Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/CodeGen/CGOpenMPRuntimeGPU.cpp
Line
Count
Source (jump to first uncovered line)
1
//===---- CGOpenMPRuntimeGPU.cpp - Interface to OpenMP GPU Runtimes ----===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This provides a generalized class for OpenMP runtime code generation
10
// specialized by GPU targets NVPTX and AMDGCN.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "CGOpenMPRuntimeGPU.h"
15
#include "CodeGenFunction.h"
16
#include "clang/AST/Attr.h"
17
#include "clang/AST/DeclOpenMP.h"
18
#include "clang/AST/OpenMPClause.h"
19
#include "clang/AST/StmtOpenMP.h"
20
#include "clang/AST/StmtVisitor.h"
21
#include "clang/Basic/Cuda.h"
22
#include "llvm/ADT/SmallPtrSet.h"
23
#include "llvm/Frontend/OpenMP/OMPGridValues.h"
24
#include "llvm/Support/MathExtras.h"
25
26
using namespace clang;
27
using namespace CodeGen;
28
using namespace llvm::omp;
29
30
namespace {
31
/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
32
class NVPTXActionTy final : public PrePostActionTy {
33
  llvm::FunctionCallee EnterCallee = nullptr;
34
  ArrayRef<llvm::Value *> EnterArgs;
35
  llvm::FunctionCallee ExitCallee = nullptr;
36
  ArrayRef<llvm::Value *> ExitArgs;
37
  bool Conditional = false;
38
  llvm::BasicBlock *ContBlock = nullptr;
39
40
public:
41
  NVPTXActionTy(llvm::FunctionCallee EnterCallee,
42
                ArrayRef<llvm::Value *> EnterArgs,
43
                llvm::FunctionCallee ExitCallee,
44
                ArrayRef<llvm::Value *> ExitArgs, bool Conditional = false)
45
      : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
46
0
        ExitArgs(ExitArgs), Conditional(Conditional) {}
47
0
  void Enter(CodeGenFunction &CGF) override {
48
0
    llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
49
0
    if (Conditional) {
50
0
      llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
51
0
      auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
52
0
      ContBlock = CGF.createBasicBlock("omp_if.end");
53
0
      // Generate the branch (If-stmt)
54
0
      CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
55
0
      CGF.EmitBlock(ThenBlock);
56
0
    }
57
0
  }
58
0
  void Done(CodeGenFunction &CGF) {
59
0
    // Emit the rest of blocks/branches
60
0
    CGF.EmitBranch(ContBlock);
61
0
    CGF.EmitBlock(ContBlock, true);
62
0
  }
63
0
  void Exit(CodeGenFunction &CGF) override {
64
0
    CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
65
0
  }
66
};
67
68
/// A class to track the execution mode when codegening directives within
69
/// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
70
/// to the target region and used by containing directives such as 'parallel'
71
/// to emit optimized code.
72
class ExecutionRuntimeModesRAII {
73
private:
74
  CGOpenMPRuntimeGPU::ExecutionMode SavedExecMode =
75
      CGOpenMPRuntimeGPU::EM_Unknown;
76
  CGOpenMPRuntimeGPU::ExecutionMode &ExecMode;
77
78
public:
79
  ExecutionRuntimeModesRAII(CGOpenMPRuntimeGPU::ExecutionMode &ExecMode,
80
                            CGOpenMPRuntimeGPU::ExecutionMode EntryMode)
81
0
      : ExecMode(ExecMode) {
82
0
    SavedExecMode = ExecMode;
83
0
    ExecMode = EntryMode;
84
0
  }
85
0
  ~ExecutionRuntimeModesRAII() { ExecMode = SavedExecMode; }
86
};
87
88
0
static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
89
0
  RefExpr = RefExpr->IgnoreParens();
90
0
  if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
91
0
    const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
92
0
    while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
93
0
      Base = TempASE->getBase()->IgnoreParenImpCasts();
94
0
    RefExpr = Base;
95
0
  } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
96
0
    const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
97
0
    while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
98
0
      Base = TempOASE->getBase()->IgnoreParenImpCasts();
99
0
    while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
100
0
      Base = TempASE->getBase()->IgnoreParenImpCasts();
101
0
    RefExpr = Base;
102
0
  }
103
0
  RefExpr = RefExpr->IgnoreParenImpCasts();
104
0
  if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
105
0
    return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
106
0
  const auto *ME = cast<MemberExpr>(RefExpr);
107
0
  return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
108
0
}
109
110
static RecordDecl *buildRecordForGlobalizedVars(
111
    ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
112
    ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
113
    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
114
        &MappedDeclsFields,
115
0
    int BufSize) {
116
0
  using VarsDataTy = std::pair<CharUnits /*Align*/, const ValueDecl *>;
117
0
  if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
118
0
    return nullptr;
119
0
  SmallVector<VarsDataTy, 4> GlobalizedVars;
120
0
  for (const ValueDecl *D : EscapedDecls)
121
0
    GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
122
0
  for (const ValueDecl *D : EscapedDeclsForTeams)
123
0
    GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
124
125
  // Build struct _globalized_locals_ty {
126
  //         /*  globalized vars  */[WarSize] align (decl_align)
127
  //         /*  globalized vars  */ for EscapedDeclsForTeams
128
  //       };
129
0
  RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
130
0
  GlobalizedRD->startDefinition();
131
0
  llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
132
0
      EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
133
0
  for (const auto &Pair : GlobalizedVars) {
134
0
    const ValueDecl *VD = Pair.second;
135
0
    QualType Type = VD->getType();
136
0
    if (Type->isLValueReferenceType())
137
0
      Type = C.getPointerType(Type.getNonReferenceType());
138
0
    else
139
0
      Type = Type.getNonReferenceType();
140
0
    SourceLocation Loc = VD->getLocation();
141
0
    FieldDecl *Field;
142
0
    if (SingleEscaped.count(VD)) {
143
0
      Field = FieldDecl::Create(
144
0
          C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
145
0
          C.getTrivialTypeSourceInfo(Type, SourceLocation()),
146
0
          /*BW=*/nullptr, /*Mutable=*/false,
147
0
          /*InitStyle=*/ICIS_NoInit);
148
0
      Field->setAccess(AS_public);
149
0
      if (VD->hasAttrs()) {
150
0
        for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
151
0
             E(VD->getAttrs().end());
152
0
             I != E; ++I)
153
0
          Field->addAttr(*I);
154
0
      }
155
0
    } else {
156
0
      if (BufSize > 1) {
157
0
        llvm::APInt ArraySize(32, BufSize);
158
0
        Type = C.getConstantArrayType(Type, ArraySize, nullptr,
159
0
                                      ArraySizeModifier::Normal, 0);
160
0
      }
161
0
      Field = FieldDecl::Create(
162
0
          C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
163
0
          C.getTrivialTypeSourceInfo(Type, SourceLocation()),
164
0
          /*BW=*/nullptr, /*Mutable=*/false,
165
0
          /*InitStyle=*/ICIS_NoInit);
166
0
      Field->setAccess(AS_public);
167
0
      llvm::APInt Align(32, Pair.first.getQuantity());
168
0
      Field->addAttr(AlignedAttr::CreateImplicit(
169
0
          C, /*IsAlignmentExpr=*/true,
170
0
          IntegerLiteral::Create(C, Align,
171
0
                                 C.getIntTypeForBitwidth(32, /*Signed=*/0),
172
0
                                 SourceLocation()),
173
0
          {}, AlignedAttr::GNU_aligned));
174
0
    }
175
0
    GlobalizedRD->addDecl(Field);
176
0
    MappedDeclsFields.try_emplace(VD, Field);
177
0
  }
178
0
  GlobalizedRD->completeDefinition();
179
0
  return GlobalizedRD;
180
0
}
181
182
/// Get the list of variables that can escape their declaration context.
183
class CheckVarsEscapingDeclContext final
184
    : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
185
  CodeGenFunction &CGF;
186
  llvm::SetVector<const ValueDecl *> EscapedDecls;
187
  llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
188
  llvm::SetVector<const ValueDecl *> DelayedVariableLengthDecls;
189
  llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
190
  RecordDecl *GlobalizedRD = nullptr;
191
  llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
192
  bool AllEscaped = false;
193
  bool IsForCombinedParallelRegion = false;
194
195
0
  void markAsEscaped(const ValueDecl *VD) {
196
    // Do not globalize declare target variables.
197
0
    if (!isa<VarDecl>(VD) ||
198
0
        OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
199
0
      return;
200
0
    VD = cast<ValueDecl>(VD->getCanonicalDecl());
201
    // Use user-specified allocation.
202
0
    if (VD->hasAttrs() && VD->hasAttr<OMPAllocateDeclAttr>())
203
0
      return;
204
    // Variables captured by value must be globalized.
205
0
    bool IsCaptured = false;
206
0
    if (auto *CSI = CGF.CapturedStmtInfo) {
207
0
      if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
208
        // Check if need to capture the variable that was already captured by
209
        // value in the outer region.
210
0
        IsCaptured = true;
211
0
        if (!IsForCombinedParallelRegion) {
212
0
          if (!FD->hasAttrs())
213
0
            return;
214
0
          const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
215
0
          if (!Attr)
216
0
            return;
217
0
          if (((Attr->getCaptureKind() != OMPC_map) &&
218
0
               !isOpenMPPrivate(Attr->getCaptureKind())) ||
219
0
              ((Attr->getCaptureKind() == OMPC_map) &&
220
0
               !FD->getType()->isAnyPointerType()))
221
0
            return;
222
0
        }
223
0
        if (!FD->getType()->isReferenceType()) {
224
0
          assert(!VD->getType()->isVariablyModifiedType() &&
225
0
                 "Parameter captured by value with variably modified type");
226
0
          EscapedParameters.insert(VD);
227
0
        } else if (!IsForCombinedParallelRegion) {
228
0
          return;
229
0
        }
230
0
      }
231
0
    }
232
0
    if ((!CGF.CapturedStmtInfo ||
233
0
         (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
234
0
        VD->getType()->isReferenceType())
235
      // Do not globalize variables with reference type.
236
0
      return;
237
0
    if (VD->getType()->isVariablyModifiedType()) {
238
      // If not captured at the target region level then mark the escaped
239
      // variable as delayed.
240
0
      if (IsCaptured)
241
0
        EscapedVariableLengthDecls.insert(VD);
242
0
      else
243
0
        DelayedVariableLengthDecls.insert(VD);
244
0
    } else
245
0
      EscapedDecls.insert(VD);
246
0
  }
247
248
0
  void VisitValueDecl(const ValueDecl *VD) {
249
0
    if (VD->getType()->isLValueReferenceType())
250
0
      markAsEscaped(VD);
251
0
    if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
252
0
      if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
253
0
        const bool SavedAllEscaped = AllEscaped;
254
0
        AllEscaped = VD->getType()->isLValueReferenceType();
255
0
        Visit(VarD->getInit());
256
0
        AllEscaped = SavedAllEscaped;
257
0
      }
258
0
    }
259
0
  }
260
  void VisitOpenMPCapturedStmt(const CapturedStmt *S,
261
                               ArrayRef<OMPClause *> Clauses,
262
0
                               bool IsCombinedParallelRegion) {
263
0
    if (!S)
264
0
      return;
265
0
    for (const CapturedStmt::Capture &C : S->captures()) {
266
0
      if (C.capturesVariable() && !C.capturesVariableByCopy()) {
267
0
        const ValueDecl *VD = C.getCapturedVar();
268
0
        bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
269
0
        if (IsCombinedParallelRegion) {
270
          // Check if the variable is privatized in the combined construct and
271
          // those private copies must be shared in the inner parallel
272
          // directive.
273
0
          IsForCombinedParallelRegion = false;
274
0
          for (const OMPClause *C : Clauses) {
275
0
            if (!isOpenMPPrivate(C->getClauseKind()) ||
276
0
                C->getClauseKind() == OMPC_reduction ||
277
0
                C->getClauseKind() == OMPC_linear ||
278
0
                C->getClauseKind() == OMPC_private)
279
0
              continue;
280
0
            ArrayRef<const Expr *> Vars;
281
0
            if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
282
0
              Vars = PC->getVarRefs();
283
0
            else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
284
0
              Vars = PC->getVarRefs();
285
0
            else
286
0
              llvm_unreachable("Unexpected clause.");
287
0
            for (const auto *E : Vars) {
288
0
              const Decl *D =
289
0
                  cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
290
0
              if (D == VD->getCanonicalDecl()) {
291
0
                IsForCombinedParallelRegion = true;
292
0
                break;
293
0
              }
294
0
            }
295
0
            if (IsForCombinedParallelRegion)
296
0
              break;
297
0
          }
298
0
        }
299
0
        markAsEscaped(VD);
300
0
        if (isa<OMPCapturedExprDecl>(VD))
301
0
          VisitValueDecl(VD);
302
0
        IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
303
0
      }
304
0
    }
305
0
  }
306
307
0
  void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
308
0
    assert(!GlobalizedRD &&
309
0
           "Record for globalized variables is built already.");
310
0
    ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
311
0
    unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
312
0
    if (IsInTTDRegion)
313
0
      EscapedDeclsForTeams = EscapedDecls.getArrayRef();
314
0
    else
315
0
      EscapedDeclsForParallel = EscapedDecls.getArrayRef();
316
0
    GlobalizedRD = ::buildRecordForGlobalizedVars(
317
0
        CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
318
0
        MappedDeclsFields, WarpSize);
319
0
  }
320
321
public:
322
  CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
323
                               ArrayRef<const ValueDecl *> TeamsReductions)
324
0
      : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
325
0
  }
326
0
  virtual ~CheckVarsEscapingDeclContext() = default;
327
0
  void VisitDeclStmt(const DeclStmt *S) {
328
0
    if (!S)
329
0
      return;
330
0
    for (const Decl *D : S->decls())
331
0
      if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
332
0
        VisitValueDecl(VD);
333
0
  }
334
0
  void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
335
0
    if (!D)
336
0
      return;
337
0
    if (!D->hasAssociatedStmt())
338
0
      return;
339
0
    if (const auto *S =
340
0
            dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
341
      // Do not analyze directives that do not actually require capturing,
342
      // like `omp for` or `omp simd` directives.
343
0
      llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
344
0
      getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
345
0
      if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
346
0
        VisitStmt(S->getCapturedStmt());
347
0
        return;
348
0
      }
349
0
      VisitOpenMPCapturedStmt(
350
0
          S, D->clauses(),
351
0
          CaptureRegions.back() == OMPD_parallel &&
352
0
              isOpenMPDistributeDirective(D->getDirectiveKind()));
353
0
    }
354
0
  }
355
0
  void VisitCapturedStmt(const CapturedStmt *S) {
356
0
    if (!S)
357
0
      return;
358
0
    for (const CapturedStmt::Capture &C : S->captures()) {
359
0
      if (C.capturesVariable() && !C.capturesVariableByCopy()) {
360
0
        const ValueDecl *VD = C.getCapturedVar();
361
0
        markAsEscaped(VD);
362
0
        if (isa<OMPCapturedExprDecl>(VD))
363
0
          VisitValueDecl(VD);
364
0
      }
365
0
    }
366
0
  }
367
0
  void VisitLambdaExpr(const LambdaExpr *E) {
368
0
    if (!E)
369
0
      return;
370
0
    for (const LambdaCapture &C : E->captures()) {
371
0
      if (C.capturesVariable()) {
372
0
        if (C.getCaptureKind() == LCK_ByRef) {
373
0
          const ValueDecl *VD = C.getCapturedVar();
374
0
          markAsEscaped(VD);
375
0
          if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
376
0
            VisitValueDecl(VD);
377
0
        }
378
0
      }
379
0
    }
380
0
  }
381
0
  void VisitBlockExpr(const BlockExpr *E) {
382
0
    if (!E)
383
0
      return;
384
0
    for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
385
0
      if (C.isByRef()) {
386
0
        const VarDecl *VD = C.getVariable();
387
0
        markAsEscaped(VD);
388
0
        if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
389
0
          VisitValueDecl(VD);
390
0
      }
391
0
    }
392
0
  }
393
0
  void VisitCallExpr(const CallExpr *E) {
394
0
    if (!E)
395
0
      return;
396
0
    for (const Expr *Arg : E->arguments()) {
397
0
      if (!Arg)
398
0
        continue;
399
0
      if (Arg->isLValue()) {
400
0
        const bool SavedAllEscaped = AllEscaped;
401
0
        AllEscaped = true;
402
0
        Visit(Arg);
403
0
        AllEscaped = SavedAllEscaped;
404
0
      } else {
405
0
        Visit(Arg);
406
0
      }
407
0
    }
408
0
    Visit(E->getCallee());
409
0
  }
410
0
  void VisitDeclRefExpr(const DeclRefExpr *E) {
411
0
    if (!E)
412
0
      return;
413
0
    const ValueDecl *VD = E->getDecl();
414
0
    if (AllEscaped)
415
0
      markAsEscaped(VD);
416
0
    if (isa<OMPCapturedExprDecl>(VD))
417
0
      VisitValueDecl(VD);
418
0
    else if (VD->isInitCapture())
419
0
      VisitValueDecl(VD);
420
0
  }
421
0
  void VisitUnaryOperator(const UnaryOperator *E) {
422
0
    if (!E)
423
0
      return;
424
0
    if (E->getOpcode() == UO_AddrOf) {
425
0
      const bool SavedAllEscaped = AllEscaped;
426
0
      AllEscaped = true;
427
0
      Visit(E->getSubExpr());
428
0
      AllEscaped = SavedAllEscaped;
429
0
    } else {
430
0
      Visit(E->getSubExpr());
431
0
    }
432
0
  }
433
0
  void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
434
0
    if (!E)
435
0
      return;
436
0
    if (E->getCastKind() == CK_ArrayToPointerDecay) {
437
0
      const bool SavedAllEscaped = AllEscaped;
438
0
      AllEscaped = true;
439
0
      Visit(E->getSubExpr());
440
0
      AllEscaped = SavedAllEscaped;
441
0
    } else {
442
0
      Visit(E->getSubExpr());
443
0
    }
444
0
  }
445
0
  void VisitExpr(const Expr *E) {
446
0
    if (!E)
447
0
      return;
448
0
    bool SavedAllEscaped = AllEscaped;
449
0
    if (!E->isLValue())
450
0
      AllEscaped = false;
451
0
    for (const Stmt *Child : E->children())
452
0
      if (Child)
453
0
        Visit(Child);
454
0
    AllEscaped = SavedAllEscaped;
455
0
  }
456
0
  void VisitStmt(const Stmt *S) {
457
0
    if (!S)
458
0
      return;
459
0
    for (const Stmt *Child : S->children())
460
0
      if (Child)
461
0
        Visit(Child);
462
0
  }
463
464
  /// Returns the record that handles all the escaped local variables and used
465
  /// instead of their original storage.
466
0
  const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
467
0
    if (!GlobalizedRD)
468
0
      buildRecordForGlobalizedVars(IsInTTDRegion);
469
0
    return GlobalizedRD;
470
0
  }
471
472
  /// Returns the field in the globalized record for the escaped variable.
473
0
  const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
474
0
    assert(GlobalizedRD &&
475
0
           "Record for globalized variables must be generated already.");
476
0
    return MappedDeclsFields.lookup(VD);
477
0
  }
478
479
  /// Returns the list of the escaped local variables/parameters.
480
0
  ArrayRef<const ValueDecl *> getEscapedDecls() const {
481
0
    return EscapedDecls.getArrayRef();
482
0
  }
483
484
  /// Checks if the escaped local variable is actually a parameter passed by
485
  /// value.
486
0
  const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
487
0
    return EscapedParameters;
488
0
  }
489
490
  /// Returns the list of the escaped variables with the variably modified
491
  /// types.
492
0
  ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
493
0
    return EscapedVariableLengthDecls.getArrayRef();
494
0
  }
495
496
  /// Returns the list of the delayed variables with the variably modified
497
  /// types.
498
0
  ArrayRef<const ValueDecl *> getDelayedVariableLengthDecls() const {
499
0
    return DelayedVariableLengthDecls.getArrayRef();
500
0
  }
501
};
502
} // anonymous namespace
503
504
/// Get the id of the warp in the block.
