Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/Analysis/ThreadSafetyCommon.cpp
Line
Count
Source (jump to first uncovered line)
1
//===- ThreadSafetyCommon.cpp ---------------------------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Implementation of the interfaces declared in ThreadSafetyCommon.h
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "clang/Analysis/Analyses/ThreadSafetyCommon.h"
14
#include "clang/AST/Attr.h"
15
#include "clang/AST/Decl.h"
16
#include "clang/AST/DeclCXX.h"
17
#include "clang/AST/DeclGroup.h"
18
#include "clang/AST/DeclObjC.h"
19
#include "clang/AST/Expr.h"
20
#include "clang/AST/ExprCXX.h"
21
#include "clang/AST/OperationKinds.h"
22
#include "clang/AST/Stmt.h"
23
#include "clang/AST/Type.h"
24
#include "clang/Analysis/Analyses/ThreadSafetyTIL.h"
25
#include "clang/Analysis/CFG.h"
26
#include "clang/Basic/LLVM.h"
27
#include "clang/Basic/OperatorKinds.h"
28
#include "clang/Basic/Specifiers.h"
29
#include "llvm/ADT/StringExtras.h"
30
#include "llvm/ADT/StringRef.h"
31
#include "llvm/Support/Casting.h"
32
#include <algorithm>
33
#include <cassert>
34
#include <string>
35
#include <utility>
36
37
using namespace clang;
38
using namespace threadSafety;
39
40
// From ThreadSafetyUtil.h
41
0
std::string threadSafety::getSourceLiteralString(const Expr *CE) {
42
0
  switch (CE->getStmtClass()) {
43
0
    case Stmt::IntegerLiteralClass:
44
0
      return toString(cast<IntegerLiteral>(CE)->getValue(), 10, true);
45
0
    case Stmt::StringLiteralClass: {
46
0
      std::string ret("\"");
47
0
      ret += cast<StringLiteral>(CE)->getString();
48
0
      ret += "\"";
49
0
      return ret;
50
0
    }
51
0
    case Stmt::CharacterLiteralClass:
52
0
    case Stmt::CXXNullPtrLiteralExprClass:
53
0
    case Stmt::GNUNullExprClass:
54
0
    case Stmt::CXXBoolLiteralExprClass:
55
0
    case Stmt::FloatingLiteralClass:
56
0
    case Stmt::ImaginaryLiteralClass:
57
0
    case Stmt::ObjCStringLiteralClass:
58
0
    default:
59
0
      return "#lit";
60
0
  }
61
0
}
62
63
// Return true if E is a variable that points to an incomplete Phi node.
64
0
static bool isIncompletePhi(const til::SExpr *E) {
65
0
  if (const auto *Ph = dyn_cast<til::Phi>(E))
66
0
    return Ph->status() == til::Phi::PH_Incomplete;
67
0
  return false;
68
0
}
69
70
using CallingContext = SExprBuilder::CallingContext;
71
72
0
til::SExpr *SExprBuilder::lookupStmt(const Stmt *S) { return SMap.lookup(S); }
73
74
0
til::SCFG *SExprBuilder::buildCFG(CFGWalker &Walker) {
75
0
  Walker.walk(*this);
76
0
  return Scfg;
77
0
}
78
79
0
static bool isCalleeArrow(const Expr *E) {
80
0
  const auto *ME = dyn_cast<MemberExpr>(E->IgnoreParenCasts());
81
0
  return ME ? ME->isArrow() : false;
82
0
}
83
84
0
static StringRef ClassifyDiagnostic(const CapabilityAttr *A) {
85
0
  return A->getName();
86
0
}
87
88
0
static StringRef ClassifyDiagnostic(QualType VDT) {
89
  // We need to look at the declaration of the type of the value to determine
90
  // which it is. The type should either be a record or a typedef, or a pointer
91
  // or reference thereof.
92
0
  if (const auto *RT = VDT->getAs<RecordType>()) {
93
0
    if (const auto *RD = RT->getDecl())
94
0
      if (const auto *CA = RD->getAttr<CapabilityAttr>())
95
0
        return ClassifyDiagnostic(CA);
96
0
  } else if (const auto *TT = VDT->getAs<TypedefType>()) {
97
0
    if (const auto *TD = TT->getDecl())
98
0
      if (const auto *CA = TD->getAttr<CapabilityAttr>())
99
0
        return ClassifyDiagnostic(CA);
100
0
  } else if (VDT->isPointerType() || VDT->isReferenceType())
101
0
    return ClassifyDiagnostic(VDT->getPointeeType());
102
103
0
  return "mutex";
104
0
}
105
106
/// Translate a clang expression in an attribute to a til::SExpr.
107
/// Constructs the context from D, DeclExp, and SelfDecl.
108
///
109
/// \param AttrExp The expression to translate.
110
/// \param D       The declaration to which the attribute is attached.
111
/// \param DeclExp An expression involving the Decl to which the attribute
112
///                is attached.  E.g. the call to a function.
113
/// \param Self    S-expression to substitute for a \ref CXXThisExpr in a call,
114
///                or argument to a cleanup function.
115
CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
116
                                               const NamedDecl *D,
117
                                               const Expr *DeclExp,
118
0
                                               til::SExpr *Self) {
119
  // If we are processing a raw attribute expression, with no substitutions.
120
0
  if (!DeclExp && !Self)
121
0
    return translateAttrExpr(AttrExp, nullptr);
122
123
0
  CallingContext Ctx(nullptr, D);
124
125
  // Examine DeclExp to find SelfArg and FunArgs, which are used to substitute
126
  // for formal parameters when we call buildMutexID later.
127
0
  if (!DeclExp)
128
0
    /* We'll use Self. */;
129
0
  else if (const auto *ME = dyn_cast<MemberExpr>(DeclExp)) {
130
0
    Ctx.SelfArg   = ME->getBase();
131
0
    Ctx.SelfArrow = ME->isArrow();
132
0
  } else if (const auto *CE = dyn_cast<CXXMemberCallExpr>(DeclExp)) {
133
0
    Ctx.SelfArg   = CE->getImplicitObjectArgument();
134
0
    Ctx.SelfArrow = isCalleeArrow(CE->getCallee());
135
0
    Ctx.NumArgs   = CE->getNumArgs();
136
0
    Ctx.FunArgs   = CE->getArgs();
137
0
  } else if (const auto *CE = dyn_cast<CallExpr>(DeclExp)) {
138
0
    Ctx.NumArgs = CE->getNumArgs();
139
0
    Ctx.FunArgs = CE->getArgs();
140
0
  } else if (const auto *CE = dyn_cast<CXXConstructExpr>(DeclExp)) {
141
0
    Ctx.SelfArg = nullptr;  // Will be set below
142
0
    Ctx.NumArgs = CE->getNumArgs();
143
0
    Ctx.FunArgs = CE->getArgs();
144
0
  }
145
146
0
  if (Self) {
147
0
    assert(!Ctx.SelfArg && "Ambiguous self argument");
148
0
    assert(isa<FunctionDecl>(D) && "Self argument requires function");
149
0
    if (isa<CXXMethodDecl>(D))
150
0
      Ctx.SelfArg = Self;
151
0
    else
152
0
      Ctx.FunArgs = Self;
153
154
    // If the attribute has no arguments, then assume the argument is "this".
