Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/Analysis/ThreadSafety.cpp
Line
Count
Source (jump to first uncovered line)
1
//===- ThreadSafety.cpp ---------------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// A intra-procedural analysis for thread safety (e.g. deadlocks and race
10
// conditions), based off of an annotation system.
11
//
12
// See http://clang.llvm.org/docs/ThreadSafetyAnalysis.html
13
// for more information.
14
//
15
//===----------------------------------------------------------------------===//
16
17
#include "clang/Analysis/Analyses/ThreadSafety.h"
18
#include "clang/AST/Attr.h"
19
#include "clang/AST/Decl.h"
20
#include "clang/AST/DeclCXX.h"
21
#include "clang/AST/DeclGroup.h"
22
#include "clang/AST/Expr.h"
23
#include "clang/AST/ExprCXX.h"
24
#include "clang/AST/OperationKinds.h"
25
#include "clang/AST/Stmt.h"
26
#include "clang/AST/StmtVisitor.h"
27
#include "clang/AST/Type.h"
28
#include "clang/Analysis/Analyses/PostOrderCFGView.h"
29
#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
30
#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
31
#include "clang/Analysis/Analyses/ThreadSafetyTraverse.h"
32
#include "clang/Analysis/Analyses/ThreadSafetyUtil.h"
33
#include "clang/Analysis/AnalysisDeclContext.h"
34
#include "clang/Analysis/CFG.h"
35
#include "clang/Basic/Builtins.h"
36
#include "clang/Basic/LLVM.h"
37
#include "clang/Basic/OperatorKinds.h"
38
#include "clang/Basic/SourceLocation.h"
39
#include "clang/Basic/Specifiers.h"
40
#include "llvm/ADT/ArrayRef.h"
41
#include "llvm/ADT/DenseMap.h"
42
#include "llvm/ADT/ImmutableMap.h"
43
#include "llvm/ADT/STLExtras.h"
44
#include "llvm/ADT/SmallVector.h"
45
#include "llvm/ADT/StringRef.h"
46
#include "llvm/Support/Allocator.h"
47
#include "llvm/Support/Casting.h"
48
#include "llvm/Support/ErrorHandling.h"
49
#include "llvm/Support/raw_ostream.h"
50
#include <algorithm>
51
#include <cassert>
52
#include <functional>
53
#include <iterator>
54
#include <memory>
55
#include <optional>
56
#include <string>
57
#include <type_traits>
58
#include <utility>
59
#include <vector>
60
61
using namespace clang;
62
using namespace threadSafety;
63
64
// Key method definition
65
0
ThreadSafetyHandler::~ThreadSafetyHandler() = default;
66
67
/// Issue a warning about an invalid lock expression
68
static void warnInvalidLock(ThreadSafetyHandler &Handler,
69
                            const Expr *MutexExp, const NamedDecl *D,
70
0
                            const Expr *DeclExp, StringRef Kind) {
71
0
  SourceLocation Loc;
72
0
  if (DeclExp)
73
0
    Loc = DeclExp->getExprLoc();
74
75
  // FIXME: add a note about the attribute location in MutexExp or D
76
0
  if (Loc.isValid())
77
0
    Handler.handleInvalidLockExp(Loc);
78
0
}
79
80
namespace {
81
82
/// A set of CapabilityExpr objects, which are compiled from thread safety
83
/// attributes on a function.
84
class CapExprSet : public SmallVector<CapabilityExpr, 4> {
85
public:
86
  /// Push M onto list, but discard duplicates.
87
0
  void push_back_nodup(const CapabilityExpr &CapE) {
88
0
    if (llvm::none_of(*this, [=](const CapabilityExpr &CapE2) {
89
0
          return CapE.equals(CapE2);
90
0
        }))
91
0
      push_back(CapE);
92
0
  }
93
};
94
95
class FactManager;
96
class FactSet;
97
98
/// This is a helper class that stores a fact that is known at a
99
/// particular point in program execution.  Currently, a fact is a capability,
100
/// along with additional information, such as where it was acquired, whether
101
/// it is exclusive or shared, etc.
102
///
103
/// FIXME: this analysis does not currently support re-entrant locking.
104
class FactEntry : public CapabilityExpr {
105
public:
106
  /// Where a fact comes from.
107
  enum SourceKind {
108
    Acquired, ///< The fact has been directly acquired.
109
    Asserted, ///< The fact has been asserted to be held.
110
    Declared, ///< The fact is assumed to be held by callers.
111
    Managed,  ///< The fact has been acquired through a scoped capability.
112
  };
113
114
private:
115
  /// Exclusive or shared.
116
  LockKind LKind : 8;
117
118
  // How it was acquired.
119
  SourceKind Source : 8;
120
121
  /// Where it was acquired.
122
  SourceLocation AcquireLoc;
123
124
public:
125
  FactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
126
            SourceKind Src)
127
0
      : CapabilityExpr(CE), LKind(LK), Source(Src), AcquireLoc(Loc) {}
128
0
  virtual ~FactEntry() = default;
129
130
0
  LockKind kind() const { return LKind;      }
131
0
  SourceLocation loc() const { return AcquireLoc; }
132
133
0
  bool asserted() const { return Source == Asserted; }
134
0
  bool declared() const { return Source == Declared; }
135
0
  bool managed() const { return Source == Managed; }
136
137
  virtual void
138
  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
139
                                SourceLocation JoinLoc, LockErrorKind LEK,
140
                                ThreadSafetyHandler &Handler) const = 0;
141
  virtual void handleLock(FactSet &FSet, FactManager &FactMan,
142
                          const FactEntry &entry,
143
                          ThreadSafetyHandler &Handler) const = 0;
144
  virtual void handleUnlock(FactSet &FSet, FactManager &FactMan,
145
                            const CapabilityExpr &Cp, SourceLocation UnlockLoc,
146
                            bool FullyRemove,
147
                            ThreadSafetyHandler &Handler) const = 0;
148
149
  // Return true if LKind >= LK, where exclusive > shared
150
0
  bool isAtLeast(LockKind LK) const {
151
0
    return  (LKind == LK_Exclusive) || (LK == LK_Shared);
152
0
  }
153
};
154
155
using FactID = unsigned short;
156
157
/// FactManager manages the memory for all facts that are created during
158
/// the analysis of a single routine.
159
class FactManager {
160
private:
161
  std::vector<std::unique_ptr<const FactEntry>> Facts;
162
163
public:
164
0
  FactID newFact(std::unique_ptr<FactEntry> Entry) {
165
0
    Facts.push_back(std::move(Entry));
166
0
    return static_cast<unsigned short>(Facts.size() - 1);
167
0
  }
168
169
0
  const FactEntry &operator[](FactID F) const { return *Facts[F]; }
170
};
171
172
/// A FactSet is the set of facts that are known to be true at a
173
/// particular program point.  FactSets must be small, because they are
174
/// frequently copied, and are thus implemented as a set of indices into a
175
/// table maintained by a FactManager.  A typical FactSet only holds 1 or 2
176
/// locks, so we can get away with doing a linear search for lookup.  Note
177
/// that a hashtable or map is inappropriate in this case, because lookups
178
/// may involve partial pattern matches, rather than exact matches.
179
class FactSet {
180
private:
181
  using FactVec = SmallVector<FactID, 4>;
182
183
  FactVec FactIDs;
184
185
public:
186
  using iterator = FactVec::iterator;
187
  using const_iterator = FactVec::const_iterator;
188
189
0
  iterator begin() { return FactIDs.begin(); }
190
0
  const_iterator begin() const { return FactIDs.begin(); }
191
192
0
  iterator end() { return FactIDs.end(); }
193
0
  const_iterator end() const { return FactIDs.end(); }
194
195
0
  bool isEmpty() const { return FactIDs.size() == 0; }
196
197
  // Return true if the set contains only negative facts
198
0
  bool isEmpty(FactManager &FactMan) const {
199
0
    for (const auto FID : *this) {
200
0
      if (!FactMan[FID].negative())
201
0
        return false;
202
0
    }
203
0
    return true;
204
0
  }
205
206
0
  void addLockByID(FactID ID) { FactIDs.push_back(ID); }
207
208
0
  FactID addLock(FactManager &FM, std::unique_ptr<FactEntry> Entry) {
209
0
    FactID F = FM.newFact(std::move(Entry));
210
0
    FactIDs.push_back(F);
211
0
    return F;
212
0
  }
213
214
0
  bool removeLock(FactManager& FM, const CapabilityExpr &CapE) {
215
0
    unsigned n = FactIDs.size();
216
0
    if (n == 0)
217
0
      return false;
218
219
0
    for (unsigned i = 0; i < n-1; ++i) {
220
0
      if (FM[FactIDs[i]].matches(CapE)) {
221
0
        FactIDs[i] = FactIDs[n-1];
222
0
        FactIDs.pop_back();
223
0
        return true;
224
0
      }
225
0
    }
226
0
    if (FM[FactIDs[n-1]].matches(CapE)) {
227
0
      FactIDs.pop_back();
228
0
      return true;
229
0
    }
230
0
    return false;
231
0
  }
232
233
0
  iterator findLockIter(FactManager &FM, const CapabilityExpr &CapE) {
234
0
    return std::find_if(begin(), end(), [&](FactID ID) {
235
0
      return FM[ID].matches(CapE);
236
0
    });
237
0
  }
238
239
0
  const FactEntry *findLock(FactManager &FM, const CapabilityExpr &CapE) const {
240
0
    auto I = std::find_if(begin(), end(), [&](FactID ID) {
241
0
      return FM[ID].matches(CapE);
242
0
    });
243
0
    return I != end() ? &FM[*I] : nullptr;
244
0
  }
245
246
  const FactEntry *findLockUniv(FactManager &FM,
247
0
                                const CapabilityExpr &CapE) const {
248
0
    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
249
0
      return FM[ID].matchesUniv(CapE);
250
0
    });
251
0
    return I != end() ? &FM[*I] : nullptr;
252
0
  }
253
254
  const FactEntry *findPartialMatch(FactManager &FM,
255
0
                                    const CapabilityExpr &CapE) const {
256
0
    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
257
0
      return FM[ID].partiallyMatches(CapE);
258
0
    });
259
0
    return I != end() ? &FM[*I] : nullptr;
260
0
  }
261
262
0
  bool containsMutexDecl(FactManager &FM, const ValueDecl* Vd) const {
263
0
    auto I = std::find_if(begin(), end(), [&](FactID ID) -> bool {
264
0
      return FM[ID].valueDecl() == Vd;
265
0
    });
266
0
    return I != end();
267
0
  }
268
};
269
270
class ThreadSafetyAnalyzer;
271
272
} // namespace
273
274
namespace clang {
275
namespace threadSafety {
276
277
class BeforeSet {
278
private:
279
  using BeforeVect = SmallVector<const ValueDecl *, 4>;
280
281
  struct BeforeInfo {
282
    BeforeVect Vect;
283
    int Visited = 0;
284
285
0
    BeforeInfo() = default;
286
    BeforeInfo(BeforeInfo &&) = default;
287
  };
288
289
  using BeforeMap =
290
      llvm::DenseMap<const ValueDecl *, std::unique_ptr<BeforeInfo>>;
291
  using CycleMap = llvm::DenseMap<const ValueDecl *, bool>;
292
293
public:
294
0
  BeforeSet() = default;
295
296
  BeforeInfo* insertAttrExprs(const ValueDecl* Vd,
297
                              ThreadSafetyAnalyzer& Analyzer);
298
299
  BeforeInfo *getBeforeInfoForDecl(const ValueDecl *Vd,
300
                                   ThreadSafetyAnalyzer &Analyzer);
301
302
  void checkBeforeAfter(const ValueDecl* Vd,
303
                        const FactSet& FSet,
304
                        ThreadSafetyAnalyzer& Analyzer,
305
                        SourceLocation Loc, StringRef CapKind);
306
307
private:
308
  BeforeMap BMap;
309
  CycleMap CycMap;
310
};
311
312
} // namespace threadSafety
313
} // namespace clang
314
315
namespace {
316
317
class LocalVariableMap;
318
319
using LocalVarContext = llvm::ImmutableMap<const NamedDecl *, unsigned>;
320
321
/// A side (entry or exit) of a CFG node.
322
enum CFGBlockSide { CBS_Entry, CBS_Exit };
323
324
/// CFGBlockInfo is a struct which contains all the information that is
325
/// maintained for each block in the CFG.  See LocalVariableMap for more
326
/// information about the contexts.
327
struct CFGBlockInfo {
328
  // Lockset held at entry to block
329
  FactSet EntrySet;
330
331
  // Lockset held at exit from block
332
  FactSet ExitSet;
333
334
  // Context held at entry to block
335
  LocalVarContext EntryContext;
336
337
  // Context held at exit from block
338
  LocalVarContext ExitContext;
339
340
  // Location of first statement in block
341
  SourceLocation EntryLoc;
342
343
  // Location of last statement in block.
344
  SourceLocation ExitLoc;
345
346
  // Used to replay contexts later
347
  unsigned EntryIndex;
348
349
  // Is this block reachable?
350
  bool Reachable = false;
351
352
0
  const FactSet &getSet(CFGBlockSide Side) const {
353
0
    return Side == CBS_Entry ? EntrySet : ExitSet;
354
0
  }
355
356
0
  SourceLocation getLocation(CFGBlockSide Side) const {
357
0
    return Side == CBS_Entry ? EntryLoc : ExitLoc;
358
0
  }
359
360
private:
361
  CFGBlockInfo(LocalVarContext EmptyCtx)
362
0
      : EntryContext(EmptyCtx), ExitContext(EmptyCtx) {}
363
364
public:
365
  static CFGBlockInfo getEmptyBlockInfo(LocalVariableMap &M);
366
};
367
368
// A LocalVariableMap maintains a map from local variables to their currently
369
// valid definitions.  It provides SSA-like functionality when traversing the
370
// CFG.  Like SSA, each definition or assignment to a variable is assigned a
371
// unique name (an integer), which acts as the SSA name for that definition.
372
// The total set of names is shared among all CFG basic blocks.
373
// Unlike SSA, we do not rewrite expressions to replace local variables declrefs
374
// with their SSA-names.  Instead, we compute a Context for each point in the
375
// code, which maps local variables to the appropriate SSA-name.  This map
376
// changes with each assignment.
377
//
378
// The map is computed in a single pass over the CFG.  Subsequent analyses can
379
// then query the map to find the appropriate Context for a statement, and use
380
// that Context to look up the definitions of variables.
381
class LocalVariableMap {
382
public:
383
  using Context = LocalVarContext;
384
385
  /// A VarDefinition consists of an expression, representing the value of the
386
  /// variable, along with the context in which that expression should be
387
  /// interpreted.  A reference VarDefinition does not itself contain this
388
  /// information, but instead contains a pointer to a previous VarDefinition.
389
  struct VarDefinition {
390
  public:
391
    friend class LocalVariableMap;
392
393
    // The original declaration for this variable.
394
    const NamedDecl *Dec;
395
396
    // The expression for this variable, OR
397
    const Expr *Exp = nullptr;
398
399
    // Reference to another VarDefinition
400
    unsigned Ref = 0;
401
402
    // The map with which Exp should be interpreted.
