Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/CodeGen/CGOpenCLRuntime.cpp
Line
Count
Source (jump to first uncovered line)
1
//===----- CGOpenCLRuntime.cpp - Interface to OpenCL Runtimes -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This provides an abstract class for OpenCL code generation.  Concrete
10
// subclasses of this implement code generation for specific OpenCL
11
// runtime libraries.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "CGOpenCLRuntime.h"
16
#include "CodeGenFunction.h"
17
#include "TargetInfo.h"
18
#include "clang/CodeGen/ConstantInitBuilder.h"
19
#include "llvm/IR/DerivedTypes.h"
20
#include "llvm/IR/GlobalValue.h"
21
#include <assert.h>
22
23
using namespace clang;
24
using namespace CodeGen;
25
26
0
CGOpenCLRuntime::~CGOpenCLRuntime() {}
27
28
void CGOpenCLRuntime::EmitWorkGroupLocalVarDecl(CodeGenFunction &CGF,
29
0
                                                const VarDecl &D) {
30
0
  return CGF.EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
31
0
}
32
33
0
llvm::Type *CGOpenCLRuntime::convertOpenCLSpecificType(const Type *T) {
34
0
  assert(T->isOpenCLSpecificType() && "Not an OpenCL specific type!");
35
36
  // Check if the target has a specific translation for this type first.
37
0
  if (llvm::Type *TransTy = CGM.getTargetCodeGenInfo().getOpenCLType(CGM, T))
38
0
    return TransTy;
39
40
0
  if (T->isSamplerT())
41
0
    return getSamplerType(T);
42
43
0
  return getPointerType(T);
44
0
}
45
46
0
llvm::PointerType *CGOpenCLRuntime::getPointerType(const Type *T) {
47
0
  uint32_t AddrSpc = CGM.getContext().getTargetAddressSpace(
48
0
      CGM.getContext().getOpenCLTypeAddrSpace(T));
49
0
  return llvm::PointerType::get(CGM.getLLVMContext(), AddrSpc);
50
0
}
51
52
0
llvm::Type *CGOpenCLRuntime::getPipeType(const PipeType *T) {
53
0
  if (llvm::Type *PipeTy = CGM.getTargetCodeGenInfo().getOpenCLType(CGM, T))
54
0
    return PipeTy;
55
56
0
  if (T->isReadOnly())
57
0
    return getPipeType(T, "opencl.pipe_ro_t", PipeROTy);
58
0
  else
59
0
    return getPipeType(T, "opencl.pipe_wo_t", PipeWOTy);
60
0
}
61
62
llvm::Type *CGOpenCLRuntime::getPipeType(const PipeType *T, StringRef Name,
63
0
                                         llvm::Type *&PipeTy) {
64
0
  if (!PipeTy)
65
0
    PipeTy = getPointerType(T);
66
0
  return PipeTy;
67
0
}
68
69
0
llvm::Type *CGOpenCLRuntime::getSamplerType(const Type *T) {
70
0
  if (SamplerTy)
71
0
    return SamplerTy;
72
73
0
  if (llvm::Type *TransTy = CGM.getTargetCodeGenInfo().getOpenCLType(
74
0
          CGM, CGM.getContext().OCLSamplerTy.getTypePtr()))
75
0
    SamplerTy = TransTy;
76
0
  else
77
0
    SamplerTy = getPointerType(T);
78
0
  return SamplerTy;
79
0
}
80
81
0
llvm::Value *CGOpenCLRuntime::getPipeElemSize(const Expr *PipeArg) {
82
0
  const PipeType *PipeTy = PipeArg->getType()->castAs<PipeType>();
83
  // The type of the last (implicit) argument to be passed.
84
0
  llvm::Type *Int32Ty = llvm::IntegerType::getInt32Ty(CGM.getLLVMContext());
85
0
  unsigned TypeSize = CGM.getContext()
86
0
                          .getTypeSizeInChars(PipeTy->getElementType())
87
0
                          .getQuantity();
88
0
  return llvm::ConstantInt::get(Int32Ty, TypeSize, false);
89
0
}
90
91
0
llvm::Value *CGOpenCLRuntime::getPipeElemAlign(const Expr *PipeArg) {
92
0
  const PipeType *PipeTy = PipeArg->getType()->castAs<PipeType>();
93
  // The type of the last (implicit) argument to be passed.