505
/// We assume that the warp size is 32, which is always the case
506
/// on the NVPTX device, to generate more efficient code.
507
0
static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
508
0
  CGBuilderTy &Bld = CGF.Builder;
509
0
  unsigned LaneIDBits =
510
0
      llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
511
0
  auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
512
0
  return Bld.CreateAShr(RT.getGPUThreadID(CGF), LaneIDBits, "nvptx_warp_id");
513
0
}
514
515
/// Get the id of the current lane in the Warp.
516
/// We assume that the warp size is 32, which is always the case
517
/// on the NVPTX device, to generate more efficient code.
518
0
static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
519
0
  CGBuilderTy &Bld = CGF.Builder;
520
0
  unsigned LaneIDBits =
521
0
      llvm::Log2_32(CGF.getTarget().getGridValue().GV_Warp_Size);
522
0
  assert(LaneIDBits < 32 && "Invalid LaneIDBits size in NVPTX device.");
523
0
  unsigned LaneIDMask = ~0u >> (32u - LaneIDBits);
524
0
  auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
525
0
  return Bld.CreateAnd(RT.getGPUThreadID(CGF), Bld.getInt32(LaneIDMask),
526
0
                       "nvptx_lane_id");
527
0
}
528
529
CGOpenMPRuntimeGPU::ExecutionMode
530
0
CGOpenMPRuntimeGPU::getExecutionMode() const {
531
0
  return CurrentExecutionMode;
532
0
}
533
534
CGOpenMPRuntimeGPU::DataSharingMode
535
0
CGOpenMPRuntimeGPU::getDataSharingMode() const {
536
0
  return CurrentDataSharingMode;
537
0
}
538
539
/// Check for inner (nested) SPMD construct, if any
540
static bool hasNestedSPMDDirective(ASTContext &Ctx,
541
0
                                   const OMPExecutableDirective &D) {
542
0
  const auto *CS = D.getInnermostCapturedStmt();
543
0
  const auto *Body =
544
0
      CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
545
0
  const Stmt *ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
546
547
0
  if (const auto *NestedDir =
548
0
          dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
549
0
    OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
550
0
    switch (D.getDirectiveKind()) {
551
0
    case OMPD_target:
552
0
      if (isOpenMPParallelDirective(DKind))
553
0
        return true;
554
0
      if (DKind == OMPD_teams) {
555
0
        Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
556
0
            /*IgnoreCaptured=*/true);
557
0
        if (!Body)
558
0
          return false;
559
0
        ChildStmt = CGOpenMPRuntime::getSingleCompoundChild(Ctx, Body);
560
0
        if (const auto *NND =
561
0
                dyn_cast_or_null<OMPExecutableDirective>(ChildStmt)) {
562
0
          DKind = NND->getDirectiveKind();
563
0
          if (isOpenMPParallelDirective(DKind))
564
0
            return true;
565
0
        }
566
0
      }
567
0
      return false;
568
0
    case OMPD_target_teams:
569
0
      return isOpenMPParallelDirective(DKind);
570
0
    case OMPD_target_simd:
571
0
    case OMPD_target_parallel:
572
0
    case OMPD_target_parallel_for:
573
0
    case OMPD_target_parallel_for_simd:
574
0
    case OMPD_target_teams_distribute:
575
0
    case OMPD_target_teams_distribute_simd:
576
0
    case OMPD_target_teams_distribute_parallel_for:
577
0
    case OMPD_target_teams_distribute_parallel_for_simd:
578
0
    case OMPD_parallel:
579
0
    case OMPD_for:
580
0
    case OMPD_parallel_for:
581
0
    case OMPD_parallel_master:
582
0
    case OMPD_parallel_sections:
583
0
    case OMPD_for_simd:
584
0
    case OMPD_parallel_for_simd:
585
0
    case OMPD_cancel:
586
0
    case OMPD_cancellation_point:
587
0
    case OMPD_ordered:
588
0
    case OMPD_threadprivate:
589
0
    case OMPD_allocate:
590
0
    case OMPD_task:
591
0
    case OMPD_simd:
592
0
    case OMPD_sections:
593
0
    case OMPD_section:
594
0
    case OMPD_single:
595
0
    case OMPD_master:
596
0
    case OMPD_critical:
597
0
    case OMPD_taskyield:
598
0
    case OMPD_barrier:
599
0
    case OMPD_taskwait:
600
0
    case OMPD_taskgroup:
601
0
    case OMPD_atomic:
602
0
    case OMPD_flush:
603
0
    case OMPD_depobj:
604
0
    case OMPD_scan:
605
0
    case OMPD_teams:
606
0
    case OMPD_target_data:
607
0
    case OMPD_target_exit_data:
608
0
    case OMPD_target_enter_data:
609
0
    case OMPD_distribute:
610
0
    case OMPD_distribute_simd:
611
0
    case OMPD_distribute_parallel_for:
612
0
    case OMPD_distribute_parallel_for_simd:
613
0
    case OMPD_teams_distribute:
614
0
    case OMPD_teams_distribute_simd:
615
0
    case OMPD_teams_distribute_parallel_for:
616
0
    case OMPD_teams_distribute_parallel_for_simd:
617
0
    case OMPD_target_update:
618
0
    case OMPD_declare_simd:
619
0
    case OMPD_declare_variant:
620
0
    case OMPD_begin_declare_variant:
621
0
    case OMPD_end_declare_variant:
622
0
    case OMPD_declare_target:
623
0
    case OMPD_end_declare_target:
624
0
    case OMPD_declare_reduction:
625
0
    case OMPD_declare_mapper:
626
0
    case OMPD_taskloop:
627
0
    case OMPD_taskloop_simd:
628
0
    case OMPD_master_taskloop:
629
0
    case OMPD_master_taskloop_simd:
630
0
    case OMPD_parallel_master_taskloop:
631
0
    case OMPD_parallel_master_taskloop_simd:
632
0
    case OMPD_requires:
633
0
    case OMPD_unknown:
634
0
    default:
635
0
      llvm_unreachable("Unexpected directive.");
636
0
    }
637
0
  }
638
639
0
  return false;
640
0
}
641
642
static bool supportsSPMDExecutionMode(ASTContext &Ctx,
643
0
                                      const OMPExecutableDirective &D) {
644
0
  OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
645
0
  switch (DirectiveKind) {
646
0
  case OMPD_target:
647
0
  case OMPD_target_teams:
648
0
    return hasNestedSPMDDirective(Ctx, D);
649
0
  case OMPD_target_teams_loop:
650
0
  case OMPD_target_parallel_loop:
651
0
  case OMPD_target_parallel:
652
0
  case OMPD_target_parallel_for:
653
0
  case OMPD_target_parallel_for_simd:
654
0
  case OMPD_target_teams_distribute_parallel_for:
655
0
  case OMPD_target_teams_distribute_parallel_for_simd:
656
0
  case OMPD_target_simd:
657
0
  case OMPD_target_teams_distribute_simd:
658
0
    return true;
659
0
  case OMPD_target_teams_distribute:
660
0
    return false;
661
0
  case OMPD_parallel:
662
0
  case OMPD_for:
663
0
  case OMPD_parallel_for:
664
0
  case OMPD_parallel_master:
665
0
  case OMPD_parallel_sections:
666
0
  case OMPD_for_simd:
667
0
  case OMPD_parallel_for_simd:
668
0
  case OMPD_cancel:
669
0
  case OMPD_cancellation_point:
670
0
  case OMPD_ordered:
671
0
  case OMPD_threadprivate:
672
0
  case OMPD_allocate:
673
0
  case OMPD_task:
674
0
  case OMPD_simd:
675
0
  case OMPD_sections:
676
0
  case OMPD_section:
677
0
  case OMPD_single:
678
0
  case OMPD_master:
679
0
  case OMPD_critical:
680
0
  case OMPD_taskyield:
681
0
  case OMPD_barrier:
682
0
  case OMPD_taskwait:
683
0
  case OMPD_taskgroup:
684
0
  case OMPD_atomic:
685
0
  case OMPD_flush:
686
0
  case OMPD_depobj:
687
0
  case OMPD_scan:
688
0
  case OMPD_teams:
689
0
  case OMPD_target_data:
690
0
  case OMPD_target_exit_data:
691
0
  case OMPD_target_enter_data:
692
0
  case OMPD_distribute:
693
0
  case OMPD_distribute_simd:
694
0
  case OMPD_distribute_parallel_for:
695
0
  case OMPD_distribute_parallel_for_simd:
696
0
  case OMPD_teams_distribute:
697
0
  case OMPD_teams_distribute_simd:
698
0
  case OMPD_teams_distribute_parallel_for:
699
0
  case OMPD_teams_distribute_parallel_for_simd:
700
0
  case OMPD_target_update:
701
0
  case OMPD_declare_simd:
702
0
  case OMPD_declare_variant:
703
0
  case OMPD_begin_declare_variant:
704
0
  case OMPD_end_declare_variant:
705
0
  case OMPD_declare_target:
706
0
  case OMPD_end_declare_target:
707
0
  case OMPD_declare_reduction:
708
0
  case OMPD_declare_mapper:
709
0
  case OMPD_taskloop:
710
0
  case OMPD_taskloop_simd:
711
0
  case OMPD_master_taskloop:
712
0
  case OMPD_master_taskloop_simd:
713
0
  case OMPD_parallel_master_taskloop:
714
0
  case OMPD_parallel_master_taskloop_simd:
715
0
  case OMPD_requires:
716
0
  case OMPD_unknown:
717
0
  default:
718
0
    break;
719
0
  }
720
0
  llvm_unreachable(
721
0
      "Unknown programming model for OpenMP directive on NVPTX target.");
722
0
}
723
724
void CGOpenMPRuntimeGPU::emitNonSPMDKernel(const OMPExecutableDirective &D,
725
                                             StringRef ParentName,
726
                                             llvm::Function *&OutlinedFn,
727
                                             llvm::Constant *&OutlinedFnID,
728
                                             bool IsOffloadEntry,
729
0
                                             const RegionCodeGenTy &CodeGen) {
730
0
  ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_NonSPMD);
731
0
  EntryFunctionState EST;
732
0
  WrapperFunctionsMap.clear();
733
734
0
  [[maybe_unused]] bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
735
0
  assert(!IsBareKernel && "bare kernel should not be at generic mode");
736
737
  // Emit target region as a standalone region.
738
0
  class NVPTXPrePostActionTy : public PrePostActionTy {
739
0
    CGOpenMPRuntimeGPU::EntryFunctionState &EST;
740
0
    const OMPExecutableDirective &D;
741
742
0
  public:
743
0
    NVPTXPrePostActionTy(CGOpenMPRuntimeGPU::EntryFunctionState &EST,
744
0
                         const OMPExecutableDirective &D)
745
0
        : EST(EST), D(D) {}
746
0
    void Enter(CodeGenFunction &CGF) override {
747
0
      auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
748
0
      RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ false);
749
      // Skip target region initialization.
750
0
      RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
751
0
    }
752
0
    void Exit(CodeGenFunction &CGF) override {
753
0
      auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
754
0
      RT.clearLocThreadIdInsertPt(CGF);
755
0
      RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ false);
756
0
    }
757
0
  } Action(EST, D);
758
0
  CodeGen.setAction(Action);
759
0
  IsInTTDRegion = true;
760
0
  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
761
0
                                   IsOffloadEntry, CodeGen);
762
0
  IsInTTDRegion = false;
763
0
}
764
765
void CGOpenMPRuntimeGPU::emitKernelInit(const OMPExecutableDirective &D,
766
                                        CodeGenFunction &CGF,
767
0
                                        EntryFunctionState &EST, bool IsSPMD) {
768
0
  int32_t MinThreadsVal = 1, MaxThreadsVal = -1, MinTeamsVal = 1,
769
0
          MaxTeamsVal = -1;
770
0
  computeMinAndMaxThreadsAndTeams(D, CGF, MinThreadsVal, MaxThreadsVal,
771
0
                                  MinTeamsVal, MaxTeamsVal);
772
773
0
  CGBuilderTy &Bld = CGF.Builder;
774
0
  Bld.restoreIP(OMPBuilder.createTargetInit(
775
0
      Bld, IsSPMD, MinThreadsVal, MaxThreadsVal, MinTeamsVal, MaxTeamsVal));
776
0
  if (!IsSPMD)
777
0
    emitGenericVarsProlog(CGF, EST.Loc);
778
0
}
779
780
void CGOpenMPRuntimeGPU::emitKernelDeinit(CodeGenFunction &CGF,
781
                                          EntryFunctionState &EST,
782
0
                                          bool IsSPMD) {
783
0
  if (!IsSPMD)
784
0
    emitGenericVarsEpilog(CGF);
785
786
  // This is temporary until we remove the fixed sized buffer.
787
0
  ASTContext &C = CGM.getContext();
788
0
  RecordDecl *StaticRD = C.buildImplicitRecord(
789
0
      "_openmp_teams_reduction_type_$_", RecordDecl::TagKind::Union);
790
0
  StaticRD->startDefinition();
791
0
  for (const RecordDecl *TeamReductionRec : TeamsReductions) {
792
0
    QualType RecTy = C.getRecordType(TeamReductionRec);
793
0
    auto *Field = FieldDecl::Create(
794
0
        C, StaticRD, SourceLocation(), SourceLocation(), nullptr, RecTy,
795
0
        C.getTrivialTypeSourceInfo(RecTy, SourceLocation()),
796
0
        /*BW=*/nullptr, /*Mutable=*/false,
797
0
        /*InitStyle=*/ICIS_NoInit);
798
0
    Field->setAccess(AS_public);
799
0
    StaticRD->addDecl(Field);
800
0
  }
801
0
  StaticRD->completeDefinition();
802
0
  QualType StaticTy = C.getRecordType(StaticRD);
803
0
  llvm::Type *LLVMReductionsBufferTy =
804
0
      CGM.getTypes().ConvertTypeForMem(StaticTy);
805
0
  const auto &DL = CGM.getModule().getDataLayout();
806
0
  uint64_t ReductionDataSize =
807
0
      TeamsReductions.empty()
808
0
          ? 0
809
0
          : DL.getTypeAllocSize(LLVMReductionsBufferTy).getFixedValue();
810
0
  CGBuilderTy &Bld = CGF.Builder;
811
0
  OMPBuilder.createTargetDeinit(Bld, ReductionDataSize,
812
0
                                C.getLangOpts().OpenMPCUDAReductionBufNum);
813
0
  TeamsReductions.clear();
814
0
}
815
816
void CGOpenMPRuntimeGPU::emitSPMDKernel(const OMPExecutableDirective &D,
817
                                          StringRef ParentName,
818
                                          llvm::Function *&OutlinedFn,
819
                                          llvm::Constant *&OutlinedFnID,
820
                                          bool IsOffloadEntry,
821
0
                                          const RegionCodeGenTy &CodeGen) {
822
0
  ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode, EM_SPMD);
823
0
  EntryFunctionState EST;
824
825
0
  bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
826
827
  // Emit target region as a standalone region.
828
0
  class NVPTXPrePostActionTy : public PrePostActionTy {
829
0
    CGOpenMPRuntimeGPU &RT;
830
0
    CGOpenMPRuntimeGPU::EntryFunctionState &EST;
831
0
    bool IsBareKernel;
832
0
    DataSharingMode Mode;
833
0
    const OMPExecutableDirective &D;
834
835
0
  public:
836
0
    NVPTXPrePostActionTy(CGOpenMPRuntimeGPU &RT,
837
0
                         CGOpenMPRuntimeGPU::EntryFunctionState &EST,
838
0
                         bool IsBareKernel, const OMPExecutableDirective &D)
839
0
        : RT(RT), EST(EST), IsBareKernel(IsBareKernel),
840
0
          Mode(RT.CurrentDataSharingMode), D(D) {}
841
0
    void Enter(CodeGenFunction &CGF) override {
842
0
      if (IsBareKernel) {
843
0
        RT.CurrentDataSharingMode = DataSharingMode::DS_CUDA;
844
0
        return;
845
0
      }
846
0
      RT.emitKernelInit(D, CGF, EST, /* IsSPMD */ true);
847
      // Skip target region initialization.
848
0
      RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
849
0
    }
850
0
    void Exit(CodeGenFunction &CGF) override {
851
0
      if (IsBareKernel) {
852
0
        RT.CurrentDataSharingMode = Mode;
853
0
        return;
854
0
      }
855
0
      RT.clearLocThreadIdInsertPt(CGF);
856
0
      RT.emitKernelDeinit(CGF, EST, /* IsSPMD */ true);
857
0
    }
858
0
  } Action(*this, EST, IsBareKernel, D);
859
0
  CodeGen.setAction(Action);
860
0
  IsInTTDRegion = true;
861
0
  emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
862
0
                                   IsOffloadEntry, CodeGen);
863
0
  IsInTTDRegion = false;
864
0
}
865
866
void CGOpenMPRuntimeGPU::emitTargetOutlinedFunction(
867
    const OMPExecutableDirective &D, StringRef ParentName,
868
    llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
869
0
    bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
870
0
  if (!IsOffloadEntry) // Nothing to do.
871
0
    return;
872
873
0
  assert(!ParentName.empty() && "Invalid target region parent name!");
874
875
0
  bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
876
0
  bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
877
0
  if (Mode || IsBareKernel)
878
0
    emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
879
0
                   CodeGen);
880
0
  else
881
0
    emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
882
0
                      CodeGen);
883
0
}
884
885
CGOpenMPRuntimeGPU::CGOpenMPRuntimeGPU(CodeGenModule &CGM)
886
0
    : CGOpenMPRuntime(CGM) {
887
0
  llvm::OpenMPIRBuilderConfig Config(
888
0
      CGM.getLangOpts().OpenMPIsTargetDevice, isGPU(),
889
0
      CGM.getLangOpts().OpenMPOffloadMandatory,
890
0
      /*HasRequiresReverseOffload*/ false, /*HasRequiresUnifiedAddress*/ false,
891
0
      hasRequiresUnifiedSharedMemory(), /*HasRequiresDynamicAllocators*/ false);
892
0
  OMPBuilder.setConfig(Config);
893
894
0
  if (!CGM.getLangOpts().OpenMPIsTargetDevice)
895
0
    llvm_unreachable("OpenMP can only handle device code.");
896
897
0
  if (CGM.getLangOpts().OpenMPCUDAMode)
898
0
    CurrentDataSharingMode = CGOpenMPRuntimeGPU::DS_CUDA;
899
900
0
  llvm::OpenMPIRBuilder &OMPBuilder = getOMPBuilder();
901
0
  if (CGM.getLangOpts().NoGPULib || CGM.getLangOpts().OMPHostIRFile.empty())
902
0
    return;
903
904
0
  OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTargetDebug,
905
0
                              "__omp_rtl_debug_kind");
906
0
  OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPTeamSubscription,
907
0
                              "__omp_rtl_assume_teams_oversubscription");
908
0
  OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPThreadSubscription,
909
0
                              "__omp_rtl_assume_threads_oversubscription");
910
0
  OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoThreadState,
911
0
                              "__omp_rtl_assume_no_thread_state");
912
0
  OMPBuilder.createGlobalFlag(CGM.getLangOpts().OpenMPNoNestedParallelism,
913
0
                              "__omp_rtl_assume_no_nested_parallelism");
914
0
}
915
916
void CGOpenMPRuntimeGPU::emitProcBindClause(CodeGenFunction &CGF,
917
                                              ProcBindKind ProcBind,
918
0
                                              SourceLocation Loc) {
919
  // Nothing to do.
920
0
}
921
922
void CGOpenMPRuntimeGPU::emitNumThreadsClause(CodeGenFunction &CGF,
923
                                                llvm::Value *NumThreads,
924
0
                                                SourceLocation Loc) {
925
  // Nothing to do.