403
    Context Ctx;
404
405
0
    bool isReference() const { return !Exp; }
406
407
  private:
408
    // Create ordinary variable definition
409
    VarDefinition(const NamedDecl *D, const Expr *E, Context C)
410
0
        : Dec(D), Exp(E), Ctx(C) {}
411
412
    // Create reference to previous definition
413
    VarDefinition(const NamedDecl *D, unsigned R, Context C)
414
0
        : Dec(D), Ref(R), Ctx(C) {}
415
  };
416
417
private:
418
  Context::Factory ContextFactory;
419
  std::vector<VarDefinition> VarDefinitions;
420
  std::vector<std::pair<const Stmt *, Context>> SavedContexts;
421
422
public:
423
0
  LocalVariableMap() {
424
    // index 0 is a placeholder for undefined variables (aka phi-nodes).
425
0
    VarDefinitions.push_back(VarDefinition(nullptr, 0u, getEmptyContext()));
426
0
  }
427
428
  /// Look up a definition, within the given context.
429
0
  const VarDefinition* lookup(const NamedDecl *D, Context Ctx) {
430
0
    const unsigned *i = Ctx.lookup(D);
431
0
    if (!i)
432
0
      return nullptr;
433
0
    assert(*i < VarDefinitions.size());
434
0
    return &VarDefinitions[*i];
435
0
  }
436
437
  /// Look up the definition for D within the given context.  Returns
438
  /// NULL if the expression is not statically known.  If successful, also
439
  /// modifies Ctx to hold the context of the return Expr.
440
0
  const Expr* lookupExpr(const NamedDecl *D, Context &Ctx) {
441
0
    const unsigned *P = Ctx.lookup(D);
442
0
    if (!P)
443
0
      return nullptr;
444
445
0
    unsigned i = *P;
446
0
    while (i > 0) {
447
0
      if (VarDefinitions[i].Exp) {
448
0
        Ctx = VarDefinitions[i].Ctx;
449
0
        return VarDefinitions[i].Exp;
450
0
      }
451
0
      i = VarDefinitions[i].Ref;
452
0
    }
453
0
    return nullptr;
454
0
  }
455
456
0
  Context getEmptyContext() { return ContextFactory.getEmptyMap(); }
457
458
  /// Return the next context after processing S.  This function is used by
459
  /// clients of the class to get the appropriate context when traversing the
460
  /// CFG.  It must be called for every assignment or DeclStmt.
461
0
  Context getNextContext(unsigned &CtxIndex, const Stmt *S, Context C) {
462
0
    if (SavedContexts[CtxIndex+1].first == S) {
463
0
      CtxIndex++;
464
0
      Context Result = SavedContexts[CtxIndex].second;
465
0
      return Result;
466
0
    }
467
0
    return C;
468
0
  }
469
470
0
  void dumpVarDefinitionName(unsigned i) {
471
0
    if (i == 0) {
472
0
      llvm::errs() << "Undefined";
473
0
      return;
474
0
    }
475
0
    const NamedDecl *Dec = VarDefinitions[i].Dec;
476
0
    if (!Dec) {
477
0
      llvm::errs() << "<<NULL>>";
478
0
      return;
479
0
    }
480
0
    Dec->printName(llvm::errs());
481
0
    llvm::errs() << "." << i << " " << ((const void*) Dec);
482
0
  }
483
484
  /// Dumps an ASCII representation of the variable map to llvm::errs()
485
0
  void dump() {
486
0
    for (unsigned i = 1, e = VarDefinitions.size(); i < e; ++i) {
487
0
      const Expr *Exp = VarDefinitions[i].Exp;
488
0
      unsigned Ref = VarDefinitions[i].Ref;
489
0
490
0
      dumpVarDefinitionName(i);
491
0
      llvm::errs() << " = ";
492
0
      if (Exp) Exp->dump();
493
0
      else {
494
0
        dumpVarDefinitionName(Ref);
495
0
        llvm::errs() << "\n";
496
0
      }
497
0
    }
498
0
  }
499
500
  /// Dumps an ASCII representation of a Context to llvm::errs()
501
0
  void dumpContext(Context C) {
502
0
    for (Context::iterator I = C.begin(), E = C.end(); I != E; ++I) {
503
0
      const NamedDecl *D = I.getKey();
504
0
      D->printName(llvm::errs());
505
0
      llvm::errs() << " -> ";
506
0
      dumpVarDefinitionName(I.getData());
507
0
      llvm::errs() << "\n";
508
0
    }
509
0
  }
510
511
  /// Builds the variable map.
512
  void traverseCFG(CFG *CFGraph, const PostOrderCFGView *SortedGraph,
513
                   std::vector<CFGBlockInfo> &BlockInfo);
514
515
protected:
516
  friend class VarMapBuilder;
517
518
  // Get the current context index
519
0
  unsigned getContextIndex() { return SavedContexts.size()-1; }
520
521
  // Save the current context for later replay
522
0
  void saveContext(const Stmt *S, Context C) {
523
0
    SavedContexts.push_back(std::make_pair(S, C));
524
0
  }
525
526
  // Adds a new definition to the given context, and returns a new context.
527
  // This method should be called when declaring a new variable.
528
0
  Context addDefinition(const NamedDecl *D, const Expr *Exp, Context Ctx) {
529
0
    assert(!Ctx.contains(D));
530
0
    unsigned newID = VarDefinitions.size();
531
0
    Context NewCtx = ContextFactory.add(Ctx, D, newID);
532
0
    VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
533
0
    return NewCtx;
534
0
  }
535
536
  // Add a new reference to an existing definition.
537
0
  Context addReference(const NamedDecl *D, unsigned i, Context Ctx) {
538
0
    unsigned newID = VarDefinitions.size();
539
0
    Context NewCtx = ContextFactory.add(Ctx, D, newID);
540
0
    VarDefinitions.push_back(VarDefinition(D, i, Ctx));
541
0
    return NewCtx;
542
0
  }
543
544
  // Updates a definition only if that definition is already in the map.
545
  // This method should be called when assigning to an existing variable.
546
0
  Context updateDefinition(const NamedDecl *D, Expr *Exp, Context Ctx) {
547
0
    if (Ctx.contains(D)) {
548
0
      unsigned newID = VarDefinitions.size();
549
0
      Context NewCtx = ContextFactory.remove(Ctx, D);
550
0
      NewCtx = ContextFactory.add(NewCtx, D, newID);
551
0
      VarDefinitions.push_back(VarDefinition(D, Exp, Ctx));
552
0
      return NewCtx;
553
0
    }
554
0
    return Ctx;
555
0
  }
556
557
  // Removes a definition from the context, but keeps the variable name
558
  // as a valid variable.  The index 0 is a placeholder for cleared definitions.
559
0
  Context clearDefinition(const NamedDecl *D, Context Ctx) {
560
0
    Context NewCtx = Ctx;
561
0
    if (NewCtx.contains(D)) {
562
0
      NewCtx = ContextFactory.remove(NewCtx, D);
563
0
      NewCtx = ContextFactory.add(NewCtx, D, 0);
564
0
    }
565
0
    return NewCtx;
566
0
  }
567
568
  // Remove a definition entirely frmo the context.
569
0
  Context removeDefinition(const NamedDecl *D, Context Ctx) {
570
0
    Context NewCtx = Ctx;
571
0
    if (NewCtx.contains(D)) {
572
0
      NewCtx = ContextFactory.remove(NewCtx, D);
573
0
    }
574
0
    return NewCtx;
575
0
  }
576
577
  Context intersectContexts(Context C1, Context C2);
578
  Context createReferenceContext(Context C);
579
  void intersectBackEdge(Context C1, Context C2);
580
};
581
582
} // namespace
583
584
// This has to be defined after LocalVariableMap.
585
0
CFGBlockInfo CFGBlockInfo::getEmptyBlockInfo(LocalVariableMap &M) {
586
0
  return CFGBlockInfo(M.getEmptyContext());
587
0
}
588
589
namespace {
590
591
/// Visitor which builds a LocalVariableMap
592
class VarMapBuilder : public ConstStmtVisitor<VarMapBuilder> {
593
public:
594
  LocalVariableMap* VMap;
595
  LocalVariableMap::Context Ctx;
596
597
  VarMapBuilder(LocalVariableMap *VM, LocalVariableMap::Context C)
598
0
      : VMap(VM), Ctx(C) {}
599
600
  void VisitDeclStmt(const DeclStmt *S);
601
  void VisitBinaryOperator(const BinaryOperator *BO);
602
};
603
604
} // namespace
605
606
// Add new local variables to the variable map
607
0
void VarMapBuilder::VisitDeclStmt(const DeclStmt *S) {
608
0
  bool modifiedCtx = false;
609
0
  const DeclGroupRef DGrp = S->getDeclGroup();
610
0
  for (const auto *D : DGrp) {
611
0
    if (const auto *VD = dyn_cast_or_null<VarDecl>(D)) {
612
0
      const Expr *E = VD->getInit();
613
614
      // Add local variables with trivial type to the variable map
615
0
      QualType T = VD->getType();
616
0
      if (T.isTrivialType(VD->getASTContext())) {
617
0
        Ctx = VMap->addDefinition(VD, E, Ctx);
618
0
        modifiedCtx = true;
619
0
      }
620
0
    }
621
0
  }
622
0
  if (modifiedCtx)
623
0
    VMap->saveContext(S, Ctx);
624
0
}
625
626
// Update local variable definitions in variable map
627
0
void VarMapBuilder::VisitBinaryOperator(const BinaryOperator *BO) {
628
0
  if (!BO->isAssignmentOp())
629
0
    return;
630
631
0
  Expr *LHSExp = BO->getLHS()->IgnoreParenCasts();
632
633
  // Update the variable map and current context.
634
0
  if (const auto *DRE = dyn_cast<DeclRefExpr>(LHSExp)) {
635
0
    const ValueDecl *VDec = DRE->getDecl();
636
0
    if (Ctx.lookup(VDec)) {
637
0
      if (BO->getOpcode() == BO_Assign)
638
0
        Ctx = VMap->updateDefinition(VDec, BO->getRHS(), Ctx);
639
0
      else
640
        // FIXME -- handle compound assignment operators
641
0
        Ctx = VMap->clearDefinition(VDec, Ctx);
642
0
      VMap->saveContext(BO, Ctx);
643
0
    }
644
0
  }
645
0
}
646
647
// Computes the intersection of two contexts.  The intersection is the
648
// set of variables which have the same definition in both contexts;
649
// variables with different definitions are discarded.
650
LocalVariableMap::Context
651
0
LocalVariableMap::intersectContexts(Context C1, Context C2) {
652
0
  Context Result = C1;
653
0
  for (const auto &P : C1) {
654
0
    const NamedDecl *Dec = P.first;
655
0
    const unsigned *i2 = C2.lookup(Dec);
656
0
    if (!i2)             // variable doesn't exist on second path
657
0
      Result = removeDefinition(Dec, Result);
658
0
    else if (*i2 != P.second)  // variable exists, but has different definition
659
0
      Result = clearDefinition(Dec, Result);
660
0
  }
661
0
  return Result;
662
0
}
663
664
// For every variable in C, create a new variable that refers to the
665
// definition in C.  Return a new context that contains these new variables.
666
// (We use this for a naive implementation of SSA on loop back-edges.)
667
0
LocalVariableMap::Context LocalVariableMap::createReferenceContext(Context C) {
668
0
  Context Result = getEmptyContext();
669
0
  for (const auto &P : C)
670
0
    Result = addReference(P.first, P.second, Result);
671
0
  return Result;
672
0
}
673
674
// This routine also takes the intersection of C1 and C2, but it does so by
675
// altering the VarDefinitions.  C1 must be the result of an earlier call to
676
// createReferenceContext.
677
0
void LocalVariableMap::intersectBackEdge(Context C1, Context C2) {
678
0
  for (const auto &P : C1) {
679
0
    unsigned i1 = P.second;
680
0
    VarDefinition *VDef = &VarDefinitions[i1];
681
0
    assert(VDef->isReference());
682
683
0
    const unsigned *i2 = C2.lookup(P.first);
684
0
    if (!i2 || (*i2 != i1))
685
0
      VDef->Ref = 0;    // Mark this variable as undefined
686
0
  }
687
0
}
688
689
// Traverse the CFG in topological order, so all predecessors of a block
690
// (excluding back-edges) are visited before the block itself.  At
691
// each point in the code, we calculate a Context, which holds the set of
692
// variable definitions which are visible at that point in execution.
693
// Visible variables are mapped to their definitions using an array that
694
// contains all definitions.
695
//
696
// At join points in the CFG, the set is computed as the intersection of
697
// the incoming sets along each edge, E.g.
698
//
699
//                       { Context                 | VarDefinitions }
700
//   int x = 0;          { x -> x1                 | x1 = 0 }
701
//   int y = 0;          { x -> x1, y -> y1        | y1 = 0, x1 = 0 }
702
//   if (b) x = 1;       { x -> x2, y -> y1        | x2 = 1, y1 = 0, ... }
703
//   else   x = 2;       { x -> x3, y -> y1        | x3 = 2, x2 = 1, ... }
704
//   ...                 { y -> y1  (x is unknown) | x3 = 2, x2 = 1, ... }
705
//
706
// This is essentially a simpler and more naive version of the standard SSA
707
// algorithm.  Those definitions that remain in the intersection are from blocks
708
// that strictly dominate the current block.  We do not bother to insert proper
709
// phi nodes, because they are not used in our analysis; instead, wherever
710
// a phi node would be required, we simply remove that definition from the
711
// context (E.g. x above).
712
//
713
// The initial traversal does not capture back-edges, so those need to be
714
// handled on a separate pass.  Whenever the first pass encounters an
715
// incoming back edge, it duplicates the context, creating new definitions
716
// that refer back to the originals.  (These correspond to places where SSA
717
// might have to insert a phi node.)  On the second pass, these definitions are
718
// set to NULL if the variable has changed on the back-edge (i.e. a phi
719
// node was actually required.)  E.g.
720
//
721
//                       { Context           | VarDefinitions }
722
//   int x = 0, y = 0;   { x -> x1, y -> y1  | y1 = 0, x1 = 0 }
723
//   while (b)           { x -> x2, y -> y1  | [1st:] x2=x1; [2nd:] x2=NULL; }
724
//     x = x+1;          { x -> x3, y -> y1  | x3 = x2 + 1, ... }
725
//   ...                 { y -> y1           | x3 = 2, x2 = 1, ... }
726
void LocalVariableMap::traverseCFG(CFG *CFGraph,
727
                                   const PostOrderCFGView *SortedGraph,
728
0
                                   std::vector<CFGBlockInfo> &BlockInfo) {
729
0
  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
730
731
0
  for (const auto *CurrBlock : *SortedGraph) {
732
0
    unsigned CurrBlockID = CurrBlock->getBlockID();
733
0
    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
734
735
0
    VisitedBlocks.insert(CurrBlock);
736
737
    // Calculate the entry context for the current block
738
0
    bool HasBackEdges = false;
739
0
    bool CtxInit = true;
740
0
    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
741
0
         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
742
      // if *PI -> CurrBlock is a back edge, so skip it
743
0
      if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI)) {
744
0
        HasBackEdges = true;
745
0
        continue;
746
0
      }
747
748
0
      unsigned PrevBlockID = (*PI)->getBlockID();
749
0
      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
750
751
0
      if (CtxInit) {
752
0
        CurrBlockInfo->EntryContext = PrevBlockInfo->ExitContext;
753
0
        CtxInit = false;
754
0
      }
755
0
      else {
756
0
        CurrBlockInfo->EntryContext =
757
0
          intersectContexts(CurrBlockInfo->EntryContext,
758
0
                            PrevBlockInfo->ExitContext);
759
0
      }
760
0
    }
761
762
    // Duplicate the context if we have back-edges, so we can call
763
    // intersectBackEdges later.
