Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/CodeGen/CodeGenFunction.h
Line
Count
Source (jump to first uncovered line)
1
//===-- CodeGenFunction.h - Per-Function state for LLVM CodeGen -*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This is the internal per-function state used for llvm translation.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#ifndef LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
14
#define LLVM_CLANG_LIB_CODEGEN_CODEGENFUNCTION_H
15
16
#include "CGBuilder.h"
17
#include "CGDebugInfo.h"
18
#include "CGLoopInfo.h"
19
#include "CGValue.h"
20
#include "CodeGenModule.h"
21
#include "CodeGenPGO.h"
22
#include "EHScopeStack.h"
23
#include "VarBypassDetector.h"
24
#include "clang/AST/CharUnits.h"
25
#include "clang/AST/CurrentSourceLocExprScope.h"
26
#include "clang/AST/ExprCXX.h"
27
#include "clang/AST/ExprObjC.h"
28
#include "clang/AST/ExprOpenMP.h"
29
#include "clang/AST/StmtOpenMP.h"
30
#include "clang/AST/Type.h"
31
#include "clang/Basic/ABI.h"
32
#include "clang/Basic/CapturedStmt.h"
33
#include "clang/Basic/CodeGenOptions.h"
34
#include "clang/Basic/OpenMPKinds.h"
35
#include "clang/Basic/TargetInfo.h"
36
#include "llvm/ADT/ArrayRef.h"
37
#include "llvm/ADT/DenseMap.h"
38
#include "llvm/ADT/MapVector.h"
39
#include "llvm/ADT/SmallVector.h"
40
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
41
#include "llvm/IR/ValueHandle.h"
42
#include "llvm/Support/Debug.h"
43
#include "llvm/Transforms/Utils/SanitizerStats.h"
44
#include <optional>
45
46
namespace llvm {
47
class BasicBlock;
48
class LLVMContext;
49
class MDNode;
50
class SwitchInst;
51
class Twine;
52
class Value;
53
class CanonicalLoopInfo;
54
}
55
56
namespace clang {
57
class ASTContext;
58
class CXXDestructorDecl;
59
class CXXForRangeStmt;
60
class CXXTryStmt;
61
class Decl;
62
class LabelDecl;
63
class FunctionDecl;
64
class FunctionProtoType;
65
class LabelStmt;
66
class ObjCContainerDecl;
67
class ObjCInterfaceDecl;
68
class ObjCIvarDecl;
69
class ObjCMethodDecl;
70
class ObjCImplementationDecl;
71
class ObjCPropertyImplDecl;
72
class TargetInfo;
73
class VarDecl;
74
class ObjCForCollectionStmt;
75
class ObjCAtTryStmt;
76
class ObjCAtThrowStmt;
77
class ObjCAtSynchronizedStmt;
78
class ObjCAutoreleasePoolStmt;
79
class OMPUseDevicePtrClause;
80
class OMPUseDeviceAddrClause;
81
class SVETypeFlags;
82
class OMPExecutableDirective;
83
84
namespace analyze_os_log {
85
class OSLogBufferLayout;
86
}
87
88
namespace CodeGen {
89
class CodeGenTypes;
90
class CGCallee;
91
class CGFunctionInfo;
92
class CGBlockInfo;
93
class CGCXXABI;
94
class BlockByrefHelpers;
95
class BlockByrefInfo;
96
class BlockFieldFlags;
97
class RegionCodeGenTy;
98
class TargetCodeGenInfo;
99
struct OMPTaskDataTy;
100
struct CGCoroData;
101
102
/// The kind of evaluation to perform on values of a particular
103
/// type.  Basically, is the code in CGExprScalar, CGExprComplex, or
104
/// CGExprAgg?
105
///
106
/// TODO: should vectors maybe be split out into their own thing?
107
enum TypeEvaluationKind {
108
  TEK_Scalar,
109
  TEK_Complex,
110
  TEK_Aggregate
111
};
112
113
#define LIST_SANITIZER_CHECKS                                                  \
114
  SANITIZER_CHECK(AddOverflow, add_overflow, 0)                                \
115
  SANITIZER_CHECK(BuiltinUnreachable, builtin_unreachable, 0)                  \
116
  SANITIZER_CHECK(CFICheckFail, cfi_check_fail, 0)                             \
117
  SANITIZER_CHECK(DivremOverflow, divrem_overflow, 0)                          \
118
  SANITIZER_CHECK(DynamicTypeCacheMiss, dynamic_type_cache_miss, 0)            \
119
  SANITIZER_CHECK(FloatCastOverflow, float_cast_overflow, 0)                   \
120
  SANITIZER_CHECK(FunctionTypeMismatch, function_type_mismatch, 0)             \
121
  SANITIZER_CHECK(ImplicitConversion, implicit_conversion, 0)                  \
122
  SANITIZER_CHECK(InvalidBuiltin, invalid_builtin, 0)                          \
123
  SANITIZER_CHECK(InvalidObjCCast, invalid_objc_cast, 0)                       \
124
  SANITIZER_CHECK(LoadInvalidValue, load_invalid_value, 0)                     \
125
  SANITIZER_CHECK(MissingReturn, missing_return, 0)                            \
126
  SANITIZER_CHECK(MulOverflow, mul_overflow, 0)                                \
127
  SANITIZER_CHECK(NegateOverflow, negate_overflow, 0)                          \
128
  SANITIZER_CHECK(NullabilityArg, nullability_arg, 0)                          \
129
  SANITIZER_CHECK(NullabilityReturn, nullability_return, 1)                    \
130
  SANITIZER_CHECK(NonnullArg, nonnull_arg, 0)                                  \
131
  SANITIZER_CHECK(NonnullReturn, nonnull_return, 1)                            \
132
  SANITIZER_CHECK(OutOfBounds, out_of_bounds, 0)                               \
133
  SANITIZER_CHECK(PointerOverflow, pointer_overflow, 0)                        \
134
  SANITIZER_CHECK(ShiftOutOfBounds, shift_out_of_bounds, 0)                    \
135
  SANITIZER_CHECK(SubOverflow, sub_overflow, 0)                                \
136
  SANITIZER_CHECK(TypeMismatch, type_mismatch, 1)                              \
137
  SANITIZER_CHECK(AlignmentAssumption, alignment_assumption, 0)                \
138
  SANITIZER_CHECK(VLABoundNotPositive, vla_bound_not_positive, 0)
139
140
enum SanitizerHandler {
141
#define SANITIZER_CHECK(Enum, Name, Version) Enum,
142
  LIST_SANITIZER_CHECKS
143
#undef SANITIZER_CHECK
144
};
145
146
/// Helper class with most of the code for saving a value for a
147
/// conditional expression cleanup.
148
struct DominatingLLVMValue {
149
  typedef llvm::PointerIntPair<llvm::Value*, 1, bool> saved_type;
150
151
  /// Answer whether the given value needs extra work to be saved.
152
0
  static bool needsSaving(llvm::Value *value) {
153
    // If it's not an instruction, we don't need to save.
154
0
    if (!isa<llvm::Instruction>(value)) return false;
155
156
    // If it's an instruction in the entry block, we don't need to save.
157
0
    llvm::BasicBlock *block = cast<llvm::Instruction>(value)->getParent();
158
0
    return (block != &block->getParent()->getEntryBlock());
159
0
  }
160
161
  static saved_type save(CodeGenFunction &CGF, llvm::Value *value);
162
  static llvm::Value *restore(CodeGenFunction &CGF, saved_type value);
163
};
164
165
/// A partial specialization of DominatingValue for llvm::Values that
166
/// might be llvm::Instructions.
167
template <class T> struct DominatingPointer<T,true> : DominatingLLVMValue {
168
  typedef T *type;
169
0
  static type restore(CodeGenFunction &CGF, saved_type value) {
170
0
    return static_cast<T*>(DominatingLLVMValue::restore(CGF, value));
171
0
  }
172
};
173
174
/// A specialization of DominatingValue for Address.
175
template <> struct DominatingValue<Address> {
176
  typedef Address type;
177
178
  struct saved_type {
179
    DominatingLLVMValue::saved_type SavedValue;
180
    llvm::Type *ElementType;
181
    CharUnits Alignment;
182
  };
183
184
0
  static bool needsSaving(type value) {
185
0
    return DominatingLLVMValue::needsSaving(value.getPointer());
186
0
  }
187
0
  static saved_type save(CodeGenFunction &CGF, type value) {
188
0
    return { DominatingLLVMValue::save(CGF, value.getPointer()),
189
0
             value.getElementType(), value.getAlignment() };
190
0
  }
191
0
  static type restore(CodeGenFunction &CGF, saved_type value) {
192
0
    return Address(DominatingLLVMValue::restore(CGF, value.SavedValue),
193
0
                   value.ElementType, value.Alignment);
194
0
  }
195
};
196
197
/// A specialization of DominatingValue for RValue.
198
template <> struct DominatingValue<RValue> {
199
  typedef RValue type;
200
  class saved_type {
201
    enum Kind { ScalarLiteral, ScalarAddress, AggregateLiteral,
202
                AggregateAddress, ComplexAddress };
203
204
    llvm::Value *Value;
205
    llvm::Type *ElementType;
206
    unsigned K : 3;
207
    unsigned Align : 29;
208
    saved_type(llvm::Value *v, llvm::Type *e, Kind k, unsigned a = 0)
209
0
      : Value(v), ElementType(e), K(k), Align(a) {}
210
211
  public:
212
    static bool needsSaving(RValue value);
213
    static saved_type save(CodeGenFunction &CGF, RValue value);
214
    RValue restore(CodeGenFunction &CGF);
215
216
    // implementations in CGCleanup.cpp
217
  };
218
219
0
  static bool needsSaving(type value) {
220
0
    return saved_type::needsSaving(value);
221
0
  }
222
0
  static saved_type save(CodeGenFunction &CGF, type value) {
223
0
    return saved_type::save(CGF, value);
224
0
  }
225
0
  static type restore(CodeGenFunction &CGF, saved_type value) {
226
0
    return value.restore(CGF);
227
0
  }
228
};
229
230
/// CodeGenFunction - This class organizes the per-function state that is used
231
/// while generating LLVM code.
232
class CodeGenFunction : public CodeGenTypeCache {
233
  CodeGenFunction(const CodeGenFunction &) = delete;
234
  void operator=(const CodeGenFunction &) = delete;
235
236
  friend class CGCXXABI;
237
public:
238
  /// A jump destination is an abstract label, branching to which may
239
  /// require a jump out through normal cleanups.
240
  struct JumpDest {
241
0
    JumpDest() : Block(nullptr), Index(0) {}
242
    JumpDest(llvm::BasicBlock *Block, EHScopeStack::stable_iterator Depth,
243
             unsigned Index)
244
0
        : Block(Block), ScopeDepth(Depth), Index(Index) {}
245
246
0
    bool isValid() const { return Block != nullptr; }
247
0
    llvm::BasicBlock *getBlock() const { return Block; }
248
0
    EHScopeStack::stable_iterator getScopeDepth() const { return ScopeDepth; }
249
0
    unsigned getDestIndex() const { return Index; }
250
251
    // This should be used cautiously.
252
0
    void setScopeDepth(EHScopeStack::stable_iterator depth) {
253
0
      ScopeDepth = depth;
254
0
    }
255
256
  private:
257
    llvm::BasicBlock *Block;
258
    EHScopeStack::stable_iterator ScopeDepth;
259
    unsigned Index;
260
  };
261
262
  CodeGenModule &CGM;  // Per-module state.
263
  const TargetInfo &Target;
264
265
  // For EH/SEH outlined funclets, this field points to parent's CGF
266
  CodeGenFunction *ParentCGF = nullptr;
267
268
  typedef std::pair<llvm::Value *, llvm::Value *> ComplexPairTy;
269
  LoopInfoStack LoopStack;
270
  CGBuilderTy Builder;
271
272
  // Stores variables for which we can't generate correct lifetime markers
273
  // because of jumps.
274
  VarBypassDetector Bypasses;
275
276
  /// List of recently emitted OMPCanonicalLoops.
277
  ///
278
  /// Since OMPCanonicalLoops are nested inside other statements (in particular
279
  /// CapturedStmt generated by OMPExecutableDirective and non-perfectly nested
280
  /// loops), we cannot directly call OMPEmitOMPCanonicalLoop and receive its
281
  /// llvm::CanonicalLoopInfo. Instead, we call EmitStmt and any
282
  /// OMPEmitOMPCanonicalLoop called by it will add its CanonicalLoopInfo to
283
  /// this stack when done. Entering a new loop requires clearing this list; it
284
  /// either means we start parsing a new loop nest (in which case the previous
285
  /// loop nest goes out of scope) or a second loop in the same level in which
286
  /// case it would be ambiguous into which of the two (or more) loops the loop
287
  /// nest would extend.
288
  SmallVector<llvm::CanonicalLoopInfo *, 4> OMPLoopNestStack;
289
290
  /// Stack to track the Logical Operator recursion nest for MC/DC.
291
  SmallVector<const BinaryOperator *, 16> MCDCLogOpStack;
292
293
  /// Number of nested loop to be consumed by the last surrounding
294
  /// loop-associated directive.
295
  int ExpectedOMPLoopDepth = 0;
296
297
  // CodeGen lambda for loops and support for ordered clause
298
  typedef llvm::function_ref<void(CodeGenFunction &, const OMPLoopDirective &,
299
                                  JumpDest)>
300
      CodeGenLoopTy;
301
  typedef llvm::function_ref<void(CodeGenFunction &, SourceLocation,
302
                                  const unsigned, const bool)>
303
      CodeGenOrderedTy;
304
305
  // Codegen lambda for loop bounds in worksharing loop constructs
306
  typedef llvm::function_ref<std::pair<LValue, LValue>(
307
      CodeGenFunction &, const OMPExecutableDirective &S)>
308
      CodeGenLoopBoundsTy;
309
310
  // Codegen lambda for loop bounds in dispatch-based loop implementation
311
  typedef llvm::function_ref<std::pair<llvm::Value *, llvm::Value *>(
312
      CodeGenFunction &, const OMPExecutableDirective &S, Address LB,
313
      Address UB)>
314
      CodeGenDispatchBoundsTy;
315
316
  /// CGBuilder insert helper. This function is called after an
317
  /// instruction is created using Builder.
318
  void InsertHelper(llvm::Instruction *I, const llvm::Twine &Name,
319
                    llvm::BasicBlock *BB,
320
                    llvm::BasicBlock::iterator InsertPt) const;
321
322
  /// CurFuncDecl - Holds the Decl for the current outermost
323
  /// non-closure context.
324
  const Decl *CurFuncDecl = nullptr;
325
  /// CurCodeDecl - This is the inner-most code context, which includes blocks.
326
  const Decl *CurCodeDecl = nullptr;
327
  const CGFunctionInfo *CurFnInfo = nullptr;
328
  QualType FnRetTy;
329
  llvm::Function *CurFn = nullptr;
330
331
  /// Save Parameter Decl for coroutine.
332
  llvm::SmallVector<const ParmVarDecl *, 4> FnArgs;
333
334
  // Holds coroutine data if the current function is a coroutine. We use a
335
  // wrapper to manage its lifetime, so that we don't have to define CGCoroData
336
  // in this header.
337
  struct CGCoroInfo {
338
    std::unique_ptr<CGCoroData> Data;
339
    bool InSuspendBlock = false;
340
    CGCoroInfo();
341
    ~CGCoroInfo();
342
  };
343
  CGCoroInfo CurCoro;
344
345
0
  bool isCoroutine() const {
346
0
    return CurCoro.Data != nullptr;
347
0
  }
348
349
0
  bool inSuspendBlock() const {
350
0
    return isCoroutine() && CurCoro.InSuspendBlock;
351
0
  }
352
353
  /// CurGD - The GlobalDecl for the current function being compiled.
354
  GlobalDecl CurGD;
355
356
  /// PrologueCleanupDepth - The cleanup depth enclosing all the
357
  /// cleanups associated with the parameters.
358
  EHScopeStack::stable_iterator PrologueCleanupDepth;
359
360
  /// ReturnBlock - Unified return block.
361
  JumpDest ReturnBlock;
362
363
  /// ReturnValue - The temporary alloca to hold the return
364
  /// value. This is invalid iff the function has no return value.
365
  Address ReturnValue = Address::invalid();
366
367
  /// ReturnValuePointer - The temporary alloca to hold a pointer to sret.
368
  /// This is invalid if sret is not in use.
369
  Address ReturnValuePointer = Address::invalid();
370
371
  /// If a return statement is being visited, this holds the return statment's
372
  /// result expression.
373
  const Expr *RetExpr = nullptr;
374
375
  /// Return true if a label was seen in the current scope.
376
0
  bool hasLabelBeenSeenInCurrentScope() const {
377
0
    if (CurLexicalScope)
378
0
      return CurLexicalScope->hasLabels();
379
0
    return !LabelMap.empty();
380
0
  }
381
382
  /// AllocaInsertPoint - This is an instruction in the entry block before which
383
  /// we prefer to insert allocas.
384
  llvm::AssertingVH<llvm::Instruction> AllocaInsertPt;
385
386
private:
387
  /// PostAllocaInsertPt - This is a place in the prologue where code can be
388
  /// inserted that will be dominated by all the static allocas. This helps
389
  /// achieve two things:
390
  ///   1. Contiguity of all static allocas (within the prologue) is maintained.
391
  ///   2. All other prologue code (which are dominated by static allocas) do
392
  ///      appear in the source order immediately after all static allocas.
393
  ///
394
  /// PostAllocaInsertPt will be lazily created when it is *really* required.
395
  llvm::AssertingVH<llvm::Instruction> PostAllocaInsertPt = nullptr;
396
397
public:
398
  /// Return PostAllocaInsertPt. If it is not yet created, then insert it
399
  /// immediately after AllocaInsertPt.
400
0
  llvm::Instruction *getPostAllocaInsertPoint() {
401
0
    if (!PostAllocaInsertPt) {
402
0
      assert(AllocaInsertPt &&
403
0
             "Expected static alloca insertion point at function prologue");
404
0
      assert(AllocaInsertPt->getParent()->isEntryBlock() &&
405
0
             "EBB should be entry block of the current code gen function");
406
0
      PostAllocaInsertPt = AllocaInsertPt->clone();
407
0
      PostAllocaInsertPt->setName("postallocapt");
408
0
      PostAllocaInsertPt->insertAfter(AllocaInsertPt);
409
0
    }
410
411
0
    return PostAllocaInsertPt;
412
0
  }
413
414
  /// API for captured statement code generation.
415
  class CGCapturedStmtInfo {
416
  public:
417
    explicit CGCapturedStmtInfo(CapturedRegionKind K = CR_Default)
418
0
        : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {}
419
    explicit CGCapturedStmtInfo(const CapturedStmt &S,
420
                                CapturedRegionKind K = CR_Default)
421
0
      : Kind(K), ThisValue(nullptr), CXXThisFieldDecl(nullptr) {
422
423
0
      RecordDecl::field_iterator Field =
424
0
        S.getCapturedRecordDecl()->field_begin();
425
0
      for (CapturedStmt::const_capture_iterator I = S.capture_begin(),
426
0
                                                E = S.capture_end();
427
0
           I != E; ++I, ++Field) {
428
0
        if (I->capturesThis())
429
0
          CXXThisFieldDecl = *Field;
430
0
        else if (I->capturesVariable())
431
0
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
432
0
        else if (I->capturesVariableByCopy())
433
0
          CaptureFields[I->getCapturedVar()->getCanonicalDecl()] = *Field;
434
0
      }
435
0
    }
436
437
    virtual ~CGCapturedStmtInfo();
438
439
0
    CapturedRegionKind getKind() const { return Kind; }
440
441
0
    virtual void setContextValue(llvm::Value *V) { ThisValue = V; }
442
    // Retrieve the value of the context parameter.
443
0
    virtual llvm::Value *getContextValue() const { return ThisValue; }
444
445
    /// Lookup the captured field decl for a variable.
446
0
    virtual const FieldDecl *lookup(const VarDecl *VD) const {
447
0
      return CaptureFields.lookup(VD->getCanonicalDecl());
448
0
    }
449
450
0
    bool isCXXThisExprCaptured() const { return getThisFieldDecl() != nullptr; }
451
0
    virtual FieldDecl *getThisFieldDecl() const { return CXXThisFieldDecl; }
452
453
0
    static bool classof(const CGCapturedStmtInfo *) {
454
0
      return true;
455
0
    }
456
457
    /// Emit the captured statement body.
458
0
    virtual void EmitBody(CodeGenFunction &CGF, const Stmt *S) {
459
0
      CGF.incrementProfileCounter(S);
460
0
      CGF.EmitStmt(S);
461
0
    }
462
463
    /// Get the name of the capture helper.
464
0
    virtual StringRef getHelperName() const { return "__captured_stmt"; }
465
466
    /// Get the CaptureFields
467
0
    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> getCaptureFields() {
468
0
      return CaptureFields;
469
0
    }
470
471
  private:
472
    /// The kind of captured statement being generated.
473
    CapturedRegionKind Kind;
474
475
    /// Keep the map between VarDecl and FieldDecl.
476
    llvm::SmallDenseMap<const VarDecl *, FieldDecl *> CaptureFields;
477
478
    /// The base address of the captured record, passed in as the first
479
    /// argument of the parallel region function.
480
    llvm::Value *ThisValue;
481
482
    /// Captured 'this' type.
483
    FieldDecl *CXXThisFieldDecl;
484
  };
485
  CGCapturedStmtInfo *CapturedStmtInfo = nullptr;
486
487
  /// RAII for correct setting/restoring of CapturedStmtInfo.
488
  class CGCapturedStmtRAII {
489
  private:
490
    CodeGenFunction &CGF;
491
    CGCapturedStmtInfo *PrevCapturedStmtInfo;
492
  public:
493
    CGCapturedStmtRAII(CodeGenFunction &CGF,
494
                       CGCapturedStmtInfo *NewCapturedStmtInfo)
495
0
        : CGF(CGF), PrevCapturedStmtInfo(CGF.CapturedStmtInfo) {
496
0
      CGF.CapturedStmtInfo = NewCapturedStmtInfo;
497
0
    }
498
0
    ~CGCapturedStmtRAII() { CGF.CapturedStmtInfo = PrevCapturedStmtInfo; }
499
  };
500
501
  /// An abstract representation of regular/ObjC call/message targets.
502
  class AbstractCallee {
503
    /// The function declaration of the callee.
504
    const Decl *CalleeDecl;
505
506
  public:
507
0
    AbstractCallee() : CalleeDecl(nullptr) {}
508
0
    AbstractCallee(const FunctionDecl *FD) : CalleeDecl(FD) {}
509
0
    AbstractCallee(const ObjCMethodDecl *OMD) : CalleeDecl(OMD) {}
510
0
    bool hasFunctionDecl() const {
511
0
      return isa_and_nonnull<FunctionDecl>(CalleeDecl);
512
0
    }
513
0
    const Decl *getDecl() const { return CalleeDecl; }
514
0
    unsigned getNumParams() const {
515
0
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
516
0
        return FD->getNumParams();
517
0
      return cast<ObjCMethodDecl>(CalleeDecl)->param_size();
518
0
    }
519
0
    const ParmVarDecl *getParamDecl(unsigned I) const {
520
0
      if (const auto *FD = dyn_cast<FunctionDecl>(CalleeDecl))
521
0
        return FD->getParamDecl(I);
522
0
      return *(cast<ObjCMethodDecl>(CalleeDecl)->param_begin() + I);
523
0
    }
524
  };
525
526
  /// Sanitizers enabled for this function.
527
  SanitizerSet SanOpts;
528
529
  /// True if CodeGen currently emits code implementing sanitizer checks.
530
  bool IsSanitizerScope = false;
531
532
  /// RAII object to set/unset CodeGenFunction::IsSanitizerScope.
533
  class SanitizerScope {
534
    CodeGenFunction *CGF;
535
  public:
536
    SanitizerScope(CodeGenFunction *CGF);
537
    ~SanitizerScope();
538
  };
539
540
  /// In C++, whether we are code generating a thunk.  This controls whether we
541
  /// should emit cleanups.
542
  bool CurFuncIsThunk = false;
543
544
  /// In ARC, whether we should autorelease the return value.
545
  bool AutoreleaseResult = false;
546
547
  /// Whether we processed a Microsoft-style asm block during CodeGen. These can
548
  /// potentially set the return value.
549
  bool SawAsmBlock = false;
550
551
  GlobalDecl CurSEHParent;
552
553
  /// True if the current function is an outlined SEH helper. This can be a
554
  /// finally block or filter expression.
555
  bool IsOutlinedSEHHelper = false;
556
557
  /// True if CodeGen currently emits code inside presereved access index
558
  /// region.
559
  bool IsInPreservedAIRegion = false;
560
561
  /// True if the current statement has nomerge attribute.
562
  bool InNoMergeAttributedStmt = false;
563
564
  /// True if the current statement has noinline attribute.
565
  bool InNoInlineAttributedStmt = false;
566
567
  /// True if the current statement has always_inline attribute.
568
  bool InAlwaysInlineAttributedStmt = false;
569
570
  // The CallExpr within the current statement that the musttail attribute
571
  // applies to.  nullptr if there is no 'musttail' on the current statement.
572
  const CallExpr *MustTailCall = nullptr;
573
574
  /// Returns true if a function must make progress, which means the
575
  /// mustprogress attribute can be added.
576
0
  bool checkIfFunctionMustProgress() {
577
0
    if (CGM.getCodeGenOpts().getFiniteLoops() ==
578
0
        CodeGenOptions::FiniteLoopsKind::Never)
579
0
      return false;
580
581
    // C++11 and later guarantees that a thread eventually will do one of the
582
    // following (C++11 [intro.multithread]p24 and C++17 [intro.progress]p1):
583
    // - terminate,
584
    //  - make a call to a library I/O function,
585
    //  - perform an access through a volatile glvalue, or
586
    //  - perform a synchronization operation or an atomic operation.
587
    //
588
    // Hence each function is 'mustprogress' in C++11 or later.
589
0
    return getLangOpts().CPlusPlus11;
590
0
  }
591
592
  /// Returns true if a loop must make progress, which means the mustprogress
593
  /// attribute can be added. \p HasConstantCond indicates whether the branch
594
  /// condition is a known constant.
595
0
  bool checkIfLoopMustProgress(bool HasConstantCond) {
596
0
    if (CGM.getCodeGenOpts().getFiniteLoops() ==
597
0
        CodeGenOptions::FiniteLoopsKind::Always)
598
0
      return true;
599
0
    if (CGM.getCodeGenOpts().getFiniteLoops() ==
600
0
        CodeGenOptions::FiniteLoopsKind::Never)
601
0
      return false;
602
603
    // If the containing function must make progress, loops also must make
604
    // progress (as in C++11 and later).
605
0
    if (checkIfFunctionMustProgress())
606
0
      return true;
607
608
    // Now apply rules for plain C (see  6.8.5.6 in C11).
609
    // Loops with constant conditions do not have to make progress in any C
610
    // version.
611
0
    if (HasConstantCond)
612
0
      return false;
613
614
    // Loops with non-constant conditions must make progress in C11 and later.
615
0
    return getLangOpts().C11;
616
0
  }
617
618
  const CodeGen::CGBlockInfo *BlockInfo = nullptr;
619
  llvm::Value *BlockPointer = nullptr;
620
621
  llvm::DenseMap<const ValueDecl *, FieldDecl *> LambdaCaptureFields;
622
  FieldDecl *LambdaThisCaptureField = nullptr;
623
624
  /// A mapping from NRVO variables to the flags used to indicate
625
  /// when the NRVO has been applied to this variable.
626
  llvm::DenseMap<const VarDecl *, llvm::Value *> NRVOFlags;
627
628
  EHScopeStack EHStack;
629
  llvm::SmallVector<char, 256> LifetimeExtendedCleanupStack;
630
  llvm::SmallVector<const JumpDest *, 2> SEHTryEpilogueStack;
631
632
  llvm::Instruction *CurrentFuncletPad = nullptr;
633
634
  class CallLifetimeEnd final : public EHScopeStack::Cleanup {
635
0
    bool isRedundantBeforeReturn() override { return true; }
636
637
    llvm::Value *Addr;
638
    llvm::Value *Size;
639
640
  public:
641
    CallLifetimeEnd(Address addr, llvm::Value *size)
642
0
        : Addr(addr.getPointer()), Size(size) {}
643
644
0
    void Emit(CodeGenFunction &CGF, Flags flags) override {
645
0
      CGF.EmitLifetimeEnd(Size, Addr);
646
0
    }
647
  };
648
649
  /// Header for data within LifetimeExtendedCleanupStack.
650
  struct LifetimeExtendedCleanupHeader {
651
    /// The size of the following cleanup object.
652
    unsigned Size;
653
    /// The kind of cleanup to push: a value from the CleanupKind enumeration.
654
    unsigned Kind : 31;
655
    /// Whether this is a conditional cleanup.
656
    unsigned IsConditional : 1;
657
658
0
    size_t getSize() const { return Size; }
659
0
    CleanupKind getKind() const { return (CleanupKind)Kind; }
660
0
    bool isConditional() const { return IsConditional; }
661
  };
662
663
  /// i32s containing the indexes of the cleanup destinations.
664
  Address NormalCleanupDest = Address::invalid();
665
666
  unsigned NextCleanupDestIndex = 1;
667
668
  /// EHResumeBlock - Unified block containing a call to llvm.eh.resume.
669
  llvm::BasicBlock *EHResumeBlock = nullptr;
670
671
  /// The exception slot.  All landing pads write the current exception pointer
672
  /// into this alloca.
673
  llvm::Value *ExceptionSlot = nullptr;
674
675
  /// The selector slot.  Under the MandatoryCleanup model, all landing pads
676
  /// write the current selector value into this alloca.
677
  llvm::AllocaInst *EHSelectorSlot = nullptr;
678
679
  /// A stack of exception code slots. Entering an __except block pushes a slot
680
  /// on the stack and leaving pops one. The __exception_code() intrinsic loads
681
  /// a value from the top of the stack.
682
  SmallVector<Address, 1> SEHCodeSlotStack;
683
684
  /// Value returned by __exception_info intrinsic.
685
  llvm::Value *SEHInfo = nullptr;
686
687
  /// Emits a landing pad for the current EH stack.
688
  llvm::BasicBlock *EmitLandingPad();
689
690
  llvm::BasicBlock *getInvokeDestImpl();
691
692
  /// Parent loop-based directive for scan directive.
693
  const OMPExecutableDirective *OMPParentLoopDirectiveForScan = nullptr;
694
  llvm::BasicBlock *OMPBeforeScanBlock = nullptr;
695
  llvm::BasicBlock *OMPAfterScanBlock = nullptr;
696
  llvm::BasicBlock *OMPScanExitBlock = nullptr;
697
  llvm::BasicBlock *OMPScanDispatch = nullptr;
698
  bool OMPFirstScanLoop = false;
699
700
  /// Manages parent directive for scan directives.
701
  class ParentLoopDirectiveForScanRegion {
702
    CodeGenFunction &CGF;
703
    const OMPExecutableDirective *ParentLoopDirectiveForScan;
704
705
  public:
706
    ParentLoopDirectiveForScanRegion(
707
        CodeGenFunction &CGF,
708
        const OMPExecutableDirective &ParentLoopDirectiveForScan)
709
        : CGF(CGF),
710
0
          ParentLoopDirectiveForScan(CGF.OMPParentLoopDirectiveForScan) {
711
0
      CGF.OMPParentLoopDirectiveForScan = &ParentLoopDirectiveForScan;
712
0
    }
713
0
    ~ParentLoopDirectiveForScanRegion() {
714
0
      CGF.OMPParentLoopDirectiveForScan = ParentLoopDirectiveForScan;
715
0
    }
716
  };
717
718
  template <class T>
719
0
  typename DominatingValue<T>::saved_type saveValueInCond(T value) {
720
0
    return DominatingValue<T>::save(*this, value);
721
0
  }
Unexecuted instantiation: clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::CodeGen::Address>(clang::CodeGen::Address)
Unexecuted instantiation: clang::CodeGen::DominatingValue<clang::QualType>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::QualType>(clang::QualType)
Unexecuted instantiation: clang::CodeGen::DominatingValue<llvm::Value*>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<llvm::Value*>(llvm::Value*)
Unexecuted instantiation: clang::CodeGen::DominatingValue<void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Unexecuted instantiation: clang::CodeGen::DominatingValue<bool>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<bool>(bool)
Unexecuted instantiation: clang::CodeGen::DominatingValue<clang::CharUnits>::saved_type clang::CodeGen::CodeGenFunction::saveValueInCond<clang::CharUnits>(clang::CharUnits)
722
723
  class CGFPOptionsRAII {
724
  public:
725
    CGFPOptionsRAII(CodeGenFunction &CGF, FPOptions FPFeatures);
726
    CGFPOptionsRAII(CodeGenFunction &CGF, const Expr *E);
727
    ~CGFPOptionsRAII();
728
729
  private:
730
    void ConstructorHelper(FPOptions FPFeatures);
731
    CodeGenFunction &CGF;
732
    FPOptions OldFPFeatures;
733
    llvm::fp::ExceptionBehavior OldExcept;
734
    llvm::RoundingMode OldRounding;
735
    std::optional<CGBuilderTy::FastMathFlagGuard> FMFGuard;
736
  };
737
  FPOptions CurFPFeatures;
738
739
public:
740
  /// ObjCEHValueStack - Stack of Objective-C exception values, used for
741
  /// rethrows.
