/src/llvm-project/clang/lib/CodeGen/ItaniumCXXABI.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===------- ItaniumCXXABI.cpp - Emit LLVM Code from ASTs for a Module ----===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This provides C++ code generation targeting the Itanium C++ ABI. The class |
10 | | // in this file generates structures that follow the Itanium C++ ABI, which is |
11 | | // documented at: |
12 | | // https://itanium-cxx-abi.github.io/cxx-abi/abi.html |
13 | | // https://itanium-cxx-abi.github.io/cxx-abi/abi-eh.html |
14 | | // |
15 | | // It also supports the closely-related ARM ABI, documented at: |
16 | | // https://developer.arm.com/documentation/ihi0041/g/ |
17 | | // |
18 | | //===----------------------------------------------------------------------===// |
19 | | |
20 | | #include "CGCXXABI.h" |
21 | | #include "CGCleanup.h" |
22 | | #include "CGRecordLayout.h" |
23 | | #include "CGVTables.h" |
24 | | #include "CodeGenFunction.h" |
25 | | #include "CodeGenModule.h" |
26 | | #include "TargetInfo.h" |
27 | | #include "clang/AST/Attr.h" |
28 | | #include "clang/AST/Mangle.h" |
29 | | #include "clang/AST/StmtCXX.h" |
30 | | #include "clang/AST/Type.h" |
31 | | #include "clang/CodeGen/ConstantInitBuilder.h" |
32 | | #include "llvm/IR/DataLayout.h" |
33 | | #include "llvm/IR/GlobalValue.h" |
34 | | #include "llvm/IR/Instructions.h" |
35 | | #include "llvm/IR/Intrinsics.h" |
36 | | #include "llvm/IR/Value.h" |
37 | | #include "llvm/Support/ScopedPrinter.h" |
38 | | |
39 | | #include <optional> |
40 | | |
41 | | using namespace clang; |
42 | | using namespace CodeGen; |
43 | | |
44 | | namespace { |
45 | | class ItaniumCXXABI : public CodeGen::CGCXXABI { |
46 | | /// VTables - All the vtables which have been defined. |
47 | | llvm::DenseMap<const CXXRecordDecl *, llvm::GlobalVariable *> VTables; |
48 | | |
49 | | /// All the thread wrapper functions that have been used. |
50 | | llvm::SmallVector<std::pair<const VarDecl *, llvm::Function *>, 8> |
51 | | ThreadWrappers; |
52 | | |
53 | | protected: |
54 | | bool UseARMMethodPtrABI; |
55 | | bool UseARMGuardVarABI; |
56 | | bool Use32BitVTableOffsetABI; |
57 | | |
58 | 0 | ItaniumMangleContext &getMangleContext() { |
59 | 0 | return cast<ItaniumMangleContext>(CodeGen::CGCXXABI::getMangleContext()); |
60 | 0 | } |
61 | | |
62 | | public: |
63 | | ItaniumCXXABI(CodeGen::CodeGenModule &CGM, |
64 | | bool UseARMMethodPtrABI = false, |
65 | | bool UseARMGuardVarABI = false) : |
66 | | CGCXXABI(CGM), UseARMMethodPtrABI(UseARMMethodPtrABI), |
67 | | UseARMGuardVarABI(UseARMGuardVarABI), |
68 | 46 | Use32BitVTableOffsetABI(false) { } |
69 | | |
70 | | bool classifyReturnType(CGFunctionInfo &FI) const override; |
71 | | |
72 | 0 | RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override { |
73 | | // If C++ prohibits us from making a copy, pass by address. |
74 | 0 | if (!RD->canPassInRegisters()) |
75 | 0 | return RAA_Indirect; |
76 | 0 | return RAA_Default; |
77 | 0 | } |
78 | | |
79 | 0 | bool isThisCompleteObject(GlobalDecl GD) const override { |
80 | | // The Itanium ABI has separate complete-object vs. base-object |
81 | | // variants of both constructors and destructors. |
82 | 0 | if (isa<CXXDestructorDecl>(GD.getDecl())) { |
83 | 0 | switch (GD.getDtorType()) { |
84 | 0 | case Dtor_Complete: |
85 | 0 | case Dtor_Deleting: |
86 | 0 | return true; |
87 | | |
88 | 0 | case Dtor_Base: |
89 | 0 | return false; |
90 | | |
91 | 0 | case Dtor_Comdat: |
92 | 0 | llvm_unreachable("emitting dtor comdat as function?"); |
93 | 0 | } |
94 | 0 | llvm_unreachable("bad dtor kind"); |
95 | 0 | } |
96 | 0 | if (isa<CXXConstructorDecl>(GD.getDecl())) { |
97 | 0 | switch (GD.getCtorType()) { |
98 | 0 | case Ctor_Complete: |
99 | 0 | return true; |
100 | | |
101 | 0 | case Ctor_Base: |
102 | 0 | return false; |
103 | | |
104 | 0 | case Ctor_CopyingClosure: |
105 | 0 | case Ctor_DefaultClosure: |
106 | 0 | llvm_unreachable("closure ctors in Itanium ABI?"); |
107 | |
|
108 | 0 | case Ctor_Comdat: |
109 | 0 | llvm_unreachable("emitting ctor comdat as function?"); |
110 | 0 | } |
111 | 0 | llvm_unreachable("bad dtor kind"); |
112 | 0 | } |
113 | | |
114 | | // No other kinds. |
115 | 0 | return false; |
116 | 0 | } |
117 | | |
118 | | bool isZeroInitializable(const MemberPointerType *MPT) override; |
119 | | |
120 | | llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override; |
121 | | |
122 | | CGCallee |
123 | | EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, |
124 | | const Expr *E, |
125 | | Address This, |
126 | | llvm::Value *&ThisPtrForCall, |
127 | | llvm::Value *MemFnPtr, |
128 | | const MemberPointerType *MPT) override; |
129 | | |
130 | | llvm::Value * |
131 | | EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E, |
132 | | Address Base, |
133 | | llvm::Value *MemPtr, |
134 | | const MemberPointerType *MPT) override; |
135 | | |
136 | | llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF, |
137 | | const CastExpr *E, |
138 | | llvm::Value *Src) override; |
139 | | llvm::Constant *EmitMemberPointerConversion(const CastExpr *E, |
140 | | llvm::Constant *Src) override; |
141 | | |
142 | | llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override; |
143 | | |
144 | | llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override; |
145 | | llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT, |
146 | | CharUnits offset) override; |
147 | | llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override; |
148 | | llvm::Constant *BuildMemberPointer(const CXXMethodDecl *MD, |
149 | | CharUnits ThisAdjustment); |
150 | | |
151 | | llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF, |
152 | | llvm::Value *L, llvm::Value *R, |
153 | | const MemberPointerType *MPT, |
154 | | bool Inequality) override; |
155 | | |
156 | | llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
157 | | llvm::Value *Addr, |
158 | | const MemberPointerType *MPT) override; |
159 | | |
160 | | void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE, |
161 | | Address Ptr, QualType ElementType, |
162 | | const CXXDestructorDecl *Dtor) override; |
163 | | |
164 | | void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override; |
165 | | void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override; |
166 | | |
167 | | void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; |
168 | | |
169 | | llvm::CallInst * |
170 | | emitTerminateForUnexpectedException(CodeGenFunction &CGF, |
171 | | llvm::Value *Exn) override; |
172 | | |
173 | | void EmitFundamentalRTTIDescriptors(const CXXRecordDecl *RD); |
174 | | llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override; |
175 | | CatchTypeInfo |
176 | | getAddrOfCXXCatchHandlerType(QualType Ty, |
177 | 0 | QualType CatchHandlerType) override { |
178 | 0 | return CatchTypeInfo{getAddrOfRTTIDescriptor(Ty), 0}; |
179 | 0 | } |
180 | | |
181 | | bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override; |
182 | | void EmitBadTypeidCall(CodeGenFunction &CGF) override; |
183 | | llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy, |
184 | | Address ThisPtr, |
185 | | llvm::Type *StdTypeInfoPtrTy) override; |
186 | | |
187 | | bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, |
188 | | QualType SrcRecordTy) override; |
189 | | |
190 | | /// Determine whether we know that all instances of type RecordTy will have |
191 | | /// the same vtable pointer values, that is distinct from all other vtable |
192 | | /// pointers. While this is required by the Itanium ABI, it doesn't happen in |
193 | | /// practice in some cases due to language extensions. |
194 | 0 | bool hasUniqueVTablePointer(QualType RecordTy) { |
195 | 0 | const CXXRecordDecl *RD = RecordTy->getAsCXXRecordDecl(); |
196 | | |
197 | | // Under -fapple-kext, multiple definitions of the same vtable may be |
198 | | // emitted. |
199 | 0 | if (!CGM.getCodeGenOpts().AssumeUniqueVTables || |
200 | 0 | getContext().getLangOpts().AppleKext) |
201 | 0 | return false; |
202 | | |
203 | | // If the type_info* would be null, the vtable might be merged with that of |
204 | | // another type. |
205 | 0 | if (!CGM.shouldEmitRTTI()) |
206 | 0 | return false; |
207 | | |
208 | | // If there's only one definition of the vtable in the program, it has a |
209 | | // unique address. |
210 | 0 | if (!llvm::GlobalValue::isWeakForLinker(CGM.getVTableLinkage(RD))) |
211 | 0 | return true; |
212 | | |
213 | | // Even if there are multiple definitions of the vtable, they are required |
214 | | // by the ABI to use the same symbol name, so should be merged at load |
215 | | // time. However, if the class has hidden visibility, there can be |
216 | | // different versions of the class in different modules, and the ABI |
217 | | // library might treat them as being the same. |
218 | 0 | if (CGM.GetLLVMVisibility(RD->getVisibility()) != |
219 | 0 | llvm::GlobalValue::DefaultVisibility) |
220 | 0 | return false; |
221 | | |
222 | 0 | return true; |
223 | 0 | } |
224 | | |
225 | 0 | bool shouldEmitExactDynamicCast(QualType DestRecordTy) override { |
226 | 0 | return hasUniqueVTablePointer(DestRecordTy); |
227 | 0 | } |
228 | | |
229 | | llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value, |
230 | | QualType SrcRecordTy, QualType DestTy, |
231 | | QualType DestRecordTy, |
232 | | llvm::BasicBlock *CastEnd) override; |
233 | | |
234 | | llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address ThisAddr, |
235 | | QualType SrcRecordTy, QualType DestTy, |
236 | | QualType DestRecordTy, |
237 | | llvm::BasicBlock *CastSuccess, |
238 | | llvm::BasicBlock *CastFail) override; |
239 | | |
240 | | llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value, |
241 | | QualType SrcRecordTy) override; |
242 | | |
243 | | bool EmitBadCastCall(CodeGenFunction &CGF) override; |
244 | | |
245 | | llvm::Value * |
246 | | GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This, |
247 | | const CXXRecordDecl *ClassDecl, |
248 | | const CXXRecordDecl *BaseClassDecl) override; |
249 | | |
250 | | void EmitCXXConstructors(const CXXConstructorDecl *D) override; |
251 | | |
252 | | AddedStructorArgCounts |
253 | | buildStructorSignature(GlobalDecl GD, |
254 | | SmallVectorImpl<CanQualType> &ArgTys) override; |
255 | | |
256 | | bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor, |
257 | 0 | CXXDtorType DT) const override { |
258 | | // Itanium does not emit any destructor variant as an inline thunk. |
259 | | // Delegating may occur as an optimization, but all variants are either |
260 | | // emitted with external linkage or as linkonce if they are inline and used. |
261 | 0 | return false; |
262 | 0 | } |
263 | | |
264 | | void EmitCXXDestructors(const CXXDestructorDecl *D) override; |
265 | | |
266 | | void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy, |
267 | | FunctionArgList &Params) override; |
268 | | |
269 | | void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override; |
270 | | |
271 | | AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF, |
272 | | const CXXConstructorDecl *D, |
273 | | CXXCtorType Type, |
274 | | bool ForVirtualBase, |
275 | | bool Delegating) override; |
276 | | |
277 | | llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF, |
278 | | const CXXDestructorDecl *DD, |
279 | | CXXDtorType Type, |
280 | | bool ForVirtualBase, |
281 | | bool Delegating) override; |
282 | | |
283 | | void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD, |
284 | | CXXDtorType Type, bool ForVirtualBase, |
285 | | bool Delegating, Address This, |
286 | | QualType ThisTy) override; |
287 | | |
288 | | void emitVTableDefinitions(CodeGenVTables &CGVT, |
289 | | const CXXRecordDecl *RD) override; |
290 | | |
291 | | bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF, |
292 | | CodeGenFunction::VPtr Vptr) override; |
293 | | |
294 | 0 | bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override { |
295 | 0 | return true; |
296 | 0 | } |
297 | | |
298 | | llvm::Constant * |
299 | | getVTableAddressPoint(BaseSubobject Base, |
300 | | const CXXRecordDecl *VTableClass) override; |
301 | | |
302 | | llvm::Value *getVTableAddressPointInStructor( |
303 | | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, |
304 | | BaseSubobject Base, const CXXRecordDecl *NearestVBase) override; |
305 | | |
306 | | llvm::Value *getVTableAddressPointInStructorWithVTT( |
307 | | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, |
308 | | BaseSubobject Base, const CXXRecordDecl *NearestVBase); |
309 | | |
310 | | llvm::Constant * |
311 | | getVTableAddressPointForConstExpr(BaseSubobject Base, |
312 | | const CXXRecordDecl *VTableClass) override; |
313 | | |
314 | | llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD, |
315 | | CharUnits VPtrOffset) override; |
316 | | |
317 | | CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD, |
318 | | Address This, llvm::Type *Ty, |
319 | | SourceLocation Loc) override; |
320 | | |
321 | | llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF, |
322 | | const CXXDestructorDecl *Dtor, |
323 | | CXXDtorType DtorType, Address This, |
324 | | DeleteOrMemberCallExpr E) override; |
325 | | |
326 | | void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override; |
327 | | |
328 | | bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override; |
329 | | bool canSpeculativelyEmitVTableAsBaseClass(const CXXRecordDecl *RD) const; |
330 | | |
331 | | void setThunkLinkage(llvm::Function *Thunk, bool ForVTable, GlobalDecl GD, |
332 | 0 | bool ReturnAdjustment) override { |
333 | | // Allow inlining of thunks by emitting them with available_externally |
334 | | // linkage together with vtables when needed. |
335 | 0 | if (ForVTable && !Thunk->hasLocalLinkage()) |
336 | 0 | Thunk->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); |
337 | 0 | CGM.setGVProperties(Thunk, GD); |
338 | 0 | } |
339 | | |
340 | 0 | bool exportThunk() override { return true; } |
341 | | |
342 | | llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This, |
343 | | const ThisAdjustment &TA) override; |
344 | | |
345 | | llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret, |
346 | | const ReturnAdjustment &RA) override; |
347 | | |
348 | | size_t getSrcArgforCopyCtor(const CXXConstructorDecl *, |
349 | 0 | FunctionArgList &Args) const override { |
350 | 0 | assert(!Args.empty() && "expected the arglist to not be empty!"); |
351 | 0 | return Args.size() - 1; |
352 | 0 | } |
353 | | |
354 | 0 | StringRef GetPureVirtualCallName() override { return "__cxa_pure_virtual"; } |
355 | | StringRef GetDeletedVirtualCallName() override |
356 | 0 | { return "__cxa_deleted_virtual"; } |
357 | | |
358 | | CharUnits getArrayCookieSizeImpl(QualType elementType) override; |
359 | | Address InitializeArrayCookie(CodeGenFunction &CGF, |
360 | | Address NewPtr, |
361 | | llvm::Value *NumElements, |
362 | | const CXXNewExpr *expr, |
363 | | QualType ElementType) override; |
364 | | llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, |
365 | | Address allocPtr, |
366 | | CharUnits cookieSize) override; |
367 | | |
368 | | void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D, |
369 | | llvm::GlobalVariable *DeclPtr, |
370 | | bool PerformInit) override; |
371 | | void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
372 | | llvm::FunctionCallee dtor, |
373 | | llvm::Constant *addr) override; |
374 | | |
375 | | llvm::Function *getOrCreateThreadLocalWrapper(const VarDecl *VD, |
376 | | llvm::Value *Val); |
377 | | void EmitThreadLocalInitFuncs( |
378 | | CodeGenModule &CGM, |
379 | | ArrayRef<const VarDecl *> CXXThreadLocals, |
380 | | ArrayRef<llvm::Function *> CXXThreadLocalInits, |
381 | | ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override; |
382 | | |
383 | 0 | bool usesThreadWrapperFunction(const VarDecl *VD) const override { |
384 | 0 | return !isEmittedWithConstantInitializer(VD) || |
385 | 0 | mayNeedDestruction(VD); |
386 | 0 | } |
387 | | LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD, |
388 | | QualType LValType) override; |
389 | | |
390 | | bool NeedsVTTParameter(GlobalDecl GD) override; |
391 | | |
392 | | /**************************** RTTI Uniqueness ******************************/ |
393 | | |
394 | | protected: |
395 | | /// Returns true if the ABI requires RTTI type_info objects to be unique |
396 | | /// across a program. |
397 | 0 | virtual bool shouldRTTIBeUnique() const { return true; } |
398 | | |
399 | | public: |
400 | | /// What sort of unique-RTTI behavior should we use? |
401 | | enum RTTIUniquenessKind { |
402 | | /// We are guaranteeing, or need to guarantee, that the RTTI string |
403 | | /// is unique. |
404 | | RUK_Unique, |
405 | | |
406 | | /// We are not guaranteeing uniqueness for the RTTI string, so we |
407 | | /// can demote to hidden visibility but must use string comparisons. |
408 | | RUK_NonUniqueHidden, |
409 | | |
410 | | /// We are not guaranteeing uniqueness for the RTTI string, so we |
411 | | /// have to use string comparisons, but we also have to emit it with |
412 | | /// non-hidden visibility. |
413 | | RUK_NonUniqueVisible |
414 | | }; |
415 | | |
416 | | /// Return the required visibility status for the given type and linkage in |
417 | | /// the current ABI. |
418 | | RTTIUniquenessKind |
419 | | classifyRTTIUniqueness(QualType CanTy, |
420 | | llvm::GlobalValue::LinkageTypes Linkage) const; |
421 | | friend class ItaniumRTTIBuilder; |
422 | | |
423 | | void emitCXXStructor(GlobalDecl GD) override; |
424 | | |
425 | | std::pair<llvm::Value *, const CXXRecordDecl *> |
426 | | LoadVTablePtr(CodeGenFunction &CGF, Address This, |
427 | | const CXXRecordDecl *RD) override; |
428 | | |
429 | | private: |
430 | 0 | bool hasAnyUnusedVirtualInlineFunction(const CXXRecordDecl *RD) const { |
431 | 0 | const auto &VtableLayout = |
432 | 0 | CGM.getItaniumVTableContext().getVTableLayout(RD); |
433 | |
|
434 | 0 | for (const auto &VtableComponent : VtableLayout.vtable_components()) { |
435 | | // Skip empty slot. |
436 | 0 | if (!VtableComponent.isUsedFunctionPointerKind()) |
437 | 0 | continue; |
438 | | |
439 | 0 | const CXXMethodDecl *Method = VtableComponent.getFunctionDecl(); |
440 | 0 | if (!Method->getCanonicalDecl()->isInlined()) |
441 | 0 | continue; |
442 | | |
443 | 0 | StringRef Name = CGM.getMangledName(VtableComponent.getGlobalDecl()); |
444 | 0 | auto *Entry = CGM.GetGlobalValue(Name); |
445 | | // This checks if virtual inline function has already been emitted. |
446 | | // Note that it is possible that this inline function would be emitted |
447 | | // after trying to emit vtable speculatively. Because of this we do |
448 | | // an extra pass after emitting all deferred vtables to find and emit |
449 | | // these vtables opportunistically. |
450 | 0 | if (!Entry || Entry->isDeclaration()) |
451 | 0 | return true; |
452 | 0 | } |
453 | 0 | return false; |
454 | 0 | } |
455 | | |
456 | 0 | bool isVTableHidden(const CXXRecordDecl *RD) const { |
457 | 0 | const auto &VtableLayout = |
458 | 0 | CGM.getItaniumVTableContext().getVTableLayout(RD); |
459 | |
|
460 | 0 | for (const auto &VtableComponent : VtableLayout.vtable_components()) { |
461 | 0 | if (VtableComponent.isRTTIKind()) { |
462 | 0 | const CXXRecordDecl *RTTIDecl = VtableComponent.getRTTIDecl(); |
463 | 0 | if (RTTIDecl->getVisibility() == Visibility::HiddenVisibility) |
464 | 0 | return true; |
465 | 0 | } else if (VtableComponent.isUsedFunctionPointerKind()) { |
466 | 0 | const CXXMethodDecl *Method = VtableComponent.getFunctionDecl(); |
467 | 0 | if (Method->getVisibility() == Visibility::HiddenVisibility && |
468 | 0 | !Method->isDefined()) |
469 | 0 | return true; |
470 | 0 | } |
471 | 0 | } |
472 | 0 | return false; |
473 | 0 | } |
474 | | }; |
475 | | |
476 | | class ARMCXXABI : public ItaniumCXXABI { |
477 | | public: |
478 | | ARMCXXABI(CodeGen::CodeGenModule &CGM) : |
479 | | ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, |
480 | 0 | /*UseARMGuardVarABI=*/true) {} |
481 | | |
482 | 0 | bool constructorsAndDestructorsReturnThis() const override { return true; } |
483 | | |
484 | | void EmitReturnFromThunk(CodeGenFunction &CGF, RValue RV, |
485 | | QualType ResTy) override; |
486 | | |
487 | | CharUnits getArrayCookieSizeImpl(QualType elementType) override; |
488 | | Address InitializeArrayCookie(CodeGenFunction &CGF, |
489 | | Address NewPtr, |
490 | | llvm::Value *NumElements, |
491 | | const CXXNewExpr *expr, |
492 | | QualType ElementType) override; |
493 | | llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF, Address allocPtr, |
494 | | CharUnits cookieSize) override; |
495 | | }; |
496 | | |
497 | | class AppleARM64CXXABI : public ARMCXXABI { |
498 | | public: |
499 | 0 | AppleARM64CXXABI(CodeGen::CodeGenModule &CGM) : ARMCXXABI(CGM) { |
500 | 0 | Use32BitVTableOffsetABI = true; |
501 | 0 | } |
502 | | |
503 | | // ARM64 libraries are prepared for non-unique RTTI. |
504 | 0 | bool shouldRTTIBeUnique() const override { return false; } |
505 | | }; |
506 | | |
507 | | class FuchsiaCXXABI final : public ItaniumCXXABI { |
508 | | public: |
509 | | explicit FuchsiaCXXABI(CodeGen::CodeGenModule &CGM) |
510 | 0 | : ItaniumCXXABI(CGM) {} |
511 | | |
512 | | private: |
513 | 0 | bool constructorsAndDestructorsReturnThis() const override { return true; } |
514 | | }; |
515 | | |
516 | | class WebAssemblyCXXABI final : public ItaniumCXXABI { |
517 | | public: |
518 | | explicit WebAssemblyCXXABI(CodeGen::CodeGenModule &CGM) |
519 | | : ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, |
520 | 0 | /*UseARMGuardVarABI=*/true) {} |
521 | | void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override; |
522 | | llvm::CallInst * |
523 | | emitTerminateForUnexpectedException(CodeGenFunction &CGF, |
524 | | llvm::Value *Exn) override; |
525 | | |
526 | | private: |
527 | 0 | bool constructorsAndDestructorsReturnThis() const override { return true; } |
528 | 0 | bool canCallMismatchedFunctionType() const override { return false; } |
529 | | }; |
530 | | |
531 | | class XLCXXABI final : public ItaniumCXXABI { |
532 | | public: |
533 | | explicit XLCXXABI(CodeGen::CodeGenModule &CGM) |
534 | 0 | : ItaniumCXXABI(CGM) {} |
535 | | |
536 | | void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
537 | | llvm::FunctionCallee dtor, |
538 | | llvm::Constant *addr) override; |
539 | | |
540 | 0 | bool useSinitAndSterm() const override { return true; } |
541 | | |
542 | | private: |
543 | | void emitCXXStermFinalizer(const VarDecl &D, llvm::Function *dtorStub, |
544 | | llvm::Constant *addr); |
545 | | }; |
546 | | } |
547 | | |
548 | 46 | CodeGen::CGCXXABI *CodeGen::CreateItaniumCXXABI(CodeGenModule &CGM) { |
549 | 46 | switch (CGM.getContext().getCXXABIKind()) { |
550 | | // For IR-generation purposes, there's no significant difference |
551 | | // between the ARM and iOS ABIs. |
552 | 0 | case TargetCXXABI::GenericARM: |
553 | 0 | case TargetCXXABI::iOS: |
554 | 0 | case TargetCXXABI::WatchOS: |
555 | 0 | return new ARMCXXABI(CGM); |
556 | | |
557 | 0 | case TargetCXXABI::AppleARM64: |
558 | 0 | return new AppleARM64CXXABI(CGM); |
559 | | |
560 | 0 | case TargetCXXABI::Fuchsia: |
561 | 0 | return new FuchsiaCXXABI(CGM); |
562 | | |
563 | | // Note that AArch64 uses the generic ItaniumCXXABI class since it doesn't |
564 | | // include the other 32-bit ARM oddities: constructor/destructor return values |
565 | | // and array cookies. |
566 | 0 | case TargetCXXABI::GenericAArch64: |
567 | 0 | return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true, |
568 | 0 | /*UseARMGuardVarABI=*/true); |
569 | | |
570 | 0 | case TargetCXXABI::GenericMIPS: |
571 | 0 | return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true); |
572 | | |
573 | 0 | case TargetCXXABI::WebAssembly: |
574 | 0 | return new WebAssemblyCXXABI(CGM); |
575 | | |
576 | 0 | case TargetCXXABI::XL: |
577 | 0 | return new XLCXXABI(CGM); |
578 | | |
579 | 46 | case TargetCXXABI::GenericItanium: |
580 | 46 | if (CGM.getContext().getTargetInfo().getTriple().getArch() |
581 | 46 | == llvm::Triple::le32) { |
582 | | // For PNaCl, use ARM-style method pointers so that PNaCl code |
583 | | // does not assume anything about the alignment of function |
584 | | // pointers. |
585 | 0 | return new ItaniumCXXABI(CGM, /*UseARMMethodPtrABI=*/true); |
586 | 0 | } |
587 | 46 | return new ItaniumCXXABI(CGM); |
588 | | |
589 | 0 | case TargetCXXABI::Microsoft: |
590 | 0 | llvm_unreachable("Microsoft ABI is not Itanium-based"); |
591 | 46 | } |
592 | 0 | llvm_unreachable("bad ABI kind"); |
593 | 0 | } |
594 | | |
595 | | llvm::Type * |
596 | 0 | ItaniumCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) { |
597 | 0 | if (MPT->isMemberDataPointer()) |
598 | 0 | return CGM.PtrDiffTy; |
599 | 0 | return llvm::StructType::get(CGM.PtrDiffTy, CGM.PtrDiffTy); |
600 | 0 | } |
601 | | |
602 | | /// In the Itanium and ARM ABIs, method pointers have the form: |
603 | | /// struct { ptrdiff_t ptr; ptrdiff_t adj; } memptr; |
604 | | /// |
605 | | /// In the Itanium ABI: |
606 | | /// - method pointers are virtual if (memptr.ptr & 1) is nonzero |
607 | | /// - the this-adjustment is (memptr.adj) |
608 | | /// - the virtual offset is (memptr.ptr - 1) |
609 | | /// |
610 | | /// In the ARM ABI: |
611 | | /// - method pointers are virtual if (memptr.adj & 1) is nonzero |
612 | | /// - the this-adjustment is (memptr.adj >> 1) |
613 | | /// - the virtual offset is (memptr.ptr) |
614 | | /// ARM uses 'adj' for the virtual flag because Thumb functions |
615 | | /// may be only single-byte aligned. |
616 | | /// |
617 | | /// If the member is virtual, the adjusted 'this' pointer points |
618 | | /// to a vtable pointer from which the virtual offset is applied. |
619 | | /// |
620 | | /// If the member is non-virtual, memptr.ptr is the address of |
621 | | /// the function to call. |
622 | | CGCallee ItaniumCXXABI::EmitLoadOfMemberFunctionPointer( |
623 | | CodeGenFunction &CGF, const Expr *E, Address ThisAddr, |
624 | | llvm::Value *&ThisPtrForCall, |
625 | 0 | llvm::Value *MemFnPtr, const MemberPointerType *MPT) { |
626 | 0 | CGBuilderTy &Builder = CGF.Builder; |
627 | |
|
628 | 0 | const FunctionProtoType *FPT = |
629 | 0 | MPT->getPointeeType()->castAs<FunctionProtoType>(); |
630 | 0 | auto *RD = |
631 | 0 | cast<CXXRecordDecl>(MPT->getClass()->castAs<RecordType>()->getDecl()); |
632 | |
|
633 | 0 | llvm::Constant *ptrdiff_1 = llvm::ConstantInt::get(CGM.PtrDiffTy, 1); |
634 | |
|
635 | 0 | llvm::BasicBlock *FnVirtual = CGF.createBasicBlock("memptr.virtual"); |
636 | 0 | llvm::BasicBlock *FnNonVirtual = CGF.createBasicBlock("memptr.nonvirtual"); |
637 | 0 | llvm::BasicBlock *FnEnd = CGF.createBasicBlock("memptr.end"); |
638 | | |
639 | | // Extract memptr.adj, which is in the second field. |
640 | 0 | llvm::Value *RawAdj = Builder.CreateExtractValue(MemFnPtr, 1, "memptr.adj"); |
641 | | |
642 | | // Compute the true adjustment. |
643 | 0 | llvm::Value *Adj = RawAdj; |
644 | 0 | if (UseARMMethodPtrABI) |
645 | 0 | Adj = Builder.CreateAShr(Adj, ptrdiff_1, "memptr.adj.shifted"); |
646 | | |
647 | | // Apply the adjustment and cast back to the original struct type |
648 | | // for consistency. |
649 | 0 | llvm::Value *This = ThisAddr.getPointer(); |
650 | 0 | This = Builder.CreateInBoundsGEP(Builder.getInt8Ty(), This, Adj); |
651 | 0 | ThisPtrForCall = This; |
652 | | |
653 | | // Load the function pointer. |
654 | 0 | llvm::Value *FnAsInt = Builder.CreateExtractValue(MemFnPtr, 0, "memptr.ptr"); |
655 | | |
656 | | // If the LSB in the function pointer is 1, the function pointer points to |
657 | | // a virtual function. |
658 | 0 | llvm::Value *IsVirtual; |
659 | 0 | if (UseARMMethodPtrABI) |
660 | 0 | IsVirtual = Builder.CreateAnd(RawAdj, ptrdiff_1); |
661 | 0 | else |
662 | 0 | IsVirtual = Builder.CreateAnd(FnAsInt, ptrdiff_1); |
663 | 0 | IsVirtual = Builder.CreateIsNotNull(IsVirtual, "memptr.isvirtual"); |
664 | 0 | Builder.CreateCondBr(IsVirtual, FnVirtual, FnNonVirtual); |
665 | | |
666 | | // In the virtual path, the adjustment left 'This' pointing to the |
667 | | // vtable of the correct base subobject. The "function pointer" is an |
668 | | // offset within the vtable (+1 for the virtual flag on non-ARM). |
669 | 0 | CGF.EmitBlock(FnVirtual); |
670 | | |
671 | | // Cast the adjusted this to a pointer to vtable pointer and load. |
672 | 0 | llvm::Type *VTableTy = CGF.CGM.GlobalsInt8PtrTy; |
673 | 0 | CharUnits VTablePtrAlign = |
674 | 0 | CGF.CGM.getDynamicOffsetAlignment(ThisAddr.getAlignment(), RD, |
675 | 0 | CGF.getPointerAlign()); |
676 | 0 | llvm::Value *VTable = CGF.GetVTablePtr( |
677 | 0 | Address(This, ThisAddr.getElementType(), VTablePtrAlign), VTableTy, RD); |
678 | | |