926
0
}
927
928
void CGOpenMPRuntimeGPU::emitNumTeamsClause(CodeGenFunction &CGF,
929
                                              const Expr *NumTeams,
930
                                              const Expr *ThreadLimit,
931
0
                                              SourceLocation Loc) {}
932
933
llvm::Function *CGOpenMPRuntimeGPU::emitParallelOutlinedFunction(
934
    CodeGenFunction &CGF, const OMPExecutableDirective &D,
935
    const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
936
0
    const RegionCodeGenTy &CodeGen) {
937
  // Emit target region as a standalone region.
938
0
  bool PrevIsInTTDRegion = IsInTTDRegion;
939
0
  IsInTTDRegion = false;
940
0
  auto *OutlinedFun =
941
0
      cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
942
0
          CGF, D, ThreadIDVar, InnermostKind, CodeGen));
943
0
  IsInTTDRegion = PrevIsInTTDRegion;
944
0
  if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD) {
945
0
    llvm::Function *WrapperFun =
946
0
        createParallelDataSharingWrapper(OutlinedFun, D);
947
0
    WrapperFunctionsMap[OutlinedFun] = WrapperFun;
948
0
  }
949
950
0
  return OutlinedFun;
951
0
}
952
953
/// Get list of lastprivate variables from the teams distribute ... or
954
/// teams {distribute ...} directives.
955
static void
956
getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
957
0
                             llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
958
0
  assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
959
0
         "expected teams directive.");
960
0
  const OMPExecutableDirective *Dir = &D;
961
0
  if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
962
0
    if (const Stmt *S = CGOpenMPRuntime::getSingleCompoundChild(
963
0
            Ctx,
964
0
            D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
965
0
                /*IgnoreCaptured=*/true))) {
966
0
      Dir = dyn_cast_or_null<OMPExecutableDirective>(S);
967
0
      if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
968
0
        Dir = nullptr;
969
0
    }
970
0
  }
971
0
  if (!Dir)
972
0
    return;
973
0
  for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
974
0
    for (const Expr *E : C->getVarRefs())
975
0
      Vars.push_back(getPrivateItem(E));
976
0
  }
977
0
}
978
979
/// Get list of reduction variables from the teams ... directives.
980
static void
981
getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
982
0
                      llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
983
0
  assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
984
0
         "expected teams directive.");
985
0
  for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
986
0
    for (const Expr *E : C->privates())
987
0
      Vars.push_back(getPrivateItem(E));
988
0
  }
989
0
}
990
991
llvm::Function *CGOpenMPRuntimeGPU::emitTeamsOutlinedFunction(
992
    CodeGenFunction &CGF, const OMPExecutableDirective &D,
993
    const VarDecl *ThreadIDVar, OpenMPDirectiveKind InnermostKind,
994
0
    const RegionCodeGenTy &CodeGen) {
995
0
  SourceLocation Loc = D.getBeginLoc();
996
997
0
  const RecordDecl *GlobalizedRD = nullptr;
998
0
  llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
999
0
  llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
1000
0
  unsigned WarpSize = CGM.getTarget().getGridValue().GV_Warp_Size;
1001
  // Globalize team reductions variable unconditionally in all modes.
1002
0
  if (getExecutionMode() != CGOpenMPRuntimeGPU::EM_SPMD)
1003
0
    getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
1004
0
  if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
1005
0
    getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
1006
0
    if (!LastPrivatesReductions.empty()) {
1007
0
      GlobalizedRD = ::buildRecordForGlobalizedVars(
1008
0
          CGM.getContext(), std::nullopt, LastPrivatesReductions,
1009
0
          MappedDeclsFields, WarpSize);
1010
0
    }
1011
0
  } else if (!LastPrivatesReductions.empty()) {
1012
0
    assert(!TeamAndReductions.first &&
1013
0
           "Previous team declaration is not expected.");
1014
0
    TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
1015
0
    std::swap(TeamAndReductions.second, LastPrivatesReductions);
1016
0
  }
1017
1018
  // Emit target region as a standalone region.
1019
0
  class NVPTXPrePostActionTy : public PrePostActionTy {
1020
0
    SourceLocation &Loc;
1021
0
    const RecordDecl *GlobalizedRD;
1022
0
    llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1023
0
        &MappedDeclsFields;
1024
1025
0
  public:
1026
0
    NVPTXPrePostActionTy(
1027
0
        SourceLocation &Loc, const RecordDecl *GlobalizedRD,
1028
0
        llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
1029
0
            &MappedDeclsFields)
1030
0
        : Loc(Loc), GlobalizedRD(GlobalizedRD),
1031
0
          MappedDeclsFields(MappedDeclsFields) {}
1032
0
    void Enter(CodeGenFunction &CGF) override {
1033
0
      auto &Rt =
1034
0
          static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1035
0
      if (GlobalizedRD) {
1036
0
        auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
1037
0
        I->getSecond().MappedParams =
1038
0
            std::make_unique<CodeGenFunction::OMPMapVars>();
1039
0
        DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
1040
0
        for (const auto &Pair : MappedDeclsFields) {
1041
0
          assert(Pair.getFirst()->isCanonicalDecl() &&
1042
0
                 "Expected canonical declaration");
1043
0
          Data.insert(std::make_pair(Pair.getFirst(), MappedVarData()));
1044
0
        }
1045
0
      }
1046
0
      Rt.emitGenericVarsProlog(CGF, Loc);
1047
0
    }
1048
0
    void Exit(CodeGenFunction &CGF) override {
1049
0
      static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
1050
0
          .emitGenericVarsEpilog(CGF);
1051
0
    }
1052
0
  } Action(Loc, GlobalizedRD, MappedDeclsFields);
1053
0
  CodeGen.setAction(Action);
1054
0
  llvm::Function *OutlinedFun = CGOpenMPRuntime::emitTeamsOutlinedFunction(
1055
0
      CGF, D, ThreadIDVar, InnermostKind, CodeGen);
1056
1057
0
  return OutlinedFun;
1058
0
}
1059
1060
void CGOpenMPRuntimeGPU::emitGenericVarsProlog(CodeGenFunction &CGF,
1061
0
                                               SourceLocation Loc) {
1062
0
  if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
1063
0
    return;
1064
1065
0
  CGBuilderTy &Bld = CGF.Builder;
1066
1067
0
  const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1068
0
  if (I == FunctionGlobalizedDecls.end())
1069
0
    return;
1070
1071
0
  for (auto &Rec : I->getSecond().LocalVarData) {
1072
0
    const auto *VD = cast<VarDecl>(Rec.first);
1073
0
    bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
1074
0
    QualType VarTy = VD->getType();
1075
1076
    // Get the local allocation of a firstprivate variable before sharing
1077
0
    llvm::Value *ParValue;
1078
0
    if (EscapedParam) {
1079
0
      LValue ParLVal =
1080
0
          CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
1081
0
      ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
1082
0
    }
1083
1084
    // Allocate space for the variable to be globalized
1085
0
    llvm::Value *AllocArgs[] = {CGF.getTypeSize(VD->getType())};
1086
0
    llvm::CallBase *VoidPtr =
1087
0
        CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1088
0
                                CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1089
0
                            AllocArgs, VD->getName());
1090
    // FIXME: We should use the variables actual alignment as an argument.
1091
0
    VoidPtr->addRetAttr(llvm::Attribute::get(
1092
0
        CGM.getLLVMContext(), llvm::Attribute::Alignment,
1093
0
        CGM.getContext().getTargetInfo().getNewAlign() / 8));
1094
1095
    // Cast the void pointer and get the address of the globalized variable.
1096
0
    llvm::PointerType *VarPtrTy = CGF.ConvertTypeForMem(VarTy)->getPointerTo();
1097
0
    llvm::Value *CastedVoidPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1098
0
        VoidPtr, VarPtrTy, VD->getName() + "_on_stack");
1099
0
    LValue VarAddr = CGF.MakeNaturalAlignAddrLValue(CastedVoidPtr, VarTy);
1100
0
    Rec.second.PrivateAddr = VarAddr.getAddress(CGF);
1101
0
    Rec.second.GlobalizedVal = VoidPtr;
1102
1103
    // Assign the local allocation to the newly globalized location.
1104
0
    if (EscapedParam) {
1105
0
      CGF.EmitStoreOfScalar(ParValue, VarAddr);
1106
0
      I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress(CGF));
1107
0
    }
1108
0
    if (auto *DI = CGF.getDebugInfo())
1109
0
      VoidPtr->setDebugLoc(DI->SourceLocToDebugLoc(VD->getLocation()));
1110
0
  }
1111
1112
0
  for (const auto *ValueD : I->getSecond().EscapedVariableLengthDecls) {
1113
0
    const auto *VD = cast<VarDecl>(ValueD);
1114
0
    std::pair<llvm::Value *, llvm::Value *> AddrSizePair =
1115
0
        getKmpcAllocShared(CGF, VD);
1116
0
    I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(AddrSizePair);
1117
0
    LValue Base = CGF.MakeAddrLValue(AddrSizePair.first, VD->getType(),
1118
0
                                     CGM.getContext().getDeclAlign(VD),
1119
0
                                     AlignmentSource::Decl);
1120
0
    I->getSecond().MappedParams->setVarAddr(CGF, VD, Base.getAddress(CGF));
1121
0
  }
1122
0
  I->getSecond().MappedParams->apply(CGF);
1123
0
}
1124
1125
bool CGOpenMPRuntimeGPU::isDelayedVariableLengthDecl(CodeGenFunction &CGF,
1126
0
                                                     const VarDecl *VD) const {
1127
0
  const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1128
0
  if (I == FunctionGlobalizedDecls.end())
1129
0
    return false;
1130
1131
  // Check variable declaration is delayed:
1132
0
  return llvm::is_contained(I->getSecond().DelayedVariableLengthDecls, VD);
1133
0
}
1134
1135
std::pair<llvm::Value *, llvm::Value *>
1136
CGOpenMPRuntimeGPU::getKmpcAllocShared(CodeGenFunction &CGF,
1137
0
                                       const VarDecl *VD) {
1138
0
  CGBuilderTy &Bld = CGF.Builder;
1139
1140
  // Compute size and alignment.
1141
0
  llvm::Value *Size = CGF.getTypeSize(VD->getType());
1142
0
  CharUnits Align = CGM.getContext().getDeclAlign(VD);
1143
0
  Size = Bld.CreateNUWAdd(
1144
0
      Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
1145
0
  llvm::Value *AlignVal =
1146
0
      llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
1147
0
  Size = Bld.CreateUDiv(Size, AlignVal);
1148
0
  Size = Bld.CreateNUWMul(Size, AlignVal);
1149
1150
  // Allocate space for this VLA object to be globalized.
1151
0
  llvm::Value *AllocArgs[] = {Size};
1152
0
  llvm::CallBase *VoidPtr =
1153
0
      CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1154
0
                              CGM.getModule(), OMPRTL___kmpc_alloc_shared),
1155
0
                          AllocArgs, VD->getName());
1156
0
  VoidPtr->addRetAttr(llvm::Attribute::get(
1157
0
      CGM.getLLVMContext(), llvm::Attribute::Alignment, Align.getQuantity()));
1158
1159
0
  return std::make_pair(VoidPtr, Size);
1160
0
}
1161
1162
void CGOpenMPRuntimeGPU::getKmpcFreeShared(
1163
    CodeGenFunction &CGF,
1164
0
    const std::pair<llvm::Value *, llvm::Value *> &AddrSizePair) {
1165
  // Deallocate the memory for each globalized VLA object
1166
0
  CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1167
0
                          CGM.getModule(), OMPRTL___kmpc_free_shared),
1168
0
                      {AddrSizePair.first, AddrSizePair.second});
1169
0
}
1170
1171
0
void CGOpenMPRuntimeGPU::emitGenericVarsEpilog(CodeGenFunction &CGF) {
1172
0
  if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
1173
0
    return;
1174
1175
0
  const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
1176
0
  if (I != FunctionGlobalizedDecls.end()) {
1177
    // Deallocate the memory for each globalized VLA object that was
1178
    // globalized in the prolog (i.e. emitGenericVarsProlog).
1179
0
    for (const auto &AddrSizePair :
1180
0
         llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
1181
0
      CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1182
0
                              CGM.getModule(), OMPRTL___kmpc_free_shared),
1183
0
                          {AddrSizePair.first, AddrSizePair.second});
1184
0
    }
1185
    // Deallocate the memory for each globalized value
1186
0
    for (auto &Rec : llvm::reverse(I->getSecond().LocalVarData)) {
1187
0
      const auto *VD = cast<VarDecl>(Rec.first);
1188
0
      I->getSecond().MappedParams->restore(CGF);
1189
1190
0
      llvm::Value *FreeArgs[] = {Rec.second.GlobalizedVal,
1191
0
                                 CGF.getTypeSize(VD->getType())};
1192
0
      CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1193
0
                              CGM.getModule(), OMPRTL___kmpc_free_shared),
1194
0
                          FreeArgs);
1195
0
    }
1196
0
  }
1197
0
}
1198
1199
void CGOpenMPRuntimeGPU::emitTeamsCall(CodeGenFunction &CGF,
1200
                                         const OMPExecutableDirective &D,
1201
                                         SourceLocation Loc,
1202
                                         llvm::Function *OutlinedFn,
1203
0
                                         ArrayRef<llvm::Value *> CapturedVars) {
1204
0
  if (!CGF.HaveInsertPoint())
1205
0
    return;
1206
1207
0
  bool IsBareKernel = D.getSingleClause<OMPXBareClause>();
1208
1209
0
  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
1210
0
                                                      /*Name=*/".zero.addr");
1211
0
  CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
1212
0
  llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
1213
  // We don't emit any thread id function call in bare kernel, but because the
1214
  // outlined function has a pointer argument, we emit a nullptr here.
1215
0
  if (IsBareKernel)
1216
0
    OutlinedFnArgs.push_back(llvm::ConstantPointerNull::get(CGM.VoidPtrTy));
1217
0
  else
1218
0
    OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
1219
0
  OutlinedFnArgs.push_back(ZeroAddr.getPointer());
1220
0
  OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
1221
0
  emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
1222
0
}
1223
1224
void CGOpenMPRuntimeGPU::emitParallelCall(CodeGenFunction &CGF,
1225
                                          SourceLocation Loc,
1226
                                          llvm::Function *OutlinedFn,
1227
                                          ArrayRef<llvm::Value *> CapturedVars,
1228
                                          const Expr *IfCond,
1229
0
                                          llvm::Value *NumThreads) {
1230
0
  if (!CGF.HaveInsertPoint())
1231
0
    return;
1232
1233
0
  auto &&ParallelGen = [this, Loc, OutlinedFn, CapturedVars, IfCond,
1234
0
                        NumThreads](CodeGenFunction &CGF,
1235
0
                                    PrePostActionTy &Action) {
1236
0
    CGBuilderTy &Bld = CGF.Builder;
1237
0
    llvm::Value *NumThreadsVal = NumThreads;
1238
0
    llvm::Function *WFn = WrapperFunctionsMap[OutlinedFn];
1239
0
    llvm::Value *ID = llvm::ConstantPointerNull::get(CGM.Int8PtrTy);
1240
0
    if (WFn)
1241
0
      ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
1242
0
    llvm::Value *FnPtr = Bld.CreateBitOrPointerCast(OutlinedFn, CGM.Int8PtrTy);
1243
1244
    // Create a private scope that will globalize the arguments
1245
    // passed from the outside of the target region.
1246
    // TODO: Is that needed?
1247
0
    CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
1248
1249
0
    Address CapturedVarsAddrs = CGF.CreateDefaultAlignTempAlloca(
1250
0
        llvm::ArrayType::get(CGM.VoidPtrTy, CapturedVars.size()),
1251
0
        "captured_vars_addrs");
1252
    // There's something to share.
1253
0
    if (!CapturedVars.empty()) {
1254
      // Prepare for parallel region. Indicate the outlined function.
1255
0
      ASTContext &Ctx = CGF.getContext();
1256
0
      unsigned Idx = 0;
1257
0
      for (llvm::Value *V : CapturedVars) {
1258
0
        Address Dst = Bld.CreateConstArrayGEP(CapturedVarsAddrs, Idx);
1259
0
        llvm::Value *PtrV;
1260
0
        if (V->getType()->isIntegerTy())
1261
0
          PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
1262
0
        else
1263
0
          PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
1264
0
        CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
1265
0
                              Ctx.getPointerType(Ctx.VoidPtrTy));
1266
0
        ++Idx;
1267
0
      }
1268
0
    }
1269
1270
0
    llvm::Value *IfCondVal = nullptr;
1271
0
    if (IfCond)
1272
0
      IfCondVal = Bld.CreateIntCast(CGF.EvaluateExprAsBool(IfCond), CGF.Int32Ty,
1273
0
                                    /* isSigned */ false);
1274
0
    else
1275
0
      IfCondVal = llvm::ConstantInt::get(CGF.Int32Ty, 1);
1276
1277
0
    if (!NumThreadsVal)
1278
0
      NumThreadsVal = llvm::ConstantInt::get(CGF.Int32Ty, -1);
1279
0
    else
1280
0
      NumThreadsVal = Bld.CreateZExtOrTrunc(NumThreadsVal, CGF.Int32Ty),
1281
1282
0
      assert(IfCondVal && "Expected a value");
1283
0
    llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
1284
0
    llvm::Value *Args[] = {
1285
0
        RTLoc,
1286
0
        getThreadID(CGF, Loc),
1287
0
        IfCondVal,
1288
0
        NumThreadsVal,
1289
0
        llvm::ConstantInt::get(CGF.Int32Ty, -1),
1290
0
        FnPtr,
1291
0
        ID,
1292
0
        Bld.CreateBitOrPointerCast(CapturedVarsAddrs.getPointer(),
1293
0
                                   CGF.VoidPtrPtrTy),
1294
0
        llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
1295
0
    CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1296
0
                            CGM.getModule(), OMPRTL___kmpc_parallel_51),
1297
0
                        Args);
1298
0
  };
1299
1300
0
  RegionCodeGenTy RCG(ParallelGen);
1301
0
  RCG(CGF);
1302
0
}
1303
1304
0
void CGOpenMPRuntimeGPU::syncCTAThreads(CodeGenFunction &CGF) {
1305
  // Always emit simple barriers!
1306
0
  if (!CGF.HaveInsertPoint())
1307
0
    return;
1308
  // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
1309
  // This function does not use parameters, so we can emit just default values.
1310
0
  llvm::Value *Args[] = {
1311
0
      llvm::ConstantPointerNull::get(
1312
0
          cast<llvm::PointerType>(getIdentTyPointerTy())),
1313
0
      llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
1314
0
  CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1315
0
                          CGM.getModule(), OMPRTL___kmpc_barrier_simple_spmd),
1316
0
                      Args);
1317
0
}
1318
1319
void CGOpenMPRuntimeGPU::emitBarrierCall(CodeGenFunction &CGF,
1320
                                           SourceLocation Loc,
1321
                                           OpenMPDirectiveKind Kind, bool,
1322
0
                                           bool) {
1323
  // Always emit simple barriers!
1324
0
  if (!CGF.HaveInsertPoint())
1325
0
    return;
1326
  // Build call __kmpc_cancel_barrier(loc, thread_id);
1327
0
  unsigned Flags = getDefaultFlagsForBarriers(Kind);
1328
0
  llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
1329
0
                         getThreadID(CGF, Loc)};
1330
1331
0
  CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1332
0
                          CGM.getModule(), OMPRTL___kmpc_barrier),
1333
0
                      Args);
1334
0
}
1335
1336
void CGOpenMPRuntimeGPU::emitCriticalRegion(
1337
    CodeGenFunction &CGF, StringRef CriticalName,
1338
    const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
1339
0
    const Expr *Hint) {
1340
0
  llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
1341
0
  llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
1342
0
  llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
1343
0
  llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
1344
0
  llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
1345
1346
0
  auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1347
1348
  // Get the mask of active threads in the warp.
1349
0
  llvm::Value *Mask = CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1350
0
      CGM.getModule(), OMPRTL___kmpc_warp_active_thread_mask));
1351
  // Fetch team-local id of the thread.
1352
0
  llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1353
1354
  // Get the width of the team.
