/src/llvm-project/clang/lib/Basic/TargetInfo.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--- TargetInfo.cpp - Information about Target machine ----------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file implements the TargetInfo interface. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "clang/Basic/TargetInfo.h" |
14 | | #include "clang/Basic/AddressSpaces.h" |
15 | | #include "clang/Basic/CharInfo.h" |
16 | | #include "clang/Basic/Diagnostic.h" |
17 | | #include "clang/Basic/DiagnosticFrontend.h" |
18 | | #include "clang/Basic/LangOptions.h" |
19 | | #include "llvm/ADT/APFloat.h" |
20 | | #include "llvm/ADT/STLExtras.h" |
21 | | #include "llvm/Support/ErrorHandling.h" |
22 | | #include "llvm/TargetParser/TargetParser.h" |
23 | | #include <cstdlib> |
24 | | using namespace clang; |
25 | | |
26 | | static const LangASMap DefaultAddrSpaceMap = {0}; |
27 | | // The fake address space map must have a distinct entry for each |
28 | | // language-specific address space. |
29 | | static const LangASMap FakeAddrSpaceMap = { |
30 | | 0, // Default |
31 | | 1, // opencl_global |
32 | | 3, // opencl_local |
33 | | 2, // opencl_constant |
34 | | 0, // opencl_private |
35 | | 4, // opencl_generic |
36 | | 5, // opencl_global_device |
37 | | 6, // opencl_global_host |
38 | | 7, // cuda_device |
39 | | 8, // cuda_constant |
40 | | 9, // cuda_shared |
41 | | 1, // sycl_global |
42 | | 5, // sycl_global_device |
43 | | 6, // sycl_global_host |
44 | | 3, // sycl_local |
45 | | 0, // sycl_private |
46 | | 10, // ptr32_sptr |
47 | | 11, // ptr32_uptr |
48 | | 12, // ptr64 |
49 | | 13, // hlsl_groupshared |
50 | | 20, // wasm_funcref |
51 | | }; |
52 | | |
53 | | // TargetInfo Constructor. |
54 | 46 | TargetInfo::TargetInfo(const llvm::Triple &T) : Triple(T) { |
55 | | // Set defaults. Defaults are set for a 32-bit RISC platform, like PPC or |
56 | | // SPARC. These should be overridden by concrete targets as needed. |
57 | 46 | BigEndian = !T.isLittleEndian(); |
58 | 46 | TLSSupported = true; |
59 | 46 | VLASupported = true; |
60 | 46 | NoAsmVariants = false; |
61 | 46 | HasLegalHalfType = false; |
62 | 46 | HalfArgsAndReturns = false; |
63 | 46 | HasFloat128 = false; |
64 | 46 | HasIbm128 = false; |
65 | 46 | HasFloat16 = false; |
66 | 46 | HasBFloat16 = false; |
67 | 46 | HasFullBFloat16 = false; |
68 | 46 | HasLongDouble = true; |
69 | 46 | HasFPReturn = true; |
70 | 46 | HasStrictFP = false; |
71 | 46 | PointerWidth = PointerAlign = 32; |
72 | 46 | BoolWidth = BoolAlign = 8; |
73 | 46 | IntWidth = IntAlign = 32; |
74 | 46 | LongWidth = LongAlign = 32; |
75 | 46 | LongLongWidth = LongLongAlign = 64; |
76 | 46 | Int128Align = 128; |
77 | | |
78 | | // Fixed point default bit widths |
79 | 46 | ShortAccumWidth = ShortAccumAlign = 16; |
80 | 46 | AccumWidth = AccumAlign = 32; |
81 | 46 | LongAccumWidth = LongAccumAlign = 64; |
82 | 46 | ShortFractWidth = ShortFractAlign = 8; |
83 | 46 | FractWidth = FractAlign = 16; |
84 | 46 | LongFractWidth = LongFractAlign = 32; |
85 | | |
86 | | // Fixed point default integral and fractional bit sizes |
87 | | // We give the _Accum 1 fewer fractional bits than their corresponding _Fract |
88 | | // types by default to have the same number of fractional bits between _Accum |
89 | | // and _Fract types. |
90 | 46 | PaddingOnUnsignedFixedPoint = false; |
91 | 46 | ShortAccumScale = 7; |
92 | 46 | AccumScale = 15; |
93 | 46 | LongAccumScale = 31; |
94 | | |
95 | 46 | SuitableAlign = 64; |
96 | 46 | DefaultAlignForAttributeAligned = 128; |
97 | 46 | MinGlobalAlign = 0; |
98 | | // From the glibc documentation, on GNU systems, malloc guarantees 16-byte |
99 | | // alignment on 64-bit systems and 8-byte alignment on 32-bit systems. See |
100 | | // https://www.gnu.org/software/libc/manual/html_node/Malloc-Examples.html. |
101 | | // This alignment guarantee also applies to Windows and Android. On Darwin |
102 | | // and OpenBSD, the alignment is 16 bytes on both 64-bit and 32-bit systems. |
103 | 46 | if (T.isGNUEnvironment() || T.isWindowsMSVCEnvironment() || T.isAndroid() || |
104 | 46 | T.isOHOSFamily()) |
105 | 46 | NewAlign = Triple.isArch64Bit() ? 128 : Triple.isArch32Bit() ? 64 : 0; |
106 | 0 | else if (T.isOSDarwin() || T.isOSOpenBSD()) |
107 | 0 | NewAlign = 128; |
108 | 0 | else |
109 | 0 | NewAlign = 0; // Infer from basic type alignment. |
110 | 46 | HalfWidth = 16; |
111 | 46 | HalfAlign = 16; |
112 | 46 | FloatWidth = 32; |
113 | 46 | FloatAlign = 32; |
114 | 46 | DoubleWidth = 64; |
115 | 46 | DoubleAlign = 64; |
116 | 46 | LongDoubleWidth = 64; |
117 | 46 | LongDoubleAlign = 64; |
118 | 46 | Float128Align = 128; |
119 | 46 | Ibm128Align = 128; |
120 | 46 | LargeArrayMinWidth = 0; |
121 | 46 | LargeArrayAlign = 0; |
122 | 46 | MaxAtomicPromoteWidth = MaxAtomicInlineWidth = 0; |
123 | 46 | MaxVectorAlign = 0; |
124 | 46 | MaxTLSAlign = 0; |
125 | 46 | SizeType = UnsignedLong; |
126 | 46 | PtrDiffType = SignedLong; |
127 | 46 | IntMaxType = SignedLongLong; |
128 | 46 | IntPtrType = SignedLong; |
129 | 46 | WCharType = SignedInt; |
130 | 46 | WIntType = SignedInt; |
