/src/llvm-project/clang/lib/CodeGen/CodeGenFunction.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This coordinates the per-function state used while generating code. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "CodeGenFunction.h" |
14 | | #include "CGBlocks.h" |
15 | | #include "CGCUDARuntime.h" |
16 | | #include "CGCXXABI.h" |
17 | | #include "CGCleanup.h" |
18 | | #include "CGDebugInfo.h" |
19 | | #include "CGHLSLRuntime.h" |
20 | | #include "CGOpenMPRuntime.h" |
21 | | #include "CodeGenModule.h" |
22 | | #include "CodeGenPGO.h" |
23 | | #include "TargetInfo.h" |
24 | | #include "clang/AST/ASTContext.h" |
25 | | #include "clang/AST/ASTLambda.h" |
26 | | #include "clang/AST/Attr.h" |
27 | | #include "clang/AST/Decl.h" |
28 | | #include "clang/AST/DeclCXX.h" |
29 | | #include "clang/AST/Expr.h" |
30 | | #include "clang/AST/StmtCXX.h" |
31 | | #include "clang/AST/StmtObjC.h" |
32 | | #include "clang/Basic/Builtins.h" |
33 | | #include "clang/Basic/CodeGenOptions.h" |
34 | | #include "clang/Basic/TargetInfo.h" |
35 | | #include "clang/CodeGen/CGFunctionInfo.h" |
36 | | #include "clang/Frontend/FrontendDiagnostic.h" |
37 | | #include "llvm/ADT/ArrayRef.h" |
38 | | #include "llvm/Frontend/OpenMP/OMPIRBuilder.h" |
39 | | #include "llvm/IR/DataLayout.h" |
40 | | #include "llvm/IR/Dominators.h" |
41 | | #include "llvm/IR/FPEnv.h" |
42 | | #include "llvm/IR/IntrinsicInst.h" |
43 | | #include "llvm/IR/Intrinsics.h" |
44 | | #include "llvm/IR/MDBuilder.h" |
45 | | #include "llvm/IR/Operator.h" |
46 | | #include "llvm/Support/CRC.h" |
47 | | #include "llvm/Support/xxhash.h" |
48 | | #include "llvm/Transforms/Scalar/LowerExpectIntrinsic.h" |
49 | | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
50 | | #include <optional> |
51 | | |
52 | | using namespace clang; |
53 | | using namespace CodeGen; |
54 | | |
55 | | /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time |
56 | | /// markers. |
57 | | static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, |
58 | 0 | const LangOptions &LangOpts) { |
59 | 0 | if (CGOpts.DisableLifetimeMarkers) |
60 | 0 | return false; |
61 | | |
62 | | // Sanitizers may use markers. |
63 | 0 | if (CGOpts.SanitizeAddressUseAfterScope || |
64 | 0 | LangOpts.Sanitize.has(SanitizerKind::HWAddress) || |
65 | 0 | LangOpts.Sanitize.has(SanitizerKind::Memory)) |
66 | 0 | return true; |
67 | | |
68 | | // For now, only in optimized builds. |
69 | 0 | return CGOpts.OptimizationLevel != 0; |
70 | 0 | } |
71 | | |
72 | | CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) |
73 | | : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), |
74 | | Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), |
75 | | CGBuilderInserterTy(this)), |
76 | | SanOpts(CGM.getLangOpts().Sanitize), CurFPFeatures(CGM.getLangOpts()), |
77 | | DebugInfo(CGM.getModuleDebugInfo()), PGO(cgm), |
78 | | ShouldEmitLifetimeMarkers( |
79 | 0 | shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { |
80 | 0 | if (!suppressNewContext) |
81 | 0 | CGM.getCXXABI().getMangleContext().startNewFunction(); |
82 | 0 | EHStack.setCGF(this); |
83 | |
|
84 | 0 | SetFastMathFlags(CurFPFeatures); |
85 | 0 | } |
86 | | |
87 | 0 | CodeGenFunction::~CodeGenFunction() { |
88 | 0 | assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); |
89 | | |
90 | 0 | if (getLangOpts().OpenMP && CurFn) |
91 | 0 | CGM.getOpenMPRuntime().functionFinished(*this); |
92 | | |
93 | | // If we have an OpenMPIRBuilder we want to finalize functions (incl. |
94 | | // outlining etc) at some point. Doing it once the function codegen is done |
95 | | // seems to be a reasonable spot. We do it here, as opposed to the deletion |
96 | | // time of the CodeGenModule, because we have to ensure the IR has not yet |
97 | | // been "emitted" to the outside, thus, modifications are still sensible. |
98 | 0 | if (CGM.getLangOpts().OpenMPIRBuilder && CurFn) |
99 | 0 | CGM.getOpenMPRuntime().getOMPBuilder().finalize(CurFn); |
100 | 0 | } |
101 | | |
102 | | // Map the LangOption for exception behavior into |
103 | | // the corresponding enum in the IR. |
104 | | llvm::fp::ExceptionBehavior |
105 | 0 | clang::ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind) { |
106 | |
|
107 | 0 | switch (Kind) { |
108 | 0 | case LangOptions::FPE_Ignore: return llvm::fp::ebIgnore; |
109 | 0 | case LangOptions::FPE_MayTrap: return llvm::fp::ebMayTrap; |
110 | 0 | case LangOptions::FPE_Strict: return llvm::fp::ebStrict; |
111 | 0 | default: |
112 | 0 | llvm_unreachable("Unsupported FP Exception Behavior"); |
113 | 0 | } |
114 | 0 | } |
115 | | |
116 | 0 | void CodeGenFunction::SetFastMathFlags(FPOptions FPFeatures) { |
117 | 0 | llvm::FastMathFlags FMF; |
118 | 0 | FMF.setAllowReassoc(FPFeatures.getAllowFPReassociate()); |
119 | 0 | FMF.setNoNaNs(FPFeatures.getNoHonorNaNs()); |
120 | 0 | FMF.setNoInfs(FPFeatures.getNoHonorInfs()); |
121 | 0 | FMF.setNoSignedZeros(FPFeatures.getNoSignedZero()); |
122 | 0 | FMF.setAllowReciprocal(FPFeatures.getAllowReciprocal()); |
123 | 0 | FMF.setApproxFunc(FPFeatures.getAllowApproxFunc()); |
124 | 0 | FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); |
125 | 0 | Builder.setFastMathFlags(FMF); |
126 | 0 | } |
127 | | |
128 | | CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, |
129 | | const Expr *E) |
130 | 0 | : CGF(CGF) { |
131 | 0 | ConstructorHelper(E->getFPFeaturesInEffect(CGF.getLangOpts())); |
132 | 0 | } |
133 | | |
134 | | CodeGenFunction::CGFPOptionsRAII::CGFPOptionsRAII(CodeGenFunction &CGF, |
135 | | FPOptions FPFeatures) |
136 | 0 | : CGF(CGF) { |
137 | 0 | ConstructorHelper(FPFeatures); |
138 | 0 | } |
139 | | |
140 | 0 | void CodeGenFunction::CGFPOptionsRAII::ConstructorHelper(FPOptions FPFeatures) { |
141 | 0 | OldFPFeatures = CGF.CurFPFeatures; |
142 | 0 | CGF.CurFPFeatures = FPFeatures; |
143 | |
|
144 | 0 | OldExcept = CGF.Builder.getDefaultConstrainedExcept(); |
145 | 0 | OldRounding = CGF.Builder.getDefaultConstrainedRounding(); |
146 | |
|
147 | 0 | if (OldFPFeatures == FPFeatures) |
148 | 0 | return; |
149 | | |
150 | 0 | FMFGuard.emplace(CGF.Builder); |
151 | |
|
152 | 0 | llvm::RoundingMode NewRoundingBehavior = FPFeatures.getRoundingMode(); |
153 | 0 | CGF.Builder.setDefaultConstrainedRounding(NewRoundingBehavior); |
154 | 0 | auto NewExceptionBehavior = |
155 | 0 | ToConstrainedExceptMD(static_cast<LangOptions::FPExceptionModeKind>( |
156 | 0 | FPFeatures.getExceptionMode())); |
157 | 0 | CGF.Builder.setDefaultConstrainedExcept(NewExceptionBehavior); |
158 | |
|
159 | 0 | CGF.SetFastMathFlags(FPFeatures); |
160 | |
|
161 | 0 | assert((CGF.CurFuncDecl == nullptr || CGF.Builder.getIsFPConstrained() || |
162 | 0 | isa<CXXConstructorDecl>(CGF.CurFuncDecl) || |
163 | 0 | isa<CXXDestructorDecl>(CGF.CurFuncDecl) || |
164 | 0 | (NewExceptionBehavior == llvm::fp::ebIgnore && |
165 | 0 | NewRoundingBehavior == llvm::RoundingMode::NearestTiesToEven)) && |
166 | 0 | "FPConstrained should be enabled on entire function"); |
167 | | |
168 | 0 | auto mergeFnAttrValue = [&](StringRef Name, bool Value) { |
169 | 0 | auto OldValue = |
170 | 0 | CGF.CurFn->getFnAttribute(Name).getValueAsBool(); |
171 | 0 | auto NewValue = OldValue & Value; |
172 | 0 | if (OldValue != NewValue) |
173 | 0 | CGF.CurFn->addFnAttr(Name, llvm::toStringRef(NewValue)); |
174 | 0 | }; |
175 | 0 | mergeFnAttrValue("no-infs-fp-math", FPFeatures.getNoHonorInfs()); |
176 | 0 | mergeFnAttrValue("no-nans-fp-math", FPFeatures.getNoHonorNaNs()); |
177 | 0 | mergeFnAttrValue("no-signed-zeros-fp-math", FPFeatures.getNoSignedZero()); |
178 | 0 | mergeFnAttrValue( |
179 | 0 | "unsafe-fp-math", |
180 | 0 | FPFeatures.getAllowFPReassociate() && FPFeatures.getAllowReciprocal() && |
181 | 0 | FPFeatures.getAllowApproxFunc() && FPFeatures.getNoSignedZero() && |
182 | 0 | FPFeatures.allowFPContractAcrossStatement()); |
183 | 0 | } |
184 | | |
185 | 0 | CodeGenFunction::CGFPOptionsRAII::~CGFPOptionsRAII() { |
186 | 0 | CGF.CurFPFeatures = OldFPFeatures; |
187 | 0 | CGF.Builder.setDefaultConstrainedExcept(OldExcept); |
188 | 0 | CGF.Builder.setDefaultConstrainedRounding(OldRounding); |
189 | 0 | } |
190 | | |
191 | 0 | LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { |
192 | 0 | LValueBaseInfo BaseInfo; |
193 | 0 | TBAAAccessInfo TBAAInfo; |
194 | 0 | CharUnits Alignment = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); |
195 | 0 | Address Addr(V, ConvertTypeForMem(T), Alignment); |
196 | 0 | return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo); |
197 | 0 | } |
198 | | |
199 | | /// Given a value of type T* that may not be to a complete object, |
200 | | /// construct an l-value with the natural pointee alignment of T. |
201 | | LValue |
202 | 0 | CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { |
203 | 0 | LValueBaseInfo BaseInfo; |
204 | 0 | TBAAAccessInfo TBAAInfo; |
205 | 0 | CharUnits Align = CGM.getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, |
206 | 0 | /* forPointeeType= */ true); |
207 | 0 | Address Addr(V, ConvertTypeForMem(T), Align); |
208 | 0 | return MakeAddrLValue(Addr, T, BaseInfo, TBAAInfo); |
209 | 0 | } |
210 | | |
211 | | |
212 | 0 | llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { |
213 | 0 | return CGM.getTypes().ConvertTypeForMem(T); |
214 | 0 | } |
215 | | |
216 | 0 | llvm::Type *CodeGenFunction::ConvertType(QualType T) { |
217 | 0 | return CGM.getTypes().ConvertType(T); |
218 | 0 | } |
219 | | |
220 | 0 | TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { |
221 | 0 | type = type.getCanonicalType(); |
222 | 0 | while (true) { |
223 | 0 | switch (type->getTypeClass()) { |
224 | 0 | #define TYPE(name, parent) |
225 | 0 | #define ABSTRACT_TYPE(name, parent) |
226 | 0 | #define NON_CANONICAL_TYPE(name, parent) case Type::name: |
227 | 0 | #define DEPENDENT_TYPE(name, parent) case Type::name: |
228 | 0 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: |
229 | 0 | #include "clang/AST/TypeNodes.inc" |
230 | 0 | llvm_unreachable("non-canonical or dependent type in IR-generation"); |
231 | |
|
232 | 0 | case Type::Auto: |
233 | 0 | case Type::DeducedTemplateSpecialization: |
234 | 0 | llvm_unreachable("undeduced type in IR-generation"); |
235 | | |
236 | | // Various scalar types. |
237 | 0 | case Type::Builtin: |
238 | 0 | case Type::Pointer: |
239 | 0 | case Type::BlockPointer: |
240 | 0 | case Type::LValueReference: |
241 | 0 | case Type::RValueReference: |
242 | 0 | case Type::MemberPointer: |
243 | 0 | case Type::Vector: |
244 | 0 | case Type::ExtVector: |
245 | 0 | case Type::ConstantMatrix: |
246 | 0 | case Type::FunctionProto: |
247 | 0 | case Type::FunctionNoProto: |
248 | 0 | case Type::Enum: |
249 | 0 | case Type::ObjCObjectPointer: |
250 | 0 | case Type::Pipe: |
251 | 0 | case Type::BitInt: |
252 | 0 | return TEK_Scalar; |
253 | | |
254 | | // Complexes. |
255 | 0 | case Type::Complex: |
256 | 0 | return TEK_Complex; |
257 | | |
258 | | // Arrays, records, and Objective-C objects. |
259 | 0 | case Type::ConstantArray: |
260 | 0 | case Type::IncompleteArray: |
261 | 0 | case Type::VariableArray: |
262 | 0 | case Type::Record: |
263 | 0 | case Type::ObjCObject: |
264 | 0 | case Type::ObjCInterface: |
265 | 0 | return TEK_Aggregate; |
266 | | |
267 | | // We operate on atomic values according to their underlying type. |
268 | 0 | case Type::Atomic: |
269 | 0 | type = cast<AtomicType>(type)->getValueType(); |
270 | 0 | continue; |
271 | 0 | } |
272 | 0 | llvm_unreachable("unknown type kind!"); |
273 | 0 | } |
274 | 0 | } |
275 | | |
276 | 0 | llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { |
277 | | // For cleanliness, we try to avoid emitting the return block for |
278 | | // simple cases. |
279 | 0 | llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); |
280 | |
|
281 | 0 | if (CurBB) { |
282 | 0 | assert(!CurBB->getTerminator() && "Unexpected terminated block."); |
283 | | |
284 | | // We have a valid insert point, reuse it if it is empty or there are no |
285 | | // explicit jumps to the return block. |
286 | 0 | if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { |
287 | 0 | ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); |
288 | 0 | delete ReturnBlock.getBlock(); |
289 | 0 | ReturnBlock = JumpDest(); |
290 | 0 | } else |
291 | 0 | EmitBlock(ReturnBlock.getBlock()); |
292 | 0 | return llvm::DebugLoc(); |
293 | 0 | } |
294 | | |
295 | | // Otherwise, if the return block is the target of a single direct |
296 | | // branch then we can just put the code in that block instead. This |
297 | | // cleans up functions which started with a unified return block. |
298 | 0 | if (ReturnBlock.getBlock()->hasOneUse()) { |
299 | 0 | llvm::BranchInst *BI = |
300 | 0 | dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); |
301 | 0 | if (BI && BI->isUnconditional() && |
302 | 0 | BI->getSuccessor(0) == ReturnBlock.getBlock()) { |
303 | | // Record/return the DebugLoc of the simple 'return' expression to be used |
304 | | // later by the actual 'ret' instruction. |
305 | 0 | llvm::DebugLoc Loc = BI->getDebugLoc(); |
306 | 0 | Builder.SetInsertPoint(BI->getParent()); |
307 | 0 | BI->eraseFromParent(); |
308 | 0 | delete ReturnBlock.getBlock(); |
309 | 0 | ReturnBlock = JumpDest(); |
310 | 0 | return Loc; |
311 | 0 | } |
312 | 0 | } |
313 | | |
314 | | // FIXME: We are at an unreachable point, there is no reason to emit the block |
315 | | // unless it has uses. However, we still need a place to put the debug |
316 | | // region.end for now. |
317 | | |
318 | 0 | EmitBlock(ReturnBlock.getBlock()); |
319 | 0 | return llvm::DebugLoc(); |
320 | 0 | } |
321 | | |
322 | 0 | static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { |
323 | 0 | if (!BB) return; |
324 | 0 | if (!BB->use_empty()) { |
325 | 0 | CGF.CurFn->insert(CGF.CurFn->end(), BB); |
326 | 0 | return; |
327 | 0 | } |
328 | 0 | delete BB; |
329 | 0 | } |
330 | | |
331 | 0 | void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { |
332 | 0 | assert(BreakContinueStack.empty() && |
333 | 0 | "mismatched push/pop in break/continue stack!"); |
334 | | |
335 | 0 | bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 |
336 | 0 | && NumSimpleReturnExprs == NumReturnExprs |
337 | 0 | && ReturnBlock.getBlock()->use_empty(); |
338 | | // Usually the return expression is evaluated before the cleanup |
339 | | // code. If the function contains only a simple return statement, |
340 | | // such as a constant, the location before the cleanup code becomes |
341 | | // the last useful breakpoint in the function, because the simple |
342 | | // return expression will be evaluated after the cleanup code. To be |
343 | | // safe, set the debug location for cleanup code to the location of |
344 | | // the return statement. Otherwise the cleanup code should be at the |
345 | | // end of the function's lexical scope. |
346 | | // |
347 | | // If there are multiple branches to the return block, the branch |
348 | | // instructions will get the location of the return statements and |
349 | | // all will be fine. |
350 | 0 | if (CGDebugInfo *DI = getDebugInfo()) { |
351 | 0 | if (OnlySimpleReturnStmts) |
352 | 0 | DI->EmitLocation(Builder, LastStopPoint); |
353 | 0 | else |
354 | 0 | DI->EmitLocation(Builder, EndLoc); |
355 | 0 | } |
356 | | |
357 | | // Pop any cleanups that might have been associated with the |
358 | | // parameters. Do this in whatever block we're currently in; it's |
359 | | // important to do this before we enter the return block or return |
360 | | // edges will be *really* confused. |
361 | 0 | bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; |
362 | 0 | bool HasOnlyLifetimeMarkers = |
363 | 0 | HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); |
364 | 0 | bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; |
365 | |
|
366 | 0 | std::optional<ApplyDebugLocation> OAL; |
367 | 0 | if (HasCleanups) { |
368 | | // Make sure the line table doesn't jump back into the body for |
369 | | // the ret after it's been at EndLoc. |
370 | 0 | if (CGDebugInfo *DI = getDebugInfo()) { |
371 | 0 | if (OnlySimpleReturnStmts) |
372 | 0 | DI->EmitLocation(Builder, EndLoc); |
373 | 0 | else |
374 | | // We may not have a valid end location. Try to apply it anyway, and |
375 | | // fall back to an artificial location if needed. |
376 | 0 | OAL = ApplyDebugLocation::CreateDefaultArtificial(*this, EndLoc); |
377 | 0 | } |
378 | |
|
379 | 0 | PopCleanupBlocks(PrologueCleanupDepth); |
380 | 0 | } |
381 | | |
382 | | // Emit function epilog (to return). |
383 | 0 | llvm::DebugLoc Loc = EmitReturnBlock(); |
384 | |
|
385 | 0 | if (ShouldInstrumentFunction()) { |
386 | 0 | if (CGM.getCodeGenOpts().InstrumentFunctions) |
387 | 0 | CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); |
388 | 0 | if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) |
389 | 0 | CurFn->addFnAttr("instrument-function-exit-inlined", |
