Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/CodeGen/CGExpr.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- CGExpr.cpp - Emit LLVM Code from Expressions ---------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This contains code to emit Expr nodes as LLVM code.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "CGCUDARuntime.h"
14
#include "CGCXXABI.h"
15
#include "CGCall.h"
16
#include "CGCleanup.h"
17
#include "CGDebugInfo.h"
18
#include "CGObjCRuntime.h"
19
#include "CGOpenMPRuntime.h"
20
#include "CGRecordLayout.h"
21
#include "CodeGenFunction.h"
22
#include "CodeGenModule.h"
23
#include "ConstantEmitter.h"
24
#include "TargetInfo.h"
25
#include "clang/AST/ASTContext.h"
26
#include "clang/AST/Attr.h"
27
#include "clang/AST/DeclObjC.h"
28
#include "clang/AST/NSAPI.h"
29
#include "clang/AST/StmtVisitor.h"
30
#include "clang/Basic/Builtins.h"
31
#include "clang/Basic/CodeGenOptions.h"
32
#include "clang/Basic/SourceManager.h"
33
#include "llvm/ADT/Hashing.h"
34
#include "llvm/ADT/STLExtras.h"
35
#include "llvm/ADT/StringExtras.h"
36
#include "llvm/IR/DataLayout.h"
37
#include "llvm/IR/Intrinsics.h"
38
#include "llvm/IR/IntrinsicsWebAssembly.h"
39
#include "llvm/IR/LLVMContext.h"
40
#include "llvm/IR/MDBuilder.h"
41
#include "llvm/IR/MatrixBuilder.h"
42
#include "llvm/Passes/OptimizationLevel.h"
43
#include "llvm/Support/ConvertUTF.h"
44
#include "llvm/Support/MathExtras.h"
45
#include "llvm/Support/Path.h"
46
#include "llvm/Support/SaveAndRestore.h"
47
#include "llvm/Support/xxhash.h"
48
#include "llvm/Transforms/Utils/SanitizerStats.h"
49
50
#include <optional>
51
#include <string>
52
53
using namespace clang;
54
using namespace CodeGen;
55
56
// Experiment to make sanitizers easier to debug
57
static llvm::cl::opt<bool> ClSanitizeDebugDeoptimization(
58
    "ubsan-unique-traps", llvm::cl::Optional,
59
    llvm::cl::desc("Deoptimize traps for UBSAN so there is 1 trap per check"),
60
    llvm::cl::init(false));
61
62
//===--------------------------------------------------------------------===//
63
//                        Miscellaneous Helper Methods
64
//===--------------------------------------------------------------------===//
65
66
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
67
/// block.
68
Address CodeGenFunction::CreateTempAllocaWithoutCast(llvm::Type *Ty,
69
                                                     CharUnits Align,
70
                                                     const Twine &Name,
71
0
                                                     llvm::Value *ArraySize) {
72
0
  auto Alloca = CreateTempAlloca(Ty, Name, ArraySize);
73
0
  Alloca->setAlignment(Align.getAsAlign());
74
0
  return Address(Alloca, Ty, Align, KnownNonNull);
75
0
}
76
77
/// CreateTempAlloca - This creates a alloca and inserts it into the entry
78
/// block. The alloca is casted to default address space if necessary.
79
Address CodeGenFunction::CreateTempAlloca(llvm::Type *Ty, CharUnits Align,
80
                                          const Twine &Name,
81
                                          llvm::Value *ArraySize,
82
0
                                          Address *AllocaAddr) {
83
0
  auto Alloca = CreateTempAllocaWithoutCast(Ty, Align, Name, ArraySize);
84
0
  if (AllocaAddr)
85
0
    *AllocaAddr = Alloca;
86
0
  llvm::Value *V = Alloca.getPointer();
87
  // Alloca always returns a pointer in alloca address space, which may
88
  // be different from the type defined by the language. For example,
89
  // in C++ the auto variables are in the default address space. Therefore
90
  // cast alloca to the default address space when necessary.
91
0
  if (getASTAllocaAddressSpace() != LangAS::Default) {
92
0
    auto DestAddrSpace = getContext().getTargetAddressSpace(LangAS::Default);
93
0
    llvm::IRBuilderBase::InsertPointGuard IPG(Builder);
94
    // When ArraySize is nullptr, alloca is inserted at AllocaInsertPt,
95
    // otherwise alloca is inserted at the current insertion point of the
96
    // builder.
97
0
    if (!ArraySize)
98
0
      Builder.SetInsertPoint(getPostAllocaInsertPoint());
99
0
    V = getTargetHooks().performAddrSpaceCast(
100
0
        *this, V, getASTAllocaAddressSpace(), LangAS::Default,
101
0
        Ty->getPointerTo(DestAddrSpace), /*non-null*/ true);
102
0
  }
103
104
0
  return Address(V, Ty, Align, KnownNonNull);
105
0
}
106
107
/// CreateTempAlloca - This creates an alloca and inserts it into the entry
108
/// block if \p ArraySize is nullptr, otherwise inserts it at the current
109
/// insertion point of the builder.
110
llvm::AllocaInst *CodeGenFunction::CreateTempAlloca(llvm::Type *Ty,
111
                                                    const Twine &Name,
112
0
                                                    llvm::Value *ArraySize) {
113
0
  if (ArraySize)
114
0
    return Builder.CreateAlloca(Ty, ArraySize, Name);
115
0
  return new llvm::AllocaInst(Ty, CGM.getDataLayout().getAllocaAddrSpace(),
116
0
                              ArraySize, Name, AllocaInsertPt);
117
0
}
118
119
/// CreateDefaultAlignTempAlloca - This creates an alloca with the
120
/// default alignment of the corresponding LLVM type, which is *not*
121
/// guaranteed to be related in any way to the expected alignment of
122
/// an AST type that might have been lowered to Ty.
123
Address CodeGenFunction::CreateDefaultAlignTempAlloca(llvm::Type *Ty,
124
0
                                                      const Twine &Name) {
125
0
  CharUnits Align =
126
0
      CharUnits::fromQuantity(CGM.getDataLayout().getPrefTypeAlign(Ty));
127
0
  return CreateTempAlloca(Ty, Align, Name);
128
0
}
129
130
0
Address CodeGenFunction::CreateIRTemp(QualType Ty, const Twine &Name) {
131
0
  CharUnits Align = getContext().getTypeAlignInChars(Ty);
132
0
  return CreateTempAlloca(ConvertType(Ty), Align, Name);
133
0
}
134
135
Address CodeGenFunction::CreateMemTemp(QualType Ty, const Twine &Name,
136
0
                                       Address *Alloca) {
137
  // FIXME: Should we prefer the preferred type alignment here?
138
0
  return CreateMemTemp(Ty, getContext().getTypeAlignInChars(Ty), Name, Alloca);
139
0
}
140
141
Address CodeGenFunction::CreateMemTemp(QualType Ty, CharUnits Align,
142
0
                                       const Twine &Name, Address *Alloca) {
143
0
  Address Result = CreateTempAlloca(ConvertTypeForMem(Ty), Align, Name,
144
0
                                    /*ArraySize=*/nullptr, Alloca);
145
146
0
  if (Ty->isConstantMatrixType()) {
147
0
    auto *ArrayTy = cast<llvm::ArrayType>(Result.getElementType());
148
0
    auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
149
0
                                                ArrayTy->getNumElements());
150
151
0
    Result = Address(Result.getPointer(), VectorTy, Result.getAlignment(),
152
0
                     KnownNonNull);
153
0
  }
154
0
  return Result;
155
0
}
156
157
Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty, CharUnits Align,
158
0
                                                  const Twine &Name) {
159
0
  return CreateTempAllocaWithoutCast(ConvertTypeForMem(Ty), Align, Name);
160
0
}
161
162
Address CodeGenFunction::CreateMemTempWithoutCast(QualType Ty,
163
0
                                                  const Twine &Name) {
164
0
  return CreateMemTempWithoutCast(Ty, getContext().getTypeAlignInChars(Ty),
165
0
                                  Name);
166
0
}
167
168
/// EvaluateExprAsBool - Perform the usual unary conversions on the specified
169
/// expression and compare the result against zero, returning an Int1Ty value.
170
0
llvm::Value *CodeGenFunction::EvaluateExprAsBool(const Expr *E) {
171
0
  PGO.setCurrentStmt(E);
172
0
  if (const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>()) {
173
0
    llvm::Value *MemPtr = EmitScalarExpr(E);
174
0
    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, MemPtr, MPT);
175
0
  }
176
177
0
  QualType BoolTy = getContext().BoolTy;
178
0
  SourceLocation Loc = E->getExprLoc();
179
0
  CGFPOptionsRAII FPOptsRAII(*this, E);
180
0
  if (!E->getType()->isAnyComplexType())
181
0
    return EmitScalarConversion(EmitScalarExpr(E), E->getType(), BoolTy, Loc);
182
183
0
  return EmitComplexToScalarConversion(EmitComplexExpr(E), E->getType(), BoolTy,
184
0
                                       Loc);
185
0
}
186
187
/// EmitIgnoredExpr - Emit code to compute the specified expression,
188
/// ignoring the result.
189
0
void CodeGenFunction::EmitIgnoredExpr(const Expr *E) {
190
0
  if (E->isPRValue())
191
0
    return (void)EmitAnyExpr(E, AggValueSlot::ignored(), true);
192
193
  // if this is a bitfield-resulting conditional operator, we can special case
194
  // emit this. The normal 'EmitLValue' version of this is particularly
195
  // difficult to codegen for, since creating a single "LValue" for two
196
  // different sized arguments here is not particularly doable.
197
0
  if (const auto *CondOp = dyn_cast<AbstractConditionalOperator>(
198
0
          E->IgnoreParenNoopCasts(getContext()))) {
199
0
    if (CondOp->getObjectKind() == OK_BitField)
200
0
      return EmitIgnoredConditionalOperator(CondOp);
201
0
  }
202
203
  // Just emit it as an l-value and drop the result.
204
0
  EmitLValue(E);
205
0
}
206
207
/// EmitAnyExpr - Emit code to compute the specified expression which
208
/// can have any type.  The result is returned as an RValue struct.
209
/// If this is an aggregate expression, AggSlot indicates where the
210
/// result should be returned.
211
RValue CodeGenFunction::EmitAnyExpr(const Expr *E,
212
                                    AggValueSlot aggSlot,
213
0
                                    bool ignoreResult) {
214
0
  switch (getEvaluationKind(E->getType())) {
215
0
  case TEK_Scalar:
216
0
    return RValue::get(EmitScalarExpr(E, ignoreResult));
217
0
  case TEK_Complex:
218
0
    return RValue::getComplex(EmitComplexExpr(E, ignoreResult, ignoreResult));
219
0
  case TEK_Aggregate:
220
0
    if (!ignoreResult && aggSlot.isIgnored())
221
0
      aggSlot = CreateAggTemp(E->getType(), "agg-temp");
222
0
    EmitAggExpr(E, aggSlot);
223
0
    return aggSlot.asRValue();
224
0
  }
225
0
  llvm_unreachable("bad evaluation kind");
226
0
}
227
228
/// EmitAnyExprToTemp - Similar to EmitAnyExpr(), however, the result will
229
/// always be accessible even if no aggregate location is provided.
230
0
RValue CodeGenFunction::EmitAnyExprToTemp(const Expr *E) {
231
0
  AggValueSlot AggSlot = AggValueSlot::ignored();
232
233
0
  if (hasAggregateEvaluationKind(E->getType()))
234
0
    AggSlot = CreateAggTemp(E->getType(), "agg.tmp");
235
0
  return EmitAnyExpr(E, AggSlot);
236
0
}
237
238
/// EmitAnyExprToMem - Evaluate an expression into a given memory
239
/// location.
240
void CodeGenFunction::EmitAnyExprToMem(const Expr *E,
241
                                       Address Location,
242
                                       Qualifiers Quals,
243
0
                                       bool IsInit) {
244
  // FIXME: This function should take an LValue as an argument.
245
0
  switch (getEvaluationKind(E->getType())) {
246
0
  case TEK_Complex:
247
0
    EmitComplexExprIntoLValue(E, MakeAddrLValue(Location, E->getType()),
248
0
                              /*isInit*/ false);
249
0
    return;
250
251
0
  case TEK_Aggregate: {
252
0
    EmitAggExpr(E, AggValueSlot::forAddr(Location, Quals,
253
0
                                         AggValueSlot::IsDestructed_t(IsInit),
254
0
                                         AggValueSlot::DoesNotNeedGCBarriers,
255
0
                                         AggValueSlot::IsAliased_t(!IsInit),
256
0
                                         AggValueSlot::MayOverlap));
257
0
    return;
258
0
  }
259
260
0
  case TEK_Scalar: {
261
0
    RValue RV = RValue::get(EmitScalarExpr(E, /*Ignore*/ false));
262
0
    LValue LV = MakeAddrLValue(Location, E->getType());
263
0
    EmitStoreThroughLValue(RV, LV);
264
0
    return;
265
0
  }
266
0
  }
267
0
  llvm_unreachable("bad evaluation kind");
268
0
}
269
270
static void
271
pushTemporaryCleanup(CodeGenFunction &CGF, const MaterializeTemporaryExpr *M,
272
0
                     const Expr *E, Address ReferenceTemporary) {
273
  // Objective-C++ ARC:
274
  //   If we are binding a reference to a temporary that has ownership, we
275
  //   need to perform retain/release operations on the temporary.
276
  //
277
  // FIXME: This should be looking at E, not M.
278
0
  if (auto Lifetime = M->getType().getObjCLifetime()) {
279
0
    switch (Lifetime) {
280
0
    case Qualifiers::OCL_None:
281
0
    case Qualifiers::OCL_ExplicitNone:
282
      // Carry on to normal cleanup handling.
283
0
      break;
284
285
0
    case Qualifiers::OCL_Autoreleasing:
286
      // Nothing to do; cleaned up by an autorelease pool.
287
0
      return;
288
289
0
    case Qualifiers::OCL_Strong:
290
0
    case Qualifiers::OCL_Weak:
291
0
      switch (StorageDuration Duration = M->getStorageDuration()) {
292
0
      case SD_Static:
293
        // Note: we intentionally do not register a cleanup to release
294
        // the object on program termination.
295
0
        return;
296
297
0
      case SD_Thread:
298
        // FIXME: We should probably register a cleanup in this case.
299
0
        return;
300
301
0
      case SD_Automatic:
302
0
      case SD_FullExpression:
303
0
        CodeGenFunction::Destroyer *Destroy;
304
0
        CleanupKind CleanupKind;
305
0
        if (Lifetime == Qualifiers::OCL_Strong) {
306
0
          const ValueDecl *VD = M->getExtendingDecl();
307
0
          bool Precise =
308
0
              VD && isa<VarDecl>(VD) && VD->hasAttr<ObjCPreciseLifetimeAttr>();
309
0
          CleanupKind = CGF.getARCCleanupKind();
310
0
          Destroy = Precise ? &CodeGenFunction::destroyARCStrongPrecise
311
0
                            : &CodeGenFunction::destroyARCStrongImprecise;
312
0
        } else {
313
          // __weak objects always get EH cleanups; otherwise, exceptions
314
          // could cause really nasty crashes instead of mere leaks.
315
0
          CleanupKind = NormalAndEHCleanup;
316
0
          Destroy = &CodeGenFunction::destroyARCWeak;
317
0
        }
318
0
        if (Duration == SD_FullExpression)
319
0
          CGF.pushDestroy(CleanupKind, ReferenceTemporary,
320
0
                          M->getType(), *Destroy,
321
0
                          CleanupKind & EHCleanup);
322
0
        else
323
0
          CGF.pushLifetimeExtendedDestroy(CleanupKind, ReferenceTemporary,
324
0
                                          M->getType(),
325
0
                                          *Destroy, CleanupKind & EHCleanup);
326
0
        return;
327
328
0
      case SD_Dynamic:
329
0
        llvm_unreachable("temporary cannot have dynamic storage duration");
330
0
      }
331
0
      llvm_unreachable("unknown storage duration");
332
0
    }
333
0
  }
334
335
0
  CXXDestructorDecl *ReferenceTemporaryDtor = nullptr;
336
0
  if (const RecordType *RT =
337
0
          E->getType()->getBaseElementTypeUnsafe()->getAs<RecordType>()) {
338
    // Get the destructor for the reference temporary.
339
0
    auto *ClassDecl = cast<CXXRecordDecl>(RT->getDecl());
340
0
    if (!ClassDecl->hasTrivialDestructor())
341
0
      ReferenceTemporaryDtor = ClassDecl->getDestructor();
342
0
  }
343
344
0
  if (!ReferenceTemporaryDtor)
345
0
    return;
346
347
  // Call the destructor for the temporary.
348
0
  switch (M->getStorageDuration()) {
349
0
  case SD_Static:
350
0
  case SD_Thread: {
351
0
    llvm::FunctionCallee CleanupFn;
352
0
    llvm::Constant *CleanupArg;
353
0
    if (E->getType()->isArrayType()) {
354
0
      CleanupFn = CodeGenFunction(CGF.CGM).generateDestroyHelper(
355
0
          ReferenceTemporary, E->getType(),
356
0
          CodeGenFunction::destroyCXXObject, CGF.getLangOpts().Exceptions,
357
0
          dyn_cast_or_null<VarDecl>(M->getExtendingDecl()));
358
0
      CleanupArg = llvm::Constant::getNullValue(CGF.Int8PtrTy);
359
0
    } else {
360
0
      CleanupFn = CGF.CGM.getAddrAndTypeOfCXXStructor(
361
0
          GlobalDecl(ReferenceTemporaryDtor, Dtor_Complete));
362
0
      CleanupArg = cast<llvm::Constant>(ReferenceTemporary.getPointer());
363
0
    }
364
0
    CGF.CGM.getCXXABI().registerGlobalDtor(
365
0
        CGF, *cast<VarDecl>(M->getExtendingDecl()), CleanupFn, CleanupArg);
366
0
    break;
367
0
  }
368
369
0
  case SD_FullExpression:
370
0
    CGF.pushDestroy(NormalAndEHCleanup, ReferenceTemporary, E->getType(),
371
0
                    CodeGenFunction::destroyCXXObject,
372
0
                    CGF.getLangOpts().Exceptions);
373
0
    break;
374
375
0
  case SD_Automatic:
376
0
    CGF.pushLifetimeExtendedDestroy(NormalAndEHCleanup,
377
0
                                    ReferenceTemporary, E->getType(),
378
0
                                    CodeGenFunction::destroyCXXObject,
379
0
                                    CGF.getLangOpts().Exceptions);
380
0
    break;
381
382
0
  case SD_Dynamic:
383
0
    llvm_unreachable("temporary cannot have dynamic storage duration");
384
0
  }
385
0
}
386
387
static Address createReferenceTemporary(CodeGenFunction &CGF,
388
                                        const MaterializeTemporaryExpr *M,
389
                                        const Expr *Inner,
390
0
                                        Address *Alloca = nullptr) {
391
0
  auto &TCG = CGF.getTargetHooks();
392
0
  switch (M->getStorageDuration()) {
393
0
  case SD_FullExpression:
394
0
  case SD_Automatic: {
395
    // If we have a constant temporary array or record try to promote it into a
396
    // constant global under the same rules a normal constant would've been
397
    // promoted. This is easier on the optimizer and generally emits fewer
398
    // instructions.
399
0
    QualType Ty = Inner->getType();
400
0
    if (CGF.CGM.getCodeGenOpts().MergeAllConstants &&
401
0
        (Ty->isArrayType() || Ty->isRecordType()) &&
402
0
        Ty.isConstantStorage(CGF.getContext(), true, false))
403
0
      if (auto Init = ConstantEmitter(CGF).tryEmitAbstract(Inner, Ty)) {
404
0
        auto AS = CGF.CGM.GetGlobalConstantAddressSpace();
405
0
        auto *GV = new llvm::GlobalVariable(
406
0
            CGF.CGM.getModule(), Init->getType(), /*isConstant=*/true,
407
0
            llvm::GlobalValue::PrivateLinkage, Init, ".ref.tmp", nullptr,
408
0
            llvm::GlobalValue::NotThreadLocal,
409
0
            CGF.getContext().getTargetAddressSpace(AS));
410
0
        CharUnits alignment = CGF.getContext().getTypeAlignInChars(Ty);
411
0
        GV->setAlignment(alignment.getAsAlign());
412
0
        llvm::Constant *C = GV;
413
0
        if (AS != LangAS::Default)
414
0
          C = TCG.performAddrSpaceCast(
415
0
              CGF.CGM, GV, AS, LangAS::Default,
416
0
              GV->getValueType()->getPointerTo(
417
0
                  CGF.getContext().getTargetAddressSpace(LangAS::Default)));
418
        // FIXME: Should we put the new global into a COMDAT?
419
0
        return Address(C, GV->getValueType(), alignment);
420
0
      }
421
0
    return CGF.CreateMemTemp(Ty, "ref.tmp", Alloca);
422
0
  }
423
0
  case SD_Thread:
424
0
  case SD_Static:
425
0
    return CGF.CGM.GetAddrOfGlobalTemporary(M, Inner);
426
427
0
  case SD_Dynamic:
428
0
    llvm_unreachable("temporary can't have dynamic storage duration");
429
0
  }
430
0
  llvm_unreachable("unknown storage duration");
431
0
}
432
433
/// Helper method to check if the underlying ABI is AAPCS
434
0
static bool isAAPCS(const TargetInfo &TargetInfo) {
435
0
  return TargetInfo.getABI().starts_with("aapcs");
436
0
}
437
438
LValue CodeGenFunction::
439
0
EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *M) {
440
0
  const Expr *E = M->getSubExpr();
441
442
0
  assert((!M->getExtendingDecl() || !isa<VarDecl>(M->getExtendingDecl()) ||
443
0
          !cast<VarDecl>(M->getExtendingDecl())->isARCPseudoStrong()) &&
444
0
         "Reference should never be pseudo-strong!");
445
446
  // FIXME: ideally this would use EmitAnyExprToMem, however, we cannot do so
447
  // as that will cause the lifetime adjustment to be lost for ARC
448
0
  auto ownership = M->getType().getObjCLifetime();
449
0
  if (ownership != Qualifiers::OCL_None &&
450
0
      ownership != Qualifiers::OCL_ExplicitNone) {
451
0
    Address Object = createReferenceTemporary(*this, M, E);
452
0
    if (auto *Var = dyn_cast<llvm::GlobalVariable>(Object.getPointer())) {
453
0
      llvm::Type *Ty = ConvertTypeForMem(E->getType());
454
0
      Object = Object.withElementType(Ty);
455
456
      // createReferenceTemporary will promote the temporary to a global with a
457
      // constant initializer if it can.  It can only do this to a value of
458
      // ARC-manageable type if the value is global and therefore "immune" to
459
      // ref-counting operations.  Therefore we have no need to emit either a
460
      // dynamic initialization or a cleanup and we can just return the address
461
      // of the temporary.
462
0
      if (Var->hasInitializer())
463
0
        return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
464
465
0
      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
466
0
    }
467
0
    LValue RefTempDst = MakeAddrLValue(Object, M->getType(),
468
0
                                       AlignmentSource::Decl);
469
470
0
    switch (getEvaluationKind(E->getType())) {
471
0
    default: llvm_unreachable("expected scalar or aggregate expression");
472
0
    case TEK_Scalar:
473
0
      EmitScalarInit(E, M->getExtendingDecl(), RefTempDst, false);
474
0
      break;
475
0
    case TEK_Aggregate: {
476
0
      EmitAggExpr(E, AggValueSlot::forAddr(Object,
477
0
                                           E->getType().getQualifiers(),
478
0
                                           AggValueSlot::IsDestructed,
479
0
                                           AggValueSlot::DoesNotNeedGCBarriers,
480
0
                                           AggValueSlot::IsNotAliased,
481
0
                                           AggValueSlot::DoesNotOverlap));
482
0
      break;
483
0
    }
484
0
    }
485
486
0
    pushTemporaryCleanup(*this, M, E, Object);
487
0
    return RefTempDst;
488
0
  }
489
490
0
  SmallVector<const Expr *, 2> CommaLHSs;
491
0
  SmallVector<SubobjectAdjustment, 2> Adjustments;
492
0
  E = E->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
493
494
0
  for (const auto &Ignored : CommaLHSs)
495
0
    EmitIgnoredExpr(Ignored);
496
497
0
  if (const auto *opaque = dyn_cast<OpaqueValueExpr>(E)) {
498
0
    if (opaque->getType()->isRecordType()) {
499
0
      assert(Adjustments.empty());
500
0
      return EmitOpaqueValueLValue(opaque);
501
0
    }
502
0
  }
503
504
  // Create and initialize the reference temporary.
505
0
  Address Alloca = Address::invalid();
506
0
  Address Object = createReferenceTemporary(*this, M, E, &Alloca);
507
0
  if (auto *Var = dyn_cast<llvm::GlobalVariable>(
508
0
          Object.getPointer()->stripPointerCasts())) {
509
0
    llvm::Type *TemporaryType = ConvertTypeForMem(E->getType());
510
0
    Object = Object.withElementType(TemporaryType);
511
    // If the temporary is a global and has a constant initializer or is a
512
    // constant temporary that we promoted to a global, we may have already
513
    // initialized it.
514
0
    if (!Var->hasInitializer()) {
515
0
      Var->setInitializer(CGM.EmitNullConstant(E->getType()));
516
0
      EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
517
0
    }
518
0
  } else {
519
0
    switch (M->getStorageDuration()) {
520
0
    case SD_Automatic:
521
0
      if (auto *Size = EmitLifetimeStart(
522
0
              CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
523
0
              Alloca.getPointer())) {
524
0
        pushCleanupAfterFullExpr<CallLifetimeEnd>(NormalEHLifetimeMarker,
525
0
                                                  Alloca, Size);
526
0
      }
527
0
      break;
528
529
0
    case SD_FullExpression: {
530
0
      if (!ShouldEmitLifetimeMarkers)
531
0
        break;
532
533
      // Avoid creating a conditional cleanup just to hold an llvm.lifetime.end
534
      // marker. Instead, start the lifetime of a conditional temporary earlier
535
      // so that it's unconditional. Don't do this with sanitizers which need
536
      // more precise lifetime marks. However when inside an "await.suspend"
537
      // block, we should always avoid conditional cleanup because it creates
538
      // boolean marker that lives across await_suspend, which can destroy coro
539
      // frame.
540
0
      ConditionalEvaluation *OldConditional = nullptr;
541
0
      CGBuilderTy::InsertPoint OldIP;
542
0
      if (isInConditionalBranch() && !E->getType().isDestructedType() &&
543
0
          ((!SanOpts.has(SanitizerKind::HWAddress) &&
544
0
            !SanOpts.has(SanitizerKind::Memory) &&
545
0
            !CGM.getCodeGenOpts().SanitizeAddressUseAfterScope) ||
546
0
           inSuspendBlock())) {
547
0
        OldConditional = OutermostConditional;
548
0
        OutermostConditional = nullptr;
549
550
0
        OldIP = Builder.saveIP();
551
0
        llvm::BasicBlock *Block = OldConditional->getStartingBlock();
552
0
        Builder.restoreIP(CGBuilderTy::InsertPoint(
553
0
            Block, llvm::BasicBlock::iterator(Block->back())));
554
0
      }
555
556
0
      if (auto *Size = EmitLifetimeStart(
557
0
              CGM.getDataLayout().getTypeAllocSize(Alloca.getElementType()),
558
0
              Alloca.getPointer())) {
559
0
        pushFullExprCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, Alloca,
560
0
                                             Size);
561
0
      }
562
563
0
      if (OldConditional) {
564
0
        OutermostConditional = OldConditional;
565
0
        Builder.restoreIP(OldIP);
566
0
      }
567
0
      break;
568
0
    }
569
570
0
    default:
571
0
      break;
572
0
    }
573
0
    EmitAnyExprToMem(E, Object, Qualifiers(), /*IsInit*/true);
574
0
  }
575
0
  pushTemporaryCleanup(*this, M, E, Object);
576
577
  // Perform derived-to-base casts and/or field accesses, to get from the
578
  // temporary object we created (and, potentially, for which we extended
579
  // the lifetime) to the subobject we're binding the reference to.
580
0
  for (SubobjectAdjustment &Adjustment : llvm::reverse(Adjustments)) {
581
0
    switch (Adjustment.Kind) {
582
0
    case SubobjectAdjustment::DerivedToBaseAdjustment:
583
0
      Object =
584
0
          GetAddressOfBaseClass(Object, Adjustment.DerivedToBase.DerivedClass,
585
0
                                Adjustment.DerivedToBase.BasePath->path_begin(),
586
0
                                Adjustment.DerivedToBase.BasePath->path_end(),
587
0
                                /*NullCheckValue=*/ false, E->getExprLoc());
588
0
      break;
589
590
0
    case SubobjectAdjustment::FieldAdjustment: {
591
0
      LValue LV = MakeAddrLValue(Object, E->getType(), AlignmentSource::Decl);
592
0
      LV = EmitLValueForField(LV, Adjustment.Field);
593
0
      assert(LV.isSimple() &&
594
0
             "materialized temporary field is not a simple lvalue");
595
0
      Object = LV.getAddress(*this);
596
0
      break;
597
0
    }
598
599
0
    case SubobjectAdjustment::MemberPointerAdjustment: {
600
0
      llvm::Value *Ptr = EmitScalarExpr(Adjustment.Ptr.RHS);
601
0
      Object = EmitCXXMemberDataPointerAddress(E, Object, Ptr,
602
0
                                               Adjustment.Ptr.MPT);
603
0
      break;
604
0
    }
605
0
    }
606
0
  }
607
608
0
  return MakeAddrLValue(Object, M->getType(), AlignmentSource::Decl);
609
0
}
610
611
RValue
612
0
CodeGenFunction::EmitReferenceBindingToExpr(const Expr *E) {
613
  // Emit the expression as an lvalue.
614
0
  LValue LV = EmitLValue(E);
615
0
  assert(LV.isSimple());
616
0
  llvm::Value *Value = LV.getPointer(*this);
617
618
0
  if (sanitizePerformTypeCheck() && !E->getType()->isFunctionType()) {
619
    // C++11 [dcl.ref]p5 (as amended by core issue 453):
620
    //   If a glvalue to which a reference is directly bound designates neither
621
    //   an existing object or function of an appropriate type nor a region of
622
    //   storage of suitable size and alignment to contain an object of the
623
    //   reference's type, the behavior is undefined.
624
0
    QualType Ty = E->getType();
625
0
    EmitTypeCheck(TCK_ReferenceBinding, E->getExprLoc(), Value, Ty);
626
0
  }
627
628
0
  return RValue::get(Value);
629
0
}
630
631
632
/// getAccessedFieldNo - Given an encoded value and a result number, return the
633
/// input field number being accessed.
634
unsigned CodeGenFunction::getAccessedFieldNo(unsigned Idx,
635
0
                                             const llvm::Constant *Elts) {
636
0
  return cast<llvm::ConstantInt>(Elts->getAggregateElement(Idx))
637
0
      ->getZExtValue();
638
0
}
639
640
/// Emit the hash_16_bytes function from include/llvm/ADT/Hashing.h.
641
static llvm::Value *emitHash16Bytes(CGBuilderTy &Builder, llvm::Value *Low,
642
0
                                    llvm::Value *High) {
643
0
  llvm::Value *KMul = Builder.getInt64(0x9ddfea08eb382d69ULL);
644
0
  llvm::Value *K47 = Builder.getInt64(47);
645
0
  llvm::Value *A0 = Builder.CreateMul(Builder.CreateXor(Low, High), KMul);
646
0
  llvm::Value *A1 = Builder.CreateXor(Builder.CreateLShr(A0, K47), A0);
647
0
  llvm::Value *B0 = Builder.CreateMul(Builder.CreateXor(High, A1), KMul);
648
0
  llvm::Value *B1 = Builder.CreateXor(Builder.CreateLShr(B0, K47), B0);
649
0
  return Builder.CreateMul(B1, KMul);
650
0
}
651
652
0
bool CodeGenFunction::isNullPointerAllowed(TypeCheckKind TCK) {
653
0
  return TCK == TCK_DowncastPointer || TCK == TCK_Upcast ||
654
0
         TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation;
655
0
}
656
657
0
bool CodeGenFunction::isVptrCheckRequired(TypeCheckKind TCK, QualType Ty) {
658
0
  CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
659
0
  return (RD && RD->hasDefinition() && RD->isDynamicClass()) &&
660
0
         (TCK == TCK_MemberAccess || TCK == TCK_MemberCall ||
661
0
          TCK == TCK_DowncastPointer || TCK == TCK_DowncastReference ||
662
0
          TCK == TCK_UpcastToVirtualBase || TCK == TCK_DynamicOperation);
663
0
}
664
665
0
bool CodeGenFunction::sanitizePerformTypeCheck() const {
666
0
  return SanOpts.has(SanitizerKind::Null) ||
667
0
         SanOpts.has(SanitizerKind::Alignment) ||
668
0
         SanOpts.has(SanitizerKind::ObjectSize) ||
669
0
         SanOpts.has(SanitizerKind::Vptr);
670
0
}
671
672
void CodeGenFunction::EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc,
673
                                    llvm::Value *Ptr, QualType Ty,
674
                                    CharUnits Alignment,
675
                                    SanitizerSet SkippedChecks,
676
0
                                    llvm::Value *ArraySize) {
677
0
  if (!sanitizePerformTypeCheck())
678
0
    return;
679
680
  // Don't check pointers outside the default address space. The null check
681
  // isn't correct, the object-size check isn't supported by LLVM, and we can't
682
  // communicate the addresses to the runtime handler for the vptr check.
683
0
  if (Ptr->getType()->getPointerAddressSpace())
684
0
    return;
685
686
  // Don't check pointers to volatile data. The behavior here is implementation-
687
  // defined.
688
0
  if (Ty.isVolatileQualified())
689
0
    return;
690
691
0
  SanitizerScope SanScope(this);
692
693
0
  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 3> Checks;
694
0
  llvm::BasicBlock *Done = nullptr;
695
696
  // Quickly determine whether we have a pointer to an alloca. It's possible
697
  // to skip null checks, and some alignment checks, for these pointers. This
698
  // can reduce compile-time significantly.
699
0
  auto PtrToAlloca = dyn_cast<llvm::AllocaInst>(Ptr->stripPointerCasts());
700
701
0
  llvm::Value *True = llvm::ConstantInt::getTrue(getLLVMContext());
702
0
  llvm::Value *IsNonNull = nullptr;
703
0
  bool IsGuaranteedNonNull =
704
0
      SkippedChecks.has(SanitizerKind::Null) || PtrToAlloca;
705
0
  bool AllowNullPointers = isNullPointerAllowed(TCK);
706
0
  if ((SanOpts.has(SanitizerKind::Null) || AllowNullPointers) &&
707
0
      !IsGuaranteedNonNull) {
708
    // The glvalue must not be an empty glvalue.
709
0
    IsNonNull = Builder.CreateIsNotNull(Ptr);
710
711
    // The IR builder can constant-fold the null check if the pointer points to
712
    // a constant.
713
0
    IsGuaranteedNonNull = IsNonNull == True;
714
715
    // Skip the null check if the pointer is known to be non-null.
716
0
    if (!IsGuaranteedNonNull) {
717
0
      if (AllowNullPointers) {
718
        // When performing pointer casts, it's OK if the value is null.
719
        // Skip the remaining checks in that case.
720
0
        Done = createBasicBlock("null");
721
0
        llvm::BasicBlock *Rest = createBasicBlock("not.null");
722
0
        Builder.CreateCondBr(IsNonNull, Rest, Done);
723
0
        EmitBlock(Rest);
724
0
      } else {
725
0
        Checks.push_back(std::make_pair(IsNonNull, SanitizerKind::Null));
726
0
      }
727
0
    }
728
0
  }
729
730
0
  if (SanOpts.has(SanitizerKind::ObjectSize) &&
731
0
      !SkippedChecks.has(SanitizerKind::ObjectSize) &&
732
0
      !Ty->isIncompleteType()) {
733
0
    uint64_t TySize = CGM.getMinimumObjectSize(Ty).getQuantity();
734
0
    llvm::Value *Size = llvm::ConstantInt::get(IntPtrTy, TySize);
735
0
    if (ArraySize)
736
0
      Size = Builder.CreateMul(Size, ArraySize);
737
738
    // Degenerate case: new X[0] does not need an objectsize check.
739
0
    llvm::Constant *ConstantSize = dyn_cast<llvm::Constant>(Size);
740
0
    if (!ConstantSize || !ConstantSize->isNullValue()) {
741
      // The glvalue must refer to a large enough storage region.
742
      // FIXME: If Address Sanitizer is enabled, insert dynamic instrumentation
743
      //        to check this.
744
      // FIXME: Get object address space
745
0
      llvm::Type *Tys[2] = { IntPtrTy, Int8PtrTy };
746
0
      llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::objectsize, Tys);
747
0
      llvm::Value *Min = Builder.getFalse();
748
0
      llvm::Value *NullIsUnknown = Builder.getFalse();
749
0
      llvm::Value *Dynamic = Builder.getFalse();
750
0
      llvm::Value *LargeEnough = Builder.CreateICmpUGE(
751
0
          Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic}), Size);
752
0
      Checks.push_back(std::make_pair(LargeEnough, SanitizerKind::ObjectSize));
753
0
    }
754
0
  }
755
756
0
  llvm::MaybeAlign AlignVal;
757
0
  llvm::Value *PtrAsInt = nullptr;
758
759
0
  if (SanOpts.has(SanitizerKind::Alignment) &&
760
0
      !SkippedChecks.has(SanitizerKind::Alignment)) {
761
0
    AlignVal = Alignment.getAsMaybeAlign();
762
0
    if (!Ty->isIncompleteType() && !AlignVal)
763
0
      AlignVal = CGM.getNaturalTypeAlignment(Ty, nullptr, nullptr,
764
0
                                             /*ForPointeeType=*/true)
765
0
                     .getAsMaybeAlign();
766
767
    // The glvalue must be suitably aligned.
768
0
    if (AlignVal && *AlignVal > llvm::Align(1) &&
769
0
        (!PtrToAlloca || PtrToAlloca->getAlign() < *AlignVal)) {
770
0
      PtrAsInt = Builder.CreatePtrToInt(Ptr, IntPtrTy);
771
0
      llvm::Value *Align = Builder.CreateAnd(
772
0
          PtrAsInt, llvm::ConstantInt::get(IntPtrTy, AlignVal->value() - 1));
773
0
      llvm::Value *Aligned =
774
0
          Builder.CreateICmpEQ(Align, llvm::ConstantInt::get(IntPtrTy, 0));
775
0
      if (Aligned != True)
776
0
        Checks.push_back(std::make_pair(Aligned, SanitizerKind::Alignment));
777
0
    }
778
0
  }
779
780
0
  if (Checks.size() > 0) {
781
0
    llvm::Constant *StaticData[] = {
782
0
        EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(Ty),
783
0
        llvm::ConstantInt::get(Int8Ty, AlignVal ? llvm::Log2(*AlignVal) : 1),
784
0
        llvm::ConstantInt::get(Int8Ty, TCK)};
785
0
    EmitCheck(Checks, SanitizerHandler::TypeMismatch, StaticData,
786
0
              PtrAsInt ? PtrAsInt : Ptr);
787
0
  }
788
789
  // If possible, check that the vptr indicates that there is a subobject of
790
  // type Ty at offset zero within this object.
791
  //
792
  // C++11 [basic.life]p5,6:
793
  //   [For storage which does not refer to an object within its lifetime]
794
  //   The program has undefined behavior if:
795
  //    -- the [pointer or glvalue] is used to access a non-static data member
796
  //       or call a non-static member function
797
0
  if (SanOpts.has(SanitizerKind::Vptr) &&
798
0
      !SkippedChecks.has(SanitizerKind::Vptr) && isVptrCheckRequired(TCK, Ty)) {
799
    // Ensure that the pointer is non-null before loading it. If there is no
800
    // compile-time guarantee, reuse the run-time null check or emit a new one.
801
0
    if (!IsGuaranteedNonNull) {
802
0
      if (!IsNonNull)
803
0
        IsNonNull = Builder.CreateIsNotNull(Ptr);
804
0
      if (!Done)
805
0
        Done = createBasicBlock("vptr.null");
806
0
      llvm::BasicBlock *VptrNotNull = createBasicBlock("vptr.not.null");
807
0
      Builder.CreateCondBr(IsNonNull, VptrNotNull, Done);
808
0
      EmitBlock(VptrNotNull);
809
0
    }
810
811
    // Compute a hash of the mangled name of the type.
