Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/CodeGen/MicrosoftCXXABI.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- MicrosoftCXXABI.cpp - Emit LLVM Code from ASTs for a Module ------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This provides C++ code generation targeting the Microsoft Visual C++ ABI.
10
// The class in this file generates structures that follow the Microsoft
11
// Visual C++ ABI, which is actually not very well documented at all outside
12
// of Microsoft.
13
//
14
//===----------------------------------------------------------------------===//
15
16
#include "ABIInfo.h"
17
#include "CGCXXABI.h"
18
#include "CGCleanup.h"
19
#include "CGVTables.h"
20
#include "CodeGenModule.h"
21
#include "CodeGenTypes.h"
22
#include "TargetInfo.h"
23
#include "clang/AST/Attr.h"
24
#include "clang/AST/CXXInheritance.h"
25
#include "clang/AST/Decl.h"
26
#include "clang/AST/DeclCXX.h"
27
#include "clang/AST/StmtCXX.h"
28
#include "clang/AST/VTableBuilder.h"
29
#include "clang/CodeGen/ConstantInitBuilder.h"
30
#include "llvm/ADT/StringExtras.h"
31
#include "llvm/ADT/StringSet.h"
32
#include "llvm/IR/Intrinsics.h"
33
34
using namespace clang;
35
using namespace CodeGen;
36
37
namespace {
38
39
/// Holds all the vbtable globals for a given class.
40
struct VBTableGlobals {
41
  const VPtrInfoVector *VBTables;
42
  SmallVector<llvm::GlobalVariable *, 2> Globals;
43
};
44
45
class MicrosoftCXXABI : public CGCXXABI {
46
public:
47
  MicrosoftCXXABI(CodeGenModule &CGM)
48
      : CGCXXABI(CGM), BaseClassDescriptorType(nullptr),
49
        ClassHierarchyDescriptorType(nullptr),
50
        CompleteObjectLocatorType(nullptr), CatchableTypeType(nullptr),
51
0
        ThrowInfoType(nullptr) {
52
0
    assert(!(CGM.getLangOpts().isExplicitDefaultVisibilityExportMapping() ||
53
0
             CGM.getLangOpts().isAllDefaultVisibilityExportMapping()) &&
54
0
           "visibility export mapping option unimplemented in this ABI");
55
0
  }
56
57
  bool HasThisReturn(GlobalDecl GD) const override;
58
  bool hasMostDerivedReturn(GlobalDecl GD) const override;
59
60
  bool classifyReturnType(CGFunctionInfo &FI) const override;
61
62
  RecordArgABI getRecordArgABI(const CXXRecordDecl *RD) const override;
63
64
0
  bool isSRetParameterAfterThis() const override { return true; }
65
66
0
  bool isThisCompleteObject(GlobalDecl GD) const override {
67
    // The Microsoft ABI doesn't use separate complete-object vs.
68
    // base-object variants of constructors, but it does of destructors.
69
0
    if (isa<CXXDestructorDecl>(GD.getDecl())) {
70
0
      switch (GD.getDtorType()) {
71
0
      case Dtor_Complete:
72
0
      case Dtor_Deleting:
73
0
        return true;
74
75
0
      case Dtor_Base:
76
0
        return false;
77
78
0
      case Dtor_Comdat: llvm_unreachable("emitting dtor comdat as function?");
79
0
      }
80
0
      llvm_unreachable("bad dtor kind");
81
0
    }
82
83
    // No other kinds.
84
0
    return false;
85
0
  }
86
87
  size_t getSrcArgforCopyCtor(const CXXConstructorDecl *CD,
88
0
                              FunctionArgList &Args) const override {
89
0
    assert(Args.size() >= 2 &&
90
0
           "expected the arglist to have at least two args!");
91
    // The 'most_derived' parameter goes second if the ctor is variadic and
92
    // has v-bases.
93
0
    if (CD->getParent()->getNumVBases() > 0 &&
94
0
        CD->getType()->castAs<FunctionProtoType>()->isVariadic())
95
0
      return 2;
96
0
    return 1;
97
0
  }
98
99
0
  std::vector<CharUnits> getVBPtrOffsets(const CXXRecordDecl *RD) override {
100
0
    std::vector<CharUnits> VBPtrOffsets;
101
0
    const ASTContext &Context = getContext();
102
0
    const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
103
104
0
    const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
105
0
    for (const std::unique_ptr<VPtrInfo> &VBT : *VBGlobals.VBTables) {
106
0
      const ASTRecordLayout &SubobjectLayout =
107
0
          Context.getASTRecordLayout(VBT->IntroducingObject);
108
0
      CharUnits Offs = VBT->NonVirtualOffset;
109
0
      Offs += SubobjectLayout.getVBPtrOffset();
110
0
      if (VBT->getVBaseWithVPtr())
111
0
        Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
112
0
      VBPtrOffsets.push_back(Offs);
113
0
    }
114
0
    llvm::array_pod_sort(VBPtrOffsets.begin(), VBPtrOffsets.end());
115
0
    return VBPtrOffsets;
116
0
  }
117
118
0
  StringRef GetPureVirtualCallName() override { return "_purecall"; }
119
0
  StringRef GetDeletedVirtualCallName() override { return "_purecall"; }
120
121
  void emitVirtualObjectDelete(CodeGenFunction &CGF, const CXXDeleteExpr *DE,
122
                               Address Ptr, QualType ElementType,
123
                               const CXXDestructorDecl *Dtor) override;
124
125
  void emitRethrow(CodeGenFunction &CGF, bool isNoReturn) override;
126
  void emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) override;
127
128
  void emitBeginCatch(CodeGenFunction &CGF, const CXXCatchStmt *C) override;
129
130
  llvm::GlobalVariable *getMSCompleteObjectLocator(const CXXRecordDecl *RD,
131
                                                   const VPtrInfo &Info);
132
133
  llvm::Constant *getAddrOfRTTIDescriptor(QualType Ty) override;
134
  CatchTypeInfo
135
  getAddrOfCXXCatchHandlerType(QualType Ty, QualType CatchHandlerType) override;
136
137
  /// MSVC needs an extra flag to indicate a catchall.
138
0
  CatchTypeInfo getCatchAllTypeInfo() override {
139
    // For -EHa catch(...) must handle HW exception
140
    // Adjective = HT_IsStdDotDot (0x40), only catch C++ exceptions
141
0
    if (getContext().getLangOpts().EHAsynch)
142
0
      return CatchTypeInfo{nullptr, 0};
143
0
    else
144
0
      return CatchTypeInfo{nullptr, 0x40};
145
0
  }
146
147
  bool shouldTypeidBeNullChecked(bool IsDeref, QualType SrcRecordTy) override;
148
  void EmitBadTypeidCall(CodeGenFunction &CGF) override;
149
  llvm::Value *EmitTypeid(CodeGenFunction &CGF, QualType SrcRecordTy,
150
                          Address ThisPtr,
151
                          llvm::Type *StdTypeInfoPtrTy) override;
152
153
  bool shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
154
                                          QualType SrcRecordTy) override;
155
156
0
  bool shouldEmitExactDynamicCast(QualType DestRecordTy) override {
157
    // TODO: Add support for exact dynamic_casts.
158
0
    return false;
159
0
  }
160
  llvm::Value *emitExactDynamicCast(CodeGenFunction &CGF, Address Value,
161
                                    QualType SrcRecordTy, QualType DestTy,
162
                                    QualType DestRecordTy,
163
                                    llvm::BasicBlock *CastSuccess,
164
0
                                    llvm::BasicBlock *CastFail) override {
165
0
    llvm_unreachable("unsupported");
166
0
  }
167
168
  llvm::Value *emitDynamicCastCall(CodeGenFunction &CGF, Address Value,
169
                                   QualType SrcRecordTy, QualType DestTy,
170
                                   QualType DestRecordTy,
171
                                   llvm::BasicBlock *CastEnd) override;
172
173
  llvm::Value *emitDynamicCastToVoid(CodeGenFunction &CGF, Address Value,
174
                                     QualType SrcRecordTy) override;
175
176
  bool EmitBadCastCall(CodeGenFunction &CGF) override;
177
0
  bool canSpeculativelyEmitVTable(const CXXRecordDecl *RD) const override {
178
0
    return false;
179
0
  }
180
181
  llvm::Value *
182
  GetVirtualBaseClassOffset(CodeGenFunction &CGF, Address This,
183
                            const CXXRecordDecl *ClassDecl,
184
                            const CXXRecordDecl *BaseClassDecl) override;
185
186
  llvm::BasicBlock *
187
  EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
188
                                const CXXRecordDecl *RD) override;
189
190
  llvm::BasicBlock *
191
  EmitDtorCompleteObjectHandler(CodeGenFunction &CGF);
192
193
  void initializeHiddenVirtualInheritanceMembers(CodeGenFunction &CGF,
194
                                              const CXXRecordDecl *RD) override;
195
196
  void EmitCXXConstructors(const CXXConstructorDecl *D) override;
197
198
  // Background on MSVC destructors
199
  // ==============================
200
  //
201
  // Both Itanium and MSVC ABIs have destructor variants.  The variant names
202
  // roughly correspond in the following way:
203
  //   Itanium       Microsoft
204
  //   Base       -> no name, just ~Class
205
  //   Complete   -> vbase destructor
206
  //   Deleting   -> scalar deleting destructor
207
  //                 vector deleting destructor
208
  //
209
  // The base and complete destructors are the same as in Itanium, although the
210
  // complete destructor does not accept a VTT parameter when there are virtual
211
  // bases.  A separate mechanism involving vtordisps is used to ensure that
212
  // virtual methods of destroyed subobjects are not called.
213
  //
214
  // The deleting destructors accept an i32 bitfield as a second parameter.  Bit
215
  // 1 indicates if the memory should be deleted.  Bit 2 indicates if the this
216
  // pointer points to an array.  The scalar deleting destructor assumes that
217
  // bit 2 is zero, and therefore does not contain a loop.
218
  //
219
  // For virtual destructors, only one entry is reserved in the vftable, and it
220
  // always points to the vector deleting destructor.  The vector deleting
221
  // destructor is the most general, so it can be used to destroy objects in
222
  // place, delete single heap objects, or delete arrays.
223
  //
224
  // A TU defining a non-inline destructor is only guaranteed to emit a base
225
  // destructor, and all of the other variants are emitted on an as-needed basis
226
  // in COMDATs.  Because a non-base destructor can be emitted in a TU that
227
  // lacks a definition for the destructor, non-base destructors must always
228
  // delegate to or alias the base destructor.
229
230
  AddedStructorArgCounts
231
  buildStructorSignature(GlobalDecl GD,
232
                         SmallVectorImpl<CanQualType> &ArgTys) override;
233
234
  /// Non-base dtors should be emitted as delegating thunks in this ABI.
