Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/CodeGen/CGExprConstant.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This contains code to emit Constant Expr nodes as LLVM code.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "CGCXXABI.h"
14
#include "CGObjCRuntime.h"
15
#include "CGRecordLayout.h"
16
#include "CodeGenFunction.h"
17
#include "CodeGenModule.h"
18
#include "ConstantEmitter.h"
19
#include "TargetInfo.h"
20
#include "clang/AST/APValue.h"
21
#include "clang/AST/ASTContext.h"
22
#include "clang/AST/Attr.h"
23
#include "clang/AST/RecordLayout.h"
24
#include "clang/AST/StmtVisitor.h"
25
#include "clang/Basic/Builtins.h"
26
#include "llvm/ADT/STLExtras.h"
27
#include "llvm/ADT/Sequence.h"
28
#include "llvm/Analysis/ConstantFolding.h"
29
#include "llvm/IR/Constants.h"
30
#include "llvm/IR/DataLayout.h"
31
#include "llvm/IR/Function.h"
32
#include "llvm/IR/GlobalVariable.h"
33
#include <optional>
34
using namespace clang;
35
using namespace CodeGen;
36
37
//===----------------------------------------------------------------------===//
38
//                            ConstantAggregateBuilder
39
//===----------------------------------------------------------------------===//
40
41
namespace {
42
class ConstExprEmitter;
43
44
struct ConstantAggregateBuilderUtils {
45
  CodeGenModule &CGM;
46
47
0
  ConstantAggregateBuilderUtils(CodeGenModule &CGM) : CGM(CGM) {}
48
49
0
  CharUnits getAlignment(const llvm::Constant *C) const {
50
0
    return CharUnits::fromQuantity(
51
0
        CGM.getDataLayout().getABITypeAlign(C->getType()));
52
0
  }
53
54
0
  CharUnits getSize(llvm::Type *Ty) const {
55
0
    return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(Ty));
56
0
  }
57
58
0
  CharUnits getSize(const llvm::Constant *C) const {
59
0
    return getSize(C->getType());
60
0
  }
61
62
0
  llvm::Constant *getPadding(CharUnits PadSize) const {
63
0
    llvm::Type *Ty = CGM.CharTy;
64
0
    if (PadSize > CharUnits::One())
65
0
      Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity());
66
0
    return llvm::UndefValue::get(Ty);
67
0
  }
68
69
0
  llvm::Constant *getZeroes(CharUnits ZeroSize) const {
70
0
    llvm::Type *Ty = llvm::ArrayType::get(CGM.CharTy, ZeroSize.getQuantity());
71
0
    return llvm::ConstantAggregateZero::get(Ty);
72
0
  }
73
};
74
75
/// Incremental builder for an llvm::Constant* holding a struct or array
76
/// constant.
77
class ConstantAggregateBuilder : private ConstantAggregateBuilderUtils {
78
  /// The elements of the constant. These two arrays must have the same size;
79
  /// Offsets[i] describes the offset of Elems[i] within the constant. The
80
  /// elements are kept in increasing offset order, and we ensure that there
81
  /// is no overlap: Offsets[i+1] >= Offsets[i] + getSize(Elemes[i]).
82
  ///
83
  /// This may contain explicit padding elements (in order to create a
84
  /// natural layout), but need not. Gaps between elements are implicitly
85
  /// considered to be filled with undef.
86
  llvm::SmallVector<llvm::Constant*, 32> Elems;
87
  llvm::SmallVector<CharUnits, 32> Offsets;
88
89
  /// The size of the constant (the maximum end offset of any added element).
90
  /// May be larger than the end of Elems.back() if we split the last element
91
  /// and removed some trailing undefs.
92
  CharUnits Size = CharUnits::Zero();
93
94
  /// This is true only if laying out Elems in order as the elements of a
95
  /// non-packed LLVM struct will give the correct layout.
96
  bool NaturalLayout = true;
97
98
  bool split(size_t Index, CharUnits Hint);
99
  std::optional<size_t> splitAt(CharUnits Pos);
100
101
  static llvm::Constant *buildFrom(CodeGenModule &CGM,
102
                                   ArrayRef<llvm::Constant *> Elems,
103
                                   ArrayRef<CharUnits> Offsets,
104
                                   CharUnits StartOffset, CharUnits Size,
105
                                   bool NaturalLayout, llvm::Type *DesiredTy,
106
                                   bool AllowOversized);
107
108
public:
109
  ConstantAggregateBuilder(CodeGenModule &CGM)
110
0
      : ConstantAggregateBuilderUtils(CGM) {}
111
112
  /// Update or overwrite the value starting at \p Offset with \c C.
113
  ///
114
  /// \param AllowOverwrite If \c true, this constant might overwrite (part of)
115
  ///        a constant that has already been added. This flag is only used to
116
  ///        detect bugs.
117
  bool add(llvm::Constant *C, CharUnits Offset, bool AllowOverwrite);
118
119
  /// Update or overwrite the bits starting at \p OffsetInBits with \p Bits.
120
  bool addBits(llvm::APInt Bits, uint64_t OffsetInBits, bool AllowOverwrite);
121
122
  /// Attempt to condense the value starting at \p Offset to a constant of type
123
  /// \p DesiredTy.
124
  void condense(CharUnits Offset, llvm::Type *DesiredTy);
125
126
  /// Produce a constant representing the entire accumulated value, ideally of
127
  /// the specified type. If \p AllowOversized, the constant might be larger
128
  /// than implied by \p DesiredTy (eg, if there is a flexible array member).
129
  /// Otherwise, the constant will be of exactly the same size as \p DesiredTy
130
  /// even if we can't represent it as that type.
131
0
  llvm::Constant *build(llvm::Type *DesiredTy, bool AllowOversized) const {
132
0
    return buildFrom(CGM, Elems, Offsets, CharUnits::Zero(), Size,
133
0
                     NaturalLayout, DesiredTy, AllowOversized);
134
0
  }
135
};
136
137
template<typename Container, typename Range = std::initializer_list<
138
                                 typename Container::value_type>>
139
0
static void replace(Container &C, size_t BeginOff, size_t EndOff, Range Vals) {
140
0
  assert(BeginOff <= EndOff && "invalid replacement range");
141
0
  llvm::replace(C, C.begin() + BeginOff, C.begin() + EndOff, Vals);
142
0
}
Unexecuted instantiation: CGExprConstant.cpp:void (anonymous namespace)::replace<llvm::SmallVector<llvm::Constant*, 32u>, llvm::iterator_range<llvm::mapped_iterator<llvm::detail::SafeIntIterator<unsigned int, false>, (anonymous namespace)::ConstantAggregateBuilder::split(unsigned long, clang::CharUnits)::$_0, llvm::Constant*> > >(llvm::SmallVector<llvm::Constant*, 32u>&, unsigned long, unsigned long, llvm::iterator_range<llvm::mapped_iterator<llvm::detail::SafeIntIterator<unsigned int, false>, (anonymous namespace)::ConstantAggregateBuilder::split(unsigned long, clang::CharUnits)::$_0, llvm::Constant*> >)
Unexecuted instantiation: CGExprConstant.cpp:void (anonymous namespace)::replace<llvm::SmallVector<clang::CharUnits, 32u>, llvm::iterator_range<llvm::mapped_iterator<llvm::detail::SafeIntIterator<unsigned int, false>, (anonymous namespace)::ConstantAggregateBuilder::split(unsigned long, clang::CharUnits)::$_1, clang::CharUnits> > >(llvm::SmallVector<clang::CharUnits, 32u>&, unsigned long, unsigned long, llvm::iterator_range<llvm::mapped_iterator<llvm::detail::SafeIntIterator<unsigned int, false>, (anonymous namespace)::ConstantAggregateBuilder::split(unsigned long, clang::CharUnits)::$_1, clang::CharUnits> >)
Unexecuted instantiation: CGExprConstant.cpp:void (anonymous namespace)::replace<llvm::SmallVector<clang::CharUnits, 32u>, llvm::iterator_range<llvm::mapped_iterator<llvm::detail::SafeIntIterator<unsigned int, false>, (anonymous namespace)::ConstantAggregateBuilder::split(unsigned long, clang::CharUnits)::$_2, clang::CharUnits> > >(llvm::SmallVector<clang::CharUnits, 32u>&, unsigned long, unsigned long, llvm::iterator_range<llvm::mapped_iterator<llvm::detail::SafeIntIterator<unsigned int, false>, (anonymous namespace)::ConstantAggregateBuilder::split(unsigned long, clang::CharUnits)::$_2, clang::CharUnits> >)
Unexecuted instantiation: CGExprConstant.cpp:void (anonymous namespace)::replace<llvm::SmallVector<llvm::Constant*, 32u>, llvm::iterator_range<llvm::mapped_iterator<llvm::detail::SafeIntIterator<unsigned int, false>, (anonymous namespace)::ConstantAggregateBuilder::split(unsigned long, clang::CharUnits)::$_3, llvm::Constant*> > >(llvm::SmallVector<llvm::Constant*, 32u>&, unsigned long, unsigned long, llvm::iterator_range<llvm::mapped_iterator<llvm::detail::SafeIntIterator<unsigned int, false>, (anonymous namespace)::ConstantAggregateBuilder::split(unsigned long, clang::CharUnits)::$_3, llvm::Constant*> >)
Unexecuted instantiation: CGExprConstant.cpp:void (anonymous namespace)::replace<llvm::SmallVector<clang::CharUnits, 32u>, llvm::iterator_range<llvm::mapped_iterator<llvm::detail::SafeIntIterator<unsigned int, false>, (anonymous namespace)::ConstantAggregateBuilder::split(unsigned long, clang::CharUnits)::$_4, clang::CharUnits> > >(llvm::SmallVector<clang::CharUnits, 32u>&, unsigned long, unsigned long, llvm::iterator_range<llvm::mapped_iterator<llvm::detail::SafeIntIterator<unsigned int, false>, (anonymous namespace)::ConstantAggregateBuilder::split(unsigned long, clang::CharUnits)::$_4, clang::CharUnits> >)
Unexecuted instantiation: CGExprConstant.cpp:void (anonymous namespace)::replace<llvm::SmallVector<llvm::Constant*, 32u>, std::initializer_list<llvm::Constant*> >(llvm::SmallVector<llvm::Constant*, 32u>&, unsigned long, unsigned long, std::initializer_list<llvm::Constant*>)
Unexecuted instantiation: CGExprConstant.cpp:void (anonymous namespace)::replace<llvm::SmallVector<clang::CharUnits, 32u>, std::initializer_list<clang::CharUnits> >(llvm::SmallVector<clang::CharUnits, 32u>&, unsigned long, unsigned long, std::initializer_list<clang::CharUnits>)
143
144
bool ConstantAggregateBuilder::add(llvm::Constant *C, CharUnits Offset,
145
0
                          bool AllowOverwrite) {
146
  // Common case: appending to a layout.
147
0
  if (Offset >= Size) {
148
0
    CharUnits Align = getAlignment(C);
149
0
    CharUnits AlignedSize = Size.alignTo(Align);
150
0
    if (AlignedSize > Offset || Offset.alignTo(Align) != Offset)
151
0
      NaturalLayout = false;
152
0
    else if (AlignedSize < Offset) {
153
0
      Elems.push_back(getPadding(Offset - Size));
154
0
      Offsets.push_back(Size);
155
0
    }
156
0
    Elems.push_back(C);
157
0
    Offsets.push_back(Offset);
158
0
    Size = Offset + getSize(C);
159
0
    return true;
160
0
  }
161
162
  // Uncommon case: constant overlaps what we've already created.
163
0
  std::optional<size_t> FirstElemToReplace = splitAt(Offset);
164
0
  if (!FirstElemToReplace)
165
0
    return false;
166
167
0
  CharUnits CSize = getSize(C);
168
0
  std::optional<size_t> LastElemToReplace = splitAt(Offset + CSize);
169
0
  if (!LastElemToReplace)
170
0
    return false;
171
172
0
  assert((FirstElemToReplace == LastElemToReplace || AllowOverwrite) &&
173
0
         "unexpectedly overwriting field");
174
175
0
  replace(Elems, *FirstElemToReplace, *LastElemToReplace, {C});
176
0
  replace(Offsets, *FirstElemToReplace, *LastElemToReplace, {Offset});
177
0
  Size = std::max(Size, Offset + CSize);
178
0
  NaturalLayout = false;
179
0
  return true;
180
0
}
181
182
bool ConstantAggregateBuilder::addBits(llvm::APInt Bits, uint64_t OffsetInBits,
183
0
                              bool AllowOverwrite) {
184
0
  const ASTContext &Context = CGM.getContext();
185
0
  const uint64_t CharWidth = CGM.getContext().getCharWidth();
186
187
  // Offset of where we want the first bit to go within the bits of the
188
  // current char.
189
0
  unsigned OffsetWithinChar = OffsetInBits % CharWidth;
190
191
  // We split bit-fields up into individual bytes. Walk over the bytes and
192
  // update them.
193
0
  for (CharUnits OffsetInChars =
194
0
           Context.toCharUnitsFromBits(OffsetInBits - OffsetWithinChar);
195
0
       /**/; ++OffsetInChars) {
196
    // Number of bits we want to fill in this char.
197
0
    unsigned WantedBits =
198
0
        std::min((uint64_t)Bits.getBitWidth(), CharWidth - OffsetWithinChar);
199
200
    // Get a char containing the bits we want in the right places. The other
201
    // bits have unspecified values.
202
0
    llvm::APInt BitsThisChar = Bits;
203
0
    if (BitsThisChar.getBitWidth() < CharWidth)
204
0
      BitsThisChar = BitsThisChar.zext(CharWidth);
205
0
    if (CGM.getDataLayout().isBigEndian()) {
206
      // Figure out how much to shift by. We may need to left-shift if we have
207
      // less than one byte of Bits left.
208
0
      int Shift = Bits.getBitWidth() - CharWidth + OffsetWithinChar;
209
0
      if (Shift > 0)
210
0
        BitsThisChar.lshrInPlace(Shift);
211
0
      else if (Shift < 0)
212
0
        BitsThisChar = BitsThisChar.shl(-Shift);
213
0
    } else {
214
0
      BitsThisChar = BitsThisChar.shl(OffsetWithinChar);
215
0
    }
216
0
    if (BitsThisChar.getBitWidth() > CharWidth)
217
0
      BitsThisChar = BitsThisChar.trunc(CharWidth);
218
219
0
    if (WantedBits == CharWidth) {
220
      // Got a full byte: just add it directly.
221
0
      add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
222
0
          OffsetInChars, AllowOverwrite);
223
0
    } else {
224
      // Partial byte: update the existing integer if there is one. If we
225
      // can't split out a 1-CharUnit range to update, then we can't add
226
      // these bits and fail the entire constant emission.