679 | | // Apply the offset. |
680 | | // On ARM64, to reserve extra space in virtual member function pointers, |
681 | | // we only pay attention to the low 32 bits of the offset. |
682 | 0 | llvm::Value *VTableOffset = FnAsInt; |
683 | 0 | if (!UseARMMethodPtrABI) |
684 | 0 | VTableOffset = Builder.CreateSub(VTableOffset, ptrdiff_1); |
685 | 0 | if (Use32BitVTableOffsetABI) { |
686 | 0 | VTableOffset = Builder.CreateTrunc(VTableOffset, CGF.Int32Ty); |
687 | 0 | VTableOffset = Builder.CreateZExt(VTableOffset, CGM.PtrDiffTy); |
688 | 0 | } |
689 | | |
690 | | // Check the address of the function pointer if CFI on member function |
691 | | // pointers is enabled. |
692 | 0 | llvm::Constant *CheckSourceLocation; |
693 | 0 | llvm::Constant *CheckTypeDesc; |
694 | 0 | bool ShouldEmitCFICheck = CGF.SanOpts.has(SanitizerKind::CFIMFCall) && |
695 | 0 | CGM.HasHiddenLTOVisibility(RD); |
696 | 0 | bool ShouldEmitVFEInfo = CGM.getCodeGenOpts().VirtualFunctionElimination && |
697 | 0 | CGM.HasHiddenLTOVisibility(RD); |
698 | 0 | bool ShouldEmitWPDInfo = |
699 | 0 | CGM.getCodeGenOpts().WholeProgramVTables && |
700 | | // Don't insert type tests if we are forcing public visibility. |
701 | 0 | !CGM.AlwaysHasLTOVisibilityPublic(RD); |
702 | 0 | llvm::Value *VirtualFn = nullptr; |
703 | |
|
704 | 0 | { |
705 | 0 | CodeGenFunction::SanitizerScope SanScope(&CGF); |
706 | 0 | llvm::Value *TypeId = nullptr; |
707 | 0 | llvm::Value *CheckResult = nullptr; |
708 | |
|
709 | 0 | if (ShouldEmitCFICheck || ShouldEmitVFEInfo || ShouldEmitWPDInfo) { |
710 | | // If doing CFI, VFE or WPD, we will need the metadata node to check |
711 | | // against. |
712 | 0 | llvm::Metadata *MD = |
713 | 0 | CGM.CreateMetadataIdentifierForVirtualMemPtrType(QualType(MPT, 0)); |
714 | 0 | TypeId = llvm::MetadataAsValue::get(CGF.getLLVMContext(), MD); |
715 | 0 | } |
716 | |
|
717 | 0 | if (ShouldEmitVFEInfo) { |
718 | 0 | llvm::Value *VFPAddr = |
719 | 0 | Builder.CreateGEP(CGF.Int8Ty, VTable, VTableOffset); |
720 | | |
721 | | // If doing VFE, load from the vtable with a type.checked.load intrinsic |
722 | | // call. Note that we use the GEP to calculate the address to load from |
723 | | // and pass 0 as the offset to the intrinsic. This is because every |
724 | | // vtable slot of the correct type is marked with matching metadata, and |
725 | | // we know that the load must be from one of these slots. |
726 | 0 | llvm::Value *CheckedLoad = Builder.CreateCall( |
727 | 0 | CGM.getIntrinsic(llvm::Intrinsic::type_checked_load), |
728 | 0 | {VFPAddr, llvm::ConstantInt::get(CGM.Int32Ty, 0), TypeId}); |
729 | 0 | CheckResult = Builder.CreateExtractValue(CheckedLoad, 1); |
730 | 0 | VirtualFn = Builder.CreateExtractValue(CheckedLoad, 0); |
731 | 0 | } else { |
732 | | // When not doing VFE, emit a normal load, as it allows more |
733 | | // optimisations than type.checked.load. |
734 | 0 | if (ShouldEmitCFICheck || ShouldEmitWPDInfo) { |
735 | 0 | llvm::Value *VFPAddr = |
736 | 0 | Builder.CreateGEP(CGF.Int8Ty, VTable, VTableOffset); |
737 | 0 | llvm::Intrinsic::ID IID = CGM.HasHiddenLTOVisibility(RD) |
738 | 0 | ? llvm::Intrinsic::type_test |
739 | 0 | : llvm::Intrinsic::public_type_test; |
740 | |
|
741 | 0 | CheckResult = |
742 | 0 | Builder.CreateCall(CGM.getIntrinsic(IID), {VFPAddr, TypeId}); |
743 | 0 | } |
744 | |
|
745 | 0 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
746 | 0 | VirtualFn = CGF.Builder.CreateCall( |
747 | 0 | CGM.getIntrinsic(llvm::Intrinsic::load_relative, |
748 | 0 | {VTableOffset->getType()}), |
749 | 0 | {VTable, VTableOffset}); |
750 | 0 | } else { |
751 | 0 | llvm::Value *VFPAddr = |
752 | 0 | CGF.Builder.CreateGEP(CGF.Int8Ty, VTable, VTableOffset); |
753 | 0 | VirtualFn = CGF.Builder.CreateAlignedLoad(CGF.UnqualPtrTy, VFPAddr, |
754 | 0 | CGF.getPointerAlign(), |
755 | 0 | "memptr.virtualfn"); |
756 | 0 | } |
757 | 0 | } |
758 | 0 | assert(VirtualFn && "Virtual fuction pointer not created!"); |
759 | 0 | assert((!ShouldEmitCFICheck || !ShouldEmitVFEInfo || !ShouldEmitWPDInfo || |
760 | 0 | CheckResult) && |
761 | 0 | "Check result required but not created!"); |
762 | | |
763 | 0 | if (ShouldEmitCFICheck) { |
764 | | // If doing CFI, emit the check. |
765 | 0 | CheckSourceLocation = CGF.EmitCheckSourceLocation(E->getBeginLoc()); |
766 | 0 | CheckTypeDesc = CGF.EmitCheckTypeDescriptor(QualType(MPT, 0)); |
767 | 0 | llvm::Constant *StaticData[] = { |
768 | 0 | llvm::ConstantInt::get(CGF.Int8Ty, CodeGenFunction::CFITCK_VMFCall), |
769 | 0 | CheckSourceLocation, |
770 | 0 | CheckTypeDesc, |
771 | 0 | }; |
772 | |
|
773 | 0 | if (CGM.getCodeGenOpts().SanitizeTrap.has(SanitizerKind::CFIMFCall)) { |
774 | 0 | CGF.EmitTrapCheck(CheckResult, SanitizerHandler::CFICheckFail); |
775 | 0 | } else { |
776 | 0 | llvm::Value *AllVtables = llvm::MetadataAsValue::get( |
777 | 0 | CGM.getLLVMContext(), |
778 | 0 | llvm::MDString::get(CGM.getLLVMContext(), "all-vtables")); |
779 | 0 | llvm::Value *ValidVtable = Builder.CreateCall( |
780 | 0 | CGM.getIntrinsic(llvm::Intrinsic::type_test), {VTable, AllVtables}); |
781 | 0 | CGF.EmitCheck(std::make_pair(CheckResult, SanitizerKind::CFIMFCall), |
782 | 0 | SanitizerHandler::CFICheckFail, StaticData, |
783 | 0 | {VTable, ValidVtable}); |
784 | 0 | } |
785 | |
|
786 | 0 | FnVirtual = Builder.GetInsertBlock(); |
787 | 0 | } |
788 | 0 | } // End of sanitizer scope |
789 | | |
790 | 0 | CGF.EmitBranch(FnEnd); |
791 | | |
792 | | // In the non-virtual path, the function pointer is actually a |
793 | | // function pointer. |
794 | 0 | CGF.EmitBlock(FnNonVirtual); |
795 | 0 | llvm::Value *NonVirtualFn = |
796 | 0 | Builder.CreateIntToPtr(FnAsInt, CGF.UnqualPtrTy, "memptr.nonvirtualfn"); |
797 | | |
798 | | // Check the function pointer if CFI on member function pointers is enabled. |
799 | 0 | if (ShouldEmitCFICheck) { |
800 | 0 | CXXRecordDecl *RD = MPT->getClass()->getAsCXXRecordDecl(); |
801 | 0 | if (RD->hasDefinition()) { |
802 | 0 | CodeGenFunction::SanitizerScope SanScope(&CGF); |
803 | |
|
804 | 0 | llvm::Constant *StaticData[] = { |
805 | 0 | llvm::ConstantInt::get(CGF.Int8Ty, CodeGenFunction::CFITCK_NVMFCall), |
806 | 0 | CheckSourceLocation, |
807 | 0 | CheckTypeDesc, |
808 | 0 | }; |
809 | |
|
810 | 0 | llvm::Value *Bit = Builder.getFalse(); |
811 | 0 | for (const CXXRecordDecl *Base : CGM.getMostBaseClasses(RD)) { |
812 | 0 | llvm::Metadata *MD = CGM.CreateMetadataIdentifierForType( |
813 | 0 | getContext().getMemberPointerType( |
814 | 0 | MPT->getPointeeType(), |
815 | 0 | getContext().getRecordType(Base).getTypePtr())); |
816 | 0 | llvm::Value *TypeId = |
817 | 0 | llvm::MetadataAsValue::get(CGF.getLLVMContext(), MD); |
818 | |
|
819 | 0 | llvm::Value *TypeTest = |
820 | 0 | Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::type_test), |
821 | 0 | {NonVirtualFn, TypeId}); |
822 | 0 | Bit = Builder.CreateOr(Bit, TypeTest); |
823 | 0 | } |
824 | |
|
825 | 0 | CGF.EmitCheck(std::make_pair(Bit, SanitizerKind::CFIMFCall), |
826 | 0 | SanitizerHandler::CFICheckFail, StaticData, |
827 | 0 | {NonVirtualFn, llvm::UndefValue::get(CGF.IntPtrTy)}); |
828 | |
|
829 | 0 | FnNonVirtual = Builder.GetInsertBlock(); |
830 | 0 | } |
831 | 0 | } |
832 | | |
833 | | // We're done. |
834 | 0 | CGF.EmitBlock(FnEnd); |
835 | 0 | llvm::PHINode *CalleePtr = Builder.CreatePHI(CGF.UnqualPtrTy, 2); |
836 | 0 | CalleePtr->addIncoming(VirtualFn, FnVirtual); |
837 | 0 | CalleePtr->addIncoming(NonVirtualFn, FnNonVirtual); |
838 | |
|
839 | 0 | CGCallee Callee(FPT, CalleePtr); |
840 | 0 | return Callee; |
841 | 0 | } |
842 | | |
843 | | /// Compute an l-value by applying the given pointer-to-member to a |
844 | | /// base object. |
845 | | llvm::Value *ItaniumCXXABI::EmitMemberDataPointerAddress( |
846 | | CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr, |
847 | 0 | const MemberPointerType *MPT) { |
848 | 0 | assert(MemPtr->getType() == CGM.PtrDiffTy); |
849 | | |
850 | 0 | CGBuilderTy &Builder = CGF.Builder; |
851 | | |
852 | | // Apply the offset, which we assume is non-null. |
853 | 0 | return Builder.CreateInBoundsGEP(CGF.Int8Ty, Base.getPointer(), MemPtr, |
854 | 0 | "memptr.offset"); |
855 | 0 | } |
856 | | |
857 | | /// Perform a bitcast, derived-to-base, or base-to-derived member pointer |
858 | | /// conversion. |
859 | | /// |
860 | | /// Bitcast conversions are always a no-op under Itanium. |
861 | | /// |
862 | | /// Obligatory offset/adjustment diagram: |
863 | | /// <-- offset --> <-- adjustment --> |
864 | | /// |--------------------------|----------------------|--------------------| |
865 | | /// ^Derived address point ^Base address point ^Member address point |
866 | | /// |
867 | | /// So when converting a base member pointer to a derived member pointer, |
868 | | /// we add the offset to the adjustment because the address point has |
869 | | /// decreased; and conversely, when converting a derived MP to a base MP |
870 | | /// we subtract the offset from the adjustment because the address point |
871 | | /// has increased. |
872 | | /// |
873 | | /// The standard forbids (at compile time) conversion to and from |
874 | | /// virtual bases, which is why we don't have to consider them here. |
875 | | /// |
876 | | /// The standard forbids (at run time) casting a derived MP to a base |
877 | | /// MP when the derived MP does not point to a member of the base. |
878 | | /// This is why -1 is a reasonable choice for null data member |
879 | | /// pointers. |
880 | | llvm::Value * |
881 | | ItaniumCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF, |
882 | | const CastExpr *E, |
883 | 0 | llvm::Value *src) { |
884 | 0 | assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || |
885 | 0 | E->getCastKind() == CK_BaseToDerivedMemberPointer || |
886 | 0 | E->getCastKind() == CK_ReinterpretMemberPointer); |
887 | | |
888 | | // Under Itanium, reinterprets don't require any additional processing. |
889 | 0 | if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; |
890 | | |
891 | | // Use constant emission if we can. |
892 | 0 | if (isa<llvm::Constant>(src)) |
893 | 0 | return EmitMemberPointerConversion(E, cast<llvm::Constant>(src)); |
894 | | |
895 | 0 | llvm::Constant *adj = getMemberPointerAdjustment(E); |
896 | 0 | if (!adj) return src; |
897 | | |
898 | 0 | CGBuilderTy &Builder = CGF.Builder; |
899 | 0 | bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); |
900 | |
|
901 | 0 | const MemberPointerType *destTy = |
902 | 0 | E->getType()->castAs<MemberPointerType>(); |
903 | | |
904 | | // For member data pointers, this is just a matter of adding the |
905 | | // offset if the source is non-null. |
906 | 0 | if (destTy->isMemberDataPointer()) { |
907 | 0 | llvm::Value *dst; |
908 | 0 | if (isDerivedToBase) |
909 | 0 | dst = Builder.CreateNSWSub(src, adj, "adj"); |
910 | 0 | else |
911 | 0 | dst = Builder.CreateNSWAdd(src, adj, "adj"); |
912 | | |
913 | | // Null check. |
914 | 0 | llvm::Value *null = llvm::Constant::getAllOnesValue(src->getType()); |
915 | 0 | llvm::Value *isNull = Builder.CreateICmpEQ(src, null, "memptr.isnull"); |
916 | 0 | return Builder.CreateSelect(isNull, src, dst); |
917 | 0 | } |
918 | | |
919 | | // The this-adjustment is left-shifted by 1 on ARM. |
920 | 0 | if (UseARMMethodPtrABI) { |
921 | 0 | uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); |
922 | 0 | offset <<= 1; |
923 | 0 | adj = llvm::ConstantInt::get(adj->getType(), offset); |
924 | 0 | } |
925 | |
|
926 | 0 | llvm::Value *srcAdj = Builder.CreateExtractValue(src, 1, "src.adj"); |
927 | 0 | llvm::Value *dstAdj; |
928 | 0 | if (isDerivedToBase) |
929 | 0 | dstAdj = Builder.CreateNSWSub(srcAdj, adj, "adj"); |
930 | 0 | else |
931 | 0 | dstAdj = Builder.CreateNSWAdd(srcAdj, adj, "adj"); |
932 | |
|
933 | 0 | return Builder.CreateInsertValue(src, dstAdj, 1); |
934 | 0 | } |
935 | | |
936 | | llvm::Constant * |
937 | | ItaniumCXXABI::EmitMemberPointerConversion(const CastExpr *E, |
938 | 0 | llvm::Constant *src) { |
939 | 0 | assert(E->getCastKind() == CK_DerivedToBaseMemberPointer || |
940 | 0 | E->getCastKind() == CK_BaseToDerivedMemberPointer || |
941 | 0 | E->getCastKind() == CK_ReinterpretMemberPointer); |
942 | | |
943 | | // Under Itanium, reinterprets don't require any additional processing. |
944 | 0 | if (E->getCastKind() == CK_ReinterpretMemberPointer) return src; |
945 | | |
946 | | // If the adjustment is trivial, we don't need to do anything. |
947 | 0 | llvm::Constant *adj = getMemberPointerAdjustment(E); |
948 | 0 | if (!adj) return src; |
949 | | |
950 | 0 | bool isDerivedToBase = (E->getCastKind() == CK_DerivedToBaseMemberPointer); |
951 | |
|
952 | 0 | const MemberPointerType *destTy = |
953 | 0 | E->getType()->castAs<MemberPointerType>(); |
954 | | |
955 | | // For member data pointers, this is just a matter of adding the |
956 | | // offset if the source is non-null. |
957 | 0 | if (destTy->isMemberDataPointer()) { |
958 | | // null maps to null. |
959 | 0 | if (src->isAllOnesValue()) return src; |
960 | | |
961 | 0 | if (isDerivedToBase) |
962 | 0 | return llvm::ConstantExpr::getNSWSub(src, adj); |
963 | 0 | else |
964 | 0 | return llvm::ConstantExpr::getNSWAdd(src, adj); |
965 | 0 | } |
966 | | |
967 | | // The this-adjustment is left-shifted by 1 on ARM. |
968 | 0 | if (UseARMMethodPtrABI) { |
969 | 0 | uint64_t offset = cast<llvm::ConstantInt>(adj)->getZExtValue(); |
970 | 0 | offset <<= 1; |
971 | 0 | adj = llvm::ConstantInt::get(adj->getType(), offset); |
972 | 0 | } |
973 | |
|
974 | 0 | llvm::Constant *srcAdj = src->getAggregateElement(1); |
975 | 0 | llvm::Constant *dstAdj; |
976 | 0 | if (isDerivedToBase) |
977 | 0 | dstAdj = llvm::ConstantExpr::getNSWSub(srcAdj, adj); |
978 | 0 | else |
979 | 0 | dstAdj = llvm::ConstantExpr::getNSWAdd(srcAdj, adj); |
980 | |
|
981 | 0 | llvm::Constant *res = ConstantFoldInsertValueInstruction(src, dstAdj, 1); |
982 | 0 | assert(res != nullptr && "Folding must succeed"); |
983 | 0 | return res; |
984 | 0 | } |
985 | | |
986 | | llvm::Constant * |
987 | 0 | ItaniumCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) { |
988 | | // Itanium C++ ABI 2.3: |
989 | | // A NULL pointer is represented as -1. |
990 | 0 | if (MPT->isMemberDataPointer()) |
991 | 0 | return llvm::ConstantInt::get(CGM.PtrDiffTy, -1ULL, /*isSigned=*/true); |
992 | | |
993 | 0 | llvm::Constant *Zero = llvm::ConstantInt::get(CGM.PtrDiffTy, 0); |
994 | 0 | llvm::Constant *Values[2] = { Zero, Zero }; |
995 | 0 | return llvm::ConstantStruct::getAnon(Values); |
996 | 0 | } |
997 | | |
998 | | llvm::Constant * |
999 | | ItaniumCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT, |
1000 | 0 | CharUnits offset) { |
1001 | | // Itanium C++ ABI 2.3: |
1002 | | // A pointer to data member is an offset from the base address of |
1003 | | // the class object containing it, represented as a ptrdiff_t |
1004 | 0 | return llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()); |
1005 | 0 | } |
1006 | | |
1007 | | llvm::Constant * |
1008 | 0 | ItaniumCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) { |
1009 | 0 | return BuildMemberPointer(MD, CharUnits::Zero()); |
1010 | 0 | } |
1011 | | |
1012 | | llvm::Constant *ItaniumCXXABI::BuildMemberPointer(const CXXMethodDecl *MD, |
1013 | 0 | CharUnits ThisAdjustment) { |
1014 | 0 | assert(MD->isInstance() && "Member function must not be static!"); |
1015 | | |
1016 | 0 | CodeGenTypes &Types = CGM.getTypes(); |
1017 | | |
1018 | | // Get the function pointer (or index if this is a virtual function). |
1019 | 0 | llvm::Constant *MemPtr[2]; |
1020 | 0 | if (MD->isVirtual()) { |
1021 | 0 | uint64_t Index = CGM.getItaniumVTableContext().getMethodVTableIndex(MD); |
1022 | 0 | uint64_t VTableOffset; |
1023 | 0 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
1024 | | // Multiply by 4-byte relative offsets. |
1025 | 0 | VTableOffset = Index * 4; |
1026 | 0 | } else { |
1027 | 0 | const ASTContext &Context = getContext(); |
1028 | 0 | CharUnits PointerWidth = Context.toCharUnitsFromBits( |
1029 | 0 | Context.getTargetInfo().getPointerWidth(LangAS::Default)); |
1030 | 0 | VTableOffset = Index * PointerWidth.getQuantity(); |
1031 | 0 | } |
1032 | |
|
1033 | 0 | if (UseARMMethodPtrABI) { |
1034 | | // ARM C++ ABI 3.2.1: |
1035 | | // This ABI specifies that adj contains twice the this |
1036 | | // adjustment, plus 1 if the member function is virtual. The |
1037 | | // least significant bit of adj then makes exactly the same |
1038 | | // discrimination as the least significant bit of ptr does for |
1039 | | // Itanium. |
1040 | 0 | MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset); |
1041 | 0 | MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, |
1042 | 0 | 2 * ThisAdjustment.getQuantity() + 1); |
1043 | 0 | } else { |
1044 | | // Itanium C++ ABI 2.3: |
1045 | | // For a virtual function, [the pointer field] is 1 plus the |
1046 | | // virtual table offset (in bytes) of the function, |
1047 | | // represented as a ptrdiff_t. |
1048 | 0 | MemPtr[0] = llvm::ConstantInt::get(CGM.PtrDiffTy, VTableOffset + 1); |
1049 | 0 | MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, |
1050 | 0 | ThisAdjustment.getQuantity()); |
1051 | 0 | } |
1052 | 0 | } else { |
1053 | 0 | const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>(); |
1054 | 0 | llvm::Type *Ty; |
1055 | | // Check whether the function has a computable LLVM signature. |
1056 | 0 | if (Types.isFuncTypeConvertible(FPT)) { |
1057 | | // The function has a computable LLVM signature; use the correct type. |
1058 | 0 | Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD)); |
1059 | 0 | } else { |
1060 | | // Use an arbitrary non-function type to tell GetAddrOfFunction that the |
1061 | | // function type is incomplete. |
1062 | 0 | Ty = CGM.PtrDiffTy; |
1063 | 0 | } |
1064 | 0 | llvm::Constant *addr = CGM.GetAddrOfFunction(MD, Ty); |
1065 | |
|
1066 | 0 | MemPtr[0] = llvm::ConstantExpr::getPtrToInt(addr, CGM.PtrDiffTy); |
1067 | 0 | MemPtr[1] = llvm::ConstantInt::get(CGM.PtrDiffTy, |
1068 | 0 | (UseARMMethodPtrABI ? 2 : 1) * |
1069 | 0 | ThisAdjustment.getQuantity()); |
1070 | 0 | } |
1071 | |
|
1072 | 0 | return llvm::ConstantStruct::getAnon(MemPtr); |
1073 | 0 | } |
1074 | | |
1075 | | llvm::Constant *ItaniumCXXABI::EmitMemberPointer(const APValue &MP, |
1076 | 0 | QualType MPType) { |
1077 | 0 | const MemberPointerType *MPT = MPType->castAs<MemberPointerType>(); |
1078 | 0 | const ValueDecl *MPD = MP.getMemberPointerDecl(); |
1079 | 0 | if (!MPD) |
1080 | 0 | return EmitNullMemberPointer(MPT); |
1081 | | |
1082 | 0 | CharUnits ThisAdjustment = getContext().getMemberPointerPathAdjustment(MP); |
1083 | |
|
1084 | 0 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) |
1085 | 0 | return BuildMemberPointer(MD, ThisAdjustment); |
1086 | | |
1087 | 0 | CharUnits FieldOffset = |
1088 | 0 | getContext().toCharUnitsFromBits(getContext().getFieldOffset(MPD)); |
1089 | 0 | return EmitMemberDataPointer(MPT, ThisAdjustment + FieldOffset); |
1090 | 0 | } |
1091 | | |
1092 | | /// The comparison algorithm is pretty easy: the member pointers are |
1093 | | /// the same if they're either bitwise identical *or* both null. |
1094 | | /// |
1095 | | /// ARM is different here only because null-ness is more complicated. |
1096 | | llvm::Value * |
1097 | | ItaniumCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF, |
1098 | | llvm::Value *L, |
1099 | | llvm::Value *R, |
1100 | | const MemberPointerType *MPT, |
1101 | 0 | bool Inequality) { |
1102 | 0 | CGBuilderTy &Builder = CGF.Builder; |
1103 | |
|
1104 | 0 | llvm::ICmpInst::Predicate Eq; |
1105 | 0 | llvm::Instruction::BinaryOps And, Or; |
1106 | 0 | if (Inequality) { |
1107 | 0 | Eq = llvm::ICmpInst::ICMP_NE; |
1108 | 0 | And = llvm::Instruction::Or; |
1109 | 0 | Or = llvm::Instruction::And; |
1110 | 0 | } else { |
1111 | 0 | Eq = llvm::ICmpInst::ICMP_EQ; |
1112 | 0 | And = llvm::Instruction::And; |
1113 | 0 | Or = llvm::Instruction::Or; |
1114 | 0 | } |
1115 | | |
1116 | | // Member data pointers are easy because there's a unique null |
1117 | | // value, so it just comes down to bitwise equality. |
1118 | 0 | if (MPT->isMemberDataPointer()) |
1119 | 0 | return Builder.CreateICmp(Eq, L, R); |
1120 | | |
1121 | | // For member function pointers, the tautologies are more complex. |
1122 | | // The Itanium tautology is: |
1123 | | // (L == R) <==> (L.ptr == R.ptr && (L.ptr == 0 || L.adj == R.adj)) |
1124 | | // The ARM tautology is: |
1125 | | // (L == R) <==> (L.ptr == R.ptr && |
1126 | | // (L.adj == R.adj || |
1127 | | // (L.ptr == 0 && ((L.adj|R.adj) & 1) == 0))) |
1128 | | // The inequality tautologies have exactly the same structure, except |
1129 | | // applying De Morgan's laws. |
1130 | | |
1131 | 0 | llvm::Value *LPtr = Builder.CreateExtractValue(L, 0, "lhs.memptr.ptr"); |
1132 | 0 | llvm::Value *RPtr = Builder.CreateExtractValue(R, 0, "rhs.memptr.ptr"); |
1133 | | |
1134 | | // This condition tests whether L.ptr == R.ptr. This must always be |
1135 | | // true for equality to hold. |
1136 | 0 | llvm::Value *PtrEq = Builder.CreateICmp(Eq, LPtr, RPtr, "cmp.ptr"); |
1137 | | |
1138 | | // This condition, together with the assumption that L.ptr == R.ptr, |
1139 | | // tests whether the pointers are both null. ARM imposes an extra |
1140 | | // condition. |
1141 | 0 | llvm::Value *Zero = llvm::Constant::getNullValue(LPtr->getType()); |
1142 | 0 | llvm::Value *EqZero = Builder.CreateICmp(Eq, LPtr, Zero, "cmp.ptr.null"); |
1143 | | |
1144 | | // This condition tests whether L.adj == R.adj. If this isn't |
1145 | | // true, the pointers are unequal unless they're both null. |
1146 | 0 | llvm::Value *LAdj = Builder.CreateExtractValue(L, 1, "lhs.memptr.adj"); |
1147 | 0 | llvm::Value *RAdj = Builder.CreateExtractValue(R, 1, "rhs.memptr.adj"); |
1148 | 0 | llvm::Value *AdjEq = Builder.CreateICmp(Eq, LAdj, RAdj, "cmp.adj"); |
1149 | | |
1150 | | // Null member function pointers on ARM clear the low bit of Adj, |
1151 | | // so the zero condition has to check that neither low bit is set. |
1152 | 0 | if (UseARMMethodPtrABI) { |
1153 | 0 | llvm::Value *One = llvm::ConstantInt::get(LPtr->getType(), 1); |
1154 | | |
1155 | | // Compute (l.adj | r.adj) & 1 and test it against zero. |
1156 | 0 | llvm::Value *OrAdj = Builder.CreateOr(LAdj, RAdj, "or.adj"); |
1157 | 0 | llvm::Value *OrAdjAnd1 = Builder.CreateAnd(OrAdj, One); |
1158 | 0 | llvm::Value *OrAdjAnd1EqZero = Builder.CreateICmp(Eq, OrAdjAnd1, Zero, |
1159 | 0 | "cmp.or.adj"); |
1160 | 0 | EqZero = Builder.CreateBinOp(And, EqZero, OrAdjAnd1EqZero); |
1161 | 0 | } |
1162 | | |
1163 | | // Tie together all our conditions. |
1164 | 0 | llvm::Value *Result = Builder.CreateBinOp(Or, EqZero, AdjEq); |
1165 | 0 | Result = Builder.CreateBinOp(And, PtrEq, Result, |
1166 | 0 | Inequality ? "memptr.ne" : "memptr.eq"); |
1167 | 0 | return Result; |
1168 | 0 | } |
1169 | | |
1170 | | llvm::Value * |
1171 | | ItaniumCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF, |
1172 | | llvm::Value *MemPtr, |
1173 | 0 | const MemberPointerType *MPT) { |
1174 | 0 | CGBuilderTy &Builder = CGF.Builder; |
1175 | | |
1176 | | /// For member data pointers, this is just a check against -1. |
1177 | 0 | if (MPT->isMemberDataPointer()) { |
1178 | 0 | assert(MemPtr->getType() == CGM.PtrDiffTy); |
1179 | 0 | llvm::Value *NegativeOne = |
1180 | 0 | llvm::Constant::getAllOnesValue(MemPtr->getType()); |
1181 | 0 | return Builder.CreateICmpNE(MemPtr, NegativeOne, "memptr.tobool"); |
1182 | 0 | } |
1183 | | |
1184 | | // In Itanium, a member function pointer is not null if 'ptr' is not null. |
1185 | 0 | llvm::Value *Ptr = Builder.CreateExtractValue(MemPtr, 0, "memptr.ptr"); |
1186 | |
|
1187 | 0 | llvm::Constant *Zero = llvm::ConstantInt::get(Ptr->getType(), 0); |
1188 | 0 | llvm::Value *Result = Builder.CreateICmpNE(Ptr, Zero, "memptr.tobool"); |
1189 | | |
1190 | | // On ARM, a member function pointer is also non-null if the low bit of 'adj' |
1191 | | // (the virtual bit) is set. |
1192 | 0 | if (UseARMMethodPtrABI) { |
1193 | 0 | llvm::Constant *One = llvm::ConstantInt::get(Ptr->getType(), 1); |
1194 | 0 | llvm::Value *Adj = Builder.CreateExtractValue(MemPtr, 1, "memptr.adj"); |
1195 | 0 | llvm::Value *VirtualBit = Builder.CreateAnd(Adj, One, "memptr.virtualbit"); |
1196 | 0 | llvm::Value *IsVirtual = Builder.CreateICmpNE(VirtualBit, Zero, |
1197 | 0 | "memptr.isvirtual"); |
1198 | 0 | Result = Builder.CreateOr(Result, IsVirtual); |
1199 | 0 | } |
1200 | |
|
1201 | 0 | return Result; |
1202 | 0 | } |
1203 | | |
1204 | 0 | bool ItaniumCXXABI::classifyReturnType(CGFunctionInfo &FI) const { |
1205 | 0 | const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl(); |
1206 | 0 | if (!RD) |
1207 | 0 | return false; |
1208 | | |
1209 | | // If C++ prohibits us from making a copy, return by address. |
1210 | 0 | if (!RD->canPassInRegisters()) { |
1211 | 0 | auto Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType()); |
1212 | 0 | FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
1213 | 0 | return true; |
1214 | 0 | } |
1215 | 0 | return false; |
1216 | 0 | } |
1217 | | |
1218 | | /// The Itanium ABI requires non-zero initialization only for data |
1219 | | /// member pointers, for which '0' is a valid offset. |
1220 | 0 | bool ItaniumCXXABI::isZeroInitializable(const MemberPointerType *MPT) { |
1221 | 0 | return MPT->isMemberFunctionPointer(); |
1222 | 0 | } |
1223 | | |
1224 | | /// The Itanium ABI always places an offset to the complete object |
1225 | | /// at entry -2 in the vtable. |
1226 | | void ItaniumCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF, |
1227 | | const CXXDeleteExpr *DE, |
1228 | | Address Ptr, |
1229 | | QualType ElementType, |
1230 | 0 | const CXXDestructorDecl *Dtor) { |
1231 | 0 | bool UseGlobalDelete = DE->isGlobalDelete(); |
1232 | 0 | if (UseGlobalDelete) { |
1233 | | // Derive the complete-object pointer, which is what we need |
1234 | | // to pass to the deallocation function. |
1235 | | |
1236 | | // Grab the vtable pointer as an intptr_t*. |
1237 | 0 | auto *ClassDecl = |
1238 | 0 | cast<CXXRecordDecl>(ElementType->castAs<RecordType>()->getDecl()); |
1239 | 0 | llvm::Value *VTable = CGF.GetVTablePtr(Ptr, CGF.UnqualPtrTy, ClassDecl); |
1240 | | |
1241 | | // Track back to entry -2 and pull out the offset there. |
1242 | 0 | llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64( |
1243 | 0 | CGF.IntPtrTy, VTable, -2, "complete-offset.ptr"); |
1244 | 0 | llvm::Value *Offset = CGF.Builder.CreateAlignedLoad(CGF.IntPtrTy, OffsetPtr, |
1245 | 0 | CGF.getPointerAlign()); |
1246 | | |
1247 | | // Apply the offset. |
1248 | 0 | llvm::Value *CompletePtr = Ptr.getPointer(); |
1249 | 0 | CompletePtr = |
1250 | 0 | CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, CompletePtr, Offset); |
1251 | | |
1252 | | // If we're supposed to call the global delete, make sure we do so |
1253 | | // even if the destructor throws. |
1254 | 0 | CGF.pushCallObjectDeleteCleanup(DE->getOperatorDelete(), CompletePtr, |
1255 | 0 | ElementType); |
1256 | 0 | } |
1257 | | |
1258 | | // FIXME: Provide a source location here even though there's no |
1259 | | // CXXMemberCallExpr for dtor call. |
1260 | 0 | CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting; |
1261 | 0 | EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE); |
1262 | |
|
1263 | 0 | if (UseGlobalDelete) |
1264 | 0 | CGF.PopCleanupBlock(); |
1265 | 0 | } |
1266 | | |
1267 | 0 | void ItaniumCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) { |
1268 | | // void __cxa_rethrow(); |
1269 | |
|
1270 | 0 | llvm::FunctionType *FTy = |
1271 | 0 | llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); |
1272 | |
|
1273 | 0 | llvm::FunctionCallee Fn = CGM.CreateRuntimeFunction(FTy, "__cxa_rethrow"); |
1274 | |
|
1275 | 0 | if (isNoReturn) |
1276 | 0 | CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, std::nullopt); |
1277 | 0 | else |
1278 | 0 | CGF.EmitRuntimeCallOrInvoke(Fn); |
1279 | 0 | } |
1280 | | |
1281 | 0 | static llvm::FunctionCallee getAllocateExceptionFn(CodeGenModule &CGM) { |
1282 | | // void *__cxa_allocate_exception(size_t thrown_size); |
1283 | |
|
1284 | 0 | llvm::FunctionType *FTy = |
1285 | 0 | llvm::FunctionType::get(CGM.Int8PtrTy, CGM.SizeTy, /*isVarArg=*/false); |
1286 | |
|
1287 | 0 | return CGM.CreateRuntimeFunction(FTy, "__cxa_allocate_exception"); |
1288 | 0 | } |
1289 | | |
1290 | 0 | static llvm::FunctionCallee getThrowFn(CodeGenModule &CGM) { |
1291 | | // void __cxa_throw(void *thrown_exception, std::type_info *tinfo, |
1292 | | // void (*dest) (void *)); |
1293 | |
|
1294 | 0 | llvm::Type *Args[3] = { CGM.Int8PtrTy, CGM.GlobalsInt8PtrTy, CGM.Int8PtrTy }; |
1295 | 0 | llvm::FunctionType *FTy = |