812
    //
813
    // FIXME: This is not guaranteed to be deterministic! Move to a
814
    //        fingerprinting mechanism once LLVM provides one. For the time
815
    //        being the implementation happens to be deterministic.
816
0
    SmallString<64> MangledName;
817
0
    llvm::raw_svector_ostream Out(MangledName);
818
0
    CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty.getUnqualifiedType(),
819
0
                                                     Out);
820
821
    // Contained in NoSanitizeList based on the mangled type.
822
0
    if (!CGM.getContext().getNoSanitizeList().containsType(SanitizerKind::Vptr,
823
0
                                                           Out.str())) {
824
0
      llvm::hash_code TypeHash = hash_value(Out.str());
825
826
      // Load the vptr, and compute hash_16_bytes(TypeHash, vptr).
827
0
      llvm::Value *Low = llvm::ConstantInt::get(Int64Ty, TypeHash);
828
0
      Address VPtrAddr(Ptr, IntPtrTy, getPointerAlign());
829
0
      llvm::Value *VPtrVal = Builder.CreateLoad(VPtrAddr);
830
0
      llvm::Value *High = Builder.CreateZExt(VPtrVal, Int64Ty);
831
832
0
      llvm::Value *Hash = emitHash16Bytes(Builder, Low, High);
833
0
      Hash = Builder.CreateTrunc(Hash, IntPtrTy);
834
835
      // Look the hash up in our cache.
836
0
      const int CacheSize = 128;
837
0
      llvm::Type *HashTable = llvm::ArrayType::get(IntPtrTy, CacheSize);
838
0
      llvm::Value *Cache = CGM.CreateRuntimeVariable(HashTable,
839
0
                                                     "__ubsan_vptr_type_cache");
840
0
      llvm::Value *Slot = Builder.CreateAnd(Hash,
841
0
                                            llvm::ConstantInt::get(IntPtrTy,
842
0
                                                                   CacheSize-1));
843
0
      llvm::Value *Indices[] = { Builder.getInt32(0), Slot };
844
0
      llvm::Value *CacheVal = Builder.CreateAlignedLoad(
845
0
          IntPtrTy, Builder.CreateInBoundsGEP(HashTable, Cache, Indices),
846
0
          getPointerAlign());
847
848
      // If the hash isn't in the cache, call a runtime handler to perform the
849
      // hard work of checking whether the vptr is for an object of the right
850
      // type. This will either fill in the cache and return, or produce a
851
      // diagnostic.
852
0
      llvm::Value *EqualHash = Builder.CreateICmpEQ(CacheVal, Hash);
853
0
      llvm::Constant *StaticData[] = {
854
0
        EmitCheckSourceLocation(Loc),
855
0
        EmitCheckTypeDescriptor(Ty),
856
0
        CGM.GetAddrOfRTTIDescriptor(Ty.getUnqualifiedType()),
857
0
        llvm::ConstantInt::get(Int8Ty, TCK)
858
0
      };
859
0
      llvm::Value *DynamicData[] = { Ptr, Hash };
860
0
      EmitCheck(std::make_pair(EqualHash, SanitizerKind::Vptr),
861
0
                SanitizerHandler::DynamicTypeCacheMiss, StaticData,
862
0
                DynamicData);
863
0
    }
864
0
  }
865
866
0
  if (Done) {
867
0
    Builder.CreateBr(Done);
868
0
    EmitBlock(Done);
869
0
  }
870
0
}
871
872
llvm::Value *CodeGenFunction::LoadPassedObjectSize(const Expr *E,
873
0
                                                   QualType EltTy) {
874
0
  ASTContext &C = getContext();
875
0
  uint64_t EltSize = C.getTypeSizeInChars(EltTy).getQuantity();
876
0
  if (!EltSize)
877
0
    return nullptr;
878
879
0
  auto *ArrayDeclRef = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts());
880
0
  if (!ArrayDeclRef)
881
0
    return nullptr;
882
883
0
  auto *ParamDecl = dyn_cast<ParmVarDecl>(ArrayDeclRef->getDecl());
884
0
  if (!ParamDecl)
885
0
    return nullptr;
886
887
0
  auto *POSAttr = ParamDecl->getAttr<PassObjectSizeAttr>();
888
0
  if (!POSAttr)
889
0
    return nullptr;
890
891
  // Don't load the size if it's a lower bound.
892
0
  int POSType = POSAttr->getType();
893
0
  if (POSType != 0 && POSType != 1)
894
0
    return nullptr;
895
896
  // Find the implicit size parameter.
897
0
  auto PassedSizeIt = SizeArguments.find(ParamDecl);
898
0
  if (PassedSizeIt == SizeArguments.end())
899
0
    return nullptr;
900
901
0
  const ImplicitParamDecl *PassedSizeDecl = PassedSizeIt->second;
902
0
  assert(LocalDeclMap.count(PassedSizeDecl) && "Passed size not loadable");
903
0
  Address AddrOfSize = LocalDeclMap.find(PassedSizeDecl)->second;
904
0
  llvm::Value *SizeInBytes = EmitLoadOfScalar(AddrOfSize, /*Volatile=*/false,
905
0
                                              C.getSizeType(), E->getExprLoc());
906
0
  llvm::Value *SizeOfElement =
907
0
      llvm::ConstantInt::get(SizeInBytes->getType(), EltSize);
908
0
  return Builder.CreateUDiv(SizeInBytes, SizeOfElement);
909
0
}
910
911
/// If Base is known to point to the start of an array, return the length of
912
/// that array. Return 0 if the length cannot be determined.
913
static llvm::Value *getArrayIndexingBound(CodeGenFunction &CGF,
914
                                          const Expr *Base,
915
                                          QualType &IndexedType,
916
                                          LangOptions::StrictFlexArraysLevelKind
917
0
                                          StrictFlexArraysLevel) {
918
  // For the vector indexing extension, the bound is the number of elements.
919
0
  if (const VectorType *VT = Base->getType()->getAs<VectorType>()) {
920
0
    IndexedType = Base->getType();
921
0
    return CGF.Builder.getInt32(VT->getNumElements());
922
0
  }
923
924
0
  Base = Base->IgnoreParens();
925
926
0
  if (const auto *CE = dyn_cast<CastExpr>(Base)) {
927
0
    if (CE->getCastKind() == CK_ArrayToPointerDecay &&
928
0
        !CE->getSubExpr()->isFlexibleArrayMemberLike(CGF.getContext(),
929
0
                                                     StrictFlexArraysLevel)) {
930
0
      CodeGenFunction::SanitizerScope SanScope(&CGF);
931
932
0
      IndexedType = CE->getSubExpr()->getType();
933
0
      const ArrayType *AT = IndexedType->castAsArrayTypeUnsafe();
934
0
      if (const auto *CAT = dyn_cast<ConstantArrayType>(AT))
935
0
        return CGF.Builder.getInt(CAT->getSize());
936
937
0
      if (const auto *VAT = dyn_cast<VariableArrayType>(AT))
938
0
        return CGF.getVLASize(VAT).NumElts;
939
      // Ignore pass_object_size here. It's not applicable on decayed pointers.
940
0
    }
941
0
  }
942
943
0
  CodeGenFunction::SanitizerScope SanScope(&CGF);
944
945
0
  QualType EltTy{Base->getType()->getPointeeOrArrayElementType(), 0};
946
0
  if (llvm::Value *POS = CGF.LoadPassedObjectSize(Base, EltTy)) {
947
0
    IndexedType = Base->getType();
948
0
    return POS;
949
0
  }
950
951
0
  return nullptr;
952
0
}
953
954
namespace {
955
956
/// \p StructAccessBase returns the base \p Expr of a field access. It returns
957
/// either a \p DeclRefExpr, representing the base pointer to the struct, i.e.:
958
///
959
///     p in p-> a.b.c
960
///
961
/// or a \p MemberExpr, if the \p MemberExpr has the \p RecordDecl we're
962
/// looking for:
963
///
964
///     struct s {
965
///       struct s *ptr;
966
///       int count;
967
///       char array[] __attribute__((counted_by(count)));
968
///     };
969
///
970
/// If we have an expression like \p p->ptr->array[index], we want the
971
/// \p MemberExpr for \p p->ptr instead of \p p.
972
class StructAccessBase
973
    : public ConstStmtVisitor<StructAccessBase, const Expr *> {
974
  const RecordDecl *ExpectedRD;
975
976
0
  bool IsExpectedRecordDecl(const Expr *E) const {
977
0
    QualType Ty = E->getType();
978
0
    if (Ty->isPointerType())
979
0
      Ty = Ty->getPointeeType();
980
0
    return ExpectedRD == Ty->getAsRecordDecl();
981
0
  }
982
983
public:
984
0
  StructAccessBase(const RecordDecl *ExpectedRD) : ExpectedRD(ExpectedRD) {}
985
986
  //===--------------------------------------------------------------------===//
987
  //                            Visitor Methods
988
  //===--------------------------------------------------------------------===//
989
990
  // NOTE: If we build C++ support for counted_by, then we'll have to handle
991
  // horrors like this:
992
  //
993
  //     struct S {
994
  //       int x, y;
995
  //       int blah[] __attribute__((counted_by(x)));
996
  //     } s;
997
  //
998
  //     int foo(int index, int val) {
999
  //       int (S::*IHatePMDs)[] = &S::blah;
1000
  //       (s.*IHatePMDs)[index] = val;
1001
  //     }
1002
1003
0
  const Expr *Visit(const Expr *E) {
1004
0
    return ConstStmtVisitor<StructAccessBase, const Expr *>::Visit(E);
1005
0
  }
1006
1007
0
  const Expr *VisitStmt(const Stmt *S) { return nullptr; }
1008
1009
  // These are the types we expect to return (in order of most to least
1010
  // likely):
1011
  //
1012
  //   1. DeclRefExpr - This is the expression for the base of the structure.
1013
  //      It's exactly what we want to build an access to the \p counted_by
1014
  //      field.
1015
  //   2. MemberExpr - This is the expression that has the same \p RecordDecl
1016
  //      as the flexble array member's lexical enclosing \p RecordDecl. This
1017
  //      allows us to catch things like: "p->p->array"
1018
  //   3. CompoundLiteralExpr - This is for people who create something
1019
  //      heretical like (struct foo has a flexible array member):
1020
  //
1021
  //        (struct foo){ 1, 2 }.blah[idx];
1022
0
  const Expr *VisitDeclRefExpr(const DeclRefExpr *E) {
1023
0
    return IsExpectedRecordDecl(E) ? E : nullptr;
1024
0
  }
1025
0
  const Expr *VisitMemberExpr(const MemberExpr *E) {
1026
0
    if (IsExpectedRecordDecl(E) && E->isArrow())
1027
0
      return E;
1028
0
    const Expr *Res = Visit(E->getBase());
1029
0
    return !Res && IsExpectedRecordDecl(E) ? E : Res;
1030
0
  }
1031
0
  const Expr *VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1032
0
    return IsExpectedRecordDecl(E) ? E : nullptr;
1033
0
  }
1034
0
  const Expr *VisitCallExpr(const CallExpr *E) {
1035
0
    return IsExpectedRecordDecl(E) ? E : nullptr;
1036
0
  }
1037
1038
0
  const Expr *VisitArraySubscriptExpr(const ArraySubscriptExpr *E) {
1039
0
    if (IsExpectedRecordDecl(E))
1040
0
      return E;
1041
0
    return Visit(E->getBase());
1042
0
  }
1043
0
  const Expr *VisitCastExpr(const CastExpr *E) {
1044
0
    return Visit(E->getSubExpr());
1045
0
  }
1046
0
  const Expr *VisitParenExpr(const ParenExpr *E) {
1047
0
    return Visit(E->getSubExpr());
1048
0
  }
1049
0
  const Expr *VisitUnaryAddrOf(const UnaryOperator *E) {
1050
0
    return Visit(E->getSubExpr());
1051
0
  }
1052
0
  const Expr *VisitUnaryDeref(const UnaryOperator *E) {
1053
0
    return Visit(E->getSubExpr());
1054
0
  }
1055
};
1056
1057
} // end anonymous namespace
1058
1059
using RecIndicesTy =
1060
    SmallVector<std::pair<const RecordDecl *, llvm::Value *>, 8>;
1061
1062
static bool getGEPIndicesToField(CodeGenFunction &CGF, const RecordDecl *RD,
1063
0
                                 const FieldDecl *FD, RecIndicesTy &Indices) {
1064
0
  const CGRecordLayout &Layout = CGF.CGM.getTypes().getCGRecordLayout(RD);
1065
0
  int64_t FieldNo = -1;
1066
0
  for (const Decl *D : RD->decls()) {
1067
0
    if (const auto *Field = dyn_cast<FieldDecl>(D)) {
1068
0
      FieldNo = Layout.getLLVMFieldNo(Field);
1069
0
      if (FD == Field) {
1070
0
        Indices.emplace_back(std::make_pair(RD, CGF.Builder.getInt32(FieldNo)));
1071
0
        return true;
1072
0
      }
1073
0
    }
1074
1075
0
    if (const auto *Record = dyn_cast<RecordDecl>(D)) {
1076
0
      ++FieldNo;
1077
0
      if (getGEPIndicesToField(CGF, Record, FD, Indices)) {
1078
0
        if (RD->isUnion())
1079
0
          FieldNo = 0;
1080
0
        Indices.emplace_back(std::make_pair(RD, CGF.Builder.getInt32(FieldNo)));
1081
0
        return true;
1082
0
      }
1083
0
    }
1084
0
  }
1085
1086
0
  return false;
1087
0
}
1088
1089
/// This method is typically called in contexts where we can't generate
1090
/// side-effects, like in __builtin_dynamic_object_size. When finding
1091
/// expressions, only choose those that have either already been emitted or can
1092
/// be loaded without side-effects.
1093
///
1094
/// - \p FAMDecl: the \p Decl for the flexible array member. It may not be
1095
///   within the top-level struct.
1096
/// - \p CountDecl: must be within the same non-anonymous struct as \p FAMDecl.
1097
llvm::Value *CodeGenFunction::EmitCountedByFieldExpr(
1098
0
    const Expr *Base, const FieldDecl *FAMDecl, const FieldDecl *CountDecl) {
1099
0
  const RecordDecl *RD = CountDecl->getParent()->getOuterLexicalRecordContext();
1100
1101
  // Find the base struct expr (i.e. p in p->a.b.c.d).
1102
0
  const Expr *StructBase = StructAccessBase(RD).Visit(Base);
1103
0
  if (!StructBase || StructBase->HasSideEffects(getContext()))
1104
0
    return nullptr;
1105
1106
0
  llvm::Value *Res = nullptr;
1107
0
  if (const auto *DRE = dyn_cast<DeclRefExpr>(StructBase)) {
1108
0
    Res = EmitDeclRefLValue(DRE).getPointer(*this);
1109
0
    Res = Builder.CreateAlignedLoad(ConvertType(DRE->getType()), Res,
1110
0
                                    getPointerAlign(), "dre.load");
1111
0
  } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(StructBase)) {
1112
0
    LValue LV = EmitMemberExpr(ME);
1113
0
    Address Addr = LV.getAddress(*this);
1114
0
    Res = Addr.getPointer();
1115
0
  } else if (StructBase->getType()->isPointerType()) {
1116
0
    LValueBaseInfo BaseInfo;
1117
0
    TBAAAccessInfo TBAAInfo;
1118
0
    Address Addr = EmitPointerWithAlignment(StructBase, &BaseInfo, &TBAAInfo);
1119
0
    Res = Addr.getPointer();
1120
0
  } else {
1121
0
    return nullptr;
1122
0
  }
1123
1124
0
  llvm::Value *Zero = Builder.getInt32(0);
1125
0
  RecIndicesTy Indices;
1126
1127
0
  getGEPIndicesToField(*this, RD, CountDecl, Indices);
1128
1129
0
  for (auto I = Indices.rbegin(), E = Indices.rend(); I != E; ++I)
1130
0
    Res = Builder.CreateInBoundsGEP(
1131
0
        ConvertType(QualType(I->first->getTypeForDecl(), 0)), Res,
1132
0
        {Zero, I->second}, "..counted_by.gep");
1133
1134
0
  return Builder.CreateAlignedLoad(ConvertType(CountDecl->getType()), Res,
1135
0
                                   getIntAlign(), "..counted_by.load");
1136
0
}
1137
1138
0
const FieldDecl *CodeGenFunction::FindCountedByField(const FieldDecl *FD) {
1139
0
  if (!FD || !FD->hasAttr<CountedByAttr>())
1140
0
    return nullptr;
1141
1142
0
  const auto *CBA = FD->getAttr<CountedByAttr>();
1143
0
  if (!CBA)
1144
0
    return nullptr;
1145
1146
0
  auto GetNonAnonStructOrUnion =
1147
0
      [](const RecordDecl *RD) -> const RecordDecl * {
1148
0
    while (RD && RD->isAnonymousStructOrUnion()) {
1149
0
      const auto *R = dyn_cast<RecordDecl>(RD->getDeclContext());
1150
0
      if (!R)
1151
0
        return nullptr;
1152
0
      RD = R;
1153
0
    }
1154
0
    return RD;
1155
0
  };
1156
0
  const RecordDecl *EnclosingRD = GetNonAnonStructOrUnion(FD->getParent());
1157
0
  if (!EnclosingRD)
1158
0
    return nullptr;
1159
1160
0
  DeclarationName DName(CBA->getCountedByField());
1161
0
  DeclContext::lookup_result Lookup = EnclosingRD->lookup(DName);
1162
1163
0
  if (Lookup.empty())
1164
0
    return nullptr;
1165
1166
0
  const NamedDecl *ND = Lookup.front();
1167
0
  if (const auto *IFD = dyn_cast<IndirectFieldDecl>(ND))
1168
0
    ND = IFD->getAnonField();
1169
1170
0
  return dyn_cast<FieldDecl>(ND);
1171
0
}
1172
1173
void CodeGenFunction::EmitBoundsCheck(const Expr *E, const Expr *Base,
1174
                                      llvm::Value *Index, QualType IndexType,
1175
0
                                      bool Accessed) {
1176
0
  assert(SanOpts.has(SanitizerKind::ArrayBounds) &&
1177
0
         "should not be called unless adding bounds checks");
1178
0
  const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
1179
0
      getLangOpts().getStrictFlexArraysLevel();
1180
0
  QualType IndexedType;
1181
0
  llvm::Value *Bound =
1182
0
      getArrayIndexingBound(*this, Base, IndexedType, StrictFlexArraysLevel);
1183
1184
0
  EmitBoundsCheckImpl(E, Bound, Index, IndexType, IndexedType, Accessed);
1185
0
}
1186
1187
void CodeGenFunction::EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound,
1188
                                          llvm::Value *Index,
1189
                                          QualType IndexType,
1190
0
                                          QualType IndexedType, bool Accessed) {
1191
0
  if (!Bound)
1192
0
    return;
1193
1194
0
  SanitizerScope SanScope(this);
1195
1196
0
  bool IndexSigned = IndexType->isSignedIntegerOrEnumerationType();
1197
0
  llvm::Value *IndexVal = Builder.CreateIntCast(Index, SizeTy, IndexSigned);
1198
0
  llvm::Value *BoundVal = Builder.CreateIntCast(Bound, SizeTy, false);
1199
1200
0
  llvm::Constant *StaticData[] = {
1201
0
    EmitCheckSourceLocation(E->getExprLoc()),
1202
0
    EmitCheckTypeDescriptor(IndexedType),
1203
0
    EmitCheckTypeDescriptor(IndexType)
1204
0
  };
1205
0
  llvm::Value *Check = Accessed ? Builder.CreateICmpULT(IndexVal, BoundVal)
1206
0
                                : Builder.CreateICmpULE(IndexVal, BoundVal);
1207
0
  EmitCheck(std::make_pair(Check, SanitizerKind::ArrayBounds),
1208
0
            SanitizerHandler::OutOfBounds, StaticData, Index);
1209
0
}
1210
1211
CodeGenFunction::ComplexPairTy CodeGenFunction::
1212
EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
1213
0
                         bool isInc, bool isPre) {
1214
0
  ComplexPairTy InVal = EmitLoadOfComplex(LV, E->getExprLoc());
1215
1216
0
  llvm::Value *NextVal;
1217
0
  if (isa<llvm::IntegerType>(InVal.first->getType())) {
1218
0
    uint64_t AmountVal = isInc ? 1 : -1;
1219
0
    NextVal = llvm::ConstantInt::get(InVal.first->getType(), AmountVal, true);
1220
1221
    // Add the inc/dec to the real part.
1222
0
    NextVal = Builder.CreateAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1223
0
  } else {
1224
0
    QualType ElemTy = E->getType()->castAs<ComplexType>()->getElementType();
1225
0
    llvm::APFloat FVal(getContext().getFloatTypeSemantics(ElemTy), 1);
1226
0
    if (!isInc)
1227
0
      FVal.changeSign();
1228
0
    NextVal = llvm::ConstantFP::get(getLLVMContext(), FVal);
1229
1230
    // Add the inc/dec to the real part.
1231
0
    NextVal = Builder.CreateFAdd(InVal.first, NextVal, isInc ? "inc" : "dec");
1232
0
  }
1233
1234
0
  ComplexPairTy IncVal(NextVal, InVal.second);
1235
1236
  // Store the updated result through the lvalue.
1237
0
  EmitStoreOfComplex(IncVal, LV, /*init*/ false);
1238
0
  if (getLangOpts().OpenMP)
1239
0
    CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
1240
0
                                                              E->getSubExpr());
1241
1242
  // If this is a postinc, return the value read from memory, otherwise use the
1243
  // updated value.
1244
0
  return isPre ? IncVal : InVal;
1245
0
}
1246
1247
void CodeGenModule::EmitExplicitCastExprType(const ExplicitCastExpr *E,
1248
0
                                             CodeGenFunction *CGF) {
1249
  // Bind VLAs in the cast type.
1250
0
  if (CGF && E->getType()->isVariablyModifiedType())
1251
0
    CGF->EmitVariablyModifiedType(E->getType());
1252
1253
0
  if (CGDebugInfo *DI = getModuleDebugInfo())
1254
0
    DI->EmitExplicitCastType(E->getType());
1255
0
}
1256
1257
//===----------------------------------------------------------------------===//
1258
//                         LValue Expression Emission
1259
//===----------------------------------------------------------------------===//
1260
1261
static Address EmitPointerWithAlignment(const Expr *E, LValueBaseInfo *BaseInfo,
1262
                                        TBAAAccessInfo *TBAAInfo,
1263
                                        KnownNonNull_t IsKnownNonNull,
1264
0
                                        CodeGenFunction &CGF) {
1265
  // We allow this with ObjC object pointers because of fragile ABIs.
1266
0
  assert(E->getType()->isPointerType() ||
1267
0
         E->getType()->isObjCObjectPointerType());
1268
0
  E = E->IgnoreParens();
1269
1270
  // Casts:
1271
0
  if (const CastExpr *CE = dyn_cast<CastExpr>(E)) {
1272
0
    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(CE))
1273
0
      CGF.CGM.EmitExplicitCastExprType(ECE, &CGF);
1274
1275
0
    switch (CE->getCastKind()) {
1276
    // Non-converting casts (but not C's implicit conversion from void*).
1277
0
    case CK_BitCast:
1278
0
    case CK_NoOp:
1279
0
    case CK_AddressSpaceConversion:
1280
0
      if (auto PtrTy = CE->getSubExpr()->getType()->getAs<PointerType>()) {
1281
0
        if (PtrTy->getPointeeType()->isVoidType())
1282
0
          break;
1283
1284
0
        LValueBaseInfo InnerBaseInfo;
1285
0
        TBAAAccessInfo InnerTBAAInfo;
1286
0
        Address Addr = CGF.EmitPointerWithAlignment(
1287
0
            CE->getSubExpr(), &InnerBaseInfo, &InnerTBAAInfo, IsKnownNonNull);
1288
0
        if (BaseInfo) *BaseInfo = InnerBaseInfo;
1289
0
        if (TBAAInfo) *TBAAInfo = InnerTBAAInfo;
1290
1291
0
        if (isa<ExplicitCastExpr>(CE)) {
1292
0
          LValueBaseInfo TargetTypeBaseInfo;
1293
0
          TBAAAccessInfo TargetTypeTBAAInfo;
1294
0
          CharUnits Align = CGF.CGM.getNaturalPointeeTypeAlignment(
1295
0
              E->getType(), &TargetTypeBaseInfo, &TargetTypeTBAAInfo);
1296
0
          if (TBAAInfo)
1297
0
            *TBAAInfo =
1298
0
                CGF.CGM.mergeTBAAInfoForCast(*TBAAInfo, TargetTypeTBAAInfo);
1299
          // If the source l-value is opaque, honor the alignment of the
1300
          // casted-to type.
1301
0
          if (InnerBaseInfo.getAlignmentSource() != AlignmentSource::Decl) {
1302
0
            if (BaseInfo)
1303
0
              BaseInfo->mergeForCast(TargetTypeBaseInfo);
1304
0
            Addr = Address(Addr.getPointer(), Addr.getElementType(), Align,
1305
0
                           IsKnownNonNull);
1306
0
          }
1307
0
        }
1308
1309
0
        if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast) &&
1310
0
            CE->getCastKind() == CK_BitCast) {
1311
0
          if (auto PT = E->getType()->getAs<PointerType>())
1312
0
            CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Addr,
1313
0
                                          /*MayBeNull=*/true,
1314
0
                                          CodeGenFunction::CFITCK_UnrelatedCast,
1315
0
                                          CE->getBeginLoc());
1316
0
        }
1317
1318
0
        llvm::Type *ElemTy =
1319
0
            CGF.ConvertTypeForMem(E->getType()->getPointeeType());
1320
0
        Addr = Addr.withElementType(ElemTy);
1321
0
        if (CE->getCastKind() == CK_AddressSpaceConversion)
1322
0
          Addr = CGF.Builder.CreateAddrSpaceCast(Addr,
1323
0
                                                 CGF.ConvertType(E->getType()));
1324
0
        return Addr;
1325
0
      }
1326
0
      break;
1327
1328
    // Array-to-pointer decay.
1329
0
    case CK_ArrayToPointerDecay:
1330
0
      return CGF.EmitArrayToPointerDecay(CE->getSubExpr(), BaseInfo, TBAAInfo);
1331
1332
    // Derived-to-base conversions.
1333
0
    case CK_UncheckedDerivedToBase:
1334
0
    case CK_DerivedToBase: {
1335
      // TODO: Support accesses to members of base classes in TBAA. For now, we
1336
      // conservatively pretend that the complete object is of the base class
1337
      // type.
1338
0
      if (TBAAInfo)
1339
0
        *TBAAInfo = CGF.CGM.getTBAAAccessInfo(E->getType());
1340
0
      Address Addr = CGF.EmitPointerWithAlignment(
1341
0
          CE->getSubExpr(), BaseInfo, nullptr,
1342
0
          (KnownNonNull_t)(IsKnownNonNull ||
1343
0
                           CE->getCastKind() == CK_UncheckedDerivedToBase));
1344
0
      auto Derived = CE->getSubExpr()->getType()->getPointeeCXXRecordDecl();
1345
0
      return CGF.GetAddressOfBaseClass(
1346
0
          Addr, Derived, CE->path_begin(), CE->path_end(),
1347
0
          CGF.ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
1348
0
    }
1349
1350
    // TODO: Is there any reason to treat base-to-derived conversions
1351
    // specially?
1352
0
    default:
1353
0
      break;
1354
0
    }
1355
0
  }
1356
1357
  // Unary &.
1358
0
  if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
1359
0
    if (UO->getOpcode() == UO_AddrOf) {
1360
0
      LValue LV = CGF.EmitLValue(UO->getSubExpr(), IsKnownNonNull);
1361
0
      if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1362
0
      if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1363
0
      return LV.getAddress(CGF);
1364
0
    }
1365
0
  }
1366
1367
  // std::addressof and variants.
1368
0
  if (auto *Call = dyn_cast<CallExpr>(E)) {
1369
0
    switch (Call->getBuiltinCallee()) {
1370
0
    default:
1371
0
      break;
1372
0
    case Builtin::BIaddressof:
1373
0
    case Builtin::BI__addressof:
1374
0
    case Builtin::BI__builtin_addressof: {
1375
0
      LValue LV = CGF.EmitLValue(Call->getArg(0), IsKnownNonNull);
1376
0
      if (BaseInfo) *BaseInfo = LV.getBaseInfo();
1377
0
      if (TBAAInfo) *TBAAInfo = LV.getTBAAInfo();
1378
0
      return LV.getAddress(CGF);
1379
0
    }
1380
0
    }
1381
0
  }
1382
1383
  // TODO: conditional operators, comma.
1384
1385
  // Otherwise, use the alignment of the type.
1386
0
  CharUnits Align =
1387
0
      CGF.CGM.getNaturalPointeeTypeAlignment(E->getType(), BaseInfo, TBAAInfo);
1388
0
  llvm::Type *ElemTy = CGF.ConvertTypeForMem(E->getType()->getPointeeType());
1389
0
  return Address(CGF.EmitScalarExpr(E), ElemTy, Align, IsKnownNonNull);
1390
0
}
1391
1392
/// EmitPointerWithAlignment - Given an expression of pointer type, try to
1393
/// derive a more accurate bound on the alignment of the pointer.
1394
Address CodeGenFunction::EmitPointerWithAlignment(
1395
    const Expr *E, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo,
1396
0
    KnownNonNull_t IsKnownNonNull) {
1397
0
  Address Addr =
1398
0
      ::EmitPointerWithAlignment(E, BaseInfo, TBAAInfo, IsKnownNonNull, *this);
1399
0
  if (IsKnownNonNull && !Addr.isKnownNonNull())
1400
0
    Addr.setKnownNonNull();
1401
0
  return Addr;
1402
0
}
1403
1404
0
llvm::Value *CodeGenFunction::EmitNonNullRValueCheck(RValue RV, QualType T) {
1405
0
  llvm::Value *V = RV.getScalarVal();
1406
0
  if (auto MPT = T->getAs<MemberPointerType>())
1407
0
    return CGM.getCXXABI().EmitMemberPointerIsNotNull(*this, V, MPT);
1408
0
  return Builder.CreateICmpNE(V, llvm::Constant::getNullValue(V->getType()));
1409
0
}
1410
1411
0
RValue CodeGenFunction::GetUndefRValue(QualType Ty) {
1412
0
  if (Ty->isVoidType())
1413
0
    return RValue::get(nullptr);
1414
1415
0
  switch (getEvaluationKind(Ty)) {
1416
0
  case TEK_Complex: {
1417
0
    llvm::Type *EltTy =
1418
0
      ConvertType(Ty->castAs<ComplexType>()->getElementType());
1419
0
    llvm::Value *U = llvm::UndefValue::get(EltTy);
1420
0
    return RValue::getComplex(std::make_pair(U, U));
1421
0
  }
1422
1423
  // If this is a use of an undefined aggregate type, the aggregate must have an
1424
  // identifiable address.  Just because the contents of the value are undefined
1425
  // doesn't mean that the address can't be taken and compared.
1426
0
  case TEK_Aggregate: {
1427
0
    Address DestPtr = CreateMemTemp(Ty, "undef.agg.tmp");
1428
0
    return RValue::getAggregate(DestPtr);
1429
0
  }
1430
1431
0
  case TEK_Scalar:
1432
0
    return RValue::get(llvm::UndefValue::get(ConvertType(Ty)));
1433
0
  }
1434
0
  llvm_unreachable("bad evaluation kind");
1435
0
}
1436
1437
RValue CodeGenFunction::EmitUnsupportedRValue(const Expr *E,
1438
0
                                              const char *Name) {
1439
0
  ErrorUnsupported(E, Name);
1440
0
  return GetUndefRValue(E->getType());
1441
0
}
1442
1443
LValue CodeGenFunction::EmitUnsupportedLValue(const Expr *E,
1444
0
                                              const char *Name) {
1445
0
  ErrorUnsupported(E, Name);
1446
0
  llvm::Type *ElTy = ConvertType(E->getType());
1447
0
  llvm::Type *Ty = UnqualPtrTy;
1448
0
  return MakeAddrLValue(
1449
0
      Address(llvm::UndefValue::get(Ty), ElTy, CharUnits::One()), E->getType());
1450
0
}
1451
1452
0
bool CodeGenFunction::IsWrappedCXXThis(const Expr *Obj) {
1453
0
  const Expr *Base = Obj;
1454
0
  while (!isa<CXXThisExpr>(Base)) {
1455
    // The result of a dynamic_cast can be null.
1456
0
    if (isa<CXXDynamicCastExpr>(Base))
1457
0
      return false;
1458
1459
0
    if (const auto *CE = dyn_cast<CastExpr>(Base)) {
1460
0
      Base = CE->getSubExpr();
1461
0
    } else if (const auto *PE = dyn_cast<ParenExpr>(Base)) {
1462
0
      Base = PE->getSubExpr();
1463
0
    } else if (const auto *UO = dyn_cast<UnaryOperator>(Base)) {
1464
0
      if (UO->getOpcode() == UO_Extension)
1465
0
        Base = UO->getSubExpr();
1466
0
      else
1467
0
        return false;
1468
0
    } else {
1469
0
      return false;
1470
0
    }
1471
0
  }
1472
0
  return true;
1473
0
}
1474
1475
0
LValue CodeGenFunction::EmitCheckedLValue(const Expr *E, TypeCheckKind TCK) {
1476
0
  LValue LV;
1477
0
  if (SanOpts.has(SanitizerKind::ArrayBounds) && isa<ArraySubscriptExpr>(E))
1478
0
    LV = EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E), /*Accessed*/true);
1479
0
  else
1480
0
    LV = EmitLValue(E);
1481
0
  if (!isa<DeclRefExpr>(E) && !LV.isBitField() && LV.isSimple()) {
1482
0
    SanitizerSet SkippedChecks;
1483
0
    if (const auto *ME = dyn_cast<MemberExpr>(E)) {
1484
0
      bool IsBaseCXXThis = IsWrappedCXXThis(ME->getBase());
1485
0
      if (IsBaseCXXThis)
1486
0
        SkippedChecks.set(SanitizerKind::Alignment, true);
1487
0
      if (IsBaseCXXThis || isa<DeclRefExpr>(ME->getBase()))
1488
0
        SkippedChecks.set(SanitizerKind::Null, true);
1489
0
    }
1490
0
    EmitTypeCheck(TCK, E->getExprLoc(), LV.getPointer(*this), E->getType(),
1491
0
                  LV.getAlignment(), SkippedChecks);
1492
0
  }
1493
0
  return LV;
1494
0
}
1495
1496
/// EmitLValue - Emit code to compute a designator that specifies the location
1497
/// of the expression.
1498
///
1499
/// This can return one of two things: a simple address or a bitfield reference.
1500
/// In either case, the LLVM Value* in the LValue structure is guaranteed to be
1501
/// an LLVM pointer type.
1502
///
1503
/// If this returns a bitfield reference, nothing about the pointee type of the
1504
/// LLVM value is known: For example, it may not be a pointer to an integer.
1505
///
1506
/// If this returns a normal address, and if the lvalue's C type is fixed size,
1507
/// this method guarantees that the returned pointer type will point to an LLVM
1508
/// type of the same size of the lvalue's type.  If the lvalue has a variable
1509
/// length type, this is not possible.
1510
///
1511
LValue CodeGenFunction::EmitLValue(const Expr *E,
1512
0
                                   KnownNonNull_t IsKnownNonNull) {
1513
0
  LValue LV = EmitLValueHelper(E, IsKnownNonNull);
1514
0
  if (IsKnownNonNull && !LV.isKnownNonNull())
1515
0
    LV.setKnownNonNull();
1516
0
  return LV;
1517
0
}
1518
1519
LValue CodeGenFunction::EmitLValueHelper(const Expr *E,
1520
0
                                         KnownNonNull_t IsKnownNonNull) {
1521
0
  ApplyDebugLocation DL(*this, E);
1522
0
  switch (E->getStmtClass()) {
1523
0
  default: return EmitUnsupportedLValue(E, "l-value expression");
1524
1525
0
  case Expr::ObjCPropertyRefExprClass:
1526
0
    llvm_unreachable("cannot emit a property reference directly");
1527
1528
0
  case Expr::ObjCSelectorExprClass:
1529
0
    return EmitObjCSelectorLValue(cast<ObjCSelectorExpr>(E));
1530
0
  case Expr::ObjCIsaExprClass:
1531
0
    return EmitObjCIsaExpr(cast<ObjCIsaExpr>(E));
1532
0
  case Expr::BinaryOperatorClass:
1533
0
    return EmitBinaryOperatorLValue(cast<BinaryOperator>(E));
1534
0
  case Expr::CompoundAssignOperatorClass: {
1535
0
    QualType Ty = E->getType();
1536
0
    if (const AtomicType *AT = Ty->getAs<AtomicType>())
1537
0
      Ty = AT->getValueType();
1538
0
    if (!Ty->isAnyComplexType())
1539
0
      return EmitCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1540
0
    return EmitComplexCompoundAssignmentLValue(cast<CompoundAssignOperator>(E));
1541
0
  }
1542
0
  case Expr::CallExprClass:
1543
0
  case Expr::CXXMemberCallExprClass:
1544
0
  case Expr::CXXOperatorCallExprClass:
1545
0
  case Expr::UserDefinedLiteralClass:
1546
0
    return EmitCallExprLValue(cast<CallExpr>(E));
1547
0
  case Expr::CXXRewrittenBinaryOperatorClass:
1548
0
    return EmitLValue(cast<CXXRewrittenBinaryOperator>(E)->getSemanticForm(),
1549
0
                      IsKnownNonNull);
1550
0
  case Expr::VAArgExprClass:
1551
0
    return EmitVAArgExprLValue(cast<VAArgExpr>(E));
1552
0
  case Expr::DeclRefExprClass:
1553
0
    return EmitDeclRefLValue(cast<DeclRefExpr>(E));
1554
0
  case Expr::ConstantExprClass: {
1555
0
    const ConstantExpr *CE = cast<ConstantExpr>(E);
1556
0
    if (llvm::Value *Result = ConstantEmitter(*this).tryEmitConstantExpr(CE)) {
1557
0
      QualType RetType = cast<CallExpr>(CE->getSubExpr()->IgnoreImplicit())
1558
0
                             ->getCallReturnType(getContext())
1559
0
                             ->getPointeeType();
1560
0
      return MakeNaturalAlignAddrLValue(Result, RetType);
1561
0
    }
1562
0
    return EmitLValue(cast<ConstantExpr>(E)->getSubExpr(), IsKnownNonNull);
1563
0
  }
1564
0
  case Expr::ParenExprClass:
1565
0
    return EmitLValue(cast<ParenExpr>(E)->getSubExpr(), IsKnownNonNull);
1566
0
  case Expr::GenericSelectionExprClass:
1567
0
    return EmitLValue(cast<GenericSelectionExpr>(E)->getResultExpr(),
1568
0
                      IsKnownNonNull);
1569
0
  case Expr::PredefinedExprClass:
1570
0
    return EmitPredefinedLValue(cast<PredefinedExpr>(E));
1571
0
  case Expr::StringLiteralClass:
1572
0
    return EmitStringLiteralLValue(cast<StringLiteral>(E));
1573
0
  case Expr::ObjCEncodeExprClass:
1574
0
    return EmitObjCEncodeExprLValue(cast<ObjCEncodeExpr>(E));
1575
0
  case Expr::PseudoObjectExprClass:
1576
0
    return EmitPseudoObjectLValue(cast<PseudoObjectExpr>(E));
1577
0
  case Expr::InitListExprClass:
1578
0
    return EmitInitListLValue(cast<InitListExpr>(E));
1579
0
  case Expr::CXXTemporaryObjectExprClass:
1580
0
  case Expr::CXXConstructExprClass:
1581
0
    return EmitCXXConstructLValue(cast<CXXConstructExpr>(E));
1582
0
  case Expr::CXXBindTemporaryExprClass:
1583
0
    return EmitCXXBindTemporaryLValue(cast<CXXBindTemporaryExpr>(E));
1584
0
  case Expr::CXXUuidofExprClass:
1585
0
    return EmitCXXUuidofLValue(cast<CXXUuidofExpr>(E));
1586
0
  case Expr::LambdaExprClass:
1587
0
    return EmitAggExprToLValue(E);
1588
1589
0
  case Expr::ExprWithCleanupsClass: {
1590
0
    const auto *cleanups = cast<ExprWithCleanups>(E);
1591
0
    RunCleanupsScope Scope(*this);
1592
0
    LValue LV = EmitLValue(cleanups->getSubExpr(), IsKnownNonNull);
1593
0
    if (LV.isSimple()) {
1594
      // Defend against branches out of gnu statement expressions surrounded by
1595
      // cleanups.
