Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/CodeGen/CGClass.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- CGClass.cpp - Emit LLVM Code for C++ classes -----------*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This contains code dealing with C++ code generation of classes
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "CGBlocks.h"
14
#include "CGCXXABI.h"
15
#include "CGDebugInfo.h"
16
#include "CGRecordLayout.h"
17
#include "CodeGenFunction.h"
18
#include "TargetInfo.h"
19
#include "clang/AST/Attr.h"
20
#include "clang/AST/CXXInheritance.h"
21
#include "clang/AST/CharUnits.h"
22
#include "clang/AST/DeclTemplate.h"
23
#include "clang/AST/EvaluatedExprVisitor.h"
24
#include "clang/AST/RecordLayout.h"
25
#include "clang/AST/StmtCXX.h"
26
#include "clang/Basic/CodeGenOptions.h"
27
#include "clang/Basic/TargetBuiltins.h"
28
#include "clang/CodeGen/CGFunctionInfo.h"
29
#include "llvm/IR/Intrinsics.h"
30
#include "llvm/IR/Metadata.h"
31
#include "llvm/Support/SaveAndRestore.h"
32
#include "llvm/Transforms/Utils/SanitizerStats.h"
33
#include <optional>
34
35
using namespace clang;
36
using namespace CodeGen;
37
38
/// Return the best known alignment for an unknown pointer to a
39
/// particular class.
40
0
CharUnits CodeGenModule::getClassPointerAlignment(const CXXRecordDecl *RD) {
41
0
  if (!RD->hasDefinition())
42
0
    return CharUnits::One(); // Hopefully won't be used anywhere.
43
44
0
  auto &layout = getContext().getASTRecordLayout(RD);
45
46
  // If the class is final, then we know that the pointer points to an
47
  // object of that type and can use the full alignment.
48
0
  if (RD->isEffectivelyFinal())
49
0
    return layout.getAlignment();
50
51
  // Otherwise, we have to assume it could be a subclass.
52
0
  return layout.getNonVirtualAlignment();
53
0
}
54
55
/// Return the smallest possible amount of storage that might be allocated
56
/// starting from the beginning of an object of a particular class.
57
///
58
/// This may be smaller than sizeof(RD) if RD has virtual base classes.
59
0
CharUnits CodeGenModule::getMinimumClassObjectSize(const CXXRecordDecl *RD) {
60
0
  if (!RD->hasDefinition())
61
0
    return CharUnits::One();
62
63
0
  auto &layout = getContext().getASTRecordLayout(RD);
64
65
  // If the class is final, then we know that the pointer points to an
66
  // object of that type and can use the full alignment.
67
0
  if (RD->isEffectivelyFinal())
68
0
    return layout.getSize();
69
70
  // Otherwise, we have to assume it could be a subclass.
71
0
  return std::max(layout.getNonVirtualSize(), CharUnits::One());
72
0
}
73
74
/// Return the best known alignment for a pointer to a virtual base,
75
/// given the alignment of a pointer to the derived class.
76
CharUnits CodeGenModule::getVBaseAlignment(CharUnits actualDerivedAlign,
77
                                           const CXXRecordDecl *derivedClass,
78
0
                                           const CXXRecordDecl *vbaseClass) {
79
  // The basic idea here is that an underaligned derived pointer might
80
  // indicate an underaligned base pointer.
81
82
0
  assert(vbaseClass->isCompleteDefinition());
83
0
  auto &baseLayout = getContext().getASTRecordLayout(vbaseClass);
84
0
  CharUnits expectedVBaseAlign = baseLayout.getNonVirtualAlignment();
85
86
0
  return getDynamicOffsetAlignment(actualDerivedAlign, derivedClass,
87
0
                                   expectedVBaseAlign);
88
0
}
89
90
CharUnits
91
CodeGenModule::getDynamicOffsetAlignment(CharUnits actualBaseAlign,
92
                                         const CXXRecordDecl *baseDecl,
93
0
                                         CharUnits expectedTargetAlign) {
94
  // If the base is an incomplete type (which is, alas, possible with
95
  // member pointers), be pessimistic.
96
0
  if (!baseDecl->isCompleteDefinition())
97
0
    return std::min(actualBaseAlign, expectedTargetAlign);
98
99
0
  auto &baseLayout = getContext().getASTRecordLayout(baseDecl);
100
0
  CharUnits expectedBaseAlign = baseLayout.getNonVirtualAlignment();
101
102
  // If the class is properly aligned, assume the target offset is, too.
103
  //
104
  // This actually isn't necessarily the right thing to do --- if the
105
  // class is a complete object, but it's only properly aligned for a
106
  // base subobject, then the alignments of things relative to it are
107
  // probably off as well.  (Note that this requires the alignment of
108
  // the target to be greater than the NV alignment of the derived
109
  // class.)
110
  //
111
  // However, our approach to this kind of under-alignment can only
112
  // ever be best effort; after all, we're never going to propagate
113
  // alignments through variables or parameters.  Note, in particular,
114
  // that constructing a polymorphic type in an address that's less
115
  // than pointer-aligned will generally trap in the constructor,
116
  // unless we someday add some sort of attribute to change the
117
  // assumed alignment of 'this'.  So our goal here is pretty much
118
  // just to allow the user to explicitly say that a pointer is
119
  // under-aligned and then safely access its fields and vtables.
120
0
  if (actualBaseAlign >= expectedBaseAlign) {
121
0
    return expectedTargetAlign;
122
0
  }
123
124
  // Otherwise, we might be offset by an arbitrary multiple of the
125
  // actual alignment.  The correct adjustment is to take the min of
126
  // the two alignments.
127
0
  return std::min(actualBaseAlign, expectedTargetAlign);
128
0
}
129
130
0
Address CodeGenFunction::LoadCXXThisAddress() {
131
0
  assert(CurFuncDecl && "loading 'this' without a func declaration?");
132
0
  auto *MD = cast<CXXMethodDecl>(CurFuncDecl);
133
134
  // Lazily compute CXXThisAlignment.
135
0
  if (CXXThisAlignment.isZero()) {
136
    // Just use the best known alignment for the parent.
137
    // TODO: if we're currently emitting a complete-object ctor/dtor,
138
    // we can always use the complete-object alignment.
139
0
    CXXThisAlignment = CGM.getClassPointerAlignment(MD->getParent());
140
0
  }
141
142
0
  llvm::Type *Ty = ConvertType(MD->getFunctionObjectParameterType());
143
0
  return Address(LoadCXXThis(), Ty, CXXThisAlignment, KnownNonNull);
144
0
}
145
146
/// Emit the address of a field using a member data pointer.
147
///
148
/// \param E Only used for emergency diagnostics
149
Address
150
CodeGenFunction::EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
151
                                                 llvm::Value *memberPtr,
152
                                      const MemberPointerType *memberPtrType,
153
                                                 LValueBaseInfo *BaseInfo,
154
0
                                                 TBAAAccessInfo *TBAAInfo) {
155
  // Ask the ABI to compute the actual address.
156
0
  llvm::Value *ptr =
157
0
    CGM.getCXXABI().EmitMemberDataPointerAddress(*this, E, base,
158
0
                                                 memberPtr, memberPtrType);
159
160
0
  QualType memberType = memberPtrType->getPointeeType();
161
0
  CharUnits memberAlign =
162
0
      CGM.getNaturalTypeAlignment(memberType, BaseInfo, TBAAInfo);
163
0
  memberAlign =
164
0
    CGM.getDynamicOffsetAlignment(base.getAlignment(),
165
0
                            memberPtrType->getClass()->getAsCXXRecordDecl(),
166
0
                                  memberAlign);
167
0
  return Address(ptr, ConvertTypeForMem(memberPtrType->getPointeeType()),
168
0
                 memberAlign);
169
0
}
170
171
CharUnits CodeGenModule::computeNonVirtualBaseClassOffset(
172
    const CXXRecordDecl *DerivedClass, CastExpr::path_const_iterator Start,
173
0
    CastExpr::path_const_iterator End) {
174
0
  CharUnits Offset = CharUnits::Zero();
175
176
0
  const ASTContext &Context = getContext();
177
0
  const CXXRecordDecl *RD = DerivedClass;
178
179
0
  for (CastExpr::path_const_iterator I = Start; I != End; ++I) {
180
0
    const CXXBaseSpecifier *Base = *I;
181
0
    assert(!Base->isVirtual() && "Should not see virtual bases here!");
182
183
    // Get the layout.
184
0
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
185
186
0
    const auto *BaseDecl =
187
0
        cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
188
189
    // Add the offset.
190
0
    Offset += Layout.getBaseClassOffset(BaseDecl);
191
192
0
    RD = BaseDecl;
193
0
  }
194
195
0
  return Offset;
196
0
}
197
198
llvm::Constant *
199
CodeGenModule::GetNonVirtualBaseClassOffset(const CXXRecordDecl *ClassDecl,
200
                                   CastExpr::path_const_iterator PathBegin,
201
0
                                   CastExpr::path_const_iterator PathEnd) {
202
0
  assert(PathBegin != PathEnd && "Base path should not be empty!");
203
204
0
  CharUnits Offset =
205
0
      computeNonVirtualBaseClassOffset(ClassDecl, PathBegin, PathEnd);
206
0
  if (Offset.isZero())
207
0
    return nullptr;
208
209
0
  llvm::Type *PtrDiffTy =
210
0
  Types.ConvertType(getContext().getPointerDiffType());
211
212
0
  return llvm::ConstantInt::get(PtrDiffTy, Offset.getQuantity());
213
0
}
214
215
/// Gets the address of a direct base class within a complete object.
216
/// This should only be used for (1) non-virtual bases or (2) virtual bases
217
/// when the type is known to be complete (e.g. in complete destructors).
218
///
219
/// The object pointed to by 'This' is assumed to be non-null.
220
Address
221
CodeGenFunction::GetAddressOfDirectBaseInCompleteClass(Address This,
222
                                                   const CXXRecordDecl *Derived,
223
                                                   const CXXRecordDecl *Base,
224
0
                                                   bool BaseIsVirtual) {
225
  // 'this' must be a pointer (in some address space) to Derived.
226
0
  assert(This.getElementType() == ConvertType(Derived));
227
228
  // Compute the offset of the virtual base.
229
0
  CharUnits Offset;
230
0
  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(Derived);
231
0
  if (BaseIsVirtual)
232
0
    Offset = Layout.getVBaseClassOffset(Base);
233
0
  else
234
0
    Offset = Layout.getBaseClassOffset(Base);
235
236
  // Shift and cast down to the base type.
237
  // TODO: for complete types, this should be possible with a GEP.
238
0
  Address V = This;
239
0
  if (!Offset.isZero()) {
240
0
    V = V.withElementType(Int8Ty);
241
0
    V = Builder.CreateConstInBoundsByteGEP(V, Offset);
242
0
  }
243
0
  return V.withElementType(ConvertType(Base));
244
0
}
245
246
static Address
247
ApplyNonVirtualAndVirtualOffset(CodeGenFunction &CGF, Address addr,
248
                                CharUnits nonVirtualOffset,
249
                                llvm::Value *virtualOffset,
250
                                const CXXRecordDecl *derivedClass,
251
0
                                const CXXRecordDecl *nearestVBase) {
252
  // Assert that we have something to do.
253
0
  assert(!nonVirtualOffset.isZero() || virtualOffset != nullptr);
254
255
  // Compute the offset from the static and dynamic components.
256
0
  llvm::Value *baseOffset;
257
0
  if (!nonVirtualOffset.isZero()) {
258
0
    llvm::Type *OffsetType =
259
0
        (CGF.CGM.getTarget().getCXXABI().isItaniumFamily() &&
260
0
         CGF.CGM.getItaniumVTableContext().isRelativeLayout())
261
0
            ? CGF.Int32Ty
262
0
            : CGF.PtrDiffTy;
263
0
    baseOffset =
264
0
        llvm::ConstantInt::get(OffsetType, nonVirtualOffset.getQuantity());
265
0
    if (virtualOffset) {
266
0
      baseOffset = CGF.Builder.CreateAdd(virtualOffset, baseOffset);
267
0
    }
268
0
  } else {
269
0
    baseOffset = virtualOffset;
270
0
  }
271
272
  // Apply the base offset.
273
0
  llvm::Value *ptr = addr.getPointer();
274
0
  ptr = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ptr, baseOffset, "add.ptr");
275
276
  // If we have a virtual component, the alignment of the result will
277
  // be relative only to the known alignment of that vbase.
278
0
  CharUnits alignment;
279
0
  if (virtualOffset) {
280
0
    assert(nearestVBase && "virtual offset without vbase?");
281
0
    alignment = CGF.CGM.getVBaseAlignment(addr.getAlignment(),
282
0
                                          derivedClass, nearestVBase);
283
0
  } else {
284
0
    alignment = addr.getAlignment();
285
0
  }
286
0
  alignment = alignment.alignmentAtOffset(nonVirtualOffset);
287
288
0
  return Address(ptr, CGF.Int8Ty, alignment);
289
0
}
290
291
Address CodeGenFunction::GetAddressOfBaseClass(
292
    Address Value, const CXXRecordDecl *Derived,
293
    CastExpr::path_const_iterator PathBegin,
294
    CastExpr::path_const_iterator PathEnd, bool NullCheckValue,
295
0
    SourceLocation Loc) {
296
0
  assert(PathBegin != PathEnd && "Base path should not be empty!");
297
298
0
  CastExpr::path_const_iterator Start = PathBegin;
299
0
  const CXXRecordDecl *VBase = nullptr;
300
301
  // Sema has done some convenient canonicalization here: if the
302
  // access path involved any virtual steps, the conversion path will
303
  // *start* with a step down to the correct virtual base subobject,
304
  // and hence will not require any further steps.
305
0
  if ((*Start)->isVirtual()) {
306
0
    VBase = cast<CXXRecordDecl>(
307
0
        (*Start)->getType()->castAs<RecordType>()->getDecl());
308
0
    ++Start;
309
0
  }
310
311
  // Compute the static offset of the ultimate destination within its
312
  // allocating subobject (the virtual base, if there is one, or else
313
  // the "complete" object that we see).
314
0
  CharUnits NonVirtualOffset = CGM.computeNonVirtualBaseClassOffset(
315
0
      VBase ? VBase : Derived, Start, PathEnd);
316
317
  // If there's a virtual step, we can sometimes "devirtualize" it.
318
  // For now, that's limited to when the derived type is final.
319
  // TODO: "devirtualize" this for accesses to known-complete objects.
320
0
  if (VBase && Derived->hasAttr<FinalAttr>()) {
321
0
    const ASTRecordLayout &layout = getContext().getASTRecordLayout(Derived);
322
0
    CharUnits vBaseOffset = layout.getVBaseClassOffset(VBase);
323
0
    NonVirtualOffset += vBaseOffset;
324
0
    VBase = nullptr; // we no longer have a virtual step
325
0
  }
326
327
  // Get the base pointer type.
328
0
  llvm::Type *BaseValueTy = ConvertType((PathEnd[-1])->getType());
329
0
  llvm::Type *PtrTy = llvm::PointerType::get(
330
0
      CGM.getLLVMContext(), Value.getType()->getPointerAddressSpace());
331
332
0
  QualType DerivedTy = getContext().getRecordType(Derived);
333
0
  CharUnits DerivedAlign = CGM.getClassPointerAlignment(Derived);
334
335
  // If the static offset is zero and we don't have a virtual step,
336
  // just do a bitcast; null checks are unnecessary.
337
0
  if (NonVirtualOffset.isZero() && !VBase) {
338
0
    if (sanitizePerformTypeCheck()) {
339
0
      SanitizerSet SkippedChecks;
340
0
      SkippedChecks.set(SanitizerKind::Null, !NullCheckValue);
341
0
      EmitTypeCheck(TCK_Upcast, Loc, Value.getPointer(),
342
0
                    DerivedTy, DerivedAlign, SkippedChecks);
343
0
    }
344
0
    return Value.withElementType(BaseValueTy);
345
0
  }
346
347
0
  llvm::BasicBlock *origBB = nullptr;
348
0
  llvm::BasicBlock *endBB = nullptr;
349
350
  // Skip over the offset (and the vtable load) if we're supposed to
351
  // null-check the pointer.
352
0
  if (NullCheckValue) {
353
0
    origBB = Builder.GetInsertBlock();
354
0
    llvm::BasicBlock *notNullBB = createBasicBlock("cast.notnull");
355
0
    endBB = createBasicBlock("cast.end");
356
357
0
    llvm::Value *isNull = Builder.CreateIsNull(Value.getPointer());
358
0
    Builder.CreateCondBr(isNull, endBB, notNullBB);
359
0
    EmitBlock(notNullBB);
360
0
  }
361
362
0
  if (sanitizePerformTypeCheck()) {
363
0
    SanitizerSet SkippedChecks;
364
0
    SkippedChecks.set(SanitizerKind::Null, true);
365
0
    EmitTypeCheck(VBase ? TCK_UpcastToVirtualBase : TCK_Upcast, Loc,
366
0
                  Value.getPointer(), DerivedTy, DerivedAlign, SkippedChecks);
367
0
  }
368
369
  // Compute the virtual offset.
370
0
  llvm::Value *VirtualOffset = nullptr;
371
0
  if (VBase) {
372
0
    VirtualOffset =
373
0
      CGM.getCXXABI().GetVirtualBaseClassOffset(*this, Value, Derived, VBase);
374
0
  }
375
376
  // Apply both offsets.
377
0
  Value = ApplyNonVirtualAndVirtualOffset(*this, Value, NonVirtualOffset,
378
0
                                          VirtualOffset, Derived, VBase);
379
380
  // Cast to the destination type.
381
0
  Value = Value.withElementType(BaseValueTy);
382
383
  // Build a phi if we needed a null check.
384
0
  if (NullCheckValue) {
385
0
    llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
386
0
    Builder.CreateBr(endBB);
387
0
    EmitBlock(endBB);
388
389
0
    llvm::PHINode *PHI = Builder.CreatePHI(PtrTy, 2, "cast.result");
390
0
    PHI->addIncoming(Value.getPointer(), notNullBB);
391
0
    PHI->addIncoming(llvm::Constant::getNullValue(PtrTy), origBB);
392
0
    Value = Value.withPointer(PHI, NotKnownNonNull);
393
0
  }
394
395
0
  return Value;
396
0
}
397
398
Address
399
CodeGenFunction::GetAddressOfDerivedClass(Address BaseAddr,
400
                                          const CXXRecordDecl *Derived,
401
                                        CastExpr::path_const_iterator PathBegin,
402
                                          CastExpr::path_const_iterator PathEnd,
403
0
                                          bool NullCheckValue) {
404
0
  assert(PathBegin != PathEnd && "Base path should not be empty!");
405
406
0
  QualType DerivedTy =
407
0
      getContext().getCanonicalType(getContext().getTagDeclType(Derived));
408
0
  llvm::Type *DerivedValueTy = ConvertType(DerivedTy);
409
410
0
  llvm::Value *NonVirtualOffset =
411
0
    CGM.GetNonVirtualBaseClassOffset(Derived, PathBegin, PathEnd);
412
413
0
  if (!NonVirtualOffset) {
414
    // No offset, we can just cast back.
