evaluated" |
12334 | 0 | : "std::is_constant_evaluated"); |
12335 | 0 | } |
12336 | |
|
12337 | 0 | return Success(Info.InConstantContext, E); |
12338 | 0 | } |
12339 | | |
12340 | 0 | case Builtin::BI__builtin_ctz: |
12341 | 0 | case Builtin::BI__builtin_ctzl: |
12342 | 0 | case Builtin::BI__builtin_ctzll: |
12343 | 0 | case Builtin::BI__builtin_ctzs: { |
12344 | 0 | APSInt Val; |
12345 | 0 | if (!EvaluateInteger(E->getArg(0), Val, Info)) |
12346 | 0 | return false; |
12347 | 0 | if (!Val) |
12348 | 0 | return Error(E); |
12349 | | |
12350 | 0 | return Success(Val.countr_zero(), E); |
12351 | 0 | } |
12352 | | |
12353 | 0 | case Builtin::BI__builtin_eh_return_data_regno: { |
12354 | 0 | int Operand = E->getArg(0)->EvaluateKnownConstInt(Info.Ctx).getZExtValue(); |
12355 | 0 | Operand = Info.Ctx.getTargetInfo().getEHDataRegisterNumber(Operand); |
12356 | 0 | return Success(Operand, E); |
12357 | 0 | } |
12358 | | |
12359 | 0 | case Builtin::BI__builtin_expect: |
12360 | 0 | case Builtin::BI__builtin_expect_with_probability: |
12361 | 0 | return Visit(E->getArg(0)); |
12362 | | |
12363 | 0 | case Builtin::BI__builtin_ffs: |
12364 | 0 | case Builtin::BI__builtin_ffsl: |
12365 | 0 | case Builtin::BI__builtin_ffsll: { |
12366 | 0 | APSInt Val; |
12367 | 0 | if (!EvaluateInteger(E->getArg(0), Val, Info)) |
12368 | 0 | return false; |
12369 | | |
12370 | 0 | unsigned N = Val.countr_zero(); |
12371 | 0 | return Success(N == Val.getBitWidth() ? 0 : N + 1, E); |
12372 | 0 | } |
12373 | | |
12374 | 0 | case Builtin::BI__builtin_fpclassify: { |
12375 | 0 | APFloat Val(0.0); |
12376 | 0 | if (!EvaluateFloat(E->getArg(5), Val, Info)) |
12377 | 0 | return false; |
12378 | 0 | unsigned Arg; |
12379 | 0 | switch (Val.getCategory()) { |
12380 | 0 | case APFloat::fcNaN: Arg = 0; break; |
12381 | 0 | case APFloat::fcInfinity: Arg = 1; break; |
12382 | 0 | case APFloat::fcNormal: Arg = Val.isDenormal() ? 3 : 2; break; |
12383 | 0 | case APFloat::fcZero: Arg = 4; break; |
12384 | 0 | } |
12385 | 0 | return Visit(E->getArg(Arg)); |
12386 | 0 | } |
12387 | | |
12388 | 0 | case Builtin::BI__builtin_isinf_sign: { |
12389 | 0 | APFloat Val(0.0); |
12390 | 0 | return EvaluateFloat(E->getArg(0), Val, Info) && |
12391 | 0 | Success(Val.isInfinity() ? (Val.isNegative() ? -1 : 1) : 0, E); |
12392 | 0 | } |
12393 | | |
12394 | 0 | case Builtin::BI__builtin_isinf: { |
12395 | 0 | APFloat Val(0.0); |
12396 | 0 | return EvaluateFloat(E->getArg(0), Val, Info) && |
12397 | 0 | Success(Val.isInfinity() ? 1 : 0, E); |
12398 | 0 | } |
12399 | | |
12400 | 0 | case Builtin::BI__builtin_isfinite: { |
12401 | 0 | APFloat Val(0.0); |
12402 | 0 | return EvaluateFloat(E->getArg(0), Val, Info) && |
12403 | 0 | Success(Val.isFinite() ? 1 : 0, E); |
12404 | 0 | } |
12405 | | |
12406 | 0 | case Builtin::BI__builtin_isnan: { |
12407 | 0 | APFloat Val(0.0); |
12408 | 0 | return EvaluateFloat(E->getArg(0), Val, Info) && |
12409 | 0 | Success(Val.isNaN() ? 1 : 0, E); |
12410 | 0 | } |
12411 | | |
12412 | 0 | case Builtin::BI__builtin_isnormal: { |
12413 | 0 | APFloat Val(0.0); |
12414 | 0 | return EvaluateFloat(E->getArg(0), Val, Info) && |
12415 | 0 | Success(Val.isNormal() ? 1 : 0, E); |
12416 | 0 | } |
12417 | | |
12418 | 0 | case Builtin::BI__builtin_issubnormal: { |
12419 | 0 | APFloat Val(0.0); |
12420 | 0 | return EvaluateFloat(E->getArg(0), Val, Info) && |
12421 | 0 | Success(Val.isDenormal() ? 1 : 0, E); |
12422 | 0 | } |
12423 | | |
12424 | 0 | case Builtin::BI__builtin_iszero: { |
12425 | 0 | APFloat Val(0.0); |
12426 | 0 | return EvaluateFloat(E->getArg(0), Val, Info) && |
12427 | 0 | Success(Val.isZero() ? 1 : 0, E); |
12428 | 0 | } |
12429 | | |
12430 | 0 | case Builtin::BI__builtin_issignaling: { |
12431 | 0 | APFloat Val(0.0); |
12432 | 0 | return EvaluateFloat(E->getArg(0), Val, Info) && |
12433 | 0 | Success(Val.isSignaling() ? 1 : 0, E); |
12434 | 0 | } |
12435 | | |
12436 | 0 | case Builtin::BI__builtin_isfpclass: { |
12437 | 0 | APSInt MaskVal; |
12438 | 0 | if (!EvaluateInteger(E->getArg(1), MaskVal, Info)) |
12439 | 0 | return false; |
12440 | 0 | unsigned Test = static_cast<llvm::FPClassTest>(MaskVal.getZExtValue()); |
12441 | 0 | APFloat Val(0.0); |
12442 | 0 | return EvaluateFloat(E->getArg(0), Val, Info) && |
12443 | 0 | Success((Val.classify() & Test) ? 1 : 0, E); |
12444 | 0 | } |
12445 | | |
12446 | 0 | case Builtin::BI__builtin_parity: |
12447 | 0 | case Builtin::BI__builtin_parityl: |
12448 | 0 | case Builtin::BI__builtin_parityll: { |
12449 | 0 | APSInt Val; |
12450 | 0 | if (!EvaluateInteger(E->getArg(0), Val, Info)) |
12451 | 0 | return false; |
12452 | | |
12453 | 0 | return Success(Val.popcount() % 2, E); |
12454 | 0 | } |
12455 | | |
12456 | 0 | case Builtin::BI__builtin_popcount: |
12457 | 0 | case Builtin::BI__builtin_popcountl: |
12458 | 0 | case Builtin::BI__builtin_popcountll: |
12459 | 0 | case Builtin::BI__popcnt16: // Microsoft variants of popcount |
12460 | 0 | case Builtin::BI__popcnt: |
12461 | 0 | case Builtin::BI__popcnt64: { |
12462 | 0 | APSInt Val; |
12463 | 0 | if (!EvaluateInteger(E->getArg(0), Val, Info)) |
12464 | 0 | return false; |
12465 | | |
12466 | 0 | return Success(Val.popcount(), E); |
12467 | 0 | } |
12468 | | |
12469 | 0 | case Builtin::BI__builtin_rotateleft8: |
12470 | 0 | case Builtin::BI__builtin_rotateleft16: |
12471 | 0 | case Builtin::BI__builtin_rotateleft32: |
12472 | 0 | case Builtin::BI__builtin_rotateleft64: |
12473 | 0 | case Builtin::BI_rotl8: // Microsoft variants of rotate right |
12474 | 0 | case Builtin::BI_rotl16: |
12475 | 0 | case Builtin::BI_rotl: |
12476 | 0 | case Builtin::BI_lrotl: |
12477 | 0 | case Builtin::BI_rotl64: { |
12478 | 0 | APSInt Val, Amt; |
12479 | 0 | if (!EvaluateInteger(E->getArg(0), Val, Info) || |
12480 | 0 | !EvaluateInteger(E->getArg(1), Amt, Info)) |
12481 | 0 | return false; |
12482 | | |
12483 | 0 | return Success(Val.rotl(Amt.urem(Val.getBitWidth())), E); |
12484 | 0 | } |
12485 | | |
12486 | 0 | case Builtin::BI__builtin_rotateright8: |
12487 | 0 | case Builtin::BI__builtin_rotateright16: |
12488 | 0 | case Builtin::BI__builtin_rotateright32: |
12489 | 0 | case Builtin::BI__builtin_rotateright64: |
12490 | 0 | case Builtin::BI_rotr8: // Microsoft variants of rotate right |
12491 | 0 | case Builtin::BI_rotr16: |
12492 | 0 | case Builtin::BI_rotr: |
12493 | 0 | case Builtin::BI_lrotr: |
12494 | 0 | case Builtin::BI_rotr64: { |
12495 | 0 | APSInt Val, Amt; |
12496 | 0 | if (!EvaluateInteger(E->getArg(0), Val, Info) || |
12497 | 0 | !EvaluateInteger(E->getArg(1), Amt, Info)) |
12498 | 0 | return false; |
12499 | | |
12500 | 0 | return Success(Val.rotr(Amt.urem(Val.getBitWidth())), E); |
12501 | 0 | } |
12502 | | |
12503 | 0 | case Builtin::BIstrlen: |
12504 | 0 | case Builtin::BIwcslen: |
12505 | | // A call to strlen is not a constant expression. |
12506 | 0 | if (Info.getLangOpts().CPlusPlus11) |
12507 | 0 | Info.CCEDiag(E, diag::note_constexpr_invalid_function) |
12508 | 0 | << /*isConstexpr*/ 0 << /*isConstructor*/ 0 |
12509 | 0 | << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); |
12510 | 0 | else |
12511 | 0 | Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); |
12512 | 0 | [[fallthrough]]; |
12513 | 0 | case Builtin::BI__builtin_strlen: |
12514 | 0 | case Builtin::BI__builtin_wcslen: { |
12515 | | // As an extension, we support __builtin_strlen() as a constant expression, |
12516 | | // and support folding strlen() to a constant. |
12517 | 0 | uint64_t StrLen; |
12518 | 0 | if (EvaluateBuiltinStrLen(E->getArg(0), StrLen, Info)) |
12519 | 0 | return Success(StrLen, E); |
12520 | 0 | return false; |
12521 | 0 | } |
12522 | | |
12523 | 0 | case Builtin::BIstrcmp: |
12524 | 0 | case Builtin::BIwcscmp: |
12525 | 0 | case Builtin::BIstrncmp: |
12526 | 0 | case Builtin::BIwcsncmp: |
12527 | 0 | case Builtin::BImemcmp: |
12528 | 0 | case Builtin::BIbcmp: |
12529 | 0 | case Builtin::BIwmemcmp: |
12530 | | // A call to strlen is not a constant expression. |
12531 | 0 | if (Info.getLangOpts().CPlusPlus11) |
12532 | 0 | Info.CCEDiag(E, diag::note_constexpr_invalid_function) |
12533 | 0 | << /*isConstexpr*/ 0 << /*isConstructor*/ 0 |
12534 | 0 | << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str(); |
12535 | 0 | else |
12536 | 0 | Info.CCEDiag(E, diag::note_invalid_subexpr_in_const_expr); |
12537 | 0 | [[fallthrough]]; |
12538 | 0 | case Builtin::BI__builtin_strcmp: |
12539 | 0 | case Builtin::BI__builtin_wcscmp: |
12540 | 0 | case Builtin::BI__builtin_strncmp: |
12541 | 0 | case Builtin::BI__builtin_wcsncmp: |
12542 | 0 | case Builtin::BI__builtin_memcmp: |
12543 | 0 | case Builtin::BI__builtin_bcmp: |
12544 | 0 | case Builtin::BI__builtin_wmemcmp: { |
12545 | 0 | LValue String1, String2; |
12546 | 0 | if (!EvaluatePointer(E->getArg(0), String1, Info) || |
12547 | 0 | !EvaluatePointer(E->getArg(1), String2, Info)) |
12548 | 0 | return false; |
12549 | | |
12550 | 0 | uint64_t MaxLength = uint64_t(-1); |
12551 | 0 | if (BuiltinOp != Builtin::BIstrcmp && |
12552 | 0 | BuiltinOp != Builtin::BIwcscmp && |
12553 | 0 | BuiltinOp != Builtin::BI__builtin_strcmp && |
12554 | 0 | BuiltinOp != Builtin::BI__builtin_wcscmp) { |
12555 | 0 | APSInt N; |
12556 | 0 | if (!EvaluateInteger(E->getArg(2), N, Info)) |
12557 | 0 | return false; |
12558 | 0 | MaxLength = N.getZExtValue(); |
12559 | 0 | } |
12560 | | |
12561 | | // Empty substrings compare equal by definition. |
12562 | 0 | if (MaxLength == 0u) |
12563 | 0 | return Success(0, E); |
12564 | | |
12565 | 0 | if (!String1.checkNullPointerForFoldAccess(Info, E, AK_Read) || |
12566 | 0 | !String2.checkNullPointerForFoldAccess(Info, E, AK_Read) || |
12567 | 0 | String1.Designator.Invalid || String2.Designator.Invalid) |
12568 | 0 | return false; |
12569 | | |
12570 | 0 | QualType CharTy1 = String1.Designator.getType(Info.Ctx); |
12571 | 0 | QualType CharTy2 = String2.Designator.getType(Info.Ctx); |
12572 | |
|
12573 | 0 | bool IsRawByte = BuiltinOp == Builtin::BImemcmp || |
12574 | 0 | BuiltinOp == Builtin::BIbcmp || |
12575 | 0 | BuiltinOp == Builtin::BI__builtin_memcmp || |
12576 | 0 | BuiltinOp == Builtin::BI__builtin_bcmp; |
12577 | |
|
12578 | 0 | assert(IsRawByte || |
12579 | 0 | (Info.Ctx.hasSameUnqualifiedType( |
12580 | 0 | CharTy1, E->getArg(0)->getType()->getPointeeType()) && |
12581 | 0 | Info.Ctx.hasSameUnqualifiedType(CharTy1, CharTy2))); |
12582 | | |
12583 | | // For memcmp, allow comparing any arrays of '[[un]signed] char' or |
12584 | | // 'char8_t', but no other types. |
12585 | 0 | if (IsRawByte && |
12586 | 0 | !(isOneByteCharacterType(CharTy1) && isOneByteCharacterType(CharTy2))) { |
12587 | | // FIXME: Consider using our bit_cast implementation to support this. |
12588 | 0 | Info.FFDiag(E, diag::note_constexpr_memcmp_unsupported) |
12589 | 0 | << ("'" + Info.Ctx.BuiltinInfo.getName(BuiltinOp) + "'").str() |
12590 | 0 | << CharTy1 << CharTy2; |
12591 | 0 | return false; |
12592 | 0 | } |
12593 | | |
12594 | 0 | const auto &ReadCurElems = [&](APValue &Char1, APValue &Char2) { |
12595 | 0 | return handleLValueToRValueConversion(Info, E, CharTy1, String1, Char1) && |
12596 | 0 | handleLValueToRValueConversion(Info, E, CharTy2, String2, Char2) && |
12597 | 0 | Char1.isInt() && Char2.isInt(); |
12598 | 0 | }; |
12599 | 0 | const auto &AdvanceElems = [&] { |
12600 | 0 | return HandleLValueArrayAdjustment(Info, E, String1, CharTy1, 1) && |
12601 | 0 | HandleLValueArrayAdjustment(Info, E, String2, CharTy2, 1); |
12602 | 0 | }; |
12603 | |
|
12604 | 0 | bool StopAtNull = |
12605 | 0 | (BuiltinOp != Builtin::BImemcmp && BuiltinOp != Builtin::BIbcmp && |
12606 | 0 | BuiltinOp != Builtin::BIwmemcmp && |
12607 | 0 | BuiltinOp != Builtin::BI__builtin_memcmp && |
12608 | 0 | BuiltinOp != Builtin::BI__builtin_bcmp && |
12609 | 0 | BuiltinOp != Builtin::BI__builtin_wmemcmp); |
12610 | 0 | bool IsWide = BuiltinOp == Builtin::BIwcscmp || |
12611 | 0 | BuiltinOp == Builtin::BIwcsncmp || |
12612 | 0 | BuiltinOp == Builtin::BIwmemcmp || |
12613 | 0 | BuiltinOp == Builtin::BI__builtin_wcscmp || |
12614 | 0 | BuiltinOp == Builtin::BI__builtin_wcsncmp || |
12615 | 0 | BuiltinOp == Builtin::BI__builtin_wmemcmp; |
12616 | |
|
12617 | 0 | for (; MaxLength; --MaxLength) { |
12618 | 0 | APValue Char1, Char2; |
12619 | 0 | if (!ReadCurElems(Char1, Char2)) |
12620 | 0 | return false; |
12621 | 0 | if (Char1.getInt().ne(Char2.getInt())) { |
12622 | 0 | if (IsWide) // wmemcmp compares with wchar_t signedness. |
12623 | 0 | return Success(Char1.getInt() < Char2.getInt() ? -1 : 1, E); |
12624 | | // memcmp always compares unsigned chars. |
12625 | 0 | return Success(Char1.getInt().ult(Char2.getInt()) ? -1 : 1, E); |
12626 | 0 | } |
12627 | 0 | if (StopAtNull && !Char1.getInt()) |
12628 | 0 | return Success(0, E); |
12629 | 0 | assert(!(StopAtNull && !Char2.getInt())); |
12630 | 0 | if (!AdvanceElems()) |
12631 | 0 | return false; |
12632 | 0 | } |
12633 | | // We hit the strncmp / memcmp limit. |
12634 | 0 | return Success(0, E); |
12635 | 0 | } |
12636 | | |
12637 | 0 | case Builtin::BI__atomic_always_lock_free: |
12638 | 0 | case Builtin::BI__atomic_is_lock_free: |
12639 | 0 | case Builtin::BI__c11_atomic_is_lock_free: { |
12640 | 0 | APSInt SizeVal; |
12641 | 0 | if (!EvaluateInteger(E->getArg(0), SizeVal, Info)) |
12642 | 0 | return false; |
12643 | | |
12644 | | // For __atomic_is_lock_free(sizeof(_Atomic(T))), if the size is a power |
12645 | | // of two less than or equal to the maximum inline atomic width, we know it |
12646 | | // is lock-free. If the size isn't a power of two, or greater than the |
12647 | | // maximum alignment where we promote atomics, we know it is not lock-free |
12648 | | // (at least not in the sense of atomic_is_lock_free). Otherwise, |
12649 | | // the answer can only be determined at runtime; for example, 16-byte |
12650 | | // atomics have lock-free implementations on some, but not all, |
12651 | | // x86-64 processors. |
12652 | | |
12653 | | // Check power-of-two. |
12654 | 0 | CharUnits Size = CharUnits::fromQuantity(SizeVal.getZExtValue()); |
12655 | 0 | if (Size.isPowerOfTwo()) { |
12656 | | // Check against inlining width. |
12657 | 0 | unsigned InlineWidthBits = |
12658 | 0 | Info.Ctx.getTargetInfo().getMaxAtomicInlineWidth(); |
12659 | 0 | if (Size <= Info.Ctx.toCharUnitsFromBits(InlineWidthBits)) { |
12660 | 0 | if (BuiltinOp == Builtin::BI__c11_atomic_is_lock_free || |
12661 | 0 | Size == CharUnits::One() || |
12662 | 0 | E->getArg(1)->isNullPointerConstant(Info.Ctx, |
12663 | 0 | Expr::NPC_NeverValueDependent)) |
12664 | | // OK, we will inline appropriately-aligned operations of this size, |
12665 | | // and _Atomic(T) is appropriately-aligned. |
12666 | 0 | return Success(1, E); |
12667 | | |
12668 | 0 | QualType PointeeType = E->getArg(1)->IgnoreImpCasts()->getType()-> |
12669 | 0 | castAs<PointerType>()->getPointeeType(); |
12670 | 0 | if (!PointeeType->isIncompleteType() && |
12671 | 0 | Info.Ctx.getTypeAlignInChars(PointeeType) >= Size) { |
12672 | | // OK, we will inline operations on this object. |
12673 | 0 | return Success(1, E); |
12674 | 0 | } |
12675 | 0 | } |
12676 | 0 | } |
12677 | | |
12678 | 0 | return BuiltinOp == Builtin::BI__atomic_always_lock_free ? |
12679 | 0 | Success(0, E) : Error(E); |
12680 | 0 | } |
12681 | 0 | case Builtin::BI__builtin_add_overflow: |
12682 | 0 | case Builtin::BI__builtin_sub_overflow: |
12683 | 0 | case Builtin::BI__builtin_mul_overflow: |
12684 | 0 | case Builtin::BI__builtin_sadd_overflow: |
12685 | 0 | case Builtin::BI__builtin_uadd_overflow: |
12686 | 0 | case Builtin::BI__builtin_uaddl_overflow: |
12687 | 0 | case Builtin::BI__builtin_uaddll_overflow: |
12688 | 0 | case Builtin::BI__builtin_usub_overflow: |
12689 | 0 | case Builtin::BI__builtin_usubl_overflow: |
12690 | 0 | case Builtin::BI__builtin_usubll_overflow: |
12691 | 0 | case Builtin::BI__builtin_umul_overflow: |
12692 | 0 | case Builtin::BI__builtin_umull_overflow: |
12693 | 0 | case Builtin::BI__builtin_umulll_overflow: |
12694 | 0 | case Builtin::BI__builtin_saddl_overflow: |
12695 | 0 | case Builtin::BI__builtin_saddll_overflow: |
12696 | 0 | case Builtin::BI__builtin_ssub_overflow: |
12697 | 0 | case Builtin::BI__builtin_ssubl_overflow: |
12698 | 0 | case Builtin::BI__builtin_ssubll_overflow: |
12699 | 0 | case Builtin::BI__builtin_smul_overflow: |
12700 | 0 | case Builtin::BI__builtin_smull_overflow: |
12701 | 0 | case Builtin::BI__builtin_smulll_overflow: { |
12702 | 0 | LValue ResultLValue; |
12703 | 0 | APSInt LHS, RHS; |
12704 | |
|
12705 | 0 | QualType ResultType = E->getArg(2)->getType()->getPointeeType(); |
12706 | 0 | if (!EvaluateInteger(E->getArg(0), LHS, Info) || |
12707 | 0 | !EvaluateInteger(E->getArg(1), RHS, Info) || |
12708 | 0 | !EvaluatePointer(E->getArg(2), ResultLValue, Info)) |
12709 | 0 | return false; |
12710 | | |
12711 | 0 | APSInt Result; |
12712 | 0 | bool DidOverflow = false; |
12713 | | |
12714 | | // If the types don't have to match, enlarge all 3 to the largest of them. |
12715 | 0 | if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
12716 | 0 | BuiltinOp == Builtin::BI__builtin_sub_overflow || |
12717 | 0 | BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
12718 | 0 | bool IsSigned = LHS.isSigned() || RHS.isSigned() || |
12719 | 0 | ResultType->isSignedIntegerOrEnumerationType(); |
12720 | 0 | bool AllSigned = LHS.isSigned() && RHS.isSigned() && |
12721 | 0 | ResultType->isSignedIntegerOrEnumerationType(); |
12722 | 0 | uint64_t LHSSize = LHS.getBitWidth(); |
12723 | 0 | uint64_t RHSSize = RHS.getBitWidth(); |
12724 | 0 | uint64_t ResultSize = Info.Ctx.getTypeSize(ResultType); |
12725 | 0 | uint64_t MaxBits = std::max(std::max(LHSSize, RHSSize), ResultSize); |
12726 | | |
12727 | | // Add an additional bit if the signedness isn't uniformly agreed to. We |
12728 | | // could do this ONLY if there is a signed and an unsigned that both have |
12729 | | // MaxBits, but the code to check that is pretty nasty. The issue will be |
12730 | | // caught in the shrink-to-result later anyway. |
12731 | 0 | if (IsSigned && !AllSigned) |
12732 | 0 | ++MaxBits; |
12733 | |
|
12734 | 0 | LHS = APSInt(LHS.extOrTrunc(MaxBits), !IsSigned); |
12735 | 0 | RHS = APSInt(RHS.extOrTrunc(MaxBits), !IsSigned); |
12736 | 0 | Result = APSInt(MaxBits, !IsSigned); |
12737 | 0 | } |
12738 | | |
12739 | | // Find largest int. |
12740 | 0 | switch (BuiltinOp) { |
12741 | 0 | default: |
12742 | 0 | llvm_unreachable("Invalid value for BuiltinOp"); |
12743 | 0 | case Builtin::BI__builtin_add_overflow: |
12744 | 0 | case Builtin::BI__builtin_sadd_overflow: |
12745 | 0 | case Builtin::BI__builtin_saddl_overflow: |
12746 | 0 | case Builtin::BI__builtin_saddll_overflow: |
12747 | 0 | case Builtin::BI__builtin_uadd_overflow: |
12748 | 0 | case Builtin::BI__builtin_uaddl_overflow: |
12749 | 0 | case Builtin::BI__builtin_uaddll_overflow: |
12750 | 0 | Result = LHS.isSigned() ? LHS.sadd_ov(RHS, DidOverflow) |
12751 | 0 | : LHS.uadd_ov(RHS, DidOverflow); |
12752 | 0 | break; |
12753 | 0 | case Builtin::BI__builtin_sub_overflow: |
12754 | 0 | case Builtin::BI__builtin_ssub_overflow: |
12755 | 0 | case Builtin::BI__builtin_ssubl_overflow: |
12756 | 0 | case Builtin::BI__builtin_ssubll_overflow: |
12757 | 0 | case Builtin::BI__builtin_usub_overflow: |
12758 | 0 | case Builtin::BI__builtin_usubl_overflow: |
12759 | 0 | case Builtin::BI__builtin_usubll_overflow: |
12760 | 0 | Result = LHS.isSigned() ? LHS.ssub_ov(RHS, DidOverflow) |
12761 | 0 | : LHS.usub_ov(RHS, DidOverflow); |
12762 | 0 | break; |
12763 | 0 | case Builtin::BI__builtin_mul_overflow: |
12764 | 0 | case Builtin::BI__builtin_smul_overflow: |
12765 | 0 | case Builtin::BI__builtin_smull_overflow: |
12766 | 0 | case Builtin::BI__builtin_smulll_overflow: |
12767 | 0 | case Builtin::BI__builtin_umul_overflow: |
12768 | 0 | case Builtin::BI__builtin_umull_overflow: |
12769 | 0 | case Builtin::BI__builtin_umulll_overflow: |
12770 | 0 | Result = LHS.isSigned() ? LHS.smul_ov(RHS, DidOverflow) |
12771 | 0 | : LHS.umul_ov(RHS, DidOverflow); |
12772 | 0 | break; |
12773 | 0 | } |
12774 | | |
12775 | | // In the case where multiple sizes are allowed, truncate and see if |
12776 | | // the values are the same. |
12777 | 0 | if (BuiltinOp == Builtin::BI__builtin_add_overflow || |
12778 | 0 | BuiltinOp == Builtin::BI__builtin_sub_overflow || |
12779 | 0 | BuiltinOp == Builtin::BI__builtin_mul_overflow) { |
12780 | | // APSInt doesn't have a TruncOrSelf, so we use extOrTrunc instead, |
12781 | | // since it will give us the behavior of a TruncOrSelf in the case where |
12782 | | // its parameter <= its size. We previously set Result to be at least the |
12783 | | // type-size of the result, so getTypeSize(ResultType) <= Result.BitWidth |
12784 | | // will work exactly like TruncOrSelf. |
12785 | 0 | APSInt Temp = Result.extOrTrunc(Info.Ctx.getTypeSize(ResultType)); |
12786 | 0 | Temp.setIsSigned(ResultType->isSignedIntegerOrEnumerationType()); |
12787 | |
|
12788 | 0 | if (!APSInt::isSameValue(Temp, Result)) |
12789 | 0 | DidOverflow = true; |
12790 | 0 | Result = Temp; |
12791 | 0 | } |
12792 | |
|
12793 | 0 | APValue APV{Result}; |
12794 | 0 | if (!handleAssignment(Info, E, ResultLValue, ResultType, APV)) |
12795 | 0 | return false; |
12796 | 0 | return Success(DidOverflow, E); |
12797 | 0 | } |
12798 | 0 | } |
12799 | 0 | } |
12800 | | |
12801 | | /// Determine whether this is a pointer past the end of the complete |
12802 | | /// object referred to by the lvalue. |
12803 | | static bool isOnePastTheEndOfCompleteObject(const ASTContext &Ctx, |
12804 | 0 | const LValue &LV) { |
12805 | | // A null pointer can be viewed as being "past the end" but we don't |
12806 | | // choose to look at it that way here. |
12807 | 0 | if (!LV.getLValueBase()) |
12808 | 0 | return false; |
12809 | | |
12810 | | // If the designator is valid and refers to a subobject, we're not pointing |
12811 | | // past the end. |
12812 | 0 | if (!LV.getLValueDesignator().Invalid && |
12813 | 0 | !LV.getLValueDesignator().isOnePastTheEnd()) |
12814 | 0 | return false; |
12815 | | |
12816 | | // A pointer to an incomplete type might be past-the-end if the type's size is |
12817 | | // zero. We cannot tell because the type is incomplete. |
12818 | 0 | QualType Ty = getType(LV.getLValueBase()); |
12819 | 0 | if (Ty->isIncompleteType()) |
12820 | 0 | return true; |
12821 | | |
12822 | | // We're a past-the-end pointer if we point to the byte after the object, |
12823 | | // no matter what our type or path is. |
12824 | 0 | auto Size = Ctx.getTypeSizeInChars(Ty); |
12825 | 0 | return LV.getLValueOffset() == Size; |
12826 | 0 | } |
12827 | | |
12828 | | namespace { |
12829 | | |
12830 | | /// Data recursive integer evaluator of certain binary operators. |
12831 | | /// |
12832 | | /// We use a data recursive algorithm for binary operators so that we are able |
12833 | | /// to handle extreme cases of chained binary operators without causing stack |
12834 | | /// overflow. |
12835 | | class DataRecursiveIntBinOpEvaluator { |
12836 | | struct EvalResult { |
12837 | | APValue Val; |
12838 | | bool Failed = false; |
12839 | | |
12840 | 0 | EvalResult() = default; |
12841 | | |
12842 | 0 | void swap(EvalResult &RHS) { |
12843 | 0 | Val.swap(RHS.Val); |
12844 | 0 | Failed = RHS.Failed; |
12845 | 0 | RHS.Failed = false; |
12846 | 0 | } |
12847 | | }; |
12848 | | |
12849 | | struct Job { |
12850 | | const Expr *E; |
12851 | | EvalResult LHSResult; // meaningful only for binary operator expression. |
12852 | | enum { AnyExprKind, BinOpKind, BinOpVisitedLHSKind } Kind; |
12853 | | |
12854 | 0 | Job() = default; |
12855 | 0 | Job(Job &&) = default; |
12856 | | |
12857 | 0 | void startSpeculativeEval(EvalInfo &Info) { |
12858 | 0 | SpecEvalRAII = SpeculativeEvaluationRAII(Info); |
12859 | 0 | } |
12860 | | |
12861 | | private: |
12862 | | SpeculativeEvaluationRAII SpecEvalRAII; |
12863 | | }; |
12864 | | |
12865 | | SmallVector<Job, 16> Queue; |
12866 | | |
12867 | | IntExprEvaluator &IntEval; |
12868 | | EvalInfo &Info; |
12869 | | APValue &FinalResult; |
12870 | | |
12871 | | public: |
12872 | | DataRecursiveIntBinOpEvaluator(IntExprEvaluator &IntEval, APValue &Result) |
12873 | 0 | : IntEval(IntEval), Info(IntEval.getEvalInfo()), FinalResult(Result) { } |
12874 | | |
12875 | | /// True if \param E is a binary operator that we are going to handle |
12876 | | /// data recursively. |
12877 | | /// We handle binary operators that are comma, logical, or that have operands |
12878 | | /// with integral or enumeration type. |
12879 | 0 | static bool shouldEnqueue(const BinaryOperator *E) { |
12880 | 0 | return E->getOpcode() == BO_Comma || E->isLogicalOp() || |