764
0
    if (HasBackEdges)
765
0
      CurrBlockInfo->EntryContext =
766
0
        createReferenceContext(CurrBlockInfo->EntryContext);
767
768
    // Create a starting context index for the current block
769
0
    saveContext(nullptr, CurrBlockInfo->EntryContext);
770
0
    CurrBlockInfo->EntryIndex = getContextIndex();
771
772
    // Visit all the statements in the basic block.
773
0
    VarMapBuilder VMapBuilder(this, CurrBlockInfo->EntryContext);
774
0
    for (const auto &BI : *CurrBlock) {
775
0
      switch (BI.getKind()) {
776
0
        case CFGElement::Statement: {
777
0
          CFGStmt CS = BI.castAs<CFGStmt>();
778
0
          VMapBuilder.Visit(CS.getStmt());
779
0
          break;
780
0
        }
781
0
        default:
782
0
          break;
783
0
      }
784
0
    }
785
0
    CurrBlockInfo->ExitContext = VMapBuilder.Ctx;
786
787
    // Mark variables on back edges as "unknown" if they've been changed.
788
0
    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
789
0
         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
790
      // if CurrBlock -> *SI is *not* a back edge
791
0
      if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
792
0
        continue;
793
794
0
      CFGBlock *FirstLoopBlock = *SI;
795
0
      Context LoopBegin = BlockInfo[FirstLoopBlock->getBlockID()].EntryContext;
796
0
      Context LoopEnd   = CurrBlockInfo->ExitContext;
797
0
      intersectBackEdge(LoopBegin, LoopEnd);
798
0
    }
799
0
  }
800
801
  // Put an extra entry at the end of the indexed context array
802
0
  unsigned exitID = CFGraph->getExit().getBlockID();
803
0
  saveContext(nullptr, BlockInfo[exitID].ExitContext);
804
0
}
805
806
/// Find the appropriate source locations to use when producing diagnostics for
807
/// each block in the CFG.
808
static void findBlockLocations(CFG *CFGraph,
809
                               const PostOrderCFGView *SortedGraph,
810
0
                               std::vector<CFGBlockInfo> &BlockInfo) {
811
0
  for (const auto *CurrBlock : *SortedGraph) {
812
0
    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlock->getBlockID()];
813
814
    // Find the source location of the last statement in the block, if the
815
    // block is not empty.
816
0
    if (const Stmt *S = CurrBlock->getTerminatorStmt()) {
817
0
      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc = S->getBeginLoc();
818
0
    } else {
819
0
      for (CFGBlock::const_reverse_iterator BI = CurrBlock->rbegin(),
820
0
           BE = CurrBlock->rend(); BI != BE; ++BI) {
821
        // FIXME: Handle other CFGElement kinds.
822
0
        if (std::optional<CFGStmt> CS = BI->getAs<CFGStmt>()) {
823
0
          CurrBlockInfo->ExitLoc = CS->getStmt()->getBeginLoc();
824
0
          break;
825
0
        }
826
0
      }
827
0
    }
828
829
0
    if (CurrBlockInfo->ExitLoc.isValid()) {
830
      // This block contains at least one statement. Find the source location
831
      // of the first statement in the block.
832
0
      for (const auto &BI : *CurrBlock) {
833
        // FIXME: Handle other CFGElement kinds.
834
0
        if (std::optional<CFGStmt> CS = BI.getAs<CFGStmt>()) {
835
0
          CurrBlockInfo->EntryLoc = CS->getStmt()->getBeginLoc();
836
0
          break;
837
0
        }
838
0
      }
839
0
    } else if (CurrBlock->pred_size() == 1 && *CurrBlock->pred_begin() &&
840
0
               CurrBlock != &CFGraph->getExit()) {
841
      // The block is empty, and has a single predecessor. Use its exit
842
      // location.
843
0
      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
844
0
          BlockInfo[(*CurrBlock->pred_begin())->getBlockID()].ExitLoc;
845
0
    } else if (CurrBlock->succ_size() == 1 && *CurrBlock->succ_begin()) {
846
      // The block is empty, and has a single successor. Use its entry
847
      // location.
848
0
      CurrBlockInfo->EntryLoc = CurrBlockInfo->ExitLoc =
849
0
          BlockInfo[(*CurrBlock->succ_begin())->getBlockID()].EntryLoc;
850
0
    }
851
0
  }
852
0
}
853
854
namespace {
855
856
class LockableFactEntry : public FactEntry {
857
public:
858
  LockableFactEntry(const CapabilityExpr &CE, LockKind LK, SourceLocation Loc,
859
                    SourceKind Src = Acquired)
860
0
      : FactEntry(CE, LK, Loc, Src) {}
861
862
  void
863
  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
864
                                SourceLocation JoinLoc, LockErrorKind LEK,
865
0
                                ThreadSafetyHandler &Handler) const override {
866
0
    if (!asserted() && !negative() && !isUniversal()) {
867
0
      Handler.handleMutexHeldEndOfScope(getKind(), toString(), loc(), JoinLoc,
868
0
                                        LEK);
869
0
    }
870
0
  }
871
872
  void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
873
0
                  ThreadSafetyHandler &Handler) const override {
874
0
    Handler.handleDoubleLock(entry.getKind(), entry.toString(), loc(),
875
0
                             entry.loc());
876
0
  }
877
878
  void handleUnlock(FactSet &FSet, FactManager &FactMan,
879
                    const CapabilityExpr &Cp, SourceLocation UnlockLoc,
880
                    bool FullyRemove,
881
0
                    ThreadSafetyHandler &Handler) const override {
882
0
    FSet.removeLock(FactMan, Cp);
883
0
    if (!Cp.negative()) {
884
0
      FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
885
0
                                !Cp, LK_Exclusive, UnlockLoc));
886
0
    }
887
0
  }
888
};
889
890
class ScopedLockableFactEntry : public FactEntry {
891
private:
892
  enum UnderlyingCapabilityKind {
893
    UCK_Acquired,          ///< Any kind of acquired capability.
894
    UCK_ReleasedShared,    ///< Shared capability that was released.
895
    UCK_ReleasedExclusive, ///< Exclusive capability that was released.
896
  };
897
898
  struct UnderlyingCapability {
899
    CapabilityExpr Cap;
900
    UnderlyingCapabilityKind Kind;
901
  };
902
903
  SmallVector<UnderlyingCapability, 2> UnderlyingMutexes;
904
905
public:
906
  ScopedLockableFactEntry(const CapabilityExpr &CE, SourceLocation Loc)
907
0
      : FactEntry(CE, LK_Exclusive, Loc, Acquired) {}
908
909
0
  void addLock(const CapabilityExpr &M) {
910
0
    UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_Acquired});
911
0
  }
912
913
0
  void addExclusiveUnlock(const CapabilityExpr &M) {
914
0
    UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedExclusive});
915
0
  }
916
917
0
  void addSharedUnlock(const CapabilityExpr &M) {
918
0
    UnderlyingMutexes.push_back(UnderlyingCapability{M, UCK_ReleasedShared});
919
0
  }
920
921
  void
922
  handleRemovalFromIntersection(const FactSet &FSet, FactManager &FactMan,
923
                                SourceLocation JoinLoc, LockErrorKind LEK,
924
0
                                ThreadSafetyHandler &Handler) const override {
925
0
    for (const auto &UnderlyingMutex : UnderlyingMutexes) {
926
0
      const auto *Entry = FSet.findLock(FactMan, UnderlyingMutex.Cap);
927
0
      if ((UnderlyingMutex.Kind == UCK_Acquired && Entry) ||
928
0
          (UnderlyingMutex.Kind != UCK_Acquired && !Entry)) {
929
        // If this scoped lock manages another mutex, and if the underlying
930
        // mutex is still/not held, then warn about the underlying mutex.
931
0
        Handler.handleMutexHeldEndOfScope(UnderlyingMutex.Cap.getKind(),
932
0
                                          UnderlyingMutex.Cap.toString(), loc(),
933
0
                                          JoinLoc, LEK);
934
0
      }
935
0
    }
936
0
  }
937
938
  void handleLock(FactSet &FSet, FactManager &FactMan, const FactEntry &entry,
939
0
                  ThreadSafetyHandler &Handler) const override {
940
0
    for (const auto &UnderlyingMutex : UnderlyingMutexes) {
941
0
      if (UnderlyingMutex.Kind == UCK_Acquired)
942
0
        lock(FSet, FactMan, UnderlyingMutex.Cap, entry.kind(), entry.loc(),
943
0
             &Handler);
944
0
      else
945
0
        unlock(FSet, FactMan, UnderlyingMutex.Cap, entry.loc(), &Handler);
946
0
    }
947
0
  }
948
949
  void handleUnlock(FactSet &FSet, FactManager &FactMan,
950
                    const CapabilityExpr &Cp, SourceLocation UnlockLoc,
951
                    bool FullyRemove,
952
0
                    ThreadSafetyHandler &Handler) const override {
953
0
    assert(!Cp.negative() && "Managing object cannot be negative.");
954
0
    for (const auto &UnderlyingMutex : UnderlyingMutexes) {
955
      // Remove/lock the underlying mutex if it exists/is still unlocked; warn
956
      // on double unlocking/locking if we're not destroying the scoped object.
957
0
      ThreadSafetyHandler *TSHandler = FullyRemove ? nullptr : &Handler;
958
0
      if (UnderlyingMutex.Kind == UCK_Acquired) {
959
0
        unlock(FSet, FactMan, UnderlyingMutex.Cap, UnlockLoc, TSHandler);
960
0
      } else {
961
0
        LockKind kind = UnderlyingMutex.Kind == UCK_ReleasedShared
962
0
                            ? LK_Shared
963
0
                            : LK_Exclusive;
964
0
        lock(FSet, FactMan, UnderlyingMutex.Cap, kind, UnlockLoc, TSHandler);
965
0
      }
966
0
    }
967
0
    if (FullyRemove)
968
0
      FSet.removeLock(FactMan, Cp);
969
0
  }
970
971
private:
972
  void lock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
973
            LockKind kind, SourceLocation loc,
974
0
            ThreadSafetyHandler *Handler) const {
975
0
    if (const FactEntry *Fact = FSet.findLock(FactMan, Cp)) {
976
0
      if (Handler)
977
0
        Handler->handleDoubleLock(Cp.getKind(), Cp.toString(), Fact->loc(),
978
0
                                  loc);
979
0
    } else {
980
0
      FSet.removeLock(FactMan, !Cp);
981
0
      FSet.addLock(FactMan,
982
0
                   std::make_unique<LockableFactEntry>(Cp, kind, loc, Managed));
983
0
    }
984
0
  }
985
986
  void unlock(FactSet &FSet, FactManager &FactMan, const CapabilityExpr &Cp,
987
0
              SourceLocation loc, ThreadSafetyHandler *Handler) const {
988
0
    if (FSet.findLock(FactMan, Cp)) {
989
0
      FSet.removeLock(FactMan, Cp);
990
0
      FSet.addLock(FactMan, std::make_unique<LockableFactEntry>(
991
0
                                !Cp, LK_Exclusive, loc));
992
0
    } else if (Handler) {
993
0
      SourceLocation PrevLoc;
994
0
      if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
995
0
        PrevLoc = Neg->loc();
996
0
      Handler->handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), loc, PrevLoc);
997
0
    }
998
0
  }
999
};
1000
1001
/// Class which implements the core thread safety analysis routines.
1002
class ThreadSafetyAnalyzer {
1003
  friend class BuildLockset;
1004
  friend class threadSafety::BeforeSet;
1005
1006
  llvm::BumpPtrAllocator Bpa;
1007
  threadSafety::til::MemRegionRef Arena;
1008
  threadSafety::SExprBuilder SxBuilder;
1009
1010
  ThreadSafetyHandler &Handler;
1011
  const FunctionDecl *CurrentFunction;
1012
  LocalVariableMap LocalVarMap;
1013
  // Maps constructed objects to `this` placeholder prior to initialization.
1014
  llvm::SmallDenseMap<const Expr *, til::LiteralPtr *> ConstructedObjects;
1015
  FactManager FactMan;
1016
  std::vector<CFGBlockInfo> BlockInfo;
1017
1018
  BeforeSet *GlobalBeforeSet;
1019
1020
public:
1021
  ThreadSafetyAnalyzer(ThreadSafetyHandler &H, BeforeSet* Bset)
1022
0
      : Arena(&Bpa), SxBuilder(Arena), Handler(H), GlobalBeforeSet(Bset) {}
1023
1024
  bool inCurrentScope(const CapabilityExpr &CapE);
1025
1026
  void addLock(FactSet &FSet, std::unique_ptr<FactEntry> Entry,
1027
               bool ReqAttr = false);
1028
  void removeLock(FactSet &FSet, const CapabilityExpr &CapE,
1029
                  SourceLocation UnlockLoc, bool FullyRemove, LockKind Kind);
1030
1031
  template <typename AttrType>
1032
  void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1033
                   const NamedDecl *D, til::SExpr *Self = nullptr);
1034
1035
  template <class AttrType>
1036
  void getMutexIDs(CapExprSet &Mtxs, AttrType *Attr, const Expr *Exp,
1037
                   const NamedDecl *D,
1038
                   const CFGBlock *PredBlock, const CFGBlock *CurrBlock,
1039
                   Expr *BrE, bool Neg);
1040
1041
  const CallExpr* getTrylockCallExpr(const Stmt *Cond, LocalVarContext C,
1042
                                     bool &Negate);
1043
1044
  void getEdgeLockset(FactSet &Result, const FactSet &ExitSet,
1045
                      const CFGBlock* PredBlock,
1046
                      const CFGBlock *CurrBlock);
1047
1048
  bool join(const FactEntry &a, const FactEntry &b, bool CanModify);
1049
1050
  void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1051
                        SourceLocation JoinLoc, LockErrorKind EntryLEK,
1052
                        LockErrorKind ExitLEK);
1053
1054
  void intersectAndWarn(FactSet &EntrySet, const FactSet &ExitSet,
1055
0
                        SourceLocation JoinLoc, LockErrorKind LEK) {
1056
0
    intersectAndWarn(EntrySet, ExitSet, JoinLoc, LEK, LEK);
1057
0
  }
1058
1059
  void runAnalysis(AnalysisDeclContext &AC);
1060
1061
  void warnIfMutexNotHeld(const FactSet &FSet, const NamedDecl *D,
1062
                          const Expr *Exp, AccessKind AK, Expr *MutexExp,
1063
                          ProtectedOperationKind POK, til::LiteralPtr *Self,
1064
                          SourceLocation Loc);
1065
  void warnIfMutexHeld(const FactSet &FSet, const NamedDecl *D, const Expr *Exp,
1066
                       Expr *MutexExp, til::LiteralPtr *Self,
1067
                       SourceLocation Loc);
1068
1069
  void checkAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK,
1070
                   ProtectedOperationKind POK);
1071
  void checkPtAccess(const FactSet &FSet, const Expr *Exp, AccessKind AK,
1072
                     ProtectedOperationKind POK);
1073
};
1074
1075
} // namespace
1076
1077
/// Process acquired_before and acquired_after attributes on Vd.
1078
BeforeSet::BeforeInfo* BeforeSet::insertAttrExprs(const ValueDecl* Vd,
1079
0
    ThreadSafetyAnalyzer& Analyzer) {
1080
  // Create a new entry for Vd.