415
0
    return BaseAddr.withElementType(DerivedValueTy);
416
0
  }
417
418
0
  llvm::BasicBlock *CastNull = nullptr;
419
0
  llvm::BasicBlock *CastNotNull = nullptr;
420
0
  llvm::BasicBlock *CastEnd = nullptr;
421
422
0
  if (NullCheckValue) {
423
0
    CastNull = createBasicBlock("cast.null");
424
0
    CastNotNull = createBasicBlock("cast.notnull");
425
0
    CastEnd = createBasicBlock("cast.end");
426
427
0
    llvm::Value *IsNull = Builder.CreateIsNull(BaseAddr.getPointer());
428
0
    Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
429
0
    EmitBlock(CastNotNull);
430
0
  }
431
432
  // Apply the offset.
433
0
  llvm::Value *Value = BaseAddr.getPointer();
434
0
  Value = Builder.CreateInBoundsGEP(
435
0
      Int8Ty, Value, Builder.CreateNeg(NonVirtualOffset), "sub.ptr");
436
437
  // Produce a PHI if we had a null-check.
438
0
  if (NullCheckValue) {
439
0
    Builder.CreateBr(CastEnd);
440
0
    EmitBlock(CastNull);
441
0
    Builder.CreateBr(CastEnd);
442
0
    EmitBlock(CastEnd);
443
444
0
    llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
445
0
    PHI->addIncoming(Value, CastNotNull);
446
0
    PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
447
0
    Value = PHI;
448
0
  }
449
450
0
  return Address(Value, DerivedValueTy, CGM.getClassPointerAlignment(Derived));
451
0
}
452
453
llvm::Value *CodeGenFunction::GetVTTParameter(GlobalDecl GD,
454
                                              bool ForVirtualBase,
455
0
                                              bool Delegating) {
456
0
  if (!CGM.getCXXABI().NeedsVTTParameter(GD)) {
457
    // This constructor/destructor does not need a VTT parameter.
458
0
    return nullptr;
459
0
  }
460
461
0
  const CXXRecordDecl *RD = cast<CXXMethodDecl>(CurCodeDecl)->getParent();
462
0
  const CXXRecordDecl *Base = cast<CXXMethodDecl>(GD.getDecl())->getParent();
463
464
0
  uint64_t SubVTTIndex;
465
466
0
  if (Delegating) {
467
    // If this is a delegating constructor call, just load the VTT.
468
0
    return LoadCXXVTT();
469
0
  } else if (RD == Base) {
470
    // If the record matches the base, this is the complete ctor/dtor
471
    // variant calling the base variant in a class with virtual bases.
472
0
    assert(!CGM.getCXXABI().NeedsVTTParameter(CurGD) &&
473
0
           "doing no-op VTT offset in base dtor/ctor?");
474
0
    assert(!ForVirtualBase && "Can't have same class as virtual base!");
475
0
    SubVTTIndex = 0;
476
0
  } else {
477
0
    const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
478
0
    CharUnits BaseOffset = ForVirtualBase ?
479
0
      Layout.getVBaseClassOffset(Base) :
480
0
      Layout.getBaseClassOffset(Base);
481
482
0
    SubVTTIndex =
483
0
      CGM.getVTables().getSubVTTIndex(RD, BaseSubobject(Base, BaseOffset));
484
0
    assert(SubVTTIndex != 0 && "Sub-VTT index must be greater than zero!");
485
0
  }
486
487
0
  if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
488
    // A VTT parameter was passed to the constructor, use it.
489
0
    llvm::Value *VTT = LoadCXXVTT();
490
0
    return Builder.CreateConstInBoundsGEP1_64(VoidPtrTy, VTT, SubVTTIndex);
491
0
  } else {
492
    // We're the complete constructor, so get the VTT by name.
493
0
    llvm::GlobalValue *VTT = CGM.getVTables().GetAddrOfVTT(RD);
494
0
    return Builder.CreateConstInBoundsGEP2_64(
495
0
        VTT->getValueType(), VTT, 0, SubVTTIndex);
496
0
  }
497
0
}
498
499
namespace {
500
  /// Call the destructor for a direct base class.
501
  struct CallBaseDtor final : EHScopeStack::Cleanup {
502
    const CXXRecordDecl *BaseClass;
503
    bool BaseIsVirtual;
504
    CallBaseDtor(const CXXRecordDecl *Base, bool BaseIsVirtual)
505
0
      : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
506
507
0
    void Emit(CodeGenFunction &CGF, Flags flags) override {
508
0
      const CXXRecordDecl *DerivedClass =
509
0
        cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
510
511
0
      const CXXDestructorDecl *D = BaseClass->getDestructor();
512
      // We are already inside a destructor, so presumably the object being
513
      // destroyed should have the expected type.
514
0
      QualType ThisTy = D->getFunctionObjectParameterType();
515
0
      Address Addr =
516
0
        CGF.GetAddressOfDirectBaseInCompleteClass(CGF.LoadCXXThisAddress(),
517
0
                                                  DerivedClass, BaseClass,
518
0
                                                  BaseIsVirtual);
519
0
      CGF.EmitCXXDestructorCall(D, Dtor_Base, BaseIsVirtual,
520
0
                                /*Delegating=*/false, Addr, ThisTy);
521
0
    }
522
  };
523
524
  /// A visitor which checks whether an initializer uses 'this' in a
525
  /// way which requires the vtable to be properly set.
526
  struct DynamicThisUseChecker : ConstEvaluatedExprVisitor<DynamicThisUseChecker> {
527
    typedef ConstEvaluatedExprVisitor<DynamicThisUseChecker> super;
528
529
    bool UsesThis;
530
531
0
    DynamicThisUseChecker(const ASTContext &C) : super(C), UsesThis(false) {}
532
533
    // Black-list all explicit and implicit references to 'this'.
534
    //
535
    // Do we need to worry about external references to 'this' derived
536
    // from arbitrary code?  If so, then anything which runs arbitrary
537
    // external code might potentially access the vtable.
538
0
    void VisitCXXThisExpr(const CXXThisExpr *E) { UsesThis = true; }
539
  };
540
} // end anonymous namespace
541
542
0
static bool BaseInitializerUsesThis(ASTContext &C, const Expr *Init) {
543
0
  DynamicThisUseChecker Checker(C);
544
0
  Checker.Visit(Init);
545
0
  return Checker.UsesThis;
546
0
}
547
548
static void EmitBaseInitializer(CodeGenFunction &CGF,
549
                                const CXXRecordDecl *ClassDecl,
550
0
                                CXXCtorInitializer *BaseInit) {
551
0
  assert(BaseInit->isBaseInitializer() &&
552
0
         "Must have base initializer!");
553
554
0
  Address ThisPtr = CGF.LoadCXXThisAddress();
555
556
0
  const Type *BaseType = BaseInit->getBaseClass();
557
0
  const auto *BaseClassDecl =
558
0
      cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
559
560
0
  bool isBaseVirtual = BaseInit->isBaseVirtual();
561
562
  // If the initializer for the base (other than the constructor
563
  // itself) accesses 'this' in any way, we need to initialize the
564
  // vtables.
565
0
  if (BaseInitializerUsesThis(CGF.getContext(), BaseInit->getInit()))
566
0
    CGF.InitializeVTablePointers(ClassDecl);
567
568
  // We can pretend to be a complete class because it only matters for
569
  // virtual bases, and we only do virtual bases for complete ctors.
570
0
  Address V =
571
0
    CGF.GetAddressOfDirectBaseInCompleteClass(ThisPtr, ClassDecl,
572
0
                                              BaseClassDecl,
573
0
                                              isBaseVirtual);
574
0
  AggValueSlot AggSlot =
575
0
      AggValueSlot::forAddr(
576
0
          V, Qualifiers(),
577
0
          AggValueSlot::IsDestructed,
578
0
          AggValueSlot::DoesNotNeedGCBarriers,
579
0
          AggValueSlot::IsNotAliased,
580
0
          CGF.getOverlapForBaseInit(ClassDecl, BaseClassDecl, isBaseVirtual));
581
582
0
  CGF.EmitAggExpr(BaseInit->getInit(), AggSlot);
583
584
0
  if (CGF.CGM.getLangOpts().Exceptions &&
585
0
      !BaseClassDecl->hasTrivialDestructor())
586
0
    CGF.EHStack.pushCleanup<CallBaseDtor>(EHCleanup, BaseClassDecl,
587
0
                                          isBaseVirtual);
588
0
}
589
590
0
static bool isMemcpyEquivalentSpecialMember(const CXXMethodDecl *D) {
591
0
  auto *CD = dyn_cast<CXXConstructorDecl>(D);
592
0
  if (!(CD && CD->isCopyOrMoveConstructor()) &&
593
0
      !D->isCopyAssignmentOperator() && !D->isMoveAssignmentOperator())
594
0
    return false;
595
596
  // We can emit a memcpy for a trivial copy or move constructor/assignment.
597
0
  if (D->isTrivial() && !D->getParent()->mayInsertExtraPadding())
598
0
    return true;
599
600
  // We *must* emit a memcpy for a defaulted union copy or move op.
601
0
  if (D->getParent()->isUnion() && D->isDefaulted())
602
0
    return true;
603
604
0
  return false;
605
0
}
606
607
static void EmitLValueForAnyFieldInitialization(CodeGenFunction &CGF,
608
                                                CXXCtorInitializer *MemberInit,
609
0
                                                LValue &LHS) {
610
0
  FieldDecl *Field = MemberInit->getAnyMember();
611
0
  if (MemberInit->isIndirectMemberInitializer()) {
612
    // If we are initializing an anonymous union field, drill down to the field.
613
0
    IndirectFieldDecl *IndirectField = MemberInit->getIndirectMember();
614
0
    for (const auto *I : IndirectField->chain())
615
0
      LHS = CGF.EmitLValueForFieldInitialization(LHS, cast<FieldDecl>(I));
616
0
  } else {
617
0
    LHS = CGF.EmitLValueForFieldInitialization(LHS, Field);
618
0
  }
619
0
}
620
621
static void EmitMemberInitializer(CodeGenFunction &CGF,
622
                                  const CXXRecordDecl *ClassDecl,
623
                                  CXXCtorInitializer *MemberInit,
624
                                  const CXXConstructorDecl *Constructor,
625
0
                                  FunctionArgList &Args) {
626
0
  ApplyDebugLocation Loc(CGF, MemberInit->getSourceLocation());
627
0
  assert(MemberInit->isAnyMemberInitializer() &&
628
0
         "Must have member initializer!");
629
0
  assert(MemberInit->getInit() && "Must have initializer!");
630
631
  // non-static data member initializers.
632
0
  FieldDecl *Field = MemberInit->getAnyMember();
633
0
  QualType FieldType = Field->getType();
634
635
0
  llvm::Value *ThisPtr = CGF.LoadCXXThis();
636
0
  QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
637
0
  LValue LHS;
638
639
  // If a base constructor is being emitted, create an LValue that has the
640
  // non-virtual alignment.
641
0
  if (CGF.CurGD.getCtorType() == Ctor_Base)
642
0
    LHS = CGF.MakeNaturalAlignPointeeAddrLValue(ThisPtr, RecordTy);
643
0
  else
644
0
    LHS = CGF.MakeNaturalAlignAddrLValue(ThisPtr, RecordTy);
645
646
0
  EmitLValueForAnyFieldInitialization(CGF, MemberInit, LHS);
647
648
  // Special case: if we are in a copy or move constructor, and we are copying
649
  // an array of PODs or classes with trivial copy constructors, ignore the
650
  // AST and perform the copy we know is equivalent.
651
  // FIXME: This is hacky at best... if we had a bit more explicit information
652
  // in the AST, we could generalize it more easily.
653
0
  const ConstantArrayType *Array
654
0
    = CGF.getContext().getAsConstantArrayType(FieldType);
655
0
  if (Array && Constructor->isDefaulted() &&
656
0
      Constructor->isCopyOrMoveConstructor()) {
657
0
    QualType BaseElementTy = CGF.getContext().getBaseElementType(Array);
658
0
    CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
659
0
    if (BaseElementTy.isPODType(CGF.getContext()) ||
660
0
        (CE && isMemcpyEquivalentSpecialMember(CE->getConstructor()))) {
661
0
      unsigned SrcArgIndex =
662
0
          CGF.CGM.getCXXABI().getSrcArgforCopyCtor(Constructor, Args);
663
0
      llvm::Value *SrcPtr
664
0
        = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(Args[SrcArgIndex]));
665
0
      LValue ThisRHSLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
666
0
      LValue Src = CGF.EmitLValueForFieldInitialization(ThisRHSLV, Field);
667
668
      // Copy the aggregate.
669
0
      CGF.EmitAggregateCopy(LHS, Src, FieldType, CGF.getOverlapForFieldInit(Field),
670
0
                            LHS.isVolatileQualified());
671
      // Ensure that we destroy the objects if an exception is thrown later in
672
      // the constructor.
673
0
      QualType::DestructionKind dtorKind = FieldType.isDestructedType();
674
0
      if (CGF.needsEHCleanup(dtorKind))
675
0
        CGF.pushEHDestroy(dtorKind, LHS.getAddress(CGF), FieldType);
676
0
      return;
677
0
    }
678
0
  }
679
680
0
  CGF.EmitInitializerForField(Field, LHS, MemberInit->getInit());
681
0
}
682
683
void CodeGenFunction::EmitInitializerForField(FieldDecl *Field, LValue LHS,
684
0
                                              Expr *Init) {
685
0
  QualType FieldType = Field->getType();
686
0
  switch (getEvaluationKind(FieldType)) {
687
0
  case TEK_Scalar:
688
0
    if (LHS.isSimple()) {
689
0
      EmitExprAsInit(Init, Field, LHS, false);
690
0
    } else {
691
0
      RValue RHS = RValue::get(EmitScalarExpr(Init));
692
0
      EmitStoreThroughLValue(RHS, LHS);
693
0
    }
694
0
    break;
695
0
  case TEK_Complex:
696
0
    EmitComplexExprIntoLValue(Init, LHS, /*isInit*/ true);
697
0
    break;
698
0
  case TEK_Aggregate: {
699
0
    AggValueSlot Slot = AggValueSlot::forLValue(
700
0
        LHS, *this, AggValueSlot::IsDestructed,
701
0
        AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
702
0
        getOverlapForFieldInit(Field), AggValueSlot::IsNotZeroed,
703
        // Checks are made by the code that calls constructor.
704
0
        AggValueSlot::IsSanitizerChecked);
705
0
    EmitAggExpr(Init, Slot);
706
0
    break;
707
0
  }
708
0
  }
709
710
  // Ensure that we destroy this object if an exception is thrown
711
  // later in the constructor.
712
0
  QualType::DestructionKind dtorKind = FieldType.isDestructedType();
713
0
  if (needsEHCleanup(dtorKind))
714
0
    pushEHDestroy(dtorKind, LHS.getAddress(*this), FieldType);
715
0
}
716
717
/// Checks whether the given constructor is a valid subject for the
718
/// complete-to-base constructor delegation optimization, i.e.
719
/// emitting the complete constructor as a simple call to the base
720
/// constructor.
721
bool CodeGenFunction::IsConstructorDelegationValid(
722
0
    const CXXConstructorDecl *Ctor) {
723
724
  // Currently we disable the optimization for classes with virtual
725
  // bases because (1) the addresses of parameter variables need to be
726
  // consistent across all initializers but (2) the delegate function
727
  // call necessarily creates a second copy of the parameter variable.
728
  //
729
  // The limiting example (purely theoretical AFAIK):
730
  //   struct A { A(int &c) { c++; } };
731
  //   struct B : virtual A {
732
  //     B(int count) : A(count) { printf("%d\n", count); }
733
  //   };
734
  // ...although even this example could in principle be emitted as a
735
  // delegation since the address of the parameter doesn't escape.
736
0
  if (Ctor->getParent()->getNumVBases()) {
737
    // TODO: white-list trivial vbase initializers.  This case wouldn't
738
    // be subject to the restrictions below.
739
740
    // TODO: white-list cases where:
741
    //  - there are no non-reference parameters to the constructor
742
    //  - the initializers don't access any non-reference parameters
743
    //  - the initializers don't take the address of non-reference
744
    //    parameters
745
    //  - etc.
746
    // If we ever add any of the above cases, remember that:
747
    //  - function-try-blocks will always exclude this optimization
748
    //  - we need to perform the constructor prologue and cleanup in
749
    //    EmitConstructorBody.
750
751
0
    return false;
752
0
  }
753
754
  // We also disable the optimization for variadic functions because
755
  // it's impossible to "re-pass" varargs.
756
0
  if (Ctor->getType()->castAs<FunctionProtoType>()->isVariadic())
757
0
    return false;
758
759
  // FIXME: Decide if we can do a delegation of a delegating constructor.
760
0
  if (Ctor->isDelegatingConstructor())
761
0
    return false;
762
763
0
  return true;
764
0
}
765
766
// Emit code in ctor (Prologue==true) or dtor (Prologue==false)
767
// to poison the extra field paddings inserted under
768
// -fsanitize-address-field-padding=1|2.
769
0
void CodeGenFunction::EmitAsanPrologueOrEpilogue(bool Prologue) {
770
0
  ASTContext &Context = getContext();
771
0
  const CXXRecordDecl *ClassDecl =
772
0
      Prologue ? cast<CXXConstructorDecl>(CurGD.getDecl())->getParent()
773
0
               : cast<CXXDestructorDecl>(CurGD.getDecl())->getParent();
774
0
  if (!ClassDecl->mayInsertExtraPadding()) return;
775
776
0
  struct SizeAndOffset {
777
0
    uint64_t Size;
778
0
    uint64_t Offset;
779
0
  };
780
781
0
  unsigned PtrSize = CGM.getDataLayout().getPointerSizeInBits();
782
0
  const ASTRecordLayout &Info = Context.getASTRecordLayout(ClassDecl);
783
784
  // Populate sizes and offsets of fields.
785
0
  SmallVector<SizeAndOffset, 16> SSV(Info.getFieldCount());
786
0
  for (unsigned i = 0, e = Info.getFieldCount(); i != e; ++i)
787
0
    SSV[i].Offset =
788
0
        Context.toCharUnitsFromBits(Info.getFieldOffset(i)).getQuantity();
789
790
0
  size_t NumFields = 0;
791
0
  for (const auto *Field : ClassDecl->fields()) {
792
0
    const FieldDecl *D = Field;
793
0
    auto FieldInfo = Context.getTypeInfoInChars(D->getType());
794
0
    CharUnits FieldSize = FieldInfo.Width;
795
0
    assert(NumFields < SSV.size());
796
0
    SSV[NumFields].Size = D->isBitField() ? 0 : FieldSize.getQuantity();
797
0
    NumFields++;
798
0
  }
799
0
  assert(NumFields == SSV.size());
800
0
  if (SSV.size() <= 1) return;
801
802
  // We will insert calls to __asan_* run-time functions.
803
  // LLVM AddressSanitizer pass may decide to inline them later.
804
0
  llvm::Type *Args[2] = {IntPtrTy, IntPtrTy};
805
0
  llvm::FunctionType *FTy =
806
0
      llvm::FunctionType::get(CGM.VoidTy, Args, false);
807
0
  llvm::FunctionCallee F = CGM.CreateRuntimeFunction(
808
0
      FTy, Prologue ? "__asan_poison_intra_object_redzone"
809
0
                    : "__asan_unpoison_intra_object_redzone");
810
811
0
  llvm::Value *ThisPtr = LoadCXXThis();
812
0
  ThisPtr = Builder.CreatePtrToInt(ThisPtr, IntPtrTy);
813
0
  uint64_t TypeSize = Info.getNonVirtualSize().getQuantity();
814
  // For each field check if it has sufficient padding,
815
  // if so (un)poison it with a call.
