/src/llvm-project/clang/lib/Analysis/UninitializedValues.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- UninitializedValues.cpp - Find Uninitialized Values ----------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file implements uninitialized values analysis for source-level CFGs. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "clang/Analysis/Analyses/UninitializedValues.h" |
14 | | #include "clang/AST/Attr.h" |
15 | | #include "clang/AST/Decl.h" |
16 | | #include "clang/AST/DeclBase.h" |
17 | | #include "clang/AST/Expr.h" |
18 | | #include "clang/AST/OperationKinds.h" |
19 | | #include "clang/AST/Stmt.h" |
20 | | #include "clang/AST/StmtObjC.h" |
21 | | #include "clang/AST/StmtVisitor.h" |
22 | | #include "clang/AST/Type.h" |
23 | | #include "clang/Analysis/Analyses/PostOrderCFGView.h" |
24 | | #include "clang/Analysis/AnalysisDeclContext.h" |
25 | | #include "clang/Analysis/CFG.h" |
26 | | #include "clang/Analysis/DomainSpecific/ObjCNoReturn.h" |
27 | | #include "clang/Analysis/FlowSensitive/DataflowWorklist.h" |
28 | | #include "clang/Basic/LLVM.h" |
29 | | #include "llvm/ADT/BitVector.h" |
30 | | #include "llvm/ADT/DenseMap.h" |
31 | | #include "llvm/ADT/PackedVector.h" |
32 | | #include "llvm/ADT/SmallBitVector.h" |
33 | | #include "llvm/ADT/SmallVector.h" |
34 | | #include "llvm/Support/Casting.h" |
35 | | #include <algorithm> |
36 | | #include <cassert> |
37 | | #include <optional> |
38 | | |
39 | | using namespace clang; |
40 | | |
41 | | #define DEBUG_LOGGING 0 |
42 | | |
43 | 0 | static bool recordIsNotEmpty(const RecordDecl *RD) { |
44 | | // We consider a record decl to be empty if it contains only unnamed bit- |
45 | | // fields, zero-width fields, and fields of empty record type. |
46 | 0 | for (const auto *FD : RD->fields()) { |
47 | 0 | if (FD->isUnnamedBitfield()) |
48 | 0 | continue; |
49 | 0 | if (FD->isZeroSize(FD->getASTContext())) |
50 | 0 | continue; |
51 | | // The only case remaining to check is for a field declaration of record |
52 | | // type and whether that record itself is empty. |
53 | 0 | if (const auto *FieldRD = FD->getType()->getAsRecordDecl(); |
54 | 0 | !FieldRD || recordIsNotEmpty(FieldRD)) |
55 | 0 | return true; |
56 | 0 | } |
57 | 0 | return false; |
58 | 0 | } |
59 | | |
60 | 0 | static bool isTrackedVar(const VarDecl *vd, const DeclContext *dc) { |
61 | 0 | if (vd->isLocalVarDecl() && !vd->hasGlobalStorage() && |
62 | 0 | !vd->isExceptionVariable() && !vd->isInitCapture() && !vd->isImplicit() && |
63 | 0 | vd->getDeclContext() == dc) { |
64 | 0 | QualType ty = vd->getType(); |
65 | 0 | if (const auto *RD = ty->getAsRecordDecl()) |
66 | 0 | return recordIsNotEmpty(RD); |
67 | 0 | return ty->isScalarType() || ty->isVectorType() || ty->isRVVSizelessBuiltinType(); |
68 | 0 | } |
69 | 0 | return false; |
70 | 0 | } |
71 | | |
72 | | //------------------------------------------------------------------------====// |
73 | | // DeclToIndex: a mapping from Decls we track to value indices. |
74 | | //====------------------------------------------------------------------------// |
75 | | |
76 | | namespace { |
77 | | |
78 | | class DeclToIndex { |
79 | | llvm::DenseMap<const VarDecl *, unsigned> map; |
80 | | |
81 | | public: |
82 | 0 | DeclToIndex() = default; |
83 | | |
84 | | /// Compute the actual mapping from declarations to bits. |
85 | | void computeMap(const DeclContext &dc); |
86 | | |
87 | | /// Return the number of declarations in the map. |
88 | 0 | unsigned size() const { return map.size(); } |
89 | | |
90 | | /// Returns the bit vector index for a given declaration. |
91 | | std::optional<unsigned> getValueIndex(const VarDecl *d) const; |
92 | | }; |
93 | | |
94 | | } // namespace |
95 | | |
96 | 0 | void DeclToIndex::computeMap(const DeclContext &dc) { |
97 | 0 | unsigned count = 0; |
98 | 0 | DeclContext::specific_decl_iterator<VarDecl> I(dc.decls_begin()), |
99 | 0 | E(dc.decls_end()); |
100 | 0 | for ( ; I != E; ++I) { |
101 | 0 | const VarDecl *vd = *I; |
102 | 0 | if (isTrackedVar(vd, &dc)) |
103 | 0 | map[vd] = count++; |
104 | 0 | } |
105 | 0 | } |
106 | | |
107 | 0 | std::optional<unsigned> DeclToIndex::getValueIndex(const VarDecl *d) const { |
108 | 0 | llvm::DenseMap<const VarDecl *, unsigned>::const_iterator I = map.find(d); |
109 | 0 | if (I == map.end()) |
110 | 0 | return std::nullopt; |
111 | 0 | return I->second; |
112 | 0 | } |
113 | | |
114 | | //------------------------------------------------------------------------====// |
115 | | // CFGBlockValues: dataflow values for CFG blocks. |
116 | | //====------------------------------------------------------------------------// |
117 | | |
118 | | // These values are defined in such a way that a merge can be done using |
119 | | // a bitwise OR. |
120 | | enum Value { Unknown = 0x0, /* 00 */ |
121 | | Initialized = 0x1, /* 01 */ |
122 | | Uninitialized = 0x2, /* 10 */ |