235
  bool useThunkForDtorVariant(const CXXDestructorDecl *Dtor,
236
0
                              CXXDtorType DT) const override {
237
0
    return DT != Dtor_Base;
238
0
  }
239
240
  void setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
241
                                  const CXXDestructorDecl *Dtor,
242
                                  CXXDtorType DT) const override;
243
244
  llvm::GlobalValue::LinkageTypes
245
  getCXXDestructorLinkage(GVALinkage Linkage, const CXXDestructorDecl *Dtor,
246
                          CXXDtorType DT) const override;
247
248
  void EmitCXXDestructors(const CXXDestructorDecl *D) override;
249
250
0
  const CXXRecordDecl *getThisArgumentTypeForMethod(GlobalDecl GD) override {
251
0
    auto *MD = cast<CXXMethodDecl>(GD.getDecl());
252
253
0
    if (MD->isVirtual()) {
254
0
      GlobalDecl LookupGD = GD;
255
0
      if (const auto *DD = dyn_cast<CXXDestructorDecl>(MD)) {
256
        // Complete dtors take a pointer to the complete object,
257
        // thus don't need adjustment.
258
0
        if (GD.getDtorType() == Dtor_Complete)
259
0
          return MD->getParent();
260
261
        // There's only Dtor_Deleting in vftable but it shares the this
262
        // adjustment with the base one, so look up the deleting one instead.
263
0
        LookupGD = GlobalDecl(DD, Dtor_Deleting);
264
0
      }
265
0
      MethodVFTableLocation ML =
266
0
          CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
267
268
      // The vbases might be ordered differently in the final overrider object
269
      // and the complete object, so the "this" argument may sometimes point to
270
      // memory that has no particular type (e.g. past the complete object).
271
      // In this case, we just use a generic pointer type.
272
      // FIXME: might want to have a more precise type in the non-virtual
273
      // multiple inheritance case.
274
0
      if (ML.VBase || !ML.VFPtrOffset.isZero())
275
0
        return nullptr;
276
0
    }
277
0
    return MD->getParent();
278
0
  }
279
280
  Address
281
  adjustThisArgumentForVirtualFunctionCall(CodeGenFunction &CGF, GlobalDecl GD,
282
                                           Address This,
283
                                           bool VirtualCall) override;
284
285
  void addImplicitStructorParams(CodeGenFunction &CGF, QualType &ResTy,
286
                                 FunctionArgList &Params) override;
287
288
  void EmitInstanceFunctionProlog(CodeGenFunction &CGF) override;
289
290
  AddedStructorArgs getImplicitConstructorArgs(CodeGenFunction &CGF,
291
                                               const CXXConstructorDecl *D,
292
                                               CXXCtorType Type,
293
                                               bool ForVirtualBase,
294
                                               bool Delegating) override;
295
296
  llvm::Value *getCXXDestructorImplicitParam(CodeGenFunction &CGF,
297
                                             const CXXDestructorDecl *DD,
298
                                             CXXDtorType Type,
299
                                             bool ForVirtualBase,
300
                                             bool Delegating) override;
301
302
  void EmitDestructorCall(CodeGenFunction &CGF, const CXXDestructorDecl *DD,
303
                          CXXDtorType Type, bool ForVirtualBase,
304
                          bool Delegating, Address This,
305
                          QualType ThisTy) override;
306
307
  void emitVTableTypeMetadata(const VPtrInfo &Info, const CXXRecordDecl *RD,
308
                              llvm::GlobalVariable *VTable);
309
310
  void emitVTableDefinitions(CodeGenVTables &CGVT,
311
                             const CXXRecordDecl *RD) override;
312
313
  bool isVirtualOffsetNeededForVTableField(CodeGenFunction &CGF,
314
                                           CodeGenFunction::VPtr Vptr) override;
315
316
  /// Don't initialize vptrs if dynamic class
317
  /// is marked with the 'novtable' attribute.
318
0
  bool doStructorsInitializeVPtrs(const CXXRecordDecl *VTableClass) override {
319
0
    return !VTableClass->hasAttr<MSNoVTableAttr>();
320
0
  }
321
322
  llvm::Constant *
323
  getVTableAddressPoint(BaseSubobject Base,
324
                        const CXXRecordDecl *VTableClass) override;
325
326
  llvm::Value *getVTableAddressPointInStructor(
327
      CodeGenFunction &CGF, const CXXRecordDecl *VTableClass,
328
      BaseSubobject Base, const CXXRecordDecl *NearestVBase) override;
329
330
  llvm::Constant *
331
  getVTableAddressPointForConstExpr(BaseSubobject Base,
332
                                    const CXXRecordDecl *VTableClass) override;
333
334
  llvm::GlobalVariable *getAddrOfVTable(const CXXRecordDecl *RD,
335
                                        CharUnits VPtrOffset) override;
336
337
  CGCallee getVirtualFunctionPointer(CodeGenFunction &CGF, GlobalDecl GD,
338
                                     Address This, llvm::Type *Ty,
339
                                     SourceLocation Loc) override;
340
341
  llvm::Value *EmitVirtualDestructorCall(CodeGenFunction &CGF,
342
                                         const CXXDestructorDecl *Dtor,
343
                                         CXXDtorType DtorType, Address This,
344
                                         DeleteOrMemberCallExpr E) override;
345
346
  void adjustCallArgsForDestructorThunk(CodeGenFunction &CGF, GlobalDecl GD,
347
0
                                        CallArgList &CallArgs) override {
348
0
    assert(GD.getDtorType() == Dtor_Deleting &&
349
0
           "Only deleting destructor thunks are available in this ABI");
350
0
    CallArgs.add(RValue::get(getStructorImplicitParamValue(CGF)),
351
0
                 getContext().IntTy);
352
0
  }
353
354
  void emitVirtualInheritanceTables(const CXXRecordDecl *RD) override;
355
356
  llvm::GlobalVariable *
357
  getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
358
                   llvm::GlobalVariable::LinkageTypes Linkage);
359
360
  llvm::GlobalVariable *
361
  getAddrOfVirtualDisplacementMap(const CXXRecordDecl *SrcRD,
362
0
                                  const CXXRecordDecl *DstRD) {
363
0
    SmallString<256> OutName;
364
0
    llvm::raw_svector_ostream Out(OutName);
365
0
    getMangleContext().mangleCXXVirtualDisplacementMap(SrcRD, DstRD, Out);
366
0
    StringRef MangledName = OutName.str();
367
368
0
    if (auto *VDispMap = CGM.getModule().getNamedGlobal(MangledName))
369
0
      return VDispMap;
370
371
0
    MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
372
0
    unsigned NumEntries = 1 + SrcRD->getNumVBases();
373
0
    SmallVector<llvm::Constant *, 4> Map(NumEntries,
374
0
                                         llvm::UndefValue::get(CGM.IntTy));
375
0
    Map[0] = llvm::ConstantInt::get(CGM.IntTy, 0);
376
0
    bool AnyDifferent = false;
377
0
    for (const auto &I : SrcRD->vbases()) {
378
0
      const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
379
0
      if (!DstRD->isVirtuallyDerivedFrom(VBase))
380
0
        continue;
381
382
0
      unsigned SrcVBIndex = VTContext.getVBTableIndex(SrcRD, VBase);
383
0
      unsigned DstVBIndex = VTContext.getVBTableIndex(DstRD, VBase);
384
0
      Map[SrcVBIndex] = llvm::ConstantInt::get(CGM.IntTy, DstVBIndex * 4);
385
0
      AnyDifferent |= SrcVBIndex != DstVBIndex;
386
0
    }
387
    // This map would be useless, don't use it.
388
0
    if (!AnyDifferent)
389
0
      return nullptr;
390
391
0
    llvm::ArrayType *VDispMapTy = llvm::ArrayType::get(CGM.IntTy, Map.size());
392
0
    llvm::Constant *Init = llvm::ConstantArray::get(VDispMapTy, Map);
393
0
    llvm::GlobalValue::LinkageTypes Linkage =
394
0
        SrcRD->isExternallyVisible() && DstRD->isExternallyVisible()
395
0
            ? llvm::GlobalValue::LinkOnceODRLinkage
396
0
            : llvm::GlobalValue::InternalLinkage;
397
0
    auto *VDispMap = new llvm::GlobalVariable(
398
0
        CGM.getModule(), VDispMapTy, /*isConstant=*/true, Linkage,
399
0
        /*Initializer=*/Init, MangledName);
400
0
    return VDispMap;
401
0
  }
402
403
  void emitVBTableDefinition(const VPtrInfo &VBT, const CXXRecordDecl *RD,
404
                             llvm::GlobalVariable *GV) const;
405
406
  void setThunkLinkage(llvm::Function *Thunk, bool ForVTable,
407
0
                       GlobalDecl GD, bool ReturnAdjustment) override {
408
0
    GVALinkage Linkage =
409
0
        getContext().GetGVALinkageForFunction(cast<FunctionDecl>(GD.getDecl()));
410
411
0
    if (Linkage == GVA_Internal)
412
0
      Thunk->setLinkage(llvm::GlobalValue::InternalLinkage);
413
0
    else if (ReturnAdjustment)
414
0
      Thunk->setLinkage(llvm::GlobalValue::WeakODRLinkage);
415
0
    else
416
0
      Thunk->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
417
0
  }
418
419
0
  bool exportThunk() override { return false; }
420
421
  llvm::Value *performThisAdjustment(CodeGenFunction &CGF, Address This,
422
                                     const ThisAdjustment &TA) override;
423
424
  llvm::Value *performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
425
                                       const ReturnAdjustment &RA) override;
426
427
  void EmitThreadLocalInitFuncs(
428
      CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
429
      ArrayRef<llvm::Function *> CXXThreadLocalInits,
430
      ArrayRef<const VarDecl *> CXXThreadLocalInitVars) override;
431
432
0
  bool usesThreadWrapperFunction(const VarDecl *VD) const override {
433
0
    return getContext().getLangOpts().isCompatibleWithMSVC(
434
0
               LangOptions::MSVC2019_5) &&
435
0
           (!isEmittedWithConstantInitializer(VD) || mayNeedDestruction(VD));
436
0
  }
437
  LValue EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF, const VarDecl *VD,
438
                                      QualType LValType) override;
439
440
  void EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
441
                       llvm::GlobalVariable *DeclPtr,
442
                       bool PerformInit) override;
443
  void registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
444
                          llvm::FunctionCallee Dtor,
445
                          llvm::Constant *Addr) override;
446
447
  // ==== Notes on array cookies =========
448
  //
449
  // MSVC seems to only use cookies when the class has a destructor; a
450
  // two-argument usual array deallocation function isn't sufficient.
451
  //
452
  // For example, this code prints "100" and "1":
453
  //   struct A {
454
  //     char x;
455
  //     void *operator new[](size_t sz) {
456
  //       printf("%u\n", sz);
457
  //       return malloc(sz);
458
  //     }
459
  //     void operator delete[](void *p, size_t sz) {
460
  //       printf("%u\n", sz);
461
  //       free(p);
462
  //     }
463
  //   };
464
  //   int main() {
465
  //     A *p = new A[100];
466
  //     delete[] p;
467
  //   }
468
  // Whereas it prints "104" and "104" if you give A a destructor.
469
470
  bool requiresArrayCookie(const CXXDeleteExpr *expr,
471
                           QualType elementType) override;
472
  bool requiresArrayCookie(const CXXNewExpr *expr) override;
473
  CharUnits getArrayCookieSizeImpl(QualType type) override;
474
  Address InitializeArrayCookie(CodeGenFunction &CGF,
475
                                Address NewPtr,
476
                                llvm::Value *NumElements,
477
                                const CXXNewExpr *expr,
478
                                QualType ElementType) override;
479
  llvm::Value *readArrayCookieImpl(CodeGenFunction &CGF,
480
                                   Address allocPtr,
481
                                   CharUnits cookieSize) override;
482
483
  friend struct MSRTTIBuilder;
484
485
0
  bool isImageRelative() const {
486
0
    return CGM.getTarget().getPointerWidth(LangAS::Default) == 64;
487
0
  }
488
489
  // 5 routines for constructing the llvm types for MS RTTI structs.