131 | 46 | Char16Type = UnsignedShort; |
132 | 46 | Char32Type = UnsignedInt; |
133 | 46 | Int64Type = SignedLongLong; |
134 | 46 | Int16Type = SignedShort; |
135 | 46 | SigAtomicType = SignedInt; |
136 | 46 | ProcessIDType = SignedInt; |
137 | 46 | UseSignedCharForObjCBool = true; |
138 | 46 | UseBitFieldTypeAlignment = true; |
139 | 46 | UseZeroLengthBitfieldAlignment = false; |
140 | 46 | UseLeadingZeroLengthBitfield = true; |
141 | 46 | UseExplicitBitFieldAlignment = true; |
142 | 46 | ZeroLengthBitfieldBoundary = 0; |
143 | 46 | MaxAlignedAttribute = 0; |
144 | 46 | HalfFormat = &llvm::APFloat::IEEEhalf(); |
145 | 46 | FloatFormat = &llvm::APFloat::IEEEsingle(); |
146 | 46 | DoubleFormat = &llvm::APFloat::IEEEdouble(); |
147 | 46 | LongDoubleFormat = &llvm::APFloat::IEEEdouble(); |
148 | 46 | Float128Format = &llvm::APFloat::IEEEquad(); |
149 | 46 | Ibm128Format = &llvm::APFloat::PPCDoubleDouble(); |
150 | 46 | MCountName = "mcount"; |
151 | 46 | UserLabelPrefix = "_"; |
152 | 46 | RegParmMax = 0; |
153 | 46 | SSERegParmMax = 0; |
154 | 46 | HasAlignMac68kSupport = false; |
155 | 46 | HasBuiltinMSVaList = false; |
156 | 46 | IsRenderScriptTarget = false; |
157 | 46 | HasAArch64SVETypes = false; |
158 | 46 | HasRISCVVTypes = false; |
159 | 46 | AllowAMDGPUUnsafeFPAtomics = false; |
160 | 46 | ARMCDECoprocMask = 0; |
161 | | |
162 | | // Default to no types using fpret. |
163 | 46 | RealTypeUsesObjCFPRetMask = 0; |
164 | | |
165 | | // Default to not using fp2ret for __Complex long double |
166 | 46 | ComplexLongDoubleUsesFP2Ret = false; |
167 | | |
168 | | // Set the C++ ABI based on the triple. |
169 | 46 | TheCXXABI.set(Triple.isKnownWindowsMSVCEnvironment() |
170 | 46 | ? TargetCXXABI::Microsoft |
171 | 46 | : TargetCXXABI::GenericItanium); |
172 | | |
173 | | // Default to an empty address space map. |
174 | 46 | AddrSpaceMap = &DefaultAddrSpaceMap; |
175 | 46 | UseAddrSpaceMapMangling = false; |
176 | | |
177 | | // Default to an unknown platform name. |
178 | 46 | PlatformName = "unknown"; |
179 | 46 | PlatformMinVersion = VersionTuple(); |
180 | | |
181 | 46 | MaxOpenCLWorkGroupSize = 1024; |
182 | | |
183 | 46 | MaxBitIntWidth.reset(); |
184 | 46 | } |
185 | | |
186 | | // Out of line virtual dtor for TargetInfo. |
187 | 46 | TargetInfo::~TargetInfo() {} |
188 | | |
189 | 46 | void TargetInfo::resetDataLayout(StringRef DL, const char *ULP) { |
190 | 46 | DataLayoutString = DL.str(); |
191 | 46 | UserLabelPrefix = ULP; |
192 | 46 | } |
193 | | |
194 | | bool |
195 | 0 | TargetInfo::checkCFProtectionBranchSupported(DiagnosticsEngine &Diags) const { |
196 | 0 | Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=branch"; |
197 | 0 | return false; |
198 | 0 | } |
199 | | |
200 | | bool |
201 | 0 | TargetInfo::checkCFProtectionReturnSupported(DiagnosticsEngine &Diags) const { |
202 | 0 | Diags.Report(diag::err_opt_not_valid_on_target) << "cf-protection=return"; |
203 | 0 | return false; |
204 | 0 | } |
205 | | |
206 | | /// getTypeName - Return the user string for the specified integer type enum. |
207 | | /// For example, SignedShort -> "short". |
208 | 1.56k | const char *TargetInfo::getTypeName(IntType T) { |
209 | 1.56k | switch (T) { |
210 | 0 | default: llvm_unreachable("not an integer!"); |
211 | 138 | case SignedChar: return "signed char"; |
212 | 138 | case UnsignedChar: return "unsigned char"; |
213 | 138 | case SignedShort: return "short"; |
214 | 184 | case UnsignedShort: return "unsigned short"; |
215 | 184 | case SignedInt: return "int"; |
216 | 230 | case UnsignedInt: return "unsigned int"; |
217 | 276 | case SignedLong: return "long int"; |
218 | 276 | case UnsignedLong: return "long unsigned int"; |
219 | 0 | case SignedLongLong: return "long long int"; |
220 | 0 | case UnsignedLongLong: return "long long unsigned int"; |
221 | 1.56k | } |
222 | 1.56k | } |
223 | | |
224 | | /// getTypeConstantSuffix - Return the constant suffix for the specified |
225 | | /// integer type enum. For example, SignedLong -> "L". |
226 | 2.23k | const char *TargetInfo::getTypeConstantSuffix(IntType T) const { |
227 | 2.23k | switch (T) { |
228 | 0 | default: llvm_unreachable("not an integer!"); |
229 | 230 | case SignedChar: |
230 | 460 | case SignedShort: |
231 | 782 | case SignedInt: return ""; |
232 | 414 | case SignedLong: return "L"; |
233 | 46 | case SignedLongLong: return "LL"; |
234 | 184 | case UnsignedChar: |
235 | 184 | if (getCharWidth() < getIntWidth()) |
236 | 184 | return ""; |
237 | 184 | [[fallthrough]]; |
238 | 184 | case UnsignedShort: |
239 | 184 | if (getShortWidth() < getIntWidth()) |
240 | 184 | return ""; |
241 | 184 | [[fallthrough]]; |
242 | 230 | case UnsignedInt: return "U"; |
243 | 391 | case UnsignedLong: return "UL"; |
244 | 0 | case UnsignedLongLong: return "ULL"; |
245 | 2.23k | } |
246 | 2.23k | } |
247 | | |
248 | | /// getTypeFormatModifier - Return the printf format modifier for the |
249 | | /// specified integer type enum. For example, SignedLong -> "l". |
250 | | |
251 | 1.38k | const char *TargetInfo::getTypeFormatModifier(IntType T) { |
252 | 1.38k | switch (T) { |
