/src/llvm-project/clang/lib/CodeGen/CGExprScalar.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "CGCXXABI.h" |
14 | | #include "CGCleanup.h" |
15 | | #include "CGDebugInfo.h" |
16 | | #include "CGObjCRuntime.h" |
17 | | #include "CGOpenMPRuntime.h" |
18 | | #include "CodeGenFunction.h" |
19 | | #include "CodeGenModule.h" |
20 | | #include "ConstantEmitter.h" |
21 | | #include "TargetInfo.h" |
22 | | #include "clang/AST/ASTContext.h" |
23 | | #include "clang/AST/Attr.h" |
24 | | #include "clang/AST/DeclObjC.h" |
25 | | #include "clang/AST/Expr.h" |
26 | | #include "clang/AST/RecordLayout.h" |
27 | | #include "clang/AST/StmtVisitor.h" |
28 | | #include "clang/Basic/CodeGenOptions.h" |
29 | | #include "clang/Basic/TargetInfo.h" |
30 | | #include "llvm/ADT/APFixedPoint.h" |
31 | | #include "llvm/IR/CFG.h" |
32 | | #include "llvm/IR/Constants.h" |
33 | | #include "llvm/IR/DataLayout.h" |
34 | | #include "llvm/IR/DerivedTypes.h" |
35 | | #include "llvm/IR/FixedPointBuilder.h" |
36 | | #include "llvm/IR/Function.h" |
37 | | #include "llvm/IR/GetElementPtrTypeIterator.h" |
38 | | #include "llvm/IR/GlobalVariable.h" |
39 | | #include "llvm/IR/Intrinsics.h" |
40 | | #include "llvm/IR/IntrinsicsPowerPC.h" |
41 | | #include "llvm/IR/MatrixBuilder.h" |
42 | | #include "llvm/IR/Module.h" |
43 | | #include "llvm/Support/TypeSize.h" |
44 | | #include <cstdarg> |
45 | | #include <optional> |
46 | | |
47 | | using namespace clang; |
48 | | using namespace CodeGen; |
49 | | using llvm::Value; |
50 | | |
51 | | //===----------------------------------------------------------------------===// |
52 | | // Scalar Expression Emitter |
53 | | //===----------------------------------------------------------------------===// |
54 | | |
55 | | namespace { |
56 | | |
57 | | /// Determine whether the given binary operation may overflow. |
58 | | /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, |
59 | | /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, |
60 | | /// the returned overflow check is precise. The returned value is 'true' for |
61 | | /// all other opcodes, to be conservative. |
62 | | bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, |
63 | | BinaryOperator::Opcode Opcode, bool Signed, |
64 | 0 | llvm::APInt &Result) { |
65 | | // Assume overflow is possible, unless we can prove otherwise. |
66 | 0 | bool Overflow = true; |
67 | 0 | const auto &LHSAP = LHS->getValue(); |
68 | 0 | const auto &RHSAP = RHS->getValue(); |
69 | 0 | if (Opcode == BO_Add) { |
70 | 0 | Result = Signed ? LHSAP.sadd_ov(RHSAP, Overflow) |
71 | 0 | : LHSAP.uadd_ov(RHSAP, Overflow); |
72 | 0 | } else if (Opcode == BO_Sub) { |
73 | 0 | Result = Signed ? LHSAP.ssub_ov(RHSAP, Overflow) |
74 | 0 | : LHSAP.usub_ov(RHSAP, Overflow); |
75 | 0 | } else if (Opcode == BO_Mul) { |
76 | 0 | Result = Signed ? LHSAP.smul_ov(RHSAP, Overflow) |
77 | 0 | : LHSAP.umul_ov(RHSAP, Overflow); |
78 | 0 | } else if (Opcode == BO_Div || Opcode == BO_Rem) { |
79 | 0 | if (Signed && !RHS->isZero()) |
80 | 0 | Result = LHSAP.sdiv_ov(RHSAP, Overflow); |
81 | 0 | else |
82 | 0 | return false; |
83 | 0 | } |
84 | 0 | return Overflow; |
85 | 0 | } |
86 | | |
87 | | struct BinOpInfo { |
88 | | Value *LHS; |
89 | | Value *RHS; |
90 | | QualType Ty; // Computation Type. |
91 | | BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform |
92 | | FPOptions FPFeatures; |
93 | | const Expr *E; // Entire expr, for error unsupported. May not be binop. |
94 | | |
95 | | /// Check if the binop can result in integer overflow. |
96 | 0 | bool mayHaveIntegerOverflow() const { |
97 | | // Without constant input, we can't rule out overflow. |
98 | 0 | auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); |
99 | 0 | auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); |
100 | 0 | if (!LHSCI || !RHSCI) |
101 | 0 | return true; |
102 | | |
103 | 0 | llvm::APInt Result; |
104 | 0 | return ::mayHaveIntegerOverflow( |
105 | 0 | LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); |
106 | 0 | } |
107 | | |
108 | | /// Check if the binop computes a division or a remainder. |
109 | 0 | bool isDivremOp() const { |
110 | 0 | return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || |
111 | 0 | Opcode == BO_RemAssign; |
112 | 0 | } |
113 | | |
114 | | /// Check if the binop can result in an integer division by zero. |
115 | 0 | bool mayHaveIntegerDivisionByZero() const { |
116 | 0 | if (isDivremOp()) |
117 | 0 | if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) |
118 | 0 | return CI->isZero(); |
119 | 0 | return true; |
120 | 0 | } |
121 | | |
122 | | /// Check if the binop can result in a float division by zero. |
123 | 0 | bool mayHaveFloatDivisionByZero() const { |
124 | 0 | if (isDivremOp()) |
125 | 0 | if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) |
126 | 0 | return CFP->isZero(); |
127 | 0 | return true; |
128 | 0 | } |
129 | | |
130 | | /// Check if at least one operand is a fixed point type. In such cases, this |
131 | | /// operation did not follow usual arithmetic conversion and both operands |
132 | | /// might not be of the same type. |
133 | 0 | bool isFixedPointOp() const { |
134 | | // We cannot simply check the result type since comparison operations return |
135 | | // an int. |
136 | 0 | if (const auto *BinOp = dyn_cast<BinaryOperator>(E)) { |
137 | 0 | QualType LHSType = BinOp->getLHS()->getType(); |
138 | 0 | QualType RHSType = BinOp->getRHS()->getType(); |
139 | 0 | return LHSType->isFixedPointType() || RHSType->isFixedPointType(); |
140 | 0 | } |
141 | 0 | if (const auto *UnOp = dyn_cast<UnaryOperator>(E)) |
142 | 0 | return UnOp->getSubExpr()->getType()->isFixedPointType(); |
143 | 0 | return false; |
144 | 0 | } |
145 | | }; |
146 | | |
147 | 0 | static bool MustVisitNullValue(const Expr *E) { |
148 | | // If a null pointer expression's type is the C++0x nullptr_t, then |
149 | | // it's not necessarily a simple constant and it must be evaluated |
150 | | // for its potential side effects. |
151 | 0 | return E->getType()->isNullPtrType(); |
152 | 0 | } |
153 | | |
154 | | /// If \p E is a widened promoted integer, get its base (unpromoted) type. |
155 | | static std::optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, |
156 | 0 | const Expr *E) { |
157 | 0 | const Expr *Base = E->IgnoreImpCasts(); |
158 | 0 | if (E == Base) |
159 | 0 | return std::nullopt; |
160 | | |
161 | 0 | QualType BaseTy = Base->getType(); |
162 | 0 | if (!Ctx.isPromotableIntegerType(BaseTy) || |
163 | 0 | Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) |
164 | 0 | return std::nullopt; |
165 | | |
166 | 0 | return BaseTy; |
167 | 0 | } |
168 | | |
169 | | /// Check if \p E is a widened promoted integer. |
170 | 0 | static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { |
171 | 0 | return getUnwidenedIntegerType(Ctx, E).has_value(); |
172 | 0 | } |
173 | | |
174 | | /// Check if we can skip the overflow check for \p Op. |
175 | 0 | static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { |
176 | 0 | assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && |
177 | 0 | "Expected a unary or binary operator"); |
178 | | |
179 | | // If the binop has constant inputs and we can prove there is no overflow, |
180 | | // we can elide the overflow check. |
181 | 0 | if (!Op.mayHaveIntegerOverflow()) |
182 | 0 | return true; |
183 | | |
184 | | // If a unary op has a widened operand, the op cannot overflow. |
185 | 0 | if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) |
186 | 0 | return !UO->canOverflow(); |
187 | | |
188 | | // We usually don't need overflow checks for binops with widened operands. |
189 | | // Multiplication with promoted unsigned operands is a special case. |
190 | 0 | const auto *BO = cast<BinaryOperator>(Op.E); |
191 | 0 | auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); |
192 | 0 | if (!OptionalLHSTy) |
193 | 0 | return false; |
194 | | |
195 | 0 | auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); |
196 | 0 | if (!OptionalRHSTy) |
197 | 0 | return false; |
198 | | |
199 | 0 | QualType LHSTy = *OptionalLHSTy; |
200 | 0 | QualType RHSTy = *OptionalRHSTy; |
201 | | |
202 | | // This is the simple case: binops without unsigned multiplication, and with |
203 | | // widened operands. No overflow check is needed here. |
204 | 0 | if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || |
205 | 0 | !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) |
206 | 0 | return true; |
207 | | |
208 | | // For unsigned multiplication the overflow check can be elided if either one |
209 | | // of the unpromoted types are less than half the size of the promoted type. |
210 | 0 | unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); |
211 | 0 | return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || |
212 | 0 | (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; |
213 | 0 | } |
214 | | |
215 | | class ScalarExprEmitter |
216 | | : public StmtVisitor<ScalarExprEmitter, Value*> { |
217 | | CodeGenFunction &CGF; |
218 | | CGBuilderTy &Builder; |
219 | | bool IgnoreResultAssign; |
220 | | llvm::LLVMContext &VMContext; |
221 | | public: |
222 | | |
223 | | ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) |
224 | | : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), |
225 | 0 | VMContext(cgf.getLLVMContext()) { |
226 | 0 | } |
227 | | |
228 | | //===--------------------------------------------------------------------===// |
229 | | // Utilities |
230 | | //===--------------------------------------------------------------------===// |
231 | | |
232 | 0 | bool TestAndClearIgnoreResultAssign() { |
233 | 0 | bool I = IgnoreResultAssign; |
234 | 0 | IgnoreResultAssign = false; |
235 | 0 | return I; |
236 | 0 | } |
237 | | |
238 | 0 | llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } |
239 | 0 | LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } |
240 | 0 | LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { |
241 | 0 | return CGF.EmitCheckedLValue(E, TCK); |
242 | 0 | } |
243 | | |
244 | | void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, |
245 | | const BinOpInfo &Info); |
246 | | |
247 | 0 | Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { |
248 | 0 | return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); |
249 | 0 | } |
250 | | |
251 | 0 | void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { |
252 | 0 | const AlignValueAttr *AVAttr = nullptr; |
253 | 0 | if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { |
254 | 0 | const ValueDecl *VD = DRE->getDecl(); |
255 | |
|
256 | 0 | if (VD->getType()->isReferenceType()) { |
257 | 0 | if (const auto *TTy = |
258 | 0 | VD->getType().getNonReferenceType()->getAs<TypedefType>()) |
259 | 0 | AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); |
260 | 0 | } else { |
261 | | // Assumptions for function parameters are emitted at the start of the |
262 | | // function, so there is no need to repeat that here, |
263 | | // unless the alignment-assumption sanitizer is enabled, |
264 | | // then we prefer the assumption over alignment attribute |
265 | | // on IR function param. |
266 | 0 | if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) |
267 | 0 | return; |
268 | | |
269 | 0 | AVAttr = VD->getAttr<AlignValueAttr>(); |
270 | 0 | } |
271 | 0 | } |
272 | | |
273 | 0 | if (!AVAttr) |
274 | 0 | if (const auto *TTy = E->getType()->getAs<TypedefType>()) |
275 | 0 | AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); |
276 | |
|
277 | 0 | if (!AVAttr) |
278 | 0 | return; |
279 | | |
280 | 0 | Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); |
281 | 0 | llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); |
282 | 0 | CGF.emitAlignmentAssumption(V, E, AVAttr->getLocation(), AlignmentCI); |
283 | 0 | } |
284 | | |
285 | | /// EmitLoadOfLValue - Given an expression with complex type that represents a |
286 | | /// value l-value, this method emits the address of the l-value, then loads |
287 | | /// and returns the result. |
288 | 0 | Value *EmitLoadOfLValue(const Expr *E) { |
289 | 0 | Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), |
290 | 0 | E->getExprLoc()); |
291 | |
|
292 | 0 | EmitLValueAlignmentAssumption(E, V); |
293 | 0 | return V; |
294 | 0 | } |
295 | | |
296 | | /// EmitConversionToBool - Convert the specified expression value to a |
297 | | /// boolean (i1) truth value. This is equivalent to "Val != 0". |
298 | | Value *EmitConversionToBool(Value *Src, QualType DstTy); |
299 | | |
300 | | /// Emit a check that a conversion from a floating-point type does not |
301 | | /// overflow. |
302 | | void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, |
303 | | Value *Src, QualType SrcType, QualType DstType, |
304 | | llvm::Type *DstTy, SourceLocation Loc); |
305 | | |
306 | | /// Known implicit conversion check kinds. |
307 | | /// Keep in sync with the enum of the same name in ubsan_handlers.h |
308 | | enum ImplicitConversionCheckKind : unsigned char { |
309 | | ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. |
310 | | ICCK_UnsignedIntegerTruncation = 1, |
311 | | ICCK_SignedIntegerTruncation = 2, |
312 | | ICCK_IntegerSignChange = 3, |
313 | | ICCK_SignedIntegerTruncationOrSignChange = 4, |
314 | | }; |
315 | | |
316 | | /// Emit a check that an [implicit] truncation of an integer does not |
317 | | /// discard any bits. It is not UB, so we use the value after truncation. |
318 | | void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, |
319 | | QualType DstType, SourceLocation Loc); |
320 | | |
321 | | /// Emit a check that an [implicit] conversion of an integer does not change |
322 | | /// the sign of the value. It is not UB, so we use the value after conversion. |
323 | | /// NOTE: Src and Dst may be the exact same value! (point to the same thing) |
324 | | void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, |
325 | | QualType DstType, SourceLocation Loc); |
326 | | |
327 | | /// Emit a conversion from the specified type to the specified destination |
328 | | /// type, both of which are LLVM scalar types. |
329 | | struct ScalarConversionOpts { |
330 | | bool TreatBooleanAsSigned; |
331 | | bool EmitImplicitIntegerTruncationChecks; |
332 | | bool EmitImplicitIntegerSignChangeChecks; |
333 | | |
334 | | ScalarConversionOpts() |
335 | | : TreatBooleanAsSigned(false), |
336 | | EmitImplicitIntegerTruncationChecks(false), |
337 | 0 | EmitImplicitIntegerSignChangeChecks(false) {} |
338 | | |
339 | | ScalarConversionOpts(clang::SanitizerSet SanOpts) |
340 | | : TreatBooleanAsSigned(false), |
341 | | EmitImplicitIntegerTruncationChecks( |
342 | | SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), |
343 | | EmitImplicitIntegerSignChangeChecks( |
344 | 0 | SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} |
345 | | }; |
346 | | Value *EmitScalarCast(Value *Src, QualType SrcType, QualType DstType, |
347 | | llvm::Type *SrcTy, llvm::Type *DstTy, |
348 | | ScalarConversionOpts Opts); |
349 | | Value * |
350 | | EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, |
351 | | SourceLocation Loc, |
352 | | ScalarConversionOpts Opts = ScalarConversionOpts()); |
353 | | |
354 | | /// Convert between either a fixed point and other fixed point or fixed point |
355 | | /// and an integer. |
356 | | Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, |
357 | | SourceLocation Loc); |
358 | | |
359 | | /// Emit a conversion from the specified complex type to the specified |
360 | | /// destination type, where the destination type is an LLVM scalar type. |
361 | | Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, |
362 | | QualType SrcTy, QualType DstTy, |
363 | | SourceLocation Loc); |
364 | | |
365 | | /// EmitNullValue - Emit a value that corresponds to null for the given type. |
366 | | Value *EmitNullValue(QualType Ty); |
367 | | |
368 | | /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. |
369 | 0 | Value *EmitFloatToBoolConversion(Value *V) { |
370 | | // Compare against 0.0 for fp scalars. |
371 | 0 | llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); |
372 | 0 | return Builder.CreateFCmpUNE(V, Zero, "tobool"); |
373 | 0 | } |
374 | | |
375 | | /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. |
376 | 0 | Value *EmitPointerToBoolConversion(Value *V, QualType QT) { |
377 | 0 | Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); |
378 | |
|
379 | 0 | return Builder.CreateICmpNE(V, Zero, "tobool"); |
380 | 0 | } |
381 | | |
382 | 0 | Value *EmitIntToBoolConversion(Value *V) { |
383 | | // Because of the type rules of C, we often end up computing a |
384 | | // logical value, then zero extending it to int, then wanting it |
385 | | // as a logical value again. Optimize this common case. |
386 | 0 | if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { |
387 | 0 | if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { |
388 | 0 | Value *Result = ZI->getOperand(0); |
389 | | // If there aren't any more uses, zap the instruction to save space. |
390 | | // Note that there can be more uses, for example if this |
391 | | // is the result of an assignment. |
392 | 0 | if (ZI->use_empty()) |
393 | 0 | ZI->eraseFromParent(); |
394 | 0 | return Result; |
395 | 0 | } |
396 | 0 | } |
397 | | |
398 | 0 | return Builder.CreateIsNotNull(V, "tobool"); |
399 | 0 | } |
400 | | |
401 | | //===--------------------------------------------------------------------===// |
402 | | // Visitor Methods |
403 | | //===--------------------------------------------------------------------===// |
404 | | |
405 | 0 | Value *Visit(Expr *E) { |
406 | 0 | ApplyDebugLocation DL(CGF, E); |
407 | 0 | return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); |
408 | 0 | } |
409 | | |
410 | 0 | Value *VisitStmt(Stmt *S) { |
411 | 0 | S->dump(llvm::errs(), CGF.getContext()); |
412 | 0 | llvm_unreachable("Stmt can't have complex result type!"); |
413 | 0 | } |
414 | | Value *VisitExpr(Expr *S); |
415 | | |
416 | 0 | Value *VisitConstantExpr(ConstantExpr *E) { |
417 | | // A constant expression of type 'void' generates no code and produces no |
418 | | // value. |
419 | 0 | if (E->getType()->isVoidType()) |
420 | 0 | return nullptr; |
421 | | |
422 | 0 | if (Value *Result = ConstantEmitter(CGF).tryEmitConstantExpr(E)) { |
423 | 0 | if (E->isGLValue()) |
424 | 0 | return CGF.Builder.CreateLoad(Address( |
425 | 0 | Result, CGF.ConvertTypeForMem(E->getType()), |
426 | 0 | CGF.getContext().getTypeAlignInChars(E->getType()))); |
427 | 0 | return Result; |
428 | 0 | } |
429 | 0 | return Visit(E->getSubExpr()); |
430 | 0 | } |
431 | 0 | Value *VisitParenExpr(ParenExpr *PE) { |
432 | 0 | return Visit(PE->getSubExpr()); |
433 | 0 | } |
434 | 0 | Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { |
435 | 0 | return Visit(E->getReplacement()); |
436 | 0 | } |
437 | 0 | Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { |
438 | 0 | return Visit(GE->getResultExpr()); |
439 | 0 | } |
440 | 0 | Value *VisitCoawaitExpr(CoawaitExpr *S) { |
441 | 0 | return CGF.EmitCoawaitExpr(*S).getScalarVal(); |
442 | 0 | } |
443 | 0 | Value *VisitCoyieldExpr(CoyieldExpr *S) { |
444 | 0 | return CGF.EmitCoyieldExpr(*S).getScalarVal(); |
445 | 0 | } |
446 | 0 | Value *VisitUnaryCoawait(const UnaryOperator *E) { |
447 | 0 | return Visit(E->getSubExpr()); |
448 | 0 | } |
449 | | |
450 | | // Leaves. |
451 | 0 | Value *VisitIntegerLiteral(const IntegerLiteral *E) { |
452 | 0 | return Builder.getInt(E->getValue()); |
453 | 0 | } |
454 | 0 | Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { |
455 | 0 | return Builder.getInt(E->getValue()); |
456 | 0 | } |
457 | 0 | Value *VisitFloatingLiteral(const FloatingLiteral *E) { |
458 | 0 | return llvm::ConstantFP::get(VMContext, E->getValue()); |
459 | 0 | } |
460 | 0 | Value *VisitCharacterLiteral(const CharacterLiteral *E) { |
461 | 0 | return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
462 | 0 | } |
463 | 0 | Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { |
464 | 0 | return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
465 | 0 | } |
466 | 0 | Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { |
467 | 0 | return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
468 | 0 | } |
469 | 0 | Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { |
470 | 0 | if (E->getType()->isVoidType()) |
471 | 0 | return nullptr; |
472 | | |
473 | 0 | return EmitNullValue(E->getType()); |
474 | 0 | } |
475 | 0 | Value *VisitGNUNullExpr(const GNUNullExpr *E) { |
476 | 0 | return EmitNullValue(E->getType()); |
477 | 0 | } |
478 | | Value *VisitOffsetOfExpr(OffsetOfExpr *E); |
479 | | Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); |
480 | 0 | Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { |
481 | 0 | llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); |
482 | 0 | return Builder.CreateBitCast(V, ConvertType(E->getType())); |
483 | 0 | } |
484 | | |
485 | 0 | Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { |
486 | 0 | return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); |
487 | 0 | } |
488 | | |
489 | 0 | Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { |
490 | 0 | return CGF.EmitPseudoObjectRValue(E).getScalarVal(); |
491 | 0 | } |
492 | | |
493 | | Value *VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E); |
494 | | |
495 | 0 | Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { |
496 | 0 | if (E->isGLValue()) |
497 | 0 | return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), |
498 | 0 | E->getExprLoc()); |
499 | | |
500 | | // Otherwise, assume the mapping is the scalar directly. |
501 | 0 | return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); |
502 | 0 | } |
503 | | |
504 | | // l-values. |
505 | 0 | Value *VisitDeclRefExpr(DeclRefExpr *E) { |
506 | 0 | if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) |
507 | 0 | return CGF.emitScalarConstant(Constant, E); |
508 | 0 | return EmitLoadOfLValue(E); |
509 | 0 | } |
510 | | |
511 | 0 | Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { |
512 | 0 | return CGF.EmitObjCSelectorExpr(E); |
513 | 0 | } |
514 | 0 | Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { |
515 | 0 | return CGF.EmitObjCProtocolExpr(E); |
516 | 0 | } |
517 | 0 | Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { |
518 | 0 | return EmitLoadOfLValue(E); |
519 | 0 | } |
520 | 0 | Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { |
521 | 0 | if (E->getMethodDecl() && |
522 | 0 | E->getMethodDecl()->getReturnType()->isReferenceType()) |
523 | 0 | return EmitLoadOfLValue(E); |
524 | 0 | return CGF.EmitObjCMessageExpr(E).getScalarVal(); |
525 | 0 | } |
526 | | |
527 | 0 | Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { |
528 | 0 | LValue LV = CGF.EmitObjCIsaExpr(E); |
529 | 0 | Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); |
530 | 0 | return V; |
531 | 0 | } |
532 | | |
533 | 0 | Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { |
534 | 0 | VersionTuple Version = E->getVersion(); |
535 | | |
536 | | // If we're checking for a platform older than our minimum deployment |
537 | | // target, we can fold the check away. |
538 | 0 | if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) |
539 | 0 | return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); |
540 | | |
541 | 0 | return CGF.EmitBuiltinAvailable(Version); |
542 | 0 | } |
543 | | |
544 | | Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); |
545 | | Value *VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E); |
546 | | Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); |
547 | | Value *VisitConvertVectorExpr(ConvertVectorExpr *E); |
548 | | Value *VisitMemberExpr(MemberExpr *E); |
549 | 0 | Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } |
550 | 0 | Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { |
551 | | // Strictly speaking, we shouldn't be calling EmitLoadOfLValue, which |
552 | | // transitively calls EmitCompoundLiteralLValue, here in C++ since compound |
553 | | // literals aren't l-values in C++. We do so simply because that's the |
554 | | // cleanest way to handle compound literals in C++. |
555 | | // See the discussion here: https://reviews.llvm.org/D64464 |
556 | 0 | return EmitLoadOfLValue(E); |
557 | 0 | } |
558 | | |
559 | | Value *VisitInitListExpr(InitListExpr *E); |
560 | | |
561 | 0 | Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { |
562 | 0 | assert(CGF.getArrayInitIndex() && |
563 | 0 | "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); |
564 | 0 | return CGF.getArrayInitIndex(); |
565 | 0 | } |
566 | | |
567 | 0 | Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { |
568 | 0 | return EmitNullValue(E->getType()); |
569 | 0 | } |
570 | 0 | Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { |
571 | 0 | CGF.CGM.EmitExplicitCastExprType(E, &CGF); |
572 | 0 | return VisitCastExpr(E); |
573 | 0 | } |
574 | | Value *VisitCastExpr(CastExpr *E); |
575 | | |
576 | 0 | Value *VisitCallExpr(const CallExpr *E) { |
577 | 0 | if (E->getCallReturnType(CGF.getContext())->isReferenceType()) |
578 | 0 | return EmitLoadOfLValue(E); |
579 | | |
580 | 0 | Value *V = CGF.EmitCallExpr(E).getScalarVal(); |
581 | |
|
582 | 0 | EmitLValueAlignmentAssumption(E, V); |
583 | 0 | return V; |
584 | 0 | } |
585 | | |
586 | | Value *VisitStmtExpr(const StmtExpr *E); |
587 | | |
588 | | // Unary Operators. |
589 | 0 | Value *VisitUnaryPostDec(const UnaryOperator *E) { |
590 | 0 | LValue LV = EmitLValue(E->getSubExpr()); |
591 | 0 | return EmitScalarPrePostIncDec(E, LV, false, false); |
592 | 0 | } |
593 | 0 | Value *VisitUnaryPostInc(const UnaryOperator *E) { |
594 | 0 | LValue LV = EmitLValue(E->getSubExpr()); |
595 | 0 | return EmitScalarPrePostIncDec(E, LV, true, false); |
596 | 0 | } |
597 | 0 | Value *VisitUnaryPreDec(const UnaryOperator *E) { |
598 | 0 | LValue LV = EmitLValue(E->getSubExpr()); |
599 | 0 | return EmitScalarPrePostIncDec(E, LV, false, true); |
600 | 0 | } |
601 | 0 | Value *VisitUnaryPreInc(const UnaryOperator *E) { |
602 | 0 | LValue LV = EmitLValue(E->getSubExpr()); |
603 | 0 | return EmitScalarPrePostIncDec(E, LV, true, true); |
604 | 0 | } |
605 | | |
606 | | llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, |
607 | | llvm::Value *InVal, |
608 | | bool IsInc); |
609 | | |
610 | | llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
611 | | bool isInc, bool isPre); |
612 | | |
613 | | |
614 | 0 | Value *VisitUnaryAddrOf(const UnaryOperator *E) { |
615 | 0 | if (isa<MemberPointerType>(E->getType())) // never sugared |
616 | 0 | return CGF.CGM.getMemberPointerConstant(E); |
617 | | |
618 | 0 | return EmitLValue(E->getSubExpr()).getPointer(CGF); |
619 | 0 | } |
620 | 0 | Value *VisitUnaryDeref(const UnaryOperator *E) { |
621 | 0 | if (E->getType()->isVoidType()) |
622 | 0 | return Visit(E->getSubExpr()); // the actual value should be unused |
623 | 0 | return EmitLoadOfLValue(E); |
624 | 0 | } |
625 | | |
626 | | Value *VisitUnaryPlus(const UnaryOperator *E, |
627 | | QualType PromotionType = QualType()); |
628 | | Value *VisitPlus(const UnaryOperator *E, QualType PromotionType); |
629 | | Value *VisitUnaryMinus(const UnaryOperator *E, |
630 | | QualType PromotionType = QualType()); |
631 | | Value *VisitMinus(const UnaryOperator *E, QualType PromotionType); |
632 | | |
633 | | Value *VisitUnaryNot (const UnaryOperator *E); |
634 | | Value *VisitUnaryLNot (const UnaryOperator *E); |
635 | | Value *VisitUnaryReal(const UnaryOperator *E, |
636 | | QualType PromotionType = QualType()); |
637 | | Value *VisitReal(const UnaryOperator *E, QualType PromotionType); |
638 | | Value *VisitUnaryImag(const UnaryOperator *E, |
639 | | QualType PromotionType = QualType()); |
640 | | Value *VisitImag(const UnaryOperator *E, QualType PromotionType); |
641 | 0 | Value *VisitUnaryExtension(const UnaryOperator *E) { |
642 | 0 | return Visit(E->getSubExpr()); |
643 | 0 | } |
644 | | |
645 | | // C++ |
646 | 0 | Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { |
647 | 0 | return EmitLoadOfLValue(E); |
648 | 0 | } |
649 | 0 | Value *VisitSourceLocExpr(SourceLocExpr *SLE) { |
650 | 0 | auto &Ctx = CGF.getContext(); |
651 | 0 | APValue Evaluated = |
652 | 0 | SLE->EvaluateInContext(Ctx, CGF.CurSourceLocExprScope.getDefaultExpr()); |
653 | 0 | return ConstantEmitter(CGF).emitAbstract(SLE->getLocation(), Evaluated, |
654 | 0 | SLE->getType()); |
655 | 0 | } |
656 | | |
657 | 0 | Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { |
658 | 0 | CodeGenFunction::CXXDefaultArgExprScope Scope(CGF, DAE); |
659 | 0 | return Visit(DAE->getExpr()); |
660 | 0 | } |
661 | 0 | Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { |
662 | 0 | CodeGenFunction::CXXDefaultInitExprScope Scope(CGF, DIE); |
663 | 0 | return Visit(DIE->getExpr()); |
664 | 0 | } |
665 | 0 | Value *VisitCXXThisExpr(CXXThisExpr *TE) { |
666 | 0 | return CGF.LoadCXXThis(); |
667 | 0 | } |
668 | | |
669 | | Value *VisitExprWithCleanups(ExprWithCleanups *E); |
670 | 0 | Value *VisitCXXNewExpr(const CXXNewExpr *E) { |
671 | 0 | return CGF.EmitCXXNewExpr(E); |
672 | 0 | } |
673 | 0 | Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { |
674 | 0 | CGF.EmitCXXDeleteExpr(E); |
675 | 0 | return nullptr; |
676 | 0 | } |
677 | | |
678 | 0 | Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { |
679 | 0 | return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); |
680 | 0 | } |
681 | | |
682 | 0 | Value *VisitConceptSpecializationExpr(const ConceptSpecializationExpr *E) { |
683 | 0 | return Builder.getInt1(E->isSatisfied()); |
684 | 0 | } |
685 | | |
686 | 0 | Value *VisitRequiresExpr(const RequiresExpr *E) { |
687 | 0 | return Builder.getInt1(E->isSatisfied()); |
688 | 0 | } |
689 | | |
690 | 0 | Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { |
691 | 0 | return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); |
692 | 0 | } |
693 | | |
694 | 0 | Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { |
695 | 0 | return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); |
696 | 0 | } |
697 | | |
698 | 0 | Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { |
699 | | // C++ [expr.pseudo]p1: |
700 | | // The result shall only be used as the operand for the function call |
701 | | // operator (), and the result of such a call has type void. The only |
702 | | // effect is the evaluation of the postfix-expression before the dot or |
703 | | // arrow. |
704 | 0 | CGF.EmitScalarExpr(E->getBase()); |
705 | 0 | return nullptr; |
706 | 0 | } |
707 | | |
708 | 0 | Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { |
709 | 0 | return EmitNullValue(E->getType()); |
710 | 0 | } |
711 | | |
712 | 0 | Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { |
713 | 0 | CGF.EmitCXXThrowExpr(E); |
714 | 0 | return nullptr; |
715 | 0 | } |
716 | | |
717 | 0 | Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { |
718 | 0 | return Builder.getInt1(E->getValue()); |
719 | 0 | } |
720 | | |
721 | | // Binary Operators. |
722 | 0 | Value *EmitMul(const BinOpInfo &Ops) { |
723 | 0 | if (Ops.Ty->isSignedIntegerOrEnumerationType()) { |
724 | 0 | switch (CGF.getLangOpts().getSignedOverflowBehavior()) { |
725 | 0 | case LangOptions::SOB_Defined: |
726 | 0 | return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); |
727 | 0 | case LangOptions::SOB_Undefined: |
728 | 0 | if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) |
729 | 0 | return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); |
730 | 0 | [[fallthrough]]; |
731 | 0 | case LangOptions::SOB_Trapping: |
732 | 0 | if (CanElideOverflowCheck(CGF.getContext(), Ops)) |
733 | 0 | return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); |
734 | 0 | return EmitOverflowCheckedBinOp(Ops); |
735 | 0 | } |
736 | 0 | } |
737 | | |
738 | 0 | if (Ops.Ty->isConstantMatrixType()) { |
739 | 0 | llvm::MatrixBuilder MB(Builder); |
740 | | // We need to check the types of the operands of the operator to get the |
741 | | // correct matrix dimensions. |
742 | 0 | auto *BO = cast<BinaryOperator>(Ops.E); |
743 | 0 | auto *LHSMatTy = dyn_cast<ConstantMatrixType>( |
