/src/llvm-project/clang/lib/CodeGen/CGAtomic.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--- CGAtomic.cpp - Emit LLVM IR for atomic operations ----------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file contains the code for emitting atomic operations. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "CGCall.h" |
14 | | #include "CGRecordLayout.h" |
15 | | #include "CodeGenFunction.h" |
16 | | #include "CodeGenModule.h" |
17 | | #include "TargetInfo.h" |
18 | | #include "clang/AST/ASTContext.h" |
19 | | #include "clang/CodeGen/CGFunctionInfo.h" |
20 | | #include "clang/Frontend/FrontendDiagnostic.h" |
21 | | #include "llvm/ADT/DenseMap.h" |
22 | | #include "llvm/IR/DataLayout.h" |
23 | | #include "llvm/IR/Intrinsics.h" |
24 | | #include "llvm/IR/Operator.h" |
25 | | |
26 | | using namespace clang; |
27 | | using namespace CodeGen; |
28 | | |
29 | | namespace { |
30 | | class AtomicInfo { |
31 | | CodeGenFunction &CGF; |
32 | | QualType AtomicTy; |
33 | | QualType ValueTy; |
34 | | uint64_t AtomicSizeInBits; |
35 | | uint64_t ValueSizeInBits; |
36 | | CharUnits AtomicAlign; |
37 | | CharUnits ValueAlign; |
38 | | TypeEvaluationKind EvaluationKind; |
39 | | bool UseLibcall; |
40 | | LValue LVal; |
41 | | CGBitFieldInfo BFI; |
42 | | public: |
43 | | AtomicInfo(CodeGenFunction &CGF, LValue &lvalue) |
44 | | : CGF(CGF), AtomicSizeInBits(0), ValueSizeInBits(0), |
45 | 0 | EvaluationKind(TEK_Scalar), UseLibcall(true) { |
46 | 0 | assert(!lvalue.isGlobalReg()); |
47 | 0 | ASTContext &C = CGF.getContext(); |
48 | 0 | if (lvalue.isSimple()) { |
49 | 0 | AtomicTy = lvalue.getType(); |
50 | 0 | if (auto *ATy = AtomicTy->getAs<AtomicType>()) |
51 | 0 | ValueTy = ATy->getValueType(); |
52 | 0 | else |
53 | 0 | ValueTy = AtomicTy; |
54 | 0 | EvaluationKind = CGF.getEvaluationKind(ValueTy); |
55 | |
|
56 | 0 | uint64_t ValueAlignInBits; |
57 | 0 | uint64_t AtomicAlignInBits; |
58 | 0 | TypeInfo ValueTI = C.getTypeInfo(ValueTy); |
59 | 0 | ValueSizeInBits = ValueTI.Width; |
60 | 0 | ValueAlignInBits = ValueTI.Align; |
61 | |
|
62 | 0 | TypeInfo AtomicTI = C.getTypeInfo(AtomicTy); |
63 | 0 | AtomicSizeInBits = AtomicTI.Width; |
64 | 0 | AtomicAlignInBits = AtomicTI.Align; |
65 | |
|
66 | 0 | assert(ValueSizeInBits <= AtomicSizeInBits); |
67 | 0 | assert(ValueAlignInBits <= AtomicAlignInBits); |
68 | | |
69 | 0 | AtomicAlign = C.toCharUnitsFromBits(AtomicAlignInBits); |
70 | 0 | ValueAlign = C.toCharUnitsFromBits(ValueAlignInBits); |
71 | 0 | if (lvalue.getAlignment().isZero()) |
72 | 0 | lvalue.setAlignment(AtomicAlign); |
73 | |
|
74 | 0 | LVal = lvalue; |
75 | 0 | } else if (lvalue.isBitField()) { |
76 | 0 | ValueTy = lvalue.getType(); |
77 | 0 | ValueSizeInBits = C.getTypeSize(ValueTy); |
78 | 0 | auto &OrigBFI = lvalue.getBitFieldInfo(); |
79 | 0 | auto Offset = OrigBFI.Offset % C.toBits(lvalue.getAlignment()); |
80 | 0 | AtomicSizeInBits = C.toBits( |
81 | 0 | C.toCharUnitsFromBits(Offset + OrigBFI.Size + C.getCharWidth() - 1) |
82 | 0 | .alignTo(lvalue.getAlignment())); |
83 | 0 | llvm::Value *BitFieldPtr = lvalue.getBitFieldPointer(); |
84 | 0 | auto OffsetInChars = |
85 | 0 | (C.toCharUnitsFromBits(OrigBFI.Offset) / lvalue.getAlignment()) * |
86 | 0 | lvalue.getAlignment(); |
87 | 0 | llvm::Value *StoragePtr = CGF.Builder.CreateConstGEP1_64( |
88 | 0 | CGF.Int8Ty, BitFieldPtr, OffsetInChars.getQuantity()); |
89 | 0 | StoragePtr = CGF.Builder.CreateAddrSpaceCast( |
90 | 0 | StoragePtr, CGF.UnqualPtrTy, "atomic_bitfield_base"); |
91 | 0 | BFI = OrigBFI; |
92 | 0 | BFI.Offset = Offset; |
93 | 0 | BFI.StorageSize = AtomicSizeInBits; |
94 | 0 | BFI.StorageOffset += OffsetInChars; |
95 | 0 | llvm::Type *StorageTy = CGF.Builder.getIntNTy(AtomicSizeInBits); |
96 | 0 | LVal = LValue::MakeBitfield( |
97 | 0 | Address(StoragePtr, StorageTy, lvalue.getAlignment()), BFI, |
98 | 0 | lvalue.getType(), lvalue.getBaseInfo(), lvalue.getTBAAInfo()); |
99 | 0 | AtomicTy = C.getIntTypeForBitwidth(AtomicSizeInBits, OrigBFI.IsSigned); |
100 | 0 | if (AtomicTy.isNull()) { |
101 | 0 | llvm::APInt Size( |
102 | 0 | /*numBits=*/32, |
103 | 0 | C.toCharUnitsFromBits(AtomicSizeInBits).getQuantity()); |
104 | 0 | AtomicTy = C.getConstantArrayType(C.CharTy, Size, nullptr, |
105 | 0 | ArraySizeModifier::Normal, |
106 | 0 | /*IndexTypeQuals=*/0); |
107 | 0 | } |
108 | 0 | AtomicAlign = ValueAlign = lvalue.getAlignment(); |
109 | 0 | } else if (lvalue.isVectorElt()) { |
110 | 0 | ValueTy = lvalue.getType()->castAs<VectorType>()->getElementType(); |
111 | 0 | ValueSizeInBits = C.getTypeSize(ValueTy); |
112 | 0 | AtomicTy = lvalue.getType(); |
113 | 0 | AtomicSizeInBits = C.getTypeSize(AtomicTy); |
114 | 0 | AtomicAlign = ValueAlign = lvalue.getAlignment(); |
115 | 0 | LVal = lvalue; |
116 | 0 | } else { |
117 | 0 | assert(lvalue.isExtVectorElt()); |
118 | 0 | ValueTy = lvalue.getType(); |
119 | 0 | ValueSizeInBits = C.getTypeSize(ValueTy); |
120 | 0 | AtomicTy = ValueTy = CGF.getContext().getExtVectorType( |
121 | 0 | lvalue.getType(), cast<llvm::FixedVectorType>( |
122 | 0 | lvalue.getExtVectorAddress().getElementType()) |
123 | 0 | ->getNumElements()); |
124 | 0 | AtomicSizeInBits = C.getTypeSize(AtomicTy); |
125 | 0 | AtomicAlign = ValueAlign = lvalue.getAlignment(); |
126 | 0 | LVal = lvalue; |
127 | 0 | } |
128 | 0 | UseLibcall = !C.getTargetInfo().hasBuiltinAtomic( |
129 | 0 | AtomicSizeInBits, C.toBits(lvalue.getAlignment())); |
130 | 0 | } |
131 | | |
132 | 0 | QualType getAtomicType() const { return AtomicTy; } |
133 | 0 | QualType getValueType() const { return ValueTy; } |
134 | 0 | CharUnits getAtomicAlignment() const { return AtomicAlign; } |
135 | 0 | uint64_t getAtomicSizeInBits() const { return AtomicSizeInBits; } |
136 | 0 | uint64_t getValueSizeInBits() const { return ValueSizeInBits; } |
137 | 0 | TypeEvaluationKind getEvaluationKind() const { return EvaluationKind; } |
138 | 0 | bool shouldUseLibcall() const { return UseLibcall; } |
139 | 0 | const LValue &getAtomicLValue() const { return LVal; } |
140 | 0 | llvm::Value *getAtomicPointer() const { |
141 | 0 | if (LVal.isSimple()) |
142 | 0 | return LVal.getPointer(CGF); |
143 | 0 | else if (LVal.isBitField()) |
144 | 0 | return LVal.getBitFieldPointer(); |
145 | 0 | else if (LVal.isVectorElt()) |
146 | 0 | return LVal.getVectorPointer(); |
147 | 0 | assert(LVal.isExtVectorElt()); |
148 | 0 | return LVal.getExtVectorPointer(); |
149 | 0 | } |
150 | 0 | Address getAtomicAddress() const { |
151 | 0 | llvm::Type *ElTy; |
152 | 0 | if (LVal.isSimple()) |
153 | 0 | ElTy = LVal.getAddress(CGF).getElementType(); |
154 | 0 | else if (LVal.isBitField()) |
155 | 0 | ElTy = LVal.getBitFieldAddress().getElementType(); |
156 | 0 | else if (LVal.isVectorElt()) |
157 | 0 | ElTy = LVal.getVectorAddress().getElementType(); |
158 | 0 | else |
159 | 0 | ElTy = LVal.getExtVectorAddress().getElementType(); |
160 | 0 | return Address(getAtomicPointer(), ElTy, getAtomicAlignment()); |
161 | 0 | } |
162 | | |
163 | 0 | Address getAtomicAddressAsAtomicIntPointer() const { |
164 | 0 | return castToAtomicIntPointer(getAtomicAddress()); |
165 | 0 | } |
166 | | |
167 | | /// Is the atomic size larger than the underlying value type? |
168 | | /// |
169 | | /// Note that the absence of padding does not mean that atomic |
170 | | /// objects are completely interchangeable with non-atomic |
171 | | /// objects: we might have promoted the alignment of a type |
172 | | /// without making it bigger. |
173 | 0 | bool hasPadding() const { |
174 | 0 | return (ValueSizeInBits != AtomicSizeInBits); |
175 | 0 | } |
176 | | |
177 | | bool emitMemSetZeroIfNecessary() const; |
178 | | |
179 | 0 | llvm::Value *getAtomicSizeValue() const { |
180 | 0 | CharUnits size = CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits); |
181 | 0 | return CGF.CGM.getSize(size); |
182 | 0 | } |
183 | | |
184 | | /// Cast the given pointer to an integer pointer suitable for atomic |
185 | | /// operations if the source. |
186 | | Address castToAtomicIntPointer(Address Addr) const; |
187 | | |
188 | | /// If Addr is compatible with the iN that will be used for an atomic |
189 | | /// operation, bitcast it. Otherwise, create a temporary that is suitable |
190 | | /// and copy the value across. |
191 | | Address convertToAtomicIntPointer(Address Addr) const; |
192 | | |
193 | | /// Turn an atomic-layout object into an r-value. |
194 | | RValue convertAtomicTempToRValue(Address addr, AggValueSlot resultSlot, |
195 | | SourceLocation loc, bool AsValue) const; |
196 | | |
197 | | /// Converts a rvalue to integer value. |
198 | | llvm::Value *convertRValueToInt(RValue RVal) const; |
199 | | |
200 | | RValue ConvertIntToValueOrAtomic(llvm::Value *IntVal, |
201 | | AggValueSlot ResultSlot, |
202 | | SourceLocation Loc, bool AsValue) const; |
203 | | |
204 | | /// Copy an atomic r-value into atomic-layout memory. |
205 | | void emitCopyIntoMemory(RValue rvalue) const; |
206 | | |
207 | | /// Project an l-value down to the value field. |
208 | 0 | LValue projectValue() const { |
209 | 0 | assert(LVal.isSimple()); |
210 | 0 | Address addr = getAtomicAddress(); |
211 | 0 | if (hasPadding()) |
212 | 0 | addr = CGF.Builder.CreateStructGEP(addr, 0); |
213 | |
|
214 | 0 | return LValue::MakeAddr(addr, getValueType(), CGF.getContext(), |
215 | 0 | LVal.getBaseInfo(), LVal.getTBAAInfo()); |
216 | 0 | } |
217 | | |
218 | | /// Emits atomic load. |
219 | | /// \returns Loaded value. |
220 | | RValue EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, |
221 | | bool AsValue, llvm::AtomicOrdering AO, |
222 | | bool IsVolatile); |
223 | | |
224 | | /// Emits atomic compare-and-exchange sequence. |
225 | | /// \param Expected Expected value. |
226 | | /// \param Desired Desired value. |
227 | | /// \param Success Atomic ordering for success operation. |
228 | | /// \param Failure Atomic ordering for failed operation. |
229 | | /// \param IsWeak true if atomic operation is weak, false otherwise. |
230 | | /// \returns Pair of values: previous value from storage (value type) and |
231 | | /// boolean flag (i1 type) with true if success and false otherwise. |
232 | | std::pair<RValue, llvm::Value *> |
233 | | EmitAtomicCompareExchange(RValue Expected, RValue Desired, |
234 | | llvm::AtomicOrdering Success = |
235 | | llvm::AtomicOrdering::SequentiallyConsistent, |
236 | | llvm::AtomicOrdering Failure = |
237 | | llvm::AtomicOrdering::SequentiallyConsistent, |
238 | | bool IsWeak = false); |
239 | | |
240 | | /// Emits atomic update. |
241 | | /// \param AO Atomic ordering. |
242 | | /// \param UpdateOp Update operation for the current lvalue. |
243 | | void EmitAtomicUpdate(llvm::AtomicOrdering AO, |
244 | | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
245 | | bool IsVolatile); |
246 | | /// Emits atomic update. |
247 | | /// \param AO Atomic ordering. |
248 | | void EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, |
249 | | bool IsVolatile); |
250 | | |
251 | | /// Materialize an atomic r-value in atomic-layout memory. |
252 | | Address materializeRValue(RValue rvalue) const; |
253 | | |
254 | | /// Creates temp alloca for intermediate operations on atomic value. |
255 | | Address CreateTempAlloca() const; |
256 | | private: |
257 | | bool requiresMemSetZero(llvm::Type *type) const; |
258 | | |
259 | | |
260 | | /// Emits atomic load as a libcall. |
261 | | void EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, |
262 | | llvm::AtomicOrdering AO, bool IsVolatile); |
263 | | /// Emits atomic load as LLVM instruction. |
264 | | llvm::Value *EmitAtomicLoadOp(llvm::AtomicOrdering AO, bool IsVolatile); |
265 | | /// Emits atomic compare-and-exchange op as a libcall. |
266 | | llvm::Value *EmitAtomicCompareExchangeLibcall( |
267 | | llvm::Value *ExpectedAddr, llvm::Value *DesiredAddr, |
268 | | llvm::AtomicOrdering Success = |
269 | | llvm::AtomicOrdering::SequentiallyConsistent, |
270 | | llvm::AtomicOrdering Failure = |
271 | | llvm::AtomicOrdering::SequentiallyConsistent); |
272 | | /// Emits atomic compare-and-exchange op as LLVM instruction. |
273 | | std::pair<llvm::Value *, llvm::Value *> EmitAtomicCompareExchangeOp( |
274 | | llvm::Value *ExpectedVal, llvm::Value *DesiredVal, |
275 | | llvm::AtomicOrdering Success = |
276 | | llvm::AtomicOrdering::SequentiallyConsistent, |
277 | | llvm::AtomicOrdering Failure = |
278 | | llvm::AtomicOrdering::SequentiallyConsistent, |
279 | | bool IsWeak = false); |
280 | | /// Emit atomic update as libcalls. |
281 | | void |
282 | | EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, |
283 | | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
284 | | bool IsVolatile); |
285 | | /// Emit atomic update as LLVM instructions. |
286 | | void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, |
287 | | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
288 | | bool IsVolatile); |
289 | | /// Emit atomic update as libcalls. |
290 | | void EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, RValue UpdateRVal, |
291 | | bool IsVolatile); |
292 | | /// Emit atomic update as LLVM instructions. |
293 | | void EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRal, |
294 | | bool IsVolatile); |
295 | | }; |
296 | | } |
297 | | |
298 | 0 | Address AtomicInfo::CreateTempAlloca() const { |
299 | 0 | Address TempAlloca = CGF.CreateMemTemp( |
300 | 0 | (LVal.isBitField() && ValueSizeInBits > AtomicSizeInBits) ? ValueTy |
301 | 0 | : AtomicTy, |
302 | 0 | getAtomicAlignment(), |
303 | 0 | "atomic-temp"); |
304 | | // Cast to pointer to value type for bitfields. |
305 | 0 | if (LVal.isBitField()) |
306 | 0 | return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( |