742
  SmallVector<llvm::Value*, 8> ObjCEHValueStack;
743
744
  /// A class controlling the emission of a finally block.
745
  class FinallyInfo {
746
    /// Where the catchall's edge through the cleanup should go.
747
    JumpDest RethrowDest;
748
749
    /// A function to call to enter the catch.
750
    llvm::FunctionCallee BeginCatchFn;
751
752
    /// An i1 variable indicating whether or not the @finally is
753
    /// running for an exception.
754
    llvm::AllocaInst *ForEHVar = nullptr;
755
756
    /// An i8* variable into which the exception pointer to rethrow
757
    /// has been saved.
758
    llvm::AllocaInst *SavedExnVar = nullptr;
759
760
  public:
761
    void enter(CodeGenFunction &CGF, const Stmt *Finally,
762
               llvm::FunctionCallee beginCatchFn,
763
               llvm::FunctionCallee endCatchFn, llvm::FunctionCallee rethrowFn);
764
    void exit(CodeGenFunction &CGF);
765
  };
766
767
  /// Returns true inside SEH __try blocks.
768
0
  bool isSEHTryScope() const { return !SEHTryEpilogueStack.empty(); }
769
770
  /// Returns true while emitting a cleanuppad.
771
0
  bool isCleanupPadScope() const {
772
0
    return CurrentFuncletPad && isa<llvm::CleanupPadInst>(CurrentFuncletPad);
773
0
  }
774
775
  /// pushFullExprCleanup - Push a cleanup to be run at the end of the
776
  /// current full-expression.  Safe against the possibility that
777
  /// we're currently inside a conditionally-evaluated expression.
778
  template <class T, class... As>
779
0
  void pushFullExprCleanup(CleanupKind kind, As... A) {
780
    // If we're not in a conditional branch, or if none of the
781
    // arguments requires saving, then use the unconditional cleanup.
782
0
    if (!isInConditionalBranch())
783
0
      return EHStack.pushCleanup<T>(kind, A...);
784
785
    // Stash values in a tuple so we can guarantee the order of saves.
786
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
787
0
    SavedTuple Saved{saveValueInCond(A)...};
788
789
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
790
0
    EHStack.pushCleanupTuple<CleanupType>(kind, Saved);
791
0
    initFullExprCleanup();
792
0
  }
Unexecuted instantiation: CGCall.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::DestroyUnpassedArg, clang::CodeGen::Address, clang::QualType>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType)
Unexecuted instantiation: void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Unexecuted instantiation: CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Unexecuted instantiation: CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::IrregularPartialArrayDestroy, llvm::Value*, clang::CodeGen::Address, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(clang::CodeGen::CleanupKind, llvm::Value*, clang::CodeGen::Address, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Unexecuted instantiation: CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::RegularPartialArrayDestroy, llvm::Value*, llvm::Value*, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType)>(clang::CodeGen::CleanupKind, llvm::Value*, llvm::Value*, clang::QualType, clang::CharUnits, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType))
Unexecuted instantiation: CGException.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::FreeException, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
Unexecuted instantiation: CGObjC.cpp:void clang::CodeGen::CodeGenFunction::pushFullExprCleanup<(anonymous namespace)::CallObjCRelease, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
793
794
  /// Queue a cleanup to be pushed after finishing the current full-expression,
795
  /// potentially with an active flag.
796
  template <class T, class... As>
797
0
  void pushCleanupAfterFullExpr(CleanupKind Kind, As... A) {
798
0
    if (!isInConditionalBranch())
799
0
      return pushCleanupAfterFullExprWithActiveFlag<T>(Kind, Address::invalid(),
800
0
                                                       A...);
801
802
0
    Address ActiveFlag = createCleanupActiveFlag();
803
0
    assert(!DominatingValue<Address>::needsSaving(ActiveFlag) &&
804
0
           "cleanup active flag should never need saving");
805
806
0
    typedef std::tuple<typename DominatingValue<As>::saved_type...> SavedTuple;
807
0
    SavedTuple Saved{saveValueInCond(A)...};
808
809
0
    typedef EHScopeStack::ConditionalCleanup<T, As...> CleanupType;
810
0
    pushCleanupAfterFullExprWithActiveFlag<CleanupType>(Kind, ActiveFlag, Saved);
811
0
  }
Unexecuted instantiation: void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExpr<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Unexecuted instantiation: CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExpr<(anonymous namespace)::CallObjCArcUse, llvm::Value*>(clang::CodeGen::CleanupKind, llvm::Value*)
812
813
  template <class T, class... As>
814
  void pushCleanupAfterFullExprWithActiveFlag(CleanupKind Kind,
815
0
                                              Address ActiveFlag, As... A) {
816
0
    LifetimeExtendedCleanupHeader Header = {sizeof(T), Kind,
817
0
                                            ActiveFlag.isValid()};
818
819
0
    size_t OldSize = LifetimeExtendedCleanupStack.size();
820
0
    LifetimeExtendedCleanupStack.resize(
821
0
        LifetimeExtendedCleanupStack.size() + sizeof(Header) + Header.Size +
822
0
        (Header.IsConditional ? sizeof(ActiveFlag) : 0));
823
824
0
    static_assert(sizeof(Header) % alignof(T) == 0,
825
0
                  "Cleanup will be allocated on misaligned address");
826
0
    char *Buffer = &LifetimeExtendedCleanupStack[OldSize];
827
0
    new (Buffer) LifetimeExtendedCleanupHeader(Header);
828
0
    new (Buffer + sizeof(Header)) T(A...);
829
0
    if (Header.IsConditional)
830
0
      new (Buffer + sizeof(Header) + sizeof(T)) Address(ActiveFlag);
831
0
  }
Unexecuted instantiation: CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Unexecuted instantiation: CGDecl.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<(anonymous namespace)::DestroyObject, clang::CodeGen::Address, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>, clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, clang::QualType, void (*)(clang::CodeGen::CodeGenFunction&, clang::CodeGen::Address, clang::QualType), bool)
Unexecuted instantiation: void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, clang::CodeGen::Address, llvm::Value*)
Unexecuted instantiation: void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<clang::CodeGen::CodeGenFunction::CallLifetimeEnd, clang::CodeGen::Address, llvm::Value*>, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > > >(clang::CodeGen::CleanupKind, clang::CodeGen::Address, std::__1::tuple<clang::CodeGen::DominatingValue<clang::CodeGen::Address>::saved_type, llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > >)
Unexecuted instantiation: CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<(anonymous namespace)::CallObjCArcUse, llvm::Value*>(clang::CodeGen::CleanupKind, clang::CodeGen::Address, llvm::Value*)
Unexecuted instantiation: CGBuiltin.cpp:void clang::CodeGen::CodeGenFunction::pushCleanupAfterFullExprWithActiveFlag<clang::CodeGen::EHScopeStack::ConditionalCleanup<(anonymous namespace)::CallObjCArcUse, llvm::Value*>, std::__1::tuple<llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > > >(clang::CodeGen::CleanupKind, clang::CodeGen::Address, std::__1::tuple<llvm::PointerIntPair<llvm::Value*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value*>, llvm::PointerIntPairInfo<llvm::Value*, 1u, llvm::PointerLikeTypeTraits<llvm::Value*> > > >)
832
833
  /// Set up the last cleanup that was pushed as a conditional
834
  /// full-expression cleanup.
835
0
  void initFullExprCleanup() {
836
0
    initFullExprCleanupWithFlag(createCleanupActiveFlag());
837
0
  }
838
839
  void initFullExprCleanupWithFlag(Address ActiveFlag);
840
  Address createCleanupActiveFlag();
841
842
  /// PushDestructorCleanup - Push a cleanup to call the
843
  /// complete-object destructor of an object of the given type at the
844
  /// given address.  Does nothing if T is not a C++ class type with a
845
  /// non-trivial destructor.
846
  void PushDestructorCleanup(QualType T, Address Addr);
847
848
  /// PushDestructorCleanup - Push a cleanup to call the
849
  /// complete-object variant of the given destructor on the object at
850
  /// the given address.
851
  void PushDestructorCleanup(const CXXDestructorDecl *Dtor, QualType T,
852
                             Address Addr);
853
854
  /// PopCleanupBlock - Will pop the cleanup entry on the stack and
855
  /// process all branch fixups.
856
  void PopCleanupBlock(bool FallThroughIsBranchThrough = false);
857
858
  /// DeactivateCleanupBlock - Deactivates the given cleanup block.
859
  /// The block cannot be reactivated.  Pops it if it's the top of the
860
  /// stack.
861
  ///
862
  /// \param DominatingIP - An instruction which is known to
863
  ///   dominate the current IP (if set) and which lies along
864
  ///   all paths of execution between the current IP and the
865
  ///   the point at which the cleanup comes into scope.
866
  void DeactivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
867
                              llvm::Instruction *DominatingIP);
868
869
  /// ActivateCleanupBlock - Activates an initially-inactive cleanup.
870
  /// Cannot be used to resurrect a deactivated cleanup.
871
  ///
872
  /// \param DominatingIP - An instruction which is known to
873
  ///   dominate the current IP (if set) and which lies along
874
  ///   all paths of execution between the current IP and the
875
  ///   the point at which the cleanup comes into scope.
876
  void ActivateCleanupBlock(EHScopeStack::stable_iterator Cleanup,
877
                            llvm::Instruction *DominatingIP);
878
879
  /// Enters a new scope for capturing cleanups, all of which
880
  /// will be executed once the scope is exited.
881
  class RunCleanupsScope {
882
    EHScopeStack::stable_iterator CleanupStackDepth, OldCleanupScopeDepth;
883
    size_t LifetimeExtendedCleanupStackSize;
884
    bool OldDidCallStackSave;
885
  protected:
886
    bool PerformCleanup;
887
  private:
888
889
    RunCleanupsScope(const RunCleanupsScope &) = delete;
890
    void operator=(const RunCleanupsScope &) = delete;
891
892
  protected:
893
    CodeGenFunction& CGF;
894
895
  public:
896
    /// Enter a new cleanup scope.
897
    explicit RunCleanupsScope(CodeGenFunction &CGF)
898
      : PerformCleanup(true), CGF(CGF)
899
0
    {
900
0
      CleanupStackDepth = CGF.EHStack.stable_begin();
901
0
      LifetimeExtendedCleanupStackSize =
902
0
          CGF.LifetimeExtendedCleanupStack.size();
903
0
      OldDidCallStackSave = CGF.DidCallStackSave;
904
0
      CGF.DidCallStackSave = false;
905
0
      OldCleanupScopeDepth = CGF.CurrentCleanupScopeDepth;
906
0
      CGF.CurrentCleanupScopeDepth = CleanupStackDepth;
907
0
    }
908
909
    /// Exit this cleanup scope, emitting any accumulated cleanups.
910
0
    ~RunCleanupsScope() {
911
0
      if (PerformCleanup)
912
0
        ForceCleanup();
913
0
    }
914
915
    /// Determine whether this scope requires any cleanups.
916
0
    bool requiresCleanups() const {
917
0
      return CGF.EHStack.stable_begin() != CleanupStackDepth;
918
0
    }
919
920
    /// Force the emission of cleanups now, instead of waiting
921
    /// until this object is destroyed.
922
    /// \param ValuesToReload - A list of values that need to be available at
923
    /// the insertion point after cleanup emission. If cleanup emission created
924
    /// a shared cleanup block, these value pointers will be rewritten.
925
    /// Otherwise, they not will be modified.
926
0
    void ForceCleanup(std::initializer_list<llvm::Value**> ValuesToReload = {}) {
927
0
      assert(PerformCleanup && "Already forced cleanup");
928
0
      CGF.DidCallStackSave = OldDidCallStackSave;
929
0
      CGF.PopCleanupBlocks(CleanupStackDepth, LifetimeExtendedCleanupStackSize,
930
0
                           ValuesToReload);
931
0
      PerformCleanup = false;
932
0
      CGF.CurrentCleanupScopeDepth = OldCleanupScopeDepth;
933
0
    }
934
  };
935
936
  // Cleanup stack depth of the RunCleanupsScope that was pushed most recently.
937
  EHScopeStack::stable_iterator CurrentCleanupScopeDepth =
938
      EHScopeStack::stable_end();
939
940
  class LexicalScope : public RunCleanupsScope {
941
    SourceRange Range;
942
    SmallVector<const LabelDecl*, 4> Labels;
943
    LexicalScope *ParentScope;
944
945
    LexicalScope(const LexicalScope &) = delete;
946
    void operator=(const LexicalScope &) = delete;
947
948
  public:
949
    /// Enter a new cleanup scope.
950
    explicit LexicalScope(CodeGenFunction &CGF, SourceRange Range)
951
0
      : RunCleanupsScope(CGF), Range(Range), ParentScope(CGF.CurLexicalScope) {
952
0
      CGF.CurLexicalScope = this;
953
0
      if (CGDebugInfo *DI = CGF.getDebugInfo())
954
0
        DI->EmitLexicalBlockStart(CGF.Builder, Range.getBegin());
955
0
    }
956
957
0
    void addLabel(const LabelDecl *label) {
958
0
      assert(PerformCleanup && "adding label to dead scope?");
959
0
      Labels.push_back(label);
960
0
    }
961
962
    /// Exit this cleanup scope, emitting any accumulated
963
    /// cleanups.
964
0
    ~LexicalScope() {
965
0
      if (CGDebugInfo *DI = CGF.getDebugInfo())
966
0
        DI->EmitLexicalBlockEnd(CGF.Builder, Range.getEnd());
967
968
      // If we should perform a cleanup, force them now.  Note that
969
      // this ends the cleanup scope before rescoping any labels.
970
0
      if (PerformCleanup) {
971
0
        ApplyDebugLocation DL(CGF, Range.getEnd());
972
0
        ForceCleanup();
973
0
      }
974
0
    }
975
976
    /// Force the emission of cleanups now, instead of waiting
977
    /// until this object is destroyed.
978
0
    void ForceCleanup() {
979
0
      CGF.CurLexicalScope = ParentScope;
980
0
      RunCleanupsScope::ForceCleanup();
981
982
0
      if (!Labels.empty())
983
0
        rescopeLabels();
984
0
    }
985
986
0
    bool hasLabels() const {
987
0
      return !Labels.empty();
988
0
    }
989
990
    void rescopeLabels();
991
  };
992
993
  typedef llvm::DenseMap<const Decl *, Address> DeclMapTy;
994
995
  /// The class used to assign some variables some temporarily addresses.
996
  class OMPMapVars {
997
    DeclMapTy SavedLocals;
998
    DeclMapTy SavedTempAddresses;
999
    OMPMapVars(const OMPMapVars &) = delete;
1000
    void operator=(const OMPMapVars &) = delete;
1001
1002
  public:
1003
0
    explicit OMPMapVars() = default;
1004
0
    ~OMPMapVars() {
1005
0
      assert(SavedLocals.empty() && "Did not restored original addresses.");
1006
0
    };
1007
1008
    /// Sets the address of the variable \p LocalVD to be \p TempAddr in
1009
    /// function \p CGF.
1010
    /// \return true if at least one variable was set already, false otherwise.
1011
    bool setVarAddr(CodeGenFunction &CGF, const VarDecl *LocalVD,
1012
0
                    Address TempAddr) {
1013
0
      LocalVD = LocalVD->getCanonicalDecl();
1014
      // Only save it once.
1015
0
      if (SavedLocals.count(LocalVD)) return false;
1016
1017
      // Copy the existing local entry to SavedLocals.
1018
0
      auto it = CGF.LocalDeclMap.find(LocalVD);
1019
0
      if (it != CGF.LocalDeclMap.end())
1020
0
        SavedLocals.try_emplace(LocalVD, it->second);
1021
0
      else
1022
0
        SavedLocals.try_emplace(LocalVD, Address::invalid());
1023
1024
      // Generate the private entry.
1025
0
      QualType VarTy = LocalVD->getType();
1026
0
      if (VarTy->isReferenceType()) {
1027
0
        Address Temp = CGF.CreateMemTemp(VarTy);
1028
0
        CGF.Builder.CreateStore(TempAddr.getPointer(), Temp);
1029
0
        TempAddr = Temp;
1030
0
      }
1031
0
      SavedTempAddresses.try_emplace(LocalVD, TempAddr);
1032
1033
0
      return true;
1034
0
    }
1035
1036
    /// Applies new addresses to the list of the variables.
1037
    /// \return true if at least one variable is using new address, false
1038
    /// otherwise.
1039
0
    bool apply(CodeGenFunction &CGF) {
1040
0
      copyInto(SavedTempAddresses, CGF.LocalDeclMap);
1041
0
      SavedTempAddresses.clear();
1042
0
      return !SavedLocals.empty();
1043
0
    }
1044
1045
    /// Restores original addresses of the variables.
1046
0
    void restore(CodeGenFunction &CGF) {
1047
0
      if (!SavedLocals.empty()) {
1048
0
        copyInto(SavedLocals, CGF.LocalDeclMap);
1049
0
        SavedLocals.clear();
1050
0
      }
1051
0
    }
1052
1053
  private:
1054
    /// Copy all the entries in the source map over the corresponding
1055
    /// entries in the destination, which must exist.
1056
0
    static void copyInto(const DeclMapTy &Src, DeclMapTy &Dest) {
1057
0
      for (auto &Pair : Src) {
1058
0
        if (!Pair.second.isValid()) {
1059
0
          Dest.erase(Pair.first);
1060
0
          continue;
1061
0
        }
1062
1063
0
        auto I = Dest.find(Pair.first);
1064
0
        if (I != Dest.end())
1065
0
          I->second = Pair.second;
1066
0
        else
1067
0
          Dest.insert(Pair);
1068
0
      }
1069
0
    }
1070
  };
1071
1072
  /// The scope used to remap some variables as private in the OpenMP loop body
1073
  /// (or other captured region emitted without outlining), and to restore old
1074
  /// vars back on exit.
1075
  class OMPPrivateScope : public RunCleanupsScope {
1076
    OMPMapVars MappedVars;
1077
    OMPPrivateScope(const OMPPrivateScope &) = delete;
1078
    void operator=(const OMPPrivateScope &) = delete;
1079
1080
  public:
1081
    /// Enter a new OpenMP private scope.
1082
0
    explicit OMPPrivateScope(CodeGenFunction &CGF) : RunCleanupsScope(CGF) {}
1083
1084
    /// Registers \p LocalVD variable as a private with \p Addr as the address
1085
    /// of the corresponding private variable. \p
1086
    /// PrivateGen is the address of the generated private variable.
1087
    /// \return true if the variable is registered as private, false if it has
1088
    /// been privatized already.
1089
0
    bool addPrivate(const VarDecl *LocalVD, Address Addr) {
1090
0
      assert(PerformCleanup && "adding private to dead scope");
1091
0
      return MappedVars.setVarAddr(CGF, LocalVD, Addr);
1092
0
    }
1093
1094
    /// Privatizes local variables previously registered as private.
1095
    /// Registration is separate from the actual privatization to allow
1096
    /// initializers use values of the original variables, not the private one.
1097
    /// This is important, for example, if the private variable is a class
1098
    /// variable initialized by a constructor that references other private
1099
    /// variables. But at initialization original variables must be used, not
1100
    /// private copies.
1101
    /// \return true if at least one variable was privatized, false otherwise.
1102
0
    bool Privatize() { return MappedVars.apply(CGF); }
1103
1104
0
    void ForceCleanup() {
1105
0
      RunCleanupsScope::ForceCleanup();
1106
0
      restoreMap();
1107
0
    }
1108
1109
    /// Exit scope - all the mapped variables are restored.
1110
0
    ~OMPPrivateScope() {
1111
0
      if (PerformCleanup)
1112
0
        ForceCleanup();
1113
0
    }
1114
1115
    /// Checks if the global variable is captured in current function.
1116
0
    bool isGlobalVarCaptured(const VarDecl *VD) const {
1117
0
      VD = VD->getCanonicalDecl();
1118
0
      return !VD->isLocalVarDeclOrParm() && CGF.LocalDeclMap.count(VD) > 0;
1119
0
    }
1120
1121
    /// Restore all mapped variables w/o clean up. This is usefully when we want
1122
    /// to reference the original variables but don't want the clean up because
1123
    /// that could emit lifetime end too early, causing backend issue #56913.
1124
0
    void restoreMap() { MappedVars.restore(CGF); }
1125
  };
1126
1127
  /// Save/restore original map of previously emitted local vars in case when we
1128
  /// need to duplicate emission of the same code several times in the same
1129
  /// function for OpenMP code.
1130
  class OMPLocalDeclMapRAII {
1131
    CodeGenFunction &CGF;
1132
    DeclMapTy SavedMap;
1133
1134
  public:
1135
    OMPLocalDeclMapRAII(CodeGenFunction &CGF)
1136
0
        : CGF(CGF), SavedMap(CGF.LocalDeclMap) {}
1137
0
    ~OMPLocalDeclMapRAII() { SavedMap.swap(CGF.LocalDeclMap); }
1138
  };
1139
1140
  /// Takes the old cleanup stack size and emits the cleanup blocks
1141
  /// that have been added.
1142
  void
1143
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1144
                   std::initializer_list<llvm::Value **> ValuesToReload = {});
1145
1146
  /// Takes the old cleanup stack size and emits the cleanup blocks
1147
  /// that have been added, then adds all lifetime-extended cleanups from
1148
  /// the given position to the stack.
1149
  void
1150
  PopCleanupBlocks(EHScopeStack::stable_iterator OldCleanupStackSize,
1151
                   size_t OldLifetimeExtendedStackSize,
1152
                   std::initializer_list<llvm::Value **> ValuesToReload = {});
1153
1154
  void ResolveBranchFixups(llvm::BasicBlock *Target);
1155
1156
  /// The given basic block lies in the current EH scope, but may be a
1157
  /// target of a potentially scope-crossing jump; get a stable handle
1158
  /// to which we can perform this jump later.
1159
0
  JumpDest getJumpDestInCurrentScope(llvm::BasicBlock *Target) {
1160
0
    return JumpDest(Target,
1161
0
                    EHStack.getInnermostNormalCleanup(),
1162
0
                    NextCleanupDestIndex++);
1163
0
  }
1164
1165
  /// The given basic block lies in the current EH scope, but may be a
1166
  /// target of a potentially scope-crossing jump; get a stable handle
1167
  /// to which we can perform this jump later.
1168
0
  JumpDest getJumpDestInCurrentScope(StringRef Name = StringRef()) {
1169
0
    return getJumpDestInCurrentScope(createBasicBlock(Name));
1170
0
  }
1171
1172
  /// EmitBranchThroughCleanup - Emit a branch from the current insert
1173
  /// block through the normal cleanup handling code (if any) and then
1174
  /// on to \arg Dest.
1175
  void EmitBranchThroughCleanup(JumpDest Dest);
1176
1177
  /// isObviouslyBranchWithoutCleanups - Return true if a branch to the
1178
  /// specified destination obviously has no cleanups to run.  'false' is always
1179
  /// a conservatively correct answer for this method.
1180
  bool isObviouslyBranchWithoutCleanups(JumpDest Dest) const;
1181
1182
  /// popCatchScope - Pops the catch scope at the top of the EHScope
1183
  /// stack, emitting any required code (other than the catch handlers
1184
  /// themselves).
1185
  void popCatchScope();
1186
1187
  llvm::BasicBlock *getEHResumeBlock(bool isCleanup);
1188
  llvm::BasicBlock *getEHDispatchBlock(EHScopeStack::stable_iterator scope);
1189
  llvm::BasicBlock *
1190
  getFuncletEHDispatchBlock(EHScopeStack::stable_iterator scope);
1191
1192
  /// An object to manage conditionally-evaluated expressions.
1193
  class ConditionalEvaluation {
1194
    llvm::BasicBlock *StartBB;
1195
1196
  public:
1197
    ConditionalEvaluation(CodeGenFunction &CGF)
1198
0
      : StartBB(CGF.Builder.GetInsertBlock()) {}
1199
1200
0
    void begin(CodeGenFunction &CGF) {
1201
0
      assert(CGF.OutermostConditional != this);
1202
0
      if (!CGF.OutermostConditional)
1203
0
        CGF.OutermostConditional = this;
1204
0
    }
1205
1206
0
    void end(CodeGenFunction &CGF) {
1207
0
      assert(CGF.OutermostConditional != nullptr);
1208
0
      if (CGF.OutermostConditional == this)
1209
0
        CGF.OutermostConditional = nullptr;
1210
0
    }
1211
1212
    /// Returns a block which will be executed prior to each
1213
    /// evaluation of the conditional code.
1214
0
    llvm::BasicBlock *getStartingBlock() const {
1215
0
      return StartBB;
1216
0
    }
1217
  };
1218
1219
  /// isInConditionalBranch - Return true if we're currently emitting
1220
  /// one branch or the other of a conditional expression.
1221
0
  bool isInConditionalBranch() const { return OutermostConditional != nullptr; }
1222
1223
0
  void setBeforeOutermostConditional(llvm::Value *value, Address addr) {
1224
0
    assert(isInConditionalBranch());
1225
0
    llvm::BasicBlock *block = OutermostConditional->getStartingBlock();
1226
0
    auto store = new llvm::StoreInst(value, addr.getPointer(), &block->back());
1227
0
    store->setAlignment(addr.getAlignment().getAsAlign());
1228
0
  }
1229
1230
  /// An RAII object to record that we're evaluating a statement
1231
  /// expression.
1232
  class StmtExprEvaluation {
1233
    CodeGenFunction &CGF;
1234
1235
    /// We have to save the outermost conditional: cleanups in a
1236
    /// statement expression aren't conditional just because the
1237
    /// StmtExpr is.
1238
    ConditionalEvaluation *SavedOutermostConditional;
1239
1240
  public:
1241
    StmtExprEvaluation(CodeGenFunction &CGF)
1242
0
      : CGF(CGF), SavedOutermostConditional(CGF.OutermostConditional) {
1243
0
      CGF.OutermostConditional = nullptr;
1244
0
    }
1245
1246
0
    ~StmtExprEvaluation() {
1247
0
      CGF.OutermostConditional = SavedOutermostConditional;
1248
0
      CGF.EnsureInsertPoint();
1249
0
    }
1250
  };
1251
1252
  /// An object which temporarily prevents a value from being
1253
  /// destroyed by aggressive peephole optimizations that assume that
1254
  /// all uses of a value have been realized in the IR.
1255
  class PeepholeProtection {
1256
    llvm::Instruction *Inst = nullptr;
1257
    friend class CodeGenFunction;
1258
1259
  public:
1260
0
    PeepholeProtection() = default;
1261
  };
1262
1263
  /// A non-RAII class containing all the information about a bound
1264
  /// opaque value.  OpaqueValueMapping, below, is a RAII wrapper for
1265
  /// this which makes individual mappings very simple; using this
1266
  /// class directly is useful when you have a variable number of
1267
  /// opaque values or don't want the RAII functionality for some
1268
  /// reason.
1269
  class OpaqueValueMappingData {
1270
    const OpaqueValueExpr *OpaqueValue;
1271
    bool BoundLValue;
1272
    CodeGenFunction::PeepholeProtection Protection;
1273
1274
    OpaqueValueMappingData(const OpaqueValueExpr *ov,
1275
                           bool boundLValue)
1276
0
      : OpaqueValue(ov), BoundLValue(boundLValue) {}
1277
  public:
1278
0
    OpaqueValueMappingData() : OpaqueValue(nullptr) {}
1279
1280
0
    static bool shouldBindAsLValue(const Expr *expr) {
1281
      // gl-values should be bound as l-values for obvious reasons.
1282
      // Records should be bound as l-values because IR generation
1283
      // always keeps them in memory.  Expressions of function type
1284
      // act exactly like l-values but are formally required to be
1285
      // r-values in C.
1286
0
      return expr->isGLValue() ||
1287
0
             expr->getType()->isFunctionType() ||
1288
0
             hasAggregateEvaluationKind(expr->getType());
1289
0
    }
1290
1291
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1292
                                       const OpaqueValueExpr *ov,
1293
0
                                       const Expr *e) {
1294
0
      if (shouldBindAsLValue(ov))
1295
0
        return bind(CGF, ov, CGF.EmitLValue(e));
1296
0
      return bind(CGF, ov, CGF.EmitAnyExpr(e));
1297
0
    }
1298
1299
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1300
                                       const OpaqueValueExpr *ov,
1301
0
                                       const LValue &lv) {
1302
0
      assert(shouldBindAsLValue(ov));
1303
0
      CGF.OpaqueLValues.insert(std::make_pair(ov, lv));
1304
0
      return OpaqueValueMappingData(ov, true);
1305
0
    }
1306
1307
    static OpaqueValueMappingData bind(CodeGenFunction &CGF,
1308
                                       const OpaqueValueExpr *ov,
1309
0
                                       const RValue &rv) {
1310
0
      assert(!shouldBindAsLValue(ov));
1311
0
      CGF.OpaqueRValues.insert(std::make_pair(ov, rv));
1312
1313
0
      OpaqueValueMappingData data(ov, false);
1314
1315
      // Work around an extremely aggressive peephole optimization in
1316
      // EmitScalarConversion which assumes that all other uses of a
1317
      // value are extant.
1318
0
      data.Protection = CGF.protectFromPeepholes(rv);
1319
1320
0
      return data;
1321
0
    }
1322
1323
0
    bool isValid() const { return OpaqueValue != nullptr; }
1324
0
    void clear() { OpaqueValue = nullptr; }
1325
1326
0
    void unbind(CodeGenFunction &CGF) {
1327
0
      assert(OpaqueValue && "no data to unbind!");
1328
1329
0
      if (BoundLValue) {
1330
0
        CGF.OpaqueLValues.erase(OpaqueValue);
1331
0
      } else {
1332
0
        CGF.OpaqueRValues.erase(OpaqueValue);
1333
0
        CGF.unprotectFromPeepholes(Protection);
1334
0
      }
1335
0
    }
1336
  };
1337
1338
  /// An RAII object to set (and then clear) a mapping for an OpaqueValueExpr.
1339
  class OpaqueValueMapping {
1340
    CodeGenFunction &CGF;
1341
    OpaqueValueMappingData Data;
1342
1343
  public:
1344
0
    static bool shouldBindAsLValue(const Expr *expr) {
1345
0
      return OpaqueValueMappingData::shouldBindAsLValue(expr);
1346
0
    }
1347
1348
    /// Build the opaque value mapping for the given conditional
1349
    /// operator if it's the GNU ?: extension.  This is a common
1350
    /// enough pattern that the convenience operator is really
1351
    /// helpful.
1352
    ///
1353
    OpaqueValueMapping(CodeGenFunction &CGF,
1354
0
                       const AbstractConditionalOperator *op) : CGF(CGF) {
1355
0
      if (isa<ConditionalOperator>(op))
1356
        // Leave Data empty.
1357
0
        return;
1358
1359
0
      const BinaryConditionalOperator *e = cast<BinaryConditionalOperator>(op);
1360
0
      Data = OpaqueValueMappingData::bind(CGF, e->getOpaqueValue(),
1361
0
                                          e->getCommon());
1362
0
    }
1363
1364
    /// Build the opaque value mapping for an OpaqueValueExpr whose source
1365
    /// expression is set to the expression the OVE represents.
1366
    OpaqueValueMapping(CodeGenFunction &CGF, const OpaqueValueExpr *OV)
1367
0
        : CGF(CGF) {
1368
0
      if (OV) {
1369
0
        assert(OV->getSourceExpr() && "wrong form of OpaqueValueMapping used "
1370
0
                                      "for OVE with no source expression");
1371
0
        Data = OpaqueValueMappingData::bind(CGF, OV, OV->getSourceExpr());
1372
0
      }
1373
0
    }
1374
1375
    OpaqueValueMapping(CodeGenFunction &CGF,
1376
                       const OpaqueValueExpr *opaqueValue,
1377
                       LValue lvalue)
1378
0
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, lvalue)) {
1379
0
    }
1380
1381
    OpaqueValueMapping(CodeGenFunction &CGF,
1382
                       const OpaqueValueExpr *opaqueValue,
1383
                       RValue rvalue)
1384
0
      : CGF(CGF), Data(OpaqueValueMappingData::bind(CGF, opaqueValue, rvalue)) {
1385
0
    }
1386
1387
0
    void pop() {
1388
0
      Data.unbind(CGF);
1389
0
      Data.clear();
1390
0
    }
1391
1392
0
    ~OpaqueValueMapping() {
1393
0
      if (Data.isValid()) Data.unbind(CGF);
1394
0
    }
1395
  };
1396
1397
private:
1398
  CGDebugInfo *DebugInfo;
1399
  /// Used to create unique names for artificial VLA size debug info variables.