1296 | 0 | llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false); |
1297 | |
|
1298 | 0 | return CGM.CreateRuntimeFunction(FTy, "__cxa_throw"); |
1299 | 0 | } |
1300 | | |
1301 | 0 | void ItaniumCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) { |
1302 | 0 | QualType ThrowType = E->getSubExpr()->getType(); |
1303 | | // Now allocate the exception object. |
1304 | 0 | llvm::Type *SizeTy = CGF.ConvertType(getContext().getSizeType()); |
1305 | 0 | uint64_t TypeSize = getContext().getTypeSizeInChars(ThrowType).getQuantity(); |
1306 | |
|
1307 | 0 | llvm::FunctionCallee AllocExceptionFn = getAllocateExceptionFn(CGM); |
1308 | 0 | llvm::CallInst *ExceptionPtr = CGF.EmitNounwindRuntimeCall( |
1309 | 0 | AllocExceptionFn, llvm::ConstantInt::get(SizeTy, TypeSize), "exception"); |
1310 | |
|
1311 | 0 | CharUnits ExnAlign = CGF.getContext().getExnObjectAlignment(); |
1312 | 0 | CGF.EmitAnyExprToExn( |
1313 | 0 | E->getSubExpr(), Address(ExceptionPtr, CGM.Int8Ty, ExnAlign)); |
1314 | | |
1315 | | // Now throw the exception. |
1316 | 0 | llvm::Constant *TypeInfo = CGM.GetAddrOfRTTIDescriptor(ThrowType, |
1317 | 0 | /*ForEH=*/true); |
1318 | | |
1319 | | // The address of the destructor. If the exception type has a |
1320 | | // trivial destructor (or isn't a record), we just pass null. |
1321 | 0 | llvm::Constant *Dtor = nullptr; |
1322 | 0 | if (const RecordType *RecordTy = ThrowType->getAs<RecordType>()) { |
1323 | 0 | CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl()); |
1324 | 0 | if (!Record->hasTrivialDestructor()) { |
1325 | 0 | CXXDestructorDecl *DtorD = Record->getDestructor(); |
1326 | 0 | Dtor = CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete)); |
1327 | 0 | } |
1328 | 0 | } |
1329 | 0 | if (!Dtor) Dtor = llvm::Constant::getNullValue(CGM.Int8PtrTy); |
1330 | |
|
1331 | 0 | llvm::Value *args[] = { ExceptionPtr, TypeInfo, Dtor }; |
1332 | 0 | CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(CGM), args); |
1333 | 0 | } |
1334 | | |
1335 | 0 | static llvm::FunctionCallee getItaniumDynamicCastFn(CodeGenFunction &CGF) { |
1336 | | // void *__dynamic_cast(const void *sub, |
1337 | | // global_as const abi::__class_type_info *src, |
1338 | | // global_as const abi::__class_type_info *dst, |
1339 | | // std::ptrdiff_t src2dst_offset); |
1340 | |
|
1341 | 0 | llvm::Type *Int8PtrTy = CGF.Int8PtrTy; |
1342 | 0 | llvm::Type *GlobInt8PtrTy = CGF.GlobalsInt8PtrTy; |
1343 | 0 | llvm::Type *PtrDiffTy = |
1344 | 0 | CGF.ConvertType(CGF.getContext().getPointerDiffType()); |
1345 | |
|
1346 | 0 | llvm::Type *Args[4] = { Int8PtrTy, GlobInt8PtrTy, GlobInt8PtrTy, PtrDiffTy }; |
1347 | |
|
1348 | 0 | llvm::FunctionType *FTy = llvm::FunctionType::get(Int8PtrTy, Args, false); |
1349 | | |
1350 | | // Mark the function as nounwind readonly. |
1351 | 0 | llvm::AttrBuilder FuncAttrs(CGF.getLLVMContext()); |
1352 | 0 | FuncAttrs.addAttribute(llvm::Attribute::NoUnwind); |
1353 | 0 | FuncAttrs.addMemoryAttr(llvm::MemoryEffects::readOnly()); |
1354 | 0 | llvm::AttributeList Attrs = llvm::AttributeList::get( |
1355 | 0 | CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex, FuncAttrs); |
1356 | |
|
1357 | 0 | return CGF.CGM.CreateRuntimeFunction(FTy, "__dynamic_cast", Attrs); |
1358 | 0 | } |
1359 | | |
1360 | 0 | static llvm::FunctionCallee getBadCastFn(CodeGenFunction &CGF) { |
1361 | | // void __cxa_bad_cast(); |
1362 | 0 | llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); |
1363 | 0 | return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_cast"); |
1364 | 0 | } |
1365 | | |
1366 | | /// Compute the src2dst_offset hint as described in the |
1367 | | /// Itanium C++ ABI [2.9.7] |
1368 | | static CharUnits computeOffsetHint(ASTContext &Context, |
1369 | | const CXXRecordDecl *Src, |
1370 | 0 | const CXXRecordDecl *Dst) { |
1371 | 0 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
1372 | 0 | /*DetectVirtual=*/false); |
1373 | | |
1374 | | // If Dst is not derived from Src we can skip the whole computation below and |
1375 | | // return that Src is not a public base of Dst. Record all inheritance paths. |
1376 | 0 | if (!Dst->isDerivedFrom(Src, Paths)) |
1377 | 0 | return CharUnits::fromQuantity(-2ULL); |
1378 | | |
1379 | 0 | unsigned NumPublicPaths = 0; |
1380 | 0 | CharUnits Offset; |
1381 | | |
1382 | | // Now walk all possible inheritance paths. |
1383 | 0 | for (const CXXBasePath &Path : Paths) { |
1384 | 0 | if (Path.Access != AS_public) // Ignore non-public inheritance. |
1385 | 0 | continue; |
1386 | | |
1387 | 0 | ++NumPublicPaths; |
1388 | |
|
1389 | 0 | for (const CXXBasePathElement &PathElement : Path) { |
1390 | | // If the path contains a virtual base class we can't give any hint. |
1391 | | // -1: no hint. |
1392 | 0 | if (PathElement.Base->isVirtual()) |
1393 | 0 | return CharUnits::fromQuantity(-1ULL); |
1394 | | |
1395 | 0 | if (NumPublicPaths > 1) // Won't use offsets, skip computation. |
1396 | 0 | continue; |
1397 | | |
1398 | | // Accumulate the base class offsets. |
1399 | 0 | const ASTRecordLayout &L = Context.getASTRecordLayout(PathElement.Class); |
1400 | 0 | Offset += L.getBaseClassOffset( |
1401 | 0 | PathElement.Base->getType()->getAsCXXRecordDecl()); |
1402 | 0 | } |
1403 | 0 | } |
1404 | | |
1405 | | // -2: Src is not a public base of Dst. |
1406 | 0 | if (NumPublicPaths == 0) |
1407 | 0 | return CharUnits::fromQuantity(-2ULL); |
1408 | | |
1409 | | // -3: Src is a multiple public base type but never a virtual base type. |
1410 | 0 | if (NumPublicPaths > 1) |
1411 | 0 | return CharUnits::fromQuantity(-3ULL); |
1412 | | |
1413 | | // Otherwise, the Src type is a unique public nonvirtual base type of Dst. |
1414 | | // Return the offset of Src from the origin of Dst. |
1415 | 0 | return Offset; |
1416 | 0 | } |
1417 | | |
1418 | 0 | static llvm::FunctionCallee getBadTypeidFn(CodeGenFunction &CGF) { |
1419 | | // void __cxa_bad_typeid(); |
1420 | 0 | llvm::FunctionType *FTy = llvm::FunctionType::get(CGF.VoidTy, false); |
1421 | |
|
1422 | 0 | return CGF.CGM.CreateRuntimeFunction(FTy, "__cxa_bad_typeid"); |
1423 | 0 | } |
1424 | | |
1425 | | bool ItaniumCXXABI::shouldTypeidBeNullChecked(bool IsDeref, |
1426 | 0 | QualType SrcRecordTy) { |
1427 | 0 | return IsDeref; |
1428 | 0 | } |
1429 | | |
1430 | 0 | void ItaniumCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) { |
1431 | 0 | llvm::FunctionCallee Fn = getBadTypeidFn(CGF); |
1432 | 0 | llvm::CallBase *Call = CGF.EmitRuntimeCallOrInvoke(Fn); |
1433 | 0 | Call->setDoesNotReturn(); |
1434 | 0 | CGF.Builder.CreateUnreachable(); |
1435 | 0 | } |
1436 | | |
1437 | | llvm::Value *ItaniumCXXABI::EmitTypeid(CodeGenFunction &CGF, |
1438 | | QualType SrcRecordTy, |
1439 | | Address ThisPtr, |
1440 | 0 | llvm::Type *StdTypeInfoPtrTy) { |
1441 | 0 | auto *ClassDecl = |
1442 | 0 | cast<CXXRecordDecl>(SrcRecordTy->castAs<RecordType>()->getDecl()); |
1443 | 0 | llvm::Value *Value = CGF.GetVTablePtr(ThisPtr, CGM.GlobalsInt8PtrTy, |
1444 | 0 | ClassDecl); |
1445 | |
|
1446 | 0 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
1447 | | // Load the type info. |
1448 | 0 | Value = CGF.Builder.CreateCall( |
1449 | 0 | CGM.getIntrinsic(llvm::Intrinsic::load_relative, {CGM.Int32Ty}), |
1450 | 0 | {Value, llvm::ConstantInt::get(CGM.Int32Ty, -4)}); |
1451 | 0 | } else { |
1452 | | // Load the type info. |
1453 | 0 | Value = |
1454 | 0 | CGF.Builder.CreateConstInBoundsGEP1_64(StdTypeInfoPtrTy, Value, -1ULL); |
1455 | 0 | } |
1456 | 0 | return CGF.Builder.CreateAlignedLoad(StdTypeInfoPtrTy, Value, |
1457 | 0 | CGF.getPointerAlign()); |
1458 | 0 | } |
1459 | | |
1460 | | bool ItaniumCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr, |
1461 | 0 | QualType SrcRecordTy) { |
1462 | 0 | return SrcIsPtr; |
1463 | 0 | } |
1464 | | |
1465 | | llvm::Value *ItaniumCXXABI::emitDynamicCastCall( |
1466 | | CodeGenFunction &CGF, Address ThisAddr, QualType SrcRecordTy, |
1467 | 0 | QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastEnd) { |
1468 | 0 | llvm::Type *PtrDiffLTy = |
1469 | 0 | CGF.ConvertType(CGF.getContext().getPointerDiffType()); |
1470 | |
|
1471 | 0 | llvm::Value *SrcRTTI = |
1472 | 0 | CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType()); |
1473 | 0 | llvm::Value *DestRTTI = |
1474 | 0 | CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType()); |
1475 | | |
1476 | | // Compute the offset hint. |
1477 | 0 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
1478 | 0 | const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); |
1479 | 0 | llvm::Value *OffsetHint = llvm::ConstantInt::get( |
1480 | 0 | PtrDiffLTy, |
1481 | 0 | computeOffsetHint(CGF.getContext(), SrcDecl, DestDecl).getQuantity()); |
1482 | | |
1483 | | // Emit the call to __dynamic_cast. |
1484 | 0 | llvm::Value *Args[] = {ThisAddr.getPointer(), SrcRTTI, DestRTTI, OffsetHint}; |
1485 | 0 | llvm::Value *Value = |
1486 | 0 | CGF.EmitNounwindRuntimeCall(getItaniumDynamicCastFn(CGF), Args); |
1487 | | |
1488 | | /// C++ [expr.dynamic.cast]p9: |
1489 | | /// A failed cast to reference type throws std::bad_cast |
1490 | 0 | if (DestTy->isReferenceType()) { |
1491 | 0 | llvm::BasicBlock *BadCastBlock = |
1492 | 0 | CGF.createBasicBlock("dynamic_cast.bad_cast"); |
1493 | |
|
1494 | 0 | llvm::Value *IsNull = CGF.Builder.CreateIsNull(Value); |
1495 | 0 | CGF.Builder.CreateCondBr(IsNull, BadCastBlock, CastEnd); |
1496 | |
|
1497 | 0 | CGF.EmitBlock(BadCastBlock); |
1498 | 0 | EmitBadCastCall(CGF); |
1499 | 0 | } |
1500 | |
|
1501 | 0 | return Value; |
1502 | 0 | } |
1503 | | |
1504 | | llvm::Value *ItaniumCXXABI::emitExactDynamicCast( |
1505 | | CodeGenFunction &CGF, Address ThisAddr, QualType SrcRecordTy, |
1506 | | QualType DestTy, QualType DestRecordTy, llvm::BasicBlock *CastSuccess, |
1507 | 0 | llvm::BasicBlock *CastFail) { |
1508 | 0 | ASTContext &Context = getContext(); |
1509 | | |
1510 | | // Find all the inheritance paths. |
1511 | 0 | const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl(); |
1512 | 0 | const CXXRecordDecl *DestDecl = DestRecordTy->getAsCXXRecordDecl(); |
1513 | 0 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, |
1514 | 0 | /*DetectVirtual=*/false); |
1515 | 0 | (void)DestDecl->isDerivedFrom(SrcDecl, Paths); |
1516 | | |
1517 | | // Find an offset within `DestDecl` where a `SrcDecl` instance and its vptr |
1518 | | // might appear. |
1519 | 0 | std::optional<CharUnits> Offset; |
1520 | 0 | for (const CXXBasePath &Path : Paths) { |
1521 | | // dynamic_cast only finds public inheritance paths. |
1522 | 0 | if (Path.Access != AS_public) |
1523 | 0 | continue; |
1524 | | |
1525 | 0 | CharUnits PathOffset; |
1526 | 0 | for (const CXXBasePathElement &PathElement : Path) { |
1527 | | // Find the offset along this inheritance step. |
1528 | 0 | const CXXRecordDecl *Base = |
1529 | 0 | PathElement.Base->getType()->getAsCXXRecordDecl(); |
1530 | 0 | if (PathElement.Base->isVirtual()) { |
1531 | | // For a virtual base class, we know that the derived class is exactly |
1532 | | // DestDecl, so we can use the vbase offset from its layout. |
1533 | 0 | const ASTRecordLayout &L = Context.getASTRecordLayout(DestDecl); |
1534 | 0 | PathOffset = L.getVBaseClassOffset(Base); |
1535 | 0 | } else { |
1536 | 0 | const ASTRecordLayout &L = |
1537 | 0 | Context.getASTRecordLayout(PathElement.Class); |
1538 | 0 | PathOffset += L.getBaseClassOffset(Base); |
1539 | 0 | } |
1540 | 0 | } |
1541 | |
|
1542 | 0 | if (!Offset) |
1543 | 0 | Offset = PathOffset; |
1544 | 0 | else if (Offset != PathOffset) { |
1545 | | // Base appears in at least two different places. Find the most-derived |
1546 | | // object and see if it's a DestDecl. Note that the most-derived object |
1547 | | // must be at least as aligned as this base class subobject, and must |
1548 | | // have a vptr at offset 0. |
1549 | 0 | ThisAddr = Address(emitDynamicCastToVoid(CGF, ThisAddr, SrcRecordTy), |
1550 | 0 | CGF.VoidPtrTy, ThisAddr.getAlignment()); |
1551 | 0 | SrcDecl = DestDecl; |
1552 | 0 | Offset = CharUnits::Zero(); |
1553 | 0 | break; |
1554 | 0 | } |
1555 | 0 | } |
1556 | |
|
1557 | 0 | if (!Offset) { |
1558 | | // If there are no public inheritance paths, the cast always fails. |
1559 | 0 | CGF.EmitBranch(CastFail); |
1560 | 0 | return llvm::PoisonValue::get(CGF.VoidPtrTy); |
1561 | 0 | } |
1562 | | |
1563 | | // Compare the vptr against the expected vptr for the destination type at |
1564 | | // this offset. Note that we do not know what type ThisAddr points to in |
1565 | | // the case where the derived class multiply inherits from the base class |
1566 | | // so we can't use GetVTablePtr, so we load the vptr directly instead. |
1567 | 0 | llvm::Instruction *VPtr = CGF.Builder.CreateLoad( |
1568 | 0 | ThisAddr.withElementType(CGF.VoidPtrPtrTy), "vtable"); |
1569 | 0 | CGM.DecorateInstructionWithTBAA( |
1570 | 0 | VPtr, CGM.getTBAAVTablePtrAccessInfo(CGF.VoidPtrPtrTy)); |
1571 | 0 | llvm::Value *Success = CGF.Builder.CreateICmpEQ( |
1572 | 0 | VPtr, getVTableAddressPoint(BaseSubobject(SrcDecl, *Offset), DestDecl)); |
1573 | 0 | llvm::Value *Result = ThisAddr.getPointer(); |
1574 | 0 | if (!Offset->isZero()) |
1575 | 0 | Result = CGF.Builder.CreateInBoundsGEP( |
1576 | 0 | CGF.CharTy, Result, |
1577 | 0 | {llvm::ConstantInt::get(CGF.PtrDiffTy, -Offset->getQuantity())}); |
1578 | 0 | CGF.Builder.CreateCondBr(Success, CastSuccess, CastFail); |
1579 | 0 | return Result; |
1580 | 0 | } |
1581 | | |
1582 | | llvm::Value *ItaniumCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF, |
1583 | | Address ThisAddr, |
1584 | 0 | QualType SrcRecordTy) { |
1585 | 0 | auto *ClassDecl = |
1586 | 0 | cast<CXXRecordDecl>(SrcRecordTy->castAs<RecordType>()->getDecl()); |
1587 | 0 | llvm::Value *OffsetToTop; |
1588 | 0 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
1589 | | // Get the vtable pointer. |
1590 | 0 | llvm::Value *VTable = |
1591 | 0 | CGF.GetVTablePtr(ThisAddr, CGF.UnqualPtrTy, ClassDecl); |
1592 | | |
1593 | | // Get the offset-to-top from the vtable. |
1594 | 0 | OffsetToTop = |
1595 | 0 | CGF.Builder.CreateConstInBoundsGEP1_32(CGM.Int32Ty, VTable, -2U); |
1596 | 0 | OffsetToTop = CGF.Builder.CreateAlignedLoad( |
1597 | 0 | CGM.Int32Ty, OffsetToTop, CharUnits::fromQuantity(4), "offset.to.top"); |
1598 | 0 | } else { |
1599 | 0 | llvm::Type *PtrDiffLTy = |
1600 | 0 | CGF.ConvertType(CGF.getContext().getPointerDiffType()); |
1601 | | |
1602 | | // Get the vtable pointer. |
1603 | 0 | llvm::Value *VTable = |
1604 | 0 | CGF.GetVTablePtr(ThisAddr, CGF.UnqualPtrTy, ClassDecl); |
1605 | | |
1606 | | // Get the offset-to-top from the vtable. |
1607 | 0 | OffsetToTop = |
1608 | 0 | CGF.Builder.CreateConstInBoundsGEP1_64(PtrDiffLTy, VTable, -2ULL); |
1609 | 0 | OffsetToTop = CGF.Builder.CreateAlignedLoad( |
1610 | 0 | PtrDiffLTy, OffsetToTop, CGF.getPointerAlign(), "offset.to.top"); |
1611 | 0 | } |
1612 | | // Finally, add the offset to the pointer. |
1613 | 0 | return CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, ThisAddr.getPointer(), |
1614 | 0 | OffsetToTop); |
1615 | 0 | } |
1616 | | |
1617 | 0 | bool ItaniumCXXABI::EmitBadCastCall(CodeGenFunction &CGF) { |
1618 | 0 | llvm::FunctionCallee Fn = getBadCastFn(CGF); |
1619 | 0 | llvm::CallBase *Call = CGF.EmitRuntimeCallOrInvoke(Fn); |
1620 | 0 | Call->setDoesNotReturn(); |
1621 | 0 | CGF.Builder.CreateUnreachable(); |
1622 | 0 | return true; |
1623 | 0 | } |
1624 | | |
1625 | | llvm::Value * |
1626 | | ItaniumCXXABI::GetVirtualBaseClassOffset(CodeGenFunction &CGF, |
1627 | | Address This, |
1628 | | const CXXRecordDecl *ClassDecl, |
1629 | 0 | const CXXRecordDecl *BaseClassDecl) { |
1630 | 0 | llvm::Value *VTablePtr = CGF.GetVTablePtr(This, CGM.Int8PtrTy, ClassDecl); |
1631 | 0 | CharUnits VBaseOffsetOffset = |
1632 | 0 | CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(ClassDecl, |
1633 | 0 | BaseClassDecl); |
1634 | 0 | llvm::Value *VBaseOffsetPtr = |
1635 | 0 | CGF.Builder.CreateConstGEP1_64( |
1636 | 0 | CGF.Int8Ty, VTablePtr, VBaseOffsetOffset.getQuantity(), |
1637 | 0 | "vbase.offset.ptr"); |
1638 | |
|
1639 | 0 | llvm::Value *VBaseOffset; |
1640 | 0 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
1641 | 0 | VBaseOffset = CGF.Builder.CreateAlignedLoad( |
1642 | 0 | CGF.Int32Ty, VBaseOffsetPtr, CharUnits::fromQuantity(4), |
1643 | 0 | "vbase.offset"); |
1644 | 0 | } else { |
1645 | 0 | VBaseOffset = CGF.Builder.CreateAlignedLoad( |
1646 | 0 | CGM.PtrDiffTy, VBaseOffsetPtr, CGF.getPointerAlign(), "vbase.offset"); |
1647 | 0 | } |
1648 | 0 | return VBaseOffset; |
1649 | 0 | } |
1650 | | |
1651 | 0 | void ItaniumCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) { |
1652 | | // Just make sure we're in sync with TargetCXXABI. |
1653 | 0 | assert(CGM.getTarget().getCXXABI().hasConstructorVariants()); |
1654 | | |
1655 | | // The constructor used for constructing this as a base class; |
1656 | | // ignores virtual bases. |
1657 | 0 | CGM.EmitGlobal(GlobalDecl(D, Ctor_Base)); |
1658 | | |
1659 | | // The constructor used for constructing this as a complete class; |
1660 | | // constructs the virtual bases, then calls the base constructor. |
1661 | 0 | if (!D->getParent()->isAbstract()) { |
1662 | | // We don't need to emit the complete ctor if the class is abstract. |
1663 | 0 | CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete)); |
1664 | 0 | } |
1665 | 0 | } |
1666 | | |
1667 | | CGCXXABI::AddedStructorArgCounts |
1668 | | ItaniumCXXABI::buildStructorSignature(GlobalDecl GD, |
1669 | 0 | SmallVectorImpl<CanQualType> &ArgTys) { |
1670 | 0 | ASTContext &Context = getContext(); |
1671 | | |
1672 | | // All parameters are already in place except VTT, which goes after 'this'. |
1673 | | // These are Clang types, so we don't need to worry about sret yet. |
1674 | | |
1675 | | // Check if we need to add a VTT parameter (which has type global void **). |
1676 | 0 | if ((isa<CXXConstructorDecl>(GD.getDecl()) ? GD.getCtorType() == Ctor_Base |
1677 | 0 | : GD.getDtorType() == Dtor_Base) && |
1678 | 0 | cast<CXXMethodDecl>(GD.getDecl())->getParent()->getNumVBases() != 0) { |
1679 | 0 | LangAS AS = CGM.GetGlobalVarAddressSpace(nullptr); |
1680 | 0 | QualType Q = Context.getAddrSpaceQualType(Context.VoidPtrTy, AS); |
1681 | 0 | ArgTys.insert(ArgTys.begin() + 1, |
1682 | 0 | Context.getPointerType(CanQualType::CreateUnsafe(Q))); |
1683 | 0 | return AddedStructorArgCounts::prefix(1); |
1684 | 0 | } |
1685 | 0 | return AddedStructorArgCounts{}; |
1686 | 0 | } |
1687 | | |
1688 | 0 | void ItaniumCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) { |
1689 | | // The destructor used for destructing this as a base class; ignores |
1690 | | // virtual bases. |
1691 | 0 | CGM.EmitGlobal(GlobalDecl(D, Dtor_Base)); |
1692 | | |
1693 | | // The destructor used for destructing this as a most-derived class; |
1694 | | // call the base destructor and then destructs any virtual bases. |
1695 | 0 | CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete)); |
1696 | | |
1697 | | // The destructor in a virtual table is always a 'deleting' |
1698 | | // destructor, which calls the complete destructor and then uses the |
1699 | | // appropriate operator delete. |
1700 | 0 | if (D->isVirtual()) |
1701 | 0 | CGM.EmitGlobal(GlobalDecl(D, Dtor_Deleting)); |
1702 | 0 | } |
1703 | | |
1704 | | void ItaniumCXXABI::addImplicitStructorParams(CodeGenFunction &CGF, |
1705 | | QualType &ResTy, |
1706 | 0 | FunctionArgList &Params) { |
1707 | 0 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl()); |
1708 | 0 | assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)); |
1709 | | |
1710 | | // Check if we need a VTT parameter as well. |
1711 | 0 | if (NeedsVTTParameter(CGF.CurGD)) { |
1712 | 0 | ASTContext &Context = getContext(); |
1713 | | |
1714 | | // FIXME: avoid the fake decl |
1715 | 0 | LangAS AS = CGM.GetGlobalVarAddressSpace(nullptr); |
1716 | 0 | QualType Q = Context.getAddrSpaceQualType(Context.VoidPtrTy, AS); |
1717 | 0 | QualType T = Context.getPointerType(Q); |
1718 | 0 | auto *VTTDecl = ImplicitParamDecl::Create( |
1719 | 0 | Context, /*DC=*/nullptr, MD->getLocation(), &Context.Idents.get("vtt"), |
1720 | 0 | T, ImplicitParamKind::CXXVTT); |
1721 | 0 | Params.insert(Params.begin() + 1, VTTDecl); |
1722 | 0 | getStructorImplicitParamDecl(CGF) = VTTDecl; |
1723 | 0 | } |
1724 | 0 | } |
1725 | | |
1726 | 0 | void ItaniumCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) { |
1727 | | // Naked functions have no prolog. |
1728 | 0 | if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>()) |
1729 | 0 | return; |
1730 | | |
1731 | | /// Initialize the 'this' slot. In the Itanium C++ ABI, no prologue |
1732 | | /// adjustments are required, because they are all handled by thunks. |
1733 | 0 | setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF)); |
1734 | | |
1735 | | /// Initialize the 'vtt' slot if needed. |
1736 | 0 | if (getStructorImplicitParamDecl(CGF)) { |
1737 | 0 | getStructorImplicitParamValue(CGF) = CGF.Builder.CreateLoad( |
1738 | 0 | CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)), "vtt"); |
1739 | 0 | } |
1740 | | |
1741 | | /// If this is a function that the ABI specifies returns 'this', initialize |
1742 | | /// the return slot to 'this' at the start of the function. |
1743 | | /// |
1744 | | /// Unlike the setting of return types, this is done within the ABI |
1745 | | /// implementation instead of by clients of CGCXXABI because: |
1746 | | /// 1) getThisValue is currently protected |
1747 | | /// 2) in theory, an ABI could implement 'this' returns some other way; |
1748 | | /// HasThisReturn only specifies a contract, not the implementation |
1749 | 0 | if (HasThisReturn(CGF.CurGD)) |
1750 | 0 | CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue); |
1751 | 0 | } |
1752 | | |
1753 | | CGCXXABI::AddedStructorArgs ItaniumCXXABI::getImplicitConstructorArgs( |
1754 | | CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type, |
1755 | 0 | bool ForVirtualBase, bool Delegating) { |
1756 | 0 | if (!NeedsVTTParameter(GlobalDecl(D, Type))) |
1757 | 0 | return AddedStructorArgs{}; |
1758 | | |
1759 | | // Insert the implicit 'vtt' argument as the second argument. Make sure to |
1760 | | // correctly reflect its address space, which can differ from generic on |
1761 | | // some targets. |
1762 | 0 | llvm::Value *VTT = |
1763 | 0 | CGF.GetVTTParameter(GlobalDecl(D, Type), ForVirtualBase, Delegating); |
1764 | 0 | LangAS AS = CGM.GetGlobalVarAddressSpace(nullptr); |
1765 | 0 | QualType Q = getContext().getAddrSpaceQualType(getContext().VoidPtrTy, AS); |
1766 | 0 | QualType VTTTy = getContext().getPointerType(Q); |
1767 | 0 | return AddedStructorArgs::prefix({{VTT, VTTTy}}); |
1768 | 0 | } |
1769 | | |
1770 | | llvm::Value *ItaniumCXXABI::getCXXDestructorImplicitParam( |
1771 | | CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type, |
1772 | 0 | bool ForVirtualBase, bool Delegating) { |
1773 | 0 | GlobalDecl GD(DD, Type); |
1774 | 0 | return CGF.GetVTTParameter(GD, ForVirtualBase, Delegating); |
1775 | 0 | } |
1776 | | |
1777 | | void ItaniumCXXABI::EmitDestructorCall(CodeGenFunction &CGF, |
1778 | | const CXXDestructorDecl *DD, |
1779 | | CXXDtorType Type, bool ForVirtualBase, |
1780 | | bool Delegating, Address This, |
1781 | 0 | QualType ThisTy) { |
1782 | 0 | GlobalDecl GD(DD, Type); |
1783 | 0 | llvm::Value *VTT = |
1784 | 0 | getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase, Delegating); |
1785 | 0 | QualType VTTTy = getContext().getPointerType(getContext().VoidPtrTy); |
1786 | |
|
1787 | 0 | CGCallee Callee; |
1788 | 0 | if (getContext().getLangOpts().AppleKext && |
1789 | 0 | Type != Dtor_Base && DD->isVirtual()) |
1790 | 0 | Callee = CGF.BuildAppleKextVirtualDestructorCall(DD, Type, DD->getParent()); |
1791 | 0 | else |
1792 | 0 | Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD); |
1793 | |
|
1794 | 0 | CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, VTT, VTTTy, |
1795 | 0 | nullptr); |
1796 | 0 | } |
1797 | | |
1798 | | void ItaniumCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT, |
1799 | 0 | const CXXRecordDecl *RD) { |
1800 | 0 | llvm::GlobalVariable *VTable = getAddrOfVTable(RD, CharUnits()); |
1801 | 0 | if (VTable->hasInitializer()) |
1802 | 0 | return; |
1803 | | |
1804 | 0 | ItaniumVTableContext &VTContext = CGM.getItaniumVTableContext(); |
1805 | 0 | const VTableLayout &VTLayout = VTContext.getVTableLayout(RD); |
1806 | 0 | llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD); |
1807 | 0 | llvm::Constant *RTTI = |
1808 | 0 | CGM.GetAddrOfRTTIDescriptor(CGM.getContext().getTagDeclType(RD)); |
1809 | | |
1810 | | // Create and set the initializer. |
1811 | 0 | ConstantInitBuilder builder(CGM); |
1812 | 0 | auto components = builder.beginStruct(); |
1813 | 0 | CGVT.createVTableInitializer(components, VTLayout, RTTI, |
1814 | 0 | llvm::GlobalValue::isLocalLinkage(Linkage)); |
1815 | 0 | components.finishAndSetAsInitializer(VTable); |
1816 | | |
1817 | | // Set the correct linkage. |
1818 | 0 | VTable->setLinkage(Linkage); |
1819 | |
|
1820 | 0 | if (CGM.supportsCOMDAT() && VTable->isWeakForLinker()) |
1821 | 0 | VTable->setComdat(CGM.getModule().getOrInsertComdat(VTable->getName())); |
1822 | | |
1823 | | // Set the right visibility. |
1824 | 0 | CGM.setGVProperties(VTable, RD); |
1825 | | |
1826 | | // If this is the magic class __cxxabiv1::__fundamental_type_info, |
1827 | | // we will emit the typeinfo for the fundamental types. This is the |
1828 | | // same behaviour as GCC. |
1829 | 0 | const DeclContext *DC = RD->getDeclContext(); |
1830 | 0 | if (RD->getIdentifier() && |
1831 | 0 | RD->getIdentifier()->isStr("__fundamental_type_info") && |
1832 | 0 | isa<NamespaceDecl>(DC) && cast<NamespaceDecl>(DC)->getIdentifier() && |
1833 | 0 | cast<NamespaceDecl>(DC)->getIdentifier()->isStr("__cxxabiv1") && |
1834 | 0 | DC->getParent()->isTranslationUnit()) |
1835 | 0 | EmitFundamentalRTTIDescriptors(RD); |
1836 | | |
1837 | | // Always emit type metadata on non-available_externally definitions, and on |
1838 | | // available_externally definitions if we are performing whole program |
1839 | | // devirtualization. For WPD we need the type metadata on all vtable |
1840 | | // definitions to ensure we associate derived classes with base classes |
1841 | | // defined in headers but with a strong definition only in a shared library. |
1842 | 0 | if (!VTable->isDeclarationForLinker() || |
1843 | 0 | CGM.getCodeGenOpts().WholeProgramVTables) { |
1844 | 0 | CGM.EmitVTableTypeMetadata(RD, VTable, VTLayout); |
1845 | | // For available_externally definitions, add the vtable to |
1846 | | // @llvm.compiler.used so that it isn't deleted before whole program |
1847 | | // analysis. |
1848 | 0 | if (VTable->isDeclarationForLinker()) { |
1849 | 0 | assert(CGM.getCodeGenOpts().WholeProgramVTables); |
1850 | 0 | CGM.addCompilerUsedGlobal(VTable); |
1851 | 0 | } |
1852 | 0 | } |
1853 | | |
1854 | 0 | if (VTContext.isRelativeLayout()) { |
1855 | 0 | CGVT.RemoveHwasanMetadata(VTable); |
1856 | 0 | if (!VTable->isDSOLocal()) |
1857 | 0 | CGVT.GenerateRelativeVTableAlias(VTable, VTable->getName()); |
1858 | 0 | } |
1859 | 0 | } |
1860 | | |
1861 | | bool ItaniumCXXABI::isVirtualOffsetNeededForVTableField( |
1862 | 0 | CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) { |
1863 | 0 | if (Vptr.NearestVBase == nullptr) |
1864 | 0 | return false; |
1865 | 0 | return NeedsVTTParameter(CGF.CurGD); |
1866 | 0 | } |
1867 | | |
1868 | | llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructor( |
1869 | | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, |
1870 | 0 | const CXXRecordDecl *NearestVBase) { |
1871 | |
|
1872 | 0 | if ((Base.getBase()->getNumVBases() || NearestVBase != nullptr) && |
1873 | 0 | NeedsVTTParameter(CGF.CurGD)) { |
1874 | 0 | return getVTableAddressPointInStructorWithVTT(CGF, VTableClass, Base, |
1875 | 0 | NearestVBase); |
1876 | 0 | } |
1877 | 0 | return getVTableAddressPoint(Base, VTableClass); |
1878 | 0 | } |
1879 | | |
1880 | | llvm::Constant * |
1881 | | ItaniumCXXABI::getVTableAddressPoint(BaseSubobject Base, |
1882 | 0 | const CXXRecordDecl *VTableClass) { |
1883 | 0 | llvm::GlobalValue *VTable = getAddrOfVTable(VTableClass, CharUnits()); |
1884 | | |
1885 | | // Find the appropriate vtable within the vtable group, and the address point |
1886 | | // within that vtable. |
1887 | 0 | VTableLayout::AddressPointLocation AddressPoint = |
1888 | 0 | CGM.getItaniumVTableContext() |
1889 | 0 | .getVTableLayout(VTableClass) |
1890 | 0 | .getAddressPoint(Base); |
1891 | 0 | llvm::Value *Indices[] = { |
1892 | 0 | llvm::ConstantInt::get(CGM.Int32Ty, 0), |
1893 | 0 | llvm::ConstantInt::get(CGM.Int32Ty, AddressPoint.VTableIndex), |
1894 | 0 | llvm::ConstantInt::get(CGM.Int32Ty, AddressPoint.AddressPointIndex), |