307 | 0 | TempAlloca, getAtomicAddress().getType(), |
308 | 0 | getAtomicAddress().getElementType()); |
309 | 0 | return TempAlloca; |
310 | 0 | } |
311 | | |
312 | | static RValue emitAtomicLibcall(CodeGenFunction &CGF, |
313 | | StringRef fnName, |
314 | | QualType resultType, |
315 | 0 | CallArgList &args) { |
316 | 0 | const CGFunctionInfo &fnInfo = |
317 | 0 | CGF.CGM.getTypes().arrangeBuiltinFunctionCall(resultType, args); |
318 | 0 | llvm::FunctionType *fnTy = CGF.CGM.getTypes().GetFunctionType(fnInfo); |
319 | 0 | llvm::AttrBuilder fnAttrB(CGF.getLLVMContext()); |
320 | 0 | fnAttrB.addAttribute(llvm::Attribute::NoUnwind); |
321 | 0 | fnAttrB.addAttribute(llvm::Attribute::WillReturn); |
322 | 0 | llvm::AttributeList fnAttrs = llvm::AttributeList::get( |
323 | 0 | CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, fnAttrB); |
324 | |
|
325 | 0 | llvm::FunctionCallee fn = |
326 | 0 | CGF.CGM.CreateRuntimeFunction(fnTy, fnName, fnAttrs); |
327 | 0 | auto callee = CGCallee::forDirect(fn); |
328 | 0 | return CGF.EmitCall(fnInfo, callee, ReturnValueSlot(), args); |
329 | 0 | } |
330 | | |
331 | | /// Does a store of the given IR type modify the full expected width? |
332 | | static bool isFullSizeType(CodeGenModule &CGM, llvm::Type *type, |
333 | 0 | uint64_t expectedSize) { |
334 | 0 | return (CGM.getDataLayout().getTypeStoreSize(type) * 8 == expectedSize); |
335 | 0 | } |
336 | | |
337 | | /// Does the atomic type require memsetting to zero before initialization? |
338 | | /// |
339 | | /// The IR type is provided as a way of making certain queries faster. |
340 | 0 | bool AtomicInfo::requiresMemSetZero(llvm::Type *type) const { |
341 | | // If the atomic type has size padding, we definitely need a memset. |
342 | 0 | if (hasPadding()) return true; |
343 | | |
344 | | // Otherwise, do some simple heuristics to try to avoid it: |
345 | 0 | switch (getEvaluationKind()) { |
346 | | // For scalars and complexes, check whether the store size of the |
347 | | // type uses the full size. |
348 | 0 | case TEK_Scalar: |
349 | 0 | return !isFullSizeType(CGF.CGM, type, AtomicSizeInBits); |
350 | 0 | case TEK_Complex: |
351 | 0 | return !isFullSizeType(CGF.CGM, type->getStructElementType(0), |
352 | 0 | AtomicSizeInBits / 2); |
353 | | |
354 | | // Padding in structs has an undefined bit pattern. User beware. |
355 | 0 | case TEK_Aggregate: |
356 | 0 | return false; |
357 | 0 | } |
358 | 0 | llvm_unreachable("bad evaluation kind"); |
359 | 0 | } |
360 | | |
361 | 0 | bool AtomicInfo::emitMemSetZeroIfNecessary() const { |
362 | 0 | assert(LVal.isSimple()); |
363 | 0 | Address addr = LVal.getAddress(CGF); |
364 | 0 | if (!requiresMemSetZero(addr.getElementType())) |
365 | 0 | return false; |
366 | | |
367 | 0 | CGF.Builder.CreateMemSet( |
368 | 0 | addr.getPointer(), llvm::ConstantInt::get(CGF.Int8Ty, 0), |
369 | 0 | CGF.getContext().toCharUnitsFromBits(AtomicSizeInBits).getQuantity(), |
370 | 0 | LVal.getAlignment().getAsAlign()); |
371 | 0 | return true; |
372 | 0 | } |
373 | | |
374 | | static void emitAtomicCmpXchg(CodeGenFunction &CGF, AtomicExpr *E, bool IsWeak, |
375 | | Address Dest, Address Ptr, |
376 | | Address Val1, Address Val2, |
377 | | uint64_t Size, |
378 | | llvm::AtomicOrdering SuccessOrder, |
379 | | llvm::AtomicOrdering FailureOrder, |
380 | 0 | llvm::SyncScope::ID Scope) { |
381 | | // Note that cmpxchg doesn't support weak cmpxchg, at least at the moment. |
382 | 0 | llvm::Value *Expected = CGF.Builder.CreateLoad(Val1); |
383 | 0 | llvm::Value *Desired = CGF.Builder.CreateLoad(Val2); |
384 | |
|
385 | 0 | llvm::AtomicCmpXchgInst *Pair = CGF.Builder.CreateAtomicCmpXchg( |
386 | 0 | Ptr, Expected, Desired, SuccessOrder, FailureOrder, Scope); |
387 | 0 | Pair->setVolatile(E->isVolatile()); |
388 | 0 | Pair->setWeak(IsWeak); |
389 | | |
390 | | // Cmp holds the result of the compare-exchange operation: true on success, |
391 | | // false on failure. |
392 | 0 | llvm::Value *Old = CGF.Builder.CreateExtractValue(Pair, 0); |
393 | 0 | llvm::Value *Cmp = CGF.Builder.CreateExtractValue(Pair, 1); |
394 | | |
395 | | // This basic block is used to hold the store instruction if the operation |
396 | | // failed. |
397 | 0 | llvm::BasicBlock *StoreExpectedBB = |
398 | 0 | CGF.createBasicBlock("cmpxchg.store_expected", CGF.CurFn); |
399 | | |
400 | | // This basic block is the exit point of the operation, we should end up |
401 | | // here regardless of whether or not the operation succeeded. |
402 | 0 | llvm::BasicBlock *ContinueBB = |
403 | 0 | CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); |
404 | | |
405 | | // Update Expected if Expected isn't equal to Old, otherwise branch to the |
406 | | // exit point. |
407 | 0 | CGF.Builder.CreateCondBr(Cmp, ContinueBB, StoreExpectedBB); |
408 | |
|
409 | 0 | CGF.Builder.SetInsertPoint(StoreExpectedBB); |
410 | | // Update the memory at Expected with Old's value. |
411 | 0 | CGF.Builder.CreateStore(Old, Val1); |
412 | | // Finally, branch to the exit point. |
413 | 0 | CGF.Builder.CreateBr(ContinueBB); |
414 | |
|
415 | 0 | CGF.Builder.SetInsertPoint(ContinueBB); |
416 | | // Update the memory at Dest with Cmp's value. |
417 | 0 | CGF.EmitStoreOfScalar(Cmp, CGF.MakeAddrLValue(Dest, E->getType())); |
418 | 0 | } |
419 | | |
420 | | /// Given an ordering required on success, emit all possible cmpxchg |
421 | | /// instructions to cope with the provided (but possibly only dynamically known) |
422 | | /// FailureOrder. |
423 | | static void emitAtomicCmpXchgFailureSet(CodeGenFunction &CGF, AtomicExpr *E, |
424 | | bool IsWeak, Address Dest, Address Ptr, |
425 | | Address Val1, Address Val2, |
426 | | llvm::Value *FailureOrderVal, |
427 | | uint64_t Size, |
428 | | llvm::AtomicOrdering SuccessOrder, |
429 | 0 | llvm::SyncScope::ID Scope) { |
430 | 0 | llvm::AtomicOrdering FailureOrder; |
431 | 0 | if (llvm::ConstantInt *FO = dyn_cast<llvm::ConstantInt>(FailureOrderVal)) { |
432 | 0 | auto FOS = FO->getSExtValue(); |
433 | 0 | if (!llvm::isValidAtomicOrderingCABI(FOS)) |
434 | 0 | FailureOrder = llvm::AtomicOrdering::Monotonic; |
435 | 0 | else |
436 | 0 | switch ((llvm::AtomicOrderingCABI)FOS) { |
437 | 0 | case llvm::AtomicOrderingCABI::relaxed: |
438 | | // 31.7.2.18: "The failure argument shall not be memory_order_release |
439 | | // nor memory_order_acq_rel". Fallback to monotonic. |
440 | 0 | case llvm::AtomicOrderingCABI::release: |
441 | 0 | case llvm::AtomicOrderingCABI::acq_rel: |
442 | 0 | FailureOrder = llvm::AtomicOrdering::Monotonic; |
443 | 0 | break; |
444 | 0 | case llvm::AtomicOrderingCABI::consume: |
445 | 0 | case llvm::AtomicOrderingCABI::acquire: |
446 | 0 | FailureOrder = llvm::AtomicOrdering::Acquire; |
447 | 0 | break; |
448 | 0 | case llvm::AtomicOrderingCABI::seq_cst: |
449 | 0 | FailureOrder = llvm::AtomicOrdering::SequentiallyConsistent; |
450 | 0 | break; |
451 | 0 | } |
452 | | // Prior to c++17, "the failure argument shall be no stronger than the |
453 | | // success argument". This condition has been lifted and the only |
454 | | // precondition is 31.7.2.18. Effectively treat this as a DR and skip |
455 | | // language version checks. |
456 | 0 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, |
457 | 0 | FailureOrder, Scope); |
458 | 0 | return; |
459 | 0 | } |
460 | | |
461 | | // Create all the relevant BB's |
462 | 0 | auto *MonotonicBB = CGF.createBasicBlock("monotonic_fail", CGF.CurFn); |
463 | 0 | auto *AcquireBB = CGF.createBasicBlock("acquire_fail", CGF.CurFn); |
464 | 0 | auto *SeqCstBB = CGF.createBasicBlock("seqcst_fail", CGF.CurFn); |
465 | 0 | auto *ContBB = CGF.createBasicBlock("atomic.continue", CGF.CurFn); |
466 | | |
467 | | // MonotonicBB is arbitrarily chosen as the default case; in practice, this |
468 | | // doesn't matter unless someone is crazy enough to use something that |
469 | | // doesn't fold to a constant for the ordering. |
470 | 0 | llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(FailureOrderVal, MonotonicBB); |
471 | | // Implemented as acquire, since it's the closest in LLVM. |
472 | 0 | SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::consume), |
473 | 0 | AcquireBB); |
474 | 0 | SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire), |
475 | 0 | AcquireBB); |
476 | 0 | SI->addCase(CGF.Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst), |
477 | 0 | SeqCstBB); |
478 | | |
479 | | // Emit all the different atomics |
480 | 0 | CGF.Builder.SetInsertPoint(MonotonicBB); |
481 | 0 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, |
482 | 0 | Size, SuccessOrder, llvm::AtomicOrdering::Monotonic, Scope); |
483 | 0 | CGF.Builder.CreateBr(ContBB); |
484 | |
|
485 | 0 | CGF.Builder.SetInsertPoint(AcquireBB); |
486 | 0 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, |
487 | 0 | llvm::AtomicOrdering::Acquire, Scope); |
488 | 0 | CGF.Builder.CreateBr(ContBB); |
489 | |
|
490 | 0 | CGF.Builder.SetInsertPoint(SeqCstBB); |
491 | 0 | emitAtomicCmpXchg(CGF, E, IsWeak, Dest, Ptr, Val1, Val2, Size, SuccessOrder, |
492 | 0 | llvm::AtomicOrdering::SequentiallyConsistent, Scope); |
493 | 0 | CGF.Builder.CreateBr(ContBB); |
494 | |
|
495 | 0 | CGF.Builder.SetInsertPoint(ContBB); |
496 | 0 | } |
497 | | |
498 | | /// Duplicate the atomic min/max operation in conventional IR for the builtin |
499 | | /// variants that return the new rather than the original value. |
500 | | static llvm::Value *EmitPostAtomicMinMax(CGBuilderTy &Builder, |
501 | | AtomicExpr::AtomicOp Op, |
502 | | bool IsSigned, |
503 | | llvm::Value *OldVal, |
504 | 0 | llvm::Value *RHS) { |
505 | 0 | llvm::CmpInst::Predicate Pred; |
506 | 0 | switch (Op) { |
507 | 0 | default: |
508 | 0 | llvm_unreachable("Unexpected min/max operation"); |
509 | 0 | case AtomicExpr::AO__atomic_max_fetch: |
510 | 0 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
511 | 0 | Pred = IsSigned ? llvm::CmpInst::ICMP_SGT : llvm::CmpInst::ICMP_UGT; |
512 | 0 | break; |
513 | 0 | case AtomicExpr::AO__atomic_min_fetch: |
514 | 0 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
515 | 0 | Pred = IsSigned ? llvm::CmpInst::ICMP_SLT : llvm::CmpInst::ICMP_ULT; |
516 | 0 | break; |
517 | 0 | } |
518 | 0 | llvm::Value *Cmp = Builder.CreateICmp(Pred, OldVal, RHS, "tst"); |
519 | 0 | return Builder.CreateSelect(Cmp, OldVal, RHS, "newval"); |
520 | 0 | } |
521 | | |
522 | | static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *E, Address Dest, |
523 | | Address Ptr, Address Val1, Address Val2, |
524 | | llvm::Value *IsWeak, llvm::Value *FailureOrder, |
525 | | uint64_t Size, llvm::AtomicOrdering Order, |
526 | 0 | llvm::SyncScope::ID Scope) { |
527 | 0 | llvm::AtomicRMWInst::BinOp Op = llvm::AtomicRMWInst::Add; |
528 | 0 | bool PostOpMinMax = false; |
529 | 0 | unsigned PostOp = 0; |
530 | |
|
531 | 0 | switch (E->getOp()) { |
532 | 0 | case AtomicExpr::AO__c11_atomic_init: |
533 | 0 | case AtomicExpr::AO__opencl_atomic_init: |
534 | 0 | llvm_unreachable("Already handled!"); |
535 | |
|
536 | 0 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
537 | 0 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
538 | 0 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
539 | 0 | emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, |
540 | 0 | FailureOrder, Size, Order, Scope); |
541 | 0 | return; |
542 | 0 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
543 | 0 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
544 | 0 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
545 | 0 | emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, |
546 | 0 | FailureOrder, Size, Order, Scope); |
547 | 0 | return; |
548 | 0 | case AtomicExpr::AO__atomic_compare_exchange: |
549 | 0 | case AtomicExpr::AO__atomic_compare_exchange_n: |
550 | 0 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
551 | 0 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: { |
552 | 0 | if (llvm::ConstantInt *IsWeakC = dyn_cast<llvm::ConstantInt>(IsWeak)) { |
553 | 0 | emitAtomicCmpXchgFailureSet(CGF, E, IsWeakC->getZExtValue(), Dest, Ptr, |
554 | 0 | Val1, Val2, FailureOrder, Size, Order, Scope); |
555 | 0 | } else { |
556 | | // Create all the relevant BB's |
557 | 0 | llvm::BasicBlock *StrongBB = |
558 | 0 | CGF.createBasicBlock("cmpxchg.strong", CGF.CurFn); |
559 | 0 | llvm::BasicBlock *WeakBB = CGF.createBasicBlock("cmxchg.weak", CGF.CurFn); |
560 | 0 | llvm::BasicBlock *ContBB = |
561 | 0 | CGF.createBasicBlock("cmpxchg.continue", CGF.CurFn); |
562 | |
|
563 | 0 | llvm::SwitchInst *SI = CGF.Builder.CreateSwitch(IsWeak, WeakBB); |
564 | 0 | SI->addCase(CGF.Builder.getInt1(false), StrongBB); |
565 | |
|
566 | 0 | CGF.Builder.SetInsertPoint(StrongBB); |
567 | 0 | emitAtomicCmpXchgFailureSet(CGF, E, false, Dest, Ptr, Val1, Val2, |
568 | 0 | FailureOrder, Size, Order, Scope); |
569 | 0 | CGF.Builder.CreateBr(ContBB); |
570 | |
|
571 | 0 | CGF.Builder.SetInsertPoint(WeakBB); |
572 | 0 | emitAtomicCmpXchgFailureSet(CGF, E, true, Dest, Ptr, Val1, Val2, |
573 | 0 | FailureOrder, Size, Order, Scope); |
574 | 0 | CGF.Builder.CreateBr(ContBB); |
575 | |
|
576 | 0 | CGF.Builder.SetInsertPoint(ContBB); |
577 | 0 | } |
578 | 0 | return; |
579 | 0 | } |
580 | 0 | case AtomicExpr::AO__c11_atomic_load: |
581 | 0 | case AtomicExpr::AO__opencl_atomic_load: |
582 | 0 | case AtomicExpr::AO__hip_atomic_load: |
583 | 0 | case AtomicExpr::AO__atomic_load_n: |
584 | 0 | case AtomicExpr::AO__atomic_load: |
585 | 0 | case AtomicExpr::AO__scoped_atomic_load_n: |
586 | 0 | case AtomicExpr::AO__scoped_atomic_load: { |
587 | 0 | llvm::LoadInst *Load = CGF.Builder.CreateLoad(Ptr); |
588 | 0 | Load->setAtomic(Order, Scope); |
589 | 0 | Load->setVolatile(E->isVolatile()); |