390 | 0 | "__cyg_profile_func_exit"); |
391 | 0 | } |
392 | | |
393 | | // Emit debug descriptor for function end. |
394 | 0 | if (CGDebugInfo *DI = getDebugInfo()) |
395 | 0 | DI->EmitFunctionEnd(Builder, CurFn); |
396 | | |
397 | | // Reset the debug location to that of the simple 'return' expression, if any |
398 | | // rather than that of the end of the function's scope '}'. |
399 | 0 | ApplyDebugLocation AL(*this, Loc); |
400 | 0 | EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); |
401 | 0 | EmitEndEHSpec(CurCodeDecl); |
402 | |
|
403 | 0 | assert(EHStack.empty() && |
404 | 0 | "did not remove all scopes from cleanup stack!"); |
405 | | |
406 | | // If someone did an indirect goto, emit the indirect goto block at the end of |
407 | | // the function. |
408 | 0 | if (IndirectBranch) { |
409 | 0 | EmitBlock(IndirectBranch->getParent()); |
410 | 0 | Builder.ClearInsertionPoint(); |
411 | 0 | } |
412 | | |
413 | | // If some of our locals escaped, insert a call to llvm.localescape in the |
414 | | // entry block. |
415 | 0 | if (!EscapedLocals.empty()) { |
416 | | // Invert the map from local to index into a simple vector. There should be |
417 | | // no holes. |
418 | 0 | SmallVector<llvm::Value *, 4> EscapeArgs; |
419 | 0 | EscapeArgs.resize(EscapedLocals.size()); |
420 | 0 | for (auto &Pair : EscapedLocals) |
421 | 0 | EscapeArgs[Pair.second] = Pair.first; |
422 | 0 | llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( |
423 | 0 | &CGM.getModule(), llvm::Intrinsic::localescape); |
424 | 0 | CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); |
425 | 0 | } |
426 | | |
427 | | // Remove the AllocaInsertPt instruction, which is just a convenience for us. |
428 | 0 | llvm::Instruction *Ptr = AllocaInsertPt; |
429 | 0 | AllocaInsertPt = nullptr; |
430 | 0 | Ptr->eraseFromParent(); |
431 | | |
432 | | // PostAllocaInsertPt, if created, was lazily created when it was required, |
433 | | // remove it now since it was just created for our own convenience. |
434 | 0 | if (PostAllocaInsertPt) { |
435 | 0 | llvm::Instruction *PostPtr = PostAllocaInsertPt; |
436 | 0 | PostAllocaInsertPt = nullptr; |
437 | 0 | PostPtr->eraseFromParent(); |
438 | 0 | } |
439 | | |
440 | | // If someone took the address of a label but never did an indirect goto, we |
441 | | // made a zero entry PHI node, which is illegal, zap it now. |
442 | 0 | if (IndirectBranch) { |
443 | 0 | llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); |
444 | 0 | if (PN->getNumIncomingValues() == 0) { |
445 | 0 | PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); |
446 | 0 | PN->eraseFromParent(); |
447 | 0 | } |
448 | 0 | } |
449 | |
|
450 | 0 | EmitIfUsed(*this, EHResumeBlock); |
451 | 0 | EmitIfUsed(*this, TerminateLandingPad); |
452 | 0 | EmitIfUsed(*this, TerminateHandler); |
453 | 0 | EmitIfUsed(*this, UnreachableBlock); |
454 | |
|
455 | 0 | for (const auto &FuncletAndParent : TerminateFunclets) |
456 | 0 | EmitIfUsed(*this, FuncletAndParent.second); |
457 | |
|
458 | 0 | if (CGM.getCodeGenOpts().EmitDeclMetadata) |
459 | 0 | EmitDeclMetadata(); |
460 | |
|
461 | 0 | for (const auto &R : DeferredReplacements) { |
462 | 0 | if (llvm::Value *Old = R.first) { |
463 | 0 | Old->replaceAllUsesWith(R.second); |
464 | 0 | cast<llvm::Instruction>(Old)->eraseFromParent(); |
465 | 0 | } |
466 | 0 | } |
467 | 0 | DeferredReplacements.clear(); |
468 | | |
469 | | // Eliminate CleanupDestSlot alloca by replacing it with SSA values and |
470 | | // PHIs if the current function is a coroutine. We don't do it for all |
471 | | // functions as it may result in slight increase in numbers of instructions |
472 | | // if compiled with no optimizations. We do it for coroutine as the lifetime |
473 | | // of CleanupDestSlot alloca make correct coroutine frame building very |
474 | | // difficult. |
475 | 0 | if (NormalCleanupDest.isValid() && isCoroutine()) { |
476 | 0 | llvm::DominatorTree DT(*CurFn); |
477 | 0 | llvm::PromoteMemToReg( |
478 | 0 | cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); |
479 | 0 | NormalCleanupDest = Address::invalid(); |
480 | 0 | } |
481 | | |
482 | | // Scan function arguments for vector width. |
483 | 0 | for (llvm::Argument &A : CurFn->args()) |
484 | 0 | if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) |
485 | 0 | LargestVectorWidth = |
486 | 0 | std::max((uint64_t)LargestVectorWidth, |
487 | 0 | VT->getPrimitiveSizeInBits().getKnownMinValue()); |
488 | | |
489 | | // Update vector width based on return type. |
490 | 0 | if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) |
491 | 0 | LargestVectorWidth = |
492 | 0 | std::max((uint64_t)LargestVectorWidth, |
493 | 0 | VT->getPrimitiveSizeInBits().getKnownMinValue()); |
494 | |
|
495 | 0 | if (CurFnInfo->getMaxVectorWidth() > LargestVectorWidth) |
496 | 0 | LargestVectorWidth = CurFnInfo->getMaxVectorWidth(); |
497 | | |
498 | | // Add the min-legal-vector-width attribute. This contains the max width from: |
499 | | // 1. min-vector-width attribute used in the source program. |
500 | | // 2. Any builtins used that have a vector width specified. |
501 | | // 3. Values passed in and out of inline assembly. |
502 | | // 4. Width of vector arguments and return types for this function. |
503 | | // 5. Width of vector arguments and return types for functions called by this |
504 | | // function. |
505 | 0 | if (getContext().getTargetInfo().getTriple().isX86()) |
506 | 0 | CurFn->addFnAttr("min-legal-vector-width", |
507 | 0 | llvm::utostr(LargestVectorWidth)); |
508 | | |
509 | | // Add vscale_range attribute if appropriate. |
510 | 0 | std::optional<std::pair<unsigned, unsigned>> VScaleRange = |
511 | 0 | getContext().getTargetInfo().getVScaleRange(getLangOpts()); |
512 | 0 | if (VScaleRange) { |
513 | 0 | CurFn->addFnAttr(llvm::Attribute::getWithVScaleRangeArgs( |
514 | 0 | getLLVMContext(), VScaleRange->first, VScaleRange->second)); |
515 | 0 | } |
516 | | |
517 | | // If we generated an unreachable return block, delete it now. |
518 | 0 | if (ReturnBlock.isValid() && ReturnBlock.getBlock()->use_empty()) { |
519 | 0 | Builder.ClearInsertionPoint(); |
520 | 0 | ReturnBlock.getBlock()->eraseFromParent(); |
521 | 0 | } |
522 | 0 | if (ReturnValue.isValid()) { |
523 | 0 | auto *RetAlloca = dyn_cast<llvm::AllocaInst>(ReturnValue.getPointer()); |
524 | 0 | if (RetAlloca && RetAlloca->use_empty()) { |
525 | 0 | RetAlloca->eraseFromParent(); |
526 | 0 | ReturnValue = Address::invalid(); |
527 | 0 | } |
528 | 0 | } |
529 | 0 | } |
530 | | |
531 | | /// ShouldInstrumentFunction - Return true if the current function should be |
532 | | /// instrumented with __cyg_profile_func_* calls |
533 | 0 | bool CodeGenFunction::ShouldInstrumentFunction() { |
534 | 0 | if (!CGM.getCodeGenOpts().InstrumentFunctions && |
535 | 0 | !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && |
536 | 0 | !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) |
537 | 0 | return false; |
538 | 0 | if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) |
539 | 0 | return false; |
540 | 0 | return true; |
541 | 0 | } |
542 | | |
543 | 0 | bool CodeGenFunction::ShouldSkipSanitizerInstrumentation() { |
544 | 0 | if (!CurFuncDecl) |
545 | 0 | return false; |
546 | 0 | return CurFuncDecl->hasAttr<DisableSanitizerInstrumentationAttr>(); |
547 | 0 | } |
548 | | |
549 | | /// ShouldXRayInstrument - Return true if the current function should be |
550 | | /// instrumented with XRay nop sleds. |
551 | 0 | bool CodeGenFunction::ShouldXRayInstrumentFunction() const { |
552 | 0 | return CGM.getCodeGenOpts().XRayInstrumentFunctions; |
553 | 0 | } |
554 | | |
555 | | /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to |
556 | | /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. |
557 | 0 | bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { |
558 | 0 | return CGM.getCodeGenOpts().XRayInstrumentFunctions && |
559 | 0 | (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || |
560 | 0 | CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == |
561 | 0 | XRayInstrKind::Custom); |
562 | 0 | } |
563 | | |
564 | 0 | bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { |
565 | 0 | return CGM.getCodeGenOpts().XRayInstrumentFunctions && |
566 | 0 | (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || |
567 | 0 | CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == |
568 | 0 | XRayInstrKind::Typed); |
569 | 0 | } |
570 | | |
571 | | llvm::ConstantInt * |
572 | 0 | CodeGenFunction::getUBSanFunctionTypeHash(QualType Ty) const { |
573 | | // Remove any (C++17) exception specifications, to allow calling e.g. a |
574 | | // noexcept function through a non-noexcept pointer. |
575 | 0 | if (!Ty->isFunctionNoProtoType()) |
576 | 0 | Ty = getContext().getFunctionTypeWithExceptionSpec(Ty, EST_None); |
577 | 0 | std::string Mangled; |
578 | 0 | llvm::raw_string_ostream Out(Mangled); |
579 | 0 | CGM.getCXXABI().getMangleContext().mangleCanonicalTypeName(Ty, Out, false); |
580 | 0 | return llvm::ConstantInt::get( |
581 | 0 | CGM.Int32Ty, static_cast<uint32_t>(llvm::xxh3_64bits(Mangled))); |
582 | 0 | } |
583 | | |
584 | | void CodeGenFunction::EmitKernelMetadata(const FunctionDecl *FD, |
585 | 0 | llvm::Function *Fn) { |
586 | 0 | if (!FD->hasAttr<OpenCLKernelAttr>() && !FD->hasAttr<CUDAGlobalAttr>()) |
587 | 0 | return; |
588 | | |
589 | 0 | llvm::LLVMContext &Context = getLLVMContext(); |
590 | |
|
591 | 0 | CGM.GenKernelArgMetadata(Fn, FD, this); |
592 | |
|
593 | 0 | if (!getLangOpts().OpenCL) |
594 | 0 | return; |
595 | | |
596 | 0 | if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { |
597 | 0 | QualType HintQTy = A->getTypeHint(); |
598 | 0 | const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); |
599 | 0 | bool IsSignedInteger = |
600 | 0 | HintQTy->isSignedIntegerType() || |
601 | 0 | (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); |
602 | 0 | llvm::Metadata *AttrMDArgs[] = { |
603 | 0 | llvm::ConstantAsMetadata::get(llvm::UndefValue::get( |
604 | 0 | CGM.getTypes().ConvertType(A->getTypeHint()))), |
605 | 0 | llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( |
606 | 0 | llvm::IntegerType::get(Context, 32), |
607 | 0 | llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; |
608 | 0 | Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); |
609 | 0 | } |
610 | |
|
611 | 0 | if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { |
612 | 0 | llvm::Metadata *AttrMDArgs[] = { |
613 | 0 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), |
614 | 0 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), |
615 | 0 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; |
616 | 0 | Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); |
617 | 0 | } |
618 | |
|
619 | 0 | if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { |
620 | 0 | llvm::Metadata *AttrMDArgs[] = { |
621 | 0 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), |
622 | 0 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), |
623 | 0 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; |
624 | 0 | Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); |
625 | 0 | } |
626 | |
|
627 | 0 | if (const OpenCLIntelReqdSubGroupSizeAttr *A = |
628 | 0 | FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { |
629 | 0 | llvm::Metadata *AttrMDArgs[] = { |
630 | 0 | llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; |
631 | 0 | Fn->setMetadata("intel_reqd_sub_group_size", |
632 | 0 | llvm::MDNode::get(Context, AttrMDArgs)); |
633 | 0 | } |
634 | 0 | } |
635 | | |
636 | | /// Determine whether the function F ends with a return stmt. |
637 | 0 | static bool endsWithReturn(const Decl* F) { |
638 | 0 | const Stmt *Body = nullptr; |
639 | 0 | if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) |
640 | 0 | Body = FD->getBody(); |
641 | 0 | else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) |
642 | 0 | Body = OMD->getBody(); |
643 | |
|
644 | 0 | if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { |
645 | 0 | auto LastStmt = CS->body_rbegin(); |
646 | 0 | if (LastStmt != CS->body_rend()) |
647 | 0 | return isa<ReturnStmt>(*LastStmt); |
648 | 0 | } |
649 | 0 | return false; |
650 | 0 | } |
651 | | |
652 | 0 | void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { |
653 | 0 | if (SanOpts.has(SanitizerKind::Thread)) { |
654 | 0 | Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); |
655 | 0 | Fn->removeFnAttr(llvm::Attribute::SanitizeThread); |
656 | 0 | } |
657 | 0 | } |
658 | | |
659 | | /// Check if the return value of this function requires sanitization. |
660 | 0 | bool CodeGenFunction::requiresReturnValueCheck() const { |
661 | 0 | return requiresReturnValueNullabilityCheck() || |
662 | 0 | (SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && CurCodeDecl && |
663 | 0 | CurCodeDecl->getAttr<ReturnsNonNullAttr>()); |
664 | 0 | } |
665 | | |
666 | 0 | static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { |
667 | 0 | auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); |
668 | 0 | if (!MD || !MD->getDeclName().getAsIdentifierInfo() || |
669 | 0 | !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || |
670 | 0 | (MD->getNumParams() != 1 && MD->getNumParams() != 2)) |
671 | 0 | return false; |
672 | | |
673 | 0 | if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) |
674 | 0 | return false; |
675 | | |
676 | 0 | if (MD->getNumParams() == 2) { |
677 | 0 | auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); |
678 | 0 | if (!PT || !PT->isVoidPointerType() || |
679 | 0 | !PT->getPointeeType().isConstQualified()) |
680 | 0 | return false; |
681 | 0 | } |
682 | | |
683 | 0 | return true; |
684 | 0 | } |
685 | | |
686 | 0 | bool CodeGenFunction::isInAllocaArgument(CGCXXABI &ABI, QualType Ty) { |
687 | 0 | const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
688 | 0 | return RD && ABI.getRecordArgABI(RD) == CGCXXABI::RAA_DirectInMemory; |
689 | 0 | } |
690 | | |
691 | 0 | bool CodeGenFunction::hasInAllocaArg(const CXXMethodDecl *MD) { |
692 | 0 | return getTarget().getTriple().getArch() == llvm::Triple::x86 && |
693 | 0 | getTarget().getCXXABI().isMicrosoft() && |
694 | 0 | llvm::any_of(MD->parameters(), [&](ParmVarDecl *P) { |
695 | 0 | return isInAllocaArgument(CGM.getCXXABI(), P->getType()); |
696 | 0 | }); |
697 | 0 | } |
698 | | |
699 | | /// Return the UBSan prologue signature for \p FD if one is available. |
700 | | static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, |
701 | 0 | const FunctionDecl *FD) { |
702 | 0 | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) |
703 | 0 | if (!MD->isStatic()) |
704 | 0 | return nullptr; |
705 | 0 | return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); |
706 | 0 | } |
707 | | |
708 | | void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy, |
709 | | llvm::Function *Fn, |
710 | | const CGFunctionInfo &FnInfo, |
711 | | const FunctionArgList &Args, |
712 | | SourceLocation Loc, |
713 | 0 | SourceLocation StartLoc) { |
714 | 0 | assert(!CurFn && |
715 | 0 | "Do not use a CodeGenFunction object for more than one function"); |
716 | | |
717 | 0 | const Decl *D = GD.getDecl(); |
718 | |
|
719 | 0 | DidCallStackSave = false; |
720 | 0 | CurCodeDecl = D; |
721 | 0 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); |
722 | 0 | if (FD && FD->usesSEHTry()) |
723 | 0 | CurSEHParent = GD; |
724 | 0 | CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); |
725 | 0 | FnRetTy = RetTy; |
726 | 0 | CurFn = Fn; |
727 | 0 | CurFnInfo = &FnInfo; |
728 | 0 | assert(CurFn->isDeclaration() && "Function already has body?"); |
729 | | |
730 | | // If this function is ignored for any of the enabled sanitizers, |
731 | | // disable the sanitizer for the function. |
732 | 0 | do { |
733 | 0 | #define SANITIZER(NAME, ID) \ |
734 | 0 | if (SanOpts.empty()) \ |
735 | 0 | break; \ |
736 | 0 | if (SanOpts.has(SanitizerKind::ID)) \ |
737 | 0 | if (CGM.isInNoSanitizeList(SanitizerKind::ID, Fn, Loc)) \ |
738 | 0 | SanOpts.set(SanitizerKind::ID, false); |
739 | |
|
740 | 0 | #include "clang/Basic/Sanitizers.def" |
741 | 0 | #undef SANITIZER |
742 | 0 | } while (false); |
743 | | |
744 | 0 | if (D) { |
745 | 0 | const bool SanitizeBounds = SanOpts.hasOneOf(SanitizerKind::Bounds); |
746 | 0 | SanitizerMask no_sanitize_mask; |
747 | 0 | bool NoSanitizeCoverage = false; |
748 | |
|
749 | 0 | for (auto *Attr : D->specific_attrs<NoSanitizeAttr>()) { |
750 | 0 | no_sanitize_mask |= Attr->getMask(); |
751 | | // SanitizeCoverage is not handled by SanOpts. |
752 | 0 | if (Attr->hasCoverage()) |
753 | 0 | NoSanitizeCoverage = true; |
754 | 0 | } |
755 | | |
756 | | // Apply the no_sanitize* attributes to SanOpts. |
757 | 0 | SanOpts.Mask &= ~no_sanitize_mask; |
758 | 0 | if (no_sanitize_mask & SanitizerKind::Address) |
759 | 0 | SanOpts.set(SanitizerKind::KernelAddress, false); |
760 | 0 | if (no_sanitize_mask & SanitizerKind::KernelAddress) |