816
0
  for (size_t i = 0; i < SSV.size(); i++) {
817
0
    uint64_t AsanAlignment = 8;
818
0
    uint64_t NextField = i == SSV.size() - 1 ? TypeSize : SSV[i + 1].Offset;
819
0
    uint64_t PoisonSize = NextField - SSV[i].Offset - SSV[i].Size;
820
0
    uint64_t EndOffset = SSV[i].Offset + SSV[i].Size;
821
0
    if (PoisonSize < AsanAlignment || !SSV[i].Size ||
822
0
        (NextField % AsanAlignment) != 0)
823
0
      continue;
824
0
    Builder.CreateCall(
825
0
        F, {Builder.CreateAdd(ThisPtr, Builder.getIntN(PtrSize, EndOffset)),
826
0
            Builder.getIntN(PtrSize, PoisonSize)});
827
0
  }
828
0
}
829
830
/// EmitConstructorBody - Emits the body of the current constructor.
831
0
void CodeGenFunction::EmitConstructorBody(FunctionArgList &Args) {
832
0
  EmitAsanPrologueOrEpilogue(true);
833
0
  const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(CurGD.getDecl());
834
0
  CXXCtorType CtorType = CurGD.getCtorType();
835
836
0
  assert((CGM.getTarget().getCXXABI().hasConstructorVariants() ||
837
0
          CtorType == Ctor_Complete) &&
838
0
         "can only generate complete ctor for this ABI");
839
840
  // Before we go any further, try the complete->base constructor
841
  // delegation optimization.
842
0
  if (CtorType == Ctor_Complete && IsConstructorDelegationValid(Ctor) &&
843
0
      CGM.getTarget().getCXXABI().hasConstructorVariants()) {
844
0
    EmitDelegateCXXConstructorCall(Ctor, Ctor_Base, Args, Ctor->getEndLoc());
845
0
    return;
846
0
  }
847
848
0
  const FunctionDecl *Definition = nullptr;
849
0
  Stmt *Body = Ctor->getBody(Definition);
850
0
  assert(Definition == Ctor && "emitting wrong constructor body");
851
852
  // Enter the function-try-block before the constructor prologue if
853
  // applicable.
854
0
  bool IsTryBody = (Body && isa<CXXTryStmt>(Body));
855
0
  if (IsTryBody)
856
0
    EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
857
858
0
  incrementProfileCounter(Body);
859
0
  maybeCreateMCDCCondBitmap();
860
861
0
  RunCleanupsScope RunCleanups(*this);
862
863
  // TODO: in restricted cases, we can emit the vbase initializers of
864
  // a complete ctor and then delegate to the base ctor.
865
866
  // Emit the constructor prologue, i.e. the base and member
867
  // initializers.
868
0
  EmitCtorPrologue(Ctor, CtorType, Args);
869
870
  // Emit the body of the statement.
871
0
  if (IsTryBody)
872
0
    EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
873
0
  else if (Body)
874
0
    EmitStmt(Body);
875
876
  // Emit any cleanup blocks associated with the member or base
877
  // initializers, which includes (along the exceptional path) the
878
  // destructors for those members and bases that were fully
879
  // constructed.
880
0
  RunCleanups.ForceCleanup();
881
882
0
  if (IsTryBody)
883
0
    ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
884
0
}
885
886
namespace {
887
  /// RAII object to indicate that codegen is copying the value representation
888
  /// instead of the object representation. Useful when copying a struct or
889
  /// class which has uninitialized members and we're only performing
890
  /// lvalue-to-rvalue conversion on the object but not its members.
891
  class CopyingValueRepresentation {
892
  public:
893
    explicit CopyingValueRepresentation(CodeGenFunction &CGF)
894
0
        : CGF(CGF), OldSanOpts(CGF.SanOpts) {
895
0
      CGF.SanOpts.set(SanitizerKind::Bool, false);
896
0
      CGF.SanOpts.set(SanitizerKind::Enum, false);
897
0
    }
898
0
    ~CopyingValueRepresentation() {
899
0
      CGF.SanOpts = OldSanOpts;
900
0
    }
901
  private:
902
    CodeGenFunction &CGF;
903
    SanitizerSet OldSanOpts;
904
  };
905
} // end anonymous namespace
906
907
namespace {
908
  class FieldMemcpyizer {
909
  public:
910
    FieldMemcpyizer(CodeGenFunction &CGF, const CXXRecordDecl *ClassDecl,
911
                    const VarDecl *SrcRec)
912
      : CGF(CGF), ClassDecl(ClassDecl), SrcRec(SrcRec),
913
        RecLayout(CGF.getContext().getASTRecordLayout(ClassDecl)),
914
        FirstField(nullptr), LastField(nullptr), FirstFieldOffset(0),
915
0
        LastFieldOffset(0), LastAddedFieldIndex(0) {}
916
917
0
    bool isMemcpyableField(FieldDecl *F) const {
918
      // Never memcpy fields when we are adding poisoned paddings.
919
0
      if (CGF.getContext().getLangOpts().SanitizeAddressFieldPadding)
920
0
        return false;
921
0
      Qualifiers Qual = F->getType().getQualifiers();
922
0
      if (Qual.hasVolatile() || Qual.hasObjCLifetime())
923
0
        return false;
924
0
      return true;
925
0
    }
926
927
0
    void addMemcpyableField(FieldDecl *F) {
928
0
      if (F->isZeroSize(CGF.getContext()))
929
0
        return;
930
0
      if (!FirstField)
931
0
        addInitialField(F);
932
0
      else
933
0
        addNextField(F);
934
0
    }
935
936
0
    CharUnits getMemcpySize(uint64_t FirstByteOffset) const {
937
0
      ASTContext &Ctx = CGF.getContext();
938
0
      unsigned LastFieldSize =
939
0
          LastField->isBitField()
940
0
              ? LastField->getBitWidthValue(Ctx)
941
0
              : Ctx.toBits(
942
0
                    Ctx.getTypeInfoDataSizeInChars(LastField->getType()).Width);
943
0
      uint64_t MemcpySizeBits = LastFieldOffset + LastFieldSize -
944
0
                                FirstByteOffset + Ctx.getCharWidth() - 1;
945
0
      CharUnits MemcpySize = Ctx.toCharUnitsFromBits(MemcpySizeBits);
946
0
      return MemcpySize;
947
0
    }
948
949
0
    void emitMemcpy() {
950
      // Give the subclass a chance to bail out if it feels the memcpy isn't
951
      // worth it (e.g. Hasn't aggregated enough data).
952
0
      if (!FirstField) {
953
0
        return;
954
0
      }
955
956
0
      uint64_t FirstByteOffset;
957
0
      if (FirstField->isBitField()) {
958
0
        const CGRecordLayout &RL =
959
0
          CGF.getTypes().getCGRecordLayout(FirstField->getParent());
960
0
        const CGBitFieldInfo &BFInfo = RL.getBitFieldInfo(FirstField);
961
        // FirstFieldOffset is not appropriate for bitfields,
962
        // we need to use the storage offset instead.
963
0
        FirstByteOffset = CGF.getContext().toBits(BFInfo.StorageOffset);
964
0
      } else {
965
0
        FirstByteOffset = FirstFieldOffset;
966
0
      }
967
968
0
      CharUnits MemcpySize = getMemcpySize(FirstByteOffset);
969
0
      QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
970
0
      Address ThisPtr = CGF.LoadCXXThisAddress();
971
0
      LValue DestLV = CGF.MakeAddrLValue(ThisPtr, RecordTy);
972
0
      LValue Dest = CGF.EmitLValueForFieldInitialization(DestLV, FirstField);
973
0
      llvm::Value *SrcPtr = CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(SrcRec));
974
0
      LValue SrcLV = CGF.MakeNaturalAlignAddrLValue(SrcPtr, RecordTy);
975
0
      LValue Src = CGF.EmitLValueForFieldInitialization(SrcLV, FirstField);
976
977
0
      emitMemcpyIR(
978
0
          Dest.isBitField() ? Dest.getBitFieldAddress() : Dest.getAddress(CGF),
979
0
          Src.isBitField() ? Src.getBitFieldAddress() : Src.getAddress(CGF),
980
0
          MemcpySize);
981
0
      reset();
982
0
    }
983
984
0
    void reset() {
985
0
      FirstField = nullptr;
986
0
    }
987
988
  protected:
989
    CodeGenFunction &CGF;
990
    const CXXRecordDecl *ClassDecl;
991
992
  private:
993
0
    void emitMemcpyIR(Address DestPtr, Address SrcPtr, CharUnits Size) {
994
0
      DestPtr = DestPtr.withElementType(CGF.Int8Ty);
995
0
      SrcPtr = SrcPtr.withElementType(CGF.Int8Ty);
996
0
      CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, Size.getQuantity());
997
0
    }
998
999
0
    void addInitialField(FieldDecl *F) {
1000
0
      FirstField = F;
1001
0
      LastField = F;
1002
0
      FirstFieldOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1003
0
      LastFieldOffset = FirstFieldOffset;
1004
0
      LastAddedFieldIndex = F->getFieldIndex();
1005
0
    }
1006
1007
0
    void addNextField(FieldDecl *F) {
1008
      // For the most part, the following invariant will hold:
1009
      //   F->getFieldIndex() == LastAddedFieldIndex + 1
1010
      // The one exception is that Sema won't add a copy-initializer for an
1011
      // unnamed bitfield, which will show up here as a gap in the sequence.
1012
0
      assert(F->getFieldIndex() >= LastAddedFieldIndex + 1 &&
1013
0
             "Cannot aggregate fields out of order.");
1014
0
      LastAddedFieldIndex = F->getFieldIndex();
1015
1016
      // The 'first' and 'last' fields are chosen by offset, rather than field
1017
      // index. This allows the code to support bitfields, as well as regular
1018
      // fields.
1019
0
      uint64_t FOffset = RecLayout.getFieldOffset(F->getFieldIndex());
1020
0
      if (FOffset < FirstFieldOffset) {
1021
0
        FirstField = F;
1022
0
        FirstFieldOffset = FOffset;
1023
0
      } else if (FOffset >= LastFieldOffset) {
1024
0
        LastField = F;
1025
0
        LastFieldOffset = FOffset;
1026
0
      }
1027
0
    }
1028
1029
    const VarDecl *SrcRec;
1030
    const ASTRecordLayout &RecLayout;
1031
    FieldDecl *FirstField;
1032
    FieldDecl *LastField;
1033
    uint64_t FirstFieldOffset, LastFieldOffset;
1034
    unsigned LastAddedFieldIndex;
1035
  };
1036
1037
  class ConstructorMemcpyizer : public FieldMemcpyizer {
1038
  private:
1039
    /// Get source argument for copy constructor. Returns null if not a copy
1040
    /// constructor.
1041
    static const VarDecl *getTrivialCopySource(CodeGenFunction &CGF,
1042
                                               const CXXConstructorDecl *CD,
1043
0
                                               FunctionArgList &Args) {
1044
0
      if (CD->isCopyOrMoveConstructor() && CD->isDefaulted())
1045
0
        return Args[CGF.CGM.getCXXABI().getSrcArgforCopyCtor(CD, Args)];
1046
0
      return nullptr;
1047
0
    }
1048
1049
    // Returns true if a CXXCtorInitializer represents a member initialization
1050
    // that can be rolled into a memcpy.
1051
0
    bool isMemberInitMemcpyable(CXXCtorInitializer *MemberInit) const {
1052
0
      if (!MemcpyableCtor)
1053
0
        return false;
1054
0
      FieldDecl *Field = MemberInit->getMember();
1055
0
      assert(Field && "No field for member init.");
1056
0
      QualType FieldType = Field->getType();
1057
0
      CXXConstructExpr *CE = dyn_cast<CXXConstructExpr>(MemberInit->getInit());
1058
1059
      // Bail out on non-memcpyable, not-trivially-copyable members.
1060
0
      if (!(CE && isMemcpyEquivalentSpecialMember(CE->getConstructor())) &&
1061
0
          !(FieldType.isTriviallyCopyableType(CGF.getContext()) ||
1062
0
            FieldType->isReferenceType()))
1063
0
        return false;
1064
1065
      // Bail out on volatile fields.
1066
0
      if (!isMemcpyableField(Field))
1067
0
        return false;
1068
1069
      // Otherwise we're good.
1070
0
      return true;
1071
0
    }
1072
1073
  public:
1074
    ConstructorMemcpyizer(CodeGenFunction &CGF, const CXXConstructorDecl *CD,
1075
                          FunctionArgList &Args)
1076
      : FieldMemcpyizer(CGF, CD->getParent(), getTrivialCopySource(CGF, CD, Args)),
1077
        ConstructorDecl(CD),
1078
        MemcpyableCtor(CD->isDefaulted() &&
1079
                       CD->isCopyOrMoveConstructor() &&
1080
                       CGF.getLangOpts().getGC() == LangOptions::NonGC),
1081
0
        Args(Args) { }
1082
1083
0
    void addMemberInitializer(CXXCtorInitializer *MemberInit) {
1084
0
      if (isMemberInitMemcpyable(MemberInit)) {
1085
0
        AggregatedInits.push_back(MemberInit);
1086
0
        addMemcpyableField(MemberInit->getMember());
1087
0
      } else {
1088
0
        emitAggregatedInits();
1089
0
        EmitMemberInitializer(CGF, ConstructorDecl->getParent(), MemberInit,
1090
0
                              ConstructorDecl, Args);
1091
0
      }
1092
0
    }
1093
1094
0
    void emitAggregatedInits() {
1095
0
      if (AggregatedInits.size() <= 1) {
1096
        // This memcpy is too small to be worthwhile. Fall back on default
1097
        // codegen.
1098
0
        if (!AggregatedInits.empty()) {
1099
0
          CopyingValueRepresentation CVR(CGF);
1100
0
          EmitMemberInitializer(CGF, ConstructorDecl->getParent(),
1101
0
                                AggregatedInits[0], ConstructorDecl, Args);
1102
0
          AggregatedInits.clear();
1103
0
        }
1104
0
        reset();
1105
0
        return;
1106
0
      }
1107
1108
0
      pushEHDestructors();
1109
0
      emitMemcpy();
1110
0
      AggregatedInits.clear();
1111
0
    }
1112
1113
0
    void pushEHDestructors() {
1114
0
      Address ThisPtr = CGF.LoadCXXThisAddress();
1115
0
      QualType RecordTy = CGF.getContext().getTypeDeclType(ClassDecl);
1116
0
      LValue LHS = CGF.MakeAddrLValue(ThisPtr, RecordTy);
1117
1118
0
      for (unsigned i = 0; i < AggregatedInits.size(); ++i) {
1119
0
        CXXCtorInitializer *MemberInit = AggregatedInits[i];
1120
0
        QualType FieldType = MemberInit->getAnyMember()->getType();
1121
0
        QualType::DestructionKind dtorKind = FieldType.isDestructedType();
1122
0
        if (!CGF.needsEHCleanup(dtorKind))
1123
0
          continue;
1124
0
        LValue FieldLHS = LHS;
1125
0
        EmitLValueForAnyFieldInitialization(CGF, MemberInit, FieldLHS);
1126
0
        CGF.pushEHDestroy(dtorKind, FieldLHS.getAddress(CGF), FieldType);
1127
0
      }
1128
0
    }
1129
1130
0
    void finish() {
1131
0
      emitAggregatedInits();
1132
0
    }
1133
1134
  private:
1135
    const CXXConstructorDecl *ConstructorDecl;
1136
    bool MemcpyableCtor;
1137
    FunctionArgList &Args;
1138
    SmallVector<CXXCtorInitializer*, 16> AggregatedInits;
1139
  };
1140
1141
  class AssignmentMemcpyizer : public FieldMemcpyizer {
1142
  private:
1143
    // Returns the memcpyable field copied by the given statement, if one
1144
    // exists. Otherwise returns null.
1145
0
    FieldDecl *getMemcpyableField(Stmt *S) {
1146
0
      if (!AssignmentsMemcpyable)
1147
0
        return nullptr;
1148
0
      if (BinaryOperator *BO = dyn_cast<BinaryOperator>(S)) {
1149
        // Recognise trivial assignments.
1150
0
        if (BO->getOpcode() != BO_Assign)
1151
0
          return nullptr;
1152
0
        MemberExpr *ME = dyn_cast<MemberExpr>(BO->getLHS());
1153
0
        if (!ME)
1154
0
          return nullptr;
1155
0
        FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1156
0
        if (!Field || !isMemcpyableField(Field))
1157
0
          return nullptr;
1158
0
        Stmt *RHS = BO->getRHS();
1159
0
        if (ImplicitCastExpr *EC = dyn_cast<ImplicitCastExpr>(RHS))
1160
0
          RHS = EC->getSubExpr();
1161
0
        if (!RHS)
1162
0
          return nullptr;
1163
0
        if (MemberExpr *ME2 = dyn_cast<MemberExpr>(RHS)) {
1164
0
          if (ME2->getMemberDecl() == Field)
1165
0
            return Field;
1166
0
        }
1167
0
        return nullptr;
1168
0
      } else if (CXXMemberCallExpr *MCE = dyn_cast<CXXMemberCallExpr>(S)) {
1169
0
        CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MCE->getCalleeDecl());
1170
0
        if (!(MD && isMemcpyEquivalentSpecialMember(MD)))
1171
0
          return nullptr;
1172
0
        MemberExpr *IOA = dyn_cast<MemberExpr>(MCE->getImplicitObjectArgument());
1173
0
        if (!IOA)
1174
0
          return nullptr;
1175
0
        FieldDecl *Field = dyn_cast<FieldDecl>(IOA->getMemberDecl());
1176
0
        if (!Field || !isMemcpyableField(Field))
1177
0
          return nullptr;
1178
0
        MemberExpr *Arg0 = dyn_cast<MemberExpr>(MCE->getArg(0));
1179
0
        if (!Arg0 || Field != dyn_cast<FieldDecl>(Arg0->getMemberDecl()))
1180
0
          return nullptr;
1181
0
        return Field;
1182
0
      } else if (CallExpr *CE = dyn_cast<CallExpr>(S)) {
1183
0
        FunctionDecl *FD = dyn_cast<FunctionDecl>(CE->getCalleeDecl());
1184
0
        if (!FD || FD->getBuiltinID() != Builtin::BI__builtin_memcpy)
1185
0
          return nullptr;
1186
0
        Expr *DstPtr = CE->getArg(0);
1187
0
        if (ImplicitCastExpr *DC = dyn_cast<ImplicitCastExpr>(DstPtr))
1188
0
          DstPtr = DC->getSubExpr();
1189
0
        UnaryOperator *DUO = dyn_cast<UnaryOperator>(DstPtr);
1190
0
        if (!DUO || DUO->getOpcode() != UO_AddrOf)
1191
0
          return nullptr;
1192
0
        MemberExpr *ME = dyn_cast<MemberExpr>(DUO->getSubExpr());
1193
0
        if (!ME)
1194
0
          return nullptr;
1195
0
        FieldDecl *Field = dyn_cast<FieldDecl>(ME->getMemberDecl());
1196
0
        if (!Field || !isMemcpyableField(Field))
1197
0
          return nullptr;
1198
0
        Expr *SrcPtr = CE->getArg(1);
1199
0
        if (ImplicitCastExpr *SC = dyn_cast<ImplicitCastExpr>(SrcPtr))
1200
0
          SrcPtr = SC->getSubExpr();
1201
0
        UnaryOperator *SUO = dyn_cast<UnaryOperator>(SrcPtr);
1202
0
        if (!SUO || SUO->getOpcode() != UO_AddrOf)
1203
0
          return nullptr;
1204
0
        MemberExpr *ME2 = dyn_cast<MemberExpr>(SUO->getSubExpr());
1205
0
        if (!ME2 || Field != dyn_cast<FieldDecl>(ME2->getMemberDecl()))
1206
0
          return nullptr;
1207
0
        return Field;
1208
0
      }
1209
1210
0
      return nullptr;
1211
0
    }
1212
1213
    bool AssignmentsMemcpyable;
1214
    SmallVector<Stmt*, 16> AggregatedStmts;
1215
1216
  public:
1217
    AssignmentMemcpyizer(CodeGenFunction &CGF, const CXXMethodDecl *AD,
1218
                         FunctionArgList &Args)
1219
      : FieldMemcpyizer(CGF, AD->getParent(), Args[Args.size() - 1]),
1220
0
        AssignmentsMemcpyable(CGF.getLangOpts().getGC() == LangOptions::NonGC) {
1221
0
      assert(Args.size() == 2);
1222
0
    }
1223
1224
0
    void emitAssignment(Stmt *S) {
1225
0
      FieldDecl *F = getMemcpyableField(S);
1226
0
      if (F) {
1227
0
        addMemcpyableField(F);
1228
0
        AggregatedStmts.push_back(S);
1229
0
      } else {
1230
0
        emitAggregatedStmts();
1231
0
        CGF.EmitStmt(S);
1232
0
      }
1233
0
    }
1234
1235
0
    void emitAggregatedStmts() {
1236
0
      if (AggregatedStmts.size() <= 1) {
1237
0
        if (!AggregatedStmts.empty()) {
1238
0
          CopyingValueRepresentation CVR(CGF);
1239
0
          CGF.EmitStmt(AggregatedStmts[0]);
1240
0
        }
1241
0
        reset();
1242
0
      }
1243
1244
0
      emitMemcpy();
1245
0
      AggregatedStmts.clear();
1246
0
    }
1247
1248
0
    void finish() {
1249
0
      emitAggregatedStmts();
1250
0
    }
1251
  };
1252
} // end anonymous namespace
1253
1254
0
static bool isInitializerOfDynamicClass(const CXXCtorInitializer *BaseInit) {
1255
0
  const Type *BaseType = BaseInit->getBaseClass();
1256
0
  const auto *BaseClassDecl =
1257
0
      cast<CXXRecordDecl>(BaseType->castAs<RecordType>()->getDecl());
1258
0
  return BaseClassDecl->isDynamicClass();
1259
0
}
1260
1261
/// EmitCtorPrologue - This routine generates necessary code to initialize
1262
/// base classes and non-static data members belonging to this constructor.