227
0
      std::optional<size_t> FirstElemToUpdate = splitAt(OffsetInChars);
228
0
      if (!FirstElemToUpdate)
229
0
        return false;
230
0
      std::optional<size_t> LastElemToUpdate =
231
0
          splitAt(OffsetInChars + CharUnits::One());
232
0
      if (!LastElemToUpdate)
233
0
        return false;
234
0
      assert(*LastElemToUpdate - *FirstElemToUpdate < 2 &&
235
0
             "should have at most one element covering one byte");
236
237
      // Figure out which bits we want and discard the rest.
238
0
      llvm::APInt UpdateMask(CharWidth, 0);
239
0
      if (CGM.getDataLayout().isBigEndian())
240
0
        UpdateMask.setBits(CharWidth - OffsetWithinChar - WantedBits,
241
0
                           CharWidth - OffsetWithinChar);
242
0
      else
243
0
        UpdateMask.setBits(OffsetWithinChar, OffsetWithinChar + WantedBits);
244
0
      BitsThisChar &= UpdateMask;
245
246
0
      if (*FirstElemToUpdate == *LastElemToUpdate ||
247
0
          Elems[*FirstElemToUpdate]->isNullValue() ||
248
0
          isa<llvm::UndefValue>(Elems[*FirstElemToUpdate])) {
249
        // All existing bits are either zero or undef.
250
0
        add(llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar),
251
0
            OffsetInChars, /*AllowOverwrite*/ true);
252
0
      } else {
253
0
        llvm::Constant *&ToUpdate = Elems[*FirstElemToUpdate];
254
        // In order to perform a partial update, we need the existing bitwise
255
        // value, which we can only extract for a constant int.
256
0
        auto *CI = dyn_cast<llvm::ConstantInt>(ToUpdate);
257
0
        if (!CI)
258
0
          return false;
259
        // Because this is a 1-CharUnit range, the constant occupying it must
260
        // be exactly one CharUnit wide.
261
0
        assert(CI->getBitWidth() == CharWidth && "splitAt failed");
262
0
        assert((!(CI->getValue() & UpdateMask) || AllowOverwrite) &&
263
0
               "unexpectedly overwriting bitfield");
264
0
        BitsThisChar |= (CI->getValue() & ~UpdateMask);
265
0
        ToUpdate = llvm::ConstantInt::get(CGM.getLLVMContext(), BitsThisChar);
266
0
      }
267
0
    }
268
269
    // Stop if we've added all the bits.
270
0
    if (WantedBits == Bits.getBitWidth())
271
0
      break;
272
273
    // Remove the consumed bits from Bits.
274
0
    if (!CGM.getDataLayout().isBigEndian())
275
0
      Bits.lshrInPlace(WantedBits);
276
0
    Bits = Bits.trunc(Bits.getBitWidth() - WantedBits);
277
278
    // The remanining bits go at the start of the following bytes.
279
0
    OffsetWithinChar = 0;
280
0
  }
281
282
0
  return true;
283
0
}
284
285
/// Returns a position within Elems and Offsets such that all elements
286
/// before the returned index end before Pos and all elements at or after
287
/// the returned index begin at or after Pos. Splits elements as necessary
288
/// to ensure this. Returns std::nullopt if we find something we can't split.
289
0
std::optional<size_t> ConstantAggregateBuilder::splitAt(CharUnits Pos) {
290
0
  if (Pos >= Size)
291
0
    return Offsets.size();
292
293
0
  while (true) {
294
0
    auto FirstAfterPos = llvm::upper_bound(Offsets, Pos);
295
0
    if (FirstAfterPos == Offsets.begin())
296
0
      return 0;
297
298
    // If we already have an element starting at Pos, we're done.
299
0
    size_t LastAtOrBeforePosIndex = FirstAfterPos - Offsets.begin() - 1;
300
0
    if (Offsets[LastAtOrBeforePosIndex] == Pos)
301
0
      return LastAtOrBeforePosIndex;
302
303
    // We found an element starting before Pos. Check for overlap.
304
0
    if (Offsets[LastAtOrBeforePosIndex] +
305
0
        getSize(Elems[LastAtOrBeforePosIndex]) <= Pos)
306
0
      return LastAtOrBeforePosIndex + 1;
307
308
    // Try to decompose it into smaller constants.
309
0
    if (!split(LastAtOrBeforePosIndex, Pos))
310
0
      return std::nullopt;
311
0
  }
312
0
}
313
314
/// Split the constant at index Index, if possible. Return true if we did.
315
/// Hint indicates the location at which we'd like to split, but may be
316
/// ignored.
317
0
bool ConstantAggregateBuilder::split(size_t Index, CharUnits Hint) {
318
0
  NaturalLayout = false;
319
0
  llvm::Constant *C = Elems[Index];
320
0
  CharUnits Offset = Offsets[Index];
321
322
0
  if (auto *CA = dyn_cast<llvm::ConstantAggregate>(C)) {
323
    // Expand the sequence into its contained elements.
324
    // FIXME: This assumes vector elements are byte-sized.
325
0
    replace(Elems, Index, Index + 1,
326
0
            llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
327
0
                            [&](unsigned Op) { return CA->getOperand(Op); }));
328
0
    if (isa<llvm::ArrayType>(CA->getType()) ||
329
0
        isa<llvm::VectorType>(CA->getType())) {
330
      // Array or vector.
331
0
      llvm::Type *ElemTy =
332
0
          llvm::GetElementPtrInst::getTypeAtIndex(CA->getType(), (uint64_t)0);
333
0
      CharUnits ElemSize = getSize(ElemTy);
334
0
      replace(
335
0
          Offsets, Index, Index + 1,
336
0
          llvm::map_range(llvm::seq(0u, CA->getNumOperands()),
337
0
                          [&](unsigned Op) { return Offset + Op * ElemSize; }));
338
0
    } else {
339
      // Must be a struct.
340
0
      auto *ST = cast<llvm::StructType>(CA->getType());
341
0
      const llvm::StructLayout *Layout =
342
0
          CGM.getDataLayout().getStructLayout(ST);
343
0
      replace(Offsets, Index, Index + 1,
344
0
              llvm::map_range(
345
0
                  llvm::seq(0u, CA->getNumOperands()), [&](unsigned Op) {
346
0
                    return Offset + CharUnits::fromQuantity(
347
0
                                        Layout->getElementOffset(Op));
348
0
                  }));
349
0
    }
350
0
    return true;
351
0
  }
352
353
0
  if (auto *CDS = dyn_cast<llvm::ConstantDataSequential>(C)) {
354
    // Expand the sequence into its contained elements.
355
    // FIXME: This assumes vector elements are byte-sized.
356
    // FIXME: If possible, split into two ConstantDataSequentials at Hint.
357
0
    CharUnits ElemSize = getSize(CDS->getElementType());
358
0
    replace(Elems, Index, Index + 1,
359
0
            llvm::map_range(llvm::seq(0u, CDS->getNumElements()),
360
0
                            [&](unsigned Elem) {
361
0
                              return CDS->getElementAsConstant(Elem);
362
0
                            }));
363
0
    replace(Offsets, Index, Index + 1,
364
0
            llvm::map_range(
365
0
                llvm::seq(0u, CDS->getNumElements()),
366
0
                [&](unsigned Elem) { return Offset + Elem * ElemSize; }));
367
0
    return true;
368
0
  }
369
370
0
  if (isa<llvm::ConstantAggregateZero>(C)) {
371
    // Split into two zeros at the hinted offset.
372
0
    CharUnits ElemSize = getSize(C);
373
0
    assert(Hint > Offset && Hint < Offset + ElemSize && "nothing to split");
374
0
    replace(Elems, Index, Index + 1,
375
0
            {getZeroes(Hint - Offset), getZeroes(Offset + ElemSize - Hint)});
376
0
    replace(Offsets, Index, Index + 1, {Offset, Hint});
377
0
    return true;
378
0
  }
379
380
0
  if (isa<llvm::UndefValue>(C)) {
381
    // Drop undef; it doesn't contribute to the final layout.
382
0
    replace(Elems, Index, Index + 1, {});
383
0
    replace(Offsets, Index, Index + 1, {});
384
0
    return true;
385
0
  }
386
387
  // FIXME: We could split a ConstantInt if the need ever arose.
388
  // We don't need to do this to handle bit-fields because we always eagerly
389
  // split them into 1-byte chunks.
390
391
0
  return false;
392
0
}
393
394
static llvm::Constant *
395
EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
396
                  llvm::Type *CommonElementType, unsigned ArrayBound,
397
                  SmallVectorImpl<llvm::Constant *> &Elements,
398
                  llvm::Constant *Filler);
399
400
llvm::Constant *ConstantAggregateBuilder::buildFrom(
401
    CodeGenModule &CGM, ArrayRef<llvm::Constant *> Elems,
402
    ArrayRef<CharUnits> Offsets, CharUnits StartOffset, CharUnits Size,
403
0
    bool NaturalLayout, llvm::Type *DesiredTy, bool AllowOversized) {
404
0
  ConstantAggregateBuilderUtils Utils(CGM);
405
406
0
  if (Elems.empty())
407
0
    return llvm::UndefValue::get(DesiredTy);
408
409
0
  auto Offset = [&](size_t I) { return Offsets[I] - StartOffset; };
410
411
  // If we want an array type, see if all the elements are the same type and
412
  // appropriately spaced.
413
0
  if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(DesiredTy)) {
414
0
    assert(!AllowOversized && "oversized array emission not supported");
415
416
0
    bool CanEmitArray = true;
417
0
    llvm::Type *CommonType = Elems[0]->getType();
418
0
    llvm::Constant *Filler = llvm::Constant::getNullValue(CommonType);
419
0
    CharUnits ElemSize = Utils.getSize(ATy->getElementType());
420
0
    SmallVector<llvm::Constant*, 32> ArrayElements;
421
0
    for (size_t I = 0; I != Elems.size(); ++I) {
422
      // Skip zeroes; we'll use a zero value as our array filler.
423
0
      if (Elems[I]->isNullValue())
424
0
        continue;
425
426
      // All remaining elements must be the same type.
427
0
      if (Elems[I]->getType() != CommonType ||
428
0
          Offset(I) % ElemSize != 0) {
429
0
        CanEmitArray = false;
430
0
        break;
431
0
      }
432
0
      ArrayElements.resize(Offset(I) / ElemSize + 1, Filler);
433
0
      ArrayElements.back() = Elems[I];
434
0
    }
435
436
0
    if (CanEmitArray) {
437
0
      return EmitArrayConstant(CGM, ATy, CommonType, ATy->getNumElements(),
438
0
                               ArrayElements, Filler);
439
0
    }
440
441
    // Can't emit as an array, carry on to emit as a struct.
442
0
  }
443
444
  // The size of the constant we plan to generate.  This is usually just
445
  // the size of the initialized type, but in AllowOversized mode (i.e.
446
  // flexible array init), it can be larger.
447
0
  CharUnits DesiredSize = Utils.getSize(DesiredTy);
448
0
  if (Size > DesiredSize) {
449
0
    assert(AllowOversized && "Elems are oversized");
450
0
    DesiredSize = Size;
451
0
  }
452
453
  // The natural alignment of an unpacked LLVM struct with the given elements.
454
0
  CharUnits Align = CharUnits::One();
455
0
  for (llvm::Constant *C : Elems)
456
0
    Align = std::max(Align, Utils.getAlignment(C));
457
458
  // The natural size of an unpacked LLVM struct with the given elements.
459
0
  CharUnits AlignedSize = Size.alignTo(Align);
460
461
0
  bool Packed = false;
462
0
  ArrayRef<llvm::Constant*> UnpackedElems = Elems;
463
0
  llvm::SmallVector<llvm::Constant*, 32> UnpackedElemStorage;
464
0
  if (DesiredSize < AlignedSize || DesiredSize.alignTo(Align) != DesiredSize) {
465
    // The natural layout would be too big; force use of a packed layout.
466
0
    NaturalLayout = false;
467
0
    Packed = true;
468
0
  } else if (DesiredSize > AlignedSize) {
469
    // The natural layout would be too small. Add padding to fix it. (This
470
    // is ignored if we choose a packed layout.)
471
0
    UnpackedElemStorage.assign(Elems.begin(), Elems.end());
472
0
    UnpackedElemStorage.push_back(Utils.getPadding(DesiredSize - Size));
473
0
    UnpackedElems = UnpackedElemStorage;
474
0
  }
475
476
  // If we don't have a natural layout, insert padding as necessary.
477
  // As we go, double-check to see if we can actually just emit Elems
478
  // as a non-packed struct and do so opportunistically if possible.
479
0
  llvm::SmallVector<llvm::Constant*, 32> PackedElems;
480
0
  if (!NaturalLayout) {
481
0
    CharUnits SizeSoFar = CharUnits::Zero();
482
0
    for (size_t I = 0; I != Elems.size(); ++I) {
483
0
      CharUnits Align = Utils.getAlignment(Elems[I]);
484
0
      CharUnits NaturalOffset = SizeSoFar.alignTo(Align);
485
0
      CharUnits DesiredOffset = Offset(I);
486
0
      assert(DesiredOffset >= SizeSoFar && "elements out of order");
487
488
0
      if (DesiredOffset != NaturalOffset)
489
0
        Packed = true;
490
0
      if (DesiredOffset != SizeSoFar)
491
0
        PackedElems.push_back(Utils.getPadding(DesiredOffset - SizeSoFar));
492
0
      PackedElems.push_back(Elems[I]);
493
0
      SizeSoFar = DesiredOffset + Utils.getSize(Elems[I]);
494
0
    }
495
    // If we're using the packed layout, pad it out to the desired size if
496
    // necessary.
497
0
    if (Packed) {
498
0
      assert(SizeSoFar <= DesiredSize &&
499
0
             "requested size is too small for contents");
500
0
      if (SizeSoFar < DesiredSize)
501
0
        PackedElems.push_back(Utils.getPadding(DesiredSize - SizeSoFar));
502
0
    }
503
0
  }
504
505
0
  llvm::StructType *STy = llvm::ConstantStruct::getTypeForElements(
506
0
      CGM.getLLVMContext(), Packed ? PackedElems : UnpackedElems, Packed);
507
508
  // Pick the type to use.  If the type is layout identical to the desired
509
  // type then use it, otherwise use whatever the builder produced for us.