253 | 0 | default: llvm_unreachable("not an integer!"); |
254 | 138 | case SignedChar: |
255 | 276 | case UnsignedChar: return "hh"; |
256 | 138 | case SignedShort: |
257 | 276 | case UnsignedShort: return "h"; |
258 | 138 | case SignedInt: |
259 | 276 | case UnsignedInt: return ""; |
260 | 276 | case SignedLong: |
261 | 552 | case UnsignedLong: return "l"; |
262 | 0 | case SignedLongLong: |
263 | 0 | case UnsignedLongLong: return "ll"; |
264 | 1.38k | } |
265 | 1.38k | } |
266 | | |
267 | | /// getTypeWidth - Return the width (in bits) of the specified integer type |
268 | | /// enum. For example, SignedInt -> getIntWidth(). |
269 | 3.82k | unsigned TargetInfo::getTypeWidth(IntType T) const { |
270 | 3.82k | switch (T) { |
271 | 0 | default: llvm_unreachable("not an integer!"); |
272 | 368 | case SignedChar: |
273 | 598 | case UnsignedChar: return getCharWidth(); |
274 | 368 | case SignedShort: |
275 | 644 | case UnsignedShort: return getShortWidth(); |
276 | 693 | case SignedInt: |
277 | 1.10k | case UnsignedInt: return getIntWidth(); |
278 | 787 | case SignedLong: |
279 | 1.43k | case UnsignedLong: return getLongWidth(); |
280 | 46 | case SignedLongLong: |
281 | 46 | case UnsignedLongLong: return getLongLongWidth(); |
282 | 3.82k | }; |
283 | 0 | } |
284 | | |
285 | | TargetInfo::IntType TargetInfo::getIntTypeByWidth( |
286 | 0 | unsigned BitWidth, bool IsSigned) const { |
287 | 0 | if (getCharWidth() == BitWidth) |
288 | 0 | return IsSigned ? SignedChar : UnsignedChar; |
289 | 0 | if (getShortWidth() == BitWidth) |
290 | 0 | return IsSigned ? SignedShort : UnsignedShort; |
291 | 0 | if (getIntWidth() == BitWidth) |
292 | 0 | return IsSigned ? SignedInt : UnsignedInt; |
293 | 0 | if (getLongWidth() == BitWidth) |
294 | 0 | return IsSigned ? SignedLong : UnsignedLong; |
295 | 0 | if (getLongLongWidth() == BitWidth) |
296 | 0 | return IsSigned ? SignedLongLong : UnsignedLongLong; |
297 | 0 | return NoInt; |
298 | 0 | } |
299 | | |
300 | | TargetInfo::IntType TargetInfo::getLeastIntTypeByWidth(unsigned BitWidth, |
301 | 736 | bool IsSigned) const { |
302 | 736 | if (getCharWidth() >= BitWidth) |
303 | 184 | return IsSigned ? SignedChar : UnsignedChar; |
304 | 552 | if (getShortWidth() >= BitWidth) |
305 | 184 | return IsSigned ? SignedShort : UnsignedShort; |
306 | 368 | if (getIntWidth() >= BitWidth) |
307 | 184 | return IsSigned ? SignedInt : UnsignedInt; |
308 | 184 | if (getLongWidth() >= BitWidth) |
309 | 184 | return IsSigned ? SignedLong : UnsignedLong; |
310 | 0 | if (getLongLongWidth() >= BitWidth) |
311 | 0 | return IsSigned ? SignedLongLong : UnsignedLongLong; |
312 | 0 | return NoInt; |
313 | 0 | } |
314 | | |
315 | | FloatModeKind TargetInfo::getRealTypeByWidth(unsigned BitWidth, |
316 | 0 | FloatModeKind ExplicitType) const { |
317 | 0 | if (getHalfWidth() == BitWidth) |
318 | 0 | return FloatModeKind::Half; |
319 | 0 | if (getFloatWidth() == BitWidth) |
320 | 0 | return FloatModeKind::Float; |
321 | 0 | if (getDoubleWidth() == BitWidth) |
322 | 0 | return FloatModeKind::Double; |
323 | | |
324 | 0 | switch (BitWidth) { |
325 | 0 | case 96: |
326 | 0 | if (&getLongDoubleFormat() == &llvm::APFloat::x87DoubleExtended()) |
327 | 0 | return FloatModeKind::LongDouble; |
328 | 0 | break; |
329 | 0 | case 128: |
330 | | // The caller explicitly asked for an IEEE compliant type but we still |
331 | | // have to check if the target supports it. |
332 | 0 | if (ExplicitType == FloatModeKind::Float128) |
333 | 0 | return hasFloat128Type() ? FloatModeKind::Float128 |
334 | 0 | : FloatModeKind::NoFloat; |
335 | 0 | if (ExplicitType == FloatModeKind::Ibm128) |
336 | 0 | return hasIbm128Type() ? FloatModeKind::Ibm128 |
337 | 0 | : FloatModeKind::NoFloat; |
338 | 0 | if (&getLongDoubleFormat() == &llvm::APFloat::PPCDoubleDouble() || |
339 | 0 | &getLongDoubleFormat() == &llvm::APFloat::IEEEquad()) |
340 | 0 | return FloatModeKind::LongDouble; |
341 | 0 | if (hasFloat128Type()) |
342 | 0 | return FloatModeKind::Float128; |
343 | 0 | break; |
344 | 0 | } |
345 | | |
346 | 0 | return FloatModeKind::NoFloat; |
347 | 0 | } |
348 | | |
349 | | /// getTypeAlign - Return the alignment (in bits) of the specified integer type |
350 | | /// enum. For example, SignedInt -> getIntAlign(). |
351 | 0 | unsigned TargetInfo::getTypeAlign(IntType T) const { |
352 | 0 | switch (T) { |
353 | 0 | default: llvm_unreachable("not an integer!"); |
354 | 0 | case SignedChar: |
355 | 0 | case UnsignedChar: return getCharAlign(); |
356 | 0 | case SignedShort: |
357 | 0 | case UnsignedShort: return getShortAlign(); |
358 | 0 | case SignedInt: |
359 | 0 | case UnsignedInt: return getIntAlign(); |
360 | 0 | case SignedLong: |
361 | 0 | case UnsignedLong: return getLongAlign(); |
362 | 0 | case SignedLongLong: |
363 | 0 | case UnsignedLongLong: return getLongLongAlign(); |
364 | 0 | }; |
365 | 0 | } |
366 | | |
367 | | /// isTypeSigned - Return whether an integer types is signed. Returns true if |
368 | | /// the type is signed; false otherwise. |
369 | 4.00k | bool TargetInfo::isTypeSigned(IntType T) { |
370 | 4.00k | switch (T) { |