744 | 0 | BO->getLHS()->getType().getCanonicalType()); |
745 | 0 | auto *RHSMatTy = dyn_cast<ConstantMatrixType>( |
746 | 0 | BO->getRHS()->getType().getCanonicalType()); |
747 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); |
748 | 0 | if (LHSMatTy && RHSMatTy) |
749 | 0 | return MB.CreateMatrixMultiply(Ops.LHS, Ops.RHS, LHSMatTy->getNumRows(), |
750 | 0 | LHSMatTy->getNumColumns(), |
751 | 0 | RHSMatTy->getNumColumns()); |
752 | 0 | return MB.CreateScalarMultiply(Ops.LHS, Ops.RHS); |
753 | 0 | } |
754 | | |
755 | 0 | if (Ops.Ty->isUnsignedIntegerType() && |
756 | 0 | CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && |
757 | 0 | !CanElideOverflowCheck(CGF.getContext(), Ops)) |
758 | 0 | return EmitOverflowCheckedBinOp(Ops); |
759 | | |
760 | 0 | if (Ops.LHS->getType()->isFPOrFPVectorTy()) { |
761 | | // Preserve the old values |
762 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); |
763 | 0 | return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); |
764 | 0 | } |
765 | 0 | if (Ops.isFixedPointOp()) |
766 | 0 | return EmitFixedPointBinOp(Ops); |
767 | 0 | return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); |
768 | 0 | } |
769 | | /// Create a binary op that checks for overflow. |
770 | | /// Currently only supports +, - and *. |
771 | | Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); |
772 | | |
773 | | // Check for undefined division and modulus behaviors. |
774 | | void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, |
775 | | llvm::Value *Zero,bool isDiv); |
776 | | // Common helper for getting how wide LHS of shift is. |
777 | | static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); |
778 | | |
779 | | // Used for shifting constraints for OpenCL, do mask for powers of 2, URem for |
780 | | // non powers of two. |
781 | | Value *ConstrainShiftValue(Value *LHS, Value *RHS, const Twine &Name); |
782 | | |
783 | | Value *EmitDiv(const BinOpInfo &Ops); |
784 | | Value *EmitRem(const BinOpInfo &Ops); |
785 | | Value *EmitAdd(const BinOpInfo &Ops); |
786 | | Value *EmitSub(const BinOpInfo &Ops); |
787 | | Value *EmitShl(const BinOpInfo &Ops); |
788 | | Value *EmitShr(const BinOpInfo &Ops); |
789 | 0 | Value *EmitAnd(const BinOpInfo &Ops) { |
790 | 0 | return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); |
791 | 0 | } |
792 | 0 | Value *EmitXor(const BinOpInfo &Ops) { |
793 | 0 | return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); |
794 | 0 | } |
795 | 0 | Value *EmitOr (const BinOpInfo &Ops) { |
796 | 0 | return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); |
797 | 0 | } |
798 | | |
799 | | // Helper functions for fixed point binary operations. |
800 | | Value *EmitFixedPointBinOp(const BinOpInfo &Ops); |
801 | | |
802 | | BinOpInfo EmitBinOps(const BinaryOperator *E, |
803 | | QualType PromotionTy = QualType()); |
804 | | |
805 | | Value *EmitPromotedValue(Value *result, QualType PromotionType); |
806 | | Value *EmitUnPromotedValue(Value *result, QualType ExprType); |
807 | | Value *EmitPromoted(const Expr *E, QualType PromotionType); |
808 | | |
809 | | LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, |
810 | | Value *(ScalarExprEmitter::*F)(const BinOpInfo &), |
811 | | Value *&Result); |
812 | | |
813 | | Value *EmitCompoundAssign(const CompoundAssignOperator *E, |
814 | | Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); |
815 | | |
816 | 0 | QualType getPromotionType(QualType Ty) { |
817 | 0 | const auto &Ctx = CGF.getContext(); |
818 | 0 | if (auto *CT = Ty->getAs<ComplexType>()) { |
819 | 0 | QualType ElementType = CT->getElementType(); |
820 | 0 | if (ElementType.UseExcessPrecision(Ctx)) |
821 | 0 | return Ctx.getComplexType(Ctx.FloatTy); |
822 | 0 | } |
823 | | |
824 | 0 | if (Ty.UseExcessPrecision(Ctx)) { |
825 | 0 | if (auto *VT = Ty->getAs<VectorType>()) { |
826 | 0 | unsigned NumElements = VT->getNumElements(); |
827 | 0 | return Ctx.getVectorType(Ctx.FloatTy, NumElements, VT->getVectorKind()); |
828 | 0 | } |
829 | 0 | return Ctx.FloatTy; |
830 | 0 | } |
831 | | |
832 | 0 | return QualType(); |
833 | 0 | } |
834 | | |
835 | | // Binary operators and binary compound assignment operators. |
836 | | #define HANDLEBINOP(OP) \ |
837 | 0 | Value *VisitBin##OP(const BinaryOperator *E) { \ |
838 | 0 | QualType promotionTy = getPromotionType(E->getType()); \ |
839 | 0 | auto result = Emit##OP(EmitBinOps(E, promotionTy)); \ |
840 | 0 | if (result && !promotionTy.isNull()) \ |
841 | 0 | result = EmitUnPromotedValue(result, E->getType()); \ |
842 | 0 | return result; \ |
843 | 0 | } \ Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinMul(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinDiv(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinRem(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinAdd(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinSub(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinShl(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinShr(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinAnd(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinXor(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinOr(clang::BinaryOperator const*) |
844 | 0 | Value *VisitBin##OP##Assign(const CompoundAssignOperator *E) { \ |
845 | 0 | return EmitCompoundAssign(E, &ScalarExprEmitter::Emit##OP); \ |
846 | 0 | } Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinMulAssign(clang::CompoundAssignOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinDivAssign(clang::CompoundAssignOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinRemAssign(clang::CompoundAssignOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinAddAssign(clang::CompoundAssignOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinSubAssign(clang::CompoundAssignOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinShlAssign(clang::CompoundAssignOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinShrAssign(clang::CompoundAssignOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinAndAssign(clang::CompoundAssignOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinOrAssign(clang::CompoundAssignOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinXorAssign(clang::CompoundAssignOperator const*) |
847 | | HANDLEBINOP(Mul) |
848 | | HANDLEBINOP(Div) |
849 | | HANDLEBINOP(Rem) |
850 | | HANDLEBINOP(Add) |
851 | | HANDLEBINOP(Sub) |
852 | | HANDLEBINOP(Shl) |
853 | | HANDLEBINOP(Shr) |
854 | | HANDLEBINOP(And) |
855 | | HANDLEBINOP(Xor) |
856 | | HANDLEBINOP(Or) |
857 | | #undef HANDLEBINOP |
858 | | |
859 | | // Comparisons. |
860 | | Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, |
861 | | llvm::CmpInst::Predicate SICmpOpc, |
862 | | llvm::CmpInst::Predicate FCmpOpc, bool IsSignaling); |
863 | | #define VISITCOMP(CODE, UI, SI, FP, SIG) \ |
864 | 0 | Value *VisitBin##CODE(const BinaryOperator *E) { \ |
865 | 0 | return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ |
866 | 0 | llvm::FCmpInst::FP, SIG); } Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinLT(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinGT(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinLE(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinGE(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinEQ(clang::BinaryOperator const*) Unexecuted instantiation: CGExprScalar.cpp:(anonymous namespace)::ScalarExprEmitter::VisitBinNE(clang::BinaryOperator const*) |
867 | | VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT, true) |
868 | | VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT, true) |
869 | | VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE, true) |
870 | | VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE, true) |
871 | | VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ, false) |
872 | | VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE, false) |
873 | | #undef VISITCOMP |
874 | | |
875 | | Value *VisitBinAssign (const BinaryOperator *E); |
876 | | |
877 | | Value *VisitBinLAnd (const BinaryOperator *E); |
878 | | Value *VisitBinLOr (const BinaryOperator *E); |
879 | | Value *VisitBinComma (const BinaryOperator *E); |
880 | | |
881 | 0 | Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } |
882 | 0 | Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } |
883 | | |
884 | 0 | Value *VisitCXXRewrittenBinaryOperator(CXXRewrittenBinaryOperator *E) { |
885 | 0 | return Visit(E->getSemanticForm()); |
886 | 0 | } |
887 | | |
888 | | // Other Operators. |
889 | | Value *VisitBlockExpr(const BlockExpr *BE); |
890 | | Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); |
891 | | Value *VisitChooseExpr(ChooseExpr *CE); |
892 | | Value *VisitVAArgExpr(VAArgExpr *VE); |
893 | 0 | Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { |
894 | 0 | return CGF.EmitObjCStringLiteral(E); |
895 | 0 | } |
896 | 0 | Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { |
897 | 0 | return CGF.EmitObjCBoxedExpr(E); |
898 | 0 | } |
899 | 0 | Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { |
900 | 0 | return CGF.EmitObjCArrayLiteral(E); |
901 | 0 | } |
902 | 0 | Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { |
903 | 0 | return CGF.EmitObjCDictionaryLiteral(E); |
904 | 0 | } |
905 | | Value *VisitAsTypeExpr(AsTypeExpr *CE); |
906 | | Value *VisitAtomicExpr(AtomicExpr *AE); |
907 | | }; |
908 | | } // end anonymous namespace. |
909 | | |
910 | | //===----------------------------------------------------------------------===// |
911 | | // Utilities |
912 | | //===----------------------------------------------------------------------===// |
913 | | |
914 | | /// EmitConversionToBool - Convert the specified expression value to a |
915 | | /// boolean (i1) truth value. This is equivalent to "Val != 0". |
916 | 0 | Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { |
917 | 0 | assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); |
918 | | |
919 | 0 | if (SrcType->isRealFloatingType()) |
920 | 0 | return EmitFloatToBoolConversion(Src); |
921 | | |
922 | 0 | if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) |
923 | 0 | return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); |
924 | | |
925 | 0 | assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && |
926 | 0 | "Unknown scalar type to convert"); |
927 | | |
928 | 0 | if (isa<llvm::IntegerType>(Src->getType())) |
929 | 0 | return EmitIntToBoolConversion(Src); |
930 | | |
931 | 0 | assert(isa<llvm::PointerType>(Src->getType())); |
932 | 0 | return EmitPointerToBoolConversion(Src, SrcType); |
933 | 0 | } |
934 | | |
935 | | void ScalarExprEmitter::EmitFloatConversionCheck( |
936 | | Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, |
937 | 0 | QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { |
938 | 0 | assert(SrcType->isFloatingType() && "not a conversion from floating point"); |
939 | 0 | if (!isa<llvm::IntegerType>(DstTy)) |
940 | 0 | return; |
941 | | |
942 | 0 | CodeGenFunction::SanitizerScope SanScope(&CGF); |
943 | 0 | using llvm::APFloat; |
944 | 0 | using llvm::APSInt; |
945 | |
|
946 | 0 | llvm::Value *Check = nullptr; |
947 | 0 | const llvm::fltSemantics &SrcSema = |
948 | 0 | CGF.getContext().getFloatTypeSemantics(OrigSrcType); |
949 | | |
950 | | // Floating-point to integer. This has undefined behavior if the source is |
951 | | // +-Inf, NaN, or doesn't fit into the destination type (after truncation |
952 | | // to an integer). |
953 | 0 | unsigned Width = CGF.getContext().getIntWidth(DstType); |
954 | 0 | bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); |
955 | |
|
956 | 0 | APSInt Min = APSInt::getMinValue(Width, Unsigned); |
957 | 0 | APFloat MinSrc(SrcSema, APFloat::uninitialized); |
958 | 0 | if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & |
959 | 0 | APFloat::opOverflow) |
960 | | // Don't need an overflow check for lower bound. Just check for |
961 | | // -Inf/NaN. |
962 | 0 | MinSrc = APFloat::getInf(SrcSema, true); |
963 | 0 | else |
964 | | // Find the largest value which is too small to represent (before |
965 | | // truncation toward zero). |
966 | 0 | MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); |
967 | |
|
968 | 0 | APSInt Max = APSInt::getMaxValue(Width, Unsigned); |
969 | 0 | APFloat MaxSrc(SrcSema, APFloat::uninitialized); |
970 | 0 | if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & |
971 | 0 | APFloat::opOverflow) |
972 | | // Don't need an overflow check for upper bound. Just check for |
973 | | // +Inf/NaN. |
974 | 0 | MaxSrc = APFloat::getInf(SrcSema, false); |
975 | 0 | else |
976 | | // Find the smallest value which is too large to represent (before |
977 | | // truncation toward zero). |
978 | 0 | MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); |
979 | | |
980 | | // If we're converting from __half, convert the range to float to match |
981 | | // the type of src. |
982 | 0 | if (OrigSrcType->isHalfType()) { |
983 | 0 | const llvm::fltSemantics &Sema = |
984 | 0 | CGF.getContext().getFloatTypeSemantics(SrcType); |
985 | 0 | bool IsInexact; |
986 | 0 | MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); |
987 | 0 | MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); |
988 | 0 | } |
989 | |
|
990 | 0 | llvm::Value *GE = |
991 | 0 | Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); |
992 | 0 | llvm::Value *LE = |
993 | 0 | Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); |
994 | 0 | Check = Builder.CreateAnd(GE, LE); |
995 | |
|
996 | 0 | llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), |
997 | 0 | CGF.EmitCheckTypeDescriptor(OrigSrcType), |
998 | 0 | CGF.EmitCheckTypeDescriptor(DstType)}; |
999 | 0 | CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), |
1000 | 0 | SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); |
1001 | 0 | } |
1002 | | |
1003 | | // Should be called within CodeGenFunction::SanitizerScope RAII scope. |
1004 | | // Returns 'i1 false' when the truncation Src -> Dst was lossy. |
1005 | | static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, |
1006 | | std::pair<llvm::Value *, SanitizerMask>> |
1007 | | EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, |
1008 | 0 | QualType DstType, CGBuilderTy &Builder) { |
1009 | 0 | llvm::Type *SrcTy = Src->getType(); |
1010 | 0 | llvm::Type *DstTy = Dst->getType(); |
1011 | 0 | (void)DstTy; // Only used in assert() |
1012 | | |
1013 | | // This should be truncation of integral types. |
1014 | 0 | assert(Src != Dst); |
1015 | 0 | assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); |
1016 | 0 | assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && |
1017 | 0 | "non-integer llvm type"); |
1018 | | |
1019 | 0 | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); |
1020 | 0 | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); |
1021 | | |
1022 | | // If both (src and dst) types are unsigned, then it's an unsigned truncation. |
1023 | | // Else, it is a signed truncation. |
1024 | 0 | ScalarExprEmitter::ImplicitConversionCheckKind Kind; |
1025 | 0 | SanitizerMask Mask; |
1026 | 0 | if (!SrcSigned && !DstSigned) { |
1027 | 0 | Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; |
1028 | 0 | Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; |
1029 | 0 | } else { |
1030 | 0 | Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; |
1031 | 0 | Mask = SanitizerKind::ImplicitSignedIntegerTruncation; |
1032 | 0 | } |
1033 | |
|
1034 | 0 | llvm::Value *Check = nullptr; |
1035 | | // 1. Extend the truncated value back to the same width as the Src. |
1036 | 0 | Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); |
1037 | | // 2. Equality-compare with the original source value |
1038 | 0 | Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); |
1039 | | // If the comparison result is 'i1 false', then the truncation was lossy. |
1040 | 0 | return std::make_pair(Kind, std::make_pair(Check, Mask)); |
1041 | 0 | } |
1042 | | |
1043 | | static bool PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( |
1044 | 0 | QualType SrcType, QualType DstType) { |
1045 | 0 | return SrcType->isIntegerType() && DstType->isIntegerType(); |
1046 | 0 | } |
1047 | | |
1048 | | void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, |
1049 | | Value *Dst, QualType DstType, |
1050 | 0 | SourceLocation Loc) { |
1051 | 0 | if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) |
1052 | 0 | return; |
1053 | | |
1054 | | // We only care about int->int conversions here. |
1055 | | // We ignore conversions to/from pointer and/or bool. |
1056 | 0 | if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, |
1057 | 0 | DstType)) |
1058 | 0 | return; |
1059 | | |
1060 | 0 | unsigned SrcBits = Src->getType()->getScalarSizeInBits(); |
1061 | 0 | unsigned DstBits = Dst->getType()->getScalarSizeInBits(); |
1062 | | // This must be truncation. Else we do not care. |
1063 | 0 | if (SrcBits <= DstBits) |
1064 | 0 | return; |
1065 | | |
1066 | 0 | assert(!DstType->isBooleanType() && "we should not get here with booleans."); |
1067 | | |
1068 | | // If the integer sign change sanitizer is enabled, |
1069 | | // and we are truncating from larger unsigned type to smaller signed type, |
1070 | | // let that next sanitizer deal with it. |
1071 | 0 | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); |
1072 | 0 | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); |
1073 | 0 | if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && |
1074 | 0 | (!SrcSigned && DstSigned)) |
1075 | 0 | return; |
1076 | | |
1077 | 0 | CodeGenFunction::SanitizerScope SanScope(&CGF); |
1078 | |
|
1079 | 0 | std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, |
1080 | 0 | std::pair<llvm::Value *, SanitizerMask>> |
1081 | 0 | Check = |
1082 | 0 | EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); |
1083 | | // If the comparison result is 'i1 false', then the truncation was lossy. |
1084 | | |
1085 | | // Do we care about this type of truncation? |
1086 | 0 | if (!CGF.SanOpts.has(Check.second.second)) |
1087 | 0 | return; |
1088 | | |
1089 | 0 | llvm::Constant *StaticArgs[] = { |
1090 | 0 | CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), |
1091 | 0 | CGF.EmitCheckTypeDescriptor(DstType), |
1092 | 0 | llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; |
1093 | 0 | CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, |
1094 | 0 | {Src, Dst}); |
1095 | 0 | } |
1096 | | |
1097 | | // Should be called within CodeGenFunction::SanitizerScope RAII scope. |
1098 | | // Returns 'i1 false' when the conversion Src -> Dst changed the sign. |
1099 | | static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, |
1100 | | std::pair<llvm::Value *, SanitizerMask>> |
1101 | | EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, |
1102 | 0 | QualType DstType, CGBuilderTy &Builder) { |
1103 | 0 | llvm::Type *SrcTy = Src->getType(); |
1104 | 0 | llvm::Type *DstTy = Dst->getType(); |
1105 | |
|
1106 | 0 | assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && |
1107 | 0 | "non-integer llvm type"); |
1108 | | |
1109 | 0 | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); |
1110 | 0 | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); |
1111 | 0 | (void)SrcSigned; // Only used in assert() |
1112 | 0 | (void)DstSigned; // Only used in assert() |
1113 | 0 | unsigned SrcBits = SrcTy->getScalarSizeInBits(); |
1114 | 0 | unsigned DstBits = DstTy->getScalarSizeInBits(); |
1115 | 0 | (void)SrcBits; // Only used in assert() |
1116 | 0 | (void)DstBits; // Only used in assert() |
1117 | |
|
1118 | 0 | assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && |
1119 | 0 | "either the widths should be different, or the signednesses."); |
1120 | | |
1121 | | // NOTE: zero value is considered to be non-negative. |
1122 | 0 | auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, |
1123 | 0 | const char *Name) -> Value * { |
1124 | | // Is this value a signed type? |
1125 | 0 | bool VSigned = VType->isSignedIntegerOrEnumerationType(); |
1126 | 0 | llvm::Type *VTy = V->getType(); |
1127 | 0 | if (!VSigned) { |
1128 | | // If the value is unsigned, then it is never negative. |
1129 | | // FIXME: can we encounter non-scalar VTy here? |
1130 | 0 | return llvm::ConstantInt::getFalse(VTy->getContext()); |
1131 | 0 | } |
1132 | | // Get the zero of the same type with which we will be comparing. |
1133 | 0 | llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); |
1134 | | // %V.isnegative = icmp slt %V, 0 |
1135 | | // I.e is %V *strictly* less than zero, does it have negative value? |
1136 | 0 | return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, |
1137 | 0 | llvm::Twine(Name) + "." + V->getName() + |
1138 | 0 | ".negativitycheck"); |
1139 | 0 | }; |
1140 | | |
1141 | | // 1. Was the old Value negative? |
1142 | 0 | llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); |
1143 | | // 2. Is the new Value negative? |
1144 | 0 | llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); |
1145 | | // 3. Now, was the 'negativity status' preserved during the conversion? |
1146 | | // NOTE: conversion from negative to zero is considered to change the sign. |
1147 | | // (We want to get 'false' when the conversion changed the sign) |
1148 | | // So we should just equality-compare the negativity statuses. |
1149 | 0 | llvm::Value *Check = nullptr; |
1150 | 0 | Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); |
1151 | | // If the comparison result is 'false', then the conversion changed the sign. |
1152 | 0 | return std::make_pair( |
1153 | 0 | ScalarExprEmitter::ICCK_IntegerSignChange, |
1154 | 0 | std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); |
1155 | 0 | } |
1156 | | |
1157 | | void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, |
1158 | | Value *Dst, QualType DstType, |
1159 | 0 | SourceLocation Loc) { |
1160 | 0 | if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) |
1161 | 0 | return; |
1162 | | |
1163 | 0 | llvm::Type *SrcTy = Src->getType(); |
1164 | 0 | llvm::Type *DstTy = Dst->getType(); |
1165 | | |
1166 | | // We only care about int->int conversions here. |
1167 | | // We ignore conversions to/from pointer and/or bool. |
1168 | 0 | if (!PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck(SrcType, |
1169 | 0 | DstType)) |
1170 | 0 | return; |
1171 | | |
1172 | 0 | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); |
1173 | 0 | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); |
1174 | 0 | unsigned SrcBits = SrcTy->getScalarSizeInBits(); |
1175 | 0 | unsigned DstBits = DstTy->getScalarSizeInBits(); |
1176 | | |
1177 | | // Now, we do not need to emit the check in *all* of the cases. |
1178 | | // We can avoid emitting it in some obvious cases where it would have been |
1179 | | // dropped by the opt passes (instcombine) always anyways. |
1180 | | // If it's a cast between effectively the same type, no check. |
1181 | | // NOTE: this is *not* equivalent to checking the canonical types. |
1182 | 0 | if (SrcSigned == DstSigned && SrcBits == DstBits) |
1183 | 0 | return; |
1184 | | // At least one of the values needs to have signed type. |
1185 | | // If both are unsigned, then obviously, neither of them can be negative. |
1186 | 0 | if (!SrcSigned && !DstSigned) |
1187 | 0 | return; |
1188 | | // If the conversion is to *larger* *signed* type, then no check is needed. |
1189 | | // Because either sign-extension happens (so the sign will remain), |
1190 | | // or zero-extension will happen (the sign bit will be zero.) |
1191 | 0 | if ((DstBits > SrcBits) && DstSigned) |
1192 | 0 | return; |
1193 | 0 | if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && |
1194 | 0 | (SrcBits > DstBits) && SrcSigned) { |
1195 | | // If the signed integer truncation sanitizer is enabled, |
1196 | | // and this is a truncation from signed type, then no check is needed. |
1197 | | // Because here sign change check is interchangeable with truncation check. |
1198 | 0 | return; |
1199 | 0 | } |
1200 | | // That's it. We can't rule out any more cases with the data we have. |
1201 | | |
1202 | 0 | CodeGenFunction::SanitizerScope SanScope(&CGF); |
1203 | |
|
1204 | 0 | std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, |
1205 | 0 | std::pair<llvm::Value *, SanitizerMask>> |
1206 | 0 | Check; |
1207 | | |
1208 | | // Each of these checks needs to return 'false' when an issue was detected. |
1209 | 0 | ImplicitConversionCheckKind CheckKind; |
1210 | 0 | llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; |
1211 | | // So we can 'and' all the checks together, and still get 'false', |
1212 | | // if at least one of the checks detected an issue. |
1213 | |
|
1214 | 0 | Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); |
1215 | 0 | CheckKind = Check.first; |
1216 | 0 | Checks.emplace_back(Check.second); |
1217 | |
|
1218 | 0 | if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && |
1219 | 0 | (SrcBits > DstBits) && !SrcSigned && DstSigned) { |
1220 | | // If the signed integer truncation sanitizer was enabled, |
1221 | | // and we are truncating from larger unsigned type to smaller signed type, |
1222 | | // let's handle the case we skipped in that check. |
1223 | 0 | Check = |
1224 | 0 | EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); |
1225 | 0 | CheckKind = ICCK_SignedIntegerTruncationOrSignChange; |
1226 | 0 | Checks.emplace_back(Check.second); |
1227 | | // If the comparison result is 'i1 false', then the truncation was lossy. |
1228 | 0 | } |
1229 | |
|
1230 | 0 | llvm::Constant *StaticArgs[] = { |
1231 | 0 | CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), |
1232 | 0 | CGF.EmitCheckTypeDescriptor(DstType), |
1233 | 0 | llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; |
1234 | | // EmitCheck() will 'and' all the checks together. |
1235 | 0 | CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, |
1236 | 0 | {Src, Dst}); |
1237 | 0 | } |
1238 | | |
1239 | | Value *ScalarExprEmitter::EmitScalarCast(Value *Src, QualType SrcType, |
1240 | | QualType DstType, llvm::Type *SrcTy, |
1241 | | llvm::Type *DstTy, |
1242 | 0 | ScalarConversionOpts Opts) { |
1243 | | // The Element types determine the type of cast to perform. |
1244 | 0 | llvm::Type *SrcElementTy; |
1245 | 0 | llvm::Type *DstElementTy; |
1246 | 0 | QualType SrcElementType; |
1247 | 0 | QualType DstElementType; |
1248 | 0 | if (SrcType->isMatrixType() && DstType->isMatrixType()) { |
1249 | 0 | SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); |
1250 | 0 | DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); |
1251 | 0 | SrcElementType = SrcType->castAs<MatrixType>()->getElementType(); |
1252 | 0 | DstElementType = DstType->castAs<MatrixType>()->getElementType(); |
1253 | 0 | } else { |
1254 | 0 | assert(!SrcType->isMatrixType() && !DstType->isMatrixType() && |
1255 | 0 | "cannot cast between matrix and non-matrix types"); |
1256 | 0 | SrcElementTy = SrcTy; |
1257 | 0 | DstElementTy = DstTy; |
1258 | 0 | SrcElementType = SrcType; |
1259 | 0 | DstElementType = DstType; |
1260 | 0 | } |
1261 | | |
1262 | 0 | if (isa<llvm::IntegerType>(SrcElementTy)) { |
1263 | 0 | bool InputSigned = SrcElementType->isSignedIntegerOrEnumerationType(); |
1264 | 0 | if (SrcElementType->isBooleanType() && Opts.TreatBooleanAsSigned) { |
1265 | 0 | InputSigned = true; |
1266 | 0 | } |
1267 | |
|
1268 | 0 | if (isa<llvm::IntegerType>(DstElementTy)) |
1269 | 0 | return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); |
1270 | 0 | if (InputSigned) |
1271 | 0 | return Builder.CreateSIToFP(Src, DstTy, "conv"); |
1272 | 0 | return Builder.CreateUIToFP(Src, DstTy, "conv"); |
1273 | 0 | } |
1274 | | |
1275 | 0 | if (isa<llvm::IntegerType>(DstElementTy)) { |
1276 | 0 | assert(SrcElementTy->isFloatingPointTy() && "Unknown real conversion"); |
1277 | 0 | bool IsSigned = DstElementType->isSignedIntegerOrEnumerationType(); |
1278 | | |
1279 | | // If we can't recognize overflow as undefined behavior, assume that |
1280 | | // overflow saturates. This protects against normal optimizations if we are |
1281 | | // compiling with non-standard FP semantics. |
1282 | 0 | if (!CGF.CGM.getCodeGenOpts().StrictFloatCastOverflow) { |
1283 | 0 | llvm::Intrinsic::ID IID = |
1284 | 0 | IsSigned ? llvm::Intrinsic::fptosi_sat : llvm::Intrinsic::fptoui_sat; |
1285 | 0 | return Builder.CreateCall(CGF.CGM.getIntrinsic(IID, {DstTy, SrcTy}), Src); |
1286 | 0 | } |
1287 | | |
1288 | 0 | if (IsSigned) |
1289 | 0 | return Builder.CreateFPToSI(Src, DstTy, "conv"); |
1290 | 0 | return Builder.CreateFPToUI(Src, DstTy, "conv"); |
1291 | 0 | } |
1292 | | |
1293 | 0 | if (DstElementTy->getTypeID() < SrcElementTy->getTypeID()) |
1294 | 0 | return Builder.CreateFPTrunc(Src, DstTy, "conv"); |
1295 | 0 | return Builder.CreateFPExt(Src, DstTy, "conv"); |
1296 | 0 | } |
1297 | | |
1298 | | /// Emit a conversion from the specified type to the specified destination type, |
1299 | | /// both of which are LLVM scalar types. |
1300 | | Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, |
1301 | | QualType DstType, |
1302 | | SourceLocation Loc, |
1303 | 0 | ScalarConversionOpts Opts) { |
1304 | | // All conversions involving fixed point types should be handled by the |
1305 | | // EmitFixedPoint family functions. This is done to prevent bloating up this |
1306 | | // function more, and although fixed point numbers are represented by |
1307 | | // integers, we do not want to follow any logic that assumes they should be |
1308 | | // treated as integers. |
1309 | | // TODO(leonardchan): When necessary, add another if statement checking for |
1310 | | // conversions to fixed point types from other types. |
1311 | 0 | if (SrcType->isFixedPointType()) { |
1312 | 0 | if (DstType->isBooleanType()) |
1313 | | // It is important that we check this before checking if the dest type is |
1314 | | // an integer because booleans are technically integer types. |
1315 | | // We do not need to check the padding bit on unsigned types if unsigned |
1316 | | // padding is enabled because overflow into this bit is undefined |
1317 | | // behavior. |
1318 | 0 | return Builder.CreateIsNotNull(Src, "tobool"); |
1319 | 0 | if (DstType->isFixedPointType() || DstType->isIntegerType() || |
1320 | 0 | DstType->isRealFloatingType()) |
1321 | 0 | return EmitFixedPointConversion(Src, SrcType, DstType, Loc); |
1322 | | |
1323 | 0 | llvm_unreachable( |
1324 | 0 | "Unhandled scalar conversion from a fixed point type to another type."); |
1325 | 0 | } else if (DstType->isFixedPointType()) { |
1326 | 0 | if (SrcType->isIntegerType() || SrcType->isRealFloatingType()) |
1327 | | // This also includes converting booleans and enums to fixed point types. |
1328 | 0 | return EmitFixedPointConversion(Src, SrcType, DstType, Loc); |
1329 | | |
1330 | 0 | llvm_unreachable( |
1331 | 0 | "Unhandled scalar conversion to a fixed point type from another type."); |
1332 | 0 | } |
1333 | | |
1334 | 0 | QualType NoncanonicalSrcType = SrcType; |
1335 | 0 | QualType NoncanonicalDstType = DstType; |
1336 | |
|
1337 | 0 | SrcType = CGF.getContext().getCanonicalType(SrcType); |
1338 | 0 | DstType = CGF.getContext().getCanonicalType(DstType); |
1339 | 0 | if (SrcType == DstType) return Src; |
1340 | | |
1341 | 0 | if (DstType->isVoidType()) return nullptr; |
1342 | | |
1343 | 0 | llvm::Value *OrigSrc = Src; |
1344 | 0 | QualType OrigSrcType = SrcType; |
1345 | 0 | llvm::Type *SrcTy = Src->getType(); |
1346 | | |
1347 | | // Handle conversions to bool first, they are special: comparisons against 0. |
1348 | 0 | if (DstType->isBooleanType()) |
1349 | 0 | return EmitConversionToBool(Src, SrcType); |
1350 | | |
1351 | 0 | llvm::Type *DstTy = ConvertType(DstType); |
1352 | | |
1353 | | // Cast from half through float if half isn't a native type. |
1354 | 0 | if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { |
1355 | | // Cast to FP using the intrinsic if the half type itself isn't supported. |
1356 | 0 | if (DstTy->isFloatingPointTy()) { |
1357 | 0 | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) |
1358 | 0 | return Builder.CreateCall( |
