/src/llvm-project/clang/lib/Analysis/CFG.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- CFG.cpp - Classes for representing and building CFGs ---------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file defines the CFG and CFGBuilder classes for representing and |
10 | | // building Control-Flow Graphs (CFGs) from ASTs. |
11 | | // |
12 | | //===----------------------------------------------------------------------===// |
13 | | |
14 | | #include "clang/Analysis/CFG.h" |
15 | | #include "clang/AST/ASTContext.h" |
16 | | #include "clang/AST/Attr.h" |
17 | | #include "clang/AST/Decl.h" |
18 | | #include "clang/AST/DeclBase.h" |
19 | | #include "clang/AST/DeclCXX.h" |
20 | | #include "clang/AST/DeclGroup.h" |
21 | | #include "clang/AST/Expr.h" |
22 | | #include "clang/AST/ExprCXX.h" |
23 | | #include "clang/AST/OperationKinds.h" |
24 | | #include "clang/AST/PrettyPrinter.h" |
25 | | #include "clang/AST/Stmt.h" |
26 | | #include "clang/AST/StmtCXX.h" |
27 | | #include "clang/AST/StmtObjC.h" |
28 | | #include "clang/AST/StmtVisitor.h" |
29 | | #include "clang/AST/Type.h" |
30 | | #include "clang/Analysis/ConstructionContext.h" |
31 | | #include "clang/Analysis/Support/BumpVector.h" |
32 | | #include "clang/Basic/Builtins.h" |
33 | | #include "clang/Basic/ExceptionSpecificationType.h" |
34 | | #include "clang/Basic/JsonSupport.h" |
35 | | #include "clang/Basic/LLVM.h" |
36 | | #include "clang/Basic/LangOptions.h" |
37 | | #include "clang/Basic/SourceLocation.h" |
38 | | #include "clang/Basic/Specifiers.h" |
39 | | #include "llvm/ADT/APInt.h" |
40 | | #include "llvm/ADT/APSInt.h" |
41 | | #include "llvm/ADT/ArrayRef.h" |
42 | | #include "llvm/ADT/DenseMap.h" |
43 | | #include "llvm/ADT/STLExtras.h" |
44 | | #include "llvm/ADT/SetVector.h" |
45 | | #include "llvm/ADT/SmallPtrSet.h" |
46 | | #include "llvm/ADT/SmallVector.h" |
47 | | #include "llvm/Support/Allocator.h" |
48 | | #include "llvm/Support/Casting.h" |
49 | | #include "llvm/Support/Compiler.h" |
50 | | #include "llvm/Support/DOTGraphTraits.h" |
51 | | #include "llvm/Support/ErrorHandling.h" |
52 | | #include "llvm/Support/Format.h" |
53 | | #include "llvm/Support/GraphWriter.h" |
54 | | #include "llvm/Support/SaveAndRestore.h" |
55 | | #include "llvm/Support/raw_ostream.h" |
56 | | #include <cassert> |
57 | | #include <memory> |
58 | | #include <optional> |
59 | | #include <string> |
60 | | #include <tuple> |
61 | | #include <utility> |
62 | | #include <vector> |
63 | | |
64 | | using namespace clang; |
65 | | |
66 | 0 | static SourceLocation GetEndLoc(Decl *D) { |
67 | 0 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) |
68 | 0 | if (Expr *Ex = VD->getInit()) |
69 | 0 | return Ex->getSourceRange().getEnd(); |
70 | 0 | return D->getLocation(); |
71 | 0 | } |
72 | | |
73 | | /// Returns true on constant values based around a single IntegerLiteral. |
74 | | /// Allow for use of parentheses, integer casts, and negative signs. |
75 | | /// FIXME: it would be good to unify this function with |
76 | | /// getIntegerLiteralSubexpressionValue at some point given the similarity |
77 | | /// between the functions. |
78 | | |
79 | 0 | static bool IsIntegerLiteralConstantExpr(const Expr *E) { |
80 | | // Allow parentheses |
81 | 0 | E = E->IgnoreParens(); |
82 | | |
83 | | // Allow conversions to different integer kind. |
84 | 0 | if (const auto *CE = dyn_cast<CastExpr>(E)) { |
85 | 0 | if (CE->getCastKind() != CK_IntegralCast) |
86 | 0 | return false; |
87 | 0 | E = CE->getSubExpr(); |
88 | 0 | } |
89 | | |
90 | | // Allow negative numbers. |
91 | 0 | if (const auto *UO = dyn_cast<UnaryOperator>(E)) { |
92 | 0 | if (UO->getOpcode() != UO_Minus) |
93 | 0 | return false; |
94 | 0 | E = UO->getSubExpr(); |
95 | 0 | } |
96 | | |
97 | 0 | return isa<IntegerLiteral>(E); |
98 | 0 | } |
99 | | |
100 | | /// Helper for tryNormalizeBinaryOperator. Attempts to extract an IntegerLiteral |
101 | | /// constant expression or EnumConstantDecl from the given Expr. If it fails, |
102 | | /// returns nullptr. |
103 | 0 | static const Expr *tryTransformToIntOrEnumConstant(const Expr *E) { |
104 | 0 | E = E->IgnoreParens(); |
105 | 0 | if (IsIntegerLiteralConstantExpr(E)) |
106 | 0 | return E; |
107 | 0 | if (auto *DR = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) |
108 | 0 | return isa<EnumConstantDecl>(DR->getDecl()) ? DR : nullptr; |
109 | 0 | return nullptr; |
110 | 0 | } |
111 | | |
112 | | /// Tries to interpret a binary operator into `Expr Op NumExpr` form, if |
113 | | /// NumExpr is an integer literal or an enum constant. |
114 | | /// |
115 | | /// If this fails, at least one of the returned DeclRefExpr or Expr will be |
116 | | /// null. |
117 | | static std::tuple<const Expr *, BinaryOperatorKind, const Expr *> |
118 | 0 | tryNormalizeBinaryOperator(const BinaryOperator *B) { |
119 | 0 | BinaryOperatorKind Op = B->getOpcode(); |
120 | |
|
121 | 0 | const Expr *MaybeDecl = B->getLHS(); |
122 | 0 | const Expr *Constant = tryTransformToIntOrEnumConstant(B->getRHS()); |
123 | | // Expr looked like `0 == Foo` instead of `Foo == 0` |
124 | 0 | if (Constant == nullptr) { |
125 | | // Flip the operator |
126 | 0 | if (Op == BO_GT) |
127 | 0 | Op = BO_LT; |
128 | 0 | else if (Op == BO_GE) |
129 | 0 | Op = BO_LE; |
130 | 0 | else if (Op == BO_LT) |
131 | 0 | Op = BO_GT; |
132 | 0 | else if (Op == BO_LE) |
133 | 0 | Op = BO_GE; |
134 | |
|
135 | 0 | MaybeDecl = B->getRHS(); |
136 | 0 | Constant = tryTransformToIntOrEnumConstant(B->getLHS()); |
137 | 0 | } |
138 | |
|
139 | 0 | return std::make_tuple(MaybeDecl, Op, Constant); |
140 | 0 | } |
141 | | |
142 | | /// For an expression `x == Foo && x == Bar`, this determines whether the |
143 | | /// `Foo` and `Bar` are either of the same enumeration type, or both integer |
144 | | /// literals. |
145 | | /// |
146 | | /// It's an error to pass this arguments that are not either IntegerLiterals |
147 | | /// or DeclRefExprs (that have decls of type EnumConstantDecl) |
148 | 0 | static bool areExprTypesCompatible(const Expr *E1, const Expr *E2) { |
149 | | // User intent isn't clear if they're mixing int literals with enum |
150 | | // constants. |
151 | 0 | if (isa<DeclRefExpr>(E1) != isa<DeclRefExpr>(E2)) |
152 | 0 | return false; |
153 | | |
154 | | // Integer literal comparisons, regardless of literal type, are acceptable. |
155 | 0 | if (!isa<DeclRefExpr>(E1)) |
156 | 0 | return true; |
157 | | |
158 | | // IntegerLiterals are handled above and only EnumConstantDecls are expected |
159 | | // beyond this point |
160 | 0 | assert(isa<DeclRefExpr>(E1) && isa<DeclRefExpr>(E2)); |
161 | 0 | auto *Decl1 = cast<DeclRefExpr>(E1)->getDecl(); |
162 | 0 | auto *Decl2 = cast<DeclRefExpr>(E2)->getDecl(); |
163 | |
|
164 | 0 | assert(isa<EnumConstantDecl>(Decl1) && isa<EnumConstantDecl>(Decl2)); |
165 | 0 | const DeclContext *DC1 = Decl1->getDeclContext(); |
166 | 0 | const DeclContext *DC2 = Decl2->getDeclContext(); |
167 | |
|
168 | 0 | assert(isa<EnumDecl>(DC1) && isa<EnumDecl>(DC2)); |
169 | 0 | return DC1 == DC2; |
170 | 0 | } |
171 | | |
172 | | namespace { |
173 | | |
174 | | class CFGBuilder; |
175 | | |
176 | | /// The CFG builder uses a recursive algorithm to build the CFG. When |
177 | | /// we process an expression, sometimes we know that we must add the |
178 | | /// subexpressions as block-level expressions. For example: |
179 | | /// |
180 | | /// exp1 || exp2 |
181 | | /// |
182 | | /// When processing the '||' expression, we know that exp1 and exp2 |
183 | | /// need to be added as block-level expressions, even though they |
184 | | /// might not normally need to be. AddStmtChoice records this |
185 | | /// contextual information. If AddStmtChoice is 'NotAlwaysAdd', then |
186 | | /// the builder has an option not to add a subexpression as a |
187 | | /// block-level expression. |
188 | | class AddStmtChoice { |
189 | | public: |
190 | | enum Kind { NotAlwaysAdd = 0, AlwaysAdd = 1 }; |
191 | | |
192 | 0 | AddStmtChoice(Kind a_kind = NotAlwaysAdd) : kind(a_kind) {} |
193 | | |
194 | | bool alwaysAdd(CFGBuilder &builder, |
195 | | const Stmt *stmt) const; |
196 | | |
197 | | /// Return a copy of this object, except with the 'always-add' bit |
198 | | /// set as specified. |
199 | 0 | AddStmtChoice withAlwaysAdd(bool alwaysAdd) const { |
200 | 0 | return AddStmtChoice(alwaysAdd ? AlwaysAdd : NotAlwaysAdd); |
201 | 0 | } |
202 | | |
203 | | private: |
204 | | Kind kind; |
205 | | }; |
206 | | |
207 | | /// LocalScope - Node in tree of local scopes created for C++ implicit |
208 | | /// destructor calls generation. It contains list of automatic variables |
209 | | /// declared in the scope and link to position in previous scope this scope |
210 | | /// began in. |
211 | | /// |
212 | | /// The process of creating local scopes is as follows: |
213 | | /// - Init CFGBuilder::ScopePos with invalid position (equivalent for null), |
214 | | /// - Before processing statements in scope (e.g. CompoundStmt) create |
215 | | /// LocalScope object using CFGBuilder::ScopePos as link to previous scope |
216 | | /// and set CFGBuilder::ScopePos to the end of new scope, |
217 | | /// - On every occurrence of VarDecl increase CFGBuilder::ScopePos if it points |
218 | | /// at this VarDecl, |
219 | | /// - For every normal (without jump) end of scope add to CFGBlock destructors |
220 | | /// for objects in the current scope, |
221 | | /// - For every jump add to CFGBlock destructors for objects |
222 | | /// between CFGBuilder::ScopePos and local scope position saved for jump |
223 | | /// target. Thanks to C++ restrictions on goto jumps we can be sure that |
224 | | /// jump target position will be on the path to root from CFGBuilder::ScopePos |
225 | | /// (adding any variable that doesn't need constructor to be called to |
226 | | /// LocalScope can break this assumption), |
227 | | /// |
228 | | class LocalScope { |
229 | | public: |
230 | | using AutomaticVarsTy = BumpVector<VarDecl *>; |
231 | | |
232 | | /// const_iterator - Iterates local scope backwards and jumps to previous |
233 | | /// scope on reaching the beginning of currently iterated scope. |
234 | | class const_iterator { |
235 | | const LocalScope* Scope = nullptr; |
236 | | |
237 | | /// VarIter is guaranteed to be greater then 0 for every valid iterator. |
238 | | /// Invalid iterator (with null Scope) has VarIter equal to 0. |
239 | | unsigned VarIter = 0; |
240 | | |
241 | | public: |
242 | | /// Create invalid iterator. Dereferencing invalid iterator is not allowed. |
243 | | /// Incrementing invalid iterator is allowed and will result in invalid |
244 | | /// iterator. |
245 | 0 | const_iterator() = default; |
246 | | |
247 | | /// Create valid iterator. In case when S.Prev is an invalid iterator and |
248 | | /// I is equal to 0, this will create invalid iterator. |
249 | | const_iterator(const LocalScope& S, unsigned I) |
250 | 0 | : Scope(&S), VarIter(I) { |
251 | | // Iterator to "end" of scope is not allowed. Handle it by going up |
252 | | // in scopes tree possibly up to invalid iterator in the root. |
253 | 0 | if (VarIter == 0 && Scope) |
254 | 0 | *this = Scope->Prev; |
255 | 0 | } |
256 | | |
257 | 0 | VarDecl *const* operator->() const { |
258 | 0 | assert(Scope && "Dereferencing invalid iterator is not allowed"); |
259 | 0 | assert(VarIter != 0 && "Iterator has invalid value of VarIter member"); |
260 | 0 | return &Scope->Vars[VarIter - 1]; |
261 | 0 | } |
262 | | |
263 | 0 | const VarDecl *getFirstVarInScope() const { |
264 | 0 | assert(Scope && "Dereferencing invalid iterator is not allowed"); |
265 | 0 | assert(VarIter != 0 && "Iterator has invalid value of VarIter member"); |
266 | 0 | return Scope->Vars[0]; |
267 | 0 | } |
268 | | |
269 | 0 | VarDecl *operator*() const { |
270 | 0 | return *this->operator->(); |
271 | 0 | } |
272 | | |
273 | 0 | const_iterator &operator++() { |
274 | 0 | if (!Scope) |
275 | 0 | return *this; |
276 | | |
277 | 0 | assert(VarIter != 0 && "Iterator has invalid value of VarIter member"); |
278 | 0 | --VarIter; |
279 | 0 | if (VarIter == 0) |
280 | 0 | *this = Scope->Prev; |
281 | 0 | return *this; |
282 | 0 | } |
283 | 0 | const_iterator operator++(int) { |
284 | 0 | const_iterator P = *this; |
285 | 0 | ++*this; |
286 | 0 | return P; |
287 | 0 | } |
288 | | |
289 | 0 | bool operator==(const const_iterator &rhs) const { |
290 | 0 | return Scope == rhs.Scope && VarIter == rhs.VarIter; |
291 | 0 | } |
292 | 0 | bool operator!=(const const_iterator &rhs) const { |
293 | 0 | return !(*this == rhs); |
294 | 0 | } |
295 | | |
296 | 0 | explicit operator bool() const { |
297 | 0 | return *this != const_iterator(); |
298 | 0 | } |
299 | | |
300 | | int distance(const_iterator L); |
301 | | const_iterator shared_parent(const_iterator L); |
302 | 0 | bool pointsToFirstDeclaredVar() { return VarIter == 1; } |
303 | 0 | bool inSameLocalScope(const_iterator rhs) { return Scope == rhs.Scope; } |
304 | | }; |
305 | | |
306 | | private: |
307 | | BumpVectorContext ctx; |
308 | | |
309 | | /// Automatic variables in order of declaration. |
310 | | AutomaticVarsTy Vars; |
311 | | |
312 | | /// Iterator to variable in previous scope that was declared just before |
313 | | /// begin of this scope. |
314 | | const_iterator Prev; |
315 | | |
316 | | public: |
317 | | /// Constructs empty scope linked to previous scope in specified place. |
318 | | LocalScope(BumpVectorContext ctx, const_iterator P) |
319 | 0 | : ctx(std::move(ctx)), Vars(this->ctx, 4), Prev(P) {} |
320 | | |
321 | | /// Begin of scope in direction of CFG building (backwards). |
322 | 0 | const_iterator begin() const { return const_iterator(*this, Vars.size()); } |
323 | | |
324 | 0 | void addVar(VarDecl *VD) { |
325 | 0 | Vars.push_back(VD, ctx); |
326 | 0 | } |
327 | | }; |
328 | | |
329 | | } // namespace |
330 | | |
331 | | /// distance - Calculates distance from this to L. L must be reachable from this |
332 | | /// (with use of ++ operator). Cost of calculating the distance is linear w.r.t. |
333 | | /// number of scopes between this and L. |
334 | 0 | int LocalScope::const_iterator::distance(LocalScope::const_iterator L) { |
335 | 0 | int D = 0; |
336 | 0 | const_iterator F = *this; |
337 | 0 | while (F.Scope != L.Scope) { |
338 | 0 | assert(F != const_iterator() && |
339 | 0 | "L iterator is not reachable from F iterator."); |
340 | 0 | D += F.VarIter; |
341 | 0 | F = F.Scope->Prev; |
342 | 0 | } |
343 | 0 | D += F.VarIter - L.VarIter; |
344 | 0 | return D; |
345 | 0 | } |
346 | | |
347 | | /// Calculates the closest parent of this iterator |
348 | | /// that is in a scope reachable through the parents of L. |
349 | | /// I.e. when using 'goto' from this to L, the lifetime of all variables |
350 | | /// between this and shared_parent(L) end. |
351 | | LocalScope::const_iterator |
352 | 0 | LocalScope::const_iterator::shared_parent(LocalScope::const_iterator L) { |
353 | | // one of iterators is not valid (we are not in scope), so common |
354 | | // parent is const_iterator() (i.e. sentinel). |
355 | 0 | if ((*this == const_iterator()) || (L == const_iterator())) { |
356 | 0 | return const_iterator(); |
357 | 0 | } |
358 | | |
359 | 0 | const_iterator F = *this; |
360 | 0 | if (F.inSameLocalScope(L)) { |
361 | | // Iterators are in the same scope, get common subset of variables. |
362 | 0 | F.VarIter = std::min(F.VarIter, L.VarIter); |
363 | 0 | return F; |
364 | 0 | } |
365 | | |
366 | 0 | llvm::SmallDenseMap<const LocalScope *, unsigned, 4> ScopesOfL; |
367 | 0 | while (true) { |
368 | 0 | ScopesOfL.try_emplace(L.Scope, L.VarIter); |
369 | 0 | if (L == const_iterator()) |
370 | 0 | break; |
371 | 0 | L = L.Scope->Prev; |
372 | 0 | } |
373 | |
|
374 | 0 | while (true) { |
375 | 0 | if (auto LIt = ScopesOfL.find(F.Scope); LIt != ScopesOfL.end()) { |
376 | | // Get common subset of variables in given scope |
377 | 0 | F.VarIter = std::min(F.VarIter, LIt->getSecond()); |
378 | 0 | return F; |
379 | 0 | } |
380 | 0 | assert(F != const_iterator() && |
381 | 0 | "L iterator is not reachable from F iterator."); |
382 | 0 | F = F.Scope->Prev; |
383 | 0 | } |
384 | 0 | } |
385 | | |
386 | | namespace { |
387 | | |
388 | | /// Structure for specifying position in CFG during its build process. It |
389 | | /// consists of CFGBlock that specifies position in CFG and |
390 | | /// LocalScope::const_iterator that specifies position in LocalScope graph. |
391 | | struct BlockScopePosPair { |
392 | | CFGBlock *block = nullptr; |
393 | | LocalScope::const_iterator scopePosition; |
394 | | |
395 | 0 | BlockScopePosPair() = default; |
396 | | BlockScopePosPair(CFGBlock *b, LocalScope::const_iterator scopePos) |
397 | 0 | : block(b), scopePosition(scopePos) {} |
398 | | }; |
399 | | |
400 | | /// TryResult - a class representing a variant over the values |
401 | | /// 'true', 'false', or 'unknown'. This is returned by tryEvaluateBool, |
402 | | /// and is used by the CFGBuilder to decide if a branch condition |
403 | | /// can be decided up front during CFG construction. |
404 | | class TryResult { |
405 | | int X = -1; |
406 | | |
407 | | public: |
408 | 0 | TryResult() = default; |
409 | 0 | TryResult(bool b) : X(b ? 1 : 0) {} |
410 | | |
411 | 0 | bool isTrue() const { return X == 1; } |
412 | 0 | bool isFalse() const { return X == 0; } |
413 | 0 | bool isKnown() const { return X >= 0; } |
414 | | |
415 | 0 | void negate() { |
416 | 0 | assert(isKnown()); |
417 | 0 | X ^= 0x1; |
418 | 0 | } |
419 | | }; |
420 | | |
421 | | } // namespace |
422 | | |
423 | 0 | static TryResult bothKnownTrue(TryResult R1, TryResult R2) { |
424 | 0 | if (!R1.isKnown() || !R2.isKnown()) |
425 | 0 | return TryResult(); |
426 | 0 | return TryResult(R1.isTrue() && R2.isTrue()); |
427 | 0 | } |
428 | | |
429 | | namespace { |
430 | | |
431 | | class reverse_children { |
432 | | llvm::SmallVector<Stmt *, 12> childrenBuf; |
433 | | ArrayRef<Stmt *> children; |
434 | | |
435 | | public: |
436 | | reverse_children(Stmt *S); |
437 | | |
438 | | using iterator = ArrayRef<Stmt *>::reverse_iterator; |
439 | | |
440 | 0 | iterator begin() const { return children.rbegin(); } |
441 | 0 | iterator end() const { return children.rend(); } |
442 | | }; |
443 | | |
444 | | } // namespace |
445 | | |
446 | 0 | reverse_children::reverse_children(Stmt *S) { |
447 | 0 | if (CallExpr *CE = dyn_cast<CallExpr>(S)) { |
448 | 0 | children = CE->getRawSubExprs(); |
449 | 0 | return; |
450 | 0 | } |
451 | 0 | switch (S->getStmtClass()) { |
452 | | // Note: Fill in this switch with more cases we want to optimize. |
453 | 0 | case Stmt::InitListExprClass: { |
454 | 0 | InitListExpr *IE = cast<InitListExpr>(S); |
455 | 0 | children = llvm::ArrayRef(reinterpret_cast<Stmt **>(IE->getInits()), |
456 | 0 | IE->getNumInits()); |
457 | 0 | return; |
458 | 0 | } |
459 | 0 | default: |
460 | 0 | break; |
461 | 0 | } |
462 | | |
463 | | // Default case for all other statements. |
464 | 0 | llvm::append_range(childrenBuf, S->children()); |
465 | | |
466 | | // This needs to be done *after* childrenBuf has been populated. |
467 | 0 | children = childrenBuf; |
468 | 0 | } |
469 | | |
470 | | namespace { |
471 | | |
472 | | /// CFGBuilder - This class implements CFG construction from an AST. |
473 | | /// The builder is stateful: an instance of the builder should be used to only |
474 | | /// construct a single CFG. |
475 | | /// |
476 | | /// Example usage: |
477 | | /// |
478 | | /// CFGBuilder builder; |
479 | | /// std::unique_ptr<CFG> cfg = builder.buildCFG(decl, stmt1); |
480 | | /// |
481 | | /// CFG construction is done via a recursive walk of an AST. We actually parse |
482 | | /// the AST in reverse order so that the successor of a basic block is |
483 | | /// constructed prior to its predecessor. This allows us to nicely capture |
484 | | /// implicit fall-throughs without extra basic blocks. |
485 | | class CFGBuilder { |
486 | | using JumpTarget = BlockScopePosPair; |
487 | | using JumpSource = BlockScopePosPair; |
488 | | |
489 | | ASTContext *Context; |
490 | | std::unique_ptr<CFG> cfg; |
491 | | |
492 | | // Current block. |
493 | | CFGBlock *Block = nullptr; |
494 | | |
495 | | // Block after the current block. |
496 | | CFGBlock *Succ = nullptr; |
497 | | |
498 | | JumpTarget ContinueJumpTarget; |
499 | | JumpTarget BreakJumpTarget; |
500 | | JumpTarget SEHLeaveJumpTarget; |
501 | | CFGBlock *SwitchTerminatedBlock = nullptr; |
502 | | CFGBlock *DefaultCaseBlock = nullptr; |
503 | | |
504 | | // This can point to either a C++ try, an Objective-C @try, or an SEH __try. |
505 | | // try and @try can be mixed and generally work the same. |
506 | | // The frontend forbids mixing SEH __try with either try or @try. |
507 | | // So having one for all three is enough. |
508 | | CFGBlock *TryTerminatedBlock = nullptr; |
509 | | |
510 | | // Current position in local scope. |
511 | | LocalScope::const_iterator ScopePos; |
512 | | |
513 | | // LabelMap records the mapping from Label expressions to their jump targets. |
514 | | using LabelMapTy = llvm::DenseMap<LabelDecl *, JumpTarget>; |
515 | | LabelMapTy LabelMap; |
516 | | |
517 | | // A list of blocks that end with a "goto" that must be backpatched to their |
518 | | // resolved targets upon completion of CFG construction. |
519 | | using BackpatchBlocksTy = std::vector<JumpSource>; |
520 | | BackpatchBlocksTy BackpatchBlocks; |
521 | | |
522 | | // A list of labels whose address has been taken (for indirect gotos). |
523 | | using LabelSetTy = llvm::SmallSetVector<LabelDecl *, 8>; |
524 | | LabelSetTy AddressTakenLabels; |
525 | | |
526 | | // Information about the currently visited C++ object construction site. |
527 | | // This is set in the construction trigger and read when the constructor |
528 | | // or a function that returns an object by value is being visited. |
529 | | llvm::DenseMap<Expr *, const ConstructionContextLayer *> |
530 | | ConstructionContextMap; |
531 | | |
532 | | bool badCFG = false; |
533 | | const CFG::BuildOptions &BuildOpts; |
534 | | |
535 | | // State to track for building switch statements. |
536 | | bool switchExclusivelyCovered = false; |
537 | | Expr::EvalResult *switchCond = nullptr; |
538 | | |
539 | | CFG::BuildOptions::ForcedBlkExprs::value_type *cachedEntry = nullptr; |
540 | | const Stmt *lastLookup = nullptr; |
541 | | |
542 | | // Caches boolean evaluations of expressions to avoid multiple re-evaluations |
543 | | // during construction of branches for chained logical operators. |
544 | | using CachedBoolEvalsTy = llvm::DenseMap<Expr *, TryResult>; |
545 | | CachedBoolEvalsTy CachedBoolEvals; |
546 | | |
547 | | public: |
548 | | explicit CFGBuilder(ASTContext *astContext, |
549 | | const CFG::BuildOptions &buildOpts) |
550 | 0 | : Context(astContext), cfg(new CFG()), BuildOpts(buildOpts) {} |
551 | | |
552 | | // buildCFG - Used by external clients to construct the CFG. |
553 | | std::unique_ptr<CFG> buildCFG(const Decl *D, Stmt *Statement); |
554 | | |
555 | | bool alwaysAdd(const Stmt *stmt); |
556 | | |
557 | | private: |
558 | | // Visitors to walk an AST and construct the CFG. |
559 | | CFGBlock *VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc); |
560 | | CFGBlock *VisitAddrLabelExpr(AddrLabelExpr *A, AddStmtChoice asc); |
561 | | CFGBlock *VisitAttributedStmt(AttributedStmt *A, AddStmtChoice asc); |
562 | | CFGBlock *VisitBinaryOperator(BinaryOperator *B, AddStmtChoice asc); |
563 | | CFGBlock *VisitBreakStmt(BreakStmt *B); |
564 | | CFGBlock *VisitCallExpr(CallExpr *C, AddStmtChoice asc); |
565 | | CFGBlock *VisitCaseStmt(CaseStmt *C); |
566 | | CFGBlock *VisitChooseExpr(ChooseExpr *C, AddStmtChoice asc); |
567 | | CFGBlock *VisitCompoundStmt(CompoundStmt *C, bool ExternallyDestructed); |
568 | | CFGBlock *VisitConditionalOperator(AbstractConditionalOperator *C, |
569 | | AddStmtChoice asc); |
570 | | CFGBlock *VisitContinueStmt(ContinueStmt *C); |
571 | | CFGBlock *VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, |
572 | | AddStmtChoice asc); |
573 | | CFGBlock *VisitCXXCatchStmt(CXXCatchStmt *S); |
574 | | CFGBlock *VisitCXXConstructExpr(CXXConstructExpr *C, AddStmtChoice asc); |
575 | | CFGBlock *VisitCXXNewExpr(CXXNewExpr *DE, AddStmtChoice asc); |
576 | | CFGBlock *VisitCXXDeleteExpr(CXXDeleteExpr *DE, AddStmtChoice asc); |
577 | | CFGBlock *VisitCXXForRangeStmt(CXXForRangeStmt *S); |
578 | | CFGBlock *VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E, |
579 | | AddStmtChoice asc); |
580 | | CFGBlock *VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C, |
581 | | AddStmtChoice asc); |
582 | | CFGBlock *VisitCXXThrowExpr(CXXThrowExpr *T); |
583 | | CFGBlock *VisitCXXTryStmt(CXXTryStmt *S); |
584 | | CFGBlock *VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc); |
585 | | CFGBlock *VisitDeclStmt(DeclStmt *DS); |
586 | | CFGBlock *VisitDeclSubExpr(DeclStmt *DS); |
587 | | CFGBlock *VisitDefaultStmt(DefaultStmt *D); |
588 | | CFGBlock *VisitDoStmt(DoStmt *D); |
589 | | CFGBlock *VisitExprWithCleanups(ExprWithCleanups *E, |
590 | | AddStmtChoice asc, bool ExternallyDestructed); |
591 | | CFGBlock *VisitForStmt(ForStmt *F); |
592 | | CFGBlock *VisitGotoStmt(GotoStmt *G); |
593 | | CFGBlock *VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc); |
594 | | CFGBlock *VisitIfStmt(IfStmt *I); |
595 | | CFGBlock *VisitImplicitCastExpr(ImplicitCastExpr *E, AddStmtChoice asc); |
596 | | CFGBlock *VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc); |
597 | | CFGBlock *VisitIndirectGotoStmt(IndirectGotoStmt *I); |
598 | | CFGBlock *VisitLabelStmt(LabelStmt *L); |
599 | | CFGBlock *VisitBlockExpr(BlockExpr *E, AddStmtChoice asc); |
600 | | CFGBlock *VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc); |
601 | | CFGBlock *VisitLogicalOperator(BinaryOperator *B); |
602 | | std::pair<CFGBlock *, CFGBlock *> VisitLogicalOperator(BinaryOperator *B, |
603 | | Stmt *Term, |
604 | | CFGBlock *TrueBlock, |
605 | | CFGBlock *FalseBlock); |
606 | | CFGBlock *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE, |
607 | | AddStmtChoice asc); |
608 | | CFGBlock *VisitMemberExpr(MemberExpr *M, AddStmtChoice asc); |
609 | | CFGBlock *VisitObjCAtCatchStmt(ObjCAtCatchStmt *S); |
610 | | CFGBlock *VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S); |
611 | | CFGBlock *VisitObjCAtThrowStmt(ObjCAtThrowStmt *S); |
612 | | CFGBlock *VisitObjCAtTryStmt(ObjCAtTryStmt *S); |
613 | | CFGBlock *VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S); |
614 | | CFGBlock *VisitObjCForCollectionStmt(ObjCForCollectionStmt *S); |
615 | | CFGBlock *VisitObjCMessageExpr(ObjCMessageExpr *E, AddStmtChoice asc); |
616 | | CFGBlock *VisitPseudoObjectExpr(PseudoObjectExpr *E); |
617 | | CFGBlock *VisitReturnStmt(Stmt *S); |
618 | | CFGBlock *VisitCoroutineSuspendExpr(CoroutineSuspendExpr *S, |
619 | | AddStmtChoice asc); |
620 | | CFGBlock *VisitSEHExceptStmt(SEHExceptStmt *S); |
621 | | CFGBlock *VisitSEHFinallyStmt(SEHFinallyStmt *S); |
622 | | CFGBlock *VisitSEHLeaveStmt(SEHLeaveStmt *S); |
623 | | CFGBlock *VisitSEHTryStmt(SEHTryStmt *S); |
624 | | CFGBlock *VisitStmtExpr(StmtExpr *S, AddStmtChoice asc); |
625 | | CFGBlock *VisitSwitchStmt(SwitchStmt *S); |
626 | | CFGBlock *VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E, |
627 | | AddStmtChoice asc); |
628 | | CFGBlock *VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc); |
629 | | CFGBlock *VisitWhileStmt(WhileStmt *W); |
630 | | CFGBlock *VisitArrayInitLoopExpr(ArrayInitLoopExpr *A, AddStmtChoice asc); |
631 | | |
632 | | CFGBlock *Visit(Stmt *S, AddStmtChoice asc = AddStmtChoice::NotAlwaysAdd, |
633 | | bool ExternallyDestructed = false); |
634 | | CFGBlock *VisitStmt(Stmt *S, AddStmtChoice asc); |
635 | | CFGBlock *VisitChildren(Stmt *S); |
636 | | CFGBlock *VisitNoRecurse(Expr *E, AddStmtChoice asc); |
637 | | CFGBlock *VisitOMPExecutableDirective(OMPExecutableDirective *D, |
638 | | AddStmtChoice asc); |
639 | | |
640 | | void maybeAddScopeBeginForVarDecl(CFGBlock *B, const VarDecl *VD, |
641 | 0 | const Stmt *S) { |
642 | 0 | if (ScopePos && (VD == ScopePos.getFirstVarInScope())) |
643 | 0 | appendScopeBegin(B, VD, S); |
644 | 0 | } |
645 | | |
646 | | /// When creating the CFG for temporary destructors, we want to mirror the |
647 | | /// branch structure of the corresponding constructor calls. |
648 | | /// Thus, while visiting a statement for temporary destructors, we keep a |
649 | | /// context to keep track of the following information: |
650 | | /// - whether a subexpression is executed unconditionally |
651 | | /// - if a subexpression is executed conditionally, the first |
652 | | /// CXXBindTemporaryExpr we encounter in that subexpression (which |
653 | | /// corresponds to the last temporary destructor we have to call for this |
654 | | /// subexpression) and the CFG block at that point (which will become the |
655 | | /// successor block when inserting the decision point). |
656 | | /// |
657 | | /// That way, we can build the branch structure for temporary destructors as |
658 | | /// follows: |
659 | | /// 1. If a subexpression is executed unconditionally, we add the temporary |
660 | | /// destructor calls to the current block. |
661 | | /// 2. If a subexpression is executed conditionally, when we encounter a |
662 | | /// CXXBindTemporaryExpr: |
663 | | /// a) If it is the first temporary destructor call in the subexpression, |
664 | | /// we remember the CXXBindTemporaryExpr and the current block in the |
665 | | /// TempDtorContext; we start a new block, and insert the temporary |
666 | | /// destructor call. |
667 | | /// b) Otherwise, add the temporary destructor call to the current block. |
668 | | /// 3. When we finished visiting a conditionally executed subexpression, |
669 | | /// and we found at least one temporary constructor during the visitation |
670 | | /// (2.a has executed), we insert a decision block that uses the |
671 | | /// CXXBindTemporaryExpr as terminator, and branches to the current block |
672 | | /// if the CXXBindTemporaryExpr was marked executed, and otherwise |
673 | | /// branches to the stored successor. |
674 | | struct TempDtorContext { |
675 | 0 | TempDtorContext() = default; |
676 | | TempDtorContext(TryResult KnownExecuted) |
677 | 0 | : IsConditional(true), KnownExecuted(KnownExecuted) {} |
678 | | |
679 | | /// Returns whether we need to start a new branch for a temporary destructor |
680 | | /// call. This is the case when the temporary destructor is |
681 | | /// conditionally executed, and it is the first one we encounter while |
682 | | /// visiting a subexpression - other temporary destructors at the same level |
683 | | /// will be added to the same block and are executed under the same |
684 | | /// condition. |
685 | 0 | bool needsTempDtorBranch() const { |
686 | 0 | return IsConditional && !TerminatorExpr; |
687 | 0 | } |
688 | | |
689 | | /// Remember the successor S of a temporary destructor decision branch for |
690 | | /// the corresponding CXXBindTemporaryExpr E. |
691 | 0 | void setDecisionPoint(CFGBlock *S, CXXBindTemporaryExpr *E) { |
692 | 0 | Succ = S; |
693 | 0 | TerminatorExpr = E; |
694 | 0 | } |
695 | | |
696 | | const bool IsConditional = false; |
697 | | const TryResult KnownExecuted = true; |
698 | | CFGBlock *Succ = nullptr; |
699 | | CXXBindTemporaryExpr *TerminatorExpr = nullptr; |
700 | | }; |
701 | | |
702 | | // Visitors to walk an AST and generate destructors of temporaries in |
703 | | // full expression. |
704 | | CFGBlock *VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed, |
705 | | TempDtorContext &Context); |
706 | | CFGBlock *VisitChildrenForTemporaryDtors(Stmt *E, bool ExternallyDestructed, |
707 | | TempDtorContext &Context); |
708 | | CFGBlock *VisitBinaryOperatorForTemporaryDtors(BinaryOperator *E, |
709 | | bool ExternallyDestructed, |
710 | | TempDtorContext &Context); |
711 | | CFGBlock *VisitCXXBindTemporaryExprForTemporaryDtors( |
712 | | CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context); |
713 | | CFGBlock *VisitConditionalOperatorForTemporaryDtors( |
714 | | AbstractConditionalOperator *E, bool ExternallyDestructed, |
715 | | TempDtorContext &Context); |
716 | | void InsertTempDtorDecisionBlock(const TempDtorContext &Context, |
717 | | CFGBlock *FalseSucc = nullptr); |
718 | | |
719 | | // NYS == Not Yet Supported |
720 | 0 | CFGBlock *NYS() { |
721 | 0 | badCFG = true; |
722 | 0 | return Block; |
723 | 0 | } |
724 | | |
725 | | // Remember to apply the construction context based on the current \p Layer |
726 | | // when constructing the CFG element for \p CE. |
727 | | void consumeConstructionContext(const ConstructionContextLayer *Layer, |
728 | | Expr *E); |
729 | | |
730 | | // Scan \p Child statement to find constructors in it, while keeping in mind |
731 | | // that its parent statement is providing a partial construction context |
732 | | // described by \p Layer. If a constructor is found, it would be assigned |
733 | | // the context based on the layer. If an additional construction context layer |
734 | | // is found, the function recurses into that. |
735 | | void findConstructionContexts(const ConstructionContextLayer *Layer, |
736 | | Stmt *Child); |
737 | | |
738 | | // Scan all arguments of a call expression for a construction context. |