1355
0
  llvm::Value *TeamWidth = RT.getGPUNumThreads(CGF);
1356
1357
  // Initialize the counter variable for the loop.
1358
0
  QualType Int32Ty =
1359
0
      CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
1360
0
  Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
1361
0
  LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
1362
0
  CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
1363
0
                        /*isInit=*/true);
1364
1365
  // Block checks if loop counter exceeds upper bound.
1366
0
  CGF.EmitBlock(LoopBB);
1367
0
  llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1368
0
  llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
1369
0
  CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
1370
1371
  // Block tests which single thread should execute region, and which threads
1372
  // should go straight to synchronisation point.
1373
0
  CGF.EmitBlock(TestBB);
1374
0
  CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
1375
0
  llvm::Value *CmpThreadToCounter =
1376
0
      CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
1377
0
  CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
1378
1379
  // Block emits the body of the critical region.
1380
0
  CGF.EmitBlock(BodyBB);
1381
1382
  // Output the critical statement.
1383
0
  CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
1384
0
                                      Hint);
1385
1386
  // After the body surrounded by the critical region, the single executing
1387
  // thread will jump to the synchronisation point.
1388
  // Block waits for all threads in current team to finish then increments the
1389
  // counter variable and returns to the loop.
1390
0
  CGF.EmitBlock(SyncBB);
1391
  // Reconverge active threads in the warp.
1392
0
  (void)CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
1393
0
                                CGM.getModule(), OMPRTL___kmpc_syncwarp),
1394
0
                            Mask);
1395
1396
0
  llvm::Value *IncCounterVal =
1397
0
      CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
1398
0
  CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
1399
0
  CGF.EmitBranch(LoopBB);
1400
1401
  // Block that is reached when  all threads in the team complete the region.
1402
0
  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
1403
0
}
1404
1405
/// Cast value to the specified type.
1406
static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
1407
                                    QualType ValTy, QualType CastTy,
1408
0
                                    SourceLocation Loc) {
1409
0
  assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
1410
0
         "Cast type must sized.");
1411
0
  assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
1412
0
         "Val type must sized.");
1413
0
  llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
1414
0
  if (ValTy == CastTy)
1415
0
    return Val;
1416
0
  if (CGF.getContext().getTypeSizeInChars(ValTy) ==
1417
0
      CGF.getContext().getTypeSizeInChars(CastTy))
1418
0
    return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
1419
0
  if (CastTy->isIntegerType() && ValTy->isIntegerType())
1420
0
    return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
1421
0
                                     CastTy->hasSignedIntegerRepresentation());
1422
0
  Address CastItem = CGF.CreateMemTemp(CastTy);
1423
0
  Address ValCastItem = CastItem.withElementType(Val->getType());
1424
0
  CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy,
1425
0
                        LValueBaseInfo(AlignmentSource::Type),
1426
0
                        TBAAAccessInfo());
1427
0
  return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc,
1428
0
                              LValueBaseInfo(AlignmentSource::Type),
1429
0
                              TBAAAccessInfo());
1430
0
}
1431
1432
/// This function creates calls to one of two shuffle functions to copy
1433
/// variables between lanes in a warp.
1434
static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
1435
                                                 llvm::Value *Elem,
1436
                                                 QualType ElemType,
1437
                                                 llvm::Value *Offset,
1438
0
                                                 SourceLocation Loc) {
1439
0
  CodeGenModule &CGM = CGF.CGM;
1440
0
  CGBuilderTy &Bld = CGF.Builder;
1441
0
  CGOpenMPRuntimeGPU &RT =
1442
0
      *(static_cast<CGOpenMPRuntimeGPU *>(&CGM.getOpenMPRuntime()));
1443
0
  llvm::OpenMPIRBuilder &OMPBuilder = RT.getOMPBuilder();
1444
1445
0
  CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1446
0
  assert(Size.getQuantity() <= 8 &&
1447
0
         "Unsupported bitwidth in shuffle instruction.");
1448
1449
0
  RuntimeFunction ShuffleFn = Size.getQuantity() <= 4
1450
0
                                  ? OMPRTL___kmpc_shuffle_int32
1451
0
                                  : OMPRTL___kmpc_shuffle_int64;
1452
1453
  // Cast all types to 32- or 64-bit values before calling shuffle routines.
1454
0
  QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
1455
0
      Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
1456
0
  llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
1457
0
  llvm::Value *WarpSize =
1458
0
      Bld.CreateIntCast(RT.getGPUWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
1459
1460
0
  llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
1461
0
      OMPBuilder.getOrCreateRuntimeFunction(CGM.getModule(), ShuffleFn),
1462
0
      {ElemCast, Offset, WarpSize});
1463
1464
0
  return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
1465
0
}
1466
1467
static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
1468
                            Address DestAddr, QualType ElemType,
1469
0
                            llvm::Value *Offset, SourceLocation Loc) {
1470
0
  CGBuilderTy &Bld = CGF.Builder;
1471
1472
0
  CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
1473
  // Create the loop over the big sized data.
1474
  // ptr = (void*)Elem;
1475
  // ptrEnd = (void*) Elem + 1;
1476
  // Step = 8;
1477
  // while (ptr + Step < ptrEnd)
1478
  //   shuffle((int64_t)*ptr);
1479
  // Step = 4;
1480
  // while (ptr + Step < ptrEnd)
1481
  //   shuffle((int32_t)*ptr);
1482
  // ...
1483
0
  Address ElemPtr = DestAddr;
1484
0
  Address Ptr = SrcAddr;
1485
0
  Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
1486
0
      Bld.CreateConstGEP(SrcAddr, 1), CGF.VoidPtrTy, CGF.Int8Ty);
1487
0
  for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
1488
0
    if (Size < CharUnits::fromQuantity(IntSize))
1489
0
      continue;
1490
0
    QualType IntType = CGF.getContext().getIntTypeForBitwidth(
1491
0
        CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
1492
0
        /*Signed=*/1);
1493
0
    llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
1494
0
    Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo(),
1495
0
                                                  IntTy);
1496
0
    ElemPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
1497
0
        ElemPtr, IntTy->getPointerTo(), IntTy);
1498
0
    if (Size.getQuantity() / IntSize > 1) {
1499
0
      llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
1500
0
      llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
1501
0
      llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
1502
0
      llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
1503
0
      CGF.EmitBlock(PreCondBB);
1504
0
      llvm::PHINode *PhiSrc =
1505
0
          Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
1506
0
      PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
1507
0
      llvm::PHINode *PhiDest =
1508
0
          Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
1509
0
      PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
1510
0
      Ptr = Address(PhiSrc, Ptr.getElementType(), Ptr.getAlignment());
1511
0
      ElemPtr =
1512
0
          Address(PhiDest, ElemPtr.getElementType(), ElemPtr.getAlignment());
1513
0
      llvm::Value *PtrDiff = Bld.CreatePtrDiff(
1514
0
          CGF.Int8Ty, PtrEnd.getPointer(),
1515
0
          Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr.getPointer(),
1516
0
                                                  CGF.VoidPtrTy));
1517
0
      Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
1518
0
                       ThenBB, ExitBB);
1519
0
      CGF.EmitBlock(ThenBB);
1520
0
      llvm::Value *Res = createRuntimeShuffleFunction(
1521
0
          CGF,
1522
0
          CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1523
0
                               LValueBaseInfo(AlignmentSource::Type),
1524
0
                               TBAAAccessInfo()),
1525
0
          IntType, Offset, Loc);
1526
0
      CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1527
0
                            LValueBaseInfo(AlignmentSource::Type),
1528
0
                            TBAAAccessInfo());
1529
0
      Address LocalPtr = Bld.CreateConstGEP(Ptr, 1);
1530
0
      Address LocalElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1531
0
      PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
1532
0
      PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
1533
0
      CGF.EmitBranch(PreCondBB);
1534
0
      CGF.EmitBlock(ExitBB);
1535
0
    } else {
1536
0
      llvm::Value *Res = createRuntimeShuffleFunction(
1537
0
          CGF,
1538
0
          CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc,
1539
0
                               LValueBaseInfo(AlignmentSource::Type),
1540
0
                               TBAAAccessInfo()),
1541
0
          IntType, Offset, Loc);
1542
0
      CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType,
1543
0
                            LValueBaseInfo(AlignmentSource::Type),
1544
0
                            TBAAAccessInfo());
1545
0
      Ptr = Bld.CreateConstGEP(Ptr, 1);
1546
0
      ElemPtr = Bld.CreateConstGEP(ElemPtr, 1);
1547
0
    }
1548
0
    Size = Size % IntSize;
1549
0
  }
1550
0
}
1551
1552
namespace {
1553
enum CopyAction : unsigned {
1554
  // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
1555
  // the warp using shuffle instructions.
1556
  RemoteLaneToThread,
1557
  // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
1558
  ThreadCopy,
1559
};
1560
} // namespace
1561
1562
struct CopyOptionsTy {
1563
  llvm::Value *RemoteLaneOffset;
1564
  llvm::Value *ScratchpadIndex;
1565
  llvm::Value *ScratchpadWidth;
1566
};
1567
1568
/// Emit instructions to copy a Reduce list, which contains partially
1569
/// aggregated values, in the specified direction.
1570
static void emitReductionListCopy(
1571
    CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
1572
    ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
1573
0
    CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
1574
1575
0
  CodeGenModule &CGM = CGF.CGM;
1576
0
  ASTContext &C = CGM.getContext();
1577
0
  CGBuilderTy &Bld = CGF.Builder;
1578
1579
0
  llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
1580
1581
  // Iterates, element-by-element, through the source Reduce list and
1582
  // make a copy.
1583
0
  unsigned Idx = 0;
1584
0
  for (const Expr *Private : Privates) {
1585
0
    Address SrcElementAddr = Address::invalid();
1586
0
    Address DestElementAddr = Address::invalid();
1587
0
    Address DestElementPtrAddr = Address::invalid();
1588
    // Should we shuffle in an element from a remote lane?
1589
0
    bool ShuffleInElement = false;
1590
    // Set to true to update the pointer in the dest Reduce list to a
1591
    // newly created element.
1592
0
    bool UpdateDestListPtr = false;
1593
0
    QualType PrivatePtrType = C.getPointerType(Private->getType());
1594
0
    llvm::Type *PrivateLlvmPtrType = CGF.ConvertType(PrivatePtrType);
1595
1596
0
    switch (Action) {
1597
0
    case RemoteLaneToThread: {
1598
      // Step 1.1: Get the address for the src element in the Reduce list.
1599
0
      Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1600
0
      SrcElementAddr = CGF.EmitLoadOfPointer(
1601
0
          SrcElementPtrAddr.withElementType(PrivateLlvmPtrType),
1602
0
          PrivatePtrType->castAs<PointerType>());
1603
1604
      // Step 1.2: Create a temporary to store the element in the destination
1605
      // Reduce list.
1606
0
      DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1607
0
      DestElementAddr =
1608
0
          CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
1609
0
      ShuffleInElement = true;
1610
0
      UpdateDestListPtr = true;
1611
0
      break;
1612
0
    }
1613
0
    case ThreadCopy: {
1614
      // Step 1.1: Get the address for the src element in the Reduce list.
1615
0
      Address SrcElementPtrAddr = Bld.CreateConstArrayGEP(SrcBase, Idx);
1616
0
      SrcElementAddr = CGF.EmitLoadOfPointer(
1617
0
          SrcElementPtrAddr.withElementType(PrivateLlvmPtrType),
1618
0
          PrivatePtrType->castAs<PointerType>());
1619
1620
      // Step 1.2: Get the address for dest element.  The destination
1621
      // element has already been created on the thread's stack.
1622
0
      DestElementPtrAddr = Bld.CreateConstArrayGEP(DestBase, Idx);
1623
0
      DestElementAddr = CGF.EmitLoadOfPointer(
1624
0
          DestElementPtrAddr.withElementType(PrivateLlvmPtrType),
1625
0
          PrivatePtrType->castAs<PointerType>());
1626
0
      break;
1627
0
    }
1628
0
    }
1629
1630
    // Regardless of src and dest of copy, we emit the load of src
1631
    // element as this is required in all directions
1632
0
    SrcElementAddr = SrcElementAddr.withElementType(
1633
0
        CGF.ConvertTypeForMem(Private->getType()));
1634
0
    DestElementAddr =
1635
0
        DestElementAddr.withElementType(SrcElementAddr.getElementType());
1636
1637
    // Now that all active lanes have read the element in the
1638
    // Reduce list, shuffle over the value from the remote lane.
1639
0
    if (ShuffleInElement) {
1640
0
      shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
1641
0
                      RemoteLaneOffset, Private->getExprLoc());
1642
0
    } else {
1643
0
      switch (CGF.getEvaluationKind(Private->getType())) {
1644
0
      case TEK_Scalar: {
1645
0
        llvm::Value *Elem = CGF.EmitLoadOfScalar(
1646
0
            SrcElementAddr, /*Volatile=*/false, Private->getType(),
1647
0
            Private->getExprLoc(), LValueBaseInfo(AlignmentSource::Type),
1648
0
            TBAAAccessInfo());
1649
        // Store the source element value to the dest element address.
1650
0
        CGF.EmitStoreOfScalar(
1651
0
            Elem, DestElementAddr, /*Volatile=*/false, Private->getType(),
1652
0
            LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
1653
0
        break;
1654
0
      }
1655
0
      case TEK_Complex: {
1656
0
        CodeGenFunction::ComplexPairTy Elem = CGF.EmitLoadOfComplex(
1657
0
            CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
1658
0
            Private->getExprLoc());
1659
0
        CGF.EmitStoreOfComplex(
1660
0
            Elem, CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
1661
0
            /*isInit=*/false);
1662
0
        break;
1663
0
      }
1664
0
      case TEK_Aggregate:
1665
0
        CGF.EmitAggregateCopy(
1666
0
            CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
1667
0
            CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
1668
0
            Private->getType(), AggValueSlot::DoesNotOverlap);
1669
0
        break;
1670
0
      }
1671
0
    }
1672
1673
    // Step 3.1: Modify reference in dest Reduce list as needed.
1674
    // Modifying the reference in Reduce list to point to the newly
1675
    // created element.  The element is live in the current function
1676
    // scope and that of functions it invokes (i.e., reduce_function).
1677
    // RemoteReduceData[i] = (void*)&RemoteElem
1678
0
    if (UpdateDestListPtr) {
1679
0
      CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
1680
0
                                DestElementAddr.getPointer(), CGF.VoidPtrTy),
1681
0
                            DestElementPtrAddr, /*Volatile=*/false,
1682
0
                            C.VoidPtrTy);
1683
0
    }
1684
1685
0
    ++Idx;
1686
0
  }
1687
0
}
1688
1689
/// This function emits a helper that gathers Reduce lists from the first
1690
/// lane of every active warp to lanes in the first warp.
1691
///
1692
/// void inter_warp_copy_func(void* reduce_data, num_warps)
1693
///   shared smem[warp_size];
1694
///   For all data entries D in reduce_data:
1695
///     sync
1696
///     If (I am the first lane in each warp)
1697
///       Copy my local D to smem[warp_id]
1698
///     sync
1699
///     if (I am the first warp)
1700
///       Copy smem[thread_id] to my local D
1701
static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
1702
                                              ArrayRef<const Expr *> Privates,
1703
                                              QualType ReductionArrayTy,
1704
0
                                              SourceLocation Loc) {
1705
0
  ASTContext &C = CGM.getContext();
1706
0
  llvm::Module &M = CGM.getModule();
1707
1708
  // ReduceList: thread local Reduce list.
1709
  // At the stage of the computation when this function is called, partially
1710
  // aggregated values reside in the first lane of every active warp.
1711
0
  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
1712
0
                                  C.VoidPtrTy, ImplicitParamKind::Other);
1713
  // NumWarps: number of warps active in the parallel region.  This could
1714
  // be smaller than 32 (max warps in a CTA) for partial block reduction.
1715
0
  ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
1716
0
                                C.getIntTypeForBitwidth(32, /* Signed */ true),
1717
0
                                ImplicitParamKind::Other);
1718
0
  FunctionArgList Args;
1719
0
  Args.push_back(&ReduceListArg);
1720
0
  Args.push_back(&NumWarpsArg);
1721
1722
0
  const CGFunctionInfo &CGFI =
1723
0
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
1724
0
  auto *Fn = llvm::Function::Create(CGM.getTypes().GetFunctionType(CGFI),
1725
0
                                    llvm::GlobalValue::InternalLinkage,
1726
0
                                    "_omp_reduction_inter_warp_copy_func", &M);
1727
0
  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
1728
0
  Fn->setDoesNotRecurse();
1729
0
  CodeGenFunction CGF(CGM);
1730
0
  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
1731
1732
0
  CGBuilderTy &Bld = CGF.Builder;
1733
1734
  // This array is used as a medium to transfer, one reduce element at a time,
1735
  // the data from the first lane of every warp to lanes in the first warp
1736
  // in order to perform the final step of a reduction in a parallel region
1737
  // (reduction across warps).  The array is placed in NVPTX __shared__ memory
1738
  // for reduced latency, as well as to have a distinct copy for concurrently
1739
  // executing target regions.  The array is declared with common linkage so
1740
  // as to be shared across compilation units.
1741
0
  StringRef TransferMediumName =
1742
0
      "__openmp_nvptx_data_transfer_temporary_storage";
1743
0
  llvm::GlobalVariable *TransferMedium =
1744
0
      M.getGlobalVariable(TransferMediumName);
1745
0
  unsigned WarpSize = CGF.getTarget().getGridValue().GV_Warp_Size;
1746
0
  if (!TransferMedium) {
1747
0
    auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
1748
0
    unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
1749
0
    TransferMedium = new llvm::GlobalVariable(
1750
0
        M, Ty, /*isConstant=*/false, llvm::GlobalVariable::WeakAnyLinkage,
1751
0
        llvm::UndefValue::get(Ty), TransferMediumName,
1752
0
        /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
1753
0
        SharedAddressSpace);
1754
0
    CGM.addCompilerUsedGlobal(TransferMedium);
1755
0
  }
1756
1757
0
  auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
1758
  // Get the CUDA thread id of the current OpenMP thread on the GPU.
1759
0
  llvm::Value *ThreadID = RT.getGPUThreadID(CGF);
1760
  // nvptx_lane_id = nvptx_id % warpsize
1761
0
  llvm::Value *LaneID = getNVPTXLaneID(CGF);
1762
  // nvptx_warp_id = nvptx_id / warpsize
1763
0
  llvm::Value *WarpID = getNVPTXWarpID(CGF);
1764
1765
0
  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
1766
0
  llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
1767
0
  Address LocalReduceList(
1768
0
      Bld.CreatePointerBitCastOrAddrSpaceCast(
1769
0
          CGF.EmitLoadOfScalar(
1770
0
              AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc,
1771
0
              LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo()),
1772
0
          ElemTy->getPointerTo()),
1773
0
      ElemTy, CGF.getPointerAlign());
1774
1775
0
  unsigned Idx = 0;
1776
0
  for (const Expr *Private : Privates) {
1777
    //
1778
    // Warp master copies reduce element to transfer medium in __shared__
1779
    // memory.
1780
    //
1781
0
    unsigned RealTySize =
1782
0
        C.getTypeSizeInChars(Private->getType())
1783
0
            .alignTo(C.getTypeAlignInChars(Private->getType()))
1784
0
            .getQuantity();
1785
0
    for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
1786
0
      unsigned NumIters = RealTySize / TySize;
1787
0
      if (NumIters == 0)
1788
0
        continue;
1789
0
      QualType CType = C.getIntTypeForBitwidth(
1790
0
          C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
1791
0
      llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
1792
0
      CharUnits Align = CharUnits::fromQuantity(TySize);
1793
0
      llvm::Value *Cnt = nullptr;
1794
0
      Address CntAddr = Address::invalid();
1795
0
      llvm::BasicBlock *PrecondBB = nullptr;
1796
0
      llvm::BasicBlock *ExitBB = nullptr;
1797
0
      if (NumIters > 1) {
1798
0
        CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
1799
0
        CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
1800
0
                              /*Volatile=*/false, C.IntTy);
1801
0
        PrecondBB = CGF.createBasicBlock("precond");
1802
0
        ExitBB = CGF.createBasicBlock("exit");
1803
0
        llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
1804
        // There is no need to emit line number for unconditional branch.