1895 | 0 | }; |
1896 | |
|
1897 | 0 | return llvm::ConstantExpr::getGetElementPtr(VTable->getValueType(), VTable, |
1898 | 0 | Indices, /*InBounds=*/true, |
1899 | 0 | /*InRangeIndex=*/1); |
1900 | 0 | } |
1901 | | |
1902 | | // Check whether all the non-inline virtual methods for the class have the |
1903 | | // specified attribute. |
1904 | | template <typename T> |
1905 | 0 | static bool CXXRecordAllNonInlineVirtualsHaveAttr(const CXXRecordDecl *RD) { |
1906 | 0 | bool FoundNonInlineVirtualMethodWithAttr = false; |
1907 | 0 | for (const auto *D : RD->noload_decls()) { |
1908 | 0 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
1909 | 0 | if (!FD->isVirtualAsWritten() || FD->isInlineSpecified() || |
1910 | 0 | FD->doesThisDeclarationHaveABody()) |
1911 | 0 | continue; |
1912 | 0 | if (!D->hasAttr<T>()) |
1913 | 0 | return false; |
1914 | 0 | FoundNonInlineVirtualMethodWithAttr = true; |
1915 | 0 | } |
1916 | 0 | } |
1917 | | |
1918 | | // We didn't find any non-inline virtual methods missing the attribute. We |
1919 | | // will return true when we found at least one non-inline virtual with the |
1920 | | // attribute. (This lets our caller know that the attribute needs to be |
1921 | | // propagated up to the vtable.) |
1922 | 0 | return FoundNonInlineVirtualMethodWithAttr; |
1923 | 0 | } Unexecuted instantiation: ItaniumCXXABI.cpp:bool CXXRecordAllNonInlineVirtualsHaveAttr<clang::DLLImportAttr>(clang::CXXRecordDecl const*) Unexecuted instantiation: ItaniumCXXABI.cpp:bool CXXRecordAllNonInlineVirtualsHaveAttr<clang::DLLExportAttr>(clang::CXXRecordDecl const*) |
1924 | | |
1925 | | llvm::Value *ItaniumCXXABI::getVTableAddressPointInStructorWithVTT( |
1926 | | CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base, |
1927 | 0 | const CXXRecordDecl *NearestVBase) { |
1928 | 0 | assert((Base.getBase()->getNumVBases() || NearestVBase != nullptr) && |
1929 | 0 | NeedsVTTParameter(CGF.CurGD) && "This class doesn't have VTT"); |
1930 | | |
1931 | | // Get the secondary vpointer index. |
1932 | 0 | uint64_t VirtualPointerIndex = |
1933 | 0 | CGM.getVTables().getSecondaryVirtualPointerIndex(VTableClass, Base); |
1934 | | |
1935 | | /// Load the VTT. |
1936 | 0 | llvm::Value *VTT = CGF.LoadCXXVTT(); |
1937 | 0 | if (VirtualPointerIndex) |
1938 | 0 | VTT = CGF.Builder.CreateConstInBoundsGEP1_64(CGF.GlobalsVoidPtrTy, VTT, |
1939 | 0 | VirtualPointerIndex); |
1940 | | |
1941 | | // And load the address point from the VTT. |
1942 | 0 | return CGF.Builder.CreateAlignedLoad(CGF.GlobalsVoidPtrTy, VTT, |
1943 | 0 | CGF.getPointerAlign()); |
1944 | 0 | } |
1945 | | |
1946 | | llvm::Constant *ItaniumCXXABI::getVTableAddressPointForConstExpr( |
1947 | 0 | BaseSubobject Base, const CXXRecordDecl *VTableClass) { |
1948 | 0 | return getVTableAddressPoint(Base, VTableClass); |
1949 | 0 | } |
1950 | | |
1951 | | llvm::GlobalVariable *ItaniumCXXABI::getAddrOfVTable(const CXXRecordDecl *RD, |
1952 | 0 | CharUnits VPtrOffset) { |
1953 | 0 | assert(VPtrOffset.isZero() && "Itanium ABI only supports zero vptr offsets"); |
1954 | | |
1955 | 0 | llvm::GlobalVariable *&VTable = VTables[RD]; |
1956 | 0 | if (VTable) |
1957 | 0 | return VTable; |
1958 | | |
1959 | | // Queue up this vtable for possible deferred emission. |
1960 | 0 | CGM.addDeferredVTable(RD); |
1961 | |
|
1962 | 0 | SmallString<256> Name; |
1963 | 0 | llvm::raw_svector_ostream Out(Name); |
1964 | 0 | getMangleContext().mangleCXXVTable(RD, Out); |
1965 | |
|
1966 | 0 | const VTableLayout &VTLayout = |
1967 | 0 | CGM.getItaniumVTableContext().getVTableLayout(RD); |
1968 | 0 | llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout); |
1969 | | |
1970 | | // Use pointer to global alignment for the vtable. Otherwise we would align |
1971 | | // them based on the size of the initializer which doesn't make sense as only |
1972 | | // single values are read. |
1973 | 0 | LangAS AS = CGM.GetGlobalVarAddressSpace(nullptr); |
1974 | 0 | unsigned PAlign = CGM.getItaniumVTableContext().isRelativeLayout() |
1975 | 0 | ? 32 |
1976 | 0 | : CGM.getTarget().getPointerAlign(AS); |
1977 | |
|
1978 | 0 | VTable = CGM.CreateOrReplaceCXXRuntimeVariable( |
1979 | 0 | Name, VTableType, llvm::GlobalValue::ExternalLinkage, |
1980 | 0 | getContext().toCharUnitsFromBits(PAlign).getAsAlign()); |
1981 | 0 | VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
1982 | | |
1983 | | // In MS C++ if you have a class with virtual functions in which you are using |
1984 | | // selective member import/export, then all virtual functions must be exported |
1985 | | // unless they are inline, otherwise a link error will result. To match this |
1986 | | // behavior, for such classes, we dllimport the vtable if it is defined |
1987 | | // externally and all the non-inline virtual methods are marked dllimport, and |
1988 | | // we dllexport the vtable if it is defined in this TU and all the non-inline |
1989 | | // virtual methods are marked dllexport. |
1990 | 0 | if (CGM.getTarget().hasPS4DLLImportExport()) { |
1991 | 0 | if ((!RD->hasAttr<DLLImportAttr>()) && (!RD->hasAttr<DLLExportAttr>())) { |
1992 | 0 | if (CGM.getVTables().isVTableExternal(RD)) { |
1993 | 0 | if (CXXRecordAllNonInlineVirtualsHaveAttr<DLLImportAttr>(RD)) |
1994 | 0 | VTable->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); |
1995 | 0 | } else { |
1996 | 0 | if (CXXRecordAllNonInlineVirtualsHaveAttr<DLLExportAttr>(RD)) |
1997 | 0 | VTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); |
1998 | 0 | } |
1999 | 0 | } |
2000 | 0 | } |
2001 | 0 | CGM.setGVProperties(VTable, RD); |
2002 | |
|
2003 | 0 | return VTable; |
2004 | 0 | } |
2005 | | |
2006 | | CGCallee ItaniumCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF, |
2007 | | GlobalDecl GD, |
2008 | | Address This, |
2009 | | llvm::Type *Ty, |
2010 | 0 | SourceLocation Loc) { |
2011 | 0 | llvm::Type *PtrTy = CGM.GlobalsInt8PtrTy; |
2012 | 0 | auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl()); |
2013 | 0 | llvm::Value *VTable = CGF.GetVTablePtr(This, PtrTy, MethodDecl->getParent()); |
2014 | |
|
2015 | 0 | uint64_t VTableIndex = CGM.getItaniumVTableContext().getMethodVTableIndex(GD); |
2016 | 0 | llvm::Value *VFunc; |
2017 | 0 | if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) { |
2018 | 0 | VFunc = CGF.EmitVTableTypeCheckedLoad( |
2019 | 0 | MethodDecl->getParent(), VTable, PtrTy, |
2020 | 0 | VTableIndex * |
2021 | 0 | CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default) / |
2022 | 0 | 8); |
2023 | 0 | } else { |
2024 | 0 | CGF.EmitTypeMetadataCodeForVCall(MethodDecl->getParent(), VTable, Loc); |
2025 | |
|
2026 | 0 | llvm::Value *VFuncLoad; |
2027 | 0 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
2028 | 0 | VFuncLoad = CGF.Builder.CreateCall( |
2029 | 0 | CGM.getIntrinsic(llvm::Intrinsic::load_relative, {CGM.Int32Ty}), |
2030 | 0 | {VTable, llvm::ConstantInt::get(CGM.Int32Ty, 4 * VTableIndex)}); |
2031 | 0 | } else { |
2032 | 0 | llvm::Value *VTableSlotPtr = CGF.Builder.CreateConstInBoundsGEP1_64( |
2033 | 0 | PtrTy, VTable, VTableIndex, "vfn"); |
2034 | 0 | VFuncLoad = CGF.Builder.CreateAlignedLoad(PtrTy, VTableSlotPtr, |
2035 | 0 | CGF.getPointerAlign()); |
2036 | 0 | } |
2037 | | |
2038 | | // Add !invariant.load md to virtual function load to indicate that |
2039 | | // function didn't change inside vtable. |
2040 | | // It's safe to add it without -fstrict-vtable-pointers, but it would not |
2041 | | // help in devirtualization because it will only matter if we will have 2 |
2042 | | // the same virtual function loads from the same vtable load, which won't |
2043 | | // happen without enabled devirtualization with -fstrict-vtable-pointers. |
2044 | 0 | if (CGM.getCodeGenOpts().OptimizationLevel > 0 && |
2045 | 0 | CGM.getCodeGenOpts().StrictVTablePointers) { |
2046 | 0 | if (auto *VFuncLoadInstr = dyn_cast<llvm::Instruction>(VFuncLoad)) { |
2047 | 0 | VFuncLoadInstr->setMetadata( |
2048 | 0 | llvm::LLVMContext::MD_invariant_load, |
2049 | 0 | llvm::MDNode::get(CGM.getLLVMContext(), |
2050 | 0 | llvm::ArrayRef<llvm::Metadata *>())); |
2051 | 0 | } |
2052 | 0 | } |
2053 | 0 | VFunc = VFuncLoad; |
2054 | 0 | } |
2055 | |
|
2056 | 0 | CGCallee Callee(GD, VFunc); |
2057 | 0 | return Callee; |
2058 | 0 | } |
2059 | | |
2060 | | llvm::Value *ItaniumCXXABI::EmitVirtualDestructorCall( |
2061 | | CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType, |
2062 | 0 | Address This, DeleteOrMemberCallExpr E) { |
2063 | 0 | auto *CE = E.dyn_cast<const CXXMemberCallExpr *>(); |
2064 | 0 | auto *D = E.dyn_cast<const CXXDeleteExpr *>(); |
2065 | 0 | assert((CE != nullptr) ^ (D != nullptr)); |
2066 | 0 | assert(CE == nullptr || CE->arg_begin() == CE->arg_end()); |
2067 | 0 | assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete); |
2068 | | |
2069 | 0 | GlobalDecl GD(Dtor, DtorType); |
2070 | 0 | const CGFunctionInfo *FInfo = |
2071 | 0 | &CGM.getTypes().arrangeCXXStructorDeclaration(GD); |
2072 | 0 | llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo); |
2073 | 0 | CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty); |
2074 | |
|
2075 | 0 | QualType ThisTy; |
2076 | 0 | if (CE) { |
2077 | 0 | ThisTy = CE->getObjectType(); |
2078 | 0 | } else { |
2079 | 0 | ThisTy = D->getDestroyedType(); |
2080 | 0 | } |
2081 | |
|
2082 | 0 | CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy, nullptr, |
2083 | 0 | QualType(), nullptr); |
2084 | 0 | return nullptr; |
2085 | 0 | } |
2086 | | |
2087 | 0 | void ItaniumCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) { |
2088 | 0 | CodeGenVTables &VTables = CGM.getVTables(); |
2089 | 0 | llvm::GlobalVariable *VTT = VTables.GetAddrOfVTT(RD); |
2090 | 0 | VTables.EmitVTTDefinition(VTT, CGM.getVTableLinkage(RD), RD); |
2091 | 0 | } |
2092 | | |
2093 | | bool ItaniumCXXABI::canSpeculativelyEmitVTableAsBaseClass( |
2094 | 0 | const CXXRecordDecl *RD) const { |
2095 | | // We don't emit available_externally vtables if we are in -fapple-kext mode |
2096 | | // because kext mode does not permit devirtualization. |
2097 | 0 | if (CGM.getLangOpts().AppleKext) |
2098 | 0 | return false; |
2099 | | |
2100 | | // If the vtable is hidden then it is not safe to emit an available_externally |
2101 | | // copy of vtable. |
2102 | 0 | if (isVTableHidden(RD)) |
2103 | 0 | return false; |
2104 | | |
2105 | 0 | if (CGM.getCodeGenOpts().ForceEmitVTables) |
2106 | 0 | return true; |
2107 | | |
2108 | | // If we don't have any not emitted inline virtual function then we are safe |
2109 | | // to emit an available_externally copy of vtable. |
2110 | | // FIXME we can still emit a copy of the vtable if we |
2111 | | // can emit definition of the inline functions. |
2112 | 0 | if (hasAnyUnusedVirtualInlineFunction(RD)) |
2113 | 0 | return false; |
2114 | | |
2115 | | // For a class with virtual bases, we must also be able to speculatively |
2116 | | // emit the VTT, because CodeGen doesn't have separate notions of "can emit |
2117 | | // the vtable" and "can emit the VTT". For a base subobject, this means we |
2118 | | // need to be able to emit non-virtual base vtables. |
2119 | 0 | if (RD->getNumVBases()) { |
2120 | 0 | for (const auto &B : RD->bases()) { |
2121 | 0 | auto *BRD = B.getType()->getAsCXXRecordDecl(); |
2122 | 0 | assert(BRD && "no class for base specifier"); |
2123 | 0 | if (B.isVirtual() || !BRD->isDynamicClass()) |
2124 | 0 | continue; |
2125 | 0 | if (!canSpeculativelyEmitVTableAsBaseClass(BRD)) |
2126 | 0 | return false; |
2127 | 0 | } |
2128 | 0 | } |
2129 | | |
2130 | 0 | return true; |
2131 | 0 | } |
2132 | | |
2133 | 0 | bool ItaniumCXXABI::canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const { |
2134 | 0 | if (!canSpeculativelyEmitVTableAsBaseClass(RD)) |
2135 | 0 | return false; |
2136 | | |
2137 | | // For a complete-object vtable (or more specifically, for the VTT), we need |
2138 | | // to be able to speculatively emit the vtables of all dynamic virtual bases. |
2139 | 0 | for (const auto &B : RD->vbases()) { |
2140 | 0 | auto *BRD = B.getType()->getAsCXXRecordDecl(); |
2141 | 0 | assert(BRD && "no class for base specifier"); |
2142 | 0 | if (!BRD->isDynamicClass()) |
2143 | 0 | continue; |
2144 | 0 | if (!canSpeculativelyEmitVTableAsBaseClass(BRD)) |
2145 | 0 | return false; |
2146 | 0 | } |
2147 | | |
2148 | 0 | return true; |
2149 | 0 | } |
2150 | | static llvm::Value *performTypeAdjustment(CodeGenFunction &CGF, |
2151 | | Address InitialPtr, |
2152 | | int64_t NonVirtualAdjustment, |
2153 | | int64_t VirtualAdjustment, |
2154 | 0 | bool IsReturnAdjustment) { |
2155 | 0 | if (!NonVirtualAdjustment && !VirtualAdjustment) |
2156 | 0 | return InitialPtr.getPointer(); |
2157 | | |
2158 | 0 | Address V = InitialPtr.withElementType(CGF.Int8Ty); |
2159 | | |
2160 | | // In a base-to-derived cast, the non-virtual adjustment is applied first. |
2161 | 0 | if (NonVirtualAdjustment && !IsReturnAdjustment) { |
2162 | 0 | V = CGF.Builder.CreateConstInBoundsByteGEP(V, |
2163 | 0 | CharUnits::fromQuantity(NonVirtualAdjustment)); |
2164 | 0 | } |
2165 | | |
2166 | | // Perform the virtual adjustment if we have one. |
2167 | 0 | llvm::Value *ResultPtr; |
2168 | 0 | if (VirtualAdjustment) { |
2169 | 0 | Address VTablePtrPtr = V.withElementType(CGF.Int8PtrTy); |
2170 | 0 | llvm::Value *VTablePtr = CGF.Builder.CreateLoad(VTablePtrPtr); |
2171 | |
|
2172 | 0 | llvm::Value *Offset; |
2173 | 0 | llvm::Value *OffsetPtr = CGF.Builder.CreateConstInBoundsGEP1_64( |
2174 | 0 | CGF.Int8Ty, VTablePtr, VirtualAdjustment); |
2175 | 0 | if (CGF.CGM.getItaniumVTableContext().isRelativeLayout()) { |
2176 | | // Load the adjustment offset from the vtable as a 32-bit int. |
2177 | 0 | Offset = |
2178 | 0 | CGF.Builder.CreateAlignedLoad(CGF.Int32Ty, OffsetPtr, |
2179 | 0 | CharUnits::fromQuantity(4)); |
2180 | 0 | } else { |
2181 | 0 | llvm::Type *PtrDiffTy = |
2182 | 0 | CGF.ConvertType(CGF.getContext().getPointerDiffType()); |
2183 | | |
2184 | | // Load the adjustment offset from the vtable. |
2185 | 0 | Offset = CGF.Builder.CreateAlignedLoad(PtrDiffTy, OffsetPtr, |
2186 | 0 | CGF.getPointerAlign()); |
2187 | 0 | } |
2188 | | // Adjust our pointer. |
2189 | 0 | ResultPtr = CGF.Builder.CreateInBoundsGEP( |
2190 | 0 | V.getElementType(), V.getPointer(), Offset); |
2191 | 0 | } else { |
2192 | 0 | ResultPtr = V.getPointer(); |
2193 | 0 | } |
2194 | | |
2195 | | // In a derived-to-base conversion, the non-virtual adjustment is |
2196 | | // applied second. |
2197 | 0 | if (NonVirtualAdjustment && IsReturnAdjustment) { |
2198 | 0 | ResultPtr = CGF.Builder.CreateConstInBoundsGEP1_64(CGF.Int8Ty, ResultPtr, |
2199 | 0 | NonVirtualAdjustment); |
2200 | 0 | } |
2201 | |
|
2202 | 0 | return ResultPtr; |
2203 | 0 | } |
2204 | | |
2205 | | llvm::Value *ItaniumCXXABI::performThisAdjustment(CodeGenFunction &CGF, |
2206 | | Address This, |
2207 | 0 | const ThisAdjustment &TA) { |
2208 | 0 | return performTypeAdjustment(CGF, This, TA.NonVirtual, |
2209 | 0 | TA.Virtual.Itanium.VCallOffsetOffset, |
2210 | 0 | /*IsReturnAdjustment=*/false); |
2211 | 0 | } |
2212 | | |
2213 | | llvm::Value * |
2214 | | ItaniumCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret, |
2215 | 0 | const ReturnAdjustment &RA) { |
2216 | 0 | return performTypeAdjustment(CGF, Ret, RA.NonVirtual, |
2217 | 0 | RA.Virtual.Itanium.VBaseOffsetOffset, |
2218 | 0 | /*IsReturnAdjustment=*/true); |
2219 | 0 | } |
2220 | | |
2221 | | void ARMCXXABI::EmitReturnFromThunk(CodeGenFunction &CGF, |
2222 | 0 | RValue RV, QualType ResultType) { |
2223 | 0 | if (!isa<CXXDestructorDecl>(CGF.CurGD.getDecl())) |
2224 | 0 | return ItaniumCXXABI::EmitReturnFromThunk(CGF, RV, ResultType); |
2225 | | |
2226 | | // Destructor thunks in the ARM ABI have indeterminate results. |
2227 | 0 | llvm::Type *T = CGF.ReturnValue.getElementType(); |
2228 | 0 | RValue Undef = RValue::get(llvm::UndefValue::get(T)); |
2229 | 0 | return ItaniumCXXABI::EmitReturnFromThunk(CGF, Undef, ResultType); |
2230 | 0 | } |
2231 | | |
2232 | | /************************** Array allocation cookies **************************/ |
2233 | | |
2234 | 0 | CharUnits ItaniumCXXABI::getArrayCookieSizeImpl(QualType elementType) { |
2235 | | // The array cookie is a size_t; pad that up to the element alignment. |
2236 | | // The cookie is actually right-justified in that space. |
2237 | 0 | return std::max(CharUnits::fromQuantity(CGM.SizeSizeInBytes), |
2238 | 0 | CGM.getContext().getPreferredTypeAlignInChars(elementType)); |
2239 | 0 | } |
2240 | | |
2241 | | Address ItaniumCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, |
2242 | | Address NewPtr, |
2243 | | llvm::Value *NumElements, |
2244 | | const CXXNewExpr *expr, |
2245 | 0 | QualType ElementType) { |
2246 | 0 | assert(requiresArrayCookie(expr)); |
2247 | | |
2248 | 0 | unsigned AS = NewPtr.getAddressSpace(); |
2249 | |
|
2250 | 0 | ASTContext &Ctx = getContext(); |
2251 | 0 | CharUnits SizeSize = CGF.getSizeSize(); |
2252 | | |
2253 | | // The size of the cookie. |
2254 | 0 | CharUnits CookieSize = |
2255 | 0 | std::max(SizeSize, Ctx.getPreferredTypeAlignInChars(ElementType)); |
2256 | 0 | assert(CookieSize == getArrayCookieSizeImpl(ElementType)); |
2257 | | |
2258 | | // Compute an offset to the cookie. |
2259 | 0 | Address CookiePtr = NewPtr; |
2260 | 0 | CharUnits CookieOffset = CookieSize - SizeSize; |
2261 | 0 | if (!CookieOffset.isZero()) |
2262 | 0 | CookiePtr = CGF.Builder.CreateConstInBoundsByteGEP(CookiePtr, CookieOffset); |
2263 | | |
2264 | | // Write the number of elements into the appropriate slot. |
2265 | 0 | Address NumElementsPtr = CookiePtr.withElementType(CGF.SizeTy); |
2266 | 0 | llvm::Instruction *SI = CGF.Builder.CreateStore(NumElements, NumElementsPtr); |
2267 | | |
2268 | | // Handle the array cookie specially in ASan. |
2269 | 0 | if (CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) && AS == 0 && |
2270 | 0 | (expr->getOperatorNew()->isReplaceableGlobalAllocationFunction() || |
2271 | 0 | CGM.getCodeGenOpts().SanitizeAddressPoisonCustomArrayCookie)) { |
2272 | | // The store to the CookiePtr does not need to be instrumented. |
2273 | 0 | SI->setNoSanitizeMetadata(); |
2274 | 0 | llvm::FunctionType *FTy = |
2275 | 0 | llvm::FunctionType::get(CGM.VoidTy, NumElementsPtr.getType(), false); |
2276 | 0 | llvm::FunctionCallee F = |
2277 | 0 | CGM.CreateRuntimeFunction(FTy, "__asan_poison_cxx_array_cookie"); |
2278 | 0 | CGF.Builder.CreateCall(F, NumElementsPtr.getPointer()); |
2279 | 0 | } |
2280 | | |
2281 | | // Finally, compute a pointer to the actual data buffer by skipping |
2282 | | // over the cookie completely. |
2283 | 0 | return CGF.Builder.CreateConstInBoundsByteGEP(NewPtr, CookieSize); |
2284 | 0 | } |
2285 | | |
2286 | | llvm::Value *ItaniumCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, |
2287 | | Address allocPtr, |
2288 | 0 | CharUnits cookieSize) { |
2289 | | // The element size is right-justified in the cookie. |
2290 | 0 | Address numElementsPtr = allocPtr; |
2291 | 0 | CharUnits numElementsOffset = cookieSize - CGF.getSizeSize(); |
2292 | 0 | if (!numElementsOffset.isZero()) |
2293 | 0 | numElementsPtr = |
2294 | 0 | CGF.Builder.CreateConstInBoundsByteGEP(numElementsPtr, numElementsOffset); |
2295 | |
|
2296 | 0 | unsigned AS = allocPtr.getAddressSpace(); |
2297 | 0 | numElementsPtr = numElementsPtr.withElementType(CGF.SizeTy); |
2298 | 0 | if (!CGM.getLangOpts().Sanitize.has(SanitizerKind::Address) || AS != 0) |
2299 | 0 | return CGF.Builder.CreateLoad(numElementsPtr); |
2300 | | // In asan mode emit a function call instead of a regular load and let the |
2301 | | // run-time deal with it: if the shadow is properly poisoned return the |
2302 | | // cookie, otherwise return 0 to avoid an infinite loop calling DTORs. |
2303 | | // We can't simply ignore this load using nosanitize metadata because |
2304 | | // the metadata may be lost. |
2305 | 0 | llvm::FunctionType *FTy = |
2306 | 0 | llvm::FunctionType::get(CGF.SizeTy, CGF.UnqualPtrTy, false); |
2307 | 0 | llvm::FunctionCallee F = |
2308 | 0 | CGM.CreateRuntimeFunction(FTy, "__asan_load_cxx_array_cookie"); |
2309 | 0 | return CGF.Builder.CreateCall(F, numElementsPtr.getPointer()); |
2310 | 0 | } |
2311 | | |
2312 | 0 | CharUnits ARMCXXABI::getArrayCookieSizeImpl(QualType elementType) { |
2313 | | // ARM says that the cookie is always: |
2314 | | // struct array_cookie { |
2315 | | // std::size_t element_size; // element_size != 0 |
2316 | | // std::size_t element_count; |
2317 | | // }; |
2318 | | // But the base ABI doesn't give anything an alignment greater than |
2319 | | // 8, so we can dismiss this as typical ABI-author blindness to |
2320 | | // actual language complexity and round up to the element alignment. |
2321 | 0 | return std::max(CharUnits::fromQuantity(2 * CGM.SizeSizeInBytes), |
2322 | 0 | CGM.getContext().getTypeAlignInChars(elementType)); |
2323 | 0 | } |
2324 | | |
2325 | | Address ARMCXXABI::InitializeArrayCookie(CodeGenFunction &CGF, |
2326 | | Address newPtr, |
2327 | | llvm::Value *numElements, |
2328 | | const CXXNewExpr *expr, |
2329 | 0 | QualType elementType) { |
2330 | 0 | assert(requiresArrayCookie(expr)); |
2331 | | |
2332 | | // The cookie is always at the start of the buffer. |
2333 | 0 | Address cookie = newPtr; |
2334 | | |
2335 | | // The first element is the element size. |
2336 | 0 | cookie = cookie.withElementType(CGF.SizeTy); |
2337 | 0 | llvm::Value *elementSize = llvm::ConstantInt::get(CGF.SizeTy, |
2338 | 0 | getContext().getTypeSizeInChars(elementType).getQuantity()); |
2339 | 0 | CGF.Builder.CreateStore(elementSize, cookie); |
2340 | | |
2341 | | // The second element is the element count. |
2342 | 0 | cookie = CGF.Builder.CreateConstInBoundsGEP(cookie, 1); |
2343 | 0 | CGF.Builder.CreateStore(numElements, cookie); |
2344 | | |
2345 | | // Finally, compute a pointer to the actual data buffer by skipping |
2346 | | // over the cookie completely. |
2347 | 0 | CharUnits cookieSize = ARMCXXABI::getArrayCookieSizeImpl(elementType); |
2348 | 0 | return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize); |
2349 | 0 | } |
2350 | | |
2351 | | llvm::Value *ARMCXXABI::readArrayCookieImpl(CodeGenFunction &CGF, |
2352 | | Address allocPtr, |
2353 | 0 | CharUnits cookieSize) { |
2354 | | // The number of elements is at offset sizeof(size_t) relative to |
2355 | | // the allocated pointer. |
2356 | 0 | Address numElementsPtr |
2357 | 0 | = CGF.Builder.CreateConstInBoundsByteGEP(allocPtr, CGF.getSizeSize()); |
2358 | |
|
2359 | 0 | numElementsPtr = numElementsPtr.withElementType(CGF.SizeTy); |
2360 | 0 | return CGF.Builder.CreateLoad(numElementsPtr); |
2361 | 0 | } |
2362 | | |
2363 | | /*********************** Static local initialization **************************/ |
2364 | | |
2365 | | static llvm::FunctionCallee getGuardAcquireFn(CodeGenModule &CGM, |
2366 | 0 | llvm::PointerType *GuardPtrTy) { |
2367 | | // int __cxa_guard_acquire(__guard *guard_object); |
2368 | 0 | llvm::FunctionType *FTy = |
2369 | 0 | llvm::FunctionType::get(CGM.getTypes().ConvertType(CGM.getContext().IntTy), |
2370 | 0 | GuardPtrTy, /*isVarArg=*/false); |
2371 | 0 | return CGM.CreateRuntimeFunction( |
2372 | 0 | FTy, "__cxa_guard_acquire", |
2373 | 0 | llvm::AttributeList::get(CGM.getLLVMContext(), |
2374 | 0 | llvm::AttributeList::FunctionIndex, |
2375 | 0 | llvm::Attribute::NoUnwind)); |
2376 | 0 | } |
2377 | | |
2378 | | static llvm::FunctionCallee getGuardReleaseFn(CodeGenModule &CGM, |
2379 | 0 | llvm::PointerType *GuardPtrTy) { |
2380 | | // void __cxa_guard_release(__guard *guard_object); |
2381 | 0 | llvm::FunctionType *FTy = |
2382 | 0 | llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); |
2383 | 0 | return CGM.CreateRuntimeFunction( |
2384 | 0 | FTy, "__cxa_guard_release", |
2385 | 0 | llvm::AttributeList::get(CGM.getLLVMContext(), |
2386 | 0 | llvm::AttributeList::FunctionIndex, |
2387 | 0 | llvm::Attribute::NoUnwind)); |
2388 | 0 | } |
2389 | | |
2390 | | static llvm::FunctionCallee getGuardAbortFn(CodeGenModule &CGM, |
2391 | 0 | llvm::PointerType *GuardPtrTy) { |
2392 | | // void __cxa_guard_abort(__guard *guard_object); |
2393 | 0 | llvm::FunctionType *FTy = |
2394 | 0 | llvm::FunctionType::get(CGM.VoidTy, GuardPtrTy, /*isVarArg=*/false); |
2395 | 0 | return CGM.CreateRuntimeFunction( |
2396 | 0 | FTy, "__cxa_guard_abort", |
2397 | 0 | llvm::AttributeList::get(CGM.getLLVMContext(), |
2398 | 0 | llvm::AttributeList::FunctionIndex, |
2399 | 0 | llvm::Attribute::NoUnwind)); |
2400 | 0 | } |
2401 | | |
2402 | | namespace { |
2403 | | struct CallGuardAbort final : EHScopeStack::Cleanup { |
2404 | | llvm::GlobalVariable *Guard; |
2405 | 0 | CallGuardAbort(llvm::GlobalVariable *Guard) : Guard(Guard) {} |
2406 | | |
2407 | 0 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
2408 | 0 | CGF.EmitNounwindRuntimeCall(getGuardAbortFn(CGF.CGM, Guard->getType()), |
2409 | 0 | Guard); |
2410 | 0 | } |
2411 | | }; |
2412 | | } |
2413 | | |
2414 | | /// The ARM code here follows the Itanium code closely enough that we |
2415 | | /// just special-case it at particular places. |
2416 | | void ItaniumCXXABI::EmitGuardedInit(CodeGenFunction &CGF, |
2417 | | const VarDecl &D, |
2418 | | llvm::GlobalVariable *var, |
2419 | 0 | bool shouldPerformInit) { |
2420 | 0 | CGBuilderTy &Builder = CGF.Builder; |
2421 | | |
2422 | | // Inline variables that weren't instantiated from variable templates have |
2423 | | // partially-ordered initialization within their translation unit. |
2424 | 0 | bool NonTemplateInline = |
2425 | 0 | D.isInline() && |
2426 | 0 | !isTemplateInstantiation(D.getTemplateSpecializationKind()); |
2427 | | |
2428 | | // We only need to use thread-safe statics for local non-TLS variables and |
2429 | | // inline variables; other global initialization is always single-threaded |
2430 | | // or (through lazy dynamic loading in multiple threads) unsequenced. |
2431 | 0 | bool threadsafe = getContext().getLangOpts().ThreadsafeStatics && |
2432 | 0 | (D.isLocalVarDecl() || NonTemplateInline) && |
2433 | 0 | !D.getTLSKind(); |
2434 | | |
2435 | | // If we have a global variable with internal linkage and thread-safe statics |
2436 | | // are disabled, we can just let the guard variable be of type i8. |
2437 | 0 | bool useInt8GuardVariable = !threadsafe && var->hasInternalLinkage(); |
2438 | |
|
2439 | 0 | llvm::IntegerType *guardTy; |
2440 | 0 | CharUnits guardAlignment; |
2441 | 0 | if (useInt8GuardVariable) { |
2442 | 0 | guardTy = CGF.Int8Ty; |
2443 | 0 | guardAlignment = CharUnits::One(); |
2444 | 0 | } else { |
2445 | | // Guard variables are 64 bits in the generic ABI and size width on ARM |
2446 | | // (i.e. 32-bit on AArch32, 64-bit on AArch64). |
2447 | 0 | if (UseARMGuardVarABI) { |
2448 | 0 | guardTy = CGF.SizeTy; |
2449 | 0 | guardAlignment = CGF.getSizeAlign(); |
2450 | 0 | } else { |
2451 | 0 | guardTy = CGF.Int64Ty; |
2452 | 0 | guardAlignment = |
2453 | 0 | CharUnits::fromQuantity(CGM.getDataLayout().getABITypeAlign(guardTy)); |
2454 | 0 | } |
2455 | 0 | } |
2456 | 0 | llvm::PointerType *guardPtrTy = llvm::PointerType::get( |
2457 | 0 | CGF.CGM.getLLVMContext(), |
2458 | 0 | CGF.CGM.getDataLayout().getDefaultGlobalsAddressSpace()); |
2459 | | |
2460 | | // Create the guard variable if we don't already have it (as we |
2461 | | // might if we're double-emitting this function body). |
2462 | 0 | llvm::GlobalVariable *guard = CGM.getStaticLocalDeclGuardAddress(&D); |
2463 | 0 | if (!guard) { |
2464 | | // Mangle the name for the guard. |
2465 | 0 | SmallString<256> guardName; |
2466 | 0 | { |
2467 | 0 | llvm::raw_svector_ostream out(guardName); |
2468 | 0 | getMangleContext().mangleStaticGuardVariable(&D, out); |
2469 | 0 | } |
2470 | | |
2471 | | // Create the guard variable with a zero-initializer. |
2472 | | // Just absorb linkage, visibility and dll storage class from the guarded |
2473 | | // variable. |
2474 | 0 | guard = new llvm::GlobalVariable(CGM.getModule(), guardTy, |
2475 | 0 | false, var->getLinkage(), |
2476 | 0 | llvm::ConstantInt::get(guardTy, 0), |
2477 | 0 | guardName.str()); |
2478 | 0 | guard->setDSOLocal(var->isDSOLocal()); |
2479 | 0 | guard->setVisibility(var->getVisibility()); |
2480 | 0 | guard->setDLLStorageClass(var->getDLLStorageClass()); |
2481 | | // If the variable is thread-local, so is its guard variable. |
2482 | 0 | guard->setThreadLocalMode(var->getThreadLocalMode()); |
2483 | 0 | guard->setAlignment(guardAlignment.getAsAlign()); |
2484 | | |
2485 | | // The ABI says: "It is suggested that it be emitted in the same COMDAT |
2486 | | // group as the associated data object." In practice, this doesn't work for |
2487 | | // non-ELF and non-Wasm object formats, so only do it for ELF and Wasm. |
2488 | 0 | llvm::Comdat *C = var->getComdat(); |