739 | | // These sorts of call expressions don't have a common superclass, |
740 | | // hence strict duck-typing. |
741 | | template <typename CallLikeExpr, |
742 | | typename = std::enable_if_t< |
743 | | std::is_base_of_v<CallExpr, CallLikeExpr> || |
744 | | std::is_base_of_v<CXXConstructExpr, CallLikeExpr> || |
745 | | std::is_base_of_v<ObjCMessageExpr, CallLikeExpr>>> |
746 | 0 | void findConstructionContextsForArguments(CallLikeExpr *E) { |
747 | 0 | for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) { |
748 | 0 | Expr *Arg = E->getArg(i); |
749 | 0 | if (Arg->getType()->getAsCXXRecordDecl() && !Arg->isGLValue()) |
750 | 0 | findConstructionContexts( |
751 | 0 | ConstructionContextLayer::create(cfg->getBumpVectorContext(), |
752 | 0 | ConstructionContextItem(E, i)), |
753 | 0 | Arg); |
754 | 0 | } |
755 | 0 | } Unexecuted instantiation: CFG.cpp:void (anonymous namespace)::CFGBuilder::findConstructionContextsForArguments<clang::CallExpr, void>(clang::CallExpr*) Unexecuted instantiation: CFG.cpp:void (anonymous namespace)::CFGBuilder::findConstructionContextsForArguments<clang::CXXConstructExpr, void>(clang::CXXConstructExpr*) Unexecuted instantiation: CFG.cpp:void (anonymous namespace)::CFGBuilder::findConstructionContextsForArguments<clang::CXXTemporaryObjectExpr, void>(clang::CXXTemporaryObjectExpr*) Unexecuted instantiation: CFG.cpp:void (anonymous namespace)::CFGBuilder::findConstructionContextsForArguments<clang::ObjCMessageExpr, void>(clang::ObjCMessageExpr*) |
756 | | |
757 | | // Unset the construction context after consuming it. This is done immediately |
758 | | // after adding the CFGConstructor or CFGCXXRecordTypedCall element, so |
759 | | // there's no need to do this manually in every Visit... function. |
760 | | void cleanupConstructionContext(Expr *E); |
761 | | |
762 | 0 | void autoCreateBlock() { if (!Block) Block = createBlock(); } |
763 | | CFGBlock *createBlock(bool add_successor = true); |
764 | | CFGBlock *createNoReturnBlock(); |
765 | | |
766 | 0 | CFGBlock *addStmt(Stmt *S) { |
767 | 0 | return Visit(S, AddStmtChoice::AlwaysAdd); |
768 | 0 | } |
769 | | |
770 | | CFGBlock *addInitializer(CXXCtorInitializer *I); |
771 | | void addLoopExit(const Stmt *LoopStmt); |
772 | | void addAutomaticObjHandling(LocalScope::const_iterator B, |
773 | | LocalScope::const_iterator E, Stmt *S); |
774 | | void addAutomaticObjDestruction(LocalScope::const_iterator B, |
775 | | LocalScope::const_iterator E, Stmt *S); |
776 | | void addScopeExitHandling(LocalScope::const_iterator B, |
777 | | LocalScope::const_iterator E, Stmt *S); |
778 | | void addImplicitDtorsForDestructor(const CXXDestructorDecl *DD); |
779 | | void addScopeChangesHandling(LocalScope::const_iterator SrcPos, |
780 | | LocalScope::const_iterator DstPos, |
781 | | Stmt *S); |
782 | | CFGBlock *createScopeChangesHandlingBlock(LocalScope::const_iterator SrcPos, |
783 | | CFGBlock *SrcBlk, |
784 | | LocalScope::const_iterator DstPost, |
785 | | CFGBlock *DstBlk); |
786 | | |
787 | | // Local scopes creation. |
788 | | LocalScope* createOrReuseLocalScope(LocalScope* Scope); |
789 | | |
790 | | void addLocalScopeForStmt(Stmt *S); |
791 | | LocalScope* addLocalScopeForDeclStmt(DeclStmt *DS, |
792 | | LocalScope* Scope = nullptr); |
793 | | LocalScope* addLocalScopeForVarDecl(VarDecl *VD, LocalScope* Scope = nullptr); |
794 | | |
795 | | void addLocalScopeAndDtors(Stmt *S); |
796 | | |
797 | 0 | const ConstructionContext *retrieveAndCleanupConstructionContext(Expr *E) { |
798 | 0 | if (!BuildOpts.AddRichCXXConstructors) |
799 | 0 | return nullptr; |
800 | | |
801 | 0 | const ConstructionContextLayer *Layer = ConstructionContextMap.lookup(E); |
802 | 0 | if (!Layer) |
803 | 0 | return nullptr; |
804 | | |
805 | 0 | cleanupConstructionContext(E); |
806 | 0 | return ConstructionContext::createFromLayers(cfg->getBumpVectorContext(), |
807 | 0 | Layer); |
808 | 0 | } |
809 | | |
810 | | // Interface to CFGBlock - adding CFGElements. |
811 | | |
812 | 0 | void appendStmt(CFGBlock *B, const Stmt *S) { |
813 | 0 | if (alwaysAdd(S) && cachedEntry) |
814 | 0 | cachedEntry->second = B; |
815 | | |
816 | | // All block-level expressions should have already been IgnoreParens()ed. |
817 | 0 | assert(!isa<Expr>(S) || cast<Expr>(S)->IgnoreParens() == S); |
818 | 0 | B->appendStmt(const_cast<Stmt*>(S), cfg->getBumpVectorContext()); |
819 | 0 | } |
820 | | |
821 | 0 | void appendConstructor(CFGBlock *B, CXXConstructExpr *CE) { |
822 | 0 | if (const ConstructionContext *CC = |
823 | 0 | retrieveAndCleanupConstructionContext(CE)) { |
824 | 0 | B->appendConstructor(CE, CC, cfg->getBumpVectorContext()); |
825 | 0 | return; |
826 | 0 | } |
827 | | |
828 | | // No valid construction context found. Fall back to statement. |
829 | 0 | B->appendStmt(CE, cfg->getBumpVectorContext()); |
830 | 0 | } |
831 | | |
832 | 0 | void appendCall(CFGBlock *B, CallExpr *CE) { |
833 | 0 | if (alwaysAdd(CE) && cachedEntry) |
834 | 0 | cachedEntry->second = B; |
835 | |
|
836 | 0 | if (const ConstructionContext *CC = |
837 | 0 | retrieveAndCleanupConstructionContext(CE)) { |
838 | 0 | B->appendCXXRecordTypedCall(CE, CC, cfg->getBumpVectorContext()); |
839 | 0 | return; |
840 | 0 | } |
841 | | |
842 | | // No valid construction context found. Fall back to statement. |
843 | 0 | B->appendStmt(CE, cfg->getBumpVectorContext()); |
844 | 0 | } |
845 | | |
846 | 0 | void appendInitializer(CFGBlock *B, CXXCtorInitializer *I) { |
847 | 0 | B->appendInitializer(I, cfg->getBumpVectorContext()); |
848 | 0 | } |
849 | | |
850 | 0 | void appendNewAllocator(CFGBlock *B, CXXNewExpr *NE) { |
851 | 0 | B->appendNewAllocator(NE, cfg->getBumpVectorContext()); |
852 | 0 | } |
853 | | |
854 | 0 | void appendBaseDtor(CFGBlock *B, const CXXBaseSpecifier *BS) { |
855 | 0 | B->appendBaseDtor(BS, cfg->getBumpVectorContext()); |
856 | 0 | } |
857 | | |
858 | 0 | void appendMemberDtor(CFGBlock *B, FieldDecl *FD) { |
859 | 0 | B->appendMemberDtor(FD, cfg->getBumpVectorContext()); |
860 | 0 | } |
861 | | |
862 | 0 | void appendObjCMessage(CFGBlock *B, ObjCMessageExpr *ME) { |
863 | 0 | if (alwaysAdd(ME) && cachedEntry) |
864 | 0 | cachedEntry->second = B; |
865 | |
|
866 | 0 | if (const ConstructionContext *CC = |
867 | 0 | retrieveAndCleanupConstructionContext(ME)) { |
868 | 0 | B->appendCXXRecordTypedCall(ME, CC, cfg->getBumpVectorContext()); |
869 | 0 | return; |
870 | 0 | } |
871 | | |
872 | 0 | B->appendStmt(const_cast<ObjCMessageExpr *>(ME), |
873 | 0 | cfg->getBumpVectorContext()); |
874 | 0 | } |
875 | | |
876 | 0 | void appendTemporaryDtor(CFGBlock *B, CXXBindTemporaryExpr *E) { |
877 | 0 | B->appendTemporaryDtor(E, cfg->getBumpVectorContext()); |
878 | 0 | } |
879 | | |
880 | 0 | void appendAutomaticObjDtor(CFGBlock *B, VarDecl *VD, Stmt *S) { |
881 | 0 | B->appendAutomaticObjDtor(VD, S, cfg->getBumpVectorContext()); |
882 | 0 | } |
883 | | |
884 | 0 | void appendCleanupFunction(CFGBlock *B, VarDecl *VD) { |
885 | 0 | B->appendCleanupFunction(VD, cfg->getBumpVectorContext()); |
886 | 0 | } |
887 | | |
888 | 0 | void appendLifetimeEnds(CFGBlock *B, VarDecl *VD, Stmt *S) { |
889 | 0 | B->appendLifetimeEnds(VD, S, cfg->getBumpVectorContext()); |
890 | 0 | } |
891 | | |
892 | 0 | void appendLoopExit(CFGBlock *B, const Stmt *LoopStmt) { |
893 | 0 | B->appendLoopExit(LoopStmt, cfg->getBumpVectorContext()); |
894 | 0 | } |
895 | | |
896 | 0 | void appendDeleteDtor(CFGBlock *B, CXXRecordDecl *RD, CXXDeleteExpr *DE) { |
897 | 0 | B->appendDeleteDtor(RD, DE, cfg->getBumpVectorContext()); |
898 | 0 | } |
899 | | |
900 | 0 | void addSuccessor(CFGBlock *B, CFGBlock *S, bool IsReachable = true) { |
901 | 0 | B->addSuccessor(CFGBlock::AdjacentBlock(S, IsReachable), |
902 | 0 | cfg->getBumpVectorContext()); |
903 | 0 | } |
904 | | |
905 | | /// Add a reachable successor to a block, with the alternate variant that is |
906 | | /// unreachable. |
907 | 0 | void addSuccessor(CFGBlock *B, CFGBlock *ReachableBlock, CFGBlock *AltBlock) { |
908 | 0 | B->addSuccessor(CFGBlock::AdjacentBlock(ReachableBlock, AltBlock), |
909 | 0 | cfg->getBumpVectorContext()); |
910 | 0 | } |
911 | | |
912 | 0 | void appendScopeBegin(CFGBlock *B, const VarDecl *VD, const Stmt *S) { |
913 | 0 | if (BuildOpts.AddScopes) |
914 | 0 | B->appendScopeBegin(VD, S, cfg->getBumpVectorContext()); |
915 | 0 | } |
916 | | |
917 | 0 | void appendScopeEnd(CFGBlock *B, const VarDecl *VD, const Stmt *S) { |
918 | 0 | if (BuildOpts.AddScopes) |
919 | 0 | B->appendScopeEnd(VD, S, cfg->getBumpVectorContext()); |
920 | 0 | } |
921 | | |
922 | | /// Find a relational comparison with an expression evaluating to a |
923 | | /// boolean and a constant other than 0 and 1. |
924 | | /// e.g. if ((x < y) == 10) |
925 | 0 | TryResult checkIncorrectRelationalOperator(const BinaryOperator *B) { |
926 | 0 | const Expr *LHSExpr = B->getLHS()->IgnoreParens(); |
927 | 0 | const Expr *RHSExpr = B->getRHS()->IgnoreParens(); |
928 | |
|
929 | 0 | const IntegerLiteral *IntLiteral = dyn_cast<IntegerLiteral>(LHSExpr); |
930 | 0 | const Expr *BoolExpr = RHSExpr; |
931 | 0 | bool IntFirst = true; |
932 | 0 | if (!IntLiteral) { |
933 | 0 | IntLiteral = dyn_cast<IntegerLiteral>(RHSExpr); |
934 | 0 | BoolExpr = LHSExpr; |
935 | 0 | IntFirst = false; |
936 | 0 | } |
937 | |
|
938 | 0 | if (!IntLiteral || !BoolExpr->isKnownToHaveBooleanValue()) |
939 | 0 | return TryResult(); |
940 | | |
941 | 0 | llvm::APInt IntValue = IntLiteral->getValue(); |
942 | 0 | if ((IntValue == 1) || (IntValue == 0)) |
943 | 0 | return TryResult(); |
944 | | |
945 | 0 | bool IntLarger = IntLiteral->getType()->isUnsignedIntegerType() || |
946 | 0 | !IntValue.isNegative(); |
947 | |
|
948 | 0 | BinaryOperatorKind Bok = B->getOpcode(); |
949 | 0 | if (Bok == BO_GT || Bok == BO_GE) { |
950 | | // Always true for 10 > bool and bool > -1 |
951 | | // Always false for -1 > bool and bool > 10 |
952 | 0 | return TryResult(IntFirst == IntLarger); |
953 | 0 | } else { |
954 | | // Always true for -1 < bool and bool < 10 |
955 | | // Always false for 10 < bool and bool < -1 |
956 | 0 | return TryResult(IntFirst != IntLarger); |
957 | 0 | } |
958 | 0 | } |
959 | | |
960 | | /// Find an incorrect equality comparison. Either with an expression |
961 | | /// evaluating to a boolean and a constant other than 0 and 1. |
962 | | /// e.g. if (!x == 10) or a bitwise and/or operation that always evaluates to |
963 | | /// true/false e.q. (x & 8) == 4. |
964 | 0 | TryResult checkIncorrectEqualityOperator(const BinaryOperator *B) { |
965 | 0 | const Expr *LHSExpr = B->getLHS()->IgnoreParens(); |
966 | 0 | const Expr *RHSExpr = B->getRHS()->IgnoreParens(); |
967 | |
|
968 | 0 | std::optional<llvm::APInt> IntLiteral1 = |
969 | 0 | getIntegerLiteralSubexpressionValue(LHSExpr); |
970 | 0 | const Expr *BoolExpr = RHSExpr; |
971 | |
|
972 | 0 | if (!IntLiteral1) { |
973 | 0 | IntLiteral1 = getIntegerLiteralSubexpressionValue(RHSExpr); |
974 | 0 | BoolExpr = LHSExpr; |
975 | 0 | } |
976 | |
|
977 | 0 | if (!IntLiteral1) |
978 | 0 | return TryResult(); |
979 | | |
980 | 0 | const BinaryOperator *BitOp = dyn_cast<BinaryOperator>(BoolExpr); |
981 | 0 | if (BitOp && (BitOp->getOpcode() == BO_And || |
982 | 0 | BitOp->getOpcode() == BO_Or)) { |
983 | 0 | const Expr *LHSExpr2 = BitOp->getLHS()->IgnoreParens(); |
984 | 0 | const Expr *RHSExpr2 = BitOp->getRHS()->IgnoreParens(); |
985 | |
|
986 | 0 | std::optional<llvm::APInt> IntLiteral2 = |
987 | 0 | getIntegerLiteralSubexpressionValue(LHSExpr2); |
988 | |
|
989 | 0 | if (!IntLiteral2) |
990 | 0 | IntLiteral2 = getIntegerLiteralSubexpressionValue(RHSExpr2); |
991 | |
|
992 | 0 | if (!IntLiteral2) |
993 | 0 | return TryResult(); |
994 | | |
995 | 0 | if ((BitOp->getOpcode() == BO_And && |
996 | 0 | (*IntLiteral2 & *IntLiteral1) != *IntLiteral1) || |
997 | 0 | (BitOp->getOpcode() == BO_Or && |
998 | 0 | (*IntLiteral2 | *IntLiteral1) != *IntLiteral1)) { |
999 | 0 | if (BuildOpts.Observer) |
1000 | 0 | BuildOpts.Observer->compareBitwiseEquality(B, |
1001 | 0 | B->getOpcode() != BO_EQ); |
1002 | 0 | return TryResult(B->getOpcode() != BO_EQ); |
1003 | 0 | } |
1004 | 0 | } else if (BoolExpr->isKnownToHaveBooleanValue()) { |
1005 | 0 | if ((*IntLiteral1 == 1) || (*IntLiteral1 == 0)) { |
1006 | 0 | return TryResult(); |
1007 | 0 | } |
1008 | 0 | return TryResult(B->getOpcode() != BO_EQ); |
1009 | 0 | } |
1010 | | |
1011 | 0 | return TryResult(); |
1012 | 0 | } |
1013 | | |
1014 | | // Helper function to get an APInt from an expression. Supports expressions |
1015 | | // which are an IntegerLiteral or a UnaryOperator and returns the value with |
1016 | | // all operations performed on it. |
1017 | | // FIXME: it would be good to unify this function with |
1018 | | // IsIntegerLiteralConstantExpr at some point given the similarity between the |
1019 | | // functions. |
1020 | | std::optional<llvm::APInt> |
1021 | 0 | getIntegerLiteralSubexpressionValue(const Expr *E) { |
1022 | | |
1023 | | // If unary. |
1024 | 0 | if (const auto *UnOp = dyn_cast<UnaryOperator>(E->IgnoreParens())) { |
1025 | | // Get the sub expression of the unary expression and get the Integer |
1026 | | // Literal. |
1027 | 0 | const Expr *SubExpr = UnOp->getSubExpr()->IgnoreParens(); |
1028 | |
|
1029 | 0 | if (const auto *IntLiteral = dyn_cast<IntegerLiteral>(SubExpr)) { |
1030 | |
|
1031 | 0 | llvm::APInt Value = IntLiteral->getValue(); |
1032 | | |
1033 | | // Perform the operation manually. |
1034 | 0 | switch (UnOp->getOpcode()) { |
1035 | 0 | case UO_Plus: |
1036 | 0 | return Value; |
1037 | 0 | case UO_Minus: |
1038 | 0 | return -Value; |
1039 | 0 | case UO_Not: |
1040 | 0 | return ~Value; |
1041 | 0 | case UO_LNot: |
1042 | 0 | return llvm::APInt(Context->getTypeSize(Context->IntTy), !Value); |
1043 | 0 | default: |
1044 | 0 | assert(false && "Unexpected unary operator!"); |
1045 | 0 | return std::nullopt; |
1046 | 0 | } |
1047 | 0 | } |
1048 | 0 | } else if (const auto *IntLiteral = |
1049 | 0 | dyn_cast<IntegerLiteral>(E->IgnoreParens())) |
1050 | 0 | return IntLiteral->getValue(); |
1051 | | |
1052 | 0 | return std::nullopt; |
1053 | 0 | } |
1054 | | |
1055 | | TryResult analyzeLogicOperatorCondition(BinaryOperatorKind Relation, |
1056 | | const llvm::APSInt &Value1, |
1057 | 0 | const llvm::APSInt &Value2) { |
1058 | 0 | assert(Value1.isSigned() == Value2.isSigned()); |
1059 | 0 | switch (Relation) { |
1060 | 0 | default: |
1061 | 0 | return TryResult(); |
1062 | 0 | case BO_EQ: |
1063 | 0 | return TryResult(Value1 == Value2); |
1064 | 0 | case BO_NE: |
1065 | 0 | return TryResult(Value1 != Value2); |
1066 | 0 | case BO_LT: |
1067 | 0 | return TryResult(Value1 < Value2); |
1068 | 0 | case BO_LE: |
1069 | 0 | return TryResult(Value1 <= Value2); |
1070 | 0 | case BO_GT: |
1071 | 0 | return TryResult(Value1 > Value2); |
1072 | 0 | case BO_GE: |
1073 | 0 | return TryResult(Value1 >= Value2); |
1074 | 0 | } |
1075 | 0 | } |
1076 | | |
1077 | | /// There are two checks handled by this function: |
1078 | | /// 1. Find a law-of-excluded-middle or law-of-noncontradiction expression |
1079 | | /// e.g. if (x || !x), if (x && !x) |
1080 | | /// 2. Find a pair of comparison expressions with or without parentheses |
1081 | | /// with a shared variable and constants and a logical operator between them |
1082 | | /// that always evaluates to either true or false. |
1083 | | /// e.g. if (x != 3 || x != 4) |
1084 | 0 | TryResult checkIncorrectLogicOperator(const BinaryOperator *B) { |
1085 | 0 | assert(B->isLogicalOp()); |
1086 | 0 | const Expr *LHSExpr = B->getLHS()->IgnoreParens(); |
1087 | 0 | const Expr *RHSExpr = B->getRHS()->IgnoreParens(); |
1088 | |
|
1089 | 0 | auto CheckLogicalOpWithNegatedVariable = [this, B](const Expr *E1, |
1090 | 0 | const Expr *E2) { |
1091 | 0 | if (const auto *Negate = dyn_cast<UnaryOperator>(E1)) { |
1092 | 0 | if (Negate->getOpcode() == UO_LNot && |
1093 | 0 | Expr::isSameComparisonOperand(Negate->getSubExpr(), E2)) { |
1094 | 0 | bool AlwaysTrue = B->getOpcode() == BO_LOr; |
1095 | 0 | if (BuildOpts.Observer) |
1096 | 0 | BuildOpts.Observer->logicAlwaysTrue(B, AlwaysTrue); |
1097 | 0 | return TryResult(AlwaysTrue); |
1098 | 0 | } |
1099 | 0 | } |
1100 | 0 | return TryResult(); |
1101 | 0 | }; |
1102 | |
|
1103 | 0 | TryResult Result = CheckLogicalOpWithNegatedVariable(LHSExpr, RHSExpr); |
1104 | 0 | if (Result.isKnown()) |
1105 | 0 | return Result; |
1106 | 0 | Result = CheckLogicalOpWithNegatedVariable(RHSExpr, LHSExpr); |
1107 | 0 | if (Result.isKnown()) |
1108 | 0 | return Result; |
1109 | | |
1110 | 0 | const auto *LHS = dyn_cast<BinaryOperator>(LHSExpr); |
1111 | 0 | const auto *RHS = dyn_cast<BinaryOperator>(RHSExpr); |
1112 | 0 | if (!LHS || !RHS) |
1113 | 0 | return {}; |
1114 | | |
1115 | 0 | if (!LHS->isComparisonOp() || !RHS->isComparisonOp()) |
1116 | 0 | return {}; |
1117 | | |
1118 | 0 | const Expr *DeclExpr1; |
1119 | 0 | const Expr *NumExpr1; |
1120 | 0 | BinaryOperatorKind BO1; |
1121 | 0 | std::tie(DeclExpr1, BO1, NumExpr1) = tryNormalizeBinaryOperator(LHS); |
1122 | |
|
1123 | 0 | if (!DeclExpr1 || !NumExpr1) |
1124 | 0 | return {}; |
1125 | | |
1126 | 0 | const Expr *DeclExpr2; |
1127 | 0 | const Expr *NumExpr2; |
1128 | 0 | BinaryOperatorKind BO2; |
1129 | 0 | std::tie(DeclExpr2, BO2, NumExpr2) = tryNormalizeBinaryOperator(RHS); |
1130 | |
|
1131 | 0 | if (!DeclExpr2 || !NumExpr2) |
1132 | 0 | return {}; |
1133 | | |
1134 | | // Check that it is the same variable on both sides. |
1135 | 0 | if (!Expr::isSameComparisonOperand(DeclExpr1, DeclExpr2)) |
1136 | 0 | return {}; |
1137 | | |
1138 | | // Make sure the user's intent is clear (e.g. they're comparing against two |
1139 | | // int literals, or two things from the same enum) |
1140 | 0 | if (!areExprTypesCompatible(NumExpr1, NumExpr2)) |
1141 | 0 | return {}; |
1142 | | |
1143 | 0 | Expr::EvalResult L1Result, L2Result; |
1144 | 0 | if (!NumExpr1->EvaluateAsInt(L1Result, *Context) || |
1145 | 0 | !NumExpr2->EvaluateAsInt(L2Result, *Context)) |
1146 | 0 | return {}; |
1147 | | |
1148 | 0 | llvm::APSInt L1 = L1Result.Val.getInt(); |
1149 | 0 | llvm::APSInt L2 = L2Result.Val.getInt(); |
1150 | | |
1151 | | // Can't compare signed with unsigned or with different bit width. |
1152 | 0 | if (L1.isSigned() != L2.isSigned() || L1.getBitWidth() != L2.getBitWidth()) |
1153 | 0 | return {}; |
1154 | | |
1155 | | // Values that will be used to determine if result of logical |
1156 | | // operator is always true/false |
1157 | 0 | const llvm::APSInt Values[] = { |
1158 | | // Value less than both Value1 and Value2 |
1159 | 0 | llvm::APSInt::getMinValue(L1.getBitWidth(), L1.isUnsigned()), |
1160 | | // L1 |
1161 | 0 | L1, |
1162 | | // Value between Value1 and Value2 |
1163 | 0 | ((L1 < L2) ? L1 : L2) + llvm::APSInt(llvm::APInt(L1.getBitWidth(), 1), |
1164 | 0 | L1.isUnsigned()), |
1165 | | // L2 |
1166 | 0 | L2, |
1167 | | // Value greater than both Value1 and Value2 |
1168 | 0 | llvm::APSInt::getMaxValue(L1.getBitWidth(), L1.isUnsigned()), |
1169 | 0 | }; |
1170 | | |
1171 | | // Check whether expression is always true/false by evaluating the following |
1172 | | // * variable x is less than the smallest literal. |
1173 | | // * variable x is equal to the smallest literal. |
1174 | | // * Variable x is between smallest and largest literal. |
1175 | | // * Variable x is equal to the largest literal. |
1176 | | // * Variable x is greater than largest literal. |
1177 | 0 | bool AlwaysTrue = true, AlwaysFalse = true; |
1178 | | // Track value of both subexpressions. If either side is always |
1179 | | // true/false, another warning should have already been emitted. |
1180 | 0 | bool LHSAlwaysTrue = true, LHSAlwaysFalse = true; |
1181 | 0 | bool RHSAlwaysTrue = true, RHSAlwaysFalse = true; |
1182 | 0 | for (const llvm::APSInt &Value : Values) { |
1183 | 0 | TryResult Res1, Res2; |
1184 | 0 | Res1 = analyzeLogicOperatorCondition(BO1, Value, L1); |
1185 | 0 | Res2 = analyzeLogicOperatorCondition(BO2, Value, L2); |
1186 | |
|
1187 | 0 | if (!Res1.isKnown() || !Res2.isKnown()) |
1188 | 0 | return {}; |
1189 | | |
1190 | 0 | if (B->getOpcode() == BO_LAnd) { |
1191 | 0 | AlwaysTrue &= (Res1.isTrue() && Res2.isTrue()); |
1192 | 0 | AlwaysFalse &= !(Res1.isTrue() && Res2.isTrue()); |
1193 | 0 | } else { |
1194 | 0 | AlwaysTrue &= (Res1.isTrue() || Res2.isTrue()); |
1195 | 0 | AlwaysFalse &= !(Res1.isTrue() || Res2.isTrue()); |
1196 | 0 | } |
1197 | |
|
1198 | 0 | LHSAlwaysTrue &= Res1.isTrue(); |
1199 | 0 | LHSAlwaysFalse &= Res1.isFalse(); |
1200 | 0 | RHSAlwaysTrue &= Res2.isTrue(); |
1201 | 0 | RHSAlwaysFalse &= Res2.isFalse(); |
1202 | 0 | } |
1203 | | |
1204 | 0 | if (AlwaysTrue || AlwaysFalse) { |
1205 | 0 | if (!LHSAlwaysTrue && !LHSAlwaysFalse && !RHSAlwaysTrue && |
1206 | 0 | !RHSAlwaysFalse && BuildOpts.Observer) |
1207 | 0 | BuildOpts.Observer->compareAlwaysTrue(B, AlwaysTrue); |
1208 | 0 | return TryResult(AlwaysTrue); |
1209 | 0 | } |
1210 | 0 | return {}; |
1211 | 0 | } |
1212 | | |
1213 | | /// A bitwise-or with a non-zero constant always evaluates to true. |
1214 | 0 | TryResult checkIncorrectBitwiseOrOperator(const BinaryOperator *B) { |
1215 | 0 | const Expr *LHSConstant = |
1216 | 0 | tryTransformToIntOrEnumConstant(B->getLHS()->IgnoreParenImpCasts()); |
1217 | 0 | const Expr *RHSConstant = |
1218 | 0 | tryTransformToIntOrEnumConstant(B->getRHS()->IgnoreParenImpCasts()); |
1219 | |
|
1220 | 0 | if ((LHSConstant && RHSConstant) || (!LHSConstant && !RHSConstant)) |
1221 | 0 | return {}; |
1222 | | |
1223 | 0 | const Expr *Constant = LHSConstant ? LHSConstant : RHSConstant; |
1224 | |
|
1225 | 0 | Expr::EvalResult Result; |
1226 | 0 | if (!Constant->EvaluateAsInt(Result, *Context)) |
1227 | 0 | return {}; |
1228 | | |
1229 | 0 | if (Result.Val.getInt() == 0) |
1230 | 0 | return {}; |
1231 | | |
1232 | 0 | if (BuildOpts.Observer) |
1233 | 0 | BuildOpts.Observer->compareBitwiseOr(B); |
1234 | |
|
1235 | 0 | return TryResult(true); |
1236 | 0 | } |
1237 | | |
1238 | | /// Try and evaluate an expression to an integer constant. |
1239 | 0 | bool tryEvaluate(Expr *S, Expr::EvalResult &outResult) { |
1240 | 0 | if (!BuildOpts.PruneTriviallyFalseEdges) |
1241 | 0 | return false; |
1242 | 0 | return !S->isTypeDependent() && |
1243 | 0 | !S->isValueDependent() && |
1244 | 0 | S->EvaluateAsRValue(outResult, *Context); |
1245 | 0 | } |
1246 | | |
1247 | | /// tryEvaluateBool - Try and evaluate the Stmt and return 0 or 1 |
1248 | | /// if we can evaluate to a known value, otherwise return -1. |
1249 | 0 | TryResult tryEvaluateBool(Expr *S) { |
1250 | 0 | if (!BuildOpts.PruneTriviallyFalseEdges || |
1251 | 0 | S->isTypeDependent() || S->isValueDependent()) |
1252 | 0 | return {}; |
1253 | | |
1254 | 0 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(S)) { |
1255 | 0 | if (Bop->isLogicalOp() || Bop->isEqualityOp()) { |
1256 | | // Check the cache first. |
1257 | 0 | CachedBoolEvalsTy::iterator I = CachedBoolEvals.find(S); |
1258 | 0 | if (I != CachedBoolEvals.end()) |
1259 | 0 | return I->second; // already in map; |
1260 | | |
1261 | | // Retrieve result at first, or the map might be updated. |
1262 | 0 | TryResult Result = evaluateAsBooleanConditionNoCache(S); |
1263 | 0 | CachedBoolEvals[S] = Result; // update or insert |
1264 | 0 | return Result; |
1265 | 0 | } |
1266 | 0 | else { |
1267 | 0 | switch (Bop->getOpcode()) { |
1268 | 0 | default: break; |
1269 | | // For 'x & 0' and 'x * 0', we can determine that |
1270 | | // the value is always false. |
1271 | 0 | case BO_Mul: |
1272 | 0 | case BO_And: { |
1273 | | // If either operand is zero, we know the value |
1274 | | // must be false. |
1275 | 0 | Expr::EvalResult LHSResult; |
1276 | 0 | if (Bop->getLHS()->EvaluateAsInt(LHSResult, *Context)) { |
1277 | 0 | llvm::APSInt IntVal = LHSResult.Val.getInt(); |
1278 | 0 | if (!IntVal.getBoolValue()) { |
1279 | 0 | return TryResult(false); |
1280 | 0 | } |
1281 | 0 | } |
1282 | 0 | Expr::EvalResult RHSResult; |
1283 | 0 | if (Bop->getRHS()->EvaluateAsInt(RHSResult, *Context)) { |
1284 | 0 | llvm::APSInt IntVal = RHSResult.Val.getInt(); |
1285 | 0 | if (!IntVal.getBoolValue()) { |
1286 | 0 | return TryResult(false); |
1287 | 0 | } |
1288 | 0 | } |
1289 | 0 | } |
1290 | 0 | break; |
1291 | 0 | } |
1292 | 0 | } |
1293 | 0 | } |
1294 | | |
1295 | 0 | return evaluateAsBooleanConditionNoCache(S); |
1296 | 0 | } |
1297 | | |
1298 | | /// Evaluate as boolean \param E without using the cache. |
1299 | 0 | TryResult evaluateAsBooleanConditionNoCache(Expr *E) { |
1300 | 0 | if (BinaryOperator *Bop = dyn_cast<BinaryOperator>(E)) { |
1301 | 0 | if (Bop->isLogicalOp()) { |
1302 | 0 | TryResult LHS = tryEvaluateBool(Bop->getLHS()); |
1303 | 0 | if (LHS.isKnown()) { |
1304 | | // We were able to evaluate the LHS, see if we can get away with not |
1305 | | // evaluating the RHS: 0 && X -> 0, 1 || X -> 1 |
1306 | 0 | if (LHS.isTrue() == (Bop->getOpcode() == BO_LOr)) |
1307 | 0 | return LHS.isTrue(); |
1308 | | |
1309 | 0 | TryResult RHS = tryEvaluateBool(Bop->getRHS()); |
1310 | 0 | if (RHS.isKnown()) { |
1311 | 0 | if (Bop->getOpcode() == BO_LOr) |
1312 | 0 | return LHS.isTrue() || RHS.isTrue(); |
1313 | 0 | else |
1314 | 0 | return LHS.isTrue() && RHS.isTrue(); |
1315 | 0 | } |
1316 | 0 | } else { |
1317 | 0 | TryResult RHS = tryEvaluateBool(Bop->getRHS()); |
1318 | 0 | if (RHS.isKnown()) { |
1319 | | // We can't evaluate the LHS; however, sometimes the result |
1320 | | // is determined by the RHS: X && 0 -> 0, X || 1 -> 1. |
1321 | 0 | if (RHS.isTrue() == (Bop->getOpcode() == BO_LOr)) |
1322 | 0 | return RHS.isTrue(); |
1323 | 0 | } else { |
1324 | 0 | TryResult BopRes = checkIncorrectLogicOperator(Bop); |
1325 | 0 | if (BopRes.isKnown()) |
1326 | 0 | return BopRes.isTrue(); |
1327 | 0 | } |
1328 | 0 | } |
1329 | | |
1330 | 0 | return {}; |
1331 | 0 | } else if (Bop->isEqualityOp()) { |
1332 | 0 | TryResult BopRes = checkIncorrectEqualityOperator(Bop); |
1333 | 0 | if (BopRes.isKnown()) |
1334 | 0 | return BopRes.isTrue(); |
1335 | 0 | } else if (Bop->isRelationalOp()) { |
1336 | 0 | TryResult BopRes = checkIncorrectRelationalOperator(Bop); |
1337 | 0 | if (BopRes.isKnown()) |
1338 | 0 | return BopRes.isTrue(); |
1339 | 0 | } else if (Bop->getOpcode() == BO_Or) { |
1340 | 0 | TryResult BopRes = checkIncorrectBitwiseOrOperator(Bop); |
1341 | 0 | if (BopRes.isKnown()) |
1342 | 0 | return BopRes.isTrue(); |
1343 | 0 | } |
1344 | 0 | } |
1345 | | |
1346 | 0 | bool Result; |
1347 | 0 | if (E->EvaluateAsBooleanCondition(Result, *Context)) |
1348 | 0 | return Result; |
1349 | | |
1350 | 0 | return {}; |
1351 | 0 | } |
1352 | | |
1353 | | bool hasTrivialDestructor(const VarDecl *VD) const; |
1354 | | bool needsAutomaticDestruction(const VarDecl *VD) const; |
1355 | | }; |
1356 | | |
1357 | | } // namespace |
1358 | | |
1359 | | Expr * |
1360 | 0 | clang::extractElementInitializerFromNestedAILE(const ArrayInitLoopExpr *AILE) { |
1361 | 0 | if (!AILE) |
1362 | 0 | return nullptr; |
1363 | | |
1364 | 0 | Expr *AILEInit = AILE->getSubExpr(); |
1365 | 0 | while (const auto *E = dyn_cast<ArrayInitLoopExpr>(AILEInit)) |
1366 | 0 | AILEInit = E->getSubExpr(); |
1367 | |
|
1368 | 0 | return AILEInit; |
1369 | 0 | } |
1370 | | |
1371 | | inline bool AddStmtChoice::alwaysAdd(CFGBuilder &builder, |
1372 | 0 | const Stmt *stmt) const { |
1373 | 0 | return builder.alwaysAdd(stmt) || kind == AlwaysAdd; |
1374 | 0 | } |
1375 | | |
1376 | 0 | bool CFGBuilder::alwaysAdd(const Stmt *stmt) { |
1377 | 0 | bool shouldAdd = BuildOpts.alwaysAdd(stmt); |
1378 | |
|
1379 | 0 | if (!BuildOpts.forcedBlkExprs) |
1380 | 0 | return shouldAdd; |
1381 | | |
1382 | 0 | if (lastLookup == stmt) { |
1383 | 0 | if (cachedEntry) { |
1384 | 0 | assert(cachedEntry->first == stmt); |
1385 | 0 | return true; |
1386 | 0 | } |
1387 | 0 | return shouldAdd; |
1388 | 0 | } |
1389 | | |
1390 | 0 | lastLookup = stmt; |
1391 | | |
1392 | | // Perform the lookup! |
1393 | 0 | CFG::BuildOptions::ForcedBlkExprs *fb = *BuildOpts.forcedBlkExprs; |
1394 | |
|
1395 | 0 | if (!fb) { |
1396 | | // No need to update 'cachedEntry', since it will always be null. |
1397 | 0 | assert(!cachedEntry); |
1398 | 0 | return shouldAdd; |
1399 | 0 | } |
1400 | | |
1401 | 0 | CFG::BuildOptions::ForcedBlkExprs::iterator itr = fb->find(stmt); |
1402 | 0 | if (itr == fb->end()) { |
1403 | 0 | cachedEntry = nullptr; |
1404 | 0 | return shouldAdd; |
1405 | 0 | } |
1406 | | |
1407 | 0 | cachedEntry = &*itr; |
1408 | 0 | return true; |
1409 | 0 | } |
1410 | | |
1411 | | // FIXME: Add support for dependent-sized array types in C++? |
1412 | | // Does it even make sense to build a CFG for an uninstantiated template? |
1413 | 0 | static const VariableArrayType *FindVA(const Type *t) { |
1414 | 0 | while (const ArrayType *vt = dyn_cast<ArrayType>(t)) { |
1415 | 0 | if (const VariableArrayType *vat = dyn_cast<VariableArrayType>(vt)) |
1416 | 0 | if (vat->getSizeExpr()) |
1417 | 0 | return vat; |
1418 | | |
1419 | 0 | t = vt->getElementType().getTypePtr(); |
1420 | 0 | } |
1421 | | |
1422 | 0 | return nullptr; |
1423 | 0 | } |
1424 | | |
1425 | | void CFGBuilder::consumeConstructionContext( |
1426 | 0 | const ConstructionContextLayer *Layer, Expr *E) { |
1427 | 0 | assert((isa<CXXConstructExpr>(E) || isa<CallExpr>(E) || |
1428 | 0 | isa<ObjCMessageExpr>(E)) && "Expression cannot construct an object!"); |
1429 | 0 | if (const ConstructionContextLayer *PreviouslyStoredLayer = |
1430 | 0 | ConstructionContextMap.lookup(E)) { |
1431 | 0 | (void)PreviouslyStoredLayer; |
1432 | | // We might have visited this child when we were finding construction |
1433 | | // contexts within its parents. |
1434 | 0 | assert(PreviouslyStoredLayer->isStrictlyMoreSpecificThan(Layer) && |
1435 | 0 | "Already within a different construction context!"); |
1436 | 0 | } else { |
1437 | 0 | ConstructionContextMap[E] = Layer; |
1438 | 0 | } |
1439 | 0 | } |
1440 | | |
1441 | | void CFGBuilder::findConstructionContexts( |
1442 | 0 | const ConstructionContextLayer *Layer, Stmt *Child) { |
1443 | 0 | if (!BuildOpts.AddRichCXXConstructors) |
1444 | 0 | return; |
1445 | | |
1446 | 0 | if (!Child) |
1447 | 0 | return; |
1448 | | |
1449 | 0 | auto withExtraLayer = [this, Layer](const ConstructionContextItem &Item) { |
1450 | 0 | return ConstructionContextLayer::create(cfg->getBumpVectorContext(), Item, |
1451 | 0 | Layer); |
1452 | 0 | }; |
1453 | |
|
1454 | 0 | switch(Child->getStmtClass()) { |
1455 | 0 | case Stmt::CXXConstructExprClass: |
1456 | 0 | case Stmt::CXXTemporaryObjectExprClass: { |
1457 | | // Support pre-C++17 copy elision AST. |
1458 | 0 | auto *CE = cast<CXXConstructExpr>(Child); |
1459 | 0 | if (BuildOpts.MarkElidedCXXConstructors && CE->isElidable()) { |
1460 | 0 | findConstructionContexts(withExtraLayer(CE), CE->getArg(0)); |
1461 | 0 | } |
1462 | |
|
1463 | 0 | consumeConstructionContext(Layer, CE); |
1464 | 0 | break; |
1465 | 0 | } |
1466 | | // FIXME: This, like the main visit, doesn't support CUDAKernelCallExpr. |
1467 | | // FIXME: An isa<> would look much better but this whole switch is a |
1468 | | // workaround for an internal compiler error in MSVC 2015 (see r326021). |
1469 | 0 | case Stmt::CallExprClass: |
1470 | 0 | case Stmt::CXXMemberCallExprClass: |
1471 | 0 | case Stmt::CXXOperatorCallExprClass: |
1472 | 0 | case Stmt::UserDefinedLiteralClass: |
1473 | 0 | case Stmt::ObjCMessageExprClass: { |
1474 | 0 | auto *E = cast<Expr>(Child); |
1475 | 0 | if (CFGCXXRecordTypedCall::isCXXRecordTypedCall(E)) |
1476 | 0 | consumeConstructionContext(Layer, E); |
1477 | 0 | break; |
1478 | 0 | } |
1479 | 0 | case Stmt::ExprWithCleanupsClass: { |
1480 | 0 | auto *Cleanups = cast<ExprWithCleanups>(Child); |
1481 | 0 | findConstructionContexts(Layer, Cleanups->getSubExpr()); |
1482 | 0 | break; |
1483 | 0 | } |
1484 | 0 | case Stmt::CXXFunctionalCastExprClass: { |
1485 | 0 | auto *Cast = cast<CXXFunctionalCastExpr>(Child); |
1486 | 0 | findConstructionContexts(Layer, Cast->getSubExpr()); |
1487 | 0 | break; |
1488 | 0 | } |
1489 | 0 | case Stmt::ImplicitCastExprClass: { |
1490 | 0 | auto *Cast = cast<ImplicitCastExpr>(Child); |
1491 | | // Should we support other implicit cast kinds? |
1492 | 0 | switch (Cast->getCastKind()) { |
1493 | 0 | case CK_NoOp: |
1494 | 0 | case CK_ConstructorConversion: |
1495 | 0 | findConstructionContexts(Layer, Cast->getSubExpr()); |
1496 | 0 | break; |
1497 | 0 | default: |
1498 | 0 | break; |
1499 | 0 | } |
1500 | 0 | break; |
1501 | 0 | } |
1502 | 0 | case Stmt::CXXBindTemporaryExprClass: { |
1503 | 0 | auto *BTE = cast<CXXBindTemporaryExpr>(Child); |
1504 | 0 | findConstructionContexts(withExtraLayer(BTE), BTE->getSubExpr()); |
1505 | 0 | break; |
1506 | 0 | } |
1507 | 0 | case Stmt::MaterializeTemporaryExprClass: { |
1508 | | // Normally we don't want to search in MaterializeTemporaryExpr because |
1509 | | // it indicates the beginning of a temporary object construction context, |
1510 | | // so it shouldn't be found in the middle. However, if it is the beginning |
1511 | | // of an elidable copy or move construction context, we need to include it. |
1512 | 0 | if (Layer->getItem().getKind() == |
1513 | 0 | ConstructionContextItem::ElidableConstructorKind) { |
1514 | 0 | auto *MTE = cast<MaterializeTemporaryExpr>(Child); |
1515 | 0 | findConstructionContexts(withExtraLayer(MTE), MTE->getSubExpr()); |