490
0
  llvm::StructType *getTypeDescriptorType(StringRef TypeInfoString) {
491
0
    llvm::SmallString<32> TDTypeName("rtti.TypeDescriptor");
492
0
    TDTypeName += llvm::utostr(TypeInfoString.size());
493
0
    llvm::StructType *&TypeDescriptorType =
494
0
        TypeDescriptorTypeMap[TypeInfoString.size()];
495
0
    if (TypeDescriptorType)
496
0
      return TypeDescriptorType;
497
0
    llvm::Type *FieldTypes[] = {
498
0
        CGM.Int8PtrPtrTy,
499
0
        CGM.Int8PtrTy,
500
0
        llvm::ArrayType::get(CGM.Int8Ty, TypeInfoString.size() + 1)};
501
0
    TypeDescriptorType =
502
0
        llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, TDTypeName);
503
0
    return TypeDescriptorType;
504
0
  }
505
506
0
  llvm::Type *getImageRelativeType(llvm::Type *PtrType) {
507
0
    if (!isImageRelative())
508
0
      return PtrType;
509
0
    return CGM.IntTy;
510
0
  }
511
512
0
  llvm::StructType *getBaseClassDescriptorType() {
513
0
    if (BaseClassDescriptorType)
514
0
      return BaseClassDescriptorType;
515
0
    llvm::Type *FieldTypes[] = {
516
0
        getImageRelativeType(CGM.Int8PtrTy),
517
0
        CGM.IntTy,
518
0
        CGM.IntTy,
519
0
        CGM.IntTy,
520
0
        CGM.IntTy,
521
0
        CGM.IntTy,
522
0
        getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
523
0
    };
524
0
    BaseClassDescriptorType = llvm::StructType::create(
525
0
        CGM.getLLVMContext(), FieldTypes, "rtti.BaseClassDescriptor");
526
0
    return BaseClassDescriptorType;
527
0
  }
528
529
0
  llvm::StructType *getClassHierarchyDescriptorType() {
530
0
    if (ClassHierarchyDescriptorType)
531
0
      return ClassHierarchyDescriptorType;
532
    // Forward-declare RTTIClassHierarchyDescriptor to break a cycle.
533
0
    ClassHierarchyDescriptorType = llvm::StructType::create(
534
0
        CGM.getLLVMContext(), "rtti.ClassHierarchyDescriptor");
535
0
    llvm::Type *FieldTypes[] = {
536
0
        CGM.IntTy,
537
0
        CGM.IntTy,
538
0
        CGM.IntTy,
539
0
        getImageRelativeType(
540
0
            getBaseClassDescriptorType()->getPointerTo()->getPointerTo()),
541
0
    };
542
0
    ClassHierarchyDescriptorType->setBody(FieldTypes);
543
0
    return ClassHierarchyDescriptorType;
544
0
  }
545
546
0
  llvm::StructType *getCompleteObjectLocatorType() {
547
0
    if (CompleteObjectLocatorType)
548
0
      return CompleteObjectLocatorType;
549
0
    CompleteObjectLocatorType = llvm::StructType::create(
550
0
        CGM.getLLVMContext(), "rtti.CompleteObjectLocator");
551
0
    llvm::Type *FieldTypes[] = {
552
0
        CGM.IntTy,
553
0
        CGM.IntTy,
554
0
        CGM.IntTy,
555
0
        getImageRelativeType(CGM.Int8PtrTy),
556
0
        getImageRelativeType(getClassHierarchyDescriptorType()->getPointerTo()),
557
0
        getImageRelativeType(CompleteObjectLocatorType),
558
0
    };
559
0
    llvm::ArrayRef<llvm::Type *> FieldTypesRef(FieldTypes);
560
0
    if (!isImageRelative())
561
0
      FieldTypesRef = FieldTypesRef.drop_back();
562
0
    CompleteObjectLocatorType->setBody(FieldTypesRef);
563
0
    return CompleteObjectLocatorType;
564
0
  }
565
566
0
  llvm::GlobalVariable *getImageBase() {
567
0
    StringRef Name = "__ImageBase";
568
0
    if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(Name))
569
0
      return GV;
570
571
0
    auto *GV = new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty,
572
0
                                        /*isConstant=*/true,
573
0
                                        llvm::GlobalValue::ExternalLinkage,
574
0
                                        /*Initializer=*/nullptr, Name);
575
0
    CGM.setDSOLocal(GV);
576
0
    return GV;
577
0
  }
578
579
0
  llvm::Constant *getImageRelativeConstant(llvm::Constant *PtrVal) {
580
0
    if (!isImageRelative())
581
0
      return PtrVal;
582
583
0
    if (PtrVal->isNullValue())
584
0
      return llvm::Constant::getNullValue(CGM.IntTy);
585
586
0
    llvm::Constant *ImageBaseAsInt =
587
0
        llvm::ConstantExpr::getPtrToInt(getImageBase(), CGM.IntPtrTy);
588
0
    llvm::Constant *PtrValAsInt =
589
0
        llvm::ConstantExpr::getPtrToInt(PtrVal, CGM.IntPtrTy);
590
0
    llvm::Constant *Diff =
591
0
        llvm::ConstantExpr::getSub(PtrValAsInt, ImageBaseAsInt,
592
0
                                   /*HasNUW=*/true, /*HasNSW=*/true);
593
0
    return llvm::ConstantExpr::getTrunc(Diff, CGM.IntTy);
594
0
  }
595
596
private:
597
0
  MicrosoftMangleContext &getMangleContext() {
598
0
    return cast<MicrosoftMangleContext>(CodeGen::CGCXXABI::getMangleContext());
599
0
  }
600
601
0
  llvm::Constant *getZeroInt() {
602
0
    return llvm::ConstantInt::get(CGM.IntTy, 0);
603
0
  }
604
605
0
  llvm::Constant *getAllOnesInt() {
606
0
    return  llvm::Constant::getAllOnesValue(CGM.IntTy);
607
0
  }
608
609
  CharUnits getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) override;
610
611
  void
612
  GetNullMemberPointerFields(const MemberPointerType *MPT,
613
                             llvm::SmallVectorImpl<llvm::Constant *> &fields);
614
615
  /// Shared code for virtual base adjustment.  Returns the offset from
616
  /// the vbptr to the virtual base.  Optionally returns the address of the
617
  /// vbptr itself.
618
  llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
619
                                       Address Base,
620
                                       llvm::Value *VBPtrOffset,
621
                                       llvm::Value *VBTableOffset,
622
                                       llvm::Value **VBPtr = nullptr);
623
624
  llvm::Value *GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
625
                                       Address Base,
626
                                       int32_t VBPtrOffset,
627
                                       int32_t VBTableOffset,
628
0
                                       llvm::Value **VBPtr = nullptr) {
629
0
    assert(VBTableOffset % 4 == 0 && "should be byte offset into table of i32s");
630
0
    llvm::Value *VBPOffset = llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
631
0
                *VBTOffset = llvm::ConstantInt::get(CGM.IntTy, VBTableOffset);
632
0
    return GetVBaseOffsetFromVBPtr(CGF, Base, VBPOffset, VBTOffset, VBPtr);
633
0
  }
634
635
  std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
636
  performBaseAdjustment(CodeGenFunction &CGF, Address Value,
637
                        QualType SrcRecordTy);
638
639
  /// Performs a full virtual base adjustment.  Used to dereference
640
  /// pointers to members of virtual bases.
641
  llvm::Value *AdjustVirtualBase(CodeGenFunction &CGF, const Expr *E,
642
                                 const CXXRecordDecl *RD, Address Base,
643
                                 llvm::Value *VirtualBaseAdjustmentOffset,
644
                                 llvm::Value *VBPtrOffset /* optional */);
645
646
  /// Emits a full member pointer with the fields common to data and
647
  /// function member pointers.
648
  llvm::Constant *EmitFullMemberPointer(llvm::Constant *FirstField,
649
                                        bool IsMemberFunction,
650
                                        const CXXRecordDecl *RD,
651
                                        CharUnits NonVirtualBaseAdjustment,
652
                                        unsigned VBTableIndex);
653
654
  bool MemberPointerConstantIsNull(const MemberPointerType *MPT,
655
                                   llvm::Constant *MP);
656
657
  /// - Initialize all vbptrs of 'this' with RD as the complete type.
658
  void EmitVBPtrStores(CodeGenFunction &CGF, const CXXRecordDecl *RD);
659
660
  /// Caching wrapper around VBTableBuilder::enumerateVBTables().
661
  const VBTableGlobals &enumerateVBTables(const CXXRecordDecl *RD);
662
663
  /// Generate a thunk for calling a virtual member function MD.