761 | 0 | SanOpts.set(SanitizerKind::Address, false); |
762 | 0 | if (no_sanitize_mask & SanitizerKind::HWAddress) |
763 | 0 | SanOpts.set(SanitizerKind::KernelHWAddress, false); |
764 | 0 | if (no_sanitize_mask & SanitizerKind::KernelHWAddress) |
765 | 0 | SanOpts.set(SanitizerKind::HWAddress, false); |
766 | |
|
767 | 0 | if (SanitizeBounds && !SanOpts.hasOneOf(SanitizerKind::Bounds)) |
768 | 0 | Fn->addFnAttr(llvm::Attribute::NoSanitizeBounds); |
769 | |
|
770 | 0 | if (NoSanitizeCoverage && CGM.getCodeGenOpts().hasSanitizeCoverage()) |
771 | 0 | Fn->addFnAttr(llvm::Attribute::NoSanitizeCoverage); |
772 | | |
773 | | // Some passes need the non-negated no_sanitize attribute. Pass them on. |
774 | 0 | if (CGM.getCodeGenOpts().hasSanitizeBinaryMetadata()) { |
775 | 0 | if (no_sanitize_mask & SanitizerKind::Thread) |
776 | 0 | Fn->addFnAttr("no_sanitize_thread"); |
777 | 0 | } |
778 | 0 | } |
779 | |
|
780 | 0 | if (ShouldSkipSanitizerInstrumentation()) { |
781 | 0 | CurFn->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation); |
782 | 0 | } else { |
783 | | // Apply sanitizer attributes to the function. |
784 | 0 | if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) |
785 | 0 | Fn->addFnAttr(llvm::Attribute::SanitizeAddress); |
786 | 0 | if (SanOpts.hasOneOf(SanitizerKind::HWAddress | |
787 | 0 | SanitizerKind::KernelHWAddress)) |
788 | 0 | Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); |
789 | 0 | if (SanOpts.has(SanitizerKind::MemtagStack)) |
790 | 0 | Fn->addFnAttr(llvm::Attribute::SanitizeMemTag); |
791 | 0 | if (SanOpts.has(SanitizerKind::Thread)) |
792 | 0 | Fn->addFnAttr(llvm::Attribute::SanitizeThread); |
793 | 0 | if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) |
794 | 0 | Fn->addFnAttr(llvm::Attribute::SanitizeMemory); |
795 | 0 | } |
796 | 0 | if (SanOpts.has(SanitizerKind::SafeStack)) |
797 | 0 | Fn->addFnAttr(llvm::Attribute::SafeStack); |
798 | 0 | if (SanOpts.has(SanitizerKind::ShadowCallStack)) |
799 | 0 | Fn->addFnAttr(llvm::Attribute::ShadowCallStack); |
800 | | |
801 | | // Apply fuzzing attribute to the function. |
802 | 0 | if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) |
803 | 0 | Fn->addFnAttr(llvm::Attribute::OptForFuzzing); |
804 | | |
805 | | // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, |
806 | | // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. |
807 | 0 | if (SanOpts.has(SanitizerKind::Thread)) { |
808 | 0 | if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { |
809 | 0 | IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); |
810 | 0 | if (OMD->getMethodFamily() == OMF_dealloc || |
811 | 0 | OMD->getMethodFamily() == OMF_initialize || |
812 | 0 | (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { |
813 | 0 | markAsIgnoreThreadCheckingAtRuntime(Fn); |
814 | 0 | } |
815 | 0 | } |
816 | 0 | } |
817 | | |
818 | | // Ignore unrelated casts in STL allocate() since the allocator must cast |
819 | | // from void* to T* before object initialization completes. Don't match on the |
820 | | // namespace because not all allocators are in std:: |
821 | 0 | if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { |
822 | 0 | if (matchesStlAllocatorFn(D, getContext())) |
823 | 0 | SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; |
824 | 0 | } |
825 | | |
826 | | // Ignore null checks in coroutine functions since the coroutines passes |
827 | | // are not aware of how to move the extra UBSan instructions across the split |
828 | | // coroutine boundaries. |
829 | 0 | if (D && SanOpts.has(SanitizerKind::Null)) |
830 | 0 | if (FD && FD->getBody() && |
831 | 0 | FD->getBody()->getStmtClass() == Stmt::CoroutineBodyStmtClass) |
832 | 0 | SanOpts.Mask &= ~SanitizerKind::Null; |
833 | | |
834 | | // Apply xray attributes to the function (as a string, for now) |
835 | 0 | bool AlwaysXRayAttr = false; |
836 | 0 | if (const auto *XRayAttr = D ? D->getAttr<XRayInstrumentAttr>() : nullptr) { |
837 | 0 | if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
838 | 0 | XRayInstrKind::FunctionEntry) || |
839 | 0 | CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
840 | 0 | XRayInstrKind::FunctionExit)) { |
841 | 0 | if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) { |
842 | 0 | Fn->addFnAttr("function-instrument", "xray-always"); |
843 | 0 | AlwaysXRayAttr = true; |
844 | 0 | } |
845 | 0 | if (XRayAttr->neverXRayInstrument()) |
846 | 0 | Fn->addFnAttr("function-instrument", "xray-never"); |
847 | 0 | if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) |
848 | 0 | if (ShouldXRayInstrumentFunction()) |
849 | 0 | Fn->addFnAttr("xray-log-args", |
850 | 0 | llvm::utostr(LogArgs->getArgumentCount())); |
851 | 0 | } |
852 | 0 | } else { |
853 | 0 | if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) |
854 | 0 | Fn->addFnAttr( |
855 | 0 | "xray-instruction-threshold", |
856 | 0 | llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); |
857 | 0 | } |
858 | |
|
859 | 0 | if (ShouldXRayInstrumentFunction()) { |
860 | 0 | if (CGM.getCodeGenOpts().XRayIgnoreLoops) |
861 | 0 | Fn->addFnAttr("xray-ignore-loops"); |
862 | |
|
863 | 0 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
864 | 0 | XRayInstrKind::FunctionExit)) |
865 | 0 | Fn->addFnAttr("xray-skip-exit"); |
866 | |
|
867 | 0 | if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has( |
868 | 0 | XRayInstrKind::FunctionEntry)) |
869 | 0 | Fn->addFnAttr("xray-skip-entry"); |
870 | |
|
871 | 0 | auto FuncGroups = CGM.getCodeGenOpts().XRayTotalFunctionGroups; |
872 | 0 | if (FuncGroups > 1) { |
873 | 0 | auto FuncName = llvm::ArrayRef<uint8_t>(CurFn->getName().bytes_begin(), |
874 | 0 | CurFn->getName().bytes_end()); |
875 | 0 | auto Group = crc32(FuncName) % FuncGroups; |
876 | 0 | if (Group != CGM.getCodeGenOpts().XRaySelectedFunctionGroup && |
877 | 0 | !AlwaysXRayAttr) |
878 | 0 | Fn->addFnAttr("function-instrument", "xray-never"); |
879 | 0 | } |
880 | 0 | } |
881 | |
|
882 | 0 | if (CGM.getCodeGenOpts().getProfileInstr() != CodeGenOptions::ProfileNone) { |
883 | 0 | switch (CGM.isFunctionBlockedFromProfileInstr(Fn, Loc)) { |
884 | 0 | case ProfileList::Skip: |
885 | 0 | Fn->addFnAttr(llvm::Attribute::SkipProfile); |
886 | 0 | break; |
887 | 0 | case ProfileList::Forbid: |
888 | 0 | Fn->addFnAttr(llvm::Attribute::NoProfile); |
889 | 0 | break; |
890 | 0 | case ProfileList::Allow: |
891 | 0 | break; |
892 | 0 | } |
893 | 0 | } |
894 | | |
895 | 0 | unsigned Count, Offset; |
896 | 0 | if (const auto *Attr = |
897 | 0 | D ? D->getAttr<PatchableFunctionEntryAttr>() : nullptr) { |
898 | 0 | Count = Attr->getCount(); |
899 | 0 | Offset = Attr->getOffset(); |
900 | 0 | } else { |
901 | 0 | Count = CGM.getCodeGenOpts().PatchableFunctionEntryCount; |
902 | 0 | Offset = CGM.getCodeGenOpts().PatchableFunctionEntryOffset; |
903 | 0 | } |
904 | 0 | if (Count && Offset <= Count) { |
905 | 0 | Fn->addFnAttr("patchable-function-entry", std::to_string(Count - Offset)); |
906 | 0 | if (Offset) |
907 | 0 | Fn->addFnAttr("patchable-function-prefix", std::to_string(Offset)); |
908 | 0 | } |
909 | | // Instruct that functions for COFF/CodeView targets should start with a |
910 | | // patchable instruction, but only on x86/x64. Don't forward this to ARM/ARM64 |
911 | | // backends as they don't need it -- instructions on these architectures are |
912 | | // always atomically patchable at runtime. |
913 | 0 | if (CGM.getCodeGenOpts().HotPatch && |
914 | 0 | getContext().getTargetInfo().getTriple().isX86() && |
915 | 0 | getContext().getTargetInfo().getTriple().getEnvironment() != |
916 | 0 | llvm::Triple::CODE16) |
917 | 0 | Fn->addFnAttr("patchable-function", "prologue-short-redirect"); |
918 | | |
919 | | // Add no-jump-tables value. |
920 | 0 | if (CGM.getCodeGenOpts().NoUseJumpTables) |
921 | 0 | Fn->addFnAttr("no-jump-tables", "true"); |
922 | | |
923 | | // Add no-inline-line-tables value. |
924 | 0 | if (CGM.getCodeGenOpts().NoInlineLineTables) |
925 | 0 | Fn->addFnAttr("no-inline-line-tables"); |
926 | | |
927 | | // Add profile-sample-accurate value. |
928 | 0 | if (CGM.getCodeGenOpts().ProfileSampleAccurate) |
929 | 0 | Fn->addFnAttr("profile-sample-accurate"); |
930 | |
|
931 | 0 | if (!CGM.getCodeGenOpts().SampleProfileFile.empty()) |
932 | 0 | Fn->addFnAttr("use-sample-profile"); |
933 | |
|
934 | 0 | if (D && D->hasAttr<CFICanonicalJumpTableAttr>()) |
935 | 0 | Fn->addFnAttr("cfi-canonical-jump-table"); |
936 | |
|
937 | 0 | if (D && D->hasAttr<NoProfileFunctionAttr>()) |
938 | 0 | Fn->addFnAttr(llvm::Attribute::NoProfile); |
939 | |
|
940 | 0 | if (D) { |
941 | | // Function attributes take precedence over command line flags. |
942 | 0 | if (auto *A = D->getAttr<FunctionReturnThunksAttr>()) { |
943 | 0 | switch (A->getThunkType()) { |
944 | 0 | case FunctionReturnThunksAttr::Kind::Keep: |
945 | 0 | break; |
946 | 0 | case FunctionReturnThunksAttr::Kind::Extern: |
947 | 0 | Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); |
948 | 0 | break; |
949 | 0 | } |
950 | 0 | } else if (CGM.getCodeGenOpts().FunctionReturnThunks) |
951 | 0 | Fn->addFnAttr(llvm::Attribute::FnRetThunkExtern); |
952 | 0 | } |
953 | | |
954 | 0 | if (FD && (getLangOpts().OpenCL || |
955 | 0 | (getLangOpts().HIP && getLangOpts().CUDAIsDevice))) { |
956 | | // Add metadata for a kernel function. |
957 | 0 | EmitKernelMetadata(FD, Fn); |
958 | 0 | } |
959 | | |
960 | | // If we are checking function types, emit a function type signature as |
961 | | // prologue data. |
962 | 0 | if (FD && SanOpts.has(SanitizerKind::Function)) { |
963 | 0 | if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { |
964 | 0 | llvm::LLVMContext &Ctx = Fn->getContext(); |
965 | 0 | llvm::MDBuilder MDB(Ctx); |
966 | 0 | Fn->setMetadata( |
967 | 0 | llvm::LLVMContext::MD_func_sanitize, |
968 | 0 | MDB.createRTTIPointerPrologue( |
969 | 0 | PrologueSig, getUBSanFunctionTypeHash(FD->getType()))); |
970 | 0 | } |
971 | 0 | } |
972 | | |
973 | | // If we're checking nullability, we need to know whether we can check the |
974 | | // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. |
975 | 0 | if (SanOpts.has(SanitizerKind::NullabilityReturn)) { |
976 | 0 | auto Nullability = FnRetTy->getNullability(); |
977 | 0 | if (Nullability && *Nullability == NullabilityKind::NonNull) { |
978 | 0 | if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && |
979 | 0 | CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) |
980 | 0 | RetValNullabilityPrecondition = |
981 | 0 | llvm::ConstantInt::getTrue(getLLVMContext()); |
982 | 0 | } |
983 | 0 | } |
984 | | |
985 | | // If we're in C++ mode and the function name is "main", it is guaranteed |
986 | | // to be norecurse by the standard (3.6.1.3 "The function main shall not be |
987 | | // used within a program"). |
988 | | // |
989 | | // OpenCL C 2.0 v2.2-11 s6.9.i: |
990 | | // Recursion is not supported. |
991 | | // |
992 | | // SYCL v1.2.1 s3.10: |
993 | | // kernels cannot include RTTI information, exception classes, |
994 | | // recursive code, virtual functions or make use of C++ libraries that |
995 | | // are not compiled for the device. |
996 | 0 | if (FD && ((getLangOpts().CPlusPlus && FD->isMain()) || |
997 | 0 | getLangOpts().OpenCL || getLangOpts().SYCLIsDevice || |
998 | 0 | (getLangOpts().CUDA && FD->hasAttr<CUDAGlobalAttr>()))) |
999 | 0 | Fn->addFnAttr(llvm::Attribute::NoRecurse); |
1000 | |
|
1001 | 0 | llvm::RoundingMode RM = getLangOpts().getDefaultRoundingMode(); |
1002 | 0 | llvm::fp::ExceptionBehavior FPExceptionBehavior = |
1003 | 0 | ToConstrainedExceptMD(getLangOpts().getDefaultExceptionMode()); |
1004 | 0 | Builder.setDefaultConstrainedRounding(RM); |
1005 | 0 | Builder.setDefaultConstrainedExcept(FPExceptionBehavior); |
1006 | 0 | if ((FD && (FD->UsesFPIntrin() || FD->hasAttr<StrictFPAttr>())) || |
1007 | 0 | (!FD && (FPExceptionBehavior != llvm::fp::ebIgnore || |
1008 | 0 | RM != llvm::RoundingMode::NearestTiesToEven))) { |
1009 | 0 | Builder.setIsFPConstrained(true); |
1010 | 0 | Fn->addFnAttr(llvm::Attribute::StrictFP); |
1011 | 0 | } |
1012 | | |
1013 | | // If a custom alignment is used, force realigning to this alignment on |
1014 | | // any main function which certainly will need it. |
1015 | 0 | if (FD && ((FD->isMain() || FD->isMSVCRTEntryPoint()) && |
1016 | 0 | CGM.getCodeGenOpts().StackAlignment)) |
1017 | 0 | Fn->addFnAttr("stackrealign"); |
1018 | | |
1019 | | // "main" doesn't need to zero out call-used registers. |
1020 | 0 | if (FD && FD->isMain()) |
1021 | 0 | Fn->removeFnAttr("zero-call-used-regs"); |
1022 | |
|
1023 | 0 | llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); |
1024 | | |
1025 | | // Create a marker to make it easy to insert allocas into the entryblock |
1026 | | // later. Don't create this with the builder, because we don't want it |
1027 | | // folded. |
1028 | 0 | llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); |
1029 | 0 | AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); |
1030 | |
|
1031 | 0 | ReturnBlock = getJumpDestInCurrentScope("return"); |
1032 | |
|
1033 | 0 | Builder.SetInsertPoint(EntryBB); |
1034 | | |
1035 | | // If we're checking the return value, allocate space for a pointer to a |
1036 | | // precise source location of the checked return statement. |
1037 | 0 | if (requiresReturnValueCheck()) { |
1038 | 0 | ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); |
1039 | 0 | Builder.CreateStore(llvm::ConstantPointerNull::get(Int8PtrTy), |
1040 | 0 | ReturnLocation); |
1041 | 0 | } |
1042 | | |
1043 | | // Emit subprogram debug descriptor. |
1044 | 0 | if (CGDebugInfo *DI = getDebugInfo()) { |
1045 | | // Reconstruct the type from the argument list so that implicit parameters, |
1046 | | // such as 'this' and 'vtt', show up in the debug info. Preserve the calling |
1047 | | // convention. |
1048 | 0 | DI->emitFunctionStart(GD, Loc, StartLoc, |
1049 | 0 | DI->getFunctionType(FD, RetTy, Args), CurFn, |
1050 | 0 | CurFuncIsThunk); |
1051 | 0 | } |
1052 | |
|
1053 | 0 | if (ShouldInstrumentFunction()) { |
1054 | 0 | if (CGM.getCodeGenOpts().InstrumentFunctions) |
1055 | 0 | CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); |
1056 | 0 | if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) |
1057 | 0 | CurFn->addFnAttr("instrument-function-entry-inlined", |
1058 | 0 | "__cyg_profile_func_enter"); |
1059 | 0 | if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) |
1060 | 0 | CurFn->addFnAttr("instrument-function-entry-inlined", |
1061 | 0 | "__cyg_profile_func_enter_bare"); |
1062 | 0 | } |
1063 | | |
1064 | | // Since emitting the mcount call here impacts optimizations such as function |
1065 | | // inlining, we just add an attribute to insert a mcount call in backend. |
1066 | | // The attribute "counting-function" is set to mcount function name which is |
1067 | | // architecture dependent. |
1068 | 0 | if (CGM.getCodeGenOpts().InstrumentForProfiling) { |
1069 | | // Calls to fentry/mcount should not be generated if function has |
1070 | | // the no_instrument_function attribute. |
1071 | 0 | if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { |
1072 | 0 | if (CGM.getCodeGenOpts().CallFEntry) |
1073 | 0 | Fn->addFnAttr("fentry-call", "true"); |
1074 | 0 | else { |
1075 | 0 | Fn->addFnAttr("instrument-function-entry-inlined", |
1076 | 0 | getTarget().getMCountName()); |
1077 | 0 | } |
1078 | 0 | if (CGM.getCodeGenOpts().MNopMCount) { |
1079 | 0 | if (!CGM.getCodeGenOpts().CallFEntry) |
1080 | 0 | CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) |
1081 | 0 | << "-mnop-mcount" << "-mfentry"; |
1082 | 0 | Fn->addFnAttr("mnop-mcount"); |
1083 | 0 | } |
1084 | |
|
1085 | 0 | if (CGM.getCodeGenOpts().RecordMCount) { |
1086 | 0 | if (!CGM.getCodeGenOpts().CallFEntry) |
1087 | 0 | CGM.getDiags().Report(diag::err_opt_not_valid_without_opt) |
1088 | 0 | << "-mrecord-mcount" << "-mfentry"; |
1089 | 0 | Fn->addFnAttr("mrecord-mcount"); |
1090 | 0 | } |
1091 | 0 | } |
1092 | 0 | } |
1093 | |
|
1094 | 0 | if (CGM.getCodeGenOpts().PackedStack) { |
1095 | 0 | if (getContext().getTargetInfo().getTriple().getArch() != |
1096 | 0 | llvm::Triple::systemz) |
1097 | 0 | CGM.getDiags().Report(diag::err_opt_not_valid_on_target) |
1098 | 0 | << "-mpacked-stack"; |
1099 | 0 | Fn->addFnAttr("packed-stack"); |
1100 | 0 | } |
1101 | |
|
1102 | 0 | if (CGM.getCodeGenOpts().WarnStackSize != UINT_MAX && |
1103 | 0 | !CGM.getDiags().isIgnored(diag::warn_fe_backend_frame_larger_than, Loc)) |
1104 | 0 | Fn->addFnAttr("warn-stack-size", |
1105 | 0 | std::to_string(CGM.getCodeGenOpts().WarnStackSize)); |
1106 | |
|
1107 | 0 | if (RetTy->isVoidType()) { |
1108 | | // Void type; nothing to return. |
1109 | 0 | ReturnValue = Address::invalid(); |
1110 | | |
1111 | | // Count the implicit return. |
1112 | 0 | if (!endsWithReturn(D)) |
1113 | 0 | ++NumReturnExprs; |
1114 | 0 | } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { |
1115 | | // Indirect return; emit returned value directly into sret slot. |
1116 | | // This reduces code size, and affects correctness in C++. |
1117 | 0 | auto AI = CurFn->arg_begin(); |
1118 | 0 | if (CurFnInfo->getReturnInfo().isSRetAfterThis()) |
1119 | 0 | ++AI; |
1120 | 0 | ReturnValue = |
1121 | 0 | Address(&*AI, ConvertType(RetTy), |
1122 | 0 | CurFnInfo->getReturnInfo().getIndirectAlign(), KnownNonNull); |
1123 | 0 | if (!CurFnInfo->getReturnInfo().getIndirectByVal()) { |
1124 | 0 | ReturnValuePointer = CreateDefaultAlignTempAlloca( |
1125 | 0 | ReturnValue.getPointer()->getType(), "result.ptr"); |
1126 | 0 | Builder.CreateStore(ReturnValue.getPointer(), ReturnValuePointer); |
1127 | 0 | } |
1128 | 0 | } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && |
1129 | 0 | !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { |
1130 | | // Load the sret pointer from the argument struct and return into that. |
1131 | 0 | unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); |
1132 | 0 | llvm::Function::arg_iterator EI = CurFn->arg_end(); |
1133 | 0 | --EI; |
1134 | 0 | llvm::Value *Addr = Builder.CreateStructGEP( |
1135 | 0 | CurFnInfo->getArgStruct(), &*EI, Idx); |
1136 | 0 | llvm::Type *Ty = |
1137 | 0 | cast<llvm::GetElementPtrInst>(Addr)->getResultElementType(); |
1138 | 0 | ReturnValuePointer = Address(Addr, Ty, getPointerAlign()); |
1139 | 0 | Addr = Builder.CreateAlignedLoad(Ty, Addr, getPointerAlign(), "agg.result"); |
1140 | 0 | ReturnValue = Address(Addr, ConvertType(RetTy), |
1141 | 0 | CGM.getNaturalTypeAlignment(RetTy), KnownNonNull); |
1142 | 0 | } else { |
1143 | 0 | ReturnValue = CreateIRTemp(RetTy, "retval"); |
1144 | | |
1145 | | // Tell the epilog emitter to autorelease the result. We do this |
1146 | | // now so that various specialized functions can suppress it |
1147 | | // during their IR-generation. |
1148 | 0 | if (getLangOpts().ObjCAutoRefCount && |
1149 | 0 | !CurFnInfo->isReturnsRetained() && |
1150 | 0 | RetTy->isObjCRetainableType()) |
1151 | 0 | AutoreleaseResult = true; |
1152 | 0 | } |
1153 | |
|
1154 | 0 | EmitStartEHSpec(CurCodeDecl); |
1155 | |
|
1156 | 0 | PrologueCleanupDepth = EHStack.stable_begin(); |
1157 | | |
1158 | | // Emit OpenMP specific initialization of the device functions. |
1159 | 0 | if (getLangOpts().OpenMP && CurCodeDecl) |
1160 | 0 | CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); |
1161 | | |
1162 | | // Handle emitting HLSL entry functions. |
1163 | 0 | if (D && D->hasAttr<HLSLShaderAttr>()) |
1164 | 0 | CGM.getHLSLRuntime().emitEntryFunction(FD, Fn); |
1165 | |
|
1166 | 0 | EmitFunctionProlog(*CurFnInfo, CurFn, Args); |
1167 | |
|
1168 | 0 | if (const CXXMethodDecl *MD = dyn_cast_if_present<CXXMethodDecl>(D); |
1169 | 0 | MD && !MD->isStatic()) { |
1170 | 0 | bool IsInLambda = |
1171 | 0 | MD->getParent()->isLambda() && MD->getOverloadedOperator() == OO_Call; |
1172 | 0 | if (MD->isImplicitObjectMemberFunction()) |
1173 | 0 | CGM.getCXXABI().EmitInstanceFunctionProlog(*this); |
1174 | 0 | if (IsInLambda) { |
1175 | | // We're in a lambda; figure out the captures. |
1176 | 0 | MD->getParent()->getCaptureFields(LambdaCaptureFields, |
1177 | 0 | LambdaThisCaptureField); |
1178 | 0 | if (LambdaThisCaptureField) { |
1179 | | // If the lambda captures the object referred to by '*this' - either by |
1180 | | // value or by reference, make sure CXXThisValue points to the correct |
1181 | | // object. |
1182 | | |
1183 | | // Get the lvalue for the field (which is a copy of the enclosing object |
1184 | | // or contains the address of the enclosing object). |
1185 | 0 | LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); |
1186 | 0 | if (!LambdaThisCaptureField->getType()->isPointerType()) { |
1187 | | // If the enclosing object was captured by value, just use its address. |
1188 | 0 | CXXThisValue = ThisFieldLValue.getAddress(*this).getPointer(); |
1189 | 0 | } else { |
1190 | | // Load the lvalue pointed to by the field, since '*this' was captured |
1191 | | // by reference. |
1192 | 0 | CXXThisValue = |
1193 | 0 | EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); |
1194 | 0 | } |
1195 | 0 | } |
1196 | 0 | for (auto *FD : MD->getParent()->fields()) { |
1197 | 0 | if (FD->hasCapturedVLAType()) { |
1198 | 0 | auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), |
1199 | 0 | SourceLocation()).getScalarVal(); |
1200 | 0 | auto VAT = FD->getCapturedVLAType(); |
1201 | 0 | VLASizeMap[VAT->getSizeExpr()] = ExprArg; |
1202 | 0 | } |
1203 | 0 | } |
1204 | 0 | } else if (MD->isImplicitObjectMemberFunction()) { |
1205 | | // Not in a lambda; just use 'this' from the method. |
1206 | | // FIXME: Should we generate a new load for each use of 'this'? The |
1207 | | // fast register allocator would be happier... |
1208 | 0 | CXXThisValue = CXXABIThisValue; |
1209 | 0 | } |
1210 | | |
1211 | | // Check the 'this' pointer once per function, if it's available. |
1212 | 0 | if (CXXABIThisValue) { |
1213 | 0 | SanitizerSet SkippedChecks; |
1214 | 0 | SkippedChecks.set(SanitizerKind::ObjectSize, true); |
1215 | 0 | QualType ThisTy = MD->getThisType(); |
1216 | | |
1217 | | // If this is the call operator of a lambda with no captures, it |
1218 | | // may have a static invoker function, which may call this operator with |
1219 | | // a null 'this' pointer. |
1220 | 0 | if (isLambdaCallOperator(MD) && MD->getParent()->isCapturelessLambda()) |
1221 | 0 | SkippedChecks.set(SanitizerKind::Null, true); |
1222 | |
|
1223 | 0 | EmitTypeCheck( |
1224 | 0 | isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall : TCK_MemberCall, |
1225 | 0 | Loc, CXXABIThisValue, ThisTy, CXXABIThisAlignment, SkippedChecks); |
1226 | 0 | } |
1227 | 0 | } |
1228 | | |
1229 | | // If any of the arguments have a variably modified type, make sure to |
1230 | | // emit the type size, but only if the function is not naked. Naked functions |
1231 | | // have no prolog to run this evaluation. |
1232 | 0 | if (!FD || !FD->hasAttr<NakedAttr>()) { |
1233 | 0 | for (const VarDecl *VD : Args) { |
1234 | | // Dig out the type as written from ParmVarDecls; it's unclear whether |
1235 | | // the standard (C99 6.9.1p10) requires this, but we're following the |
1236 | | // precedent set by gcc. |
1237 | 0 | QualType Ty; |
1238 | 0 | if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) |
1239 | 0 | Ty = PVD->getOriginalType(); |
1240 | 0 | else |
1241 | 0 | Ty = VD->getType(); |
1242 | |
|
1243 | 0 | if (Ty->isVariablyModifiedType()) |
1244 | 0 | EmitVariablyModifiedType(Ty); |
1245 | 0 | } |
1246 | 0 | } |
1247 | | // Emit a location at the end of the prologue. |
1248 | 0 | if (CGDebugInfo *DI = getDebugInfo()) |
1249 | 0 | DI->EmitLocation(Builder, StartLoc); |
1250 | | // TODO: Do we need to handle this in two places like we do with |
1251 | | // target-features/target-cpu? |
1252 | 0 | if (CurFuncDecl) |
1253 | 0 | if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) |
1254 | 0 | LargestVectorWidth = VecWidth->getVectorWidth(); |
1255 | 0 | } |
1256 | | |
1257 | 0 | void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { |
1258 | 0 | incrementProfileCounter(Body); |
1259 | 0 | maybeCreateMCDCCondBitmap(); |
1260 | 0 | if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) |
1261 | 0 | EmitCompoundStmtWithoutScope(*S); |
1262 | 0 | else |
1263 | 0 | EmitStmt(Body); |
1264 | 0 | } |
1265 | | |
1266 | | /// When instrumenting to collect profile data, the counts for some blocks |
1267 | | /// such as switch cases need to not include the fall-through counts, so |
1268 | | /// emit a branch around the instrumentation code. When not instrumenting, |
1269 | | /// this just calls EmitBlock(). |
1270 | | void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, |
1271 | 0 | const Stmt *S) { |
1272 | 0 | llvm::BasicBlock *SkipCountBB = nullptr; |
1273 | 0 | if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { |
1274 | | // When instrumenting for profiling, the fallthrough to certain |
1275 | | // statements needs to skip over the instrumentation code so that we |
1276 | | // get an accurate count. |
1277 | 0 | SkipCountBB = createBasicBlock("skipcount"); |
1278 | 0 | EmitBranch(SkipCountBB); |
1279 | 0 | } |
1280 | 0 | EmitBlock(BB); |
1281 | 0 | uint64_t CurrentCount = getCurrentProfileCount(); |
1282 | 0 | incrementProfileCounter(S); |
1283 | 0 | setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); |
1284 | 0 | if (SkipCountBB) |
1285 | 0 | EmitBlock(SkipCountBB); |
1286 | 0 | } |
1287 | | |
1288 | | /// Tries to mark the given function nounwind based on the |
1289 | | /// non-existence of any throwing calls within it. We believe this is |
1290 | | /// lightweight enough to do at -O0. |
1291 | 0 | static void TryMarkNoThrow(llvm::Function *F) { |
1292 | | // LLVM treats 'nounwind' on a function as part of the type, so we |
1293 | | // can't do this on functions that can be overwritten. |
1294 | 0 | if (F->isInterposable()) return; |
1295 | | |
1296 | 0 | for (llvm::BasicBlock &BB : *F) |
1297 | 0 | for (llvm::Instruction &I : BB) |
1298 | 0 | if (I.mayThrow()) |
1299 | 0 | return; |
1300 | | |
1301 | 0 | F->setDoesNotThrow(); |
1302 | 0 | } |
1303 | | |
1304 | | QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, |
1305 | 0 | FunctionArgList &Args) { |
1306 | 0 | const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); |
1307 | 0 | QualType ResTy = FD->getReturnType(); |
1308 | |
|
1309 | 0 | const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
1310 | 0 | if (MD && MD->isImplicitObjectMemberFunction()) { |
1311 | 0 | if (CGM.getCXXABI().HasThisReturn(GD)) |
1312 | 0 | ResTy = MD->getThisType(); |
1313 | 0 | else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) |
1314 | 0 | ResTy = CGM.getContext().VoidPtrTy; |
1315 | 0 | CGM.getCXXABI().buildThisParam(*this, Args); |
1316 | 0 | } |
1317 | | |
1318 | | // The base version of an inheriting constructor whose constructed base is a |
1319 | | // virtual base is not passed any arguments (because it doesn't actually call |
1320 | | // the inherited constructor). |
1321 | 0 | bool PassedParams = true; |
1322 | 0 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) |
1323 | 0 | if (auto Inherited = CD->getInheritedConstructor()) |
1324 | 0 | PassedParams = |
1325 | 0 | getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); |
1326 | |
|
1327 | 0 | if (PassedParams) { |
1328 | 0 | for (auto *Param : FD->parameters()) { |
1329 | 0 | Args.push_back(Param); |
1330 | 0 | if (!Param->hasAttr<PassObjectSizeAttr>()) |
1331 | 0 | continue; |
1332 | | |
1333 | 0 | auto *Implicit = ImplicitParamDecl::Create( |
1334 | 0 | getContext(), Param->getDeclContext(), Param->getLocation(), |
1335 | 0 | /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamKind::Other); |
1336 | 0 | SizeArguments[Param] = Implicit; |
1337 | 0 | Args.push_back(Implicit); |
1338 | 0 | } |
1339 | 0 | } |
1340 | |
|
1341 | 0 | if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) |
1342 | 0 | CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); |
1343 | |
|
1344 | 0 | return ResTy; |
1345 | 0 | } |
1346 | | |
1347 | | void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, |
1348 | 0 | const CGFunctionInfo &FnInfo) { |
1349 | 0 | assert(Fn && "generating code for null Function"); |
1350 | 0 | const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); |
1351 | 0 | CurGD = GD; |
1352 | |
|
1353 | 0 | FunctionArgList Args; |
1354 | 0 | QualType ResTy = BuildFunctionArgList(GD, Args); |
1355 | |
|
1356 | 0 | if (FD->isInlineBuiltinDeclaration()) { |
1357 | | // When generating code for a builtin with an inline declaration, use a |
1358 | | // mangled name to hold the actual body, while keeping an external |
1359 | | // definition in case the function pointer is referenced somewhere. |
1360 | 0 | std::string FDInlineName = (Fn->getName() + ".inline").str(); |
1361 | 0 | llvm::Module *M = Fn->getParent(); |
1362 | 0 | llvm::Function *Clone = M->getFunction(FDInlineName); |
1363 | 0 | if (!Clone) { |
1364 | 0 | Clone = llvm::Function::Create(Fn->getFunctionType(), |
1365 | 0 | llvm::GlobalValue::InternalLinkage, |
1366 | 0 | Fn->getAddressSpace(), FDInlineName, M); |
1367 | 0 | Clone->addFnAttr(llvm::Attribute::AlwaysInline); |
1368 | 0 | } |
1369 | 0 | Fn->setLinkage(llvm::GlobalValue::ExternalLinkage); |
1370 | 0 | Fn = Clone; |
1371 | 0 | } else { |
1372 | | // Detect the unusual situation where an inline version is shadowed by a |
1373 | | // non-inline version. In that case we should pick the external one |
1374 | | // everywhere. That's GCC behavior too. Unfortunately, I cannot find a way |
1375 | | // to detect that situation before we reach codegen, so do some late |
1376 | | // replacement. |
1377 | 0 | for (const FunctionDecl *PD = FD->getPreviousDecl(); PD; |
1378 | 0 | PD = PD->getPreviousDecl()) { |
1379 | 0 | if (LLVM_UNLIKELY(PD->isInlineBuiltinDeclaration())) { |
1380 | 0 | std::string FDInlineName = (Fn->getName() + ".inline").str(); |
1381 | 0 | llvm::Module *M = Fn->getParent(); |
1382 | 0 | if (llvm::Function *Clone = M->getFunction(FDInlineName)) { |
1383 | 0 | Clone->replaceAllUsesWith(Fn); |
1384 | 0 | Clone->eraseFromParent(); |
1385 | 0 | } |
1386 | 0 | break; |
1387 | 0 | } |
1388 | 0 | } |
1389 | 0 | } |
1390 | | |
1391 | | // Check if we should generate debug info for this function. |
1392 | 0 | if (FD->hasAttr<NoDebugAttr>()) { |
1393 | | // Clear non-distinct debug info that was possibly attached to the function |
1394 | | // due to an earlier declaration without the nodebug attribute |
1395 | 0 | Fn->setSubprogram(nullptr); |
1396 | | // Disable debug info indefinitely for this function |
1397 | 0 | DebugInfo = nullptr; |
1398 | 0 | } |
1399 | | |
1400 | | // The function might not have a body if we're generating thunks for a |
1401 | | // function declaration. |
1402 | 0 | SourceRange BodyRange; |
1403 | 0 | if (Stmt *Body = FD->getBody()) |
1404 | 0 | BodyRange = Body->getSourceRange(); |
1405 | 0 | else |
1406 | 0 | BodyRange = FD->getLocation(); |
1407 | 0 | CurEHLocation = BodyRange.getEnd(); |
1408 | | |
1409 | | // Use the location of the start of the function to determine where |
1410 | | // the function definition is located. By default use the location |
1411 | | // of the declaration as the location for the subprogram. A function |
1412 | | // may lack a declaration in the source code if it is created by code |
1413 | | // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). |
1414 | 0 | SourceLocation Loc = FD->getLocation(); |
1415 | | |
1416 | | // If this is a function specialization then use the pattern body |
1417 | | // as the location for the function. |
1418 | 0 | if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) |
1419 | 0 | if (SpecDecl->hasBody(SpecDecl)) |
1420 | 0 | Loc = SpecDecl->getLocation(); |
1421 | |
|
1422 | 0 | Stmt *Body = FD->getBody(); |
1423 | |
|
1424 | 0 | if (Body) { |
1425 | | // Coroutines always emit lifetime markers. |
1426 | 0 | if (isa<CoroutineBodyStmt>(Body)) |
1427 | 0 | ShouldEmitLifetimeMarkers = true; |
1428 | | |
1429 | | // Initialize helper which will detect jumps which can cause invalid |
1430 | | // lifetime markers. |
1431 | 0 | if (ShouldEmitLifetimeMarkers) |
1432 | 0 | Bypasses.Init(Body); |
1433 | 0 | } |
1434 | | |
1435 | | // Emit the standard function prologue. |
1436 | 0 | StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); |
1437 | | |
1438 | | // Save parameters for coroutine function. |
1439 | 0 | if (Body && isa_and_nonnull<CoroutineBodyStmt>(Body)) |
1440 | 0 | llvm::append_range(FnArgs, FD->parameters()); |
1441 | | |
1442 | | // Ensure that the function adheres to the forward progress guarantee, which |
1443 | | // is required by certain optimizations. |
1444 | 0 | if (checkIfFunctionMustProgress()) |
1445 | 0 | CurFn->addFnAttr(llvm::Attribute::MustProgress); |
1446 | | |
1447 | | // Generate the body of the function. |
1448 | 0 | PGO.assignRegionCounters(GD, CurFn); |
1449 | 0 | if (isa<CXXDestructorDecl>(FD)) |
1450 | 0 | EmitDestructorBody(Args); |
1451 | 0 | else if (isa<CXXConstructorDecl>(FD)) |
1452 | 0 | EmitConstructorBody(Args); |
1453 | 0 | else if (getLangOpts().CUDA && |
1454 | 0 | !getLangOpts().CUDAIsDevice && |
1455 | 0 | FD->hasAttr<CUDAGlobalAttr>()) |
1456 | 0 | CGM.getCUDARuntime().emitDeviceStub(*this, Args); |
1457 | 0 | else if (isa<CXXMethodDecl>(FD) && |
1458 | 0 | cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { |
1459 | | // The lambda static invoker function is special, because it forwards or |
1460 | | // clones the body of the function call operator (but is actually static). |
1461 | 0 | EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); |
1462 | 0 | } else if (isa<CXXMethodDecl>(FD) && |
1463 | 0 | isLambdaCallOperator(cast<CXXMethodDecl>(FD)) && |
1464 | 0 | !FnInfo.isDelegateCall() && |