1516 | 0 | } |
1517 | 0 | break; |
1518 | 0 | } |
1519 | 0 | case Stmt::ConditionalOperatorClass: { |
1520 | 0 | auto *CO = cast<ConditionalOperator>(Child); |
1521 | 0 | if (Layer->getItem().getKind() != |
1522 | 0 | ConstructionContextItem::MaterializationKind) { |
1523 | | // If the object returned by the conditional operator is not going to be a |
1524 | | // temporary object that needs to be immediately materialized, then |
1525 | | // it must be C++17 with its mandatory copy elision. Do not yet promise |
1526 | | // to support this case. |
1527 | 0 | assert(!CO->getType()->getAsCXXRecordDecl() || CO->isGLValue() || |
1528 | 0 | Context->getLangOpts().CPlusPlus17); |
1529 | 0 | break; |
1530 | 0 | } |
1531 | 0 | findConstructionContexts(Layer, CO->getLHS()); |
1532 | 0 | findConstructionContexts(Layer, CO->getRHS()); |
1533 | 0 | break; |
1534 | 0 | } |
1535 | 0 | case Stmt::InitListExprClass: { |
1536 | 0 | auto *ILE = cast<InitListExpr>(Child); |
1537 | 0 | if (ILE->isTransparent()) { |
1538 | 0 | findConstructionContexts(Layer, ILE->getInit(0)); |
1539 | 0 | break; |
1540 | 0 | } |
1541 | | // TODO: Handle other cases. For now, fail to find construction contexts. |
1542 | 0 | break; |
1543 | 0 | } |
1544 | 0 | case Stmt::ParenExprClass: { |
1545 | | // If expression is placed into parenthesis we should propagate the parent |
1546 | | // construction context to subexpressions. |
1547 | 0 | auto *PE = cast<ParenExpr>(Child); |
1548 | 0 | findConstructionContexts(Layer, PE->getSubExpr()); |
1549 | 0 | break; |
1550 | 0 | } |
1551 | 0 | default: |
1552 | 0 | break; |
1553 | 0 | } |
1554 | 0 | } |
1555 | | |
1556 | 0 | void CFGBuilder::cleanupConstructionContext(Expr *E) { |
1557 | 0 | assert(BuildOpts.AddRichCXXConstructors && |
1558 | 0 | "We should not be managing construction contexts!"); |
1559 | 0 | assert(ConstructionContextMap.count(E) && |
1560 | 0 | "Cannot exit construction context without the context!"); |
1561 | 0 | ConstructionContextMap.erase(E); |
1562 | 0 | } |
1563 | | |
1564 | | /// BuildCFG - Constructs a CFG from an AST (a Stmt*). The AST can represent an |
1565 | | /// arbitrary statement. Examples include a single expression or a function |
1566 | | /// body (compound statement). The ownership of the returned CFG is |
1567 | | /// transferred to the caller. If CFG construction fails, this method returns |
1568 | | /// NULL. |
1569 | 0 | std::unique_ptr<CFG> CFGBuilder::buildCFG(const Decl *D, Stmt *Statement) { |
1570 | 0 | assert(cfg.get()); |
1571 | 0 | if (!Statement) |
1572 | 0 | return nullptr; |
1573 | | |
1574 | | // Create an empty block that will serve as the exit block for the CFG. Since |
1575 | | // this is the first block added to the CFG, it will be implicitly registered |
1576 | | // as the exit block. |
1577 | 0 | Succ = createBlock(); |
1578 | 0 | assert(Succ == &cfg->getExit()); |
1579 | 0 | Block = nullptr; // the EXIT block is empty. Create all other blocks lazily. |
1580 | |
|
1581 | 0 | if (BuildOpts.AddImplicitDtors) |
1582 | 0 | if (const CXXDestructorDecl *DD = dyn_cast_or_null<CXXDestructorDecl>(D)) |
1583 | 0 | addImplicitDtorsForDestructor(DD); |
1584 | | |
1585 | | // Visit the statements and create the CFG. |
1586 | 0 | CFGBlock *B = addStmt(Statement); |
1587 | |
|
1588 | 0 | if (badCFG) |
1589 | 0 | return nullptr; |
1590 | | |
1591 | | // For C++ constructor add initializers to CFG. Constructors of virtual bases |
1592 | | // are ignored unless the object is of the most derived class. |
1593 | | // class VBase { VBase() = default; VBase(int) {} }; |
1594 | | // class A : virtual public VBase { A() : VBase(0) {} }; |
1595 | | // class B : public A {}; |
1596 | | // B b; // Constructor calls in order: VBase(), A(), B(). |
1597 | | // // VBase(0) is ignored because A isn't the most derived class. |
1598 | | // This may result in the virtual base(s) being already initialized at this |
1599 | | // point, in which case we should jump right onto non-virtual bases and |
1600 | | // fields. To handle this, make a CFG branch. We only need to add one such |
1601 | | // branch per constructor, since the Standard states that all virtual bases |
1602 | | // shall be initialized before non-virtual bases and direct data members. |
1603 | 0 | if (const auto *CD = dyn_cast_or_null<CXXConstructorDecl>(D)) { |
1604 | 0 | CFGBlock *VBaseSucc = nullptr; |
1605 | 0 | for (auto *I : llvm::reverse(CD->inits())) { |
1606 | 0 | if (BuildOpts.AddVirtualBaseBranches && !VBaseSucc && |
1607 | 0 | I->isBaseInitializer() && I->isBaseVirtual()) { |
1608 | | // We've reached the first virtual base init while iterating in reverse |
1609 | | // order. Make a new block for virtual base initializers so that we |
1610 | | // could skip them. |
1611 | 0 | VBaseSucc = Succ = B ? B : &cfg->getExit(); |
1612 | 0 | Block = createBlock(); |
1613 | 0 | } |
1614 | 0 | B = addInitializer(I); |
1615 | 0 | if (badCFG) |
1616 | 0 | return nullptr; |
1617 | 0 | } |
1618 | 0 | if (VBaseSucc) { |
1619 | | // Make a branch block for potentially skipping virtual base initializers. |
1620 | 0 | Succ = VBaseSucc; |
1621 | 0 | B = createBlock(); |
1622 | 0 | B->setTerminator( |
1623 | 0 | CFGTerminator(nullptr, CFGTerminator::VirtualBaseBranch)); |
1624 | 0 | addSuccessor(B, Block, true); |
1625 | 0 | } |
1626 | 0 | } |
1627 | | |
1628 | 0 | if (B) |
1629 | 0 | Succ = B; |
1630 | | |
1631 | | // Backpatch the gotos whose label -> block mappings we didn't know when we |
1632 | | // encountered them. |
1633 | 0 | for (BackpatchBlocksTy::iterator I = BackpatchBlocks.begin(), |
1634 | 0 | E = BackpatchBlocks.end(); I != E; ++I ) { |
1635 | |
|
1636 | 0 | CFGBlock *B = I->block; |
1637 | 0 | if (auto *G = dyn_cast<GotoStmt>(B->getTerminator())) { |
1638 | 0 | LabelMapTy::iterator LI = LabelMap.find(G->getLabel()); |
1639 | | // If there is no target for the goto, then we are looking at an |
1640 | | // incomplete AST. Handle this by not registering a successor. |
1641 | 0 | if (LI == LabelMap.end()) |
1642 | 0 | continue; |
1643 | 0 | JumpTarget JT = LI->second; |
1644 | |
|
1645 | 0 | CFGBlock *SuccBlk = createScopeChangesHandlingBlock( |
1646 | 0 | I->scopePosition, B, JT.scopePosition, JT.block); |
1647 | 0 | addSuccessor(B, SuccBlk); |
1648 | 0 | } else if (auto *G = dyn_cast<GCCAsmStmt>(B->getTerminator())) { |
1649 | 0 | CFGBlock *Successor = (I+1)->block; |
1650 | 0 | for (auto *L : G->labels()) { |
1651 | 0 | LabelMapTy::iterator LI = LabelMap.find(L->getLabel()); |
1652 | | // If there is no target for the goto, then we are looking at an |
1653 | | // incomplete AST. Handle this by not registering a successor. |
1654 | 0 | if (LI == LabelMap.end()) |
1655 | 0 | continue; |
1656 | 0 | JumpTarget JT = LI->second; |
1657 | | // Successor has been added, so skip it. |
1658 | 0 | if (JT.block == Successor) |
1659 | 0 | continue; |
1660 | 0 | addSuccessor(B, JT.block); |
1661 | 0 | } |
1662 | 0 | I++; |
1663 | 0 | } |
1664 | 0 | } |
1665 | | |
1666 | | // Add successors to the Indirect Goto Dispatch block (if we have one). |
1667 | 0 | if (CFGBlock *B = cfg->getIndirectGotoBlock()) |
1668 | 0 | for (LabelSetTy::iterator I = AddressTakenLabels.begin(), |
1669 | 0 | E = AddressTakenLabels.end(); I != E; ++I ) { |
1670 | | // Lookup the target block. |
1671 | 0 | LabelMapTy::iterator LI = LabelMap.find(*I); |
1672 | | |
1673 | | // If there is no target block that contains label, then we are looking |
1674 | | // at an incomplete AST. Handle this by not registering a successor. |
1675 | 0 | if (LI == LabelMap.end()) continue; |
1676 | | |
1677 | 0 | addSuccessor(B, LI->second.block); |
1678 | 0 | } |
1679 | | |
1680 | | // Create an empty entry block that has no predecessors. |
1681 | 0 | cfg->setEntry(createBlock()); |
1682 | |
|
1683 | 0 | if (BuildOpts.AddRichCXXConstructors) |
1684 | 0 | assert(ConstructionContextMap.empty() && |
1685 | 0 | "Not all construction contexts were cleaned up!"); |
1686 | | |
1687 | 0 | return std::move(cfg); |
1688 | 0 | } |
1689 | | |
1690 | | /// createBlock - Used to lazily create blocks that are connected |
1691 | | /// to the current (global) successor. |
1692 | 0 | CFGBlock *CFGBuilder::createBlock(bool add_successor) { |
1693 | 0 | CFGBlock *B = cfg->createBlock(); |
1694 | 0 | if (add_successor && Succ) |
1695 | 0 | addSuccessor(B, Succ); |
1696 | 0 | return B; |
1697 | 0 | } |
1698 | | |
1699 | | /// createNoReturnBlock - Used to create a block is a 'noreturn' point in the |
1700 | | /// CFG. It is *not* connected to the current (global) successor, and instead |
1701 | | /// directly tied to the exit block in order to be reachable. |
1702 | 0 | CFGBlock *CFGBuilder::createNoReturnBlock() { |
1703 | 0 | CFGBlock *B = createBlock(false); |
1704 | 0 | B->setHasNoReturnElement(); |
1705 | 0 | addSuccessor(B, &cfg->getExit(), Succ); |
1706 | 0 | return B; |
1707 | 0 | } |
1708 | | |
1709 | | /// addInitializer - Add C++ base or member initializer element to CFG. |
1710 | 0 | CFGBlock *CFGBuilder::addInitializer(CXXCtorInitializer *I) { |
1711 | 0 | if (!BuildOpts.AddInitializers) |
1712 | 0 | return Block; |
1713 | | |
1714 | 0 | bool HasTemporaries = false; |
1715 | | |
1716 | | // Destructors of temporaries in initialization expression should be called |
1717 | | // after initialization finishes. |
1718 | 0 | Expr *Init = I->getInit(); |
1719 | 0 | if (Init) { |
1720 | 0 | HasTemporaries = isa<ExprWithCleanups>(Init); |
1721 | |
|
1722 | 0 | if (BuildOpts.AddTemporaryDtors && HasTemporaries) { |
1723 | | // Generate destructors for temporaries in initialization expression. |
1724 | 0 | TempDtorContext Context; |
1725 | 0 | VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(), |
1726 | 0 | /*ExternallyDestructed=*/false, Context); |
1727 | 0 | } |
1728 | 0 | } |
1729 | |
|
1730 | 0 | autoCreateBlock(); |
1731 | 0 | appendInitializer(Block, I); |
1732 | |
|
1733 | 0 | if (Init) { |
1734 | | // If the initializer is an ArrayInitLoopExpr, we want to extract the |
1735 | | // initializer, that's used for each element. |
1736 | 0 | auto *AILEInit = extractElementInitializerFromNestedAILE( |
1737 | 0 | dyn_cast<ArrayInitLoopExpr>(Init)); |
1738 | |
|
1739 | 0 | findConstructionContexts( |
1740 | 0 | ConstructionContextLayer::create(cfg->getBumpVectorContext(), I), |
1741 | 0 | AILEInit ? AILEInit : Init); |
1742 | |
|
1743 | 0 | if (HasTemporaries) { |
1744 | | // For expression with temporaries go directly to subexpression to omit |
1745 | | // generating destructors for the second time. |
1746 | 0 | return Visit(cast<ExprWithCleanups>(Init)->getSubExpr()); |
1747 | 0 | } |
1748 | 0 | if (BuildOpts.AddCXXDefaultInitExprInCtors) { |
1749 | 0 | if (CXXDefaultInitExpr *Default = dyn_cast<CXXDefaultInitExpr>(Init)) { |
1750 | | // In general, appending the expression wrapped by a CXXDefaultInitExpr |
1751 | | // may cause the same Expr to appear more than once in the CFG. Doing it |
1752 | | // here is safe because there's only one initializer per field. |
1753 | 0 | autoCreateBlock(); |
1754 | 0 | appendStmt(Block, Default); |
1755 | 0 | if (Stmt *Child = Default->getExpr()) |
1756 | 0 | if (CFGBlock *R = Visit(Child)) |
1757 | 0 | Block = R; |
1758 | 0 | return Block; |
1759 | 0 | } |
1760 | 0 | } |
1761 | 0 | return Visit(Init); |
1762 | 0 | } |
1763 | | |
1764 | 0 | return Block; |
1765 | 0 | } |
1766 | | |
1767 | | /// Retrieve the type of the temporary object whose lifetime was |
1768 | | /// extended by a local reference with the given initializer. |
1769 | | static QualType getReferenceInitTemporaryType(const Expr *Init, |
1770 | 0 | bool *FoundMTE = nullptr) { |
1771 | 0 | while (true) { |
1772 | | // Skip parentheses. |
1773 | 0 | Init = Init->IgnoreParens(); |
1774 | | |
1775 | | // Skip through cleanups. |
1776 | 0 | if (const ExprWithCleanups *EWC = dyn_cast<ExprWithCleanups>(Init)) { |
1777 | 0 | Init = EWC->getSubExpr(); |
1778 | 0 | continue; |
1779 | 0 | } |
1780 | | |
1781 | | // Skip through the temporary-materialization expression. |
1782 | 0 | if (const MaterializeTemporaryExpr *MTE |
1783 | 0 | = dyn_cast<MaterializeTemporaryExpr>(Init)) { |
1784 | 0 | Init = MTE->getSubExpr(); |
1785 | 0 | if (FoundMTE) |
1786 | 0 | *FoundMTE = true; |
1787 | 0 | continue; |
1788 | 0 | } |
1789 | | |
1790 | | // Skip sub-object accesses into rvalues. |
1791 | 0 | SmallVector<const Expr *, 2> CommaLHSs; |
1792 | 0 | SmallVector<SubobjectAdjustment, 2> Adjustments; |
1793 | 0 | const Expr *SkippedInit = |
1794 | 0 | Init->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); |
1795 | 0 | if (SkippedInit != Init) { |
1796 | 0 | Init = SkippedInit; |
1797 | 0 | continue; |
1798 | 0 | } |
1799 | | |
1800 | 0 | break; |
1801 | 0 | } |
1802 | |
|
1803 | 0 | return Init->getType(); |
1804 | 0 | } |
1805 | | |
1806 | | // TODO: Support adding LoopExit element to the CFG in case where the loop is |
1807 | | // ended by ReturnStmt, GotoStmt or ThrowExpr. |
1808 | 0 | void CFGBuilder::addLoopExit(const Stmt *LoopStmt){ |
1809 | 0 | if(!BuildOpts.AddLoopExit) |
1810 | 0 | return; |
1811 | 0 | autoCreateBlock(); |
1812 | 0 | appendLoopExit(Block, LoopStmt); |
1813 | 0 | } |
1814 | | |
1815 | | /// Adds the CFG elements for leaving the scope of automatic objects in |
1816 | | /// range [B, E). This include following: |
1817 | | /// * AutomaticObjectDtor for variables with non-trivial destructor |
1818 | | /// * LifetimeEnds for all variables |
1819 | | /// * ScopeEnd for each scope left |
1820 | | void CFGBuilder::addAutomaticObjHandling(LocalScope::const_iterator B, |
1821 | | LocalScope::const_iterator E, |
1822 | 0 | Stmt *S) { |
1823 | 0 | if (!BuildOpts.AddScopes && !BuildOpts.AddImplicitDtors && |
1824 | 0 | !BuildOpts.AddLifetime) |
1825 | 0 | return; |
1826 | | |
1827 | 0 | if (B == E) |
1828 | 0 | return; |
1829 | | |
1830 | | // Not leaving the scope, only need to handle destruction and lifetime |
1831 | 0 | if (B.inSameLocalScope(E)) { |
1832 | 0 | addAutomaticObjDestruction(B, E, S); |
1833 | 0 | return; |
1834 | 0 | } |
1835 | | |
1836 | | // Extract information about all local scopes that are left |
1837 | 0 | SmallVector<LocalScope::const_iterator, 10> LocalScopeEndMarkers; |
1838 | 0 | LocalScopeEndMarkers.push_back(B); |
1839 | 0 | for (LocalScope::const_iterator I = B; I != E; ++I) { |
1840 | 0 | if (!I.inSameLocalScope(LocalScopeEndMarkers.back())) |
1841 | 0 | LocalScopeEndMarkers.push_back(I); |
1842 | 0 | } |
1843 | 0 | LocalScopeEndMarkers.push_back(E); |
1844 | | |
1845 | | // We need to leave the scope in reverse order, so we reverse the end |
1846 | | // markers |
1847 | 0 | std::reverse(LocalScopeEndMarkers.begin(), LocalScopeEndMarkers.end()); |
1848 | 0 | auto Pairwise = |
1849 | 0 | llvm::zip(LocalScopeEndMarkers, llvm::drop_begin(LocalScopeEndMarkers)); |
1850 | 0 | for (auto [E, B] : Pairwise) { |
1851 | 0 | if (!B.inSameLocalScope(E)) |
1852 | 0 | addScopeExitHandling(B, E, S); |
1853 | 0 | addAutomaticObjDestruction(B, E, S); |
1854 | 0 | } |
1855 | 0 | } |
1856 | | |
1857 | | /// Add CFG elements corresponding to call destructor and end of lifetime |
1858 | | /// of all automatic variables with non-trivial destructor in range [B, E). |
1859 | | /// This include AutomaticObjectDtor and LifetimeEnds elements. |
1860 | | void CFGBuilder::addAutomaticObjDestruction(LocalScope::const_iterator B, |
1861 | | LocalScope::const_iterator E, |
1862 | 0 | Stmt *S) { |
1863 | 0 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime) |
1864 | 0 | return; |
1865 | | |
1866 | 0 | if (B == E) |
1867 | 0 | return; |
1868 | | |
1869 | 0 | SmallVector<VarDecl *, 10> DeclsNeedDestruction; |
1870 | 0 | DeclsNeedDestruction.reserve(B.distance(E)); |
1871 | |
|
1872 | 0 | for (VarDecl* D : llvm::make_range(B, E)) |
1873 | 0 | if (needsAutomaticDestruction(D)) |
1874 | 0 | DeclsNeedDestruction.push_back(D); |
1875 | |
|
1876 | 0 | for (VarDecl *VD : llvm::reverse(DeclsNeedDestruction)) { |
1877 | 0 | if (BuildOpts.AddImplicitDtors) { |
1878 | | // If this destructor is marked as a no-return destructor, we need to |
1879 | | // create a new block for the destructor which does not have as a |
1880 | | // successor anything built thus far: control won't flow out of this |
1881 | | // block. |
1882 | 0 | QualType Ty = VD->getType(); |
1883 | 0 | if (Ty->isReferenceType()) |
1884 | 0 | Ty = getReferenceInitTemporaryType(VD->getInit()); |
1885 | 0 | Ty = Context->getBaseElementType(Ty); |
1886 | |
|
1887 | 0 | const CXXRecordDecl *CRD = Ty->getAsCXXRecordDecl(); |
1888 | 0 | if (CRD && CRD->isAnyDestructorNoReturn()) |
1889 | 0 | Block = createNoReturnBlock(); |
1890 | 0 | } |
1891 | |
|
1892 | 0 | autoCreateBlock(); |
1893 | | |
1894 | | // Add LifetimeEnd after automatic obj with non-trivial destructors, |
1895 | | // as they end their lifetime when the destructor returns. For trivial |
1896 | | // objects, we end lifetime with scope end. |
1897 | 0 | if (BuildOpts.AddLifetime) |
1898 | 0 | appendLifetimeEnds(Block, VD, S); |
1899 | 0 | if (BuildOpts.AddImplicitDtors && !hasTrivialDestructor(VD)) |
1900 | 0 | appendAutomaticObjDtor(Block, VD, S); |
1901 | 0 | if (VD->hasAttr<CleanupAttr>()) |
1902 | 0 | appendCleanupFunction(Block, VD); |
1903 | 0 | } |
1904 | 0 | } |
1905 | | |
1906 | | /// Add CFG elements corresponding to leaving a scope. |
1907 | | /// Assumes that range [B, E) corresponds to single scope. |
1908 | | /// This add following elements: |
1909 | | /// * LifetimeEnds for all variables with non-trivial destructor |
1910 | | /// * ScopeEnd for each scope left |
1911 | | void CFGBuilder::addScopeExitHandling(LocalScope::const_iterator B, |
1912 | 0 | LocalScope::const_iterator E, Stmt *S) { |
1913 | 0 | assert(!B.inSameLocalScope(E)); |
1914 | 0 | if (!BuildOpts.AddLifetime && !BuildOpts.AddScopes) |
1915 | 0 | return; |
1916 | | |
1917 | 0 | if (BuildOpts.AddScopes) { |
1918 | 0 | autoCreateBlock(); |
1919 | 0 | appendScopeEnd(Block, B.getFirstVarInScope(), S); |
1920 | 0 | } |
1921 | |
|
1922 | 0 | if (!BuildOpts.AddLifetime) |
1923 | 0 | return; |
1924 | | |
1925 | | // We need to perform the scope leaving in reverse order |
1926 | 0 | SmallVector<VarDecl *, 10> DeclsTrivial; |
1927 | 0 | DeclsTrivial.reserve(B.distance(E)); |
1928 | | |
1929 | | // Objects with trivial destructor ends their lifetime when their storage |
1930 | | // is destroyed, for automatic variables, this happens when the end of the |
1931 | | // scope is added. |
1932 | 0 | for (VarDecl* D : llvm::make_range(B, E)) |
1933 | 0 | if (!needsAutomaticDestruction(D)) |
1934 | 0 | DeclsTrivial.push_back(D); |
1935 | |
|
1936 | 0 | if (DeclsTrivial.empty()) |
1937 | 0 | return; |
1938 | | |
1939 | 0 | autoCreateBlock(); |
1940 | 0 | for (VarDecl *VD : llvm::reverse(DeclsTrivial)) |
1941 | 0 | appendLifetimeEnds(Block, VD, S); |
1942 | 0 | } |
1943 | | |
1944 | | /// addScopeChangesHandling - appends information about destruction, lifetime |
1945 | | /// and cfgScopeEnd for variables in the scope that was left by the jump, and |
1946 | | /// appends cfgScopeBegin for all scopes that where entered. |
1947 | | /// We insert the cfgScopeBegin at the end of the jump node, as depending on |
1948 | | /// the sourceBlock, each goto, may enter different amount of scopes. |
1949 | | void CFGBuilder::addScopeChangesHandling(LocalScope::const_iterator SrcPos, |
1950 | | LocalScope::const_iterator DstPos, |
1951 | 0 | Stmt *S) { |
1952 | 0 | assert(Block && "Source block should be always crated"); |
1953 | 0 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
1954 | 0 | !BuildOpts.AddScopes) { |
1955 | 0 | return; |
1956 | 0 | } |
1957 | | |
1958 | 0 | if (SrcPos == DstPos) |
1959 | 0 | return; |
1960 | | |
1961 | | // Get common scope, the jump leaves all scopes [SrcPos, BasePos), and |
1962 | | // enter all scopes between [DstPos, BasePos) |
1963 | 0 | LocalScope::const_iterator BasePos = SrcPos.shared_parent(DstPos); |
1964 | | |
1965 | | // Append scope begins for scopes entered by goto |
1966 | 0 | if (BuildOpts.AddScopes && !DstPos.inSameLocalScope(BasePos)) { |
1967 | 0 | for (LocalScope::const_iterator I = DstPos; I != BasePos; ++I) |
1968 | 0 | if (I.pointsToFirstDeclaredVar()) |
1969 | 0 | appendScopeBegin(Block, *I, S); |
1970 | 0 | } |
1971 | | |
1972 | | // Append scopeEnds, destructor and lifetime with the terminator for |
1973 | | // block left by goto. |
1974 | 0 | addAutomaticObjHandling(SrcPos, BasePos, S); |
1975 | 0 | } |
1976 | | |
1977 | | /// createScopeChangesHandlingBlock - Creates a block with cfgElements |
1978 | | /// corresponding to changing the scope from the source scope of the GotoStmt, |
1979 | | /// to destination scope. Add destructor, lifetime and cfgScopeEnd |
1980 | | /// CFGElements to newly created CFGBlock, that will have the CFG terminator |
1981 | | /// transferred. |
1982 | | CFGBlock *CFGBuilder::createScopeChangesHandlingBlock( |
1983 | | LocalScope::const_iterator SrcPos, CFGBlock *SrcBlk, |
1984 | 0 | LocalScope::const_iterator DstPos, CFGBlock *DstBlk) { |
1985 | 0 | if (SrcPos == DstPos) |
1986 | 0 | return DstBlk; |
1987 | | |
1988 | 0 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
1989 | 0 | (!BuildOpts.AddScopes || SrcPos.inSameLocalScope(DstPos))) |
1990 | 0 | return DstBlk; |
1991 | | |
1992 | | // We will update CFBBuilder when creating new block, restore the |
1993 | | // previous state at exit. |
1994 | 0 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
1995 | | |
1996 | | // Create a new block, and transfer terminator |
1997 | 0 | Block = createBlock(false); |
1998 | 0 | Block->setTerminator(SrcBlk->getTerminator()); |
1999 | 0 | SrcBlk->setTerminator(CFGTerminator()); |
2000 | 0 | addSuccessor(Block, DstBlk); |
2001 | | |
2002 | | // Fill the created Block with the required elements. |
2003 | 0 | addScopeChangesHandling(SrcPos, DstPos, Block->getTerminatorStmt()); |
2004 | |
|
2005 | 0 | assert(Block && "There should be at least one scope changing Block"); |
2006 | 0 | return Block; |
2007 | 0 | } |
2008 | | |
2009 | | /// addImplicitDtorsForDestructor - Add implicit destructors generated for |
2010 | | /// base and member objects in destructor. |
2011 | 0 | void CFGBuilder::addImplicitDtorsForDestructor(const CXXDestructorDecl *DD) { |
2012 | 0 | assert(BuildOpts.AddImplicitDtors && |
2013 | 0 | "Can be called only when dtors should be added"); |
2014 | 0 | const CXXRecordDecl *RD = DD->getParent(); |
2015 | | |
2016 | | // At the end destroy virtual base objects. |
2017 | 0 | for (const auto &VI : RD->vbases()) { |
2018 | | // TODO: Add a VirtualBaseBranch to see if the most derived class |
2019 | | // (which is different from the current class) is responsible for |
2020 | | // destroying them. |
2021 | 0 | const CXXRecordDecl *CD = VI.getType()->getAsCXXRecordDecl(); |
2022 | 0 | if (CD && !CD->hasTrivialDestructor()) { |
2023 | 0 | autoCreateBlock(); |
2024 | 0 | appendBaseDtor(Block, &VI); |
2025 | 0 | } |
2026 | 0 | } |
2027 | | |
2028 | | // Before virtual bases destroy direct base objects. |
2029 | 0 | for (const auto &BI : RD->bases()) { |
2030 | 0 | if (!BI.isVirtual()) { |
2031 | 0 | const CXXRecordDecl *CD = BI.getType()->getAsCXXRecordDecl(); |
2032 | 0 | if (CD && !CD->hasTrivialDestructor()) { |
2033 | 0 | autoCreateBlock(); |
2034 | 0 | appendBaseDtor(Block, &BI); |
2035 | 0 | } |
2036 | 0 | } |
2037 | 0 | } |
2038 | | |
2039 | | // First destroy member objects. |
2040 | 0 | for (auto *FI : RD->fields()) { |
2041 | | // Check for constant size array. Set type to array element type. |
2042 | 0 | QualType QT = FI->getType(); |
2043 | | // It may be a multidimensional array. |
2044 | 0 | while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) { |
2045 | 0 | if (AT->getSize() == 0) |
2046 | 0 | break; |
2047 | 0 | QT = AT->getElementType(); |
2048 | 0 | } |
2049 | |
|
2050 | 0 | if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl()) |
2051 | 0 | if (!CD->hasTrivialDestructor()) { |
2052 | 0 | autoCreateBlock(); |
2053 | 0 | appendMemberDtor(Block, FI); |
2054 | 0 | } |
2055 | 0 | } |
2056 | 0 | } |
2057 | | |
2058 | | /// createOrReuseLocalScope - If Scope is NULL create new LocalScope. Either |
2059 | | /// way return valid LocalScope object. |
2060 | 0 | LocalScope* CFGBuilder::createOrReuseLocalScope(LocalScope* Scope) { |
2061 | 0 | if (Scope) |
2062 | 0 | return Scope; |
2063 | 0 | llvm::BumpPtrAllocator &alloc = cfg->getAllocator(); |
2064 | 0 | return new (alloc) LocalScope(BumpVectorContext(alloc), ScopePos); |
2065 | 0 | } |
2066 | | |
2067 | | /// addLocalScopeForStmt - Add LocalScope to local scopes tree for statement |
2068 | | /// that should create implicit scope (e.g. if/else substatements). |
2069 | 0 | void CFGBuilder::addLocalScopeForStmt(Stmt *S) { |
2070 | 0 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
2071 | 0 | !BuildOpts.AddScopes) |
2072 | 0 | return; |
2073 | | |
2074 | 0 | LocalScope *Scope = nullptr; |
2075 | | |
2076 | | // For compound statement we will be creating explicit scope. |
2077 | 0 | if (CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { |
2078 | 0 | for (auto *BI : CS->body()) { |
2079 | 0 | Stmt *SI = BI->stripLabelLikeStatements(); |
2080 | 0 | if (DeclStmt *DS = dyn_cast<DeclStmt>(SI)) |
2081 | 0 | Scope = addLocalScopeForDeclStmt(DS, Scope); |
2082 | 0 | } |
2083 | 0 | return; |
2084 | 0 | } |
2085 | | |
2086 | | // For any other statement scope will be implicit and as such will be |
2087 | | // interesting only for DeclStmt. |
2088 | 0 | if (DeclStmt *DS = dyn_cast<DeclStmt>(S->stripLabelLikeStatements())) |
2089 | 0 | addLocalScopeForDeclStmt(DS); |
2090 | 0 | } |
2091 | | |
2092 | | /// addLocalScopeForDeclStmt - Add LocalScope for declaration statement. Will |
2093 | | /// reuse Scope if not NULL. |
2094 | | LocalScope* CFGBuilder::addLocalScopeForDeclStmt(DeclStmt *DS, |
2095 | 0 | LocalScope* Scope) { |
2096 | 0 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
2097 | 0 | !BuildOpts.AddScopes) |
2098 | 0 | return Scope; |
2099 | | |
2100 | 0 | for (auto *DI : DS->decls()) |
2101 | 0 | if (VarDecl *VD = dyn_cast<VarDecl>(DI)) |
2102 | 0 | Scope = addLocalScopeForVarDecl(VD, Scope); |
2103 | 0 | return Scope; |
2104 | 0 | } |
2105 | | |
2106 | 0 | bool CFGBuilder::needsAutomaticDestruction(const VarDecl *VD) const { |
2107 | 0 | return !hasTrivialDestructor(VD) || VD->hasAttr<CleanupAttr>(); |
2108 | 0 | } |
2109 | | |
2110 | 0 | bool CFGBuilder::hasTrivialDestructor(const VarDecl *VD) const { |
2111 | | // Check for const references bound to temporary. Set type to pointee. |
2112 | 0 | QualType QT = VD->getType(); |
2113 | 0 | if (QT->isReferenceType()) { |
2114 | | // Attempt to determine whether this declaration lifetime-extends a |
2115 | | // temporary. |
2116 | | // |
2117 | | // FIXME: This is incorrect. Non-reference declarations can lifetime-extend |
2118 | | // temporaries, and a single declaration can extend multiple temporaries. |
2119 | | // We should look at the storage duration on each nested |
2120 | | // MaterializeTemporaryExpr instead. |
2121 | |
|
2122 | 0 | const Expr *Init = VD->getInit(); |
2123 | 0 | if (!Init) { |
2124 | | // Probably an exception catch-by-reference variable. |
2125 | | // FIXME: It doesn't really mean that the object has a trivial destructor. |
2126 | | // Also are there other cases? |
2127 | 0 | return true; |
2128 | 0 | } |
2129 | | |
2130 | | // Lifetime-extending a temporary? |
2131 | 0 | bool FoundMTE = false; |
2132 | 0 | QT = getReferenceInitTemporaryType(Init, &FoundMTE); |
2133 | 0 | if (!FoundMTE) |
2134 | 0 | return true; |
2135 | 0 | } |
2136 | | |
2137 | | // Check for constant size array. Set type to array element type. |
2138 | 0 | while (const ConstantArrayType *AT = Context->getAsConstantArrayType(QT)) { |
2139 | 0 | if (AT->getSize() == 0) |
2140 | 0 | return true; |
2141 | 0 | QT = AT->getElementType(); |
2142 | 0 | } |
2143 | | |
2144 | | // Check if type is a C++ class with non-trivial destructor. |
2145 | 0 | if (const CXXRecordDecl *CD = QT->getAsCXXRecordDecl()) |
2146 | 0 | return !CD->hasDefinition() || CD->hasTrivialDestructor(); |
2147 | 0 | return true; |
2148 | 0 | } |
2149 | | |
2150 | | /// addLocalScopeForVarDecl - Add LocalScope for variable declaration. It will |
2151 | | /// create add scope for automatic objects and temporary objects bound to |
2152 | | /// const reference. Will reuse Scope if not NULL. |
2153 | | LocalScope* CFGBuilder::addLocalScopeForVarDecl(VarDecl *VD, |
2154 | 0 | LocalScope* Scope) { |
2155 | 0 | if (!BuildOpts.AddImplicitDtors && !BuildOpts.AddLifetime && |
2156 | 0 | !BuildOpts.AddScopes) |
2157 | 0 | return Scope; |
2158 | | |
2159 | | // Check if variable is local. |
2160 | 0 | if (!VD->hasLocalStorage()) |
2161 | 0 | return Scope; |
2162 | | |
2163 | 0 | if (!BuildOpts.AddLifetime && !BuildOpts.AddScopes && |
2164 | 0 | !needsAutomaticDestruction(VD)) { |
2165 | 0 | assert(BuildOpts.AddImplicitDtors); |
2166 | 0 | return Scope; |
2167 | 0 | } |
2168 | | |
2169 | | // Add the variable to scope |
2170 | 0 | Scope = createOrReuseLocalScope(Scope); |
2171 | 0 | Scope->addVar(VD); |
2172 | 0 | ScopePos = Scope->begin(); |
2173 | 0 | return Scope; |
2174 | 0 | } |
2175 | | |
2176 | | /// addLocalScopeAndDtors - For given statement add local scope for it and |
2177 | | /// add destructors that will cleanup the scope. Will reuse Scope if not NULL. |
2178 | 0 | void CFGBuilder::addLocalScopeAndDtors(Stmt *S) { |
2179 | 0 | LocalScope::const_iterator scopeBeginPos = ScopePos; |
2180 | 0 | addLocalScopeForStmt(S); |
2181 | 0 | addAutomaticObjHandling(ScopePos, scopeBeginPos, S); |
2182 | 0 | } |
2183 | | |
2184 | | /// Visit - Walk the subtree of a statement and add extra |
2185 | | /// blocks for ternary operators, &&, and ||. We also process "," and |
2186 | | /// DeclStmts (which may contain nested control-flow). |
2187 | | CFGBlock *CFGBuilder::Visit(Stmt * S, AddStmtChoice asc, |
2188 | 0 | bool ExternallyDestructed) { |
2189 | 0 | if (!S) { |
2190 | 0 | badCFG = true; |
2191 | 0 | return nullptr; |
2192 | 0 | } |
2193 | | |
2194 | 0 | if (Expr *E = dyn_cast<Expr>(S)) |
2195 | 0 | S = E->IgnoreParens(); |
2196 | |
|
2197 | 0 | if (Context->getLangOpts().OpenMP) |
2198 | 0 | if (auto *D = dyn_cast<OMPExecutableDirective>(S)) |
2199 | 0 | return VisitOMPExecutableDirective(D, asc); |
2200 | | |
2201 | 0 | switch (S->getStmtClass()) { |
2202 | 0 | default: |
2203 | 0 | return VisitStmt(S, asc); |
2204 | | |
2205 | 0 | case Stmt::ImplicitValueInitExprClass: |
2206 | 0 | if (BuildOpts.OmitImplicitValueInitializers) |
2207 | 0 | return Block; |
2208 | 0 | return VisitStmt(S, asc); |
2209 | | |
2210 | 0 | case Stmt::InitListExprClass: |
2211 | 0 | return VisitInitListExpr(cast<InitListExpr>(S), asc); |
2212 | | |
2213 | 0 | case Stmt::AttributedStmtClass: |
2214 | 0 | return VisitAttributedStmt(cast<AttributedStmt>(S), asc); |
2215 | | |
2216 | 0 | case Stmt::AddrLabelExprClass: |
2217 | 0 | return VisitAddrLabelExpr(cast<AddrLabelExpr>(S), asc); |
2218 | | |
2219 | 0 | case Stmt::BinaryConditionalOperatorClass: |
2220 | 0 | return VisitConditionalOperator(cast<BinaryConditionalOperator>(S), asc); |
2221 | | |
2222 | 0 | case Stmt::BinaryOperatorClass: |
2223 | 0 | return VisitBinaryOperator(cast<BinaryOperator>(S), asc); |
2224 | | |
2225 | 0 | case Stmt::BlockExprClass: |
2226 | 0 | return VisitBlockExpr(cast<BlockExpr>(S), asc); |
2227 | | |
2228 | 0 | case Stmt::BreakStmtClass: |
2229 | 0 | return VisitBreakStmt(cast<BreakStmt>(S)); |
2230 | | |
2231 | 0 | case Stmt::CallExprClass: |
2232 | 0 | case Stmt::CXXOperatorCallExprClass: |
2233 | 0 | case Stmt::CXXMemberCallExprClass: |
2234 | 0 | case Stmt::UserDefinedLiteralClass: |
2235 | 0 | return VisitCallExpr(cast<CallExpr>(S), asc); |
2236 | | |
2237 | 0 | case Stmt::CaseStmtClass: |
2238 | 0 | return VisitCaseStmt(cast<CaseStmt>(S)); |
2239 | | |
2240 | 0 | case Stmt::ChooseExprClass: |
2241 | 0 | return VisitChooseExpr(cast<ChooseExpr>(S), asc); |
2242 | | |
2243 | 0 | case Stmt::CompoundStmtClass: |
2244 | 0 | return VisitCompoundStmt(cast<CompoundStmt>(S), ExternallyDestructed); |
2245 | | |
2246 | 0 | case Stmt::ConditionalOperatorClass: |
2247 | 0 | return VisitConditionalOperator(cast<ConditionalOperator>(S), asc); |
2248 | | |
2249 | 0 | case Stmt::ContinueStmtClass: |
2250 | 0 | return VisitContinueStmt(cast<ContinueStmt>(S)); |
2251 | | |
2252 | 0 | case Stmt::CXXCatchStmtClass: |
2253 | 0 | return VisitCXXCatchStmt(cast<CXXCatchStmt>(S)); |
2254 | | |
2255 | 0 | case Stmt::ExprWithCleanupsClass: |
2256 | 0 | return VisitExprWithCleanups(cast<ExprWithCleanups>(S), |
2257 | 0 | asc, ExternallyDestructed); |
2258 | | |
2259 | 0 | case Stmt::CXXDefaultArgExprClass: |
2260 | 0 | case Stmt::CXXDefaultInitExprClass: |
2261 | | // FIXME: The expression inside a CXXDefaultArgExpr is owned by the |
2262 | | // called function's declaration, not by the caller. If we simply add |
2263 | | // this expression to the CFG, we could end up with the same Expr |
2264 | | // appearing multiple times (PR13385). |
2265 | | // |
2266 | | // It's likewise possible for multiple CXXDefaultInitExprs for the same |
2267 | | // expression to be used in the same function (through aggregate |
2268 | | // initialization). |
2269 | 0 | return VisitStmt(S, asc); |