155
0
    if (!AttrExp)
156
0
      return CapabilityExpr(
157
0
          Self,
158
0
          ClassifyDiagnostic(
159
0
              cast<CXXMethodDecl>(D)->getFunctionObjectParameterType()),
160
0
          false);
161
0
    else  // For most attributes.
162
0
      return translateAttrExpr(AttrExp, &Ctx);
163
0
  }
164
165
  // If the attribute has no arguments, then assume the argument is "this".
166
0
  if (!AttrExp)
167
0
    return translateAttrExpr(cast<const Expr *>(Ctx.SelfArg), nullptr);
168
0
  else  // For most attributes.
169
0
    return translateAttrExpr(AttrExp, &Ctx);
170
0
}
171
172
/// Translate a clang expression in an attribute to a til::SExpr.
173
// This assumes a CallingContext has already been created.
174
CapabilityExpr SExprBuilder::translateAttrExpr(const Expr *AttrExp,
175
0
                                               CallingContext *Ctx) {
176
0
  if (!AttrExp)
177
0
    return CapabilityExpr();
178
179
0
  if (const auto* SLit = dyn_cast<StringLiteral>(AttrExp)) {
180
0
    if (SLit->getString() == StringRef("*"))
181
      // The "*" expr is a universal lock, which essentially turns off
182
      // checks until it is removed from the lockset.
183
0
      return CapabilityExpr(new (Arena) til::Wildcard(), StringRef("wildcard"),
184
0
                            false);
185
0
    else
186
      // Ignore other string literals for now.
187
0
      return CapabilityExpr();
188
0
  }
189
190
0
  bool Neg = false;
191
0
  if (const auto *OE = dyn_cast<CXXOperatorCallExpr>(AttrExp)) {
192
0
    if (OE->getOperator() == OO_Exclaim) {
193
0
      Neg = true;
194
0
      AttrExp = OE->getArg(0);
195
0
    }
196
0
  }
197
0
  else if (const auto *UO = dyn_cast<UnaryOperator>(AttrExp)) {
198
0
    if (UO->getOpcode() == UO_LNot) {
199
0
      Neg = true;
200
0
      AttrExp = UO->getSubExpr();
201
0
    }
202
0
  }
203
204
0
  til::SExpr *E = translate(AttrExp, Ctx);
205
206
  // Trap mutex expressions like nullptr, or 0.
207
  // Any literal value is nonsense.
208
0
  if (!E || isa<til::Literal>(E))
209
0
    return CapabilityExpr();
210
211
0
  StringRef Kind = ClassifyDiagnostic(AttrExp->getType());
212
213
  // Hack to deal with smart pointers -- strip off top-level pointer casts.
214
0
  if (const auto *CE = dyn_cast<til::Cast>(E)) {
215
0
    if (CE->castOpcode() == til::CAST_objToPtr)
216
0
      return CapabilityExpr(CE->expr(), Kind, Neg);
217
0
  }
218
0
  return CapabilityExpr(E, Kind, Neg);
219
0
}
220
221
0
til::LiteralPtr *SExprBuilder::createVariable(const VarDecl *VD) {
222
0
  return new (Arena) til::LiteralPtr(VD);
223
0
}
224
225
std::pair<til::LiteralPtr *, StringRef>
226
0
SExprBuilder::createThisPlaceholder(const Expr *Exp) {
227
0
  return {new (Arena) til::LiteralPtr(nullptr),
228
0
          ClassifyDiagnostic(Exp->getType())};
229
0
}
230
231
// Translate a clang statement or expression to a TIL expression.
232
// Also performs substitution of variables; Ctx provides the context.
233
// Dispatches on the type of S.
234
0
til::SExpr *SExprBuilder::translate(const Stmt *S, CallingContext *Ctx) {
235
0
  if (!S)
236
0
    return nullptr;
237
238
  // Check if S has already been translated and cached.
239
  // This handles the lookup of SSA names for DeclRefExprs here.