1465 | 0 | cast<CXXMethodDecl>(FD)->getParent()->getLambdaStaticInvoker() && |
1466 | 0 | hasInAllocaArg(cast<CXXMethodDecl>(FD))) { |
1467 | | // If emitting a lambda with static invoker on X86 Windows, change |
1468 | | // the call operator body. |
1469 | | // Make sure that this is a call operator with an inalloca arg and check |
1470 | | // for delegate call to make sure this is the original call op and not the |
1471 | | // new forwarding function for the static invoker. |
1472 | 0 | EmitLambdaInAllocaCallOpBody(cast<CXXMethodDecl>(FD)); |
1473 | 0 | } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && |
1474 | 0 | (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || |
1475 | 0 | cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { |
1476 | | // Implicit copy-assignment gets the same special treatment as implicit |
1477 | | // copy-constructors. |
1478 | 0 | emitImplicitAssignmentOperatorBody(Args); |
1479 | 0 | } else if (Body) { |
1480 | 0 | EmitFunctionBody(Body); |
1481 | 0 | } else |
1482 | 0 | llvm_unreachable("no definition for emitted function"); |
1483 | | |
1484 | | // C++11 [stmt.return]p2: |
1485 | | // Flowing off the end of a function [...] results in undefined behavior in |
1486 | | // a value-returning function. |
1487 | | // C11 6.9.1p12: |
1488 | | // If the '}' that terminates a function is reached, and the value of the |
1489 | | // function call is used by the caller, the behavior is undefined. |
1490 | 0 | if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && |
1491 | 0 | !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { |
1492 | 0 | bool ShouldEmitUnreachable = |
1493 | 0 | CGM.getCodeGenOpts().StrictReturn || |
1494 | 0 | !CGM.MayDropFunctionReturn(FD->getASTContext(), FD->getReturnType()); |
1495 | 0 | if (SanOpts.has(SanitizerKind::Return)) { |
1496 | 0 | SanitizerScope SanScope(this); |
1497 | 0 | llvm::Value *IsFalse = Builder.getFalse(); |
1498 | 0 | EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), |
1499 | 0 | SanitizerHandler::MissingReturn, |
1500 | 0 | EmitCheckSourceLocation(FD->getLocation()), std::nullopt); |
1501 | 0 | } else if (ShouldEmitUnreachable) { |
1502 | 0 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
1503 | 0 | EmitTrapCall(llvm::Intrinsic::trap); |
1504 | 0 | } |
1505 | 0 | if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { |
1506 | 0 | Builder.CreateUnreachable(); |
1507 | 0 | Builder.ClearInsertionPoint(); |
1508 | 0 | } |
1509 | 0 | } |
1510 | | |
1511 | | // Emit the standard function epilogue. |
1512 | 0 | FinishFunction(BodyRange.getEnd()); |
1513 | | |
1514 | | // If we haven't marked the function nothrow through other means, do |
1515 | | // a quick pass now to see if we can. |
1516 | 0 | if (!CurFn->doesNotThrow()) |
1517 | 0 | TryMarkNoThrow(CurFn); |
1518 | 0 | } |
1519 | | |
1520 | | /// ContainsLabel - Return true if the statement contains a label in it. If |
1521 | | /// this statement is not executed normally, it not containing a label means |
1522 | | /// that we can just remove the code. |
1523 | 0 | bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { |
1524 | | // Null statement, not a label! |
1525 | 0 | if (!S) return false; |
1526 | | |
1527 | | // If this is a label, we have to emit the code, consider something like: |
1528 | | // if (0) { ... foo: bar(); } goto foo; |
1529 | | // |
1530 | | // TODO: If anyone cared, we could track __label__'s, since we know that you |
1531 | | // can't jump to one from outside their declared region. |
1532 | 0 | if (isa<LabelStmt>(S)) |
1533 | 0 | return true; |
1534 | | |
1535 | | // If this is a case/default statement, and we haven't seen a switch, we have |
1536 | | // to emit the code. |
1537 | 0 | if (isa<SwitchCase>(S) && !IgnoreCaseStmts) |
1538 | 0 | return true; |
1539 | | |
1540 | | // If this is a switch statement, we want to ignore cases below it. |
1541 | 0 | if (isa<SwitchStmt>(S)) |
1542 | 0 | IgnoreCaseStmts = true; |
1543 | | |
1544 | | // Scan subexpressions for verboten labels. |
1545 | 0 | for (const Stmt *SubStmt : S->children()) |
1546 | 0 | if (ContainsLabel(SubStmt, IgnoreCaseStmts)) |
1547 | 0 | return true; |
1548 | | |
1549 | 0 | return false; |
1550 | 0 | } |
1551 | | |
1552 | | /// containsBreak - Return true if the statement contains a break out of it. |
1553 | | /// If the statement (recursively) contains a switch or loop with a break |
1554 | | /// inside of it, this is fine. |
1555 | 0 | bool CodeGenFunction::containsBreak(const Stmt *S) { |
1556 | | // Null statement, not a label! |
1557 | 0 | if (!S) return false; |
1558 | | |
1559 | | // If this is a switch or loop that defines its own break scope, then we can |
1560 | | // include it and anything inside of it. |
1561 | 0 | if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || |
1562 | 0 | isa<ForStmt>(S)) |
1563 | 0 | return false; |
1564 | | |
1565 | 0 | if (isa<BreakStmt>(S)) |
1566 | 0 | return true; |
1567 | | |
1568 | | // Scan subexpressions for verboten breaks. |
1569 | 0 | for (const Stmt *SubStmt : S->children()) |
1570 | 0 | if (containsBreak(SubStmt)) |
1571 | 0 | return true; |
1572 | | |
1573 | 0 | return false; |
1574 | 0 | } |
1575 | | |
1576 | 0 | bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { |
1577 | 0 | if (!S) return false; |
1578 | | |
1579 | | // Some statement kinds add a scope and thus never add a decl to the current |
1580 | | // scope. Note, this list is longer than the list of statements that might |
1581 | | // have an unscoped decl nested within them, but this way is conservatively |
1582 | | // correct even if more statement kinds are added. |
1583 | 0 | if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || |
1584 | 0 | isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || |
1585 | 0 | isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || |
1586 | 0 | isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) |
1587 | 0 | return false; |
1588 | | |
1589 | 0 | if (isa<DeclStmt>(S)) |
1590 | 0 | return true; |
1591 | | |
1592 | 0 | for (const Stmt *SubStmt : S->children()) |
1593 | 0 | if (mightAddDeclToScope(SubStmt)) |
1594 | 0 | return true; |
1595 | | |
1596 | 0 | return false; |
1597 | 0 | } |
1598 | | |
1599 | | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
1600 | | /// to a constant, or if it does but contains a label, return false. If it |
1601 | | /// constant folds return true and set the boolean result in Result. |
1602 | | bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, |
1603 | | bool &ResultBool, |
1604 | 0 | bool AllowLabels) { |
1605 | | // If MC/DC is enabled, disable folding so that we can instrument all |
1606 | | // conditions to yield complete test vectors. We still keep track of |
1607 | | // folded conditions during region mapping and visualization. |
1608 | 0 | if (!AllowLabels && CGM.getCodeGenOpts().hasProfileClangInstr() && |
1609 | 0 | CGM.getCodeGenOpts().MCDCCoverage) |
1610 | 0 | return false; |
1611 | | |
1612 | 0 | llvm::APSInt ResultInt; |
1613 | 0 | if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) |
1614 | 0 | return false; |
1615 | | |
1616 | 0 | ResultBool = ResultInt.getBoolValue(); |
1617 | 0 | return true; |
1618 | 0 | } |
1619 | | |
1620 | | /// ConstantFoldsToSimpleInteger - If the specified expression does not fold |
1621 | | /// to a constant, or if it does but contains a label, return false. If it |
1622 | | /// constant folds return true and set the folded value. |
1623 | | bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, |
1624 | | llvm::APSInt &ResultInt, |
1625 | 0 | bool AllowLabels) { |
1626 | | // FIXME: Rename and handle conversion of other evaluatable things |
1627 | | // to bool. |
1628 | 0 | Expr::EvalResult Result; |
1629 | 0 | if (!Cond->EvaluateAsInt(Result, getContext())) |
1630 | 0 | return false; // Not foldable, not integer or not fully evaluatable. |
1631 | | |
1632 | 0 | llvm::APSInt Int = Result.Val.getInt(); |
1633 | 0 | if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) |
1634 | 0 | return false; // Contains a label. |
1635 | | |
1636 | 0 | ResultInt = Int; |
1637 | 0 | return true; |
1638 | 0 | } |
1639 | | |
1640 | | /// Strip parentheses and simplistic logical-NOT operators. |
1641 | 0 | const Expr *CodeGenFunction::stripCond(const Expr *C) { |
1642 | 0 | while (const UnaryOperator *Op = dyn_cast<UnaryOperator>(C->IgnoreParens())) { |
1643 | 0 | if (Op->getOpcode() != UO_LNot) |
1644 | 0 | break; |
1645 | 0 | C = Op->getSubExpr(); |
1646 | 0 | } |
1647 | 0 | return C->IgnoreParens(); |
1648 | 0 | } |
1649 | | |
1650 | | /// Determine whether the given condition is an instrumentable condition |
1651 | | /// (i.e. no "&&" or "||"). |
1652 | 0 | bool CodeGenFunction::isInstrumentedCondition(const Expr *C) { |
1653 | 0 | const BinaryOperator *BOp = dyn_cast<BinaryOperator>(stripCond(C)); |
1654 | 0 | return (!BOp || !BOp->isLogicalOp()); |
1655 | 0 | } |
1656 | | |
1657 | | /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that |
1658 | | /// increments a profile counter based on the semantics of the given logical |
1659 | | /// operator opcode. This is used to instrument branch condition coverage for |
1660 | | /// logical operators. |
1661 | | void CodeGenFunction::EmitBranchToCounterBlock( |
1662 | | const Expr *Cond, BinaryOperator::Opcode LOp, llvm::BasicBlock *TrueBlock, |
1663 | | llvm::BasicBlock *FalseBlock, uint64_t TrueCount /* = 0 */, |
1664 | 0 | Stmt::Likelihood LH /* =None */, const Expr *CntrIdx /* = nullptr */) { |
1665 | | // If not instrumenting, just emit a branch. |
1666 | 0 | bool InstrumentRegions = CGM.getCodeGenOpts().hasProfileClangInstr(); |
1667 | 0 | if (!InstrumentRegions || !isInstrumentedCondition(Cond)) |
1668 | 0 | return EmitBranchOnBoolExpr(Cond, TrueBlock, FalseBlock, TrueCount, LH); |
1669 | | |
1670 | 0 | llvm::BasicBlock *ThenBlock = nullptr; |
1671 | 0 | llvm::BasicBlock *ElseBlock = nullptr; |
1672 | 0 | llvm::BasicBlock *NextBlock = nullptr; |
1673 | | |
1674 | | // Create the block we'll use to increment the appropriate counter. |
1675 | 0 | llvm::BasicBlock *CounterIncrBlock = createBasicBlock("lop.rhscnt"); |
1676 | | |
1677 | | // Set block pointers according to Logical-AND (BO_LAnd) semantics. This |
1678 | | // means we need to evaluate the condition and increment the counter on TRUE: |
1679 | | // |
1680 | | // if (Cond) |
1681 | | // goto CounterIncrBlock; |
1682 | | // else |
1683 | | // goto FalseBlock; |
1684 | | // |
1685 | | // CounterIncrBlock: |
1686 | | // Counter++; |
1687 | | // goto TrueBlock; |
1688 | |
|
1689 | 0 | if (LOp == BO_LAnd) { |
1690 | 0 | ThenBlock = CounterIncrBlock; |
1691 | 0 | ElseBlock = FalseBlock; |
1692 | 0 | NextBlock = TrueBlock; |
1693 | 0 | } |
1694 | | |
1695 | | // Set block pointers according to Logical-OR (BO_LOr) semantics. This means |
1696 | | // we need to evaluate the condition and increment the counter on FALSE: |
1697 | | // |
1698 | | // if (Cond) |
1699 | | // goto TrueBlock; |
1700 | | // else |
1701 | | // goto CounterIncrBlock; |
1702 | | // |
1703 | | // CounterIncrBlock: |
1704 | | // Counter++; |
1705 | | // goto FalseBlock; |
1706 | | |
1707 | 0 | else if (LOp == BO_LOr) { |
1708 | 0 | ThenBlock = TrueBlock; |
1709 | 0 | ElseBlock = CounterIncrBlock; |
1710 | 0 | NextBlock = FalseBlock; |
1711 | 0 | } else { |
1712 | 0 | llvm_unreachable("Expected Opcode must be that of a Logical Operator"); |
1713 | 0 | } |
1714 | | |
1715 | | // Emit Branch based on condition. |
1716 | 0 | EmitBranchOnBoolExpr(Cond, ThenBlock, ElseBlock, TrueCount, LH); |
1717 | | |
1718 | | // Emit the block containing the counter increment(s). |
1719 | 0 | EmitBlock(CounterIncrBlock); |
1720 | | |
1721 | | // Increment corresponding counter; if index not provided, use Cond as index. |
1722 | 0 | incrementProfileCounter(CntrIdx ? CntrIdx : Cond); |
1723 | | |
1724 | | // Go to the next block. |
1725 | 0 | EmitBranch(NextBlock); |
1726 | 0 | } |
1727 | | |
1728 | | /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if |
1729 | | /// statement) to the specified blocks. Based on the condition, this might try |
1730 | | /// to simplify the codegen of the conditional based on the branch. |
1731 | | /// \param LH The value of the likelihood attribute on the True branch. |
1732 | | /// \param ConditionalOp Used by MC/DC code coverage to track the result of the |
1733 | | /// ConditionalOperator (ternary) through a recursive call for the operator's |
1734 | | /// LHS and RHS nodes. |
1735 | | void CodeGenFunction::EmitBranchOnBoolExpr( |
1736 | | const Expr *Cond, llvm::BasicBlock *TrueBlock, llvm::BasicBlock *FalseBlock, |
1737 | 0 | uint64_t TrueCount, Stmt::Likelihood LH, const Expr *ConditionalOp) { |
1738 | 0 | Cond = Cond->IgnoreParens(); |
1739 | |
|
1740 | 0 | if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { |
1741 | | // Handle X && Y in a condition. |
1742 | 0 | if (CondBOp->getOpcode() == BO_LAnd) { |
1743 | 0 | MCDCLogOpStack.push_back(CondBOp); |
1744 | | |
1745 | | // If we have "1 && X", simplify the code. "0 && X" would have constant |
1746 | | // folded if the case was simple enough. |
1747 | 0 | bool ConstantBool = false; |
1748 | 0 | if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && |
1749 | 0 | ConstantBool) { |
1750 | | // br(1 && X) -> br(X). |
1751 | 0 | incrementProfileCounter(CondBOp); |
1752 | 0 | EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, |
1753 | 0 | FalseBlock, TrueCount, LH); |
1754 | 0 | MCDCLogOpStack.pop_back(); |
1755 | 0 | return; |
1756 | 0 | } |
1757 | | |
1758 | | // If we have "X && 1", simplify the code to use an uncond branch. |
1759 | | // "X && 0" would have been constant folded to 0. |
1760 | 0 | if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && |
1761 | 0 | ConstantBool) { |
1762 | | // br(X && 1) -> br(X). |
1763 | 0 | EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LAnd, TrueBlock, |
1764 | 0 | FalseBlock, TrueCount, LH, CondBOp); |
1765 | 0 | MCDCLogOpStack.pop_back(); |
1766 | 0 | return; |
1767 | 0 | } |
1768 | | |
1769 | | // Emit the LHS as a conditional. If the LHS conditional is false, we |
1770 | | // want to jump to the FalseBlock. |
1771 | 0 | llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); |
1772 | | // The counter tells us how often we evaluate RHS, and all of TrueCount |
1773 | | // can be propagated to that branch. |
1774 | 0 | uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); |
1775 | |
|
1776 | 0 | ConditionalEvaluation eval(*this); |
1777 | 0 | { |
1778 | 0 | ApplyDebugLocation DL(*this, Cond); |
1779 | | // Propagate the likelihood attribute like __builtin_expect |
1780 | | // __builtin_expect(X && Y, 1) -> X and Y are likely |
1781 | | // __builtin_expect(X && Y, 0) -> only Y is unlikely |
1782 | 0 | EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount, |
1783 | 0 | LH == Stmt::LH_Unlikely ? Stmt::LH_None : LH); |
1784 | 0 | EmitBlock(LHSTrue); |
1785 | 0 | } |
1786 | |
|
1787 | 0 | incrementProfileCounter(CondBOp); |
1788 | 0 | setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); |
1789 | | |
1790 | | // Any temporaries created here are conditional. |
1791 | 0 | eval.begin(*this); |
1792 | 0 | EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LAnd, TrueBlock, |
1793 | 0 | FalseBlock, TrueCount, LH); |
1794 | 0 | eval.end(*this); |
1795 | 0 | MCDCLogOpStack.pop_back(); |
1796 | 0 | return; |
1797 | 0 | } |
1798 | | |
1799 | 0 | if (CondBOp->getOpcode() == BO_LOr) { |
1800 | 0 | MCDCLogOpStack.push_back(CondBOp); |
1801 | | |
1802 | | // If we have "0 || X", simplify the code. "1 || X" would have constant |
1803 | | // folded if the case was simple enough. |
1804 | 0 | bool ConstantBool = false; |
1805 | 0 | if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && |
1806 | 0 | !ConstantBool) { |
1807 | | // br(0 || X) -> br(X). |
1808 | 0 | incrementProfileCounter(CondBOp); |
1809 | 0 | EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, |
1810 | 0 | FalseBlock, TrueCount, LH); |
1811 | 0 | MCDCLogOpStack.pop_back(); |
1812 | 0 | return; |
1813 | 0 | } |
1814 | | |
1815 | | // If we have "X || 0", simplify the code to use an uncond branch. |
1816 | | // "X || 1" would have been constant folded to 1. |
1817 | 0 | if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && |
1818 | 0 | !ConstantBool) { |
1819 | | // br(X || 0) -> br(X). |
1820 | 0 | EmitBranchToCounterBlock(CondBOp->getLHS(), BO_LOr, TrueBlock, |
1821 | 0 | FalseBlock, TrueCount, LH, CondBOp); |
1822 | 0 | MCDCLogOpStack.pop_back(); |
1823 | 0 | return; |
1824 | 0 | } |
1825 | | // Emit the LHS as a conditional. If the LHS conditional is true, we |
1826 | | // want to jump to the TrueBlock. |
1827 | 0 | llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); |
1828 | | // We have the count for entry to the RHS and for the whole expression |