2270 | | |
2271 | 0 | case Stmt::CXXBindTemporaryExprClass: |
2272 | 0 | return VisitCXXBindTemporaryExpr(cast<CXXBindTemporaryExpr>(S), asc); |
2273 | | |
2274 | 0 | case Stmt::CXXConstructExprClass: |
2275 | 0 | return VisitCXXConstructExpr(cast<CXXConstructExpr>(S), asc); |
2276 | | |
2277 | 0 | case Stmt::CXXNewExprClass: |
2278 | 0 | return VisitCXXNewExpr(cast<CXXNewExpr>(S), asc); |
2279 | | |
2280 | 0 | case Stmt::CXXDeleteExprClass: |
2281 | 0 | return VisitCXXDeleteExpr(cast<CXXDeleteExpr>(S), asc); |
2282 | | |
2283 | 0 | case Stmt::CXXFunctionalCastExprClass: |
2284 | 0 | return VisitCXXFunctionalCastExpr(cast<CXXFunctionalCastExpr>(S), asc); |
2285 | | |
2286 | 0 | case Stmt::CXXTemporaryObjectExprClass: |
2287 | 0 | return VisitCXXTemporaryObjectExpr(cast<CXXTemporaryObjectExpr>(S), asc); |
2288 | | |
2289 | 0 | case Stmt::CXXThrowExprClass: |
2290 | 0 | return VisitCXXThrowExpr(cast<CXXThrowExpr>(S)); |
2291 | | |
2292 | 0 | case Stmt::CXXTryStmtClass: |
2293 | 0 | return VisitCXXTryStmt(cast<CXXTryStmt>(S)); |
2294 | | |
2295 | 0 | case Stmt::CXXTypeidExprClass: |
2296 | 0 | return VisitCXXTypeidExpr(cast<CXXTypeidExpr>(S), asc); |
2297 | | |
2298 | 0 | case Stmt::CXXForRangeStmtClass: |
2299 | 0 | return VisitCXXForRangeStmt(cast<CXXForRangeStmt>(S)); |
2300 | | |
2301 | 0 | case Stmt::DeclStmtClass: |
2302 | 0 | return VisitDeclStmt(cast<DeclStmt>(S)); |
2303 | | |
2304 | 0 | case Stmt::DefaultStmtClass: |
2305 | 0 | return VisitDefaultStmt(cast<DefaultStmt>(S)); |
2306 | | |
2307 | 0 | case Stmt::DoStmtClass: |
2308 | 0 | return VisitDoStmt(cast<DoStmt>(S)); |
2309 | | |
2310 | 0 | case Stmt::ForStmtClass: |
2311 | 0 | return VisitForStmt(cast<ForStmt>(S)); |
2312 | | |
2313 | 0 | case Stmt::GotoStmtClass: |
2314 | 0 | return VisitGotoStmt(cast<GotoStmt>(S)); |
2315 | | |
2316 | 0 | case Stmt::GCCAsmStmtClass: |
2317 | 0 | return VisitGCCAsmStmt(cast<GCCAsmStmt>(S), asc); |
2318 | | |
2319 | 0 | case Stmt::IfStmtClass: |
2320 | 0 | return VisitIfStmt(cast<IfStmt>(S)); |
2321 | | |
2322 | 0 | case Stmt::ImplicitCastExprClass: |
2323 | 0 | return VisitImplicitCastExpr(cast<ImplicitCastExpr>(S), asc); |
2324 | | |
2325 | 0 | case Stmt::ConstantExprClass: |
2326 | 0 | return VisitConstantExpr(cast<ConstantExpr>(S), asc); |
2327 | | |
2328 | 0 | case Stmt::IndirectGotoStmtClass: |
2329 | 0 | return VisitIndirectGotoStmt(cast<IndirectGotoStmt>(S)); |
2330 | | |
2331 | 0 | case Stmt::LabelStmtClass: |
2332 | 0 | return VisitLabelStmt(cast<LabelStmt>(S)); |
2333 | | |
2334 | 0 | case Stmt::LambdaExprClass: |
2335 | 0 | return VisitLambdaExpr(cast<LambdaExpr>(S), asc); |
2336 | | |
2337 | 0 | case Stmt::MaterializeTemporaryExprClass: |
2338 | 0 | return VisitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(S), |
2339 | 0 | asc); |
2340 | | |
2341 | 0 | case Stmt::MemberExprClass: |
2342 | 0 | return VisitMemberExpr(cast<MemberExpr>(S), asc); |
2343 | | |
2344 | 0 | case Stmt::NullStmtClass: |
2345 | 0 | return Block; |
2346 | | |
2347 | 0 | case Stmt::ObjCAtCatchStmtClass: |
2348 | 0 | return VisitObjCAtCatchStmt(cast<ObjCAtCatchStmt>(S)); |
2349 | | |
2350 | 0 | case Stmt::ObjCAutoreleasePoolStmtClass: |
2351 | 0 | return VisitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(S)); |
2352 | | |
2353 | 0 | case Stmt::ObjCAtSynchronizedStmtClass: |
2354 | 0 | return VisitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(S)); |
2355 | | |
2356 | 0 | case Stmt::ObjCAtThrowStmtClass: |
2357 | 0 | return VisitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(S)); |
2358 | | |
2359 | 0 | case Stmt::ObjCAtTryStmtClass: |
2360 | 0 | return VisitObjCAtTryStmt(cast<ObjCAtTryStmt>(S)); |
2361 | | |
2362 | 0 | case Stmt::ObjCForCollectionStmtClass: |
2363 | 0 | return VisitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(S)); |
2364 | | |
2365 | 0 | case Stmt::ObjCMessageExprClass: |
2366 | 0 | return VisitObjCMessageExpr(cast<ObjCMessageExpr>(S), asc); |
2367 | | |
2368 | 0 | case Stmt::OpaqueValueExprClass: |
2369 | 0 | return Block; |
2370 | | |
2371 | 0 | case Stmt::PseudoObjectExprClass: |
2372 | 0 | return VisitPseudoObjectExpr(cast<PseudoObjectExpr>(S)); |
2373 | | |
2374 | 0 | case Stmt::ReturnStmtClass: |
2375 | 0 | case Stmt::CoreturnStmtClass: |
2376 | 0 | return VisitReturnStmt(S); |
2377 | | |
2378 | 0 | case Stmt::CoyieldExprClass: |
2379 | 0 | case Stmt::CoawaitExprClass: |
2380 | 0 | return VisitCoroutineSuspendExpr(cast<CoroutineSuspendExpr>(S), asc); |
2381 | | |
2382 | 0 | case Stmt::SEHExceptStmtClass: |
2383 | 0 | return VisitSEHExceptStmt(cast<SEHExceptStmt>(S)); |
2384 | | |
2385 | 0 | case Stmt::SEHFinallyStmtClass: |
2386 | 0 | return VisitSEHFinallyStmt(cast<SEHFinallyStmt>(S)); |
2387 | | |
2388 | 0 | case Stmt::SEHLeaveStmtClass: |
2389 | 0 | return VisitSEHLeaveStmt(cast<SEHLeaveStmt>(S)); |
2390 | | |
2391 | 0 | case Stmt::SEHTryStmtClass: |
2392 | 0 | return VisitSEHTryStmt(cast<SEHTryStmt>(S)); |
2393 | | |
2394 | 0 | case Stmt::UnaryExprOrTypeTraitExprClass: |
2395 | 0 | return VisitUnaryExprOrTypeTraitExpr(cast<UnaryExprOrTypeTraitExpr>(S), |
2396 | 0 | asc); |
2397 | | |
2398 | 0 | case Stmt::StmtExprClass: |
2399 | 0 | return VisitStmtExpr(cast<StmtExpr>(S), asc); |
2400 | | |
2401 | 0 | case Stmt::SwitchStmtClass: |
2402 | 0 | return VisitSwitchStmt(cast<SwitchStmt>(S)); |
2403 | | |
2404 | 0 | case Stmt::UnaryOperatorClass: |
2405 | 0 | return VisitUnaryOperator(cast<UnaryOperator>(S), asc); |
2406 | | |
2407 | 0 | case Stmt::WhileStmtClass: |
2408 | 0 | return VisitWhileStmt(cast<WhileStmt>(S)); |
2409 | | |
2410 | 0 | case Stmt::ArrayInitLoopExprClass: |
2411 | 0 | return VisitArrayInitLoopExpr(cast<ArrayInitLoopExpr>(S), asc); |
2412 | 0 | } |
2413 | 0 | } |
2414 | | |
2415 | 0 | CFGBlock *CFGBuilder::VisitStmt(Stmt *S, AddStmtChoice asc) { |
2416 | 0 | if (asc.alwaysAdd(*this, S)) { |
2417 | 0 | autoCreateBlock(); |
2418 | 0 | appendStmt(Block, S); |
2419 | 0 | } |
2420 | |
|
2421 | 0 | return VisitChildren(S); |
2422 | 0 | } |
2423 | | |
2424 | | /// VisitChildren - Visit the children of a Stmt. |
2425 | 0 | CFGBlock *CFGBuilder::VisitChildren(Stmt *S) { |
2426 | 0 | CFGBlock *B = Block; |
2427 | | |
2428 | | // Visit the children in their reverse order so that they appear in |
2429 | | // left-to-right (natural) order in the CFG. |
2430 | 0 | reverse_children RChildren(S); |
2431 | 0 | for (Stmt *Child : RChildren) { |
2432 | 0 | if (Child) |
2433 | 0 | if (CFGBlock *R = Visit(Child)) |
2434 | 0 | B = R; |
2435 | 0 | } |
2436 | 0 | return B; |
2437 | 0 | } |
2438 | | |
2439 | 0 | CFGBlock *CFGBuilder::VisitInitListExpr(InitListExpr *ILE, AddStmtChoice asc) { |
2440 | 0 | if (asc.alwaysAdd(*this, ILE)) { |
2441 | 0 | autoCreateBlock(); |
2442 | 0 | appendStmt(Block, ILE); |
2443 | 0 | } |
2444 | 0 | CFGBlock *B = Block; |
2445 | |
|
2446 | 0 | reverse_children RChildren(ILE); |
2447 | 0 | for (Stmt *Child : RChildren) { |
2448 | 0 | if (!Child) |
2449 | 0 | continue; |
2450 | 0 | if (CFGBlock *R = Visit(Child)) |
2451 | 0 | B = R; |
2452 | 0 | if (BuildOpts.AddCXXDefaultInitExprInAggregates) { |
2453 | 0 | if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Child)) |
2454 | 0 | if (Stmt *Child = DIE->getExpr()) |
2455 | 0 | if (CFGBlock *R = Visit(Child)) |
2456 | 0 | B = R; |
2457 | 0 | } |
2458 | 0 | } |
2459 | 0 | return B; |
2460 | 0 | } |
2461 | | |
2462 | | CFGBlock *CFGBuilder::VisitAddrLabelExpr(AddrLabelExpr *A, |
2463 | 0 | AddStmtChoice asc) { |
2464 | 0 | AddressTakenLabels.insert(A->getLabel()); |
2465 | |
|
2466 | 0 | if (asc.alwaysAdd(*this, A)) { |
2467 | 0 | autoCreateBlock(); |
2468 | 0 | appendStmt(Block, A); |
2469 | 0 | } |
2470 | |
|
2471 | 0 | return Block; |
2472 | 0 | } |
2473 | | |
2474 | 0 | static bool isFallthroughStatement(const AttributedStmt *A) { |
2475 | 0 | bool isFallthrough = hasSpecificAttr<FallThroughAttr>(A->getAttrs()); |
2476 | 0 | assert((!isFallthrough || isa<NullStmt>(A->getSubStmt())) && |
2477 | 0 | "expected fallthrough not to have children"); |
2478 | 0 | return isFallthrough; |
2479 | 0 | } |
2480 | | |
2481 | | CFGBlock *CFGBuilder::VisitAttributedStmt(AttributedStmt *A, |
2482 | 0 | AddStmtChoice asc) { |
2483 | | // AttributedStmts for [[likely]] can have arbitrary statements as children, |
2484 | | // and the current visitation order here would add the AttributedStmts |
2485 | | // for [[likely]] after the child nodes, which is undesirable: For example, |
2486 | | // if the child contains an unconditional return, the [[likely]] would be |
2487 | | // considered unreachable. |
2488 | | // So only add the AttributedStmt for FallThrough, which has CFG effects and |
2489 | | // also no children, and omit the others. None of the other current StmtAttrs |
2490 | | // have semantic meaning for the CFG. |
2491 | 0 | if (isFallthroughStatement(A) && asc.alwaysAdd(*this, A)) { |
2492 | 0 | autoCreateBlock(); |
2493 | 0 | appendStmt(Block, A); |
2494 | 0 | } |
2495 | |
|
2496 | 0 | return VisitChildren(A); |
2497 | 0 | } |
2498 | | |
2499 | 0 | CFGBlock *CFGBuilder::VisitUnaryOperator(UnaryOperator *U, AddStmtChoice asc) { |
2500 | 0 | if (asc.alwaysAdd(*this, U)) { |
2501 | 0 | autoCreateBlock(); |
2502 | 0 | appendStmt(Block, U); |
2503 | 0 | } |
2504 | |
|
2505 | 0 | if (U->getOpcode() == UO_LNot) |
2506 | 0 | tryEvaluateBool(U->getSubExpr()->IgnoreParens()); |
2507 | |
|
2508 | 0 | return Visit(U->getSubExpr(), AddStmtChoice()); |
2509 | 0 | } |
2510 | | |
2511 | 0 | CFGBlock *CFGBuilder::VisitLogicalOperator(BinaryOperator *B) { |
2512 | 0 | CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); |
2513 | 0 | appendStmt(ConfluenceBlock, B); |
2514 | |
|
2515 | 0 | if (badCFG) |
2516 | 0 | return nullptr; |
2517 | | |
2518 | 0 | return VisitLogicalOperator(B, nullptr, ConfluenceBlock, |
2519 | 0 | ConfluenceBlock).first; |
2520 | 0 | } |
2521 | | |
2522 | | std::pair<CFGBlock*, CFGBlock*> |
2523 | | CFGBuilder::VisitLogicalOperator(BinaryOperator *B, |
2524 | | Stmt *Term, |
2525 | | CFGBlock *TrueBlock, |
2526 | 0 | CFGBlock *FalseBlock) { |
2527 | | // Introspect the RHS. If it is a nested logical operation, we recursively |
2528 | | // build the CFG using this function. Otherwise, resort to default |
2529 | | // CFG construction behavior. |
2530 | 0 | Expr *RHS = B->getRHS()->IgnoreParens(); |
2531 | 0 | CFGBlock *RHSBlock, *ExitBlock; |
2532 | |
|
2533 | 0 | do { |
2534 | 0 | if (BinaryOperator *B_RHS = dyn_cast<BinaryOperator>(RHS)) |
2535 | 0 | if (B_RHS->isLogicalOp()) { |
2536 | 0 | std::tie(RHSBlock, ExitBlock) = |
2537 | 0 | VisitLogicalOperator(B_RHS, Term, TrueBlock, FalseBlock); |
2538 | 0 | break; |
2539 | 0 | } |
2540 | | |
2541 | | // The RHS is not a nested logical operation. Don't push the terminator |
2542 | | // down further, but instead visit RHS and construct the respective |
2543 | | // pieces of the CFG, and link up the RHSBlock with the terminator |
2544 | | // we have been provided. |
2545 | 0 | ExitBlock = RHSBlock = createBlock(false); |
2546 | | |
2547 | | // Even though KnownVal is only used in the else branch of the next |
2548 | | // conditional, tryEvaluateBool performs additional checking on the |
2549 | | // Expr, so it should be called unconditionally. |
2550 | 0 | TryResult KnownVal = tryEvaluateBool(RHS); |
2551 | 0 | if (!KnownVal.isKnown()) |
2552 | 0 | KnownVal = tryEvaluateBool(B); |
2553 | |
|
2554 | 0 | if (!Term) { |
2555 | 0 | assert(TrueBlock == FalseBlock); |
2556 | 0 | addSuccessor(RHSBlock, TrueBlock); |
2557 | 0 | } |
2558 | 0 | else { |
2559 | 0 | RHSBlock->setTerminator(Term); |
2560 | 0 | addSuccessor(RHSBlock, TrueBlock, !KnownVal.isFalse()); |
2561 | 0 | addSuccessor(RHSBlock, FalseBlock, !KnownVal.isTrue()); |
2562 | 0 | } |
2563 | | |
2564 | 0 | Block = RHSBlock; |
2565 | 0 | RHSBlock = addStmt(RHS); |
2566 | 0 | } |
2567 | 0 | while (false); |
2568 | | |
2569 | 0 | if (badCFG) |
2570 | 0 | return std::make_pair(nullptr, nullptr); |
2571 | | |
2572 | | // Generate the blocks for evaluating the LHS. |
2573 | 0 | Expr *LHS = B->getLHS()->IgnoreParens(); |
2574 | |
|
2575 | 0 | if (BinaryOperator *B_LHS = dyn_cast<BinaryOperator>(LHS)) |
2576 | 0 | if (B_LHS->isLogicalOp()) { |
2577 | 0 | if (B->getOpcode() == BO_LOr) |
2578 | 0 | FalseBlock = RHSBlock; |
2579 | 0 | else |
2580 | 0 | TrueBlock = RHSBlock; |
2581 | | |
2582 | | // For the LHS, treat 'B' as the terminator that we want to sink |
2583 | | // into the nested branch. The RHS always gets the top-most |
2584 | | // terminator. |
2585 | 0 | return VisitLogicalOperator(B_LHS, B, TrueBlock, FalseBlock); |
2586 | 0 | } |
2587 | | |
2588 | | // Create the block evaluating the LHS. |
2589 | | // This contains the '&&' or '||' as the terminator. |
2590 | 0 | CFGBlock *LHSBlock = createBlock(false); |
2591 | 0 | LHSBlock->setTerminator(B); |
2592 | |
|
2593 | 0 | Block = LHSBlock; |
2594 | 0 | CFGBlock *EntryLHSBlock = addStmt(LHS); |
2595 | |
|
2596 | 0 | if (badCFG) |
2597 | 0 | return std::make_pair(nullptr, nullptr); |
2598 | | |
2599 | | // See if this is a known constant. |
2600 | 0 | TryResult KnownVal = tryEvaluateBool(LHS); |
2601 | | |
2602 | | // Now link the LHSBlock with RHSBlock. |
2603 | 0 | if (B->getOpcode() == BO_LOr) { |
2604 | 0 | addSuccessor(LHSBlock, TrueBlock, !KnownVal.isFalse()); |
2605 | 0 | addSuccessor(LHSBlock, RHSBlock, !KnownVal.isTrue()); |
2606 | 0 | } else { |
2607 | 0 | assert(B->getOpcode() == BO_LAnd); |
2608 | 0 | addSuccessor(LHSBlock, RHSBlock, !KnownVal.isFalse()); |
2609 | 0 | addSuccessor(LHSBlock, FalseBlock, !KnownVal.isTrue()); |
2610 | 0 | } |
2611 | | |
2612 | 0 | return std::make_pair(EntryLHSBlock, ExitBlock); |
2613 | 0 | } |
2614 | | |
2615 | | CFGBlock *CFGBuilder::VisitBinaryOperator(BinaryOperator *B, |
2616 | 0 | AddStmtChoice asc) { |
2617 | | // && or || |
2618 | 0 | if (B->isLogicalOp()) |
2619 | 0 | return VisitLogicalOperator(B); |
2620 | | |
2621 | 0 | if (B->getOpcode() == BO_Comma) { // , |
2622 | 0 | autoCreateBlock(); |
2623 | 0 | appendStmt(Block, B); |
2624 | 0 | addStmt(B->getRHS()); |
2625 | 0 | return addStmt(B->getLHS()); |
2626 | 0 | } |
2627 | | |
2628 | 0 | if (B->isAssignmentOp()) { |
2629 | 0 | if (asc.alwaysAdd(*this, B)) { |
2630 | 0 | autoCreateBlock(); |
2631 | 0 | appendStmt(Block, B); |
2632 | 0 | } |
2633 | 0 | Visit(B->getLHS()); |
2634 | 0 | return Visit(B->getRHS()); |
2635 | 0 | } |
2636 | | |
2637 | 0 | if (asc.alwaysAdd(*this, B)) { |
2638 | 0 | autoCreateBlock(); |
2639 | 0 | appendStmt(Block, B); |
2640 | 0 | } |
2641 | |
|
2642 | 0 | if (B->isEqualityOp() || B->isRelationalOp()) |
2643 | 0 | tryEvaluateBool(B); |
2644 | |
|
2645 | 0 | CFGBlock *RBlock = Visit(B->getRHS()); |
2646 | 0 | CFGBlock *LBlock = Visit(B->getLHS()); |
2647 | | // If visiting RHS causes us to finish 'Block', e.g. the RHS is a StmtExpr |
2648 | | // containing a DoStmt, and the LHS doesn't create a new block, then we should |
2649 | | // return RBlock. Otherwise we'll incorrectly return NULL. |
2650 | 0 | return (LBlock ? LBlock : RBlock); |
2651 | 0 | } |
2652 | | |
2653 | 0 | CFGBlock *CFGBuilder::VisitNoRecurse(Expr *E, AddStmtChoice asc) { |
2654 | 0 | if (asc.alwaysAdd(*this, E)) { |
2655 | 0 | autoCreateBlock(); |
2656 | 0 | appendStmt(Block, E); |
2657 | 0 | } |
2658 | 0 | return Block; |
2659 | 0 | } |
2660 | | |
2661 | 0 | CFGBlock *CFGBuilder::VisitBreakStmt(BreakStmt *B) { |
2662 | | // "break" is a control-flow statement. Thus we stop processing the current |
2663 | | // block. |
2664 | 0 | if (badCFG) |
2665 | 0 | return nullptr; |
2666 | | |
2667 | | // Now create a new block that ends with the break statement. |
2668 | 0 | Block = createBlock(false); |
2669 | 0 | Block->setTerminator(B); |
2670 | | |
2671 | | // If there is no target for the break, then we are looking at an incomplete |
2672 | | // AST. This means that the CFG cannot be constructed. |
2673 | 0 | if (BreakJumpTarget.block) { |
2674 | 0 | addAutomaticObjHandling(ScopePos, BreakJumpTarget.scopePosition, B); |
2675 | 0 | addSuccessor(Block, BreakJumpTarget.block); |
2676 | 0 | } else |
2677 | 0 | badCFG = true; |
2678 | |
|
2679 | 0 | return Block; |
2680 | 0 | } |
2681 | | |
2682 | 0 | static bool CanThrow(Expr *E, ASTContext &Ctx) { |
2683 | 0 | QualType Ty = E->getType(); |
2684 | 0 | if (Ty->isFunctionPointerType() || Ty->isBlockPointerType()) |
2685 | 0 | Ty = Ty->getPointeeType(); |
2686 | |
|
2687 | 0 | const FunctionType *FT = Ty->getAs<FunctionType>(); |
2688 | 0 | if (FT) { |
2689 | 0 | if (const FunctionProtoType *Proto = dyn_cast<FunctionProtoType>(FT)) |
2690 | 0 | if (!isUnresolvedExceptionSpec(Proto->getExceptionSpecType()) && |
2691 | 0 | Proto->isNothrow()) |
2692 | 0 | return false; |
2693 | 0 | } |
2694 | 0 | return true; |
2695 | 0 | } |
2696 | | |
2697 | 0 | CFGBlock *CFGBuilder::VisitCallExpr(CallExpr *C, AddStmtChoice asc) { |
2698 | | // Compute the callee type. |
2699 | 0 | QualType calleeType = C->getCallee()->getType(); |
2700 | 0 | if (calleeType == Context->BoundMemberTy) { |
2701 | 0 | QualType boundType = Expr::findBoundMemberType(C->getCallee()); |
2702 | | |
2703 | | // We should only get a null bound type if processing a dependent |
2704 | | // CFG. Recover by assuming nothing. |
2705 | 0 | if (!boundType.isNull()) calleeType = boundType; |
2706 | 0 | } |
2707 | | |
2708 | | // If this is a call to a no-return function, this stops the block here. |
2709 | 0 | bool NoReturn = getFunctionExtInfo(*calleeType).getNoReturn(); |
2710 | |
|
2711 | 0 | bool AddEHEdge = false; |
2712 | | |
2713 | | // Languages without exceptions are assumed to not throw. |
2714 | 0 | if (Context->getLangOpts().Exceptions) { |
2715 | 0 | if (BuildOpts.AddEHEdges) |
2716 | 0 | AddEHEdge = true; |
2717 | 0 | } |
2718 | | |
2719 | | // If this is a call to a builtin function, it might not actually evaluate |
2720 | | // its arguments. Don't add them to the CFG if this is the case. |
2721 | 0 | bool OmitArguments = false; |
2722 | |
|
2723 | 0 | if (FunctionDecl *FD = C->getDirectCallee()) { |
2724 | | // TODO: Support construction contexts for variadic function arguments. |
2725 | | // These are a bit problematic and not very useful because passing |
2726 | | // C++ objects as C-style variadic arguments doesn't work in general |
2727 | | // (see [expr.call]). |
2728 | 0 | if (!FD->isVariadic()) |
2729 | 0 | findConstructionContextsForArguments(C); |
2730 | |
|
2731 | 0 | if (FD->isNoReturn() || C->isBuiltinAssumeFalse(*Context)) |
2732 | 0 | NoReturn = true; |
2733 | 0 | if (FD->hasAttr<NoThrowAttr>()) |
2734 | 0 | AddEHEdge = false; |
2735 | 0 | if (FD->getBuiltinID() == Builtin::BI__builtin_object_size || |
2736 | 0 | FD->getBuiltinID() == Builtin::BI__builtin_dynamic_object_size) |
2737 | 0 | OmitArguments = true; |
2738 | 0 | } |
2739 | |
|
2740 | 0 | if (!CanThrow(C->getCallee(), *Context)) |
2741 | 0 | AddEHEdge = false; |
2742 | |
|
2743 | 0 | if (OmitArguments) { |
2744 | 0 | assert(!NoReturn && "noreturn calls with unevaluated args not implemented"); |
2745 | 0 | assert(!AddEHEdge && "EH calls with unevaluated args not implemented"); |
2746 | 0 | autoCreateBlock(); |
2747 | 0 | appendStmt(Block, C); |
2748 | 0 | return Visit(C->getCallee()); |
2749 | 0 | } |
2750 | | |
2751 | 0 | if (!NoReturn && !AddEHEdge) { |
2752 | 0 | autoCreateBlock(); |
2753 | 0 | appendCall(Block, C); |
2754 | |
|
2755 | 0 | return VisitChildren(C); |
2756 | 0 | } |
2757 | | |
2758 | 0 | if (Block) { |
2759 | 0 | Succ = Block; |
2760 | 0 | if (badCFG) |
2761 | 0 | return nullptr; |
2762 | 0 | } |
2763 | | |
2764 | 0 | if (NoReturn) |
2765 | 0 | Block = createNoReturnBlock(); |
2766 | 0 | else |
2767 | 0 | Block = createBlock(); |
2768 | |
|
2769 | 0 | appendCall(Block, C); |
2770 | |
|
2771 | 0 | if (AddEHEdge) { |
2772 | | // Add exceptional edges. |
2773 | 0 | if (TryTerminatedBlock) |
2774 | 0 | addSuccessor(Block, TryTerminatedBlock); |
2775 | 0 | else |
2776 | 0 | addSuccessor(Block, &cfg->getExit()); |
2777 | 0 | } |
2778 | |
|
2779 | 0 | return VisitChildren(C); |
2780 | 0 | } |
2781 | | |
2782 | | CFGBlock *CFGBuilder::VisitChooseExpr(ChooseExpr *C, |
2783 | 0 | AddStmtChoice asc) { |
2784 | 0 | CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); |
2785 | 0 | appendStmt(ConfluenceBlock, C); |
2786 | 0 | if (badCFG) |
2787 | 0 | return nullptr; |
2788 | | |
2789 | 0 | AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true); |
2790 | 0 | Succ = ConfluenceBlock; |
2791 | 0 | Block = nullptr; |
2792 | 0 | CFGBlock *LHSBlock = Visit(C->getLHS(), alwaysAdd); |
2793 | 0 | if (badCFG) |
2794 | 0 | return nullptr; |
2795 | | |
2796 | 0 | Succ = ConfluenceBlock; |
2797 | 0 | Block = nullptr; |
2798 | 0 | CFGBlock *RHSBlock = Visit(C->getRHS(), alwaysAdd); |
2799 | 0 | if (badCFG) |
2800 | 0 | return nullptr; |
2801 | | |
2802 | 0 | Block = createBlock(false); |
2803 | | // See if this is a known constant. |
2804 | 0 | const TryResult& KnownVal = tryEvaluateBool(C->getCond()); |
2805 | 0 | addSuccessor(Block, KnownVal.isFalse() ? nullptr : LHSBlock); |
2806 | 0 | addSuccessor(Block, KnownVal.isTrue() ? nullptr : RHSBlock); |
2807 | 0 | Block->setTerminator(C); |
2808 | 0 | return addStmt(C->getCond()); |
2809 | 0 | } |
2810 | | |
2811 | | CFGBlock *CFGBuilder::VisitCompoundStmt(CompoundStmt *C, |
2812 | 0 | bool ExternallyDestructed) { |
2813 | 0 | LocalScope::const_iterator scopeBeginPos = ScopePos; |
2814 | 0 | addLocalScopeForStmt(C); |
2815 | |
|
2816 | 0 | if (!C->body_empty() && !isa<ReturnStmt>(*C->body_rbegin())) { |
2817 | | // If the body ends with a ReturnStmt, the dtors will be added in |
2818 | | // VisitReturnStmt. |
2819 | 0 | addAutomaticObjHandling(ScopePos, scopeBeginPos, C); |
2820 | 0 | } |
2821 | |
|
2822 | 0 | CFGBlock *LastBlock = Block; |
2823 | |
|
2824 | 0 | for (Stmt *S : llvm::reverse(C->body())) { |
2825 | | // If we hit a segment of code just containing ';' (NullStmts), we can |
2826 | | // get a null block back. In such cases, just use the LastBlock |
2827 | 0 | CFGBlock *newBlock = Visit(S, AddStmtChoice::AlwaysAdd, |
2828 | 0 | ExternallyDestructed); |
2829 | |
|
2830 | 0 | if (newBlock) |
2831 | 0 | LastBlock = newBlock; |
2832 | |
|
2833 | 0 | if (badCFG) |
2834 | 0 | return nullptr; |
2835 | | |
2836 | 0 | ExternallyDestructed = false; |
2837 | 0 | } |
2838 | | |
2839 | 0 | return LastBlock; |
2840 | 0 | } |
2841 | | |
2842 | | CFGBlock *CFGBuilder::VisitConditionalOperator(AbstractConditionalOperator *C, |
2843 | 0 | AddStmtChoice asc) { |
2844 | 0 | const BinaryConditionalOperator *BCO = dyn_cast<BinaryConditionalOperator>(C); |
2845 | 0 | const OpaqueValueExpr *opaqueValue = (BCO ? BCO->getOpaqueValue() : nullptr); |
2846 | | |
2847 | | // Create the confluence block that will "merge" the results of the ternary |
2848 | | // expression. |
2849 | 0 | CFGBlock *ConfluenceBlock = Block ? Block : createBlock(); |
2850 | 0 | appendStmt(ConfluenceBlock, C); |
2851 | 0 | if (badCFG) |
2852 | 0 | return nullptr; |
2853 | | |
2854 | 0 | AddStmtChoice alwaysAdd = asc.withAlwaysAdd(true); |
2855 | | |
2856 | | // Create a block for the LHS expression if there is an LHS expression. A |
2857 | | // GCC extension allows LHS to be NULL, causing the condition to be the |
2858 | | // value that is returned instead. |
2859 | | // e.g: x ?: y is shorthand for: x ? x : y; |
2860 | 0 | Succ = ConfluenceBlock; |
2861 | 0 | Block = nullptr; |
2862 | 0 | CFGBlock *LHSBlock = nullptr; |
2863 | 0 | const Expr *trueExpr = C->getTrueExpr(); |
2864 | 0 | if (trueExpr != opaqueValue) { |
2865 | 0 | LHSBlock = Visit(C->getTrueExpr(), alwaysAdd); |
2866 | 0 | if (badCFG) |
2867 | 0 | return nullptr; |
2868 | 0 | Block = nullptr; |
2869 | 0 | } |
2870 | 0 | else |
2871 | 0 | LHSBlock = ConfluenceBlock; |
2872 | | |
2873 | | // Create the block for the RHS expression. |
2874 | 0 | Succ = ConfluenceBlock; |
2875 | 0 | CFGBlock *RHSBlock = Visit(C->getFalseExpr(), alwaysAdd); |
2876 | 0 | if (badCFG) |
2877 | 0 | return nullptr; |
2878 | | |
2879 | | // If the condition is a logical '&&' or '||', build a more accurate CFG. |
2880 | 0 | if (BinaryOperator *Cond = |
2881 | 0 | dyn_cast<BinaryOperator>(C->getCond()->IgnoreParens())) |
2882 | 0 | if (Cond->isLogicalOp()) |
2883 | 0 | return VisitLogicalOperator(Cond, C, LHSBlock, RHSBlock).first; |
2884 | | |
2885 | | // Create the block that will contain the condition. |
2886 | 0 | Block = createBlock(false); |
2887 | | |
2888 | | // See if this is a known constant. |
2889 | 0 | const TryResult& KnownVal = tryEvaluateBool(C->getCond()); |
2890 | 0 | addSuccessor(Block, LHSBlock, !KnownVal.isFalse()); |
2891 | 0 | addSuccessor(Block, RHSBlock, !KnownVal.isTrue()); |
2892 | 0 | Block->setTerminator(C); |
2893 | 0 | Expr *condExpr = C->getCond(); |
2894 | |
|
2895 | 0 | if (opaqueValue) { |
2896 | | // Run the condition expression if it's not trivially expressed in |
2897 | | // terms of the opaque value (or if there is no opaque value). |
2898 | 0 | if (condExpr != opaqueValue) |
2899 | 0 | addStmt(condExpr); |
2900 | | |
2901 | | // Before that, run the common subexpression if there was one. |
2902 | | // At least one of this or the above will be run. |
2903 | 0 | return addStmt(BCO->getCommon()); |
2904 | 0 | } |
2905 | | |
2906 | 0 | return addStmt(condExpr); |
2907 | 0 | } |
2908 | | |
2909 | 0 | CFGBlock *CFGBuilder::VisitDeclStmt(DeclStmt *DS) { |
2910 | | // Check if the Decl is for an __label__. If so, elide it from the |
2911 | | // CFG entirely. |
2912 | 0 | if (isa<LabelDecl>(*DS->decl_begin())) |
2913 | 0 | return Block; |
2914 | | |
2915 | | // This case also handles static_asserts. |
2916 | 0 | if (DS->isSingleDecl()) |
2917 | 0 | return VisitDeclSubExpr(DS); |
2918 | | |
2919 | 0 | CFGBlock *B = nullptr; |
2920 | | |
2921 | | // Build an individual DeclStmt for each decl. |
2922 | 0 | for (DeclStmt::reverse_decl_iterator I = DS->decl_rbegin(), |
2923 | 0 | E = DS->decl_rend(); |
2924 | 0 | I != E; ++I) { |
2925 | | |
2926 | | // Allocate the DeclStmt using the BumpPtrAllocator. It will get |
2927 | | // automatically freed with the CFG. |
2928 | 0 | DeclGroupRef DG(*I); |
2929 | 0 | Decl *D = *I; |
2930 | 0 | DeclStmt *DSNew = new (Context) DeclStmt(DG, D->getLocation(), GetEndLoc(D)); |
2931 | 0 | cfg->addSyntheticDeclStmt(DSNew, DS); |
2932 | | |
2933 | | // Append the fake DeclStmt to block. |
2934 | 0 | B = VisitDeclSubExpr(DSNew); |
2935 | 0 | } |
2936 | |
|
2937 | 0 | return B; |
2938 | 0 | } |
2939 | | |
2940 | | /// VisitDeclSubExpr - Utility method to add block-level expressions for |
2941 | | /// DeclStmts and initializers in them. |
2942 | 0 | CFGBlock *CFGBuilder::VisitDeclSubExpr(DeclStmt *DS) { |
2943 | 0 | assert(DS->isSingleDecl() && "Can handle single declarations only."); |
2944 | | |
2945 | 0 | if (const auto *TND = dyn_cast<TypedefNameDecl>(DS->getSingleDecl())) { |
2946 | | // If we encounter a VLA, process its size expressions. |
2947 | 0 | const Type *T = TND->getUnderlyingType().getTypePtr(); |
2948 | 0 | if (!T->isVariablyModifiedType()) |
2949 | 0 | return Block; |
2950 | | |
2951 | 0 | autoCreateBlock(); |
2952 | 0 | appendStmt(Block, DS); |
2953 | |
|
2954 | 0 | CFGBlock *LastBlock = Block; |
2955 | 0 | for (const VariableArrayType *VA = FindVA(T); VA != nullptr; |
2956 | 0 | VA = FindVA(VA->getElementType().getTypePtr())) { |
2957 | 0 | if (CFGBlock *NewBlock = addStmt(VA->getSizeExpr())) |
2958 | 0 | LastBlock = NewBlock; |
2959 | 0 | } |
2960 | 0 | return LastBlock; |
2961 | 0 | } |
2962 | | |
2963 | 0 | VarDecl *VD = dyn_cast<VarDecl>(DS->getSingleDecl()); |
2964 | |
|
2965 | 0 | if (!VD) { |
2966 | | // Of everything that can be declared in a DeclStmt, only VarDecls and the |
2967 | | // exceptions above impact runtime semantics. |
2968 | 0 | return Block; |
2969 | 0 | } |
2970 | | |
2971 | 0 | bool HasTemporaries = false; |
2972 | | |
2973 | | // Guard static initializers under a branch. |
2974 | 0 | CFGBlock *blockAfterStaticInit = nullptr; |
2975 | |
|
2976 | 0 | if (BuildOpts.AddStaticInitBranches && VD->isStaticLocal()) { |
2977 | | // For static variables, we need to create a branch to track |
2978 | | // whether or not they are initialized. |
2979 | 0 | if (Block) { |
2980 | 0 | Succ = Block; |
2981 | 0 | Block = nullptr; |
2982 | 0 | if (badCFG) |
2983 | 0 | return nullptr; |
2984 | 0 | } |
2985 | 0 | blockAfterStaticInit = Succ; |
2986 | 0 | } |
2987 | | |
2988 | | // Destructors of temporaries in initialization expression should be called |
2989 | | // after initialization finishes. |
2990 | 0 | Expr *Init = VD->getInit(); |
2991 | 0 | if (Init) { |
2992 | 0 | HasTemporaries = isa<ExprWithCleanups>(Init); |
2993 | |
|
2994 | 0 | if (BuildOpts.AddTemporaryDtors && HasTemporaries) { |
2995 | | // Generate destructors for temporaries in initialization expression. |
2996 | 0 | TempDtorContext Context; |
2997 | 0 | VisitForTemporaryDtors(cast<ExprWithCleanups>(Init)->getSubExpr(), |
2998 | 0 | /*ExternallyDestructed=*/true, Context); |
2999 | 0 | } |
3000 | 0 | } |
3001 | | |
3002 | | // If we bind to a tuple-like type, we iterate over the HoldingVars, and |
3003 | | // create a DeclStmt for each of them. |
3004 | 0 | if (const auto *DD = dyn_cast<DecompositionDecl>(VD)) { |
3005 | 0 | for (auto *BD : llvm::reverse(DD->bindings())) { |
3006 | 0 | if (auto *VD = BD->getHoldingVar()) { |
3007 | 0 | DeclGroupRef DG(VD); |
3008 | 0 | DeclStmt *DSNew = |
3009 | 0 | new (Context) DeclStmt(DG, VD->getLocation(), GetEndLoc(VD)); |
3010 | 0 | cfg->addSyntheticDeclStmt(DSNew, DS); |
3011 | 0 | Block = VisitDeclSubExpr(DSNew); |
3012 | 0 | } |
3013 | 0 | } |
3014 | 0 | } |
3015 | |
|
3016 | 0 | autoCreateBlock(); |
3017 | 0 | appendStmt(Block, DS); |
3018 | | |
3019 | | // If the initializer is an ArrayInitLoopExpr, we want to extract the |
3020 | | // initializer, that's used for each element. |
3021 | 0 | const auto *AILE = dyn_cast_or_null<ArrayInitLoopExpr>(Init); |
3022 | |
|
3023 | 0 | findConstructionContexts( |
3024 | 0 | ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS), |
3025 | 0 | AILE ? AILE->getSubExpr() : Init); |
3026 | | |
3027 | | // Keep track of the last non-null block, as 'Block' can be nulled out |
3028 | | // if the initializer expression is something like a 'while' in a |
3029 | | // statement-expression. |
3030 | 0 | CFGBlock *LastBlock = Block; |
3031 | |
|
3032 | 0 | if (Init) { |
3033 | 0 | if (HasTemporaries) { |
3034 | | // For expression with temporaries go directly to subexpression to omit |
3035 | | // generating destructors for the second time. |
3036 | 0 | ExprWithCleanups *EC = cast<ExprWithCleanups>(Init); |
3037 | 0 | if (CFGBlock *newBlock = Visit(EC->getSubExpr())) |
3038 | 0 | LastBlock = newBlock; |
3039 | 0 | } |
3040 | 0 | else { |
3041 | 0 | if (CFGBlock *newBlock = Visit(Init)) |
3042 | 0 | LastBlock = newBlock; |
3043 | 0 | } |
3044 | 0 | } |
3045 | | |
3046 | | // If the type of VD is a VLA, then we must process its size expressions. |
3047 | | // FIXME: This does not find the VLA if it is embedded in other types, |
3048 | | // like here: `int (*p_vla)[x];` |
3049 | 0 | for (const VariableArrayType* VA = FindVA(VD->getType().getTypePtr()); |
3050 | 0 | VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) { |
3051 | 0 | if (CFGBlock *newBlock = addStmt(VA->getSizeExpr())) |
3052 | 0 | LastBlock = newBlock; |
3053 | 0 | } |
3054 | |
|
3055 | 0 | maybeAddScopeBeginForVarDecl(Block, VD, DS); |
3056 | | |
3057 | | // Remove variable from local scope. |
3058 | 0 | if (ScopePos && VD == *ScopePos) |
3059 | 0 | ++ScopePos; |
3060 | |
|
3061 | 0 | CFGBlock *B = LastBlock; |
3062 | 0 | if (blockAfterStaticInit) { |
3063 | 0 | Succ = B; |
3064 | 0 | Block = createBlock(false); |
3065 | 0 | Block->setTerminator(DS); |
3066 | 0 | addSuccessor(Block, blockAfterStaticInit); |
3067 | 0 | addSuccessor(Block, B); |
3068 | 0 | B = Block; |
3069 | 0 | } |
3070 | |
|
3071 | 0 | return B; |
3072 | 0 | } |
3073 | | |
3074 | 0 | CFGBlock *CFGBuilder::VisitIfStmt(IfStmt *I) { |
3075 | | // We may see an if statement in the middle of a basic block, or it may be the |
3076 | | // first statement we are processing. In either case, we create a new basic |
3077 | | // block. First, we create the blocks for the then...else statements, and |
3078 | | // then we create the block containing the if statement. If we were in the |
3079 | | // middle of a block, we stop processing that block. That block is then the |
3080 | | // implicit successor for the "then" and "else" clauses. |
3081 | | |
3082 | | // Save local scope position because in case of condition variable ScopePos |
3083 | | // won't be restored when traversing AST. |
3084 | 0 | SaveAndRestore save_scope_pos(ScopePos); |
3085 | | |
3086 | | // Create local scope for C++17 if init-stmt if one exists. |
3087 | 0 | if (Stmt *Init = I->getInit()) |
3088 | 0 | addLocalScopeForStmt(Init); |
3089 | | |
3090 | | // Create local scope for possible condition variable. |
3091 | | // Store scope position. Add implicit destructor. |
3092 | 0 | if (VarDecl *VD = I->getConditionVariable()) |
3093 | 0 | addLocalScopeForVarDecl(VD); |
3094 | |
|
3095 | 0 | addAutomaticObjHandling(ScopePos, save_scope_pos.get(), I); |
3096 | | |
3097 | | // The block we were processing is now finished. Make it the successor |
3098 | | // block. |