664
  llvm::Function *EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
665
                                         const MethodVFTableLocation &ML);
666
667
  llvm::Constant *EmitMemberDataPointer(const CXXRecordDecl *RD,
668
                                        CharUnits offset);
669
670
public:
671
  llvm::Type *ConvertMemberPointerType(const MemberPointerType *MPT) override;
672
673
  bool isZeroInitializable(const MemberPointerType *MPT) override;
674
675
0
  bool isMemberPointerConvertible(const MemberPointerType *MPT) const override {
676
0
    const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
677
0
    return RD->hasAttr<MSInheritanceAttr>();
678
0
  }
679
680
  llvm::Constant *EmitNullMemberPointer(const MemberPointerType *MPT) override;
681
682
  llvm::Constant *EmitMemberDataPointer(const MemberPointerType *MPT,
683
                                        CharUnits offset) override;
684
  llvm::Constant *EmitMemberFunctionPointer(const CXXMethodDecl *MD) override;
685
  llvm::Constant *EmitMemberPointer(const APValue &MP, QualType MPT) override;
686
687
  llvm::Value *EmitMemberPointerComparison(CodeGenFunction &CGF,
688
                                           llvm::Value *L,
689
                                           llvm::Value *R,
690
                                           const MemberPointerType *MPT,
691
                                           bool Inequality) override;
692
693
  llvm::Value *EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
694
                                          llvm::Value *MemPtr,
695
                                          const MemberPointerType *MPT) override;
696
697
  llvm::Value *
698
  EmitMemberDataPointerAddress(CodeGenFunction &CGF, const Expr *E,
699
                               Address Base, llvm::Value *MemPtr,
700
                               const MemberPointerType *MPT) override;
701
702
  llvm::Value *EmitNonNullMemberPointerConversion(
703
      const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
704
      CastKind CK, CastExpr::path_const_iterator PathBegin,
705
      CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
706
      CGBuilderTy &Builder);
707
708
  llvm::Value *EmitMemberPointerConversion(CodeGenFunction &CGF,
709
                                           const CastExpr *E,
710
                                           llvm::Value *Src) override;
711
712
  llvm::Constant *EmitMemberPointerConversion(const CastExpr *E,
713
                                              llvm::Constant *Src) override;
714
715
  llvm::Constant *EmitMemberPointerConversion(
716
      const MemberPointerType *SrcTy, const MemberPointerType *DstTy,
717
      CastKind CK, CastExpr::path_const_iterator PathBegin,
718
      CastExpr::path_const_iterator PathEnd, llvm::Constant *Src);
719
720
  CGCallee
721
  EmitLoadOfMemberFunctionPointer(CodeGenFunction &CGF, const Expr *E,
722
                                  Address This, llvm::Value *&ThisPtrForCall,
723
                                  llvm::Value *MemPtr,
724
                                  const MemberPointerType *MPT) override;
725
726
  void emitCXXStructor(GlobalDecl GD) override;
727
728
0
  llvm::StructType *getCatchableTypeType() {
729
0
    if (CatchableTypeType)
730
0
      return CatchableTypeType;
731
0
    llvm::Type *FieldTypes[] = {
732
0
        CGM.IntTy,                           // Flags
733
0
        getImageRelativeType(CGM.Int8PtrTy), // TypeDescriptor
734
0
        CGM.IntTy,                           // NonVirtualAdjustment
735
0
        CGM.IntTy,                           // OffsetToVBPtr
736
0
        CGM.IntTy,                           // VBTableIndex
737
0
        CGM.IntTy,                           // Size
738
0
        getImageRelativeType(CGM.Int8PtrTy)  // CopyCtor
739
0
    };
740
0
    CatchableTypeType = llvm::StructType::create(
741
0
        CGM.getLLVMContext(), FieldTypes, "eh.CatchableType");
742
0
    return CatchableTypeType;
743
0
  }
744
745
0
  llvm::StructType *getCatchableTypeArrayType(uint32_t NumEntries) {
746
0
    llvm::StructType *&CatchableTypeArrayType =
747
0
        CatchableTypeArrayTypeMap[NumEntries];
748
0
    if (CatchableTypeArrayType)
749
0
      return CatchableTypeArrayType;
750
751
0
    llvm::SmallString<23> CTATypeName("eh.CatchableTypeArray.");
752
0
    CTATypeName += llvm::utostr(NumEntries);
753
0
    llvm::Type *CTType =
754
0
        getImageRelativeType(getCatchableTypeType()->getPointerTo());
755
0
    llvm::Type *FieldTypes[] = {
756
0
        CGM.IntTy,                               // NumEntries
757
0
        llvm::ArrayType::get(CTType, NumEntries) // CatchableTypes
758
0
    };
759
0
    CatchableTypeArrayType =
760
0
        llvm::StructType::create(CGM.getLLVMContext(), FieldTypes, CTATypeName);
761
0
    return CatchableTypeArrayType;
762
0
  }
763
764
0
  llvm::StructType *getThrowInfoType() {
765
0
    if (ThrowInfoType)
766
0
      return ThrowInfoType;
767
0
    llvm::Type *FieldTypes[] = {
768
0
        CGM.IntTy,                           // Flags
769
0
        getImageRelativeType(CGM.Int8PtrTy), // CleanupFn
770
0
        getImageRelativeType(CGM.Int8PtrTy), // ForwardCompat
771
0
        getImageRelativeType(CGM.Int8PtrTy)  // CatchableTypeArray
772
0
    };
773
0
    ThrowInfoType = llvm::StructType::create(CGM.getLLVMContext(), FieldTypes,
774
0
                                             "eh.ThrowInfo");
775
0
    return ThrowInfoType;
776
0
  }
777
778
0
  llvm::FunctionCallee getThrowFn() {
779
    // _CxxThrowException is passed an exception object and a ThrowInfo object
780
    // which describes the exception.
781
0
    llvm::Type *Args[] = {CGM.Int8PtrTy, getThrowInfoType()->getPointerTo()};
782
0
    llvm::FunctionType *FTy =
783
0
        llvm::FunctionType::get(CGM.VoidTy, Args, /*isVarArg=*/false);
784
0
    llvm::FunctionCallee Throw =
785
0
        CGM.CreateRuntimeFunction(FTy, "_CxxThrowException");
786
    // _CxxThrowException is stdcall on 32-bit x86 platforms.
787
0
    if (CGM.getTarget().getTriple().getArch() == llvm::Triple::x86) {
788
0
      if (auto *Fn = dyn_cast<llvm::Function>(Throw.getCallee()))
789
0
        Fn->setCallingConv(llvm::CallingConv::X86_StdCall);
790
0
    }
791
0
    return Throw;
792
0
  }
793
794
  llvm::Function *getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
795
                                          CXXCtorType CT);
796
797
  llvm::Constant *getCatchableType(QualType T,
798
                                   uint32_t NVOffset = 0,
799
                                   int32_t VBPtrOffset = -1,
800
                                   uint32_t VBIndex = 0);
801
802
  llvm::GlobalVariable *getCatchableTypeArray(QualType T);
803
804
  llvm::GlobalVariable *getThrowInfo(QualType T) override;
805
806
  std::pair<llvm::Value *, const CXXRecordDecl *>
807
  LoadVTablePtr(CodeGenFunction &CGF, Address This,
808
                const CXXRecordDecl *RD) override;
809
810
  bool
811
  isPermittedToBeHomogeneousAggregate(const CXXRecordDecl *RD) const override;
812
813
private:
814
  typedef std::pair<const CXXRecordDecl *, CharUnits> VFTableIdTy;
815
  typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalVariable *> VTablesMapTy;
816
  typedef llvm::DenseMap<VFTableIdTy, llvm::GlobalValue *> VFTablesMapTy;
817
  /// All the vftables that have been referenced.
818
  VFTablesMapTy VFTablesMap;
819
  VTablesMapTy VTablesMap;
820
821
  /// This set holds the record decls we've deferred vtable emission for.
822
  llvm::SmallPtrSet<const CXXRecordDecl *, 4> DeferredVFTables;
823
824
825
  /// All the vbtables which have been referenced.
826
  llvm::DenseMap<const CXXRecordDecl *, VBTableGlobals> VBTablesMap;
827
828
  /// Info on the global variable used to guard initialization of static locals.
829
  /// The BitIndex field is only used for externally invisible declarations.
830
  struct GuardInfo {
831
0
    GuardInfo() = default;
832
    llvm::GlobalVariable *Guard = nullptr;
833
    unsigned BitIndex = 0;
834
  };
835
836
  /// Map from DeclContext to the current guard variable.  We assume that the
837
  /// AST is visited in source code order.
838
  llvm::DenseMap<const DeclContext *, GuardInfo> GuardVariableMap;
839
  llvm::DenseMap<const DeclContext *, GuardInfo> ThreadLocalGuardVariableMap;
840
  llvm::DenseMap<const DeclContext *, unsigned> ThreadSafeGuardNumMap;
841
842
  llvm::DenseMap<size_t, llvm::StructType *> TypeDescriptorTypeMap;
843
  llvm::StructType *BaseClassDescriptorType;
844
  llvm::StructType *ClassHierarchyDescriptorType;
845
  llvm::StructType *CompleteObjectLocatorType;
846
847
  llvm::DenseMap<QualType, llvm::GlobalVariable *> CatchableTypeArrays;
848
849
  llvm::StructType *CatchableTypeType;
850
  llvm::DenseMap<uint32_t, llvm::StructType *> CatchableTypeArrayTypeMap;
851
  llvm::StructType *ThrowInfoType;
852
};
853
854
}
855
856
CGCXXABI::RecordArgABI
857
0
MicrosoftCXXABI::getRecordArgABI(const CXXRecordDecl *RD) const {
858
  // Use the default C calling convention rules for things that can be passed in
859
  // registers, i.e. non-trivially copyable records or records marked with
860
  // [[trivial_abi]].
861
0
  if (RD->canPassInRegisters())
862
0
    return RAA_Default;
863
864
0
  switch (CGM.getTarget().getTriple().getArch()) {
865
0
  default:
866
    // FIXME: Implement for other architectures.
867
0
    return RAA_Indirect;
868
869
0
  case llvm::Triple::thumb:
870
    // Pass things indirectly for now because it is simple.
871
    // FIXME: This is incompatible with MSVC for arguments with a dtor and no
872
    // copy ctor.
873
0
    return RAA_Indirect;
874
875
0
  case llvm::Triple::x86: {
876
    // If the argument has *required* alignment greater than four bytes, pass
877
    // it indirectly. Prior to MSVC version 19.14, passing overaligned
878
    // arguments was not supported and resulted in a compiler error. In 19.14
879
    // and later versions, such arguments are now passed indirectly.
880
0
    TypeInfo Info = getContext().getTypeInfo(RD->getTypeForDecl());
881
0
    if (Info.isAlignRequired() && Info.Align > 4)
882
0
      return RAA_Indirect;
883
884
    // If C++ prohibits us from making a copy, construct the arguments directly
885
    // into argument memory.
886
0
    return RAA_DirectInMemory;
887
0
  }
888
889
0
  case llvm::Triple::x86_64:
890
0
  case llvm::Triple::aarch64:
891
0
    return RAA_Indirect;
892
0
  }
893
894
0
  llvm_unreachable("invalid enum");
895
0
}
896
897
void MicrosoftCXXABI::emitVirtualObjectDelete(CodeGenFunction &CGF,
898
                                              const CXXDeleteExpr *DE,
899
                                              Address Ptr,
900
                                              QualType ElementType,
901
0
                                              const CXXDestructorDecl *Dtor) {
902
  // FIXME: Provide a source location here even though there's no
903
  // CXXMemberCallExpr for dtor call.
904
0
  bool UseGlobalDelete = DE->isGlobalDelete();
905
0
  CXXDtorType DtorType = UseGlobalDelete ? Dtor_Complete : Dtor_Deleting;
906
0
  llvm::Value *MDThis = EmitVirtualDestructorCall(CGF, Dtor, DtorType, Ptr, DE);
907
0
  if (UseGlobalDelete)
908
0
    CGF.EmitDeleteCall(DE->getOperatorDelete(), MDThis, ElementType);
909
0
}
910
911
0
void MicrosoftCXXABI::emitRethrow(CodeGenFunction &CGF, bool isNoReturn) {
912
0
  llvm::Value *Args[] = {
913
0
      llvm::ConstantPointerNull::get(CGM.Int8PtrTy),
914
0
      llvm::ConstantPointerNull::get(getThrowInfoType()->getPointerTo())};
915
0
  llvm::FunctionCallee Fn = getThrowFn();
916
0
  if (isNoReturn)
917
0
    CGF.EmitNoreturnRuntimeCallOrInvoke(Fn, Args);
918
0
  else
919
0
    CGF.EmitRuntimeCallOrInvoke(Fn, Args);
920
0
}
921
922
void MicrosoftCXXABI::emitBeginCatch(CodeGenFunction &CGF,
923
0
                                     const CXXCatchStmt *S) {
924
  // In the MS ABI, the runtime handles the copy, and the catch handler is
925
  // responsible for destruction.
926
0
  VarDecl *CatchParam = S->getExceptionDecl();
927
0
  llvm::BasicBlock *CatchPadBB = CGF.Builder.GetInsertBlock();
928
0
  llvm::CatchPadInst *CPI =
929
0
      cast<llvm::CatchPadInst>(CatchPadBB->getFirstNonPHI());
930
0
  CGF.CurrentFuncletPad = CPI;
931
932
  // If this is a catch-all or the catch parameter is unnamed, we don't need to
933
  // emit an alloca to the object.