1829 | | // being true, so we can divy up True count between the short circuit and |
1830 | | // the RHS. |
1831 | 0 | uint64_t LHSCount = |
1832 | 0 | getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); |
1833 | 0 | uint64_t RHSCount = TrueCount - LHSCount; |
1834 | |
|
1835 | 0 | ConditionalEvaluation eval(*this); |
1836 | 0 | { |
1837 | | // Propagate the likelihood attribute like __builtin_expect |
1838 | | // __builtin_expect(X || Y, 1) -> only Y is likely |
1839 | | // __builtin_expect(X || Y, 0) -> both X and Y are unlikely |
1840 | 0 | ApplyDebugLocation DL(*this, Cond); |
1841 | 0 | EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount, |
1842 | 0 | LH == Stmt::LH_Likely ? Stmt::LH_None : LH); |
1843 | 0 | EmitBlock(LHSFalse); |
1844 | 0 | } |
1845 | |
|
1846 | 0 | incrementProfileCounter(CondBOp); |
1847 | 0 | setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); |
1848 | | |
1849 | | // Any temporaries created here are conditional. |
1850 | 0 | eval.begin(*this); |
1851 | 0 | EmitBranchToCounterBlock(CondBOp->getRHS(), BO_LOr, TrueBlock, FalseBlock, |
1852 | 0 | RHSCount, LH); |
1853 | |
|
1854 | 0 | eval.end(*this); |
1855 | 0 | MCDCLogOpStack.pop_back(); |
1856 | 0 | return; |
1857 | 0 | } |
1858 | 0 | } |
1859 | | |
1860 | 0 | if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { |
1861 | | // br(!x, t, f) -> br(x, f, t) |
1862 | | // Avoid doing this optimization when instrumenting a condition for MC/DC. |
1863 | | // LNot is taken as part of the condition for simplicity, and changing its |
1864 | | // sense negatively impacts test vector tracking. |
1865 | 0 | bool MCDCCondition = CGM.getCodeGenOpts().hasProfileClangInstr() && |
1866 | 0 | CGM.getCodeGenOpts().MCDCCoverage && |
1867 | 0 | isInstrumentedCondition(Cond); |
1868 | 0 | if (CondUOp->getOpcode() == UO_LNot && !MCDCCondition) { |
1869 | | // Negate the count. |
1870 | 0 | uint64_t FalseCount = getCurrentProfileCount() - TrueCount; |
1871 | | // The values of the enum are chosen to make this negation possible. |
1872 | 0 | LH = static_cast<Stmt::Likelihood>(-LH); |
1873 | | // Negate the condition and swap the destination blocks. |
1874 | 0 | return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, |
1875 | 0 | FalseCount, LH); |
1876 | 0 | } |
1877 | 0 | } |
1878 | | |
1879 | 0 | if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { |
1880 | | // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) |
1881 | 0 | llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); |
1882 | 0 | llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); |
1883 | | |
1884 | | // The ConditionalOperator itself has no likelihood information for its |
1885 | | // true and false branches. This matches the behavior of __builtin_expect. |
1886 | 0 | ConditionalEvaluation cond(*this); |
1887 | 0 | EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, |
1888 | 0 | getProfileCount(CondOp), Stmt::LH_None); |
1889 | | |
1890 | | // When computing PGO branch weights, we only know the overall count for |
1891 | | // the true block. This code is essentially doing tail duplication of the |
1892 | | // naive code-gen, introducing new edges for which counts are not |
1893 | | // available. Divide the counts proportionally between the LHS and RHS of |
1894 | | // the conditional operator. |
1895 | 0 | uint64_t LHSScaledTrueCount = 0; |
1896 | 0 | if (TrueCount) { |
1897 | 0 | double LHSRatio = |
1898 | 0 | getProfileCount(CondOp) / (double)getCurrentProfileCount(); |
1899 | 0 | LHSScaledTrueCount = TrueCount * LHSRatio; |
1900 | 0 | } |
1901 | |
|
1902 | 0 | cond.begin(*this); |
1903 | 0 | EmitBlock(LHSBlock); |
1904 | 0 | incrementProfileCounter(CondOp); |
1905 | 0 | { |
1906 | 0 | ApplyDebugLocation DL(*this, Cond); |
1907 | 0 | EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, |
1908 | 0 | LHSScaledTrueCount, LH, CondOp); |
1909 | 0 | } |
1910 | 0 | cond.end(*this); |
1911 | |
|
1912 | 0 | cond.begin(*this); |
1913 | 0 | EmitBlock(RHSBlock); |
1914 | 0 | EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, |
1915 | 0 | TrueCount - LHSScaledTrueCount, LH, CondOp); |
1916 | 0 | cond.end(*this); |
1917 | |
|
1918 | 0 | return; |
1919 | 0 | } |
1920 | | |
1921 | 0 | if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { |
1922 | | // Conditional operator handling can give us a throw expression as a |
1923 | | // condition for a case like: |
1924 | | // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) |
1925 | | // Fold this to: |
1926 | | // br(c, throw x, br(y, t, f)) |
1927 | 0 | EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); |
1928 | 0 | return; |
1929 | 0 | } |
1930 | | |
1931 | | // Emit the code with the fully general case. |
1932 | 0 | llvm::Value *CondV; |
1933 | 0 | { |
1934 | 0 | ApplyDebugLocation DL(*this, Cond); |
1935 | 0 | CondV = EvaluateExprAsBool(Cond); |
1936 | 0 | } |
1937 | | |
1938 | | // If not at the top of the logical operator nest, update MCDC temp with the |
1939 | | // boolean result of the evaluated condition. |
1940 | 0 | if (!MCDCLogOpStack.empty()) { |
1941 | 0 | const Expr *MCDCBaseExpr = Cond; |
1942 | | // When a nested ConditionalOperator (ternary) is encountered in a boolean |
1943 | | // expression, MC/DC tracks the result of the ternary, and this is tied to |
1944 | | // the ConditionalOperator expression and not the ternary's LHS or RHS. If |
1945 | | // this is the case, the ConditionalOperator expression is passed through |
1946 | | // the ConditionalOp parameter and then used as the MCDC base expression. |
1947 | 0 | if (ConditionalOp) |
1948 | 0 | MCDCBaseExpr = ConditionalOp; |
1949 | |
|
1950 | 0 | maybeUpdateMCDCCondBitmap(MCDCBaseExpr, CondV); |
1951 | 0 | } |
1952 | |
|
1953 | 0 | llvm::MDNode *Weights = nullptr; |
1954 | 0 | llvm::MDNode *Unpredictable = nullptr; |
1955 | | |
1956 | | // If the branch has a condition wrapped by __builtin_unpredictable, |
1957 | | // create metadata that specifies that the branch is unpredictable. |
1958 | | // Don't bother if not optimizing because that metadata would not be used. |
1959 | 0 | auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); |
1960 | 0 | if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { |
1961 | 0 | auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); |
1962 | 0 | if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { |
1963 | 0 | llvm::MDBuilder MDHelper(getLLVMContext()); |
1964 | 0 | Unpredictable = MDHelper.createUnpredictable(); |
1965 | 0 | } |
1966 | 0 | } |
1967 | | |
1968 | | // If there is a Likelihood knowledge for the cond, lower it. |
1969 | | // Note that if not optimizing this won't emit anything. |
1970 | 0 | llvm::Value *NewCondV = emitCondLikelihoodViaExpectIntrinsic(CondV, LH); |
1971 | 0 | if (CondV != NewCondV) |
1972 | 0 | CondV = NewCondV; |
1973 | 0 | else { |
1974 | | // Otherwise, lower profile counts. Note that we do this even at -O0. |
1975 | 0 | uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); |
1976 | 0 | Weights = createProfileWeights(TrueCount, CurrentCount - TrueCount); |
1977 | 0 | } |
1978 | |
|
1979 | 0 | Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); |
1980 | 0 | } |
1981 | | |
1982 | | /// ErrorUnsupported - Print out an error that codegen doesn't support the |
1983 | | /// specified stmt yet. |
1984 | 0 | void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { |
1985 | 0 | CGM.ErrorUnsupported(S, Type); |
1986 | 0 | } |
1987 | | |
1988 | | /// emitNonZeroVLAInit - Emit the "zero" initialization of a |
1989 | | /// variable-length array whose elements have a non-zero bit-pattern. |
1990 | | /// |
1991 | | /// \param baseType the inner-most element type of the array |
1992 | | /// \param src - a char* pointing to the bit-pattern for a single |
1993 | | /// base element of the array |
1994 | | /// \param sizeInChars - the total size of the VLA, in chars |
1995 | | static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, |
1996 | | Address dest, Address src, |
1997 | 0 | llvm::Value *sizeInChars) { |
1998 | 0 | CGBuilderTy &Builder = CGF.Builder; |
1999 | |
|
2000 | 0 | CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); |
2001 | 0 | llvm::Value *baseSizeInChars |
2002 | 0 | = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); |
2003 | |
|
2004 | 0 | Address begin = dest.withElementType(CGF.Int8Ty); |
2005 | 0 | llvm::Value *end = Builder.CreateInBoundsGEP( |
2006 | 0 | begin.getElementType(), begin.getPointer(), sizeInChars, "vla.end"); |
2007 | |
|
2008 | 0 | llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); |
2009 | 0 | llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); |
2010 | 0 | llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); |
2011 | | |
2012 | | // Make a loop over the VLA. C99 guarantees that the VLA element |
2013 | | // count must be nonzero. |
2014 | 0 | CGF.EmitBlock(loopBB); |
2015 | |
|
2016 | 0 | llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); |
2017 | 0 | cur->addIncoming(begin.getPointer(), originBB); |
2018 | |
|
2019 | 0 | CharUnits curAlign = |
2020 | 0 | dest.getAlignment().alignmentOfArrayElement(baseSize); |
2021 | | |
2022 | | // memcpy the individual element bit-pattern. |
2023 | 0 | Builder.CreateMemCpy(Address(cur, CGF.Int8Ty, curAlign), src, baseSizeInChars, |
2024 | 0 | /*volatile*/ false); |
2025 | | |
2026 | | // Go to the next element. |
2027 | 0 | llvm::Value *next = |
2028 | 0 | Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); |
2029 | | |
2030 | | // Leave if that's the end of the VLA. |
2031 | 0 | llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); |
2032 | 0 | Builder.CreateCondBr(done, contBB, loopBB); |
2033 | 0 | cur->addIncoming(next, loopBB); |
2034 | |
|
2035 | 0 | CGF.EmitBlock(contBB); |
2036 | 0 | } |
2037 | | |
2038 | | void |
2039 | 0 | CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { |
2040 | | // Ignore empty classes in C++. |
2041 | 0 | if (getLangOpts().CPlusPlus) { |
2042 | 0 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
2043 | 0 | if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) |
2044 | 0 | return; |
2045 | 0 | } |
2046 | 0 | } |
2047 | | |
2048 | 0 | if (DestPtr.getElementType() != Int8Ty) |
2049 | 0 | DestPtr = DestPtr.withElementType(Int8Ty); |
2050 | | |
2051 | | // Get size and alignment info for this aggregate. |
2052 | 0 | CharUnits size = getContext().getTypeSizeInChars(Ty); |
2053 | |
|
2054 | 0 | llvm::Value *SizeVal; |
2055 | 0 | const VariableArrayType *vla; |
2056 | | |
2057 | | // Don't bother emitting a zero-byte memset. |
2058 | 0 | if (size.isZero()) { |
2059 | | // But note that getTypeInfo returns 0 for a VLA. |
2060 | 0 | if (const VariableArrayType *vlaType = |
2061 | 0 | dyn_cast_or_null<VariableArrayType>( |
2062 | 0 | getContext().getAsArrayType(Ty))) { |
2063 | 0 | auto VlaSize = getVLASize(vlaType); |
2064 | 0 | SizeVal = VlaSize.NumElts; |
2065 | 0 | CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); |
2066 | 0 | if (!eltSize.isOne()) |
2067 | 0 | SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); |
2068 | 0 | vla = vlaType; |
2069 | 0 | } else { |
2070 | 0 | return; |
2071 | 0 | } |
2072 | 0 | } else { |
2073 | 0 | SizeVal = CGM.getSize(size); |
2074 | 0 | vla = nullptr; |
2075 | 0 | } |
2076 | | |
2077 | | // If the type contains a pointer to data member we can't memset it to zero. |
2078 | | // Instead, create a null constant and copy it to the destination. |
2079 | | // TODO: there are other patterns besides zero that we can usefully memset, |
2080 | | // like -1, which happens to be the pattern used by member-pointers. |
2081 | 0 | if (!CGM.getTypes().isZeroInitializable(Ty)) { |
2082 | | // For a VLA, emit a single element, then splat that over the VLA. |
2083 | 0 | if (vla) Ty = getContext().getBaseElementType(vla); |
2084 | |
|
2085 | 0 | llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); |
2086 | |
|
2087 | 0 | llvm::GlobalVariable *NullVariable = |
2088 | 0 | new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), |
2089 | 0 | /*isConstant=*/true, |
2090 | 0 | llvm::GlobalVariable::PrivateLinkage, |
2091 | 0 | NullConstant, Twine()); |
2092 | 0 | CharUnits NullAlign = DestPtr.getAlignment(); |
2093 | 0 | NullVariable->setAlignment(NullAlign.getAsAlign()); |
2094 | 0 | Address SrcPtr(NullVariable, Builder.getInt8Ty(), NullAlign); |
2095 | |
|
2096 | 0 | if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); |
2097 | | |
2098 | | // Get and call the appropriate llvm.memcpy overload. |
2099 | 0 | Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); |
2100 | 0 | return; |
2101 | 0 | } |
2102 | | |
2103 | | // Otherwise, just memset the whole thing to zero. This is legal |
2104 | | // because in LLVM, all default initializers (other than the ones we just |
2105 | | // handled above) are guaranteed to have a bit pattern of all zeros. |
2106 | 0 | Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); |
2107 | 0 | } |
2108 | | |
2109 | 0 | llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { |
2110 | | // Make sure that there is a block for the indirect goto. |
2111 | 0 | if (!IndirectBranch) |
2112 | 0 | GetIndirectGotoBlock(); |
2113 | |
|
2114 | 0 | llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); |
2115 | | |
2116 | | // Make sure the indirect branch includes all of the address-taken blocks. |
2117 | 0 | IndirectBranch->addDestination(BB); |
2118 | 0 | return llvm::BlockAddress::get(CurFn, BB); |
2119 | 0 | } |
2120 | | |
2121 | 0 | llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { |
2122 | | // If we already made the indirect branch for indirect goto, return its block. |
2123 | 0 | if (IndirectBranch) return IndirectBranch->getParent(); |
2124 | | |
2125 | 0 | CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); |
2126 | | |
2127 | | // Create the PHI node that indirect gotos will add entries to. |
2128 | 0 | llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, |
2129 | 0 | "indirect.goto.dest"); |
2130 | | |
2131 | | // Create the indirect branch instruction. |
2132 | 0 | IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); |
2133 | 0 | return IndirectBranch->getParent(); |
2134 | 0 | } |
2135 | | |
2136 | | /// Computes the length of an array in elements, as well as the base |
2137 | | /// element type and a properly-typed first element pointer. |
2138 | | llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, |
2139 | | QualType &baseType, |
2140 | 0 | Address &addr) { |
2141 | 0 | const ArrayType *arrayType = origArrayType; |
2142 | | |
2143 | | // If it's a VLA, we have to load the stored size. Note that |
2144 | | // this is the size of the VLA in bytes, not its size in elements. |
2145 | 0 | llvm::Value *numVLAElements = nullptr; |
2146 | 0 | if (isa<VariableArrayType>(arrayType)) { |
2147 | 0 | numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; |
2148 | | |
2149 | | // Walk into all VLAs. This doesn't require changes to addr, |
2150 | | // which has type T* where T is the first non-VLA element type. |
2151 | 0 | do { |
2152 | 0 | QualType elementType = arrayType->getElementType(); |
2153 | 0 | arrayType = getContext().getAsArrayType(elementType); |
2154 | | |
2155 | | // If we only have VLA components, 'addr' requires no adjustment. |
2156 | 0 | if (!arrayType) { |
2157 | 0 | baseType = elementType; |
2158 | 0 | return numVLAElements; |
2159 | 0 | } |
2160 | 0 | } while (isa<VariableArrayType>(arrayType)); |
2161 | | |
2162 | | // We get out here only if we find a constant array type |
2163 | | // inside the VLA. |
2164 | 0 | } |
2165 | | |
2166 | | // We have some number of constant-length arrays, so addr should |
2167 | | // have LLVM type [M x [N x [...]]]*. Build a GEP that walks |
2168 | | // down to the first element of addr. |
2169 | 0 | SmallVector<llvm::Value*, 8> gepIndices; |
2170 | | |
2171 | | // GEP down to the array type. |
2172 | 0 | llvm::ConstantInt *zero = Builder.getInt32(0); |
2173 | 0 | gepIndices.push_back(zero); |
2174 | |
|
2175 | 0 | uint64_t countFromCLAs = 1; |
2176 | 0 | QualType eltType; |
2177 | |
|
2178 | 0 | llvm::ArrayType *llvmArrayType = |
2179 | 0 | dyn_cast<llvm::ArrayType>(addr.getElementType()); |
2180 | 0 | while (llvmArrayType) { |
2181 | 0 | assert(isa<ConstantArrayType>(arrayType)); |
2182 | 0 | assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() |
2183 | 0 | == llvmArrayType->getNumElements()); |
2184 | | |
2185 | 0 | gepIndices.push_back(zero); |
2186 | 0 | countFromCLAs *= llvmArrayType->getNumElements(); |
2187 | 0 | eltType = arrayType->getElementType(); |
2188 | |
|
2189 | 0 | llvmArrayType = |
2190 | 0 | dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); |
2191 | 0 | arrayType = getContext().getAsArrayType(arrayType->getElementType()); |
2192 | 0 | assert((!llvmArrayType || arrayType) && |
2193 | 0 | "LLVM and Clang types are out-of-synch"); |
2194 | 0 | } |
2195 | |
|
2196 | 0 | if (arrayType) { |