3099 | 0 | if (Block) { |
3100 | 0 | Succ = Block; |
3101 | 0 | if (badCFG) |
3102 | 0 | return nullptr; |
3103 | 0 | } |
3104 | | |
3105 | | // Process the false branch. |
3106 | 0 | CFGBlock *ElseBlock = Succ; |
3107 | |
|
3108 | 0 | if (Stmt *Else = I->getElse()) { |
3109 | 0 | SaveAndRestore sv(Succ); |
3110 | | |
3111 | | // NULL out Block so that the recursive call to Visit will |
3112 | | // create a new basic block. |
3113 | 0 | Block = nullptr; |
3114 | | |
3115 | | // If branch is not a compound statement create implicit scope |
3116 | | // and add destructors. |
3117 | 0 | if (!isa<CompoundStmt>(Else)) |
3118 | 0 | addLocalScopeAndDtors(Else); |
3119 | |
|
3120 | 0 | ElseBlock = addStmt(Else); |
3121 | |
|
3122 | 0 | if (!ElseBlock) // Can occur when the Else body has all NullStmts. |
3123 | 0 | ElseBlock = sv.get(); |
3124 | 0 | else if (Block) { |
3125 | 0 | if (badCFG) |
3126 | 0 | return nullptr; |
3127 | 0 | } |
3128 | 0 | } |
3129 | | |
3130 | | // Process the true branch. |
3131 | 0 | CFGBlock *ThenBlock; |
3132 | 0 | { |
3133 | 0 | Stmt *Then = I->getThen(); |
3134 | 0 | assert(Then); |
3135 | 0 | SaveAndRestore sv(Succ); |
3136 | 0 | Block = nullptr; |
3137 | | |
3138 | | // If branch is not a compound statement create implicit scope |
3139 | | // and add destructors. |
3140 | 0 | if (!isa<CompoundStmt>(Then)) |
3141 | 0 | addLocalScopeAndDtors(Then); |
3142 | |
|
3143 | 0 | ThenBlock = addStmt(Then); |
3144 | |
|
3145 | 0 | if (!ThenBlock) { |
3146 | | // We can reach here if the "then" body has all NullStmts. |
3147 | | // Create an empty block so we can distinguish between true and false |
3148 | | // branches in path-sensitive analyses. |
3149 | 0 | ThenBlock = createBlock(false); |
3150 | 0 | addSuccessor(ThenBlock, sv.get()); |
3151 | 0 | } else if (Block) { |
3152 | 0 | if (badCFG) |
3153 | 0 | return nullptr; |
3154 | 0 | } |
3155 | 0 | } |
3156 | | |
3157 | | // Specially handle "if (expr1 || ...)" and "if (expr1 && ...)" by |
3158 | | // having these handle the actual control-flow jump. Note that |
3159 | | // if we introduce a condition variable, e.g. "if (int x = exp1 || exp2)" |
3160 | | // we resort to the old control-flow behavior. This special handling |
3161 | | // removes infeasible paths from the control-flow graph by having the |
3162 | | // control-flow transfer of '&&' or '||' go directly into the then/else |
3163 | | // blocks directly. |
3164 | 0 | BinaryOperator *Cond = |
3165 | 0 | (I->isConsteval() || I->getConditionVariable()) |
3166 | 0 | ? nullptr |
3167 | 0 | : dyn_cast<BinaryOperator>(I->getCond()->IgnoreParens()); |
3168 | 0 | CFGBlock *LastBlock; |
3169 | 0 | if (Cond && Cond->isLogicalOp()) |
3170 | 0 | LastBlock = VisitLogicalOperator(Cond, I, ThenBlock, ElseBlock).first; |
3171 | 0 | else { |
3172 | | // Now create a new block containing the if statement. |
3173 | 0 | Block = createBlock(false); |
3174 | | |
3175 | | // Set the terminator of the new block to the If statement. |
3176 | 0 | Block->setTerminator(I); |
3177 | | |
3178 | | // See if this is a known constant. |
3179 | 0 | TryResult KnownVal; |
3180 | 0 | if (!I->isConsteval()) |
3181 | 0 | KnownVal = tryEvaluateBool(I->getCond()); |
3182 | | |
3183 | | // Add the successors. If we know that specific branches are |
3184 | | // unreachable, inform addSuccessor() of that knowledge. |
3185 | 0 | addSuccessor(Block, ThenBlock, /* IsReachable = */ !KnownVal.isFalse()); |
3186 | 0 | addSuccessor(Block, ElseBlock, /* IsReachable = */ !KnownVal.isTrue()); |
3187 | | |
3188 | | // Add the condition as the last statement in the new block. This may |
3189 | | // create new blocks as the condition may contain control-flow. Any newly |
3190 | | // created blocks will be pointed to be "Block". |
3191 | 0 | LastBlock = addStmt(I->getCond()); |
3192 | | |
3193 | | // If the IfStmt contains a condition variable, add it and its |
3194 | | // initializer to the CFG. |
3195 | 0 | if (const DeclStmt* DS = I->getConditionVariableDeclStmt()) { |
3196 | 0 | autoCreateBlock(); |
3197 | 0 | LastBlock = addStmt(const_cast<DeclStmt *>(DS)); |
3198 | 0 | } |
3199 | 0 | } |
3200 | | |
3201 | | // Finally, if the IfStmt contains a C++17 init-stmt, add it to the CFG. |
3202 | 0 | if (Stmt *Init = I->getInit()) { |
3203 | 0 | autoCreateBlock(); |
3204 | 0 | LastBlock = addStmt(Init); |
3205 | 0 | } |
3206 | |
|
3207 | 0 | return LastBlock; |
3208 | 0 | } |
3209 | | |
3210 | 0 | CFGBlock *CFGBuilder::VisitReturnStmt(Stmt *S) { |
3211 | | // If we were in the middle of a block we stop processing that block. |
3212 | | // |
3213 | | // NOTE: If a "return" or "co_return" appears in the middle of a block, this |
3214 | | // means that the code afterwards is DEAD (unreachable). We still keep |
3215 | | // a basic block for that code; a simple "mark-and-sweep" from the entry |
3216 | | // block will be able to report such dead blocks. |
3217 | 0 | assert(isa<ReturnStmt>(S) || isa<CoreturnStmt>(S)); |
3218 | | |
3219 | | // Create the new block. |
3220 | 0 | Block = createBlock(false); |
3221 | |
|
3222 | 0 | addAutomaticObjHandling(ScopePos, LocalScope::const_iterator(), S); |
3223 | |
|
3224 | 0 | if (auto *R = dyn_cast<ReturnStmt>(S)) |
3225 | 0 | findConstructionContexts( |
3226 | 0 | ConstructionContextLayer::create(cfg->getBumpVectorContext(), R), |
3227 | 0 | R->getRetValue()); |
3228 | | |
3229 | | // If the one of the destructors does not return, we already have the Exit |
3230 | | // block as a successor. |
3231 | 0 | if (!Block->hasNoReturnElement()) |
3232 | 0 | addSuccessor(Block, &cfg->getExit()); |
3233 | | |
3234 | | // Add the return statement to the block. |
3235 | 0 | appendStmt(Block, S); |
3236 | | |
3237 | | // Visit children |
3238 | 0 | if (ReturnStmt *RS = dyn_cast<ReturnStmt>(S)) { |
3239 | 0 | if (Expr *O = RS->getRetValue()) |
3240 | 0 | return Visit(O, AddStmtChoice::AlwaysAdd, /*ExternallyDestructed=*/true); |
3241 | 0 | return Block; |
3242 | 0 | } |
3243 | | |
3244 | 0 | CoreturnStmt *CRS = cast<CoreturnStmt>(S); |
3245 | 0 | auto *B = Block; |
3246 | 0 | if (CFGBlock *R = Visit(CRS->getPromiseCall())) |
3247 | 0 | B = R; |
3248 | |
|
3249 | 0 | if (Expr *RV = CRS->getOperand()) |
3250 | 0 | if (RV->getType()->isVoidType() && !isa<InitListExpr>(RV)) |
3251 | | // A non-initlist void expression. |
3252 | 0 | if (CFGBlock *R = Visit(RV)) |
3253 | 0 | B = R; |
3254 | |
|
3255 | 0 | return B; |
3256 | 0 | } |
3257 | | |
3258 | | CFGBlock *CFGBuilder::VisitCoroutineSuspendExpr(CoroutineSuspendExpr *E, |
3259 | 0 | AddStmtChoice asc) { |
3260 | | // We're modelling the pre-coro-xform CFG. Thus just evalate the various |
3261 | | // active components of the co_await or co_yield. Note we do not model the |
3262 | | // edge from the builtin_suspend to the exit node. |
3263 | 0 | if (asc.alwaysAdd(*this, E)) { |
3264 | 0 | autoCreateBlock(); |
3265 | 0 | appendStmt(Block, E); |
3266 | 0 | } |
3267 | 0 | CFGBlock *B = Block; |
3268 | 0 | if (auto *R = Visit(E->getResumeExpr())) |
3269 | 0 | B = R; |
3270 | 0 | if (auto *R = Visit(E->getSuspendExpr())) |
3271 | 0 | B = R; |
3272 | 0 | if (auto *R = Visit(E->getReadyExpr())) |
3273 | 0 | B = R; |
3274 | 0 | if (auto *R = Visit(E->getCommonExpr())) |
3275 | 0 | B = R; |
3276 | 0 | return B; |
3277 | 0 | } |
3278 | | |
3279 | 0 | CFGBlock *CFGBuilder::VisitSEHExceptStmt(SEHExceptStmt *ES) { |
3280 | | // SEHExceptStmt are treated like labels, so they are the first statement in a |
3281 | | // block. |
3282 | | |
3283 | | // Save local scope position because in case of exception variable ScopePos |
3284 | | // won't be restored when traversing AST. |
3285 | 0 | SaveAndRestore save_scope_pos(ScopePos); |
3286 | |
|
3287 | 0 | addStmt(ES->getBlock()); |
3288 | 0 | CFGBlock *SEHExceptBlock = Block; |
3289 | 0 | if (!SEHExceptBlock) |
3290 | 0 | SEHExceptBlock = createBlock(); |
3291 | |
|
3292 | 0 | appendStmt(SEHExceptBlock, ES); |
3293 | | |
3294 | | // Also add the SEHExceptBlock as a label, like with regular labels. |
3295 | 0 | SEHExceptBlock->setLabel(ES); |
3296 | | |
3297 | | // Bail out if the CFG is bad. |
3298 | 0 | if (badCFG) |
3299 | 0 | return nullptr; |
3300 | | |
3301 | | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
3302 | 0 | Block = nullptr; |
3303 | |
|
3304 | 0 | return SEHExceptBlock; |
3305 | 0 | } |
3306 | | |
3307 | 0 | CFGBlock *CFGBuilder::VisitSEHFinallyStmt(SEHFinallyStmt *FS) { |
3308 | 0 | return VisitCompoundStmt(FS->getBlock(), /*ExternallyDestructed=*/false); |
3309 | 0 | } |
3310 | | |
3311 | 0 | CFGBlock *CFGBuilder::VisitSEHLeaveStmt(SEHLeaveStmt *LS) { |
3312 | | // "__leave" is a control-flow statement. Thus we stop processing the current |
3313 | | // block. |
3314 | 0 | if (badCFG) |
3315 | 0 | return nullptr; |
3316 | | |
3317 | | // Now create a new block that ends with the __leave statement. |
3318 | 0 | Block = createBlock(false); |
3319 | 0 | Block->setTerminator(LS); |
3320 | | |
3321 | | // If there is no target for the __leave, then we are looking at an incomplete |
3322 | | // AST. This means that the CFG cannot be constructed. |
3323 | 0 | if (SEHLeaveJumpTarget.block) { |
3324 | 0 | addAutomaticObjHandling(ScopePos, SEHLeaveJumpTarget.scopePosition, LS); |
3325 | 0 | addSuccessor(Block, SEHLeaveJumpTarget.block); |
3326 | 0 | } else |
3327 | 0 | badCFG = true; |
3328 | |
|
3329 | 0 | return Block; |
3330 | 0 | } |
3331 | | |
3332 | 0 | CFGBlock *CFGBuilder::VisitSEHTryStmt(SEHTryStmt *Terminator) { |
3333 | | // "__try"/"__except"/"__finally" is a control-flow statement. Thus we stop |
3334 | | // processing the current block. |
3335 | 0 | CFGBlock *SEHTrySuccessor = nullptr; |
3336 | |
|
3337 | 0 | if (Block) { |
3338 | 0 | if (badCFG) |
3339 | 0 | return nullptr; |
3340 | 0 | SEHTrySuccessor = Block; |
3341 | 0 | } else SEHTrySuccessor = Succ; |
3342 | | |
3343 | | // FIXME: Implement __finally support. |
3344 | 0 | if (Terminator->getFinallyHandler()) |
3345 | 0 | return NYS(); |
3346 | | |
3347 | 0 | CFGBlock *PrevSEHTryTerminatedBlock = TryTerminatedBlock; |
3348 | | |
3349 | | // Create a new block that will contain the __try statement. |
3350 | 0 | CFGBlock *NewTryTerminatedBlock = createBlock(false); |
3351 | | |
3352 | | // Add the terminator in the __try block. |
3353 | 0 | NewTryTerminatedBlock->setTerminator(Terminator); |
3354 | |
|
3355 | 0 | if (SEHExceptStmt *Except = Terminator->getExceptHandler()) { |
3356 | | // The code after the try is the implicit successor if there's an __except. |
3357 | 0 | Succ = SEHTrySuccessor; |
3358 | 0 | Block = nullptr; |
3359 | 0 | CFGBlock *ExceptBlock = VisitSEHExceptStmt(Except); |
3360 | 0 | if (!ExceptBlock) |
3361 | 0 | return nullptr; |
3362 | | // Add this block to the list of successors for the block with the try |
3363 | | // statement. |
3364 | 0 | addSuccessor(NewTryTerminatedBlock, ExceptBlock); |
3365 | 0 | } |
3366 | 0 | if (PrevSEHTryTerminatedBlock) |
3367 | 0 | addSuccessor(NewTryTerminatedBlock, PrevSEHTryTerminatedBlock); |
3368 | 0 | else |
3369 | 0 | addSuccessor(NewTryTerminatedBlock, &cfg->getExit()); |
3370 | | |
3371 | | // The code after the try is the implicit successor. |
3372 | 0 | Succ = SEHTrySuccessor; |
3373 | | |
3374 | | // Save the current "__try" context. |
3375 | 0 | SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); |
3376 | 0 | cfg->addTryDispatchBlock(TryTerminatedBlock); |
3377 | | |
3378 | | // Save the current value for the __leave target. |
3379 | | // All __leaves should go to the code following the __try |
3380 | | // (FIXME: or if the __try has a __finally, to the __finally.) |
3381 | 0 | SaveAndRestore save_break(SEHLeaveJumpTarget); |
3382 | 0 | SEHLeaveJumpTarget = JumpTarget(SEHTrySuccessor, ScopePos); |
3383 | |
|
3384 | 0 | assert(Terminator->getTryBlock() && "__try must contain a non-NULL body"); |
3385 | 0 | Block = nullptr; |
3386 | 0 | return addStmt(Terminator->getTryBlock()); |
3387 | 0 | } |
3388 | | |
3389 | 0 | CFGBlock *CFGBuilder::VisitLabelStmt(LabelStmt *L) { |
3390 | | // Get the block of the labeled statement. Add it to our map. |
3391 | 0 | addStmt(L->getSubStmt()); |
3392 | 0 | CFGBlock *LabelBlock = Block; |
3393 | |
|
3394 | 0 | if (!LabelBlock) // This can happen when the body is empty, i.e. |
3395 | 0 | LabelBlock = createBlock(); // scopes that only contains NullStmts. |
3396 | |
|
3397 | 0 | assert(!LabelMap.contains(L->getDecl()) && "label already in map"); |
3398 | 0 | LabelMap[L->getDecl()] = JumpTarget(LabelBlock, ScopePos); |
3399 | | |
3400 | | // Labels partition blocks, so this is the end of the basic block we were |
3401 | | // processing (L is the block's label). Because this is label (and we have |
3402 | | // already processed the substatement) there is no extra control-flow to worry |
3403 | | // about. |
3404 | 0 | LabelBlock->setLabel(L); |
3405 | 0 | if (badCFG) |
3406 | 0 | return nullptr; |
3407 | | |
3408 | | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
3409 | 0 | Block = nullptr; |
3410 | | |
3411 | | // This block is now the implicit successor of other blocks. |
3412 | 0 | Succ = LabelBlock; |
3413 | |
|
3414 | 0 | return LabelBlock; |
3415 | 0 | } |
3416 | | |
3417 | 0 | CFGBlock *CFGBuilder::VisitBlockExpr(BlockExpr *E, AddStmtChoice asc) { |
3418 | 0 | CFGBlock *LastBlock = VisitNoRecurse(E, asc); |
3419 | 0 | for (const BlockDecl::Capture &CI : E->getBlockDecl()->captures()) { |
3420 | 0 | if (Expr *CopyExpr = CI.getCopyExpr()) { |
3421 | 0 | CFGBlock *Tmp = Visit(CopyExpr); |
3422 | 0 | if (Tmp) |
3423 | 0 | LastBlock = Tmp; |
3424 | 0 | } |
3425 | 0 | } |
3426 | 0 | return LastBlock; |
3427 | 0 | } |
3428 | | |
3429 | 0 | CFGBlock *CFGBuilder::VisitLambdaExpr(LambdaExpr *E, AddStmtChoice asc) { |
3430 | 0 | CFGBlock *LastBlock = VisitNoRecurse(E, asc); |
3431 | |
|
3432 | 0 | unsigned Idx = 0; |
3433 | 0 | for (LambdaExpr::capture_init_iterator it = E->capture_init_begin(), |
3434 | 0 | et = E->capture_init_end(); |
3435 | 0 | it != et; ++it, ++Idx) { |
3436 | 0 | if (Expr *Init = *it) { |
3437 | | // If the initializer is an ArrayInitLoopExpr, we want to extract the |
3438 | | // initializer, that's used for each element. |
3439 | 0 | auto *AILEInit = extractElementInitializerFromNestedAILE( |
3440 | 0 | dyn_cast<ArrayInitLoopExpr>(Init)); |
3441 | |
|
3442 | 0 | findConstructionContexts(ConstructionContextLayer::create( |
3443 | 0 | cfg->getBumpVectorContext(), {E, Idx}), |
3444 | 0 | AILEInit ? AILEInit : Init); |
3445 | |
|
3446 | 0 | CFGBlock *Tmp = Visit(Init); |
3447 | 0 | if (Tmp) |
3448 | 0 | LastBlock = Tmp; |
3449 | 0 | } |
3450 | 0 | } |
3451 | 0 | return LastBlock; |
3452 | 0 | } |
3453 | | |
3454 | 0 | CFGBlock *CFGBuilder::VisitGotoStmt(GotoStmt *G) { |
3455 | | // Goto is a control-flow statement. Thus we stop processing the current |
3456 | | // block and create a new one. |
3457 | |
|
3458 | 0 | Block = createBlock(false); |
3459 | 0 | Block->setTerminator(G); |
3460 | | |
3461 | | // If we already know the mapping to the label block add the successor now. |
3462 | 0 | LabelMapTy::iterator I = LabelMap.find(G->getLabel()); |
3463 | |
|
3464 | 0 | if (I == LabelMap.end()) |
3465 | | // We will need to backpatch this block later. |
3466 | 0 | BackpatchBlocks.push_back(JumpSource(Block, ScopePos)); |
3467 | 0 | else { |
3468 | 0 | JumpTarget JT = I->second; |
3469 | 0 | addSuccessor(Block, JT.block); |
3470 | 0 | addScopeChangesHandling(ScopePos, JT.scopePosition, G); |
3471 | 0 | } |
3472 | |
|
3473 | 0 | return Block; |
3474 | 0 | } |
3475 | | |
3476 | 0 | CFGBlock *CFGBuilder::VisitGCCAsmStmt(GCCAsmStmt *G, AddStmtChoice asc) { |
3477 | | // Goto is a control-flow statement. Thus we stop processing the current |
3478 | | // block and create a new one. |
3479 | |
|
3480 | 0 | if (!G->isAsmGoto()) |
3481 | 0 | return VisitStmt(G, asc); |
3482 | | |
3483 | 0 | if (Block) { |
3484 | 0 | Succ = Block; |
3485 | 0 | if (badCFG) |
3486 | 0 | return nullptr; |
3487 | 0 | } |
3488 | 0 | Block = createBlock(); |
3489 | 0 | Block->setTerminator(G); |
3490 | | // We will backpatch this block later for all the labels. |
3491 | 0 | BackpatchBlocks.push_back(JumpSource(Block, ScopePos)); |
3492 | | // Save "Succ" in BackpatchBlocks. In the backpatch processing, "Succ" is |
3493 | | // used to avoid adding "Succ" again. |
3494 | 0 | BackpatchBlocks.push_back(JumpSource(Succ, ScopePos)); |
3495 | 0 | return VisitChildren(G); |
3496 | 0 | } |
3497 | | |
3498 | 0 | CFGBlock *CFGBuilder::VisitForStmt(ForStmt *F) { |
3499 | 0 | CFGBlock *LoopSuccessor = nullptr; |
3500 | | |
3501 | | // Save local scope position because in case of condition variable ScopePos |
3502 | | // won't be restored when traversing AST. |
3503 | 0 | SaveAndRestore save_scope_pos(ScopePos); |
3504 | | |
3505 | | // Create local scope for init statement and possible condition variable. |
3506 | | // Add destructor for init statement and condition variable. |
3507 | | // Store scope position for continue statement. |
3508 | 0 | if (Stmt *Init = F->getInit()) |
3509 | 0 | addLocalScopeForStmt(Init); |
3510 | 0 | LocalScope::const_iterator LoopBeginScopePos = ScopePos; |
3511 | |
|
3512 | 0 | if (VarDecl *VD = F->getConditionVariable()) |
3513 | 0 | addLocalScopeForVarDecl(VD); |
3514 | 0 | LocalScope::const_iterator ContinueScopePos = ScopePos; |
3515 | |
|
3516 | 0 | addAutomaticObjHandling(ScopePos, save_scope_pos.get(), F); |
3517 | |
|
3518 | 0 | addLoopExit(F); |
3519 | | |
3520 | | // "for" is a control-flow statement. Thus we stop processing the current |
3521 | | // block. |
3522 | 0 | if (Block) { |
3523 | 0 | if (badCFG) |
3524 | 0 | return nullptr; |
3525 | 0 | LoopSuccessor = Block; |
3526 | 0 | } else |
3527 | 0 | LoopSuccessor = Succ; |
3528 | | |
3529 | | // Save the current value for the break targets. |
3530 | | // All breaks should go to the code following the loop. |
3531 | 0 | SaveAndRestore save_break(BreakJumpTarget); |
3532 | 0 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
3533 | |
|
3534 | 0 | CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr; |
3535 | | |
3536 | | // Now create the loop body. |
3537 | 0 | { |
3538 | 0 | assert(F->getBody()); |
3539 | | |
3540 | | // Save the current values for Block, Succ, continue and break targets. |
3541 | 0 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
3542 | 0 | SaveAndRestore save_continue(ContinueJumpTarget); |
3543 | | |
3544 | | // Create an empty block to represent the transition block for looping back |
3545 | | // to the head of the loop. If we have increment code, it will |
3546 | | // go in this block as well. |
3547 | 0 | Block = Succ = TransitionBlock = createBlock(false); |
3548 | 0 | TransitionBlock->setLoopTarget(F); |
3549 | | |
3550 | | |
3551 | | // Loop iteration (after increment) should end with destructor of Condition |
3552 | | // variable (if any). |
3553 | 0 | addAutomaticObjHandling(ScopePos, LoopBeginScopePos, F); |
3554 | |
|
3555 | 0 | if (Stmt *I = F->getInc()) { |
3556 | | // Generate increment code in its own basic block. This is the target of |
3557 | | // continue statements. |
3558 | 0 | Succ = addStmt(I); |
3559 | 0 | } |
3560 | | |
3561 | | // Finish up the increment (or empty) block if it hasn't been already. |
3562 | 0 | if (Block) { |
3563 | 0 | assert(Block == Succ); |
3564 | 0 | if (badCFG) |
3565 | 0 | return nullptr; |
3566 | 0 | Block = nullptr; |
3567 | 0 | } |
3568 | | |
3569 | | // The starting block for the loop increment is the block that should |
3570 | | // represent the 'loop target' for looping back to the start of the loop. |
3571 | 0 | ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos); |
3572 | 0 | ContinueJumpTarget.block->setLoopTarget(F); |
3573 | | |
3574 | | |
3575 | | // If body is not a compound statement create implicit scope |
3576 | | // and add destructors. |
3577 | 0 | if (!isa<CompoundStmt>(F->getBody())) |
3578 | 0 | addLocalScopeAndDtors(F->getBody()); |
3579 | | |
3580 | | // Now populate the body block, and in the process create new blocks as we |
3581 | | // walk the body of the loop. |
3582 | 0 | BodyBlock = addStmt(F->getBody()); |
3583 | |
|
3584 | 0 | if (!BodyBlock) { |
3585 | | // In the case of "for (...;...;...);" we can have a null BodyBlock. |
3586 | | // Use the continue jump target as the proxy for the body. |
3587 | 0 | BodyBlock = ContinueJumpTarget.block; |
3588 | 0 | } |
3589 | 0 | else if (badCFG) |
3590 | 0 | return nullptr; |
3591 | 0 | } |
3592 | | |
3593 | | // Because of short-circuit evaluation, the condition of the loop can span |
3594 | | // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that |
3595 | | // evaluate the condition. |
3596 | 0 | CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr; |
3597 | |
|
3598 | 0 | do { |
3599 | 0 | Expr *C = F->getCond(); |
3600 | 0 | SaveAndRestore save_scope_pos(ScopePos); |
3601 | | |
3602 | | // Specially handle logical operators, which have a slightly |
3603 | | // more optimal CFG representation. |
3604 | 0 | if (BinaryOperator *Cond = |
3605 | 0 | dyn_cast_or_null<BinaryOperator>(C ? C->IgnoreParens() : nullptr)) |
3606 | 0 | if (Cond->isLogicalOp()) { |
3607 | 0 | std::tie(EntryConditionBlock, ExitConditionBlock) = |
3608 | 0 | VisitLogicalOperator(Cond, F, BodyBlock, LoopSuccessor); |
3609 | 0 | break; |
3610 | 0 | } |
3611 | | |
3612 | | // The default case when not handling logical operators. |
3613 | 0 | EntryConditionBlock = ExitConditionBlock = createBlock(false); |
3614 | 0 | ExitConditionBlock->setTerminator(F); |
3615 | | |
3616 | | // See if this is a known constant. |
3617 | 0 | TryResult KnownVal(true); |
3618 | |
|
3619 | 0 | if (C) { |
3620 | | // Now add the actual condition to the condition block. |
3621 | | // Because the condition itself may contain control-flow, new blocks may |
3622 | | // be created. Thus we update "Succ" after adding the condition. |
3623 | 0 | Block = ExitConditionBlock; |
3624 | 0 | EntryConditionBlock = addStmt(C); |
3625 | | |
3626 | | // If this block contains a condition variable, add both the condition |
3627 | | // variable and initializer to the CFG. |
3628 | 0 | if (VarDecl *VD = F->getConditionVariable()) { |
3629 | 0 | if (Expr *Init = VD->getInit()) { |
3630 | 0 | autoCreateBlock(); |
3631 | 0 | const DeclStmt *DS = F->getConditionVariableDeclStmt(); |
3632 | 0 | assert(DS->isSingleDecl()); |
3633 | 0 | findConstructionContexts( |
3634 | 0 | ConstructionContextLayer::create(cfg->getBumpVectorContext(), DS), |
3635 | 0 | Init); |
3636 | 0 | appendStmt(Block, DS); |
3637 | 0 | EntryConditionBlock = addStmt(Init); |
3638 | 0 | assert(Block == EntryConditionBlock); |
3639 | 0 | maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C); |
3640 | 0 | } |
3641 | 0 | } |
3642 | | |
3643 | 0 | if (Block && badCFG) |
3644 | 0 | return nullptr; |
3645 | | |
3646 | 0 | KnownVal = tryEvaluateBool(C); |
3647 | 0 | } |
3648 | | |
3649 | | // Add the loop body entry as a successor to the condition. |
3650 | 0 | addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock); |
3651 | | // Link up the condition block with the code that follows the loop. (the |
3652 | | // false branch). |
3653 | 0 | addSuccessor(ExitConditionBlock, |
3654 | 0 | KnownVal.isTrue() ? nullptr : LoopSuccessor); |
3655 | 0 | } while (false); |
3656 | | |
3657 | | // Link up the loop-back block to the entry condition block. |
3658 | 0 | addSuccessor(TransitionBlock, EntryConditionBlock); |
3659 | | |
3660 | | // The condition block is the implicit successor for any code above the loop. |
3661 | 0 | Succ = EntryConditionBlock; |
3662 | | |
3663 | | // If the loop contains initialization, create a new block for those |
3664 | | // statements. This block can also contain statements that precede the loop. |
3665 | 0 | if (Stmt *I = F->getInit()) { |
3666 | 0 | SaveAndRestore save_scope_pos(ScopePos); |
3667 | 0 | ScopePos = LoopBeginScopePos; |
3668 | 0 | Block = createBlock(); |
3669 | 0 | return addStmt(I); |
3670 | 0 | } |
3671 | | |
3672 | | // There is no loop initialization. We are thus basically a while loop. |
3673 | | // NULL out Block to force lazy block construction. |
3674 | 0 | Block = nullptr; |
3675 | 0 | Succ = EntryConditionBlock; |
3676 | 0 | return EntryConditionBlock; |
3677 | 0 | } |
3678 | | |
3679 | | CFGBlock * |
3680 | | CFGBuilder::VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *MTE, |
3681 | 0 | AddStmtChoice asc) { |
3682 | 0 | findConstructionContexts( |
3683 | 0 | ConstructionContextLayer::create(cfg->getBumpVectorContext(), MTE), |
3684 | 0 | MTE->getSubExpr()); |
3685 | |
|
3686 | 0 | return VisitStmt(MTE, asc); |
3687 | 0 | } |
3688 | | |
3689 | 0 | CFGBlock *CFGBuilder::VisitMemberExpr(MemberExpr *M, AddStmtChoice asc) { |
3690 | 0 | if (asc.alwaysAdd(*this, M)) { |
3691 | 0 | autoCreateBlock(); |
3692 | 0 | appendStmt(Block, M); |
3693 | 0 | } |
3694 | 0 | return Visit(M->getBase()); |
3695 | 0 | } |
3696 | | |
3697 | 0 | CFGBlock *CFGBuilder::VisitObjCForCollectionStmt(ObjCForCollectionStmt *S) { |
3698 | | // Objective-C fast enumeration 'for' statements: |
3699 | | // http://developer.apple.com/documentation/Cocoa/Conceptual/ObjectiveC |
3700 | | // |
3701 | | // for ( Type newVariable in collection_expression ) { statements } |
3702 | | // |
3703 | | // becomes: |
3704 | | // |
3705 | | // prologue: |
3706 | | // 1. collection_expression |
3707 | | // T. jump to loop_entry |
3708 | | // loop_entry: |
3709 | | // 1. side-effects of element expression |
3710 | | // 1. ObjCForCollectionStmt [performs binding to newVariable] |
3711 | | // T. ObjCForCollectionStmt TB, FB [jumps to TB if newVariable != nil] |
3712 | | // TB: |
3713 | | // statements |
3714 | | // T. jump to loop_entry |
3715 | | // FB: |
3716 | | // what comes after |
3717 | | // |
3718 | | // and |
3719 | | // |
3720 | | // Type existingItem; |
3721 | | // for ( existingItem in expression ) { statements } |
3722 | | // |
3723 | | // becomes: |
3724 | | // |
3725 | | // the same with newVariable replaced with existingItem; the binding works |
3726 | | // the same except that for one ObjCForCollectionStmt::getElement() returns |
3727 | | // a DeclStmt and the other returns a DeclRefExpr. |
3728 | |
|
3729 | 0 | CFGBlock *LoopSuccessor = nullptr; |
3730 | |
|
3731 | 0 | if (Block) { |
3732 | 0 | if (badCFG) |
3733 | 0 | return nullptr; |
3734 | 0 | LoopSuccessor = Block; |
3735 | 0 | Block = nullptr; |
3736 | 0 | } else |
3737 | 0 | LoopSuccessor = Succ; |
3738 | | |
3739 | | // Build the condition blocks. |
3740 | 0 | CFGBlock *ExitConditionBlock = createBlock(false); |
3741 | | |
3742 | | // Set the terminator for the "exit" condition block. |
3743 | 0 | ExitConditionBlock->setTerminator(S); |
3744 | | |
3745 | | // The last statement in the block should be the ObjCForCollectionStmt, which |
3746 | | // performs the actual binding to 'element' and determines if there are any |
3747 | | // more items in the collection. |
3748 | 0 | appendStmt(ExitConditionBlock, S); |
3749 | 0 | Block = ExitConditionBlock; |
3750 | | |
3751 | | // Walk the 'element' expression to see if there are any side-effects. We |
3752 | | // generate new blocks as necessary. We DON'T add the statement by default to |
3753 | | // the CFG unless it contains control-flow. |
3754 | 0 | CFGBlock *EntryConditionBlock = Visit(S->getElement(), |
3755 | 0 | AddStmtChoice::NotAlwaysAdd); |
3756 | 0 | if (Block) { |
3757 | 0 | if (badCFG) |
3758 | 0 | return nullptr; |
3759 | 0 | Block = nullptr; |
3760 | 0 | } |
3761 | | |
3762 | | // The condition block is the implicit successor for the loop body as well as |
3763 | | // any code above the loop. |
3764 | 0 | Succ = EntryConditionBlock; |
3765 | | |
3766 | | // Now create the true branch. |
3767 | 0 | { |
3768 | | // Save the current values for Succ, continue and break targets. |
3769 | 0 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
3770 | 0 | SaveAndRestore save_continue(ContinueJumpTarget), |
3771 | 0 | save_break(BreakJumpTarget); |
3772 | | |
3773 | | // Add an intermediate block between the BodyBlock and the |
3774 | | // EntryConditionBlock to represent the "loop back" transition, for looping |
3775 | | // back to the head of the loop. |
3776 | 0 | CFGBlock *LoopBackBlock = nullptr; |
3777 | 0 | Succ = LoopBackBlock = createBlock(); |
3778 | 0 | LoopBackBlock->setLoopTarget(S); |
3779 | |
|
3780 | 0 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
3781 | 0 | ContinueJumpTarget = JumpTarget(Succ, ScopePos); |
3782 | |
|
3783 | 0 | CFGBlock *BodyBlock = addStmt(S->getBody()); |
3784 | |
|
3785 | 0 | if (!BodyBlock) |
3786 | 0 | BodyBlock = ContinueJumpTarget.block; // can happen for "for (X in Y) ;" |
3787 | 0 | else if (Block) { |
3788 | 0 | if (badCFG) |
3789 | 0 | return nullptr; |
3790 | 0 | } |
3791 | | |
3792 | | // This new body block is a successor to our "exit" condition block. |
3793 | 0 | addSuccessor(ExitConditionBlock, BodyBlock); |
3794 | 0 | } |
3795 | | |
3796 | | // Link up the condition block with the code that follows the loop. |
3797 | | // (the false branch). |
3798 | 0 | addSuccessor(ExitConditionBlock, LoopSuccessor); |
3799 | | |
3800 | | // Now create a prologue block to contain the collection expression. |
3801 | 0 | Block = createBlock(); |
3802 | 0 | return addStmt(S->getCollection()); |
3803 | 0 | } |
3804 | | |
3805 | 0 | CFGBlock *CFGBuilder::VisitObjCAutoreleasePoolStmt(ObjCAutoreleasePoolStmt *S) { |
3806 | | // Inline the body. |
3807 | 0 | return addStmt(S->getSubStmt()); |
3808 | | // TODO: consider adding cleanups for the end of @autoreleasepool scope. |
3809 | 0 | } |
3810 | | |
3811 | 0 | CFGBlock *CFGBuilder::VisitObjCAtSynchronizedStmt(ObjCAtSynchronizedStmt *S) { |
3812 | | // FIXME: Add locking 'primitives' to CFG for @synchronized. |
3813 | | |
3814 | | // Inline the body. |
3815 | 0 | CFGBlock *SyncBlock = addStmt(S->getSynchBody()); |
3816 | | |
3817 | | // The sync body starts its own basic block. This makes it a little easier |
3818 | | // for diagnostic clients. |
3819 | 0 | if (SyncBlock) { |
3820 | 0 | if (badCFG) |
3821 | 0 | return nullptr; |
3822 | | |
3823 | 0 | Block = nullptr; |
3824 | 0 | Succ = SyncBlock; |
3825 | 0 | } |
3826 | | |
3827 | | // Add the @synchronized to the CFG. |
3828 | 0 | autoCreateBlock(); |
3829 | 0 | appendStmt(Block, S); |
3830 | | |
3831 | | // Inline the sync expression. |
3832 | 0 | return addStmt(S->getSynchExpr()); |
3833 | 0 | } |
3834 | | |
3835 | 0 | CFGBlock *CFGBuilder::VisitPseudoObjectExpr(PseudoObjectExpr *E) { |
3836 | 0 | autoCreateBlock(); |
3837 | | |
3838 | | // Add the PseudoObject as the last thing. |
3839 | 0 | appendStmt(Block, E); |
3840 | |
|
3841 | 0 | CFGBlock *lastBlock = Block; |
3842 | | |
3843 | | // Before that, evaluate all of the semantics in order. In |
3844 | | // CFG-land, that means appending them in reverse order. |
3845 | 0 | for (unsigned i = E->getNumSemanticExprs(); i != 0; ) { |
3846 | 0 | Expr *Semantic = E->getSemanticExpr(--i); |
3847 | | |
3848 | | // If the semantic is an opaque value, we're being asked to bind |
3849 | | // it to its source expression. |
3850 | 0 | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(Semantic)) |
3851 | 0 | Semantic = OVE->getSourceExpr(); |
3852 | |
|
3853 | 0 | if (CFGBlock *B = Visit(Semantic)) |
3854 | 0 | lastBlock = B; |
3855 | 0 | } |
3856 | |
|
3857 | 0 | return lastBlock; |
3858 | 0 | } |
3859 | | |
3860 | 0 | CFGBlock *CFGBuilder::VisitWhileStmt(WhileStmt *W) { |
3861 | 0 | CFGBlock *LoopSuccessor = nullptr; |
3862 | | |
3863 | | // Save local scope position because in case of condition variable ScopePos |
3864 | | // won't be restored when traversing AST. |
3865 | 0 | SaveAndRestore save_scope_pos(ScopePos); |
3866 | | |
3867 | | // Create local scope for possible condition variable. |
3868 | | // Store scope position for continue statement. |
3869 | 0 | LocalScope::const_iterator LoopBeginScopePos = ScopePos; |
3870 | 0 | if (VarDecl *VD = W->getConditionVariable()) { |
3871 | 0 | addLocalScopeForVarDecl(VD); |
3872 | 0 | addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W); |
3873 | 0 | } |
3874 | 0 | addLoopExit(W); |
3875 | | |
3876 | | // "while" is a control-flow statement. Thus we stop processing the current |
3877 | | // block. |
3878 | 0 | if (Block) { |
3879 | 0 | if (badCFG) |
3880 | 0 | return nullptr; |
3881 | 0 | LoopSuccessor = Block; |
3882 | 0 | Block = nullptr; |
3883 | 0 | } else { |
3884 | 0 | LoopSuccessor = Succ; |
3885 | 0 | } |
3886 | | |
3887 | 0 | CFGBlock *BodyBlock = nullptr, *TransitionBlock = nullptr; |
3888 | | |
3889 | | // Process the loop body. |
3890 | 0 | { |
3891 | 0 | assert(W->getBody()); |
3892 | | |
3893 | | // Save the current values for Block, Succ, continue and break targets. |
3894 | 0 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
3895 | 0 | SaveAndRestore save_continue(ContinueJumpTarget), |
3896 | 0 | save_break(BreakJumpTarget); |
3897 | | |
3898 | | // Create an empty block to represent the transition block for looping back |
3899 | | // to the head of the loop. |
3900 | 0 | Succ = TransitionBlock = createBlock(false); |
3901 | 0 | TransitionBlock->setLoopTarget(W); |
3902 | 0 | ContinueJumpTarget = JumpTarget(Succ, LoopBeginScopePos); |
3903 | | |
3904 | | // All breaks should go to the code following the loop. |
