Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/CodeGen/CodeGenModule.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This coordinates the per-module state used while generating code.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "CodeGenModule.h"
14
#include "ABIInfo.h"
15
#include "CGBlocks.h"
16
#include "CGCUDARuntime.h"
17
#include "CGCXXABI.h"
18
#include "CGCall.h"
19
#include "CGDebugInfo.h"
20
#include "CGHLSLRuntime.h"
21
#include "CGObjCRuntime.h"
22
#include "CGOpenCLRuntime.h"
23
#include "CGOpenMPRuntime.h"
24
#include "CGOpenMPRuntimeGPU.h"
25
#include "CodeGenFunction.h"
26
#include "CodeGenPGO.h"
27
#include "ConstantEmitter.h"
28
#include "CoverageMappingGen.h"
29
#include "TargetInfo.h"
30
#include "clang/AST/ASTContext.h"
31
#include "clang/AST/ASTLambda.h"
32
#include "clang/AST/CharUnits.h"
33
#include "clang/AST/DeclCXX.h"
34
#include "clang/AST/DeclObjC.h"
35
#include "clang/AST/DeclTemplate.h"
36
#include "clang/AST/Mangle.h"
37
#include "clang/AST/RecursiveASTVisitor.h"
38
#include "clang/AST/StmtVisitor.h"
39
#include "clang/Basic/Builtins.h"
40
#include "clang/Basic/CharInfo.h"
41
#include "clang/Basic/CodeGenOptions.h"
42
#include "clang/Basic/Diagnostic.h"
43
#include "clang/Basic/FileManager.h"
44
#include "clang/Basic/Module.h"
45
#include "clang/Basic/SourceManager.h"
46
#include "clang/Basic/TargetInfo.h"
47
#include "clang/Basic/Version.h"
48
#include "clang/CodeGen/BackendUtil.h"
49
#include "clang/CodeGen/ConstantInitBuilder.h"
50
#include "clang/Frontend/FrontendDiagnostic.h"
51
#include "llvm/ADT/STLExtras.h"
52
#include "llvm/ADT/StringExtras.h"
53
#include "llvm/ADT/StringSwitch.h"
54
#include "llvm/Analysis/TargetLibraryInfo.h"
55
#include "llvm/Frontend/OpenMP/OMPIRBuilder.h"
56
#include "llvm/IR/AttributeMask.h"
57
#include "llvm/IR/CallingConv.h"
58
#include "llvm/IR/DataLayout.h"
59
#include "llvm/IR/Intrinsics.h"
60
#include "llvm/IR/LLVMContext.h"
61
#include "llvm/IR/Module.h"
62
#include "llvm/IR/ProfileSummary.h"
63
#include "llvm/ProfileData/InstrProfReader.h"
64
#include "llvm/ProfileData/SampleProf.h"
65
#include "llvm/Support/CRC.h"
66
#include "llvm/Support/CodeGen.h"
67
#include "llvm/Support/CommandLine.h"
68
#include "llvm/Support/ConvertUTF.h"
69
#include "llvm/Support/ErrorHandling.h"
70
#include "llvm/Support/TimeProfiler.h"
71
#include "llvm/Support/xxhash.h"
72
#include "llvm/TargetParser/Triple.h"
73
#include "llvm/TargetParser/X86TargetParser.h"
74
#include <optional>
75
76
using namespace clang;
77
using namespace CodeGen;
78
79
static llvm::cl::opt<bool> LimitedCoverage(
80
    "limited-coverage-experimental", llvm::cl::Hidden,
81
    llvm::cl::desc("Emit limited coverage mapping information (experimental)"));
82
83
static const char AnnotationSection[] = "llvm.metadata";
84
85
46
static CGCXXABI *createCXXABI(CodeGenModule &CGM) {
86
46
  switch (CGM.getContext().getCXXABIKind()) {
87
0
  case TargetCXXABI::AppleARM64:
88
0
  case TargetCXXABI::Fuchsia:
89
0
  case TargetCXXABI::GenericAArch64:
90
0
  case TargetCXXABI::GenericARM:
91
0
  case TargetCXXABI::iOS:
92
0
  case TargetCXXABI::WatchOS:
93
0
  case TargetCXXABI::GenericMIPS:
94
46
  case TargetCXXABI::GenericItanium:
95
46
  case TargetCXXABI::WebAssembly:
96
46
  case TargetCXXABI::XL:
97
46
    return CreateItaniumCXXABI(CGM);
98
0
  case TargetCXXABI::Microsoft:
99
0
    return CreateMicrosoftCXXABI(CGM);
100
46
  }
101
102
0
  llvm_unreachable("invalid C++ ABI kind");
103
0
}
104
105
static std::unique_ptr<TargetCodeGenInfo>
106
46
createTargetCodeGenInfo(CodeGenModule &CGM) {
107
46
  const TargetInfo &Target = CGM.getTarget();
108
46
  const llvm::Triple &Triple = Target.getTriple();
109
46
  const CodeGenOptions &CodeGenOpts = CGM.getCodeGenOpts();
110
111
46
  switch (Triple.getArch()) {
112
0
  default:
113
0
    return createDefaultTargetCodeGenInfo(CGM);
114
115
0
  case llvm::Triple::le32:
116
0
    return createPNaClTargetCodeGenInfo(CGM);
117
0
  case llvm::Triple::m68k:
118
0
    return createM68kTargetCodeGenInfo(CGM);
119
0
  case llvm::Triple::mips:
120
0
  case llvm::Triple::mipsel:
121
0
    if (Triple.getOS() == llvm::Triple::NaCl)
122
0
      return createPNaClTargetCodeGenInfo(CGM);
123
0
    return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/true);
124
125
0
  case llvm::Triple::mips64:
126
0
  case llvm::Triple::mips64el:
127
0
    return createMIPSTargetCodeGenInfo(CGM, /*IsOS32=*/false);
128
129
0
  case llvm::Triple::avr: {
130
    // For passing parameters, R8~R25 are used on avr, and R18~R25 are used
131
    // on avrtiny. For passing return value, R18~R25 are used on avr, and
132
    // R22~R25 are used on avrtiny.
133
0
    unsigned NPR = Target.getABI() == "avrtiny" ? 6 : 18;
134
0
    unsigned NRR = Target.getABI() == "avrtiny" ? 4 : 8;
135
0
    return createAVRTargetCodeGenInfo(CGM, NPR, NRR);
136
0
  }
137
138
0
  case llvm::Triple::aarch64:
139
0
  case llvm::Triple::aarch64_32:
140
0
  case llvm::Triple::aarch64_be: {
141
0
    AArch64ABIKind Kind = AArch64ABIKind::AAPCS;
142
0
    if (Target.getABI() == "darwinpcs")
143
0
      Kind = AArch64ABIKind::DarwinPCS;
144
0
    else if (Triple.isOSWindows())
145
0
      return createWindowsAArch64TargetCodeGenInfo(CGM, AArch64ABIKind::Win64);
146
147
0
    return createAArch64TargetCodeGenInfo(CGM, Kind);
148
0
  }
149
150
0
  case llvm::Triple::wasm32:
151
0
  case llvm::Triple::wasm64: {
152
0
    WebAssemblyABIKind Kind = WebAssemblyABIKind::MVP;
153
0
    if (Target.getABI() == "experimental-mv")
154
0
      Kind = WebAssemblyABIKind::ExperimentalMV;
155
0
    return createWebAssemblyTargetCodeGenInfo(CGM, Kind);
156
0
  }
157
158
0
  case llvm::Triple::arm:
159
0
  case llvm::Triple::armeb:
160
0
  case llvm::Triple::thumb:
161
0
  case llvm::Triple::thumbeb: {
162
0
    if (Triple.getOS() == llvm::Triple::Win32)
163
0
      return createWindowsARMTargetCodeGenInfo(CGM, ARMABIKind::AAPCS_VFP);
164
165
0
    ARMABIKind Kind = ARMABIKind::AAPCS;
166
0
    StringRef ABIStr = Target.getABI();
167
0
    if (ABIStr == "apcs-gnu")
168
0
      Kind = ARMABIKind::APCS;
169
0
    else if (ABIStr == "aapcs16")
170
0
      Kind = ARMABIKind::AAPCS16_VFP;
171
0
    else if (CodeGenOpts.FloatABI == "hard" ||
172
0
             (CodeGenOpts.FloatABI != "soft" &&
173
0
              (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
174
0
               Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
175
0
               Triple.getEnvironment() == llvm::Triple::EABIHF)))
176
0
      Kind = ARMABIKind::AAPCS_VFP;
177
178
0
    return createARMTargetCodeGenInfo(CGM, Kind);
179
0
  }
180
181
0
  case llvm::Triple::ppc: {
182
0
    if (Triple.isOSAIX())
183
0
      return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/false);
184
185
0
    bool IsSoftFloat =
186
0
        CodeGenOpts.FloatABI == "soft" || Target.hasFeature("spe");
187
0
    return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
188
0
  }
189
0
  case llvm::Triple::ppcle: {
190
0
    bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
191
0
    return createPPC32TargetCodeGenInfo(CGM, IsSoftFloat);
192
0
  }
193
0
  case llvm::Triple::ppc64:
194
0
    if (Triple.isOSAIX())
195
0
      return createAIXTargetCodeGenInfo(CGM, /*Is64Bit=*/true);
196
197
0
    if (Triple.isOSBinFormatELF()) {
198
0
      PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv1;
199
0
      if (Target.getABI() == "elfv2")
200
0
        Kind = PPC64_SVR4_ABIKind::ELFv2;
201
0
      bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
202
203
0
      return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
204
0
    }
205
0
    return createPPC64TargetCodeGenInfo(CGM);
206
0
  case llvm::Triple::ppc64le: {
207
0
    assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
208
0
    PPC64_SVR4_ABIKind Kind = PPC64_SVR4_ABIKind::ELFv2;
209
0
    if (Target.getABI() == "elfv1")
210
0
      Kind = PPC64_SVR4_ABIKind::ELFv1;
211
0
    bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
212
213
0
    return createPPC64_SVR4_TargetCodeGenInfo(CGM, Kind, IsSoftFloat);
214
0
  }
215
216
0
  case llvm::Triple::nvptx:
217
0
  case llvm::Triple::nvptx64:
218
0
    return createNVPTXTargetCodeGenInfo(CGM);
219
220
0
  case llvm::Triple::msp430:
221
0
    return createMSP430TargetCodeGenInfo(CGM);
222
223
0
  case llvm::Triple::riscv32:
224
0
  case llvm::Triple::riscv64: {
225
0
    StringRef ABIStr = Target.getABI();
226
0
    unsigned XLen = Target.getPointerWidth(LangAS::Default);
227
0
    unsigned ABIFLen = 0;
228
0
    if (ABIStr.ends_with("f"))
229
0
      ABIFLen = 32;
230
0
    else if (ABIStr.ends_with("d"))
231
0
      ABIFLen = 64;
232
0
    bool EABI = ABIStr.ends_with("e");
233
0
    return createRISCVTargetCodeGenInfo(CGM, XLen, ABIFLen, EABI);
234
0
  }
235
236
0
  case llvm::Triple::systemz: {
237
0
    bool SoftFloat = CodeGenOpts.FloatABI == "soft";
238
0
    bool HasVector = !SoftFloat && Target.getABI() == "vector";
239
0
    return createSystemZTargetCodeGenInfo(CGM, HasVector, SoftFloat);
240
0
  }
241
242
0
  case llvm::Triple::tce:
243
0
  case llvm::Triple::tcele:
244
0
    return createTCETargetCodeGenInfo(CGM);
245
246
0
  case llvm::Triple::x86: {
247
0
    bool IsDarwinVectorABI = Triple.isOSDarwin();
248
0
    bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
249
250
0
    if (Triple.getOS() == llvm::Triple::Win32) {
251
0
      return createWinX86_32TargetCodeGenInfo(
252
0
          CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
253
0
          CodeGenOpts.NumRegisterParameters);
254
0
    }
255
0
    return createX86_32TargetCodeGenInfo(
256
0
        CGM, IsDarwinVectorABI, IsWin32FloatStructABI,
257
0
        CodeGenOpts.NumRegisterParameters, CodeGenOpts.FloatABI == "soft");
258
0
  }
259
260
46
  case llvm::Triple::x86_64: {
261
46
    StringRef ABI = Target.getABI();
262
46
    X86AVXABILevel AVXLevel = (ABI == "avx512" ? X86AVXABILevel::AVX512
263
46
                               : ABI == "avx"  ? X86AVXABILevel::AVX
264
46
                                               : X86AVXABILevel::None);
265
266
46
    switch (Triple.getOS()) {
267
0
    case llvm::Triple::Win32:
268
0
      return createWinX86_64TargetCodeGenInfo(CGM, AVXLevel);
269
46
    default:
270
46
      return createX86_64TargetCodeGenInfo(CGM, AVXLevel);
271
46
    }
272
46
  }
273
0
  case llvm::Triple::hexagon:
274
0
    return createHexagonTargetCodeGenInfo(CGM);
275
0
  case llvm::Triple::lanai:
276
0
    return createLanaiTargetCodeGenInfo(CGM);
277
0
  case llvm::Triple::r600:
278
0
    return createAMDGPUTargetCodeGenInfo(CGM);
279
0
  case llvm::Triple::amdgcn:
280
0
    return createAMDGPUTargetCodeGenInfo(CGM);
281
0
  case llvm::Triple::sparc:
282
0
    return createSparcV8TargetCodeGenInfo(CGM);
283
0
  case llvm::Triple::sparcv9:
284
0
    return createSparcV9TargetCodeGenInfo(CGM);
285
0
  case llvm::Triple::xcore:
286
0
    return createXCoreTargetCodeGenInfo(CGM);
287
0
  case llvm::Triple::arc:
288
0
    return createARCTargetCodeGenInfo(CGM);
289
0
  case llvm::Triple::spir:
290
0
  case llvm::Triple::spir64:
291
0
    return createCommonSPIRTargetCodeGenInfo(CGM);
292
0
  case llvm::Triple::spirv32:
293
0
  case llvm::Triple::spirv64:
294
0
    return createSPIRVTargetCodeGenInfo(CGM);
295
0
  case llvm::Triple::ve:
296
0
    return createVETargetCodeGenInfo(CGM);
297
0
  case llvm::Triple::csky: {
298
0
    bool IsSoftFloat = !Target.hasFeature("hard-float-abi");
299
0
    bool hasFP64 =
300
0
        Target.hasFeature("fpuv2_df") || Target.hasFeature("fpuv3_df");
301
0
    return createCSKYTargetCodeGenInfo(CGM, IsSoftFloat ? 0
302
0
                                            : hasFP64   ? 64
303
0
                                                        : 32);
304
0
  }
305
0
  case llvm::Triple::bpfeb:
306
0
  case llvm::Triple::bpfel:
307
0
    return createBPFTargetCodeGenInfo(CGM);
308
0
  case llvm::Triple::loongarch32:
309
0
  case llvm::Triple::loongarch64: {
310
0
    StringRef ABIStr = Target.getABI();
311
0
    unsigned ABIFRLen = 0;
312
0
    if (ABIStr.ends_with("f"))
313
0
      ABIFRLen = 32;
314
0
    else if (ABIStr.ends_with("d"))
315
0
      ABIFRLen = 64;
316
0
    return createLoongArchTargetCodeGenInfo(
317
0
        CGM, Target.getPointerWidth(LangAS::Default), ABIFRLen);
318
0
  }
319
46
  }
320
46
}
321
322
138
const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
323
138
  if (!TheTargetCodeGenInfo)
324
46
    TheTargetCodeGenInfo = createTargetCodeGenInfo(*this);
325
138
  return *TheTargetCodeGenInfo;
326
138
}
327
328
CodeGenModule::CodeGenModule(ASTContext &C,
329
                             IntrusiveRefCntPtr<llvm::vfs::FileSystem> FS,
330
                             const HeaderSearchOptions &HSO,
331
                             const PreprocessorOptions &PPO,
332
                             const CodeGenOptions &CGO, llvm::Module &M,
333
                             DiagnosticsEngine &diags,
334
                             CoverageSourceInfo *CoverageInfo)
335
    : Context(C), LangOpts(C.getLangOpts()), FS(FS), HeaderSearchOpts(HSO),
336
      PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags),
337
      Target(C.getTargetInfo()), ABI(createCXXABI(*this)),
338
      VMContext(M.getContext()), Types(*this), VTables(*this),
339
46
      SanitizerMD(new SanitizerMetadata(*this)) {
340
341
  // Initialize the type cache.
342
46
  llvm::LLVMContext &LLVMContext = M.getContext();
343
46
  VoidTy = llvm::Type::getVoidTy(LLVMContext);
344
46
  Int8Ty = llvm::Type::getInt8Ty(LLVMContext);
345
46
  Int16Ty = llvm::Type::getInt16Ty(LLVMContext);
346
46
  Int32Ty = llvm::Type::getInt32Ty(LLVMContext);
347
46
  Int64Ty = llvm::Type::getInt64Ty(LLVMContext);
348
46
  HalfTy = llvm::Type::getHalfTy(LLVMContext);
349
46
  BFloatTy = llvm::Type::getBFloatTy(LLVMContext);
350
46
  FloatTy = llvm::Type::getFloatTy(LLVMContext);
351
46
  DoubleTy = llvm::Type::getDoubleTy(LLVMContext);
352
46
  PointerWidthInBits = C.getTargetInfo().getPointerWidth(LangAS::Default);
353
46
  PointerAlignInBytes =
354
46
      C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(LangAS::Default))
355
46
          .getQuantity();
356
46
  SizeSizeInBytes =
357
46
    C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity();
358
46
  IntAlignInBytes =
359
46
    C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity();
360
46
  CharTy =
361
46
    llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getCharWidth());
362
46
  IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth());
363
46
  IntPtrTy = llvm::IntegerType::get(LLVMContext,
364
46
    C.getTargetInfo().getMaxPointerWidth());
365
46
  Int8PtrTy = llvm::PointerType::get(LLVMContext, 0);
366
46
  const llvm::DataLayout &DL = M.getDataLayout();
367
46
  AllocaInt8PtrTy =
368
46
      llvm::PointerType::get(LLVMContext, DL.getAllocaAddrSpace());
369
46
  GlobalsInt8PtrTy =
370
46
      llvm::PointerType::get(LLVMContext, DL.getDefaultGlobalsAddressSpace());
371
46
  ConstGlobalsPtrTy = llvm::PointerType::get(
372
46
      LLVMContext, C.getTargetAddressSpace(GetGlobalConstantAddressSpace()));
373
46
  ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace();
374
375
  // Build C++20 Module initializers.
376
  // TODO: Add Microsoft here once we know the mangling required for the
377
  // initializers.
378
46
  CXX20ModuleInits =
379
46
      LangOpts.CPlusPlusModules && getCXXABI().getMangleContext().getKind() ==
380
0
                                       ItaniumMangleContext::MK_Itanium;
381
382
46
  RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC();
383
384
46
  if (LangOpts.ObjC)
385
23
    createObjCRuntime();
386
46
  if (LangOpts.OpenCL)
387
0
    createOpenCLRuntime();
388
46
  if (LangOpts.OpenMP)
389
0
    createOpenMPRuntime();
390
46
  if (LangOpts.CUDA)
391
0
    createCUDARuntime();
392
46
  if (LangOpts.HLSL)
393
0
    createHLSLRuntime();
394
395
  // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0.
396
46
  if (LangOpts.Sanitize.has(SanitizerKind::Thread) ||
397
46
      (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0))
398
46
    TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(),
399
46
                               getCXXABI().getMangleContext()));
400
401
  // If debug info or coverage generation is enabled, create the CGDebugInfo
402
  // object.
403
46
  if (CodeGenOpts.getDebugInfo() != llvm::codegenoptions::NoDebugInfo ||
404
46
      CodeGenOpts.CoverageNotesFile.size() ||
405
46
      CodeGenOpts.CoverageDataFile.size())
406
0
    DebugInfo.reset(new CGDebugInfo(*this));
407
408
46
  Block.GlobalUniqueCount = 0;
409
410
46
  if (C.getLangOpts().ObjC)
411
23
    ObjCData.reset(new ObjCEntrypoints());
412
413
46
  if (CodeGenOpts.hasProfileClangUse()) {
414
0
    auto ReaderOrErr = llvm::IndexedInstrProfReader::create(
415
0
        CodeGenOpts.ProfileInstrumentUsePath, *FS,
416
0
        CodeGenOpts.ProfileRemappingFile);
417
    // We're checking for profile read errors in CompilerInvocation, so if
418
    // there was an error it should've already been caught. If it hasn't been
419
    // somehow, trip an assertion.
420
0
    assert(ReaderOrErr);
421
0
    PGOReader = std::move(ReaderOrErr.get());
422
0
  }
423
424
  // If coverage mapping generation is enabled, create the
425
  // CoverageMappingModuleGen object.
426
46
  if (CodeGenOpts.CoverageMapping)
427
0
    CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo));
428
429
  // Generate the module name hash here if needed.
430
46
  if (CodeGenOpts.UniqueInternalLinkageNames &&
431
46
      !getModule().getSourceFileName().empty()) {
432
0
    std::string Path = getModule().getSourceFileName();
433
    // Check if a path substitution is needed from the MacroPrefixMap.
434
0
    for (const auto &Entry : LangOpts.MacroPrefixMap)
435
0
      if (Path.rfind(Entry.first, 0) != std::string::npos) {
436
0
        Path = Entry.second + Path.substr(Entry.first.size());
437
0
        break;
438
0
      }
439
0
    ModuleNameHash = llvm::getUniqueInternalLinkagePostfix(Path);
440
0
  }
441
46
}
442
443
46
CodeGenModule::~CodeGenModule() {}
444
445
23
void CodeGenModule::createObjCRuntime() {
446
  // This is just isGNUFamily(), but we want to force implementors of
447
  // new ABIs to decide how best to do this.
448
23
  switch (LangOpts.ObjCRuntime.getKind()) {
449
0
  case ObjCRuntime::GNUstep:
450
0
  case ObjCRuntime::GCC:
451
0
  case ObjCRuntime::ObjFW:
452
0
    ObjCRuntime.reset(CreateGNUObjCRuntime(*this));
453
0
    return;
454
455
0
  case ObjCRuntime::FragileMacOSX:
456
23
  case ObjCRuntime::MacOSX:
457
23
  case ObjCRuntime::iOS:
458
23
  case ObjCRuntime::WatchOS:
459
23
    ObjCRuntime.reset(CreateMacObjCRuntime(*this));
460
23
    return;
461
23
  }
462
0
  llvm_unreachable("bad runtime kind");
463
0
}
464
465
0
void CodeGenModule::createOpenCLRuntime() {
466
0
  OpenCLRuntime.reset(new CGOpenCLRuntime(*this));
467
0
}
468
469
0
void CodeGenModule::createOpenMPRuntime() {
470
  // Select a specialized code generation class based on the target, if any.
471
  // If it does not exist use the default implementation.
472
0
  switch (getTriple().getArch()) {
473
0
  case llvm::Triple::nvptx:
474
0
  case llvm::Triple::nvptx64:
475
0
  case llvm::Triple::amdgcn:
476
0
    assert(getLangOpts().OpenMPIsTargetDevice &&
477
0
           "OpenMP AMDGPU/NVPTX is only prepared to deal with device code.");
478
0
    OpenMPRuntime.reset(new CGOpenMPRuntimeGPU(*this));
479
0
    break;
480
0
  default:
481
0
    if (LangOpts.OpenMPSimd)
482
0
      OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this));
483
0
    else
484
0
      OpenMPRuntime.reset(new CGOpenMPRuntime(*this));
485
0
    break;
486
0
  }
487
0
}
488
489
0
void CodeGenModule::createCUDARuntime() {
490
0
  CUDARuntime.reset(CreateNVCUDARuntime(*this));
491
0
}
492
493
0
void CodeGenModule::createHLSLRuntime() {
494
0
  HLSLRuntime.reset(new CGHLSLRuntime(*this));
495
0
}
496
497
0
void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) {
498
0
  Replacements[Name] = C;
499
0
}
500
501
0
void CodeGenModule::applyReplacements() {
502
0
  for (auto &I : Replacements) {
503
0
    StringRef MangledName = I.first;
504
0
    llvm::Constant *Replacement = I.second;
505
0
    llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
506
0
    if (!Entry)
507
0
      continue;
508
0
    auto *OldF = cast<llvm::Function>(Entry);
509
0
    auto *NewF = dyn_cast<llvm::Function>(Replacement);
510
0
    if (!NewF) {
511
0
      if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) {
512
0
        NewF = dyn_cast<llvm::Function>(Alias->getAliasee());
513
0
      } else {
514
0
        auto *CE = cast<llvm::ConstantExpr>(Replacement);
515
0
        assert(CE->getOpcode() == llvm::Instruction::BitCast ||
516
0
               CE->getOpcode() == llvm::Instruction::GetElementPtr);
517
0
        NewF = dyn_cast<llvm::Function>(CE->getOperand(0));
518
0
      }
519
0
    }
520
521
    // Replace old with new, but keep the old order.
522
0
    OldF->replaceAllUsesWith(Replacement);
523
0
    if (NewF) {
524
0
      NewF->removeFromParent();
525
0
      OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(),
526
0
                                                       NewF);
527
0
    }
528
0
    OldF->eraseFromParent();
529
0
  }
530
0
}
531
532
0
void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) {
533
0
  GlobalValReplacements.push_back(std::make_pair(GV, C));
534
0
}
535
536
0
void CodeGenModule::applyGlobalValReplacements() {
537
0
  for (auto &I : GlobalValReplacements) {
538
0
    llvm::GlobalValue *GV = I.first;
539
0
    llvm::Constant *C = I.second;
540
541
0
    GV->replaceAllUsesWith(C);
542
0
    GV->eraseFromParent();
543
0
  }
544
0
}
545
546
// This is only used in aliases that we created and we know they have a
547
// linear structure.
548
0
static const llvm::GlobalValue *getAliasedGlobal(const llvm::GlobalValue *GV) {
549
0
  const llvm::Constant *C;
550
0
  if (auto *GA = dyn_cast<llvm::GlobalAlias>(GV))
551
0
    C = GA->getAliasee();
552
0
  else if (auto *GI = dyn_cast<llvm::GlobalIFunc>(GV))
553
0
    C = GI->getResolver();
554
0
  else
555
0
    return GV;
556
557
0
  const auto *AliaseeGV = dyn_cast<llvm::GlobalValue>(C->stripPointerCasts());
558
0
  if (!AliaseeGV)
559
0
    return nullptr;
560
561
0
  const llvm::GlobalValue *FinalGV = AliaseeGV->getAliaseeObject();
562
0
  if (FinalGV == GV)
563
0
    return nullptr;
564
565
0
  return FinalGV;
566
0
}
567
568
static bool checkAliasedGlobal(
569
    const ASTContext &Context, DiagnosticsEngine &Diags, SourceLocation Location,
570
    bool IsIFunc, const llvm::GlobalValue *Alias, const llvm::GlobalValue *&GV,
571
    const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames,
572
0
    SourceRange AliasRange) {
573
0
  GV = getAliasedGlobal(Alias);
574
0
  if (!GV) {
575
0
    Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc;
576
0
    return false;
577
0
  }
578
579
0
  if (GV->hasCommonLinkage()) {
580
0
    const llvm::Triple &Triple = Context.getTargetInfo().getTriple();
581
0
    if (Triple.getObjectFormat() == llvm::Triple::XCOFF) {
582
0
      Diags.Report(Location, diag::err_alias_to_common);
583
0
      return false;
584
0
    }
585
0
  }
586
587
0
  if (GV->isDeclaration()) {
588
0
    Diags.Report(Location, diag::err_alias_to_undefined) << IsIFunc << IsIFunc;
589
0
    Diags.Report(Location, diag::note_alias_requires_mangled_name)
590
0
        << IsIFunc << IsIFunc;
591
    // Provide a note if the given function is not found and exists as a
592
    // mangled name.
593
0
    for (const auto &[Decl, Name] : MangledDeclNames) {
594
0
      if (const auto *ND = dyn_cast<NamedDecl>(Decl.getDecl())) {
595
0
        if (ND->getName() == GV->getName()) {
596
0
          Diags.Report(Location, diag::note_alias_mangled_name_alternative)
597
0
              << Name
598
0
              << FixItHint::CreateReplacement(
599
0
                     AliasRange,
600
0
                     (Twine(IsIFunc ? "ifunc" : "alias") + "(\"" + Name + "\")")
601
0
                         .str());
602
0
        }
603
0
      }
604
0
    }
605
0
    return false;
606
0
  }
607
608
0
  if (IsIFunc) {
609
    // Check resolver function type.
610
0
    const auto *F = dyn_cast<llvm::Function>(GV);
611
0
    if (!F) {
612
0
      Diags.Report(Location, diag::err_alias_to_undefined)
613
0
          << IsIFunc << IsIFunc;
614
0
      return false;
615
0
    }
616
617
0
    llvm::FunctionType *FTy = F->getFunctionType();
618
0
    if (!FTy->getReturnType()->isPointerTy()) {
619
0
      Diags.Report(Location, diag::err_ifunc_resolver_return);
620
0
      return false;
621
0
    }
622
0
  }
623
624
0
  return true;
625
0
}
626
627
0
void CodeGenModule::checkAliases() {
628
  // Check if the constructed aliases are well formed. It is really unfortunate
629
  // that we have to do this in CodeGen, but we only construct mangled names
630
  // and aliases during codegen.
631
0
  bool Error = false;
632
0
  DiagnosticsEngine &Diags = getDiags();
633
0
  for (const GlobalDecl &GD : Aliases) {
634
0
    const auto *D = cast<ValueDecl>(GD.getDecl());
635
0
    SourceLocation Location;
636
0
    SourceRange Range;
637
0
    bool IsIFunc = D->hasAttr<IFuncAttr>();
638
0
    if (const Attr *A = D->getDefiningAttr()) {
639
0
      Location = A->getLocation();
640
0
      Range = A->getRange();
641
0
    } else
642
0
      llvm_unreachable("Not an alias or ifunc?");
643
644
0
    StringRef MangledName = getMangledName(GD);
645
0
    llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
646
0
    const llvm::GlobalValue *GV = nullptr;
647
0
    if (!checkAliasedGlobal(getContext(), Diags, Location, IsIFunc, Alias, GV,
648
0
                            MangledDeclNames, Range)) {
649
0
      Error = true;
650
0
      continue;
651
0
    }
652
653
0
    llvm::Constant *Aliasee =
654
0
        IsIFunc ? cast<llvm::GlobalIFunc>(Alias)->getResolver()
655
0
                : cast<llvm::GlobalAlias>(Alias)->getAliasee();
656
657
0
    llvm::GlobalValue *AliaseeGV;
658
0
    if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee))
659
0
      AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0));
660
0
    else
661
0
      AliaseeGV = cast<llvm::GlobalValue>(Aliasee);
662
663
0
    if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
664
0
      StringRef AliasSection = SA->getName();
665
0
      if (AliasSection != AliaseeGV->getSection())
666
0
        Diags.Report(SA->getLocation(), diag::warn_alias_with_section)
667
0
            << AliasSection << IsIFunc << IsIFunc;
668
0
    }
669
670
    // We have to handle alias to weak aliases in here. LLVM itself disallows
671
    // this since the object semantics would not match the IL one. For
672
    // compatibility with gcc we implement it by just pointing the alias
673
    // to its aliasee's aliasee. We also warn, since the user is probably
674
    // expecting the link to be weak.
675
0
    if (auto *GA = dyn_cast<llvm::GlobalAlias>(AliaseeGV)) {
676
0
      if (GA->isInterposable()) {
677
0
        Diags.Report(Location, diag::warn_alias_to_weak_alias)
678
0
            << GV->getName() << GA->getName() << IsIFunc;
679
0
        Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
680
0
            GA->getAliasee(), Alias->getType());
681
682
0
        if (IsIFunc)
683
0
          cast<llvm::GlobalIFunc>(Alias)->setResolver(Aliasee);
684
0
        else
685
0
          cast<llvm::GlobalAlias>(Alias)->setAliasee(Aliasee);
686
0
      }
687
0
    }
688
0
  }
689
0
  if (!Error)
690
0
    return;
691
692
0
  for (const GlobalDecl &GD : Aliases) {
693
0
    StringRef MangledName = getMangledName(GD);
694
0
    llvm::GlobalValue *Alias = GetGlobalValue(MangledName);
695
0
    Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType()));
696
0
    Alias->eraseFromParent();
697
0
  }
698
0
}
699
700
46
void CodeGenModule::clear() {
701
46
  DeferredDeclsToEmit.clear();
702
46
  EmittedDeferredDecls.clear();
703
46
  DeferredAnnotations.clear();
704
46
  if (OpenMPRuntime)
705
0
    OpenMPRuntime->clear();
706
46
}
707
708
void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags,
709
0
                                       StringRef MainFile) {
710
0
  if (!hasDiagnostics())
711
0
    return;
712
0
  if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) {
713
0
    if (MainFile.empty())
714
0
      MainFile = "<stdin>";
715
0
    Diags.Report(diag::warn_profile_data_unprofiled) << MainFile;
716
0
  } else {
717
0
    if (Mismatched > 0)
718
0
      Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched;
719
720
0
    if (Missing > 0)
721
0
      Diags.Report(diag::warn_profile_data_missing) << Visited << Missing;
722
0
  }
723
0
}
724
725
static void setVisibilityFromDLLStorageClass(const clang::LangOptions &LO,
726
0
                                             llvm::Module &M) {
727
0
  if (!LO.VisibilityFromDLLStorageClass)
728
0
    return;
729
730
0
  llvm::GlobalValue::VisibilityTypes DLLExportVisibility =
731
0
      CodeGenModule::GetLLVMVisibility(LO.getDLLExportVisibility());
732
0
  llvm::GlobalValue::VisibilityTypes NoDLLStorageClassVisibility =
733
0
      CodeGenModule::GetLLVMVisibility(LO.getNoDLLStorageClassVisibility());
734
0
  llvm::GlobalValue::VisibilityTypes ExternDeclDLLImportVisibility =
735
0
      CodeGenModule::GetLLVMVisibility(LO.getExternDeclDLLImportVisibility());
736
0
  llvm::GlobalValue::VisibilityTypes ExternDeclNoDLLStorageClassVisibility =
737
0
      CodeGenModule::GetLLVMVisibility(
738
0
          LO.getExternDeclNoDLLStorageClassVisibility());
739
740
0
  for (llvm::GlobalValue &GV : M.global_values()) {
741
0
    if (GV.hasAppendingLinkage() || GV.hasLocalLinkage())
742
0
      continue;
743
744
    // Reset DSO locality before setting the visibility. This removes
745
    // any effects that visibility options and annotations may have
746
    // had on the DSO locality. Setting the visibility will implicitly set
747
    // appropriate globals to DSO Local; however, this will be pessimistic
748
    // w.r.t. to the normal compiler IRGen.
749
0
    GV.setDSOLocal(false);
750
751
0
    if (GV.isDeclarationForLinker()) {
752
0
      GV.setVisibility(GV.getDLLStorageClass() ==
753
0
                               llvm::GlobalValue::DLLImportStorageClass
754
0
                           ? ExternDeclDLLImportVisibility
755
0
                           : ExternDeclNoDLLStorageClassVisibility);
756
0
    } else {
757
0
      GV.setVisibility(GV.getDLLStorageClass() ==
758
0
                               llvm::GlobalValue::DLLExportStorageClass
759
0
                           ? DLLExportVisibility
760
0
                           : NoDLLStorageClassVisibility);
761
0
    }
762
763
0
    GV.setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
764
0
  }
765
0
}
766
767
static bool isStackProtectorOn(const LangOptions &LangOpts,
768
                               const llvm::Triple &Triple,
769
0
                               clang::LangOptions::StackProtectorMode Mode) {
770
0
  if (Triple.isAMDGPU() || Triple.isNVPTX())
771
0
    return false;
772
0
  return LangOpts.getStackProtector() == Mode;
773
0
}
774
775
0
void CodeGenModule::Release() {
776
0
  Module *Primary = getContext().getCurrentNamedModule();
777
0
  if (CXX20ModuleInits && Primary && !Primary->isHeaderLikeModule())
778
0
    EmitModuleInitializers(Primary);
779
0
  EmitDeferred();
780
0
  DeferredDecls.insert(EmittedDeferredDecls.begin(),
781
0
                       EmittedDeferredDecls.end());
782
0
  EmittedDeferredDecls.clear();
783
0
  EmitVTablesOpportunistically();
784
0
  applyGlobalValReplacements();
785
0
  applyReplacements();
786
0
  emitMultiVersionFunctions();
787
788
0
  if (Context.getLangOpts().IncrementalExtensions &&
789
0
      GlobalTopLevelStmtBlockInFlight.first) {
790
0
    const TopLevelStmtDecl *TLSD = GlobalTopLevelStmtBlockInFlight.second;
791
0
    GlobalTopLevelStmtBlockInFlight.first->FinishFunction(TLSD->getEndLoc());
792
0
    GlobalTopLevelStmtBlockInFlight = {nullptr, nullptr};
793
0
  }
794
795
  // Module implementations are initialized the same way as a regular TU that
796
  // imports one or more modules.
797
0
  if (CXX20ModuleInits && Primary && Primary->isInterfaceOrPartition())
798
0
    EmitCXXModuleInitFunc(Primary);
799
0
  else
800
0
    EmitCXXGlobalInitFunc();
801
0
  EmitCXXGlobalCleanUpFunc();
802
0
  registerGlobalDtorsWithAtExit();
803
0
  EmitCXXThreadLocalInitFunc();
804
0
  if (ObjCRuntime)
805
0
    if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction())
806
0
      AddGlobalCtor(ObjCInitFunction);
807
0
  if (Context.getLangOpts().CUDA && CUDARuntime) {
808
0
    if (llvm::Function *CudaCtorFunction = CUDARuntime->finalizeModule())
809
0
      AddGlobalCtor(CudaCtorFunction);
810
0
  }
811
0
  if (OpenMPRuntime) {
812
0
    if (llvm::Function *OpenMPRequiresDirectiveRegFun =
813
0
            OpenMPRuntime->emitRequiresDirectiveRegFun()) {
814
0
      AddGlobalCtor(OpenMPRequiresDirectiveRegFun, 0);
815
0
    }
816
0
    OpenMPRuntime->createOffloadEntriesAndInfoMetadata();
817
0
    OpenMPRuntime->clear();
818
0
  }
819
0
  if (PGOReader) {
820
0
    getModule().setProfileSummary(
821
0
        PGOReader->getSummary(/* UseCS */ false).getMD(VMContext),
822
0
        llvm::ProfileSummary::PSK_Instr);
823
0
    if (PGOStats.hasDiagnostics())
824
0
      PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName);
825
0
  }
826
0
  llvm::stable_sort(GlobalCtors, [](const Structor &L, const Structor &R) {
827
0
    return L.LexOrder < R.LexOrder;
828
0
  });
829
0
  EmitCtorList(GlobalCtors, "llvm.global_ctors");
830
0
  EmitCtorList(GlobalDtors, "llvm.global_dtors");
831
0
  EmitGlobalAnnotations();
832
0
  EmitStaticExternCAliases();
833
0
  checkAliases();
834
0
  EmitDeferredUnusedCoverageMappings();
835
0
  CodeGenPGO(*this).setValueProfilingFlag(getModule());
836
0
  if (CoverageMapping)
837
0
    CoverageMapping->emit();
838
0
  if (CodeGenOpts.SanitizeCfiCrossDso) {
839
0
    CodeGenFunction(*this).EmitCfiCheckFail();
840
0
    CodeGenFunction(*this).EmitCfiCheckStub();
841
0
  }
842
0
  if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
843
0
    finalizeKCFITypes();
844
0
  emitAtAvailableLinkGuard();
845
0
  if (Context.getTargetInfo().getTriple().isWasm())
846
0
    EmitMainVoidAlias();
847
848
0
  if (getTriple().isAMDGPU()) {
849
    // Emit amdgpu_code_object_version module flag, which is code object version
850
    // times 100.
851
0
    if (getTarget().getTargetOpts().CodeObjectVersion !=
852
0
        llvm::CodeObjectVersionKind::COV_None) {
853
0
      getModule().addModuleFlag(llvm::Module::Error,
854
0
                                "amdgpu_code_object_version",
855
0
                                getTarget().getTargetOpts().CodeObjectVersion);
856
0
    }
857
858
    // Currently, "-mprintf-kind" option is only supported for HIP
859
0
    if (LangOpts.HIP) {
860
0
      auto *MDStr = llvm::MDString::get(
861
0
          getLLVMContext(), (getTarget().getTargetOpts().AMDGPUPrintfKindVal ==
862
0
                             TargetOptions::AMDGPUPrintfKind::Hostcall)
863
0
                                ? "hostcall"
864
0
                                : "buffered");
865
0
      getModule().addModuleFlag(llvm::Module::Error, "amdgpu_printf_kind",
866
0
                                MDStr);
867
0
    }
868
0
  }
869
870
  // Emit a global array containing all external kernels or device variables
871
  // used by host functions and mark it as used for CUDA/HIP. This is necessary
872
  // to get kernels or device variables in archives linked in even if these
873
  // kernels or device variables are only used in host functions.
874
0
  if (!Context.CUDAExternalDeviceDeclODRUsedByHost.empty()) {
875
0
    SmallVector<llvm::Constant *, 8> UsedArray;
876
0
    for (auto D : Context.CUDAExternalDeviceDeclODRUsedByHost) {
877
0
      GlobalDecl GD;
878
0
      if (auto *FD = dyn_cast<FunctionDecl>(D))
879
0
        GD = GlobalDecl(FD, KernelReferenceKind::Kernel);
880
0
      else
881
0
        GD = GlobalDecl(D);
882
0
      UsedArray.push_back(llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
883
0
          GetAddrOfGlobal(GD), Int8PtrTy));
884
0
    }
885
886
0
    llvm::ArrayType *ATy = llvm::ArrayType::get(Int8PtrTy, UsedArray.size());
887
888
0
    auto *GV = new llvm::GlobalVariable(
889
0
        getModule(), ATy, false, llvm::GlobalValue::InternalLinkage,
890
0
        llvm::ConstantArray::get(ATy, UsedArray), "__clang_gpu_used_external");
891
0
    addCompilerUsedGlobal(GV);
892
0
  }
893
894
0
  emitLLVMUsed();
895
0
  if (SanStats)
896
0
    SanStats->finish();
897
898
0
  if (CodeGenOpts.Autolink &&
899
0
      (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) {
900
0
    EmitModuleLinkOptions();
901
0
  }
902
903
  // On ELF we pass the dependent library specifiers directly to the linker
904
  // without manipulating them. This is in contrast to other platforms where
905
  // they are mapped to a specific linker option by the compiler. This
906
  // difference is a result of the greater variety of ELF linkers and the fact
907
  // that ELF linkers tend to handle libraries in a more complicated fashion
908
  // than on other platforms. This forces us to defer handling the dependent
909
  // libs to the linker.
910
  //
911
  // CUDA/HIP device and host libraries are different. Currently there is no
912
  // way to differentiate dependent libraries for host or device. Existing
913
  // usage of #pragma comment(lib, *) is intended for host libraries on
914
  // Windows. Therefore emit llvm.dependent-libraries only for host.
915
0
  if (!ELFDependentLibraries.empty() && !Context.getLangOpts().CUDAIsDevice) {
916
0
    auto *NMD = getModule().getOrInsertNamedMetadata("llvm.dependent-libraries");
917
0
    for (auto *MD : ELFDependentLibraries)
918
0
      NMD->addOperand(MD);
919
0
  }
920
921
  // Record mregparm value now so it is visible through rest of codegen.
922
0
  if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
923
0
    getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters",
924
0
                              CodeGenOpts.NumRegisterParameters);
925
926
0
  if (CodeGenOpts.DwarfVersion) {
927
0
    getModule().addModuleFlag(llvm::Module::Max, "Dwarf Version",
928
0
                              CodeGenOpts.DwarfVersion);
929
0
  }
930
931
0
  if (CodeGenOpts.Dwarf64)
932
0
    getModule().addModuleFlag(llvm::Module::Max, "DWARF64", 1);
933
934
0
  if (Context.getLangOpts().SemanticInterposition)
935
    // Require various optimization to respect semantic interposition.
936
0
    getModule().setSemanticInterposition(true);
937
938
0
  if (CodeGenOpts.EmitCodeView) {
939
    // Indicate that we want CodeView in the metadata.