123 | | MayUninitialized = 0x3 /* 11 */ }; |
124 | | |
125 | 0 | static bool isUninitialized(const Value v) { |
126 | 0 | return v >= Uninitialized; |
127 | 0 | } |
128 | | |
129 | 0 | static bool isAlwaysUninit(const Value v) { |
130 | 0 | return v == Uninitialized; |
131 | 0 | } |
132 | | |
133 | | namespace { |
134 | | |
135 | | using ValueVector = llvm::PackedVector<Value, 2, llvm::SmallBitVector>; |
136 | | |
137 | | class CFGBlockValues { |
138 | | const CFG &cfg; |
139 | | SmallVector<ValueVector, 8> vals; |
140 | | ValueVector scratch; |
141 | | DeclToIndex declToIndex; |
142 | | |
143 | | public: |
144 | | CFGBlockValues(const CFG &cfg); |
145 | | |
146 | 0 | unsigned getNumEntries() const { return declToIndex.size(); } |
147 | | |
148 | | void computeSetOfDeclarations(const DeclContext &dc); |
149 | | |
150 | 0 | ValueVector &getValueVector(const CFGBlock *block) { |
151 | 0 | return vals[block->getBlockID()]; |
152 | 0 | } |
153 | | |
154 | | void setAllScratchValues(Value V); |
155 | | void mergeIntoScratch(ValueVector const &source, bool isFirst); |
156 | | bool updateValueVectorWithScratch(const CFGBlock *block); |
157 | | |
158 | 0 | bool hasNoDeclarations() const { |
159 | 0 | return declToIndex.size() == 0; |
160 | 0 | } |
161 | | |
162 | | void resetScratch(); |
163 | | |
164 | | ValueVector::reference operator[](const VarDecl *vd); |
165 | | |
166 | | Value getValue(const CFGBlock *block, const CFGBlock *dstBlock, |
167 | 0 | const VarDecl *vd) { |
168 | 0 | std::optional<unsigned> idx = declToIndex.getValueIndex(vd); |
169 | 0 | return getValueVector(block)[*idx]; |
170 | 0 | } |
171 | | }; |
172 | | |
173 | | } // namespace |
174 | | |
175 | 0 | CFGBlockValues::CFGBlockValues(const CFG &c) : cfg(c), vals(0) {} |
176 | | |
177 | 0 | void CFGBlockValues::computeSetOfDeclarations(const DeclContext &dc) { |
178 | 0 | declToIndex.computeMap(dc); |
179 | 0 | unsigned decls = declToIndex.size(); |
180 | 0 | scratch.resize(decls); |
181 | 0 | unsigned n = cfg.getNumBlockIDs(); |
182 | 0 | if (!n) |
183 | 0 | return; |
184 | 0 | vals.resize(n); |
185 | 0 | for (auto &val : vals) |
186 | 0 | val.resize(decls); |
187 | 0 | } |
188 | | |
189 | | #if DEBUG_LOGGING |
190 | | static void printVector(const CFGBlock *block, ValueVector &bv, |
191 | | unsigned num) { |
192 | | llvm::errs() << block->getBlockID() << " :"; |
193 | | for (const auto &i : bv) |
194 | | llvm::errs() << ' ' << i; |
195 | | llvm::errs() << " : " << num << '\n'; |
196 | | } |
197 | | #endif |
198 | | |
199 | 0 | void CFGBlockValues::setAllScratchValues(Value V) { |
200 | 0 | for (unsigned I = 0, E = scratch.size(); I != E; ++I) |
201 | 0 | scratch[I] = V; |
202 | 0 | } |
203 | | |
204 | | void CFGBlockValues::mergeIntoScratch(ValueVector const &source, |
205 | 0 | bool isFirst) { |
206 | 0 | if (isFirst) |
207 | 0 | scratch = source; |
208 | 0 | else |
209 | 0 | scratch |= source; |
210 | 0 | } |
211 | | |
212 | 0 | bool CFGBlockValues::updateValueVectorWithScratch(const CFGBlock *block) { |
213 | 0 | ValueVector &dst = getValueVector(block); |
214 | 0 | bool changed = (dst != scratch); |
215 | 0 | if (changed) |
216 | 0 | dst = scratch; |
217 | | #if DEBUG_LOGGING |
218 | | printVector(block, scratch, 0); |
219 | | #endif |
220 | 0 | return changed; |
221 | 0 | } |
222 | | |
223 | 0 | void CFGBlockValues::resetScratch() { |
224 | 0 | scratch.reset(); |
225 | 0 | } |
226 | | |
227 | 0 | ValueVector::reference CFGBlockValues::operator[](const VarDecl *vd) { |
228 | 0 | return scratch[*declToIndex.getValueIndex(vd)]; |
229 | 0 | } |
230 | | |
231 | | //------------------------------------------------------------------------====// |
232 | | // Classification of DeclRefExprs as use or initialization. |
233 | | //====------------------------------------------------------------------------// |
234 | | |
235 | | namespace { |
236 | | |
237 | | class FindVarResult { |
238 | | const VarDecl *vd; |
239 | | const DeclRefExpr *dr; |
240 | | |
241 | | public: |
242 | 0 | FindVarResult(const VarDecl *vd, const DeclRefExpr *dr) : vd(vd), dr(dr) {} |
243 | | |
244 | 0 | const DeclRefExpr *getDeclRefExpr() const { return dr; } |
245 | 0 | const VarDecl *getDecl() const { return vd; } |
246 | | }; |
247 | | |
248 | | } // namespace |
249 | | |
250 | 0 | static const Expr *stripCasts(ASTContext &C, const Expr *Ex) { |
251 | 0 | while (Ex) { |
252 | 0 | Ex = Ex->IgnoreParenNoopCasts(C); |
253 | 0 | if (const auto *CE = dyn_cast<CastExpr>(Ex)) { |
254 | 0 | if (CE->getCastKind() == CK_LValueBitCast) { |
255 | 0 | Ex = CE->getSubExpr(); |
256 | 0 | continue; |
257 | 0 | } |
258 | 0 | } |
259 | 0 | break; |
260 | 0 | } |
261 | 0 | return Ex; |
262 | 0 | } |
263 | | |
264 | | /// If E is an expression comprising a reference to a single variable, find that |
265 | | /// variable. |
266 | 0 | static FindVarResult findVar(const Expr *E, const DeclContext *DC) { |