1359 | 0 | CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), |
1360 | 0 | Src); |
1361 | 0 | } else { |
1362 | | // Cast to other types through float, using either the intrinsic or FPExt, |
1363 | | // depending on whether the half type itself is supported |
1364 | | // (as opposed to operations on half, available with NativeHalfType). |
1365 | 0 | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { |
1366 | 0 | Src = Builder.CreateCall( |
1367 | 0 | CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, |
1368 | 0 | CGF.CGM.FloatTy), |
1369 | 0 | Src); |
1370 | 0 | } else { |
1371 | 0 | Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); |
1372 | 0 | } |
1373 | 0 | SrcType = CGF.getContext().FloatTy; |
1374 | 0 | SrcTy = CGF.FloatTy; |
1375 | 0 | } |
1376 | 0 | } |
1377 | | |
1378 | | // Ignore conversions like int -> uint. |
1379 | 0 | if (SrcTy == DstTy) { |
1380 | 0 | if (Opts.EmitImplicitIntegerSignChangeChecks) |
1381 | 0 | EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, |
1382 | 0 | NoncanonicalDstType, Loc); |
1383 | |
|
1384 | 0 | return Src; |
1385 | 0 | } |
1386 | | |
1387 | | // Handle pointer conversions next: pointers can only be converted to/from |
1388 | | // other pointers and integers. Check for pointer types in terms of LLVM, as |
1389 | | // some native types (like Obj-C id) may map to a pointer type. |
1390 | 0 | if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { |
1391 | | // The source value may be an integer, or a pointer. |
1392 | 0 | if (isa<llvm::PointerType>(SrcTy)) |
1393 | 0 | return Builder.CreateBitCast(Src, DstTy, "conv"); |
1394 | | |
1395 | 0 | assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); |
1396 | | // First, convert to the correct width so that we control the kind of |
1397 | | // extension. |
1398 | 0 | llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); |
1399 | 0 | bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); |
1400 | 0 | llvm::Value* IntResult = |
1401 | 0 | Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); |
1402 | | // Then, cast to pointer. |
1403 | 0 | return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); |
1404 | 0 | } |
1405 | | |
1406 | 0 | if (isa<llvm::PointerType>(SrcTy)) { |
1407 | | // Must be an ptr to int cast. |
1408 | 0 | assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); |
1409 | 0 | return Builder.CreatePtrToInt(Src, DstTy, "conv"); |
1410 | 0 | } |
1411 | | |
1412 | | // A scalar can be splatted to an extended vector of the same element type |
1413 | 0 | if (DstType->isExtVectorType() && !SrcType->isVectorType()) { |
1414 | | // Sema should add casts to make sure that the source expression's type is |
1415 | | // the same as the vector's element type (sans qualifiers) |
1416 | 0 | assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == |
1417 | 0 | SrcType.getTypePtr() && |
1418 | 0 | "Splatted expr doesn't match with vector element type?"); |
1419 | | |
1420 | | // Splat the element across to all elements |
1421 | 0 | unsigned NumElements = cast<llvm::FixedVectorType>(DstTy)->getNumElements(); |
1422 | 0 | return Builder.CreateVectorSplat(NumElements, Src, "splat"); |
1423 | 0 | } |
1424 | | |
1425 | 0 | if (SrcType->isMatrixType() && DstType->isMatrixType()) |
1426 | 0 | return EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); |
1427 | | |
1428 | 0 | if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { |
1429 | | // Allow bitcast from vector to integer/fp of the same size. |
1430 | 0 | llvm::TypeSize SrcSize = SrcTy->getPrimitiveSizeInBits(); |
1431 | 0 | llvm::TypeSize DstSize = DstTy->getPrimitiveSizeInBits(); |
1432 | 0 | if (SrcSize == DstSize) |
1433 | 0 | return Builder.CreateBitCast(Src, DstTy, "conv"); |
1434 | | |
1435 | | // Conversions between vectors of different sizes are not allowed except |
1436 | | // when vectors of half are involved. Operations on storage-only half |
1437 | | // vectors require promoting half vector operands to float vectors and |
1438 | | // truncating the result, which is either an int or float vector, to a |
1439 | | // short or half vector. |
1440 | | |
1441 | | // Source and destination are both expected to be vectors. |
1442 | 0 | llvm::Type *SrcElementTy = cast<llvm::VectorType>(SrcTy)->getElementType(); |
1443 | 0 | llvm::Type *DstElementTy = cast<llvm::VectorType>(DstTy)->getElementType(); |
1444 | 0 | (void)DstElementTy; |
1445 | |
|
1446 | 0 | assert(((SrcElementTy->isIntegerTy() && |
1447 | 0 | DstElementTy->isIntegerTy()) || |
1448 | 0 | (SrcElementTy->isFloatingPointTy() && |
1449 | 0 | DstElementTy->isFloatingPointTy())) && |
1450 | 0 | "unexpected conversion between a floating-point vector and an " |
1451 | 0 | "integer vector"); |
1452 | | |
1453 | | // Truncate an i32 vector to an i16 vector. |
1454 | 0 | if (SrcElementTy->isIntegerTy()) |
1455 | 0 | return Builder.CreateIntCast(Src, DstTy, false, "conv"); |
1456 | | |
1457 | | // Truncate a float vector to a half vector. |
1458 | 0 | if (SrcSize > DstSize) |
1459 | 0 | return Builder.CreateFPTrunc(Src, DstTy, "conv"); |
1460 | | |
1461 | | // Promote a half vector to a float vector. |
1462 | 0 | return Builder.CreateFPExt(Src, DstTy, "conv"); |
1463 | 0 | } |
1464 | | |
1465 | | // Finally, we have the arithmetic types: real int/float. |
1466 | 0 | Value *Res = nullptr; |
1467 | 0 | llvm::Type *ResTy = DstTy; |
1468 | | |
1469 | | // An overflowing conversion has undefined behavior if either the source type |
1470 | | // or the destination type is a floating-point type. However, we consider the |
1471 | | // range of representable values for all floating-point types to be |
1472 | | // [-inf,+inf], so no overflow can ever happen when the destination type is a |
1473 | | // floating-point type. |
1474 | 0 | if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && |
1475 | 0 | OrigSrcType->isFloatingType()) |
1476 | 0 | EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, |
1477 | 0 | Loc); |
1478 | | |
1479 | | // Cast to half through float if half isn't a native type. |
1480 | 0 | if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { |
1481 | | // Make sure we cast in a single step if from another FP type. |
1482 | 0 | if (SrcTy->isFloatingPointTy()) { |
1483 | | // Use the intrinsic if the half type itself isn't supported |
1484 | | // (as opposed to operations on half, available with NativeHalfType). |
1485 | 0 | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) |
1486 | 0 | return Builder.CreateCall( |
1487 | 0 | CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); |
1488 | | // If the half type is supported, just use an fptrunc. |
1489 | 0 | return Builder.CreateFPTrunc(Src, DstTy); |
1490 | 0 | } |
1491 | 0 | DstTy = CGF.FloatTy; |
1492 | 0 | } |
1493 | | |
1494 | 0 | Res = EmitScalarCast(Src, SrcType, DstType, SrcTy, DstTy, Opts); |
1495 | |
|
1496 | 0 | if (DstTy != ResTy) { |
1497 | 0 | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { |
1498 | 0 | assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); |
1499 | 0 | Res = Builder.CreateCall( |
1500 | 0 | CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), |
1501 | 0 | Res); |
1502 | 0 | } else { |
1503 | 0 | Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); |
1504 | 0 | } |
1505 | 0 | } |
1506 | | |
1507 | 0 | if (Opts.EmitImplicitIntegerTruncationChecks) |
1508 | 0 | EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, |
1509 | 0 | NoncanonicalDstType, Loc); |
1510 | |
|
1511 | 0 | if (Opts.EmitImplicitIntegerSignChangeChecks) |
1512 | 0 | EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, |
1513 | 0 | NoncanonicalDstType, Loc); |
1514 | |
|
1515 | 0 | return Res; |
1516 | 0 | } |
1517 | | |
1518 | | Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, |
1519 | | QualType DstTy, |
1520 | 0 | SourceLocation Loc) { |
1521 | 0 | llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); |
1522 | 0 | llvm::Value *Result; |
1523 | 0 | if (SrcTy->isRealFloatingType()) |
1524 | 0 | Result = FPBuilder.CreateFloatingToFixed(Src, |
1525 | 0 | CGF.getContext().getFixedPointSemantics(DstTy)); |
1526 | 0 | else if (DstTy->isRealFloatingType()) |
1527 | 0 | Result = FPBuilder.CreateFixedToFloating(Src, |
1528 | 0 | CGF.getContext().getFixedPointSemantics(SrcTy), |
1529 | 0 | ConvertType(DstTy)); |
1530 | 0 | else { |
1531 | 0 | auto SrcFPSema = CGF.getContext().getFixedPointSemantics(SrcTy); |
1532 | 0 | auto DstFPSema = CGF.getContext().getFixedPointSemantics(DstTy); |
1533 | |
|
1534 | 0 | if (DstTy->isIntegerType()) |
1535 | 0 | Result = FPBuilder.CreateFixedToInteger(Src, SrcFPSema, |
1536 | 0 | DstFPSema.getWidth(), |
1537 | 0 | DstFPSema.isSigned()); |
1538 | 0 | else if (SrcTy->isIntegerType()) |
1539 | 0 | Result = FPBuilder.CreateIntegerToFixed(Src, SrcFPSema.isSigned(), |
1540 | 0 | DstFPSema); |
1541 | 0 | else |
1542 | 0 | Result = FPBuilder.CreateFixedToFixed(Src, SrcFPSema, DstFPSema); |
1543 | 0 | } |
1544 | 0 | return Result; |
1545 | 0 | } |
1546 | | |
1547 | | /// Emit a conversion from the specified complex type to the specified |
1548 | | /// destination type, where the destination type is an LLVM scalar type. |
1549 | | Value *ScalarExprEmitter::EmitComplexToScalarConversion( |
1550 | | CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, |
1551 | 0 | SourceLocation Loc) { |
1552 | | // Get the source element type. |
1553 | 0 | SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); |
1554 | | |
1555 | | // Handle conversions to bool first, they are special: comparisons against 0. |
1556 | 0 | if (DstTy->isBooleanType()) { |
1557 | | // Complex != 0 -> (Real != 0) | (Imag != 0) |
1558 | 0 | Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); |
1559 | 0 | Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); |
1560 | 0 | return Builder.CreateOr(Src.first, Src.second, "tobool"); |
1561 | 0 | } |
1562 | | |
1563 | | // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, |
1564 | | // the imaginary part of the complex value is discarded and the value of the |
1565 | | // real part is converted according to the conversion rules for the |
1566 | | // corresponding real type. |
1567 | 0 | return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); |
1568 | 0 | } |
1569 | | |
1570 | 0 | Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { |
1571 | 0 | return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); |
1572 | 0 | } |
1573 | | |
1574 | | /// Emit a sanitization check for the given "binary" operation (which |
1575 | | /// might actually be a unary increment which has been lowered to a binary |
1576 | | /// operation). The check passes if all values in \p Checks (which are \c i1), |
1577 | | /// are \c true. |
1578 | | void ScalarExprEmitter::EmitBinOpCheck( |
1579 | 0 | ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { |
1580 | 0 | assert(CGF.IsSanitizerScope); |
1581 | 0 | SanitizerHandler Check; |
1582 | 0 | SmallVector<llvm::Constant *, 4> StaticData; |
1583 | 0 | SmallVector<llvm::Value *, 2> DynamicData; |
1584 | |
|
1585 | 0 | BinaryOperatorKind Opcode = Info.Opcode; |
1586 | 0 | if (BinaryOperator::isCompoundAssignmentOp(Opcode)) |
1587 | 0 | Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); |
1588 | |
|
1589 | 0 | StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); |
1590 | 0 | const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); |
1591 | 0 | if (UO && UO->getOpcode() == UO_Minus) { |
1592 | 0 | Check = SanitizerHandler::NegateOverflow; |
1593 | 0 | StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); |
1594 | 0 | DynamicData.push_back(Info.RHS); |
1595 | 0 | } else { |
1596 | 0 | if (BinaryOperator::isShiftOp(Opcode)) { |
1597 | | // Shift LHS negative or too large, or RHS out of bounds. |
1598 | 0 | Check = SanitizerHandler::ShiftOutOfBounds; |
1599 | 0 | const BinaryOperator *BO = cast<BinaryOperator>(Info.E); |
1600 | 0 | StaticData.push_back( |
1601 | 0 | CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); |
1602 | 0 | StaticData.push_back( |
1603 | 0 | CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); |
1604 | 0 | } else if (Opcode == BO_Div || Opcode == BO_Rem) { |
1605 | | // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). |
1606 | 0 | Check = SanitizerHandler::DivremOverflow; |
1607 | 0 | StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); |
1608 | 0 | } else { |
1609 | | // Arithmetic overflow (+, -, *). |
1610 | 0 | switch (Opcode) { |
1611 | 0 | case BO_Add: Check = SanitizerHandler::AddOverflow; break; |
1612 | 0 | case BO_Sub: Check = SanitizerHandler::SubOverflow; break; |
1613 | 0 | case BO_Mul: Check = SanitizerHandler::MulOverflow; break; |
1614 | 0 | default: llvm_unreachable("unexpected opcode for bin op check"); |
1615 | 0 | } |
1616 | 0 | StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); |
1617 | 0 | } |
1618 | 0 | DynamicData.push_back(Info.LHS); |
1619 | 0 | DynamicData.push_back(Info.RHS); |
1620 | 0 | } |
1621 | | |
1622 | 0 | CGF.EmitCheck(Checks, Check, StaticData, DynamicData); |
1623 | 0 | } |
1624 | | |
1625 | | //===----------------------------------------------------------------------===// |
1626 | | // Visitor Methods |
1627 | | //===----------------------------------------------------------------------===// |
1628 | | |
1629 | 0 | Value *ScalarExprEmitter::VisitExpr(Expr *E) { |
1630 | 0 | CGF.ErrorUnsupported(E, "scalar expression"); |
1631 | 0 | if (E->getType()->isVoidType()) |
1632 | 0 | return nullptr; |
1633 | 0 | return llvm::UndefValue::get(CGF.ConvertType(E->getType())); |
1634 | 0 | } |
1635 | | |
1636 | | Value * |
1637 | 0 | ScalarExprEmitter::VisitSYCLUniqueStableNameExpr(SYCLUniqueStableNameExpr *E) { |
1638 | 0 | ASTContext &Context = CGF.getContext(); |
1639 | 0 | unsigned AddrSpace = |
1640 | 0 | Context.getTargetAddressSpace(CGF.CGM.GetGlobalConstantAddressSpace()); |
1641 | 0 | llvm::Constant *GlobalConstStr = Builder.CreateGlobalStringPtr( |
1642 | 0 | E->ComputeName(Context), "__usn_str", AddrSpace); |
1643 | |
|
1644 | 0 | llvm::Type *ExprTy = ConvertType(E->getType()); |
1645 | 0 | return Builder.CreatePointerBitCastOrAddrSpaceCast(GlobalConstStr, ExprTy, |
1646 | 0 | "usn_addr_cast"); |
1647 | 0 | } |
1648 | | |
1649 | 0 | Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { |
1650 | | // Vector Mask Case |
1651 | 0 | if (E->getNumSubExprs() == 2) { |
1652 | 0 | Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); |
1653 | 0 | Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); |
1654 | 0 | Value *Mask; |
1655 | |
|
1656 | 0 | auto *LTy = cast<llvm::FixedVectorType>(LHS->getType()); |
1657 | 0 | unsigned LHSElts = LTy->getNumElements(); |
1658 | |
|
1659 | 0 | Mask = RHS; |
1660 | |
|
1661 | 0 | auto *MTy = cast<llvm::FixedVectorType>(Mask->getType()); |
1662 | | |
1663 | | // Mask off the high bits of each shuffle index. |
1664 | 0 | Value *MaskBits = |
1665 | 0 | llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); |
1666 | 0 | Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); |
1667 | | |
1668 | | // newv = undef |
1669 | | // mask = mask & maskbits |
1670 | | // for each elt |
1671 | | // n = extract mask i |
1672 | | // x = extract val n |
1673 | | // newv = insert newv, x, i |
1674 | 0 | auto *RTy = llvm::FixedVectorType::get(LTy->getElementType(), |
1675 | 0 | MTy->getNumElements()); |
1676 | 0 | Value* NewV = llvm::PoisonValue::get(RTy); |
1677 | 0 | for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { |
1678 | 0 | Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); |
1679 | 0 | Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); |
1680 | |
|
1681 | 0 | Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); |
1682 | 0 | NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); |
1683 | 0 | } |
1684 | 0 | return NewV; |
1685 | 0 | } |
1686 | | |
1687 | 0 | Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); |
1688 | 0 | Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); |
1689 | |
|
1690 | 0 | SmallVector<int, 32> Indices; |
1691 | 0 | for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { |
1692 | 0 | llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); |
1693 | | // Check for -1 and output it as undef in the IR. |
1694 | 0 | if (Idx.isSigned() && Idx.isAllOnes()) |
1695 | 0 | Indices.push_back(-1); |
1696 | 0 | else |
1697 | 0 | Indices.push_back(Idx.getZExtValue()); |
1698 | 0 | } |
1699 | |
|
1700 | 0 | return Builder.CreateShuffleVector(V1, V2, Indices, "shuffle"); |
1701 | 0 | } |
1702 | | |
1703 | 0 | Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { |
1704 | 0 | QualType SrcType = E->getSrcExpr()->getType(), |
1705 | 0 | DstType = E->getType(); |
1706 | |
|
1707 | 0 | Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); |
1708 | |
|
1709 | 0 | SrcType = CGF.getContext().getCanonicalType(SrcType); |
1710 | 0 | DstType = CGF.getContext().getCanonicalType(DstType); |
1711 | 0 | if (SrcType == DstType) return Src; |
1712 | | |
1713 | 0 | assert(SrcType->isVectorType() && |
1714 | 0 | "ConvertVector source type must be a vector"); |
1715 | 0 | assert(DstType->isVectorType() && |
1716 | 0 | "ConvertVector destination type must be a vector"); |
1717 | | |
1718 | 0 | llvm::Type *SrcTy = Src->getType(); |
1719 | 0 | llvm::Type *DstTy = ConvertType(DstType); |
1720 | | |
1721 | | // Ignore conversions like int -> uint. |
1722 | 0 | if (SrcTy == DstTy) |
1723 | 0 | return Src; |
1724 | | |
1725 | 0 | QualType SrcEltType = SrcType->castAs<VectorType>()->getElementType(), |
1726 | 0 | DstEltType = DstType->castAs<VectorType>()->getElementType(); |
1727 | |
|
1728 | 0 | assert(SrcTy->isVectorTy() && |
1729 | 0 | "ConvertVector source IR type must be a vector"); |
1730 | 0 | assert(DstTy->isVectorTy() && |
1731 | 0 | "ConvertVector destination IR type must be a vector"); |
1732 | | |
1733 | 0 | llvm::Type *SrcEltTy = cast<llvm::VectorType>(SrcTy)->getElementType(), |
1734 | 0 | *DstEltTy = cast<llvm::VectorType>(DstTy)->getElementType(); |
1735 | |
|
1736 | 0 | if (DstEltType->isBooleanType()) { |
1737 | 0 | assert((SrcEltTy->isFloatingPointTy() || |
1738 | 0 | isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); |
1739 | | |
1740 | 0 | llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); |
1741 | 0 | if (SrcEltTy->isFloatingPointTy()) { |
1742 | 0 | return Builder.CreateFCmpUNE(Src, Zero, "tobool"); |
1743 | 0 | } else { |
1744 | 0 | return Builder.CreateICmpNE(Src, Zero, "tobool"); |
1745 | 0 | } |
1746 | 0 | } |
1747 | | |
1748 | | // We have the arithmetic types: real int/float. |
1749 | 0 | Value *Res = nullptr; |
1750 | |
|
1751 | 0 | if (isa<llvm::IntegerType>(SrcEltTy)) { |
1752 | 0 | bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); |
1753 | 0 | if (isa<llvm::IntegerType>(DstEltTy)) |
1754 | 0 | Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); |
1755 | 0 | else if (InputSigned) |
1756 | 0 | Res = Builder.CreateSIToFP(Src, DstTy, "conv"); |
1757 | 0 | else |
1758 | 0 | Res = Builder.CreateUIToFP(Src, DstTy, "conv"); |
1759 | 0 | } else if (isa<llvm::IntegerType>(DstEltTy)) { |
1760 | 0 | assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); |
1761 | 0 | if (DstEltType->isSignedIntegerOrEnumerationType()) |
1762 | 0 | Res = Builder.CreateFPToSI(Src, DstTy, "conv"); |
1763 | 0 | else |
1764 | 0 | Res = Builder.CreateFPToUI(Src, DstTy, "conv"); |
1765 | 0 | } else { |
1766 | 0 | assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && |
1767 | 0 | "Unknown real conversion"); |
1768 | 0 | if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) |
1769 | 0 | Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); |
1770 | 0 | else |
1771 | 0 | Res = Builder.CreateFPExt(Src, DstTy, "conv"); |
1772 | 0 | } |
1773 | | |
1774 | 0 | return Res; |
1775 | 0 | } |
1776 | | |
1777 | 0 | Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { |
1778 | 0 | if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { |
1779 | 0 | CGF.EmitIgnoredExpr(E->getBase()); |
1780 | 0 | return CGF.emitScalarConstant(Constant, E); |
1781 | 0 | } else { |
1782 | 0 | Expr::EvalResult Result; |
1783 | 0 | if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { |
1784 | 0 | llvm::APSInt Value = Result.Val.getInt(); |
1785 | 0 | CGF.EmitIgnoredExpr(E->getBase()); |
1786 | 0 | return Builder.getInt(Value); |
1787 | 0 | } |
1788 | 0 | } |
1789 | | |
1790 | 0 | return EmitLoadOfLValue(E); |
1791 | 0 | } |
1792 | | |
1793 | 0 | Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { |
1794 | 0 | TestAndClearIgnoreResultAssign(); |
1795 | | |
1796 | | // Emit subscript expressions in rvalue context's. For most cases, this just |
1797 | | // loads the lvalue formed by the subscript expr. However, we have to be |
1798 | | // careful, because the base of a vector subscript is occasionally an rvalue, |
1799 | | // so we can't get it as an lvalue. |
1800 | 0 | if (!E->getBase()->getType()->isVectorType() && |
1801 | 0 | !E->getBase()->getType()->isSveVLSBuiltinType()) |
1802 | 0 | return EmitLoadOfLValue(E); |
1803 | | |
1804 | | // Handle the vector case. The base must be a vector, the index must be an |
1805 | | // integer value. |
1806 | 0 | Value *Base = Visit(E->getBase()); |
1807 | 0 | Value *Idx = Visit(E->getIdx()); |
1808 | 0 | QualType IdxTy = E->getIdx()->getType(); |
1809 | |
|
1810 | 0 | if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) |
1811 | 0 | CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); |
1812 | |
|
1813 | 0 | return Builder.CreateExtractElement(Base, Idx, "vecext"); |
1814 | 0 | } |
1815 | | |
1816 | 0 | Value *ScalarExprEmitter::VisitMatrixSubscriptExpr(MatrixSubscriptExpr *E) { |
1817 | 0 | TestAndClearIgnoreResultAssign(); |
1818 | | |
1819 | | // Handle the vector case. The base must be a vector, the index must be an |
1820 | | // integer value. |
1821 | 0 | Value *RowIdx = Visit(E->getRowIdx()); |
1822 | 0 | Value *ColumnIdx = Visit(E->getColumnIdx()); |
1823 | |
|
1824 | 0 | const auto *MatrixTy = E->getBase()->getType()->castAs<ConstantMatrixType>(); |
1825 | 0 | unsigned NumRows = MatrixTy->getNumRows(); |
1826 | 0 | llvm::MatrixBuilder MB(Builder); |
1827 | 0 | Value *Idx = MB.CreateIndex(RowIdx, ColumnIdx, NumRows); |
1828 | 0 | if (CGF.CGM.getCodeGenOpts().OptimizationLevel > 0) |
1829 | 0 | MB.CreateIndexAssumption(Idx, MatrixTy->getNumElementsFlattened()); |
1830 | |
|
1831 | 0 | Value *Matrix = Visit(E->getBase()); |
1832 | | |
1833 | | // TODO: Should we emit bounds checks with SanitizerKind::ArrayBounds? |
1834 | 0 | return Builder.CreateExtractElement(Matrix, Idx, "matrixext"); |
1835 | 0 | } |
1836 | | |
1837 | | static int getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, |
1838 | 0 | unsigned Off) { |
1839 | 0 | int MV = SVI->getMaskValue(Idx); |
1840 | 0 | if (MV == -1) |
1841 | 0 | return -1; |
1842 | 0 | return Off + MV; |
1843 | 0 | } |
1844 | | |
1845 | 0 | static int getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { |
1846 | 0 | assert(llvm::ConstantInt::isValueValidForType(I32Ty, C->getZExtValue()) && |
1847 | 0 | "Index operand too large for shufflevector mask!"); |
1848 | 0 | return C->getZExtValue(); |
1849 | 0 | } |
1850 | | |
1851 | 0 | Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { |
1852 | 0 | bool Ignore = TestAndClearIgnoreResultAssign(); |
1853 | 0 | (void)Ignore; |
1854 | 0 | assert (Ignore == false && "init list ignored"); |
1855 | 0 | unsigned NumInitElements = E->getNumInits(); |
1856 | |
|
1857 | 0 | if (E->hadArrayRangeDesignator()) |
1858 | 0 | CGF.ErrorUnsupported(E, "GNU array range designator extension"); |
1859 | |
|
1860 | 0 | llvm::VectorType *VType = |
1861 | 0 | dyn_cast<llvm::VectorType>(ConvertType(E->getType())); |
1862 | |
|
1863 | 0 | if (!VType) { |
1864 | 0 | if (NumInitElements == 0) { |
1865 | | // C++11 value-initialization for the scalar. |
1866 | 0 | return EmitNullValue(E->getType()); |
1867 | 0 | } |
1868 | | // We have a scalar in braces. Just use the first element. |
1869 | 0 | return Visit(E->getInit(0)); |
1870 | 0 | } |
1871 | | |
1872 | 0 | if (isa<llvm::ScalableVectorType>(VType)) { |
1873 | 0 | if (NumInitElements == 0) { |
1874 | | // C++11 value-initialization for the vector. |
1875 | 0 | return EmitNullValue(E->getType()); |
1876 | 0 | } |
1877 | | |
1878 | 0 | if (NumInitElements == 1) { |
1879 | 0 | Expr *InitVector = E->getInit(0); |
1880 | | |
1881 | | // Initialize from another scalable vector of the same type. |
1882 | 0 | if (InitVector->getType() == E->getType()) |
1883 | 0 | return Visit(InitVector); |
1884 | 0 | } |
1885 | | |
1886 | 0 | llvm_unreachable("Unexpected initialization of a scalable vector!"); |
1887 | 0 | } |
1888 | | |
1889 | 0 | unsigned ResElts = cast<llvm::FixedVectorType>(VType)->getNumElements(); |
1890 | | |
1891 | | // Loop over initializers collecting the Value for each, and remembering |
1892 | | // whether the source was swizzle (ExtVectorElementExpr). This will allow |
1893 | | // us to fold the shuffle for the swizzle into the shuffle for the vector |
1894 | | // initializer, since LLVM optimizers generally do not want to touch |
1895 | | // shuffles. |
1896 | 0 | unsigned CurIdx = 0; |
1897 | 0 | bool VIsPoisonShuffle = false; |
1898 | 0 | llvm::Value *V = llvm::PoisonValue::get(VType); |
1899 | 0 | for (unsigned i = 0; i != NumInitElements; ++i) { |
1900 | 0 | Expr *IE = E->getInit(i); |
1901 | 0 | Value *Init = Visit(IE); |
1902 | 0 | SmallVector<int, 16> Args; |
1903 | |
|
1904 | 0 | llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); |
1905 | | |
1906 | | // Handle scalar elements. If the scalar initializer is actually one |
1907 | | // element of a different vector of the same width, use shuffle instead of |
1908 | | // extract+insert. |
1909 | 0 | if (!VVT) { |
1910 | 0 | if (isa<ExtVectorElementExpr>(IE)) { |
1911 | 0 | llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); |
1912 | |
|
1913 | 0 | if (cast<llvm::FixedVectorType>(EI->getVectorOperandType()) |
1914 | 0 | ->getNumElements() == ResElts) { |
1915 | 0 | llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); |
1916 | 0 | Value *LHS = nullptr, *RHS = nullptr; |
1917 | 0 | if (CurIdx == 0) { |
1918 | | // insert into poison -> shuffle (src, poison) |
1919 | | // shufflemask must use an i32 |
1920 | 0 | Args.push_back(getAsInt32(C, CGF.Int32Ty)); |
1921 | 0 | Args.resize(ResElts, -1); |
1922 | |
|
1923 | 0 | LHS = EI->getVectorOperand(); |
1924 | 0 | RHS = V; |
1925 | 0 | VIsPoisonShuffle = true; |
1926 | 0 | } else if (VIsPoisonShuffle) { |
1927 | | // insert into poison shuffle && size match -> shuffle (v, src) |
1928 | 0 | llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); |
1929 | 0 | for (unsigned j = 0; j != CurIdx; ++j) |
1930 | 0 | Args.push_back(getMaskElt(SVV, j, 0)); |
1931 | 0 | Args.push_back(ResElts + C->getZExtValue()); |
1932 | 0 | Args.resize(ResElts, -1); |
1933 | |
|
1934 | 0 | LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); |
1935 | 0 | RHS = EI->getVectorOperand(); |
1936 | 0 | VIsPoisonShuffle = false; |
1937 | 0 | } |
1938 | 0 | if (!Args.empty()) { |
1939 | 0 | V = Builder.CreateShuffleVector(LHS, RHS, Args); |
1940 | 0 | ++CurIdx; |
1941 | 0 | continue; |
1942 | 0 | } |
1943 | 0 | } |
1944 | 0 | } |
1945 | 0 | V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), |
1946 | 0 | "vecinit"); |
1947 | 0 | VIsPoisonShuffle = false; |
1948 | 0 | ++CurIdx; |
1949 | 0 | continue; |
1950 | 0 | } |
1951 | | |
1952 | 0 | unsigned InitElts = cast<llvm::FixedVectorType>(VVT)->getNumElements(); |
1953 | | |
1954 | | // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's |
1955 | | // input is the same width as the vector being constructed, generate an |
1956 | | // optimized shuffle of the swizzle input into the result. |
1957 | 0 | unsigned Offset = (CurIdx == 0) ? 0 : ResElts; |
1958 | 0 | if (isa<ExtVectorElementExpr>(IE)) { |
1959 | 0 | llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); |
1960 | 0 | Value *SVOp = SVI->getOperand(0); |
1961 | 0 | auto *OpTy = cast<llvm::FixedVectorType>(SVOp->getType()); |
1962 | |
|
1963 | 0 | if (OpTy->getNumElements() == ResElts) { |
1964 | 0 | for (unsigned j = 0; j != CurIdx; ++j) { |
1965 | | // If the current vector initializer is a shuffle with poison, merge |
1966 | | // this shuffle directly into it. |
1967 | 0 | if (VIsPoisonShuffle) { |
1968 | 0 | Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0)); |
1969 | 0 | } else { |
1970 | 0 | Args.push_back(j); |
1971 | 0 | } |
1972 | 0 | } |
1973 | 0 | for (unsigned j = 0, je = InitElts; j != je; ++j) |
1974 | 0 | Args.push_back(getMaskElt(SVI, j, Offset)); |
1975 | 0 | Args.resize(ResElts, -1); |
1976 | |
|
1977 | 0 | if (VIsPoisonShuffle) |
1978 | 0 | V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); |
1979 | |
|
1980 | 0 | Init = SVOp; |
1981 | 0 | } |
1982 | 0 | } |
1983 | | |
1984 | | // Extend init to result vector length, and then shuffle its contribution |
1985 | | // to the vector initializer into V. |
1986 | 0 | if (Args.empty()) { |
1987 | 0 | for (unsigned j = 0; j != InitElts; ++j) |
1988 | 0 | Args.push_back(j); |
1989 | 0 | Args.resize(ResElts, -1); |
1990 | 0 | Init = Builder.CreateShuffleVector(Init, Args, "vext"); |
1991 | |
|
1992 | 0 | Args.clear(); |
1993 | 0 | for (unsigned j = 0; j != CurIdx; ++j) |
1994 | 0 | Args.push_back(j); |
1995 | 0 | for (unsigned j = 0; j != InitElts; ++j) |
1996 | 0 | Args.push_back(j + Offset); |
1997 | 0 | Args.resize(ResElts, -1); |
1998 | 0 | } |
1999 | | |
2000 | | // If V is poison, make sure it ends up on the RHS of the shuffle to aid |
2001 | | // merging subsequent shuffles into this one. |
2002 | 0 | if (CurIdx == 0) |
2003 | 0 | std::swap(V, Init); |
2004 | 0 | V = Builder.CreateShuffleVector(V, Init, Args, "vecinit"); |
2005 | 0 | VIsPoisonShuffle = isa<llvm::PoisonValue>(Init); |
2006 | 0 | CurIdx += InitElts; |
2007 | 0 | } |
2008 | | |
2009 | | // FIXME: evaluate codegen vs. shuffling against constant null vector. |
2010 | | // Emit remaining default initializers. |
2011 | 0 | llvm::Type *EltTy = VType->getElementType(); |
2012 | | |
2013 | | // Emit remaining default initializers |
2014 | 0 | for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { |
2015 | 0 | Value *Idx = Builder.getInt32(CurIdx); |
2016 | 0 | llvm::Value *Init = llvm::Constant::getNullValue(EltTy); |
2017 | 0 | V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); |
2018 | 0 | } |
2019 | 0 | return V; |
2020 | 0 | } |
2021 | | |
2022 | 0 | bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { |
2023 | 0 | const Expr *E = CE->getSubExpr(); |
2024 | |
|
2025 | 0 | if (CE->getCastKind() == CK_UncheckedDerivedToBase) |
2026 | 0 | return false; |
2027 | | |
2028 | 0 | if (isa<CXXThisExpr>(E->IgnoreParens())) { |
2029 | | // We always assume that 'this' is never null. |
2030 | 0 | return false; |
2031 | 0 | } |
2032 | | |
2033 | 0 | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { |
2034 | | // And that glvalue casts are never null. |
2035 | 0 | if (ICE->isGLValue()) |
2036 | 0 | return false; |
2037 | 0 | } |
2038 | | |
2039 | 0 | return true; |
2040 | 0 | } |
2041 | | |
2042 | | // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts |
2043 | | // have to handle a more broad range of conversions than explicit casts, as they |
2044 | | // handle things like function to ptr-to-function decay etc. |
2045 | 0 | Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { |
2046 | 0 | Expr *E = CE->getSubExpr(); |
2047 | 0 | QualType DestTy = CE->getType(); |
2048 | 0 | CastKind Kind = CE->getCastKind(); |
2049 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptions(CGF, CE); |
2050 | | |
2051 | | // These cases are generally not written to ignore the result of |
2052 | | // evaluating their sub-expressions, so we clear this now. |
2053 | 0 | bool Ignored = TestAndClearIgnoreResultAssign(); |
2054 | | |
2055 | | // Since almost all cast kinds apply to scalars, this switch doesn't have |
2056 | | // a default case, so the compiler will warn on a missing case. The cases |