1263
void CodeGenFunction::EmitCtorPrologue(const CXXConstructorDecl *CD,
1264
                                       CXXCtorType CtorType,
1265
0
                                       FunctionArgList &Args) {
1266
0
  if (CD->isDelegatingConstructor())
1267
0
    return EmitDelegatingCXXConstructorCall(CD, Args);
1268
1269
0
  const CXXRecordDecl *ClassDecl = CD->getParent();
1270
1271
0
  CXXConstructorDecl::init_const_iterator B = CD->init_begin(),
1272
0
                                          E = CD->init_end();
1273
1274
  // Virtual base initializers first, if any. They aren't needed if:
1275
  // - This is a base ctor variant
1276
  // - There are no vbases
1277
  // - The class is abstract, so a complete object of it cannot be constructed
1278
  //
1279
  // The check for an abstract class is necessary because sema may not have
1280
  // marked virtual base destructors referenced.
1281
0
  bool ConstructVBases = CtorType != Ctor_Base &&
1282
0
                         ClassDecl->getNumVBases() != 0 &&
1283
0
                         !ClassDecl->isAbstract();
1284
1285
  // In the Microsoft C++ ABI, there are no constructor variants. Instead, the
1286
  // constructor of a class with virtual bases takes an additional parameter to
1287
  // conditionally construct the virtual bases. Emit that check here.
1288
0
  llvm::BasicBlock *BaseCtorContinueBB = nullptr;
1289
0
  if (ConstructVBases &&
1290
0
      !CGM.getTarget().getCXXABI().hasConstructorVariants()) {
1291
0
    BaseCtorContinueBB =
1292
0
        CGM.getCXXABI().EmitCtorCompleteObjectHandler(*this, ClassDecl);
1293
0
    assert(BaseCtorContinueBB);
1294
0
  }
1295
1296
0
  for (; B != E && (*B)->isBaseInitializer() && (*B)->isBaseVirtual(); B++) {
1297
0
    if (!ConstructVBases)
1298
0
      continue;
1299
0
    SaveAndRestore ThisRAII(CXXThisValue);
1300
0
    if (CGM.getCodeGenOpts().StrictVTablePointers &&
1301
0
        CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1302
0
        isInitializerOfDynamicClass(*B))
1303
0
      CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1304
0
    EmitBaseInitializer(*this, ClassDecl, *B);
1305
0
  }
1306
1307
0
  if (BaseCtorContinueBB) {
1308
    // Complete object handler should continue to the remaining initializers.
1309
0
    Builder.CreateBr(BaseCtorContinueBB);
1310
0
    EmitBlock(BaseCtorContinueBB);
1311
0
  }
1312
1313
  // Then, non-virtual base initializers.
1314
0
  for (; B != E && (*B)->isBaseInitializer(); B++) {
1315
0
    assert(!(*B)->isBaseVirtual());
1316
0
    SaveAndRestore ThisRAII(CXXThisValue);
1317
0
    if (CGM.getCodeGenOpts().StrictVTablePointers &&
1318
0
        CGM.getCodeGenOpts().OptimizationLevel > 0 &&
1319
0
        isInitializerOfDynamicClass(*B))
1320
0
      CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1321
0
    EmitBaseInitializer(*this, ClassDecl, *B);
1322
0
  }
1323
1324
0
  InitializeVTablePointers(ClassDecl);
1325
1326
  // And finally, initialize class members.
1327
0
  FieldConstructionScope FCS(*this, LoadCXXThisAddress());
1328
0
  ConstructorMemcpyizer CM(*this, CD, Args);
1329
0
  for (; B != E; B++) {
1330
0
    CXXCtorInitializer *Member = (*B);
1331
0
    assert(!Member->isBaseInitializer());
1332
0
    assert(Member->isAnyMemberInitializer() &&
1333
0
           "Delegating initializer on non-delegating constructor");
1334
0
    CM.addMemberInitializer(Member);
1335
0
  }
1336
0
  CM.finish();
1337
0
}
1338
1339
static bool
1340
FieldHasTrivialDestructorBody(ASTContext &Context, const FieldDecl *Field);
1341
1342
static bool
1343
HasTrivialDestructorBody(ASTContext &Context,
1344
                         const CXXRecordDecl *BaseClassDecl,
1345
                         const CXXRecordDecl *MostDerivedClassDecl)
1346
0
{
1347
  // If the destructor is trivial we don't have to check anything else.
1348
0
  if (BaseClassDecl->hasTrivialDestructor())
1349
0
    return true;
1350
1351
0
  if (!BaseClassDecl->getDestructor()->hasTrivialBody())
1352
0
    return false;
1353
1354
  // Check fields.
1355
0
  for (const auto *Field : BaseClassDecl->fields())
1356
0
    if (!FieldHasTrivialDestructorBody(Context, Field))
1357
0
      return false;
1358
1359
  // Check non-virtual bases.
1360
0
  for (const auto &I : BaseClassDecl->bases()) {
1361
0
    if (I.isVirtual())
1362
0
      continue;
1363
1364
0
    const CXXRecordDecl *NonVirtualBase =
1365
0
      cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1366
0
    if (!HasTrivialDestructorBody(Context, NonVirtualBase,
1367
0
                                  MostDerivedClassDecl))
1368
0
      return false;
1369
0
  }
1370
1371
0
  if (BaseClassDecl == MostDerivedClassDecl) {
1372
    // Check virtual bases.
1373
0
    for (const auto &I : BaseClassDecl->vbases()) {
1374
0
      const CXXRecordDecl *VirtualBase =
1375
0
        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
1376
0
      if (!HasTrivialDestructorBody(Context, VirtualBase,
1377
0
                                    MostDerivedClassDecl))
1378
0
        return false;
1379
0
    }
1380
0
  }
1381
1382
0
  return true;
1383
0
}
1384
1385
static bool
1386
FieldHasTrivialDestructorBody(ASTContext &Context,
1387
                                          const FieldDecl *Field)
1388
0
{
1389
0
  QualType FieldBaseElementType = Context.getBaseElementType(Field->getType());
1390
1391
0
  const RecordType *RT = FieldBaseElementType->getAs<RecordType>();
1392
0
  if (!RT)
1393
0
    return true;
1394
1395
0
  CXXRecordDecl *FieldClassDecl = cast<CXXRecordDecl>(RT->getDecl());
1396
1397
  // The destructor for an implicit anonymous union member is never invoked.
1398
0
  if (FieldClassDecl->isUnion() && FieldClassDecl->isAnonymousStructOrUnion())
1399
0
    return false;
1400
1401
0
  return HasTrivialDestructorBody(Context, FieldClassDecl, FieldClassDecl);
1402
0
}
1403
1404
/// CanSkipVTablePointerInitialization - Check whether we need to initialize
1405
/// any vtable pointers before calling this destructor.
1406
static bool CanSkipVTablePointerInitialization(CodeGenFunction &CGF,
1407
0
                                               const CXXDestructorDecl *Dtor) {
1408
0
  const CXXRecordDecl *ClassDecl = Dtor->getParent();
1409
0
  if (!ClassDecl->isDynamicClass())
1410
0
    return true;
1411
1412
  // For a final class, the vtable pointer is known to already point to the
1413
  // class's vtable.
1414
0
  if (ClassDecl->isEffectivelyFinal())
1415
0
    return true;
1416
1417
0
  if (!Dtor->hasTrivialBody())
1418
0
    return false;
1419
1420
  // Check the fields.
1421
0
  for (const auto *Field : ClassDecl->fields())
1422
0
    if (!FieldHasTrivialDestructorBody(CGF.getContext(), Field))
1423
0
      return false;
1424
1425
0
  return true;
1426
0
}
1427
1428
/// EmitDestructorBody - Emits the body of the current destructor.
1429
0
void CodeGenFunction::EmitDestructorBody(FunctionArgList &Args) {
1430
0
  const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CurGD.getDecl());
1431
0
  CXXDtorType DtorType = CurGD.getDtorType();
1432
1433
  // For an abstract class, non-base destructors are never used (and can't
1434
  // be emitted in general, because vbase dtors may not have been validated
1435
  // by Sema), but the Itanium ABI doesn't make them optional and Clang may
1436
  // in fact emit references to them from other compilations, so emit them
1437
  // as functions containing a trap instruction.
1438
0
  if (DtorType != Dtor_Base && Dtor->getParent()->isAbstract()) {
1439
0
    llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap);
1440
0
    TrapCall->setDoesNotReturn();
1441
0
    TrapCall->setDoesNotThrow();
1442
0
    Builder.CreateUnreachable();
1443
0
    Builder.ClearInsertionPoint();
1444
0
    return;
1445
0
  }
1446
1447
0
  Stmt *Body = Dtor->getBody();
1448
0
  if (Body) {
1449
0
    incrementProfileCounter(Body);
1450
0
    maybeCreateMCDCCondBitmap();
1451
0
  }
1452
1453
  // The call to operator delete in a deleting destructor happens
1454
  // outside of the function-try-block, which means it's always
1455
  // possible to delegate the destructor body to the complete
1456
  // destructor.  Do so.
1457
0
  if (DtorType == Dtor_Deleting) {
1458
0
    RunCleanupsScope DtorEpilogue(*this);
1459
0
    EnterDtorCleanups(Dtor, Dtor_Deleting);
1460
0
    if (HaveInsertPoint()) {
1461
0
      QualType ThisTy = Dtor->getFunctionObjectParameterType();
1462
0
      EmitCXXDestructorCall(Dtor, Dtor_Complete, /*ForVirtualBase=*/false,
1463
0
                            /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1464
0
    }
1465
0
    return;
1466
0
  }
1467
1468
  // If the body is a function-try-block, enter the try before
1469
  // anything else.
1470
0
  bool isTryBody = (Body && isa<CXXTryStmt>(Body));
1471
0
  if (isTryBody)
1472
0
    EnterCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1473
0
  EmitAsanPrologueOrEpilogue(false);
1474
1475
  // Enter the epilogue cleanups.
1476
0
  RunCleanupsScope DtorEpilogue(*this);
1477
1478
  // If this is the complete variant, just invoke the base variant;
1479
  // the epilogue will destruct the virtual bases.  But we can't do
1480
  // this optimization if the body is a function-try-block, because
1481
  // we'd introduce *two* handler blocks.  In the Microsoft ABI, we
1482
  // always delegate because we might not have a definition in this TU.
1483
0
  switch (DtorType) {
1484
0
  case Dtor_Comdat: llvm_unreachable("not expecting a COMDAT");
1485
0
  case Dtor_Deleting: llvm_unreachable("already handled deleting case");
1486
1487
0
  case Dtor_Complete:
1488
0
    assert((Body || getTarget().getCXXABI().isMicrosoft()) &&
1489
0
           "can't emit a dtor without a body for non-Microsoft ABIs");
1490
1491
    // Enter the cleanup scopes for virtual bases.
1492
0
    EnterDtorCleanups(Dtor, Dtor_Complete);
1493
1494
0
    if (!isTryBody) {
1495
0
      QualType ThisTy = Dtor->getFunctionObjectParameterType();
1496
0
      EmitCXXDestructorCall(Dtor, Dtor_Base, /*ForVirtualBase=*/false,
1497
0
                            /*Delegating=*/false, LoadCXXThisAddress(), ThisTy);
1498
0
      break;
1499
0
    }
1500
1501
    // Fallthrough: act like we're in the base variant.
1502
0
    [[fallthrough]];
1503
1504
0
  case Dtor_Base:
1505
0
    assert(Body);
1506
1507
    // Enter the cleanup scopes for fields and non-virtual bases.
1508
0
    EnterDtorCleanups(Dtor, Dtor_Base);
1509
1510
    // Initialize the vtable pointers before entering the body.
1511
0
    if (!CanSkipVTablePointerInitialization(*this, Dtor)) {
1512
      // Insert the llvm.launder.invariant.group intrinsic before initializing
1513
      // the vptrs to cancel any previous assumptions we might have made.
1514
0
      if (CGM.getCodeGenOpts().StrictVTablePointers &&
1515
0
          CGM.getCodeGenOpts().OptimizationLevel > 0)
1516
0
        CXXThisValue = Builder.CreateLaunderInvariantGroup(LoadCXXThis());
1517
0
      InitializeVTablePointers(Dtor->getParent());
1518
0
    }
1519
1520
0
    if (isTryBody)
1521
0
      EmitStmt(cast<CXXTryStmt>(Body)->getTryBlock());
1522
0
    else if (Body)
1523
0
      EmitStmt(Body);
1524
0
    else {
1525
0
      assert(Dtor->isImplicit() && "bodyless dtor not implicit");
1526
      // nothing to do besides what's in the epilogue
1527
0
    }
1528
    // -fapple-kext must inline any call to this dtor into
1529
    // the caller's body.
1530
0
    if (getLangOpts().AppleKext)
1531
0
      CurFn->addFnAttr(llvm::Attribute::AlwaysInline);
1532
1533
0
    break;
1534
0
  }
1535
1536
  // Jump out through the epilogue cleanups.
1537
0
  DtorEpilogue.ForceCleanup();
1538
1539
  // Exit the try if applicable.
1540
0
  if (isTryBody)
1541
0
    ExitCXXTryStmt(*cast<CXXTryStmt>(Body), true);
1542
0
}
1543
1544
0
void CodeGenFunction::emitImplicitAssignmentOperatorBody(FunctionArgList &Args) {
1545
0
  const CXXMethodDecl *AssignOp = cast<CXXMethodDecl>(CurGD.getDecl());
1546
0
  const Stmt *RootS = AssignOp->getBody();
1547
0
  assert(isa<CompoundStmt>(RootS) &&
1548
0
         "Body of an implicit assignment operator should be compound stmt.");
1549
0
  const CompoundStmt *RootCS = cast<CompoundStmt>(RootS);
1550
1551
0
  LexicalScope Scope(*this, RootCS->getSourceRange());
1552
1553
0
  incrementProfileCounter(RootCS);
1554
0
  maybeCreateMCDCCondBitmap();
1555
0
  AssignmentMemcpyizer AM(*this, AssignOp, Args);
1556
0
  for (auto *I : RootCS->body())
1557
0
    AM.emitAssignment(I);
1558
0
  AM.finish();
1559
0
}
1560
1561
namespace {
1562
  llvm::Value *LoadThisForDtorDelete(CodeGenFunction &CGF,
1563
0
                                     const CXXDestructorDecl *DD) {
1564
0
    if (Expr *ThisArg = DD->getOperatorDeleteThisArg())
1565
0
      return CGF.EmitScalarExpr(ThisArg);
1566
0
    return CGF.LoadCXXThis();
1567
0
  }
1568
1569
  /// Call the operator delete associated with the current destructor.
1570
  struct CallDtorDelete final : EHScopeStack::Cleanup {
1571
0
    CallDtorDelete() {}
1572
1573
0
    void Emit(CodeGenFunction &CGF, Flags flags) override {
1574
0
      const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1575
0
      const CXXRecordDecl *ClassDecl = Dtor->getParent();
1576
0
      CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1577
0
                         LoadThisForDtorDelete(CGF, Dtor),
1578
0
                         CGF.getContext().getTagDeclType(ClassDecl));
1579
0
    }
1580
  };
1581
1582
  void EmitConditionalDtorDeleteCall(CodeGenFunction &CGF,
1583
                                     llvm::Value *ShouldDeleteCondition,
1584
0
                                     bool ReturnAfterDelete) {
1585
0
    llvm::BasicBlock *callDeleteBB = CGF.createBasicBlock("dtor.call_delete");
1586
0
    llvm::BasicBlock *continueBB = CGF.createBasicBlock("dtor.continue");
1587
0
    llvm::Value *ShouldCallDelete
1588
0
      = CGF.Builder.CreateIsNull(ShouldDeleteCondition);
1589
0
    CGF.Builder.CreateCondBr(ShouldCallDelete, continueBB, callDeleteBB);
1590
1591
0
    CGF.EmitBlock(callDeleteBB);
1592
0
    const CXXDestructorDecl *Dtor = cast<CXXDestructorDecl>(CGF.CurCodeDecl);
1593
0
    const CXXRecordDecl *ClassDecl = Dtor->getParent();
1594
0
    CGF.EmitDeleteCall(Dtor->getOperatorDelete(),
1595
0
                       LoadThisForDtorDelete(CGF, Dtor),
1596
0
                       CGF.getContext().getTagDeclType(ClassDecl));
1597
0
    assert(Dtor->getOperatorDelete()->isDestroyingOperatorDelete() ==
1598
0
               ReturnAfterDelete &&
1599
0
           "unexpected value for ReturnAfterDelete");
1600
0
    if (ReturnAfterDelete)
1601
0
      CGF.EmitBranchThroughCleanup(CGF.ReturnBlock);
1602
0
    else
1603
0
      CGF.Builder.CreateBr(continueBB);
1604
1605
0
    CGF.EmitBlock(continueBB);
1606
0
  }
1607
1608
  struct CallDtorDeleteConditional final : EHScopeStack::Cleanup {
1609
    llvm::Value *ShouldDeleteCondition;
1610
1611
  public:
1612
    CallDtorDeleteConditional(llvm::Value *ShouldDeleteCondition)
1613
0
        : ShouldDeleteCondition(ShouldDeleteCondition) {
1614
0
      assert(ShouldDeleteCondition != nullptr);
1615
0
    }
1616
1617
0
    void Emit(CodeGenFunction &CGF, Flags flags) override {
1618
0
      EmitConditionalDtorDeleteCall(CGF, ShouldDeleteCondition,
1619
0
                                    /*ReturnAfterDelete*/false);
1620
0
    }
1621
  };
1622
1623
  class DestroyField  final : public EHScopeStack::Cleanup {
1624
    const FieldDecl *field;
1625
    CodeGenFunction::Destroyer *destroyer;
1626
    bool useEHCleanupForArray;
1627
1628
  public:
1629
    DestroyField(const FieldDecl *field, CodeGenFunction::Destroyer *destroyer,
1630
                 bool useEHCleanupForArray)
1631
        : field(field), destroyer(destroyer),
1632
0
          useEHCleanupForArray(useEHCleanupForArray) {}
1633
1634
0
    void Emit(CodeGenFunction &CGF, Flags flags) override {
1635
      // Find the address of the field.