267 | 0 | if (const auto *DRE = |
268 | 0 | dyn_cast<DeclRefExpr>(stripCasts(DC->getParentASTContext(), E))) |
269 | 0 | if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) |
270 | 0 | if (isTrackedVar(VD, DC)) |
271 | 0 | return FindVarResult(VD, DRE); |
272 | 0 | return FindVarResult(nullptr, nullptr); |
273 | 0 | } |
274 | | |
275 | | namespace { |
276 | | |
277 | | /// Classify each DeclRefExpr as an initialization or a use. Any |
278 | | /// DeclRefExpr which isn't explicitly classified will be assumed to have |
279 | | /// escaped the analysis and will be treated as an initialization. |
280 | | class ClassifyRefs : public StmtVisitor<ClassifyRefs> { |
281 | | public: |
282 | | enum Class { |
283 | | Init, |
284 | | Use, |
285 | | SelfInit, |
286 | | ConstRefUse, |
287 | | Ignore |
288 | | }; |
289 | | |
290 | | private: |
291 | | const DeclContext *DC; |
292 | | llvm::DenseMap<const DeclRefExpr *, Class> Classification; |
293 | | |
294 | 0 | bool isTrackedVar(const VarDecl *VD) const { |
295 | 0 | return ::isTrackedVar(VD, DC); |
296 | 0 | } |
297 | | |
298 | | void classify(const Expr *E, Class C); |
299 | | |
300 | | public: |
301 | 0 | ClassifyRefs(AnalysisDeclContext &AC) : DC(cast<DeclContext>(AC.getDecl())) {} |
302 | | |
303 | | void VisitDeclStmt(DeclStmt *DS); |
304 | | void VisitUnaryOperator(UnaryOperator *UO); |
305 | | void VisitBinaryOperator(BinaryOperator *BO); |
306 | | void VisitCallExpr(CallExpr *CE); |
307 | | void VisitCastExpr(CastExpr *CE); |
308 | | void VisitOMPExecutableDirective(OMPExecutableDirective *ED); |
309 | | |
310 | 0 | void operator()(Stmt *S) { Visit(S); } |
311 | | |
312 | 0 | Class get(const DeclRefExpr *DRE) const { |
313 | 0 | llvm::DenseMap<const DeclRefExpr*, Class>::const_iterator I |
314 | 0 | = Classification.find(DRE); |
315 | 0 | if (I != Classification.end()) |
316 | 0 | return I->second; |
317 | | |
318 | 0 | const auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); |
319 | 0 | if (!VD || !isTrackedVar(VD)) |
320 | 0 | return Ignore; |
321 | | |
322 | 0 | return Init; |
323 | 0 | } |
324 | | }; |
325 | | |
326 | | } // namespace |
327 | | |
328 | 0 | static const DeclRefExpr *getSelfInitExpr(VarDecl *VD) { |
329 | 0 | if (VD->getType()->isRecordType()) |
330 | 0 | return nullptr; |
331 | 0 | if (Expr *Init = VD->getInit()) { |
332 | 0 | const auto *DRE = |
333 | 0 | dyn_cast<DeclRefExpr>(stripCasts(VD->getASTContext(), Init)); |
334 | 0 | if (DRE && DRE->getDecl() == VD) |
335 | 0 | return DRE; |
336 | 0 | } |
337 | 0 | return nullptr; |
338 | 0 | } |
339 | | |
340 | 0 | void ClassifyRefs::classify(const Expr *E, Class C) { |
341 | | // The result of a ?: could also be an lvalue. |
342 | 0 | E = E->IgnoreParens(); |
343 | 0 | if (const auto *CO = dyn_cast<ConditionalOperator>(E)) { |
344 | 0 | classify(CO->getTrueExpr(), C); |
345 | 0 | classify(CO->getFalseExpr(), C); |
346 | 0 | return; |
347 | 0 | } |
348 | | |
349 | 0 | if (const auto *BCO = dyn_cast<BinaryConditionalOperator>(E)) { |
350 | 0 | classify(BCO->getFalseExpr(), C); |
351 | 0 | return; |
352 | 0 | } |
353 | | |
354 | 0 | if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E)) { |
355 | 0 | classify(OVE->getSourceExpr(), C); |
356 | 0 | return; |
357 | 0 | } |
358 | | |
359 | 0 | if (const auto *ME = dyn_cast<MemberExpr>(E)) { |
360 | 0 | if (const auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) { |
361 | 0 | if (!VD->isStaticDataMember()) |
362 | 0 | classify(ME->getBase(), C); |
363 | 0 | } |
364 | 0 | return; |
365 | 0 | } |
366 | | |
367 | 0 | if (const auto *BO = dyn_cast<BinaryOperator>(E)) { |
368 | 0 | switch (BO->getOpcode()) { |
369 | 0 | case BO_PtrMemD: |
370 | 0 | case BO_PtrMemI: |
371 | 0 | classify(BO->getLHS(), C); |
372 | 0 | return; |
373 | 0 | case BO_Comma: |
374 | 0 | classify(BO->getRHS(), C); |
375 | 0 | return; |
376 | 0 | default: |
377 | 0 | return; |
378 | 0 | } |
379 | 0 | } |
380 | | |
381 | 0 | FindVarResult Var = findVar(E, DC); |
382 | 0 | if (const DeclRefExpr *DRE = Var.getDeclRefExpr()) |
383 | 0 | Classification[DRE] = std::max(Classification[DRE], C); |
384 | 0 | } |
385 | | |
386 | 0 | void ClassifyRefs::VisitDeclStmt(DeclStmt *DS) { |
387 | 0 | for (auto *DI : DS->decls()) { |
388 | 0 | auto *VD = dyn_cast<VarDecl>(DI); |
389 | 0 | if (VD && isTrackedVar(VD)) |
390 | 0 | if (const DeclRefExpr *DRE = getSelfInitExpr(VD)) |
391 | 0 | Classification[DRE] = SelfInit; |
392 | 0 | } |
393 | 0 | } |
394 | | |
395 | 0 | void ClassifyRefs::VisitBinaryOperator(BinaryOperator *BO) { |
396 | | // Ignore the evaluation of a DeclRefExpr on the LHS of an assignment. If this |
397 | | // is not a compound-assignment, we will treat it as initializing the variable |
398 | | // when TransferFunctions visits it. A compound-assignment does not affect |
399 | | // whether a variable is uninitialized, and there's no point counting it as a |
400 | | // use. |