240
0
  if (til::SExpr *E = lookupStmt(S))
241
0
    return E;
242
243
0
  switch (S->getStmtClass()) {
244
0
  case Stmt::DeclRefExprClass:
245
0
    return translateDeclRefExpr(cast<DeclRefExpr>(S), Ctx);
246
0
  case Stmt::CXXThisExprClass:
247
0
    return translateCXXThisExpr(cast<CXXThisExpr>(S), Ctx);
248
0
  case Stmt::MemberExprClass:
249
0
    return translateMemberExpr(cast<MemberExpr>(S), Ctx);
250
0
  case Stmt::ObjCIvarRefExprClass:
251
0
    return translateObjCIVarRefExpr(cast<ObjCIvarRefExpr>(S), Ctx);
252
0
  case Stmt::CallExprClass:
253
0
    return translateCallExpr(cast<CallExpr>(S), Ctx);
254
0
  case Stmt::CXXMemberCallExprClass:
255
0
    return translateCXXMemberCallExpr(cast<CXXMemberCallExpr>(S), Ctx);
256
0
  case Stmt::CXXOperatorCallExprClass:
257
0
    return translateCXXOperatorCallExpr(cast<CXXOperatorCallExpr>(S), Ctx);
258
0
  case Stmt::UnaryOperatorClass:
259
0
    return translateUnaryOperator(cast<UnaryOperator>(S), Ctx);
260
0
  case Stmt::BinaryOperatorClass:
261
0
  case Stmt::CompoundAssignOperatorClass:
262
0
    return translateBinaryOperator(cast<BinaryOperator>(S), Ctx);
263
264
0
  case Stmt::ArraySubscriptExprClass:
265
0
    return translateArraySubscriptExpr(cast<ArraySubscriptExpr>(S), Ctx);
266
0
  case Stmt::ConditionalOperatorClass:
267
0
    return translateAbstractConditionalOperator(
268
0
             cast<ConditionalOperator>(S), Ctx);
269
0
  case Stmt::BinaryConditionalOperatorClass:
270
0
    return translateAbstractConditionalOperator(
271
0
             cast<BinaryConditionalOperator>(S), Ctx);
272
273
  // We treat these as no-ops
274
0
  case Stmt::ConstantExprClass:
275
0
    return translate(cast<ConstantExpr>(S)->getSubExpr(), Ctx);
276
0
  case Stmt::ParenExprClass:
277
0
    return translate(cast<ParenExpr>(S)->getSubExpr(), Ctx);
278
0
  case Stmt::ExprWithCleanupsClass:
279
0
    return translate(cast<ExprWithCleanups>(S)->getSubExpr(), Ctx);
280
0
  case Stmt::CXXBindTemporaryExprClass:
281
0
    return translate(cast<CXXBindTemporaryExpr>(S)->getSubExpr(), Ctx);
282
0
  case Stmt::MaterializeTemporaryExprClass:
283
0
    return translate(cast<MaterializeTemporaryExpr>(S)->getSubExpr(), Ctx);
284
285
  // Collect all literals
286
0
  case Stmt::CharacterLiteralClass:
287
0
  case Stmt::CXXNullPtrLiteralExprClass:
288
0
  case Stmt::GNUNullExprClass:
289
0
  case Stmt::CXXBoolLiteralExprClass:
290
0
  case Stmt::FloatingLiteralClass:
291
0
  case Stmt::ImaginaryLiteralClass:
292
0
  case Stmt::IntegerLiteralClass:
293
0
  case Stmt::StringLiteralClass:
294
0
  case Stmt::ObjCStringLiteralClass:
295
0
    return new (Arena) til::Literal(cast<Expr>(S));
296
297
0
  case Stmt::DeclStmtClass:
298
0
    return translateDeclStmt(cast<DeclStmt>(S), Ctx);
299
0
  default:
300
0
    break;
301
0
  }
302
0
  if (const auto *CE = dyn_cast<CastExpr>(S))
303
0
    return translateCastExpr(CE, Ctx);
304
305
0
  return new (Arena) til::Undefined(S);
306
0
}
307
308
til::SExpr *SExprBuilder::translateDeclRefExpr(const DeclRefExpr *DRE,
309
0
                                               CallingContext *Ctx) {
310
0
  const auto *VD = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
311
312
  // Function parameters require substitution and/or renaming.
313
0
  if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
314
0
    unsigned I = PV->getFunctionScopeIndex();
315
0
    const DeclContext *D = PV->getDeclContext();
316
0
    if (Ctx && Ctx->FunArgs) {
317
0
      const Decl *Canonical = Ctx->AttrDecl->getCanonicalDecl();
318
0
      if (isa<FunctionDecl>(D)
319
0
              ? (cast<FunctionDecl>(D)->getCanonicalDecl() == Canonical)
320
0
              : (cast<ObjCMethodDecl>(D)->getCanonicalDecl() == Canonical)) {
321
        // Substitute call arguments for references to function parameters
322
0
        if (const Expr *const *FunArgs =
323
0
                Ctx->FunArgs.dyn_cast<const Expr *const *>()) {
324
0
          assert(I < Ctx->NumArgs);
325
0
          return translate(FunArgs[I], Ctx->Prev);
326
0
        }
327
328
0
        assert(I == 0);
329
0
        return Ctx->FunArgs.get<til::SExpr *>();
330
0
      }
331
0
    }
332
    // Map the param back to the param of the original function declaration
333
    // for consistent comparisons.
334
0
    VD = isa<FunctionDecl>(D)
335
0
             ? cast<FunctionDecl>(D)->getCanonicalDecl()->getParamDecl(I)
336
0
             : cast<ObjCMethodDecl>(D)->getCanonicalDecl()->getParamDecl(I);
337
0
  }
338
339
  // For non-local variables, treat it as a reference to a named object.
340
0
  return new (Arena) til::LiteralPtr(VD);
341
0
}
342
343
til::SExpr *SExprBuilder::translateCXXThisExpr(const CXXThisExpr *TE,
344
0
                                               CallingContext *Ctx) {
345
  // Substitute for 'this'
346
0
  if (Ctx && Ctx->SelfArg) {
347
0
    if (const auto *SelfArg = dyn_cast<const Expr *>(Ctx->SelfArg))
348
0
      return translate(SelfArg, Ctx->Prev);
349
0
    else
350
0
      return cast<til::SExpr *>(Ctx->SelfArg);
351
0
  }
352
0
  assert(SelfVar && "We have no variable for 'this'!");
353
0
  return SelfVar;
354
0
}
355
356
0
static const ValueDecl *getValueDeclFromSExpr(const til::SExpr *E) {
357
0
  if (const auto *V = dyn_cast<til::Variable>(E))
358
0
    return V->clangDecl();
359
0
  if (const auto *Ph = dyn_cast<til::Phi>(E))
360
0
    return Ph->clangDecl();
361
0
  if (const auto *P = dyn_cast<til::Project>(E))
362
0
    return P->clangDecl();
363
0
  if (const auto *L = dyn_cast<til::LiteralPtr>(E))
364
0
    return L->clangDecl();
365
0
  return nullptr;
366
0
}
367
368
0
static bool hasAnyPointerType(const til::SExpr *E) {
369
0
  auto *VD = getValueDeclFromSExpr(E);
370
0
  if (VD && VD->getType()->isAnyPointerType())
371
0
    return true;
372
0
  if (const auto *C = dyn_cast<til::Cast>(E))
373
0
    return C->castOpcode() == til::CAST_objToPtr;
374
375
0
  return false;
376
0
}
377
378
// Grab the very first declaration of virtual method D
379
0
static const CXXMethodDecl *getFirstVirtualDecl(const CXXMethodDecl *D) {
380
0
  while (true) {
381
0
    D = D->getCanonicalDecl();
382
0
    auto OverriddenMethods = D->overridden_methods();
383
0
    if (OverriddenMethods.begin() == OverriddenMethods.end())
384
0
      return D;  // Method does not override anything
385
    // FIXME: this does not work with multiple inheritance.