12881 | 0 | (E->isPRValue() && E->getType()->isIntegralOrEnumerationType() && |
12882 | 0 | E->getLHS()->getType()->isIntegralOrEnumerationType() && |
12883 | 0 | E->getRHS()->getType()->isIntegralOrEnumerationType()); |
12884 | 0 | } |
12885 | | |
12886 | 0 | bool Traverse(const BinaryOperator *E) { |
12887 | 0 | enqueue(E); |
12888 | 0 | EvalResult PrevResult; |
12889 | 0 | while (!Queue.empty()) |
12890 | 0 | process(PrevResult); |
12891 | |
|
12892 | 0 | if (PrevResult.Failed) return false; |
12893 | | |
12894 | 0 | FinalResult.swap(PrevResult.Val); |
12895 | 0 | return true; |
12896 | 0 | } |
12897 | | |
12898 | | private: |
12899 | 0 | bool Success(uint64_t Value, const Expr *E, APValue &Result) { |
12900 | 0 | return IntEval.Success(Value, E, Result); |
12901 | 0 | } |
12902 | 0 | bool Success(const APSInt &Value, const Expr *E, APValue &Result) { |
12903 | 0 | return IntEval.Success(Value, E, Result); |
12904 | 0 | } |
12905 | 0 | bool Error(const Expr *E) { |
12906 | 0 | return IntEval.Error(E); |
12907 | 0 | } |
12908 | 0 | bool Error(const Expr *E, diag::kind D) { |
12909 | 0 | return IntEval.Error(E, D); |
12910 | 0 | } |
12911 | | |
12912 | 0 | OptionalDiagnostic CCEDiag(const Expr *E, diag::kind D) { |
12913 | 0 | return Info.CCEDiag(E, D); |
12914 | 0 | } |
12915 | | |
12916 | | // Returns true if visiting the RHS is necessary, false otherwise. |
12917 | | bool VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, |
12918 | | bool &SuppressRHSDiags); |
12919 | | |
12920 | | bool VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, |
12921 | | const BinaryOperator *E, APValue &Result); |
12922 | | |
12923 | 0 | void EvaluateExpr(const Expr *E, EvalResult &Result) { |
12924 | 0 | Result.Failed = !Evaluate(Result.Val, Info, E); |
12925 | 0 | if (Result.Failed) |
12926 | 0 | Result.Val = APValue(); |
12927 | 0 | } |
12928 | | |
12929 | | void process(EvalResult &Result); |
12930 | | |
12931 | 0 | void enqueue(const Expr *E) { |
12932 | 0 | E = E->IgnoreParens(); |
12933 | 0 | Queue.resize(Queue.size()+1); |
12934 | 0 | Queue.back().E = E; |
12935 | 0 | Queue.back().Kind = Job::AnyExprKind; |
12936 | 0 | } |
12937 | | }; |
12938 | | |
12939 | | } |
12940 | | |
12941 | | bool DataRecursiveIntBinOpEvaluator:: |
12942 | | VisitBinOpLHSOnly(EvalResult &LHSResult, const BinaryOperator *E, |
12943 | 0 | bool &SuppressRHSDiags) { |
12944 | 0 | if (E->getOpcode() == BO_Comma) { |
12945 | | // Ignore LHS but note if we could not evaluate it. |
12946 | 0 | if (LHSResult.Failed) |
12947 | 0 | return Info.noteSideEffect(); |
12948 | 0 | return true; |
12949 | 0 | } |
12950 | | |
12951 | 0 | if (E->isLogicalOp()) { |
12952 | 0 | bool LHSAsBool; |
12953 | 0 | if (!LHSResult.Failed && HandleConversionToBool(LHSResult.Val, LHSAsBool)) { |
12954 | | // We were able to evaluate the LHS, see if we can get away with not |
12955 | | // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 |
12956 | 0 | if (LHSAsBool == (E->getOpcode() == BO_LOr)) { |
12957 | 0 | Success(LHSAsBool, E, LHSResult.Val); |
12958 | 0 | return false; // Ignore RHS |
12959 | 0 | } |
12960 | 0 | } else { |
12961 | 0 | LHSResult.Failed = true; |
12962 | | |
12963 | | // Since we weren't able to evaluate the left hand side, it |
12964 | | // might have had side effects. |
12965 | 0 | if (!Info.noteSideEffect()) |
12966 | 0 | return false; |
12967 | | |
12968 | | // We can't evaluate the LHS; however, sometimes the result |
12969 | | // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
12970 | | // Don't ignore RHS and suppress diagnostics from this arm. |
12971 | 0 | SuppressRHSDiags = true; |
12972 | 0 | } |
12973 | | |
12974 | 0 | return true; |
12975 | 0 | } |
12976 | | |
12977 | 0 | assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && |
12978 | 0 | E->getRHS()->getType()->isIntegralOrEnumerationType()); |
12979 | | |
12980 | 0 | if (LHSResult.Failed && !Info.noteFailure()) |
12981 | 0 | return false; // Ignore RHS; |
12982 | | |
12983 | 0 | return true; |
12984 | 0 | } |
12985 | | |
12986 | | static void addOrSubLValueAsInteger(APValue &LVal, const APSInt &Index, |
12987 | 0 | bool IsSub) { |
12988 | | // Compute the new offset in the appropriate width, wrapping at 64 bits. |
12989 | | // FIXME: When compiling for a 32-bit target, we should use 32-bit |
12990 | | // offsets. |
12991 | 0 | assert(!LVal.hasLValuePath() && "have designator for integer lvalue"); |
12992 | 0 | CharUnits &Offset = LVal.getLValueOffset(); |
12993 | 0 | uint64_t Offset64 = Offset.getQuantity(); |
12994 | 0 | uint64_t Index64 = Index.extOrTrunc(64).getZExtValue(); |
12995 | 0 | Offset = CharUnits::fromQuantity(IsSub ? Offset64 - Index64 |
12996 | 0 | : Offset64 + Index64); |
12997 | 0 | } |
12998 | | |
12999 | | bool DataRecursiveIntBinOpEvaluator:: |
13000 | | VisitBinOp(const EvalResult &LHSResult, const EvalResult &RHSResult, |
13001 | 0 | const BinaryOperator *E, APValue &Result) { |
13002 | 0 | if (E->getOpcode() == BO_Comma) { |
13003 | 0 | if (RHSResult.Failed) |
13004 | 0 | return false; |
13005 | 0 | Result = RHSResult.Val; |
13006 | 0 | return true; |
13007 | 0 | } |
13008 | | |
13009 | 0 | if (E->isLogicalOp()) { |
13010 | 0 | bool lhsResult, rhsResult; |
13011 | 0 | bool LHSIsOK = HandleConversionToBool(LHSResult.Val, lhsResult); |
13012 | 0 | bool RHSIsOK = HandleConversionToBool(RHSResult.Val, rhsResult); |
13013 | |
|
13014 | 0 | if (LHSIsOK) { |
13015 | 0 | if (RHSIsOK) { |
13016 | 0 | if (E->getOpcode() == BO_LOr) |
13017 | 0 | return Success(lhsResult || rhsResult, E, Result); |
13018 | 0 | else |
13019 | 0 | return Success(lhsResult && rhsResult, E, Result); |
13020 | 0 | } |
13021 | 0 | } else { |
13022 | 0 | if (RHSIsOK) { |
13023 | | // We can't evaluate the LHS; however, sometimes the result |
13024 | | // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
13025 | 0 | if (rhsResult == (E->getOpcode() == BO_LOr)) |
13026 | 0 | return Success(rhsResult, E, Result); |
13027 | 0 | } |
13028 | 0 | } |
13029 | | |
13030 | 0 | return false; |
13031 | 0 | } |
13032 | | |
13033 | 0 | assert(E->getLHS()->getType()->isIntegralOrEnumerationType() && |
13034 | 0 | E->getRHS()->getType()->isIntegralOrEnumerationType()); |
13035 | | |
13036 | 0 | if (LHSResult.Failed || RHSResult.Failed) |
13037 | 0 | return false; |
13038 | | |
13039 | 0 | const APValue &LHSVal = LHSResult.Val; |
13040 | 0 | const APValue &RHSVal = RHSResult.Val; |
13041 | | |
13042 | | // Handle cases like (unsigned long)&a + 4. |
13043 | 0 | if (E->isAdditiveOp() && LHSVal.isLValue() && RHSVal.isInt()) { |
13044 | 0 | Result = LHSVal; |
13045 | 0 | addOrSubLValueAsInteger(Result, RHSVal.getInt(), E->getOpcode() == BO_Sub); |
13046 | 0 | return true; |
13047 | 0 | } |
13048 | | |
13049 | | // Handle cases like 4 + (unsigned long)&a |
13050 | 0 | if (E->getOpcode() == BO_Add && |
13051 | 0 | RHSVal.isLValue() && LHSVal.isInt()) { |
13052 | 0 | Result = RHSVal; |
13053 | 0 | addOrSubLValueAsInteger(Result, LHSVal.getInt(), /*IsSub*/false); |
13054 | 0 | return true; |
13055 | 0 | } |
13056 | | |
13057 | 0 | if (E->getOpcode() == BO_Sub && LHSVal.isLValue() && RHSVal.isLValue()) { |
13058 | | // Handle (intptr_t)&&A - (intptr_t)&&B. |
13059 | 0 | if (!LHSVal.getLValueOffset().isZero() || |
13060 | 0 | !RHSVal.getLValueOffset().isZero()) |
13061 | 0 | return false; |
13062 | 0 | const Expr *LHSExpr = LHSVal.getLValueBase().dyn_cast<const Expr*>(); |
13063 | 0 | const Expr *RHSExpr = RHSVal.getLValueBase().dyn_cast<const Expr*>(); |
13064 | 0 | if (!LHSExpr || !RHSExpr) |
13065 | 0 | return false; |
13066 | 0 | const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); |
13067 | 0 | const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); |
13068 | 0 | if (!LHSAddrExpr || !RHSAddrExpr) |
13069 | 0 | return false; |
13070 | | // Make sure both labels come from the same function. |
13071 | 0 | if (LHSAddrExpr->getLabel()->getDeclContext() != |
13072 | 0 | RHSAddrExpr->getLabel()->getDeclContext()) |
13073 | 0 | return false; |
13074 | 0 | Result = APValue(LHSAddrExpr, RHSAddrExpr); |
13075 | 0 | return true; |
13076 | 0 | } |
13077 | | |
13078 | | // All the remaining cases expect both operands to be an integer |
13079 | 0 | if (!LHSVal.isInt() || !RHSVal.isInt()) |
13080 | 0 | return Error(E); |
13081 | | |
13082 | | // Set up the width and signedness manually, in case it can't be deduced |
13083 | | // from the operation we're performing. |
13084 | | // FIXME: Don't do this in the cases where we can deduce it. |
13085 | 0 | APSInt Value(Info.Ctx.getIntWidth(E->getType()), |
13086 | 0 | E->getType()->isUnsignedIntegerOrEnumerationType()); |
13087 | 0 | if (!handleIntIntBinOp(Info, E, LHSVal.getInt(), E->getOpcode(), |
13088 | 0 | RHSVal.getInt(), Value)) |
13089 | 0 | return false; |
13090 | 0 | return Success(Value, E, Result); |
13091 | 0 | } |
13092 | | |
13093 | 0 | void DataRecursiveIntBinOpEvaluator::process(EvalResult &Result) { |
13094 | 0 | Job &job = Queue.back(); |
13095 | |
|
13096 | 0 | switch (job.Kind) { |
13097 | 0 | case Job::AnyExprKind: { |
13098 | 0 | if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(job.E)) { |
13099 | 0 | if (shouldEnqueue(Bop)) { |
13100 | 0 | job.Kind = Job::BinOpKind; |
13101 | 0 | enqueue(Bop->getLHS()); |
13102 | 0 | return; |
13103 | 0 | } |
13104 | 0 | } |
13105 | | |
13106 | 0 | EvaluateExpr(job.E, Result); |
13107 | 0 | Queue.pop_back(); |
13108 | 0 | return; |
13109 | 0 | } |
13110 | | |
13111 | 0 | case Job::BinOpKind: { |
13112 | 0 | const BinaryOperator *Bop = cast<BinaryOperator>(job.E); |
13113 | 0 | bool SuppressRHSDiags = false; |
13114 | 0 | if (!VisitBinOpLHSOnly(Result, Bop, SuppressRHSDiags)) { |
13115 | 0 | Queue.pop_back(); |
13116 | 0 | return; |
13117 | 0 | } |
13118 | 0 | if (SuppressRHSDiags) |
13119 | 0 | job.startSpeculativeEval(Info); |
13120 | 0 | job.LHSResult.swap(Result); |
13121 | 0 | job.Kind = Job::BinOpVisitedLHSKind; |
13122 | 0 | enqueue(Bop->getRHS()); |
13123 | 0 | return; |
13124 | 0 | } |
13125 | | |
13126 | 0 | case Job::BinOpVisitedLHSKind: { |
13127 | 0 | const BinaryOperator *Bop = cast<BinaryOperator>(job.E); |
13128 | 0 | EvalResult RHS; |
13129 | 0 | RHS.swap(Result); |
13130 | 0 | Result.Failed = !VisitBinOp(job.LHSResult, RHS, Bop, Result.Val); |
13131 | 0 | Queue.pop_back(); |
13132 | 0 | return; |
13133 | 0 | } |
13134 | 0 | } |
13135 | | |
13136 | 0 | llvm_unreachable("Invalid Job::Kind!"); |
13137 | 0 | } |
13138 | | |
13139 | | namespace { |
13140 | | enum class CmpResult { |
13141 | | Unequal, |
13142 | | Less, |
13143 | | Equal, |
13144 | | Greater, |
13145 | | Unordered, |
13146 | | }; |
13147 | | } |
13148 | | |
13149 | | template <class SuccessCB, class AfterCB> |
13150 | | static bool |
13151 | | EvaluateComparisonBinaryOperator(EvalInfo &Info, const BinaryOperator *E, |
13152 | 0 | SuccessCB &&Success, AfterCB &&DoAfter) { |
13153 | 0 | assert(!E->isValueDependent()); |
13154 | 0 | assert(E->isComparisonOp() && "expected comparison operator"); |
13155 | 0 | assert((E->getOpcode() == BO_Cmp || |
13156 | 0 | E->getType()->isIntegralOrEnumerationType()) && |
13157 | 0 | "unsupported binary expression evaluation"); |
13158 | 0 | auto Error = [&](const Expr *E) { |
13159 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
13160 | 0 | return false; |
13161 | 0 | }; Unexecuted instantiation: ExprConstant.cpp:EvaluateComparisonBinaryOperator<(anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_3&, (anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_4>((anonymous namespace)::EvalInfo&, clang::BinaryOperator const*, (anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_3&, (anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_4&&)::{lambda(clang::Expr const*)#1}::operator()(clang::Expr const*) const Unexecuted instantiation: ExprConstant.cpp:EvaluateComparisonBinaryOperator<(anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_5&, (anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_6>((anonymous namespace)::EvalInfo&, clang::BinaryOperator const*, (anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_5&, (anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_6&&)::{lambda(clang::Expr const*)#1}::operator()(clang::Expr const*) const |
13162 | |
|
13163 | 0 | bool IsRelational = E->isRelationalOp() || E->getOpcode() == BO_Cmp; |
13164 | 0 | bool IsEquality = E->isEqualityOp(); |
13165 | |
|
13166 | 0 | QualType LHSTy = E->getLHS()->getType(); |
13167 | 0 | QualType RHSTy = E->getRHS()->getType(); |
13168 | |
|
13169 | 0 | if (LHSTy->isIntegralOrEnumerationType() && |
13170 | 0 | RHSTy->isIntegralOrEnumerationType()) { |
13171 | 0 | APSInt LHS, RHS; |
13172 | 0 | bool LHSOK = EvaluateInteger(E->getLHS(), LHS, Info); |
13173 | 0 | if (!LHSOK && !Info.noteFailure()) |
13174 | 0 | return false; |
13175 | 0 | if (!EvaluateInteger(E->getRHS(), RHS, Info) || !LHSOK) |
13176 | 0 | return false; |
13177 | 0 | if (LHS < RHS) |
13178 | 0 | return Success(CmpResult::Less, E); |
13179 | 0 | if (LHS > RHS) |
13180 | 0 | return Success(CmpResult::Greater, E); |
13181 | 0 | return Success(CmpResult::Equal, E); |
13182 | 0 | } |
13183 | | |
13184 | 0 | if (LHSTy->isFixedPointType() || RHSTy->isFixedPointType()) { |
13185 | 0 | APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHSTy)); |
13186 | 0 | APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHSTy)); |
13187 | |
|
13188 | 0 | bool LHSOK = EvaluateFixedPointOrInteger(E->getLHS(), LHSFX, Info); |
13189 | 0 | if (!LHSOK && !Info.noteFailure()) |
13190 | 0 | return false; |
13191 | 0 | if (!EvaluateFixedPointOrInteger(E->getRHS(), RHSFX, Info) || !LHSOK) |
13192 | 0 | return false; |
13193 | 0 | if (LHSFX < RHSFX) |
13194 | 0 | return Success(CmpResult::Less, E); |
13195 | 0 | if (LHSFX > RHSFX) |
13196 | 0 | return Success(CmpResult::Greater, E); |
13197 | 0 | return Success(CmpResult::Equal, E); |
13198 | 0 | } |
13199 | | |
13200 | 0 | if (LHSTy->isAnyComplexType() || RHSTy->isAnyComplexType()) { |
13201 | 0 | ComplexValue LHS, RHS; |
13202 | 0 | bool LHSOK; |
13203 | 0 | if (E->isAssignmentOp()) { |
13204 | 0 | LValue LV; |
13205 | 0 | EvaluateLValue(E->getLHS(), LV, Info); |
13206 | 0 | LHSOK = false; |
13207 | 0 | } else if (LHSTy->isRealFloatingType()) { |
13208 | 0 | LHSOK = EvaluateFloat(E->getLHS(), LHS.FloatReal, Info); |
13209 | 0 | if (LHSOK) { |
13210 | 0 | LHS.makeComplexFloat(); |
13211 | 0 | LHS.FloatImag = APFloat(LHS.FloatReal.getSemantics()); |
13212 | 0 | } |
13213 | 0 | } else { |
13214 | 0 | LHSOK = EvaluateComplex(E->getLHS(), LHS, Info); |
13215 | 0 | } |
13216 | 0 | if (!LHSOK && !Info.noteFailure()) |
13217 | 0 | return false; |
13218 | | |
13219 | 0 | if (E->getRHS()->getType()->isRealFloatingType()) { |
13220 | 0 | if (!EvaluateFloat(E->getRHS(), RHS.FloatReal, Info) || !LHSOK) |
13221 | 0 | return false; |
13222 | 0 | RHS.makeComplexFloat(); |
13223 | 0 | RHS.FloatImag = APFloat(RHS.FloatReal.getSemantics()); |
13224 | 0 | } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) |
13225 | 0 | return false; |
13226 | | |
13227 | 0 | if (LHS.isComplexFloat()) { |
13228 | 0 | APFloat::cmpResult CR_r = |
13229 | 0 | LHS.getComplexFloatReal().compare(RHS.getComplexFloatReal()); |
13230 | 0 | APFloat::cmpResult CR_i = |
13231 | 0 | LHS.getComplexFloatImag().compare(RHS.getComplexFloatImag()); |
13232 | 0 | bool IsEqual = CR_r == APFloat::cmpEqual && CR_i == APFloat::cmpEqual; |
13233 | 0 | return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); |
13234 | 0 | } else { |
13235 | 0 | assert(IsEquality && "invalid complex comparison"); |
13236 | 0 | bool IsEqual = LHS.getComplexIntReal() == RHS.getComplexIntReal() && |
13237 | 0 | LHS.getComplexIntImag() == RHS.getComplexIntImag(); |
13238 | 0 | return Success(IsEqual ? CmpResult::Equal : CmpResult::Unequal, E); |
13239 | 0 | } |
13240 | 0 | } |
13241 | | |
13242 | 0 | if (LHSTy->isRealFloatingType() && |
13243 | 0 | RHSTy->isRealFloatingType()) { |
13244 | 0 | APFloat RHS(0.0), LHS(0.0); |
13245 | |
|
13246 | 0 | bool LHSOK = EvaluateFloat(E->getRHS(), RHS, Info); |
13247 | 0 | if (!LHSOK && !Info.noteFailure()) |
13248 | 0 | return false; |
13249 | | |
13250 | 0 | if (!EvaluateFloat(E->getLHS(), LHS, Info) || !LHSOK) |
13251 | 0 | return false; |
13252 | | |
13253 | 0 | assert(E->isComparisonOp() && "Invalid binary operator!"); |
13254 | 0 | llvm::APFloatBase::cmpResult APFloatCmpResult = LHS.compare(RHS); |
13255 | 0 | if (!Info.InConstantContext && |
13256 | 0 | APFloatCmpResult == APFloat::cmpUnordered && |
13257 | 0 | E->getFPFeaturesInEffect(Info.Ctx.getLangOpts()).isFPConstrained()) { |
13258 | | // Note: Compares may raise invalid in some cases involving NaN or sNaN. |
13259 | 0 | Info.FFDiag(E, diag::note_constexpr_float_arithmetic_strict); |
13260 | 0 | return false; |
13261 | 0 | } |
13262 | 0 | auto GetCmpRes = [&]() { |
13263 | 0 | switch (APFloatCmpResult) { |
13264 | 0 | case APFloat::cmpEqual: |
13265 | 0 | return CmpResult::Equal; |
13266 | 0 | case APFloat::cmpLessThan: |
13267 | 0 | return CmpResult::Less; |
13268 | 0 | case APFloat::cmpGreaterThan: |
13269 | 0 | return CmpResult::Greater; |
13270 | 0 | case APFloat::cmpUnordered: |
13271 | 0 | return CmpResult::Unordered; |
13272 | 0 | } |
13273 | 0 | llvm_unreachable("Unrecognised APFloat::cmpResult enum"); |
13274 | 0 | }; Unexecuted instantiation: ExprConstant.cpp:EvaluateComparisonBinaryOperator<(anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_3&, (anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_4>((anonymous namespace)::EvalInfo&, clang::BinaryOperator const*, (anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_3&, (anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_4&&)::{lambda()#1}::operator()() const Unexecuted instantiation: ExprConstant.cpp:EvaluateComparisonBinaryOperator<(anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_5&, (anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_6>((anonymous namespace)::EvalInfo&, clang::BinaryOperator const*, (anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_5&, (anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_6&&)::{lambda()#1}::operator()() const |
13275 | 0 | return Success(GetCmpRes(), E); |
13276 | 0 | } |
13277 | | |
13278 | 0 | if (LHSTy->isPointerType() && RHSTy->isPointerType()) { |
13279 | 0 | LValue LHSValue, RHSValue; |
13280 | |
|
13281 | 0 | bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); |
13282 | 0 | if (!LHSOK && !Info.noteFailure()) |
13283 | 0 | return false; |
13284 | | |
13285 | 0 | if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) |
13286 | 0 | return false; |
13287 | | |
13288 | | // Reject differing bases from the normal codepath; we special-case |
13289 | | // comparisons to null. |
13290 | 0 | if (!HasSameBase(LHSValue, RHSValue)) { |
13291 | 0 | auto DiagComparison = [&] (unsigned DiagID, bool Reversed = false) { |
13292 | 0 | std::string LHS = LHSValue.toString(Info.Ctx, E->getLHS()->getType()); |
13293 | 0 | std::string RHS = RHSValue.toString(Info.Ctx, E->getRHS()->getType()); |
13294 | 0 | Info.FFDiag(E, DiagID) |
13295 | 0 | << (Reversed ? RHS : LHS) << (Reversed ? LHS : RHS); |
13296 | 0 | return false; |
13297 | 0 | }; Unexecuted instantiation: ExprConstant.cpp:EvaluateComparisonBinaryOperator<(anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_3&, (anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_4>((anonymous namespace)::EvalInfo&, clang::BinaryOperator const*, (anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_3&, (anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_4&&)::{lambda(unsigned int, bool)#1}::operator()(unsigned int, bool) const Unexecuted instantiation: ExprConstant.cpp:EvaluateComparisonBinaryOperator<(anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_5&, (anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_6>((anonymous namespace)::EvalInfo&, clang::BinaryOperator const*, (anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_5&, (anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_6&&)::{lambda(unsigned int, bool)#1}::operator()(unsigned int, bool) const |
13298 | | // Inequalities and subtractions between unrelated pointers have |
13299 | | // unspecified or undefined behavior. |
13300 | 0 | if (!IsEquality) |
13301 | 0 | return DiagComparison( |
13302 | 0 | diag::note_constexpr_pointer_comparison_unspecified); |
13303 | | // A constant address may compare equal to the address of a symbol. |
13304 | | // The one exception is that address of an object cannot compare equal |
13305 | | // to a null pointer constant. |
13306 | | // TODO: Should we restrict this to actual null pointers, and exclude the |
13307 | | // case of zero cast to pointer type? |
13308 | 0 | if ((!LHSValue.Base && !LHSValue.Offset.isZero()) || |
13309 | 0 | (!RHSValue.Base && !RHSValue.Offset.isZero())) |
13310 | 0 | return DiagComparison(diag::note_constexpr_pointer_constant_comparison, |
13311 | 0 | !RHSValue.Base); |
13312 | | // It's implementation-defined whether distinct literals will have |
13313 | | // distinct addresses. In clang, the result of such a comparison is |
13314 | | // unspecified, so it is not a constant expression. However, we do know |
13315 | | // that the address of a literal will be non-null. |
13316 | 0 | if ((IsLiteralLValue(LHSValue) || IsLiteralLValue(RHSValue)) && |
13317 | 0 | LHSValue.Base && RHSValue.Base) |
13318 | 0 | return DiagComparison(diag::note_constexpr_literal_comparison); |
13319 | | // We can't tell whether weak symbols will end up pointing to the same |
13320 | | // object. |
13321 | 0 | if (IsWeakLValue(LHSValue) || IsWeakLValue(RHSValue)) |
13322 | 0 | return DiagComparison(diag::note_constexpr_pointer_weak_comparison, |
13323 | 0 | !IsWeakLValue(LHSValue)); |
13324 | | // We can't compare the address of the start of one object with the |
13325 | | // past-the-end address of another object, per C++ DR1652. |
13326 | 0 | if (LHSValue.Base && LHSValue.Offset.isZero() && |
13327 | 0 | isOnePastTheEndOfCompleteObject(Info.Ctx, RHSValue)) |
13328 | 0 | return DiagComparison(diag::note_constexpr_pointer_comparison_past_end, |
13329 | 0 | true); |
13330 | 0 | if (RHSValue.Base && RHSValue.Offset.isZero() && |
13331 | 0 | isOnePastTheEndOfCompleteObject(Info.Ctx, LHSValue)) |
13332 | 0 | return DiagComparison(diag::note_constexpr_pointer_comparison_past_end, |
13333 | 0 | false); |
13334 | | // We can't tell whether an object is at the same address as another |
13335 | | // zero sized object. |
13336 | 0 | if ((RHSValue.Base && isZeroSized(LHSValue)) || |
13337 | 0 | (LHSValue.Base && isZeroSized(RHSValue))) |
13338 | 0 | return DiagComparison( |
13339 | 0 | diag::note_constexpr_pointer_comparison_zero_sized); |
13340 | 0 | return Success(CmpResult::Unequal, E); |
13341 | 0 | } |
13342 | | |
13343 | 0 | const CharUnits &LHSOffset = LHSValue.getLValueOffset(); |
13344 | 0 | const CharUnits &RHSOffset = RHSValue.getLValueOffset(); |
13345 | |
|
13346 | 0 | SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); |
13347 | 0 | SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); |
13348 | | |
13349 | | // C++11 [expr.rel]p3: |
13350 | | // Pointers to void (after pointer conversions) can be compared, with a |
13351 | | // result defined as follows: If both pointers represent the same |
13352 | | // address or are both the null pointer value, the result is true if the |
13353 | | // operator is <= or >= and false otherwise; otherwise the result is |
13354 | | // unspecified. |
13355 | | // We interpret this as applying to pointers to *cv* void. |
13356 | 0 | if (LHSTy->isVoidPointerType() && LHSOffset != RHSOffset && IsRelational) |
13357 | 0 | Info.CCEDiag(E, diag::note_constexpr_void_comparison); |
13358 | | |
13359 | | // C++11 [expr.rel]p2: |
13360 | | // - If two pointers point to non-static data members of the same object, |
13361 | | // or to subobjects or array elements fo such members, recursively, the |
13362 | | // pointer to the later declared member compares greater provided the |
13363 | | // two members have the same access control and provided their class is |
13364 | | // not a union. |
13365 | | // [...] |
13366 | | // - Otherwise pointer comparisons are unspecified. |
13367 | 0 | if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && IsRelational) { |
13368 | 0 | bool WasArrayIndex; |
13369 | 0 | unsigned Mismatch = FindDesignatorMismatch( |
13370 | 0 | getType(LHSValue.Base), LHSDesignator, RHSDesignator, WasArrayIndex); |
13371 | | // At the point where the designators diverge, the comparison has a |
13372 | | // specified value if: |
13373 | | // - we are comparing array indices |
13374 | | // - we are comparing fields of a union, or fields with the same access |