510
0
  if (llvm::StructType *DesiredSTy = dyn_cast<llvm::StructType>(DesiredTy)) {
511
0
    if (DesiredSTy->isLayoutIdentical(STy))
512
0
      STy = DesiredSTy;
513
0
  }
514
515
0
  return llvm::ConstantStruct::get(STy, Packed ? PackedElems : UnpackedElems);
516
0
}
517
518
void ConstantAggregateBuilder::condense(CharUnits Offset,
519
0
                                        llvm::Type *DesiredTy) {
520
0
  CharUnits Size = getSize(DesiredTy);
521
522
0
  std::optional<size_t> FirstElemToReplace = splitAt(Offset);
523
0
  if (!FirstElemToReplace)
524
0
    return;
525
0
  size_t First = *FirstElemToReplace;
526
527
0
  std::optional<size_t> LastElemToReplace = splitAt(Offset + Size);
528
0
  if (!LastElemToReplace)
529
0
    return;
530
0
  size_t Last = *LastElemToReplace;
531
532
0
  size_t Length = Last - First;
533
0
  if (Length == 0)
534
0
    return;
535
536
0
  if (Length == 1 && Offsets[First] == Offset &&
537
0
      getSize(Elems[First]) == Size) {
538
    // Re-wrap single element structs if necessary. Otherwise, leave any single
539
    // element constant of the right size alone even if it has the wrong type.
540
0
    auto *STy = dyn_cast<llvm::StructType>(DesiredTy);
541
0
    if (STy && STy->getNumElements() == 1 &&
542
0
        STy->getElementType(0) == Elems[First]->getType())
543
0
      Elems[First] = llvm::ConstantStruct::get(STy, Elems[First]);
544
0
    return;
545
0
  }
546
547
0
  llvm::Constant *Replacement = buildFrom(
548
0
      CGM, ArrayRef(Elems).slice(First, Length),
549
0
      ArrayRef(Offsets).slice(First, Length), Offset, getSize(DesiredTy),
550
0
      /*known to have natural layout=*/false, DesiredTy, false);
551
0
  replace(Elems, First, Last, {Replacement});
552
0
  replace(Offsets, First, Last, {Offset});
553
0
}
554
555
//===----------------------------------------------------------------------===//
556
//                            ConstStructBuilder
557
//===----------------------------------------------------------------------===//
558
559
class ConstStructBuilder {
560
  CodeGenModule &CGM;
561
  ConstantEmitter &Emitter;
562
  ConstantAggregateBuilder &Builder;
563
  CharUnits StartOffset;
564
565
public:
566
  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
567
                                     InitListExpr *ILE, QualType StructTy);
568
  static llvm::Constant *BuildStruct(ConstantEmitter &Emitter,
569
                                     const APValue &Value, QualType ValTy);
570
  static bool UpdateStruct(ConstantEmitter &Emitter,
571
                           ConstantAggregateBuilder &Const, CharUnits Offset,
572
                           InitListExpr *Updater);
573
574
private:
575
  ConstStructBuilder(ConstantEmitter &Emitter,
576
                     ConstantAggregateBuilder &Builder, CharUnits StartOffset)
577
      : CGM(Emitter.CGM), Emitter(Emitter), Builder(Builder),
578
0
        StartOffset(StartOffset) {}
579
580
  bool AppendField(const FieldDecl *Field, uint64_t FieldOffset,
581
                   llvm::Constant *InitExpr, bool AllowOverwrite = false);
582
583
  bool AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst,
584
                   bool AllowOverwrite = false);
585
586
  bool AppendBitField(const FieldDecl *Field, uint64_t FieldOffset,
587
                      llvm::ConstantInt *InitExpr, bool AllowOverwrite = false);
588
589
  bool Build(InitListExpr *ILE, bool AllowOverwrite);
590
  bool Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase,
591
             const CXXRecordDecl *VTableClass, CharUnits BaseOffset);
592
  llvm::Constant *Finalize(QualType Ty);
593
};
594
595
bool ConstStructBuilder::AppendField(
596
    const FieldDecl *Field, uint64_t FieldOffset, llvm::Constant *InitCst,
597
0
    bool AllowOverwrite) {
598
0
  const ASTContext &Context = CGM.getContext();
599
600
0
  CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset);
601
602
0
  return AppendBytes(FieldOffsetInChars, InitCst, AllowOverwrite);
603
0
}
604
605
bool ConstStructBuilder::AppendBytes(CharUnits FieldOffsetInChars,
606
                                     llvm::Constant *InitCst,
607
0
                                     bool AllowOverwrite) {
608
0
  return Builder.add(InitCst, StartOffset + FieldOffsetInChars, AllowOverwrite);
609
0
}
610
611
bool ConstStructBuilder::AppendBitField(
612
    const FieldDecl *Field, uint64_t FieldOffset, llvm::ConstantInt *CI,
613
0
    bool AllowOverwrite) {
614
0
  const CGRecordLayout &RL =
615
0
      CGM.getTypes().getCGRecordLayout(Field->getParent());
616
0
  const CGBitFieldInfo &Info = RL.getBitFieldInfo(Field);
617
0
  llvm::APInt FieldValue = CI->getValue();
618
619
  // Promote the size of FieldValue if necessary
620
  // FIXME: This should never occur, but currently it can because initializer
621
  // constants are cast to bool, and because clang is not enforcing bitfield
622
  // width limits.
623
0
  if (Info.Size > FieldValue.getBitWidth())
624
0
    FieldValue = FieldValue.zext(Info.Size);
625
626
  // Truncate the size of FieldValue to the bit field size.
627
0
  if (Info.Size < FieldValue.getBitWidth())
628
0
    FieldValue = FieldValue.trunc(Info.Size);
629
630
0
  return Builder.addBits(FieldValue,
631
0
                         CGM.getContext().toBits(StartOffset) + FieldOffset,
632
0
                         AllowOverwrite);
633
0
}
634
635
static bool EmitDesignatedInitUpdater(ConstantEmitter &Emitter,
636
                                      ConstantAggregateBuilder &Const,
637
                                      CharUnits Offset, QualType Type,
638
0
                                      InitListExpr *Updater) {
639
0
  if (Type->isRecordType())
640
0
    return ConstStructBuilder::UpdateStruct(Emitter, Const, Offset, Updater);
641
642
0
  auto CAT = Emitter.CGM.getContext().getAsConstantArrayType(Type);
643
0
  if (!CAT)
644
0
    return false;
645
0
  QualType ElemType = CAT->getElementType();
646
0
  CharUnits ElemSize = Emitter.CGM.getContext().getTypeSizeInChars(ElemType);
647
0
  llvm::Type *ElemTy = Emitter.CGM.getTypes().ConvertTypeForMem(ElemType);
648
649
0
  llvm::Constant *FillC = nullptr;
650
0
  if (Expr *Filler = Updater->getArrayFiller()) {
651
0
    if (!isa<NoInitExpr>(Filler)) {
652
0
      FillC = Emitter.tryEmitAbstractForMemory(Filler, ElemType);
653
0
      if (!FillC)
654
0
        return false;
655
0
    }
656
0
  }
657
658
0
  unsigned NumElementsToUpdate =
659
0
      FillC ? CAT->getSize().getZExtValue() : Updater->getNumInits();
660
0
  for (unsigned I = 0; I != NumElementsToUpdate; ++I, Offset += ElemSize) {
661
0
    Expr *Init = nullptr;
662
0
    if (I < Updater->getNumInits())
663
0
      Init = Updater->getInit(I);
664
665
0
    if (!Init && FillC) {
666
0
      if (!Const.add(FillC, Offset, true))
667
0
        return false;
668
0
    } else if (!Init || isa<NoInitExpr>(Init)) {
669
0
      continue;
670
0
    } else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) {
671
0
      if (!EmitDesignatedInitUpdater(Emitter, Const, Offset, ElemType,
672
0
                                     ChildILE))
673
0
        return false;
674
      // Attempt to reduce the array element to a single constant if necessary.
675
0
      Const.condense(Offset, ElemTy);
676
0
    } else {
677
0
      llvm::Constant *Val = Emitter.tryEmitPrivateForMemory(Init, ElemType);
678
0
      if (!Const.add(Val, Offset, true))
679
0
        return false;
680
0
    }
681
0
  }
682
683
0
  return true;
684
0
}
685
686
0
bool ConstStructBuilder::Build(InitListExpr *ILE, bool AllowOverwrite) {
687
0
  RecordDecl *RD = ILE->getType()->castAs<RecordType>()->getDecl();
688
0
  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
689
690
0
  unsigned FieldNo = -1;
691
0
  unsigned ElementNo = 0;
692
693
  // Bail out if we have base classes. We could support these, but they only
694
  // arise in C++1z where we will have already constant folded most interesting
695
  // cases. FIXME: There are still a few more cases we can handle this way.
696
0
  if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD))
697
0
    if (CXXRD->getNumBases())
698
0
      return false;
699
700
0
  for (FieldDecl *Field : RD->fields()) {
701
0
    ++FieldNo;
702
703
    // If this is a union, skip all the fields that aren't being initialized.
704
0
    if (RD->isUnion() &&
705
0
        !declaresSameEntity(ILE->getInitializedFieldInUnion(), Field))
706
0
      continue;
707
708
    // Don't emit anonymous bitfields.
709
0
    if (Field->isUnnamedBitfield())
710
0
      continue;
711
712
    // Get the initializer.  A struct can include fields without initializers,
713
    // we just use explicit null values for them.
714
0
    Expr *Init = nullptr;
715
0
    if (ElementNo < ILE->getNumInits())
716
0
      Init = ILE->getInit(ElementNo++);
717
0
    if (Init && isa<NoInitExpr>(Init))
718
0
      continue;
719
720
    // Zero-sized fields are not emitted, but their initializers may still
721
    // prevent emission of this struct as a constant.
722
0
    if (Field->isZeroSize(CGM.getContext())) {
723
0
      if (Init->HasSideEffects(CGM.getContext()))
724
0
        return false;
725
0
      continue;
726
0
    }
727
728
    // When emitting a DesignatedInitUpdateExpr, a nested InitListExpr
729
    // represents additional overwriting of our current constant value, and not
730
    // a new constant to emit independently.
731
0
    if (AllowOverwrite &&
732
0
        (Field->getType()->isArrayType() || Field->getType()->isRecordType())) {
733
0
      if (auto *SubILE = dyn_cast<InitListExpr>(Init)) {
734
0
        CharUnits Offset = CGM.getContext().toCharUnitsFromBits(
735
0
            Layout.getFieldOffset(FieldNo));
736
0
        if (!EmitDesignatedInitUpdater(Emitter, Builder, StartOffset + Offset,
737
0
                                       Field->getType(), SubILE))
738
0
          return false;
739
        // If we split apart the field's value, try to collapse it down to a
740
        // single value now.
741
0
        Builder.condense(StartOffset + Offset,
742
0
                         CGM.getTypes().ConvertTypeForMem(Field->getType()));
743
0
        continue;
744
0
      }
745
0
    }
746
747
0
    llvm::Constant *EltInit =
748
0
        Init ? Emitter.tryEmitPrivateForMemory(Init, Field->getType())
749
0
             : Emitter.emitNullForMemory(Field->getType());
750
0
    if (!EltInit)
751
0
      return false;
752
753
0
    if (!Field->isBitField()) {
754
      // Handle non-bitfield members.
755
0
      if (!AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit,
756
0
                       AllowOverwrite))
757
0
        return false;
758
      // After emitting a non-empty field with [[no_unique_address]], we may
759
      // need to overwrite its tail padding.
760
0
      if (Field->hasAttr<NoUniqueAddressAttr>())
761
0
        AllowOverwrite = true;
762
0
    } else {
763
      // Otherwise we have a bitfield.
764
0
      if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) {
765
0
        if (!AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI,
766
0
                            AllowOverwrite))
767
0
          return false;
768
0
      } else {
769
        // We are trying to initialize a bitfield with a non-trivial constant,
770
        // this must require run-time code.
771
0
        return false;
772
0
      }
773
0
    }
774
0
  }
775
776
0
  return true;
777
0
}
778
779
namespace {
780
struct BaseInfo {
781
  BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index)
782
0
    : Decl(Decl), Offset(Offset), Index(Index) {
783
0
  }
784
785
  const CXXRecordDecl *Decl;
786
  CharUnits Offset;
787
  unsigned Index;
788
789
0
  bool operator<(const BaseInfo &O) const { return Offset < O.Offset; }
790
};
791
}
792
793
bool ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD,
794
                               bool IsPrimaryBase,
795
                               const CXXRecordDecl *VTableClass,
796
0
                               CharUnits Offset) {
797
0
  const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD);
798
799
0
  if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) {
800
    // Add a vtable pointer, if we need one and it hasn't already been added.
801
0
    if (Layout.hasOwnVFPtr()) {
802
0
      llvm::Constant *VTableAddressPoint =
803
0
          CGM.getCXXABI().getVTableAddressPointForConstExpr(
804
0
              BaseSubobject(CD, Offset), VTableClass);
805
0
      if (!AppendBytes(Offset, VTableAddressPoint))
806
0
        return false;
807
0
    }
808
809
    // Accumulate and sort bases, in order to visit them in address order, which
810
    // may not be the same as declaration order.
811
0
    SmallVector<BaseInfo, 8> Bases;
812
0
    Bases.reserve(CD->getNumBases());
813
0
    unsigned BaseNo = 0;
814
0
    for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(),
815
0
         BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) {
816
0
      assert(!Base->isVirtual() && "should not have virtual bases here");
817
0
      const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl();
818
0
      CharUnits BaseOffset = Layout.getBaseClassOffset(BD);
819
0
      Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo));
820
0
    }
821
0
    llvm::stable_sort(Bases);
822
823
0
    for (unsigned I = 0, N = Bases.size(); I != N; ++I) {
824
0
      BaseInfo &Base = Bases[I];
825
826
0
      bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl;
827
0
      Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase,
828
0
            VTableClass, Offset + Base.Offset);
829
0
    }
830
0
  }
831
832
0
  unsigned FieldNo = 0;
833
0
  uint64_t OffsetBits = CGM.getContext().toBits(Offset);
834
835
0
  bool AllowOverwrite = false;
836
0
  for (RecordDecl::field_iterator Field = RD->field_begin(),
837
0
       FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) {
838
    // If this is a union, skip all the fields that aren't being initialized.
839
0
    if (RD->isUnion() && !declaresSameEntity(Val.getUnionField(), *Field))
840
0
      continue;
841
842
    // Don't emit anonymous bitfields or zero-sized fields.
843
0
    if (Field->isUnnamedBitfield() || Field->isZeroSize(CGM.getContext()))
844
0
      continue;
845
846
    // Emit the value of the initializer.
847
0
    const APValue &FieldValue =
848
0
      RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo);
849
0
    llvm::Constant *EltInit =
850
0
      Emitter.tryEmitPrivateForMemory(FieldValue, Field->getType());
851
0
    if (!EltInit)
852
0
      return false;
853
854
0
    if (!Field->isBitField()) {
855
      // Handle non-bitfield members.