401 | 0 | if (BO->isCompoundAssignmentOp()) |
402 | 0 | classify(BO->getLHS(), Use); |
403 | 0 | else if (BO->getOpcode() == BO_Assign || BO->getOpcode() == BO_Comma) |
404 | 0 | classify(BO->getLHS(), Ignore); |
405 | 0 | } |
406 | | |
407 | 0 | void ClassifyRefs::VisitUnaryOperator(UnaryOperator *UO) { |
408 | | // Increment and decrement are uses despite there being no lvalue-to-rvalue |
409 | | // conversion. |
410 | 0 | if (UO->isIncrementDecrementOp()) |
411 | 0 | classify(UO->getSubExpr(), Use); |
412 | 0 | } |
413 | | |
414 | 0 | void ClassifyRefs::VisitOMPExecutableDirective(OMPExecutableDirective *ED) { |
415 | 0 | for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) |
416 | 0 | classify(cast<Expr>(S), Use); |
417 | 0 | } |
418 | | |
419 | 0 | static bool isPointerToConst(const QualType &QT) { |
420 | 0 | return QT->isAnyPointerType() && QT->getPointeeType().isConstQualified(); |
421 | 0 | } |
422 | | |
423 | 0 | static bool hasTrivialBody(CallExpr *CE) { |
424 | 0 | if (FunctionDecl *FD = CE->getDirectCallee()) { |
425 | 0 | if (FunctionTemplateDecl *FTD = FD->getPrimaryTemplate()) |
426 | 0 | return FTD->getTemplatedDecl()->hasTrivialBody(); |
427 | 0 | return FD->hasTrivialBody(); |
428 | 0 | } |
429 | 0 | return false; |
430 | 0 | } |
431 | | |
432 | 0 | void ClassifyRefs::VisitCallExpr(CallExpr *CE) { |
433 | | // Classify arguments to std::move as used. |
434 | 0 | if (CE->isCallToStdMove()) { |
435 | | // RecordTypes are handled in SemaDeclCXX.cpp. |
436 | 0 | if (!CE->getArg(0)->getType()->isRecordType()) |
437 | 0 | classify(CE->getArg(0), Use); |
438 | 0 | return; |
439 | 0 | } |
440 | 0 | bool isTrivialBody = hasTrivialBody(CE); |
441 | | // If a value is passed by const pointer to a function, |
442 | | // we should not assume that it is initialized by the call, and we |
443 | | // conservatively do not assume that it is used. |
444 | | // If a value is passed by const reference to a function, |
445 | | // it should already be initialized. |
446 | 0 | for (CallExpr::arg_iterator I = CE->arg_begin(), E = CE->arg_end(); |
447 | 0 | I != E; ++I) { |
448 | 0 | if ((*I)->isGLValue()) { |
449 | 0 | if ((*I)->getType().isConstQualified()) |
450 | 0 | classify((*I), isTrivialBody ? Ignore : ConstRefUse); |
451 | 0 | } else if (isPointerToConst((*I)->getType())) { |
452 | 0 | const Expr *Ex = stripCasts(DC->getParentASTContext(), *I); |
453 | 0 | const auto *UO = dyn_cast<UnaryOperator>(Ex); |
454 | 0 | if (UO && UO->getOpcode() == UO_AddrOf) |
455 | 0 | Ex = UO->getSubExpr(); |
456 | 0 | classify(Ex, Ignore); |
457 | 0 | } |
458 | 0 | } |
459 | 0 | } |
460 | | |
461 | 0 | void ClassifyRefs::VisitCastExpr(CastExpr *CE) { |
462 | 0 | if (CE->getCastKind() == CK_LValueToRValue) |
463 | 0 | classify(CE->getSubExpr(), Use); |
464 | 0 | else if (const auto *CSE = dyn_cast<CStyleCastExpr>(CE)) { |
465 | 0 | if (CSE->getType()->isVoidType()) { |
466 | | // Squelch any detected load of an uninitialized value if |
467 | | // we cast it to void. |
468 | | // e.g. (void) x; |
469 | 0 | classify(CSE->getSubExpr(), Ignore); |
470 | 0 | } |
471 | 0 | } |
472 | 0 | } |
473 | | |
474 | | //------------------------------------------------------------------------====// |
475 | | // Transfer function for uninitialized values analysis. |
476 | | //====------------------------------------------------------------------------// |
477 | | |
478 | | namespace { |
479 | | |
480 | | class TransferFunctions : public StmtVisitor<TransferFunctions> { |
481 | | CFGBlockValues &vals; |
482 | | const CFG &cfg; |
483 | | const CFGBlock *block; |
484 | | AnalysisDeclContext ∾ |
485 | | const ClassifyRefs &classification; |
486 | | ObjCNoReturn objCNoRet; |
487 | | UninitVariablesHandler &handler; |
488 | | |
489 | | public: |
490 | | TransferFunctions(CFGBlockValues &vals, const CFG &cfg, |
491 | | const CFGBlock *block, AnalysisDeclContext &ac, |
492 | | const ClassifyRefs &classification, |
493 | | UninitVariablesHandler &handler) |
494 | | : vals(vals), cfg(cfg), block(block), ac(ac), |
495 | | classification(classification), objCNoRet(ac.getASTContext()), |
496 | 0 | handler(handler) {} |
497 | | |
498 | | void reportUse(const Expr *ex, const VarDecl *vd); |
499 | | void reportConstRefUse(const Expr *ex, const VarDecl *vd); |
500 | | |
501 | | void VisitBinaryOperator(BinaryOperator *bo); |
502 | | void VisitBlockExpr(BlockExpr *be); |
503 | | void VisitCallExpr(CallExpr *ce); |
504 | | void VisitDeclRefExpr(DeclRefExpr *dr); |
505 | | void VisitDeclStmt(DeclStmt *ds); |
506 | | void VisitGCCAsmStmt(GCCAsmStmt *as); |
507 | | void VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS); |
508 | | void VisitObjCMessageExpr(ObjCMessageExpr *ME); |
509 | | void VisitOMPExecutableDirective(OMPExecutableDirective *ED); |
510 | | |
511 | 0 | bool isTrackedVar(const VarDecl *vd) { |
512 | 0 | return ::isTrackedVar(vd, cast<DeclContext>(ac.getDecl())); |