590 | 0 | CGF.Builder.CreateStore(Load, Dest); |
591 | 0 | return; |
592 | 0 | } |
593 | | |
594 | 0 | case AtomicExpr::AO__c11_atomic_store: |
595 | 0 | case AtomicExpr::AO__opencl_atomic_store: |
596 | 0 | case AtomicExpr::AO__hip_atomic_store: |
597 | 0 | case AtomicExpr::AO__atomic_store: |
598 | 0 | case AtomicExpr::AO__atomic_store_n: |
599 | 0 | case AtomicExpr::AO__scoped_atomic_store: |
600 | 0 | case AtomicExpr::AO__scoped_atomic_store_n: { |
601 | 0 | llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1); |
602 | 0 | llvm::StoreInst *Store = CGF.Builder.CreateStore(LoadVal1, Ptr); |
603 | 0 | Store->setAtomic(Order, Scope); |
604 | 0 | Store->setVolatile(E->isVolatile()); |
605 | 0 | return; |
606 | 0 | } |
607 | | |
608 | 0 | case AtomicExpr::AO__c11_atomic_exchange: |
609 | 0 | case AtomicExpr::AO__hip_atomic_exchange: |
610 | 0 | case AtomicExpr::AO__opencl_atomic_exchange: |
611 | 0 | case AtomicExpr::AO__atomic_exchange_n: |
612 | 0 | case AtomicExpr::AO__atomic_exchange: |
613 | 0 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
614 | 0 | case AtomicExpr::AO__scoped_atomic_exchange: |
615 | 0 | Op = llvm::AtomicRMWInst::Xchg; |
616 | 0 | break; |
617 | | |
618 | 0 | case AtomicExpr::AO__atomic_add_fetch: |
619 | 0 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
620 | 0 | PostOp = E->getValueType()->isFloatingType() ? llvm::Instruction::FAdd |
621 | 0 | : llvm::Instruction::Add; |
622 | 0 | [[fallthrough]]; |
623 | 0 | case AtomicExpr::AO__c11_atomic_fetch_add: |
624 | 0 | case AtomicExpr::AO__hip_atomic_fetch_add: |
625 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
626 | 0 | case AtomicExpr::AO__atomic_fetch_add: |
627 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
628 | 0 | Op = E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FAdd |
629 | 0 | : llvm::AtomicRMWInst::Add; |
630 | 0 | break; |
631 | | |
632 | 0 | case AtomicExpr::AO__atomic_sub_fetch: |
633 | 0 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
634 | 0 | PostOp = E->getValueType()->isFloatingType() ? llvm::Instruction::FSub |
635 | 0 | : llvm::Instruction::Sub; |
636 | 0 | [[fallthrough]]; |
637 | 0 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
638 | 0 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
639 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
640 | 0 | case AtomicExpr::AO__atomic_fetch_sub: |
641 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
642 | 0 | Op = E->getValueType()->isFloatingType() ? llvm::AtomicRMWInst::FSub |
643 | 0 | : llvm::AtomicRMWInst::Sub; |
644 | 0 | break; |
645 | | |
646 | 0 | case AtomicExpr::AO__atomic_min_fetch: |
647 | 0 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
648 | 0 | PostOpMinMax = true; |
649 | 0 | [[fallthrough]]; |
650 | 0 | case AtomicExpr::AO__c11_atomic_fetch_min: |
651 | 0 | case AtomicExpr::AO__hip_atomic_fetch_min: |
652 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
653 | 0 | case AtomicExpr::AO__atomic_fetch_min: |
654 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
655 | 0 | Op = E->getValueType()->isFloatingType() |
656 | 0 | ? llvm::AtomicRMWInst::FMin |
657 | 0 | : (E->getValueType()->isSignedIntegerType() |
658 | 0 | ? llvm::AtomicRMWInst::Min |
659 | 0 | : llvm::AtomicRMWInst::UMin); |
660 | 0 | break; |
661 | | |
662 | 0 | case AtomicExpr::AO__atomic_max_fetch: |
663 | 0 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
664 | 0 | PostOpMinMax = true; |
665 | 0 | [[fallthrough]]; |
666 | 0 | case AtomicExpr::AO__c11_atomic_fetch_max: |
667 | 0 | case AtomicExpr::AO__hip_atomic_fetch_max: |
668 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
669 | 0 | case AtomicExpr::AO__atomic_fetch_max: |
670 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
671 | 0 | Op = E->getValueType()->isFloatingType() |
672 | 0 | ? llvm::AtomicRMWInst::FMax |
673 | 0 | : (E->getValueType()->isSignedIntegerType() |
674 | 0 | ? llvm::AtomicRMWInst::Max |
675 | 0 | : llvm::AtomicRMWInst::UMax); |
676 | 0 | break; |
677 | | |
678 | 0 | case AtomicExpr::AO__atomic_and_fetch: |
679 | 0 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
680 | 0 | PostOp = llvm::Instruction::And; |
681 | 0 | [[fallthrough]]; |
682 | 0 | case AtomicExpr::AO__c11_atomic_fetch_and: |
683 | 0 | case AtomicExpr::AO__hip_atomic_fetch_and: |
684 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
685 | 0 | case AtomicExpr::AO__atomic_fetch_and: |
686 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
687 | 0 | Op = llvm::AtomicRMWInst::And; |
688 | 0 | break; |
689 | | |
690 | 0 | case AtomicExpr::AO__atomic_or_fetch: |
691 | 0 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
692 | 0 | PostOp = llvm::Instruction::Or; |
693 | 0 | [[fallthrough]]; |
694 | 0 | case AtomicExpr::AO__c11_atomic_fetch_or: |
695 | 0 | case AtomicExpr::AO__hip_atomic_fetch_or: |
696 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
697 | 0 | case AtomicExpr::AO__atomic_fetch_or: |
698 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
699 | 0 | Op = llvm::AtomicRMWInst::Or; |
700 | 0 | break; |
701 | | |
702 | 0 | case AtomicExpr::AO__atomic_xor_fetch: |
703 | 0 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
704 | 0 | PostOp = llvm::Instruction::Xor; |
705 | 0 | [[fallthrough]]; |
706 | 0 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
707 | 0 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
708 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
709 | 0 | case AtomicExpr::AO__atomic_fetch_xor: |
710 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
711 | 0 | Op = llvm::AtomicRMWInst::Xor; |
712 | 0 | break; |
713 | | |
714 | 0 | case AtomicExpr::AO__atomic_nand_fetch: |
715 | 0 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
716 | 0 | PostOp = llvm::Instruction::And; // the NOT is special cased below |
717 | 0 | [[fallthrough]]; |
718 | 0 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
719 | 0 | case AtomicExpr::AO__atomic_fetch_nand: |
720 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
721 | 0 | Op = llvm::AtomicRMWInst::Nand; |
722 | 0 | break; |
723 | 0 | } |
724 | | |
725 | 0 | llvm::Value *LoadVal1 = CGF.Builder.CreateLoad(Val1); |
726 | 0 | llvm::AtomicRMWInst *RMWI = |
727 | 0 | CGF.Builder.CreateAtomicRMW(Op, Ptr, LoadVal1, Order, Scope); |
728 | 0 | RMWI->setVolatile(E->isVolatile()); |
729 | | |
730 | | // For __atomic_*_fetch operations, perform the operation again to |
731 | | // determine the value which was written. |
732 | 0 | llvm::Value *Result = RMWI; |
733 | 0 | if (PostOpMinMax) |
734 | 0 | Result = EmitPostAtomicMinMax(CGF.Builder, E->getOp(), |
735 | 0 | E->getValueType()->isSignedIntegerType(), |
736 | 0 | RMWI, LoadVal1); |
737 | 0 | else if (PostOp) |
738 | 0 | Result = CGF.Builder.CreateBinOp((llvm::Instruction::BinaryOps)PostOp, RMWI, |
739 | 0 | LoadVal1); |
740 | 0 | if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch || |
741 | 0 | E->getOp() == AtomicExpr::AO__scoped_atomic_nand_fetch) |
742 | 0 | Result = CGF.Builder.CreateNot(Result); |
743 | 0 | CGF.Builder.CreateStore(Result, Dest); |
744 | 0 | } |
745 | | |
746 | | // This function emits any expression (scalar, complex, or aggregate) |
747 | | // into a temporary alloca. |
748 | | static Address |
749 | 0 | EmitValToTemp(CodeGenFunction &CGF, Expr *E) { |
750 | 0 | Address DeclPtr = CGF.CreateMemTemp(E->getType(), ".atomictmp"); |
751 | 0 | CGF.EmitAnyExprToMem(E, DeclPtr, E->getType().getQualifiers(), |
752 | 0 | /*Init*/ true); |
753 | 0 | return DeclPtr; |
754 | 0 | } |
755 | | |
756 | | static void EmitAtomicOp(CodeGenFunction &CGF, AtomicExpr *Expr, Address Dest, |
757 | | Address Ptr, Address Val1, Address Val2, |
758 | | llvm::Value *IsWeak, llvm::Value *FailureOrder, |
759 | | uint64_t Size, llvm::AtomicOrdering Order, |
760 | 0 | llvm::Value *Scope) { |
761 | 0 | auto ScopeModel = Expr->getScopeModel(); |
762 | | |
763 | | // LLVM atomic instructions always have synch scope. If clang atomic |
764 | | // expression has no scope operand, use default LLVM synch scope. |
765 | 0 | if (!ScopeModel) { |
766 | 0 | EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, |
767 | 0 | Order, CGF.CGM.getLLVMContext().getOrInsertSyncScopeID("")); |
768 | 0 | return; |
769 | 0 | } |
770 | | |
771 | | // Handle constant scope. |
772 | 0 | if (auto SC = dyn_cast<llvm::ConstantInt>(Scope)) { |
773 | 0 | auto SCID = CGF.getTargetHooks().getLLVMSyncScopeID( |
774 | 0 | CGF.CGM.getLangOpts(), ScopeModel->map(SC->getZExtValue()), |
775 | 0 | Order, CGF.CGM.getLLVMContext()); |
776 | 0 | EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, |
777 | 0 | Order, SCID); |
778 | 0 | return; |
779 | 0 | } |
780 | | |
781 | | // Handle non-constant scope. |
782 | 0 | auto &Builder = CGF.Builder; |
783 | 0 | auto Scopes = ScopeModel->getRuntimeValues(); |
784 | 0 | llvm::DenseMap<unsigned, llvm::BasicBlock *> BB; |
785 | 0 | for (auto S : Scopes) |
786 | 0 | BB[S] = CGF.createBasicBlock(getAsString(ScopeModel->map(S)), CGF.CurFn); |
787 | |
|
788 | 0 | llvm::BasicBlock *ContBB = |
789 | 0 | CGF.createBasicBlock("atomic.scope.continue", CGF.CurFn); |
790 | |
|
791 | 0 | auto *SC = Builder.CreateIntCast(Scope, Builder.getInt32Ty(), false); |
792 | | // If unsupported synch scope is encountered at run time, assume a fallback |
793 | | // synch scope value. |
794 | 0 | auto FallBack = ScopeModel->getFallBackValue(); |
795 | 0 | llvm::SwitchInst *SI = Builder.CreateSwitch(SC, BB[FallBack]); |
796 | 0 | for (auto S : Scopes) { |
797 | 0 | auto *B = BB[S]; |
798 | 0 | if (S != FallBack) |
799 | 0 | SI->addCase(Builder.getInt32(S), B); |
800 | |
|
801 | 0 | Builder.SetInsertPoint(B); |
802 | 0 | EmitAtomicOp(CGF, Expr, Dest, Ptr, Val1, Val2, IsWeak, FailureOrder, Size, |
803 | 0 | Order, |
804 | 0 | CGF.getTargetHooks().getLLVMSyncScopeID(CGF.CGM.getLangOpts(), |
805 | 0 | ScopeModel->map(S), |
806 | 0 | Order, |
807 | 0 | CGF.getLLVMContext())); |
808 | 0 | Builder.CreateBr(ContBB); |
809 | 0 | } |
810 | |
|
811 | 0 | Builder.SetInsertPoint(ContBB); |
812 | 0 | } |
813 | | |
814 | | static void |
815 | | AddDirectArgument(CodeGenFunction &CGF, CallArgList &Args, |
816 | | bool UseOptimizedLibcall, llvm::Value *Val, QualType ValTy, |
817 | 0 | SourceLocation Loc, CharUnits SizeInChars) { |
818 | 0 | if (UseOptimizedLibcall) { |
819 | | // Load value and pass it to the function directly. |
820 | 0 | CharUnits Align = CGF.getContext().getTypeAlignInChars(ValTy); |
821 | 0 | int64_t SizeInBits = CGF.getContext().toBits(SizeInChars); |
822 | 0 | ValTy = |
823 | 0 | CGF.getContext().getIntTypeForBitwidth(SizeInBits, /*Signed=*/false); |
824 | 0 | llvm::Type *ITy = llvm::IntegerType::get(CGF.getLLVMContext(), SizeInBits); |
825 | 0 | Address Ptr = Address(Val, ITy, Align); |
826 | 0 | Val = CGF.EmitLoadOfScalar(Ptr, false, |
827 | 0 | CGF.getContext().getPointerType(ValTy), |
828 | 0 | Loc); |
829 | | // Coerce the value into an appropriately sized integer type. |
830 | 0 | Args.add(RValue::get(Val), ValTy); |
831 | 0 | } else { |
832 | | // Non-optimized functions always take a reference. |
833 | 0 | Args.add(RValue::get(Val), CGF.getContext().VoidPtrTy); |
834 | 0 | } |
835 | 0 | } |
836 | | |
837 | 0 | RValue CodeGenFunction::EmitAtomicExpr(AtomicExpr *E) { |
838 | 0 | QualType AtomicTy = E->getPtr()->getType()->getPointeeType(); |
839 | 0 | QualType MemTy = AtomicTy; |
840 | 0 | if (const AtomicType *AT = AtomicTy->getAs<AtomicType>()) |
841 | 0 | MemTy = AT->getValueType(); |
842 | 0 | llvm::Value *IsWeak = nullptr, *OrderFail = nullptr; |
843 | |
|
844 | 0 | Address Val1 = Address::invalid(); |
845 | 0 | Address Val2 = Address::invalid(); |
846 | 0 | Address Dest = Address::invalid(); |
847 | 0 | Address Ptr = EmitPointerWithAlignment(E->getPtr()); |
848 | |
|
849 | 0 | if (E->getOp() == AtomicExpr::AO__c11_atomic_init || |
850 | 0 | E->getOp() == AtomicExpr::AO__opencl_atomic_init) { |
851 | 0 | LValue lvalue = MakeAddrLValue(Ptr, AtomicTy); |
852 | 0 | EmitAtomicInit(E->getVal1(), lvalue); |
853 | 0 | return RValue::get(nullptr); |
854 | 0 | } |
855 | | |
856 | 0 | auto TInfo = getContext().getTypeInfoInChars(AtomicTy); |
857 | 0 | uint64_t Size = TInfo.Width.getQuantity(); |
858 | 0 | unsigned MaxInlineWidthInBits = getTarget().getMaxAtomicInlineWidth(); |
859 | |
|
860 | 0 | bool Oversized = getContext().toBits(TInfo.Width) > MaxInlineWidthInBits; |
861 | 0 | bool Misaligned = (Ptr.getAlignment() % TInfo.Width) != 0; |
862 | 0 | bool UseLibcall = Misaligned | Oversized; |
863 | 0 | bool ShouldCastToIntPtrTy = true; |
864 | |
|
865 | 0 | CharUnits MaxInlineWidth = |
866 | 0 | getContext().toCharUnitsFromBits(MaxInlineWidthInBits); |
867 | |
|
868 | 0 | DiagnosticsEngine &Diags = CGM.getDiags(); |
869 | |
|
870 | 0 | if (Misaligned) { |
871 | 0 | Diags.Report(E->getBeginLoc(), diag::warn_atomic_op_misaligned) |
872 | 0 | << (int)TInfo.Width.getQuantity() |
873 | 0 | << (int)Ptr.getAlignment().getQuantity(); |
874 | 0 | } |
875 | |
|
876 | 0 | if (Oversized) { |
877 | 0 | Diags.Report(E->getBeginLoc(), diag::warn_atomic_op_oversized) |
878 | 0 | << (int)TInfo.Width.getQuantity() << (int)MaxInlineWidth.getQuantity(); |
879 | 0 | } |
880 | |
|
881 | 0 | llvm::Value *Order = EmitScalarExpr(E->getOrder()); |
882 | 0 | llvm::Value *Scope = |
883 | 0 | E->getScopeModel() ? EmitScalarExpr(E->getScope()) : nullptr; |
884 | |
|
885 | 0 | switch (E->getOp()) { |
886 | 0 | case AtomicExpr::AO__c11_atomic_init: |
887 | 0 | case AtomicExpr::AO__opencl_atomic_init: |
888 | 0 | llvm_unreachable("Already handled above with EmitAtomicInit!"); |
889 | |
|
890 | 0 | case AtomicExpr::AO__atomic_load_n: |
891 | 0 | case AtomicExpr::AO__scoped_atomic_load_n: |