1805
0
        (void)ApplyDebugLocation::CreateEmpty(CGF);
1806
0
        CGF.EmitBlock(PrecondBB);
1807
0
        Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
1808
0
        llvm::Value *Cmp =
1809
0
            Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
1810
0
        Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
1811
0
        CGF.EmitBlock(BodyBB);
1812
0
      }
1813
      // kmpc_barrier.
1814
0
      CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
1815
0
                                             /*EmitChecks=*/false,
1816
0
                                             /*ForceSimpleCall=*/true);
1817
0
      llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
1818
0
      llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
1819
0
      llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
1820
1821
      // if (lane_id == 0)
1822
0
      llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
1823
0
      Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
1824
0
      CGF.EmitBlock(ThenBB);
1825
1826
      // Reduce element = LocalReduceList[i]
1827
0
      Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
1828
0
      llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
1829
0
          ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
1830
      // elemptr = ((CopyType*)(elemptrptr)) + I
1831
0
      Address ElemPtr(ElemPtrPtr, CopyType, Align);
1832
0
      if (NumIters > 1)
1833
0
        ElemPtr = Bld.CreateGEP(ElemPtr, Cnt);
1834
1835
      // Get pointer to location in transfer medium.
1836
      // MediumPtr = &medium[warp_id]
1837
0
      llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
1838
0
          TransferMedium->getValueType(), TransferMedium,
1839
0
          {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
1840
      // Casting to actual data type.
1841
      // MediumPtr = (CopyType*)MediumPtrAddr;
1842
0
      Address MediumPtr(MediumPtrVal, CopyType, Align);
1843
1844
      // elem = *elemptr
1845
      //*MediumPtr = elem
1846
0
      llvm::Value *Elem = CGF.EmitLoadOfScalar(
1847
0
          ElemPtr, /*Volatile=*/false, CType, Loc,
1848
0
          LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
1849
      // Store the source element value to the dest element address.
1850
0
      CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType,
1851
0
                            LValueBaseInfo(AlignmentSource::Type),
1852
0
                            TBAAAccessInfo());
1853
1854
0
      Bld.CreateBr(MergeBB);
1855
1856
0
      CGF.EmitBlock(ElseBB);
1857
0
      Bld.CreateBr(MergeBB);
1858
1859
0
      CGF.EmitBlock(MergeBB);
1860
1861
      // kmpc_barrier.
1862
0
      CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
1863
0
                                             /*EmitChecks=*/false,
1864
0
                                             /*ForceSimpleCall=*/true);
1865
1866
      //
1867
      // Warp 0 copies reduce element from transfer medium.
1868
      //
1869
0
      llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
1870
0
      llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
1871
0
      llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
1872
1873
0
      Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
1874
0
      llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
1875
0
          AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
1876
1877
      // Up to 32 threads in warp 0 are active.
1878
0
      llvm::Value *IsActiveThread =
1879
0
          Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
1880
0
      Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
1881
1882
0
      CGF.EmitBlock(W0ThenBB);
1883
1884
      // SrcMediumPtr = &medium[tid]
1885
0
      llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
1886
0
          TransferMedium->getValueType(), TransferMedium,
1887
0
          {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
1888
      // SrcMediumVal = *SrcMediumPtr;
1889
0
      Address SrcMediumPtr(SrcMediumPtrVal, CopyType, Align);
1890
1891
      // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
1892
0
      Address TargetElemPtrPtr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
1893
0
      llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
1894
0
          TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
1895
0
      Address TargetElemPtr(TargetElemPtrVal, CopyType, Align);
1896
0
      if (NumIters > 1)
1897
0
        TargetElemPtr = Bld.CreateGEP(TargetElemPtr, Cnt);
1898
1899
      // *TargetElemPtr = SrcMediumVal;
1900
0
      llvm::Value *SrcMediumValue =
1901
0
          CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
1902
0
      CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
1903
0
                            CType);
1904
0
      Bld.CreateBr(W0MergeBB);
1905
1906
0
      CGF.EmitBlock(W0ElseBB);
1907
0
      Bld.CreateBr(W0MergeBB);
1908
1909
0
      CGF.EmitBlock(W0MergeBB);
1910
1911
0
      if (NumIters > 1) {
1912
0
        Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
1913
0
        CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
1914
0
        CGF.EmitBranch(PrecondBB);
1915
0
        (void)ApplyDebugLocation::CreateEmpty(CGF);
1916
0
        CGF.EmitBlock(ExitBB);
1917
0
      }
1918
0
      RealTySize %= TySize;
1919
0
    }
1920
0
    ++Idx;
1921
0
  }
1922
1923
0
  CGF.FinishFunction();
1924
0
  return Fn;
1925
0
}
1926
1927
/// Emit a helper that reduces data across two OpenMP threads (lanes)
1928
/// in the same warp.  It uses shuffle instructions to copy over data from
1929
/// a remote lane's stack.  The reduction algorithm performed is specified
1930
/// by the fourth parameter.
1931
///
1932
/// Algorithm Versions.
1933
/// Full Warp Reduce (argument value 0):
1934
///   This algorithm assumes that all 32 lanes are active and gathers
1935
///   data from these 32 lanes, producing a single resultant value.
1936
/// Contiguous Partial Warp Reduce (argument value 1):
1937
///   This algorithm assumes that only a *contiguous* subset of lanes
1938
///   are active.  This happens for the last warp in a parallel region
1939
///   when the user specified num_threads is not an integer multiple of
1940
///   32.  This contiguous subset always starts with the zeroth lane.
1941
/// Partial Warp Reduce (argument value 2):
1942
///   This algorithm gathers data from any number of lanes at any position.
1943
/// All reduced values are stored in the lowest possible lane.  The set
1944
/// of problems every algorithm addresses is a super set of those
1945
/// addressable by algorithms with a lower version number.  Overhead
1946
/// increases as algorithm version increases.
1947
///
1948
/// Terminology
1949
/// Reduce element:
1950
///   Reduce element refers to the individual data field with primitive
1951
///   data types to be combined and reduced across threads.
1952
/// Reduce list:
1953
///   Reduce list refers to a collection of local, thread-private
1954
///   reduce elements.
1955
/// Remote Reduce list:
1956
///   Remote Reduce list refers to a collection of remote (relative to
1957
///   the current thread) reduce elements.
1958
///
1959
/// We distinguish between three states of threads that are important to
1960
/// the implementation of this function.
1961
/// Alive threads:
1962
///   Threads in a warp executing the SIMT instruction, as distinguished from
1963
///   threads that are inactive due to divergent control flow.
1964
/// Active threads:
1965
///   The minimal set of threads that has to be alive upon entry to this
1966
///   function.  The computation is correct iff active threads are alive.
1967
///   Some threads are alive but they are not active because they do not
1968
///   contribute to the computation in any useful manner.  Turning them off
1969
///   may introduce control flow overheads without any tangible benefits.
1970
/// Effective threads:
1971
///   In order to comply with the argument requirements of the shuffle
1972
///   function, we must keep all lanes holding data alive.  But at most
1973
///   half of them perform value aggregation; we refer to this half of
1974
///   threads as effective. The other half is simply handing off their
1975
///   data.
1976
///
1977
/// Procedure
1978
/// Value shuffle:
1979
///   In this step active threads transfer data from higher lane positions
1980
///   in the warp to lower lane positions, creating Remote Reduce list.
1981
/// Value aggregation:
1982
///   In this step, effective threads combine their thread local Reduce list
1983
///   with Remote Reduce list and store the result in the thread local
1984
///   Reduce list.
1985
/// Value copy:
1986
///   In this step, we deal with the assumption made by algorithm 2
1987
///   (i.e. contiguity assumption).  When we have an odd number of lanes
1988
///   active, say 2k+1, only k threads will be effective and therefore k
1989
///   new values will be produced.  However, the Reduce list owned by the
1990
///   (2k+1)th thread is ignored in the value aggregation.  Therefore
1991
///   we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
1992
///   that the contiguity assumption still holds.
1993
static llvm::Function *emitShuffleAndReduceFunction(
1994
    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
1995
0
    QualType ReductionArrayTy, llvm::Function *ReduceFn, SourceLocation Loc) {
1996
0
  ASTContext &C = CGM.getContext();
1997
1998
  // Thread local Reduce list used to host the values of data to be reduced.
1999
0
  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2000
0
                                  C.VoidPtrTy, ImplicitParamKind::Other);
2001
  // Current lane id; could be logical.
2002
0
  ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
2003
0
                              ImplicitParamKind::Other);
2004
  // Offset of the remote source lane relative to the current lane.
2005
0
  ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2006
0
                                        C.ShortTy, ImplicitParamKind::Other);
2007
  // Algorithm version.  This is expected to be known at compile time.
2008
0
  ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2009
0
                               C.ShortTy, ImplicitParamKind::Other);
2010
0
  FunctionArgList Args;
2011
0
  Args.push_back(&ReduceListArg);
2012
0
  Args.push_back(&LaneIDArg);
2013
0
  Args.push_back(&RemoteLaneOffsetArg);
2014
0
  Args.push_back(&AlgoVerArg);
2015
2016
0
  const CGFunctionInfo &CGFI =
2017
0
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2018
0
  auto *Fn = llvm::Function::Create(
2019
0
      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2020
0
      "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
2021
0
  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2022
0
  Fn->setDoesNotRecurse();
2023
2024
0
  CodeGenFunction CGF(CGM);
2025
0
  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2026
2027
0
  CGBuilderTy &Bld = CGF.Builder;
2028
2029
0
  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2030
0
  llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2031
0
  Address LocalReduceList(
2032
0
      Bld.CreatePointerBitCastOrAddrSpaceCast(
2033
0
          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2034
0
                               C.VoidPtrTy, SourceLocation()),
2035
0
          ElemTy->getPointerTo()),
2036
0
      ElemTy, CGF.getPointerAlign());
2037
2038
0
  Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
2039
0
  llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
2040
0
      AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2041
2042
0
  Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
2043
0
  llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
2044
0
      AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2045
2046
0
  Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
2047
0
  llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
2048
0
      AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
2049
2050
  // Create a local thread-private variable to host the Reduce list
2051
  // from a remote lane.
2052
0
  Address RemoteReduceList =
2053
0
      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
2054
2055
  // This loop iterates through the list of reduce elements and copies,
2056
  // element by element, from a remote lane in the warp to RemoteReduceList,
2057
  // hosted on the thread's stack.
2058
0
  emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
2059
0
                        LocalReduceList, RemoteReduceList,
2060
0
                        {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
2061
0
                         /*ScratchpadIndex=*/nullptr,
2062
0
                         /*ScratchpadWidth=*/nullptr});
2063
2064
  // The actions to be performed on the Remote Reduce list is dependent
2065
  // on the algorithm version.
2066
  //
2067
  //  if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
2068
  //  LaneId % 2 == 0 && Offset > 0):
2069
  //    do the reduction value aggregation
2070
  //
2071
  //  The thread local variable Reduce list is mutated in place to host the
2072
  //  reduced data, which is the aggregated value produced from local and
2073
  //  remote lanes.
2074
  //
2075
  //  Note that AlgoVer is expected to be a constant integer known at compile
2076
  //  time.
2077
  //  When AlgoVer==0, the first conjunction evaluates to true, making
2078
  //    the entire predicate true during compile time.
2079
  //  When AlgoVer==1, the second conjunction has only the second part to be
2080
  //    evaluated during runtime.  Other conjunctions evaluates to false
2081
  //    during compile time.
2082
  //  When AlgoVer==2, the third conjunction has only the second part to be
2083
  //    evaluated during runtime.  Other conjunctions evaluates to false
2084
  //    during compile time.
2085
0
  llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
2086
2087
0
  llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2088
0
  llvm::Value *CondAlgo1 = Bld.CreateAnd(
2089
0
      Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
2090
2091
0
  llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
2092
0
  llvm::Value *CondAlgo2 = Bld.CreateAnd(
2093
0
      Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
2094
0
  CondAlgo2 = Bld.CreateAnd(
2095
0
      CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
2096
2097
0
  llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
2098
0
  CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
2099
2100
0
  llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
2101
0
  llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
2102
0
  llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
2103
0
  Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
2104
2105
0
  CGF.EmitBlock(ThenBB);
2106
  // reduce_function(LocalReduceList, RemoteReduceList)
2107
0
  llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2108
0
      LocalReduceList.getPointer(), CGF.VoidPtrTy);
2109
0
  llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2110
0
      RemoteReduceList.getPointer(), CGF.VoidPtrTy);
2111
0
  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2112
0
      CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
2113
0
  Bld.CreateBr(MergeBB);
2114
2115
0
  CGF.EmitBlock(ElseBB);
2116
0
  Bld.CreateBr(MergeBB);
2117
2118
0
  CGF.EmitBlock(MergeBB);
2119
2120
  // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
2121
  // Reduce list.
2122
0
  Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
2123
0
  llvm::Value *CondCopy = Bld.CreateAnd(
2124
0
      Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
2125
2126
0
  llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
2127
0
  llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
2128
0
  llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
2129
0
  Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
2130
2131
0
  CGF.EmitBlock(CpyThenBB);
2132
0
  emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
2133
0
                        RemoteReduceList, LocalReduceList);
2134
0
  Bld.CreateBr(CpyMergeBB);
2135
2136
0
  CGF.EmitBlock(CpyElseBB);
2137
0
  Bld.CreateBr(CpyMergeBB);
2138
2139
0
  CGF.EmitBlock(CpyMergeBB);
2140
2141
0
  CGF.FinishFunction();
2142
0
  return Fn;
2143
0
}
2144
2145
/// This function emits a helper that copies all the reduction variables from
2146
/// the team into the provided global buffer for the reduction variables.
2147
///
2148
/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2149
///   For all data entries D in reduce_data:
2150
///     Copy local D to buffer.D[Idx]
2151
static llvm::Value *emitListToGlobalCopyFunction(
2152
    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2153
    QualType ReductionArrayTy, SourceLocation Loc,
2154
    const RecordDecl *TeamReductionRec,
2155
    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2156
0
        &VarFieldMap) {
2157
0
  ASTContext &C = CGM.getContext();
2158
2159
  // Buffer: global reduction buffer.
2160
0
  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2161
0
                              C.VoidPtrTy, ImplicitParamKind::Other);
2162
  // Idx: index of the buffer.
2163
0
  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2164
0
                           ImplicitParamKind::Other);
2165
  // ReduceList: thread local Reduce list.
2166
0
  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2167
0
                                  C.VoidPtrTy, ImplicitParamKind::Other);
2168
0
  FunctionArgList Args;
2169
0
  Args.push_back(&BufferArg);
2170
0
  Args.push_back(&IdxArg);
2171
0
  Args.push_back(&ReduceListArg);
2172
2173
0
  const CGFunctionInfo &CGFI =
2174
0
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2175
0
  auto *Fn = llvm::Function::Create(
2176
0
      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2177
0
      "_omp_reduction_list_to_global_copy_func", &CGM.getModule());
2178
0
  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2179
0
  Fn->setDoesNotRecurse();
2180
0
  CodeGenFunction CGF(CGM);
2181
0
  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2182
2183
0
  CGBuilderTy &Bld = CGF.Builder;
2184
2185
0
  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2186
0
  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2187
0
  llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2188
0
  Address LocalReduceList(
2189
0
      Bld.CreatePointerBitCastOrAddrSpaceCast(
2190
0
          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2191
0
                               C.VoidPtrTy, Loc),
2192
0
          ElemTy->getPointerTo()),
2193
0
      ElemTy, CGF.getPointerAlign());
2194
0
  QualType StaticTy = C.getRecordType(TeamReductionRec);
2195
0
  llvm::Type *LLVMReductionsBufferTy =
2196
0
      CGM.getTypes().ConvertTypeForMem(StaticTy);
2197
0
  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2198
0
      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2199
0
      LLVMReductionsBufferTy->getPointerTo());
2200
0
  llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2201
0
                                              /*Volatile=*/false, C.IntTy,
2202
0
                                              Loc)};
2203
0
  unsigned Idx = 0;
2204
0
  for (const Expr *Private : Privates) {
2205
    // Reduce element = LocalReduceList[i]
2206
0
    Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2207
0
    llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2208
0
        ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2209
    // elemptr = ((CopyType*)(elemptrptr)) + I
2210
0
    ElemTy = CGF.ConvertTypeForMem(Private->getType());
2211
0
    ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2212
0
        ElemPtrPtr, ElemTy->getPointerTo());
2213
0
    Address ElemPtr =
2214
0
        Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2215
0
    const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2216
    // Global = Buffer.VD[Idx];
2217
0
    const FieldDecl *FD = VarFieldMap.lookup(VD);
2218
0
    llvm::Value *BufferPtr =
2219
0
        Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs);
2220
0
    LValue GlobLVal = CGF.EmitLValueForField(
2221
0
        CGF.MakeNaturalAlignAddrLValue(BufferPtr, StaticTy), FD);
2222
0
    Address GlobAddr = GlobLVal.getAddress(CGF);
2223
0
    GlobLVal.setAddress(Address(GlobAddr.getPointer(),
2224
0
                                CGF.ConvertTypeForMem(Private->getType()),
2225
0
                                GlobAddr.getAlignment()));
2226
0
    switch (CGF.getEvaluationKind(Private->getType())) {
2227
0
    case TEK_Scalar: {
2228
0
      llvm::Value *V = CGF.EmitLoadOfScalar(
2229
0
          ElemPtr, /*Volatile=*/false, Private->getType(), Loc,
2230
0
          LValueBaseInfo(AlignmentSource::Type), TBAAAccessInfo());
2231
0
      CGF.EmitStoreOfScalar(V, GlobLVal);
2232
0
      break;
2233
0
    }
2234
0
    case TEK_Complex: {
2235
0
      CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(
2236
0
          CGF.MakeAddrLValue(ElemPtr, Private->getType()), Loc);
2237
0
      CGF.EmitStoreOfComplex(V, GlobLVal, /*isInit=*/false);
2238
0
      break;
2239
0
    }
2240
0
    case TEK_Aggregate:
2241
0
      CGF.EmitAggregateCopy(GlobLVal,
2242
0
                            CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2243
0
                            Private->getType(), AggValueSlot::DoesNotOverlap);
2244
0
      break;
2245
0
    }
2246
0
    ++Idx;
2247
0
  }
2248
2249
0
  CGF.FinishFunction();
2250
0
  return Fn;
2251
0
}
2252
2253
/// This function emits a helper that reduces all the reduction variables from
2254
/// the team into the provided global buffer for the reduction variables.
2255
///
2256
/// void list_to_global_reduce_func(void *buffer, int Idx, void *reduce_data)
2257
///  void *GlobPtrs[];
2258
///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2259
///  ...
2260
///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2261
///  reduce_function(GlobPtrs, reduce_data);
2262
static llvm::Value *emitListToGlobalReduceFunction(
2263
    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2264
    QualType ReductionArrayTy, SourceLocation Loc,
2265
    const RecordDecl *TeamReductionRec,
2266
    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2267
        &VarFieldMap,
2268
0
    llvm::Function *ReduceFn) {
2269
0
  ASTContext &C = CGM.getContext();
2270
2271
  // Buffer: global reduction buffer.
2272
0
  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2273
0
                              C.VoidPtrTy, ImplicitParamKind::Other);
2274
  // Idx: index of the buffer.
2275
0
  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2276
0
                           ImplicitParamKind::Other);
2277
  // ReduceList: thread local Reduce list.