940
0
    getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1);
941
0
  }
942
0
  if (CodeGenOpts.CodeViewGHash) {
943
0
    getModule().addModuleFlag(llvm::Module::Warning, "CodeViewGHash", 1);
944
0
  }
945
0
  if (CodeGenOpts.ControlFlowGuard) {
946
    // Function ID tables and checks for Control Flow Guard (cfguard=2).
947
0
    getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 2);
948
0
  } else if (CodeGenOpts.ControlFlowGuardNoChecks) {
949
    // Function ID tables for Control Flow Guard (cfguard=1).
950
0
    getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1);
951
0
  }
952
0
  if (CodeGenOpts.EHContGuard) {
953
    // Function ID tables for EH Continuation Guard.
954
0
    getModule().addModuleFlag(llvm::Module::Warning, "ehcontguard", 1);
955
0
  }
956
0
  if (Context.getLangOpts().Kernel) {
957
    // Note if we are compiling with /kernel.
958
0
    getModule().addModuleFlag(llvm::Module::Warning, "ms-kernel", 1);
959
0
  }
960
0
  if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) {
961
    // We don't support LTO with 2 with different StrictVTablePointers
962
    // FIXME: we could support it by stripping all the information introduced
963
    // by StrictVTablePointers.
964
965
0
    getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1);
966
967
0
    llvm::Metadata *Ops[2] = {
968
0
              llvm::MDString::get(VMContext, "StrictVTablePointers"),
969
0
              llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
970
0
                  llvm::Type::getInt32Ty(VMContext), 1))};
971
972
0
    getModule().addModuleFlag(llvm::Module::Require,
973
0
                              "StrictVTablePointersRequirement",
974
0
                              llvm::MDNode::get(VMContext, Ops));
975
0
  }
976
0
  if (getModuleDebugInfo())
977
    // We support a single version in the linked module. The LLVM
978
    // parser will drop debug info with a different version number
979
    // (and warn about it, too).
980
0
    getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version",
981
0
                              llvm::DEBUG_METADATA_VERSION);
982
983
  // We need to record the widths of enums and wchar_t, so that we can generate
984
  // the correct build attributes in the ARM backend. wchar_size is also used by
985
  // TargetLibraryInfo.
986
0
  uint64_t WCharWidth =
987
0
      Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity();
988
0
  getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth);
989
990
0
  if (getTriple().isOSzOS()) {
991
0
    getModule().addModuleFlag(llvm::Module::Warning,
992
0
                              "zos_product_major_version",
993
0
                              uint32_t(CLANG_VERSION_MAJOR));
994
0
    getModule().addModuleFlag(llvm::Module::Warning,
995
0
                              "zos_product_minor_version",
996
0
                              uint32_t(CLANG_VERSION_MINOR));
997
0
    getModule().addModuleFlag(llvm::Module::Warning, "zos_product_patchlevel",
998
0
                              uint32_t(CLANG_VERSION_PATCHLEVEL));
999
0
    std::string ProductId = getClangVendor() + "clang";
1000
0
    getModule().addModuleFlag(llvm::Module::Error, "zos_product_id",
1001
0
                              llvm::MDString::get(VMContext, ProductId));
1002
1003
    // Record the language because we need it for the PPA2.
1004
0
    StringRef lang_str = languageToString(
1005
0
        LangStandard::getLangStandardForKind(LangOpts.LangStd).Language);
1006
0
    getModule().addModuleFlag(llvm::Module::Error, "zos_cu_language",
1007
0
                              llvm::MDString::get(VMContext, lang_str));
1008
1009
0
    time_t TT = PreprocessorOpts.SourceDateEpoch
1010
0
                    ? *PreprocessorOpts.SourceDateEpoch
1011
0
                    : std::time(nullptr);
1012
0
    getModule().addModuleFlag(llvm::Module::Max, "zos_translation_time",
1013
0
                              static_cast<uint64_t>(TT));
1014
1015
    // Multiple modes will be supported here.
1016
0
    getModule().addModuleFlag(llvm::Module::Error, "zos_le_char_mode",
1017
0
                              llvm::MDString::get(VMContext, "ascii"));
1018
0
  }
1019
1020
0
  llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch();
1021
0
  if (   Arch == llvm::Triple::arm
1022
0
      || Arch == llvm::Triple::armeb
1023
0
      || Arch == llvm::Triple::thumb
1024
0
      || Arch == llvm::Triple::thumbeb) {
1025
    // The minimum width of an enum in bytes
1026
0
    uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4;
1027
0
    getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth);
1028
0
  }
1029
1030
0
  if (Arch == llvm::Triple::riscv32 || Arch == llvm::Triple::riscv64) {
1031
0
    StringRef ABIStr = Target.getABI();
1032
0
    llvm::LLVMContext &Ctx = TheModule.getContext();
1033
0
    getModule().addModuleFlag(llvm::Module::Error, "target-abi",
1034
0
                              llvm::MDString::get(Ctx, ABIStr));
1035
0
  }
1036
1037
0
  if (CodeGenOpts.SanitizeCfiCrossDso) {
1038
    // Indicate that we want cross-DSO control flow integrity checks.
1039
0
    getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1);
1040
0
  }
1041
1042
0
  if (CodeGenOpts.WholeProgramVTables) {
1043
    // Indicate whether VFE was enabled for this module, so that the
1044
    // vcall_visibility metadata added under whole program vtables is handled
1045
    // appropriately in the optimizer.
1046
0
    getModule().addModuleFlag(llvm::Module::Error, "Virtual Function Elim",
1047
0
                              CodeGenOpts.VirtualFunctionElimination);
1048
0
  }
1049
1050
0
  if (LangOpts.Sanitize.has(SanitizerKind::CFIICall)) {
1051
0
    getModule().addModuleFlag(llvm::Module::Override,
1052
0
                              "CFI Canonical Jump Tables",
1053
0
                              CodeGenOpts.SanitizeCfiCanonicalJumpTables);
1054
0
  }
1055
1056
0
  if (LangOpts.Sanitize.has(SanitizerKind::KCFI)) {
1057
0
    getModule().addModuleFlag(llvm::Module::Override, "kcfi", 1);
1058
    // KCFI assumes patchable-function-prefix is the same for all indirectly
1059
    // called functions. Store the expected offset for code generation.
1060
0
    if (CodeGenOpts.PatchableFunctionEntryOffset)
1061
0
      getModule().addModuleFlag(llvm::Module::Override, "kcfi-offset",
1062
0
                                CodeGenOpts.PatchableFunctionEntryOffset);
1063
0
  }
1064
1065
0
  if (CodeGenOpts.CFProtectionReturn &&
1066
0
      Target.checkCFProtectionReturnSupported(getDiags())) {
1067
    // Indicate that we want to instrument return control flow protection.
1068
0
    getModule().addModuleFlag(llvm::Module::Min, "cf-protection-return",
1069
0
                              1);
1070
0
  }
1071
1072
0
  if (CodeGenOpts.CFProtectionBranch &&
1073
0
      Target.checkCFProtectionBranchSupported(getDiags())) {
1074
    // Indicate that we want to instrument branch control flow protection.
1075
0
    getModule().addModuleFlag(llvm::Module::Min, "cf-protection-branch",
1076
0
                              1);
1077
0
  }
1078
1079
0
  if (CodeGenOpts.FunctionReturnThunks)
1080
0
    getModule().addModuleFlag(llvm::Module::Override, "function_return_thunk_extern", 1);
1081
1082
0
  if (CodeGenOpts.IndirectBranchCSPrefix)
1083
0
    getModule().addModuleFlag(llvm::Module::Override, "indirect_branch_cs_prefix", 1);
1084
1085
  // Add module metadata for return address signing (ignoring
1086
  // non-leaf/all) and stack tagging. These are actually turned on by function
1087
  // attributes, but we use module metadata to emit build attributes. This is
1088
  // needed for LTO, where the function attributes are inside bitcode
1089
  // serialised into a global variable by the time build attributes are
1090
  // emitted, so we can't access them. LTO objects could be compiled with
1091
  // different flags therefore module flags are set to "Min" behavior to achieve
1092
  // the same end result of the normal build where e.g BTI is off if any object
1093
  // doesn't support it.
1094
0
  if (Context.getTargetInfo().hasFeature("ptrauth") &&
1095
0
      LangOpts.getSignReturnAddressScope() !=
1096
0
          LangOptions::SignReturnAddressScopeKind::None)
1097
0
    getModule().addModuleFlag(llvm::Module::Override,
1098
0
                              "sign-return-address-buildattr", 1);
1099
0
  if (LangOpts.Sanitize.has(SanitizerKind::MemtagStack))
1100
0
    getModule().addModuleFlag(llvm::Module::Override,
1101
0
                              "tag-stack-memory-buildattr", 1);
1102
1103
0
  if (Arch == llvm::Triple::thumb || Arch == llvm::Triple::thumbeb ||
1104
0
      Arch == llvm::Triple::arm || Arch == llvm::Triple::armeb ||
1105
0
      Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_32 ||
1106
0
      Arch == llvm::Triple::aarch64_be) {
1107
0
    if (LangOpts.BranchTargetEnforcement)
1108
0
      getModule().addModuleFlag(llvm::Module::Min, "branch-target-enforcement",
1109
0
                                1);
1110
0
    if (LangOpts.BranchProtectionPAuthLR)
1111
0
      getModule().addModuleFlag(llvm::Module::Min, "branch-protection-pauth-lr",
1112
0
                                1);
1113
0
    if (LangOpts.GuardedControlStack)
1114
0
      getModule().addModuleFlag(llvm::Module::Min, "guarded-control-stack", 1);
1115
0
    if (LangOpts.hasSignReturnAddress())
1116
0
      getModule().addModuleFlag(llvm::Module::Min, "sign-return-address", 1);
1117
0
    if (LangOpts.isSignReturnAddressScopeAll())
1118
0
      getModule().addModuleFlag(llvm::Module::Min, "sign-return-address-all",
1119
0
                                1);
1120
0
    if (!LangOpts.isSignReturnAddressWithAKey())
1121
0
      getModule().addModuleFlag(llvm::Module::Min,
1122
0
                                "sign-return-address-with-bkey", 1);
1123
0
  }
1124
1125
0
  if (CodeGenOpts.StackClashProtector)
1126
0
    getModule().addModuleFlag(
1127
0
        llvm::Module::Override, "probe-stack",
1128
0
        llvm::MDString::get(TheModule.getContext(), "inline-asm"));
1129
1130
0
  if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
1131
0
    getModule().addModuleFlag(llvm::Module::Min, "stack-probe-size",
1132
0
                              CodeGenOpts.StackProbeSize);
1133
1134
0
  if (!CodeGenOpts.MemoryProfileOutput.empty()) {
1135
0
    llvm::LLVMContext &Ctx = TheModule.getContext();
1136
0
    getModule().addModuleFlag(
1137
0
        llvm::Module::Error, "MemProfProfileFilename",
1138
0
        llvm::MDString::get(Ctx, CodeGenOpts.MemoryProfileOutput));
1139
0
  }
1140
1141
0
  if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) {
1142
    // Indicate whether __nvvm_reflect should be configured to flush denormal
1143
    // floating point values to 0.  (This corresponds to its "__CUDA_FTZ"
1144
    // property.)
1145
0
    getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz",
1146
0
                              CodeGenOpts.FP32DenormalMode.Output !=
1147
0
                                  llvm::DenormalMode::IEEE);
1148
0
  }
1149
1150
0
  if (LangOpts.EHAsynch)
1151
0
    getModule().addModuleFlag(llvm::Module::Warning, "eh-asynch", 1);
1152
1153
  // Indicate whether this Module was compiled with -fopenmp
1154
0
  if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
1155
0
    getModule().addModuleFlag(llvm::Module::Max, "openmp", LangOpts.OpenMP);
1156
0
  if (getLangOpts().OpenMPIsTargetDevice)
1157
0
    getModule().addModuleFlag(llvm::Module::Max, "openmp-device",
1158
0
                              LangOpts.OpenMP);
1159
1160
  // Emit OpenCL specific module metadata: OpenCL/SPIR version.
1161
0
  if (LangOpts.OpenCL || (LangOpts.CUDAIsDevice && getTriple().isSPIRV())) {
1162
0
    EmitOpenCLMetadata();
1163
    // Emit SPIR version.
1164
0
    if (getTriple().isSPIR()) {
1165
      // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the
1166
      // opencl.spir.version named metadata.
1167
      // C++ for OpenCL has a distinct mapping for version compatibility with
1168
      // OpenCL.
1169
0
      auto Version = LangOpts.getOpenCLCompatibleVersion();
1170
0
      llvm::Metadata *SPIRVerElts[] = {
1171
0
          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1172
0
              Int32Ty, Version / 100)),
1173
0
          llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1174
0
              Int32Ty, (Version / 100 > 1) ? 0 : 2))};
1175
0
      llvm::NamedMDNode *SPIRVerMD =
1176
0
          TheModule.getOrInsertNamedMetadata("opencl.spir.version");
1177
0
      llvm::LLVMContext &Ctx = TheModule.getContext();
1178
0
      SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts));
1179
0
    }
1180
0
  }
1181
1182
  // HLSL related end of code gen work items.
1183
0
  if (LangOpts.HLSL)
1184
0
    getHLSLRuntime().finishCodeGen();
1185
1186
0
  if (uint32_t PLevel = Context.getLangOpts().PICLevel) {
1187
0
    assert(PLevel < 3 && "Invalid PIC Level");
1188
0
    getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel));
1189
0
    if (Context.getLangOpts().PIE)
1190
0
      getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel));
1191
0
  }
1192
1193
0
  if (getCodeGenOpts().CodeModel.size() > 0) {
1194
0
    unsigned CM = llvm::StringSwitch<unsigned>(getCodeGenOpts().CodeModel)
1195
0
                  .Case("tiny", llvm::CodeModel::Tiny)
1196
0
                  .Case("small", llvm::CodeModel::Small)
1197
0
                  .Case("kernel", llvm::CodeModel::Kernel)
1198
0
                  .Case("medium", llvm::CodeModel::Medium)
1199
0
                  .Case("large", llvm::CodeModel::Large)
1200
0
                  .Default(~0u);
1201
0
    if (CM != ~0u) {
1202
0
      llvm::CodeModel::Model codeModel = static_cast<llvm::CodeModel::Model>(CM);
1203
0
      getModule().setCodeModel(codeModel);
1204
1205
0
      if ((CM == llvm::CodeModel::Medium || CM == llvm::CodeModel::Large) &&
1206
0
          Context.getTargetInfo().getTriple().getArch() ==
1207
0
              llvm::Triple::x86_64) {
1208
0
        getModule().setLargeDataThreshold(getCodeGenOpts().LargeDataThreshold);
1209
0
      }
1210
0
    }
1211
0
  }
1212
1213
0
  if (CodeGenOpts.NoPLT)
1214
0
    getModule().setRtLibUseGOT();
1215
0
  if (getTriple().isOSBinFormatELF() &&
1216
0
      CodeGenOpts.DirectAccessExternalData !=
1217
0
          getModule().getDirectAccessExternalData()) {
1218
0
    getModule().setDirectAccessExternalData(
1219
0
        CodeGenOpts.DirectAccessExternalData);
1220
0
  }
1221
0
  if (CodeGenOpts.UnwindTables)
1222
0
    getModule().setUwtable(llvm::UWTableKind(CodeGenOpts.UnwindTables));
1223
1224
0
  switch (CodeGenOpts.getFramePointer()) {
1225
0
  case CodeGenOptions::FramePointerKind::None:
1226
    // 0 ("none") is the default.
1227
0
    break;
1228
0
  case CodeGenOptions::FramePointerKind::NonLeaf:
1229
0
    getModule().setFramePointer(llvm::FramePointerKind::NonLeaf);
1230
0
    break;
1231
0
  case CodeGenOptions::FramePointerKind::All:
1232
0
    getModule().setFramePointer(llvm::FramePointerKind::All);
1233
0
    break;
1234
0
  }
1235
1236
0
  SimplifyPersonality();
1237
1238
0
  if (getCodeGenOpts().EmitDeclMetadata)
1239
0
    EmitDeclMetadata();
1240
1241
0
  if (getCodeGenOpts().CoverageNotesFile.size() ||
1242
0
      getCodeGenOpts().CoverageDataFile.size())
1243
0
    EmitCoverageFile();
1244
1245
0
  if (CGDebugInfo *DI = getModuleDebugInfo())
1246
0
    DI->finalize();
1247
1248
0
  if (getCodeGenOpts().EmitVersionIdentMetadata)
1249
0
    EmitVersionIdentMetadata();
1250
1251
0
  if (!getCodeGenOpts().RecordCommandLine.empty())
1252
0
    EmitCommandLineMetadata();
1253
1254
0
  if (!getCodeGenOpts().StackProtectorGuard.empty())
1255
0
    getModule().setStackProtectorGuard(getCodeGenOpts().StackProtectorGuard);
1256
0
  if (!getCodeGenOpts().StackProtectorGuardReg.empty())
1257
0
    getModule().setStackProtectorGuardReg(
1258
0
        getCodeGenOpts().StackProtectorGuardReg);
1259
0
  if (!getCodeGenOpts().StackProtectorGuardSymbol.empty())
1260
0
    getModule().setStackProtectorGuardSymbol(
1261
0
        getCodeGenOpts().StackProtectorGuardSymbol);
1262
0
  if (getCodeGenOpts().StackProtectorGuardOffset != INT_MAX)
1263
0
    getModule().setStackProtectorGuardOffset(
1264
0
        getCodeGenOpts().StackProtectorGuardOffset);
1265
0
  if (getCodeGenOpts().StackAlignment)
1266
0
    getModule().setOverrideStackAlignment(getCodeGenOpts().StackAlignment);
1267
0
  if (getCodeGenOpts().SkipRaxSetup)
1268
0
    getModule().addModuleFlag(llvm::Module::Override, "SkipRaxSetup", 1);
1269
0
  if (getLangOpts().RegCall4)
1270
0
    getModule().addModuleFlag(llvm::Module::Override, "RegCallv4", 1);
1271
1272
0
  if (getContext().getTargetInfo().getMaxTLSAlign())
1273
0
    getModule().addModuleFlag(llvm::Module::Error, "MaxTLSAlign",
1274
0
                              getContext().getTargetInfo().getMaxTLSAlign());
1275
1276
0
  getTargetCodeGenInfo().emitTargetGlobals(*this);
1277
1278
0
  getTargetCodeGenInfo().emitTargetMetadata(*this, MangledDeclNames);
1279
1280
0
  EmitBackendOptionsMetadata(getCodeGenOpts());
1281
1282
  // If there is device offloading code embed it in the host now.
1283
0
  EmbedObject(&getModule(), CodeGenOpts, getDiags());
1284
1285
  // Set visibility from DLL storage class
1286
  // We do this at the end of LLVM IR generation; after any operation
1287
  // that might affect the DLL storage class or the visibility, and
1288
  // before anything that might act on these.
1289
0
  setVisibilityFromDLLStorageClass(LangOpts, getModule());
1290
0
}
1291
1292
0
void CodeGenModule::EmitOpenCLMetadata() {
1293
  // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the
1294
  // opencl.ocl.version named metadata node.
1295
  // C++ for OpenCL has a distinct mapping for versions compatibile with OpenCL.
1296
0
  auto Version = LangOpts.getOpenCLCompatibleVersion();
1297
0
  llvm::Metadata *OCLVerElts[] = {
1298
0
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1299
0
          Int32Ty, Version / 100)),
1300
0
      llvm::ConstantAsMetadata::get(llvm::ConstantInt::get(
1301
0
          Int32Ty, (Version % 100) / 10))};
1302
0
  llvm::NamedMDNode *OCLVerMD =
1303
0
      TheModule.getOrInsertNamedMetadata("opencl.ocl.version");
1304
0
  llvm::LLVMContext &Ctx = TheModule.getContext();
1305
0
  OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts));
1306
0
}
1307
1308
void CodeGenModule::EmitBackendOptionsMetadata(
1309
0
    const CodeGenOptions &CodeGenOpts) {
1310
0
  if (getTriple().isRISCV()) {
1311
0
    getModule().addModuleFlag(llvm::Module::Min, "SmallDataLimit",
1312
0
                              CodeGenOpts.SmallDataLimit);
1313
0
  }
1314
0
}
1315
1316
0
void CodeGenModule::UpdateCompletedType(const TagDecl *TD) {
1317
  // Make sure that this type is translated.
1318
0
  Types.UpdateCompletedType(TD);
1319
0
}
1320
1321
0
void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) {
1322
  // Make sure that this type is translated.
1323
0
  Types.RefreshTypeCacheForClass(RD);
1324
0
}
1325
1326
0
llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) {
1327
0
  if (!TBAA)
1328
0
    return nullptr;
1329
0
  return TBAA->getTypeInfo(QTy);
1330
0
}
1331
1332
0
TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) {
1333
0
  if (!TBAA)
1334
0
    return TBAAAccessInfo();
1335
0
  if (getLangOpts().CUDAIsDevice) {
1336
    // As CUDA builtin surface/texture types are replaced, skip generating TBAA
1337
    // access info.
1338
0
    if (AccessType->isCUDADeviceBuiltinSurfaceType()) {
1339
0
      if (getTargetCodeGenInfo().getCUDADeviceBuiltinSurfaceDeviceType() !=
1340
0
          nullptr)
1341
0
        return TBAAAccessInfo();
1342
0
    } else if (AccessType->isCUDADeviceBuiltinTextureType()) {
1343
0
      if (getTargetCodeGenInfo().getCUDADeviceBuiltinTextureDeviceType() !=
1344
0
          nullptr)
1345
0
        return TBAAAccessInfo();
1346
0
    }
1347
0
  }
1348
0
  return TBAA->getAccessInfo(AccessType);
1349
0
}
1350
1351
TBAAAccessInfo
1352
0
CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) {
1353
0
  if (!TBAA)
1354
0
    return TBAAAccessInfo();
1355
0
  return TBAA->getVTablePtrAccessInfo(VTablePtrType);
1356
0
}
1357
1358
0
llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) {
1359
0
  if (!TBAA)
1360
0
    return nullptr;
1361
0
  return TBAA->getTBAAStructInfo(QTy);
1362
0
}
1363
1364
0
llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) {
1365
0
  if (!TBAA)
1366
0
    return nullptr;
1367
0
  return TBAA->getBaseTypeInfo(QTy);
1368
0
}
1369
1370
0
llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) {
1371
0
  if (!TBAA)
1372
0
    return nullptr;
1373
0
  return TBAA->getAccessTagInfo(Info);
1374
0
}
1375
1376
TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo,
1377
0
                                                   TBAAAccessInfo TargetInfo) {
1378
0
  if (!TBAA)
1379
0
    return TBAAAccessInfo();
1380
0
  return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo);
1381
0
}
1382
1383
TBAAAccessInfo
1384
CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA,
1385
0
                                                   TBAAAccessInfo InfoB) {
1386
0
  if (!TBAA)
1387
0
    return TBAAAccessInfo();
1388
0
  return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB);
1389
0
}
1390
1391
TBAAAccessInfo
1392
CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo,
1393
0
                                              TBAAAccessInfo SrcInfo) {
1394
0
  if (!TBAA)
1395
0
    return TBAAAccessInfo();
1396
0
  return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo);
1397
0
}
1398
1399
void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst,
1400
0
                                                TBAAAccessInfo TBAAInfo) {
1401
0
  if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo))
1402
0
    Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag);
1403
0
}
1404
1405
void CodeGenModule::DecorateInstructionWithInvariantGroup(
1406
0
    llvm::Instruction *I, const CXXRecordDecl *RD) {
1407
0
  I->setMetadata(llvm::LLVMContext::MD_invariant_group,
1408
0
                 llvm::MDNode::get(getLLVMContext(), {}));
1409
0
}
1410
1411
0
void CodeGenModule::Error(SourceLocation loc, StringRef message) {
1412
0
  unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0");
1413
0
  getDiags().Report(Context.getFullLoc(loc), diagID) << message;
1414
0
}
1415
1416
/// ErrorUnsupported - Print out an error that codegen doesn't support the
1417
/// specified stmt yet.
1418
0
void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) {
1419
0
  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1420
0
                                               "cannot compile this %0 yet");
1421
0
  std::string Msg = Type;
1422
0
  getDiags().Report(Context.getFullLoc(S->getBeginLoc()), DiagID)
1423
0
      << Msg << S->getSourceRange();
1424
0
}
1425
1426
/// ErrorUnsupported - Print out an error that codegen doesn't support the
1427
/// specified decl yet.
1428
0
void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) {
1429
0
  unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error,
1430
0
                                               "cannot compile this %0 yet");
1431
0
  std::string Msg = Type;
1432
0
  getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg;
1433
0
}
1434
1435
0
llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) {
1436
0
  return llvm::ConstantInt::get(SizeTy, size.getQuantity());
1437
0
}
1438
1439
void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV,
1440
0
                                        const NamedDecl *D) const {
1441
  // Internal definitions always have default visibility.
1442
0
  if (GV->hasLocalLinkage()) {
1443
0
    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
1444
0
    return;
1445
0
  }
1446
0
  if (!D)
1447
0
    return;
1448
1449
  // Set visibility for definitions, and for declarations if requested globally
1450
  // or set explicitly.
1451
0
  LinkageInfo LV = D->getLinkageAndVisibility();
1452
1453
  // OpenMP declare target variables must be visible to the host so they can
1454
  // be registered. We require protected visibility unless the variable has
1455
  // the DT_nohost modifier and does not need to be registered.
1456
0
  if (Context.getLangOpts().OpenMP &&
1457
0
      Context.getLangOpts().OpenMPIsTargetDevice && isa<VarDecl>(D) &&
1458
0
      D->hasAttr<OMPDeclareTargetDeclAttr>() &&
1459
0
      D->getAttr<OMPDeclareTargetDeclAttr>()->getDevType() !=
1460
0
          OMPDeclareTargetDeclAttr::DT_NoHost &&
1461
0
      LV.getVisibility() == HiddenVisibility) {
1462
0
    GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
1463
0
    return;
1464
0
  }
1465
1466
0
  if (GV->hasDLLExportStorageClass() || GV->hasDLLImportStorageClass()) {
1467
    // Reject incompatible dlllstorage and visibility annotations.
1468
0
    if (!LV.isVisibilityExplicit())
1469
0
      return;
1470
0
    if (GV->hasDLLExportStorageClass()) {
1471
0
      if (LV.getVisibility() == HiddenVisibility)
1472
0
        getDiags().Report(D->getLocation(),
1473
0
                          diag::err_hidden_visibility_dllexport);
1474
0
    } else if (LV.getVisibility() != DefaultVisibility) {
1475
0
      getDiags().Report(D->getLocation(),
1476
0
                        diag::err_non_default_visibility_dllimport);
1477
0
    }
1478
0
    return;
1479
0
  }
1480
1481
0
  if (LV.isVisibilityExplicit() || getLangOpts().SetVisibilityForExternDecls ||
1482
0
      !GV->isDeclarationForLinker())
1483
0
    GV->setVisibility(GetLLVMVisibility(LV.getVisibility()));
1484
0
}
1485
1486
static bool shouldAssumeDSOLocal(const CodeGenModule &CGM,
1487
0
                                 llvm::GlobalValue *GV) {
1488
0
  if (GV->hasLocalLinkage())
1489
0
    return true;
1490
1491
0
  if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())
1492
0
    return true;
1493
1494
  // DLLImport explicitly marks the GV as external.
1495
0
  if (GV->hasDLLImportStorageClass())
1496
0
    return false;
1497
1498
0
  const llvm::Triple &TT = CGM.getTriple();
1499
0
  const auto &CGOpts = CGM.getCodeGenOpts();
1500
0
  if (TT.isWindowsGNUEnvironment()) {
1501
    // In MinGW, variables without DLLImport can still be automatically
1502
    // imported from a DLL by the linker; don't mark variables that
1503
    // potentially could come from another DLL as DSO local.
1504
1505
    // With EmulatedTLS, TLS variables can be autoimported from other DLLs
1506
    // (and this actually happens in the public interface of libstdc++), so
1507
    // such variables can't be marked as DSO local. (Native TLS variables
1508
    // can't be dllimported at all, though.)
1509
0
    if (GV->isDeclarationForLinker() && isa<llvm::GlobalVariable>(GV) &&
1510
0
        (!GV->isThreadLocal() || CGM.getCodeGenOpts().EmulatedTLS) &&
1511
0
        CGOpts.AutoImport)
1512
0
      return false;
1513
0
  }
1514
1515
  // On COFF, don't mark 'extern_weak' symbols as DSO local. If these symbols
1516
  // remain unresolved in the link, they can be resolved to zero, which is
1517
  // outside the current DSO.
1518
0
  if (TT.isOSBinFormatCOFF() && GV->hasExternalWeakLinkage())
1519
0
    return false;
1520
1521
  // Every other GV is local on COFF.
1522
  // Make an exception for windows OS in the triple: Some firmware builds use
1523
  // *-win32-macho triples. This (accidentally?) produced windows relocations
1524
  // without GOT tables in older clang versions; Keep this behaviour.
1525
  // FIXME: even thread local variables?
1526
0
  if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO()))
1527
0
    return true;
1528
1529
  // Only handle COFF and ELF for now.
1530
0
  if (!TT.isOSBinFormatELF())
1531
0
    return false;
1532
1533
  // If this is not an executable, don't assume anything is local.
1534
0
  llvm::Reloc::Model RM = CGOpts.RelocationModel;
1535
0
  const auto &LOpts = CGM.getLangOpts();
1536
0
  if (RM != llvm::Reloc::Static && !LOpts.PIE) {
1537
    // On ELF, if -fno-semantic-interposition is specified and the target
1538
    // supports local aliases, there will be neither CC1
1539
    // -fsemantic-interposition nor -fhalf-no-semantic-interposition. Set
1540
    // dso_local on the function if using a local alias is preferable (can avoid
1541
    // PLT indirection).
1542
0
    if (!(isa<llvm::Function>(GV) && GV->canBenefitFromLocalAlias()))
1543
0
      return false;
1544
0
    return !(CGM.getLangOpts().SemanticInterposition ||
1545
0
             CGM.getLangOpts().HalfNoSemanticInterposition);
1546
0
  }
1547
1548
  // A definition cannot be preempted from an executable.
1549
0
  if (!GV->isDeclarationForLinker())
1550
0
    return true;
1551
1552
  // Most PIC code sequences that assume that a symbol is local cannot produce a
1553
  // 0 if it turns out the symbol is undefined. While this is ABI and relocation
1554
  // depended, it seems worth it to handle it here.
1555
0
  if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage())
1556
0
    return false;
1557
1558
  // PowerPC64 prefers TOC indirection to avoid copy relocations.
1559
0
  if (TT.isPPC64())
1560
0
    return false;
1561
1562
0
  if (CGOpts.DirectAccessExternalData) {
1563
    // If -fdirect-access-external-data (default for -fno-pic), set dso_local
1564
    // for non-thread-local variables. If the symbol is not defined in the
1565
    // executable, a copy relocation will be needed at link time. dso_local is
1566
    // excluded for thread-local variables because they generally don't support
1567
    // copy relocations.
1568
0
    if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV))
1569
0
      if (!Var->isThreadLocal())
1570
0
        return true;
1571
1572
    // -fno-pic sets dso_local on a function declaration to allow direct
1573
    // accesses when taking its address (similar to a data symbol). If the
1574
    // function is not defined in the executable, a canonical PLT entry will be
1575
    // needed at link time. -fno-direct-access-external-data can avoid the
1576
    // canonical PLT entry. We don't generalize this condition to -fpie/-fpic as
1577
    // it could just cause trouble without providing perceptible benefits.
1578
0
    if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static)
1579
0
      return true;
1580
0
  }
1581
1582
  // If we can use copy relocations we can assume it is local.
1583
1584
  // Otherwise don't assume it is local.
1585
0
  return false;
1586
0
}
1587
1588
0
void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const {
1589
0
  GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV));
1590
0
}
1591
1592
void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1593
0
                                          GlobalDecl GD) const {
1594
0
  const auto *D = dyn_cast<NamedDecl>(GD.getDecl());
1595
  // C++ destructors have a few C++ ABI specific special cases.
1596
0
  if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) {
1597
0
    getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType());
1598
0
    return;
1599
0
  }
1600
0
  setDLLImportDLLExport(GV, D);
1601
0
}
1602
1603
void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV,
1604
0
                                          const NamedDecl *D) const {
1605
0
  if (D && D->isExternallyVisible()) {
1606
0
    if (D->hasAttr<DLLImportAttr>())
1607
0
      GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
1608
0
    else if ((D->hasAttr<DLLExportAttr>() ||
1609
0
              shouldMapVisibilityToDLLExport(D)) &&
1610
0
             !GV->isDeclarationForLinker())
1611
0
      GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
1612
0
  }
1613
0
}
1614
1615
void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1616
0
                                    GlobalDecl GD) const {
1617
0
  setDLLImportDLLExport(GV, GD);
1618
0
  setGVPropertiesAux(GV, dyn_cast<NamedDecl>(GD.getDecl()));
1619
0
}
1620
1621
void CodeGenModule::setGVProperties(llvm::GlobalValue *GV,
1622
0
                                    const NamedDecl *D) const {
1623
0
  setDLLImportDLLExport(GV, D);
1624
0
  setGVPropertiesAux(GV, D);
1625
0
}
1626
1627
void CodeGenModule::setGVPropertiesAux(llvm::GlobalValue *GV,
1628
0
                                       const NamedDecl *D) const {
1629
0
  setGlobalVisibility(GV, D);
1630
0
  setDSOLocal(GV);
1631
0
  GV->setPartition(CodeGenOpts.SymbolPartition);
1632
0
}
1633
1634
0
static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) {
1635
0
  return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S)
1636
0
      .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel)
1637
0
      .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel)
1638
0
      .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel)
1639
0
      .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel);
1640
0
}
1641
1642
llvm::GlobalVariable::ThreadLocalMode
1643
0
CodeGenModule::GetDefaultLLVMTLSModel() const {
1644
0
  switch (CodeGenOpts.getDefaultTLSModel()) {
1645
0
  case CodeGenOptions::GeneralDynamicTLSModel:
1646
0
    return llvm::GlobalVariable::GeneralDynamicTLSModel;
1647
0
  case CodeGenOptions::LocalDynamicTLSModel:
1648
0
    return llvm::GlobalVariable::LocalDynamicTLSModel;
1649
0
  case CodeGenOptions::InitialExecTLSModel:
1650
0
    return llvm::GlobalVariable::InitialExecTLSModel;
1651
0
  case CodeGenOptions::LocalExecTLSModel:
1652
0
    return llvm::GlobalVariable::LocalExecTLSModel;
1653
0
  }
1654
0
  llvm_unreachable("Invalid TLS model!");
1655
0
}
1656
1657
0
void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const {
1658
0
  assert(D.getTLSKind() && "setting TLS mode on non-TLS var!");
1659
1660
0
  llvm::GlobalValue::ThreadLocalMode TLM;
1661
0
  TLM = GetDefaultLLVMTLSModel();
1662
1663
  // Override the TLS model if it is explicitly specified.
1664
0
  if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) {
1665
0
    TLM = GetLLVMTLSModel(Attr->getModel());
1666
0
  }
1667
1668
0
  GV->setThreadLocalMode(TLM);
1669
0
}
1670
1671
static std::string getCPUSpecificMangling(const CodeGenModule &CGM,
1672
0
                                          StringRef Name) {
1673
0
  const TargetInfo &Target = CGM.getTarget();
1674
0
  return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str();
1675
0
}
1676
1677
static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM,
1678
                                                 const CPUSpecificAttr *Attr,
1679
                                                 unsigned CPUIndex,
1680
0
                                                 raw_ostream &Out) {
1681
  // cpu_specific gets the current name, dispatch gets the resolver if IFunc is
1682
  // supported.
1683
0
  if (Attr)
1684
0
    Out << getCPUSpecificMangling(CGM, Attr->getCPUName(CPUIndex)->getName());
1685
0
  else if (CGM.getTarget().supportsIFunc())
1686
0
    Out << ".resolver";
1687
0
}
1688
1689
static void AppendTargetVersionMangling(const CodeGenModule &CGM,
1690
                                        const TargetVersionAttr *Attr,
1691
0
                                        raw_ostream &Out) {
1692
0
  if (Attr->isDefaultVersion())
1693
0
    return;
1694
0
  Out << "._";
1695
0
  const TargetInfo &TI = CGM.getTarget();
1696
0
  llvm::SmallVector<StringRef, 8> Feats;
1697
0
  Attr->getFeatures(Feats);
1698
0
  llvm::stable_sort(Feats, [&TI](const StringRef FeatL, const StringRef FeatR) {
1699
0
    return TI.multiVersionSortPriority(FeatL) <
1700
0
           TI.multiVersionSortPriority(FeatR);
1701
0
  });
1702
0
  for (const auto &Feat : Feats) {
1703
0
    Out << 'M';
1704
0
    Out << Feat;
1705
0
  }
1706
0
}
1707
1708
static void AppendTargetMangling(const CodeGenModule &CGM,
1709
0
                                 const TargetAttr *Attr, raw_ostream &Out) {
1710
0
  if (Attr->isDefaultVersion())
1711
0
    return;
1712
1713
0
  Out << '.';
1714
0
  const TargetInfo &Target = CGM.getTarget();
1715
0
  ParsedTargetAttr Info = Target.parseTargetAttr(Attr->getFeaturesStr());
1716
0
  llvm::sort(Info.Features, [&Target](StringRef LHS, StringRef RHS) {
1717
    // Multiversioning doesn't allow "no-${feature}", so we can
1718
    // only have "+" prefixes here.
1719
0
    assert(LHS.starts_with("+") && RHS.starts_with("+") &&
1720
0
           "Features should always have a prefix.");
1721
0
    return Target.multiVersionSortPriority(LHS.substr(1)) >
1722
0
           Target.multiVersionSortPriority(RHS.substr(1));
1723
0
  });
1724
1725
0
  bool IsFirst = true;
1726
1727
0
  if (!Info.CPU.empty()) {
1728
0
    IsFirst = false;
1729
0
    Out << "arch_" << Info.CPU;
1730
0
  }
1731
1732
0
  for (StringRef Feat : Info.Features) {
1733
0
    if (!IsFirst)
1734
0
      Out << '_';
1735
0
    IsFirst = false;
1736
0
    Out << Feat.substr(1);
1737
0
  }
1738
0
}
1739
1740
// Returns true if GD is a function decl with internal linkage and
1741
// needs a unique suffix after the mangled name.
1742
static bool isUniqueInternalLinkageDecl(GlobalDecl GD,
1743
0
                                        CodeGenModule &CGM) {
1744
0
  const Decl *D = GD.getDecl();
1745
0
  return !CGM.getModuleNameHash().empty() && isa<FunctionDecl>(D) &&
1746
0
         (CGM.getFunctionLinkage(GD) == llvm::GlobalValue::InternalLinkage);
1747
0
}
1748
1749
static void AppendTargetClonesMangling(const CodeGenModule &CGM,
1750
                                       const TargetClonesAttr *Attr,
1751
                                       unsigned VersionIndex,
1752
0
                                       raw_ostream &Out) {
1753
0
  const TargetInfo &TI = CGM.getTarget();
1754
0
  if (TI.getTriple().isAArch64()) {
1755
0
    StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1756
0
    if (FeatureStr == "default")
1757
0
      return;
1758
0
    Out << "._";
1759
0
    SmallVector<StringRef, 8> Features;
1760
0
    FeatureStr.split(Features, "+");
1761
0
    llvm::stable_sort(Features,
1762
0
                      [&TI](const StringRef FeatL, const StringRef FeatR) {
1763
0
                        return TI.multiVersionSortPriority(FeatL) <
1764
0
                               TI.multiVersionSortPriority(FeatR);
1765
0
                      });
1766
0
    for (auto &Feat : Features) {
1767
0
      Out << 'M';
1768
0
      Out << Feat;
1769
0
    }
1770
0
  } else {
1771
0
    Out << '.';
1772
0
    StringRef FeatureStr = Attr->getFeatureStr(VersionIndex);
1773
0
    if (FeatureStr.starts_with("arch="))
1774
0
      Out << "arch_" << FeatureStr.substr(sizeof("arch=") - 1);
1775
0
    else
1776
0
      Out << FeatureStr;
1777
1778
0
    Out << '.' << Attr->getMangledIndex(VersionIndex);
1779
0
  }
1780
0
}
1781
1782
static std::string getMangledNameImpl(CodeGenModule &CGM, GlobalDecl GD,
1783
                                      const NamedDecl *ND,
1784
0
                                      bool OmitMultiVersionMangling = false) {
1785
0
  SmallString<256> Buffer;
1786
0
  llvm::raw_svector_ostream Out(Buffer);
1787
0
  MangleContext &MC = CGM.getCXXABI().getMangleContext();
1788
0
  if (!CGM.getModuleNameHash().empty())
1789
0
    MC.needsUniqueInternalLinkageNames();
1790
0
  bool ShouldMangle = MC.shouldMangleDeclName(ND);
1791
0
  if (ShouldMangle)
1792
0
    MC.mangleName(GD.getWithDecl(ND), Out);
1793
0
  else {
1794
0
    IdentifierInfo *II = ND->getIdentifier();
1795
0
    assert(II && "Attempt to mangle unnamed decl.");
1796
0
    const auto *FD = dyn_cast<FunctionDecl>(ND);
1797
1798
0
    if (FD &&
1799
0
        FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) {
1800
0
      if (CGM.getLangOpts().RegCall4)
1801
0
        Out << "__regcall4__" << II->getName();
1802
0
      else
1803
0
        Out << "__regcall3__" << II->getName();
1804
0
    } else if (FD && FD->hasAttr<CUDAGlobalAttr>() &&
1805
0
               GD.getKernelReferenceKind() == KernelReferenceKind::Stub) {
1806
0
      Out << "__device_stub__" << II->getName();
1807
0
    } else {
1808
0
      Out << II->getName();
1809
0
    }
1810
0
  }
1811
1812
  // Check if the module name hash should be appended for internal linkage
1813
  // symbols.   This should come before multi-version target suffixes are
1814
  // appended. This is to keep the name and module hash suffix of the
1815
  // internal linkage function together.  The unique suffix should only be
1816
  // added when name mangling is done to make sure that the final name can
1817
  // be properly demangled.  For example, for C functions without prototypes,
1818
  // name mangling is not done and the unique suffix should not be appeneded
1819
  // then.
1820
0
  if (ShouldMangle && isUniqueInternalLinkageDecl(GD, CGM)) {
1821
0
    assert(CGM.getCodeGenOpts().UniqueInternalLinkageNames &&
1822
0
           "Hash computed when not explicitly requested");
1823
0
    Out << CGM.getModuleNameHash();
1824
0
  }
1825
1826
0
  if (const auto *FD = dyn_cast<FunctionDecl>(ND))
1827
0
    if (FD->isMultiVersion() && !OmitMultiVersionMangling) {
1828
0
      switch (FD->getMultiVersionKind()) {
1829
0
      case MultiVersionKind::CPUDispatch:
1830
0
      case MultiVersionKind::CPUSpecific:
1831
0
        AppendCPUSpecificCPUDispatchMangling(CGM,
1832
0
                                             FD->getAttr<CPUSpecificAttr>(),
1833
0
                                             GD.getMultiVersionIndex(), Out);
1834
0
        break;
1835
0
      case MultiVersionKind::Target:
1836
0
        AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out);
1837
0
        break;
1838
0
      case MultiVersionKind::TargetVersion:
1839
0
        AppendTargetVersionMangling(CGM, FD->getAttr<TargetVersionAttr>(), Out);
1840
0
        break;
1841
0
      case MultiVersionKind::TargetClones:
1842
0
        AppendTargetClonesMangling(CGM, FD->getAttr<TargetClonesAttr>(),
1843
0
                                   GD.getMultiVersionIndex(), Out);
1844
0
        break;
1845
0
      case MultiVersionKind::None:
1846
0
        llvm_unreachable("None multiversion type isn't valid here");
1847
0
      }
1848
0
    }
1849
1850
  // Make unique name for device side static file-scope variable for HIP.
1851
0
  if (CGM.getContext().shouldExternalize(ND) &&
1852
0
      CGM.getLangOpts().GPURelocatableDeviceCode &&
1853
0
      CGM.getLangOpts().CUDAIsDevice)
1854
0
    CGM.printPostfixForExternalizedDecl(Out, ND);
1855
1856
0
  return std::string(Out.str());
1857
0
}
1858
1859
void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD,
1860
                                            const FunctionDecl *FD,
1861
0
                                            StringRef &CurName) {
1862
0
  if (!FD->isMultiVersion())
1863
0
    return;
1864
1865
  // Get the name of what this would be without the 'target' attribute.  This
1866
  // allows us to lookup the version that was emitted when this wasn't a
1867
  // multiversion function.