892 | 0 | case AtomicExpr::AO__c11_atomic_load: |
893 | 0 | case AtomicExpr::AO__opencl_atomic_load: |
894 | 0 | case AtomicExpr::AO__hip_atomic_load: |
895 | 0 | break; |
896 | | |
897 | 0 | case AtomicExpr::AO__atomic_load: |
898 | 0 | case AtomicExpr::AO__scoped_atomic_load: |
899 | 0 | Dest = EmitPointerWithAlignment(E->getVal1()); |
900 | 0 | break; |
901 | | |
902 | 0 | case AtomicExpr::AO__atomic_store: |
903 | 0 | case AtomicExpr::AO__scoped_atomic_store: |
904 | 0 | Val1 = EmitPointerWithAlignment(E->getVal1()); |
905 | 0 | break; |
906 | | |
907 | 0 | case AtomicExpr::AO__atomic_exchange: |
908 | 0 | case AtomicExpr::AO__scoped_atomic_exchange: |
909 | 0 | Val1 = EmitPointerWithAlignment(E->getVal1()); |
910 | 0 | Dest = EmitPointerWithAlignment(E->getVal2()); |
911 | 0 | break; |
912 | | |
913 | 0 | case AtomicExpr::AO__atomic_compare_exchange: |
914 | 0 | case AtomicExpr::AO__atomic_compare_exchange_n: |
915 | 0 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
916 | 0 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
917 | 0 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
918 | 0 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
919 | 0 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
920 | 0 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
921 | 0 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
922 | 0 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: |
923 | 0 | Val1 = EmitPointerWithAlignment(E->getVal1()); |
924 | 0 | if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange || |
925 | 0 | E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange) |
926 | 0 | Val2 = EmitPointerWithAlignment(E->getVal2()); |
927 | 0 | else |
928 | 0 | Val2 = EmitValToTemp(*this, E->getVal2()); |
929 | 0 | OrderFail = EmitScalarExpr(E->getOrderFail()); |
930 | 0 | if (E->getOp() == AtomicExpr::AO__atomic_compare_exchange_n || |
931 | 0 | E->getOp() == AtomicExpr::AO__atomic_compare_exchange || |
932 | 0 | E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange_n || |
933 | 0 | E->getOp() == AtomicExpr::AO__scoped_atomic_compare_exchange) |
934 | 0 | IsWeak = EmitScalarExpr(E->getWeak()); |
935 | 0 | break; |
936 | | |
937 | 0 | case AtomicExpr::AO__c11_atomic_fetch_add: |
938 | 0 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
939 | 0 | case AtomicExpr::AO__hip_atomic_fetch_add: |
940 | 0 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
941 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
942 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
943 | 0 | if (MemTy->isPointerType()) { |
944 | | // For pointer arithmetic, we're required to do a bit of math: |
945 | | // adding 1 to an int* is not the same as adding 1 to a uintptr_t. |
946 | | // ... but only for the C11 builtins. The GNU builtins expect the |
947 | | // user to multiply by sizeof(T). |
948 | 0 | QualType Val1Ty = E->getVal1()->getType(); |
949 | 0 | llvm::Value *Val1Scalar = EmitScalarExpr(E->getVal1()); |
950 | 0 | CharUnits PointeeIncAmt = |
951 | 0 | getContext().getTypeSizeInChars(MemTy->getPointeeType()); |
952 | 0 | Val1Scalar = Builder.CreateMul(Val1Scalar, CGM.getSize(PointeeIncAmt)); |
953 | 0 | auto Temp = CreateMemTemp(Val1Ty, ".atomictmp"); |
954 | 0 | Val1 = Temp; |
955 | 0 | EmitStoreOfScalar(Val1Scalar, MakeAddrLValue(Temp, Val1Ty)); |
956 | 0 | break; |
957 | 0 | } |
958 | 0 | [[fallthrough]]; |
959 | 0 | case AtomicExpr::AO__atomic_fetch_add: |
960 | 0 | case AtomicExpr::AO__atomic_fetch_max: |
961 | 0 | case AtomicExpr::AO__atomic_fetch_min: |
962 | 0 | case AtomicExpr::AO__atomic_fetch_sub: |
963 | 0 | case AtomicExpr::AO__atomic_add_fetch: |
964 | 0 | case AtomicExpr::AO__atomic_max_fetch: |
965 | 0 | case AtomicExpr::AO__atomic_min_fetch: |
966 | 0 | case AtomicExpr::AO__atomic_sub_fetch: |
967 | 0 | case AtomicExpr::AO__c11_atomic_fetch_max: |
968 | 0 | case AtomicExpr::AO__c11_atomic_fetch_min: |
969 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
970 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
971 | 0 | case AtomicExpr::AO__hip_atomic_fetch_max: |
972 | 0 | case AtomicExpr::AO__hip_atomic_fetch_min: |
973 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
974 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
975 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
976 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
977 | 0 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
978 | 0 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
979 | 0 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
980 | 0 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
981 | 0 | ShouldCastToIntPtrTy = !MemTy->isFloatingType(); |
982 | 0 | [[fallthrough]]; |
983 | |
|
984 | 0 | case AtomicExpr::AO__atomic_fetch_and: |
985 | 0 | case AtomicExpr::AO__atomic_fetch_nand: |
986 | 0 | case AtomicExpr::AO__atomic_fetch_or: |
987 | 0 | case AtomicExpr::AO__atomic_fetch_xor: |
988 | 0 | case AtomicExpr::AO__atomic_and_fetch: |
989 | 0 | case AtomicExpr::AO__atomic_nand_fetch: |
990 | 0 | case AtomicExpr::AO__atomic_or_fetch: |
991 | 0 | case AtomicExpr::AO__atomic_xor_fetch: |
992 | 0 | case AtomicExpr::AO__atomic_store_n: |
993 | 0 | case AtomicExpr::AO__atomic_exchange_n: |
994 | 0 | case AtomicExpr::AO__c11_atomic_fetch_and: |
995 | 0 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
996 | 0 | case AtomicExpr::AO__c11_atomic_fetch_or: |
997 | 0 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
998 | 0 | case AtomicExpr::AO__c11_atomic_store: |
999 | 0 | case AtomicExpr::AO__c11_atomic_exchange: |
1000 | 0 | case AtomicExpr::AO__hip_atomic_fetch_and: |
1001 | 0 | case AtomicExpr::AO__hip_atomic_fetch_or: |
1002 | 0 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
1003 | 0 | case AtomicExpr::AO__hip_atomic_store: |
1004 | 0 | case AtomicExpr::AO__hip_atomic_exchange: |
1005 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
1006 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
1007 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
1008 | 0 | case AtomicExpr::AO__opencl_atomic_store: |
1009 | 0 | case AtomicExpr::AO__opencl_atomic_exchange: |
1010 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
1011 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
1012 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
1013 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
1014 | 0 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
1015 | 0 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
1016 | 0 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
1017 | 0 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
1018 | 0 | case AtomicExpr::AO__scoped_atomic_store_n: |
1019 | 0 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
1020 | 0 | Val1 = EmitValToTemp(*this, E->getVal1()); |
1021 | 0 | break; |
1022 | 0 | } |
1023 | | |
1024 | 0 | QualType RValTy = E->getType().getUnqualifiedType(); |
1025 | | |
1026 | | // The inlined atomics only function on iN types, where N is a power of 2. We |
1027 | | // need to make sure (via temporaries if necessary) that all incoming values |
1028 | | // are compatible. |
1029 | 0 | LValue AtomicVal = MakeAddrLValue(Ptr, AtomicTy); |
1030 | 0 | AtomicInfo Atomics(*this, AtomicVal); |
1031 | |
|
1032 | 0 | if (ShouldCastToIntPtrTy) { |
1033 | 0 | Ptr = Atomics.castToAtomicIntPointer(Ptr); |
1034 | 0 | if (Val1.isValid()) |
1035 | 0 | Val1 = Atomics.convertToAtomicIntPointer(Val1); |
1036 | 0 | if (Val2.isValid()) |
1037 | 0 | Val2 = Atomics.convertToAtomicIntPointer(Val2); |
1038 | 0 | } |
1039 | 0 | if (Dest.isValid()) { |
1040 | 0 | if (ShouldCastToIntPtrTy) |
1041 | 0 | Dest = Atomics.castToAtomicIntPointer(Dest); |
1042 | 0 | } else if (E->isCmpXChg()) |
1043 | 0 | Dest = CreateMemTemp(RValTy, "cmpxchg.bool"); |
1044 | 0 | else if (!RValTy->isVoidType()) { |
1045 | 0 | Dest = Atomics.CreateTempAlloca(); |
1046 | 0 | if (ShouldCastToIntPtrTy) |
1047 | 0 | Dest = Atomics.castToAtomicIntPointer(Dest); |
1048 | 0 | } |
1049 | | |
1050 | | // Use a library call. See: http://gcc.gnu.org/wiki/Atomic/GCCMM/LIbrary . |
1051 | 0 | if (UseLibcall) { |
1052 | 0 | bool UseOptimizedLibcall = false; |
1053 | 0 | switch (E->getOp()) { |
1054 | 0 | case AtomicExpr::AO__c11_atomic_init: |
1055 | 0 | case AtomicExpr::AO__opencl_atomic_init: |
1056 | 0 | llvm_unreachable("Already handled above with EmitAtomicInit!"); |
1057 | |
|
1058 | 0 | case AtomicExpr::AO__atomic_fetch_add: |
1059 | 0 | case AtomicExpr::AO__atomic_fetch_and: |
1060 | 0 | case AtomicExpr::AO__atomic_fetch_max: |
1061 | 0 | case AtomicExpr::AO__atomic_fetch_min: |
1062 | 0 | case AtomicExpr::AO__atomic_fetch_nand: |
1063 | 0 | case AtomicExpr::AO__atomic_fetch_or: |
1064 | 0 | case AtomicExpr::AO__atomic_fetch_sub: |
1065 | 0 | case AtomicExpr::AO__atomic_fetch_xor: |
1066 | 0 | case AtomicExpr::AO__atomic_add_fetch: |
1067 | 0 | case AtomicExpr::AO__atomic_and_fetch: |
1068 | 0 | case AtomicExpr::AO__atomic_max_fetch: |
1069 | 0 | case AtomicExpr::AO__atomic_min_fetch: |
1070 | 0 | case AtomicExpr::AO__atomic_nand_fetch: |
1071 | 0 | case AtomicExpr::AO__atomic_or_fetch: |
1072 | 0 | case AtomicExpr::AO__atomic_sub_fetch: |
1073 | 0 | case AtomicExpr::AO__atomic_xor_fetch: |
1074 | 0 | case AtomicExpr::AO__c11_atomic_fetch_add: |
1075 | 0 | case AtomicExpr::AO__c11_atomic_fetch_and: |
1076 | 0 | case AtomicExpr::AO__c11_atomic_fetch_max: |
1077 | 0 | case AtomicExpr::AO__c11_atomic_fetch_min: |
1078 | 0 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
1079 | 0 | case AtomicExpr::AO__c11_atomic_fetch_or: |
1080 | 0 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
1081 | 0 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
1082 | 0 | case AtomicExpr::AO__hip_atomic_fetch_add: |
1083 | 0 | case AtomicExpr::AO__hip_atomic_fetch_and: |
1084 | 0 | case AtomicExpr::AO__hip_atomic_fetch_max: |
1085 | 0 | case AtomicExpr::AO__hip_atomic_fetch_min: |
1086 | 0 | case AtomicExpr::AO__hip_atomic_fetch_or: |
1087 | 0 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
1088 | 0 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
1089 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
1090 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
1091 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
1092 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
1093 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
1094 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
1095 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
1096 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
1097 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
1098 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
1099 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
1100 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
1101 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
1102 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
1103 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
1104 | 0 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
1105 | 0 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
1106 | 0 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
1107 | 0 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
1108 | 0 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
1109 | 0 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
1110 | 0 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
1111 | 0 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
1112 | | // For these, only library calls for certain sizes exist. |
1113 | 0 | UseOptimizedLibcall = true; |
1114 | 0 | break; |
1115 | | |
1116 | 0 | case AtomicExpr::AO__atomic_load: |
1117 | 0 | case AtomicExpr::AO__atomic_store: |
1118 | 0 | case AtomicExpr::AO__atomic_exchange: |
1119 | 0 | case AtomicExpr::AO__atomic_compare_exchange: |
1120 | 0 | case AtomicExpr::AO__scoped_atomic_load: |
1121 | 0 | case AtomicExpr::AO__scoped_atomic_store: |
1122 | 0 | case AtomicExpr::AO__scoped_atomic_exchange: |
1123 | 0 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
1124 | | // Use the generic version if we don't know that the operand will be |
1125 | | // suitably aligned for the optimized version. |
1126 | 0 | if (Misaligned) |
1127 | 0 | break; |
1128 | 0 | [[fallthrough]]; |
1129 | 0 | case AtomicExpr::AO__atomic_load_n: |
1130 | 0 | case AtomicExpr::AO__atomic_store_n: |
1131 | 0 | case AtomicExpr::AO__atomic_exchange_n: |
1132 | 0 | case AtomicExpr::AO__atomic_compare_exchange_n: |
1133 | 0 | case AtomicExpr::AO__c11_atomic_load: |
1134 | 0 | case AtomicExpr::AO__c11_atomic_store: |
1135 | 0 | case AtomicExpr::AO__c11_atomic_exchange: |
1136 | 0 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
1137 | 0 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
1138 | 0 | case AtomicExpr::AO__hip_atomic_load: |
1139 | 0 | case AtomicExpr::AO__hip_atomic_store: |
1140 | 0 | case AtomicExpr::AO__hip_atomic_exchange: |
1141 | 0 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
1142 | 0 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
1143 | 0 | case AtomicExpr::AO__opencl_atomic_load: |
1144 | 0 | case AtomicExpr::AO__opencl_atomic_store: |
1145 | 0 | case AtomicExpr::AO__opencl_atomic_exchange: |
1146 | 0 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
1147 | 0 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
1148 | 0 | case AtomicExpr::AO__scoped_atomic_load_n: |
1149 | 0 | case AtomicExpr::AO__scoped_atomic_store_n: |
1150 | 0 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
1151 | 0 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: |
1152 | | // Only use optimized library calls for sizes for which they exist. |