2278
0
  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2279
0
                                  C.VoidPtrTy, ImplicitParamKind::Other);
2280
0
  FunctionArgList Args;
2281
0
  Args.push_back(&BufferArg);
2282
0
  Args.push_back(&IdxArg);
2283
0
  Args.push_back(&ReduceListArg);
2284
2285
0
  const CGFunctionInfo &CGFI =
2286
0
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2287
0
  auto *Fn = llvm::Function::Create(
2288
0
      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2289
0
      "_omp_reduction_list_to_global_reduce_func", &CGM.getModule());
2290
0
  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2291
0
  Fn->setDoesNotRecurse();
2292
0
  CodeGenFunction CGF(CGM);
2293
0
  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2294
2295
0
  CGBuilderTy &Bld = CGF.Builder;
2296
2297
0
  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2298
0
  QualType StaticTy = C.getRecordType(TeamReductionRec);
2299
0
  llvm::Type *LLVMReductionsBufferTy =
2300
0
      CGM.getTypes().ConvertTypeForMem(StaticTy);
2301
0
  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2302
0
      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2303
0
      LLVMReductionsBufferTy->getPointerTo());
2304
2305
  // 1. Build a list of reduction variables.
2306
  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2307
0
  Address ReductionList =
2308
0
      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2309
0
  auto IPriv = Privates.begin();
2310
0
  llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2311
0
                                              /*Volatile=*/false, C.IntTy,
2312
0
                                              Loc)};
2313
0
  unsigned Idx = 0;
2314
0
  for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2315
0
    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2316
    // Global = Buffer.VD[Idx];
2317
0
    const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2318
0
    const FieldDecl *FD = VarFieldMap.lookup(VD);
2319
0
    llvm::Value *BufferPtr =
2320
0
        Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs);
2321
0
    LValue GlobLVal = CGF.EmitLValueForField(
2322
0
        CGF.MakeNaturalAlignAddrLValue(BufferPtr, StaticTy), FD);
2323
0
    Address GlobAddr = GlobLVal.getAddress(CGF);
2324
0
    CGF.EmitStoreOfScalar(GlobAddr.getPointer(), Elem, /*Volatile=*/false,
2325
0
                          C.VoidPtrTy);
2326
0
    if ((*IPriv)->getType()->isVariablyModifiedType()) {
2327
      // Store array size.
2328
0
      ++Idx;
2329
0
      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2330
0
      llvm::Value *Size = CGF.Builder.CreateIntCast(
2331
0
          CGF.getVLASize(
2332
0
                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2333
0
              .NumElts,
2334
0
          CGF.SizeTy, /*isSigned=*/false);
2335
0
      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2336
0
                              Elem);
2337
0
    }
2338
0
  }
2339
2340
  // Call reduce_function(GlobalReduceList, ReduceList)
2341
0
  llvm::Value *GlobalReduceList = ReductionList.getPointer();
2342
0
  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2343
0
  llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2344
0
      AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2345
0
  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2346
0
      CGF, Loc, ReduceFn, {GlobalReduceList, ReducedPtr});
2347
0
  CGF.FinishFunction();
2348
0
  return Fn;
2349
0
}
2350
2351
/// This function emits a helper that copies all the reduction variables from
2352
/// the team into the provided global buffer for the reduction variables.
2353
///
2354
/// void list_to_global_copy_func(void *buffer, int Idx, void *reduce_data)
2355
///   For all data entries D in reduce_data:
2356
///     Copy buffer.D[Idx] to local D;
2357
static llvm::Value *emitGlobalToListCopyFunction(
2358
    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2359
    QualType ReductionArrayTy, SourceLocation Loc,
2360
    const RecordDecl *TeamReductionRec,
2361
    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2362
0
        &VarFieldMap) {
2363
0
  ASTContext &C = CGM.getContext();
2364
2365
  // Buffer: global reduction buffer.
2366
0
  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2367
0
                              C.VoidPtrTy, ImplicitParamKind::Other);
2368
  // Idx: index of the buffer.
2369
0
  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2370
0
                           ImplicitParamKind::Other);
2371
  // ReduceList: thread local Reduce list.
2372
0
  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2373
0
                                  C.VoidPtrTy, ImplicitParamKind::Other);
2374
0
  FunctionArgList Args;
2375
0
  Args.push_back(&BufferArg);
2376
0
  Args.push_back(&IdxArg);
2377
0
  Args.push_back(&ReduceListArg);
2378
2379
0
  const CGFunctionInfo &CGFI =
2380
0
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2381
0
  auto *Fn = llvm::Function::Create(
2382
0
      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2383
0
      "_omp_reduction_global_to_list_copy_func", &CGM.getModule());
2384
0
  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2385
0
  Fn->setDoesNotRecurse();
2386
0
  CodeGenFunction CGF(CGM);
2387
0
  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2388
2389
0
  CGBuilderTy &Bld = CGF.Builder;
2390
2391
0
  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2392
0
  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2393
0
  llvm::Type *ElemTy = CGF.ConvertTypeForMem(ReductionArrayTy);
2394
0
  Address LocalReduceList(
2395
0
      Bld.CreatePointerBitCastOrAddrSpaceCast(
2396
0
          CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
2397
0
                               C.VoidPtrTy, Loc),
2398
0
          ElemTy->getPointerTo()),
2399
0
      ElemTy, CGF.getPointerAlign());
2400
0
  QualType StaticTy = C.getRecordType(TeamReductionRec);
2401
0
  llvm::Type *LLVMReductionsBufferTy =
2402
0
      CGM.getTypes().ConvertTypeForMem(StaticTy);
2403
0
  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2404
0
      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2405
0
      LLVMReductionsBufferTy->getPointerTo());
2406
2407
0
  llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2408
0
                                              /*Volatile=*/false, C.IntTy,
2409
0
                                              Loc)};
2410
0
  unsigned Idx = 0;
2411
0
  for (const Expr *Private : Privates) {
2412
    // Reduce element = LocalReduceList[i]
2413
0
    Address ElemPtrPtrAddr = Bld.CreateConstArrayGEP(LocalReduceList, Idx);
2414
0
    llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
2415
0
        ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
2416
    // elemptr = ((CopyType*)(elemptrptr)) + I
2417
0
    ElemTy = CGF.ConvertTypeForMem(Private->getType());
2418
0
    ElemPtrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2419
0
        ElemPtrPtr, ElemTy->getPointerTo());
2420
0
    Address ElemPtr =
2421
0
        Address(ElemPtrPtr, ElemTy, C.getTypeAlignInChars(Private->getType()));
2422
0
    const ValueDecl *VD = cast<DeclRefExpr>(Private)->getDecl();
2423
    // Global = Buffer.VD[Idx];
2424
0
    const FieldDecl *FD = VarFieldMap.lookup(VD);
2425
0
    llvm::Value *BufferPtr =
2426
0
        Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs);
2427
0
    LValue GlobLVal = CGF.EmitLValueForField(
2428
0
        CGF.MakeNaturalAlignAddrLValue(BufferPtr, StaticTy), FD);
2429
0
    Address GlobAddr = GlobLVal.getAddress(CGF);
2430
0
    GlobLVal.setAddress(Address(GlobAddr.getPointer(),
2431
0
                                CGF.ConvertTypeForMem(Private->getType()),
2432
0
                                GlobAddr.getAlignment()));
2433
0
    switch (CGF.getEvaluationKind(Private->getType())) {
2434
0
    case TEK_Scalar: {
2435
0
      llvm::Value *V = CGF.EmitLoadOfScalar(GlobLVal, Loc);
2436
0
      CGF.EmitStoreOfScalar(V, ElemPtr, /*Volatile=*/false, Private->getType(),
2437
0
                            LValueBaseInfo(AlignmentSource::Type),
2438
0
                            TBAAAccessInfo());
2439
0
      break;
2440
0
    }
2441
0
    case TEK_Complex: {
2442
0
      CodeGenFunction::ComplexPairTy V = CGF.EmitLoadOfComplex(GlobLVal, Loc);
2443
0
      CGF.EmitStoreOfComplex(V, CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2444
0
                             /*isInit=*/false);
2445
0
      break;
2446
0
    }
2447
0
    case TEK_Aggregate:
2448
0
      CGF.EmitAggregateCopy(CGF.MakeAddrLValue(ElemPtr, Private->getType()),
2449
0
                            GlobLVal, Private->getType(),
2450
0
                            AggValueSlot::DoesNotOverlap);
2451
0
      break;
2452
0
    }
2453
0
    ++Idx;
2454
0
  }
2455
2456
0
  CGF.FinishFunction();
2457
0
  return Fn;
2458
0
}
2459
2460
/// This function emits a helper that reduces all the reduction variables from
2461
/// the team into the provided global buffer for the reduction variables.
2462
///
2463
/// void global_to_list_reduce_func(void *buffer, int Idx, void *reduce_data)
2464
///  void *GlobPtrs[];
2465
///  GlobPtrs[0] = (void*)&buffer.D0[Idx];
2466
///  ...
2467
///  GlobPtrs[N] = (void*)&buffer.DN[Idx];
2468
///  reduce_function(reduce_data, GlobPtrs);
2469
static llvm::Value *emitGlobalToListReduceFunction(
2470
    CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
2471
    QualType ReductionArrayTy, SourceLocation Loc,
2472
    const RecordDecl *TeamReductionRec,
2473
    const llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
2474
        &VarFieldMap,
2475
0
    llvm::Function *ReduceFn) {
2476
0
  ASTContext &C = CGM.getContext();
2477
2478
  // Buffer: global reduction buffer.
2479
0
  ImplicitParamDecl BufferArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2480
0
                              C.VoidPtrTy, ImplicitParamKind::Other);
2481
  // Idx: index of the buffer.
2482
0
  ImplicitParamDecl IdxArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.IntTy,
2483
0
                           ImplicitParamKind::Other);
2484
  // ReduceList: thread local Reduce list.
2485
0
  ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
2486
0
                                  C.VoidPtrTy, ImplicitParamKind::Other);
2487
0
  FunctionArgList Args;
2488
0
  Args.push_back(&BufferArg);
2489
0
  Args.push_back(&IdxArg);
2490
0
  Args.push_back(&ReduceListArg);
2491
2492
0
  const CGFunctionInfo &CGFI =
2493
0
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
2494
0
  auto *Fn = llvm::Function::Create(
2495
0
      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
2496
0
      "_omp_reduction_global_to_list_reduce_func", &CGM.getModule());
2497
0
  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
2498
0
  Fn->setDoesNotRecurse();
2499
0
  CodeGenFunction CGF(CGM);
2500
0
  CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
2501
2502
0
  CGBuilderTy &Bld = CGF.Builder;
2503
2504
0
  Address AddrBufferArg = CGF.GetAddrOfLocalVar(&BufferArg);
2505
0
  QualType StaticTy = C.getRecordType(TeamReductionRec);
2506
0
  llvm::Type *LLVMReductionsBufferTy =
2507
0
      CGM.getTypes().ConvertTypeForMem(StaticTy);
2508
0
  llvm::Value *BufferArrPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
2509
0
      CGF.EmitLoadOfScalar(AddrBufferArg, /*Volatile=*/false, C.VoidPtrTy, Loc),
2510
0
      LLVMReductionsBufferTy->getPointerTo());
2511
2512
  // 1. Build a list of reduction variables.
2513
  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2514
0
  Address ReductionList =
2515
0
      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2516
0
  auto IPriv = Privates.begin();
2517
0
  llvm::Value *Idxs[] = {CGF.EmitLoadOfScalar(CGF.GetAddrOfLocalVar(&IdxArg),
2518
0
                                              /*Volatile=*/false, C.IntTy,
2519
0
                                              Loc)};
2520
0
  unsigned Idx = 0;
2521
0
  for (unsigned I = 0, E = Privates.size(); I < E; ++I, ++IPriv, ++Idx) {
2522
0
    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2523
    // Global = Buffer.VD[Idx];
2524
0
    const ValueDecl *VD = cast<DeclRefExpr>(*IPriv)->getDecl();
2525
0
    const FieldDecl *FD = VarFieldMap.lookup(VD);
2526
0
    llvm::Value *BufferPtr =
2527
0
        Bld.CreateInBoundsGEP(LLVMReductionsBufferTy, BufferArrPtr, Idxs);
2528
0
    LValue GlobLVal = CGF.EmitLValueForField(
2529
0
        CGF.MakeNaturalAlignAddrLValue(BufferPtr, StaticTy), FD);
2530
0
    Address GlobAddr = GlobLVal.getAddress(CGF);
2531
0
    CGF.EmitStoreOfScalar(GlobAddr.getPointer(), Elem, /*Volatile=*/false,
2532
0
                          C.VoidPtrTy);
2533
0
    if ((*IPriv)->getType()->isVariablyModifiedType()) {
2534
      // Store array size.
2535
0
      ++Idx;
2536
0
      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2537
0
      llvm::Value *Size = CGF.Builder.CreateIntCast(
2538
0
          CGF.getVLASize(
2539
0
                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2540
0
              .NumElts,
2541
0
          CGF.SizeTy, /*isSigned=*/false);
2542
0
      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2543
0
                              Elem);
2544
0
    }
2545
0
  }
2546
2547
  // Call reduce_function(ReduceList, GlobalReduceList)
2548
0
  llvm::Value *GlobalReduceList = ReductionList.getPointer();
2549
0
  Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
2550
0
  llvm::Value *ReducedPtr = CGF.EmitLoadOfScalar(
2551
0
      AddrReduceListArg, /*Volatile=*/false, C.VoidPtrTy, Loc);
2552
0
  CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
2553
0
      CGF, Loc, ReduceFn, {ReducedPtr, GlobalReduceList});
2554
0
  CGF.FinishFunction();
2555
0
  return Fn;
2556
0
}
2557
2558
///
2559
/// Design of OpenMP reductions on the GPU
2560
///
2561
/// Consider a typical OpenMP program with one or more reduction
2562
/// clauses:
2563
///
2564
/// float foo;
2565
/// double bar;
2566
/// #pragma omp target teams distribute parallel for \
2567
///             reduction(+:foo) reduction(*:bar)
2568
/// for (int i = 0; i < N; i++) {
2569
///   foo += A[i]; bar *= B[i];
2570
/// }
2571
///
2572
/// where 'foo' and 'bar' are reduced across all OpenMP threads in
2573
/// all teams.  In our OpenMP implementation on the NVPTX device an
2574
/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
2575
/// within a team are mapped to CUDA threads within a threadblock.
2576
/// Our goal is to efficiently aggregate values across all OpenMP
2577
/// threads such that:
2578
///
2579
///   - the compiler and runtime are logically concise, and
2580
///   - the reduction is performed efficiently in a hierarchical
2581
///     manner as follows: within OpenMP threads in the same warp,
2582
///     across warps in a threadblock, and finally across teams on
2583
///     the NVPTX device.
2584
///
2585
/// Introduction to Decoupling
2586
///
2587
/// We would like to decouple the compiler and the runtime so that the
2588
/// latter is ignorant of the reduction variables (number, data types)
2589
/// and the reduction operators.  This allows a simpler interface
2590
/// and implementation while still attaining good performance.
2591
///
2592
/// Pseudocode for the aforementioned OpenMP program generated by the
2593
/// compiler is as follows:
2594
///
2595
/// 1. Create private copies of reduction variables on each OpenMP
2596
///    thread: 'foo_private', 'bar_private'
2597
/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
2598
///    to it and writes the result in 'foo_private' and 'bar_private'
2599
///    respectively.
2600
/// 3. Call the OpenMP runtime on the GPU to reduce within a team
2601
///    and store the result on the team master:
2602
///
2603
///     __kmpc_nvptx_parallel_reduce_nowait_v2(...,
2604
///        reduceData, shuffleReduceFn, interWarpCpyFn)
2605
///
2606
///     where:
2607
///       struct ReduceData {
2608
///         double *foo;
2609
///         double *bar;
2610
///       } reduceData
2611
///       reduceData.foo = &foo_private
2612
///       reduceData.bar = &bar_private
2613
///
2614
///     'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
2615
///     auxiliary functions generated by the compiler that operate on
2616
///     variables of type 'ReduceData'.  They aid the runtime perform
2617
///     algorithmic steps in a data agnostic manner.
2618
///
2619
///     'shuffleReduceFn' is a pointer to a function that reduces data
2620
///     of type 'ReduceData' across two OpenMP threads (lanes) in the
2621
///     same warp.  It takes the following arguments as input:
2622
///
2623
///     a. variable of type 'ReduceData' on the calling lane,
2624
///     b. its lane_id,
2625
///     c. an offset relative to the current lane_id to generate a
2626
///        remote_lane_id.  The remote lane contains the second
2627
///        variable of type 'ReduceData' that is to be reduced.
2628
///     d. an algorithm version parameter determining which reduction
2629
///        algorithm to use.
2630
///
2631
///     'shuffleReduceFn' retrieves data from the remote lane using
2632
///     efficient GPU shuffle intrinsics and reduces, using the
2633
///     algorithm specified by the 4th parameter, the two operands
2634
///     element-wise.  The result is written to the first operand.
2635
///
2636
///     Different reduction algorithms are implemented in different
2637
///     runtime functions, all calling 'shuffleReduceFn' to perform
2638
///     the essential reduction step.  Therefore, based on the 4th
2639
///     parameter, this function behaves slightly differently to
2640
///     cooperate with the runtime to ensure correctness under
2641
///     different circumstances.
2642
///
2643
///     'InterWarpCpyFn' is a pointer to a function that transfers
2644
///     reduced variables across warps.  It tunnels, through CUDA
2645
///     shared memory, the thread-private data of type 'ReduceData'
2646
///     from lane 0 of each warp to a lane in the first warp.
2647
/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
2648
///    The last team writes the global reduced value to memory.
2649
///
2650
///     ret = __kmpc_nvptx_teams_reduce_nowait(...,
2651
///             reduceData, shuffleReduceFn, interWarpCpyFn,
2652
///             scratchpadCopyFn, loadAndReduceFn)
2653
///
2654
///     'scratchpadCopyFn' is a helper that stores reduced
2655
///     data from the team master to a scratchpad array in
2656
///     global memory.
2657
///
2658
///     'loadAndReduceFn' is a helper that loads data from
2659
///     the scratchpad array and reduces it with the input
2660
///     operand.
2661
///
2662
///     These compiler generated functions hide address
2663
///     calculation and alignment information from the runtime.
2664
/// 5. if ret == 1:
2665
///     The team master of the last team stores the reduced
2666
///     result to the globals in memory.
2667
///     foo += reduceData.foo; bar *= reduceData.bar
2668
///
2669
///
2670
/// Warp Reduction Algorithms
2671
///
2672
/// On the warp level, we have three algorithms implemented in the
2673
/// OpenMP runtime depending on the number of active lanes:
2674
///
2675
/// Full Warp Reduction
2676
///
2677
/// The reduce algorithm within a warp where all lanes are active
2678
/// is implemented in the runtime as follows:
2679
///
2680
/// full_warp_reduce(void *reduce_data,
2681
///                  kmp_ShuffleReductFctPtr ShuffleReduceFn) {
2682
///   for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
2683
///     ShuffleReduceFn(reduce_data, 0, offset, 0);
2684
/// }
2685
///
2686
/// The algorithm completes in log(2, WARPSIZE) steps.
2687
///
2688
/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
2689
/// not used therefore we save instructions by not retrieving lane_id
2690
/// from the corresponding special registers.  The 4th parameter, which
2691
/// represents the version of the algorithm being used, is set to 0 to
2692
/// signify full warp reduction.
2693
///
2694
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2695
///
2696
/// #reduce_elem refers to an element in the local lane's data structure
2697
/// #remote_elem is retrieved from a remote lane
2698
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2699
/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
2700
///
2701
/// Contiguous Partial Warp Reduction
2702
///
2703
/// This reduce algorithm is used within a warp where only the first
2704
/// 'n' (n <= WARPSIZE) lanes are active.  It is typically used when the
2705
/// number of OpenMP threads in a parallel region is not a multiple of
2706
/// WARPSIZE.  The algorithm is implemented in the runtime as follows:
2707
///
2708
/// void
2709
/// contiguous_partial_reduce(void *reduce_data,
2710
///                           kmp_ShuffleReductFctPtr ShuffleReduceFn,
2711
///                           int size, int lane_id) {
2712
///   int curr_size;
2713
///   int offset;
2714
///   curr_size = size;
2715
///   mask = curr_size/2;
2716
///   while (offset>0) {
2717
///     ShuffleReduceFn(reduce_data, lane_id, offset, 1);
2718
///     curr_size = (curr_size+1)/2;
2719
///     offset = curr_size/2;
2720
///   }
2721
/// }
2722
///
2723
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2724
///
2725
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2726
/// if (lane_id < offset)
2727
///     reduce_elem = reduce_elem REDUCE_OP remote_elem
2728
/// else
2729
///     reduce_elem = remote_elem
2730
///
2731
/// This algorithm assumes that the data to be reduced are located in a
2732
/// contiguous subset of lanes starting from the first.  When there is
2733
/// an odd number of active lanes, the data in the last lane is not
2734
/// aggregated with any other lane's dat but is instead copied over.