371 | 0 | default: llvm_unreachable("not an integer!"); |
372 | 414 | case SignedChar: |
373 | 828 | case SignedShort: |
374 | 1.42k | case SignedInt: |
375 | 2.11k | case SignedLong: |
376 | 2.16k | case SignedLongLong: |
377 | 2.16k | return true; |
378 | 368 | case UnsignedChar: |
379 | 736 | case UnsignedShort: |
380 | 1.19k | case UnsignedInt: |
381 | 1.84k | case UnsignedLong: |
382 | 1.84k | case UnsignedLongLong: |
383 | 1.84k | return false; |
384 | 4.00k | }; |
385 | 0 | } |
386 | | |
387 | | /// adjust - Set forced language options. |
388 | | /// Apply changes to the target information with respect to certain |
389 | | /// language options which change the target configuration and adjust |
390 | | /// the language based on the target options where applicable. |
391 | 92 | void TargetInfo::adjust(DiagnosticsEngine &Diags, LangOptions &Opts) { |
392 | 92 | if (Opts.NoBitFieldTypeAlign) |
393 | 0 | UseBitFieldTypeAlignment = false; |
394 | | |
395 | 92 | switch (Opts.WCharSize) { |
396 | 0 | default: llvm_unreachable("invalid wchar_t width"); |
397 | 92 | case 0: break; |
398 | 0 | case 1: WCharType = Opts.WCharIsSigned ? SignedChar : UnsignedChar; break; |
399 | 0 | case 2: WCharType = Opts.WCharIsSigned ? SignedShort : UnsignedShort; break; |
400 | 0 | case 4: WCharType = Opts.WCharIsSigned ? SignedInt : UnsignedInt; break; |
401 | 92 | } |
402 | | |
403 | 92 | if (Opts.AlignDouble) { |
404 | 0 | DoubleAlign = LongLongAlign = 64; |
405 | 0 | LongDoubleAlign = 64; |
406 | 0 | } |
407 | | |
408 | 92 | if (Opts.OpenCL) { |
409 | | // OpenCL C requires specific widths for types, irrespective of |
410 | | // what these normally are for the target. |
411 | | // We also define long long and long double here, although the |
412 | | // OpenCL standard only mentions these as "reserved". |
413 | 0 | IntWidth = IntAlign = 32; |
414 | 0 | LongWidth = LongAlign = 64; |
415 | 0 | LongLongWidth = LongLongAlign = 128; |
416 | 0 | HalfWidth = HalfAlign = 16; |
417 | 0 | FloatWidth = FloatAlign = 32; |
418 | | |
419 | | // Embedded 32-bit targets (OpenCL EP) might have double C type |
420 | | // defined as float. Let's not override this as it might lead |
421 | | // to generating illegal code that uses 64bit doubles. |
422 | 0 | if (DoubleWidth != FloatWidth) { |
423 | 0 | DoubleWidth = DoubleAlign = 64; |
424 | 0 | DoubleFormat = &llvm::APFloat::IEEEdouble(); |
425 | 0 | } |
426 | 0 | LongDoubleWidth = LongDoubleAlign = 128; |
427 | |
|
428 | 0 | unsigned MaxPointerWidth = getMaxPointerWidth(); |
429 | 0 | assert(MaxPointerWidth == 32 || MaxPointerWidth == 64); |
430 | 0 | bool Is32BitArch = MaxPointerWidth == 32; |
431 | 0 | SizeType = Is32BitArch ? UnsignedInt : UnsignedLong; |
432 | 0 | PtrDiffType = Is32BitArch ? SignedInt : SignedLong; |
433 | 0 | IntPtrType = Is32BitArch ? SignedInt : SignedLong; |
434 | |
|
435 | 0 | IntMaxType = SignedLongLong; |
436 | 0 | Int64Type = SignedLong; |
437 | |
|
438 | 0 | HalfFormat = &llvm::APFloat::IEEEhalf(); |
439 | 0 | FloatFormat = &llvm::APFloat::IEEEsingle(); |
440 | 0 | LongDoubleFormat = &llvm::APFloat::IEEEquad(); |
441 | | |
442 | | // OpenCL C v3.0 s6.7.5 - The generic address space requires support for |
443 | | // OpenCL C 2.0 or OpenCL C 3.0 with the __opencl_c_generic_address_space |
444 | | // feature |
445 | | // OpenCL C v3.0 s6.2.1 - OpenCL pipes require support of OpenCL C 2.0 |
446 | | // or later and __opencl_c_pipes feature |
447 | | // FIXME: These language options are also defined in setLangDefaults() |
448 | | // for OpenCL C 2.0 but with no access to target capabilities. Target |
449 | | // should be immutable once created and thus these language options need |
450 | | // to be defined only once. |
451 | 0 | if (Opts.getOpenCLCompatibleVersion() == 300) { |
452 | 0 | const auto &OpenCLFeaturesMap = getSupportedOpenCLOpts(); |
453 | 0 | Opts.OpenCLGenericAddressSpace = hasFeatureEnabled( |
454 | 0 | OpenCLFeaturesMap, "__opencl_c_generic_address_space"); |
455 | 0 | Opts.OpenCLPipes = |
456 | 0 | hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_pipes"); |
457 | 0 | Opts.Blocks = |
458 | 0 | hasFeatureEnabled(OpenCLFeaturesMap, "__opencl_c_device_enqueue"); |
459 | 0 | } |
460 | 0 | } |
461 | | |
462 | 92 | if (Opts.DoubleSize) { |
463 | 0 | if (Opts.DoubleSize == 32) { |
464 | 0 | DoubleWidth = 32; |
465 | 0 | LongDoubleWidth = 32; |
466 | 0 | DoubleFormat = &llvm::APFloat::IEEEsingle(); |
467 | 0 | LongDoubleFormat = &llvm::APFloat::IEEEsingle(); |
468 | 0 | } else if (Opts.DoubleSize == 64) { |
469 | 0 | DoubleWidth = 64; |
470 | 0 | LongDoubleWidth = 64; |
471 | 0 | DoubleFormat = &llvm::APFloat::IEEEdouble(); |
472 | 0 | LongDoubleFormat = &llvm::APFloat::IEEEdouble(); |
473 | 0 | } |
474 | 0 | } |
475 | | |
476 | 92 | if (Opts.LongDoubleSize) { |
477 | 0 | if (Opts.LongDoubleSize == DoubleWidth) { |
478 | 0 | LongDoubleWidth = DoubleWidth; |
479 | 0 | LongDoubleAlign = DoubleAlign; |
480 | 0 | LongDoubleFormat = DoubleFormat; |
481 | 0 | } else if (Opts.LongDoubleSize == 128) { |
482 | 0 | LongDoubleWidth = LongDoubleAlign = 128; |