13375 | | // Otherwise, the result is unspecified and thus the comparison is not a |
13376 | | // constant expression. |
13377 | 0 | if (!WasArrayIndex && Mismatch < LHSDesignator.Entries.size() && |
13378 | 0 | Mismatch < RHSDesignator.Entries.size()) { |
13379 | 0 | const FieldDecl *LF = getAsField(LHSDesignator.Entries[Mismatch]); |
13380 | 0 | const FieldDecl *RF = getAsField(RHSDesignator.Entries[Mismatch]); |
13381 | 0 | if (!LF && !RF) |
13382 | 0 | Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_classes); |
13383 | 0 | else if (!LF) |
13384 | 0 | Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) |
13385 | 0 | << getAsBaseClass(LHSDesignator.Entries[Mismatch]) |
13386 | 0 | << RF->getParent() << RF; |
13387 | 0 | else if (!RF) |
13388 | 0 | Info.CCEDiag(E, diag::note_constexpr_pointer_comparison_base_field) |
13389 | 0 | << getAsBaseClass(RHSDesignator.Entries[Mismatch]) |
13390 | 0 | << LF->getParent() << LF; |
13391 | 0 | else if (!LF->getParent()->isUnion() && |
13392 | 0 | LF->getAccess() != RF->getAccess()) |
13393 | 0 | Info.CCEDiag(E, |
13394 | 0 | diag::note_constexpr_pointer_comparison_differing_access) |
13395 | 0 | << LF << LF->getAccess() << RF << RF->getAccess() |
13396 | 0 | << LF->getParent(); |
13397 | 0 | } |
13398 | 0 | } |
13399 | | |
13400 | | // The comparison here must be unsigned, and performed with the same |
13401 | | // width as the pointer. |
13402 | 0 | unsigned PtrSize = Info.Ctx.getTypeSize(LHSTy); |
13403 | 0 | uint64_t CompareLHS = LHSOffset.getQuantity(); |
13404 | 0 | uint64_t CompareRHS = RHSOffset.getQuantity(); |
13405 | 0 | assert(PtrSize <= 64 && "Unexpected pointer width"); |
13406 | 0 | uint64_t Mask = ~0ULL >> (64 - PtrSize); |
13407 | 0 | CompareLHS &= Mask; |
13408 | 0 | CompareRHS &= Mask; |
13409 | | |
13410 | | // If there is a base and this is a relational operator, we can only |
13411 | | // compare pointers within the object in question; otherwise, the result |
13412 | | // depends on where the object is located in memory. |
13413 | 0 | if (!LHSValue.Base.isNull() && IsRelational) { |
13414 | 0 | QualType BaseTy = getType(LHSValue.Base); |
13415 | 0 | if (BaseTy->isIncompleteType()) |
13416 | 0 | return Error(E); |
13417 | 0 | CharUnits Size = Info.Ctx.getTypeSizeInChars(BaseTy); |
13418 | 0 | uint64_t OffsetLimit = Size.getQuantity(); |
13419 | 0 | if (CompareLHS > OffsetLimit || CompareRHS > OffsetLimit) |
13420 | 0 | return Error(E); |
13421 | 0 | } |
13422 | | |
13423 | 0 | if (CompareLHS < CompareRHS) |
13424 | 0 | return Success(CmpResult::Less, E); |
13425 | 0 | if (CompareLHS > CompareRHS) |
13426 | 0 | return Success(CmpResult::Greater, E); |
13427 | 0 | return Success(CmpResult::Equal, E); |
13428 | 0 | } |
13429 | | |
13430 | 0 | if (LHSTy->isMemberPointerType()) { |
13431 | 0 | assert(IsEquality && "unexpected member pointer operation"); |
13432 | 0 | assert(RHSTy->isMemberPointerType() && "invalid comparison"); |
13433 | | |
13434 | 0 | MemberPtr LHSValue, RHSValue; |
13435 | |
|
13436 | 0 | bool LHSOK = EvaluateMemberPointer(E->getLHS(), LHSValue, Info); |
13437 | 0 | if (!LHSOK && !Info.noteFailure()) |
13438 | 0 | return false; |
13439 | | |
13440 | 0 | if (!EvaluateMemberPointer(E->getRHS(), RHSValue, Info) || !LHSOK) |
13441 | 0 | return false; |
13442 | | |
13443 | | // If either operand is a pointer to a weak function, the comparison is not |
13444 | | // constant. |
13445 | 0 | if (LHSValue.getDecl() && LHSValue.getDecl()->isWeak()) { |
13446 | 0 | Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison) |
13447 | 0 | << LHSValue.getDecl(); |
13448 | 0 | return false; |
13449 | 0 | } |
13450 | 0 | if (RHSValue.getDecl() && RHSValue.getDecl()->isWeak()) { |
13451 | 0 | Info.FFDiag(E, diag::note_constexpr_mem_pointer_weak_comparison) |
13452 | 0 | << RHSValue.getDecl(); |
13453 | 0 | return false; |
13454 | 0 | } |
13455 | | |
13456 | | // C++11 [expr.eq]p2: |
13457 | | // If both operands are null, they compare equal. Otherwise if only one is |
13458 | | // null, they compare unequal. |
13459 | 0 | if (!LHSValue.getDecl() || !RHSValue.getDecl()) { |
13460 | 0 | bool Equal = !LHSValue.getDecl() && !RHSValue.getDecl(); |
13461 | 0 | return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); |
13462 | 0 | } |
13463 | | |
13464 | | // Otherwise if either is a pointer to a virtual member function, the |
13465 | | // result is unspecified. |
13466 | 0 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(LHSValue.getDecl())) |
13467 | 0 | if (MD->isVirtual()) |
13468 | 0 | Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; |
13469 | 0 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(RHSValue.getDecl())) |
13470 | 0 | if (MD->isVirtual()) |
13471 | 0 | Info.CCEDiag(E, diag::note_constexpr_compare_virtual_mem_ptr) << MD; |
13472 | | |
13473 | | // Otherwise they compare equal if and only if they would refer to the |
13474 | | // same member of the same most derived object or the same subobject if |
13475 | | // they were dereferenced with a hypothetical object of the associated |
13476 | | // class type. |
13477 | 0 | bool Equal = LHSValue == RHSValue; |
13478 | 0 | return Success(Equal ? CmpResult::Equal : CmpResult::Unequal, E); |
13479 | 0 | } |
13480 | | |
13481 | 0 | if (LHSTy->isNullPtrType()) { |
13482 | 0 | assert(E->isComparisonOp() && "unexpected nullptr operation"); |
13483 | 0 | assert(RHSTy->isNullPtrType() && "missing pointer conversion"); |
13484 | | // C++11 [expr.rel]p4, [expr.eq]p3: If two operands of type std::nullptr_t |
13485 | | // are compared, the result is true of the operator is <=, >= or ==, and |
13486 | | // false otherwise. |
13487 | 0 | LValue Res; |
13488 | 0 | if (!EvaluatePointer(E->getLHS(), Res, Info) || |
13489 | 0 | !EvaluatePointer(E->getRHS(), Res, Info)) |
13490 | 0 | return false; |
13491 | 0 | return Success(CmpResult::Equal, E); |
13492 | 0 | } |
13493 | | |
13494 | 0 | return DoAfter(); |
13495 | 0 | } Unexecuted instantiation: ExprConstant.cpp:bool EvaluateComparisonBinaryOperator<(anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_3&, (anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_4>((anonymous namespace)::EvalInfo&, clang::BinaryOperator const*, (anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_3&, (anonymous namespace)::RecordExprEvaluator::VisitBinCmp(clang::BinaryOperator const*)::$_4&&) Unexecuted instantiation: ExprConstant.cpp:bool EvaluateComparisonBinaryOperator<(anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_5&, (anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_6>((anonymous namespace)::EvalInfo&, clang::BinaryOperator const*, (anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_5&, (anonymous namespace)::IntExprEvaluator::VisitBinaryOperator(clang::BinaryOperator const*)::$_6&&) |
13496 | | |
13497 | 0 | bool RecordExprEvaluator::VisitBinCmp(const BinaryOperator *E) { |
13498 | 0 | if (!CheckLiteralType(Info, E)) |
13499 | 0 | return false; |
13500 | | |
13501 | 0 | auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { |
13502 | 0 | ComparisonCategoryResult CCR; |
13503 | 0 | switch (CR) { |
13504 | 0 | case CmpResult::Unequal: |
13505 | 0 | llvm_unreachable("should never produce Unequal for three-way comparison"); |
13506 | 0 | case CmpResult::Less: |
13507 | 0 | CCR = ComparisonCategoryResult::Less; |
13508 | 0 | break; |
13509 | 0 | case CmpResult::Equal: |
13510 | 0 | CCR = ComparisonCategoryResult::Equal; |
13511 | 0 | break; |
13512 | 0 | case CmpResult::Greater: |
13513 | 0 | CCR = ComparisonCategoryResult::Greater; |
13514 | 0 | break; |
13515 | 0 | case CmpResult::Unordered: |
13516 | 0 | CCR = ComparisonCategoryResult::Unordered; |
13517 | 0 | break; |
13518 | 0 | } |
13519 | | // Evaluation succeeded. Lookup the information for the comparison category |
13520 | | // type and fetch the VarDecl for the result. |
13521 | 0 | const ComparisonCategoryInfo &CmpInfo = |
13522 | 0 | Info.Ctx.CompCategories.getInfoForType(E->getType()); |
13523 | 0 | const VarDecl *VD = CmpInfo.getValueInfo(CmpInfo.makeWeakResult(CCR))->VD; |
13524 | | // Check and evaluate the result as a constant expression. |
13525 | 0 | LValue LV; |
13526 | 0 | LV.set(VD); |
13527 | 0 | if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) |
13528 | 0 | return false; |
13529 | 0 | return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, |
13530 | 0 | ConstantExprKind::Normal); |
13531 | 0 | }; |
13532 | 0 | return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { |
13533 | 0 | return ExprEvaluatorBaseTy::VisitBinCmp(E); |
13534 | 0 | }); |
13535 | 0 | } |
13536 | | |
13537 | | bool RecordExprEvaluator::VisitCXXParenListInitExpr( |
13538 | 0 | const CXXParenListInitExpr *E) { |
13539 | 0 | return VisitCXXParenListOrInitListExpr(E, E->getInitExprs()); |
13540 | 0 | } |
13541 | | |
13542 | 0 | bool IntExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
13543 | | // We don't support assignment in C. C++ assignments don't get here because |
13544 | | // assignment is an lvalue in C++. |
13545 | 0 | if (E->isAssignmentOp()) { |
13546 | 0 | Error(E); |
13547 | 0 | if (!Info.noteFailure()) |
13548 | 0 | return false; |
13549 | 0 | } |
13550 | | |
13551 | 0 | if (DataRecursiveIntBinOpEvaluator::shouldEnqueue(E)) |
13552 | 0 | return DataRecursiveIntBinOpEvaluator(*this, Result).Traverse(E); |
13553 | | |
13554 | 0 | assert((!E->getLHS()->getType()->isIntegralOrEnumerationType() || |
13555 | 0 | !E->getRHS()->getType()->isIntegralOrEnumerationType()) && |
13556 | 0 | "DataRecursiveIntBinOpEvaluator should have handled integral types"); |
13557 | | |
13558 | 0 | if (E->isComparisonOp()) { |
13559 | | // Evaluate builtin binary comparisons by evaluating them as three-way |
13560 | | // comparisons and then translating the result. |
13561 | 0 | auto OnSuccess = [&](CmpResult CR, const BinaryOperator *E) { |
13562 | 0 | assert((CR != CmpResult::Unequal || E->isEqualityOp()) && |
13563 | 0 | "should only produce Unequal for equality comparisons"); |
13564 | 0 | bool IsEqual = CR == CmpResult::Equal, |
13565 | 0 | IsLess = CR == CmpResult::Less, |
13566 | 0 | IsGreater = CR == CmpResult::Greater; |
13567 | 0 | auto Op = E->getOpcode(); |
13568 | 0 | switch (Op) { |
13569 | 0 | default: |
13570 | 0 | llvm_unreachable("unsupported binary operator"); |
13571 | 0 | case BO_EQ: |
13572 | 0 | case BO_NE: |
13573 | 0 | return Success(IsEqual == (Op == BO_EQ), E); |
13574 | 0 | case BO_LT: |
13575 | 0 | return Success(IsLess, E); |
13576 | 0 | case BO_GT: |
13577 | 0 | return Success(IsGreater, E); |
13578 | 0 | case BO_LE: |
13579 | 0 | return Success(IsEqual || IsLess, E); |
13580 | 0 | case BO_GE: |
13581 | 0 | return Success(IsEqual || IsGreater, E); |
13582 | 0 | } |
13583 | 0 | }; |
13584 | 0 | return EvaluateComparisonBinaryOperator(Info, E, OnSuccess, [&]() { |
13585 | 0 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
13586 | 0 | }); |
13587 | 0 | } |
13588 | | |
13589 | 0 | QualType LHSTy = E->getLHS()->getType(); |
13590 | 0 | QualType RHSTy = E->getRHS()->getType(); |
13591 | |
|
13592 | 0 | if (LHSTy->isPointerType() && RHSTy->isPointerType() && |
13593 | 0 | E->getOpcode() == BO_Sub) { |
13594 | 0 | LValue LHSValue, RHSValue; |
13595 | |
|
13596 | 0 | bool LHSOK = EvaluatePointer(E->getLHS(), LHSValue, Info); |
13597 | 0 | if (!LHSOK && !Info.noteFailure()) |
13598 | 0 | return false; |
13599 | | |
13600 | 0 | if (!EvaluatePointer(E->getRHS(), RHSValue, Info) || !LHSOK) |
13601 | 0 | return false; |
13602 | | |
13603 | | // Reject differing bases from the normal codepath; we special-case |
13604 | | // comparisons to null. |
13605 | 0 | if (!HasSameBase(LHSValue, RHSValue)) { |
13606 | | // Handle &&A - &&B. |
13607 | 0 | if (!LHSValue.Offset.isZero() || !RHSValue.Offset.isZero()) |
13608 | 0 | return Error(E); |
13609 | 0 | const Expr *LHSExpr = LHSValue.Base.dyn_cast<const Expr *>(); |
13610 | 0 | const Expr *RHSExpr = RHSValue.Base.dyn_cast<const Expr *>(); |
13611 | 0 | if (!LHSExpr || !RHSExpr) |
13612 | 0 | return Error(E); |
13613 | 0 | const AddrLabelExpr *LHSAddrExpr = dyn_cast<AddrLabelExpr>(LHSExpr); |
13614 | 0 | const AddrLabelExpr *RHSAddrExpr = dyn_cast<AddrLabelExpr>(RHSExpr); |
13615 | 0 | if (!LHSAddrExpr || !RHSAddrExpr) |
13616 | 0 | return Error(E); |
13617 | | // Make sure both labels come from the same function. |
13618 | 0 | if (LHSAddrExpr->getLabel()->getDeclContext() != |
13619 | 0 | RHSAddrExpr->getLabel()->getDeclContext()) |
13620 | 0 | return Error(E); |
13621 | 0 | return Success(APValue(LHSAddrExpr, RHSAddrExpr), E); |
13622 | 0 | } |
13623 | 0 | const CharUnits &LHSOffset = LHSValue.getLValueOffset(); |
13624 | 0 | const CharUnits &RHSOffset = RHSValue.getLValueOffset(); |
13625 | |
|
13626 | 0 | SubobjectDesignator &LHSDesignator = LHSValue.getLValueDesignator(); |
13627 | 0 | SubobjectDesignator &RHSDesignator = RHSValue.getLValueDesignator(); |
13628 | | |
13629 | | // C++11 [expr.add]p6: |
13630 | | // Unless both pointers point to elements of the same array object, or |
13631 | | // one past the last element of the array object, the behavior is |
13632 | | // undefined. |
13633 | 0 | if (!LHSDesignator.Invalid && !RHSDesignator.Invalid && |
13634 | 0 | !AreElementsOfSameArray(getType(LHSValue.Base), LHSDesignator, |
13635 | 0 | RHSDesignator)) |
13636 | 0 | Info.CCEDiag(E, diag::note_constexpr_pointer_subtraction_not_same_array); |
13637 | |
|
13638 | 0 | QualType Type = E->getLHS()->getType(); |
13639 | 0 | QualType ElementType = Type->castAs<PointerType>()->getPointeeType(); |
13640 | |
|
13641 | 0 | CharUnits ElementSize; |
13642 | 0 | if (!HandleSizeof(Info, E->getExprLoc(), ElementType, ElementSize)) |
13643 | 0 | return false; |
13644 | | |
13645 | | // As an extension, a type may have zero size (empty struct or union in |
13646 | | // C, array of zero length). Pointer subtraction in such cases has |
13647 | | // undefined behavior, so is not constant. |
13648 | 0 | if (ElementSize.isZero()) { |
13649 | 0 | Info.FFDiag(E, diag::note_constexpr_pointer_subtraction_zero_size) |
13650 | 0 | << ElementType; |
13651 | 0 | return false; |
13652 | 0 | } |
13653 | | |
13654 | | // FIXME: LLVM and GCC both compute LHSOffset - RHSOffset at runtime, |
13655 | | // and produce incorrect results when it overflows. Such behavior |
13656 | | // appears to be non-conforming, but is common, so perhaps we should |
13657 | | // assume the standard intended for such cases to be undefined behavior |
13658 | | // and check for them. |
13659 | | |
13660 | | // Compute (LHSOffset - RHSOffset) / Size carefully, checking for |
13661 | | // overflow in the final conversion to ptrdiff_t. |
13662 | 0 | APSInt LHS(llvm::APInt(65, (int64_t)LHSOffset.getQuantity(), true), false); |
13663 | 0 | APSInt RHS(llvm::APInt(65, (int64_t)RHSOffset.getQuantity(), true), false); |
13664 | 0 | APSInt ElemSize(llvm::APInt(65, (int64_t)ElementSize.getQuantity(), true), |
13665 | 0 | false); |
13666 | 0 | APSInt TrueResult = (LHS - RHS) / ElemSize; |
13667 | 0 | APSInt Result = TrueResult.trunc(Info.Ctx.getIntWidth(E->getType())); |
13668 | |
|
13669 | 0 | if (Result.extend(65) != TrueResult && |
13670 | 0 | !HandleOverflow(Info, E, TrueResult, E->getType())) |
13671 | 0 | return false; |
13672 | 0 | return Success(Result, E); |
13673 | 0 | } |
13674 | | |
13675 | 0 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
13676 | 0 | } |
13677 | | |
13678 | | /// VisitUnaryExprOrTypeTraitExpr - Evaluate a sizeof, alignof or vec_step with |
13679 | | /// a result as the expression's type. |
13680 | | bool IntExprEvaluator::VisitUnaryExprOrTypeTraitExpr( |
13681 | 0 | const UnaryExprOrTypeTraitExpr *E) { |
13682 | 0 | switch(E->getKind()) { |
13683 | 0 | case UETT_PreferredAlignOf: |
13684 | 0 | case UETT_AlignOf: { |
13685 | 0 | if (E->isArgumentType()) |
13686 | 0 | return Success(GetAlignOfType(Info, E->getArgumentType(), E->getKind()), |
13687 | 0 | E); |
13688 | 0 | else |
13689 | 0 | return Success(GetAlignOfExpr(Info, E->getArgumentExpr(), E->getKind()), |
13690 | 0 | E); |
13691 | 0 | } |
13692 | | |
13693 | 0 | case UETT_VecStep: { |
13694 | 0 | QualType Ty = E->getTypeOfArgument(); |
13695 | |
|
13696 | 0 | if (Ty->isVectorType()) { |
13697 | 0 | unsigned n = Ty->castAs<VectorType>()->getNumElements(); |
13698 | | |
13699 | | // The vec_step built-in functions that take a 3-component |
13700 | | // vector return 4. (OpenCL 1.1 spec 6.11.12) |
13701 | 0 | if (n == 3) |
13702 | 0 | n = 4; |
13703 | |
|
13704 | 0 | return Success(n, E); |
13705 | 0 | } else |
13706 | 0 | return Success(1, E); |
13707 | 0 | } |
13708 | | |
13709 | 0 | case UETT_DataSizeOf: |
13710 | 0 | case UETT_SizeOf: { |
13711 | 0 | QualType SrcTy = E->getTypeOfArgument(); |
13712 | | // C++ [expr.sizeof]p2: "When applied to a reference or a reference type, |
13713 | | // the result is the size of the referenced type." |
13714 | 0 | if (const ReferenceType *Ref = SrcTy->getAs<ReferenceType>()) |
13715 | 0 | SrcTy = Ref->getPointeeType(); |
13716 | |
|
13717 | 0 | CharUnits Sizeof; |
13718 | 0 | if (!HandleSizeof(Info, E->getExprLoc(), SrcTy, Sizeof, |
13719 | 0 | E->getKind() == UETT_DataSizeOf ? SizeOfType::DataSizeOf |
13720 | 0 | : SizeOfType::SizeOf)) { |
13721 | 0 | return false; |
13722 | 0 | } |
13723 | 0 | return Success(Sizeof, E); |
13724 | 0 | } |
13725 | 0 | case UETT_OpenMPRequiredSimdAlign: |
13726 | 0 | assert(E->isArgumentType()); |
13727 | 0 | return Success( |
13728 | 0 | Info.Ctx.toCharUnitsFromBits( |
13729 | 0 | Info.Ctx.getOpenMPDefaultSimdAlign(E->getArgumentType())) |
13730 | 0 | .getQuantity(), |
13731 | 0 | E); |
13732 | 0 | case UETT_VectorElements: { |
13733 | 0 | QualType Ty = E->getTypeOfArgument(); |
13734 | | // If the vector has a fixed size, we can determine the number of elements |
13735 | | // at compile time. |
13736 | 0 | if (Ty->isVectorType()) |
13737 | 0 | return Success(Ty->castAs<VectorType>()->getNumElements(), E); |
13738 | | |
13739 | 0 | assert(Ty->isSizelessVectorType()); |
13740 | 0 | if (Info.InConstantContext) |
13741 | 0 | Info.CCEDiag(E, diag::note_constexpr_non_const_vectorelements) |
13742 | 0 | << E->getSourceRange(); |
13743 | |
|
13744 | 0 | return false; |
13745 | 0 | } |
13746 | 0 | } |
13747 | | |
13748 | 0 | llvm_unreachable("unknown expr/type trait"); |
13749 | 0 | } |
13750 | | |
13751 | 0 | bool IntExprEvaluator::VisitOffsetOfExpr(const OffsetOfExpr *OOE) { |
13752 | 0 | CharUnits Result; |
13753 | 0 | unsigned n = OOE->getNumComponents(); |
13754 | 0 | if (n == 0) |
13755 | 0 | return Error(OOE); |
13756 | 0 | QualType CurrentType = OOE->getTypeSourceInfo()->getType(); |
13757 | 0 | for (unsigned i = 0; i != n; ++i) { |
13758 | 0 | OffsetOfNode ON = OOE->getComponent(i); |
13759 | 0 | switch (ON.getKind()) { |
13760 | 0 | case OffsetOfNode::Array: { |
13761 | 0 | const Expr *Idx = OOE->getIndexExpr(ON.getArrayExprIndex()); |
13762 | 0 | APSInt IdxResult; |
13763 | 0 | if (!EvaluateInteger(Idx, IdxResult, Info)) |
13764 | 0 | return false; |
13765 | 0 | const ArrayType *AT = Info.Ctx.getAsArrayType(CurrentType); |
13766 | 0 | if (!AT) |
13767 | 0 | return Error(OOE); |
13768 | 0 | CurrentType = AT->getElementType(); |
13769 | 0 | CharUnits ElementSize = Info.Ctx.getTypeSizeInChars(CurrentType); |
13770 | 0 | Result += IdxResult.getSExtValue() * ElementSize; |
13771 | 0 | break; |
13772 | 0 | } |
13773 | | |
13774 | 0 | case OffsetOfNode::Field: { |
13775 | 0 | FieldDecl *MemberDecl = ON.getField(); |
13776 | 0 | const RecordType *RT = CurrentType->getAs<RecordType>(); |
13777 | 0 | if (!RT) |
13778 | 0 | return Error(OOE); |
13779 | 0 | RecordDecl *RD = RT->getDecl(); |
13780 | 0 | if (RD->isInvalidDecl()) return false; |
13781 | 0 | const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); |
13782 | 0 | unsigned i = MemberDecl->getFieldIndex(); |
13783 | 0 | assert(i < RL.getFieldCount() && "offsetof field in wrong type"); |
13784 | 0 | Result += Info.Ctx.toCharUnitsFromBits(RL.getFieldOffset(i)); |
13785 | 0 | CurrentType = MemberDecl->getType().getNonReferenceType(); |
13786 | 0 | break; |
13787 | 0 | } |
13788 | | |
13789 | 0 | case OffsetOfNode::Identifier: |
13790 | 0 | llvm_unreachable("dependent __builtin_offsetof"); |
13791 | |
|
13792 | 0 | case OffsetOfNode::Base: { |
13793 | 0 | CXXBaseSpecifier *BaseSpec = ON.getBase(); |
13794 | 0 | if (BaseSpec->isVirtual()) |
13795 | 0 | return Error(OOE); |
13796 | | |
13797 | | // Find the layout of the class whose base we are looking into. |
13798 | 0 | const RecordType *RT = CurrentType->getAs<RecordType>(); |
13799 | 0 | if (!RT) |
13800 | 0 | return Error(OOE); |
13801 | 0 | RecordDecl *RD = RT->getDecl(); |
13802 | 0 | if (RD->isInvalidDecl()) return false; |
13803 | 0 | const ASTRecordLayout &RL = Info.Ctx.getASTRecordLayout(RD); |
13804 | | |
13805 | | // Find the base class itself. |
13806 | 0 | CurrentType = BaseSpec->getType(); |
13807 | 0 | const RecordType *BaseRT = CurrentType->getAs<RecordType>(); |
13808 | 0 | if (!BaseRT) |
13809 | 0 | return Error(OOE); |
13810 | | |
13811 | | // Add the offset to the base. |
13812 | 0 | Result += RL.getBaseClassOffset(cast<CXXRecordDecl>(BaseRT->getDecl())); |
13813 | 0 | break; |
13814 | 0 | } |
13815 | 0 | } |
13816 | 0 | } |
13817 | 0 | return Success(Result, OOE); |
13818 | 0 | } |
13819 | | |
13820 | 3 | bool IntExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
13821 | 3 | switch (E->getOpcode()) { |
13822 | 0 | default: |
13823 | | // Address, indirect, pre/post inc/dec, etc are not valid constant exprs. |
13824 | | // See C99 6.6p3. |
13825 | 0 | return Error(E); |
13826 | 0 | case UO_Extension: |
13827 | | // FIXME: Should extension allow i-c-e extension expressions in its scope? |
13828 | | // If so, we could clear the diagnostic ID. |
13829 | 0 | return Visit(E->getSubExpr()); |
13830 | 0 | case UO_Plus: |
13831 | | // The result is just the value. |
13832 | 0 | return Visit(E->getSubExpr()); |
13833 | 3 | case UO_Minus: { |
13834 | 3 | if (!Visit(E->getSubExpr())) |
13835 | 2 | return false; |
13836 | 1 | if (!Result.isInt()) return Error(E); |
13837 | 1 | const APSInt &Value = Result.getInt(); |
13838 | 1 | if (Value.isSigned() && Value.isMinSignedValue() && E->canOverflow()) { |
13839 | 0 | if (Info.checkingForUndefinedBehavior()) |
13840 | 0 | Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
13841 | 0 | diag::warn_integer_constant_overflow) |
13842 | 0 | << toString(Value, 10) << E->getType() << E->getSourceRange(); |
13843 | |
|
13844 | 0 | if (!HandleOverflow(Info, E, -Value.extend(Value.getBitWidth() + 1), |
13845 | 0 | E->getType())) |
13846 | 0 | return false; |
13847 | 0 | } |
13848 | 1 | return Success(-Value, E); |
13849 | 1 | } |
13850 | 0 | case UO_Not: { |
13851 | 0 | if (!Visit(E->getSubExpr())) |
13852 | 0 | return false; |
13853 | 0 | if (!Result.isInt()) return Error(E); |
13854 | 0 | return Success(~Result.getInt(), E); |
13855 | 0 | } |
13856 | 0 | case UO_LNot: { |
13857 | 0 | bool bres; |
13858 | 0 | if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) |
13859 | 0 | return false; |
13860 | 0 | return Success(!bres, E); |
13861 | 0 | } |
13862 | 3 | } |
13863 | 3 | } |
13864 | | |
13865 | | /// HandleCast - This is used to evaluate implicit or explicit casts where the |
13866 | | /// result type is integer. |
13867 | 5 | bool IntExprEvaluator::VisitCastExpr(const CastExpr *E) { |
13868 | 5 | const Expr *SubExpr = E->getSubExpr(); |
13869 | 5 | QualType DestType = E->getType(); |
13870 | 5 | QualType SrcType = SubExpr->getType(); |
13871 | | |
13872 | 5 | switch (E->getCastKind()) { |
13873 | 0 | case CK_BaseToDerived: |
13874 | 0 | case CK_DerivedToBase: |
13875 | 0 | case CK_UncheckedDerivedToBase: |
13876 | 0 | case CK_Dynamic: |
13877 | 0 | case CK_ToUnion: |
13878 | 0 | case CK_ArrayToPointerDecay: |
13879 | 0 | case CK_FunctionToPointerDecay: |
13880 | 0 | case CK_NullToPointer: |
13881 | 0 | case CK_NullToMemberPointer: |
13882 | 0 | case CK_BaseToDerivedMemberPointer: |
13883 | 0 | case CK_DerivedToBaseMemberPointer: |
13884 | 0 | case CK_ReinterpretMemberPointer: |
13885 | 0 | case CK_ConstructorConversion: |
13886 | 0 | case CK_IntegralToPointer: |
13887 | 0 | case CK_ToVoid: |
13888 | 0 | case CK_VectorSplat: |
13889 | 0 | case CK_IntegralToFloating: |
13890 | 0 | case CK_FloatingCast: |
13891 | 0 | case CK_CPointerToObjCPointerCast: |
13892 | 0 | case CK_BlockPointerToObjCPointerCast: |
13893 | 0 | case CK_AnyPointerToBlockPointerCast: |
13894 | 0 | case CK_ObjCObjectLValueCast: |
13895 | 0 | case CK_FloatingRealToComplex: |
13896 | 0 | case CK_FloatingComplexToReal: |
13897 | 0 | case CK_FloatingComplexCast: |
13898 | 0 | case CK_FloatingComplexToIntegralComplex: |