1400
  unsigned VLAExprCounter = 0;
1401
  bool DisableDebugInfo = false;
1402
1403
  /// DidCallStackSave - Whether llvm.stacksave has been called. Used to avoid
1404
  /// calling llvm.stacksave for multiple VLAs in the same scope.
1405
  bool DidCallStackSave = false;
1406
1407
  /// IndirectBranch - The first time an indirect goto is seen we create a block
1408
  /// with an indirect branch.  Every time we see the address of a label taken,
1409
  /// we add the label to the indirect goto.  Every subsequent indirect goto is
1410
  /// codegen'd as a jump to the IndirectBranch's basic block.
1411
  llvm::IndirectBrInst *IndirectBranch = nullptr;
1412
1413
  /// LocalDeclMap - This keeps track of the LLVM allocas or globals for local C
1414
  /// decls.
1415
  DeclMapTy LocalDeclMap;
1416
1417
  // Keep track of the cleanups for callee-destructed parameters pushed to the
1418
  // cleanup stack so that they can be deactivated later.
1419
  llvm::DenseMap<const ParmVarDecl *, EHScopeStack::stable_iterator>
1420
      CalleeDestructedParamCleanups;
1421
1422
  /// SizeArguments - If a ParmVarDecl had the pass_object_size attribute, this
1423
  /// will contain a mapping from said ParmVarDecl to its implicit "object_size"
1424
  /// parameter.
1425
  llvm::SmallDenseMap<const ParmVarDecl *, const ImplicitParamDecl *, 2>
1426
      SizeArguments;
1427
1428
  /// Track escaped local variables with auto storage. Used during SEH
1429
  /// outlining to produce a call to llvm.localescape.
1430
  llvm::DenseMap<llvm::AllocaInst *, int> EscapedLocals;
1431
1432
  /// LabelMap - This keeps track of the LLVM basic block for each C label.
1433
  llvm::DenseMap<const LabelDecl*, JumpDest> LabelMap;
1434
1435
  // BreakContinueStack - This keeps track of where break and continue
1436
  // statements should jump to.
1437
  struct BreakContinue {
1438
    BreakContinue(JumpDest Break, JumpDest Continue)
1439
0
      : BreakBlock(Break), ContinueBlock(Continue) {}
1440
1441
    JumpDest BreakBlock;
1442
    JumpDest ContinueBlock;
1443
  };
1444
  SmallVector<BreakContinue, 8> BreakContinueStack;
1445
1446
  /// Handles cancellation exit points in OpenMP-related constructs.
1447
  class OpenMPCancelExitStack {
1448
    /// Tracks cancellation exit point and join point for cancel-related exit
1449
    /// and normal exit.
1450
    struct CancelExit {
1451
0
      CancelExit() = default;
1452
      CancelExit(OpenMPDirectiveKind Kind, JumpDest ExitBlock,
1453
                 JumpDest ContBlock)
1454
0
          : Kind(Kind), ExitBlock(ExitBlock), ContBlock(ContBlock) {}
1455
      OpenMPDirectiveKind Kind = llvm::omp::OMPD_unknown;
1456
      /// true if the exit block has been emitted already by the special
1457
      /// emitExit() call, false if the default codegen is used.
1458
      bool HasBeenEmitted = false;
1459
      JumpDest ExitBlock;
1460
      JumpDest ContBlock;
1461
    };
1462
1463
    SmallVector<CancelExit, 8> Stack;
1464
1465
  public:
1466
0
    OpenMPCancelExitStack() : Stack(1) {}
1467
0
    ~OpenMPCancelExitStack() = default;
1468
    /// Fetches the exit block for the current OpenMP construct.
1469
0
    JumpDest getExitBlock() const { return Stack.back().ExitBlock; }
1470
    /// Emits exit block with special codegen procedure specific for the related
1471
    /// OpenMP construct + emits code for normal construct cleanup.
1472
    void emitExit(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
1473
0
                  const llvm::function_ref<void(CodeGenFunction &)> CodeGen) {
1474
0
      if (Stack.back().Kind == Kind && getExitBlock().isValid()) {
1475
0
        assert(CGF.getOMPCancelDestination(Kind).isValid());
1476
0
        assert(CGF.HaveInsertPoint());
1477
0
        assert(!Stack.back().HasBeenEmitted);
1478
0
        auto IP = CGF.Builder.saveAndClearIP();
1479
0
        CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1480
0
        CodeGen(CGF);
1481
0
        CGF.EmitBranch(Stack.back().ContBlock.getBlock());
1482
0
        CGF.Builder.restoreIP(IP);
1483
0
        Stack.back().HasBeenEmitted = true;
1484
0
      }
1485
0
      CodeGen(CGF);
1486
0
    }
1487
    /// Enter the cancel supporting \a Kind construct.
1488
    /// \param Kind OpenMP directive that supports cancel constructs.
1489
    /// \param HasCancel true, if the construct has inner cancel directive,
1490
    /// false otherwise.
1491
0
    void enter(CodeGenFunction &CGF, OpenMPDirectiveKind Kind, bool HasCancel) {
1492
0
      Stack.push_back({Kind,
1493
0
                       HasCancel ? CGF.getJumpDestInCurrentScope("cancel.exit")
1494
0
                                 : JumpDest(),
1495
0
                       HasCancel ? CGF.getJumpDestInCurrentScope("cancel.cont")
1496
0
                                 : JumpDest()});
1497
0
    }
1498
    /// Emits default exit point for the cancel construct (if the special one
1499
    /// has not be used) + join point for cancel/normal exits.
1500
0
    void exit(CodeGenFunction &CGF) {
1501
0
      if (getExitBlock().isValid()) {
1502
0
        assert(CGF.getOMPCancelDestination(Stack.back().Kind).isValid());
1503
0
        bool HaveIP = CGF.HaveInsertPoint();
1504
0
        if (!Stack.back().HasBeenEmitted) {
1505
0
          if (HaveIP)
1506
0
            CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1507
0
          CGF.EmitBlock(Stack.back().ExitBlock.getBlock());
1508
0
          CGF.EmitBranchThroughCleanup(Stack.back().ContBlock);
1509
0
        }
1510
0
        CGF.EmitBlock(Stack.back().ContBlock.getBlock());
1511
0
        if (!HaveIP) {
1512
0
          CGF.Builder.CreateUnreachable();
1513
0
          CGF.Builder.ClearInsertionPoint();
1514
0
        }
1515
0
      }
1516
0
      Stack.pop_back();
1517
0
    }
1518
  };
1519
  OpenMPCancelExitStack OMPCancelStack;
1520
1521
  /// Lower the Likelihood knowledge about the \p Cond via llvm.expect intrin.
1522
  llvm::Value *emitCondLikelihoodViaExpectIntrinsic(llvm::Value *Cond,
1523
                                                    Stmt::Likelihood LH);
1524
1525
  CodeGenPGO PGO;
1526
1527
  /// Bitmap used by MC/DC to track condition outcomes of a boolean expression.
1528
  Address MCDCCondBitmapAddr = Address::invalid();
1529
1530
  /// Calculate branch weights appropriate for PGO data
1531
  llvm::MDNode *createProfileWeights(uint64_t TrueCount,
1532
                                     uint64_t FalseCount) const;
1533
  llvm::MDNode *createProfileWeights(ArrayRef<uint64_t> Weights) const;
1534
  llvm::MDNode *createProfileWeightsForLoop(const Stmt *Cond,
1535
                                            uint64_t LoopCount) const;
1536
1537
public:
1538
  /// Increment the profiler's counter for the given statement by \p StepV.
1539
  /// If \p StepV is null, the default increment is 1.
1540
0
  void incrementProfileCounter(const Stmt *S, llvm::Value *StepV = nullptr) {
1541
0
    if (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1542
0
        !CurFn->hasFnAttribute(llvm::Attribute::NoProfile) &&
1543
0
        !CurFn->hasFnAttribute(llvm::Attribute::SkipProfile))
1544
0
      PGO.emitCounterIncrement(Builder, S, StepV);
1545
0
    PGO.setCurrentStmt(S);
1546
0
  }
1547
1548
0
  bool isMCDCCoverageEnabled() const {
1549
0
    return (CGM.getCodeGenOpts().hasProfileClangInstr() &&
1550
0
            CGM.getCodeGenOpts().MCDCCoverage &&
1551
0
            !CurFn->hasFnAttribute(llvm::Attribute::NoProfile));
1552
0
  }
1553
1554
  /// Allocate a temp value on the stack that MCDC can use to track condition
1555
  /// results.
1556
0
  void maybeCreateMCDCCondBitmap() {
1557
0
    if (isMCDCCoverageEnabled()) {
1558
0
      PGO.emitMCDCParameters(Builder);
1559
0
      MCDCCondBitmapAddr =
1560
0
          CreateIRTemp(getContext().UnsignedIntTy, "mcdc.addr");
1561
0
    }
1562
0
  }
1563
1564
0
  bool isBinaryLogicalOp(const Expr *E) const {
1565
0
    const BinaryOperator *BOp = dyn_cast<BinaryOperator>(E->IgnoreParens());
1566
0
    return (BOp && BOp->isLogicalOp());
1567
0
  }
1568
1569
  /// Zero-init the MCDC temp value.
1570
0
  void maybeResetMCDCCondBitmap(const Expr *E) {
1571
0
    if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) {
1572
0
      PGO.emitMCDCCondBitmapReset(Builder, E, MCDCCondBitmapAddr);
1573
0
      PGO.setCurrentStmt(E);
1574
0
    }
1575
0
  }
1576
1577
  /// Increment the profiler's counter for the given expression by \p StepV.
1578
  /// If \p StepV is null, the default increment is 1.
1579
0
  void maybeUpdateMCDCTestVectorBitmap(const Expr *E) {
1580
0
    if (isMCDCCoverageEnabled() && isBinaryLogicalOp(E)) {
1581
0
      PGO.emitMCDCTestVectorBitmapUpdate(Builder, E, MCDCCondBitmapAddr);
1582
0
      PGO.setCurrentStmt(E);
1583
0
    }
1584
0
  }
1585
1586
  /// Update the MCDC temp value with the condition's evaluated result.
1587
0
  void maybeUpdateMCDCCondBitmap(const Expr *E, llvm::Value *Val) {
1588
0
    if (isMCDCCoverageEnabled()) {
1589
0
      PGO.emitMCDCCondBitmapUpdate(Builder, E, MCDCCondBitmapAddr, Val);
1590
0
      PGO.setCurrentStmt(E);
1591
0
    }
1592
0
  }
1593
1594
  /// Get the profiler's count for the given statement.
1595
0
  uint64_t getProfileCount(const Stmt *S) {
1596
0
    return PGO.getStmtCount(S).value_or(0);
1597
0
  }
1598
1599
  /// Set the profiler's current count.
1600
0
  void setCurrentProfileCount(uint64_t Count) {
1601
0
    PGO.setCurrentRegionCount(Count);
1602
0
  }
1603
1604
  /// Get the profiler's current count. This is generally the count for the most
1605
  /// recently incremented counter.
1606
0
  uint64_t getCurrentProfileCount() {
1607
0
    return PGO.getCurrentRegionCount();
1608
0
  }
1609
1610
private:
1611
1612
  /// SwitchInsn - This is nearest current switch instruction. It is null if
1613
  /// current context is not in a switch.
1614
  llvm::SwitchInst *SwitchInsn = nullptr;
1615
  /// The branch weights of SwitchInsn when doing instrumentation based PGO.
1616
  SmallVector<uint64_t, 16> *SwitchWeights = nullptr;
1617
1618
  /// The likelihood attributes of the SwitchCase.
1619
  SmallVector<Stmt::Likelihood, 16> *SwitchLikelihood = nullptr;
1620
1621
  /// CaseRangeBlock - This block holds if condition check for last case
1622
  /// statement range in current switch instruction.
1623
  llvm::BasicBlock *CaseRangeBlock = nullptr;
1624
1625
  /// OpaqueLValues - Keeps track of the current set of opaque value
1626
  /// expressions.
1627
  llvm::DenseMap<const OpaqueValueExpr *, LValue> OpaqueLValues;
1628
  llvm::DenseMap<const OpaqueValueExpr *, RValue> OpaqueRValues;
1629
1630
  // VLASizeMap - This keeps track of the associated size for each VLA type.
1631
  // We track this by the size expression rather than the type itself because
1632
  // in certain situations, like a const qualifier applied to an VLA typedef,
1633
  // multiple VLA types can share the same size expression.
1634
  // FIXME: Maybe this could be a stack of maps that is pushed/popped as we
1635
  // enter/leave scopes.
1636
  llvm::DenseMap<const Expr*, llvm::Value*> VLASizeMap;
1637
1638
  /// A block containing a single 'unreachable' instruction.  Created
1639
  /// lazily by getUnreachableBlock().
1640
  llvm::BasicBlock *UnreachableBlock = nullptr;
1641
1642
  /// Counts of the number return expressions in the function.
1643
  unsigned NumReturnExprs = 0;
1644
1645
  /// Count the number of simple (constant) return expressions in the function.
1646
  unsigned NumSimpleReturnExprs = 0;
1647
1648
  /// The last regular (non-return) debug location (breakpoint) in the function.
1649
  SourceLocation LastStopPoint;
1650
1651
public:
1652
  /// Source location information about the default argument or member
1653
  /// initializer expression we're evaluating, if any.
1654
  CurrentSourceLocExprScope CurSourceLocExprScope;
1655
  using SourceLocExprScopeGuard =
1656
      CurrentSourceLocExprScope::SourceLocExprScopeGuard;
1657
1658
  /// A scope within which we are constructing the fields of an object which
1659
  /// might use a CXXDefaultInitExpr. This stashes away a 'this' value to use
1660
  /// if we need to evaluate a CXXDefaultInitExpr within the evaluation.
1661
  class FieldConstructionScope {
1662
  public:
1663
    FieldConstructionScope(CodeGenFunction &CGF, Address This)
1664
0
        : CGF(CGF), OldCXXDefaultInitExprThis(CGF.CXXDefaultInitExprThis) {
1665
0
      CGF.CXXDefaultInitExprThis = This;
1666
0
    }
1667
0
    ~FieldConstructionScope() {
1668
0
      CGF.CXXDefaultInitExprThis = OldCXXDefaultInitExprThis;
1669
0
    }
1670
1671
  private:
1672
    CodeGenFunction &CGF;
1673
    Address OldCXXDefaultInitExprThis;
1674
  };
1675
1676
  /// The scope of a CXXDefaultInitExpr. Within this scope, the value of 'this'
1677
  /// is overridden to be the object under construction.
1678
  class CXXDefaultInitExprScope  {
1679
  public:
1680
    CXXDefaultInitExprScope(CodeGenFunction &CGF, const CXXDefaultInitExpr *E)
1681
        : CGF(CGF), OldCXXThisValue(CGF.CXXThisValue),
1682
          OldCXXThisAlignment(CGF.CXXThisAlignment),
1683
0
          SourceLocScope(E, CGF.CurSourceLocExprScope) {
1684
0
      CGF.CXXThisValue = CGF.CXXDefaultInitExprThis.getPointer();
1685
0
      CGF.CXXThisAlignment = CGF.CXXDefaultInitExprThis.getAlignment();
1686
0
    }
1687
0
    ~CXXDefaultInitExprScope() {
1688
0
      CGF.CXXThisValue = OldCXXThisValue;
1689
0
      CGF.CXXThisAlignment = OldCXXThisAlignment;
1690
0
    }
1691
1692
  public:
1693
    CodeGenFunction &CGF;
1694
    llvm::Value *OldCXXThisValue;
1695
    CharUnits OldCXXThisAlignment;
1696
    SourceLocExprScopeGuard SourceLocScope;
1697
  };
1698
1699
  struct CXXDefaultArgExprScope : SourceLocExprScopeGuard {
1700
    CXXDefaultArgExprScope(CodeGenFunction &CGF, const CXXDefaultArgExpr *E)
1701
0
        : SourceLocExprScopeGuard(E, CGF.CurSourceLocExprScope) {}
1702
  };
1703
1704
  /// The scope of an ArrayInitLoopExpr. Within this scope, the value of the
1705
  /// current loop index is overridden.
1706
  class ArrayInitLoopExprScope {
1707
  public:
1708
    ArrayInitLoopExprScope(CodeGenFunction &CGF, llvm::Value *Index)
1709
0
      : CGF(CGF), OldArrayInitIndex(CGF.ArrayInitIndex) {
1710
0
      CGF.ArrayInitIndex = Index;
1711
0
    }
1712
0
    ~ArrayInitLoopExprScope() {
1713
0
      CGF.ArrayInitIndex = OldArrayInitIndex;
1714
0
    }
1715
1716
  private:
1717
    CodeGenFunction &CGF;
1718
    llvm::Value *OldArrayInitIndex;
1719
  };
1720
1721
  class InlinedInheritingConstructorScope {
1722
  public:
1723
    InlinedInheritingConstructorScope(CodeGenFunction &CGF, GlobalDecl GD)
1724
        : CGF(CGF), OldCurGD(CGF.CurGD), OldCurFuncDecl(CGF.CurFuncDecl),
1725
          OldCurCodeDecl(CGF.CurCodeDecl),
1726
          OldCXXABIThisDecl(CGF.CXXABIThisDecl),
1727
          OldCXXABIThisValue(CGF.CXXABIThisValue),
1728
          OldCXXThisValue(CGF.CXXThisValue),
1729
          OldCXXABIThisAlignment(CGF.CXXABIThisAlignment),
1730
          OldCXXThisAlignment(CGF.CXXThisAlignment),
1731
          OldReturnValue(CGF.ReturnValue), OldFnRetTy(CGF.FnRetTy),
1732
          OldCXXInheritedCtorInitExprArgs(
1733
0
              std::move(CGF.CXXInheritedCtorInitExprArgs)) {
1734
0
      CGF.CurGD = GD;
1735
0
      CGF.CurFuncDecl = CGF.CurCodeDecl =
1736
0
          cast<CXXConstructorDecl>(GD.getDecl());
1737
0
      CGF.CXXABIThisDecl = nullptr;
1738
0
      CGF.CXXABIThisValue = nullptr;
1739
0
      CGF.CXXThisValue = nullptr;
1740
0
      CGF.CXXABIThisAlignment = CharUnits();
1741
0
      CGF.CXXThisAlignment = CharUnits();
1742
0
      CGF.ReturnValue = Address::invalid();
1743
0
      CGF.FnRetTy = QualType();
1744
0
      CGF.CXXInheritedCtorInitExprArgs.clear();
1745
0
    }
1746
0
    ~InlinedInheritingConstructorScope() {
1747
0
      CGF.CurGD = OldCurGD;
1748
0
      CGF.CurFuncDecl = OldCurFuncDecl;
1749
0
      CGF.CurCodeDecl = OldCurCodeDecl;
1750
0
      CGF.CXXABIThisDecl = OldCXXABIThisDecl;
1751
0
      CGF.CXXABIThisValue = OldCXXABIThisValue;
1752
0
      CGF.CXXThisValue = OldCXXThisValue;
1753
0
      CGF.CXXABIThisAlignment = OldCXXABIThisAlignment;
1754
0
      CGF.CXXThisAlignment = OldCXXThisAlignment;
1755
0
      CGF.ReturnValue = OldReturnValue;
1756
0
      CGF.FnRetTy = OldFnRetTy;
1757
0
      CGF.CXXInheritedCtorInitExprArgs =
1758
0
          std::move(OldCXXInheritedCtorInitExprArgs);
1759
0
    }
1760
1761
  private:
1762
    CodeGenFunction &CGF;
1763
    GlobalDecl OldCurGD;
1764
    const Decl *OldCurFuncDecl;
1765
    const Decl *OldCurCodeDecl;
1766
    ImplicitParamDecl *OldCXXABIThisDecl;
1767
    llvm::Value *OldCXXABIThisValue;
1768
    llvm::Value *OldCXXThisValue;
1769
    CharUnits OldCXXABIThisAlignment;
1770
    CharUnits OldCXXThisAlignment;
1771
    Address OldReturnValue;
1772
    QualType OldFnRetTy;
1773
    CallArgList OldCXXInheritedCtorInitExprArgs;
1774
  };
1775
1776
  // Helper class for the OpenMP IR Builder. Allows reusability of code used for
1777
  // region body, and finalization codegen callbacks. This will class will also
1778
  // contain privatization functions used by the privatization call backs
1779
  //
1780
  // TODO: this is temporary class for things that are being moved out of
1781
  // CGOpenMPRuntime, new versions of current CodeGenFunction methods, or
1782
  // utility function for use with the OMPBuilder. Once that move to use the
1783
  // OMPBuilder is done, everything here will either become part of CodeGenFunc.
1784
  // directly, or a new helper class that will contain functions used by both
1785
  // this and the OMPBuilder
1786
1787
  struct OMPBuilderCBHelpers {
1788
1789
    OMPBuilderCBHelpers() = delete;
1790
    OMPBuilderCBHelpers(const OMPBuilderCBHelpers &) = delete;
1791
    OMPBuilderCBHelpers &operator=(const OMPBuilderCBHelpers &) = delete;
1792
1793
    using InsertPointTy = llvm::OpenMPIRBuilder::InsertPointTy;
1794
1795
    /// Cleanup action for allocate support.
1796
    class OMPAllocateCleanupTy final : public EHScopeStack::Cleanup {
1797
1798
    private:
1799
      llvm::CallInst *RTLFnCI;
1800
1801
    public:
1802
0
      OMPAllocateCleanupTy(llvm::CallInst *RLFnCI) : RTLFnCI(RLFnCI) {
1803
0
        RLFnCI->removeFromParent();
1804
0
      }
1805
1806
0
      void Emit(CodeGenFunction &CGF, Flags /*flags*/) override {
1807
0
        if (!CGF.HaveInsertPoint())
1808
0
          return;
1809
0
        CGF.Builder.Insert(RTLFnCI);
1810
0
      }
1811
    };
1812
1813
    /// Returns address of the threadprivate variable for the current
1814
    /// thread. This Also create any necessary OMP runtime calls.
1815
    ///
1816
    /// \param VD VarDecl for Threadprivate variable.
1817
    /// \param VDAddr Address of the Vardecl
1818
    /// \param Loc  The location where the barrier directive was encountered
1819
    static Address getAddrOfThreadPrivate(CodeGenFunction &CGF,
1820
                                          const VarDecl *VD, Address VDAddr,
1821
                                          SourceLocation Loc);
1822
1823
    /// Gets the OpenMP-specific address of the local variable /p VD.
1824
    static Address getAddressOfLocalVariable(CodeGenFunction &CGF,
1825
                                             const VarDecl *VD);
1826
    /// Get the platform-specific name separator.
1827
    /// \param Parts different parts of the final name that needs separation
1828
    /// \param FirstSeparator First separator used between the initial two
1829
    ///        parts of the name.
1830
    /// \param Separator separator used between all of the rest consecutinve
1831
    ///        parts of the name
1832
    static std::string getNameWithSeparators(ArrayRef<StringRef> Parts,
1833
                                             StringRef FirstSeparator = ".",
1834
                                             StringRef Separator = ".");
1835
    /// Emit the Finalization for an OMP region
1836
    /// \param CGF  The Codegen function this belongs to
1837
    /// \param IP Insertion point for generating the finalization code.
1838
0
    static void FinalizeOMPRegion(CodeGenFunction &CGF, InsertPointTy IP) {
1839
0
      CGBuilderTy::InsertPointGuard IPG(CGF.Builder);
1840
0
      assert(IP.getBlock()->end() != IP.getPoint() &&
1841
0
             "OpenMP IR Builder should cause terminated block!");
1842
1843
0
      llvm::BasicBlock *IPBB = IP.getBlock();
1844
0
      llvm::BasicBlock *DestBB = IPBB->getUniqueSuccessor();
1845
0
      assert(DestBB && "Finalization block should have one successor!");
1846
1847
      // erase and replace with cleanup branch.
1848
0
      IPBB->getTerminator()->eraseFromParent();
1849
0
      CGF.Builder.SetInsertPoint(IPBB);
1850
0
      CodeGenFunction::JumpDest Dest = CGF.getJumpDestInCurrentScope(DestBB);
1851
0
      CGF.EmitBranchThroughCleanup(Dest);
1852
0
    }
1853
1854
    /// Emit the body of an OMP region
1855
    /// \param CGF            The Codegen function this belongs to
1856
    /// \param RegionBodyStmt The body statement for the OpenMP region being
1857
    ///                       generated
1858
    /// \param AllocaIP       Where to insert alloca instructions
1859
    /// \param CodeGenIP      Where to insert the region code
1860
    /// \param RegionName     Name to be used for new blocks
1861
    static void EmitOMPInlinedRegionBody(CodeGenFunction &CGF,
1862
                                         const Stmt *RegionBodyStmt,
1863
                                         InsertPointTy AllocaIP,
1864
                                         InsertPointTy CodeGenIP,
1865
                                         Twine RegionName);
1866
1867
    static void EmitCaptureStmt(CodeGenFunction &CGF, InsertPointTy CodeGenIP,
1868
                                llvm::BasicBlock &FiniBB, llvm::Function *Fn,
1869
0
                                ArrayRef<llvm::Value *> Args) {
1870
0
      llvm::BasicBlock *CodeGenIPBB = CodeGenIP.getBlock();
1871
0
      if (llvm::Instruction *CodeGenIPBBTI = CodeGenIPBB->getTerminator())
1872
0
        CodeGenIPBBTI->eraseFromParent();
1873
1874
0
      CGF.Builder.SetInsertPoint(CodeGenIPBB);
1875
1876
0
      if (Fn->doesNotThrow())
1877
0
        CGF.EmitNounwindRuntimeCall(Fn, Args);
1878
0
      else
1879
0
        CGF.EmitRuntimeCall(Fn, Args);
1880
1881
0
      if (CGF.Builder.saveIP().isSet())
1882
0
        CGF.Builder.CreateBr(&FiniBB);
1883
0
    }
1884
1885
    /// Emit the body of an OMP region that will be outlined in
1886
    /// OpenMPIRBuilder::finalize().
1887
    /// \param CGF            The Codegen function this belongs to
1888
    /// \param RegionBodyStmt The body statement for the OpenMP region being
1889
    ///                       generated
1890
    /// \param AllocaIP       Where to insert alloca instructions
1891
    /// \param CodeGenIP      Where to insert the region code
1892
    /// \param RegionName     Name to be used for new blocks
1893
    static void EmitOMPOutlinedRegionBody(CodeGenFunction &CGF,
1894
                                          const Stmt *RegionBodyStmt,
1895
                                          InsertPointTy AllocaIP,
1896
                                          InsertPointTy CodeGenIP,
1897
                                          Twine RegionName);
1898
1899
    /// RAII for preserving necessary info during Outlined region body codegen.
1900
    class OutlinedRegionBodyRAII {
1901
1902
      llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1903
      CodeGenFunction::JumpDest OldReturnBlock;
1904
      CodeGenFunction &CGF;
1905
1906
    public:
1907
      OutlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1908
                             llvm::BasicBlock &RetBB)
1909
0
          : CGF(cgf) {
1910
0
        assert(AllocaIP.isSet() &&
1911
0
               "Must specify Insertion point for allocas of outlined function");
1912
0
        OldAllocaIP = CGF.AllocaInsertPt;
1913
0
        CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1914
1915
0
        OldReturnBlock = CGF.ReturnBlock;
1916
0
        CGF.ReturnBlock = CGF.getJumpDestInCurrentScope(&RetBB);
1917
0
      }
1918
1919
0
      ~OutlinedRegionBodyRAII() {
1920
0
        CGF.AllocaInsertPt = OldAllocaIP;
1921
0
        CGF.ReturnBlock = OldReturnBlock;
1922
0
      }
1923
    };
1924
1925
    /// RAII for preserving necessary info during inlined region body codegen.
1926
    class InlinedRegionBodyRAII {
1927
1928
      llvm::AssertingVH<llvm::Instruction> OldAllocaIP;
1929
      CodeGenFunction &CGF;
1930
1931
    public:
1932
      InlinedRegionBodyRAII(CodeGenFunction &cgf, InsertPointTy &AllocaIP,
1933
                            llvm::BasicBlock &FiniBB)
1934
0
          : CGF(cgf) {
1935
        // Alloca insertion block should be in the entry block of the containing
1936
        // function so it expects an empty AllocaIP in which case will reuse the
1937
        // old alloca insertion point, or a new AllocaIP in the same block as
1938
        // the old one
1939
0
        assert((!AllocaIP.isSet() ||
1940
0
                CGF.AllocaInsertPt->getParent() == AllocaIP.getBlock()) &&
1941
0
               "Insertion point should be in the entry block of containing "
1942
0
               "function!");
1943
0
        OldAllocaIP = CGF.AllocaInsertPt;
1944
0
        if (AllocaIP.isSet())
1945
0
          CGF.AllocaInsertPt = &*AllocaIP.getPoint();
1946
1947
        // TODO: Remove the call, after making sure the counter is not used by
1948
        //       the EHStack.
1949
        // Since this is an inlined region, it should not modify the
1950
        // ReturnBlock, and should reuse the one for the enclosing outlined
1951
        // region. So, the JumpDest being return by the function is discarded
1952
0
        (void)CGF.getJumpDestInCurrentScope(&FiniBB);
1953
0
      }
1954
1955
0
      ~InlinedRegionBodyRAII() { CGF.AllocaInsertPt = OldAllocaIP; }
1956
    };
1957
  };
1958
1959
private:
1960
  /// CXXThisDecl - When generating code for a C++ member function,
1961
  /// this will hold the implicit 'this' declaration.
1962
  ImplicitParamDecl *CXXABIThisDecl = nullptr;
1963
  llvm::Value *CXXABIThisValue = nullptr;
1964
  llvm::Value *CXXThisValue = nullptr;
1965
  CharUnits CXXABIThisAlignment;
1966
  CharUnits CXXThisAlignment;
1967
1968
  /// The value of 'this' to use when evaluating CXXDefaultInitExprs within
1969
  /// this expression.
1970
  Address CXXDefaultInitExprThis = Address::invalid();
1971
1972
  /// The current array initialization index when evaluating an
1973
  /// ArrayInitIndexExpr within an ArrayInitLoopExpr.
1974
  llvm::Value *ArrayInitIndex = nullptr;
1975
1976
  /// The values of function arguments to use when evaluating
1977
  /// CXXInheritedCtorInitExprs within this context.
1978
  CallArgList CXXInheritedCtorInitExprArgs;
1979
1980
  /// CXXStructorImplicitParamDecl - When generating code for a constructor or
1981
  /// destructor, this will hold the implicit argument (e.g. VTT).
1982
  ImplicitParamDecl *CXXStructorImplicitParamDecl = nullptr;
1983
  llvm::Value *CXXStructorImplicitParamValue = nullptr;
1984
1985
  /// OutermostConditional - Points to the outermost active
1986
  /// conditional control.  This is used so that we know if a
1987
  /// temporary should be destroyed conditionally.
1988
  ConditionalEvaluation *OutermostConditional = nullptr;
1989
1990
  /// The current lexical scope.
1991
  LexicalScope *CurLexicalScope = nullptr;
1992
1993
  /// The current source location that should be used for exception
1994
  /// handling code.
1995
  SourceLocation CurEHLocation;
1996
1997
  /// BlockByrefInfos - For each __block variable, contains
1998
  /// information about the layout of the variable.
1999
  llvm::DenseMap<const ValueDecl *, BlockByrefInfo> BlockByrefInfos;
2000
2001
  /// Used by -fsanitize=nullability-return to determine whether the return
2002
  /// value can be checked.
2003
  llvm::Value *RetValNullabilityPrecondition = nullptr;
2004
2005
  /// Check if -fsanitize=nullability-return instrumentation is required for
2006
  /// this function.
2007
0
  bool requiresReturnValueNullabilityCheck() const {
2008
0
    return RetValNullabilityPrecondition;
2009
0
  }
2010
2011
  /// Used to store precise source locations for return statements by the
2012
  /// runtime return value checks.
2013
  Address ReturnLocation = Address::invalid();
2014
2015
  /// Check if the return value of this function requires sanitization.
2016
  bool requiresReturnValueCheck() const;
2017
2018
  bool isInAllocaArgument(CGCXXABI &ABI, QualType Ty);
2019
  bool hasInAllocaArg(const CXXMethodDecl *MD);
2020
2021
  llvm::BasicBlock *TerminateLandingPad = nullptr;
2022
  llvm::BasicBlock *TerminateHandler = nullptr;
2023
  llvm::SmallVector<llvm::BasicBlock *, 2> TrapBBs;
2024
2025
  /// Terminate funclets keyed by parent funclet pad.