483 | 0 | LongDoubleFormat = &llvm::APFloat::IEEEquad(); |
484 | 0 | } else if (Opts.LongDoubleSize == 80) { |
485 | 0 | LongDoubleFormat = &llvm::APFloat::x87DoubleExtended(); |
486 | 0 | if (getTriple().isWindowsMSVCEnvironment()) { |
487 | 0 | LongDoubleWidth = 128; |
488 | 0 | LongDoubleAlign = 128; |
489 | 0 | } else { // Linux |
490 | 0 | if (getTriple().getArch() == llvm::Triple::x86) { |
491 | 0 | LongDoubleWidth = 96; |
492 | 0 | LongDoubleAlign = 32; |
493 | 0 | } else { |
494 | 0 | LongDoubleWidth = 128; |
495 | 0 | LongDoubleAlign = 128; |
496 | 0 | } |
497 | 0 | } |
498 | 0 | } |
499 | 0 | } |
500 | | |
501 | 92 | if (Opts.NewAlignOverride) |
502 | 0 | NewAlign = Opts.NewAlignOverride * getCharWidth(); |
503 | | |
504 | | // Each unsigned fixed point type has the same number of fractional bits as |
505 | | // its corresponding signed type. |
506 | 92 | PaddingOnUnsignedFixedPoint |= Opts.PaddingOnUnsignedFixedPoint; |
507 | 92 | CheckFixedPointBits(); |
508 | | |
509 | 92 | if (Opts.ProtectParens && !checkArithmeticFenceSupported()) { |
510 | 0 | Diags.Report(diag::err_opt_not_valid_on_target) << "-fprotect-parens"; |
511 | 0 | Opts.ProtectParens = false; |
512 | 0 | } |
513 | | |
514 | 92 | if (Opts.MaxBitIntWidth) |
515 | 0 | MaxBitIntWidth = static_cast<unsigned>(Opts.MaxBitIntWidth); |
516 | | |
517 | 92 | if (Opts.FakeAddressSpaceMap) |
518 | 0 | AddrSpaceMap = &FakeAddrSpaceMap; |
519 | 92 | } |
520 | | |
521 | | bool TargetInfo::initFeatureMap( |
522 | | llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU, |
523 | 46 | const std::vector<std::string> &FeatureVec) const { |
524 | 46 | for (const auto &F : FeatureVec) { |
525 | 0 | StringRef Name = F; |
526 | 0 | if (Name.empty()) |
527 | 0 | continue; |
528 | | // Apply the feature via the target. |
529 | 0 | if (Name[0] != '+' && Name[0] != '-') |
530 | 0 | Diags.Report(diag::warn_fe_backend_invalid_feature_flag) << Name; |
531 | 0 | else |
532 | 0 | setFeatureEnabled(Features, Name.substr(1), Name[0] == '+'); |
533 | 0 | } |
534 | 46 | return true; |
535 | 46 | } |
536 | | |
537 | 0 | ParsedTargetAttr TargetInfo::parseTargetAttr(StringRef Features) const { |
538 | 0 | ParsedTargetAttr Ret; |
539 | 0 | if (Features == "default") |
540 | 0 | return Ret; |
541 | 0 | SmallVector<StringRef, 1> AttrFeatures; |
542 | 0 | Features.split(AttrFeatures, ","); |
543 | | |
544 | | // Grab the various features and prepend a "+" to turn on the feature to |
545 | | // the backend and add them to our existing set of features. |
546 | 0 | for (auto &Feature : AttrFeatures) { |
547 | | // Go ahead and trim whitespace rather than either erroring or |
548 | | // accepting it weirdly. |
549 | 0 | Feature = Feature.trim(); |
550 | | |
551 | | // TODO: Support the fpmath option. It will require checking |
552 | | // overall feature validity for the function with the rest of the |
553 | | // attributes on the function. |
554 | 0 | if (Feature.starts_with("fpmath=")) |
555 | 0 | continue; |
556 | | |
557 | 0 | if (Feature.starts_with("branch-protection=")) { |
558 | 0 | Ret.BranchProtection = Feature.split('=').second.trim(); |
559 | 0 | continue; |
560 | 0 | } |
561 | | |
562 | | // While we're here iterating check for a different target cpu. |
563 | 0 | if (Feature.starts_with("arch=")) { |
564 | 0 | if (!Ret.CPU.empty()) |
565 | 0 | Ret.Duplicate = "arch="; |
566 | 0 | else |
567 | 0 | Ret.CPU = Feature.split("=").second.trim(); |
568 | 0 | } else if (Feature.starts_with("tune=")) { |
569 | 0 | if (!Ret.Tune.empty()) |
570 | 0 | Ret.Duplicate = "tune="; |
571 | 0 | else |
572 | 0 | Ret.Tune = Feature.split("=").second.trim(); |
573 | 0 | } else if (Feature.starts_with("no-")) |
574 | 0 | Ret.Features.push_back("-" + Feature.split("-").second.str()); |
575 | 0 | else |
576 | 0 | Ret.Features.push_back("+" + Feature.str()); |
577 | 0 | } |
578 | 0 | return Ret; |
579 | 0 | } |
580 | | |
581 | | TargetInfo::CallingConvKind |
582 | 0 | TargetInfo::getCallingConvKind(bool ClangABICompat4) const { |
583 | 0 | if (getCXXABI() != TargetCXXABI::Microsoft && |
584 | 0 | (ClangABICompat4 || getTriple().isPS4())) |
585 | 0 | return CCK_ClangABI4OrPS4; |
586 | 0 | return CCK_Default; |
587 | 0 | } |
588 | | |
589 | 0 | bool TargetInfo::areDefaultedSMFStillPOD(const LangOptions &LangOpts) const { |
590 | 0 | return LangOpts.getClangABICompat() > LangOptions::ClangABI::Ver15; |
591 | 0 | } |
592 | | |
593 | 0 | LangAS TargetInfo::getOpenCLTypeAddrSpace(OpenCLTypeKind TK) const { |
594 | 0 | switch (TK) { |
595 | 0 | case OCLTK_Image: |
596 | 0 | case OCLTK_Pipe: |
597 | 0 | return LangAS::opencl_global; |
598 | | |
599 | 0 | case OCLTK_Sampler: |
600 | 0 | return LangAS::opencl_constant; |
601 | | |
602 | 0 | default: |
603 | 0 | return LangAS::Default; |
604 | 0 | } |
605 | 0 | } |
606 | | |
607 | | //===----------------------------------------------------------------------===// |
608 | | |
609 | | |
610 | 0 | static StringRef removeGCCRegisterPrefix(StringRef Name) { |
611 | 0 | if (Name[0] == '%' || Name[0] == '#') |
612 | 0 | Name = Name.substr(1); |
613 | |
|
614 | 0 | return Name; |