1596
0
      Address Addr = LV.getAddress(*this);
1597
0
      llvm::Value *V = Addr.getPointer();
1598
0
      Scope.ForceCleanup({&V});
1599
0
      return LValue::MakeAddr(Addr.withPointer(V, Addr.isKnownNonNull()),
1600
0
                              LV.getType(), getContext(), LV.getBaseInfo(),
1601
0
                              LV.getTBAAInfo());
1602
0
    }
1603
    // FIXME: Is it possible to create an ExprWithCleanups that produces a
1604
    // bitfield lvalue or some other non-simple lvalue?
1605
0
    return LV;
1606
0
  }
1607
1608
0
  case Expr::CXXDefaultArgExprClass: {
1609
0
    auto *DAE = cast<CXXDefaultArgExpr>(E);
1610
0
    CXXDefaultArgExprScope Scope(*this, DAE);
1611
0
    return EmitLValue(DAE->getExpr(), IsKnownNonNull);
1612
0
  }
1613
0
  case Expr::CXXDefaultInitExprClass: {
1614
0
    auto *DIE = cast<CXXDefaultInitExpr>(E);
1615
0
    CXXDefaultInitExprScope Scope(*this, DIE);
1616
0
    return EmitLValue(DIE->getExpr(), IsKnownNonNull);
1617
0
  }
1618
0
  case Expr::CXXTypeidExprClass:
1619
0
    return EmitCXXTypeidLValue(cast<CXXTypeidExpr>(E));
1620
1621
0
  case Expr::ObjCMessageExprClass:
1622
0
    return EmitObjCMessageExprLValue(cast<ObjCMessageExpr>(E));
1623
0
  case Expr::ObjCIvarRefExprClass:
1624
0
    return EmitObjCIvarRefLValue(cast<ObjCIvarRefExpr>(E));
1625
0
  case Expr::StmtExprClass:
1626
0
    return EmitStmtExprLValue(cast<StmtExpr>(E));
1627
0
  case Expr::UnaryOperatorClass:
1628
0
    return EmitUnaryOpLValue(cast<UnaryOperator>(E));
1629
0
  case Expr::ArraySubscriptExprClass:
1630
0
    return EmitArraySubscriptExpr(cast<ArraySubscriptExpr>(E));
1631
0
  case Expr::MatrixSubscriptExprClass:
1632
0
    return EmitMatrixSubscriptExpr(cast<MatrixSubscriptExpr>(E));
1633
0
  case Expr::OMPArraySectionExprClass:
1634
0
    return EmitOMPArraySectionExpr(cast<OMPArraySectionExpr>(E));
1635
0
  case Expr::ExtVectorElementExprClass:
1636
0
    return EmitExtVectorElementExpr(cast<ExtVectorElementExpr>(E));
1637
0
  case Expr::CXXThisExprClass:
1638
0
    return MakeAddrLValue(LoadCXXThisAddress(), E->getType());
1639
0
  case Expr::MemberExprClass:
1640
0
    return EmitMemberExpr(cast<MemberExpr>(E));
1641
0
  case Expr::CompoundLiteralExprClass:
1642
0
    return EmitCompoundLiteralLValue(cast<CompoundLiteralExpr>(E));
1643
0
  case Expr::ConditionalOperatorClass:
1644
0
    return EmitConditionalOperatorLValue(cast<ConditionalOperator>(E));
1645
0
  case Expr::BinaryConditionalOperatorClass:
1646
0
    return EmitConditionalOperatorLValue(cast<BinaryConditionalOperator>(E));
1647
0
  case Expr::ChooseExprClass:
1648
0
    return EmitLValue(cast<ChooseExpr>(E)->getChosenSubExpr(), IsKnownNonNull);
1649
0
  case Expr::OpaqueValueExprClass:
1650
0
    return EmitOpaqueValueLValue(cast<OpaqueValueExpr>(E));
1651
0
  case Expr::SubstNonTypeTemplateParmExprClass:
1652
0
    return EmitLValue(cast<SubstNonTypeTemplateParmExpr>(E)->getReplacement(),
1653
0
                      IsKnownNonNull);
1654
0
  case Expr::ImplicitCastExprClass:
1655
0
  case Expr::CStyleCastExprClass:
1656
0
  case Expr::CXXFunctionalCastExprClass:
1657
0
  case Expr::CXXStaticCastExprClass:
1658
0
  case Expr::CXXDynamicCastExprClass:
1659
0
  case Expr::CXXReinterpretCastExprClass:
1660
0
  case Expr::CXXConstCastExprClass:
1661
0
  case Expr::CXXAddrspaceCastExprClass:
1662
0
  case Expr::ObjCBridgedCastExprClass:
1663
0
    return EmitCastLValue(cast<CastExpr>(E));
1664
1665
0
  case Expr::MaterializeTemporaryExprClass:
1666
0
    return EmitMaterializeTemporaryExpr(cast<MaterializeTemporaryExpr>(E));
1667
1668
0
  case Expr::CoawaitExprClass:
1669
0
    return EmitCoawaitLValue(cast<CoawaitExpr>(E));
1670
0
  case Expr::CoyieldExprClass:
1671
0
    return EmitCoyieldLValue(cast<CoyieldExpr>(E));
1672
0
  }
1673
0
}
1674
1675
/// Given an object of the given canonical type, can we safely copy a
1676
/// value out of it based on its initializer?
1677
0
static bool isConstantEmittableObjectType(QualType type) {
1678
0
  assert(type.isCanonical());
1679
0
  assert(!type->isReferenceType());
1680
1681
  // Must be const-qualified but non-volatile.
1682
0
  Qualifiers qs = type.getLocalQualifiers();
1683
0
  if (!qs.hasConst() || qs.hasVolatile()) return false;
1684
1685
  // Otherwise, all object types satisfy this except C++ classes with
1686
  // mutable subobjects or non-trivial copy/destroy behavior.
1687
0
  if (const auto *RT = dyn_cast<RecordType>(type))
1688
0
    if (const auto *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
1689
0
      if (RD->hasMutableFields() || !RD->isTrivial())
1690
0
        return false;
1691
1692
0
  return true;
1693
0
}
1694
1695
/// Can we constant-emit a load of a reference to a variable of the
1696
/// given type?  This is different from predicates like
1697
/// Decl::mightBeUsableInConstantExpressions because we do want it to apply
1698
/// in situations that don't necessarily satisfy the language's rules
1699
/// for this (e.g. C++'s ODR-use rules).  For example, we want to able
1700
/// to do this with const float variables even if those variables
1701
/// aren't marked 'constexpr'.
1702
enum ConstantEmissionKind {
1703
  CEK_None,
1704
  CEK_AsReferenceOnly,
1705
  CEK_AsValueOrReference,
1706
  CEK_AsValueOnly
1707
};
1708
0
static ConstantEmissionKind checkVarTypeForConstantEmission(QualType type) {
1709
0
  type = type.getCanonicalType();
1710
0
  if (const auto *ref = dyn_cast<ReferenceType>(type)) {
1711
0
    if (isConstantEmittableObjectType(ref->getPointeeType()))
1712
0
      return CEK_AsValueOrReference;
1713
0
    return CEK_AsReferenceOnly;
1714
0
  }
1715
0
  if (isConstantEmittableObjectType(type))
1716
0
    return CEK_AsValueOnly;
1717
0
  return CEK_None;
1718
0
}
1719
1720
/// Try to emit a reference to the given value without producing it as
1721
/// an l-value.  This is just an optimization, but it avoids us needing
1722
/// to emit global copies of variables if they're named without triggering
1723
/// a formal use in a context where we can't emit a direct reference to them,
1724
/// for instance if a block or lambda or a member of a local class uses a
1725
/// const int variable or constexpr variable from an enclosing function.
1726
CodeGenFunction::ConstantEmission
1727
0
CodeGenFunction::tryEmitAsConstant(DeclRefExpr *refExpr) {
1728
0
  ValueDecl *value = refExpr->getDecl();
1729
1730
  // The value needs to be an enum constant or a constant variable.
1731
0
  ConstantEmissionKind CEK;
1732
0
  if (isa<ParmVarDecl>(value)) {
1733
0
    CEK = CEK_None;
1734
0
  } else if (auto *var = dyn_cast<VarDecl>(value)) {
1735
0
    CEK = checkVarTypeForConstantEmission(var->getType());
1736
0
  } else if (isa<EnumConstantDecl>(value)) {
1737
0
    CEK = CEK_AsValueOnly;
1738
0
  } else {
1739
0
    CEK = CEK_None;
1740
0
  }
1741
0
  if (CEK == CEK_None) return ConstantEmission();
1742
1743
0
  Expr::EvalResult result;
1744
0
  bool resultIsReference;
1745
0
  QualType resultType;
1746
1747
  // It's best to evaluate all the way as an r-value if that's permitted.
1748
0
  if (CEK != CEK_AsReferenceOnly &&
1749
0
      refExpr->EvaluateAsRValue(result, getContext())) {
1750
0
    resultIsReference = false;
1751
0
    resultType = refExpr->getType();
1752
1753
  // Otherwise, try to evaluate as an l-value.
1754
0
  } else if (CEK != CEK_AsValueOnly &&
1755
0
             refExpr->EvaluateAsLValue(result, getContext())) {
1756
0
    resultIsReference = true;
1757
0
    resultType = value->getType();
1758
1759
  // Failure.
1760
0
  } else {
1761
0
    return ConstantEmission();
1762
0
  }
1763
1764
  // In any case, if the initializer has side-effects, abandon ship.
1765
0
  if (result.HasSideEffects)
1766
0
    return ConstantEmission();
1767
1768
  // In CUDA/HIP device compilation, a lambda may capture a reference variable
1769
  // referencing a global host variable by copy. In this case the lambda should
1770
  // make a copy of the value of the global host variable. The DRE of the
1771
  // captured reference variable cannot be emitted as load from the host
1772
  // global variable as compile time constant, since the host variable is not
1773
  // accessible on device. The DRE of the captured reference variable has to be
1774
  // loaded from captures.
1775
0
  if (CGM.getLangOpts().CUDAIsDevice && result.Val.isLValue() &&
1776
0
      refExpr->refersToEnclosingVariableOrCapture()) {
1777
0
    auto *MD = dyn_cast_or_null<CXXMethodDecl>(CurCodeDecl);
1778
0
    if (MD && MD->getParent()->isLambda() &&
1779
0
        MD->getOverloadedOperator() == OO_Call) {
1780
0
      const APValue::LValueBase &base = result.Val.getLValueBase();
1781
0
      if (const ValueDecl *D = base.dyn_cast<const ValueDecl *>()) {
1782
0
        if (const VarDecl *VD = dyn_cast<const VarDecl>(D)) {
1783
0
          if (!VD->hasAttr<CUDADeviceAttr>()) {
1784
0
            return ConstantEmission();
1785
0
          }
1786
0
        }
1787
0
      }
1788
0
    }
1789
0
  }
1790
1791
  // Emit as a constant.
1792
0
  auto C = ConstantEmitter(*this).emitAbstract(refExpr->getLocation(),
1793
0
                                               result.Val, resultType);
1794
1795
  // Make sure we emit a debug reference to the global variable.
1796
  // This should probably fire even for
1797
0
  if (isa<VarDecl>(value)) {
1798
0
    if (!getContext().DeclMustBeEmitted(cast<VarDecl>(value)))
1799
0
      EmitDeclRefExprDbgValue(refExpr, result.Val);
1800
0
  } else {
1801
0
    assert(isa<EnumConstantDecl>(value));
1802
0
    EmitDeclRefExprDbgValue(refExpr, result.Val);
1803
0
  }
1804
1805
  // If we emitted a reference constant, we need to dereference that.
1806
0
  if (resultIsReference)
1807
0
    return ConstantEmission::forReference(C);
1808
1809
0
  return ConstantEmission::forValue(C);
1810
0
}
1811
1812
static DeclRefExpr *tryToConvertMemberExprToDeclRefExpr(CodeGenFunction &CGF,
1813
0
                                                        const MemberExpr *ME) {
1814
0
  if (auto *VD = dyn_cast<VarDecl>(ME->getMemberDecl())) {
1815
    // Try to emit static variable member expressions as DREs.
1816
0
    return DeclRefExpr::Create(
1817
0
        CGF.getContext(), NestedNameSpecifierLoc(), SourceLocation(), VD,
1818
0
        /*RefersToEnclosingVariableOrCapture=*/false, ME->getExprLoc(),
1819
0
        ME->getType(), ME->getValueKind(), nullptr, nullptr, ME->isNonOdrUse());
1820
0
  }
1821
0
  return nullptr;
1822
0
}
1823
1824
CodeGenFunction::ConstantEmission
1825
0
CodeGenFunction::tryEmitAsConstant(const MemberExpr *ME) {
1826
0
  if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, ME))
1827
0
    return tryEmitAsConstant(DRE);
1828
0
  return ConstantEmission();
1829
0
}
1830
1831
llvm::Value *CodeGenFunction::emitScalarConstant(
1832
0
    const CodeGenFunction::ConstantEmission &Constant, Expr *E) {
1833
0
  assert(Constant && "not a constant");
1834
0
  if (Constant.isReference())
1835
0
    return EmitLoadOfLValue(Constant.getReferenceLValue(*this, E),
1836
0
                            E->getExprLoc())
1837
0
        .getScalarVal();
1838
0
  return Constant.getValue();
1839
0
}
1840
1841
llvm::Value *CodeGenFunction::EmitLoadOfScalar(LValue lvalue,
1842
0
                                               SourceLocation Loc) {
1843
0
  return EmitLoadOfScalar(lvalue.getAddress(*this), lvalue.isVolatile(),
1844
0
                          lvalue.getType(), Loc, lvalue.getBaseInfo(),
1845
0
                          lvalue.getTBAAInfo(), lvalue.isNontemporal());
1846
0
}
1847
1848
0
static bool hasBooleanRepresentation(QualType Ty) {
1849
0
  if (Ty->isBooleanType())
1850
0
    return true;
1851
1852
0
  if (const EnumType *ET = Ty->getAs<EnumType>())
1853
0
    return ET->getDecl()->getIntegerType()->isBooleanType();
1854
1855
0
  if (const AtomicType *AT = Ty->getAs<AtomicType>())
1856
0
    return hasBooleanRepresentation(AT->getValueType());
1857
1858
0
  return false;
1859
0
}
1860
1861
static bool getRangeForType(CodeGenFunction &CGF, QualType Ty,
1862
                            llvm::APInt &Min, llvm::APInt &End,
1863
0
                            bool StrictEnums, bool IsBool) {
1864
0
  const EnumType *ET = Ty->getAs<EnumType>();
1865
0
  bool IsRegularCPlusPlusEnum = CGF.getLangOpts().CPlusPlus && StrictEnums &&
1866
0
                                ET && !ET->getDecl()->isFixed();
1867
0
  if (!IsBool && !IsRegularCPlusPlusEnum)
1868
0
    return false;
1869
1870
0
  if (IsBool) {
1871
0
    Min = llvm::APInt(CGF.getContext().getTypeSize(Ty), 0);
1872
0
    End = llvm::APInt(CGF.getContext().getTypeSize(Ty), 2);
1873
0
  } else {
1874
0
    const EnumDecl *ED = ET->getDecl();
1875
0
    ED->getValueRange(End, Min);
1876
0
  }
1877
0
  return true;
1878
0
}
1879
1880
0
llvm::MDNode *CodeGenFunction::getRangeForLoadFromType(QualType Ty) {
1881
0
  llvm::APInt Min, End;
1882
0
  if (!getRangeForType(*this, Ty, Min, End, CGM.getCodeGenOpts().StrictEnums,
1883
0
                       hasBooleanRepresentation(Ty)))
1884
0
    return nullptr;
1885
1886
0
  llvm::MDBuilder MDHelper(getLLVMContext());
1887
0
  return MDHelper.createRange(Min, End);
1888
0
}
1889
1890
bool CodeGenFunction::EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
1891
0
                                           SourceLocation Loc) {
1892
0
  bool HasBoolCheck = SanOpts.has(SanitizerKind::Bool);
1893
0
  bool HasEnumCheck = SanOpts.has(SanitizerKind::Enum);
1894
0
  if (!HasBoolCheck && !HasEnumCheck)
1895
0
    return false;
1896
1897
0
  bool IsBool = hasBooleanRepresentation(Ty) ||
1898
0
                NSAPI(CGM.getContext()).isObjCBOOLType(Ty);
1899
0
  bool NeedsBoolCheck = HasBoolCheck && IsBool;
1900
0
  bool NeedsEnumCheck = HasEnumCheck && Ty->getAs<EnumType>();
1901
0
  if (!NeedsBoolCheck && !NeedsEnumCheck)
1902
0
    return false;
1903
1904
  // Single-bit booleans don't need to be checked. Special-case this to avoid
1905
  // a bit width mismatch when handling bitfield values. This is handled by
1906
  // EmitFromMemory for the non-bitfield case.
1907
0
  if (IsBool &&
1908
0
      cast<llvm::IntegerType>(Value->getType())->getBitWidth() == 1)
1909
0
    return false;
1910
1911
0
  llvm::APInt Min, End;
1912
0
  if (!getRangeForType(*this, Ty, Min, End, /*StrictEnums=*/true, IsBool))
1913
0
    return true;
1914
1915
0
  auto &Ctx = getLLVMContext();
1916
0
  SanitizerScope SanScope(this);
1917
0
  llvm::Value *Check;
1918
0
  --End;
1919
0
  if (!Min) {
1920
0
    Check = Builder.CreateICmpULE(Value, llvm::ConstantInt::get(Ctx, End));
1921
0
  } else {
1922
0
    llvm::Value *Upper =
1923
0
        Builder.CreateICmpSLE(Value, llvm::ConstantInt::get(Ctx, End));
1924
0
    llvm::Value *Lower =
1925
0
        Builder.CreateICmpSGE(Value, llvm::ConstantInt::get(Ctx, Min));
1926
0
    Check = Builder.CreateAnd(Upper, Lower);
1927
0
  }
1928
0
  llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc),
1929
0
                                  EmitCheckTypeDescriptor(Ty)};
1930
0
  SanitizerMask Kind =
1931
0
      NeedsEnumCheck ? SanitizerKind::Enum : SanitizerKind::Bool;
1932
0
  EmitCheck(std::make_pair(Check, Kind), SanitizerHandler::LoadInvalidValue,
1933
0
            StaticArgs, EmitCheckValue(Value));
1934
0
  return true;
1935
0
}
1936
1937
llvm::Value *CodeGenFunction::EmitLoadOfScalar(Address Addr, bool Volatile,
1938
                                               QualType Ty,
1939
                                               SourceLocation Loc,
1940
                                               LValueBaseInfo BaseInfo,
1941
                                               TBAAAccessInfo TBAAInfo,
1942
0
                                               bool isNontemporal) {
1943
0
  if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer()))
1944
0
    if (GV->isThreadLocal())
1945
0
      Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV),
1946
0
                              NotKnownNonNull);
1947
1948
0
  if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
1949
    // Boolean vectors use `iN` as storage type.
1950
0
    if (ClangVecTy->isExtVectorBoolType()) {
1951
0
      llvm::Type *ValTy = ConvertType(Ty);
1952
0
      unsigned ValNumElems =
1953
0
          cast<llvm::FixedVectorType>(ValTy)->getNumElements();
1954
      // Load the `iP` storage object (P is the padded vector size).
1955
0
      auto *RawIntV = Builder.CreateLoad(Addr, Volatile, "load_bits");
1956
0
      const auto *RawIntTy = RawIntV->getType();
1957
0
      assert(RawIntTy->isIntegerTy() && "compressed iN storage for bitvectors");
1958
      // Bitcast iP --> <P x i1>.
1959
0
      auto *PaddedVecTy = llvm::FixedVectorType::get(
1960
0
          Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
1961
0
      llvm::Value *V = Builder.CreateBitCast(RawIntV, PaddedVecTy);
1962
      // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
1963
0
      V = emitBoolVecConversion(V, ValNumElems, "extractvec");
1964
1965
0
      return EmitFromMemory(V, Ty);
1966
0
    }
1967
1968
    // Handle vectors of size 3 like size 4 for better performance.
1969
0
    const llvm::Type *EltTy = Addr.getElementType();
1970
0
    const auto *VTy = cast<llvm::FixedVectorType>(EltTy);
1971
1972
0
    if (!CGM.getCodeGenOpts().PreserveVec3Type && VTy->getNumElements() == 3) {
1973
1974
0
      llvm::VectorType *vec4Ty =
1975
0
          llvm::FixedVectorType::get(VTy->getElementType(), 4);
1976
0
      Address Cast = Addr.withElementType(vec4Ty);
1977
      // Now load value.
1978
0
      llvm::Value *V = Builder.CreateLoad(Cast, Volatile, "loadVec4");
1979
1980
      // Shuffle vector to get vec3.
1981
0
      V = Builder.CreateShuffleVector(V, ArrayRef<int>{0, 1, 2}, "extractVec");
1982
0
      return EmitFromMemory(V, Ty);
1983
0
    }
1984
0
  }
1985
1986
  // Atomic operations have to be done on integral types.
1987
0
  LValue AtomicLValue =
1988
0
      LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
1989
0
  if (Ty->isAtomicType() || LValueIsSuitableForInlineAtomic(AtomicLValue)) {
1990
0
    return EmitAtomicLoad(AtomicLValue, Loc).getScalarVal();
1991
0
  }
1992
1993
0
  llvm::LoadInst *Load = Builder.CreateLoad(Addr, Volatile);
1994
0
  if (isNontemporal) {
1995
0
    llvm::MDNode *Node = llvm::MDNode::get(
1996
0
        Load->getContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
1997
0
    Load->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
1998
0
  }
1999
2000
0
  CGM.DecorateInstructionWithTBAA(Load, TBAAInfo);
2001
2002
0
  if (EmitScalarRangeCheck(Load, Ty, Loc)) {
2003
    // In order to prevent the optimizer from throwing away the check, don't
2004
    // attach range metadata to the load.
2005
0
  } else if (CGM.getCodeGenOpts().OptimizationLevel > 0)
2006
0
    if (llvm::MDNode *RangeInfo = getRangeForLoadFromType(Ty)) {
2007
0
      Load->setMetadata(llvm::LLVMContext::MD_range, RangeInfo);
2008
0
      Load->setMetadata(llvm::LLVMContext::MD_noundef,
2009
0
                        llvm::MDNode::get(getLLVMContext(), std::nullopt));
2010
0
    }
2011
2012
0
  return EmitFromMemory(Load, Ty);
2013
0
}
2014
2015
0
llvm::Value *CodeGenFunction::EmitToMemory(llvm::Value *Value, QualType Ty) {
2016
  // Bool has a different representation in memory than in registers.
2017
0
  if (hasBooleanRepresentation(Ty)) {
2018
    // This should really always be an i1, but sometimes it's already
2019
    // an i8, and it's awkward to track those cases down.
2020
0
    if (Value->getType()->isIntegerTy(1))
2021
0
      return Builder.CreateZExt(Value, ConvertTypeForMem(Ty), "frombool");
2022
0
    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
2023
0
           "wrong value rep of bool");
2024
0
  }
2025
2026
0
  return Value;
2027
0
}
2028
2029
0
llvm::Value *CodeGenFunction::EmitFromMemory(llvm::Value *Value, QualType Ty) {
2030
  // Bool has a different representation in memory than in registers.
2031
0
  if (hasBooleanRepresentation(Ty)) {
2032
0
    assert(Value->getType()->isIntegerTy(getContext().getTypeSize(Ty)) &&
2033
0
           "wrong value rep of bool");
2034
0
    return Builder.CreateTrunc(Value, Builder.getInt1Ty(), "tobool");
2035
0
  }
2036
0
  if (Ty->isExtVectorBoolType()) {
2037
0
    const auto *RawIntTy = Value->getType();
2038
    // Bitcast iP --> <P x i1>.
2039
0
    auto *PaddedVecTy = llvm::FixedVectorType::get(
2040
0
        Builder.getInt1Ty(), RawIntTy->getPrimitiveSizeInBits());
2041
0
    auto *V = Builder.CreateBitCast(Value, PaddedVecTy);
2042
    // Shuffle <P x i1> --> <N x i1> (N is the actual bit size).
2043
0
    llvm::Type *ValTy = ConvertType(Ty);
2044
0
    unsigned ValNumElems = cast<llvm::FixedVectorType>(ValTy)->getNumElements();
2045
0
    return emitBoolVecConversion(V, ValNumElems, "extractvec");
2046
0
  }
2047
2048
0
  return Value;
2049
0
}
2050
2051
// Convert the pointer of \p Addr to a pointer to a vector (the value type of
2052
// MatrixType), if it points to a array (the memory type of MatrixType).
2053
static Address MaybeConvertMatrixAddress(Address Addr, CodeGenFunction &CGF,
2054
0
                                         bool IsVector = true) {
2055
0
  auto *ArrayTy = dyn_cast<llvm::ArrayType>(Addr.getElementType());
2056
0
  if (ArrayTy && IsVector) {
2057
0
    auto *VectorTy = llvm::FixedVectorType::get(ArrayTy->getElementType(),
2058
0
                                                ArrayTy->getNumElements());
2059
2060
0
    return Addr.withElementType(VectorTy);
2061
0
  }
2062
0
  auto *VectorTy = dyn_cast<llvm::VectorType>(Addr.getElementType());
2063
0
  if (VectorTy && !IsVector) {
2064
0
    auto *ArrayTy = llvm::ArrayType::get(
2065
0
        VectorTy->getElementType(),
2066
0
        cast<llvm::FixedVectorType>(VectorTy)->getNumElements());
2067
2068
0
    return Addr.withElementType(ArrayTy);
2069
0
  }
2070
2071
0
  return Addr;
2072
0
}
2073
2074
// Emit a store of a matrix LValue. This may require casting the original
2075
// pointer to memory address (ArrayType) to a pointer to the value type
2076
// (VectorType).
2077
static void EmitStoreOfMatrixScalar(llvm::Value *value, LValue lvalue,
2078
0
                                    bool isInit, CodeGenFunction &CGF) {
2079
0
  Address Addr = MaybeConvertMatrixAddress(lvalue.getAddress(CGF), CGF,
2080
0
                                           value->getType()->isVectorTy());
2081
0
  CGF.EmitStoreOfScalar(value, Addr, lvalue.isVolatile(), lvalue.getType(),
2082
0
                        lvalue.getBaseInfo(), lvalue.getTBAAInfo(), isInit,
2083
0
                        lvalue.isNontemporal());
2084
0
}
2085
2086
void CodeGenFunction::EmitStoreOfScalar(llvm::Value *Value, Address Addr,
2087
                                        bool Volatile, QualType Ty,
2088
                                        LValueBaseInfo BaseInfo,
2089
                                        TBAAAccessInfo TBAAInfo,
2090
0
                                        bool isInit, bool isNontemporal) {
2091
0
  if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr.getPointer()))
2092
0
    if (GV->isThreadLocal())
2093
0
      Addr = Addr.withPointer(Builder.CreateThreadLocalAddress(GV),
2094
0
                              NotKnownNonNull);
2095
2096
0
  llvm::Type *SrcTy = Value->getType();
2097
0
  if (const auto *ClangVecTy = Ty->getAs<VectorType>()) {
2098
0
    auto *VecTy = dyn_cast<llvm::FixedVectorType>(SrcTy);
2099
0
    if (VecTy && ClangVecTy->isExtVectorBoolType()) {
2100
0
      auto *MemIntTy = cast<llvm::IntegerType>(Addr.getElementType());
2101
      // Expand to the memory bit width.
2102
0
      unsigned MemNumElems = MemIntTy->getPrimitiveSizeInBits();
2103
      // <N x i1> --> <P x i1>.
2104
0
      Value = emitBoolVecConversion(Value, MemNumElems, "insertvec");
2105
      // <P x i1> --> iP.
2106
0
      Value = Builder.CreateBitCast(Value, MemIntTy);
2107
0
    } else if (!CGM.getCodeGenOpts().PreserveVec3Type) {
2108
      // Handle vec3 special.
2109
0
      if (VecTy && cast<llvm::FixedVectorType>(VecTy)->getNumElements() == 3) {
2110
        // Our source is a vec3, do a shuffle vector to make it a vec4.
2111
0
        Value = Builder.CreateShuffleVector(Value, ArrayRef<int>{0, 1, 2, -1},
2112
0
                                            "extractVec");
2113
0
        SrcTy = llvm::FixedVectorType::get(VecTy->getElementType(), 4);
2114
0
      }
2115
0
      if (Addr.getElementType() != SrcTy) {
2116
0
        Addr = Addr.withElementType(SrcTy);
2117
0
      }
2118
0
    }
2119
0
  }
2120
2121
0
  Value = EmitToMemory(Value, Ty);
2122
2123
0
  LValue AtomicLValue =
2124
0
      LValue::MakeAddr(Addr, Ty, getContext(), BaseInfo, TBAAInfo);
2125
0
  if (Ty->isAtomicType() ||
2126
0
      (!isInit && LValueIsSuitableForInlineAtomic(AtomicLValue))) {
2127
0
    EmitAtomicStore(RValue::get(Value), AtomicLValue, isInit);
2128
0
    return;
2129
0
  }
2130
2131
0
  llvm::StoreInst *Store = Builder.CreateStore(Value, Addr, Volatile);
2132
0
  if (isNontemporal) {
2133
0
    llvm::MDNode *Node =
2134
0
        llvm::MDNode::get(Store->getContext(),
2135
0
                          llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
2136
0
    Store->setMetadata(llvm::LLVMContext::MD_nontemporal, Node);
2137
0
  }
2138
2139
0
  CGM.DecorateInstructionWithTBAA(Store, TBAAInfo);
2140
0
}
2141
2142
void CodeGenFunction::EmitStoreOfScalar(llvm::Value *value, LValue lvalue,
2143
0
                                        bool isInit) {
2144
0
  if (lvalue.getType()->isConstantMatrixType()) {
2145
0
    EmitStoreOfMatrixScalar(value, lvalue, isInit, *this);
2146
0
    return;
2147
0
  }
2148
2149
0
  EmitStoreOfScalar(value, lvalue.getAddress(*this), lvalue.isVolatile(),
2150
0
                    lvalue.getType(), lvalue.getBaseInfo(),
2151
0
                    lvalue.getTBAAInfo(), isInit, lvalue.isNontemporal());
2152
0
}
2153
2154
// Emit a load of a LValue of matrix type. This may require casting the pointer
2155
// to memory address (ArrayType) to a pointer to the value type (VectorType).
2156
static RValue EmitLoadOfMatrixLValue(LValue LV, SourceLocation Loc,
2157
0
                                     CodeGenFunction &CGF) {
2158
0
  assert(LV.getType()->isConstantMatrixType());
2159
0
  Address Addr = MaybeConvertMatrixAddress(LV.getAddress(CGF), CGF);
2160
0
  LV.setAddress(Addr);
2161
0
  return RValue::get(CGF.EmitLoadOfScalar(LV, Loc));
2162
0
}
2163
2164
/// EmitLoadOfLValue - Given an expression that represents a value lvalue, this
2165
/// method emits the address of the lvalue, then loads the result as an rvalue,
2166
/// returning the rvalue.
2167
0
RValue CodeGenFunction::EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
2168
0
  if (LV.isObjCWeak()) {
2169
    // load of a __weak object.
2170
0
    Address AddrWeakObj = LV.getAddress(*this);
2171
0
    return RValue::get(CGM.getObjCRuntime().EmitObjCWeakRead(*this,
2172
0
                                                             AddrWeakObj));
2173
0
  }
2174
0
  if (LV.getQuals().getObjCLifetime() == Qualifiers::OCL_Weak) {
2175
    // In MRC mode, we do a load+autorelease.
2176
0
    if (!getLangOpts().ObjCAutoRefCount) {
2177
0
      return RValue::get(EmitARCLoadWeak(LV.getAddress(*this)));
2178
0
    }
2179
2180
    // In ARC mode, we load retained and then consume the value.
2181
0
    llvm::Value *Object = EmitARCLoadWeakRetained(LV.getAddress(*this));
2182
0
    Object = EmitObjCConsumeObject(LV.getType(), Object);
2183
0
    return RValue::get(Object);
2184
0
  }
2185
2186
0
  if (LV.isSimple()) {
2187
0
    assert(!LV.getType()->isFunctionType());
2188
2189
0
    if (LV.getType()->isConstantMatrixType())
2190
0
      return EmitLoadOfMatrixLValue(LV, Loc, *this);
2191
2192
    // Everything needs a load.
2193
0
    return RValue::get(EmitLoadOfScalar(LV, Loc));
2194
0
  }
2195
2196
0
  if (LV.isVectorElt()) {
2197
0
    llvm::LoadInst *Load = Builder.CreateLoad(LV.getVectorAddress(),
2198
0
                                              LV.isVolatileQualified());
2199
0
    return RValue::get(Builder.CreateExtractElement(Load, LV.getVectorIdx(),
2200
0
                                                    "vecext"));
2201
0
  }
2202
2203
  // If this is a reference to a subset of the elements of a vector, either
2204
  // shuffle the input or extract/insert them as appropriate.
2205
0
  if (LV.isExtVectorElt()) {
2206
0
    return EmitLoadOfExtVectorElementLValue(LV);
2207
0
  }
2208
2209
  // Global Register variables always invoke intrinsics
2210
0
  if (LV.isGlobalReg())
2211
0
    return EmitLoadOfGlobalRegLValue(LV);
2212
2213
0
  if (LV.isMatrixElt()) {
2214
0
    llvm::Value *Idx = LV.getMatrixIdx();
2215
0
    if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2216
0
      const auto *const MatTy = LV.getType()->castAs<ConstantMatrixType>();
2217
0
      llvm::MatrixBuilder MB(Builder);
2218
0
      MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2219
0
    }
2220
0
    llvm::LoadInst *Load =
2221
0
        Builder.CreateLoad(LV.getMatrixAddress(), LV.isVolatileQualified());
2222
0
    return RValue::get(Builder.CreateExtractElement(Load, Idx, "matrixext"));
2223
0
  }
2224
2225
0
  assert(LV.isBitField() && "Unknown LValue type!");
2226
0
  return EmitLoadOfBitfieldLValue(LV, Loc);
2227
0
}
2228
2229
RValue CodeGenFunction::EmitLoadOfBitfieldLValue(LValue LV,
2230
0
                                                 SourceLocation Loc) {
2231
0
  const CGBitFieldInfo &Info = LV.getBitFieldInfo();
2232
2233
  // Get the output type.
2234
0
  llvm::Type *ResLTy = ConvertType(LV.getType());
2235
2236
0
  Address Ptr = LV.getBitFieldAddress();
2237
0
  llvm::Value *Val =
2238
0
      Builder.CreateLoad(Ptr, LV.isVolatileQualified(), "bf.load");
2239
2240
0
  bool UseVolatile = LV.isVolatileQualified() &&
2241
0
                     Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2242
0
  const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2243
0
  const unsigned StorageSize =
2244
0
      UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2245
0
  if (Info.IsSigned) {
2246
0
    assert(static_cast<unsigned>(Offset + Info.Size) <= StorageSize);
2247
0
    unsigned HighBits = StorageSize - Offset - Info.Size;
2248
0
    if (HighBits)
2249
0
      Val = Builder.CreateShl(Val, HighBits, "bf.shl");
2250
0
    if (Offset + HighBits)
2251
0
      Val = Builder.CreateAShr(Val, Offset + HighBits, "bf.ashr");
2252
0
  } else {
2253
0
    if (Offset)
2254
0
      Val = Builder.CreateLShr(Val, Offset, "bf.lshr");
2255
0
    if (static_cast<unsigned>(Offset) + Info.Size < StorageSize)
2256
0
      Val = Builder.CreateAnd(
2257
0
          Val, llvm::APInt::getLowBitsSet(StorageSize, Info.Size), "bf.clear");
2258
0
  }
2259
0
  Val = Builder.CreateIntCast(Val, ResLTy, Info.IsSigned, "bf.cast");
2260
0
  EmitScalarRangeCheck(Val, LV.getType(), Loc);
2261
0
  return RValue::get(Val);
2262
0
}
2263
2264
// If this is a reference to a subset of the elements of a vector, create an
2265
// appropriate shufflevector.
2266
0
RValue CodeGenFunction::EmitLoadOfExtVectorElementLValue(LValue LV) {
2267
0
  llvm::Value *Vec = Builder.CreateLoad(LV.getExtVectorAddress(),
2268
0
                                        LV.isVolatileQualified());
2269
2270
  // HLSL allows treating scalars as one-element vectors. Converting the scalar
2271
  // IR value to a vector here allows the rest of codegen to behave as normal.
2272
0
  if (getLangOpts().HLSL && !Vec->getType()->isVectorTy()) {
2273
0
    llvm::Type *DstTy = llvm::FixedVectorType::get(Vec->getType(), 1);
2274
0
    llvm::Value *Zero = llvm::Constant::getNullValue(CGM.Int64Ty);
2275
0
    Vec = Builder.CreateInsertElement(DstTy, Vec, Zero, "cast.splat");
2276
0
  }
2277
2278
0
  const llvm::Constant *Elts = LV.getExtVectorElts();
2279
2280
  // If the result of the expression is a non-vector type, we must be extracting
2281
  // a single element.  Just codegen as an extractelement.
2282
0
  const VectorType *ExprVT = LV.getType()->getAs<VectorType>();
2283
0
  if (!ExprVT) {
2284
0
    unsigned InIdx = getAccessedFieldNo(0, Elts);
2285
0
    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2286
0
    return RValue::get(Builder.CreateExtractElement(Vec, Elt));
2287
0
  }
2288
2289
  // Always use shuffle vector to try to retain the original program structure
2290
0
  unsigned NumResultElts = ExprVT->getNumElements();
2291
2292
0
  SmallVector<int, 4> Mask;
2293
0
  for (unsigned i = 0; i != NumResultElts; ++i)
2294
0
    Mask.push_back(getAccessedFieldNo(i, Elts));
2295
2296
0
  Vec = Builder.CreateShuffleVector(Vec, Mask);
2297
0
  return RValue::get(Vec);
2298
0
}
2299
2300
/// Generates lvalue for partial ext_vector access.
2301
0
Address CodeGenFunction::EmitExtVectorElementLValue(LValue LV) {
2302
0
  Address VectorAddress = LV.getExtVectorAddress();
2303
0
  QualType EQT = LV.getType()->castAs<VectorType>()->getElementType();
2304
0
  llvm::Type *VectorElementTy = CGM.getTypes().ConvertType(EQT);
2305
2306
0
  Address CastToPointerElement = VectorAddress.withElementType(VectorElementTy);
2307
2308
0
  const llvm::Constant *Elts = LV.getExtVectorElts();
2309
0
  unsigned ix = getAccessedFieldNo(0, Elts);
2310
2311
0
  Address VectorBasePtrPlusIx =
2312
0
    Builder.CreateConstInBoundsGEP(CastToPointerElement, ix,
2313
0
                                   "vector.elt");
2314
2315
0
  return VectorBasePtrPlusIx;
2316
0
}
2317
2318
/// Load of global gamed gegisters are always calls to intrinsics.
2319
0
RValue CodeGenFunction::EmitLoadOfGlobalRegLValue(LValue LV) {
2320
0
  assert((LV.getType()->isIntegerType() || LV.getType()->isPointerType()) &&
2321
0
         "Bad type for register variable");
2322
0
  llvm::MDNode *RegName = cast<llvm::MDNode>(
2323
0
      cast<llvm::MetadataAsValue>(LV.getGlobalReg())->getMetadata());
2324
2325
  // We accept integer and pointer types only
2326
0
  llvm::Type *OrigTy = CGM.getTypes().ConvertType(LV.getType());
2327
0
  llvm::Type *Ty = OrigTy;
2328
0
  if (OrigTy->isPointerTy())
2329
0
    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2330
0
  llvm::Type *Types[] = { Ty };
2331
2332
0
  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
2333
0
  llvm::Value *Call = Builder.CreateCall(
2334
0
      F, llvm::MetadataAsValue::get(Ty->getContext(), RegName));
2335
0
  if (OrigTy->isPointerTy())
2336
0
    Call = Builder.CreateIntToPtr(Call, OrigTy);
2337
0
  return RValue::get(Call);
2338
0
}
2339
2340
/// EmitStoreThroughLValue - Store the specified rvalue into the specified
2341
/// lvalue, where both are guaranteed to the have the same type, and that type
2342
/// is 'Ty'.