13899 | 0 | case CK_IntegralRealToComplex: |
13900 | 0 | case CK_IntegralComplexCast: |
13901 | 0 | case CK_IntegralComplexToFloatingComplex: |
13902 | 0 | case CK_BuiltinFnToFnPtr: |
13903 | 0 | case CK_ZeroToOCLOpaqueType: |
13904 | 0 | case CK_NonAtomicToAtomic: |
13905 | 0 | case CK_AddressSpaceConversion: |
13906 | 0 | case CK_IntToOCLSampler: |
13907 | 0 | case CK_FloatingToFixedPoint: |
13908 | 0 | case CK_FixedPointToFloating: |
13909 | 0 | case CK_FixedPointCast: |
13910 | 0 | case CK_IntegralToFixedPoint: |
13911 | 0 | case CK_MatrixCast: |
13912 | 0 | llvm_unreachable("invalid cast kind for integral value"); |
13913 | |
|
13914 | 0 | case CK_BitCast: |
13915 | 0 | case CK_Dependent: |
13916 | 0 | case CK_LValueBitCast: |
13917 | 0 | case CK_ARCProduceObject: |
13918 | 0 | case CK_ARCConsumeObject: |
13919 | 0 | case CK_ARCReclaimReturnedObject: |
13920 | 0 | case CK_ARCExtendBlockObject: |
13921 | 0 | case CK_CopyAndAutoreleaseBlockObject: |
13922 | 0 | return Error(E); |
13923 | | |
13924 | 0 | case CK_UserDefinedConversion: |
13925 | 5 | case CK_LValueToRValue: |
13926 | 5 | case CK_AtomicToNonAtomic: |
13927 | 5 | case CK_NoOp: |
13928 | 5 | case CK_LValueToRValueBitCast: |
13929 | 5 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
13930 | | |
13931 | 0 | case CK_MemberPointerToBoolean: |
13932 | 0 | case CK_PointerToBoolean: |
13933 | 0 | case CK_IntegralToBoolean: |
13934 | 0 | case CK_FloatingToBoolean: |
13935 | 0 | case CK_BooleanToSignedIntegral: |
13936 | 0 | case CK_FloatingComplexToBoolean: |
13937 | 0 | case CK_IntegralComplexToBoolean: { |
13938 | 0 | bool BoolResult; |
13939 | 0 | if (!EvaluateAsBooleanCondition(SubExpr, BoolResult, Info)) |
13940 | 0 | return false; |
13941 | 0 | uint64_t IntResult = BoolResult; |
13942 | 0 | if (BoolResult && E->getCastKind() == CK_BooleanToSignedIntegral) |
13943 | 0 | IntResult = (uint64_t)-1; |
13944 | 0 | return Success(IntResult, E); |
13945 | 0 | } |
13946 | | |
13947 | 0 | case CK_FixedPointToIntegral: { |
13948 | 0 | APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SrcType)); |
13949 | 0 | if (!EvaluateFixedPoint(SubExpr, Src, Info)) |
13950 | 0 | return false; |
13951 | 0 | bool Overflowed; |
13952 | 0 | llvm::APSInt Result = Src.convertToInt( |
13953 | 0 | Info.Ctx.getIntWidth(DestType), |
13954 | 0 | DestType->isSignedIntegerOrEnumerationType(), &Overflowed); |
13955 | 0 | if (Overflowed && !HandleOverflow(Info, E, Result, DestType)) |
13956 | 0 | return false; |
13957 | 0 | return Success(Result, E); |
13958 | 0 | } |
13959 | | |
13960 | 0 | case CK_FixedPointToBoolean: { |
13961 | | // Unsigned padding does not affect this. |
13962 | 0 | APValue Val; |
13963 | 0 | if (!Evaluate(Val, Info, SubExpr)) |
13964 | 0 | return false; |
13965 | 0 | return Success(Val.getFixedPoint().getBoolValue(), E); |
13966 | 0 | } |
13967 | | |
13968 | 0 | case CK_IntegralCast: { |
13969 | 0 | if (!Visit(SubExpr)) |
13970 | 0 | return false; |
13971 | | |
13972 | 0 | if (!Result.isInt()) { |
13973 | | // Allow casts of address-of-label differences if they are no-ops |
13974 | | // or narrowing. (The narrowing case isn't actually guaranteed to |
13975 | | // be constant-evaluatable except in some narrow cases which are hard |
13976 | | // to detect here. We let it through on the assumption the user knows |
13977 | | // what they are doing.) |
13978 | 0 | if (Result.isAddrLabelDiff()) |
13979 | 0 | return Info.Ctx.getTypeSize(DestType) <= Info.Ctx.getTypeSize(SrcType); |
13980 | | // Only allow casts of lvalues if they are lossless. |
13981 | 0 | return Info.Ctx.getTypeSize(DestType) == Info.Ctx.getTypeSize(SrcType); |
13982 | 0 | } |
13983 | | |
13984 | 0 | if (Info.Ctx.getLangOpts().CPlusPlus && Info.InConstantContext && |
13985 | 0 | Info.EvalMode == EvalInfo::EM_ConstantExpression && |
13986 | 0 | DestType->isEnumeralType()) { |
13987 | |
|
13988 | 0 | bool ConstexprVar = true; |
13989 | | |
13990 | | // We know if we are here that we are in a context that we might require |
13991 | | // a constant expression or a context that requires a constant |
13992 | | // value. But if we are initializing a value we don't know if it is a |
13993 | | // constexpr variable or not. We can check the EvaluatingDecl to determine |
13994 | | // if it constexpr or not. If not then we don't want to emit a diagnostic. |
13995 | 0 | if (const auto *VD = dyn_cast_or_null<VarDecl>( |
13996 | 0 | Info.EvaluatingDecl.dyn_cast<const ValueDecl *>())) |
13997 | 0 | ConstexprVar = VD->isConstexpr(); |
13998 | |
|
13999 | 0 | const EnumType *ET = dyn_cast<EnumType>(DestType.getCanonicalType()); |
14000 | 0 | const EnumDecl *ED = ET->getDecl(); |
14001 | | // Check that the value is within the range of the enumeration values. |
14002 | | // |
14003 | | // This corressponds to [expr.static.cast]p10 which says: |
14004 | | // A value of integral or enumeration type can be explicitly converted |
14005 | | // to a complete enumeration type ... If the enumeration type does not |
14006 | | // have a fixed underlying type, the value is unchanged if the original |
14007 | | // value is within the range of the enumeration values ([dcl.enum]), and |
14008 | | // otherwise, the behavior is undefined. |
14009 | | // |
14010 | | // This was resolved as part of DR2338 which has CD5 status. |
14011 | 0 | if (!ED->isFixed()) { |
14012 | 0 | llvm::APInt Min; |
14013 | 0 | llvm::APInt Max; |
14014 | |
|
14015 | 0 | ED->getValueRange(Max, Min); |
14016 | 0 | --Max; |
14017 | |
|
14018 | 0 | if (ED->getNumNegativeBits() && ConstexprVar && |
14019 | 0 | (Max.slt(Result.getInt().getSExtValue()) || |
14020 | 0 | Min.sgt(Result.getInt().getSExtValue()))) |
14021 | 0 | Info.Ctx.getDiagnostics().Report( |
14022 | 0 | E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range) |
14023 | 0 | << llvm::toString(Result.getInt(), 10) << Min.getSExtValue() |
14024 | 0 | << Max.getSExtValue() << ED; |
14025 | 0 | else if (!ED->getNumNegativeBits() && ConstexprVar && |
14026 | 0 | Max.ult(Result.getInt().getZExtValue())) |
14027 | 0 | Info.Ctx.getDiagnostics().Report( |
14028 | 0 | E->getExprLoc(), diag::warn_constexpr_unscoped_enum_out_of_range) |
14029 | 0 | << llvm::toString(Result.getInt(), 10) << Min.getZExtValue() |
14030 | 0 | << Max.getZExtValue() << ED; |
14031 | 0 | } |
14032 | 0 | } |
14033 | |
|
14034 | 0 | return Success(HandleIntToIntCast(Info, E, DestType, SrcType, |
14035 | 0 | Result.getInt()), E); |
14036 | 0 | } |
14037 | | |
14038 | 0 | case CK_PointerToIntegral: { |
14039 | 0 | CCEDiag(E, diag::note_constexpr_invalid_cast) |
14040 | 0 | << 2 << Info.Ctx.getLangOpts().CPlusPlus << E->getSourceRange(); |
14041 | |
|
14042 | 0 | LValue LV; |
14043 | 0 | if (!EvaluatePointer(SubExpr, LV, Info)) |
14044 | 0 | return false; |
14045 | | |
14046 | 0 | if (LV.getLValueBase()) { |
14047 | | // Only allow based lvalue casts if they are lossless. |
14048 | | // FIXME: Allow a larger integer size than the pointer size, and allow |
14049 | | // narrowing back down to pointer width in subsequent integral casts. |
14050 | | // FIXME: Check integer type's active bits, not its type size. |
14051 | 0 | if (Info.Ctx.getTypeSize(DestType) != Info.Ctx.getTypeSize(SrcType)) |
14052 | 0 | return Error(E); |
14053 | | |
14054 | 0 | LV.Designator.setInvalid(); |
14055 | 0 | LV.moveInto(Result); |
14056 | 0 | return true; |
14057 | 0 | } |
14058 | | |
14059 | 0 | APSInt AsInt; |
14060 | 0 | APValue V; |
14061 | 0 | LV.moveInto(V); |
14062 | 0 | if (!V.toIntegralConstant(AsInt, SrcType, Info.Ctx)) |
14063 | 0 | llvm_unreachable("Can't cast this!"); |
14064 | |
|
14065 | 0 | return Success(HandleIntToIntCast(Info, E, DestType, SrcType, AsInt), E); |
14066 | 0 | } |
14067 | | |
14068 | 0 | case CK_IntegralComplexToReal: { |
14069 | 0 | ComplexValue C; |
14070 | 0 | if (!EvaluateComplex(SubExpr, C, Info)) |
14071 | 0 | return false; |
14072 | 0 | return Success(C.getComplexIntReal(), E); |
14073 | 0 | } |
14074 | | |
14075 | 0 | case CK_FloatingToIntegral: { |
14076 | 0 | APFloat F(0.0); |
14077 | 0 | if (!EvaluateFloat(SubExpr, F, Info)) |
14078 | 0 | return false; |
14079 | | |
14080 | 0 | APSInt Value; |
14081 | 0 | if (!HandleFloatToIntCast(Info, E, SrcType, F, DestType, Value)) |
14082 | 0 | return false; |
14083 | 0 | return Success(Value, E); |
14084 | 0 | } |
14085 | 5 | } |
14086 | | |
14087 | 0 | llvm_unreachable("unknown cast resulting in integral value"); |
14088 | 0 | } |
14089 | | |
14090 | 0 | bool IntExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
14091 | 0 | if (E->getSubExpr()->getType()->isAnyComplexType()) { |
14092 | 0 | ComplexValue LV; |
14093 | 0 | if (!EvaluateComplex(E->getSubExpr(), LV, Info)) |
14094 | 0 | return false; |
14095 | 0 | if (!LV.isComplexInt()) |
14096 | 0 | return Error(E); |
14097 | 0 | return Success(LV.getComplexIntReal(), E); |
14098 | 0 | } |
14099 | | |
14100 | 0 | return Visit(E->getSubExpr()); |
14101 | 0 | } |
14102 | | |
14103 | 0 | bool IntExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
14104 | 0 | if (E->getSubExpr()->getType()->isComplexIntegerType()) { |
14105 | 0 | ComplexValue LV; |
14106 | 0 | if (!EvaluateComplex(E->getSubExpr(), LV, Info)) |
14107 | 0 | return false; |
14108 | 0 | if (!LV.isComplexInt()) |
14109 | 0 | return Error(E); |
14110 | 0 | return Success(LV.getComplexIntImag(), E); |
14111 | 0 | } |
14112 | | |
14113 | 0 | VisitIgnoredValue(E->getSubExpr()); |
14114 | 0 | return Success(0, E); |
14115 | 0 | } |
14116 | | |
14117 | 0 | bool IntExprEvaluator::VisitSizeOfPackExpr(const SizeOfPackExpr *E) { |
14118 | 0 | return Success(E->getPackLength(), E); |
14119 | 0 | } |
14120 | | |
14121 | 0 | bool IntExprEvaluator::VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { |
14122 | 0 | return Success(E->getValue(), E); |
14123 | 0 | } |
14124 | | |
14125 | | bool IntExprEvaluator::VisitConceptSpecializationExpr( |
14126 | 0 | const ConceptSpecializationExpr *E) { |
14127 | 0 | return Success(E->isSatisfied(), E); |
14128 | 0 | } |
14129 | | |
14130 | 0 | bool IntExprEvaluator::VisitRequiresExpr(const RequiresExpr *E) { |
14131 | 0 | return Success(E->isSatisfied(), E); |
14132 | 0 | } |
14133 | | |
14134 | 0 | bool FixedPointExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
14135 | 0 | switch (E->getOpcode()) { |
14136 | 0 | default: |
14137 | | // Invalid unary operators |
14138 | 0 | return Error(E); |
14139 | 0 | case UO_Plus: |
14140 | | // The result is just the value. |
14141 | 0 | return Visit(E->getSubExpr()); |
14142 | 0 | case UO_Minus: { |
14143 | 0 | if (!Visit(E->getSubExpr())) return false; |
14144 | 0 | if (!Result.isFixedPoint()) |
14145 | 0 | return Error(E); |
14146 | 0 | bool Overflowed; |
14147 | 0 | APFixedPoint Negated = Result.getFixedPoint().negate(&Overflowed); |
14148 | 0 | if (Overflowed && !HandleOverflow(Info, E, Negated, E->getType())) |
14149 | 0 | return false; |
14150 | 0 | return Success(Negated, E); |
14151 | 0 | } |
14152 | 0 | case UO_LNot: { |
14153 | 0 | bool bres; |
14154 | 0 | if (!EvaluateAsBooleanCondition(E->getSubExpr(), bres, Info)) |
14155 | 0 | return false; |
14156 | 0 | return Success(!bres, E); |
14157 | 0 | } |
14158 | 0 | } |
14159 | 0 | } |
14160 | | |
14161 | 0 | bool FixedPointExprEvaluator::VisitCastExpr(const CastExpr *E) { |
14162 | 0 | const Expr *SubExpr = E->getSubExpr(); |
14163 | 0 | QualType DestType = E->getType(); |
14164 | 0 | assert(DestType->isFixedPointType() && |
14165 | 0 | "Expected destination type to be a fixed point type"); |
14166 | 0 | auto DestFXSema = Info.Ctx.getFixedPointSemantics(DestType); |
14167 | |
|
14168 | 0 | switch (E->getCastKind()) { |
14169 | 0 | case CK_FixedPointCast: { |
14170 | 0 | APFixedPoint Src(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); |
14171 | 0 | if (!EvaluateFixedPoint(SubExpr, Src, Info)) |
14172 | 0 | return false; |
14173 | 0 | bool Overflowed; |
14174 | 0 | APFixedPoint Result = Src.convert(DestFXSema, &Overflowed); |
14175 | 0 | if (Overflowed) { |
14176 | 0 | if (Info.checkingForUndefinedBehavior()) |
14177 | 0 | Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
14178 | 0 | diag::warn_fixedpoint_constant_overflow) |
14179 | 0 | << Result.toString() << E->getType(); |
14180 | 0 | if (!HandleOverflow(Info, E, Result, E->getType())) |
14181 | 0 | return false; |
14182 | 0 | } |
14183 | 0 | return Success(Result, E); |
14184 | 0 | } |
14185 | 0 | case CK_IntegralToFixedPoint: { |
14186 | 0 | APSInt Src; |
14187 | 0 | if (!EvaluateInteger(SubExpr, Src, Info)) |
14188 | 0 | return false; |
14189 | | |
14190 | 0 | bool Overflowed; |
14191 | 0 | APFixedPoint IntResult = APFixedPoint::getFromIntValue( |
14192 | 0 | Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); |
14193 | |
|
14194 | 0 | if (Overflowed) { |
14195 | 0 | if (Info.checkingForUndefinedBehavior()) |
14196 | 0 | Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
14197 | 0 | diag::warn_fixedpoint_constant_overflow) |
14198 | 0 | << IntResult.toString() << E->getType(); |
14199 | 0 | if (!HandleOverflow(Info, E, IntResult, E->getType())) |
14200 | 0 | return false; |
14201 | 0 | } |
14202 | | |
14203 | 0 | return Success(IntResult, E); |
14204 | 0 | } |
14205 | 0 | case CK_FloatingToFixedPoint: { |
14206 | 0 | APFloat Src(0.0); |
14207 | 0 | if (!EvaluateFloat(SubExpr, Src, Info)) |
14208 | 0 | return false; |
14209 | | |
14210 | 0 | bool Overflowed; |
14211 | 0 | APFixedPoint Result = APFixedPoint::getFromFloatValue( |
14212 | 0 | Src, Info.Ctx.getFixedPointSemantics(DestType), &Overflowed); |
14213 | |
|
14214 | 0 | if (Overflowed) { |
14215 | 0 | if (Info.checkingForUndefinedBehavior()) |
14216 | 0 | Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
14217 | 0 | diag::warn_fixedpoint_constant_overflow) |
14218 | 0 | << Result.toString() << E->getType(); |
14219 | 0 | if (!HandleOverflow(Info, E, Result, E->getType())) |
14220 | 0 | return false; |
14221 | 0 | } |
14222 | | |
14223 | 0 | return Success(Result, E); |
14224 | 0 | } |
14225 | 0 | case CK_NoOp: |
14226 | 0 | case CK_LValueToRValue: |
14227 | 0 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
14228 | 0 | default: |
14229 | 0 | return Error(E); |
14230 | 0 | } |
14231 | 0 | } |
14232 | | |
14233 | 0 | bool FixedPointExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
14234 | 0 | if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) |
14235 | 0 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
14236 | | |
14237 | 0 | const Expr *LHS = E->getLHS(); |
14238 | 0 | const Expr *RHS = E->getRHS(); |
14239 | 0 | FixedPointSemantics ResultFXSema = |
14240 | 0 | Info.Ctx.getFixedPointSemantics(E->getType()); |
14241 | |
|
14242 | 0 | APFixedPoint LHSFX(Info.Ctx.getFixedPointSemantics(LHS->getType())); |
14243 | 0 | if (!EvaluateFixedPointOrInteger(LHS, LHSFX, Info)) |
14244 | 0 | return false; |
14245 | 0 | APFixedPoint RHSFX(Info.Ctx.getFixedPointSemantics(RHS->getType())); |
14246 | 0 | if (!EvaluateFixedPointOrInteger(RHS, RHSFX, Info)) |
14247 | 0 | return false; |
14248 | | |
14249 | 0 | bool OpOverflow = false, ConversionOverflow = false; |
14250 | 0 | APFixedPoint Result(LHSFX.getSemantics()); |
14251 | 0 | switch (E->getOpcode()) { |
14252 | 0 | case BO_Add: { |
14253 | 0 | Result = LHSFX.add(RHSFX, &OpOverflow) |
14254 | 0 | .convert(ResultFXSema, &ConversionOverflow); |
14255 | 0 | break; |
14256 | 0 | } |
14257 | 0 | case BO_Sub: { |
14258 | 0 | Result = LHSFX.sub(RHSFX, &OpOverflow) |
14259 | 0 | .convert(ResultFXSema, &ConversionOverflow); |
14260 | 0 | break; |
14261 | 0 | } |
14262 | 0 | case BO_Mul: { |
14263 | 0 | Result = LHSFX.mul(RHSFX, &OpOverflow) |
14264 | 0 | .convert(ResultFXSema, &ConversionOverflow); |
14265 | 0 | break; |
14266 | 0 | } |
14267 | 0 | case BO_Div: { |
14268 | 0 | if (RHSFX.getValue() == 0) { |
14269 | 0 | Info.FFDiag(E, diag::note_expr_divide_by_zero); |
14270 | 0 | return false; |
14271 | 0 | } |
14272 | 0 | Result = LHSFX.div(RHSFX, &OpOverflow) |
14273 | 0 | .convert(ResultFXSema, &ConversionOverflow); |
14274 | 0 | break; |
14275 | 0 | } |
14276 | 0 | case BO_Shl: |
14277 | 0 | case BO_Shr: { |
14278 | 0 | FixedPointSemantics LHSSema = LHSFX.getSemantics(); |
14279 | 0 | llvm::APSInt RHSVal = RHSFX.getValue(); |
14280 | |
|
14281 | 0 | unsigned ShiftBW = |
14282 | 0 | LHSSema.getWidth() - (unsigned)LHSSema.hasUnsignedPadding(); |
14283 | 0 | unsigned Amt = RHSVal.getLimitedValue(ShiftBW - 1); |
14284 | | // Embedded-C 4.1.6.2.2: |
14285 | | // The right operand must be nonnegative and less than the total number |
14286 | | // of (nonpadding) bits of the fixed-point operand ... |
14287 | 0 | if (RHSVal.isNegative()) |
14288 | 0 | Info.CCEDiag(E, diag::note_constexpr_negative_shift) << RHSVal; |
14289 | 0 | else if (Amt != RHSVal) |
14290 | 0 | Info.CCEDiag(E, diag::note_constexpr_large_shift) |
14291 | 0 | << RHSVal << E->getType() << ShiftBW; |
14292 | |
|
14293 | 0 | if (E->getOpcode() == BO_Shl) |
14294 | 0 | Result = LHSFX.shl(Amt, &OpOverflow); |
14295 | 0 | else |
14296 | 0 | Result = LHSFX.shr(Amt, &OpOverflow); |
14297 | 0 | break; |
14298 | 0 | } |
14299 | 0 | default: |
14300 | 0 | return false; |
14301 | 0 | } |
14302 | 0 | if (OpOverflow || ConversionOverflow) { |
14303 | 0 | if (Info.checkingForUndefinedBehavior()) |
14304 | 0 | Info.Ctx.getDiagnostics().Report(E->getExprLoc(), |
14305 | 0 | diag::warn_fixedpoint_constant_overflow) |
14306 | 0 | << Result.toString() << E->getType(); |
14307 | 0 | if (!HandleOverflow(Info, E, Result, E->getType())) |
14308 | 0 | return false; |
14309 | 0 | } |
14310 | 0 | return Success(Result, E); |
14311 | 0 | } |
14312 | | |
14313 | | //===----------------------------------------------------------------------===// |
14314 | | // Float Evaluation |
14315 | | //===----------------------------------------------------------------------===// |
14316 | | |
14317 | | namespace { |
14318 | | class FloatExprEvaluator |
14319 | | : public ExprEvaluatorBase<FloatExprEvaluator> { |
14320 | | APFloat &Result; |
14321 | | public: |
14322 | | FloatExprEvaluator(EvalInfo &info, APFloat &result) |
14323 | 0 | : ExprEvaluatorBaseTy(info), Result(result) {} |
14324 | | |
14325 | 0 | bool Success(const APValue &V, const Expr *e) { |
14326 | 0 | Result = V.getFloat(); |
14327 | 0 | return true; |
14328 | 0 | } |
14329 | | |
14330 | 0 | bool ZeroInitialization(const Expr *E) { |
14331 | 0 | Result = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(E->getType())); |
14332 | 0 | return true; |
14333 | 0 | } |
14334 | | |
14335 | | bool VisitCallExpr(const CallExpr *E); |
14336 | | |
14337 | | bool VisitUnaryOperator(const UnaryOperator *E); |
14338 | | bool VisitBinaryOperator(const BinaryOperator *E); |
14339 | | bool VisitFloatingLiteral(const FloatingLiteral *E); |
14340 | | bool VisitCastExpr(const CastExpr *E); |
14341 | | |
14342 | | bool VisitUnaryReal(const UnaryOperator *E); |
14343 | | bool VisitUnaryImag(const UnaryOperator *E); |
14344 | | |
14345 | | // FIXME: Missing: array subscript of vector, member of vector |
14346 | | }; |
14347 | | } // end anonymous namespace |
14348 | | |
14349 | 0 | static bool EvaluateFloat(const Expr* E, APFloat& Result, EvalInfo &Info) { |
14350 | 0 | assert(!E->isValueDependent()); |
14351 | 0 | assert(E->isPRValue() && E->getType()->isRealFloatingType()); |
14352 | 0 | return FloatExprEvaluator(Info, Result).Visit(E); |
14353 | 0 | } |
14354 | | |
14355 | | static bool TryEvaluateBuiltinNaN(const ASTContext &Context, |
14356 | | QualType ResultTy, |
14357 | | const Expr *Arg, |
14358 | | bool SNaN, |
14359 | 0 | llvm::APFloat &Result) { |
14360 | 0 | const StringLiteral *S = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts()); |
14361 | 0 | if (!S) return false; |
14362 | | |
14363 | 0 | const llvm::fltSemantics &Sem = Context.getFloatTypeSemantics(ResultTy); |
14364 | |
|
14365 | 0 | llvm::APInt fill; |
14366 | | |
14367 | | // Treat empty strings as if they were zero. |
14368 | 0 | if (S->getString().empty()) |
14369 | 0 | fill = llvm::APInt(32, 0); |
14370 | 0 | else if (S->getString().getAsInteger(0, fill)) |
14371 | 0 | return false; |
14372 | | |
14373 | 0 | if (Context.getTargetInfo().isNan2008()) { |
14374 | 0 | if (SNaN) |
14375 | 0 | Result = llvm::APFloat::getSNaN(Sem, false, &fill); |
14376 | 0 | else |
14377 | 0 | Result = llvm::APFloat::getQNaN(Sem, false, &fill); |
14378 | 0 | } else { |
14379 | | // Prior to IEEE 754-2008, architectures were allowed to choose whether |
14380 | | // the first bit of their significand was set for qNaN or sNaN. MIPS chose |
14381 | | // a different encoding to what became a standard in 2008, and for pre- |
14382 | | // 2008 revisions, MIPS interpreted sNaN-2008 as qNan and qNaN-2008 as |
14383 | | // sNaN. This is now known as "legacy NaN" encoding. |
14384 | 0 | if (SNaN) |
14385 | 0 | Result = llvm::APFloat::getQNaN(Sem, false, &fill); |
14386 | 0 | else |
14387 | 0 | Result = llvm::APFloat::getSNaN(Sem, false, &fill); |
14388 | 0 | } |
14389 | |
|
14390 | 0 | return true; |
14391 | 0 | } |
14392 | | |
14393 | 0 | bool FloatExprEvaluator::VisitCallExpr(const CallExpr *E) { |
14394 | 0 | if (!IsConstantEvaluatedBuiltinCall(E)) |
14395 | 0 | return ExprEvaluatorBaseTy::VisitCallExpr(E); |
14396 | | |
14397 | 0 | switch (E->getBuiltinCallee()) { |
14398 | 0 | default: |
14399 | 0 | return false; |
14400 | | |
14401 | 0 | case Builtin::BI__builtin_huge_val: |
14402 | 0 | case Builtin::BI__builtin_huge_valf: |
14403 | 0 | case Builtin::BI__builtin_huge_vall: |
14404 | 0 | case Builtin::BI__builtin_huge_valf16: |
14405 | 0 | case Builtin::BI__builtin_huge_valf128: |
14406 | 0 | case Builtin::BI__builtin_inf: |
14407 | 0 | case Builtin::BI__builtin_inff: |
14408 | 0 | case Builtin::BI__builtin_infl: |
14409 | 0 | case Builtin::BI__builtin_inff16: |
14410 | 0 | case Builtin::BI__builtin_inff128: { |
14411 | 0 | const llvm::fltSemantics &Sem = |
14412 | 0 | Info.Ctx.getFloatTypeSemantics(E->getType()); |
14413 | 0 | Result = llvm::APFloat::getInf(Sem); |
14414 | 0 | return true; |
14415 | 0 | } |
14416 | | |
14417 | 0 | case Builtin::BI__builtin_nans: |
14418 | 0 | case Builtin::BI__builtin_nansf: |
14419 | 0 | case Builtin::BI__builtin_nansl: |
14420 | 0 | case Builtin::BI__builtin_nansf16: |
14421 | 0 | case Builtin::BI__builtin_nansf128: |
14422 | 0 | if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), |
14423 | 0 | true, Result)) |
14424 | 0 | return Error(E); |
14425 | 0 | return true; |
14426 | | |
14427 | 0 | case Builtin::BI__builtin_nan: |
14428 | 0 | case Builtin::BI__builtin_nanf: |
14429 | 0 | case Builtin::BI__builtin_nanl: |
14430 | 0 | case Builtin::BI__builtin_nanf16: |
14431 | 0 | case Builtin::BI__builtin_nanf128: |
14432 | | // If this is __builtin_nan() turn this into a nan, otherwise we |
14433 | | // can't constant fold it. |
14434 | 0 | if (!TryEvaluateBuiltinNaN(Info.Ctx, E->getType(), E->getArg(0), |
14435 | 0 | false, Result)) |
14436 | 0 | return Error(E); |
14437 | 0 | return true; |
14438 | | |
14439 | 0 | case Builtin::BI__builtin_fabs: |
14440 | 0 | case Builtin::BI__builtin_fabsf: |
14441 | 0 | case Builtin::BI__builtin_fabsl: |
14442 | 0 | case Builtin::BI__builtin_fabsf128: |
14443 | | // The C standard says "fabs raises no floating-point exceptions, |
14444 | | // even if x is a signaling NaN. The returned value is independent of |
14445 | | // the current rounding direction mode." Therefore constant folding can |
14446 | | // proceed without regard to the floating point settings. |
14447 | | // Reference, WG14 N2478 F.10.4.3 |
14448 | 0 | if (!EvaluateFloat(E->getArg(0), Result, Info)) |
14449 | 0 | return false; |
14450 | | |
14451 | 0 | if (Result.isNegative()) |
14452 | 0 | Result.changeSign(); |
14453 | 0 | return true; |
14454 | | |
14455 | 0 | case Builtin::BI__arithmetic_fence: |
14456 | 0 | return EvaluateFloat(E->getArg(0), Result, Info); |
14457 | | |
14458 | | // FIXME: Builtin::BI__builtin_powi |
14459 | | // FIXME: Builtin::BI__builtin_powif |
14460 | | // FIXME: Builtin::BI__builtin_powil |
14461 | | |
14462 | 0 | case Builtin::BI__builtin_copysign: |
14463 | 0 | case Builtin::BI__builtin_copysignf: |
14464 | 0 | case Builtin::BI__builtin_copysignl: |
14465 | 0 | case Builtin::BI__builtin_copysignf128: { |
14466 | 0 | APFloat RHS(0.); |
14467 | 0 | if (!EvaluateFloat(E->getArg(0), Result, Info) || |
14468 | 0 | !EvaluateFloat(E->getArg(1), RHS, Info)) |
14469 | 0 | return false; |
14470 | 0 | Result.copySign(RHS); |
14471 | 0 | return true; |
14472 | 0 | } |
14473 | | |
14474 | 0 | case Builtin::BI__builtin_fmax: |
14475 | 0 | case Builtin::BI__builtin_fmaxf: |
14476 | 0 | case Builtin::BI__builtin_fmaxl: |
14477 | 0 | case Builtin::BI__builtin_fmaxf16: |