1636
0
      Address thisValue = CGF.LoadCXXThisAddress();
1637
0
      QualType RecordTy = CGF.getContext().getTagDeclType(field->getParent());
1638
0
      LValue ThisLV = CGF.MakeAddrLValue(thisValue, RecordTy);
1639
0
      LValue LV = CGF.EmitLValueForField(ThisLV, field);
1640
0
      assert(LV.isSimple());
1641
1642
0
      CGF.emitDestroy(LV.getAddress(CGF), field->getType(), destroyer,
1643
0
                      flags.isForNormalCleanup() && useEHCleanupForArray);
1644
0
    }
1645
  };
1646
1647
  class DeclAsInlineDebugLocation {
1648
    CGDebugInfo *DI;
1649
    llvm::MDNode *InlinedAt;
1650
    std::optional<ApplyDebugLocation> Location;
1651
1652
  public:
1653
    DeclAsInlineDebugLocation(CodeGenFunction &CGF, const NamedDecl &Decl)
1654
0
        : DI(CGF.getDebugInfo()) {
1655
0
      if (!DI)
1656
0
        return;
1657
0
      InlinedAt = DI->getInlinedAt();
1658
0
      DI->setInlinedAt(CGF.Builder.getCurrentDebugLocation());
1659
0
      Location.emplace(CGF, Decl.getLocation());
1660
0
    }
1661
1662
0
    ~DeclAsInlineDebugLocation() {
1663
0
      if (!DI)
1664
0
        return;
1665
0
      Location.reset();
1666
0
      DI->setInlinedAt(InlinedAt);
1667
0
    }
1668
  };
1669
1670
  static void EmitSanitizerDtorCallback(
1671
      CodeGenFunction &CGF, StringRef Name, llvm::Value *Ptr,
1672
0
      std::optional<CharUnits::QuantityType> PoisonSize = {}) {
1673
0
    CodeGenFunction::SanitizerScope SanScope(&CGF);
1674
    // Pass in void pointer and size of region as arguments to runtime
1675
    // function
1676
0
    SmallVector<llvm::Value *, 2> Args = {Ptr};
1677
0
    SmallVector<llvm::Type *, 2> ArgTypes = {CGF.VoidPtrTy};
1678
1679
0
    if (PoisonSize.has_value()) {
1680
0
      Args.emplace_back(llvm::ConstantInt::get(CGF.SizeTy, *PoisonSize));
1681
0
      ArgTypes.emplace_back(CGF.SizeTy);
1682
0
    }
1683
1684
0
    llvm::FunctionType *FnType =
1685
0
        llvm::FunctionType::get(CGF.VoidTy, ArgTypes, false);
1686
0
    llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FnType, Name);
1687
1688
0
    CGF.EmitNounwindRuntimeCall(Fn, Args);
1689
0
  }
1690
1691
  static void
1692
  EmitSanitizerDtorFieldsCallback(CodeGenFunction &CGF, llvm::Value *Ptr,
1693
0
                                  CharUnits::QuantityType PoisonSize) {
1694
0
    EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_fields", Ptr,
1695
0
                              PoisonSize);
1696
0
  }
1697
1698
  /// Poison base class with a trivial destructor.
1699
  struct SanitizeDtorTrivialBase final : EHScopeStack::Cleanup {
1700
    const CXXRecordDecl *BaseClass;
1701
    bool BaseIsVirtual;
1702
    SanitizeDtorTrivialBase(const CXXRecordDecl *Base, bool BaseIsVirtual)
1703
0
        : BaseClass(Base), BaseIsVirtual(BaseIsVirtual) {}
1704
1705
0
    void Emit(CodeGenFunction &CGF, Flags flags) override {
1706
0
      const CXXRecordDecl *DerivedClass =
1707
0
          cast<CXXMethodDecl>(CGF.CurCodeDecl)->getParent();
1708
1709
0
      Address Addr = CGF.GetAddressOfDirectBaseInCompleteClass(
1710
0
          CGF.LoadCXXThisAddress(), DerivedClass, BaseClass, BaseIsVirtual);
1711
1712
0
      const ASTRecordLayout &BaseLayout =
1713
0
          CGF.getContext().getASTRecordLayout(BaseClass);
1714
0
      CharUnits BaseSize = BaseLayout.getSize();
1715
1716
0
      if (!BaseSize.isPositive())
1717
0
        return;
1718
1719
      // Use the base class declaration location as inline DebugLocation. All
1720
      // fields of the class are destroyed.
1721
0
      DeclAsInlineDebugLocation InlineHere(CGF, *BaseClass);
1722
0
      EmitSanitizerDtorFieldsCallback(CGF, Addr.getPointer(),
1723
0
                                      BaseSize.getQuantity());
1724
1725
      // Prevent the current stack frame from disappearing from the stack trace.
1726
0
      CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1727
0
    }
1728
  };
1729
1730
  class SanitizeDtorFieldRange final : public EHScopeStack::Cleanup {
1731
    const CXXDestructorDecl *Dtor;
1732
    unsigned StartIndex;
1733
    unsigned EndIndex;
1734
1735
  public:
1736
    SanitizeDtorFieldRange(const CXXDestructorDecl *Dtor, unsigned StartIndex,
1737
                           unsigned EndIndex)
1738
0
        : Dtor(Dtor), StartIndex(StartIndex), EndIndex(EndIndex) {}
1739
1740
    // Generate function call for handling object poisoning.
1741
    // Disables tail call elimination, to prevent the current stack frame
1742
    // from disappearing from the stack trace.
1743
0
    void Emit(CodeGenFunction &CGF, Flags flags) override {
1744
0
      const ASTContext &Context = CGF.getContext();
1745
0
      const ASTRecordLayout &Layout =
1746
0
          Context.getASTRecordLayout(Dtor->getParent());
1747
1748
      // It's a first trivial field so it should be at the begining of a char,
1749
      // still round up start offset just in case.
1750
0
      CharUnits PoisonStart = Context.toCharUnitsFromBits(
1751
0
          Layout.getFieldOffset(StartIndex) + Context.getCharWidth() - 1);
1752
0
      llvm::ConstantInt *OffsetSizePtr =
1753
0
          llvm::ConstantInt::get(CGF.SizeTy, PoisonStart.getQuantity());
1754
1755
0
      llvm::Value *OffsetPtr =
1756
0
          CGF.Builder.CreateGEP(CGF.Int8Ty, CGF.LoadCXXThis(), OffsetSizePtr);
1757
1758
0
      CharUnits PoisonEnd;
1759
0
      if (EndIndex >= Layout.getFieldCount()) {
1760
0
        PoisonEnd = Layout.getNonVirtualSize();
1761
0
      } else {
1762
0
        PoisonEnd =
1763
0
            Context.toCharUnitsFromBits(Layout.getFieldOffset(EndIndex));
1764
0
      }
1765
0
      CharUnits PoisonSize = PoisonEnd - PoisonStart;
1766
0
      if (!PoisonSize.isPositive())
1767
0
        return;
1768
1769
      // Use the top field declaration location as inline DebugLocation.
1770
0
      DeclAsInlineDebugLocation InlineHere(
1771
0
          CGF, **std::next(Dtor->getParent()->field_begin(), StartIndex));
1772
0
      EmitSanitizerDtorFieldsCallback(CGF, OffsetPtr, PoisonSize.getQuantity());
1773
1774
      // Prevent the current stack frame from disappearing from the stack trace.
1775
0
      CGF.CurFn->addFnAttr("disable-tail-calls", "true");
1776
0
    }
1777
  };
1778
1779
 class SanitizeDtorVTable final : public EHScopeStack::Cleanup {
1780
    const CXXDestructorDecl *Dtor;
1781
1782
  public:
1783
0
    SanitizeDtorVTable(const CXXDestructorDecl *Dtor) : Dtor(Dtor) {}
1784
1785
    // Generate function call for handling vtable pointer poisoning.
1786
0
    void Emit(CodeGenFunction &CGF, Flags flags) override {
1787
0
      assert(Dtor->getParent()->isDynamicClass());
1788
0
      (void)Dtor;
1789
      // Poison vtable and vtable ptr if they exist for this class.
1790
0
      llvm::Value *VTablePtr = CGF.LoadCXXThis();
1791
1792
      // Pass in void pointer and size of region as arguments to runtime
1793
      // function
1794
0
      EmitSanitizerDtorCallback(CGF, "__sanitizer_dtor_callback_vptr",
1795
0
                                VTablePtr);
1796
0
    }
1797
 };
1798
1799
 class SanitizeDtorCleanupBuilder {
1800
   ASTContext &Context;
1801
   EHScopeStack &EHStack;
1802
   const CXXDestructorDecl *DD;
1803
   std::optional<unsigned> StartIndex;
1804
1805
 public:
1806
   SanitizeDtorCleanupBuilder(ASTContext &Context, EHScopeStack &EHStack,
1807
                              const CXXDestructorDecl *DD)
1808
0
       : Context(Context), EHStack(EHStack), DD(DD), StartIndex(std::nullopt) {}
1809
0
   void PushCleanupForField(const FieldDecl *Field) {
1810
0
     if (Field->isZeroSize(Context))
1811
0
       return;
1812
0
     unsigned FieldIndex = Field->getFieldIndex();
1813
0
     if (FieldHasTrivialDestructorBody(Context, Field)) {
1814
0
       if (!StartIndex)
1815
0
         StartIndex = FieldIndex;
1816
0
     } else if (StartIndex) {
1817
0
       EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1818
0
                                                   *StartIndex, FieldIndex);
1819
0
       StartIndex = std::nullopt;
1820
0
     }
1821
0
   }
1822
0
   void End() {
1823
0
     if (StartIndex)
1824
0
       EHStack.pushCleanup<SanitizeDtorFieldRange>(NormalAndEHCleanup, DD,
1825
0
                                                   *StartIndex, -1);
1826
0
   }
1827
 };
1828
} // end anonymous namespace
1829
1830
/// Emit all code that comes at the end of class's
1831
/// destructor. This is to call destructors on members and base classes
1832
/// in reverse order of their construction.
1833
///
1834
/// For a deleting destructor, this also handles the case where a destroying
1835
/// operator delete completely overrides the definition.
1836
void CodeGenFunction::EnterDtorCleanups(const CXXDestructorDecl *DD,
1837
0
                                        CXXDtorType DtorType) {
1838
0
  assert((!DD->isTrivial() || DD->hasAttr<DLLExportAttr>()) &&
1839
0
         "Should not emit dtor epilogue for non-exported trivial dtor!");
1840
1841
  // The deleting-destructor phase just needs to call the appropriate
1842
  // operator delete that Sema picked up.
1843
0
  if (DtorType == Dtor_Deleting) {
1844
0
    assert(DD->getOperatorDelete() &&
1845
0
           "operator delete missing - EnterDtorCleanups");
1846
0
    if (CXXStructorImplicitParamValue) {
1847
      // If there is an implicit param to the deleting dtor, it's a boolean
1848
      // telling whether this is a deleting destructor.
1849
0
      if (DD->getOperatorDelete()->isDestroyingOperatorDelete())
1850
0
        EmitConditionalDtorDeleteCall(*this, CXXStructorImplicitParamValue,
1851
0
                                      /*ReturnAfterDelete*/true);
1852
0
      else
1853
0
        EHStack.pushCleanup<CallDtorDeleteConditional>(
1854
0
            NormalAndEHCleanup, CXXStructorImplicitParamValue);
1855
0
    } else {
1856
0
      if (DD->getOperatorDelete()->isDestroyingOperatorDelete()) {
1857
0
        const CXXRecordDecl *ClassDecl = DD->getParent();
1858
0
        EmitDeleteCall(DD->getOperatorDelete(),
1859
0
                       LoadThisForDtorDelete(*this, DD),
1860
0
                       getContext().getTagDeclType(ClassDecl));
1861
0
        EmitBranchThroughCleanup(ReturnBlock);
1862
0
      } else {
1863
0
        EHStack.pushCleanup<CallDtorDelete>(NormalAndEHCleanup);
1864
0
      }
1865
0
    }
1866
0
    return;
1867
0
  }
1868
1869
0
  const CXXRecordDecl *ClassDecl = DD->getParent();
1870
1871
  // Unions have no bases and do not call field destructors.
1872
0
  if (ClassDecl->isUnion())
1873
0
    return;
1874
1875
  // The complete-destructor phase just destructs all the virtual bases.
1876
0
  if (DtorType == Dtor_Complete) {
1877
    // Poison the vtable pointer such that access after the base
1878
    // and member destructors are invoked is invalid.
1879
0
    if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1880
0
        SanOpts.has(SanitizerKind::Memory) && ClassDecl->getNumVBases() &&
1881
0
        ClassDecl->isPolymorphic())
1882
0
      EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1883
1884
    // We push them in the forward order so that they'll be popped in
1885
    // the reverse order.
1886
0
    for (const auto &Base : ClassDecl->vbases()) {
1887
0
      auto *BaseClassDecl =
1888
0
          cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl());
1889
1890
0
      if (BaseClassDecl->hasTrivialDestructor()) {
1891
        // Under SanitizeMemoryUseAfterDtor, poison the trivial base class
1892
        // memory. For non-trival base classes the same is done in the class
1893
        // destructor.
1894
0
        if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1895
0
            SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1896
0
          EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1897
0
                                                       BaseClassDecl,
1898
0
                                                       /*BaseIsVirtual*/ true);
1899
0
      } else {
1900
0
        EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1901
0
                                          /*BaseIsVirtual*/ true);
1902
0
      }
1903
0
    }
1904
1905
0
    return;
1906
0
  }
1907
1908
0
  assert(DtorType == Dtor_Base);
1909
  // Poison the vtable pointer if it has no virtual bases, but inherits
1910
  // virtual functions.
1911
0
  if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1912
0
      SanOpts.has(SanitizerKind::Memory) && !ClassDecl->getNumVBases() &&
1913
0
      ClassDecl->isPolymorphic())
1914
0
    EHStack.pushCleanup<SanitizeDtorVTable>(NormalAndEHCleanup, DD);
1915
1916
  // Destroy non-virtual bases.
1917
0
  for (const auto &Base : ClassDecl->bases()) {
1918
    // Ignore virtual bases.
1919
0
    if (Base.isVirtual())
1920
0
      continue;
1921
1922
0
    CXXRecordDecl *BaseClassDecl = Base.getType()->getAsCXXRecordDecl();
1923
1924
0
    if (BaseClassDecl->hasTrivialDestructor()) {
1925
0
      if (CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1926
0
          SanOpts.has(SanitizerKind::Memory) && !BaseClassDecl->isEmpty())
1927
0
        EHStack.pushCleanup<SanitizeDtorTrivialBase>(NormalAndEHCleanup,
1928
0
                                                     BaseClassDecl,
1929
0
                                                     /*BaseIsVirtual*/ false);
1930
0
    } else {
1931
0
      EHStack.pushCleanup<CallBaseDtor>(NormalAndEHCleanup, BaseClassDecl,
1932
0
                                        /*BaseIsVirtual*/ false);
1933
0
    }
1934
0
  }
1935
1936
  // Poison fields such that access after their destructors are
1937
  // invoked, and before the base class destructor runs, is invalid.
1938
0
  bool SanitizeFields = CGM.getCodeGenOpts().SanitizeMemoryUseAfterDtor &&
1939
0
                        SanOpts.has(SanitizerKind::Memory);
1940
0
  SanitizeDtorCleanupBuilder SanitizeBuilder(getContext(), EHStack, DD);
1941
1942
  // Destroy direct fields.
1943
0
  for (const auto *Field : ClassDecl->fields()) {
1944
0
    if (SanitizeFields)
1945
0
      SanitizeBuilder.PushCleanupForField(Field);
1946
1947
0
    QualType type = Field->getType();
1948
0
    QualType::DestructionKind dtorKind = type.isDestructedType();
1949
0
    if (!dtorKind)
1950
0
      continue;
1951
1952
    // Anonymous union members do not have their destructors called.
1953
0
    const RecordType *RT = type->getAsUnionType();
1954
0
    if (RT && RT->getDecl()->isAnonymousStructOrUnion())
1955
0
      continue;
1956
1957
0
    CleanupKind cleanupKind = getCleanupKind(dtorKind);
1958
0
    EHStack.pushCleanup<DestroyField>(
1959
0
        cleanupKind, Field, getDestroyer(dtorKind), cleanupKind & EHCleanup);
1960
0
  }
1961
1962
0
  if (SanitizeFields)
1963
0
    SanitizeBuilder.End();
1964
0
}
1965
1966
/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1967
/// constructor for each of several members of an array.
1968
///
1969
/// \param ctor the constructor to call for each element
1970
/// \param arrayType the type of the array to initialize
1971
/// \param arrayBegin an arrayType*
1972
/// \param zeroInitialize true if each element should be
1973
///   zero-initialized before it is constructed
1974
void CodeGenFunction::EmitCXXAggrConstructorCall(
1975
    const CXXConstructorDecl *ctor, const ArrayType *arrayType,
1976
    Address arrayBegin, const CXXConstructExpr *E, bool NewPointerIsChecked,
1977
0
    bool zeroInitialize) {
1978
0
  QualType elementType;
1979
0
  llvm::Value *numElements =
1980
0
    emitArrayLength(arrayType, elementType, arrayBegin);
1981
1982
0
  EmitCXXAggrConstructorCall(ctor, numElements, arrayBegin, E,
1983
0
                             NewPointerIsChecked, zeroInitialize);
1984
0
}
1985
1986
/// EmitCXXAggrConstructorCall - Emit a loop to call a particular
1987
/// constructor for each of several members of an array.