2057 | | // are in the same order as in the CastKind enum. |
2058 | 0 | switch (Kind) { |
2059 | 0 | case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); |
2060 | 0 | case CK_BuiltinFnToFnPtr: |
2061 | 0 | llvm_unreachable("builtin functions are handled elsewhere"); |
2062 | |
|
2063 | 0 | case CK_LValueBitCast: |
2064 | 0 | case CK_ObjCObjectLValueCast: { |
2065 | 0 | Address Addr = EmitLValue(E).getAddress(CGF); |
2066 | 0 | Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy)); |
2067 | 0 | LValue LV = CGF.MakeAddrLValue(Addr, DestTy); |
2068 | 0 | return EmitLoadOfLValue(LV, CE->getExprLoc()); |
2069 | 0 | } |
2070 | | |
2071 | 0 | case CK_LValueToRValueBitCast: { |
2072 | 0 | LValue SourceLVal = CGF.EmitLValue(E); |
2073 | 0 | Address Addr = SourceLVal.getAddress(CGF).withElementType( |
2074 | 0 | CGF.ConvertTypeForMem(DestTy)); |
2075 | 0 | LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); |
2076 | 0 | DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); |
2077 | 0 | return EmitLoadOfLValue(DestLV, CE->getExprLoc()); |
2078 | 0 | } |
2079 | | |
2080 | 0 | case CK_CPointerToObjCPointerCast: |
2081 | 0 | case CK_BlockPointerToObjCPointerCast: |
2082 | 0 | case CK_AnyPointerToBlockPointerCast: |
2083 | 0 | case CK_BitCast: { |
2084 | 0 | Value *Src = Visit(const_cast<Expr*>(E)); |
2085 | 0 | llvm::Type *SrcTy = Src->getType(); |
2086 | 0 | llvm::Type *DstTy = ConvertType(DestTy); |
2087 | 0 | assert( |
2088 | 0 | (!SrcTy->isPtrOrPtrVectorTy() || !DstTy->isPtrOrPtrVectorTy() || |
2089 | 0 | SrcTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace()) && |
2090 | 0 | "Address-space cast must be used to convert address spaces"); |
2091 | | |
2092 | 0 | if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { |
2093 | 0 | if (auto *PT = DestTy->getAs<PointerType>()) { |
2094 | 0 | CGF.EmitVTablePtrCheckForCast( |
2095 | 0 | PT->getPointeeType(), |
2096 | 0 | Address(Src, |
2097 | 0 | CGF.ConvertTypeForMem( |
2098 | 0 | E->getType()->castAs<PointerType>()->getPointeeType()), |
2099 | 0 | CGF.getPointerAlign()), |
2100 | 0 | /*MayBeNull=*/true, CodeGenFunction::CFITCK_UnrelatedCast, |
2101 | 0 | CE->getBeginLoc()); |
2102 | 0 | } |
2103 | 0 | } |
2104 | |
|
2105 | 0 | if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { |
2106 | 0 | const QualType SrcType = E->getType(); |
2107 | |
|
2108 | 0 | if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { |
2109 | | // Casting to pointer that could carry dynamic information (provided by |
2110 | | // invariant.group) requires launder. |
2111 | 0 | Src = Builder.CreateLaunderInvariantGroup(Src); |
2112 | 0 | } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { |
2113 | | // Casting to pointer that does not carry dynamic information (provided |
2114 | | // by invariant.group) requires stripping it. Note that we don't do it |
2115 | | // if the source could not be dynamic type and destination could be |
2116 | | // dynamic because dynamic information is already laundered. It is |
2117 | | // because launder(strip(src)) == launder(src), so there is no need to |
2118 | | // add extra strip before launder. |
2119 | 0 | Src = Builder.CreateStripInvariantGroup(Src); |
2120 | 0 | } |
2121 | 0 | } |
2122 | | |
2123 | | // Update heapallocsite metadata when there is an explicit pointer cast. |
2124 | 0 | if (auto *CI = dyn_cast<llvm::CallBase>(Src)) { |
2125 | 0 | if (CI->getMetadata("heapallocsite") && isa<ExplicitCastExpr>(CE) && |
2126 | 0 | !isa<CastExpr>(E)) { |
2127 | 0 | QualType PointeeType = DestTy->getPointeeType(); |
2128 | 0 | if (!PointeeType.isNull()) |
2129 | 0 | CGF.getDebugInfo()->addHeapAllocSiteMetadata(CI, PointeeType, |
2130 | 0 | CE->getExprLoc()); |
2131 | 0 | } |
2132 | 0 | } |
2133 | | |
2134 | | // If Src is a fixed vector and Dst is a scalable vector, and both have the |
2135 | | // same element type, use the llvm.vector.insert intrinsic to perform the |
2136 | | // bitcast. |
2137 | 0 | if (const auto *FixedSrc = dyn_cast<llvm::FixedVectorType>(SrcTy)) { |
2138 | 0 | if (const auto *ScalableDst = dyn_cast<llvm::ScalableVectorType>(DstTy)) { |
2139 | | // If we are casting a fixed i8 vector to a scalable 16 x i1 predicate |
2140 | | // vector, use a vector insert and bitcast the result. |
2141 | 0 | bool NeedsBitCast = false; |
2142 | 0 | auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); |
2143 | 0 | llvm::Type *OrigType = DstTy; |
2144 | 0 | if (ScalableDst == PredType && |
2145 | 0 | FixedSrc->getElementType() == Builder.getInt8Ty()) { |
2146 | 0 | DstTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); |
2147 | 0 | ScalableDst = cast<llvm::ScalableVectorType>(DstTy); |
2148 | 0 | NeedsBitCast = true; |
2149 | 0 | } |
2150 | 0 | if (FixedSrc->getElementType() == ScalableDst->getElementType()) { |
2151 | 0 | llvm::Value *UndefVec = llvm::UndefValue::get(DstTy); |
2152 | 0 | llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); |
2153 | 0 | llvm::Value *Result = Builder.CreateInsertVector( |
2154 | 0 | DstTy, UndefVec, Src, Zero, "cast.scalable"); |
2155 | 0 | if (NeedsBitCast) |
2156 | 0 | Result = Builder.CreateBitCast(Result, OrigType); |
2157 | 0 | return Result; |
2158 | 0 | } |
2159 | 0 | } |
2160 | 0 | } |
2161 | | |
2162 | | // If Src is a scalable vector and Dst is a fixed vector, and both have the |
2163 | | // same element type, use the llvm.vector.extract intrinsic to perform the |
2164 | | // bitcast. |
2165 | 0 | if (const auto *ScalableSrc = dyn_cast<llvm::ScalableVectorType>(SrcTy)) { |
2166 | 0 | if (const auto *FixedDst = dyn_cast<llvm::FixedVectorType>(DstTy)) { |
2167 | | // If we are casting a scalable 16 x i1 predicate vector to a fixed i8 |
2168 | | // vector, bitcast the source and use a vector extract. |
2169 | 0 | auto PredType = llvm::ScalableVectorType::get(Builder.getInt1Ty(), 16); |
2170 | 0 | if (ScalableSrc == PredType && |
2171 | 0 | FixedDst->getElementType() == Builder.getInt8Ty()) { |
2172 | 0 | SrcTy = llvm::ScalableVectorType::get(Builder.getInt8Ty(), 2); |
2173 | 0 | ScalableSrc = cast<llvm::ScalableVectorType>(SrcTy); |
2174 | 0 | Src = Builder.CreateBitCast(Src, SrcTy); |
2175 | 0 | } |
2176 | 0 | if (ScalableSrc->getElementType() == FixedDst->getElementType()) { |
2177 | 0 | llvm::Value *Zero = llvm::Constant::getNullValue(CGF.CGM.Int64Ty); |
2178 | 0 | return Builder.CreateExtractVector(DstTy, Src, Zero, "cast.fixed"); |
2179 | 0 | } |
2180 | 0 | } |
2181 | 0 | } |
2182 | | |
2183 | | // Perform VLAT <-> VLST bitcast through memory. |
2184 | | // TODO: since the llvm.experimental.vector.{insert,extract} intrinsics |
2185 | | // require the element types of the vectors to be the same, we |
2186 | | // need to keep this around for bitcasts between VLAT <-> VLST where |
2187 | | // the element types of the vectors are not the same, until we figure |
2188 | | // out a better way of doing these casts. |
2189 | 0 | if ((isa<llvm::FixedVectorType>(SrcTy) && |
2190 | 0 | isa<llvm::ScalableVectorType>(DstTy)) || |
2191 | 0 | (isa<llvm::ScalableVectorType>(SrcTy) && |
2192 | 0 | isa<llvm::FixedVectorType>(DstTy))) { |
2193 | 0 | Address Addr = CGF.CreateDefaultAlignTempAlloca(SrcTy, "saved-value"); |
2194 | 0 | LValue LV = CGF.MakeAddrLValue(Addr, E->getType()); |
2195 | 0 | CGF.EmitStoreOfScalar(Src, LV); |
2196 | 0 | Addr = Addr.withElementType(CGF.ConvertTypeForMem(DestTy)); |
2197 | 0 | LValue DestLV = CGF.MakeAddrLValue(Addr, DestTy); |
2198 | 0 | DestLV.setTBAAInfo(TBAAAccessInfo::getMayAliasInfo()); |
2199 | 0 | return EmitLoadOfLValue(DestLV, CE->getExprLoc()); |
2200 | 0 | } |
2201 | 0 | return Builder.CreateBitCast(Src, DstTy); |
2202 | 0 | } |
2203 | 0 | case CK_AddressSpaceConversion: { |
2204 | 0 | Expr::EvalResult Result; |
2205 | 0 | if (E->EvaluateAsRValue(Result, CGF.getContext()) && |
2206 | 0 | Result.Val.isNullPointer()) { |
2207 | | // If E has side effect, it is emitted even if its final result is a |
2208 | | // null pointer. In that case, a DCE pass should be able to |
2209 | | // eliminate the useless instructions emitted during translating E. |
2210 | 0 | if (Result.HasSideEffects) |
2211 | 0 | Visit(E); |
2212 | 0 | return CGF.CGM.getNullPointer(cast<llvm::PointerType>( |
2213 | 0 | ConvertType(DestTy)), DestTy); |
2214 | 0 | } |
2215 | | // Since target may map different address spaces in AST to the same address |
2216 | | // space, an address space conversion may end up as a bitcast. |
2217 | 0 | return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( |
2218 | 0 | CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), |
2219 | 0 | DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); |
2220 | 0 | } |
2221 | 0 | case CK_AtomicToNonAtomic: |
2222 | 0 | case CK_NonAtomicToAtomic: |
2223 | 0 | case CK_UserDefinedConversion: |
2224 | 0 | return Visit(const_cast<Expr*>(E)); |
2225 | | |
2226 | 0 | case CK_NoOp: { |
2227 | 0 | return CE->changesVolatileQualification() ? EmitLoadOfLValue(CE) |
2228 | 0 | : Visit(const_cast<Expr *>(E)); |
2229 | 0 | } |
2230 | | |
2231 | 0 | case CK_BaseToDerived: { |
2232 | 0 | const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); |
2233 | 0 | assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); |
2234 | | |
2235 | 0 | Address Base = CGF.EmitPointerWithAlignment(E); |
2236 | 0 | Address Derived = |
2237 | 0 | CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, |
2238 | 0 | CE->path_begin(), CE->path_end(), |
2239 | 0 | CGF.ShouldNullCheckClassCastValue(CE)); |
2240 | | |
2241 | | // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is |
2242 | | // performed and the object is not of the derived type. |
2243 | 0 | if (CGF.sanitizePerformTypeCheck()) |
2244 | 0 | CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), |
2245 | 0 | Derived.getPointer(), DestTy->getPointeeType()); |
2246 | |
|
2247 | 0 | if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) |
2248 | 0 | CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived, |
2249 | 0 | /*MayBeNull=*/true, |
2250 | 0 | CodeGenFunction::CFITCK_DerivedCast, |
2251 | 0 | CE->getBeginLoc()); |
2252 | |
|
2253 | 0 | return Derived.getPointer(); |
2254 | 0 | } |
2255 | 0 | case CK_UncheckedDerivedToBase: |
2256 | 0 | case CK_DerivedToBase: { |
2257 | | // The EmitPointerWithAlignment path does this fine; just discard |
2258 | | // the alignment. |
2259 | 0 | return CGF.EmitPointerWithAlignment(CE).getPointer(); |
2260 | 0 | } |
2261 | | |
2262 | 0 | case CK_Dynamic: { |
2263 | 0 | Address V = CGF.EmitPointerWithAlignment(E); |
2264 | 0 | const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); |
2265 | 0 | return CGF.EmitDynamicCast(V, DCE); |
2266 | 0 | } |
2267 | | |
2268 | 0 | case CK_ArrayToPointerDecay: |
2269 | 0 | return CGF.EmitArrayToPointerDecay(E).getPointer(); |
2270 | 0 | case CK_FunctionToPointerDecay: |
2271 | 0 | return EmitLValue(E).getPointer(CGF); |
2272 | | |
2273 | 0 | case CK_NullToPointer: |
2274 | 0 | if (MustVisitNullValue(E)) |
2275 | 0 | CGF.EmitIgnoredExpr(E); |
2276 | |
|
2277 | 0 | return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), |
2278 | 0 | DestTy); |
2279 | | |
2280 | 0 | case CK_NullToMemberPointer: { |
2281 | 0 | if (MustVisitNullValue(E)) |
2282 | 0 | CGF.EmitIgnoredExpr(E); |
2283 | |
|
2284 | 0 | const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); |
2285 | 0 | return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); |
2286 | 0 | } |
2287 | | |
2288 | 0 | case CK_ReinterpretMemberPointer: |
2289 | 0 | case CK_BaseToDerivedMemberPointer: |
2290 | 0 | case CK_DerivedToBaseMemberPointer: { |
2291 | 0 | Value *Src = Visit(E); |
2292 | | |
2293 | | // Note that the AST doesn't distinguish between checked and |
2294 | | // unchecked member pointer conversions, so we always have to |
2295 | | // implement checked conversions here. This is inefficient when |
2296 | | // actual control flow may be required in order to perform the |
2297 | | // check, which it is for data member pointers (but not member |
2298 | | // function pointers on Itanium and ARM). |
2299 | 0 | return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); |
2300 | 0 | } |
2301 | | |
2302 | 0 | case CK_ARCProduceObject: |
2303 | 0 | return CGF.EmitARCRetainScalarExpr(E); |
2304 | 0 | case CK_ARCConsumeObject: |
2305 | 0 | return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); |
2306 | 0 | case CK_ARCReclaimReturnedObject: |
2307 | 0 | return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); |
2308 | 0 | case CK_ARCExtendBlockObject: |
2309 | 0 | return CGF.EmitARCExtendBlockObject(E); |
2310 | | |
2311 | 0 | case CK_CopyAndAutoreleaseBlockObject: |
2312 | 0 | return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); |
2313 | | |
2314 | 0 | case CK_FloatingRealToComplex: |
2315 | 0 | case CK_FloatingComplexCast: |
2316 | 0 | case CK_IntegralRealToComplex: |
2317 | 0 | case CK_IntegralComplexCast: |
2318 | 0 | case CK_IntegralComplexToFloatingComplex: |
2319 | 0 | case CK_FloatingComplexToIntegralComplex: |
2320 | 0 | case CK_ConstructorConversion: |
2321 | 0 | case CK_ToUnion: |
2322 | 0 | llvm_unreachable("scalar cast to non-scalar value"); |
2323 | |
|
2324 | 0 | case CK_LValueToRValue: |
2325 | 0 | assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); |
2326 | 0 | assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); |
2327 | 0 | return Visit(const_cast<Expr*>(E)); |
2328 | | |
2329 | 0 | case CK_IntegralToPointer: { |
2330 | 0 | Value *Src = Visit(const_cast<Expr*>(E)); |
2331 | | |
2332 | | // First, convert to the correct width so that we control the kind of |
2333 | | // extension. |
2334 | 0 | auto DestLLVMTy = ConvertType(DestTy); |
2335 | 0 | llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); |
2336 | 0 | bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); |
2337 | 0 | llvm::Value* IntResult = |
2338 | 0 | Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); |
2339 | |
|
2340 | 0 | auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); |
2341 | |
|
2342 | 0 | if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { |
2343 | | // Going from integer to pointer that could be dynamic requires reloading |
2344 | | // dynamic information from invariant.group. |
2345 | 0 | if (DestTy.mayBeDynamicClass()) |
2346 | 0 | IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); |
2347 | 0 | } |
2348 | 0 | return IntToPtr; |
2349 | 0 | } |
2350 | 0 | case CK_PointerToIntegral: { |
2351 | 0 | assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); |
2352 | 0 | auto *PtrExpr = Visit(E); |
2353 | |
|
2354 | 0 | if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { |
2355 | 0 | const QualType SrcType = E->getType(); |
2356 | | |
2357 | | // Casting to integer requires stripping dynamic information as it does |
2358 | | // not carries it. |
2359 | 0 | if (SrcType.mayBeDynamicClass()) |
2360 | 0 | PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); |
2361 | 0 | } |
2362 | |
|
2363 | 0 | return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); |
2364 | 0 | } |
2365 | 0 | case CK_ToVoid: { |
2366 | 0 | CGF.EmitIgnoredExpr(E); |
2367 | 0 | return nullptr; |
2368 | 0 | } |
2369 | 0 | case CK_MatrixCast: { |
2370 | 0 | return EmitScalarConversion(Visit(E), E->getType(), DestTy, |
2371 | 0 | CE->getExprLoc()); |
2372 | 0 | } |
2373 | 0 | case CK_VectorSplat: { |
2374 | 0 | llvm::Type *DstTy = ConvertType(DestTy); |
2375 | 0 | Value *Elt = Visit(const_cast<Expr *>(E)); |
2376 | | // Splat the element across to all elements |
2377 | 0 | llvm::ElementCount NumElements = |
2378 | 0 | cast<llvm::VectorType>(DstTy)->getElementCount(); |
2379 | 0 | return Builder.CreateVectorSplat(NumElements, Elt, "splat"); |
2380 | 0 | } |
2381 | | |
2382 | 0 | case CK_FixedPointCast: |
2383 | 0 | return EmitScalarConversion(Visit(E), E->getType(), DestTy, |
2384 | 0 | CE->getExprLoc()); |
2385 | | |
2386 | 0 | case CK_FixedPointToBoolean: |
2387 | 0 | assert(E->getType()->isFixedPointType() && |
2388 | 0 | "Expected src type to be fixed point type"); |
2389 | 0 | assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); |
2390 | 0 | return EmitScalarConversion(Visit(E), E->getType(), DestTy, |
2391 | 0 | CE->getExprLoc()); |
2392 | | |
2393 | 0 | case CK_FixedPointToIntegral: |
2394 | 0 | assert(E->getType()->isFixedPointType() && |
2395 | 0 | "Expected src type to be fixed point type"); |
2396 | 0 | assert(DestTy->isIntegerType() && "Expected dest type to be an integer"); |
2397 | 0 | return EmitScalarConversion(Visit(E), E->getType(), DestTy, |
2398 | 0 | CE->getExprLoc()); |
2399 | | |
2400 | 0 | case CK_IntegralToFixedPoint: |
2401 | 0 | assert(E->getType()->isIntegerType() && |
2402 | 0 | "Expected src type to be an integer"); |
2403 | 0 | assert(DestTy->isFixedPointType() && |
2404 | 0 | "Expected dest type to be fixed point type"); |
2405 | 0 | return EmitScalarConversion(Visit(E), E->getType(), DestTy, |
2406 | 0 | CE->getExprLoc()); |
2407 | | |
2408 | 0 | case CK_IntegralCast: { |
2409 | 0 | ScalarConversionOpts Opts; |
2410 | 0 | if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { |
2411 | 0 | if (!ICE->isPartOfExplicitCast()) |
2412 | 0 | Opts = ScalarConversionOpts(CGF.SanOpts); |
2413 | 0 | } |
2414 | 0 | return EmitScalarConversion(Visit(E), E->getType(), DestTy, |
2415 | 0 | CE->getExprLoc(), Opts); |
2416 | 0 | } |
2417 | 0 | case CK_IntegralToFloating: |
2418 | 0 | case CK_FloatingToIntegral: |
2419 | 0 | case CK_FloatingCast: |
2420 | 0 | case CK_FixedPointToFloating: |
2421 | 0 | case CK_FloatingToFixedPoint: { |
2422 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); |
2423 | 0 | return EmitScalarConversion(Visit(E), E->getType(), DestTy, |
2424 | 0 | CE->getExprLoc()); |
2425 | 0 | } |
2426 | 0 | case CK_BooleanToSignedIntegral: { |
2427 | 0 | ScalarConversionOpts Opts; |
2428 | 0 | Opts.TreatBooleanAsSigned = true; |
2429 | 0 | return EmitScalarConversion(Visit(E), E->getType(), DestTy, |
2430 | 0 | CE->getExprLoc(), Opts); |
2431 | 0 | } |
2432 | 0 | case CK_IntegralToBoolean: |
2433 | 0 | return EmitIntToBoolConversion(Visit(E)); |
2434 | 0 | case CK_PointerToBoolean: |
2435 | 0 | return EmitPointerToBoolConversion(Visit(E), E->getType()); |
2436 | 0 | case CK_FloatingToBoolean: { |
2437 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, CE); |
2438 | 0 | return EmitFloatToBoolConversion(Visit(E)); |
2439 | 0 | } |
2440 | 0 | case CK_MemberPointerToBoolean: { |
2441 | 0 | llvm::Value *MemPtr = Visit(E); |
2442 | 0 | const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); |
2443 | 0 | return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); |
2444 | 0 | } |
2445 | | |
2446 | 0 | case CK_FloatingComplexToReal: |
2447 | 0 | case CK_IntegralComplexToReal: |
2448 | 0 | return CGF.EmitComplexExpr(E, false, true).first; |
2449 | | |
2450 | 0 | case CK_FloatingComplexToBoolean: |
2451 | 0 | case CK_IntegralComplexToBoolean: { |
2452 | 0 | CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); |
2453 | | |
2454 | | // TODO: kill this function off, inline appropriate case here |
2455 | 0 | return EmitComplexToScalarConversion(V, E->getType(), DestTy, |
2456 | 0 | CE->getExprLoc()); |
2457 | 0 | } |
2458 | | |
2459 | 0 | case CK_ZeroToOCLOpaqueType: { |
2460 | 0 | assert((DestTy->isEventT() || DestTy->isQueueT() || |
2461 | 0 | DestTy->isOCLIntelSubgroupAVCType()) && |
2462 | 0 | "CK_ZeroToOCLEvent cast on non-event type"); |
2463 | 0 | return llvm::Constant::getNullValue(ConvertType(DestTy)); |
2464 | 0 | } |
2465 | | |
2466 | 0 | case CK_IntToOCLSampler: |
2467 | 0 | return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); |
2468 | |
|
2469 | 0 | } // end of switch |
2470 | | |
2471 | 0 | llvm_unreachable("unknown scalar cast"); |
2472 | 0 | } |
2473 | | |
2474 | 0 | Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { |
2475 | 0 | CodeGenFunction::StmtExprEvaluation eval(CGF); |
2476 | 0 | Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), |
2477 | 0 | !E->getType()->isVoidType()); |
2478 | 0 | if (!RetAlloca.isValid()) |
2479 | 0 | return nullptr; |
2480 | 0 | return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), |
2481 | 0 | E->getExprLoc()); |
2482 | 0 | } |
2483 | | |
2484 | 0 | Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { |
2485 | 0 | CodeGenFunction::RunCleanupsScope Scope(CGF); |
2486 | 0 | Value *V = Visit(E->getSubExpr()); |
2487 | | // Defend against dominance problems caused by jumps out of expression |
2488 | | // evaluation through the shared cleanup block. |
2489 | 0 | Scope.ForceCleanup({&V}); |
2490 | 0 | return V; |
2491 | 0 | } |
2492 | | |
2493 | | //===----------------------------------------------------------------------===// |
2494 | | // Unary Operators |
2495 | | //===----------------------------------------------------------------------===// |
2496 | | |
2497 | | static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, |
2498 | | llvm::Value *InVal, bool IsInc, |
2499 | 0 | FPOptions FPFeatures) { |
2500 | 0 | BinOpInfo BinOp; |
2501 | 0 | BinOp.LHS = InVal; |
2502 | 0 | BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); |
2503 | 0 | BinOp.Ty = E->getType(); |
2504 | 0 | BinOp.Opcode = IsInc ? BO_Add : BO_Sub; |
2505 | 0 | BinOp.FPFeatures = FPFeatures; |
2506 | 0 | BinOp.E = E; |
2507 | 0 | return BinOp; |
2508 | 0 | } |
2509 | | |
2510 | | llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( |
2511 | 0 | const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { |
2512 | 0 | llvm::Value *Amount = |
2513 | 0 | llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); |
2514 | 0 | StringRef Name = IsInc ? "inc" : "dec"; |
2515 | 0 | switch (CGF.getLangOpts().getSignedOverflowBehavior()) { |
2516 | 0 | case LangOptions::SOB_Defined: |
2517 | 0 | return Builder.CreateAdd(InVal, Amount, Name); |
2518 | 0 | case LangOptions::SOB_Undefined: |
2519 | 0 | if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) |
2520 | 0 | return Builder.CreateNSWAdd(InVal, Amount, Name); |
2521 | 0 | [[fallthrough]]; |
2522 | 0 | case LangOptions::SOB_Trapping: |
2523 | 0 | if (!E->canOverflow()) |
2524 | 0 | return Builder.CreateNSWAdd(InVal, Amount, Name); |
2525 | 0 | return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( |
2526 | 0 | E, InVal, IsInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); |
2527 | 0 | } |
2528 | 0 | llvm_unreachable("Unknown SignedOverflowBehaviorTy"); |
2529 | 0 | } |
2530 | | |
2531 | | namespace { |
2532 | | /// Handles check and update for lastprivate conditional variables. |
2533 | | class OMPLastprivateConditionalUpdateRAII { |
2534 | | private: |
2535 | | CodeGenFunction &CGF; |
2536 | | const UnaryOperator *E; |
2537 | | |
2538 | | public: |
2539 | | OMPLastprivateConditionalUpdateRAII(CodeGenFunction &CGF, |
2540 | | const UnaryOperator *E) |
2541 | 0 | : CGF(CGF), E(E) {} |
2542 | 0 | ~OMPLastprivateConditionalUpdateRAII() { |
2543 | 0 | if (CGF.getLangOpts().OpenMP) |
2544 | 0 | CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional( |
2545 | 0 | CGF, E->getSubExpr()); |
2546 | 0 | } |
2547 | | }; |
2548 | | } // namespace |
2549 | | |
2550 | | llvm::Value * |
2551 | | ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
2552 | 0 | bool isInc, bool isPre) { |
2553 | 0 | OMPLastprivateConditionalUpdateRAII OMPRegion(CGF, E); |
2554 | 0 | QualType type = E->getSubExpr()->getType(); |
2555 | 0 | llvm::PHINode *atomicPHI = nullptr; |
2556 | 0 | llvm::Value *value; |
2557 | 0 | llvm::Value *input; |
2558 | |
|
2559 | 0 | int amount = (isInc ? 1 : -1); |
2560 | 0 | bool isSubtraction = !isInc; |
2561 | |
|
2562 | 0 | if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { |
2563 | 0 | type = atomicTy->getValueType(); |
2564 | 0 | if (isInc && type->isBooleanType()) { |
2565 | 0 | llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); |
2566 | 0 | if (isPre) { |
2567 | 0 | Builder.CreateStore(True, LV.getAddress(CGF), LV.isVolatileQualified()) |
2568 | 0 | ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); |
2569 | 0 | return Builder.getTrue(); |
2570 | 0 | } |
2571 | | // For atomic bool increment, we just store true and return it for |
2572 | | // preincrement, do an atomic swap with true for postincrement |
2573 | 0 | return Builder.CreateAtomicRMW( |
2574 | 0 | llvm::AtomicRMWInst::Xchg, LV.getAddress(CGF), True, |
2575 | 0 | llvm::AtomicOrdering::SequentiallyConsistent); |
2576 | 0 | } |
2577 | | // Special case for atomic increment / decrement on integers, emit |
2578 | | // atomicrmw instructions. We skip this if we want to be doing overflow |
2579 | | // checking, and fall into the slow path with the atomic cmpxchg loop. |
2580 | 0 | if (!type->isBooleanType() && type->isIntegerType() && |
2581 | 0 | !(type->isUnsignedIntegerType() && |
2582 | 0 | CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && |
2583 | 0 | CGF.getLangOpts().getSignedOverflowBehavior() != |
2584 | 0 | LangOptions::SOB_Trapping) { |
2585 | 0 | llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : |
2586 | 0 | llvm::AtomicRMWInst::Sub; |
2587 | 0 | llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : |
2588 | 0 | llvm::Instruction::Sub; |
2589 | 0 | llvm::Value *amt = CGF.EmitToMemory( |
2590 | 0 | llvm::ConstantInt::get(ConvertType(type), 1, true), type); |
2591 | 0 | llvm::Value *old = |
2592 | 0 | Builder.CreateAtomicRMW(aop, LV.getAddress(CGF), amt, |
2593 | 0 | llvm::AtomicOrdering::SequentiallyConsistent); |
2594 | 0 | return isPre ? Builder.CreateBinOp(op, old, amt) : old; |
2595 | 0 | } |
2596 | 0 | value = EmitLoadOfLValue(LV, E->getExprLoc()); |
2597 | 0 | input = value; |
2598 | | // For every other atomic operation, we need to emit a load-op-cmpxchg loop |
2599 | 0 | llvm::BasicBlock *startBB = Builder.GetInsertBlock(); |
2600 | 0 | llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); |
2601 | 0 | value = CGF.EmitToMemory(value, type); |
2602 | 0 | Builder.CreateBr(opBB); |
2603 | 0 | Builder.SetInsertPoint(opBB); |
2604 | 0 | atomicPHI = Builder.CreatePHI(value->getType(), 2); |
2605 | 0 | atomicPHI->addIncoming(value, startBB); |
2606 | 0 | value = atomicPHI; |
2607 | 0 | } else { |
2608 | 0 | value = EmitLoadOfLValue(LV, E->getExprLoc()); |
2609 | 0 | input = value; |
2610 | 0 | } |
2611 | | |
2612 | | // Special case of integer increment that we have to check first: bool++. |
2613 | | // Due to promotion rules, we get: |
2614 | | // bool++ -> bool = bool + 1 |
2615 | | // -> bool = (int)bool + 1 |
2616 | | // -> bool = ((int)bool + 1 != 0) |
2617 | | // An interesting aspect of this is that increment is always true. |
2618 | | // Decrement does not have this property. |
2619 | 0 | if (isInc && type->isBooleanType()) { |
2620 | 0 | value = Builder.getTrue(); |
2621 | | |
2622 | | // Most common case by far: integer increment. |
2623 | 0 | } else if (type->isIntegerType()) { |
2624 | 0 | QualType promotedType; |
2625 | 0 | bool canPerformLossyDemotionCheck = false; |
2626 | 0 | if (CGF.getContext().isPromotableIntegerType(type)) { |
2627 | 0 | promotedType = CGF.getContext().getPromotedIntegerType(type); |
2628 | 0 | assert(promotedType != type && "Shouldn't promote to the same type."); |
2629 | 0 | canPerformLossyDemotionCheck = true; |
2630 | 0 | canPerformLossyDemotionCheck &= |
2631 | 0 | CGF.getContext().getCanonicalType(type) != |
2632 | 0 | CGF.getContext().getCanonicalType(promotedType); |
2633 | 0 | canPerformLossyDemotionCheck &= |
2634 | 0 | PromotionIsPotentiallyEligibleForImplicitIntegerConversionCheck( |
2635 | 0 | type, promotedType); |
2636 | 0 | assert((!canPerformLossyDemotionCheck || |
2637 | 0 | type->isSignedIntegerOrEnumerationType() || |
2638 | 0 | promotedType->isSignedIntegerOrEnumerationType() || |
2639 | 0 | ConvertType(type)->getScalarSizeInBits() == |
2640 | 0 | ConvertType(promotedType)->getScalarSizeInBits()) && |
2641 | 0 | "The following check expects that if we do promotion to different " |
2642 | 0 | "underlying canonical type, at least one of the types (either " |
2643 | 0 | "base or promoted) will be signed, or the bitwidths will match."); |
2644 | 0 | } |
2645 | 0 | if (CGF.SanOpts.hasOneOf( |
2646 | 0 | SanitizerKind::ImplicitIntegerArithmeticValueChange) && |
2647 | 0 | canPerformLossyDemotionCheck) { |
2648 | | // While `x += 1` (for `x` with width less than int) is modeled as |
2649 | | // promotion+arithmetics+demotion, and we can catch lossy demotion with |
2650 | | // ease; inc/dec with width less than int can't overflow because of |
2651 | | // promotion rules, so we omit promotion+demotion, which means that we can |
2652 | | // not catch lossy "demotion". Because we still want to catch these cases |
2653 | | // when the sanitizer is enabled, we perform the promotion, then perform |
2654 | | // the increment/decrement in the wider type, and finally |
2655 | | // perform the demotion. This will catch lossy demotions. |
2656 | |
|
2657 | 0 | value = EmitScalarConversion(value, type, promotedType, E->getExprLoc()); |
2658 | 0 | Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); |
2659 | 0 | value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); |
2660 | | // Do pass non-default ScalarConversionOpts so that sanitizer check is |
2661 | | // emitted. |
2662 | 0 | value = EmitScalarConversion(value, promotedType, type, E->getExprLoc(), |
2663 | 0 | ScalarConversionOpts(CGF.SanOpts)); |
2664 | | |
2665 | | // Note that signed integer inc/dec with width less than int can't |
2666 | | // overflow because of promotion rules; we're just eliding a few steps |
2667 | | // here. |
2668 | 0 | } else if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { |
2669 | 0 | value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); |
2670 | 0 | } else if (E->canOverflow() && type->isUnsignedIntegerType() && |
2671 | 0 | CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { |
2672 | 0 | value = EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec( |
2673 | 0 | E, value, isInc, E->getFPFeaturesInEffect(CGF.getLangOpts()))); |
2674 | 0 | } else { |
2675 | 0 | llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); |
2676 | 0 | value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); |
2677 | 0 | } |
2678 | | |
2679 | | // Next most common: pointer increment. |
2680 | 0 | } else if (const PointerType *ptr = type->getAs<PointerType>()) { |
2681 | 0 | QualType type = ptr->getPointeeType(); |
2682 | | |
2683 | | // VLA types don't have constant size. |
2684 | 0 | if (const VariableArrayType *vla |
2685 | 0 | = CGF.getContext().getAsVariableArrayType(type)) { |
2686 | 0 | llvm::Value *numElts = CGF.getVLASize(vla).NumElts; |
2687 | 0 | if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); |
2688 | 0 | llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType()); |
2689 | 0 | if (CGF.getLangOpts().isSignedOverflowDefined()) |
2690 | 0 | value = Builder.CreateGEP(elemTy, value, numElts, "vla.inc"); |
2691 | 0 | else |
2692 | 0 | value = CGF.EmitCheckedInBoundsGEP( |
2693 | 0 | elemTy, value, numElts, /*SignedIndices=*/false, isSubtraction, |
2694 | 0 | E->getExprLoc(), "vla.inc"); |
2695 | | |
2696 | | // Arithmetic on function pointers (!) is just +-1. |
2697 | 0 | } else if (type->isFunctionType()) { |
2698 | 0 | llvm::Value *amt = Builder.getInt32(amount); |
2699 | |
|
2700 | 0 | if (CGF.getLangOpts().isSignedOverflowDefined()) |
2701 | 0 | value = Builder.CreateGEP(CGF.Int8Ty, value, amt, "incdec.funcptr"); |
2702 | 0 | else |
2703 | 0 | value = |
2704 | 0 | CGF.EmitCheckedInBoundsGEP(CGF.Int8Ty, value, amt, |
2705 | 0 | /*SignedIndices=*/false, isSubtraction, |
2706 | 0 | E->getExprLoc(), "incdec.funcptr"); |
2707 | | |
2708 | | // For everything else, we can just do a simple increment. |
2709 | 0 | } else { |
2710 | 0 | llvm::Value *amt = Builder.getInt32(amount); |
2711 | 0 | llvm::Type *elemTy = CGF.ConvertTypeForMem(type); |
2712 | 0 | if (CGF.getLangOpts().isSignedOverflowDefined()) |
2713 | 0 | value = Builder.CreateGEP(elemTy, value, amt, "incdec.ptr"); |
2714 | 0 | else |
2715 | 0 | value = CGF.EmitCheckedInBoundsGEP( |