2489 | 0 | if (!D.isLocalVarDecl() && C && |
2490 | 0 | (CGM.getTarget().getTriple().isOSBinFormatELF() || |
2491 | 0 | CGM.getTarget().getTriple().isOSBinFormatWasm())) { |
2492 | 0 | guard->setComdat(C); |
2493 | 0 | } else if (CGM.supportsCOMDAT() && guard->isWeakForLinker()) { |
2494 | 0 | guard->setComdat(CGM.getModule().getOrInsertComdat(guard->getName())); |
2495 | 0 | } |
2496 | |
|
2497 | 0 | CGM.setStaticLocalDeclGuardAddress(&D, guard); |
2498 | 0 | } |
2499 | |
|
2500 | 0 | Address guardAddr = Address(guard, guard->getValueType(), guardAlignment); |
2501 | | |
2502 | | // Test whether the variable has completed initialization. |
2503 | | // |
2504 | | // Itanium C++ ABI 3.3.2: |
2505 | | // The following is pseudo-code showing how these functions can be used: |
2506 | | // if (obj_guard.first_byte == 0) { |
2507 | | // if ( __cxa_guard_acquire (&obj_guard) ) { |
2508 | | // try { |
2509 | | // ... initialize the object ...; |
2510 | | // } catch (...) { |
2511 | | // __cxa_guard_abort (&obj_guard); |
2512 | | // throw; |
2513 | | // } |
2514 | | // ... queue object destructor with __cxa_atexit() ...; |
2515 | | // __cxa_guard_release (&obj_guard); |
2516 | | // } |
2517 | | // } |
2518 | | // |
2519 | | // If threadsafe statics are enabled, but we don't have inline atomics, just |
2520 | | // call __cxa_guard_acquire unconditionally. The "inline" check isn't |
2521 | | // actually inline, and the user might not expect calls to __atomic libcalls. |
2522 | |
|
2523 | 0 | unsigned MaxInlineWidthInBits = CGF.getTarget().getMaxAtomicInlineWidth(); |
2524 | 0 | llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end"); |
2525 | 0 | if (!threadsafe || MaxInlineWidthInBits) { |
2526 | | // Load the first byte of the guard variable. |
2527 | 0 | llvm::LoadInst *LI = |
2528 | 0 | Builder.CreateLoad(guardAddr.withElementType(CGM.Int8Ty)); |
2529 | | |
2530 | | // Itanium ABI: |
2531 | | // An implementation supporting thread-safety on multiprocessor |
2532 | | // systems must also guarantee that references to the initialized |
2533 | | // object do not occur before the load of the initialization flag. |
2534 | | // |
2535 | | // In LLVM, we do this by marking the load Acquire. |
2536 | 0 | if (threadsafe) |
2537 | 0 | LI->setAtomic(llvm::AtomicOrdering::Acquire); |
2538 | | |
2539 | | // For ARM, we should only check the first bit, rather than the entire byte: |
2540 | | // |
2541 | | // ARM C++ ABI 3.2.3.1: |
2542 | | // To support the potential use of initialization guard variables |
2543 | | // as semaphores that are the target of ARM SWP and LDREX/STREX |
2544 | | // synchronizing instructions we define a static initialization |
2545 | | // guard variable to be a 4-byte aligned, 4-byte word with the |
2546 | | // following inline access protocol. |
2547 | | // #define INITIALIZED 1 |
2548 | | // if ((obj_guard & INITIALIZED) != INITIALIZED) { |
2549 | | // if (__cxa_guard_acquire(&obj_guard)) |
2550 | | // ... |
2551 | | // } |
2552 | | // |
2553 | | // and similarly for ARM64: |
2554 | | // |
2555 | | // ARM64 C++ ABI 3.2.2: |
2556 | | // This ABI instead only specifies the value bit 0 of the static guard |
2557 | | // variable; all other bits are platform defined. Bit 0 shall be 0 when the |
2558 | | // variable is not initialized and 1 when it is. |
2559 | 0 | llvm::Value *V = |
2560 | 0 | (UseARMGuardVarABI && !useInt8GuardVariable) |
2561 | 0 | ? Builder.CreateAnd(LI, llvm::ConstantInt::get(CGM.Int8Ty, 1)) |
2562 | 0 | : LI; |
2563 | 0 | llvm::Value *NeedsInit = Builder.CreateIsNull(V, "guard.uninitialized"); |
2564 | |
|
2565 | 0 | llvm::BasicBlock *InitCheckBlock = CGF.createBasicBlock("init.check"); |
2566 | | |
2567 | | // Check if the first byte of the guard variable is zero. |
2568 | 0 | CGF.EmitCXXGuardedInitBranch(NeedsInit, InitCheckBlock, EndBlock, |
2569 | 0 | CodeGenFunction::GuardKind::VariableGuard, &D); |
2570 | |
|
2571 | 0 | CGF.EmitBlock(InitCheckBlock); |
2572 | 0 | } |
2573 | | |
2574 | | // The semantics of dynamic initialization of variables with static or thread |
2575 | | // storage duration depends on whether they are declared at block-scope. The |
2576 | | // initialization of such variables at block-scope can be aborted with an |
2577 | | // exception and later retried (per C++20 [stmt.dcl]p4), and recursive entry |
2578 | | // to their initialization has undefined behavior (also per C++20 |
2579 | | // [stmt.dcl]p4). For such variables declared at non-block scope, exceptions |
2580 | | // lead to termination (per C++20 [except.terminate]p1), and recursive |
2581 | | // references to the variables are governed only by the lifetime rules (per |
2582 | | // C++20 [class.cdtor]p2), which means such references are perfectly fine as |
2583 | | // long as they avoid touching memory. As a result, block-scope variables must |
2584 | | // not be marked as initialized until after initialization completes (unless |
2585 | | // the mark is reverted following an exception), but non-block-scope variables |
2586 | | // must be marked prior to initialization so that recursive accesses during |
2587 | | // initialization do not restart initialization. |
2588 | | |
2589 | | // Variables used when coping with thread-safe statics and exceptions. |
2590 | 0 | if (threadsafe) { |
2591 | | // Call __cxa_guard_acquire. |
2592 | 0 | llvm::Value *V |
2593 | 0 | = CGF.EmitNounwindRuntimeCall(getGuardAcquireFn(CGM, guardPtrTy), guard); |
2594 | |
|
2595 | 0 | llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init"); |
2596 | |
|
2597 | 0 | Builder.CreateCondBr(Builder.CreateIsNotNull(V, "tobool"), |
2598 | 0 | InitBlock, EndBlock); |
2599 | | |
2600 | | // Call __cxa_guard_abort along the exceptional edge. |
2601 | 0 | CGF.EHStack.pushCleanup<CallGuardAbort>(EHCleanup, guard); |
2602 | |
|
2603 | 0 | CGF.EmitBlock(InitBlock); |
2604 | 0 | } else if (!D.isLocalVarDecl()) { |
2605 | | // For non-local variables, store 1 into the first byte of the guard |
2606 | | // variable before the object initialization begins so that references |
2607 | | // to the variable during initialization don't restart initialization. |
2608 | 0 | Builder.CreateStore(llvm::ConstantInt::get(CGM.Int8Ty, 1), |
2609 | 0 | guardAddr.withElementType(CGM.Int8Ty)); |
2610 | 0 | } |
2611 | | |
2612 | | // Emit the initializer and add a global destructor if appropriate. |
2613 | 0 | CGF.EmitCXXGlobalVarDeclInit(D, var, shouldPerformInit); |
2614 | |
|
2615 | 0 | if (threadsafe) { |
2616 | | // Pop the guard-abort cleanup if we pushed one. |
2617 | 0 | CGF.PopCleanupBlock(); |
2618 | | |
2619 | | // Call __cxa_guard_release. This cannot throw. |
2620 | 0 | CGF.EmitNounwindRuntimeCall(getGuardReleaseFn(CGM, guardPtrTy), |
2621 | 0 | guardAddr.getPointer()); |
2622 | 0 | } else if (D.isLocalVarDecl()) { |
2623 | | // For local variables, store 1 into the first byte of the guard variable |
2624 | | // after the object initialization completes so that initialization is |
2625 | | // retried if initialization is interrupted by an exception. |
2626 | 0 | Builder.CreateStore(llvm::ConstantInt::get(CGM.Int8Ty, 1), |
2627 | 0 | guardAddr.withElementType(CGM.Int8Ty)); |
2628 | 0 | } |
2629 | |
|
2630 | 0 | CGF.EmitBlock(EndBlock); |
2631 | 0 | } |
2632 | | |
2633 | | /// Register a global destructor using __cxa_atexit. |
2634 | | static void emitGlobalDtorWithCXAAtExit(CodeGenFunction &CGF, |
2635 | | llvm::FunctionCallee dtor, |
2636 | 0 | llvm::Constant *addr, bool TLS) { |
2637 | 0 | assert(!CGF.getTarget().getTriple().isOSAIX() && |
2638 | 0 | "unexpected call to emitGlobalDtorWithCXAAtExit"); |
2639 | 0 | assert((TLS || CGF.getTypes().getCodeGenOpts().CXAAtExit) && |
2640 | 0 | "__cxa_atexit is disabled"); |
2641 | 0 | const char *Name = "__cxa_atexit"; |
2642 | 0 | if (TLS) { |
2643 | 0 | const llvm::Triple &T = CGF.getTarget().getTriple(); |
2644 | 0 | Name = T.isOSDarwin() ? "_tlv_atexit" : "__cxa_thread_atexit"; |
2645 | 0 | } |
2646 | | |
2647 | | // We're assuming that the destructor function is something we can |
2648 | | // reasonably call with the default CC. |
2649 | 0 | llvm::Type *dtorTy = CGF.UnqualPtrTy; |
2650 | | |
2651 | | // Preserve address space of addr. |
2652 | 0 | auto AddrAS = addr ? addr->getType()->getPointerAddressSpace() : 0; |
2653 | 0 | auto AddrPtrTy = AddrAS ? llvm::PointerType::get(CGF.getLLVMContext(), AddrAS) |
2654 | 0 | : CGF.Int8PtrTy; |
2655 | | |
2656 | | // Create a variable that binds the atexit to this shared object. |
2657 | 0 | llvm::Constant *handle = |
2658 | 0 | CGF.CGM.CreateRuntimeVariable(CGF.Int8Ty, "__dso_handle"); |
2659 | 0 | auto *GV = cast<llvm::GlobalValue>(handle->stripPointerCasts()); |
2660 | 0 | GV->setVisibility(llvm::GlobalValue::HiddenVisibility); |
2661 | | |
2662 | | // extern "C" int __cxa_atexit(void (*f)(void *), void *p, void *d); |
2663 | 0 | llvm::Type *paramTys[] = {dtorTy, AddrPtrTy, handle->getType()}; |
2664 | 0 | llvm::FunctionType *atexitTy = |
2665 | 0 | llvm::FunctionType::get(CGF.IntTy, paramTys, false); |
2666 | | |
2667 | | // Fetch the actual function. |
2668 | 0 | llvm::FunctionCallee atexit = CGF.CGM.CreateRuntimeFunction(atexitTy, Name); |
2669 | 0 | if (llvm::Function *fn = dyn_cast<llvm::Function>(atexit.getCallee())) |
2670 | 0 | fn->setDoesNotThrow(); |
2671 | |
|
2672 | 0 | if (!addr) |
2673 | | // addr is null when we are trying to register a dtor annotated with |
2674 | | // __attribute__((destructor)) in a constructor function. Using null here is |
2675 | | // okay because this argument is just passed back to the destructor |
2676 | | // function. |
2677 | 0 | addr = llvm::Constant::getNullValue(CGF.Int8PtrTy); |
2678 | |
|
2679 | 0 | llvm::Value *args[] = {dtor.getCallee(), addr, handle}; |
2680 | 0 | CGF.EmitNounwindRuntimeCall(atexit, args); |
2681 | 0 | } |
2682 | | |
2683 | | static llvm::Function *createGlobalInitOrCleanupFn(CodeGen::CodeGenModule &CGM, |
2684 | 0 | StringRef FnName) { |
2685 | | // Create a function that registers/unregisters destructors that have the same |
2686 | | // priority. |
2687 | 0 | llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); |
2688 | 0 | llvm::Function *GlobalInitOrCleanupFn = CGM.CreateGlobalInitOrCleanUpFunction( |
2689 | 0 | FTy, FnName, CGM.getTypes().arrangeNullaryFunction(), SourceLocation()); |
2690 | |
|
2691 | 0 | return GlobalInitOrCleanupFn; |
2692 | 0 | } |
2693 | | |
2694 | 0 | void CodeGenModule::unregisterGlobalDtorsWithUnAtExit() { |
2695 | 0 | for (const auto &I : DtorsUsingAtExit) { |
2696 | 0 | int Priority = I.first; |
2697 | 0 | std::string GlobalCleanupFnName = |
2698 | 0 | std::string("__GLOBAL_cleanup_") + llvm::to_string(Priority); |
2699 | |
|
2700 | 0 | llvm::Function *GlobalCleanupFn = |
2701 | 0 | createGlobalInitOrCleanupFn(*this, GlobalCleanupFnName); |
2702 | |
|
2703 | 0 | CodeGenFunction CGF(*this); |
2704 | 0 | CGF.StartFunction(GlobalDecl(), getContext().VoidTy, GlobalCleanupFn, |
2705 | 0 | getTypes().arrangeNullaryFunction(), FunctionArgList(), |
2706 | 0 | SourceLocation(), SourceLocation()); |
2707 | 0 | auto AL = ApplyDebugLocation::CreateArtificial(CGF); |
2708 | | |
2709 | | // Get the destructor function type, void(*)(void). |
2710 | 0 | llvm::FunctionType *dtorFuncTy = llvm::FunctionType::get(CGF.VoidTy, false); |
2711 | | |
2712 | | // Destructor functions are run/unregistered in non-ascending |
2713 | | // order of their priorities. |
2714 | 0 | const llvm::TinyPtrVector<llvm::Function *> &Dtors = I.second; |
2715 | 0 | auto itv = Dtors.rbegin(); |
2716 | 0 | while (itv != Dtors.rend()) { |
2717 | 0 | llvm::Function *Dtor = *itv; |
2718 | | |
2719 | | // We're assuming that the destructor function is something we can |
2720 | | // reasonably call with the correct CC. |
2721 | 0 | llvm::Value *V = CGF.unregisterGlobalDtorWithUnAtExit(Dtor); |
2722 | 0 | llvm::Value *NeedsDestruct = |
2723 | 0 | CGF.Builder.CreateIsNull(V, "needs_destruct"); |
2724 | |
|
2725 | 0 | llvm::BasicBlock *DestructCallBlock = |
2726 | 0 | CGF.createBasicBlock("destruct.call"); |
2727 | 0 | llvm::BasicBlock *EndBlock = CGF.createBasicBlock( |
2728 | 0 | (itv + 1) != Dtors.rend() ? "unatexit.call" : "destruct.end"); |
2729 | | // Check if unatexit returns a value of 0. If it does, jump to |
2730 | | // DestructCallBlock, otherwise jump to EndBlock directly. |
2731 | 0 | CGF.Builder.CreateCondBr(NeedsDestruct, DestructCallBlock, EndBlock); |
2732 | |
|
2733 | 0 | CGF.EmitBlock(DestructCallBlock); |
2734 | | |
2735 | | // Emit the call to casted Dtor. |
2736 | 0 | llvm::CallInst *CI = CGF.Builder.CreateCall(dtorFuncTy, Dtor); |
2737 | | // Make sure the call and the callee agree on calling convention. |
2738 | 0 | CI->setCallingConv(Dtor->getCallingConv()); |
2739 | |
|
2740 | 0 | CGF.EmitBlock(EndBlock); |
2741 | |
|
2742 | 0 | itv++; |
2743 | 0 | } |
2744 | |
|
2745 | 0 | CGF.FinishFunction(); |
2746 | 0 | AddGlobalDtor(GlobalCleanupFn, Priority); |
2747 | 0 | } |
2748 | 0 | } |
2749 | | |
2750 | 0 | void CodeGenModule::registerGlobalDtorsWithAtExit() { |
2751 | 0 | for (const auto &I : DtorsUsingAtExit) { |
2752 | 0 | int Priority = I.first; |
2753 | 0 | std::string GlobalInitFnName = |
2754 | 0 | std::string("__GLOBAL_init_") + llvm::to_string(Priority); |
2755 | 0 | llvm::Function *GlobalInitFn = |
2756 | 0 | createGlobalInitOrCleanupFn(*this, GlobalInitFnName); |
2757 | |
|
2758 | 0 | CodeGenFunction CGF(*this); |
2759 | 0 | CGF.StartFunction(GlobalDecl(), getContext().VoidTy, GlobalInitFn, |
2760 | 0 | getTypes().arrangeNullaryFunction(), FunctionArgList(), |
2761 | 0 | SourceLocation(), SourceLocation()); |
2762 | 0 | auto AL = ApplyDebugLocation::CreateArtificial(CGF); |
2763 | | |
2764 | | // Since constructor functions are run in non-descending order of their |
2765 | | // priorities, destructors are registered in non-descending order of their |
2766 | | // priorities, and since destructor functions are run in the reverse order |
2767 | | // of their registration, destructor functions are run in non-ascending |
2768 | | // order of their priorities. |
2769 | 0 | const llvm::TinyPtrVector<llvm::Function *> &Dtors = I.second; |
2770 | 0 | for (auto *Dtor : Dtors) { |
2771 | | // Register the destructor function calling __cxa_atexit if it is |
2772 | | // available. Otherwise fall back on calling atexit. |
2773 | 0 | if (getCodeGenOpts().CXAAtExit) { |
2774 | 0 | emitGlobalDtorWithCXAAtExit(CGF, Dtor, nullptr, false); |
2775 | 0 | } else { |
2776 | | // We're assuming that the destructor function is something we can |
2777 | | // reasonably call with the correct CC. |
2778 | 0 | CGF.registerGlobalDtorWithAtExit(Dtor); |
2779 | 0 | } |
2780 | 0 | } |
2781 | |
|
2782 | 0 | CGF.FinishFunction(); |
2783 | 0 | AddGlobalCtor(GlobalInitFn, Priority); |
2784 | 0 | } |
2785 | |
|
2786 | 0 | if (getCXXABI().useSinitAndSterm()) |
2787 | 0 | unregisterGlobalDtorsWithUnAtExit(); |
2788 | 0 | } |
2789 | | |
2790 | | /// Register a global destructor as best as we know how. |
2791 | | void ItaniumCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
2792 | | llvm::FunctionCallee dtor, |
2793 | 0 | llvm::Constant *addr) { |
2794 | 0 | if (D.isNoDestroy(CGM.getContext())) |
2795 | 0 | return; |
2796 | | |
2797 | | // OpenMP offloading supports C++ constructors and destructors but we do not |
2798 | | // always have 'atexit' available. Instead lower these to use the LLVM global |
2799 | | // destructors which we can handle directly in the runtime. Note that this is |
2800 | | // not strictly 1-to-1 with using `atexit` because we no longer tear down |
2801 | | // globals in reverse order of when they were constructed. |
2802 | 0 | if (!CGM.getLangOpts().hasAtExit() && !D.isStaticLocal()) |
2803 | 0 | return CGF.registerGlobalDtorWithLLVM(D, dtor, addr); |
2804 | | |
2805 | | // emitGlobalDtorWithCXAAtExit will emit a call to either __cxa_thread_atexit |
2806 | | // or __cxa_atexit depending on whether this VarDecl is a thread-local storage |
2807 | | // or not. CXAAtExit controls only __cxa_atexit, so use it if it is enabled. |
2808 | | // We can always use __cxa_thread_atexit. |
2809 | 0 | if (CGM.getCodeGenOpts().CXAAtExit || D.getTLSKind()) |
2810 | 0 | return emitGlobalDtorWithCXAAtExit(CGF, dtor, addr, D.getTLSKind()); |
2811 | | |
2812 | | // In Apple kexts, we want to add a global destructor entry. |
2813 | | // FIXME: shouldn't this be guarded by some variable? |
2814 | 0 | if (CGM.getLangOpts().AppleKext) { |
2815 | | // Generate a global destructor entry. |
2816 | 0 | return CGM.AddCXXDtorEntry(dtor, addr); |
2817 | 0 | } |
2818 | | |
2819 | 0 | CGF.registerGlobalDtorWithAtExit(D, dtor, addr); |
2820 | 0 | } |
2821 | | |
2822 | | static bool isThreadWrapperReplaceable(const VarDecl *VD, |
2823 | 0 | CodeGen::CodeGenModule &CGM) { |
2824 | 0 | assert(!VD->isStaticLocal() && "static local VarDecls don't need wrappers!"); |
2825 | | // Darwin prefers to have references to thread local variables to go through |
2826 | | // the thread wrapper instead of directly referencing the backing variable. |
2827 | 0 | return VD->getTLSKind() == VarDecl::TLS_Dynamic && |
2828 | 0 | CGM.getTarget().getTriple().isOSDarwin(); |
2829 | 0 | } |
2830 | | |
2831 | | /// Get the appropriate linkage for the wrapper function. This is essentially |
2832 | | /// the weak form of the variable's linkage; every translation unit which needs |
2833 | | /// the wrapper emits a copy, and we want the linker to merge them. |
2834 | | static llvm::GlobalValue::LinkageTypes |
2835 | 0 | getThreadLocalWrapperLinkage(const VarDecl *VD, CodeGen::CodeGenModule &CGM) { |
2836 | 0 | llvm::GlobalValue::LinkageTypes VarLinkage = |
2837 | 0 | CGM.getLLVMLinkageVarDefinition(VD); |
2838 | | |
2839 | | // For internal linkage variables, we don't need an external or weak wrapper. |
2840 | 0 | if (llvm::GlobalValue::isLocalLinkage(VarLinkage)) |
2841 | 0 | return VarLinkage; |
2842 | | |
2843 | | // If the thread wrapper is replaceable, give it appropriate linkage. |
2844 | 0 | if (isThreadWrapperReplaceable(VD, CGM)) |
2845 | 0 | if (!llvm::GlobalVariable::isLinkOnceLinkage(VarLinkage) && |
2846 | 0 | !llvm::GlobalVariable::isWeakODRLinkage(VarLinkage)) |
2847 | 0 | return VarLinkage; |
2848 | 0 | return llvm::GlobalValue::WeakODRLinkage; |
2849 | 0 | } |
2850 | | |
2851 | | llvm::Function * |
2852 | | ItaniumCXXABI::getOrCreateThreadLocalWrapper(const VarDecl *VD, |
2853 | 0 | llvm::Value *Val) { |
2854 | | // Mangle the name for the thread_local wrapper function. |
2855 | 0 | SmallString<256> WrapperName; |
2856 | 0 | { |
2857 | 0 | llvm::raw_svector_ostream Out(WrapperName); |
2858 | 0 | getMangleContext().mangleItaniumThreadLocalWrapper(VD, Out); |
2859 | 0 | } |
2860 | | |
2861 | | // FIXME: If VD is a definition, we should regenerate the function attributes |
2862 | | // before returning. |
2863 | 0 | if (llvm::Value *V = CGM.getModule().getNamedValue(WrapperName)) |
2864 | 0 | return cast<llvm::Function>(V); |
2865 | | |
2866 | 0 | QualType RetQT = VD->getType(); |
2867 | 0 | if (RetQT->isReferenceType()) |
2868 | 0 | RetQT = RetQT.getNonReferenceType(); |
2869 | |
|
2870 | 0 | const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( |
2871 | 0 | getContext().getPointerType(RetQT), FunctionArgList()); |
2872 | |
|
2873 | 0 | llvm::FunctionType *FnTy = CGM.getTypes().GetFunctionType(FI); |
2874 | 0 | llvm::Function *Wrapper = |
2875 | 0 | llvm::Function::Create(FnTy, getThreadLocalWrapperLinkage(VD, CGM), |
2876 | 0 | WrapperName.str(), &CGM.getModule()); |
2877 | |
|
2878 | 0 | if (CGM.supportsCOMDAT() && Wrapper->isWeakForLinker()) |
2879 | 0 | Wrapper->setComdat(CGM.getModule().getOrInsertComdat(Wrapper->getName())); |
2880 | |
|
2881 | 0 | CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Wrapper, /*IsThunk=*/false); |
2882 | | |
2883 | | // Always resolve references to the wrapper at link time. |
2884 | 0 | if (!Wrapper->hasLocalLinkage()) |
2885 | 0 | if (!isThreadWrapperReplaceable(VD, CGM) || |
2886 | 0 | llvm::GlobalVariable::isLinkOnceLinkage(Wrapper->getLinkage()) || |
2887 | 0 | llvm::GlobalVariable::isWeakODRLinkage(Wrapper->getLinkage()) || |
2888 | 0 | VD->getVisibility() == HiddenVisibility) |
2889 | 0 | Wrapper->setVisibility(llvm::GlobalValue::HiddenVisibility); |
2890 | |
|
2891 | 0 | if (isThreadWrapperReplaceable(VD, CGM)) { |
2892 | 0 | Wrapper->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); |
2893 | 0 | Wrapper->addFnAttr(llvm::Attribute::NoUnwind); |
2894 | 0 | } |
2895 | |
|
2896 | 0 | ThreadWrappers.push_back({VD, Wrapper}); |
2897 | 0 | return Wrapper; |
2898 | 0 | } |
2899 | | |
2900 | | void ItaniumCXXABI::EmitThreadLocalInitFuncs( |
2901 | | CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals, |
2902 | | ArrayRef<llvm::Function *> CXXThreadLocalInits, |
2903 | 0 | ArrayRef<const VarDecl *> CXXThreadLocalInitVars) { |
2904 | 0 | llvm::Function *InitFunc = nullptr; |
2905 | | |
2906 | | // Separate initializers into those with ordered (or partially-ordered) |
2907 | | // initialization and those with unordered initialization. |
2908 | 0 | llvm::SmallVector<llvm::Function *, 8> OrderedInits; |
2909 | 0 | llvm::SmallDenseMap<const VarDecl *, llvm::Function *> UnorderedInits; |
2910 | 0 | for (unsigned I = 0; I != CXXThreadLocalInits.size(); ++I) { |
2911 | 0 | if (isTemplateInstantiation( |
2912 | 0 | CXXThreadLocalInitVars[I]->getTemplateSpecializationKind())) |
2913 | 0 | UnorderedInits[CXXThreadLocalInitVars[I]->getCanonicalDecl()] = |
2914 | 0 | CXXThreadLocalInits[I]; |
2915 | 0 | else |
2916 | 0 | OrderedInits.push_back(CXXThreadLocalInits[I]); |
2917 | 0 | } |
2918 | |
|
2919 | 0 | if (!OrderedInits.empty()) { |
2920 | | // Generate a guarded initialization function. |
2921 | 0 | llvm::FunctionType *FTy = |
2922 | 0 | llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); |
2923 | 0 | const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
2924 | 0 | InitFunc = CGM.CreateGlobalInitOrCleanUpFunction(FTy, "__tls_init", FI, |
2925 | 0 | SourceLocation(), |
2926 | 0 | /*TLS=*/true); |
2927 | 0 | llvm::GlobalVariable *Guard = new llvm::GlobalVariable( |
2928 | 0 | CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false, |
2929 | 0 | llvm::GlobalVariable::InternalLinkage, |
2930 | 0 | llvm::ConstantInt::get(CGM.Int8Ty, 0), "__tls_guard"); |
2931 | 0 | Guard->setThreadLocal(true); |
2932 | 0 | Guard->setThreadLocalMode(CGM.GetDefaultLLVMTLSModel()); |
2933 | |
|
2934 | 0 | CharUnits GuardAlign = CharUnits::One(); |
2935 | 0 | Guard->setAlignment(GuardAlign.getAsAlign()); |
2936 | |
|
2937 | 0 | CodeGenFunction(CGM).GenerateCXXGlobalInitFunc( |
2938 | 0 | InitFunc, OrderedInits, ConstantAddress(Guard, CGM.Int8Ty, GuardAlign)); |
2939 | | // On Darwin platforms, use CXX_FAST_TLS calling convention. |
2940 | 0 | if (CGM.getTarget().getTriple().isOSDarwin()) { |
2941 | 0 | InitFunc->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); |
2942 | 0 | InitFunc->addFnAttr(llvm::Attribute::NoUnwind); |
2943 | 0 | } |
2944 | 0 | } |
2945 | | |
2946 | | // Create declarations for thread wrappers for all thread-local variables |
2947 | | // with non-discardable definitions in this translation unit. |
2948 | 0 | for (const VarDecl *VD : CXXThreadLocals) { |
2949 | 0 | if (VD->hasDefinition() && |
2950 | 0 | !isDiscardableGVALinkage(getContext().GetGVALinkageForVariable(VD))) { |
2951 | 0 | llvm::GlobalValue *GV = CGM.GetGlobalValue(CGM.getMangledName(VD)); |
2952 | 0 | getOrCreateThreadLocalWrapper(VD, GV); |
2953 | 0 | } |
2954 | 0 | } |
2955 | | |
2956 | | // Emit all referenced thread wrappers. |
2957 | 0 | for (auto VDAndWrapper : ThreadWrappers) { |
2958 | 0 | const VarDecl *VD = VDAndWrapper.first; |
2959 | 0 | llvm::GlobalVariable *Var = |
2960 | 0 | cast<llvm::GlobalVariable>(CGM.GetGlobalValue(CGM.getMangledName(VD))); |
2961 | 0 | llvm::Function *Wrapper = VDAndWrapper.second; |
2962 | | |
2963 | | // Some targets require that all access to thread local variables go through |
2964 | | // the thread wrapper. This means that we cannot attempt to create a thread |
2965 | | // wrapper or a thread helper. |
2966 | 0 | if (!VD->hasDefinition()) { |
2967 | 0 | if (isThreadWrapperReplaceable(VD, CGM)) { |
2968 | 0 | Wrapper->setLinkage(llvm::Function::ExternalLinkage); |
2969 | 0 | continue; |
2970 | 0 | } |
2971 | | |
2972 | | // If this isn't a TU in which this variable is defined, the thread |
2973 | | // wrapper is discardable. |
2974 | 0 | if (Wrapper->getLinkage() == llvm::Function::WeakODRLinkage) |
2975 | 0 | Wrapper->setLinkage(llvm::Function::LinkOnceODRLinkage); |
2976 | 0 | } |
2977 | | |
2978 | 0 | CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Wrapper); |
2979 | | |
2980 | | // Mangle the name for the thread_local initialization function. |
2981 | 0 | SmallString<256> InitFnName; |
2982 | 0 | { |
2983 | 0 | llvm::raw_svector_ostream Out(InitFnName); |
2984 | 0 | getMangleContext().mangleItaniumThreadLocalInit(VD, Out); |
2985 | 0 | } |
2986 | |
|
2987 | 0 | llvm::FunctionType *InitFnTy = llvm::FunctionType::get(CGM.VoidTy, false); |
2988 | | |
2989 | | // If we have a definition for the variable, emit the initialization |
2990 | | // function as an alias to the global Init function (if any). Otherwise, |
2991 | | // produce a declaration of the initialization function. |
2992 | 0 | llvm::GlobalValue *Init = nullptr; |
2993 | 0 | bool InitIsInitFunc = false; |
2994 | 0 | bool HasConstantInitialization = false; |
2995 | 0 | if (!usesThreadWrapperFunction(VD)) { |
2996 | 0 | HasConstantInitialization = true; |
2997 | 0 | } else if (VD->hasDefinition()) { |
2998 | 0 | InitIsInitFunc = true; |
2999 | 0 | llvm::Function *InitFuncToUse = InitFunc; |
3000 | 0 | if (isTemplateInstantiation(VD->getTemplateSpecializationKind())) |
3001 | 0 | InitFuncToUse = UnorderedInits.lookup(VD->getCanonicalDecl()); |
3002 | 0 | if (InitFuncToUse) |
3003 | 0 | Init = llvm::GlobalAlias::create(Var->getLinkage(), InitFnName.str(), |
3004 | 0 | InitFuncToUse); |
3005 | 0 | } else { |
3006 | | // Emit a weak global function referring to the initialization function. |
3007 | | // This function will not exist if the TU defining the thread_local |
3008 | | // variable in question does not need any dynamic initialization for |
3009 | | // its thread_local variables. |
3010 | 0 | Init = llvm::Function::Create(InitFnTy, |
3011 | 0 | llvm::GlobalVariable::ExternalWeakLinkage, |
3012 | 0 | InitFnName.str(), &CGM.getModule()); |
3013 | 0 | const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
3014 | 0 | CGM.SetLLVMFunctionAttributes( |
3015 | 0 | GlobalDecl(), FI, cast<llvm::Function>(Init), /*IsThunk=*/false); |
3016 | 0 | } |
3017 | |
|
3018 | 0 | if (Init) { |
3019 | 0 | Init->setVisibility(Var->getVisibility()); |
3020 | | // Don't mark an extern_weak function DSO local on windows. |
3021 | 0 | if (!CGM.getTriple().isOSWindows() || !Init->hasExternalWeakLinkage()) |
3022 | 0 | Init->setDSOLocal(Var->isDSOLocal()); |
3023 | 0 | } |
3024 | |
|
3025 | 0 | llvm::LLVMContext &Context = CGM.getModule().getContext(); |
3026 | | |
3027 | | // The linker on AIX is not happy with missing weak symbols. However, |
3028 | | // other TUs will not know whether the initialization routine exists |
3029 | | // so create an empty, init function to satisfy the linker. |
3030 | | // This is needed whenever a thread wrapper function is not used, and |
3031 | | // also when the symbol is weak. |
3032 | 0 | if (CGM.getTriple().isOSAIX() && VD->hasDefinition() && |
3033 | 0 | isEmittedWithConstantInitializer(VD, true) && |
3034 | 0 | !mayNeedDestruction(VD)) { |
3035 | | // Init should be null. If it were non-null, then the logic above would |
3036 | | // either be defining the function to be an alias or declaring the |
3037 | | // function with the expectation that the definition of the variable |
3038 | | // is elsewhere. |
3039 | 0 | assert(Init == nullptr && "Expected Init to be null."); |
3040 | | |
3041 | 0 | llvm::Function *Func = llvm::Function::Create( |
3042 | 0 | InitFnTy, Var->getLinkage(), InitFnName.str(), &CGM.getModule()); |
3043 | 0 | const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
3044 | 0 | CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, |
3045 | 0 | cast<llvm::Function>(Func), |
3046 | 0 | /*IsThunk=*/false); |
3047 | | // Create a function body that just returns |
3048 | 0 | llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Func); |
3049 | 0 | CGBuilderTy Builder(CGM, Entry); |
3050 | 0 | Builder.CreateRetVoid(); |
3051 | 0 | } |
3052 | | |
3053 | 0 | llvm::BasicBlock *Entry = llvm::BasicBlock::Create(Context, "", Wrapper); |
3054 | 0 | CGBuilderTy Builder(CGM, Entry); |