94
0
  llvm::Type *Int32Ty = llvm::IntegerType::getInt32Ty(CGM.getLLVMContext());
95
0
  unsigned TypeSize = CGM.getContext()
96
0
                          .getTypeAlignInChars(PipeTy->getElementType())
97
0
                          .getQuantity();
98
0
  return llvm::ConstantInt::get(Int32Ty, TypeSize, false);
99
0
}
100
101
0
llvm::PointerType *CGOpenCLRuntime::getGenericVoidPointerType() {
102
0
  assert(CGM.getLangOpts().OpenCL);
103
0
  return llvm::PointerType::get(
104
0
      CGM.getLLVMContext(),
105
0
      CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
106
0
}
107
108
// Get the block literal from an expression derived from the block expression.
109
// OpenCL v2.0 s6.12.5:
110
// Block variable declarations are implicitly qualified with const. Therefore
111
// all block variables must be initialized at declaration time and may not be
112
// reassigned.
113
0
static const BlockExpr *getBlockExpr(const Expr *E) {
114
0
  const Expr *Prev = nullptr; // to make sure we do not stuck in infinite loop.
115
0
  while(!isa<BlockExpr>(E) && E != Prev) {
116
0
    Prev = E;
117
0
    E = E->IgnoreCasts();
118
0
    if (auto DR = dyn_cast<DeclRefExpr>(E)) {
119
0
      E = cast<VarDecl>(DR->getDecl())->getInit();
120
0
    }
121
0
  }
122
0
  return cast<BlockExpr>(E);
123
0
}
124
125
/// Record emitted llvm invoke function and llvm block literal for the
126
/// corresponding block expression.
127
void CGOpenCLRuntime::recordBlockInfo(const BlockExpr *E,
128
                                      llvm::Function *InvokeF,
129
0
                                      llvm::Value *Block, llvm::Type *BlockTy) {
130
0
  assert(!EnqueuedBlockMap.contains(E) && "Block expression emitted twice");
131
0
  assert(isa<llvm::Function>(InvokeF) && "Invalid invoke function");
132
0
  assert(Block->getType()->isPointerTy() && "Invalid block literal type");
133
0
  EnqueuedBlockMap[E].InvokeFunc = InvokeF;
134
0
  EnqueuedBlockMap[E].BlockArg = Block;
135
0
  EnqueuedBlockMap[E].BlockTy = BlockTy;
136
0
  EnqueuedBlockMap[E].KernelHandle = nullptr;
137
0
}
138
139
0
llvm::Function *CGOpenCLRuntime::getInvokeFunction(const Expr *E) {
140
0
  return EnqueuedBlockMap[getBlockExpr(E)].InvokeFunc;
141
0
}
142
143
CGOpenCLRuntime::EnqueuedBlockInfo
144
0
CGOpenCLRuntime::emitOpenCLEnqueuedBlock(CodeGenFunction &CGF, const Expr *E) {
145
0
  CGF.EmitScalarExpr(E);
146
147
  // The block literal may be assigned to a const variable. Chasing down
148
  // to get the block literal.
149
0
  const BlockExpr *Block = getBlockExpr(E);
150
151
0
  assert(EnqueuedBlockMap.contains(Block) && "Block expression not emitted");
152
153
  // Do not emit the block wrapper again if it has been emitted.
154
0
  if (EnqueuedBlockMap[Block].KernelHandle) {
155
0
    return EnqueuedBlockMap[Block];
156
0
  }
157
158
0
  auto *F = CGF.getTargetHooks().createEnqueuedBlockKernel(
159
0
      CGF, EnqueuedBlockMap[Block].InvokeFunc, EnqueuedBlockMap[Block].BlockTy);
160
161
  // The common part of the post-processing of the kernel goes here.
162
0
  EnqueuedBlockMap[Block].KernelHandle = F;
163
0
  return EnqueuedBlockMap[Block];
164
0
}