2716 | 0 | elemTy, value, amt, /*SignedIndices=*/false, isSubtraction, |
2717 | 0 | E->getExprLoc(), "incdec.ptr"); |
2718 | 0 | } |
2719 | | |
2720 | | // Vector increment/decrement. |
2721 | 0 | } else if (type->isVectorType()) { |
2722 | 0 | if (type->hasIntegerRepresentation()) { |
2723 | 0 | llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); |
2724 | |
|
2725 | 0 | value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); |
2726 | 0 | } else { |
2727 | 0 | value = Builder.CreateFAdd( |
2728 | 0 | value, |
2729 | 0 | llvm::ConstantFP::get(value->getType(), amount), |
2730 | 0 | isInc ? "inc" : "dec"); |
2731 | 0 | } |
2732 | | |
2733 | | // Floating point. |
2734 | 0 | } else if (type->isRealFloatingType()) { |
2735 | | // Add the inc/dec to the real part. |
2736 | 0 | llvm::Value *amt; |
2737 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, E); |
2738 | |
|
2739 | 0 | if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { |
2740 | | // Another special case: half FP increment should be done via float |
2741 | 0 | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { |
2742 | 0 | value = Builder.CreateCall( |
2743 | 0 | CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, |
2744 | 0 | CGF.CGM.FloatTy), |
2745 | 0 | input, "incdec.conv"); |
2746 | 0 | } else { |
2747 | 0 | value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); |
2748 | 0 | } |
2749 | 0 | } |
2750 | |
|
2751 | 0 | if (value->getType()->isFloatTy()) |
2752 | 0 | amt = llvm::ConstantFP::get(VMContext, |
2753 | 0 | llvm::APFloat(static_cast<float>(amount))); |
2754 | 0 | else if (value->getType()->isDoubleTy()) |
2755 | 0 | amt = llvm::ConstantFP::get(VMContext, |
2756 | 0 | llvm::APFloat(static_cast<double>(amount))); |
2757 | 0 | else { |
2758 | | // Remaining types are Half, Bfloat16, LongDouble, __ibm128 or __float128. |
2759 | | // Convert from float. |
2760 | 0 | llvm::APFloat F(static_cast<float>(amount)); |
2761 | 0 | bool ignored; |
2762 | 0 | const llvm::fltSemantics *FS; |
2763 | | // Don't use getFloatTypeSemantics because Half isn't |
2764 | | // necessarily represented using the "half" LLVM type. |
2765 | 0 | if (value->getType()->isFP128Ty()) |
2766 | 0 | FS = &CGF.getTarget().getFloat128Format(); |
2767 | 0 | else if (value->getType()->isHalfTy()) |
2768 | 0 | FS = &CGF.getTarget().getHalfFormat(); |
2769 | 0 | else if (value->getType()->isBFloatTy()) |
2770 | 0 | FS = &CGF.getTarget().getBFloat16Format(); |
2771 | 0 | else if (value->getType()->isPPC_FP128Ty()) |
2772 | 0 | FS = &CGF.getTarget().getIbm128Format(); |
2773 | 0 | else |
2774 | 0 | FS = &CGF.getTarget().getLongDoubleFormat(); |
2775 | 0 | F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); |
2776 | 0 | amt = llvm::ConstantFP::get(VMContext, F); |
2777 | 0 | } |
2778 | 0 | value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); |
2779 | |
|
2780 | 0 | if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { |
2781 | 0 | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { |
2782 | 0 | value = Builder.CreateCall( |
2783 | 0 | CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, |
2784 | 0 | CGF.CGM.FloatTy), |
2785 | 0 | value, "incdec.conv"); |
2786 | 0 | } else { |
2787 | 0 | value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); |
2788 | 0 | } |
2789 | 0 | } |
2790 | | |
2791 | | // Fixed-point types. |
2792 | 0 | } else if (type->isFixedPointType()) { |
2793 | | // Fixed-point types are tricky. In some cases, it isn't possible to |
2794 | | // represent a 1 or a -1 in the type at all. Piggyback off of |
2795 | | // EmitFixedPointBinOp to avoid having to reimplement saturation. |
2796 | 0 | BinOpInfo Info; |
2797 | 0 | Info.E = E; |
2798 | 0 | Info.Ty = E->getType(); |
2799 | 0 | Info.Opcode = isInc ? BO_Add : BO_Sub; |
2800 | 0 | Info.LHS = value; |
2801 | 0 | Info.RHS = llvm::ConstantInt::get(value->getType(), 1, false); |
2802 | | // If the type is signed, it's better to represent this as +(-1) or -(-1), |
2803 | | // since -1 is guaranteed to be representable. |
2804 | 0 | if (type->isSignedFixedPointType()) { |
2805 | 0 | Info.Opcode = isInc ? BO_Sub : BO_Add; |
2806 | 0 | Info.RHS = Builder.CreateNeg(Info.RHS); |
2807 | 0 | } |
2808 | | // Now, convert from our invented integer literal to the type of the unary |
2809 | | // op. This will upscale and saturate if necessary. This value can become |
2810 | | // undef in some cases. |
2811 | 0 | llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); |
2812 | 0 | auto DstSema = CGF.getContext().getFixedPointSemantics(Info.Ty); |
2813 | 0 | Info.RHS = FPBuilder.CreateIntegerToFixed(Info.RHS, true, DstSema); |
2814 | 0 | value = EmitFixedPointBinOp(Info); |
2815 | | |
2816 | | // Objective-C pointer types. |
2817 | 0 | } else { |
2818 | 0 | const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); |
2819 | |
|
2820 | 0 | CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); |
2821 | 0 | if (!isInc) size = -size; |
2822 | 0 | llvm::Value *sizeValue = |
2823 | 0 | llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); |
2824 | |
|
2825 | 0 | if (CGF.getLangOpts().isSignedOverflowDefined()) |
2826 | 0 | value = Builder.CreateGEP(CGF.Int8Ty, value, sizeValue, "incdec.objptr"); |
2827 | 0 | else |
2828 | 0 | value = CGF.EmitCheckedInBoundsGEP( |
2829 | 0 | CGF.Int8Ty, value, sizeValue, /*SignedIndices=*/false, isSubtraction, |
2830 | 0 | E->getExprLoc(), "incdec.objptr"); |
2831 | 0 | value = Builder.CreateBitCast(value, input->getType()); |
2832 | 0 | } |
2833 | | |
2834 | 0 | if (atomicPHI) { |
2835 | 0 | llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); |
2836 | 0 | llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); |
2837 | 0 | auto Pair = CGF.EmitAtomicCompareExchange( |
2838 | 0 | LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); |
2839 | 0 | llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); |
2840 | 0 | llvm::Value *success = Pair.second; |
2841 | 0 | atomicPHI->addIncoming(old, curBlock); |
2842 | 0 | Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); |
2843 | 0 | Builder.SetInsertPoint(contBB); |
2844 | 0 | return isPre ? value : input; |
2845 | 0 | } |
2846 | | |
2847 | | // Store the updated result through the lvalue. |
2848 | 0 | if (LV.isBitField()) |
2849 | 0 | CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); |
2850 | 0 | else |
2851 | 0 | CGF.EmitStoreThroughLValue(RValue::get(value), LV); |
2852 | | |
2853 | | // If this is a postinc, return the value read from memory, otherwise use the |
2854 | | // updated value. |
2855 | 0 | return isPre ? value : input; |
2856 | 0 | } |
2857 | | |
2858 | | |
2859 | | Value *ScalarExprEmitter::VisitUnaryPlus(const UnaryOperator *E, |
2860 | 0 | QualType PromotionType) { |
2861 | 0 | QualType promotionTy = PromotionType.isNull() |
2862 | 0 | ? getPromotionType(E->getSubExpr()->getType()) |
2863 | 0 | : PromotionType; |
2864 | 0 | Value *result = VisitPlus(E, promotionTy); |
2865 | 0 | if (result && !promotionTy.isNull()) |
2866 | 0 | result = EmitUnPromotedValue(result, E->getType()); |
2867 | 0 | return result; |
2868 | 0 | } |
2869 | | |
2870 | | Value *ScalarExprEmitter::VisitPlus(const UnaryOperator *E, |
2871 | 0 | QualType PromotionType) { |
2872 | | // This differs from gcc, though, most likely due to a bug in gcc. |
2873 | 0 | TestAndClearIgnoreResultAssign(); |
2874 | 0 | if (!PromotionType.isNull()) |
2875 | 0 | return CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType); |
2876 | 0 | return Visit(E->getSubExpr()); |
2877 | 0 | } |
2878 | | |
2879 | | Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E, |
2880 | 0 | QualType PromotionType) { |
2881 | 0 | QualType promotionTy = PromotionType.isNull() |
2882 | 0 | ? getPromotionType(E->getSubExpr()->getType()) |
2883 | 0 | : PromotionType; |
2884 | 0 | Value *result = VisitMinus(E, promotionTy); |
2885 | 0 | if (result && !promotionTy.isNull()) |
2886 | 0 | result = EmitUnPromotedValue(result, E->getType()); |
2887 | 0 | return result; |
2888 | 0 | } |
2889 | | |
2890 | | Value *ScalarExprEmitter::VisitMinus(const UnaryOperator *E, |
2891 | 0 | QualType PromotionType) { |
2892 | 0 | TestAndClearIgnoreResultAssign(); |
2893 | 0 | Value *Op; |
2894 | 0 | if (!PromotionType.isNull()) |
2895 | 0 | Op = CGF.EmitPromotedScalarExpr(E->getSubExpr(), PromotionType); |
2896 | 0 | else |
2897 | 0 | Op = Visit(E->getSubExpr()); |
2898 | | |
2899 | | // Generate a unary FNeg for FP ops. |
2900 | 0 | if (Op->getType()->isFPOrFPVectorTy()) |
2901 | 0 | return Builder.CreateFNeg(Op, "fneg"); |
2902 | | |
2903 | | // Emit unary minus with EmitSub so we handle overflow cases etc. |
2904 | 0 | BinOpInfo BinOp; |
2905 | 0 | BinOp.RHS = Op; |
2906 | 0 | BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); |
2907 | 0 | BinOp.Ty = E->getType(); |
2908 | 0 | BinOp.Opcode = BO_Sub; |
2909 | 0 | BinOp.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); |
2910 | 0 | BinOp.E = E; |
2911 | 0 | return EmitSub(BinOp); |
2912 | 0 | } |
2913 | | |
2914 | 0 | Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { |
2915 | 0 | TestAndClearIgnoreResultAssign(); |
2916 | 0 | Value *Op = Visit(E->getSubExpr()); |
2917 | 0 | return Builder.CreateNot(Op, "not"); |
2918 | 0 | } |
2919 | | |
2920 | 0 | Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { |
2921 | | // Perform vector logical not on comparison with zero vector. |
2922 | 0 | if (E->getType()->isVectorType() && |
2923 | 0 | E->getType()->castAs<VectorType>()->getVectorKind() == |
2924 | 0 | VectorKind::Generic) { |
2925 | 0 | Value *Oper = Visit(E->getSubExpr()); |
2926 | 0 | Value *Zero = llvm::Constant::getNullValue(Oper->getType()); |
2927 | 0 | Value *Result; |
2928 | 0 | if (Oper->getType()->isFPOrFPVectorTy()) { |
2929 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII( |
2930 | 0 | CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); |
2931 | 0 | Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); |
2932 | 0 | } else |
2933 | 0 | Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); |
2934 | 0 | return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); |
2935 | 0 | } |
2936 | | |
2937 | | // Compare operand to zero. |
2938 | 0 | Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); |
2939 | | |
2940 | | // Invert value. |
2941 | | // TODO: Could dynamically modify easy computations here. For example, if |
2942 | | // the operand is an icmp ne, turn into icmp eq. |
2943 | 0 | BoolVal = Builder.CreateNot(BoolVal, "lnot"); |
2944 | | |
2945 | | // ZExt result to the expr type. |
2946 | 0 | return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); |
2947 | 0 | } |
2948 | | |
2949 | 0 | Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { |
2950 | | // Try folding the offsetof to a constant. |
2951 | 0 | Expr::EvalResult EVResult; |
2952 | 0 | if (E->EvaluateAsInt(EVResult, CGF.getContext())) { |
2953 | 0 | llvm::APSInt Value = EVResult.Val.getInt(); |
2954 | 0 | return Builder.getInt(Value); |
2955 | 0 | } |
2956 | | |
2957 | | // Loop over the components of the offsetof to compute the value. |
2958 | 0 | unsigned n = E->getNumComponents(); |
2959 | 0 | llvm::Type* ResultType = ConvertType(E->getType()); |
2960 | 0 | llvm::Value* Result = llvm::Constant::getNullValue(ResultType); |
2961 | 0 | QualType CurrentType = E->getTypeSourceInfo()->getType(); |
2962 | 0 | for (unsigned i = 0; i != n; ++i) { |
2963 | 0 | OffsetOfNode ON = E->getComponent(i); |
2964 | 0 | llvm::Value *Offset = nullptr; |
2965 | 0 | switch (ON.getKind()) { |
2966 | 0 | case OffsetOfNode::Array: { |
2967 | | // Compute the index |
2968 | 0 | Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); |
2969 | 0 | llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); |
2970 | 0 | bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); |
2971 | 0 | Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); |
2972 | | |
2973 | | // Save the element type |
2974 | 0 | CurrentType = |
2975 | 0 | CGF.getContext().getAsArrayType(CurrentType)->getElementType(); |
2976 | | |
2977 | | // Compute the element size |
2978 | 0 | llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, |
2979 | 0 | CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); |
2980 | | |
2981 | | // Multiply out to compute the result |
2982 | 0 | Offset = Builder.CreateMul(Idx, ElemSize); |
2983 | 0 | break; |
2984 | 0 | } |
2985 | | |
2986 | 0 | case OffsetOfNode::Field: { |
2987 | 0 | FieldDecl *MemberDecl = ON.getField(); |
2988 | 0 | RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); |
2989 | 0 | const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); |
2990 | | |
2991 | | // Compute the index of the field in its parent. |
2992 | 0 | unsigned i = 0; |
2993 | | // FIXME: It would be nice if we didn't have to loop here! |
2994 | 0 | for (RecordDecl::field_iterator Field = RD->field_begin(), |
2995 | 0 | FieldEnd = RD->field_end(); |
2996 | 0 | Field != FieldEnd; ++Field, ++i) { |
2997 | 0 | if (*Field == MemberDecl) |
2998 | 0 | break; |
2999 | 0 | } |
3000 | 0 | assert(i < RL.getFieldCount() && "offsetof field in wrong type"); |
3001 | | |
3002 | | // Compute the offset to the field |
3003 | 0 | int64_t OffsetInt = RL.getFieldOffset(i) / |
3004 | 0 | CGF.getContext().getCharWidth(); |
3005 | 0 | Offset = llvm::ConstantInt::get(ResultType, OffsetInt); |
3006 | | |
3007 | | // Save the element type. |
3008 | 0 | CurrentType = MemberDecl->getType(); |
3009 | 0 | break; |
3010 | 0 | } |
3011 | | |
3012 | 0 | case OffsetOfNode::Identifier: |
3013 | 0 | llvm_unreachable("dependent __builtin_offsetof"); |
3014 | |
|
3015 | 0 | case OffsetOfNode::Base: { |
3016 | 0 | if (ON.getBase()->isVirtual()) { |
3017 | 0 | CGF.ErrorUnsupported(E, "virtual base in offsetof"); |
3018 | 0 | continue; |
3019 | 0 | } |
3020 | | |
3021 | 0 | RecordDecl *RD = CurrentType->castAs<RecordType>()->getDecl(); |
3022 | 0 | const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); |
3023 | | |
3024 | | // Save the element type. |
3025 | 0 | CurrentType = ON.getBase()->getType(); |
3026 | | |
3027 | | // Compute the offset to the base. |
3028 | 0 | auto *BaseRT = CurrentType->castAs<RecordType>(); |
3029 | 0 | auto *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); |
3030 | 0 | CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); |
3031 | 0 | Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); |
3032 | 0 | break; |
3033 | 0 | } |
3034 | 0 | } |
3035 | 0 | Result = Builder.CreateAdd(Result, Offset); |
3036 | 0 | } |
3037 | 0 | return Result; |
3038 | 0 | } |
3039 | | |
3040 | | /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of |
3041 | | /// argument of the sizeof expression as an integer. |
3042 | | Value * |
3043 | | ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( |
3044 | 0 | const UnaryExprOrTypeTraitExpr *E) { |
3045 | 0 | QualType TypeToSize = E->getTypeOfArgument(); |
3046 | 0 | if (auto Kind = E->getKind(); |
3047 | 0 | Kind == UETT_SizeOf || Kind == UETT_DataSizeOf) { |
3048 | 0 | if (const VariableArrayType *VAT = |
3049 | 0 | CGF.getContext().getAsVariableArrayType(TypeToSize)) { |
3050 | 0 | if (E->isArgumentType()) { |
3051 | | // sizeof(type) - make sure to emit the VLA size. |
3052 | 0 | CGF.EmitVariablyModifiedType(TypeToSize); |
3053 | 0 | } else { |
3054 | | // C99 6.5.3.4p2: If the argument is an expression of type |
3055 | | // VLA, it is evaluated. |
3056 | 0 | CGF.EmitIgnoredExpr(E->getArgumentExpr()); |
3057 | 0 | } |
3058 | |
|
3059 | 0 | auto VlaSize = CGF.getVLASize(VAT); |
3060 | 0 | llvm::Value *size = VlaSize.NumElts; |
3061 | | |
3062 | | // Scale the number of non-VLA elements by the non-VLA element size. |
3063 | 0 | CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); |
3064 | 0 | if (!eltSize.isOne()) |
3065 | 0 | size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); |
3066 | |
|
3067 | 0 | return size; |
3068 | 0 | } |
3069 | 0 | } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { |
3070 | 0 | auto Alignment = |
3071 | 0 | CGF.getContext() |
3072 | 0 | .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( |
3073 | 0 | E->getTypeOfArgument()->getPointeeType())) |
3074 | 0 | .getQuantity(); |
3075 | 0 | return llvm::ConstantInt::get(CGF.SizeTy, Alignment); |
3076 | 0 | } else if (E->getKind() == UETT_VectorElements) { |
3077 | 0 | auto *VecTy = cast<llvm::VectorType>(ConvertType(E->getTypeOfArgument())); |
3078 | 0 | return Builder.CreateElementCount(CGF.SizeTy, VecTy->getElementCount()); |
3079 | 0 | } |
3080 | | |
3081 | | // If this isn't sizeof(vla), the result must be constant; use the constant |
3082 | | // folding logic so we don't have to duplicate it here. |
3083 | 0 | return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); |
3084 | 0 | } |
3085 | | |
3086 | | Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E, |
3087 | 0 | QualType PromotionType) { |
3088 | 0 | QualType promotionTy = PromotionType.isNull() |
3089 | 0 | ? getPromotionType(E->getSubExpr()->getType()) |
3090 | 0 | : PromotionType; |
3091 | 0 | Value *result = VisitReal(E, promotionTy); |
3092 | 0 | if (result && !promotionTy.isNull()) |
3093 | 0 | result = EmitUnPromotedValue(result, E->getType()); |
3094 | 0 | return result; |
3095 | 0 | } |
3096 | | |
3097 | | Value *ScalarExprEmitter::VisitReal(const UnaryOperator *E, |
3098 | 0 | QualType PromotionType) { |
3099 | 0 | Expr *Op = E->getSubExpr(); |
3100 | 0 | if (Op->getType()->isAnyComplexType()) { |
3101 | | // If it's an l-value, load through the appropriate subobject l-value. |
3102 | | // Note that we have to ask E because Op might be an l-value that |
3103 | | // this won't work for, e.g. an Obj-C property. |
3104 | 0 | if (E->isGLValue()) { |
3105 | 0 | if (!PromotionType.isNull()) { |
3106 | 0 | CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr( |
3107 | 0 | Op, /*IgnoreReal*/ IgnoreResultAssign, /*IgnoreImag*/ true); |
3108 | 0 | if (result.first) |
3109 | 0 | result.first = CGF.EmitPromotedValue(result, PromotionType).first; |
3110 | 0 | return result.first; |
3111 | 0 | } else { |
3112 | 0 | return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()) |
3113 | 0 | .getScalarVal(); |
3114 | 0 | } |
3115 | 0 | } |
3116 | | // Otherwise, calculate and project. |
3117 | 0 | return CGF.EmitComplexExpr(Op, false, true).first; |
3118 | 0 | } |
3119 | | |
3120 | 0 | if (!PromotionType.isNull()) |
3121 | 0 | return CGF.EmitPromotedScalarExpr(Op, PromotionType); |
3122 | 0 | return Visit(Op); |
3123 | 0 | } |
3124 | | |
3125 | | Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E, |
3126 | 0 | QualType PromotionType) { |
3127 | 0 | QualType promotionTy = PromotionType.isNull() |
3128 | 0 | ? getPromotionType(E->getSubExpr()->getType()) |
3129 | 0 | : PromotionType; |
3130 | 0 | Value *result = VisitImag(E, promotionTy); |
3131 | 0 | if (result && !promotionTy.isNull()) |
3132 | 0 | result = EmitUnPromotedValue(result, E->getType()); |
3133 | 0 | return result; |
3134 | 0 | } |
3135 | | |
3136 | | Value *ScalarExprEmitter::VisitImag(const UnaryOperator *E, |
3137 | 0 | QualType PromotionType) { |
3138 | 0 | Expr *Op = E->getSubExpr(); |
3139 | 0 | if (Op->getType()->isAnyComplexType()) { |
3140 | | // If it's an l-value, load through the appropriate subobject l-value. |
3141 | | // Note that we have to ask E because Op might be an l-value that |
3142 | | // this won't work for, e.g. an Obj-C property. |
3143 | 0 | if (Op->isGLValue()) { |
3144 | 0 | if (!PromotionType.isNull()) { |
3145 | 0 | CodeGenFunction::ComplexPairTy result = CGF.EmitComplexExpr( |
3146 | 0 | Op, /*IgnoreReal*/ true, /*IgnoreImag*/ IgnoreResultAssign); |
3147 | 0 | if (result.second) |
3148 | 0 | result.second = CGF.EmitPromotedValue(result, PromotionType).second; |
3149 | 0 | return result.second; |
3150 | 0 | } else { |
3151 | 0 | return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getExprLoc()) |
3152 | 0 | .getScalarVal(); |
3153 | 0 | } |
3154 | 0 | } |
3155 | | // Otherwise, calculate and project. |
3156 | 0 | return CGF.EmitComplexExpr(Op, true, false).second; |
3157 | 0 | } |
3158 | | |
3159 | | // __imag on a scalar returns zero. Emit the subexpr to ensure side |
3160 | | // effects are evaluated, but not the actual value. |
3161 | 0 | if (Op->isGLValue()) |
3162 | 0 | CGF.EmitLValue(Op); |
3163 | 0 | else if (!PromotionType.isNull()) |
3164 | 0 | CGF.EmitPromotedScalarExpr(Op, PromotionType); |
3165 | 0 | else |
3166 | 0 | CGF.EmitScalarExpr(Op, true); |
3167 | 0 | if (!PromotionType.isNull()) |
3168 | 0 | return llvm::Constant::getNullValue(ConvertType(PromotionType)); |
3169 | 0 | return llvm::Constant::getNullValue(ConvertType(E->getType())); |
3170 | 0 | } |
3171 | | |
3172 | | //===----------------------------------------------------------------------===// |
3173 | | // Binary Operators |
3174 | | //===----------------------------------------------------------------------===// |
3175 | | |
3176 | | Value *ScalarExprEmitter::EmitPromotedValue(Value *result, |
3177 | 0 | QualType PromotionType) { |
3178 | 0 | return CGF.Builder.CreateFPExt(result, ConvertType(PromotionType), "ext"); |
3179 | 0 | } |
3180 | | |
3181 | | Value *ScalarExprEmitter::EmitUnPromotedValue(Value *result, |
3182 | 0 | QualType ExprType) { |
3183 | 0 | return CGF.Builder.CreateFPTrunc(result, ConvertType(ExprType), "unpromotion"); |
3184 | 0 | } |
3185 | | |
3186 | 0 | Value *ScalarExprEmitter::EmitPromoted(const Expr *E, QualType PromotionType) { |
3187 | 0 | E = E->IgnoreParens(); |
3188 | 0 | if (auto BO = dyn_cast<BinaryOperator>(E)) { |
3189 | 0 | switch (BO->getOpcode()) { |
3190 | 0 | #define HANDLE_BINOP(OP) \ |
3191 | 0 | case BO_##OP: \ |
3192 | 0 | return Emit##OP(EmitBinOps(BO, PromotionType)); |
3193 | 0 | HANDLE_BINOP(Add) |
3194 | 0 | HANDLE_BINOP(Sub) |
3195 | 0 | HANDLE_BINOP(Mul) |
3196 | 0 | HANDLE_BINOP(Div) |
3197 | 0 | #undef HANDLE_BINOP |
3198 | 0 | default: |
3199 | 0 | break; |
3200 | 0 | } |
3201 | 0 | } else if (auto UO = dyn_cast<UnaryOperator>(E)) { |
3202 | 0 | switch (UO->getOpcode()) { |
3203 | 0 | case UO_Imag: |
3204 | 0 | return VisitImag(UO, PromotionType); |
3205 | 0 | case UO_Real: |
3206 | 0 | return VisitReal(UO, PromotionType); |
3207 | 0 | case UO_Minus: |
3208 | 0 | return VisitMinus(UO, PromotionType); |
3209 | 0 | case UO_Plus: |
3210 | 0 | return VisitPlus(UO, PromotionType); |
3211 | 0 | default: |
3212 | 0 | break; |
3213 | 0 | } |
3214 | 0 | } |
3215 | 0 | auto result = Visit(const_cast<Expr *>(E)); |
3216 | 0 | if (result) { |
3217 | 0 | if (!PromotionType.isNull()) |
3218 | 0 | return EmitPromotedValue(result, PromotionType); |
3219 | 0 | else |
3220 | 0 | return EmitUnPromotedValue(result, E->getType()); |
3221 | 0 | } |
3222 | 0 | return result; |
3223 | 0 | } |
3224 | | |
3225 | | BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E, |
3226 | 0 | QualType PromotionType) { |
3227 | 0 | TestAndClearIgnoreResultAssign(); |
3228 | 0 | BinOpInfo Result; |
3229 | 0 | Result.LHS = CGF.EmitPromotedScalarExpr(E->getLHS(), PromotionType); |
3230 | 0 | Result.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionType); |
3231 | 0 | if (!PromotionType.isNull()) |
3232 | 0 | Result.Ty = PromotionType; |
3233 | 0 | else |
3234 | 0 | Result.Ty = E->getType(); |
3235 | 0 | Result.Opcode = E->getOpcode(); |
3236 | 0 | Result.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); |
3237 | 0 | Result.E = E; |
3238 | 0 | return Result; |
3239 | 0 | } |
3240 | | |
3241 | | LValue ScalarExprEmitter::EmitCompoundAssignLValue( |
3242 | | const CompoundAssignOperator *E, |
3243 | | Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), |
3244 | 0 | Value *&Result) { |
3245 | 0 | QualType LHSTy = E->getLHS()->getType(); |
3246 | 0 | BinOpInfo OpInfo; |
3247 | |
|
3248 | 0 | if (E->getComputationResultType()->isAnyComplexType()) |
3249 | 0 | return CGF.EmitScalarCompoundAssignWithComplex(E, Result); |
3250 | | |
3251 | | // Emit the RHS first. __block variables need to have the rhs evaluated |
3252 | | // first, plus this should improve codegen a little. |
3253 | | |
3254 | 0 | QualType PromotionTypeCR; |
3255 | 0 | PromotionTypeCR = getPromotionType(E->getComputationResultType()); |
3256 | 0 | if (PromotionTypeCR.isNull()) |
3257 | 0 | PromotionTypeCR = E->getComputationResultType(); |
3258 | 0 | QualType PromotionTypeLHS = getPromotionType(E->getComputationLHSType()); |
3259 | 0 | QualType PromotionTypeRHS = getPromotionType(E->getRHS()->getType()); |
3260 | 0 | if (!PromotionTypeRHS.isNull()) |
3261 | 0 | OpInfo.RHS = CGF.EmitPromotedScalarExpr(E->getRHS(), PromotionTypeRHS); |
3262 | 0 | else |
3263 | 0 | OpInfo.RHS = Visit(E->getRHS()); |
3264 | 0 | OpInfo.Ty = PromotionTypeCR; |
3265 | 0 | OpInfo.Opcode = E->getOpcode(); |
3266 | 0 | OpInfo.FPFeatures = E->getFPFeaturesInEffect(CGF.getLangOpts()); |
3267 | 0 | OpInfo.E = E; |
3268 | | // Load/convert the LHS. |
3269 | 0 | LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); |
3270 | |
|
3271 | 0 | llvm::PHINode *atomicPHI = nullptr; |
3272 | 0 | if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { |
3273 | 0 | QualType type = atomicTy->getValueType(); |
3274 | 0 | if (!type->isBooleanType() && type->isIntegerType() && |
3275 | 0 | !(type->isUnsignedIntegerType() && |
3276 | 0 | CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && |
3277 | 0 | CGF.getLangOpts().getSignedOverflowBehavior() != |
3278 | 0 | LangOptions::SOB_Trapping) { |
3279 | 0 | llvm::AtomicRMWInst::BinOp AtomicOp = llvm::AtomicRMWInst::BAD_BINOP; |
3280 | 0 | llvm::Instruction::BinaryOps Op; |
3281 | 0 | switch (OpInfo.Opcode) { |
3282 | | // We don't have atomicrmw operands for *, %, /, <<, >> |
3283 | 0 | case BO_MulAssign: case BO_DivAssign: |
3284 | 0 | case BO_RemAssign: |
3285 | 0 | case BO_ShlAssign: |
3286 | 0 | case BO_ShrAssign: |
3287 | 0 | break; |
3288 | 0 | case BO_AddAssign: |
3289 | 0 | AtomicOp = llvm::AtomicRMWInst::Add; |
3290 | 0 | Op = llvm::Instruction::Add; |
3291 | 0 | break; |
3292 | 0 | case BO_SubAssign: |
3293 | 0 | AtomicOp = llvm::AtomicRMWInst::Sub; |
3294 | 0 | Op = llvm::Instruction::Sub; |
3295 | 0 | break; |
3296 | 0 | case BO_AndAssign: |
3297 | 0 | AtomicOp = llvm::AtomicRMWInst::And; |
3298 | 0 | Op = llvm::Instruction::And; |
3299 | 0 | break; |
3300 | 0 | case BO_XorAssign: |
3301 | 0 | AtomicOp = llvm::AtomicRMWInst::Xor; |
3302 | 0 | Op = llvm::Instruction::Xor; |
3303 | 0 | break; |
3304 | 0 | case BO_OrAssign: |
3305 | 0 | AtomicOp = llvm::AtomicRMWInst::Or; |
3306 | 0 | Op = llvm::Instruction::Or; |
3307 | 0 | break; |
3308 | 0 | default: |
3309 | 0 | llvm_unreachable("Invalid compound assignment type"); |
3310 | 0 | } |
3311 | 0 | if (AtomicOp != llvm::AtomicRMWInst::BAD_BINOP) { |
3312 | 0 | llvm::Value *Amt = CGF.EmitToMemory( |
3313 | 0 | EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, |
3314 | 0 | E->getExprLoc()), |
3315 | 0 | LHSTy); |
3316 | 0 | Value *OldVal = Builder.CreateAtomicRMW( |
3317 | 0 | AtomicOp, LHSLV.getAddress(CGF), Amt, |
3318 | 0 | llvm::AtomicOrdering::SequentiallyConsistent); |
3319 | | |
3320 | | // Since operation is atomic, the result type is guaranteed to be the |
3321 | | // same as the input in LLVM terms. |
3322 | 0 | Result = Builder.CreateBinOp(Op, OldVal, Amt); |
3323 | 0 | return LHSLV; |
3324 | 0 | } |
3325 | 0 | } |
3326 | | // FIXME: For floating point types, we should be saving and restoring the |
3327 | | // floating point environment in the loop. |
3328 | 0 | llvm::BasicBlock *startBB = Builder.GetInsertBlock(); |
3329 | 0 | llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); |
3330 | 0 | OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); |
3331 | 0 | OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); |
3332 | 0 | Builder.CreateBr(opBB); |
3333 | 0 | Builder.SetInsertPoint(opBB); |
3334 | 0 | atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); |
3335 | 0 | atomicPHI->addIncoming(OpInfo.LHS, startBB); |
3336 | 0 | OpInfo.LHS = atomicPHI; |
3337 | 0 | } |
3338 | 0 | else |
3339 | 0 | OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); |
3340 | | |
3341 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, OpInfo.FPFeatures); |
3342 | 0 | SourceLocation Loc = E->getExprLoc(); |
3343 | 0 | if (!PromotionTypeLHS.isNull()) |
3344 | 0 | OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, PromotionTypeLHS, |
3345 | 0 | E->getExprLoc()); |
3346 | 0 | else |
3347 | 0 | OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, |
3348 | 0 | E->getComputationLHSType(), Loc); |
3349 | | |
3350 | | // Expand the binary operator. |
3351 | 0 | Result = (this->*Func)(OpInfo); |
3352 | | |
3353 | | // Convert the result back to the LHS type, |
3354 | | // potentially with Implicit Conversion sanitizer check. |
3355 | 0 | Result = EmitScalarConversion(Result, PromotionTypeCR, LHSTy, Loc, |
3356 | 0 | ScalarConversionOpts(CGF.SanOpts)); |
3357 | |
|
3358 | 0 | if (atomicPHI) { |
3359 | 0 | llvm::BasicBlock *curBlock = Builder.GetInsertBlock(); |
3360 | 0 | llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); |
3361 | 0 | auto Pair = CGF.EmitAtomicCompareExchange( |
3362 | 0 | LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); |
3363 | 0 | llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); |
3364 | 0 | llvm::Value *success = Pair.second; |
3365 | 0 | atomicPHI->addIncoming(old, curBlock); |
3366 | 0 | Builder.CreateCondBr(success, contBB, atomicPHI->getParent()); |
3367 | 0 | Builder.SetInsertPoint(contBB); |
3368 | 0 | return LHSLV; |
3369 | 0 | } |
3370 | | |
3371 | | // Store the result value into the LHS lvalue. Bit-fields are handled |
3372 | | // specially because the result is altered by the store, i.e., [C99 6.5.16p1] |
3373 | | // 'An assignment expression has the value of the left operand after the |
3374 | | // assignment...'. |
3375 | 0 | if (LHSLV.isBitField()) |
3376 | 0 | CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); |
3377 | 0 | else |
3378 | 0 | CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); |
3379 | |
|
3380 | 0 | if (CGF.getLangOpts().OpenMP) |
3381 | 0 | CGF.CGM.getOpenMPRuntime().checkAndEmitLastprivateConditional(CGF, |
3382 | 0 | E->getLHS()); |
3383 | 0 | return LHSLV; |
3384 | 0 | } |
3385 | | |
3386 | | Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, |
3387 | 0 | Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { |
3388 | 0 | bool Ignore = TestAndClearIgnoreResultAssign(); |
3389 | 0 | Value *RHS = nullptr; |
3390 | 0 | LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); |
3391 | | |
3392 | | // If the result is clearly ignored, return now. |
3393 | 0 | if (Ignore) |
3394 | 0 | return nullptr; |
3395 | | |
3396 | | // The result of an assignment in C is the assigned r-value. |
3397 | 0 | if (!CGF.getLangOpts().CPlusPlus) |
3398 | 0 | return RHS; |
3399 | | |
3400 | | // If the lvalue is non-volatile, return the computed value of the assignment. |
3401 | 0 | if (!LHS.isVolatileQualified()) |
3402 | 0 | return RHS; |
3403 | | |
3404 | | // Otherwise, reload the value. |
3405 | 0 | return EmitLoadOfLValue(LHS, E->getExprLoc()); |
3406 | 0 | } |
3407 | | |
3408 | | void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( |
3409 | 0 | const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { |
3410 | 0 | SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; |
3411 | |
|
3412 | 0 | if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { |
3413 | 0 | Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), |
3414 | 0 | SanitizerKind::IntegerDivideByZero)); |
3415 | 0 | } |
3416 | |
|
3417 | 0 | const auto *BO = cast<BinaryOperator>(Ops.E); |
3418 | 0 | if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && |
3419 | 0 | Ops.Ty->hasSignedIntegerRepresentation() && |
3420 | 0 | !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && |
3421 | 0 | Ops.mayHaveIntegerOverflow()) { |
3422 | 0 | llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); |
3423 | |
|
3424 | 0 | llvm::Value *IntMin = |