2197 | | // From this point onwards, the Clang array type has been emitted |
2198 | | // as some other type (probably a packed struct). Compute the array |
2199 | | // size, and just emit the 'begin' expression as a bitcast. |
2200 | 0 | while (arrayType) { |
2201 | 0 | countFromCLAs *= |
2202 | 0 | cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); |
2203 | 0 | eltType = arrayType->getElementType(); |
2204 | 0 | arrayType = getContext().getAsArrayType(eltType); |
2205 | 0 | } |
2206 | |
|
2207 | 0 | llvm::Type *baseType = ConvertType(eltType); |
2208 | 0 | addr = addr.withElementType(baseType); |
2209 | 0 | } else { |
2210 | | // Create the actual GEP. |
2211 | 0 | addr = Address(Builder.CreateInBoundsGEP( |
2212 | 0 | addr.getElementType(), addr.getPointer(), gepIndices, "array.begin"), |
2213 | 0 | ConvertTypeForMem(eltType), |
2214 | 0 | addr.getAlignment()); |
2215 | 0 | } |
2216 | |
|
2217 | 0 | baseType = eltType; |
2218 | |
|
2219 | 0 | llvm::Value *numElements |
2220 | 0 | = llvm::ConstantInt::get(SizeTy, countFromCLAs); |
2221 | | |
2222 | | // If we had any VLA dimensions, factor them in. |
2223 | 0 | if (numVLAElements) |
2224 | 0 | numElements = Builder.CreateNUWMul(numVLAElements, numElements); |
2225 | |
|
2226 | 0 | return numElements; |
2227 | 0 | } |
2228 | | |
2229 | 0 | CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { |
2230 | 0 | const VariableArrayType *vla = getContext().getAsVariableArrayType(type); |
2231 | 0 | assert(vla && "type was not a variable array type!"); |
2232 | 0 | return getVLASize(vla); |
2233 | 0 | } |
2234 | | |
2235 | | CodeGenFunction::VlaSizePair |
2236 | 0 | CodeGenFunction::getVLASize(const VariableArrayType *type) { |
2237 | | // The number of elements so far; always size_t. |
2238 | 0 | llvm::Value *numElements = nullptr; |
2239 | |
|
2240 | 0 | QualType elementType; |
2241 | 0 | do { |
2242 | 0 | elementType = type->getElementType(); |
2243 | 0 | llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; |
2244 | 0 | assert(vlaSize && "no size for VLA!"); |
2245 | 0 | assert(vlaSize->getType() == SizeTy); |
2246 | | |
2247 | 0 | if (!numElements) { |
2248 | 0 | numElements = vlaSize; |
2249 | 0 | } else { |
2250 | | // It's undefined behavior if this wraps around, so mark it that way. |
2251 | | // FIXME: Teach -fsanitize=undefined to trap this. |
2252 | 0 | numElements = Builder.CreateNUWMul(numElements, vlaSize); |
2253 | 0 | } |
2254 | 0 | } while ((type = getContext().getAsVariableArrayType(elementType))); |
2255 | | |
2256 | 0 | return { numElements, elementType }; |
2257 | 0 | } |
2258 | | |
2259 | | CodeGenFunction::VlaSizePair |
2260 | 0 | CodeGenFunction::getVLAElements1D(QualType type) { |
2261 | 0 | const VariableArrayType *vla = getContext().getAsVariableArrayType(type); |
2262 | 0 | assert(vla && "type was not a variable array type!"); |
2263 | 0 | return getVLAElements1D(vla); |
2264 | 0 | } |
2265 | | |
2266 | | CodeGenFunction::VlaSizePair |
2267 | 0 | CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { |
2268 | 0 | llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; |
2269 | 0 | assert(VlaSize && "no size for VLA!"); |
2270 | 0 | assert(VlaSize->getType() == SizeTy); |
2271 | 0 | return { VlaSize, Vla->getElementType() }; |
2272 | 0 | } |
2273 | | |
2274 | 0 | void CodeGenFunction::EmitVariablyModifiedType(QualType type) { |
2275 | 0 | assert(type->isVariablyModifiedType() && |
2276 | 0 | "Must pass variably modified type to EmitVLASizes!"); |
2277 | | |
2278 | 0 | EnsureInsertPoint(); |
2279 | | |
2280 | | // We're going to walk down into the type and look for VLA |
2281 | | // expressions. |
2282 | 0 | do { |
2283 | 0 | assert(type->isVariablyModifiedType()); |
2284 | | |
2285 | 0 | const Type *ty = type.getTypePtr(); |
2286 | 0 | switch (ty->getTypeClass()) { |
2287 | | |
2288 | 0 | #define TYPE(Class, Base) |
2289 | 0 | #define ABSTRACT_TYPE(Class, Base) |
2290 | 0 | #define NON_CANONICAL_TYPE(Class, Base) |
2291 | 0 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
2292 | 0 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) |
2293 | 0 | #include "clang/AST/TypeNodes.inc" |
2294 | 0 | llvm_unreachable("unexpected dependent type!"); |
2295 | | |
2296 | | // These types are never variably-modified. |
2297 | 0 | case Type::Builtin: |
2298 | 0 | case Type::Complex: |
2299 | 0 | case Type::Vector: |
2300 | 0 | case Type::ExtVector: |
2301 | 0 | case Type::ConstantMatrix: |
2302 | 0 | case Type::Record: |
2303 | 0 | case Type::Enum: |
2304 | 0 | case Type::Using: |
2305 | 0 | case Type::TemplateSpecialization: |
2306 | 0 | case Type::ObjCTypeParam: |
2307 | 0 | case Type::ObjCObject: |
2308 | 0 | case Type::ObjCInterface: |
2309 | 0 | case Type::ObjCObjectPointer: |
2310 | 0 | case Type::BitInt: |
2311 | 0 | llvm_unreachable("type class is never variably-modified!"); |
2312 | |
|
2313 | 0 | case Type::Elaborated: |
2314 | 0 | type = cast<ElaboratedType>(ty)->getNamedType(); |
2315 | 0 | break; |
2316 | | |
2317 | 0 | case Type::Adjusted: |
2318 | 0 | type = cast<AdjustedType>(ty)->getAdjustedType(); |
2319 | 0 | break; |
2320 | | |
2321 | 0 | case Type::Decayed: |
2322 | 0 | type = cast<DecayedType>(ty)->getPointeeType(); |
2323 | 0 | break; |
2324 | | |
2325 | 0 | case Type::Pointer: |
2326 | 0 | type = cast<PointerType>(ty)->getPointeeType(); |
2327 | 0 | break; |
2328 | | |
2329 | 0 | case Type::BlockPointer: |
2330 | 0 | type = cast<BlockPointerType>(ty)->getPointeeType(); |
2331 | 0 | break; |
2332 | | |
2333 | 0 | case Type::LValueReference: |
2334 | 0 | case Type::RValueReference: |
2335 | 0 | type = cast<ReferenceType>(ty)->getPointeeType(); |
2336 | 0 | break; |
2337 | | |
2338 | 0 | case Type::MemberPointer: |
2339 | 0 | type = cast<MemberPointerType>(ty)->getPointeeType(); |
2340 | 0 | break; |
2341 | | |
2342 | 0 | case Type::ConstantArray: |
2343 | 0 | case Type::IncompleteArray: |
2344 | | // Losing element qualification here is fine. |
2345 | 0 | type = cast<ArrayType>(ty)->getElementType(); |
2346 | 0 | break; |
2347 | | |
2348 | 0 | case Type::VariableArray: { |
2349 | | // Losing element qualification here is fine. |
2350 | 0 | const VariableArrayType *vat = cast<VariableArrayType>(ty); |
2351 | | |
2352 | | // Unknown size indication requires no size computation. |
2353 | | // Otherwise, evaluate and record it. |
2354 | 0 | if (const Expr *sizeExpr = vat->getSizeExpr()) { |
2355 | | // It's possible that we might have emitted this already, |
2356 | | // e.g. with a typedef and a pointer to it. |
2357 | 0 | llvm::Value *&entry = VLASizeMap[sizeExpr]; |
2358 | 0 | if (!entry) { |
2359 | 0 | llvm::Value *size = EmitScalarExpr(sizeExpr); |
2360 | | |
2361 | | // C11 6.7.6.2p5: |
2362 | | // If the size is an expression that is not an integer constant |
2363 | | // expression [...] each time it is evaluated it shall have a value |
2364 | | // greater than zero. |
2365 | 0 | if (SanOpts.has(SanitizerKind::VLABound)) { |
2366 | 0 | SanitizerScope SanScope(this); |
2367 | 0 | llvm::Value *Zero = llvm::Constant::getNullValue(size->getType()); |
2368 | 0 | clang::QualType SEType = sizeExpr->getType(); |
2369 | 0 | llvm::Value *CheckCondition = |
2370 | 0 | SEType->isSignedIntegerType() |
2371 | 0 | ? Builder.CreateICmpSGT(size, Zero) |
2372 | 0 | : Builder.CreateICmpUGT(size, Zero); |
2373 | 0 | llvm::Constant *StaticArgs[] = { |
2374 | 0 | EmitCheckSourceLocation(sizeExpr->getBeginLoc()), |
2375 | 0 | EmitCheckTypeDescriptor(SEType)}; |
2376 | 0 | EmitCheck(std::make_pair(CheckCondition, SanitizerKind::VLABound), |
2377 | 0 | SanitizerHandler::VLABoundNotPositive, StaticArgs, size); |
2378 | 0 | } |
2379 | | |
2380 | | // Always zexting here would be wrong if it weren't |
2381 | | // undefined behavior to have a negative bound. |
2382 | | // FIXME: What about when size's type is larger than size_t? |
2383 | 0 | entry = Builder.CreateIntCast(size, SizeTy, /*signed*/ false); |
2384 | 0 | } |
2385 | 0 | } |
2386 | 0 | type = vat->getElementType(); |
2387 | 0 | break; |
2388 | 0 | } |
2389 | | |
2390 | 0 | case Type::FunctionProto: |
2391 | 0 | case Type::FunctionNoProto: |
2392 | 0 | type = cast<FunctionType>(ty)->getReturnType(); |
2393 | 0 | break; |
2394 | | |
2395 | 0 | case Type::Paren: |
2396 | 0 | case Type::TypeOf: |
2397 | 0 | case Type::UnaryTransform: |
2398 | 0 | case Type::Attributed: |
2399 | 0 | case Type::BTFTagAttributed: |
2400 | 0 | case Type::SubstTemplateTypeParm: |
2401 | 0 | case Type::MacroQualified: |
2402 | | // Keep walking after single level desugaring. |
2403 | 0 | type = type.getSingleStepDesugaredType(getContext()); |
2404 | 0 | break; |
2405 | | |
2406 | 0 | case Type::Typedef: |
2407 | 0 | case Type::Decltype: |
2408 | 0 | case Type::Auto: |
2409 | 0 | case Type::DeducedTemplateSpecialization: |
2410 | | // Stop walking: nothing to do. |
2411 | 0 | return; |
2412 | | |
2413 | 0 | case Type::TypeOfExpr: |
2414 | | // Stop walking: emit typeof expression. |
2415 | 0 | EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); |
2416 | 0 | return; |
2417 | | |
2418 | 0 | case Type::Atomic: |
2419 | 0 | type = cast<AtomicType>(ty)->getValueType(); |
2420 | 0 | break; |
2421 | | |
2422 | 0 | case Type::Pipe: |
2423 | 0 | type = cast<PipeType>(ty)->getElementType(); |
2424 | 0 | break; |
2425 | 0 | } |
2426 | 0 | } while (type->isVariablyModifiedType()); |
2427 | 0 | } |
2428 | | |
2429 | 0 | Address CodeGenFunction::EmitVAListRef(const Expr* E) { |
2430 | 0 | if (getContext().getBuiltinVaListType()->isArrayType()) |
2431 | 0 | return EmitPointerWithAlignment(E); |
2432 | 0 | return EmitLValue(E).getAddress(*this); |
2433 | 0 | } |
2434 | | |
2435 | 0 | Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { |
2436 | 0 | return EmitLValue(E).getAddress(*this); |
2437 | 0 | } |
2438 | | |
2439 | | void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, |
2440 | 0 | const APValue &Init) { |
2441 | 0 | assert(Init.hasValue() && "Invalid DeclRefExpr initializer!"); |
2442 | 0 | if (CGDebugInfo *Dbg = getDebugInfo()) |
2443 | 0 | if (CGM.getCodeGenOpts().hasReducedDebugInfo()) |
2444 | 0 | Dbg->EmitGlobalVariable(E->getDecl(), Init); |
2445 | 0 | } |
2446 | | |
2447 | | CodeGenFunction::PeepholeProtection |
2448 | 0 | CodeGenFunction::protectFromPeepholes(RValue rvalue) { |
2449 | | // At the moment, the only aggressive peephole we do in IR gen |
2450 | | // is trunc(zext) folding, but if we add more, we can easily |
2451 | | // extend this protection. |
2452 | |
|
2453 | 0 | if (!rvalue.isScalar()) return PeepholeProtection(); |
2454 | 0 | llvm::Value *value = rvalue.getScalarVal(); |
2455 | 0 | if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); |
2456 | | |
2457 | | // Just make an extra bitcast. |
2458 | 0 | assert(HaveInsertPoint()); |
2459 | 0 | llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", |
2460 | 0 | Builder.GetInsertBlock()); |
2461 | |
|
2462 | 0 | PeepholeProtection protection; |
2463 | 0 | protection.Inst = inst; |
2464 | 0 | return protection; |
2465 | 0 | } |
2466 | | |
2467 | 0 | void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { |
2468 | 0 | if (!protection.Inst) return; |
2469 | | |
2470 | | // In theory, we could try to duplicate the peepholes now, but whatever. |
2471 | 0 | protection.Inst->eraseFromParent(); |
2472 | 0 | } |
2473 | | |
2474 | | void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, |
2475 | | QualType Ty, SourceLocation Loc, |
2476 | | SourceLocation AssumptionLoc, |
2477 | | llvm::Value *Alignment, |
2478 | 0 | llvm::Value *OffsetValue) { |
2479 | 0 | if (Alignment->getType() != IntPtrTy) |
2480 | 0 | Alignment = |
2481 | 0 | Builder.CreateIntCast(Alignment, IntPtrTy, false, "casted.align"); |
2482 | 0 | if (OffsetValue && OffsetValue->getType() != IntPtrTy) |
2483 | 0 | OffsetValue = |
2484 | 0 | Builder.CreateIntCast(OffsetValue, IntPtrTy, true, "casted.offset"); |
2485 | 0 | llvm::Value *TheCheck = nullptr; |
2486 | 0 | if (SanOpts.has(SanitizerKind::Alignment)) { |
2487 | 0 | llvm::Value *PtrIntValue = |
2488 | 0 | Builder.CreatePtrToInt(PtrValue, IntPtrTy, "ptrint"); |
2489 | |
|
2490 | 0 | if (OffsetValue) { |
2491 | 0 | bool IsOffsetZero = false; |
2492 | 0 | if (const auto *CI = dyn_cast<llvm::ConstantInt>(OffsetValue)) |
2493 | 0 | IsOffsetZero = CI->isZero(); |
2494 | |
|
2495 | 0 | if (!IsOffsetZero) |
2496 | 0 | PtrIntValue = Builder.CreateSub(PtrIntValue, OffsetValue, "offsetptr"); |
2497 | 0 | } |
2498 | |
|
2499 | 0 | llvm::Value *Zero = llvm::ConstantInt::get(IntPtrTy, 0); |
2500 | 0 | llvm::Value *Mask = |
2501 | 0 | Builder.CreateSub(Alignment, llvm::ConstantInt::get(IntPtrTy, 1)); |
2502 | 0 | llvm::Value *MaskedPtr = Builder.CreateAnd(PtrIntValue, Mask, "maskedptr"); |
2503 | 0 | TheCheck = Builder.CreateICmpEQ(MaskedPtr, Zero, "maskcond"); |
2504 | 0 | } |
2505 | 0 | llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( |
2506 | 0 | CGM.getDataLayout(), PtrValue, Alignment, OffsetValue); |
2507 | |
|
2508 | 0 | if (!SanOpts.has(SanitizerKind::Alignment)) |
2509 | 0 | return; |
2510 | 0 | emitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, |
2511 | 0 | OffsetValue, TheCheck, Assumption); |
2512 | 0 | } |
2513 | | |
2514 | | void CodeGenFunction::emitAlignmentAssumption(llvm::Value *PtrValue, |
2515 | | const Expr *E, |
2516 | | SourceLocation AssumptionLoc, |
2517 | | llvm::Value *Alignment, |
2518 | 0 | llvm::Value *OffsetValue) { |
2519 | 0 | QualType Ty = E->getType(); |
2520 | 0 | SourceLocation Loc = E->getExprLoc(); |
2521 | |
|
2522 | 0 | emitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, |
2523 | 0 | OffsetValue); |
2524 | 0 | } |
2525 | | |
2526 | | llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Function *AnnotationFn, |
2527 | | llvm::Value *AnnotatedVal, |
2528 | | StringRef AnnotationStr, |
2529 | | SourceLocation Location, |
2530 | 0 | const AnnotateAttr *Attr) { |
2531 | 0 | SmallVector<llvm::Value *, 5> Args = { |
2532 | 0 | AnnotatedVal, |
2533 | 0 | CGM.EmitAnnotationString(AnnotationStr), |
2534 | 0 | CGM.EmitAnnotationUnit(Location), |
2535 | 0 | CGM.EmitAnnotationLineNo(Location), |
2536 | 0 | }; |
2537 | 0 | if (Attr) |
2538 | 0 | Args.push_back(CGM.EmitAnnotationArgs(Attr)); |
2539 | 0 | return Builder.CreateCall(AnnotationFn, Args); |
2540 | 0 | } |
2541 | | |
2542 | 0 | void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { |
2543 | 0 | assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); |
2544 | 0 | for (const auto *I : D->specific_attrs<AnnotateAttr>()) |
2545 | 0 | EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation, |
2546 | 0 | {V->getType(), CGM.ConstGlobalsPtrTy}), |
2547 | 0 | V, I->getAnnotation(), D->getLocation(), I); |
2548 | 0 | } |
2549 | | |
2550 | | Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, |
2551 | 0 | Address Addr) { |
2552 | 0 | assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); |
2553 | 0 | llvm::Value *V = Addr.getPointer(); |
2554 | 0 | llvm::Type *VTy = V->getType(); |
2555 | 0 | auto *PTy = dyn_cast<llvm::PointerType>(VTy); |
2556 | 0 | unsigned AS = PTy ? PTy->getAddressSpace() : 0; |
2557 | 0 | llvm::PointerType *IntrinTy = |
2558 | 0 | llvm::PointerType::get(CGM.getLLVMContext(), AS); |
2559 | 0 | llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, |
2560 | 0 | {IntrinTy, CGM.ConstGlobalsPtrTy}); |
2561 | |
|
2562 | 0 | for (const auto *I : D->specific_attrs<AnnotateAttr>()) { |
2563 | | // FIXME Always emit the cast inst so we can differentiate between |
2564 | | // annotation on the first field of a struct and annotation on the struct |
2565 | | // itself. |
2566 | 0 | if (VTy != IntrinTy) |
2567 | 0 | V = Builder.CreateBitCast(V, IntrinTy); |
2568 | 0 | V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation(), I); |
2569 | 0 | V = Builder.CreateBitCast(V, VTy); |
2570 | 0 | } |
2571 | |
|
2572 | 0 | return Address(V, Addr.getElementType(), Addr.getAlignment()); |
2573 | 0 | } |
2574 | | |
2575 | 0 | CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } |
2576 | | |
2577 | | CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) |
2578 | 0 | : CGF(CGF) { |
2579 | 0 | assert(!CGF->IsSanitizerScope); |
2580 | 0 | CGF->IsSanitizerScope = true; |
2581 | 0 | } |
2582 | | |
2583 | 0 | CodeGenFunction::SanitizerScope::~SanitizerScope() { |
2584 | 0 | CGF->IsSanitizerScope = false; |
2585 | 0 | } |
2586 | | |
2587 | | void CodeGenFunction::InsertHelper(llvm::Instruction *I, |
2588 | | const llvm::Twine &Name, |
2589 | | llvm::BasicBlock *BB, |
2590 | 0 | llvm::BasicBlock::iterator InsertPt) const { |
2591 | 0 | LoopStack.InsertHelper(I); |
2592 | 0 | if (IsSanitizerScope) |
2593 | 0 | I->setNoSanitizeMetadata(); |
2594 | 0 | } |
2595 | | |
2596 | | void CGBuilderInserter::InsertHelper( |
2597 | | llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, |
2598 | 0 | llvm::BasicBlock::iterator InsertPt) const { |