1081
0
  BeforeInfo *Info = nullptr;
1082
0
  {
1083
    // Keep InfoPtr in its own scope in case BMap is modified later and the
1084
    // reference becomes invalid.
1085
0
    std::unique_ptr<BeforeInfo> &InfoPtr = BMap[Vd];
1086
0
    if (!InfoPtr)
1087
0
      InfoPtr.reset(new BeforeInfo());
1088
0
    Info = InfoPtr.get();
1089
0
  }
1090
1091
0
  for (const auto *At : Vd->attrs()) {
1092
0
    switch (At->getKind()) {
1093
0
      case attr::AcquiredBefore: {
1094
0
        const auto *A = cast<AcquiredBeforeAttr>(At);
1095
1096
        // Read exprs from the attribute, and add them to BeforeVect.
1097
0
        for (const auto *Arg : A->args()) {
1098
0
          CapabilityExpr Cp =
1099
0
            Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1100
0
          if (const ValueDecl *Cpvd = Cp.valueDecl()) {
1101
0
            Info->Vect.push_back(Cpvd);
1102
0
            const auto It = BMap.find(Cpvd);
1103
0
            if (It == BMap.end())
1104
0
              insertAttrExprs(Cpvd, Analyzer);
1105
0
          }
1106
0
        }
1107
0
        break;
1108
0
      }
1109
0
      case attr::AcquiredAfter: {
1110
0
        const auto *A = cast<AcquiredAfterAttr>(At);
1111
1112
        // Read exprs from the attribute, and add them to BeforeVect.
1113
0
        for (const auto *Arg : A->args()) {
1114
0
          CapabilityExpr Cp =
1115
0
            Analyzer.SxBuilder.translateAttrExpr(Arg, nullptr);
1116
0
          if (const ValueDecl *ArgVd = Cp.valueDecl()) {
1117
            // Get entry for mutex listed in attribute
1118
0
            BeforeInfo *ArgInfo = getBeforeInfoForDecl(ArgVd, Analyzer);
1119
0
            ArgInfo->Vect.push_back(Vd);
1120
0
          }
1121
0
        }
1122
0
        break;
1123
0
      }
1124
0
      default:
1125
0
        break;
1126
0
    }
1127
0
  }
1128
1129
0
  return Info;
1130
0
}
1131
1132
BeforeSet::BeforeInfo *
1133
BeforeSet::getBeforeInfoForDecl(const ValueDecl *Vd,
1134
0
                                ThreadSafetyAnalyzer &Analyzer) {
1135
0
  auto It = BMap.find(Vd);
1136
0
  BeforeInfo *Info = nullptr;
1137
0
  if (It == BMap.end())
1138
0
    Info = insertAttrExprs(Vd, Analyzer);
1139
0
  else
1140
0
    Info = It->second.get();
1141
0
  assert(Info && "BMap contained nullptr?");
1142
0
  return Info;
1143
0
}
1144
1145
/// Return true if any mutexes in FSet are in the acquired_before set of Vd.
1146
void BeforeSet::checkBeforeAfter(const ValueDecl* StartVd,
1147
                                 const FactSet& FSet,
1148
                                 ThreadSafetyAnalyzer& Analyzer,
1149
0
                                 SourceLocation Loc, StringRef CapKind) {
1150
0
  SmallVector<BeforeInfo*, 8> InfoVect;
1151
1152
  // Do a depth-first traversal of Vd.
1153
  // Return true if there are cycles.
1154
0
  std::function<bool (const ValueDecl*)> traverse = [&](const ValueDecl* Vd) {
1155
0
    if (!Vd)
1156
0
      return false;
1157
1158
0
    BeforeSet::BeforeInfo *Info = getBeforeInfoForDecl(Vd, Analyzer);
1159
1160
0
    if (Info->Visited == 1)
1161
0
      return true;
1162
1163
0
    if (Info->Visited == 2)
1164
0
      return false;
1165
1166
0
    if (Info->Vect.empty())
1167
0
      return false;
1168
1169
0
    InfoVect.push_back(Info);
1170
0
    Info->Visited = 1;
1171
0
    for (const auto *Vdb : Info->Vect) {
1172
      // Exclude mutexes in our immediate before set.
1173
0
      if (FSet.containsMutexDecl(Analyzer.FactMan, Vdb)) {
1174
0
        StringRef L1 = StartVd->getName();
1175
0
        StringRef L2 = Vdb->getName();
1176
0
        Analyzer.Handler.handleLockAcquiredBefore(CapKind, L1, L2, Loc);
1177
0
      }
1178
      // Transitively search other before sets, and warn on cycles.
1179
0
      if (traverse(Vdb)) {
1180
0
        if (!CycMap.contains(Vd)) {
1181
0
          CycMap.insert(std::make_pair(Vd, true));
1182
0
          StringRef L1 = Vd->getName();
1183
0
          Analyzer.Handler.handleBeforeAfterCycle(L1, Vd->getLocation());
1184
0
        }
1185
0
      }
1186
0
    }
1187
0
    Info->Visited = 2;
1188
0
    return false;
1189
0
  };
1190
1191
0
  traverse(StartVd);
1192
1193
0
  for (auto *Info : InfoVect)
1194
0
    Info->Visited = 0;
1195
0
}
1196
1197
/// Gets the value decl pointer from DeclRefExprs or MemberExprs.
1198
0
static const ValueDecl *getValueDecl(const Expr *Exp) {
1199
0
  if (const auto *CE = dyn_cast<ImplicitCastExpr>(Exp))
1200
0
    return getValueDecl(CE->getSubExpr());
1201
1202
0
  if (const auto *DR = dyn_cast<DeclRefExpr>(Exp))
1203
0
    return DR->getDecl();
1204
1205
0
  if (const auto *ME = dyn_cast<MemberExpr>(Exp))
1206
0
    return ME->getMemberDecl();
1207
1208
0
  return nullptr;
1209
0
}
1210
1211
namespace {
1212
1213
template <typename Ty>
1214
class has_arg_iterator_range {
1215
  using yes = char[1];
1216
  using no = char[2];
1217
1218
  template <typename Inner>
1219
  static yes& test(Inner *I, decltype(I->args()) * = nullptr);
1220
1221
  template <typename>
1222
  static no& test(...);
1223
1224
public:
1225
  static const bool value = sizeof(test<Ty>(nullptr)) == sizeof(yes);
1226
};
1227
1228
} // namespace
1229
1230
0
bool ThreadSafetyAnalyzer::inCurrentScope(const CapabilityExpr &CapE) {
1231
0
  const threadSafety::til::SExpr *SExp = CapE.sexpr();
1232
0
  assert(SExp && "Null expressions should be ignored");
1233
1234
0
  if (const auto *LP = dyn_cast<til::LiteralPtr>(SExp)) {
1235
0
    const ValueDecl *VD = LP->clangDecl();
1236
    // Variables defined in a function are always inaccessible.
1237
0
    if (!VD || !VD->isDefinedOutsideFunctionOrMethod())
1238
0
      return false;
1239
    // For now we consider static class members to be inaccessible.
1240
0
    if (isa<CXXRecordDecl>(VD->getDeclContext()))
1241
0
      return false;
1242
    // Global variables are always in scope.
1243
0
    return true;
1244
0
  }
1245
1246
  // Members are in scope from methods of the same class.
1247
0
  if (const auto *P = dyn_cast<til::Project>(SExp)) {
1248
0
    if (!isa_and_nonnull<CXXMethodDecl>(CurrentFunction))
1249
0
      return false;
1250
0
    const ValueDecl *VD = P->clangDecl();
1251
0
    return VD->getDeclContext() == CurrentFunction->getDeclContext();
1252
0
  }
1253
1254
0
  return false;
1255
0
}
1256
1257
/// Add a new lock to the lockset, warning if the lock is already there.
1258
/// \param ReqAttr -- true if this is part of an initial Requires attribute.
1259
void ThreadSafetyAnalyzer::addLock(FactSet &FSet,
1260
                                   std::unique_ptr<FactEntry> Entry,
1261
0
                                   bool ReqAttr) {
1262
0
  if (Entry->shouldIgnore())
1263
0
    return;
1264
1265
0
  if (!ReqAttr && !Entry->negative()) {
1266
    // look for the negative capability, and remove it from the fact set.
1267
0
    CapabilityExpr NegC = !*Entry;
1268
0
    const FactEntry *Nen = FSet.findLock(FactMan, NegC);
1269
0
    if (Nen) {
1270
0
      FSet.removeLock(FactMan, NegC);
1271
0
    }
1272
0
    else {
1273
0
      if (inCurrentScope(*Entry) && !Entry->asserted())
1274
0
        Handler.handleNegativeNotHeld(Entry->getKind(), Entry->toString(),
1275
0
                                      NegC.toString(), Entry->loc());
1276
0
    }
1277
0
  }
1278
1279
  // Check before/after constraints
1280
0
  if (Handler.issueBetaWarnings() &&
1281
0
      !Entry->asserted() && !Entry->declared()) {
1282
0
    GlobalBeforeSet->checkBeforeAfter(Entry->valueDecl(), FSet, *this,
1283
0
                                      Entry->loc(), Entry->getKind());
1284
0
  }
1285
1286
  // FIXME: Don't always warn when we have support for reentrant locks.
1287
0
  if (const FactEntry *Cp = FSet.findLock(FactMan, *Entry)) {
1288
0
    if (!Entry->asserted())
1289
0
      Cp->handleLock(FSet, FactMan, *Entry, Handler);
1290
0
  } else {
1291
0
    FSet.addLock(FactMan, std::move(Entry));
1292
0
  }
1293
0
}
1294
1295
/// Remove a lock from the lockset, warning if the lock is not there.
1296
/// \param UnlockLoc The source location of the unlock (only used in error msg)
1297
void ThreadSafetyAnalyzer::removeLock(FactSet &FSet, const CapabilityExpr &Cp,
1298
                                      SourceLocation UnlockLoc,
1299
0
                                      bool FullyRemove, LockKind ReceivedKind) {
1300
0
  if (Cp.shouldIgnore())
1301
0
    return;
1302
1303
0
  const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1304
0
  if (!LDat) {
1305
0
    SourceLocation PrevLoc;
1306
0
    if (const FactEntry *Neg = FSet.findLock(FactMan, !Cp))
1307
0
      PrevLoc = Neg->loc();
1308
0
    Handler.handleUnmatchedUnlock(Cp.getKind(), Cp.toString(), UnlockLoc,
1309
0
                                  PrevLoc);
1310
0
    return;
1311
0
  }
1312
1313
  // Generic lock removal doesn't care about lock kind mismatches, but
1314
  // otherwise diagnose when the lock kinds are mismatched.
1315
0
  if (ReceivedKind != LK_Generic && LDat->kind() != ReceivedKind) {
1316
0
    Handler.handleIncorrectUnlockKind(Cp.getKind(), Cp.toString(), LDat->kind(),
1317
0
                                      ReceivedKind, LDat->loc(), UnlockLoc);
1318
0
  }
1319
1320
0
  LDat->handleUnlock(FSet, FactMan, Cp, UnlockLoc, FullyRemove, Handler);
1321
0
}
1322
1323
/// Extract the list of mutexIDs from the attribute on an expression,
1324
/// and push them onto Mtxs, discarding any duplicates.
1325
template <typename AttrType>
1326
void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1327
                                       const Expr *Exp, const NamedDecl *D,
1328
0
                                       til::SExpr *Self) {
1329
0
  if (Attr->args_size() == 0) {
1330
    // The mutex held is the "this" object.
1331
0
    CapabilityExpr Cp = SxBuilder.translateAttrExpr(nullptr, D, Exp, Self);
1332
0
    if (Cp.isInvalid()) {
1333
0
      warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1334
0
      return;
1335
0
    }
1336
    //else
1337
0
    if (!Cp.shouldIgnore())
1338
0
      Mtxs.push_back_nodup(Cp);
1339
0
    return;
1340
0
  }
1341
1342
0
  for (const auto *Arg : Attr->args()) {
1343
0
    CapabilityExpr Cp = SxBuilder.translateAttrExpr(Arg, D, Exp, Self);
1344
0
    if (Cp.isInvalid()) {
1345
0
      warnInvalidLock(Handler, nullptr, D, Exp, Cp.getKind());
1346
0
      continue;
1347
0
    }
1348
    //else
1349
0
    if (!Cp.shouldIgnore())
1350
0
      Mtxs.push_back_nodup(Cp);
1351
0
  }
1352
0
}
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::RequiresCapabilityAttr const>((anonymous namespace)::CapExprSet&, clang::RequiresCapabilityAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::threadSafety::til::SExpr*)
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::ReleaseCapabilityAttr const>((anonymous namespace)::CapExprSet&, clang::ReleaseCapabilityAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::threadSafety::til::SExpr*)
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::AcquireCapabilityAttr const>((anonymous namespace)::CapExprSet&, clang::AcquireCapabilityAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::threadSafety::til::SExpr*)
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::TryAcquireCapabilityAttr const>((anonymous namespace)::CapExprSet&, clang::TryAcquireCapabilityAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::threadSafety::til::SExpr*)
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::ExclusiveTrylockFunctionAttr const>((anonymous namespace)::CapExprSet&, clang::ExclusiveTrylockFunctionAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::threadSafety::til::SExpr*)
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::SharedTrylockFunctionAttr const>((anonymous namespace)::CapExprSet&, clang::SharedTrylockFunctionAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::threadSafety::til::SExpr*)
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::AssertExclusiveLockAttr const>((anonymous namespace)::CapExprSet&, clang::AssertExclusiveLockAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::threadSafety::til::SExpr*)
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::AssertSharedLockAttr const>((anonymous namespace)::CapExprSet&, clang::AssertSharedLockAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::threadSafety::til::SExpr*)
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::AssertCapabilityAttr const>((anonymous namespace)::CapExprSet&, clang::AssertCapabilityAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::threadSafety::til::SExpr*)
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::LocksExcludedAttr const>((anonymous namespace)::CapExprSet&, clang::LocksExcludedAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::threadSafety::til::SExpr*)
1353
1354
/// Extract the list of mutexIDs from a trylock attribute.  If the
1355
/// trylock applies to the given edge, then push them onto Mtxs, discarding
1356
/// any duplicates.