3425 | 0 | Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); |
3426 | 0 | llvm::Value *NegOne = llvm::Constant::getAllOnesValue(Ty); |
3427 | |
|
3428 | 0 | llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); |
3429 | 0 | llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); |
3430 | 0 | llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); |
3431 | 0 | Checks.push_back( |
3432 | 0 | std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); |
3433 | 0 | } |
3434 | |
|
3435 | 0 | if (Checks.size() > 0) |
3436 | 0 | EmitBinOpCheck(Checks, Ops); |
3437 | 0 | } |
3438 | | |
3439 | 0 | Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { |
3440 | 0 | { |
3441 | 0 | CodeGenFunction::SanitizerScope SanScope(&CGF); |
3442 | 0 | if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || |
3443 | 0 | CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && |
3444 | 0 | Ops.Ty->isIntegerType() && |
3445 | 0 | (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { |
3446 | 0 | llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); |
3447 | 0 | EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); |
3448 | 0 | } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && |
3449 | 0 | Ops.Ty->isRealFloatingType() && |
3450 | 0 | Ops.mayHaveFloatDivisionByZero()) { |
3451 | 0 | llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); |
3452 | 0 | llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); |
3453 | 0 | EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), |
3454 | 0 | Ops); |
3455 | 0 | } |
3456 | 0 | } |
3457 | |
|
3458 | 0 | if (Ops.Ty->isConstantMatrixType()) { |
3459 | 0 | llvm::MatrixBuilder MB(Builder); |
3460 | | // We need to check the types of the operands of the operator to get the |
3461 | | // correct matrix dimensions. |
3462 | 0 | auto *BO = cast<BinaryOperator>(Ops.E); |
3463 | 0 | (void)BO; |
3464 | 0 | assert( |
3465 | 0 | isa<ConstantMatrixType>(BO->getLHS()->getType().getCanonicalType()) && |
3466 | 0 | "first operand must be a matrix"); |
3467 | 0 | assert(BO->getRHS()->getType().getCanonicalType()->isArithmeticType() && |
3468 | 0 | "second operand must be an arithmetic type"); |
3469 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); |
3470 | 0 | return MB.CreateScalarDiv(Ops.LHS, Ops.RHS, |
3471 | 0 | Ops.Ty->hasUnsignedIntegerRepresentation()); |
3472 | 0 | } |
3473 | | |
3474 | 0 | if (Ops.LHS->getType()->isFPOrFPVectorTy()) { |
3475 | 0 | llvm::Value *Val; |
3476 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, Ops.FPFeatures); |
3477 | 0 | Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); |
3478 | 0 | CGF.SetDivFPAccuracy(Val); |
3479 | 0 | return Val; |
3480 | 0 | } |
3481 | 0 | else if (Ops.isFixedPointOp()) |
3482 | 0 | return EmitFixedPointBinOp(Ops); |
3483 | 0 | else if (Ops.Ty->hasUnsignedIntegerRepresentation()) |
3484 | 0 | return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); |
3485 | 0 | else |
3486 | 0 | return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); |
3487 | 0 | } |
3488 | | |
3489 | 0 | Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { |
3490 | | // Rem in C can't be a floating point type: C99 6.5.5p2. |
3491 | 0 | if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || |
3492 | 0 | CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && |
3493 | 0 | Ops.Ty->isIntegerType() && |
3494 | 0 | (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { |
3495 | 0 | CodeGenFunction::SanitizerScope SanScope(&CGF); |
3496 | 0 | llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); |
3497 | 0 | EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); |
3498 | 0 | } |
3499 | |
|
3500 | 0 | if (Ops.Ty->hasUnsignedIntegerRepresentation()) |
3501 | 0 | return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); |
3502 | 0 | else |
3503 | 0 | return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); |
3504 | 0 | } |
3505 | | |
3506 | 0 | Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { |
3507 | 0 | unsigned IID; |
3508 | 0 | unsigned OpID = 0; |
3509 | 0 | SanitizerHandler OverflowKind; |
3510 | |
|
3511 | 0 | bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); |
3512 | 0 | switch (Ops.Opcode) { |
3513 | 0 | case BO_Add: |
3514 | 0 | case BO_AddAssign: |
3515 | 0 | OpID = 1; |
3516 | 0 | IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : |
3517 | 0 | llvm::Intrinsic::uadd_with_overflow; |
3518 | 0 | OverflowKind = SanitizerHandler::AddOverflow; |
3519 | 0 | break; |
3520 | 0 | case BO_Sub: |
3521 | 0 | case BO_SubAssign: |
3522 | 0 | OpID = 2; |
3523 | 0 | IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : |
3524 | 0 | llvm::Intrinsic::usub_with_overflow; |
3525 | 0 | OverflowKind = SanitizerHandler::SubOverflow; |
3526 | 0 | break; |
3527 | 0 | case BO_Mul: |
3528 | 0 | case BO_MulAssign: |
3529 | 0 | OpID = 3; |
3530 | 0 | IID = isSigned ? llvm::Intrinsic::smul_with_overflow : |
3531 | 0 | llvm::Intrinsic::umul_with_overflow; |
3532 | 0 | OverflowKind = SanitizerHandler::MulOverflow; |
3533 | 0 | break; |
3534 | 0 | default: |
3535 | 0 | llvm_unreachable("Unsupported operation for overflow detection"); |
3536 | 0 | } |
3537 | 0 | OpID <<= 1; |
3538 | 0 | if (isSigned) |
3539 | 0 | OpID |= 1; |
3540 | |
|
3541 | 0 | CodeGenFunction::SanitizerScope SanScope(&CGF); |
3542 | 0 | llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); |
3543 | |
|
3544 | 0 | llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); |
3545 | |
|
3546 | 0 | Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); |
3547 | 0 | Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); |
3548 | 0 | Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); |
3549 | | |
3550 | | // Handle overflow with llvm.trap if no custom handler has been specified. |
3551 | 0 | const std::string *handlerName = |
3552 | 0 | &CGF.getLangOpts().OverflowHandler; |
3553 | 0 | if (handlerName->empty()) { |
3554 | | // If the signed-integer-overflow sanitizer is enabled, emit a call to its |
3555 | | // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. |
3556 | 0 | if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { |
3557 | 0 | llvm::Value *NotOverflow = Builder.CreateNot(overflow); |
3558 | 0 | SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow |
3559 | 0 | : SanitizerKind::UnsignedIntegerOverflow; |
3560 | 0 | EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); |
3561 | 0 | } else |
3562 | 0 | CGF.EmitTrapCheck(Builder.CreateNot(overflow), OverflowKind); |
3563 | 0 | return result; |
3564 | 0 | } |
3565 | | |
3566 | | // Branch in case of overflow. |
3567 | 0 | llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); |
3568 | 0 | llvm::BasicBlock *continueBB = |
3569 | 0 | CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); |
3570 | 0 | llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); |
3571 | |
|
3572 | 0 | Builder.CreateCondBr(overflow, overflowBB, continueBB); |
3573 | | |
3574 | | // If an overflow handler is set, then we want to call it and then use its |
3575 | | // result, if it returns. |
3576 | 0 | Builder.SetInsertPoint(overflowBB); |
3577 | | |
3578 | | // Get the overflow handler. |
3579 | 0 | llvm::Type *Int8Ty = CGF.Int8Ty; |
3580 | 0 | llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; |
3581 | 0 | llvm::FunctionType *handlerTy = |
3582 | 0 | llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); |
3583 | 0 | llvm::FunctionCallee handler = |
3584 | 0 | CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); |
3585 | | |
3586 | | // Sign extend the args to 64-bit, so that we can use the same handler for |
3587 | | // all types of overflow. |
3588 | 0 | llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); |
3589 | 0 | llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); |
3590 | | |
3591 | | // Call the handler with the two arguments, the operation, and the size of |
3592 | | // the result. |
3593 | 0 | llvm::Value *handlerArgs[] = { |
3594 | 0 | lhs, |
3595 | 0 | rhs, |
3596 | 0 | Builder.getInt8(OpID), |
3597 | 0 | Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) |
3598 | 0 | }; |
3599 | 0 | llvm::Value *handlerResult = |
3600 | 0 | CGF.EmitNounwindRuntimeCall(handler, handlerArgs); |
3601 | | |
3602 | | // Truncate the result back to the desired size. |
3603 | 0 | handlerResult = Builder.CreateTrunc(handlerResult, opTy); |
3604 | 0 | Builder.CreateBr(continueBB); |
3605 | |
|
3606 | 0 | Builder.SetInsertPoint(continueBB); |
3607 | 0 | llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); |
3608 | 0 | phi->addIncoming(result, initialBB); |
3609 | 0 | phi->addIncoming(handlerResult, overflowBB); |
3610 | |
|
3611 | 0 | return phi; |
3612 | 0 | } |
3613 | | |
3614 | | /// Emit pointer + index arithmetic. |
3615 | | static Value *emitPointerArithmetic(CodeGenFunction &CGF, |
3616 | | const BinOpInfo &op, |
3617 | 0 | bool isSubtraction) { |
3618 | | // Must have binary (not unary) expr here. Unary pointer |
3619 | | // increment/decrement doesn't use this path. |
3620 | 0 | const BinaryOperator *expr = cast<BinaryOperator>(op.E); |
3621 | |
|
3622 | 0 | Value *pointer = op.LHS; |
3623 | 0 | Expr *pointerOperand = expr->getLHS(); |
3624 | 0 | Value *index = op.RHS; |
3625 | 0 | Expr *indexOperand = expr->getRHS(); |
3626 | | |
3627 | | // In a subtraction, the LHS is always the pointer. |
3628 | 0 | if (!isSubtraction && !pointer->getType()->isPointerTy()) { |
3629 | 0 | std::swap(pointer, index); |
3630 | 0 | std::swap(pointerOperand, indexOperand); |
3631 | 0 | } |
3632 | |
|
3633 | 0 | bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); |
3634 | |
|
3635 | 0 | unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); |
3636 | 0 | auto &DL = CGF.CGM.getDataLayout(); |
3637 | 0 | auto PtrTy = cast<llvm::PointerType>(pointer->getType()); |
3638 | | |
3639 | | // Some versions of glibc and gcc use idioms (particularly in their malloc |
3640 | | // routines) that add a pointer-sized integer (known to be a pointer value) |
3641 | | // to a null pointer in order to cast the value back to an integer or as |
3642 | | // part of a pointer alignment algorithm. This is undefined behavior, but |
3643 | | // we'd like to be able to compile programs that use it. |
3644 | | // |
3645 | | // Normally, we'd generate a GEP with a null-pointer base here in response |
3646 | | // to that code, but it's also UB to dereference a pointer created that |
3647 | | // way. Instead (as an acknowledged hack to tolerate the idiom) we will |
3648 | | // generate a direct cast of the integer value to a pointer. |
3649 | | // |
3650 | | // The idiom (p = nullptr + N) is not met if any of the following are true: |
3651 | | // |
3652 | | // The operation is subtraction. |
3653 | | // The index is not pointer-sized. |
3654 | | // The pointer type is not byte-sized. |
3655 | | // |
3656 | 0 | if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), |
3657 | 0 | op.Opcode, |
3658 | 0 | expr->getLHS(), |
3659 | 0 | expr->getRHS())) |
3660 | 0 | return CGF.Builder.CreateIntToPtr(index, pointer->getType()); |
3661 | | |
3662 | 0 | if (width != DL.getIndexTypeSizeInBits(PtrTy)) { |
3663 | | // Zero-extend or sign-extend the pointer value according to |
3664 | | // whether the index is signed or not. |
3665 | 0 | index = CGF.Builder.CreateIntCast(index, DL.getIndexType(PtrTy), isSigned, |
3666 | 0 | "idx.ext"); |
3667 | 0 | } |
3668 | | |
3669 | | // If this is subtraction, negate the index. |
3670 | 0 | if (isSubtraction) |
3671 | 0 | index = CGF.Builder.CreateNeg(index, "idx.neg"); |
3672 | |
|
3673 | 0 | if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) |
3674 | 0 | CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), |
3675 | 0 | /*Accessed*/ false); |
3676 | |
|
3677 | 0 | const PointerType *pointerType |
3678 | 0 | = pointerOperand->getType()->getAs<PointerType>(); |
3679 | 0 | if (!pointerType) { |
3680 | 0 | QualType objectType = pointerOperand->getType() |
3681 | 0 | ->castAs<ObjCObjectPointerType>() |
3682 | 0 | ->getPointeeType(); |
3683 | 0 | llvm::Value *objectSize |
3684 | 0 | = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); |
3685 | |
|
3686 | 0 | index = CGF.Builder.CreateMul(index, objectSize); |
3687 | |
|
3688 | 0 | Value *result = |
3689 | 0 | CGF.Builder.CreateGEP(CGF.Int8Ty, pointer, index, "add.ptr"); |
3690 | 0 | return CGF.Builder.CreateBitCast(result, pointer->getType()); |
3691 | 0 | } |
3692 | | |
3693 | 0 | QualType elementType = pointerType->getPointeeType(); |
3694 | 0 | if (const VariableArrayType *vla |
3695 | 0 | = CGF.getContext().getAsVariableArrayType(elementType)) { |
3696 | | // The element count here is the total number of non-VLA elements. |
3697 | 0 | llvm::Value *numElements = CGF.getVLASize(vla).NumElts; |
3698 | | |
3699 | | // Effectively, the multiply by the VLA size is part of the GEP. |
3700 | | // GEP indexes are signed, and scaling an index isn't permitted to |
3701 | | // signed-overflow, so we use the same semantics for our explicit |
3702 | | // multiply. We suppress this if overflow is not undefined behavior. |
3703 | 0 | llvm::Type *elemTy = CGF.ConvertTypeForMem(vla->getElementType()); |
3704 | 0 | if (CGF.getLangOpts().isSignedOverflowDefined()) { |
3705 | 0 | index = CGF.Builder.CreateMul(index, numElements, "vla.index"); |
3706 | 0 | pointer = CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); |
3707 | 0 | } else { |
3708 | 0 | index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); |
3709 | 0 | pointer = CGF.EmitCheckedInBoundsGEP( |
3710 | 0 | elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), |
3711 | 0 | "add.ptr"); |
3712 | 0 | } |
3713 | 0 | return pointer; |
3714 | 0 | } |
3715 | | |
3716 | | // Explicitly handle GNU void* and function pointer arithmetic extensions. The |
3717 | | // GNU void* casts amount to no-ops since our void* type is i8*, but this is |
3718 | | // future proof. |
3719 | 0 | llvm::Type *elemTy; |
3720 | 0 | if (elementType->isVoidType() || elementType->isFunctionType()) |
3721 | 0 | elemTy = CGF.Int8Ty; |
3722 | 0 | else |
3723 | 0 | elemTy = CGF.ConvertTypeForMem(elementType); |
3724 | |
|
3725 | 0 | if (CGF.getLangOpts().isSignedOverflowDefined()) |
3726 | 0 | return CGF.Builder.CreateGEP(elemTy, pointer, index, "add.ptr"); |
3727 | | |
3728 | 0 | return CGF.EmitCheckedInBoundsGEP( |
3729 | 0 | elemTy, pointer, index, isSigned, isSubtraction, op.E->getExprLoc(), |
3730 | 0 | "add.ptr"); |
3731 | 0 | } |
3732 | | |
3733 | | // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and |
3734 | | // Addend. Use negMul and negAdd to negate the first operand of the Mul or |
3735 | | // the add operand respectively. This allows fmuladd to represent a*b-c, or |
3736 | | // c-a*b. Patterns in LLVM should catch the negated forms and translate them to |
3737 | | // efficient operations. |
3738 | | static Value* buildFMulAdd(llvm::Instruction *MulOp, Value *Addend, |
3739 | | const CodeGenFunction &CGF, CGBuilderTy &Builder, |
3740 | 0 | bool negMul, bool negAdd) { |
3741 | 0 | Value *MulOp0 = MulOp->getOperand(0); |
3742 | 0 | Value *MulOp1 = MulOp->getOperand(1); |
3743 | 0 | if (negMul) |
3744 | 0 | MulOp0 = Builder.CreateFNeg(MulOp0, "neg"); |
3745 | 0 | if (negAdd) |
3746 | 0 | Addend = Builder.CreateFNeg(Addend, "neg"); |
3747 | |
|
3748 | 0 | Value *FMulAdd = nullptr; |
3749 | 0 | if (Builder.getIsFPConstrained()) { |
3750 | 0 | assert(isa<llvm::ConstrainedFPIntrinsic>(MulOp) && |
3751 | 0 | "Only constrained operation should be created when Builder is in FP " |
3752 | 0 | "constrained mode"); |
3753 | 0 | FMulAdd = Builder.CreateConstrainedFPCall( |
3754 | 0 | CGF.CGM.getIntrinsic(llvm::Intrinsic::experimental_constrained_fmuladd, |
3755 | 0 | Addend->getType()), |
3756 | 0 | {MulOp0, MulOp1, Addend}); |
3757 | 0 | } else { |
3758 | 0 | FMulAdd = Builder.CreateCall( |
3759 | 0 | CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), |
3760 | 0 | {MulOp0, MulOp1, Addend}); |
3761 | 0 | } |
3762 | 0 | MulOp->eraseFromParent(); |
3763 | |
|
3764 | 0 | return FMulAdd; |
3765 | 0 | } |
3766 | | |
3767 | | // Check whether it would be legal to emit an fmuladd intrinsic call to |
3768 | | // represent op and if so, build the fmuladd. |
3769 | | // |
3770 | | // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. |
3771 | | // Does NOT check the type of the operation - it's assumed that this function |
3772 | | // will be called from contexts where it's known that the type is contractable. |
3773 | | static Value* tryEmitFMulAdd(const BinOpInfo &op, |
3774 | | const CodeGenFunction &CGF, CGBuilderTy &Builder, |
3775 | 0 | bool isSub=false) { |
3776 | |
|
3777 | 0 | assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || |
3778 | 0 | op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && |
3779 | 0 | "Only fadd/fsub can be the root of an fmuladd."); |
3780 | | |
3781 | | // Check whether this op is marked as fusable. |
3782 | 0 | if (!op.FPFeatures.allowFPContractWithinStatement()) |
3783 | 0 | return nullptr; |
3784 | | |
3785 | 0 | Value *LHS = op.LHS; |
3786 | 0 | Value *RHS = op.RHS; |
3787 | | |
3788 | | // Peek through fneg to look for fmul. Make sure fneg has no users, and that |
3789 | | // it is the only use of its operand. |
3790 | 0 | bool NegLHS = false; |
3791 | 0 | if (auto *LHSUnOp = dyn_cast<llvm::UnaryOperator>(LHS)) { |
3792 | 0 | if (LHSUnOp->getOpcode() == llvm::Instruction::FNeg && |
3793 | 0 | LHSUnOp->use_empty() && LHSUnOp->getOperand(0)->hasOneUse()) { |
3794 | 0 | LHS = LHSUnOp->getOperand(0); |
3795 | 0 | NegLHS = true; |
3796 | 0 | } |
3797 | 0 | } |
3798 | |
|
3799 | 0 | bool NegRHS = false; |
3800 | 0 | if (auto *RHSUnOp = dyn_cast<llvm::UnaryOperator>(RHS)) { |
3801 | 0 | if (RHSUnOp->getOpcode() == llvm::Instruction::FNeg && |
3802 | 0 | RHSUnOp->use_empty() && RHSUnOp->getOperand(0)->hasOneUse()) { |
3803 | 0 | RHS = RHSUnOp->getOperand(0); |
3804 | 0 | NegRHS = true; |
3805 | 0 | } |
3806 | 0 | } |
3807 | | |
3808 | | // We have a potentially fusable op. Look for a mul on one of the operands. |
3809 | | // Also, make sure that the mul result isn't used directly. In that case, |
3810 | | // there's no point creating a muladd operation. |
3811 | 0 | if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(LHS)) { |
3812 | 0 | if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && |
3813 | 0 | (LHSBinOp->use_empty() || NegLHS)) { |
3814 | | // If we looked through fneg, erase it. |
3815 | 0 | if (NegLHS) |
3816 | 0 | cast<llvm::Instruction>(op.LHS)->eraseFromParent(); |
3817 | 0 | return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub); |
3818 | 0 | } |
3819 | 0 | } |
3820 | 0 | if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(RHS)) { |
3821 | 0 | if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && |
3822 | 0 | (RHSBinOp->use_empty() || NegRHS)) { |
3823 | | // If we looked through fneg, erase it. |
3824 | 0 | if (NegRHS) |
3825 | 0 | cast<llvm::Instruction>(op.RHS)->eraseFromParent(); |
3826 | 0 | return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false); |
3827 | 0 | } |
3828 | 0 | } |
3829 | | |
3830 | 0 | if (auto *LHSBinOp = dyn_cast<llvm::CallBase>(LHS)) { |
3831 | 0 | if (LHSBinOp->getIntrinsicID() == |
3832 | 0 | llvm::Intrinsic::experimental_constrained_fmul && |
3833 | 0 | (LHSBinOp->use_empty() || NegLHS)) { |
3834 | | // If we looked through fneg, erase it. |
3835 | 0 | if (NegLHS) |
3836 | 0 | cast<llvm::Instruction>(op.LHS)->eraseFromParent(); |
3837 | 0 | return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, NegLHS, isSub); |
3838 | 0 | } |
3839 | 0 | } |
3840 | 0 | if (auto *RHSBinOp = dyn_cast<llvm::CallBase>(RHS)) { |
3841 | 0 | if (RHSBinOp->getIntrinsicID() == |
3842 | 0 | llvm::Intrinsic::experimental_constrained_fmul && |
3843 | 0 | (RHSBinOp->use_empty() || NegRHS)) { |
3844 | | // If we looked through fneg, erase it. |
3845 | 0 | if (NegRHS) |
3846 | 0 | cast<llvm::Instruction>(op.RHS)->eraseFromParent(); |
3847 | 0 | return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub ^ NegRHS, false); |
3848 | 0 | } |
3849 | 0 | } |
3850 | | |
3851 | 0 | return nullptr; |
3852 | 0 | } |
3853 | | |
3854 | 0 | Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { |
3855 | 0 | if (op.LHS->getType()->isPointerTy() || |
3856 | 0 | op.RHS->getType()->isPointerTy()) |
3857 | 0 | return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); |
3858 | | |
3859 | 0 | if (op.Ty->isSignedIntegerOrEnumerationType()) { |
3860 | 0 | switch (CGF.getLangOpts().getSignedOverflowBehavior()) { |
3861 | 0 | case LangOptions::SOB_Defined: |
3862 | 0 | return Builder.CreateAdd(op.LHS, op.RHS, "add"); |
3863 | 0 | case LangOptions::SOB_Undefined: |
3864 | 0 | if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) |
3865 | 0 | return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); |
3866 | 0 | [[fallthrough]]; |
3867 | 0 | case LangOptions::SOB_Trapping: |
3868 | 0 | if (CanElideOverflowCheck(CGF.getContext(), op)) |
3869 | 0 | return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); |
3870 | 0 | return EmitOverflowCheckedBinOp(op); |
3871 | 0 | } |
3872 | 0 | } |
3873 | | |
3874 | | // For vector and matrix adds, try to fold into a fmuladd. |
3875 | 0 | if (op.LHS->getType()->isFPOrFPVectorTy()) { |
3876 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); |
3877 | | // Try to form an fmuladd. |
3878 | 0 | if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) |
3879 | 0 | return FMulAdd; |
3880 | 0 | } |
3881 | | |
3882 | 0 | if (op.Ty->isConstantMatrixType()) { |
3883 | 0 | llvm::MatrixBuilder MB(Builder); |
3884 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); |
3885 | 0 | return MB.CreateAdd(op.LHS, op.RHS); |
3886 | 0 | } |
3887 | | |
3888 | 0 | if (op.Ty->isUnsignedIntegerType() && |
3889 | 0 | CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && |
3890 | 0 | !CanElideOverflowCheck(CGF.getContext(), op)) |
3891 | 0 | return EmitOverflowCheckedBinOp(op); |
3892 | | |
3893 | 0 | if (op.LHS->getType()->isFPOrFPVectorTy()) { |
3894 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); |
3895 | 0 | return Builder.CreateFAdd(op.LHS, op.RHS, "add"); |
3896 | 0 | } |
3897 | | |
3898 | 0 | if (op.isFixedPointOp()) |
3899 | 0 | return EmitFixedPointBinOp(op); |
3900 | | |
3901 | 0 | return Builder.CreateAdd(op.LHS, op.RHS, "add"); |
3902 | 0 | } |
3903 | | |
3904 | | /// The resulting value must be calculated with exact precision, so the operands |
3905 | | /// may not be the same type. |
3906 | 0 | Value *ScalarExprEmitter::EmitFixedPointBinOp(const BinOpInfo &op) { |
3907 | 0 | using llvm::APSInt; |
3908 | 0 | using llvm::ConstantInt; |
3909 | | |
3910 | | // This is either a binary operation where at least one of the operands is |
3911 | | // a fixed-point type, or a unary operation where the operand is a fixed-point |
3912 | | // type. The result type of a binary operation is determined by |
3913 | | // Sema::handleFixedPointConversions(). |
3914 | 0 | QualType ResultTy = op.Ty; |
3915 | 0 | QualType LHSTy, RHSTy; |
3916 | 0 | if (const auto *BinOp = dyn_cast<BinaryOperator>(op.E)) { |
3917 | 0 | RHSTy = BinOp->getRHS()->getType(); |
3918 | 0 | if (const auto *CAO = dyn_cast<CompoundAssignOperator>(BinOp)) { |
3919 | | // For compound assignment, the effective type of the LHS at this point |
3920 | | // is the computation LHS type, not the actual LHS type, and the final |
3921 | | // result type is not the type of the expression but rather the |
3922 | | // computation result type. |
3923 | 0 | LHSTy = CAO->getComputationLHSType(); |
3924 | 0 | ResultTy = CAO->getComputationResultType(); |
3925 | 0 | } else |
3926 | 0 | LHSTy = BinOp->getLHS()->getType(); |
3927 | 0 | } else if (const auto *UnOp = dyn_cast<UnaryOperator>(op.E)) { |
3928 | 0 | LHSTy = UnOp->getSubExpr()->getType(); |
3929 | 0 | RHSTy = UnOp->getSubExpr()->getType(); |
3930 | 0 | } |
3931 | 0 | ASTContext &Ctx = CGF.getContext(); |
3932 | 0 | Value *LHS = op.LHS; |
3933 | 0 | Value *RHS = op.RHS; |
3934 | |
|
3935 | 0 | auto LHSFixedSema = Ctx.getFixedPointSemantics(LHSTy); |
3936 | 0 | auto RHSFixedSema = Ctx.getFixedPointSemantics(RHSTy); |
3937 | 0 | auto ResultFixedSema = Ctx.getFixedPointSemantics(ResultTy); |
3938 | 0 | auto CommonFixedSema = LHSFixedSema.getCommonSemantics(RHSFixedSema); |
3939 | | |
3940 | | // Perform the actual operation. |
3941 | 0 | Value *Result; |
3942 | 0 | llvm::FixedPointBuilder<CGBuilderTy> FPBuilder(Builder); |
3943 | 0 | switch (op.Opcode) { |
3944 | 0 | case BO_AddAssign: |
3945 | 0 | case BO_Add: |
3946 | 0 | Result = FPBuilder.CreateAdd(LHS, LHSFixedSema, RHS, RHSFixedSema); |
3947 | 0 | break; |
3948 | 0 | case BO_SubAssign: |
3949 | 0 | case BO_Sub: |
3950 | 0 | Result = FPBuilder.CreateSub(LHS, LHSFixedSema, RHS, RHSFixedSema); |
3951 | 0 | break; |
3952 | 0 | case BO_MulAssign: |
3953 | 0 | case BO_Mul: |
3954 | 0 | Result = FPBuilder.CreateMul(LHS, LHSFixedSema, RHS, RHSFixedSema); |
3955 | 0 | break; |
3956 | 0 | case BO_DivAssign: |
3957 | 0 | case BO_Div: |
3958 | 0 | Result = FPBuilder.CreateDiv(LHS, LHSFixedSema, RHS, RHSFixedSema); |
3959 | 0 | break; |
3960 | 0 | case BO_ShlAssign: |
3961 | 0 | case BO_Shl: |
3962 | 0 | Result = FPBuilder.CreateShl(LHS, LHSFixedSema, RHS); |
3963 | 0 | break; |
3964 | 0 | case BO_ShrAssign: |
3965 | 0 | case BO_Shr: |
3966 | 0 | Result = FPBuilder.CreateShr(LHS, LHSFixedSema, RHS); |
3967 | 0 | break; |
3968 | 0 | case BO_LT: |
3969 | 0 | return FPBuilder.CreateLT(LHS, LHSFixedSema, RHS, RHSFixedSema); |
3970 | 0 | case BO_GT: |
3971 | 0 | return FPBuilder.CreateGT(LHS, LHSFixedSema, RHS, RHSFixedSema); |
3972 | 0 | case BO_LE: |
3973 | 0 | return FPBuilder.CreateLE(LHS, LHSFixedSema, RHS, RHSFixedSema); |
3974 | 0 | case BO_GE: |
3975 | 0 | return FPBuilder.CreateGE(LHS, LHSFixedSema, RHS, RHSFixedSema); |
3976 | 0 | case BO_EQ: |
3977 | | // For equality operations, we assume any padding bits on unsigned types are |
3978 | | // zero'd out. They could be overwritten through non-saturating operations |
3979 | | // that cause overflow, but this leads to undefined behavior. |
3980 | 0 | return FPBuilder.CreateEQ(LHS, LHSFixedSema, RHS, RHSFixedSema); |
3981 | 0 | case BO_NE: |
3982 | 0 | return FPBuilder.CreateNE(LHS, LHSFixedSema, RHS, RHSFixedSema); |
3983 | 0 | case BO_Cmp: |
3984 | 0 | case BO_LAnd: |
3985 | 0 | case BO_LOr: |
3986 | 0 | llvm_unreachable("Found unimplemented fixed point binary operation"); |
3987 | 0 | case BO_PtrMemD: |
3988 | 0 | case BO_PtrMemI: |
3989 | 0 | case BO_Rem: |
3990 | 0 | case BO_Xor: |
3991 | 0 | case BO_And: |
3992 | 0 | case BO_Or: |
3993 | 0 | case BO_Assign: |
3994 | 0 | case BO_RemAssign: |
3995 | 0 | case BO_AndAssign: |
3996 | 0 | case BO_XorAssign: |
3997 | 0 | case BO_OrAssign: |
3998 | 0 | case BO_Comma: |
3999 | 0 | llvm_unreachable("Found unsupported binary operation for fixed point types."); |
4000 | 0 | } |
4001 | | |
4002 | 0 | bool IsShift = BinaryOperator::isShiftOp(op.Opcode) || |
4003 | 0 | BinaryOperator::isShiftAssignOp(op.Opcode); |
4004 | | // Convert to the result type. |
4005 | 0 | return FPBuilder.CreateFixedToFixed(Result, IsShift ? LHSFixedSema |
4006 | 0 | : CommonFixedSema, |
4007 | 0 | ResultFixedSema); |
4008 | 0 | } |
4009 | | |
4010 | 0 | Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { |
4011 | | // The LHS is always a pointer if either side is. |
4012 | 0 | if (!op.LHS->getType()->isPointerTy()) { |
4013 | 0 | if (op.Ty->isSignedIntegerOrEnumerationType()) { |
4014 | 0 | switch (CGF.getLangOpts().getSignedOverflowBehavior()) { |
4015 | 0 | case LangOptions::SOB_Defined: |
4016 | 0 | return Builder.CreateSub(op.LHS, op.RHS, "sub"); |
4017 | 0 | case LangOptions::SOB_Undefined: |
4018 | 0 | if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) |
4019 | 0 | return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); |
4020 | 0 | [[fallthrough]]; |
4021 | 0 | case LangOptions::SOB_Trapping: |
4022 | 0 | if (CanElideOverflowCheck(CGF.getContext(), op)) |
4023 | 0 | return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); |
4024 | 0 | return EmitOverflowCheckedBinOp(op); |
4025 | 0 | } |
4026 | 0 | } |
4027 | | |
4028 | | // For vector and matrix subs, try to fold into a fmuladd. |
4029 | 0 | if (op.LHS->getType()->isFPOrFPVectorTy()) { |
4030 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); |
4031 | | // Try to form an fmuladd. |
4032 | 0 | if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) |
4033 | 0 | return FMulAdd; |
4034 | 0 | } |
4035 | | |
4036 | 0 | if (op.Ty->isConstantMatrixType()) { |
4037 | 0 | llvm::MatrixBuilder MB(Builder); |
4038 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); |
4039 | 0 | return MB.CreateSub(op.LHS, op.RHS); |
4040 | 0 | } |
4041 | | |
4042 | 0 | if (op.Ty->isUnsignedIntegerType() && |
4043 | 0 | CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && |
4044 | 0 | !CanElideOverflowCheck(CGF.getContext(), op)) |
4045 | 0 | return EmitOverflowCheckedBinOp(op); |
4046 | | |
4047 | 0 | if (op.LHS->getType()->isFPOrFPVectorTy()) { |
4048 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, op.FPFeatures); |
4049 | 0 | return Builder.CreateFSub(op.LHS, op.RHS, "sub"); |
4050 | 0 | } |
4051 | | |
4052 | 0 | if (op.isFixedPointOp()) |
4053 | 0 | return EmitFixedPointBinOp(op); |
4054 | | |
4055 | 0 | return Builder.CreateSub(op.LHS, op.RHS, "sub"); |
4056 | 0 | } |
4057 | | |
4058 | | // If the RHS is not a pointer, then we have normal pointer |
4059 | | // arithmetic. |
4060 | 0 | if (!op.RHS->getType()->isPointerTy()) |
4061 | 0 | return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); |
4062 | | |
4063 | | // Otherwise, this is a pointer subtraction. |
4064 | | |
4065 | | // Do the raw subtraction part. |
4066 | 0 | llvm::Value *LHS |
4067 | 0 | = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); |
4068 | 0 | llvm::Value *RHS |
4069 | 0 | = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); |
4070 | 0 | Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); |
4071 | | |
4072 | | // Okay, figure out the element size. |
4073 | 0 | const BinaryOperator *expr = cast<BinaryOperator>(op.E); |
4074 | 0 | QualType elementType = expr->getLHS()->getType()->getPointeeType(); |
4075 | |
|
4076 | 0 | llvm::Value *divisor = nullptr; |
4077 | | |
4078 | | // For a variable-length array, this is going to be non-constant. |
4079 | 0 | if (const VariableArrayType *vla |
4080 | 0 | = CGF.getContext().getAsVariableArrayType(elementType)) { |
4081 | 0 | auto VlaSize = CGF.getVLASize(vla); |
4082 | 0 | elementType = VlaSize.Type; |
4083 | 0 | divisor = VlaSize.NumElts; |
4084 | | |
4085 | | // Scale the number of non-VLA elements by the non-VLA element size. |
4086 | 0 | CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); |
4087 | 0 | if (!eltSize.isOne()) |
4088 | 0 | divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); |
4089 | | |
4090 | | // For everything elese, we can just compute it, safe in the |
4091 | | // assumption that Sema won't let anything through that we can't |
4092 | | // safely compute the size of. |
4093 | 0 | } else { |
4094 | 0 | CharUnits elementSize; |
4095 | | // Handle GCC extension for pointer arithmetic on void* and |
4096 | | // function pointer types. |
4097 | 0 | if (elementType->isVoidType() || elementType->isFunctionType()) |
4098 | 0 | elementSize = CharUnits::One(); |
4099 | 0 | else |
4100 | 0 | elementSize = CGF.getContext().getTypeSizeInChars(elementType); |
4101 | | |
4102 | | // Don't even emit the divide for element size of 1. |
4103 | 0 | if (elementSize.isOne()) |
4104 | 0 | return diffInChars; |
4105 | | |
4106 | 0 | divisor = CGF.CGM.getSize(elementSize); |
4107 | 0 | } |
4108 | | |
4109 | | // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since |
4110 | | // pointer difference in C is only defined in the case where both operands |
4111 | | // are pointing to elements of an array. |
4112 | 0 | return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); |
4113 | 0 | } |
4114 | | |