2343
void CodeGenFunction::EmitStoreThroughLValue(RValue Src, LValue Dst,
2344
0
                                             bool isInit) {
2345
0
  if (!Dst.isSimple()) {
2346
0
    if (Dst.isVectorElt()) {
2347
      // Read/modify/write the vector, inserting the new element.
2348
0
      llvm::Value *Vec = Builder.CreateLoad(Dst.getVectorAddress(),
2349
0
                                            Dst.isVolatileQualified());
2350
0
      auto *IRStoreTy = dyn_cast<llvm::IntegerType>(Vec->getType());
2351
0
      if (IRStoreTy) {
2352
0
        auto *IRVecTy = llvm::FixedVectorType::get(
2353
0
            Builder.getInt1Ty(), IRStoreTy->getPrimitiveSizeInBits());
2354
0
        Vec = Builder.CreateBitCast(Vec, IRVecTy);
2355
        // iN --> <N x i1>.
2356
0
      }
2357
0
      Vec = Builder.CreateInsertElement(Vec, Src.getScalarVal(),
2358
0
                                        Dst.getVectorIdx(), "vecins");
2359
0
      if (IRStoreTy) {
2360
        // <N x i1> --> <iN>.
2361
0
        Vec = Builder.CreateBitCast(Vec, IRStoreTy);
2362
0
      }
2363
0
      Builder.CreateStore(Vec, Dst.getVectorAddress(),
2364
0
                          Dst.isVolatileQualified());
2365
0
      return;
2366
0
    }
2367
2368
    // If this is an update of extended vector elements, insert them as
2369
    // appropriate.
2370
0
    if (Dst.isExtVectorElt())
2371
0
      return EmitStoreThroughExtVectorComponentLValue(Src, Dst);
2372
2373
0
    if (Dst.isGlobalReg())
2374
0
      return EmitStoreThroughGlobalRegLValue(Src, Dst);
2375
2376
0
    if (Dst.isMatrixElt()) {
2377
0
      llvm::Value *Idx = Dst.getMatrixIdx();
2378
0
      if (CGM.getCodeGenOpts().OptimizationLevel > 0) {
2379
0
        const auto *const MatTy = Dst.getType()->castAs<ConstantMatrixType>();
2380
0
        llvm::MatrixBuilder MB(Builder);
2381
0
        MB.CreateIndexAssumption(Idx, MatTy->getNumElementsFlattened());
2382
0
      }
2383
0
      llvm::Instruction *Load = Builder.CreateLoad(Dst.getMatrixAddress());
2384
0
      llvm::Value *Vec =
2385
0
          Builder.CreateInsertElement(Load, Src.getScalarVal(), Idx, "matins");
2386
0
      Builder.CreateStore(Vec, Dst.getMatrixAddress(),
2387
0
                          Dst.isVolatileQualified());
2388
0
      return;
2389
0
    }
2390
2391
0
    assert(Dst.isBitField() && "Unknown LValue type");
2392
0
    return EmitStoreThroughBitfieldLValue(Src, Dst);
2393
0
  }
2394
2395
  // There's special magic for assigning into an ARC-qualified l-value.
2396
0
  if (Qualifiers::ObjCLifetime Lifetime = Dst.getQuals().getObjCLifetime()) {
2397
0
    switch (Lifetime) {
2398
0
    case Qualifiers::OCL_None:
2399
0
      llvm_unreachable("present but none");
2400
2401
0
    case Qualifiers::OCL_ExplicitNone:
2402
      // nothing special
2403
0
      break;
2404
2405
0
    case Qualifiers::OCL_Strong:
2406
0
      if (isInit) {
2407
0
        Src = RValue::get(EmitARCRetain(Dst.getType(), Src.getScalarVal()));
2408
0
        break;
2409
0
      }
2410
0
      EmitARCStoreStrong(Dst, Src.getScalarVal(), /*ignore*/ true);
2411
0
      return;
2412
2413
0
    case Qualifiers::OCL_Weak:
2414
0
      if (isInit)
2415
        // Initialize and then skip the primitive store.
2416
0
        EmitARCInitWeak(Dst.getAddress(*this), Src.getScalarVal());
2417
0
      else
2418
0
        EmitARCStoreWeak(Dst.getAddress(*this), Src.getScalarVal(),
2419
0
                         /*ignore*/ true);
2420
0
      return;
2421
2422
0
    case Qualifiers::OCL_Autoreleasing:
2423
0
      Src = RValue::get(EmitObjCExtendObjectLifetime(Dst.getType(),
2424
0
                                                     Src.getScalarVal()));
2425
      // fall into the normal path
2426
0
      break;
2427
0
    }
2428
0
  }
2429
2430
0
  if (Dst.isObjCWeak() && !Dst.isNonGC()) {
2431
    // load of a __weak object.
2432
0
    Address LvalueDst = Dst.getAddress(*this);
2433
0
    llvm::Value *src = Src.getScalarVal();
2434
0
     CGM.getObjCRuntime().EmitObjCWeakAssign(*this, src, LvalueDst);
2435
0
    return;
2436
0
  }
2437
2438
0
  if (Dst.isObjCStrong() && !Dst.isNonGC()) {
2439
    // load of a __strong object.
2440
0
    Address LvalueDst = Dst.getAddress(*this);
2441
0
    llvm::Value *src = Src.getScalarVal();
2442
0
    if (Dst.isObjCIvar()) {
2443
0
      assert(Dst.getBaseIvarExp() && "BaseIvarExp is NULL");
2444
0
      llvm::Type *ResultType = IntPtrTy;
2445
0
      Address dst = EmitPointerWithAlignment(Dst.getBaseIvarExp());
2446
0
      llvm::Value *RHS = dst.getPointer();
2447
0
      RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
2448
0
      llvm::Value *LHS =
2449
0
        Builder.CreatePtrToInt(LvalueDst.getPointer(), ResultType,
2450
0
                               "sub.ptr.lhs.cast");
2451
0
      llvm::Value *BytesBetween = Builder.CreateSub(LHS, RHS, "ivar.offset");
2452
0
      CGM.getObjCRuntime().EmitObjCIvarAssign(*this, src, dst,
2453
0
                                              BytesBetween);
2454
0
    } else if (Dst.isGlobalObjCRef()) {
2455
0
      CGM.getObjCRuntime().EmitObjCGlobalAssign(*this, src, LvalueDst,
2456
0
                                                Dst.isThreadLocalRef());
2457
0
    }
2458
0
    else
2459
0
      CGM.getObjCRuntime().EmitObjCStrongCastAssign(*this, src, LvalueDst);
2460
0
    return;
2461
0
  }
2462
2463
0
  assert(Src.isScalar() && "Can't emit an agg store with this method");
2464
0
  EmitStoreOfScalar(Src.getScalarVal(), Dst, isInit);
2465
0
}
2466
2467
void CodeGenFunction::EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
2468
0
                                                     llvm::Value **Result) {
2469
0
  const CGBitFieldInfo &Info = Dst.getBitFieldInfo();
2470
0
  llvm::Type *ResLTy = ConvertTypeForMem(Dst.getType());
2471
0
  Address Ptr = Dst.getBitFieldAddress();
2472
2473
  // Get the source value, truncated to the width of the bit-field.
2474
0
  llvm::Value *SrcVal = Src.getScalarVal();
2475
2476
  // Cast the source to the storage type and shift it into place.
2477
0
  SrcVal = Builder.CreateIntCast(SrcVal, Ptr.getElementType(),
2478
0
                                 /*isSigned=*/false);
2479
0
  llvm::Value *MaskedVal = SrcVal;
2480
2481
0
  const bool UseVolatile =
2482
0
      CGM.getCodeGenOpts().AAPCSBitfieldWidth && Dst.isVolatileQualified() &&
2483
0
      Info.VolatileStorageSize != 0 && isAAPCS(CGM.getTarget());
2484
0
  const unsigned StorageSize =
2485
0
      UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
2486
0
  const unsigned Offset = UseVolatile ? Info.VolatileOffset : Info.Offset;
2487
  // See if there are other bits in the bitfield's storage we'll need to load
2488
  // and mask together with source before storing.
2489
0
  if (StorageSize != Info.Size) {
2490
0
    assert(StorageSize > Info.Size && "Invalid bitfield size.");
2491
0
    llvm::Value *Val =
2492
0
        Builder.CreateLoad(Ptr, Dst.isVolatileQualified(), "bf.load");
2493
2494
    // Mask the source value as needed.
2495
0
    if (!hasBooleanRepresentation(Dst.getType()))
2496
0
      SrcVal = Builder.CreateAnd(
2497
0
          SrcVal, llvm::APInt::getLowBitsSet(StorageSize, Info.Size),
2498
0
          "bf.value");
2499
0
    MaskedVal = SrcVal;
2500
0
    if (Offset)
2501
0
      SrcVal = Builder.CreateShl(SrcVal, Offset, "bf.shl");
2502
2503
    // Mask out the original value.
2504
0
    Val = Builder.CreateAnd(
2505
0
        Val, ~llvm::APInt::getBitsSet(StorageSize, Offset, Offset + Info.Size),
2506
0
        "bf.clear");
2507
2508
    // Or together the unchanged values and the source value.
2509
0
    SrcVal = Builder.CreateOr(Val, SrcVal, "bf.set");
2510
0
  } else {
2511
0
    assert(Offset == 0);
2512
    // According to the AACPS:
2513
    // When a volatile bit-field is written, and its container does not overlap
2514
    // with any non-bit-field member, its container must be read exactly once
2515
    // and written exactly once using the access width appropriate to the type
2516
    // of the container. The two accesses are not atomic.
2517
0
    if (Dst.isVolatileQualified() && isAAPCS(CGM.getTarget()) &&
2518
0
        CGM.getCodeGenOpts().ForceAAPCSBitfieldLoad)
2519
0
      Builder.CreateLoad(Ptr, true, "bf.load");
2520
0
  }
2521
2522
  // Write the new value back out.
2523
0
  Builder.CreateStore(SrcVal, Ptr, Dst.isVolatileQualified());
2524
2525
  // Return the new value of the bit-field, if requested.
2526
0
  if (Result) {
2527
0
    llvm::Value *ResultVal = MaskedVal;
2528
2529
    // Sign extend the value if needed.
2530
0
    if (Info.IsSigned) {
2531
0
      assert(Info.Size <= StorageSize);
2532
0
      unsigned HighBits = StorageSize - Info.Size;
2533
0
      if (HighBits) {
2534
0
        ResultVal = Builder.CreateShl(ResultVal, HighBits, "bf.result.shl");
2535
0
        ResultVal = Builder.CreateAShr(ResultVal, HighBits, "bf.result.ashr");
2536
0
      }
2537
0
    }
2538
2539
0
    ResultVal = Builder.CreateIntCast(ResultVal, ResLTy, Info.IsSigned,
2540
0
                                      "bf.result.cast");
2541
0
    *Result = EmitFromMemory(ResultVal, Dst.getType());
2542
0
  }
2543
0
}
2544
2545
void CodeGenFunction::EmitStoreThroughExtVectorComponentLValue(RValue Src,
2546
0
                                                               LValue Dst) {
2547
  // HLSL allows storing to scalar values through ExtVector component LValues.
2548
  // To support this we need to handle the case where the destination address is
2549
  // a scalar.
2550
0
  Address DstAddr = Dst.getExtVectorAddress();
2551
0
  if (!DstAddr.getElementType()->isVectorTy()) {
2552
0
    assert(!Dst.getType()->isVectorType() &&
2553
0
           "this should only occur for non-vector l-values");
2554
0
    Builder.CreateStore(Src.getScalarVal(), DstAddr, Dst.isVolatileQualified());
2555
0
    return;
2556
0
  }
2557
2558
  // This access turns into a read/modify/write of the vector.  Load the input
2559
  // value now.
2560
0
  llvm::Value *Vec = Builder.CreateLoad(DstAddr, Dst.isVolatileQualified());
2561
0
  const llvm::Constant *Elts = Dst.getExtVectorElts();
2562
2563
0
  llvm::Value *SrcVal = Src.getScalarVal();
2564
2565
0
  if (const VectorType *VTy = Dst.getType()->getAs<VectorType>()) {
2566
0
    unsigned NumSrcElts = VTy->getNumElements();
2567
0
    unsigned NumDstElts =
2568
0
        cast<llvm::FixedVectorType>(Vec->getType())->getNumElements();
2569
0
    if (NumDstElts == NumSrcElts) {
2570
      // Use shuffle vector is the src and destination are the same number of
2571
      // elements and restore the vector mask since it is on the side it will be
2572
      // stored.
2573
0
      SmallVector<int, 4> Mask(NumDstElts);
2574
0
      for (unsigned i = 0; i != NumSrcElts; ++i)
2575
0
        Mask[getAccessedFieldNo(i, Elts)] = i;
2576
2577
0
      Vec = Builder.CreateShuffleVector(SrcVal, Mask);
2578
0
    } else if (NumDstElts > NumSrcElts) {
2579
      // Extended the source vector to the same length and then shuffle it
2580
      // into the destination.
2581
      // FIXME: since we're shuffling with undef, can we just use the indices
2582
      //        into that?  This could be simpler.
2583
0
      SmallVector<int, 4> ExtMask;
2584
0
      for (unsigned i = 0; i != NumSrcElts; ++i)
2585
0
        ExtMask.push_back(i);
2586
0
      ExtMask.resize(NumDstElts, -1);
2587
0
      llvm::Value *ExtSrcVal = Builder.CreateShuffleVector(SrcVal, ExtMask);
2588
      // build identity
2589
0
      SmallVector<int, 4> Mask;
2590
0
      for (unsigned i = 0; i != NumDstElts; ++i)
2591
0
        Mask.push_back(i);
2592
2593
      // When the vector size is odd and .odd or .hi is used, the last element
2594
      // of the Elts constant array will be one past the size of the vector.
2595
      // Ignore the last element here, if it is greater than the mask size.
2596
0
      if (getAccessedFieldNo(NumSrcElts - 1, Elts) == Mask.size())
2597
0
        NumSrcElts--;
2598
2599
      // modify when what gets shuffled in
2600
0
      for (unsigned i = 0; i != NumSrcElts; ++i)
2601
0
        Mask[getAccessedFieldNo(i, Elts)] = i + NumDstElts;
2602
0
      Vec = Builder.CreateShuffleVector(Vec, ExtSrcVal, Mask);
2603
0
    } else {
2604
      // We should never shorten the vector
2605
0
      llvm_unreachable("unexpected shorten vector length");
2606
0
    }
2607
0
  } else {
2608
    // If the Src is a scalar (not a vector), and the target is a vector it must
2609
    // be updating one element.
2610
0
    unsigned InIdx = getAccessedFieldNo(0, Elts);
2611
0
    llvm::Value *Elt = llvm::ConstantInt::get(SizeTy, InIdx);
2612
0
    Vec = Builder.CreateInsertElement(Vec, SrcVal, Elt);
2613
0
  }
2614
2615
0
  Builder.CreateStore(Vec, Dst.getExtVectorAddress(),
2616
0
                      Dst.isVolatileQualified());
2617
0
}
2618
2619
/// Store of global named registers are always calls to intrinsics.
2620
0
void CodeGenFunction::EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst) {
2621
0
  assert((Dst.getType()->isIntegerType() || Dst.getType()->isPointerType()) &&
2622
0
         "Bad type for register variable");
2623
0
  llvm::MDNode *RegName = cast<llvm::MDNode>(
2624
0
      cast<llvm::MetadataAsValue>(Dst.getGlobalReg())->getMetadata());
2625
0
  assert(RegName && "Register LValue is not metadata");
2626
2627
  // We accept integer and pointer types only
2628
0
  llvm::Type *OrigTy = CGM.getTypes().ConvertType(Dst.getType());
2629
0
  llvm::Type *Ty = OrigTy;
2630
0
  if (OrigTy->isPointerTy())
2631
0
    Ty = CGM.getTypes().getDataLayout().getIntPtrType(OrigTy);
2632
0
  llvm::Type *Types[] = { Ty };
2633
2634
0
  llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
2635
0
  llvm::Value *Value = Src.getScalarVal();
2636
0
  if (OrigTy->isPointerTy())
2637
0
    Value = Builder.CreatePtrToInt(Value, Ty);
2638
0
  Builder.CreateCall(
2639
0
      F, {llvm::MetadataAsValue::get(Ty->getContext(), RegName), Value});
2640
0
}
2641
2642
// setObjCGCLValueClass - sets class of the lvalue for the purpose of
2643
// generating write-barries API. It is currently a global, ivar,
2644
// or neither.
2645
static void setObjCGCLValueClass(const ASTContext &Ctx, const Expr *E,
2646
                                 LValue &LV,
2647
0
                                 bool IsMemberAccess=false) {
2648
0
  if (Ctx.getLangOpts().getGC() == LangOptions::NonGC)
2649
0
    return;
2650
2651
0
  if (isa<ObjCIvarRefExpr>(E)) {
2652
0
    QualType ExpTy = E->getType();
2653
0
    if (IsMemberAccess && ExpTy->isPointerType()) {
2654
      // If ivar is a structure pointer, assigning to field of
2655
      // this struct follows gcc's behavior and makes it a non-ivar
2656
      // writer-barrier conservatively.
2657
0
      ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2658
0
      if (ExpTy->isRecordType()) {
2659
0
        LV.setObjCIvar(false);
2660
0
        return;
2661
0
      }
2662
0
    }
2663
0
    LV.setObjCIvar(true);
2664
0
    auto *Exp = cast<ObjCIvarRefExpr>(const_cast<Expr *>(E));
2665
0
    LV.setBaseIvarExp(Exp->getBase());
2666
0
    LV.setObjCArray(E->getType()->isArrayType());
2667
0
    return;
2668
0
  }
2669
2670
0
  if (const auto *Exp = dyn_cast<DeclRefExpr>(E)) {
2671
0
    if (const auto *VD = dyn_cast<VarDecl>(Exp->getDecl())) {
2672
0
      if (VD->hasGlobalStorage()) {
2673
0
        LV.setGlobalObjCRef(true);
2674
0
        LV.setThreadLocalRef(VD->getTLSKind() != VarDecl::TLS_None);
2675
0
      }
2676
0
    }
2677
0
    LV.setObjCArray(E->getType()->isArrayType());
2678
0
    return;
2679
0
  }
2680
2681
0
  if (const auto *Exp = dyn_cast<UnaryOperator>(E)) {
2682
0
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2683
0
    return;
2684
0
  }
2685
2686
0
  if (const auto *Exp = dyn_cast<ParenExpr>(E)) {
2687
0
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2688
0
    if (LV.isObjCIvar()) {
2689
      // If cast is to a structure pointer, follow gcc's behavior and make it
2690
      // a non-ivar write-barrier.
2691
0
      QualType ExpTy = E->getType();
2692
0
      if (ExpTy->isPointerType())
2693
0
        ExpTy = ExpTy->castAs<PointerType>()->getPointeeType();
2694
0
      if (ExpTy->isRecordType())
2695
0
        LV.setObjCIvar(false);
2696
0
    }
2697
0
    return;
2698
0
  }
2699
2700
0
  if (const auto *Exp = dyn_cast<GenericSelectionExpr>(E)) {
2701
0
    setObjCGCLValueClass(Ctx, Exp->getResultExpr(), LV);
2702
0
    return;
2703
0
  }
2704
2705
0
  if (const auto *Exp = dyn_cast<ImplicitCastExpr>(E)) {
2706
0
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2707
0
    return;
2708
0
  }
2709
2710
0
  if (const auto *Exp = dyn_cast<CStyleCastExpr>(E)) {
2711
0
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2712
0
    return;
2713
0
  }
2714
2715
0
  if (const auto *Exp = dyn_cast<ObjCBridgedCastExpr>(E)) {
2716
0
    setObjCGCLValueClass(Ctx, Exp->getSubExpr(), LV, IsMemberAccess);
2717
0
    return;
2718
0
  }
2719
2720
0
  if (const auto *Exp = dyn_cast<ArraySubscriptExpr>(E)) {
2721
0
    setObjCGCLValueClass(Ctx, Exp->getBase(), LV);
2722
0
    if (LV.isObjCIvar() && !LV.isObjCArray())
2723
      // Using array syntax to assigning to what an ivar points to is not
2724
      // same as assigning to the ivar itself. {id *Names;} Names[i] = 0;
2725
0
      LV.setObjCIvar(false);
2726
0
    else if (LV.isGlobalObjCRef() && !LV.isObjCArray())
2727
      // Using array syntax to assigning to what global points to is not
2728
      // same as assigning to the global itself. {id *G;} G[i] = 0;
2729
0
      LV.setGlobalObjCRef(false);
2730
0
    return;
2731
0
  }
2732
2733
0
  if (const auto *Exp = dyn_cast<MemberExpr>(E)) {
2734
0
    setObjCGCLValueClass(Ctx, Exp->getBase(), LV, true);
2735
    // We don't know if member is an 'ivar', but this flag is looked at
2736
    // only in the context of LV.isObjCIvar().
2737
0
    LV.setObjCArray(E->getType()->isArrayType());
2738
0
    return;
2739
0
  }
2740
0
}
2741
2742
static LValue EmitThreadPrivateVarDeclLValue(
2743
    CodeGenFunction &CGF, const VarDecl *VD, QualType T, Address Addr,
2744
0
    llvm::Type *RealVarTy, SourceLocation Loc) {
2745
0
  if (CGF.CGM.getLangOpts().OpenMPIRBuilder)
2746
0
    Addr = CodeGenFunction::OMPBuilderCBHelpers::getAddrOfThreadPrivate(
2747
0
        CGF, VD, Addr, Loc);
2748
0
  else
2749
0
    Addr =
2750
0
        CGF.CGM.getOpenMPRuntime().getAddrOfThreadPrivate(CGF, VD, Addr, Loc);
2751
2752
0
  Addr = Addr.withElementType(RealVarTy);
2753
0
  return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2754
0
}
2755
2756
static Address emitDeclTargetVarDeclLValue(CodeGenFunction &CGF,
2757
0
                                           const VarDecl *VD, QualType T) {
2758
0
  std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
2759
0
      OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD);
2760
  // Return an invalid address if variable is MT_To (or MT_Enter starting with
2761
  // OpenMP 5.2) and unified memory is not enabled. For all other cases: MT_Link
2762
  // and MT_To (or MT_Enter) with unified memory, return a valid address.
2763
0
  if (!Res || ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
2764
0
                *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
2765
0
               !CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory()))
2766
0
    return Address::invalid();
2767
0
  assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
2768
0
          ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
2769
0
            *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
2770
0
           CGF.CGM.getOpenMPRuntime().hasRequiresUnifiedSharedMemory())) &&
2771
0
         "Expected link clause OR to clause with unified memory enabled.");
2772
0
  QualType PtrTy = CGF.getContext().getPointerType(VD->getType());
2773
0
  Address Addr = CGF.CGM.getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
2774
0
  return CGF.EmitLoadOfPointer(Addr, PtrTy->castAs<PointerType>());
2775
0
}
2776
2777
Address
2778
CodeGenFunction::EmitLoadOfReference(LValue RefLVal,
2779
                                     LValueBaseInfo *PointeeBaseInfo,
2780
0
                                     TBAAAccessInfo *PointeeTBAAInfo) {
2781
0
  llvm::LoadInst *Load =
2782
0
      Builder.CreateLoad(RefLVal.getAddress(*this), RefLVal.isVolatile());
2783
0
  CGM.DecorateInstructionWithTBAA(Load, RefLVal.getTBAAInfo());
2784
2785
0
  QualType PointeeType = RefLVal.getType()->getPointeeType();
2786
0
  CharUnits Align = CGM.getNaturalTypeAlignment(
2787
0
      PointeeType, PointeeBaseInfo, PointeeTBAAInfo,
2788
0
      /* forPointeeType= */ true);
2789
0
  return Address(Load, ConvertTypeForMem(PointeeType), Align);
2790
0
}
2791
2792
0
LValue CodeGenFunction::EmitLoadOfReferenceLValue(LValue RefLVal) {
2793
0
  LValueBaseInfo PointeeBaseInfo;
2794
0
  TBAAAccessInfo PointeeTBAAInfo;
2795
0
  Address PointeeAddr = EmitLoadOfReference(RefLVal, &PointeeBaseInfo,
2796
0
                                            &PointeeTBAAInfo);
2797
0
  return MakeAddrLValue(PointeeAddr, RefLVal.getType()->getPointeeType(),
2798
0
                        PointeeBaseInfo, PointeeTBAAInfo);
2799
0
}
2800
2801
Address CodeGenFunction::EmitLoadOfPointer(Address Ptr,
2802
                                           const PointerType *PtrTy,
2803
                                           LValueBaseInfo *BaseInfo,
2804
0
                                           TBAAAccessInfo *TBAAInfo) {
2805
0
  llvm::Value *Addr = Builder.CreateLoad(Ptr);
2806
0
  return Address(Addr, ConvertTypeForMem(PtrTy->getPointeeType()),
2807
0
                 CGM.getNaturalTypeAlignment(PtrTy->getPointeeType(), BaseInfo,
2808
0
                                             TBAAInfo,
2809
0
                                             /*forPointeeType=*/true));
2810
0
}
2811
2812
LValue CodeGenFunction::EmitLoadOfPointerLValue(Address PtrAddr,
2813
0
                                                const PointerType *PtrTy) {
2814
0
  LValueBaseInfo BaseInfo;
2815
0
  TBAAAccessInfo TBAAInfo;
2816
0
  Address Addr = EmitLoadOfPointer(PtrAddr, PtrTy, &BaseInfo, &TBAAInfo);
2817
0
  return MakeAddrLValue(Addr, PtrTy->getPointeeType(), BaseInfo, TBAAInfo);
2818
0
}
2819
2820
static LValue EmitGlobalVarDeclLValue(CodeGenFunction &CGF,
2821
0
                                      const Expr *E, const VarDecl *VD) {
2822
0
  QualType T = E->getType();
2823
2824
  // If it's thread_local, emit a call to its wrapper function instead.
2825
0
  if (VD->getTLSKind() == VarDecl::TLS_Dynamic &&
2826
0
      CGF.CGM.getCXXABI().usesThreadWrapperFunction(VD))
2827
0
    return CGF.CGM.getCXXABI().EmitThreadLocalVarDeclLValue(CGF, VD, T);
2828
  // Check if the variable is marked as declare target with link clause in
2829
  // device codegen.
2830
0
  if (CGF.getLangOpts().OpenMPIsTargetDevice) {
2831
0
    Address Addr = emitDeclTargetVarDeclLValue(CGF, VD, T);
2832
0
    if (Addr.isValid())
2833
0
      return CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2834
0
  }
2835
2836
0
  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2837
2838
0
  if (VD->getTLSKind() != VarDecl::TLS_None)
2839
0
    V = CGF.Builder.CreateThreadLocalAddress(V);
2840
2841
0
  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2842
0
  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2843
0
  Address Addr(V, RealVarTy, Alignment);
2844
  // Emit reference to the private copy of the variable if it is an OpenMP
2845
  // threadprivate variable.
2846
0
  if (CGF.getLangOpts().OpenMP && !CGF.getLangOpts().OpenMPSimd &&
2847
0
      VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
2848
0
    return EmitThreadPrivateVarDeclLValue(CGF, VD, T, Addr, RealVarTy,
2849
0
                                          E->getExprLoc());
2850
0
  }
2851
0
  LValue LV = VD->getType()->isReferenceType() ?
2852
0
      CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2853
0
                                    AlignmentSource::Decl) :
2854
0
      CGF.MakeAddrLValue(Addr, T, AlignmentSource::Decl);
2855
0
  setObjCGCLValueClass(CGF.getContext(), E, LV);
2856
0
  return LV;
2857
0
}
2858
2859
static llvm::Constant *EmitFunctionDeclPointer(CodeGenModule &CGM,
2860
0
                                               GlobalDecl GD) {
2861
0
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2862
0
  if (FD->hasAttr<WeakRefAttr>()) {
2863
0
    ConstantAddress aliasee = CGM.GetWeakRefReference(FD);
2864
0
    return aliasee.getPointer();
2865
0
  }
2866
2867
0
  llvm::Constant *V = CGM.GetAddrOfFunction(GD);
2868
0
  return V;
2869
0
}
2870
2871
static LValue EmitFunctionDeclLValue(CodeGenFunction &CGF, const Expr *E,
2872
0
                                     GlobalDecl GD) {
2873
0
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
2874
0
  llvm::Value *V = EmitFunctionDeclPointer(CGF.CGM, GD);
2875
0
  CharUnits Alignment = CGF.getContext().getDeclAlign(FD);
2876
0
  return CGF.MakeAddrLValue(V, E->getType(), Alignment,
2877
0
                            AlignmentSource::Decl);
2878
0
}
2879
2880
static LValue EmitCapturedFieldLValue(CodeGenFunction &CGF, const FieldDecl *FD,
2881
0
                                      llvm::Value *ThisValue) {
2882
2883
0
  return CGF.EmitLValueForLambdaField(FD, ThisValue);
2884
0
}
2885
2886
/// Named Registers are named metadata pointing to the register name
2887
/// which will be read from/written to as an argument to the intrinsic
2888
/// @llvm.read/write_register.
2889
/// So far, only the name is being passed down, but other options such as
2890
/// register type, allocation type or even optimization options could be
2891
/// passed down via the metadata node.
2892
0
static LValue EmitGlobalNamedRegister(const VarDecl *VD, CodeGenModule &CGM) {
2893
0
  SmallString<64> Name("llvm.named.register.");
2894
0
  AsmLabelAttr *Asm = VD->getAttr<AsmLabelAttr>();
2895
0
  assert(Asm->getLabel().size() < 64-Name.size() &&
2896
0
      "Register name too big");
2897
0
  Name.append(Asm->getLabel());
2898
0
  llvm::NamedMDNode *M =
2899
0
    CGM.getModule().getOrInsertNamedMetadata(Name);
2900
0
  if (M->getNumOperands() == 0) {
2901
0
    llvm::MDString *Str = llvm::MDString::get(CGM.getLLVMContext(),
2902
0
                                              Asm->getLabel());
2903
0
    llvm::Metadata *Ops[] = {Str};
2904
0
    M->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
2905
0
  }
2906
2907
0
  CharUnits Alignment = CGM.getContext().getDeclAlign(VD);
2908
2909
0
  llvm::Value *Ptr =
2910
0
    llvm::MetadataAsValue::get(CGM.getLLVMContext(), M->getOperand(0));
2911
0
  return LValue::MakeGlobalReg(Ptr, Alignment, VD->getType());
2912
0
}
2913
2914
/// Determine whether we can emit a reference to \p VD from the current
2915
/// context, despite not necessarily having seen an odr-use of the variable in
2916
/// this context.
2917
static bool canEmitSpuriousReferenceToVariable(CodeGenFunction &CGF,
2918
                                               const DeclRefExpr *E,
2919
0
                                               const VarDecl *VD) {
2920
  // For a variable declared in an enclosing scope, do not emit a spurious
2921
  // reference even if we have a capture, as that will emit an unwarranted
2922
  // reference to our capture state, and will likely generate worse code than
2923
  // emitting a local copy.
2924
0
  if (E->refersToEnclosingVariableOrCapture())
2925
0
    return false;
2926
2927
  // For a local declaration declared in this function, we can always reference
2928
  // it even if we don't have an odr-use.
2929
0
  if (VD->hasLocalStorage()) {
2930
0
    return VD->getDeclContext() ==
2931
0
           dyn_cast_or_null<DeclContext>(CGF.CurCodeDecl);
2932
0
  }
2933
2934
  // For a global declaration, we can emit a reference to it if we know
2935
  // for sure that we are able to emit a definition of it.
2936
0
  VD = VD->getDefinition(CGF.getContext());
2937
0
  if (!VD)
2938
0
    return false;
2939
2940
  // Don't emit a spurious reference if it might be to a variable that only
2941
  // exists on a different device / target.
2942
  // FIXME: This is unnecessarily broad. Check whether this would actually be a
2943
  // cross-target reference.
2944
0
  if (CGF.getLangOpts().OpenMP || CGF.getLangOpts().CUDA ||
2945
0
      CGF.getLangOpts().OpenCL) {
2946
0
    return false;
2947
0
  }
2948
2949
  // We can emit a spurious reference only if the linkage implies that we'll
2950
  // be emitting a non-interposable symbol that will be retained until link
2951
  // time.
2952
0
  switch (CGF.CGM.getLLVMLinkageVarDefinition(VD)) {
2953
0
  case llvm::GlobalValue::ExternalLinkage:
2954
0
  case llvm::GlobalValue::LinkOnceODRLinkage:
2955
0
  case llvm::GlobalValue::WeakODRLinkage:
2956
0
  case llvm::GlobalValue::InternalLinkage:
2957
0
  case llvm::GlobalValue::PrivateLinkage:
2958
0
    return true;
2959
0
  default:
2960
0
    return false;
2961
0
  }
2962
0
}
2963
2964
0
LValue CodeGenFunction::EmitDeclRefLValue(const DeclRefExpr *E) {
2965
0
  const NamedDecl *ND = E->getDecl();
2966
0
  QualType T = E->getType();
2967
2968
0
  assert(E->isNonOdrUse() != NOUR_Unevaluated &&
2969
0
         "should not emit an unevaluated operand");
2970
2971
0
  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
2972
    // Global Named registers access via intrinsics only
2973
0
    if (VD->getStorageClass() == SC_Register &&
2974
0
        VD->hasAttr<AsmLabelAttr>() && !VD->isLocalVarDecl())
2975
0
      return EmitGlobalNamedRegister(VD, CGM);
2976
2977
    // If this DeclRefExpr does not constitute an odr-use of the variable,
2978
    // we're not permitted to emit a reference to it in general, and it might
2979
    // not be captured if capture would be necessary for a use. Emit the
2980
    // constant value directly instead.
2981
0
    if (E->isNonOdrUse() == NOUR_Constant &&
2982
0
        (VD->getType()->isReferenceType() ||
2983
0
         !canEmitSpuriousReferenceToVariable(*this, E, VD))) {
2984
0
      VD->getAnyInitializer(VD);
2985
0
      llvm::Constant *Val = ConstantEmitter(*this).emitAbstract(
2986
0
          E->getLocation(), *VD->evaluateValue(), VD->getType());
2987
0
      assert(Val && "failed to emit constant expression");
2988
2989
0
      Address Addr = Address::invalid();
2990
0
      if (!VD->getType()->isReferenceType()) {
2991
        // Spill the constant value to a global.
2992
0
        Addr = CGM.createUnnamedGlobalFrom(*VD, Val,
2993
0
                                           getContext().getDeclAlign(VD));
2994
0
        llvm::Type *VarTy = getTypes().ConvertTypeForMem(VD->getType());
2995
0
        auto *PTy = llvm::PointerType::get(
2996
0
            VarTy, getTypes().getTargetAddressSpace(VD->getType()));
2997
0
        Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(Addr, PTy, VarTy);
2998
0
      } else {
2999
        // Should we be using the alignment of the constant pointer we emitted?
3000
0
        CharUnits Alignment =
3001
0
            CGM.getNaturalTypeAlignment(E->getType(),
3002
0
                                        /* BaseInfo= */ nullptr,
3003
0
                                        /* TBAAInfo= */ nullptr,
3004
0
                                        /* forPointeeType= */ true);
3005
0
        Addr = Address(Val, ConvertTypeForMem(E->getType()), Alignment);
3006
0
      }
3007
0
      return MakeAddrLValue(Addr, T, AlignmentSource::Decl);
3008
0
    }
3009
3010
    // FIXME: Handle other kinds of non-odr-use DeclRefExprs.
3011
3012
    // Check for captured variables.
3013
0
    if (E->refersToEnclosingVariableOrCapture()) {
3014
0
      VD = VD->getCanonicalDecl();
3015
0
      if (auto *FD = LambdaCaptureFields.lookup(VD))
3016
0
        return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
3017
0
      if (CapturedStmtInfo) {
3018
0
        auto I = LocalDeclMap.find(VD);
3019
0
        if (I != LocalDeclMap.end()) {
3020
0
          LValue CapLVal;
3021
0
          if (VD->getType()->isReferenceType())
3022
0
            CapLVal = EmitLoadOfReferenceLValue(I->second, VD->getType(),
3023
0
                                                AlignmentSource::Decl);
3024
0
          else
3025
0
            CapLVal = MakeAddrLValue(I->second, T);
3026
          // Mark lvalue as nontemporal if the variable is marked as nontemporal
3027
          // in simd context.
3028
0
          if (getLangOpts().OpenMP &&
3029
0
              CGM.getOpenMPRuntime().isNontemporalDecl(VD))
3030
0
            CapLVal.setNontemporal(/*Value=*/true);
3031
0
          return CapLVal;
3032
0
        }
3033
0
        LValue CapLVal =
3034
0
            EmitCapturedFieldLValue(*this, CapturedStmtInfo->lookup(VD),
3035
0
                                    CapturedStmtInfo->getContextValue());
3036
0
        Address LValueAddress = CapLVal.getAddress(*this);
3037
0
        CapLVal = MakeAddrLValue(
3038
0
            Address(LValueAddress.getPointer(), LValueAddress.getElementType(),
3039
0
                    getContext().getDeclAlign(VD)),
3040
0
            CapLVal.getType(), LValueBaseInfo(AlignmentSource::Decl),
3041
0
            CapLVal.getTBAAInfo());
3042
        // Mark lvalue as nontemporal if the variable is marked as nontemporal
3043
        // in simd context.
3044
0
        if (getLangOpts().OpenMP &&
3045
0
            CGM.getOpenMPRuntime().isNontemporalDecl(VD))
3046
0
          CapLVal.setNontemporal(/*Value=*/true);
3047
0
        return CapLVal;
3048
0
      }
3049
3050
0
      assert(isa<BlockDecl>(CurCodeDecl));
3051
0
      Address addr = GetAddrOfBlockDecl(VD);
3052
0
      return MakeAddrLValue(addr, T, AlignmentSource::Decl);
3053
0
    }
3054
0
  }
3055
3056
  // FIXME: We should be able to assert this for FunctionDecls as well!
3057
  // FIXME: We should be able to assert this for all DeclRefExprs, not just
3058
  // those with a valid source location.
3059
0
  assert((ND->isUsed(false) || !isa<VarDecl>(ND) || E->isNonOdrUse() ||
3060
0
          !E->getLocation().isValid()) &&
3061
0
         "Should not use decl without marking it used!");
3062
3063
0
  if (ND->hasAttr<WeakRefAttr>()) {
3064
0
    const auto *VD = cast<ValueDecl>(ND);
3065
0
    ConstantAddress Aliasee = CGM.GetWeakRefReference(VD);
3066
0
    return MakeAddrLValue(Aliasee, T, AlignmentSource::Decl);
3067
0
  }
3068
3069
0
  if (const auto *VD = dyn_cast<VarDecl>(ND)) {
3070
    // Check if this is a global variable.
3071
0
    if (VD->hasLinkage() || VD->isStaticDataMember())
3072
0
      return EmitGlobalVarDeclLValue(*this, E, VD);
3073
3074
0
    Address addr = Address::invalid();
3075
3076
    // The variable should generally be present in the local decl map.
3077
0
    auto iter = LocalDeclMap.find(VD);
3078
0
    if (iter != LocalDeclMap.end()) {
3079
0
      addr = iter->second;
3080
3081
    // Otherwise, it might be static local we haven't emitted yet for
3082
    // some reason; most likely, because it's in an outer function.
3083
0
    } else if (VD->isStaticLocal()) {
3084
0
      llvm::Constant *var = CGM.getOrCreateStaticVarDecl(
3085
0
          *VD, CGM.getLLVMLinkageVarDefinition(VD));
3086
0
      addr = Address(
3087
0
          var, ConvertTypeForMem(VD->getType()), getContext().getDeclAlign(VD));
3088
3089
    // No other cases for now.