856
0
      if (!AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
857
0
                       EltInit, AllowOverwrite))
858
0
        return false;
859
      // After emitting a non-empty field with [[no_unique_address]], we may
860
      // need to overwrite its tail padding.
861
0
      if (Field->hasAttr<NoUniqueAddressAttr>())
862
0
        AllowOverwrite = true;
863
0
    } else {
864
      // Otherwise we have a bitfield.
865
0
      if (!AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits,
866
0
                          cast<llvm::ConstantInt>(EltInit), AllowOverwrite))
867
0
        return false;
868
0
    }
869
0
  }
870
871
0
  return true;
872
0
}
873
874
0
llvm::Constant *ConstStructBuilder::Finalize(QualType Type) {
875
0
  Type = Type.getNonReferenceType();
876
0
  RecordDecl *RD = Type->castAs<RecordType>()->getDecl();
877
0
  llvm::Type *ValTy = CGM.getTypes().ConvertType(Type);
878
0
  return Builder.build(ValTy, RD->hasFlexibleArrayMember());
879
0
}
880
881
llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
882
                                                InitListExpr *ILE,
883
0
                                                QualType ValTy) {
884
0
  ConstantAggregateBuilder Const(Emitter.CGM);
885
0
  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
886
887
0
  if (!Builder.Build(ILE, /*AllowOverwrite*/false))
888
0
    return nullptr;
889
890
0
  return Builder.Finalize(ValTy);
891
0
}
892
893
llvm::Constant *ConstStructBuilder::BuildStruct(ConstantEmitter &Emitter,
894
                                                const APValue &Val,
895
0
                                                QualType ValTy) {
896
0
  ConstantAggregateBuilder Const(Emitter.CGM);
897
0
  ConstStructBuilder Builder(Emitter, Const, CharUnits::Zero());
898
899
0
  const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl();
900
0
  const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD);
901
0
  if (!Builder.Build(Val, RD, false, CD, CharUnits::Zero()))
902
0
    return nullptr;
903
904
0
  return Builder.Finalize(ValTy);
905
0
}
906
907
bool ConstStructBuilder::UpdateStruct(ConstantEmitter &Emitter,
908
                                      ConstantAggregateBuilder &Const,
909
0
                                      CharUnits Offset, InitListExpr *Updater) {
910
0
  return ConstStructBuilder(Emitter, Const, Offset)
911
0
      .Build(Updater, /*AllowOverwrite*/ true);
912
0
}
913
914
//===----------------------------------------------------------------------===//
915
//                             ConstExprEmitter
916
//===----------------------------------------------------------------------===//
917
918
static ConstantAddress
919
tryEmitGlobalCompoundLiteral(ConstantEmitter &emitter,
920
0
                             const CompoundLiteralExpr *E) {
921
0
  CodeGenModule &CGM = emitter.CGM;
922
0
  CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType());
923
0
  if (llvm::GlobalVariable *Addr =
924
0
          CGM.getAddrOfConstantCompoundLiteralIfEmitted(E))
925
0
    return ConstantAddress(Addr, Addr->getValueType(), Align);
926
927
0
  LangAS addressSpace = E->getType().getAddressSpace();
928
0
  llvm::Constant *C = emitter.tryEmitForInitializer(E->getInitializer(),
929
0
                                                    addressSpace, E->getType());
930
0
  if (!C) {
931
0
    assert(!E->isFileScope() &&
932
0
           "file-scope compound literal did not have constant initializer!");
933
0
    return ConstantAddress::invalid();
934
0
  }
935
936
0
  auto GV = new llvm::GlobalVariable(
937
0
      CGM.getModule(), C->getType(),
938
0
      E->getType().isConstantStorage(CGM.getContext(), true, false),
939
0
      llvm::GlobalValue::InternalLinkage, C, ".compoundliteral", nullptr,
940
0
      llvm::GlobalVariable::NotThreadLocal,
941
0
      CGM.getContext().getTargetAddressSpace(addressSpace));
942
0
  emitter.finalize(GV);
943
0
  GV->setAlignment(Align.getAsAlign());
944
0
  CGM.setAddrOfConstantCompoundLiteral(E, GV);
945
0
  return ConstantAddress(GV, GV->getValueType(), Align);
946
0
}
947
948
static llvm::Constant *
949
EmitArrayConstant(CodeGenModule &CGM, llvm::ArrayType *DesiredType,
950
                  llvm::Type *CommonElementType, unsigned ArrayBound,
951
                  SmallVectorImpl<llvm::Constant *> &Elements,
952
0
                  llvm::Constant *Filler) {
953
  // Figure out how long the initial prefix of non-zero elements is.
954
0
  unsigned NonzeroLength = ArrayBound;
955
0
  if (Elements.size() < NonzeroLength && Filler->isNullValue())
956
0
    NonzeroLength = Elements.size();
957
0
  if (NonzeroLength == Elements.size()) {
958
0
    while (NonzeroLength > 0 && Elements[NonzeroLength - 1]->isNullValue())
959
0
      --NonzeroLength;
960
0
  }
961
962
0
  if (NonzeroLength == 0)
963
0
    return llvm::ConstantAggregateZero::get(DesiredType);
964
965
  // Add a zeroinitializer array filler if we have lots of trailing zeroes.
966
0
  unsigned TrailingZeroes = ArrayBound - NonzeroLength;
967
0
  if (TrailingZeroes >= 8) {
968
0
    assert(Elements.size() >= NonzeroLength &&
969
0
           "missing initializer for non-zero element");
970
971
    // If all the elements had the same type up to the trailing zeroes, emit a
972
    // struct of two arrays (the nonzero data and the zeroinitializer).
973
0
    if (CommonElementType && NonzeroLength >= 8) {
974
0
      llvm::Constant *Initial = llvm::ConstantArray::get(
975
0
          llvm::ArrayType::get(CommonElementType, NonzeroLength),
976
0
          ArrayRef(Elements).take_front(NonzeroLength));
977
0
      Elements.resize(2);
978
0
      Elements[0] = Initial;
979
0
    } else {
980
0
      Elements.resize(NonzeroLength + 1);
981
0
    }
982
983
0
    auto *FillerType =
984
0
        CommonElementType ? CommonElementType : DesiredType->getElementType();
985
0
    FillerType = llvm::ArrayType::get(FillerType, TrailingZeroes);
986
0
    Elements.back() = llvm::ConstantAggregateZero::get(FillerType);
987
0
    CommonElementType = nullptr;
988
0
  } else if (Elements.size() != ArrayBound) {
989
    // Otherwise pad to the right size with the filler if necessary.
990
0
    Elements.resize(ArrayBound, Filler);
991
0
    if (Filler->getType() != CommonElementType)
992
0
      CommonElementType = nullptr;
993
0
  }
994
995
  // If all elements have the same type, just emit an array constant.
996
0
  if (CommonElementType)
997
0
    return llvm::ConstantArray::get(
998
0
        llvm::ArrayType::get(CommonElementType, ArrayBound), Elements);
999
1000
  // We have mixed types. Use a packed struct.
1001
0
  llvm::SmallVector<llvm::Type *, 16> Types;
1002
0
  Types.reserve(Elements.size());
1003
0
  for (llvm::Constant *Elt : Elements)
1004
0
    Types.push_back(Elt->getType());
1005
0
  llvm::StructType *SType =
1006
0
      llvm::StructType::get(CGM.getLLVMContext(), Types, true);
1007
0
  return llvm::ConstantStruct::get(SType, Elements);
1008
0
}
1009
1010
// This class only needs to handle arrays, structs and unions. Outside C++11
1011
// mode, we don't currently constant fold those types.  All other types are
1012
// handled by constant folding.
1013
//
1014
// Constant folding is currently missing support for a few features supported
1015
// here: CK_ToUnion, CK_ReinterpretMemberPointer, and DesignatedInitUpdateExpr.
1016
class ConstExprEmitter :
1017
  public StmtVisitor<ConstExprEmitter, llvm::Constant*, QualType> {
1018
  CodeGenModule &CGM;
1019
  ConstantEmitter &Emitter;
1020
  llvm::LLVMContext &VMContext;
1021
public:
1022
  ConstExprEmitter(ConstantEmitter &emitter)
1023
0
    : CGM(emitter.CGM), Emitter(emitter), VMContext(CGM.getLLVMContext()) {
1024
0
  }
1025
1026
  //===--------------------------------------------------------------------===//
1027
  //                            Visitor Methods
1028
  //===--------------------------------------------------------------------===//
1029
1030
0
  llvm::Constant *VisitStmt(Stmt *S, QualType T) {
1031
0
    return nullptr;
1032
0
  }
1033
1034
0
  llvm::Constant *VisitConstantExpr(ConstantExpr *CE, QualType T) {
1035
0
    if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(CE))
1036
0
      return Result;
1037
0
    return Visit(CE->getSubExpr(), T);
1038
0
  }
1039
1040
0
  llvm::Constant *VisitParenExpr(ParenExpr *PE, QualType T) {
1041
0
    return Visit(PE->getSubExpr(), T);
1042
0
  }
1043
1044
  llvm::Constant *
1045
  VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE,
1046
0
                                    QualType T) {
1047
0
    return Visit(PE->getReplacement(), T);
1048
0
  }
1049
1050
  llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE,
1051
0
                                            QualType T) {
1052
0
    return Visit(GE->getResultExpr(), T);
1053
0
  }
1054
1055
0
  llvm::Constant *VisitChooseExpr(ChooseExpr *CE, QualType T) {
1056
0
    return Visit(CE->getChosenSubExpr(), T);
1057
0
  }
1058
1059
0
  llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E, QualType T) {
1060
0
    return Visit(E->getInitializer(), T);
1061
0
  }
1062
1063
0
  llvm::Constant *VisitCastExpr(CastExpr *E, QualType destType) {
1064
0
    if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E))
1065
0
      CGM.EmitExplicitCastExprType(ECE, Emitter.CGF);
1066
0
    Expr *subExpr = E->getSubExpr();
1067
1068
0
    switch (E->getCastKind()) {
1069
0
    case CK_ToUnion: {
1070
      // GCC cast to union extension
1071
0
      assert(E->getType()->isUnionType() &&
1072
0
             "Destination type is not union type!");
1073
1074
0
      auto field = E->getTargetUnionField();
1075
1076
0
      auto C = Emitter.tryEmitPrivateForMemory(subExpr, field->getType());
1077
0
      if (!C) return nullptr;
1078
1079
0
      auto destTy = ConvertType(destType);
1080
0
      if (C->getType() == destTy) return C;
1081
1082
      // Build a struct with the union sub-element as the first member,
1083
      // and padded to the appropriate size.
1084
0
      SmallVector<llvm::Constant*, 2> Elts;
1085
0
      SmallVector<llvm::Type*, 2> Types;
1086
0
      Elts.push_back(C);
1087
0
      Types.push_back(C->getType());
1088
0
      unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType());
1089
0
      unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destTy);
1090
1091
0
      assert(CurSize <= TotalSize && "Union size mismatch!");
1092
0
      if (unsigned NumPadBytes = TotalSize - CurSize) {
1093
0
        llvm::Type *Ty = CGM.CharTy;
1094
0
        if (NumPadBytes > 1)
1095
0
          Ty = llvm::ArrayType::get(Ty, NumPadBytes);
1096
1097
0
        Elts.push_back(llvm::UndefValue::get(Ty));
1098
0
        Types.push_back(Ty);
1099
0
      }
1100
1101
0
      llvm::StructType *STy = llvm::StructType::get(VMContext, Types, false);
1102
0
      return llvm::ConstantStruct::get(STy, Elts);
1103
0
    }
1104
1105
0
    case CK_AddressSpaceConversion: {
1106
0
      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1107
0
      if (!C) return nullptr;
1108
0
      LangAS destAS = E->getType()->getPointeeType().getAddressSpace();
1109
0
      LangAS srcAS = subExpr->getType()->getPointeeType().getAddressSpace();
1110
0
      llvm::Type *destTy = ConvertType(E->getType());
1111
0
      return CGM.getTargetCodeGenInfo().performAddrSpaceCast(CGM, C, srcAS,
1112
0
                                                             destAS, destTy);
1113
0
    }
1114
1115
0
    case CK_LValueToRValue: {
1116
      // We don't really support doing lvalue-to-rvalue conversions here; any
1117
      // interesting conversions should be done in Evaluate().  But as a
1118
      // special case, allow compound literals to support the gcc extension
1119
      // allowing "struct x {int x;} x = (struct x) {};".
1120
0
      if (auto *E = dyn_cast<CompoundLiteralExpr>(subExpr->IgnoreParens()))
1121
0
        return Visit(E->getInitializer(), destType);
1122
0
      return nullptr;
1123
0
    }
1124
1125
0
    case CK_AtomicToNonAtomic:
1126
0
    case CK_NonAtomicToAtomic:
1127
0
    case CK_NoOp:
1128
0
    case CK_ConstructorConversion:
1129
0
      return Visit(subExpr, destType);
1130
1131
0
    case CK_ArrayToPointerDecay:
1132
0
      if (const auto *S = dyn_cast<StringLiteral>(subExpr))
1133
0
        return CGM.GetAddrOfConstantStringFromLiteral(S).getPointer();
1134
0
      return nullptr;
1135
0
    case CK_NullToPointer:
1136
0
      if (Visit(subExpr, destType))
1137
0
        return CGM.EmitNullConstant(destType);
1138
0
      return nullptr;
1139
1140
0
    case CK_IntToOCLSampler:
1141
0
      llvm_unreachable("global sampler variables are not generated");
1142
1143
0
    case CK_IntegralCast: {
1144
0
      QualType FromType = subExpr->getType();
1145
      // See also HandleIntToIntCast in ExprConstant.cpp
1146
0
      if (FromType->isIntegerType())
1147
0
        if (llvm::Constant *C = Visit(subExpr, FromType))
1148
0
          if (auto *CI = dyn_cast<llvm::ConstantInt>(C)) {
1149
0
            unsigned SrcWidth = CGM.getContext().getIntWidth(FromType);
1150
0
            unsigned DstWidth = CGM.getContext().getIntWidth(destType);
1151
0
            if (DstWidth == SrcWidth)
1152
0
              return CI;
1153
0
            llvm::APInt A = FromType->isSignedIntegerType()
1154
0
                                ? CI->getValue().sextOrTrunc(DstWidth)
1155
0
                                : CI->getValue().zextOrTrunc(DstWidth);
1156
0
            return llvm::ConstantInt::get(CGM.getLLVMContext(), A);
1157
0
          }
1158
0
      return nullptr;
1159
0
    }
1160
1161
0
    case CK_Dependent: llvm_unreachable("saw dependent cast!");
1162
1163
0
    case CK_BuiltinFnToFnPtr:
1164
0
      llvm_unreachable("builtin functions are handled elsewhere");
1165
1166
0
    case CK_ReinterpretMemberPointer:
1167
0
    case CK_DerivedToBaseMemberPointer:
1168
0
    case CK_BaseToDerivedMemberPointer: {
1169
0
      auto C = Emitter.tryEmitPrivate(subExpr, subExpr->getType());
1170
0
      if (!C) return nullptr;
1171
0
      return CGM.getCXXABI().EmitMemberPointerConversion(E, C);
1172
0
    }
1173
1174
    // These will never be supported.