4115 | 0 | Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { |
4116 | 0 | llvm::IntegerType *Ty; |
4117 | 0 | if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) |
4118 | 0 | Ty = cast<llvm::IntegerType>(VT->getElementType()); |
4119 | 0 | else |
4120 | 0 | Ty = cast<llvm::IntegerType>(LHS->getType()); |
4121 | 0 | return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); |
4122 | 0 | } |
4123 | | |
4124 | | Value *ScalarExprEmitter::ConstrainShiftValue(Value *LHS, Value *RHS, |
4125 | 0 | const Twine &Name) { |
4126 | 0 | llvm::IntegerType *Ty; |
4127 | 0 | if (auto *VT = dyn_cast<llvm::VectorType>(LHS->getType())) |
4128 | 0 | Ty = cast<llvm::IntegerType>(VT->getElementType()); |
4129 | 0 | else |
4130 | 0 | Ty = cast<llvm::IntegerType>(LHS->getType()); |
4131 | |
|
4132 | 0 | if (llvm::isPowerOf2_64(Ty->getBitWidth())) |
4133 | 0 | return Builder.CreateAnd(RHS, GetWidthMinusOneValue(LHS, RHS), Name); |
4134 | | |
4135 | 0 | return Builder.CreateURem( |
4136 | 0 | RHS, llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth()), Name); |
4137 | 0 | } |
4138 | | |
4139 | 0 | Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { |
4140 | | // TODO: This misses out on the sanitizer check below. |
4141 | 0 | if (Ops.isFixedPointOp()) |
4142 | 0 | return EmitFixedPointBinOp(Ops); |
4143 | | |
4144 | | // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
4145 | | // RHS to the same size as the LHS. |
4146 | 0 | Value *RHS = Ops.RHS; |
4147 | 0 | if (Ops.LHS->getType() != RHS->getType()) |
4148 | 0 | RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); |
4149 | |
|
4150 | 0 | bool SanitizeSignedBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && |
4151 | 0 | Ops.Ty->hasSignedIntegerRepresentation() && |
4152 | 0 | !CGF.getLangOpts().isSignedOverflowDefined() && |
4153 | 0 | !CGF.getLangOpts().CPlusPlus20; |
4154 | 0 | bool SanitizeUnsignedBase = |
4155 | 0 | CGF.SanOpts.has(SanitizerKind::UnsignedShiftBase) && |
4156 | 0 | Ops.Ty->hasUnsignedIntegerRepresentation(); |
4157 | 0 | bool SanitizeBase = SanitizeSignedBase || SanitizeUnsignedBase; |
4158 | 0 | bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); |
4159 | | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
4160 | 0 | if (CGF.getLangOpts().OpenCL) |
4161 | 0 | RHS = ConstrainShiftValue(Ops.LHS, RHS, "shl.mask"); |
4162 | 0 | else if ((SanitizeBase || SanitizeExponent) && |
4163 | 0 | isa<llvm::IntegerType>(Ops.LHS->getType())) { |
4164 | 0 | CodeGenFunction::SanitizerScope SanScope(&CGF); |
4165 | 0 | SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; |
4166 | 0 | llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); |
4167 | 0 | llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); |
4168 | |
|
4169 | 0 | if (SanitizeExponent) { |
4170 | 0 | Checks.push_back( |
4171 | 0 | std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); |
4172 | 0 | } |
4173 | |
|
4174 | 0 | if (SanitizeBase) { |
4175 | | // Check whether we are shifting any non-zero bits off the top of the |
4176 | | // integer. We only emit this check if exponent is valid - otherwise |
4177 | | // instructions below will have undefined behavior themselves. |
4178 | 0 | llvm::BasicBlock *Orig = Builder.GetInsertBlock(); |
4179 | 0 | llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); |
4180 | 0 | llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); |
4181 | 0 | Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); |
4182 | 0 | llvm::Value *PromotedWidthMinusOne = |
4183 | 0 | (RHS == Ops.RHS) ? WidthMinusOne |
4184 | 0 | : GetWidthMinusOneValue(Ops.LHS, RHS); |
4185 | 0 | CGF.EmitBlock(CheckShiftBase); |
4186 | 0 | llvm::Value *BitsShiftedOff = Builder.CreateLShr( |
4187 | 0 | Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", |
4188 | 0 | /*NUW*/ true, /*NSW*/ true), |
4189 | 0 | "shl.check"); |
4190 | 0 | if (SanitizeUnsignedBase || CGF.getLangOpts().CPlusPlus) { |
4191 | | // In C99, we are not permitted to shift a 1 bit into the sign bit. |
4192 | | // Under C++11's rules, shifting a 1 bit into the sign bit is |
4193 | | // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't |
4194 | | // define signed left shifts, so we use the C99 and C++11 rules there). |
4195 | | // Unsigned shifts can always shift into the top bit. |
4196 | 0 | llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); |
4197 | 0 | BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); |
4198 | 0 | } |
4199 | 0 | llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); |
4200 | 0 | llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); |
4201 | 0 | CGF.EmitBlock(Cont); |
4202 | 0 | llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); |
4203 | 0 | BaseCheck->addIncoming(Builder.getTrue(), Orig); |
4204 | 0 | BaseCheck->addIncoming(ValidBase, CheckShiftBase); |
4205 | 0 | Checks.push_back(std::make_pair( |
4206 | 0 | BaseCheck, SanitizeSignedBase ? SanitizerKind::ShiftBase |
4207 | 0 | : SanitizerKind::UnsignedShiftBase)); |
4208 | 0 | } |
4209 | |
|
4210 | 0 | assert(!Checks.empty()); |
4211 | 0 | EmitBinOpCheck(Checks, Ops); |
4212 | 0 | } |
4213 | | |
4214 | 0 | return Builder.CreateShl(Ops.LHS, RHS, "shl"); |
4215 | 0 | } |
4216 | | |
4217 | 0 | Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { |
4218 | | // TODO: This misses out on the sanitizer check below. |
4219 | 0 | if (Ops.isFixedPointOp()) |
4220 | 0 | return EmitFixedPointBinOp(Ops); |
4221 | | |
4222 | | // LLVM requires the LHS and RHS to be the same type: promote or truncate the |
4223 | | // RHS to the same size as the LHS. |
4224 | 0 | Value *RHS = Ops.RHS; |
4225 | 0 | if (Ops.LHS->getType() != RHS->getType()) |
4226 | 0 | RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); |
4227 | | |
4228 | | // OpenCL 6.3j: shift values are effectively % word size of LHS. |
4229 | 0 | if (CGF.getLangOpts().OpenCL) |
4230 | 0 | RHS = ConstrainShiftValue(Ops.LHS, RHS, "shr.mask"); |
4231 | 0 | else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && |
4232 | 0 | isa<llvm::IntegerType>(Ops.LHS->getType())) { |
4233 | 0 | CodeGenFunction::SanitizerScope SanScope(&CGF); |
4234 | 0 | llvm::Value *Valid = |
4235 | 0 | Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); |
4236 | 0 | EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); |
4237 | 0 | } |
4238 | |
|
4239 | 0 | if (Ops.Ty->hasUnsignedIntegerRepresentation()) |
4240 | 0 | return Builder.CreateLShr(Ops.LHS, RHS, "shr"); |
4241 | 0 | return Builder.CreateAShr(Ops.LHS, RHS, "shr"); |
4242 | 0 | } |
4243 | | |
4244 | | enum IntrinsicType { VCMPEQ, VCMPGT }; |
4245 | | // return corresponding comparison intrinsic for given vector type |
4246 | | static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, |
4247 | 0 | BuiltinType::Kind ElemKind) { |
4248 | 0 | switch (ElemKind) { |
4249 | 0 | default: llvm_unreachable("unexpected element type"); |
4250 | 0 | case BuiltinType::Char_U: |
4251 | 0 | case BuiltinType::UChar: |
4252 | 0 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : |
4253 | 0 | llvm::Intrinsic::ppc_altivec_vcmpgtub_p; |
4254 | 0 | case BuiltinType::Char_S: |
4255 | 0 | case BuiltinType::SChar: |
4256 | 0 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : |
4257 | 0 | llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; |
4258 | 0 | case BuiltinType::UShort: |
4259 | 0 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : |
4260 | 0 | llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; |
4261 | 0 | case BuiltinType::Short: |
4262 | 0 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : |
4263 | 0 | llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; |
4264 | 0 | case BuiltinType::UInt: |
4265 | 0 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : |
4266 | 0 | llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; |
4267 | 0 | case BuiltinType::Int: |
4268 | 0 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : |
4269 | 0 | llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; |
4270 | 0 | case BuiltinType::ULong: |
4271 | 0 | case BuiltinType::ULongLong: |
4272 | 0 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : |
4273 | 0 | llvm::Intrinsic::ppc_altivec_vcmpgtud_p; |
4274 | 0 | case BuiltinType::Long: |
4275 | 0 | case BuiltinType::LongLong: |
4276 | 0 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : |
4277 | 0 | llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; |
4278 | 0 | case BuiltinType::Float: |
4279 | 0 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : |
4280 | 0 | llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; |
4281 | 0 | case BuiltinType::Double: |
4282 | 0 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : |
4283 | 0 | llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; |
4284 | 0 | case BuiltinType::UInt128: |
4285 | 0 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p |
4286 | 0 | : llvm::Intrinsic::ppc_altivec_vcmpgtuq_p; |
4287 | 0 | case BuiltinType::Int128: |
4288 | 0 | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequq_p |
4289 | 0 | : llvm::Intrinsic::ppc_altivec_vcmpgtsq_p; |
4290 | 0 | } |
4291 | 0 | } |
4292 | | |
4293 | | Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, |
4294 | | llvm::CmpInst::Predicate UICmpOpc, |
4295 | | llvm::CmpInst::Predicate SICmpOpc, |
4296 | | llvm::CmpInst::Predicate FCmpOpc, |
4297 | 0 | bool IsSignaling) { |
4298 | 0 | TestAndClearIgnoreResultAssign(); |
4299 | 0 | Value *Result; |
4300 | 0 | QualType LHSTy = E->getLHS()->getType(); |
4301 | 0 | QualType RHSTy = E->getRHS()->getType(); |
4302 | 0 | if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { |
4303 | 0 | assert(E->getOpcode() == BO_EQ || |
4304 | 0 | E->getOpcode() == BO_NE); |
4305 | 0 | Value *LHS = CGF.EmitScalarExpr(E->getLHS()); |
4306 | 0 | Value *RHS = CGF.EmitScalarExpr(E->getRHS()); |
4307 | 0 | Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( |
4308 | 0 | CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); |
4309 | 0 | } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { |
4310 | 0 | BinOpInfo BOInfo = EmitBinOps(E); |
4311 | 0 | Value *LHS = BOInfo.LHS; |
4312 | 0 | Value *RHS = BOInfo.RHS; |
4313 | | |
4314 | | // If AltiVec, the comparison results in a numeric type, so we use |
4315 | | // intrinsics comparing vectors and giving 0 or 1 as a result |
4316 | 0 | if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { |
4317 | | // constants for mapping CR6 register bits to predicate result |
4318 | 0 | enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; |
4319 | |
|
4320 | 0 | llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; |
4321 | | |
4322 | | // in several cases vector arguments order will be reversed |
4323 | 0 | Value *FirstVecArg = LHS, |
4324 | 0 | *SecondVecArg = RHS; |
4325 | |
|
4326 | 0 | QualType ElTy = LHSTy->castAs<VectorType>()->getElementType(); |
4327 | 0 | BuiltinType::Kind ElementKind = ElTy->castAs<BuiltinType>()->getKind(); |
4328 | |
|
4329 | 0 | switch(E->getOpcode()) { |
4330 | 0 | default: llvm_unreachable("is not a comparison operation"); |
4331 | 0 | case BO_EQ: |
4332 | 0 | CR6 = CR6_LT; |
4333 | 0 | ID = GetIntrinsic(VCMPEQ, ElementKind); |
4334 | 0 | break; |
4335 | 0 | case BO_NE: |
4336 | 0 | CR6 = CR6_EQ; |
4337 | 0 | ID = GetIntrinsic(VCMPEQ, ElementKind); |
4338 | 0 | break; |
4339 | 0 | case BO_LT: |
4340 | 0 | CR6 = CR6_LT; |
4341 | 0 | ID = GetIntrinsic(VCMPGT, ElementKind); |
4342 | 0 | std::swap(FirstVecArg, SecondVecArg); |
4343 | 0 | break; |
4344 | 0 | case BO_GT: |
4345 | 0 | CR6 = CR6_LT; |
4346 | 0 | ID = GetIntrinsic(VCMPGT, ElementKind); |
4347 | 0 | break; |
4348 | 0 | case BO_LE: |
4349 | 0 | if (ElementKind == BuiltinType::Float) { |
4350 | 0 | CR6 = CR6_LT; |
4351 | 0 | ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; |
4352 | 0 | std::swap(FirstVecArg, SecondVecArg); |
4353 | 0 | } |
4354 | 0 | else { |
4355 | 0 | CR6 = CR6_EQ; |
4356 | 0 | ID = GetIntrinsic(VCMPGT, ElementKind); |
4357 | 0 | } |
4358 | 0 | break; |
4359 | 0 | case BO_GE: |
4360 | 0 | if (ElementKind == BuiltinType::Float) { |
4361 | 0 | CR6 = CR6_LT; |
4362 | 0 | ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; |
4363 | 0 | } |
4364 | 0 | else { |
4365 | 0 | CR6 = CR6_EQ; |
4366 | 0 | ID = GetIntrinsic(VCMPGT, ElementKind); |
4367 | 0 | std::swap(FirstVecArg, SecondVecArg); |
4368 | 0 | } |
4369 | 0 | break; |
4370 | 0 | } |
4371 | | |
4372 | 0 | Value *CR6Param = Builder.getInt32(CR6); |
4373 | 0 | llvm::Function *F = CGF.CGM.getIntrinsic(ID); |
4374 | 0 | Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); |
4375 | | |
4376 | | // The result type of intrinsic may not be same as E->getType(). |
4377 | | // If E->getType() is not BoolTy, EmitScalarConversion will do the |
4378 | | // conversion work. If E->getType() is BoolTy, EmitScalarConversion will |
4379 | | // do nothing, if ResultTy is not i1 at the same time, it will cause |
4380 | | // crash later. |
4381 | 0 | llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); |
4382 | 0 | if (ResultTy->getBitWidth() > 1 && |
4383 | 0 | E->getType() == CGF.getContext().BoolTy) |
4384 | 0 | Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); |
4385 | 0 | return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), |
4386 | 0 | E->getExprLoc()); |
4387 | 0 | } |
4388 | | |
4389 | 0 | if (BOInfo.isFixedPointOp()) { |
4390 | 0 | Result = EmitFixedPointBinOp(BOInfo); |
4391 | 0 | } else if (LHS->getType()->isFPOrFPVectorTy()) { |
4392 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII(CGF, BOInfo.FPFeatures); |
4393 | 0 | if (!IsSignaling) |
4394 | 0 | Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); |
4395 | 0 | else |
4396 | 0 | Result = Builder.CreateFCmpS(FCmpOpc, LHS, RHS, "cmp"); |
4397 | 0 | } else if (LHSTy->hasSignedIntegerRepresentation()) { |
4398 | 0 | Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); |
4399 | 0 | } else { |
4400 | | // Unsigned integers and pointers. |
4401 | |
|
4402 | 0 | if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && |
4403 | 0 | !isa<llvm::ConstantPointerNull>(LHS) && |
4404 | 0 | !isa<llvm::ConstantPointerNull>(RHS)) { |
4405 | | |
4406 | | // Dynamic information is required to be stripped for comparisons, |
4407 | | // because it could leak the dynamic information. Based on comparisons |
4408 | | // of pointers to dynamic objects, the optimizer can replace one pointer |
4409 | | // with another, which might be incorrect in presence of invariant |
4410 | | // groups. Comparison with null is safe because null does not carry any |
4411 | | // dynamic information. |
4412 | 0 | if (LHSTy.mayBeDynamicClass()) |
4413 | 0 | LHS = Builder.CreateStripInvariantGroup(LHS); |
4414 | 0 | if (RHSTy.mayBeDynamicClass()) |
4415 | 0 | RHS = Builder.CreateStripInvariantGroup(RHS); |
4416 | 0 | } |
4417 | |
|
4418 | 0 | Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); |
4419 | 0 | } |
4420 | | |
4421 | | // If this is a vector comparison, sign extend the result to the appropriate |
4422 | | // vector integer type and return it (don't convert to bool). |
4423 | 0 | if (LHSTy->isVectorType()) |
4424 | 0 | return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); |
4425 | |
|
4426 | 0 | } else { |
4427 | | // Complex Comparison: can only be an equality comparison. |
4428 | 0 | CodeGenFunction::ComplexPairTy LHS, RHS; |
4429 | 0 | QualType CETy; |
4430 | 0 | if (auto *CTy = LHSTy->getAs<ComplexType>()) { |
4431 | 0 | LHS = CGF.EmitComplexExpr(E->getLHS()); |
4432 | 0 | CETy = CTy->getElementType(); |
4433 | 0 | } else { |
4434 | 0 | LHS.first = Visit(E->getLHS()); |
4435 | 0 | LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); |
4436 | 0 | CETy = LHSTy; |
4437 | 0 | } |
4438 | 0 | if (auto *CTy = RHSTy->getAs<ComplexType>()) { |
4439 | 0 | RHS = CGF.EmitComplexExpr(E->getRHS()); |
4440 | 0 | assert(CGF.getContext().hasSameUnqualifiedType(CETy, |
4441 | 0 | CTy->getElementType()) && |
4442 | 0 | "The element types must always match."); |
4443 | 0 | (void)CTy; |
4444 | 0 | } else { |
4445 | 0 | RHS.first = Visit(E->getRHS()); |
4446 | 0 | RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); |
4447 | 0 | assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && |
4448 | 0 | "The element types must always match."); |
4449 | 0 | } |
4450 | | |
4451 | 0 | Value *ResultR, *ResultI; |
4452 | 0 | if (CETy->isRealFloatingType()) { |
4453 | | // As complex comparisons can only be equality comparisons, they |
4454 | | // are never signaling comparisons. |
4455 | 0 | ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); |
4456 | 0 | ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); |
4457 | 0 | } else { |
4458 | | // Complex comparisons can only be equality comparisons. As such, signed |
4459 | | // and unsigned opcodes are the same. |
4460 | 0 | ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); |
4461 | 0 | ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); |
4462 | 0 | } |
4463 | |
|
4464 | 0 | if (E->getOpcode() == BO_EQ) { |
4465 | 0 | Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); |
4466 | 0 | } else { |
4467 | 0 | assert(E->getOpcode() == BO_NE && |
4468 | 0 | "Complex comparison other than == or != ?"); |
4469 | 0 | Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); |
4470 | 0 | } |
4471 | 0 | } |
4472 | | |
4473 | 0 | return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), |
4474 | 0 | E->getExprLoc()); |
4475 | 0 | } |
4476 | | |
4477 | 0 | Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { |
4478 | 0 | bool Ignore = TestAndClearIgnoreResultAssign(); |
4479 | |
|
4480 | 0 | Value *RHS; |
4481 | 0 | LValue LHS; |
4482 | |
|
4483 | 0 | switch (E->getLHS()->getType().getObjCLifetime()) { |
4484 | 0 | case Qualifiers::OCL_Strong: |
4485 | 0 | std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); |
4486 | 0 | break; |
4487 | | |
4488 | 0 | case Qualifiers::OCL_Autoreleasing: |
4489 | 0 | std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); |
4490 | 0 | break; |
4491 | | |
4492 | 0 | case Qualifiers::OCL_ExplicitNone: |
4493 | 0 | std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); |
4494 | 0 | break; |
4495 | | |
4496 | 0 | case Qualifiers::OCL_Weak: |
4497 | 0 | RHS = Visit(E->getRHS()); |
4498 | 0 | LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); |
4499 | 0 | RHS = CGF.EmitARCStoreWeak(LHS.getAddress(CGF), RHS, Ignore); |
4500 | 0 | break; |
4501 | | |
4502 | 0 | case Qualifiers::OCL_None: |
4503 | | // __block variables need to have the rhs evaluated first, plus |
4504 | | // this should improve codegen just a little. |
4505 | 0 | RHS = Visit(E->getRHS()); |
4506 | 0 | LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); |
4507 | | |
4508 | | // Store the value into the LHS. Bit-fields are handled specially |
4509 | | // because the result is altered by the store, i.e., [C99 6.5.16p1] |
4510 | | // 'An assignment expression has the value of the left operand after |
4511 | | // the assignment...'. |
4512 | 0 | if (LHS.isBitField()) { |
4513 | 0 | CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); |
4514 | 0 | } else { |
4515 | 0 | CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); |
4516 | 0 | CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); |
4517 | 0 | } |
4518 | 0 | } |
4519 | | |
4520 | | // If the result is clearly ignored, return now. |
4521 | 0 | if (Ignore) |
4522 | 0 | return nullptr; |
4523 | | |
4524 | | // The result of an assignment in C is the assigned r-value. |
4525 | 0 | if (!CGF.getLangOpts().CPlusPlus) |
4526 | 0 | return RHS; |
4527 | | |
4528 | | // If the lvalue is non-volatile, return the computed value of the assignment. |
4529 | 0 | if (!LHS.isVolatileQualified()) |
4530 | 0 | return RHS; |
4531 | | |
4532 | | // Otherwise, reload the value. |
4533 | 0 | return EmitLoadOfLValue(LHS, E->getExprLoc()); |
4534 | 0 | } |
4535 | | |
4536 | 0 | Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { |
4537 | | // Perform vector logical and on comparisons with zero vectors. |
4538 | 0 | if (E->getType()->isVectorType()) { |
4539 | 0 | CGF.incrementProfileCounter(E); |
4540 | |
|
4541 | 0 | Value *LHS = Visit(E->getLHS()); |
4542 | 0 | Value *RHS = Visit(E->getRHS()); |
4543 | 0 | Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); |
4544 | 0 | if (LHS->getType()->isFPOrFPVectorTy()) { |
4545 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII( |
4546 | 0 | CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); |
4547 | 0 | LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); |
4548 | 0 | RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); |
4549 | 0 | } else { |
4550 | 0 | LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); |
4551 | 0 | RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); |
4552 | 0 | } |
4553 | 0 | Value *And = Builder.CreateAnd(LHS, RHS); |
4554 | 0 | return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); |
4555 | 0 | } |
4556 | | |
4557 | 0 | bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); |
4558 | 0 | llvm::Type *ResTy = ConvertType(E->getType()); |
4559 | | |
4560 | | // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. |
4561 | | // If we have 1 && X, just emit X without inserting the control flow. |
4562 | 0 | bool LHSCondVal; |
4563 | 0 | if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { |
4564 | 0 | if (LHSCondVal) { // If we have 1 && X, just emit X. |
4565 | 0 | CGF.incrementProfileCounter(E); |
4566 | | |
4567 | | // If the top of the logical operator nest, reset the MCDC temp to 0. |
4568 | 0 | if (CGF.MCDCLogOpStack.empty()) |
4569 | 0 | CGF.maybeResetMCDCCondBitmap(E); |
4570 | |
|
4571 | 0 | CGF.MCDCLogOpStack.push_back(E); |
4572 | |
|
4573 | 0 | Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
4574 | | |
4575 | | // If we're generating for profiling or coverage, generate a branch to a |
4576 | | // block that increments the RHS counter needed to track branch condition |
4577 | | // coverage. In this case, use "FBlock" as both the final "TrueBlock" and |
4578 | | // "FalseBlock" after the increment is done. |
4579 | 0 | if (InstrumentRegions && |
4580 | 0 | CodeGenFunction::isInstrumentedCondition(E->getRHS())) { |
4581 | 0 | CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond); |
4582 | 0 | llvm::BasicBlock *FBlock = CGF.createBasicBlock("land.end"); |
4583 | 0 | llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); |
4584 | 0 | Builder.CreateCondBr(RHSCond, RHSBlockCnt, FBlock); |
4585 | 0 | CGF.EmitBlock(RHSBlockCnt); |
4586 | 0 | CGF.incrementProfileCounter(E->getRHS()); |
4587 | 0 | CGF.EmitBranch(FBlock); |
4588 | 0 | CGF.EmitBlock(FBlock); |
4589 | 0 | } |
4590 | |
|
4591 | 0 | CGF.MCDCLogOpStack.pop_back(); |
4592 | | // If the top of the logical operator nest, update the MCDC bitmap. |
4593 | 0 | if (CGF.MCDCLogOpStack.empty()) |
4594 | 0 | CGF.maybeUpdateMCDCTestVectorBitmap(E); |
4595 | | |
4596 | | // ZExt result to int or bool. |
4597 | 0 | return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); |
4598 | 0 | } |
4599 | | |
4600 | | // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. |
4601 | 0 | if (!CGF.ContainsLabel(E->getRHS())) |
4602 | 0 | return llvm::Constant::getNullValue(ResTy); |
4603 | 0 | } |
4604 | | |
4605 | | // If the top of the logical operator nest, reset the MCDC temp to 0. |
4606 | 0 | if (CGF.MCDCLogOpStack.empty()) |
4607 | 0 | CGF.maybeResetMCDCCondBitmap(E); |
4608 | |
|
4609 | 0 | CGF.MCDCLogOpStack.push_back(E); |
4610 | |
|
4611 | 0 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); |
4612 | 0 | llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); |
4613 | |
|
4614 | 0 | CodeGenFunction::ConditionalEvaluation eval(CGF); |
4615 | | |
4616 | | // Branch on the LHS first. If it is false, go to the failure (cont) block. |
4617 | 0 | CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, |
4618 | 0 | CGF.getProfileCount(E->getRHS())); |
4619 | | |
4620 | | // Any edges into the ContBlock are now from an (indeterminate number of) |
4621 | | // edges from this first condition. All of these values will be false. Start |
4622 | | // setting up the PHI node in the Cont Block for this. |
4623 | 0 | llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, |
4624 | 0 | "", ContBlock); |
4625 | 0 | for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); |
4626 | 0 | PI != PE; ++PI) |
4627 | 0 | PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); |
4628 | |
|
4629 | 0 | eval.begin(CGF); |
4630 | 0 | CGF.EmitBlock(RHSBlock); |
4631 | 0 | CGF.incrementProfileCounter(E); |
4632 | 0 | Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
4633 | 0 | eval.end(CGF); |
4634 | | |
4635 | | // Reaquire the RHS block, as there may be subblocks inserted. |
4636 | 0 | RHSBlock = Builder.GetInsertBlock(); |
4637 | | |
4638 | | // If we're generating for profiling or coverage, generate a branch on the |
4639 | | // RHS to a block that increments the RHS true counter needed to track branch |
4640 | | // condition coverage. |
4641 | 0 | if (InstrumentRegions && |
4642 | 0 | CodeGenFunction::isInstrumentedCondition(E->getRHS())) { |
4643 | 0 | CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond); |
4644 | 0 | llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("land.rhscnt"); |
4645 | 0 | Builder.CreateCondBr(RHSCond, RHSBlockCnt, ContBlock); |
4646 | 0 | CGF.EmitBlock(RHSBlockCnt); |
4647 | 0 | CGF.incrementProfileCounter(E->getRHS()); |
4648 | 0 | CGF.EmitBranch(ContBlock); |
4649 | 0 | PN->addIncoming(RHSCond, RHSBlockCnt); |
4650 | 0 | } |
4651 | | |
4652 | | // Emit an unconditional branch from this block to ContBlock. |
4653 | 0 | { |
4654 | | // There is no need to emit line number for unconditional branch. |
4655 | 0 | auto NL = ApplyDebugLocation::CreateEmpty(CGF); |
4656 | 0 | CGF.EmitBlock(ContBlock); |
4657 | 0 | } |
4658 | | // Insert an entry into the phi node for the edge with the value of RHSCond. |
4659 | 0 | PN->addIncoming(RHSCond, RHSBlock); |
4660 | |
|
4661 | 0 | CGF.MCDCLogOpStack.pop_back(); |
4662 | | // If the top of the logical operator nest, update the MCDC bitmap. |
4663 | 0 | if (CGF.MCDCLogOpStack.empty()) |
4664 | 0 | CGF.maybeUpdateMCDCTestVectorBitmap(E); |
4665 | | |
4666 | | // Artificial location to preserve the scope information |
4667 | 0 | { |
4668 | 0 | auto NL = ApplyDebugLocation::CreateArtificial(CGF); |
4669 | 0 | PN->setDebugLoc(Builder.getCurrentDebugLocation()); |
4670 | 0 | } |
4671 | | |
4672 | | // ZExt result to int. |
4673 | 0 | return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); |
4674 | 0 | } |
4675 | | |
4676 | 0 | Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { |
4677 | | // Perform vector logical or on comparisons with zero vectors. |
4678 | 0 | if (E->getType()->isVectorType()) { |
4679 | 0 | CGF.incrementProfileCounter(E); |
4680 | |
|
4681 | 0 | Value *LHS = Visit(E->getLHS()); |
4682 | 0 | Value *RHS = Visit(E->getRHS()); |
4683 | 0 | Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); |
4684 | 0 | if (LHS->getType()->isFPOrFPVectorTy()) { |
4685 | 0 | CodeGenFunction::CGFPOptionsRAII FPOptsRAII( |
4686 | 0 | CGF, E->getFPFeaturesInEffect(CGF.getLangOpts())); |
4687 | 0 | LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); |
4688 | 0 | RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); |
4689 | 0 | } else { |
4690 | 0 | LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); |
4691 | 0 | RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); |
4692 | 0 | } |
4693 | 0 | Value *Or = Builder.CreateOr(LHS, RHS); |
4694 | 0 | return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); |
4695 | 0 | } |
4696 | | |
4697 | 0 | bool InstrumentRegions = CGF.CGM.getCodeGenOpts().hasProfileClangInstr(); |
4698 | 0 | llvm::Type *ResTy = ConvertType(E->getType()); |
4699 | | |
4700 | | // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. |
4701 | | // If we have 0 || X, just emit X without inserting the control flow. |
4702 | 0 | bool LHSCondVal; |
4703 | 0 | if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { |
4704 | 0 | if (!LHSCondVal) { // If we have 0 || X, just emit X. |
4705 | 0 | CGF.incrementProfileCounter(E); |
4706 | | |
4707 | | // If the top of the logical operator nest, reset the MCDC temp to 0. |
4708 | 0 | if (CGF.MCDCLogOpStack.empty()) |
4709 | 0 | CGF.maybeResetMCDCCondBitmap(E); |
4710 | |
|
4711 | 0 | CGF.MCDCLogOpStack.push_back(E); |
4712 | |
|
4713 | 0 | Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
4714 | | |
4715 | | // If we're generating for profiling or coverage, generate a branch to a |
4716 | | // block that increments the RHS counter need to track branch condition |
4717 | | // coverage. In this case, use "FBlock" as both the final "TrueBlock" and |
4718 | | // "FalseBlock" after the increment is done. |
4719 | 0 | if (InstrumentRegions && |
4720 | 0 | CodeGenFunction::isInstrumentedCondition(E->getRHS())) { |
4721 | 0 | CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond); |
4722 | 0 | llvm::BasicBlock *FBlock = CGF.createBasicBlock("lor.end"); |
4723 | 0 | llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); |
4724 | 0 | Builder.CreateCondBr(RHSCond, FBlock, RHSBlockCnt); |
4725 | 0 | CGF.EmitBlock(RHSBlockCnt); |
4726 | 0 | CGF.incrementProfileCounter(E->getRHS()); |
4727 | 0 | CGF.EmitBranch(FBlock); |
4728 | 0 | CGF.EmitBlock(FBlock); |
4729 | 0 | } |
4730 | |
|
4731 | 0 | CGF.MCDCLogOpStack.pop_back(); |
4732 | | // If the top of the logical operator nest, update the MCDC bitmap. |
4733 | 0 | if (CGF.MCDCLogOpStack.empty()) |
4734 | 0 | CGF.maybeUpdateMCDCTestVectorBitmap(E); |
4735 | | |
4736 | | // ZExt result to int or bool. |
4737 | 0 | return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); |
4738 | 0 | } |
4739 | | |
4740 | | // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. |
4741 | 0 | if (!CGF.ContainsLabel(E->getRHS())) |
4742 | 0 | return llvm::ConstantInt::get(ResTy, 1); |
4743 | 0 | } |
4744 | | |
4745 | | // If the top of the logical operator nest, reset the MCDC temp to 0. |
4746 | 0 | if (CGF.MCDCLogOpStack.empty()) |
4747 | 0 | CGF.maybeResetMCDCCondBitmap(E); |
4748 | |
|
4749 | 0 | CGF.MCDCLogOpStack.push_back(E); |
4750 | |
|
4751 | 0 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); |
4752 | 0 | llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); |
4753 | |
|
4754 | 0 | CodeGenFunction::ConditionalEvaluation eval(CGF); |
4755 | | |
4756 | | // Branch on the LHS first. If it is true, go to the success (cont) block. |
4757 | 0 | CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, |
4758 | 0 | CGF.getCurrentProfileCount() - |
4759 | 0 | CGF.getProfileCount(E->getRHS())); |
4760 | | |
4761 | | // Any edges into the ContBlock are now from an (indeterminate number of) |
4762 | | // edges from this first condition. All of these values will be true. Start |
4763 | | // setting up the PHI node in the Cont Block for this. |
4764 | 0 | llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, |
4765 | 0 | "", ContBlock); |
4766 | 0 | for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); |
4767 | 0 | PI != PE; ++PI) |
4768 | 0 | PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); |
4769 | |
|
4770 | 0 | eval.begin(CGF); |
4771 | | |
4772 | | // Emit the RHS condition as a bool value. |
4773 | 0 | CGF.EmitBlock(RHSBlock); |
4774 | 0 | CGF.incrementProfileCounter(E); |
4775 | 0 | Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); |
4776 | |
|
4777 | 0 | eval.end(CGF); |
4778 | | |
4779 | | // Reaquire the RHS block, as there may be subblocks inserted. |
4780 | 0 | RHSBlock = Builder.GetInsertBlock(); |
4781 | | |
4782 | | // If we're generating for profiling or coverage, generate a branch on the |
4783 | | // RHS to a block that increments the RHS true counter needed to track branch |
4784 | | // condition coverage. |
4785 | 0 | if (InstrumentRegions && |
4786 | 0 | CodeGenFunction::isInstrumentedCondition(E->getRHS())) { |
4787 | 0 | CGF.maybeUpdateMCDCCondBitmap(E->getRHS(), RHSCond); |