2599 | 0 | llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); |
2600 | 0 | if (CGF) |
2601 | 0 | CGF->InsertHelper(I, Name, BB, InsertPt); |
2602 | 0 | } |
2603 | | |
2604 | | // Emits an error if we don't have a valid set of target features for the |
2605 | | // called function. |
2606 | | void CodeGenFunction::checkTargetFeatures(const CallExpr *E, |
2607 | 0 | const FunctionDecl *TargetDecl) { |
2608 | 0 | return checkTargetFeatures(E->getBeginLoc(), TargetDecl); |
2609 | 0 | } |
2610 | | |
2611 | | // Emits an error if we don't have a valid set of target features for the |
2612 | | // called function. |
2613 | | void CodeGenFunction::checkTargetFeatures(SourceLocation Loc, |
2614 | 0 | const FunctionDecl *TargetDecl) { |
2615 | | // Early exit if this is an indirect call. |
2616 | 0 | if (!TargetDecl) |
2617 | 0 | return; |
2618 | | |
2619 | | // Get the current enclosing function if it exists. If it doesn't |
2620 | | // we can't check the target features anyhow. |
2621 | 0 | const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurCodeDecl); |
2622 | 0 | if (!FD) |
2623 | 0 | return; |
2624 | | |
2625 | | // Grab the required features for the call. For a builtin this is listed in |
2626 | | // the td file with the default cpu, for an always_inline function this is any |
2627 | | // listed cpu and any listed features. |
2628 | 0 | unsigned BuiltinID = TargetDecl->getBuiltinID(); |
2629 | 0 | std::string MissingFeature; |
2630 | 0 | llvm::StringMap<bool> CallerFeatureMap; |
2631 | 0 | CGM.getContext().getFunctionFeatureMap(CallerFeatureMap, FD); |
2632 | | // When compiling in HipStdPar mode we have to be conservative in rejecting |
2633 | | // target specific features in the FE, and defer the possible error to the |
2634 | | // AcceleratorCodeSelection pass, wherein iff an unsupported target builtin is |
2635 | | // referenced by an accelerator executable function, we emit an error. |
2636 | 0 | bool IsHipStdPar = getLangOpts().HIPStdPar && getLangOpts().CUDAIsDevice; |
2637 | 0 | if (BuiltinID) { |
2638 | 0 | StringRef FeatureList(CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID)); |
2639 | 0 | if (!Builtin::evaluateRequiredTargetFeatures( |
2640 | 0 | FeatureList, CallerFeatureMap) && !IsHipStdPar) { |
2641 | 0 | CGM.getDiags().Report(Loc, diag::err_builtin_needs_feature) |
2642 | 0 | << TargetDecl->getDeclName() |
2643 | 0 | << FeatureList; |
2644 | 0 | } |
2645 | 0 | } else if (!TargetDecl->isMultiVersion() && |
2646 | 0 | TargetDecl->hasAttr<TargetAttr>()) { |
2647 | | // Get the required features for the callee. |
2648 | |
|
2649 | 0 | const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); |
2650 | 0 | ParsedTargetAttr ParsedAttr = |
2651 | 0 | CGM.getContext().filterFunctionTargetAttrs(TD); |
2652 | |
|
2653 | 0 | SmallVector<StringRef, 1> ReqFeatures; |
2654 | 0 | llvm::StringMap<bool> CalleeFeatureMap; |
2655 | 0 | CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); |
2656 | |
|
2657 | 0 | for (const auto &F : ParsedAttr.Features) { |
2658 | 0 | if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) |
2659 | 0 | ReqFeatures.push_back(StringRef(F).substr(1)); |
2660 | 0 | } |
2661 | |
|
2662 | 0 | for (const auto &F : CalleeFeatureMap) { |
2663 | | // Only positive features are "required". |
2664 | 0 | if (F.getValue()) |
2665 | 0 | ReqFeatures.push_back(F.getKey()); |
2666 | 0 | } |
2667 | 0 | if (!llvm::all_of(ReqFeatures, [&](StringRef Feature) { |
2668 | 0 | if (!CallerFeatureMap.lookup(Feature)) { |
2669 | 0 | MissingFeature = Feature.str(); |
2670 | 0 | return false; |
2671 | 0 | } |
2672 | 0 | return true; |
2673 | 0 | }) && !IsHipStdPar) |
2674 | 0 | CGM.getDiags().Report(Loc, diag::err_function_needs_feature) |
2675 | 0 | << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; |
2676 | 0 | } else if (!FD->isMultiVersion() && FD->hasAttr<TargetAttr>()) { |
2677 | 0 | llvm::StringMap<bool> CalleeFeatureMap; |
2678 | 0 | CGM.getContext().getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); |
2679 | |
|
2680 | 0 | for (const auto &F : CalleeFeatureMap) { |
2681 | 0 | if (F.getValue() && (!CallerFeatureMap.lookup(F.getKey()) || |
2682 | 0 | !CallerFeatureMap.find(F.getKey())->getValue()) && |
2683 | 0 | !IsHipStdPar) |
2684 | 0 | CGM.getDiags().Report(Loc, diag::err_function_needs_feature) |
2685 | 0 | << FD->getDeclName() << TargetDecl->getDeclName() << F.getKey(); |
2686 | 0 | } |
2687 | 0 | } |
2688 | 0 | } |
2689 | | |
2690 | 0 | void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { |
2691 | 0 | if (!CGM.getCodeGenOpts().SanitizeStats) |
2692 | 0 | return; |
2693 | | |
2694 | 0 | llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); |
2695 | 0 | IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); |
2696 | 0 | CGM.getSanStats().create(IRB, SSK); |
2697 | 0 | } |
2698 | | |
2699 | | void CodeGenFunction::EmitKCFIOperandBundle( |
2700 | 0 | const CGCallee &Callee, SmallVectorImpl<llvm::OperandBundleDef> &Bundles) { |
2701 | 0 | const FunctionProtoType *FP = |
2702 | 0 | Callee.getAbstractInfo().getCalleeFunctionProtoType(); |
2703 | 0 | if (FP) |
2704 | 0 | Bundles.emplace_back("kcfi", CGM.CreateKCFITypeId(FP->desugar())); |
2705 | 0 | } |
2706 | | |
2707 | | llvm::Value *CodeGenFunction::FormAArch64ResolverCondition( |
2708 | 0 | const MultiVersionResolverOption &RO) { |
2709 | 0 | llvm::SmallVector<StringRef, 8> CondFeatures; |
2710 | 0 | for (const StringRef &Feature : RO.Conditions.Features) { |
2711 | | // Form condition for features which are not yet enabled in target |
2712 | 0 | if (!getContext().getTargetInfo().hasFeature(Feature)) |
2713 | 0 | CondFeatures.push_back(Feature); |
2714 | 0 | } |
2715 | 0 | if (!CondFeatures.empty()) { |
2716 | 0 | return EmitAArch64CpuSupports(CondFeatures); |
2717 | 0 | } |
2718 | 0 | return nullptr; |
2719 | 0 | } |
2720 | | |
2721 | | llvm::Value *CodeGenFunction::FormX86ResolverCondition( |
2722 | 0 | const MultiVersionResolverOption &RO) { |
2723 | 0 | llvm::Value *Condition = nullptr; |
2724 | |
|
2725 | 0 | if (!RO.Conditions.Architecture.empty()) { |
2726 | 0 | StringRef Arch = RO.Conditions.Architecture; |
2727 | | // If arch= specifies an x86-64 micro-architecture level, test the feature |
2728 | | // with __builtin_cpu_supports, otherwise use __builtin_cpu_is. |
2729 | 0 | if (Arch.starts_with("x86-64")) |
2730 | 0 | Condition = EmitX86CpuSupports({Arch}); |
2731 | 0 | else |
2732 | 0 | Condition = EmitX86CpuIs(Arch); |
2733 | 0 | } |
2734 | |
|
2735 | 0 | if (!RO.Conditions.Features.empty()) { |
2736 | 0 | llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); |
2737 | 0 | Condition = |
2738 | 0 | Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; |
2739 | 0 | } |
2740 | 0 | return Condition; |
2741 | 0 | } |
2742 | | |
2743 | | static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, |
2744 | | llvm::Function *Resolver, |
2745 | | CGBuilderTy &Builder, |
2746 | | llvm::Function *FuncToReturn, |
2747 | 0 | bool SupportsIFunc) { |
2748 | 0 | if (SupportsIFunc) { |
2749 | 0 | Builder.CreateRet(FuncToReturn); |
2750 | 0 | return; |
2751 | 0 | } |
2752 | | |
2753 | 0 | llvm::SmallVector<llvm::Value *, 10> Args( |
2754 | 0 | llvm::make_pointer_range(Resolver->args())); |
2755 | |
|
2756 | 0 | llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); |
2757 | 0 | Result->setTailCallKind(llvm::CallInst::TCK_MustTail); |
2758 | |
|
2759 | 0 | if (Resolver->getReturnType()->isVoidTy()) |
2760 | 0 | Builder.CreateRetVoid(); |
2761 | 0 | else |
2762 | 0 | Builder.CreateRet(Result); |
2763 | 0 | } |
2764 | | |
2765 | | void CodeGenFunction::EmitMultiVersionResolver( |
2766 | 0 | llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { |
2767 | |
|
2768 | 0 | llvm::Triple::ArchType ArchType = |
2769 | 0 | getContext().getTargetInfo().getTriple().getArch(); |
2770 | |
|
2771 | 0 | switch (ArchType) { |
2772 | 0 | case llvm::Triple::x86: |
2773 | 0 | case llvm::Triple::x86_64: |
2774 | 0 | EmitX86MultiVersionResolver(Resolver, Options); |
2775 | 0 | return; |
2776 | 0 | case llvm::Triple::aarch64: |
2777 | 0 | EmitAArch64MultiVersionResolver(Resolver, Options); |
2778 | 0 | return; |
2779 | | |
2780 | 0 | default: |
2781 | 0 | assert(false && "Only implemented for x86 and AArch64 targets"); |
2782 | 0 | } |
2783 | 0 | } |
2784 | | |
2785 | | void CodeGenFunction::EmitAArch64MultiVersionResolver( |
2786 | 0 | llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { |
2787 | 0 | assert(!Options.empty() && "No multiversion resolver options found"); |
2788 | 0 | assert(Options.back().Conditions.Features.size() == 0 && |
2789 | 0 | "Default case must be last"); |
2790 | 0 | bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); |
2791 | 0 | assert(SupportsIFunc && |
2792 | 0 | "Multiversion resolver requires target IFUNC support"); |
2793 | 0 | bool AArch64CpuInitialized = false; |
2794 | 0 | llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); |
2795 | |
|
2796 | 0 | for (const MultiVersionResolverOption &RO : Options) { |
2797 | 0 | Builder.SetInsertPoint(CurBlock); |
2798 | 0 | llvm::Value *Condition = FormAArch64ResolverCondition(RO); |
2799 | | |
2800 | | // The 'default' or 'all features enabled' case. |
2801 | 0 | if (!Condition) { |
2802 | 0 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, |
2803 | 0 | SupportsIFunc); |
2804 | 0 | return; |
2805 | 0 | } |
2806 | | |
2807 | 0 | if (!AArch64CpuInitialized) { |
2808 | 0 | Builder.SetInsertPoint(CurBlock, CurBlock->begin()); |
2809 | 0 | EmitAArch64CpuInit(); |
2810 | 0 | AArch64CpuInitialized = true; |
2811 | 0 | Builder.SetInsertPoint(CurBlock); |
2812 | 0 | } |
2813 | |
|
2814 | 0 | llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); |
2815 | 0 | CGBuilderTy RetBuilder(*this, RetBlock); |
2816 | 0 | CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, |
2817 | 0 | SupportsIFunc); |
2818 | 0 | CurBlock = createBasicBlock("resolver_else", Resolver); |
2819 | 0 | Builder.CreateCondBr(Condition, RetBlock, CurBlock); |
2820 | 0 | } |
2821 | | |
2822 | | // If no default, emit an unreachable. |
2823 | 0 | Builder.SetInsertPoint(CurBlock); |
2824 | 0 | llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); |
2825 | 0 | TrapCall->setDoesNotReturn(); |
2826 | 0 | TrapCall->setDoesNotThrow(); |
2827 | 0 | Builder.CreateUnreachable(); |
2828 | 0 | Builder.ClearInsertionPoint(); |
2829 | 0 | } |
2830 | | |
2831 | | void CodeGenFunction::EmitX86MultiVersionResolver( |
2832 | 0 | llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { |
2833 | |
|
2834 | 0 | bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); |
2835 | | |
2836 | | // Main function's basic block. |
2837 | 0 | llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); |
2838 | 0 | Builder.SetInsertPoint(CurBlock); |
2839 | 0 | EmitX86CpuInit(); |
2840 | |
|
2841 | 0 | for (const MultiVersionResolverOption &RO : Options) { |
2842 | 0 | Builder.SetInsertPoint(CurBlock); |
2843 | 0 | llvm::Value *Condition = FormX86ResolverCondition(RO); |
2844 | | |
2845 | | // The 'default' or 'generic' case. |
2846 | 0 | if (!Condition) { |
2847 | 0 | assert(&RO == Options.end() - 1 && |
2848 | 0 | "Default or Generic case must be last"); |
2849 | 0 | CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, |
2850 | 0 | SupportsIFunc); |
2851 | 0 | return; |
2852 | 0 | } |
2853 | | |
2854 | 0 | llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); |
2855 | 0 | CGBuilderTy RetBuilder(*this, RetBlock); |
2856 | 0 | CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, |
2857 | 0 | SupportsIFunc); |
2858 | 0 | CurBlock = createBasicBlock("resolver_else", Resolver); |
2859 | 0 | Builder.CreateCondBr(Condition, RetBlock, CurBlock); |
2860 | 0 | } |
2861 | | |
2862 | | // If no generic/default, emit an unreachable. |
2863 | 0 | Builder.SetInsertPoint(CurBlock); |
2864 | 0 | llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); |
2865 | 0 | TrapCall->setDoesNotReturn(); |
2866 | 0 | TrapCall->setDoesNotThrow(); |
2867 | 0 | Builder.CreateUnreachable(); |
2868 | 0 | Builder.ClearInsertionPoint(); |
2869 | 0 | } |
2870 | | |
2871 | | // Loc - where the diagnostic will point, where in the source code this |
2872 | | // alignment has failed. |
2873 | | // SecondaryLoc - if present (will be present if sufficiently different from |
2874 | | // Loc), the diagnostic will additionally point a "Note:" to this location. |
2875 | | // It should be the location where the __attribute__((assume_aligned)) |
2876 | | // was written e.g. |
2877 | | void CodeGenFunction::emitAlignmentAssumptionCheck( |
2878 | | llvm::Value *Ptr, QualType Ty, SourceLocation Loc, |
2879 | | SourceLocation SecondaryLoc, llvm::Value *Alignment, |
2880 | | llvm::Value *OffsetValue, llvm::Value *TheCheck, |
2881 | 0 | llvm::Instruction *Assumption) { |
2882 | 0 | assert(Assumption && isa<llvm::CallInst>(Assumption) && |
2883 | 0 | cast<llvm::CallInst>(Assumption)->getCalledOperand() == |
2884 | 0 | llvm::Intrinsic::getDeclaration( |
2885 | 0 | Builder.GetInsertBlock()->getParent()->getParent(), |
2886 | 0 | llvm::Intrinsic::assume) && |
2887 | 0 | "Assumption should be a call to llvm.assume()."); |
2888 | 0 | assert(&(Builder.GetInsertBlock()->back()) == Assumption && |
2889 | 0 | "Assumption should be the last instruction of the basic block, " |
2890 | 0 | "since the basic block is still being generated."); |
2891 | | |
2892 | 0 | if (!SanOpts.has(SanitizerKind::Alignment)) |
2893 | 0 | return; |
2894 | | |
2895 | | // Don't check pointers to volatile data. The behavior here is implementation- |
2896 | | // defined. |
2897 | 0 | if (Ty->getPointeeType().isVolatileQualified()) |
2898 | 0 | return; |
2899 | | |
2900 | | // We need to temorairly remove the assumption so we can insert the |
2901 | | // sanitizer check before it, else the check will be dropped by optimizations. |
2902 | 0 | Assumption->removeFromParent(); |
2903 | |
|
2904 | 0 | { |
2905 | 0 | SanitizerScope SanScope(this); |
2906 | |
|
2907 | 0 | if (!OffsetValue) |
2908 | 0 | OffsetValue = Builder.getInt1(false); // no offset. |
2909 | |
|
2910 | 0 | llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), |
2911 | 0 | EmitCheckSourceLocation(SecondaryLoc), |
2912 | 0 | EmitCheckTypeDescriptor(Ty)}; |
2913 | 0 | llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), |
2914 | 0 | EmitCheckValue(Alignment), |
2915 | 0 | EmitCheckValue(OffsetValue)}; |
2916 | 0 | EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, |
2917 | 0 | SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); |
2918 | 0 | } |
2919 | | |
2920 | | // We are now in the (new, empty) "cont" basic block. |
2921 | | // Reintroduce the assumption. |
2922 | 0 | Builder.Insert(Assumption); |
2923 | | // FIXME: Assumption still has it's original basic block as it's Parent. |
2924 | 0 | } |
2925 | | |
2926 | 0 | llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { |
2927 | 0 | if (CGDebugInfo *DI = getDebugInfo()) |
2928 | 0 | return DI->SourceLocToDebugLoc(Location); |
2929 | | |
2930 | 0 | return llvm::DebugLoc(); |
2931 | 0 | } |
2932 | | |
2933 | | llvm::Value * |
2934 | | CodeGenFunction::emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond, |
2935 | 0 | Stmt::Likelihood LH) { |
2936 | 0 | switch (LH) { |
2937 | 0 | case Stmt::LH_None: |
2938 | 0 | return Cond; |
2939 | 0 | case Stmt::LH_Likely: |
2940 | 0 | case Stmt::LH_Unlikely: |
2941 | | // Don't generate llvm.expect on -O0 as the backend won't use it for |
2942 | | // anything. |
2943 | 0 | if (CGM.getCodeGenOpts().OptimizationLevel == 0) |
2944 | 0 | return Cond; |
2945 | 0 | llvm::Type *CondTy = Cond->getType(); |
2946 | 0 | assert(CondTy->isIntegerTy(1) && "expecting condition to be a boolean"); |
2947 | 0 | llvm::Function *FnExpect = |
2948 | 0 | CGM.getIntrinsic(llvm::Intrinsic::expect, CondTy); |
2949 | 0 | llvm::Value *ExpectedValueOfCond = |
2950 | 0 | llvm::ConstantInt::getBool(CondTy, LH == Stmt::LH_Likely); |
2951 | 0 | return Builder.CreateCall(FnExpect, {Cond, ExpectedValueOfCond}, |
2952 | 0 | Cond->getName() + ".expval"); |
2953 | 0 | } |
2954 | 0 | llvm_unreachable("Unknown Likelihood"); |
2955 | 0 | } |
2956 | | |
2957 | | llvm::Value *CodeGenFunction::emitBoolVecConversion(llvm::Value *SrcVec, |
2958 | | unsigned NumElementsDst, |
2959 | 0 | const llvm::Twine &Name) { |
2960 | 0 | auto *SrcTy = cast<llvm::FixedVectorType>(SrcVec->getType()); |
2961 | 0 | unsigned NumElementsSrc = SrcTy->getNumElements(); |
2962 | 0 | if (NumElementsSrc == NumElementsDst) |
2963 | 0 | return SrcVec; |
2964 | | |
2965 | 0 | std::vector<int> ShuffleMask(NumElementsDst, -1); |
2966 | 0 | for (unsigned MaskIdx = 0; |
2967 | 0 | MaskIdx < std::min<>(NumElementsDst, NumElementsSrc); ++MaskIdx) |
2968 | 0 | ShuffleMask[MaskIdx] = MaskIdx; |
2969 | |
|
2970 | 0 | return Builder.CreateShuffleVector(SrcVec, ShuffleMask, Name); |
2971 | 0 | } |