2026
  llvm::MapVector<llvm::Value *, llvm::BasicBlock *> TerminateFunclets;
2027
2028
  /// Largest vector width used in ths function. Will be used to create a
2029
  /// function attribute.
2030
  unsigned LargestVectorWidth = 0;
2031
2032
  /// True if we need emit the life-time markers. This is initially set in
2033
  /// the constructor, but could be overwritten to true if this is a coroutine.
2034
  bool ShouldEmitLifetimeMarkers;
2035
2036
  /// Add OpenCL kernel arg metadata and the kernel attribute metadata to
2037
  /// the function metadata.
2038
  void EmitKernelMetadata(const FunctionDecl *FD, llvm::Function *Fn);
2039
2040
public:
2041
  CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext=false);
2042
  ~CodeGenFunction();
2043
2044
0
  CodeGenTypes &getTypes() const { return CGM.getTypes(); }
2045
0
  ASTContext &getContext() const { return CGM.getContext(); }
2046
0
  CGDebugInfo *getDebugInfo() {
2047
0
    if (DisableDebugInfo)
2048
0
      return nullptr;
2049
0
    return DebugInfo;
2050
0
  }
2051
0
  void disableDebugInfo() { DisableDebugInfo = true; }
2052
0
  void enableDebugInfo() { DisableDebugInfo = false; }
2053
2054
0
  bool shouldUseFusedARCCalls() {
2055
0
    return CGM.getCodeGenOpts().OptimizationLevel == 0;
2056
0
  }
2057
2058
0
  const LangOptions &getLangOpts() const { return CGM.getLangOpts(); }
2059
2060
  /// Returns a pointer to the function's exception object and selector slot,
2061
  /// which is assigned in every landing pad.
2062
  Address getExceptionSlot();
2063
  Address getEHSelectorSlot();
2064
2065
  /// Returns the contents of the function's exception object and selector
2066
  /// slots.
2067
  llvm::Value *getExceptionFromSlot();
2068
  llvm::Value *getSelectorFromSlot();
2069
2070
  Address getNormalCleanupDestSlot();
2071
2072
0
  llvm::BasicBlock *getUnreachableBlock() {
2073
0
    if (!UnreachableBlock) {
2074
0
      UnreachableBlock = createBasicBlock("unreachable");
2075
0
      new llvm::UnreachableInst(getLLVMContext(), UnreachableBlock);
2076
0
    }
2077
0
    return UnreachableBlock;
2078
0
  }
2079
2080
0
  llvm::BasicBlock *getInvokeDest() {
2081
0
    if (!EHStack.requiresLandingPad()) return nullptr;
2082
0
    return getInvokeDestImpl();
2083
0
  }
2084
2085
0
  bool currentFunctionUsesSEHTry() const { return !!CurSEHParent; }
2086
2087
0
  const TargetInfo &getTarget() const { return Target; }
2088
0
  llvm::LLVMContext &getLLVMContext() { return CGM.getLLVMContext(); }
2089
0
  const TargetCodeGenInfo &getTargetHooks() const {
2090
0
    return CGM.getTargetCodeGenInfo();
2091
0
  }
2092
2093
  //===--------------------------------------------------------------------===//
2094
  //                                  Cleanups
2095
  //===--------------------------------------------------------------------===//
2096
2097
  typedef void Destroyer(CodeGenFunction &CGF, Address addr, QualType ty);
2098
2099
  void pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
2100
                                        Address arrayEndPointer,
2101
                                        QualType elementType,
2102
                                        CharUnits elementAlignment,
2103
                                        Destroyer *destroyer);
2104
  void pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
2105
                                      llvm::Value *arrayEnd,
2106
                                      QualType elementType,
2107
                                      CharUnits elementAlignment,
2108
                                      Destroyer *destroyer);
2109
2110
  void pushDestroy(QualType::DestructionKind dtorKind,
2111
                   Address addr, QualType type);
2112
  void pushEHDestroy(QualType::DestructionKind dtorKind,
2113
                     Address addr, QualType type);
2114
  void pushDestroy(CleanupKind kind, Address addr, QualType type,
2115
                   Destroyer *destroyer, bool useEHCleanupForArray);
2116
  void pushLifetimeExtendedDestroy(CleanupKind kind, Address addr,
2117
                                   QualType type, Destroyer *destroyer,
2118
                                   bool useEHCleanupForArray);
2119
  void pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
2120
                                   llvm::Value *CompletePtr,
2121
                                   QualType ElementType);
2122
  void pushStackRestore(CleanupKind kind, Address SPMem);
2123
  void pushKmpcAllocFree(CleanupKind Kind,
2124
                         std::pair<llvm::Value *, llvm::Value *> AddrSizePair);
2125
  void emitDestroy(Address addr, QualType type, Destroyer *destroyer,
2126
                   bool useEHCleanupForArray);
2127
  llvm::Function *generateDestroyHelper(Address addr, QualType type,
2128
                                        Destroyer *destroyer,
2129
                                        bool useEHCleanupForArray,
2130
                                        const VarDecl *VD);
2131
  void emitArrayDestroy(llvm::Value *begin, llvm::Value *end,
2132
                        QualType elementType, CharUnits elementAlign,
2133
                        Destroyer *destroyer,
2134
                        bool checkZeroLength, bool useEHCleanup);
2135
2136
  Destroyer *getDestroyer(QualType::DestructionKind destructionKind);
2137
2138
  /// Determines whether an EH cleanup is required to destroy a type
2139
  /// with the given destruction kind.
2140
0
  bool needsEHCleanup(QualType::DestructionKind kind) {
2141
0
    switch (kind) {
2142
0
    case QualType::DK_none:
2143
0
      return false;
2144
0
    case QualType::DK_cxx_destructor:
2145
0
    case QualType::DK_objc_weak_lifetime:
2146
0
    case QualType::DK_nontrivial_c_struct:
2147
0
      return getLangOpts().Exceptions;
2148
0
    case QualType::DK_objc_strong_lifetime:
2149
0
      return getLangOpts().Exceptions &&
2150
0
             CGM.getCodeGenOpts().ObjCAutoRefCountExceptions;
2151
0
    }
2152
0
    llvm_unreachable("bad destruction kind");
2153
0
  }
2154
2155
0
  CleanupKind getCleanupKind(QualType::DestructionKind kind) {
2156
0
    return (needsEHCleanup(kind) ? NormalAndEHCleanup : NormalCleanup);
2157
0
  }
2158
2159
  //===--------------------------------------------------------------------===//
2160
  //                                  Objective-C
2161
  //===--------------------------------------------------------------------===//
2162
2163
  void GenerateObjCMethod(const ObjCMethodDecl *OMD);
2164
2165
  void StartObjCMethod(const ObjCMethodDecl *MD, const ObjCContainerDecl *CD);
2166
2167
  /// GenerateObjCGetter - Synthesize an Objective-C property getter function.
2168
  void GenerateObjCGetter(ObjCImplementationDecl *IMP,
2169
                          const ObjCPropertyImplDecl *PID);
2170
  void generateObjCGetterBody(const ObjCImplementationDecl *classImpl,
2171
                              const ObjCPropertyImplDecl *propImpl,
2172
                              const ObjCMethodDecl *GetterMothodDecl,
2173
                              llvm::Constant *AtomicHelperFn);
2174
2175
  void GenerateObjCCtorDtorMethod(ObjCImplementationDecl *IMP,
2176
                                  ObjCMethodDecl *MD, bool ctor);
2177
2178
  /// GenerateObjCSetter - Synthesize an Objective-C property setter function
2179
  /// for the given property.
2180
  void GenerateObjCSetter(ObjCImplementationDecl *IMP,
2181
                          const ObjCPropertyImplDecl *PID);
2182
  void generateObjCSetterBody(const ObjCImplementationDecl *classImpl,
2183
                              const ObjCPropertyImplDecl *propImpl,
2184
                              llvm::Constant *AtomicHelperFn);
2185
2186
  //===--------------------------------------------------------------------===//
2187
  //                                  Block Bits
2188
  //===--------------------------------------------------------------------===//
2189
2190
  /// Emit block literal.
2191
  /// \return an LLVM value which is a pointer to a struct which contains
2192
  /// information about the block, including the block invoke function, the
2193
  /// captured variables, etc.
2194
  llvm::Value *EmitBlockLiteral(const BlockExpr *);
2195
2196
  llvm::Function *GenerateBlockFunction(GlobalDecl GD,
2197
                                        const CGBlockInfo &Info,
2198
                                        const DeclMapTy &ldm,
2199
                                        bool IsLambdaConversionToBlock,
2200
                                        bool BuildGlobalBlock);
2201
2202
  /// Check if \p T is a C++ class that has a destructor that can throw.
2203
  static bool cxxDestructorCanThrow(QualType T);
2204
2205
  llvm::Constant *GenerateCopyHelperFunction(const CGBlockInfo &blockInfo);
2206
  llvm::Constant *GenerateDestroyHelperFunction(const CGBlockInfo &blockInfo);
2207
  llvm::Constant *GenerateObjCAtomicSetterCopyHelperFunction(
2208
                                             const ObjCPropertyImplDecl *PID);
2209
  llvm::Constant *GenerateObjCAtomicGetterCopyHelperFunction(
2210
                                             const ObjCPropertyImplDecl *PID);
2211
  llvm::Value *EmitBlockCopyAndAutorelease(llvm::Value *Block, QualType Ty);
2212
2213
  void BuildBlockRelease(llvm::Value *DeclPtr, BlockFieldFlags flags,
2214
                         bool CanThrow);
2215
2216
  class AutoVarEmission;
2217
2218
  void emitByrefStructureInit(const AutoVarEmission &emission);
2219
2220
  /// Enter a cleanup to destroy a __block variable.  Note that this
2221
  /// cleanup should be a no-op if the variable hasn't left the stack
2222
  /// yet; if a cleanup is required for the variable itself, that needs
2223
  /// to be done externally.
2224
  ///
2225
  /// \param Kind Cleanup kind.
2226
  ///
2227
  /// \param Addr When \p LoadBlockVarAddr is false, the address of the __block
2228
  /// structure that will be passed to _Block_object_dispose. When
2229
  /// \p LoadBlockVarAddr is true, the address of the field of the block
2230
  /// structure that holds the address of the __block structure.
2231
  ///
2232
  /// \param Flags The flag that will be passed to _Block_object_dispose.
2233
  ///
2234
  /// \param LoadBlockVarAddr Indicates whether we need to emit a load from
2235
  /// \p Addr to get the address of the __block structure.
2236
  void enterByrefCleanup(CleanupKind Kind, Address Addr, BlockFieldFlags Flags,
2237
                         bool LoadBlockVarAddr, bool CanThrow);
2238
2239
  void setBlockContextParameter(const ImplicitParamDecl *D, unsigned argNum,
2240
                                llvm::Value *ptr);
2241
2242
  Address LoadBlockStruct();
2243
  Address GetAddrOfBlockDecl(const VarDecl *var);
2244
2245
  /// BuildBlockByrefAddress - Computes the location of the
2246
  /// data in a variable which is declared as __block.
2247
  Address emitBlockByrefAddress(Address baseAddr, const VarDecl *V,
2248
                                bool followForward = true);
2249
  Address emitBlockByrefAddress(Address baseAddr,
2250
                                const BlockByrefInfo &info,
2251
                                bool followForward,
2252
                                const llvm::Twine &name);
2253
2254
  const BlockByrefInfo &getBlockByrefInfo(const VarDecl *var);
2255
2256
  QualType BuildFunctionArgList(GlobalDecl GD, FunctionArgList &Args);
2257
2258
  void GenerateCode(GlobalDecl GD, llvm::Function *Fn,
2259
                    const CGFunctionInfo &FnInfo);
2260
2261
  /// Annotate the function with an attribute that disables TSan checking at
2262
  /// runtime.
2263
  void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn);
2264
2265
  /// Emit code for the start of a function.
2266
  /// \param Loc       The location to be associated with the function.
2267
  /// \param StartLoc  The location of the function body.
2268
  void StartFunction(GlobalDecl GD,
2269
                     QualType RetTy,
2270
                     llvm::Function *Fn,
2271
                     const CGFunctionInfo &FnInfo,
2272
                     const FunctionArgList &Args,
2273
                     SourceLocation Loc = SourceLocation(),
2274
                     SourceLocation StartLoc = SourceLocation());
2275
2276
  static bool IsConstructorDelegationValid(const CXXConstructorDecl *Ctor);
2277
2278
  void EmitConstructorBody(FunctionArgList &Args);
2279
  void EmitDestructorBody(FunctionArgList &Args);
2280
  void emitImplicitAssignmentOperatorBody(FunctionArgList &Args);
2281
  void EmitFunctionBody(const Stmt *Body);
2282
  void EmitBlockWithFallThrough(llvm::BasicBlock *BB, const Stmt *S);
2283
2284
  void EmitForwardingCallToLambda(const CXXMethodDecl *LambdaCallOperator,
2285
                                  CallArgList &CallArgs,
2286
                                  const CGFunctionInfo *CallOpFnInfo = nullptr,
2287
                                  llvm::Constant *CallOpFn = nullptr);
2288
  void EmitLambdaBlockInvokeBody();
2289
  void EmitLambdaStaticInvokeBody(const CXXMethodDecl *MD);
2290
  void EmitLambdaDelegatingInvokeBody(const CXXMethodDecl *MD,
2291
                                      CallArgList &CallArgs);
2292
  void EmitLambdaInAllocaImplFn(const CXXMethodDecl *CallOp,
2293
                                const CGFunctionInfo **ImplFnInfo,
2294
                                llvm::Function **ImplFn);
2295
  void EmitLambdaInAllocaCallOpBody(const CXXMethodDecl *MD);
2296
0
  void EmitLambdaVLACapture(const VariableArrayType *VAT, LValue LV) {
2297
0
    EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
2298
0
  }
2299
  void EmitAsanPrologueOrEpilogue(bool Prologue);
2300
2301
  /// Emit the unified return block, trying to avoid its emission when
2302
  /// possible.
2303
  /// \return The debug location of the user written return statement if the
2304
  /// return block is avoided.
2305
  llvm::DebugLoc EmitReturnBlock();
2306
2307
  /// FinishFunction - Complete IR generation of the current function. It is
2308
  /// legal to call this function even if there is no current insertion point.
2309
  void FinishFunction(SourceLocation EndLoc=SourceLocation());
2310
2311
  void StartThunk(llvm::Function *Fn, GlobalDecl GD,
2312
                  const CGFunctionInfo &FnInfo, bool IsUnprototyped);
2313
2314
  void EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
2315
                                 const ThunkInfo *Thunk, bool IsUnprototyped);
2316
2317
  void FinishThunk();
2318
2319
  /// Emit a musttail call for a thunk with a potentially adjusted this pointer.
2320
  void EmitMustTailThunk(GlobalDecl GD, llvm::Value *AdjustedThisPtr,
2321
                         llvm::FunctionCallee Callee);
2322
2323
  /// Generate a thunk for the given method.
2324
  void generateThunk(llvm::Function *Fn, const CGFunctionInfo &FnInfo,
2325
                     GlobalDecl GD, const ThunkInfo &Thunk,
2326
                     bool IsUnprototyped);
2327
2328
  llvm::Function *GenerateVarArgsThunk(llvm::Function *Fn,
2329
                                       const CGFunctionInfo &FnInfo,
2330
                                       GlobalDecl GD, const ThunkInfo &Thunk);
2331
2332
  void EmitCtorPrologue(const CXXConstructorDecl *CD, CXXCtorType Type,
2333
                        FunctionArgList &Args);
2334
2335
  void EmitInitializerForField(FieldDecl *Field, LValue LHS, Expr *Init);
2336
2337
  /// Struct with all information about dynamic [sub]class needed to set vptr.
2338
  struct VPtr {
2339
    BaseSubobject Base;
2340
    const CXXRecordDecl *NearestVBase;
2341
    CharUnits OffsetFromNearestVBase;
2342
    const CXXRecordDecl *VTableClass;
2343
  };
2344
2345
  /// Initialize the vtable pointer of the given subobject.
2346
  void InitializeVTablePointer(const VPtr &vptr);
2347
2348
  typedef llvm::SmallVector<VPtr, 4> VPtrsVector;
2349
2350
  typedef llvm::SmallPtrSet<const CXXRecordDecl *, 4> VisitedVirtualBasesSetTy;
2351
  VPtrsVector getVTablePointers(const CXXRecordDecl *VTableClass);
2352
2353
  void getVTablePointers(BaseSubobject Base, const CXXRecordDecl *NearestVBase,
2354
                         CharUnits OffsetFromNearestVBase,
2355
                         bool BaseIsNonVirtualPrimaryBase,
2356
                         const CXXRecordDecl *VTableClass,
2357
                         VisitedVirtualBasesSetTy &VBases, VPtrsVector &vptrs);
2358
2359
  void InitializeVTablePointers(const CXXRecordDecl *ClassDecl);
2360
2361
  /// GetVTablePtr - Return the Value of the vtable pointer member pointed
2362
  /// to by This.
2363
  llvm::Value *GetVTablePtr(Address This, llvm::Type *VTableTy,
2364
                            const CXXRecordDecl *VTableClass);
2365
2366
  enum CFITypeCheckKind {
2367
    CFITCK_VCall,
2368
    CFITCK_NVCall,
2369
    CFITCK_DerivedCast,
2370
    CFITCK_UnrelatedCast,
2371
    CFITCK_ICall,
2372
    CFITCK_NVMFCall,
2373
    CFITCK_VMFCall,
2374
  };
2375
2376
  /// Derived is the presumed address of an object of type T after a
2377
  /// cast. If T is a polymorphic class type, emit a check that the virtual
2378
  /// table for Derived belongs to a class derived from T.
2379
  void EmitVTablePtrCheckForCast(QualType T, Address Derived, bool MayBeNull,
2380
                                 CFITypeCheckKind TCK, SourceLocation Loc);
2381
2382
  /// EmitVTablePtrCheckForCall - Virtual method MD is being called via VTable.
2383
  /// If vptr CFI is enabled, emit a check that VTable is valid.
2384
  void EmitVTablePtrCheckForCall(const CXXRecordDecl *RD, llvm::Value *VTable,
2385
                                 CFITypeCheckKind TCK, SourceLocation Loc);
2386
2387
  /// EmitVTablePtrCheck - Emit a check that VTable is a valid virtual table for
2388
  /// RD using llvm.type.test.
2389
  void EmitVTablePtrCheck(const CXXRecordDecl *RD, llvm::Value *VTable,
2390
                          CFITypeCheckKind TCK, SourceLocation Loc);
2391
2392
  /// If whole-program virtual table optimization is enabled, emit an assumption
2393
  /// that VTable is a member of RD's type identifier. Or, if vptr CFI is
2394
  /// enabled, emit a check that VTable is a member of RD's type identifier.
2395
  void EmitTypeMetadataCodeForVCall(const CXXRecordDecl *RD,
2396
                                    llvm::Value *VTable, SourceLocation Loc);
2397
2398
  /// Returns whether we should perform a type checked load when loading a
2399
  /// virtual function for virtual calls to members of RD. This is generally
2400
  /// true when both vcall CFI and whole-program-vtables are enabled.
2401
  bool ShouldEmitVTableTypeCheckedLoad(const CXXRecordDecl *RD);
2402
2403
  /// Emit a type checked load from the given vtable.
2404
  llvm::Value *EmitVTableTypeCheckedLoad(const CXXRecordDecl *RD,
2405
                                         llvm::Value *VTable,
2406
                                         llvm::Type *VTableTy,
2407
                                         uint64_t VTableByteOffset);
2408
2409
  /// EnterDtorCleanups - Enter the cleanups necessary to complete the
2410
  /// given phase of destruction for a destructor.  The end result
2411
  /// should call destructors on members and base classes in reverse
2412
  /// order of their construction.
2413
  void EnterDtorCleanups(const CXXDestructorDecl *Dtor, CXXDtorType Type);
2414
2415
  /// ShouldInstrumentFunction - Return true if the current function should be
2416
  /// instrumented with __cyg_profile_func_* calls
2417
  bool ShouldInstrumentFunction();
2418
2419
  /// ShouldSkipSanitizerInstrumentation - Return true if the current function
2420
  /// should not be instrumented with sanitizers.
2421
  bool ShouldSkipSanitizerInstrumentation();
2422
2423
  /// ShouldXRayInstrument - Return true if the current function should be
2424
  /// instrumented with XRay nop sleds.
2425
  bool ShouldXRayInstrumentFunction() const;
2426
2427
  /// AlwaysEmitXRayCustomEvents - Return true if we must unconditionally emit
2428
  /// XRay custom event handling calls.
2429
  bool AlwaysEmitXRayCustomEvents() const;
2430
2431
  /// AlwaysEmitXRayTypedEvents - Return true if clang must unconditionally emit
2432
  /// XRay typed event handling calls.
2433
  bool AlwaysEmitXRayTypedEvents() const;
2434
2435
  /// Return a type hash constant for a function instrumented by
2436
  /// -fsanitize=function.
2437
  llvm::ConstantInt *getUBSanFunctionTypeHash(QualType T) const;
2438
2439
  /// EmitFunctionProlog - Emit the target specific LLVM code to load the
2440
  /// arguments for the given function. This is also responsible for naming the
2441
  /// LLVM function arguments.
2442
  void EmitFunctionProlog(const CGFunctionInfo &FI,
2443
                          llvm::Function *Fn,
2444
                          const FunctionArgList &Args);
2445
2446
  /// EmitFunctionEpilog - Emit the target specific LLVM code to return the
2447
  /// given temporary.
2448
  void EmitFunctionEpilog(const CGFunctionInfo &FI, bool EmitRetDbgLoc,
2449
                          SourceLocation EndLoc);
2450
2451
  /// Emit a test that checks if the return value \p RV is nonnull.
2452
  void EmitReturnValueCheck(llvm::Value *RV);
2453
2454
  /// EmitStartEHSpec - Emit the start of the exception spec.
2455
  void EmitStartEHSpec(const Decl *D);
2456
2457
  /// EmitEndEHSpec - Emit the end of the exception spec.
2458
  void EmitEndEHSpec(const Decl *D);
2459
2460
  /// getTerminateLandingPad - Return a landing pad that just calls terminate.
2461
  llvm::BasicBlock *getTerminateLandingPad();
2462
2463
  /// getTerminateLandingPad - Return a cleanup funclet that just calls
2464
  /// terminate.
2465
  llvm::BasicBlock *getTerminateFunclet();
2466
2467
  /// getTerminateHandler - Return a handler (not a landing pad, just
2468
  /// a catch handler) that just calls terminate.  This is used when
2469
  /// a terminate scope encloses a try.
2470
  llvm::BasicBlock *getTerminateHandler();
2471
2472
  llvm::Type *ConvertTypeForMem(QualType T);
2473
  llvm::Type *ConvertType(QualType T);
2474
0
  llvm::Type *ConvertType(const TypeDecl *T) {
2475
0
    return ConvertType(getContext().getTypeDeclType(T));
2476
0
  }
2477
2478
  /// LoadObjCSelf - Load the value of self. This function is only valid while
2479
  /// generating code for an Objective-C method.
2480
  llvm::Value *LoadObjCSelf();
2481
2482
  /// TypeOfSelfObject - Return type of object that this self represents.
2483
  QualType TypeOfSelfObject();
2484
2485
  /// getEvaluationKind - Return the TypeEvaluationKind of QualType \c T.
2486
  static TypeEvaluationKind getEvaluationKind(QualType T);
2487
2488
0
  static bool hasScalarEvaluationKind(QualType T) {
2489
0
    return getEvaluationKind(T) == TEK_Scalar;
2490
0
  }
2491
2492
0
  static bool hasAggregateEvaluationKind(QualType T) {
2493
0
    return getEvaluationKind(T) == TEK_Aggregate;
2494
0
  }
2495
2496
  /// createBasicBlock - Create an LLVM basic block.
2497
  llvm::BasicBlock *createBasicBlock(const Twine &name = "",
2498
                                     llvm::Function *parent = nullptr,
2499
0
                                     llvm::BasicBlock *before = nullptr) {
2500
0
    return llvm::BasicBlock::Create(getLLVMContext(), name, parent, before);
2501
0
  }
2502
2503
  /// getBasicBlockForLabel - Return the LLVM basicblock that the specified
2504
  /// label maps to.
2505
  JumpDest getJumpDestForLabel(const LabelDecl *S);
2506
2507
  /// SimplifyForwardingBlocks - If the given basic block is only a branch to
2508
  /// another basic block, simplify it. This assumes that no other code could
2509
  /// potentially reference the basic block.
2510
  void SimplifyForwardingBlocks(llvm::BasicBlock *BB);
2511
2512
  /// EmitBlock - Emit the given block \arg BB and set it as the insert point,
2513
  /// adding a fall-through branch from the current insert block if
2514
  /// necessary. It is legal to call this function even if there is no current
2515
  /// insertion point.
2516
  ///
2517
  /// IsFinished - If true, indicates that the caller has finished emitting
2518
  /// branches to the given block and does not expect to emit code into it. This
2519
  /// means the block can be ignored if it is unreachable.
2520
  void EmitBlock(llvm::BasicBlock *BB, bool IsFinished=false);
2521
2522
  /// EmitBlockAfterUses - Emit the given block somewhere hopefully
2523
  /// near its uses, and leave the insertion point in it.
2524
  void EmitBlockAfterUses(llvm::BasicBlock *BB);
2525
2526
  /// EmitBranch - Emit a branch to the specified basic block from the current
2527
  /// insert block, taking care to avoid creation of branches from dummy
2528
  /// blocks. It is legal to call this function even if there is no current
2529
  /// insertion point.
2530
  ///
2531
  /// This function clears the current insertion point. The caller should follow
2532
  /// calls to this function with calls to Emit*Block prior to generation new
2533
  /// code.
2534
  void EmitBranch(llvm::BasicBlock *Block);
2535
2536
  /// HaveInsertPoint - True if an insertion point is defined. If not, this
2537
  /// indicates that the current code being emitted is unreachable.
2538
0
  bool HaveInsertPoint() const {
2539
0
    return Builder.GetInsertBlock() != nullptr;
2540
0
  }
2541
2542
  /// EnsureInsertPoint - Ensure that an insertion point is defined so that
2543
  /// emitted IR has a place to go. Note that by definition, if this function
2544
  /// creates a block then that block is unreachable; callers may do better to
2545
  /// detect when no insertion point is defined and simply skip IR generation.
2546
0
  void EnsureInsertPoint() {
2547
0
    if (!HaveInsertPoint())
2548
0
      EmitBlock(createBasicBlock());
2549
0
  }
2550
2551
  /// ErrorUnsupported - Print out an error that codegen doesn't support the
2552
  /// specified stmt yet.
2553
  void ErrorUnsupported(const Stmt *S, const char *Type);
2554
2555
  //===--------------------------------------------------------------------===//
2556
  //                                  Helpers
2557
  //===--------------------------------------------------------------------===//
2558
2559
  LValue MakeAddrLValue(Address Addr, QualType T,
2560
0
                        AlignmentSource Source = AlignmentSource::Type) {
2561
0
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2562
0
                            CGM.getTBAAAccessInfo(T));
2563
0
  }
2564
2565
  LValue MakeAddrLValue(Address Addr, QualType T, LValueBaseInfo BaseInfo,
2566
0
                        TBAAAccessInfo TBAAInfo) {
2567
0
    return LValue::MakeAddr(Addr, T, getContext(), BaseInfo, TBAAInfo);
2568
0
  }
2569
2570
  LValue MakeAddrLValue(llvm::Value *V, QualType T, CharUnits Alignment,
2571
0
                        AlignmentSource Source = AlignmentSource::Type) {
2572
0
    Address Addr(V, ConvertTypeForMem(T), Alignment);
2573
0
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2574
0
                            CGM.getTBAAAccessInfo(T));
2575
0
  }
2576
2577
  LValue
2578
  MakeAddrLValueWithoutTBAA(Address Addr, QualType T,
2579
0
                            AlignmentSource Source = AlignmentSource::Type) {
2580
0
    return LValue::MakeAddr(Addr, T, getContext(), LValueBaseInfo(Source),
2581
0
                            TBAAAccessInfo());
2582
0
  }
2583
2584
  LValue MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T);
2585
  LValue MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T);
2586
2587
  Address EmitLoadOfReference(LValue RefLVal,
2588
                              LValueBaseInfo *PointeeBaseInfo = nullptr,
2589
                              TBAAAccessInfo *PointeeTBAAInfo = nullptr);
2590
  LValue EmitLoadOfReferenceLValue(LValue RefLVal);
2591
  LValue EmitLoadOfReferenceLValue(Address RefAddr, QualType RefTy,
2592
                                   AlignmentSource Source =
2593
0
                                       AlignmentSource::Type) {
2594
0
    LValue RefLVal = MakeAddrLValue(RefAddr, RefTy, LValueBaseInfo(Source),
2595
0
                                    CGM.getTBAAAccessInfo(RefTy));
2596
0
    return EmitLoadOfReferenceLValue(RefLVal);
2597
0
  }
2598
2599
  /// Load a pointer with type \p PtrTy stored at address \p Ptr.
2600
  /// Note that \p PtrTy is the type of the loaded pointer, not the addresses
2601
  /// it is loaded from.
2602
  Address EmitLoadOfPointer(Address Ptr, const PointerType *PtrTy,
2603
                            LValueBaseInfo *BaseInfo = nullptr,
2604
                            TBAAAccessInfo *TBAAInfo = nullptr);
2605
  LValue EmitLoadOfPointerLValue(Address Ptr, const PointerType *PtrTy);
2606
2607
  /// CreateTempAlloca - This creates an alloca and inserts it into the entry
2608
  /// block if \p ArraySize is nullptr, otherwise inserts it at the current
2609
  /// insertion point of the builder. The caller is responsible for setting an
2610
  /// appropriate alignment on
2611
  /// the alloca.
2612
  ///
2613
  /// \p ArraySize is the number of array elements to be allocated if it
2614
  ///    is not nullptr.
2615
  ///
2616
  /// LangAS::Default is the address space of pointers to local variables and
2617
  /// temporaries, as exposed in the source language. In certain
2618
  /// configurations, this is not the same as the alloca address space, and a
2619
  /// cast is needed to lift the pointer from the alloca AS into
2620
  /// LangAS::Default. This can happen when the target uses a restricted
2621
  /// address space for the stack but the source language requires
2622
  /// LangAS::Default to be a generic address space. The latter condition is
2623
  /// common for most programming languages; OpenCL is an exception in that
2624
  /// LangAS::Default is the private address space, which naturally maps
2625
  /// to the stack.
2626
  ///
2627
  /// Because the address of a temporary is often exposed to the program in
2628
  /// various ways, this function will perform the cast. The original alloca
2629
  /// instruction is returned through \p Alloca if it is not nullptr.
2630
  ///
2631
  /// The cast is not performaed in CreateTempAllocaWithoutCast. This is
2632
  /// more efficient if the caller knows that the address will not be exposed.
2633
  llvm::AllocaInst *CreateTempAlloca(llvm::Type *Ty, const Twine &Name = "tmp",
2634
                                     llvm::Value *ArraySize = nullptr);
2635
  Address CreateTempAlloca(llvm::Type *Ty, CharUnits align,
2636
                           const Twine &Name = "tmp",
2637
                           llvm::Value *ArraySize = nullptr,
2638
                           Address *Alloca = nullptr);
2639
  Address CreateTempAllocaWithoutCast(llvm::Type *Ty, CharUnits align,
2640
                                      const Twine &Name = "tmp",
2641
                                      llvm::Value *ArraySize = nullptr);
2642
2643
  /// CreateDefaultAlignedTempAlloca - This creates an alloca with the
2644
  /// default ABI alignment of the given LLVM type.
2645
  ///
2646
  /// IMPORTANT NOTE: This is *not* generally the right alignment for
2647
  /// any given AST type that happens to have been lowered to the
2648
  /// given IR type.  This should only ever be used for function-local,
2649
  /// IR-driven manipulations like saving and restoring a value.  Do
2650
  /// not hand this address off to arbitrary IRGen routines, and especially
2651
  /// do not pass it as an argument to a function that might expect a
2652
  /// properly ABI-aligned value.
2653
  Address CreateDefaultAlignTempAlloca(llvm::Type *Ty,
2654
                                       const Twine &Name = "tmp");
2655
2656
  /// CreateIRTemp - Create a temporary IR object of the given type, with
2657
  /// appropriate alignment. This routine should only be used when an temporary
2658
  /// value needs to be stored into an alloca (for example, to avoid explicit
2659
  /// PHI construction), but the type is the IR type, not the type appropriate
2660
  /// for storing in memory.
2661
  ///
2662
  /// That is, this is exactly equivalent to CreateMemTemp, but calling
2663
  /// ConvertType instead of ConvertTypeForMem.