3090
0
    } else {
3091
0
      llvm_unreachable("DeclRefExpr for Decl not entered in LocalDeclMap?");
3092
0
    }
3093
3094
    // Handle threadlocal function locals.
3095
0
    if (VD->getTLSKind() != VarDecl::TLS_None)
3096
0
      addr = addr.withPointer(
3097
0
          Builder.CreateThreadLocalAddress(addr.getPointer()), NotKnownNonNull);
3098
3099
    // Check for OpenMP threadprivate variables.
3100
0
    if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd &&
3101
0
        VD->hasAttr<OMPThreadPrivateDeclAttr>()) {
3102
0
      return EmitThreadPrivateVarDeclLValue(
3103
0
          *this, VD, T, addr, getTypes().ConvertTypeForMem(VD->getType()),
3104
0
          E->getExprLoc());
3105
0
    }
3106
3107
    // Drill into block byref variables.
3108
0
    bool isBlockByref = VD->isEscapingByref();
3109
0
    if (isBlockByref) {
3110
0
      addr = emitBlockByrefAddress(addr, VD);
3111
0
    }
3112
3113
    // Drill into reference types.
3114
0
    LValue LV = VD->getType()->isReferenceType() ?
3115
0
        EmitLoadOfReferenceLValue(addr, VD->getType(), AlignmentSource::Decl) :
3116
0
        MakeAddrLValue(addr, T, AlignmentSource::Decl);
3117
3118
0
    bool isLocalStorage = VD->hasLocalStorage();
3119
3120
0
    bool NonGCable = isLocalStorage &&
3121
0
                     !VD->getType()->isReferenceType() &&
3122
0
                     !isBlockByref;
3123
0
    if (NonGCable) {
3124
0
      LV.getQuals().removeObjCGCAttr();
3125
0
      LV.setNonGC(true);
3126
0
    }
3127
3128
0
    bool isImpreciseLifetime =
3129
0
      (isLocalStorage && !VD->hasAttr<ObjCPreciseLifetimeAttr>());
3130
0
    if (isImpreciseLifetime)
3131
0
      LV.setARCPreciseLifetime(ARCImpreciseLifetime);
3132
0
    setObjCGCLValueClass(getContext(), E, LV);
3133
0
    return LV;
3134
0
  }
3135
3136
0
  if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
3137
0
    LValue LV = EmitFunctionDeclLValue(*this, E, FD);
3138
3139
    // Emit debuginfo for the function declaration if the target wants to.
3140
0
    if (getContext().getTargetInfo().allowDebugInfoForExternalRef()) {
3141
0
      if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) {
3142
0
        auto *Fn =
3143
0
            cast<llvm::Function>(LV.getPointer(*this)->stripPointerCasts());
3144
0
        if (!Fn->getSubprogram())
3145
0
          DI->EmitFunctionDecl(FD, FD->getLocation(), T, Fn);
3146
0
      }
3147
0
    }
3148
3149
0
    return LV;
3150
0
  }
3151
3152
  // FIXME: While we're emitting a binding from an enclosing scope, all other
3153
  // DeclRefExprs we see should be implicitly treated as if they also refer to
3154
  // an enclosing scope.
3155
0
  if (const auto *BD = dyn_cast<BindingDecl>(ND)) {
3156
0
    if (E->refersToEnclosingVariableOrCapture()) {
3157
0
      auto *FD = LambdaCaptureFields.lookup(BD);
3158
0
      return EmitCapturedFieldLValue(*this, FD, CXXABIThisValue);
3159
0
    }
3160
0
    return EmitLValue(BD->getBinding());
3161
0
  }
3162
3163
  // We can form DeclRefExprs naming GUID declarations when reconstituting
3164
  // non-type template parameters into expressions.
3165
0
  if (const auto *GD = dyn_cast<MSGuidDecl>(ND))
3166
0
    return MakeAddrLValue(CGM.GetAddrOfMSGuidDecl(GD), T,
3167
0
                          AlignmentSource::Decl);
3168
3169
0
  if (const auto *TPO = dyn_cast<TemplateParamObjectDecl>(ND)) {
3170
0
    auto ATPO = CGM.GetAddrOfTemplateParamObject(TPO);
3171
0
    auto AS = getLangASFromTargetAS(ATPO.getAddressSpace());
3172
3173
0
    if (AS != T.getAddressSpace()) {
3174
0
      auto TargetAS = getContext().getTargetAddressSpace(T.getAddressSpace());
3175
0
      auto PtrTy = ATPO.getElementType()->getPointerTo(TargetAS);
3176
0
      auto ASC = getTargetHooks().performAddrSpaceCast(
3177
0
          CGM, ATPO.getPointer(), AS, T.getAddressSpace(), PtrTy);
3178
0
      ATPO = ConstantAddress(ASC, ATPO.getElementType(), ATPO.getAlignment());
3179
0
    }
3180
3181
0
    return MakeAddrLValue(ATPO, T, AlignmentSource::Decl);
3182
0
  }
3183
3184
0
  llvm_unreachable("Unhandled DeclRefExpr");
3185
0
}
3186
3187
0
LValue CodeGenFunction::EmitUnaryOpLValue(const UnaryOperator *E) {
3188
  // __extension__ doesn't affect lvalue-ness.
3189
0
  if (E->getOpcode() == UO_Extension)
3190
0
    return EmitLValue(E->getSubExpr());
3191
3192
0
  QualType ExprTy = getContext().getCanonicalType(E->getSubExpr()->getType());
3193
0
  switch (E->getOpcode()) {
3194
0
  default: llvm_unreachable("Unknown unary operator lvalue!");
3195
0
  case UO_Deref: {
3196
0
    QualType T = E->getSubExpr()->getType()->getPointeeType();
3197
0
    assert(!T.isNull() && "CodeGenFunction::EmitUnaryOpLValue: Illegal type");
3198
3199
0
    LValueBaseInfo BaseInfo;
3200
0
    TBAAAccessInfo TBAAInfo;
3201
0
    Address Addr = EmitPointerWithAlignment(E->getSubExpr(), &BaseInfo,
3202
0
                                            &TBAAInfo);
3203
0
    LValue LV = MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo);
3204
0
    LV.getQuals().setAddressSpace(ExprTy.getAddressSpace());
3205
3206
    // We should not generate __weak write barrier on indirect reference
3207
    // of a pointer to object; as in void foo (__weak id *param); *param = 0;
3208
    // But, we continue to generate __strong write barrier on indirect write
3209
    // into a pointer to object.
3210
0
    if (getLangOpts().ObjC &&
3211
0
        getLangOpts().getGC() != LangOptions::NonGC &&
3212
0
        LV.isObjCWeak())
3213
0
      LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
3214
0
    return LV;
3215
0
  }
3216
0
  case UO_Real:
3217
0
  case UO_Imag: {
3218
0
    LValue LV = EmitLValue(E->getSubExpr());
3219
0
    assert(LV.isSimple() && "real/imag on non-ordinary l-value");
3220
3221
    // __real is valid on scalars.  This is a faster way of testing that.
3222
    // __imag can only produce an rvalue on scalars.
3223
0
    if (E->getOpcode() == UO_Real &&
3224
0
        !LV.getAddress(*this).getElementType()->isStructTy()) {
3225
0
      assert(E->getSubExpr()->getType()->isArithmeticType());
3226
0
      return LV;
3227
0
    }
3228
3229
0
    QualType T = ExprTy->castAs<ComplexType>()->getElementType();
3230
3231
0
    Address Component =
3232
0
        (E->getOpcode() == UO_Real
3233
0
             ? emitAddrOfRealComponent(LV.getAddress(*this), LV.getType())
3234
0
             : emitAddrOfImagComponent(LV.getAddress(*this), LV.getType()));
3235
0
    LValue ElemLV = MakeAddrLValue(Component, T, LV.getBaseInfo(),
3236
0
                                   CGM.getTBAAInfoForSubobject(LV, T));
3237
0
    ElemLV.getQuals().addQualifiers(LV.getQuals());
3238
0
    return ElemLV;
3239
0
  }
3240
0
  case UO_PreInc:
3241
0
  case UO_PreDec: {
3242
0
    LValue LV = EmitLValue(E->getSubExpr());
3243
0
    bool isInc = E->getOpcode() == UO_PreInc;
3244
3245
0
    if (E->getType()->isAnyComplexType())
3246
0
      EmitComplexPrePostIncDec(E, LV, isInc, true/*isPre*/);
3247
0
    else
3248
0
      EmitScalarPrePostIncDec(E, LV, isInc, true/*isPre*/);
3249
0
    return LV;
3250
0
  }
3251
0
  }
3252
0
}
3253
3254
0
LValue CodeGenFunction::EmitStringLiteralLValue(const StringLiteral *E) {
3255
0
  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromLiteral(E),
3256
0
                        E->getType(), AlignmentSource::Decl);
3257
0
}
3258
3259
0
LValue CodeGenFunction::EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E) {
3260
0
  return MakeAddrLValue(CGM.GetAddrOfConstantStringFromObjCEncode(E),
3261
0
                        E->getType(), AlignmentSource::Decl);
3262
0
}
3263
3264
0
LValue CodeGenFunction::EmitPredefinedLValue(const PredefinedExpr *E) {
3265
0
  auto SL = E->getFunctionName();
3266
0
  assert(SL != nullptr && "No StringLiteral name in PredefinedExpr");
3267
0
  StringRef FnName = CurFn->getName();
3268
0
  if (FnName.starts_with("\01"))
3269
0
    FnName = FnName.substr(1);
3270
0
  StringRef NameItems[] = {
3271
0
      PredefinedExpr::getIdentKindName(E->getIdentKind()), FnName};
3272
0
  std::string GVName = llvm::join(NameItems, NameItems + 2, ".");
3273
0
  if (auto *BD = dyn_cast_or_null<BlockDecl>(CurCodeDecl)) {
3274
0
    std::string Name = std::string(SL->getString());
3275
0
    if (!Name.empty()) {
3276
0
      unsigned Discriminator =
3277
0
          CGM.getCXXABI().getMangleContext().getBlockId(BD, true);
3278
0
      if (Discriminator)
3279
0
        Name += "_" + Twine(Discriminator + 1).str();
3280
0
      auto C = CGM.GetAddrOfConstantCString(Name, GVName.c_str());
3281
0
      return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3282
0
    } else {
3283
0
      auto C =
3284
0
          CGM.GetAddrOfConstantCString(std::string(FnName), GVName.c_str());
3285
0
      return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3286
0
    }
3287
0
  }
3288
0
  auto C = CGM.GetAddrOfConstantStringFromLiteral(SL, GVName);
3289
0
  return MakeAddrLValue(C, E->getType(), AlignmentSource::Decl);
3290
0
}
3291
3292
/// Emit a type description suitable for use by a runtime sanitizer library. The
3293
/// format of a type descriptor is
3294
///
3295
/// \code
3296
///   { i16 TypeKind, i16 TypeInfo }
3297
/// \endcode
3298
///
3299
/// followed by an array of i8 containing the type name. TypeKind is 0 for an
3300
/// integer, 1 for a floating point value, and -1 for anything else.
3301
0
llvm::Constant *CodeGenFunction::EmitCheckTypeDescriptor(QualType T) {
3302
  // Only emit each type's descriptor once.
3303
0
  if (llvm::Constant *C = CGM.getTypeDescriptorFromMap(T))
3304
0
    return C;
3305
3306
0
  uint16_t TypeKind = -1;
3307
0
  uint16_t TypeInfo = 0;
3308
3309
0
  if (T->isIntegerType()) {
3310
0
    TypeKind = 0;
3311
0
    TypeInfo = (llvm::Log2_32(getContext().getTypeSize(T)) << 1) |
3312
0
               (T->isSignedIntegerType() ? 1 : 0);
3313
0
  } else if (T->isFloatingType()) {
3314
0
    TypeKind = 1;
3315
0
    TypeInfo = getContext().getTypeSize(T);
3316
0
  }
3317
3318
  // Format the type name as if for a diagnostic, including quotes and
3319
  // optionally an 'aka'.
3320
0
  SmallString<32> Buffer;
3321
0
  CGM.getDiags().ConvertArgToString(
3322
0
      DiagnosticsEngine::ak_qualtype, (intptr_t)T.getAsOpaquePtr(), StringRef(),
3323
0
      StringRef(), std::nullopt, Buffer, std::nullopt);
3324
3325
0
  llvm::Constant *Components[] = {
3326
0
    Builder.getInt16(TypeKind), Builder.getInt16(TypeInfo),
3327
0
    llvm::ConstantDataArray::getString(getLLVMContext(), Buffer)
3328
0
  };
3329
0
  llvm::Constant *Descriptor = llvm::ConstantStruct::getAnon(Components);
3330
3331
0
  auto *GV = new llvm::GlobalVariable(
3332
0
      CGM.getModule(), Descriptor->getType(),
3333
0
      /*isConstant=*/true, llvm::GlobalVariable::PrivateLinkage, Descriptor);
3334
0
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3335
0
  CGM.getSanitizerMetadata()->disableSanitizerForGlobal(GV);
3336
3337
  // Remember the descriptor for this type.
3338
0
  CGM.setTypeDescriptorInMap(T, GV);
3339
3340
0
  return GV;
3341
0
}
3342
3343
0
llvm::Value *CodeGenFunction::EmitCheckValue(llvm::Value *V) {
3344
0
  llvm::Type *TargetTy = IntPtrTy;
3345
3346
0
  if (V->getType() == TargetTy)
3347
0
    return V;
3348
3349
  // Floating-point types which fit into intptr_t are bitcast to integers
3350
  // and then passed directly (after zero-extension, if necessary).
3351
0
  if (V->getType()->isFloatingPointTy()) {
3352
0
    unsigned Bits = V->getType()->getPrimitiveSizeInBits().getFixedValue();
3353
0
    if (Bits <= TargetTy->getIntegerBitWidth())
3354
0
      V = Builder.CreateBitCast(V, llvm::Type::getIntNTy(getLLVMContext(),
3355
0
                                                         Bits));
3356
0
  }
3357
3358
  // Integers which fit in intptr_t are zero-extended and passed directly.
3359
0
  if (V->getType()->isIntegerTy() &&
3360
0
      V->getType()->getIntegerBitWidth() <= TargetTy->getIntegerBitWidth())
3361
0
    return Builder.CreateZExt(V, TargetTy);
3362
3363
  // Pointers are passed directly, everything else is passed by address.
3364
0
  if (!V->getType()->isPointerTy()) {
3365
0
    Address Ptr = CreateDefaultAlignTempAlloca(V->getType());
3366
0
    Builder.CreateStore(V, Ptr);
3367
0
    V = Ptr.getPointer();
3368
0
  }
3369
0
  return Builder.CreatePtrToInt(V, TargetTy);
3370
0
}
3371
3372
/// Emit a representation of a SourceLocation for passing to a handler
3373
/// in a sanitizer runtime library. The format for this data is:
3374
/// \code
3375
///   struct SourceLocation {
3376
///     const char *Filename;
3377
///     int32_t Line, Column;
3378
///   };
3379
/// \endcode
3380
/// For an invalid SourceLocation, the Filename pointer is null.
3381
0
llvm::Constant *CodeGenFunction::EmitCheckSourceLocation(SourceLocation Loc) {
3382
0
  llvm::Constant *Filename;
3383
0
  int Line, Column;
3384
3385
0
  PresumedLoc PLoc = getContext().getSourceManager().getPresumedLoc(Loc);
3386
0
  if (PLoc.isValid()) {
3387
0
    StringRef FilenameString = PLoc.getFilename();
3388
3389
0
    int PathComponentsToStrip =
3390
0
        CGM.getCodeGenOpts().EmitCheckPathComponentsToStrip;
3391
0
    if (PathComponentsToStrip < 0) {
3392
0
      assert(PathComponentsToStrip != INT_MIN);
3393
0
      int PathComponentsToKeep = -PathComponentsToStrip;
3394
0
      auto I = llvm::sys::path::rbegin(FilenameString);
3395
0
      auto E = llvm::sys::path::rend(FilenameString);
3396
0
      while (I != E && --PathComponentsToKeep)
3397
0
        ++I;
3398
3399
0
      FilenameString = FilenameString.substr(I - E);
3400
0
    } else if (PathComponentsToStrip > 0) {
3401
0
      auto I = llvm::sys::path::begin(FilenameString);
3402
0
      auto E = llvm::sys::path::end(FilenameString);
3403
0
      while (I != E && PathComponentsToStrip--)
3404
0
        ++I;
3405
3406
0
      if (I != E)
3407
0
        FilenameString =
3408
0
            FilenameString.substr(I - llvm::sys::path::begin(FilenameString));
3409
0
      else
3410
0
        FilenameString = llvm::sys::path::filename(FilenameString);
3411
0
    }
3412
3413
0
    auto FilenameGV =
3414
0
        CGM.GetAddrOfConstantCString(std::string(FilenameString), ".src");
3415
0
    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(
3416
0
        cast<llvm::GlobalVariable>(
3417
0
            FilenameGV.getPointer()->stripPointerCasts()));
3418
0
    Filename = FilenameGV.getPointer();
3419
0
    Line = PLoc.getLine();
3420
0
    Column = PLoc.getColumn();
3421
0
  } else {
3422
0
    Filename = llvm::Constant::getNullValue(Int8PtrTy);
3423
0
    Line = Column = 0;
3424
0
  }
3425
3426
0
  llvm::Constant *Data[] = {Filename, Builder.getInt32(Line),
3427
0
                            Builder.getInt32(Column)};
3428
3429
0
  return llvm::ConstantStruct::getAnon(Data);
3430
0
}
3431
3432
namespace {
3433
/// Specify under what conditions this check can be recovered
3434
enum class CheckRecoverableKind {
3435
  /// Always terminate program execution if this check fails.
3436
  Unrecoverable,
3437
  /// Check supports recovering, runtime has both fatal (noreturn) and
3438
  /// non-fatal handlers for this check.
3439
  Recoverable,
3440
  /// Runtime conditionally aborts, always need to support recovery.
3441
  AlwaysRecoverable
3442
};
3443
}
3444
3445
0
static CheckRecoverableKind getRecoverableKind(SanitizerMask Kind) {
3446
0
  assert(Kind.countPopulation() == 1);
3447
0
  if (Kind == SanitizerKind::Vptr)
3448
0
    return CheckRecoverableKind::AlwaysRecoverable;
3449
0
  else if (Kind == SanitizerKind::Return || Kind == SanitizerKind::Unreachable)
3450
0
    return CheckRecoverableKind::Unrecoverable;
3451
0
  else
3452
0
    return CheckRecoverableKind::Recoverable;
3453
0
}
3454
3455
namespace {
3456
struct SanitizerHandlerInfo {
3457
  char const *const Name;
3458
  unsigned Version;
3459
};
3460
}
3461
3462
const SanitizerHandlerInfo SanitizerHandlers[] = {
3463
#define SANITIZER_CHECK(Enum, Name, Version) {#Name, Version},
3464
    LIST_SANITIZER_CHECKS
3465
#undef SANITIZER_CHECK
3466
};
3467
3468
static void emitCheckHandlerCall(CodeGenFunction &CGF,
3469
                                 llvm::FunctionType *FnType,
3470
                                 ArrayRef<llvm::Value *> FnArgs,
3471
                                 SanitizerHandler CheckHandler,
3472
                                 CheckRecoverableKind RecoverKind, bool IsFatal,
3473
0
                                 llvm::BasicBlock *ContBB) {
3474
0
  assert(IsFatal || RecoverKind != CheckRecoverableKind::Unrecoverable);
3475
0
  std::optional<ApplyDebugLocation> DL;
3476
0
  if (!CGF.Builder.getCurrentDebugLocation()) {
3477
    // Ensure that the call has at least an artificial debug location.
3478
0
    DL.emplace(CGF, SourceLocation());
3479
0
  }
3480
0
  bool NeedsAbortSuffix =
3481
0
      IsFatal && RecoverKind != CheckRecoverableKind::Unrecoverable;
3482
0
  bool MinimalRuntime = CGF.CGM.getCodeGenOpts().SanitizeMinimalRuntime;
3483
0
  const SanitizerHandlerInfo &CheckInfo = SanitizerHandlers[CheckHandler];
3484
0
  const StringRef CheckName = CheckInfo.Name;
3485
0
  std::string FnName = "__ubsan_handle_" + CheckName.str();
3486
0
  if (CheckInfo.Version && !MinimalRuntime)
3487
0
    FnName += "_v" + llvm::utostr(CheckInfo.Version);
3488
0
  if (MinimalRuntime)
3489
0
    FnName += "_minimal";
3490
0
  if (NeedsAbortSuffix)
3491
0
    FnName += "_abort";
3492
0
  bool MayReturn =
3493
0
      !IsFatal || RecoverKind == CheckRecoverableKind::AlwaysRecoverable;
3494
3495
0
  llvm::AttrBuilder B(CGF.getLLVMContext());
3496
0
  if (!MayReturn) {
3497
0
    B.addAttribute(llvm::Attribute::NoReturn)
3498
0
        .addAttribute(llvm::Attribute::NoUnwind);
3499
0
  }
3500
0
  B.addUWTableAttr(llvm::UWTableKind::Default);
3501
3502
0
  llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(
3503
0
      FnType, FnName,
3504
0
      llvm::AttributeList::get(CGF.getLLVMContext(),
3505
0
                               llvm::AttributeList::FunctionIndex, B),
3506
0
      /*Local=*/true);
3507
0
  llvm::CallInst *HandlerCall = CGF.EmitNounwindRuntimeCall(Fn, FnArgs);
3508
0
  if (!MayReturn) {
3509
0
    HandlerCall->setDoesNotReturn();
3510
0
    CGF.Builder.CreateUnreachable();
3511
0
  } else {
3512
0
    CGF.Builder.CreateBr(ContBB);
3513
0
  }
3514
0
}
3515
3516
void CodeGenFunction::EmitCheck(
3517
    ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
3518
    SanitizerHandler CheckHandler, ArrayRef<llvm::Constant *> StaticArgs,
3519
0
    ArrayRef<llvm::Value *> DynamicArgs) {
3520
0
  assert(IsSanitizerScope);
3521
0
  assert(Checked.size() > 0);
3522
0
  assert(CheckHandler >= 0 &&
3523
0
         size_t(CheckHandler) < std::size(SanitizerHandlers));
3524
0
  const StringRef CheckName = SanitizerHandlers[CheckHandler].Name;
3525
3526
0
  llvm::Value *FatalCond = nullptr;
3527
0
  llvm::Value *RecoverableCond = nullptr;
3528
0
  llvm::Value *TrapCond = nullptr;
3529
0
  for (int i = 0, n = Checked.size(); i < n; ++i) {
3530
0
    llvm::Value *Check = Checked[i].first;
3531
    // -fsanitize-trap= overrides -fsanitize-recover=.
3532
0
    llvm::Value *&Cond =
3533
0
        CGM.getCodeGenOpts().SanitizeTrap.has(Checked[i].second)
3534
0
            ? TrapCond
3535
0
            : CGM.getCodeGenOpts().SanitizeRecover.has(Checked[i].second)
3536
0
                  ? RecoverableCond
3537
0
                  : FatalCond;
3538
0
    Cond = Cond ? Builder.CreateAnd(Cond, Check) : Check;
3539
0
  }
3540
3541
0
  if (TrapCond)
3542
0
    EmitTrapCheck(TrapCond, CheckHandler);
3543
0
  if (!FatalCond && !RecoverableCond)
3544
0
    return;
3545
3546
0
  llvm::Value *JointCond;
3547
0
  if (FatalCond && RecoverableCond)
3548
0
    JointCond = Builder.CreateAnd(FatalCond, RecoverableCond);
3549
0
  else
3550
0
    JointCond = FatalCond ? FatalCond : RecoverableCond;
3551
0
  assert(JointCond);
3552
3553
0
  CheckRecoverableKind RecoverKind = getRecoverableKind(Checked[0].second);
3554
0
  assert(SanOpts.has(Checked[0].second));
3555
0
#ifndef NDEBUG
3556
0
  for (int i = 1, n = Checked.size(); i < n; ++i) {
3557
0
    assert(RecoverKind == getRecoverableKind(Checked[i].second) &&
3558
0
           "All recoverable kinds in a single check must be same!");
3559
0
    assert(SanOpts.has(Checked[i].second));
3560
0
  }
3561
0
#endif
3562
3563
0
  llvm::BasicBlock *Cont = createBasicBlock("cont");
3564
0
  llvm::BasicBlock *Handlers = createBasicBlock("handler." + CheckName);
3565
0
  llvm::Instruction *Branch = Builder.CreateCondBr(JointCond, Cont, Handlers);
3566
  // Give hint that we very much don't expect to execute the handler
3567
  // Value chosen to match UR_NONTAKEN_WEIGHT, see BranchProbabilityInfo.cpp
3568
0
  llvm::MDBuilder MDHelper(getLLVMContext());
3569
0
  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3570
0
  Branch->setMetadata(llvm::LLVMContext::MD_prof, Node);
3571
0
  EmitBlock(Handlers);
3572
3573
  // Handler functions take an i8* pointing to the (handler-specific) static
3574
  // information block, followed by a sequence of intptr_t arguments
3575
  // representing operand values.
3576
0
  SmallVector<llvm::Value *, 4> Args;
3577
0
  SmallVector<llvm::Type *, 4> ArgTypes;
3578
0
  if (!CGM.getCodeGenOpts().SanitizeMinimalRuntime) {
3579
0
    Args.reserve(DynamicArgs.size() + 1);
3580
0
    ArgTypes.reserve(DynamicArgs.size() + 1);
3581
3582
    // Emit handler arguments and create handler function type.
3583
0
    if (!StaticArgs.empty()) {
3584
0
      llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3585
0
      auto *InfoPtr = new llvm::GlobalVariable(
3586
0
          CGM.getModule(), Info->getType(), false,
3587
0
          llvm::GlobalVariable::PrivateLinkage, Info, "", nullptr,
3588
0
          llvm::GlobalVariable::NotThreadLocal,
3589
0
          CGM.getDataLayout().getDefaultGlobalsAddressSpace());
3590
0
      InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3591
0
      CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3592
0
      Args.push_back(InfoPtr);
3593
0
      ArgTypes.push_back(Args.back()->getType());
3594
0
    }
3595
3596
0
    for (size_t i = 0, n = DynamicArgs.size(); i != n; ++i) {
3597
0
      Args.push_back(EmitCheckValue(DynamicArgs[i]));
3598
0
      ArgTypes.push_back(IntPtrTy);
3599
0
    }
3600
0
  }
3601
3602
0
  llvm::FunctionType *FnType =
3603
0
    llvm::FunctionType::get(CGM.VoidTy, ArgTypes, false);
3604
3605
0
  if (!FatalCond || !RecoverableCond) {
3606
    // Simple case: we need to generate a single handler call, either
3607
    // fatal, or non-fatal.
3608
0
    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind,
3609
0
                         (FatalCond != nullptr), Cont);
3610
0
  } else {
3611
    // Emit two handler calls: first one for set of unrecoverable checks,
3612
    // another one for recoverable.
3613
0
    llvm::BasicBlock *NonFatalHandlerBB =
3614
0
        createBasicBlock("non_fatal." + CheckName);
3615
0
    llvm::BasicBlock *FatalHandlerBB = createBasicBlock("fatal." + CheckName);
3616
0
    Builder.CreateCondBr(FatalCond, NonFatalHandlerBB, FatalHandlerBB);
3617
0
    EmitBlock(FatalHandlerBB);
3618
0
    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, true,
3619
0
                         NonFatalHandlerBB);
3620
0
    EmitBlock(NonFatalHandlerBB);
3621
0
    emitCheckHandlerCall(*this, FnType, Args, CheckHandler, RecoverKind, false,
3622
0
                         Cont);
3623
0
  }
3624
3625
0
  EmitBlock(Cont);
3626
0
}
3627
3628
void CodeGenFunction::EmitCfiSlowPathCheck(
3629
    SanitizerMask Kind, llvm::Value *Cond, llvm::ConstantInt *TypeId,
3630
0
    llvm::Value *Ptr, ArrayRef<llvm::Constant *> StaticArgs) {
3631
0
  llvm::BasicBlock *Cont = createBasicBlock("cfi.cont");
3632
3633
0
  llvm::BasicBlock *CheckBB = createBasicBlock("cfi.slowpath");
3634
0
  llvm::BranchInst *BI = Builder.CreateCondBr(Cond, Cont, CheckBB);
3635
3636
0
  llvm::MDBuilder MDHelper(getLLVMContext());
3637
0
  llvm::MDNode *Node = MDHelper.createBranchWeights((1U << 20) - 1, 1);
3638
0
  BI->setMetadata(llvm::LLVMContext::MD_prof, Node);
3639
3640
0
  EmitBlock(CheckBB);
3641
3642
0
  bool WithDiag = !CGM.getCodeGenOpts().SanitizeTrap.has(Kind);
3643
3644
0
  llvm::CallInst *CheckCall;
3645
0
  llvm::FunctionCallee SlowPathFn;
3646
0
  if (WithDiag) {
3647
0
    llvm::Constant *Info = llvm::ConstantStruct::getAnon(StaticArgs);
3648
0
    auto *InfoPtr =
3649
0
        new llvm::GlobalVariable(CGM.getModule(), Info->getType(), false,
3650
0
                                 llvm::GlobalVariable::PrivateLinkage, Info);
3651
0
    InfoPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3652
0
    CGM.getSanitizerMetadata()->disableSanitizerForGlobal(InfoPtr);
3653
3654
0
    SlowPathFn = CGM.getModule().getOrInsertFunction(
3655
0
        "__cfi_slowpath_diag",
3656
0
        llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy},
3657
0
                                false));
3658
0
    CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr, InfoPtr});
3659
0
  } else {
3660
0
    SlowPathFn = CGM.getModule().getOrInsertFunction(
3661
0
        "__cfi_slowpath",
3662
0
        llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy}, false));
3663
0
    CheckCall = Builder.CreateCall(SlowPathFn, {TypeId, Ptr});
3664
0
  }
3665
3666
0
  CGM.setDSOLocal(
3667
0
      cast<llvm::GlobalValue>(SlowPathFn.getCallee()->stripPointerCasts()));
3668
0
  CheckCall->setDoesNotThrow();
3669
3670
0
  EmitBlock(Cont);
3671
0
}
3672
3673
// Emit a stub for __cfi_check function so that the linker knows about this
3674
// symbol in LTO mode.
3675
0
void CodeGenFunction::EmitCfiCheckStub() {
3676
0
  llvm::Module *M = &CGM.getModule();
3677
0
  auto &Ctx = M->getContext();
3678
0
  llvm::Function *F = llvm::Function::Create(
3679
0
      llvm::FunctionType::get(VoidTy, {Int64Ty, Int8PtrTy, Int8PtrTy}, false),
3680
0
      llvm::GlobalValue::WeakAnyLinkage, "__cfi_check", M);
3681
0
  F->setAlignment(llvm::Align(4096));
3682
0
  CGM.setDSOLocal(F);
3683
0
  llvm::BasicBlock *BB = llvm::BasicBlock::Create(Ctx, "entry", F);
3684
  // CrossDSOCFI pass is not executed if there is no executable code.
3685
0
  SmallVector<llvm::Value*> Args{F->getArg(2), F->getArg(1)};
3686
0
  llvm::CallInst::Create(M->getFunction("__cfi_check_fail"), Args, "", BB);
3687
0
  llvm::ReturnInst::Create(Ctx, nullptr, BB);
3688
0
}
3689
3690
// This function is basically a switch over the CFI failure kind, which is
3691
// extracted from CFICheckFailData (1st function argument). Each case is either
3692
// llvm.trap or a call to one of the two runtime handlers, based on
3693
// -fsanitize-trap and -fsanitize-recover settings.  Default case (invalid
3694
// failure kind) traps, but this should really never happen.  CFICheckFailData
3695
// can be nullptr if the calling module has -fsanitize-trap behavior for this
3696
// check kind; in this case __cfi_check_fail traps as well.
3697
0
void CodeGenFunction::EmitCfiCheckFail() {
3698
0
  SanitizerScope SanScope(this);
3699
0
  FunctionArgList Args;
3700
0
  ImplicitParamDecl ArgData(getContext(), getContext().VoidPtrTy,
3701
0
                            ImplicitParamKind::Other);
3702
0
  ImplicitParamDecl ArgAddr(getContext(), getContext().VoidPtrTy,
3703
0
                            ImplicitParamKind::Other);
3704
0
  Args.push_back(&ArgData);
3705
0
  Args.push_back(&ArgAddr);
3706
3707
0
  const CGFunctionInfo &FI =
3708
0
    CGM.getTypes().arrangeBuiltinFunctionDeclaration(getContext().VoidTy, Args);
3709
3710
0
  llvm::Function *F = llvm::Function::Create(
3711
0
      llvm::FunctionType::get(VoidTy, {VoidPtrTy, VoidPtrTy}, false),
3712
0
      llvm::GlobalValue::WeakODRLinkage, "__cfi_check_fail", &CGM.getModule());
3713
3714
0
  CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, F, /*IsThunk=*/false);
3715
0
  CGM.SetLLVMFunctionAttributesForDefinition(nullptr, F);
3716
0
  F->setVisibility(llvm::GlobalValue::HiddenVisibility);
3717
3718
0
  StartFunction(GlobalDecl(), CGM.getContext().VoidTy, F, FI, Args,
3719
0
                SourceLocation());
3720
3721
  // This function is not affected by NoSanitizeList. This function does
3722
  // not have a source location, but "src:*" would still apply. Revert any
3723
  // changes to SanOpts made in StartFunction.
3724
0
  SanOpts = CGM.getLangOpts().Sanitize;
3725
3726
0
  llvm::Value *Data =
3727
0
      EmitLoadOfScalar(GetAddrOfLocalVar(&ArgData), /*Volatile=*/false,
3728
0
                       CGM.getContext().VoidPtrTy, ArgData.getLocation());
3729
0
  llvm::Value *Addr =
3730
0
      EmitLoadOfScalar(GetAddrOfLocalVar(&ArgAddr), /*Volatile=*/false,
3731
0
                       CGM.getContext().VoidPtrTy, ArgAddr.getLocation());
3732
3733
  // Data == nullptr means the calling module has trap behaviour for this check.
3734
0
  llvm::Value *DataIsNotNullPtr =
3735
0
      Builder.CreateICmpNE(Data, llvm::ConstantPointerNull::get(Int8PtrTy));
3736
0
  EmitTrapCheck(DataIsNotNullPtr, SanitizerHandler::CFICheckFail);
3737
3738
0
  llvm::StructType *SourceLocationTy =
3739
0
      llvm::StructType::get(VoidPtrTy, Int32Ty, Int32Ty);
3740
0
  llvm::StructType *CfiCheckFailDataTy =
3741
0
      llvm::StructType::get(Int8Ty, SourceLocationTy, VoidPtrTy);
3742
3743
0
  llvm::Value *V = Builder.CreateConstGEP2_32(
3744
0
      CfiCheckFailDataTy,
3745
0
      Builder.CreatePointerCast(Data, CfiCheckFailDataTy->getPointerTo(0)), 0,
3746
0
      0);
3747
3748
0
  Address CheckKindAddr(V, Int8Ty, getIntAlign());
3749
0
  llvm::Value *CheckKind = Builder.CreateLoad(CheckKindAddr);
3750
3751
0
  llvm::Value *AllVtables = llvm::MetadataAsValue::get(
3752
0
      CGM.getLLVMContext(),
3753
0
      llvm::MDString::get(CGM.getLLVMContext(), "all-vtables"));
3754
0
  llvm::Value *ValidVtable = Builder.CreateZExt(
3755
0
      Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test),
3756
0
                         {Addr, AllVtables}),
3757
0
      IntPtrTy);
3758
3759
0
  const std::pair<int, SanitizerMask> CheckKinds[] = {
3760
0
      {CFITCK_VCall, SanitizerKind::CFIVCall},
3761
0
      {CFITCK_NVCall, SanitizerKind::CFINVCall},
3762
0
      {CFITCK_DerivedCast, SanitizerKind::CFIDerivedCast},
3763
0
      {CFITCK_UnrelatedCast, SanitizerKind::CFIUnrelatedCast},
3764
0
      {CFITCK_ICall, SanitizerKind::CFIICall}};
3765
3766
0
  SmallVector<std::pair<llvm::Value *, SanitizerMask>, 5> Checks;
3767
0
  for (auto CheckKindMaskPair : CheckKinds) {
3768
0
    int Kind = CheckKindMaskPair.first;
3769
0
    SanitizerMask Mask = CheckKindMaskPair.second;
3770
0
    llvm::Value *Cond =
3771
0
        Builder.CreateICmpNE(CheckKind, llvm::ConstantInt::get(Int8Ty, Kind));
3772
0
    if (CGM.getLangOpts().Sanitize.has(Mask))
3773
0
      EmitCheck(std::make_pair(Cond, Mask), SanitizerHandler::CFICheckFail, {},
3774
0
                {Data, Addr, ValidVtable});
3775
0
    else
3776
0
      EmitTrapCheck(Cond, SanitizerHandler::CFICheckFail);
3777
0
  }
3778
3779
0
  FinishFunction();
3780
  // The only reference to this function will be created during LTO link.
3781
  // Make sure it survives until then.
3782
0
  CGM.addUsedGlobal(F);
3783
0
}
3784
3785
0
void CodeGenFunction::EmitUnreachable(SourceLocation Loc) {
3786
0
  if (SanOpts.has(SanitizerKind::Unreachable)) {
3787
0
    SanitizerScope SanScope(this);
3788
0
    EmitCheck(std::make_pair(static_cast<llvm::Value *>(Builder.getFalse()),
3789
0
                             SanitizerKind::Unreachable),
3790
0
              SanitizerHandler::BuiltinUnreachable,
3791
0
              EmitCheckSourceLocation(Loc), std::nullopt);
3792
0
  }
3793
0
  Builder.CreateUnreachable();
3794
0
}
3795
3796
void CodeGenFunction::EmitTrapCheck(llvm::Value *Checked,
3797
0
                                    SanitizerHandler CheckHandlerID) {
3798
0
  llvm::BasicBlock *Cont = createBasicBlock("cont");
3799
3800
  // If we're optimizing, collapse all calls to trap down to just one per
3801
  // check-type per function to save on code size.
3802
0
  if (TrapBBs.size() <= CheckHandlerID)
3803
0
    TrapBBs.resize(CheckHandlerID + 1);
3804
3805
0
  llvm::BasicBlock *&TrapBB = TrapBBs[CheckHandlerID];
3806
3807
0
  if (!ClSanitizeDebugDeoptimization &&
3808
0
      CGM.getCodeGenOpts().OptimizationLevel && TrapBB &&
3809
0
      (!CurCodeDecl || !CurCodeDecl->hasAttr<OptimizeNoneAttr>())) {
3810
0
    auto Call = TrapBB->begin();
3811
0
    assert(isa<llvm::CallInst>(Call) && "Expected call in trap BB");
3812
3813
0
    Call->applyMergedLocation(Call->getDebugLoc(),
3814
0
                              Builder.getCurrentDebugLocation());
3815
0
    Builder.CreateCondBr(Checked, Cont, TrapBB);
3816
0
  } else {
3817
0
    TrapBB = createBasicBlock("trap");
3818
0
    Builder.CreateCondBr(Checked, Cont, TrapBB);
3819
0
    EmitBlock(TrapBB);
3820
3821
0
    llvm::CallInst *TrapCall = Builder.CreateCall(
3822
0
        CGM.getIntrinsic(llvm::Intrinsic::ubsantrap),
3823
0
        llvm::ConstantInt::get(CGM.Int8Ty, ClSanitizeDebugDeoptimization
3824
0
                                               ? TrapBB->getParent()->size()
3825
0
                                               : CheckHandlerID));
3826
3827
0
    if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3828
0
      auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3829
0
                                    CGM.getCodeGenOpts().TrapFuncName);
3830
0
      TrapCall->addFnAttr(A);
3831
0
    }
3832
0
    TrapCall->setDoesNotReturn();
3833
0
    TrapCall->setDoesNotThrow();
3834
0
    Builder.CreateUnreachable();
3835
0
  }
3836
3837
0
  EmitBlock(Cont);
3838
0
}
3839
3840
0
llvm::CallInst *CodeGenFunction::EmitTrapCall(llvm::Intrinsic::ID IntrID) {
3841
0
  llvm::CallInst *TrapCall =
3842
0
      Builder.CreateCall(CGM.getIntrinsic(IntrID));
3843
3844
0
  if (!CGM.getCodeGenOpts().TrapFuncName.empty()) {
3845
0
    auto A = llvm::Attribute::get(getLLVMContext(), "trap-func-name",
3846
0
                                  CGM.getCodeGenOpts().TrapFuncName);
3847
0
    TrapCall->addFnAttr(A);
3848
0
  }
3849
3850
0
  return TrapCall;
3851
0
}
3852
3853
Address CodeGenFunction::EmitArrayToPointerDecay(const Expr *E,
3854
                                                 LValueBaseInfo *BaseInfo,
3855
0
                                                 TBAAAccessInfo *TBAAInfo) {
3856
0
  assert(E->getType()->isArrayType() &&
3857
0
         "Array to pointer decay must have array source type!");
3858
3859
  // Expressions of array type can't be bitfields or vector elements.