1357
template <class AttrType>
1358
void ThreadSafetyAnalyzer::getMutexIDs(CapExprSet &Mtxs, AttrType *Attr,
1359
                                       const Expr *Exp, const NamedDecl *D,
1360
                                       const CFGBlock *PredBlock,
1361
                                       const CFGBlock *CurrBlock,
1362
0
                                       Expr *BrE, bool Neg) {
1363
  // Find out which branch has the lock
1364
0
  bool branch = false;
1365
0
  if (const auto *BLE = dyn_cast_or_null<CXXBoolLiteralExpr>(BrE))
1366
0
    branch = BLE->getValue();
1367
0
  else if (const auto *ILE = dyn_cast_or_null<IntegerLiteral>(BrE))
1368
0
    branch = ILE->getValue().getBoolValue();
1369
1370
0
  int branchnum = branch ? 0 : 1;
1371
0
  if (Neg)
1372
0
    branchnum = !branchnum;
1373
1374
  // If we've taken the trylock branch, then add the lock
1375
0
  int i = 0;
1376
0
  for (CFGBlock::const_succ_iterator SI = PredBlock->succ_begin(),
1377
0
       SE = PredBlock->succ_end(); SI != SE && i < 2; ++SI, ++i) {
1378
0
    if (*SI == CurrBlock && i == branchnum)
1379
0
      getMutexIDs(Mtxs, Attr, Exp, D);
1380
0
  }
1381
0
}
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::TryAcquireCapabilityAttr const>((anonymous namespace)::CapExprSet&, clang::TryAcquireCapabilityAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::CFGBlock const*, clang::CFGBlock const*, clang::Expr*, bool)
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::ExclusiveTrylockFunctionAttr const>((anonymous namespace)::CapExprSet&, clang::ExclusiveTrylockFunctionAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::CFGBlock const*, clang::CFGBlock const*, clang::Expr*, bool)
Unexecuted instantiation: ThreadSafety.cpp:void (anonymous namespace)::ThreadSafetyAnalyzer::getMutexIDs<clang::SharedTrylockFunctionAttr const>((anonymous namespace)::CapExprSet&, clang::SharedTrylockFunctionAttr const*, clang::Expr const*, clang::NamedDecl const*, clang::CFGBlock const*, clang::CFGBlock const*, clang::Expr*, bool)
1382
1383
0
static bool getStaticBooleanValue(Expr *E, bool &TCond) {
1384
0
  if (isa<CXXNullPtrLiteralExpr>(E) || isa<GNUNullExpr>(E)) {
1385
0
    TCond = false;
1386
0
    return true;
1387
0
  } else if (const auto *BLE = dyn_cast<CXXBoolLiteralExpr>(E)) {
1388
0
    TCond = BLE->getValue();
1389
0
    return true;
1390
0
  } else if (const auto *ILE = dyn_cast<IntegerLiteral>(E)) {
1391
0
    TCond = ILE->getValue().getBoolValue();
1392
0
    return true;
1393
0
  } else if (auto *CE = dyn_cast<ImplicitCastExpr>(E))
1394
0
    return getStaticBooleanValue(CE->getSubExpr(), TCond);
1395
0
  return false;
1396
0
}
1397
1398
// If Cond can be traced back to a function call, return the call expression.
1399
// The negate variable should be called with false, and will be set to true
1400
// if the function call is negated, e.g. if (!mu.tryLock(...))
1401
const CallExpr* ThreadSafetyAnalyzer::getTrylockCallExpr(const Stmt *Cond,
1402
                                                         LocalVarContext C,
1403
0
                                                         bool &Negate) {
1404
0
  if (!Cond)
1405
0
    return nullptr;
1406
1407
0
  if (const auto *CallExp = dyn_cast<CallExpr>(Cond)) {
1408
0
    if (CallExp->getBuiltinCallee() == Builtin::BI__builtin_expect)
1409
0
      return getTrylockCallExpr(CallExp->getArg(0), C, Negate);
1410
0
    return CallExp;
1411
0
  }
1412
0
  else if (const auto *PE = dyn_cast<ParenExpr>(Cond))
1413
0
    return getTrylockCallExpr(PE->getSubExpr(), C, Negate);
1414
0
  else if (const auto *CE = dyn_cast<ImplicitCastExpr>(Cond))
1415
0
    return getTrylockCallExpr(CE->getSubExpr(), C, Negate);
1416
0
  else if (const auto *FE = dyn_cast<FullExpr>(Cond))
1417
0
    return getTrylockCallExpr(FE->getSubExpr(), C, Negate);
1418
0
  else if (const auto *DRE = dyn_cast<DeclRefExpr>(Cond)) {
1419
0
    const Expr *E = LocalVarMap.lookupExpr(DRE->getDecl(), C);
1420
0
    return getTrylockCallExpr(E, C, Negate);
1421
0
  }
1422
0
  else if (const auto *UOP = dyn_cast<UnaryOperator>(Cond)) {
1423
0
    if (UOP->getOpcode() == UO_LNot) {
1424
0
      Negate = !Negate;
1425
0
      return getTrylockCallExpr(UOP->getSubExpr(), C, Negate);
1426
0
    }
1427
0
    return nullptr;
1428
0
  }
1429
0
  else if (const auto *BOP = dyn_cast<BinaryOperator>(Cond)) {
1430
0
    if (BOP->getOpcode() == BO_EQ || BOP->getOpcode() == BO_NE) {
1431
0
      if (BOP->getOpcode() == BO_NE)
1432
0
        Negate = !Negate;
1433
1434
0
      bool TCond = false;
1435
0
      if (getStaticBooleanValue(BOP->getRHS(), TCond)) {
1436
0
        if (!TCond) Negate = !Negate;
1437
0
        return getTrylockCallExpr(BOP->getLHS(), C, Negate);
1438
0
      }
1439
0
      TCond = false;
1440
0
      if (getStaticBooleanValue(BOP->getLHS(), TCond)) {
1441
0
        if (!TCond) Negate = !Negate;
1442
0
        return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1443
0
      }
1444
0
      return nullptr;
1445
0
    }
1446
0
    if (BOP->getOpcode() == BO_LAnd) {
1447
      // LHS must have been evaluated in a different block.
1448
0
      return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1449
0
    }
1450
0
    if (BOP->getOpcode() == BO_LOr)
1451
0
      return getTrylockCallExpr(BOP->getRHS(), C, Negate);
1452
0
    return nullptr;
1453
0
  } else if (const auto *COP = dyn_cast<ConditionalOperator>(Cond)) {
1454
0
    bool TCond, FCond;
1455
0
    if (getStaticBooleanValue(COP->getTrueExpr(), TCond) &&
1456
0
        getStaticBooleanValue(COP->getFalseExpr(), FCond)) {
1457
0
      if (TCond && !FCond)
1458
0
        return getTrylockCallExpr(COP->getCond(), C, Negate);
1459
0
      if (!TCond && FCond) {
1460
0
        Negate = !Negate;
1461
0
        return getTrylockCallExpr(COP->getCond(), C, Negate);
1462
0
      }
1463
0
    }
1464
0
  }
1465
0
  return nullptr;
1466
0
}
1467
1468
/// Find the lockset that holds on the edge between PredBlock
1469
/// and CurrBlock.  The edge set is the exit set of PredBlock (passed
1470
/// as the ExitSet parameter) plus any trylocks, which are conditionally held.
1471
void ThreadSafetyAnalyzer::getEdgeLockset(FactSet& Result,
1472
                                          const FactSet &ExitSet,
1473
                                          const CFGBlock *PredBlock,
1474
0
                                          const CFGBlock *CurrBlock) {
1475
0
  Result = ExitSet;
1476
1477
0
  const Stmt *Cond = PredBlock->getTerminatorCondition();
1478
  // We don't acquire try-locks on ?: branches, only when its result is used.
1479
0
  if (!Cond || isa<ConditionalOperator>(PredBlock->getTerminatorStmt()))
1480
0
    return;
1481
1482
0
  bool Negate = false;
1483
0
  const CFGBlockInfo *PredBlockInfo = &BlockInfo[PredBlock->getBlockID()];
1484
0
  const LocalVarContext &LVarCtx = PredBlockInfo->ExitContext;
1485
1486
0
  const auto *Exp = getTrylockCallExpr(Cond, LVarCtx, Negate);
1487
0
  if (!Exp)
1488
0
    return;
1489
1490
0
  auto *FunDecl = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
1491
0
  if(!FunDecl || !FunDecl->hasAttrs())
1492
0
    return;
1493
1494
0
  CapExprSet ExclusiveLocksToAdd;
1495
0
  CapExprSet SharedLocksToAdd;
1496
1497
  // If the condition is a call to a Trylock function, then grab the attributes
1498
0
  for (const auto *Attr : FunDecl->attrs()) {
1499
0
    switch (Attr->getKind()) {
1500
0
      case attr::TryAcquireCapability: {
1501
0
        auto *A = cast<TryAcquireCapabilityAttr>(Attr);
1502
0
        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
1503
0
                    Exp, FunDecl, PredBlock, CurrBlock, A->getSuccessValue(),
1504
0
                    Negate);
1505
0
        break;
1506
0
      };
1507
0
      case attr::ExclusiveTrylockFunction: {
1508
0
        const auto *A = cast<ExclusiveTrylockFunctionAttr>(Attr);
1509
0
        getMutexIDs(ExclusiveLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1510
0
                    A->getSuccessValue(), Negate);
1511
0
        break;
1512
0
      }
1513
0
      case attr::SharedTrylockFunction: {
1514
0
        const auto *A = cast<SharedTrylockFunctionAttr>(Attr);
1515
0
        getMutexIDs(SharedLocksToAdd, A, Exp, FunDecl, PredBlock, CurrBlock,
1516
0
                    A->getSuccessValue(), Negate);
1517
0
        break;
1518
0
      }
1519
0
      default:
1520
0
        break;
1521
0
    }
1522
0
  }
1523
1524
  // Add and remove locks.
1525
0
  SourceLocation Loc = Exp->getExprLoc();
1526
0
  for (const auto &ExclusiveLockToAdd : ExclusiveLocksToAdd)
1527
0
    addLock(Result, std::make_unique<LockableFactEntry>(ExclusiveLockToAdd,
1528
0
                                                        LK_Exclusive, Loc));
1529
0
  for (const auto &SharedLockToAdd : SharedLocksToAdd)
1530
0
    addLock(Result, std::make_unique<LockableFactEntry>(SharedLockToAdd,
1531
0
                                                        LK_Shared, Loc));
1532
0
}
1533
1534
namespace {
1535
1536
/// We use this class to visit different types of expressions in
1537
/// CFGBlocks, and build up the lockset.
1538
/// An expression may cause us to add or remove locks from the lockset, or else
1539
/// output error messages related to missing locks.
1540
/// FIXME: In future, we may be able to not inherit from a visitor.
1541
class BuildLockset : public ConstStmtVisitor<BuildLockset> {
1542
  friend class ThreadSafetyAnalyzer;
1543
1544
  ThreadSafetyAnalyzer *Analyzer;
1545
  FactSet FSet;
1546
  // The fact set for the function on exit.
1547
  const FactSet &FunctionExitFSet;
1548
  LocalVariableMap::Context LVarCtx;
1549
  unsigned CtxIndex;
1550
1551
  // helper functions
1552
1553
  void checkAccess(const Expr *Exp, AccessKind AK,
1554
0
                   ProtectedOperationKind POK = POK_VarAccess) {
1555
0
    Analyzer->checkAccess(FSet, Exp, AK, POK);
1556
0
  }
1557
  void checkPtAccess(const Expr *Exp, AccessKind AK,
1558
0
                     ProtectedOperationKind POK = POK_VarAccess) {
1559
0
    Analyzer->checkPtAccess(FSet, Exp, AK, POK);
1560
0
  }
1561
1562
  void handleCall(const Expr *Exp, const NamedDecl *D,
1563
                  til::LiteralPtr *Self = nullptr,
1564
                  SourceLocation Loc = SourceLocation());
1565
  void examineArguments(const FunctionDecl *FD,
1566
                        CallExpr::const_arg_iterator ArgBegin,
1567
                        CallExpr::const_arg_iterator ArgEnd,
1568
                        bool SkipFirstParam = false);
1569
1570
public:
1571
  BuildLockset(ThreadSafetyAnalyzer *Anlzr, CFGBlockInfo &Info,
1572
               const FactSet &FunctionExitFSet)
1573
      : ConstStmtVisitor<BuildLockset>(), Analyzer(Anlzr), FSet(Info.EntrySet),
1574
        FunctionExitFSet(FunctionExitFSet), LVarCtx(Info.EntryContext),
1575
0
        CtxIndex(Info.EntryIndex) {}
1576
1577
  void VisitUnaryOperator(const UnaryOperator *UO);
1578
  void VisitBinaryOperator(const BinaryOperator *BO);
1579
  void VisitCastExpr(const CastExpr *CE);
1580
  void VisitCallExpr(const CallExpr *Exp);
1581
  void VisitCXXConstructExpr(const CXXConstructExpr *Exp);
1582
  void VisitDeclStmt(const DeclStmt *S);
1583
  void VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *Exp);
1584
  void VisitReturnStmt(const ReturnStmt *S);
1585
};
1586
1587
} // namespace
1588
1589
/// Warn if the LSet does not contain a lock sufficient to protect access
1590
/// of at least the passed in AccessKind.
1591
void ThreadSafetyAnalyzer::warnIfMutexNotHeld(
1592
    const FactSet &FSet, const NamedDecl *D, const Expr *Exp, AccessKind AK,
1593
    Expr *MutexExp, ProtectedOperationKind POK, til::LiteralPtr *Self,
1594
0
    SourceLocation Loc) {
1595
0
  LockKind LK = getLockKindFromAccessKind(AK);
1596
0
  CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1597
0
  if (Cp.isInvalid()) {
1598
0
    warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind());
1599
0
    return;
1600
0
  } else if (Cp.shouldIgnore()) {
1601
0
    return;
1602
0
  }
1603
1604
0
  if (Cp.negative()) {
1605
    // Negative capabilities act like locks excluded
1606
0
    const FactEntry *LDat = FSet.findLock(FactMan, !Cp);
1607
0
    if (LDat) {
1608
0
      Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1609
0
                                    (!Cp).toString(), Loc);
1610
0
      return;
1611
0
    }
1612
1613
    // If this does not refer to a negative capability in the same class,
1614
    // then stop here.
1615
0
    if (!inCurrentScope(Cp))
1616
0
      return;
1617
1618
    // Otherwise the negative requirement must be propagated to the caller.
1619
0
    LDat = FSet.findLock(FactMan, Cp);
1620
0
    if (!LDat) {
1621
0
      Handler.handleNegativeNotHeld(D, Cp.toString(), Loc);
1622
0
    }
1623
0
    return;
1624
0
  }
1625
1626
0
  const FactEntry *LDat = FSet.findLockUniv(FactMan, Cp);
1627
0
  bool NoError = true;
1628
0
  if (!LDat) {
1629
    // No exact match found.  Look for a partial match.
1630
0
    LDat = FSet.findPartialMatch(FactMan, Cp);
1631
0
    if (LDat) {
1632
      // Warn that there's no precise match.
1633
0
      std::string PartMatchStr = LDat->toString();
1634
0
      StringRef   PartMatchName(PartMatchStr);
1635
0
      Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc,
1636
0
                                 &PartMatchName);
1637
0
    } else {
1638
      // Warn that there's no match at all.
1639
0
      Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc);
1640
0
    }
1641
0
    NoError = false;
1642
0
  }
1643
  // Make sure the mutex we found is the right kind.
1644
0
  if (NoError && LDat && !LDat->isAtLeast(LK)) {
1645
0
    Handler.handleMutexNotHeld(Cp.getKind(), D, POK, Cp.toString(), LK, Loc);
1646
0
  }
1647
0
}
1648
1649
/// Warn if the LSet contains the given lock.
1650
void ThreadSafetyAnalyzer::warnIfMutexHeld(const FactSet &FSet,
1651
                                           const NamedDecl *D, const Expr *Exp,
1652
                                           Expr *MutexExp,
1653
                                           til::LiteralPtr *Self,
1654
0
                                           SourceLocation Loc) {
1655
0
  CapabilityExpr Cp = SxBuilder.translateAttrExpr(MutexExp, D, Exp, Self);
1656
0
  if (Cp.isInvalid()) {
1657
0
    warnInvalidLock(Handler, MutexExp, D, Exp, Cp.getKind());
1658
0
    return;
1659
0
  } else if (Cp.shouldIgnore()) {
1660
0
    return;
1661
0
  }
1662
1663
0
  const FactEntry *LDat = FSet.findLock(FactMan, Cp);
1664
0
  if (LDat) {
1665
0
    Handler.handleFunExcludesLock(Cp.getKind(), D->getNameAsString(),
1666
0
                                  Cp.toString(), Loc);
1667
0
  }
1668
0
}
1669
1670
/// Checks guarded_by and pt_guarded_by attributes.