3055 | 0 | if (HasConstantInitialization) { |
3056 | | // No dynamic initialization to invoke. |
3057 | 0 | } else if (InitIsInitFunc) { |
3058 | 0 | if (Init) { |
3059 | 0 | llvm::CallInst *CallVal = Builder.CreateCall(InitFnTy, Init); |
3060 | 0 | if (isThreadWrapperReplaceable(VD, CGM)) { |
3061 | 0 | CallVal->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); |
3062 | 0 | llvm::Function *Fn = |
3063 | 0 | cast<llvm::Function>(cast<llvm::GlobalAlias>(Init)->getAliasee()); |
3064 | 0 | Fn->setCallingConv(llvm::CallingConv::CXX_FAST_TLS); |
3065 | 0 | } |
3066 | 0 | } |
3067 | 0 | } else if (CGM.getTriple().isOSAIX()) { |
3068 | | // On AIX, except if constinit and also neither of class type or of |
3069 | | // (possibly multi-dimensional) array of class type, thread_local vars |
3070 | | // will have init routines regardless of whether they are |
3071 | | // const-initialized. Since the routine is guaranteed to exist, we can |
3072 | | // unconditionally call it without testing for its existance. This |
3073 | | // avoids potentially unresolved weak symbols which the AIX linker |
3074 | | // isn't happy with. |
3075 | 0 | Builder.CreateCall(InitFnTy, Init); |
3076 | 0 | } else { |
3077 | | // Don't know whether we have an init function. Call it if it exists. |
3078 | 0 | llvm::Value *Have = Builder.CreateIsNotNull(Init); |
3079 | 0 | llvm::BasicBlock *InitBB = llvm::BasicBlock::Create(Context, "", Wrapper); |
3080 | 0 | llvm::BasicBlock *ExitBB = llvm::BasicBlock::Create(Context, "", Wrapper); |
3081 | 0 | Builder.CreateCondBr(Have, InitBB, ExitBB); |
3082 | |
|
3083 | 0 | Builder.SetInsertPoint(InitBB); |
3084 | 0 | Builder.CreateCall(InitFnTy, Init); |
3085 | 0 | Builder.CreateBr(ExitBB); |
3086 | |
|
3087 | 0 | Builder.SetInsertPoint(ExitBB); |
3088 | 0 | } |
3089 | | |
3090 | | // For a reference, the result of the wrapper function is a pointer to |
3091 | | // the referenced object. |
3092 | 0 | llvm::Value *Val = Builder.CreateThreadLocalAddress(Var); |
3093 | |
|
3094 | 0 | if (VD->getType()->isReferenceType()) { |
3095 | 0 | CharUnits Align = CGM.getContext().getDeclAlign(VD); |
3096 | 0 | Val = Builder.CreateAlignedLoad(Var->getValueType(), Val, Align); |
3097 | 0 | } |
3098 | |
|
3099 | 0 | Builder.CreateRet(Val); |
3100 | 0 | } |
3101 | 0 | } |
3102 | | |
3103 | | LValue ItaniumCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, |
3104 | | const VarDecl *VD, |
3105 | 0 | QualType LValType) { |
3106 | 0 | llvm::Value *Val = CGF.CGM.GetAddrOfGlobalVar(VD); |
3107 | 0 | llvm::Function *Wrapper = getOrCreateThreadLocalWrapper(VD, Val); |
3108 | |
|
3109 | 0 | llvm::CallInst *CallVal = CGF.Builder.CreateCall(Wrapper); |
3110 | 0 | CallVal->setCallingConv(Wrapper->getCallingConv()); |
3111 | |
|
3112 | 0 | LValue LV; |
3113 | 0 | if (VD->getType()->isReferenceType()) |
3114 | 0 | LV = CGF.MakeNaturalAlignAddrLValue(CallVal, LValType); |
3115 | 0 | else |
3116 | 0 | LV = CGF.MakeAddrLValue(CallVal, LValType, |
3117 | 0 | CGF.getContext().getDeclAlign(VD)); |
3118 | | // FIXME: need setObjCGCLValueClass? |
3119 | 0 | return LV; |
3120 | 0 | } |
3121 | | |
3122 | | /// Return whether the given global decl needs a VTT parameter, which it does |
3123 | | /// if it's a base constructor or destructor with virtual bases. |
3124 | 0 | bool ItaniumCXXABI::NeedsVTTParameter(GlobalDecl GD) { |
3125 | 0 | const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); |
3126 | | |
3127 | | // We don't have any virtual bases, just return early. |
3128 | 0 | if (!MD->getParent()->getNumVBases()) |
3129 | 0 | return false; |
3130 | | |
3131 | | // Check if we have a base constructor. |
3132 | 0 | if (isa<CXXConstructorDecl>(MD) && GD.getCtorType() == Ctor_Base) |
3133 | 0 | return true; |
3134 | | |
3135 | | // Check if we have a base destructor. |
3136 | 0 | if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) |
3137 | 0 | return true; |
3138 | | |
3139 | 0 | return false; |
3140 | 0 | } |
3141 | | |
3142 | | namespace { |
3143 | | class ItaniumRTTIBuilder { |
3144 | | CodeGenModule &CGM; // Per-module state. |
3145 | | llvm::LLVMContext &VMContext; |
3146 | | const ItaniumCXXABI &CXXABI; // Per-module state. |
3147 | | |
3148 | | /// Fields - The fields of the RTTI descriptor currently being built. |
3149 | | SmallVector<llvm::Constant *, 16> Fields; |
3150 | | |
3151 | | /// GetAddrOfTypeName - Returns the mangled type name of the given type. |
3152 | | llvm::GlobalVariable * |
3153 | | GetAddrOfTypeName(QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage); |
3154 | | |
3155 | | /// GetAddrOfExternalRTTIDescriptor - Returns the constant for the RTTI |
3156 | | /// descriptor of the given type. |
3157 | | llvm::Constant *GetAddrOfExternalRTTIDescriptor(QualType Ty); |
3158 | | |
3159 | | /// BuildVTablePointer - Build the vtable pointer for the given type. |
3160 | | void BuildVTablePointer(const Type *Ty); |
3161 | | |
3162 | | /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single |
3163 | | /// inheritance, according to the Itanium C++ ABI, 2.9.5p6b. |
3164 | | void BuildSIClassTypeInfo(const CXXRecordDecl *RD); |
3165 | | |
3166 | | /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for |
3167 | | /// classes with bases that do not satisfy the abi::__si_class_type_info |
3168 | | /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. |
3169 | | void BuildVMIClassTypeInfo(const CXXRecordDecl *RD); |
3170 | | |
3171 | | /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, used |
3172 | | /// for pointer types. |
3173 | | void BuildPointerTypeInfo(QualType PointeeTy); |
3174 | | |
3175 | | /// BuildObjCObjectTypeInfo - Build the appropriate kind of |
3176 | | /// type_info for an object type. |
3177 | | void BuildObjCObjectTypeInfo(const ObjCObjectType *Ty); |
3178 | | |
3179 | | /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info |
3180 | | /// struct, used for member pointer types. |
3181 | | void BuildPointerToMemberTypeInfo(const MemberPointerType *Ty); |
3182 | | |
3183 | | public: |
3184 | | ItaniumRTTIBuilder(const ItaniumCXXABI &ABI) |
3185 | 0 | : CGM(ABI.CGM), VMContext(CGM.getModule().getContext()), CXXABI(ABI) {} |
3186 | | |
3187 | | // Pointer type info flags. |
3188 | | enum { |
3189 | | /// PTI_Const - Type has const qualifier. |
3190 | | PTI_Const = 0x1, |
3191 | | |
3192 | | /// PTI_Volatile - Type has volatile qualifier. |
3193 | | PTI_Volatile = 0x2, |
3194 | | |
3195 | | /// PTI_Restrict - Type has restrict qualifier. |
3196 | | PTI_Restrict = 0x4, |
3197 | | |
3198 | | /// PTI_Incomplete - Type is incomplete. |
3199 | | PTI_Incomplete = 0x8, |
3200 | | |
3201 | | /// PTI_ContainingClassIncomplete - Containing class is incomplete. |
3202 | | /// (in pointer to member). |
3203 | | PTI_ContainingClassIncomplete = 0x10, |
3204 | | |
3205 | | /// PTI_TransactionSafe - Pointee is transaction_safe function (C++ TM TS). |
3206 | | //PTI_TransactionSafe = 0x20, |
3207 | | |
3208 | | /// PTI_Noexcept - Pointee is noexcept function (C++1z). |
3209 | | PTI_Noexcept = 0x40, |
3210 | | }; |
3211 | | |
3212 | | // VMI type info flags. |
3213 | | enum { |
3214 | | /// VMI_NonDiamondRepeat - Class has non-diamond repeated inheritance. |
3215 | | VMI_NonDiamondRepeat = 0x1, |
3216 | | |
3217 | | /// VMI_DiamondShaped - Class is diamond shaped. |
3218 | | VMI_DiamondShaped = 0x2 |
3219 | | }; |
3220 | | |
3221 | | // Base class type info flags. |
3222 | | enum { |
3223 | | /// BCTI_Virtual - Base class is virtual. |
3224 | | BCTI_Virtual = 0x1, |
3225 | | |
3226 | | /// BCTI_Public - Base class is public. |
3227 | | BCTI_Public = 0x2 |
3228 | | }; |
3229 | | |
3230 | | /// BuildTypeInfo - Build the RTTI type info struct for the given type, or |
3231 | | /// link to an existing RTTI descriptor if one already exists. |
3232 | | llvm::Constant *BuildTypeInfo(QualType Ty); |
3233 | | |
3234 | | /// BuildTypeInfo - Build the RTTI type info struct for the given type. |
3235 | | llvm::Constant *BuildTypeInfo( |
3236 | | QualType Ty, |
3237 | | llvm::GlobalVariable::LinkageTypes Linkage, |
3238 | | llvm::GlobalValue::VisibilityTypes Visibility, |
3239 | | llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass); |
3240 | | }; |
3241 | | } |
3242 | | |
3243 | | llvm::GlobalVariable *ItaniumRTTIBuilder::GetAddrOfTypeName( |
3244 | 0 | QualType Ty, llvm::GlobalVariable::LinkageTypes Linkage) { |
3245 | 0 | SmallString<256> Name; |
3246 | 0 | llvm::raw_svector_ostream Out(Name); |
3247 | 0 | CGM.getCXXABI().getMangleContext().mangleCXXRTTIName(Ty, Out); |
3248 | | |
3249 | | // We know that the mangled name of the type starts at index 4 of the |
3250 | | // mangled name of the typename, so we can just index into it in order to |
3251 | | // get the mangled name of the type. |
3252 | 0 | llvm::Constant *Init = llvm::ConstantDataArray::getString(VMContext, |
3253 | 0 | Name.substr(4)); |
3254 | 0 | auto Align = CGM.getContext().getTypeAlignInChars(CGM.getContext().CharTy); |
3255 | |
|
3256 | 0 | llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable( |
3257 | 0 | Name, Init->getType(), Linkage, Align.getAsAlign()); |
3258 | |
|
3259 | 0 | GV->setInitializer(Init); |
3260 | |
|
3261 | 0 | return GV; |
3262 | 0 | } |
3263 | | |
3264 | | llvm::Constant * |
3265 | 0 | ItaniumRTTIBuilder::GetAddrOfExternalRTTIDescriptor(QualType Ty) { |
3266 | | // Mangle the RTTI name. |
3267 | 0 | SmallString<256> Name; |
3268 | 0 | llvm::raw_svector_ostream Out(Name); |
3269 | 0 | CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); |
3270 | | |
3271 | | // Look for an existing global. |
3272 | 0 | llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name); |
3273 | |
|
3274 | 0 | if (!GV) { |
3275 | | // Create a new global variable. |
3276 | | // Note for the future: If we would ever like to do deferred emission of |
3277 | | // RTTI, check if emitting vtables opportunistically need any adjustment. |
3278 | |
|
3279 | 0 | GV = new llvm::GlobalVariable( |
3280 | 0 | CGM.getModule(), CGM.GlobalsInt8PtrTy, |
3281 | 0 | /*isConstant=*/true, llvm::GlobalValue::ExternalLinkage, nullptr, Name); |
3282 | 0 | const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
3283 | 0 | CGM.setGVProperties(GV, RD); |
3284 | | // Import the typeinfo symbol when all non-inline virtual methods are |
3285 | | // imported. |
3286 | 0 | if (CGM.getTarget().hasPS4DLLImportExport()) { |
3287 | 0 | if (RD && CXXRecordAllNonInlineVirtualsHaveAttr<DLLImportAttr>(RD)) { |
3288 | 0 | GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); |
3289 | 0 | CGM.setDSOLocal(GV); |
3290 | 0 | } |
3291 | 0 | } |
3292 | 0 | } |
3293 | |
|
3294 | 0 | return GV; |
3295 | 0 | } |
3296 | | |
3297 | | /// TypeInfoIsInStandardLibrary - Given a builtin type, returns whether the type |
3298 | | /// info for that type is defined in the standard library. |
3299 | 0 | static bool TypeInfoIsInStandardLibrary(const BuiltinType *Ty) { |
3300 | | // Itanium C++ ABI 2.9.2: |
3301 | | // Basic type information (e.g. for "int", "bool", etc.) will be kept in |
3302 | | // the run-time support library. Specifically, the run-time support |
3303 | | // library should contain type_info objects for the types X, X* and |
3304 | | // X const*, for every X in: void, std::nullptr_t, bool, wchar_t, char, |
3305 | | // unsigned char, signed char, short, unsigned short, int, unsigned int, |
3306 | | // long, unsigned long, long long, unsigned long long, float, double, |
3307 | | // long double, char16_t, char32_t, and the IEEE 754r decimal and |
3308 | | // half-precision floating point types. |
3309 | | // |
3310 | | // GCC also emits RTTI for __int128. |
3311 | | // FIXME: We do not emit RTTI information for decimal types here. |
3312 | | |
3313 | | // Types added here must also be added to EmitFundamentalRTTIDescriptors. |
3314 | 0 | switch (Ty->getKind()) { |
3315 | 0 | case BuiltinType::Void: |
3316 | 0 | case BuiltinType::NullPtr: |
3317 | 0 | case BuiltinType::Bool: |
3318 | 0 | case BuiltinType::WChar_S: |
3319 | 0 | case BuiltinType::WChar_U: |
3320 | 0 | case BuiltinType::Char_U: |
3321 | 0 | case BuiltinType::Char_S: |
3322 | 0 | case BuiltinType::UChar: |
3323 | 0 | case BuiltinType::SChar: |
3324 | 0 | case BuiltinType::Short: |
3325 | 0 | case BuiltinType::UShort: |
3326 | 0 | case BuiltinType::Int: |
3327 | 0 | case BuiltinType::UInt: |
3328 | 0 | case BuiltinType::Long: |
3329 | 0 | case BuiltinType::ULong: |
3330 | 0 | case BuiltinType::LongLong: |
3331 | 0 | case BuiltinType::ULongLong: |
3332 | 0 | case BuiltinType::Half: |
3333 | 0 | case BuiltinType::Float: |
3334 | 0 | case BuiltinType::Double: |
3335 | 0 | case BuiltinType::LongDouble: |
3336 | 0 | case BuiltinType::Float16: |
3337 | 0 | case BuiltinType::Float128: |
3338 | 0 | case BuiltinType::Ibm128: |
3339 | 0 | case BuiltinType::Char8: |
3340 | 0 | case BuiltinType::Char16: |
3341 | 0 | case BuiltinType::Char32: |
3342 | 0 | case BuiltinType::Int128: |
3343 | 0 | case BuiltinType::UInt128: |
3344 | 0 | return true; |
3345 | | |
3346 | 0 | #define IMAGE_TYPE(ImgType, Id, SingletonId, Access, Suffix) \ |
3347 | 0 | case BuiltinType::Id: |
3348 | 0 | #include "clang/Basic/OpenCLImageTypes.def" |
3349 | 0 | #define EXT_OPAQUE_TYPE(ExtType, Id, Ext) \ |
3350 | 0 | case BuiltinType::Id: |
3351 | 0 | #include "clang/Basic/OpenCLExtensionTypes.def" |
3352 | 0 | case BuiltinType::OCLSampler: |
3353 | 0 | case BuiltinType::OCLEvent: |
3354 | 0 | case BuiltinType::OCLClkEvent: |
3355 | 0 | case BuiltinType::OCLQueue: |
3356 | 0 | case BuiltinType::OCLReserveID: |
3357 | 0 | #define SVE_TYPE(Name, Id, SingletonId) \ |
3358 | 0 | case BuiltinType::Id: |
3359 | 0 | #include "clang/Basic/AArch64SVEACLETypes.def" |
3360 | 0 | #define PPC_VECTOR_TYPE(Name, Id, Size) \ |
3361 | 0 | case BuiltinType::Id: |
3362 | 0 | #include "clang/Basic/PPCTypes.def" |
3363 | 0 | #define RVV_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
3364 | 0 | #include "clang/Basic/RISCVVTypes.def" |
3365 | 0 | #define WASM_TYPE(Name, Id, SingletonId) case BuiltinType::Id: |
3366 | 0 | #include "clang/Basic/WebAssemblyReferenceTypes.def" |
3367 | 0 | case BuiltinType::ShortAccum: |
3368 | 0 | case BuiltinType::Accum: |
3369 | 0 | case BuiltinType::LongAccum: |
3370 | 0 | case BuiltinType::UShortAccum: |
3371 | 0 | case BuiltinType::UAccum: |
3372 | 0 | case BuiltinType::ULongAccum: |
3373 | 0 | case BuiltinType::ShortFract: |
3374 | 0 | case BuiltinType::Fract: |
3375 | 0 | case BuiltinType::LongFract: |
3376 | 0 | case BuiltinType::UShortFract: |
3377 | 0 | case BuiltinType::UFract: |
3378 | 0 | case BuiltinType::ULongFract: |
3379 | 0 | case BuiltinType::SatShortAccum: |
3380 | 0 | case BuiltinType::SatAccum: |
3381 | 0 | case BuiltinType::SatLongAccum: |
3382 | 0 | case BuiltinType::SatUShortAccum: |
3383 | 0 | case BuiltinType::SatUAccum: |
3384 | 0 | case BuiltinType::SatULongAccum: |
3385 | 0 | case BuiltinType::SatShortFract: |
3386 | 0 | case BuiltinType::SatFract: |
3387 | 0 | case BuiltinType::SatLongFract: |
3388 | 0 | case BuiltinType::SatUShortFract: |
3389 | 0 | case BuiltinType::SatUFract: |
3390 | 0 | case BuiltinType::SatULongFract: |
3391 | 0 | case BuiltinType::BFloat16: |
3392 | 0 | return false; |
3393 | | |
3394 | 0 | case BuiltinType::Dependent: |
3395 | 0 | #define BUILTIN_TYPE(Id, SingletonId) |
3396 | 0 | #define PLACEHOLDER_TYPE(Id, SingletonId) \ |
3397 | 0 | case BuiltinType::Id: |
3398 | 0 | #include "clang/AST/BuiltinTypes.def" |
3399 | 0 | llvm_unreachable("asking for RRTI for a placeholder type!"); |
3400 | |
|
3401 | 0 | case BuiltinType::ObjCId: |
3402 | 0 | case BuiltinType::ObjCClass: |
3403 | 0 | case BuiltinType::ObjCSel: |
3404 | 0 | llvm_unreachable("FIXME: Objective-C types are unsupported!"); |
3405 | 0 | } |
3406 | | |
3407 | 0 | llvm_unreachable("Invalid BuiltinType Kind!"); |
3408 | 0 | } |
3409 | | |
3410 | 0 | static bool TypeInfoIsInStandardLibrary(const PointerType *PointerTy) { |
3411 | 0 | QualType PointeeTy = PointerTy->getPointeeType(); |
3412 | 0 | const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(PointeeTy); |
3413 | 0 | if (!BuiltinTy) |
3414 | 0 | return false; |
3415 | | |
3416 | | // Check the qualifiers. |
3417 | 0 | Qualifiers Quals = PointeeTy.getQualifiers(); |
3418 | 0 | Quals.removeConst(); |
3419 | |
|
3420 | 0 | if (!Quals.empty()) |
3421 | 0 | return false; |
3422 | | |
3423 | 0 | return TypeInfoIsInStandardLibrary(BuiltinTy); |
3424 | 0 | } |
3425 | | |
3426 | | /// IsStandardLibraryRTTIDescriptor - Returns whether the type |
3427 | | /// information for the given type exists in the standard library. |
3428 | 0 | static bool IsStandardLibraryRTTIDescriptor(QualType Ty) { |
3429 | | // Type info for builtin types is defined in the standard library. |
3430 | 0 | if (const BuiltinType *BuiltinTy = dyn_cast<BuiltinType>(Ty)) |
3431 | 0 | return TypeInfoIsInStandardLibrary(BuiltinTy); |
3432 | | |
3433 | | // Type info for some pointer types to builtin types is defined in the |
3434 | | // standard library. |
3435 | 0 | if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty)) |
3436 | 0 | return TypeInfoIsInStandardLibrary(PointerTy); |
3437 | | |
3438 | 0 | return false; |
3439 | 0 | } |
3440 | | |
3441 | | /// ShouldUseExternalRTTIDescriptor - Returns whether the type information for |
3442 | | /// the given type exists somewhere else, and that we should not emit the type |
3443 | | /// information in this translation unit. Assumes that it is not a |
3444 | | /// standard-library type. |
3445 | | static bool ShouldUseExternalRTTIDescriptor(CodeGenModule &CGM, |
3446 | 0 | QualType Ty) { |
3447 | 0 | ASTContext &Context = CGM.getContext(); |
3448 | | |
3449 | | // If RTTI is disabled, assume it might be disabled in the |
3450 | | // translation unit that defines any potential key function, too. |
3451 | 0 | if (!Context.getLangOpts().RTTI) return false; |
3452 | | |
3453 | 0 | if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { |
3454 | 0 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); |
3455 | 0 | if (!RD->hasDefinition()) |
3456 | 0 | return false; |
3457 | | |
3458 | 0 | if (!RD->isDynamicClass()) |
3459 | 0 | return false; |
3460 | | |
3461 | | // FIXME: this may need to be reconsidered if the key function |
3462 | | // changes. |
3463 | | // N.B. We must always emit the RTTI data ourselves if there exists a key |
3464 | | // function. |
3465 | 0 | bool IsDLLImport = RD->hasAttr<DLLImportAttr>(); |
3466 | | |
3467 | | // Don't import the RTTI but emit it locally. |
3468 | 0 | if (CGM.getTriple().isWindowsGNUEnvironment()) |
3469 | 0 | return false; |
3470 | | |
3471 | 0 | if (CGM.getVTables().isVTableExternal(RD)) { |
3472 | 0 | if (CGM.getTarget().hasPS4DLLImportExport()) |
3473 | 0 | return true; |
3474 | | |
3475 | 0 | return IsDLLImport && !CGM.getTriple().isWindowsItaniumEnvironment() |
3476 | 0 | ? false |
3477 | 0 | : true; |
3478 | 0 | } |
3479 | 0 | if (IsDLLImport) |
3480 | 0 | return true; |
3481 | 0 | } |
3482 | | |
3483 | 0 | return false; |
3484 | 0 | } |
3485 | | |
3486 | | /// IsIncompleteClassType - Returns whether the given record type is incomplete. |
3487 | 0 | static bool IsIncompleteClassType(const RecordType *RecordTy) { |
3488 | 0 | return !RecordTy->getDecl()->isCompleteDefinition(); |
3489 | 0 | } |
3490 | | |
3491 | | /// ContainsIncompleteClassType - Returns whether the given type contains an |
3492 | | /// incomplete class type. This is true if |
3493 | | /// |
3494 | | /// * The given type is an incomplete class type. |
3495 | | /// * The given type is a pointer type whose pointee type contains an |
3496 | | /// incomplete class type. |
3497 | | /// * The given type is a member pointer type whose class is an incomplete |
3498 | | /// class type. |
3499 | | /// * The given type is a member pointer type whoise pointee type contains an |
3500 | | /// incomplete class type. |
3501 | | /// is an indirect or direct pointer to an incomplete class type. |
3502 | 0 | static bool ContainsIncompleteClassType(QualType Ty) { |
3503 | 0 | if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { |
3504 | 0 | if (IsIncompleteClassType(RecordTy)) |
3505 | 0 | return true; |
3506 | 0 | } |
3507 | | |
3508 | 0 | if (const PointerType *PointerTy = dyn_cast<PointerType>(Ty)) |
3509 | 0 | return ContainsIncompleteClassType(PointerTy->getPointeeType()); |
3510 | | |
3511 | 0 | if (const MemberPointerType *MemberPointerTy = |
3512 | 0 | dyn_cast<MemberPointerType>(Ty)) { |
3513 | | // Check if the class type is incomplete. |
3514 | 0 | const RecordType *ClassType = cast<RecordType>(MemberPointerTy->getClass()); |
3515 | 0 | if (IsIncompleteClassType(ClassType)) |
3516 | 0 | return true; |
3517 | | |
3518 | 0 | return ContainsIncompleteClassType(MemberPointerTy->getPointeeType()); |
3519 | 0 | } |
3520 | | |
3521 | 0 | return false; |
3522 | 0 | } |
3523 | | |
3524 | | // CanUseSingleInheritance - Return whether the given record decl has a "single, |
3525 | | // public, non-virtual base at offset zero (i.e. the derived class is dynamic |
3526 | | // iff the base is)", according to Itanium C++ ABI, 2.95p6b. |
3527 | 0 | static bool CanUseSingleInheritance(const CXXRecordDecl *RD) { |
3528 | | // Check the number of bases. |
3529 | 0 | if (RD->getNumBases() != 1) |
3530 | 0 | return false; |
3531 | | |
3532 | | // Get the base. |
3533 | 0 | CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(); |
3534 | | |
3535 | | // Check that the base is not virtual. |
3536 | 0 | if (Base->isVirtual()) |
3537 | 0 | return false; |
3538 | | |
3539 | | // Check that the base is public. |
3540 | 0 | if (Base->getAccessSpecifier() != AS_public) |
3541 | 0 | return false; |
3542 | | |
3543 | | // Check that the class is dynamic iff the base is. |
3544 | 0 | auto *BaseDecl = |
3545 | 0 | cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); |
3546 | 0 | if (!BaseDecl->isEmpty() && |
3547 | 0 | BaseDecl->isDynamicClass() != RD->isDynamicClass()) |
3548 | 0 | return false; |
3549 | | |
3550 | 0 | return true; |
3551 | 0 | } |
3552 | | |
3553 | 0 | void ItaniumRTTIBuilder::BuildVTablePointer(const Type *Ty) { |
3554 | | // abi::__class_type_info. |
3555 | 0 | static const char * const ClassTypeInfo = |
3556 | 0 | "_ZTVN10__cxxabiv117__class_type_infoE"; |
3557 | | // abi::__si_class_type_info. |
3558 | 0 | static const char * const SIClassTypeInfo = |
3559 | 0 | "_ZTVN10__cxxabiv120__si_class_type_infoE"; |
3560 | | // abi::__vmi_class_type_info. |
3561 | 0 | static const char * const VMIClassTypeInfo = |
3562 | 0 | "_ZTVN10__cxxabiv121__vmi_class_type_infoE"; |
3563 | |
|
3564 | 0 | const char *VTableName = nullptr; |
3565 | |
|
3566 | 0 | switch (Ty->getTypeClass()) { |
3567 | 0 | #define TYPE(Class, Base) |
3568 | 0 | #define ABSTRACT_TYPE(Class, Base) |
3569 | 0 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
3570 | 0 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
3571 | 0 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
3572 | 0 | #include "clang/AST/TypeNodes.inc" |
3573 | 0 | llvm_unreachable("Non-canonical and dependent types shouldn't get here"); |
3574 | |
|
3575 | 0 | case Type::LValueReference: |
3576 | 0 | case Type::RValueReference: |
3577 | 0 | llvm_unreachable("References shouldn't get here"); |
3578 | |
|
3579 | 0 | case Type::Auto: |
3580 | 0 | case Type::DeducedTemplateSpecialization: |
3581 | 0 | llvm_unreachable("Undeduced type shouldn't get here"); |
3582 | |
|
3583 | 0 | case Type::Pipe: |
3584 | 0 | llvm_unreachable("Pipe types shouldn't get here"); |
3585 | |
|
3586 | 0 | case Type::Builtin: |
3587 | 0 | case Type::BitInt: |
3588 | | // GCC treats vector and complex types as fundamental types. |
3589 | 0 | case Type::Vector: |
3590 | 0 | case Type::ExtVector: |
3591 | 0 | case Type::ConstantMatrix: |
3592 | 0 | case Type::Complex: |
3593 | 0 | case Type::Atomic: |
3594 | | // FIXME: GCC treats block pointers as fundamental types?! |
3595 | 0 | case Type::BlockPointer: |
3596 | | // abi::__fundamental_type_info. |
3597 | 0 | VTableName = "_ZTVN10__cxxabiv123__fundamental_type_infoE"; |
3598 | 0 | break; |
3599 | | |
3600 | 0 | case Type::ConstantArray: |
3601 | 0 | case Type::IncompleteArray: |
3602 | 0 | case Type::VariableArray: |
3603 | | // abi::__array_type_info. |
3604 | 0 | VTableName = "_ZTVN10__cxxabiv117__array_type_infoE"; |
3605 | 0 | break; |
3606 | | |
3607 | 0 | case Type::FunctionNoProto: |
3608 | 0 | case Type::FunctionProto: |
3609 | | // abi::__function_type_info. |
3610 | 0 | VTableName = "_ZTVN10__cxxabiv120__function_type_infoE"; |
3611 | 0 | break; |
3612 | | |
3613 | 0 | case Type::Enum: |
3614 | | // abi::__enum_type_info. |
3615 | 0 | VTableName = "_ZTVN10__cxxabiv116__enum_type_infoE"; |
3616 | 0 | break; |
3617 | | |
3618 | 0 | case Type::Record: { |
3619 | 0 | const CXXRecordDecl *RD = |
3620 | 0 | cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); |
3621 | |
|
3622 | 0 | if (!RD->hasDefinition() || !RD->getNumBases()) { |
3623 | 0 | VTableName = ClassTypeInfo; |
3624 | 0 | } else if (CanUseSingleInheritance(RD)) { |
3625 | 0 | VTableName = SIClassTypeInfo; |
3626 | 0 | } else { |
3627 | 0 | VTableName = VMIClassTypeInfo; |
3628 | 0 | } |
3629 | |
|
3630 | 0 | break; |
3631 | 0 | } |
3632 | | |
3633 | 0 | case Type::ObjCObject: |
3634 | | // Ignore protocol qualifiers. |
3635 | 0 | Ty = cast<ObjCObjectType>(Ty)->getBaseType().getTypePtr(); |
3636 | | |
3637 | | // Handle id and Class. |
3638 | 0 | if (isa<BuiltinType>(Ty)) { |
3639 | 0 | VTableName = ClassTypeInfo; |
3640 | 0 | break; |
3641 | 0 | } |
3642 | | |
3643 | 0 | assert(isa<ObjCInterfaceType>(Ty)); |
3644 | 0 | [[fallthrough]]; |
3645 | | |
3646 | 0 | case Type::ObjCInterface: |
3647 | 0 | if (cast<ObjCInterfaceType>(Ty)->getDecl()->getSuperClass()) { |
3648 | 0 | VTableName = SIClassTypeInfo; |
3649 | 0 | } else { |
3650 | 0 | VTableName = ClassTypeInfo; |
3651 | 0 | } |
3652 | 0 | break; |
3653 | | |
3654 | 0 | case Type::ObjCObjectPointer: |
3655 | 0 | case Type::Pointer: |
3656 | | // abi::__pointer_type_info. |
3657 | 0 | VTableName = "_ZTVN10__cxxabiv119__pointer_type_infoE"; |
3658 | 0 | break; |
3659 | | |
3660 | 0 | case Type::MemberPointer: |
3661 | | // abi::__pointer_to_member_type_info. |
3662 | 0 | VTableName = "_ZTVN10__cxxabiv129__pointer_to_member_type_infoE"; |
3663 | 0 | break; |
3664 | 0 | } |
3665 | | |
3666 | 0 | llvm::Constant *VTable = nullptr; |
3667 | | |
3668 | | // Check if the alias exists. If it doesn't, then get or create the global. |
3669 | 0 | if (CGM.getItaniumVTableContext().isRelativeLayout()) |
3670 | 0 | VTable = CGM.getModule().getNamedAlias(VTableName); |
3671 | 0 | if (!VTable) { |
3672 | 0 | llvm::Type *Ty = llvm::ArrayType::get(CGM.GlobalsInt8PtrTy, 0); |
3673 | 0 | VTable = CGM.getModule().getOrInsertGlobal(VTableName, Ty); |
3674 | 0 | } |
3675 | |
|
3676 | 0 | CGM.setDSOLocal(cast<llvm::GlobalValue>(VTable->stripPointerCasts())); |
3677 | |
|
3678 | 0 | llvm::Type *PtrDiffTy = |
3679 | 0 | CGM.getTypes().ConvertType(CGM.getContext().getPointerDiffType()); |
3680 | | |
3681 | | // The vtable address point is 2. |
3682 | 0 | if (CGM.getItaniumVTableContext().isRelativeLayout()) { |
3683 | | // The vtable address point is 8 bytes after its start: |
3684 | | // 4 for the offset to top + 4 for the relative offset to rtti. |
3685 | 0 | llvm::Constant *Eight = llvm::ConstantInt::get(CGM.Int32Ty, 8); |
3686 | 0 | VTable = |
3687 | 0 | llvm::ConstantExpr::getInBoundsGetElementPtr(CGM.Int8Ty, VTable, Eight); |
3688 | 0 | } else { |
3689 | 0 | llvm::Constant *Two = llvm::ConstantInt::get(PtrDiffTy, 2); |
3690 | 0 | VTable = llvm::ConstantExpr::getInBoundsGetElementPtr(CGM.GlobalsInt8PtrTy, |
3691 | 0 | VTable, Two); |
3692 | 0 | } |
3693 | |
|
3694 | 0 | Fields.push_back(VTable); |
3695 | 0 | } |
3696 | | |
3697 | | /// Return the linkage that the type info and type info name constants |
3698 | | /// should have for the given type. |
3699 | | static llvm::GlobalVariable::LinkageTypes getTypeInfoLinkage(CodeGenModule &CGM, |
3700 | 0 | QualType Ty) { |
3701 | | // Itanium C++ ABI 2.9.5p7: |
3702 | | // In addition, it and all of the intermediate abi::__pointer_type_info |
3703 | | // structs in the chain down to the abi::__class_type_info for the |
3704 | | // incomplete class type must be prevented from resolving to the |
3705 | | // corresponding type_info structs for the complete class type, possibly |
3706 | | // by making them local static objects. Finally, a dummy class RTTI is |
3707 | | // generated for the incomplete type that will not resolve to the final |
3708 | | // complete class RTTI (because the latter need not exist), possibly by |
3709 | | // making it a local static object. |
3710 | 0 | if (ContainsIncompleteClassType(Ty)) |