1868
0
  std::string NonTargetName =
1869
0
      getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
1870
0
  GlobalDecl OtherGD;
1871
0
  if (lookupRepresentativeDecl(NonTargetName, OtherGD)) {
1872
0
    assert(OtherGD.getCanonicalDecl()
1873
0
               .getDecl()
1874
0
               ->getAsFunction()
1875
0
               ->isMultiVersion() &&
1876
0
           "Other GD should now be a multiversioned function");
1877
    // OtherFD is the version of this function that was mangled BEFORE
1878
    // becoming a MultiVersion function.  It potentially needs to be updated.
1879
0
    const FunctionDecl *OtherFD = OtherGD.getCanonicalDecl()
1880
0
                                      .getDecl()
1881
0
                                      ->getAsFunction()
1882
0
                                      ->getMostRecentDecl();
1883
0
    std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD);
1884
    // This is so that if the initial version was already the 'default'
1885
    // version, we don't try to update it.
1886
0
    if (OtherName != NonTargetName) {
1887
      // Remove instead of erase, since others may have stored the StringRef
1888
      // to this.
1889
0
      const auto ExistingRecord = Manglings.find(NonTargetName);
1890
0
      if (ExistingRecord != std::end(Manglings))
1891
0
        Manglings.remove(&(*ExistingRecord));
1892
0
      auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD));
1893
0
      StringRef OtherNameRef = MangledDeclNames[OtherGD.getCanonicalDecl()] =
1894
0
          Result.first->first();
1895
      // If this is the current decl is being created, make sure we update the name.
1896
0
      if (GD.getCanonicalDecl() == OtherGD.getCanonicalDecl())
1897
0
        CurName = OtherNameRef;
1898
0
      if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName))
1899
0
        Entry->setName(OtherName);
1900
0
    }
1901
0
  }
1902
0
}
1903
1904
0
StringRef CodeGenModule::getMangledName(GlobalDecl GD) {
1905
0
  GlobalDecl CanonicalGD = GD.getCanonicalDecl();
1906
1907
  // Some ABIs don't have constructor variants.  Make sure that base and
1908
  // complete constructors get mangled the same.
1909
0
  if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) {
1910
0
    if (!getTarget().getCXXABI().hasConstructorVariants()) {
1911
0
      CXXCtorType OrigCtorType = GD.getCtorType();
1912
0
      assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete);
1913
0
      if (OrigCtorType == Ctor_Base)
1914
0
        CanonicalGD = GlobalDecl(CD, Ctor_Complete);
1915
0
    }
1916
0
  }
1917
1918
  // In CUDA/HIP device compilation with -fgpu-rdc, the mangled name of a
1919
  // static device variable depends on whether the variable is referenced by
1920
  // a host or device host function. Therefore the mangled name cannot be
1921
  // cached.
1922
0
  if (!LangOpts.CUDAIsDevice || !getContext().mayExternalize(GD.getDecl())) {
1923
0
    auto FoundName = MangledDeclNames.find(CanonicalGD);
1924
0
    if (FoundName != MangledDeclNames.end())
1925
0
      return FoundName->second;
1926
0
  }
1927
1928
  // Keep the first result in the case of a mangling collision.
1929
0
  const auto *ND = cast<NamedDecl>(GD.getDecl());
1930
0
  std::string MangledName = getMangledNameImpl(*this, GD, ND);
1931
1932
  // Ensure either we have different ABIs between host and device compilations,
1933
  // says host compilation following MSVC ABI but device compilation follows
1934
  // Itanium C++ ABI or, if they follow the same ABI, kernel names after
1935
  // mangling should be the same after name stubbing. The later checking is
1936
  // very important as the device kernel name being mangled in host-compilation
1937
  // is used to resolve the device binaries to be executed. Inconsistent naming
1938
  // result in undefined behavior. Even though we cannot check that naming
1939
  // directly between host- and device-compilations, the host- and
1940
  // device-mangling in host compilation could help catching certain ones.
1941
0
  assert(!isa<FunctionDecl>(ND) || !ND->hasAttr<CUDAGlobalAttr>() ||
1942
0
         getContext().shouldExternalize(ND) || getLangOpts().CUDAIsDevice ||
1943
0
         (getContext().getAuxTargetInfo() &&
1944
0
          (getContext().getAuxTargetInfo()->getCXXABI() !=
1945
0
           getContext().getTargetInfo().getCXXABI())) ||
1946
0
         getCUDARuntime().getDeviceSideName(ND) ==
1947
0
             getMangledNameImpl(
1948
0
                 *this,
1949
0
                 GD.getWithKernelReferenceKind(KernelReferenceKind::Kernel),
1950
0
                 ND));
1951
1952
0
  auto Result = Manglings.insert(std::make_pair(MangledName, GD));
1953
0
  return MangledDeclNames[CanonicalGD] = Result.first->first();
1954
0
}
1955
1956
StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD,
1957
0
                                             const BlockDecl *BD) {
1958
0
  MangleContext &MangleCtx = getCXXABI().getMangleContext();
1959
0
  const Decl *D = GD.getDecl();
1960
1961
0
  SmallString<256> Buffer;
1962
0
  llvm::raw_svector_ostream Out(Buffer);
1963
0
  if (!D)
1964
0
    MangleCtx.mangleGlobalBlock(BD,
1965
0
      dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out);
1966
0
  else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D))
1967
0
    MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out);
1968
0
  else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D))
1969
0
    MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out);
1970
0
  else
1971
0
    MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out);
1972
1973
0
  auto Result = Manglings.insert(std::make_pair(Out.str(), BD));
1974
0
  return Result.first->first();
1975
0
}
1976
1977
0
const GlobalDecl CodeGenModule::getMangledNameDecl(StringRef Name) {
1978
0
  auto it = MangledDeclNames.begin();
1979
0
  while (it != MangledDeclNames.end()) {
1980
0
    if (it->second == Name)
1981
0
      return it->first;
1982
0
    it++;
1983
0
  }
1984
0
  return GlobalDecl();
1985
0
}
1986
1987
0
llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) {
1988
0
  return getModule().getNamedValue(Name);
1989
0
}
1990
1991
/// AddGlobalCtor - Add a function to the list that will be called before
1992
/// main() runs.
1993
void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority,
1994
                                  unsigned LexOrder,
1995
0
                                  llvm::Constant *AssociatedData) {
1996
  // FIXME: Type coercion of void()* types.
1997
0
  GlobalCtors.push_back(Structor(Priority, LexOrder, Ctor, AssociatedData));
1998
0
}
1999
2000
/// AddGlobalDtor - Add a function to the list that will be called
2001
/// when the module is unloaded.
2002
void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority,
2003
0
                                  bool IsDtorAttrFunc) {
2004
0
  if (CodeGenOpts.RegisterGlobalDtorsWithAtExit &&
2005
0
      (!getContext().getTargetInfo().getTriple().isOSAIX() || IsDtorAttrFunc)) {
2006
0
    DtorsUsingAtExit[Priority].push_back(Dtor);
2007
0
    return;
2008
0
  }
2009
2010
  // FIXME: Type coercion of void()* types.
2011
0
  GlobalDtors.push_back(Structor(Priority, ~0U, Dtor, nullptr));
2012
0
}
2013
2014
0
void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) {
2015
0
  if (Fns.empty()) return;
2016
2017
  // Ctor function type is void()*.
2018
0
  llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false);
2019
0
  llvm::Type *CtorPFTy = llvm::PointerType::get(CtorFTy,
2020
0
      TheModule.getDataLayout().getProgramAddressSpace());
2021
2022
  // Get the type of a ctor entry, { i32, void ()*, i8* }.
2023
0
  llvm::StructType *CtorStructTy = llvm::StructType::get(
2024
0
      Int32Ty, CtorPFTy, VoidPtrTy);
2025
2026
  // Construct the constructor and destructor arrays.
2027
0
  ConstantInitBuilder builder(*this);
2028
0
  auto ctors = builder.beginArray(CtorStructTy);
2029
0
  for (const auto &I : Fns) {
2030
0
    auto ctor = ctors.beginStruct(CtorStructTy);
2031
0
    ctor.addInt(Int32Ty, I.Priority);
2032
0
    ctor.add(I.Initializer);
2033
0
    if (I.AssociatedData)
2034
0
      ctor.add(I.AssociatedData);
2035
0
    else
2036
0
      ctor.addNullPointer(VoidPtrTy);
2037
0
    ctor.finishAndAddTo(ctors);
2038
0
  }
2039
2040
0
  auto list =
2041
0
    ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(),
2042
0
                                /*constant*/ false,
2043
0
                                llvm::GlobalValue::AppendingLinkage);
2044
2045
  // The LTO linker doesn't seem to like it when we set an alignment
2046
  // on appending variables.  Take it off as a workaround.
2047
0
  list->setAlignment(std::nullopt);
2048
2049
0
  Fns.clear();
2050
0
}
2051
2052
llvm::GlobalValue::LinkageTypes
2053
0
CodeGenModule::getFunctionLinkage(GlobalDecl GD) {
2054
0
  const auto *D = cast<FunctionDecl>(GD.getDecl());
2055
2056
0
  GVALinkage Linkage = getContext().GetGVALinkageForFunction(D);
2057
2058
0
  if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D))
2059
0
    return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType());
2060
2061
0
  return getLLVMLinkageForDeclarator(D, Linkage);
2062
0
}
2063
2064
0
llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) {
2065
0
  llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD);
2066
0
  if (!MDS) return nullptr;
2067
2068
0
  return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString()));
2069
0
}
2070
2071
0
llvm::ConstantInt *CodeGenModule::CreateKCFITypeId(QualType T) {
2072
0
  if (auto *FnType = T->getAs<FunctionProtoType>())
2073
0
    T = getContext().getFunctionType(
2074
0
        FnType->getReturnType(), FnType->getParamTypes(),
2075
0
        FnType->getExtProtoInfo().withExceptionSpec(EST_None));
2076
2077
0
  std::string OutName;
2078
0
  llvm::raw_string_ostream Out(OutName);
2079
0
  getCXXABI().getMangleContext().mangleCanonicalTypeName(
2080
0
      T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
2081
2082
0
  if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
2083
0
    Out << ".normalized";
2084
2085
0
  return llvm::ConstantInt::get(Int32Ty,
2086
0
                                static_cast<uint32_t>(llvm::xxHash64(OutName)));
2087
0
}
2088
2089
void CodeGenModule::SetLLVMFunctionAttributes(GlobalDecl GD,
2090
                                              const CGFunctionInfo &Info,
2091
0
                                              llvm::Function *F, bool IsThunk) {
2092
0
  unsigned CallingConv;
2093
0
  llvm::AttributeList PAL;
2094
0
  ConstructAttributeList(F->getName(), Info, GD, PAL, CallingConv,
2095
0
                         /*AttrOnCallSite=*/false, IsThunk);
2096
0
  F->setAttributes(PAL);
2097
0
  F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
2098
0
}
2099
2100
0
static void removeImageAccessQualifier(std::string& TyName) {
2101
0
  std::string ReadOnlyQual("__read_only");
2102
0
  std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual);
2103
0
  if (ReadOnlyPos != std::string::npos)
2104
    // "+ 1" for the space after access qualifier.
2105
0
    TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1);
2106
0
  else {
2107
0
    std::string WriteOnlyQual("__write_only");
2108
0
    std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual);
2109
0
    if (WriteOnlyPos != std::string::npos)
2110
0
      TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1);
2111
0
    else {
2112
0
      std::string ReadWriteQual("__read_write");
2113
0
      std::string::size_type ReadWritePos = TyName.find(ReadWriteQual);
2114
0
      if (ReadWritePos != std::string::npos)
2115
0
        TyName.erase(ReadWritePos, ReadWriteQual.size() + 1);
2116
0
    }
2117
0
  }
2118
0
}
2119
2120
// Returns the address space id that should be produced to the
2121
// kernel_arg_addr_space metadata. This is always fixed to the ids
2122
// as specified in the SPIR 2.0 specification in order to differentiate
2123
// for example in clGetKernelArgInfo() implementation between the address
2124
// spaces with targets without unique mapping to the OpenCL address spaces
2125
// (basically all single AS CPUs).
2126
0
static unsigned ArgInfoAddressSpace(LangAS AS) {
2127
0
  switch (AS) {
2128
0
  case LangAS::opencl_global:
2129
0
    return 1;
2130
0
  case LangAS::opencl_constant:
2131
0
    return 2;
2132
0
  case LangAS::opencl_local:
2133
0
    return 3;
2134
0
  case LangAS::opencl_generic:
2135
0
    return 4; // Not in SPIR 2.0 specs.
2136
0
  case LangAS::opencl_global_device:
2137
0
    return 5;
2138
0
  case LangAS::opencl_global_host:
2139
0
    return 6;
2140
0
  default:
2141
0
    return 0; // Assume private.
2142
0
  }
2143
0
}
2144
2145
void CodeGenModule::GenKernelArgMetadata(llvm::Function *Fn,
2146
                                         const FunctionDecl *FD,
2147
0
                                         CodeGenFunction *CGF) {
2148
0
  assert(((FD && CGF) || (!FD && !CGF)) &&
2149
0
         "Incorrect use - FD and CGF should either be both null or not!");
2150
  // Create MDNodes that represent the kernel arg metadata.
2151
  // Each MDNode is a list in the form of "key", N number of values which is
2152
  // the same number of values as their are kernel arguments.
2153
2154
0
  const PrintingPolicy &Policy = Context.getPrintingPolicy();
2155
2156
  // MDNode for the kernel argument address space qualifiers.
2157
0
  SmallVector<llvm::Metadata *, 8> addressQuals;
2158
2159
  // MDNode for the kernel argument access qualifiers (images only).
2160
0
  SmallVector<llvm::Metadata *, 8> accessQuals;
2161
2162
  // MDNode for the kernel argument type names.
2163
0
  SmallVector<llvm::Metadata *, 8> argTypeNames;
2164
2165
  // MDNode for the kernel argument base type names.
2166
0
  SmallVector<llvm::Metadata *, 8> argBaseTypeNames;
2167
2168
  // MDNode for the kernel argument type qualifiers.
2169
0
  SmallVector<llvm::Metadata *, 8> argTypeQuals;
2170
2171
  // MDNode for the kernel argument names.
2172
0
  SmallVector<llvm::Metadata *, 8> argNames;
2173
2174
0
  if (FD && CGF)
2175
0
    for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) {
2176
0
      const ParmVarDecl *parm = FD->getParamDecl(i);
2177
      // Get argument name.
2178
0
      argNames.push_back(llvm::MDString::get(VMContext, parm->getName()));
2179
2180
0
      if (!getLangOpts().OpenCL)
2181
0
        continue;
2182
0
      QualType ty = parm->getType();
2183
0
      std::string typeQuals;
2184
2185
      // Get image and pipe access qualifier:
2186
0
      if (ty->isImageType() || ty->isPipeType()) {
2187
0
        const Decl *PDecl = parm;
2188
0
        if (const auto *TD = ty->getAs<TypedefType>())
2189
0
          PDecl = TD->getDecl();
2190
0
        const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>();
2191
0
        if (A && A->isWriteOnly())
2192
0
          accessQuals.push_back(llvm::MDString::get(VMContext, "write_only"));
2193
0
        else if (A && A->isReadWrite())
2194
0
          accessQuals.push_back(llvm::MDString::get(VMContext, "read_write"));
2195
0
        else
2196
0
          accessQuals.push_back(llvm::MDString::get(VMContext, "read_only"));
2197
0
      } else
2198
0
        accessQuals.push_back(llvm::MDString::get(VMContext, "none"));
2199
2200
0
      auto getTypeSpelling = [&](QualType Ty) {
2201
0
        auto typeName = Ty.getUnqualifiedType().getAsString(Policy);
2202
2203
0
        if (Ty.isCanonical()) {
2204
0
          StringRef typeNameRef = typeName;
2205
          // Turn "unsigned type" to "utype"
2206
0
          if (typeNameRef.consume_front("unsigned "))
2207
0
            return std::string("u") + typeNameRef.str();
2208
0
          if (typeNameRef.consume_front("signed "))
2209
0
            return typeNameRef.str();
2210
0
        }
2211
2212
0
        return typeName;
2213
0
      };
2214
2215
0
      if (ty->isPointerType()) {
2216
0
        QualType pointeeTy = ty->getPointeeType();
2217
2218
        // Get address qualifier.
2219
0
        addressQuals.push_back(
2220
0
            llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(
2221
0
                ArgInfoAddressSpace(pointeeTy.getAddressSpace()))));
2222
2223
        // Get argument type name.
2224
0
        std::string typeName = getTypeSpelling(pointeeTy) + "*";
2225
0
        std::string baseTypeName =
2226
0
            getTypeSpelling(pointeeTy.getCanonicalType()) + "*";
2227
0
        argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2228
0
        argBaseTypeNames.push_back(
2229
0
            llvm::MDString::get(VMContext, baseTypeName));
2230
2231
        // Get argument type qualifiers:
2232
0
        if (ty.isRestrictQualified())
2233
0
          typeQuals = "restrict";
2234
0
        if (pointeeTy.isConstQualified() ||
2235
0
            (pointeeTy.getAddressSpace() == LangAS::opencl_constant))
2236
0
          typeQuals += typeQuals.empty() ? "const" : " const";
2237
0
        if (pointeeTy.isVolatileQualified())
2238
0
          typeQuals += typeQuals.empty() ? "volatile" : " volatile";
2239
0
      } else {
2240
0
        uint32_t AddrSpc = 0;
2241
0
        bool isPipe = ty->isPipeType();
2242
0
        if (ty->isImageType() || isPipe)
2243
0
          AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global);
2244
2245
0
        addressQuals.push_back(
2246
0
            llvm::ConstantAsMetadata::get(CGF->Builder.getInt32(AddrSpc)));
2247
2248
        // Get argument type name.
2249
0
        ty = isPipe ? ty->castAs<PipeType>()->getElementType() : ty;
2250
0
        std::string typeName = getTypeSpelling(ty);
2251
0
        std::string baseTypeName = getTypeSpelling(ty.getCanonicalType());
2252
2253
        // Remove access qualifiers on images
2254
        // (as they are inseparable from type in clang implementation,
2255
        // but OpenCL spec provides a special query to get access qualifier
2256
        // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER):
2257
0
        if (ty->isImageType()) {
2258
0
          removeImageAccessQualifier(typeName);
2259
0
          removeImageAccessQualifier(baseTypeName);
2260
0
        }
2261
2262
0
        argTypeNames.push_back(llvm::MDString::get(VMContext, typeName));
2263
0
        argBaseTypeNames.push_back(
2264
0
            llvm::MDString::get(VMContext, baseTypeName));
2265
2266
0
        if (isPipe)
2267
0
          typeQuals = "pipe";
2268
0
      }
2269
0
      argTypeQuals.push_back(llvm::MDString::get(VMContext, typeQuals));
2270
0
    }
2271
2272
0
  if (getLangOpts().OpenCL) {
2273
0
    Fn->setMetadata("kernel_arg_addr_space",
2274
0
                    llvm::MDNode::get(VMContext, addressQuals));
2275
0
    Fn->setMetadata("kernel_arg_access_qual",
2276
0
                    llvm::MDNode::get(VMContext, accessQuals));
2277
0
    Fn->setMetadata("kernel_arg_type",
2278
0
                    llvm::MDNode::get(VMContext, argTypeNames));
2279
0
    Fn->setMetadata("kernel_arg_base_type",
2280
0
                    llvm::MDNode::get(VMContext, argBaseTypeNames));
2281
0
    Fn->setMetadata("kernel_arg_type_qual",
2282
0
                    llvm::MDNode::get(VMContext, argTypeQuals));
2283
0
  }
2284
0
  if (getCodeGenOpts().EmitOpenCLArgMetadata ||
2285
0
      getCodeGenOpts().HIPSaveKernelArgName)
2286
0
    Fn->setMetadata("kernel_arg_name",
2287
0
                    llvm::MDNode::get(VMContext, argNames));
2288
0
}
2289
2290
/// Determines whether the language options require us to model
2291
/// unwind exceptions.  We treat -fexceptions as mandating this
2292
/// except under the fragile ObjC ABI with only ObjC exceptions
2293
/// enabled.  This means, for example, that C with -fexceptions
2294
/// enables this.
2295
0
static bool hasUnwindExceptions(const LangOptions &LangOpts) {
2296
  // If exceptions are completely disabled, obviously this is false.
2297
0
  if (!LangOpts.Exceptions) return false;
2298
2299
  // If C++ exceptions are enabled, this is true.
2300
0
  if (LangOpts.CXXExceptions) return true;
2301
2302
  // If ObjC exceptions are enabled, this depends on the ABI.
2303
0
  if (LangOpts.ObjCExceptions) {
2304
0
    return LangOpts.ObjCRuntime.hasUnwindExceptions();
2305
0
  }
2306
2307
0
  return true;
2308
0
}
2309
2310
static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM,
2311
0
                                                      const CXXMethodDecl *MD) {
2312
  // Check that the type metadata can ever actually be used by a call.
2313
0
  if (!CGM.getCodeGenOpts().LTOUnit ||
2314
0
      !CGM.HasHiddenLTOVisibility(MD->getParent()))
2315
0
    return false;
2316
2317
  // Only functions whose address can be taken with a member function pointer
2318
  // need this sort of type metadata.
2319
0
  return MD->isImplicitObjectMemberFunction() && !MD->isVirtual() &&
2320
0
         !isa<CXXConstructorDecl, CXXDestructorDecl>(MD);
2321
0
}
2322
2323
SmallVector<const CXXRecordDecl *, 0>
2324
0
CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) {
2325
0
  llvm::SetVector<const CXXRecordDecl *> MostBases;
2326
2327
0
  std::function<void (const CXXRecordDecl *)> CollectMostBases;
2328
0
  CollectMostBases = [&](const CXXRecordDecl *RD) {
2329
0
    if (RD->getNumBases() == 0)
2330
0
      MostBases.insert(RD);
2331
0
    for (const CXXBaseSpecifier &B : RD->bases())
2332
0
      CollectMostBases(B.getType()->getAsCXXRecordDecl());
2333
0
  };
2334
0
  CollectMostBases(RD);
2335
0
  return MostBases.takeVector();
2336
0
}
2337
2338
void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D,
2339
0
                                                           llvm::Function *F) {
2340
0
  llvm::AttrBuilder B(F->getContext());
2341
2342
0
  if ((!D || !D->hasAttr<NoUwtableAttr>()) && CodeGenOpts.UnwindTables)
2343
0
    B.addUWTableAttr(llvm::UWTableKind(CodeGenOpts.UnwindTables));
2344
2345
0
  if (CodeGenOpts.StackClashProtector)
2346
0
    B.addAttribute("probe-stack", "inline-asm");
2347
2348
0
  if (CodeGenOpts.StackProbeSize && CodeGenOpts.StackProbeSize != 4096)
2349
0
    B.addAttribute("stack-probe-size",
2350
0
                   std::to_string(CodeGenOpts.StackProbeSize));
2351
2352
0
  if (!hasUnwindExceptions(LangOpts))
2353
0
    B.addAttribute(llvm::Attribute::NoUnwind);
2354
2355
0
  if (D && D->hasAttr<NoStackProtectorAttr>())
2356
0
    ; // Do nothing.
2357
0
  else if (D && D->hasAttr<StrictGuardStackCheckAttr>() &&
2358
0
           isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2359
0
    B.addAttribute(llvm::Attribute::StackProtectStrong);
2360
0
  else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPOn))
2361
0
    B.addAttribute(llvm::Attribute::StackProtect);
2362
0
  else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPStrong))
2363
0
    B.addAttribute(llvm::Attribute::StackProtectStrong);
2364
0
  else if (isStackProtectorOn(LangOpts, getTriple(), LangOptions::SSPReq))
2365
0
    B.addAttribute(llvm::Attribute::StackProtectReq);
2366
2367
0
  if (!D) {
2368
    // If we don't have a declaration to control inlining, the function isn't
2369
    // explicitly marked as alwaysinline for semantic reasons, and inlining is
2370
    // disabled, mark the function as noinline.
2371
0
    if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) &&
2372
0
        CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining)
2373
0
      B.addAttribute(llvm::Attribute::NoInline);
2374
2375
0
    F->addFnAttrs(B);
2376
0
    return;
2377
0
  }
2378
2379
  // Handle SME attributes that apply to function definitions,
2380
  // rather than to function prototypes.
2381
0
  if (D->hasAttr<ArmLocallyStreamingAttr>())
2382
0
    B.addAttribute("aarch64_pstate_sm_body");
2383
2384
0
  if (auto *Attr = D->getAttr<ArmNewAttr>()) {
2385
0
    if (Attr->isNewZA())
2386
0
      B.addAttribute("aarch64_pstate_za_new");
2387
0
  }
2388
2389
  // Track whether we need to add the optnone LLVM attribute,
2390
  // starting with the default for this optimization level.
2391
0
  bool ShouldAddOptNone =
2392
0
      !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0;
2393
  // We can't add optnone in the following cases, it won't pass the verifier.
2394
0
  ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>();
2395
0
  ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>();
2396
2397
  // Add optnone, but do so only if the function isn't always_inline.
2398
0
  if ((ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) &&
2399
0
      !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2400
0
    B.addAttribute(llvm::Attribute::OptimizeNone);
2401
2402
    // OptimizeNone implies noinline; we should not be inlining such functions.
2403
0
    B.addAttribute(llvm::Attribute::NoInline);
2404
2405
    // We still need to handle naked functions even though optnone subsumes
2406
    // much of their semantics.
2407
0
    if (D->hasAttr<NakedAttr>())
2408
0
      B.addAttribute(llvm::Attribute::Naked);
2409
2410
    // OptimizeNone wins over OptimizeForSize and MinSize.
2411
0
    F->removeFnAttr(llvm::Attribute::OptimizeForSize);
2412
0
    F->removeFnAttr(llvm::Attribute::MinSize);
2413
0
  } else if (D->hasAttr<NakedAttr>()) {
2414
    // Naked implies noinline: we should not be inlining such functions.
2415
0
    B.addAttribute(llvm::Attribute::Naked);
2416
0
    B.addAttribute(llvm::Attribute::NoInline);
2417
0
  } else if (D->hasAttr<NoDuplicateAttr>()) {
2418
0
    B.addAttribute(llvm::Attribute::NoDuplicate);
2419
0
  } else if (D->hasAttr<NoInlineAttr>() && !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2420
    // Add noinline if the function isn't always_inline.
2421
0
    B.addAttribute(llvm::Attribute::NoInline);
2422
0
  } else if (D->hasAttr<AlwaysInlineAttr>() &&
2423
0
             !F->hasFnAttribute(llvm::Attribute::NoInline)) {
2424
    // (noinline wins over always_inline, and we can't specify both in IR)
2425
0
    B.addAttribute(llvm::Attribute::AlwaysInline);
2426
0
  } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) {
2427
    // If we're not inlining, then force everything that isn't always_inline to
2428
    // carry an explicit noinline attribute.
2429
0
    if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline))
2430
0
      B.addAttribute(llvm::Attribute::NoInline);
2431
0
  } else {
2432
    // Otherwise, propagate the inline hint attribute and potentially use its
2433
    // absence to mark things as noinline.
2434
0
    if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2435
      // Search function and template pattern redeclarations for inline.
2436
0
      auto CheckForInline = [](const FunctionDecl *FD) {
2437
0
        auto CheckRedeclForInline = [](const FunctionDecl *Redecl) {
2438
0
          return Redecl->isInlineSpecified();
2439
0
        };
2440
0
        if (any_of(FD->redecls(), CheckRedeclForInline))
2441
0
          return true;
2442
0
        const FunctionDecl *Pattern = FD->getTemplateInstantiationPattern();
2443
0
        if (!Pattern)
2444
0
          return false;
2445
0
        return any_of(Pattern->redecls(), CheckRedeclForInline);
2446
0
      };
2447
0
      if (CheckForInline(FD)) {
2448
0
        B.addAttribute(llvm::Attribute::InlineHint);
2449
0
      } else if (CodeGenOpts.getInlining() ==
2450
0
                     CodeGenOptions::OnlyHintInlining &&
2451
0
                 !FD->isInlined() &&
2452
0
                 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) {
2453
0
        B.addAttribute(llvm::Attribute::NoInline);
2454
0
      }
2455
0
    }
2456
0
  }
2457
2458
  // Add other optimization related attributes if we are optimizing this
2459
  // function.
2460
0
  if (!D->hasAttr<OptimizeNoneAttr>()) {
2461
0
    if (D->hasAttr<ColdAttr>()) {
2462
0
      if (!ShouldAddOptNone)
2463
0
        B.addAttribute(llvm::Attribute::OptimizeForSize);
2464
0
      B.addAttribute(llvm::Attribute::Cold);
2465
0
    }
2466
0
    if (D->hasAttr<HotAttr>())
2467
0
      B.addAttribute(llvm::Attribute::Hot);
2468
0
    if (D->hasAttr<MinSizeAttr>())
2469
0
      B.addAttribute(llvm::Attribute::MinSize);
2470
0
  }
2471
2472
0
  F->addFnAttrs(B);
2473
2474
0
  unsigned alignment = D->getMaxAlignment() / Context.getCharWidth();
2475
0
  if (alignment)
2476
0
    F->setAlignment(llvm::Align(alignment));
2477
2478
0
  if (!D->hasAttr<AlignedAttr>())
2479
0
    if (LangOpts.FunctionAlignment)
2480
0
      F->setAlignment(llvm::Align(1ull << LangOpts.FunctionAlignment));
2481
2482
  // Some C++ ABIs require 2-byte alignment for member functions, in order to
2483
  // reserve a bit for differentiating between virtual and non-virtual member
2484
  // functions. If the current target's C++ ABI requires this and this is a
2485
  // member function, set its alignment accordingly.
2486
0
  if (getTarget().getCXXABI().areMemberFunctionsAligned()) {
2487
0
    if (isa<CXXMethodDecl>(D) && F->getPointerAlignment(getDataLayout()) < 2)
2488
0
      F->setAlignment(std::max(llvm::Align(2), F->getAlign().valueOrOne()));
2489
0
  }
2490
2491
  // In the cross-dso CFI mode with canonical jump tables, we want !type
2492
  // attributes on definitions only.
2493
0
  if (CodeGenOpts.SanitizeCfiCrossDso &&
2494
0
      CodeGenOpts.SanitizeCfiCanonicalJumpTables) {
2495
0
    if (auto *FD = dyn_cast<FunctionDecl>(D)) {
2496
      // Skip available_externally functions. They won't be codegen'ed in the
2497
      // current module anyway.
2498
0
      if (getContext().GetGVALinkageForFunction(FD) != GVA_AvailableExternally)
2499
0
        CreateFunctionTypeMetadataForIcall(FD, F);
2500
0
    }
2501
0
  }
2502
2503
  // Emit type metadata on member functions for member function pointer checks.
2504
  // These are only ever necessary on definitions; we're guaranteed that the
2505
  // definition will be present in the LTO unit as a result of LTO visibility.
2506
0
  auto *MD = dyn_cast<CXXMethodDecl>(D);
2507
0
  if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) {
2508
0
    for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) {
2509
0
      llvm::Metadata *Id =
2510
0
          CreateMetadataIdentifierForType(Context.getMemberPointerType(
2511
0
              MD->getType(), Context.getRecordType(Base).getTypePtr()));
2512
0
      F->addTypeMetadata(0, Id);
2513
0
    }
2514
0
  }
2515
0
}
2516
2517
0
void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) {
2518
0
  const Decl *D = GD.getDecl();
2519
0
  if (isa_and_nonnull<NamedDecl>(D))
2520
0
    setGVProperties(GV, GD);
2521
0
  else
2522
0
    GV->setVisibility(llvm::GlobalValue::DefaultVisibility);
2523
2524
0
  if (D && D->hasAttr<UsedAttr>())
2525
0
    addUsedOrCompilerUsedGlobal(GV);
2526
2527
0
  if (const auto *VD = dyn_cast_if_present<VarDecl>(D);
2528
0
      VD &&
2529
0
      ((CodeGenOpts.KeepPersistentStorageVariables &&
2530
0
        (VD->getStorageDuration() == SD_Static ||
2531
0
         VD->getStorageDuration() == SD_Thread)) ||
2532
0
       (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
2533
0
        VD->getType().isConstQualified())))
2534
0
    addUsedOrCompilerUsedGlobal(GV);
2535
0
}
2536
2537
bool CodeGenModule::GetCPUAndFeaturesAttributes(GlobalDecl GD,
2538
                                                llvm::AttrBuilder &Attrs,
2539
0
                                                bool SetTargetFeatures) {
2540
  // Add target-cpu and target-features attributes to functions. If
2541
  // we have a decl for the function and it has a target attribute then
2542
  // parse that and add it to the feature set.
2543
0
  StringRef TargetCPU = getTarget().getTargetOpts().CPU;
2544
0
  StringRef TuneCPU = getTarget().getTargetOpts().TuneCPU;
2545
0
  std::vector<std::string> Features;
2546
0
  const auto *FD = dyn_cast_or_null<FunctionDecl>(GD.getDecl());
2547
0
  FD = FD ? FD->getMostRecentDecl() : FD;
2548
0
  const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr;
2549
0
  const auto *TV = FD ? FD->getAttr<TargetVersionAttr>() : nullptr;
2550
0
  assert((!TD || !TV) && "both target_version and target specified");
2551
0
  const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr;
2552
0
  const auto *TC = FD ? FD->getAttr<TargetClonesAttr>() : nullptr;
2553
0
  bool AddedAttr = false;
2554
0
  if (TD || TV || SD || TC) {
2555
0
    llvm::StringMap<bool> FeatureMap;
2556
0
    getContext().getFunctionFeatureMap(FeatureMap, GD);
2557
2558
    // Produce the canonical string for this set of features.
2559
0
    for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap)
2560
0
      Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str());
2561
2562
    // Now add the target-cpu and target-features to the function.
2563
    // While we populated the feature map above, we still need to
2564
    // get and parse the target attribute so we can get the cpu for
2565
    // the function.
2566
0
    if (TD) {
2567
0
      ParsedTargetAttr ParsedAttr =
2568
0
          Target.parseTargetAttr(TD->getFeaturesStr());
2569
0
      if (!ParsedAttr.CPU.empty() &&
2570
0
          getTarget().isValidCPUName(ParsedAttr.CPU)) {
2571
0
        TargetCPU = ParsedAttr.CPU;
2572
0
        TuneCPU = ""; // Clear the tune CPU.
2573
0
      }
2574
0
      if (!ParsedAttr.Tune.empty() &&
2575
0
          getTarget().isValidCPUName(ParsedAttr.Tune))
2576
0
        TuneCPU = ParsedAttr.Tune;
2577
0
    }
2578
2579
0
    if (SD) {
2580
      // Apply the given CPU name as the 'tune-cpu' so that the optimizer can
2581
      // favor this processor.
2582
0
      TuneCPU = SD->getCPUName(GD.getMultiVersionIndex())->getName();
2583
0
    }
2584
0
  } else {
2585
    // Otherwise just add the existing target cpu and target features to the
2586
    // function.
2587
0
    Features = getTarget().getTargetOpts().Features;
2588
0
  }
2589
2590
0
  if (!TargetCPU.empty()) {
2591
0
    Attrs.addAttribute("target-cpu", TargetCPU);
2592
0
    AddedAttr = true;
2593
0
  }
2594
0
  if (!TuneCPU.empty()) {
2595
0
    Attrs.addAttribute("tune-cpu", TuneCPU);
2596
0
    AddedAttr = true;
2597
0
  }
2598
0
  if (!Features.empty() && SetTargetFeatures) {
2599
0
    llvm::erase_if(Features, [&](const std::string& F) {
2600
0
       return getTarget().isReadOnlyFeature(F.substr(1));
2601
0
    });
2602
0
    llvm::sort(Features);
2603
0
    Attrs.addAttribute("target-features", llvm::join(Features, ","));
2604
0
    AddedAttr = true;
2605
0
  }
2606
2607
0
  return AddedAttr;
2608
0
}
2609
2610
void CodeGenModule::setNonAliasAttributes(GlobalDecl GD,
2611
0
                                          llvm::GlobalObject *GO) {
2612
0
  const Decl *D = GD.getDecl();
2613
0
  SetCommonAttributes(GD, GO);
2614
2615
0
  if (D) {
2616
0
    if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) {
2617
0
      if (D->hasAttr<RetainAttr>())
2618
0
        addUsedGlobal(GV);
2619
0
      if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>())
2620
0
        GV->addAttribute("bss-section", SA->getName());
2621
0
      if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>())
2622
0
        GV->addAttribute("data-section", SA->getName());
2623
0
      if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>())
2624
0
        GV->addAttribute("rodata-section", SA->getName());
2625
0
      if (auto *SA = D->getAttr<PragmaClangRelroSectionAttr>())
2626
0
        GV->addAttribute("relro-section", SA->getName());
2627
0
    }
2628
2629
0
    if (auto *F = dyn_cast<llvm::Function>(GO)) {
2630
0
      if (D->hasAttr<RetainAttr>())
2631
0
        addUsedGlobal(F);
2632
0
      if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>())
2633
0
        if (!D->getAttr<SectionAttr>())
2634
0
          F->addFnAttr("implicit-section-name", SA->getName());
2635
2636
0
      llvm::AttrBuilder Attrs(F->getContext());
2637
0
      if (GetCPUAndFeaturesAttributes(GD, Attrs)) {
2638
        // We know that GetCPUAndFeaturesAttributes will always have the
2639
        // newest set, since it has the newest possible FunctionDecl, so the
2640
        // new ones should replace the old.
2641
0
        llvm::AttributeMask RemoveAttrs;
2642
0
        RemoveAttrs.addAttribute("target-cpu");
2643
0
        RemoveAttrs.addAttribute("target-features");
2644
0
        RemoveAttrs.addAttribute("tune-cpu");
2645
0
        F->removeFnAttrs(RemoveAttrs);
2646
0
        F->addFnAttrs(Attrs);
2647
0
      }
2648
0
    }
2649
2650
0
    if (const auto *CSA = D->getAttr<CodeSegAttr>())
2651
0
      GO->setSection(CSA->getName());
2652
0
    else if (const auto *SA = D->getAttr<SectionAttr>())
2653
0
      GO->setSection(SA->getName());
2654
0
  }
2655
2656
0
  getTargetCodeGenInfo().setTargetAttributes(D, GO, *this);
2657
0
}
2658
2659
void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD,
2660
                                                  llvm::Function *F,
2661
0
                                                  const CGFunctionInfo &FI) {
2662
0
  const Decl *D = GD.getDecl();
2663
0
  SetLLVMFunctionAttributes(GD, FI, F, /*IsThunk=*/false);
2664
0
  SetLLVMFunctionAttributesForDefinition(D, F);
2665
2666
0
  F->setLinkage(llvm::Function::InternalLinkage);
2667
2668
0
  setNonAliasAttributes(GD, F);
2669
0
}
2670
2671
0
static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) {
2672
  // Set linkage and visibility in case we never see a definition.
2673
0
  LinkageInfo LV = ND->getLinkageAndVisibility();
2674
  // Don't set internal linkage on declarations.
2675
  // "extern_weak" is overloaded in LLVM; we probably should have
2676
  // separate linkage types for this.
2677
0
  if (isExternallyVisible(LV.getLinkage()) &&
2678
0
      (ND->hasAttr<WeakAttr>() || ND->isWeakImported()))
2679
0
    GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage);
2680
0
}
2681
2682
void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD,
2683
0
                                                       llvm::Function *F) {
2684
  // Only if we are checking indirect calls.
2685
0
  if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall))
2686
0
    return;
2687
2688
  // Non-static class methods are handled via vtable or member function pointer
2689
  // checks elsewhere.
2690
0
  if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic())
2691
0
    return;
2692
2693
0
  llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType());
2694
0
  F->addTypeMetadata(0, MD);
2695
0
  F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType()));
2696
2697
  // Emit a hash-based bit set entry for cross-DSO calls.
2698
0
  if (CodeGenOpts.SanitizeCfiCrossDso)
2699
0
    if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
2700
0
      F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId));
2701
0
}
2702
2703
0
void CodeGenModule::setKCFIType(const FunctionDecl *FD, llvm::Function *F) {
2704
0
  llvm::LLVMContext &Ctx = F->getContext();
2705
0
  llvm::MDBuilder MDB(Ctx);
2706
0
  F->setMetadata(llvm::LLVMContext::MD_kcfi_type,
2707
0
                 llvm::MDNode::get(
2708
0
                     Ctx, MDB.createConstant(CreateKCFITypeId(FD->getType()))));
2709
0
}
2710
2711
0
static bool allowKCFIIdentifier(StringRef Name) {
2712
  // KCFI type identifier constants are only necessary for external assembly
2713
  // functions, which means it's safe to skip unusual names. Subset of
2714
  // MCAsmInfo::isAcceptableChar() and MCAsmInfoXCOFF::isAcceptableChar().
2715
0
  return llvm::all_of(Name, [](const char &C) {
2716
0
    return llvm::isAlnum(C) || C == '_' || C == '.';
2717
0
  });
2718
0
}
2719
2720
0
void CodeGenModule::finalizeKCFITypes() {
2721
0
  llvm::Module &M = getModule();
2722
0
  for (auto &F : M.functions()) {
2723
    // Remove KCFI type metadata from non-address-taken local functions.
2724
0
    bool AddressTaken = F.hasAddressTaken();
2725
0
    if (!AddressTaken && F.hasLocalLinkage())
2726
0
      F.eraseMetadata(llvm::LLVMContext::MD_kcfi_type);
2727
2728
    // Generate a constant with the expected KCFI type identifier for all
2729
    // address-taken function declarations to support annotating indirectly
2730
    // called assembly functions.
2731
0
    if (!AddressTaken || !F.isDeclaration())
2732
0
      continue;
2733
2734
0
    const llvm::ConstantInt *Type;
2735
0
    if (const llvm::MDNode *MD = F.getMetadata(llvm::LLVMContext::MD_kcfi_type))
2736
0
      Type = llvm::mdconst::extract<llvm::ConstantInt>(MD->getOperand(0));
2737
0
    else
2738
0
      continue;
2739
2740
0
    StringRef Name = F.getName();
2741
0
    if (!allowKCFIIdentifier(Name))
2742
0
      continue;
2743
2744
0
    std::string Asm = (".weak __kcfi_typeid_" + Name + "\n.set __kcfi_typeid_" +
2745
0
                       Name + ", " + Twine(Type->getZExtValue()) + "\n")
2746
0
                          .str();
2747
0
    M.appendModuleInlineAsm(Asm);
2748
0
  }
2749
0
}
2750
2751
void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F,
2752
                                          bool IsIncompleteFunction,
2753
0
                                          bool IsThunk) {
2754
2755
0
  if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) {
2756
    // If this is an intrinsic function, set the function's attributes
2757
    // to the intrinsic's attributes.
2758
0
    F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID));
2759
0
    return;
2760
0
  }
2761
2762
0
  const auto *FD = cast<FunctionDecl>(GD.getDecl());
2763
2764
0
  if (!IsIncompleteFunction)
2765
0
    SetLLVMFunctionAttributes(GD, getTypes().arrangeGlobalDeclaration(GD), F,
2766
0
                              IsThunk);
2767
2768
  // Add the Returned attribute for "this", except for iOS 5 and earlier
2769
  // where substantial code, including the libstdc++ dylib, was compiled with
2770
  // GCC and does not actually return "this".
2771
0
  if (!IsThunk && getCXXABI().HasThisReturn(GD) &&
2772
0
      !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) {
2773
0
    assert(!F->arg_empty() &&
2774
0
           F->arg_begin()->getType()
2775
0
             ->canLosslesslyBitCastTo(F->getReturnType()) &&
2776
0
           "unexpected this return");
2777
0
    F->addParamAttr(0, llvm::Attribute::Returned);
2778
0
  }
2779
2780
  // Only a few attributes are set on declarations; these may later be
2781
  // overridden by a definition.
2782
2783
0
  setLinkageForGV(F, FD);
2784
0
  setGVProperties(F, FD);
2785
2786
  // Setup target-specific attributes.