513 | 0 | } |
514 | | |
515 | 0 | FindVarResult findVar(const Expr *ex) { |
516 | 0 | return ::findVar(ex, cast<DeclContext>(ac.getDecl())); |
517 | 0 | } |
518 | | |
519 | 0 | UninitUse getUninitUse(const Expr *ex, const VarDecl *vd, Value v) { |
520 | 0 | UninitUse Use(ex, isAlwaysUninit(v)); |
521 | |
|
522 | 0 | assert(isUninitialized(v)); |
523 | 0 | if (Use.getKind() == UninitUse::Always) |
524 | 0 | return Use; |
525 | | |
526 | | // If an edge which leads unconditionally to this use did not initialize |
527 | | // the variable, we can say something stronger than 'may be uninitialized': |
528 | | // we can say 'either it's used uninitialized or you have dead code'. |
529 | | // |
530 | | // We track the number of successors of a node which have been visited, and |
531 | | // visit a node once we have visited all of its successors. Only edges where |
532 | | // the variable might still be uninitialized are followed. Since a variable |
533 | | // can't transfer from being initialized to being uninitialized, this will |
534 | | // trace out the subgraph which inevitably leads to the use and does not |
535 | | // initialize the variable. We do not want to skip past loops, since their |
536 | | // non-termination might be correlated with the initialization condition. |
537 | | // |
538 | | // For example: |
539 | | // |
540 | | // void f(bool a, bool b) { |
541 | | // block1: int n; |
542 | | // if (a) { |
543 | | // block2: if (b) |
544 | | // block3: n = 1; |
545 | | // block4: } else if (b) { |
546 | | // block5: while (!a) { |
547 | | // block6: do_work(&a); |
548 | | // n = 2; |
549 | | // } |
550 | | // } |
551 | | // block7: if (a) |
552 | | // block8: g(); |
553 | | // block9: return n; |
554 | | // } |
555 | | // |
556 | | // Starting from the maybe-uninitialized use in block 9: |
557 | | // * Block 7 is not visited because we have only visited one of its two |
558 | | // successors. |
559 | | // * Block 8 is visited because we've visited its only successor. |
560 | | // From block 8: |
561 | | // * Block 7 is visited because we've now visited both of its successors. |
562 | | // From block 7: |
563 | | // * Blocks 1, 2, 4, 5, and 6 are not visited because we didn't visit all |
564 | | // of their successors (we didn't visit 4, 3, 5, 6, and 5, respectively). |
565 | | // * Block 3 is not visited because it initializes 'n'. |
566 | | // Now the algorithm terminates, having visited blocks 7 and 8, and having |
567 | | // found the frontier is blocks 2, 4, and 5. |
568 | | // |
569 | | // 'n' is definitely uninitialized for two edges into block 7 (from blocks 2 |
570 | | // and 4), so we report that any time either of those edges is taken (in |
571 | | // each case when 'b == false'), 'n' is used uninitialized. |
572 | 0 | SmallVector<const CFGBlock*, 32> Queue; |
573 | 0 | SmallVector<unsigned, 32> SuccsVisited(cfg.getNumBlockIDs(), 0); |
574 | 0 | Queue.push_back(block); |
575 | | // Specify that we've already visited all successors of the starting block. |
576 | | // This has the dual purpose of ensuring we never add it to the queue, and |
577 | | // of marking it as not being a candidate element of the frontier. |
578 | 0 | SuccsVisited[block->getBlockID()] = block->succ_size(); |
579 | 0 | while (!Queue.empty()) { |
580 | 0 | const CFGBlock *B = Queue.pop_back_val(); |
581 | | |
582 | | // If the use is always reached from the entry block, make a note of that. |
583 | 0 | if (B == &cfg.getEntry()) |
584 | 0 | Use.setUninitAfterCall(); |
585 | |
|
586 | 0 | for (CFGBlock::const_pred_iterator I = B->pred_begin(), E = B->pred_end(); |
587 | 0 | I != E; ++I) { |
588 | 0 | const CFGBlock *Pred = *I; |
589 | 0 | if (!Pred) |
590 | 0 | continue; |
591 | | |
592 | 0 | Value AtPredExit = vals.getValue(Pred, B, vd); |
593 | 0 | if (AtPredExit == Initialized) |
594 | | // This block initializes the variable. |
595 | 0 | continue; |
596 | 0 | if (AtPredExit == MayUninitialized && |
597 | 0 | vals.getValue(B, nullptr, vd) == Uninitialized) { |
598 | | // This block declares the variable (uninitialized), and is reachable |
599 | | // from a block that initializes the variable. We can't guarantee to |
600 | | // give an earlier location for the diagnostic (and it appears that |
601 | | // this code is intended to be reachable) so give a diagnostic here |
602 | | // and go no further down this path. |
603 | 0 | Use.setUninitAfterDecl(); |
604 | 0 | continue; |
605 | 0 | } |
606 | | |
607 | 0 | unsigned &SV = SuccsVisited[Pred->getBlockID()]; |
608 | 0 | if (!SV) { |
609 | | // When visiting the first successor of a block, mark all NULL |
610 | | // successors as having been visited. |
611 | 0 | for (CFGBlock::const_succ_iterator SI = Pred->succ_begin(), |
612 | 0 | SE = Pred->succ_end(); |
613 | 0 | SI != SE; ++SI) |
614 | 0 | if (!*SI) |
615 | 0 | ++SV; |
616 | 0 | } |
617 | |
|