1175
0
    case CK_ObjCObjectLValueCast:
1176
0
    case CK_ARCProduceObject:
1177
0
    case CK_ARCConsumeObject:
1178
0
    case CK_ARCReclaimReturnedObject:
1179
0
    case CK_ARCExtendBlockObject:
1180
0
    case CK_CopyAndAutoreleaseBlockObject:
1181
0
      return nullptr;
1182
1183
    // These don't need to be handled here because Evaluate knows how to
1184
    // evaluate them in the cases where they can be folded.
1185
0
    case CK_BitCast:
1186
0
    case CK_ToVoid:
1187
0
    case CK_Dynamic:
1188
0
    case CK_LValueBitCast:
1189
0
    case CK_LValueToRValueBitCast:
1190
0
    case CK_NullToMemberPointer:
1191
0
    case CK_UserDefinedConversion:
1192
0
    case CK_CPointerToObjCPointerCast:
1193
0
    case CK_BlockPointerToObjCPointerCast:
1194
0
    case CK_AnyPointerToBlockPointerCast:
1195
0
    case CK_FunctionToPointerDecay:
1196
0
    case CK_BaseToDerived:
1197
0
    case CK_DerivedToBase:
1198
0
    case CK_UncheckedDerivedToBase:
1199
0
    case CK_MemberPointerToBoolean:
1200
0
    case CK_VectorSplat:
1201
0
    case CK_FloatingRealToComplex:
1202
0
    case CK_FloatingComplexToReal:
1203
0
    case CK_FloatingComplexToBoolean:
1204
0
    case CK_FloatingComplexCast:
1205
0
    case CK_FloatingComplexToIntegralComplex:
1206
0
    case CK_IntegralRealToComplex:
1207
0
    case CK_IntegralComplexToReal:
1208
0
    case CK_IntegralComplexToBoolean:
1209
0
    case CK_IntegralComplexCast:
1210
0
    case CK_IntegralComplexToFloatingComplex:
1211
0
    case CK_PointerToIntegral:
1212
0
    case CK_PointerToBoolean:
1213
0
    case CK_BooleanToSignedIntegral:
1214
0
    case CK_IntegralToPointer:
1215
0
    case CK_IntegralToBoolean:
1216
0
    case CK_IntegralToFloating:
1217
0
    case CK_FloatingToIntegral:
1218
0
    case CK_FloatingToBoolean:
1219
0
    case CK_FloatingCast:
1220
0
    case CK_FloatingToFixedPoint:
1221
0
    case CK_FixedPointToFloating:
1222
0
    case CK_FixedPointCast:
1223
0
    case CK_FixedPointToBoolean:
1224
0
    case CK_FixedPointToIntegral:
1225
0
    case CK_IntegralToFixedPoint:
1226
0
    case CK_ZeroToOCLOpaqueType:
1227
0
    case CK_MatrixCast:
1228
0
      return nullptr;
1229
0
    }
1230
0
    llvm_unreachable("Invalid CastKind");
1231
0
  }
1232
1233
0
  llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE, QualType T) {
1234
    // No need for a DefaultInitExprScope: we don't handle 'this' in a
1235
    // constant expression.
1236
0
    return Visit(DIE->getExpr(), T);
1237
0
  }
1238
1239
0
  llvm::Constant *VisitExprWithCleanups(ExprWithCleanups *E, QualType T) {
1240
0
    return Visit(E->getSubExpr(), T);
1241
0
  }
1242
1243
0
  llvm::Constant *VisitIntegerLiteral(IntegerLiteral *I, QualType T) {
1244
0
    return llvm::ConstantInt::get(CGM.getLLVMContext(), I->getValue());
1245
0
  }
1246
1247
0
  llvm::Constant *EmitArrayInitialization(InitListExpr *ILE, QualType T) {
1248
0
    auto *CAT = CGM.getContext().getAsConstantArrayType(ILE->getType());
1249
0
    assert(CAT && "can't emit array init for non-constant-bound array");
1250
0
    unsigned NumInitElements = ILE->getNumInits();
1251
0
    unsigned NumElements = CAT->getSize().getZExtValue();
1252
1253
    // Initialising an array requires us to automatically
1254
    // initialise any elements that have not been initialised explicitly
1255
0
    unsigned NumInitableElts = std::min(NumInitElements, NumElements);
1256
1257
0
    QualType EltType = CAT->getElementType();
1258
1259
    // Initialize remaining array elements.
1260
0
    llvm::Constant *fillC = nullptr;
1261
0
    if (Expr *filler = ILE->getArrayFiller()) {
1262
0
      fillC = Emitter.tryEmitAbstractForMemory(filler, EltType);
1263
0
      if (!fillC)
1264
0
        return nullptr;
1265
0
    }
1266
1267
    // Copy initializer elements.
1268
0
    SmallVector<llvm::Constant*, 16> Elts;
1269
0
    if (fillC && fillC->isNullValue())
1270
0
      Elts.reserve(NumInitableElts + 1);
1271
0
    else
1272
0
      Elts.reserve(NumElements);
1273
1274
0
    llvm::Type *CommonElementType = nullptr;
1275
0
    for (unsigned i = 0; i < NumInitableElts; ++i) {
1276
0
      Expr *Init = ILE->getInit(i);
1277
0
      llvm::Constant *C = Emitter.tryEmitPrivateForMemory(Init, EltType);
1278
0
      if (!C)
1279
0
        return nullptr;
1280
0
      if (i == 0)
1281
0
        CommonElementType = C->getType();
1282
0
      else if (C->getType() != CommonElementType)
1283
0
        CommonElementType = nullptr;
1284
0
      Elts.push_back(C);
1285
0
    }
1286
1287
0
    llvm::ArrayType *Desired =
1288
0
        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(ILE->getType()));
1289
0
    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
1290
0
                             fillC);
1291
0
  }
1292
1293
0
  llvm::Constant *EmitRecordInitialization(InitListExpr *ILE, QualType T) {
1294
0
    return ConstStructBuilder::BuildStruct(Emitter, ILE, T);
1295
0
  }
1296
1297
  llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E,
1298
0
                                             QualType T) {
1299
0
    return CGM.EmitNullConstant(T);
1300
0
  }
1301
1302
0
  llvm::Constant *VisitInitListExpr(InitListExpr *ILE, QualType T) {
1303
0
    if (ILE->isTransparent())
1304
0
      return Visit(ILE->getInit(0), T);
1305
1306
0
    if (ILE->getType()->isArrayType())
1307
0
      return EmitArrayInitialization(ILE, T);
1308
1309
0
    if (ILE->getType()->isRecordType())
1310
0
      return EmitRecordInitialization(ILE, T);
1311
1312
0
    return nullptr;
1313
0
  }
1314
1315
  llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E,
1316
0
                                                QualType destType) {
1317
0
    auto C = Visit(E->getBase(), destType);
1318
0
    if (!C)
1319
0
      return nullptr;
1320
1321
0
    ConstantAggregateBuilder Const(CGM);
1322
0
    Const.add(C, CharUnits::Zero(), false);
1323
1324
0
    if (!EmitDesignatedInitUpdater(Emitter, Const, CharUnits::Zero(), destType,
1325
0
                                   E->getUpdater()))
1326
0
      return nullptr;
1327
1328
0
    llvm::Type *ValTy = CGM.getTypes().ConvertType(destType);
1329
0
    bool HasFlexibleArray = false;
1330
0
    if (auto *RT = destType->getAs<RecordType>())
1331
0
      HasFlexibleArray = RT->getDecl()->hasFlexibleArrayMember();
1332
0
    return Const.build(ValTy, HasFlexibleArray);
1333
0
  }
1334
1335
0
  llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E, QualType Ty) {
1336
0
    if (!E->getConstructor()->isTrivial())
1337
0
      return nullptr;
1338
1339
    // Only default and copy/move constructors can be trivial.
1340
0
    if (E->getNumArgs()) {
1341
0
      assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument");
1342
0
      assert(E->getConstructor()->isCopyOrMoveConstructor() &&
1343
0
             "trivial ctor has argument but isn't a copy/move ctor");
1344
1345
0
      Expr *Arg = E->getArg(0);
1346
0
      assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) &&
1347
0
             "argument to copy ctor is of wrong type");
1348
1349
      // Look through the temporary; it's just converting the value to an
1350
      // lvalue to pass it to the constructor.
1351
0
      if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Arg))
1352
0
        return Visit(MTE->getSubExpr(), Ty);
1353
      // Don't try to support arbitrary lvalue-to-rvalue conversions for now.
1354
0
      return nullptr;
1355
0
    }
1356
1357
0
    return CGM.EmitNullConstant(Ty);
1358
0
  }
1359
1360
0
  llvm::Constant *VisitStringLiteral(StringLiteral *E, QualType T) {
1361
    // This is a string literal initializing an array in an initializer.
1362
0
    return CGM.GetConstantArrayFromStringLiteral(E);
1363
0
  }
1364
1365
0
  llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E, QualType T) {
1366
    // This must be an @encode initializing an array in a static initializer.
1367
    // Don't emit it as the address of the string, emit the string data itself
1368
    // as an inline array.
1369
0
    std::string Str;
1370
0
    CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str);
1371
0
    const ConstantArrayType *CAT = CGM.getContext().getAsConstantArrayType(T);
1372
0
    assert(CAT && "String data not of constant array type!");
1373
1374
    // Resize the string to the right size, adding zeros at the end, or
1375
    // truncating as needed.
1376
0
    Str.resize(CAT->getSize().getZExtValue(), '\0');
1377
0
    return llvm::ConstantDataArray::getString(VMContext, Str, false);
1378
0
  }
1379
1380
0
  llvm::Constant *VisitUnaryExtension(const UnaryOperator *E, QualType T) {
1381
0
    return Visit(E->getSubExpr(), T);
1382
0
  }
1383
1384
0
  llvm::Constant *VisitUnaryMinus(UnaryOperator *U, QualType T) {
1385
0
    if (llvm::Constant *C = Visit(U->getSubExpr(), T))
1386
0
      if (auto *CI = dyn_cast<llvm::ConstantInt>(C))
1387
0
        return llvm::ConstantInt::get(CGM.getLLVMContext(), -CI->getValue());
1388
0
    return nullptr;
1389
0
  }
1390
1391
  // Utility methods
1392
0
  llvm::Type *ConvertType(QualType T) {
1393
0
    return CGM.getTypes().ConvertType(T);
1394
0
  }
1395
};
1396
1397
}  // end anonymous namespace.
1398
1399
llvm::Constant *ConstantEmitter::validateAndPopAbstract(llvm::Constant *C,
1400
0
                                                        AbstractState saved) {
1401
0
  Abstract = saved.OldValue;
1402
1403
0
  assert(saved.OldPlaceholdersSize == PlaceholderAddresses.size() &&
1404
0
         "created a placeholder while doing an abstract emission?");
1405
1406
  // No validation necessary for now.
1407
  // No cleanup to do for now.
1408
0
  return C;
1409
0
}
1410
1411
llvm::Constant *
1412
0
ConstantEmitter::tryEmitAbstractForInitializer(const VarDecl &D) {
1413
0
  auto state = pushAbstract();
1414
0
  auto C = tryEmitPrivateForVarInit(D);
1415
0
  return validateAndPopAbstract(C, state);
1416
0
}
1417
1418
llvm::Constant *
1419
0
ConstantEmitter::tryEmitAbstract(const Expr *E, QualType destType) {
1420
0
  auto state = pushAbstract();
1421
0
  auto C = tryEmitPrivate(E, destType);
1422
0
  return validateAndPopAbstract(C, state);
1423
0
}
1424
1425
llvm::Constant *
1426
0
ConstantEmitter::tryEmitAbstract(const APValue &value, QualType destType) {
1427
0
  auto state = pushAbstract();
1428
0
  auto C = tryEmitPrivate(value, destType);
1429
0
  return validateAndPopAbstract(C, state);
1430
0
}
1431
1432
0
llvm::Constant *ConstantEmitter::tryEmitConstantExpr(const ConstantExpr *CE) {
1433
0
  if (!CE->hasAPValueResult())
1434
0
    return nullptr;
1435
1436
0
  QualType RetType = CE->getType();
1437
0
  if (CE->isGLValue())
1438
0
    RetType = CGM.getContext().getLValueReferenceType(RetType);
1439
1440
0
  return emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(), RetType);
1441
0
}
1442
1443
llvm::Constant *
1444
0
ConstantEmitter::emitAbstract(const Expr *E, QualType destType) {
1445
0
  auto state = pushAbstract();
1446
0
  auto C = tryEmitPrivate(E, destType);
1447
0
  C = validateAndPopAbstract(C, state);
1448
0
  if (!C) {
1449
0
    CGM.Error(E->getExprLoc(),
1450
0
              "internal error: could not emit constant value \"abstractly\"");
1451
0
    C = CGM.EmitNullConstant(destType);
1452
0
  }
1453
0
  return C;
1454
0
}
1455
1456
llvm::Constant *
1457
ConstantEmitter::emitAbstract(SourceLocation loc, const APValue &value,
1458
0
                              QualType destType) {
1459
0
  auto state = pushAbstract();
1460
0
  auto C = tryEmitPrivate(value, destType);
1461
0
  C = validateAndPopAbstract(C, state);
1462
0
  if (!C) {
1463
0
    CGM.Error(loc,
1464
0
              "internal error: could not emit constant value \"abstractly\"");
1465
0
    C = CGM.EmitNullConstant(destType);
1466
0
  }
1467
0
  return C;
1468
0
}
1469
1470
0
llvm::Constant *ConstantEmitter::tryEmitForInitializer(const VarDecl &D) {
1471
0
  initializeNonAbstract(D.getType().getAddressSpace());
1472
0
  return markIfFailed(tryEmitPrivateForVarInit(D));
1473
0
}
1474
1475
llvm::Constant *ConstantEmitter::tryEmitForInitializer(const Expr *E,
1476
                                                       LangAS destAddrSpace,
1477
0
                                                       QualType destType) {
1478
0
  initializeNonAbstract(destAddrSpace);
1479
0
  return markIfFailed(tryEmitPrivateForMemory(E, destType));
1480
0
}
1481
1482
llvm::Constant *ConstantEmitter::emitForInitializer(const APValue &value,
1483
                                                    LangAS destAddrSpace,
1484
0
                                                    QualType destType) {
1485
0
  initializeNonAbstract(destAddrSpace);
1486
0
  auto C = tryEmitPrivateForMemory(value, destType);
1487
0
  assert(C && "couldn't emit constant value non-abstractly?");
1488
0
  return C;
1489
0
}
1490
1491
0
llvm::GlobalValue *ConstantEmitter::getCurrentAddrPrivate() {
1492
0
  assert(!Abstract && "cannot get current address for abstract constant");
1493
1494
1495
1496
  // Make an obviously ill-formed global that should blow up compilation
1497
  // if it survives.