386
0
    D = *OverriddenMethods.begin();
387
0
  }
388
0
  return nullptr;
389
0
}
390
391
til::SExpr *SExprBuilder::translateMemberExpr(const MemberExpr *ME,
392
0
                                              CallingContext *Ctx) {
393
0
  til::SExpr *BE = translate(ME->getBase(), Ctx);
394
0
  til::SExpr *E  = new (Arena) til::SApply(BE);
395
396
0
  const auto *D = cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
397
0
  if (const auto *VD = dyn_cast<CXXMethodDecl>(D))
398
0
    D = getFirstVirtualDecl(VD);
399
400
0
  til::Project *P = new (Arena) til::Project(E, D);
401
0
  if (hasAnyPointerType(BE))
402
0
    P->setArrow(true);
403
0
  return P;
404
0
}
405
406
til::SExpr *SExprBuilder::translateObjCIVarRefExpr(const ObjCIvarRefExpr *IVRE,
407
0
                                                   CallingContext *Ctx) {
408
0
  til::SExpr *BE = translate(IVRE->getBase(), Ctx);
409
0
  til::SExpr *E = new (Arena) til::SApply(BE);
410
411
0
  const auto *D = cast<ObjCIvarDecl>(IVRE->getDecl()->getCanonicalDecl());
412
413
0
  til::Project *P = new (Arena) til::Project(E, D);
414
0
  if (hasAnyPointerType(BE))
415
0
    P->setArrow(true);
416
0
  return P;
417
0
}
418
419
til::SExpr *SExprBuilder::translateCallExpr(const CallExpr *CE,
420
                                            CallingContext *Ctx,
421
0
                                            const Expr *SelfE) {
422
0
  if (CapabilityExprMode) {
423
    // Handle LOCK_RETURNED
424
0
    if (const FunctionDecl *FD = CE->getDirectCallee()) {
425
0
      FD = FD->getMostRecentDecl();
426
0
      if (LockReturnedAttr *At = FD->getAttr<LockReturnedAttr>()) {
427
0
        CallingContext LRCallCtx(Ctx);
428
0
        LRCallCtx.AttrDecl = CE->getDirectCallee();
429
0
        LRCallCtx.SelfArg = SelfE;
430
0
        LRCallCtx.NumArgs = CE->getNumArgs();
431
0
        LRCallCtx.FunArgs = CE->getArgs();
432
0
        return const_cast<til::SExpr *>(
433
0
            translateAttrExpr(At->getArg(), &LRCallCtx).sexpr());
434
0
      }
435
0
    }
436
0
  }
437
438
0
  til::SExpr *E = translate(CE->getCallee(), Ctx);
439
0
  for (const auto *Arg : CE->arguments()) {
440
0
    til::SExpr *A = translate(Arg, Ctx);
441
0
    E = new (Arena) til::Apply(E, A);
442
0
  }
443
0
  return new (Arena) til::Call(E, CE);
444
0
}
445
446
til::SExpr *SExprBuilder::translateCXXMemberCallExpr(
447
0
    const CXXMemberCallExpr *ME, CallingContext *Ctx) {
448
0
  if (CapabilityExprMode) {
449
    // Ignore calls to get() on smart pointers.
450
0
    if (ME->getMethodDecl()->getNameAsString() == "get" &&
451
0
        ME->getNumArgs() == 0) {
452
0
      auto *E = translate(ME->getImplicitObjectArgument(), Ctx);
453
0
      return new (Arena) til::Cast(til::CAST_objToPtr, E);
454
      // return E;
455
0
    }
456
0
  }
457
0
  return translateCallExpr(cast<CallExpr>(ME), Ctx,
458
0
                           ME->getImplicitObjectArgument());
459
0
}
460
461
til::SExpr *SExprBuilder::translateCXXOperatorCallExpr(
462
0
    const CXXOperatorCallExpr *OCE, CallingContext *Ctx) {
463
0
  if (CapabilityExprMode) {
464
    // Ignore operator * and operator -> on smart pointers.
465
0
    OverloadedOperatorKind k = OCE->getOperator();
466
0
    if (k == OO_Star || k == OO_Arrow) {
467
0
      auto *E = translate(OCE->getArg(0), Ctx);
468
0
      return new (Arena) til::Cast(til::CAST_objToPtr, E);
469
      // return E;
470
0
    }
471
0
  }
472
0
  return translateCallExpr(cast<CallExpr>(OCE), Ctx);
473
0
}
474
475
til::SExpr *SExprBuilder::translateUnaryOperator(const UnaryOperator *UO,
476
0
                                                 CallingContext *Ctx) {
477
0
  switch (UO->getOpcode()) {
478
0
  case UO_PostInc:
479
0
  case UO_PostDec:
480
0
  case UO_PreInc:
481
0
  case UO_PreDec:
482
0
    return new (Arena) til::Undefined(UO);
483
484
0
  case UO_AddrOf:
485
0
    if (CapabilityExprMode) {
486
      // interpret &Graph::mu_ as an existential.
487
0
      if (const auto *DRE = dyn_cast<DeclRefExpr>(UO->getSubExpr())) {
488
0
        if (DRE->getDecl()->isCXXInstanceMember()) {
489
          // This is a pointer-to-member expression, e.g. &MyClass::mu_.
490
          // We interpret this syntax specially, as a wildcard.