1153 | | // FIXME: Size == 16 optimized library functions exist too. |
1154 | 0 | if (Size == 1 || Size == 2 || Size == 4 || Size == 8) |
1155 | 0 | UseOptimizedLibcall = true; |
1156 | 0 | break; |
1157 | 0 | } |
1158 | | |
1159 | 0 | CallArgList Args; |
1160 | 0 | if (!UseOptimizedLibcall) { |
1161 | | // For non-optimized library calls, the size is the first parameter |
1162 | 0 | Args.add(RValue::get(llvm::ConstantInt::get(SizeTy, Size)), |
1163 | 0 | getContext().getSizeType()); |
1164 | 0 | } |
1165 | | // Atomic address is the first or second parameter |
1166 | | // The OpenCL atomic library functions only accept pointer arguments to |
1167 | | // generic address space. |
1168 | 0 | auto CastToGenericAddrSpace = [&](llvm::Value *V, QualType PT) { |
1169 | 0 | if (!E->isOpenCL()) |
1170 | 0 | return V; |
1171 | 0 | auto AS = PT->castAs<PointerType>()->getPointeeType().getAddressSpace(); |
1172 | 0 | if (AS == LangAS::opencl_generic) |
1173 | 0 | return V; |
1174 | 0 | auto DestAS = getContext().getTargetAddressSpace(LangAS::opencl_generic); |
1175 | 0 | auto *DestType = llvm::PointerType::get(getLLVMContext(), DestAS); |
1176 | |
|
1177 | 0 | return getTargetHooks().performAddrSpaceCast( |
1178 | 0 | *this, V, AS, LangAS::opencl_generic, DestType, false); |
1179 | 0 | }; |
1180 | |
|
1181 | 0 | Args.add(RValue::get(CastToGenericAddrSpace(Ptr.getPointer(), |
1182 | 0 | E->getPtr()->getType())), |
1183 | 0 | getContext().VoidPtrTy); |
1184 | |
|
1185 | 0 | std::string LibCallName; |
1186 | 0 | QualType LoweredMemTy = |
1187 | 0 | MemTy->isPointerType() ? getContext().getIntPtrType() : MemTy; |
1188 | 0 | QualType RetTy; |
1189 | 0 | bool HaveRetTy = false; |
1190 | 0 | llvm::Instruction::BinaryOps PostOp = (llvm::Instruction::BinaryOps)0; |
1191 | 0 | bool PostOpMinMax = false; |
1192 | 0 | switch (E->getOp()) { |
1193 | 0 | case AtomicExpr::AO__c11_atomic_init: |
1194 | 0 | case AtomicExpr::AO__opencl_atomic_init: |
1195 | 0 | llvm_unreachable("Already handled!"); |
1196 | | |
1197 | | // There is only one libcall for compare an exchange, because there is no |
1198 | | // optimisation benefit possible from a libcall version of a weak compare |
1199 | | // and exchange. |
1200 | | // bool __atomic_compare_exchange(size_t size, void *mem, void *expected, |
1201 | | // void *desired, int success, int failure) |
1202 | | // bool __atomic_compare_exchange_N(T *mem, T *expected, T desired, |
1203 | | // int success, int failure) |
1204 | 0 | case AtomicExpr::AO__atomic_compare_exchange: |
1205 | 0 | case AtomicExpr::AO__atomic_compare_exchange_n: |
1206 | 0 | case AtomicExpr::AO__c11_atomic_compare_exchange_weak: |
1207 | 0 | case AtomicExpr::AO__c11_atomic_compare_exchange_strong: |
1208 | 0 | case AtomicExpr::AO__hip_atomic_compare_exchange_weak: |
1209 | 0 | case AtomicExpr::AO__hip_atomic_compare_exchange_strong: |
1210 | 0 | case AtomicExpr::AO__opencl_atomic_compare_exchange_weak: |
1211 | 0 | case AtomicExpr::AO__opencl_atomic_compare_exchange_strong: |
1212 | 0 | case AtomicExpr::AO__scoped_atomic_compare_exchange: |
1213 | 0 | case AtomicExpr::AO__scoped_atomic_compare_exchange_n: |
1214 | 0 | LibCallName = "__atomic_compare_exchange"; |
1215 | 0 | RetTy = getContext().BoolTy; |
1216 | 0 | HaveRetTy = true; |
1217 | 0 | Args.add(RValue::get(CastToGenericAddrSpace(Val1.getPointer(), |
1218 | 0 | E->getVal1()->getType())), |
1219 | 0 | getContext().VoidPtrTy); |
1220 | 0 | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val2.getPointer(), |
1221 | 0 | MemTy, E->getExprLoc(), TInfo.Width); |
1222 | 0 | Args.add(RValue::get(Order), getContext().IntTy); |
1223 | 0 | Order = OrderFail; |
1224 | 0 | break; |
1225 | | // void __atomic_exchange(size_t size, void *mem, void *val, void *return, |
1226 | | // int order) |
1227 | | // T __atomic_exchange_N(T *mem, T val, int order) |
1228 | 0 | case AtomicExpr::AO__atomic_exchange: |
1229 | 0 | case AtomicExpr::AO__atomic_exchange_n: |
1230 | 0 | case AtomicExpr::AO__c11_atomic_exchange: |
1231 | 0 | case AtomicExpr::AO__hip_atomic_exchange: |
1232 | 0 | case AtomicExpr::AO__opencl_atomic_exchange: |
1233 | 0 | case AtomicExpr::AO__scoped_atomic_exchange: |
1234 | 0 | case AtomicExpr::AO__scoped_atomic_exchange_n: |
1235 | 0 | LibCallName = "__atomic_exchange"; |
1236 | 0 | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), |
1237 | 0 | MemTy, E->getExprLoc(), TInfo.Width); |
1238 | 0 | break; |
1239 | | // void __atomic_store(size_t size, void *mem, void *val, int order) |
1240 | | // void __atomic_store_N(T *mem, T val, int order) |
1241 | 0 | case AtomicExpr::AO__atomic_store: |
1242 | 0 | case AtomicExpr::AO__atomic_store_n: |
1243 | 0 | case AtomicExpr::AO__c11_atomic_store: |
1244 | 0 | case AtomicExpr::AO__hip_atomic_store: |
1245 | 0 | case AtomicExpr::AO__opencl_atomic_store: |
1246 | 0 | case AtomicExpr::AO__scoped_atomic_store: |
1247 | 0 | case AtomicExpr::AO__scoped_atomic_store_n: |
1248 | 0 | LibCallName = "__atomic_store"; |
1249 | 0 | RetTy = getContext().VoidTy; |
1250 | 0 | HaveRetTy = true; |
1251 | 0 | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), |
1252 | 0 | MemTy, E->getExprLoc(), TInfo.Width); |
1253 | 0 | break; |
1254 | | // void __atomic_load(size_t size, void *mem, void *return, int order) |
1255 | | // T __atomic_load_N(T *mem, int order) |
1256 | 0 | case AtomicExpr::AO__atomic_load: |
1257 | 0 | case AtomicExpr::AO__atomic_load_n: |
1258 | 0 | case AtomicExpr::AO__c11_atomic_load: |
1259 | 0 | case AtomicExpr::AO__hip_atomic_load: |
1260 | 0 | case AtomicExpr::AO__opencl_atomic_load: |
1261 | 0 | case AtomicExpr::AO__scoped_atomic_load: |
1262 | 0 | case AtomicExpr::AO__scoped_atomic_load_n: |
1263 | 0 | LibCallName = "__atomic_load"; |
1264 | 0 | break; |
1265 | | // T __atomic_add_fetch_N(T *mem, T val, int order) |
1266 | | // T __atomic_fetch_add_N(T *mem, T val, int order) |
1267 | 0 | case AtomicExpr::AO__atomic_add_fetch: |
1268 | 0 | case AtomicExpr::AO__scoped_atomic_add_fetch: |
1269 | 0 | PostOp = llvm::Instruction::Add; |
1270 | 0 | [[fallthrough]]; |
1271 | 0 | case AtomicExpr::AO__atomic_fetch_add: |
1272 | 0 | case AtomicExpr::AO__c11_atomic_fetch_add: |
1273 | 0 | case AtomicExpr::AO__hip_atomic_fetch_add: |
1274 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_add: |
1275 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_add: |
1276 | 0 | LibCallName = "__atomic_fetch_add"; |
1277 | 0 | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), |
1278 | 0 | LoweredMemTy, E->getExprLoc(), TInfo.Width); |
1279 | 0 | break; |
1280 | | // T __atomic_and_fetch_N(T *mem, T val, int order) |
1281 | | // T __atomic_fetch_and_N(T *mem, T val, int order) |
1282 | 0 | case AtomicExpr::AO__atomic_and_fetch: |
1283 | 0 | case AtomicExpr::AO__scoped_atomic_and_fetch: |
1284 | 0 | PostOp = llvm::Instruction::And; |
1285 | 0 | [[fallthrough]]; |
1286 | 0 | case AtomicExpr::AO__atomic_fetch_and: |
1287 | 0 | case AtomicExpr::AO__c11_atomic_fetch_and: |
1288 | 0 | case AtomicExpr::AO__hip_atomic_fetch_and: |
1289 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_and: |
1290 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_and: |
1291 | 0 | LibCallName = "__atomic_fetch_and"; |
1292 | 0 | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), |
1293 | 0 | MemTy, E->getExprLoc(), TInfo.Width); |
1294 | 0 | break; |
1295 | | // T __atomic_or_fetch_N(T *mem, T val, int order) |
1296 | | // T __atomic_fetch_or_N(T *mem, T val, int order) |
1297 | 0 | case AtomicExpr::AO__atomic_or_fetch: |
1298 | 0 | case AtomicExpr::AO__scoped_atomic_or_fetch: |
1299 | 0 | PostOp = llvm::Instruction::Or; |
1300 | 0 | [[fallthrough]]; |
1301 | 0 | case AtomicExpr::AO__atomic_fetch_or: |
1302 | 0 | case AtomicExpr::AO__c11_atomic_fetch_or: |
1303 | 0 | case AtomicExpr::AO__hip_atomic_fetch_or: |
1304 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_or: |
1305 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_or: |
1306 | 0 | LibCallName = "__atomic_fetch_or"; |
1307 | 0 | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), |
1308 | 0 | MemTy, E->getExprLoc(), TInfo.Width); |
1309 | 0 | break; |
1310 | | // T __atomic_sub_fetch_N(T *mem, T val, int order) |
1311 | | // T __atomic_fetch_sub_N(T *mem, T val, int order) |
1312 | 0 | case AtomicExpr::AO__atomic_sub_fetch: |
1313 | 0 | case AtomicExpr::AO__scoped_atomic_sub_fetch: |
1314 | 0 | PostOp = llvm::Instruction::Sub; |
1315 | 0 | [[fallthrough]]; |
1316 | 0 | case AtomicExpr::AO__atomic_fetch_sub: |
1317 | 0 | case AtomicExpr::AO__c11_atomic_fetch_sub: |
1318 | 0 | case AtomicExpr::AO__hip_atomic_fetch_sub: |
1319 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_sub: |
1320 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_sub: |
1321 | 0 | LibCallName = "__atomic_fetch_sub"; |
1322 | 0 | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), |
1323 | 0 | LoweredMemTy, E->getExprLoc(), TInfo.Width); |
1324 | 0 | break; |
1325 | | // T __atomic_xor_fetch_N(T *mem, T val, int order) |
1326 | | // T __atomic_fetch_xor_N(T *mem, T val, int order) |
1327 | 0 | case AtomicExpr::AO__atomic_xor_fetch: |
1328 | 0 | case AtomicExpr::AO__scoped_atomic_xor_fetch: |
1329 | 0 | PostOp = llvm::Instruction::Xor; |
1330 | 0 | [[fallthrough]]; |
1331 | 0 | case AtomicExpr::AO__atomic_fetch_xor: |
1332 | 0 | case AtomicExpr::AO__c11_atomic_fetch_xor: |
1333 | 0 | case AtomicExpr::AO__hip_atomic_fetch_xor: |
1334 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_xor: |
1335 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_xor: |
1336 | 0 | LibCallName = "__atomic_fetch_xor"; |
1337 | 0 | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), |
1338 | 0 | MemTy, E->getExprLoc(), TInfo.Width); |
1339 | 0 | break; |
1340 | 0 | case AtomicExpr::AO__atomic_min_fetch: |
1341 | 0 | case AtomicExpr::AO__scoped_atomic_min_fetch: |
1342 | 0 | PostOpMinMax = true; |
1343 | 0 | [[fallthrough]]; |
1344 | 0 | case AtomicExpr::AO__atomic_fetch_min: |
1345 | 0 | case AtomicExpr::AO__c11_atomic_fetch_min: |
1346 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_min: |
1347 | 0 | case AtomicExpr::AO__hip_atomic_fetch_min: |
1348 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_min: |
1349 | 0 | LibCallName = E->getValueType()->isSignedIntegerType() |
1350 | 0 | ? "__atomic_fetch_min" |
1351 | 0 | : "__atomic_fetch_umin"; |
1352 | 0 | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), |
1353 | 0 | LoweredMemTy, E->getExprLoc(), TInfo.Width); |
1354 | 0 | break; |
1355 | 0 | case AtomicExpr::AO__atomic_max_fetch: |
1356 | 0 | case AtomicExpr::AO__scoped_atomic_max_fetch: |
1357 | 0 | PostOpMinMax = true; |
1358 | 0 | [[fallthrough]]; |
1359 | 0 | case AtomicExpr::AO__atomic_fetch_max: |
1360 | 0 | case AtomicExpr::AO__c11_atomic_fetch_max: |
1361 | 0 | case AtomicExpr::AO__hip_atomic_fetch_max: |
1362 | 0 | case AtomicExpr::AO__opencl_atomic_fetch_max: |
1363 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_max: |
1364 | 0 | LibCallName = E->getValueType()->isSignedIntegerType() |
1365 | 0 | ? "__atomic_fetch_max" |
1366 | 0 | : "__atomic_fetch_umax"; |
1367 | 0 | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), |
1368 | 0 | LoweredMemTy, E->getExprLoc(), TInfo.Width); |
1369 | 0 | break; |
1370 | | // T __atomic_nand_fetch_N(T *mem, T val, int order) |
1371 | | // T __atomic_fetch_nand_N(T *mem, T val, int order) |
1372 | 0 | case AtomicExpr::AO__atomic_nand_fetch: |
1373 | 0 | case AtomicExpr::AO__scoped_atomic_nand_fetch: |
1374 | 0 | PostOp = llvm::Instruction::And; // the NOT is special cased below |
1375 | 0 | [[fallthrough]]; |
1376 | 0 | case AtomicExpr::AO__atomic_fetch_nand: |
1377 | 0 | case AtomicExpr::AO__c11_atomic_fetch_nand: |
1378 | 0 | case AtomicExpr::AO__scoped_atomic_fetch_nand: |
1379 | 0 | LibCallName = "__atomic_fetch_nand"; |
1380 | 0 | AddDirectArgument(*this, Args, UseOptimizedLibcall, Val1.getPointer(), |
1381 | 0 | MemTy, E->getExprLoc(), TInfo.Width); |
1382 | 0 | break; |
1383 | 0 | } |
1384 | | |
1385 | 0 | if (E->isOpenCL()) { |
1386 | 0 | LibCallName = std::string("__opencl") + |
1387 | 0 | StringRef(LibCallName).drop_front(1).str(); |
1388 | |
|
1389 | 0 | } |
1390 | | // Optimized functions have the size in their name. |
1391 | 0 | if (UseOptimizedLibcall) |
1392 | 0 | LibCallName += "_" + llvm::utostr(Size); |
1393 | | // By default, assume we return a value of the atomic type. |
1394 | 0 | if (!HaveRetTy) { |
1395 | 0 | if (UseOptimizedLibcall) { |
1396 | | // Value is returned directly. |
1397 | | // The function returns an appropriately sized integer type. |
1398 | 0 | RetTy = getContext().getIntTypeForBitwidth( |
1399 | 0 | getContext().toBits(TInfo.Width), /*Signed=*/false); |
1400 | 0 | } else { |
1401 | | // Value is returned through parameter before the order. |
1402 | 0 | RetTy = getContext().VoidTy; |
1403 | 0 | Args.add(RValue::get(Dest.getPointer()), getContext().VoidPtrTy); |
1404 | 0 | } |
1405 | 0 | } |
1406 | | // order is always the last parameter |
1407 | 0 | Args.add(RValue::get(Order), |
1408 | 0 | getContext().IntTy); |
1409 | 0 | if (E->isOpenCL()) |
1410 | 0 | Args.add(RValue::get(Scope), getContext().IntTy); |
1411 | | |
1412 | | // PostOp is only needed for the atomic_*_fetch operations, and |
1413 | | // thus is only needed for and implemented in the |
1414 | | // UseOptimizedLibcall codepath. |
1415 | 0 | assert(UseOptimizedLibcall || (!PostOp && !PostOpMinMax)); |
1416 | | |
1417 | 0 | RValue Res = emitAtomicLibcall(*this, LibCallName, RetTy, Args); |
1418 | | // The value is returned directly from the libcall. |
1419 | 0 | if (E->isCmpXChg()) |
1420 | 0 | return Res; |