14478 | 0 | case Builtin::BI__builtin_fmaxf128: { |
14479 | | // TODO: Handle sNaN. |
14480 | 0 | APFloat RHS(0.); |
14481 | 0 | if (!EvaluateFloat(E->getArg(0), Result, Info) || |
14482 | 0 | !EvaluateFloat(E->getArg(1), RHS, Info)) |
14483 | 0 | return false; |
14484 | | // When comparing zeroes, return +0.0 if one of the zeroes is positive. |
14485 | 0 | if (Result.isZero() && RHS.isZero() && Result.isNegative()) |
14486 | 0 | Result = RHS; |
14487 | 0 | else if (Result.isNaN() || RHS > Result) |
14488 | 0 | Result = RHS; |
14489 | 0 | return true; |
14490 | 0 | } |
14491 | | |
14492 | 0 | case Builtin::BI__builtin_fmin: |
14493 | 0 | case Builtin::BI__builtin_fminf: |
14494 | 0 | case Builtin::BI__builtin_fminl: |
14495 | 0 | case Builtin::BI__builtin_fminf16: |
14496 | 0 | case Builtin::BI__builtin_fminf128: { |
14497 | | // TODO: Handle sNaN. |
14498 | 0 | APFloat RHS(0.); |
14499 | 0 | if (!EvaluateFloat(E->getArg(0), Result, Info) || |
14500 | 0 | !EvaluateFloat(E->getArg(1), RHS, Info)) |
14501 | 0 | return false; |
14502 | | // When comparing zeroes, return -0.0 if one of the zeroes is negative. |
14503 | 0 | if (Result.isZero() && RHS.isZero() && RHS.isNegative()) |
14504 | 0 | Result = RHS; |
14505 | 0 | else if (Result.isNaN() || RHS < Result) |
14506 | 0 | Result = RHS; |
14507 | 0 | return true; |
14508 | 0 | } |
14509 | 0 | } |
14510 | 0 | } |
14511 | | |
14512 | 0 | bool FloatExprEvaluator::VisitUnaryReal(const UnaryOperator *E) { |
14513 | 0 | if (E->getSubExpr()->getType()->isAnyComplexType()) { |
14514 | 0 | ComplexValue CV; |
14515 | 0 | if (!EvaluateComplex(E->getSubExpr(), CV, Info)) |
14516 | 0 | return false; |
14517 | 0 | Result = CV.FloatReal; |
14518 | 0 | return true; |
14519 | 0 | } |
14520 | | |
14521 | 0 | return Visit(E->getSubExpr()); |
14522 | 0 | } |
14523 | | |
14524 | 0 | bool FloatExprEvaluator::VisitUnaryImag(const UnaryOperator *E) { |
14525 | 0 | if (E->getSubExpr()->getType()->isAnyComplexType()) { |
14526 | 0 | ComplexValue CV; |
14527 | 0 | if (!EvaluateComplex(E->getSubExpr(), CV, Info)) |
14528 | 0 | return false; |
14529 | 0 | Result = CV.FloatImag; |
14530 | 0 | return true; |
14531 | 0 | } |
14532 | | |
14533 | 0 | VisitIgnoredValue(E->getSubExpr()); |
14534 | 0 | const llvm::fltSemantics &Sem = Info.Ctx.getFloatTypeSemantics(E->getType()); |
14535 | 0 | Result = llvm::APFloat::getZero(Sem); |
14536 | 0 | return true; |
14537 | 0 | } |
14538 | | |
14539 | 0 | bool FloatExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
14540 | 0 | switch (E->getOpcode()) { |
14541 | 0 | default: return Error(E); |
14542 | 0 | case UO_Plus: |
14543 | 0 | return EvaluateFloat(E->getSubExpr(), Result, Info); |
14544 | 0 | case UO_Minus: |
14545 | | // In C standard, WG14 N2478 F.3 p4 |
14546 | | // "the unary - raises no floating point exceptions, |
14547 | | // even if the operand is signalling." |
14548 | 0 | if (!EvaluateFloat(E->getSubExpr(), Result, Info)) |
14549 | 0 | return false; |
14550 | 0 | Result.changeSign(); |
14551 | 0 | return true; |
14552 | 0 | } |
14553 | 0 | } |
14554 | | |
14555 | 0 | bool FloatExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
14556 | 0 | if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) |
14557 | 0 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
14558 | | |
14559 | 0 | APFloat RHS(0.0); |
14560 | 0 | bool LHSOK = EvaluateFloat(E->getLHS(), Result, Info); |
14561 | 0 | if (!LHSOK && !Info.noteFailure()) |
14562 | 0 | return false; |
14563 | 0 | return EvaluateFloat(E->getRHS(), RHS, Info) && LHSOK && |
14564 | 0 | handleFloatFloatBinOp(Info, E, Result, E->getOpcode(), RHS); |
14565 | 0 | } |
14566 | | |
14567 | 0 | bool FloatExprEvaluator::VisitFloatingLiteral(const FloatingLiteral *E) { |
14568 | 0 | Result = E->getValue(); |
14569 | 0 | return true; |
14570 | 0 | } |
14571 | | |
14572 | 0 | bool FloatExprEvaluator::VisitCastExpr(const CastExpr *E) { |
14573 | 0 | const Expr* SubExpr = E->getSubExpr(); |
14574 | |
|
14575 | 0 | switch (E->getCastKind()) { |
14576 | 0 | default: |
14577 | 0 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
14578 | | |
14579 | 0 | case CK_IntegralToFloating: { |
14580 | 0 | APSInt IntResult; |
14581 | 0 | const FPOptions FPO = E->getFPFeaturesInEffect( |
14582 | 0 | Info.Ctx.getLangOpts()); |
14583 | 0 | return EvaluateInteger(SubExpr, IntResult, Info) && |
14584 | 0 | HandleIntToFloatCast(Info, E, FPO, SubExpr->getType(), |
14585 | 0 | IntResult, E->getType(), Result); |
14586 | 0 | } |
14587 | | |
14588 | 0 | case CK_FixedPointToFloating: { |
14589 | 0 | APFixedPoint FixResult(Info.Ctx.getFixedPointSemantics(SubExpr->getType())); |
14590 | 0 | if (!EvaluateFixedPoint(SubExpr, FixResult, Info)) |
14591 | 0 | return false; |
14592 | 0 | Result = |
14593 | 0 | FixResult.convertToFloat(Info.Ctx.getFloatTypeSemantics(E->getType())); |
14594 | 0 | return true; |
14595 | 0 | } |
14596 | | |
14597 | 0 | case CK_FloatingCast: { |
14598 | 0 | if (!Visit(SubExpr)) |
14599 | 0 | return false; |
14600 | 0 | return HandleFloatToFloatCast(Info, E, SubExpr->getType(), E->getType(), |
14601 | 0 | Result); |
14602 | 0 | } |
14603 | | |
14604 | 0 | case CK_FloatingComplexToReal: { |
14605 | 0 | ComplexValue V; |
14606 | 0 | if (!EvaluateComplex(SubExpr, V, Info)) |
14607 | 0 | return false; |
14608 | 0 | Result = V.getComplexFloatReal(); |
14609 | 0 | return true; |
14610 | 0 | } |
14611 | 0 | } |
14612 | 0 | } |
14613 | | |
14614 | | //===----------------------------------------------------------------------===// |
14615 | | // Complex Evaluation (for float and integer) |
14616 | | //===----------------------------------------------------------------------===// |
14617 | | |
14618 | | namespace { |
14619 | | class ComplexExprEvaluator |
14620 | | : public ExprEvaluatorBase<ComplexExprEvaluator> { |
14621 | | ComplexValue &Result; |
14622 | | |
14623 | | public: |
14624 | | ComplexExprEvaluator(EvalInfo &info, ComplexValue &Result) |
14625 | 0 | : ExprEvaluatorBaseTy(info), Result(Result) {} |
14626 | | |
14627 | 0 | bool Success(const APValue &V, const Expr *e) { |
14628 | 0 | Result.setFrom(V); |
14629 | 0 | return true; |
14630 | 0 | } |
14631 | | |
14632 | | bool ZeroInitialization(const Expr *E); |
14633 | | |
14634 | | //===--------------------------------------------------------------------===// |
14635 | | // Visitor Methods |
14636 | | //===--------------------------------------------------------------------===// |
14637 | | |
14638 | | bool VisitImaginaryLiteral(const ImaginaryLiteral *E); |
14639 | | bool VisitCastExpr(const CastExpr *E); |
14640 | | bool VisitBinaryOperator(const BinaryOperator *E); |
14641 | | bool VisitUnaryOperator(const UnaryOperator *E); |
14642 | | bool VisitInitListExpr(const InitListExpr *E); |
14643 | | bool VisitCallExpr(const CallExpr *E); |
14644 | | }; |
14645 | | } // end anonymous namespace |
14646 | | |
14647 | | static bool EvaluateComplex(const Expr *E, ComplexValue &Result, |
14648 | 0 | EvalInfo &Info) { |
14649 | 0 | assert(!E->isValueDependent()); |
14650 | 0 | assert(E->isPRValue() && E->getType()->isAnyComplexType()); |
14651 | 0 | return ComplexExprEvaluator(Info, Result).Visit(E); |
14652 | 0 | } |
14653 | | |
14654 | 0 | bool ComplexExprEvaluator::ZeroInitialization(const Expr *E) { |
14655 | 0 | QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType(); |
14656 | 0 | if (ElemTy->isRealFloatingType()) { |
14657 | 0 | Result.makeComplexFloat(); |
14658 | 0 | APFloat Zero = APFloat::getZero(Info.Ctx.getFloatTypeSemantics(ElemTy)); |
14659 | 0 | Result.FloatReal = Zero; |
14660 | 0 | Result.FloatImag = Zero; |
14661 | 0 | } else { |
14662 | 0 | Result.makeComplexInt(); |
14663 | 0 | APSInt Zero = Info.Ctx.MakeIntValue(0, ElemTy); |
14664 | 0 | Result.IntReal = Zero; |
14665 | 0 | Result.IntImag = Zero; |
14666 | 0 | } |
14667 | 0 | return true; |
14668 | 0 | } |
14669 | | |
14670 | 0 | bool ComplexExprEvaluator::VisitImaginaryLiteral(const ImaginaryLiteral *E) { |
14671 | 0 | const Expr* SubExpr = E->getSubExpr(); |
14672 | |
|
14673 | 0 | if (SubExpr->getType()->isRealFloatingType()) { |
14674 | 0 | Result.makeComplexFloat(); |
14675 | 0 | APFloat &Imag = Result.FloatImag; |
14676 | 0 | if (!EvaluateFloat(SubExpr, Imag, Info)) |
14677 | 0 | return false; |
14678 | | |
14679 | 0 | Result.FloatReal = APFloat(Imag.getSemantics()); |
14680 | 0 | return true; |
14681 | 0 | } else { |
14682 | 0 | assert(SubExpr->getType()->isIntegerType() && |
14683 | 0 | "Unexpected imaginary literal."); |
14684 | | |
14685 | 0 | Result.makeComplexInt(); |
14686 | 0 | APSInt &Imag = Result.IntImag; |
14687 | 0 | if (!EvaluateInteger(SubExpr, Imag, Info)) |
14688 | 0 | return false; |
14689 | | |
14690 | 0 | Result.IntReal = APSInt(Imag.getBitWidth(), !Imag.isSigned()); |
14691 | 0 | return true; |
14692 | 0 | } |
14693 | 0 | } |
14694 | | |
14695 | 0 | bool ComplexExprEvaluator::VisitCastExpr(const CastExpr *E) { |
14696 | |
|
14697 | 0 | switch (E->getCastKind()) { |
14698 | 0 | case CK_BitCast: |
14699 | 0 | case CK_BaseToDerived: |
14700 | 0 | case CK_DerivedToBase: |
14701 | 0 | case CK_UncheckedDerivedToBase: |
14702 | 0 | case CK_Dynamic: |
14703 | 0 | case CK_ToUnion: |
14704 | 0 | case CK_ArrayToPointerDecay: |
14705 | 0 | case CK_FunctionToPointerDecay: |
14706 | 0 | case CK_NullToPointer: |
14707 | 0 | case CK_NullToMemberPointer: |
14708 | 0 | case CK_BaseToDerivedMemberPointer: |
14709 | 0 | case CK_DerivedToBaseMemberPointer: |
14710 | 0 | case CK_MemberPointerToBoolean: |
14711 | 0 | case CK_ReinterpretMemberPointer: |
14712 | 0 | case CK_ConstructorConversion: |
14713 | 0 | case CK_IntegralToPointer: |
14714 | 0 | case CK_PointerToIntegral: |
14715 | 0 | case CK_PointerToBoolean: |
14716 | 0 | case CK_ToVoid: |
14717 | 0 | case CK_VectorSplat: |
14718 | 0 | case CK_IntegralCast: |
14719 | 0 | case CK_BooleanToSignedIntegral: |
14720 | 0 | case CK_IntegralToBoolean: |
14721 | 0 | case CK_IntegralToFloating: |
14722 | 0 | case CK_FloatingToIntegral: |
14723 | 0 | case CK_FloatingToBoolean: |
14724 | 0 | case CK_FloatingCast: |
14725 | 0 | case CK_CPointerToObjCPointerCast: |
14726 | 0 | case CK_BlockPointerToObjCPointerCast: |
14727 | 0 | case CK_AnyPointerToBlockPointerCast: |
14728 | 0 | case CK_ObjCObjectLValueCast: |
14729 | 0 | case CK_FloatingComplexToReal: |
14730 | 0 | case CK_FloatingComplexToBoolean: |
14731 | 0 | case CK_IntegralComplexToReal: |
14732 | 0 | case CK_IntegralComplexToBoolean: |
14733 | 0 | case CK_ARCProduceObject: |
14734 | 0 | case CK_ARCConsumeObject: |
14735 | 0 | case CK_ARCReclaimReturnedObject: |
14736 | 0 | case CK_ARCExtendBlockObject: |
14737 | 0 | case CK_CopyAndAutoreleaseBlockObject: |
14738 | 0 | case CK_BuiltinFnToFnPtr: |
14739 | 0 | case CK_ZeroToOCLOpaqueType: |
14740 | 0 | case CK_NonAtomicToAtomic: |
14741 | 0 | case CK_AddressSpaceConversion: |
14742 | 0 | case CK_IntToOCLSampler: |
14743 | 0 | case CK_FloatingToFixedPoint: |
14744 | 0 | case CK_FixedPointToFloating: |
14745 | 0 | case CK_FixedPointCast: |
14746 | 0 | case CK_FixedPointToBoolean: |
14747 | 0 | case CK_FixedPointToIntegral: |
14748 | 0 | case CK_IntegralToFixedPoint: |
14749 | 0 | case CK_MatrixCast: |
14750 | 0 | llvm_unreachable("invalid cast kind for complex value"); |
14751 | |
|
14752 | 0 | case CK_LValueToRValue: |
14753 | 0 | case CK_AtomicToNonAtomic: |
14754 | 0 | case CK_NoOp: |
14755 | 0 | case CK_LValueToRValueBitCast: |
14756 | 0 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
14757 | | |
14758 | 0 | case CK_Dependent: |
14759 | 0 | case CK_LValueBitCast: |
14760 | 0 | case CK_UserDefinedConversion: |
14761 | 0 | return Error(E); |
14762 | | |
14763 | 0 | case CK_FloatingRealToComplex: { |
14764 | 0 | APFloat &Real = Result.FloatReal; |
14765 | 0 | if (!EvaluateFloat(E->getSubExpr(), Real, Info)) |
14766 | 0 | return false; |
14767 | | |
14768 | 0 | Result.makeComplexFloat(); |
14769 | 0 | Result.FloatImag = APFloat(Real.getSemantics()); |
14770 | 0 | return true; |
14771 | 0 | } |
14772 | | |
14773 | 0 | case CK_FloatingComplexCast: { |
14774 | 0 | if (!Visit(E->getSubExpr())) |
14775 | 0 | return false; |
14776 | | |
14777 | 0 | QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
14778 | 0 | QualType From |
14779 | 0 | = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
14780 | |
|
14781 | 0 | return HandleFloatToFloatCast(Info, E, From, To, Result.FloatReal) && |
14782 | 0 | HandleFloatToFloatCast(Info, E, From, To, Result.FloatImag); |
14783 | 0 | } |
14784 | | |
14785 | 0 | case CK_FloatingComplexToIntegralComplex: { |
14786 | 0 | if (!Visit(E->getSubExpr())) |
14787 | 0 | return false; |
14788 | | |
14789 | 0 | QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
14790 | 0 | QualType From |
14791 | 0 | = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
14792 | 0 | Result.makeComplexInt(); |
14793 | 0 | return HandleFloatToIntCast(Info, E, From, Result.FloatReal, |
14794 | 0 | To, Result.IntReal) && |
14795 | 0 | HandleFloatToIntCast(Info, E, From, Result.FloatImag, |
14796 | 0 | To, Result.IntImag); |
14797 | 0 | } |
14798 | | |
14799 | 0 | case CK_IntegralRealToComplex: { |
14800 | 0 | APSInt &Real = Result.IntReal; |
14801 | 0 | if (!EvaluateInteger(E->getSubExpr(), Real, Info)) |
14802 | 0 | return false; |
14803 | | |
14804 | 0 | Result.makeComplexInt(); |
14805 | 0 | Result.IntImag = APSInt(Real.getBitWidth(), !Real.isSigned()); |
14806 | 0 | return true; |
14807 | 0 | } |
14808 | | |
14809 | 0 | case CK_IntegralComplexCast: { |
14810 | 0 | if (!Visit(E->getSubExpr())) |
14811 | 0 | return false; |
14812 | | |
14813 | 0 | QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
14814 | 0 | QualType From |
14815 | 0 | = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
14816 | |
|
14817 | 0 | Result.IntReal = HandleIntToIntCast(Info, E, To, From, Result.IntReal); |
14818 | 0 | Result.IntImag = HandleIntToIntCast(Info, E, To, From, Result.IntImag); |
14819 | 0 | return true; |
14820 | 0 | } |
14821 | | |
14822 | 0 | case CK_IntegralComplexToFloatingComplex: { |
14823 | 0 | if (!Visit(E->getSubExpr())) |
14824 | 0 | return false; |
14825 | | |
14826 | 0 | const FPOptions FPO = E->getFPFeaturesInEffect( |
14827 | 0 | Info.Ctx.getLangOpts()); |
14828 | 0 | QualType To = E->getType()->castAs<ComplexType>()->getElementType(); |
14829 | 0 | QualType From |
14830 | 0 | = E->getSubExpr()->getType()->castAs<ComplexType>()->getElementType(); |
14831 | 0 | Result.makeComplexFloat(); |
14832 | 0 | return HandleIntToFloatCast(Info, E, FPO, From, Result.IntReal, |
14833 | 0 | To, Result.FloatReal) && |
14834 | 0 | HandleIntToFloatCast(Info, E, FPO, From, Result.IntImag, |
14835 | 0 | To, Result.FloatImag); |
14836 | 0 | } |
14837 | 0 | } |
14838 | | |
14839 | 0 | llvm_unreachable("unknown cast resulting in complex value"); |
14840 | 0 | } |
14841 | | |
14842 | 0 | bool ComplexExprEvaluator::VisitBinaryOperator(const BinaryOperator *E) { |
14843 | 0 | if (E->isPtrMemOp() || E->isAssignmentOp() || E->getOpcode() == BO_Comma) |
14844 | 0 | return ExprEvaluatorBaseTy::VisitBinaryOperator(E); |
14845 | | |
14846 | | // Track whether the LHS or RHS is real at the type system level. When this is |
14847 | | // the case we can simplify our evaluation strategy. |
14848 | 0 | bool LHSReal = false, RHSReal = false; |
14849 | |
|
14850 | 0 | bool LHSOK; |
14851 | 0 | if (E->getLHS()->getType()->isRealFloatingType()) { |
14852 | 0 | LHSReal = true; |
14853 | 0 | APFloat &Real = Result.FloatReal; |
14854 | 0 | LHSOK = EvaluateFloat(E->getLHS(), Real, Info); |
14855 | 0 | if (LHSOK) { |
14856 | 0 | Result.makeComplexFloat(); |
14857 | 0 | Result.FloatImag = APFloat(Real.getSemantics()); |
14858 | 0 | } |
14859 | 0 | } else { |
14860 | 0 | LHSOK = Visit(E->getLHS()); |
14861 | 0 | } |
14862 | 0 | if (!LHSOK && !Info.noteFailure()) |
14863 | 0 | return false; |
14864 | | |
14865 | 0 | ComplexValue RHS; |
14866 | 0 | if (E->getRHS()->getType()->isRealFloatingType()) { |
14867 | 0 | RHSReal = true; |
14868 | 0 | APFloat &Real = RHS.FloatReal; |
14869 | 0 | if (!EvaluateFloat(E->getRHS(), Real, Info) || !LHSOK) |
14870 | 0 | return false; |
14871 | 0 | RHS.makeComplexFloat(); |
14872 | 0 | RHS.FloatImag = APFloat(Real.getSemantics()); |
14873 | 0 | } else if (!EvaluateComplex(E->getRHS(), RHS, Info) || !LHSOK) |
14874 | 0 | return false; |
14875 | | |
14876 | 0 | assert(!(LHSReal && RHSReal) && |
14877 | 0 | "Cannot have both operands of a complex operation be real."); |
14878 | 0 | switch (E->getOpcode()) { |
14879 | 0 | default: return Error(E); |
14880 | 0 | case BO_Add: |
14881 | 0 | if (Result.isComplexFloat()) { |
14882 | 0 | Result.getComplexFloatReal().add(RHS.getComplexFloatReal(), |
14883 | 0 | APFloat::rmNearestTiesToEven); |
14884 | 0 | if (LHSReal) |
14885 | 0 | Result.getComplexFloatImag() = RHS.getComplexFloatImag(); |
14886 | 0 | else if (!RHSReal) |
14887 | 0 | Result.getComplexFloatImag().add(RHS.getComplexFloatImag(), |
14888 | 0 | APFloat::rmNearestTiesToEven); |
14889 | 0 | } else { |
14890 | 0 | Result.getComplexIntReal() += RHS.getComplexIntReal(); |
14891 | 0 | Result.getComplexIntImag() += RHS.getComplexIntImag(); |
14892 | 0 | } |
14893 | 0 | break; |
14894 | 0 | case BO_Sub: |
14895 | 0 | if (Result.isComplexFloat()) { |
14896 | 0 | Result.getComplexFloatReal().subtract(RHS.getComplexFloatReal(), |
14897 | 0 | APFloat::rmNearestTiesToEven); |
14898 | 0 | if (LHSReal) { |
14899 | 0 | Result.getComplexFloatImag() = RHS.getComplexFloatImag(); |
14900 | 0 | Result.getComplexFloatImag().changeSign(); |
14901 | 0 | } else if (!RHSReal) { |
14902 | 0 | Result.getComplexFloatImag().subtract(RHS.getComplexFloatImag(), |
14903 | 0 | APFloat::rmNearestTiesToEven); |
14904 | 0 | } |
14905 | 0 | } else { |
14906 | 0 | Result.getComplexIntReal() -= RHS.getComplexIntReal(); |
14907 | 0 | Result.getComplexIntImag() -= RHS.getComplexIntImag(); |
14908 | 0 | } |
14909 | 0 | break; |
14910 | 0 | case BO_Mul: |
14911 | 0 | if (Result.isComplexFloat()) { |
14912 | | // This is an implementation of complex multiplication according to the |
14913 | | // constraints laid out in C11 Annex G. The implementation uses the |
14914 | | // following naming scheme: |
14915 | | // (a + ib) * (c + id) |
14916 | 0 | ComplexValue LHS = Result; |
14917 | 0 | APFloat &A = LHS.getComplexFloatReal(); |
14918 | 0 | APFloat &B = LHS.getComplexFloatImag(); |
14919 | 0 | APFloat &C = RHS.getComplexFloatReal(); |
14920 | 0 | APFloat &D = RHS.getComplexFloatImag(); |
14921 | 0 | APFloat &ResR = Result.getComplexFloatReal(); |
14922 | 0 | APFloat &ResI = Result.getComplexFloatImag(); |
14923 | 0 | if (LHSReal) { |
14924 | 0 | assert(!RHSReal && "Cannot have two real operands for a complex op!"); |
14925 | 0 | ResR = A * C; |
14926 | 0 | ResI = A * D; |
14927 | 0 | } else if (RHSReal) { |
14928 | 0 | ResR = C * A; |
14929 | 0 | ResI = C * B; |
14930 | 0 | } else { |
14931 | | // In the fully general case, we need to handle NaNs and infinities |
14932 | | // robustly. |
14933 | 0 | APFloat AC = A * C; |
14934 | 0 | APFloat BD = B * D; |
14935 | 0 | APFloat AD = A * D; |
14936 | 0 | APFloat BC = B * C; |
14937 | 0 | ResR = AC - BD; |
14938 | 0 | ResI = AD + BC; |
14939 | 0 | if (ResR.isNaN() && ResI.isNaN()) { |
14940 | 0 | bool Recalc = false; |
14941 | 0 | if (A.isInfinity() || B.isInfinity()) { |
14942 | 0 | A = APFloat::copySign( |
14943 | 0 | APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); |
14944 | 0 | B = APFloat::copySign( |
14945 | 0 | APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); |
14946 | 0 | if (C.isNaN()) |
14947 | 0 | C = APFloat::copySign(APFloat(C.getSemantics()), C); |
14948 | 0 | if (D.isNaN()) |
14949 | 0 | D = APFloat::copySign(APFloat(D.getSemantics()), D); |
14950 | 0 | Recalc = true; |
14951 | 0 | } |
14952 | 0 | if (C.isInfinity() || D.isInfinity()) { |
14953 | 0 | C = APFloat::copySign( |
14954 | 0 | APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); |
14955 | 0 | D = APFloat::copySign( |
14956 | 0 | APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); |
14957 | 0 | if (A.isNaN()) |
14958 | 0 | A = APFloat::copySign(APFloat(A.getSemantics()), A); |
14959 | 0 | if (B.isNaN()) |
14960 | 0 | B = APFloat::copySign(APFloat(B.getSemantics()), B); |
14961 | 0 | Recalc = true; |
14962 | 0 | } |
14963 | 0 | if (!Recalc && (AC.isInfinity() || BD.isInfinity() || |
14964 | 0 | AD.isInfinity() || BC.isInfinity())) { |
14965 | 0 | if (A.isNaN()) |
14966 | 0 | A = APFloat::copySign(APFloat(A.getSemantics()), A); |
14967 | 0 | if (B.isNaN()) |
14968 | 0 | B = APFloat::copySign(APFloat(B.getSemantics()), B); |
14969 | 0 | if (C.isNaN()) |
14970 | 0 | C = APFloat::copySign(APFloat(C.getSemantics()), C); |
14971 | 0 | if (D.isNaN()) |
14972 | 0 | D = APFloat::copySign(APFloat(D.getSemantics()), D); |
14973 | 0 | Recalc = true; |
14974 | 0 | } |
14975 | 0 | if (Recalc) { |
14976 | 0 | ResR = APFloat::getInf(A.getSemantics()) * (A * C - B * D); |
14977 | 0 | ResI = APFloat::getInf(A.getSemantics()) * (A * D + B * C); |
14978 | 0 | } |
14979 | 0 | } |
14980 | 0 | } |
14981 | 0 | } else { |
14982 | 0 | ComplexValue LHS = Result; |
14983 | 0 | Result.getComplexIntReal() = |
14984 | 0 | (LHS.getComplexIntReal() * RHS.getComplexIntReal() - |
14985 | 0 | LHS.getComplexIntImag() * RHS.getComplexIntImag()); |
14986 | 0 | Result.getComplexIntImag() = |
14987 | 0 | (LHS.getComplexIntReal() * RHS.getComplexIntImag() + |
14988 | 0 | LHS.getComplexIntImag() * RHS.getComplexIntReal()); |
14989 | 0 | } |
14990 | 0 | break; |
14991 | 0 | case BO_Div: |
14992 | 0 | if (Result.isComplexFloat()) { |
14993 | | // This is an implementation of complex division according to the |
14994 | | // constraints laid out in C11 Annex G. The implementation uses the |
14995 | | // following naming scheme: |
14996 | | // (a + ib) / (c + id) |
14997 | 0 | ComplexValue LHS = Result; |
14998 | 0 | APFloat &A = LHS.getComplexFloatReal(); |
14999 | 0 | APFloat &B = LHS.getComplexFloatImag(); |
15000 | 0 | APFloat &C = RHS.getComplexFloatReal(); |
15001 | 0 | APFloat &D = RHS.getComplexFloatImag(); |
15002 | 0 | APFloat &ResR = Result.getComplexFloatReal(); |
15003 | 0 | APFloat &ResI = Result.getComplexFloatImag(); |
15004 | 0 | if (RHSReal) { |
15005 | 0 | ResR = A / C; |
15006 | 0 | ResI = B / C; |
15007 | 0 | } else { |
15008 | 0 | if (LHSReal) { |
15009 | | // No real optimizations we can do here, stub out with zero. |
15010 | 0 | B = APFloat::getZero(A.getSemantics()); |
15011 | 0 | } |
15012 | 0 | int DenomLogB = 0; |
15013 | 0 | APFloat MaxCD = maxnum(abs(C), abs(D)); |
15014 | 0 | if (MaxCD.isFinite()) { |
15015 | 0 | DenomLogB = ilogb(MaxCD); |
15016 | 0 | C = scalbn(C, -DenomLogB, APFloat::rmNearestTiesToEven); |
15017 | 0 | D = scalbn(D, -DenomLogB, APFloat::rmNearestTiesToEven); |
15018 | 0 | } |
15019 | 0 | APFloat Denom = C * C + D * D; |
15020 | 0 | ResR = scalbn((A * C + B * D) / Denom, -DenomLogB, |
15021 | 0 | APFloat::rmNearestTiesToEven); |
15022 | 0 | ResI = scalbn((B * C - A * D) / Denom, -DenomLogB, |
15023 | 0 | APFloat::rmNearestTiesToEven); |
15024 | 0 | if (ResR.isNaN() && ResI.isNaN()) { |
15025 | 0 | if (Denom.isPosZero() && (!A.isNaN() || !B.isNaN())) { |
15026 | 0 | ResR = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * A; |
15027 | 0 | ResI = APFloat::getInf(ResR.getSemantics(), C.isNegative()) * B; |
15028 | 0 | } else if ((A.isInfinity() || B.isInfinity()) && C.isFinite() && |
15029 | 0 | D.isFinite()) { |
15030 | 0 | A = APFloat::copySign( |
15031 | 0 | APFloat(A.getSemantics(), A.isInfinity() ? 1 : 0), A); |
15032 | 0 | B = APFloat::copySign( |
15033 | 0 | APFloat(B.getSemantics(), B.isInfinity() ? 1 : 0), B); |
15034 | 0 | ResR = APFloat::getInf(ResR.getSemantics()) * (A * C + B * D); |
15035 | 0 | ResI = APFloat::getInf(ResI.getSemantics()) * (B * C - A * D); |
15036 | 0 | } else if (MaxCD.isInfinity() && A.isFinite() && B.isFinite()) { |
15037 | 0 | C = APFloat::copySign( |
15038 | 0 | APFloat(C.getSemantics(), C.isInfinity() ? 1 : 0), C); |
15039 | 0 | D = APFloat::copySign( |
15040 | 0 | APFloat(D.getSemantics(), D.isInfinity() ? 1 : 0), D); |
15041 | 0 | ResR = APFloat::getZero(ResR.getSemantics()) * (A * C + B * D); |
15042 | 0 | ResI = APFloat::getZero(ResI.getSemantics()) * (B * C - A * D); |
15043 | 0 | } |
15044 | 0 | } |
15045 | 0 | } |
15046 | 0 | } else { |
15047 | 0 | if (RHS.getComplexIntReal() == 0 && RHS.getComplexIntImag() == 0) |
15048 | 0 | return Error(E, diag::note_expr_divide_by_zero); |
15049 | | |
15050 | 0 | ComplexValue LHS = Result; |
15051 | 0 | APSInt Den = RHS.getComplexIntReal() * RHS.getComplexIntReal() + |
15052 | 0 | RHS.getComplexIntImag() * RHS.getComplexIntImag(); |