491
0
          auto *W = new (Arena) til::Wildcard();
492
0
          return new (Arena) til::Project(W, DRE->getDecl());
493
0
        }
494
0
      }
495
0
    }
496
    // otherwise, & is a no-op
497
0
    return translate(UO->getSubExpr(), Ctx);
498
499
  // We treat these as no-ops
500
0
  case UO_Deref:
501
0
  case UO_Plus:
502
0
    return translate(UO->getSubExpr(), Ctx);
503
504
0
  case UO_Minus:
505
0
    return new (Arena)
506
0
      til::UnaryOp(til::UOP_Minus, translate(UO->getSubExpr(), Ctx));
507
0
  case UO_Not:
508
0
    return new (Arena)
509
0
      til::UnaryOp(til::UOP_BitNot, translate(UO->getSubExpr(), Ctx));
510
0
  case UO_LNot:
511
0
    return new (Arena)
512
0
      til::UnaryOp(til::UOP_LogicNot, translate(UO->getSubExpr(), Ctx));
513
514
  // Currently unsupported
515
0
  case UO_Real:
516
0
  case UO_Imag:
517
0
  case UO_Extension:
518
0
  case UO_Coawait:
519
0
    return new (Arena) til::Undefined(UO);
520
0
  }
521
0
  return new (Arena) til::Undefined(UO);
522
0
}
523
524
til::SExpr *SExprBuilder::translateBinOp(til::TIL_BinaryOpcode Op,
525
                                         const BinaryOperator *BO,
526
0
                                         CallingContext *Ctx, bool Reverse) {
527
0
   til::SExpr *E0 = translate(BO->getLHS(), Ctx);
528
0
   til::SExpr *E1 = translate(BO->getRHS(), Ctx);
529
0
   if (Reverse)
530
0
     return new (Arena) til::BinaryOp(Op, E1, E0);
531
0
   else
532
0
     return new (Arena) til::BinaryOp(Op, E0, E1);
533
0
}
534
535
til::SExpr *SExprBuilder::translateBinAssign(til::TIL_BinaryOpcode Op,
536
                                             const BinaryOperator *BO,
537
                                             CallingContext *Ctx,
538
0
                                             bool Assign) {
539
0
  const Expr *LHS = BO->getLHS();
540
0
  const Expr *RHS = BO->getRHS();
541
0
  til::SExpr *E0 = translate(LHS, Ctx);
542
0
  til::SExpr *E1 = translate(RHS, Ctx);
543
544
0
  const ValueDecl *VD = nullptr;
545
0
  til::SExpr *CV = nullptr;
546
0
  if (const auto *DRE = dyn_cast<DeclRefExpr>(LHS)) {
547
0
    VD = DRE->getDecl();
548
0
    CV = lookupVarDecl(VD);
549
0
  }
550
551
0
  if (!Assign) {
552
0
    til::SExpr *Arg = CV ? CV : new (Arena) til::Load(E0);
553
0
    E1 = new (Arena) til::BinaryOp(Op, Arg, E1);
554
0
    E1 = addStatement(E1, nullptr, VD);
555
0
  }
556
0
  if (VD && CV)
557
0
    return updateVarDecl(VD, E1);
558
0
  return new (Arena) til::Store(E0, E1);
559
0
}
560
561
til::SExpr *SExprBuilder::translateBinaryOperator(const BinaryOperator *BO,
562
0
                                                  CallingContext *Ctx) {
563
0
  switch (BO->getOpcode()) {
564
0
  case BO_PtrMemD:
565
0
  case BO_PtrMemI:
566
0
    return new (Arena) til::Undefined(BO);
567
568
0
  case BO_Mul:  return translateBinOp(til::BOP_Mul, BO, Ctx);
569
0
  case BO_Div:  return translateBinOp(til::BOP_Div, BO, Ctx);
570
0
  case BO_Rem:  return translateBinOp(til::BOP_Rem, BO, Ctx);
571
0
  case BO_Add:  return translateBinOp(til::BOP_Add, BO, Ctx);
572
0
  case BO_Sub:  return translateBinOp(til::BOP_Sub, BO, Ctx);
573
0
  case BO_Shl:  return translateBinOp(til::BOP_Shl, BO, Ctx);
574
0
  case BO_Shr:  return translateBinOp(til::BOP_Shr, BO, Ctx);
575
0
  case BO_LT:   return translateBinOp(til::BOP_Lt,  BO, Ctx);
576
0
  case BO_GT:   return translateBinOp(til::BOP_Lt,  BO, Ctx, true);
577
0
  case BO_LE:   return translateBinOp(til::BOP_Leq, BO, Ctx);
578
0
  case BO_GE:   return translateBinOp(til::BOP_Leq, BO, Ctx, true);
579
0
  case BO_EQ:   return translateBinOp(til::BOP_Eq,  BO, Ctx);
580
0
  case BO_NE:   return translateBinOp(til::BOP_Neq, BO, Ctx);
581
0
  case BO_Cmp:  return translateBinOp(til::BOP_Cmp, BO, Ctx);
582
0
  case BO_And:  return translateBinOp(til::BOP_BitAnd,   BO, Ctx);
583
0
  case BO_Xor:  return translateBinOp(til::BOP_BitXor,   BO, Ctx);
584
0
  case BO_Or:   return translateBinOp(til::BOP_BitOr,    BO, Ctx);
585
0
  case BO_LAnd: return translateBinOp(til::BOP_LogicAnd, BO, Ctx);
586
0
  case BO_LOr:  return translateBinOp(til::BOP_LogicOr,  BO, Ctx);
587
588
0
  case BO_Assign:    return translateBinAssign(til::BOP_Eq,  BO, Ctx, true);
589
0
  case BO_MulAssign: return translateBinAssign(til::BOP_Mul, BO, Ctx);
590
0
  case BO_DivAssign: return translateBinAssign(til::BOP_Div, BO, Ctx);
591
0
  case BO_RemAssign: return translateBinAssign(til::BOP_Rem, BO, Ctx);
592
0
  case BO_AddAssign: return translateBinAssign(til::BOP_Add, BO, Ctx);
593
0
  case BO_SubAssign: return translateBinAssign(til::BOP_Sub, BO, Ctx);
594
0
  case BO_ShlAssign: return translateBinAssign(til::BOP_Shl, BO, Ctx);
595
0
  case BO_ShrAssign: return translateBinAssign(til::BOP_Shr, BO, Ctx);
596
0
  case BO_AndAssign: return translateBinAssign(til::BOP_BitAnd, BO, Ctx);
597
0
  case BO_XorAssign: return translateBinAssign(til::BOP_BitXor, BO, Ctx);
598
0
  case BO_OrAssign:  return translateBinAssign(til::BOP_BitOr,  BO, Ctx);
599
600
0
  case BO_Comma:
601
    // The clang CFG should have already processed both sides.
602
0
    return translate(BO->getRHS(), Ctx);
603
0
  }
604
0
  return new (Arena) til::Undefined(BO);
605
0
}
606
607
til::SExpr *SExprBuilder::translateCastExpr(const CastExpr *CE,
608
0
                                            CallingContext *Ctx) {
609
0
  CastKind K = CE->getCastKind();
610
0
  switch (K) {
611
0
  case CK_LValueToRValue: {
612
0
    if (const auto *DRE = dyn_cast<DeclRefExpr>(CE->getSubExpr())) {
613
0
      til::SExpr *E0 = lookupVarDecl(DRE->getDecl());
614
0
      if (E0)
615
0
        return E0;
616
0
    }
617
0
    til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
618
0
    return E0;
619
    // FIXME!! -- get Load working properly
620
    // return new (Arena) til::Load(E0);
621
0
  }
622
0
  case CK_NoOp:
623
0
  case CK_DerivedToBase:
624
0
  case CK_UncheckedDerivedToBase:
625
0
  case CK_ArrayToPointerDecay:
626
0
  case CK_FunctionToPointerDecay: {
627
0
    til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
628
0
    return E0;
629
0
  }
630
0
  default: {
631
    // FIXME: handle different kinds of casts.