1421 | | |
1422 | | // The value is returned directly for optimized libcalls but the expr |
1423 | | // provided an out-param. |
1424 | 0 | if (UseOptimizedLibcall && Res.getScalarVal()) { |
1425 | 0 | llvm::Value *ResVal = Res.getScalarVal(); |
1426 | 0 | if (PostOpMinMax) { |
1427 | 0 | llvm::Value *LoadVal1 = Args[1].getRValue(*this).getScalarVal(); |
1428 | 0 | ResVal = EmitPostAtomicMinMax(Builder, E->getOp(), |
1429 | 0 | E->getValueType()->isSignedIntegerType(), |
1430 | 0 | ResVal, LoadVal1); |
1431 | 0 | } else if (PostOp) { |
1432 | 0 | llvm::Value *LoadVal1 = Args[1].getRValue(*this).getScalarVal(); |
1433 | 0 | ResVal = Builder.CreateBinOp(PostOp, ResVal, LoadVal1); |
1434 | 0 | } |
1435 | 0 | if (E->getOp() == AtomicExpr::AO__atomic_nand_fetch || |
1436 | 0 | E->getOp() == AtomicExpr::AO__scoped_atomic_nand_fetch) |
1437 | 0 | ResVal = Builder.CreateNot(ResVal); |
1438 | |
|
1439 | 0 | Builder.CreateStore(ResVal, Dest.withElementType(ResVal->getType())); |
1440 | 0 | } |
1441 | |
|
1442 | 0 | if (RValTy->isVoidType()) |
1443 | 0 | return RValue::get(nullptr); |
1444 | | |
1445 | 0 | return convertTempToRValue(Dest.withElementType(ConvertTypeForMem(RValTy)), |
1446 | 0 | RValTy, E->getExprLoc()); |
1447 | 0 | } |
1448 | | |
1449 | 0 | bool IsStore = E->getOp() == AtomicExpr::AO__c11_atomic_store || |
1450 | 0 | E->getOp() == AtomicExpr::AO__opencl_atomic_store || |
1451 | 0 | E->getOp() == AtomicExpr::AO__hip_atomic_store || |
1452 | 0 | E->getOp() == AtomicExpr::AO__atomic_store || |
1453 | 0 | E->getOp() == AtomicExpr::AO__atomic_store_n || |
1454 | 0 | E->getOp() == AtomicExpr::AO__scoped_atomic_store || |
1455 | 0 | E->getOp() == AtomicExpr::AO__scoped_atomic_store_n; |
1456 | 0 | bool IsLoad = E->getOp() == AtomicExpr::AO__c11_atomic_load || |
1457 | 0 | E->getOp() == AtomicExpr::AO__opencl_atomic_load || |
1458 | 0 | E->getOp() == AtomicExpr::AO__hip_atomic_load || |
1459 | 0 | E->getOp() == AtomicExpr::AO__atomic_load || |
1460 | 0 | E->getOp() == AtomicExpr::AO__atomic_load_n || |
1461 | 0 | E->getOp() == AtomicExpr::AO__scoped_atomic_load || |
1462 | 0 | E->getOp() == AtomicExpr::AO__scoped_atomic_load_n; |
1463 | |
|
1464 | 0 | if (isa<llvm::ConstantInt>(Order)) { |
1465 | 0 | auto ord = cast<llvm::ConstantInt>(Order)->getZExtValue(); |
1466 | | // We should not ever get to a case where the ordering isn't a valid C ABI |
1467 | | // value, but it's hard to enforce that in general. |
1468 | 0 | if (llvm::isValidAtomicOrderingCABI(ord)) |
1469 | 0 | switch ((llvm::AtomicOrderingCABI)ord) { |
1470 | 0 | case llvm::AtomicOrderingCABI::relaxed: |
1471 | 0 | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, |
1472 | 0 | llvm::AtomicOrdering::Monotonic, Scope); |
1473 | 0 | break; |
1474 | 0 | case llvm::AtomicOrderingCABI::consume: |
1475 | 0 | case llvm::AtomicOrderingCABI::acquire: |
1476 | 0 | if (IsStore) |
1477 | 0 | break; // Avoid crashing on code with undefined behavior |
1478 | 0 | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, |
1479 | 0 | llvm::AtomicOrdering::Acquire, Scope); |
1480 | 0 | break; |
1481 | 0 | case llvm::AtomicOrderingCABI::release: |
1482 | 0 | if (IsLoad) |
1483 | 0 | break; // Avoid crashing on code with undefined behavior |
1484 | 0 | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, |
1485 | 0 | llvm::AtomicOrdering::Release, Scope); |
1486 | 0 | break; |
1487 | 0 | case llvm::AtomicOrderingCABI::acq_rel: |
1488 | 0 | if (IsLoad || IsStore) |
1489 | 0 | break; // Avoid crashing on code with undefined behavior |
1490 | 0 | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, |
1491 | 0 | llvm::AtomicOrdering::AcquireRelease, Scope); |
1492 | 0 | break; |
1493 | 0 | case llvm::AtomicOrderingCABI::seq_cst: |
1494 | 0 | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, |
1495 | 0 | llvm::AtomicOrdering::SequentiallyConsistent, Scope); |
1496 | 0 | break; |
1497 | 0 | } |
1498 | 0 | if (RValTy->isVoidType()) |
1499 | 0 | return RValue::get(nullptr); |
1500 | | |
1501 | 0 | return convertTempToRValue(Dest.withElementType(ConvertTypeForMem(RValTy)), |
1502 | 0 | RValTy, E->getExprLoc()); |
1503 | 0 | } |
1504 | | |
1505 | | // Long case, when Order isn't obviously constant. |
1506 | | |
1507 | | // Create all the relevant BB's |
1508 | 0 | llvm::BasicBlock *MonotonicBB = nullptr, *AcquireBB = nullptr, |
1509 | 0 | *ReleaseBB = nullptr, *AcqRelBB = nullptr, |
1510 | 0 | *SeqCstBB = nullptr; |
1511 | 0 | MonotonicBB = createBasicBlock("monotonic", CurFn); |
1512 | 0 | if (!IsStore) |
1513 | 0 | AcquireBB = createBasicBlock("acquire", CurFn); |
1514 | 0 | if (!IsLoad) |
1515 | 0 | ReleaseBB = createBasicBlock("release", CurFn); |
1516 | 0 | if (!IsLoad && !IsStore) |
1517 | 0 | AcqRelBB = createBasicBlock("acqrel", CurFn); |
1518 | 0 | SeqCstBB = createBasicBlock("seqcst", CurFn); |
1519 | 0 | llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn); |
1520 | | |
1521 | | // Create the switch for the split |
1522 | | // MonotonicBB is arbitrarily chosen as the default case; in practice, this |
1523 | | // doesn't matter unless someone is crazy enough to use something that |
1524 | | // doesn't fold to a constant for the ordering. |
1525 | 0 | Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false); |
1526 | 0 | llvm::SwitchInst *SI = Builder.CreateSwitch(Order, MonotonicBB); |
1527 | | |
1528 | | // Emit all the different atomics |
1529 | 0 | Builder.SetInsertPoint(MonotonicBB); |
1530 | 0 | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, |
1531 | 0 | llvm::AtomicOrdering::Monotonic, Scope); |
1532 | 0 | Builder.CreateBr(ContBB); |
1533 | 0 | if (!IsStore) { |
1534 | 0 | Builder.SetInsertPoint(AcquireBB); |
1535 | 0 | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, |
1536 | 0 | llvm::AtomicOrdering::Acquire, Scope); |
1537 | 0 | Builder.CreateBr(ContBB); |
1538 | 0 | SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::consume), |
1539 | 0 | AcquireBB); |
1540 | 0 | SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acquire), |
1541 | 0 | AcquireBB); |
1542 | 0 | } |
1543 | 0 | if (!IsLoad) { |
1544 | 0 | Builder.SetInsertPoint(ReleaseBB); |
1545 | 0 | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, |
1546 | 0 | llvm::AtomicOrdering::Release, Scope); |
1547 | 0 | Builder.CreateBr(ContBB); |
1548 | 0 | SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::release), |
1549 | 0 | ReleaseBB); |
1550 | 0 | } |
1551 | 0 | if (!IsLoad && !IsStore) { |
1552 | 0 | Builder.SetInsertPoint(AcqRelBB); |
1553 | 0 | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, |
1554 | 0 | llvm::AtomicOrdering::AcquireRelease, Scope); |
1555 | 0 | Builder.CreateBr(ContBB); |
1556 | 0 | SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::acq_rel), |
1557 | 0 | AcqRelBB); |
1558 | 0 | } |
1559 | 0 | Builder.SetInsertPoint(SeqCstBB); |
1560 | 0 | EmitAtomicOp(*this, E, Dest, Ptr, Val1, Val2, IsWeak, OrderFail, Size, |
1561 | 0 | llvm::AtomicOrdering::SequentiallyConsistent, Scope); |
1562 | 0 | Builder.CreateBr(ContBB); |
1563 | 0 | SI->addCase(Builder.getInt32((int)llvm::AtomicOrderingCABI::seq_cst), |
1564 | 0 | SeqCstBB); |
1565 | | |
1566 | | // Cleanup and return |
1567 | 0 | Builder.SetInsertPoint(ContBB); |
1568 | 0 | if (RValTy->isVoidType()) |
1569 | 0 | return RValue::get(nullptr); |
1570 | | |
1571 | 0 | assert(Atomics.getValueSizeInBits() <= Atomics.getAtomicSizeInBits()); |
1572 | 0 | return convertTempToRValue(Dest.withElementType(ConvertTypeForMem(RValTy)), |
1573 | 0 | RValTy, E->getExprLoc()); |
1574 | 0 | } |
1575 | | |
1576 | 0 | Address AtomicInfo::castToAtomicIntPointer(Address addr) const { |
1577 | 0 | llvm::IntegerType *ty = |
1578 | 0 | llvm::IntegerType::get(CGF.getLLVMContext(), AtomicSizeInBits); |
1579 | 0 | return addr.withElementType(ty); |
1580 | 0 | } |
1581 | | |
1582 | 0 | Address AtomicInfo::convertToAtomicIntPointer(Address Addr) const { |
1583 | 0 | llvm::Type *Ty = Addr.getElementType(); |
1584 | 0 | uint64_t SourceSizeInBits = CGF.CGM.getDataLayout().getTypeSizeInBits(Ty); |
1585 | 0 | if (SourceSizeInBits != AtomicSizeInBits) { |
1586 | 0 | Address Tmp = CreateTempAlloca(); |
1587 | 0 | CGF.Builder.CreateMemCpy(Tmp, Addr, |
1588 | 0 | std::min(AtomicSizeInBits, SourceSizeInBits) / 8); |
1589 | 0 | Addr = Tmp; |
1590 | 0 | } |
1591 | |
|
1592 | 0 | return castToAtomicIntPointer(Addr); |
1593 | 0 | } |
1594 | | |
1595 | | RValue AtomicInfo::convertAtomicTempToRValue(Address addr, |
1596 | | AggValueSlot resultSlot, |
1597 | | SourceLocation loc, |
1598 | 0 | bool asValue) const { |
1599 | 0 | if (LVal.isSimple()) { |
1600 | 0 | if (EvaluationKind == TEK_Aggregate) |
1601 | 0 | return resultSlot.asRValue(); |
1602 | | |
1603 | | // Drill into the padding structure if we have one. |
1604 | 0 | if (hasPadding()) |
1605 | 0 | addr = CGF.Builder.CreateStructGEP(addr, 0); |
1606 | | |
1607 | | // Otherwise, just convert the temporary to an r-value using the |
1608 | | // normal conversion routine. |
1609 | 0 | return CGF.convertTempToRValue(addr, getValueType(), loc); |
1610 | 0 | } |
1611 | 0 | if (!asValue) |
1612 | | // Get RValue from temp memory as atomic for non-simple lvalues |
1613 | 0 | return RValue::get(CGF.Builder.CreateLoad(addr)); |
1614 | 0 | if (LVal.isBitField()) |
1615 | 0 | return CGF.EmitLoadOfBitfieldLValue( |
1616 | 0 | LValue::MakeBitfield(addr, LVal.getBitFieldInfo(), LVal.getType(), |
1617 | 0 | LVal.getBaseInfo(), TBAAAccessInfo()), loc); |
1618 | 0 | if (LVal.isVectorElt()) |
1619 | 0 | return CGF.EmitLoadOfLValue( |
1620 | 0 | LValue::MakeVectorElt(addr, LVal.getVectorIdx(), LVal.getType(), |
1621 | 0 | LVal.getBaseInfo(), TBAAAccessInfo()), loc); |
1622 | 0 | assert(LVal.isExtVectorElt()); |
1623 | 0 | return CGF.EmitLoadOfExtVectorElementLValue(LValue::MakeExtVectorElt( |
1624 | 0 | addr, LVal.getExtVectorElts(), LVal.getType(), |
1625 | 0 | LVal.getBaseInfo(), TBAAAccessInfo())); |
1626 | 0 | } |
1627 | | |
1628 | | RValue AtomicInfo::ConvertIntToValueOrAtomic(llvm::Value *IntVal, |
1629 | | AggValueSlot ResultSlot, |
1630 | | SourceLocation Loc, |
1631 | 0 | bool AsValue) const { |
1632 | | // Try not to in some easy cases. |
1633 | 0 | assert(IntVal->getType()->isIntegerTy() && "Expected integer value"); |
1634 | 0 | if (getEvaluationKind() == TEK_Scalar && |
1635 | 0 | (((!LVal.isBitField() || |
1636 | 0 | LVal.getBitFieldInfo().Size == ValueSizeInBits) && |
1637 | 0 | !hasPadding()) || |
1638 | 0 | !AsValue)) { |
1639 | 0 | auto *ValTy = AsValue |
1640 | 0 | ? CGF.ConvertTypeForMem(ValueTy) |
1641 | 0 | : getAtomicAddress().getElementType(); |
1642 | 0 | if (ValTy->isIntegerTy()) { |
1643 | 0 | assert(IntVal->getType() == ValTy && "Different integer types."); |
1644 | 0 | return RValue::get(CGF.EmitFromMemory(IntVal, ValueTy)); |
1645 | 0 | } else if (ValTy->isPointerTy()) |
1646 | 0 | return RValue::get(CGF.Builder.CreateIntToPtr(IntVal, ValTy)); |
1647 | 0 | else if (llvm::CastInst::isBitCastable(IntVal->getType(), ValTy)) |
1648 | 0 | return RValue::get(CGF.Builder.CreateBitCast(IntVal, ValTy)); |
1649 | 0 | } |
1650 | | |
1651 | | // Create a temporary. This needs to be big enough to hold the |
1652 | | // atomic integer. |
1653 | 0 | Address Temp = Address::invalid(); |
1654 | 0 | bool TempIsVolatile = false; |
1655 | 0 | if (AsValue && getEvaluationKind() == TEK_Aggregate) { |
1656 | 0 | assert(!ResultSlot.isIgnored()); |
1657 | 0 | Temp = ResultSlot.getAddress(); |
1658 | 0 | TempIsVolatile = ResultSlot.isVolatile(); |
1659 | 0 | } else { |
1660 | 0 | Temp = CreateTempAlloca(); |
1661 | 0 | } |
1662 | | |
1663 | | // Slam the integer into the temporary. |
1664 | 0 | Address CastTemp = castToAtomicIntPointer(Temp); |
1665 | 0 | CGF.Builder.CreateStore(IntVal, CastTemp) |
1666 | 0 | ->setVolatile(TempIsVolatile); |
1667 | |
|
1668 | 0 | return convertAtomicTempToRValue(Temp, ResultSlot, Loc, AsValue); |
1669 | 0 | } |
1670 | | |
1671 | | void AtomicInfo::EmitAtomicLoadLibcall(llvm::Value *AddForLoaded, |
1672 | 0 | llvm::AtomicOrdering AO, bool) { |
1673 | | // void __atomic_load(size_t size, void *mem, void *return, int order); |
1674 | 0 | CallArgList Args; |
1675 | 0 | Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); |
1676 | 0 | Args.add(RValue::get(getAtomicPointer()), CGF.getContext().VoidPtrTy); |
1677 | 0 | Args.add(RValue::get(AddForLoaded), CGF.getContext().VoidPtrTy); |
1678 | 0 | Args.add( |
1679 | 0 | RValue::get(llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(AO))), |
1680 | 0 | CGF.getContext().IntTy); |
1681 | 0 | emitAtomicLibcall(CGF, "__atomic_load", CGF.getContext().VoidTy, Args); |
1682 | 0 | } |
1683 | | |
1684 | | llvm::Value *AtomicInfo::EmitAtomicLoadOp(llvm::AtomicOrdering AO, |
1685 | 0 | bool IsVolatile) { |
1686 | | // Okay, we're doing this natively. |
1687 | 0 | Address Addr = getAtomicAddressAsAtomicIntPointer(); |
1688 | 0 | llvm::LoadInst *Load = CGF.Builder.CreateLoad(Addr, "atomic-load"); |
1689 | 0 | Load->setAtomic(AO); |
1690 | | |
1691 | | // Other decoration. |
1692 | 0 | if (IsVolatile) |
1693 | 0 | Load->setVolatile(true); |
1694 | 0 | CGF.CGM.DecorateInstructionWithTBAA(Load, LVal.getTBAAInfo()); |
1695 | 0 | return Load; |
1696 | 0 | } |
1697 | | |
1698 | | /// An LValue is a candidate for having its loads and stores be made atomic if |
1699 | | /// we are operating under /volatile:ms *and* the LValue itself is volatile and |
1700 | | /// performing such an operation can be performed without a libcall. |
1701 | 0 | bool CodeGenFunction::LValueIsSuitableForInlineAtomic(LValue LV) { |
1702 | 0 | if (!CGM.getLangOpts().MSVolatile) return false; |
1703 | 0 | AtomicInfo AI(*this, LV); |