1498
0
  auto global = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, true,
1499
0
                                         llvm::GlobalValue::PrivateLinkage,
1500
0
                                         /*init*/ nullptr,
1501
0
                                         /*name*/ "",
1502
0
                                         /*before*/ nullptr,
1503
0
                                         llvm::GlobalVariable::NotThreadLocal,
1504
0
                                         CGM.getContext().getTargetAddressSpace(DestAddressSpace));
1505
1506
0
  PlaceholderAddresses.push_back(std::make_pair(nullptr, global));
1507
1508
0
  return global;
1509
0
}
1510
1511
void ConstantEmitter::registerCurrentAddrPrivate(llvm::Constant *signal,
1512
0
                                           llvm::GlobalValue *placeholder) {
1513
0
  assert(!PlaceholderAddresses.empty());
1514
0
  assert(PlaceholderAddresses.back().first == nullptr);
1515
0
  assert(PlaceholderAddresses.back().second == placeholder);
1516
0
  PlaceholderAddresses.back().first = signal;
1517
0
}
1518
1519
namespace {
1520
  struct ReplacePlaceholders {
1521
    CodeGenModule &CGM;
1522
1523
    /// The base address of the global.
1524
    llvm::Constant *Base;
1525
    llvm::Type *BaseValueTy = nullptr;
1526
1527
    /// The placeholder addresses that were registered during emission.
1528
    llvm::DenseMap<llvm::Constant*, llvm::GlobalVariable*> PlaceholderAddresses;
1529
1530
    /// The locations of the placeholder signals.
1531
    llvm::DenseMap<llvm::GlobalVariable*, llvm::Constant*> Locations;
1532
1533
    /// The current index stack.  We use a simple unsigned stack because
1534
    /// we assume that placeholders will be relatively sparse in the
1535
    /// initializer, but we cache the index values we find just in case.
1536
    llvm::SmallVector<unsigned, 8> Indices;
1537
    llvm::SmallVector<llvm::Constant*, 8> IndexValues;
1538
1539
    ReplacePlaceholders(CodeGenModule &CGM, llvm::Constant *base,
1540
                        ArrayRef<std::pair<llvm::Constant*,
1541
                                           llvm::GlobalVariable*>> addresses)
1542
        : CGM(CGM), Base(base),
1543
0
          PlaceholderAddresses(addresses.begin(), addresses.end()) {
1544
0
    }
1545
1546
0
    void replaceInInitializer(llvm::Constant *init) {
1547
      // Remember the type of the top-most initializer.
1548
0
      BaseValueTy = init->getType();
1549
1550
      // Initialize the stack.
1551
0
      Indices.push_back(0);
1552
0
      IndexValues.push_back(nullptr);
1553
1554
      // Recurse into the initializer.
1555
0
      findLocations(init);
1556
1557
      // Check invariants.
1558
0
      assert(IndexValues.size() == Indices.size() && "mismatch");
1559
0
      assert(Indices.size() == 1 && "didn't pop all indices");
1560
1561
      // Do the replacement; this basically invalidates 'init'.
1562
0
      assert(Locations.size() == PlaceholderAddresses.size() &&
1563
0
             "missed a placeholder?");
1564
1565
      // We're iterating over a hashtable, so this would be a source of
1566
      // non-determinism in compiler output *except* that we're just
1567
      // messing around with llvm::Constant structures, which never itself
1568
      // does anything that should be visible in compiler output.
1569
0
      for (auto &entry : Locations) {
1570
0
        assert(entry.first->getParent() == nullptr && "not a placeholder!");
1571
0
        entry.first->replaceAllUsesWith(entry.second);
1572
0
        entry.first->eraseFromParent();
1573
0
      }
1574
0
    }
1575
1576
  private:
1577
0
    void findLocations(llvm::Constant *init) {
1578
      // Recurse into aggregates.
1579
0
      if (auto agg = dyn_cast<llvm::ConstantAggregate>(init)) {
1580
0
        for (unsigned i = 0, e = agg->getNumOperands(); i != e; ++i) {
1581
0
          Indices.push_back(i);
1582
0
          IndexValues.push_back(nullptr);
1583
1584
0
          findLocations(agg->getOperand(i));
1585
1586
0
          IndexValues.pop_back();
1587
0
          Indices.pop_back();
1588
0
        }
1589
0
        return;
1590
0
      }
1591
1592
      // Otherwise, check for registered constants.
1593
0
      while (true) {
1594
0
        auto it = PlaceholderAddresses.find(init);
1595
0
        if (it != PlaceholderAddresses.end()) {
1596
0
          setLocation(it->second);
1597
0
          break;
1598
0
        }
1599
1600
        // Look through bitcasts or other expressions.
1601
0
        if (auto expr = dyn_cast<llvm::ConstantExpr>(init)) {
1602
0
          init = expr->getOperand(0);
1603
0
        } else {
1604
0
          break;
1605
0
        }
1606
0
      }
1607
0
    }
1608
1609
0
    void setLocation(llvm::GlobalVariable *placeholder) {
1610
0
      assert(!Locations.contains(placeholder) &&
1611
0
             "already found location for placeholder!");
1612
1613
      // Lazily fill in IndexValues with the values from Indices.
1614
      // We do this in reverse because we should always have a strict
1615
      // prefix of indices from the start.
1616
0
      assert(Indices.size() == IndexValues.size());
1617
0
      for (size_t i = Indices.size() - 1; i != size_t(-1); --i) {
1618
0
        if (IndexValues[i]) {
1619
0
#ifndef NDEBUG
1620
0
          for (size_t j = 0; j != i + 1; ++j) {
1621
0
            assert(IndexValues[j] &&
1622
0
                   isa<llvm::ConstantInt>(IndexValues[j]) &&
1623
0
                   cast<llvm::ConstantInt>(IndexValues[j])->getZExtValue()
1624
0
                     == Indices[j]);
1625
0
          }
1626
0
#endif
1627
0
          break;
1628
0
        }
1629
1630
0
        IndexValues[i] = llvm::ConstantInt::get(CGM.Int32Ty, Indices[i]);
1631
0
      }
1632
1633
0
      llvm::Constant *location = llvm::ConstantExpr::getInBoundsGetElementPtr(
1634
0
          BaseValueTy, Base, IndexValues);
1635
1636
0
      Locations.insert({placeholder, location});
1637
0
    }
1638
  };
1639
}
1640
1641
0
void ConstantEmitter::finalize(llvm::GlobalVariable *global) {
1642
0
  assert(InitializedNonAbstract &&
1643
0
         "finalizing emitter that was used for abstract emission?");
1644
0
  assert(!Finalized && "finalizing emitter multiple times");
1645
0
  assert(global->getInitializer());
1646
1647
  // Note that we might also be Failed.
1648
0
  Finalized = true;
1649
1650
0
  if (!PlaceholderAddresses.empty()) {
1651
0
    ReplacePlaceholders(CGM, global, PlaceholderAddresses)
1652
0
      .replaceInInitializer(global->getInitializer());
1653
0
    PlaceholderAddresses.clear(); // satisfy
1654
0
  }
1655
0
}
1656
1657
0
ConstantEmitter::~ConstantEmitter() {
1658
0
  assert((!InitializedNonAbstract || Finalized || Failed) &&
1659
0
         "not finalized after being initialized for non-abstract emission");
1660
0
  assert(PlaceholderAddresses.empty() && "unhandled placeholders");
1661
0
}
1662
1663
0
static QualType getNonMemoryType(CodeGenModule &CGM, QualType type) {
1664
0
  if (auto AT = type->getAs<AtomicType>()) {
1665
0
    return CGM.getContext().getQualifiedType(AT->getValueType(),
1666
0
                                             type.getQualifiers());
1667
0
  }
1668
0
  return type;
1669
0
}
1670
1671
0
llvm::Constant *ConstantEmitter::tryEmitPrivateForVarInit(const VarDecl &D) {
1672
  // Make a quick check if variable can be default NULL initialized
1673
  // and avoid going through rest of code which may do, for c++11,
1674
  // initialization of memory to all NULLs.
1675
0
  if (!D.hasLocalStorage()) {
1676
0
    QualType Ty = CGM.getContext().getBaseElementType(D.getType());
1677
0
    if (Ty->isRecordType())
1678
0
      if (const CXXConstructExpr *E =
1679
0
          dyn_cast_or_null<CXXConstructExpr>(D.getInit())) {
1680
0
        const CXXConstructorDecl *CD = E->getConstructor();
1681
0
        if (CD->isTrivial() && CD->isDefaultConstructor())
1682
0
          return CGM.EmitNullConstant(D.getType());
1683
0
      }
1684
0
  }
1685
0
  InConstantContext = D.hasConstantInitialization();
1686
1687
0
  QualType destType = D.getType();
1688
0
  const Expr *E = D.getInit();
1689
0
  assert(E && "No initializer to emit");
1690
1691
0
  if (!destType->isReferenceType()) {
1692
0
    QualType nonMemoryDestType = getNonMemoryType(CGM, destType);
1693
0
    if (llvm::Constant *C = ConstExprEmitter(*this).Visit(const_cast<Expr *>(E),
1694
0
                                                          nonMemoryDestType))
1695
0
      return emitForMemory(C, destType);
1696
0
  }
1697
1698
  // Try to emit the initializer.  Note that this can allow some things that
1699
  // are not allowed by tryEmitPrivateForMemory alone.
1700
0
  if (APValue *value = D.evaluateValue())
1701
0
    return tryEmitPrivateForMemory(*value, destType);
1702
1703
0
  return nullptr;
1704
0
}
1705
1706
llvm::Constant *
1707
0
ConstantEmitter::tryEmitAbstractForMemory(const Expr *E, QualType destType) {
1708
0
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1709
0
  auto C = tryEmitAbstract(E, nonMemoryDestType);
1710
0
  return (C ? emitForMemory(C, destType) : nullptr);
1711
0
}
1712
1713
llvm::Constant *
1714
ConstantEmitter::tryEmitAbstractForMemory(const APValue &value,
1715
0
                                          QualType destType) {
1716
0
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1717
0
  auto C = tryEmitAbstract(value, nonMemoryDestType);
1718
0
  return (C ? emitForMemory(C, destType) : nullptr);
1719
0
}
1720
1721
llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const Expr *E,
1722
0
                                                         QualType destType) {
1723
0
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1724
0
  llvm::Constant *C = tryEmitPrivate(E, nonMemoryDestType);
1725
0
  return (C ? emitForMemory(C, destType) : nullptr);
1726
0
}
1727
1728
llvm::Constant *ConstantEmitter::tryEmitPrivateForMemory(const APValue &value,
1729
0
                                                         QualType destType) {
1730
0
  auto nonMemoryDestType = getNonMemoryType(CGM, destType);
1731
0
  auto C = tryEmitPrivate(value, nonMemoryDestType);
1732
0
  return (C ? emitForMemory(C, destType) : nullptr);
1733
0
}
1734
1735
llvm::Constant *ConstantEmitter::emitForMemory(CodeGenModule &CGM,
1736
                                               llvm::Constant *C,
1737
0
                                               QualType destType) {
1738
  // For an _Atomic-qualified constant, we may need to add tail padding.
1739
0
  if (auto AT = destType->getAs<AtomicType>()) {
1740
0
    QualType destValueType = AT->getValueType();
1741
0
    C = emitForMemory(CGM, C, destValueType);
1742
1743
0
    uint64_t innerSize = CGM.getContext().getTypeSize(destValueType);
1744
0
    uint64_t outerSize = CGM.getContext().getTypeSize(destType);
1745
0
    if (innerSize == outerSize)
1746
0
      return C;
1747
1748
0
    assert(innerSize < outerSize && "emitted over-large constant for atomic");
1749
0
    llvm::Constant *elts[] = {
1750
0
      C,
1751
0
      llvm::ConstantAggregateZero::get(
1752
0
          llvm::ArrayType::get(CGM.Int8Ty, (outerSize - innerSize) / 8))
1753
0
    };
1754
0
    return llvm::ConstantStruct::getAnon(elts);
1755
0
  }
1756
1757
  // Zero-extend bool.
1758
0
  if (C->getType()->isIntegerTy(1) && !destType->isBitIntType()) {
1759
0
    llvm::Type *boolTy = CGM.getTypes().ConvertTypeForMem(destType);
1760
0
    llvm::Constant *Res = llvm::ConstantFoldCastOperand(
1761
0
        llvm::Instruction::ZExt, C, boolTy, CGM.getDataLayout());
1762
0
    assert(Res && "Constant folding must succeed");
1763
0
    return Res;
1764
0
  }
1765
1766
0
  return C;
1767
0
}
1768
1769
llvm::Constant *ConstantEmitter::tryEmitPrivate(const Expr *E,
1770
0
                                                QualType destType) {
1771
0
  assert(!destType->isVoidType() && "can't emit a void constant");
1772
1773
0
  if (!destType->isReferenceType())
1774
0
    if (llvm::Constant *C =
1775
0
            ConstExprEmitter(*this).Visit(const_cast<Expr *>(E), destType))
1776
0
      return C;
1777
1778
0
  Expr::EvalResult Result;
1779
1780
0
  bool Success = false;
1781
1782
0
  if (destType->isReferenceType())
1783
0
    Success = E->EvaluateAsLValue(Result, CGM.getContext());
1784
0
  else
1785
0
    Success = E->EvaluateAsRValue(Result, CGM.getContext(), InConstantContext);
1786
1787
0
  if (Success && !Result.HasSideEffects)
1788
0
    return tryEmitPrivate(Result.Val, destType);
1789
1790
0
  return nullptr;
1791
0
}
1792
1793
0
llvm::Constant *CodeGenModule::getNullPointer(llvm::PointerType *T, QualType QT) {
1794
0
  return getTargetCodeGenInfo().getNullPointer(*this, T, QT);
1795
0
}
1796
1797
namespace {
1798
/// A struct which can be used to peephole certain kinds of finalization
1799
/// that normally happen during l-value emission.