2787
0
  if (!IsIncompleteFunction && F->isDeclaration())
2788
0
    getTargetCodeGenInfo().setTargetAttributes(FD, F, *this);
2789
2790
0
  if (const auto *CSA = FD->getAttr<CodeSegAttr>())
2791
0
    F->setSection(CSA->getName());
2792
0
  else if (const auto *SA = FD->getAttr<SectionAttr>())
2793
0
     F->setSection(SA->getName());
2794
2795
0
  if (const auto *EA = FD->getAttr<ErrorAttr>()) {
2796
0
    if (EA->isError())
2797
0
      F->addFnAttr("dontcall-error", EA->getUserDiagnostic());
2798
0
    else if (EA->isWarning())
2799
0
      F->addFnAttr("dontcall-warn", EA->getUserDiagnostic());
2800
0
  }
2801
2802
  // If we plan on emitting this inline builtin, we can't treat it as a builtin.
2803
0
  if (FD->isInlineBuiltinDeclaration()) {
2804
0
    const FunctionDecl *FDBody;
2805
0
    bool HasBody = FD->hasBody(FDBody);
2806
0
    (void)HasBody;
2807
0
    assert(HasBody && "Inline builtin declarations should always have an "
2808
0
                      "available body!");
2809
0
    if (shouldEmitFunction(FDBody))
2810
0
      F->addFnAttr(llvm::Attribute::NoBuiltin);
2811
0
  }
2812
2813
0
  if (FD->isReplaceableGlobalAllocationFunction()) {
2814
    // A replaceable global allocation function does not act like a builtin by
2815
    // default, only if it is invoked by a new-expression or delete-expression.
2816
0
    F->addFnAttr(llvm::Attribute::NoBuiltin);
2817
0
  }
2818
2819
0
  if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD))
2820
0
    F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2821
0
  else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD))
2822
0
    if (MD->isVirtual())
2823
0
      F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2824
2825
  // Don't emit entries for function declarations in the cross-DSO mode. This
2826
  // is handled with better precision by the receiving DSO. But if jump tables
2827
  // are non-canonical then we need type metadata in order to produce the local
2828
  // jump table.
2829
0
  if (!CodeGenOpts.SanitizeCfiCrossDso ||
2830
0
      !CodeGenOpts.SanitizeCfiCanonicalJumpTables)
2831
0
    CreateFunctionTypeMetadataForIcall(FD, F);
2832
2833
0
  if (LangOpts.Sanitize.has(SanitizerKind::KCFI))
2834
0
    setKCFIType(FD, F);
2835
2836
0
  if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>())
2837
0
    getOpenMPRuntime().emitDeclareSimdFunction(FD, F);
2838
2839
0
  if (CodeGenOpts.InlineMaxStackSize != UINT_MAX)
2840
0
    F->addFnAttr("inline-max-stacksize", llvm::utostr(CodeGenOpts.InlineMaxStackSize));
2841
2842
0
  if (const auto *CB = FD->getAttr<CallbackAttr>()) {
2843
    // Annotate the callback behavior as metadata:
2844
    //  - The callback callee (as argument number).
2845
    //  - The callback payloads (as argument numbers).
2846
0
    llvm::LLVMContext &Ctx = F->getContext();
2847
0
    llvm::MDBuilder MDB(Ctx);
2848
2849
    // The payload indices are all but the first one in the encoding. The first
2850
    // identifies the callback callee.
2851
0
    int CalleeIdx = *CB->encoding_begin();
2852
0
    ArrayRef<int> PayloadIndices(CB->encoding_begin() + 1, CB->encoding_end());
2853
0
    F->addMetadata(llvm::LLVMContext::MD_callback,
2854
0
                   *llvm::MDNode::get(Ctx, {MDB.createCallbackEncoding(
2855
0
                                               CalleeIdx, PayloadIndices,
2856
0
                                               /* VarArgsArePassed */ false)}));
2857
0
  }
2858
0
}
2859
2860
0
void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) {
2861
0
  assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2862
0
         "Only globals with definition can force usage.");
2863
0
  LLVMUsed.emplace_back(GV);
2864
0
}
2865
2866
0
void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) {
2867
0
  assert(!GV->isDeclaration() &&
2868
0
         "Only globals with definition can force usage.");
2869
0
  LLVMCompilerUsed.emplace_back(GV);
2870
0
}
2871
2872
0
void CodeGenModule::addUsedOrCompilerUsedGlobal(llvm::GlobalValue *GV) {
2873
0
  assert((isa<llvm::Function>(GV) || !GV->isDeclaration()) &&
2874
0
         "Only globals with definition can force usage.");
2875
0
  if (getTriple().isOSBinFormatELF())
2876
0
    LLVMCompilerUsed.emplace_back(GV);
2877
0
  else
2878
0
    LLVMUsed.emplace_back(GV);
2879
0
}
2880
2881
static void emitUsed(CodeGenModule &CGM, StringRef Name,
2882
0
                     std::vector<llvm::WeakTrackingVH> &List) {
2883
  // Don't create llvm.used if there is no need.
2884
0
  if (List.empty())
2885
0
    return;
2886
2887
  // Convert List to what ConstantArray needs.
2888
0
  SmallVector<llvm::Constant*, 8> UsedArray;
2889
0
  UsedArray.resize(List.size());
2890
0
  for (unsigned i = 0, e = List.size(); i != e; ++i) {
2891
0
    UsedArray[i] =
2892
0
        llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
2893
0
            cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy);
2894
0
  }
2895
2896
0
  if (UsedArray.empty())
2897
0
    return;
2898
0
  llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size());
2899
2900
0
  auto *GV = new llvm::GlobalVariable(
2901
0
      CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage,
2902
0
      llvm::ConstantArray::get(ATy, UsedArray), Name);
2903
2904
0
  GV->setSection("llvm.metadata");
2905
0
}
2906
2907
0
void CodeGenModule::emitLLVMUsed() {
2908
0
  emitUsed(*this, "llvm.used", LLVMUsed);
2909
0
  emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed);
2910
0
}
2911
2912
0
void CodeGenModule::AppendLinkerOptions(StringRef Opts) {
2913
0
  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts);
2914
0
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2915
0
}
2916
2917
0
void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) {
2918
0
  llvm::SmallString<32> Opt;
2919
0
  getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt);
2920
0
  if (Opt.empty())
2921
0
    return;
2922
0
  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2923
0
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts));
2924
0
}
2925
2926
0
void CodeGenModule::AddDependentLib(StringRef Lib) {
2927
0
  auto &C = getLLVMContext();
2928
0
  if (getTarget().getTriple().isOSBinFormatELF()) {
2929
0
      ELFDependentLibraries.push_back(
2930
0
        llvm::MDNode::get(C, llvm::MDString::get(C, Lib)));
2931
0
    return;
2932
0
  }
2933
2934
0
  llvm::SmallString<24> Opt;
2935
0
  getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt);
2936
0
  auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt);
2937
0
  LinkerOptionsMetadata.push_back(llvm::MDNode::get(C, MDOpts));
2938
0
}
2939
2940
/// Add link options implied by the given module, including modules
2941
/// it depends on, using a postorder walk.
2942
static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod,
2943
                                    SmallVectorImpl<llvm::MDNode *> &Metadata,
2944
0
                                    llvm::SmallPtrSet<Module *, 16> &Visited) {
2945
  // Import this module's parent.
2946
0
  if (Mod->Parent && Visited.insert(Mod->Parent).second) {
2947
0
    addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited);
2948
0
  }
2949
2950
  // Import this module's dependencies.
2951
0
  for (Module *Import : llvm::reverse(Mod->Imports)) {
2952
0
    if (Visited.insert(Import).second)
2953
0
      addLinkOptionsPostorder(CGM, Import, Metadata, Visited);
2954
0
  }
2955
2956
  // Add linker options to link against the libraries/frameworks
2957
  // described by this module.
2958
0
  llvm::LLVMContext &Context = CGM.getLLVMContext();
2959
0
  bool IsELF = CGM.getTarget().getTriple().isOSBinFormatELF();
2960
2961
  // For modules that use export_as for linking, use that module
2962
  // name instead.
2963
0
  if (Mod->UseExportAsModuleLinkName)
2964
0
    return;
2965
2966
0
  for (const Module::LinkLibrary &LL : llvm::reverse(Mod->LinkLibraries)) {
2967
    // Link against a framework.  Frameworks are currently Darwin only, so we
2968
    // don't to ask TargetCodeGenInfo for the spelling of the linker option.
2969
0
    if (LL.IsFramework) {
2970
0
      llvm::Metadata *Args[2] = {llvm::MDString::get(Context, "-framework"),
2971
0
                                 llvm::MDString::get(Context, LL.Library)};
2972
2973
0
      Metadata.push_back(llvm::MDNode::get(Context, Args));
2974
0
      continue;
2975
0
    }
2976
2977
    // Link against a library.
2978
0
    if (IsELF) {
2979
0
      llvm::Metadata *Args[2] = {
2980
0
          llvm::MDString::get(Context, "lib"),
2981
0
          llvm::MDString::get(Context, LL.Library),
2982
0
      };
2983
0
      Metadata.push_back(llvm::MDNode::get(Context, Args));
2984
0
    } else {
2985
0
      llvm::SmallString<24> Opt;
2986
0
      CGM.getTargetCodeGenInfo().getDependentLibraryOption(LL.Library, Opt);
2987
0
      auto *OptString = llvm::MDString::get(Context, Opt);
2988
0
      Metadata.push_back(llvm::MDNode::get(Context, OptString));
2989
0
    }
2990
0
  }
2991
0
}
2992
2993
0
void CodeGenModule::EmitModuleInitializers(clang::Module *Primary) {
2994
0
  assert(Primary->isNamedModuleUnit() &&
2995
0
         "We should only emit module initializers for named modules.");
2996
2997
  // Emit the initializers in the order that sub-modules appear in the
2998
  // source, first Global Module Fragments, if present.
2999
0
  if (auto GMF = Primary->getGlobalModuleFragment()) {
3000
0
    for (Decl *D : getContext().getModuleInitializers(GMF)) {
3001
0
      if (isa<ImportDecl>(D))
3002
0
        continue;
3003
0
      assert(isa<VarDecl>(D) && "GMF initializer decl is not a var?");
3004
0
      EmitTopLevelDecl(D);
3005
0
    }
3006
0
  }
3007
  // Second any associated with the module, itself.
3008
0
  for (Decl *D : getContext().getModuleInitializers(Primary)) {
3009
    // Skip import decls, the inits for those are called explicitly.
3010
0
    if (isa<ImportDecl>(D))
3011
0
      continue;
3012
0
    EmitTopLevelDecl(D);
3013
0
  }
3014
  // Third any associated with the Privat eMOdule Fragment, if present.
3015
0
  if (auto PMF = Primary->getPrivateModuleFragment()) {
3016
0
    for (Decl *D : getContext().getModuleInitializers(PMF)) {
3017
      // Skip import decls, the inits for those are called explicitly.
3018
0
      if (isa<ImportDecl>(D))
3019
0
        continue;
3020
0
      assert(isa<VarDecl>(D) && "PMF initializer decl is not a var?");
3021
0
      EmitTopLevelDecl(D);
3022
0
    }
3023
0
  }
3024
0
}
3025
3026
0
void CodeGenModule::EmitModuleLinkOptions() {
3027
  // Collect the set of all of the modules we want to visit to emit link
3028
  // options, which is essentially the imported modules and all of their
3029
  // non-explicit child modules.
3030
0
  llvm::SetVector<clang::Module *> LinkModules;
3031
0
  llvm::SmallPtrSet<clang::Module *, 16> Visited;
3032
0
  SmallVector<clang::Module *, 16> Stack;
3033
3034
  // Seed the stack with imported modules.
3035
0
  for (Module *M : ImportedModules) {
3036
    // Do not add any link flags when an implementation TU of a module imports
3037
    // a header of that same module.
3038
0
    if (M->getTopLevelModuleName() == getLangOpts().CurrentModule &&
3039
0
        !getLangOpts().isCompilingModule())
3040
0
      continue;
3041
0
    if (Visited.insert(M).second)
3042
0
      Stack.push_back(M);
3043
0
  }
3044
3045
  // Find all of the modules to import, making a little effort to prune
3046
  // non-leaf modules.
3047
0
  while (!Stack.empty()) {
3048
0
    clang::Module *Mod = Stack.pop_back_val();
3049
3050
0
    bool AnyChildren = false;
3051
3052
    // Visit the submodules of this module.
3053
0
    for (const auto &SM : Mod->submodules()) {
3054
      // Skip explicit children; they need to be explicitly imported to be
3055
      // linked against.
3056
0
      if (SM->IsExplicit)
3057
0
        continue;
3058
3059
0
      if (Visited.insert(SM).second) {
3060
0
        Stack.push_back(SM);
3061
0
        AnyChildren = true;
3062
0
      }
3063
0
    }
3064
3065
    // We didn't find any children, so add this module to the list of
3066
    // modules to link against.
3067
0
    if (!AnyChildren) {
3068
0
      LinkModules.insert(Mod);
3069
0
    }
3070
0
  }
3071
3072
  // Add link options for all of the imported modules in reverse topological
3073
  // order.  We don't do anything to try to order import link flags with respect
3074
  // to linker options inserted by things like #pragma comment().
3075
0
  SmallVector<llvm::MDNode *, 16> MetadataArgs;
3076
0
  Visited.clear();
3077
0
  for (Module *M : LinkModules)
3078
0
    if (Visited.insert(M).second)
3079
0
      addLinkOptionsPostorder(*this, M, MetadataArgs, Visited);
3080
0
  std::reverse(MetadataArgs.begin(), MetadataArgs.end());
3081
0
  LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end());
3082
3083
  // Add the linker options metadata flag.
3084
0
  auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options");
3085
0
  for (auto *MD : LinkerOptionsMetadata)
3086
0
    NMD->addOperand(MD);
3087
0
}
3088
3089
0
void CodeGenModule::EmitDeferred() {
3090
  // Emit deferred declare target declarations.
3091
0
  if (getLangOpts().OpenMP && !getLangOpts().OpenMPSimd)
3092
0
    getOpenMPRuntime().emitDeferredTargetDecls();
3093
3094
  // Emit code for any potentially referenced deferred decls.  Since a
3095
  // previously unused static decl may become used during the generation of code
3096
  // for a static function, iterate until no changes are made.
3097
3098
0
  if (!DeferredVTables.empty()) {
3099
0
    EmitDeferredVTables();
3100
3101
    // Emitting a vtable doesn't directly cause more vtables to
3102
    // become deferred, although it can cause functions to be
3103
    // emitted that then need those vtables.
3104
0
    assert(DeferredVTables.empty());
3105
0
  }
3106
3107
  // Emit CUDA/HIP static device variables referenced by host code only.
3108
  // Note we should not clear CUDADeviceVarODRUsedByHost since it is still
3109
  // needed for further handling.
3110
0
  if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice)
3111
0
    llvm::append_range(DeferredDeclsToEmit,
3112
0
                       getContext().CUDADeviceVarODRUsedByHost);
3113
3114
  // Stop if we're out of both deferred vtables and deferred declarations.
3115
0
  if (DeferredDeclsToEmit.empty())
3116
0
    return;
3117
3118
  // Grab the list of decls to emit. If EmitGlobalDefinition schedules more
3119
  // work, it will not interfere with this.
3120
0
  std::vector<GlobalDecl> CurDeclsToEmit;
3121
0
  CurDeclsToEmit.swap(DeferredDeclsToEmit);
3122
3123
0
  for (GlobalDecl &D : CurDeclsToEmit) {
3124
    // We should call GetAddrOfGlobal with IsForDefinition set to true in order
3125
    // to get GlobalValue with exactly the type we need, not something that
3126
    // might had been created for another decl with the same mangled name but
3127
    // different type.
3128
0
    llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>(
3129
0
        GetAddrOfGlobal(D, ForDefinition));
3130
3131
    // In case of different address spaces, we may still get a cast, even with
3132
    // IsForDefinition equal to true. Query mangled names table to get
3133
    // GlobalValue.
3134
0
    if (!GV)
3135
0
      GV = GetGlobalValue(getMangledName(D));
3136
3137
    // Make sure GetGlobalValue returned non-null.
3138
0
    assert(GV);
3139
3140
    // Check to see if we've already emitted this.  This is necessary
3141
    // for a couple of reasons: first, decls can end up in the
3142
    // deferred-decls queue multiple times, and second, decls can end
3143
    // up with definitions in unusual ways (e.g. by an extern inline
3144
    // function acquiring a strong function redefinition).  Just
3145
    // ignore these cases.
3146
0
    if (!GV->isDeclaration())
3147
0
      continue;
3148
3149
    // If this is OpenMP, check if it is legal to emit this global normally.
3150
0
    if (LangOpts.OpenMP && OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(D))
3151
0
      continue;
3152
3153
    // Otherwise, emit the definition and move on to the next one.
3154
0
    EmitGlobalDefinition(D, GV);
3155
3156
    // If we found out that we need to emit more decls, do that recursively.
3157
    // This has the advantage that the decls are emitted in a DFS and related
3158
    // ones are close together, which is convenient for testing.
3159
0
    if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) {
3160
0
      EmitDeferred();
3161
0
      assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty());
3162
0
    }
3163
0
  }
3164
0
}
3165
3166
0
void CodeGenModule::EmitVTablesOpportunistically() {
3167
  // Try to emit external vtables as available_externally if they have emitted
3168
  // all inlined virtual functions.  It runs after EmitDeferred() and therefore
3169
  // is not allowed to create new references to things that need to be emitted
3170
  // lazily. Note that it also uses fact that we eagerly emitting RTTI.
3171
3172
0
  assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables())
3173
0
         && "Only emit opportunistic vtables with optimizations");
3174
3175
0
  for (const CXXRecordDecl *RD : OpportunisticVTables) {
3176
0
    assert(getVTables().isVTableExternal(RD) &&
3177
0
           "This queue should only contain external vtables");
3178
0
    if (getCXXABI().canSpeculativelyEmitVTable(RD))
3179
0
      VTables.GenerateClassData(RD);
3180
0
  }
3181
0
  OpportunisticVTables.clear();
3182
0
}
3183
3184
0
void CodeGenModule::EmitGlobalAnnotations() {
3185
0
  for (const auto& [MangledName, VD] : DeferredAnnotations) {
3186
0
    llvm::GlobalValue *GV = GetGlobalValue(MangledName);
3187
0
    if (GV)
3188
0
      AddGlobalAnnotations(VD, GV);
3189
0
  }
3190
0
  DeferredAnnotations.clear();
3191
3192
0
  if (Annotations.empty())
3193
0
    return;
3194
3195
  // Create a new global variable for the ConstantStruct in the Module.
3196
0
  llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get(
3197
0
    Annotations[0]->getType(), Annotations.size()), Annotations);
3198
0
  auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false,
3199
0
                                      llvm::GlobalValue::AppendingLinkage,
3200
0
                                      Array, "llvm.global.annotations");
3201
0
  gv->setSection(AnnotationSection);
3202
0
}
3203
3204
0
llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) {
3205
0
  llvm::Constant *&AStr = AnnotationStrings[Str];
3206
0
  if (AStr)
3207
0
    return AStr;
3208
3209
  // Not found yet, create a new global.
3210
0
  llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str);
3211
0
  auto *gv = new llvm::GlobalVariable(
3212
0
      getModule(), s->getType(), true, llvm::GlobalValue::PrivateLinkage, s,
3213
0
      ".str", nullptr, llvm::GlobalValue::NotThreadLocal,
3214
0
      ConstGlobalsPtrTy->getAddressSpace());
3215
0
  gv->setSection(AnnotationSection);
3216
0
  gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3217
0
  AStr = gv;
3218
0
  return gv;
3219
0
}
3220
3221
0
llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) {
3222
0
  SourceManager &SM = getContext().getSourceManager();
3223
0
  PresumedLoc PLoc = SM.getPresumedLoc(Loc);
3224
0
  if (PLoc.isValid())
3225
0
    return EmitAnnotationString(PLoc.getFilename());
3226
0
  return EmitAnnotationString(SM.getBufferName(Loc));
3227
0
}
3228
3229
0
llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) {
3230
0
  SourceManager &SM = getContext().getSourceManager();
3231
0
  PresumedLoc PLoc = SM.getPresumedLoc(L);
3232
0
  unsigned LineNo = PLoc.isValid() ? PLoc.getLine() :
3233
0
    SM.getExpansionLineNumber(L);
3234
0
  return llvm::ConstantInt::get(Int32Ty, LineNo);
3235
0
}
3236
3237
0
llvm::Constant *CodeGenModule::EmitAnnotationArgs(const AnnotateAttr *Attr) {
3238
0
  ArrayRef<Expr *> Exprs = {Attr->args_begin(), Attr->args_size()};
3239
0
  if (Exprs.empty())
3240
0
    return llvm::ConstantPointerNull::get(ConstGlobalsPtrTy);
3241
3242
0
  llvm::FoldingSetNodeID ID;
3243
0
  for (Expr *E : Exprs) {
3244
0
    ID.Add(cast<clang::ConstantExpr>(E)->getAPValueResult());
3245
0
  }
3246
0
  llvm::Constant *&Lookup = AnnotationArgs[ID.ComputeHash()];
3247
0
  if (Lookup)
3248
0
    return Lookup;
3249
3250
0
  llvm::SmallVector<llvm::Constant *, 4> LLVMArgs;
3251
0
  LLVMArgs.reserve(Exprs.size());
3252
0
  ConstantEmitter ConstEmiter(*this);
3253
0
  llvm::transform(Exprs, std::back_inserter(LLVMArgs), [&](const Expr *E) {
3254
0
    const auto *CE = cast<clang::ConstantExpr>(E);
3255
0
    return ConstEmiter.emitAbstract(CE->getBeginLoc(), CE->getAPValueResult(),
3256
0
                                    CE->getType());
3257
0
  });
3258
0
  auto *Struct = llvm::ConstantStruct::getAnon(LLVMArgs);
3259
0
  auto *GV = new llvm::GlobalVariable(getModule(), Struct->getType(), true,
3260
0
                                      llvm::GlobalValue::PrivateLinkage, Struct,
3261
0
                                      ".args");
3262
0
  GV->setSection(AnnotationSection);
3263
0
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3264
3265
0
  Lookup = GV;
3266
0
  return GV;
3267
0
}
3268
3269
llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV,
3270
                                                const AnnotateAttr *AA,
3271
0
                                                SourceLocation L) {
3272
  // Get the globals for file name, annotation, and the line number.
3273
0
  llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()),
3274
0
                 *UnitGV = EmitAnnotationUnit(L),
3275
0
                 *LineNoCst = EmitAnnotationLineNo(L),
3276
0
                 *Args = EmitAnnotationArgs(AA);
3277
3278
0
  llvm::Constant *GVInGlobalsAS = GV;
3279
0
  if (GV->getAddressSpace() !=
3280
0
      getDataLayout().getDefaultGlobalsAddressSpace()) {
3281
0
    GVInGlobalsAS = llvm::ConstantExpr::getAddrSpaceCast(
3282
0
        GV,
3283
0
        llvm::PointerType::get(
3284
0
            GV->getContext(), getDataLayout().getDefaultGlobalsAddressSpace()));
3285
0
  }
3286
3287
  // Create the ConstantStruct for the global annotation.
3288
0
  llvm::Constant *Fields[] = {
3289
0
      GVInGlobalsAS, AnnoGV, UnitGV, LineNoCst, Args,
3290
0
  };
3291
0
  return llvm::ConstantStruct::getAnon(Fields);
3292
0
}
3293
3294
void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D,
3295
0
                                         llvm::GlobalValue *GV) {
3296
0
  assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute");
3297
  // Get the struct elements for these annotations.
3298
0
  for (const auto *I : D->specific_attrs<AnnotateAttr>())
3299
0
    Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation()));
3300
0
}
3301
3302
bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind, llvm::Function *Fn,
3303
0
                                       SourceLocation Loc) const {
3304
0
  const auto &NoSanitizeL = getContext().getNoSanitizeList();
3305
  // NoSanitize by function name.
3306
0
  if (NoSanitizeL.containsFunction(Kind, Fn->getName()))
3307
0
    return true;
3308
  // NoSanitize by location. Check "mainfile" prefix.
3309
0
  auto &SM = Context.getSourceManager();
3310
0
  FileEntryRef MainFile = *SM.getFileEntryRefForID(SM.getMainFileID());
3311
0
  if (NoSanitizeL.containsMainFile(Kind, MainFile.getName()))
3312
0
    return true;
3313
3314
  // Check "src" prefix.
3315
0
  if (Loc.isValid())
3316
0
    return NoSanitizeL.containsLocation(Kind, Loc);
3317
  // If location is unknown, this may be a compiler-generated function. Assume
3318
  // it's located in the main file.
3319
0
  return NoSanitizeL.containsFile(Kind, MainFile.getName());
3320
0
}
3321
3322
bool CodeGenModule::isInNoSanitizeList(SanitizerMask Kind,
3323
                                       llvm::GlobalVariable *GV,
3324
                                       SourceLocation Loc, QualType Ty,
3325
0
                                       StringRef Category) const {
3326
0
  const auto &NoSanitizeL = getContext().getNoSanitizeList();
3327
0
  if (NoSanitizeL.containsGlobal(Kind, GV->getName(), Category))
3328
0
    return true;
3329
0
  auto &SM = Context.getSourceManager();
3330
0
  if (NoSanitizeL.containsMainFile(
3331
0
          Kind, SM.getFileEntryRefForID(SM.getMainFileID())->getName(),
3332
0
          Category))
3333
0
    return true;
3334
0
  if (NoSanitizeL.containsLocation(Kind, Loc, Category))
3335
0
    return true;
3336
3337
  // Check global type.
3338
0
  if (!Ty.isNull()) {
3339
    // Drill down the array types: if global variable of a fixed type is
3340
    // not sanitized, we also don't instrument arrays of them.
3341
0
    while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr()))
3342
0
      Ty = AT->getElementType();
3343
0
    Ty = Ty.getCanonicalType().getUnqualifiedType();
3344
    // Only record types (classes, structs etc.) are ignored.
3345
0
    if (Ty->isRecordType()) {
3346
0
      std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy());
3347
0
      if (NoSanitizeL.containsType(Kind, TypeStr, Category))
3348
0
        return true;
3349
0
    }
3350
0
  }
3351
0
  return false;
3352
0
}
3353
3354
bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc,
3355
0
                                   StringRef Category) const {
3356
0
  const auto &XRayFilter = getContext().getXRayFilter();
3357
0
  using ImbueAttr = XRayFunctionFilter::ImbueAttribute;
3358
0
  auto Attr = ImbueAttr::NONE;
3359
0
  if (Loc.isValid())
3360
0
    Attr = XRayFilter.shouldImbueLocation(Loc, Category);
3361
0
  if (Attr == ImbueAttr::NONE)
3362
0
    Attr = XRayFilter.shouldImbueFunction(Fn->getName());
3363
0
  switch (Attr) {
3364
0
  case ImbueAttr::NONE:
3365
0
    return false;
3366
0
  case ImbueAttr::ALWAYS:
3367
0
    Fn->addFnAttr("function-instrument", "xray-always");
3368
0
    break;
3369
0
  case ImbueAttr::ALWAYS_ARG1:
3370
0
    Fn->addFnAttr("function-instrument", "xray-always");
3371
0
    Fn->addFnAttr("xray-log-args", "1");
3372
0
    break;
3373
0
  case ImbueAttr::NEVER:
3374
0
    Fn->addFnAttr("function-instrument", "xray-never");
3375
0
    break;
3376
0
  }
3377
0
  return true;
3378
0
}
3379
3380
ProfileList::ExclusionType
3381
CodeGenModule::isFunctionBlockedByProfileList(llvm::Function *Fn,
3382
0
                                              SourceLocation Loc) const {
3383
0
  const auto &ProfileList = getContext().getProfileList();
3384
  // If the profile list is empty, then instrument everything.
3385
0
  if (ProfileList.isEmpty())
3386
0
    return ProfileList::Allow;
3387
0
  CodeGenOptions::ProfileInstrKind Kind = getCodeGenOpts().getProfileInstr();
3388
  // First, check the function name.
3389
0
  if (auto V = ProfileList.isFunctionExcluded(Fn->getName(), Kind))
3390
0
    return *V;
3391
  // Next, check the source location.
3392
0
  if (Loc.isValid())
3393
0
    if (auto V = ProfileList.isLocationExcluded(Loc, Kind))
3394
0
      return *V;
3395
  // If location is unknown, this may be a compiler-generated function. Assume
3396
  // it's located in the main file.
3397
0
  auto &SM = Context.getSourceManager();
3398
0
  if (auto MainFile = SM.getFileEntryRefForID(SM.getMainFileID()))
3399
0
    if (auto V = ProfileList.isFileExcluded(MainFile->getName(), Kind))
3400
0
      return *V;
3401
0
  return ProfileList.getDefault(Kind);
3402
0
}
3403
3404
ProfileList::ExclusionType
3405
CodeGenModule::isFunctionBlockedFromProfileInstr(llvm::Function *Fn,
3406
0
                                                 SourceLocation Loc) const {
3407
0
  auto V = isFunctionBlockedByProfileList(Fn, Loc);
3408
0
  if (V != ProfileList::Allow)
3409
0
    return V;
3410
3411
0
  auto NumGroups = getCodeGenOpts().ProfileTotalFunctionGroups;
3412
0
  if (NumGroups > 1) {
3413
0
    auto Group = llvm::crc32(arrayRefFromStringRef(Fn->getName())) % NumGroups;
3414
0
    if (Group != getCodeGenOpts().ProfileSelectedFunctionGroup)
3415
0
      return ProfileList::Skip;
3416
0
  }
3417
0
  return ProfileList::Allow;
3418
0
}
3419
3420
0
bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) {
3421
  // Never defer when EmitAllDecls is specified.
3422
0
  if (LangOpts.EmitAllDecls)
3423
0
    return true;
3424
3425
0
  const auto *VD = dyn_cast<VarDecl>(Global);
3426
0
  if (VD &&
3427
0
      ((CodeGenOpts.KeepPersistentStorageVariables &&
3428
0
        (VD->getStorageDuration() == SD_Static ||
3429
0
         VD->getStorageDuration() == SD_Thread)) ||
3430
0
       (CodeGenOpts.KeepStaticConsts && VD->getStorageDuration() == SD_Static &&
3431
0
        VD->getType().isConstQualified())))
3432
0
    return true;
3433
3434
0
  return getContext().DeclMustBeEmitted(Global);
3435
0
}
3436
3437
0
bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) {
3438
  // In OpenMP 5.0 variables and function may be marked as
3439
  // device_type(host/nohost) and we should not emit them eagerly unless we sure
3440
  // that they must be emitted on the host/device. To be sure we need to have
3441
  // seen a declare target with an explicit mentioning of the function, we know
3442
  // we have if the level of the declare target attribute is -1. Note that we
3443
  // check somewhere else if we should emit this at all.
3444
0
  if (LangOpts.OpenMP >= 50 && !LangOpts.OpenMPSimd) {
3445
0
    std::optional<OMPDeclareTargetDeclAttr *> ActiveAttr =
3446
0
        OMPDeclareTargetDeclAttr::getActiveAttr(Global);
3447
0
    if (!ActiveAttr || (*ActiveAttr)->getLevel() != (unsigned)-1)
3448
0
      return false;
3449
0
  }
3450
3451
0
  if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3452
0
    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
3453
      // Implicit template instantiations may change linkage if they are later
3454
      // explicitly instantiated, so they should not be emitted eagerly.
3455
0
      return false;
3456
0
  }
3457
0
  if (const auto *VD = dyn_cast<VarDecl>(Global)) {
3458
0
    if (Context.getInlineVariableDefinitionKind(VD) ==
3459
0
        ASTContext::InlineVariableDefinitionKind::WeakUnknown)
3460
      // A definition of an inline constexpr static data member may change
3461
      // linkage later if it's redeclared outside the class.
3462
0
      return false;
3463
0
    if (CXX20ModuleInits && VD->getOwningModule() &&
3464
0
        !VD->getOwningModule()->isModuleMapModule()) {
3465
      // For CXX20, module-owned initializers need to be deferred, since it is
3466
      // not known at this point if they will be run for the current module or
3467
      // as part of the initializer for an imported one.
3468
0
      return false;
3469
0
    }
3470
0
  }
3471
  // If OpenMP is enabled and threadprivates must be generated like TLS, delay
3472
  // codegen for global variables, because they may be marked as threadprivate.
3473
0
  if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS &&
3474
0
      getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) &&
3475
0
      !Global->getType().isConstantStorage(getContext(), false, false) &&
3476
0
      !OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(Global))
3477
0
    return false;
3478
3479
0
  return true;
3480
0
}
3481
3482
0
ConstantAddress CodeGenModule::GetAddrOfMSGuidDecl(const MSGuidDecl *GD) {
3483
0
  StringRef Name = getMangledName(GD);
3484
3485
  // The UUID descriptor should be pointer aligned.
3486
0
  CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes);
3487
3488
  // Look for an existing global.
3489
0
  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3490
0
    return ConstantAddress(GV, GV->getValueType(), Alignment);
3491
3492
0
  ConstantEmitter Emitter(*this);
3493
0
  llvm::Constant *Init;
3494
3495
0
  APValue &V = GD->getAsAPValue();
3496
0
  if (!V.isAbsent()) {
3497
    // If possible, emit the APValue version of the initializer. In particular,
3498
    // this gets the type of the constant right.
3499
0
    Init = Emitter.emitForInitializer(
3500
0
        GD->getAsAPValue(), GD->getType().getAddressSpace(), GD->getType());
3501
0
  } else {
3502
    // As a fallback, directly construct the constant.
3503
    // FIXME: This may get padding wrong under esoteric struct layout rules.
3504
    // MSVC appears to create a complete type 'struct __s_GUID' that it
3505
    // presumably uses to represent these constants.
3506
0
    MSGuidDecl::Parts Parts = GD->getParts();
3507
0
    llvm::Constant *Fields[4] = {
3508
0
        llvm::ConstantInt::get(Int32Ty, Parts.Part1),
3509
0
        llvm::ConstantInt::get(Int16Ty, Parts.Part2),
3510
0
        llvm::ConstantInt::get(Int16Ty, Parts.Part3),
3511
0
        llvm::ConstantDataArray::getRaw(
3512
0
            StringRef(reinterpret_cast<char *>(Parts.Part4And5), 8), 8,
3513
0
            Int8Ty)};
3514
0
    Init = llvm::ConstantStruct::getAnon(Fields);
3515
0
  }
3516
3517
0
  auto *GV = new llvm::GlobalVariable(
3518
0
      getModule(), Init->getType(),
3519
0
      /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name);
3520
0
  if (supportsCOMDAT())
3521
0
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3522
0
  setDSOLocal(GV);
3523
3524
0
  if (!V.isAbsent()) {
3525
0
    Emitter.finalize(GV);
3526
0
    return ConstantAddress(GV, GV->getValueType(), Alignment);
3527
0
  }
3528
3529
0
  llvm::Type *Ty = getTypes().ConvertTypeForMem(GD->getType());
3530
0
  return ConstantAddress(GV, Ty, Alignment);
3531
0
}
3532
3533
ConstantAddress CodeGenModule::GetAddrOfUnnamedGlobalConstantDecl(
3534
0
    const UnnamedGlobalConstantDecl *GCD) {
3535
0
  CharUnits Alignment = getContext().getTypeAlignInChars(GCD->getType());
3536
3537
0
  llvm::GlobalVariable **Entry = nullptr;
3538
0
  Entry = &UnnamedGlobalConstantDeclMap[GCD];
3539
0
  if (*Entry)
3540
0
    return ConstantAddress(*Entry, (*Entry)->getValueType(), Alignment);
3541
3542
0
  ConstantEmitter Emitter(*this);
3543
0
  llvm::Constant *Init;
3544
3545
0
  const APValue &V = GCD->getValue();
3546
3547
0
  assert(!V.isAbsent());
3548
0
  Init = Emitter.emitForInitializer(V, GCD->getType().getAddressSpace(),
3549
0
                                    GCD->getType());
3550
3551
0
  auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3552
0
                                      /*isConstant=*/true,
3553
0
                                      llvm::GlobalValue::PrivateLinkage, Init,
3554
0
                                      ".constant");
3555
0
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
3556
0
  GV->setAlignment(Alignment.getAsAlign());
3557
3558
0
  Emitter.finalize(GV);
3559
3560
0
  *Entry = GV;
3561
0
  return ConstantAddress(GV, GV->getValueType(), Alignment);
3562
0
}
3563
3564
ConstantAddress CodeGenModule::GetAddrOfTemplateParamObject(
3565
0
    const TemplateParamObjectDecl *TPO) {
3566
0
  StringRef Name = getMangledName(TPO);
3567
0
  CharUnits Alignment = getNaturalTypeAlignment(TPO->getType());
3568
3569
0
  if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name))
3570
0
    return ConstantAddress(GV, GV->getValueType(), Alignment);
3571
3572
0
  ConstantEmitter Emitter(*this);
3573
0
  llvm::Constant *Init = Emitter.emitForInitializer(
3574
0
        TPO->getValue(), TPO->getType().getAddressSpace(), TPO->getType());
3575
3576
0
  if (!Init) {
3577
0
    ErrorUnsupported(TPO, "template parameter object");
3578
0
    return ConstantAddress::invalid();
3579
0
  }
3580
3581
0
  llvm::GlobalValue::LinkageTypes Linkage =
3582
0
      isExternallyVisible(TPO->getLinkageAndVisibility().getLinkage())
3583
0
          ? llvm::GlobalValue::LinkOnceODRLinkage
3584
0
          : llvm::GlobalValue::InternalLinkage;
3585
0
  auto *GV = new llvm::GlobalVariable(getModule(), Init->getType(),
3586
0
                                      /*isConstant=*/true, Linkage, Init, Name);
3587
0
  setGVProperties(GV, TPO);
3588
0
  if (supportsCOMDAT())
3589
0
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
3590
0
  Emitter.finalize(GV);
3591
3592
0
    return ConstantAddress(GV, GV->getValueType(), Alignment);
3593
0
}
3594
3595
0
ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) {
3596
0
  const AliasAttr *AA = VD->getAttr<AliasAttr>();
3597
0
  assert(AA && "No alias?");
3598
3599
0
  CharUnits Alignment = getContext().getDeclAlign(VD);
3600
0
  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType());
3601
3602
  // See if there is already something with the target's name in the module.
3603
0
  llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee());
3604
0
  if (Entry)
3605
0
    return ConstantAddress(Entry, DeclTy, Alignment);
3606
3607
0
  llvm::Constant *Aliasee;
3608
0
  if (isa<llvm::FunctionType>(DeclTy))
3609
0
    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy,
3610
0
                                      GlobalDecl(cast<FunctionDecl>(VD)),
3611
0
                                      /*ForVTable=*/false);
3612
0
  else
3613
0
    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
3614
0
                                    nullptr);
3615
3616
0
  auto *F = cast<llvm::GlobalValue>(Aliasee);
3617
0
  F->setLinkage(llvm::Function::ExternalWeakLinkage);
3618
0
  WeakRefReferences.insert(F);
3619
3620
0
  return ConstantAddress(Aliasee, DeclTy, Alignment);
3621
0
}
3622
3623
0
template <typename AttrT> static bool hasImplicitAttr(const ValueDecl *D) {
3624
0
  if (!D)
3625
0
    return false;
3626
0
  if (auto *A = D->getAttr<AttrT>())
3627
0
    return A->isImplicit();
3628
0
  return D->isImplicit();
3629
0
}
Unexecuted instantiation: CodeGenModule.cpp:bool hasImplicitAttr<clang::CUDAHostAttr>(clang::ValueDecl const*)
Unexecuted instantiation: CodeGenModule.cpp:bool hasImplicitAttr<clang::CUDADeviceAttr>(clang::ValueDecl const*)
3630
3631
0
void CodeGenModule::EmitGlobal(GlobalDecl GD) {
3632
0
  const auto *Global = cast<ValueDecl>(GD.getDecl());
3633
3634
  // Weak references don't produce any output by themselves.
3635
0
  if (Global->hasAttr<WeakRefAttr>())
3636
0
    return;
3637
3638
  // If this is an alias definition (which otherwise looks like a declaration)
3639
  // emit it now.
3640
0
  if (Global->hasAttr<AliasAttr>())
3641
0
    return EmitAliasDefinition(GD);
3642
3643
  // IFunc like an alias whose value is resolved at runtime by calling resolver.
3644
0
  if (Global->hasAttr<IFuncAttr>())
3645
0
    return emitIFuncDefinition(GD);
3646
3647
  // If this is a cpu_dispatch multiversion function, emit the resolver.
3648
0
  if (Global->hasAttr<CPUDispatchAttr>())
3649
0
    return emitCPUDispatchDefinition(GD);
3650
3651
  // If this is CUDA, be selective about which declarations we emit.
3652
  // Non-constexpr non-lambda implicit host device functions are not emitted
3653
  // unless they are used on device side.
3654
0
  if (LangOpts.CUDA) {
3655
0
    if (LangOpts.CUDAIsDevice) {
3656
0
      const auto *FD = dyn_cast<FunctionDecl>(Global);
3657
0
      if ((!Global->hasAttr<CUDADeviceAttr>() ||
3658
0
           (LangOpts.OffloadImplicitHostDeviceTemplates && FD &&
3659
0
            hasImplicitAttr<CUDAHostAttr>(FD) &&
3660
0
            hasImplicitAttr<CUDADeviceAttr>(FD) && !FD->isConstexpr() &&
3661
0
            !isLambdaCallOperator(FD) &&
3662
0
            !getContext().CUDAImplicitHostDeviceFunUsedByDevice.count(FD))) &&
3663
0
          !Global->hasAttr<CUDAGlobalAttr>() &&
3664
0
          !Global->hasAttr<CUDAConstantAttr>() &&
3665
0
          !Global->hasAttr<CUDASharedAttr>() &&
3666
0
          !Global->getType()->isCUDADeviceBuiltinSurfaceType() &&
3667
0
          !Global->getType()->isCUDADeviceBuiltinTextureType() &&
3668
0
          !(LangOpts.HIPStdPar && isa<FunctionDecl>(Global) &&
3669
0
            !Global->hasAttr<CUDAHostAttr>()))
3670
0
        return;
3671
0
    } else {
3672
      // We need to emit host-side 'shadows' for all global
3673
      // device-side variables because the CUDA runtime needs their
3674
      // size and host-side address in order to provide access to
3675
      // their device-side incarnations.
3676
3677
      // So device-only functions are the only things we skip.
3678
0
      if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() &&
3679
0
          Global->hasAttr<CUDADeviceAttr>())
3680
0
        return;
3681
3682
0
      assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) &&
3683
0
             "Expected Variable or Function");
3684
0
    }
3685
0
  }
3686
3687
0
  if (LangOpts.OpenMP) {
3688
    // If this is OpenMP, check if it is legal to emit this global normally.
3689
0
    if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD))
3690
0
      return;
3691
0
    if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) {
3692
0
      if (MustBeEmitted(Global))
3693
0
        EmitOMPDeclareReduction(DRD);
3694
0
      return;
3695
0
    }
3696
0
    if (auto *DMD = dyn_cast<OMPDeclareMapperDecl>(Global)) {
3697
0
      if (MustBeEmitted(Global))
3698
0
        EmitOMPDeclareMapper(DMD);
3699
0
      return;
3700
0
    }
3701
0
  }
3702
3703
  // Ignore declarations, they will be emitted on their first use.
3704
0
  if (const auto *FD = dyn_cast<FunctionDecl>(Global)) {
3705
    // Update deferred annotations with the latest declaration if the function
3706
    // function was already used or defined.
3707
0
    if (FD->hasAttr<AnnotateAttr>()) {
3708
0
      StringRef MangledName = getMangledName(GD);
3709
0
      if (GetGlobalValue(MangledName))
3710
0
        DeferredAnnotations[MangledName] = FD;
3711
0
    }
3712
3713
    // Forward declarations are emitted lazily on first use.
3714
0
    if (!FD->doesThisDeclarationHaveABody()) {
3715
0
      if (!FD->doesDeclarationForceExternallyVisibleDefinition())
3716
0
        return;
3717
3718
0
      StringRef MangledName = getMangledName(GD);
3719
3720
      // Compute the function info and LLVM type.
3721
0
      const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
3722
0
      llvm::Type *Ty = getTypes().GetFunctionType(FI);
3723
3724
0
      GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false,
3725
0
                              /*DontDefer=*/false);
3726
0
      return;
3727
0
    }
3728
0
  } else {
3729
0
    const auto *VD = cast<VarDecl>(Global);
3730
0
    assert(VD->isFileVarDecl() && "Cannot emit local var decl as global.");
3731
0
    if (VD->isThisDeclarationADefinition() != VarDecl::Definition &&
3732
0
        !Context.isMSStaticDataMemberInlineDefinition(VD)) {
3733
0
      if (LangOpts.OpenMP) {
3734
        // Emit declaration of the must-be-emitted declare target variable.