2664
  Address CreateIRTemp(QualType T, const Twine &Name = "tmp");
2665
2666
  /// CreateMemTemp - Create a temporary memory object of the given type, with
2667
  /// appropriate alignmen and cast it to the default address space. Returns
2668
  /// the original alloca instruction by \p Alloca if it is not nullptr.
2669
  Address CreateMemTemp(QualType T, const Twine &Name = "tmp",
2670
                        Address *Alloca = nullptr);
2671
  Address CreateMemTemp(QualType T, CharUnits Align, const Twine &Name = "tmp",
2672
                        Address *Alloca = nullptr);
2673
2674
  /// CreateMemTemp - Create a temporary memory object of the given type, with
2675
  /// appropriate alignmen without casting it to the default address space.
2676
  Address CreateMemTempWithoutCast(QualType T, const Twine &Name = "tmp");
2677
  Address CreateMemTempWithoutCast(QualType T, CharUnits Align,
2678
                                   const Twine &Name = "tmp");
2679
2680
  /// CreateAggTemp - Create a temporary memory object for the given
2681
  /// aggregate type.
2682
  AggValueSlot CreateAggTemp(QualType T, const Twine &Name = "tmp",
2683
0
                             Address *Alloca = nullptr) {
2684
0
    return AggValueSlot::forAddr(CreateMemTemp(T, Name, Alloca),
2685
0
                                 T.getQualifiers(),
2686
0
                                 AggValueSlot::IsNotDestructed,
2687
0
                                 AggValueSlot::DoesNotNeedGCBarriers,
2688
0
                                 AggValueSlot::IsNotAliased,
2689
0
                                 AggValueSlot::DoesNotOverlap);
2690
0
  }
2691
2692
  /// EvaluateExprAsBool - Perform the usual unary conversions on the specified
2693
  /// expression and compare the result against zero, returning an Int1Ty value.
2694
  llvm::Value *EvaluateExprAsBool(const Expr *E);
2695
2696
  /// EmitIgnoredExpr - Emit an expression in a context which ignores the result.
2697
  void EmitIgnoredExpr(const Expr *E);
2698
2699
  /// EmitAnyExpr - Emit code to compute the specified expression which can have
2700
  /// any type.  The result is returned as an RValue struct.  If this is an
2701
  /// aggregate expression, the aggloc/agglocvolatile arguments indicate where
2702
  /// the result should be returned.
2703
  ///
2704
  /// \param ignoreResult True if the resulting value isn't used.
2705
  RValue EmitAnyExpr(const Expr *E,
2706
                     AggValueSlot aggSlot = AggValueSlot::ignored(),
2707
                     bool ignoreResult = false);
2708
2709
  // EmitVAListRef - Emit a "reference" to a va_list; this is either the address
2710
  // or the value of the expression, depending on how va_list is defined.
2711
  Address EmitVAListRef(const Expr *E);
2712
2713
  /// Emit a "reference" to a __builtin_ms_va_list; this is
2714
  /// always the value of the expression, because a __builtin_ms_va_list is a
2715
  /// pointer to a char.
2716
  Address EmitMSVAListRef(const Expr *E);
2717
2718
  /// EmitAnyExprToTemp - Similarly to EmitAnyExpr(), however, the result will
2719
  /// always be accessible even if no aggregate location is provided.
2720
  RValue EmitAnyExprToTemp(const Expr *E);
2721
2722
  /// EmitAnyExprToMem - Emits the code necessary to evaluate an
2723
  /// arbitrary expression into the given memory location.
2724
  void EmitAnyExprToMem(const Expr *E, Address Location,
2725
                        Qualifiers Quals, bool IsInitializer);
2726
2727
  void EmitAnyExprToExn(const Expr *E, Address Addr);
2728
2729
  /// EmitExprAsInit - Emits the code necessary to initialize a
2730
  /// location in memory with the given initializer.
2731
  void EmitExprAsInit(const Expr *init, const ValueDecl *D, LValue lvalue,
2732
                      bool capturedByInit);
2733
2734
  /// hasVolatileMember - returns true if aggregate type has a volatile
2735
  /// member.
2736
0
  bool hasVolatileMember(QualType T) {
2737
0
    if (const RecordType *RT = T->getAs<RecordType>()) {
2738
0
      const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
2739
0
      return RD->hasVolatileMember();
2740
0
    }
2741
0
    return false;
2742
0
  }
2743
2744
  /// Determine whether a return value slot may overlap some other object.
2745
0
  AggValueSlot::Overlap_t getOverlapForReturnValue() {
2746
    // FIXME: Assuming no overlap here breaks guaranteed copy elision for base
2747
    // class subobjects. These cases may need to be revisited depending on the
2748
    // resolution of the relevant core issue.
2749
0
    return AggValueSlot::DoesNotOverlap;
2750
0
  }
2751
2752
  /// Determine whether a field initialization may overlap some other object.
2753
  AggValueSlot::Overlap_t getOverlapForFieldInit(const FieldDecl *FD);
2754
2755
  /// Determine whether a base class initialization may overlap some other
2756
  /// object.
2757
  AggValueSlot::Overlap_t getOverlapForBaseInit(const CXXRecordDecl *RD,
2758
                                                const CXXRecordDecl *BaseRD,
2759
                                                bool IsVirtual);
2760
2761
  /// Emit an aggregate assignment.
2762
0
  void EmitAggregateAssign(LValue Dest, LValue Src, QualType EltTy) {
2763
0
    bool IsVolatile = hasVolatileMember(EltTy);
2764
0
    EmitAggregateCopy(Dest, Src, EltTy, AggValueSlot::MayOverlap, IsVolatile);
2765
0
  }
2766
2767
  void EmitAggregateCopyCtor(LValue Dest, LValue Src,
2768
0
                             AggValueSlot::Overlap_t MayOverlap) {
2769
0
    EmitAggregateCopy(Dest, Src, Src.getType(), MayOverlap);
2770
0
  }
2771
2772
  /// EmitAggregateCopy - Emit an aggregate copy.
2773
  ///
2774
  /// \param isVolatile \c true iff either the source or the destination is
2775
  ///        volatile.
2776
  /// \param MayOverlap Whether the tail padding of the destination might be
2777
  ///        occupied by some other object. More efficient code can often be
2778
  ///        generated if not.
2779
  void EmitAggregateCopy(LValue Dest, LValue Src, QualType EltTy,
2780
                         AggValueSlot::Overlap_t MayOverlap,
2781
                         bool isVolatile = false);
2782
2783
  /// GetAddrOfLocalVar - Return the address of a local variable.
2784
0
  Address GetAddrOfLocalVar(const VarDecl *VD) {
2785
0
    auto it = LocalDeclMap.find(VD);
2786
0
    assert(it != LocalDeclMap.end() &&
2787
0
           "Invalid argument to GetAddrOfLocalVar(), no decl!");
2788
0
    return it->second;
2789
0
  }
2790
2791
  /// Given an opaque value expression, return its LValue mapping if it exists,
2792
  /// otherwise create one.
2793
  LValue getOrCreateOpaqueLValueMapping(const OpaqueValueExpr *e);
2794
2795
  /// Given an opaque value expression, return its RValue mapping if it exists,
2796
  /// otherwise create one.
2797
  RValue getOrCreateOpaqueRValueMapping(const OpaqueValueExpr *e);
2798
2799
  /// Get the index of the current ArrayInitLoopExpr, if any.
2800
0
  llvm::Value *getArrayInitIndex() { return ArrayInitIndex; }
2801
2802
  /// getAccessedFieldNo - Given an encoded value and a result number, return
2803
  /// the input field number being accessed.
2804
  static unsigned getAccessedFieldNo(unsigned Idx, const llvm::Constant *Elts);
2805
2806
  llvm::BlockAddress *GetAddrOfLabel(const LabelDecl *L);
2807
  llvm::BasicBlock *GetIndirectGotoBlock();
2808
2809
  /// Check if \p E is a C++ "this" pointer wrapped in value-preserving casts.
2810
  static bool IsWrappedCXXThis(const Expr *E);
2811
2812
  /// EmitNullInitialization - Generate code to set a value of the given type to
2813
  /// null, If the type contains data member pointers, they will be initialized
2814
  /// to -1 in accordance with the Itanium C++ ABI.
2815
  void EmitNullInitialization(Address DestPtr, QualType Ty);
2816
2817
  /// Emits a call to an LLVM variable-argument intrinsic, either
2818
  /// \c llvm.va_start or \c llvm.va_end.
2819
  /// \param ArgValue A reference to the \c va_list as emitted by either
2820
  /// \c EmitVAListRef or \c EmitMSVAListRef.
2821
  /// \param IsStart If \c true, emits a call to \c llvm.va_start; otherwise,
2822
  /// calls \c llvm.va_end.
2823
  llvm::Value *EmitVAStartEnd(llvm::Value *ArgValue, bool IsStart);
2824
2825
  /// Generate code to get an argument from the passed in pointer
2826
  /// and update it accordingly.
2827
  /// \param VE The \c VAArgExpr for which to generate code.
2828
  /// \param VAListAddr Receives a reference to the \c va_list as emitted by
2829
  /// either \c EmitVAListRef or \c EmitMSVAListRef.
2830
  /// \returns A pointer to the argument.
2831
  // FIXME: We should be able to get rid of this method and use the va_arg
2832
  // instruction in LLVM instead once it works well enough.
2833
  Address EmitVAArg(VAArgExpr *VE, Address &VAListAddr);
2834
2835
  /// emitArrayLength - Compute the length of an array, even if it's a
2836
  /// VLA, and drill down to the base element type.
2837
  llvm::Value *emitArrayLength(const ArrayType *arrayType,
2838
                               QualType &baseType,
2839
                               Address &addr);
2840
2841
  /// EmitVLASize - Capture all the sizes for the VLA expressions in
2842
  /// the given variably-modified type and store them in the VLASizeMap.
2843
  ///
2844
  /// This function can be called with a null (unreachable) insert point.
2845
  void EmitVariablyModifiedType(QualType Ty);
2846
2847
  struct VlaSizePair {
2848
    llvm::Value *NumElts;
2849
    QualType Type;
2850
2851
0
    VlaSizePair(llvm::Value *NE, QualType T) : NumElts(NE), Type(T) {}
2852
  };
2853
2854
  /// Return the number of elements for a single dimension
2855
  /// for the given array type.
2856
  VlaSizePair getVLAElements1D(const VariableArrayType *vla);
2857
  VlaSizePair getVLAElements1D(QualType vla);
2858
2859
  /// Returns an LLVM value that corresponds to the size,
2860
  /// in non-variably-sized elements, of a variable length array type,
2861
  /// plus that largest non-variably-sized element type.  Assumes that
2862
  /// the type has already been emitted with EmitVariablyModifiedType.
2863
  VlaSizePair getVLASize(const VariableArrayType *vla);
2864
  VlaSizePair getVLASize(QualType vla);
2865
2866
  /// LoadCXXThis - Load the value of 'this'. This function is only valid while
2867
  /// generating code for an C++ member function.
2868
0
  llvm::Value *LoadCXXThis() {
2869
0
    assert(CXXThisValue && "no 'this' value for this function");
2870
0
    return CXXThisValue;
2871
0
  }
2872
  Address LoadCXXThisAddress();
2873
2874
  /// LoadCXXVTT - Load the VTT parameter to base constructors/destructors have
2875
  /// virtual bases.
2876
  // FIXME: Every place that calls LoadCXXVTT is something
2877
  // that needs to be abstracted properly.
2878
0
  llvm::Value *LoadCXXVTT() {
2879
0
    assert(CXXStructorImplicitParamValue && "no VTT value for this function");
2880
0
    return CXXStructorImplicitParamValue;
2881
0
  }
2882
2883
  /// GetAddressOfBaseOfCompleteClass - Convert the given pointer to a
2884
  /// complete class to the given direct base.
2885
  Address
2886
  GetAddressOfDirectBaseInCompleteClass(Address Value,
2887
                                        const CXXRecordDecl *Derived,
2888
                                        const CXXRecordDecl *Base,
2889
                                        bool BaseIsVirtual);
2890
2891
  static bool ShouldNullCheckClassCastValue(const CastExpr *Cast);
2892
2893
  /// GetAddressOfBaseClass - This function will add the necessary delta to the
2894
  /// load of 'this' and returns address of the base class.
2895
  Address GetAddressOfBaseClass(Address Value,
2896
                                const CXXRecordDecl *Derived,
2897
                                CastExpr::path_const_iterator PathBegin,
2898
                                CastExpr::path_const_iterator PathEnd,
2899
                                bool NullCheckValue, SourceLocation Loc);
2900
2901
  Address GetAddressOfDerivedClass(Address Value,
2902
                                   const CXXRecordDecl *Derived,
2903
                                   CastExpr::path_const_iterator PathBegin,
2904
                                   CastExpr::path_const_iterator PathEnd,
2905
                                   bool NullCheckValue);
2906
2907
  /// GetVTTParameter - Return the VTT parameter that should be passed to a
2908
  /// base constructor/destructor with virtual bases.
2909
  /// FIXME: VTTs are Itanium ABI-specific, so the definition should move
2910
  /// to ItaniumCXXABI.cpp together with all the references to VTT.
2911
  llvm::Value *GetVTTParameter(GlobalDecl GD, bool ForVirtualBase,
2912
                               bool Delegating);
2913
2914
  void EmitDelegateCXXConstructorCall(const CXXConstructorDecl *Ctor,
2915
                                      CXXCtorType CtorType,
2916
                                      const FunctionArgList &Args,
2917
                                      SourceLocation Loc);
2918
  // It's important not to confuse this and the previous function. Delegating
2919
  // constructors are the C++0x feature. The constructor delegate optimization
2920
  // is used to reduce duplication in the base and complete consturctors where
2921
  // they are substantially the same.
2922
  void EmitDelegatingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2923
                                        const FunctionArgList &Args);
2924
2925
  /// Emit a call to an inheriting constructor (that is, one that invokes a
2926
  /// constructor inherited from a base class) by inlining its definition. This
2927
  /// is necessary if the ABI does not support forwarding the arguments to the
2928
  /// base class constructor (because they're variadic or similar).
2929
  void EmitInlinedInheritingCXXConstructorCall(const CXXConstructorDecl *Ctor,
2930
                                               CXXCtorType CtorType,
2931
                                               bool ForVirtualBase,
2932
                                               bool Delegating,
2933
                                               CallArgList &Args);
2934
2935
  /// Emit a call to a constructor inherited from a base class, passing the
2936
  /// current constructor's arguments along unmodified (without even making
2937
  /// a copy).
2938
  void EmitInheritedCXXConstructorCall(const CXXConstructorDecl *D,
2939
                                       bool ForVirtualBase, Address This,
2940
                                       bool InheritedFromVBase,
2941
                                       const CXXInheritedCtorInitExpr *E);
2942
2943
  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2944
                              bool ForVirtualBase, bool Delegating,
2945
                              AggValueSlot ThisAVS, const CXXConstructExpr *E);
2946
2947
  void EmitCXXConstructorCall(const CXXConstructorDecl *D, CXXCtorType Type,
2948
                              bool ForVirtualBase, bool Delegating,
2949
                              Address This, CallArgList &Args,
2950
                              AggValueSlot::Overlap_t Overlap,
2951
                              SourceLocation Loc, bool NewPointerIsChecked);
2952
2953
  /// Emit assumption load for all bases. Requires to be called only on
2954
  /// most-derived class and not under construction of the object.
2955
  void EmitVTableAssumptionLoads(const CXXRecordDecl *ClassDecl, Address This);
2956
2957
  /// Emit assumption that vptr load == global vtable.
2958
  void EmitVTableAssumptionLoad(const VPtr &vptr, Address This);
2959
2960
  void EmitSynthesizedCXXCopyCtorCall(const CXXConstructorDecl *D,
2961
                                      Address This, Address Src,
2962
                                      const CXXConstructExpr *E);
2963
2964
  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2965
                                  const ArrayType *ArrayTy,
2966
                                  Address ArrayPtr,
2967
                                  const CXXConstructExpr *E,
2968
                                  bool NewPointerIsChecked,
2969
                                  bool ZeroInitialization = false);
2970
2971
  void EmitCXXAggrConstructorCall(const CXXConstructorDecl *D,
2972
                                  llvm::Value *NumElements,
2973
                                  Address ArrayPtr,
2974
                                  const CXXConstructExpr *E,
2975
                                  bool NewPointerIsChecked,
2976
                                  bool ZeroInitialization = false);
2977
2978
  static Destroyer destroyCXXObject;
2979
2980
  void EmitCXXDestructorCall(const CXXDestructorDecl *D, CXXDtorType Type,
2981
                             bool ForVirtualBase, bool Delegating, Address This,
2982
                             QualType ThisTy);
2983
2984
  void EmitNewArrayInitializer(const CXXNewExpr *E, QualType elementType,
2985
                               llvm::Type *ElementTy, Address NewPtr,
2986
                               llvm::Value *NumElements,
2987
                               llvm::Value *AllocSizeWithoutCookie);
2988
2989
  void EmitCXXTemporary(const CXXTemporary *Temporary, QualType TempType,
2990
                        Address Ptr);
2991
2992
  void EmitSehCppScopeBegin();
2993
  void EmitSehCppScopeEnd();
2994
  void EmitSehTryScopeBegin();
2995
  void EmitSehTryScopeEnd();
2996
2997
  llvm::Value *EmitLifetimeStart(llvm::TypeSize Size, llvm::Value *Addr);
2998
  void EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr);
2999
3000
  llvm::Value *EmitCXXNewExpr(const CXXNewExpr *E);
3001
  void EmitCXXDeleteExpr(const CXXDeleteExpr *E);
3002
3003
  void EmitDeleteCall(const FunctionDecl *DeleteFD, llvm::Value *Ptr,
3004
                      QualType DeleteTy, llvm::Value *NumElements = nullptr,
3005
                      CharUnits CookieSize = CharUnits());
3006
3007
  RValue EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
3008
                                  const CallExpr *TheCallExpr, bool IsDelete);
3009
3010
  llvm::Value *EmitCXXTypeidExpr(const CXXTypeidExpr *E);
3011
  llvm::Value *EmitDynamicCast(Address V, const CXXDynamicCastExpr *DCE);
3012
  Address EmitCXXUuidofExpr(const CXXUuidofExpr *E);
3013
3014
  /// Situations in which we might emit a check for the suitability of a
3015
  /// pointer or glvalue. Needs to be kept in sync with ubsan_handlers.cpp in
3016
  /// compiler-rt.
3017
  enum TypeCheckKind {
3018
    /// Checking the operand of a load. Must be suitably sized and aligned.
3019
    TCK_Load,
3020
    /// Checking the destination of a store. Must be suitably sized and aligned.
3021
    TCK_Store,
3022
    /// Checking the bound value in a reference binding. Must be suitably sized
3023
    /// and aligned, but is not required to refer to an object (until the
3024
    /// reference is used), per core issue 453.
3025
    TCK_ReferenceBinding,
3026
    /// Checking the object expression in a non-static data member access. Must
3027
    /// be an object within its lifetime.
3028
    TCK_MemberAccess,
3029
    /// Checking the 'this' pointer for a call to a non-static member function.
3030
    /// Must be an object within its lifetime.
3031
    TCK_MemberCall,
3032
    /// Checking the 'this' pointer for a constructor call.
3033
    TCK_ConstructorCall,
3034
    /// Checking the operand of a static_cast to a derived pointer type. Must be
3035
    /// null or an object within its lifetime.
3036
    TCK_DowncastPointer,
3037
    /// Checking the operand of a static_cast to a derived reference type. Must
3038
    /// be an object within its lifetime.
3039
    TCK_DowncastReference,
3040
    /// Checking the operand of a cast to a base object. Must be suitably sized
3041
    /// and aligned.
3042
    TCK_Upcast,
3043
    /// Checking the operand of a cast to a virtual base object. Must be an
3044
    /// object within its lifetime.
3045
    TCK_UpcastToVirtualBase,
3046
    /// Checking the value assigned to a _Nonnull pointer. Must not be null.
3047
    TCK_NonnullAssign,
3048
    /// Checking the operand of a dynamic_cast or a typeid expression.  Must be
3049
    /// null or an object within its lifetime.
3050
    TCK_DynamicOperation
3051
  };
3052
3053
  /// Determine whether the pointer type check \p TCK permits null pointers.
3054
  static bool isNullPointerAllowed(TypeCheckKind TCK);
3055
3056
  /// Determine whether the pointer type check \p TCK requires a vptr check.
3057
  static bool isVptrCheckRequired(TypeCheckKind TCK, QualType Ty);
3058
3059
  /// Whether any type-checking sanitizers are enabled. If \c false,
3060
  /// calls to EmitTypeCheck can be skipped.
3061
  bool sanitizePerformTypeCheck() const;
3062
3063
  /// Emit a check that \p V is the address of storage of the
3064
  /// appropriate size and alignment for an object of type \p Type
3065
  /// (or if ArraySize is provided, for an array of that bound).
3066
  void EmitTypeCheck(TypeCheckKind TCK, SourceLocation Loc, llvm::Value *V,
3067
                     QualType Type, CharUnits Alignment = CharUnits::Zero(),
3068
                     SanitizerSet SkippedChecks = SanitizerSet(),
3069
                     llvm::Value *ArraySize = nullptr);
3070
3071
  /// Emit a check that \p Base points into an array object, which
3072
  /// we can access at index \p Index. \p Accessed should be \c false if we
3073
  /// this expression is used as an lvalue, for instance in "&Arr[Idx]".
3074
  void EmitBoundsCheck(const Expr *E, const Expr *Base, llvm::Value *Index,
3075
                       QualType IndexType, bool Accessed);
3076
  void EmitBoundsCheckImpl(const Expr *E, llvm::Value *Bound,
3077
                           llvm::Value *Index, QualType IndexType,
3078
                           QualType IndexedType, bool Accessed);
3079
3080
  // Find a struct's flexible array member. It may be embedded inside multiple
3081
  // sub-structs, but must still be the last field.
3082
  const FieldDecl *FindFlexibleArrayMemberField(ASTContext &Ctx,
3083
                                                const RecordDecl *RD,
3084
                                                StringRef Name,
3085
                                                uint64_t &Offset);
3086
3087
  /// Find the FieldDecl specified in a FAM's "counted_by" attribute. Returns
3088
  /// \p nullptr if either the attribute or the field doesn't exist.
3089
  const FieldDecl *FindCountedByField(const FieldDecl *FD);
3090
3091
  /// Build an expression accessing the "counted_by" field.
3092
  llvm::Value *EmitCountedByFieldExpr(const Expr *Base,
3093
                                      const FieldDecl *FAMDecl,
3094
                                      const FieldDecl *CountDecl);
3095
3096
  llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3097
                                       bool isInc, bool isPre);
3098
  ComplexPairTy EmitComplexPrePostIncDec(const UnaryOperator *E, LValue LV,
3099
                                         bool isInc, bool isPre);
3100
3101
  /// Converts Location to a DebugLoc, if debug information is enabled.
3102
  llvm::DebugLoc SourceLocToDebugLoc(SourceLocation Location);
3103
3104
  /// Get the record field index as represented in debug info.
3105
  unsigned getDebugInfoFIndex(const RecordDecl *Rec, unsigned FieldIndex);
3106
3107
3108
  //===--------------------------------------------------------------------===//
3109
  //                            Declaration Emission
3110
  //===--------------------------------------------------------------------===//
3111
3112
  /// EmitDecl - Emit a declaration.
3113
  ///
3114
  /// This function can be called with a null (unreachable) insert point.
3115
  void EmitDecl(const Decl &D);
3116
3117
  /// EmitVarDecl - Emit a local variable declaration.
3118
  ///
3119
  /// This function can be called with a null (unreachable) insert point.
3120
  void EmitVarDecl(const VarDecl &D);
3121
3122
  void EmitScalarInit(const Expr *init, const ValueDecl *D, LValue lvalue,
3123
                      bool capturedByInit);
3124
3125
  typedef void SpecialInitFn(CodeGenFunction &Init, const VarDecl &D,
3126
                             llvm::Value *Address);
3127
3128
  /// Determine whether the given initializer is trivial in the sense
3129
  /// that it requires no code to be generated.
3130
  bool isTrivialInitializer(const Expr *Init);
3131
3132
  /// EmitAutoVarDecl - Emit an auto variable declaration.
3133
  ///
3134
  /// This function can be called with a null (unreachable) insert point.
3135
  void EmitAutoVarDecl(const VarDecl &D);
3136
3137
  class AutoVarEmission {
3138
    friend class CodeGenFunction;
3139
3140
    const VarDecl *Variable;
3141
3142
    /// The address of the alloca for languages with explicit address space
3143
    /// (e.g. OpenCL) or alloca casted to generic pointer for address space
3144
    /// agnostic languages (e.g. C++). Invalid if the variable was emitted
3145
    /// as a global constant.
3146
    Address Addr;
3147
3148
    llvm::Value *NRVOFlag;
3149
3150
    /// True if the variable is a __block variable that is captured by an
3151
    /// escaping block.
3152
    bool IsEscapingByRef;
3153
3154
    /// True if the variable is of aggregate type and has a constant
3155
    /// initializer.
3156
    bool IsConstantAggregate;
3157
3158
    /// Non-null if we should use lifetime annotations.
3159
    llvm::Value *SizeForLifetimeMarkers;
3160
3161
    /// Address with original alloca instruction. Invalid if the variable was
3162
    /// emitted as a global constant.
3163
    Address AllocaAddr;
3164
3165
    struct Invalid {};
3166
    AutoVarEmission(Invalid)
3167
        : Variable(nullptr), Addr(Address::invalid()),
3168
0
          AllocaAddr(Address::invalid()) {}
3169
3170
    AutoVarEmission(const VarDecl &variable)
3171
        : Variable(&variable), Addr(Address::invalid()), NRVOFlag(nullptr),
3172
          IsEscapingByRef(false), IsConstantAggregate(false),
3173
0
          SizeForLifetimeMarkers(nullptr), AllocaAddr(Address::invalid()) {}
3174
3175
0
    bool wasEmittedAsGlobal() const { return !Addr.isValid(); }
3176
3177
  public:
3178
0
    static AutoVarEmission invalid() { return AutoVarEmission(Invalid()); }
3179
3180
0
    bool useLifetimeMarkers() const {
3181
0
      return SizeForLifetimeMarkers != nullptr;
3182
0
    }
3183
0
    llvm::Value *getSizeForLifetimeMarkers() const {
3184
0
      assert(useLifetimeMarkers());
3185
0
      return SizeForLifetimeMarkers;
3186
0
    }
3187
3188
    /// Returns the raw, allocated address, which is not necessarily
3189
    /// the address of the object itself. It is casted to default
3190
    /// address space for address space agnostic languages.
3191
0
    Address getAllocatedAddress() const {
3192
0
      return Addr;
3193
0
    }
3194
3195
    /// Returns the address for the original alloca instruction.
3196
0
    Address getOriginalAllocatedAddress() const { return AllocaAddr; }
3197
3198
    /// Returns the address of the object within this declaration.
3199
    /// Note that this does not chase the forwarding pointer for
3200
    /// __block decls.
3201
0
    Address getObjectAddress(CodeGenFunction &CGF) const {
3202
0
      if (!IsEscapingByRef) return Addr;
3203
3204
0
      return CGF.emitBlockByrefAddress(Addr, Variable, /*forward*/ false);
3205
0
    }
3206
  };
3207
  AutoVarEmission EmitAutoVarAlloca(const VarDecl &var);
3208
  void EmitAutoVarInit(const AutoVarEmission &emission);
3209
  void EmitAutoVarCleanups(const AutoVarEmission &emission);
3210
  void emitAutoVarTypeCleanup(const AutoVarEmission &emission,
3211
                              QualType::DestructionKind dtorKind);
3212
3213
  /// Emits the alloca and debug information for the size expressions for each
3214
  /// dimension of an array. It registers the association of its (1-dimensional)
3215
  /// QualTypes and size expression's debug node, so that CGDebugInfo can
3216
  /// reference this node when creating the DISubrange object to describe the
3217
  /// array types.
3218
  void EmitAndRegisterVariableArrayDimensions(CGDebugInfo *DI,
3219
                                              const VarDecl &D,
3220
                                              bool EmitDebugInfo);
3221
3222
  void EmitStaticVarDecl(const VarDecl &D,
3223
                         llvm::GlobalValue::LinkageTypes Linkage);
3224
3225
  class ParamValue {
3226
    llvm::Value *Value;
3227
    llvm::Type *ElementType;
3228
    unsigned Alignment;
3229
    ParamValue(llvm::Value *V, llvm::Type *T, unsigned A)
3230
0
        : Value(V), ElementType(T), Alignment(A) {}
3231
  public:
3232
0
    static ParamValue forDirect(llvm::Value *value) {
3233
0
      return ParamValue(value, nullptr, 0);
3234
0
    }
3235
0
    static ParamValue forIndirect(Address addr) {
3236
0
      assert(!addr.getAlignment().isZero());
3237
0
      return ParamValue(addr.getPointer(), addr.getElementType(),
3238
0
                        addr.getAlignment().getQuantity());
3239
0
    }
3240
3241
0
    bool isIndirect() const { return Alignment != 0; }
3242
0
    llvm::Value *getAnyValue() const { return Value; }
3243
3244
0
    llvm::Value *getDirectValue() const {
3245
0
      assert(!isIndirect());
3246
0
      return Value;
3247
0
    }
3248
3249
0
    Address getIndirectAddress() const {
3250
0
      assert(isIndirect());
3251
0
      return Address(Value, ElementType, CharUnits::fromQuantity(Alignment),
3252
0
                     KnownNonNull);
3253
0
    }
3254
  };
3255
3256
  /// EmitParmDecl - Emit a ParmVarDecl or an ImplicitParamDecl.
3257
  void EmitParmDecl(const VarDecl &D, ParamValue Arg, unsigned ArgNo);
3258
3259
  /// protectFromPeepholes - Protect a value that we're intending to
3260
  /// store to the side, but which will probably be used later, from
3261
  /// aggressive peepholing optimizations that might delete it.
3262
  ///
3263
  /// Pass the result to unprotectFromPeepholes to declare that
3264
  /// protection is no longer required.
3265
  ///
3266
  /// There's no particular reason why this shouldn't apply to
3267
  /// l-values, it's just that no existing peepholes work on pointers.
3268
  PeepholeProtection protectFromPeepholes(RValue rvalue);
3269
  void unprotectFromPeepholes(PeepholeProtection protection);
3270
3271
  void emitAlignmentAssumptionCheck(llvm::Value *Ptr, QualType Ty,
3272
                                    SourceLocation Loc,
3273
                                    SourceLocation AssumptionLoc,
3274
                                    llvm::Value *Alignment,
3275
                                    llvm::Value *OffsetValue,
3276
                                    llvm::Value *TheCheck,
3277
                                    llvm::Instruction *Assumption);
3278
3279
  void emitAlignmentAssumption(llvm::Value *PtrValue, QualType Ty,
3280
                               SourceLocation Loc, SourceLocation AssumptionLoc,
3281
                               llvm::Value *Alignment,
3282
                               llvm::Value *OffsetValue = nullptr);
3283
3284
  void emitAlignmentAssumption(llvm::Value *PtrValue, const Expr *E,
3285
                               SourceLocation AssumptionLoc,
3286
                               llvm::Value *Alignment,
3287
                               llvm::Value *OffsetValue = nullptr);
3288
3289
  //===--------------------------------------------------------------------===//
3290
  //                             Statement Emission
3291
  //===--------------------------------------------------------------------===//
3292
3293
  /// EmitStopPoint - Emit a debug stoppoint if we are emitting debug info.
3294
  void EmitStopPoint(const Stmt *S);
3295
3296
  /// EmitStmt - Emit the code for the statement \arg S. It is legal to call
3297
  /// this function even if there is no current insertion point.
3298
  ///
3299
  /// This function may clear the current insertion point; callers should use
3300
  /// EnsureInsertPoint if they wish to subsequently generate code without first
3301
  /// calling EmitBlock, EmitBranch, or EmitStmt.
3302
  void EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs = std::nullopt);
3303
3304
  /// EmitSimpleStmt - Try to emit a "simple" statement which does not
3305
  /// necessarily require an insertion point or debug information; typically
3306
  /// because the statement amounts to a jump or a container of other
3307
  /// statements.
3308
  ///
3309
  /// \return True if the statement was handled.
3310
  bool EmitSimpleStmt(const Stmt *S, ArrayRef<const Attr *> Attrs);
3311
3312
  Address EmitCompoundStmt(const CompoundStmt &S, bool GetLast = false,
3313
                           AggValueSlot AVS = AggValueSlot::ignored());
3314
  Address EmitCompoundStmtWithoutScope(const CompoundStmt &S,
3315
                                       bool GetLast = false,
3316
                                       AggValueSlot AVS =
3317
                                                AggValueSlot::ignored());
3318
3319
  /// EmitLabel - Emit the block for the given label. It is legal to call this
3320
  /// function even if there is no current insertion point.