1671
/// Whenever we identify an access (read or write) to a DeclRefExpr that is
1672
/// marked with guarded_by, we must ensure the appropriate mutexes are held.
1673
/// Similarly, we check if the access is to an expression that dereferences
1674
/// a pointer marked with pt_guarded_by.
1675
void ThreadSafetyAnalyzer::checkAccess(const FactSet &FSet, const Expr *Exp,
1676
                                       AccessKind AK,
1677
0
                                       ProtectedOperationKind POK) {
1678
0
  Exp = Exp->IgnoreImplicit()->IgnoreParenCasts();
1679
1680
0
  SourceLocation Loc = Exp->getExprLoc();
1681
1682
  // Local variables of reference type cannot be re-assigned;
1683
  // map them to their initializer.
1684
0
  while (const auto *DRE = dyn_cast<DeclRefExpr>(Exp)) {
1685
0
    const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()->getCanonicalDecl());
1686
0
    if (VD && VD->isLocalVarDecl() && VD->getType()->isReferenceType()) {
1687
0
      if (const auto *E = VD->getInit()) {
1688
        // Guard against self-initialization. e.g., int &i = i;
1689
0
        if (E == Exp)
1690
0
          break;
1691
0
        Exp = E;
1692
0
        continue;
1693
0
      }
1694
0
    }
1695
0
    break;
1696
0
  }
1697
1698
0
  if (const auto *UO = dyn_cast<UnaryOperator>(Exp)) {
1699
    // For dereferences
1700
0
    if (UO->getOpcode() == UO_Deref)
1701
0
      checkPtAccess(FSet, UO->getSubExpr(), AK, POK);
1702
0
    return;
1703
0
  }
1704
1705
0
  if (const auto *BO = dyn_cast<BinaryOperator>(Exp)) {
1706
0
    switch (BO->getOpcode()) {
1707
0
    case BO_PtrMemD: // .*
1708
0
      return checkAccess(FSet, BO->getLHS(), AK, POK);
1709
0
    case BO_PtrMemI: // ->*
1710
0
      return checkPtAccess(FSet, BO->getLHS(), AK, POK);
1711
0
    default:
1712
0
      return;
1713
0
    }
1714
0
  }
1715
1716
0
  if (const auto *AE = dyn_cast<ArraySubscriptExpr>(Exp)) {
1717
0
    checkPtAccess(FSet, AE->getLHS(), AK, POK);
1718
0
    return;
1719
0
  }
1720
1721
0
  if (const auto *ME = dyn_cast<MemberExpr>(Exp)) {
1722
0
    if (ME->isArrow())
1723
0
      checkPtAccess(FSet, ME->getBase(), AK, POK);
1724
0
    else
1725
0
      checkAccess(FSet, ME->getBase(), AK, POK);
1726
0
  }
1727
1728
0
  const ValueDecl *D = getValueDecl(Exp);
1729
0
  if (!D || !D->hasAttrs())
1730
0
    return;
1731
1732
0
  if (D->hasAttr<GuardedVarAttr>() && FSet.isEmpty(FactMan)) {
1733
0
    Handler.handleNoMutexHeld(D, POK, AK, Loc);
1734
0
  }
1735
1736
0
  for (const auto *I : D->specific_attrs<GuardedByAttr>())
1737
0
    warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), POK, nullptr, Loc);
1738
0
}
1739
1740
/// Checks pt_guarded_by and pt_guarded_var attributes.
1741
/// POK is the same  operationKind that was passed to checkAccess.
1742
void ThreadSafetyAnalyzer::checkPtAccess(const FactSet &FSet, const Expr *Exp,
1743
                                         AccessKind AK,
1744
0
                                         ProtectedOperationKind POK) {
1745
0
  while (true) {
1746
0
    if (const auto *PE = dyn_cast<ParenExpr>(Exp)) {
1747
0
      Exp = PE->getSubExpr();
1748
0
      continue;
1749
0
    }
1750
0
    if (const auto *CE = dyn_cast<CastExpr>(Exp)) {
1751
0
      if (CE->getCastKind() == CK_ArrayToPointerDecay) {
1752
        // If it's an actual array, and not a pointer, then it's elements
1753
        // are protected by GUARDED_BY, not PT_GUARDED_BY;
1754
0
        checkAccess(FSet, CE->getSubExpr(), AK, POK);
1755
0
        return;
1756
0
      }
1757
0
      Exp = CE->getSubExpr();
1758
0
      continue;
1759
0
    }
1760
0
    break;
1761
0
  }
1762
1763
  // Pass by reference warnings are under a different flag.
1764
0
  ProtectedOperationKind PtPOK = POK_VarDereference;
1765
0
  if (POK == POK_PassByRef) PtPOK = POK_PtPassByRef;
1766
0
  if (POK == POK_ReturnByRef)
1767
0
    PtPOK = POK_PtReturnByRef;
1768
1769
0
  const ValueDecl *D = getValueDecl(Exp);
1770
0
  if (!D || !D->hasAttrs())
1771
0
    return;
1772
1773
0
  if (D->hasAttr<PtGuardedVarAttr>() && FSet.isEmpty(FactMan))
1774
0
    Handler.handleNoMutexHeld(D, PtPOK, AK, Exp->getExprLoc());
1775
1776
0
  for (auto const *I : D->specific_attrs<PtGuardedByAttr>())
1777
0
    warnIfMutexNotHeld(FSet, D, Exp, AK, I->getArg(), PtPOK, nullptr,
1778
0
                       Exp->getExprLoc());
1779
0
}
1780
1781
/// Process a function call, method call, constructor call,
1782
/// or destructor call.  This involves looking at the attributes on the
1783
/// corresponding function/method/constructor/destructor, issuing warnings,
1784
/// and updating the locksets accordingly.
1785
///
1786
/// FIXME: For classes annotated with one of the guarded annotations, we need
1787
/// to treat const method calls as reads and non-const method calls as writes,
1788
/// and check that the appropriate locks are held. Non-const method calls with
1789
/// the same signature as const method calls can be also treated as reads.
1790
///
1791
/// \param Exp   The call expression.
1792
/// \param D     The callee declaration.
1793
/// \param Self  If \p Exp = nullptr, the implicit this argument or the argument
1794
///              of an implicitly called cleanup function.
1795
/// \param Loc   If \p Exp = nullptr, the location.
1796
void BuildLockset::handleCall(const Expr *Exp, const NamedDecl *D,
1797
0
                              til::LiteralPtr *Self, SourceLocation Loc) {
1798
0
  CapExprSet ExclusiveLocksToAdd, SharedLocksToAdd;
1799
0
  CapExprSet ExclusiveLocksToRemove, SharedLocksToRemove, GenericLocksToRemove;
1800
0
  CapExprSet ScopedReqsAndExcludes;
1801
1802
  // Figure out if we're constructing an object of scoped lockable class
1803
0
  CapabilityExpr Scp;
1804
0
  if (Exp) {
1805
0
    assert(!Self);
1806
0
    const auto *TagT = Exp->getType()->getAs<TagType>();
1807
0
    if (TagT && Exp->isPRValue()) {
1808
0
      std::pair<til::LiteralPtr *, StringRef> Placeholder =
1809
0
          Analyzer->SxBuilder.createThisPlaceholder(Exp);
1810
0
      [[maybe_unused]] auto inserted =
1811
0
          Analyzer->ConstructedObjects.insert({Exp, Placeholder.first});
1812
0
      assert(inserted.second && "Are we visiting the same expression again?");
1813
0
      if (isa<CXXConstructExpr>(Exp))
1814
0
        Self = Placeholder.first;
1815
0
      if (TagT->getDecl()->hasAttr<ScopedLockableAttr>())
1816
0
        Scp = CapabilityExpr(Placeholder.first, Placeholder.second, false);
1817
0
    }
1818
1819
0
    assert(Loc.isInvalid());
1820
0
    Loc = Exp->getExprLoc();
1821
0
  }
1822
1823
0
  for(const Attr *At : D->attrs()) {
1824
0
    switch (At->getKind()) {
1825
      // When we encounter a lock function, we need to add the lock to our
1826
      // lockset.
1827
0
      case attr::AcquireCapability: {
1828
0
        const auto *A = cast<AcquireCapabilityAttr>(At);
1829
0
        Analyzer->getMutexIDs(A->isShared() ? SharedLocksToAdd
1830
0
                                            : ExclusiveLocksToAdd,
1831
0
                              A, Exp, D, Self);
1832
0
        break;
1833
0
      }
1834
1835
      // An assert will add a lock to the lockset, but will not generate
1836
      // a warning if it is already there, and will not generate a warning
1837
      // if it is not removed.
1838
0
      case attr::AssertExclusiveLock: {
1839
0
        const auto *A = cast<AssertExclusiveLockAttr>(At);
1840
1841
0
        CapExprSet AssertLocks;
1842
0
        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1843
0
        for (const auto &AssertLock : AssertLocks)
1844
0
          Analyzer->addLock(
1845
0
              FSet, std::make_unique<LockableFactEntry>(
1846
0
                        AssertLock, LK_Exclusive, Loc, FactEntry::Asserted));
1847
0
        break;
1848
0
      }
1849
0
      case attr::AssertSharedLock: {
1850
0
        const auto *A = cast<AssertSharedLockAttr>(At);
1851
1852
0
        CapExprSet AssertLocks;
1853
0
        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1854
0
        for (const auto &AssertLock : AssertLocks)
1855
0
          Analyzer->addLock(
1856
0
              FSet, std::make_unique<LockableFactEntry>(
1857
0
                        AssertLock, LK_Shared, Loc, FactEntry::Asserted));
1858
0
        break;
1859
0
      }
1860
1861
0
      case attr::AssertCapability: {
1862
0
        const auto *A = cast<AssertCapabilityAttr>(At);
1863
0
        CapExprSet AssertLocks;
1864
0
        Analyzer->getMutexIDs(AssertLocks, A, Exp, D, Self);
1865
0
        for (const auto &AssertLock : AssertLocks)
1866
0
          Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(
1867
0
                                      AssertLock,
1868
0
                                      A->isShared() ? LK_Shared : LK_Exclusive,
1869
0
                                      Loc, FactEntry::Asserted));
1870
0
        break;
1871
0
      }
1872
1873
      // When we encounter an unlock function, we need to remove unlocked
1874
      // mutexes from the lockset, and flag a warning if they are not there.
1875
0
      case attr::ReleaseCapability: {
1876
0
        const auto *A = cast<ReleaseCapabilityAttr>(At);
1877
0
        if (A->isGeneric())
1878
0
          Analyzer->getMutexIDs(GenericLocksToRemove, A, Exp, D, Self);
1879
0
        else if (A->isShared())
1880
0
          Analyzer->getMutexIDs(SharedLocksToRemove, A, Exp, D, Self);
1881
0
        else
1882
0
          Analyzer->getMutexIDs(ExclusiveLocksToRemove, A, Exp, D, Self);
1883
0
        break;
1884
0
      }
1885
1886
0
      case attr::RequiresCapability: {
1887
0
        const auto *A = cast<RequiresCapabilityAttr>(At);
1888
0
        for (auto *Arg : A->args()) {
1889
0
          Analyzer->warnIfMutexNotHeld(FSet, D, Exp,
1890
0
                                       A->isShared() ? AK_Read : AK_Written,
1891
0
                                       Arg, POK_FunctionCall, Self, Loc);
1892
          // use for adopting a lock
1893
0
          if (!Scp.shouldIgnore())
1894
0
            Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1895
0
        }
1896
0
        break;
1897
0
      }
1898
1899
0
      case attr::LocksExcluded: {
1900
0
        const auto *A = cast<LocksExcludedAttr>(At);
1901
0
        for (auto *Arg : A->args()) {
1902
0
          Analyzer->warnIfMutexHeld(FSet, D, Exp, Arg, Self, Loc);
1903
          // use for deferring a lock
1904
0
          if (!Scp.shouldIgnore())
1905
0
            Analyzer->getMutexIDs(ScopedReqsAndExcludes, A, Exp, D, Self);
1906
0
        }
1907
0
        break;
1908
0
      }
1909
1910
      // Ignore attributes unrelated to thread-safety
1911
0
      default:
1912
0
        break;
1913
0
    }
1914
0
  }
1915
1916
  // Remove locks first to allow lock upgrading/downgrading.
1917
  // FIXME -- should only fully remove if the attribute refers to 'this'.
1918
0
  bool Dtor = isa<CXXDestructorDecl>(D);
1919
0
  for (const auto &M : ExclusiveLocksToRemove)
1920
0
    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Exclusive);
1921
0
  for (const auto &M : SharedLocksToRemove)
1922
0
    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Shared);
1923
0
  for (const auto &M : GenericLocksToRemove)
1924
0
    Analyzer->removeLock(FSet, M, Loc, Dtor, LK_Generic);
1925
1926
  // Add locks.
1927
0
  FactEntry::SourceKind Source =
1928
0
      !Scp.shouldIgnore() ? FactEntry::Managed : FactEntry::Acquired;
1929
0
  for (const auto &M : ExclusiveLocksToAdd)
1930
0
    Analyzer->addLock(FSet, std::make_unique<LockableFactEntry>(M, LK_Exclusive,
1931
0
                                                                Loc, Source));
1932
0
  for (const auto &M : SharedLocksToAdd)
1933
0
    Analyzer->addLock(
1934
0
        FSet, std::make_unique<LockableFactEntry>(M, LK_Shared, Loc, Source));
1935
1936
0
  if (!Scp.shouldIgnore()) {
1937
    // Add the managing object as a dummy mutex, mapped to the underlying mutex.
1938
0
    auto ScopedEntry = std::make_unique<ScopedLockableFactEntry>(Scp, Loc);
1939
0
    for (const auto &M : ExclusiveLocksToAdd)
1940
0
      ScopedEntry->addLock(M);
1941
0
    for (const auto &M : SharedLocksToAdd)
1942
0
      ScopedEntry->addLock(M);
1943
0
    for (const auto &M : ScopedReqsAndExcludes)
1944
0
      ScopedEntry->addLock(M);
1945
0
    for (const auto &M : ExclusiveLocksToRemove)
1946
0
      ScopedEntry->addExclusiveUnlock(M);
1947
0
    for (const auto &M : SharedLocksToRemove)
1948
0
      ScopedEntry->addSharedUnlock(M);
1949
0
    Analyzer->addLock(FSet, std::move(ScopedEntry));
1950
0
  }
1951
0
}
1952
1953
/// For unary operations which read and write a variable, we need to
1954
/// check whether we hold any required mutexes. Reads are checked in
1955
/// VisitCastExpr.
1956
0
void BuildLockset::VisitUnaryOperator(const UnaryOperator *UO) {
1957
0
  switch (UO->getOpcode()) {
1958
0
    case UO_PostDec:
1959
0
    case UO_PostInc:
1960
0
    case UO_PreDec:
1961
0
    case UO_PreInc:
1962
0
      checkAccess(UO->getSubExpr(), AK_Written);
1963
0
      break;
1964
0
    default:
1965
0
      break;
1966
0
  }
1967
0
}
1968
1969
/// For binary operations which assign to a variable (writes), we need to check
1970
/// whether we hold any required mutexes.