618 | 0 | if (++SV == Pred->succ_size()) |
619 | | // All paths from this block lead to the use and don't initialize the |
620 | | // variable. |
621 | 0 | Queue.push_back(Pred); |
622 | 0 | } |
623 | 0 | } |
624 | | |
625 | | // Scan the frontier, looking for blocks where the variable was |
626 | | // uninitialized. |
627 | 0 | for (const auto *Block : cfg) { |
628 | 0 | unsigned BlockID = Block->getBlockID(); |
629 | 0 | const Stmt *Term = Block->getTerminatorStmt(); |
630 | 0 | if (SuccsVisited[BlockID] && SuccsVisited[BlockID] < Block->succ_size() && |
631 | 0 | Term) { |
632 | | // This block inevitably leads to the use. If we have an edge from here |
633 | | // to a post-dominator block, and the variable is uninitialized on that |
634 | | // edge, we have found a bug. |
635 | 0 | for (CFGBlock::const_succ_iterator I = Block->succ_begin(), |
636 | 0 | E = Block->succ_end(); I != E; ++I) { |
637 | 0 | const CFGBlock *Succ = *I; |
638 | 0 | if (Succ && SuccsVisited[Succ->getBlockID()] >= Succ->succ_size() && |
639 | 0 | vals.getValue(Block, Succ, vd) == Uninitialized) { |
640 | | // Switch cases are a special case: report the label to the caller |
641 | | // as the 'terminator', not the switch statement itself. Suppress |
642 | | // situations where no label matched: we can't be sure that's |
643 | | // possible. |
644 | 0 | if (isa<SwitchStmt>(Term)) { |
645 | 0 | const Stmt *Label = Succ->getLabel(); |
646 | 0 | if (!Label || !isa<SwitchCase>(Label)) |
647 | | // Might not be possible. |
648 | 0 | continue; |
649 | 0 | UninitUse::Branch Branch; |
650 | 0 | Branch.Terminator = Label; |
651 | 0 | Branch.Output = 0; // Ignored. |
652 | 0 | Use.addUninitBranch(Branch); |
653 | 0 | } else { |
654 | 0 | UninitUse::Branch Branch; |
655 | 0 | Branch.Terminator = Term; |
656 | 0 | Branch.Output = I - Block->succ_begin(); |
657 | 0 | Use.addUninitBranch(Branch); |
658 | 0 | } |
659 | 0 | } |
660 | 0 | } |
661 | 0 | } |
662 | 0 | } |
663 | |
|
664 | 0 | return Use; |
665 | 0 | } |
666 | | }; |
667 | | |
668 | | } // namespace |
669 | | |
670 | 0 | void TransferFunctions::reportUse(const Expr *ex, const VarDecl *vd) { |
671 | 0 | Value v = vals[vd]; |
672 | 0 | if (isUninitialized(v)) |
673 | 0 | handler.handleUseOfUninitVariable(vd, getUninitUse(ex, vd, v)); |
674 | 0 | } |
675 | | |
676 | 0 | void TransferFunctions::reportConstRefUse(const Expr *ex, const VarDecl *vd) { |
677 | 0 | Value v = vals[vd]; |
678 | 0 | if (isAlwaysUninit(v)) |
679 | 0 | handler.handleConstRefUseOfUninitVariable(vd, getUninitUse(ex, vd, v)); |
680 | 0 | } |
681 | | |
682 | 0 | void TransferFunctions::VisitObjCForCollectionStmt(ObjCForCollectionStmt *FS) { |
683 | | // This represents an initialization of the 'element' value. |
684 | 0 | if (const auto *DS = dyn_cast<DeclStmt>(FS->getElement())) { |
685 | 0 | const auto *VD = cast<VarDecl>(DS->getSingleDecl()); |
686 | 0 | if (isTrackedVar(VD)) |
687 | 0 | vals[VD] = Initialized; |
688 | 0 | } |
689 | 0 | } |
690 | | |
691 | | void TransferFunctions::VisitOMPExecutableDirective( |
692 | 0 | OMPExecutableDirective *ED) { |
693 | 0 | for (Stmt *S : OMPExecutableDirective::used_clauses_children(ED->clauses())) { |
694 | 0 | assert(S && "Expected non-null used-in-clause child."); |
695 | 0 | Visit(S); |
696 | 0 | } |
697 | 0 | if (!ED->isStandaloneDirective()) |
698 | 0 | Visit(ED->getStructuredBlock()); |
699 | 0 | } |
700 | | |
701 | 0 | void TransferFunctions::VisitBlockExpr(BlockExpr *be) { |
702 | 0 | const BlockDecl *bd = be->getBlockDecl(); |
703 | 0 | for (const auto &I : bd->captures()) { |
704 | 0 | const VarDecl *vd = I.getVariable(); |
705 | 0 | if (!isTrackedVar(vd)) |
706 | 0 | continue; |
707 | 0 | if (I.isByRef()) { |
708 | 0 | vals[vd] = Initialized; |
709 | 0 | continue; |
710 | 0 | } |
711 | 0 | reportUse(be, vd); |
712 | 0 | } |
713 | 0 | } |
714 | | |
715 | 0 | void TransferFunctions::VisitCallExpr(CallExpr *ce) { |
716 | 0 | if (Decl *Callee = ce->getCalleeDecl()) { |
717 | 0 | if (Callee->hasAttr<ReturnsTwiceAttr>()) { |
718 | | // After a call to a function like setjmp or vfork, any variable which is |
719 | | // initialized anywhere within this function may now be initialized. For |
720 | | // now, just assume such a call initializes all variables. FIXME: Only |
721 | | // mark variables as initialized if they have an initializer which is |
722 | | // reachable from here. |
723 | 0 | vals.setAllScratchValues(Initialized); |
724 | 0 | } |
725 | 0 | else if (Callee->hasAttr<AnalyzerNoReturnAttr>()) { |
726 | | // Functions labeled like "analyzer_noreturn" are often used to denote |
727 | | // "panic" functions that in special debug situations can still return, |
728 | | // but for the most part should not be treated as returning. This is a |
729 | | // useful annotation borrowed from the static analyzer that is useful for |
730 | | // suppressing branch-specific false positives when we call one of these |