3905 | 0 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
3906 | | |
3907 | | // Loop body should end with destructor of Condition variable (if any). |
3908 | 0 | addAutomaticObjHandling(ScopePos, LoopBeginScopePos, W); |
3909 | | |
3910 | | // If body is not a compound statement create implicit scope |
3911 | | // and add destructors. |
3912 | 0 | if (!isa<CompoundStmt>(W->getBody())) |
3913 | 0 | addLocalScopeAndDtors(W->getBody()); |
3914 | | |
3915 | | // Create the body. The returned block is the entry to the loop body. |
3916 | 0 | BodyBlock = addStmt(W->getBody()); |
3917 | |
|
3918 | 0 | if (!BodyBlock) |
3919 | 0 | BodyBlock = ContinueJumpTarget.block; // can happen for "while(...) ;" |
3920 | 0 | else if (Block && badCFG) |
3921 | 0 | return nullptr; |
3922 | 0 | } |
3923 | | |
3924 | | // Because of short-circuit evaluation, the condition of the loop can span |
3925 | | // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that |
3926 | | // evaluate the condition. |
3927 | 0 | CFGBlock *EntryConditionBlock = nullptr, *ExitConditionBlock = nullptr; |
3928 | |
|
3929 | 0 | do { |
3930 | 0 | Expr *C = W->getCond(); |
3931 | | |
3932 | | // Specially handle logical operators, which have a slightly |
3933 | | // more optimal CFG representation. |
3934 | 0 | if (BinaryOperator *Cond = dyn_cast<BinaryOperator>(C->IgnoreParens())) |
3935 | 0 | if (Cond->isLogicalOp()) { |
3936 | 0 | std::tie(EntryConditionBlock, ExitConditionBlock) = |
3937 | 0 | VisitLogicalOperator(Cond, W, BodyBlock, LoopSuccessor); |
3938 | 0 | break; |
3939 | 0 | } |
3940 | | |
3941 | | // The default case when not handling logical operators. |
3942 | 0 | ExitConditionBlock = createBlock(false); |
3943 | 0 | ExitConditionBlock->setTerminator(W); |
3944 | | |
3945 | | // Now add the actual condition to the condition block. |
3946 | | // Because the condition itself may contain control-flow, new blocks may |
3947 | | // be created. Thus we update "Succ" after adding the condition. |
3948 | 0 | Block = ExitConditionBlock; |
3949 | 0 | Block = EntryConditionBlock = addStmt(C); |
3950 | | |
3951 | | // If this block contains a condition variable, add both the condition |
3952 | | // variable and initializer to the CFG. |
3953 | 0 | if (VarDecl *VD = W->getConditionVariable()) { |
3954 | 0 | if (Expr *Init = VD->getInit()) { |
3955 | 0 | autoCreateBlock(); |
3956 | 0 | const DeclStmt *DS = W->getConditionVariableDeclStmt(); |
3957 | 0 | assert(DS->isSingleDecl()); |
3958 | 0 | findConstructionContexts( |
3959 | 0 | ConstructionContextLayer::create(cfg->getBumpVectorContext(), |
3960 | 0 | const_cast<DeclStmt *>(DS)), |
3961 | 0 | Init); |
3962 | 0 | appendStmt(Block, DS); |
3963 | 0 | EntryConditionBlock = addStmt(Init); |
3964 | 0 | assert(Block == EntryConditionBlock); |
3965 | 0 | maybeAddScopeBeginForVarDecl(EntryConditionBlock, VD, C); |
3966 | 0 | } |
3967 | 0 | } |
3968 | | |
3969 | 0 | if (Block && badCFG) |
3970 | 0 | return nullptr; |
3971 | | |
3972 | | // See if this is a known constant. |
3973 | 0 | const TryResult& KnownVal = tryEvaluateBool(C); |
3974 | | |
3975 | | // Add the loop body entry as a successor to the condition. |
3976 | 0 | addSuccessor(ExitConditionBlock, KnownVal.isFalse() ? nullptr : BodyBlock); |
3977 | | // Link up the condition block with the code that follows the loop. (the |
3978 | | // false branch). |
3979 | 0 | addSuccessor(ExitConditionBlock, |
3980 | 0 | KnownVal.isTrue() ? nullptr : LoopSuccessor); |
3981 | 0 | } while(false); |
3982 | | |
3983 | | // Link up the loop-back block to the entry condition block. |
3984 | 0 | addSuccessor(TransitionBlock, EntryConditionBlock); |
3985 | | |
3986 | | // There can be no more statements in the condition block since we loop back |
3987 | | // to this block. NULL out Block to force lazy creation of another block. |
3988 | 0 | Block = nullptr; |
3989 | | |
3990 | | // Return the condition block, which is the dominating block for the loop. |
3991 | 0 | Succ = EntryConditionBlock; |
3992 | 0 | return EntryConditionBlock; |
3993 | 0 | } |
3994 | | |
3995 | | CFGBlock *CFGBuilder::VisitArrayInitLoopExpr(ArrayInitLoopExpr *A, |
3996 | 0 | AddStmtChoice asc) { |
3997 | 0 | if (asc.alwaysAdd(*this, A)) { |
3998 | 0 | autoCreateBlock(); |
3999 | 0 | appendStmt(Block, A); |
4000 | 0 | } |
4001 | |
|
4002 | 0 | CFGBlock *B = Block; |
4003 | |
|
4004 | 0 | if (CFGBlock *R = Visit(A->getSubExpr())) |
4005 | 0 | B = R; |
4006 | |
|
4007 | 0 | auto *OVE = dyn_cast<OpaqueValueExpr>(A->getCommonExpr()); |
4008 | 0 | assert(OVE && "ArrayInitLoopExpr->getCommonExpr() should be wrapped in an " |
4009 | 0 | "OpaqueValueExpr!"); |
4010 | 0 | if (CFGBlock *R = Visit(OVE->getSourceExpr())) |
4011 | 0 | B = R; |
4012 | |
|
4013 | 0 | return B; |
4014 | 0 | } |
4015 | | |
4016 | 0 | CFGBlock *CFGBuilder::VisitObjCAtCatchStmt(ObjCAtCatchStmt *CS) { |
4017 | | // ObjCAtCatchStmt are treated like labels, so they are the first statement |
4018 | | // in a block. |
4019 | | |
4020 | | // Save local scope position because in case of exception variable ScopePos |
4021 | | // won't be restored when traversing AST. |
4022 | 0 | SaveAndRestore save_scope_pos(ScopePos); |
4023 | |
|
4024 | 0 | if (CS->getCatchBody()) |
4025 | 0 | addStmt(CS->getCatchBody()); |
4026 | |
|
4027 | 0 | CFGBlock *CatchBlock = Block; |
4028 | 0 | if (!CatchBlock) |
4029 | 0 | CatchBlock = createBlock(); |
4030 | |
|
4031 | 0 | appendStmt(CatchBlock, CS); |
4032 | | |
4033 | | // Also add the ObjCAtCatchStmt as a label, like with regular labels. |
4034 | 0 | CatchBlock->setLabel(CS); |
4035 | | |
4036 | | // Bail out if the CFG is bad. |
4037 | 0 | if (badCFG) |
4038 | 0 | return nullptr; |
4039 | | |
4040 | | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
4041 | 0 | Block = nullptr; |
4042 | |
|
4043 | 0 | return CatchBlock; |
4044 | 0 | } |
4045 | | |
4046 | 0 | CFGBlock *CFGBuilder::VisitObjCAtThrowStmt(ObjCAtThrowStmt *S) { |
4047 | | // If we were in the middle of a block we stop processing that block. |
4048 | 0 | if (badCFG) |
4049 | 0 | return nullptr; |
4050 | | |
4051 | | // Create the new block. |
4052 | 0 | Block = createBlock(false); |
4053 | |
|
4054 | 0 | if (TryTerminatedBlock) |
4055 | | // The current try statement is the only successor. |
4056 | 0 | addSuccessor(Block, TryTerminatedBlock); |
4057 | 0 | else |
4058 | | // otherwise the Exit block is the only successor. |
4059 | 0 | addSuccessor(Block, &cfg->getExit()); |
4060 | | |
4061 | | // Add the statement to the block. This may create new blocks if S contains |
4062 | | // control-flow (short-circuit operations). |
4063 | 0 | return VisitStmt(S, AddStmtChoice::AlwaysAdd); |
4064 | 0 | } |
4065 | | |
4066 | 0 | CFGBlock *CFGBuilder::VisitObjCAtTryStmt(ObjCAtTryStmt *Terminator) { |
4067 | | // "@try"/"@catch" is a control-flow statement. Thus we stop processing the |
4068 | | // current block. |
4069 | 0 | CFGBlock *TrySuccessor = nullptr; |
4070 | |
|
4071 | 0 | if (Block) { |
4072 | 0 | if (badCFG) |
4073 | 0 | return nullptr; |
4074 | 0 | TrySuccessor = Block; |
4075 | 0 | } else |
4076 | 0 | TrySuccessor = Succ; |
4077 | | |
4078 | | // FIXME: Implement @finally support. |
4079 | 0 | if (Terminator->getFinallyStmt()) |
4080 | 0 | return NYS(); |
4081 | | |
4082 | 0 | CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock; |
4083 | | |
4084 | | // Create a new block that will contain the try statement. |
4085 | 0 | CFGBlock *NewTryTerminatedBlock = createBlock(false); |
4086 | | // Add the terminator in the try block. |
4087 | 0 | NewTryTerminatedBlock->setTerminator(Terminator); |
4088 | |
|
4089 | 0 | bool HasCatchAll = false; |
4090 | 0 | for (ObjCAtCatchStmt *CS : Terminator->catch_stmts()) { |
4091 | | // The code after the try is the implicit successor. |
4092 | 0 | Succ = TrySuccessor; |
4093 | 0 | if (CS->hasEllipsis()) { |
4094 | 0 | HasCatchAll = true; |
4095 | 0 | } |
4096 | 0 | Block = nullptr; |
4097 | 0 | CFGBlock *CatchBlock = VisitObjCAtCatchStmt(CS); |
4098 | 0 | if (!CatchBlock) |
4099 | 0 | return nullptr; |
4100 | | // Add this block to the list of successors for the block with the try |
4101 | | // statement. |
4102 | 0 | addSuccessor(NewTryTerminatedBlock, CatchBlock); |
4103 | 0 | } |
4104 | | |
4105 | | // FIXME: This needs updating when @finally support is added. |
4106 | 0 | if (!HasCatchAll) { |
4107 | 0 | if (PrevTryTerminatedBlock) |
4108 | 0 | addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock); |
4109 | 0 | else |
4110 | 0 | addSuccessor(NewTryTerminatedBlock, &cfg->getExit()); |
4111 | 0 | } |
4112 | | |
4113 | | // The code after the try is the implicit successor. |
4114 | 0 | Succ = TrySuccessor; |
4115 | | |
4116 | | // Save the current "try" context. |
4117 | 0 | SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); |
4118 | 0 | cfg->addTryDispatchBlock(TryTerminatedBlock); |
4119 | |
|
4120 | 0 | assert(Terminator->getTryBody() && "try must contain a non-NULL body"); |
4121 | 0 | Block = nullptr; |
4122 | 0 | return addStmt(Terminator->getTryBody()); |
4123 | 0 | } |
4124 | | |
4125 | | CFGBlock *CFGBuilder::VisitObjCMessageExpr(ObjCMessageExpr *ME, |
4126 | 0 | AddStmtChoice asc) { |
4127 | 0 | findConstructionContextsForArguments(ME); |
4128 | |
|
4129 | 0 | autoCreateBlock(); |
4130 | 0 | appendObjCMessage(Block, ME); |
4131 | |
|
4132 | 0 | return VisitChildren(ME); |
4133 | 0 | } |
4134 | | |
4135 | 0 | CFGBlock *CFGBuilder::VisitCXXThrowExpr(CXXThrowExpr *T) { |
4136 | | // If we were in the middle of a block we stop processing that block. |
4137 | 0 | if (badCFG) |
4138 | 0 | return nullptr; |
4139 | | |
4140 | | // Create the new block. |
4141 | 0 | Block = createBlock(false); |
4142 | |
|
4143 | 0 | if (TryTerminatedBlock) |
4144 | | // The current try statement is the only successor. |
4145 | 0 | addSuccessor(Block, TryTerminatedBlock); |
4146 | 0 | else |
4147 | | // otherwise the Exit block is the only successor. |
4148 | 0 | addSuccessor(Block, &cfg->getExit()); |
4149 | | |
4150 | | // Add the statement to the block. This may create new blocks if S contains |
4151 | | // control-flow (short-circuit operations). |
4152 | 0 | return VisitStmt(T, AddStmtChoice::AlwaysAdd); |
4153 | 0 | } |
4154 | | |
4155 | 0 | CFGBlock *CFGBuilder::VisitCXXTypeidExpr(CXXTypeidExpr *S, AddStmtChoice asc) { |
4156 | 0 | if (asc.alwaysAdd(*this, S)) { |
4157 | 0 | autoCreateBlock(); |
4158 | 0 | appendStmt(Block, S); |
4159 | 0 | } |
4160 | | |
4161 | | // C++ [expr.typeid]p3: |
4162 | | // When typeid is applied to an expression other than an glvalue of a |
4163 | | // polymorphic class type [...] [the] expression is an unevaluated |
4164 | | // operand. [...] |
4165 | | // We add only potentially evaluated statements to the block to avoid |
4166 | | // CFG generation for unevaluated operands. |
4167 | 0 | if (!S->isTypeDependent() && S->isPotentiallyEvaluated()) |
4168 | 0 | return VisitChildren(S); |
4169 | | |
4170 | | // Return block without CFG for unevaluated operands. |
4171 | 0 | return Block; |
4172 | 0 | } |
4173 | | |
4174 | 0 | CFGBlock *CFGBuilder::VisitDoStmt(DoStmt *D) { |
4175 | 0 | CFGBlock *LoopSuccessor = nullptr; |
4176 | |
|
4177 | 0 | addLoopExit(D); |
4178 | | |
4179 | | // "do...while" is a control-flow statement. Thus we stop processing the |
4180 | | // current block. |
4181 | 0 | if (Block) { |
4182 | 0 | if (badCFG) |
4183 | 0 | return nullptr; |
4184 | 0 | LoopSuccessor = Block; |
4185 | 0 | } else |
4186 | 0 | LoopSuccessor = Succ; |
4187 | | |
4188 | | // Because of short-circuit evaluation, the condition of the loop can span |
4189 | | // multiple basic blocks. Thus we need the "Entry" and "Exit" blocks that |
4190 | | // evaluate the condition. |
4191 | 0 | CFGBlock *ExitConditionBlock = createBlock(false); |
4192 | 0 | CFGBlock *EntryConditionBlock = ExitConditionBlock; |
4193 | | |
4194 | | // Set the terminator for the "exit" condition block. |
4195 | 0 | ExitConditionBlock->setTerminator(D); |
4196 | | |
4197 | | // Now add the actual condition to the condition block. Because the condition |
4198 | | // itself may contain control-flow, new blocks may be created. |
4199 | 0 | if (Stmt *C = D->getCond()) { |
4200 | 0 | Block = ExitConditionBlock; |
4201 | 0 | EntryConditionBlock = addStmt(C); |
4202 | 0 | if (Block) { |
4203 | 0 | if (badCFG) |
4204 | 0 | return nullptr; |
4205 | 0 | } |
4206 | 0 | } |
4207 | | |
4208 | | // The condition block is the implicit successor for the loop body. |
4209 | 0 | Succ = EntryConditionBlock; |
4210 | | |
4211 | | // See if this is a known constant. |
4212 | 0 | const TryResult &KnownVal = tryEvaluateBool(D->getCond()); |
4213 | | |
4214 | | // Process the loop body. |
4215 | 0 | CFGBlock *BodyBlock = nullptr; |
4216 | 0 | { |
4217 | 0 | assert(D->getBody()); |
4218 | | |
4219 | | // Save the current values for Block, Succ, and continue and break targets |
4220 | 0 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
4221 | 0 | SaveAndRestore save_continue(ContinueJumpTarget), |
4222 | 0 | save_break(BreakJumpTarget); |
4223 | | |
4224 | | // All continues within this loop should go to the condition block |
4225 | 0 | ContinueJumpTarget = JumpTarget(EntryConditionBlock, ScopePos); |
4226 | | |
4227 | | // All breaks should go to the code following the loop. |
4228 | 0 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
4229 | | |
4230 | | // NULL out Block to force lazy instantiation of blocks for the body. |
4231 | 0 | Block = nullptr; |
4232 | | |
4233 | | // If body is not a compound statement create implicit scope |
4234 | | // and add destructors. |
4235 | 0 | if (!isa<CompoundStmt>(D->getBody())) |
4236 | 0 | addLocalScopeAndDtors(D->getBody()); |
4237 | | |
4238 | | // Create the body. The returned block is the entry to the loop body. |
4239 | 0 | BodyBlock = addStmt(D->getBody()); |
4240 | |
|
4241 | 0 | if (!BodyBlock) |
4242 | 0 | BodyBlock = EntryConditionBlock; // can happen for "do ; while(...)" |
4243 | 0 | else if (Block) { |
4244 | 0 | if (badCFG) |
4245 | 0 | return nullptr; |
4246 | 0 | } |
4247 | | |
4248 | | // Add an intermediate block between the BodyBlock and the |
4249 | | // ExitConditionBlock to represent the "loop back" transition. Create an |
4250 | | // empty block to represent the transition block for looping back to the |
4251 | | // head of the loop. |
4252 | | // FIXME: Can we do this more efficiently without adding another block? |
4253 | 0 | Block = nullptr; |
4254 | 0 | Succ = BodyBlock; |
4255 | 0 | CFGBlock *LoopBackBlock = createBlock(); |
4256 | 0 | LoopBackBlock->setLoopTarget(D); |
4257 | |
|
4258 | 0 | if (!KnownVal.isFalse()) |
4259 | | // Add the loop body entry as a successor to the condition. |
4260 | 0 | addSuccessor(ExitConditionBlock, LoopBackBlock); |
4261 | 0 | else |
4262 | 0 | addSuccessor(ExitConditionBlock, nullptr); |
4263 | 0 | } |
4264 | | |
4265 | | // Link up the condition block with the code that follows the loop. |
4266 | | // (the false branch). |
4267 | 0 | addSuccessor(ExitConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor); |
4268 | | |
4269 | | // There can be no more statements in the body block(s) since we loop back to |
4270 | | // the body. NULL out Block to force lazy creation of another block. |
4271 | 0 | Block = nullptr; |
4272 | | |
4273 | | // Return the loop body, which is the dominating block for the loop. |
4274 | 0 | Succ = BodyBlock; |
4275 | 0 | return BodyBlock; |
4276 | 0 | } |
4277 | | |
4278 | 0 | CFGBlock *CFGBuilder::VisitContinueStmt(ContinueStmt *C) { |
4279 | | // "continue" is a control-flow statement. Thus we stop processing the |
4280 | | // current block. |
4281 | 0 | if (badCFG) |
4282 | 0 | return nullptr; |
4283 | | |
4284 | | // Now create a new block that ends with the continue statement. |
4285 | 0 | Block = createBlock(false); |
4286 | 0 | Block->setTerminator(C); |
4287 | | |
4288 | | // If there is no target for the continue, then we are looking at an |
4289 | | // incomplete AST. This means the CFG cannot be constructed. |
4290 | 0 | if (ContinueJumpTarget.block) { |
4291 | 0 | addAutomaticObjHandling(ScopePos, ContinueJumpTarget.scopePosition, C); |
4292 | 0 | addSuccessor(Block, ContinueJumpTarget.block); |
4293 | 0 | } else |
4294 | 0 | badCFG = true; |
4295 | |
|
4296 | 0 | return Block; |
4297 | 0 | } |
4298 | | |
4299 | | CFGBlock *CFGBuilder::VisitUnaryExprOrTypeTraitExpr(UnaryExprOrTypeTraitExpr *E, |
4300 | 0 | AddStmtChoice asc) { |
4301 | 0 | if (asc.alwaysAdd(*this, E)) { |
4302 | 0 | autoCreateBlock(); |
4303 | 0 | appendStmt(Block, E); |
4304 | 0 | } |
4305 | | |
4306 | | // VLA types have expressions that must be evaluated. |
4307 | | // Evaluation is done only for `sizeof`. |
4308 | |
|
4309 | 0 | if (E->getKind() != UETT_SizeOf) |
4310 | 0 | return Block; |
4311 | | |
4312 | 0 | CFGBlock *lastBlock = Block; |
4313 | |
|
4314 | 0 | if (E->isArgumentType()) { |
4315 | 0 | for (const VariableArrayType *VA =FindVA(E->getArgumentType().getTypePtr()); |
4316 | 0 | VA != nullptr; VA = FindVA(VA->getElementType().getTypePtr())) |
4317 | 0 | lastBlock = addStmt(VA->getSizeExpr()); |
4318 | 0 | } |
4319 | 0 | return lastBlock; |
4320 | 0 | } |
4321 | | |
4322 | | /// VisitStmtExpr - Utility method to handle (nested) statement |
4323 | | /// expressions (a GCC extension). |
4324 | 0 | CFGBlock *CFGBuilder::VisitStmtExpr(StmtExpr *SE, AddStmtChoice asc) { |
4325 | 0 | if (asc.alwaysAdd(*this, SE)) { |
4326 | 0 | autoCreateBlock(); |
4327 | 0 | appendStmt(Block, SE); |
4328 | 0 | } |
4329 | 0 | return VisitCompoundStmt(SE->getSubStmt(), /*ExternallyDestructed=*/true); |
4330 | 0 | } |
4331 | | |
4332 | 0 | CFGBlock *CFGBuilder::VisitSwitchStmt(SwitchStmt *Terminator) { |
4333 | | // "switch" is a control-flow statement. Thus we stop processing the current |
4334 | | // block. |
4335 | 0 | CFGBlock *SwitchSuccessor = nullptr; |
4336 | | |
4337 | | // Save local scope position because in case of condition variable ScopePos |
4338 | | // won't be restored when traversing AST. |
4339 | 0 | SaveAndRestore save_scope_pos(ScopePos); |
4340 | | |
4341 | | // Create local scope for C++17 switch init-stmt if one exists. |
4342 | 0 | if (Stmt *Init = Terminator->getInit()) |
4343 | 0 | addLocalScopeForStmt(Init); |
4344 | | |
4345 | | // Create local scope for possible condition variable. |
4346 | | // Store scope position. Add implicit destructor. |
4347 | 0 | if (VarDecl *VD = Terminator->getConditionVariable()) |
4348 | 0 | addLocalScopeForVarDecl(VD); |
4349 | |
|
4350 | 0 | addAutomaticObjHandling(ScopePos, save_scope_pos.get(), Terminator); |
4351 | |
|
4352 | 0 | if (Block) { |
4353 | 0 | if (badCFG) |
4354 | 0 | return nullptr; |
4355 | 0 | SwitchSuccessor = Block; |
4356 | 0 | } else SwitchSuccessor = Succ; |
4357 | | |
4358 | | // Save the current "switch" context. |
4359 | 0 | SaveAndRestore save_switch(SwitchTerminatedBlock), |
4360 | 0 | save_default(DefaultCaseBlock); |
4361 | 0 | SaveAndRestore save_break(BreakJumpTarget); |
4362 | | |
4363 | | // Set the "default" case to be the block after the switch statement. If the |
4364 | | // switch statement contains a "default:", this value will be overwritten with |
4365 | | // the block for that code. |
4366 | 0 | DefaultCaseBlock = SwitchSuccessor; |
4367 | | |
4368 | | // Create a new block that will contain the switch statement. |
4369 | 0 | SwitchTerminatedBlock = createBlock(false); |
4370 | | |
4371 | | // Now process the switch body. The code after the switch is the implicit |
4372 | | // successor. |
4373 | 0 | Succ = SwitchSuccessor; |
4374 | 0 | BreakJumpTarget = JumpTarget(SwitchSuccessor, ScopePos); |
4375 | | |
4376 | | // When visiting the body, the case statements should automatically get linked |
4377 | | // up to the switch. We also don't keep a pointer to the body, since all |
4378 | | // control-flow from the switch goes to case/default statements. |
4379 | 0 | assert(Terminator->getBody() && "switch must contain a non-NULL body"); |
4380 | 0 | Block = nullptr; |
4381 | | |
4382 | | // For pruning unreachable case statements, save the current state |
4383 | | // for tracking the condition value. |
4384 | 0 | SaveAndRestore save_switchExclusivelyCovered(switchExclusivelyCovered, false); |
4385 | | |
4386 | | // Determine if the switch condition can be explicitly evaluated. |
4387 | 0 | assert(Terminator->getCond() && "switch condition must be non-NULL"); |
4388 | 0 | Expr::EvalResult result; |
4389 | 0 | bool b = tryEvaluate(Terminator->getCond(), result); |
4390 | 0 | SaveAndRestore save_switchCond(switchCond, b ? &result : nullptr); |
4391 | | |
4392 | | // If body is not a compound statement create implicit scope |
4393 | | // and add destructors. |
4394 | 0 | if (!isa<CompoundStmt>(Terminator->getBody())) |
4395 | 0 | addLocalScopeAndDtors(Terminator->getBody()); |
4396 | |
|
4397 | 0 | addStmt(Terminator->getBody()); |
4398 | 0 | if (Block) { |
4399 | 0 | if (badCFG) |
4400 | 0 | return nullptr; |
4401 | 0 | } |
4402 | | |
4403 | | // If we have no "default:" case, the default transition is to the code |
4404 | | // following the switch body. Moreover, take into account if all the |
4405 | | // cases of a switch are covered (e.g., switching on an enum value). |
4406 | | // |
4407 | | // Note: We add a successor to a switch that is considered covered yet has no |
4408 | | // case statements if the enumeration has no enumerators. |
4409 | 0 | bool SwitchAlwaysHasSuccessor = false; |
4410 | 0 | SwitchAlwaysHasSuccessor |= switchExclusivelyCovered; |
4411 | 0 | SwitchAlwaysHasSuccessor |= Terminator->isAllEnumCasesCovered() && |
4412 | 0 | Terminator->getSwitchCaseList(); |
4413 | 0 | addSuccessor(SwitchTerminatedBlock, DefaultCaseBlock, |
4414 | 0 | !SwitchAlwaysHasSuccessor); |
4415 | | |
4416 | | // Add the terminator and condition in the switch block. |
4417 | 0 | SwitchTerminatedBlock->setTerminator(Terminator); |
4418 | 0 | Block = SwitchTerminatedBlock; |
4419 | 0 | CFGBlock *LastBlock = addStmt(Terminator->getCond()); |
4420 | | |
4421 | | // If the SwitchStmt contains a condition variable, add both the |
4422 | | // SwitchStmt and the condition variable initialization to the CFG. |
4423 | 0 | if (VarDecl *VD = Terminator->getConditionVariable()) { |
4424 | 0 | if (Expr *Init = VD->getInit()) { |
4425 | 0 | autoCreateBlock(); |
4426 | 0 | appendStmt(Block, Terminator->getConditionVariableDeclStmt()); |
4427 | 0 | LastBlock = addStmt(Init); |
4428 | 0 | maybeAddScopeBeginForVarDecl(LastBlock, VD, Init); |
4429 | 0 | } |
4430 | 0 | } |
4431 | | |
4432 | | // Finally, if the SwitchStmt contains a C++17 init-stmt, add it to the CFG. |
4433 | 0 | if (Stmt *Init = Terminator->getInit()) { |
4434 | 0 | autoCreateBlock(); |
4435 | 0 | LastBlock = addStmt(Init); |
4436 | 0 | } |
4437 | |
|
4438 | 0 | return LastBlock; |
4439 | 0 | } |
4440 | | |
4441 | | static bool shouldAddCase(bool &switchExclusivelyCovered, |
4442 | | const Expr::EvalResult *switchCond, |
4443 | | const CaseStmt *CS, |
4444 | 0 | ASTContext &Ctx) { |
4445 | 0 | if (!switchCond) |
4446 | 0 | return true; |
4447 | | |
4448 | 0 | bool addCase = false; |
4449 | |
|
4450 | 0 | if (!switchExclusivelyCovered) { |
4451 | 0 | if (switchCond->Val.isInt()) { |
4452 | | // Evaluate the LHS of the case value. |
4453 | 0 | const llvm::APSInt &lhsInt = CS->getLHS()->EvaluateKnownConstInt(Ctx); |
4454 | 0 | const llvm::APSInt &condInt = switchCond->Val.getInt(); |
4455 | |
|
4456 | 0 | if (condInt == lhsInt) { |
4457 | 0 | addCase = true; |
4458 | 0 | switchExclusivelyCovered = true; |
4459 | 0 | } |
4460 | 0 | else if (condInt > lhsInt) { |
4461 | 0 | if (const Expr *RHS = CS->getRHS()) { |
4462 | | // Evaluate the RHS of the case value. |
4463 | 0 | const llvm::APSInt &V2 = RHS->EvaluateKnownConstInt(Ctx); |
4464 | 0 | if (V2 >= condInt) { |
4465 | 0 | addCase = true; |
4466 | 0 | switchExclusivelyCovered = true; |
4467 | 0 | } |
4468 | 0 | } |
4469 | 0 | } |
4470 | 0 | } |
4471 | 0 | else |
4472 | 0 | addCase = true; |
4473 | 0 | } |
4474 | 0 | return addCase; |
4475 | 0 | } |
4476 | | |
4477 | 0 | CFGBlock *CFGBuilder::VisitCaseStmt(CaseStmt *CS) { |
4478 | | // CaseStmts are essentially labels, so they are the first statement in a |
4479 | | // block. |
4480 | 0 | CFGBlock *TopBlock = nullptr, *LastBlock = nullptr; |
4481 | |
|
4482 | 0 | if (Stmt *Sub = CS->getSubStmt()) { |
4483 | | // For deeply nested chains of CaseStmts, instead of doing a recursion |
4484 | | // (which can blow out the stack), manually unroll and create blocks |
4485 | | // along the way. |
4486 | 0 | while (isa<CaseStmt>(Sub)) { |
4487 | 0 | CFGBlock *currentBlock = createBlock(false); |
4488 | 0 | currentBlock->setLabel(CS); |
4489 | |
|
4490 | 0 | if (TopBlock) |
4491 | 0 | addSuccessor(LastBlock, currentBlock); |
4492 | 0 | else |
4493 | 0 | TopBlock = currentBlock; |
4494 | |
|
4495 | 0 | addSuccessor(SwitchTerminatedBlock, |
4496 | 0 | shouldAddCase(switchExclusivelyCovered, switchCond, |
4497 | 0 | CS, *Context) |
4498 | 0 | ? currentBlock : nullptr); |
4499 | |
|
4500 | 0 | LastBlock = currentBlock; |
4501 | 0 | CS = cast<CaseStmt>(Sub); |
4502 | 0 | Sub = CS->getSubStmt(); |
4503 | 0 | } |
4504 | |
|
4505 | 0 | addStmt(Sub); |
4506 | 0 | } |
4507 | |
|
4508 | 0 | CFGBlock *CaseBlock = Block; |
4509 | 0 | if (!CaseBlock) |
4510 | 0 | CaseBlock = createBlock(); |
4511 | | |
4512 | | // Cases statements partition blocks, so this is the top of the basic block we |
4513 | | // were processing (the "case XXX:" is the label). |
4514 | 0 | CaseBlock->setLabel(CS); |
4515 | |
|
4516 | 0 | if (badCFG) |
4517 | 0 | return nullptr; |
4518 | | |
4519 | | // Add this block to the list of successors for the block with the switch |
4520 | | // statement. |
4521 | 0 | assert(SwitchTerminatedBlock); |
4522 | 0 | addSuccessor(SwitchTerminatedBlock, CaseBlock, |
4523 | 0 | shouldAddCase(switchExclusivelyCovered, switchCond, |
4524 | 0 | CS, *Context)); |
4525 | | |
4526 | | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
4527 | 0 | Block = nullptr; |
4528 | |
|
4529 | 0 | if (TopBlock) { |
4530 | 0 | addSuccessor(LastBlock, CaseBlock); |
4531 | 0 | Succ = TopBlock; |
4532 | 0 | } else { |
4533 | | // This block is now the implicit successor of other blocks. |
4534 | 0 | Succ = CaseBlock; |
4535 | 0 | } |
4536 | |
|
4537 | 0 | return Succ; |
4538 | 0 | } |
4539 | | |
4540 | 0 | CFGBlock *CFGBuilder::VisitDefaultStmt(DefaultStmt *Terminator) { |
4541 | 0 | if (Terminator->getSubStmt()) |
4542 | 0 | addStmt(Terminator->getSubStmt()); |
4543 | |
|
4544 | 0 | DefaultCaseBlock = Block; |
4545 | |
|
4546 | 0 | if (!DefaultCaseBlock) |
4547 | 0 | DefaultCaseBlock = createBlock(); |
4548 | | |
4549 | | // Default statements partition blocks, so this is the top of the basic block |
4550 | | // we were processing (the "default:" is the label). |
4551 | 0 | DefaultCaseBlock->setLabel(Terminator); |
4552 | |
|
4553 | 0 | if (badCFG) |
4554 | 0 | return nullptr; |
4555 | | |
4556 | | // Unlike case statements, we don't add the default block to the successors |
4557 | | // for the switch statement immediately. This is done when we finish |
4558 | | // processing the switch statement. This allows for the default case |
4559 | | // (including a fall-through to the code after the switch statement) to always |
4560 | | // be the last successor of a switch-terminated block. |
4561 | | |
4562 | | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
4563 | 0 | Block = nullptr; |
4564 | | |
4565 | | // This block is now the implicit successor of other blocks. |
4566 | 0 | Succ = DefaultCaseBlock; |
4567 | |
|
4568 | 0 | return DefaultCaseBlock; |
4569 | 0 | } |
4570 | | |
4571 | 0 | CFGBlock *CFGBuilder::VisitCXXTryStmt(CXXTryStmt *Terminator) { |
4572 | | // "try"/"catch" is a control-flow statement. Thus we stop processing the |
4573 | | // current block. |
4574 | 0 | CFGBlock *TrySuccessor = nullptr; |
4575 | |
|
4576 | 0 | if (Block) { |
4577 | 0 | if (badCFG) |
4578 | 0 | return nullptr; |
4579 | 0 | TrySuccessor = Block; |
4580 | 0 | } else |
4581 | 0 | TrySuccessor = Succ; |
4582 | | |
4583 | 0 | CFGBlock *PrevTryTerminatedBlock = TryTerminatedBlock; |
4584 | | |
4585 | | // Create a new block that will contain the try statement. |
4586 | 0 | CFGBlock *NewTryTerminatedBlock = createBlock(false); |
4587 | | // Add the terminator in the try block. |
4588 | 0 | NewTryTerminatedBlock->setTerminator(Terminator); |
4589 | |
|
4590 | 0 | bool HasCatchAll = false; |
4591 | 0 | for (unsigned I = 0, E = Terminator->getNumHandlers(); I != E; ++I) { |
4592 | | // The code after the try is the implicit successor. |
4593 | 0 | Succ = TrySuccessor; |
4594 | 0 | CXXCatchStmt *CS = Terminator->getHandler(I); |
4595 | 0 | if (CS->getExceptionDecl() == nullptr) { |
4596 | 0 | HasCatchAll = true; |
4597 | 0 | } |
4598 | 0 | Block = nullptr; |
4599 | 0 | CFGBlock *CatchBlock = VisitCXXCatchStmt(CS); |
4600 | 0 | if (!CatchBlock) |
4601 | 0 | return nullptr; |
4602 | | // Add this block to the list of successors for the block with the try |
4603 | | // statement. |
4604 | 0 | addSuccessor(NewTryTerminatedBlock, CatchBlock); |
4605 | 0 | } |
4606 | 0 | if (!HasCatchAll) { |
4607 | 0 | if (PrevTryTerminatedBlock) |
4608 | 0 | addSuccessor(NewTryTerminatedBlock, PrevTryTerminatedBlock); |
4609 | 0 | else |
4610 | 0 | addSuccessor(NewTryTerminatedBlock, &cfg->getExit()); |
4611 | 0 | } |
4612 | | |
4613 | | // The code after the try is the implicit successor. |
4614 | 0 | Succ = TrySuccessor; |
4615 | | |
4616 | | // Save the current "try" context. |
4617 | 0 | SaveAndRestore SaveTry(TryTerminatedBlock, NewTryTerminatedBlock); |
4618 | 0 | cfg->addTryDispatchBlock(TryTerminatedBlock); |
4619 | |
|
4620 | 0 | assert(Terminator->getTryBlock() && "try must contain a non-NULL body"); |
4621 | 0 | Block = nullptr; |
4622 | 0 | return addStmt(Terminator->getTryBlock()); |
4623 | 0 | } |
4624 | | |
4625 | 0 | CFGBlock *CFGBuilder::VisitCXXCatchStmt(CXXCatchStmt *CS) { |
4626 | | // CXXCatchStmt are treated like labels, so they are the first statement in a |
4627 | | // block. |
4628 | | |
4629 | | // Save local scope position because in case of exception variable ScopePos |
4630 | | // won't be restored when traversing AST. |
4631 | 0 | SaveAndRestore save_scope_pos(ScopePos); |
4632 | | |
4633 | | // Create local scope for possible exception variable. |
4634 | | // Store scope position. Add implicit destructor. |
4635 | 0 | if (VarDecl *VD = CS->getExceptionDecl()) { |
4636 | 0 | LocalScope::const_iterator BeginScopePos = ScopePos; |
4637 | 0 | addLocalScopeForVarDecl(VD); |
4638 | 0 | addAutomaticObjHandling(ScopePos, BeginScopePos, CS); |
4639 | 0 | } |
4640 | |
|
4641 | 0 | if (CS->getHandlerBlock()) |
4642 | 0 | addStmt(CS->getHandlerBlock()); |
4643 | |
|
4644 | 0 | CFGBlock *CatchBlock = Block; |
4645 | 0 | if (!CatchBlock) |
4646 | 0 | CatchBlock = createBlock(); |
4647 | | |
4648 | | // CXXCatchStmt is more than just a label. They have semantic meaning |
4649 | | // as well, as they implicitly "initialize" the catch variable. Add |
4650 | | // it to the CFG as a CFGElement so that the control-flow of these |
4651 | | // semantics gets captured. |
4652 | 0 | appendStmt(CatchBlock, CS); |
4653 | | |
4654 | | // Also add the CXXCatchStmt as a label, to mirror handling of regular |
4655 | | // labels. |
4656 | 0 | CatchBlock->setLabel(CS); |
4657 | | |
4658 | | // Bail out if the CFG is bad. |
4659 | 0 | if (badCFG) |
4660 | 0 | return nullptr; |
4661 | | |
4662 | | // We set Block to NULL to allow lazy creation of a new block (if necessary). |
4663 | 0 | Block = nullptr; |
4664 | |
|
4665 | 0 | return CatchBlock; |
4666 | 0 | } |
4667 | | |
4668 | 0 | CFGBlock *CFGBuilder::VisitCXXForRangeStmt(CXXForRangeStmt *S) { |
4669 | | // C++0x for-range statements are specified as [stmt.ranged]: |
4670 | | // |
4671 | | // { |
4672 | | // auto && __range = range-init; |
4673 | | // for ( auto __begin = begin-expr, |
4674 | | // __end = end-expr; |
4675 | | // __begin != __end; |
4676 | | // ++__begin ) { |
4677 | | // for-range-declaration = *__begin; |
4678 | | // statement |
4679 | | // } |
4680 | | // } |
4681 | | |
4682 | | // Save local scope position before the addition of the implicit variables. |
4683 | 0 | SaveAndRestore save_scope_pos(ScopePos); |
4684 | | |
4685 | | // Create local scopes and destructors for range, begin and end variables. |
4686 | 0 | if (Stmt *Range = S->getRangeStmt()) |
4687 | 0 | addLocalScopeForStmt(Range); |
4688 | 0 | if (Stmt *Begin = S->getBeginStmt()) |
4689 | 0 | addLocalScopeForStmt(Begin); |
4690 | 0 | if (Stmt *End = S->getEndStmt()) |
4691 | 0 | addLocalScopeForStmt(End); |
4692 | 0 | addAutomaticObjHandling(ScopePos, save_scope_pos.get(), S); |
4693 | |
|
4694 | 0 | LocalScope::const_iterator ContinueScopePos = ScopePos; |
4695 | | |
4696 | | // "for" is a control-flow statement. Thus we stop processing the current |
4697 | | // block. |
4698 | 0 | CFGBlock *LoopSuccessor = nullptr; |
4699 | 0 | if (Block) { |
4700 | 0 | if (badCFG) |
4701 | 0 | return nullptr; |
4702 | 0 | LoopSuccessor = Block; |
4703 | 0 | } else |
4704 | 0 | LoopSuccessor = Succ; |
4705 | | |
4706 | | // Save the current value for the break targets. |
4707 | | // All breaks should go to the code following the loop. |