1704 | 0 | bool IsVolatile = LV.isVolatile() || hasVolatileMember(LV.getType()); |
1705 | | // An atomic is inline if we don't need to use a libcall. |
1706 | 0 | bool AtomicIsInline = !AI.shouldUseLibcall(); |
1707 | | // MSVC doesn't seem to do this for types wider than a pointer. |
1708 | 0 | if (getContext().getTypeSize(LV.getType()) > |
1709 | 0 | getContext().getTypeSize(getContext().getIntPtrType())) |
1710 | 0 | return false; |
1711 | 0 | return IsVolatile && AtomicIsInline; |
1712 | 0 | } |
1713 | | |
1714 | | RValue CodeGenFunction::EmitAtomicLoad(LValue LV, SourceLocation SL, |
1715 | 0 | AggValueSlot Slot) { |
1716 | 0 | llvm::AtomicOrdering AO; |
1717 | 0 | bool IsVolatile = LV.isVolatileQualified(); |
1718 | 0 | if (LV.getType()->isAtomicType()) { |
1719 | 0 | AO = llvm::AtomicOrdering::SequentiallyConsistent; |
1720 | 0 | } else { |
1721 | 0 | AO = llvm::AtomicOrdering::Acquire; |
1722 | 0 | IsVolatile = true; |
1723 | 0 | } |
1724 | 0 | return EmitAtomicLoad(LV, SL, AO, IsVolatile, Slot); |
1725 | 0 | } |
1726 | | |
1727 | | RValue AtomicInfo::EmitAtomicLoad(AggValueSlot ResultSlot, SourceLocation Loc, |
1728 | | bool AsValue, llvm::AtomicOrdering AO, |
1729 | 0 | bool IsVolatile) { |
1730 | | // Check whether we should use a library call. |
1731 | 0 | if (shouldUseLibcall()) { |
1732 | 0 | Address TempAddr = Address::invalid(); |
1733 | 0 | if (LVal.isSimple() && !ResultSlot.isIgnored()) { |
1734 | 0 | assert(getEvaluationKind() == TEK_Aggregate); |
1735 | 0 | TempAddr = ResultSlot.getAddress(); |
1736 | 0 | } else |
1737 | 0 | TempAddr = CreateTempAlloca(); |
1738 | | |
1739 | 0 | EmitAtomicLoadLibcall(TempAddr.getPointer(), AO, IsVolatile); |
1740 | | |
1741 | | // Okay, turn that back into the original value or whole atomic (for |
1742 | | // non-simple lvalues) type. |
1743 | 0 | return convertAtomicTempToRValue(TempAddr, ResultSlot, Loc, AsValue); |
1744 | 0 | } |
1745 | | |
1746 | | // Okay, we're doing this natively. |
1747 | 0 | auto *Load = EmitAtomicLoadOp(AO, IsVolatile); |
1748 | | |
1749 | | // If we're ignoring an aggregate return, don't do anything. |
1750 | 0 | if (getEvaluationKind() == TEK_Aggregate && ResultSlot.isIgnored()) |
1751 | 0 | return RValue::getAggregate(Address::invalid(), false); |
1752 | | |
1753 | | // Okay, turn that back into the original value or atomic (for non-simple |
1754 | | // lvalues) type. |
1755 | 0 | return ConvertIntToValueOrAtomic(Load, ResultSlot, Loc, AsValue); |
1756 | 0 | } |
1757 | | |
1758 | | /// Emit a load from an l-value of atomic type. Note that the r-value |
1759 | | /// we produce is an r-value of the atomic *value* type. |
1760 | | RValue CodeGenFunction::EmitAtomicLoad(LValue src, SourceLocation loc, |
1761 | | llvm::AtomicOrdering AO, bool IsVolatile, |
1762 | 0 | AggValueSlot resultSlot) { |
1763 | 0 | AtomicInfo Atomics(*this, src); |
1764 | 0 | return Atomics.EmitAtomicLoad(resultSlot, loc, /*AsValue=*/true, AO, |
1765 | 0 | IsVolatile); |
1766 | 0 | } |
1767 | | |
1768 | | /// Copy an r-value into memory as part of storing to an atomic type. |
1769 | | /// This needs to create a bit-pattern suitable for atomic operations. |
1770 | 0 | void AtomicInfo::emitCopyIntoMemory(RValue rvalue) const { |
1771 | 0 | assert(LVal.isSimple()); |
1772 | | // If we have an r-value, the rvalue should be of the atomic type, |
1773 | | // which means that the caller is responsible for having zeroed |
1774 | | // any padding. Just do an aggregate copy of that type. |
1775 | 0 | if (rvalue.isAggregate()) { |
1776 | 0 | LValue Dest = CGF.MakeAddrLValue(getAtomicAddress(), getAtomicType()); |
1777 | 0 | LValue Src = CGF.MakeAddrLValue(rvalue.getAggregateAddress(), |
1778 | 0 | getAtomicType()); |
1779 | 0 | bool IsVolatile = rvalue.isVolatileQualified() || |
1780 | 0 | LVal.isVolatileQualified(); |
1781 | 0 | CGF.EmitAggregateCopy(Dest, Src, getAtomicType(), |
1782 | 0 | AggValueSlot::DoesNotOverlap, IsVolatile); |
1783 | 0 | return; |
1784 | 0 | } |
1785 | | |
1786 | | // Okay, otherwise we're copying stuff. |
1787 | | |
1788 | | // Zero out the buffer if necessary. |
1789 | 0 | emitMemSetZeroIfNecessary(); |
1790 | | |
1791 | | // Drill past the padding if present. |
1792 | 0 | LValue TempLVal = projectValue(); |
1793 | | |
1794 | | // Okay, store the rvalue in. |
1795 | 0 | if (rvalue.isScalar()) { |
1796 | 0 | CGF.EmitStoreOfScalar(rvalue.getScalarVal(), TempLVal, /*init*/ true); |
1797 | 0 | } else { |
1798 | 0 | CGF.EmitStoreOfComplex(rvalue.getComplexVal(), TempLVal, /*init*/ true); |
1799 | 0 | } |
1800 | 0 | } |
1801 | | |
1802 | | |
1803 | | /// Materialize an r-value into memory for the purposes of storing it |
1804 | | /// to an atomic type. |
1805 | 0 | Address AtomicInfo::materializeRValue(RValue rvalue) const { |
1806 | | // Aggregate r-values are already in memory, and EmitAtomicStore |
1807 | | // requires them to be values of the atomic type. |
1808 | 0 | if (rvalue.isAggregate()) |
1809 | 0 | return rvalue.getAggregateAddress(); |
1810 | | |
1811 | | // Otherwise, make a temporary and materialize into it. |
1812 | 0 | LValue TempLV = CGF.MakeAddrLValue(CreateTempAlloca(), getAtomicType()); |
1813 | 0 | AtomicInfo Atomics(CGF, TempLV); |
1814 | 0 | Atomics.emitCopyIntoMemory(rvalue); |
1815 | 0 | return TempLV.getAddress(CGF); |
1816 | 0 | } |
1817 | | |
1818 | 0 | llvm::Value *AtomicInfo::convertRValueToInt(RValue RVal) const { |
1819 | | // If we've got a scalar value of the right size, try to avoid going |
1820 | | // through memory. |
1821 | 0 | if (RVal.isScalar() && (!hasPadding() || !LVal.isSimple())) { |
1822 | 0 | llvm::Value *Value = RVal.getScalarVal(); |
1823 | 0 | if (isa<llvm::IntegerType>(Value->getType())) |
1824 | 0 | return CGF.EmitToMemory(Value, ValueTy); |
1825 | 0 | else { |
1826 | 0 | llvm::IntegerType *InputIntTy = llvm::IntegerType::get( |
1827 | 0 | CGF.getLLVMContext(), |
1828 | 0 | LVal.isSimple() ? getValueSizeInBits() : getAtomicSizeInBits()); |
1829 | 0 | if (isa<llvm::PointerType>(Value->getType())) |
1830 | 0 | return CGF.Builder.CreatePtrToInt(Value, InputIntTy); |
1831 | 0 | else if (llvm::BitCastInst::isBitCastable(Value->getType(), InputIntTy)) |
1832 | 0 | return CGF.Builder.CreateBitCast(Value, InputIntTy); |
1833 | 0 | } |
1834 | 0 | } |
1835 | | // Otherwise, we need to go through memory. |
1836 | | // Put the r-value in memory. |
1837 | 0 | Address Addr = materializeRValue(RVal); |
1838 | | |
1839 | | // Cast the temporary to the atomic int type and pull a value out. |
1840 | 0 | Addr = castToAtomicIntPointer(Addr); |
1841 | 0 | return CGF.Builder.CreateLoad(Addr); |
1842 | 0 | } |
1843 | | |
1844 | | std::pair<llvm::Value *, llvm::Value *> AtomicInfo::EmitAtomicCompareExchangeOp( |
1845 | | llvm::Value *ExpectedVal, llvm::Value *DesiredVal, |
1846 | 0 | llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak) { |
1847 | | // Do the atomic store. |
1848 | 0 | Address Addr = getAtomicAddressAsAtomicIntPointer(); |
1849 | 0 | auto *Inst = CGF.Builder.CreateAtomicCmpXchg(Addr, ExpectedVal, DesiredVal, |
1850 | 0 | Success, Failure); |
1851 | | // Other decoration. |
1852 | 0 | Inst->setVolatile(LVal.isVolatileQualified()); |
1853 | 0 | Inst->setWeak(IsWeak); |
1854 | | |
1855 | | // Okay, turn that back into the original value type. |
1856 | 0 | auto *PreviousVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/0); |
1857 | 0 | auto *SuccessFailureVal = CGF.Builder.CreateExtractValue(Inst, /*Idxs=*/1); |
1858 | 0 | return std::make_pair(PreviousVal, SuccessFailureVal); |
1859 | 0 | } |
1860 | | |
1861 | | llvm::Value * |
1862 | | AtomicInfo::EmitAtomicCompareExchangeLibcall(llvm::Value *ExpectedAddr, |
1863 | | llvm::Value *DesiredAddr, |
1864 | | llvm::AtomicOrdering Success, |
1865 | 0 | llvm::AtomicOrdering Failure) { |
1866 | | // bool __atomic_compare_exchange(size_t size, void *obj, void *expected, |
1867 | | // void *desired, int success, int failure); |
1868 | 0 | CallArgList Args; |
1869 | 0 | Args.add(RValue::get(getAtomicSizeValue()), CGF.getContext().getSizeType()); |
1870 | 0 | Args.add(RValue::get(getAtomicPointer()), CGF.getContext().VoidPtrTy); |
1871 | 0 | Args.add(RValue::get(ExpectedAddr), CGF.getContext().VoidPtrTy); |
1872 | 0 | Args.add(RValue::get(DesiredAddr), CGF.getContext().VoidPtrTy); |
1873 | 0 | Args.add(RValue::get( |
1874 | 0 | llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Success))), |
1875 | 0 | CGF.getContext().IntTy); |
1876 | 0 | Args.add(RValue::get( |
1877 | 0 | llvm::ConstantInt::get(CGF.IntTy, (int)llvm::toCABI(Failure))), |
1878 | 0 | CGF.getContext().IntTy); |
1879 | 0 | auto SuccessFailureRVal = emitAtomicLibcall(CGF, "__atomic_compare_exchange", |
1880 | 0 | CGF.getContext().BoolTy, Args); |
1881 | |
|
1882 | 0 | return SuccessFailureRVal.getScalarVal(); |
1883 | 0 | } |
1884 | | |
1885 | | std::pair<RValue, llvm::Value *> AtomicInfo::EmitAtomicCompareExchange( |
1886 | | RValue Expected, RValue Desired, llvm::AtomicOrdering Success, |
1887 | 0 | llvm::AtomicOrdering Failure, bool IsWeak) { |
1888 | | // Check whether we should use a library call. |
1889 | 0 | if (shouldUseLibcall()) { |
1890 | | // Produce a source address. |
1891 | 0 | Address ExpectedAddr = materializeRValue(Expected); |
1892 | 0 | Address DesiredAddr = materializeRValue(Desired); |
1893 | 0 | auto *Res = EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), |
1894 | 0 | DesiredAddr.getPointer(), |
1895 | 0 | Success, Failure); |
1896 | 0 | return std::make_pair( |
1897 | 0 | convertAtomicTempToRValue(ExpectedAddr, AggValueSlot::ignored(), |
1898 | 0 | SourceLocation(), /*AsValue=*/false), |
1899 | 0 | Res); |
1900 | 0 | } |
1901 | | |
1902 | | // If we've got a scalar value of the right size, try to avoid going |
1903 | | // through memory. |
1904 | 0 | auto *ExpectedVal = convertRValueToInt(Expected); |
1905 | 0 | auto *DesiredVal = convertRValueToInt(Desired); |
1906 | 0 | auto Res = EmitAtomicCompareExchangeOp(ExpectedVal, DesiredVal, Success, |
1907 | 0 | Failure, IsWeak); |
1908 | 0 | return std::make_pair( |
1909 | 0 | ConvertIntToValueOrAtomic(Res.first, AggValueSlot::ignored(), |
1910 | 0 | SourceLocation(), /*AsValue=*/false), |
1911 | 0 | Res.second); |
1912 | 0 | } |
1913 | | |
1914 | | static void |
1915 | | EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, RValue OldRVal, |
1916 | | const llvm::function_ref<RValue(RValue)> &UpdateOp, |
1917 | 0 | Address DesiredAddr) { |
1918 | 0 | RValue UpRVal; |
1919 | 0 | LValue AtomicLVal = Atomics.getAtomicLValue(); |
1920 | 0 | LValue DesiredLVal; |
1921 | 0 | if (AtomicLVal.isSimple()) { |
1922 | 0 | UpRVal = OldRVal; |
1923 | 0 | DesiredLVal = CGF.MakeAddrLValue(DesiredAddr, AtomicLVal.getType()); |
1924 | 0 | } else { |
1925 | | // Build new lvalue for temp address. |
1926 | 0 | Address Ptr = Atomics.materializeRValue(OldRVal); |
1927 | 0 | LValue UpdateLVal; |
1928 | 0 | if (AtomicLVal.isBitField()) { |
1929 | 0 | UpdateLVal = |
1930 | 0 | LValue::MakeBitfield(Ptr, AtomicLVal.getBitFieldInfo(), |
1931 | 0 | AtomicLVal.getType(), |
1932 | 0 | AtomicLVal.getBaseInfo(), |
1933 | 0 | AtomicLVal.getTBAAInfo()); |
1934 | 0 | DesiredLVal = |
1935 | 0 | LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), |
1936 | 0 | AtomicLVal.getType(), AtomicLVal.getBaseInfo(), |
1937 | 0 | AtomicLVal.getTBAAInfo()); |
1938 | 0 | } else if (AtomicLVal.isVectorElt()) { |
1939 | 0 | UpdateLVal = LValue::MakeVectorElt(Ptr, AtomicLVal.getVectorIdx(), |
1940 | 0 | AtomicLVal.getType(), |
1941 | 0 | AtomicLVal.getBaseInfo(), |
1942 | 0 | AtomicLVal.getTBAAInfo()); |
1943 | 0 | DesiredLVal = LValue::MakeVectorElt( |
1944 | 0 | DesiredAddr, AtomicLVal.getVectorIdx(), AtomicLVal.getType(), |
1945 | 0 | AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo()); |
1946 | 0 | } else { |
1947 | 0 | assert(AtomicLVal.isExtVectorElt()); |
1948 | 0 | UpdateLVal = LValue::MakeExtVectorElt(Ptr, AtomicLVal.getExtVectorElts(), |
1949 | 0 | AtomicLVal.getType(), |
1950 | 0 | AtomicLVal.getBaseInfo(), |
1951 | 0 | AtomicLVal.getTBAAInfo()); |
1952 | 0 | DesiredLVal = LValue::MakeExtVectorElt( |
1953 | 0 | DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), |
1954 | 0 | AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo()); |
1955 | 0 | } |
1956 | 0 | UpRVal = CGF.EmitLoadOfLValue(UpdateLVal, SourceLocation()); |
1957 | 0 | } |
1958 | | // Store new value in the corresponding memory area. |
1959 | 0 | RValue NewRVal = UpdateOp(UpRVal); |
1960 | 0 | if (NewRVal.isScalar()) { |
1961 | 0 | CGF.EmitStoreThroughLValue(NewRVal, DesiredLVal); |
1962 | 0 | } else { |
1963 | 0 | assert(NewRVal.isComplex()); |
1964 | 0 | CGF.EmitStoreOfComplex(NewRVal.getComplexVal(), DesiredLVal, |
1965 | 0 | /*isInit=*/false); |
1966 | 0 | } |
1967 | 0 | } |
1968 | | |
1969 | | void AtomicInfo::EmitAtomicUpdateLibcall( |
1970 | | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, |
1971 | 0 | bool IsVolatile) { |
1972 | 0 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); |
1973 | |
|
1974 | 0 | Address ExpectedAddr = CreateTempAlloca(); |
1975 | |
|
1976 | 0 | EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile); |
1977 | 0 | auto *ContBB = CGF.createBasicBlock("atomic_cont"); |
1978 | 0 | auto *ExitBB = CGF.createBasicBlock("atomic_exit"); |
1979 | 0 | CGF.EmitBlock(ContBB); |
1980 | 0 | Address DesiredAddr = CreateTempAlloca(); |
1981 | 0 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
1982 | 0 | requiresMemSetZero(getAtomicAddress().getElementType())) { |
1983 | 0 | auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr); |
1984 | 0 | CGF.Builder.CreateStore(OldVal, DesiredAddr); |
1985 | 0 | } |
1986 | 0 | auto OldRVal = convertAtomicTempToRValue(ExpectedAddr, |