3321
  void EmitLabel(const LabelDecl *D); // helper for EmitLabelStmt.
3322
3323
  void EmitLabelStmt(const LabelStmt &S);
3324
  void EmitAttributedStmt(const AttributedStmt &S);
3325
  void EmitGotoStmt(const GotoStmt &S);
3326
  void EmitIndirectGotoStmt(const IndirectGotoStmt &S);
3327
  void EmitIfStmt(const IfStmt &S);
3328
3329
  void EmitWhileStmt(const WhileStmt &S,
3330
                     ArrayRef<const Attr *> Attrs = std::nullopt);
3331
  void EmitDoStmt(const DoStmt &S, ArrayRef<const Attr *> Attrs = std::nullopt);
3332
  void EmitForStmt(const ForStmt &S,
3333
                   ArrayRef<const Attr *> Attrs = std::nullopt);
3334
  void EmitReturnStmt(const ReturnStmt &S);
3335
  void EmitDeclStmt(const DeclStmt &S);
3336
  void EmitBreakStmt(const BreakStmt &S);
3337
  void EmitContinueStmt(const ContinueStmt &S);
3338
  void EmitSwitchStmt(const SwitchStmt &S);
3339
  void EmitDefaultStmt(const DefaultStmt &S, ArrayRef<const Attr *> Attrs);
3340
  void EmitCaseStmt(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3341
  void EmitCaseStmtRange(const CaseStmt &S, ArrayRef<const Attr *> Attrs);
3342
  void EmitAsmStmt(const AsmStmt &S);
3343
3344
  void EmitObjCForCollectionStmt(const ObjCForCollectionStmt &S);
3345
  void EmitObjCAtTryStmt(const ObjCAtTryStmt &S);
3346
  void EmitObjCAtThrowStmt(const ObjCAtThrowStmt &S);
3347
  void EmitObjCAtSynchronizedStmt(const ObjCAtSynchronizedStmt &S);
3348
  void EmitObjCAutoreleasePoolStmt(const ObjCAutoreleasePoolStmt &S);
3349
3350
  void EmitCoroutineBody(const CoroutineBodyStmt &S);
3351
  void EmitCoreturnStmt(const CoreturnStmt &S);
3352
  RValue EmitCoawaitExpr(const CoawaitExpr &E,
3353
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
3354
                         bool ignoreResult = false);
3355
  LValue EmitCoawaitLValue(const CoawaitExpr *E);
3356
  RValue EmitCoyieldExpr(const CoyieldExpr &E,
3357
                         AggValueSlot aggSlot = AggValueSlot::ignored(),
3358
                         bool ignoreResult = false);
3359
  LValue EmitCoyieldLValue(const CoyieldExpr *E);
3360
  RValue EmitCoroutineIntrinsic(const CallExpr *E, unsigned int IID);
3361
3362
  void EnterCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3363
  void ExitCXXTryStmt(const CXXTryStmt &S, bool IsFnTryBlock = false);
3364
3365
  void EmitCXXTryStmt(const CXXTryStmt &S);
3366
  void EmitSEHTryStmt(const SEHTryStmt &S);
3367
  void EmitSEHLeaveStmt(const SEHLeaveStmt &S);
3368
  void EnterSEHTryStmt(const SEHTryStmt &S);
3369
  void ExitSEHTryStmt(const SEHTryStmt &S);
3370
  void VolatilizeTryBlocks(llvm::BasicBlock *BB,
3371
                           llvm::SmallPtrSet<llvm::BasicBlock *, 10> &V);
3372
3373
  void pushSEHCleanup(CleanupKind kind,
3374
                      llvm::Function *FinallyFunc);
3375
  void startOutlinedSEHHelper(CodeGenFunction &ParentCGF, bool IsFilter,
3376
                              const Stmt *OutlinedStmt);
3377
3378
  llvm::Function *GenerateSEHFilterFunction(CodeGenFunction &ParentCGF,
3379
                                            const SEHExceptStmt &Except);
3380
3381
  llvm::Function *GenerateSEHFinallyFunction(CodeGenFunction &ParentCGF,
3382
                                             const SEHFinallyStmt &Finally);
3383
3384
  void EmitSEHExceptionCodeSave(CodeGenFunction &ParentCGF,
3385
                                llvm::Value *ParentFP,
3386
                                llvm::Value *EntryEBP);
3387
  llvm::Value *EmitSEHExceptionCode();
3388
  llvm::Value *EmitSEHExceptionInfo();
3389
  llvm::Value *EmitSEHAbnormalTermination();
3390
3391
  /// Emit simple code for OpenMP directives in Simd-only mode.
3392
  void EmitSimpleOMPExecutableDirective(const OMPExecutableDirective &D);
3393
3394
  /// Scan the outlined statement for captures from the parent function. For
3395
  /// each capture, mark the capture as escaped and emit a call to
3396
  /// llvm.localrecover. Insert the localrecover result into the LocalDeclMap.
3397
  void EmitCapturedLocals(CodeGenFunction &ParentCGF, const Stmt *OutlinedStmt,
3398
                          bool IsFilter);
3399
3400
  /// Recovers the address of a local in a parent function. ParentVar is the
3401
  /// address of the variable used in the immediate parent function. It can
3402
  /// either be an alloca or a call to llvm.localrecover if there are nested
3403
  /// outlined functions. ParentFP is the frame pointer of the outermost parent
3404
  /// frame.
3405
  Address recoverAddrOfEscapedLocal(CodeGenFunction &ParentCGF,
3406
                                    Address ParentVar,
3407
                                    llvm::Value *ParentFP);
3408
3409
  void EmitCXXForRangeStmt(const CXXForRangeStmt &S,
3410
                           ArrayRef<const Attr *> Attrs = std::nullopt);
3411
3412
  /// Controls insertion of cancellation exit blocks in worksharing constructs.
3413
  class OMPCancelStackRAII {
3414
    CodeGenFunction &CGF;
3415
3416
  public:
3417
    OMPCancelStackRAII(CodeGenFunction &CGF, OpenMPDirectiveKind Kind,
3418
                       bool HasCancel)
3419
0
        : CGF(CGF) {
3420
0
      CGF.OMPCancelStack.enter(CGF, Kind, HasCancel);
3421
0
    }
3422
0
    ~OMPCancelStackRAII() { CGF.OMPCancelStack.exit(CGF); }
3423
  };
3424
3425
  /// Returns calculated size of the specified type.
3426
  llvm::Value *getTypeSize(QualType Ty);
3427
  LValue InitCapturedStruct(const CapturedStmt &S);
3428
  llvm::Function *EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K);
3429
  llvm::Function *GenerateCapturedStmtFunction(const CapturedStmt &S);
3430
  Address GenerateCapturedStmtArgument(const CapturedStmt &S);
3431
  llvm::Function *GenerateOpenMPCapturedStmtFunction(const CapturedStmt &S,
3432
                                                     SourceLocation Loc);
3433
  void GenerateOpenMPCapturedVars(const CapturedStmt &S,
3434
                                  SmallVectorImpl<llvm::Value *> &CapturedVars);
3435
  void emitOMPSimpleStore(LValue LVal, RValue RVal, QualType RValTy,
3436
                          SourceLocation Loc);
3437
  /// Perform element by element copying of arrays with type \a
3438
  /// OriginalType from \a SrcAddr to \a DestAddr using copying procedure
3439
  /// generated by \a CopyGen.
3440
  ///
3441
  /// \param DestAddr Address of the destination array.
3442
  /// \param SrcAddr Address of the source array.
3443
  /// \param OriginalType Type of destination and source arrays.
3444
  /// \param CopyGen Copying procedure that copies value of single array element
3445
  /// to another single array element.
3446
  void EmitOMPAggregateAssign(
3447
      Address DestAddr, Address SrcAddr, QualType OriginalType,
3448
      const llvm::function_ref<void(Address, Address)> CopyGen);
3449
  /// Emit proper copying of data from one variable to another.
3450
  ///
3451
  /// \param OriginalType Original type of the copied variables.
3452
  /// \param DestAddr Destination address.
3453
  /// \param SrcAddr Source address.
3454
  /// \param DestVD Destination variable used in \a CopyExpr (for arrays, has
3455
  /// type of the base array element).
3456
  /// \param SrcVD Source variable used in \a CopyExpr (for arrays, has type of
3457
  /// the base array element).
3458
  /// \param Copy Actual copygin expression for copying data from \a SrcVD to \a
3459
  /// DestVD.
3460
  void EmitOMPCopy(QualType OriginalType,
3461
                   Address DestAddr, Address SrcAddr,
3462
                   const VarDecl *DestVD, const VarDecl *SrcVD,
3463
                   const Expr *Copy);
3464
  /// Emit atomic update code for constructs: \a X = \a X \a BO \a E or
3465
  /// \a X = \a E \a BO \a E.
3466
  ///
3467
  /// \param X Value to be updated.
3468
  /// \param E Update value.
3469
  /// \param BO Binary operation for update operation.
3470
  /// \param IsXLHSInRHSPart true if \a X is LHS in RHS part of the update
3471
  /// expression, false otherwise.
3472
  /// \param AO Atomic ordering of the generated atomic instructions.
3473
  /// \param CommonGen Code generator for complex expressions that cannot be
3474
  /// expressed through atomicrmw instruction.
3475
  /// \returns <true, OldAtomicValue> if simple 'atomicrmw' instruction was
3476
  /// generated, <false, RValue::get(nullptr)> otherwise.
3477
  std::pair<bool, RValue> EmitOMPAtomicSimpleUpdateExpr(
3478
      LValue X, RValue E, BinaryOperatorKind BO, bool IsXLHSInRHSPart,
3479
      llvm::AtomicOrdering AO, SourceLocation Loc,
3480
      const llvm::function_ref<RValue(RValue)> CommonGen);
3481
  bool EmitOMPFirstprivateClause(const OMPExecutableDirective &D,
3482
                                 OMPPrivateScope &PrivateScope);
3483
  void EmitOMPPrivateClause(const OMPExecutableDirective &D,
3484
                            OMPPrivateScope &PrivateScope);
3485
  void EmitOMPUseDevicePtrClause(
3486
      const OMPUseDevicePtrClause &C, OMPPrivateScope &PrivateScope,
3487
      const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3488
          CaptureDeviceAddrMap);
3489
  void EmitOMPUseDeviceAddrClause(
3490
      const OMPUseDeviceAddrClause &C, OMPPrivateScope &PrivateScope,
3491
      const llvm::DenseMap<const ValueDecl *, llvm::Value *>
3492
          CaptureDeviceAddrMap);
3493
  /// Emit code for copyin clause in \a D directive. The next code is
3494
  /// generated at the start of outlined functions for directives:
3495
  /// \code
3496
  /// threadprivate_var1 = master_threadprivate_var1;
3497
  /// operator=(threadprivate_var2, master_threadprivate_var2);
3498
  /// ...
3499
  /// __kmpc_barrier(&loc, global_tid);
3500
  /// \endcode
3501
  ///
3502
  /// \param D OpenMP directive possibly with 'copyin' clause(s).
3503
  /// \returns true if at least one copyin variable is found, false otherwise.
3504
  bool EmitOMPCopyinClause(const OMPExecutableDirective &D);
3505
  /// Emit initial code for lastprivate variables. If some variable is
3506
  /// not also firstprivate, then the default initialization is used. Otherwise
3507
  /// initialization of this variable is performed by EmitOMPFirstprivateClause
3508
  /// method.
3509
  ///
3510
  /// \param D Directive that may have 'lastprivate' directives.
3511
  /// \param PrivateScope Private scope for capturing lastprivate variables for
3512
  /// proper codegen in internal captured statement.
3513
  ///
3514
  /// \returns true if there is at least one lastprivate variable, false
3515
  /// otherwise.
3516
  bool EmitOMPLastprivateClauseInit(const OMPExecutableDirective &D,
3517
                                    OMPPrivateScope &PrivateScope);
3518
  /// Emit final copying of lastprivate values to original variables at
3519
  /// the end of the worksharing or simd directive.
3520
  ///
3521
  /// \param D Directive that has at least one 'lastprivate' directives.
3522
  /// \param IsLastIterCond Boolean condition that must be set to 'i1 true' if
3523
  /// it is the last iteration of the loop code in associated directive, or to
3524
  /// 'i1 false' otherwise. If this item is nullptr, no final check is required.
3525
  void EmitOMPLastprivateClauseFinal(const OMPExecutableDirective &D,
3526
                                     bool NoFinals,
3527
                                     llvm::Value *IsLastIterCond = nullptr);
3528
  /// Emit initial code for linear clauses.
3529
  void EmitOMPLinearClause(const OMPLoopDirective &D,
3530
                           CodeGenFunction::OMPPrivateScope &PrivateScope);
3531
  /// Emit final code for linear clauses.
3532
  /// \param CondGen Optional conditional code for final part of codegen for
3533
  /// linear clause.
3534
  void EmitOMPLinearClauseFinal(
3535
      const OMPLoopDirective &D,
3536
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3537
  /// Emit initial code for reduction variables. Creates reduction copies
3538
  /// and initializes them with the values according to OpenMP standard.
3539
  ///
3540
  /// \param D Directive (possibly) with the 'reduction' clause.
3541
  /// \param PrivateScope Private scope for capturing reduction variables for
3542
  /// proper codegen in internal captured statement.
3543
  ///
3544
  void EmitOMPReductionClauseInit(const OMPExecutableDirective &D,
3545
                                  OMPPrivateScope &PrivateScope,
3546
                                  bool ForInscan = false);
3547
  /// Emit final update of reduction values to original variables at
3548
  /// the end of the directive.
3549
  ///
3550
  /// \param D Directive that has at least one 'reduction' directives.
3551
  /// \param ReductionKind The kind of reduction to perform.
3552
  void EmitOMPReductionClauseFinal(const OMPExecutableDirective &D,
3553
                                   const OpenMPDirectiveKind ReductionKind);
3554
  /// Emit initial code for linear variables. Creates private copies
3555
  /// and initializes them with the values according to OpenMP standard.
3556
  ///
3557
  /// \param D Directive (possibly) with the 'linear' clause.
3558
  /// \return true if at least one linear variable is found that should be
3559
  /// initialized with the value of the original variable, false otherwise.
3560
  bool EmitOMPLinearClauseInit(const OMPLoopDirective &D);
3561
3562
  typedef const llvm::function_ref<void(CodeGenFunction & /*CGF*/,
3563
                                        llvm::Function * /*OutlinedFn*/,
3564
                                        const OMPTaskDataTy & /*Data*/)>
3565
      TaskGenTy;
3566
  void EmitOMPTaskBasedDirective(const OMPExecutableDirective &S,
3567
                                 const OpenMPDirectiveKind CapturedRegion,
3568
                                 const RegionCodeGenTy &BodyGen,
3569
                                 const TaskGenTy &TaskGen, OMPTaskDataTy &Data);
3570
  struct OMPTargetDataInfo {
3571
    Address BasePointersArray = Address::invalid();
3572
    Address PointersArray = Address::invalid();
3573
    Address SizesArray = Address::invalid();
3574
    Address MappersArray = Address::invalid();
3575
    unsigned NumberOfTargetItems = 0;
3576
0
    explicit OMPTargetDataInfo() = default;
3577
    OMPTargetDataInfo(Address BasePointersArray, Address PointersArray,
3578
                      Address SizesArray, Address MappersArray,
3579
                      unsigned NumberOfTargetItems)
3580
        : BasePointersArray(BasePointersArray), PointersArray(PointersArray),
3581
          SizesArray(SizesArray), MappersArray(MappersArray),
3582
0
          NumberOfTargetItems(NumberOfTargetItems) {}
3583
  };
3584
  void EmitOMPTargetTaskBasedDirective(const OMPExecutableDirective &S,
3585
                                       const RegionCodeGenTy &BodyGen,
3586
                                       OMPTargetDataInfo &InputInfo);
3587
  void processInReduction(const OMPExecutableDirective &S,
3588
                          OMPTaskDataTy &Data,
3589
                          CodeGenFunction &CGF,
3590
                          const CapturedStmt *CS,
3591
                          OMPPrivateScope &Scope);
3592
  void EmitOMPMetaDirective(const OMPMetaDirective &S);
3593
  void EmitOMPParallelDirective(const OMPParallelDirective &S);
3594
  void EmitOMPSimdDirective(const OMPSimdDirective &S);
3595
  void EmitOMPTileDirective(const OMPTileDirective &S);
3596
  void EmitOMPUnrollDirective(const OMPUnrollDirective &S);
3597
  void EmitOMPForDirective(const OMPForDirective &S);
3598
  void EmitOMPForSimdDirective(const OMPForSimdDirective &S);
3599
  void EmitOMPSectionsDirective(const OMPSectionsDirective &S);
3600
  void EmitOMPSectionDirective(const OMPSectionDirective &S);
3601
  void EmitOMPSingleDirective(const OMPSingleDirective &S);
3602
  void EmitOMPMasterDirective(const OMPMasterDirective &S);
3603
  void EmitOMPMaskedDirective(const OMPMaskedDirective &S);
3604
  void EmitOMPCriticalDirective(const OMPCriticalDirective &S);
3605
  void EmitOMPParallelForDirective(const OMPParallelForDirective &S);
3606
  void EmitOMPParallelForSimdDirective(const OMPParallelForSimdDirective &S);
3607
  void EmitOMPParallelSectionsDirective(const OMPParallelSectionsDirective &S);
3608
  void EmitOMPParallelMasterDirective(const OMPParallelMasterDirective &S);
3609
  void EmitOMPTaskDirective(const OMPTaskDirective &S);
3610
  void EmitOMPTaskyieldDirective(const OMPTaskyieldDirective &S);
3611
  void EmitOMPErrorDirective(const OMPErrorDirective &S);
3612
  void EmitOMPBarrierDirective(const OMPBarrierDirective &S);
3613
  void EmitOMPTaskwaitDirective(const OMPTaskwaitDirective &S);
3614
  void EmitOMPTaskgroupDirective(const OMPTaskgroupDirective &S);
3615
  void EmitOMPFlushDirective(const OMPFlushDirective &S);
3616
  void EmitOMPDepobjDirective(const OMPDepobjDirective &S);
3617
  void EmitOMPScanDirective(const OMPScanDirective &S);
3618
  void EmitOMPOrderedDirective(const OMPOrderedDirective &S);
3619
  void EmitOMPAtomicDirective(const OMPAtomicDirective &S);
3620
  void EmitOMPTargetDirective(const OMPTargetDirective &S);
3621
  void EmitOMPTargetDataDirective(const OMPTargetDataDirective &S);
3622
  void EmitOMPTargetEnterDataDirective(const OMPTargetEnterDataDirective &S);
3623
  void EmitOMPTargetExitDataDirective(const OMPTargetExitDataDirective &S);
3624
  void EmitOMPTargetUpdateDirective(const OMPTargetUpdateDirective &S);
3625
  void EmitOMPTargetParallelDirective(const OMPTargetParallelDirective &S);
3626
  void
3627
  EmitOMPTargetParallelForDirective(const OMPTargetParallelForDirective &S);
3628
  void EmitOMPTeamsDirective(const OMPTeamsDirective &S);
3629
  void
3630
  EmitOMPCancellationPointDirective(const OMPCancellationPointDirective &S);
3631
  void EmitOMPCancelDirective(const OMPCancelDirective &S);
3632
  void EmitOMPTaskLoopBasedDirective(const OMPLoopDirective &S);
3633
  void EmitOMPTaskLoopDirective(const OMPTaskLoopDirective &S);
3634
  void EmitOMPTaskLoopSimdDirective(const OMPTaskLoopSimdDirective &S);
3635
  void EmitOMPMasterTaskLoopDirective(const OMPMasterTaskLoopDirective &S);
3636
  void
3637
  EmitOMPMasterTaskLoopSimdDirective(const OMPMasterTaskLoopSimdDirective &S);
3638
  void EmitOMPParallelMasterTaskLoopDirective(
3639
      const OMPParallelMasterTaskLoopDirective &S);
3640
  void EmitOMPParallelMasterTaskLoopSimdDirective(
3641
      const OMPParallelMasterTaskLoopSimdDirective &S);
3642
  void EmitOMPDistributeDirective(const OMPDistributeDirective &S);
3643
  void EmitOMPDistributeParallelForDirective(
3644
      const OMPDistributeParallelForDirective &S);
3645
  void EmitOMPDistributeParallelForSimdDirective(
3646
      const OMPDistributeParallelForSimdDirective &S);
3647
  void EmitOMPDistributeSimdDirective(const OMPDistributeSimdDirective &S);
3648
  void EmitOMPTargetParallelForSimdDirective(
3649
      const OMPTargetParallelForSimdDirective &S);
3650
  void EmitOMPTargetSimdDirective(const OMPTargetSimdDirective &S);
3651
  void EmitOMPTeamsDistributeDirective(const OMPTeamsDistributeDirective &S);
3652
  void
3653
  EmitOMPTeamsDistributeSimdDirective(const OMPTeamsDistributeSimdDirective &S);
3654
  void EmitOMPTeamsDistributeParallelForSimdDirective(
3655
      const OMPTeamsDistributeParallelForSimdDirective &S);
3656
  void EmitOMPTeamsDistributeParallelForDirective(
3657
      const OMPTeamsDistributeParallelForDirective &S);
3658
  void EmitOMPTargetTeamsDirective(const OMPTargetTeamsDirective &S);
3659
  void EmitOMPTargetTeamsDistributeDirective(
3660
      const OMPTargetTeamsDistributeDirective &S);
3661
  void EmitOMPTargetTeamsDistributeParallelForDirective(
3662
      const OMPTargetTeamsDistributeParallelForDirective &S);
3663
  void EmitOMPTargetTeamsDistributeParallelForSimdDirective(
3664
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3665
  void EmitOMPTargetTeamsDistributeSimdDirective(
3666
      const OMPTargetTeamsDistributeSimdDirective &S);
3667
  void EmitOMPGenericLoopDirective(const OMPGenericLoopDirective &S);
3668
  void EmitOMPParallelGenericLoopDirective(const OMPLoopDirective &S);
3669
  void EmitOMPTargetParallelGenericLoopDirective(
3670
      const OMPTargetParallelGenericLoopDirective &S);
3671
  void EmitOMPTargetTeamsGenericLoopDirective(
3672
      const OMPTargetTeamsGenericLoopDirective &S);
3673
  void EmitOMPTeamsGenericLoopDirective(const OMPTeamsGenericLoopDirective &S);
3674
  void EmitOMPInteropDirective(const OMPInteropDirective &S);
3675
  void EmitOMPParallelMaskedDirective(const OMPParallelMaskedDirective &S);
3676
3677
  /// Emit device code for the target directive.
3678
  static void EmitOMPTargetDeviceFunction(CodeGenModule &CGM,
3679
                                          StringRef ParentName,
3680
                                          const OMPTargetDirective &S);
3681
  static void
3682
  EmitOMPTargetParallelDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3683
                                      const OMPTargetParallelDirective &S);
3684
  /// Emit device code for the target parallel for directive.
3685
  static void EmitOMPTargetParallelForDeviceFunction(
3686
      CodeGenModule &CGM, StringRef ParentName,
3687
      const OMPTargetParallelForDirective &S);
3688
  /// Emit device code for the target parallel for simd directive.
3689
  static void EmitOMPTargetParallelForSimdDeviceFunction(
3690
      CodeGenModule &CGM, StringRef ParentName,
3691
      const OMPTargetParallelForSimdDirective &S);
3692
  /// Emit device code for the target teams directive.
3693
  static void
3694
  EmitOMPTargetTeamsDeviceFunction(CodeGenModule &CGM, StringRef ParentName,
3695
                                   const OMPTargetTeamsDirective &S);
3696
  /// Emit device code for the target teams distribute directive.
3697
  static void EmitOMPTargetTeamsDistributeDeviceFunction(
3698
      CodeGenModule &CGM, StringRef ParentName,
3699
      const OMPTargetTeamsDistributeDirective &S);
3700
  /// Emit device code for the target teams distribute simd directive.
3701
  static void EmitOMPTargetTeamsDistributeSimdDeviceFunction(
3702
      CodeGenModule &CGM, StringRef ParentName,
3703
      const OMPTargetTeamsDistributeSimdDirective &S);
3704
  /// Emit device code for the target simd directive.
3705
  static void EmitOMPTargetSimdDeviceFunction(CodeGenModule &CGM,
3706
                                              StringRef ParentName,
3707
                                              const OMPTargetSimdDirective &S);
3708
  /// Emit device code for the target teams distribute parallel for simd
3709
  /// directive.
3710
  static void EmitOMPTargetTeamsDistributeParallelForSimdDeviceFunction(
3711
      CodeGenModule &CGM, StringRef ParentName,
3712
      const OMPTargetTeamsDistributeParallelForSimdDirective &S);
3713
3714
  /// Emit device code for the target teams loop directive.
3715
  static void EmitOMPTargetTeamsGenericLoopDeviceFunction(
3716
      CodeGenModule &CGM, StringRef ParentName,
3717
      const OMPTargetTeamsGenericLoopDirective &S);
3718
3719
  /// Emit device code for the target parallel loop directive.
3720
  static void EmitOMPTargetParallelGenericLoopDeviceFunction(
3721
      CodeGenModule &CGM, StringRef ParentName,
3722
      const OMPTargetParallelGenericLoopDirective &S);
3723
3724
  static void EmitOMPTargetTeamsDistributeParallelForDeviceFunction(
3725
      CodeGenModule &CGM, StringRef ParentName,
3726
      const OMPTargetTeamsDistributeParallelForDirective &S);
3727
3728
  /// Emit the Stmt \p S and return its topmost canonical loop, if any.
3729
  /// TODO: The \p Depth paramter is not yet implemented and must be 1. In the
3730
  /// future it is meant to be the number of loops expected in the loop nests
3731
  /// (usually specified by the "collapse" clause) that are collapsed to a
3732
  /// single loop by this function.
3733
  llvm::CanonicalLoopInfo *EmitOMPCollapsedCanonicalLoopNest(const Stmt *S,
3734
                                                             int Depth);
3735
3736
  /// Emit an OMPCanonicalLoop using the OpenMPIRBuilder.
3737
  void EmitOMPCanonicalLoop(const OMPCanonicalLoop *S);
3738
3739
  /// Emit inner loop of the worksharing/simd construct.
3740
  ///
3741
  /// \param S Directive, for which the inner loop must be emitted.
3742
  /// \param RequiresCleanup true, if directive has some associated private
3743
  /// variables.
3744
  /// \param LoopCond Bollean condition for loop continuation.
3745
  /// \param IncExpr Increment expression for loop control variable.
3746
  /// \param BodyGen Generator for the inner body of the inner loop.
3747
  /// \param PostIncGen Genrator for post-increment code (required for ordered
3748
  /// loop directvies).
3749
  void EmitOMPInnerLoop(
3750
      const OMPExecutableDirective &S, bool RequiresCleanup,
3751
      const Expr *LoopCond, const Expr *IncExpr,
3752
      const llvm::function_ref<void(CodeGenFunction &)> BodyGen,
3753
      const llvm::function_ref<void(CodeGenFunction &)> PostIncGen);
3754
3755
  JumpDest getOMPCancelDestination(OpenMPDirectiveKind Kind);
3756
  /// Emit initial code for loop counters of loop-based directives.
3757
  void EmitOMPPrivateLoopCounters(const OMPLoopDirective &S,
3758
                                  OMPPrivateScope &LoopScope);
3759
3760
  /// Helper for the OpenMP loop directives.
3761
  void EmitOMPLoopBody(const OMPLoopDirective &D, JumpDest LoopExit);
3762
3763
  /// Emit code for the worksharing loop-based directive.
3764
  /// \return true, if this construct has any lastprivate clause, false -
3765
  /// otherwise.
3766
  bool EmitOMPWorksharingLoop(const OMPLoopDirective &S, Expr *EUB,
3767
                              const CodeGenLoopBoundsTy &CodeGenLoopBounds,
3768
                              const CodeGenDispatchBoundsTy &CGDispatchBounds);
3769
3770
  /// Emit code for the distribute loop-based directive.
3771
  void EmitOMPDistributeLoop(const OMPLoopDirective &S,
3772
                             const CodeGenLoopTy &CodeGenLoop, Expr *IncExpr);
3773
3774
  /// Helpers for the OpenMP loop directives.
3775
  void EmitOMPSimdInit(const OMPLoopDirective &D);
3776
  void EmitOMPSimdFinal(
3777
      const OMPLoopDirective &D,
3778
      const llvm::function_ref<llvm::Value *(CodeGenFunction &)> CondGen);
3779
3780
  /// Emits the lvalue for the expression with possibly captured variable.
3781
  LValue EmitOMPSharedLValue(const Expr *E);
3782
3783
private:
3784
  /// Helpers for blocks.
3785
  llvm::Value *EmitBlockLiteral(const CGBlockInfo &Info);
3786
3787
  /// struct with the values to be passed to the OpenMP loop-related functions
3788
  struct OMPLoopArguments {
3789
    /// loop lower bound
3790
    Address LB = Address::invalid();
3791
    /// loop upper bound
3792
    Address UB = Address::invalid();
3793
    /// loop stride
3794
    Address ST = Address::invalid();
3795
    /// isLastIteration argument for runtime functions
3796
    Address IL = Address::invalid();
3797
    /// Chunk value generated by sema
3798
    llvm::Value *Chunk = nullptr;
3799
    /// EnsureUpperBound
3800
    Expr *EUB = nullptr;
3801
    /// IncrementExpression
3802
    Expr *IncExpr = nullptr;
3803
    /// Loop initialization
3804
    Expr *Init = nullptr;
3805
    /// Loop exit condition
3806
    Expr *Cond = nullptr;
3807
    /// Update of LB after a whole chunk has been executed
3808
    Expr *NextLB = nullptr;
3809
    /// Update of UB after a whole chunk has been executed
3810
    Expr *NextUB = nullptr;
3811
0
    OMPLoopArguments() = default;
3812
    OMPLoopArguments(Address LB, Address UB, Address ST, Address IL,
3813
                     llvm::Value *Chunk = nullptr, Expr *EUB = nullptr,
3814
                     Expr *IncExpr = nullptr, Expr *Init = nullptr,
3815
                     Expr *Cond = nullptr, Expr *NextLB = nullptr,
3816
                     Expr *NextUB = nullptr)
3817
        : LB(LB), UB(UB), ST(ST), IL(IL), Chunk(Chunk), EUB(EUB),
3818
          IncExpr(IncExpr), Init(Init), Cond(Cond), NextLB(NextLB),
3819
0
          NextUB(NextUB) {}
3820
  };
3821
  void EmitOMPOuterLoop(bool DynamicOrOrdered, bool IsMonotonic,
3822
                        const OMPLoopDirective &S, OMPPrivateScope &LoopScope,
3823
                        const OMPLoopArguments &LoopArgs,
3824
                        const CodeGenLoopTy &CodeGenLoop,
3825
                        const CodeGenOrderedTy &CodeGenOrdered);
3826
  void EmitOMPForOuterLoop(const OpenMPScheduleTy &ScheduleKind,
3827
                           bool IsMonotonic, const OMPLoopDirective &S,
3828
                           OMPPrivateScope &LoopScope, bool Ordered,
3829
                           const OMPLoopArguments &LoopArgs,
3830
                           const CodeGenDispatchBoundsTy &CGDispatchBounds);
3831
  void EmitOMPDistributeOuterLoop(OpenMPDistScheduleClauseKind ScheduleKind,
3832
                                  const OMPLoopDirective &S,
3833
                                  OMPPrivateScope &LoopScope,
3834
                                  const OMPLoopArguments &LoopArgs,
3835
                                  const CodeGenLoopTy &CodeGenLoopContent);
3836
  /// Emit code for sections directive.
3837
  void EmitSections(const OMPExecutableDirective &S);
3838
3839
public:
3840
3841
  //===--------------------------------------------------------------------===//
3842
  //                         LValue Expression Emission
3843
  //===--------------------------------------------------------------------===//
3844
3845
  /// Create a check that a scalar RValue is non-null.
3846
  llvm::Value *EmitNonNullRValueCheck(RValue RV, QualType T);
3847
3848
  /// GetUndefRValue - Get an appropriate 'undef' rvalue for the given type.
3849
  RValue GetUndefRValue(QualType Ty);
3850
3851
  /// EmitUnsupportedRValue - Emit a dummy r-value using the type of E
3852
  /// and issue an ErrorUnsupported style diagnostic (using the
3853
  /// provided Name).
3854
  RValue EmitUnsupportedRValue(const Expr *E,
3855
                               const char *Name);
3856
3857
  /// EmitUnsupportedLValue - Emit a dummy l-value using the type of E and issue
3858
  /// an ErrorUnsupported style diagnostic (using the provided Name).