731 | | // functions but keep pretending the path continues (when in reality the |
732 | | // user doesn't care). |
733 | 0 | vals.setAllScratchValues(Unknown); |
734 | 0 | } |
735 | 0 | } |
736 | 0 | } |
737 | | |
738 | 0 | void TransferFunctions::VisitDeclRefExpr(DeclRefExpr *dr) { |
739 | 0 | switch (classification.get(dr)) { |
740 | 0 | case ClassifyRefs::Ignore: |
741 | 0 | break; |
742 | 0 | case ClassifyRefs::Use: |
743 | 0 | reportUse(dr, cast<VarDecl>(dr->getDecl())); |
744 | 0 | break; |
745 | 0 | case ClassifyRefs::Init: |
746 | 0 | vals[cast<VarDecl>(dr->getDecl())] = Initialized; |
747 | 0 | break; |
748 | 0 | case ClassifyRefs::SelfInit: |
749 | 0 | handler.handleSelfInit(cast<VarDecl>(dr->getDecl())); |
750 | 0 | break; |
751 | 0 | case ClassifyRefs::ConstRefUse: |
752 | 0 | reportConstRefUse(dr, cast<VarDecl>(dr->getDecl())); |
753 | 0 | break; |
754 | 0 | } |
755 | 0 | } |
756 | | |
757 | 0 | void TransferFunctions::VisitBinaryOperator(BinaryOperator *BO) { |
758 | 0 | if (BO->getOpcode() == BO_Assign) { |
759 | 0 | FindVarResult Var = findVar(BO->getLHS()); |
760 | 0 | if (const VarDecl *VD = Var.getDecl()) |
761 | 0 | vals[VD] = Initialized; |
762 | 0 | } |
763 | 0 | } |
764 | | |
765 | 0 | void TransferFunctions::VisitDeclStmt(DeclStmt *DS) { |
766 | 0 | for (auto *DI : DS->decls()) { |
767 | 0 | auto *VD = dyn_cast<VarDecl>(DI); |
768 | 0 | if (VD && isTrackedVar(VD)) { |
769 | 0 | if (getSelfInitExpr(VD)) { |
770 | | // If the initializer consists solely of a reference to itself, we |
771 | | // explicitly mark the variable as uninitialized. This allows code |
772 | | // like the following: |
773 | | // |
774 | | // int x = x; |
775 | | // |
776 | | // to deliberately leave a variable uninitialized. Different analysis |
777 | | // clients can detect this pattern and adjust their reporting |
778 | | // appropriately, but we need to continue to analyze subsequent uses |
779 | | // of the variable. |
780 | 0 | vals[VD] = Uninitialized; |
781 | 0 | } else if (VD->getInit()) { |
782 | | // Treat the new variable as initialized. |
783 | 0 | vals[VD] = Initialized; |
784 | 0 | } else { |
785 | | // No initializer: the variable is now uninitialized. This matters |
786 | | // for cases like: |
787 | | // while (...) { |
788 | | // int n; |
789 | | // use(n); |
790 | | // n = 0; |
791 | | // } |
792 | | // FIXME: Mark the variable as uninitialized whenever its scope is |
793 | | // left, since its scope could be re-entered by a jump over the |
794 | | // declaration. |
795 | 0 | vals[VD] = Uninitialized; |
796 | 0 | } |
797 | 0 | } |
798 | 0 | } |
799 | 0 | } |
800 | | |
801 | 0 | void TransferFunctions::VisitGCCAsmStmt(GCCAsmStmt *as) { |
802 | | // An "asm goto" statement is a terminator that may initialize some variables. |
803 | 0 | if (!as->isAsmGoto()) |
804 | 0 | return; |
805 | | |
806 | 0 | ASTContext &C = ac.getASTContext(); |
807 | 0 | for (const Expr *O : as->outputs()) { |
808 | 0 | const Expr *Ex = stripCasts(C, O); |
809 | | |
810 | | // Strip away any unary operators. Invalid l-values are reported by other |
811 | | // semantic analysis passes. |
812 | 0 | while (const auto *UO = dyn_cast<UnaryOperator>(Ex)) |
813 | 0 | Ex = stripCasts(C, UO->getSubExpr()); |
814 | | |
815 | | // Mark the variable as potentially uninitialized for those cases where |
816 | | // it's used on an indirect path, where it's not guaranteed to be |
817 | | // defined. |
818 | 0 | if (const VarDecl *VD = findVar(Ex).getDecl()) |
819 | 0 | if (vals[VD] != Initialized) |
820 | 0 | vals[VD] = MayUninitialized; |
821 | 0 | } |
822 | 0 | } |
823 | | |
824 | 0 | void TransferFunctions::VisitObjCMessageExpr(ObjCMessageExpr *ME) { |
825 | | // If the Objective-C message expression is an implicit no-return that |
826 | | // is not modeled in the CFG, set the tracked dataflow values to Unknown. |
827 | 0 | if (objCNoRet.isImplicitNoReturn(ME)) { |
828 | 0 | vals.setAllScratchValues(Unknown); |
829 | 0 | } |
830 | 0 | } |
831 | | |
832 | | //------------------------------------------------------------------------====// |
833 | | // High-level "driver" logic for uninitialized values analysis. |
834 | | //====------------------------------------------------------------------------// |
835 | | |
836 | | static bool runOnBlock(const CFGBlock *block, const CFG &cfg, |
837 | | AnalysisDeclContext &ac, CFGBlockValues &vals, |
838 | | const ClassifyRefs &classification, |
839 | | llvm::BitVector &wasAnalyzed, |
840 | 0 | UninitVariablesHandler &handler) { |
841 | 0 | wasAnalyzed[block->getBlockID()] = true; |
842 | 0 | vals.resetScratch(); |
843 | | // Merge in values of predecessor blocks. |
844 | 0 | bool isFirst = true; |
845 | 0 | for (CFGBlock::const_pred_iterator I = block->pred_begin(), |
846 | 0 | E = block->pred_end(); I != E; ++I) { |
847 | 0 | const CFGBlock *pred = *I; |
848 | 0 | if (!pred) |