3735
0
        if (std::optional<OMPDeclareTargetDeclAttr::MapTypeTy> Res =
3736
0
                OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD)) {
3737
3738
          // If this variable has external storage and doesn't require special
3739
          // link handling we defer to its canonical definition.
3740
0
          if (VD->hasExternalStorage() &&
3741
0
              Res != OMPDeclareTargetDeclAttr::MT_Link)
3742
0
            return;
3743
3744
0
          bool UnifiedMemoryEnabled =
3745
0
              getOpenMPRuntime().hasRequiresUnifiedSharedMemory();
3746
0
          if ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3747
0
               *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3748
0
              !UnifiedMemoryEnabled) {
3749
0
            (void)GetAddrOfGlobalVar(VD);
3750
0
          } else {
3751
0
            assert(((*Res == OMPDeclareTargetDeclAttr::MT_Link) ||
3752
0
                    ((*Res == OMPDeclareTargetDeclAttr::MT_To ||
3753
0
                      *Res == OMPDeclareTargetDeclAttr::MT_Enter) &&
3754
0
                     UnifiedMemoryEnabled)) &&
3755
0
                   "Link clause or to clause with unified memory expected.");
3756
0
            (void)getOpenMPRuntime().getAddrOfDeclareTargetVar(VD);
3757
0
          }
3758
3759
0
          return;
3760
0
        }
3761
0
      }
3762
      // If this declaration may have caused an inline variable definition to
3763
      // change linkage, make sure that it's emitted.
3764
0
      if (Context.getInlineVariableDefinitionKind(VD) ==
3765
0
          ASTContext::InlineVariableDefinitionKind::Strong)
3766
0
        GetAddrOfGlobalVar(VD);
3767
0
      return;
3768
0
    }
3769
0
  }
3770
3771
  // Defer code generation to first use when possible, e.g. if this is an inline
3772
  // function. If the global must always be emitted, do it eagerly if possible
3773
  // to benefit from cache locality.
3774
0
  if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) {
3775
    // Emit the definition if it can't be deferred.
3776
0
    EmitGlobalDefinition(GD);
3777
0
    addEmittedDeferredDecl(GD);
3778
0
    return;
3779
0
  }
3780
3781
  // If we're deferring emission of a C++ variable with an
3782
  // initializer, remember the order in which it appeared in the file.
3783
0
  if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) &&
3784
0
      cast<VarDecl>(Global)->hasInit()) {
3785
0
    DelayedCXXInitPosition[Global] = CXXGlobalInits.size();
3786
0
    CXXGlobalInits.push_back(nullptr);
3787
0
  }
3788
3789
0
  StringRef MangledName = getMangledName(GD);
3790
0
  if (GetGlobalValue(MangledName) != nullptr) {
3791
    // The value has already been used and should therefore be emitted.
3792
0
    addDeferredDeclToEmit(GD);
3793
0
  } else if (MustBeEmitted(Global)) {
3794
    // The value must be emitted, but cannot be emitted eagerly.
3795
0
    assert(!MayBeEmittedEagerly(Global));
3796
0
    addDeferredDeclToEmit(GD);
3797
0
  } else {
3798
    // Otherwise, remember that we saw a deferred decl with this name.  The
3799
    // first use of the mangled name will cause it to move into
3800
    // DeferredDeclsToEmit.
3801
0
    DeferredDecls[MangledName] = GD;
3802
0
  }
3803
0
}
3804
3805
// Check if T is a class type with a destructor that's not dllimport.
3806
0
static bool HasNonDllImportDtor(QualType T) {
3807
0
  if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>())
3808
0
    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()))
3809
0
      if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>())
3810
0
        return true;
3811
3812
0
  return false;
3813
0
}
3814
3815
namespace {
3816
  struct FunctionIsDirectlyRecursive
3817
      : public ConstStmtVisitor<FunctionIsDirectlyRecursive, bool> {
3818
    const StringRef Name;
3819
    const Builtin::Context &BI;
3820
    FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C)
3821
0
        : Name(N), BI(C) {}
3822
3823
0
    bool VisitCallExpr(const CallExpr *E) {
3824
0
      const FunctionDecl *FD = E->getDirectCallee();
3825
0
      if (!FD)
3826
0
        return false;
3827
0
      AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3828
0
      if (Attr && Name == Attr->getLabel())
3829
0
        return true;
3830
0
      unsigned BuiltinID = FD->getBuiltinID();
3831
0
      if (!BuiltinID || !BI.isLibFunction(BuiltinID))
3832
0
        return false;
3833
0
      StringRef BuiltinName = BI.getName(BuiltinID);
3834
0
      if (BuiltinName.starts_with("__builtin_") &&
3835
0
          Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) {
3836
0
        return true;
3837
0
      }
3838
0
      return false;
3839
0
    }
3840
3841
0
    bool VisitStmt(const Stmt *S) {
3842
0
      for (const Stmt *Child : S->children())
3843
0
        if (Child && this->Visit(Child))
3844
0
          return true;
3845
0
      return false;
3846
0
    }
3847
  };
3848
3849
  // Make sure we're not referencing non-imported vars or functions.
3850
  struct DLLImportFunctionVisitor
3851
      : public RecursiveASTVisitor<DLLImportFunctionVisitor> {
3852
    bool SafeToInline = true;
3853
3854
0
    bool shouldVisitImplicitCode() const { return true; }
3855
3856
0
    bool VisitVarDecl(VarDecl *VD) {
3857
0
      if (VD->getTLSKind()) {
3858
        // A thread-local variable cannot be imported.
3859
0
        SafeToInline = false;
3860
0
        return SafeToInline;
3861
0
      }
3862
3863
      // A variable definition might imply a destructor call.
3864
0
      if (VD->isThisDeclarationADefinition())
3865
0
        SafeToInline = !HasNonDllImportDtor(VD->getType());
3866
3867
0
      return SafeToInline;
3868
0
    }
3869
3870
0
    bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) {
3871
0
      if (const auto *D = E->getTemporary()->getDestructor())
3872
0
        SafeToInline = D->hasAttr<DLLImportAttr>();
3873
0
      return SafeToInline;
3874
0
    }
3875
3876
0
    bool VisitDeclRefExpr(DeclRefExpr *E) {
3877
0
      ValueDecl *VD = E->getDecl();
3878
0
      if (isa<FunctionDecl>(VD))
3879
0
        SafeToInline = VD->hasAttr<DLLImportAttr>();
3880
0
      else if (VarDecl *V = dyn_cast<VarDecl>(VD))
3881
0
        SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>();
3882
0
      return SafeToInline;
3883
0
    }
3884
3885
0
    bool VisitCXXConstructExpr(CXXConstructExpr *E) {
3886
0
      SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>();
3887
0
      return SafeToInline;
3888
0
    }
3889
3890
0
    bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) {
3891
0
      CXXMethodDecl *M = E->getMethodDecl();
3892
0
      if (!M) {
3893
        // Call through a pointer to member function. This is safe to inline.
3894
0
        SafeToInline = true;
3895
0
      } else {
3896
0
        SafeToInline = M->hasAttr<DLLImportAttr>();
3897
0
      }
3898
0
      return SafeToInline;
3899
0
    }
3900
3901
0
    bool VisitCXXDeleteExpr(CXXDeleteExpr *E) {
3902
0
      SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>();
3903
0
      return SafeToInline;
3904
0
    }
3905
3906
0
    bool VisitCXXNewExpr(CXXNewExpr *E) {
3907
0
      SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>();
3908
0
      return SafeToInline;
3909
0
    }
3910
  };
3911
}
3912
3913
// isTriviallyRecursive - Check if this function calls another
3914
// decl that, because of the asm attribute or the other decl being a builtin,
3915
// ends up pointing to itself.
3916
bool
3917
0
CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) {
3918
0
  StringRef Name;
3919
0
  if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) {
3920
    // asm labels are a special kind of mangling we have to support.
3921
0
    AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>();
3922
0
    if (!Attr)
3923
0
      return false;
3924
0
    Name = Attr->getLabel();
3925
0
  } else {
3926
0
    Name = FD->getName();
3927
0
  }
3928
3929
0
  FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo);
3930
0
  const Stmt *Body = FD->getBody();
3931
0
  return Body ? Walker.Visit(Body) : false;
3932
0
}
3933
3934
0
bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) {
3935
0
  if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage)
3936
0
    return true;
3937
3938
0
  const auto *F = cast<FunctionDecl>(GD.getDecl());
3939
0
  if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>())
3940
0
    return false;
3941
3942
  // We don't import function bodies from other named module units since that
3943
  // behavior may break ABI compatibility of the current unit.
3944
0
  if (const Module *M = F->getOwningModule();
3945
0
      M && M->getTopLevelModule()->isNamedModule() &&
3946
0
      getContext().getCurrentNamedModule() != M->getTopLevelModule() &&
3947
0
      !F->hasAttr<AlwaysInlineAttr>())
3948
0
    return false;
3949
3950
0
  if (F->hasAttr<NoInlineAttr>())
3951
0
    return false;
3952
3953
0
  if (F->hasAttr<DLLImportAttr>() && !F->hasAttr<AlwaysInlineAttr>()) {
3954
    // Check whether it would be safe to inline this dllimport function.
3955
0
    DLLImportFunctionVisitor Visitor;
3956
0
    Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F));
3957
0
    if (!Visitor.SafeToInline)
3958
0
      return false;
3959
3960
0
    if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) {
3961
      // Implicit destructor invocations aren't captured in the AST, so the
3962
      // check above can't see them. Check for them manually here.
3963
0
      for (const Decl *Member : Dtor->getParent()->decls())
3964
0
        if (isa<FieldDecl>(Member))
3965
0
          if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType()))
3966
0
            return false;
3967
0
      for (const CXXBaseSpecifier &B : Dtor->getParent()->bases())
3968
0
        if (HasNonDllImportDtor(B.getType()))
3969
0
          return false;
3970
0
    }
3971
0
  }
3972
3973
  // Inline builtins declaration must be emitted. They often are fortified
3974
  // functions.
3975
0
  if (F->isInlineBuiltinDeclaration())
3976
0
    return true;
3977
3978
  // PR9614. Avoid cases where the source code is lying to us. An available
3979
  // externally function should have an equivalent function somewhere else,
3980
  // but a function that calls itself through asm label/`__builtin_` trickery is
3981
  // clearly not equivalent to the real implementation.
3982
  // This happens in glibc's btowc and in some configure checks.
3983
0
  return !isTriviallyRecursive(F);
3984
0
}
3985
3986
0
bool CodeGenModule::shouldOpportunisticallyEmitVTables() {
3987
0
  return CodeGenOpts.OptimizationLevel > 0;
3988
0
}
3989
3990
void CodeGenModule::EmitMultiVersionFunctionDefinition(GlobalDecl GD,
3991
0
                                                       llvm::GlobalValue *GV) {
3992
0
  const auto *FD = cast<FunctionDecl>(GD.getDecl());
3993
3994
0
  if (FD->isCPUSpecificMultiVersion()) {
3995
0
    auto *Spec = FD->getAttr<CPUSpecificAttr>();
3996
0
    for (unsigned I = 0; I < Spec->cpus_size(); ++I)
3997
0
      EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
3998
0
  } else if (FD->isTargetClonesMultiVersion()) {
3999
0
    auto *Clone = FD->getAttr<TargetClonesAttr>();
4000
0
    for (unsigned I = 0; I < Clone->featuresStrs_size(); ++I)
4001
0
      if (Clone->isFirstOfVersion(I))
4002
0
        EmitGlobalFunctionDefinition(GD.getWithMultiVersionIndex(I), nullptr);
4003
    // Ensure that the resolver function is also emitted.
4004
0
    GetOrCreateMultiVersionResolver(GD);
4005
0
  } else
4006
0
    EmitGlobalFunctionDefinition(GD, GV);
4007
0
}
4008
4009
0
void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) {
4010
0
  const auto *D = cast<ValueDecl>(GD.getDecl());
4011
4012
0
  PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(),
4013
0
                                 Context.getSourceManager(),
4014
0
                                 "Generating code for declaration");
4015
4016
0
  if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
4017
    // At -O0, don't generate IR for functions with available_externally
4018
    // linkage.
4019
0
    if (!shouldEmitFunction(GD))
4020
0
      return;
4021
4022
0
    llvm::TimeTraceScope TimeScope("CodeGen Function", [&]() {
4023
0
      std::string Name;
4024
0
      llvm::raw_string_ostream OS(Name);
4025
0
      FD->getNameForDiagnostic(OS, getContext().getPrintingPolicy(),
4026
0
                               /*Qualified=*/true);
4027
0
      return Name;
4028
0
    });
4029
4030
0
    if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) {
4031
      // Make sure to emit the definition(s) before we emit the thunks.
4032
      // This is necessary for the generation of certain thunks.
4033
0
      if (isa<CXXConstructorDecl>(Method) || isa<CXXDestructorDecl>(Method))
4034
0
        ABI->emitCXXStructor(GD);
4035
0
      else if (FD->isMultiVersion())
4036
0
        EmitMultiVersionFunctionDefinition(GD, GV);
4037
0
      else
4038
0
        EmitGlobalFunctionDefinition(GD, GV);
4039
4040
0
      if (Method->isVirtual())
4041
0
        getVTables().EmitThunks(GD);
4042
4043
0
      return;
4044
0
    }
4045
4046
0
    if (FD->isMultiVersion())
4047
0
      return EmitMultiVersionFunctionDefinition(GD, GV);
4048
0
    return EmitGlobalFunctionDefinition(GD, GV);
4049
0
  }
4050
4051
0
  if (const auto *VD = dyn_cast<VarDecl>(D))
4052
0
    return EmitGlobalVarDefinition(VD, !VD->hasDefinition());
4053
4054
0
  llvm_unreachable("Invalid argument to EmitGlobalDefinition()");
4055
0
}
4056
4057
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
4058
                                                      llvm::Function *NewFn);
4059
4060
static unsigned
4061
TargetMVPriority(const TargetInfo &TI,
4062
0
                 const CodeGenFunction::MultiVersionResolverOption &RO) {
4063
0
  unsigned Priority = 0;
4064
0
  unsigned NumFeatures = 0;
4065
0
  for (StringRef Feat : RO.Conditions.Features) {
4066
0
    Priority = std::max(Priority, TI.multiVersionSortPriority(Feat));
4067
0
    NumFeatures++;
4068
0
  }
4069
4070
0
  if (!RO.Conditions.Architecture.empty())
4071
0
    Priority = std::max(
4072
0
        Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture));
4073
4074
0
  Priority += TI.multiVersionFeatureCost() * NumFeatures;
4075
4076
0
  return Priority;
4077
0
}
4078
4079
// Multiversion functions should be at most 'WeakODRLinkage' so that a different
4080
// TU can forward declare the function without causing problems.  Particularly
4081
// in the cases of CPUDispatch, this causes issues. This also makes sure we
4082
// work with internal linkage functions, so that the same function name can be
4083
// used with internal linkage in multiple TUs.
4084
llvm::GlobalValue::LinkageTypes getMultiversionLinkage(CodeGenModule &CGM,
4085
0
                                                       GlobalDecl GD) {
4086
0
  const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
4087
0
  if (FD->getFormalLinkage() == Linkage::Internal)
4088
0
    return llvm::GlobalValue::InternalLinkage;
4089
0
  return llvm::GlobalValue::WeakODRLinkage;
4090
0
}
4091
4092
0
void CodeGenModule::emitMultiVersionFunctions() {
4093
0
  std::vector<GlobalDecl> MVFuncsToEmit;
4094
0
  MultiVersionFuncs.swap(MVFuncsToEmit);
4095
0
  for (GlobalDecl GD : MVFuncsToEmit) {
4096
0
    const auto *FD = cast<FunctionDecl>(GD.getDecl());
4097
0
    assert(FD && "Expected a FunctionDecl");
4098
4099
0
    SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4100
0
    if (FD->isTargetMultiVersion()) {
4101
0
      getContext().forEachMultiversionedFunctionVersion(
4102
0
          FD, [this, &GD, &Options](const FunctionDecl *CurFD) {
4103
0
            GlobalDecl CurGD{
4104
0
                (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)};
4105
0
            StringRef MangledName = getMangledName(CurGD);
4106
0
            llvm::Constant *Func = GetGlobalValue(MangledName);
4107
0
            if (!Func) {
4108
0
              if (CurFD->isDefined()) {
4109
0
                EmitGlobalFunctionDefinition(CurGD, nullptr);
4110
0
                Func = GetGlobalValue(MangledName);
4111
0
              } else {
4112
0
                const CGFunctionInfo &FI =
4113
0
                    getTypes().arrangeGlobalDeclaration(GD);
4114
0
                llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4115
0
                Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4116
0
                                         /*DontDefer=*/false, ForDefinition);
4117
0
              }
4118
0
              assert(Func && "This should have just been created");
4119
0
            }
4120
0
            if (CurFD->getMultiVersionKind() == MultiVersionKind::Target) {
4121
0
              const auto *TA = CurFD->getAttr<TargetAttr>();
4122
0
              llvm::SmallVector<StringRef, 8> Feats;
4123
0
              TA->getAddedFeatures(Feats);
4124
0
              Options.emplace_back(cast<llvm::Function>(Func),
4125
0
                                   TA->getArchitecture(), Feats);
4126
0
            } else {
4127
0
              const auto *TVA = CurFD->getAttr<TargetVersionAttr>();
4128
0
              llvm::SmallVector<StringRef, 8> Feats;
4129
0
              TVA->getFeatures(Feats);
4130
0
              Options.emplace_back(cast<llvm::Function>(Func),
4131
0
                                   /*Architecture*/ "", Feats);
4132
0
            }
4133
0
          });
4134
0
    } else if (FD->isTargetClonesMultiVersion()) {
4135
0
      const auto *TC = FD->getAttr<TargetClonesAttr>();
4136
0
      for (unsigned VersionIndex = 0; VersionIndex < TC->featuresStrs_size();
4137
0
           ++VersionIndex) {
4138
0
        if (!TC->isFirstOfVersion(VersionIndex))
4139
0
          continue;
4140
0
        GlobalDecl CurGD{(FD->isDefined() ? FD->getDefinition() : FD),
4141
0
                         VersionIndex};
4142
0
        StringRef Version = TC->getFeatureStr(VersionIndex);
4143
0
        StringRef MangledName = getMangledName(CurGD);
4144
0
        llvm::Constant *Func = GetGlobalValue(MangledName);
4145
0
        if (!Func) {
4146
0
          if (FD->isDefined()) {
4147
0
            EmitGlobalFunctionDefinition(CurGD, nullptr);
4148
0
            Func = GetGlobalValue(MangledName);
4149
0
          } else {
4150
0
            const CGFunctionInfo &FI =
4151
0
                getTypes().arrangeGlobalDeclaration(CurGD);
4152
0
            llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4153
0
            Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false,
4154
0
                                     /*DontDefer=*/false, ForDefinition);
4155
0
          }
4156
0
          assert(Func && "This should have just been created");
4157
0
        }
4158
4159
0
        StringRef Architecture;
4160
0
        llvm::SmallVector<StringRef, 1> Feature;
4161
4162
0
        if (getTarget().getTriple().isAArch64()) {
4163
0
          if (Version != "default") {
4164
0
            llvm::SmallVector<StringRef, 8> VerFeats;
4165
0
            Version.split(VerFeats, "+");
4166
0
            for (auto &CurFeat : VerFeats)
4167
0
              Feature.push_back(CurFeat.trim());
4168
0
          }
4169
0
        } else {
4170
0
          if (Version.starts_with("arch="))
4171
0
            Architecture = Version.drop_front(sizeof("arch=") - 1);
4172
0
          else if (Version != "default")
4173
0
            Feature.push_back(Version);
4174
0
        }
4175
4176
0
        Options.emplace_back(cast<llvm::Function>(Func), Architecture, Feature);
4177
0
      }
4178
0
    } else {
4179
0
      assert(0 && "Expected a target or target_clones multiversion function");
4180
0
      continue;
4181
0
    }
4182
4183
0
    llvm::Constant *ResolverConstant = GetOrCreateMultiVersionResolver(GD);
4184
0
    if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(ResolverConstant)) {
4185
0
      ResolverConstant = IFunc->getResolver();
4186
      // In Aarch64, default versions of multiversioned functions are mangled to
4187
      // their 'normal' assembly name. This deviates from other targets which
4188
      // append a '.default' string. As a result we need to continue appending
4189
      // .ifunc in Aarch64.
4190
      // FIXME: Should Aarch64 mangling for 'default' multiversion function and
4191
      // in turn ifunc function match that of other targets?
4192
0
      if (FD->isTargetClonesMultiVersion() &&
4193
0
          !getTarget().getTriple().isAArch64()) {
4194
0
        const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4195
0
        llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4196
0
        std::string MangledName = getMangledNameImpl(
4197
0
            *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4198
        // In prior versions of Clang, the mangling for ifuncs incorrectly
4199
        // included an .ifunc suffix. This alias is generated for backward
4200
        // compatibility. It is deprecated, and may be removed in the future.
4201
0
        auto *Alias = llvm::GlobalAlias::create(
4202
0
            DeclTy, 0, getMultiversionLinkage(*this, GD),
4203
0
            MangledName + ".ifunc", IFunc, &getModule());
4204
0
        SetCommonAttributes(FD, Alias);
4205
0
      }
4206
0
    }
4207
0
    llvm::Function *ResolverFunc = cast<llvm::Function>(ResolverConstant);
4208
4209
0
    ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4210
4211
0
    if (!ResolverFunc->hasLocalLinkage() && supportsCOMDAT())
4212
0
      ResolverFunc->setComdat(
4213
0
          getModule().getOrInsertComdat(ResolverFunc->getName()));
4214
4215
0
    const TargetInfo &TI = getTarget();
4216
0
    llvm::stable_sort(
4217
0
        Options, [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS,
4218
0
                       const CodeGenFunction::MultiVersionResolverOption &RHS) {
4219
0
          return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS);
4220
0
        });
4221
0
    CodeGenFunction CGF(*this);
4222
0
    CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4223
0
  }
4224
4225
  // Ensure that any additions to the deferred decls list caused by emitting a
4226
  // variant are emitted.  This can happen when the variant itself is inline and
4227
  // calls a function without linkage.
4228
0
  if (!MVFuncsToEmit.empty())
4229
0
    EmitDeferred();
4230
4231
  // Ensure that any additions to the multiversion funcs list from either the
4232
  // deferred decls or the multiversion functions themselves are emitted.
4233
0
  if (!MultiVersionFuncs.empty())
4234
0
    emitMultiVersionFunctions();
4235
0
}
4236
4237
0
void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) {
4238
0
  const auto *FD = cast<FunctionDecl>(GD.getDecl());
4239
0
  assert(FD && "Not a FunctionDecl?");
4240
0
  assert(FD->isCPUDispatchMultiVersion() && "Not a multiversion function?");
4241
0
  const auto *DD = FD->getAttr<CPUDispatchAttr>();
4242
0
  assert(DD && "Not a cpu_dispatch Function?");
4243
4244
0
  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4245
0
  llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4246
4247
0
  StringRef ResolverName = getMangledName(GD);
4248
0
  UpdateMultiVersionNames(GD, FD, ResolverName);
4249
4250
0
  llvm::Type *ResolverType;
4251
0
  GlobalDecl ResolverGD;
4252
0
  if (getTarget().supportsIFunc()) {
4253
0
    ResolverType = llvm::FunctionType::get(
4254
0
        llvm::PointerType::get(DeclTy,
4255
0
                               getTypes().getTargetAddressSpace(FD->getType())),
4256
0
        false);
4257
0
  }
4258
0
  else {
4259
0
    ResolverType = DeclTy;
4260
0
    ResolverGD = GD;
4261
0
  }
4262
4263
0
  auto *ResolverFunc = cast<llvm::Function>(GetOrCreateLLVMFunction(
4264
0
      ResolverName, ResolverType, ResolverGD, /*ForVTable=*/false));
4265
0
  ResolverFunc->setLinkage(getMultiversionLinkage(*this, GD));
4266
0
  if (supportsCOMDAT())
4267
0
    ResolverFunc->setComdat(
4268
0
        getModule().getOrInsertComdat(ResolverFunc->getName()));
4269
4270
0
  SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options;
4271
0
  const TargetInfo &Target = getTarget();
4272
0
  unsigned Index = 0;
4273
0
  for (const IdentifierInfo *II : DD->cpus()) {
4274
    // Get the name of the target function so we can look it up/create it.
4275
0
    std::string MangledName = getMangledNameImpl(*this, GD, FD, true) +
4276
0
                              getCPUSpecificMangling(*this, II->getName());
4277
4278
0
    llvm::Constant *Func = GetGlobalValue(MangledName);
4279
4280
0
    if (!Func) {
4281
0
      GlobalDecl ExistingDecl = Manglings.lookup(MangledName);
4282
0
      if (ExistingDecl.getDecl() &&
4283
0
          ExistingDecl.getDecl()->getAsFunction()->isDefined()) {
4284
0
        EmitGlobalFunctionDefinition(ExistingDecl, nullptr);
4285
0
        Func = GetGlobalValue(MangledName);
4286
0
      } else {
4287
0
        if (!ExistingDecl.getDecl())
4288
0
          ExistingDecl = GD.getWithMultiVersionIndex(Index);
4289
4290
0
      Func = GetOrCreateLLVMFunction(
4291
0
          MangledName, DeclTy, ExistingDecl,
4292
0
          /*ForVTable=*/false, /*DontDefer=*/true,
4293
0
          /*IsThunk=*/false, llvm::AttributeList(), ForDefinition);
4294
0
      }
4295
0
    }
4296
4297
0
    llvm::SmallVector<StringRef, 32> Features;
4298
0
    Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features);
4299
0
    llvm::transform(Features, Features.begin(),
4300
0
                    [](StringRef Str) { return Str.substr(1); });
4301
0
    llvm::erase_if(Features, [&Target](StringRef Feat) {
4302
0
      return !Target.validateCpuSupports(Feat);
4303
0
    });
4304
0
    Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features);
4305
0
    ++Index;
4306
0
  }
4307
4308
0
  llvm::stable_sort(
4309
0
      Options, [](const CodeGenFunction::MultiVersionResolverOption &LHS,
4310
0
                  const CodeGenFunction::MultiVersionResolverOption &RHS) {
4311
0
        return llvm::X86::getCpuSupportsMask(LHS.Conditions.Features) >
4312
0
               llvm::X86::getCpuSupportsMask(RHS.Conditions.Features);
4313
0
      });
4314
4315
  // If the list contains multiple 'default' versions, such as when it contains
4316
  // 'pentium' and 'generic', don't emit the call to the generic one (since we
4317
  // always run on at least a 'pentium'). We do this by deleting the 'least
4318
  // advanced' (read, lowest mangling letter).
4319
0
  while (Options.size() > 1 &&
4320
0
         llvm::all_of(llvm::X86::getCpuSupportsMask(
4321
0
                          (Options.end() - 2)->Conditions.Features),
4322
0
                      [](auto X) { return X == 0; })) {
4323
0
    StringRef LHSName = (Options.end() - 2)->Function->getName();
4324
0
    StringRef RHSName = (Options.end() - 1)->Function->getName();
4325
0
    if (LHSName.compare(RHSName) < 0)
4326
0
      Options.erase(Options.end() - 2);
4327
0
    else
4328
0
      Options.erase(Options.end() - 1);
4329
0
  }
4330
4331
0
  CodeGenFunction CGF(*this);
4332
0
  CGF.EmitMultiVersionResolver(ResolverFunc, Options);
4333
4334
0
  if (getTarget().supportsIFunc()) {
4335
0
    llvm::GlobalValue::LinkageTypes Linkage = getMultiversionLinkage(*this, GD);
4336
0
    auto *IFunc = cast<llvm::GlobalValue>(GetOrCreateMultiVersionResolver(GD));
4337
4338
    // Fix up function declarations that were created for cpu_specific before
4339
    // cpu_dispatch was known
4340
0
    if (!isa<llvm::GlobalIFunc>(IFunc)) {
4341
0
      assert(cast<llvm::Function>(IFunc)->isDeclaration());
4342
0
      auto *GI = llvm::GlobalIFunc::create(DeclTy, 0, Linkage, "", ResolverFunc,
4343
0
                                           &getModule());
4344
0
      GI->takeName(IFunc);
4345
0
      IFunc->replaceAllUsesWith(GI);
4346
0
      IFunc->eraseFromParent();
4347
0
      IFunc = GI;
4348
0
    }
4349
4350
0
    std::string AliasName = getMangledNameImpl(
4351
0
        *this, GD, FD, /*OmitMultiVersionMangling=*/true);
4352
0
    llvm::Constant *AliasFunc = GetGlobalValue(AliasName);
4353
0
    if (!AliasFunc) {
4354
0
      auto *GA = llvm::GlobalAlias::create(DeclTy, 0, Linkage, AliasName, IFunc,
4355
0
                                           &getModule());
4356
0
      SetCommonAttributes(GD, GA);
4357
0
    }
4358
0
  }
4359
0
}
4360
4361
/// If a dispatcher for the specified mangled name is not in the module, create
4362
/// and return an llvm Function with the specified type.
4363
0
llvm::Constant *CodeGenModule::GetOrCreateMultiVersionResolver(GlobalDecl GD) {
4364
0
  const auto *FD = cast<FunctionDecl>(GD.getDecl());
4365
0
  assert(FD && "Not a FunctionDecl?");
4366
4367
0
  std::string MangledName =
4368
0
      getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true);
4369
4370
  // Holds the name of the resolver, in ifunc mode this is the ifunc (which has
4371
  // a separate resolver).
4372
0
  std::string ResolverName = MangledName;
4373
0
  if (getTarget().supportsIFunc()) {
4374
    // In Aarch64, default versions of multiversioned functions are mangled to
4375
    // their 'normal' assembly name. This deviates from other targets which
4376
    // append a '.default' string. As a result we need to continue appending
4377
    // .ifunc in Aarch64.
4378
    // FIXME: Should Aarch64 mangling for 'default' multiversion function and
4379
    // in turn ifunc function match that of other targets?
4380
0
    if (!FD->isTargetClonesMultiVersion() ||
4381
0
        getTarget().getTriple().isAArch64())
4382
0
      ResolverName += ".ifunc";
4383
0
  } else if (FD->isTargetMultiVersion()) {
4384
0
    ResolverName += ".resolver";
4385
0
  }
4386
4387
  // If the resolver has already been created, just return it.
4388
0
  if (llvm::GlobalValue *ResolverGV = GetGlobalValue(ResolverName))
4389
0
    return ResolverGV;
4390
4391
0
  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4392
0
  llvm::FunctionType *DeclTy = getTypes().GetFunctionType(FI);
4393
4394
  // The resolver needs to be created. For target and target_clones, defer
4395
  // creation until the end of the TU.
4396
0
  if (FD->isTargetMultiVersion() || FD->isTargetClonesMultiVersion())
4397
0
    MultiVersionFuncs.push_back(GD);
4398
4399
  // For cpu_specific, don't create an ifunc yet because we don't know if the
4400
  // cpu_dispatch will be emitted in this translation unit.
4401
0
  if (getTarget().supportsIFunc() && !FD->isCPUSpecificMultiVersion()) {
4402
0
    llvm::Type *ResolverType = llvm::FunctionType::get(
4403
0
        llvm::PointerType::get(DeclTy,
4404
0
                               getTypes().getTargetAddressSpace(FD->getType())),
4405
0
        false);
4406
0
    llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4407
0
        MangledName + ".resolver", ResolverType, GlobalDecl{},
4408
0
        /*ForVTable=*/false);
4409
0
    llvm::GlobalIFunc *GIF =
4410
0
        llvm::GlobalIFunc::create(DeclTy, 0, getMultiversionLinkage(*this, GD),
4411
0
                                  "", Resolver, &getModule());
4412
0
    GIF->setName(ResolverName);
4413
0
    SetCommonAttributes(FD, GIF);
4414
4415
0
    return GIF;
4416
0
  }
4417
4418
0
  llvm::Constant *Resolver = GetOrCreateLLVMFunction(
4419
0
      ResolverName, DeclTy, GlobalDecl{}, /*ForVTable=*/false);
4420
0
  assert(isa<llvm::GlobalValue>(Resolver) &&
4421
0
         "Resolver should be created for the first time");
4422
0
  SetCommonAttributes(FD, cast<llvm::GlobalValue>(Resolver));
4423
0
  return Resolver;
4424
0
}
4425
4426
/// GetOrCreateLLVMFunction - If the specified mangled name is not in the
4427
/// module, create and return an llvm Function with the specified type. If there
4428
/// is something in the module with the specified name, return it potentially
4429
/// bitcasted to the right type.
4430
///
4431
/// If D is non-null, it specifies a decl that correspond to this.  This is used
4432
/// to set the attributes on the function when it is first created.
4433
llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction(
4434
    StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable,
4435
    bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs,
4436
0
    ForDefinition_t IsForDefinition) {
4437
0
  const Decl *D = GD.getDecl();
4438
4439
  // Any attempts to use a MultiVersion function should result in retrieving
4440
  // the iFunc instead. Name Mangling will handle the rest of the changes.
4441
0
  if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) {
4442
    // For the device mark the function as one that should be emitted.
4443
0
    if (getLangOpts().OpenMPIsTargetDevice && OpenMPRuntime &&
4444
0
        !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() &&
4445
0
        !DontDefer && !IsForDefinition) {
4446
0
      if (const FunctionDecl *FDDef = FD->getDefinition()) {
4447
0
        GlobalDecl GDDef;
4448
0
        if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef))
4449
0
          GDDef = GlobalDecl(CD, GD.getCtorType());
4450
0
        else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef))
4451
0
          GDDef = GlobalDecl(DD, GD.getDtorType());
4452
0
        else
4453
0
          GDDef = GlobalDecl(FDDef);
4454
0
        EmitGlobal(GDDef);
4455
0
      }
4456
0
    }
4457
4458
0
    if (FD->isMultiVersion()) {
4459
0
      UpdateMultiVersionNames(GD, FD, MangledName);
4460
0
      if (!IsForDefinition)
4461
0
        return GetOrCreateMultiVersionResolver(GD);
4462
0
    }
4463
0
  }
4464
4465
  // Lookup the entry, lazily creating it if necessary.
4466
0
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4467
0
  if (Entry) {
4468
0
    if (WeakRefReferences.erase(Entry)) {
4469
0
      const FunctionDecl *FD = cast_or_null<FunctionDecl>(D);
4470
0
      if (FD && !FD->hasAttr<WeakAttr>())
4471
0
        Entry->setLinkage(llvm::Function::ExternalLinkage);
4472
0
    }
4473
4474
    // Handle dropped DLL attributes.
4475
0
    if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4476
0
        !shouldMapVisibilityToDLLExport(cast_or_null<NamedDecl>(D))) {
4477
0
      Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4478
0
      setDSOLocal(Entry);
4479
0
    }
4480
4481
    // If there are two attempts to define the same mangled name, issue an
4482
    // error.
4483
0
    if (IsForDefinition && !Entry->isDeclaration()) {
4484
0
      GlobalDecl OtherGD;
4485
      // Check that GD is not yet in DiagnosedConflictingDefinitions is required
4486
      // to make sure that we issue an error only once.
4487
0
      if (lookupRepresentativeDecl(MangledName, OtherGD) &&
4488
0
          (GD.getCanonicalDecl().getDecl() !=
4489
0
           OtherGD.getCanonicalDecl().getDecl()) &&
4490
0
          DiagnosedConflictingDefinitions.insert(GD).second) {
4491
0
        getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4492
0
            << MangledName;
4493
0
        getDiags().Report(OtherGD.getDecl()->getLocation(),
4494
0
                          diag::note_previous_definition);
4495
0
      }
4496
0
    }
4497
4498
0
    if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) &&
4499
0
        (Entry->getValueType() == Ty)) {
4500
0
      return Entry;
4501
0
    }
4502
4503
    // Make sure the result is of the correct type.
4504
    // (If function is requested for a definition, we always need to create a new
4505
    // function, not just return a bitcast.)
4506
0
    if (!IsForDefinition)
4507
0
      return Entry;
4508
0
  }
4509
4510
  // This function doesn't have a complete type (for example, the return
4511
  // type is an incomplete struct). Use a fake type instead, and make
4512
  // sure not to try to set attributes.
4513
0
  bool IsIncompleteFunction = false;
4514
4515
0
  llvm::FunctionType *FTy;
4516
0
  if (isa<llvm::FunctionType>(Ty)) {
4517
0
    FTy = cast<llvm::FunctionType>(Ty);
4518
0
  } else {
4519
0
    FTy = llvm::FunctionType::get(VoidTy, false);
4520
0
    IsIncompleteFunction = true;
4521
0
  }
4522
4523
0
  llvm::Function *F =
4524
0
      llvm::Function::Create(FTy, llvm::Function::ExternalLinkage,
4525
0
                             Entry ? StringRef() : MangledName, &getModule());
4526
4527
  // Store the declaration associated with this function so it is potentially
4528
  // updated by further declarations or definitions and emitted at the end.
4529
0
  if (D && D->hasAttr<AnnotateAttr>())
4530
0
    DeferredAnnotations[MangledName] = cast<ValueDecl>(D);
4531
4532
  // If we already created a function with the same mangled name (but different
4533
  // type) before, take its name and add it to the list of functions to be
4534
  // replaced with F at the end of CodeGen.
4535
  //
4536
  // This happens if there is a prototype for a function (e.g. "int f()") and
4537
  // then a definition of a different type (e.g. "int f(int x)").
4538
0
  if (Entry) {
4539
0
    F->takeName(Entry);
4540
4541
    // This might be an implementation of a function without a prototype, in
4542
    // which case, try to do special replacement of calls which match the new
4543
    // prototype.  The really key thing here is that we also potentially drop
4544
    // arguments from the call site so as to make a direct call, which makes the
4545
    // inliner happier and suppresses a number of optimizer warnings (!) about
4546
    // dropping arguments.
4547
0
    if (!Entry->use_empty()) {
4548
0
      ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F);
4549
0
      Entry->removeDeadConstantUsers();
4550
0
    }
4551
4552
0
    addGlobalValReplacement(Entry, F);
4553
0
  }
4554
4555
0
  assert(F->getName() == MangledName && "name was uniqued!");
4556
0
  if (D)
4557
0
    SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk);
4558
0
  if (ExtraAttrs.hasFnAttrs()) {
4559
0
    llvm::AttrBuilder B(F->getContext(), ExtraAttrs.getFnAttrs());
4560
0
    F->addFnAttrs(B);
4561
0
  }
4562
4563
0
  if (!DontDefer) {
4564
    // All MSVC dtors other than the base dtor are linkonce_odr and delegate to
4565
    // each other bottoming out with the base dtor.  Therefore we emit non-base
4566
    // dtors on usage, even if there is no dtor definition in the TU.
4567
0
    if (isa_and_nonnull<CXXDestructorDecl>(D) &&
4568
0
        getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D),
4569
0
                                           GD.getDtorType()))
4570
0
      addDeferredDeclToEmit(GD);
4571
4572
    // This is the first use or definition of a mangled name.  If there is a
4573
    // deferred decl with this name, remember that we need to emit it at the end
4574
    // of the file.
4575
0
    auto DDI = DeferredDecls.find(MangledName);
4576
0
    if (DDI != DeferredDecls.end()) {
4577
      // Move the potentially referenced deferred decl to the
4578
      // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we
4579
      // don't need it anymore).
4580
0
      addDeferredDeclToEmit(DDI->second);
4581
0
      DeferredDecls.erase(DDI);
4582
4583
      // Otherwise, there are cases we have to worry about where we're
4584
      // using a declaration for which we must emit a definition but where
4585
      // we might not find a top-level definition:
4586
      //   - member functions defined inline in their classes
4587
      //   - friend functions defined inline in some class
4588
      //   - special member functions with implicit definitions
4589
      // If we ever change our AST traversal to walk into class methods,
4590
      // this will be unnecessary.
4591
      //
4592
      // We also don't emit a definition for a function if it's going to be an
4593
      // entry in a vtable, unless it's already marked as used.
4594
0
    } else if (getLangOpts().CPlusPlus && D) {
4595
      // Look for a declaration that's lexically in a record.
4596
0
      for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD;
4597
0
           FD = FD->getPreviousDecl()) {
4598
0
        if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) {
4599
0
          if (FD->doesThisDeclarationHaveABody()) {
4600
0
            addDeferredDeclToEmit(GD.getWithDecl(FD));
4601
0
            break;
4602
0
          }
4603
0
        }
4604
0
      }
4605
0
    }
4606
0
  }
4607
4608
  // Make sure the result is of the requested type.
4609
0
  if (!IsIncompleteFunction) {
4610
0
    assert(F->getFunctionType() == Ty);
4611
0
    return F;
4612
0
  }
4613
4614
0
  return F;
4615
0
}
4616
4617
/// GetAddrOfFunction - Return the address of the given function.  If Ty is
4618
/// non-null, then this function will use the specified type if it has to
4619
/// create it (this occurs when we see a definition of the function).
4620
llvm::Constant *
4621
CodeGenModule::GetAddrOfFunction(GlobalDecl GD, llvm::Type *Ty, bool ForVTable,
4622
                                 bool DontDefer,
4623
0
                                 ForDefinition_t IsForDefinition) {
4624
  // If there was no specific requested type, just convert it now.
4625
0
  if (!Ty) {
4626
0
    const auto *FD = cast<FunctionDecl>(GD.getDecl());
4627
0
    Ty = getTypes().ConvertType(FD->getType());
4628
0
  }
4629
4630
  // Devirtualized destructor calls may come through here instead of via
4631
  // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead
4632
  // of the complete destructor when necessary.
4633
0
  if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) {
4634
0
    if (getTarget().getCXXABI().isMicrosoft() &&
4635
0
        GD.getDtorType() == Dtor_Complete &&
4636
0
        DD->getParent()->getNumVBases() == 0)
4637
0
      GD = GlobalDecl(DD, Dtor_Base);
4638
0
  }
4639
4640
0
  StringRef MangledName = getMangledName(GD);
4641
0
  auto *F = GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer,
4642
0
                                    /*IsThunk=*/false, llvm::AttributeList(),
4643
0
                                    IsForDefinition);
4644
  // Returns kernel handle for HIP kernel stub function.
4645
0
  if (LangOpts.CUDA && !LangOpts.CUDAIsDevice &&
4646
0
      cast<FunctionDecl>(GD.getDecl())->hasAttr<CUDAGlobalAttr>()) {
4647
0
    auto *Handle = getCUDARuntime().getKernelHandle(
4648
0
        cast<llvm::Function>(F->stripPointerCasts()), GD);
4649
0
    if (IsForDefinition)
4650
0
      return F;
4651
0
    return Handle;
4652
0
  }
4653
0
  return F;
4654
0
}
4655
4656
0
llvm::Constant *CodeGenModule::GetFunctionStart(const ValueDecl *Decl) {
4657
0
  llvm::GlobalValue *F =
4658
0
      cast<llvm::GlobalValue>(GetAddrOfFunction(Decl)->stripPointerCasts());
4659
4660
0
  return llvm::NoCFIValue::get(F);
4661
0
}
4662
4663
static const FunctionDecl *
4664
0
GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) {
4665
0
  TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl();
4666
0
  DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
4667
4668
0
  IdentifierInfo &CII = C.Idents.get(Name);
4669
0
  for (const auto *Result : DC->lookup(&CII))
4670
0
    if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4671
0
      return FD;
4672
4673
0
  if (!C.getLangOpts().CPlusPlus)
4674
0
    return nullptr;
4675
4676
  // Demangle the premangled name from getTerminateFn()
4677
0
  IdentifierInfo &CXXII =
4678
0
      (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ")
4679
0
          ? C.Idents.get("terminate")
4680
0
          : C.Idents.get(Name);
4681
4682
0
  for (const auto &N : {"__cxxabiv1", "std"}) {
4683
0
    IdentifierInfo &NS = C.Idents.get(N);
4684
0
    for (const auto *Result : DC->lookup(&NS)) {
4685
0
      const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result);
4686
0
      if (auto *LSD = dyn_cast<LinkageSpecDecl>(Result))
4687
0
        for (const auto *Result : LSD->lookup(&NS))
4688
0
          if ((ND = dyn_cast<NamespaceDecl>(Result)))
4689
0
            break;
4690
4691
0
      if (ND)
4692
0
        for (const auto *Result : ND->lookup(&CXXII))
4693
0
          if (const auto *FD = dyn_cast<FunctionDecl>(Result))
4694
0
            return FD;
4695
0
    }
4696
0
  }
4697
4698
0
  return nullptr;
4699
0
}
4700
4701
/// CreateRuntimeFunction - Create a new runtime function with the specified
4702
/// type and name.