15053 | 0 | Result.getComplexIntReal() = |
15054 | 0 | (LHS.getComplexIntReal() * RHS.getComplexIntReal() + |
15055 | 0 | LHS.getComplexIntImag() * RHS.getComplexIntImag()) / Den; |
15056 | 0 | Result.getComplexIntImag() = |
15057 | 0 | (LHS.getComplexIntImag() * RHS.getComplexIntReal() - |
15058 | 0 | LHS.getComplexIntReal() * RHS.getComplexIntImag()) / Den; |
15059 | 0 | } |
15060 | 0 | break; |
15061 | 0 | } |
15062 | | |
15063 | 0 | return true; |
15064 | 0 | } |
15065 | | |
15066 | 0 | bool ComplexExprEvaluator::VisitUnaryOperator(const UnaryOperator *E) { |
15067 | | // Get the operand value into 'Result'. |
15068 | 0 | if (!Visit(E->getSubExpr())) |
15069 | 0 | return false; |
15070 | | |
15071 | 0 | switch (E->getOpcode()) { |
15072 | 0 | default: |
15073 | 0 | return Error(E); |
15074 | 0 | case UO_Extension: |
15075 | 0 | return true; |
15076 | 0 | case UO_Plus: |
15077 | | // The result is always just the subexpr. |
15078 | 0 | return true; |
15079 | 0 | case UO_Minus: |
15080 | 0 | if (Result.isComplexFloat()) { |
15081 | 0 | Result.getComplexFloatReal().changeSign(); |
15082 | 0 | Result.getComplexFloatImag().changeSign(); |
15083 | 0 | } |
15084 | 0 | else { |
15085 | 0 | Result.getComplexIntReal() = -Result.getComplexIntReal(); |
15086 | 0 | Result.getComplexIntImag() = -Result.getComplexIntImag(); |
15087 | 0 | } |
15088 | 0 | return true; |
15089 | 0 | case UO_Not: |
15090 | 0 | if (Result.isComplexFloat()) |
15091 | 0 | Result.getComplexFloatImag().changeSign(); |
15092 | 0 | else |
15093 | 0 | Result.getComplexIntImag() = -Result.getComplexIntImag(); |
15094 | 0 | return true; |
15095 | 0 | } |
15096 | 0 | } |
15097 | | |
15098 | 0 | bool ComplexExprEvaluator::VisitInitListExpr(const InitListExpr *E) { |
15099 | 0 | if (E->getNumInits() == 2) { |
15100 | 0 | if (E->getType()->isComplexType()) { |
15101 | 0 | Result.makeComplexFloat(); |
15102 | 0 | if (!EvaluateFloat(E->getInit(0), Result.FloatReal, Info)) |
15103 | 0 | return false; |
15104 | 0 | if (!EvaluateFloat(E->getInit(1), Result.FloatImag, Info)) |
15105 | 0 | return false; |
15106 | 0 | } else { |
15107 | 0 | Result.makeComplexInt(); |
15108 | 0 | if (!EvaluateInteger(E->getInit(0), Result.IntReal, Info)) |
15109 | 0 | return false; |
15110 | 0 | if (!EvaluateInteger(E->getInit(1), Result.IntImag, Info)) |
15111 | 0 | return false; |
15112 | 0 | } |
15113 | 0 | return true; |
15114 | 0 | } |
15115 | 0 | return ExprEvaluatorBaseTy::VisitInitListExpr(E); |
15116 | 0 | } |
15117 | | |
15118 | 0 | bool ComplexExprEvaluator::VisitCallExpr(const CallExpr *E) { |
15119 | 0 | if (!IsConstantEvaluatedBuiltinCall(E)) |
15120 | 0 | return ExprEvaluatorBaseTy::VisitCallExpr(E); |
15121 | | |
15122 | 0 | switch (E->getBuiltinCallee()) { |
15123 | 0 | case Builtin::BI__builtin_complex: |
15124 | 0 | Result.makeComplexFloat(); |
15125 | 0 | if (!EvaluateFloat(E->getArg(0), Result.FloatReal, Info)) |
15126 | 0 | return false; |
15127 | 0 | if (!EvaluateFloat(E->getArg(1), Result.FloatImag, Info)) |
15128 | 0 | return false; |
15129 | 0 | return true; |
15130 | | |
15131 | 0 | default: |
15132 | 0 | return false; |
15133 | 0 | } |
15134 | 0 | } |
15135 | | |
15136 | | //===----------------------------------------------------------------------===// |
15137 | | // Atomic expression evaluation, essentially just handling the NonAtomicToAtomic |
15138 | | // implicit conversion. |
15139 | | //===----------------------------------------------------------------------===// |
15140 | | |
15141 | | namespace { |
15142 | | class AtomicExprEvaluator : |
15143 | | public ExprEvaluatorBase<AtomicExprEvaluator> { |
15144 | | const LValue *This; |
15145 | | APValue &Result; |
15146 | | public: |
15147 | | AtomicExprEvaluator(EvalInfo &Info, const LValue *This, APValue &Result) |
15148 | 0 | : ExprEvaluatorBaseTy(Info), This(This), Result(Result) {} |
15149 | | |
15150 | 0 | bool Success(const APValue &V, const Expr *E) { |
15151 | 0 | Result = V; |
15152 | 0 | return true; |
15153 | 0 | } |
15154 | | |
15155 | 0 | bool ZeroInitialization(const Expr *E) { |
15156 | 0 | ImplicitValueInitExpr VIE( |
15157 | 0 | E->getType()->castAs<AtomicType>()->getValueType()); |
15158 | | // For atomic-qualified class (and array) types in C++, initialize the |
15159 | | // _Atomic-wrapped subobject directly, in-place. |
15160 | 0 | return This ? EvaluateInPlace(Result, Info, *This, &VIE) |
15161 | 0 | : Evaluate(Result, Info, &VIE); |
15162 | 0 | } |
15163 | | |
15164 | 0 | bool VisitCastExpr(const CastExpr *E) { |
15165 | 0 | switch (E->getCastKind()) { |
15166 | 0 | default: |
15167 | 0 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
15168 | 0 | case CK_NullToPointer: |
15169 | 0 | VisitIgnoredValue(E->getSubExpr()); |
15170 | 0 | return ZeroInitialization(E); |
15171 | 0 | case CK_NonAtomicToAtomic: |
15172 | 0 | return This ? EvaluateInPlace(Result, Info, *This, E->getSubExpr()) |
15173 | 0 | : Evaluate(Result, Info, E->getSubExpr()); |
15174 | 0 | } |
15175 | 0 | } |
15176 | | }; |
15177 | | } // end anonymous namespace |
15178 | | |
15179 | | static bool EvaluateAtomic(const Expr *E, const LValue *This, APValue &Result, |
15180 | 0 | EvalInfo &Info) { |
15181 | 0 | assert(!E->isValueDependent()); |
15182 | 0 | assert(E->isPRValue() && E->getType()->isAtomicType()); |
15183 | 0 | return AtomicExprEvaluator(Info, This, Result).Visit(E); |
15184 | 0 | } |
15185 | | |
15186 | | //===----------------------------------------------------------------------===// |
15187 | | // Void expression evaluation, primarily for a cast to void on the LHS of a |
15188 | | // comma operator |
15189 | | //===----------------------------------------------------------------------===// |
15190 | | |
15191 | | namespace { |
15192 | | class VoidExprEvaluator |
15193 | | : public ExprEvaluatorBase<VoidExprEvaluator> { |
15194 | | public: |
15195 | 0 | VoidExprEvaluator(EvalInfo &Info) : ExprEvaluatorBaseTy(Info) {} |
15196 | | |
15197 | 0 | bool Success(const APValue &V, const Expr *e) { return true; } |
15198 | | |
15199 | 0 | bool ZeroInitialization(const Expr *E) { return true; } |
15200 | | |
15201 | 0 | bool VisitCastExpr(const CastExpr *E) { |
15202 | 0 | switch (E->getCastKind()) { |
15203 | 0 | default: |
15204 | 0 | return ExprEvaluatorBaseTy::VisitCastExpr(E); |
15205 | 0 | case CK_ToVoid: |
15206 | 0 | VisitIgnoredValue(E->getSubExpr()); |
15207 | 0 | return true; |
15208 | 0 | } |
15209 | 0 | } |
15210 | | |
15211 | 0 | bool VisitCallExpr(const CallExpr *E) { |
15212 | 0 | if (!IsConstantEvaluatedBuiltinCall(E)) |
15213 | 0 | return ExprEvaluatorBaseTy::VisitCallExpr(E); |
15214 | | |
15215 | 0 | switch (E->getBuiltinCallee()) { |
15216 | 0 | case Builtin::BI__assume: |
15217 | 0 | case Builtin::BI__builtin_assume: |
15218 | | // The argument is not evaluated! |
15219 | 0 | return true; |
15220 | | |
15221 | 0 | case Builtin::BI__builtin_operator_delete: |
15222 | 0 | return HandleOperatorDeleteCall(Info, E); |
15223 | | |
15224 | 0 | default: |
15225 | 0 | return false; |
15226 | 0 | } |
15227 | 0 | } |
15228 | | |
15229 | | bool VisitCXXDeleteExpr(const CXXDeleteExpr *E); |
15230 | | }; |
15231 | | } // end anonymous namespace |
15232 | | |
15233 | 0 | bool VoidExprEvaluator::VisitCXXDeleteExpr(const CXXDeleteExpr *E) { |
15234 | | // We cannot speculatively evaluate a delete expression. |
15235 | 0 | if (Info.SpeculativeEvaluationDepth) |
15236 | 0 | return false; |
15237 | | |
15238 | 0 | FunctionDecl *OperatorDelete = E->getOperatorDelete(); |
15239 | 0 | if (!OperatorDelete->isReplaceableGlobalAllocationFunction()) { |
15240 | 0 | Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) |
15241 | 0 | << isa<CXXMethodDecl>(OperatorDelete) << OperatorDelete; |
15242 | 0 | return false; |
15243 | 0 | } |
15244 | | |
15245 | 0 | const Expr *Arg = E->getArgument(); |
15246 | |
|
15247 | 0 | LValue Pointer; |
15248 | 0 | if (!EvaluatePointer(Arg, Pointer, Info)) |
15249 | 0 | return false; |
15250 | 0 | if (Pointer.Designator.Invalid) |
15251 | 0 | return false; |
15252 | | |
15253 | | // Deleting a null pointer has no effect. |
15254 | 0 | if (Pointer.isNullPointer()) { |
15255 | | // This is the only case where we need to produce an extension warning: |
15256 | | // the only other way we can succeed is if we find a dynamic allocation, |
15257 | | // and we will have warned when we allocated it in that case. |
15258 | 0 | if (!Info.getLangOpts().CPlusPlus20) |
15259 | 0 | Info.CCEDiag(E, diag::note_constexpr_new); |
15260 | 0 | return true; |
15261 | 0 | } |
15262 | | |
15263 | 0 | std::optional<DynAlloc *> Alloc = CheckDeleteKind( |
15264 | 0 | Info, E, Pointer, E->isArrayForm() ? DynAlloc::ArrayNew : DynAlloc::New); |
15265 | 0 | if (!Alloc) |
15266 | 0 | return false; |
15267 | 0 | QualType AllocType = Pointer.Base.getDynamicAllocType(); |
15268 | | |
15269 | | // For the non-array case, the designator must be empty if the static type |
15270 | | // does not have a virtual destructor. |
15271 | 0 | if (!E->isArrayForm() && Pointer.Designator.Entries.size() != 0 && |
15272 | 0 | !hasVirtualDestructor(Arg->getType()->getPointeeType())) { |
15273 | 0 | Info.FFDiag(E, diag::note_constexpr_delete_base_nonvirt_dtor) |
15274 | 0 | << Arg->getType()->getPointeeType() << AllocType; |
15275 | 0 | return false; |
15276 | 0 | } |
15277 | | |
15278 | | // For a class type with a virtual destructor, the selected operator delete |
15279 | | // is the one looked up when building the destructor. |
15280 | 0 | if (!E->isArrayForm() && !E->isGlobalDelete()) { |
15281 | 0 | const FunctionDecl *VirtualDelete = getVirtualOperatorDelete(AllocType); |
15282 | 0 | if (VirtualDelete && |
15283 | 0 | !VirtualDelete->isReplaceableGlobalAllocationFunction()) { |
15284 | 0 | Info.FFDiag(E, diag::note_constexpr_new_non_replaceable) |
15285 | 0 | << isa<CXXMethodDecl>(VirtualDelete) << VirtualDelete; |
15286 | 0 | return false; |
15287 | 0 | } |
15288 | 0 | } |
15289 | | |
15290 | 0 | if (!HandleDestruction(Info, E->getExprLoc(), Pointer.getLValueBase(), |
15291 | 0 | (*Alloc)->Value, AllocType)) |
15292 | 0 | return false; |
15293 | | |
15294 | 0 | if (!Info.HeapAllocs.erase(Pointer.Base.dyn_cast<DynamicAllocLValue>())) { |
15295 | | // The element was already erased. This means the destructor call also |
15296 | | // deleted the object. |
15297 | | // FIXME: This probably results in undefined behavior before we get this |
15298 | | // far, and should be diagnosed elsewhere first. |
15299 | 0 | Info.FFDiag(E, diag::note_constexpr_double_delete); |
15300 | 0 | return false; |
15301 | 0 | } |
15302 | | |
15303 | 0 | return true; |
15304 | 0 | } |
15305 | | |
15306 | 0 | static bool EvaluateVoid(const Expr *E, EvalInfo &Info) { |
15307 | 0 | assert(!E->isValueDependent()); |
15308 | 0 | assert(E->isPRValue() && E->getType()->isVoidType()); |
15309 | 0 | return VoidExprEvaluator(Info).Visit(E); |
15310 | 0 | } |
15311 | | |
15312 | | //===----------------------------------------------------------------------===// |
15313 | | // Top level Expr::EvaluateAsRValue method. |
15314 | | //===----------------------------------------------------------------------===// |
15315 | | |
15316 | 14 | static bool Evaluate(APValue &Result, EvalInfo &Info, const Expr *E) { |
15317 | 14 | assert(!E->isValueDependent()); |
15318 | | // In C, function designators are not lvalues, but we evaluate them as if they |
15319 | | // are. |
15320 | 0 | QualType T = E->getType(); |
15321 | 14 | if (E->isGLValue() || T->isFunctionType()) { |
15322 | 4 | LValue LV; |
15323 | 4 | if (!EvaluateLValue(E, LV, Info)) |
15324 | 0 | return false; |
15325 | 4 | LV.moveInto(Result); |
15326 | 10 | } else if (T->isVectorType()) { |
15327 | 0 | if (!EvaluateVector(E, Result, Info)) |
15328 | 0 | return false; |
15329 | 10 | } else if (T->isIntegralOrEnumerationType()) { |
15330 | 9 | if (!IntExprEvaluator(Info, Result).Visit(E)) |
15331 | 4 | return false; |
15332 | 9 | } else if (T->hasPointerRepresentation()) { |
15333 | 1 | LValue LV; |
15334 | 1 | if (!EvaluatePointer(E, LV, Info)) |
15335 | 1 | return false; |
15336 | 0 | LV.moveInto(Result); |
15337 | 0 | } else if (T->isRealFloatingType()) { |
15338 | 0 | llvm::APFloat F(0.0); |
15339 | 0 | if (!EvaluateFloat(E, F, Info)) |
15340 | 0 | return false; |
15341 | 0 | Result = APValue(F); |
15342 | 0 | } else if (T->isAnyComplexType()) { |
15343 | 0 | ComplexValue C; |
15344 | 0 | if (!EvaluateComplex(E, C, Info)) |
15345 | 0 | return false; |
15346 | 0 | C.moveInto(Result); |
15347 | 0 | } else if (T->isFixedPointType()) { |
15348 | 0 | if (!FixedPointExprEvaluator(Info, Result).Visit(E)) return false; |
15349 | 0 | } else if (T->isMemberPointerType()) { |
15350 | 0 | MemberPtr P; |
15351 | 0 | if (!EvaluateMemberPointer(E, P, Info)) |
15352 | 0 | return false; |
15353 | 0 | P.moveInto(Result); |
15354 | 0 | return true; |
15355 | 0 | } else if (T->isArrayType()) { |
15356 | 0 | LValue LV; |
15357 | 0 | APValue &Value = |
15358 | 0 | Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); |
15359 | 0 | if (!EvaluateArray(E, LV, Value, Info)) |
15360 | 0 | return false; |
15361 | 0 | Result = Value; |
15362 | 0 | } else if (T->isRecordType()) { |
15363 | 0 | LValue LV; |
15364 | 0 | APValue &Value = |
15365 | 0 | Info.CurrentCall->createTemporary(E, T, ScopeKind::FullExpression, LV); |
15366 | 0 | if (!EvaluateRecord(E, LV, Value, Info)) |
15367 | 0 | return false; |
15368 | 0 | Result = Value; |
15369 | 0 | } else if (T->isVoidType()) { |
15370 | 0 | if (!Info.getLangOpts().CPlusPlus11) |
15371 | 0 | Info.CCEDiag(E, diag::note_constexpr_nonliteral) |
15372 | 0 | << E->getType(); |
15373 | 0 | if (!EvaluateVoid(E, Info)) |
15374 | 0 | return false; |
15375 | 0 | } else if (T->isAtomicType()) { |
15376 | 0 | QualType Unqual = T.getAtomicUnqualifiedType(); |
15377 | 0 | if (Unqual->isArrayType() || Unqual->isRecordType()) { |
15378 | 0 | LValue LV; |
15379 | 0 | APValue &Value = Info.CurrentCall->createTemporary( |
15380 | 0 | E, Unqual, ScopeKind::FullExpression, LV); |
15381 | 0 | if (!EvaluateAtomic(E, &LV, Value, Info)) |
15382 | 0 | return false; |
15383 | 0 | Result = Value; |
15384 | 0 | } else { |
15385 | 0 | if (!EvaluateAtomic(E, nullptr, Result, Info)) |
15386 | 0 | return false; |
15387 | 0 | } |
15388 | 0 | } else if (Info.getLangOpts().CPlusPlus11) { |
15389 | 0 | Info.FFDiag(E, diag::note_constexpr_nonliteral) << E->getType(); |
15390 | 0 | return false; |
15391 | 0 | } else { |
15392 | 0 | Info.FFDiag(E, diag::note_invalid_subexpr_in_const_expr); |
15393 | 0 | return false; |
15394 | 0 | } |
15395 | | |
15396 | 9 | return true; |
15397 | 14 | } |
15398 | | |
15399 | | /// EvaluateInPlace - Evaluate an expression in-place in an APValue. In some |
15400 | | /// cases, the in-place evaluation is essential, since later initializers for |
15401 | | /// an object can indirectly refer to subobjects which were initialized earlier. |
15402 | | static bool EvaluateInPlace(APValue &Result, EvalInfo &Info, const LValue &This, |
15403 | 0 | const Expr *E, bool AllowNonLiteralTypes) { |
15404 | 0 | assert(!E->isValueDependent()); |
15405 | | |
15406 | 0 | if (!AllowNonLiteralTypes && !CheckLiteralType(Info, E, &This)) |
15407 | 0 | return false; |
15408 | | |
15409 | 0 | if (E->isPRValue()) { |
15410 | | // Evaluate arrays and record types in-place, so that later initializers can |
15411 | | // refer to earlier-initialized members of the object. |
15412 | 0 | QualType T = E->getType(); |
15413 | 0 | if (T->isArrayType()) |
15414 | 0 | return EvaluateArray(E, This, Result, Info); |
15415 | 0 | else if (T->isRecordType()) |
15416 | 0 | return EvaluateRecord(E, This, Result, Info); |
15417 | 0 | else if (T->isAtomicType()) { |
15418 | 0 | QualType Unqual = T.getAtomicUnqualifiedType(); |
15419 | 0 | if (Unqual->isArrayType() || Unqual->isRecordType()) |
15420 | 0 | return EvaluateAtomic(E, &This, Result, Info); |
15421 | 0 | } |
15422 | 0 | } |
15423 | | |
15424 | | // For any other type, in-place evaluation is unimportant. |
15425 | 0 | return Evaluate(Result, Info, E); |
15426 | 0 | } |
15427 | | |
15428 | | /// EvaluateAsRValue - Try to evaluate this expression, performing an implicit |
15429 | | /// lvalue-to-rvalue cast if it is an lvalue. |
15430 | 14 | static bool EvaluateAsRValue(EvalInfo &Info, const Expr *E, APValue &Result) { |
15431 | 14 | assert(!E->isValueDependent()); |
15432 | | |
15433 | 14 | if (E->getType().isNull()) |
15434 | 0 | return false; |
15435 | | |
15436 | 14 | if (!CheckLiteralType(Info, E)) |
15437 | 0 | return false; |
15438 | | |
15439 | 14 | if (Info.EnableNewConstInterp) { |
15440 | 0 | if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, E, Result)) |
15441 | 0 | return false; |
15442 | 14 | } else { |
15443 | 14 | if (!::Evaluate(Result, Info, E)) |
15444 | 5 | return false; |
15445 | 14 | } |
15446 | | |
15447 | | // Implicit lvalue-to-rvalue cast. |
15448 | 9 | if (E->isGLValue()) { |
15449 | 4 | LValue LV; |
15450 | 4 | LV.setFrom(Info.Ctx, Result); |
15451 | 4 | if (!handleLValueToRValueConversion(Info, E, E->getType(), LV, Result)) |
15452 | 4 | return false; |
15453 | 4 | } |
15454 | | |
15455 | | // Check this core constant expression is a constant expression. |
15456 | 5 | return CheckConstantExpression(Info, E->getExprLoc(), E->getType(), Result, |
15457 | 5 | ConstantExprKind::Normal) && |
15458 | 5 | CheckMemoryLeaks(Info); |
15459 | 9 | } |
15460 | | |
15461 | | static bool FastEvaluateAsRValue(const Expr *Exp, Expr::EvalResult &Result, |
15462 | 14 | const ASTContext &Ctx, bool &IsConst) { |
15463 | | // Fast-path evaluations of integer literals, since we sometimes see files |
15464 | | // containing vast quantities of these. |
15465 | 14 | if (const IntegerLiteral *L = dyn_cast<IntegerLiteral>(Exp)) { |
15466 | 4 | Result.Val = APValue(APSInt(L->getValue(), |
15467 | 4 | L->getType()->isUnsignedIntegerType())); |
15468 | 4 | IsConst = true; |
15469 | 4 | return true; |
15470 | 4 | } |
15471 | | |
15472 | 10 | if (const auto *L = dyn_cast<CXXBoolLiteralExpr>(Exp)) { |
15473 | 0 | Result.Val = APValue(APSInt(APInt(1, L->getValue()))); |
15474 | 0 | IsConst = true; |
15475 | 0 | return true; |
15476 | 0 | } |
15477 | | |
15478 | 10 | if (const auto *CE = dyn_cast<ConstantExpr>(Exp)) { |
15479 | 0 | if (CE->hasAPValueResult()) { |
15480 | 0 | Result.Val = CE->getAPValueResult(); |
15481 | 0 | IsConst = true; |
15482 | 0 | return true; |
15483 | 0 | } |
15484 | | |
15485 | | // The SubExpr is usually just an IntegerLiteral. |
15486 | 0 | return FastEvaluateAsRValue(CE->getSubExpr(), Result, Ctx, IsConst); |
15487 | 0 | } |
15488 | | |
15489 | | // This case should be rare, but we need to check it before we check on |
15490 | | // the type below. |
15491 | 10 | if (Exp->getType().isNull()) { |
15492 | 0 | IsConst = false; |
15493 | 0 | return true; |
15494 | 0 | } |
15495 | | |
15496 | 10 | return false; |
15497 | 10 | } |
15498 | | |
15499 | | static bool hasUnacceptableSideEffect(Expr::EvalStatus &Result, |
15500 | 3 | Expr::SideEffectsKind SEK) { |
15501 | 3 | return (SEK < Expr::SE_AllowSideEffects && Result.HasSideEffects) || |
15502 | 3 | (SEK < Expr::SE_AllowUndefinedBehavior && Result.HasUndefinedBehavior); |
15503 | 3 | } |
15504 | | |
15505 | | static bool EvaluateAsRValue(const Expr *E, Expr::EvalResult &Result, |
15506 | 14 | const ASTContext &Ctx, EvalInfo &Info) { |
15507 | 14 | assert(!E->isValueDependent()); |
15508 | 0 | bool IsConst; |
15509 | 14 | if (FastEvaluateAsRValue(E, Result, Ctx, IsConst)) |
15510 | 4 | return IsConst; |
15511 | | |
15512 | 10 | return EvaluateAsRValue(Info, E, Result.Val); |
15513 | 14 | } |
15514 | | |
15515 | | static bool EvaluateAsInt(const Expr *E, Expr::EvalResult &ExprResult, |
15516 | | const ASTContext &Ctx, |
15517 | | Expr::SideEffectsKind AllowSideEffects, |
15518 | 2 | EvalInfo &Info) { |
15519 | 2 | assert(!E->isValueDependent()); |
15520 | 2 | if (!E->getType()->isIntegralOrEnumerationType()) |
15521 | 0 | return false; |
15522 | | |
15523 | 2 | if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info) || |
15524 | 2 | !ExprResult.Val.isInt() || |
15525 | 2 | hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) |
15526 | 2 | return false; |
15527 | | |
15528 | 0 | return true; |
15529 | 2 | } |
15530 | | |
15531 | | static bool EvaluateAsFixedPoint(const Expr *E, Expr::EvalResult &ExprResult, |
15532 | | const ASTContext &Ctx, |
15533 | | Expr::SideEffectsKind AllowSideEffects, |
15534 | 0 | EvalInfo &Info) { |
15535 | 0 | assert(!E->isValueDependent()); |
15536 | 0 | if (!E->getType()->isFixedPointType()) |
15537 | 0 | return false; |
15538 | | |
15539 | 0 | if (!::EvaluateAsRValue(E, ExprResult, Ctx, Info)) |
15540 | 0 | return false; |
15541 | | |
15542 | 0 | if (!ExprResult.Val.isFixedPoint() || |
15543 | 0 | hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) |
15544 | 0 | return false; |
15545 | | |
15546 | 0 | return true; |
15547 | 0 | } |
15548 | | |
15549 | | /// EvaluateAsRValue - Return true if this is a constant which we can fold using |
15550 | | /// any crazy technique (that has nothing to do with language standards) that |
15551 | | /// we want to. If this function returns true, it returns the folded constant |
15552 | | /// in Result. If this expression is a glvalue, an lvalue-to-rvalue conversion |
15553 | | /// will be applied to the result. |
15554 | | bool Expr::EvaluateAsRValue(EvalResult &Result, const ASTContext &Ctx, |
15555 | 12 | bool InConstantContext) const { |
15556 | 12 | assert(!isValueDependent() && |
15557 | 12 | "Expression evaluator can't be called on a dependent expression."); |
15558 | 0 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsRValue"); |
15559 | 12 | EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); |
15560 | 12 | Info.InConstantContext = InConstantContext; |
15561 | 12 | return ::EvaluateAsRValue(this, Result, Ctx, Info); |
15562 | 12 | } |
15563 | | |
15564 | | bool Expr::EvaluateAsBooleanCondition(bool &Result, const ASTContext &Ctx, |
15565 | 0 | bool InConstantContext) const { |
15566 | 0 | assert(!isValueDependent() && |
15567 | 0 | "Expression evaluator can't be called on a dependent expression."); |
15568 | 0 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsBooleanCondition"); |
15569 | 0 | EvalResult Scratch; |
15570 | 0 | return EvaluateAsRValue(Scratch, Ctx, InConstantContext) && |
15571 | 0 | HandleConversionToBool(Scratch.Val, Result); |
15572 | 0 | } |
15573 | | |
15574 | | bool Expr::EvaluateAsInt(EvalResult &Result, const ASTContext &Ctx, |
15575 | | SideEffectsKind AllowSideEffects, |
15576 | 2 | bool InConstantContext) const { |
15577 | 2 | assert(!isValueDependent() && |
15578 | 2 | "Expression evaluator can't be called on a dependent expression."); |
15579 | 0 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsInt"); |
15580 | 2 | EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); |
15581 | 2 | Info.InConstantContext = InConstantContext; |
15582 | 2 | return ::EvaluateAsInt(this, Result, Ctx, AllowSideEffects, Info); |
15583 | 2 | } |
15584 | | |
15585 | | bool Expr::EvaluateAsFixedPoint(EvalResult &Result, const ASTContext &Ctx, |
15586 | | SideEffectsKind AllowSideEffects, |
15587 | 0 | bool InConstantContext) const { |
15588 | 0 | assert(!isValueDependent() && |
15589 | 0 | "Expression evaluator can't be called on a dependent expression."); |
15590 | 0 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFixedPoint"); |
15591 | 0 | EvalInfo Info(Ctx, Result, EvalInfo::EM_IgnoreSideEffects); |
15592 | 0 | Info.InConstantContext = InConstantContext; |
15593 | 0 | return ::EvaluateAsFixedPoint(this, Result, Ctx, AllowSideEffects, Info); |
15594 | 0 | } |
15595 | | |
15596 | | bool Expr::EvaluateAsFloat(APFloat &Result, const ASTContext &Ctx, |
15597 | | SideEffectsKind AllowSideEffects, |
15598 | 0 | bool InConstantContext) const { |
15599 | 0 | assert(!isValueDependent() && |
15600 | 0 | "Expression evaluator can't be called on a dependent expression."); |
15601 | | |
15602 | 0 | if (!getType()->isRealFloatingType()) |
15603 | 0 | return false; |
15604 | | |
15605 | 0 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsFloat"); |
15606 | 0 | EvalResult ExprResult; |
15607 | 0 | if (!EvaluateAsRValue(ExprResult, Ctx, InConstantContext) || |
15608 | 0 | !ExprResult.Val.isFloat() || |
15609 | 0 | hasUnacceptableSideEffect(ExprResult, AllowSideEffects)) |
15610 | 0 | return false; |
15611 | | |
15612 | 0 | Result = ExprResult.Val.getFloat(); |
15613 | 0 | return true; |
15614 | 0 | } |
15615 | | |
15616 | | bool Expr::EvaluateAsLValue(EvalResult &Result, const ASTContext &Ctx, |
15617 | 0 | bool InConstantContext) const { |