3860
0
  LValue LV = EmitLValue(E);
3861
0
  Address Addr = LV.getAddress(*this);
3862
3863
  // If the array type was an incomplete type, we need to make sure
3864
  // the decay ends up being the right type.
3865
0
  llvm::Type *NewTy = ConvertType(E->getType());
3866
0
  Addr = Addr.withElementType(NewTy);
3867
3868
  // Note that VLA pointers are always decayed, so we don't need to do
3869
  // anything here.
3870
0
  if (!E->getType()->isVariableArrayType()) {
3871
0
    assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
3872
0
           "Expected pointer to array");
3873
0
    Addr = Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
3874
0
  }
3875
3876
  // The result of this decay conversion points to an array element within the
3877
  // base lvalue. However, since TBAA currently does not support representing
3878
  // accesses to elements of member arrays, we conservatively represent accesses
3879
  // to the pointee object as if it had no any base lvalue specified.
3880
  // TODO: Support TBAA for member arrays.
3881
0
  QualType EltType = E->getType()->castAsArrayTypeUnsafe()->getElementType();
3882
0
  if (BaseInfo) *BaseInfo = LV.getBaseInfo();
3883
0
  if (TBAAInfo) *TBAAInfo = CGM.getTBAAAccessInfo(EltType);
3884
3885
0
  return Addr.withElementType(ConvertTypeForMem(EltType));
3886
0
}
3887
3888
/// isSimpleArrayDecayOperand - If the specified expr is a simple decay from an
3889
/// array to pointer, return the array subexpression.
3890
0
static const Expr *isSimpleArrayDecayOperand(const Expr *E) {
3891
  // If this isn't just an array->pointer decay, bail out.
3892
0
  const auto *CE = dyn_cast<CastExpr>(E);
3893
0
  if (!CE || CE->getCastKind() != CK_ArrayToPointerDecay)
3894
0
    return nullptr;
3895
3896
  // If this is a decay from variable width array, bail out.
3897
0
  const Expr *SubExpr = CE->getSubExpr();
3898
0
  if (SubExpr->getType()->isVariableArrayType())
3899
0
    return nullptr;
3900
3901
0
  return SubExpr;
3902
0
}
3903
3904
static llvm::Value *emitArraySubscriptGEP(CodeGenFunction &CGF,
3905
                                          llvm::Type *elemType,
3906
                                          llvm::Value *ptr,
3907
                                          ArrayRef<llvm::Value*> indices,
3908
                                          bool inbounds,
3909
                                          bool signedIndices,
3910
                                          SourceLocation loc,
3911
0
                                    const llvm::Twine &name = "arrayidx") {
3912
0
  if (inbounds) {
3913
0
    return CGF.EmitCheckedInBoundsGEP(elemType, ptr, indices, signedIndices,
3914
0
                                      CodeGenFunction::NotSubtraction, loc,
3915
0
                                      name);
3916
0
  } else {
3917
0
    return CGF.Builder.CreateGEP(elemType, ptr, indices, name);
3918
0
  }
3919
0
}
3920
3921
static CharUnits getArrayElementAlign(CharUnits arrayAlign,
3922
                                      llvm::Value *idx,
3923
0
                                      CharUnits eltSize) {
3924
  // If we have a constant index, we can use the exact offset of the
3925
  // element we're accessing.
3926
0
  if (auto constantIdx = dyn_cast<llvm::ConstantInt>(idx)) {
3927
0
    CharUnits offset = constantIdx->getZExtValue() * eltSize;
3928
0
    return arrayAlign.alignmentAtOffset(offset);
3929
3930
  // Otherwise, use the worst-case alignment for any element.
3931
0
  } else {
3932
0
    return arrayAlign.alignmentOfArrayElement(eltSize);
3933
0
  }
3934
0
}
3935
3936
static QualType getFixedSizeElementType(const ASTContext &ctx,
3937
0
                                        const VariableArrayType *vla) {
3938
0
  QualType eltType;
3939
0
  do {
3940
0
    eltType = vla->getElementType();
3941
0
  } while ((vla = ctx.getAsVariableArrayType(eltType)));
3942
0
  return eltType;
3943
0
}
3944
3945
0
static bool hasBPFPreserveStaticOffset(const RecordDecl *D) {
3946
0
  return D && D->hasAttr<BPFPreserveStaticOffsetAttr>();
3947
0
}
3948
3949
0
static bool hasBPFPreserveStaticOffset(const Expr *E) {
3950
0
  if (!E)
3951
0
    return false;
3952
0
  QualType PointeeType = E->getType()->getPointeeType();
3953
0
  if (PointeeType.isNull())
3954
0
    return false;
3955
0
  if (const auto *BaseDecl = PointeeType->getAsRecordDecl())
3956
0
    return hasBPFPreserveStaticOffset(BaseDecl);
3957
0
  return false;
3958
0
}
3959
3960
// Wraps Addr with a call to llvm.preserve.static.offset intrinsic.
3961
static Address wrapWithBPFPreserveStaticOffset(CodeGenFunction &CGF,
3962
0
                                               Address &Addr) {
3963
0
  if (!CGF.getTarget().getTriple().isBPF())
3964
0
    return Addr;
3965
3966
0
  llvm::Function *Fn =
3967
0
      CGF.CGM.getIntrinsic(llvm::Intrinsic::preserve_static_offset);
3968
0
  llvm::CallInst *Call = CGF.Builder.CreateCall(Fn, {Addr.getPointer()});
3969
0
  return Address(Call, Addr.getElementType(), Addr.getAlignment());
3970
0
}
3971
3972
/// Given an array base, check whether its member access belongs to a record
3973
/// with preserve_access_index attribute or not.
3974
0
static bool IsPreserveAIArrayBase(CodeGenFunction &CGF, const Expr *ArrayBase) {
3975
0
  if (!ArrayBase || !CGF.getDebugInfo())
3976
0
    return false;
3977
3978
  // Only support base as either a MemberExpr or DeclRefExpr.
3979
  // DeclRefExpr to cover cases like:
3980
  //    struct s { int a; int b[10]; };
3981
  //    struct s *p;
3982
  //    p[1].a
3983
  // p[1] will generate a DeclRefExpr and p[1].a is a MemberExpr.
3984
  // p->b[5] is a MemberExpr example.
3985
0
  const Expr *E = ArrayBase->IgnoreImpCasts();
3986
0
  if (const auto *ME = dyn_cast<MemberExpr>(E))
3987
0
    return ME->getMemberDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
3988
3989
0
  if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
3990
0
    const auto *VarDef = dyn_cast<VarDecl>(DRE->getDecl());
3991
0
    if (!VarDef)
3992
0
      return false;
3993
3994
0
    const auto *PtrT = VarDef->getType()->getAs<PointerType>();
3995
0
    if (!PtrT)
3996
0
      return false;
3997
3998
0
    const auto *PointeeT = PtrT->getPointeeType()
3999
0
                             ->getUnqualifiedDesugaredType();
4000
0
    if (const auto *RecT = dyn_cast<RecordType>(PointeeT))
4001
0
      return RecT->getDecl()->hasAttr<BPFPreserveAccessIndexAttr>();
4002
0
    return false;
4003
0
  }
4004
4005
0
  return false;
4006
0
}
4007
4008
static Address emitArraySubscriptGEP(CodeGenFunction &CGF, Address addr,
4009
                                     ArrayRef<llvm::Value *> indices,
4010
                                     QualType eltType, bool inbounds,
4011
                                     bool signedIndices, SourceLocation loc,
4012
                                     QualType *arrayType = nullptr,
4013
                                     const Expr *Base = nullptr,
4014
0
                                     const llvm::Twine &name = "arrayidx") {
4015
  // All the indices except that last must be zero.
4016
0
#ifndef NDEBUG
4017
0
  for (auto *idx : indices.drop_back())
4018
0
    assert(isa<llvm::ConstantInt>(idx) &&
4019
0
           cast<llvm::ConstantInt>(idx)->isZero());
4020
0
#endif
4021
4022
  // Determine the element size of the statically-sized base.  This is
4023
  // the thing that the indices are expressed in terms of.
4024
0
  if (auto vla = CGF.getContext().getAsVariableArrayType(eltType)) {
4025
0
    eltType = getFixedSizeElementType(CGF.getContext(), vla);
4026
0
  }
4027
4028
  // We can use that to compute the best alignment of the element.
4029
0
  CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
4030
0
  CharUnits eltAlign =
4031
0
    getArrayElementAlign(addr.getAlignment(), indices.back(), eltSize);
4032
4033
0
  if (hasBPFPreserveStaticOffset(Base))
4034
0
    addr = wrapWithBPFPreserveStaticOffset(CGF, addr);
4035
4036
0
  llvm::Value *eltPtr;
4037
0
  auto LastIndex = dyn_cast<llvm::ConstantInt>(indices.back());
4038
0
  if (!LastIndex ||
4039
0
      (!CGF.IsInPreservedAIRegion && !IsPreserveAIArrayBase(CGF, Base))) {
4040
0
    eltPtr = emitArraySubscriptGEP(
4041
0
        CGF, addr.getElementType(), addr.getPointer(), indices, inbounds,
4042
0
        signedIndices, loc, name);
4043
0
  } else {
4044
    // Remember the original array subscript for bpf target
4045
0
    unsigned idx = LastIndex->getZExtValue();
4046
0
    llvm::DIType *DbgInfo = nullptr;
4047
0
    if (arrayType)
4048
0
      DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(*arrayType, loc);
4049
0
    eltPtr = CGF.Builder.CreatePreserveArrayAccessIndex(addr.getElementType(),
4050
0
                                                        addr.getPointer(),
4051
0
                                                        indices.size() - 1,
4052
0
                                                        idx, DbgInfo);
4053
0
  }
4054
4055
0
  return Address(eltPtr, CGF.ConvertTypeForMem(eltType), eltAlign);
4056
0
}
4057
4058
/// The offset of a field from the beginning of the record.
4059
static bool getFieldOffsetInBits(CodeGenFunction &CGF, const RecordDecl *RD,
4060
0
                                 const FieldDecl *FD, int64_t &Offset) {
4061
0
  ASTContext &Ctx = CGF.getContext();
4062
0
  const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(RD);
4063
0
  unsigned FieldNo = 0;
4064
4065
0
  for (const Decl *D : RD->decls()) {
4066
0
    if (const auto *Record = dyn_cast<RecordDecl>(D))
4067
0
      if (getFieldOffsetInBits(CGF, Record, FD, Offset)) {
4068
0
        Offset += Layout.getFieldOffset(FieldNo);
4069
0
        return true;
4070
0
      }
4071
4072
0
    if (const auto *Field = dyn_cast<FieldDecl>(D))
4073
0
      if (FD == Field) {
4074
0
        Offset += Layout.getFieldOffset(FieldNo);
4075
0
        return true;
4076
0
      }
4077
4078
0
    if (isa<FieldDecl>(D))
4079
0
      ++FieldNo;
4080
0
  }
4081
4082
0
  return false;
4083
0
}
4084
4085
/// Returns the relative offset difference between \p FD1 and \p FD2.
4086
/// \code
4087
///   offsetof(struct foo, FD1) - offsetof(struct foo, FD2)
4088
/// \endcode
4089
/// Both fields must be within the same struct.
4090
static std::optional<int64_t> getOffsetDifferenceInBits(CodeGenFunction &CGF,
4091
                                                        const FieldDecl *FD1,
4092
0
                                                        const FieldDecl *FD2) {
4093
0
  const RecordDecl *FD1OuterRec =
4094
0
      FD1->getParent()->getOuterLexicalRecordContext();
4095
0
  const RecordDecl *FD2OuterRec =
4096
0
      FD2->getParent()->getOuterLexicalRecordContext();
4097
4098
0
  if (FD1OuterRec != FD2OuterRec)
4099
    // Fields must be within the same RecordDecl.
4100
0
    return std::optional<int64_t>();
4101
4102
0
  int64_t FD1Offset = 0;
4103
0
  if (!getFieldOffsetInBits(CGF, FD1OuterRec, FD1, FD1Offset))
4104
0
    return std::optional<int64_t>();
4105
4106
0
  int64_t FD2Offset = 0;
4107
0
  if (!getFieldOffsetInBits(CGF, FD2OuterRec, FD2, FD2Offset))
4108
0
    return std::optional<int64_t>();
4109
4110
0
  return std::make_optional<int64_t>(FD1Offset - FD2Offset);
4111
0
}
4112
4113
LValue CodeGenFunction::EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
4114
0
                                               bool Accessed) {
4115
  // The index must always be an integer, which is not an aggregate.  Emit it
4116
  // in lexical order (this complexity is, sadly, required by C++17).
4117
0
  llvm::Value *IdxPre =
4118
0
      (E->getLHS() == E->getIdx()) ? EmitScalarExpr(E->getIdx()) : nullptr;
4119
0
  bool SignedIndices = false;
4120
0
  auto EmitIdxAfterBase = [&, IdxPre](bool Promote) -> llvm::Value * {
4121
0
    auto *Idx = IdxPre;
4122
0
    if (E->getLHS() != E->getIdx()) {
4123
0
      assert(E->getRHS() == E->getIdx() && "index was neither LHS nor RHS");
4124
0
      Idx = EmitScalarExpr(E->getIdx());
4125
0
    }
4126
4127
0
    QualType IdxTy = E->getIdx()->getType();
4128
0
    bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
4129
0
    SignedIndices |= IdxSigned;
4130
4131
0
    if (SanOpts.has(SanitizerKind::ArrayBounds))
4132
0
      EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, Accessed);
4133
4134
    // Extend or truncate the index type to 32 or 64-bits.
4135
0
    if (Promote && Idx->getType() != IntPtrTy)
4136
0
      Idx = Builder.CreateIntCast(Idx, IntPtrTy, IdxSigned, "idxprom");
4137
4138
0
    return Idx;
4139
0
  };
4140
0
  IdxPre = nullptr;
4141
4142
  // If the base is a vector type, then we are forming a vector element lvalue
4143
  // with this subscript.
4144
0
  if (E->getBase()->getType()->isVectorType() &&
4145
0
      !isa<ExtVectorElementExpr>(E->getBase())) {
4146
    // Emit the vector as an lvalue to get its address.
4147
0
    LValue LHS = EmitLValue(E->getBase());
4148
0
    auto *Idx = EmitIdxAfterBase(/*Promote*/false);
4149
0
    assert(LHS.isSimple() && "Can only subscript lvalue vectors here!");
4150
0
    return LValue::MakeVectorElt(LHS.getAddress(*this), Idx,
4151
0
                                 E->getBase()->getType(), LHS.getBaseInfo(),
4152
0
                                 TBAAAccessInfo());
4153
0
  }
4154
4155
  // All the other cases basically behave like simple offsetting.
4156
4157
  // Handle the extvector case we ignored above.
4158
0
  if (isa<ExtVectorElementExpr>(E->getBase())) {
4159
0
    LValue LV = EmitLValue(E->getBase());
4160
0
    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4161
0
    Address Addr = EmitExtVectorElementLValue(LV);
4162
4163
0
    QualType EltType = LV.getType()->castAs<VectorType>()->getElementType();
4164
0
    Addr = emitArraySubscriptGEP(*this, Addr, Idx, EltType, /*inbounds*/ true,
4165
0
                                 SignedIndices, E->getExprLoc());
4166
0
    return MakeAddrLValue(Addr, EltType, LV.getBaseInfo(),
4167
0
                          CGM.getTBAAInfoForSubobject(LV, EltType));
4168
0
  }
4169
4170
0
  LValueBaseInfo EltBaseInfo;
4171
0
  TBAAAccessInfo EltTBAAInfo;
4172
0
  Address Addr = Address::invalid();
4173
0
  if (const VariableArrayType *vla =
4174
0
           getContext().getAsVariableArrayType(E->getType())) {
4175
    // The base must be a pointer, which is not an aggregate.  Emit
4176
    // it.  It needs to be emitted first in case it's what captures
4177
    // the VLA bounds.
4178
0
    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
4179
0
    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4180
4181
    // The element count here is the total number of non-VLA elements.
4182
0
    llvm::Value *numElements = getVLASize(vla).NumElts;
4183
4184
    // Effectively, the multiply by the VLA size is part of the GEP.
4185
    // GEP indexes are signed, and scaling an index isn't permitted to
4186
    // signed-overflow, so we use the same semantics for our explicit
4187
    // multiply.  We suppress this if overflow is not undefined behavior.
4188
0
    if (getLangOpts().isSignedOverflowDefined()) {
4189
0
      Idx = Builder.CreateMul(Idx, numElements);
4190
0
    } else {
4191
0
      Idx = Builder.CreateNSWMul(Idx, numElements);
4192
0
    }
4193
4194
0
    Addr = emitArraySubscriptGEP(*this, Addr, Idx, vla->getElementType(),
4195
0
                                 !getLangOpts().isSignedOverflowDefined(),
4196
0
                                 SignedIndices, E->getExprLoc());
4197
4198
0
  } else if (const ObjCObjectType *OIT = E->getType()->getAs<ObjCObjectType>()){
4199
    // Indexing over an interface, as in "NSString *P; P[4];"
4200
4201
    // Emit the base pointer.
4202
0
    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
4203
0
    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4204
4205
0
    CharUnits InterfaceSize = getContext().getTypeSizeInChars(OIT);
4206
0
    llvm::Value *InterfaceSizeVal =
4207
0
        llvm::ConstantInt::get(Idx->getType(), InterfaceSize.getQuantity());
4208
4209
0
    llvm::Value *ScaledIdx = Builder.CreateMul(Idx, InterfaceSizeVal);
4210
4211
    // We don't necessarily build correct LLVM struct types for ObjC
4212
    // interfaces, so we can't rely on GEP to do this scaling
4213
    // correctly, so we need to cast to i8*.  FIXME: is this actually
4214
    // true?  A lot of other things in the fragile ABI would break...
4215
0
    llvm::Type *OrigBaseElemTy = Addr.getElementType();
4216
4217
    // Do the GEP.
4218
0
    CharUnits EltAlign =
4219
0
      getArrayElementAlign(Addr.getAlignment(), Idx, InterfaceSize);
4220
0
    llvm::Value *EltPtr =
4221
0
        emitArraySubscriptGEP(*this, Int8Ty, Addr.getPointer(), ScaledIdx,
4222
0
                              false, SignedIndices, E->getExprLoc());
4223
0
    Addr = Address(EltPtr, OrigBaseElemTy, EltAlign);
4224
0
  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4225
    // If this is A[i] where A is an array, the frontend will have decayed the
4226
    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4227
    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4228
    // "gep x, i" here.  Emit one "gep A, 0, i".
4229
0
    assert(Array->getType()->isArrayType() &&
4230
0
           "Array to pointer decay must have array source type!");
4231
0
    LValue ArrayLV;
4232
    // For simple multidimensional array indexing, set the 'accessed' flag for
4233
    // better bounds-checking of the base expression.
4234
0
    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4235
0
      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4236
0
    else
4237
0
      ArrayLV = EmitLValue(Array);
4238
0
    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4239
4240
0
    if (SanOpts.has(SanitizerKind::ArrayBounds)) {
4241
      // If the array being accessed has a "counted_by" attribute, generate
4242
      // bounds checking code. The "count" field is at the top level of the
4243
      // struct or in an anonymous struct, that's also at the top level. Future
4244
      // expansions may allow the "count" to reside at any place in the struct,
4245
      // but the value of "counted_by" will be a "simple" path to the count,
4246
      // i.e. "a.b.count", so we shouldn't need the full force of EmitLValue or
4247
      // similar to emit the correct GEP.
4248
0
      const LangOptions::StrictFlexArraysLevelKind StrictFlexArraysLevel =
4249
0
          getLangOpts().getStrictFlexArraysLevel();
4250
4251
0
      if (const auto *ME = dyn_cast<MemberExpr>(Array);
4252
0
          ME &&
4253
0
          ME->isFlexibleArrayMemberLike(getContext(), StrictFlexArraysLevel) &&
4254
0
          ME->getMemberDecl()->hasAttr<CountedByAttr>()) {
4255
0
        const FieldDecl *FAMDecl = dyn_cast<FieldDecl>(ME->getMemberDecl());
4256
0
        if (const FieldDecl *CountFD = FindCountedByField(FAMDecl)) {
4257
0
          if (std::optional<int64_t> Diff =
4258
0
                  getOffsetDifferenceInBits(*this, CountFD, FAMDecl)) {
4259
0
            CharUnits OffsetDiff = CGM.getContext().toCharUnitsFromBits(*Diff);
4260
4261
            // Create a GEP with a byte offset between the FAM and count and
4262
            // use that to load the count value.
4263
0
            Addr = Builder.CreatePointerBitCastOrAddrSpaceCast(
4264
0
                ArrayLV.getAddress(*this), Int8PtrTy, Int8Ty);
4265
4266
0
            llvm::Type *CountTy = ConvertType(CountFD->getType());
4267
0
            llvm::Value *Res = Builder.CreateInBoundsGEP(
4268
0
                Int8Ty, Addr.getPointer(),
4269
0
                Builder.getInt32(OffsetDiff.getQuantity()), ".counted_by.gep");
4270
0
            Res = Builder.CreateAlignedLoad(CountTy, Res, getIntAlign(),
4271
0
                                            ".counted_by.load");
4272
4273
            // Now emit the bounds checking.
4274
0
            EmitBoundsCheckImpl(E, Res, Idx, E->getIdx()->getType(),
4275
0
                                Array->getType(), Accessed);
4276
0
          }
4277
0
        }
4278
0
      }
4279
0
    }
4280
4281
    // Propagate the alignment from the array itself to the result.
4282
0
    QualType arrayType = Array->getType();
4283
0
    Addr = emitArraySubscriptGEP(
4284
0
        *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4285
0
        E->getType(), !getLangOpts().isSignedOverflowDefined(), SignedIndices,
4286
0
        E->getExprLoc(), &arrayType, E->getBase());
4287
0
    EltBaseInfo = ArrayLV.getBaseInfo();
4288
0
    EltTBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, E->getType());
4289
0
  } else {
4290
    // The base must be a pointer; emit it with an estimate of its alignment.
4291
0
    Addr = EmitPointerWithAlignment(E->getBase(), &EltBaseInfo, &EltTBAAInfo);
4292
0
    auto *Idx = EmitIdxAfterBase(/*Promote*/true);
4293
0
    QualType ptrType = E->getBase()->getType();
4294
0
    Addr = emitArraySubscriptGEP(*this, Addr, Idx, E->getType(),
4295
0
                                 !getLangOpts().isSignedOverflowDefined(),
4296
0
                                 SignedIndices, E->getExprLoc(), &ptrType,
4297
0
                                 E->getBase());
4298
0
  }
4299
4300
0
  LValue LV = MakeAddrLValue(Addr, E->getType(), EltBaseInfo, EltTBAAInfo);
4301
4302
0
  if (getLangOpts().ObjC &&
4303
0
      getLangOpts().getGC() != LangOptions::NonGC) {
4304
0
    LV.setNonGC(!E->isOBJCGCCandidate(getContext()));
4305
0
    setObjCGCLValueClass(getContext(), E, LV);
4306
0
  }
4307
0
  return LV;
4308
0
}
4309
4310
0
LValue CodeGenFunction::EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E) {
4311
0
  assert(
4312
0
      !E->isIncomplete() &&
4313
0
      "incomplete matrix subscript expressions should be rejected during Sema");
4314
0
  LValue Base = EmitLValue(E->getBase());
4315
0
  llvm::Value *RowIdx = EmitScalarExpr(E->getRowIdx());
4316
0
  llvm::Value *ColIdx = EmitScalarExpr(E->getColumnIdx());
4317
0
  llvm::Value *NumRows = Builder.getIntN(
4318
0
      RowIdx->getType()->getScalarSizeInBits(),
4319
0
      E->getBase()->getType()->castAs<ConstantMatrixType>()->getNumRows());
4320
0
  llvm::Value *FinalIdx =
4321
0
      Builder.CreateAdd(Builder.CreateMul(ColIdx, NumRows), RowIdx);
4322
0
  return LValue::MakeMatrixElt(
4323
0
      MaybeConvertMatrixAddress(Base.getAddress(*this), *this), FinalIdx,
4324
0
      E->getBase()->getType(), Base.getBaseInfo(), TBAAAccessInfo());
4325
0
}
4326
4327
static Address emitOMPArraySectionBase(CodeGenFunction &CGF, const Expr *Base,
4328
                                       LValueBaseInfo &BaseInfo,
4329
                                       TBAAAccessInfo &TBAAInfo,
4330
                                       QualType BaseTy, QualType ElTy,
4331
0
                                       bool IsLowerBound) {
4332
0
  LValue BaseLVal;
4333
0
  if (auto *ASE = dyn_cast<OMPArraySectionExpr>(Base->IgnoreParenImpCasts())) {
4334
0
    BaseLVal = CGF.EmitOMPArraySectionExpr(ASE, IsLowerBound);
4335
0
    if (BaseTy->isArrayType()) {
4336
0
      Address Addr = BaseLVal.getAddress(CGF);
4337
0
      BaseInfo = BaseLVal.getBaseInfo();
4338
4339
      // If the array type was an incomplete type, we need to make sure
4340
      // the decay ends up being the right type.
4341
0
      llvm::Type *NewTy = CGF.ConvertType(BaseTy);
4342
0
      Addr = Addr.withElementType(NewTy);
4343
4344
      // Note that VLA pointers are always decayed, so we don't need to do
4345
      // anything here.
4346
0
      if (!BaseTy->isVariableArrayType()) {
4347
0
        assert(isa<llvm::ArrayType>(Addr.getElementType()) &&
4348
0
               "Expected pointer to array");
4349
0
        Addr = CGF.Builder.CreateConstArrayGEP(Addr, 0, "arraydecay");
4350
0
      }
4351
4352
0
      return Addr.withElementType(CGF.ConvertTypeForMem(ElTy));
4353
0
    }
4354
0
    LValueBaseInfo TypeBaseInfo;
4355
0
    TBAAAccessInfo TypeTBAAInfo;
4356
0
    CharUnits Align =
4357
0
        CGF.CGM.getNaturalTypeAlignment(ElTy, &TypeBaseInfo, &TypeTBAAInfo);
4358
0
    BaseInfo.mergeForCast(TypeBaseInfo);
4359
0
    TBAAInfo = CGF.CGM.mergeTBAAInfoForCast(TBAAInfo, TypeTBAAInfo);
4360
0
    return Address(CGF.Builder.CreateLoad(BaseLVal.getAddress(CGF)),
4361
0
                   CGF.ConvertTypeForMem(ElTy), Align);
4362
0
  }
4363
0
  return CGF.EmitPointerWithAlignment(Base, &BaseInfo, &TBAAInfo);
4364
0
}
4365
4366
LValue CodeGenFunction::EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
4367
0
                                                bool IsLowerBound) {
4368
0
  QualType BaseTy = OMPArraySectionExpr::getBaseOriginalType(E->getBase());
4369
0
  QualType ResultExprTy;
4370
0
  if (auto *AT = getContext().getAsArrayType(BaseTy))
4371
0
    ResultExprTy = AT->getElementType();
4372
0
  else
4373
0
    ResultExprTy = BaseTy->getPointeeType();
4374
0
  llvm::Value *Idx = nullptr;
4375
0
  if (IsLowerBound || E->getColonLocFirst().isInvalid()) {
4376
    // Requesting lower bound or upper bound, but without provided length and
4377
    // without ':' symbol for the default length -> length = 1.
4378
    // Idx = LowerBound ?: 0;
4379
0
    if (auto *LowerBound = E->getLowerBound()) {
4380
0
      Idx = Builder.CreateIntCast(
4381
0
          EmitScalarExpr(LowerBound), IntPtrTy,
4382
0
          LowerBound->getType()->hasSignedIntegerRepresentation());
4383
0
    } else
4384
0
      Idx = llvm::ConstantInt::getNullValue(IntPtrTy);
4385
0
  } else {
4386
    // Try to emit length or lower bound as constant. If this is possible, 1
4387
    // is subtracted from constant length or lower bound. Otherwise, emit LLVM
4388
    // IR (LB + Len) - 1.
4389
0
    auto &C = CGM.getContext();
4390
0
    auto *Length = E->getLength();
4391
0
    llvm::APSInt ConstLength;
4392
0
    if (Length) {
4393
      // Idx = LowerBound + Length - 1;
4394
0
      if (std::optional<llvm::APSInt> CL = Length->getIntegerConstantExpr(C)) {
4395
0
        ConstLength = CL->zextOrTrunc(PointerWidthInBits);
4396
0
        Length = nullptr;
4397
0
      }
4398
0
      auto *LowerBound = E->getLowerBound();
4399
0
      llvm::APSInt ConstLowerBound(PointerWidthInBits, /*isUnsigned=*/false);
4400
0
      if (LowerBound) {
4401
0
        if (std::optional<llvm::APSInt> LB =
4402
0
                LowerBound->getIntegerConstantExpr(C)) {
4403
0
          ConstLowerBound = LB->zextOrTrunc(PointerWidthInBits);
4404
0
          LowerBound = nullptr;
4405
0
        }
4406
0
      }
4407
0
      if (!Length)
4408
0
        --ConstLength;
4409
0
      else if (!LowerBound)
4410
0
        --ConstLowerBound;
4411
4412
0
      if (Length || LowerBound) {
4413
0
        auto *LowerBoundVal =
4414
0
            LowerBound
4415
0
                ? Builder.CreateIntCast(
4416
0
                      EmitScalarExpr(LowerBound), IntPtrTy,
4417
0
                      LowerBound->getType()->hasSignedIntegerRepresentation())
4418
0
                : llvm::ConstantInt::get(IntPtrTy, ConstLowerBound);
4419
0
        auto *LengthVal =
4420
0
            Length
4421
0
                ? Builder.CreateIntCast(
4422
0
                      EmitScalarExpr(Length), IntPtrTy,
4423
0
                      Length->getType()->hasSignedIntegerRepresentation())
4424
0
                : llvm::ConstantInt::get(IntPtrTy, ConstLength);
4425
0
        Idx = Builder.CreateAdd(LowerBoundVal, LengthVal, "lb_add_len",
4426
0
                                /*HasNUW=*/false,
4427
0
                                !getLangOpts().isSignedOverflowDefined());
4428
0
        if (Length && LowerBound) {
4429
0
          Idx = Builder.CreateSub(
4430
0
              Idx, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "idx_sub_1",
4431
0
              /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4432
0
        }
4433
0
      } else
4434
0
        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength + ConstLowerBound);
4435
0
    } else {
4436
      // Idx = ArraySize - 1;
4437
0
      QualType ArrayTy = BaseTy->isPointerType()
4438
0
                             ? E->getBase()->IgnoreParenImpCasts()->getType()
4439
0
                             : BaseTy;
4440
0
      if (auto *VAT = C.getAsVariableArrayType(ArrayTy)) {
4441
0
        Length = VAT->getSizeExpr();
4442
0
        if (std::optional<llvm::APSInt> L = Length->getIntegerConstantExpr(C)) {
4443
0
          ConstLength = *L;
4444
0
          Length = nullptr;
4445
0
        }
4446
0
      } else {
4447
0
        auto *CAT = C.getAsConstantArrayType(ArrayTy);
4448
0
        assert(CAT && "unexpected type for array initializer");
4449
0
        ConstLength = CAT->getSize();
4450
0
      }
4451
0
      if (Length) {
4452
0
        auto *LengthVal = Builder.CreateIntCast(
4453
0
            EmitScalarExpr(Length), IntPtrTy,
4454
0
            Length->getType()->hasSignedIntegerRepresentation());
4455
0
        Idx = Builder.CreateSub(
4456
0
            LengthVal, llvm::ConstantInt::get(IntPtrTy, /*V=*/1), "len_sub_1",
4457
0
            /*HasNUW=*/false, !getLangOpts().isSignedOverflowDefined());
4458
0
      } else {
4459
0
        ConstLength = ConstLength.zextOrTrunc(PointerWidthInBits);
4460
0
        --ConstLength;
4461
0
        Idx = llvm::ConstantInt::get(IntPtrTy, ConstLength);
4462
0
      }
4463
0
    }
4464
0
  }
4465
0
  assert(Idx);
4466
4467
0
  Address EltPtr = Address::invalid();
4468
0
  LValueBaseInfo BaseInfo;
4469
0
  TBAAAccessInfo TBAAInfo;
4470
0
  if (auto *VLA = getContext().getAsVariableArrayType(ResultExprTy)) {
4471
    // The base must be a pointer, which is not an aggregate.  Emit
4472
    // it.  It needs to be emitted first in case it's what captures
4473
    // the VLA bounds.
4474
0
    Address Base =
4475
0
        emitOMPArraySectionBase(*this, E->getBase(), BaseInfo, TBAAInfo,
4476
0
                                BaseTy, VLA->getElementType(), IsLowerBound);
4477
    // The element count here is the total number of non-VLA elements.
4478
0
    llvm::Value *NumElements = getVLASize(VLA).NumElts;
4479
4480
    // Effectively, the multiply by the VLA size is part of the GEP.
4481
    // GEP indexes are signed, and scaling an index isn't permitted to
4482
    // signed-overflow, so we use the same semantics for our explicit
4483
    // multiply.  We suppress this if overflow is not undefined behavior.
4484
0
    if (getLangOpts().isSignedOverflowDefined())
4485
0
      Idx = Builder.CreateMul(Idx, NumElements);
4486
0
    else
4487
0
      Idx = Builder.CreateNSWMul(Idx, NumElements);
4488
0
    EltPtr = emitArraySubscriptGEP(*this, Base, Idx, VLA->getElementType(),
4489
0
                                   !getLangOpts().isSignedOverflowDefined(),
4490
0
                                   /*signedIndices=*/false, E->getExprLoc());
4491
0
  } else if (const Expr *Array = isSimpleArrayDecayOperand(E->getBase())) {
4492
    // If this is A[i] where A is an array, the frontend will have decayed the
4493
    // base to be a ArrayToPointerDecay implicit cast.  While correct, it is
4494
    // inefficient at -O0 to emit a "gep A, 0, 0" when codegen'ing it, then a
4495
    // "gep x, i" here.  Emit one "gep A, 0, i".
4496
0
    assert(Array->getType()->isArrayType() &&
4497
0
           "Array to pointer decay must have array source type!");
4498
0
    LValue ArrayLV;
4499
    // For simple multidimensional array indexing, set the 'accessed' flag for
4500
    // better bounds-checking of the base expression.
4501
0
    if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(Array))
4502
0
      ArrayLV = EmitArraySubscriptExpr(ASE, /*Accessed*/ true);
4503
0
    else
4504
0
      ArrayLV = EmitLValue(Array);
4505
4506
    // Propagate the alignment from the array itself to the result.
4507
0
    EltPtr = emitArraySubscriptGEP(
4508
0
        *this, ArrayLV.getAddress(*this), {CGM.getSize(CharUnits::Zero()), Idx},
4509
0
        ResultExprTy, !getLangOpts().isSignedOverflowDefined(),
4510
0
        /*signedIndices=*/false, E->getExprLoc());
4511
0
    BaseInfo = ArrayLV.getBaseInfo();
4512
0
    TBAAInfo = CGM.getTBAAInfoForSubobject(ArrayLV, ResultExprTy);
4513
0
  } else {
4514
0
    Address Base = emitOMPArraySectionBase(*this, E->getBase(), BaseInfo,
4515
0
                                           TBAAInfo, BaseTy, ResultExprTy,
4516
0
                                           IsLowerBound);
4517
0
    EltPtr = emitArraySubscriptGEP(*this, Base, Idx, ResultExprTy,
4518
0
                                   !getLangOpts().isSignedOverflowDefined(),
4519
0
                                   /*signedIndices=*/false, E->getExprLoc());
4520
0
  }
4521
4522
0
  return MakeAddrLValue(EltPtr, ResultExprTy, BaseInfo, TBAAInfo);
4523
0
}
4524
4525
LValue CodeGenFunction::
4526
0
EmitExtVectorElementExpr(const ExtVectorElementExpr *E) {
4527
  // Emit the base vector as an l-value.
4528
0
  LValue Base;
4529
4530
  // ExtVectorElementExpr's base can either be a vector or pointer to vector.
4531
0
  if (E->isArrow()) {
4532
    // If it is a pointer to a vector, emit the address and form an lvalue with
4533
    // it.
4534
0
    LValueBaseInfo BaseInfo;
4535
0
    TBAAAccessInfo TBAAInfo;
4536
0
    Address Ptr = EmitPointerWithAlignment(E->getBase(), &BaseInfo, &TBAAInfo);
4537
0
    const auto *PT = E->getBase()->getType()->castAs<PointerType>();
4538
0
    Base = MakeAddrLValue(Ptr, PT->getPointeeType(), BaseInfo, TBAAInfo);
4539
0
    Base.getQuals().removeObjCGCAttr();
4540
0
  } else if (E->getBase()->isGLValue()) {
4541
    // Otherwise, if the base is an lvalue ( as in the case of foo.x.x),
4542
    // emit the base as an lvalue.
4543
0
    assert(E->getBase()->getType()->isVectorType());
4544
0
    Base = EmitLValue(E->getBase());
4545
0
  } else {
4546
    // Otherwise, the base is a normal rvalue (as in (V+V).x), emit it as such.
4547
0
    assert(E->getBase()->getType()->isVectorType() &&
4548
0
           "Result must be a vector");
4549
0
    llvm::Value *Vec = EmitScalarExpr(E->getBase());
4550
4551
    // Store the vector to memory (because LValue wants an address).
4552
0
    Address VecMem = CreateMemTemp(E->getBase()->getType());
4553
0
    Builder.CreateStore(Vec, VecMem);
4554
0
    Base = MakeAddrLValue(VecMem, E->getBase()->getType(),
4555
0
                          AlignmentSource::Decl);
4556
0
  }
4557
4558
0
  QualType type =
4559
0
    E->getType().withCVRQualifiers(Base.getQuals().getCVRQualifiers());
4560
4561
  // Encode the element access list into a vector of unsigned indices.
4562
0
  SmallVector<uint32_t, 4> Indices;
4563
0
  E->getEncodedElementAccess(Indices);
4564
4565
0
  if (Base.isSimple()) {
4566
0
    llvm::Constant *CV =
4567
0
        llvm::ConstantDataVector::get(getLLVMContext(), Indices);
4568
0
    return LValue::MakeExtVectorElt(Base.getAddress(*this), CV, type,
4569
0
                                    Base.getBaseInfo(), TBAAAccessInfo());
4570
0
  }
4571
0
  assert(Base.isExtVectorElt() && "Can only subscript lvalue vec elts here!");
4572
4573
0
  llvm::Constant *BaseElts = Base.getExtVectorElts();
4574
0
  SmallVector<llvm::Constant *, 4> CElts;
4575
4576
0
  for (unsigned i = 0, e = Indices.size(); i != e; ++i)
4577
0
    CElts.push_back(BaseElts->getAggregateElement(Indices[i]));
4578
0
  llvm::Constant *CV = llvm::ConstantVector::get(CElts);
4579
0
  return LValue::MakeExtVectorElt(Base.getExtVectorAddress(), CV, type,
4580
0
                                  Base.getBaseInfo(), TBAAAccessInfo());
4581
0
}
4582
4583
0
LValue CodeGenFunction::EmitMemberExpr(const MemberExpr *E) {
4584
0
  if (DeclRefExpr *DRE = tryToConvertMemberExprToDeclRefExpr(*this, E)) {
4585
0
    EmitIgnoredExpr(E->getBase());
4586
0
    return EmitDeclRefLValue(DRE);
4587
0
  }
4588
4589
0
  Expr *BaseExpr = E->getBase();
4590
  // If this is s.x, emit s as an lvalue.  If it is s->x, emit s as a scalar.