3859
  LValue EmitUnsupportedLValue(const Expr *E,
3860
                               const char *Name);
3861
3862
  /// EmitLValue - Emit code to compute a designator that specifies the location
3863
  /// of the expression.
3864
  ///
3865
  /// This can return one of two things: a simple address or a bitfield
3866
  /// reference.  In either case, the LLVM Value* in the LValue structure is
3867
  /// guaranteed to be an LLVM pointer type.
3868
  ///
3869
  /// If this returns a bitfield reference, nothing about the pointee type of
3870
  /// the LLVM value is known: For example, it may not be a pointer to an
3871
  /// integer.
3872
  ///
3873
  /// If this returns a normal address, and if the lvalue's C type is fixed
3874
  /// size, this method guarantees that the returned pointer type will point to
3875
  /// an LLVM type of the same size of the lvalue's type.  If the lvalue has a
3876
  /// variable length type, this is not possible.
3877
  ///
3878
  LValue EmitLValue(const Expr *E,
3879
                    KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
3880
3881
private:
3882
  LValue EmitLValueHelper(const Expr *E, KnownNonNull_t IsKnownNonNull);
3883
3884
public:
3885
  /// Same as EmitLValue but additionally we generate checking code to
3886
  /// guard against undefined behavior.  This is only suitable when we know
3887
  /// that the address will be used to access the object.
3888
  LValue EmitCheckedLValue(const Expr *E, TypeCheckKind TCK);
3889
3890
  RValue convertTempToRValue(Address addr, QualType type,
3891
                             SourceLocation Loc);
3892
3893
  void EmitAtomicInit(Expr *E, LValue lvalue);
3894
3895
  bool LValueIsSuitableForInlineAtomic(LValue Src);
3896
3897
  RValue EmitAtomicLoad(LValue LV, SourceLocation SL,
3898
                        AggValueSlot Slot = AggValueSlot::ignored());
3899
3900
  RValue EmitAtomicLoad(LValue lvalue, SourceLocation loc,
3901
                        llvm::AtomicOrdering AO, bool IsVolatile = false,
3902
                        AggValueSlot slot = AggValueSlot::ignored());
3903
3904
  void EmitAtomicStore(RValue rvalue, LValue lvalue, bool isInit);
3905
3906
  void EmitAtomicStore(RValue rvalue, LValue lvalue, llvm::AtomicOrdering AO,
3907
                       bool IsVolatile, bool isInit);
3908
3909
  std::pair<RValue, llvm::Value *> EmitAtomicCompareExchange(
3910
      LValue Obj, RValue Expected, RValue Desired, SourceLocation Loc,
3911
      llvm::AtomicOrdering Success =
3912
          llvm::AtomicOrdering::SequentiallyConsistent,
3913
      llvm::AtomicOrdering Failure =
3914
          llvm::AtomicOrdering::SequentiallyConsistent,
3915
      bool IsWeak = false, AggValueSlot Slot = AggValueSlot::ignored());
3916
3917
  void EmitAtomicUpdate(LValue LVal, llvm::AtomicOrdering AO,
3918
                        const llvm::function_ref<RValue(RValue)> &UpdateOp,
3919
                        bool IsVolatile);
3920
3921
  /// EmitToMemory - Change a scalar value from its value
3922
  /// representation to its in-memory representation.
3923
  llvm::Value *EmitToMemory(llvm::Value *Value, QualType Ty);
3924
3925
  /// EmitFromMemory - Change a scalar value from its memory
3926
  /// representation to its value representation.
3927
  llvm::Value *EmitFromMemory(llvm::Value *Value, QualType Ty);
3928
3929
  /// Check if the scalar \p Value is within the valid range for the given
3930
  /// type \p Ty.
3931
  ///
3932
  /// Returns true if a check is needed (even if the range is unknown).
3933
  bool EmitScalarRangeCheck(llvm::Value *Value, QualType Ty,
3934
                            SourceLocation Loc);
3935
3936
  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3937
  /// care to appropriately convert from the memory representation to
3938
  /// the LLVM value representation.
3939
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3940
                                SourceLocation Loc,
3941
                                AlignmentSource Source = AlignmentSource::Type,
3942
0
                                bool isNontemporal = false) {
3943
0
    return EmitLoadOfScalar(Addr, Volatile, Ty, Loc, LValueBaseInfo(Source),
3944
0
                            CGM.getTBAAAccessInfo(Ty), isNontemporal);
3945
0
  }
3946
3947
  llvm::Value *EmitLoadOfScalar(Address Addr, bool Volatile, QualType Ty,
3948
                                SourceLocation Loc, LValueBaseInfo BaseInfo,
3949
                                TBAAAccessInfo TBAAInfo,
3950
                                bool isNontemporal = false);
3951
3952
  /// EmitLoadOfScalar - Load a scalar value from an address, taking
3953
  /// care to appropriately convert from the memory representation to
3954
  /// the LLVM value representation.  The l-value must be a simple
3955
  /// l-value.
3956
  llvm::Value *EmitLoadOfScalar(LValue lvalue, SourceLocation Loc);
3957
3958
  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3959
  /// care to appropriately convert from the memory representation to
3960
  /// the LLVM value representation.
3961
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3962
                         bool Volatile, QualType Ty,
3963
                         AlignmentSource Source = AlignmentSource::Type,
3964
0
                         bool isInit = false, bool isNontemporal = false) {
3965
0
    EmitStoreOfScalar(Value, Addr, Volatile, Ty, LValueBaseInfo(Source),
3966
0
                      CGM.getTBAAAccessInfo(Ty), isInit, isNontemporal);
3967
0
  }
3968
3969
  void EmitStoreOfScalar(llvm::Value *Value, Address Addr,
3970
                         bool Volatile, QualType Ty,
3971
                         LValueBaseInfo BaseInfo, TBAAAccessInfo TBAAInfo,
3972
                         bool isInit = false, bool isNontemporal = false);
3973
3974
  /// EmitStoreOfScalar - Store a scalar value to an address, taking
3975
  /// care to appropriately convert from the memory representation to
3976
  /// the LLVM value representation.  The l-value must be a simple
3977
  /// l-value.  The isInit flag indicates whether this is an initialization.
3978
  /// If so, atomic qualifiers are ignored and the store is always non-atomic.
3979
  void EmitStoreOfScalar(llvm::Value *value, LValue lvalue, bool isInit=false);
3980
3981
  /// EmitLoadOfLValue - Given an expression that represents a value lvalue,
3982
  /// this method emits the address of the lvalue, then loads the result as an
3983
  /// rvalue, returning the rvalue.
3984
  RValue EmitLoadOfLValue(LValue V, SourceLocation Loc);
3985
  RValue EmitLoadOfExtVectorElementLValue(LValue V);
3986
  RValue EmitLoadOfBitfieldLValue(LValue LV, SourceLocation Loc);
3987
  RValue EmitLoadOfGlobalRegLValue(LValue LV);
3988
3989
  /// EmitStoreThroughLValue - Store the specified rvalue into the specified
3990
  /// lvalue, where both are guaranteed to the have the same type, and that type
3991
  /// is 'Ty'.
3992
  void EmitStoreThroughLValue(RValue Src, LValue Dst, bool isInit = false);
3993
  void EmitStoreThroughExtVectorComponentLValue(RValue Src, LValue Dst);
3994
  void EmitStoreThroughGlobalRegLValue(RValue Src, LValue Dst);
3995
3996
  /// EmitStoreThroughBitfieldLValue - Store Src into Dst with same constraints
3997
  /// as EmitStoreThroughLValue.
3998
  ///
3999
  /// \param Result [out] - If non-null, this will be set to a Value* for the
4000
  /// bit-field contents after the store, appropriate for use as the result of
4001
  /// an assignment to the bit-field.
4002
  void EmitStoreThroughBitfieldLValue(RValue Src, LValue Dst,
4003
                                      llvm::Value **Result=nullptr);
4004
4005
  /// Emit an l-value for an assignment (simple or compound) of complex type.
4006
  LValue EmitComplexAssignmentLValue(const BinaryOperator *E);
4007
  LValue EmitComplexCompoundAssignmentLValue(const CompoundAssignOperator *E);
4008
  LValue EmitScalarCompoundAssignWithComplex(const CompoundAssignOperator *E,
4009
                                             llvm::Value *&Result);
4010
4011
  // Note: only available for agg return types
4012
  LValue EmitBinaryOperatorLValue(const BinaryOperator *E);
4013
  LValue EmitCompoundAssignmentLValue(const CompoundAssignOperator *E);
4014
  // Note: only available for agg return types
4015
  LValue EmitCallExprLValue(const CallExpr *E);
4016
  // Note: only available for agg return types
4017
  LValue EmitVAArgExprLValue(const VAArgExpr *E);
4018
  LValue EmitDeclRefLValue(const DeclRefExpr *E);
4019
  LValue EmitStringLiteralLValue(const StringLiteral *E);
4020
  LValue EmitObjCEncodeExprLValue(const ObjCEncodeExpr *E);
4021
  LValue EmitPredefinedLValue(const PredefinedExpr *E);
4022
  LValue EmitUnaryOpLValue(const UnaryOperator *E);
4023
  LValue EmitArraySubscriptExpr(const ArraySubscriptExpr *E,
4024
                                bool Accessed = false);
4025
  LValue EmitMatrixSubscriptExpr(const MatrixSubscriptExpr *E);
4026
  LValue EmitOMPArraySectionExpr(const OMPArraySectionExpr *E,
4027
                                 bool IsLowerBound = true);
4028
  LValue EmitExtVectorElementExpr(const ExtVectorElementExpr *E);
4029
  LValue EmitMemberExpr(const MemberExpr *E);
4030
  LValue EmitObjCIsaExpr(const ObjCIsaExpr *E);
4031
  LValue EmitCompoundLiteralLValue(const CompoundLiteralExpr *E);
4032
  LValue EmitInitListLValue(const InitListExpr *E);
4033
  void EmitIgnoredConditionalOperator(const AbstractConditionalOperator *E);
4034
  LValue EmitConditionalOperatorLValue(const AbstractConditionalOperator *E);
4035
  LValue EmitCastLValue(const CastExpr *E);
4036
  LValue EmitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E);
4037
  LValue EmitOpaqueValueLValue(const OpaqueValueExpr *e);
4038
4039
  Address EmitExtVectorElementLValue(LValue V);
4040
4041
  RValue EmitRValueForField(LValue LV, const FieldDecl *FD, SourceLocation Loc);
4042
4043
  Address EmitArrayToPointerDecay(const Expr *Array,
4044
                                  LValueBaseInfo *BaseInfo = nullptr,
4045
                                  TBAAAccessInfo *TBAAInfo = nullptr);
4046
4047
  class ConstantEmission {
4048
    llvm::PointerIntPair<llvm::Constant*, 1, bool> ValueAndIsReference;
4049
    ConstantEmission(llvm::Constant *C, bool isReference)
4050
0
      : ValueAndIsReference(C, isReference) {}
4051
  public:
4052
0
    ConstantEmission() {}
4053
0
    static ConstantEmission forReference(llvm::Constant *C) {
4054
0
      return ConstantEmission(C, true);
4055
0
    }
4056
0
    static ConstantEmission forValue(llvm::Constant *C) {
4057
0
      return ConstantEmission(C, false);
4058
0
    }
4059
4060
0
    explicit operator bool() const {
4061
0
      return ValueAndIsReference.getOpaqueValue() != nullptr;
4062
0
    }
4063
4064
0
    bool isReference() const { return ValueAndIsReference.getInt(); }
4065
0
    LValue getReferenceLValue(CodeGenFunction &CGF, Expr *refExpr) const {
4066
0
      assert(isReference());
4067
0
      return CGF.MakeNaturalAlignAddrLValue(ValueAndIsReference.getPointer(),
4068
0
                                            refExpr->getType());
4069
0
    }
4070
4071
0
    llvm::Constant *getValue() const {
4072
0
      assert(!isReference());
4073
0
      return ValueAndIsReference.getPointer();
4074
0
    }
4075
  };
4076
4077
  ConstantEmission tryEmitAsConstant(DeclRefExpr *refExpr);
4078
  ConstantEmission tryEmitAsConstant(const MemberExpr *ME);
4079
  llvm::Value *emitScalarConstant(const ConstantEmission &Constant, Expr *E);
4080
4081
  RValue EmitPseudoObjectRValue(const PseudoObjectExpr *e,
4082
                                AggValueSlot slot = AggValueSlot::ignored());
4083
  LValue EmitPseudoObjectLValue(const PseudoObjectExpr *e);
4084
4085
  llvm::Value *EmitIvarOffset(const ObjCInterfaceDecl *Interface,
4086
                              const ObjCIvarDecl *Ivar);
4087
  llvm::Value *EmitIvarOffsetAsPointerDiff(const ObjCInterfaceDecl *Interface,
4088
                                           const ObjCIvarDecl *Ivar);
4089
  LValue EmitLValueForField(LValue Base, const FieldDecl* Field);
4090
  LValue EmitLValueForLambdaField(const FieldDecl *Field);
4091
  LValue EmitLValueForLambdaField(const FieldDecl *Field,
4092
                                  llvm::Value *ThisValue);
4093
4094
  /// EmitLValueForFieldInitialization - Like EmitLValueForField, except that
4095
  /// if the Field is a reference, this will return the address of the reference
4096
  /// and not the address of the value stored in the reference.
4097
  LValue EmitLValueForFieldInitialization(LValue Base,
4098
                                          const FieldDecl* Field);
4099
4100
  LValue EmitLValueForIvar(QualType ObjectTy,
4101
                           llvm::Value* Base, const ObjCIvarDecl *Ivar,
4102
                           unsigned CVRQualifiers);
4103
4104
  LValue EmitCXXConstructLValue(const CXXConstructExpr *E);
4105
  LValue EmitCXXBindTemporaryLValue(const CXXBindTemporaryExpr *E);
4106
  LValue EmitCXXTypeidLValue(const CXXTypeidExpr *E);
4107
  LValue EmitCXXUuidofLValue(const CXXUuidofExpr *E);
4108
4109
  LValue EmitObjCMessageExprLValue(const ObjCMessageExpr *E);
4110
  LValue EmitObjCIvarRefLValue(const ObjCIvarRefExpr *E);
4111
  LValue EmitStmtExprLValue(const StmtExpr *E);
4112
  LValue EmitPointerToDataMemberBinaryExpr(const BinaryOperator *E);
4113
  LValue EmitObjCSelectorLValue(const ObjCSelectorExpr *E);
4114
  void   EmitDeclRefExprDbgValue(const DeclRefExpr *E, const APValue &Init);
4115
4116
  //===--------------------------------------------------------------------===//
4117
  //                         Scalar Expression Emission
4118
  //===--------------------------------------------------------------------===//
4119
4120
  /// EmitCall - Generate a call of the given function, expecting the given
4121
  /// result type, and using the given argument list which specifies both the
4122
  /// LLVM arguments and the types they were derived from.
4123
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4124
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
4125
                  llvm::CallBase **callOrInvoke, bool IsMustTail,
4126
                  SourceLocation Loc);
4127
  RValue EmitCall(const CGFunctionInfo &CallInfo, const CGCallee &Callee,
4128
                  ReturnValueSlot ReturnValue, const CallArgList &Args,
4129
                  llvm::CallBase **callOrInvoke = nullptr,
4130
0
                  bool IsMustTail = false) {
4131
0
    return EmitCall(CallInfo, Callee, ReturnValue, Args, callOrInvoke,
4132
0
                    IsMustTail, SourceLocation());
4133
0
  }
4134
  RValue EmitCall(QualType FnType, const CGCallee &Callee, const CallExpr *E,
4135
                  ReturnValueSlot ReturnValue, llvm::Value *Chain = nullptr);
4136
  RValue EmitCallExpr(const CallExpr *E,
4137
                      ReturnValueSlot ReturnValue = ReturnValueSlot());
4138
  RValue EmitSimpleCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4139
  CGCallee EmitCallee(const Expr *E);
4140
4141
  void checkTargetFeatures(const CallExpr *E, const FunctionDecl *TargetDecl);
4142
  void checkTargetFeatures(SourceLocation Loc, const FunctionDecl *TargetDecl);
4143
4144
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4145
                                  const Twine &name = "");
4146
  llvm::CallInst *EmitRuntimeCall(llvm::FunctionCallee callee,
4147
                                  ArrayRef<llvm::Value *> args,
4148
                                  const Twine &name = "");
4149
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4150
                                          const Twine &name = "");
4151
  llvm::CallInst *EmitNounwindRuntimeCall(llvm::FunctionCallee callee,
4152
                                          ArrayRef<llvm::Value *> args,
4153
                                          const Twine &name = "");
4154
4155
  SmallVector<llvm::OperandBundleDef, 1>
4156
  getBundlesForFunclet(llvm::Value *Callee);
4157
4158
  llvm::CallBase *EmitCallOrInvoke(llvm::FunctionCallee Callee,
4159
                                   ArrayRef<llvm::Value *> Args,
4160
                                   const Twine &Name = "");
4161
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4162
                                          ArrayRef<llvm::Value *> args,
4163
                                          const Twine &name = "");
4164
  llvm::CallBase *EmitRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4165
                                          const Twine &name = "");
4166
  void EmitNoreturnRuntimeCallOrInvoke(llvm::FunctionCallee callee,
4167
                                       ArrayRef<llvm::Value *> args);
4168
4169
  CGCallee BuildAppleKextVirtualCall(const CXXMethodDecl *MD,
4170
                                     NestedNameSpecifier *Qual,
4171
                                     llvm::Type *Ty);
4172
4173
  CGCallee BuildAppleKextVirtualDestructorCall(const CXXDestructorDecl *DD,
4174
                                               CXXDtorType Type,
4175
                                               const CXXRecordDecl *RD);
4176
4177
  // Return the copy constructor name with the prefix "__copy_constructor_"
4178
  // removed.
4179
  static std::string getNonTrivialCopyConstructorStr(QualType QT,
4180
                                                     CharUnits Alignment,
4181
                                                     bool IsVolatile,
4182
                                                     ASTContext &Ctx);
4183
4184
  // Return the destructor name with the prefix "__destructor_" removed.
4185
  static std::string getNonTrivialDestructorStr(QualType QT,
4186
                                                CharUnits Alignment,
4187
                                                bool IsVolatile,
4188
                                                ASTContext &Ctx);
4189
4190
  // These functions emit calls to the special functions of non-trivial C
4191
  // structs.
4192
  void defaultInitNonTrivialCStructVar(LValue Dst);
4193
  void callCStructDefaultConstructor(LValue Dst);
4194
  void callCStructDestructor(LValue Dst);
4195
  void callCStructCopyConstructor(LValue Dst, LValue Src);
4196
  void callCStructMoveConstructor(LValue Dst, LValue Src);
4197
  void callCStructCopyAssignmentOperator(LValue Dst, LValue Src);
4198
  void callCStructMoveAssignmentOperator(LValue Dst, LValue Src);
4199
4200
  RValue
4201
  EmitCXXMemberOrOperatorCall(const CXXMethodDecl *Method,
4202
                              const CGCallee &Callee,
4203
                              ReturnValueSlot ReturnValue, llvm::Value *This,
4204
                              llvm::Value *ImplicitParam,
4205
                              QualType ImplicitParamTy, const CallExpr *E,
4206
                              CallArgList *RtlArgs);
4207
  RValue EmitCXXDestructorCall(GlobalDecl Dtor, const CGCallee &Callee,
4208
                               llvm::Value *This, QualType ThisTy,
4209
                               llvm::Value *ImplicitParam,
4210
                               QualType ImplicitParamTy, const CallExpr *E);
4211
  RValue EmitCXXMemberCallExpr(const CXXMemberCallExpr *E,
4212
                               ReturnValueSlot ReturnValue);
4213
  RValue EmitCXXMemberOrOperatorMemberCallExpr(const CallExpr *CE,
4214
                                               const CXXMethodDecl *MD,
4215
                                               ReturnValueSlot ReturnValue,
4216
                                               bool HasQualifier,
4217
                                               NestedNameSpecifier *Qualifier,
4218
                                               bool IsArrow, const Expr *Base);
4219
  // Compute the object pointer.
4220
  Address EmitCXXMemberDataPointerAddress(const Expr *E, Address base,
4221
                                          llvm::Value *memberPtr,
4222
                                          const MemberPointerType *memberPtrType,
4223
                                          LValueBaseInfo *BaseInfo = nullptr,
4224
                                          TBAAAccessInfo *TBAAInfo = nullptr);
4225
  RValue EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
4226
                                      ReturnValueSlot ReturnValue);
4227
4228
  RValue EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
4229
                                       const CXXMethodDecl *MD,
4230
                                       ReturnValueSlot ReturnValue);
4231
  RValue EmitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E);
4232
4233
  RValue EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
4234
                                ReturnValueSlot ReturnValue);
4235
4236
  RValue EmitNVPTXDevicePrintfCallExpr(const CallExpr *E);
4237
  RValue EmitAMDGPUDevicePrintfCallExpr(const CallExpr *E);
4238
  RValue EmitOpenMPDevicePrintfCallExpr(const CallExpr *E);
4239
4240
  RValue EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
4241
                         const CallExpr *E, ReturnValueSlot ReturnValue);
4242
4243
  RValue emitRotate(const CallExpr *E, bool IsRotateRight);
4244
4245
  /// Emit IR for __builtin_os_log_format.
4246
  RValue emitBuiltinOSLogFormat(const CallExpr &E);
4247
4248
  /// Emit IR for __builtin_is_aligned.
4249
  RValue EmitBuiltinIsAligned(const CallExpr *E);
4250
  /// Emit IR for __builtin_align_up/__builtin_align_down.
4251
  RValue EmitBuiltinAlignTo(const CallExpr *E, bool AlignUp);
4252
4253
  llvm::Function *generateBuiltinOSLogHelperFunction(
4254
      const analyze_os_log::OSLogBufferLayout &Layout,
4255
      CharUnits BufferAlignment);
4256
4257
  RValue EmitBlockCallExpr(const CallExpr *E, ReturnValueSlot ReturnValue);
4258
4259
  /// EmitTargetBuiltinExpr - Emit the given builtin call. Returns 0 if the call
4260
  /// is unhandled by the current target.
4261
  llvm::Value *EmitTargetBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4262
                                     ReturnValueSlot ReturnValue);
4263
4264
  llvm::Value *EmitAArch64CompareBuiltinExpr(llvm::Value *Op, llvm::Type *Ty,
4265
                                             const llvm::CmpInst::Predicate Fp,
4266
                                             const llvm::CmpInst::Predicate Ip,
4267
                                             const llvm::Twine &Name = "");
4268
  llvm::Value *EmitARMBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4269
                                  ReturnValueSlot ReturnValue,
4270
                                  llvm::Triple::ArchType Arch);
4271
  llvm::Value *EmitARMMVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4272
                                     ReturnValueSlot ReturnValue,
4273
                                     llvm::Triple::ArchType Arch);
4274
  llvm::Value *EmitARMCDEBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4275
                                     ReturnValueSlot ReturnValue,
4276
                                     llvm::Triple::ArchType Arch);
4277
  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::IntegerType *ITy,
4278
                                   QualType RTy);
4279
  llvm::Value *EmitCMSEClearRecord(llvm::Value *V, llvm::ArrayType *ATy,
4280
                                   QualType RTy);
4281
4282
  llvm::Value *EmitCommonNeonBuiltinExpr(unsigned BuiltinID,
4283
                                         unsigned LLVMIntrinsic,
4284
                                         unsigned AltLLVMIntrinsic,
4285
                                         const char *NameHint,
4286
                                         unsigned Modifier,
4287
                                         const CallExpr *E,
4288
                                         SmallVectorImpl<llvm::Value *> &Ops,
4289
                                         Address PtrOp0, Address PtrOp1,
4290
                                         llvm::Triple::ArchType Arch);
4291
4292
  llvm::Function *LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
4293
                                          unsigned Modifier, llvm::Type *ArgTy,
4294
                                          const CallExpr *E);
4295
  llvm::Value *EmitNeonCall(llvm::Function *F,
4296
                            SmallVectorImpl<llvm::Value*> &O,
4297
                            const char *name,
4298
                            unsigned shift = 0, bool rightshift = false);
4299
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx,
4300
                             const llvm::ElementCount &Count);
4301
  llvm::Value *EmitNeonSplat(llvm::Value *V, llvm::Constant *Idx);
4302
  llvm::Value *EmitNeonShiftVector(llvm::Value *V, llvm::Type *Ty,
4303
                                   bool negateForRightShift);
4304
  llvm::Value *EmitNeonRShiftImm(llvm::Value *Vec, llvm::Value *Amt,
4305
                                 llvm::Type *Ty, bool usgn, const char *name);
4306
  llvm::Value *vectorWrapScalar16(llvm::Value *Op);
4307
  /// SVEBuiltinMemEltTy - Returns the memory element type for this memory
4308
  /// access builtin.  Only required if it can't be inferred from the base
4309
  /// pointer operand.
4310
  llvm::Type *SVEBuiltinMemEltTy(const SVETypeFlags &TypeFlags);
4311
4312
  SmallVector<llvm::Type *, 2>
4313
  getSVEOverloadTypes(const SVETypeFlags &TypeFlags, llvm::Type *ReturnType,
4314
                      ArrayRef<llvm::Value *> Ops);
4315
  llvm::Type *getEltType(const SVETypeFlags &TypeFlags);
4316
  llvm::ScalableVectorType *getSVEType(const SVETypeFlags &TypeFlags);
4317
  llvm::ScalableVectorType *getSVEPredType(const SVETypeFlags &TypeFlags);
4318
  llvm::Value *EmitSVETupleSetOrGet(const SVETypeFlags &TypeFlags,
4319
                                    llvm::Type *ReturnType,
4320
                                    ArrayRef<llvm::Value *> Ops);
4321
  llvm::Value *EmitSVETupleCreate(const SVETypeFlags &TypeFlags,
4322
                                  llvm::Type *ReturnType,
4323
                                  ArrayRef<llvm::Value *> Ops);
4324
  llvm::Value *EmitSVEAllTruePred(const SVETypeFlags &TypeFlags);
4325
  llvm::Value *EmitSVEDupX(llvm::Value *Scalar);
4326
  llvm::Value *EmitSVEDupX(llvm::Value *Scalar, llvm::Type *Ty);
4327
  llvm::Value *EmitSVEReinterpret(llvm::Value *Val, llvm::Type *Ty);
4328
  llvm::Value *EmitSVEPMull(const SVETypeFlags &TypeFlags,
4329
                            llvm::SmallVectorImpl<llvm::Value *> &Ops,
4330
                            unsigned BuiltinID);
4331
  llvm::Value *EmitSVEMovl(const SVETypeFlags &TypeFlags,
4332
                           llvm::ArrayRef<llvm::Value *> Ops,
4333
                           unsigned BuiltinID);
4334
  llvm::Value *EmitSVEPredicateCast(llvm::Value *Pred,
4335
                                    llvm::ScalableVectorType *VTy);
4336
  llvm::Value *EmitSVEGatherLoad(const SVETypeFlags &TypeFlags,
4337
                                 llvm::SmallVectorImpl<llvm::Value *> &Ops,
4338
                                 unsigned IntID);
4339
  llvm::Value *EmitSVEScatterStore(const SVETypeFlags &TypeFlags,
4340
                                   llvm::SmallVectorImpl<llvm::Value *> &Ops,
4341
                                   unsigned IntID);
4342
  llvm::Value *EmitSVEMaskedLoad(const CallExpr *, llvm::Type *ReturnTy,
4343
                                 SmallVectorImpl<llvm::Value *> &Ops,
4344
                                 unsigned BuiltinID, bool IsZExtReturn);
4345
  llvm::Value *EmitSVEMaskedStore(const CallExpr *,
4346
                                  SmallVectorImpl<llvm::Value *> &Ops,
4347
                                  unsigned BuiltinID);
4348
  llvm::Value *EmitSVEPrefetchLoad(const SVETypeFlags &TypeFlags,
4349
                                   SmallVectorImpl<llvm::Value *> &Ops,
4350
                                   unsigned BuiltinID);
4351
  llvm::Value *EmitSVEGatherPrefetch(const SVETypeFlags &TypeFlags,
4352
                                     SmallVectorImpl<llvm::Value *> &Ops,
4353
                                     unsigned IntID);
4354
  llvm::Value *EmitSVEStructLoad(const SVETypeFlags &TypeFlags,
4355
                                 SmallVectorImpl<llvm::Value *> &Ops,
4356
                                 unsigned IntID);
4357
  llvm::Value *EmitSVEStructStore(const SVETypeFlags &TypeFlags,
4358
                                  SmallVectorImpl<llvm::Value *> &Ops,
4359
                                  unsigned IntID);
4360
  /// FormSVEBuiltinResult - Returns the struct of scalable vectors as a wider
4361
  /// vector. It extracts the scalable vector from the struct and inserts into
4362
  /// the wider vector. This avoids the error when allocating space in llvm
4363
  /// for struct of scalable vectors if a function returns struct.
4364
  llvm::Value *FormSVEBuiltinResult(llvm::Value *Call);
4365
4366
  llvm::Value *EmitAArch64SVEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4367
4368
  llvm::Value *EmitSMELd1St1(const SVETypeFlags &TypeFlags,
4369
                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4370
                             unsigned IntID);
4371
  llvm::Value *EmitSMEReadWrite(const SVETypeFlags &TypeFlags,
4372
                                llvm::SmallVectorImpl<llvm::Value *> &Ops,
4373
                                unsigned IntID);
4374
  llvm::Value *EmitSMEZero(const SVETypeFlags &TypeFlags,
4375
                           llvm::SmallVectorImpl<llvm::Value *> &Ops,
4376
                           unsigned IntID);
4377
  llvm::Value *EmitSMELdrStr(const SVETypeFlags &TypeFlags,
4378
                             llvm::SmallVectorImpl<llvm::Value *> &Ops,
4379
                             unsigned IntID);
4380
4381
  void GetAArch64SVEProcessedOperands(unsigned BuiltinID, const CallExpr *E,
4382
                                      SmallVectorImpl<llvm::Value *> &Ops,
4383
                                      SVETypeFlags TypeFlags);
4384
4385
  llvm::Value *EmitAArch64SMEBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4386
4387
  llvm::Value *EmitAArch64BuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4388
                                      llvm::Triple::ArchType Arch);
4389
  llvm::Value *EmitBPFBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4390
4391
  llvm::Value *BuildVector(ArrayRef<llvm::Value*> Ops);
4392
  llvm::Value *EmitX86BuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4393
  llvm::Value *EmitPPCBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4394
  llvm::Value *EmitAMDGPUBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4395
  llvm::Value *EmitScalarOrConstFoldImmArg(unsigned ICEArguments, unsigned Idx,
4396
                                           const CallExpr *E);
4397
  llvm::Value *EmitSystemZBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4398
  llvm::Value *EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4399
  llvm::Value *EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
4400
                                          const CallExpr *E);
4401
  llvm::Value *EmitHexagonBuiltinExpr(unsigned BuiltinID, const CallExpr *E);
4402
  llvm::Value *EmitRISCVBuiltinExpr(unsigned BuiltinID, const CallExpr *E,
4403
                                    ReturnValueSlot ReturnValue);
4404
  void ProcessOrderScopeAMDGCN(llvm::Value *Order, llvm::Value *Scope,
4405
                               llvm::AtomicOrdering &AO,
4406
                               llvm::SyncScope::ID &SSID);
4407
4408
  enum class MSVCIntrin;
4409
  llvm::Value *EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID, const CallExpr *E);
4410
4411
  llvm::Value *EmitBuiltinAvailable(const VersionTuple &Version);
4412
4413
  llvm::Value *EmitObjCProtocolExpr(const ObjCProtocolExpr *E);
4414
  llvm::Value *EmitObjCStringLiteral(const ObjCStringLiteral *E);
4415
  llvm::Value *EmitObjCBoxedExpr(const ObjCBoxedExpr *E);
4416
  llvm::Value *EmitObjCArrayLiteral(const ObjCArrayLiteral *E);
4417
  llvm::Value *EmitObjCDictionaryLiteral(const ObjCDictionaryLiteral *E);
4418
  llvm::Value *EmitObjCCollectionLiteral(const Expr *E,
4419
                                const ObjCMethodDecl *MethodWithObjects);
4420
  llvm::Value *EmitObjCSelectorExpr(const ObjCSelectorExpr *E);
4421
  RValue EmitObjCMessageExpr(const ObjCMessageExpr *E,
4422
                             ReturnValueSlot Return = ReturnValueSlot());
4423
4424
  /// Retrieves the default cleanup kind for an ARC cleanup.
4425
  /// Except under -fobjc-arc-eh, ARC cleanups are normal-only.
4426
0
  CleanupKind getARCCleanupKind() {
4427
0
    return CGM.getCodeGenOpts().ObjCAutoRefCountExceptions
4428
0
             ? NormalAndEHCleanup : NormalCleanup;
4429
0
  }
4430
4431
  // ARC primitives.