4708 | 0 | SaveAndRestore save_break(BreakJumpTarget); |
4709 | 0 | BreakJumpTarget = JumpTarget(LoopSuccessor, ScopePos); |
4710 | | |
4711 | | // The block for the __begin != __end expression. |
4712 | 0 | CFGBlock *ConditionBlock = createBlock(false); |
4713 | 0 | ConditionBlock->setTerminator(S); |
4714 | | |
4715 | | // Now add the actual condition to the condition block. |
4716 | 0 | if (Expr *C = S->getCond()) { |
4717 | 0 | Block = ConditionBlock; |
4718 | 0 | CFGBlock *BeginConditionBlock = addStmt(C); |
4719 | 0 | if (badCFG) |
4720 | 0 | return nullptr; |
4721 | 0 | assert(BeginConditionBlock == ConditionBlock && |
4722 | 0 | "condition block in for-range was unexpectedly complex"); |
4723 | 0 | (void)BeginConditionBlock; |
4724 | 0 | } |
4725 | | |
4726 | | // The condition block is the implicit successor for the loop body as well as |
4727 | | // any code above the loop. |
4728 | 0 | Succ = ConditionBlock; |
4729 | | |
4730 | | // See if this is a known constant. |
4731 | 0 | TryResult KnownVal(true); |
4732 | |
|
4733 | 0 | if (S->getCond()) |
4734 | 0 | KnownVal = tryEvaluateBool(S->getCond()); |
4735 | | |
4736 | | // Now create the loop body. |
4737 | 0 | { |
4738 | 0 | assert(S->getBody()); |
4739 | | |
4740 | | // Save the current values for Block, Succ, and continue targets. |
4741 | 0 | SaveAndRestore save_Block(Block), save_Succ(Succ); |
4742 | 0 | SaveAndRestore save_continue(ContinueJumpTarget); |
4743 | | |
4744 | | // Generate increment code in its own basic block. This is the target of |
4745 | | // continue statements. |
4746 | 0 | Block = nullptr; |
4747 | 0 | Succ = addStmt(S->getInc()); |
4748 | 0 | if (badCFG) |
4749 | 0 | return nullptr; |
4750 | 0 | ContinueJumpTarget = JumpTarget(Succ, ContinueScopePos); |
4751 | | |
4752 | | // The starting block for the loop increment is the block that should |
4753 | | // represent the 'loop target' for looping back to the start of the loop. |
4754 | 0 | ContinueJumpTarget.block->setLoopTarget(S); |
4755 | | |
4756 | | // Finish up the increment block and prepare to start the loop body. |
4757 | 0 | assert(Block); |
4758 | 0 | if (badCFG) |
4759 | 0 | return nullptr; |
4760 | 0 | Block = nullptr; |
4761 | | |
4762 | | // Add implicit scope and dtors for loop variable. |
4763 | 0 | addLocalScopeAndDtors(S->getLoopVarStmt()); |
4764 | | |
4765 | | // If body is not a compound statement create implicit scope |
4766 | | // and add destructors. |
4767 | 0 | if (!isa<CompoundStmt>(S->getBody())) |
4768 | 0 | addLocalScopeAndDtors(S->getBody()); |
4769 | | |
4770 | | // Populate a new block to contain the loop body and loop variable. |
4771 | 0 | addStmt(S->getBody()); |
4772 | |
|
4773 | 0 | if (badCFG) |
4774 | 0 | return nullptr; |
4775 | 0 | CFGBlock *LoopVarStmtBlock = addStmt(S->getLoopVarStmt()); |
4776 | 0 | if (badCFG) |
4777 | 0 | return nullptr; |
4778 | | |
4779 | | // This new body block is a successor to our condition block. |
4780 | 0 | addSuccessor(ConditionBlock, |
4781 | 0 | KnownVal.isFalse() ? nullptr : LoopVarStmtBlock); |
4782 | 0 | } |
4783 | | |
4784 | | // Link up the condition block with the code that follows the loop (the |
4785 | | // false branch). |
4786 | 0 | addSuccessor(ConditionBlock, KnownVal.isTrue() ? nullptr : LoopSuccessor); |
4787 | | |
4788 | | // Add the initialization statements. |
4789 | 0 | Block = createBlock(); |
4790 | 0 | addStmt(S->getBeginStmt()); |
4791 | 0 | addStmt(S->getEndStmt()); |
4792 | 0 | CFGBlock *Head = addStmt(S->getRangeStmt()); |
4793 | 0 | if (S->getInit()) |
4794 | 0 | Head = addStmt(S->getInit()); |
4795 | 0 | return Head; |
4796 | 0 | } |
4797 | | |
4798 | | CFGBlock *CFGBuilder::VisitExprWithCleanups(ExprWithCleanups *E, |
4799 | 0 | AddStmtChoice asc, bool ExternallyDestructed) { |
4800 | 0 | if (BuildOpts.AddTemporaryDtors) { |
4801 | | // If adding implicit destructors visit the full expression for adding |
4802 | | // destructors of temporaries. |
4803 | 0 | TempDtorContext Context; |
4804 | 0 | VisitForTemporaryDtors(E->getSubExpr(), ExternallyDestructed, Context); |
4805 | | |
4806 | | // Full expression has to be added as CFGStmt so it will be sequenced |
4807 | | // before destructors of it's temporaries. |
4808 | 0 | asc = asc.withAlwaysAdd(true); |
4809 | 0 | } |
4810 | 0 | return Visit(E->getSubExpr(), asc); |
4811 | 0 | } |
4812 | | |
4813 | | CFGBlock *CFGBuilder::VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E, |
4814 | 0 | AddStmtChoice asc) { |
4815 | 0 | if (asc.alwaysAdd(*this, E)) { |
4816 | 0 | autoCreateBlock(); |
4817 | 0 | appendStmt(Block, E); |
4818 | |
|
4819 | 0 | findConstructionContexts( |
4820 | 0 | ConstructionContextLayer::create(cfg->getBumpVectorContext(), E), |
4821 | 0 | E->getSubExpr()); |
4822 | | |
4823 | | // We do not want to propagate the AlwaysAdd property. |
4824 | 0 | asc = asc.withAlwaysAdd(false); |
4825 | 0 | } |
4826 | 0 | return Visit(E->getSubExpr(), asc); |
4827 | 0 | } |
4828 | | |
4829 | | CFGBlock *CFGBuilder::VisitCXXConstructExpr(CXXConstructExpr *C, |
4830 | 0 | AddStmtChoice asc) { |
4831 | | // If the constructor takes objects as arguments by value, we need to properly |
4832 | | // construct these objects. Construction contexts we find here aren't for the |
4833 | | // constructor C, they're for its arguments only. |
4834 | 0 | findConstructionContextsForArguments(C); |
4835 | |
|
4836 | 0 | autoCreateBlock(); |
4837 | 0 | appendConstructor(Block, C); |
4838 | |
|
4839 | 0 | return VisitChildren(C); |
4840 | 0 | } |
4841 | | |
4842 | | CFGBlock *CFGBuilder::VisitCXXNewExpr(CXXNewExpr *NE, |
4843 | 0 | AddStmtChoice asc) { |
4844 | 0 | autoCreateBlock(); |
4845 | 0 | appendStmt(Block, NE); |
4846 | |
|
4847 | 0 | findConstructionContexts( |
4848 | 0 | ConstructionContextLayer::create(cfg->getBumpVectorContext(), NE), |
4849 | 0 | const_cast<CXXConstructExpr *>(NE->getConstructExpr())); |
4850 | |
|
4851 | 0 | if (NE->getInitializer()) |
4852 | 0 | Block = Visit(NE->getInitializer()); |
4853 | |
|
4854 | 0 | if (BuildOpts.AddCXXNewAllocator) |
4855 | 0 | appendNewAllocator(Block, NE); |
4856 | |
|
4857 | 0 | if (NE->isArray() && *NE->getArraySize()) |
4858 | 0 | Block = Visit(*NE->getArraySize()); |
4859 | |
|
4860 | 0 | for (CXXNewExpr::arg_iterator I = NE->placement_arg_begin(), |
4861 | 0 | E = NE->placement_arg_end(); I != E; ++I) |
4862 | 0 | Block = Visit(*I); |
4863 | |
|
4864 | 0 | return Block; |
4865 | 0 | } |
4866 | | |
4867 | | CFGBlock *CFGBuilder::VisitCXXDeleteExpr(CXXDeleteExpr *DE, |
4868 | 0 | AddStmtChoice asc) { |
4869 | 0 | autoCreateBlock(); |
4870 | 0 | appendStmt(Block, DE); |
4871 | 0 | QualType DTy = DE->getDestroyedType(); |
4872 | 0 | if (!DTy.isNull()) { |
4873 | 0 | DTy = DTy.getNonReferenceType(); |
4874 | 0 | CXXRecordDecl *RD = Context->getBaseElementType(DTy)->getAsCXXRecordDecl(); |
4875 | 0 | if (RD) { |
4876 | 0 | if (RD->isCompleteDefinition() && !RD->hasTrivialDestructor()) |
4877 | 0 | appendDeleteDtor(Block, RD, DE); |
4878 | 0 | } |
4879 | 0 | } |
4880 | |
|
4881 | 0 | return VisitChildren(DE); |
4882 | 0 | } |
4883 | | |
4884 | | CFGBlock *CFGBuilder::VisitCXXFunctionalCastExpr(CXXFunctionalCastExpr *E, |
4885 | 0 | AddStmtChoice asc) { |
4886 | 0 | if (asc.alwaysAdd(*this, E)) { |
4887 | 0 | autoCreateBlock(); |
4888 | 0 | appendStmt(Block, E); |
4889 | | // We do not want to propagate the AlwaysAdd property. |
4890 | 0 | asc = asc.withAlwaysAdd(false); |
4891 | 0 | } |
4892 | 0 | return Visit(E->getSubExpr(), asc); |
4893 | 0 | } |
4894 | | |
4895 | | CFGBlock *CFGBuilder::VisitCXXTemporaryObjectExpr(CXXTemporaryObjectExpr *C, |
4896 | 0 | AddStmtChoice asc) { |
4897 | | // If the constructor takes objects as arguments by value, we need to properly |
4898 | | // construct these objects. Construction contexts we find here aren't for the |
4899 | | // constructor C, they're for its arguments only. |
4900 | 0 | findConstructionContextsForArguments(C); |
4901 | |
|
4902 | 0 | autoCreateBlock(); |
4903 | 0 | appendConstructor(Block, C); |
4904 | 0 | return VisitChildren(C); |
4905 | 0 | } |
4906 | | |
4907 | | CFGBlock *CFGBuilder::VisitImplicitCastExpr(ImplicitCastExpr *E, |
4908 | 0 | AddStmtChoice asc) { |
4909 | 0 | if (asc.alwaysAdd(*this, E)) { |
4910 | 0 | autoCreateBlock(); |
4911 | 0 | appendStmt(Block, E); |
4912 | 0 | } |
4913 | |
|
4914 | 0 | if (E->getCastKind() == CK_IntegralToBoolean) |
4915 | 0 | tryEvaluateBool(E->getSubExpr()->IgnoreParens()); |
4916 | |
|
4917 | 0 | return Visit(E->getSubExpr(), AddStmtChoice()); |
4918 | 0 | } |
4919 | | |
4920 | 0 | CFGBlock *CFGBuilder::VisitConstantExpr(ConstantExpr *E, AddStmtChoice asc) { |
4921 | 0 | return Visit(E->getSubExpr(), AddStmtChoice()); |
4922 | 0 | } |
4923 | | |
4924 | 0 | CFGBlock *CFGBuilder::VisitIndirectGotoStmt(IndirectGotoStmt *I) { |
4925 | | // Lazily create the indirect-goto dispatch block if there isn't one already. |
4926 | 0 | CFGBlock *IBlock = cfg->getIndirectGotoBlock(); |
4927 | |
|
4928 | 0 | if (!IBlock) { |
4929 | 0 | IBlock = createBlock(false); |
4930 | 0 | cfg->setIndirectGotoBlock(IBlock); |
4931 | 0 | } |
4932 | | |
4933 | | // IndirectGoto is a control-flow statement. Thus we stop processing the |
4934 | | // current block and create a new one. |
4935 | 0 | if (badCFG) |
4936 | 0 | return nullptr; |
4937 | | |
4938 | 0 | Block = createBlock(false); |
4939 | 0 | Block->setTerminator(I); |
4940 | 0 | addSuccessor(Block, IBlock); |
4941 | 0 | return addStmt(I->getTarget()); |
4942 | 0 | } |
4943 | | |
4944 | | CFGBlock *CFGBuilder::VisitForTemporaryDtors(Stmt *E, bool ExternallyDestructed, |
4945 | 0 | TempDtorContext &Context) { |
4946 | 0 | assert(BuildOpts.AddImplicitDtors && BuildOpts.AddTemporaryDtors); |
4947 | | |
4948 | 0 | tryAgain: |
4949 | 0 | if (!E) { |
4950 | 0 | badCFG = true; |
4951 | 0 | return nullptr; |
4952 | 0 | } |
4953 | 0 | switch (E->getStmtClass()) { |
4954 | 0 | default: |
4955 | 0 | return VisitChildrenForTemporaryDtors(E, false, Context); |
4956 | | |
4957 | 0 | case Stmt::InitListExprClass: |
4958 | 0 | return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context); |
4959 | | |
4960 | 0 | case Stmt::BinaryOperatorClass: |
4961 | 0 | return VisitBinaryOperatorForTemporaryDtors(cast<BinaryOperator>(E), |
4962 | 0 | ExternallyDestructed, |
4963 | 0 | Context); |
4964 | | |
4965 | 0 | case Stmt::CXXBindTemporaryExprClass: |
4966 | 0 | return VisitCXXBindTemporaryExprForTemporaryDtors( |
4967 | 0 | cast<CXXBindTemporaryExpr>(E), ExternallyDestructed, Context); |
4968 | | |
4969 | 0 | case Stmt::BinaryConditionalOperatorClass: |
4970 | 0 | case Stmt::ConditionalOperatorClass: |
4971 | 0 | return VisitConditionalOperatorForTemporaryDtors( |
4972 | 0 | cast<AbstractConditionalOperator>(E), ExternallyDestructed, Context); |
4973 | | |
4974 | 0 | case Stmt::ImplicitCastExprClass: |
4975 | | // For implicit cast we want ExternallyDestructed to be passed further. |
4976 | 0 | E = cast<CastExpr>(E)->getSubExpr(); |
4977 | 0 | goto tryAgain; |
4978 | | |
4979 | 0 | case Stmt::CXXFunctionalCastExprClass: |
4980 | | // For functional cast we want ExternallyDestructed to be passed further. |
4981 | 0 | E = cast<CXXFunctionalCastExpr>(E)->getSubExpr(); |
4982 | 0 | goto tryAgain; |
4983 | | |
4984 | 0 | case Stmt::ConstantExprClass: |
4985 | 0 | E = cast<ConstantExpr>(E)->getSubExpr(); |
4986 | 0 | goto tryAgain; |
4987 | | |
4988 | 0 | case Stmt::ParenExprClass: |
4989 | 0 | E = cast<ParenExpr>(E)->getSubExpr(); |
4990 | 0 | goto tryAgain; |
4991 | | |
4992 | 0 | case Stmt::MaterializeTemporaryExprClass: { |
4993 | 0 | const MaterializeTemporaryExpr* MTE = cast<MaterializeTemporaryExpr>(E); |
4994 | 0 | ExternallyDestructed = (MTE->getStorageDuration() != SD_FullExpression); |
4995 | 0 | SmallVector<const Expr *, 2> CommaLHSs; |
4996 | 0 | SmallVector<SubobjectAdjustment, 2> Adjustments; |
4997 | | // Find the expression whose lifetime needs to be extended. |
4998 | 0 | E = const_cast<Expr *>( |
4999 | 0 | cast<MaterializeTemporaryExpr>(E) |
5000 | 0 | ->getSubExpr() |
5001 | 0 | ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments)); |
5002 | | // Visit the skipped comma operator left-hand sides for other temporaries. |
5003 | 0 | for (const Expr *CommaLHS : CommaLHSs) { |
5004 | 0 | VisitForTemporaryDtors(const_cast<Expr *>(CommaLHS), |
5005 | 0 | /*ExternallyDestructed=*/false, Context); |
5006 | 0 | } |
5007 | 0 | goto tryAgain; |
5008 | 0 | } |
5009 | | |
5010 | 0 | case Stmt::BlockExprClass: |
5011 | | // Don't recurse into blocks; their subexpressions don't get evaluated |
5012 | | // here. |
5013 | 0 | return Block; |
5014 | | |
5015 | 0 | case Stmt::LambdaExprClass: { |
5016 | | // For lambda expressions, only recurse into the capture initializers, |
5017 | | // and not the body. |
5018 | 0 | auto *LE = cast<LambdaExpr>(E); |
5019 | 0 | CFGBlock *B = Block; |
5020 | 0 | for (Expr *Init : LE->capture_inits()) { |
5021 | 0 | if (Init) { |
5022 | 0 | if (CFGBlock *R = VisitForTemporaryDtors( |
5023 | 0 | Init, /*ExternallyDestructed=*/true, Context)) |
5024 | 0 | B = R; |
5025 | 0 | } |
5026 | 0 | } |
5027 | 0 | return B; |
5028 | 0 | } |
5029 | | |
5030 | 0 | case Stmt::StmtExprClass: |
5031 | | // Don't recurse into statement expressions; any cleanups inside them |
5032 | | // will be wrapped in their own ExprWithCleanups. |
5033 | 0 | return Block; |
5034 | | |
5035 | 0 | case Stmt::CXXDefaultArgExprClass: |
5036 | 0 | E = cast<CXXDefaultArgExpr>(E)->getExpr(); |
5037 | 0 | goto tryAgain; |
5038 | | |
5039 | 0 | case Stmt::CXXDefaultInitExprClass: |
5040 | 0 | E = cast<CXXDefaultInitExpr>(E)->getExpr(); |
5041 | 0 | goto tryAgain; |
5042 | 0 | } |
5043 | 0 | } |
5044 | | |
5045 | | CFGBlock *CFGBuilder::VisitChildrenForTemporaryDtors(Stmt *E, |
5046 | | bool ExternallyDestructed, |
5047 | 0 | TempDtorContext &Context) { |
5048 | 0 | if (isa<LambdaExpr>(E)) { |
5049 | | // Do not visit the children of lambdas; they have their own CFGs. |
5050 | 0 | return Block; |
5051 | 0 | } |
5052 | | |
5053 | | // When visiting children for destructors we want to visit them in reverse |
5054 | | // order that they will appear in the CFG. Because the CFG is built |
5055 | | // bottom-up, this means we visit them in their natural order, which |
5056 | | // reverses them in the CFG. |
5057 | 0 | CFGBlock *B = Block; |
5058 | 0 | for (Stmt *Child : E->children()) |
5059 | 0 | if (Child) |
5060 | 0 | if (CFGBlock *R = VisitForTemporaryDtors(Child, ExternallyDestructed, Context)) |
5061 | 0 | B = R; |
5062 | |
|
5063 | 0 | return B; |
5064 | 0 | } |
5065 | | |
5066 | | CFGBlock *CFGBuilder::VisitBinaryOperatorForTemporaryDtors( |
5067 | 0 | BinaryOperator *E, bool ExternallyDestructed, TempDtorContext &Context) { |
5068 | 0 | if (E->isCommaOp()) { |
5069 | | // For the comma operator, the LHS expression is evaluated before the RHS |
5070 | | // expression, so prepend temporary destructors for the LHS first. |
5071 | 0 | CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context); |
5072 | 0 | CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), ExternallyDestructed, Context); |
5073 | 0 | return RHSBlock ? RHSBlock : LHSBlock; |
5074 | 0 | } |
5075 | | |
5076 | 0 | if (E->isLogicalOp()) { |
5077 | 0 | VisitForTemporaryDtors(E->getLHS(), false, Context); |
5078 | 0 | TryResult RHSExecuted = tryEvaluateBool(E->getLHS()); |
5079 | 0 | if (RHSExecuted.isKnown() && E->getOpcode() == BO_LOr) |
5080 | 0 | RHSExecuted.negate(); |
5081 | | |
5082 | | // We do not know at CFG-construction time whether the right-hand-side was |
5083 | | // executed, thus we add a branch node that depends on the temporary |
5084 | | // constructor call. |
5085 | 0 | TempDtorContext RHSContext( |
5086 | 0 | bothKnownTrue(Context.KnownExecuted, RHSExecuted)); |
5087 | 0 | VisitForTemporaryDtors(E->getRHS(), false, RHSContext); |
5088 | 0 | InsertTempDtorDecisionBlock(RHSContext); |
5089 | |
|
5090 | 0 | return Block; |
5091 | 0 | } |
5092 | | |
5093 | 0 | if (E->isAssignmentOp()) { |
5094 | | // For assignment operators, the RHS expression is evaluated before the LHS |
5095 | | // expression, so prepend temporary destructors for the RHS first. |
5096 | 0 | CFGBlock *RHSBlock = VisitForTemporaryDtors(E->getRHS(), false, Context); |
5097 | 0 | CFGBlock *LHSBlock = VisitForTemporaryDtors(E->getLHS(), false, Context); |
5098 | 0 | return LHSBlock ? LHSBlock : RHSBlock; |
5099 | 0 | } |
5100 | | |
5101 | | // Any other operator is visited normally. |
5102 | 0 | return VisitChildrenForTemporaryDtors(E, ExternallyDestructed, Context); |
5103 | 0 | } |
5104 | | |
5105 | | CFGBlock *CFGBuilder::VisitCXXBindTemporaryExprForTemporaryDtors( |
5106 | 0 | CXXBindTemporaryExpr *E, bool ExternallyDestructed, TempDtorContext &Context) { |
5107 | | // First add destructors for temporaries in subexpression. |
5108 | | // Because VisitCXXBindTemporaryExpr calls setDestructed: |
5109 | 0 | CFGBlock *B = VisitForTemporaryDtors(E->getSubExpr(), true, Context); |
5110 | 0 | if (!ExternallyDestructed) { |
5111 | | // If lifetime of temporary is not prolonged (by assigning to constant |
5112 | | // reference) add destructor for it. |
5113 | |
|
5114 | 0 | const CXXDestructorDecl *Dtor = E->getTemporary()->getDestructor(); |
5115 | |
|
5116 | 0 | if (Dtor->getParent()->isAnyDestructorNoReturn()) { |
5117 | | // If the destructor is marked as a no-return destructor, we need to |
5118 | | // create a new block for the destructor which does not have as a |
5119 | | // successor anything built thus far. Control won't flow out of this |
5120 | | // block. |
5121 | 0 | if (B) Succ = B; |
5122 | 0 | Block = createNoReturnBlock(); |
5123 | 0 | } else if (Context.needsTempDtorBranch()) { |
5124 | | // If we need to introduce a branch, we add a new block that we will hook |
5125 | | // up to a decision block later. |
5126 | 0 | if (B) Succ = B; |
5127 | 0 | Block = createBlock(); |
5128 | 0 | } else { |
5129 | 0 | autoCreateBlock(); |
5130 | 0 | } |
5131 | 0 | if (Context.needsTempDtorBranch()) { |
5132 | 0 | Context.setDecisionPoint(Succ, E); |
5133 | 0 | } |
5134 | 0 | appendTemporaryDtor(Block, E); |
5135 | |
|
5136 | 0 | B = Block; |
5137 | 0 | } |
5138 | 0 | return B; |
5139 | 0 | } |
5140 | | |
5141 | | void CFGBuilder::InsertTempDtorDecisionBlock(const TempDtorContext &Context, |
5142 | 0 | CFGBlock *FalseSucc) { |
5143 | 0 | if (!Context.TerminatorExpr) { |
5144 | | // If no temporary was found, we do not need to insert a decision point. |
5145 | 0 | return; |
5146 | 0 | } |
5147 | 0 | assert(Context.TerminatorExpr); |
5148 | 0 | CFGBlock *Decision = createBlock(false); |
5149 | 0 | Decision->setTerminator(CFGTerminator(Context.TerminatorExpr, |
5150 | 0 | CFGTerminator::TemporaryDtorsBranch)); |
5151 | 0 | addSuccessor(Decision, Block, !Context.KnownExecuted.isFalse()); |
5152 | 0 | addSuccessor(Decision, FalseSucc ? FalseSucc : Context.Succ, |
5153 | 0 | !Context.KnownExecuted.isTrue()); |
5154 | 0 | Block = Decision; |
5155 | 0 | } |
5156 | | |
5157 | | CFGBlock *CFGBuilder::VisitConditionalOperatorForTemporaryDtors( |
5158 | | AbstractConditionalOperator *E, bool ExternallyDestructed, |
5159 | 0 | TempDtorContext &Context) { |
5160 | 0 | VisitForTemporaryDtors(E->getCond(), false, Context); |
5161 | 0 | CFGBlock *ConditionBlock = Block; |
5162 | 0 | CFGBlock *ConditionSucc = Succ; |
5163 | 0 | TryResult ConditionVal = tryEvaluateBool(E->getCond()); |
5164 | 0 | TryResult NegatedVal = ConditionVal; |
5165 | 0 | if (NegatedVal.isKnown()) NegatedVal.negate(); |
5166 | |
|
5167 | 0 | TempDtorContext TrueContext( |
5168 | 0 | bothKnownTrue(Context.KnownExecuted, ConditionVal)); |
5169 | 0 | VisitForTemporaryDtors(E->getTrueExpr(), ExternallyDestructed, TrueContext); |
5170 | 0 | CFGBlock *TrueBlock = Block; |
5171 | |
|
5172 | 0 | Block = ConditionBlock; |
5173 | 0 | Succ = ConditionSucc; |
5174 | 0 | TempDtorContext FalseContext( |
5175 | 0 | bothKnownTrue(Context.KnownExecuted, NegatedVal)); |
5176 | 0 | VisitForTemporaryDtors(E->getFalseExpr(), ExternallyDestructed, FalseContext); |
5177 | |
|
5178 | 0 | if (TrueContext.TerminatorExpr && FalseContext.TerminatorExpr) { |
5179 | 0 | InsertTempDtorDecisionBlock(FalseContext, TrueBlock); |
5180 | 0 | } else if (TrueContext.TerminatorExpr) { |
5181 | 0 | Block = TrueBlock; |
5182 | 0 | InsertTempDtorDecisionBlock(TrueContext); |
5183 | 0 | } else { |
5184 | 0 | InsertTempDtorDecisionBlock(FalseContext); |
5185 | 0 | } |
5186 | 0 | return Block; |
5187 | 0 | } |
5188 | | |
5189 | | CFGBlock *CFGBuilder::VisitOMPExecutableDirective(OMPExecutableDirective *D, |
5190 | 0 | AddStmtChoice asc) { |
5191 | 0 | if (asc.alwaysAdd(*this, D)) { |
5192 | 0 | autoCreateBlock(); |
5193 | 0 | appendStmt(Block, D); |
5194 | 0 | } |
5195 | | |
5196 | | // Iterate over all used expression in clauses. |
5197 | 0 | CFGBlock *B = Block; |
5198 | | |
5199 | | // Reverse the elements to process them in natural order. Iterators are not |
5200 | | // bidirectional, so we need to create temp vector. |
5201 | 0 | SmallVector<Stmt *, 8> Used( |
5202 | 0 | OMPExecutableDirective::used_clauses_children(D->clauses())); |
5203 | 0 | for (Stmt *S : llvm::reverse(Used)) { |
5204 | 0 | assert(S && "Expected non-null used-in-clause child."); |
5205 | 0 | if (CFGBlock *R = Visit(S)) |
5206 | 0 | B = R; |
5207 | 0 | } |
5208 | | // Visit associated structured block if any. |
5209 | 0 | if (!D->isStandaloneDirective()) { |
5210 | 0 | Stmt *S = D->getRawStmt(); |
5211 | 0 | if (!isa<CompoundStmt>(S)) |
5212 | 0 | addLocalScopeAndDtors(S); |
5213 | 0 | if (CFGBlock *R = addStmt(S)) |
5214 | 0 | B = R; |
5215 | 0 | } |
5216 | |
|
5217 | 0 | return B; |
5218 | 0 | } |
5219 | | |
5220 | | /// createBlock - Constructs and adds a new CFGBlock to the CFG. The block has |
5221 | | /// no successors or predecessors. If this is the first block created in the |
5222 | | /// CFG, it is automatically set to be the Entry and Exit of the CFG. |
5223 | 0 | CFGBlock *CFG::createBlock() { |
5224 | 0 | bool first_block = begin() == end(); |
5225 | | |
5226 | | // Create the block. |
5227 | 0 | CFGBlock *Mem = new (getAllocator()) CFGBlock(NumBlockIDs++, BlkBVC, this); |
5228 | 0 | Blocks.push_back(Mem, BlkBVC); |
5229 | | |
5230 | | // If this is the first block, set it as the Entry and Exit. |
5231 | 0 | if (first_block) |
5232 | 0 | Entry = Exit = &back(); |
5233 | | |
5234 | | // Return the block. |
5235 | 0 | return &back(); |
5236 | 0 | } |
5237 | | |
5238 | | /// buildCFG - Constructs a CFG from an AST. |
5239 | | std::unique_ptr<CFG> CFG::buildCFG(const Decl *D, Stmt *Statement, |
5240 | 0 | ASTContext *C, const BuildOptions &BO) { |
5241 | 0 | CFGBuilder Builder(C, BO); |
5242 | 0 | return Builder.buildCFG(D, Statement); |
5243 | 0 | } |
5244 | | |
5245 | 0 | bool CFG::isLinear() const { |
5246 | | // Quick path: if we only have the ENTRY block, the EXIT block, and some code |
5247 | | // in between, then we have no room for control flow. |
5248 | 0 | if (size() <= 3) |
5249 | 0 | return true; |
5250 | | |
5251 | | // Traverse the CFG until we find a branch. |
5252 | | // TODO: While this should still be very fast, |
5253 | | // maybe we should cache the answer. |
5254 | 0 | llvm::SmallPtrSet<const CFGBlock *, 4> Visited; |
5255 | 0 | const CFGBlock *B = Entry; |
5256 | 0 | while (B != Exit) { |
5257 | 0 | auto IteratorAndFlag = Visited.insert(B); |
5258 | 0 | if (!IteratorAndFlag.second) { |
5259 | | // We looped back to a block that we've already visited. Not linear. |
5260 | 0 | return false; |
5261 | 0 | } |
5262 | | |
5263 | | // Iterate over reachable successors. |
5264 | 0 | const CFGBlock *FirstReachableB = nullptr; |
5265 | 0 | for (const CFGBlock::AdjacentBlock &AB : B->succs()) { |
5266 | 0 | if (!AB.isReachable()) |
5267 | 0 | continue; |
5268 | | |
5269 | 0 | if (FirstReachableB == nullptr) { |
5270 | 0 | FirstReachableB = &*AB; |
5271 | 0 | } else { |
5272 | | // We've encountered a branch. It's not a linear CFG. |
5273 | 0 | return false; |
5274 | 0 | } |
5275 | 0 | } |
5276 | | |
5277 | 0 | if (!FirstReachableB) { |
5278 | | // We reached a dead end. EXIT is unreachable. This is linear enough. |
5279 | 0 | return true; |
5280 | 0 | } |
5281 | | |
5282 | | // There's only one way to move forward. Proceed. |
5283 | 0 | B = FirstReachableB; |
5284 | 0 | } |
5285 | | |
5286 | | // We reached EXIT and found no branches. |
5287 | 0 | return true; |
5288 | 0 | } |
5289 | | |
5290 | | const CXXDestructorDecl * |
5291 | 0 | CFGImplicitDtor::getDestructorDecl(ASTContext &astContext) const { |
5292 | 0 | switch (getKind()) { |
5293 | 0 | case CFGElement::Initializer: |
5294 | 0 | case CFGElement::NewAllocator: |
5295 | 0 | case CFGElement::LoopExit: |
5296 | 0 | case CFGElement::LifetimeEnds: |
5297 | 0 | case CFGElement::Statement: |
5298 | 0 | case CFGElement::Constructor: |
5299 | 0 | case CFGElement::CXXRecordTypedCall: |
5300 | 0 | case CFGElement::ScopeBegin: |
5301 | 0 | case CFGElement::ScopeEnd: |
5302 | 0 | case CFGElement::CleanupFunction: |
5303 | 0 | llvm_unreachable("getDestructorDecl should only be used with " |
5304 | 0 | "ImplicitDtors"); |
5305 | 0 | case CFGElement::AutomaticObjectDtor: { |
5306 | 0 | const VarDecl *var = castAs<CFGAutomaticObjDtor>().getVarDecl(); |
5307 | 0 | QualType ty = var->getType(); |
5308 | | |
5309 | | // FIXME: See CFGBuilder::addLocalScopeForVarDecl. |
5310 | | // |
5311 | | // Lifetime-extending constructs are handled here. This works for a single |
5312 | | // temporary in an initializer expression. |
5313 | 0 | if (ty->isReferenceType()) { |
5314 | 0 | if (const Expr *Init = var->getInit()) { |
5315 | 0 | ty = getReferenceInitTemporaryType(Init); |
5316 | 0 | } |
5317 | 0 | } |
5318 | |
|
5319 | 0 | while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) { |
5320 | 0 | ty = arrayType->getElementType(); |
5321 | 0 | } |
5322 | | |
5323 | | // The situation when the type of the lifetime-extending reference |
5324 | | // does not correspond to the type of the object is supposed |
5325 | | // to be handled by now. In particular, 'ty' is now the unwrapped |
5326 | | // record type. |
5327 | 0 | const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl(); |
5328 | 0 | assert(classDecl); |
5329 | 0 | return classDecl->getDestructor(); |
5330 | 0 | } |
5331 | 0 | case CFGElement::DeleteDtor: { |
5332 | 0 | const CXXDeleteExpr *DE = castAs<CFGDeleteDtor>().getDeleteExpr(); |
5333 | 0 | QualType DTy = DE->getDestroyedType(); |
5334 | 0 | DTy = DTy.getNonReferenceType(); |
5335 | 0 | const CXXRecordDecl *classDecl = |
5336 | 0 | astContext.getBaseElementType(DTy)->getAsCXXRecordDecl(); |
5337 | 0 | return classDecl->getDestructor(); |
5338 | 0 | } |
5339 | 0 | case CFGElement::TemporaryDtor: { |
5340 | 0 | const CXXBindTemporaryExpr *bindExpr = |
5341 | 0 | castAs<CFGTemporaryDtor>().getBindTemporaryExpr(); |
5342 | 0 | const CXXTemporary *temp = bindExpr->getTemporary(); |
5343 | 0 | return temp->getDestructor(); |
5344 | 0 | } |
5345 | 0 | case CFGElement::MemberDtor: { |
5346 | 0 | const FieldDecl *field = castAs<CFGMemberDtor>().getFieldDecl(); |
5347 | 0 | QualType ty = field->getType(); |
5348 | |
|
5349 | 0 | while (const ArrayType *arrayType = astContext.getAsArrayType(ty)) { |
5350 | 0 | ty = arrayType->getElementType(); |
5351 | 0 | } |
5352 | |
|
5353 | 0 | const CXXRecordDecl *classDecl = ty->getAsCXXRecordDecl(); |
5354 | 0 | assert(classDecl); |
5355 | 0 | return classDecl->getDestructor(); |
5356 | 0 | } |
5357 | 0 | case CFGElement::BaseDtor: |
5358 | | // Not yet supported. |
5359 | 0 | return nullptr; |
5360 | 0 | } |
5361 | 0 | llvm_unreachable("getKind() returned bogus value"); |
5362 | 0 | } |
5363 | | |
5364 | | //===----------------------------------------------------------------------===// |
5365 | | // CFGBlock operations. |
5366 | | //===----------------------------------------------------------------------===// |
5367 | | |
5368 | | CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, bool IsReachable) |
5369 | | : ReachableBlock(IsReachable ? B : nullptr), |
5370 | | UnreachableBlock(!IsReachable ? B : nullptr, |
5371 | 0 | B && IsReachable ? AB_Normal : AB_Unreachable) {} |
5372 | | |
5373 | | CFGBlock::AdjacentBlock::AdjacentBlock(CFGBlock *B, CFGBlock *AlternateBlock) |
5374 | | : ReachableBlock(B), |
5375 | | UnreachableBlock(B == AlternateBlock ? nullptr : AlternateBlock, |
5376 | 0 | B == AlternateBlock ? AB_Alternate : AB_Normal) {} |
5377 | | |
5378 | | void CFGBlock::addSuccessor(AdjacentBlock Succ, |
5379 | 0 | BumpVectorContext &C) { |
5380 | 0 | if (CFGBlock *B = Succ.getReachableBlock()) |
5381 | 0 | B->Preds.push_back(AdjacentBlock(this, Succ.isReachable()), C); |
5382 | |
|
5383 | 0 | if (CFGBlock *UnreachableB = Succ.getPossiblyUnreachableBlock()) |
5384 | 0 | UnreachableB->Preds.push_back(AdjacentBlock(this, false), C); |
5385 | |
|
5386 | 0 | Succs.push_back(Succ, C); |
5387 | 0 | } |
5388 | | |
5389 | | bool CFGBlock::FilterEdge(const CFGBlock::FilterOptions &F, |
5390 | 0 | const CFGBlock *From, const CFGBlock *To) { |
5391 | 0 | if (F.IgnoreNullPredecessors && !From) |
5392 | 0 | return true; |
5393 | | |
5394 | 0 | if (To && From && F.IgnoreDefaultsWithCoveredEnums) { |
5395 | | // If the 'To' has no label or is labeled but the label isn't a |
5396 | | // CaseStmt then filter this edge. |
5397 | 0 | if (const SwitchStmt *S = |
5398 | 0 | dyn_cast_or_null<SwitchStmt>(From->getTerminatorStmt())) { |
5399 | 0 | if (S->isAllEnumCasesCovered()) { |
5400 | 0 | const Stmt *L = To->getLabel(); |
5401 | 0 | if (!L || !isa<CaseStmt>(L)) |
5402 | 0 | return true; |
5403 | 0 | } |
5404 | 0 | } |
5405 | 0 | } |
5406 | | |
5407 | 0 | return false; |
5408 | 0 | } |
5409 | | |
5410 | | //===----------------------------------------------------------------------===// |
5411 | | // CFG pretty printing |
5412 | | //===----------------------------------------------------------------------===// |
5413 | | |
5414 | | namespace { |
5415 | | |
5416 | | class StmtPrinterHelper : public PrinterHelper { |
5417 | | using StmtMapTy = llvm::DenseMap<const Stmt *, std::pair<unsigned, unsigned>>; |
5418 | | using DeclMapTy = llvm::DenseMap<const Decl *, std::pair<unsigned, unsigned>>; |
5419 | | |
5420 | | StmtMapTy StmtMap; |
5421 | | DeclMapTy DeclMap; |
5422 | | signed currentBlock = 0; |
5423 | | unsigned currStmt = 0; |
5424 | | const LangOptions &LangOpts; |
5425 | | |
5426 | | public: |
5427 | | StmtPrinterHelper(const CFG* cfg, const LangOptions &LO) |
5428 | 0 | : LangOpts(LO) { |
5429 | 0 | if (!cfg) |
5430 | 0 | return; |
5431 | 0 | for (CFG::const_iterator I = cfg->begin(), E = cfg->end(); I != E; ++I ) { |
5432 | 0 | unsigned j = 1; |
5433 | 0 | for (CFGBlock::const_iterator BI = (*I)->begin(), BEnd = (*I)->end() ; |
5434 | 0 | BI != BEnd; ++BI, ++j ) { |
5435 | 0 | if (std::optional<CFGStmt> SE = BI->getAs<CFGStmt>()) { |
5436 | 0 | const Stmt *stmt= SE->getStmt(); |
5437 | 0 | std::pair<unsigned, unsigned> P((*I)->getBlockID(), j); |
5438 | 0 | StmtMap[stmt] = P; |
5439 | |
|
5440 | 0 | switch (stmt->getStmtClass()) { |
5441 | 0 | case Stmt::DeclStmtClass: |
5442 | 0 | DeclMap[cast<DeclStmt>(stmt)->getSingleDecl()] = P; |
5443 | 0 | break; |
5444 | 0 | case Stmt::IfStmtClass: { |
5445 | 0 | const VarDecl *var = cast<IfStmt>(stmt)->getConditionVariable(); |
5446 | 0 | if (var) |
5447 | 0 | DeclMap[var] = P; |
5448 | 0 | break; |
5449 | 0 | } |
5450 | 0 | case Stmt::ForStmtClass: { |
5451 | 0 | const VarDecl *var = cast<ForStmt>(stmt)->getConditionVariable(); |
5452 | 0 | if (var) |
5453 | 0 | DeclMap[var] = P; |
5454 | 0 | break; |
5455 | 0 | } |
5456 | 0 | case Stmt::WhileStmtClass: { |
5457 | 0 | const VarDecl *var = |
5458 | 0 | cast<WhileStmt>(stmt)->getConditionVariable(); |
5459 | 0 | if (var) |
5460 | 0 | DeclMap[var] = P; |
5461 | 0 | break; |
5462 | 0 | } |
5463 | 0 | case Stmt::SwitchStmtClass: { |
5464 | 0 | const VarDecl *var = |
5465 | 0 | cast<SwitchStmt>(stmt)->getConditionVariable(); |
5466 | 0 | if (var) |
5467 | 0 | DeclMap[var] = P; |
5468 | 0 | break; |
5469 | 0 | } |
5470 | 0 | case Stmt::CXXCatchStmtClass: { |
5471 | 0 | const VarDecl *var = |
5472 | 0 | cast<CXXCatchStmt>(stmt)->getExceptionDecl(); |
5473 | 0 | if (var) |
5474 | 0 | DeclMap[var] = P; |
5475 | 0 | break; |
5476 | 0 | } |
5477 | 0 | default: |
5478 | 0 | break; |
5479 | 0 | } |
5480 | 0 | } |
5481 | 0 | } |
5482 | 0 | } |
5483 | 0 | } |
5484 | | |
5485 | 0 | ~StmtPrinterHelper() override = default; |
5486 | | |
5487 | 0 | const LangOptions &getLangOpts() const { return LangOpts; } |
5488 | 0 | void setBlockID(signed i) { currentBlock = i; } |
5489 | 0 | void setStmtID(unsigned i) { currStmt = i; } |
5490 | | |
5491 | 0 | bool handledStmt(Stmt *S, raw_ostream &OS) override { |
5492 | 0 | StmtMapTy::iterator I = StmtMap.find(S); |
5493 | |
|
5494 | 0 | if (I == StmtMap.end()) |
5495 | 0 | return false; |
5496 | | |
5497 | 0 | if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock |
5498 | 0 | && I->second.second == currStmt) { |
5499 | 0 | return false; |
5500 | 0 | } |
5501 | | |
5502 | 0 | OS << "[B" << I->second.first << "." << I->second.second << "]"; |
5503 | 0 | return true; |
5504 | 0 | } |
5505 | | |
5506 | 0 | bool handleDecl(const Decl *D, raw_ostream &OS) { |