1988
///
1989
/// \param ctor the constructor to call for each element
1990
/// \param numElements the number of elements in the array;
1991
///   may be zero
1992
/// \param arrayBase a T*, where T is the type constructed by ctor
1993
/// \param zeroInitialize true if each element should be
1994
///   zero-initialized before it is constructed
1995
void CodeGenFunction::EmitCXXAggrConstructorCall(const CXXConstructorDecl *ctor,
1996
                                                 llvm::Value *numElements,
1997
                                                 Address arrayBase,
1998
                                                 const CXXConstructExpr *E,
1999
                                                 bool NewPointerIsChecked,
2000
0
                                                 bool zeroInitialize) {
2001
  // It's legal for numElements to be zero.  This can happen both
2002
  // dynamically, because x can be zero in 'new A[x]', and statically,
2003
  // because of GCC extensions that permit zero-length arrays.  There
2004
  // are probably legitimate places where we could assume that this
2005
  // doesn't happen, but it's not clear that it's worth it.
2006
0
  llvm::BranchInst *zeroCheckBranch = nullptr;
2007
2008
  // Optimize for a constant count.
2009
0
  llvm::ConstantInt *constantCount
2010
0
    = dyn_cast<llvm::ConstantInt>(numElements);
2011
0
  if (constantCount) {
2012
    // Just skip out if the constant count is zero.
2013
0
    if (constantCount->isZero()) return;
2014
2015
  // Otherwise, emit the check.
2016
0
  } else {
2017
0
    llvm::BasicBlock *loopBB = createBasicBlock("new.ctorloop");
2018
0
    llvm::Value *iszero = Builder.CreateIsNull(numElements, "isempty");
2019
0
    zeroCheckBranch = Builder.CreateCondBr(iszero, loopBB, loopBB);
2020
0
    EmitBlock(loopBB);
2021
0
  }
2022
2023
  // Find the end of the array.
2024
0
  llvm::Type *elementType = arrayBase.getElementType();
2025
0
  llvm::Value *arrayBegin = arrayBase.getPointer();
2026
0
  llvm::Value *arrayEnd = Builder.CreateInBoundsGEP(
2027
0
      elementType, arrayBegin, numElements, "arrayctor.end");
2028
2029
  // Enter the loop, setting up a phi for the current location to initialize.
2030
0
  llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
2031
0
  llvm::BasicBlock *loopBB = createBasicBlock("arrayctor.loop");
2032
0
  EmitBlock(loopBB);
2033
0
  llvm::PHINode *cur = Builder.CreatePHI(arrayBegin->getType(), 2,
2034
0
                                         "arrayctor.cur");
2035
0
  cur->addIncoming(arrayBegin, entryBB);
2036
2037
  // Inside the loop body, emit the constructor call on the array element.
2038
2039
  // The alignment of the base, adjusted by the size of a single element,
2040
  // provides a conservative estimate of the alignment of every element.
2041
  // (This assumes we never start tracking offsetted alignments.)
2042
  //
2043
  // Note that these are complete objects and so we don't need to
2044
  // use the non-virtual size or alignment.
2045
0
  QualType type = getContext().getTypeDeclType(ctor->getParent());
2046
0
  CharUnits eltAlignment =
2047
0
    arrayBase.getAlignment()
2048
0
             .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
2049
0
  Address curAddr = Address(cur, elementType, eltAlignment);
2050
2051
  // Zero initialize the storage, if requested.
2052
0
  if (zeroInitialize)
2053
0
    EmitNullInitialization(curAddr, type);
2054
2055
  // C++ [class.temporary]p4:
2056
  // There are two contexts in which temporaries are destroyed at a different
2057
  // point than the end of the full-expression. The first context is when a
2058
  // default constructor is called to initialize an element of an array.
2059
  // If the constructor has one or more default arguments, the destruction of
2060
  // every temporary created in a default argument expression is sequenced
2061
  // before the construction of the next array element, if any.
2062
2063
0
  {
2064
0
    RunCleanupsScope Scope(*this);
2065
2066
    // Evaluate the constructor and its arguments in a regular
2067
    // partial-destroy cleanup.
2068
0
    if (getLangOpts().Exceptions &&
2069
0
        !ctor->getParent()->hasTrivialDestructor()) {
2070
0
      Destroyer *destroyer = destroyCXXObject;
2071
0
      pushRegularPartialArrayCleanup(arrayBegin, cur, type, eltAlignment,
2072
0
                                     *destroyer);
2073
0
    }
2074
0
    auto currAVS = AggValueSlot::forAddr(
2075
0
        curAddr, type.getQualifiers(), AggValueSlot::IsDestructed,
2076
0
        AggValueSlot::DoesNotNeedGCBarriers, AggValueSlot::IsNotAliased,
2077
0
        AggValueSlot::DoesNotOverlap, AggValueSlot::IsNotZeroed,
2078
0
        NewPointerIsChecked ? AggValueSlot::IsSanitizerChecked
2079
0
                            : AggValueSlot::IsNotSanitizerChecked);
2080
0
    EmitCXXConstructorCall(ctor, Ctor_Complete, /*ForVirtualBase=*/false,
2081
0
                           /*Delegating=*/false, currAVS, E);
2082
0
  }
2083
2084
  // Go to the next element.
2085
0
  llvm::Value *next = Builder.CreateInBoundsGEP(
2086
0
      elementType, cur, llvm::ConstantInt::get(SizeTy, 1), "arrayctor.next");
2087
0
  cur->addIncoming(next, Builder.GetInsertBlock());
2088
2089
  // Check whether that's the end of the loop.
2090
0
  llvm::Value *done = Builder.CreateICmpEQ(next, arrayEnd, "arrayctor.done");
2091
0
  llvm::BasicBlock *contBB = createBasicBlock("arrayctor.cont");
2092
0
  Builder.CreateCondBr(done, contBB, loopBB);
2093
2094
  // Patch the earlier check to skip over the loop.
2095
0
  if (zeroCheckBranch) zeroCheckBranch->setSuccessor(0, contBB);
2096
2097
0
  EmitBlock(contBB);
2098
0
}
2099
2100
void CodeGenFunction::destroyCXXObject(CodeGenFunction &CGF,
2101
                                       Address addr,
2102
0
                                       QualType type) {
2103
0
  const RecordType *rtype = type->castAs<RecordType>();
2104
0
  const CXXRecordDecl *record = cast<CXXRecordDecl>(rtype->getDecl());
2105
0
  const CXXDestructorDecl *dtor = record->getDestructor();
2106
0
  assert(!dtor->isTrivial());
2107
0
  CGF.EmitCXXDestructorCall(dtor, Dtor_Complete, /*for vbase*/ false,
2108
0
                            /*Delegating=*/false, addr, type);
2109
0
}
2110
2111
void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2112
                                             CXXCtorType Type,
2113
                                             bool ForVirtualBase,
2114
                                             bool Delegating,
2115
                                             AggValueSlot ThisAVS,
2116
0
                                             const CXXConstructExpr *E) {
2117
0
  CallArgList Args;
2118
0
  Address This = ThisAVS.getAddress();
2119
0
  LangAS SlotAS = ThisAVS.getQualifiers().getAddressSpace();
2120
0
  LangAS ThisAS = D->getFunctionObjectParameterType().getAddressSpace();
2121
0
  llvm::Value *ThisPtr = This.getPointer();
2122
2123
0
  if (SlotAS != ThisAS) {
2124
0
    unsigned TargetThisAS = getContext().getTargetAddressSpace(ThisAS);
2125
0
    llvm::Type *NewType =
2126
0
        llvm::PointerType::get(getLLVMContext(), TargetThisAS);
2127
0
    ThisPtr = getTargetHooks().performAddrSpaceCast(*this, This.getPointer(),
2128
0
                                                    ThisAS, SlotAS, NewType);
2129
0
  }
2130
2131
  // Push the this ptr.
2132
0
  Args.add(RValue::get(ThisPtr), D->getThisType());
2133
2134
  // If this is a trivial constructor, emit a memcpy now before we lose
2135
  // the alignment information on the argument.
2136
  // FIXME: It would be better to preserve alignment information into CallArg.
2137
0
  if (isMemcpyEquivalentSpecialMember(D)) {
2138
0
    assert(E->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
2139
2140
0
    const Expr *Arg = E->getArg(0);
2141
0
    LValue Src = EmitLValue(Arg);
2142
0
    QualType DestTy = getContext().getTypeDeclType(D->getParent());
2143
0
    LValue Dest = MakeAddrLValue(This, DestTy);
2144
0
    EmitAggregateCopyCtor(Dest, Src, ThisAVS.mayOverlap());
2145
0
    return;
2146
0
  }
2147
2148
  // Add the rest of the user-supplied arguments.
2149
0
  const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2150
0
  EvaluationOrder Order = E->isListInitialization()
2151
0
                              ? EvaluationOrder::ForceLeftToRight
2152
0
                              : EvaluationOrder::Default;
2153
0
  EmitCallArgs(Args, FPT, E->arguments(), E->getConstructor(),
2154
0
               /*ParamsToSkip*/ 0, Order);
2155
2156
0
  EmitCXXConstructorCall(D, Type, ForVirtualBase, Delegating, This, Args,
2157
0
                         ThisAVS.mayOverlap(), E->getExprLoc(),
2158
0
                         ThisAVS.isSanitizerChecked());
2159
0
}
2160
2161
static bool canEmitDelegateCallArgs(CodeGenFunction &CGF,
2162
                                    const CXXConstructorDecl *Ctor,
2163
0
                                    CXXCtorType Type, CallArgList &Args) {
2164
  // We can't forward a variadic call.
2165
0
  if (Ctor->isVariadic())
2166
0
    return false;
2167
2168
0
  if (CGF.getTarget().getCXXABI().areArgsDestroyedLeftToRightInCallee()) {
2169
    // If the parameters are callee-cleanup, it's not safe to forward.
2170
0
    for (auto *P : Ctor->parameters())
2171
0
      if (P->needsDestruction(CGF.getContext()))
2172
0
        return false;
2173
2174
    // Likewise if they're inalloca.
2175
0
    const CGFunctionInfo &Info =
2176
0
        CGF.CGM.getTypes().arrangeCXXConstructorCall(Args, Ctor, Type, 0, 0);
2177
0
    if (Info.usesInAlloca())
2178
0
      return false;
2179
0
  }
2180
2181
  // Anything else should be OK.
2182
0
  return true;
2183
0
}
2184
2185
void CodeGenFunction::EmitCXXConstructorCall(const CXXConstructorDecl *D,
2186
                                             CXXCtorType Type,
2187
                                             bool ForVirtualBase,
2188
                                             bool Delegating,
2189
                                             Address This,
2190
                                             CallArgList &Args,
2191
                                             AggValueSlot::Overlap_t Overlap,
2192
                                             SourceLocation Loc,
2193
0
                                             bool NewPointerIsChecked) {
2194
0
  const CXXRecordDecl *ClassDecl = D->getParent();
2195
2196
0
  if (!NewPointerIsChecked)
2197
0
    EmitTypeCheck(CodeGenFunction::TCK_ConstructorCall, Loc, This.getPointer(),
2198
0
                  getContext().getRecordType(ClassDecl), CharUnits::Zero());
2199
2200
0
  if (D->isTrivial() && D->isDefaultConstructor()) {
2201
0
    assert(Args.size() == 1 && "trivial default ctor with args");
2202
0
    return;
2203
0
  }
2204
2205
  // If this is a trivial constructor, just emit what's needed. If this is a
2206
  // union copy constructor, we must emit a memcpy, because the AST does not
2207
  // model that copy.
2208
0
  if (isMemcpyEquivalentSpecialMember(D)) {
2209
0
    assert(Args.size() == 2 && "unexpected argcount for trivial ctor");
2210
2211
0
    QualType SrcTy = D->getParamDecl(0)->getType().getNonReferenceType();
2212
0
    Address Src = Address(Args[1].getRValue(*this).getScalarVal(), ConvertTypeForMem(SrcTy),
2213
0
                                      CGM.getNaturalTypeAlignment(SrcTy));
2214
0
    LValue SrcLVal = MakeAddrLValue(Src, SrcTy);
2215
0
    QualType DestTy = getContext().getTypeDeclType(ClassDecl);
2216
0
    LValue DestLVal = MakeAddrLValue(This, DestTy);
2217
0
    EmitAggregateCopyCtor(DestLVal, SrcLVal, Overlap);
2218
0
    return;
2219
0
  }
2220
2221
0
  bool PassPrototypeArgs = true;
2222
  // Check whether we can actually emit the constructor before trying to do so.
2223
0
  if (auto Inherited = D->getInheritedConstructor()) {
2224
0
    PassPrototypeArgs = getTypes().inheritingCtorHasParams(Inherited, Type);
2225
0
    if (PassPrototypeArgs && !canEmitDelegateCallArgs(*this, D, Type, Args)) {
2226
0
      EmitInlinedInheritingCXXConstructorCall(D, Type, ForVirtualBase,
2227
0
                                              Delegating, Args);
2228
0
      return;
2229
0
    }
2230
0
  }
2231
2232
  // Insert any ABI-specific implicit constructor arguments.
2233
0
  CGCXXABI::AddedStructorArgCounts ExtraArgs =
2234
0
      CGM.getCXXABI().addImplicitConstructorArgs(*this, D, Type, ForVirtualBase,
2235
0
                                                 Delegating, Args);
2236
2237
  // Emit the call.
2238
0
  llvm::Constant *CalleePtr = CGM.getAddrOfCXXStructor(GlobalDecl(D, Type));
2239
0
  const CGFunctionInfo &Info = CGM.getTypes().arrangeCXXConstructorCall(
2240
0
      Args, D, Type, ExtraArgs.Prefix, ExtraArgs.Suffix, PassPrototypeArgs);
2241
0
  CGCallee Callee = CGCallee::forDirect(CalleePtr, GlobalDecl(D, Type));
2242
0
  EmitCall(Info, Callee, ReturnValueSlot(), Args, nullptr, false, Loc);
2243
2244
  // Generate vtable assumptions if we're constructing a complete object
2245
  // with a vtable.  We don't do this for base subobjects for two reasons:
2246
  // first, it's incorrect for classes with virtual bases, and second, we're
2247
  // about to overwrite the vptrs anyway.
2248
  // We also have to make sure if we can refer to vtable:
2249
  // - Otherwise we can refer to vtable if it's safe to speculatively emit.
2250
  // FIXME: If vtable is used by ctor/dtor, or if vtable is external and we are
2251
  // sure that definition of vtable is not hidden,
2252
  // then we are always safe to refer to it.
2253
  // FIXME: It looks like InstCombine is very inefficient on dealing with
2254
  // assumes. Make assumption loads require -fstrict-vtable-pointers temporarily.
2255
0
  if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2256
0
      ClassDecl->isDynamicClass() && Type != Ctor_Base &&
2257
0
      CGM.getCXXABI().canSpeculativelyEmitVTable(ClassDecl) &&
2258
0
      CGM.getCodeGenOpts().StrictVTablePointers)
2259
0
    EmitVTableAssumptionLoads(ClassDecl, This);
2260
0
}
2261
2262
void CodeGenFunction::EmitInheritedCXXConstructorCall(
2263
    const CXXConstructorDecl *D, bool ForVirtualBase, Address This,
2264
0
    bool InheritedFromVBase, const CXXInheritedCtorInitExpr *E) {
2265
0
  CallArgList Args;
2266
0
  CallArg ThisArg(RValue::get(This.getPointer()), D->getThisType());
2267
2268
  // Forward the parameters.
2269
0
  if (InheritedFromVBase &&
2270
0
      CGM.getTarget().getCXXABI().hasConstructorVariants()) {
2271
    // Nothing to do; this construction is not responsible for constructing
2272
    // the base class containing the inherited constructor.
2273
    // FIXME: Can we just pass undef's for the remaining arguments if we don't
2274
    // have constructor variants?
2275
0
    Args.push_back(ThisArg);
2276
0
  } else if (!CXXInheritedCtorInitExprArgs.empty()) {
2277
    // The inheriting constructor was inlined; just inject its arguments.
2278
0
    assert(CXXInheritedCtorInitExprArgs.size() >= D->getNumParams() &&
2279
0
           "wrong number of parameters for inherited constructor call");
2280
0
    Args = CXXInheritedCtorInitExprArgs;
2281
0
    Args[0] = ThisArg;
2282
0
  } else {
2283
    // The inheriting constructor was not inlined. Emit delegating arguments.
2284
0
    Args.push_back(ThisArg);
2285
0
    const auto *OuterCtor = cast<CXXConstructorDecl>(CurCodeDecl);
2286
0
    assert(OuterCtor->getNumParams() == D->getNumParams());
2287
0
    assert(!OuterCtor->isVariadic() && "should have been inlined");
2288
2289
0
    for (const auto *Param : OuterCtor->parameters()) {
2290
0
      assert(getContext().hasSameUnqualifiedType(
2291
0
          OuterCtor->getParamDecl(Param->getFunctionScopeIndex())->getType(),
2292
0
          Param->getType()));
2293
0
      EmitDelegateCallArg(Args, Param, E->getLocation());
2294
2295
      // Forward __attribute__(pass_object_size).
2296
0
      if (Param->hasAttr<PassObjectSizeAttr>()) {
2297
0
        auto *POSParam = SizeArguments[Param];
2298
0
        assert(POSParam && "missing pass_object_size value for forwarding");
2299
0
        EmitDelegateCallArg(Args, POSParam, E->getLocation());
2300
0
      }
2301
0
    }
2302
0
  }
2303
2304
0
  EmitCXXConstructorCall(D, Ctor_Base, ForVirtualBase, /*Delegating*/false,
2305
0
                         This, Args, AggValueSlot::MayOverlap,
2306
0
                         E->getLocation(), /*NewPointerIsChecked*/true);
2307
0
}
2308
2309
void CodeGenFunction::EmitInlinedInheritingCXXConstructorCall(
2310
    const CXXConstructorDecl *Ctor, CXXCtorType CtorType, bool ForVirtualBase,
2311
0
    bool Delegating, CallArgList &Args) {
2312
0
  GlobalDecl GD(Ctor, CtorType);
2313
0
  InlinedInheritingConstructorScope Scope(*this, GD);
2314
0
  ApplyInlineDebugLocation DebugScope(*this, GD);
2315
0
  RunCleanupsScope RunCleanups(*this);
2316
2317
  // Save the arguments to be passed to the inherited constructor.
2318
0
  CXXInheritedCtorInitExprArgs = Args;
2319
2320
0
  FunctionArgList Params;
2321
0
  QualType RetType = BuildFunctionArgList(CurGD, Params);
2322
0
  FnRetTy = RetType;
2323
2324
  // Insert any ABI-specific implicit constructor arguments.
2325
0
  CGM.getCXXABI().addImplicitConstructorArgs(*this, Ctor, CtorType,
2326
0
                                             ForVirtualBase, Delegating, Args);
2327
2328
  // Emit a simplified prolog. We only need to emit the implicit params.
2329
0
  assert(Args.size() >= Params.size() && "too few arguments for call");
2330
0
  for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2331
0
    if (I < Params.size() && isa<ImplicitParamDecl>(Params[I])) {
2332
0
      const RValue &RV = Args[I].getRValue(*this);
2333
0
      assert(!RV.isComplex() && "complex indirect params not supported");
2334
0
      ParamValue Val = RV.isScalar()
2335
0
                           ? ParamValue::forDirect(RV.getScalarVal())
2336
0
                           : ParamValue::forIndirect(RV.getAggregateAddress());
2337
0
      EmitParmDecl(*Params[I], Val, I + 1);
2338
0
    }
2339
0
  }
2340
2341
  // Create a return value slot if the ABI implementation wants one.