4432
  void EmitARCInitWeak(Address addr, llvm::Value *value);
4433
  void EmitARCDestroyWeak(Address addr);
4434
  llvm::Value *EmitARCLoadWeak(Address addr);
4435
  llvm::Value *EmitARCLoadWeakRetained(Address addr);
4436
  llvm::Value *EmitARCStoreWeak(Address addr, llvm::Value *value, bool ignored);
4437
  void emitARCCopyAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4438
  void emitARCMoveAssignWeak(QualType Ty, Address DstAddr, Address SrcAddr);
4439
  void EmitARCCopyWeak(Address dst, Address src);
4440
  void EmitARCMoveWeak(Address dst, Address src);
4441
  llvm::Value *EmitARCRetainAutorelease(QualType type, llvm::Value *value);
4442
  llvm::Value *EmitARCRetainAutoreleaseNonBlock(llvm::Value *value);
4443
  llvm::Value *EmitARCStoreStrong(LValue lvalue, llvm::Value *value,
4444
                                  bool resultIgnored);
4445
  llvm::Value *EmitARCStoreStrongCall(Address addr, llvm::Value *value,
4446
                                      bool resultIgnored);
4447
  llvm::Value *EmitARCRetain(QualType type, llvm::Value *value);
4448
  llvm::Value *EmitARCRetainNonBlock(llvm::Value *value);
4449
  llvm::Value *EmitARCRetainBlock(llvm::Value *value, bool mandatory);
4450
  void EmitARCDestroyStrong(Address addr, ARCPreciseLifetime_t precise);
4451
  void EmitARCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4452
  llvm::Value *EmitARCAutorelease(llvm::Value *value);
4453
  llvm::Value *EmitARCAutoreleaseReturnValue(llvm::Value *value);
4454
  llvm::Value *EmitARCRetainAutoreleaseReturnValue(llvm::Value *value);
4455
  llvm::Value *EmitARCRetainAutoreleasedReturnValue(llvm::Value *value);
4456
  llvm::Value *EmitARCUnsafeClaimAutoreleasedReturnValue(llvm::Value *value);
4457
4458
  llvm::Value *EmitObjCAutorelease(llvm::Value *value, llvm::Type *returnType);
4459
  llvm::Value *EmitObjCRetainNonBlock(llvm::Value *value,
4460
                                      llvm::Type *returnType);
4461
  void EmitObjCRelease(llvm::Value *value, ARCPreciseLifetime_t precise);
4462
4463
  std::pair<LValue,llvm::Value*>
4464
  EmitARCStoreAutoreleasing(const BinaryOperator *e);
4465
  std::pair<LValue,llvm::Value*>
4466
  EmitARCStoreStrong(const BinaryOperator *e, bool ignored);
4467
  std::pair<LValue,llvm::Value*>
4468
  EmitARCStoreUnsafeUnretained(const BinaryOperator *e, bool ignored);
4469
4470
  llvm::Value *EmitObjCAlloc(llvm::Value *value,
4471
                             llvm::Type *returnType);
4472
  llvm::Value *EmitObjCAllocWithZone(llvm::Value *value,
4473
                                     llvm::Type *returnType);
4474
  llvm::Value *EmitObjCAllocInit(llvm::Value *value, llvm::Type *resultType);
4475
4476
  llvm::Value *EmitObjCThrowOperand(const Expr *expr);
4477
  llvm::Value *EmitObjCConsumeObject(QualType T, llvm::Value *Ptr);
4478
  llvm::Value *EmitObjCExtendObjectLifetime(QualType T, llvm::Value *Ptr);
4479
4480
  llvm::Value *EmitARCExtendBlockObject(const Expr *expr);
4481
  llvm::Value *EmitARCReclaimReturnedObject(const Expr *e,
4482
                                            bool allowUnsafeClaim);
4483
  llvm::Value *EmitARCRetainScalarExpr(const Expr *expr);
4484
  llvm::Value *EmitARCRetainAutoreleaseScalarExpr(const Expr *expr);
4485
  llvm::Value *EmitARCUnsafeUnretainedScalarExpr(const Expr *expr);
4486
4487
  void EmitARCIntrinsicUse(ArrayRef<llvm::Value*> values);
4488
4489
  void EmitARCNoopIntrinsicUse(ArrayRef<llvm::Value *> values);
4490
4491
  static Destroyer destroyARCStrongImprecise;
4492
  static Destroyer destroyARCStrongPrecise;
4493
  static Destroyer destroyARCWeak;
4494
  static Destroyer emitARCIntrinsicUse;
4495
  static Destroyer destroyNonTrivialCStruct;
4496
4497
  void EmitObjCAutoreleasePoolPop(llvm::Value *Ptr);
4498
  llvm::Value *EmitObjCAutoreleasePoolPush();
4499
  llvm::Value *EmitObjCMRRAutoreleasePoolPush();
4500
  void EmitObjCAutoreleasePoolCleanup(llvm::Value *Ptr);
4501
  void EmitObjCMRRAutoreleasePoolPop(llvm::Value *Ptr);
4502
4503
  /// Emits a reference binding to the passed in expression.
4504
  RValue EmitReferenceBindingToExpr(const Expr *E);
4505
4506
  //===--------------------------------------------------------------------===//
4507
  //                           Expression Emission
4508
  //===--------------------------------------------------------------------===//
4509
4510
  // Expressions are broken into three classes: scalar, complex, aggregate.
4511
4512
  /// EmitScalarExpr - Emit the computation of the specified expression of LLVM
4513
  /// scalar type, returning the result.
4514
  llvm::Value *EmitScalarExpr(const Expr *E , bool IgnoreResultAssign = false);
4515
4516
  /// Emit a conversion from the specified type to the specified destination
4517
  /// type, both of which are LLVM scalar types.
4518
  llvm::Value *EmitScalarConversion(llvm::Value *Src, QualType SrcTy,
4519
                                    QualType DstTy, SourceLocation Loc);
4520
4521
  /// Emit a conversion from the specified complex type to the specified
4522
  /// destination type, where the destination type is an LLVM scalar type.
4523
  llvm::Value *EmitComplexToScalarConversion(ComplexPairTy Src, QualType SrcTy,
4524
                                             QualType DstTy,
4525
                                             SourceLocation Loc);
4526
4527
  /// EmitAggExpr - Emit the computation of the specified expression
4528
  /// of aggregate type.  The result is computed into the given slot,
4529
  /// which may be null to indicate that the value is not needed.
4530
  void EmitAggExpr(const Expr *E, AggValueSlot AS);
4531
4532
  /// EmitAggExprToLValue - Emit the computation of the specified expression of
4533
  /// aggregate type into a temporary LValue.
4534
  LValue EmitAggExprToLValue(const Expr *E);
4535
4536
  /// Build all the stores needed to initialize an aggregate at Dest with the
4537
  /// value Val.
4538
  void EmitAggregateStore(llvm::Value *Val, Address Dest, bool DestIsVolatile);
4539
4540
  /// EmitExtendGCLifetime - Given a pointer to an Objective-C object,
4541
  /// make sure it survives garbage collection until this point.
4542
  void EmitExtendGCLifetime(llvm::Value *object);
4543
4544
  /// EmitComplexExpr - Emit the computation of the specified expression of
4545
  /// complex type, returning the result.
4546
  ComplexPairTy EmitComplexExpr(const Expr *E,
4547
                                bool IgnoreReal = false,
4548
                                bool IgnoreImag = false);
4549
4550
  /// EmitComplexExprIntoLValue - Emit the given expression of complex
4551
  /// type and place its result into the specified l-value.
4552
  void EmitComplexExprIntoLValue(const Expr *E, LValue dest, bool isInit);
4553
4554
  /// EmitStoreOfComplex - Store a complex number into the specified l-value.
4555
  void EmitStoreOfComplex(ComplexPairTy V, LValue dest, bool isInit);
4556
4557
  /// EmitLoadOfComplex - Load a complex number from the specified l-value.
4558
  ComplexPairTy EmitLoadOfComplex(LValue src, SourceLocation loc);
4559
4560
  ComplexPairTy EmitPromotedComplexExpr(const Expr *E, QualType PromotionType);
4561
  llvm::Value *EmitPromotedScalarExpr(const Expr *E, QualType PromotionType);
4562
  ComplexPairTy EmitPromotedValue(ComplexPairTy result, QualType PromotionType);
4563
  ComplexPairTy EmitUnPromotedValue(ComplexPairTy result, QualType PromotionType);
4564
4565
  Address emitAddrOfRealComponent(Address complex, QualType complexType);
4566
  Address emitAddrOfImagComponent(Address complex, QualType complexType);
4567
4568
  /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
4569
  /// global variable that has already been created for it.  If the initializer
4570
  /// has a different type than GV does, this may free GV and return a different
4571
  /// one.  Otherwise it just returns GV.
4572
  llvm::GlobalVariable *
4573
  AddInitializerToStaticVarDecl(const VarDecl &D,
4574
                                llvm::GlobalVariable *GV);
4575
4576
  // Emit an @llvm.invariant.start call for the given memory region.
4577
  void EmitInvariantStart(llvm::Constant *Addr, CharUnits Size);
4578
4579
  /// EmitCXXGlobalVarDeclInit - Create the initializer for a C++
4580
  /// variable with global storage.
4581
  void EmitCXXGlobalVarDeclInit(const VarDecl &D, llvm::GlobalVariable *GV,
4582
                                bool PerformInit);
4583
4584
  llvm::Function *createAtExitStub(const VarDecl &VD, llvm::FunctionCallee Dtor,
4585
                                   llvm::Constant *Addr);
4586
4587
  llvm::Function *createTLSAtExitStub(const VarDecl &VD,
4588
                                      llvm::FunctionCallee Dtor,
4589
                                      llvm::Constant *Addr,
4590
                                      llvm::FunctionCallee &AtExit);
4591
4592
  /// Call atexit() with a function that passes the given argument to
4593
  /// the given function.
4594
  void registerGlobalDtorWithAtExit(const VarDecl &D, llvm::FunctionCallee fn,
4595
                                    llvm::Constant *addr);
4596
4597
  /// Registers the dtor using 'llvm.global_dtors' for platforms that do not
4598
  /// support an 'atexit()' function.
4599
  void registerGlobalDtorWithLLVM(const VarDecl &D, llvm::FunctionCallee fn,
4600
                                  llvm::Constant *addr);
4601
4602
  /// Call atexit() with function dtorStub.
4603
  void registerGlobalDtorWithAtExit(llvm::Constant *dtorStub);
4604
4605
  /// Call unatexit() with function dtorStub.
4606
  llvm::Value *unregisterGlobalDtorWithUnAtExit(llvm::Constant *dtorStub);
4607
4608
  /// Emit code in this function to perform a guarded variable
4609
  /// initialization.  Guarded initializations are used when it's not
4610
  /// possible to prove that an initialization will be done exactly
4611
  /// once, e.g. with a static local variable or a static data member
4612
  /// of a class template.
4613
  void EmitCXXGuardedInit(const VarDecl &D, llvm::GlobalVariable *DeclPtr,
4614
                          bool PerformInit);
4615
4616
  enum class GuardKind { VariableGuard, TlsGuard };
4617
4618
  /// Emit a branch to select whether or not to perform guarded initialization.
4619
  void EmitCXXGuardedInitBranch(llvm::Value *NeedsInit,
4620
                                llvm::BasicBlock *InitBlock,
4621
                                llvm::BasicBlock *NoInitBlock,
4622
                                GuardKind Kind, const VarDecl *D);
4623
4624
  /// GenerateCXXGlobalInitFunc - Generates code for initializing global
4625
  /// variables.
4626
  void
4627
  GenerateCXXGlobalInitFunc(llvm::Function *Fn,
4628
                            ArrayRef<llvm::Function *> CXXThreadLocals,
4629
                            ConstantAddress Guard = ConstantAddress::invalid());
4630
4631
  /// GenerateCXXGlobalCleanUpFunc - Generates code for cleaning up global
4632
  /// variables.
4633
  void GenerateCXXGlobalCleanUpFunc(
4634
      llvm::Function *Fn,
4635
      ArrayRef<std::tuple<llvm::FunctionType *, llvm::WeakTrackingVH,
4636
                          llvm::Constant *>>
4637
          DtorsOrStermFinalizers);
4638
4639
  void GenerateCXXGlobalVarDeclInitFunc(llvm::Function *Fn,
4640
                                        const VarDecl *D,
4641
                                        llvm::GlobalVariable *Addr,
4642
                                        bool PerformInit);
4643
4644
  void EmitCXXConstructExpr(const CXXConstructExpr *E, AggValueSlot Dest);
4645
4646
  void EmitSynthesizedCXXCopyCtor(Address Dest, Address Src, const Expr *Exp);
4647
4648
  void EmitCXXThrowExpr(const CXXThrowExpr *E, bool KeepInsertionPoint = true);
4649
4650
  RValue EmitAtomicExpr(AtomicExpr *E);
4651
4652
  //===--------------------------------------------------------------------===//
4653
  //                         Annotations Emission
4654
  //===--------------------------------------------------------------------===//
4655
4656
  /// Emit an annotation call (intrinsic).
4657
  llvm::Value *EmitAnnotationCall(llvm::Function *AnnotationFn,
4658
                                  llvm::Value *AnnotatedVal,
4659
                                  StringRef AnnotationStr,
4660
                                  SourceLocation Location,
4661
                                  const AnnotateAttr *Attr);
4662
4663
  /// Emit local annotations for the local variable V, declared by D.
4664
  void EmitVarAnnotations(const VarDecl *D, llvm::Value *V);
4665
4666
  /// Emit field annotations for the given field & value. Returns the
4667
  /// annotation result.
4668
  Address EmitFieldAnnotations(const FieldDecl *D, Address V);
4669
4670
  //===--------------------------------------------------------------------===//
4671
  //                             Internal Helpers
4672
  //===--------------------------------------------------------------------===//
4673
4674
  /// ContainsLabel - Return true if the statement contains a label in it.  If
4675
  /// this statement is not executed normally, it not containing a label means
4676
  /// that we can just remove the code.
4677
  static bool ContainsLabel(const Stmt *S, bool IgnoreCaseStmts = false);
4678
4679
  /// containsBreak - Return true if the statement contains a break out of it.
4680
  /// If the statement (recursively) contains a switch or loop with a break
4681
  /// inside of it, this is fine.
4682
  static bool containsBreak(const Stmt *S);
4683
4684
  /// Determine if the given statement might introduce a declaration into the
4685
  /// current scope, by being a (possibly-labelled) DeclStmt.
4686
  static bool mightAddDeclToScope(const Stmt *S);
4687
4688
  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4689
  /// to a constant, or if it does but contains a label, return false.  If it
4690
  /// constant folds return true and set the boolean result in Result.
4691
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, bool &Result,
4692
                                    bool AllowLabels = false);
4693
4694
  /// ConstantFoldsToSimpleInteger - If the specified expression does not fold
4695
  /// to a constant, or if it does but contains a label, return false.  If it
4696
  /// constant folds return true and set the folded value.
4697
  bool ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &Result,
4698
                                    bool AllowLabels = false);
4699
4700
  /// Ignore parentheses and logical-NOT to track conditions consistently.
4701
  static const Expr *stripCond(const Expr *C);
4702
4703
  /// isInstrumentedCondition - Determine whether the given condition is an
4704
  /// instrumentable condition (i.e. no "&&" or "||").
4705
  static bool isInstrumentedCondition(const Expr *C);
4706
4707
  /// EmitBranchToCounterBlock - Emit a conditional branch to a new block that
4708
  /// increments a profile counter based on the semantics of the given logical
4709
  /// operator opcode.  This is used to instrument branch condition coverage
4710
  /// for logical operators.
4711
  void EmitBranchToCounterBlock(const Expr *Cond, BinaryOperator::Opcode LOp,
4712
                                llvm::BasicBlock *TrueBlock,
4713
                                llvm::BasicBlock *FalseBlock,
4714
                                uint64_t TrueCount = 0,
4715
                                Stmt::Likelihood LH = Stmt::LH_None,
4716
                                const Expr *CntrIdx = nullptr);
4717
4718
  /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an
4719
  /// if statement) to the specified blocks.  Based on the condition, this might
4720
  /// try to simplify the codegen of the conditional based on the branch.
4721
  /// TrueCount should be the number of times we expect the condition to
4722
  /// evaluate to true based on PGO data.
4723
  void EmitBranchOnBoolExpr(const Expr *Cond, llvm::BasicBlock *TrueBlock,
4724
                            llvm::BasicBlock *FalseBlock, uint64_t TrueCount,
4725
                            Stmt::Likelihood LH = Stmt::LH_None,
4726
                            const Expr *ConditionalOp = nullptr);
4727
4728
  /// Given an assignment `*LHS = RHS`, emit a test that checks if \p RHS is
4729
  /// nonnull, if \p LHS is marked _Nonnull.
4730
  void EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, SourceLocation Loc);
4731
4732
  /// An enumeration which makes it easier to specify whether or not an
4733
  /// operation is a subtraction.
4734
  enum { NotSubtraction = false, IsSubtraction = true };
4735
4736
  /// Same as IRBuilder::CreateInBoundsGEP, but additionally emits a check to
4737
  /// detect undefined behavior when the pointer overflow sanitizer is enabled.
4738
  /// \p SignedIndices indicates whether any of the GEP indices are signed.
4739
  /// \p IsSubtraction indicates whether the expression used to form the GEP
4740
  /// is a subtraction.
4741
  llvm::Value *EmitCheckedInBoundsGEP(llvm::Type *ElemTy, llvm::Value *Ptr,
4742
                                      ArrayRef<llvm::Value *> IdxList,
4743
                                      bool SignedIndices,
4744
                                      bool IsSubtraction,
4745
                                      SourceLocation Loc,
4746
                                      const Twine &Name = "");
4747
4748
  /// Specifies which type of sanitizer check to apply when handling a
4749
  /// particular builtin.
4750
  enum BuiltinCheckKind {
4751
    BCK_CTZPassedZero,
4752
    BCK_CLZPassedZero,
4753
  };
4754
4755
  /// Emits an argument for a call to a builtin. If the builtin sanitizer is
4756
  /// enabled, a runtime check specified by \p Kind is also emitted.
4757
  llvm::Value *EmitCheckedArgForBuiltin(const Expr *E, BuiltinCheckKind Kind);
4758
4759
  /// Emit a description of a type in a format suitable for passing to
4760
  /// a runtime sanitizer handler.
4761
  llvm::Constant *EmitCheckTypeDescriptor(QualType T);
4762
4763
  /// Convert a value into a format suitable for passing to a runtime
4764
  /// sanitizer handler.
4765
  llvm::Value *EmitCheckValue(llvm::Value *V);
4766
4767
  /// Emit a description of a source location in a format suitable for
4768
  /// passing to a runtime sanitizer handler.
4769
  llvm::Constant *EmitCheckSourceLocation(SourceLocation Loc);
4770
4771
  void EmitKCFIOperandBundle(const CGCallee &Callee,
4772
                             SmallVectorImpl<llvm::OperandBundleDef> &Bundles);
4773
4774
  /// Create a basic block that will either trap or call a handler function in
4775
  /// the UBSan runtime with the provided arguments, and create a conditional
4776
  /// branch to it.
4777
  void EmitCheck(ArrayRef<std::pair<llvm::Value *, SanitizerMask>> Checked,
4778
                 SanitizerHandler Check, ArrayRef<llvm::Constant *> StaticArgs,
4779
                 ArrayRef<llvm::Value *> DynamicArgs);
4780
4781
  /// Emit a slow path cross-DSO CFI check which calls __cfi_slowpath
4782
  /// if Cond if false.
4783
  void EmitCfiSlowPathCheck(SanitizerMask Kind, llvm::Value *Cond,
4784
                            llvm::ConstantInt *TypeId, llvm::Value *Ptr,
4785
                            ArrayRef<llvm::Constant *> StaticArgs);
4786
4787
  /// Emit a reached-unreachable diagnostic if \p Loc is valid and runtime
4788
  /// checking is enabled. Otherwise, just emit an unreachable instruction.
4789
  void EmitUnreachable(SourceLocation Loc);
4790
4791
  /// Create a basic block that will call the trap intrinsic, and emit a
4792
  /// conditional branch to it, for the -ftrapv checks.
4793
  void EmitTrapCheck(llvm::Value *Checked, SanitizerHandler CheckHandlerID);
4794
4795
  /// Emit a call to trap or debugtrap and attach function attribute
4796
  /// "trap-func-name" if specified.
4797
  llvm::CallInst *EmitTrapCall(llvm::Intrinsic::ID IntrID);
4798
4799
  /// Emit a stub for the cross-DSO CFI check function.
4800
  void EmitCfiCheckStub();
4801
4802
  /// Emit a cross-DSO CFI failure handling function.
4803
  void EmitCfiCheckFail();
4804
4805
  /// Create a check for a function parameter that may potentially be
4806
  /// declared as non-null.
4807
  void EmitNonNullArgCheck(RValue RV, QualType ArgType, SourceLocation ArgLoc,
4808
                           AbstractCallee AC, unsigned ParmNum);
4809
4810
  /// EmitCallArg - Emit a single call argument.
4811
  void EmitCallArg(CallArgList &args, const Expr *E, QualType ArgType);
4812
4813
  /// EmitDelegateCallArg - We are performing a delegate call; that
4814
  /// is, the current function is delegating to another one.  Produce
4815
  /// a r-value suitable for passing the given parameter.
4816
  void EmitDelegateCallArg(CallArgList &args, const VarDecl *param,
4817
                           SourceLocation loc);
4818
4819
  /// SetFPAccuracy - Set the minimum required accuracy of the given floating
4820
  /// point operation, expressed as the maximum relative error in ulp.
4821
  void SetFPAccuracy(llvm::Value *Val, float Accuracy);
4822
4823
  /// Set the minimum required accuracy of the given sqrt operation
4824
  /// based on CodeGenOpts.
4825
  void SetSqrtFPAccuracy(llvm::Value *Val);
4826
4827
  /// Set the minimum required accuracy of the given sqrt operation based on
4828
  /// CodeGenOpts.
4829
  void SetDivFPAccuracy(llvm::Value *Val);
4830
4831
  /// Set the codegen fast-math flags.
4832
  void SetFastMathFlags(FPOptions FPFeatures);
4833
4834
  // Truncate or extend a boolean vector to the requested number of elements.
4835
  llvm::Value *emitBoolVecConversion(llvm::Value *SrcVec,
4836
                                     unsigned NumElementsDst,
4837
                                     const llvm::Twine &Name = "");
4838
4839
private:
4840
  llvm::MDNode *getRangeForLoadFromType(QualType Ty);
4841
  void EmitReturnOfRValue(RValue RV, QualType Ty);
4842
4843
  void deferPlaceholderReplacement(llvm::Instruction *Old, llvm::Value *New);
4844
4845
  llvm::SmallVector<std::pair<llvm::WeakTrackingVH, llvm::Value *>, 4>
4846
      DeferredReplacements;
4847
4848
  /// Set the address of a local variable.
4849
0
  void setAddrOfLocalVar(const VarDecl *VD, Address Addr) {
4850
0
    assert(!LocalDeclMap.count(VD) && "Decl already exists in LocalDeclMap!");
4851
0
    LocalDeclMap.insert({VD, Addr});
4852
0
  }
4853
4854
  /// ExpandTypeFromArgs - Reconstruct a structure of type \arg Ty
4855
  /// from function arguments into \arg Dst. See ABIArgInfo::Expand.
4856
  ///
4857
  /// \param AI - The first function argument of the expansion.
4858
  void ExpandTypeFromArgs(QualType Ty, LValue Dst,
4859
                          llvm::Function::arg_iterator &AI);
4860
4861
  /// ExpandTypeToArgs - Expand an CallArg \arg Arg, with the LLVM type for \arg
4862
  /// Ty, into individual arguments on the provided vector \arg IRCallArgs,
4863
  /// starting at index \arg IRCallArgPos. See ABIArgInfo::Expand.
4864
  void ExpandTypeToArgs(QualType Ty, CallArg Arg, llvm::FunctionType *IRFuncTy,
4865
                        SmallVectorImpl<llvm::Value *> &IRCallArgs,
4866
                        unsigned &IRCallArgPos);
4867
4868
  std::pair<llvm::Value *, llvm::Type *>
4869
  EmitAsmInput(const TargetInfo::ConstraintInfo &Info, const Expr *InputExpr,
4870
               std::string &ConstraintStr);
4871
4872
  std::pair<llvm::Value *, llvm::Type *>
4873
  EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, LValue InputValue,
4874
                     QualType InputType, std::string &ConstraintStr,
4875
                     SourceLocation Loc);
4876
4877
  /// Attempts to statically evaluate the object size of E. If that
4878
  /// fails, emits code to figure the size of E out for us. This is
4879
  /// pass_object_size aware.
4880
  ///
4881
  /// If EmittedExpr is non-null, this will use that instead of re-emitting E.
4882
  llvm::Value *evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
4883
                                               llvm::IntegerType *ResType,
4884
                                               llvm::Value *EmittedE,
4885
                                               bool IsDynamic);
4886
4887
  /// Emits the size of E, as required by __builtin_object_size. This
4888
  /// function is aware of pass_object_size parameters, and will act accordingly
4889
  /// if E is a parameter with the pass_object_size attribute.
4890
  llvm::Value *emitBuiltinObjectSize(const Expr *E, unsigned Type,
4891
                                     llvm::IntegerType *ResType,
4892
                                     llvm::Value *EmittedE,
4893
                                     bool IsDynamic);
4894
4895
  llvm::Value *emitFlexibleArrayMemberSize(const Expr *E, unsigned Type,
4896
                                           llvm::IntegerType *ResType);
4897
4898
  void emitZeroOrPatternForAutoVarInit(QualType type, const VarDecl &D,
4899
                                       Address Loc);
4900
4901
public:
4902
  enum class EvaluationOrder {
4903
    ///! No language constraints on evaluation order.
4904
    Default,
4905
    ///! Language semantics require left-to-right evaluation.
4906
    ForceLeftToRight,
4907
    ///! Language semantics require right-to-left evaluation.
4908
    ForceRightToLeft
4909
  };
4910
4911
  // Wrapper for function prototype sources. Wraps either a FunctionProtoType or
4912
  // an ObjCMethodDecl.
4913
  struct PrototypeWrapper {
4914
    llvm::PointerUnion<const FunctionProtoType *, const ObjCMethodDecl *> P;
4915
4916
0
    PrototypeWrapper(const FunctionProtoType *FT) : P(FT) {}
4917
0
    PrototypeWrapper(const ObjCMethodDecl *MD) : P(MD) {}
4918
  };
4919
4920
  void EmitCallArgs(CallArgList &Args, PrototypeWrapper Prototype,
4921
                    llvm::iterator_range<CallExpr::const_arg_iterator> ArgRange,
4922
                    AbstractCallee AC = AbstractCallee(),
4923
                    unsigned ParamsToSkip = 0,
4924
                    EvaluationOrder Order = EvaluationOrder::Default);
4925
4926
  /// EmitPointerWithAlignment - Given an expression with a pointer type,
4927
  /// emit the value and compute our best estimate of the alignment of the
4928
  /// pointee.
4929
  ///
4930
  /// \param BaseInfo - If non-null, this will be initialized with
4931
  /// information about the source of the alignment and the may-alias
4932
  /// attribute.  Note that this function will conservatively fall back on
4933
  /// the type when it doesn't recognize the expression and may-alias will
4934
  /// be set to false.
4935
  ///
4936
  /// One reasonable way to use this information is when there's a language
4937
  /// guarantee that the pointer must be aligned to some stricter value, and
4938
  /// we're simply trying to ensure that sufficiently obvious uses of under-
4939
  /// aligned objects don't get miscompiled; for example, a placement new
4940
  /// into the address of a local variable.  In such a case, it's quite
4941
  /// reasonable to just ignore the returned alignment when it isn't from an
4942
  /// explicit source.
4943
  Address
4944
  EmitPointerWithAlignment(const Expr *Addr, LValueBaseInfo *BaseInfo = nullptr,
4945
                           TBAAAccessInfo *TBAAInfo = nullptr,
4946
                           KnownNonNull_t IsKnownNonNull = NotKnownNonNull);
4947
4948
  /// If \p E references a parameter with pass_object_size info or a constant
4949
  /// array size modifier, emit the object size divided by the size of \p EltTy.
4950
  /// Otherwise return null.
4951
  llvm::Value *LoadPassedObjectSize(const Expr *E, QualType EltTy);
4952
4953
  void EmitSanitizerStatReport(llvm::SanitizerStatKind SSK);
4954
4955
  struct MultiVersionResolverOption {
4956
    llvm::Function *Function;
4957
    struct Conds {
4958
      StringRef Architecture;
4959
      llvm::SmallVector<StringRef, 8> Features;
4960
4961
      Conds(StringRef Arch, ArrayRef<StringRef> Feats)
4962
0
          : Architecture(Arch), Features(Feats.begin(), Feats.end()) {}
4963
    } Conditions;
4964
4965
    MultiVersionResolverOption(llvm::Function *F, StringRef Arch,
4966
                               ArrayRef<StringRef> Feats)
4967
0
        : Function(F), Conditions(Arch, Feats) {}
4968
  };
4969
4970
  // Emits the body of a multiversion function's resolver. Assumes that the
4971
  // options are already sorted in the proper order, with the 'default' option
4972
  // last (if it exists).
4973
  void EmitMultiVersionResolver(llvm::Function *Resolver,
4974
                                ArrayRef<MultiVersionResolverOption> Options);
4975
  void
4976
  EmitX86MultiVersionResolver(llvm::Function *Resolver,
4977
                              ArrayRef<MultiVersionResolverOption> Options);
4978
  void
4979
  EmitAArch64MultiVersionResolver(llvm::Function *Resolver,
4980
                                  ArrayRef<MultiVersionResolverOption> Options);
4981
4982
private:
4983
  QualType getVarArgType(const Expr *Arg);
4984
4985
  void EmitDeclMetadata();
4986
4987
  BlockByrefHelpers *buildByrefHelpers(llvm::StructType &byrefType,
4988
                                  const AutoVarEmission &emission);
4989
4990
  void AddObjCARCExceptionMetadata(llvm::Instruction *Inst);
4991
4992
  llvm::Value *GetValueForARMHint(unsigned BuiltinID);
4993
  llvm::Value *EmitX86CpuIs(const CallExpr *E);
4994
  llvm::Value *EmitX86CpuIs(StringRef CPUStr);
4995
  llvm::Value *EmitX86CpuSupports(const CallExpr *E);
4996
  llvm::Value *EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs);
4997
  llvm::Value *EmitX86CpuSupports(std::array<uint32_t, 4> FeatureMask);
4998
  llvm::Value *EmitX86CpuInit();
4999
  llvm::Value *FormX86ResolverCondition(const MultiVersionResolverOption &RO);
5000
  llvm::Value *EmitAArch64CpuInit();
5001
  llvm::Value *
5002
  FormAArch64ResolverCondition(const MultiVersionResolverOption &RO);
5003
  llvm::Value *EmitAArch64CpuSupports(ArrayRef<StringRef> FeatureStrs);
5004
};
5005
5006
5007
inline DominatingLLVMValue::saved_type
5008
0
DominatingLLVMValue::save(CodeGenFunction &CGF, llvm::Value *value) {
5009
0
  if (!needsSaving(value)) return saved_type(value, false);
5010
5011
  // Otherwise, we need an alloca.
5012
0
  auto align = CharUnits::fromQuantity(
5013
0
      CGF.CGM.getDataLayout().getPrefTypeAlign(value->getType()));
5014
0
  Address alloca =
5015
0
      CGF.CreateTempAlloca(value->getType(), align, "cond-cleanup.save");
5016
0
  CGF.Builder.CreateStore(value, alloca);
5017
5018
0
  return saved_type(alloca.getPointer(), true);
5019
0
}
5020
5021
inline llvm::Value *DominatingLLVMValue::restore(CodeGenFunction &CGF,
5022
0
                                                 saved_type value) {
5023
  // If the value says it wasn't saved, trust that it's still dominating.
5024
0
  if (!value.getInt()) return value.getPointer();
5025
5026
  // Otherwise, it should be an alloca instruction, as set up in save().
5027
0
  auto alloca = cast<llvm::AllocaInst>(value.getPointer());
5028
0
  return CGF.Builder.CreateAlignedLoad(alloca->getAllocatedType(), alloca,
5029
0
                                       alloca->getAlign());
5030
0
}
5031
5032
}  // end namespace CodeGen
5033
5034
// Map the LangOption for floating point exception behavior into
5035
// the corresponding enum in the IR.
5036
llvm::fp::ExceptionBehavior
5037
ToConstrainedExceptMD(LangOptions::FPExceptionModeKind Kind);
5038
}  // end namespace clang
5039
5040
#endif