3711 | 0 | return llvm::GlobalValue::InternalLinkage; |
3712 | | |
3713 | 0 | switch (Ty->getLinkage()) { |
3714 | 0 | case Linkage::Invalid: |
3715 | 0 | llvm_unreachable("Linkage hasn't been computed!"); |
3716 | |
|
3717 | 0 | case Linkage::None: |
3718 | 0 | case Linkage::Internal: |
3719 | 0 | case Linkage::UniqueExternal: |
3720 | 0 | return llvm::GlobalValue::InternalLinkage; |
3721 | | |
3722 | 0 | case Linkage::VisibleNone: |
3723 | 0 | case Linkage::Module: |
3724 | 0 | case Linkage::External: |
3725 | | // RTTI is not enabled, which means that this type info struct is going |
3726 | | // to be used for exception handling. Give it linkonce_odr linkage. |
3727 | 0 | if (!CGM.getLangOpts().RTTI) |
3728 | 0 | return llvm::GlobalValue::LinkOnceODRLinkage; |
3729 | | |
3730 | 0 | if (const RecordType *Record = dyn_cast<RecordType>(Ty)) { |
3731 | 0 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(Record->getDecl()); |
3732 | 0 | if (RD->hasAttr<WeakAttr>()) |
3733 | 0 | return llvm::GlobalValue::WeakODRLinkage; |
3734 | 0 | if (CGM.getTriple().isWindowsItaniumEnvironment()) |
3735 | 0 | if (RD->hasAttr<DLLImportAttr>() && |
3736 | 0 | ShouldUseExternalRTTIDescriptor(CGM, Ty)) |
3737 | 0 | return llvm::GlobalValue::ExternalLinkage; |
3738 | | // MinGW always uses LinkOnceODRLinkage for type info. |
3739 | 0 | if (RD->isDynamicClass() && |
3740 | 0 | !CGM.getContext() |
3741 | 0 | .getTargetInfo() |
3742 | 0 | .getTriple() |
3743 | 0 | .isWindowsGNUEnvironment()) |
3744 | 0 | return CGM.getVTableLinkage(RD); |
3745 | 0 | } |
3746 | | |
3747 | 0 | return llvm::GlobalValue::LinkOnceODRLinkage; |
3748 | 0 | } |
3749 | | |
3750 | 0 | llvm_unreachable("Invalid linkage!"); |
3751 | 0 | } |
3752 | | |
3753 | 0 | llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo(QualType Ty) { |
3754 | | // We want to operate on the canonical type. |
3755 | 0 | Ty = Ty.getCanonicalType(); |
3756 | | |
3757 | | // Check if we've already emitted an RTTI descriptor for this type. |
3758 | 0 | SmallString<256> Name; |
3759 | 0 | llvm::raw_svector_ostream Out(Name); |
3760 | 0 | CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); |
3761 | |
|
3762 | 0 | llvm::GlobalVariable *OldGV = CGM.getModule().getNamedGlobal(Name); |
3763 | 0 | if (OldGV && !OldGV->isDeclaration()) { |
3764 | 0 | assert(!OldGV->hasAvailableExternallyLinkage() && |
3765 | 0 | "available_externally typeinfos not yet implemented"); |
3766 | | |
3767 | 0 | return OldGV; |
3768 | 0 | } |
3769 | | |
3770 | | // Check if there is already an external RTTI descriptor for this type. |
3771 | 0 | if (IsStandardLibraryRTTIDescriptor(Ty) || |
3772 | 0 | ShouldUseExternalRTTIDescriptor(CGM, Ty)) |
3773 | 0 | return GetAddrOfExternalRTTIDescriptor(Ty); |
3774 | | |
3775 | | // Emit the standard library with external linkage. |
3776 | 0 | llvm::GlobalVariable::LinkageTypes Linkage = getTypeInfoLinkage(CGM, Ty); |
3777 | | |
3778 | | // Give the type_info object and name the formal visibility of the |
3779 | | // type itself. |
3780 | 0 | llvm::GlobalValue::VisibilityTypes llvmVisibility; |
3781 | 0 | if (llvm::GlobalValue::isLocalLinkage(Linkage)) |
3782 | | // If the linkage is local, only default visibility makes sense. |
3783 | 0 | llvmVisibility = llvm::GlobalValue::DefaultVisibility; |
3784 | 0 | else if (CXXABI.classifyRTTIUniqueness(Ty, Linkage) == |
3785 | 0 | ItaniumCXXABI::RUK_NonUniqueHidden) |
3786 | 0 | llvmVisibility = llvm::GlobalValue::HiddenVisibility; |
3787 | 0 | else |
3788 | 0 | llvmVisibility = CodeGenModule::GetLLVMVisibility(Ty->getVisibility()); |
3789 | |
|
3790 | 0 | llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass = |
3791 | 0 | llvm::GlobalValue::DefaultStorageClass; |
3792 | 0 | if (auto RD = Ty->getAsCXXRecordDecl()) { |
3793 | 0 | if ((CGM.getTriple().isWindowsItaniumEnvironment() && |
3794 | 0 | RD->hasAttr<DLLExportAttr>()) || |
3795 | 0 | (CGM.shouldMapVisibilityToDLLExport(RD) && |
3796 | 0 | !llvm::GlobalValue::isLocalLinkage(Linkage) && |
3797 | 0 | llvmVisibility == llvm::GlobalValue::DefaultVisibility)) |
3798 | 0 | DLLStorageClass = llvm::GlobalValue::DLLExportStorageClass; |
3799 | 0 | } |
3800 | 0 | return BuildTypeInfo(Ty, Linkage, llvmVisibility, DLLStorageClass); |
3801 | 0 | } |
3802 | | |
3803 | | llvm::Constant *ItaniumRTTIBuilder::BuildTypeInfo( |
3804 | | QualType Ty, |
3805 | | llvm::GlobalVariable::LinkageTypes Linkage, |
3806 | | llvm::GlobalValue::VisibilityTypes Visibility, |
3807 | 0 | llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass) { |
3808 | | // Add the vtable pointer. |
3809 | 0 | BuildVTablePointer(cast<Type>(Ty)); |
3810 | | |
3811 | | // And the name. |
3812 | 0 | llvm::GlobalVariable *TypeName = GetAddrOfTypeName(Ty, Linkage); |
3813 | 0 | llvm::Constant *TypeNameField; |
3814 | | |
3815 | | // If we're supposed to demote the visibility, be sure to set a flag |
3816 | | // to use a string comparison for type_info comparisons. |
3817 | 0 | ItaniumCXXABI::RTTIUniquenessKind RTTIUniqueness = |
3818 | 0 | CXXABI.classifyRTTIUniqueness(Ty, Linkage); |
3819 | 0 | if (RTTIUniqueness != ItaniumCXXABI::RUK_Unique) { |
3820 | | // The flag is the sign bit, which on ARM64 is defined to be clear |
3821 | | // for global pointers. This is very ARM64-specific. |
3822 | 0 | TypeNameField = llvm::ConstantExpr::getPtrToInt(TypeName, CGM.Int64Ty); |
3823 | 0 | llvm::Constant *flag = |
3824 | 0 | llvm::ConstantInt::get(CGM.Int64Ty, ((uint64_t)1) << 63); |
3825 | 0 | TypeNameField = llvm::ConstantExpr::getAdd(TypeNameField, flag); |
3826 | 0 | TypeNameField = |
3827 | 0 | llvm::ConstantExpr::getIntToPtr(TypeNameField, CGM.GlobalsInt8PtrTy); |
3828 | 0 | } else { |
3829 | 0 | TypeNameField = TypeName; |
3830 | 0 | } |
3831 | 0 | Fields.push_back(TypeNameField); |
3832 | |
|
3833 | 0 | switch (Ty->getTypeClass()) { |
3834 | 0 | #define TYPE(Class, Base) |
3835 | 0 | #define ABSTRACT_TYPE(Class, Base) |
3836 | 0 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
3837 | 0 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
3838 | 0 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
3839 | 0 | #include "clang/AST/TypeNodes.inc" |
3840 | 0 | llvm_unreachable("Non-canonical and dependent types shouldn't get here"); |
3841 | | |
3842 | | // GCC treats vector types as fundamental types. |
3843 | 0 | case Type::Builtin: |
3844 | 0 | case Type::Vector: |
3845 | 0 | case Type::ExtVector: |
3846 | 0 | case Type::ConstantMatrix: |
3847 | 0 | case Type::Complex: |
3848 | 0 | case Type::BlockPointer: |
3849 | | // Itanium C++ ABI 2.9.5p4: |
3850 | | // abi::__fundamental_type_info adds no data members to std::type_info. |
3851 | 0 | break; |
3852 | | |
3853 | 0 | case Type::LValueReference: |
3854 | 0 | case Type::RValueReference: |
3855 | 0 | llvm_unreachable("References shouldn't get here"); |
3856 | |
|
3857 | 0 | case Type::Auto: |
3858 | 0 | case Type::DeducedTemplateSpecialization: |
3859 | 0 | llvm_unreachable("Undeduced type shouldn't get here"); |
3860 | |
|
3861 | 0 | case Type::Pipe: |
3862 | 0 | break; |
3863 | | |
3864 | 0 | case Type::BitInt: |
3865 | 0 | break; |
3866 | | |
3867 | 0 | case Type::ConstantArray: |
3868 | 0 | case Type::IncompleteArray: |
3869 | 0 | case Type::VariableArray: |
3870 | | // Itanium C++ ABI 2.9.5p5: |
3871 | | // abi::__array_type_info adds no data members to std::type_info. |
3872 | 0 | break; |
3873 | | |
3874 | 0 | case Type::FunctionNoProto: |
3875 | 0 | case Type::FunctionProto: |
3876 | | // Itanium C++ ABI 2.9.5p5: |
3877 | | // abi::__function_type_info adds no data members to std::type_info. |
3878 | 0 | break; |
3879 | | |
3880 | 0 | case Type::Enum: |
3881 | | // Itanium C++ ABI 2.9.5p5: |
3882 | | // abi::__enum_type_info adds no data members to std::type_info. |
3883 | 0 | break; |
3884 | | |
3885 | 0 | case Type::Record: { |
3886 | 0 | const CXXRecordDecl *RD = |
3887 | 0 | cast<CXXRecordDecl>(cast<RecordType>(Ty)->getDecl()); |
3888 | 0 | if (!RD->hasDefinition() || !RD->getNumBases()) { |
3889 | | // We don't need to emit any fields. |
3890 | 0 | break; |
3891 | 0 | } |
3892 | | |
3893 | 0 | if (CanUseSingleInheritance(RD)) |
3894 | 0 | BuildSIClassTypeInfo(RD); |
3895 | 0 | else |
3896 | 0 | BuildVMIClassTypeInfo(RD); |
3897 | |
|
3898 | 0 | break; |
3899 | 0 | } |
3900 | | |
3901 | 0 | case Type::ObjCObject: |
3902 | 0 | case Type::ObjCInterface: |
3903 | 0 | BuildObjCObjectTypeInfo(cast<ObjCObjectType>(Ty)); |
3904 | 0 | break; |
3905 | | |
3906 | 0 | case Type::ObjCObjectPointer: |
3907 | 0 | BuildPointerTypeInfo(cast<ObjCObjectPointerType>(Ty)->getPointeeType()); |
3908 | 0 | break; |
3909 | | |
3910 | 0 | case Type::Pointer: |
3911 | 0 | BuildPointerTypeInfo(cast<PointerType>(Ty)->getPointeeType()); |
3912 | 0 | break; |
3913 | | |
3914 | 0 | case Type::MemberPointer: |
3915 | 0 | BuildPointerToMemberTypeInfo(cast<MemberPointerType>(Ty)); |
3916 | 0 | break; |
3917 | | |
3918 | 0 | case Type::Atomic: |
3919 | | // No fields, at least for the moment. |
3920 | 0 | break; |
3921 | 0 | } |
3922 | | |
3923 | 0 | llvm::Constant *Init = llvm::ConstantStruct::getAnon(Fields); |
3924 | |
|
3925 | 0 | SmallString<256> Name; |
3926 | 0 | llvm::raw_svector_ostream Out(Name); |
3927 | 0 | CGM.getCXXABI().getMangleContext().mangleCXXRTTI(Ty, Out); |
3928 | 0 | llvm::Module &M = CGM.getModule(); |
3929 | 0 | llvm::GlobalVariable *OldGV = M.getNamedGlobal(Name); |
3930 | 0 | llvm::GlobalVariable *GV = |
3931 | 0 | new llvm::GlobalVariable(M, Init->getType(), |
3932 | 0 | /*isConstant=*/true, Linkage, Init, Name); |
3933 | | |
3934 | | // Export the typeinfo in the same circumstances as the vtable is exported. |
3935 | 0 | auto GVDLLStorageClass = DLLStorageClass; |
3936 | 0 | if (CGM.getTarget().hasPS4DLLImportExport()) { |
3937 | 0 | if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) { |
3938 | 0 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(RecordTy->getDecl()); |
3939 | 0 | if (RD->hasAttr<DLLExportAttr>() || |
3940 | 0 | CXXRecordAllNonInlineVirtualsHaveAttr<DLLExportAttr>(RD)) { |
3941 | 0 | GVDLLStorageClass = llvm::GlobalVariable::DLLExportStorageClass; |
3942 | 0 | } |
3943 | 0 | } |
3944 | 0 | } |
3945 | | |
3946 | | // If there's already an old global variable, replace it with the new one. |
3947 | 0 | if (OldGV) { |
3948 | 0 | GV->takeName(OldGV); |
3949 | 0 | OldGV->replaceAllUsesWith(GV); |
3950 | 0 | OldGV->eraseFromParent(); |
3951 | 0 | } |
3952 | |
|
3953 | 0 | if (CGM.supportsCOMDAT() && GV->isWeakForLinker()) |
3954 | 0 | GV->setComdat(M.getOrInsertComdat(GV->getName())); |
3955 | |
|
3956 | 0 | CharUnits Align = CGM.getContext().toCharUnitsFromBits( |
3957 | 0 | CGM.getTarget().getPointerAlign(CGM.GetGlobalVarAddressSpace(nullptr))); |
3958 | 0 | GV->setAlignment(Align.getAsAlign()); |
3959 | | |
3960 | | // The Itanium ABI specifies that type_info objects must be globally |
3961 | | // unique, with one exception: if the type is an incomplete class |
3962 | | // type or a (possibly indirect) pointer to one. That exception |
3963 | | // affects the general case of comparing type_info objects produced |
3964 | | // by the typeid operator, which is why the comparison operators on |
3965 | | // std::type_info generally use the type_info name pointers instead |
3966 | | // of the object addresses. However, the language's built-in uses |
3967 | | // of RTTI generally require class types to be complete, even when |
3968 | | // manipulating pointers to those class types. This allows the |
3969 | | // implementation of dynamic_cast to rely on address equality tests, |
3970 | | // which is much faster. |
3971 | | |
3972 | | // All of this is to say that it's important that both the type_info |
3973 | | // object and the type_info name be uniqued when weakly emitted. |
3974 | |
|
3975 | 0 | TypeName->setVisibility(Visibility); |
3976 | 0 | CGM.setDSOLocal(TypeName); |
3977 | |
|
3978 | 0 | GV->setVisibility(Visibility); |
3979 | 0 | CGM.setDSOLocal(GV); |
3980 | |
|
3981 | 0 | TypeName->setDLLStorageClass(DLLStorageClass); |
3982 | 0 | GV->setDLLStorageClass(CGM.getTarget().hasPS4DLLImportExport() |
3983 | 0 | ? GVDLLStorageClass |
3984 | 0 | : DLLStorageClass); |
3985 | |
|
3986 | 0 | TypeName->setPartition(CGM.getCodeGenOpts().SymbolPartition); |
3987 | 0 | GV->setPartition(CGM.getCodeGenOpts().SymbolPartition); |
3988 | |
|
3989 | 0 | return GV; |
3990 | 0 | } |
3991 | | |
3992 | | /// BuildObjCObjectTypeInfo - Build the appropriate kind of type_info |
3993 | | /// for the given Objective-C object type. |
3994 | 0 | void ItaniumRTTIBuilder::BuildObjCObjectTypeInfo(const ObjCObjectType *OT) { |
3995 | | // Drop qualifiers. |
3996 | 0 | const Type *T = OT->getBaseType().getTypePtr(); |
3997 | 0 | assert(isa<BuiltinType>(T) || isa<ObjCInterfaceType>(T)); |
3998 | | |
3999 | | // The builtin types are abi::__class_type_infos and don't require |
4000 | | // extra fields. |
4001 | 0 | if (isa<BuiltinType>(T)) return; |
4002 | | |
4003 | 0 | ObjCInterfaceDecl *Class = cast<ObjCInterfaceType>(T)->getDecl(); |
4004 | 0 | ObjCInterfaceDecl *Super = Class->getSuperClass(); |
4005 | | |
4006 | | // Root classes are also __class_type_info. |
4007 | 0 | if (!Super) return; |
4008 | | |
4009 | 0 | QualType SuperTy = CGM.getContext().getObjCInterfaceType(Super); |
4010 | | |
4011 | | // Everything else is single inheritance. |
4012 | 0 | llvm::Constant *BaseTypeInfo = |
4013 | 0 | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(SuperTy); |
4014 | 0 | Fields.push_back(BaseTypeInfo); |
4015 | 0 | } |
4016 | | |
4017 | | /// BuildSIClassTypeInfo - Build an abi::__si_class_type_info, used for single |
4018 | | /// inheritance, according to the Itanium C++ ABI, 2.95p6b. |
4019 | 0 | void ItaniumRTTIBuilder::BuildSIClassTypeInfo(const CXXRecordDecl *RD) { |
4020 | | // Itanium C++ ABI 2.9.5p6b: |
4021 | | // It adds to abi::__class_type_info a single member pointing to the |
4022 | | // type_info structure for the base type, |
4023 | 0 | llvm::Constant *BaseTypeInfo = |
4024 | 0 | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(RD->bases_begin()->getType()); |
4025 | 0 | Fields.push_back(BaseTypeInfo); |
4026 | 0 | } |
4027 | | |
4028 | | namespace { |
4029 | | /// SeenBases - Contains virtual and non-virtual bases seen when traversing |
4030 | | /// a class hierarchy. |
4031 | | struct SeenBases { |
4032 | | llvm::SmallPtrSet<const CXXRecordDecl *, 16> NonVirtualBases; |
4033 | | llvm::SmallPtrSet<const CXXRecordDecl *, 16> VirtualBases; |
4034 | | }; |
4035 | | } |
4036 | | |
4037 | | /// ComputeVMIClassTypeInfoFlags - Compute the value of the flags member in |
4038 | | /// abi::__vmi_class_type_info. |
4039 | | /// |
4040 | | static unsigned ComputeVMIClassTypeInfoFlags(const CXXBaseSpecifier *Base, |
4041 | 0 | SeenBases &Bases) { |
4042 | |
|
4043 | 0 | unsigned Flags = 0; |
4044 | |
|
4045 | 0 | auto *BaseDecl = |
4046 | 0 | cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl()); |
4047 | |
|
4048 | 0 | if (Base->isVirtual()) { |
4049 | | // Mark the virtual base as seen. |
4050 | 0 | if (!Bases.VirtualBases.insert(BaseDecl).second) { |
4051 | | // If this virtual base has been seen before, then the class is diamond |
4052 | | // shaped. |
4053 | 0 | Flags |= ItaniumRTTIBuilder::VMI_DiamondShaped; |
4054 | 0 | } else { |
4055 | 0 | if (Bases.NonVirtualBases.count(BaseDecl)) |
4056 | 0 | Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; |
4057 | 0 | } |
4058 | 0 | } else { |
4059 | | // Mark the non-virtual base as seen. |
4060 | 0 | if (!Bases.NonVirtualBases.insert(BaseDecl).second) { |
4061 | | // If this non-virtual base has been seen before, then the class has non- |
4062 | | // diamond shaped repeated inheritance. |
4063 | 0 | Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; |
4064 | 0 | } else { |
4065 | 0 | if (Bases.VirtualBases.count(BaseDecl)) |
4066 | 0 | Flags |= ItaniumRTTIBuilder::VMI_NonDiamondRepeat; |
4067 | 0 | } |
4068 | 0 | } |
4069 | | |
4070 | | // Walk all bases. |
4071 | 0 | for (const auto &I : BaseDecl->bases()) |
4072 | 0 | Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases); |
4073 | |
|
4074 | 0 | return Flags; |
4075 | 0 | } |
4076 | | |
4077 | 0 | static unsigned ComputeVMIClassTypeInfoFlags(const CXXRecordDecl *RD) { |
4078 | 0 | unsigned Flags = 0; |
4079 | 0 | SeenBases Bases; |
4080 | | |
4081 | | // Walk all bases. |
4082 | 0 | for (const auto &I : RD->bases()) |
4083 | 0 | Flags |= ComputeVMIClassTypeInfoFlags(&I, Bases); |
4084 | |
|
4085 | 0 | return Flags; |
4086 | 0 | } |
4087 | | |
4088 | | /// BuildVMIClassTypeInfo - Build an abi::__vmi_class_type_info, used for |
4089 | | /// classes with bases that do not satisfy the abi::__si_class_type_info |
4090 | | /// constraints, according ti the Itanium C++ ABI, 2.9.5p5c. |
4091 | 0 | void ItaniumRTTIBuilder::BuildVMIClassTypeInfo(const CXXRecordDecl *RD) { |
4092 | 0 | llvm::Type *UnsignedIntLTy = |
4093 | 0 | CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); |
4094 | | |
4095 | | // Itanium C++ ABI 2.9.5p6c: |
4096 | | // __flags is a word with flags describing details about the class |
4097 | | // structure, which may be referenced by using the __flags_masks |
4098 | | // enumeration. These flags refer to both direct and indirect bases. |
4099 | 0 | unsigned Flags = ComputeVMIClassTypeInfoFlags(RD); |
4100 | 0 | Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); |
4101 | | |
4102 | | // Itanium C++ ABI 2.9.5p6c: |
4103 | | // __base_count is a word with the number of direct proper base class |
4104 | | // descriptions that follow. |
4105 | 0 | Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, RD->getNumBases())); |
4106 | |
|
4107 | 0 | if (!RD->getNumBases()) |
4108 | 0 | return; |
4109 | | |
4110 | | // Now add the base class descriptions. |
4111 | | |
4112 | | // Itanium C++ ABI 2.9.5p6c: |
4113 | | // __base_info[] is an array of base class descriptions -- one for every |
4114 | | // direct proper base. Each description is of the type: |
4115 | | // |
4116 | | // struct abi::__base_class_type_info { |
4117 | | // public: |
4118 | | // const __class_type_info *__base_type; |
4119 | | // long __offset_flags; |
4120 | | // |
4121 | | // enum __offset_flags_masks { |
4122 | | // __virtual_mask = 0x1, |
4123 | | // __public_mask = 0x2, |
4124 | | // __offset_shift = 8 |
4125 | | // }; |
4126 | | // }; |
4127 | | |
4128 | | // If we're in mingw and 'long' isn't wide enough for a pointer, use 'long |
4129 | | // long' instead of 'long' for __offset_flags. libstdc++abi uses long long on |
4130 | | // LLP64 platforms. |
4131 | | // FIXME: Consider updating libc++abi to match, and extend this logic to all |
4132 | | // LLP64 platforms. |
4133 | 0 | QualType OffsetFlagsTy = CGM.getContext().LongTy; |
4134 | 0 | const TargetInfo &TI = CGM.getContext().getTargetInfo(); |
4135 | 0 | if (TI.getTriple().isOSCygMing() && |
4136 | 0 | TI.getPointerWidth(LangAS::Default) > TI.getLongWidth()) |
4137 | 0 | OffsetFlagsTy = CGM.getContext().LongLongTy; |
4138 | 0 | llvm::Type *OffsetFlagsLTy = |
4139 | 0 | CGM.getTypes().ConvertType(OffsetFlagsTy); |
4140 | |
|
4141 | 0 | for (const auto &Base : RD->bases()) { |
4142 | | // The __base_type member points to the RTTI for the base type. |
4143 | 0 | Fields.push_back(ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(Base.getType())); |
4144 | |
|
4145 | 0 | auto *BaseDecl = |
4146 | 0 | cast<CXXRecordDecl>(Base.getType()->castAs<RecordType>()->getDecl()); |
4147 | |
|
4148 | 0 | int64_t OffsetFlags = 0; |
4149 | | |
4150 | | // All but the lower 8 bits of __offset_flags are a signed offset. |
4151 | | // For a non-virtual base, this is the offset in the object of the base |
4152 | | // subobject. For a virtual base, this is the offset in the virtual table of |
4153 | | // the virtual base offset for the virtual base referenced (negative). |
4154 | 0 | CharUnits Offset; |
4155 | 0 | if (Base.isVirtual()) |
4156 | 0 | Offset = |
4157 | 0 | CGM.getItaniumVTableContext().getVirtualBaseOffsetOffset(RD, BaseDecl); |
4158 | 0 | else { |
4159 | 0 | const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); |
4160 | 0 | Offset = Layout.getBaseClassOffset(BaseDecl); |
4161 | 0 | }; |
4162 | |
|
4163 | 0 | OffsetFlags = uint64_t(Offset.getQuantity()) << 8; |
4164 | | |
4165 | | // The low-order byte of __offset_flags contains flags, as given by the |
4166 | | // masks from the enumeration __offset_flags_masks. |
4167 | 0 | if (Base.isVirtual()) |
4168 | 0 | OffsetFlags |= BCTI_Virtual; |
4169 | 0 | if (Base.getAccessSpecifier() == AS_public) |
4170 | 0 | OffsetFlags |= BCTI_Public; |
4171 | |
|
4172 | 0 | Fields.push_back(llvm::ConstantInt::get(OffsetFlagsLTy, OffsetFlags)); |
4173 | 0 | } |
4174 | 0 | } |
4175 | | |
4176 | | /// Compute the flags for a __pbase_type_info, and remove the corresponding |
4177 | | /// pieces from \p Type. |
4178 | 0 | static unsigned extractPBaseFlags(ASTContext &Ctx, QualType &Type) { |
4179 | 0 | unsigned Flags = 0; |
4180 | |
|
4181 | 0 | if (Type.isConstQualified()) |
4182 | 0 | Flags |= ItaniumRTTIBuilder::PTI_Const; |
4183 | 0 | if (Type.isVolatileQualified()) |
4184 | 0 | Flags |= ItaniumRTTIBuilder::PTI_Volatile; |
4185 | 0 | if (Type.isRestrictQualified()) |
4186 | 0 | Flags |= ItaniumRTTIBuilder::PTI_Restrict; |
4187 | 0 | Type = Type.getUnqualifiedType(); |
4188 | | |
4189 | | // Itanium C++ ABI 2.9.5p7: |
4190 | | // When the abi::__pbase_type_info is for a direct or indirect pointer to an |
4191 | | // incomplete class type, the incomplete target type flag is set. |
4192 | 0 | if (ContainsIncompleteClassType(Type)) |
4193 | 0 | Flags |= ItaniumRTTIBuilder::PTI_Incomplete; |
4194 | |
|
4195 | 0 | if (auto *Proto = Type->getAs<FunctionProtoType>()) { |
4196 | 0 | if (Proto->isNothrow()) { |
4197 | 0 | Flags |= ItaniumRTTIBuilder::PTI_Noexcept; |
4198 | 0 | Type = Ctx.getFunctionTypeWithExceptionSpec(Type, EST_None); |
4199 | 0 | } |
4200 | 0 | } |
4201 | |
|
4202 | 0 | return Flags; |
4203 | 0 | } |
4204 | | |
4205 | | /// BuildPointerTypeInfo - Build an abi::__pointer_type_info struct, |
4206 | | /// used for pointer types. |
4207 | 0 | void ItaniumRTTIBuilder::BuildPointerTypeInfo(QualType PointeeTy) { |
4208 | | // Itanium C++ ABI 2.9.5p7: |
4209 | | // __flags is a flag word describing the cv-qualification and other |
4210 | | // attributes of the type pointed to |
4211 | 0 | unsigned Flags = extractPBaseFlags(CGM.getContext(), PointeeTy); |
4212 | |
|
4213 | 0 | llvm::Type *UnsignedIntLTy = |
4214 | 0 | CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); |
4215 | 0 | Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); |
4216 | | |
4217 | | // Itanium C++ ABI 2.9.5p7: |
4218 | | // __pointee is a pointer to the std::type_info derivation for the |
4219 | | // unqualified type being pointed to. |
4220 | 0 | llvm::Constant *PointeeTypeInfo = |
4221 | 0 | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(PointeeTy); |
4222 | 0 | Fields.push_back(PointeeTypeInfo); |
4223 | 0 | } |
4224 | | |
4225 | | /// BuildPointerToMemberTypeInfo - Build an abi::__pointer_to_member_type_info |
4226 | | /// struct, used for member pointer types. |
4227 | | void |
4228 | 0 | ItaniumRTTIBuilder::BuildPointerToMemberTypeInfo(const MemberPointerType *Ty) { |
4229 | 0 | QualType PointeeTy = Ty->getPointeeType(); |
4230 | | |
4231 | | // Itanium C++ ABI 2.9.5p7: |
4232 | | // __flags is a flag word describing the cv-qualification and other |
4233 | | // attributes of the type pointed to. |
4234 | 0 | unsigned Flags = extractPBaseFlags(CGM.getContext(), PointeeTy); |
4235 | |
|
4236 | 0 | const RecordType *ClassType = cast<RecordType>(Ty->getClass()); |
4237 | 0 | if (IsIncompleteClassType(ClassType)) |
4238 | 0 | Flags |= PTI_ContainingClassIncomplete; |
4239 | |
|
4240 | 0 | llvm::Type *UnsignedIntLTy = |
4241 | 0 | CGM.getTypes().ConvertType(CGM.getContext().UnsignedIntTy); |
4242 | 0 | Fields.push_back(llvm::ConstantInt::get(UnsignedIntLTy, Flags)); |
4243 | | |
4244 | | // Itanium C++ ABI 2.9.5p7: |
4245 | | // __pointee is a pointer to the std::type_info derivation for the |
4246 | | // unqualified type being pointed to. |
4247 | 0 | llvm::Constant *PointeeTypeInfo = |
4248 | 0 | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(PointeeTy); |
4249 | 0 | Fields.push_back(PointeeTypeInfo); |
4250 | | |
4251 | | // Itanium C++ ABI 2.9.5p9: |
4252 | | // __context is a pointer to an abi::__class_type_info corresponding to the |
4253 | | // class type containing the member pointed to |
4254 | | // (e.g., the "A" in "int A::*"). |
4255 | 0 | Fields.push_back( |
4256 | 0 | ItaniumRTTIBuilder(CXXABI).BuildTypeInfo(QualType(ClassType, 0))); |
4257 | 0 | } |
4258 | | |
4259 | 0 | llvm::Constant *ItaniumCXXABI::getAddrOfRTTIDescriptor(QualType Ty) { |
4260 | 0 | return ItaniumRTTIBuilder(*this).BuildTypeInfo(Ty); |
4261 | 0 | } |
4262 | | |
4263 | 0 | void ItaniumCXXABI::EmitFundamentalRTTIDescriptors(const CXXRecordDecl *RD) { |
4264 | | // Types added here must also be added to TypeInfoIsInStandardLibrary. |
4265 | 0 | QualType FundamentalTypes[] = { |
4266 | 0 | getContext().VoidTy, getContext().NullPtrTy, |
4267 | 0 | getContext().BoolTy, getContext().WCharTy, |
4268 | 0 | getContext().CharTy, getContext().UnsignedCharTy, |
4269 | 0 | getContext().SignedCharTy, getContext().ShortTy, |
4270 | 0 | getContext().UnsignedShortTy, getContext().IntTy, |
4271 | 0 | getContext().UnsignedIntTy, getContext().LongTy, |
4272 | 0 | getContext().UnsignedLongTy, getContext().LongLongTy, |
4273 | 0 | getContext().UnsignedLongLongTy, getContext().Int128Ty, |
4274 | 0 | getContext().UnsignedInt128Ty, getContext().HalfTy, |
4275 | 0 | getContext().FloatTy, getContext().DoubleTy, |
4276 | 0 | getContext().LongDoubleTy, getContext().Float128Ty, |
4277 | 0 | getContext().Char8Ty, getContext().Char16Ty, |
4278 | 0 | getContext().Char32Ty |
4279 | 0 | }; |
4280 | 0 | llvm::GlobalValue::DLLStorageClassTypes DLLStorageClass = |
4281 | 0 | RD->hasAttr<DLLExportAttr>() || CGM.shouldMapVisibilityToDLLExport(RD) |
4282 | 0 | ? llvm::GlobalValue::DLLExportStorageClass |
4283 | 0 | : llvm::GlobalValue::DefaultStorageClass; |
4284 | 0 | llvm::GlobalValue::VisibilityTypes Visibility = |
4285 | 0 | CodeGenModule::GetLLVMVisibility(RD->getVisibility()); |
4286 | 0 | for (const QualType &FundamentalType : FundamentalTypes) { |
4287 | 0 | QualType PointerType = getContext().getPointerType(FundamentalType); |
4288 | 0 | QualType PointerTypeConst = getContext().getPointerType( |
4289 | 0 | FundamentalType.withConst()); |
4290 | 0 | for (QualType Type : {FundamentalType, PointerType, PointerTypeConst}) |
4291 | 0 | ItaniumRTTIBuilder(*this).BuildTypeInfo( |
4292 | 0 | Type, llvm::GlobalValue::ExternalLinkage, |
4293 | 0 | Visibility, DLLStorageClass); |
4294 | 0 | } |
4295 | 0 | } |
4296 | | |
4297 | | /// What sort of uniqueness rules should we use for the RTTI for the |
4298 | | /// given type? |
4299 | | ItaniumCXXABI::RTTIUniquenessKind ItaniumCXXABI::classifyRTTIUniqueness( |
4300 | 0 | QualType CanTy, llvm::GlobalValue::LinkageTypes Linkage) const { |
4301 | 0 | if (shouldRTTIBeUnique()) |
4302 | 0 | return RUK_Unique; |
4303 | | |
4304 | | // It's only necessary for linkonce_odr or weak_odr linkage. |
4305 | 0 | if (Linkage != llvm::GlobalValue::LinkOnceODRLinkage && |
4306 | 0 | Linkage != llvm::GlobalValue::WeakODRLinkage) |
4307 | 0 | return RUK_Unique; |
4308 | | |
4309 | | // It's only necessary with default visibility. |
4310 | 0 | if (CanTy->getVisibility() != DefaultVisibility) |
4311 | 0 | return RUK_Unique; |
4312 | | |
4313 | | // If we're not required to publish this symbol, hide it. |
4314 | 0 | if (Linkage == llvm::GlobalValue::LinkOnceODRLinkage) |
4315 | 0 | return RUK_NonUniqueHidden; |
4316 | | |
4317 | | // If we're required to publish this symbol, as we might be under an |
4318 | | // explicit instantiation, leave it with default visibility but |
4319 | | // enable string-comparisons. |
4320 | 0 | assert(Linkage == llvm::GlobalValue::WeakODRLinkage); |
4321 | 0 | return RUK_NonUniqueVisible; |
4322 | 0 | } |
4323 | | |
4324 | | // Find out how to codegen the complete destructor and constructor |
4325 | | namespace { |
4326 | | enum class StructorCodegen { Emit, RAUW, Alias, COMDAT }; |
4327 | | } |
4328 | | static StructorCodegen getCodegenToUse(CodeGenModule &CGM, |
4329 | 0 | const CXXMethodDecl *MD) { |
4330 | 0 | if (!CGM.getCodeGenOpts().CXXCtorDtorAliases) |
4331 | 0 | return StructorCodegen::Emit; |
4332 | | |
4333 | | // The complete and base structors are not equivalent if there are any virtual |
4334 | | // bases, so emit separate functions. |
4335 | 0 | if (MD->getParent()->getNumVBases()) |
4336 | 0 | return StructorCodegen::Emit; |