4703
llvm::FunctionCallee
4704
CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name,
4705
                                     llvm::AttributeList ExtraAttrs, bool Local,
4706
0
                                     bool AssumeConvergent) {
4707
0
  if (AssumeConvergent) {
4708
0
    ExtraAttrs =
4709
0
        ExtraAttrs.addFnAttribute(VMContext, llvm::Attribute::Convergent);
4710
0
  }
4711
4712
0
  llvm::Constant *C =
4713
0
      GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false,
4714
0
                              /*DontDefer=*/false, /*IsThunk=*/false,
4715
0
                              ExtraAttrs);
4716
4717
0
  if (auto *F = dyn_cast<llvm::Function>(C)) {
4718
0
    if (F->empty()) {
4719
0
      F->setCallingConv(getRuntimeCC());
4720
4721
      // In Windows Itanium environments, try to mark runtime functions
4722
      // dllimport. For Mingw and MSVC, don't. We don't really know if the user
4723
      // will link their standard library statically or dynamically. Marking
4724
      // functions imported when they are not imported can cause linker errors
4725
      // and warnings.
4726
0
      if (!Local && getTriple().isWindowsItaniumEnvironment() &&
4727
0
          !getCodeGenOpts().LTOVisibilityPublicStd) {
4728
0
        const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name);
4729
0
        if (!FD || FD->hasAttr<DLLImportAttr>()) {
4730
0
          F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
4731
0
          F->setLinkage(llvm::GlobalValue::ExternalLinkage);
4732
0
        }
4733
0
      }
4734
0
      setDSOLocal(F);
4735
0
    }
4736
0
  }
4737
4738
0
  return {FTy, C};
4739
0
}
4740
4741
/// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module,
4742
/// create and return an llvm GlobalVariable with the specified type and address
4743
/// space. If there is something in the module with the specified name, return
4744
/// it potentially bitcasted to the right type.
4745
///
4746
/// If D is non-null, it specifies a decl that correspond to this.  This is used
4747
/// to set the attributes on the global when it is first created.
4748
///
4749
/// If IsForDefinition is true, it is guaranteed that an actual global with
4750
/// type Ty will be returned, not conversion of a variable with the same
4751
/// mangled name but some other type.
4752
llvm::Constant *
4753
CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, llvm::Type *Ty,
4754
                                     LangAS AddrSpace, const VarDecl *D,
4755
0
                                     ForDefinition_t IsForDefinition) {
4756
  // Lookup the entry, lazily creating it if necessary.
4757
0
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
4758
0
  unsigned TargetAS = getContext().getTargetAddressSpace(AddrSpace);
4759
0
  if (Entry) {
4760
0
    if (WeakRefReferences.erase(Entry)) {
4761
0
      if (D && !D->hasAttr<WeakAttr>())
4762
0
        Entry->setLinkage(llvm::Function::ExternalLinkage);
4763
0
    }
4764
4765
    // Handle dropped DLL attributes.
4766
0
    if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>() &&
4767
0
        !shouldMapVisibilityToDLLExport(D))
4768
0
      Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
4769
4770
0
    if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D)
4771
0
      getOpenMPRuntime().registerTargetGlobalVariable(D, Entry);
4772
4773
0
    if (Entry->getValueType() == Ty && Entry->getAddressSpace() == TargetAS)
4774
0
      return Entry;
4775
4776
    // If there are two attempts to define the same mangled name, issue an
4777
    // error.
4778
0
    if (IsForDefinition && !Entry->isDeclaration()) {
4779
0
      GlobalDecl OtherGD;
4780
0
      const VarDecl *OtherD;
4781
4782
      // Check that D is not yet in DiagnosedConflictingDefinitions is required
4783
      // to make sure that we issue an error only once.
4784
0
      if (D && lookupRepresentativeDecl(MangledName, OtherGD) &&
4785
0
          (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) &&
4786
0
          (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) &&
4787
0
          OtherD->hasInit() &&
4788
0
          DiagnosedConflictingDefinitions.insert(D).second) {
4789
0
        getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name)
4790
0
            << MangledName;
4791
0
        getDiags().Report(OtherGD.getDecl()->getLocation(),
4792
0
                          diag::note_previous_definition);
4793
0
      }
4794
0
    }
4795
4796
    // Make sure the result is of the correct type.
4797
0
    if (Entry->getType()->getAddressSpace() != TargetAS)
4798
0
      return llvm::ConstantExpr::getAddrSpaceCast(
4799
0
          Entry, llvm::PointerType::get(Ty->getContext(), TargetAS));
4800
4801
    // (If global is requested for a definition, we always need to create a new
4802
    // global, not just return a bitcast.)
4803
0
    if (!IsForDefinition)
4804
0
      return Entry;
4805
0
  }
4806
4807
0
  auto DAddrSpace = GetGlobalVarAddressSpace(D);
4808
4809
0
  auto *GV = new llvm::GlobalVariable(
4810
0
      getModule(), Ty, false, llvm::GlobalValue::ExternalLinkage, nullptr,
4811
0
      MangledName, nullptr, llvm::GlobalVariable::NotThreadLocal,
4812
0
      getContext().getTargetAddressSpace(DAddrSpace));
4813
4814
  // If we already created a global with the same mangled name (but different
4815
  // type) before, take its name and remove it from its parent.
4816
0
  if (Entry) {
4817
0
    GV->takeName(Entry);
4818
4819
0
    if (!Entry->use_empty()) {
4820
0
      Entry->replaceAllUsesWith(GV);
4821
0
    }
4822
4823
0
    Entry->eraseFromParent();
4824
0
  }
4825
4826
  // This is the first use or definition of a mangled name.  If there is a
4827
  // deferred decl with this name, remember that we need to emit it at the end
4828
  // of the file.
4829
0
  auto DDI = DeferredDecls.find(MangledName);
4830
0
  if (DDI != DeferredDecls.end()) {
4831
    // Move the potentially referenced deferred decl to the DeferredDeclsToEmit
4832
    // list, and remove it from DeferredDecls (since we don't need it anymore).
4833
0
    addDeferredDeclToEmit(DDI->second);
4834
0
    DeferredDecls.erase(DDI);
4835
0
  }
4836
4837
  // Handle things which are present even on external declarations.
4838
0
  if (D) {
4839
0
    if (LangOpts.OpenMP && !LangOpts.OpenMPSimd)
4840
0
      getOpenMPRuntime().registerTargetGlobalVariable(D, GV);
4841
4842
    // FIXME: This code is overly simple and should be merged with other global
4843
    // handling.
4844
0
    GV->setConstant(D->getType().isConstantStorage(getContext(), false, false));
4845
4846
0
    GV->setAlignment(getContext().getDeclAlign(D).getAsAlign());
4847
4848
0
    setLinkageForGV(GV, D);
4849
4850
0
    if (D->getTLSKind()) {
4851
0
      if (D->getTLSKind() == VarDecl::TLS_Dynamic)
4852
0
        CXXThreadLocals.push_back(D);
4853
0
      setTLSMode(GV, *D);
4854
0
    }
4855
4856
0
    setGVProperties(GV, D);
4857
4858
    // If required by the ABI, treat declarations of static data members with
4859
    // inline initializers as definitions.
4860
0
    if (getContext().isMSStaticDataMemberInlineDefinition(D)) {
4861
0
      EmitGlobalVarDefinition(D);
4862
0
    }
4863
4864
    // Emit section information for extern variables.
4865
0
    if (D->hasExternalStorage()) {
4866
0
      if (const SectionAttr *SA = D->getAttr<SectionAttr>())
4867
0
        GV->setSection(SA->getName());
4868
0
    }
4869
4870
    // Handle XCore specific ABI requirements.
4871
0
    if (getTriple().getArch() == llvm::Triple::xcore &&
4872
0
        D->getLanguageLinkage() == CLanguageLinkage &&
4873
0
        D->getType().isConstant(Context) &&
4874
0
        isExternallyVisible(D->getLinkageAndVisibility().getLinkage()))
4875
0
      GV->setSection(".cp.rodata");
4876
4877
    // Handle code model attribute
4878
0
    if (const auto *CMA = D->getAttr<CodeModelAttr>())
4879
0
      GV->setCodeModel(CMA->getModel());
4880
4881
    // Check if we a have a const declaration with an initializer, we may be
4882
    // able to emit it as available_externally to expose it's value to the
4883
    // optimizer.
4884
0
    if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() &&
4885
0
        D->getType().isConstQualified() && !GV->hasInitializer() &&
4886
0
        !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) {
4887
0
      const auto *Record =
4888
0
          Context.getBaseElementType(D->getType())->getAsCXXRecordDecl();
4889
0
      bool HasMutableFields = Record && Record->hasMutableFields();
4890
0
      if (!HasMutableFields) {
4891
0
        const VarDecl *InitDecl;
4892
0
        const Expr *InitExpr = D->getAnyInitializer(InitDecl);
4893
0
        if (InitExpr) {
4894
0
          ConstantEmitter emitter(*this);
4895
0
          llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl);
4896
0
          if (Init) {
4897
0
            auto *InitType = Init->getType();
4898
0
            if (GV->getValueType() != InitType) {
4899
              // The type of the initializer does not match the definition.
4900
              // This happens when an initializer has a different type from
4901
              // the type of the global (because of padding at the end of a
4902
              // structure for instance).
4903
0
              GV->setName(StringRef());
4904
              // Make a new global with the correct type, this is now guaranteed
4905
              // to work.
4906
0
              auto *NewGV = cast<llvm::GlobalVariable>(
4907
0
                  GetAddrOfGlobalVar(D, InitType, IsForDefinition)
4908
0
                      ->stripPointerCasts());
4909
4910
              // Erase the old global, since it is no longer used.
4911
0
              GV->eraseFromParent();
4912
0
              GV = NewGV;
4913
0
            } else {
4914
0
              GV->setInitializer(Init);
4915
0
              GV->setConstant(true);
4916
0
              GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage);
4917
0
            }
4918
0
            emitter.finalize(GV);
4919
0
          }
4920
0
        }
4921
0
      }
4922
0
    }
4923
0
  }
4924
4925
0
  if (D &&
4926
0
      D->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly) {
4927
0
    getTargetCodeGenInfo().setTargetAttributes(D, GV, *this);
4928
    // External HIP managed variables needed to be recorded for transformation
4929
    // in both device and host compilations.
4930
0
    if (getLangOpts().CUDA && D && D->hasAttr<HIPManagedAttr>() &&
4931
0
        D->hasExternalStorage())
4932
0
      getCUDARuntime().handleVarRegistration(D, *GV);
4933
0
  }
4934
4935
0
  if (D)
4936
0
    SanitizerMD->reportGlobal(GV, *D);
4937
4938
0
  LangAS ExpectedAS =
4939
0
      D ? D->getType().getAddressSpace()
4940
0
        : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default);
4941
0
  assert(getContext().getTargetAddressSpace(ExpectedAS) == TargetAS);
4942
0
  if (DAddrSpace != ExpectedAS) {
4943
0
    return getTargetCodeGenInfo().performAddrSpaceCast(
4944
0
        *this, GV, DAddrSpace, ExpectedAS,
4945
0
        llvm::PointerType::get(getLLVMContext(), TargetAS));
4946
0
  }
4947
4948
0
  return GV;
4949
0
}
4950
4951
llvm::Constant *
4952
0
CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, ForDefinition_t IsForDefinition) {
4953
0
  const Decl *D = GD.getDecl();
4954
4955
0
  if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D))
4956
0
    return getAddrOfCXXStructor(GD, /*FnInfo=*/nullptr, /*FnType=*/nullptr,
4957
0
                                /*DontDefer=*/false, IsForDefinition);
4958
4959
0
  if (isa<CXXMethodDecl>(D)) {
4960
0
    auto FInfo =
4961
0
        &getTypes().arrangeCXXMethodDeclaration(cast<CXXMethodDecl>(D));
4962
0
    auto Ty = getTypes().GetFunctionType(*FInfo);
4963
0
    return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4964
0
                             IsForDefinition);
4965
0
  }
4966
4967
0
  if (isa<FunctionDecl>(D)) {
4968
0
    const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
4969
0
    llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
4970
0
    return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false,
4971
0
                             IsForDefinition);
4972
0
  }
4973
4974
0
  return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, IsForDefinition);
4975
0
}
4976
4977
llvm::GlobalVariable *CodeGenModule::CreateOrReplaceCXXRuntimeVariable(
4978
    StringRef Name, llvm::Type *Ty, llvm::GlobalValue::LinkageTypes Linkage,
4979
0
    llvm::Align Alignment) {
4980
0
  llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name);
4981
0
  llvm::GlobalVariable *OldGV = nullptr;
4982
4983
0
  if (GV) {
4984
    // Check if the variable has the right type.
4985
0
    if (GV->getValueType() == Ty)
4986
0
      return GV;
4987
4988
    // Because C++ name mangling, the only way we can end up with an already
4989
    // existing global with the same name is if it has been declared extern "C".
4990
0
    assert(GV->isDeclaration() && "Declaration has wrong type!");
4991
0
    OldGV = GV;
4992
0
  }
4993
4994
  // Create a new variable.
4995
0
  GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true,
4996
0
                                Linkage, nullptr, Name);
4997
4998
0
  if (OldGV) {
4999
    // Replace occurrences of the old variable if needed.
5000
0
    GV->takeName(OldGV);
5001
5002
0
    if (!OldGV->use_empty()) {
5003
0
      OldGV->replaceAllUsesWith(GV);
5004
0
    }
5005
5006
0
    OldGV->eraseFromParent();
5007
0
  }
5008
5009
0
  if (supportsCOMDAT() && GV->isWeakForLinker() &&
5010
0
      !GV->hasAvailableExternallyLinkage())
5011
0
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
5012
5013
0
  GV->setAlignment(Alignment);
5014
5015
0
  return GV;
5016
0
}
5017
5018
/// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the
5019
/// given global variable.  If Ty is non-null and if the global doesn't exist,
5020
/// then it will be created with the specified type instead of whatever the
5021
/// normal requested type would be. If IsForDefinition is true, it is guaranteed
5022
/// that an actual global with type Ty will be returned, not conversion of a
5023
/// variable with the same mangled name but some other type.
5024
llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D,
5025
                                                  llvm::Type *Ty,
5026
0
                                           ForDefinition_t IsForDefinition) {
5027
0
  assert(D->hasGlobalStorage() && "Not a global variable");
5028
0
  QualType ASTTy = D->getType();
5029
0
  if (!Ty)
5030
0
    Ty = getTypes().ConvertTypeForMem(ASTTy);
5031
5032
0
  StringRef MangledName = getMangledName(D);
5033
0
  return GetOrCreateLLVMGlobal(MangledName, Ty, ASTTy.getAddressSpace(), D,
5034
0
                               IsForDefinition);
5035
0
}
5036
5037
/// CreateRuntimeVariable - Create a new runtime global variable with the
5038
/// specified type and name.
5039
llvm::Constant *
5040
CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty,
5041
0
                                     StringRef Name) {
5042
0
  LangAS AddrSpace = getContext().getLangOpts().OpenCL ? LangAS::opencl_global
5043
0
                                                       : LangAS::Default;
5044
0
  auto *Ret = GetOrCreateLLVMGlobal(Name, Ty, AddrSpace, nullptr);
5045
0
  setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts()));
5046
0
  return Ret;
5047
0
}
5048
5049
0
void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) {
5050
0
  assert(!D->getInit() && "Cannot emit definite definitions here!");
5051
5052
0
  StringRef MangledName = getMangledName(D);
5053
0
  llvm::GlobalValue *GV = GetGlobalValue(MangledName);
5054
5055
  // We already have a definition, not declaration, with the same mangled name.
5056
  // Emitting of declaration is not required (and actually overwrites emitted
5057
  // definition).
5058
0
  if (GV && !GV->isDeclaration())
5059
0
    return;
5060
5061
  // If we have not seen a reference to this variable yet, place it into the
5062
  // deferred declarations table to be emitted if needed later.
5063
0
  if (!MustBeEmitted(D) && !GV) {
5064
0
      DeferredDecls[MangledName] = D;
5065
0
      return;
5066
0
  }
5067
5068
  // The tentative definition is the only definition.
5069
0
  EmitGlobalVarDefinition(D);
5070
0
}
5071
5072
0
void CodeGenModule::EmitExternalDeclaration(const VarDecl *D) {
5073
0
  EmitExternalVarDeclaration(D);
5074
0
}
5075
5076
0
CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const {
5077
0
  return Context.toCharUnitsFromBits(
5078
0
      getDataLayout().getTypeStoreSizeInBits(Ty));
5079
0
}
5080
5081
0
LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) {
5082
0
  if (LangOpts.OpenCL) {
5083
0
    LangAS AS = D ? D->getType().getAddressSpace() : LangAS::opencl_global;
5084
0
    assert(AS == LangAS::opencl_global ||
5085
0
           AS == LangAS::opencl_global_device ||
5086
0
           AS == LangAS::opencl_global_host ||
5087
0
           AS == LangAS::opencl_constant ||
5088
0
           AS == LangAS::opencl_local ||
5089
0
           AS >= LangAS::FirstTargetAddressSpace);
5090
0
    return AS;
5091
0
  }
5092
5093
0
  if (LangOpts.SYCLIsDevice &&
5094
0
      (!D || D->getType().getAddressSpace() == LangAS::Default))
5095
0
    return LangAS::sycl_global;
5096
5097
0
  if (LangOpts.CUDA && LangOpts.CUDAIsDevice) {
5098
0
    if (D) {
5099
0
      if (D->hasAttr<CUDAConstantAttr>())
5100
0
        return LangAS::cuda_constant;
5101
0
      if (D->hasAttr<CUDASharedAttr>())
5102
0
        return LangAS::cuda_shared;
5103
0
      if (D->hasAttr<CUDADeviceAttr>())
5104
0
        return LangAS::cuda_device;
5105
0
      if (D->getType().isConstQualified())
5106
0
        return LangAS::cuda_constant;
5107
0
    }
5108
0
    return LangAS::cuda_device;
5109
0
  }
5110
5111
0
  if (LangOpts.OpenMP) {
5112
0
    LangAS AS;
5113
0
    if (OpenMPRuntime->hasAllocateAttributeForGlobalVar(D, AS))
5114
0
      return AS;
5115
0
  }
5116
0
  return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D);
5117
0
}
5118
5119
46
LangAS CodeGenModule::GetGlobalConstantAddressSpace() const {
5120
  // OpenCL v1.2 s6.5.3: a string literal is in the constant address space.
5121
46
  if (LangOpts.OpenCL)
5122
0
    return LangAS::opencl_constant;
5123
46
  if (LangOpts.SYCLIsDevice)
5124
0
    return LangAS::sycl_global;
5125
46
  if (LangOpts.HIP && LangOpts.CUDAIsDevice && getTriple().isSPIRV())
5126
    // For HIPSPV map literals to cuda_device (maps to CrossWorkGroup in SPIR-V)
5127
    // instead of default AS (maps to Generic in SPIR-V). Otherwise, we end up
5128
    // with OpVariable instructions with Generic storage class which is not
5129
    // allowed (SPIR-V V1.6 s3.42.8). Also, mapping literals to SPIR-V
5130
    // UniformConstant storage class is not viable as pointers to it may not be
5131
    // casted to Generic pointers which are used to model HIP's "flat" pointers.
5132
0
    return LangAS::cuda_device;
5133
46
  if (auto AS = getTarget().getConstantAddressSpace())
5134
46
    return *AS;
5135
0
  return LangAS::Default;
5136
46
}
5137
5138
// In address space agnostic languages, string literals are in default address
5139
// space in AST. However, certain targets (e.g. amdgcn) request them to be
5140
// emitted in constant address space in LLVM IR. To be consistent with other
5141
// parts of AST, string literal global variables in constant address space
5142
// need to be casted to default address space before being put into address
5143
// map and referenced by other part of CodeGen.
5144
// In OpenCL, string literals are in constant address space in AST, therefore
5145
// they should not be casted to default address space.
5146
static llvm::Constant *
5147
castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM,
5148
0
                                       llvm::GlobalVariable *GV) {
5149
0
  llvm::Constant *Cast = GV;
5150
0
  if (!CGM.getLangOpts().OpenCL) {
5151
0
    auto AS = CGM.GetGlobalConstantAddressSpace();
5152
0
    if (AS != LangAS::Default)
5153
0
      Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast(
5154
0
          CGM, GV, AS, LangAS::Default,
5155
0
          llvm::PointerType::get(
5156
0
              CGM.getLLVMContext(),
5157
0
              CGM.getContext().getTargetAddressSpace(LangAS::Default)));
5158
0
  }
5159
0
  return Cast;
5160
0
}
5161
5162
template<typename SomeDecl>
5163
void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D,
5164
0
                                               llvm::GlobalValue *GV) {
5165
0
  if (!getLangOpts().CPlusPlus)
5166
0
    return;
5167
5168
  // Must have 'used' attribute, or else inline assembly can't rely on
5169
  // the name existing.
5170
0
  if (!D->template hasAttr<UsedAttr>())
5171
0
    return;
5172
5173
  // Must have internal linkage and an ordinary name.
5174
0
  if (!D->getIdentifier() || D->getFormalLinkage() != Linkage::Internal)
5175
0
    return;
5176
5177
  // Must be in an extern "C" context. Entities declared directly within
5178
  // a record are not extern "C" even if the record is in such a context.
5179
0
  const SomeDecl *First = D->getFirstDecl();
5180
0
  if (First->getDeclContext()->isRecord() || !First->isInExternCContext())
5181
0
    return;
5182
5183
  // OK, this is an internal linkage entity inside an extern "C" linkage
5184
  // specification. Make a note of that so we can give it the "expected"
5185
  // mangled name if nothing else is using that name.
5186
0
  std::pair<StaticExternCMap::iterator, bool> R =
5187
0
      StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV));
5188
5189
  // If we have multiple internal linkage entities with the same name
5190
  // in extern "C" regions, none of them gets that name.
5191
0
  if (!R.second)
5192
0
    R.first->second = nullptr;
5193
0
}
Unexecuted instantiation: void clang::CodeGen::CodeGenModule::MaybeHandleStaticInExternC<clang::VarDecl>(clang::VarDecl const*, llvm::GlobalValue*)
Unexecuted instantiation: void clang::CodeGen::CodeGenModule::MaybeHandleStaticInExternC<clang::FunctionDecl>(clang::FunctionDecl const*, llvm::GlobalValue*)
5194
5195
0
static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) {
5196
0
  if (!CGM.supportsCOMDAT())
5197
0
    return false;
5198
5199
0
  if (D.hasAttr<SelectAnyAttr>())
5200
0
    return true;
5201
5202
0
  GVALinkage Linkage;
5203
0
  if (auto *VD = dyn_cast<VarDecl>(&D))
5204
0
    Linkage = CGM.getContext().GetGVALinkageForVariable(VD);
5205
0
  else
5206
0
    Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D));
5207
5208
0
  switch (Linkage) {
5209
0
  case GVA_Internal:
5210
0
  case GVA_AvailableExternally:
5211
0
  case GVA_StrongExternal:
5212
0
    return false;
5213
0
  case GVA_DiscardableODR:
5214
0
  case GVA_StrongODR:
5215
0
    return true;
5216
0
  }
5217
0
  llvm_unreachable("No such linkage");
5218
0
}
5219
5220
0
bool CodeGenModule::supportsCOMDAT() const {
5221
0
  return getTriple().supportsCOMDAT();
5222
0
}
5223
5224
void CodeGenModule::maybeSetTrivialComdat(const Decl &D,
5225
0
                                          llvm::GlobalObject &GO) {
5226
0
  if (!shouldBeInCOMDAT(*this, D))
5227
0
    return;
5228
0
  GO.setComdat(TheModule.getOrInsertComdat(GO.getName()));
5229
0
}
5230
5231
/// Pass IsTentative as true if you want to create a tentative definition.
5232
void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D,
5233
0
                                            bool IsTentative) {
5234
  // OpenCL global variables of sampler type are translated to function calls,
5235
  // therefore no need to be translated.
5236
0
  QualType ASTTy = D->getType();
5237
0
  if (getLangOpts().OpenCL && ASTTy->isSamplerT())
5238
0
    return;
5239
5240
  // If this is OpenMP device, check if it is legal to emit this global
5241
  // normally.
5242
0
  if (LangOpts.OpenMPIsTargetDevice && OpenMPRuntime &&
5243
0
      OpenMPRuntime->emitTargetGlobalVariable(D))
5244
0
    return;
5245
5246
0
  llvm::TrackingVH<llvm::Constant> Init;
5247
0
  bool NeedsGlobalCtor = false;
5248
  // Whether the definition of the variable is available externally.
5249
  // If yes, we shouldn't emit the GloablCtor and GlobalDtor for the variable
5250
  // since this is the job for its original source.
5251
0
  bool IsDefinitionAvailableExternally =
5252
0
      getContext().GetGVALinkageForVariable(D) == GVA_AvailableExternally;
5253
0
  bool NeedsGlobalDtor =
5254
0
      !IsDefinitionAvailableExternally &&
5255
0
      D->needsDestruction(getContext()) == QualType::DK_cxx_destructor;
5256
5257
0
  const VarDecl *InitDecl;
5258
0
  const Expr *InitExpr = D->getAnyInitializer(InitDecl);
5259
5260
0
  std::optional<ConstantEmitter> emitter;
5261
5262
  // CUDA E.2.4.1 "__shared__ variables cannot have an initialization
5263
  // as part of their declaration."  Sema has already checked for
5264
  // error cases, so we just need to set Init to UndefValue.
5265
0
  bool IsCUDASharedVar =
5266
0
      getLangOpts().CUDAIsDevice && D->hasAttr<CUDASharedAttr>();
5267
  // Shadows of initialized device-side global variables are also left
5268
  // undefined.
5269
  // Managed Variables should be initialized on both host side and device side.
5270
0
  bool IsCUDAShadowVar =
5271
0
      !getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5272
0
      (D->hasAttr<CUDAConstantAttr>() || D->hasAttr<CUDADeviceAttr>() ||
5273
0
       D->hasAttr<CUDASharedAttr>());
5274
0
  bool IsCUDADeviceShadowVar =
5275
0
      getLangOpts().CUDAIsDevice && !D->hasAttr<HIPManagedAttr>() &&
5276
0
      (D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5277
0
       D->getType()->isCUDADeviceBuiltinTextureType());
5278
0
  if (getLangOpts().CUDA &&
5279
0
      (IsCUDASharedVar || IsCUDAShadowVar || IsCUDADeviceShadowVar))
5280
0
    Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5281
0
  else if (D->hasAttr<LoaderUninitializedAttr>())
5282
0
    Init = llvm::UndefValue::get(getTypes().ConvertTypeForMem(ASTTy));
5283
0
  else if (!InitExpr) {
5284
    // This is a tentative definition; tentative definitions are
5285
    // implicitly initialized with { 0 }.
5286
    //
5287
    // Note that tentative definitions are only emitted at the end of
5288
    // a translation unit, so they should never have incomplete
5289
    // type. In addition, EmitTentativeDefinition makes sure that we
5290
    // never attempt to emit a tentative definition if a real one
5291
    // exists. A use may still exists, however, so we still may need
5292
    // to do a RAUW.
5293
0
    assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type");
5294
0
    Init = EmitNullConstant(D->getType());
5295
0
  } else {
5296
0
    initializedGlobalDecl = GlobalDecl(D);
5297
0
    emitter.emplace(*this);
5298
0
    llvm::Constant *Initializer = emitter->tryEmitForInitializer(*InitDecl);
5299
0
    if (!Initializer) {
5300
0
      QualType T = InitExpr->getType();
5301
0
      if (D->getType()->isReferenceType())
5302
0
        T = D->getType();
5303
5304
0
      if (getLangOpts().CPlusPlus) {
5305
0
        if (InitDecl->hasFlexibleArrayInit(getContext()))
5306
0
          ErrorUnsupported(D, "flexible array initializer");
5307
0
        Init = EmitNullConstant(T);
5308
5309
0
        if (!IsDefinitionAvailableExternally)
5310
0
          NeedsGlobalCtor = true;
5311
0
      } else {
5312
0
        ErrorUnsupported(D, "static initializer");
5313
0
        Init = llvm::UndefValue::get(getTypes().ConvertType(T));
5314
0
      }
5315
0
    } else {
5316
0
      Init = Initializer;
5317
      // We don't need an initializer, so remove the entry for the delayed
5318
      // initializer position (just in case this entry was delayed) if we
5319
      // also don't need to register a destructor.
5320
0
      if (getLangOpts().CPlusPlus && !NeedsGlobalDtor)
5321
0
        DelayedCXXInitPosition.erase(D);
5322
5323
0
#ifndef NDEBUG
5324
0
      CharUnits VarSize = getContext().getTypeSizeInChars(ASTTy) +
5325
0
                          InitDecl->getFlexibleArrayInitChars(getContext());
5326
0
      CharUnits CstSize = CharUnits::fromQuantity(
5327
0
          getDataLayout().getTypeAllocSize(Init->getType()));
5328
0
      assert(VarSize == CstSize && "Emitted constant has unexpected size");
5329
0
#endif
5330
0
    }
5331
0
  }
5332
5333
0
  llvm::Type* InitType = Init->getType();
5334
0
  llvm::Constant *Entry =
5335
0
      GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative));
5336
5337
  // Strip off pointer casts if we got them.
5338
0
  Entry = Entry->stripPointerCasts();
5339
5340
  // Entry is now either a Function or GlobalVariable.
5341
0
  auto *GV = dyn_cast<llvm::GlobalVariable>(Entry);
5342
5343
  // We have a definition after a declaration with the wrong type.
5344
  // We must make a new GlobalVariable* and update everything that used OldGV
5345
  // (a declaration or tentative definition) with the new GlobalVariable*
5346
  // (which will be a definition).
5347
  //
5348
  // This happens if there is a prototype for a global (e.g.
5349
  // "extern int x[];") and then a definition of a different type (e.g.
5350
  // "int x[10];"). This also happens when an initializer has a different type
5351
  // from the type of the global (this happens with unions).
5352
0
  if (!GV || GV->getValueType() != InitType ||
5353
0
      GV->getType()->getAddressSpace() !=
5354
0
          getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) {
5355
5356
    // Move the old entry aside so that we'll create a new one.
5357
0
    Entry->setName(StringRef());
5358
5359
    // Make a new global with the correct type, this is now guaranteed to work.
5360
0
    GV = cast<llvm::GlobalVariable>(
5361
0
        GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))
5362
0
            ->stripPointerCasts());
5363
5364
    // Replace all uses of the old global with the new global
5365
0
    llvm::Constant *NewPtrForOldDecl =
5366
0
        llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(GV,
5367
0
                                                             Entry->getType());
5368
0
    Entry->replaceAllUsesWith(NewPtrForOldDecl);
5369
5370
    // Erase the old global, since it is no longer used.
5371
0
    cast<llvm::GlobalValue>(Entry)->eraseFromParent();
5372
0
  }
5373
5374
0
  MaybeHandleStaticInExternC(D, GV);
5375
5376
0
  if (D->hasAttr<AnnotateAttr>())
5377
0
    AddGlobalAnnotations(D, GV);
5378
5379
  // Set the llvm linkage type as appropriate.
5380
0
  llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(D);
5381
5382
  // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on
5383
  // the device. [...]"
5384
  // CUDA B.2.2 "The __constant__ qualifier, optionally used together with
5385
  // __device__, declares a variable that: [...]
5386
  // Is accessible from all the threads within the grid and from the host
5387
  // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize()
5388
  // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())."
5389
0
  if (LangOpts.CUDA) {
5390
0
    if (LangOpts.CUDAIsDevice) {
5391
0
      if (Linkage != llvm::GlobalValue::InternalLinkage &&
5392
0
          (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
5393
0
           D->getType()->isCUDADeviceBuiltinSurfaceType() ||
5394
0
           D->getType()->isCUDADeviceBuiltinTextureType()))
5395
0
        GV->setExternallyInitialized(true);
5396
0
    } else {
5397
0
      getCUDARuntime().internalizeDeviceSideVar(D, Linkage);
5398
0
    }
5399
0
    getCUDARuntime().handleVarRegistration(D, *GV);
5400
0
  }
5401
5402
0
  GV->setInitializer(Init);
5403
0
  if (emitter)
5404
0
    emitter->finalize(GV);
5405
5406
  // If it is safe to mark the global 'constant', do so now.
5407
0
  GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor &&
5408
0
                  D->getType().isConstantStorage(getContext(), true, true));
5409
5410
  // If it is in a read-only section, mark it 'constant'.
5411
0
  if (const SectionAttr *SA = D->getAttr<SectionAttr>()) {
5412
0
    const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()];
5413
0
    if ((SI.SectionFlags & ASTContext::PSF_Write) == 0)
5414
0
      GV->setConstant(true);
5415
0
  }
5416
5417
0
  CharUnits AlignVal = getContext().getDeclAlign(D);
5418
  // Check for alignment specifed in an 'omp allocate' directive.
5419
0
  if (std::optional<CharUnits> AlignValFromAllocate =
5420
0
          getOMPAllocateAlignment(D))
5421
0
    AlignVal = *AlignValFromAllocate;
5422
0
  GV->setAlignment(AlignVal.getAsAlign());
5423
5424
  // On Darwin, unlike other Itanium C++ ABI platforms, the thread-wrapper
5425
  // function is only defined alongside the variable, not also alongside
5426
  // callers. Normally, all accesses to a thread_local go through the
5427
  // thread-wrapper in order to ensure initialization has occurred, underlying
5428
  // variable will never be used other than the thread-wrapper, so it can be
5429
  // converted to internal linkage.
5430
  //
5431
  // However, if the variable has the 'constinit' attribute, it _can_ be
5432
  // referenced directly, without calling the thread-wrapper, so the linkage
5433
  // must not be changed.
5434
  //
5435
  // Additionally, if the variable isn't plain external linkage, e.g. if it's
5436
  // weak or linkonce, the de-duplication semantics are important to preserve,
5437
  // so we don't change the linkage.
5438
0
  if (D->getTLSKind() == VarDecl::TLS_Dynamic &&
5439
0
      Linkage == llvm::GlobalValue::ExternalLinkage &&
5440
0
      Context.getTargetInfo().getTriple().isOSDarwin() &&
5441
0
      !D->hasAttr<ConstInitAttr>())
5442
0
    Linkage = llvm::GlobalValue::InternalLinkage;
5443
5444
0
  GV->setLinkage(Linkage);
5445
0
  if (D->hasAttr<DLLImportAttr>())
5446
0
    GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass);
5447
0
  else if (D->hasAttr<DLLExportAttr>())
5448
0
    GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass);
5449
0
  else
5450
0
    GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
5451
5452
0
  if (Linkage == llvm::GlobalVariable::CommonLinkage) {
5453
    // common vars aren't constant even if declared const.
5454
0
    GV->setConstant(false);
5455
    // Tentative definition of global variables may be initialized with
5456
    // non-zero null pointers. In this case they should have weak linkage
5457
    // since common linkage must have zero initializer and must not have
5458
    // explicit section therefore cannot have non-zero initial value.
5459
0
    if (!GV->getInitializer()->isNullValue())
5460
0
      GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage);
5461
0
  }
5462
5463
0
  setNonAliasAttributes(D, GV);
5464
5465
0
  if (D->getTLSKind() && !GV->isThreadLocal()) {
5466
0
    if (D->getTLSKind() == VarDecl::TLS_Dynamic)
5467
0
      CXXThreadLocals.push_back(D);
5468
0
    setTLSMode(GV, *D);
5469
0
  }
5470
5471
0
  maybeSetTrivialComdat(*D, *GV);
5472
5473
  // Emit the initializer function if necessary.
5474
0
  if (NeedsGlobalCtor || NeedsGlobalDtor)
5475
0
    EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor);
5476
5477
0
  SanitizerMD->reportGlobal(GV, *D, NeedsGlobalCtor);
5478
5479
  // Emit global variable debug information.
5480
0
  if (CGDebugInfo *DI = getModuleDebugInfo())
5481
0
    if (getCodeGenOpts().hasReducedDebugInfo())
5482
0
      DI->EmitGlobalVariable(GV, D);
5483
0
}
5484
5485
0
void CodeGenModule::EmitExternalVarDeclaration(const VarDecl *D) {
5486
0
  if (CGDebugInfo *DI = getModuleDebugInfo())
5487
0
    if (getCodeGenOpts().hasReducedDebugInfo()) {
5488
0
      QualType ASTTy = D->getType();
5489
0
      llvm::Type *Ty = getTypes().ConvertTypeForMem(D->getType());
5490
0
      llvm::Constant *GV =
5491
0
          GetOrCreateLLVMGlobal(D->getName(), Ty, ASTTy.getAddressSpace(), D);
5492
0
      DI->EmitExternalVariable(
5493
0
          cast<llvm::GlobalVariable>(GV->stripPointerCasts()), D);
5494
0
    }
5495
0
}
5496
5497
static bool isVarDeclStrongDefinition(const ASTContext &Context,
5498
                                      CodeGenModule &CGM, const VarDecl *D,
5499
0
                                      bool NoCommon) {
5500
  // Don't give variables common linkage if -fno-common was specified unless it
5501
  // was overridden by a NoCommon attribute.
5502
0
  if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>())
5503
0
    return true;
5504
5505
  // C11 6.9.2/2:
5506
  //   A declaration of an identifier for an object that has file scope without
5507
  //   an initializer, and without a storage-class specifier or with the
5508
  //   storage-class specifier static, constitutes a tentative definition.
5509
0
  if (D->getInit() || D->hasExternalStorage())
5510
0
    return true;
5511
5512
  // A variable cannot be both common and exist in a section.
5513
0
  if (D->hasAttr<SectionAttr>())
5514
0
    return true;
5515
5516
  // A variable cannot be both common and exist in a section.
5517
  // We don't try to determine which is the right section in the front-end.
5518
  // If no specialized section name is applicable, it will resort to default.
5519
0
  if (D->hasAttr<PragmaClangBSSSectionAttr>() ||
5520
0
      D->hasAttr<PragmaClangDataSectionAttr>() ||
5521
0
      D->hasAttr<PragmaClangRelroSectionAttr>() ||
5522
0
      D->hasAttr<PragmaClangRodataSectionAttr>())
5523
0
    return true;
5524
5525
  // Thread local vars aren't considered common linkage.
5526
0
  if (D->getTLSKind())
5527
0
    return true;
5528
5529
  // Tentative definitions marked with WeakImportAttr are true definitions.
5530
0
  if (D->hasAttr<WeakImportAttr>())
5531
0
    return true;
5532
5533
  // A variable cannot be both common and exist in a comdat.
5534
0
  if (shouldBeInCOMDAT(CGM, *D))
5535
0
    return true;
5536
5537
  // Declarations with a required alignment do not have common linkage in MSVC
5538
  // mode.
5539
0
  if (Context.getTargetInfo().getCXXABI().isMicrosoft()) {
5540
0
    if (D->hasAttr<AlignedAttr>())
5541
0
      return true;
5542
0
    QualType VarType = D->getType();
5543
0
    if (Context.isAlignmentRequired(VarType))
5544
0
      return true;
5545
5546
0
    if (const auto *RT = VarType->getAs<RecordType>()) {
5547
0
      const RecordDecl *RD = RT->getDecl();
5548
0
      for (const FieldDecl *FD : RD->fields()) {
5549
0
        if (FD->isBitField())
5550
0
          continue;
5551
0
        if (FD->hasAttr<AlignedAttr>())
5552
0
          return true;
5553
0
        if (Context.isAlignmentRequired(FD->getType()))
5554
0
          return true;
5555
0
      }
5556
0
    }
5557
0
  }
5558
5559
  // Microsoft's link.exe doesn't support alignments greater than 32 bytes for
5560
  // common symbols, so symbols with greater alignment requirements cannot be
5561
  // common.
5562
  // Other COFF linkers (ld.bfd and LLD) support arbitrary power-of-two
5563
  // alignments for common symbols via the aligncomm directive, so this
5564
  // restriction only applies to MSVC environments.
5565
0
  if (Context.getTargetInfo().getTriple().isKnownWindowsMSVCEnvironment() &&
5566
0
      Context.getTypeAlignIfKnown(D->getType()) >
5567
0
          Context.toBits(CharUnits::fromQuantity(32)))
5568
0
    return true;
5569
5570
0
  return false;
5571
0
}
5572
5573
llvm::GlobalValue::LinkageTypes
5574
CodeGenModule::getLLVMLinkageForDeclarator(const DeclaratorDecl *D,
5575
0
                                           GVALinkage Linkage) {
5576
0
  if (Linkage == GVA_Internal)
5577
0
    return llvm::Function::InternalLinkage;
5578
5579
0
  if (D->hasAttr<WeakAttr>())
5580
0
    return llvm::GlobalVariable::WeakAnyLinkage;
5581
5582
0
  if (const auto *FD = D->getAsFunction())
5583
0
    if (FD->isMultiVersion() && Linkage == GVA_AvailableExternally)
5584
0
      return llvm::GlobalVariable::LinkOnceAnyLinkage;
5585
5586
  // We are guaranteed to have a strong definition somewhere else,
5587
  // so we can use available_externally linkage.
5588
0
  if (Linkage == GVA_AvailableExternally)
5589
0
    return llvm::GlobalValue::AvailableExternallyLinkage;
5590
5591
  // Note that Apple's kernel linker doesn't support symbol
5592
  // coalescing, so we need to avoid linkonce and weak linkages there.
5593
  // Normally, this means we just map to internal, but for explicit
5594
  // instantiations we'll map to external.
5595
5596
  // In C++, the compiler has to emit a definition in every translation unit
5597
  // that references the function.  We should use linkonce_odr because
5598
  // a) if all references in this translation unit are optimized away, we
5599
  // don't need to codegen it.  b) if the function persists, it needs to be
5600
  // merged with other definitions. c) C++ has the ODR, so we know the
5601
  // definition is dependable.
5602
0
  if (Linkage == GVA_DiscardableODR)
5603
0
    return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage
5604
0
                                            : llvm::Function::InternalLinkage;
5605
5606
  // An explicit instantiation of a template has weak linkage, since
5607
  // explicit instantiations can occur in multiple translation units
5608
  // and must all be equivalent. However, we are not allowed to
5609
  // throw away these explicit instantiations.
5610
  //
5611
  // CUDA/HIP: For -fno-gpu-rdc case, device code is limited to one TU,
5612
  // so say that CUDA templates are either external (for kernels) or internal.
5613
  // This lets llvm perform aggressive inter-procedural optimizations. For
5614
  // -fgpu-rdc case, device function calls across multiple TU's are allowed,
5615
  // therefore we need to follow the normal linkage paradigm.
5616
0
  if (Linkage == GVA_StrongODR) {
5617
0
    if (getLangOpts().AppleKext)
5618
0
      return llvm::Function::ExternalLinkage;
5619
0
    if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
5620
0
        !getLangOpts().GPURelocatableDeviceCode)
5621
0
      return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage
5622
0
                                          : llvm::Function::InternalLinkage;
5623
0
    return llvm::Function::WeakODRLinkage;
5624
0
  }
5625
5626
  // C++ doesn't have tentative definitions and thus cannot have common
5627
  // linkage.
5628
0
  if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) &&
5629
0
      !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D),
5630
0
                                 CodeGenOpts.NoCommon))
5631
0
    return llvm::GlobalVariable::CommonLinkage;
5632
5633
  // selectany symbols are externally visible, so use weak instead of
5634
  // linkonce.  MSVC optimizes away references to const selectany globals, so
5635
  // all definitions should be the same and ODR linkage should be used.
5636
  // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx
5637
0
  if (D->hasAttr<SelectAnyAttr>())
5638
0
    return llvm::GlobalVariable::WeakODRLinkage;
5639
5640
  // Otherwise, we have strong external linkage.
5641
0
  assert(Linkage == GVA_StrongExternal);
5642
0
  return llvm::GlobalVariable::ExternalLinkage;
5643
0
}
5644
5645
llvm::GlobalValue::LinkageTypes
5646
0
CodeGenModule::getLLVMLinkageVarDefinition(const VarDecl *VD) {
5647
0
  GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD);
5648
0
  return getLLVMLinkageForDeclarator(VD, Linkage);
5649
0
}
5650
5651
/// Replace the uses of a function that was declared with a non-proto type.
5652
/// We want to silently drop extra arguments from call sites
5653
static void replaceUsesOfNonProtoConstant(llvm::Constant *old,
5654
0
                                          llvm::Function *newFn) {
5655
  // Fast path.