934
0
  if (!CatchParam || !CatchParam->getDeclName()) {
935
0
    CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
936
0
    return;
937
0
  }
938
939
0
  CodeGenFunction::AutoVarEmission var = CGF.EmitAutoVarAlloca(*CatchParam);
940
0
  CPI->setArgOperand(2, var.getObjectAddress(CGF).getPointer());
941
0
  CGF.EHStack.pushCleanup<CatchRetScope>(NormalCleanup, CPI);
942
0
  CGF.EmitAutoVarCleanups(var);
943
0
}
944
945
/// We need to perform a generic polymorphic operation (like a typeid
946
/// or a cast), which requires an object with a vfptr.  Adjust the
947
/// address to point to an object with a vfptr.
948
std::tuple<Address, llvm::Value *, const CXXRecordDecl *>
949
MicrosoftCXXABI::performBaseAdjustment(CodeGenFunction &CGF, Address Value,
950
0
                                       QualType SrcRecordTy) {
951
0
  Value = Value.withElementType(CGF.Int8Ty);
952
0
  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
953
0
  const ASTContext &Context = getContext();
954
955
  // If the class itself has a vfptr, great.  This check implicitly
956
  // covers non-virtual base subobjects: a class with its own virtual
957
  // functions would be a candidate to be a primary base.
958
0
  if (Context.getASTRecordLayout(SrcDecl).hasExtendableVFPtr())
959
0
    return std::make_tuple(Value, llvm::ConstantInt::get(CGF.Int32Ty, 0),
960
0
                           SrcDecl);
961
962
  // Okay, one of the vbases must have a vfptr, or else this isn't
963
  // actually a polymorphic class.
964
0
  const CXXRecordDecl *PolymorphicBase = nullptr;
965
0
  for (auto &Base : SrcDecl->vbases()) {
966
0
    const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
967
0
    if (Context.getASTRecordLayout(BaseDecl).hasExtendableVFPtr()) {
968
0
      PolymorphicBase = BaseDecl;
969
0
      break;
970
0
    }
971
0
  }
972
0
  assert(PolymorphicBase && "polymorphic class has no apparent vfptr?");
973
974
0
  llvm::Value *Offset =
975
0
    GetVirtualBaseClassOffset(CGF, Value, SrcDecl, PolymorphicBase);
976
0
  llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(
977
0
      Value.getElementType(), Value.getPointer(), Offset);
978
0
  CharUnits VBaseAlign =
979
0
    CGF.CGM.getVBaseAlignment(Value.getAlignment(), SrcDecl, PolymorphicBase);
980
0
  return std::make_tuple(Address(Ptr, CGF.Int8Ty, VBaseAlign), Offset,
981
0
                         PolymorphicBase);
982
0
}
983
984
bool MicrosoftCXXABI::shouldTypeidBeNullChecked(bool IsDeref,
985
0
                                                QualType SrcRecordTy) {
986
0
  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
987
0
  return IsDeref &&
988
0
         !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
989
0
}
990
991
static llvm::CallBase *emitRTtypeidCall(CodeGenFunction &CGF,
992
0
                                        llvm::Value *Argument) {
993
0
  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
994
0
  llvm::FunctionType *FTy =
995
0
      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false);
996
0
  llvm::Value *Args[] = {Argument};
997
0
  llvm::FunctionCallee Fn = CGF.CGM.CreateRuntimeFunction(FTy, "__RTtypeid");
998
0
  return CGF.EmitRuntimeCallOrInvoke(Fn, Args);
999
0
}
1000
1001
0
void MicrosoftCXXABI::EmitBadTypeidCall(CodeGenFunction &CGF) {
1002
0
  llvm::CallBase *Call =
1003
0
      emitRTtypeidCall(CGF, llvm::Constant::getNullValue(CGM.VoidPtrTy));
1004
0
  Call->setDoesNotReturn();
1005
0
  CGF.Builder.CreateUnreachable();
1006
0
}
1007
1008
llvm::Value *MicrosoftCXXABI::EmitTypeid(CodeGenFunction &CGF,
1009
                                         QualType SrcRecordTy,
1010
                                         Address ThisPtr,
1011
0
                                         llvm::Type *StdTypeInfoPtrTy) {
1012
0
  std::tie(ThisPtr, std::ignore, std::ignore) =
1013
0
      performBaseAdjustment(CGF, ThisPtr, SrcRecordTy);
1014
0
  llvm::CallBase *Typeid = emitRTtypeidCall(CGF, ThisPtr.getPointer());
1015
0
  return CGF.Builder.CreateBitCast(Typeid, StdTypeInfoPtrTy);
1016
0
}
1017
1018
bool MicrosoftCXXABI::shouldDynamicCastCallBeNullChecked(bool SrcIsPtr,
1019
0
                                                         QualType SrcRecordTy) {
1020
0
  const CXXRecordDecl *SrcDecl = SrcRecordTy->getAsCXXRecordDecl();
1021
0
  return SrcIsPtr &&
1022
0
         !getContext().getASTRecordLayout(SrcDecl).hasExtendableVFPtr();
1023
0
}
1024
1025
llvm::Value *MicrosoftCXXABI::emitDynamicCastCall(
1026
    CodeGenFunction &CGF, Address This, QualType SrcRecordTy, QualType DestTy,
1027
0
    QualType DestRecordTy, llvm::BasicBlock *CastEnd) {
1028
0
  llvm::Value *SrcRTTI =
1029
0
      CGF.CGM.GetAddrOfRTTIDescriptor(SrcRecordTy.getUnqualifiedType());
1030
0
  llvm::Value *DestRTTI =
1031
0
      CGF.CGM.GetAddrOfRTTIDescriptor(DestRecordTy.getUnqualifiedType());
1032
1033
0
  llvm::Value *Offset;
1034
0
  std::tie(This, Offset, std::ignore) =
1035
0
      performBaseAdjustment(CGF, This, SrcRecordTy);
1036
0
  llvm::Value *ThisPtr = This.getPointer();
1037
0
  Offset = CGF.Builder.CreateTrunc(Offset, CGF.Int32Ty);
1038
1039
  // PVOID __RTDynamicCast(
1040
  //   PVOID inptr,
1041
  //   LONG VfDelta,
1042
  //   PVOID SrcType,
1043
  //   PVOID TargetType,
1044
  //   BOOL isReference)
1045
0
  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy, CGF.Int32Ty, CGF.Int8PtrTy,
1046
0
                            CGF.Int8PtrTy, CGF.Int32Ty};
1047
0
  llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1048
0
      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1049
0
      "__RTDynamicCast");
1050
0
  llvm::Value *Args[] = {
1051
0
      ThisPtr, Offset, SrcRTTI, DestRTTI,
1052
0
      llvm::ConstantInt::get(CGF.Int32Ty, DestTy->isReferenceType())};
1053
0
  return CGF.EmitRuntimeCallOrInvoke(Function, Args);
1054
0
}
1055
1056
llvm::Value *MicrosoftCXXABI::emitDynamicCastToVoid(CodeGenFunction &CGF,
1057
                                                    Address Value,
1058
0
                                                    QualType SrcRecordTy) {
1059
0
  std::tie(Value, std::ignore, std::ignore) =
1060
0
      performBaseAdjustment(CGF, Value, SrcRecordTy);
1061
1062
  // PVOID __RTCastToVoid(
1063
  //   PVOID inptr)
1064
0
  llvm::Type *ArgTypes[] = {CGF.Int8PtrTy};
1065
0
  llvm::FunctionCallee Function = CGF.CGM.CreateRuntimeFunction(
1066
0
      llvm::FunctionType::get(CGF.Int8PtrTy, ArgTypes, false),
1067
0
      "__RTCastToVoid");
1068
0
  llvm::Value *Args[] = {Value.getPointer()};
1069
0
  return CGF.EmitRuntimeCall(Function, Args);
1070
0
}
1071
1072
0
bool MicrosoftCXXABI::EmitBadCastCall(CodeGenFunction &CGF) {
1073
0
  return false;
1074
0
}
1075
1076
llvm::Value *MicrosoftCXXABI::GetVirtualBaseClassOffset(
1077
    CodeGenFunction &CGF, Address This, const CXXRecordDecl *ClassDecl,
1078
0
    const CXXRecordDecl *BaseClassDecl) {
1079
0
  const ASTContext &Context = getContext();
1080
0
  int64_t VBPtrChars =
1081
0
      Context.getASTRecordLayout(ClassDecl).getVBPtrOffset().getQuantity();
1082
0
  llvm::Value *VBPtrOffset = llvm::ConstantInt::get(CGM.PtrDiffTy, VBPtrChars);
1083
0
  CharUnits IntSize = Context.getTypeSizeInChars(Context.IntTy);
1084
0
  CharUnits VBTableChars =
1085
0
      IntSize *
1086
0
      CGM.getMicrosoftVTableContext().getVBTableIndex(ClassDecl, BaseClassDecl);
1087
0
  llvm::Value *VBTableOffset =
1088
0
      llvm::ConstantInt::get(CGM.IntTy, VBTableChars.getQuantity());
1089
1090
0
  llvm::Value *VBPtrToNewBase =
1091
0
      GetVBaseOffsetFromVBPtr(CGF, This, VBPtrOffset, VBTableOffset);
1092
0
  VBPtrToNewBase =
1093
0
      CGF.Builder.CreateSExtOrBitCast(VBPtrToNewBase, CGM.PtrDiffTy);
1094
0
  return CGF.Builder.CreateNSWAdd(VBPtrOffset, VBPtrToNewBase);
1095
0
}
1096
1097
0
bool MicrosoftCXXABI::HasThisReturn(GlobalDecl GD) const {
1098
0
  return isa<CXXConstructorDecl>(GD.getDecl());
1099
0
}
1100
1101
0
static bool isDeletingDtor(GlobalDecl GD) {
1102
0
  return isa<CXXDestructorDecl>(GD.getDecl()) &&
1103
0
         GD.getDtorType() == Dtor_Deleting;
1104
0
}
1105
1106
0
bool MicrosoftCXXABI::hasMostDerivedReturn(GlobalDecl GD) const {
1107
0
  return isDeletingDtor(GD);
1108
0
}
1109
1110
static bool isTrivialForMSVC(const CXXRecordDecl *RD, QualType Ty,
1111
0
                             CodeGenModule &CGM) {
1112
  // On AArch64, HVAs that can be passed in registers can also be returned
1113
  // in registers. (Note this is using the MSVC definition of an HVA; see
1114
  // isPermittedToBeHomogeneousAggregate().)
1115
0
  const Type *Base = nullptr;
1116
0
  uint64_t NumElts = 0;
1117
0
  if (CGM.getTarget().getTriple().isAArch64() &&
1118
0
      CGM.getTypes().getABIInfo().isHomogeneousAggregate(Ty, Base, NumElts) &&
1119
0
      isa<VectorType>(Base)) {
1120
0
    return true;
1121
0
  }
1122
1123
  // We use the C++14 definition of an aggregate, so we also
1124
  // check for:
1125
  //   No private or protected non static data members.
1126
  //   No base classes
1127
  //   No virtual functions
1128
  // Additionally, we need to ensure that there is a trivial copy assignment
1129
  // operator, a trivial destructor and no user-provided constructors.