4591
0
  LValue BaseLV;
4592
0
  if (E->isArrow()) {
4593
0
    LValueBaseInfo BaseInfo;
4594
0
    TBAAAccessInfo TBAAInfo;
4595
0
    Address Addr = EmitPointerWithAlignment(BaseExpr, &BaseInfo, &TBAAInfo);
4596
0
    QualType PtrTy = BaseExpr->getType()->getPointeeType();
4597
0
    SanitizerSet SkippedChecks;
4598
0
    bool IsBaseCXXThis = IsWrappedCXXThis(BaseExpr);
4599
0
    if (IsBaseCXXThis)
4600
0
      SkippedChecks.set(SanitizerKind::Alignment, true);
4601
0
    if (IsBaseCXXThis || isa<DeclRefExpr>(BaseExpr))
4602
0
      SkippedChecks.set(SanitizerKind::Null, true);
4603
0
    EmitTypeCheck(TCK_MemberAccess, E->getExprLoc(), Addr.getPointer(), PtrTy,
4604
0
                  /*Alignment=*/CharUnits::Zero(), SkippedChecks);
4605
0
    BaseLV = MakeAddrLValue(Addr, PtrTy, BaseInfo, TBAAInfo);
4606
0
  } else
4607
0
    BaseLV = EmitCheckedLValue(BaseExpr, TCK_MemberAccess);
4608
4609
0
  NamedDecl *ND = E->getMemberDecl();
4610
0
  if (auto *Field = dyn_cast<FieldDecl>(ND)) {
4611
0
    LValue LV = EmitLValueForField(BaseLV, Field);
4612
0
    setObjCGCLValueClass(getContext(), E, LV);
4613
0
    if (getLangOpts().OpenMP) {
4614
      // If the member was explicitly marked as nontemporal, mark it as
4615
      // nontemporal. If the base lvalue is marked as nontemporal, mark access
4616
      // to children as nontemporal too.
4617
0
      if ((IsWrappedCXXThis(BaseExpr) &&
4618
0
           CGM.getOpenMPRuntime().isNontemporalDecl(Field)) ||
4619
0
          BaseLV.isNontemporal())
4620
0
        LV.setNontemporal(/*Value=*/true);
4621
0
    }
4622
0
    return LV;
4623
0
  }
4624
4625
0
  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
4626
0
    return EmitFunctionDeclLValue(*this, E, FD);
4627
4628
0
  llvm_unreachable("Unhandled member declaration!");
4629
0
}
4630
4631
/// Given that we are currently emitting a lambda, emit an l-value for
4632
/// one of its members.
4633
///
4634
LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field,
4635
0
                                                 llvm::Value *ThisValue) {
4636
0
  bool HasExplicitObjectParameter = false;
4637
0
  if (const auto *MD = dyn_cast_if_present<CXXMethodDecl>(CurCodeDecl)) {
4638
0
    HasExplicitObjectParameter = MD->isExplicitObjectMemberFunction();
4639
0
    assert(MD->getParent()->isLambda());
4640
0
    assert(MD->getParent() == Field->getParent());
4641
0
  }
4642
0
  LValue LambdaLV;
4643
0
  if (HasExplicitObjectParameter) {
4644
0
    const VarDecl *D = cast<CXXMethodDecl>(CurCodeDecl)->getParamDecl(0);
4645
0
    auto It = LocalDeclMap.find(D);
4646
0
    assert(It != LocalDeclMap.end() && "explicit parameter not loaded?");
4647
0
    Address AddrOfExplicitObject = It->getSecond();
4648
0
    if (D->getType()->isReferenceType())
4649
0
      LambdaLV = EmitLoadOfReferenceLValue(AddrOfExplicitObject, D->getType(),
4650
0
                                           AlignmentSource::Decl);
4651
0
    else
4652
0
      LambdaLV = MakeNaturalAlignAddrLValue(AddrOfExplicitObject.getPointer(),
4653
0
                                            D->getType().getNonReferenceType());
4654
0
  } else {
4655
0
    QualType LambdaTagType = getContext().getTagDeclType(Field->getParent());
4656
0
    LambdaLV = MakeNaturalAlignAddrLValue(ThisValue, LambdaTagType);
4657
0
  }
4658
0
  return EmitLValueForField(LambdaLV, Field);
4659
0
}
4660
4661
0
LValue CodeGenFunction::EmitLValueForLambdaField(const FieldDecl *Field) {
4662
0
  return EmitLValueForLambdaField(Field, CXXABIThisValue);
4663
0
}
4664
4665
/// Get the field index in the debug info. The debug info structure/union
4666
/// will ignore the unnamed bitfields.
4667
unsigned CodeGenFunction::getDebugInfoFIndex(const RecordDecl *Rec,
4668
0
                                             unsigned FieldIndex) {
4669
0
  unsigned I = 0, Skipped = 0;
4670
4671
0
  for (auto *F : Rec->getDefinition()->fields()) {
4672
0
    if (I == FieldIndex)
4673
0
      break;
4674
0
    if (F->isUnnamedBitfield())
4675
0
      Skipped++;
4676
0
    I++;
4677
0
  }
4678
4679
0
  return FieldIndex - Skipped;
4680
0
}
4681
4682
/// Get the address of a zero-sized field within a record. The resulting
4683
/// address doesn't necessarily have the right type.
4684
static Address emitAddrOfZeroSizeField(CodeGenFunction &CGF, Address Base,
4685
0
                                       const FieldDecl *Field) {
4686
0
  CharUnits Offset = CGF.getContext().toCharUnitsFromBits(
4687
0
      CGF.getContext().getFieldOffset(Field));
4688
0
  if (Offset.isZero())
4689
0
    return Base;
4690
0
  Base = Base.withElementType(CGF.Int8Ty);
4691
0
  return CGF.Builder.CreateConstInBoundsByteGEP(Base, Offset);
4692
0
}
4693
4694
/// Drill down to the storage of a field without walking into
4695
/// reference types.
4696
///
4697
/// The resulting address doesn't necessarily have the right type.
4698
static Address emitAddrOfFieldStorage(CodeGenFunction &CGF, Address base,
4699
0
                                      const FieldDecl *field) {
4700
0
  if (field->isZeroSize(CGF.getContext()))
4701
0
    return emitAddrOfZeroSizeField(CGF, base, field);
4702
4703
0
  const RecordDecl *rec = field->getParent();
4704
4705
0
  unsigned idx =
4706
0
    CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4707
4708
0
  return CGF.Builder.CreateStructGEP(base, idx, field->getName());
4709
0
}
4710
4711
static Address emitPreserveStructAccess(CodeGenFunction &CGF, LValue base,
4712
0
                                        Address addr, const FieldDecl *field) {
4713
0
  const RecordDecl *rec = field->getParent();
4714
0
  llvm::DIType *DbgInfo = CGF.getDebugInfo()->getOrCreateStandaloneType(
4715
0
      base.getType(), rec->getLocation());
4716
4717
0
  unsigned idx =
4718
0
      CGF.CGM.getTypes().getCGRecordLayout(rec).getLLVMFieldNo(field);
4719
4720
0
  return CGF.Builder.CreatePreserveStructAccessIndex(
4721
0
      addr, idx, CGF.getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo);
4722
0
}
4723
4724
0
static bool hasAnyVptr(const QualType Type, const ASTContext &Context) {
4725
0
  const auto *RD = Type.getTypePtr()->getAsCXXRecordDecl();
4726
0
  if (!RD)
4727
0
    return false;
4728
4729
0
  if (RD->isDynamicClass())
4730
0
    return true;
4731
4732
0
  for (const auto &Base : RD->bases())
4733
0
    if (hasAnyVptr(Base.getType(), Context))
4734
0
      return true;
4735
4736
0
  for (const FieldDecl *Field : RD->fields())
4737
0
    if (hasAnyVptr(Field->getType(), Context))
4738
0
      return true;
4739
4740
0
  return false;
4741
0
}
4742
4743
LValue CodeGenFunction::EmitLValueForField(LValue base,
4744
0
                                           const FieldDecl *field) {
4745
0
  LValueBaseInfo BaseInfo = base.getBaseInfo();
4746
4747
0
  if (field->isBitField()) {
4748
0
    const CGRecordLayout &RL =
4749
0
        CGM.getTypes().getCGRecordLayout(field->getParent());
4750
0
    const CGBitFieldInfo &Info = RL.getBitFieldInfo(field);
4751
0
    const bool UseVolatile = isAAPCS(CGM.getTarget()) &&
4752
0
                             CGM.getCodeGenOpts().AAPCSBitfieldWidth &&
4753
0
                             Info.VolatileStorageSize != 0 &&
4754
0
                             field->getType()
4755
0
                                 .withCVRQualifiers(base.getVRQualifiers())
4756
0
                                 .isVolatileQualified();
4757
0
    Address Addr = base.getAddress(*this);
4758
0
    unsigned Idx = RL.getLLVMFieldNo(field);
4759
0
    const RecordDecl *rec = field->getParent();
4760
0
    if (hasBPFPreserveStaticOffset(rec))
4761
0
      Addr = wrapWithBPFPreserveStaticOffset(*this, Addr);
4762
0
    if (!UseVolatile) {
4763
0
      if (!IsInPreservedAIRegion &&
4764
0
          (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4765
0
        if (Idx != 0)
4766
          // For structs, we GEP to the field that the record layout suggests.
4767
0
          Addr = Builder.CreateStructGEP(Addr, Idx, field->getName());
4768
0
      } else {
4769
0
        llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateRecordType(
4770
0
            getContext().getRecordType(rec), rec->getLocation());
4771
0
        Addr = Builder.CreatePreserveStructAccessIndex(
4772
0
            Addr, Idx, getDebugInfoFIndex(rec, field->getFieldIndex()),
4773
0
            DbgInfo);
4774
0
      }
4775
0
    }
4776
0
    const unsigned SS =
4777
0
        UseVolatile ? Info.VolatileStorageSize : Info.StorageSize;
4778
    // Get the access type.
4779
0
    llvm::Type *FieldIntTy = llvm::Type::getIntNTy(getLLVMContext(), SS);
4780
0
    Addr = Addr.withElementType(FieldIntTy);
4781
0
    if (UseVolatile) {
4782
0
      const unsigned VolatileOffset = Info.VolatileStorageOffset.getQuantity();
4783
0
      if (VolatileOffset)
4784
0
        Addr = Builder.CreateConstInBoundsGEP(Addr, VolatileOffset);
4785
0
    }
4786
4787
0
    QualType fieldType =
4788
0
        field->getType().withCVRQualifiers(base.getVRQualifiers());
4789
    // TODO: Support TBAA for bit fields.
4790
0
    LValueBaseInfo FieldBaseInfo(BaseInfo.getAlignmentSource());
4791
0
    return LValue::MakeBitfield(Addr, Info, fieldType, FieldBaseInfo,
4792
0
                                TBAAAccessInfo());
4793
0
  }
4794
4795
  // Fields of may-alias structures are may-alias themselves.
4796
  // FIXME: this should get propagated down through anonymous structs
4797
  // and unions.
4798
0
  QualType FieldType = field->getType();
4799
0
  const RecordDecl *rec = field->getParent();
4800
0
  AlignmentSource BaseAlignSource = BaseInfo.getAlignmentSource();
4801
0
  LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(BaseAlignSource));
4802
0
  TBAAAccessInfo FieldTBAAInfo;
4803
0
  if (base.getTBAAInfo().isMayAlias() ||
4804
0
          rec->hasAttr<MayAliasAttr>() || FieldType->isVectorType()) {
4805
0
    FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4806
0
  } else if (rec->isUnion()) {
4807
    // TODO: Support TBAA for unions.
4808
0
    FieldTBAAInfo = TBAAAccessInfo::getMayAliasInfo();
4809
0
  } else {
4810
    // If no base type been assigned for the base access, then try to generate
4811
    // one for this base lvalue.
4812
0
    FieldTBAAInfo = base.getTBAAInfo();
4813
0
    if (!FieldTBAAInfo.BaseType) {
4814
0
        FieldTBAAInfo.BaseType = CGM.getTBAABaseTypeInfo(base.getType());
4815
0
        assert(!FieldTBAAInfo.Offset &&
4816
0
               "Nonzero offset for an access with no base type!");
4817
0
    }
4818
4819
    // Adjust offset to be relative to the base type.
4820
0
    const ASTRecordLayout &Layout =
4821
0
        getContext().getASTRecordLayout(field->getParent());
4822
0
    unsigned CharWidth = getContext().getCharWidth();
4823
0
    if (FieldTBAAInfo.BaseType)
4824
0
      FieldTBAAInfo.Offset +=
4825
0
          Layout.getFieldOffset(field->getFieldIndex()) / CharWidth;
4826
4827
    // Update the final access type and size.
4828
0
    FieldTBAAInfo.AccessType = CGM.getTBAATypeInfo(FieldType);
4829
0
    FieldTBAAInfo.Size =
4830
0
        getContext().getTypeSizeInChars(FieldType).getQuantity();
4831
0
  }
4832
4833
0
  Address addr = base.getAddress(*this);
4834
0
  if (hasBPFPreserveStaticOffset(rec))
4835
0
    addr = wrapWithBPFPreserveStaticOffset(*this, addr);
4836
0
  if (auto *ClassDef = dyn_cast<CXXRecordDecl>(rec)) {
4837
0
    if (CGM.getCodeGenOpts().StrictVTablePointers &&
4838
0
        ClassDef->isDynamicClass()) {
4839
      // Getting to any field of dynamic object requires stripping dynamic
4840
      // information provided by invariant.group.  This is because accessing
4841
      // fields may leak the real address of dynamic object, which could result
4842
      // in miscompilation when leaked pointer would be compared.
4843
0
      auto *stripped = Builder.CreateStripInvariantGroup(addr.getPointer());
4844
0
      addr = Address(stripped, addr.getElementType(), addr.getAlignment());
4845
0
    }
4846
0
  }
4847
4848
0
  unsigned RecordCVR = base.getVRQualifiers();
4849
0
  if (rec->isUnion()) {
4850
    // For unions, there is no pointer adjustment.
4851
0
    if (CGM.getCodeGenOpts().StrictVTablePointers &&
4852
0
        hasAnyVptr(FieldType, getContext()))
4853
      // Because unions can easily skip invariant.barriers, we need to add
4854
      // a barrier every time CXXRecord field with vptr is referenced.
4855
0
      addr = Builder.CreateLaunderInvariantGroup(addr);
4856
4857
0
    if (IsInPreservedAIRegion ||
4858
0
        (getDebugInfo() && rec->hasAttr<BPFPreserveAccessIndexAttr>())) {
4859
      // Remember the original union field index
4860
0
      llvm::DIType *DbgInfo = getDebugInfo()->getOrCreateStandaloneType(base.getType(),
4861
0
          rec->getLocation());
4862
0
      addr = Address(
4863
0
          Builder.CreatePreserveUnionAccessIndex(
4864
0
              addr.getPointer(), getDebugInfoFIndex(rec, field->getFieldIndex()), DbgInfo),
4865
0
          addr.getElementType(), addr.getAlignment());
4866
0
    }
4867
4868
0
    if (FieldType->isReferenceType())
4869
0
      addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType));
4870
0
  } else {
4871
0
    if (!IsInPreservedAIRegion &&
4872
0
        (!getDebugInfo() || !rec->hasAttr<BPFPreserveAccessIndexAttr>()))
4873
      // For structs, we GEP to the field that the record layout suggests.
4874
0
      addr = emitAddrOfFieldStorage(*this, addr, field);
4875
0
    else
4876
      // Remember the original struct field index
4877
0
      addr = emitPreserveStructAccess(*this, base, addr, field);
4878
0
  }
4879
4880
  // If this is a reference field, load the reference right now.
4881
0
  if (FieldType->isReferenceType()) {
4882
0
    LValue RefLVal =
4883
0
        MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4884
0
    if (RecordCVR & Qualifiers::Volatile)
4885
0
      RefLVal.getQuals().addVolatile();
4886
0
    addr = EmitLoadOfReference(RefLVal, &FieldBaseInfo, &FieldTBAAInfo);
4887
4888
    // Qualifiers on the struct don't apply to the referencee.
4889
0
    RecordCVR = 0;
4890
0
    FieldType = FieldType->getPointeeType();
4891
0
  }
4892
4893
  // Make sure that the address is pointing to the right type.  This is critical
4894
  // for both unions and structs.
4895
0
  addr = addr.withElementType(CGM.getTypes().ConvertTypeForMem(FieldType));
4896
4897
0
  if (field->hasAttr<AnnotateAttr>())
4898
0
    addr = EmitFieldAnnotations(field, addr);
4899
4900
0
  LValue LV = MakeAddrLValue(addr, FieldType, FieldBaseInfo, FieldTBAAInfo);
4901
0
  LV.getQuals().addCVRQualifiers(RecordCVR);
4902
4903
  // __weak attribute on a field is ignored.
4904
0
  if (LV.getQuals().getObjCGCAttr() == Qualifiers::Weak)
4905
0
    LV.getQuals().removeObjCGCAttr();
4906
4907
0
  return LV;
4908
0
}
4909
4910
LValue
4911
CodeGenFunction::EmitLValueForFieldInitialization(LValue Base,
4912
0
                                                  const FieldDecl *Field) {
4913
0
  QualType FieldType = Field->getType();
4914
4915
0
  if (!FieldType->isReferenceType())
4916
0
    return EmitLValueForField(Base, Field);
4917
4918
0
  Address V = emitAddrOfFieldStorage(*this, Base.getAddress(*this), Field);
4919
4920
  // Make sure that the address is pointing to the right type.
4921
0
  llvm::Type *llvmType = ConvertTypeForMem(FieldType);
4922
0
  V = V.withElementType(llvmType);
4923
4924
  // TODO: Generate TBAA information that describes this access as a structure
4925
  // member access and not just an access to an object of the field's type. This
4926
  // should be similar to what we do in EmitLValueForField().
4927
0
  LValueBaseInfo BaseInfo = Base.getBaseInfo();
4928
0
  AlignmentSource FieldAlignSource = BaseInfo.getAlignmentSource();
4929
0
  LValueBaseInfo FieldBaseInfo(getFieldAlignmentSource(FieldAlignSource));
4930
0
  return MakeAddrLValue(V, FieldType, FieldBaseInfo,
4931
0
                        CGM.getTBAAInfoForSubobject(Base, FieldType));
4932
0
}
4933
4934
0
LValue CodeGenFunction::EmitCompoundLiteralLValue(const CompoundLiteralExpr *E){
4935
0
  if (E->isFileScope()) {
4936
0
    ConstantAddress GlobalPtr = CGM.GetAddrOfConstantCompoundLiteral(E);
4937
0
    return MakeAddrLValue(GlobalPtr, E->getType(), AlignmentSource::Decl);
4938
0
  }
4939
0
  if (E->getType()->isVariablyModifiedType())
4940
    // make sure to emit the VLA size.
4941
0
    EmitVariablyModifiedType(E->getType());
4942
4943
0
  Address DeclPtr = CreateMemTemp(E->getType(), ".compoundliteral");
4944
0
  const Expr *InitExpr = E->getInitializer();
4945
0
  LValue Result = MakeAddrLValue(DeclPtr, E->getType(), AlignmentSource::Decl);
4946
4947
0
  EmitAnyExprToMem(InitExpr, DeclPtr, E->getType().getQualifiers(),
4948
0
                   /*Init*/ true);
4949
4950
  // Block-scope compound literals are destroyed at the end of the enclosing
4951
  // scope in C.
4952
0
  if (!getLangOpts().CPlusPlus)
4953
0
    if (QualType::DestructionKind DtorKind = E->getType().isDestructedType())
4954
0
      pushLifetimeExtendedDestroy(getCleanupKind(DtorKind), DeclPtr,
4955
0
                                  E->getType(), getDestroyer(DtorKind),
4956
0
                                  DtorKind & EHCleanup);
4957
4958
0
  return Result;
4959
0
}
4960
4961
0
LValue CodeGenFunction::EmitInitListLValue(const InitListExpr *E) {
4962
0
  if (!E->isGLValue())
4963
    // Initializing an aggregate temporary in C++11: T{...}.
4964
0
    return EmitAggExprToLValue(E);
4965
4966
  // An lvalue initializer list must be initializing a reference.
4967
0
  assert(E->isTransparent() && "non-transparent glvalue init list");
4968
0
  return EmitLValue(E->getInit(0));
4969
0
}
4970
4971
/// Emit the operand of a glvalue conditional operator. This is either a glvalue
4972
/// or a (possibly-parenthesized) throw-expression. If this is a throw, no
4973
/// LValue is returned and the current block has been terminated.
4974
static std::optional<LValue> EmitLValueOrThrowExpression(CodeGenFunction &CGF,
4975
0
                                                         const Expr *Operand) {
4976
0
  if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Operand->IgnoreParens())) {
4977
0
    CGF.EmitCXXThrowExpr(ThrowExpr, /*KeepInsertionPoint*/false);
4978
0
    return std::nullopt;
4979
0
  }
4980
4981
0
  return CGF.EmitLValue(Operand);
4982
0
}
4983
4984
namespace {
4985
// Handle the case where the condition is a constant evaluatable simple integer,
4986
// which means we don't have to separately handle the true/false blocks.
4987
std::optional<LValue> HandleConditionalOperatorLValueSimpleCase(
4988
0
    CodeGenFunction &CGF, const AbstractConditionalOperator *E) {
4989
0
  const Expr *condExpr = E->getCond();
4990
0
  bool CondExprBool;
4991
0
  if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
4992
0
    const Expr *Live = E->getTrueExpr(), *Dead = E->getFalseExpr();
4993
0
    if (!CondExprBool)
4994
0
      std::swap(Live, Dead);
4995
4996
0
    if (!CGF.ContainsLabel(Dead)) {
4997
      // If the true case is live, we need to track its region.
4998
0
      if (CondExprBool)
4999
0
        CGF.incrementProfileCounter(E);
5000
      // If a throw expression we emit it and return an undefined lvalue
5001
      // because it can't be used.
5002
0
      if (auto *ThrowExpr = dyn_cast<CXXThrowExpr>(Live->IgnoreParens())) {
5003
0
        CGF.EmitCXXThrowExpr(ThrowExpr);
5004
0
        llvm::Type *ElemTy = CGF.ConvertType(Dead->getType());
5005
0
        llvm::Type *Ty = CGF.UnqualPtrTy;
5006
0
        return CGF.MakeAddrLValue(
5007
0
            Address(llvm::UndefValue::get(Ty), ElemTy, CharUnits::One()),
5008
0
            Dead->getType());
5009
0
      }
5010
0
      return CGF.EmitLValue(Live);
5011
0
    }
5012
0
  }
5013
0
  return std::nullopt;
5014
0
}
5015
struct ConditionalInfo {
5016
  llvm::BasicBlock *lhsBlock, *rhsBlock;
5017
  std::optional<LValue> LHS, RHS;
5018
};
5019
5020
// Create and generate the 3 blocks for a conditional operator.
5021
// Leaves the 'current block' in the continuation basic block.
5022
template<typename FuncTy>
5023
ConditionalInfo EmitConditionalBlocks(CodeGenFunction &CGF,
5024
                                      const AbstractConditionalOperator *E,
5025
0
                                      const FuncTy &BranchGenFunc) {
5026
0
  ConditionalInfo Info{CGF.createBasicBlock("cond.true"),
5027
0
                       CGF.createBasicBlock("cond.false"), std::nullopt,
5028
0
                       std::nullopt};
5029
0
  llvm::BasicBlock *endBlock = CGF.createBasicBlock("cond.end");
5030
5031
0
  CodeGenFunction::ConditionalEvaluation eval(CGF);
5032
0
  CGF.EmitBranchOnBoolExpr(E->getCond(), Info.lhsBlock, Info.rhsBlock,
5033
0
                           CGF.getProfileCount(E));
5034
5035
  // Any temporaries created here are conditional.
5036
0
  CGF.EmitBlock(Info.lhsBlock);
5037
0
  CGF.incrementProfileCounter(E);
5038
0
  eval.begin(CGF);
5039
0
  Info.LHS = BranchGenFunc(CGF, E->getTrueExpr());
5040
0
  eval.end(CGF);
5041
0
  Info.lhsBlock = CGF.Builder.GetInsertBlock();
5042
5043
0
  if (Info.LHS)
5044
0
    CGF.Builder.CreateBr(endBlock);
5045
5046
  // Any temporaries created here are conditional.
5047
0
  CGF.EmitBlock(Info.rhsBlock);
5048
0
  eval.begin(CGF);
5049
0
  Info.RHS = BranchGenFunc(CGF, E->getFalseExpr());
5050
0
  eval.end(CGF);
5051
0
  Info.rhsBlock = CGF.Builder.GetInsertBlock();
5052
0
  CGF.EmitBlock(endBlock);
5053
5054
0
  return Info;
5055
0
}
Unexecuted instantiation: CGExpr.cpp:(anonymous namespace)::ConditionalInfo (anonymous namespace)::EmitConditionalBlocks<clang::CodeGen::CodeGenFunction::EmitIgnoredConditionalOperator(clang::AbstractConditionalOperator const*)::$_2>(clang::CodeGen::CodeGenFunction&, clang::AbstractConditionalOperator const*, clang::CodeGen::CodeGenFunction::EmitIgnoredConditionalOperator(clang::AbstractConditionalOperator const*)::$_2 const&)
Unexecuted instantiation: CGExpr.cpp:(anonymous namespace)::ConditionalInfo (anonymous namespace)::EmitConditionalBlocks<clang::CodeGen::CodeGenFunction::EmitConditionalOperatorLValue(clang::AbstractConditionalOperator const*)::$_3>(clang::CodeGen::CodeGenFunction&, clang::AbstractConditionalOperator const*, clang::CodeGen::CodeGenFunction::EmitConditionalOperatorLValue(clang::AbstractConditionalOperator const*)::$_3 const&)
5056
} // namespace
5057
5058
void CodeGenFunction::EmitIgnoredConditionalOperator(
5059
0
    const AbstractConditionalOperator *E) {
5060
0
  if (!E->isGLValue()) {
5061
    // ?: here should be an aggregate.
5062
0
    assert(hasAggregateEvaluationKind(E->getType()) &&
5063
0
           "Unexpected conditional operator!");
5064
0
    return (void)EmitAggExprToLValue(E);
5065
0
  }
5066
5067
0
  OpaqueValueMapping binding(*this, E);
5068
0
  if (HandleConditionalOperatorLValueSimpleCase(*this, E))
5069
0
    return;
5070
5071
0
  EmitConditionalBlocks(*this, E, [](CodeGenFunction &CGF, const Expr *E) {
5072
0
    CGF.EmitIgnoredExpr(E);
5073
0
    return LValue{};
5074
0
  });
5075
0
}
5076
LValue CodeGenFunction::EmitConditionalOperatorLValue(
5077
0
    const AbstractConditionalOperator *expr) {
5078
0
  if (!expr->isGLValue()) {
5079
    // ?: here should be an aggregate.
5080
0
    assert(hasAggregateEvaluationKind(expr->getType()) &&
5081
0
           "Unexpected conditional operator!");
5082
0
    return EmitAggExprToLValue(expr);
5083
0
  }
5084
5085
0
  OpaqueValueMapping binding(*this, expr);
5086
0
  if (std::optional<LValue> Res =
5087
0
          HandleConditionalOperatorLValueSimpleCase(*this, expr))
5088
0
    return *Res;
5089
5090
0
  ConditionalInfo Info = EmitConditionalBlocks(
5091
0
      *this, expr, [](CodeGenFunction &CGF, const Expr *E) {
5092
0
        return EmitLValueOrThrowExpression(CGF, E);
5093
0
      });
5094
5095
0
  if ((Info.LHS && !Info.LHS->isSimple()) ||
5096
0
      (Info.RHS && !Info.RHS->isSimple()))
5097
0
    return EmitUnsupportedLValue(expr, "conditional operator");
5098
5099
0
  if (Info.LHS && Info.RHS) {
5100
0
    Address lhsAddr = Info.LHS->getAddress(*this);
5101
0
    Address rhsAddr = Info.RHS->getAddress(*this);
5102
0
    llvm::PHINode *phi = Builder.CreatePHI(lhsAddr.getType(), 2, "cond-lvalue");
5103
0
    phi->addIncoming(lhsAddr.getPointer(), Info.lhsBlock);
5104
0
    phi->addIncoming(rhsAddr.getPointer(), Info.rhsBlock);
5105
0
    Address result(phi, lhsAddr.getElementType(),
5106
0
                   std::min(lhsAddr.getAlignment(), rhsAddr.getAlignment()));
5107
0
    AlignmentSource alignSource =
5108
0
        std::max(Info.LHS->getBaseInfo().getAlignmentSource(),
5109
0
                 Info.RHS->getBaseInfo().getAlignmentSource());
5110
0
    TBAAAccessInfo TBAAInfo = CGM.mergeTBAAInfoForConditionalOperator(
5111
0
        Info.LHS->getTBAAInfo(), Info.RHS->getTBAAInfo());
5112
0
    return MakeAddrLValue(result, expr->getType(), LValueBaseInfo(alignSource),
5113
0
                          TBAAInfo);
5114
0
  } else {
5115
0
    assert((Info.LHS || Info.RHS) &&
5116
0
           "both operands of glvalue conditional are throw-expressions?");
5117
0
    return Info.LHS ? *Info.LHS : *Info.RHS;
5118
0
  }
5119
0
}
5120
5121
/// EmitCastLValue - Casts are never lvalues unless that cast is to a reference
5122
/// type. If the cast is to a reference, we can have the usual lvalue result,
5123
/// otherwise if a cast is needed by the code generator in an lvalue context,
5124
/// then it must mean that we need the address of an aggregate in order to
5125
/// access one of its members.  This can happen for all the reasons that casts
5126
/// are permitted with aggregate result, including noop aggregate casts, and
5127
/// cast from scalar to union.
5128
0
LValue CodeGenFunction::EmitCastLValue(const CastExpr *E) {
5129
0
  switch (E->getCastKind()) {
5130
0
  case CK_ToVoid:
5131
0
  case CK_BitCast:
5132
0
  case CK_LValueToRValueBitCast:
5133
0
  case CK_ArrayToPointerDecay:
5134
0
  case CK_FunctionToPointerDecay:
5135
0
  case CK_NullToMemberPointer:
5136
0
  case CK_NullToPointer:
5137
0
  case CK_IntegralToPointer:
5138
0
  case CK_PointerToIntegral:
5139
0
  case CK_PointerToBoolean:
5140
0
  case CK_IntegralCast:
5141
0
  case CK_BooleanToSignedIntegral:
5142
0
  case CK_IntegralToBoolean:
5143
0
  case CK_IntegralToFloating:
5144
0
  case CK_FloatingToIntegral:
5145
0
  case CK_FloatingToBoolean:
5146
0
  case CK_FloatingCast:
5147
0
  case CK_FloatingRealToComplex:
5148
0
  case CK_FloatingComplexToReal:
5149
0
  case CK_FloatingComplexToBoolean:
5150
0
  case CK_FloatingComplexCast:
5151
0
  case CK_FloatingComplexToIntegralComplex:
5152
0
  case CK_IntegralRealToComplex:
5153
0
  case CK_IntegralComplexToReal:
5154
0
  case CK_IntegralComplexToBoolean:
5155
0
  case CK_IntegralComplexCast:
5156
0
  case CK_IntegralComplexToFloatingComplex:
5157
0
  case CK_DerivedToBaseMemberPointer:
5158
0
  case CK_BaseToDerivedMemberPointer:
5159
0
  case CK_MemberPointerToBoolean:
5160
0
  case CK_ReinterpretMemberPointer:
5161
0
  case CK_AnyPointerToBlockPointerCast:
5162
0
  case CK_ARCProduceObject:
5163
0
  case CK_ARCConsumeObject:
5164
0
  case CK_ARCReclaimReturnedObject:
5165
0
  case CK_ARCExtendBlockObject:
5166
0
  case CK_CopyAndAutoreleaseBlockObject:
5167
0
  case CK_IntToOCLSampler:
5168
0
  case CK_FloatingToFixedPoint:
5169
0
  case CK_FixedPointToFloating:
5170
0
  case CK_FixedPointCast:
5171
0
  case CK_FixedPointToBoolean:
5172
0
  case CK_FixedPointToIntegral:
5173
0
  case CK_IntegralToFixedPoint:
5174
0
  case CK_MatrixCast:
5175
0
    return EmitUnsupportedLValue(E, "unexpected cast lvalue");
5176
5177
0
  case CK_Dependent:
5178
0
    llvm_unreachable("dependent cast kind in IR gen!");
5179
5180
0
  case CK_BuiltinFnToFnPtr:
5181
0
    llvm_unreachable("builtin functions are handled elsewhere");
5182
5183
  // These are never l-values; just use the aggregate emission code.
5184
0
  case CK_NonAtomicToAtomic:
5185
0
  case CK_AtomicToNonAtomic:
5186
0
    return EmitAggExprToLValue(E);
5187
5188
0
  case CK_Dynamic: {
5189
0
    LValue LV = EmitLValue(E->getSubExpr());
5190
0
    Address V = LV.getAddress(*this);
5191
0
    const auto *DCE = cast<CXXDynamicCastExpr>(E);
5192
0
    return MakeNaturalAlignAddrLValue(EmitDynamicCast(V, DCE), E->getType());
5193
0
  }
5194
5195
0
  case CK_ConstructorConversion:
5196
0
  case CK_UserDefinedConversion:
5197
0
  case CK_CPointerToObjCPointerCast:
5198
0
  case CK_BlockPointerToObjCPointerCast:
5199
0
  case CK_LValueToRValue:
5200
0
    return EmitLValue(E->getSubExpr());
5201
5202
0
  case CK_NoOp: {
5203
    // CK_NoOp can model a qualification conversion, which can remove an array
5204
    // bound and change the IR type.
5205
    // FIXME: Once pointee types are removed from IR, remove this.
5206
0
    LValue LV = EmitLValue(E->getSubExpr());
5207
    // Propagate the volatile qualifer to LValue, if exist in E.
5208
0
    if (E->changesVolatileQualification())
5209
0
      LV.getQuals() = E->getType().getQualifiers();
5210
0
    if (LV.isSimple()) {
5211
0
      Address V = LV.getAddress(*this);
5212
0
      if (V.isValid()) {
5213
0
        llvm::Type *T = ConvertTypeForMem(E->getType());
5214
0
        if (V.getElementType() != T)
5215
0
          LV.setAddress(V.withElementType(T));
5216
0
      }
5217
0
    }
5218
0
    return LV;
5219
0
  }
5220
5221
0
  case CK_UncheckedDerivedToBase:
5222
0
  case CK_DerivedToBase: {
5223
0
    const auto *DerivedClassTy =
5224
0
        E->getSubExpr()->getType()->castAs<RecordType>();
5225
0
    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
5226
5227
0
    LValue LV = EmitLValue(E->getSubExpr());
5228
0
    Address This = LV.getAddress(*this);
5229
5230
    // Perform the derived-to-base conversion
5231
0
    Address Base = GetAddressOfBaseClass(
5232
0
        This, DerivedClassDecl, E->path_begin(), E->path_end(),
5233
0
        /*NullCheckValue=*/false, E->getExprLoc());
5234
5235
    // TODO: Support accesses to members of base classes in TBAA. For now, we
5236
    // conservatively pretend that the complete object is of the base class
5237
    // type.
5238
0
    return MakeAddrLValue(Base, E->getType(), LV.getBaseInfo(),
5239
0
                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
5240
0
  }
5241
0
  case CK_ToUnion:
5242
0
    return EmitAggExprToLValue(E);
5243
0
  case CK_BaseToDerived: {
5244
0
    const auto *DerivedClassTy = E->getType()->castAs<RecordType>();
5245
0
    auto *DerivedClassDecl = cast<CXXRecordDecl>(DerivedClassTy->getDecl());
5246
5247
0
    LValue LV = EmitLValue(E->getSubExpr());
5248
5249
    // Perform the base-to-derived conversion
5250
0
    Address Derived = GetAddressOfDerivedClass(
5251
0
        LV.getAddress(*this), DerivedClassDecl, E->path_begin(), E->path_end(),
5252
0
        /*NullCheckValue=*/false);
5253
5254
    // C++11 [expr.static.cast]p2: Behavior is undefined if a downcast is
5255
    // performed and the object is not of the derived type.
5256
0
    if (sanitizePerformTypeCheck())
5257
0
      EmitTypeCheck(TCK_DowncastReference, E->getExprLoc(),
5258
0
                    Derived.getPointer(), E->getType());
5259
5260
0
    if (SanOpts.has(SanitizerKind::CFIDerivedCast))
5261
0
      EmitVTablePtrCheckForCast(E->getType(), Derived,
5262
0
                                /*MayBeNull=*/false, CFITCK_DerivedCast,
5263
0
                                E->getBeginLoc());
5264
5265
0
    return MakeAddrLValue(Derived, E->getType(), LV.getBaseInfo(),
5266
0
                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
5267
0
  }
5268
0
  case CK_LValueBitCast: {
5269
    // This must be a reinterpret_cast (or c-style equivalent).
5270
0
    const auto *CE = cast<ExplicitCastExpr>(E);
5271
5272
0
    CGM.EmitExplicitCastExprType(CE, this);
5273
0
    LValue LV = EmitLValue(E->getSubExpr());
5274
0
    Address V = LV.getAddress(*this).withElementType(
5275
0
        ConvertTypeForMem(CE->getTypeAsWritten()->getPointeeType()));
5276
5277
0
    if (SanOpts.has(SanitizerKind::CFIUnrelatedCast))
5278
0
      EmitVTablePtrCheckForCast(E->getType(), V,
5279
0
                                /*MayBeNull=*/false, CFITCK_UnrelatedCast,
5280
0
                                E->getBeginLoc());
5281
5282
0
    return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
5283
0
                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
5284
0
  }
5285
0
  case CK_AddressSpaceConversion: {
5286
0
    LValue LV = EmitLValue(E->getSubExpr());
5287
0
    QualType DestTy = getContext().getPointerType(E->getType());
5288
0
    llvm::Value *V = getTargetHooks().performAddrSpaceCast(
5289
0
        *this, LV.getPointer(*this),
5290
0
        E->getSubExpr()->getType().getAddressSpace(),
5291
0
        E->getType().getAddressSpace(), ConvertType(DestTy));
5292
0
    return MakeAddrLValue(Address(V, ConvertTypeForMem(E->getType()),
5293
0
                                  LV.getAddress(*this).getAlignment()),
5294
0
                          E->getType(), LV.getBaseInfo(), LV.getTBAAInfo());
5295
0
  }
5296
0
  case CK_ObjCObjectLValueCast: {
5297
0
    LValue LV = EmitLValue(E->getSubExpr());
5298
0
    Address V = LV.getAddress(*this).withElementType(ConvertType(E->getType()));
5299
0
    return MakeAddrLValue(V, E->getType(), LV.getBaseInfo(),
5300
0
                          CGM.getTBAAInfoForSubobject(LV, E->getType()));
5301
0
  }
5302
0
  case CK_ZeroToOCLOpaqueType:
5303
0
    llvm_unreachable("NULL to OpenCL opaque type lvalue cast is not valid");
5304
5305
0
  case CK_VectorSplat: {
5306
    // LValue results of vector splats are only supported in HLSL.