5656
0
  if (old->use_empty()) return;
5657
5658
0
  llvm::Type *newRetTy = newFn->getReturnType();
5659
0
  SmallVector<llvm::Value*, 4> newArgs;
5660
5661
0
  for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end();
5662
0
         ui != ue; ) {
5663
0
    llvm::Value::use_iterator use = ui++; // Increment before the use is erased.
5664
0
    llvm::User *user = use->getUser();
5665
5666
    // Recognize and replace uses of bitcasts.  Most calls to
5667
    // unprototyped functions will use bitcasts.
5668
0
    if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) {
5669
0
      if (bitcast->getOpcode() == llvm::Instruction::BitCast)
5670
0
        replaceUsesOfNonProtoConstant(bitcast, newFn);
5671
0
      continue;
5672
0
    }
5673
5674
    // Recognize calls to the function.
5675
0
    llvm::CallBase *callSite = dyn_cast<llvm::CallBase>(user);
5676
0
    if (!callSite) continue;
5677
0
    if (!callSite->isCallee(&*use))
5678
0
      continue;
5679
5680
    // If the return types don't match exactly, then we can't
5681
    // transform this call unless it's dead.
5682
0
    if (callSite->getType() != newRetTy && !callSite->use_empty())
5683
0
      continue;
5684
5685
    // Get the call site's attribute list.
5686
0
    SmallVector<llvm::AttributeSet, 8> newArgAttrs;
5687
0
    llvm::AttributeList oldAttrs = callSite->getAttributes();
5688
5689
    // If the function was passed too few arguments, don't transform.
5690
0
    unsigned newNumArgs = newFn->arg_size();
5691
0
    if (callSite->arg_size() < newNumArgs)
5692
0
      continue;
5693
5694
    // If extra arguments were passed, we silently drop them.
5695
    // If any of the types mismatch, we don't transform.
5696
0
    unsigned argNo = 0;
5697
0
    bool dontTransform = false;
5698
0
    for (llvm::Argument &A : newFn->args()) {
5699
0
      if (callSite->getArgOperand(argNo)->getType() != A.getType()) {
5700
0
        dontTransform = true;
5701
0
        break;
5702
0
      }
5703
5704
      // Add any parameter attributes.
5705
0
      newArgAttrs.push_back(oldAttrs.getParamAttrs(argNo));
5706
0
      argNo++;
5707
0
    }
5708
0
    if (dontTransform)
5709
0
      continue;
5710
5711
    // Okay, we can transform this.  Create the new call instruction and copy
5712
    // over the required information.
5713
0
    newArgs.append(callSite->arg_begin(), callSite->arg_begin() + argNo);
5714
5715
    // Copy over any operand bundles.
5716
0
    SmallVector<llvm::OperandBundleDef, 1> newBundles;
5717
0
    callSite->getOperandBundlesAsDefs(newBundles);
5718
5719
0
    llvm::CallBase *newCall;
5720
0
    if (isa<llvm::CallInst>(callSite)) {
5721
0
      newCall =
5722
0
          llvm::CallInst::Create(newFn, newArgs, newBundles, "", callSite);
5723
0
    } else {
5724
0
      auto *oldInvoke = cast<llvm::InvokeInst>(callSite);
5725
0
      newCall = llvm::InvokeInst::Create(newFn, oldInvoke->getNormalDest(),
5726
0
                                         oldInvoke->getUnwindDest(), newArgs,
5727
0
                                         newBundles, "", callSite);
5728
0
    }
5729
0
    newArgs.clear(); // for the next iteration
5730
5731
0
    if (!newCall->getType()->isVoidTy())
5732
0
      newCall->takeName(callSite);
5733
0
    newCall->setAttributes(
5734
0
        llvm::AttributeList::get(newFn->getContext(), oldAttrs.getFnAttrs(),
5735
0
                                 oldAttrs.getRetAttrs(), newArgAttrs));
5736
0
    newCall->setCallingConv(callSite->getCallingConv());
5737
5738
    // Finally, remove the old call, replacing any uses with the new one.
5739
0
    if (!callSite->use_empty())
5740
0
      callSite->replaceAllUsesWith(newCall);
5741
5742
    // Copy debug location attached to CI.
5743
0
    if (callSite->getDebugLoc())
5744
0
      newCall->setDebugLoc(callSite->getDebugLoc());
5745
5746
0
    callSite->eraseFromParent();
5747
0
  }
5748
0
}
5749
5750
/// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we
5751
/// implement a function with no prototype, e.g. "int foo() {}".  If there are
5752
/// existing call uses of the old function in the module, this adjusts them to
5753
/// call the new function directly.
5754
///
5755
/// This is not just a cleanup: the always_inline pass requires direct calls to
5756
/// functions to be able to inline them.  If there is a bitcast in the way, it
5757
/// won't inline them.  Instcombine normally deletes these calls, but it isn't
5758
/// run at -O0.
5759
static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old,
5760
0
                                                      llvm::Function *NewFn) {
5761
  // If we're redefining a global as a function, don't transform it.
5762
0
  if (!isa<llvm::Function>(Old)) return;
5763
5764
0
  replaceUsesOfNonProtoConstant(Old, NewFn);
5765
0
}
5766
5767
0
void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) {
5768
0
  auto DK = VD->isThisDeclarationADefinition();
5769
0
  if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>())
5770
0
    return;
5771
5772
0
  TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind();
5773
  // If we have a definition, this might be a deferred decl. If the
5774
  // instantiation is explicit, make sure we emit it at the end.
5775
0
  if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition)
5776
0
    GetAddrOfGlobalVar(VD);
5777
5778
0
  EmitTopLevelDecl(VD);
5779
0
}
5780
5781
void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD,
5782
0
                                                 llvm::GlobalValue *GV) {
5783
0
  const auto *D = cast<FunctionDecl>(GD.getDecl());
5784
5785
  // Compute the function info and LLVM type.
5786
0
  const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD);
5787
0
  llvm::FunctionType *Ty = getTypes().GetFunctionType(FI);
5788
5789
  // Get or create the prototype for the function.
5790
0
  if (!GV || (GV->getValueType() != Ty))
5791
0
    GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false,
5792
0
                                                   /*DontDefer=*/true,
5793
0
                                                   ForDefinition));
5794
5795
  // Already emitted.
5796
0
  if (!GV->isDeclaration())
5797
0
    return;
5798
5799
  // We need to set linkage and visibility on the function before
5800
  // generating code for it because various parts of IR generation
5801
  // want to propagate this information down (e.g. to local static
5802
  // declarations).
5803
0
  auto *Fn = cast<llvm::Function>(GV);
5804
0
  setFunctionLinkage(GD, Fn);
5805
5806
  // FIXME: this is redundant with part of setFunctionDefinitionAttributes
5807
0
  setGVProperties(Fn, GD);
5808
5809
0
  MaybeHandleStaticInExternC(D, Fn);
5810
5811
0
  maybeSetTrivialComdat(*D, *Fn);
5812
5813
0
  CodeGenFunction(*this).GenerateCode(GD, Fn, FI);
5814
5815
0
  setNonAliasAttributes(GD, Fn);
5816
0
  SetLLVMFunctionAttributesForDefinition(D, Fn);
5817
5818
0
  if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>())
5819
0
    AddGlobalCtor(Fn, CA->getPriority());
5820
0
  if (const DestructorAttr *DA = D->getAttr<DestructorAttr>())
5821
0
    AddGlobalDtor(Fn, DA->getPriority(), true);
5822
0
  if (getLangOpts().OpenMP && D->hasAttr<OMPDeclareTargetDeclAttr>())
5823
0
    getOpenMPRuntime().emitDeclareTargetFunction(D, GV);
5824
0
}
5825
5826
0
void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) {
5827
0
  const auto *D = cast<ValueDecl>(GD.getDecl());
5828
0
  const AliasAttr *AA = D->getAttr<AliasAttr>();
5829
0
  assert(AA && "Not an alias?");
5830
5831
0
  StringRef MangledName = getMangledName(GD);
5832
5833
0
  if (AA->getAliasee() == MangledName) {
5834
0
    Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5835
0
    return;
5836
0
  }
5837
5838
  // If there is a definition in the module, then it wins over the alias.
5839
  // This is dubious, but allow it to be safe.  Just ignore the alias.
5840
0
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5841
0
  if (Entry && !Entry->isDeclaration())
5842
0
    return;
5843
5844
0
  Aliases.push_back(GD);
5845
5846
0
  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5847
5848
  // Create a reference to the named value.  This ensures that it is emitted
5849
  // if a deferred decl.
5850
0
  llvm::Constant *Aliasee;
5851
0
  llvm::GlobalValue::LinkageTypes LT;
5852
0
  if (isa<llvm::FunctionType>(DeclTy)) {
5853
0
    Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD,
5854
0
                                      /*ForVTable=*/false);
5855
0
    LT = getFunctionLinkage(GD);
5856
0
  } else {
5857
0
    Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), DeclTy, LangAS::Default,
5858
0
                                    /*D=*/nullptr);
5859
0
    if (const auto *VD = dyn_cast<VarDecl>(GD.getDecl()))
5860
0
      LT = getLLVMLinkageVarDefinition(VD);
5861
0
    else
5862
0
      LT = getFunctionLinkage(GD);
5863
0
  }
5864
5865
  // Create the new alias itself, but don't set a name yet.
5866
0
  unsigned AS = Aliasee->getType()->getPointerAddressSpace();
5867
0
  auto *GA =
5868
0
      llvm::GlobalAlias::create(DeclTy, AS, LT, "", Aliasee, &getModule());
5869
5870
0
  if (Entry) {
5871
0
    if (GA->getAliasee() == Entry) {
5872
0
      Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0;
5873
0
      return;
5874
0
    }
5875
5876
0
    assert(Entry->isDeclaration());
5877
5878
    // If there is a declaration in the module, then we had an extern followed
5879
    // by the alias, as in:
5880
    //   extern int test6();
5881
    //   ...
5882
    //   int test6() __attribute__((alias("test7")));
5883
    //
5884
    // Remove it and replace uses of it with the alias.
5885
0
    GA->takeName(Entry);
5886
5887
0
    Entry->replaceAllUsesWith(GA);
5888
0
    Entry->eraseFromParent();
5889
0
  } else {
5890
0
    GA->setName(MangledName);
5891
0
  }
5892
5893
  // Set attributes which are particular to an alias; this is a
5894
  // specialization of the attributes which may be set on a global
5895
  // variable/function.
5896
0
  if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() ||
5897
0
      D->isWeakImported()) {
5898
0
    GA->setLinkage(llvm::Function::WeakAnyLinkage);
5899
0
  }
5900
5901
0
  if (const auto *VD = dyn_cast<VarDecl>(D))
5902
0
    if (VD->getTLSKind())
5903
0
      setTLSMode(GA, *VD);
5904
5905
0
  SetCommonAttributes(GD, GA);
5906
5907
  // Emit global alias debug information.
5908
0
  if (isa<VarDecl>(D))
5909
0
    if (CGDebugInfo *DI = getModuleDebugInfo())
5910
0
      DI->EmitGlobalAlias(cast<llvm::GlobalValue>(GA->getAliasee()->stripPointerCasts()), GD);
5911
0
}
5912
5913
0
void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) {
5914
0
  const auto *D = cast<ValueDecl>(GD.getDecl());
5915
0
  const IFuncAttr *IFA = D->getAttr<IFuncAttr>();
5916
0
  assert(IFA && "Not an ifunc?");
5917
5918
0
  StringRef MangledName = getMangledName(GD);
5919
5920
0
  if (IFA->getResolver() == MangledName) {
5921
0
    Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5922
0
    return;
5923
0
  }
5924
5925
  // Report an error if some definition overrides ifunc.
5926
0
  llvm::GlobalValue *Entry = GetGlobalValue(MangledName);
5927
0
  if (Entry && !Entry->isDeclaration()) {
5928
0
    GlobalDecl OtherGD;
5929
0
    if (lookupRepresentativeDecl(MangledName, OtherGD) &&
5930
0
        DiagnosedConflictingDefinitions.insert(GD).second) {
5931
0
      Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name)
5932
0
          << MangledName;
5933
0
      Diags.Report(OtherGD.getDecl()->getLocation(),
5934
0
                   diag::note_previous_definition);
5935
0
    }
5936
0
    return;
5937
0
  }
5938
5939
0
  Aliases.push_back(GD);
5940
5941
0
  llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType());
5942
0
  llvm::Type *ResolverTy = llvm::GlobalIFunc::getResolverFunctionType(DeclTy);
5943
0
  llvm::Constant *Resolver =
5944
0
      GetOrCreateLLVMFunction(IFA->getResolver(), ResolverTy, {},
5945
0
                              /*ForVTable=*/false);
5946
0
  llvm::GlobalIFunc *GIF =
5947
0
      llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage,
5948
0
                                "", Resolver, &getModule());
5949
0
  if (Entry) {
5950
0
    if (GIF->getResolver() == Entry) {
5951
0
      Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1;
5952
0
      return;
5953
0
    }
5954
0
    assert(Entry->isDeclaration());
5955
5956
    // If there is a declaration in the module, then we had an extern followed
5957
    // by the ifunc, as in:
5958
    //   extern int test();
5959
    //   ...
5960
    //   int test() __attribute__((ifunc("resolver")));
5961
    //
5962
    // Remove it and replace uses of it with the ifunc.
5963
0
    GIF->takeName(Entry);
5964
5965
0
    Entry->replaceAllUsesWith(GIF);
5966
0
    Entry->eraseFromParent();
5967
0
  } else
5968
0
    GIF->setName(MangledName);
5969
0
  if (auto *F = dyn_cast<llvm::Function>(Resolver)) {
5970
0
    F->addFnAttr(llvm::Attribute::DisableSanitizerInstrumentation);
5971
0
  }
5972
0
  SetCommonAttributes(GD, GIF);
5973
0
}
5974
5975
llvm::Function *CodeGenModule::getIntrinsic(unsigned IID,
5976
0
                                            ArrayRef<llvm::Type*> Tys) {
5977
0
  return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID,
5978
0
                                         Tys);
5979
0
}
5980
5981
static llvm::StringMapEntry<llvm::GlobalVariable *> &
5982
GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map,
5983
                         const StringLiteral *Literal, bool TargetIsLSB,
5984
0
                         bool &IsUTF16, unsigned &StringLength) {
5985
0
  StringRef String = Literal->getString();
5986
0
  unsigned NumBytes = String.size();
5987
5988
  // Check for simple case.
5989
0
  if (!Literal->containsNonAsciiOrNull()) {
5990
0
    StringLength = NumBytes;
5991
0
    return *Map.insert(std::make_pair(String, nullptr)).first;
5992
0
  }
5993
5994
  // Otherwise, convert the UTF8 literals into a string of shorts.
5995
0
  IsUTF16 = true;
5996
5997
0
  SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls.
5998
0
  const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
5999
0
  llvm::UTF16 *ToPtr = &ToBuf[0];
6000
6001
0
  (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
6002
0
                                 ToPtr + NumBytes, llvm::strictConversion);
6003
6004
  // ConvertUTF8toUTF16 returns the length in ToPtr.
6005
0
  StringLength = ToPtr - &ToBuf[0];
6006
6007
  // Add an explicit null.
6008
0
  *ToPtr = 0;
6009
0
  return *Map.insert(std::make_pair(
6010
0
                         StringRef(reinterpret_cast<const char *>(ToBuf.data()),
6011
0
                                   (StringLength + 1) * 2),
6012
0
                         nullptr)).first;
6013
0
}
6014
6015
ConstantAddress
6016
0
CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) {
6017
0
  unsigned StringLength = 0;
6018
0
  bool isUTF16 = false;
6019
0
  llvm::StringMapEntry<llvm::GlobalVariable *> &Entry =
6020
0
      GetConstantCFStringEntry(CFConstantStringMap, Literal,
6021
0
                               getDataLayout().isLittleEndian(), isUTF16,
6022
0
                               StringLength);
6023
6024
0
  if (auto *C = Entry.second)
6025
0
    return ConstantAddress(
6026
0
        C, C->getValueType(), CharUnits::fromQuantity(C->getAlignment()));
6027
6028
0
  llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty);
6029
0
  llvm::Constant *Zeros[] = { Zero, Zero };
6030
6031
0
  const ASTContext &Context = getContext();
6032
0
  const llvm::Triple &Triple = getTriple();
6033
6034
0
  const auto CFRuntime = getLangOpts().CFRuntime;
6035
0
  const bool IsSwiftABI =
6036
0
      static_cast<unsigned>(CFRuntime) >=
6037
0
      static_cast<unsigned>(LangOptions::CoreFoundationABI::Swift);
6038
0
  const bool IsSwift4_1 = CFRuntime == LangOptions::CoreFoundationABI::Swift4_1;
6039
6040
  // If we don't already have it, get __CFConstantStringClassReference.
6041
0
  if (!CFConstantStringClassRef) {
6042
0
    const char *CFConstantStringClassName = "__CFConstantStringClassReference";
6043
0
    llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy);
6044
0
    Ty = llvm::ArrayType::get(Ty, 0);
6045
6046
0
    switch (CFRuntime) {
6047
0
    default: break;
6048
0
    case LangOptions::CoreFoundationABI::Swift: [[fallthrough]];
6049
0
    case LangOptions::CoreFoundationABI::Swift5_0:
6050
0
      CFConstantStringClassName =
6051
0
          Triple.isOSDarwin() ? "$s15SwiftFoundation19_NSCFConstantStringCN"
6052
0
                              : "$s10Foundation19_NSCFConstantStringCN";
6053
0
      Ty = IntPtrTy;
6054
0
      break;
6055
0
    case LangOptions::CoreFoundationABI::Swift4_2:
6056
0
      CFConstantStringClassName =
6057
0
          Triple.isOSDarwin() ? "$S15SwiftFoundation19_NSCFConstantStringCN"
6058
0
                              : "$S10Foundation19_NSCFConstantStringCN";
6059
0
      Ty = IntPtrTy;
6060
0
      break;
6061
0
    case LangOptions::CoreFoundationABI::Swift4_1:
6062
0
      CFConstantStringClassName =
6063
0
          Triple.isOSDarwin() ? "__T015SwiftFoundation19_NSCFConstantStringCN"
6064
0
                              : "__T010Foundation19_NSCFConstantStringCN";
6065
0
      Ty = IntPtrTy;
6066
0
      break;
6067
0
    }
6068
6069
0
    llvm::Constant *C = CreateRuntimeVariable(Ty, CFConstantStringClassName);
6070
6071
0
    if (Triple.isOSBinFormatELF() || Triple.isOSBinFormatCOFF()) {
6072
0
      llvm::GlobalValue *GV = nullptr;
6073
6074
0
      if ((GV = dyn_cast<llvm::GlobalValue>(C))) {
6075
0
        IdentifierInfo &II = Context.Idents.get(GV->getName());
6076
0
        TranslationUnitDecl *TUDecl = Context.getTranslationUnitDecl();
6077
0
        DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl);
6078
6079
0
        const VarDecl *VD = nullptr;
6080
0
        for (const auto *Result : DC->lookup(&II))
6081
0
          if ((VD = dyn_cast<VarDecl>(Result)))
6082
0
            break;
6083
6084
0
        if (Triple.isOSBinFormatELF()) {
6085
0
          if (!VD)
6086
0
            GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6087
0
        } else {
6088
0
          GV->setLinkage(llvm::GlobalValue::ExternalLinkage);
6089
0
          if (!VD || !VD->hasAttr<DLLExportAttr>())
6090
0
            GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
6091
0
          else
6092
0
            GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
6093
0
        }
6094
6095
0
        setDSOLocal(GV);
6096
0
      }
6097
0
    }
6098
6099
    // Decay array -> ptr
6100
0
    CFConstantStringClassRef =
6101
0
        IsSwiftABI ? llvm::ConstantExpr::getPtrToInt(C, Ty)
6102
0
                   : llvm::ConstantExpr::getGetElementPtr(Ty, C, Zeros);
6103
0
  }
6104
6105
0
  QualType CFTy = Context.getCFConstantStringType();
6106
6107
0
  auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy));
6108
6109
0
  ConstantInitBuilder Builder(*this);
6110
0
  auto Fields = Builder.beginStruct(STy);
6111
6112
  // Class pointer.
6113
0
  Fields.add(cast<llvm::Constant>(CFConstantStringClassRef));
6114
6115
  // Flags.
6116
0
  if (IsSwiftABI) {
6117
0
    Fields.addInt(IntPtrTy, IsSwift4_1 ? 0x05 : 0x01);
6118
0
    Fields.addInt(Int64Ty, isUTF16 ? 0x07d0 : 0x07c8);
6119
0
  } else {
6120
0
    Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8);
6121
0
  }
6122
6123
  // String pointer.
6124
0
  llvm::Constant *C = nullptr;
6125
0
  if (isUTF16) {
6126
0
    auto Arr = llvm::ArrayRef(
6127
0
        reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())),
6128
0
        Entry.first().size() / 2);
6129
0
    C = llvm::ConstantDataArray::get(VMContext, Arr);
6130
0
  } else {
6131
0
    C = llvm::ConstantDataArray::getString(VMContext, Entry.first());
6132
0
  }
6133
6134
  // Note: -fwritable-strings doesn't make the backing store strings of
6135
  // CFStrings writable.
6136
0
  auto *GV =
6137
0
      new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true,
6138
0
                               llvm::GlobalValue::PrivateLinkage, C, ".str");
6139
0
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6140
  // Don't enforce the target's minimum global alignment, since the only use
6141
  // of the string is via this class initializer.
6142
0
  CharUnits Align = isUTF16 ? Context.getTypeAlignInChars(Context.ShortTy)
6143
0
                            : Context.getTypeAlignInChars(Context.CharTy);
6144
0
  GV->setAlignment(Align.getAsAlign());
6145
6146
  // FIXME: We set the section explicitly to avoid a bug in ld64 224.1.
6147
  // Without it LLVM can merge the string with a non unnamed_addr one during
6148
  // LTO.  Doing that changes the section it ends in, which surprises ld64.
6149
0
  if (Triple.isOSBinFormatMachO())
6150
0
    GV->setSection(isUTF16 ? "__TEXT,__ustring"
6151
0
                           : "__TEXT,__cstring,cstring_literals");
6152
  // Make sure the literal ends up in .rodata to allow for safe ICF and for
6153
  // the static linker to adjust permissions to read-only later on.
6154
0
  else if (Triple.isOSBinFormatELF())
6155
0
    GV->setSection(".rodata");
6156
6157
  // String.
6158
0
  llvm::Constant *Str =
6159
0
      llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros);
6160
6161
0
  Fields.add(Str);
6162
6163
  // String length.
6164
0
  llvm::IntegerType *LengthTy =
6165
0
      llvm::IntegerType::get(getModule().getContext(),
6166
0
                             Context.getTargetInfo().getLongWidth());
6167
0
  if (IsSwiftABI) {
6168
0
    if (CFRuntime == LangOptions::CoreFoundationABI::Swift4_1 ||
6169
0
        CFRuntime == LangOptions::CoreFoundationABI::Swift4_2)
6170
0
      LengthTy = Int32Ty;
6171
0
    else
6172
0
      LengthTy = IntPtrTy;
6173
0
  }
6174
0
  Fields.addInt(LengthTy, StringLength);
6175
6176
  // Swift ABI requires 8-byte alignment to ensure that the _Atomic(uint64_t) is
6177
  // properly aligned on 32-bit platforms.
6178
0
  CharUnits Alignment =
6179
0
      IsSwiftABI ? Context.toCharUnitsFromBits(64) : getPointerAlign();
6180
6181
  // The struct.
6182
0
  GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment,
6183
0
                                    /*isConstant=*/false,
6184
0
                                    llvm::GlobalVariable::PrivateLinkage);
6185
0
  GV->addAttribute("objc_arc_inert");
6186
0
  switch (Triple.getObjectFormat()) {
6187
0
  case llvm::Triple::UnknownObjectFormat:
6188
0
    llvm_unreachable("unknown file format");
6189
0
  case llvm::Triple::DXContainer:
6190
0
  case llvm::Triple::GOFF:
6191
0
  case llvm::Triple::SPIRV:
6192
0
  case llvm::Triple::XCOFF:
6193
0
    llvm_unreachable("unimplemented");
6194
0
  case llvm::Triple::COFF:
6195
0
  case llvm::Triple::ELF:
6196
0
  case llvm::Triple::Wasm:
6197
0
    GV->setSection("cfstring");
6198
0
    break;
6199
0
  case llvm::Triple::MachO:
6200
0
    GV->setSection("__DATA,__cfstring");
6201
0
    break;
6202
0
  }
6203
0
  Entry.second = GV;
6204
6205
0
  return ConstantAddress(GV, GV->getValueType(), Alignment);
6206
0
}
6207
6208
0
bool CodeGenModule::getExpressionLocationsEnabled() const {
6209
0
  return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo;
6210
0
}
6211
6212
0
QualType CodeGenModule::getObjCFastEnumerationStateType() {
6213
0
  if (ObjCFastEnumerationStateType.isNull()) {
6214
0
    RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState");
6215
0
    D->startDefinition();
6216
6217
0
    QualType FieldTypes[] = {
6218
0
        Context.UnsignedLongTy, Context.getPointerType(Context.getObjCIdType()),
6219
0
        Context.getPointerType(Context.UnsignedLongTy),
6220
0
        Context.getConstantArrayType(Context.UnsignedLongTy, llvm::APInt(32, 5),
6221
0
                                     nullptr, ArraySizeModifier::Normal, 0)};
6222
6223
0
    for (size_t i = 0; i < 4; ++i) {
6224
0
      FieldDecl *Field = FieldDecl::Create(Context,
6225
0
                                           D,
6226
0
                                           SourceLocation(),
6227
0
                                           SourceLocation(), nullptr,
6228
0
                                           FieldTypes[i], /*TInfo=*/nullptr,
6229
0
                                           /*BitWidth=*/nullptr,
6230
0
                                           /*Mutable=*/false,
6231
0
                                           ICIS_NoInit);
6232
0
      Field->setAccess(AS_public);
6233
0
      D->addDecl(Field);
6234
0
    }
6235
6236
0
    D->completeDefinition();
6237
0
    ObjCFastEnumerationStateType = Context.getTagDeclType(D);
6238
0
  }
6239
6240
0
  return ObjCFastEnumerationStateType;
6241
0
}
6242
6243
llvm::Constant *
6244
0
CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) {
6245
0
  assert(!E->getType()->isPointerType() && "Strings are always arrays");
6246
6247
  // Don't emit it as the address of the string, emit the string data itself
6248
  // as an inline array.
6249
0
  if (E->getCharByteWidth() == 1) {
6250
0
    SmallString<64> Str(E->getString());
6251
6252
    // Resize the string to the right size, which is indicated by its type.
6253
0
    const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType());
6254
0
    assert(CAT && "String literal not of constant array type!");
6255
0
    Str.resize(CAT->getSize().getZExtValue());
6256
0
    return llvm::ConstantDataArray::getString(VMContext, Str, false);
6257
0
  }
6258
6259
0
  auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType()));
6260
0
  llvm::Type *ElemTy = AType->getElementType();
6261
0
  unsigned NumElements = AType->getNumElements();
6262
6263
  // Wide strings have either 2-byte or 4-byte elements.
6264
0
  if (ElemTy->getPrimitiveSizeInBits() == 16) {
6265
0
    SmallVector<uint16_t, 32> Elements;
6266
0
    Elements.reserve(NumElements);
6267
6268
0
    for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6269
0
      Elements.push_back(E->getCodeUnit(i));
6270
0
    Elements.resize(NumElements);
6271
0
    return llvm::ConstantDataArray::get(VMContext, Elements);
6272
0
  }
6273
6274
0
  assert(ElemTy->getPrimitiveSizeInBits() == 32);
6275
0
  SmallVector<uint32_t, 32> Elements;
6276
0
  Elements.reserve(NumElements);
6277
6278
0
  for(unsigned i = 0, e = E->getLength(); i != e; ++i)
6279
0
    Elements.push_back(E->getCodeUnit(i));
6280
0
  Elements.resize(NumElements);
6281
0
  return llvm::ConstantDataArray::get(VMContext, Elements);
6282
0
}
6283
6284
static llvm::GlobalVariable *
6285
GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT,
6286
                      CodeGenModule &CGM, StringRef GlobalName,
6287
0
                      CharUnits Alignment) {
6288
0
  unsigned AddrSpace = CGM.getContext().getTargetAddressSpace(
6289
0
      CGM.GetGlobalConstantAddressSpace());
6290
6291
0
  llvm::Module &M = CGM.getModule();
6292
  // Create a global variable for this string
6293
0
  auto *GV = new llvm::GlobalVariable(
6294
0
      M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName,
6295
0
      nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace);
6296
0
  GV->setAlignment(Alignment.getAsAlign());
6297
0
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
6298
0
  if (GV->isWeakForLinker()) {
6299
0
    assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals");
6300
0
    GV->setComdat(M.getOrInsertComdat(GV->getName()));
6301
0
  }
6302
0
  CGM.setDSOLocal(GV);
6303
6304
0
  return GV;
6305
0
}
6306
6307
/// GetAddrOfConstantStringFromLiteral - Return a pointer to a
6308
/// constant array for the given string literal.
6309
ConstantAddress
6310
CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S,
6311
0
                                                  StringRef Name) {
6312
0
  CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType());
6313
6314
0
  llvm::Constant *C = GetConstantArrayFromStringLiteral(S);
6315
0
  llvm::GlobalVariable **Entry = nullptr;
6316
0
  if (!LangOpts.WritableStrings) {
6317
0
    Entry = &ConstantStringMap[C];
6318
0
    if (auto GV = *Entry) {
6319
0
      if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6320
0
        GV->setAlignment(Alignment.getAsAlign());
6321
0
      return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6322
0
                             GV->getValueType(), Alignment);
6323
0
    }
6324
0
  }
6325
6326
0
  SmallString<256> MangledNameBuffer;
6327
0
  StringRef GlobalVariableName;
6328
0
  llvm::GlobalValue::LinkageTypes LT;
6329
6330
  // Mangle the string literal if that's how the ABI merges duplicate strings.
6331
  // Don't do it if they are writable, since we don't want writes in one TU to
6332
  // affect strings in another.
6333
0
  if (getCXXABI().getMangleContext().shouldMangleStringLiteral(S) &&
6334
0
      !LangOpts.WritableStrings) {
6335
0
    llvm::raw_svector_ostream Out(MangledNameBuffer);
6336
0
    getCXXABI().getMangleContext().mangleStringLiteral(S, Out);
6337
0
    LT = llvm::GlobalValue::LinkOnceODRLinkage;
6338
0
    GlobalVariableName = MangledNameBuffer;
6339
0
  } else {
6340
0
    LT = llvm::GlobalValue::PrivateLinkage;
6341
0
    GlobalVariableName = Name;
6342
0
  }
6343
6344
0
  auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment);
6345
6346
0
  CGDebugInfo *DI = getModuleDebugInfo();
6347
0
  if (DI && getCodeGenOpts().hasReducedDebugInfo())
6348
0
    DI->AddStringLiteralDebugInfo(GV, S);
6349
6350
0
  if (Entry)
6351
0
    *Entry = GV;
6352
6353
0
  SanitizerMD->reportGlobal(GV, S->getStrTokenLoc(0), "<string literal>");
6354
6355
0
  return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6356
0
                         GV->getValueType(), Alignment);
6357
0
}
6358
6359
/// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant
6360
/// array for the given ObjCEncodeExpr node.
6361
ConstantAddress
6362
0
CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) {
6363
0
  std::string Str;
6364
0
  getContext().getObjCEncodingForType(E->getEncodedType(), Str);
6365
6366
0
  return GetAddrOfConstantCString(Str);
6367
0
}
6368
6369
/// GetAddrOfConstantCString - Returns a pointer to a character array containing
6370
/// the literal and a terminating '\0' character.
6371
/// The result has pointer to array type.
6372
ConstantAddress CodeGenModule::GetAddrOfConstantCString(
6373
0
    const std::string &Str, const char *GlobalName) {
6374
0
  StringRef StrWithNull(Str.c_str(), Str.size() + 1);
6375
0
  CharUnits Alignment =
6376
0
    getContext().getAlignOfGlobalVarInChars(getContext().CharTy);
6377
6378
0
  llvm::Constant *C =
6379
0
      llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false);
6380
6381
  // Don't share any string literals if strings aren't constant.
6382
0
  llvm::GlobalVariable **Entry = nullptr;
6383
0
  if (!LangOpts.WritableStrings) {
6384
0
    Entry = &ConstantStringMap[C];
6385
0
    if (auto GV = *Entry) {
6386
0
      if (uint64_t(Alignment.getQuantity()) > GV->getAlignment())
6387
0
        GV->setAlignment(Alignment.getAsAlign());
6388
0
      return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6389
0
                             GV->getValueType(), Alignment);
6390
0
    }
6391
0
  }
6392
6393
  // Get the default prefix if a name wasn't specified.
6394
0
  if (!GlobalName)
6395
0
    GlobalName = ".str";
6396
  // Create a global variable for this.
6397
0
  auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this,
6398
0
                                  GlobalName, Alignment);
6399
0
  if (Entry)
6400
0
    *Entry = GV;
6401
6402
0
  return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV),
6403
0
                         GV->getValueType(), Alignment);
6404
0
}
6405
6406
ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary(
6407
0
    const MaterializeTemporaryExpr *E, const Expr *Init) {
6408
0
  assert((E->getStorageDuration() == SD_Static ||
6409
0
          E->getStorageDuration() == SD_Thread) && "not a global temporary");
6410
0
  const auto *VD = cast<VarDecl>(E->getExtendingDecl());
6411
6412
  // If we're not materializing a subobject of the temporary, keep the
6413
  // cv-qualifiers from the type of the MaterializeTemporaryExpr.
6414
0
  QualType MaterializedType = Init->getType();
6415
0
  if (Init == E->getSubExpr())
6416
0
    MaterializedType = E->getType();
6417
6418
0
  CharUnits Align = getContext().getTypeAlignInChars(MaterializedType);
6419
6420
0
  auto InsertResult = MaterializedGlobalTemporaryMap.insert({E, nullptr});
6421
0
  if (!InsertResult.second) {
6422
    // We've seen this before: either we already created it or we're in the
6423
    // process of doing so.
6424
0
    if (!InsertResult.first->second) {
6425
      // We recursively re-entered this function, probably during emission of
6426
      // the initializer. Create a placeholder. We'll clean this up in the
6427
      // outer call, at the end of this function.
6428
0
      llvm::Type *Type = getTypes().ConvertTypeForMem(MaterializedType);
6429
0
      InsertResult.first->second = new llvm::GlobalVariable(
6430
0
          getModule(), Type, false, llvm::GlobalVariable::InternalLinkage,
6431
0
          nullptr);
6432
0
    }
6433
0
    return ConstantAddress(InsertResult.first->second,
6434
0
                           llvm::cast<llvm::GlobalVariable>(
6435
0
                               InsertResult.first->second->stripPointerCasts())
6436
0
                               ->getValueType(),
6437
0
                           Align);
6438
0
  }
6439
6440
  // FIXME: If an externally-visible declaration extends multiple temporaries,
6441
  // we need to give each temporary the same name in every translation unit (and
6442
  // we also need to make the temporaries externally-visible).
6443
0
  SmallString<256> Name;
6444
0
  llvm::raw_svector_ostream Out(Name);
6445
0
  getCXXABI().getMangleContext().mangleReferenceTemporary(
6446
0
      VD, E->getManglingNumber(), Out);
6447
6448
0
  APValue *Value = nullptr;
6449
0
  if (E->getStorageDuration() == SD_Static && VD->evaluateValue()) {
6450
    // If the initializer of the extending declaration is a constant
6451
    // initializer, we should have a cached constant initializer for this
6452
    // temporary. Note that this might have a different value from the value
6453
    // computed by evaluating the initializer if the surrounding constant
6454
    // expression modifies the temporary.
6455
0
    Value = E->getOrCreateValue(false);
6456
0
  }
6457
6458
  // Try evaluating it now, it might have a constant initializer.
6459
0
  Expr::EvalResult EvalResult;
6460
0
  if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) &&
6461
0
      !EvalResult.hasSideEffects())
6462
0
    Value = &EvalResult.Val;
6463
6464
0
  LangAS AddrSpace = GetGlobalVarAddressSpace(VD);
6465
6466
0
  std::optional<ConstantEmitter> emitter;
6467
0
  llvm::Constant *InitialValue = nullptr;
6468
0
  bool Constant = false;
6469
0
  llvm::Type *Type;
6470
0
  if (Value) {
6471
    // The temporary has a constant initializer, use it.
6472
0
    emitter.emplace(*this);
6473
0
    InitialValue = emitter->emitForInitializer(*Value, AddrSpace,
6474
0
                                               MaterializedType);
6475
0
    Constant =
6476
0
        MaterializedType.isConstantStorage(getContext(), /*ExcludeCtor*/ Value,
6477
0
                                           /*ExcludeDtor*/ false);
6478
0
    Type = InitialValue->getType();
6479
0
  } else {
6480
    // No initializer, the initialization will be provided when we
6481
    // initialize the declaration which performed lifetime extension.
6482
0
    Type = getTypes().ConvertTypeForMem(MaterializedType);
6483
0
  }
6484
6485
  // Create a global variable for this lifetime-extended temporary.
6486
0
  llvm::GlobalValue::LinkageTypes Linkage = getLLVMLinkageVarDefinition(VD);
6487
0
  if (Linkage == llvm::GlobalVariable::ExternalLinkage) {
6488
0
    const VarDecl *InitVD;
6489
0
    if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) &&
6490
0
        isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) {
6491
      // Temporaries defined inside a class get linkonce_odr linkage because the
6492
      // class can be defined in multiple translation units.
6493
0
      Linkage = llvm::GlobalVariable::LinkOnceODRLinkage;
6494
0
    } else {
6495
      // There is no need for this temporary to have external linkage if the
6496
      // VarDecl has external linkage.
6497
0
      Linkage = llvm::GlobalVariable::InternalLinkage;
6498
0
    }
6499
0
  }
6500
0
  auto TargetAS = getContext().getTargetAddressSpace(AddrSpace);
6501
0
  auto *GV = new llvm::GlobalVariable(
6502
0
      getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(),
6503
0
      /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
6504
0
  if (emitter) emitter->finalize(GV);
6505
  // Don't assign dllimport or dllexport to local linkage globals.
6506
0
  if (!llvm::GlobalValue::isLocalLinkage(Linkage)) {
6507
0
    setGVProperties(GV, VD);
6508
0
    if (GV->getDLLStorageClass() == llvm::GlobalVariable::DLLExportStorageClass)
6509
      // The reference temporary should never be dllexport.
6510
0
      GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass);
6511
0
  }
6512
0
  GV->setAlignment(Align.getAsAlign());
6513
0
  if (supportsCOMDAT() && GV->isWeakForLinker())
6514
0
    GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
6515
0
  if (VD->getTLSKind())
6516
0
    setTLSMode(GV, *VD);
6517
0
  llvm::Constant *CV = GV;
6518
0
  if (AddrSpace != LangAS::Default)
6519
0
    CV = getTargetCodeGenInfo().performAddrSpaceCast(
6520
0
        *this, GV, AddrSpace, LangAS::Default,
6521
0
        llvm::PointerType::get(
6522
0
            getLLVMContext(),
6523
0
            getContext().getTargetAddressSpace(LangAS::Default)));
6524
6525
  // Update the map with the new temporary. If we created a placeholder above,
6526
  // replace it with the new global now.
6527
0
  llvm::Constant *&Entry = MaterializedGlobalTemporaryMap[E];
6528
0
  if (Entry) {
6529
0
    Entry->replaceAllUsesWith(CV);
6530
0
    llvm::cast<llvm::GlobalVariable>(Entry)->eraseFromParent();
6531
0
  }
6532
0
  Entry = CV;
6533
6534
0
  return ConstantAddress(CV, Type, Align);
6535
0
}
6536
6537
/// EmitObjCPropertyImplementations - Emit information for synthesized
6538
/// properties for an implementation.
6539
void CodeGenModule::EmitObjCPropertyImplementations(const
6540
0
                                                    ObjCImplementationDecl *D) {
6541
0
  for (const auto *PID : D->property_impls()) {
6542
    // Dynamic is just for type-checking.
6543
0
    if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) {
6544
0
      ObjCPropertyDecl *PD = PID->getPropertyDecl();
6545
6546
      // Determine which methods need to be implemented, some may have
6547
      // been overridden. Note that ::isPropertyAccessor is not the method
6548
      // we want, that just indicates if the decl came from a
6549
      // property. What we want to know is if the method is defined in
6550
      // this implementation.
6551
0
      auto *Getter = PID->getGetterMethodDecl();
6552
0
      if (!Getter || Getter->isSynthesizedAccessorStub())
6553
0
        CodeGenFunction(*this).GenerateObjCGetter(
6554
0
            const_cast<ObjCImplementationDecl *>(D), PID);
6555
0
      auto *Setter = PID->getSetterMethodDecl();
6556
0
      if (!PD->isReadOnly() && (!Setter || Setter->isSynthesizedAccessorStub()))
6557
0
        CodeGenFunction(*this).GenerateObjCSetter(
6558
0
                                 const_cast<ObjCImplementationDecl *>(D), PID);
6559
0
    }
6560
0
  }
6561
0
}
6562
6563
0
static bool needsDestructMethod(ObjCImplementationDecl *impl) {
6564
0
  const ObjCInterfaceDecl *iface = impl->getClassInterface();
6565
0
  for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin();
6566
0
       ivar; ivar = ivar->getNextIvar())
6567
0
    if (ivar->getType().isDestructedType())
6568
0
      return true;
6569
6570
0
  return false;
6571
0
}
6572
6573
static bool AllTrivialInitializers(CodeGenModule &CGM,
6574
0
                                   ObjCImplementationDecl *D) {
6575
0
  CodeGenFunction CGF(CGM);
6576
0
  for (ObjCImplementationDecl::init_iterator B = D->init_begin(),
6577
0
       E = D->init_end(); B != E; ++B) {
6578
0
    CXXCtorInitializer *CtorInitExp = *B;
6579
0
    Expr *Init = CtorInitExp->getInit();
6580
0
    if (!CGF.isTrivialInitializer(Init))
6581
0
      return false;
6582
0
  }
6583
0
  return true;
6584
0
}
6585
6586
/// EmitObjCIvarInitializations - Emit information for ivar initialization
6587
/// for an implementation.
6588
0
void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) {
6589
  // We might need a .cxx_destruct even if we don't have any ivar initializers.
6590
0
  if (needsDestructMethod(D)) {
6591
0
    IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct");
6592
0
    Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6593
0
    ObjCMethodDecl *DTORMethod = ObjCMethodDecl::Create(
6594
0
        getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6595
0
        getContext().VoidTy, nullptr, D,
6596
0
        /*isInstance=*/true, /*isVariadic=*/false,
6597
0
        /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6598
0
        /*isImplicitlyDeclared=*/true,
6599
0
        /*isDefined=*/false, ObjCImplementationControl::Required);
6600
0
    D->addInstanceMethod(DTORMethod);
6601
0
    CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false);
6602
0
    D->setHasDestructors(true);
6603
0
  }
6604
6605
  // If the implementation doesn't have any ivar initializers, we don't need
6606
  // a .cxx_construct.
6607
0
  if (D->getNumIvarInitializers() == 0 ||
6608
0
      AllTrivialInitializers(*this, D))
6609
0
    return;
6610
6611
0
  IdentifierInfo *II = &getContext().Idents.get(".cxx_construct");
6612
0
  Selector cxxSelector = getContext().Selectors.getSelector(0, &II);
6613
  // The constructor returns 'self'.
6614
0
  ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(
6615
0
      getContext(), D->getLocation(), D->getLocation(), cxxSelector,
6616
0
      getContext().getObjCIdType(), nullptr, D, /*isInstance=*/true,
6617
0
      /*isVariadic=*/false,
6618
0
      /*isPropertyAccessor=*/true, /*isSynthesizedAccessorStub=*/false,
6619
0
      /*isImplicitlyDeclared=*/true,
6620
0
      /*isDefined=*/false, ObjCImplementationControl::Required);
6621
0
  D->addInstanceMethod(CTORMethod);
6622
0
  CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true);
6623
0
  D->setHasNonZeroConstructors(true);
6624
0
}
6625
6626
// EmitLinkageSpec - Emit all declarations in a linkage spec.