1130
0
  if (RD->hasProtectedFields() || RD->hasPrivateFields())
1131
0
    return false;
1132
0
  if (RD->getNumBases() > 0)
1133
0
    return false;
1134
0
  if (RD->isPolymorphic())
1135
0
    return false;
1136
0
  if (RD->hasNonTrivialCopyAssignment())
1137
0
    return false;
1138
0
  for (const CXXConstructorDecl *Ctor : RD->ctors())
1139
0
    if (Ctor->isUserProvided())
1140
0
      return false;
1141
0
  if (RD->hasNonTrivialDestructor())
1142
0
    return false;
1143
0
  return true;
1144
0
}
1145
1146
0
bool MicrosoftCXXABI::classifyReturnType(CGFunctionInfo &FI) const {
1147
0
  const CXXRecordDecl *RD = FI.getReturnType()->getAsCXXRecordDecl();
1148
0
  if (!RD)
1149
0
    return false;
1150
1151
0
  bool isTrivialForABI = RD->canPassInRegisters() &&
1152
0
                         isTrivialForMSVC(RD, FI.getReturnType(), CGM);
1153
1154
  // MSVC always returns structs indirectly from C++ instance methods.
1155
0
  bool isIndirectReturn = !isTrivialForABI || FI.isInstanceMethod();
1156
1157
0
  if (isIndirectReturn) {
1158
0
    CharUnits Align = CGM.getContext().getTypeAlignInChars(FI.getReturnType());
1159
0
    FI.getReturnInfo() = ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
1160
1161
    // MSVC always passes `this` before the `sret` parameter.
1162
0
    FI.getReturnInfo().setSRetAfterThis(FI.isInstanceMethod());
1163
1164
    // On AArch64, use the `inreg` attribute if the object is considered to not
1165
    // be trivially copyable, or if this is an instance method struct return.
1166
0
    FI.getReturnInfo().setInReg(CGM.getTarget().getTriple().isAArch64());
1167
1168
0
    return true;
1169
0
  }
1170
1171
  // Otherwise, use the C ABI rules.
1172
0
  return false;
1173
0
}
1174
1175
llvm::BasicBlock *
1176
MicrosoftCXXABI::EmitCtorCompleteObjectHandler(CodeGenFunction &CGF,
1177
0
                                               const CXXRecordDecl *RD) {
1178
0
  llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1179
0
  assert(IsMostDerivedClass &&
1180
0
         "ctor for a class with virtual bases must have an implicit parameter");
1181
0
  llvm::Value *IsCompleteObject =
1182
0
    CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1183
1184
0
  llvm::BasicBlock *CallVbaseCtorsBB = CGF.createBasicBlock("ctor.init_vbases");
1185
0
  llvm::BasicBlock *SkipVbaseCtorsBB = CGF.createBasicBlock("ctor.skip_vbases");
1186
0
  CGF.Builder.CreateCondBr(IsCompleteObject,
1187
0
                           CallVbaseCtorsBB, SkipVbaseCtorsBB);
1188
1189
0
  CGF.EmitBlock(CallVbaseCtorsBB);
1190
1191
  // Fill in the vbtable pointers here.
1192
0
  EmitVBPtrStores(CGF, RD);
1193
1194
  // CGF will put the base ctor calls in this basic block for us later.
1195
1196
0
  return SkipVbaseCtorsBB;
1197
0
}
1198
1199
llvm::BasicBlock *
1200
0
MicrosoftCXXABI::EmitDtorCompleteObjectHandler(CodeGenFunction &CGF) {
1201
0
  llvm::Value *IsMostDerivedClass = getStructorImplicitParamValue(CGF);
1202
0
  assert(IsMostDerivedClass &&
1203
0
         "ctor for a class with virtual bases must have an implicit parameter");
1204
0
  llvm::Value *IsCompleteObject =
1205
0
      CGF.Builder.CreateIsNotNull(IsMostDerivedClass, "is_complete_object");
1206
1207
0
  llvm::BasicBlock *CallVbaseDtorsBB = CGF.createBasicBlock("Dtor.dtor_vbases");
1208
0
  llvm::BasicBlock *SkipVbaseDtorsBB = CGF.createBasicBlock("Dtor.skip_vbases");
1209
0
  CGF.Builder.CreateCondBr(IsCompleteObject,
1210
0
                           CallVbaseDtorsBB, SkipVbaseDtorsBB);
1211
1212
0
  CGF.EmitBlock(CallVbaseDtorsBB);
1213
  // CGF will put the base dtor calls in this basic block for us later.
1214
1215
0
  return SkipVbaseDtorsBB;
1216
0
}
1217
1218
void MicrosoftCXXABI::initializeHiddenVirtualInheritanceMembers(
1219
0
    CodeGenFunction &CGF, const CXXRecordDecl *RD) {
1220
  // In most cases, an override for a vbase virtual method can adjust
1221
  // the "this" parameter by applying a constant offset.
1222
  // However, this is not enough while a constructor or a destructor of some
1223
  // class X is being executed if all the following conditions are met:
1224
  //  - X has virtual bases, (1)
1225
  //  - X overrides a virtual method M of a vbase Y, (2)
1226
  //  - X itself is a vbase of the most derived class.
1227
  //
1228
  // If (1) and (2) are true, the vtorDisp for vbase Y is a hidden member of X
1229
  // which holds the extra amount of "this" adjustment we must do when we use
1230
  // the X vftables (i.e. during X ctor or dtor).
1231
  // Outside the ctors and dtors, the values of vtorDisps are zero.
1232
1233
0
  const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
1234
0
  typedef ASTRecordLayout::VBaseOffsetsMapTy VBOffsets;
1235
0
  const VBOffsets &VBaseMap = Layout.getVBaseOffsetsMap();
1236
0
  CGBuilderTy &Builder = CGF.Builder;
1237
1238
0
  llvm::Value *Int8This = nullptr;  // Initialize lazily.
1239
1240
0
  for (const CXXBaseSpecifier &S : RD->vbases()) {
1241
0
    const CXXRecordDecl *VBase = S.getType()->getAsCXXRecordDecl();
1242
0
    auto I = VBaseMap.find(VBase);
1243
0
    assert(I != VBaseMap.end());
1244
0
    if (!I->second.hasVtorDisp())
1245
0
      continue;
1246
1247
0
    llvm::Value *VBaseOffset =
1248
0
        GetVirtualBaseClassOffset(CGF, getThisAddress(CGF), RD, VBase);
1249
0
    uint64_t ConstantVBaseOffset = I->second.VBaseOffset.getQuantity();
1250
1251
    // vtorDisp_for_vbase = vbptr[vbase_idx] - offsetof(RD, vbase).
1252
0
    llvm::Value *VtorDispValue = Builder.CreateSub(
1253
0
        VBaseOffset, llvm::ConstantInt::get(CGM.PtrDiffTy, ConstantVBaseOffset),
1254
0
        "vtordisp.value");
1255
0
    VtorDispValue = Builder.CreateTruncOrBitCast(VtorDispValue, CGF.Int32Ty);
1256
1257
0
    if (!Int8This)
1258
0
      Int8This = getThisValue(CGF);
1259
1260
0
    llvm::Value *VtorDispPtr =
1261
0
        Builder.CreateInBoundsGEP(CGF.Int8Ty, Int8This, VBaseOffset);
1262
    // vtorDisp is always the 32-bits before the vbase in the class layout.
1263
0
    VtorDispPtr = Builder.CreateConstGEP1_32(CGF.Int8Ty, VtorDispPtr, -4);
1264
1265
0
    Builder.CreateAlignedStore(VtorDispValue, VtorDispPtr,
1266
0
                               CharUnits::fromQuantity(4));
1267
0
  }
1268
0
}
1269
1270
static bool hasDefaultCXXMethodCC(ASTContext &Context,
1271
0
                                  const CXXMethodDecl *MD) {
1272
0
  CallingConv ExpectedCallingConv = Context.getDefaultCallingConvention(
1273
0
      /*IsVariadic=*/false, /*IsCXXMethod=*/true);
1274
0
  CallingConv ActualCallingConv =
1275
0
      MD->getType()->castAs<FunctionProtoType>()->getCallConv();
1276
0
  return ExpectedCallingConv == ActualCallingConv;
1277
0
}
1278
1279
0
void MicrosoftCXXABI::EmitCXXConstructors(const CXXConstructorDecl *D) {
1280
  // There's only one constructor type in this ABI.
1281
0
  CGM.EmitGlobal(GlobalDecl(D, Ctor_Complete));
1282
1283
  // Exported default constructors either have a simple call-site where they use
1284
  // the typical calling convention and have a single 'this' pointer for an
1285
  // argument -or- they get a wrapper function which appropriately thunks to the
1286
  // real default constructor.  This thunk is the default constructor closure.
1287
0
  if (D->hasAttr<DLLExportAttr>() && D->isDefaultConstructor() &&
1288
0
      D->isDefined()) {
1289
0
    if (!hasDefaultCXXMethodCC(getContext(), D) || D->getNumParams() != 0) {
1290
0
      llvm::Function *Fn = getAddrOfCXXCtorClosure(D, Ctor_DefaultClosure);
1291
0
      Fn->setLinkage(llvm::GlobalValue::WeakODRLinkage);
1292
0
      CGM.setGVProperties(Fn, D);
1293
0
    }
1294
0
  }
1295
0
}
1296
1297
void MicrosoftCXXABI::EmitVBPtrStores(CodeGenFunction &CGF,
1298
0
                                      const CXXRecordDecl *RD) {
1299
0
  Address This = getThisAddress(CGF);
1300
0
  This = This.withElementType(CGM.Int8Ty);
1301
0
  const ASTContext &Context = getContext();
1302
0
  const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
1303
1304
0
  const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
1305
0
  for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
1306
0
    const std::unique_ptr<VPtrInfo> &VBT = (*VBGlobals.VBTables)[I];
1307
0
    llvm::GlobalVariable *GV = VBGlobals.Globals[I];
1308
0
    const ASTRecordLayout &SubobjectLayout =
1309
0
        Context.getASTRecordLayout(VBT->IntroducingObject);
1310
0
    CharUnits Offs = VBT->NonVirtualOffset;
1311
0
    Offs += SubobjectLayout.getVBPtrOffset();
1312
0
    if (VBT->getVBaseWithVPtr())
1313
0
      Offs += Layout.getVBaseClassOffset(VBT->getVBaseWithVPtr());
1314
0
    Address VBPtr = CGF.Builder.CreateConstInBoundsByteGEP(This, Offs);
1315
0
    llvm::Value *GVPtr =
1316
0
        CGF.Builder.CreateConstInBoundsGEP2_32(GV->getValueType(), GV, 0, 0);
1317
0
    VBPtr = VBPtr.withElementType(GVPtr->getType());
1318
0
    CGF.Builder.CreateStore(GVPtr, VBPtr);
1319
0
  }
1320
0
}
1321
1322
CGCXXABI::AddedStructorArgCounts
1323
MicrosoftCXXABI::buildStructorSignature(GlobalDecl GD,
1324
0
                                        SmallVectorImpl<CanQualType> &ArgTys) {
1325
0
  AddedStructorArgCounts Added;
1326
  // TODO: 'for base' flag
1327
0
  if (isa<CXXDestructorDecl>(GD.getDecl()) &&
1328
0
      GD.getDtorType() == Dtor_Deleting) {
1329
    // The scalar deleting destructor takes an implicit int parameter.