15618 | 0 | assert(!isValueDependent() && |
15619 | 0 | "Expression evaluator can't be called on a dependent expression."); |
15620 | | |
15621 | 0 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsLValue"); |
15622 | 0 | EvalInfo Info(Ctx, Result, EvalInfo::EM_ConstantFold); |
15623 | 0 | Info.InConstantContext = InConstantContext; |
15624 | 0 | LValue LV; |
15625 | 0 | CheckedTemporaries CheckedTemps; |
15626 | 0 | if (!EvaluateLValue(this, LV, Info) || !Info.discardCleanups() || |
15627 | 0 | Result.HasSideEffects || |
15628 | 0 | !CheckLValueConstantExpression(Info, getExprLoc(), |
15629 | 0 | Ctx.getLValueReferenceType(getType()), LV, |
15630 | 0 | ConstantExprKind::Normal, CheckedTemps)) |
15631 | 0 | return false; |
15632 | | |
15633 | 0 | LV.moveInto(Result.Val); |
15634 | 0 | return true; |
15635 | 0 | } |
15636 | | |
15637 | | static bool EvaluateDestruction(const ASTContext &Ctx, APValue::LValueBase Base, |
15638 | | APValue DestroyedValue, QualType Type, |
15639 | | SourceLocation Loc, Expr::EvalStatus &EStatus, |
15640 | 0 | bool IsConstantDestruction) { |
15641 | 0 | EvalInfo Info(Ctx, EStatus, |
15642 | 0 | IsConstantDestruction ? EvalInfo::EM_ConstantExpression |
15643 | 0 | : EvalInfo::EM_ConstantFold); |
15644 | 0 | Info.setEvaluatingDecl(Base, DestroyedValue, |
15645 | 0 | EvalInfo::EvaluatingDeclKind::Dtor); |
15646 | 0 | Info.InConstantContext = IsConstantDestruction; |
15647 | |
|
15648 | 0 | LValue LVal; |
15649 | 0 | LVal.set(Base); |
15650 | |
|
15651 | 0 | if (!HandleDestruction(Info, Loc, Base, DestroyedValue, Type) || |
15652 | 0 | EStatus.HasSideEffects) |
15653 | 0 | return false; |
15654 | | |
15655 | 0 | if (!Info.discardCleanups()) |
15656 | 0 | llvm_unreachable("Unhandled cleanup; missing full expression marker?"); |
15657 | |
|
15658 | 0 | return true; |
15659 | 0 | } |
15660 | | |
15661 | | bool Expr::EvaluateAsConstantExpr(EvalResult &Result, const ASTContext &Ctx, |
15662 | 0 | ConstantExprKind Kind) const { |
15663 | 0 | assert(!isValueDependent() && |
15664 | 0 | "Expression evaluator can't be called on a dependent expression."); |
15665 | 0 | bool IsConst; |
15666 | 0 | if (FastEvaluateAsRValue(this, Result, Ctx, IsConst) && Result.Val.hasValue()) |
15667 | 0 | return true; |
15668 | | |
15669 | 0 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateAsConstantExpr"); |
15670 | 0 | EvalInfo::EvaluationMode EM = EvalInfo::EM_ConstantExpression; |
15671 | 0 | EvalInfo Info(Ctx, Result, EM); |
15672 | 0 | Info.InConstantContext = true; |
15673 | | |
15674 | | // The type of the object we're initializing is 'const T' for a class NTTP. |
15675 | 0 | QualType T = getType(); |
15676 | 0 | if (Kind == ConstantExprKind::ClassTemplateArgument) |
15677 | 0 | T.addConst(); |
15678 | | |
15679 | | // If we're evaluating a prvalue, fake up a MaterializeTemporaryExpr to |
15680 | | // represent the result of the evaluation. CheckConstantExpression ensures |
15681 | | // this doesn't escape. |
15682 | 0 | MaterializeTemporaryExpr BaseMTE(T, const_cast<Expr*>(this), true); |
15683 | 0 | APValue::LValueBase Base(&BaseMTE); |
15684 | 0 | Info.setEvaluatingDecl(Base, Result.Val); |
15685 | |
|
15686 | 0 | if (Info.EnableNewConstInterp) { |
15687 | 0 | if (!Info.Ctx.getInterpContext().evaluateAsRValue(Info, this, Result.Val)) |
15688 | 0 | return false; |
15689 | 0 | } else { |
15690 | 0 | LValue LVal; |
15691 | 0 | LVal.set(Base); |
15692 | | // C++23 [intro.execution]/p5 |
15693 | | // A full-expression is [...] a constant-expression |
15694 | | // So we need to make sure temporary objects are destroyed after having |
15695 | | // evaluating the expression (per C++23 [class.temporary]/p4). |
15696 | 0 | FullExpressionRAII Scope(Info); |
15697 | 0 | if (!::EvaluateInPlace(Result.Val, Info, LVal, this) || |
15698 | 0 | Result.HasSideEffects || !Scope.destroy()) |
15699 | 0 | return false; |
15700 | | |
15701 | 0 | if (!Info.discardCleanups()) |
15702 | 0 | llvm_unreachable("Unhandled cleanup; missing full expression marker?"); |
15703 | 0 | } |
15704 | | |
15705 | 0 | if (!CheckConstantExpression(Info, getExprLoc(), getStorageType(Ctx, this), |
15706 | 0 | Result.Val, Kind)) |
15707 | 0 | return false; |
15708 | 0 | if (!CheckMemoryLeaks(Info)) |
15709 | 0 | return false; |
15710 | | |
15711 | | // If this is a class template argument, it's required to have constant |
15712 | | // destruction too. |
15713 | 0 | if (Kind == ConstantExprKind::ClassTemplateArgument && |
15714 | 0 | (!EvaluateDestruction(Ctx, Base, Result.Val, T, getBeginLoc(), Result, |
15715 | 0 | true) || |
15716 | 0 | Result.HasSideEffects)) { |
15717 | | // FIXME: Prefix a note to indicate that the problem is lack of constant |
15718 | | // destruction. |
15719 | 0 | return false; |
15720 | 0 | } |
15721 | | |
15722 | 0 | return true; |
15723 | 0 | } |
15724 | | |
15725 | | bool Expr::EvaluateAsInitializer(APValue &Value, const ASTContext &Ctx, |
15726 | | const VarDecl *VD, |
15727 | | SmallVectorImpl<PartialDiagnosticAt> &Notes, |
15728 | 0 | bool IsConstantInitialization) const { |
15729 | 0 | assert(!isValueDependent() && |
15730 | 0 | "Expression evaluator can't be called on a dependent expression."); |
15731 | | |
15732 | 0 | llvm::TimeTraceScope TimeScope("EvaluateAsInitializer", [&] { |
15733 | 0 | std::string Name; |
15734 | 0 | llvm::raw_string_ostream OS(Name); |
15735 | 0 | VD->printQualifiedName(OS); |
15736 | 0 | return Name; |
15737 | 0 | }); |
15738 | |
|
15739 | 0 | Expr::EvalStatus EStatus; |
15740 | 0 | EStatus.Diag = &Notes; |
15741 | |
|
15742 | 0 | EvalInfo Info(Ctx, EStatus, |
15743 | 0 | (IsConstantInitialization && Ctx.getLangOpts().CPlusPlus) |
15744 | 0 | ? EvalInfo::EM_ConstantExpression |
15745 | 0 | : EvalInfo::EM_ConstantFold); |
15746 | 0 | Info.setEvaluatingDecl(VD, Value); |
15747 | 0 | Info.InConstantContext = IsConstantInitialization; |
15748 | |
|
15749 | 0 | if (Info.EnableNewConstInterp) { |
15750 | 0 | auto &InterpCtx = const_cast<ASTContext &>(Ctx).getInterpContext(); |
15751 | 0 | if (!InterpCtx.evaluateAsInitializer(Info, VD, Value)) |
15752 | 0 | return false; |
15753 | 0 | } else { |
15754 | 0 | LValue LVal; |
15755 | 0 | LVal.set(VD); |
15756 | |
|
15757 | 0 | { |
15758 | | // C++23 [intro.execution]/p5 |
15759 | | // A full-expression is ... an init-declarator ([dcl.decl]) or a |
15760 | | // mem-initializer. |
15761 | | // So we need to make sure temporary objects are destroyed after having |
15762 | | // evaluated the expression (per C++23 [class.temporary]/p4). |
15763 | | // |
15764 | | // FIXME: Otherwise this may break test/Modules/pr68702.cpp because the |
15765 | | // serialization code calls ParmVarDecl::getDefaultArg() which strips the |
15766 | | // outermost FullExpr, such as ExprWithCleanups. |
15767 | 0 | FullExpressionRAII Scope(Info); |
15768 | 0 | if (!EvaluateInPlace(Value, Info, LVal, this, |
15769 | 0 | /*AllowNonLiteralTypes=*/true) || |
15770 | 0 | EStatus.HasSideEffects) |
15771 | 0 | return false; |
15772 | 0 | } |
15773 | | |
15774 | | // At this point, any lifetime-extended temporaries are completely |
15775 | | // initialized. |
15776 | 0 | Info.performLifetimeExtension(); |
15777 | |
|
15778 | 0 | if (!Info.discardCleanups()) |
15779 | 0 | llvm_unreachable("Unhandled cleanup; missing full expression marker?"); |
15780 | 0 | } |
15781 | | |
15782 | 0 | SourceLocation DeclLoc = VD->getLocation(); |
15783 | 0 | QualType DeclTy = VD->getType(); |
15784 | 0 | return CheckConstantExpression(Info, DeclLoc, DeclTy, Value, |
15785 | 0 | ConstantExprKind::Normal) && |
15786 | 0 | CheckMemoryLeaks(Info); |
15787 | 0 | } |
15788 | | |
15789 | | bool VarDecl::evaluateDestruction( |
15790 | 0 | SmallVectorImpl<PartialDiagnosticAt> &Notes) const { |
15791 | 0 | Expr::EvalStatus EStatus; |
15792 | 0 | EStatus.Diag = &Notes; |
15793 | | |
15794 | | // Only treat the destruction as constant destruction if we formally have |
15795 | | // constant initialization (or are usable in a constant expression). |
15796 | 0 | bool IsConstantDestruction = hasConstantInitialization(); |
15797 | | |
15798 | | // Make a copy of the value for the destructor to mutate, if we know it. |
15799 | | // Otherwise, treat the value as default-initialized; if the destructor works |
15800 | | // anyway, then the destruction is constant (and must be essentially empty). |
15801 | 0 | APValue DestroyedValue; |
15802 | 0 | if (getEvaluatedValue() && !getEvaluatedValue()->isAbsent()) |
15803 | 0 | DestroyedValue = *getEvaluatedValue(); |
15804 | 0 | else if (!handleDefaultInitValue(getType(), DestroyedValue)) |
15805 | 0 | return false; |
15806 | | |
15807 | 0 | if (!EvaluateDestruction(getASTContext(), this, std::move(DestroyedValue), |
15808 | 0 | getType(), getLocation(), EStatus, |
15809 | 0 | IsConstantDestruction) || |
15810 | 0 | EStatus.HasSideEffects) |
15811 | 0 | return false; |
15812 | | |
15813 | 0 | ensureEvaluatedStmt()->HasConstantDestruction = true; |
15814 | 0 | return true; |
15815 | 0 | } |
15816 | | |
15817 | | /// isEvaluatable - Call EvaluateAsRValue to see if this expression can be |
15818 | | /// constant folded, but discard the result. |
15819 | 8 | bool Expr::isEvaluatable(const ASTContext &Ctx, SideEffectsKind SEK) const { |
15820 | 8 | assert(!isValueDependent() && |
15821 | 8 | "Expression evaluator can't be called on a dependent expression."); |
15822 | | |
15823 | 0 | EvalResult Result; |
15824 | 8 | return EvaluateAsRValue(Result, Ctx, /* in constant context */ true) && |
15825 | 8 | !hasUnacceptableSideEffect(Result, SEK); |
15826 | 8 | } |
15827 | | |
15828 | | APSInt Expr::EvaluateKnownConstInt(const ASTContext &Ctx, |
15829 | 0 | SmallVectorImpl<PartialDiagnosticAt> *Diag) const { |
15830 | 0 | assert(!isValueDependent() && |
15831 | 0 | "Expression evaluator can't be called on a dependent expression."); |
15832 | | |
15833 | 0 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstInt"); |
15834 | 0 | EvalResult EVResult; |
15835 | 0 | EVResult.Diag = Diag; |
15836 | 0 | EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); |
15837 | 0 | Info.InConstantContext = true; |
15838 | |
|
15839 | 0 | bool Result = ::EvaluateAsRValue(this, EVResult, Ctx, Info); |
15840 | 0 | (void)Result; |
15841 | 0 | assert(Result && "Could not evaluate expression"); |
15842 | 0 | assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); |
15843 | | |
15844 | 0 | return EVResult.Val.getInt(); |
15845 | 0 | } |
15846 | | |
15847 | | APSInt Expr::EvaluateKnownConstIntCheckOverflow( |
15848 | 4 | const ASTContext &Ctx, SmallVectorImpl<PartialDiagnosticAt> *Diag) const { |
15849 | 4 | assert(!isValueDependent() && |
15850 | 4 | "Expression evaluator can't be called on a dependent expression."); |
15851 | | |
15852 | 0 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateKnownConstIntCheckOverflow"); |
15853 | 4 | EvalResult EVResult; |
15854 | 4 | EVResult.Diag = Diag; |
15855 | 4 | EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); |
15856 | 4 | Info.InConstantContext = true; |
15857 | 4 | Info.CheckingForUndefinedBehavior = true; |
15858 | | |
15859 | 4 | bool Result = ::EvaluateAsRValue(Info, this, EVResult.Val); |
15860 | 4 | (void)Result; |
15861 | 4 | assert(Result && "Could not evaluate expression"); |
15862 | 0 | assert(EVResult.Val.isInt() && "Expression did not evaluate to integer"); |
15863 | | |
15864 | 0 | return EVResult.Val.getInt(); |
15865 | 4 | } |
15866 | | |
15867 | 0 | void Expr::EvaluateForOverflow(const ASTContext &Ctx) const { |
15868 | 0 | assert(!isValueDependent() && |
15869 | 0 | "Expression evaluator can't be called on a dependent expression."); |
15870 | | |
15871 | 0 | ExprTimeTraceScope TimeScope(this, Ctx, "EvaluateForOverflow"); |
15872 | 0 | bool IsConst; |
15873 | 0 | EvalResult EVResult; |
15874 | 0 | if (!FastEvaluateAsRValue(this, EVResult, Ctx, IsConst)) { |
15875 | 0 | EvalInfo Info(Ctx, EVResult, EvalInfo::EM_IgnoreSideEffects); |
15876 | 0 | Info.CheckingForUndefinedBehavior = true; |
15877 | 0 | (void)::EvaluateAsRValue(Info, this, EVResult.Val); |
15878 | 0 | } |
15879 | 0 | } |
15880 | | |
15881 | 0 | bool Expr::EvalResult::isGlobalLValue() const { |
15882 | 0 | assert(Val.isLValue()); |
15883 | 0 | return IsGlobalLValue(Val.getLValueBase()); |
15884 | 0 | } |
15885 | | |
15886 | | /// isIntegerConstantExpr - this recursive routine will test if an expression is |
15887 | | /// an integer constant expression. |
15888 | | |
15889 | | /// FIXME: Pass up a reason why! Invalid operation in i-c-e, division by zero, |
15890 | | /// comma, etc |
15891 | | |
15892 | | // CheckICE - This function does the fundamental ICE checking: the returned |
15893 | | // ICEDiag contains an ICEKind indicating whether the expression is an ICE, |
15894 | | // and a (possibly null) SourceLocation indicating the location of the problem. |
15895 | | // |
15896 | | // Note that to reduce code duplication, this helper does no evaluation |
15897 | | // itself; the caller checks whether the expression is evaluatable, and |
15898 | | // in the rare cases where CheckICE actually cares about the evaluated |
15899 | | // value, it calls into Evaluate. |
15900 | | |
15901 | | namespace { |
15902 | | |
15903 | | enum ICEKind { |
15904 | | /// This expression is an ICE. |
15905 | | IK_ICE, |
15906 | | /// This expression is not an ICE, but if it isn't evaluated, it's |
15907 | | /// a legal subexpression for an ICE. This return value is used to handle |
15908 | | /// the comma operator in C99 mode, and non-constant subexpressions. |
15909 | | IK_ICEIfUnevaluated, |
15910 | | /// This expression is not an ICE, and is not a legal subexpression for one. |
15911 | | IK_NotICE |
15912 | | }; |
15913 | | |
15914 | | struct ICEDiag { |
15915 | | ICEKind Kind; |
15916 | | SourceLocation Loc; |
15917 | | |
15918 | 7 | ICEDiag(ICEKind IK, SourceLocation l) : Kind(IK), Loc(l) {} |
15919 | | }; |
15920 | | |
15921 | | } |
15922 | | |
15923 | 4 | static ICEDiag NoDiag() { return ICEDiag(IK_ICE, SourceLocation()); } |
15924 | | |
15925 | 0 | static ICEDiag Worst(ICEDiag A, ICEDiag B) { return A.Kind >= B.Kind ? A : B; } |
15926 | | |
15927 | 0 | static ICEDiag CheckEvalInICE(const Expr* E, const ASTContext &Ctx) { |
15928 | 0 | Expr::EvalResult EVResult; |
15929 | 0 | Expr::EvalStatus Status; |
15930 | 0 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); |
15931 | |
|
15932 | 0 | Info.InConstantContext = true; |
15933 | 0 | if (!::EvaluateAsRValue(E, EVResult, Ctx, Info) || EVResult.HasSideEffects || |
15934 | 0 | !EVResult.Val.isInt()) |
15935 | 0 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
15936 | | |
15937 | 0 | return NoDiag(); |
15938 | 0 | } |
15939 | | |
15940 | 10 | static ICEDiag CheckICE(const Expr* E, const ASTContext &Ctx) { |
15941 | 10 | assert(!E->isValueDependent() && "Should not see value dependent exprs!"); |
15942 | 10 | if (!E->getType()->isIntegralOrEnumerationType()) |
15943 | 0 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
15944 | | |
15945 | 10 | switch (E->getStmtClass()) { |
15946 | 0 | #define ABSTRACT_STMT(Node) |
15947 | 0 | #define STMT(Node, Base) case Expr::Node##Class: |
15948 | 0 | #define EXPR(Node, Base) |
15949 | 0 | #include "clang/AST/StmtNodes.inc" |
15950 | 0 | case Expr::PredefinedExprClass: |
15951 | 0 | case Expr::FloatingLiteralClass: |
15952 | 0 | case Expr::ImaginaryLiteralClass: |
15953 | 0 | case Expr::StringLiteralClass: |
15954 | 0 | case Expr::ArraySubscriptExprClass: |
15955 | 0 | case Expr::MatrixSubscriptExprClass: |
15956 | 0 | case Expr::OMPArraySectionExprClass: |
15957 | 0 | case Expr::OMPArrayShapingExprClass: |
15958 | 0 | case Expr::OMPIteratorExprClass: |
15959 | 0 | case Expr::MemberExprClass: |
15960 | 0 | case Expr::CompoundAssignOperatorClass: |
15961 | 0 | case Expr::CompoundLiteralExprClass: |
15962 | 0 | case Expr::ExtVectorElementExprClass: |
15963 | 0 | case Expr::DesignatedInitExprClass: |
15964 | 0 | case Expr::ArrayInitLoopExprClass: |
15965 | 0 | case Expr::ArrayInitIndexExprClass: |
15966 | 0 | case Expr::NoInitExprClass: |
15967 | 0 | case Expr::DesignatedInitUpdateExprClass: |
15968 | 0 | case Expr::ImplicitValueInitExprClass: |
15969 | 0 | case Expr::ParenListExprClass: |
15970 | 0 | case Expr::VAArgExprClass: |
15971 | 0 | case Expr::AddrLabelExprClass: |
15972 | 0 | case Expr::StmtExprClass: |
15973 | 0 | case Expr::CXXMemberCallExprClass: |
15974 | 0 | case Expr::CUDAKernelCallExprClass: |
15975 | 0 | case Expr::CXXAddrspaceCastExprClass: |
15976 | 0 | case Expr::CXXDynamicCastExprClass: |
15977 | 0 | case Expr::CXXTypeidExprClass: |
15978 | 0 | case Expr::CXXUuidofExprClass: |
15979 | 0 | case Expr::MSPropertyRefExprClass: |
15980 | 0 | case Expr::MSPropertySubscriptExprClass: |
15981 | 0 | case Expr::CXXNullPtrLiteralExprClass: |
15982 | 0 | case Expr::UserDefinedLiteralClass: |
15983 | 0 | case Expr::CXXThisExprClass: |
15984 | 0 | case Expr::CXXThrowExprClass: |
15985 | 0 | case Expr::CXXNewExprClass: |
15986 | 0 | case Expr::CXXDeleteExprClass: |
15987 | 0 | case Expr::CXXPseudoDestructorExprClass: |
15988 | 0 | case Expr::UnresolvedLookupExprClass: |
15989 | 0 | case Expr::TypoExprClass: |
15990 | 0 | case Expr::RecoveryExprClass: |
15991 | 0 | case Expr::DependentScopeDeclRefExprClass: |
15992 | 0 | case Expr::CXXConstructExprClass: |
15993 | 0 | case Expr::CXXInheritedCtorInitExprClass: |
15994 | 0 | case Expr::CXXStdInitializerListExprClass: |
15995 | 0 | case Expr::CXXBindTemporaryExprClass: |
15996 | 0 | case Expr::ExprWithCleanupsClass: |
15997 | 0 | case Expr::CXXTemporaryObjectExprClass: |
15998 | 0 | case Expr::CXXUnresolvedConstructExprClass: |
15999 | 0 | case Expr::CXXDependentScopeMemberExprClass: |
16000 | 0 | case Expr::UnresolvedMemberExprClass: |
16001 | 0 | case Expr::ObjCStringLiteralClass: |
16002 | 0 | case Expr::ObjCBoxedExprClass: |
16003 | 0 | case Expr::ObjCArrayLiteralClass: |
16004 | 0 | case Expr::ObjCDictionaryLiteralClass: |
16005 | 0 | case Expr::ObjCEncodeExprClass: |
16006 | 0 | case Expr::ObjCMessageExprClass: |
16007 | 0 | case Expr::ObjCSelectorExprClass: |
16008 | 0 | case Expr::ObjCProtocolExprClass: |
16009 | 0 | case Expr::ObjCIvarRefExprClass: |
16010 | 0 | case Expr::ObjCPropertyRefExprClass: |
16011 | 0 | case Expr::ObjCSubscriptRefExprClass: |
16012 | 0 | case Expr::ObjCIsaExprClass: |
16013 | 0 | case Expr::ObjCAvailabilityCheckExprClass: |
16014 | 0 | case Expr::ShuffleVectorExprClass: |
16015 | 0 | case Expr::ConvertVectorExprClass: |
16016 | 0 | case Expr::BlockExprClass: |
16017 | 0 | case Expr::NoStmtClass: |
16018 | 0 | case Expr::OpaqueValueExprClass: |
16019 | 0 | case Expr::PackExpansionExprClass: |
16020 | 0 | case Expr::SubstNonTypeTemplateParmPackExprClass: |
16021 | 0 | case Expr::FunctionParmPackExprClass: |
16022 | 0 | case Expr::AsTypeExprClass: |
16023 | 0 | case Expr::ObjCIndirectCopyRestoreExprClass: |
16024 | 0 | case Expr::MaterializeTemporaryExprClass: |
16025 | 0 | case Expr::PseudoObjectExprClass: |
16026 | 0 | case Expr::AtomicExprClass: |
16027 | 0 | case Expr::LambdaExprClass: |
16028 | 0 | case Expr::CXXFoldExprClass: |
16029 | 0 | case Expr::CoawaitExprClass: |
16030 | 0 | case Expr::DependentCoawaitExprClass: |
16031 | 0 | case Expr::CoyieldExprClass: |
16032 | 0 | case Expr::SYCLUniqueStableNameExprClass: |
16033 | 0 | case Expr::CXXParenListInitExprClass: |
16034 | 0 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16035 | | |
16036 | 0 | case Expr::InitListExprClass: { |
16037 | | // C++03 [dcl.init]p13: If T is a scalar type, then a declaration of the |
16038 | | // form "T x = { a };" is equivalent to "T x = a;". |
16039 | | // Unless we're initializing a reference, T is a scalar as it is known to be |
16040 | | // of integral or enumeration type. |
16041 | 0 | if (E->isPRValue()) |
16042 | 0 | if (cast<InitListExpr>(E)->getNumInits() == 1) |
16043 | 0 | return CheckICE(cast<InitListExpr>(E)->getInit(0), Ctx); |
16044 | 0 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16045 | 0 | } |
16046 | | |
16047 | 0 | case Expr::SizeOfPackExprClass: |
16048 | 0 | case Expr::GNUNullExprClass: |
16049 | 0 | case Expr::SourceLocExprClass: |
16050 | 0 | return NoDiag(); |
16051 | | |
16052 | 0 | case Expr::SubstNonTypeTemplateParmExprClass: |
16053 | 0 | return |
16054 | 0 | CheckICE(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(), Ctx); |
16055 | | |
16056 | 0 | case Expr::ConstantExprClass: |
16057 | 0 | return CheckICE(cast<ConstantExpr>(E)->getSubExpr(), Ctx); |
16058 | | |
16059 | 0 | case Expr::ParenExprClass: |
16060 | 0 | return CheckICE(cast<ParenExpr>(E)->getSubExpr(), Ctx); |
16061 | 0 | case Expr::GenericSelectionExprClass: |
16062 | 0 | return CheckICE(cast<GenericSelectionExpr>(E)->getResultExpr(), Ctx); |
16063 | 4 | case Expr::IntegerLiteralClass: |
16064 | 4 | case Expr::FixedPointLiteralClass: |
16065 | 4 | case Expr::CharacterLiteralClass: |
16066 | 4 | case Expr::ObjCBoolLiteralExprClass: |
16067 | 4 | case Expr::CXXBoolLiteralExprClass: |
16068 | 4 | case Expr::CXXScalarValueInitExprClass: |
16069 | 4 | case Expr::TypeTraitExprClass: |
16070 | 4 | case Expr::ConceptSpecializationExprClass: |
16071 | 4 | case Expr::RequiresExprClass: |
16072 | 4 | case Expr::ArrayTypeTraitExprClass: |
16073 | 4 | case Expr::ExpressionTraitExprClass: |
16074 | 4 | case Expr::CXXNoexceptExprClass: |
16075 | 4 | return NoDiag(); |
16076 | 0 | case Expr::CallExprClass: |
16077 | 0 | case Expr::CXXOperatorCallExprClass: { |
16078 | | // C99 6.6/3 allows function calls within unevaluated subexpressions of |
16079 | | // constant expressions, but they can never be ICEs because an ICE cannot |
16080 | | // contain an operand of (pointer to) function type. |
16081 | 0 | const CallExpr *CE = cast<CallExpr>(E); |
16082 | 0 | if (CE->getBuiltinCallee()) |
16083 | 0 | return CheckEvalInICE(E, Ctx); |
16084 | 0 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16085 | 0 | } |
16086 | 0 | case Expr::CXXRewrittenBinaryOperatorClass: |
16087 | 0 | return CheckICE(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(), |
16088 | 0 | Ctx); |
16089 | 3 | case Expr::DeclRefExprClass: { |
16090 | 3 | const NamedDecl *D = cast<DeclRefExpr>(E)->getDecl(); |
16091 | 3 | if (isa<EnumConstantDecl>(D)) |
16092 | 0 | return NoDiag(); |
16093 | | |
16094 | | // C++ and OpenCL (FIXME: spec reference?) allow reading const-qualified |
16095 | | // integer variables in constant expressions: |
16096 | | // |
16097 | | // C++ 7.1.5.1p2 |
16098 | | // A variable of non-volatile const-qualified integral or enumeration |
16099 | | // type initialized by an ICE can be used in ICEs. |
16100 | | // |
16101 | | // We sometimes use CheckICE to check the C++98 rules in C++11 mode. In |
16102 | | // that mode, use of reference variables should not be allowed. |
16103 | 3 | const VarDecl *VD = dyn_cast<VarDecl>(D); |
16104 | 3 | if (VD && VD->isUsableInConstantExpressions(Ctx) && |
16105 | 3 | !VD->getType()->isReferenceType()) |
16106 | 0 | return NoDiag(); |
16107 | | |
16108 | 3 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16109 | 3 | } |
16110 | 1 | case Expr::UnaryOperatorClass: { |
16111 | 1 | const UnaryOperator *Exp = cast<UnaryOperator>(E); |
16112 | 1 | switch (Exp->getOpcode()) { |
16113 | 0 | case UO_PostInc: |
16114 | 0 | case UO_PostDec: |
16115 | 0 | case UO_PreInc: |
16116 | 0 | case UO_PreDec: |
16117 | 0 | case UO_AddrOf: |
16118 | 0 | case UO_Deref: |
16119 | 0 | case UO_Coawait: |
16120 | | // C99 6.6/3 allows increment and decrement within unevaluated |
16121 | | // subexpressions of constant expressions, but they can never be ICEs |
16122 | | // because an ICE cannot contain an lvalue operand. |
16123 | 0 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16124 | 0 | case UO_Extension: |
16125 | 0 | case UO_LNot: |
16126 | 0 | case UO_Plus: |
16127 | 1 | case UO_Minus: |
16128 | 1 | case UO_Not: |
16129 | 1 | case UO_Real: |
16130 | 1 | case UO_Imag: |
16131 | 1 | return CheckICE(Exp->getSubExpr(), Ctx); |
16132 | 1 | } |
16133 | 0 | llvm_unreachable("invalid unary operator class"); |
16134 | 0 | } |
16135 | 0 | case Expr::OffsetOfExprClass: { |
16136 | | // Note that per C99, offsetof must be an ICE. And AFAIK, using |
16137 | | // EvaluateAsRValue matches the proposed gcc behavior for cases like |
16138 | | // "offsetof(struct s{int x[4];}, x[1.0])". This doesn't affect |
16139 | | // compliance: we should warn earlier for offsetof expressions with |
16140 | | // array subscripts that aren't ICEs, and if the array subscripts |
16141 | | // are ICEs, the value of the offsetof must be an integer constant. |
16142 | 0 | return CheckEvalInICE(E, Ctx); |
16143 | 0 | } |
16144 | 0 | case Expr::UnaryExprOrTypeTraitExprClass: { |