632
0
    til::SExpr *E0 = translate(CE->getSubExpr(), Ctx);
633
0
    if (CapabilityExprMode)
634
0
      return E0;
635
0
    return new (Arena) til::Cast(til::CAST_none, E0);
636
0
  }
637
0
  }
638
0
}
639
640
til::SExpr *
641
SExprBuilder::translateArraySubscriptExpr(const ArraySubscriptExpr *E,
642
0
                                          CallingContext *Ctx) {
643
0
  til::SExpr *E0 = translate(E->getBase(), Ctx);
644
0
  til::SExpr *E1 = translate(E->getIdx(), Ctx);
645
0
  return new (Arena) til::ArrayIndex(E0, E1);
646
0
}
647
648
til::SExpr *
649
SExprBuilder::translateAbstractConditionalOperator(
650
0
    const AbstractConditionalOperator *CO, CallingContext *Ctx) {
651
0
  auto *C = translate(CO->getCond(), Ctx);
652
0
  auto *T = translate(CO->getTrueExpr(), Ctx);
653
0
  auto *E = translate(CO->getFalseExpr(), Ctx);
654
0
  return new (Arena) til::IfThenElse(C, T, E);
655
0
}
656
657
til::SExpr *
658
0
SExprBuilder::translateDeclStmt(const DeclStmt *S, CallingContext *Ctx) {
659
0
  DeclGroupRef DGrp = S->getDeclGroup();
660
0
  for (auto *I : DGrp) {
661
0
    if (auto *VD = dyn_cast_or_null<VarDecl>(I)) {
662
0
      Expr *E = VD->getInit();
663
0
      til::SExpr* SE = translate(E, Ctx);
664
665
      // Add local variables with trivial type to the variable map
666
0
      QualType T = VD->getType();
667
0
      if (T.isTrivialType(VD->getASTContext()))
668
0
        return addVarDecl(VD, SE);
669
0
      else {
670
        // TODO: add alloca
671
0
      }
672
0
    }
673
0
  }
674
0
  return nullptr;
675
0
}
676
677
// If (E) is non-trivial, then add it to the current basic block, and
678
// update the statement map so that S refers to E.  Returns a new variable
679
// that refers to E.
680
// If E is trivial returns E.
681
til::SExpr *SExprBuilder::addStatement(til::SExpr* E, const Stmt *S,
682
0
                                       const ValueDecl *VD) {
683
0
  if (!E || !CurrentBB || E->block() || til::ThreadSafetyTIL::isTrivial(E))
684
0
    return E;
685
0
  if (VD)
686
0
    E = new (Arena) til::Variable(E, VD);
687
0
  CurrentInstructions.push_back(E);
688
0
  if (S)
689
0
    insertStmt(S, E);
690
0
  return E;
691
0
}
692
693
// Returns the current value of VD, if known, and nullptr otherwise.
694
0
til::SExpr *SExprBuilder::lookupVarDecl(const ValueDecl *VD) {
695
0
  auto It = LVarIdxMap.find(VD);
696
0
  if (It != LVarIdxMap.end()) {
697
0
    assert(CurrentLVarMap[It->second].first == VD);
698
0
    return CurrentLVarMap[It->second].second;
699
0
  }
700
0
  return nullptr;
701
0
}
702
703
// if E is a til::Variable, update its clangDecl.
704
0
static void maybeUpdateVD(til::SExpr *E, const ValueDecl *VD) {
705
0
  if (!E)
706
0
    return;
707
0
  if (auto *V = dyn_cast<til::Variable>(E)) {
708
0
    if (!V->clangDecl())
709
0
      V->setClangDecl(VD);
710
0
  }
711
0
}
712
713
// Adds a new variable declaration.
714
0
til::SExpr *SExprBuilder::addVarDecl(const ValueDecl *VD, til::SExpr *E) {
715
0
  maybeUpdateVD(E, VD);
716
0
  LVarIdxMap.insert(std::make_pair(VD, CurrentLVarMap.size()));
717
0
  CurrentLVarMap.makeWritable();
718
0
  CurrentLVarMap.push_back(std::make_pair(VD, E));
719
0
  return E;
720
0
}
721
722
// Updates a current variable declaration.  (E.g. by assignment)
723
0
til::SExpr *SExprBuilder::updateVarDecl(const ValueDecl *VD, til::SExpr *E) {
724
0
  maybeUpdateVD(E, VD);
725
0
  auto It = LVarIdxMap.find(VD);
726
0
  if (It == LVarIdxMap.end()) {
727
0
    til::SExpr *Ptr = new (Arena) til::LiteralPtr(VD);
728
0
    til::SExpr *St  = new (Arena) til::Store(Ptr, E);
729
0
    return St;
730
0
  }
731
0
  CurrentLVarMap.makeWritable();
732
0
  CurrentLVarMap.elem(It->second).second = E;
733
0
  return E;
734
0
}
735
736
// Make a Phi node in the current block for the i^th variable in CurrentVarMap.
737
// If E != null, sets Phi[CurrentBlockInfo->ArgIndex] = E.
738
// If E == null, this is a backedge and will be set later.
739
0
void SExprBuilder::makePhiNodeVar(unsigned i, unsigned NPreds, til::SExpr *E) {
740
0
  unsigned ArgIndex = CurrentBlockInfo->ProcessedPredecessors;
741
0
  assert(ArgIndex > 0 && ArgIndex < NPreds);
742
743
0
  til::SExpr *CurrE = CurrentLVarMap[i].second;
744
0
  if (CurrE->block() == CurrentBB) {
745
    // We already have a Phi node in the current block,
746
    // so just add the new variable to the Phi node.
747
0
    auto *Ph = dyn_cast<til::Phi>(CurrE);
748
0
    assert(Ph && "Expecting Phi node.");
749
0
    if (E)
750
0
      Ph->values()[ArgIndex] = E;
751
0
    return;
752
0
  }
753
754
  // Make a new phi node: phi(..., E)
755
  // All phi args up to the current index are set to the current value.