2735
///
2736
/// Dispersed Partial Warp Reduction
2737
///
2738
/// This algorithm is used within a warp when any discontiguous subset of
2739
/// lanes are active.  It is used to implement the reduction operation
2740
/// across lanes in an OpenMP simd region or in a nested parallel region.
2741
///
2742
/// void
2743
/// dispersed_partial_reduce(void *reduce_data,
2744
///                          kmp_ShuffleReductFctPtr ShuffleReduceFn) {
2745
///   int size, remote_id;
2746
///   int logical_lane_id = number_of_active_lanes_before_me() * 2;
2747
///   do {
2748
///       remote_id = next_active_lane_id_right_after_me();
2749
///       # the above function returns 0 of no active lane
2750
///       # is present right after the current lane.
2751
///       size = number_of_active_lanes_in_this_warp();
2752
///       logical_lane_id /= 2;
2753
///       ShuffleReduceFn(reduce_data, logical_lane_id,
2754
///                       remote_id-1-threadIdx.x, 2);
2755
///   } while (logical_lane_id % 2 == 0 && size > 1);
2756
/// }
2757
///
2758
/// There is no assumption made about the initial state of the reduction.
2759
/// Any number of lanes (>=1) could be active at any position.  The reduction
2760
/// result is returned in the first active lane.
2761
///
2762
/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
2763
///
2764
/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
2765
/// if (lane_id % 2 == 0 && offset > 0)
2766
///     reduce_elem = reduce_elem REDUCE_OP remote_elem
2767
/// else
2768
///     reduce_elem = remote_elem
2769
///
2770
///
2771
/// Intra-Team Reduction
2772
///
2773
/// This function, as implemented in the runtime call
2774
/// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
2775
/// threads in a team.  It first reduces within a warp using the
2776
/// aforementioned algorithms.  We then proceed to gather all such
2777
/// reduced values at the first warp.
2778
///
2779
/// The runtime makes use of the function 'InterWarpCpyFn', which copies
2780
/// data from each of the "warp master" (zeroth lane of each warp, where
2781
/// warp-reduced data is held) to the zeroth warp.  This step reduces (in
2782
/// a mathematical sense) the problem of reduction across warp masters in
2783
/// a block to the problem of warp reduction.
2784
///
2785
///
2786
/// Inter-Team Reduction
2787
///
2788
/// Once a team has reduced its data to a single value, it is stored in
2789
/// a global scratchpad array.  Since each team has a distinct slot, this
2790
/// can be done without locking.
2791
///
2792
/// The last team to write to the scratchpad array proceeds to reduce the
2793
/// scratchpad array.  One or more workers in the last team use the helper
2794
/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
2795
/// the k'th worker reduces every k'th element.
2796
///
2797
/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
2798
/// reduce across workers and compute a globally reduced value.
2799
///
2800
void CGOpenMPRuntimeGPU::emitReduction(
2801
    CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
2802
    ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
2803
0
    ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
2804
0
  if (!CGF.HaveInsertPoint())
2805
0
    return;
2806
2807
0
  bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
2808
0
#ifndef NDEBUG
2809
0
  bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
2810
0
#endif
2811
2812
0
  if (Options.SimpleReduction) {
2813
0
    assert(!TeamsReduction && !ParallelReduction &&
2814
0
           "Invalid reduction selection in emitReduction.");
2815
0
    CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
2816
0
                                   ReductionOps, Options);
2817
0
    return;
2818
0
  }
2819
2820
0
  assert((TeamsReduction || ParallelReduction) &&
2821
0
         "Invalid reduction selection in emitReduction.");
2822
2823
0
  llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> VarFieldMap;
2824
0
  llvm::SmallVector<const ValueDecl *, 4> PrivatesReductions(Privates.size());
2825
0
  int Cnt = 0;
2826
0
  for (const Expr *DRE : Privates) {
2827
0
    PrivatesReductions[Cnt] = cast<DeclRefExpr>(DRE)->getDecl();
2828
0
    ++Cnt;
2829
0
  }
2830
2831
0
  ASTContext &C = CGM.getContext();
2832
0
  const RecordDecl *ReductionRec = ::buildRecordForGlobalizedVars(
2833
0
      CGM.getContext(), PrivatesReductions, std::nullopt, VarFieldMap, 1);
2834
2835
  // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
2836
  // RedList, shuffle_reduce_func, interwarp_copy_func);
2837
  // or
2838
  // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
2839
0
  llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
2840
2841
0
  llvm::Value *Res;
2842
  // 1. Build a list of reduction variables.
2843
  // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
2844
0
  auto Size = RHSExprs.size();
2845
0
  for (const Expr *E : Privates) {
2846
0
    if (E->getType()->isVariablyModifiedType())
2847
      // Reserve place for array size.
2848
0
      ++Size;
2849
0
  }
2850
0
  llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
2851
0
  QualType ReductionArrayTy = C.getConstantArrayType(
2852
0
      C.VoidPtrTy, ArraySize, nullptr, ArraySizeModifier::Normal,
2853
0
      /*IndexTypeQuals=*/0);
2854
0
  Address ReductionList =
2855
0
      CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
2856
0
  auto IPriv = Privates.begin();
2857
0
  unsigned Idx = 0;
2858
0
  for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
2859
0
    Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2860
0
    CGF.Builder.CreateStore(
2861
0
        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2862
0
            CGF.EmitLValue(RHSExprs[I]).getPointer(CGF), CGF.VoidPtrTy),
2863
0
        Elem);
2864
0
    if ((*IPriv)->getType()->isVariablyModifiedType()) {
2865
      // Store array size.
2866
0
      ++Idx;
2867
0
      Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx);
2868
0
      llvm::Value *Size = CGF.Builder.CreateIntCast(
2869
0
          CGF.getVLASize(
2870
0
                 CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
2871
0
              .NumElts,
2872
0
          CGF.SizeTy, /*isSigned=*/false);
2873
0
      CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
2874
0
                              Elem);
2875
0
    }
2876
0
  }
2877
2878
0
  llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
2879
0
      ReductionList.getPointer(), CGF.VoidPtrTy);
2880
0
  llvm::Function *ReductionFn = emitReductionFunction(
2881
0
      CGF.CurFn->getName(), Loc, CGF.ConvertTypeForMem(ReductionArrayTy),
2882
0
      Privates, LHSExprs, RHSExprs, ReductionOps);
2883
0
  llvm::Value *ReductionDataSize =
2884
0
      CGF.getTypeSize(C.getRecordType(ReductionRec));
2885
0
  ReductionDataSize =
2886
0
      CGF.Builder.CreateSExtOrTrunc(ReductionDataSize, CGF.Int64Ty);
2887
0
  llvm::Function *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
2888
0
      CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
2889
0
  llvm::Value *InterWarpCopyFn =
2890
0
      emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
2891
2892
0
  if (ParallelReduction) {
2893
0
    llvm::Value *Args[] = {RTLoc, ReductionDataSize, RL, ShuffleAndReduceFn,
2894
0
                           InterWarpCopyFn};
2895
2896
0
    Res = CGF.EmitRuntimeCall(
2897
0
        OMPBuilder.getOrCreateRuntimeFunction(
2898
0
            CGM.getModule(), OMPRTL___kmpc_nvptx_parallel_reduce_nowait_v2),
2899
0
        Args);
2900
0
  } else {
2901
0
    assert(TeamsReduction && "expected teams reduction.");
2902
0
    TeamsReductions.push_back(ReductionRec);
2903
0
    auto *KernelTeamsReductionPtr = CGF.EmitRuntimeCall(
2904
0
        OMPBuilder.getOrCreateRuntimeFunction(
2905
0
            CGM.getModule(), OMPRTL___kmpc_reduction_get_fixed_buffer),
2906
0
        {}, "_openmp_teams_reductions_buffer_$_$ptr");
2907
0
    llvm::Value *GlobalToBufferCpyFn = ::emitListToGlobalCopyFunction(
2908
0
        CGM, Privates, ReductionArrayTy, Loc, ReductionRec, VarFieldMap);
2909
0
    llvm::Value *GlobalToBufferRedFn = ::emitListToGlobalReduceFunction(
2910
0
        CGM, Privates, ReductionArrayTy, Loc, ReductionRec, VarFieldMap,
2911
0
        ReductionFn);
2912
0
    llvm::Value *BufferToGlobalCpyFn = ::emitGlobalToListCopyFunction(
2913
0
        CGM, Privates, ReductionArrayTy, Loc, ReductionRec, VarFieldMap);
2914
0
    llvm::Value *BufferToGlobalRedFn = ::emitGlobalToListReduceFunction(
2915
0
        CGM, Privates, ReductionArrayTy, Loc, ReductionRec, VarFieldMap,
2916
0
        ReductionFn);
2917
2918
0
    llvm::Value *Args[] = {
2919
0
        RTLoc,
2920
0
        KernelTeamsReductionPtr,
2921
0
        CGF.Builder.getInt32(C.getLangOpts().OpenMPCUDAReductionBufNum),
2922
0
        ReductionDataSize,
2923
0
        RL,
2924
0
        ShuffleAndReduceFn,
2925
0
        InterWarpCopyFn,
2926
0
        GlobalToBufferCpyFn,
2927
0
        GlobalToBufferRedFn,
2928
0
        BufferToGlobalCpyFn,
2929
0
        BufferToGlobalRedFn};
2930
2931
0
    Res = CGF.EmitRuntimeCall(
2932
0
        OMPBuilder.getOrCreateRuntimeFunction(
2933
0
            CGM.getModule(), OMPRTL___kmpc_nvptx_teams_reduce_nowait_v2),
2934
0
        Args);
2935
0
  }
2936
2937
  // 5. Build if (res == 1)
2938
0
  llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
2939
0
  llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
2940
0
  llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
2941
0
      Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
2942
0
  CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
2943
2944
  // 6. Build then branch: where we have reduced values in the master
2945
  //    thread in each team.
2946
  //    __kmpc_end_reduce{_nowait}(<gtid>);
2947
  //    break;
2948
0
  CGF.EmitBlock(ThenBB);
2949
2950
  // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
2951
0
  auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
2952
0
                    this](CodeGenFunction &CGF, PrePostActionTy &Action) {
2953
0
    auto IPriv = Privates.begin();
2954
0
    auto ILHS = LHSExprs.begin();
2955
0
    auto IRHS = RHSExprs.begin();
2956
0
    for (const Expr *E : ReductionOps) {
2957
0
      emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
2958
0
                                  cast<DeclRefExpr>(*IRHS));
2959
0
      ++IPriv;
2960
0
      ++ILHS;
2961
0
      ++IRHS;
2962
0
    }
2963
0
  };
2964
0
  RegionCodeGenTy RCG(CodeGen);
2965
0
  RCG(CGF);
2966
  // There is no need to emit line number for unconditional branch.
2967
0
  (void)ApplyDebugLocation::CreateEmpty(CGF);
2968
0
  CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
2969
0
}
2970
2971
const VarDecl *
2972
CGOpenMPRuntimeGPU::translateParameter(const FieldDecl *FD,
2973
0
                                       const VarDecl *NativeParam) const {
2974
0
  if (!NativeParam->getType()->isReferenceType())
2975
0
    return NativeParam;
2976
0
  QualType ArgType = NativeParam->getType();
2977
0
  QualifierCollector QC;
2978
0
  const Type *NonQualTy = QC.strip(ArgType);
2979
0
  QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
2980
0
  if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
2981
0
    if (Attr->getCaptureKind() == OMPC_map) {
2982
0
      PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
2983
0
                                                        LangAS::opencl_global);
2984
0
    }
2985
0
  }
2986
0
  ArgType = CGM.getContext().getPointerType(PointeeTy);
2987
0
  QC.addRestrict();
2988
0
  enum { NVPTX_local_addr = 5 };
2989
0
  QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
2990
0
  ArgType = QC.apply(CGM.getContext(), ArgType);
2991
0
  if (isa<ImplicitParamDecl>(NativeParam))
2992
0
    return ImplicitParamDecl::Create(
2993
0
        CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
2994
0
        NativeParam->getIdentifier(), ArgType, ImplicitParamKind::Other);
2995
0
  return ParmVarDecl::Create(
2996
0
      CGM.getContext(),
2997
0
      const_cast<DeclContext *>(NativeParam->getDeclContext()),
2998
0
      NativeParam->getBeginLoc(), NativeParam->getLocation(),
2999
0
      NativeParam->getIdentifier(), ArgType,
3000
0
      /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
3001
0
}
3002
3003
Address
3004
CGOpenMPRuntimeGPU::getParameterAddress(CodeGenFunction &CGF,
3005
                                          const VarDecl *NativeParam,
3006
0
                                          const VarDecl *TargetParam) const {
3007
0
  assert(NativeParam != TargetParam &&
3008
0
         NativeParam->getType()->isReferenceType() &&
3009
0
         "Native arg must not be the same as target arg.");
3010
0
  Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
3011
0
  QualType NativeParamType = NativeParam->getType();
3012
0
  QualifierCollector QC;
3013
0
  const Type *NonQualTy = QC.strip(NativeParamType);
3014
0
  QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
3015
0
  unsigned NativePointeeAddrSpace =
3016
0
      CGF.getTypes().getTargetAddressSpace(NativePointeeTy);
3017
0
  QualType TargetTy = TargetParam->getType();
3018
0
  llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(LocalAddr, /*Volatile=*/false,
3019
0
                                                 TargetTy, SourceLocation());
3020
  // Cast to native address space.
3021
0
  TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3022
0
      TargetAddr,
3023
0
      llvm::PointerType::get(CGF.getLLVMContext(), NativePointeeAddrSpace));
3024
0
  Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
3025
0
  CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
3026
0
                        NativeParamType);
3027
0
  return NativeParamAddr;
3028
0
}
3029
3030
void CGOpenMPRuntimeGPU::emitOutlinedFunctionCall(
3031
    CodeGenFunction &CGF, SourceLocation Loc, llvm::FunctionCallee OutlinedFn,
3032
0
    ArrayRef<llvm::Value *> Args) const {
3033
0
  SmallVector<llvm::Value *, 4> TargetArgs;
3034
0
  TargetArgs.reserve(Args.size());
3035
0
  auto *FnType = OutlinedFn.getFunctionType();
3036
0
  for (unsigned I = 0, E = Args.size(); I < E; ++I) {
3037
0
    if (FnType->isVarArg() && FnType->getNumParams() <= I) {
3038
0
      TargetArgs.append(std::next(Args.begin(), I), Args.end());
3039
0
      break;
3040
0
    }
3041
0
    llvm::Type *TargetType = FnType->getParamType(I);
3042
0
    llvm::Value *NativeArg = Args[I];
3043
0
    if (!TargetType->isPointerTy()) {
3044
0
      TargetArgs.emplace_back(NativeArg);
3045
0
      continue;
3046
0
    }
3047
0
    TargetArgs.emplace_back(
3048
0
        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(NativeArg, TargetType));
3049
0
  }
3050
0
  CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
3051
0
}
3052
3053
/// Emit function which wraps the outline parallel region
3054
/// and controls the arguments which are passed to this function.
3055
/// The wrapper ensures that the outlined function is called
3056
/// with the correct arguments when data is shared.
3057
llvm::Function *CGOpenMPRuntimeGPU::createParallelDataSharingWrapper(
3058
0
    llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
3059
0
  ASTContext &Ctx = CGM.getContext();
3060
0
  const auto &CS = *D.getCapturedStmt(OMPD_parallel);
3061
3062
  // Create a function that takes as argument the source thread.
3063
0
  FunctionArgList WrapperArgs;
3064
0
  QualType Int16QTy =
3065
0
      Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
3066
0
  QualType Int32QTy =
3067
0
      Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
3068
0
  ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3069
0
                                     /*Id=*/nullptr, Int16QTy,
3070
0
                                     ImplicitParamKind::Other);
3071
0
  ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
3072
0
                               /*Id=*/nullptr, Int32QTy,
3073
0
                               ImplicitParamKind::Other);
3074
0
  WrapperArgs.emplace_back(&ParallelLevelArg);
3075
0
  WrapperArgs.emplace_back(&WrapperArg);
3076
3077
0
  const CGFunctionInfo &CGFI =
3078
0
      CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
3079
3080
0
  auto *Fn = llvm::Function::Create(
3081
0
      CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
3082
0
      Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
3083
3084
  // Ensure we do not inline the function. This is trivially true for the ones
3085
  // passed to __kmpc_fork_call but the ones calles in serialized regions
3086
  // could be inlined. This is not a perfect but it is closer to the invariant
3087
  // we want, namely, every data environment starts with a new function.
3088
  // TODO: We should pass the if condition to the runtime function and do the
3089
  //       handling there. Much cleaner code.
3090
0
  Fn->addFnAttr(llvm::Attribute::NoInline);
3091
3092
0
  CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
3093
0
  Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
3094
0
  Fn->setDoesNotRecurse();
3095
3096
0
  CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
3097
0
  CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
3098
0
                    D.getBeginLoc(), D.getBeginLoc());
3099
3100
0
  const auto *RD = CS.getCapturedRecordDecl();
3101
0
  auto CurField = RD->field_begin();
3102
3103
0
  Address ZeroAddr = CGF.CreateDefaultAlignTempAlloca(CGF.Int32Ty,
3104
0
                                                      /*Name=*/".zero.addr");
3105
0
  CGF.Builder.CreateStore(CGF.Builder.getInt32(/*C*/ 0), ZeroAddr);
3106
  // Get the array of arguments.
3107
0
  SmallVector<llvm::Value *, 8> Args;
3108
3109
0
  Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
3110
0
  Args.emplace_back(ZeroAddr.getPointer());
3111
3112
0
  CGBuilderTy &Bld = CGF.Builder;
3113
0
  auto CI = CS.capture_begin();
3114
3115
  // Use global memory for data sharing.
3116
  // Handle passing of global args to workers.
3117
0
  Address GlobalArgs =
3118
0
      CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
3119
0
  llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
3120
0
  llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
3121
0
  CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3122
0
                          CGM.getModule(), OMPRTL___kmpc_get_shared_variables),
3123
0
                      DataSharingArgs);
3124
3125
  // Retrieve the shared variables from the list of references returned
3126
  // by the runtime. Pass the variables to the outlined function.