5507 | 0 | DeclMapTy::iterator I = DeclMap.find(D); |
5508 | |
|
5509 | 0 | if (I == DeclMap.end()) |
5510 | 0 | return false; |
5511 | | |
5512 | 0 | if (currentBlock >= 0 && I->second.first == (unsigned) currentBlock |
5513 | 0 | && I->second.second == currStmt) { |
5514 | 0 | return false; |
5515 | 0 | } |
5516 | | |
5517 | 0 | OS << "[B" << I->second.first << "." << I->second.second << "]"; |
5518 | 0 | return true; |
5519 | 0 | } |
5520 | | }; |
5521 | | |
5522 | | class CFGBlockTerminatorPrint |
5523 | | : public StmtVisitor<CFGBlockTerminatorPrint,void> { |
5524 | | raw_ostream &OS; |
5525 | | StmtPrinterHelper* Helper; |
5526 | | PrintingPolicy Policy; |
5527 | | |
5528 | | public: |
5529 | | CFGBlockTerminatorPrint(raw_ostream &os, StmtPrinterHelper* helper, |
5530 | | const PrintingPolicy &Policy) |
5531 | 0 | : OS(os), Helper(helper), Policy(Policy) { |
5532 | 0 | this->Policy.IncludeNewlines = false; |
5533 | 0 | } |
5534 | | |
5535 | 0 | void VisitIfStmt(IfStmt *I) { |
5536 | 0 | OS << "if "; |
5537 | 0 | if (Stmt *C = I->getCond()) |
5538 | 0 | C->printPretty(OS, Helper, Policy); |
5539 | 0 | } |
5540 | | |
5541 | | // Default case. |
5542 | 0 | void VisitStmt(Stmt *Terminator) { |
5543 | 0 | Terminator->printPretty(OS, Helper, Policy); |
5544 | 0 | } |
5545 | | |
5546 | 0 | void VisitDeclStmt(DeclStmt *DS) { |
5547 | 0 | VarDecl *VD = cast<VarDecl>(DS->getSingleDecl()); |
5548 | 0 | OS << "static init " << VD->getName(); |
5549 | 0 | } |
5550 | | |
5551 | 0 | void VisitForStmt(ForStmt *F) { |
5552 | 0 | OS << "for (" ; |
5553 | 0 | if (F->getInit()) |
5554 | 0 | OS << "..."; |
5555 | 0 | OS << "; "; |
5556 | 0 | if (Stmt *C = F->getCond()) |
5557 | 0 | C->printPretty(OS, Helper, Policy); |
5558 | 0 | OS << "; "; |
5559 | 0 | if (F->getInc()) |
5560 | 0 | OS << "..."; |
5561 | 0 | OS << ")"; |
5562 | 0 | } |
5563 | | |
5564 | 0 | void VisitWhileStmt(WhileStmt *W) { |
5565 | 0 | OS << "while " ; |
5566 | 0 | if (Stmt *C = W->getCond()) |
5567 | 0 | C->printPretty(OS, Helper, Policy); |
5568 | 0 | } |
5569 | | |
5570 | 0 | void VisitDoStmt(DoStmt *D) { |
5571 | 0 | OS << "do ... while "; |
5572 | 0 | if (Stmt *C = D->getCond()) |
5573 | 0 | C->printPretty(OS, Helper, Policy); |
5574 | 0 | } |
5575 | | |
5576 | 0 | void VisitSwitchStmt(SwitchStmt *Terminator) { |
5577 | 0 | OS << "switch "; |
5578 | 0 | Terminator->getCond()->printPretty(OS, Helper, Policy); |
5579 | 0 | } |
5580 | | |
5581 | 0 | void VisitCXXTryStmt(CXXTryStmt *) { OS << "try ..."; } |
5582 | | |
5583 | 0 | void VisitObjCAtTryStmt(ObjCAtTryStmt *) { OS << "@try ..."; } |
5584 | | |
5585 | 0 | void VisitSEHTryStmt(SEHTryStmt *CS) { OS << "__try ..."; } |
5586 | | |
5587 | 0 | void VisitAbstractConditionalOperator(AbstractConditionalOperator* C) { |
5588 | 0 | if (Stmt *Cond = C->getCond()) |
5589 | 0 | Cond->printPretty(OS, Helper, Policy); |
5590 | 0 | OS << " ? ... : ..."; |
5591 | 0 | } |
5592 | | |
5593 | 0 | void VisitChooseExpr(ChooseExpr *C) { |
5594 | 0 | OS << "__builtin_choose_expr( "; |
5595 | 0 | if (Stmt *Cond = C->getCond()) |
5596 | 0 | Cond->printPretty(OS, Helper, Policy); |
5597 | 0 | OS << " )"; |
5598 | 0 | } |
5599 | | |
5600 | 0 | void VisitIndirectGotoStmt(IndirectGotoStmt *I) { |
5601 | 0 | OS << "goto *"; |
5602 | 0 | if (Stmt *T = I->getTarget()) |
5603 | 0 | T->printPretty(OS, Helper, Policy); |
5604 | 0 | } |
5605 | | |
5606 | 0 | void VisitBinaryOperator(BinaryOperator* B) { |
5607 | 0 | if (!B->isLogicalOp()) { |
5608 | 0 | VisitExpr(B); |
5609 | 0 | return; |
5610 | 0 | } |
5611 | | |
5612 | 0 | if (B->getLHS()) |
5613 | 0 | B->getLHS()->printPretty(OS, Helper, Policy); |
5614 | |
|
5615 | 0 | switch (B->getOpcode()) { |
5616 | 0 | case BO_LOr: |
5617 | 0 | OS << " || ..."; |
5618 | 0 | return; |
5619 | 0 | case BO_LAnd: |
5620 | 0 | OS << " && ..."; |
5621 | 0 | return; |
5622 | 0 | default: |
5623 | 0 | llvm_unreachable("Invalid logical operator."); |
5624 | 0 | } |
5625 | 0 | } |
5626 | | |
5627 | 0 | void VisitExpr(Expr *E) { |
5628 | 0 | E->printPretty(OS, Helper, Policy); |
5629 | 0 | } |
5630 | | |
5631 | | public: |
5632 | 0 | void print(CFGTerminator T) { |
5633 | 0 | switch (T.getKind()) { |
5634 | 0 | case CFGTerminator::StmtBranch: |
5635 | 0 | Visit(T.getStmt()); |
5636 | 0 | break; |
5637 | 0 | case CFGTerminator::TemporaryDtorsBranch: |
5638 | 0 | OS << "(Temp Dtor) "; |
5639 | 0 | Visit(T.getStmt()); |
5640 | 0 | break; |
5641 | 0 | case CFGTerminator::VirtualBaseBranch: |
5642 | 0 | OS << "(See if most derived ctor has already initialized vbases)"; |
5643 | 0 | break; |
5644 | 0 | } |
5645 | 0 | } |
5646 | | }; |
5647 | | |
5648 | | } // namespace |
5649 | | |
5650 | | static void print_initializer(raw_ostream &OS, StmtPrinterHelper &Helper, |
5651 | 0 | const CXXCtorInitializer *I) { |
5652 | 0 | if (I->isBaseInitializer()) |
5653 | 0 | OS << I->getBaseClass()->getAsCXXRecordDecl()->getName(); |
5654 | 0 | else if (I->isDelegatingInitializer()) |
5655 | 0 | OS << I->getTypeSourceInfo()->getType()->getAsCXXRecordDecl()->getName(); |
5656 | 0 | else |
5657 | 0 | OS << I->getAnyMember()->getName(); |
5658 | 0 | OS << "("; |
5659 | 0 | if (Expr *IE = I->getInit()) |
5660 | 0 | IE->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); |
5661 | 0 | OS << ")"; |
5662 | |
|
5663 | 0 | if (I->isBaseInitializer()) |
5664 | 0 | OS << " (Base initializer)"; |
5665 | 0 | else if (I->isDelegatingInitializer()) |
5666 | 0 | OS << " (Delegating initializer)"; |
5667 | 0 | else |
5668 | 0 | OS << " (Member initializer)"; |
5669 | 0 | } |
5670 | | |
5671 | | static void print_construction_context(raw_ostream &OS, |
5672 | | StmtPrinterHelper &Helper, |
5673 | 0 | const ConstructionContext *CC) { |
5674 | 0 | SmallVector<const Stmt *, 3> Stmts; |
5675 | 0 | switch (CC->getKind()) { |
5676 | 0 | case ConstructionContext::SimpleConstructorInitializerKind: { |
5677 | 0 | OS << ", "; |
5678 | 0 | const auto *SICC = cast<SimpleConstructorInitializerConstructionContext>(CC); |
5679 | 0 | print_initializer(OS, Helper, SICC->getCXXCtorInitializer()); |
5680 | 0 | return; |
5681 | 0 | } |
5682 | 0 | case ConstructionContext::CXX17ElidedCopyConstructorInitializerKind: { |
5683 | 0 | OS << ", "; |
5684 | 0 | const auto *CICC = |
5685 | 0 | cast<CXX17ElidedCopyConstructorInitializerConstructionContext>(CC); |
5686 | 0 | print_initializer(OS, Helper, CICC->getCXXCtorInitializer()); |
5687 | 0 | Stmts.push_back(CICC->getCXXBindTemporaryExpr()); |
5688 | 0 | break; |
5689 | 0 | } |
5690 | 0 | case ConstructionContext::SimpleVariableKind: { |
5691 | 0 | const auto *SDSCC = cast<SimpleVariableConstructionContext>(CC); |
5692 | 0 | Stmts.push_back(SDSCC->getDeclStmt()); |
5693 | 0 | break; |
5694 | 0 | } |
5695 | 0 | case ConstructionContext::CXX17ElidedCopyVariableKind: { |
5696 | 0 | const auto *CDSCC = cast<CXX17ElidedCopyVariableConstructionContext>(CC); |
5697 | 0 | Stmts.push_back(CDSCC->getDeclStmt()); |
5698 | 0 | Stmts.push_back(CDSCC->getCXXBindTemporaryExpr()); |
5699 | 0 | break; |
5700 | 0 | } |
5701 | 0 | case ConstructionContext::NewAllocatedObjectKind: { |
5702 | 0 | const auto *NECC = cast<NewAllocatedObjectConstructionContext>(CC); |
5703 | 0 | Stmts.push_back(NECC->getCXXNewExpr()); |
5704 | 0 | break; |
5705 | 0 | } |
5706 | 0 | case ConstructionContext::SimpleReturnedValueKind: { |
5707 | 0 | const auto *RSCC = cast<SimpleReturnedValueConstructionContext>(CC); |
5708 | 0 | Stmts.push_back(RSCC->getReturnStmt()); |
5709 | 0 | break; |
5710 | 0 | } |
5711 | 0 | case ConstructionContext::CXX17ElidedCopyReturnedValueKind: { |
5712 | 0 | const auto *RSCC = |
5713 | 0 | cast<CXX17ElidedCopyReturnedValueConstructionContext>(CC); |
5714 | 0 | Stmts.push_back(RSCC->getReturnStmt()); |
5715 | 0 | Stmts.push_back(RSCC->getCXXBindTemporaryExpr()); |
5716 | 0 | break; |
5717 | 0 | } |
5718 | 0 | case ConstructionContext::SimpleTemporaryObjectKind: { |
5719 | 0 | const auto *TOCC = cast<SimpleTemporaryObjectConstructionContext>(CC); |
5720 | 0 | Stmts.push_back(TOCC->getCXXBindTemporaryExpr()); |
5721 | 0 | Stmts.push_back(TOCC->getMaterializedTemporaryExpr()); |
5722 | 0 | break; |
5723 | 0 | } |
5724 | 0 | case ConstructionContext::ElidedTemporaryObjectKind: { |
5725 | 0 | const auto *TOCC = cast<ElidedTemporaryObjectConstructionContext>(CC); |
5726 | 0 | Stmts.push_back(TOCC->getCXXBindTemporaryExpr()); |
5727 | 0 | Stmts.push_back(TOCC->getMaterializedTemporaryExpr()); |
5728 | 0 | Stmts.push_back(TOCC->getConstructorAfterElision()); |
5729 | 0 | break; |
5730 | 0 | } |
5731 | 0 | case ConstructionContext::LambdaCaptureKind: { |
5732 | 0 | const auto *LCC = cast<LambdaCaptureConstructionContext>(CC); |
5733 | 0 | Helper.handledStmt(const_cast<LambdaExpr *>(LCC->getLambdaExpr()), OS); |
5734 | 0 | OS << "+" << LCC->getIndex(); |
5735 | 0 | return; |
5736 | 0 | } |
5737 | 0 | case ConstructionContext::ArgumentKind: { |
5738 | 0 | const auto *ACC = cast<ArgumentConstructionContext>(CC); |
5739 | 0 | if (const Stmt *BTE = ACC->getCXXBindTemporaryExpr()) { |
5740 | 0 | OS << ", "; |
5741 | 0 | Helper.handledStmt(const_cast<Stmt *>(BTE), OS); |
5742 | 0 | } |
5743 | 0 | OS << ", "; |
5744 | 0 | Helper.handledStmt(const_cast<Expr *>(ACC->getCallLikeExpr()), OS); |
5745 | 0 | OS << "+" << ACC->getIndex(); |
5746 | 0 | return; |
5747 | 0 | } |
5748 | 0 | } |
5749 | 0 | for (auto I: Stmts) |
5750 | 0 | if (I) { |
5751 | 0 | OS << ", "; |
5752 | 0 | Helper.handledStmt(const_cast<Stmt *>(I), OS); |
5753 | 0 | } |
5754 | 0 | } |
5755 | | |
5756 | | static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper, |
5757 | | const CFGElement &E); |
5758 | | |
5759 | 0 | void CFGElement::dumpToStream(llvm::raw_ostream &OS) const { |
5760 | 0 | LangOptions LangOpts; |
5761 | 0 | StmtPrinterHelper Helper(nullptr, LangOpts); |
5762 | 0 | print_elem(OS, Helper, *this); |
5763 | 0 | } |
5764 | | |
5765 | | static void print_elem(raw_ostream &OS, StmtPrinterHelper &Helper, |
5766 | 0 | const CFGElement &E) { |
5767 | 0 | switch (E.getKind()) { |
5768 | 0 | case CFGElement::Kind::Statement: |
5769 | 0 | case CFGElement::Kind::CXXRecordTypedCall: |
5770 | 0 | case CFGElement::Kind::Constructor: { |
5771 | 0 | CFGStmt CS = E.castAs<CFGStmt>(); |
5772 | 0 | const Stmt *S = CS.getStmt(); |
5773 | 0 | assert(S != nullptr && "Expecting non-null Stmt"); |
5774 | | |
5775 | | // special printing for statement-expressions. |
5776 | 0 | if (const StmtExpr *SE = dyn_cast<StmtExpr>(S)) { |
5777 | 0 | const CompoundStmt *Sub = SE->getSubStmt(); |
5778 | |
|
5779 | 0 | auto Children = Sub->children(); |
5780 | 0 | if (Children.begin() != Children.end()) { |
5781 | 0 | OS << "({ ... ; "; |
5782 | 0 | Helper.handledStmt(*SE->getSubStmt()->body_rbegin(),OS); |
5783 | 0 | OS << " })\n"; |
5784 | 0 | return; |
5785 | 0 | } |
5786 | 0 | } |
5787 | | // special printing for comma expressions. |
5788 | 0 | if (const BinaryOperator* B = dyn_cast<BinaryOperator>(S)) { |
5789 | 0 | if (B->getOpcode() == BO_Comma) { |
5790 | 0 | OS << "... , "; |
5791 | 0 | Helper.handledStmt(B->getRHS(),OS); |
5792 | 0 | OS << '\n'; |
5793 | 0 | return; |
5794 | 0 | } |
5795 | 0 | } |
5796 | 0 | S->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); |
5797 | |
|
5798 | 0 | if (auto VTC = E.getAs<CFGCXXRecordTypedCall>()) { |
5799 | 0 | if (isa<CXXOperatorCallExpr>(S)) |
5800 | 0 | OS << " (OperatorCall)"; |
5801 | 0 | OS << " (CXXRecordTypedCall"; |
5802 | 0 | print_construction_context(OS, Helper, VTC->getConstructionContext()); |
5803 | 0 | OS << ")"; |
5804 | 0 | } else if (isa<CXXOperatorCallExpr>(S)) { |
5805 | 0 | OS << " (OperatorCall)"; |
5806 | 0 | } else if (isa<CXXBindTemporaryExpr>(S)) { |
5807 | 0 | OS << " (BindTemporary)"; |
5808 | 0 | } else if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(S)) { |
5809 | 0 | OS << " (CXXConstructExpr"; |
5810 | 0 | if (std::optional<CFGConstructor> CE = E.getAs<CFGConstructor>()) { |
5811 | 0 | print_construction_context(OS, Helper, CE->getConstructionContext()); |
5812 | 0 | } |
5813 | 0 | OS << ", " << CCE->getType() << ")"; |
5814 | 0 | } else if (const CastExpr *CE = dyn_cast<CastExpr>(S)) { |
5815 | 0 | OS << " (" << CE->getStmtClassName() << ", " << CE->getCastKindName() |
5816 | 0 | << ", " << CE->getType() << ")"; |
5817 | 0 | } |
5818 | | |
5819 | | // Expressions need a newline. |
5820 | 0 | if (isa<Expr>(S)) |
5821 | 0 | OS << '\n'; |
5822 | |
|
5823 | 0 | break; |
5824 | 0 | } |
5825 | | |
5826 | 0 | case CFGElement::Kind::Initializer: |
5827 | 0 | print_initializer(OS, Helper, E.castAs<CFGInitializer>().getInitializer()); |
5828 | 0 | OS << '\n'; |
5829 | 0 | break; |
5830 | | |
5831 | 0 | case CFGElement::Kind::AutomaticObjectDtor: { |
5832 | 0 | CFGAutomaticObjDtor DE = E.castAs<CFGAutomaticObjDtor>(); |
5833 | 0 | const VarDecl *VD = DE.getVarDecl(); |
5834 | 0 | Helper.handleDecl(VD, OS); |
5835 | |
|
5836 | 0 | QualType T = VD->getType(); |
5837 | 0 | if (T->isReferenceType()) |
5838 | 0 | T = getReferenceInitTemporaryType(VD->getInit(), nullptr); |
5839 | |
|
5840 | 0 | OS << ".~"; |
5841 | 0 | T.getUnqualifiedType().print(OS, PrintingPolicy(Helper.getLangOpts())); |
5842 | 0 | OS << "() (Implicit destructor)\n"; |
5843 | 0 | break; |
5844 | 0 | } |
5845 | | |
5846 | 0 | case CFGElement::Kind::CleanupFunction: |
5847 | 0 | OS << "CleanupFunction (" |
5848 | 0 | << E.castAs<CFGCleanupFunction>().getFunctionDecl()->getName() << ")\n"; |
5849 | 0 | break; |
5850 | | |
5851 | 0 | case CFGElement::Kind::LifetimeEnds: |
5852 | 0 | Helper.handleDecl(E.castAs<CFGLifetimeEnds>().getVarDecl(), OS); |
5853 | 0 | OS << " (Lifetime ends)\n"; |
5854 | 0 | break; |
5855 | | |
5856 | 0 | case CFGElement::Kind::LoopExit: |
5857 | 0 | OS << E.castAs<CFGLoopExit>().getLoopStmt()->getStmtClassName() << " (LoopExit)\n"; |
5858 | 0 | break; |
5859 | | |
5860 | 0 | case CFGElement::Kind::ScopeBegin: |
5861 | 0 | OS << "CFGScopeBegin("; |
5862 | 0 | if (const VarDecl *VD = E.castAs<CFGScopeBegin>().getVarDecl()) |
5863 | 0 | OS << VD->getQualifiedNameAsString(); |
5864 | 0 | OS << ")\n"; |
5865 | 0 | break; |
5866 | | |
5867 | 0 | case CFGElement::Kind::ScopeEnd: |
5868 | 0 | OS << "CFGScopeEnd("; |
5869 | 0 | if (const VarDecl *VD = E.castAs<CFGScopeEnd>().getVarDecl()) |
5870 | 0 | OS << VD->getQualifiedNameAsString(); |
5871 | 0 | OS << ")\n"; |
5872 | 0 | break; |
5873 | | |
5874 | 0 | case CFGElement::Kind::NewAllocator: |
5875 | 0 | OS << "CFGNewAllocator("; |
5876 | 0 | if (const CXXNewExpr *AllocExpr = E.castAs<CFGNewAllocator>().getAllocatorExpr()) |
5877 | 0 | AllocExpr->getType().print(OS, PrintingPolicy(Helper.getLangOpts())); |
5878 | 0 | OS << ")\n"; |
5879 | 0 | break; |
5880 | | |
5881 | 0 | case CFGElement::Kind::DeleteDtor: { |
5882 | 0 | CFGDeleteDtor DE = E.castAs<CFGDeleteDtor>(); |
5883 | 0 | const CXXRecordDecl *RD = DE.getCXXRecordDecl(); |
5884 | 0 | if (!RD) |
5885 | 0 | return; |
5886 | 0 | CXXDeleteExpr *DelExpr = |
5887 | 0 | const_cast<CXXDeleteExpr*>(DE.getDeleteExpr()); |
5888 | 0 | Helper.handledStmt(cast<Stmt>(DelExpr->getArgument()), OS); |
5889 | 0 | OS << "->~" << RD->getName().str() << "()"; |
5890 | 0 | OS << " (Implicit destructor)\n"; |
5891 | 0 | break; |
5892 | 0 | } |
5893 | | |
5894 | 0 | case CFGElement::Kind::BaseDtor: { |
5895 | 0 | const CXXBaseSpecifier *BS = E.castAs<CFGBaseDtor>().getBaseSpecifier(); |
5896 | 0 | OS << "~" << BS->getType()->getAsCXXRecordDecl()->getName() << "()"; |
5897 | 0 | OS << " (Base object destructor)\n"; |
5898 | 0 | break; |
5899 | 0 | } |
5900 | | |
5901 | 0 | case CFGElement::Kind::MemberDtor: { |
5902 | 0 | const FieldDecl *FD = E.castAs<CFGMemberDtor>().getFieldDecl(); |
5903 | 0 | const Type *T = FD->getType()->getBaseElementTypeUnsafe(); |
5904 | 0 | OS << "this->" << FD->getName(); |
5905 | 0 | OS << ".~" << T->getAsCXXRecordDecl()->getName() << "()"; |
5906 | 0 | OS << " (Member object destructor)\n"; |
5907 | 0 | break; |
5908 | 0 | } |
5909 | | |
5910 | 0 | case CFGElement::Kind::TemporaryDtor: { |
5911 | 0 | const CXXBindTemporaryExpr *BT = |
5912 | 0 | E.castAs<CFGTemporaryDtor>().getBindTemporaryExpr(); |
5913 | 0 | OS << "~"; |
5914 | 0 | BT->getType().print(OS, PrintingPolicy(Helper.getLangOpts())); |
5915 | 0 | OS << "() (Temporary object destructor)\n"; |
5916 | 0 | break; |
5917 | 0 | } |
5918 | 0 | } |
5919 | 0 | } |
5920 | | |
5921 | | static void print_block(raw_ostream &OS, const CFG* cfg, |
5922 | | const CFGBlock &B, |
5923 | | StmtPrinterHelper &Helper, bool print_edges, |
5924 | 0 | bool ShowColors) { |
5925 | 0 | Helper.setBlockID(B.getBlockID()); |
5926 | | |
5927 | | // Print the header. |
5928 | 0 | if (ShowColors) |
5929 | 0 | OS.changeColor(raw_ostream::YELLOW, true); |
5930 | |
|
5931 | 0 | OS << "\n [B" << B.getBlockID(); |
5932 | |
|
5933 | 0 | if (&B == &cfg->getEntry()) |
5934 | 0 | OS << " (ENTRY)]\n"; |
5935 | 0 | else if (&B == &cfg->getExit()) |
5936 | 0 | OS << " (EXIT)]\n"; |
5937 | 0 | else if (&B == cfg->getIndirectGotoBlock()) |
5938 | 0 | OS << " (INDIRECT GOTO DISPATCH)]\n"; |
5939 | 0 | else if (B.hasNoReturnElement()) |
5940 | 0 | OS << " (NORETURN)]\n"; |
5941 | 0 | else |
5942 | 0 | OS << "]\n"; |
5943 | |
|
5944 | 0 | if (ShowColors) |
5945 | 0 | OS.resetColor(); |
5946 | | |
5947 | | // Print the label of this block. |
5948 | 0 | if (Stmt *Label = const_cast<Stmt*>(B.getLabel())) { |
5949 | 0 | if (print_edges) |
5950 | 0 | OS << " "; |
5951 | |
|
5952 | 0 | if (LabelStmt *L = dyn_cast<LabelStmt>(Label)) |
5953 | 0 | OS << L->getName(); |
5954 | 0 | else if (CaseStmt *C = dyn_cast<CaseStmt>(Label)) { |
5955 | 0 | OS << "case "; |
5956 | 0 | if (const Expr *LHS = C->getLHS()) |
5957 | 0 | LHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); |
5958 | 0 | if (const Expr *RHS = C->getRHS()) { |
5959 | 0 | OS << " ... "; |
5960 | 0 | RHS->printPretty(OS, &Helper, PrintingPolicy(Helper.getLangOpts())); |
5961 | 0 | } |
5962 | 0 | } else if (isa<DefaultStmt>(Label)) |
5963 | 0 | OS << "default"; |
5964 | 0 | else if (CXXCatchStmt *CS = dyn_cast<CXXCatchStmt>(Label)) { |
5965 | 0 | OS << "catch ("; |
5966 | 0 | if (const VarDecl *ED = CS->getExceptionDecl()) |
5967 | 0 | ED->print(OS, PrintingPolicy(Helper.getLangOpts()), 0); |
5968 | 0 | else |
5969 | 0 | OS << "..."; |
5970 | 0 | OS << ")"; |
5971 | 0 | } else if (ObjCAtCatchStmt *CS = dyn_cast<ObjCAtCatchStmt>(Label)) { |
5972 | 0 | OS << "@catch ("; |
5973 | 0 | if (const VarDecl *PD = CS->getCatchParamDecl()) |
5974 | 0 | PD->print(OS, PrintingPolicy(Helper.getLangOpts()), 0); |
5975 | 0 | else |
5976 | 0 | OS << "..."; |
5977 | 0 | OS << ")"; |
5978 | 0 | } else if (SEHExceptStmt *ES = dyn_cast<SEHExceptStmt>(Label)) { |
5979 | 0 | OS << "__except ("; |
5980 | 0 | ES->getFilterExpr()->printPretty(OS, &Helper, |
5981 | 0 | PrintingPolicy(Helper.getLangOpts()), 0); |
5982 | 0 | OS << ")"; |
5983 | 0 | } else |
5984 | 0 | llvm_unreachable("Invalid label statement in CFGBlock."); |
5985 | |
|
5986 | 0 | OS << ":\n"; |
5987 | 0 | } |
5988 | | |
5989 | | // Iterate through the statements in the block and print them. |
5990 | 0 | unsigned j = 1; |
5991 | |
|
5992 | 0 | for (CFGBlock::const_iterator I = B.begin(), E = B.end() ; |
5993 | 0 | I != E ; ++I, ++j ) { |
5994 | | // Print the statement # in the basic block and the statement itself. |
5995 | 0 | if (print_edges) |
5996 | 0 | OS << " "; |
5997 | |
|
5998 | 0 | OS << llvm::format("%3d", j) << ": "; |
5999 | |
|
6000 | 0 | Helper.setStmtID(j); |
6001 | |
|
6002 | 0 | print_elem(OS, Helper, *I); |
6003 | 0 | } |
6004 | | |
6005 | | // Print the terminator of this block. |
6006 | 0 | if (B.getTerminator().isValid()) { |
6007 | 0 | if (ShowColors) |
6008 | 0 | OS.changeColor(raw_ostream::GREEN); |
6009 | |
|
6010 | 0 | OS << " T: "; |
6011 | |
|
6012 | 0 | Helper.setBlockID(-1); |
6013 | |
|
6014 | 0 | PrintingPolicy PP(Helper.getLangOpts()); |
6015 | 0 | CFGBlockTerminatorPrint TPrinter(OS, &Helper, PP); |
6016 | 0 | TPrinter.print(B.getTerminator()); |
6017 | 0 | OS << '\n'; |
6018 | |
|
6019 | 0 | if (ShowColors) |
6020 | 0 | OS.resetColor(); |
6021 | 0 | } |
6022 | |
|
6023 | 0 | if (print_edges) { |
6024 | | // Print the predecessors of this block. |
6025 | 0 | if (!B.pred_empty()) { |
6026 | 0 | const raw_ostream::Colors Color = raw_ostream::BLUE; |
6027 | 0 | if (ShowColors) |
6028 | 0 | OS.changeColor(Color); |
6029 | 0 | OS << " Preds " ; |
6030 | 0 | if (ShowColors) |
6031 | 0 | OS.resetColor(); |
6032 | 0 | OS << '(' << B.pred_size() << "):"; |
6033 | 0 | unsigned i = 0; |
6034 | |
|
6035 | 0 | if (ShowColors) |
6036 | 0 | OS.changeColor(Color); |
6037 | |
|
6038 | 0 | for (CFGBlock::const_pred_iterator I = B.pred_begin(), E = B.pred_end(); |
6039 | 0 | I != E; ++I, ++i) { |
6040 | 0 | if (i % 10 == 8) |
6041 | 0 | OS << "\n "; |
6042 | |
|
6043 | 0 | CFGBlock *B = *I; |
6044 | 0 | bool Reachable = true; |
6045 | 0 | if (!B) { |
6046 | 0 | Reachable = false; |
6047 | 0 | B = I->getPossiblyUnreachableBlock(); |
6048 | 0 | } |
6049 | |
|
6050 | 0 | OS << " B" << B->getBlockID(); |
6051 | 0 | if (!Reachable) |
6052 | 0 | OS << "(Unreachable)"; |
6053 | 0 | } |
6054 | |
|
6055 | 0 | if (ShowColors) |
6056 | 0 | OS.resetColor(); |
6057 | |
|
6058 | 0 | OS << '\n'; |
6059 | 0 | } |
6060 | | |
6061 | | // Print the successors of this block. |
6062 | 0 | if (!B.succ_empty()) { |
6063 | 0 | const raw_ostream::Colors Color = raw_ostream::MAGENTA; |
6064 | 0 | if (ShowColors) |
6065 | 0 | OS.changeColor(Color); |
6066 | 0 | OS << " Succs "; |
6067 | 0 | if (ShowColors) |
6068 | 0 | OS.resetColor(); |
6069 | 0 | OS << '(' << B.succ_size() << "):"; |
6070 | 0 | unsigned i = 0; |
6071 | |
|
6072 | 0 | if (ShowColors) |
6073 | 0 | OS.changeColor(Color); |
6074 | |
|
6075 | 0 | for (CFGBlock::const_succ_iterator I = B.succ_begin(), E = B.succ_end(); |
6076 | 0 | I != E; ++I, ++i) { |
6077 | 0 | if (i % 10 == 8) |
6078 | 0 | OS << "\n "; |
6079 | |
|
6080 | 0 | CFGBlock *B = *I; |
6081 | |
|
6082 | 0 | bool Reachable = true; |
6083 | 0 | if (!B) { |
6084 | 0 | Reachable = false; |
6085 | 0 | B = I->getPossiblyUnreachableBlock(); |
6086 | 0 | } |
6087 | |
|
6088 | 0 | if (B) { |
6089 | 0 | OS << " B" << B->getBlockID(); |
6090 | 0 | if (!Reachable) |
6091 | 0 | OS << "(Unreachable)"; |
6092 | 0 | } |
6093 | 0 | else { |
6094 | 0 | OS << " NULL"; |
6095 | 0 | } |
6096 | 0 | } |
6097 | |
|
6098 | 0 | if (ShowColors) |
6099 | 0 | OS.resetColor(); |
6100 | 0 | OS << '\n'; |
6101 | 0 | } |
6102 | 0 | } |
6103 | 0 | } |
6104 | | |
6105 | | /// dump - A simple pretty printer of a CFG that outputs to stderr. |
6106 | 0 | void CFG::dump(const LangOptions &LO, bool ShowColors) const { |
6107 | 0 | print(llvm::errs(), LO, ShowColors); |
6108 | 0 | } |
6109 | | |
6110 | | /// print - A simple pretty printer of a CFG that outputs to an ostream. |
6111 | 0 | void CFG::print(raw_ostream &OS, const LangOptions &LO, bool ShowColors) const { |
6112 | 0 | StmtPrinterHelper Helper(this, LO); |
6113 | | |
6114 | | // Print the entry block. |
6115 | 0 | print_block(OS, this, getEntry(), Helper, true, ShowColors); |
6116 | | |
6117 | | // Iterate through the CFGBlocks and print them one by one. |
6118 | 0 | for (const_iterator I = Blocks.begin(), E = Blocks.end() ; I != E ; ++I) { |
6119 | | // Skip the entry block, because we already printed it. |
6120 | 0 | if (&(**I) == &getEntry() || &(**I) == &getExit()) |
6121 | 0 | continue; |
6122 | | |
6123 | 0 | print_block(OS, this, **I, Helper, true, ShowColors); |
6124 | 0 | } |
6125 | | |
6126 | | // Print the exit block. |
6127 | 0 | print_block(OS, this, getExit(), Helper, true, ShowColors); |
6128 | 0 | OS << '\n'; |
6129 | 0 | OS.flush(); |
6130 | 0 | } |
6131 | | |
6132 | 0 | size_t CFGBlock::getIndexInCFG() const { |
6133 | 0 | return llvm::find(*getParent(), this) - getParent()->begin(); |
6134 | 0 | } |
6135 | | |
6136 | | /// dump - A simply pretty printer of a CFGBlock that outputs to stderr. |
6137 | | void CFGBlock::dump(const CFG* cfg, const LangOptions &LO, |
6138 | 0 | bool ShowColors) const { |
6139 | 0 | print(llvm::errs(), cfg, LO, ShowColors); |
6140 | 0 | } |
6141 | | |
6142 | 0 | LLVM_DUMP_METHOD void CFGBlock::dump() const { |
6143 | 0 | dump(getParent(), LangOptions(), false); |
6144 | 0 | } |
6145 | | |
6146 | | /// print - A simple pretty printer of a CFGBlock that outputs to an ostream. |
6147 | | /// Generally this will only be called from CFG::print. |
6148 | | void CFGBlock::print(raw_ostream &OS, const CFG* cfg, |
6149 | 0 | const LangOptions &LO, bool ShowColors) const { |
6150 | 0 | StmtPrinterHelper Helper(cfg, LO); |
6151 | 0 | print_block(OS, cfg, *this, Helper, true, ShowColors); |
6152 | 0 | OS << '\n'; |
6153 | 0 | } |
6154 | | |
6155 | | /// printTerminator - A simple pretty printer of the terminator of a CFGBlock. |
6156 | | void CFGBlock::printTerminator(raw_ostream &OS, |
6157 | 0 | const LangOptions &LO) const { |
6158 | 0 | CFGBlockTerminatorPrint TPrinter(OS, nullptr, PrintingPolicy(LO)); |
6159 | 0 | TPrinter.print(getTerminator()); |
6160 | 0 | } |
6161 | | |
6162 | | /// printTerminatorJson - Pretty-prints the terminator in JSON format. |
6163 | | void CFGBlock::printTerminatorJson(raw_ostream &Out, const LangOptions &LO, |
6164 | 0 | bool AddQuotes) const { |
6165 | 0 | std::string Buf; |
6166 | 0 | llvm::raw_string_ostream TempOut(Buf); |
6167 | |
|
6168 | 0 | printTerminator(TempOut, LO); |
6169 | |
|
6170 | 0 | Out << JsonFormat(TempOut.str(), AddQuotes); |
6171 | 0 | } |
6172 | | |
6173 | | // Returns true if by simply looking at the block, we can be sure that it |
6174 | | // results in a sink during analysis. This is useful to know when the analysis |
6175 | | // was interrupted, and we try to figure out if it would sink eventually. |
6176 | | // There may be many more reasons why a sink would appear during analysis |
6177 | | // (eg. checkers may generate sinks arbitrarily), but here we only consider |
6178 | | // sinks that would be obvious by looking at the CFG. |
6179 | 0 | static bool isImmediateSinkBlock(const CFGBlock *Blk) { |
6180 | 0 | if (Blk->hasNoReturnElement()) |
6181 | 0 | return true; |
6182 | | |
6183 | | // FIXME: Throw-expressions are currently generating sinks during analysis: |
6184 | | // they're not supported yet, and also often used for actually terminating |
6185 | | // the program. So we should treat them as sinks in this analysis as well, |
6186 | | // at least for now, but once we have better support for exceptions, |
6187 | | // we'd need to carefully handle the case when the throw is being |
6188 | | // immediately caught. |
6189 | 0 | if (llvm::any_of(*Blk, [](const CFGElement &Elm) { |
6190 | 0 | if (std::optional<CFGStmt> StmtElm = Elm.getAs<CFGStmt>()) |
6191 | 0 | if (isa<CXXThrowExpr>(StmtElm->getStmt())) |
6192 | 0 | return true; |
6193 | 0 | return false; |
6194 | 0 | })) |
6195 | 0 | return true; |
6196 | | |
6197 | 0 | return false; |
6198 | 0 | } |
6199 | | |
6200 | 0 | bool CFGBlock::isInevitablySinking() const { |
6201 | 0 | const CFG &Cfg = *getParent(); |
6202 | |
|
6203 | 0 | const CFGBlock *StartBlk = this; |
6204 | 0 | if (isImmediateSinkBlock(StartBlk)) |
6205 | 0 | return true; |
6206 | | |
6207 | 0 | llvm::SmallVector<const CFGBlock *, 32> DFSWorkList; |
6208 | 0 | llvm::SmallPtrSet<const CFGBlock *, 32> Visited; |
6209 | |
|
6210 | 0 | DFSWorkList.push_back(StartBlk); |
6211 | 0 | while (!DFSWorkList.empty()) { |
6212 | 0 | const CFGBlock *Blk = DFSWorkList.back(); |
6213 | 0 | DFSWorkList.pop_back(); |
6214 | 0 | Visited.insert(Blk); |
6215 | | |
6216 | | // If at least one path reaches the CFG exit, it means that control is |
6217 | | // returned to the caller. For now, say that we are not sure what |
6218 | | // happens next. If necessary, this can be improved to analyze |
6219 | | // the parent StackFrameContext's call site in a similar manner. |
6220 | 0 | if (Blk == &Cfg.getExit()) |
6221 | 0 | return false; |
6222 | | |
6223 | 0 | for (const auto &Succ : Blk->succs()) { |
6224 | 0 | if (const CFGBlock *SuccBlk = Succ.getReachableBlock()) { |
6225 | 0 | if (!isImmediateSinkBlock(SuccBlk) && !Visited.count(SuccBlk)) { |
6226 | | // If the block has reachable child blocks that aren't no-return, |
6227 | | // add them to the worklist. |
6228 | 0 | DFSWorkList.push_back(SuccBlk); |
6229 | 0 | } |
6230 | 0 | } |
6231 | 0 | } |
6232 | 0 | } |
6233 | | |
6234 | | // Nothing reached the exit. It can only mean one thing: there's no return. |
6235 | 0 | return true; |
6236 | 0 | } |
6237 | | |
6238 | 0 | const Expr *CFGBlock::getLastCondition() const { |
6239 | | // If the terminator is a temporary dtor or a virtual base, etc, we can't |
6240 | | // retrieve a meaningful condition, bail out. |
6241 | 0 | if (Terminator.getKind() != CFGTerminator::StmtBranch) |
6242 | 0 | return nullptr; |
6243 | | |
6244 | | // Also, if this method was called on a block that doesn't have 2 successors, |
6245 | | // this block doesn't have retrievable condition. |
6246 | 0 | if (succ_size() < 2) |
6247 | 0 | return nullptr; |
6248 | | |
6249 | | // FIXME: Is there a better condition expression we can return in this case? |
6250 | 0 | if (size() == 0) |
6251 | 0 | return nullptr; |
6252 | | |
6253 | 0 | auto StmtElem = rbegin()->getAs<CFGStmt>(); |
6254 | 0 | if (!StmtElem) |
6255 | 0 | return nullptr; |
6256 | | |
6257 | 0 | const Stmt *Cond = StmtElem->getStmt(); |
6258 | 0 | if (isa<ObjCForCollectionStmt>(Cond) || isa<DeclStmt>(Cond)) |
6259 | 0 | return nullptr; |
6260 | | |
6261 | | // Only ObjCForCollectionStmt is known not to be a non-Expr terminator, hence |
6262 | | // the cast<>. |
6263 | 0 | return cast<Expr>(Cond)->IgnoreParens(); |
6264 | 0 | } |
6265 | | |
6266 | 0 | Stmt *CFGBlock::getTerminatorCondition(bool StripParens) { |
6267 | 0 | Stmt *Terminator = getTerminatorStmt(); |
6268 | 0 | if (!Terminator) |
6269 | 0 | return nullptr; |
6270 | | |
6271 | 0 | Expr *E = nullptr; |
6272 | |
|
6273 | 0 | switch (Terminator->getStmtClass()) { |
6274 | 0 | default: |
6275 | 0 | break; |
6276 | | |
6277 | 0 | case Stmt::CXXForRangeStmtClass: |
6278 | 0 | E = cast<CXXForRangeStmt>(Terminator)->getCond(); |
6279 | 0 | break; |
6280 | | |
6281 | 0 | case Stmt::ForStmtClass: |
6282 | 0 | E = cast<ForStmt>(Terminator)->getCond(); |
6283 | 0 | break; |
6284 | | |
6285 | 0 | case Stmt::WhileStmtClass: |
6286 | 0 | E = cast<WhileStmt>(Terminator)->getCond(); |
6287 | 0 | break; |
6288 | | |
6289 | 0 | case Stmt::DoStmtClass: |
6290 | 0 | E = cast<DoStmt>(Terminator)->getCond(); |
6291 | 0 | break; |
6292 | | |
6293 | 0 | case Stmt::IfStmtClass: |
6294 | 0 | E = cast<IfStmt>(Terminator)->getCond(); |
6295 | 0 | break; |
6296 | | |
6297 | 0 | case Stmt::ChooseExprClass: |
6298 | 0 | E = cast<ChooseExpr>(Terminator)->getCond(); |
6299 | 0 | break; |
6300 | | |
6301 | 0 | case Stmt::IndirectGotoStmtClass: |
6302 | 0 | E = cast<IndirectGotoStmt>(Terminator)->getTarget(); |
6303 | 0 | break; |
6304 | | |
6305 | 0 | case Stmt::SwitchStmtClass: |
6306 | 0 | E = cast<SwitchStmt>(Terminator)->getCond(); |
6307 | 0 | break; |
6308 | | |
6309 | 0 | case Stmt::BinaryConditionalOperatorClass: |
6310 | 0 | E = cast<BinaryConditionalOperator>(Terminator)->getCond(); |
6311 | 0 | break; |
6312 | | |
6313 | 0 | case Stmt::ConditionalOperatorClass: |
6314 | 0 | E = cast<ConditionalOperator>(Terminator)->getCond(); |
6315 | 0 | break; |
6316 | | |
6317 | 0 | case Stmt::BinaryOperatorClass: // '&&' and '||' |
6318 | 0 | E = cast<BinaryOperator>(Terminator)->getLHS(); |
6319 | 0 | break; |
6320 | | |
6321 | 0 | case Stmt::ObjCForCollectionStmtClass: |
6322 | 0 | return Terminator; |
6323 | 0 | } |
6324 | | |
6325 | 0 | if (!StripParens) |
6326 | 0 | return E; |
6327 | | |
6328 | 0 | return E ? E->IgnoreParens() : nullptr; |
6329 | 0 | } |
6330 | | |
6331 | | //===----------------------------------------------------------------------===// |
6332 | | // CFG Graphviz Visualization |
6333 | | //===----------------------------------------------------------------------===// |
6334 | | |
6335 | | static StmtPrinterHelper *GraphHelper; |
6336 | | |
6337 | 0 | void CFG::viewCFG(const LangOptions &LO) const { |
6338 | 0 | StmtPrinterHelper H(this, LO); |
6339 | 0 | GraphHelper = &H; |
6340 | 0 | llvm::ViewGraph(this,"CFG"); |
6341 | 0 | GraphHelper = nullptr; |
6342 | 0 | } |
6343 | | |
6344 | | namespace llvm { |
6345 | | |
6346 | | template<> |
6347 | | struct DOTGraphTraits<const CFG*> : public DefaultDOTGraphTraits { |
6348 | 0 | DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {} |
6349 | | |
6350 | 0 | static std::string getNodeLabel(const CFGBlock *Node, const CFG *Graph) { |
6351 | 0 | std::string OutSStr; |
6352 | 0 | llvm::raw_string_ostream Out(OutSStr); |
6353 | 0 | print_block(Out,Graph, *Node, *GraphHelper, false, false); |
6354 | 0 | std::string& OutStr = Out.str(); |
6355 | |
|
6356 | 0 | if (OutStr[0] == '\n') OutStr.erase(OutStr.begin()); |
6357 | | |
6358 | | // Process string output to make it nicer... |
6359 | 0 | for (unsigned i = 0; i != OutStr.length(); ++i) |
6360 | 0 | if (OutStr[i] == '\n') { // Left justify |
6361 | 0 | OutStr[i] = '\\'; |
6362 | 0 | OutStr.insert(OutStr.begin()+i+1, 'l'); |
6363 | 0 | } |
6364 | |
|
6365 | 0 | return OutStr; |
6366 | 0 | } |
6367 | | }; |
6368 | | |
6369 | | } // namespace llvm |