4788 | 0 | llvm::BasicBlock *RHSBlockCnt = CGF.createBasicBlock("lor.rhscnt"); |
4789 | 0 | Builder.CreateCondBr(RHSCond, ContBlock, RHSBlockCnt); |
4790 | 0 | CGF.EmitBlock(RHSBlockCnt); |
4791 | 0 | CGF.incrementProfileCounter(E->getRHS()); |
4792 | 0 | CGF.EmitBranch(ContBlock); |
4793 | 0 | PN->addIncoming(RHSCond, RHSBlockCnt); |
4794 | 0 | } |
4795 | | |
4796 | | // Emit an unconditional branch from this block to ContBlock. Insert an entry |
4797 | | // into the phi node for the edge with the value of RHSCond. |
4798 | 0 | CGF.EmitBlock(ContBlock); |
4799 | 0 | PN->addIncoming(RHSCond, RHSBlock); |
4800 | |
|
4801 | 0 | CGF.MCDCLogOpStack.pop_back(); |
4802 | | // If the top of the logical operator nest, update the MCDC bitmap. |
4803 | 0 | if (CGF.MCDCLogOpStack.empty()) |
4804 | 0 | CGF.maybeUpdateMCDCTestVectorBitmap(E); |
4805 | | |
4806 | | // ZExt result to int. |
4807 | 0 | return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); |
4808 | 0 | } |
4809 | | |
4810 | 0 | Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { |
4811 | 0 | CGF.EmitIgnoredExpr(E->getLHS()); |
4812 | 0 | CGF.EnsureInsertPoint(); |
4813 | 0 | return Visit(E->getRHS()); |
4814 | 0 | } |
4815 | | |
4816 | | //===----------------------------------------------------------------------===// |
4817 | | // Other Operators |
4818 | | //===----------------------------------------------------------------------===// |
4819 | | |
4820 | | /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified |
4821 | | /// expression is cheap enough and side-effect-free enough to evaluate |
4822 | | /// unconditionally instead of conditionally. This is used to convert control |
4823 | | /// flow into selects in some cases. |
4824 | | static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, |
4825 | 0 | CodeGenFunction &CGF) { |
4826 | | // Anything that is an integer or floating point constant is fine. |
4827 | 0 | return E->IgnoreParens()->isEvaluatable(CGF.getContext()); |
4828 | | |
4829 | | // Even non-volatile automatic variables can't be evaluated unconditionally. |
4830 | | // Referencing a thread_local may cause non-trivial initialization work to |
4831 | | // occur. If we're inside a lambda and one of the variables is from the scope |
4832 | | // outside the lambda, that function may have returned already. Reading its |
4833 | | // locals is a bad idea. Also, these reads may introduce races there didn't |
4834 | | // exist in the source-level program. |
4835 | 0 | } |
4836 | | |
4837 | | |
4838 | | Value *ScalarExprEmitter:: |
4839 | 0 | VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { |
4840 | 0 | TestAndClearIgnoreResultAssign(); |
4841 | | |
4842 | | // Bind the common expression if necessary. |
4843 | 0 | CodeGenFunction::OpaqueValueMapping binding(CGF, E); |
4844 | |
|
4845 | 0 | Expr *condExpr = E->getCond(); |
4846 | 0 | Expr *lhsExpr = E->getTrueExpr(); |
4847 | 0 | Expr *rhsExpr = E->getFalseExpr(); |
4848 | | |
4849 | | // If the condition constant folds and can be elided, try to avoid emitting |
4850 | | // the condition and the dead arm. |
4851 | 0 | bool CondExprBool; |
4852 | 0 | if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { |
4853 | 0 | Expr *live = lhsExpr, *dead = rhsExpr; |
4854 | 0 | if (!CondExprBool) std::swap(live, dead); |
4855 | | |
4856 | | // If the dead side doesn't have labels we need, just emit the Live part. |
4857 | 0 | if (!CGF.ContainsLabel(dead)) { |
4858 | 0 | if (CondExprBool) |
4859 | 0 | CGF.incrementProfileCounter(E); |
4860 | 0 | Value *Result = Visit(live); |
4861 | | |
4862 | | // If the live part is a throw expression, it acts like it has a void |
4863 | | // type, so evaluating it returns a null Value*. However, a conditional |
4864 | | // with non-void type must return a non-null Value*. |
4865 | 0 | if (!Result && !E->getType()->isVoidType()) |
4866 | 0 | Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); |
4867 | |
|
4868 | 0 | return Result; |
4869 | 0 | } |
4870 | 0 | } |
4871 | | |
4872 | | // OpenCL: If the condition is a vector, we can treat this condition like |
4873 | | // the select function. |
4874 | 0 | if ((CGF.getLangOpts().OpenCL && condExpr->getType()->isVectorType()) || |
4875 | 0 | condExpr->getType()->isExtVectorType()) { |
4876 | 0 | CGF.incrementProfileCounter(E); |
4877 | |
|
4878 | 0 | llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); |
4879 | 0 | llvm::Value *LHS = Visit(lhsExpr); |
4880 | 0 | llvm::Value *RHS = Visit(rhsExpr); |
4881 | |
|
4882 | 0 | llvm::Type *condType = ConvertType(condExpr->getType()); |
4883 | 0 | auto *vecTy = cast<llvm::FixedVectorType>(condType); |
4884 | |
|
4885 | 0 | unsigned numElem = vecTy->getNumElements(); |
4886 | 0 | llvm::Type *elemType = vecTy->getElementType(); |
4887 | |
|
4888 | 0 | llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); |
4889 | 0 | llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); |
4890 | 0 | llvm::Value *tmp = Builder.CreateSExt( |
4891 | 0 | TestMSB, llvm::FixedVectorType::get(elemType, numElem), "sext"); |
4892 | 0 | llvm::Value *tmp2 = Builder.CreateNot(tmp); |
4893 | | |
4894 | | // Cast float to int to perform ANDs if necessary. |
4895 | 0 | llvm::Value *RHSTmp = RHS; |
4896 | 0 | llvm::Value *LHSTmp = LHS; |
4897 | 0 | bool wasCast = false; |
4898 | 0 | llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); |
4899 | 0 | if (rhsVTy->getElementType()->isFloatingPointTy()) { |
4900 | 0 | RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); |
4901 | 0 | LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); |
4902 | 0 | wasCast = true; |
4903 | 0 | } |
4904 | |
|
4905 | 0 | llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); |
4906 | 0 | llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); |
4907 | 0 | llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); |
4908 | 0 | if (wasCast) |
4909 | 0 | tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); |
4910 | |
|
4911 | 0 | return tmp5; |
4912 | 0 | } |
4913 | | |
4914 | 0 | if (condExpr->getType()->isVectorType() || |
4915 | 0 | condExpr->getType()->isSveVLSBuiltinType()) { |
4916 | 0 | CGF.incrementProfileCounter(E); |
4917 | |
|
4918 | 0 | llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); |
4919 | 0 | llvm::Value *LHS = Visit(lhsExpr); |
4920 | 0 | llvm::Value *RHS = Visit(rhsExpr); |
4921 | |
|
4922 | 0 | llvm::Type *CondType = ConvertType(condExpr->getType()); |
4923 | 0 | auto *VecTy = cast<llvm::VectorType>(CondType); |
4924 | 0 | llvm::Value *ZeroVec = llvm::Constant::getNullValue(VecTy); |
4925 | |
|
4926 | 0 | CondV = Builder.CreateICmpNE(CondV, ZeroVec, "vector_cond"); |
4927 | 0 | return Builder.CreateSelect(CondV, LHS, RHS, "vector_select"); |
4928 | 0 | } |
4929 | | |
4930 | | // If this is a really simple expression (like x ? 4 : 5), emit this as a |
4931 | | // select instead of as control flow. We can only do this if it is cheap and |
4932 | | // safe to evaluate the LHS and RHS unconditionally. |
4933 | 0 | if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && |
4934 | 0 | isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { |
4935 | 0 | llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); |
4936 | 0 | llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); |
4937 | |
|
4938 | 0 | CGF.incrementProfileCounter(E, StepV); |
4939 | |
|
4940 | 0 | llvm::Value *LHS = Visit(lhsExpr); |
4941 | 0 | llvm::Value *RHS = Visit(rhsExpr); |
4942 | 0 | if (!LHS) { |
4943 | | // If the conditional has void type, make sure we return a null Value*. |
4944 | 0 | assert(!RHS && "LHS and RHS types must match"); |
4945 | 0 | return nullptr; |
4946 | 0 | } |
4947 | 0 | return Builder.CreateSelect(CondV, LHS, RHS, "cond"); |
4948 | 0 | } |
4949 | | |
4950 | | // If the top of the logical operator nest, reset the MCDC temp to 0. |
4951 | 0 | if (CGF.MCDCLogOpStack.empty()) |
4952 | 0 | CGF.maybeResetMCDCCondBitmap(condExpr); |
4953 | |
|
4954 | 0 | llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); |
4955 | 0 | llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); |
4956 | 0 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); |
4957 | |
|
4958 | 0 | CodeGenFunction::ConditionalEvaluation eval(CGF); |
4959 | 0 | CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, |
4960 | 0 | CGF.getProfileCount(lhsExpr)); |
4961 | |
|
4962 | 0 | CGF.EmitBlock(LHSBlock); |
4963 | 0 | CGF.incrementProfileCounter(E); |
4964 | 0 | eval.begin(CGF); |
4965 | 0 | Value *LHS = Visit(lhsExpr); |
4966 | 0 | eval.end(CGF); |
4967 | |
|
4968 | 0 | LHSBlock = Builder.GetInsertBlock(); |
4969 | 0 | Builder.CreateBr(ContBlock); |
4970 | |
|
4971 | 0 | CGF.EmitBlock(RHSBlock); |
4972 | 0 | eval.begin(CGF); |
4973 | 0 | Value *RHS = Visit(rhsExpr); |
4974 | 0 | eval.end(CGF); |
4975 | |
|
4976 | 0 | RHSBlock = Builder.GetInsertBlock(); |
4977 | 0 | CGF.EmitBlock(ContBlock); |
4978 | | |
4979 | | // If the LHS or RHS is a throw expression, it will be legitimately null. |
4980 | 0 | if (!LHS) |
4981 | 0 | return RHS; |
4982 | 0 | if (!RHS) |
4983 | 0 | return LHS; |
4984 | | |
4985 | | // Create a PHI node for the real part. |
4986 | 0 | llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); |
4987 | 0 | PN->addIncoming(LHS, LHSBlock); |
4988 | 0 | PN->addIncoming(RHS, RHSBlock); |
4989 | | |
4990 | | // If the top of the logical operator nest, update the MCDC bitmap. |
4991 | 0 | if (CGF.MCDCLogOpStack.empty()) |
4992 | 0 | CGF.maybeUpdateMCDCTestVectorBitmap(condExpr); |
4993 | |
|
4994 | 0 | return PN; |
4995 | 0 | } |
4996 | | |
4997 | 0 | Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { |
4998 | 0 | return Visit(E->getChosenSubExpr()); |
4999 | 0 | } |
5000 | | |
5001 | 0 | Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { |
5002 | 0 | QualType Ty = VE->getType(); |
5003 | |
|
5004 | 0 | if (Ty->isVariablyModifiedType()) |
5005 | 0 | CGF.EmitVariablyModifiedType(Ty); |
5006 | |
|
5007 | 0 | Address ArgValue = Address::invalid(); |
5008 | 0 | Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); |
5009 | |
|
5010 | 0 | llvm::Type *ArgTy = ConvertType(VE->getType()); |
5011 | | |
5012 | | // If EmitVAArg fails, emit an error. |
5013 | 0 | if (!ArgPtr.isValid()) { |
5014 | 0 | CGF.ErrorUnsupported(VE, "va_arg expression"); |
5015 | 0 | return llvm::UndefValue::get(ArgTy); |
5016 | 0 | } |
5017 | | |
5018 | | // FIXME Volatility. |
5019 | 0 | llvm::Value *Val = Builder.CreateLoad(ArgPtr); |
5020 | | |
5021 | | // If EmitVAArg promoted the type, we must truncate it. |
5022 | 0 | if (ArgTy != Val->getType()) { |
5023 | 0 | if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) |
5024 | 0 | Val = Builder.CreateIntToPtr(Val, ArgTy); |
5025 | 0 | else |
5026 | 0 | Val = Builder.CreateTrunc(Val, ArgTy); |
5027 | 0 | } |
5028 | |
|
5029 | 0 | return Val; |
5030 | 0 | } |
5031 | | |
5032 | 0 | Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { |
5033 | 0 | return CGF.EmitBlockLiteral(block); |
5034 | 0 | } |
5035 | | |
5036 | | // Convert a vec3 to vec4, or vice versa. |
5037 | | static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, |
5038 | 0 | Value *Src, unsigned NumElementsDst) { |
5039 | 0 | static constexpr int Mask[] = {0, 1, 2, -1}; |
5040 | 0 | return Builder.CreateShuffleVector(Src, llvm::ArrayRef(Mask, NumElementsDst)); |
5041 | 0 | } |
5042 | | |
5043 | | // Create cast instructions for converting LLVM value \p Src to LLVM type \p |
5044 | | // DstTy. \p Src has the same size as \p DstTy. Both are single value types |
5045 | | // but could be scalar or vectors of different lengths, and either can be |
5046 | | // pointer. |
5047 | | // There are 4 cases: |
5048 | | // 1. non-pointer -> non-pointer : needs 1 bitcast |
5049 | | // 2. pointer -> pointer : needs 1 bitcast or addrspacecast |
5050 | | // 3. pointer -> non-pointer |
5051 | | // a) pointer -> intptr_t : needs 1 ptrtoint |
5052 | | // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast |
5053 | | // 4. non-pointer -> pointer |
5054 | | // a) intptr_t -> pointer : needs 1 inttoptr |
5055 | | // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr |
5056 | | // Note: for cases 3b and 4b two casts are required since LLVM casts do not |
5057 | | // allow casting directly between pointer types and non-integer non-pointer |
5058 | | // types. |
5059 | | static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, |
5060 | | const llvm::DataLayout &DL, |
5061 | | Value *Src, llvm::Type *DstTy, |
5062 | 0 | StringRef Name = "") { |
5063 | 0 | auto SrcTy = Src->getType(); |
5064 | | |
5065 | | // Case 1. |
5066 | 0 | if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) |
5067 | 0 | return Builder.CreateBitCast(Src, DstTy, Name); |
5068 | | |
5069 | | // Case 2. |
5070 | 0 | if (SrcTy->isPointerTy() && DstTy->isPointerTy()) |
5071 | 0 | return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); |
5072 | | |
5073 | | // Case 3. |
5074 | 0 | if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { |
5075 | | // Case 3b. |
5076 | 0 | if (!DstTy->isIntegerTy()) |
5077 | 0 | Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); |
5078 | | // Cases 3a and 3b. |
5079 | 0 | return Builder.CreateBitOrPointerCast(Src, DstTy, Name); |
5080 | 0 | } |
5081 | | |
5082 | | // Case 4b. |
5083 | 0 | if (!SrcTy->isIntegerTy()) |
5084 | 0 | Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); |
5085 | | // Cases 4a and 4b. |
5086 | 0 | return Builder.CreateIntToPtr(Src, DstTy, Name); |
5087 | 0 | } |
5088 | | |
5089 | 0 | Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { |
5090 | 0 | Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); |
5091 | 0 | llvm::Type *DstTy = ConvertType(E->getType()); |
5092 | |
|
5093 | 0 | llvm::Type *SrcTy = Src->getType(); |
5094 | 0 | unsigned NumElementsSrc = |
5095 | 0 | isa<llvm::VectorType>(SrcTy) |
5096 | 0 | ? cast<llvm::FixedVectorType>(SrcTy)->getNumElements() |
5097 | 0 | : 0; |
5098 | 0 | unsigned NumElementsDst = |
5099 | 0 | isa<llvm::VectorType>(DstTy) |
5100 | 0 | ? cast<llvm::FixedVectorType>(DstTy)->getNumElements() |
5101 | 0 | : 0; |
5102 | | |
5103 | | // Use bit vector expansion for ext_vector_type boolean vectors. |
5104 | 0 | if (E->getType()->isExtVectorBoolType()) |
5105 | 0 | return CGF.emitBoolVecConversion(Src, NumElementsDst, "astype"); |
5106 | | |
5107 | | // Going from vec3 to non-vec3 is a special case and requires a shuffle |
5108 | | // vector to get a vec4, then a bitcast if the target type is different. |
5109 | 0 | if (NumElementsSrc == 3 && NumElementsDst != 3) { |
5110 | 0 | Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); |
5111 | 0 | Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, |
5112 | 0 | DstTy); |
5113 | |
|
5114 | 0 | Src->setName("astype"); |
5115 | 0 | return Src; |
5116 | 0 | } |
5117 | | |
5118 | | // Going from non-vec3 to vec3 is a special case and requires a bitcast |
5119 | | // to vec4 if the original type is not vec4, then a shuffle vector to |
5120 | | // get a vec3. |
5121 | 0 | if (NumElementsSrc != 3 && NumElementsDst == 3) { |
5122 | 0 | auto *Vec4Ty = llvm::FixedVectorType::get( |
5123 | 0 | cast<llvm::VectorType>(DstTy)->getElementType(), 4); |
5124 | 0 | Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, |
5125 | 0 | Vec4Ty); |
5126 | |
|
5127 | 0 | Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); |
5128 | 0 | Src->setName("astype"); |
5129 | 0 | return Src; |
5130 | 0 | } |
5131 | | |
5132 | 0 | return createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), |
5133 | 0 | Src, DstTy, "astype"); |
5134 | 0 | } |
5135 | | |
5136 | 0 | Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { |
5137 | 0 | return CGF.EmitAtomicExpr(E).getScalarVal(); |
5138 | 0 | } |
5139 | | |
5140 | | //===----------------------------------------------------------------------===// |
5141 | | // Entry Point into this File |
5142 | | //===----------------------------------------------------------------------===// |
5143 | | |
5144 | | /// Emit the computation of the specified expression of scalar type, ignoring |
5145 | | /// the result. |
5146 | 0 | Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { |
5147 | 0 | assert(E && hasScalarEvaluationKind(E->getType()) && |
5148 | 0 | "Invalid scalar expression to emit"); |
5149 | | |
5150 | 0 | return ScalarExprEmitter(*this, IgnoreResultAssign) |
5151 | 0 | .Visit(const_cast<Expr *>(E)); |
5152 | 0 | } |
5153 | | |
5154 | | /// Emit a conversion from the specified type to the specified destination type, |
5155 | | /// both of which are LLVM scalar types. |
5156 | | Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, |
5157 | | QualType DstTy, |
5158 | 0 | SourceLocation Loc) { |
5159 | 0 | assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && |
5160 | 0 | "Invalid scalar expression to emit"); |
5161 | 0 | return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); |
5162 | 0 | } |
5163 | | |
5164 | | /// Emit a conversion from the specified complex type to the specified |
5165 | | /// destination type, where the destination type is an LLVM scalar type. |
5166 | | Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, |
5167 | | QualType SrcTy, |
5168 | | QualType DstTy, |
5169 | 0 | SourceLocation Loc) { |
5170 | 0 | assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && |
5171 | 0 | "Invalid complex -> scalar conversion"); |
5172 | 0 | return ScalarExprEmitter(*this) |
5173 | 0 | .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); |
5174 | 0 | } |
5175 | | |
5176 | | |
5177 | | Value * |
5178 | | CodeGenFunction::EmitPromotedScalarExpr(const Expr *E, |
5179 | 0 | QualType PromotionType) { |
5180 | 0 | if (!PromotionType.isNull()) |
5181 | 0 | return ScalarExprEmitter(*this).EmitPromoted(E, PromotionType); |
5182 | 0 | else |
5183 | 0 | return ScalarExprEmitter(*this).Visit(const_cast<Expr *>(E)); |
5184 | 0 | } |
5185 | | |
5186 | | |
5187 | | llvm::Value *CodeGenFunction:: |
5188 | | EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, |
5189 | 0 | bool isInc, bool isPre) { |
5190 | 0 | return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); |
5191 | 0 | } |
5192 | | |
5193 | 0 | LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { |
5194 | | // object->isa or (*object).isa |
5195 | | // Generate code as for: *(Class*)object |
5196 | |
|
5197 | 0 | Expr *BaseExpr = E->getBase(); |
5198 | 0 | Address Addr = Address::invalid(); |
5199 | 0 | if (BaseExpr->isPRValue()) { |
5200 | 0 | llvm::Type *BaseTy = |
5201 | 0 | ConvertTypeForMem(BaseExpr->getType()->getPointeeType()); |
5202 | 0 | Addr = Address(EmitScalarExpr(BaseExpr), BaseTy, getPointerAlign()); |
5203 | 0 | } else { |
5204 | 0 | Addr = EmitLValue(BaseExpr).getAddress(*this); |
5205 | 0 | } |
5206 | | |
5207 | | // Cast the address to Class*. |
5208 | 0 | Addr = Addr.withElementType(ConvertType(E->getType())); |
5209 | 0 | return MakeAddrLValue(Addr, E->getType()); |
5210 | 0 | } |
5211 | | |
5212 | | |
5213 | | LValue CodeGenFunction::EmitCompoundAssignmentLValue( |
5214 | 0 | const CompoundAssignOperator *E) { |
5215 | 0 | ScalarExprEmitter Scalar(*this); |
5216 | 0 | Value *Result = nullptr; |
5217 | 0 | switch (E->getOpcode()) { |
5218 | 0 | #define COMPOUND_OP(Op) \ |
5219 | 0 | case BO_##Op##Assign: \ |
5220 | 0 | return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ |
5221 | 0 | Result) |
5222 | 0 | COMPOUND_OP(Mul); |
5223 | 0 | COMPOUND_OP(Div); |
5224 | 0 | COMPOUND_OP(Rem); |
5225 | 0 | COMPOUND_OP(Add); |
5226 | 0 | COMPOUND_OP(Sub); |
5227 | 0 | COMPOUND_OP(Shl); |
5228 | 0 | COMPOUND_OP(Shr); |
5229 | 0 | COMPOUND_OP(And); |
5230 | 0 | COMPOUND_OP(Xor); |
5231 | 0 | COMPOUND_OP(Or); |
5232 | 0 | #undef COMPOUND_OP |
5233 | | |
5234 | 0 | case BO_PtrMemD: |
5235 | 0 | case BO_PtrMemI: |
5236 | 0 | case BO_Mul: |
5237 | 0 | case BO_Div: |
5238 | 0 | case BO_Rem: |
5239 | 0 | case BO_Add: |
5240 | 0 | case BO_Sub: |
5241 | 0 | case BO_Shl: |
5242 | 0 | case BO_Shr: |
5243 | 0 | case BO_LT: |
5244 | 0 | case BO_GT: |
5245 | 0 | case BO_LE: |
5246 | 0 | case BO_GE: |
5247 | 0 | case BO_EQ: |
5248 | 0 | case BO_NE: |
5249 | 0 | case BO_Cmp: |
5250 | 0 | case BO_And: |
5251 | 0 | case BO_Xor: |
5252 | 0 | case BO_Or: |
5253 | 0 | case BO_LAnd: |
5254 | 0 | case BO_LOr: |
5255 | 0 | case BO_Assign: |
5256 | 0 | case BO_Comma: |
5257 | 0 | llvm_unreachable("Not valid compound assignment operators"); |
5258 | 0 | } |
5259 | | |
5260 | 0 | llvm_unreachable("Unhandled compound assignment operator"); |
5261 | 0 | } |
5262 | | |
5263 | | struct GEPOffsetAndOverflow { |
5264 | | // The total (signed) byte offset for the GEP. |
5265 | | llvm::Value *TotalOffset; |
5266 | | // The offset overflow flag - true if the total offset overflows. |
5267 | | llvm::Value *OffsetOverflows; |
5268 | | }; |
5269 | | |
5270 | | /// Evaluate given GEPVal, which is either an inbounds GEP, or a constant, |
5271 | | /// and compute the total offset it applies from it's base pointer BasePtr. |
5272 | | /// Returns offset in bytes and a boolean flag whether an overflow happened |
5273 | | /// during evaluation. |
5274 | | static GEPOffsetAndOverflow EmitGEPOffsetInBytes(Value *BasePtr, Value *GEPVal, |
5275 | | llvm::LLVMContext &VMContext, |
5276 | | CodeGenModule &CGM, |
5277 | 0 | CGBuilderTy &Builder) { |
5278 | 0 | const auto &DL = CGM.getDataLayout(); |
5279 | | |
5280 | | // The total (signed) byte offset for the GEP. |
5281 | 0 | llvm::Value *TotalOffset = nullptr; |
5282 | | |
5283 | | // Was the GEP already reduced to a constant? |
5284 | 0 | if (isa<llvm::Constant>(GEPVal)) { |
5285 | | // Compute the offset by casting both pointers to integers and subtracting: |
5286 | | // GEPVal = BasePtr + ptr(Offset) <--> Offset = int(GEPVal) - int(BasePtr) |
5287 | 0 | Value *BasePtr_int = |
5288 | 0 | Builder.CreatePtrToInt(BasePtr, DL.getIntPtrType(BasePtr->getType())); |
5289 | 0 | Value *GEPVal_int = |
5290 | 0 | Builder.CreatePtrToInt(GEPVal, DL.getIntPtrType(GEPVal->getType())); |
5291 | 0 | TotalOffset = Builder.CreateSub(GEPVal_int, BasePtr_int); |
5292 | 0 | return {TotalOffset, /*OffsetOverflows=*/Builder.getFalse()}; |
5293 | 0 | } |
5294 | | |
5295 | 0 | auto *GEP = cast<llvm::GEPOperator>(GEPVal); |
5296 | 0 | assert(GEP->getPointerOperand() == BasePtr && |
5297 | 0 | "BasePtr must be the base of the GEP."); |
5298 | 0 | assert(GEP->isInBounds() && "Expected inbounds GEP"); |
5299 | | |
5300 | 0 | auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); |
5301 | | |
5302 | | // Grab references to the signed add/mul overflow intrinsics for intptr_t. |
5303 | 0 | auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); |
5304 | 0 | auto *SAddIntrinsic = |
5305 | 0 | CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); |
5306 | 0 | auto *SMulIntrinsic = |
5307 | 0 | CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); |
5308 | | |
5309 | | // The offset overflow flag - true if the total offset overflows. |
5310 | 0 | llvm::Value *OffsetOverflows = Builder.getFalse(); |
5311 | | |
5312 | | /// Return the result of the given binary operation. |
5313 | 0 | auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, |
5314 | 0 | llvm::Value *RHS) -> llvm::Value * { |
5315 | 0 | assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); |
5316 | | |
5317 | | // If the operands are constants, return a constant result. |
5318 | 0 | if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { |
5319 | 0 | if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { |
5320 | 0 | llvm::APInt N; |
5321 | 0 | bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, |
5322 | 0 | /*Signed=*/true, N); |
5323 | 0 | if (HasOverflow) |
5324 | 0 | OffsetOverflows = Builder.getTrue(); |
5325 | 0 | return llvm::ConstantInt::get(VMContext, N); |
5326 | 0 | } |
5327 | 0 | } |
5328 | | |
5329 | | // Otherwise, compute the result with checked arithmetic. |
5330 | 0 | auto *ResultAndOverflow = Builder.CreateCall( |
5331 | 0 | (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); |
5332 | 0 | OffsetOverflows = Builder.CreateOr( |
5333 | 0 | Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); |
5334 | 0 | return Builder.CreateExtractValue(ResultAndOverflow, 0); |
5335 | 0 | }; |
5336 | | |
5337 | | // Determine the total byte offset by looking at each GEP operand. |
5338 | 0 | for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); |
5339 | 0 | GTI != GTE; ++GTI) { |
5340 | 0 | llvm::Value *LocalOffset; |
5341 | 0 | auto *Index = GTI.getOperand(); |
5342 | | // Compute the local offset contributed by this indexing step: |
5343 | 0 | if (auto *STy = GTI.getStructTypeOrNull()) { |
5344 | | // For struct indexing, the local offset is the byte position of the |
5345 | | // specified field. |
5346 | 0 | unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); |
5347 | 0 | LocalOffset = llvm::ConstantInt::get( |
5348 | 0 | IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); |
5349 | 0 | } else { |
5350 | | // Otherwise this is array-like indexing. The local offset is the index |
5351 | | // multiplied by the element size. |
5352 | 0 | auto *ElementSize = |
5353 | 0 | llvm::ConstantInt::get(IntPtrTy, GTI.getSequentialElementStride(DL)); |
5354 | 0 | auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); |
5355 | 0 | LocalOffset = eval(BO_Mul, ElementSize, IndexS); |
5356 | 0 | } |
5357 | | |
5358 | | // If this is the first offset, set it as the total offset. Otherwise, add |
5359 | | // the local offset into the running total. |
5360 | 0 | if (!TotalOffset || TotalOffset == Zero) |
5361 | 0 | TotalOffset = LocalOffset; |
5362 | 0 | else |
5363 | 0 | TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); |
5364 | 0 | } |
5365 | |
|
5366 | 0 | return {TotalOffset, OffsetOverflows}; |
5367 | 0 | } |
5368 | | |
5369 | | Value * |
5370 | | CodeGenFunction::EmitCheckedInBoundsGEP(llvm::Type *ElemTy, Value *Ptr, |
5371 | | ArrayRef<Value *> IdxList, |
5372 | | bool SignedIndices, bool IsSubtraction, |
5373 | 0 | SourceLocation Loc, const Twine &Name) { |
5374 | 0 | llvm::Type *PtrTy = Ptr->getType(); |
5375 | 0 | Value *GEPVal = Builder.CreateInBoundsGEP(ElemTy, Ptr, IdxList, Name); |
5376 | | |
5377 | | // If the pointer overflow sanitizer isn't enabled, do nothing. |
5378 | 0 | if (!SanOpts.has(SanitizerKind::PointerOverflow)) |
5379 | 0 | return GEPVal; |
5380 | | |
5381 | | // Perform nullptr-and-offset check unless the nullptr is defined. |
5382 | 0 | bool PerformNullCheck = !NullPointerIsDefined( |
5383 | 0 | Builder.GetInsertBlock()->getParent(), PtrTy->getPointerAddressSpace()); |
5384 | | // Check for overflows unless the GEP got constant-folded, |
5385 | | // and only in the default address space |
5386 | 0 | bool PerformOverflowCheck = |
5387 | 0 | !isa<llvm::Constant>(GEPVal) && PtrTy->getPointerAddressSpace() == 0; |
5388 | |
|
5389 | 0 | if (!(PerformNullCheck || PerformOverflowCheck)) |
5390 | 0 | return GEPVal; |
5391 | | |
5392 | 0 | const auto &DL = CGM.getDataLayout(); |
5393 | |
|
5394 | 0 | SanitizerScope SanScope(this); |
5395 | 0 | llvm::Type *IntPtrTy = DL.getIntPtrType(PtrTy); |
5396 | |
|
5397 | 0 | GEPOffsetAndOverflow EvaluatedGEP = |
5398 | 0 | EmitGEPOffsetInBytes(Ptr, GEPVal, getLLVMContext(), CGM, Builder); |
5399 | |
|
5400 | 0 | assert((!isa<llvm::Constant>(EvaluatedGEP.TotalOffset) || |
5401 | 0 | EvaluatedGEP.OffsetOverflows == Builder.getFalse()) && |
5402 | 0 | "If the offset got constant-folded, we don't expect that there was an " |
5403 | 0 | "overflow."); |
5404 | | |
5405 | 0 | auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); |
5406 | | |
5407 | | // Common case: if the total offset is zero, and we are using C++ semantics, |
5408 | | // where nullptr+0 is defined, don't emit a check. |
5409 | 0 | if (EvaluatedGEP.TotalOffset == Zero && CGM.getLangOpts().CPlusPlus) |
5410 | 0 | return GEPVal; |
5411 | | |
5412 | | // Now that we've computed the total offset, add it to the base pointer (with |
5413 | | // wrapping semantics). |
5414 | 0 | auto *IntPtr = Builder.CreatePtrToInt(Ptr, IntPtrTy); |
5415 | 0 | auto *ComputedGEP = Builder.CreateAdd(IntPtr, EvaluatedGEP.TotalOffset); |
5416 | |
|
5417 | 0 | llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; |
5418 | |
|
5419 | 0 | if (PerformNullCheck) { |
5420 | | // In C++, if the base pointer evaluates to a null pointer value, |
5421 | | // the only valid pointer this inbounds GEP can produce is also |
5422 | | // a null pointer, so the offset must also evaluate to zero. |
5423 | | // Likewise, if we have non-zero base pointer, we can not get null pointer |
5424 | | // as a result, so the offset can not be -intptr_t(BasePtr). |
5425 | | // In other words, both pointers are either null, or both are non-null, |
5426 | | // or the behaviour is undefined. |
5427 | | // |
5428 | | // C, however, is more strict in this regard, and gives more |
5429 | | // optimization opportunities: in C, additionally, nullptr+0 is undefined. |
5430 | | // So both the input to the 'gep inbounds' AND the output must not be null. |
5431 | 0 | auto *BaseIsNotNullptr = Builder.CreateIsNotNull(Ptr); |
5432 | 0 | auto *ResultIsNotNullptr = Builder.CreateIsNotNull(ComputedGEP); |
5433 | 0 | auto *Valid = |
5434 | 0 | CGM.getLangOpts().CPlusPlus |
5435 | 0 | ? Builder.CreateICmpEQ(BaseIsNotNullptr, ResultIsNotNullptr) |
5436 | 0 | : Builder.CreateAnd(BaseIsNotNullptr, ResultIsNotNullptr); |
5437 | 0 | Checks.emplace_back(Valid, SanitizerKind::PointerOverflow); |
5438 | 0 | } |
5439 | |
|
5440 | 0 | if (PerformOverflowCheck) { |
5441 | | // The GEP is valid if: |
5442 | | // 1) The total offset doesn't overflow, and |
5443 | | // 2) The sign of the difference between the computed address and the base |
5444 | | // pointer matches the sign of the total offset. |
5445 | 0 | llvm::Value *ValidGEP; |
5446 | 0 | auto *NoOffsetOverflow = Builder.CreateNot(EvaluatedGEP.OffsetOverflows); |
5447 | 0 | if (SignedIndices) { |
5448 | | // GEP is computed as `unsigned base + signed offset`, therefore: |
5449 | | // * If offset was positive, then the computed pointer can not be |
5450 | | // [unsigned] less than the base pointer, unless it overflowed. |
5451 | | // * If offset was negative, then the computed pointer can not be |
5452 | | // [unsigned] greater than the bas pointere, unless it overflowed. |
5453 | 0 | auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); |
5454 | 0 | auto *PosOrZeroOffset = |
5455 | 0 | Builder.CreateICmpSGE(EvaluatedGEP.TotalOffset, Zero); |
5456 | 0 | llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); |
5457 | 0 | ValidGEP = |
5458 | 0 | Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid); |
5459 | 0 | } else if (!IsSubtraction) { |
5460 | | // GEP is computed as `unsigned base + unsigned offset`, therefore the |
5461 | | // computed pointer can not be [unsigned] less than base pointer, |
5462 | | // unless there was an overflow. |
5463 | | // Equivalent to `@llvm.uadd.with.overflow(%base, %offset)`. |
5464 | 0 | ValidGEP = Builder.CreateICmpUGE(ComputedGEP, IntPtr); |
5465 | 0 | } else { |
5466 | | // GEP is computed as `unsigned base - unsigned offset`, therefore the |
5467 | | // computed pointer can not be [unsigned] greater than base pointer, |
5468 | | // unless there was an overflow. |
5469 | | // Equivalent to `@llvm.usub.with.overflow(%base, sub(0, %offset))`. |
5470 | 0 | ValidGEP = Builder.CreateICmpULE(ComputedGEP, IntPtr); |
5471 | 0 | } |
5472 | 0 | ValidGEP = Builder.CreateAnd(ValidGEP, NoOffsetOverflow); |
5473 | 0 | Checks.emplace_back(ValidGEP, SanitizerKind::PointerOverflow); |
5474 | 0 | } |
5475 | |
|
5476 | 0 | assert(!Checks.empty() && "Should have produced some checks."); |
5477 | | |
5478 | 0 | llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; |
5479 | | // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. |
5480 | 0 | llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; |
5481 | 0 | EmitCheck(Checks, SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); |
5482 | |
|
5483 | 0 | return GEPVal; |
5484 | 0 | } |