3127
0
  Address SharedArgListAddress = Address::invalid();
3128
0
  if (CS.capture_size() > 0 ||
3129
0
      isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3130
0
    SharedArgListAddress = CGF.EmitLoadOfPointer(
3131
0
        GlobalArgs, CGF.getContext()
3132
0
                        .getPointerType(CGF.getContext().VoidPtrTy)
3133
0
                        .castAs<PointerType>());
3134
0
  }
3135
0
  unsigned Idx = 0;
3136
0
  if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
3137
0
    Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3138
0
    Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3139
0
        Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3140
0
    llvm::Value *LB = CGF.EmitLoadOfScalar(
3141
0
        TypedAddress,
3142
0
        /*Volatile=*/false,
3143
0
        CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3144
0
        cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
3145
0
    Args.emplace_back(LB);
3146
0
    ++Idx;
3147
0
    Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx);
3148
0
    TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3149
0
        Src, CGF.SizeTy->getPointerTo(), CGF.SizeTy);
3150
0
    llvm::Value *UB = CGF.EmitLoadOfScalar(
3151
0
        TypedAddress,
3152
0
        /*Volatile=*/false,
3153
0
        CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
3154
0
        cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
3155
0
    Args.emplace_back(UB);
3156
0
    ++Idx;
3157
0
  }
3158
0
  if (CS.capture_size() > 0) {
3159
0
    ASTContext &CGFContext = CGF.getContext();
3160
0
    for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
3161
0
      QualType ElemTy = CurField->getType();
3162
0
      Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx);
3163
0
      Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
3164
0
          Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)),
3165
0
          CGF.ConvertTypeForMem(ElemTy));
3166
0
      llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
3167
0
                                              /*Volatile=*/false,
3168
0
                                              CGFContext.getPointerType(ElemTy),
3169
0
                                              CI->getLocation());
3170
0
      if (CI->capturesVariableByCopy() &&
3171
0
          !CI->getCapturedVar()->getType()->isAnyPointerType()) {
3172
0
        Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
3173
0
                              CI->getLocation());
3174
0
      }
3175
0
      Args.emplace_back(Arg);
3176
0
    }
3177
0
  }
3178
3179
0
  emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
3180
0
  CGF.FinishFunction();
3181
0
  return Fn;
3182
0
}
3183
3184
void CGOpenMPRuntimeGPU::emitFunctionProlog(CodeGenFunction &CGF,
3185
0
                                              const Decl *D) {
3186
0
  if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
3187
0
    return;
3188
3189
0
  assert(D && "Expected function or captured|block decl.");
3190
0
  assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
3191
0
         "Function is registered already.");
3192
0
  assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
3193
0
         "Team is set but not processed.");
3194
0
  const Stmt *Body = nullptr;
3195
0
  bool NeedToDelayGlobalization = false;
3196
0
  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
3197
0
    Body = FD->getBody();
3198
0
  } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
3199
0
    Body = BD->getBody();
3200
0
  } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
3201
0
    Body = CD->getBody();
3202
0
    NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
3203
0
    if (NeedToDelayGlobalization &&
3204
0
        getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD)
3205
0
      return;
3206
0
  }
3207
0
  if (!Body)
3208
0
    return;
3209
0
  CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
3210
0
  VarChecker.Visit(Body);
3211
0
  const RecordDecl *GlobalizedVarsRecord =
3212
0
      VarChecker.getGlobalizedRecord(IsInTTDRegion);
3213
0
  TeamAndReductions.first = nullptr;
3214
0
  TeamAndReductions.second.clear();
3215
0
  ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
3216
0
      VarChecker.getEscapedVariableLengthDecls();
3217
0
  ArrayRef<const ValueDecl *> DelayedVariableLengthDecls =
3218
0
      VarChecker.getDelayedVariableLengthDecls();
3219
0
  if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty() &&
3220
0
      DelayedVariableLengthDecls.empty())
3221
0
    return;
3222
0
  auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
3223
0
  I->getSecond().MappedParams =
3224
0
      std::make_unique<CodeGenFunction::OMPMapVars>();
3225
0
  I->getSecond().EscapedParameters.insert(
3226
0
      VarChecker.getEscapedParameters().begin(),
3227
0
      VarChecker.getEscapedParameters().end());
3228
0
  I->getSecond().EscapedVariableLengthDecls.append(
3229
0
      EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
3230
0
  I->getSecond().DelayedVariableLengthDecls.append(
3231
0
      DelayedVariableLengthDecls.begin(), DelayedVariableLengthDecls.end());
3232
0
  DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
3233
0
  for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
3234
0
    assert(VD->isCanonicalDecl() && "Expected canonical declaration");
3235
0
    Data.insert(std::make_pair(VD, MappedVarData()));
3236
0
  }
3237
0
  if (!NeedToDelayGlobalization) {
3238
0
    emitGenericVarsProlog(CGF, D->getBeginLoc());
3239
0
    struct GlobalizationScope final : EHScopeStack::Cleanup {
3240
0
      GlobalizationScope() = default;
3241
3242
0
      void Emit(CodeGenFunction &CGF, Flags flags) override {
3243
0
        static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime())
3244
0
            .emitGenericVarsEpilog(CGF);
3245
0
      }
3246
0
    };
3247
0
    CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
3248
0
  }
3249
0
}
3250
3251
Address CGOpenMPRuntimeGPU::getAddressOfLocalVariable(CodeGenFunction &CGF,
3252
0
                                                        const VarDecl *VD) {
3253
0
  if (VD && VD->hasAttr<OMPAllocateDeclAttr>()) {
3254
0
    const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3255
0
    auto AS = LangAS::Default;
3256
0
    switch (A->getAllocatorType()) {
3257
      // Use the default allocator here as by default local vars are
3258
      // threadlocal.
3259
0
    case OMPAllocateDeclAttr::OMPNullMemAlloc:
3260
0
    case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3261
0
    case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3262
0
    case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3263
0
    case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3264
      // Follow the user decision - use default allocation.
3265
0
      return Address::invalid();
3266
0
    case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3267
      // TODO: implement aupport for user-defined allocators.
3268
0
      return Address::invalid();
3269
0
    case OMPAllocateDeclAttr::OMPConstMemAlloc:
3270
0
      AS = LangAS::cuda_constant;
3271
0
      break;
3272
0
    case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3273
0
      AS = LangAS::cuda_shared;
3274
0
      break;
3275
0
    case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3276
0
    case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3277
0
      break;
3278
0
    }
3279
0
    llvm::Type *VarTy = CGF.ConvertTypeForMem(VD->getType());
3280
0
    auto *GV = new llvm::GlobalVariable(
3281
0
        CGM.getModule(), VarTy, /*isConstant=*/false,
3282
0
        llvm::GlobalValue::InternalLinkage, llvm::PoisonValue::get(VarTy),
3283
0
        VD->getName(),
3284
0
        /*InsertBefore=*/nullptr, llvm::GlobalValue::NotThreadLocal,
3285
0
        CGM.getContext().getTargetAddressSpace(AS));
3286
0
    CharUnits Align = CGM.getContext().getDeclAlign(VD);
3287
0
    GV->setAlignment(Align.getAsAlign());
3288
0
    return Address(
3289
0
        CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
3290
0
            GV, VarTy->getPointerTo(CGM.getContext().getTargetAddressSpace(
3291
0
                    VD->getType().getAddressSpace()))),
3292
0
        VarTy, Align);
3293
0
  }
3294
3295
0
  if (getDataSharingMode() != CGOpenMPRuntimeGPU::DS_Generic)
3296
0
    return Address::invalid();
3297
3298
0
  VD = VD->getCanonicalDecl();
3299
0
  auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
3300
0
  if (I == FunctionGlobalizedDecls.end())
3301
0
    return Address::invalid();
3302
0
  auto VDI = I->getSecond().LocalVarData.find(VD);
3303
0
  if (VDI != I->getSecond().LocalVarData.end())
3304
0
    return VDI->second.PrivateAddr;
3305
0
  if (VD->hasAttrs()) {
3306
0
    for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
3307
0
         E(VD->attr_end());
3308
0
         IT != E; ++IT) {
3309
0
      auto VDI = I->getSecond().LocalVarData.find(
3310
0
          cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
3311
0
              ->getCanonicalDecl());
3312
0
      if (VDI != I->getSecond().LocalVarData.end())
3313
0
        return VDI->second.PrivateAddr;
3314
0
    }
3315
0
  }
3316
3317
0
  return Address::invalid();
3318
0
}
3319
3320
0
void CGOpenMPRuntimeGPU::functionFinished(CodeGenFunction &CGF) {
3321
0
  FunctionGlobalizedDecls.erase(CGF.CurFn);
3322
0
  CGOpenMPRuntime::functionFinished(CGF);
3323
0
}
3324
3325
void CGOpenMPRuntimeGPU::getDefaultDistScheduleAndChunk(
3326
    CodeGenFunction &CGF, const OMPLoopDirective &S,
3327
    OpenMPDistScheduleClauseKind &ScheduleKind,
3328
0
    llvm::Value *&Chunk) const {
3329
0
  auto &RT = static_cast<CGOpenMPRuntimeGPU &>(CGF.CGM.getOpenMPRuntime());
3330
0
  if (getExecutionMode() == CGOpenMPRuntimeGPU::EM_SPMD) {
3331
0
    ScheduleKind = OMPC_DIST_SCHEDULE_static;
3332
0
    Chunk = CGF.EmitScalarConversion(
3333
0
        RT.getGPUNumThreads(CGF),
3334
0
        CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3335
0
        S.getIterationVariable()->getType(), S.getBeginLoc());
3336
0
    return;
3337
0
  }
3338
0
  CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
3339
0
      CGF, S, ScheduleKind, Chunk);
3340
0
}
3341
3342
void CGOpenMPRuntimeGPU::getDefaultScheduleAndChunk(
3343
    CodeGenFunction &CGF, const OMPLoopDirective &S,
3344
    OpenMPScheduleClauseKind &ScheduleKind,
3345
0
    const Expr *&ChunkExpr) const {
3346
0
  ScheduleKind = OMPC_SCHEDULE_static;
3347
  // Chunk size is 1 in this case.
3348
0
  llvm::APInt ChunkSize(32, 1);
3349
0
  ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
3350
0
      CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
3351
0
      SourceLocation());
3352
0
}
3353
3354
void CGOpenMPRuntimeGPU::adjustTargetSpecificDataForLambdas(
3355
0
    CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
3356
0
  assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
3357
0
         " Expected target-based directive.");
3358
0
  const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
3359
0
  for (const CapturedStmt::Capture &C : CS->captures()) {
3360
    // Capture variables captured by reference in lambdas for target-based
3361
    // directives.
3362
0
    if (!C.capturesVariable())
3363
0
      continue;
3364
0
    const VarDecl *VD = C.getCapturedVar();
3365
0
    const auto *RD = VD->getType()
3366
0
                         .getCanonicalType()
3367
0
                         .getNonReferenceType()
3368
0
                         ->getAsCXXRecordDecl();
3369
0
    if (!RD || !RD->isLambda())
3370
0
      continue;
3371
0
    Address VDAddr = CGF.GetAddrOfLocalVar(VD);
3372
0
    LValue VDLVal;
3373
0
    if (VD->getType().getCanonicalType()->isReferenceType())
3374
0
      VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
3375
0
    else
3376
0
      VDLVal = CGF.MakeAddrLValue(
3377
0
          VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
3378
0
    llvm::DenseMap<const ValueDecl *, FieldDecl *> Captures;
3379
0
    FieldDecl *ThisCapture = nullptr;
3380
0
    RD->getCaptureFields(Captures, ThisCapture);
3381
0
    if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
3382
0
      LValue ThisLVal =
3383
0
          CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
3384
0
      llvm::Value *CXXThis = CGF.LoadCXXThis();
3385
0
      CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
3386
0
    }
3387
0
    for (const LambdaCapture &LC : RD->captures()) {
3388
0
      if (LC.getCaptureKind() != LCK_ByRef)
3389
0
        continue;
3390
0
      const ValueDecl *VD = LC.getCapturedVar();
3391
      // FIXME: For now VD is always a VarDecl because OpenMP does not support
3392
      //  capturing structured bindings in lambdas yet.
3393
0
      if (!CS->capturesVariable(cast<VarDecl>(VD)))
3394
0
        continue;
3395
0
      auto It = Captures.find(VD);
3396
0
      assert(It != Captures.end() && "Found lambda capture without field.");
3397
0
      LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
3398
0
      Address VDAddr = CGF.GetAddrOfLocalVar(cast<VarDecl>(VD));
3399
0
      if (VD->getType().getCanonicalType()->isReferenceType())
3400
0
        VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
3401
0
                                               VD->getType().getCanonicalType())
3402
0
                     .getAddress(CGF);
3403
0
      CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
3404
0
    }
3405
0
  }
3406
0
}
3407
3408
bool CGOpenMPRuntimeGPU::hasAllocateAttributeForGlobalVar(const VarDecl *VD,
3409
0
                                                            LangAS &AS) {
3410
0
  if (!VD || !VD->hasAttr<OMPAllocateDeclAttr>())
3411
0
    return false;
3412
0
  const auto *A = VD->getAttr<OMPAllocateDeclAttr>();
3413
0
  switch(A->getAllocatorType()) {
3414
0
  case OMPAllocateDeclAttr::OMPNullMemAlloc:
3415
0
  case OMPAllocateDeclAttr::OMPDefaultMemAlloc:
3416
  // Not supported, fallback to the default mem space.
3417
0
  case OMPAllocateDeclAttr::OMPThreadMemAlloc:
3418
0
  case OMPAllocateDeclAttr::OMPLargeCapMemAlloc:
3419
0
  case OMPAllocateDeclAttr::OMPCGroupMemAlloc:
3420
0
  case OMPAllocateDeclAttr::OMPHighBWMemAlloc:
3421
0
  case OMPAllocateDeclAttr::OMPLowLatMemAlloc:
3422
0
    AS = LangAS::Default;
3423
0
    return true;
3424
0
  case OMPAllocateDeclAttr::OMPConstMemAlloc:
3425
0
    AS = LangAS::cuda_constant;
3426
0
    return true;
3427
0
  case OMPAllocateDeclAttr::OMPPTeamMemAlloc:
3428
0
    AS = LangAS::cuda_shared;
3429
0
    return true;
3430
0
  case OMPAllocateDeclAttr::OMPUserDefinedMemAlloc:
3431
0
    llvm_unreachable("Expected predefined allocator for the variables with the "
3432
0
                     "static storage.");
3433
0
  }
3434
0
  return false;
3435
0
}
3436
3437
// Get current CudaArch and ignore any unknown values
3438
0
static CudaArch getCudaArch(CodeGenModule &CGM) {
3439
0
  if (!CGM.getTarget().hasFeature("ptx"))
3440
0
    return CudaArch::UNKNOWN;
3441
0
  for (const auto &Feature : CGM.getTarget().getTargetOpts().FeatureMap) {
3442
0
    if (Feature.getValue()) {
3443
0
      CudaArch Arch = StringToCudaArch(Feature.getKey());
3444
0
      if (Arch != CudaArch::UNKNOWN)
3445
0
        return Arch;
3446
0
    }
3447
0
  }
3448
0
  return CudaArch::UNKNOWN;
3449
0
}
3450
3451
/// Check to see if target architecture supports unified addressing which is
3452
/// a restriction for OpenMP requires clause "unified_shared_memory".
3453
void CGOpenMPRuntimeGPU::processRequiresDirective(
3454
0
    const OMPRequiresDecl *D) {
3455
0
  for (const OMPClause *Clause : D->clauselists()) {
3456
0
    if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
3457
0
      CudaArch Arch = getCudaArch(CGM);
3458
0
      switch (Arch) {
3459
0
      case CudaArch::SM_20:
3460
0
      case CudaArch::SM_21:
3461
0
      case CudaArch::SM_30:
3462
0
      case CudaArch::SM_32:
3463
0
      case CudaArch::SM_35:
3464
0
      case CudaArch::SM_37:
3465
0
      case CudaArch::SM_50:
3466
0
      case CudaArch::SM_52:
3467
0
      case CudaArch::SM_53: {
3468
0
        SmallString<256> Buffer;
3469
0
        llvm::raw_svector_ostream Out(Buffer);
3470
0
        Out << "Target architecture " << CudaArchToString(Arch)
3471
0
            << " does not support unified addressing";
3472
0
        CGM.Error(Clause->getBeginLoc(), Out.str());
3473
0
        return;
3474
0
      }
3475
0
      case CudaArch::SM_60:
3476
0
      case CudaArch::SM_61:
3477
0
      case CudaArch::SM_62:
3478
0
      case CudaArch::SM_70:
3479
0
      case CudaArch::SM_72:
3480
0
      case CudaArch::SM_75:
3481
0
      case CudaArch::SM_80:
3482
0
      case CudaArch::SM_86:
3483
0
      case CudaArch::SM_87:
3484
0
      case CudaArch::SM_89:
3485
0
      case CudaArch::SM_90:
3486
0
      case CudaArch::SM_90a:
3487
0
      case CudaArch::GFX600:
3488
0
      case CudaArch::GFX601:
3489
0
      case CudaArch::GFX602:
3490
0
      case CudaArch::GFX700:
3491
0
      case CudaArch::GFX701:
3492
0
      case CudaArch::GFX702:
3493
0
      case CudaArch::GFX703:
3494
0
      case CudaArch::GFX704:
3495
0
      case CudaArch::GFX705:
3496
0
      case CudaArch::GFX801:
3497
0
      case CudaArch::GFX802:
3498
0
      case CudaArch::GFX803:
3499
0
      case CudaArch::GFX805:
3500
0
      case CudaArch::GFX810:
3501
0
      case CudaArch::GFX900:
3502
0
      case CudaArch::GFX902:
3503
0
      case CudaArch::GFX904:
3504
0
      case CudaArch::GFX906:
3505
0
      case CudaArch::GFX908:
3506
0
      case CudaArch::GFX909:
3507
0
      case CudaArch::GFX90a:
3508
0
      case CudaArch::GFX90c:
3509
0
      case CudaArch::GFX940:
3510
0
      case CudaArch::GFX941:
3511
0
      case CudaArch::GFX942:
3512
0
      case CudaArch::GFX1010:
3513
0
      case CudaArch::GFX1011:
3514
0
      case CudaArch::GFX1012:
3515
0
      case CudaArch::GFX1013:
3516
0
      case CudaArch::GFX1030:
3517
0
      case CudaArch::GFX1031:
3518
0
      case CudaArch::GFX1032:
3519
0
      case CudaArch::GFX1033:
3520
0
      case CudaArch::GFX1034:
3521
0
      case CudaArch::GFX1035:
3522
0
      case CudaArch::GFX1036:
3523
0
      case CudaArch::GFX1100:
3524
0
      case CudaArch::GFX1101:
3525
0
      case CudaArch::GFX1102:
3526
0
      case CudaArch::GFX1103:
3527
0
      case CudaArch::GFX1150:
3528
0
      case CudaArch::GFX1151:
3529
0
      case CudaArch::GFX1200:
3530
0
      case CudaArch::GFX1201:
3531
0
      case CudaArch::Generic:
3532
0
      case CudaArch::UNUSED:
3533
0
      case CudaArch::UNKNOWN:
3534
0
        break;
3535
0
      case CudaArch::LAST:
3536
0
        llvm_unreachable("Unexpected Cuda arch.");
3537
0
      }
3538
0
    }
3539
0
  }
3540
0
  CGOpenMPRuntime::processRequiresDirective(D);
3541
0
}
3542
3543
0
llvm::Value *CGOpenMPRuntimeGPU::getGPUNumThreads(CodeGenFunction &CGF) {
3544
0
  CGBuilderTy &Bld = CGF.Builder;
3545
0
  llvm::Module *M = &CGF.CGM.getModule();
3546
0
  const char *LocSize = "__kmpc_get_hardware_num_threads_in_block";
3547
0
  llvm::Function *F = M->getFunction(LocSize);
3548
0
  if (!F) {
3549
0
    F = llvm::Function::Create(
3550
0
        llvm::FunctionType::get(CGF.Int32Ty, std::nullopt, false),
3551
0
        llvm::GlobalVariable::ExternalLinkage, LocSize, &CGF.CGM.getModule());
3552
0
  }
3553
0
  return Bld.CreateCall(F, std::nullopt, "nvptx_num_threads");
3554
0
}
3555
3556
0
llvm::Value *CGOpenMPRuntimeGPU::getGPUThreadID(CodeGenFunction &CGF) {
3557
0
  ArrayRef<llvm::Value *> Args{};
3558
0
  return CGF.EmitRuntimeCall(
3559
0
      OMPBuilder.getOrCreateRuntimeFunction(
3560
0
          CGM.getModule(), OMPRTL___kmpc_get_hardware_thread_id_in_block),
3561
0
      Args);
3562
0
}
3563
3564
0
llvm::Value *CGOpenMPRuntimeGPU::getGPUWarpSize(CodeGenFunction &CGF) {
3565
0
  ArrayRef<llvm::Value *> Args{};
3566
0
  return CGF.EmitRuntimeCall(OMPBuilder.getOrCreateRuntimeFunction(
3567
0
                                 CGM.getModule(), OMPRTL___kmpc_get_warp_size),
3568
0
                             Args);
3569
0
}