5307
0
    if (!getLangOpts().HLSL)
5308
0
      return EmitUnsupportedLValue(E, "unexpected cast lvalue");
5309
0
    return EmitLValue(E->getSubExpr());
5310
0
  }
5311
0
  }
5312
5313
0
  llvm_unreachable("Unhandled lvalue cast kind?");
5314
0
}
5315
5316
0
LValue CodeGenFunction::EmitOpaqueValueLValue(const OpaqueValueExpr *e) {
5317
0
  assert(OpaqueValueMappingData::shouldBindAsLValue(e));
5318
0
  return getOrCreateOpaqueLValueMapping(e);
5319
0
}
5320
5321
LValue
5322
0
CodeGenFunction::getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e) {
5323
0
  assert(OpaqueValueMapping::shouldBindAsLValue(e));
5324
5325
0
  llvm::DenseMap<const OpaqueValueExpr*,LValue>::iterator
5326
0
      it = OpaqueLValues.find(e);
5327
5328
0
  if (it != OpaqueLValues.end())
5329
0
    return it->second;
5330
5331
0
  assert(e->isUnique() && "LValue for a nonunique OVE hasn't been emitted");
5332
0
  return EmitLValue(e->getSourceExpr());
5333
0
}
5334
5335
RValue
5336
0
CodeGenFunction::getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e) {
5337
0
  assert(!OpaqueValueMapping::shouldBindAsLValue(e));
5338
5339
0
  llvm::DenseMap<const OpaqueValueExpr*,RValue>::iterator
5340
0
      it = OpaqueRValues.find(e);
5341
5342
0
  if (it != OpaqueRValues.end())
5343
0
    return it->second;
5344
5345
0
  assert(e->isUnique() && "RValue for a nonunique OVE hasn't been emitted");
5346
0
  return EmitAnyExpr(e->getSourceExpr());
5347
0
}
5348
5349
RValue CodeGenFunction::EmitRValueForField(LValue LV,
5350
                                           const FieldDecl *FD,
5351
0
                                           SourceLocation Loc) {
5352
0
  QualType FT = FD->getType();
5353
0
  LValue FieldLV = EmitLValueForField(LV, FD);
5354
0
  switch (getEvaluationKind(FT)) {
5355
0
  case TEK_Complex:
5356
0
    return RValue::getComplex(EmitLoadOfComplex(FieldLV, Loc));
5357
0
  case TEK_Aggregate:
5358
0
    return FieldLV.asAggregateRValue(*this);
5359
0
  case TEK_Scalar:
5360
    // This routine is used to load fields one-by-one to perform a copy, so
5361
    // don't load reference fields.
5362
0
    if (FD->getType()->isReferenceType())
5363
0
      return RValue::get(FieldLV.getPointer(*this));
5364
    // Call EmitLoadOfScalar except when the lvalue is a bitfield to emit a
5365
    // primitive load.
5366
0
    if (FieldLV.isBitField())
5367
0
      return EmitLoadOfLValue(FieldLV, Loc);
5368
0
    return RValue::get(EmitLoadOfScalar(FieldLV, Loc));
5369
0
  }
5370
0
  llvm_unreachable("bad evaluation kind");
5371
0
}
5372
5373
//===--------------------------------------------------------------------===//
5374
//                             Expression Emission
5375
//===--------------------------------------------------------------------===//
5376
5377
RValue CodeGenFunction::EmitCallExpr(const CallExpr *E,
5378
0
                                     ReturnValueSlot ReturnValue) {
5379
  // Builtins never have block type.
5380
0
  if (E->getCallee()->getType()->isBlockPointerType())
5381
0
    return EmitBlockCallExpr(E, ReturnValue);
5382
5383
0
  if (const auto *CE = dyn_cast<CXXMemberCallExpr>(E))
5384
0
    return EmitCXXMemberCallExpr(CE, ReturnValue);
5385
5386
0
  if (const auto *CE = dyn_cast<CUDAKernelCallExpr>(E))
5387
0
    return EmitCUDAKernelCallExpr(CE, ReturnValue);
5388
5389
  // A CXXOperatorCallExpr is created even for explicit object methods, but
5390
  // these should be treated like static function call.
5391
0
  if (const auto *CE = dyn_cast<CXXOperatorCallExpr>(E))
5392
0
    if (const auto *MD =
5393
0
            dyn_cast_if_present<CXXMethodDecl>(CE->getCalleeDecl());
5394
0
        MD && MD->isImplicitObjectMemberFunction())
5395
0
      return EmitCXXOperatorMemberCallExpr(CE, MD, ReturnValue);
5396
5397
0
  CGCallee callee = EmitCallee(E->getCallee());
5398
5399
0
  if (callee.isBuiltin()) {
5400
0
    return EmitBuiltinExpr(callee.getBuiltinDecl(), callee.getBuiltinID(),
5401
0
                           E, ReturnValue);
5402
0
  }
5403
5404
0
  if (callee.isPseudoDestructor()) {
5405
0
    return EmitCXXPseudoDestructorExpr(callee.getPseudoDestructorExpr());
5406
0
  }
5407
5408
0
  return EmitCall(E->getCallee()->getType(), callee, E, ReturnValue);
5409
0
}
5410
5411
/// Emit a CallExpr without considering whether it might be a subclass.
5412
RValue CodeGenFunction::EmitSimpleCallExpr(const CallExpr *E,
5413
0
                                           ReturnValueSlot ReturnValue) {
5414
0
  CGCallee Callee = EmitCallee(E->getCallee());
5415
0
  return EmitCall(E->getCallee()->getType(), Callee, E, ReturnValue);
5416
0
}
5417
5418
// Detect the unusual situation where an inline version is shadowed by a
5419
// non-inline version. In that case we should pick the external one
5420
// everywhere. That's GCC behavior too.
5421
0
static bool OnlyHasInlineBuiltinDeclaration(const FunctionDecl *FD) {
5422
0
  for (const FunctionDecl *PD = FD; PD; PD = PD->getPreviousDecl())
5423
0
    if (!PD->isInlineBuiltinDeclaration())
5424
0
      return false;
5425
0
  return true;
5426
0
}
5427
5428
0
static CGCallee EmitDirectCallee(CodeGenFunction &CGF, GlobalDecl GD) {
5429
0
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
5430
5431
0
  if (auto builtinID = FD->getBuiltinID()) {
5432
0
    std::string NoBuiltinFD = ("no-builtin-" + FD->getName()).str();
5433
0
    std::string NoBuiltins = "no-builtins";
5434
5435
0
    StringRef Ident = CGF.CGM.getMangledName(GD);
5436
0
    std::string FDInlineName = (Ident + ".inline").str();
5437
5438
0
    bool IsPredefinedLibFunction =
5439
0
        CGF.getContext().BuiltinInfo.isPredefinedLibFunction(builtinID);
5440
0
    bool HasAttributeNoBuiltin =
5441
0
        CGF.CurFn->getAttributes().hasFnAttr(NoBuiltinFD) ||
5442
0
        CGF.CurFn->getAttributes().hasFnAttr(NoBuiltins);
5443
5444
    // When directing calling an inline builtin, call it through it's mangled
5445
    // name to make it clear it's not the actual builtin.
5446
0
    if (CGF.CurFn->getName() != FDInlineName &&
5447
0
        OnlyHasInlineBuiltinDeclaration(FD)) {
5448
0
      llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5449
0
      llvm::Function *Fn = llvm::cast<llvm::Function>(CalleePtr);
5450
0
      llvm::Module *M = Fn->getParent();
5451
0
      llvm::Function *Clone = M->getFunction(FDInlineName);
5452
0
      if (!Clone) {
5453
0
        Clone = llvm::Function::Create(Fn->getFunctionType(),
5454
0
                                       llvm::GlobalValue::InternalLinkage,
5455
0
                                       Fn->getAddressSpace(), FDInlineName, M);
5456
0
        Clone->addFnAttr(llvm::Attribute::AlwaysInline);
5457
0
      }
5458
0
      return CGCallee::forDirect(Clone, GD);
5459
0
    }
5460
5461
    // Replaceable builtins provide their own implementation of a builtin. If we
5462
    // are in an inline builtin implementation, avoid trivial infinite
5463
    // recursion. Honor __attribute__((no_builtin("foo"))) or
5464
    // __attribute__((no_builtin)) on the current function unless foo is
5465
    // not a predefined library function which means we must generate the
5466
    // builtin no matter what.
5467
0
    else if (!IsPredefinedLibFunction || !HasAttributeNoBuiltin)
5468
0
      return CGCallee::forBuiltin(builtinID, FD);
5469
0
  }
5470
5471
0
  llvm::Constant *CalleePtr = EmitFunctionDeclPointer(CGF.CGM, GD);
5472
0
  if (CGF.CGM.getLangOpts().CUDA && !CGF.CGM.getLangOpts().CUDAIsDevice &&
5473
0
      FD->hasAttr<CUDAGlobalAttr>())
5474
0
    CalleePtr = CGF.CGM.getCUDARuntime().getKernelStub(
5475
0
        cast<llvm::GlobalValue>(CalleePtr->stripPointerCasts()));
5476
5477
0
  return CGCallee::forDirect(CalleePtr, GD);
5478
0
}
5479
5480
0
CGCallee CodeGenFunction::EmitCallee(const Expr *E) {
5481
0
  E = E->IgnoreParens();
5482
5483
  // Look through function-to-pointer decay.
5484
0
  if (auto ICE = dyn_cast<ImplicitCastExpr>(E)) {
5485
0
    if (ICE->getCastKind() == CK_FunctionToPointerDecay ||
5486
0
        ICE->getCastKind() == CK_BuiltinFnToFnPtr) {
5487
0
      return EmitCallee(ICE->getSubExpr());
5488
0
    }
5489
5490
  // Resolve direct calls.
5491
0
  } else if (auto DRE = dyn_cast<DeclRefExpr>(E)) {
5492
0
    if (auto FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
5493
0
      return EmitDirectCallee(*this, FD);
5494
0
    }
5495
0
  } else if (auto ME = dyn_cast<MemberExpr>(E)) {
5496
0
    if (auto FD = dyn_cast<FunctionDecl>(ME->getMemberDecl())) {
5497
0
      EmitIgnoredExpr(ME->getBase());
5498
0
      return EmitDirectCallee(*this, FD);
5499
0
    }
5500
5501
  // Look through template substitutions.
5502
0
  } else if (auto NTTP = dyn_cast<SubstNonTypeTemplateParmExpr>(E)) {
5503
0
    return EmitCallee(NTTP->getReplacement());
5504
5505
  // Treat pseudo-destructor calls differently.
5506
0
  } else if (auto PDE = dyn_cast<CXXPseudoDestructorExpr>(E)) {
5507
0
    return CGCallee::forPseudoDestructor(PDE);
5508
0
  }
5509
5510
  // Otherwise, we have an indirect reference.
5511
0
  llvm::Value *calleePtr;
5512
0
  QualType functionType;
5513
0
  if (auto ptrType = E->getType()->getAs<PointerType>()) {
5514
0
    calleePtr = EmitScalarExpr(E);
5515
0
    functionType = ptrType->getPointeeType();
5516
0
  } else {
5517
0
    functionType = E->getType();
5518
0
    calleePtr = EmitLValue(E, KnownNonNull).getPointer(*this);
5519
0
  }
5520
0
  assert(functionType->isFunctionType());
5521
5522
0
  GlobalDecl GD;
5523
0
  if (const auto *VD =
5524
0
          dyn_cast_or_null<VarDecl>(E->getReferencedDeclOfCallee()))
5525
0
    GD = GlobalDecl(VD);
5526
5527
0
  CGCalleeInfo calleeInfo(functionType->getAs<FunctionProtoType>(), GD);
5528
0
  CGCallee callee(calleeInfo, calleePtr);
5529
0
  return callee;
5530
0
}
5531
5532
0
LValue CodeGenFunction::EmitBinaryOperatorLValue(const BinaryOperator *E) {
5533
  // Comma expressions just emit their LHS then their RHS as an l-value.
5534
0
  if (E->getOpcode() == BO_Comma) {
5535
0
    EmitIgnoredExpr(E->getLHS());
5536
0
    EnsureInsertPoint();
5537
0
    return EmitLValue(E->getRHS());
5538
0
  }
5539
5540
0
  if (E->getOpcode() == BO_PtrMemD ||
5541
0
      E->getOpcode() == BO_PtrMemI)
5542
0
    return EmitPointerToDataMemberBinaryExpr(E);
5543
5544
0
  assert(E->getOpcode() == BO_Assign && "unexpected binary l-value");
5545
5546
  // Note that in all of these cases, __block variables need the RHS
5547
  // evaluated first just in case the variable gets moved by the RHS.
5548
5549
0
  switch (getEvaluationKind(E->getType())) {
5550
0
  case TEK_Scalar: {
5551
0
    switch (E->getLHS()->getType().getObjCLifetime()) {
5552
0
    case Qualifiers::OCL_Strong:
5553
0
      return EmitARCStoreStrong(E, /*ignored*/ false).first;
5554
5555
0
    case Qualifiers::OCL_Autoreleasing:
5556
0
      return EmitARCStoreAutoreleasing(E).first;
5557
5558
    // No reason to do any of these differently.
5559
0
    case Qualifiers::OCL_None:
5560
0
    case Qualifiers::OCL_ExplicitNone:
5561
0
    case Qualifiers::OCL_Weak:
5562
0
      break;
5563
0
    }
5564
5565
0
    RValue RV = EmitAnyExpr(E->getRHS());
5566
0
    LValue LV = EmitCheckedLValue(E->getLHS(), TCK_Store);
5567
0
    if (RV.isScalar())
5568
0
      EmitNullabilityCheck(LV, RV.getScalarVal(), E->getExprLoc());
5569
0
    EmitStoreThroughLValue(RV, LV);
5570
0
    if (getLangOpts().OpenMP)
5571
0
      CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(*this,
5572
0
                                                                E->getLHS());
5573
0
    return LV;
5574
0
  }
5575
5576
0
  case TEK_Complex:
5577
0
    return EmitComplexAssignmentLValue(E);
5578
5579
0
  case TEK_Aggregate:
5580
0
    return EmitAggExprToLValue(E);
5581
0
  }
5582
0
  llvm_unreachable("bad evaluation kind");
5583
0
}
5584
5585
0
LValue CodeGenFunction::EmitCallExprLValue(const CallExpr *E) {
5586
0
  RValue RV = EmitCallExpr(E);
5587
5588
0
  if (!RV.isScalar())
5589
0
    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5590
0
                          AlignmentSource::Decl);
5591
5592
0
  assert(E->getCallReturnType(getContext())->isReferenceType() &&
5593
0
         "Can't have a scalar return unless the return type is a "
5594
0
         "reference type!");
5595
5596
0
  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5597
0
}
5598
5599
0
LValue CodeGenFunction::EmitVAArgExprLValue(const VAArgExpr *E) {
5600
  // FIXME: This shouldn't require another copy.
5601
0
  return EmitAggExprToLValue(E);
5602
0
}
5603
5604
0
LValue CodeGenFunction::EmitCXXConstructLValue(const CXXConstructExpr *E) {
5605
0
  assert(E->getType()->getAsCXXRecordDecl()->hasTrivialDestructor()
5606
0
         && "binding l-value to type which needs a temporary");
5607
0
  AggValueSlot Slot = CreateAggTemp(E->getType());
5608
0
  EmitCXXConstructExpr(E, Slot);
5609
0
  return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5610
0
}
5611
5612
LValue
5613
0
CodeGenFunction::EmitCXXTypeidLValue(const CXXTypeidExpr *E) {
5614
0
  return MakeNaturalAlignAddrLValue(EmitCXXTypeidExpr(E), E->getType());
5615
0
}
5616
5617
0
Address CodeGenFunction::EmitCXXUuidofExpr(const CXXUuidofExpr *E) {
5618
0
  return CGM.GetAddrOfMSGuidDecl(E->getGuidDecl())
5619
0
      .withElementType(ConvertType(E->getType()));
5620
0
}
5621
5622
0
LValue CodeGenFunction::EmitCXXUuidofLValue(const CXXUuidofExpr *E) {
5623
0
  return MakeAddrLValue(EmitCXXUuidofExpr(E), E->getType(),
5624
0
                        AlignmentSource::Decl);
5625
0
}
5626
5627
LValue
5628
0
CodeGenFunction::EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E) {
5629
0
  AggValueSlot Slot = CreateAggTemp(E->getType(), "temp.lvalue");
5630
0
  Slot.setExternallyDestructed();
5631
0
  EmitAggExpr(E->getSubExpr(), Slot);
5632
0
  EmitCXXTemporary(E->getTemporary(), E->getType(), Slot.getAddress());
5633
0
  return MakeAddrLValue(Slot.getAddress(), E->getType(), AlignmentSource::Decl);
5634
0
}
5635
5636
0
LValue CodeGenFunction::EmitObjCMessageExprLValue(const ObjCMessageExpr *E) {
5637
0
  RValue RV = EmitObjCMessageExpr(E);
5638
5639
0
  if (!RV.isScalar())
5640
0
    return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5641
0
                          AlignmentSource::Decl);
5642
5643
0
  assert(E->getMethodDecl()->getReturnType()->isReferenceType() &&
5644
0
         "Can't have a scalar return unless the return type is a "
5645
0
         "reference type!");
5646
5647
0
  return MakeNaturalAlignPointeeAddrLValue(RV.getScalarVal(), E->getType());
5648
0
}
5649
5650
0
LValue CodeGenFunction::EmitObjCSelectorLValue(const ObjCSelectorExpr *E) {
5651
0
  Address V =
5652
0
    CGM.getObjCRuntime().GetAddrOfSelector(*this, E->getSelector());
5653
0
  return MakeAddrLValue(V, E->getType(), AlignmentSource::Decl);
5654
0
}
5655
5656
llvm::Value *CodeGenFunction::EmitIvarOffset(const ObjCInterfaceDecl *Interface,
5657
0
                                             const ObjCIvarDecl *Ivar) {
5658
0
  return CGM.getObjCRuntime().EmitIvarOffset(*this, Interface, Ivar);
5659
0
}
5660
5661
llvm::Value *
5662
CodeGenFunction::EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
5663
0
                                             const ObjCIvarDecl *Ivar) {
5664
0
  llvm::Value *OffsetValue = EmitIvarOffset(Interface, Ivar);
5665
0
  QualType PointerDiffType = getContext().getPointerDiffType();
5666
0
  return Builder.CreateZExtOrTrunc(OffsetValue,
5667
0
                                   getTypes().ConvertType(PointerDiffType));
5668
0
}
5669
5670
LValue CodeGenFunction::EmitLValueForIvar(QualType ObjectTy,
5671
                                          llvm::Value *BaseValue,
5672
                                          const ObjCIvarDecl *Ivar,
5673
0
                                          unsigned CVRQualifiers) {
5674
0
  return CGM.getObjCRuntime().EmitObjCValueForIvar(*this, ObjectTy, BaseValue,
5675
0
                                                   Ivar, CVRQualifiers);
5676
0
}
5677
5678
0
LValue CodeGenFunction::EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E) {
5679
  // FIXME: A lot of the code below could be shared with EmitMemberExpr.
5680
0
  llvm::Value *BaseValue = nullptr;
5681
0
  const Expr *BaseExpr = E->getBase();
5682
0
  Qualifiers BaseQuals;
5683
0
  QualType ObjectTy;
5684
0
  if (E->isArrow()) {
5685
0
    BaseValue = EmitScalarExpr(BaseExpr);
5686
0
    ObjectTy = BaseExpr->getType()->getPointeeType();
5687
0
    BaseQuals = ObjectTy.getQualifiers();
5688
0
  } else {
5689
0
    LValue BaseLV = EmitLValue(BaseExpr);
5690
0
    BaseValue = BaseLV.getPointer(*this);
5691
0
    ObjectTy = BaseExpr->getType();
5692
0
    BaseQuals = ObjectTy.getQualifiers();
5693
0
  }
5694
5695
0
  LValue LV =
5696
0
    EmitLValueForIvar(ObjectTy, BaseValue, E->getDecl(),
5697
0
                      BaseQuals.getCVRQualifiers());
5698
0
  setObjCGCLValueClass(getContext(), E, LV);
5699
0
  return LV;
5700
0
}
5701
5702
0
LValue CodeGenFunction::EmitStmtExprLValue(const StmtExpr *E) {
5703
  // Can only get l-value for message expression returning aggregate type
5704
0
  RValue RV = EmitAnyExprToTemp(E);
5705
0
  return MakeAddrLValue(RV.getAggregateAddress(), E->getType(),
5706
0
                        AlignmentSource::Decl);
5707
0
}
5708
5709
RValue CodeGenFunction::EmitCall(QualType CalleeType, const CGCallee &OrigCallee,
5710
                                 const CallExpr *E, ReturnValueSlot ReturnValue,
5711
0
                                 llvm::Value *Chain) {
5712
  // Get the actual function type. The callee type will always be a pointer to
5713
  // function type or a block pointer type.
5714
0
  assert(CalleeType->isFunctionPointerType() &&
5715
0
         "Call must have function pointer type!");
5716
5717
0
  const Decl *TargetDecl =
5718
0
      OrigCallee.getAbstractInfo().getCalleeDecl().getDecl();
5719
5720
0
  assert((!isa_and_present<FunctionDecl>(TargetDecl) ||
5721
0
          !cast<FunctionDecl>(TargetDecl)->isImmediateFunction()) &&
5722
0
         "trying to emit a call to an immediate function");
5723
5724
0
  CalleeType = getContext().getCanonicalType(CalleeType);
5725
5726
0
  auto PointeeType = cast<PointerType>(CalleeType)->getPointeeType();
5727
5728
0
  CGCallee Callee = OrigCallee;
5729
5730
0
  if (SanOpts.has(SanitizerKind::Function) &&
5731
0
      (!TargetDecl || !isa<FunctionDecl>(TargetDecl)) &&
5732
0
      !isa<FunctionNoProtoType>(PointeeType)) {
5733
0
    if (llvm::Constant *PrefixSig =
5734
0
            CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) {
5735
0
      SanitizerScope SanScope(this);
5736
0
      auto *TypeHash = getUBSanFunctionTypeHash(PointeeType);
5737
5738
0
      llvm::Type *PrefixSigType = PrefixSig->getType();
5739
0
      llvm::StructType *PrefixStructTy = llvm::StructType::get(
5740
0
          CGM.getLLVMContext(), {PrefixSigType, Int32Ty}, /*isPacked=*/true);
5741
5742
0
      llvm::Value *CalleePtr = Callee.getFunctionPointer();
5743
5744
      // On 32-bit Arm, the low bit of a function pointer indicates whether
5745
      // it's using the Arm or Thumb instruction set. The actual first
5746
      // instruction lives at the same address either way, so we must clear
5747
      // that low bit before using the function address to find the prefix
5748
      // structure.
5749
      //
5750
      // This applies to both Arm and Thumb target triples, because
5751
      // either one could be used in an interworking context where it
5752
      // might be passed function pointers of both types.
5753
0
      llvm::Value *AlignedCalleePtr;
5754
0
      if (CGM.getTriple().isARM() || CGM.getTriple().isThumb()) {
5755
0
        llvm::Value *CalleeAddress =
5756
0
            Builder.CreatePtrToInt(CalleePtr, IntPtrTy);
5757
0
        llvm::Value *Mask = llvm::ConstantInt::get(IntPtrTy, ~1);
5758
0
        llvm::Value *AlignedCalleeAddress =
5759
0
            Builder.CreateAnd(CalleeAddress, Mask);
5760
0
        AlignedCalleePtr =
5761
0
            Builder.CreateIntToPtr(AlignedCalleeAddress, CalleePtr->getType());
5762
0
      } else {
5763
0
        AlignedCalleePtr = CalleePtr;
5764
0
      }
5765
5766
0
      llvm::Value *CalleePrefixStruct = AlignedCalleePtr;
5767
0
      llvm::Value *CalleeSigPtr =
5768
0
          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 0);
5769
0
      llvm::Value *CalleeSig =
5770
0
          Builder.CreateAlignedLoad(PrefixSigType, CalleeSigPtr, getIntAlign());
5771
0
      llvm::Value *CalleeSigMatch = Builder.CreateICmpEQ(CalleeSig, PrefixSig);
5772
5773
0
      llvm::BasicBlock *Cont = createBasicBlock("cont");
5774
0
      llvm::BasicBlock *TypeCheck = createBasicBlock("typecheck");
5775
0
      Builder.CreateCondBr(CalleeSigMatch, TypeCheck, Cont);
5776
5777
0
      EmitBlock(TypeCheck);
5778
0
      llvm::Value *CalleeTypeHash = Builder.CreateAlignedLoad(
5779
0
          Int32Ty,
5780
0
          Builder.CreateConstGEP2_32(PrefixStructTy, CalleePrefixStruct, -1, 1),
5781
0
          getPointerAlign());
5782
0
      llvm::Value *CalleeTypeHashMatch =
5783
0
          Builder.CreateICmpEQ(CalleeTypeHash, TypeHash);
5784
0
      llvm::Constant *StaticData[] = {EmitCheckSourceLocation(E->getBeginLoc()),
5785
0
                                      EmitCheckTypeDescriptor(CalleeType)};
5786
0
      EmitCheck(std::make_pair(CalleeTypeHashMatch, SanitizerKind::Function),
5787
0
                SanitizerHandler::FunctionTypeMismatch, StaticData,
5788
0
                {CalleePtr});
5789
5790
0
      Builder.CreateBr(Cont);
5791
0
      EmitBlock(Cont);
5792
0
    }
5793
0
  }
5794
5795
0
  const auto *FnType = cast<FunctionType>(PointeeType);
5796
5797
  // If we are checking indirect calls and this call is indirect, check that the
5798
  // function pointer is a member of the bit set for the function type.
5799
0
  if (SanOpts.has(SanitizerKind::CFIICall) &&
5800
0
      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5801
0
    SanitizerScope SanScope(this);
5802
0
    EmitSanitizerStatReport(llvm::SanStat_CFI_ICall);
5803
5804
0
    llvm::Metadata *MD;
5805
0
    if (CGM.getCodeGenOpts().SanitizeCfiICallGeneralizePointers)
5806
0
      MD = CGM.CreateMetadataIdentifierGeneralized(QualType(FnType, 0));
5807
0
    else
5808
0
      MD = CGM.CreateMetadataIdentifierForType(QualType(FnType, 0));
5809
5810
0
    llvm::Value *TypeId = llvm::MetadataAsValue::get(getLLVMContext(), MD);
5811
5812
0
    llvm::Value *CalleePtr = Callee.getFunctionPointer();
5813
0
    llvm::Value *TypeTest = Builder.CreateCall(
5814
0
        CGM.getIntrinsic(llvm::Intrinsic::type_test), {CalleePtr, TypeId});
5815
5816
0
    auto CrossDsoTypeId = CGM.CreateCrossDsoCfiTypeId(MD);
5817
0
    llvm::Constant *StaticData[] = {
5818
0
        llvm::ConstantInt::get(Int8Ty, CFITCK_ICall),
5819
0
        EmitCheckSourceLocation(E->getBeginLoc()),
5820
0
        EmitCheckTypeDescriptor(QualType(FnType, 0)),
5821
0
    };
5822
0
    if (CGM.getCodeGenOpts().SanitizeCfiCrossDso && CrossDsoTypeId) {
5823
0
      EmitCfiSlowPathCheck(SanitizerKind::CFIICall, TypeTest, CrossDsoTypeId,
5824
0
                           CalleePtr, StaticData);
5825
0
    } else {
5826
0
      EmitCheck(std::make_pair(TypeTest, SanitizerKind::CFIICall),
5827
0
                SanitizerHandler::CFICheckFail, StaticData,
5828
0
                {CalleePtr, llvm::UndefValue::get(IntPtrTy)});
5829
0
    }
5830
0
  }
5831
5832
0
  CallArgList Args;
5833
0
  if (Chain)
5834
0
    Args.add(RValue::get(Chain), CGM.getContext().VoidPtrTy);
5835
5836
  // C++17 requires that we evaluate arguments to a call using assignment syntax
5837
  // right-to-left, and that we evaluate arguments to certain other operators
5838
  // left-to-right. Note that we allow this to override the order dictated by
5839
  // the calling convention on the MS ABI, which means that parameter
5840
  // destruction order is not necessarily reverse construction order.
5841
  // FIXME: Revisit this based on C++ committee response to unimplementability.
5842
0
  EvaluationOrder Order = EvaluationOrder::Default;
5843
0
  if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(E)) {
5844
0
    if (OCE->isAssignmentOp())
5845
0
      Order = EvaluationOrder::ForceRightToLeft;
5846
0
    else {
5847
0
      switch (OCE->getOperator()) {
5848
0
      case OO_LessLess:
5849
0
      case OO_GreaterGreater:
5850
0
      case OO_AmpAmp:
5851
0
      case OO_PipePipe:
5852
0
      case OO_Comma:
5853
0
      case OO_ArrowStar:
5854
0
        Order = EvaluationOrder::ForceLeftToRight;
5855
0
        break;
5856
0
      default:
5857
0
        break;
5858
0
      }
5859
0
    }
5860
0
  }
5861
5862
0
  EmitCallArgs(Args, dyn_cast<FunctionProtoType>(FnType), E->arguments(),
5863
0
               E->getDirectCallee(), /*ParamsToSkip*/ 0, Order);
5864
5865
0
  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeFreeFunctionCall(
5866
0
      Args, FnType, /*ChainCall=*/Chain);
5867
5868
  // C99 6.5.2.2p6:
5869
  //   If the expression that denotes the called function has a type
5870
  //   that does not include a prototype, [the default argument
5871
  //   promotions are performed]. If the number of arguments does not
5872
  //   equal the number of parameters, the behavior is undefined. If
5873
  //   the function is defined with a type that includes a prototype,
5874
  //   and either the prototype ends with an ellipsis (, ...) or the
5875
  //   types of the arguments after promotion are not compatible with
5876
  //   the types of the parameters, the behavior is undefined. If the
5877
  //   function is defined with a type that does not include a
5878
  //   prototype, and the types of the arguments after promotion are
5879
  //   not compatible with those of the parameters after promotion,
5880
  //   the behavior is undefined [except in some trivial cases].
5881
  // That is, in the general case, we should assume that a call
5882
  // through an unprototyped function type works like a *non-variadic*
5883
  // call.  The way we make this work is to cast to the exact type
5884
  // of the promoted arguments.
5885
  //
5886
  // Chain calls use this same code path to add the invisible chain parameter
5887
  // to the function type.
5888
0
  if (isa<FunctionNoProtoType>(FnType) || Chain) {
5889
0
    llvm::Type *CalleeTy = getTypes().GetFunctionType(FnInfo);
5890
0
    int AS = Callee.getFunctionPointer()->getType()->getPointerAddressSpace();
5891
0
    CalleeTy = CalleeTy->getPointerTo(AS);
5892
5893
0
    llvm::Value *CalleePtr = Callee.getFunctionPointer();
5894
0
    CalleePtr = Builder.CreateBitCast(CalleePtr, CalleeTy, "callee.knr.cast");
5895
0
    Callee.setFunctionPointer(CalleePtr);
5896
0
  }
5897
5898
  // HIP function pointer contains kernel handle when it is used in triple
5899
  // chevron. The kernel stub needs to be loaded from kernel handle and used
5900
  // as callee.
5901
0
  if (CGM.getLangOpts().HIP && !CGM.getLangOpts().CUDAIsDevice &&
5902
0
      isa<CUDAKernelCallExpr>(E) &&
5903
0
      (!TargetDecl || !isa<FunctionDecl>(TargetDecl))) {
5904
0
    llvm::Value *Handle = Callee.getFunctionPointer();
5905
0
    auto *Stub = Builder.CreateLoad(
5906
0
        Address(Handle, Handle->getType(), CGM.getPointerAlign()));
5907
0
    Callee.setFunctionPointer(Stub);
5908
0
  }
5909
0
  llvm::CallBase *CallOrInvoke = nullptr;
5910
0
  RValue Call = EmitCall(FnInfo, Callee, ReturnValue, Args, &CallOrInvoke,
5911
0
                         E == MustTailCall, E->getExprLoc());
5912
5913
  // Generate function declaration DISuprogram in order to be used
5914
  // in debug info about call sites.
5915
0
  if (CGDebugInfo *DI = getDebugInfo()) {
5916
0
    if (auto *CalleeDecl = dyn_cast_or_null<FunctionDecl>(TargetDecl)) {
5917
0
      FunctionArgList Args;
5918
0
      QualType ResTy = BuildFunctionArgList(CalleeDecl, Args);
5919
0
      DI->EmitFuncDeclForCallSite(CallOrInvoke,
5920
0
                                  DI->getFunctionType(CalleeDecl, ResTy, Args),
5921
0
                                  CalleeDecl);
5922
0
    }
5923
0
  }
5924
5925
0
  return Call;
5926
0
}
5927
5928
LValue CodeGenFunction::
5929
0
EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E) {
5930
0
  Address BaseAddr = Address::invalid();
5931
0
  if (E->getOpcode() == BO_PtrMemI) {
5932
0
    BaseAddr = EmitPointerWithAlignment(E->getLHS());
5933
0
  } else {
5934
0
    BaseAddr = EmitLValue(E->getLHS()).getAddress(*this);
5935
0
  }
5936
5937
0
  llvm::Value *OffsetV = EmitScalarExpr(E->getRHS());
5938
0
  const auto *MPT = E->getRHS()->getType()->castAs<MemberPointerType>();
5939
5940
0
  LValueBaseInfo BaseInfo;
5941
0
  TBAAAccessInfo TBAAInfo;
5942
0
  Address MemberAddr =
5943
0
    EmitCXXMemberDataPointerAddress(E, BaseAddr, OffsetV, MPT, &BaseInfo,
5944
0
                                    &TBAAInfo);
5945
5946
0
  return MakeAddrLValue(MemberAddr, MPT->getPointeeType(), BaseInfo, TBAAInfo);
5947
0
}
5948
5949
/// Given the address of a temporary variable, produce an r-value of
5950
/// its type.
5951
RValue CodeGenFunction::convertTempToRValue(Address addr,
5952
                                            QualType type,
5953
0
                                            SourceLocation loc) {
5954
0
  LValue lvalue = MakeAddrLValue(addr, type, AlignmentSource::Decl);
5955
0
  switch (getEvaluationKind(type)) {
5956
0
  case TEK_Complex:
5957
0
    return RValue::getComplex(EmitLoadOfComplex(lvalue, loc));
5958
0
  case TEK_Aggregate:
5959
0
    return lvalue.asAggregateRValue(*this);
5960
0
  case TEK_Scalar:
5961
0
    return RValue::get(EmitLoadOfScalar(lvalue, loc));
5962
0
  }
5963
0
  llvm_unreachable("bad evaluation kind");
5964
0
}
5965
5966
0
void CodeGenFunction::SetFPAccuracy(llvm::Value *Val, float Accuracy) {
5967
0
  assert(Val->getType()->isFPOrFPVectorTy());
5968
0
  if (Accuracy == 0.0 || !isa<llvm::Instruction>(Val))
5969
0
    return;
5970
5971
0
  llvm::MDBuilder MDHelper(getLLVMContext());
5972
0
  llvm::MDNode *Node = MDHelper.createFPMath(Accuracy);
5973
5974
0
  cast<llvm::Instruction>(Val)->setMetadata(llvm::LLVMContext::MD_fpmath, Node);
5975
0
}
5976
5977
0
void CodeGenFunction::SetSqrtFPAccuracy(llvm::Value *Val) {
5978
0
  llvm::Type *EltTy = Val->getType()->getScalarType();
5979
0
  if (!EltTy->isFloatTy())
5980
0
    return;
5981
5982
0
  if ((getLangOpts().OpenCL &&
5983
0
       !CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
5984
0
      (getLangOpts().HIP && getLangOpts().CUDAIsDevice &&
5985
0
       !CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
5986
    // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 3ulp
5987
    //
5988
    // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
5989
    // build option allows an application to specify that single precision
5990
    // floating-point divide (x/y and 1/x) and sqrt used in the program
5991
    // source are correctly rounded.
5992
    //
5993
    // TODO: CUDA has a prec-sqrt flag
5994
0
    SetFPAccuracy(Val, 3.0f);
5995
0
  }
5996
0
}
5997
5998
0
void CodeGenFunction::SetDivFPAccuracy(llvm::Value *Val) {
5999
0
  llvm::Type *EltTy = Val->getType()->getScalarType();
6000
0
  if (!EltTy->isFloatTy())
6001
0
    return;
6002
6003
0
  if ((getLangOpts().OpenCL &&
6004
0
       !CGM.getCodeGenOpts().OpenCLCorrectlyRoundedDivSqrt) ||
6005
0
      (getLangOpts().HIP && getLangOpts().CUDAIsDevice &&
6006
0
       !CGM.getCodeGenOpts().HIPCorrectlyRoundedDivSqrt)) {
6007
    // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp
6008
    //
6009
    // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt
6010
    // build option allows an application to specify that single precision
6011
    // floating-point divide (x/y and 1/x) and sqrt used in the program
6012
    // source are correctly rounded.
6013
    //
6014
    // TODO: CUDA has a prec-div flag
6015
0
    SetFPAccuracy(Val, 2.5f);
6016
0
  }
6017
0
}
6018
6019
namespace {
6020
  struct LValueOrRValue {
6021
    LValue LV;
6022
    RValue RV;
6023
  };
6024
}
6025
6026
static LValueOrRValue emitPseudoObjectExpr(CodeGenFunction &CGF,
6027
                                           const PseudoObjectExpr *E,
6028
                                           bool forLValue,
6029
0
                                           AggValueSlot slot) {
6030
0
  SmallVector<CodeGenFunction::OpaqueValueMappingData, 4> opaques;
6031
6032
  // Find the result expression, if any.
6033
0
  const Expr *resultExpr = E->getResultExpr();
6034
0
  LValueOrRValue result;
6035
6036
0
  for (PseudoObjectExpr::const_semantics_iterator
6037
0
         i = E->semantics_begin(), e = E->semantics_end(); i != e; ++i) {
6038
0
    const Expr *semantic = *i;
6039
6040
    // If this semantic expression is an opaque value, bind it
6041
    // to the result of its source expression.
6042
0
    if (const auto *ov = dyn_cast<OpaqueValueExpr>(semantic)) {
6043
      // Skip unique OVEs.
6044
0
      if (ov->isUnique()) {
6045
0
        assert(ov != resultExpr &&
6046
0
               "A unique OVE cannot be used as the result expression");
6047
0
        continue;
6048
0
      }
6049
6050
      // If this is the result expression, we may need to evaluate
6051
      // directly into the slot.
6052
0
      typedef CodeGenFunction::OpaqueValueMappingData OVMA;
6053
0
      OVMA opaqueData;
6054
0
      if (ov == resultExpr && ov->isPRValue() && !forLValue &&
6055
0
          CodeGenFunction::hasAggregateEvaluationKind(ov->getType())) {
6056
0
        CGF.EmitAggExpr(ov->getSourceExpr(), slot);
6057
0
        LValue LV = CGF.MakeAddrLValue(slot.getAddress(), ov->getType(),
6058
0
                                       AlignmentSource::Decl);
6059
0
        opaqueData = OVMA::bind(CGF, ov, LV);
6060
0
        result.RV = slot.asRValue();
6061
6062
      // Otherwise, emit as normal.
6063
0
      } else {
6064
0
        opaqueData = OVMA::bind(CGF, ov, ov->getSourceExpr());
6065
6066
        // If this is the result, also evaluate the result now.
6067
0
        if (ov == resultExpr) {
6068
0
          if (forLValue)
6069
0
            result.LV = CGF.EmitLValue(ov);
6070
0
          else
6071
0
            result.RV = CGF.EmitAnyExpr(ov, slot);
6072
0
        }
6073
0
      }
6074
6075
0
      opaques.push_back(opaqueData);
6076
6077
    // Otherwise, if the expression is the result, evaluate it
6078
    // and remember the result.
6079
0
    } else if (semantic == resultExpr) {
6080
0
      if (forLValue)
6081
0
        result.LV = CGF.EmitLValue(semantic);
6082
0
      else
6083
0
        result.RV = CGF.EmitAnyExpr(semantic, slot);
6084
6085
    // Otherwise, evaluate the expression in an ignored context.
6086
0
    } else {
6087
0
      CGF.EmitIgnoredExpr(semantic);
6088
0
    }
6089
0
  }
6090
6091
  // Unbind all the opaques now.
6092
0
  for (unsigned i = 0, e = opaques.size(); i != e; ++i)
6093
0
    opaques[i].unbind(CGF);
6094
6095
0
  return result;
6096
0
}
6097
6098
RValue CodeGenFunction::EmitPseudoObjectRValue(const PseudoObjectExpr *E,
6099
0
                                               AggValueSlot slot) {
6100
0
  return emitPseudoObjectExpr(*this, E, false, slot).RV;
6101
0
}
6102
6103
0
LValue CodeGenFunction::EmitPseudoObjectLValue(const PseudoObjectExpr *E) {
6104
0
  return emitPseudoObjectExpr(*this, E, true, AggValueSlot::ignored()).LV;
6105
0
}