756
0
  til::Phi *Ph = new (Arena) til::Phi(Arena, NPreds);
757
0
  Ph->values().setValues(NPreds, nullptr);
758
0
  for (unsigned PIdx = 0; PIdx < ArgIndex; ++PIdx)
759
0
    Ph->values()[PIdx] = CurrE;
760
0
  if (E)
761
0
    Ph->values()[ArgIndex] = E;
762
0
  Ph->setClangDecl(CurrentLVarMap[i].first);
763
  // If E is from a back-edge, or either E or CurrE are incomplete, then
764
  // mark this node as incomplete; we may need to remove it later.
765
0
  if (!E || isIncompletePhi(E) || isIncompletePhi(CurrE))
766
0
    Ph->setStatus(til::Phi::PH_Incomplete);
767
768
  // Add Phi node to current block, and update CurrentLVarMap[i]
769
0
  CurrentArguments.push_back(Ph);
770
0
  if (Ph->status() == til::Phi::PH_Incomplete)
771
0
    IncompleteArgs.push_back(Ph);
772
773
0
  CurrentLVarMap.makeWritable();
774
0
  CurrentLVarMap.elem(i).second = Ph;
775
0
}
776
777
// Merge values from Map into the current variable map.
778
// This will construct Phi nodes in the current basic block as necessary.
779
0
void SExprBuilder::mergeEntryMap(LVarDefinitionMap Map) {
780
0
  assert(CurrentBlockInfo && "Not processing a block!");
781
782
0
  if (!CurrentLVarMap.valid()) {
783
    // Steal Map, using copy-on-write.
784
0
    CurrentLVarMap = std::move(Map);
785
0
    return;
786
0
  }
787
0
  if (CurrentLVarMap.sameAs(Map))
788
0
    return;  // Easy merge: maps from different predecessors are unchanged.
789
790
0
  unsigned NPreds = CurrentBB->numPredecessors();
791
0
  unsigned ESz = CurrentLVarMap.size();
792
0
  unsigned MSz = Map.size();
793
0
  unsigned Sz  = std::min(ESz, MSz);
794
795
0
  for (unsigned i = 0; i < Sz; ++i) {
796
0
    if (CurrentLVarMap[i].first != Map[i].first) {
797
      // We've reached the end of variables in common.
798
0
      CurrentLVarMap.makeWritable();
799
0
      CurrentLVarMap.downsize(i);
800
0
      break;
801
0
    }
802
0
    if (CurrentLVarMap[i].second != Map[i].second)
803
0
      makePhiNodeVar(i, NPreds, Map[i].second);
804
0
  }
805
0
  if (ESz > MSz) {
806
0
    CurrentLVarMap.makeWritable();
807
0
    CurrentLVarMap.downsize(Map.size());
808
0
  }
809
0
}
810
811
// Merge a back edge into the current variable map.
812
// This will create phi nodes for all variables in the variable map.
813
0
void SExprBuilder::mergeEntryMapBackEdge() {
814
  // We don't have definitions for variables on the backedge, because we
815
  // haven't gotten that far in the CFG.  Thus, when encountering a back edge,
816
  // we conservatively create Phi nodes for all variables.  Unnecessary Phi
817
  // nodes will be marked as incomplete, and stripped out at the end.
818
  //
819
  // An Phi node is unnecessary if it only refers to itself and one other
820
  // variable, e.g. x = Phi(y, y, x)  can be reduced to x = y.
821
822
0
  assert(CurrentBlockInfo && "Not processing a block!");
823
824
0
  if (CurrentBlockInfo->HasBackEdges)
825
0
    return;
826
0
  CurrentBlockInfo->HasBackEdges = true;
827
828
0
  CurrentLVarMap.makeWritable();
829
0
  unsigned Sz = CurrentLVarMap.size();
830
0
  unsigned NPreds = CurrentBB->numPredecessors();
831
832
0
  for (unsigned i = 0; i < Sz; ++i)
833
0
    makePhiNodeVar(i, NPreds, nullptr);
834
0
}
835
836
// Update the phi nodes that were initially created for a back edge
837
// once the variable definitions have been computed.
838
// I.e., merge the current variable map into the phi nodes for Blk.
839
0
void SExprBuilder::mergePhiNodesBackEdge(const CFGBlock *Blk) {
840
0
  til::BasicBlock *BB = lookupBlock(Blk);
841
0
  unsigned ArgIndex = BBInfo[Blk->getBlockID()].ProcessedPredecessors;
842
0
  assert(ArgIndex > 0 && ArgIndex < BB->numPredecessors());
843
844
0
  for (til::SExpr *PE : BB->arguments()) {
845
0
    auto *Ph = dyn_cast_or_null<til::Phi>(PE);
846
0
    assert(Ph && "Expecting Phi Node.");
847
0
    assert(Ph->values()[ArgIndex] == nullptr && "Wrong index for back edge.");
848
849
0
    til::SExpr *E = lookupVarDecl(Ph->clangDecl());
850
0
    assert(E && "Couldn't find local variable for Phi node.");
851
0
    Ph->values()[ArgIndex] = E;
852
0
  }
853
0
}
854
855
void SExprBuilder::enterCFG(CFG *Cfg, const NamedDecl *D,
856
0
                            const CFGBlock *First) {
857
  // Perform initial setup operations.
858
0
  unsigned NBlocks = Cfg->getNumBlockIDs();
859
0
  Scfg = new (Arena) til::SCFG(Arena, NBlocks);
860
861
  // allocate all basic blocks immediately, to handle forward references.
862
0
  BBInfo.resize(NBlocks);
863
0
  BlockMap.resize(NBlocks, nullptr);
864
  // create map from clang blockID to til::BasicBlocks
865
0
  for (auto *B : *Cfg) {
866
0
    auto *BB = new (Arena) til::BasicBlock(Arena);
867
0
    BB->reserveInstructions(B->size());
868
0
    BlockMap[B->getBlockID()] = BB;
869
0
  }
870
871
0
  CurrentBB = lookupBlock(&Cfg->getEntry());
872
0
  auto Parms = isa<ObjCMethodDecl>(D) ? cast<ObjCMethodDecl>(D)->parameters()
873
0
                                      : cast<FunctionDecl>(D)->parameters();
874
0
  for (auto *Pm : Parms) {
875
0
    QualType T = Pm->getType();
876
0
    if (!T.isTrivialType(Pm->getASTContext()))
877
0
      continue;
878
879
    // Add parameters to local variable map.
880
    // FIXME: right now we emulate params with loads; that should be fixed.