1800
struct ConstantLValue {
1801
  llvm::Constant *Value;
1802
  bool HasOffsetApplied;
1803
1804
  /*implicit*/ ConstantLValue(llvm::Constant *value,
1805
                              bool hasOffsetApplied = false)
1806
0
    : Value(value), HasOffsetApplied(hasOffsetApplied) {}
1807
1808
  /*implicit*/ ConstantLValue(ConstantAddress address)
1809
0
    : ConstantLValue(address.getPointer()) {}
1810
};
1811
1812
/// A helper class for emitting constant l-values.
1813
class ConstantLValueEmitter : public ConstStmtVisitor<ConstantLValueEmitter,
1814
                                                      ConstantLValue> {
1815
  CodeGenModule &CGM;
1816
  ConstantEmitter &Emitter;
1817
  const APValue &Value;
1818
  QualType DestType;
1819
1820
  // Befriend StmtVisitorBase so that we don't have to expose Visit*.
1821
  friend StmtVisitorBase;
1822
1823
public:
1824
  ConstantLValueEmitter(ConstantEmitter &emitter, const APValue &value,
1825
                        QualType destType)
1826
0
    : CGM(emitter.CGM), Emitter(emitter), Value(value), DestType(destType) {}
1827
1828
  llvm::Constant *tryEmit();
1829
1830
private:
1831
  llvm::Constant *tryEmitAbsolute(llvm::Type *destTy);
1832
  ConstantLValue tryEmitBase(const APValue::LValueBase &base);
1833
1834
0
  ConstantLValue VisitStmt(const Stmt *S) { return nullptr; }
1835
  ConstantLValue VisitConstantExpr(const ConstantExpr *E);
1836
  ConstantLValue VisitCompoundLiteralExpr(const CompoundLiteralExpr *E);
1837
  ConstantLValue VisitStringLiteral(const StringLiteral *E);
1838
  ConstantLValue VisitObjCBoxedExpr(const ObjCBoxedExpr *E);
1839
  ConstantLValue VisitObjCEncodeExpr(const ObjCEncodeExpr *E);
1840
  ConstantLValue VisitObjCStringLiteral(const ObjCStringLiteral *E);
1841
  ConstantLValue VisitPredefinedExpr(const PredefinedExpr *E);
1842
  ConstantLValue VisitAddrLabelExpr(const AddrLabelExpr *E);
1843
  ConstantLValue VisitCallExpr(const CallExpr *E);
1844
  ConstantLValue VisitBlockExpr(const BlockExpr *E);
1845
  ConstantLValue VisitCXXTypeidExpr(const CXXTypeidExpr *E);
1846
  ConstantLValue VisitMaterializeTemporaryExpr(
1847
                                         const MaterializeTemporaryExpr *E);
1848
1849
0
  bool hasNonZeroOffset() const {
1850
0
    return !Value.getLValueOffset().isZero();
1851
0
  }
1852
1853
  /// Return the value offset.
1854
0
  llvm::Constant *getOffset() {
1855
0
    return llvm::ConstantInt::get(CGM.Int64Ty,
1856
0
                                  Value.getLValueOffset().getQuantity());
1857
0
  }
1858
1859
  /// Apply the value offset to the given constant.
1860
0
  llvm::Constant *applyOffset(llvm::Constant *C) {
1861
0
    if (!hasNonZeroOffset())
1862
0
      return C;
1863
1864
0
    return llvm::ConstantExpr::getGetElementPtr(CGM.Int8Ty, C, getOffset());
1865
0
  }
1866
};
1867
1868
}
1869
1870
0
llvm::Constant *ConstantLValueEmitter::tryEmit() {
1871
0
  const APValue::LValueBase &base = Value.getLValueBase();
1872
1873
  // The destination type should be a pointer or reference
1874
  // type, but it might also be a cast thereof.
1875
  //
1876
  // FIXME: the chain of casts required should be reflected in the APValue.
1877
  // We need this in order to correctly handle things like a ptrtoint of a
1878
  // non-zero null pointer and addrspace casts that aren't trivially
1879
  // represented in LLVM IR.
1880
0
  auto destTy = CGM.getTypes().ConvertTypeForMem(DestType);
1881
0
  assert(isa<llvm::IntegerType>(destTy) || isa<llvm::PointerType>(destTy));
1882
1883
  // If there's no base at all, this is a null or absolute pointer,
1884
  // possibly cast back to an integer type.
1885
0
  if (!base) {
1886
0
    return tryEmitAbsolute(destTy);
1887
0
  }
1888
1889
  // Otherwise, try to emit the base.
1890
0
  ConstantLValue result = tryEmitBase(base);
1891
1892
  // If that failed, we're done.
1893
0
  llvm::Constant *value = result.Value;
1894
0
  if (!value) return nullptr;
1895
1896
  // Apply the offset if necessary and not already done.
1897
0
  if (!result.HasOffsetApplied) {
1898
0
    value = applyOffset(value);
1899
0
  }
1900
1901
  // Convert to the appropriate type; this could be an lvalue for
1902
  // an integer.  FIXME: performAddrSpaceCast
1903
0
  if (isa<llvm::PointerType>(destTy))
1904
0
    return llvm::ConstantExpr::getPointerCast(value, destTy);
1905
1906
0
  return llvm::ConstantExpr::getPtrToInt(value, destTy);
1907
0
}
1908
1909
/// Try to emit an absolute l-value, such as a null pointer or an integer
1910
/// bitcast to pointer type.
1911
llvm::Constant *
1912
0
ConstantLValueEmitter::tryEmitAbsolute(llvm::Type *destTy) {
1913
  // If we're producing a pointer, this is easy.
1914
0
  auto destPtrTy = cast<llvm::PointerType>(destTy);
1915
0
  if (Value.isNullPointer()) {
1916
    // FIXME: integer offsets from non-zero null pointers.
1917
0
    return CGM.getNullPointer(destPtrTy, DestType);
1918
0
  }
1919
1920
  // Convert the integer to a pointer-sized integer before converting it
1921
  // to a pointer.
1922
  // FIXME: signedness depends on the original integer type.
1923
0
  auto intptrTy = CGM.getDataLayout().getIntPtrType(destPtrTy);
1924
0
  llvm::Constant *C;
1925
0
  C = llvm::ConstantFoldIntegerCast(getOffset(), intptrTy, /*isSigned*/ false,
1926
0
                                    CGM.getDataLayout());
1927
0
  assert(C && "Must have folded, as Offset is a ConstantInt");
1928
0
  C = llvm::ConstantExpr::getIntToPtr(C, destPtrTy);
1929
0
  return C;
1930
0
}
1931
1932
ConstantLValue
1933
0
ConstantLValueEmitter::tryEmitBase(const APValue::LValueBase &base) {
1934
  // Handle values.
1935
0
  if (const ValueDecl *D = base.dyn_cast<const ValueDecl*>()) {
1936
    // The constant always points to the canonical declaration. We want to look
1937
    // at properties of the most recent declaration at the point of emission.
1938
0
    D = cast<ValueDecl>(D->getMostRecentDecl());
1939
1940
0
    if (D->hasAttr<WeakRefAttr>())
1941
0
      return CGM.GetWeakRefReference(D).getPointer();
1942
1943
0
    if (auto FD = dyn_cast<FunctionDecl>(D))
1944
0
      return CGM.GetAddrOfFunction(FD);
1945
1946
0
    if (auto VD = dyn_cast<VarDecl>(D)) {
1947
      // We can never refer to a variable with local storage.
1948
0
      if (!VD->hasLocalStorage()) {
1949
0
        if (VD->isFileVarDecl() || VD->hasExternalStorage())
1950
0
          return CGM.GetAddrOfGlobalVar(VD);
1951
1952
0
        if (VD->isLocalVarDecl()) {
1953
0
          return CGM.getOrCreateStaticVarDecl(
1954
0
              *VD, CGM.getLLVMLinkageVarDefinition(VD));
1955
0
        }
1956
0
      }
1957
0
    }
1958
1959
0
    if (auto *GD = dyn_cast<MSGuidDecl>(D))
1960
0
      return CGM.GetAddrOfMSGuidDecl(GD);
1961
1962
0
    if (auto *GCD = dyn_cast<UnnamedGlobalConstantDecl>(D))
1963
0
      return CGM.GetAddrOfUnnamedGlobalConstantDecl(GCD);
1964
1965
0
    if (auto *TPO = dyn_cast<TemplateParamObjectDecl>(D))
1966
0
      return CGM.GetAddrOfTemplateParamObject(TPO);
1967
1968
0
    return nullptr;
1969
0
  }
1970
1971
  // Handle typeid(T).
1972
0
  if (TypeInfoLValue TI = base.dyn_cast<TypeInfoLValue>())
1973
0
    return CGM.GetAddrOfRTTIDescriptor(QualType(TI.getType(), 0));
1974
1975
  // Otherwise, it must be an expression.
1976
0
  return Visit(base.get<const Expr*>());
1977
0
}
1978
1979
ConstantLValue
1980
0
ConstantLValueEmitter::VisitConstantExpr(const ConstantExpr *E) {
1981
0
  if (llvm::Constant *Result = Emitter.tryEmitConstantExpr(E))
1982
0
    return Result;
1983
0
  return Visit(E->getSubExpr());
1984
0
}
1985
1986
ConstantLValue
1987
0
ConstantLValueEmitter::VisitCompoundLiteralExpr(const CompoundLiteralExpr *E) {
1988
0
  ConstantEmitter CompoundLiteralEmitter(CGM, Emitter.CGF);
1989
0
  CompoundLiteralEmitter.setInConstantContext(Emitter.isInConstantContext());
1990
0
  return tryEmitGlobalCompoundLiteral(CompoundLiteralEmitter, E);
1991
0
}
1992
1993
ConstantLValue
1994
0
ConstantLValueEmitter::VisitStringLiteral(const StringLiteral *E) {
1995
0
  return CGM.GetAddrOfConstantStringFromLiteral(E);
1996
0
}
1997
1998
ConstantLValue
1999
0
ConstantLValueEmitter::VisitObjCEncodeExpr(const ObjCEncodeExpr *E) {
2000
0
  return CGM.GetAddrOfConstantStringFromObjCEncode(E);
2001
0
}
2002
2003
static ConstantLValue emitConstantObjCStringLiteral(const StringLiteral *S,
2004
                                                    QualType T,
2005
0
                                                    CodeGenModule &CGM) {
2006
0
  auto C = CGM.getObjCRuntime().GenerateConstantString(S);
2007
0
  return C.withElementType(CGM.getTypes().ConvertTypeForMem(T));
2008
0
}
2009
2010
ConstantLValue
2011
0
ConstantLValueEmitter::VisitObjCStringLiteral(const ObjCStringLiteral *E) {
2012
0
  return emitConstantObjCStringLiteral(E->getString(), E->getType(), CGM);
2013
0
}
2014
2015
ConstantLValue
2016
0
ConstantLValueEmitter::VisitObjCBoxedExpr(const ObjCBoxedExpr *E) {
2017
0
  assert(E->isExpressibleAsConstantInitializer() &&
2018
0
         "this boxed expression can't be emitted as a compile-time constant");
2019
0
  auto *SL = cast<StringLiteral>(E->getSubExpr()->IgnoreParenCasts());
2020
0
  return emitConstantObjCStringLiteral(SL, E->getType(), CGM);
2021
0
}
2022
2023
ConstantLValue
2024
0
ConstantLValueEmitter::VisitPredefinedExpr(const PredefinedExpr *E) {
2025
0
  return CGM.GetAddrOfConstantStringFromLiteral(E->getFunctionName());
2026
0
}
2027
2028
ConstantLValue
2029
0
ConstantLValueEmitter::VisitAddrLabelExpr(const AddrLabelExpr *E) {
2030
0
  assert(Emitter.CGF && "Invalid address of label expression outside function");
2031
0
  llvm::Constant *Ptr = Emitter.CGF->GetAddrOfLabel(E->getLabel());
2032
0
  return Ptr;
2033
0
}
2034
2035
ConstantLValue
2036
0
ConstantLValueEmitter::VisitCallExpr(const CallExpr *E) {
2037
0
  unsigned builtin = E->getBuiltinCallee();
2038
0
  if (builtin == Builtin::BI__builtin_function_start)
2039
0
    return CGM.GetFunctionStart(
2040
0
        E->getArg(0)->getAsBuiltinConstantDeclRef(CGM.getContext()));
2041
0
  if (builtin != Builtin::BI__builtin___CFStringMakeConstantString &&
2042
0
      builtin != Builtin::BI__builtin___NSStringMakeConstantString)
2043
0
    return nullptr;
2044
2045
0
  auto literal = cast<StringLiteral>(E->getArg(0)->IgnoreParenCasts());
2046
0
  if (builtin == Builtin::BI__builtin___NSStringMakeConstantString) {
2047
0
    return CGM.getObjCRuntime().GenerateConstantString(literal);
2048
0
  } else {
2049
    // FIXME: need to deal with UCN conversion issues.
2050
0
    return CGM.GetAddrOfConstantCFString(literal);
2051
0
  }
2052
0
}
2053
2054
ConstantLValue
2055
0
ConstantLValueEmitter::VisitBlockExpr(const BlockExpr *E) {
2056
0
  StringRef functionName;
2057
0
  if (auto CGF = Emitter.CGF)
2058
0
    functionName = CGF->CurFn->getName();
2059
0
  else
2060
0
    functionName = "global";
2061
2062
0
  return CGM.GetAddrOfGlobalBlock(E, functionName);
2063
0
}
2064
2065
ConstantLValue
2066
0
ConstantLValueEmitter::VisitCXXTypeidExpr(const CXXTypeidExpr *E) {
2067
0
  QualType T;
2068
0
  if (E->isTypeOperand())
2069
0
    T = E->getTypeOperand(CGM.getContext());
2070
0
  else
2071
0
    T = E->getExprOperand()->getType();
2072
0
  return CGM.GetAddrOfRTTIDescriptor(T);
2073
0
}
2074
2075
ConstantLValue
2076
ConstantLValueEmitter::VisitMaterializeTemporaryExpr(
2077
0
                                            const MaterializeTemporaryExpr *E) {
2078
0
  assert(E->getStorageDuration() == SD_Static);
2079
0
  SmallVector<const Expr *, 2> CommaLHSs;
2080
0
  SmallVector<SubobjectAdjustment, 2> Adjustments;
2081
0
  const Expr *Inner =
2082
0
      E->getSubExpr()->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments);
2083
0
  return CGM.GetAddrOfGlobalTemporary(E, Inner);
2084
0
}
2085
2086
llvm::Constant *ConstantEmitter::tryEmitPrivate(const APValue &Value,
2087
0
                                                QualType DestType) {
2088
0
  switch (Value.getKind()) {
2089
0
  case APValue::None:
2090
0
  case APValue::Indeterminate:
2091
    // Out-of-lifetime and indeterminate values can be modeled as 'undef'.