1330
0
    ArgTys.push_back(getContext().IntTy);
1331
0
    ++Added.Suffix;
1332
0
  }
1333
0
  auto *CD = dyn_cast<CXXConstructorDecl>(GD.getDecl());
1334
0
  if (!CD)
1335
0
    return Added;
1336
1337
  // All parameters are already in place except is_most_derived, which goes
1338
  // after 'this' if it's variadic and last if it's not.
1339
1340
0
  const CXXRecordDecl *Class = CD->getParent();
1341
0
  const FunctionProtoType *FPT = CD->getType()->castAs<FunctionProtoType>();
1342
0
  if (Class->getNumVBases()) {
1343
0
    if (FPT->isVariadic()) {
1344
0
      ArgTys.insert(ArgTys.begin() + 1, getContext().IntTy);
1345
0
      ++Added.Prefix;
1346
0
    } else {
1347
0
      ArgTys.push_back(getContext().IntTy);
1348
0
      ++Added.Suffix;
1349
0
    }
1350
0
  }
1351
1352
0
  return Added;
1353
0
}
1354
1355
void MicrosoftCXXABI::setCXXDestructorDLLStorage(llvm::GlobalValue *GV,
1356
                                                 const CXXDestructorDecl *Dtor,
1357
0
                                                 CXXDtorType DT) const {
1358
  // Deleting destructor variants are never imported or exported. Give them the
1359
  // default storage class.
1360
0
  if (DT == Dtor_Deleting) {
1361
0
    GV->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
1362
0
  } else {
1363
0
    const NamedDecl *ND = Dtor;
1364
0
    CGM.setDLLImportDLLExport(GV, ND);
1365
0
  }
1366
0
}
1367
1368
llvm::GlobalValue::LinkageTypes MicrosoftCXXABI::getCXXDestructorLinkage(
1369
0
    GVALinkage Linkage, const CXXDestructorDecl *Dtor, CXXDtorType DT) const {
1370
  // Internal things are always internal, regardless of attributes. After this,
1371
  // we know the thunk is externally visible.
1372
0
  if (Linkage == GVA_Internal)
1373
0
    return llvm::GlobalValue::InternalLinkage;
1374
1375
0
  switch (DT) {
1376
0
  case Dtor_Base:
1377
    // The base destructor most closely tracks the user-declared constructor, so
1378
    // we delegate back to the normal declarator case.
1379
0
    return CGM.getLLVMLinkageForDeclarator(Dtor, Linkage);
1380
0
  case Dtor_Complete:
1381
    // The complete destructor is like an inline function, but it may be
1382
    // imported and therefore must be exported as well. This requires changing
1383
    // the linkage if a DLL attribute is present.
1384
0
    if (Dtor->hasAttr<DLLExportAttr>())
1385
0
      return llvm::GlobalValue::WeakODRLinkage;
1386
0
    if (Dtor->hasAttr<DLLImportAttr>())
1387
0
      return llvm::GlobalValue::AvailableExternallyLinkage;
1388
0
    return llvm::GlobalValue::LinkOnceODRLinkage;
1389
0
  case Dtor_Deleting:
1390
    // Deleting destructors are like inline functions. They have vague linkage
1391
    // and are emitted everywhere they are used. They are internal if the class
1392
    // is internal.
1393
0
    return llvm::GlobalValue::LinkOnceODRLinkage;
1394
0
  case Dtor_Comdat:
1395
0
    llvm_unreachable("MS C++ ABI does not support comdat dtors");
1396
0
  }
1397
0
  llvm_unreachable("invalid dtor type");
1398
0
}
1399
1400
0
void MicrosoftCXXABI::EmitCXXDestructors(const CXXDestructorDecl *D) {
1401
  // The TU defining a dtor is only guaranteed to emit a base destructor.  All
1402
  // other destructor variants are delegating thunks.
1403
0
  CGM.EmitGlobal(GlobalDecl(D, Dtor_Base));
1404
1405
  // If the class is dllexported, emit the complete (vbase) destructor wherever
1406
  // the base dtor is emitted.
1407
  // FIXME: To match MSVC, this should only be done when the class is exported
1408
  // with -fdllexport-inlines enabled.
1409
0
  if (D->getParent()->getNumVBases() > 0 && D->hasAttr<DLLExportAttr>())
1410
0
    CGM.EmitGlobal(GlobalDecl(D, Dtor_Complete));
1411
0
}
1412
1413
CharUnits
1414
0
MicrosoftCXXABI::getVirtualFunctionPrologueThisAdjustment(GlobalDecl GD) {
1415
0
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1416
1417
0
  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1418
    // Complete destructors take a pointer to the complete object as a
1419
    // parameter, thus don't need this adjustment.
1420
0
    if (GD.getDtorType() == Dtor_Complete)
1421
0
      return CharUnits();
1422
1423
    // There's no Dtor_Base in vftable but it shares the this adjustment with
1424
    // the deleting one, so look it up instead.
1425
0
    GD = GlobalDecl(DD, Dtor_Deleting);
1426
0
  }
1427
1428
0
  MethodVFTableLocation ML =
1429
0
      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(GD);
1430
0
  CharUnits Adjustment = ML.VFPtrOffset;
1431
1432
  // Normal virtual instance methods need to adjust from the vfptr that first
1433
  // defined the virtual method to the virtual base subobject, but destructors
1434
  // do not.  The vector deleting destructor thunk applies this adjustment for
1435
  // us if necessary.
1436
0
  if (isa<CXXDestructorDecl>(MD))
1437
0
    Adjustment = CharUnits::Zero();
1438
1439
0
  if (ML.VBase) {
1440
0
    const ASTRecordLayout &DerivedLayout =
1441
0
        getContext().getASTRecordLayout(MD->getParent());
1442
0
    Adjustment += DerivedLayout.getVBaseClassOffset(ML.VBase);
1443
0
  }
1444
1445
0
  return Adjustment;
1446
0
}
1447
1448
Address MicrosoftCXXABI::adjustThisArgumentForVirtualFunctionCall(
1449
    CodeGenFunction &CGF, GlobalDecl GD, Address This,
1450
0
    bool VirtualCall) {
1451
0
  if (!VirtualCall) {
1452
    // If the call of a virtual function is not virtual, we just have to
1453
    // compensate for the adjustment the virtual function does in its prologue.
1454
0
    CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(GD);
1455
0
    if (Adjustment.isZero())
1456
0
      return This;
1457
1458
0
    This = This.withElementType(CGF.Int8Ty);
1459
0
    assert(Adjustment.isPositive());
1460
0
    return CGF.Builder.CreateConstByteGEP(This, Adjustment);
1461
0
  }
1462
1463
0
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
1464
1465
0
  GlobalDecl LookupGD = GD;
1466
0
  if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) {
1467
    // Complete dtors take a pointer to the complete object,
1468
    // thus don't need adjustment.
1469
0
    if (GD.getDtorType() == Dtor_Complete)
1470
0
      return This;
1471
1472
    // There's only Dtor_Deleting in vftable but it shares the this adjustment
1473
    // with the base one, so look up the deleting one instead.
1474
0
    LookupGD = GlobalDecl(DD, Dtor_Deleting);
1475
0
  }
1476
0
  MethodVFTableLocation ML =
1477
0
      CGM.getMicrosoftVTableContext().getMethodVFTableLocation(LookupGD);
1478
1479
0
  CharUnits StaticOffset = ML.VFPtrOffset;
1480
1481
  // Base destructors expect 'this' to point to the beginning of the base
1482
  // subobject, not the first vfptr that happens to contain the virtual dtor.
1483
  // However, we still need to apply the virtual base adjustment.
1484
0
  if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
1485
0
    StaticOffset = CharUnits::Zero();
1486
1487
0
  Address Result = This;
1488
0
  if (ML.VBase) {
1489
0
    Result = Result.withElementType(CGF.Int8Ty);
1490
1491
0
    const CXXRecordDecl *Derived = MD->getParent();
1492
0
    const CXXRecordDecl *VBase = ML.VBase;
1493
0
    llvm::Value *VBaseOffset =
1494
0
      GetVirtualBaseClassOffset(CGF, Result, Derived, VBase);
1495
0
    llvm::Value *VBasePtr = CGF.Builder.CreateInBoundsGEP(
1496
0
        Result.getElementType(), Result.getPointer(), VBaseOffset);
1497
0
    CharUnits VBaseAlign =
1498
0
      CGF.CGM.getVBaseAlignment(Result.getAlignment(), Derived, VBase);
1499
0
    Result = Address(VBasePtr, CGF.Int8Ty, VBaseAlign);
1500
0
  }
1501
0
  if (!StaticOffset.isZero()) {
1502
0
    assert(StaticOffset.isPositive());
1503
0
    Result = Result.withElementType(CGF.Int8Ty);
1504
0
    if (ML.VBase) {
1505
      // Non-virtual adjustment might result in a pointer outside the allocated
1506
      // object, e.g. if the final overrider class is laid out after the virtual
1507
      // base that declares a method in the most derived class.
1508
      // FIXME: Update the code that emits this adjustment in thunks prologues.
1509
0
      Result = CGF.Builder.CreateConstByteGEP(Result, StaticOffset);
1510
0
    } else {
1511
0
      Result = CGF.Builder.CreateConstInBoundsByteGEP(Result, StaticOffset);
1512
0
    }
1513
0
  }
1514
0
  return Result;
1515
0
}
1516
1517
void MicrosoftCXXABI::addImplicitStructorParams(CodeGenFunction &CGF,
1518
                                                QualType &ResTy,
1519
0
                                                FunctionArgList &Params) {
1520
0
  ASTContext &Context = getContext();
1521
0
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1522
0
  assert(isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD));
1523
0
  if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1524
0
    auto *IsMostDerived = ImplicitParamDecl::Create(
1525
0
        Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1526
0
        &Context.Idents.get("is_most_derived"), Context.IntTy,
1527
0
        ImplicitParamKind::Other);
1528
    // The 'most_derived' parameter goes second if the ctor is variadic and last
1529
    // if it's not.  Dtors can't be variadic.
1530
0
    const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
1531
0
    if (FPT->isVariadic())
1532
0
      Params.insert(Params.begin() + 1, IsMostDerived);
1533
0
    else
1534
0
      Params.push_back(IsMostDerived);
1535
0
    getStructorImplicitParamDecl(CGF) = IsMostDerived;
1536
0
  } else if (isDeletingDtor(CGF.CurGD)) {
1537
0
    auto *ShouldDelete = ImplicitParamDecl::Create(
1538
0
        Context, /*DC=*/nullptr, CGF.CurGD.getDecl()->getLocation(),
1539
0
        &Context.Idents.get("should_call_delete"), Context.IntTy,
1540
0
        ImplicitParamKind::Other);
1541
0
    Params.push_back(ShouldDelete);
1542
0
    getStructorImplicitParamDecl(CGF) = ShouldDelete;
1543
0
  }
1544
0
}
1545
1546
0
void MicrosoftCXXABI::EmitInstanceFunctionProlog(CodeGenFunction &CGF) {
1547
  // Naked functions have no prolog.