2342
  // FIXME: This is dumb, we should ask the ABI not to try to set the return
2343
  // value instead.
2344
0
  if (!RetType->isVoidType())
2345
0
    ReturnValue = CreateIRTemp(RetType, "retval.inhctor");
2346
2347
0
  CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
2348
0
  CXXThisValue = CXXABIThisValue;
2349
2350
  // Directly emit the constructor initializers.
2351
0
  EmitCtorPrologue(Ctor, CtorType, Params);
2352
0
}
2353
2354
0
void CodeGenFunction::EmitVTableAssumptionLoad(const VPtr &Vptr, Address This) {
2355
0
  llvm::Value *VTableGlobal =
2356
0
      CGM.getCXXABI().getVTableAddressPoint(Vptr.Base, Vptr.VTableClass);
2357
0
  if (!VTableGlobal)
2358
0
    return;
2359
2360
  // We can just use the base offset in the complete class.
2361
0
  CharUnits NonVirtualOffset = Vptr.Base.getBaseOffset();
2362
2363
0
  if (!NonVirtualOffset.isZero())
2364
0
    This =
2365
0
        ApplyNonVirtualAndVirtualOffset(*this, This, NonVirtualOffset, nullptr,
2366
0
                                        Vptr.VTableClass, Vptr.NearestVBase);
2367
2368
0
  llvm::Value *VPtrValue =
2369
0
      GetVTablePtr(This, VTableGlobal->getType(), Vptr.VTableClass);
2370
0
  llvm::Value *Cmp =
2371
0
      Builder.CreateICmpEQ(VPtrValue, VTableGlobal, "cmp.vtables");
2372
0
  Builder.CreateAssumption(Cmp);
2373
0
}
2374
2375
void CodeGenFunction::EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl,
2376
0
                                                Address This) {
2377
0
  if (CGM.getCXXABI().doStructorsInitializeVPtrs(ClassDecl))
2378
0
    for (const VPtr &Vptr : getVTablePointers(ClassDecl))
2379
0
      EmitVTableAssumptionLoad(Vptr, This);
2380
0
}
2381
2382
void
2383
CodeGenFunction::EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2384
                                                Address This, Address Src,
2385
0
                                                const CXXConstructExpr *E) {
2386
0
  const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
2387
2388
0
  CallArgList Args;
2389
2390
  // Push the this ptr.
2391
0
  Args.add(RValue::get(This.getPointer()), D->getThisType());
2392
2393
  // Push the src ptr.
2394
0
  QualType QT = *(FPT->param_type_begin());
2395
0
  llvm::Type *t = CGM.getTypes().ConvertType(QT);
2396
0
  llvm::Value *SrcVal = Builder.CreateBitCast(Src.getPointer(), t);
2397
0
  Args.add(RValue::get(SrcVal), QT);
2398
2399
  // Skip over first argument (Src).
2400
0
  EmitCallArgs(Args, FPT, drop_begin(E->arguments(), 1), E->getConstructor(),
2401
0
               /*ParamsToSkip*/ 1);
2402
2403
0
  EmitCXXConstructorCall(D, Ctor_Complete, /*ForVirtualBase*/false,
2404
0
                         /*Delegating*/false, This, Args,
2405
0
                         AggValueSlot::MayOverlap, E->getExprLoc(),
2406
0
                         /*NewPointerIsChecked*/false);
2407
0
}
2408
2409
void
2410
CodeGenFunction::EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2411
                                                CXXCtorType CtorType,
2412
                                                const FunctionArgList &Args,
2413
0
                                                SourceLocation Loc) {
2414
0
  CallArgList DelegateArgs;
2415
2416
0
  FunctionArgList::const_iterator I = Args.begin(), E = Args.end();
2417
0
  assert(I != E && "no parameters to constructor");
2418
2419
  // this
2420
0
  Address This = LoadCXXThisAddress();
2421
0
  DelegateArgs.add(RValue::get(This.getPointer()), (*I)->getType());
2422
0
  ++I;
2423
2424
  // FIXME: The location of the VTT parameter in the parameter list is
2425
  // specific to the Itanium ABI and shouldn't be hardcoded here.
2426
0
  if (CGM.getCXXABI().NeedsVTTParameter(CurGD)) {
2427
0
    assert(I != E && "cannot skip vtt parameter, already done with args");
2428
0
    assert((*I)->getType()->isPointerType() &&
2429
0
           "skipping parameter not of vtt type");
2430
0
    ++I;
2431
0
  }
2432
2433
  // Explicit arguments.
2434
0
  for (; I != E; ++I) {
2435
0
    const VarDecl *param = *I;
2436
    // FIXME: per-argument source location
2437
0
    EmitDelegateCallArg(DelegateArgs, param, Loc);
2438
0
  }
2439
2440
0
  EmitCXXConstructorCall(Ctor, CtorType, /*ForVirtualBase=*/false,
2441
0
                         /*Delegating=*/true, This, DelegateArgs,
2442
0
                         AggValueSlot::MayOverlap, Loc,
2443
0
                         /*NewPointerIsChecked=*/true);
2444
0
}
2445
2446
namespace {
2447
  struct CallDelegatingCtorDtor final : EHScopeStack::Cleanup {
2448
    const CXXDestructorDecl *Dtor;
2449
    Address Addr;
2450
    CXXDtorType Type;
2451
2452
    CallDelegatingCtorDtor(const CXXDestructorDecl *D, Address Addr,
2453
                           CXXDtorType Type)
2454
0
      : Dtor(D), Addr(Addr), Type(Type) {}
2455
2456
0
    void Emit(CodeGenFunction &CGF, Flags flags) override {
2457
      // We are calling the destructor from within the constructor.
2458
      // Therefore, "this" should have the expected type.
2459
0
      QualType ThisTy = Dtor->getFunctionObjectParameterType();
2460
0
      CGF.EmitCXXDestructorCall(Dtor, Type, /*ForVirtualBase=*/false,
2461
0
                                /*Delegating=*/true, Addr, ThisTy);
2462
0
    }
2463
  };
2464
} // end anonymous namespace
2465
2466
void
2467
CodeGenFunction::EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2468
0
                                                  const FunctionArgList &Args) {
2469
0
  assert(Ctor->isDelegatingConstructor());
2470
2471
0
  Address ThisPtr = LoadCXXThisAddress();
2472
2473
0
  AggValueSlot AggSlot =
2474
0
    AggValueSlot::forAddr(ThisPtr, Qualifiers(),
2475
0
                          AggValueSlot::IsDestructed,
2476
0
                          AggValueSlot::DoesNotNeedGCBarriers,
2477
0
                          AggValueSlot::IsNotAliased,
2478
0
                          AggValueSlot::MayOverlap,
2479
0
                          AggValueSlot::IsNotZeroed,
2480
                          // Checks are made by the code that calls constructor.
2481
0
                          AggValueSlot::IsSanitizerChecked);
2482
2483
0
  EmitAggExpr(Ctor->init_begin()[0]->getInit(), AggSlot);
2484
2485
0
  const CXXRecordDecl *ClassDecl = Ctor->getParent();
2486
0
  if (CGM.getLangOpts().Exceptions && !ClassDecl->hasTrivialDestructor()) {
2487
0
    CXXDtorType Type =
2488
0
      CurGD.getCtorType() == Ctor_Complete ? Dtor_Complete : Dtor_Base;
2489
2490
0
    EHStack.pushCleanup<CallDelegatingCtorDtor>(EHCleanup,
2491
0
                                                ClassDecl->getDestructor(),
2492
0
                                                ThisPtr, Type);
2493
0
  }
2494
0
}
2495
2496
void CodeGenFunction::EmitCXXDestructorCall(const CXXDestructorDecl *DD,
2497
                                            CXXDtorType Type,
2498
                                            bool ForVirtualBase,
2499
                                            bool Delegating, Address This,
2500
0
                                            QualType ThisTy) {
2501
0
  CGM.getCXXABI().EmitDestructorCall(*this, DD, Type, ForVirtualBase,
2502
0
                                     Delegating, This, ThisTy);
2503
0
}
2504
2505
namespace {
2506
  struct CallLocalDtor final : EHScopeStack::Cleanup {
2507
    const CXXDestructorDecl *Dtor;
2508
    Address Addr;
2509
    QualType Ty;
2510
2511
    CallLocalDtor(const CXXDestructorDecl *D, Address Addr, QualType Ty)
2512
0
        : Dtor(D), Addr(Addr), Ty(Ty) {}
2513
2514
0
    void Emit(CodeGenFunction &CGF, Flags flags) override {
2515
0
      CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
2516
0
                                /*ForVirtualBase=*/false,
2517
0
                                /*Delegating=*/false, Addr, Ty);
2518
0
    }
2519
  };
2520
} // end anonymous namespace
2521
2522
void CodeGenFunction::PushDestructorCleanup(const CXXDestructorDecl *D,
2523
0
                                            QualType T, Address Addr) {
2524
0
  EHStack.pushCleanup<CallLocalDtor>(NormalAndEHCleanup, D, Addr, T);
2525
0
}
2526
2527
0
void CodeGenFunction::PushDestructorCleanup(QualType T, Address Addr) {
2528
0
  CXXRecordDecl *ClassDecl = T->getAsCXXRecordDecl();
2529
0
  if (!ClassDecl) return;
2530
0
  if (ClassDecl->hasTrivialDestructor()) return;
2531
2532
0
  const CXXDestructorDecl *D = ClassDecl->getDestructor();
2533
0
  assert(D && D->isUsed() && "destructor not marked as used!");
2534
0
  PushDestructorCleanup(D, T, Addr);
2535
0
}
2536
2537
0
void CodeGenFunction::InitializeVTablePointer(const VPtr &Vptr) {
2538
  // Compute the address point.
2539
0
  llvm::Value *VTableAddressPoint =
2540
0
      CGM.getCXXABI().getVTableAddressPointInStructor(
2541
0
          *this, Vptr.VTableClass, Vptr.Base, Vptr.NearestVBase);
2542
2543
0
  if (!VTableAddressPoint)
2544
0
    return;
2545
2546
  // Compute where to store the address point.
2547
0
  llvm::Value *VirtualOffset = nullptr;
2548
0
  CharUnits NonVirtualOffset = CharUnits::Zero();
2549
2550
0
  if (CGM.getCXXABI().isVirtualOffsetNeededForVTableField(*this, Vptr)) {
2551
    // We need to use the virtual base offset offset because the virtual base
2552
    // might have a different offset in the most derived class.
2553
2554
0
    VirtualOffset = CGM.getCXXABI().GetVirtualBaseClassOffset(
2555
0
        *this, LoadCXXThisAddress(), Vptr.VTableClass, Vptr.NearestVBase);
2556
0
    NonVirtualOffset = Vptr.OffsetFromNearestVBase;
2557
0
  } else {
2558
    // We can just use the base offset in the complete class.
2559
0
    NonVirtualOffset = Vptr.Base.getBaseOffset();
2560
0
  }
2561
2562
  // Apply the offsets.
2563
0
  Address VTableField = LoadCXXThisAddress();
2564
0
  if (!NonVirtualOffset.isZero() || VirtualOffset)
2565
0
    VTableField = ApplyNonVirtualAndVirtualOffset(
2566
0
        *this, VTableField, NonVirtualOffset, VirtualOffset, Vptr.VTableClass,
2567
0
        Vptr.NearestVBase);
2568
2569
  // Finally, store the address point. Use the same LLVM types as the field to
2570
  // support optimization.
2571
0
  unsigned GlobalsAS = CGM.getDataLayout().getDefaultGlobalsAddressSpace();
2572
0
  llvm::Type *PtrTy = llvm::PointerType::get(CGM.getLLVMContext(), GlobalsAS);
2573
  // vtable field is derived from `this` pointer, therefore they should be in
2574
  // the same addr space. Note that this might not be LLVM address space 0.
2575
0
  VTableField = VTableField.withElementType(PtrTy);
2576
2577
0
  llvm::StoreInst *Store = Builder.CreateStore(VTableAddressPoint, VTableField);
2578
0
  TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(PtrTy);
2579
0
  CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2580
0
  if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2581
0
      CGM.getCodeGenOpts().StrictVTablePointers)
2582
0
    CGM.DecorateInstructionWithInvariantGroup(Store, Vptr.VTableClass);
2583
0
}
2584
2585
CodeGenFunction::VPtrsVector
2586
0
CodeGenFunction::getVTablePointers(const CXXRecordDecl *VTableClass) {
2587
0
  CodeGenFunction::VPtrsVector VPtrsResult;
2588
0
  VisitedVirtualBasesSetTy VBases;
2589
0
  getVTablePointers(BaseSubobject(VTableClass, CharUnits::Zero()),
2590
0
                    /*NearestVBase=*/nullptr,
2591
0
                    /*OffsetFromNearestVBase=*/CharUnits::Zero(),
2592
0
                    /*BaseIsNonVirtualPrimaryBase=*/false, VTableClass, VBases,
2593
0
                    VPtrsResult);
2594
0
  return VPtrsResult;
2595
0
}
2596
2597
void CodeGenFunction::getVTablePointers(BaseSubobject Base,
2598
                                        const CXXRecordDecl *NearestVBase,
2599
                                        CharUnits OffsetFromNearestVBase,
2600
                                        bool BaseIsNonVirtualPrimaryBase,
2601
                                        const CXXRecordDecl *VTableClass,
2602
                                        VisitedVirtualBasesSetTy &VBases,
2603
0
                                        VPtrsVector &Vptrs) {
2604
  // If this base is a non-virtual primary base the address point has already
2605
  // been set.
2606
0
  if (!BaseIsNonVirtualPrimaryBase) {
2607
    // Initialize the vtable pointer for this base.
2608
0
    VPtr Vptr = {Base, NearestVBase, OffsetFromNearestVBase, VTableClass};
2609
0
    Vptrs.push_back(Vptr);
2610
0
  }
2611
2612
0
  const CXXRecordDecl *RD = Base.getBase();
2613
2614
  // Traverse bases.
2615
0
  for (const auto &I : RD->bases()) {
2616
0
    auto *BaseDecl =
2617
0
        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2618
2619
    // Ignore classes without a vtable.
2620
0
    if (!BaseDecl->isDynamicClass())
2621
0
      continue;
2622
2623
0
    CharUnits BaseOffset;
2624
0
    CharUnits BaseOffsetFromNearestVBase;
2625
0
    bool BaseDeclIsNonVirtualPrimaryBase;
2626
2627
0
    if (I.isVirtual()) {
2628
      // Check if we've visited this virtual base before.
2629
0
      if (!VBases.insert(BaseDecl).second)
2630
0
        continue;
2631
2632
0
      const ASTRecordLayout &Layout =
2633
0
        getContext().getASTRecordLayout(VTableClass);
2634
2635
0
      BaseOffset = Layout.getVBaseClassOffset(BaseDecl);
2636
0
      BaseOffsetFromNearestVBase = CharUnits::Zero();
2637
0
      BaseDeclIsNonVirtualPrimaryBase = false;
2638
0
    } else {
2639
0
      const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2640
2641
0
      BaseOffset = Base.getBaseOffset() + Layout.getBaseClassOffset(BaseDecl);
2642
0
      BaseOffsetFromNearestVBase =
2643
0
        OffsetFromNearestVBase + Layout.getBaseClassOffset(BaseDecl);
2644
0
      BaseDeclIsNonVirtualPrimaryBase = Layout.getPrimaryBase() == BaseDecl;
2645
0
    }
2646
2647
0
    getVTablePointers(
2648
0
        BaseSubobject(BaseDecl, BaseOffset),
2649
0
        I.isVirtual() ? BaseDecl : NearestVBase, BaseOffsetFromNearestVBase,
2650
0
        BaseDeclIsNonVirtualPrimaryBase, VTableClass, VBases, Vptrs);
2651
0
  }
2652
0
}
2653
2654
0
void CodeGenFunction::InitializeVTablePointers(const CXXRecordDecl *RD) {
2655
  // Ignore classes without a vtable.
2656
0
  if (!RD->isDynamicClass())
2657
0
    return;
2658
2659
  // Initialize the vtable pointers for this class and all of its bases.
2660
0
  if (CGM.getCXXABI().doStructorsInitializeVPtrs(RD))
2661
0
    for (const VPtr &Vptr : getVTablePointers(RD))
2662
0
      InitializeVTablePointer(Vptr);
2663
2664
0
  if (RD->getNumVBases())
2665
0
    CGM.getCXXABI().initializeHiddenVirtualInheritanceMembers(*this, RD);
2666
0
}
2667
2668
llvm::Value *CodeGenFunction::GetVTablePtr(Address This,
2669
                                           llvm::Type *VTableTy,
2670
0
                                           const CXXRecordDecl *RD) {
2671
0
  Address VTablePtrSrc = This.withElementType(VTableTy);
2672
0
  llvm::Instruction *VTable = Builder.CreateLoad(VTablePtrSrc, "vtable");
2673
0
  TBAAAccessInfo TBAAInfo = CGM.getTBAAVTablePtrAccessInfo(VTableTy);
2674
0
  CGM.DecorateInstructionWithTBAA(VTable, TBAAInfo);
2675
2676
0
  if (CGM.getCodeGenOpts().OptimizationLevel > 0 &&
2677
0
      CGM.getCodeGenOpts().StrictVTablePointers)
2678
0
    CGM.DecorateInstructionWithInvariantGroup(VTable, RD);
2679
2680
0
  return VTable;
2681
0
}
2682
2683
// If a class has a single non-virtual base and does not introduce or override
2684
// virtual member functions or fields, it will have the same layout as its base.
2685
// This function returns the least derived such class.
2686
//
2687
// Casting an instance of a base class to such a derived class is technically
2688
// undefined behavior, but it is a relatively common hack for introducing member
2689
// functions on class instances with specific properties (e.g. llvm::Operator)
2690
// that works under most compilers and should not have security implications, so
2691
// we allow it by default. It can be disabled with -fsanitize=cfi-cast-strict.
2692
static const CXXRecordDecl *
2693
0
LeastDerivedClassWithSameLayout(const CXXRecordDecl *RD) {
2694
0
  if (!RD->field_empty())
2695
0
    return RD;
2696
2697
0
  if (RD->getNumVBases() != 0)
2698
0
    return RD;
2699
2700
0
  if (RD->getNumBases() != 1)
2701
0
    return RD;
2702
2703
0
  for (const CXXMethodDecl *MD : RD->methods()) {
2704
0
    if (MD->isVirtual()) {
2705
      // Virtual member functions are only ok if they are implicit destructors
2706
      // because the implicit destructor will have the same semantics as the
2707
      // base class's destructor if no fields are added.
2708
0
      if (isa<CXXDestructorDecl>(MD) && MD->isImplicit())
2709
0
        continue;
2710
0
      return RD;
2711
0
    }
2712
0
  }
2713
2714
0
  return LeastDerivedClassWithSameLayout(
2715
0
      RD->bases_begin()->getType()->getAsCXXRecordDecl());
2716
0
}
2717
2718
void CodeGenFunction::EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2719
                                                   llvm::Value *VTable,
2720
0
                                                   SourceLocation Loc) {
2721
0
  if (SanOpts.has(SanitizerKind::CFIVCall))
2722
0
    EmitVTablePtrCheckForCall(RD, VTable, CodeGenFunction::CFITCK_VCall, Loc);
2723
0
  else if (CGM.getCodeGenOpts().WholeProgramVTables &&
2724
           // Don't insert type test assumes if we are forcing public
2725
           // visibility.