2092
0
    return llvm::UndefValue::get(CGM.getTypes().ConvertType(DestType));
2093
0
  case APValue::LValue:
2094
0
    return ConstantLValueEmitter(*this, Value, DestType).tryEmit();
2095
0
  case APValue::Int:
2096
0
    return llvm::ConstantInt::get(CGM.getLLVMContext(), Value.getInt());
2097
0
  case APValue::FixedPoint:
2098
0
    return llvm::ConstantInt::get(CGM.getLLVMContext(),
2099
0
                                  Value.getFixedPoint().getValue());
2100
0
  case APValue::ComplexInt: {
2101
0
    llvm::Constant *Complex[2];
2102
2103
0
    Complex[0] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2104
0
                                        Value.getComplexIntReal());
2105
0
    Complex[1] = llvm::ConstantInt::get(CGM.getLLVMContext(),
2106
0
                                        Value.getComplexIntImag());
2107
2108
    // FIXME: the target may want to specify that this is packed.
2109
0
    llvm::StructType *STy =
2110
0
        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2111
0
    return llvm::ConstantStruct::get(STy, Complex);
2112
0
  }
2113
0
  case APValue::Float: {
2114
0
    const llvm::APFloat &Init = Value.getFloat();
2115
0
    if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf() &&
2116
0
        !CGM.getContext().getLangOpts().NativeHalfType &&
2117
0
        CGM.getContext().getTargetInfo().useFP16ConversionIntrinsics())
2118
0
      return llvm::ConstantInt::get(CGM.getLLVMContext(),
2119
0
                                    Init.bitcastToAPInt());
2120
0
    else
2121
0
      return llvm::ConstantFP::get(CGM.getLLVMContext(), Init);
2122
0
  }
2123
0
  case APValue::ComplexFloat: {
2124
0
    llvm::Constant *Complex[2];
2125
2126
0
    Complex[0] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2127
0
                                       Value.getComplexFloatReal());
2128
0
    Complex[1] = llvm::ConstantFP::get(CGM.getLLVMContext(),
2129
0
                                       Value.getComplexFloatImag());
2130
2131
    // FIXME: the target may want to specify that this is packed.
2132
0
    llvm::StructType *STy =
2133
0
        llvm::StructType::get(Complex[0]->getType(), Complex[1]->getType());
2134
0
    return llvm::ConstantStruct::get(STy, Complex);
2135
0
  }
2136
0
  case APValue::Vector: {
2137
0
    unsigned NumElts = Value.getVectorLength();
2138
0
    SmallVector<llvm::Constant *, 4> Inits(NumElts);
2139
2140
0
    for (unsigned I = 0; I != NumElts; ++I) {
2141
0
      const APValue &Elt = Value.getVectorElt(I);
2142
0
      if (Elt.isInt())
2143
0
        Inits[I] = llvm::ConstantInt::get(CGM.getLLVMContext(), Elt.getInt());
2144
0
      else if (Elt.isFloat())
2145
0
        Inits[I] = llvm::ConstantFP::get(CGM.getLLVMContext(), Elt.getFloat());
2146
0
      else if (Elt.isIndeterminate())
2147
0
        Inits[I] = llvm::UndefValue::get(CGM.getTypes().ConvertType(
2148
0
            DestType->castAs<VectorType>()->getElementType()));
2149
0
      else
2150
0
        llvm_unreachable("unsupported vector element type");
2151
0
    }
2152
0
    return llvm::ConstantVector::get(Inits);
2153
0
  }
2154
0
  case APValue::AddrLabelDiff: {
2155
0
    const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS();
2156
0
    const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS();
2157
0
    llvm::Constant *LHS = tryEmitPrivate(LHSExpr, LHSExpr->getType());
2158
0
    llvm::Constant *RHS = tryEmitPrivate(RHSExpr, RHSExpr->getType());
2159
0
    if (!LHS || !RHS) return nullptr;
2160
2161
    // Compute difference
2162
0
    llvm::Type *ResultType = CGM.getTypes().ConvertType(DestType);
2163
0
    LHS = llvm::ConstantExpr::getPtrToInt(LHS, CGM.IntPtrTy);
2164
0
    RHS = llvm::ConstantExpr::getPtrToInt(RHS, CGM.IntPtrTy);
2165
0
    llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS);
2166
2167
    // LLVM is a bit sensitive about the exact format of the
2168
    // address-of-label difference; make sure to truncate after
2169
    // the subtraction.
2170
0
    return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType);
2171
0
  }
2172
0
  case APValue::Struct:
2173
0
  case APValue::Union:
2174
0
    return ConstStructBuilder::BuildStruct(*this, Value, DestType);
2175
0
  case APValue::Array: {
2176
0
    const ArrayType *ArrayTy = CGM.getContext().getAsArrayType(DestType);
2177
0
    unsigned NumElements = Value.getArraySize();
2178
0
    unsigned NumInitElts = Value.getArrayInitializedElts();
2179
2180
    // Emit array filler, if there is one.
2181
0
    llvm::Constant *Filler = nullptr;
2182
0
    if (Value.hasArrayFiller()) {
2183
0
      Filler = tryEmitAbstractForMemory(Value.getArrayFiller(),
2184
0
                                        ArrayTy->getElementType());
2185
0
      if (!Filler)
2186
0
        return nullptr;
2187
0
    }
2188
2189
    // Emit initializer elements.
2190
0
    SmallVector<llvm::Constant*, 16> Elts;
2191
0
    if (Filler && Filler->isNullValue())
2192
0
      Elts.reserve(NumInitElts + 1);
2193
0
    else
2194
0
      Elts.reserve(NumElements);
2195
2196
0
    llvm::Type *CommonElementType = nullptr;
2197
0
    for (unsigned I = 0; I < NumInitElts; ++I) {
2198
0
      llvm::Constant *C = tryEmitPrivateForMemory(
2199
0
          Value.getArrayInitializedElt(I), ArrayTy->getElementType());
2200
0
      if (!C) return nullptr;
2201
2202
0
      if (I == 0)
2203
0
        CommonElementType = C->getType();
2204
0
      else if (C->getType() != CommonElementType)
2205
0
        CommonElementType = nullptr;
2206
0
      Elts.push_back(C);
2207
0
    }
2208
2209
0
    llvm::ArrayType *Desired =
2210
0
        cast<llvm::ArrayType>(CGM.getTypes().ConvertType(DestType));
2211
2212
    // Fix the type of incomplete arrays if the initializer isn't empty.
2213
0
    if (DestType->isIncompleteArrayType() && !Elts.empty())
2214
0
      Desired = llvm::ArrayType::get(Desired->getElementType(), Elts.size());
2215
2216
0
    return EmitArrayConstant(CGM, Desired, CommonElementType, NumElements, Elts,
2217
0
                             Filler);
2218
0
  }
2219
0
  case APValue::MemberPointer:
2220
0
    return CGM.getCXXABI().EmitMemberPointer(Value, DestType);
2221
0
  }
2222
0
  llvm_unreachable("Unknown APValue kind");
2223
0
}
2224
2225
llvm::GlobalVariable *CodeGenModule::getAddrOfConstantCompoundLiteralIfEmitted(
2226
0
    const CompoundLiteralExpr *E) {
2227
0
  return EmittedCompoundLiterals.lookup(E);
2228
0
}
2229
2230
void CodeGenModule::setAddrOfConstantCompoundLiteral(
2231
0
    const CompoundLiteralExpr *CLE, llvm::GlobalVariable *GV) {
2232
0
  bool Ok = EmittedCompoundLiterals.insert(std::make_pair(CLE, GV)).second;
2233
0
  (void)Ok;
2234
0
  assert(Ok && "CLE has already been emitted!");
2235
0
}
2236
2237
ConstantAddress
2238
0
CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) {
2239
0
  assert(E->isFileScope() && "not a file-scope compound literal expr");
2240
0
  ConstantEmitter emitter(*this);
2241
0
  return tryEmitGlobalCompoundLiteral(emitter, E);
2242
0
}
2243
2244
llvm::Constant *
2245
0
CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) {
2246
  // Member pointer constants always have a very particular form.
2247
0
  const MemberPointerType *type = cast<MemberPointerType>(uo->getType());
2248
0
  const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl();
2249
2250
  // A member function pointer.
2251
0
  if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl))
2252
0
    return getCXXABI().EmitMemberFunctionPointer(method);
2253
2254
  // Otherwise, a member data pointer.
2255
0
  uint64_t fieldOffset = getContext().getFieldOffset(decl);
2256
0
  CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset);
2257
0
  return getCXXABI().EmitMemberDataPointer(type, chars);
2258
0
}
2259
2260
static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2261
                                               llvm::Type *baseType,
2262
                                               const CXXRecordDecl *base);
2263
2264
static llvm::Constant *EmitNullConstant(CodeGenModule &CGM,
2265
                                        const RecordDecl *record,
2266
0
                                        bool asCompleteObject) {
2267
0
  const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record);
2268
0
  llvm::StructType *structure =
2269
0
    (asCompleteObject ? layout.getLLVMType()
2270
0
                      : layout.getBaseSubobjectLLVMType());
2271
2272
0
  unsigned numElements = structure->getNumElements();
2273
0
  std::vector<llvm::Constant *> elements(numElements);
2274
2275
0
  auto CXXR = dyn_cast<CXXRecordDecl>(record);
2276
  // Fill in all the bases.
2277
0
  if (CXXR) {
2278
0
    for (const auto &I : CXXR->bases()) {
2279
0
      if (I.isVirtual()) {
2280
        // Ignore virtual bases; if we're laying out for a complete
2281
        // object, we'll lay these out later.
2282
0
        continue;
2283
0
      }
2284
2285
0
      const CXXRecordDecl *base =
2286
0
        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2287
2288
      // Ignore empty bases.
2289
0
      if (base->isEmpty() ||
2290
0
          CGM.getContext().getASTRecordLayout(base).getNonVirtualSize()
2291
0
              .isZero())
2292
0
        continue;
2293
2294
0
      unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base);
2295
0
      llvm::Type *baseType = structure->getElementType(fieldIndex);
2296
0
      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2297
0
    }
2298
0
  }
2299
2300
  // Fill in all the fields.
2301
0
  for (const auto *Field : record->fields()) {
2302
    // Fill in non-bitfields. (Bitfields always use a zero pattern, which we
2303
    // will fill in later.)
2304
0
    if (!Field->isBitField() && !Field->isZeroSize(CGM.getContext())) {
2305
0
      unsigned fieldIndex = layout.getLLVMFieldNo(Field);
2306
0
      elements[fieldIndex] = CGM.EmitNullConstant(Field->getType());
2307
0
    }
2308
2309
    // For unions, stop after the first named field.
2310
0
    if (record->isUnion()) {
2311
0
      if (Field->getIdentifier())
2312
0
        break;
2313
0
      if (const auto *FieldRD = Field->getType()->getAsRecordDecl())
2314
0
        if (FieldRD->findFirstNamedDataMember())
2315
0
          break;
2316
0
    }
2317
0
  }
2318
2319
  // Fill in the virtual bases, if we're working with the complete object.
2320
0
  if (CXXR && asCompleteObject) {
2321
0
    for (const auto &I : CXXR->vbases()) {
2322
0
      const CXXRecordDecl *base =
2323
0
        cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2324
2325
      // Ignore empty bases.
2326
0
      if (base->isEmpty())
2327
0
        continue;
2328
2329
0
      unsigned fieldIndex = layout.getVirtualBaseIndex(base);
2330
2331
      // We might have already laid this field out.
2332
0
      if (elements[fieldIndex]) continue;
2333
2334
0
      llvm::Type *baseType = structure->getElementType(fieldIndex);
2335
0
      elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base);
2336
0
    }
2337
0
  }
2338
2339
  // Now go through all other fields and zero them out.
2340
0
  for (unsigned i = 0; i != numElements; ++i) {
2341
0
    if (!elements[i])
2342
0
      elements[i] = llvm::Constant::getNullValue(structure->getElementType(i));
2343
0
  }
2344
2345
0
  return llvm::ConstantStruct::get(structure, elements);
2346
0
}
2347
2348
/// Emit the null constant for a base subobject.
2349
static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM,
2350
                                               llvm::Type *baseType,
2351
0
                                               const CXXRecordDecl *base) {
2352
0
  const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base);
2353
2354
  // Just zero out bases that don't have any pointer to data members.
2355
0
  if (baseLayout.isZeroInitializableAsBase())
2356
0
    return llvm::Constant::getNullValue(baseType);
2357
2358
  // Otherwise, we can just use its null constant.
2359
0
  return EmitNullConstant(CGM, base, /*asCompleteObject=*/false);
2360
0
}
2361
2362
llvm::Constant *ConstantEmitter::emitNullForMemory(CodeGenModule &CGM,
2363
0
                                                   QualType T) {
2364
0
  return emitForMemory(CGM, CGM.EmitNullConstant(T), T);
2365
0
}
2366
2367
0
llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) {
2368
0
  if (T->getAs<PointerType>())
2369
0
    return getNullPointer(
2370
0
        cast<llvm::PointerType>(getTypes().ConvertTypeForMem(T)), T);
2371
2372
0
  if (getTypes().isZeroInitializable(T))
2373
0
    return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T));
2374
2375
0
  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) {
2376
0
    llvm::ArrayType *ATy =
2377
0
      cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T));
2378
2379
0
    QualType ElementTy = CAT->getElementType();
2380
2381
0
    llvm::Constant *Element =
2382
0
      ConstantEmitter::emitNullForMemory(*this, ElementTy);
2383
0
    unsigned NumElements = CAT->getSize().getZExtValue();
2384
0
    SmallVector<llvm::Constant *, 8> Array(NumElements, Element);
2385
0
    return llvm::ConstantArray::get(ATy, Array);
2386
0
  }
2387
2388
0
  if (const RecordType *RT = T->getAs<RecordType>())
2389
0
    return ::EmitNullConstant(*this, RT->getDecl(), /*complete object*/ true);
2390
2391
0
  assert(T->isMemberDataPointerType() &&
2392
0
         "Should only see pointers to data members here!");
2393
2394
0
  return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>());
2395
0
}
2396
2397
llvm::Constant *
2398
0
CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) {
2399
0
  return ::EmitNullConstant(*this, Record, false);
2400
0
}