615 | 0 | } |
616 | | |
617 | | /// isValidClobber - Returns whether the passed in string is |
618 | | /// a valid clobber in an inline asm statement. This is used by |
619 | | /// Sema. |
620 | 0 | bool TargetInfo::isValidClobber(StringRef Name) const { |
621 | 0 | return (isValidGCCRegisterName(Name) || Name == "memory" || Name == "cc" || |
622 | 0 | Name == "unwind"); |
623 | 0 | } |
624 | | |
625 | | /// isValidGCCRegisterName - Returns whether the passed in string |
626 | | /// is a valid register name according to GCC. This is used by Sema for |
627 | | /// inline asm statements. |
628 | 0 | bool TargetInfo::isValidGCCRegisterName(StringRef Name) const { |
629 | 0 | if (Name.empty()) |
630 | 0 | return false; |
631 | | |
632 | | // Get rid of any register prefix. |
633 | 0 | Name = removeGCCRegisterPrefix(Name); |
634 | 0 | if (Name.empty()) |
635 | 0 | return false; |
636 | | |
637 | 0 | ArrayRef<const char *> Names = getGCCRegNames(); |
638 | | |
639 | | // If we have a number it maps to an entry in the register name array. |
640 | 0 | if (isDigit(Name[0])) { |
641 | 0 | unsigned n; |
642 | 0 | if (!Name.getAsInteger(0, n)) |
643 | 0 | return n < Names.size(); |
644 | 0 | } |
645 | | |
646 | | // Check register names. |
647 | 0 | if (llvm::is_contained(Names, Name)) |
648 | 0 | return true; |
649 | | |
650 | | // Check any additional names that we have. |
651 | 0 | for (const AddlRegName &ARN : getGCCAddlRegNames()) |
652 | 0 | for (const char *AN : ARN.Names) { |
653 | 0 | if (!AN) |
654 | 0 | break; |
655 | | // Make sure the register that the additional name is for is within |
656 | | // the bounds of the register names from above. |
657 | 0 | if (AN == Name && ARN.RegNum < Names.size()) |
658 | 0 | return true; |
659 | 0 | } |
660 | | |
661 | | // Now check aliases. |
662 | 0 | for (const GCCRegAlias &GRA : getGCCRegAliases()) |
663 | 0 | for (const char *A : GRA.Aliases) { |
664 | 0 | if (!A) |
665 | 0 | break; |
666 | 0 | if (A == Name) |
667 | 0 | return true; |
668 | 0 | } |
669 | | |
670 | 0 | return false; |
671 | 0 | } |
672 | | |
673 | | StringRef TargetInfo::getNormalizedGCCRegisterName(StringRef Name, |
674 | 0 | bool ReturnCanonical) const { |
675 | 0 | assert(isValidGCCRegisterName(Name) && "Invalid register passed in"); |
676 | | |
677 | | // Get rid of any register prefix. |
678 | 0 | Name = removeGCCRegisterPrefix(Name); |
679 | |
|
680 | 0 | ArrayRef<const char *> Names = getGCCRegNames(); |
681 | | |
682 | | // First, check if we have a number. |
683 | 0 | if (isDigit(Name[0])) { |
684 | 0 | unsigned n; |
685 | 0 | if (!Name.getAsInteger(0, n)) { |
686 | 0 | assert(n < Names.size() && "Out of bounds register number!"); |
687 | 0 | return Names[n]; |
688 | 0 | } |
689 | 0 | } |
690 | | |
691 | | // Check any additional names that we have. |
692 | 0 | for (const AddlRegName &ARN : getGCCAddlRegNames()) |
693 | 0 | for (const char *AN : ARN.Names) { |
694 | 0 | if (!AN) |
695 | 0 | break; |
696 | | // Make sure the register that the additional name is for is within |
697 | | // the bounds of the register names from above. |
698 | 0 | if (AN == Name && ARN.RegNum < Names.size()) |
699 | 0 | return ReturnCanonical ? Names[ARN.RegNum] : Name; |
700 | 0 | } |
701 | | |
702 | | // Now check aliases. |
703 | 0 | for (const GCCRegAlias &RA : getGCCRegAliases()) |
704 | 0 | for (const char *A : RA.Aliases) { |
705 | 0 | if (!A) |
706 | 0 | break; |
707 | 0 | if (A == Name) |
708 | 0 | return RA.Register; |
709 | 0 | } |
710 | | |
711 | 0 | return Name; |
712 | 0 | } |
713 | | |
714 | 0 | bool TargetInfo::validateOutputConstraint(ConstraintInfo &Info) const { |
715 | 0 | const char *Name = Info.getConstraintStr().c_str(); |
716 | | // An output constraint must start with '=' or '+' |
717 | 0 | if (*Name != '=' && *Name != '+') |
718 | 0 | return false; |
719 | | |
720 | 0 | if (*Name == '+') |
721 | 0 | Info.setIsReadWrite(); |
722 | |
|
723 | 0 | Name++; |
724 | 0 | while (*Name) { |
725 | 0 | switch (*Name) { |
726 | 0 | default: |
727 | 0 | if (!validateAsmConstraint(Name, Info)) { |
728 | | // FIXME: We temporarily return false |
729 | | // so we can add more constraints as we hit it. |
730 | | // Eventually, an unknown constraint should just be treated as 'g'. |
731 | 0 | return false; |
732 | 0 | } |
733 | 0 | break; |
734 | 0 | case '&': // early clobber. |
735 | 0 | Info.setEarlyClobber(); |
736 | 0 | break; |
737 | 0 | case '%': // commutative. |
738 | | // FIXME: Check that there is a another register after this one. |
739 | 0 | break; |
740 | 0 | case 'r': // general register. |
741 | 0 | Info.setAllowsRegister(); |
742 | 0 | break; |
743 | 0 | case 'm': // memory operand. |
744 | 0 | case 'o': // offsetable memory operand. |
745 | 0 | case 'V': // non-offsetable memory operand. |
746 | 0 | case '<': // autodecrement memory operand. |
747 | 0 | case '>': // autoincrement memory operand. |
748 | 0 | Info.setAllowsMemory(); |
749 | 0 | break; |
750 | 0 | case 'g': // general register, memory operand or immediate integer. |
751 | 0 | case 'X': // any operand. |