4337 | | |
4338 | 0 | GlobalDecl AliasDecl; |
4339 | 0 | if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) { |
4340 | 0 | AliasDecl = GlobalDecl(DD, Dtor_Complete); |
4341 | 0 | } else { |
4342 | 0 | const auto *CD = cast<CXXConstructorDecl>(MD); |
4343 | 0 | AliasDecl = GlobalDecl(CD, Ctor_Complete); |
4344 | 0 | } |
4345 | 0 | llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl); |
4346 | |
|
4347 | 0 | if (llvm::GlobalValue::isDiscardableIfUnused(Linkage)) |
4348 | 0 | return StructorCodegen::RAUW; |
4349 | | |
4350 | | // FIXME: Should we allow available_externally aliases? |
4351 | 0 | if (!llvm::GlobalAlias::isValidLinkage(Linkage)) |
4352 | 0 | return StructorCodegen::RAUW; |
4353 | | |
4354 | 0 | if (llvm::GlobalValue::isWeakForLinker(Linkage)) { |
4355 | | // Only ELF and wasm support COMDATs with arbitrary names (C5/D5). |
4356 | 0 | if (CGM.getTarget().getTriple().isOSBinFormatELF() || |
4357 | 0 | CGM.getTarget().getTriple().isOSBinFormatWasm()) |
4358 | 0 | return StructorCodegen::COMDAT; |
4359 | 0 | return StructorCodegen::Emit; |
4360 | 0 | } |
4361 | | |
4362 | 0 | return StructorCodegen::Alias; |
4363 | 0 | } |
4364 | | |
4365 | | static void emitConstructorDestructorAlias(CodeGenModule &CGM, |
4366 | | GlobalDecl AliasDecl, |
4367 | 0 | GlobalDecl TargetDecl) { |
4368 | 0 | llvm::GlobalValue::LinkageTypes Linkage = CGM.getFunctionLinkage(AliasDecl); |
4369 | |
|
4370 | 0 | StringRef MangledName = CGM.getMangledName(AliasDecl); |
4371 | 0 | llvm::GlobalValue *Entry = CGM.GetGlobalValue(MangledName); |
4372 | 0 | if (Entry && !Entry->isDeclaration()) |
4373 | 0 | return; |
4374 | | |
4375 | 0 | auto *Aliasee = cast<llvm::GlobalValue>(CGM.GetAddrOfGlobal(TargetDecl)); |
4376 | | |
4377 | | // Create the alias with no name. |
4378 | 0 | auto *Alias = llvm::GlobalAlias::create(Linkage, "", Aliasee); |
4379 | | |
4380 | | // Constructors and destructors are always unnamed_addr. |
4381 | 0 | Alias->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); |
4382 | | |
4383 | | // Switch any previous uses to the alias. |
4384 | 0 | if (Entry) { |
4385 | 0 | assert(Entry->getType() == Aliasee->getType() && |
4386 | 0 | "declaration exists with different type"); |
4387 | 0 | Alias->takeName(Entry); |
4388 | 0 | Entry->replaceAllUsesWith(Alias); |
4389 | 0 | Entry->eraseFromParent(); |
4390 | 0 | } else { |
4391 | 0 | Alias->setName(MangledName); |
4392 | 0 | } |
4393 | | |
4394 | | // Finally, set up the alias with its proper name and attributes. |
4395 | 0 | CGM.SetCommonAttributes(AliasDecl, Alias); |
4396 | 0 | } |
4397 | | |
4398 | 0 | void ItaniumCXXABI::emitCXXStructor(GlobalDecl GD) { |
4399 | 0 | auto *MD = cast<CXXMethodDecl>(GD.getDecl()); |
4400 | 0 | auto *CD = dyn_cast<CXXConstructorDecl>(MD); |
4401 | 0 | const CXXDestructorDecl *DD = CD ? nullptr : cast<CXXDestructorDecl>(MD); |
4402 | |
|
4403 | 0 | StructorCodegen CGType = getCodegenToUse(CGM, MD); |
4404 | |
|
4405 | 0 | if (CD ? GD.getCtorType() == Ctor_Complete |
4406 | 0 | : GD.getDtorType() == Dtor_Complete) { |
4407 | 0 | GlobalDecl BaseDecl; |
4408 | 0 | if (CD) |
4409 | 0 | BaseDecl = GD.getWithCtorType(Ctor_Base); |
4410 | 0 | else |
4411 | 0 | BaseDecl = GD.getWithDtorType(Dtor_Base); |
4412 | |
|
4413 | 0 | if (CGType == StructorCodegen::Alias || CGType == StructorCodegen::COMDAT) { |
4414 | 0 | emitConstructorDestructorAlias(CGM, GD, BaseDecl); |
4415 | 0 | return; |
4416 | 0 | } |
4417 | | |
4418 | 0 | if (CGType == StructorCodegen::RAUW) { |
4419 | 0 | StringRef MangledName = CGM.getMangledName(GD); |
4420 | 0 | auto *Aliasee = CGM.GetAddrOfGlobal(BaseDecl); |
4421 | 0 | CGM.addReplacement(MangledName, Aliasee); |
4422 | 0 | return; |
4423 | 0 | } |
4424 | 0 | } |
4425 | | |
4426 | | // The base destructor is equivalent to the base destructor of its |
4427 | | // base class if there is exactly one non-virtual base class with a |
4428 | | // non-trivial destructor, there are no fields with a non-trivial |
4429 | | // destructor, and the body of the destructor is trivial. |
4430 | 0 | if (DD && GD.getDtorType() == Dtor_Base && |
4431 | 0 | CGType != StructorCodegen::COMDAT && |
4432 | 0 | !CGM.TryEmitBaseDestructorAsAlias(DD)) |
4433 | 0 | return; |
4434 | | |
4435 | | // FIXME: The deleting destructor is equivalent to the selected operator |
4436 | | // delete if: |
4437 | | // * either the delete is a destroying operator delete or the destructor |
4438 | | // would be trivial if it weren't virtual, |
4439 | | // * the conversion from the 'this' parameter to the first parameter of the |
4440 | | // destructor is equivalent to a bitcast, |
4441 | | // * the destructor does not have an implicit "this" return, and |
4442 | | // * the operator delete has the same calling convention and IR function type |
4443 | | // as the destructor. |
4444 | | // In such cases we should try to emit the deleting dtor as an alias to the |
4445 | | // selected 'operator delete'. |
4446 | | |
4447 | 0 | llvm::Function *Fn = CGM.codegenCXXStructor(GD); |
4448 | |
|
4449 | 0 | if (CGType == StructorCodegen::COMDAT) { |
4450 | 0 | SmallString<256> Buffer; |
4451 | 0 | llvm::raw_svector_ostream Out(Buffer); |
4452 | 0 | if (DD) |
4453 | 0 | getMangleContext().mangleCXXDtorComdat(DD, Out); |
4454 | 0 | else |
4455 | 0 | getMangleContext().mangleCXXCtorComdat(CD, Out); |
4456 | 0 | llvm::Comdat *C = CGM.getModule().getOrInsertComdat(Out.str()); |
4457 | 0 | Fn->setComdat(C); |
4458 | 0 | } else { |
4459 | 0 | CGM.maybeSetTrivialComdat(*MD, *Fn); |
4460 | 0 | } |
4461 | 0 | } |
4462 | | |
4463 | 0 | static llvm::FunctionCallee getBeginCatchFn(CodeGenModule &CGM) { |
4464 | | // void *__cxa_begin_catch(void*); |
4465 | 0 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4466 | 0 | CGM.Int8PtrTy, CGM.Int8PtrTy, /*isVarArg=*/false); |
4467 | |
|
4468 | 0 | return CGM.CreateRuntimeFunction(FTy, "__cxa_begin_catch"); |
4469 | 0 | } |
4470 | | |
4471 | 0 | static llvm::FunctionCallee getEndCatchFn(CodeGenModule &CGM) { |
4472 | | // void __cxa_end_catch(); |
4473 | 0 | llvm::FunctionType *FTy = |
4474 | 0 | llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); |
4475 | |
|
4476 | 0 | return CGM.CreateRuntimeFunction(FTy, "__cxa_end_catch"); |
4477 | 0 | } |
4478 | | |
4479 | 0 | static llvm::FunctionCallee getGetExceptionPtrFn(CodeGenModule &CGM) { |
4480 | | // void *__cxa_get_exception_ptr(void*); |
4481 | 0 | llvm::FunctionType *FTy = llvm::FunctionType::get( |
4482 | 0 | CGM.Int8PtrTy, CGM.Int8PtrTy, /*isVarArg=*/false); |
4483 | |
|
4484 | 0 | return CGM.CreateRuntimeFunction(FTy, "__cxa_get_exception_ptr"); |
4485 | 0 | } |
4486 | | |
4487 | | namespace { |
4488 | | /// A cleanup to call __cxa_end_catch. In many cases, the caught |
4489 | | /// exception type lets us state definitively that the thrown exception |
4490 | | /// type does not have a destructor. In particular: |
4491 | | /// - Catch-alls tell us nothing, so we have to conservatively |
4492 | | /// assume that the thrown exception might have a destructor. |
4493 | | /// - Catches by reference behave according to their base types. |
4494 | | /// - Catches of non-record types will only trigger for exceptions |
4495 | | /// of non-record types, which never have destructors. |
4496 | | /// - Catches of record types can trigger for arbitrary subclasses |
4497 | | /// of the caught type, so we have to assume the actual thrown |
4498 | | /// exception type might have a throwing destructor, even if the |
4499 | | /// caught type's destructor is trivial or nothrow. |
4500 | | struct CallEndCatch final : EHScopeStack::Cleanup { |
4501 | 0 | CallEndCatch(bool MightThrow) : MightThrow(MightThrow) {} |
4502 | | bool MightThrow; |
4503 | | |
4504 | 0 | void Emit(CodeGenFunction &CGF, Flags flags) override { |
4505 | 0 | if (!MightThrow) { |
4506 | 0 | CGF.EmitNounwindRuntimeCall(getEndCatchFn(CGF.CGM)); |
4507 | 0 | return; |
4508 | 0 | } |
4509 | | |
4510 | 0 | CGF.EmitRuntimeCallOrInvoke(getEndCatchFn(CGF.CGM)); |
4511 | 0 | } |
4512 | | }; |
4513 | | } |
4514 | | |
4515 | | /// Emits a call to __cxa_begin_catch and enters a cleanup to call |
4516 | | /// __cxa_end_catch. If -fassume-nothrow-exception-dtor is specified, we assume |
4517 | | /// that the exception object's dtor is nothrow, therefore the __cxa_end_catch |
4518 | | /// call can be marked as nounwind even if EndMightThrow is true. |
4519 | | /// |
4520 | | /// \param EndMightThrow - true if __cxa_end_catch might throw |
4521 | | static llvm::Value *CallBeginCatch(CodeGenFunction &CGF, |
4522 | | llvm::Value *Exn, |
4523 | 0 | bool EndMightThrow) { |
4524 | 0 | llvm::CallInst *call = |
4525 | 0 | CGF.EmitNounwindRuntimeCall(getBeginCatchFn(CGF.CGM), Exn); |
4526 | |
|
4527 | 0 | CGF.EHStack.pushCleanup<CallEndCatch>( |
4528 | 0 | NormalAndEHCleanup, |
4529 | 0 | EndMightThrow && !CGF.CGM.getLangOpts().AssumeNothrowExceptionDtor); |
4530 | |
|
4531 | 0 | return call; |
4532 | 0 | } |
4533 | | |
4534 | | /// A "special initializer" callback for initializing a catch |
4535 | | /// parameter during catch initialization. |
4536 | | static void InitCatchParam(CodeGenFunction &CGF, |
4537 | | const VarDecl &CatchParam, |
4538 | | Address ParamAddr, |
4539 | 0 | SourceLocation Loc) { |
4540 | | // Load the exception from where the landing pad saved it. |
4541 | 0 | llvm::Value *Exn = CGF.getExceptionFromSlot(); |
4542 | |
|
4543 | 0 | CanQualType CatchType = |
4544 | 0 | CGF.CGM.getContext().getCanonicalType(CatchParam.getType()); |
4545 | 0 | llvm::Type *LLVMCatchTy = CGF.ConvertTypeForMem(CatchType); |
4546 | | |
4547 | | // If we're catching by reference, we can just cast the object |
4548 | | // pointer to the appropriate pointer. |
4549 | 0 | if (isa<ReferenceType>(CatchType)) { |
4550 | 0 | QualType CaughtType = cast<ReferenceType>(CatchType)->getPointeeType(); |
4551 | 0 | bool EndCatchMightThrow = CaughtType->isRecordType(); |
4552 | | |
4553 | | // __cxa_begin_catch returns the adjusted object pointer. |
4554 | 0 | llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, EndCatchMightThrow); |
4555 | | |
4556 | | // We have no way to tell the personality function that we're |
4557 | | // catching by reference, so if we're catching a pointer, |
4558 | | // __cxa_begin_catch will actually return that pointer by value. |
4559 | 0 | if (const PointerType *PT = dyn_cast<PointerType>(CaughtType)) { |
4560 | 0 | QualType PointeeType = PT->getPointeeType(); |
4561 | | |
4562 | | // When catching by reference, generally we should just ignore |
4563 | | // this by-value pointer and use the exception object instead. |
4564 | 0 | if (!PointeeType->isRecordType()) { |
4565 | | |
4566 | | // Exn points to the struct _Unwind_Exception header, which |
4567 | | // we have to skip past in order to reach the exception data. |
4568 | 0 | unsigned HeaderSize = |
4569 | 0 | CGF.CGM.getTargetCodeGenInfo().getSizeOfUnwindException(); |
4570 | 0 | AdjustedExn = |
4571 | 0 | CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, Exn, HeaderSize); |
4572 | | |
4573 | | // However, if we're catching a pointer-to-record type that won't |
4574 | | // work, because the personality function might have adjusted |
4575 | | // the pointer. There's actually no way for us to fully satisfy |
4576 | | // the language/ABI contract here: we can't use Exn because it |
4577 | | // might have the wrong adjustment, but we can't use the by-value |
4578 | | // pointer because it's off by a level of abstraction. |
4579 | | // |
4580 | | // The current solution is to dump the adjusted pointer into an |
4581 | | // alloca, which breaks language semantics (because changing the |
4582 | | // pointer doesn't change the exception) but at least works. |
4583 | | // The better solution would be to filter out non-exact matches |
4584 | | // and rethrow them, but this is tricky because the rethrow |
4585 | | // really needs to be catchable by other sites at this landing |
4586 | | // pad. The best solution is to fix the personality function. |
4587 | 0 | } else { |
4588 | | // Pull the pointer for the reference type off. |
4589 | 0 | llvm::Type *PtrTy = CGF.ConvertTypeForMem(CaughtType); |
4590 | | |
4591 | | // Create the temporary and write the adjusted pointer into it. |
4592 | 0 | Address ExnPtrTmp = |
4593 | 0 | CGF.CreateTempAlloca(PtrTy, CGF.getPointerAlign(), "exn.byref.tmp"); |
4594 | 0 | llvm::Value *Casted = CGF.Builder.CreateBitCast(AdjustedExn, PtrTy); |
4595 | 0 | CGF.Builder.CreateStore(Casted, ExnPtrTmp); |
4596 | | |
4597 | | // Bind the reference to the temporary. |
4598 | 0 | AdjustedExn = ExnPtrTmp.getPointer(); |
4599 | 0 | } |
4600 | 0 | } |
4601 | |
|
4602 | 0 | llvm::Value *ExnCast = |
4603 | 0 | CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.byref"); |
4604 | 0 | CGF.Builder.CreateStore(ExnCast, ParamAddr); |
4605 | 0 | return; |
4606 | 0 | } |
4607 | | |
4608 | | // Scalars and complexes. |
4609 | 0 | TypeEvaluationKind TEK = CGF.getEvaluationKind(CatchType); |
4610 | 0 | if (TEK != TEK_Aggregate) { |
4611 | 0 | llvm::Value *AdjustedExn = CallBeginCatch(CGF, Exn, false); |
4612 | | |
4613 | | // If the catch type is a pointer type, __cxa_begin_catch returns |
4614 | | // the pointer by value. |
4615 | 0 | if (CatchType->hasPointerRepresentation()) { |
4616 | 0 | llvm::Value *CastExn = |
4617 | 0 | CGF.Builder.CreateBitCast(AdjustedExn, LLVMCatchTy, "exn.casted"); |
4618 | |
|
4619 | 0 | switch (CatchType.getQualifiers().getObjCLifetime()) { |
4620 | 0 | case Qualifiers::OCL_Strong: |
4621 | 0 | CastExn = CGF.EmitARCRetainNonBlock(CastExn); |
4622 | 0 | [[fallthrough]]; |
4623 | |
|
4624 | 0 | case Qualifiers::OCL_None: |
4625 | 0 | case Qualifiers::OCL_ExplicitNone: |
4626 | 0 | case Qualifiers::OCL_Autoreleasing: |
4627 | 0 | CGF.Builder.CreateStore(CastExn, ParamAddr); |
4628 | 0 | return; |
4629 | | |
4630 | 0 | case Qualifiers::OCL_Weak: |
4631 | 0 | CGF.EmitARCInitWeak(ParamAddr, CastExn); |
4632 | 0 | return; |
4633 | 0 | } |
4634 | 0 | llvm_unreachable("bad ownership qualifier!"); |
4635 | 0 | } |
4636 | | |
4637 | | // Otherwise, it returns a pointer into the exception object. |
4638 | | |
4639 | 0 | LValue srcLV = CGF.MakeNaturalAlignAddrLValue(AdjustedExn, CatchType); |
4640 | 0 | LValue destLV = CGF.MakeAddrLValue(ParamAddr, CatchType); |
4641 | 0 | switch (TEK) { |
4642 | 0 | case TEK_Complex: |
4643 | 0 | CGF.EmitStoreOfComplex(CGF.EmitLoadOfComplex(srcLV, Loc), destLV, |
4644 | 0 | /*init*/ true); |
4645 | 0 | return; |
4646 | 0 | case TEK_Scalar: { |
4647 | 0 | llvm::Value *ExnLoad = CGF.EmitLoadOfScalar(srcLV, Loc); |
4648 | 0 | CGF.EmitStoreOfScalar(ExnLoad, destLV, /*init*/ true); |
4649 | 0 | return; |
4650 | 0 | } |
4651 | 0 | case TEK_Aggregate: |
4652 | 0 | llvm_unreachable("evaluation kind filtered out!"); |
4653 | 0 | } |
4654 | 0 | llvm_unreachable("bad evaluation kind"); |
4655 | 0 | } |
4656 | | |
4657 | 0 | assert(isa<RecordType>(CatchType) && "unexpected catch type!"); |
4658 | 0 | auto catchRD = CatchType->getAsCXXRecordDecl(); |
4659 | 0 | CharUnits caughtExnAlignment = CGF.CGM.getClassPointerAlignment(catchRD); |
4660 | |
|
4661 | 0 | llvm::Type *PtrTy = CGF.UnqualPtrTy; // addrspace 0 ok |
4662 | | |
4663 | | // Check for a copy expression. If we don't have a copy expression, |
4664 | | // that means a trivial copy is okay. |
4665 | 0 | const Expr *copyExpr = CatchParam.getInit(); |
4666 | 0 | if (!copyExpr) { |
4667 | 0 | llvm::Value *rawAdjustedExn = CallBeginCatch(CGF, Exn, true); |
4668 | 0 | Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy), |
4669 | 0 | LLVMCatchTy, caughtExnAlignment); |
4670 | 0 | LValue Dest = CGF.MakeAddrLValue(ParamAddr, CatchType); |
4671 | 0 | LValue Src = CGF.MakeAddrLValue(adjustedExn, CatchType); |
4672 | 0 | CGF.EmitAggregateCopy(Dest, Src, CatchType, AggValueSlot::DoesNotOverlap); |
4673 | 0 | return; |
4674 | 0 | } |
4675 | | |
4676 | | // We have to call __cxa_get_exception_ptr to get the adjusted |
4677 | | // pointer before copying. |
4678 | 0 | llvm::CallInst *rawAdjustedExn = |
4679 | 0 | CGF.EmitNounwindRuntimeCall(getGetExceptionPtrFn(CGF.CGM), Exn); |
4680 | | |
4681 | | // Cast that to the appropriate type. |
4682 | 0 | Address adjustedExn(CGF.Builder.CreateBitCast(rawAdjustedExn, PtrTy), |
4683 | 0 | LLVMCatchTy, caughtExnAlignment); |
4684 | | |
4685 | | // The copy expression is defined in terms of an OpaqueValueExpr. |
4686 | | // Find it and map it to the adjusted expression. |
4687 | 0 | CodeGenFunction::OpaqueValueMapping |
4688 | 0 | opaque(CGF, OpaqueValueExpr::findInCopyConstruct(copyExpr), |
4689 | 0 | CGF.MakeAddrLValue(adjustedExn, CatchParam.getType())); |
4690 | | |
4691 | | // Call the copy ctor in a terminate scope. |
4692 | 0 | CGF.EHStack.pushTerminate(); |
4693 | | |
4694 | | // Perform the copy construction. |
4695 | 0 | CGF.EmitAggExpr(copyExpr, |
4696 | 0 | AggValueSlot::forAddr(ParamAddr, Qualifiers(), |
4697 | 0 | AggValueSlot::IsNotDestructed, |
4698 | 0 | AggValueSlot::DoesNotNeedGCBarriers, |
4699 | 0 | AggValueSlot::IsNotAliased, |
4700 | 0 | AggValueSlot::DoesNotOverlap)); |
4701 | | |
4702 | | // Leave the terminate scope. |
4703 | 0 | CGF.EHStack.popTerminate(); |
4704 | | |
4705 | | // Undo the opaque value mapping. |
4706 | 0 | opaque.pop(); |
4707 | | |
4708 | | // Finally we can call __cxa_begin_catch. |
4709 | 0 | CallBeginCatch(CGF, Exn, true); |
4710 | 0 | } |
4711 | | |
4712 | | /// Begins a catch statement by initializing the catch variable and |
4713 | | /// calling __cxa_begin_catch. |
4714 | | void ItaniumCXXABI::emitBeginCatch(CodeGenFunction &CGF, |
4715 | 0 | const CXXCatchStmt *S) { |
4716 | | // We have to be very careful with the ordering of cleanups here: |
4717 | | // C++ [except.throw]p4: |
4718 | | // The destruction [of the exception temporary] occurs |
4719 | | // immediately after the destruction of the object declared in |
4720 | | // the exception-declaration in the handler. |
4721 | | // |
4722 | | // So the precise ordering is: |
4723 | | // 1. Construct catch variable. |
4724 | | // 2. __cxa_begin_catch |
4725 | | // 3. Enter __cxa_end_catch cleanup |
4726 | | // 4. Enter dtor cleanup |
4727 | | // |
4728 | | // We do this by using a slightly abnormal initialization process. |
4729 | | // Delegation sequence: |
4730 | | // - ExitCXXTryStmt opens a RunCleanupsScope |
4731 | | // - EmitAutoVarAlloca creates the variable and debug info |
4732 | | // - InitCatchParam initializes the variable from the exception |
4733 | | // - CallBeginCatch calls __cxa_begin_catch |
4734 | | // - CallBeginCatch enters the __cxa_end_catch cleanup |
4735 | | // - EmitAutoVarCleanups enters the variable destructor cleanup |
4736 | | // - EmitCXXTryStmt emits the code for the catch body |
4737 | | // - EmitCXXTryStmt close the RunCleanupsScope |
4738 | |
|
4739 | 0 | VarDecl *CatchParam = S->getExceptionDecl(); |
4740 | 0 | if (!CatchParam) { |
4741 | 0 | llvm::Value *Exn = CGF.getExceptionFromSlot(); |
4742 | 0 | CallBeginCatch(CGF, Exn, true); |
4743 | 0 | return; |
4744 | 0 | } |
4745 | | |
4746 | | // Emit the local. |
4747 | 0 | CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam); |
4748 | 0 | InitCatchParam(CGF, *CatchParam, var.getObjectAddress(CGF), S->getBeginLoc()); |
4749 | 0 | CGF.EmitAutoVarCleanups(var); |
4750 | 0 | } |
4751 | | |
4752 | | /// Get or define the following function: |
4753 | | /// void @__clang_call_terminate(i8* %exn) nounwind noreturn |
4754 | | /// This code is used only in C++. |
4755 | 0 | static llvm::FunctionCallee getClangCallTerminateFn(CodeGenModule &CGM) { |
4756 | 0 | ASTContext &C = CGM.getContext(); |
4757 | 0 | const CGFunctionInfo &FI = CGM.getTypes().arrangeBuiltinFunctionDeclaration( |
4758 | 0 | C.VoidTy, {C.getPointerType(C.CharTy)}); |
4759 | 0 | llvm::FunctionType *fnTy = CGM.getTypes().GetFunctionType(FI); |
4760 | 0 | llvm::FunctionCallee fnRef = CGM.CreateRuntimeFunction( |
4761 | 0 | fnTy, "__clang_call_terminate", llvm::AttributeList(), /*Local=*/true); |
4762 | 0 | llvm::Function *fn = |
4763 | 0 | cast<llvm::Function>(fnRef.getCallee()->stripPointerCasts()); |
4764 | 0 | if (fn->empty()) { |
4765 | 0 | CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, fn, /*IsThunk=*/false); |
4766 | 0 | CGM.SetLLVMFunctionAttributesForDefinition(nullptr, fn); |
4767 | 0 | fn->setDoesNotThrow(); |
4768 | 0 | fn->setDoesNotReturn(); |
4769 | | |
4770 | | // What we really want is to massively penalize inlining without |
4771 | | // forbidding it completely. The difference between that and |
4772 | | // 'noinline' is negligible. |
4773 | 0 | fn->addFnAttr(llvm::Attribute::NoInline); |
4774 | | |
4775 | | // Allow this function to be shared across translation units, but |
4776 | | // we don't want it to turn into an exported symbol. |
4777 | 0 | fn->setLinkage(llvm::Function::LinkOnceODRLinkage); |
4778 | 0 | fn->setVisibility(llvm::Function::HiddenVisibility); |
4779 | 0 | if (CGM.supportsCOMDAT()) |
4780 | 0 | fn->setComdat(CGM.getModule().getOrInsertComdat(fn->getName())); |
4781 | | |
4782 | | // Set up the function. |
4783 | 0 | llvm::BasicBlock *entry = |
4784 | 0 | llvm::BasicBlock::Create(CGM.getLLVMContext(), "", fn); |
4785 | 0 | CGBuilderTy builder(CGM, entry); |
4786 | | |
4787 | | // Pull the exception pointer out of the parameter list. |
4788 | 0 | llvm::Value *exn = &*fn->arg_begin(); |
4789 | | |
4790 | | // Call __cxa_begin_catch(exn). |
4791 | 0 | llvm::CallInst *catchCall = builder.CreateCall(getBeginCatchFn(CGM), exn); |
4792 | 0 | catchCall->setDoesNotThrow(); |
4793 | 0 | catchCall->setCallingConv(CGM.getRuntimeCC()); |
4794 | | |
4795 | | // Call std::terminate(). |
4796 | 0 | llvm::CallInst *termCall = builder.CreateCall(CGM.getTerminateFn()); |
4797 | 0 | termCall->setDoesNotThrow(); |
4798 | 0 | termCall->setDoesNotReturn(); |
4799 | 0 | termCall->setCallingConv(CGM.getRuntimeCC()); |
4800 | | |
4801 | | // std::terminate cannot return. |
4802 | 0 | builder.CreateUnreachable(); |
4803 | 0 | } |
4804 | 0 | return fnRef; |
4805 | 0 | } |
4806 | | |
4807 | | llvm::CallInst * |
4808 | | ItaniumCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF, |
4809 | 0 | llvm::Value *Exn) { |
4810 | | // In C++, we want to call __cxa_begin_catch() before terminating. |
4811 | 0 | if (Exn) { |
4812 | 0 | assert(CGF.CGM.getLangOpts().CPlusPlus); |
4813 | 0 | return CGF.EmitNounwindRuntimeCall(getClangCallTerminateFn(CGF.CGM), Exn); |
4814 | 0 | } |
4815 | 0 | return CGF.EmitNounwindRuntimeCall(CGF.CGM.getTerminateFn()); |
4816 | 0 | } |
4817 | | |
4818 | | std::pair<llvm::Value *, const CXXRecordDecl *> |
4819 | | ItaniumCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This, |
4820 | 0 | const CXXRecordDecl *RD) { |
4821 | 0 | return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD}; |
4822 | 0 | } |
4823 | | |
4824 | | void WebAssemblyCXXABI::emitBeginCatch(CodeGenFunction &CGF, |
4825 | 0 | const CXXCatchStmt *C) { |
4826 | 0 | if (CGF.getTarget().hasFeature("exception-handling")) |
4827 | 0 | CGF.EHStack.pushCleanup<CatchRetScope>( |
4828 | 0 | NormalCleanup, cast<llvm::CatchPadInst>(CGF.CurrentFuncletPad)); |
4829 | 0 | ItaniumCXXABI::emitBeginCatch(CGF, C); |
4830 | 0 | } |
4831 | | |
4832 | | llvm::CallInst * |
4833 | | WebAssemblyCXXABI::emitTerminateForUnexpectedException(CodeGenFunction &CGF, |
4834 | 0 | llvm::Value *Exn) { |
4835 | | // Itanium ABI calls __clang_call_terminate(), which __cxa_begin_catch() on |
4836 | | // the violating exception to mark it handled, but it is currently hard to do |
4837 | | // with wasm EH instruction structure with catch/catch_all, we just call |
4838 | | // std::terminate and ignore the violating exception as in CGCXXABI. |
4839 | | // TODO Consider code transformation that makes calling __clang_call_terminate |
4840 | | // possible. |
4841 | 0 | return CGCXXABI::emitTerminateForUnexpectedException(CGF, Exn); |
4842 | 0 | } |
4843 | | |
4844 | | /// Register a global destructor as best as we know how. |
4845 | | void XLCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D, |
4846 | | llvm::FunctionCallee Dtor, |
4847 | 0 | llvm::Constant *Addr) { |
4848 | 0 | if (D.getTLSKind() != VarDecl::TLS_None) { |
4849 | 0 | llvm::PointerType *PtrTy = CGF.UnqualPtrTy; |
4850 | | |
4851 | | // extern "C" int __pt_atexit_np(int flags, int(*)(int,...), ...); |
4852 | 0 | llvm::FunctionType *AtExitTy = |
4853 | 0 | llvm::FunctionType::get(CGM.IntTy, {CGM.IntTy, PtrTy}, true); |
4854 | | |
4855 | | // Fetch the actual function. |
4856 | 0 | llvm::FunctionCallee AtExit = |
4857 | 0 | CGM.CreateRuntimeFunction(AtExitTy, "__pt_atexit_np"); |
4858 | | |
4859 | | // Create __dtor function for the var decl. |
4860 | 0 | llvm::Function *DtorStub = CGF.createTLSAtExitStub(D, Dtor, Addr, AtExit); |
4861 | | |
4862 | | // Register above __dtor with atexit(). |
4863 | | // First param is flags and must be 0, second param is function ptr |
4864 | 0 | llvm::Value *NV = llvm::Constant::getNullValue(CGM.IntTy); |
4865 | 0 | CGF.EmitNounwindRuntimeCall(AtExit, {NV, DtorStub}); |
4866 | | |
4867 | | // Cannot unregister TLS __dtor so done |
4868 | 0 | return; |
4869 | 0 | } |
4870 | | |
4871 | | // Create __dtor function for the var decl. |
4872 | 0 | llvm::Function *DtorStub = CGF.createAtExitStub(D, Dtor, Addr); |
4873 | | |
4874 | | // Register above __dtor with atexit(). |
4875 | 0 | CGF.registerGlobalDtorWithAtExit(DtorStub); |
4876 | | |
4877 | | // Emit __finalize function to unregister __dtor and (as appropriate) call |
4878 | | // __dtor. |
4879 | 0 | emitCXXStermFinalizer(D, DtorStub, Addr); |
4880 | 0 | } |
4881 | | |
4882 | | void XLCXXABI::emitCXXStermFinalizer(const VarDecl &D, llvm::Function *dtorStub, |
4883 | 0 | llvm::Constant *addr) { |
4884 | 0 | llvm::FunctionType *FTy = llvm::FunctionType::get(CGM.VoidTy, false); |
4885 | 0 | SmallString<256> FnName; |
4886 | 0 | { |
4887 | 0 | llvm::raw_svector_ostream Out(FnName); |
4888 | 0 | getMangleContext().mangleDynamicStermFinalizer(&D, Out); |
4889 | 0 | } |
4890 | | |
4891 | | // Create the finalization action associated with a variable. |
4892 | 0 | const CGFunctionInfo &FI = CGM.getTypes().arrangeNullaryFunction(); |
4893 | 0 | llvm::Function *StermFinalizer = CGM.CreateGlobalInitOrCleanUpFunction( |
4894 | 0 | FTy, FnName.str(), FI, D.getLocation()); |
4895 | |
|
4896 | 0 | CodeGenFunction CGF(CGM); |
4897 | |
|
4898 | 0 | CGF.StartFunction(GlobalDecl(), CGM.getContext().VoidTy, StermFinalizer, FI, |
4899 | 0 | FunctionArgList(), D.getLocation(), |
4900 | 0 | D.getInit()->getExprLoc()); |
4901 | | |
4902 | | // The unatexit subroutine unregisters __dtor functions that were previously |
4903 | | // registered by the atexit subroutine. If the referenced function is found, |
4904 | | // the unatexit returns a value of 0, meaning that the cleanup is still |
4905 | | // pending (and we should call the __dtor function). |
4906 | 0 | llvm::Value *V = CGF.unregisterGlobalDtorWithUnAtExit(dtorStub); |
4907 | |
|
4908 | 0 | llvm::Value *NeedsDestruct = CGF.Builder.CreateIsNull(V, "needs_destruct"); |
4909 | |
|
4910 | 0 | llvm::BasicBlock *DestructCallBlock = CGF.createBasicBlock("destruct.call"); |
4911 | 0 | llvm::BasicBlock *EndBlock = CGF.createBasicBlock("destruct.end"); |
4912 | | |
4913 | | // Check if unatexit returns a value of 0. If it does, jump to |
4914 | | // DestructCallBlock, otherwise jump to EndBlock directly. |
4915 | 0 | CGF.Builder.CreateCondBr(NeedsDestruct, DestructCallBlock, EndBlock); |
4916 | |
|
4917 | 0 | CGF.EmitBlock(DestructCallBlock); |
4918 | | |
4919 | | // Emit the call to dtorStub. |
4920 | 0 | llvm::CallInst *CI = CGF.Builder.CreateCall(dtorStub); |
4921 | | |
4922 | | // Make sure the call and the callee agree on calling convention. |
4923 | 0 | CI->setCallingConv(dtorStub->getCallingConv()); |
4924 | |
|
4925 | 0 | CGF.EmitBlock(EndBlock); |
4926 | |
|
4927 | 0 | CGF.FinishFunction(); |
4928 | |
|
4929 | 0 | if (auto *IPA = D.getAttr<InitPriorityAttr>()) { |
4930 | 0 | CGM.AddCXXPrioritizedStermFinalizerEntry(StermFinalizer, |
4931 | 0 | IPA->getPriority()); |
4932 | 0 | } else if (isTemplateInstantiation(D.getTemplateSpecializationKind()) || |
4933 | 0 | getContext().GetGVALinkageForVariable(&D) == GVA_DiscardableODR) { |
4934 | | // According to C++ [basic.start.init]p2, class template static data |
4935 | | // members (i.e., implicitly or explicitly instantiated specializations) |
4936 | | // have unordered initialization. As a consequence, we can put them into |
4937 | | // their own llvm.global_dtors entry. |
4938 | 0 | CGM.AddCXXStermFinalizerToGlobalDtor(StermFinalizer, 65535); |
4939 | 0 | } else { |
4940 | 0 | CGM.AddCXXStermFinalizerEntry(StermFinalizer); |
4941 | 0 | } |
4942 | 0 | } |