1987 | 0 | AggValueSlot::ignored(), |
1988 | 0 | SourceLocation(), /*AsValue=*/false); |
1989 | 0 | EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, DesiredAddr); |
1990 | 0 | auto *Res = |
1991 | 0 | EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), |
1992 | 0 | DesiredAddr.getPointer(), |
1993 | 0 | AO, Failure); |
1994 | 0 | CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); |
1995 | 0 | CGF.EmitBlock(ExitBB, /*IsFinished=*/true); |
1996 | 0 | } |
1997 | | |
1998 | | void AtomicInfo::EmitAtomicUpdateOp( |
1999 | | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, |
2000 | 0 | bool IsVolatile) { |
2001 | 0 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); |
2002 | | |
2003 | | // Do the atomic load. |
2004 | 0 | auto *OldVal = EmitAtomicLoadOp(Failure, IsVolatile); |
2005 | | // For non-simple lvalues perform compare-and-swap procedure. |
2006 | 0 | auto *ContBB = CGF.createBasicBlock("atomic_cont"); |
2007 | 0 | auto *ExitBB = CGF.createBasicBlock("atomic_exit"); |
2008 | 0 | auto *CurBB = CGF.Builder.GetInsertBlock(); |
2009 | 0 | CGF.EmitBlock(ContBB); |
2010 | 0 | llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), |
2011 | 0 | /*NumReservedValues=*/2); |
2012 | 0 | PHI->addIncoming(OldVal, CurBB); |
2013 | 0 | Address NewAtomicAddr = CreateTempAlloca(); |
2014 | 0 | Address NewAtomicIntAddr = castToAtomicIntPointer(NewAtomicAddr); |
2015 | 0 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
2016 | 0 | requiresMemSetZero(getAtomicAddress().getElementType())) { |
2017 | 0 | CGF.Builder.CreateStore(PHI, NewAtomicIntAddr); |
2018 | 0 | } |
2019 | 0 | auto OldRVal = ConvertIntToValueOrAtomic(PHI, AggValueSlot::ignored(), |
2020 | 0 | SourceLocation(), /*AsValue=*/false); |
2021 | 0 | EmitAtomicUpdateValue(CGF, *this, OldRVal, UpdateOp, NewAtomicAddr); |
2022 | 0 | auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr); |
2023 | | // Try to write new value using cmpxchg operation. |
2024 | 0 | auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); |
2025 | 0 | PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); |
2026 | 0 | CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); |
2027 | 0 | CGF.EmitBlock(ExitBB, /*IsFinished=*/true); |
2028 | 0 | } |
2029 | | |
2030 | | static void EmitAtomicUpdateValue(CodeGenFunction &CGF, AtomicInfo &Atomics, |
2031 | 0 | RValue UpdateRVal, Address DesiredAddr) { |
2032 | 0 | LValue AtomicLVal = Atomics.getAtomicLValue(); |
2033 | 0 | LValue DesiredLVal; |
2034 | | // Build new lvalue for temp address. |
2035 | 0 | if (AtomicLVal.isBitField()) { |
2036 | 0 | DesiredLVal = |
2037 | 0 | LValue::MakeBitfield(DesiredAddr, AtomicLVal.getBitFieldInfo(), |
2038 | 0 | AtomicLVal.getType(), AtomicLVal.getBaseInfo(), |
2039 | 0 | AtomicLVal.getTBAAInfo()); |
2040 | 0 | } else if (AtomicLVal.isVectorElt()) { |
2041 | 0 | DesiredLVal = |
2042 | 0 | LValue::MakeVectorElt(DesiredAddr, AtomicLVal.getVectorIdx(), |
2043 | 0 | AtomicLVal.getType(), AtomicLVal.getBaseInfo(), |
2044 | 0 | AtomicLVal.getTBAAInfo()); |
2045 | 0 | } else { |
2046 | 0 | assert(AtomicLVal.isExtVectorElt()); |
2047 | 0 | DesiredLVal = LValue::MakeExtVectorElt( |
2048 | 0 | DesiredAddr, AtomicLVal.getExtVectorElts(), AtomicLVal.getType(), |
2049 | 0 | AtomicLVal.getBaseInfo(), AtomicLVal.getTBAAInfo()); |
2050 | 0 | } |
2051 | | // Store new value in the corresponding memory area. |
2052 | 0 | assert(UpdateRVal.isScalar()); |
2053 | 0 | CGF.EmitStoreThroughLValue(UpdateRVal, DesiredLVal); |
2054 | 0 | } |
2055 | | |
2056 | | void AtomicInfo::EmitAtomicUpdateLibcall(llvm::AtomicOrdering AO, |
2057 | 0 | RValue UpdateRVal, bool IsVolatile) { |
2058 | 0 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); |
2059 | |
|
2060 | 0 | Address ExpectedAddr = CreateTempAlloca(); |
2061 | |
|
2062 | 0 | EmitAtomicLoadLibcall(ExpectedAddr.getPointer(), AO, IsVolatile); |
2063 | 0 | auto *ContBB = CGF.createBasicBlock("atomic_cont"); |
2064 | 0 | auto *ExitBB = CGF.createBasicBlock("atomic_exit"); |
2065 | 0 | CGF.EmitBlock(ContBB); |
2066 | 0 | Address DesiredAddr = CreateTempAlloca(); |
2067 | 0 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
2068 | 0 | requiresMemSetZero(getAtomicAddress().getElementType())) { |
2069 | 0 | auto *OldVal = CGF.Builder.CreateLoad(ExpectedAddr); |
2070 | 0 | CGF.Builder.CreateStore(OldVal, DesiredAddr); |
2071 | 0 | } |
2072 | 0 | EmitAtomicUpdateValue(CGF, *this, UpdateRVal, DesiredAddr); |
2073 | 0 | auto *Res = |
2074 | 0 | EmitAtomicCompareExchangeLibcall(ExpectedAddr.getPointer(), |
2075 | 0 | DesiredAddr.getPointer(), |
2076 | 0 | AO, Failure); |
2077 | 0 | CGF.Builder.CreateCondBr(Res, ExitBB, ContBB); |
2078 | 0 | CGF.EmitBlock(ExitBB, /*IsFinished=*/true); |
2079 | 0 | } |
2080 | | |
2081 | | void AtomicInfo::EmitAtomicUpdateOp(llvm::AtomicOrdering AO, RValue UpdateRVal, |
2082 | 0 | bool IsVolatile) { |
2083 | 0 | auto Failure = llvm::AtomicCmpXchgInst::getStrongestFailureOrdering(AO); |
2084 | | |
2085 | | // Do the atomic load. |
2086 | 0 | auto *OldVal = EmitAtomicLoadOp(Failure, IsVolatile); |
2087 | | // For non-simple lvalues perform compare-and-swap procedure. |
2088 | 0 | auto *ContBB = CGF.createBasicBlock("atomic_cont"); |
2089 | 0 | auto *ExitBB = CGF.createBasicBlock("atomic_exit"); |
2090 | 0 | auto *CurBB = CGF.Builder.GetInsertBlock(); |
2091 | 0 | CGF.EmitBlock(ContBB); |
2092 | 0 | llvm::PHINode *PHI = CGF.Builder.CreatePHI(OldVal->getType(), |
2093 | 0 | /*NumReservedValues=*/2); |
2094 | 0 | PHI->addIncoming(OldVal, CurBB); |
2095 | 0 | Address NewAtomicAddr = CreateTempAlloca(); |
2096 | 0 | Address NewAtomicIntAddr = castToAtomicIntPointer(NewAtomicAddr); |
2097 | 0 | if ((LVal.isBitField() && BFI.Size != ValueSizeInBits) || |
2098 | 0 | requiresMemSetZero(getAtomicAddress().getElementType())) { |
2099 | 0 | CGF.Builder.CreateStore(PHI, NewAtomicIntAddr); |
2100 | 0 | } |
2101 | 0 | EmitAtomicUpdateValue(CGF, *this, UpdateRVal, NewAtomicAddr); |
2102 | 0 | auto *DesiredVal = CGF.Builder.CreateLoad(NewAtomicIntAddr); |
2103 | | // Try to write new value using cmpxchg operation. |
2104 | 0 | auto Res = EmitAtomicCompareExchangeOp(PHI, DesiredVal, AO, Failure); |
2105 | 0 | PHI->addIncoming(Res.first, CGF.Builder.GetInsertBlock()); |
2106 | 0 | CGF.Builder.CreateCondBr(Res.second, ExitBB, ContBB); |
2107 | 0 | CGF.EmitBlock(ExitBB, /*IsFinished=*/true); |
2108 | 0 | } |
2109 | | |
2110 | | void AtomicInfo::EmitAtomicUpdate( |
2111 | | llvm::AtomicOrdering AO, const llvm::function_ref<RValue(RValue)> &UpdateOp, |
2112 | 0 | bool IsVolatile) { |
2113 | 0 | if (shouldUseLibcall()) { |
2114 | 0 | EmitAtomicUpdateLibcall(AO, UpdateOp, IsVolatile); |
2115 | 0 | } else { |
2116 | 0 | EmitAtomicUpdateOp(AO, UpdateOp, IsVolatile); |
2117 | 0 | } |
2118 | 0 | } |
2119 | | |
2120 | | void AtomicInfo::EmitAtomicUpdate(llvm::AtomicOrdering AO, RValue UpdateRVal, |
2121 | 0 | bool IsVolatile) { |
2122 | 0 | if (shouldUseLibcall()) { |
2123 | 0 | EmitAtomicUpdateLibcall(AO, UpdateRVal, IsVolatile); |
2124 | 0 | } else { |
2125 | 0 | EmitAtomicUpdateOp(AO, UpdateRVal, IsVolatile); |
2126 | 0 | } |
2127 | 0 | } |
2128 | | |
2129 | | void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue lvalue, |
2130 | 0 | bool isInit) { |
2131 | 0 | bool IsVolatile = lvalue.isVolatileQualified(); |
2132 | 0 | llvm::AtomicOrdering AO; |
2133 | 0 | if (lvalue.getType()->isAtomicType()) { |
2134 | 0 | AO = llvm::AtomicOrdering::SequentiallyConsistent; |
2135 | 0 | } else { |
2136 | 0 | AO = llvm::AtomicOrdering::Release; |
2137 | 0 | IsVolatile = true; |
2138 | 0 | } |
2139 | 0 | return EmitAtomicStore(rvalue, lvalue, AO, IsVolatile, isInit); |
2140 | 0 | } |
2141 | | |
2142 | | /// Emit a store to an l-value of atomic type. |
2143 | | /// |
2144 | | /// Note that the r-value is expected to be an r-value *of the atomic |
2145 | | /// type*; this means that for aggregate r-values, it should include |
2146 | | /// storage for any padding that was necessary. |
2147 | | void CodeGenFunction::EmitAtomicStore(RValue rvalue, LValue dest, |
2148 | | llvm::AtomicOrdering AO, bool IsVolatile, |
2149 | 0 | bool isInit) { |
2150 | | // If this is an aggregate r-value, it should agree in type except |
2151 | | // maybe for address-space qualification. |
2152 | 0 | assert(!rvalue.isAggregate() || |
2153 | 0 | rvalue.getAggregateAddress().getElementType() == |
2154 | 0 | dest.getAddress(*this).getElementType()); |
2155 | | |
2156 | 0 | AtomicInfo atomics(*this, dest); |
2157 | 0 | LValue LVal = atomics.getAtomicLValue(); |
2158 | | |
2159 | | // If this is an initialization, just put the value there normally. |
2160 | 0 | if (LVal.isSimple()) { |
2161 | 0 | if (isInit) { |
2162 | 0 | atomics.emitCopyIntoMemory(rvalue); |
2163 | 0 | return; |
2164 | 0 | } |
2165 | | |
2166 | | // Check whether we should use a library call. |
2167 | 0 | if (atomics.shouldUseLibcall()) { |
2168 | | // Produce a source address. |
2169 | 0 | Address srcAddr = atomics.materializeRValue(rvalue); |
2170 | | |
2171 | | // void __atomic_store(size_t size, void *mem, void *val, int order) |
2172 | 0 | CallArgList args; |
2173 | 0 | args.add(RValue::get(atomics.getAtomicSizeValue()), |
2174 | 0 | getContext().getSizeType()); |
2175 | 0 | args.add(RValue::get(atomics.getAtomicPointer()), getContext().VoidPtrTy); |
2176 | 0 | args.add(RValue::get(srcAddr.getPointer()), getContext().VoidPtrTy); |
2177 | 0 | args.add( |
2178 | 0 | RValue::get(llvm::ConstantInt::get(IntTy, (int)llvm::toCABI(AO))), |
2179 | 0 | getContext().IntTy); |
2180 | 0 | emitAtomicLibcall(*this, "__atomic_store", getContext().VoidTy, args); |
2181 | 0 | return; |
2182 | 0 | } |
2183 | | |
2184 | | // Okay, we're doing this natively. |
2185 | 0 | llvm::Value *intValue = atomics.convertRValueToInt(rvalue); |
2186 | | |
2187 | | // Do the atomic store. |
2188 | 0 | Address addr = atomics.castToAtomicIntPointer(atomics.getAtomicAddress()); |
2189 | 0 | intValue = Builder.CreateIntCast( |
2190 | 0 | intValue, addr.getElementType(), /*isSigned=*/false); |
2191 | 0 | llvm::StoreInst *store = Builder.CreateStore(intValue, addr); |
2192 | |
|
2193 | 0 | if (AO == llvm::AtomicOrdering::Acquire) |
2194 | 0 | AO = llvm::AtomicOrdering::Monotonic; |
2195 | 0 | else if (AO == llvm::AtomicOrdering::AcquireRelease) |
2196 | 0 | AO = llvm::AtomicOrdering::Release; |
2197 | | // Initializations don't need to be atomic. |
2198 | 0 | if (!isInit) |
2199 | 0 | store->setAtomic(AO); |
2200 | | |
2201 | | // Other decoration. |
2202 | 0 | if (IsVolatile) |
2203 | 0 | store->setVolatile(true); |
2204 | 0 | CGM.DecorateInstructionWithTBAA(store, dest.getTBAAInfo()); |
2205 | 0 | return; |
2206 | 0 | } |
2207 | | |
2208 | | // Emit simple atomic update operation. |
2209 | 0 | atomics.EmitAtomicUpdate(AO, rvalue, IsVolatile); |
2210 | 0 | } |
2211 | | |
2212 | | /// Emit a compare-and-exchange op for atomic type. |
2213 | | /// |
2214 | | std::pair<RValue, llvm::Value *> CodeGenFunction::EmitAtomicCompareExchange( |
2215 | | LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc, |
2216 | | llvm::AtomicOrdering Success, llvm::AtomicOrdering Failure, bool IsWeak, |
2217 | 0 | AggValueSlot Slot) { |
2218 | | // If this is an aggregate r-value, it should agree in type except |
2219 | | // maybe for address-space qualification. |
2220 | 0 | assert(!Expected.isAggregate() || |
2221 | 0 | Expected.getAggregateAddress().getElementType() == |
2222 | 0 | Obj.getAddress(*this).getElementType()); |
2223 | 0 | assert(!Desired.isAggregate() || |
2224 | 0 | Desired.getAggregateAddress().getElementType() == |
2225 | 0 | Obj.getAddress(*this).getElementType()); |
2226 | 0 | AtomicInfo Atomics(*this, Obj); |
2227 | |
|
2228 | 0 | return Atomics.EmitAtomicCompareExchange(Expected, Desired, Success, Failure, |
2229 | 0 | IsWeak); |
2230 | 0 | } |
2231 | | |
2232 | | void CodeGenFunction::EmitAtomicUpdate( |
2233 | | LValue LVal, llvm::AtomicOrdering AO, |
2234 | 0 | const llvm::function_ref<RValue(RValue)> &UpdateOp, bool IsVolatile) { |
2235 | 0 | AtomicInfo Atomics(*this, LVal); |
2236 | 0 | Atomics.EmitAtomicUpdate(AO, UpdateOp, IsVolatile); |
2237 | 0 | } |
2238 | | |
2239 | 0 | void CodeGenFunction::EmitAtomicInit(Expr *init, LValue dest) { |
2240 | 0 | AtomicInfo atomics(*this, dest); |
2241 | |
|
2242 | 0 | switch (atomics.getEvaluationKind()) { |
2243 | 0 | case TEK_Scalar: { |
2244 | 0 | llvm::Value *value = EmitScalarExpr(init); |
2245 | 0 | atomics.emitCopyIntoMemory(RValue::get(value)); |
2246 | 0 | return; |
2247 | 0 | } |
2248 | | |
2249 | 0 | case TEK_Complex: { |
2250 | 0 | ComplexPairTy value = EmitComplexExpr(init); |
2251 | 0 | atomics.emitCopyIntoMemory(RValue::getComplex(value)); |
2252 | 0 | return; |
2253 | 0 | } |
2254 | | |
2255 | 0 | case TEK_Aggregate: { |
2256 | | // Fix up the destination if the initializer isn't an expression |
2257 | | // of atomic type. |
2258 | 0 | bool Zeroed = false; |
2259 | 0 | if (!init->getType()->isAtomicType()) { |
2260 | 0 | Zeroed = atomics.emitMemSetZeroIfNecessary(); |
2261 | 0 | dest = atomics.projectValue(); |
2262 | 0 | } |
2263 | | |
2264 | | // Evaluate the expression directly into the destination. |
2265 | 0 | AggValueSlot slot = AggValueSlot::forLValue( |
2266 | 0 | dest, *this, AggValueSlot::IsNotDestructed, |
2267 | 0 | AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased, |
2268 | 0 | AggValueSlot::DoesNotOverlap, |
2269 | 0 | Zeroed ? AggValueSlot::IsZeroed : AggValueSlot::IsNotZeroed); |
2270 | |
|
2271 | 0 | EmitAggExpr(init, slot); |
2272 | 0 | return; |
2273 | 0 | } |
2274 | 0 | } |
2275 | 0 | llvm_unreachable("bad evaluation kind"); |
2276 | 0 | } |