752 | 0 | Info.setAllowsRegister(); |
753 | 0 | Info.setAllowsMemory(); |
754 | 0 | break; |
755 | 0 | case ',': // multiple alternative constraint. Pass it. |
756 | | // Handle additional optional '=' or '+' modifiers. |
757 | 0 | if (Name[1] == '=' || Name[1] == '+') |
758 | 0 | Name++; |
759 | 0 | break; |
760 | 0 | case '#': // Ignore as constraint. |
761 | 0 | while (Name[1] && Name[1] != ',') |
762 | 0 | Name++; |
763 | 0 | break; |
764 | 0 | case '?': // Disparage slightly code. |
765 | 0 | case '!': // Disparage severely. |
766 | 0 | case '*': // Ignore for choosing register preferences. |
767 | 0 | case 'i': // Ignore i,n,E,F as output constraints (match from the other |
768 | | // chars) |
769 | 0 | case 'n': |
770 | 0 | case 'E': |
771 | 0 | case 'F': |
772 | 0 | break; // Pass them. |
773 | 0 | } |
774 | | |
775 | 0 | Name++; |
776 | 0 | } |
777 | | |
778 | | // Early clobber with a read-write constraint which doesn't permit registers |
779 | | // is invalid. |
780 | 0 | if (Info.earlyClobber() && Info.isReadWrite() && !Info.allowsRegister()) |
781 | 0 | return false; |
782 | | |
783 | | // If a constraint allows neither memory nor register operands it contains |
784 | | // only modifiers. Reject it. |
785 | 0 | return Info.allowsMemory() || Info.allowsRegister(); |
786 | 0 | } |
787 | | |
788 | | bool TargetInfo::resolveSymbolicName(const char *&Name, |
789 | | ArrayRef<ConstraintInfo> OutputConstraints, |
790 | 0 | unsigned &Index) const { |
791 | 0 | assert(*Name == '[' && "Symbolic name did not start with '['"); |
792 | 0 | Name++; |
793 | 0 | const char *Start = Name; |
794 | 0 | while (*Name && *Name != ']') |
795 | 0 | Name++; |
796 | |
|
797 | 0 | if (!*Name) { |
798 | | // Missing ']' |
799 | 0 | return false; |
800 | 0 | } |
801 | | |
802 | 0 | std::string SymbolicName(Start, Name - Start); |
803 | |
|
804 | 0 | for (Index = 0; Index != OutputConstraints.size(); ++Index) |
805 | 0 | if (SymbolicName == OutputConstraints[Index].getName()) |
806 | 0 | return true; |
807 | | |
808 | 0 | return false; |
809 | 0 | } |
810 | | |
811 | | bool TargetInfo::validateInputConstraint( |
812 | | MutableArrayRef<ConstraintInfo> OutputConstraints, |
813 | 0 | ConstraintInfo &Info) const { |
814 | 0 | const char *Name = Info.ConstraintStr.c_str(); |
815 | |
|
816 | 0 | if (!*Name) |
817 | 0 | return false; |
818 | | |
819 | 0 | while (*Name) { |
820 | 0 | switch (*Name) { |
821 | 0 | default: |
822 | | // Check if we have a matching constraint |
823 | 0 | if (*Name >= '0' && *Name <= '9') { |
824 | 0 | const char *DigitStart = Name; |
825 | 0 | while (Name[1] >= '0' && Name[1] <= '9') |
826 | 0 | Name++; |
827 | 0 | const char *DigitEnd = Name; |
828 | 0 | unsigned i; |
829 | 0 | if (StringRef(DigitStart, DigitEnd - DigitStart + 1) |
830 | 0 | .getAsInteger(10, i)) |
831 | 0 | return false; |
832 | | |
833 | | // Check if matching constraint is out of bounds. |
834 | 0 | if (i >= OutputConstraints.size()) return false; |
835 | | |
836 | | // A number must refer to an output only operand. |
837 | 0 | if (OutputConstraints[i].isReadWrite()) |
838 | 0 | return false; |
839 | | |
840 | | // If the constraint is already tied, it must be tied to the |
841 | | // same operand referenced to by the number. |
842 | 0 | if (Info.hasTiedOperand() && Info.getTiedOperand() != i) |
843 | 0 | return false; |
844 | | |
845 | | // The constraint should have the same info as the respective |
846 | | // output constraint. |
847 | 0 | Info.setTiedOperand(i, OutputConstraints[i]); |
848 | 0 | } else if (!validateAsmConstraint(Name, Info)) { |
849 | | // FIXME: This error return is in place temporarily so we can |
850 | | // add more constraints as we hit it. Eventually, an unknown |
851 | | // constraint should just be treated as 'g'. |
852 | 0 | return false; |
853 | 0 | } |
854 | 0 | break; |
855 | 0 | case '[': { |
856 | 0 | unsigned Index = 0; |
857 | 0 | if (!resolveSymbolicName(Name, OutputConstraints, Index)) |
858 | 0 | return false; |
859 | | |
860 | | // If the constraint is already tied, it must be tied to the |
861 | | // same operand referenced to by the number. |
862 | 0 | if (Info.hasTiedOperand() && Info.getTiedOperand() != Index) |
863 | 0 | return false; |
864 | | |
865 | | // A number must refer to an output only operand. |
866 | 0 | if (OutputConstraints[Index].isReadWrite()) |
867 | 0 | return false; |
868 | | |
869 | 0 | Info.setTiedOperand(Index, OutputConstraints[Index]); |
870 | 0 | break; |
871 | 0 | } |
872 | 0 | case '%': // commutative |
873 | | // FIXME: Fail if % is used with the last operand. |
874 | 0 | break; |
875 | 0 | case 'i': // immediate integer. |
876 | 0 | break; |
877 | 0 | case 'n': // immediate integer with a known value. |
878 | 0 | Info.setRequiresImmediate(); |
879 | 0 | break; |
880 | 0 | case 'I': // Various constant constraints with target-specific meanings. |
881 | 0 | case 'J': |
882 | 0 | case 'K': |
883 | 0 | case 'L': |
884 | 0 | case 'M': |
885 | 0 | case 'N': |
886 | 0 | case 'O': |
887 | 0 | case 'P': |
888 | 0 | if (!validateAsmConstraint(Name, Info)) |
889 | 0 | return false; |