16145 | 0 | const UnaryExprOrTypeTraitExpr *Exp = cast<UnaryExprOrTypeTraitExpr>(E); |
16146 | 0 | if ((Exp->getKind() == UETT_SizeOf) && |
16147 | 0 | Exp->getTypeOfArgument()->isVariableArrayType()) |
16148 | 0 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16149 | 0 | return NoDiag(); |
16150 | 0 | } |
16151 | 0 | case Expr::BinaryOperatorClass: { |
16152 | 0 | const BinaryOperator *Exp = cast<BinaryOperator>(E); |
16153 | 0 | switch (Exp->getOpcode()) { |
16154 | 0 | case BO_PtrMemD: |
16155 | 0 | case BO_PtrMemI: |
16156 | 0 | case BO_Assign: |
16157 | 0 | case BO_MulAssign: |
16158 | 0 | case BO_DivAssign: |
16159 | 0 | case BO_RemAssign: |
16160 | 0 | case BO_AddAssign: |
16161 | 0 | case BO_SubAssign: |
16162 | 0 | case BO_ShlAssign: |
16163 | 0 | case BO_ShrAssign: |
16164 | 0 | case BO_AndAssign: |
16165 | 0 | case BO_XorAssign: |
16166 | 0 | case BO_OrAssign: |
16167 | | // C99 6.6/3 allows assignments within unevaluated subexpressions of |
16168 | | // constant expressions, but they can never be ICEs because an ICE cannot |
16169 | | // contain an lvalue operand. |
16170 | 0 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16171 | | |
16172 | 0 | case BO_Mul: |
16173 | 0 | case BO_Div: |
16174 | 0 | case BO_Rem: |
16175 | 0 | case BO_Add: |
16176 | 0 | case BO_Sub: |
16177 | 0 | case BO_Shl: |
16178 | 0 | case BO_Shr: |
16179 | 0 | case BO_LT: |
16180 | 0 | case BO_GT: |
16181 | 0 | case BO_LE: |
16182 | 0 | case BO_GE: |
16183 | 0 | case BO_EQ: |
16184 | 0 | case BO_NE: |
16185 | 0 | case BO_And: |
16186 | 0 | case BO_Xor: |
16187 | 0 | case BO_Or: |
16188 | 0 | case BO_Comma: |
16189 | 0 | case BO_Cmp: { |
16190 | 0 | ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); |
16191 | 0 | ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); |
16192 | 0 | if (Exp->getOpcode() == BO_Div || |
16193 | 0 | Exp->getOpcode() == BO_Rem) { |
16194 | | // EvaluateAsRValue gives an error for undefined Div/Rem, so make sure |
16195 | | // we don't evaluate one. |
16196 | 0 | if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) { |
16197 | 0 | llvm::APSInt REval = Exp->getRHS()->EvaluateKnownConstInt(Ctx); |
16198 | 0 | if (REval == 0) |
16199 | 0 | return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); |
16200 | 0 | if (REval.isSigned() && REval.isAllOnes()) { |
16201 | 0 | llvm::APSInt LEval = Exp->getLHS()->EvaluateKnownConstInt(Ctx); |
16202 | 0 | if (LEval.isMinSignedValue()) |
16203 | 0 | return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); |
16204 | 0 | } |
16205 | 0 | } |
16206 | 0 | } |
16207 | 0 | if (Exp->getOpcode() == BO_Comma) { |
16208 | 0 | if (Ctx.getLangOpts().C99) { |
16209 | | // C99 6.6p3 introduces a strange edge case: comma can be in an ICE |
16210 | | // if it isn't evaluated. |
16211 | 0 | if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICE) |
16212 | 0 | return ICEDiag(IK_ICEIfUnevaluated, E->getBeginLoc()); |
16213 | 0 | } else { |
16214 | | // In both C89 and C++, commas in ICEs are illegal. |
16215 | 0 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16216 | 0 | } |
16217 | 0 | } |
16218 | 0 | return Worst(LHSResult, RHSResult); |
16219 | 0 | } |
16220 | 0 | case BO_LAnd: |
16221 | 0 | case BO_LOr: { |
16222 | 0 | ICEDiag LHSResult = CheckICE(Exp->getLHS(), Ctx); |
16223 | 0 | ICEDiag RHSResult = CheckICE(Exp->getRHS(), Ctx); |
16224 | 0 | if (LHSResult.Kind == IK_ICE && RHSResult.Kind == IK_ICEIfUnevaluated) { |
16225 | | // Rare case where the RHS has a comma "side-effect"; we need |
16226 | | // to actually check the condition to see whether the side |
16227 | | // with the comma is evaluated. |
16228 | 0 | if ((Exp->getOpcode() == BO_LAnd) != |
16229 | 0 | (Exp->getLHS()->EvaluateKnownConstInt(Ctx) == 0)) |
16230 | 0 | return RHSResult; |
16231 | 0 | return NoDiag(); |
16232 | 0 | } |
16233 | | |
16234 | 0 | return Worst(LHSResult, RHSResult); |
16235 | 0 | } |
16236 | 0 | } |
16237 | 0 | llvm_unreachable("invalid binary operator kind"); |
16238 | 0 | } |
16239 | 2 | case Expr::ImplicitCastExprClass: |
16240 | 2 | case Expr::CStyleCastExprClass: |
16241 | 2 | case Expr::CXXFunctionalCastExprClass: |
16242 | 2 | case Expr::CXXStaticCastExprClass: |
16243 | 2 | case Expr::CXXReinterpretCastExprClass: |
16244 | 2 | case Expr::CXXConstCastExprClass: |
16245 | 2 | case Expr::ObjCBridgedCastExprClass: { |
16246 | 2 | const Expr *SubExpr = cast<CastExpr>(E)->getSubExpr(); |
16247 | 2 | if (isa<ExplicitCastExpr>(E)) { |
16248 | 0 | if (const FloatingLiteral *FL |
16249 | 0 | = dyn_cast<FloatingLiteral>(SubExpr->IgnoreParenImpCasts())) { |
16250 | 0 | unsigned DestWidth = Ctx.getIntWidth(E->getType()); |
16251 | 0 | bool DestSigned = E->getType()->isSignedIntegerOrEnumerationType(); |
16252 | 0 | APSInt IgnoredVal(DestWidth, !DestSigned); |
16253 | 0 | bool Ignored; |
16254 | | // If the value does not fit in the destination type, the behavior is |
16255 | | // undefined, so we are not required to treat it as a constant |
16256 | | // expression. |
16257 | 0 | if (FL->getValue().convertToInteger(IgnoredVal, |
16258 | 0 | llvm::APFloat::rmTowardZero, |
16259 | 0 | &Ignored) & APFloat::opInvalidOp) |
16260 | 0 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16261 | 0 | return NoDiag(); |
16262 | 0 | } |
16263 | 0 | } |
16264 | 2 | switch (cast<CastExpr>(E)->getCastKind()) { |
16265 | 2 | case CK_LValueToRValue: |
16266 | 2 | case CK_AtomicToNonAtomic: |
16267 | 2 | case CK_NonAtomicToAtomic: |
16268 | 2 | case CK_NoOp: |
16269 | 2 | case CK_IntegralToBoolean: |
16270 | 2 | case CK_IntegralCast: |
16271 | 2 | return CheckICE(SubExpr, Ctx); |
16272 | 0 | default: |
16273 | 0 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16274 | 2 | } |
16275 | 2 | } |
16276 | 0 | case Expr::BinaryConditionalOperatorClass: { |
16277 | 0 | const BinaryConditionalOperator *Exp = cast<BinaryConditionalOperator>(E); |
16278 | 0 | ICEDiag CommonResult = CheckICE(Exp->getCommon(), Ctx); |
16279 | 0 | if (CommonResult.Kind == IK_NotICE) return CommonResult; |
16280 | 0 | ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); |
16281 | 0 | if (FalseResult.Kind == IK_NotICE) return FalseResult; |
16282 | 0 | if (CommonResult.Kind == IK_ICEIfUnevaluated) return CommonResult; |
16283 | 0 | if (FalseResult.Kind == IK_ICEIfUnevaluated && |
16284 | 0 | Exp->getCommon()->EvaluateKnownConstInt(Ctx) != 0) return NoDiag(); |
16285 | 0 | return FalseResult; |
16286 | 0 | } |
16287 | 0 | case Expr::ConditionalOperatorClass: { |
16288 | 0 | const ConditionalOperator *Exp = cast<ConditionalOperator>(E); |
16289 | | // If the condition (ignoring parens) is a __builtin_constant_p call, |
16290 | | // then only the true side is actually considered in an integer constant |
16291 | | // expression, and it is fully evaluated. This is an important GNU |
16292 | | // extension. See GCC PR38377 for discussion. |
16293 | 0 | if (const CallExpr *CallCE |
16294 | 0 | = dyn_cast<CallExpr>(Exp->getCond()->IgnoreParenCasts())) |
16295 | 0 | if (CallCE->getBuiltinCallee() == Builtin::BI__builtin_constant_p) |
16296 | 0 | return CheckEvalInICE(E, Ctx); |
16297 | 0 | ICEDiag CondResult = CheckICE(Exp->getCond(), Ctx); |
16298 | 0 | if (CondResult.Kind == IK_NotICE) |
16299 | 0 | return CondResult; |
16300 | | |
16301 | 0 | ICEDiag TrueResult = CheckICE(Exp->getTrueExpr(), Ctx); |
16302 | 0 | ICEDiag FalseResult = CheckICE(Exp->getFalseExpr(), Ctx); |
16303 | |
|
16304 | 0 | if (TrueResult.Kind == IK_NotICE) |
16305 | 0 | return TrueResult; |
16306 | 0 | if (FalseResult.Kind == IK_NotICE) |
16307 | 0 | return FalseResult; |
16308 | 0 | if (CondResult.Kind == IK_ICEIfUnevaluated) |
16309 | 0 | return CondResult; |
16310 | 0 | if (TrueResult.Kind == IK_ICE && FalseResult.Kind == IK_ICE) |
16311 | 0 | return NoDiag(); |
16312 | | // Rare case where the diagnostics depend on which side is evaluated |
16313 | | // Note that if we get here, CondResult is 0, and at least one of |
16314 | | // TrueResult and FalseResult is non-zero. |
16315 | 0 | if (Exp->getCond()->EvaluateKnownConstInt(Ctx) == 0) |
16316 | 0 | return FalseResult; |
16317 | 0 | return TrueResult; |
16318 | 0 | } |
16319 | 0 | case Expr::CXXDefaultArgExprClass: |
16320 | 0 | return CheckICE(cast<CXXDefaultArgExpr>(E)->getExpr(), Ctx); |
16321 | 0 | case Expr::CXXDefaultInitExprClass: |
16322 | 0 | return CheckICE(cast<CXXDefaultInitExpr>(E)->getExpr(), Ctx); |
16323 | 0 | case Expr::ChooseExprClass: { |
16324 | 0 | return CheckICE(cast<ChooseExpr>(E)->getChosenSubExpr(), Ctx); |
16325 | 0 | } |
16326 | 0 | case Expr::BuiltinBitCastExprClass: { |
16327 | 0 | if (!checkBitCastConstexprEligibility(nullptr, Ctx, cast<CastExpr>(E))) |
16328 | 0 | return ICEDiag(IK_NotICE, E->getBeginLoc()); |
16329 | 0 | return CheckICE(cast<CastExpr>(E)->getSubExpr(), Ctx); |
16330 | 0 | } |
16331 | 10 | } |
16332 | | |
16333 | 0 | llvm_unreachable("Invalid StmtClass!"); |
16334 | 0 | } |
16335 | | |
16336 | | /// Evaluate an expression as a C++11 integral constant expression. |
16337 | | static bool EvaluateCPlusPlus11IntegralConstantExpr(const ASTContext &Ctx, |
16338 | | const Expr *E, |
16339 | | llvm::APSInt *Value, |
16340 | 0 | SourceLocation *Loc) { |
16341 | 0 | if (!E->getType()->isIntegralOrUnscopedEnumerationType()) { |
16342 | 0 | if (Loc) *Loc = E->getExprLoc(); |
16343 | 0 | return false; |
16344 | 0 | } |
16345 | | |
16346 | 0 | APValue Result; |
16347 | 0 | if (!E->isCXX11ConstantExpr(Ctx, &Result, Loc)) |
16348 | 0 | return false; |
16349 | | |
16350 | 0 | if (!Result.isInt()) { |
16351 | 0 | if (Loc) *Loc = E->getExprLoc(); |
16352 | 0 | return false; |
16353 | 0 | } |
16354 | | |
16355 | 0 | if (Value) *Value = Result.getInt(); |
16356 | 0 | return true; |
16357 | 0 | } |
16358 | | |
16359 | | bool Expr::isIntegerConstantExpr(const ASTContext &Ctx, |
16360 | 7 | SourceLocation *Loc) const { |
16361 | 7 | assert(!isValueDependent() && |
16362 | 7 | "Expression evaluator can't be called on a dependent expression."); |
16363 | | |
16364 | 0 | ExprTimeTraceScope TimeScope(this, Ctx, "isIntegerConstantExpr"); |
16365 | | |
16366 | 7 | if (Ctx.getLangOpts().CPlusPlus11) |
16367 | 0 | return EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, nullptr, Loc); |
16368 | | |
16369 | 7 | ICEDiag D = CheckICE(this, Ctx); |
16370 | 7 | if (D.Kind != IK_ICE) { |
16371 | 3 | if (Loc) *Loc = D.Loc; |
16372 | 3 | return false; |
16373 | 3 | } |
16374 | 4 | return true; |
16375 | 7 | } |
16376 | | |
16377 | | std::optional<llvm::APSInt> |
16378 | 0 | Expr::getIntegerConstantExpr(const ASTContext &Ctx, SourceLocation *Loc) const { |
16379 | 0 | if (isValueDependent()) { |
16380 | | // Expression evaluator can't succeed on a dependent expression. |
16381 | 0 | return std::nullopt; |
16382 | 0 | } |
16383 | | |
16384 | 0 | APSInt Value; |
16385 | |
|
16386 | 0 | if (Ctx.getLangOpts().CPlusPlus11) { |
16387 | 0 | if (EvaluateCPlusPlus11IntegralConstantExpr(Ctx, this, &Value, Loc)) |
16388 | 0 | return Value; |
16389 | 0 | return std::nullopt; |
16390 | 0 | } |
16391 | | |
16392 | 0 | if (!isIntegerConstantExpr(Ctx, Loc)) |
16393 | 0 | return std::nullopt; |
16394 | | |
16395 | | // The only possible side-effects here are due to UB discovered in the |
16396 | | // evaluation (for instance, INT_MAX + 1). In such a case, we are still |
16397 | | // required to treat the expression as an ICE, so we produce the folded |
16398 | | // value. |
16399 | 0 | EvalResult ExprResult; |
16400 | 0 | Expr::EvalStatus Status; |
16401 | 0 | EvalInfo Info(Ctx, Status, EvalInfo::EM_IgnoreSideEffects); |
16402 | 0 | Info.InConstantContext = true; |
16403 | |
|
16404 | 0 | if (!::EvaluateAsInt(this, ExprResult, Ctx, SE_AllowSideEffects, Info)) |
16405 | 0 | llvm_unreachable("ICE cannot be evaluated!"); |
16406 | |
|
16407 | 0 | return ExprResult.Val.getInt(); |
16408 | 0 | } |
16409 | | |
16410 | 0 | bool Expr::isCXX98IntegralConstantExpr(const ASTContext &Ctx) const { |
16411 | 0 | assert(!isValueDependent() && |
16412 | 0 | "Expression evaluator can't be called on a dependent expression."); |
16413 | | |
16414 | 0 | return CheckICE(this, Ctx).Kind == IK_ICE; |
16415 | 0 | } |
16416 | | |
16417 | | bool Expr::isCXX11ConstantExpr(const ASTContext &Ctx, APValue *Result, |
16418 | 0 | SourceLocation *Loc) const { |
16419 | 0 | assert(!isValueDependent() && |
16420 | 0 | "Expression evaluator can't be called on a dependent expression."); |
16421 | | |
16422 | | // We support this checking in C++98 mode in order to diagnose compatibility |
16423 | | // issues. |
16424 | 0 | assert(Ctx.getLangOpts().CPlusPlus); |
16425 | | |
16426 | | // Build evaluation settings. |
16427 | 0 | Expr::EvalStatus Status; |
16428 | 0 | SmallVector<PartialDiagnosticAt, 8> Diags; |
16429 | 0 | Status.Diag = &Diags; |
16430 | 0 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); |
16431 | |
|
16432 | 0 | APValue Scratch; |
16433 | 0 | bool IsConstExpr = |
16434 | 0 | ::EvaluateAsRValue(Info, this, Result ? *Result : Scratch) && |
16435 | | // FIXME: We don't produce a diagnostic for this, but the callers that |
16436 | | // call us on arbitrary full-expressions should generally not care. |
16437 | 0 | Info.discardCleanups() && !Status.HasSideEffects; |
16438 | |
|
16439 | 0 | if (!Diags.empty()) { |
16440 | 0 | IsConstExpr = false; |
16441 | 0 | if (Loc) *Loc = Diags[0].first; |
16442 | 0 | } else if (!IsConstExpr) { |
16443 | | // FIXME: This shouldn't happen. |
16444 | 0 | if (Loc) *Loc = getExprLoc(); |
16445 | 0 | } |
16446 | |
|
16447 | 0 | return IsConstExpr; |
16448 | 0 | } |
16449 | | |
16450 | | bool Expr::EvaluateWithSubstitution(APValue &Value, ASTContext &Ctx, |
16451 | | const FunctionDecl *Callee, |
16452 | | ArrayRef<const Expr*> Args, |
16453 | 0 | const Expr *This) const { |
16454 | 0 | assert(!isValueDependent() && |
16455 | 0 | "Expression evaluator can't be called on a dependent expression."); |
16456 | | |
16457 | 0 | llvm::TimeTraceScope TimeScope("EvaluateWithSubstitution", [&] { |
16458 | 0 | std::string Name; |
16459 | 0 | llvm::raw_string_ostream OS(Name); |
16460 | 0 | Callee->getNameForDiagnostic(OS, Ctx.getPrintingPolicy(), |
16461 | 0 | /*Qualified=*/true); |
16462 | 0 | return Name; |
16463 | 0 | }); |
16464 | |
|
16465 | 0 | Expr::EvalStatus Status; |
16466 | 0 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpressionUnevaluated); |
16467 | 0 | Info.InConstantContext = true; |
16468 | |
|
16469 | 0 | LValue ThisVal; |
16470 | 0 | const LValue *ThisPtr = nullptr; |
16471 | 0 | if (This) { |
16472 | 0 | #ifndef NDEBUG |
16473 | 0 | auto *MD = dyn_cast<CXXMethodDecl>(Callee); |
16474 | 0 | assert(MD && "Don't provide `this` for non-methods."); |
16475 | 0 | assert(MD->isImplicitObjectMemberFunction() && |
16476 | 0 | "Don't provide `this` for methods without an implicit object."); |
16477 | 0 | #endif |
16478 | 0 | if (!This->isValueDependent() && |
16479 | 0 | EvaluateObjectArgument(Info, This, ThisVal) && |
16480 | 0 | !Info.EvalStatus.HasSideEffects) |
16481 | 0 | ThisPtr = &ThisVal; |
16482 | | |
16483 | | // Ignore any side-effects from a failed evaluation. This is safe because |
16484 | | // they can't interfere with any other argument evaluation. |
16485 | 0 | Info.EvalStatus.HasSideEffects = false; |
16486 | 0 | } |
16487 | | |
16488 | 0 | CallRef Call = Info.CurrentCall->createCall(Callee); |
16489 | 0 | for (ArrayRef<const Expr*>::iterator I = Args.begin(), E = Args.end(); |
16490 | 0 | I != E; ++I) { |
16491 | 0 | unsigned Idx = I - Args.begin(); |
16492 | 0 | if (Idx >= Callee->getNumParams()) |
16493 | 0 | break; |
16494 | 0 | const ParmVarDecl *PVD = Callee->getParamDecl(Idx); |
16495 | 0 | if ((*I)->isValueDependent() || |
16496 | 0 | !EvaluateCallArg(PVD, *I, Call, Info) || |
16497 | 0 | Info.EvalStatus.HasSideEffects) { |
16498 | | // If evaluation fails, throw away the argument entirely. |
16499 | 0 | if (APValue *Slot = Info.getParamSlot(Call, PVD)) |
16500 | 0 | *Slot = APValue(); |
16501 | 0 | } |
16502 | | |
16503 | | // Ignore any side-effects from a failed evaluation. This is safe because |
16504 | | // they can't interfere with any other argument evaluation. |
16505 | 0 | Info.EvalStatus.HasSideEffects = false; |
16506 | 0 | } |
16507 | | |
16508 | | // Parameter cleanups happen in the caller and are not part of this |
16509 | | // evaluation. |
16510 | 0 | Info.discardCleanups(); |
16511 | 0 | Info.EvalStatus.HasSideEffects = false; |
16512 | | |
16513 | | // Build fake call to Callee. |
16514 | 0 | CallStackFrame Frame(Info, Callee->getLocation(), Callee, ThisPtr, This, |
16515 | 0 | Call); |
16516 | | // FIXME: Missing ExprWithCleanups in enable_if conditions? |
16517 | 0 | FullExpressionRAII Scope(Info); |
16518 | 0 | return Evaluate(Value, Info, this) && Scope.destroy() && |
16519 | 0 | !Info.EvalStatus.HasSideEffects; |
16520 | 0 | } |
16521 | | |
16522 | | bool Expr::isPotentialConstantExpr(const FunctionDecl *FD, |
16523 | | SmallVectorImpl< |
16524 | 0 | PartialDiagnosticAt> &Diags) { |
16525 | | // FIXME: It would be useful to check constexpr function templates, but at the |
16526 | | // moment the constant expression evaluator cannot cope with the non-rigorous |
16527 | | // ASTs which we build for dependent expressions. |
16528 | 0 | if (FD->isDependentContext()) |
16529 | 0 | return true; |
16530 | | |
16531 | 0 | llvm::TimeTraceScope TimeScope("isPotentialConstantExpr", [&] { |
16532 | 0 | std::string Name; |
16533 | 0 | llvm::raw_string_ostream OS(Name); |
16534 | 0 | FD->getNameForDiagnostic(OS, FD->getASTContext().getPrintingPolicy(), |
16535 | 0 | /*Qualified=*/true); |
16536 | 0 | return Name; |
16537 | 0 | }); |
16538 | |
|
16539 | 0 | Expr::EvalStatus Status; |
16540 | 0 | Status.Diag = &Diags; |
16541 | |
|
16542 | 0 | EvalInfo Info(FD->getASTContext(), Status, EvalInfo::EM_ConstantExpression); |
16543 | 0 | Info.InConstantContext = true; |
16544 | 0 | Info.CheckingPotentialConstantExpression = true; |
16545 | | |
16546 | | // The constexpr VM attempts to compile all methods to bytecode here. |
16547 | 0 | if (Info.EnableNewConstInterp) { |
16548 | 0 | Info.Ctx.getInterpContext().isPotentialConstantExpr(Info, FD); |
16549 | 0 | return Diags.empty(); |
16550 | 0 | } |
16551 | | |
16552 | 0 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
16553 | 0 | const CXXRecordDecl *RD = MD ? MD->getParent()->getCanonicalDecl() : nullptr; |
16554 | | |
16555 | | // Fabricate an arbitrary expression on the stack and pretend that it |
16556 | | // is a temporary being used as the 'this' pointer. |
16557 | 0 | LValue This; |
16558 | 0 | ImplicitValueInitExpr VIE(RD ? Info.Ctx.getRecordType(RD) : Info.Ctx.IntTy); |
16559 | 0 | This.set({&VIE, Info.CurrentCall->Index}); |
16560 | |
|
16561 | 0 | ArrayRef<const Expr*> Args; |
16562 | |
|
16563 | 0 | APValue Scratch; |
16564 | 0 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) { |
16565 | | // Evaluate the call as a constant initializer, to allow the construction |
16566 | | // of objects of non-literal types. |
16567 | 0 | Info.setEvaluatingDecl(This.getLValueBase(), Scratch); |
16568 | 0 | HandleConstructorCall(&VIE, This, Args, CD, Info, Scratch); |
16569 | 0 | } else { |
16570 | 0 | SourceLocation Loc = FD->getLocation(); |
16571 | 0 | HandleFunctionCall( |
16572 | 0 | Loc, FD, (MD && MD->isImplicitObjectMemberFunction()) ? &This : nullptr, |
16573 | 0 | &VIE, Args, CallRef(), FD->getBody(), Info, Scratch, |
16574 | 0 | /*ResultSlot=*/nullptr); |
16575 | 0 | } |
16576 | |
|
16577 | 0 | return Diags.empty(); |
16578 | 0 | } |
16579 | | |
16580 | | bool Expr::isPotentialConstantExprUnevaluated(Expr *E, |
16581 | | const FunctionDecl *FD, |
16582 | | SmallVectorImpl< |
16583 | 0 | PartialDiagnosticAt> &Diags) { |
16584 | 0 | assert(!E->isValueDependent() && |
16585 | 0 | "Expression evaluator can't be called on a dependent expression."); |
16586 | | |
16587 | 0 | Expr::EvalStatus Status; |
16588 | 0 | Status.Diag = &Diags; |
16589 | |
|
16590 | 0 | EvalInfo Info(FD->getASTContext(), Status, |
16591 | 0 | EvalInfo::EM_ConstantExpressionUnevaluated); |
16592 | 0 | Info.InConstantContext = true; |
16593 | 0 | Info.CheckingPotentialConstantExpression = true; |
16594 | | |
16595 | | // Fabricate a call stack frame to give the arguments a plausible cover story. |
16596 | 0 | CallStackFrame Frame(Info, SourceLocation(), FD, /*This=*/nullptr, |
16597 | 0 | /*CallExpr=*/nullptr, CallRef()); |
16598 | |
|
16599 | 0 | APValue ResultScratch; |
16600 | 0 | Evaluate(ResultScratch, Info, E); |
16601 | 0 | return Diags.empty(); |
16602 | 0 | } |
16603 | | |
16604 | | bool Expr::tryEvaluateObjectSize(uint64_t &Result, ASTContext &Ctx, |
16605 | 0 | unsigned Type) const { |
16606 | 0 | if (!getType()->isPointerType()) |
16607 | 0 | return false; |
16608 | | |
16609 | 0 | Expr::EvalStatus Status; |
16610 | 0 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); |
16611 | 0 | return tryEvaluateBuiltinObjectSize(this, Type, Info, Result); |
16612 | 0 | } |
16613 | | |
16614 | | static bool EvaluateBuiltinStrLen(const Expr *E, uint64_t &Result, |
16615 | 0 | EvalInfo &Info) { |
16616 | 0 | if (!E->getType()->hasPointerRepresentation() || !E->isPRValue()) |
16617 | 0 | return false; |
16618 | | |
16619 | 0 | LValue String; |
16620 | |
|
16621 | 0 | if (!EvaluatePointer(E, String, Info)) |
16622 | 0 | return false; |
16623 | | |
16624 | 0 | QualType CharTy = E->getType()->getPointeeType(); |
16625 | | |
16626 | | // Fast path: if it's a string literal, search the string value. |
16627 | 0 | if (const StringLiteral *S = dyn_cast_or_null<StringLiteral>( |
16628 | 0 | String.getLValueBase().dyn_cast<const Expr *>())) { |
16629 | 0 | StringRef Str = S->getBytes(); |
16630 | 0 | int64_t Off = String.Offset.getQuantity(); |
16631 | 0 | if (Off >= 0 && (uint64_t)Off <= (uint64_t)Str.size() && |
16632 | 0 | S->getCharByteWidth() == 1 && |
16633 | | // FIXME: Add fast-path for wchar_t too. |
16634 | 0 | Info.Ctx.hasSameUnqualifiedType(CharTy, Info.Ctx.CharTy)) { |
16635 | 0 | Str = Str.substr(Off); |
16636 | |
|
16637 | 0 | StringRef::size_type Pos = Str.find(0); |
16638 | 0 | if (Pos != StringRef::npos) |
16639 | 0 | Str = Str.substr(0, Pos); |
16640 | |
|
16641 | 0 | Result = Str.size(); |
16642 | 0 | return true; |
16643 | 0 | } |
16644 | | |
16645 | | // Fall through to slow path. |
16646 | 0 | } |
16647 | | |
16648 | | // Slow path: scan the bytes of the string looking for the terminating 0. |
16649 | 0 | for (uint64_t Strlen = 0; /**/; ++Strlen) { |
16650 | 0 | APValue Char; |
16651 | 0 | if (!handleLValueToRValueConversion(Info, E, CharTy, String, Char) || |
16652 | 0 | !Char.isInt()) |
16653 | 0 | return false; |
16654 | 0 | if (!Char.getInt()) { |
16655 | 0 | Result = Strlen; |
16656 | 0 | return true; |
16657 | 0 | } |
16658 | 0 | if (!HandleLValueArrayAdjustment(Info, E, String, CharTy, 1)) |
16659 | 0 | return false; |
16660 | 0 | } |
16661 | 0 | } |
16662 | | |
16663 | | bool Expr::EvaluateCharRangeAsString(std::string &Result, |
16664 | | const Expr *SizeExpression, |
16665 | | const Expr *PtrExpression, ASTContext &Ctx, |
16666 | 0 | EvalResult &Status) const { |
16667 | 0 | LValue String; |
16668 | 0 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantExpression); |
16669 | 0 | Info.InConstantContext = true; |
16670 | |
|
16671 | 0 | FullExpressionRAII Scope(Info); |
16672 | 0 | APSInt SizeValue; |
16673 | 0 | if (!::EvaluateInteger(SizeExpression, SizeValue, Info)) |
16674 | 0 | return false; |
16675 | | |
16676 | 0 | int64_t Size = SizeValue.getExtValue(); |
16677 | |
|
16678 | 0 | if (!::EvaluatePointer(PtrExpression, String, Info)) |
16679 | 0 | return false; |
16680 | | |
16681 | 0 | QualType CharTy = PtrExpression->getType()->getPointeeType(); |
16682 | 0 | for (int64_t I = 0; I < Size; ++I) { |
16683 | 0 | APValue Char; |
16684 | 0 | if (!handleLValueToRValueConversion(Info, PtrExpression, CharTy, String, |
16685 | 0 | Char)) |
16686 | 0 | return false; |
16687 | | |
16688 | 0 | APSInt C = Char.getInt(); |
16689 | 0 | Result.push_back(static_cast<char>(C.getExtValue())); |
16690 | 0 | if (!HandleLValueArrayAdjustment(Info, PtrExpression, String, CharTy, 1)) |
16691 | 0 | return false; |
16692 | 0 | } |
16693 | 0 | if (!Scope.destroy()) |
16694 | 0 | return false; |
16695 | | |
16696 | 0 | if (!CheckMemoryLeaks(Info)) |
16697 | 0 | return false; |
16698 | | |
16699 | 0 | return true; |
16700 | 0 | } |
16701 | | |
16702 | 0 | bool Expr::tryEvaluateStrLen(uint64_t &Result, ASTContext &Ctx) const { |
16703 | 0 | Expr::EvalStatus Status; |
16704 | 0 | EvalInfo Info(Ctx, Status, EvalInfo::EM_ConstantFold); |
16705 | 0 | return EvaluateBuiltinStrLen(this, Result, Info); |
16706 | 0 | } |