2726
0
           !CGM.AlwaysHasLTOVisibilityPublic(RD)) {
2727
0
    QualType Ty = QualType(RD->getTypeForDecl(), 0);
2728
0
    llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType(Ty);
2729
0
    llvm::Value *TypeId =
2730
0
        llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2731
2732
    // If we already know that the call has hidden LTO visibility, emit
2733
    // @llvm.type.test(). Otherwise emit @llvm.public.type.test(), which WPD
2734
    // will convert to @llvm.type.test() if we assert at link time that we have
2735
    // whole program visibility.
2736
0
    llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD)
2737
0
                                  ? llvm::Intrinsic::type_test
2738
0
                                  : llvm::Intrinsic::public_type_test;
2739
0
    llvm::Value *TypeTest =
2740
0
        Builder.CreateCall(CGM.getIntrinsic(IID), {VTable, TypeId});
2741
0
    Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::assume), TypeTest);
2742
0
  }
2743
0
}
2744
2745
void CodeGenFunction::EmitVTablePtrCheckForCall(const CXXRecordDecl *RD,
2746
                                                llvm::Value *VTable,
2747
                                                CFITypeCheckKind TCK,
2748
0
                                                SourceLocation Loc) {
2749
0
  if (!SanOpts.has(SanitizerKind::CFICastStrict))
2750
0
    RD = LeastDerivedClassWithSameLayout(RD);
2751
2752
0
  EmitVTablePtrCheck(RD, VTable, TCK, Loc);
2753
0
}
2754
2755
void CodeGenFunction::EmitVTablePtrCheckForCast(QualType T, Address Derived,
2756
                                                bool MayBeNull,
2757
                                                CFITypeCheckKind TCK,
2758
0
                                                SourceLocation Loc) {
2759
0
  if (!getLangOpts().CPlusPlus)
2760
0
    return;
2761
2762
0
  auto *ClassTy = T->getAs<RecordType>();
2763
0
  if (!ClassTy)
2764
0
    return;
2765
2766
0
  const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassTy->getDecl());
2767
2768
0
  if (!ClassDecl->isCompleteDefinition() || !ClassDecl->isDynamicClass())
2769
0
    return;
2770
2771
0
  if (!SanOpts.has(SanitizerKind::CFICastStrict))
2772
0
    ClassDecl = LeastDerivedClassWithSameLayout(ClassDecl);
2773
2774
0
  llvm::BasicBlock *ContBlock = nullptr;
2775
2776
0
  if (MayBeNull) {
2777
0
    llvm::Value *DerivedNotNull =
2778
0
        Builder.CreateIsNotNull(Derived.getPointer(), "cast.nonnull");
2779
2780
0
    llvm::BasicBlock *CheckBlock = createBasicBlock("cast.check");
2781
0
    ContBlock = createBasicBlock("cast.cont");
2782
2783
0
    Builder.CreateCondBr(DerivedNotNull, CheckBlock, ContBlock);
2784
2785
0
    EmitBlock(CheckBlock);
2786
0
  }
2787
2788
0
  llvm::Value *VTable;
2789
0
  std::tie(VTable, ClassDecl) =
2790
0
      CGM.getCXXABI().LoadVTablePtr(*this, Derived, ClassDecl);
2791
2792
0
  EmitVTablePtrCheck(ClassDecl, VTable, TCK, Loc);
2793
2794
0
  if (MayBeNull) {
2795
0
    Builder.CreateBr(ContBlock);
2796
0
    EmitBlock(ContBlock);
2797
0
  }
2798
0
}
2799
2800
void CodeGenFunction::EmitVTablePtrCheck(const CXXRecordDecl *RD,
2801
                                         llvm::Value *VTable,
2802
                                         CFITypeCheckKind TCK,
2803
0
                                         SourceLocation Loc) {
2804
0
  if (!CGM.getCodeGenOpts().SanitizeCfiCrossDso &&
2805
0
      !CGM.HasHiddenLTOVisibility(RD))
2806
0
    return;
2807
2808
0
  SanitizerMask M;
2809
0
  llvm::SanitizerStatKind SSK;
2810
0
  switch (TCK) {
2811
0
  case CFITCK_VCall:
2812
0
    M = SanitizerKind::CFIVCall;
2813
0
    SSK = llvm::SanStat_CFI_VCall;
2814
0
    break;
2815
0
  case CFITCK_NVCall:
2816
0
    M = SanitizerKind::CFINVCall;
2817
0
    SSK = llvm::SanStat_CFI_NVCall;
2818
0
    break;
2819
0
  case CFITCK_DerivedCast:
2820
0
    M = SanitizerKind::CFIDerivedCast;
2821
0
    SSK = llvm::SanStat_CFI_DerivedCast;
2822
0
    break;
2823
0
  case CFITCK_UnrelatedCast:
2824
0
    M = SanitizerKind::CFIUnrelatedCast;
2825
0
    SSK = llvm::SanStat_CFI_UnrelatedCast;
2826
0
    break;
2827
0
  case CFITCK_ICall:
2828
0
  case CFITCK_NVMFCall:
2829
0
  case CFITCK_VMFCall:
2830
0
    llvm_unreachable("unexpected sanitizer kind");
2831
0
  }
2832
2833
0
  std::string TypeName = RD->getQualifiedNameAsString();
2834
0
  if (getContext().getNoSanitizeList().containsType(M, TypeName))
2835
0
    return;
2836
2837
0
  SanitizerScope SanScope(this);
2838
0
  EmitSanitizerStatReport(SSK);
2839
2840
0
  llvm::Metadata *MD =
2841
0
      CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2842
0
  llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
2843
2844
0
  llvm::Value *TypeTest = Builder.CreateCall(
2845
0
      CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, TypeId});
2846
2847
0
  llvm::Constant *StaticData[] = {
2848
0
      llvm::ConstantInt::get(Int8Ty, TCK),
2849
0
      EmitCheckSourceLocation(Loc),
2850
0
      EmitCheckTypeDescriptor(QualType(RD->getTypeForDecl(), 0)),
2851
0
  };
2852
2853
0
  auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
2854
0
  if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
2855
0
    EmitCfiSlowPathCheck(M, TypeTest, CrossDsoTypeId, VTable, StaticData);
2856
0
    return;
2857
0
  }
2858
2859
0
  if (CGM.getCodeGenOpts().SanitizeTrap.has(M)) {
2860
0
    EmitTrapCheck(TypeTest, SanitizerHandler::CFICheckFail);
2861
0
    return;
2862
0
  }
2863
2864
0
  llvm::Value *AllVtables = llvm::MetadataAsValue::get(
2865
0
      CGM.getLLVMContext(),
2866
0
      llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
2867
0
  llvm::Value *ValidVtable = Builder.CreateCall(
2868
0
      CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables});
2869
0
  EmitCheck(std::make_pair(TypeTest, M), SanitizerHandler::CFICheckFail,
2870
0
            StaticData, {VTable, ValidVtable});
2871
0
}
2872
2873
0
bool CodeGenFunction::ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD) {
2874
0
  if (!CGM.getCodeGenOpts().WholeProgramVTables ||
2875
0
      !CGM.HasHiddenLTOVisibility(RD))
2876
0
    return false;
2877
2878
0
  if (CGM.getCodeGenOpts().VirtualFunctionElimination)
2879
0
    return true;
2880
2881
0
  if (!SanOpts.has(SanitizerKind::CFIVCall) ||
2882
0
      !CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIVCall))
2883
0
    return false;
2884
2885
0
  std::string TypeName = RD->getQualifiedNameAsString();
2886
0
  return !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2887
0
                                                        TypeName);
2888
0
}
2889
2890
llvm::Value *CodeGenFunction::EmitVTableTypeCheckedLoad(
2891
    const CXXRecordDecl *RD, llvm::Value *VTable, llvm::Type *VTableTy,
2892
0
    uint64_t VTableByteOffset) {
2893
0
  SanitizerScope SanScope(this);
2894
2895
0
  EmitSanitizerStatReport(llvm::SanStat_CFI_VCall);
2896
2897
0
  llvm::Metadata *MD =
2898
0
      CGM.CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
2899
0
  llvm::Value *TypeId = llvm::MetadataAsValue::get(CGM.getLLVMContext(), MD);
2900
2901
0
  llvm::Value *CheckedLoad = Builder.CreateCall(
2902
0
      CGM.getIntrinsic(llvm::Intrinsic::type_checked_load),
2903
0
      {VTable, llvm::ConstantInt::get(Int32Ty, VTableByteOffset), TypeId});
2904
0
  llvm::Value *CheckResult = Builder.CreateExtractValue(CheckedLoad, 1);
2905
2906
0
  std::string TypeName = RD->getQualifiedNameAsString();
2907
0
  if (SanOpts.has(SanitizerKind::CFIVCall) &&
2908
0
      !getContext().getNoSanitizeList().containsType(SanitizerKind::CFIVCall,
2909
0
                                                     TypeName)) {
2910
0
    EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIVCall),
2911
0
              SanitizerHandler::CFICheckFail, {}, {});
2912
0
  }
2913
2914
0
  return Builder.CreateBitCast(Builder.CreateExtractValue(CheckedLoad, 0),
2915
0
                               VTableTy);
2916
0
}
2917
2918
void CodeGenFunction::EmitForwardingCallToLambda(
2919
    const CXXMethodDecl *callOperator, CallArgList &callArgs,
2920
0
    const CGFunctionInfo *calleeFnInfo, llvm::Constant *calleePtr) {
2921
  // Get the address of the call operator.
2922
0
  if (!calleeFnInfo)
2923
0
    calleeFnInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(callOperator);
2924
2925
0
  if (!calleePtr)
2926
0
    calleePtr =
2927
0
        CGM.GetAddrOfFunction(GlobalDecl(callOperator),
2928
0
                              CGM.getTypes().GetFunctionType(*calleeFnInfo));
2929
2930
  // Prepare the return slot.
2931
0
  const FunctionProtoType *FPT =
2932
0
    callOperator->getType()->castAs<FunctionProtoType>();
2933
0
  QualType resultType = FPT->getReturnType();
2934
0
  ReturnValueSlot returnSlot;
2935
0
  if (!resultType->isVoidType() &&
2936
0
      calleeFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
2937
0
      !hasScalarEvaluationKind(calleeFnInfo->getReturnType()))
2938
0
    returnSlot =
2939
0
        ReturnValueSlot(ReturnValue, resultType.isVolatileQualified(),
2940
0
                        /*IsUnused=*/false, /*IsExternallyDestructed=*/true);
2941
2942
  // We don't need to separately arrange the call arguments because
2943
  // the call can't be variadic anyway --- it's impossible to forward
2944
  // variadic arguments.
2945
2946
  // Now emit our call.
2947
0
  auto callee = CGCallee::forDirect(calleePtr, GlobalDecl(callOperator));
2948
0
  RValue RV = EmitCall(*calleeFnInfo, callee, returnSlot, callArgs);
2949
2950
  // If necessary, copy the returned value into the slot.
2951
0
  if (!resultType->isVoidType() && returnSlot.isNull()) {
2952
0
    if (getLangOpts().ObjCAutoRefCount && resultType->isObjCRetainableType()) {
2953
0
      RV = RValue::get(EmitARCRetainAutoreleasedReturnValue(RV.getScalarVal()));
2954
0
    }
2955
0
    EmitReturnOfRValue(RV, resultType);
2956
0
  } else
2957
0
    EmitBranchThroughCleanup(ReturnBlock);
2958
0
}
2959
2960
0
void CodeGenFunction::EmitLambdaBlockInvokeBody() {
2961
0
  const BlockDecl *BD = BlockInfo->getBlockDecl();
2962
0
  const VarDecl *variable = BD->capture_begin()->getVariable();
2963
0
  const CXXRecordDecl *Lambda = variable->getType()->getAsCXXRecordDecl();
2964
0
  const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
2965
2966
0
  if (CallOp->isVariadic()) {
2967
    // FIXME: Making this work correctly is nasty because it requires either
2968
    // cloning the body of the call operator or making the call operator
2969
    // forward.
2970
0
    CGM.ErrorUnsupported(CurCodeDecl, "lambda conversion to variadic function");
2971
0
    return;
2972
0
  }
2973
2974
  // Start building arguments for forwarding call
2975
0
  CallArgList CallArgs;
2976
2977
0
  QualType ThisType = getContext().getPointerType(getContext().getRecordType(Lambda));
2978
0
  Address ThisPtr = GetAddrOfBlockDecl(variable);
2979
0
  CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
2980
2981
  // Add the rest of the parameters.
2982
0
  for (auto *param : BD->parameters())
2983
0
    EmitDelegateCallArg(CallArgs, param, param->getBeginLoc());
2984
2985
0
  assert(!Lambda->isGenericLambda() &&
2986
0
            "generic lambda interconversion to block not implemented");
2987
0
  EmitForwardingCallToLambda(CallOp, CallArgs);
2988
0
}
2989
2990
0
void CodeGenFunction::EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD) {
2991
0
  if (MD->isVariadic()) {
2992
    // FIXME: Making this work correctly is nasty because it requires either
2993
    // cloning the body of the call operator or making the call operator
2994
    // forward.
2995
0
    CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
2996
0
    return;
2997
0
  }
2998
2999
0
  const CXXRecordDecl *Lambda = MD->getParent();
3000
3001
  // Start building arguments for forwarding call
3002
0
  CallArgList CallArgs;
3003
3004
0
  QualType LambdaType = getContext().getRecordType(Lambda);
3005
0
  QualType ThisType = getContext().getPointerType(LambdaType);
3006
0
  Address ThisPtr = CreateMemTemp(LambdaType, "unused.capture");
3007
0
  CallArgs.add(RValue::get(ThisPtr.getPointer()), ThisType);
3008
3009
0
  EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3010
0
}
3011
3012
void CodeGenFunction::EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
3013
0
                                                     CallArgList &CallArgs) {
3014
  // Add the rest of the forwarded parameters.
3015
0
  for (auto *Param : MD->parameters())
3016
0
    EmitDelegateCallArg(CallArgs, Param, Param->getBeginLoc());
3017
3018
0
  const CXXRecordDecl *Lambda = MD->getParent();
3019
0
  const CXXMethodDecl *CallOp = Lambda->getLambdaCallOperator();
3020
  // For a generic lambda, find the corresponding call operator specialization
3021
  // to which the call to the static-invoker shall be forwarded.
3022
0
  if (Lambda->isGenericLambda()) {
3023
0
    assert(MD->isFunctionTemplateSpecialization());
3024
0
    const TemplateArgumentList *TAL = MD->getTemplateSpecializationArgs();
3025
0
    FunctionTemplateDecl *CallOpTemplate = CallOp->getDescribedFunctionTemplate();
3026
0
    void *InsertPos = nullptr;
3027
0
    FunctionDecl *CorrespondingCallOpSpecialization =
3028
0
        CallOpTemplate->findSpecialization(TAL->asArray(), InsertPos);
3029
0
    assert(CorrespondingCallOpSpecialization);
3030
0
    CallOp = cast<CXXMethodDecl>(CorrespondingCallOpSpecialization);
3031
0
  }
3032
3033
  // Special lambda forwarding when there are inalloca parameters.
3034
0
  if (hasInAllocaArg(MD)) {
3035
0
    const CGFunctionInfo *ImplFnInfo = nullptr;
3036
0
    llvm::Function *ImplFn = nullptr;
3037
0
    EmitLambdaInAllocaImplFn(CallOp, &ImplFnInfo, &ImplFn);
3038
3039
0
    EmitForwardingCallToLambda(CallOp, CallArgs, ImplFnInfo, ImplFn);
3040
0
    return;
3041
0
  }
3042
3043
0
  EmitForwardingCallToLambda(CallOp, CallArgs);
3044
0
}
3045
3046
0
void CodeGenFunction::EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD) {
3047
0
  if (MD->isVariadic()) {
3048
    // FIXME: Making this work correctly is nasty because it requires either
3049
    // cloning the body of the call operator or making the call operator forward.
3050
0
    CGM.ErrorUnsupported(MD, "lambda conversion to variadic function");
3051
0
    return;
3052
0
  }
3053
3054
  // Forward %this argument.
3055
0
  CallArgList CallArgs;
3056
0
  QualType LambdaType = getContext().getRecordType(MD->getParent());
3057
0
  QualType ThisType = getContext().getPointerType(LambdaType);
3058
0
  llvm::Value *ThisArg = CurFn->getArg(0);
3059
0
  CallArgs.add(RValue::get(ThisArg), ThisType);
3060
3061
0
  EmitLambdaDelegatingInvokeBody(MD, CallArgs);
3062
0
}
3063
3064
void CodeGenFunction::EmitLambdaInAllocaImplFn(
3065
    const CXXMethodDecl *CallOp, const CGFunctionInfo **ImplFnInfo,
3066
0
    llvm::Function **ImplFn) {
3067
0
  const CGFunctionInfo &FnInfo =
3068
0
      CGM.getTypes().arrangeCXXMethodDeclaration(CallOp);
3069
0
  llvm::Function *CallOpFn =
3070
0
      cast<llvm::Function>(CGM.GetAddrOfFunction(GlobalDecl(CallOp)));
3071
3072
  // Emit function containing the original call op body. __invoke will delegate
3073
  // to this function.
3074
0
  SmallVector<CanQualType, 4> ArgTypes;
3075
0
  for (auto I = FnInfo.arg_begin(); I != FnInfo.arg_end(); ++I)
3076
0
    ArgTypes.push_back(I->type);
3077
0
  *ImplFnInfo = &CGM.getTypes().arrangeLLVMFunctionInfo(
3078
0
      FnInfo.getReturnType(), FnInfoOpts::IsDelegateCall, ArgTypes,
3079
0
      FnInfo.getExtInfo(), {}, FnInfo.getRequiredArgs());
3080
3081
  // Create mangled name as if this was a method named __impl. If for some
3082
  // reason the name doesn't look as expected then just tack __impl to the
3083
  // front.
3084
  // TODO: Use the name mangler to produce the right name instead of using
3085
  // string replacement.
3086
0
  StringRef CallOpName = CallOpFn->getName();
3087
0
  std::string ImplName;
3088
0
  if (size_t Pos = CallOpName.find_first_of("<lambda"))
3089
0
    ImplName = ("?__impl@" + CallOpName.drop_front(Pos)).str();
3090
0
  else
3091
0
    ImplName = ("__impl" + CallOpName).str();
3092
3093
0
  llvm::Function *Fn = CallOpFn->getParent()->getFunction(ImplName);
3094
0
  if (!Fn) {
3095
0
    Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(**ImplFnInfo),
3096
0
                                llvm::GlobalValue::InternalLinkage, ImplName,
3097
0
                                CGM.getModule());
3098
0
    CGM.SetInternalFunctionAttributes(CallOp, Fn, **ImplFnInfo);
3099
3100
0
    const GlobalDecl &GD = GlobalDecl(CallOp);
3101
0
    const auto *D = cast<FunctionDecl>(GD.getDecl());
3102
0
    CodeGenFunction(CGM).GenerateCode(GD, Fn, **ImplFnInfo);
3103
0
    CGM.SetLLVMFunctionAttributesForDefinition(D, Fn);
3104
0
  }
3105
0
  *ImplFn = Fn;
3106
0
}