890 | 0 | break; |
891 | 0 | case 'r': // general register. |
892 | 0 | Info.setAllowsRegister(); |
893 | 0 | break; |
894 | 0 | case 'm': // memory operand. |
895 | 0 | case 'o': // offsettable memory operand. |
896 | 0 | case 'V': // non-offsettable memory operand. |
897 | 0 | case '<': // autodecrement memory operand. |
898 | 0 | case '>': // autoincrement memory operand. |
899 | 0 | Info.setAllowsMemory(); |
900 | 0 | break; |
901 | 0 | case 'g': // general register, memory operand or immediate integer. |
902 | 0 | case 'X': // any operand. |
903 | 0 | Info.setAllowsRegister(); |
904 | 0 | Info.setAllowsMemory(); |
905 | 0 | break; |
906 | 0 | case 'E': // immediate floating point. |
907 | 0 | case 'F': // immediate floating point. |
908 | 0 | case 'p': // address operand. |
909 | 0 | break; |
910 | 0 | case ',': // multiple alternative constraint. Ignore comma. |
911 | 0 | break; |
912 | 0 | case '#': // Ignore as constraint. |
913 | 0 | while (Name[1] && Name[1] != ',') |
914 | 0 | Name++; |
915 | 0 | break; |
916 | 0 | case '?': // Disparage slightly code. |
917 | 0 | case '!': // Disparage severely. |
918 | 0 | case '*': // Ignore for choosing register preferences. |
919 | 0 | break; // Pass them. |
920 | 0 | } |
921 | | |
922 | 0 | Name++; |
923 | 0 | } |
924 | | |
925 | 0 | return true; |
926 | 0 | } |
927 | | |
928 | 138 | void TargetInfo::CheckFixedPointBits() const { |
929 | | // Check that the number of fractional and integral bits (and maybe sign) can |
930 | | // fit into the bits given for a fixed point type. |
931 | 138 | assert(ShortAccumScale + getShortAccumIBits() + 1 <= ShortAccumWidth); |
932 | 0 | assert(AccumScale + getAccumIBits() + 1 <= AccumWidth); |
933 | 0 | assert(LongAccumScale + getLongAccumIBits() + 1 <= LongAccumWidth); |
934 | 0 | assert(getUnsignedShortAccumScale() + getUnsignedShortAccumIBits() <= |
935 | 138 | ShortAccumWidth); |
936 | 0 | assert(getUnsignedAccumScale() + getUnsignedAccumIBits() <= AccumWidth); |
937 | 0 | assert(getUnsignedLongAccumScale() + getUnsignedLongAccumIBits() <= |
938 | 138 | LongAccumWidth); |
939 | | |
940 | 0 | assert(getShortFractScale() + 1 <= ShortFractWidth); |
941 | 0 | assert(getFractScale() + 1 <= FractWidth); |
942 | 0 | assert(getLongFractScale() + 1 <= LongFractWidth); |
943 | 0 | assert(getUnsignedShortFractScale() <= ShortFractWidth); |
944 | 0 | assert(getUnsignedFractScale() <= FractWidth); |
945 | 0 | assert(getUnsignedLongFractScale() <= LongFractWidth); |
946 | | |
947 | | // Each unsigned fract type has either the same number of fractional bits |
948 | | // as, or one more fractional bit than, its corresponding signed fract type. |
949 | 0 | assert(getShortFractScale() == getUnsignedShortFractScale() || |
950 | 138 | getShortFractScale() == getUnsignedShortFractScale() - 1); |
951 | 0 | assert(getFractScale() == getUnsignedFractScale() || |
952 | 138 | getFractScale() == getUnsignedFractScale() - 1); |
953 | 0 | assert(getLongFractScale() == getUnsignedLongFractScale() || |
954 | 138 | getLongFractScale() == getUnsignedLongFractScale() - 1); |
955 | | |
956 | | // When arranged in order of increasing rank (see 6.3.1.3a), the number of |
957 | | // fractional bits is nondecreasing for each of the following sets of |
958 | | // fixed-point types: |
959 | | // - signed fract types |
960 | | // - unsigned fract types |
961 | | // - signed accum types |
962 | | // - unsigned accum types. |
963 | 0 | assert(getLongFractScale() >= getFractScale() && |
964 | 138 | getFractScale() >= getShortFractScale()); |
965 | 0 | assert(getUnsignedLongFractScale() >= getUnsignedFractScale() && |
966 | 138 | getUnsignedFractScale() >= getUnsignedShortFractScale()); |
967 | 0 | assert(LongAccumScale >= AccumScale && AccumScale >= ShortAccumScale); |
968 | 0 | assert(getUnsignedLongAccumScale() >= getUnsignedAccumScale() && |
969 | 138 | getUnsignedAccumScale() >= getUnsignedShortAccumScale()); |
970 | | |
971 | | // When arranged in order of increasing rank (see 6.3.1.3a), the number of |
972 | | // integral bits is nondecreasing for each of the following sets of |
973 | | // fixed-point types: |
974 | | // - signed accum types |
975 | | // - unsigned accum types |
976 | 0 | assert(getLongAccumIBits() >= getAccumIBits() && |
977 | 138 | getAccumIBits() >= getShortAccumIBits()); |
978 | 0 | assert(getUnsignedLongAccumIBits() >= getUnsignedAccumIBits() && |
979 | 138 | getUnsignedAccumIBits() >= getUnsignedShortAccumIBits()); |
980 | | |
981 | | // Each signed accum type has at least as many integral bits as its |
982 | | // corresponding unsigned accum type. |
983 | 0 | assert(getShortAccumIBits() >= getUnsignedShortAccumIBits()); |
984 | 0 | assert(getAccumIBits() >= getUnsignedAccumIBits()); |
985 | 0 | assert(getLongAccumIBits() >= getUnsignedLongAccumIBits()); |
986 | 138 | } |
987 | | |
988 | 0 | void TargetInfo::copyAuxTarget(const TargetInfo *Aux) { |
989 | 0 | auto *Target = static_cast<TransferrableTargetInfo*>(this); |
990 | 0 | auto *Src = static_cast<const TransferrableTargetInfo*>(Aux); |
991 | 0 | *Target = *Src; |
992 | 0 | } |