849 | 0 | continue; |
850 | 0 | if (wasAnalyzed[pred->getBlockID()]) { |
851 | 0 | vals.mergeIntoScratch(vals.getValueVector(pred), isFirst); |
852 | 0 | isFirst = false; |
853 | 0 | } |
854 | 0 | } |
855 | | // Apply the transfer function. |
856 | 0 | TransferFunctions tf(vals, cfg, block, ac, classification, handler); |
857 | 0 | for (const auto &I : *block) { |
858 | 0 | if (std::optional<CFGStmt> cs = I.getAs<CFGStmt>()) |
859 | 0 | tf.Visit(const_cast<Stmt *>(cs->getStmt())); |
860 | 0 | } |
861 | 0 | CFGTerminator terminator = block->getTerminator(); |
862 | 0 | if (auto *as = dyn_cast_or_null<GCCAsmStmt>(terminator.getStmt())) |
863 | 0 | if (as->isAsmGoto()) |
864 | 0 | tf.Visit(as); |
865 | 0 | return vals.updateValueVectorWithScratch(block); |
866 | 0 | } |
867 | | |
868 | | namespace { |
869 | | |
870 | | /// PruneBlocksHandler is a special UninitVariablesHandler that is used |
871 | | /// to detect when a CFGBlock has any *potential* use of an uninitialized |
872 | | /// variable. It is mainly used to prune out work during the final |
873 | | /// reporting pass. |
874 | | struct PruneBlocksHandler : public UninitVariablesHandler { |
875 | | /// Records if a CFGBlock had a potential use of an uninitialized variable. |
876 | | llvm::BitVector hadUse; |
877 | | |
878 | | /// Records if any CFGBlock had a potential use of an uninitialized variable. |
879 | | bool hadAnyUse = false; |
880 | | |
881 | | /// The current block to scribble use information. |
882 | | unsigned currentBlock = 0; |
883 | | |
884 | 0 | PruneBlocksHandler(unsigned numBlocks) : hadUse(numBlocks, false) {} |
885 | | |
886 | 0 | ~PruneBlocksHandler() override = default; |
887 | | |
888 | | void handleUseOfUninitVariable(const VarDecl *vd, |
889 | 0 | const UninitUse &use) override { |
890 | 0 | hadUse[currentBlock] = true; |
891 | 0 | hadAnyUse = true; |
892 | 0 | } |
893 | | |
894 | | void handleConstRefUseOfUninitVariable(const VarDecl *vd, |
895 | 0 | const UninitUse &use) override { |
896 | 0 | hadUse[currentBlock] = true; |
897 | 0 | hadAnyUse = true; |
898 | 0 | } |
899 | | |
900 | | /// Called when the uninitialized variable analysis detects the |
901 | | /// idiom 'int x = x'. All other uses of 'x' within the initializer |
902 | | /// are handled by handleUseOfUninitVariable. |
903 | 0 | void handleSelfInit(const VarDecl *vd) override { |
904 | 0 | hadUse[currentBlock] = true; |
905 | 0 | hadAnyUse = true; |
906 | 0 | } |
907 | | }; |
908 | | |
909 | | } // namespace |
910 | | |
911 | | void clang::runUninitializedVariablesAnalysis( |
912 | | const DeclContext &dc, |
913 | | const CFG &cfg, |
914 | | AnalysisDeclContext &ac, |
915 | | UninitVariablesHandler &handler, |
916 | 0 | UninitVariablesAnalysisStats &stats) { |
917 | 0 | CFGBlockValues vals(cfg); |
918 | 0 | vals.computeSetOfDeclarations(dc); |
919 | 0 | if (vals.hasNoDeclarations()) |
920 | 0 | return; |
921 | | |
922 | 0 | stats.NumVariablesAnalyzed = vals.getNumEntries(); |
923 | | |
924 | | // Precompute which expressions are uses and which are initializations. |
925 | 0 | ClassifyRefs classification(ac); |
926 | 0 | cfg.VisitBlockStmts(classification); |
927 | | |
928 | | // Mark all variables uninitialized at the entry. |
929 | 0 | const CFGBlock &entry = cfg.getEntry(); |
930 | 0 | ValueVector &vec = vals.getValueVector(&entry); |
931 | 0 | const unsigned n = vals.getNumEntries(); |
932 | 0 | for (unsigned j = 0; j < n; ++j) { |
933 | 0 | vec[j] = Uninitialized; |
934 | 0 | } |
935 | | |
936 | | // Proceed with the workist. |
937 | 0 | ForwardDataflowWorklist worklist(cfg, ac); |
938 | 0 | llvm::BitVector previouslyVisited(cfg.getNumBlockIDs()); |
939 | 0 | worklist.enqueueSuccessors(&cfg.getEntry()); |
940 | 0 | llvm::BitVector wasAnalyzed(cfg.getNumBlockIDs(), false); |
941 | 0 | wasAnalyzed[cfg.getEntry().getBlockID()] = true; |
942 | 0 | PruneBlocksHandler PBH(cfg.getNumBlockIDs()); |
943 | |
|
944 | 0 | while (const CFGBlock *block = worklist.dequeue()) { |
945 | 0 | PBH.currentBlock = block->getBlockID(); |
946 | | |
947 | | // Did the block change? |
948 | 0 | bool changed = runOnBlock(block, cfg, ac, vals, |
949 | 0 | classification, wasAnalyzed, PBH); |
950 | 0 | ++stats.NumBlockVisits; |
951 | 0 | if (changed || !previouslyVisited[block->getBlockID()]) |
952 | 0 | worklist.enqueueSuccessors(block); |
953 | 0 | previouslyVisited[block->getBlockID()] = true; |
954 | 0 | } |
955 | |
|
956 | 0 | if (!PBH.hadAnyUse) |
957 | 0 | return; |
958 | | |
959 | | // Run through the blocks one more time, and report uninitialized variables. |
960 | 0 | for (const auto *block : cfg) |
961 | 0 | if (PBH.hadUse[block->getBlockID()]) { |
962 | 0 | runOnBlock(block, cfg, ac, vals, classification, wasAnalyzed, handler); |
963 | 0 | ++stats.NumBlockVisits; |
964 | 0 | } |
965 | 0 | } |
966 | | |
967 | 0 | UninitVariablesHandler::~UninitVariablesHandler() = default; |