6627
0
void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) {
6628
0
  if (LSD->getLanguage() != LinkageSpecLanguageIDs::C &&
6629
0
      LSD->getLanguage() != LinkageSpecLanguageIDs::CXX) {
6630
0
    ErrorUnsupported(LSD, "linkage spec");
6631
0
    return;
6632
0
  }
6633
6634
0
  EmitDeclContext(LSD);
6635
0
}
6636
6637
0
void CodeGenModule::EmitTopLevelStmt(const TopLevelStmtDecl *D) {
6638
  // Device code should not be at top level.
6639
0
  if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6640
0
    return;
6641
6642
0
  std::unique_ptr<CodeGenFunction> &CurCGF =
6643
0
      GlobalTopLevelStmtBlockInFlight.first;
6644
6645
  // We emitted a top-level stmt but after it there is initialization.
6646
  // Stop squashing the top-level stmts into a single function.
6647
0
  if (CurCGF && CXXGlobalInits.back() != CurCGF->CurFn) {
6648
0
    CurCGF->FinishFunction(D->getEndLoc());
6649
0
    CurCGF = nullptr;
6650
0
  }
6651
6652
0
  if (!CurCGF) {
6653
    // void __stmts__N(void)
6654
    // FIXME: Ask the ABI name mangler to pick a name.
6655
0
    std::string Name = "__stmts__" + llvm::utostr(CXXGlobalInits.size());
6656
0
    FunctionArgList Args;
6657
0
    QualType RetTy = getContext().VoidTy;
6658
0
    const CGFunctionInfo &FnInfo =
6659
0
        getTypes().arrangeBuiltinFunctionDeclaration(RetTy, Args);
6660
0
    llvm::FunctionType *FnTy = getTypes().GetFunctionType(FnInfo);
6661
0
    llvm::Function *Fn = llvm::Function::Create(
6662
0
        FnTy, llvm::GlobalValue::InternalLinkage, Name, &getModule());
6663
6664
0
    CurCGF.reset(new CodeGenFunction(*this));
6665
0
    GlobalTopLevelStmtBlockInFlight.second = D;
6666
0
    CurCGF->StartFunction(GlobalDecl(), RetTy, Fn, FnInfo, Args,
6667
0
                          D->getBeginLoc(), D->getBeginLoc());
6668
0
    CXXGlobalInits.push_back(Fn);
6669
0
  }
6670
6671
0
  CurCGF->EmitStmt(D->getStmt());
6672
0
}
6673
6674
0
void CodeGenModule::EmitDeclContext(const DeclContext *DC) {
6675
0
  for (auto *I : DC->decls()) {
6676
    // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope
6677
    // are themselves considered "top-level", so EmitTopLevelDecl on an
6678
    // ObjCImplDecl does not recursively visit them. We need to do that in
6679
    // case they're nested inside another construct (LinkageSpecDecl /
6680
    // ExportDecl) that does stop them from being considered "top-level".
6681
0
    if (auto *OID = dyn_cast<ObjCImplDecl>(I)) {
6682
0
      for (auto *M : OID->methods())
6683
0
        EmitTopLevelDecl(M);
6684
0
    }
6685
6686
0
    EmitTopLevelDecl(I);
6687
0
  }
6688
0
}
6689
6690
/// EmitTopLevelDecl - Emit code for a single top level declaration.
6691
0
void CodeGenModule::EmitTopLevelDecl(Decl *D) {
6692
  // Ignore dependent declarations.
6693
0
  if (D->isTemplated())
6694
0
    return;
6695
6696
  // Consteval function shouldn't be emitted.
6697
0
  if (auto *FD = dyn_cast<FunctionDecl>(D); FD && FD->isImmediateFunction())
6698
0
    return;
6699
6700
0
  switch (D->getKind()) {
6701
0
  case Decl::CXXConversion:
6702
0
  case Decl::CXXMethod:
6703
0
  case Decl::Function:
6704
0
    EmitGlobal(cast<FunctionDecl>(D));
6705
    // Always provide some coverage mapping
6706
    // even for the functions that aren't emitted.
6707
0
    AddDeferredUnusedCoverageMapping(D);
6708
0
    break;
6709
6710
0
  case Decl::CXXDeductionGuide:
6711
    // Function-like, but does not result in code emission.
6712
0
    break;
6713
6714
0
  case Decl::Var:
6715
0
  case Decl::Decomposition:
6716
0
  case Decl::VarTemplateSpecialization:
6717
0
    EmitGlobal(cast<VarDecl>(D));
6718
0
    if (auto *DD = dyn_cast<DecompositionDecl>(D))
6719
0
      for (auto *B : DD->bindings())
6720
0
        if (auto *HD = B->getHoldingVar())
6721
0
          EmitGlobal(HD);
6722
0
    break;
6723
6724
  // Indirect fields from global anonymous structs and unions can be
6725
  // ignored; only the actual variable requires IR gen support.
6726
0
  case Decl::IndirectField:
6727
0
    break;
6728
6729
  // C++ Decls
6730
0
  case Decl::Namespace:
6731
0
    EmitDeclContext(cast<NamespaceDecl>(D));
6732
0
    break;
6733
0
  case Decl::ClassTemplateSpecialization: {
6734
0
    const auto *Spec = cast<ClassTemplateSpecializationDecl>(D);
6735
0
    if (CGDebugInfo *DI = getModuleDebugInfo())
6736
0
      if (Spec->getSpecializationKind() ==
6737
0
              TSK_ExplicitInstantiationDefinition &&
6738
0
          Spec->hasDefinition())
6739
0
        DI->completeTemplateDefinition(*Spec);
6740
0
  } [[fallthrough]];
6741
0
  case Decl::CXXRecord: {
6742
0
    CXXRecordDecl *CRD = cast<CXXRecordDecl>(D);
6743
0
    if (CGDebugInfo *DI = getModuleDebugInfo()) {
6744
0
      if (CRD->hasDefinition())
6745
0
        DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6746
0
      if (auto *ES = D->getASTContext().getExternalSource())
6747
0
        if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never)
6748
0
          DI->completeUnusedClass(*CRD);
6749
0
    }
6750
    // Emit any static data members, they may be definitions.
6751
0
    for (auto *I : CRD->decls())
6752
0
      if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I))
6753
0
        EmitTopLevelDecl(I);
6754
0
    break;
6755
0
  }
6756
    // No code generation needed.
6757
0
  case Decl::UsingShadow:
6758
0
  case Decl::ClassTemplate:
6759
0
  case Decl::VarTemplate:
6760
0
  case Decl::Concept:
6761
0
  case Decl::VarTemplatePartialSpecialization:
6762
0
  case Decl::FunctionTemplate:
6763
0
  case Decl::TypeAliasTemplate:
6764
0
  case Decl::Block:
6765
0
  case Decl::Empty:
6766
0
  case Decl::Binding:
6767
0
    break;
6768
0
  case Decl::Using:          // using X; [C++]
6769
0
    if (CGDebugInfo *DI = getModuleDebugInfo())
6770
0
        DI->EmitUsingDecl(cast<UsingDecl>(*D));
6771
0
    break;
6772
0
  case Decl::UsingEnum: // using enum X; [C++]
6773
0
    if (CGDebugInfo *DI = getModuleDebugInfo())
6774
0
      DI->EmitUsingEnumDecl(cast<UsingEnumDecl>(*D));
6775
0
    break;
6776
0
  case Decl::NamespaceAlias:
6777
0
    if (CGDebugInfo *DI = getModuleDebugInfo())
6778
0
        DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D));
6779
0
    break;
6780
0
  case Decl::UsingDirective: // using namespace X; [C++]
6781
0
    if (CGDebugInfo *DI = getModuleDebugInfo())
6782
0
      DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D));
6783
0
    break;
6784
0
  case Decl::CXXConstructor:
6785
0
    getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D));
6786
0
    break;
6787
0
  case Decl::CXXDestructor:
6788
0
    getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D));
6789
0
    break;
6790
6791
0
  case Decl::StaticAssert:
6792
    // Nothing to do.
6793
0
    break;
6794
6795
  // Objective-C Decls
6796
6797
  // Forward declarations, no (immediate) code generation.
6798
0
  case Decl::ObjCInterface:
6799
0
  case Decl::ObjCCategory:
6800
0
    break;
6801
6802
0
  case Decl::ObjCProtocol: {
6803
0
    auto *Proto = cast<ObjCProtocolDecl>(D);
6804
0
    if (Proto->isThisDeclarationADefinition())
6805
0
      ObjCRuntime->GenerateProtocol(Proto);
6806
0
    break;
6807
0
  }
6808
6809
0
  case Decl::ObjCCategoryImpl:
6810
    // Categories have properties but don't support synthesize so we
6811
    // can ignore them here.
6812
0
    ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D));
6813
0
    break;
6814
6815
0
  case Decl::ObjCImplementation: {
6816
0
    auto *OMD = cast<ObjCImplementationDecl>(D);
6817
0
    EmitObjCPropertyImplementations(OMD);
6818
0
    EmitObjCIvarInitializations(OMD);
6819
0
    ObjCRuntime->GenerateClass(OMD);
6820
    // Emit global variable debug information.
6821
0
    if (CGDebugInfo *DI = getModuleDebugInfo())
6822
0
      if (getCodeGenOpts().hasReducedDebugInfo())
6823
0
        DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType(
6824
0
            OMD->getClassInterface()), OMD->getLocation());
6825
0
    break;
6826
0
  }
6827
0
  case Decl::ObjCMethod: {
6828
0
    auto *OMD = cast<ObjCMethodDecl>(D);
6829
    // If this is not a prototype, emit the body.
6830
0
    if (OMD->getBody())
6831
0
      CodeGenFunction(*this).GenerateObjCMethod(OMD);
6832
0
    break;
6833
0
  }
6834
0
  case Decl::ObjCCompatibleAlias:
6835
0
    ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D));
6836
0
    break;
6837
6838
0
  case Decl::PragmaComment: {
6839
0
    const auto *PCD = cast<PragmaCommentDecl>(D);
6840
0
    switch (PCD->getCommentKind()) {
6841
0
    case PCK_Unknown:
6842
0
      llvm_unreachable("unexpected pragma comment kind");
6843
0
    case PCK_Linker:
6844
0
      AppendLinkerOptions(PCD->getArg());
6845
0
      break;
6846
0
    case PCK_Lib:
6847
0
        AddDependentLib(PCD->getArg());
6848
0
      break;
6849
0
    case PCK_Compiler:
6850
0
    case PCK_ExeStr:
6851
0
    case PCK_User:
6852
0
      break; // We ignore all of these.
6853
0
    }
6854
0
    break;
6855
0
  }
6856
6857
0
  case Decl::PragmaDetectMismatch: {
6858
0
    const auto *PDMD = cast<PragmaDetectMismatchDecl>(D);
6859
0
    AddDetectMismatch(PDMD->getName(), PDMD->getValue());
6860
0
    break;
6861
0
  }
6862
6863
0
  case Decl::LinkageSpec:
6864
0
    EmitLinkageSpec(cast<LinkageSpecDecl>(D));
6865
0
    break;
6866
6867
0
  case Decl::FileScopeAsm: {
6868
    // File-scope asm is ignored during device-side CUDA compilation.
6869
0
    if (LangOpts.CUDA && LangOpts.CUDAIsDevice)
6870
0
      break;
6871
    // File-scope asm is ignored during device-side OpenMP compilation.
6872
0
    if (LangOpts.OpenMPIsTargetDevice)
6873
0
      break;
6874
    // File-scope asm is ignored during device-side SYCL compilation.
6875
0
    if (LangOpts.SYCLIsDevice)
6876
0
      break;
6877
0
    auto *AD = cast<FileScopeAsmDecl>(D);
6878
0
    getModule().appendModuleInlineAsm(AD->getAsmString()->getString());
6879
0
    break;
6880
0
  }
6881
6882
0
  case Decl::TopLevelStmt:
6883
0
    EmitTopLevelStmt(cast<TopLevelStmtDecl>(D));
6884
0
    break;
6885
6886
0
  case Decl::Import: {
6887
0
    auto *Import = cast<ImportDecl>(D);
6888
6889
    // If we've already imported this module, we're done.
6890
0
    if (!ImportedModules.insert(Import->getImportedModule()))
6891
0
      break;
6892
6893
    // Emit debug information for direct imports.
6894
0
    if (!Import->getImportedOwningModule()) {
6895
0
      if (CGDebugInfo *DI = getModuleDebugInfo())
6896
0
        DI->EmitImportDecl(*Import);
6897
0
    }
6898
6899
    // For C++ standard modules we are done - we will call the module
6900
    // initializer for imported modules, and that will likewise call those for
6901
    // any imports it has.
6902
0
    if (CXX20ModuleInits && Import->getImportedOwningModule() &&
6903
0
        !Import->getImportedOwningModule()->isModuleMapModule())
6904
0
      break;
6905
6906
    // For clang C++ module map modules the initializers for sub-modules are
6907
    // emitted here.
6908
6909
    // Find all of the submodules and emit the module initializers.
6910
0
    llvm::SmallPtrSet<clang::Module *, 16> Visited;
6911
0
    SmallVector<clang::Module *, 16> Stack;
6912
0
    Visited.insert(Import->getImportedModule());
6913
0
    Stack.push_back(Import->getImportedModule());
6914
6915
0
    while (!Stack.empty()) {
6916
0
      clang::Module *Mod = Stack.pop_back_val();
6917
0
      if (!EmittedModuleInitializers.insert(Mod).second)
6918
0
        continue;
6919
6920
0
      for (auto *D : Context.getModuleInitializers(Mod))
6921
0
        EmitTopLevelDecl(D);
6922
6923
      // Visit the submodules of this module.
6924
0
      for (auto *Submodule : Mod->submodules()) {
6925
        // Skip explicit children; they need to be explicitly imported to emit
6926
        // the initializers.
6927
0
        if (Submodule->IsExplicit)
6928
0
          continue;
6929
6930
0
        if (Visited.insert(Submodule).second)
6931
0
          Stack.push_back(Submodule);
6932
0
      }
6933
0
    }
6934
0
    break;
6935
0
  }
6936
6937
0
  case Decl::Export:
6938
0
    EmitDeclContext(cast<ExportDecl>(D));
6939
0
    break;
6940
6941
0
  case Decl::OMPThreadPrivate:
6942
0
    EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D));
6943
0
    break;
6944
6945
0
  case Decl::OMPAllocate:
6946
0
    EmitOMPAllocateDecl(cast<OMPAllocateDecl>(D));
6947
0
    break;
6948
6949
0
  case Decl::OMPDeclareReduction:
6950
0
    EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D));
6951
0
    break;
6952
6953
0
  case Decl::OMPDeclareMapper:
6954
0
    EmitOMPDeclareMapper(cast<OMPDeclareMapperDecl>(D));
6955
0
    break;
6956
6957
0
  case Decl::OMPRequires:
6958
0
    EmitOMPRequiresDecl(cast<OMPRequiresDecl>(D));
6959
0
    break;
6960
6961
0
  case Decl::Typedef:
6962
0
  case Decl::TypeAlias: // using foo = bar; [C++11]
6963
0
    if (CGDebugInfo *DI = getModuleDebugInfo())
6964
0
      DI->EmitAndRetainType(
6965
0
          getContext().getTypedefType(cast<TypedefNameDecl>(D)));
6966
0
    break;
6967
6968
0
  case Decl::Record:
6969
0
    if (CGDebugInfo *DI = getModuleDebugInfo())
6970
0
      if (cast<RecordDecl>(D)->getDefinition())
6971
0
        DI->EmitAndRetainType(getContext().getRecordType(cast<RecordDecl>(D)));
6972
0
    break;
6973
6974
0
  case Decl::Enum:
6975
0
    if (CGDebugInfo *DI = getModuleDebugInfo())
6976
0
      if (cast<EnumDecl>(D)->getDefinition())
6977
0
        DI->EmitAndRetainType(getContext().getEnumType(cast<EnumDecl>(D)));
6978
0
    break;
6979
6980
0
  case Decl::HLSLBuffer:
6981
0
    getHLSLRuntime().addBuffer(cast<HLSLBufferDecl>(D));
6982
0
    break;
6983
6984
0
  default:
6985
    // Make sure we handled everything we should, every other kind is a
6986
    // non-top-level decl.  FIXME: Would be nice to have an isTopLevelDeclKind
6987
    // function. Need to recode Decl::Kind to do that easily.
6988
0
    assert(isa<TypeDecl>(D) && "Unsupported decl kind");
6989
0
    break;
6990
0
  }
6991
0
}
6992
6993
0
void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) {
6994
  // Do we need to generate coverage mapping?
6995
0
  if (!CodeGenOpts.CoverageMapping)
6996
0
    return;
6997
0
  switch (D->getKind()) {
6998
0
  case Decl::CXXConversion:
6999
0
  case Decl::CXXMethod:
7000
0
  case Decl::Function:
7001
0
  case Decl::ObjCMethod:
7002
0
  case Decl::CXXConstructor:
7003
0
  case Decl::CXXDestructor: {
7004
0
    if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody())
7005
0
      break;
7006
0
    SourceManager &SM = getContext().getSourceManager();
7007
0
    if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getBeginLoc()))
7008
0
      break;
7009
0
    DeferredEmptyCoverageMappingDecls.try_emplace(D, true);
7010
0
    break;
7011
0
  }
7012
0
  default:
7013
0
    break;
7014
0
  };
7015
0
}
7016
7017
0
void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) {
7018
  // Do we need to generate coverage mapping?
7019
0
  if (!CodeGenOpts.CoverageMapping)
7020
0
    return;
7021
0
  if (const auto *Fn = dyn_cast<FunctionDecl>(D)) {
7022
0
    if (Fn->isTemplateInstantiation())
7023
0
      ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern());
7024
0
  }
7025
0
  DeferredEmptyCoverageMappingDecls.insert_or_assign(D, false);
7026
0
}
7027
7028
0
void CodeGenModule::EmitDeferredUnusedCoverageMappings() {
7029
  // We call takeVector() here to avoid use-after-free.
7030
  // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because
7031
  // we deserialize function bodies to emit coverage info for them, and that
7032
  // deserializes more declarations. How should we handle that case?
7033
0
  for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) {
7034
0
    if (!Entry.second)
7035
0
      continue;
7036
0
    const Decl *D = Entry.first;
7037
0
    switch (D->getKind()) {
7038
0
    case Decl::CXXConversion:
7039
0
    case Decl::CXXMethod:
7040
0
    case Decl::Function:
7041
0
    case Decl::ObjCMethod: {
7042
0
      CodeGenPGO PGO(*this);
7043
0
      GlobalDecl GD(cast<FunctionDecl>(D));
7044
0
      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7045
0
                                  getFunctionLinkage(GD));
7046
0
      break;
7047
0
    }
7048
0
    case Decl::CXXConstructor: {
7049
0
      CodeGenPGO PGO(*this);
7050
0
      GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base);
7051
0
      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7052
0
                                  getFunctionLinkage(GD));
7053
0
      break;
7054
0
    }
7055
0
    case Decl::CXXDestructor: {
7056
0
      CodeGenPGO PGO(*this);
7057
0
      GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base);
7058
0
      PGO.emitEmptyCounterMapping(D, getMangledName(GD),
7059
0
                                  getFunctionLinkage(GD));
7060
0
      break;
7061
0
    }
7062
0
    default:
7063
0
      break;
7064
0
    };
7065
0
  }
7066
0
}
7067
7068
0
void CodeGenModule::EmitMainVoidAlias() {
7069
  // In order to transition away from "__original_main" gracefully, emit an
7070
  // alias for "main" in the no-argument case so that libc can detect when
7071
  // new-style no-argument main is in used.
7072
0
  if (llvm::Function *F = getModule().getFunction("main")) {
7073
0
    if (!F->isDeclaration() && F->arg_size() == 0 && !F->isVarArg() &&
7074
0
        F->getReturnType()->isIntegerTy(Context.getTargetInfo().getIntWidth())) {
7075
0
      auto *GA = llvm::GlobalAlias::create("__main_void", F);
7076
0
      GA->setVisibility(llvm::GlobalValue::HiddenVisibility);
7077
0
    }
7078
0
  }
7079
0
}
7080
7081
/// Turns the given pointer into a constant.
7082
static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context,
7083
0
                                          const void *Ptr) {
7084
0
  uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr);
7085
0
  llvm::Type *i64 = llvm::Type::getInt64Ty(Context);
7086
0
  return llvm::ConstantInt::get(i64, PtrInt);
7087
0
}
7088
7089
static void EmitGlobalDeclMetadata(CodeGenModule &CGM,
7090
                                   llvm::NamedMDNode *&GlobalMetadata,
7091
                                   GlobalDecl D,
7092
0
                                   llvm::GlobalValue *Addr) {
7093
0
  if (!GlobalMetadata)
7094
0
    GlobalMetadata =
7095
0
      CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs");
7096
7097
  // TODO: should we report variant information for ctors/dtors?
7098
0
  llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr),
7099
0
                           llvm::ConstantAsMetadata::get(GetPointerConstant(
7100
0
                               CGM.getLLVMContext(), D.getDecl()))};
7101
0
  GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops));
7102
0
}
7103
7104
bool CodeGenModule::CheckAndReplaceExternCIFuncs(llvm::GlobalValue *Elem,
7105
0
                                                 llvm::GlobalValue *CppFunc) {
7106
  // Store the list of ifuncs we need to replace uses in.
7107
0
  llvm::SmallVector<llvm::GlobalIFunc *> IFuncs;
7108
  // List of ConstantExprs that we should be able to delete when we're done
7109
  // here.
7110
0
  llvm::SmallVector<llvm::ConstantExpr *> CEs;
7111
7112
  // It isn't valid to replace the extern-C ifuncs if all we find is itself!
7113
0
  if (Elem == CppFunc)
7114
0
    return false;
7115
7116
  // First make sure that all users of this are ifuncs (or ifuncs via a
7117
  // bitcast), and collect the list of ifuncs and CEs so we can work on them
7118
  // later.
7119
0
  for (llvm::User *User : Elem->users()) {
7120
    // Users can either be a bitcast ConstExpr that is used by the ifuncs, OR an
7121
    // ifunc directly. In any other case, just give up, as we don't know what we
7122
    // could break by changing those.
7123
0
    if (auto *ConstExpr = dyn_cast<llvm::ConstantExpr>(User)) {
7124
0
      if (ConstExpr->getOpcode() != llvm::Instruction::BitCast)
7125
0
        return false;
7126
7127
0
      for (llvm::User *CEUser : ConstExpr->users()) {
7128
0
        if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(CEUser)) {
7129
0
          IFuncs.push_back(IFunc);
7130
0
        } else {
7131
0
          return false;
7132
0
        }
7133
0
      }
7134
0
      CEs.push_back(ConstExpr);
7135
0
    } else if (auto *IFunc = dyn_cast<llvm::GlobalIFunc>(User)) {
7136
0
      IFuncs.push_back(IFunc);
7137
0
    } else {
7138
      // This user is one we don't know how to handle, so fail redirection. This
7139
      // will result in an ifunc retaining a resolver name that will ultimately
7140
      // fail to be resolved to a defined function.
7141
0
      return false;
7142
0
    }
7143
0
  }
7144
7145
  // Now we know this is a valid case where we can do this alias replacement, we
7146
  // need to remove all of the references to Elem (and the bitcasts!) so we can
7147
  // delete it.
7148
0
  for (llvm::GlobalIFunc *IFunc : IFuncs)
7149
0
    IFunc->setResolver(nullptr);
7150
0
  for (llvm::ConstantExpr *ConstExpr : CEs)
7151
0
    ConstExpr->destroyConstant();
7152
7153
  // We should now be out of uses for the 'old' version of this function, so we
7154
  // can erase it as well.
7155
0
  Elem->eraseFromParent();
7156
7157
0
  for (llvm::GlobalIFunc *IFunc : IFuncs) {
7158
    // The type of the resolver is always just a function-type that returns the
7159
    // type of the IFunc, so create that here. If the type of the actual
7160
    // resolver doesn't match, it just gets bitcast to the right thing.
7161
0
    auto *ResolverTy =
7162
0
        llvm::FunctionType::get(IFunc->getType(), /*isVarArg*/ false);
7163
0
    llvm::Constant *Resolver = GetOrCreateLLVMFunction(
7164
0
        CppFunc->getName(), ResolverTy, {}, /*ForVTable*/ false);
7165
0
    IFunc->setResolver(Resolver);
7166
0
  }
7167
0
  return true;
7168
0
}
7169
7170
/// For each function which is declared within an extern "C" region and marked
7171
/// as 'used', but has internal linkage, create an alias from the unmangled
7172
/// name to the mangled name if possible. People expect to be able to refer
7173
/// to such functions with an unmangled name from inline assembly within the
7174
/// same translation unit.
7175
0
void CodeGenModule::EmitStaticExternCAliases() {
7176
0
  if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases())
7177
0
    return;
7178
0
  for (auto &I : StaticExternCValues) {
7179
0
    IdentifierInfo *Name = I.first;
7180
0
    llvm::GlobalValue *Val = I.second;
7181
7182
    // If Val is null, that implies there were multiple declarations that each
7183
    // had a claim to the unmangled name. In this case, generation of the alias
7184
    // is suppressed. See CodeGenModule::MaybeHandleStaticInExternC.
7185
0
    if (!Val)
7186
0
      break;
7187
7188
0
    llvm::GlobalValue *ExistingElem =
7189
0
        getModule().getNamedValue(Name->getName());
7190
7191
    // If there is either not something already by this name, or we were able to
7192
    // replace all uses from IFuncs, create the alias.
7193
0
    if (!ExistingElem || CheckAndReplaceExternCIFuncs(ExistingElem, Val))
7194
0
      addCompilerUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val));
7195
0
  }
7196
0
}
7197
7198
bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName,
7199
0
                                             GlobalDecl &Result) const {
7200
0
  auto Res = Manglings.find(MangledName);
7201
0
  if (Res == Manglings.end())
7202
0
    return false;
7203
0
  Result = Res->getValue();
7204
0
  return true;
7205
0
}
7206
7207
/// Emits metadata nodes associating all the global values in the
7208
/// current module with the Decls they came from.  This is useful for
7209
/// projects using IR gen as a subroutine.
7210
///
7211
/// Since there's currently no way to associate an MDNode directly
7212
/// with an llvm::GlobalValue, we create a global named metadata
7213
/// with the name 'clang.global.decl.ptrs'.
7214
0
void CodeGenModule::EmitDeclMetadata() {
7215
0
  llvm::NamedMDNode *GlobalMetadata = nullptr;
7216
7217
0
  for (auto &I : MangledDeclNames) {
7218
0
    llvm::GlobalValue *Addr = getModule().getNamedValue(I.second);
7219
    // Some mangled names don't necessarily have an associated GlobalValue
7220
    // in this module, e.g. if we mangled it for DebugInfo.
7221
0
    if (Addr)
7222
0
      EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr);
7223
0
  }
7224
0
}
7225
7226
/// Emits metadata nodes for all the local variables in the current
7227
/// function.
7228
0
void CodeGenFunction::EmitDeclMetadata() {
7229
0
  if (LocalDeclMap.empty()) return;
7230
7231
0
  llvm::LLVMContext &Context = getLLVMContext();
7232
7233
  // Find the unique metadata ID for this name.
7234
0
  unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr");
7235
7236
0
  llvm::NamedMDNode *GlobalMetadata = nullptr;
7237
7238
0
  for (auto &I : LocalDeclMap) {
7239
0
    const Decl *D = I.first;
7240
0
    llvm::Value *Addr = I.second.getPointer();
7241
0
    if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) {
7242
0
      llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D);
7243
0
      Alloca->setMetadata(
7244
0
          DeclPtrKind, llvm::MDNode::get(
7245
0
                           Context, llvm::ValueAsMetadata::getConstant(DAddr)));
7246
0
    } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) {
7247
0
      GlobalDecl GD = GlobalDecl(cast<VarDecl>(D));
7248
0
      EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV);
7249
0
    }
7250
0
  }
7251
0
}
7252
7253
0
void CodeGenModule::EmitVersionIdentMetadata() {
7254
0
  llvm::NamedMDNode *IdentMetadata =
7255
0
    TheModule.getOrInsertNamedMetadata("llvm.ident");
7256
0
  std::string Version = getClangFullVersion();
7257
0
  llvm::LLVMContext &Ctx = TheModule.getContext();
7258
7259
0
  llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)};
7260
0
  IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode));
7261
0
}
7262
7263
0
void CodeGenModule::EmitCommandLineMetadata() {
7264
0
  llvm::NamedMDNode *CommandLineMetadata =
7265
0
    TheModule.getOrInsertNamedMetadata("llvm.commandline");
7266
0
  std::string CommandLine = getCodeGenOpts().RecordCommandLine;
7267
0
  llvm::LLVMContext &Ctx = TheModule.getContext();
7268
7269
0
  llvm::Metadata *CommandLineNode[] = {llvm::MDString::get(Ctx, CommandLine)};
7270
0
  CommandLineMetadata->addOperand(llvm::MDNode::get(Ctx, CommandLineNode));
7271
0
}
7272
7273
0
void CodeGenModule::EmitCoverageFile() {
7274
0
  llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu");
7275
0
  if (!CUNode)
7276
0
    return;
7277
7278
0
  llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov");
7279
0
  llvm::LLVMContext &Ctx = TheModule.getContext();
7280
0
  auto *CoverageDataFile =
7281
0
      llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile);
7282
0
  auto *CoverageNotesFile =
7283
0
      llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile);
7284
0
  for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) {
7285
0
    llvm::MDNode *CU = CUNode->getOperand(i);
7286
0
    llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU};
7287
0
    GCov->addOperand(llvm::MDNode::get(Ctx, Elts));
7288
0
  }
7289
0
}
7290
7291
llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty,
7292
0
                                                       bool ForEH) {
7293
  // Return a bogus pointer if RTTI is disabled, unless it's for EH.
7294
  // FIXME: should we even be calling this method if RTTI is disabled
7295
  // and it's not for EH?
7296
0
  if (!shouldEmitRTTI(ForEH))
7297
0
    return llvm::Constant::getNullValue(GlobalsInt8PtrTy);
7298
7299
0
  if (ForEH && Ty->isObjCObjectPointerType() &&
7300
0
      LangOpts.ObjCRuntime.isGNUFamily())
7301
0
    return ObjCRuntime->GetEHType(Ty);
7302
7303
0
  return getCXXABI().getAddrOfRTTIDescriptor(Ty);
7304
0
}
7305
7306
0
void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) {
7307
  // Do not emit threadprivates in simd-only mode.
7308
0
  if (LangOpts.OpenMP && LangOpts.OpenMPSimd)
7309
0
    return;
7310
0
  for (auto RefExpr : D->varlists()) {
7311
0
    auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl());
7312
0
    bool PerformInit =
7313
0
        VD->getAnyInitializer() &&
7314
0
        !VD->getAnyInitializer()->isConstantInitializer(getContext(),
7315
0
                                                        /*ForRef=*/false);
7316
7317
0
    Address Addr(GetAddrOfGlobalVar(VD),
7318
0
                 getTypes().ConvertTypeForMem(VD->getType()),
7319
0
                 getContext().getDeclAlign(VD));
7320
0
    if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition(
7321
0
            VD, Addr, RefExpr->getBeginLoc(), PerformInit))
7322
0
      CXXGlobalInits.push_back(InitFunction);
7323
0
  }
7324
0
}
7325
7326
llvm::Metadata *
7327
CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map,
7328
0
                                            StringRef Suffix) {
7329
0
  if (auto *FnType = T->getAs<FunctionProtoType>())
7330
0
    T = getContext().getFunctionType(
7331
0
        FnType->getReturnType(), FnType->getParamTypes(),
7332
0
        FnType->getExtProtoInfo().withExceptionSpec(EST_None));
7333
7334
0
  llvm::Metadata *&InternalId = Map[T.getCanonicalType()];
7335
0
  if (InternalId)
7336
0
    return InternalId;
7337
7338
0
  if (isExternallyVisible(T->getLinkage())) {
7339
0
    std::string OutName;
7340
0
    llvm::raw_string_ostream Out(OutName);
7341
0
    getCXXABI().getMangleContext().mangleCanonicalTypeName(
7342
0
        T, Out, getCodeGenOpts().SanitizeCfiICallNormalizeIntegers);
7343
7344
0
    if (getCodeGenOpts().SanitizeCfiICallNormalizeIntegers)
7345
0
      Out << ".normalized";
7346
7347
0
    Out << Suffix;
7348
7349
0
    InternalId = llvm::MDString::get(getLLVMContext(), Out.str());
7350
0
  } else {
7351
0
    InternalId = llvm::MDNode::getDistinct(getLLVMContext(),
7352
0
                                           llvm::ArrayRef<llvm::Metadata *>());
7353
0
  }
7354
7355
0
  return InternalId;
7356
0
}
7357
7358
0
llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) {
7359
0
  return CreateMetadataIdentifierImpl(T, MetadataIdMap, "");
7360
0
}
7361
7362
llvm::Metadata *
7363
0
CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) {
7364
0
  return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual");
7365
0
}
7366
7367
// Generalize pointer types to a void pointer with the qualifiers of the
7368
// originally pointed-to type, e.g. 'const char *' and 'char * const *'
7369
// generalize to 'const void *' while 'char *' and 'const char **' generalize to
7370
// 'void *'.
7371
0
static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) {
7372
0
  if (!Ty->isPointerType())
7373
0
    return Ty;
7374
7375
0
  return Ctx.getPointerType(
7376
0
      QualType(Ctx.VoidTy).withCVRQualifiers(
7377
0
          Ty->getPointeeType().getCVRQualifiers()));
7378
0
}
7379
7380
// Apply type generalization to a FunctionType's return and argument types
7381
0
static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) {
7382
0
  if (auto *FnType = Ty->getAs<FunctionProtoType>()) {
7383
0
    SmallVector<QualType, 8> GeneralizedParams;
7384
0
    for (auto &Param : FnType->param_types())
7385
0
      GeneralizedParams.push_back(GeneralizeType(Ctx, Param));
7386
7387
0
    return Ctx.getFunctionType(
7388
0
        GeneralizeType(Ctx, FnType->getReturnType()),
7389
0
        GeneralizedParams, FnType->getExtProtoInfo());
7390
0
  }
7391
7392
0
  if (auto *FnType = Ty->getAs<FunctionNoProtoType>())
7393
0
    return Ctx.getFunctionNoProtoType(
7394
0
        GeneralizeType(Ctx, FnType->getReturnType()));
7395
7396
0
  llvm_unreachable("Encountered unknown FunctionType");
7397
0
}
7398
7399
0
llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) {
7400
0
  return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T),
7401
0
                                      GeneralizedMetadataIdMap, ".generalized");
7402
0
}
7403
7404
/// Returns whether this module needs the "all-vtables" type identifier.
7405
0
bool CodeGenModule::NeedAllVtablesTypeId() const {
7406
  // Returns true if at least one of vtable-based CFI checkers is enabled and
7407
  // is not in the trapping mode.
7408
0
  return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) &&
7409
0
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) ||
7410
0
          (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) &&
7411
0
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) ||
7412
0
          (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) &&
7413
0
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) ||
7414
0
          (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) &&
7415
0
           !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast)));
7416
0
}
7417
7418
void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable,
7419
                                          CharUnits Offset,
7420
0
                                          const CXXRecordDecl *RD) {
7421
0
  llvm::Metadata *MD =
7422
0
      CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0));
7423
0
  VTable->addTypeMetadata(Offset.getQuantity(), MD);
7424
7425
0
  if (CodeGenOpts.SanitizeCfiCrossDso)
7426
0
    if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD))
7427
0
      VTable->addTypeMetadata(Offset.getQuantity(),
7428
0
                              llvm::ConstantAsMetadata::get(CrossDsoTypeId));
7429
7430
0
  if (NeedAllVtablesTypeId()) {
7431
0
    llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables");
7432
0
    VTable->addTypeMetadata(Offset.getQuantity(), MD);
7433
0
  }
7434
0
}
7435
7436
0
llvm::SanitizerStatReport &CodeGenModule::getSanStats() {
7437
0
  if (!SanStats)
7438
0
    SanStats = std::make_unique<llvm::SanitizerStatReport>(&getModule());
7439
7440
0
  return *SanStats;
7441
0
}
7442
7443
llvm::Value *
7444
CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E,
7445
0
                                                  CodeGenFunction &CGF) {
7446
0
  llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType());
7447
0
  auto *SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr());
7448
0
  auto *FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false);
7449
0
  auto *Call = CGF.EmitRuntimeCall(
7450
0
      CreateRuntimeFunction(FTy, "__translate_sampler_initializer"), {C});
7451
0
  return Call;
7452
0
}
7453
7454
CharUnits CodeGenModule::getNaturalPointeeTypeAlignment(
7455
0
    QualType T, LValueBaseInfo *BaseInfo, TBAAAccessInfo *TBAAInfo) {
7456
0
  return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo,
7457
0
                                 /* forPointeeType= */ true);
7458
0
}
7459
7460
CharUnits CodeGenModule::getNaturalTypeAlignment(QualType T,
7461
                                                 LValueBaseInfo *BaseInfo,
7462
                                                 TBAAAccessInfo *TBAAInfo,
7463
0
                                                 bool forPointeeType) {
7464
0
  if (TBAAInfo)
7465
0
    *TBAAInfo = getTBAAAccessInfo(T);
7466
7467
  // FIXME: This duplicates logic in ASTContext::getTypeAlignIfKnown. But
7468
  // that doesn't return the information we need to compute BaseInfo.
7469
7470
  // Honor alignment typedef attributes even on incomplete types.
7471
  // We also honor them straight for C++ class types, even as pointees;
7472
  // there's an expressivity gap here.
7473
0
  if (auto TT = T->getAs<TypedefType>()) {
7474
0
    if (auto Align = TT->getDecl()->getMaxAlignment()) {
7475
0
      if (BaseInfo)
7476
0
        *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType);
7477
0
      return getContext().toCharUnitsFromBits(Align);
7478
0
    }
7479
0
  }
7480
7481
0
  bool AlignForArray = T->isArrayType();
7482
7483
  // Analyze the base element type, so we don't get confused by incomplete
7484
  // array types.
7485
0
  T = getContext().getBaseElementType(T);
7486
7487
0
  if (T->isIncompleteType()) {
7488
    // We could try to replicate the logic from
7489
    // ASTContext::getTypeAlignIfKnown, but nothing uses the alignment if the
7490
    // type is incomplete, so it's impossible to test. We could try to reuse
7491
    // getTypeAlignIfKnown, but that doesn't return the information we need
7492
    // to set BaseInfo.  So just ignore the possibility that the alignment is
7493
    // greater than one.
7494
0
    if (BaseInfo)
7495
0
      *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7496
0
    return CharUnits::One();
7497
0
  }
7498
7499
0
  if (BaseInfo)
7500
0
    *BaseInfo = LValueBaseInfo(AlignmentSource::Type);
7501
7502
0
  CharUnits Alignment;
7503
0
  const CXXRecordDecl *RD;
7504
0
  if (T.getQualifiers().hasUnaligned()) {
7505
0
    Alignment = CharUnits::One();
7506
0
  } else if (forPointeeType && !AlignForArray &&
7507
0
             (RD = T->getAsCXXRecordDecl())) {
7508
    // For C++ class pointees, we don't know whether we're pointing at a
7509
    // base or a complete object, so we generally need to use the
7510
    // non-virtual alignment.
7511
0
    Alignment = getClassPointerAlignment(RD);
7512
0
  } else {
7513
0
    Alignment = getContext().getTypeAlignInChars(T);
7514
0
  }
7515
7516
  // Cap to the global maximum type alignment unless the alignment
7517
  // was somehow explicit on the type.
7518
0
  if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) {
7519
0
    if (Alignment.getQuantity() > MaxAlign &&
7520
0
        !getContext().isAlignmentRequired(T))
7521
0
      Alignment = CharUnits::fromQuantity(MaxAlign);
7522
0
  }
7523
0
  return Alignment;
7524
0
}
7525
7526
0
bool CodeGenModule::stopAutoInit() {
7527
0
  unsigned StopAfter = getContext().getLangOpts().TrivialAutoVarInitStopAfter;
7528
0
  if (StopAfter) {
7529
    // This number is positive only when -ftrivial-auto-var-init-stop-after=* is
7530
    // used
7531
0
    if (NumAutoVarInit >= StopAfter) {
7532
0
      return true;
7533
0
    }
7534
0
    if (!NumAutoVarInit) {
7535
0
      unsigned DiagID = getDiags().getCustomDiagID(
7536
0
          DiagnosticsEngine::Warning,
7537
0
          "-ftrivial-auto-var-init-stop-after=%0 has been enabled to limit the "
7538
0
          "number of times ftrivial-auto-var-init=%1 gets applied.");
7539
0
      getDiags().Report(DiagID)
7540
0
          << StopAfter
7541
0
          << (getContext().getLangOpts().getTrivialAutoVarInit() ==
7542
0
                      LangOptions::TrivialAutoVarInitKind::Zero
7543
0
                  ? "zero"
7544
0
                  : "pattern");
7545
0
    }
7546
0
    ++NumAutoVarInit;
7547
0
  }
7548
0
  return false;
7549
0
}
7550
7551
void CodeGenModule::printPostfixForExternalizedDecl(llvm::raw_ostream &OS,
7552
0
                                                    const Decl *D) const {
7553
  // ptxas does not allow '.' in symbol names. On the other hand, HIP prefers
7554
  // postfix beginning with '.' since the symbol name can be demangled.
7555
0
  if (LangOpts.HIP)
7556
0
    OS << (isa<VarDecl>(D) ? ".static." : ".intern.");
7557
0
  else
7558
0
    OS << (isa<VarDecl>(D) ? "__static__" : "__intern__");
7559
7560
  // If the CUID is not specified we try to generate a unique postfix.
7561
0
  if (getLangOpts().CUID.empty()) {
7562
0
    SourceManager &SM = getContext().getSourceManager();
7563
0
    PresumedLoc PLoc = SM.getPresumedLoc(D->getLocation());
7564
0
    assert(PLoc.isValid() && "Source location is expected to be valid.");
7565
7566
    // Get the hash of the user defined macros.
7567
0
    llvm::MD5 Hash;
7568
0
    llvm::MD5::MD5Result Result;
7569
0
    for (const auto &Arg : PreprocessorOpts.Macros)
7570
0
      Hash.update(Arg.first);
7571
0
    Hash.final(Result);
7572
7573
    // Get the UniqueID for the file containing the decl.
7574
0
    llvm::sys::fs::UniqueID ID;
7575
0
    if (llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID)) {
7576
0
      PLoc = SM.getPresumedLoc(D->getLocation(), /*UseLineDirectives=*/false);
7577
0
      assert(PLoc.isValid() && "Source location is expected to be valid.");
7578
0
      if (auto EC = llvm::sys::fs::getUniqueID(PLoc.getFilename(), ID))
7579
0
        SM.getDiagnostics().Report(diag::err_cannot_open_file)
7580
0
            << PLoc.getFilename() << EC.message();
7581
0
    }
7582
0
    OS << llvm::format("%x", ID.getFile()) << llvm::format("%x", ID.getDevice())
7583
0
       << "_" << llvm::utohexstr(Result.low(), /*LowerCase=*/true, /*Width=*/8);
7584
0
  } else {
7585
0
    OS << getContext().getCUIDHash();
7586
0
  }
7587
0
}
7588
7589
0
void CodeGenModule::moveLazyEmissionStates(CodeGenModule *NewBuilder) {
7590
0
  assert(DeferredDeclsToEmit.empty() &&
7591
0
         "Should have emitted all decls deferred to emit.");
7592
0
  assert(NewBuilder->DeferredDecls.empty() &&
7593
0
         "Newly created module should not have deferred decls");
7594
0
  NewBuilder->DeferredDecls = std::move(DeferredDecls);
7595
0
  assert(EmittedDeferredDecls.empty() &&
7596
0
         "Still have (unmerged) EmittedDeferredDecls deferred decls");
7597
7598
0
  assert(NewBuilder->DeferredVTables.empty() &&
7599
0
         "Newly created module should not have deferred vtables");
7600
0
  NewBuilder->DeferredVTables = std::move(DeferredVTables);
7601
7602
0
  assert(NewBuilder->MangledDeclNames.empty() &&
7603
0
         "Newly created module should not have mangled decl names");
7604
0
  assert(NewBuilder->Manglings.empty() &&
7605
0
         "Newly created module should not have manglings");
7606
0
  NewBuilder->Manglings = std::move(Manglings);
7607
7608
0
  NewBuilder->WeakRefReferences = std::move(WeakRefReferences);
7609
7610
0
  NewBuilder->TBAA = std::move(TBAA);
7611
7612
0
  NewBuilder->ABI->MangleCtx = std::move(ABI->MangleCtx);
7613
0
}