1971
/// FIXME: Deal with non-primitive types.
1972
0
void BuildLockset::VisitBinaryOperator(const BinaryOperator *BO) {
1973
0
  if (!BO->isAssignmentOp())
1974
0
    return;
1975
1976
  // adjust the context
1977
0
  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, BO, LVarCtx);
1978
1979
0
  checkAccess(BO->getLHS(), AK_Written);
1980
0
}
1981
1982
/// Whenever we do an LValue to Rvalue cast, we are reading a variable and
1983
/// need to ensure we hold any required mutexes.
1984
/// FIXME: Deal with non-primitive types.
1985
0
void BuildLockset::VisitCastExpr(const CastExpr *CE) {
1986
0
  if (CE->getCastKind() != CK_LValueToRValue)
1987
0
    return;
1988
0
  checkAccess(CE->getSubExpr(), AK_Read);
1989
0
}
1990
1991
void BuildLockset::examineArguments(const FunctionDecl *FD,
1992
                                    CallExpr::const_arg_iterator ArgBegin,
1993
                                    CallExpr::const_arg_iterator ArgEnd,
1994
0
                                    bool SkipFirstParam) {
1995
  // Currently we can't do anything if we don't know the function declaration.
1996
0
  if (!FD)
1997
0
    return;
1998
1999
  // NO_THREAD_SAFETY_ANALYSIS does double duty here.  Normally it
2000
  // only turns off checking within the body of a function, but we also
2001
  // use it to turn off checking in arguments to the function.  This
2002
  // could result in some false negatives, but the alternative is to
2003
  // create yet another attribute.
2004
0
  if (FD->hasAttr<NoThreadSafetyAnalysisAttr>())
2005
0
    return;
2006
2007
0
  const ArrayRef<ParmVarDecl *> Params = FD->parameters();
2008
0
  auto Param = Params.begin();
2009
0
  if (SkipFirstParam)
2010
0
    ++Param;
2011
2012
  // There can be default arguments, so we stop when one iterator is at end().
2013
0
  for (auto Arg = ArgBegin; Param != Params.end() && Arg != ArgEnd;
2014
0
       ++Param, ++Arg) {
2015
0
    QualType Qt = (*Param)->getType();
2016
0
    if (Qt->isReferenceType())
2017
0
      checkAccess(*Arg, AK_Read, POK_PassByRef);
2018
0
  }
2019
0
}
2020
2021
0
void BuildLockset::VisitCallExpr(const CallExpr *Exp) {
2022
0
  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(Exp)) {
2023
0
    const auto *ME = dyn_cast<MemberExpr>(CE->getCallee());
2024
    // ME can be null when calling a method pointer
2025
0
    const CXXMethodDecl *MD = CE->getMethodDecl();
2026
2027
0
    if (ME && MD) {
2028
0
      if (ME->isArrow()) {
2029
        // Should perhaps be AK_Written if !MD->isConst().
2030
0
        checkPtAccess(CE->getImplicitObjectArgument(), AK_Read);
2031
0
      } else {
2032
        // Should perhaps be AK_Written if !MD->isConst().
2033
0
        checkAccess(CE->getImplicitObjectArgument(), AK_Read);
2034
0
      }
2035
0
    }
2036
2037
0
    examineArguments(CE->getDirectCallee(), CE->arg_begin(), CE->arg_end());
2038
0
  } else if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(Exp)) {
2039
0
    OverloadedOperatorKind OEop = OE->getOperator();
2040
0
    switch (OEop) {
2041
0
      case OO_Equal:
2042
0
      case OO_PlusEqual:
2043
0
      case OO_MinusEqual:
2044
0
      case OO_StarEqual:
2045
0
      case OO_SlashEqual:
2046
0
      case OO_PercentEqual:
2047
0
      case OO_CaretEqual:
2048
0
      case OO_AmpEqual:
2049
0
      case OO_PipeEqual:
2050
0
      case OO_LessLessEqual:
2051
0
      case OO_GreaterGreaterEqual:
2052
0
        checkAccess(OE->getArg(1), AK_Read);
2053
0
        [[fallthrough]];
2054
0
      case OO_PlusPlus:
2055
0
      case OO_MinusMinus:
2056
0
        checkAccess(OE->getArg(0), AK_Written);
2057
0
        break;
2058
0
      case OO_Star:
2059
0
      case OO_ArrowStar:
2060
0
      case OO_Arrow:
2061
0
      case OO_Subscript:
2062
0
        if (!(OEop == OO_Star && OE->getNumArgs() > 1)) {
2063
          // Grrr.  operator* can be multiplication...
2064
0
          checkPtAccess(OE->getArg(0), AK_Read);
2065
0
        }
2066
0
        [[fallthrough]];
2067
0
      default: {
2068
        // TODO: get rid of this, and rely on pass-by-ref instead.
2069
0
        const Expr *Obj = OE->getArg(0);
2070
0
        checkAccess(Obj, AK_Read);
2071
        // Check the remaining arguments. For method operators, the first
2072
        // argument is the implicit self argument, and doesn't appear in the
2073
        // FunctionDecl, but for non-methods it does.
2074
0
        const FunctionDecl *FD = OE->getDirectCallee();
2075
0
        examineArguments(FD, std::next(OE->arg_begin()), OE->arg_end(),
2076
0
                         /*SkipFirstParam*/ !isa<CXXMethodDecl>(FD));
2077
0
        break;
2078
0
      }
2079
0
    }
2080
0
  } else {
2081
0
    examineArguments(Exp->getDirectCallee(), Exp->arg_begin(), Exp->arg_end());
2082
0
  }
2083
2084
0
  auto *D = dyn_cast_or_null<NamedDecl>(Exp->getCalleeDecl());
2085
0
  if(!D || !D->hasAttrs())
2086
0
    return;
2087
0
  handleCall(Exp, D);
2088
0
}
2089
2090
0
void BuildLockset::VisitCXXConstructExpr(const CXXConstructExpr *Exp) {
2091
0
  const CXXConstructorDecl *D = Exp->getConstructor();
2092
0
  if (D && D->isCopyConstructor()) {
2093
0
    const Expr* Source = Exp->getArg(0);
2094
0
    checkAccess(Source, AK_Read);
2095
0
  } else {
2096
0
    examineArguments(D, Exp->arg_begin(), Exp->arg_end());
2097
0
  }
2098
0
  if (D && D->hasAttrs())
2099
0
    handleCall(Exp, D);
2100
0
}
2101
2102
0
static const Expr *UnpackConstruction(const Expr *E) {
2103
0
  if (auto *CE = dyn_cast<CastExpr>(E))
2104
0
    if (CE->getCastKind() == CK_NoOp)
2105
0
      E = CE->getSubExpr()->IgnoreParens();
2106
0
  if (auto *CE = dyn_cast<CastExpr>(E))
2107
0
    if (CE->getCastKind() == CK_ConstructorConversion ||
2108
0
        CE->getCastKind() == CK_UserDefinedConversion)
2109
0
      E = CE->getSubExpr();
2110
0
  if (auto *BTE = dyn_cast<CXXBindTemporaryExpr>(E))
2111
0
    E = BTE->getSubExpr();
2112
0
  return E;
2113
0
}
2114
2115
0
void BuildLockset::VisitDeclStmt(const DeclStmt *S) {
2116
  // adjust the context
2117
0
  LVarCtx = Analyzer->LocalVarMap.getNextContext(CtxIndex, S, LVarCtx);
2118
2119
0
  for (auto *D : S->getDeclGroup()) {
2120
0
    if (auto *VD = dyn_cast_or_null<VarDecl>(D)) {
2121
0
      const Expr *E = VD->getInit();
2122
0
      if (!E)
2123
0
        continue;
2124
0
      E = E->IgnoreParens();
2125
2126
      // handle constructors that involve temporaries
2127
0
      if (auto *EWC = dyn_cast<ExprWithCleanups>(E))
2128
0
        E = EWC->getSubExpr()->IgnoreParens();
2129
0
      E = UnpackConstruction(E);
2130
2131
0
      if (auto Object = Analyzer->ConstructedObjects.find(E);
2132
0
          Object != Analyzer->ConstructedObjects.end()) {
2133
0
        Object->second->setClangDecl(VD);
2134
0
        Analyzer->ConstructedObjects.erase(Object);
2135
0
      }
2136
0
    }
2137
0
  }
2138
0
}
2139
2140
void BuildLockset::VisitMaterializeTemporaryExpr(
2141
0
    const MaterializeTemporaryExpr *Exp) {
2142
0
  if (const ValueDecl *ExtD = Exp->getExtendingDecl()) {
2143
0
    if (auto Object = Analyzer->ConstructedObjects.find(
2144
0
            UnpackConstruction(Exp->getSubExpr()));
2145
0
        Object != Analyzer->ConstructedObjects.end()) {
2146
0
      Object->second->setClangDecl(ExtD);
2147
0
      Analyzer->ConstructedObjects.erase(Object);
2148
0
    }
2149
0
  }
2150
0
}
2151
2152
0
void BuildLockset::VisitReturnStmt(const ReturnStmt *S) {
2153
0
  if (Analyzer->CurrentFunction == nullptr)
2154
0
    return;
2155
0
  const Expr *RetVal = S->getRetValue();
2156
0
  if (!RetVal)
2157
0
    return;
2158
2159
  // If returning by reference, check that the function requires the appropriate
2160
  // capabilities.
2161
0
  const QualType ReturnType =
2162
0
      Analyzer->CurrentFunction->getReturnType().getCanonicalType();
2163
0
  if (ReturnType->isLValueReferenceType()) {
2164
0
    Analyzer->checkAccess(
2165
0
        FunctionExitFSet, RetVal,
2166
0
        ReturnType->getPointeeType().isConstQualified() ? AK_Read : AK_Written,
2167
0
        POK_ReturnByRef);
2168
0
  }
2169
0
}
2170
2171
/// Given two facts merging on a join point, possibly warn and decide whether to
2172
/// keep or replace.
2173
///
2174
/// \param CanModify Whether we can replace \p A by \p B.
2175
/// \return  false if we should keep \p A, true if we should take \p B.
2176
bool ThreadSafetyAnalyzer::join(const FactEntry &A, const FactEntry &B,
2177
0
                                bool CanModify) {
2178
0
  if (A.kind() != B.kind()) {
2179
    // For managed capabilities, the destructor should unlock in the right mode
2180
    // anyway. For asserted capabilities no unlocking is needed.
2181
0
    if ((A.managed() || A.asserted()) && (B.managed() || B.asserted())) {
2182
      // The shared capability subsumes the exclusive capability, if possible.
2183
0
      bool ShouldTakeB = B.kind() == LK_Shared;
2184
0
      if (CanModify || !ShouldTakeB)
2185
0
        return ShouldTakeB;
2186
0
    }
2187
0
    Handler.handleExclusiveAndShared(B.getKind(), B.toString(), B.loc(),
2188
0
                                     A.loc());
2189
    // Take the exclusive capability to reduce further warnings.
2190
0
    return CanModify && B.kind() == LK_Exclusive;
2191
0
  } else {
2192
    // The non-asserted capability is the one we want to track.
2193
0
    return CanModify && A.asserted() && !B.asserted();
2194
0
  }
2195
0
}
2196
2197
/// Compute the intersection of two locksets and issue warnings for any
2198
/// locks in the symmetric difference.
2199
///
2200
/// This function is used at a merge point in the CFG when comparing the lockset
2201
/// of each branch being merged. For example, given the following sequence:
2202
/// A; if () then B; else C; D; we need to check that the lockset after B and C
2203
/// are the same. In the event of a difference, we use the intersection of these
2204
/// two locksets at the start of D.
2205
///
2206
/// \param EntrySet A lockset for entry into a (possibly new) block.
2207
/// \param ExitSet The lockset on exiting a preceding block.
2208
/// \param JoinLoc The location of the join point for error reporting
2209
/// \param EntryLEK The warning if a mutex is missing from \p EntrySet.
2210
/// \param ExitLEK The warning if a mutex is missing from \p ExitSet.
2211
void ThreadSafetyAnalyzer::intersectAndWarn(FactSet &EntrySet,
2212
                                            const FactSet &ExitSet,
2213
                                            SourceLocation JoinLoc,
2214
                                            LockErrorKind EntryLEK,
2215
0
                                            LockErrorKind ExitLEK) {
2216
0
  FactSet EntrySetOrig = EntrySet;
2217
2218
  // Find locks in ExitSet that conflict or are not in EntrySet, and warn.
2219
0
  for (const auto &Fact : ExitSet) {
2220
0
    const FactEntry &ExitFact = FactMan[Fact];
2221
2222
0
    FactSet::iterator EntryIt = EntrySet.findLockIter(FactMan, ExitFact);
2223
0
    if (EntryIt != EntrySet.end()) {
2224
0
      if (join(FactMan[*EntryIt], ExitFact,
2225
0
               EntryLEK != LEK_LockedSomeLoopIterations))
2226
0
        *EntryIt = Fact;
2227
0
    } else if (!ExitFact.managed()) {
2228
0
      ExitFact.handleRemovalFromIntersection(ExitSet, FactMan, JoinLoc,
2229
0
                                             EntryLEK, Handler);
2230
0
    }
2231
0
  }
2232
2233
  // Find locks in EntrySet that are not in ExitSet, and remove them.
2234
0
  for (const auto &Fact : EntrySetOrig) {
2235
0
    const FactEntry *EntryFact = &FactMan[Fact];
2236
0
    const FactEntry *ExitFact = ExitSet.findLock(FactMan, *EntryFact);
2237
2238
0
    if (!ExitFact) {
2239
0
      if (!EntryFact->managed() || ExitLEK == LEK_LockedSomeLoopIterations)
2240
0
        EntryFact->handleRemovalFromIntersection(EntrySetOrig, FactMan, JoinLoc,
2241
0
                                                 ExitLEK, Handler);
2242
0
      if (ExitLEK == LEK_LockedSomePredecessors)
2243
0
        EntrySet.removeLock(FactMan, *EntryFact);
2244
0
    }
2245
0
  }
2246
0
}
2247
2248
// Return true if block B never continues to its successors.
2249
0
static bool neverReturns(const CFGBlock *B) {
2250
0
  if (B->hasNoReturnElement())
2251
0
    return true;
2252
0
  if (B->empty())
2253
0
    return false;
2254
2255
0
  CFGElement Last = B->back();
2256
0
  if (std::optional<CFGStmt> S = Last.getAs<CFGStmt>()) {
2257
0
    if (isa<CXXThrowExpr>(S->getStmt()))
2258
0
      return true;
2259
0
  }
2260
0
  return false;
2261
0
}
2262
2263
/// Check a function's CFG for thread-safety violations.
2264
///
2265
/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2266
/// at the end of each block, and issue warnings for thread safety violations.
2267
/// Each block in the CFG is traversed exactly once.
2268
0
void ThreadSafetyAnalyzer::runAnalysis(AnalysisDeclContext &AC) {
2269
  // TODO: this whole function needs be rewritten as a visitor for CFGWalker.
2270
  // For now, we just use the walker to set things up.