881
0
    til::SExpr *Lp = new (Arena) til::LiteralPtr(Pm);
882
0
    til::SExpr *Ld = new (Arena) til::Load(Lp);
883
0
    til::SExpr *V  = addStatement(Ld, nullptr, Pm);
884
0
    addVarDecl(Pm, V);
885
0
  }
886
0
}
887
888
0
void SExprBuilder::enterCFGBlock(const CFGBlock *B) {
889
  // Initialize TIL basic block and add it to the CFG.
890
0
  CurrentBB = lookupBlock(B);
891
0
  CurrentBB->reservePredecessors(B->pred_size());
892
0
  Scfg->add(CurrentBB);
893
894
0
  CurrentBlockInfo = &BBInfo[B->getBlockID()];
895
896
  // CurrentLVarMap is moved to ExitMap on block exit.
897
  // FIXME: the entry block will hold function parameters.
898
  // assert(!CurrentLVarMap.valid() && "CurrentLVarMap already initialized.");
899
0
}
900
901
0
void SExprBuilder::handlePredecessor(const CFGBlock *Pred) {
902
  // Compute CurrentLVarMap on entry from ExitMaps of predecessors
903
904
0
  CurrentBB->addPredecessor(BlockMap[Pred->getBlockID()]);
905
0
  BlockInfo *PredInfo = &BBInfo[Pred->getBlockID()];
906
0
  assert(PredInfo->UnprocessedSuccessors > 0);
907
908
0
  if (--PredInfo->UnprocessedSuccessors == 0)
909
0
    mergeEntryMap(std::move(PredInfo->ExitMap));
910
0
  else
911
0
    mergeEntryMap(PredInfo->ExitMap.clone());
912
913
0
  ++CurrentBlockInfo->ProcessedPredecessors;
914
0
}
915
916
0
void SExprBuilder::handlePredecessorBackEdge(const CFGBlock *Pred) {
917
0
  mergeEntryMapBackEdge();
918
0
}
919
920
0
void SExprBuilder::enterCFGBlockBody(const CFGBlock *B) {
921
  // The merge*() methods have created arguments.
922
  // Push those arguments onto the basic block.
923
0
  CurrentBB->arguments().reserve(
924
0
    static_cast<unsigned>(CurrentArguments.size()), Arena);
925
0
  for (auto *A : CurrentArguments)
926
0
    CurrentBB->addArgument(A);
927
0
}
928
929
0
void SExprBuilder::handleStatement(const Stmt *S) {
930
0
  til::SExpr *E = translate(S, nullptr);
931
0
  addStatement(E, S);
932
0
}
933
934
void SExprBuilder::handleDestructorCall(const VarDecl *VD,
935
0
                                        const CXXDestructorDecl *DD) {
936
0
  til::SExpr *Sf = new (Arena) til::LiteralPtr(VD);
937
0
  til::SExpr *Dr = new (Arena) til::LiteralPtr(DD);
938
0
  til::SExpr *Ap = new (Arena) til::Apply(Dr, Sf);
939
0
  til::SExpr *E = new (Arena) til::Call(Ap);
940
0
  addStatement(E, nullptr);
941
0
}
942
943
0
void SExprBuilder::exitCFGBlockBody(const CFGBlock *B) {
944
0
  CurrentBB->instructions().reserve(
945
0
    static_cast<unsigned>(CurrentInstructions.size()), Arena);
946
0
  for (auto *V : CurrentInstructions)
947
0
    CurrentBB->addInstruction(V);
948
949
  // Create an appropriate terminator
950
0
  unsigned N = B->succ_size();
951
0
  auto It = B->succ_begin();
952
0
  if (N == 1) {
953
0
    til::BasicBlock *BB = *It ? lookupBlock(*It) : nullptr;
954
    // TODO: set index
955
0
    unsigned Idx = BB ? BB->findPredecessorIndex(CurrentBB) : 0;
956
0
    auto *Tm = new (Arena) til::Goto(BB, Idx);
957
0
    CurrentBB->setTerminator(Tm);
958
0
  }
959
0
  else if (N == 2) {
960
0
    til::SExpr *C = translate(B->getTerminatorCondition(true), nullptr);
961
0
    til::BasicBlock *BB1 = *It ? lookupBlock(*It) : nullptr;
962
0
    ++It;
963
0
    til::BasicBlock *BB2 = *It ? lookupBlock(*It) : nullptr;
964
    // FIXME: make sure these aren't critical edges.
965
0
    auto *Tm = new (Arena) til::Branch(C, BB1, BB2);
966
0
    CurrentBB->setTerminator(Tm);
967
0
  }
968
0
}
969
970
0
void SExprBuilder::handleSuccessor(const CFGBlock *Succ) {
971
0
  ++CurrentBlockInfo->UnprocessedSuccessors;
972
0
}
973
974
0
void SExprBuilder::handleSuccessorBackEdge(const CFGBlock *Succ) {
975
0
  mergePhiNodesBackEdge(Succ);
976
0
  ++BBInfo[Succ->getBlockID()].ProcessedPredecessors;
977
0
}
978
979
0
void SExprBuilder::exitCFGBlock(const CFGBlock *B) {
980
0
  CurrentArguments.clear();
981
0
  CurrentInstructions.clear();
982
0
  CurrentBlockInfo->ExitMap = std::move(CurrentLVarMap);
983
0
  CurrentBB = nullptr;
984
0
  CurrentBlockInfo = nullptr;
985
0
}
986
987
0
void SExprBuilder::exitCFG(const CFGBlock *Last) {
988
0
  for (auto *Ph : IncompleteArgs) {
989
0
    if (Ph->status() == til::Phi::PH_Incomplete)
990
0
      simplifyIncompleteArg(Ph);
991
0
  }
992
993
0
  CurrentArguments.clear();
994
0
  CurrentInstructions.clear();
995
0
  IncompleteArgs.clear();
996
0
}
997
998
/*
999
namespace {
1000
1001
class TILPrinter :
1002
    public til::PrettyPrinter<TILPrinter, llvm::raw_ostream> {};
1003
1004
} // namespace
1005
1006
namespace clang {
1007
namespace threadSafety {
1008
1009
void printSCFG(CFGWalker &Walker) {
1010
  llvm::BumpPtrAllocator Bpa;
1011
  til::MemRegionRef Arena(&Bpa);
1012
  SExprBuilder SxBuilder(Arena);
1013
  til::SCFG *Scfg = SxBuilder.buildCFG(Walker);
1014
  TILPrinter::print(Scfg, llvm::errs());
1015
}
1016
1017
} // namespace threadSafety
1018
} // namespace clang
1019
*/