2271
0
  threadSafety::CFGWalker walker;
2272
0
  if (!walker.init(AC))
2273
0
    return;
2274
2275
  // AC.dumpCFG(true);
2276
  // threadSafety::printSCFG(walker);
2277
2278
0
  CFG *CFGraph = walker.getGraph();
2279
0
  const NamedDecl *D = walker.getDecl();
2280
0
  CurrentFunction = dyn_cast<FunctionDecl>(D);
2281
2282
0
  if (D->hasAttr<NoThreadSafetyAnalysisAttr>())
2283
0
    return;
2284
2285
  // FIXME: Do something a bit more intelligent inside constructor and
2286
  // destructor code.  Constructors and destructors must assume unique access
2287
  // to 'this', so checks on member variable access is disabled, but we should
2288
  // still enable checks on other objects.
2289
0
  if (isa<CXXConstructorDecl>(D))
2290
0
    return;  // Don't check inside constructors.
2291
0
  if (isa<CXXDestructorDecl>(D))
2292
0
    return;  // Don't check inside destructors.
2293
2294
0
  Handler.enterFunction(CurrentFunction);
2295
2296
0
  BlockInfo.resize(CFGraph->getNumBlockIDs(),
2297
0
    CFGBlockInfo::getEmptyBlockInfo(LocalVarMap));
2298
2299
  // We need to explore the CFG via a "topological" ordering.
2300
  // That way, we will be guaranteed to have information about required
2301
  // predecessor locksets when exploring a new block.
2302
0
  const PostOrderCFGView *SortedGraph = walker.getSortedGraph();
2303
0
  PostOrderCFGView::CFGBlockSet VisitedBlocks(CFGraph);
2304
2305
0
  CFGBlockInfo &Initial = BlockInfo[CFGraph->getEntry().getBlockID()];
2306
0
  CFGBlockInfo &Final   = BlockInfo[CFGraph->getExit().getBlockID()];
2307
2308
  // Mark entry block as reachable
2309
0
  Initial.Reachable = true;
2310
2311
  // Compute SSA names for local variables
2312
0
  LocalVarMap.traverseCFG(CFGraph, SortedGraph, BlockInfo);
2313
2314
  // Fill in source locations for all CFGBlocks.
2315
0
  findBlockLocations(CFGraph, SortedGraph, BlockInfo);
2316
2317
0
  CapExprSet ExclusiveLocksAcquired;
2318
0
  CapExprSet SharedLocksAcquired;
2319
0
  CapExprSet LocksReleased;
2320
2321
  // Add locks from exclusive_locks_required and shared_locks_required
2322
  // to initial lockset. Also turn off checking for lock and unlock functions.
2323
  // FIXME: is there a more intelligent way to check lock/unlock functions?
2324
0
  if (!SortedGraph->empty() && D->hasAttrs()) {
2325
0
    assert(*SortedGraph->begin() == &CFGraph->getEntry());
2326
0
    FactSet &InitialLockset = Initial.EntrySet;
2327
2328
0
    CapExprSet ExclusiveLocksToAdd;
2329
0
    CapExprSet SharedLocksToAdd;
2330
2331
0
    SourceLocation Loc = D->getLocation();
2332
0
    for (const auto *Attr : D->attrs()) {
2333
0
      Loc = Attr->getLocation();
2334
0
      if (const auto *A = dyn_cast<RequiresCapabilityAttr>(Attr)) {
2335
0
        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2336
0
                    nullptr, D);
2337
0
      } else if (const auto *A = dyn_cast<ReleaseCapabilityAttr>(Attr)) {
2338
        // UNLOCK_FUNCTION() is used to hide the underlying lock implementation.
2339
        // We must ignore such methods.
2340
0
        if (A->args_size() == 0)
2341
0
          return;
2342
0
        getMutexIDs(A->isShared() ? SharedLocksToAdd : ExclusiveLocksToAdd, A,
2343
0
                    nullptr, D);
2344
0
        getMutexIDs(LocksReleased, A, nullptr, D);
2345
0
      } else if (const auto *A = dyn_cast<AcquireCapabilityAttr>(Attr)) {
2346
0
        if (A->args_size() == 0)
2347
0
          return;
2348
0
        getMutexIDs(A->isShared() ? SharedLocksAcquired
2349
0
                                  : ExclusiveLocksAcquired,
2350
0
                    A, nullptr, D);
2351
0
      } else if (isa<ExclusiveTrylockFunctionAttr>(Attr)) {
2352
        // Don't try to check trylock functions for now.
2353
0
        return;
2354
0
      } else if (isa<SharedTrylockFunctionAttr>(Attr)) {
2355
        // Don't try to check trylock functions for now.
2356
0
        return;
2357
0
      } else if (isa<TryAcquireCapabilityAttr>(Attr)) {
2358
        // Don't try to check trylock functions for now.
2359
0
        return;
2360
0
      }
2361
0
    }
2362
2363
    // FIXME -- Loc can be wrong here.
2364
0
    for (const auto &Mu : ExclusiveLocksToAdd) {
2365
0
      auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Exclusive, Loc,
2366
0
                                                       FactEntry::Declared);
2367
0
      addLock(InitialLockset, std::move(Entry), true);
2368
0
    }
2369
0
    for (const auto &Mu : SharedLocksToAdd) {
2370
0
      auto Entry = std::make_unique<LockableFactEntry>(Mu, LK_Shared, Loc,
2371
0
                                                       FactEntry::Declared);
2372
0
      addLock(InitialLockset, std::move(Entry), true);
2373
0
    }
2374
0
  }
2375
2376
  // Compute the expected exit set.
2377
  // By default, we expect all locks held on entry to be held on exit.
2378
0
  FactSet ExpectedFunctionExitSet = Initial.EntrySet;
2379
2380
  // Adjust the expected exit set by adding or removing locks, as declared
2381
  // by *-LOCK_FUNCTION and UNLOCK_FUNCTION.  The intersect below will then
2382
  // issue the appropriate warning.
2383
  // FIXME: the location here is not quite right.
2384
0
  for (const auto &Lock : ExclusiveLocksAcquired)
2385
0
    ExpectedFunctionExitSet.addLock(
2386
0
        FactMan, std::make_unique<LockableFactEntry>(Lock, LK_Exclusive,
2387
0
                                                     D->getLocation()));
2388
0
  for (const auto &Lock : SharedLocksAcquired)
2389
0
    ExpectedFunctionExitSet.addLock(
2390
0
        FactMan,
2391
0
        std::make_unique<LockableFactEntry>(Lock, LK_Shared, D->getLocation()));
2392
0
  for (const auto &Lock : LocksReleased)
2393
0
    ExpectedFunctionExitSet.removeLock(FactMan, Lock);
2394
2395
0
  for (const auto *CurrBlock : *SortedGraph) {
2396
0
    unsigned CurrBlockID = CurrBlock->getBlockID();
2397
0
    CFGBlockInfo *CurrBlockInfo = &BlockInfo[CurrBlockID];
2398
2399
    // Use the default initial lockset in case there are no predecessors.
2400
0
    VisitedBlocks.insert(CurrBlock);
2401
2402
    // Iterate through the predecessor blocks and warn if the lockset for all
2403
    // predecessors is not the same. We take the entry lockset of the current
2404
    // block to be the intersection of all previous locksets.
2405
    // FIXME: By keeping the intersection, we may output more errors in future
2406
    // for a lock which is not in the intersection, but was in the union. We
2407
    // may want to also keep the union in future. As an example, let's say
2408
    // the intersection contains Mutex L, and the union contains L and M.
2409
    // Later we unlock M. At this point, we would output an error because we
2410
    // never locked M; although the real error is probably that we forgot to
2411
    // lock M on all code paths. Conversely, let's say that later we lock M.
2412
    // In this case, we should compare against the intersection instead of the
2413
    // union because the real error is probably that we forgot to unlock M on
2414
    // all code paths.
2415
0
    bool LocksetInitialized = false;
2416
0
    for (CFGBlock::const_pred_iterator PI = CurrBlock->pred_begin(),
2417
0
         PE  = CurrBlock->pred_end(); PI != PE; ++PI) {
2418
      // if *PI -> CurrBlock is a back edge
2419
0
      if (*PI == nullptr || !VisitedBlocks.alreadySet(*PI))
2420
0
        continue;
2421
2422
0
      unsigned PrevBlockID = (*PI)->getBlockID();
2423
0
      CFGBlockInfo *PrevBlockInfo = &BlockInfo[PrevBlockID];
2424
2425
      // Ignore edges from blocks that can't return.
2426
0
      if (neverReturns(*PI) || !PrevBlockInfo->Reachable)
2427
0
        continue;
2428
2429
      // Okay, we can reach this block from the entry.
2430
0
      CurrBlockInfo->Reachable = true;
2431
2432
0
      FactSet PrevLockset;
2433
0
      getEdgeLockset(PrevLockset, PrevBlockInfo->ExitSet, *PI, CurrBlock);
2434
2435
0
      if (!LocksetInitialized) {
2436
0
        CurrBlockInfo->EntrySet = PrevLockset;
2437
0
        LocksetInitialized = true;
2438
0
      } else {
2439
        // Surprisingly 'continue' doesn't always produce back edges, because
2440
        // the CFG has empty "transition" blocks where they meet with the end
2441
        // of the regular loop body. We still want to diagnose them as loop.
2442
0
        intersectAndWarn(
2443
0
            CurrBlockInfo->EntrySet, PrevLockset, CurrBlockInfo->EntryLoc,
2444
0
            isa_and_nonnull<ContinueStmt>((*PI)->getTerminatorStmt())
2445
0
                ? LEK_LockedSomeLoopIterations
2446
0
                : LEK_LockedSomePredecessors);
2447
0
      }
2448
0
    }
2449
2450
    // Skip rest of block if it's not reachable.
2451
0
    if (!CurrBlockInfo->Reachable)
2452
0
      continue;
2453
2454
0
    BuildLockset LocksetBuilder(this, *CurrBlockInfo, ExpectedFunctionExitSet);
2455
2456
    // Visit all the statements in the basic block.
2457
0
    for (const auto &BI : *CurrBlock) {
2458
0
      switch (BI.getKind()) {
2459
0
        case CFGElement::Statement: {
2460
0
          CFGStmt CS = BI.castAs<CFGStmt>();
2461
0
          LocksetBuilder.Visit(CS.getStmt());
2462
0
          break;
2463
0
        }
2464
        // Ignore BaseDtor and MemberDtor for now.
2465
0
        case CFGElement::AutomaticObjectDtor: {
2466
0
          CFGAutomaticObjDtor AD = BI.castAs<CFGAutomaticObjDtor>();
2467
0
          const auto *DD = AD.getDestructorDecl(AC.getASTContext());
2468
0
          if (!DD->hasAttrs())
2469
0
            break;
2470
2471
0
          LocksetBuilder.handleCall(nullptr, DD,
2472
0
                                    SxBuilder.createVariable(AD.getVarDecl()),
2473
0
                                    AD.getTriggerStmt()->getEndLoc());
2474
0
          break;
2475
0
        }
2476
2477
0
        case CFGElement::CleanupFunction: {
2478
0
          const CFGCleanupFunction &CF = BI.castAs<CFGCleanupFunction>();
2479
0
          LocksetBuilder.handleCall(/*Exp=*/nullptr, CF.getFunctionDecl(),
2480
0
                                    SxBuilder.createVariable(CF.getVarDecl()),
2481
0
                                    CF.getVarDecl()->getLocation());
2482
0
          break;
2483
0
        }
2484
2485
0
        case CFGElement::TemporaryDtor: {
2486
0
          auto TD = BI.castAs<CFGTemporaryDtor>();
2487
2488
          // Clean up constructed object even if there are no attributes to
2489
          // keep the number of objects in limbo as small as possible.
2490
0
          if (auto Object = ConstructedObjects.find(
2491
0
                  TD.getBindTemporaryExpr()->getSubExpr());
2492
0
              Object != ConstructedObjects.end()) {
2493
0
            const auto *DD = TD.getDestructorDecl(AC.getASTContext());
2494
0
            if (DD->hasAttrs())
2495
              // TODO: the location here isn't quite correct.
2496
0
              LocksetBuilder.handleCall(nullptr, DD, Object->second,
2497
0
                                        TD.getBindTemporaryExpr()->getEndLoc());
2498
0
            ConstructedObjects.erase(Object);
2499
0
          }
2500
0
          break;
2501
0
        }
2502
0
        default:
2503
0
          break;
2504
0
      }
2505
0
    }
2506
0
    CurrBlockInfo->ExitSet = LocksetBuilder.FSet;
2507
2508
    // For every back edge from CurrBlock (the end of the loop) to another block
2509
    // (FirstLoopBlock) we need to check that the Lockset of Block is equal to
2510
    // the one held at the beginning of FirstLoopBlock. We can look up the
2511
    // Lockset held at the beginning of FirstLoopBlock in the EntryLockSets map.
2512
0
    for (CFGBlock::const_succ_iterator SI = CurrBlock->succ_begin(),
2513
0
         SE  = CurrBlock->succ_end(); SI != SE; ++SI) {
2514
      // if CurrBlock -> *SI is *not* a back edge
2515
0
      if (*SI == nullptr || !VisitedBlocks.alreadySet(*SI))
2516
0
        continue;
2517
2518
0
      CFGBlock *FirstLoopBlock = *SI;
2519
0
      CFGBlockInfo *PreLoop = &BlockInfo[FirstLoopBlock->getBlockID()];
2520
0
      CFGBlockInfo *LoopEnd = &BlockInfo[CurrBlockID];
2521
0
      intersectAndWarn(PreLoop->EntrySet, LoopEnd->ExitSet, PreLoop->EntryLoc,
2522
0
                       LEK_LockedSomeLoopIterations);
2523
0
    }
2524
0
  }
2525
2526
  // Skip the final check if the exit block is unreachable.
2527
0
  if (!Final.Reachable)
2528
0
    return;
2529
2530
  // FIXME: Should we call this function for all blocks which exit the function?
2531
0
  intersectAndWarn(ExpectedFunctionExitSet, Final.ExitSet, Final.ExitLoc,
2532
0
                   LEK_LockedAtEndOfFunction, LEK_NotLockedAtEndOfFunction);
2533
2534
0
  Handler.leaveFunction(CurrentFunction);
2535
0
}
2536
2537
/// Check a function's CFG for thread-safety violations.
2538
///
2539
/// We traverse the blocks in the CFG, compute the set of mutexes that are held
2540
/// at the end of each block, and issue warnings for thread safety violations.
2541
/// Each block in the CFG is traversed exactly once.
2542
void threadSafety::runThreadSafetyAnalysis(AnalysisDeclContext &AC,
2543
                                           ThreadSafetyHandler &Handler,
2544
0
                                           BeforeSet **BSet) {
2545
0
  if (!*BSet)
2546
0
    *BSet = new BeforeSet;
2547
0
  ThreadSafetyAnalyzer Analyzer(Handler, *BSet);
2548
0
  Analyzer.runAnalysis(AC);
2549
0
}
2550
2551
46
void threadSafety::threadSafetyCleanup(BeforeSet *Cache) { delete Cache; }
2552
2553
/// Helper function that returns a LockKind required for the given level
2554
/// of access.
2555
0
LockKind threadSafety::getLockKindFromAccessKind(AccessKind AK) {
2556
0
  switch (AK) {
2557
0
    case AK_Read :
2558
0
      return LK_Shared;
2559
0
    case AK_Written :
2560
0
      return LK_Exclusive;
2561
0
  }
2562
0
  llvm_unreachable("Unknown AccessKind");
2563
0
}