1548
0
  if (CGF.CurFuncDecl && CGF.CurFuncDecl->hasAttr<NakedAttr>())
1549
0
    return;
1550
1551
  // Overridden virtual methods of non-primary bases need to adjust the incoming
1552
  // 'this' pointer in the prologue. In this hierarchy, C::b will subtract
1553
  // sizeof(void*) to adjust from B* to C*:
1554
  //   struct A { virtual void a(); };
1555
  //   struct B { virtual void b(); };
1556
  //   struct C : A, B { virtual void b(); };
1557
  //
1558
  // Leave the value stored in the 'this' alloca unadjusted, so that the
1559
  // debugger sees the unadjusted value. Microsoft debuggers require this, and
1560
  // will apply the ThisAdjustment in the method type information.
1561
  // FIXME: Do something better for DWARF debuggers, which won't expect this,
1562
  // without making our codegen depend on debug info settings.
1563
0
  llvm::Value *This = loadIncomingCXXThis(CGF);
1564
0
  const CXXMethodDecl *MD = cast<CXXMethodDecl>(CGF.CurGD.getDecl());
1565
0
  if (!CGF.CurFuncIsThunk && MD->isVirtual()) {
1566
0
    CharUnits Adjustment = getVirtualFunctionPrologueThisAdjustment(CGF.CurGD);
1567
0
    if (!Adjustment.isZero()) {
1568
0
      assert(Adjustment.isPositive());
1569
0
      This = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, This,
1570
0
                                                    -Adjustment.getQuantity());
1571
0
    }
1572
0
  }
1573
0
  setCXXABIThisValue(CGF, This);
1574
1575
  // If this is a function that the ABI specifies returns 'this', initialize
1576
  // the return slot to 'this' at the start of the function.
1577
  //
1578
  // Unlike the setting of return types, this is done within the ABI
1579
  // implementation instead of by clients of CGCXXABI because:
1580
  // 1) getThisValue is currently protected
1581
  // 2) in theory, an ABI could implement 'this' returns some other way;
1582
  //    HasThisReturn only specifies a contract, not the implementation
1583
0
  if (HasThisReturn(CGF.CurGD) || hasMostDerivedReturn(CGF.CurGD))
1584
0
    CGF.Builder.CreateStore(getThisValue(CGF), CGF.ReturnValue);
1585
1586
0
  if (isa<CXXConstructorDecl>(MD) && MD->getParent()->getNumVBases()) {
1587
0
    assert(getStructorImplicitParamDecl(CGF) &&
1588
0
           "no implicit parameter for a constructor with virtual bases?");
1589
0
    getStructorImplicitParamValue(CGF)
1590
0
      = CGF.Builder.CreateLoad(
1591
0
          CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1592
0
          "is_most_derived");
1593
0
  }
1594
1595
0
  if (isDeletingDtor(CGF.CurGD)) {
1596
0
    assert(getStructorImplicitParamDecl(CGF) &&
1597
0
           "no implicit parameter for a deleting destructor?");
1598
0
    getStructorImplicitParamValue(CGF)
1599
0
      = CGF.Builder.CreateLoad(
1600
0
          CGF.GetAddrOfLocalVar(getStructorImplicitParamDecl(CGF)),
1601
0
          "should_call_delete");
1602
0
  }
1603
0
}
1604
1605
CGCXXABI::AddedStructorArgs MicrosoftCXXABI::getImplicitConstructorArgs(
1606
    CodeGenFunction &CGF, const CXXConstructorDecl *D, CXXCtorType Type,
1607
0
    bool ForVirtualBase, bool Delegating) {
1608
0
  assert(Type == Ctor_Complete || Type == Ctor_Base);
1609
1610
  // Check if we need a 'most_derived' parameter.
1611
0
  if (!D->getParent()->getNumVBases())
1612
0
    return AddedStructorArgs{};
1613
1614
  // Add the 'most_derived' argument second if we are variadic or last if not.
1615
0
  const FunctionProtoType *FPT = D->getType()->castAs<FunctionProtoType>();
1616
0
  llvm::Value *MostDerivedArg;
1617
0
  if (Delegating) {
1618
0
    MostDerivedArg = getStructorImplicitParamValue(CGF);
1619
0
  } else {
1620
0
    MostDerivedArg = llvm::ConstantInt::get(CGM.Int32Ty, Type == Ctor_Complete);
1621
0
  }
1622
0
  if (FPT->isVariadic()) {
1623
0
    return AddedStructorArgs::prefix({{MostDerivedArg, getContext().IntTy}});
1624
0
  }
1625
0
  return AddedStructorArgs::suffix({{MostDerivedArg, getContext().IntTy}});
1626
0
}
1627
1628
llvm::Value *MicrosoftCXXABI::getCXXDestructorImplicitParam(
1629
    CodeGenFunction &CGF, const CXXDestructorDecl *DD, CXXDtorType Type,
1630
0
    bool ForVirtualBase, bool Delegating) {
1631
0
  return nullptr;
1632
0
}
1633
1634
void MicrosoftCXXABI::EmitDestructorCall(CodeGenFunction &CGF,
1635
                                         const CXXDestructorDecl *DD,
1636
                                         CXXDtorType Type, bool ForVirtualBase,
1637
                                         bool Delegating, Address This,
1638
0
                                         QualType ThisTy) {
1639
  // Use the base destructor variant in place of the complete destructor variant
1640
  // if the class has no virtual bases. This effectively implements some of the
1641
  // -mconstructor-aliases optimization, but as part of the MS C++ ABI.
1642
0
  if (Type == Dtor_Complete && DD->getParent()->getNumVBases() == 0)
1643
0
    Type = Dtor_Base;
1644
1645
0
  GlobalDecl GD(DD, Type);
1646
0
  CGCallee Callee = CGCallee::forDirect(CGM.getAddrOfCXXStructor(GD), GD);
1647
1648
0
  if (DD->isVirtual()) {
1649
0
    assert(Type != CXXDtorType::Dtor_Deleting &&
1650
0
           "The deleting destructor should only be called via a virtual call");
1651
0
    This = adjustThisArgumentForVirtualFunctionCall(CGF, GlobalDecl(DD, Type),
1652
0
                                                    This, false);
1653
0
  }
1654
1655
0
  llvm::BasicBlock *BaseDtorEndBB = nullptr;
1656
0
  if (ForVirtualBase && isa<CXXConstructorDecl>(CGF.CurCodeDecl)) {
1657
0
    BaseDtorEndBB = EmitDtorCompleteObjectHandler(CGF);
1658
0
  }
1659
1660
0
  llvm::Value *Implicit =
1661
0
      getCXXDestructorImplicitParam(CGF, DD, Type, ForVirtualBase,
1662
0
                                    Delegating); // = nullptr
1663
0
  CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
1664
0
                            /*ImplicitParam=*/Implicit,
1665
0
                            /*ImplicitParamTy=*/QualType(), nullptr);
1666
0
  if (BaseDtorEndBB) {
1667
    // Complete object handler should continue to be the remaining
1668
0
    CGF.Builder.CreateBr(BaseDtorEndBB);
1669
0
    CGF.EmitBlock(BaseDtorEndBB);
1670
0
  }
1671
0
}
1672
1673
void MicrosoftCXXABI::emitVTableTypeMetadata(const VPtrInfo &Info,
1674
                                             const CXXRecordDecl *RD,
1675
0
                                             llvm::GlobalVariable *VTable) {
1676
  // Emit type metadata on vtables with LTO or IR instrumentation.
1677
  // In IR instrumentation, the type metadata could be used to find out vtable
1678
  // definitions (for type profiling) among all global variables.
1679
0
  if (!CGM.getCodeGenOpts().LTOUnit &&
1680
0
      !CGM.getCodeGenOpts().hasProfileIRInstr())
1681
0
    return;
1682
1683
  // TODO: Should VirtualFunctionElimination also be supported here?
1684
  // See similar handling in CodeGenModule::EmitVTableTypeMetadata.
1685
0
  if (CGM.getCodeGenOpts().WholeProgramVTables) {
1686
0
    llvm::DenseSet<const CXXRecordDecl *> Visited;
1687
0
    llvm::GlobalObject::VCallVisibility TypeVis =
1688
0
        CGM.GetVCallVisibilityLevel(RD, Visited);
1689
0
    if (TypeVis != llvm::GlobalObject::VCallVisibilityPublic)
1690
0
      VTable->setVCallVisibilityMetadata(TypeVis);
1691
0
  }
1692
1693
  // The location of the first virtual function pointer in the virtual table,
1694
  // aka the "address point" on Itanium. This is at offset 0 if RTTI is
1695
  // disabled, or sizeof(void*) if RTTI is enabled.
1696
0
  CharUnits AddressPoint =
1697
0
      getContext().getLangOpts().RTTIData
1698
0
          ? getContext().toCharUnitsFromBits(
1699
0
                getContext().getTargetInfo().getPointerWidth(LangAS::Default))
1700
0
          : CharUnits::Zero();
1701
1702
0
  if (Info.PathToIntroducingObject.empty()) {
1703
0
    CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1704
0
    return;
1705
0
  }
1706
1707
  // Add a bitset entry for the least derived base belonging to this vftable.
1708
0
  CGM.AddVTableTypeMetadata(VTable, AddressPoint,
1709
0
                            Info.PathToIntroducingObject.back());
1710
1711
  // Add a bitset entry for each derived class that is laid out at the same
1712
  // offset as the least derived base.
1713
0
  for (unsigned I = Info.PathToIntroducingObject.size() - 1; I != 0; --I) {
1714
0
    const CXXRecordDecl *DerivedRD = Info.PathToIntroducingObject[I - 1];
1715
0
    const CXXRecordDecl *BaseRD = Info.PathToIntroducingObject[I];
1716
1717
0
    const ASTRecordLayout &Layout =
1718
0
        getContext().getASTRecordLayout(DerivedRD);
1719
0
    CharUnits Offset;
1720
0
    auto VBI = Layout.getVBaseOffsetsMap().find(BaseRD);
1721
0
    if (VBI == Layout.getVBaseOffsetsMap().end())
1722
0
      Offset = Layout.getBaseClassOffset(BaseRD);
1723
0
    else
1724
0
      Offset = VBI->second.VBaseOffset;
1725
0
    if (!Offset.isZero())
1726
0
      return;
1727
0
    CGM.AddVTableTypeMetadata(VTable, AddressPoint, DerivedRD);
1728
0
  }
1729
1730
  // Finally do the same for the most derived class.
1731
0
  if (Info.FullOffsetInMDC.isZero())
1732
0
    CGM.AddVTableTypeMetadata(VTable, AddressPoint, RD);
1733
0
}
1734
1735
void MicrosoftCXXABI::emitVTableDefinitions(CodeGenVTables &CGVT,
1736
0
                                            const CXXRecordDecl *RD) {
1737
0
  MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1738
0
  const VPtrInfoVector &VFPtrs = VFTContext.getVFPtrOffsets(RD);
1739
1740
0
  for (const std::unique_ptr<VPtrInfo>& Info : VFPtrs) {
1741
0
    llvm::GlobalVariable *VTable = getAddrOfVTable(RD, Info->FullOffsetInMDC);
1742
0
    if (VTable->hasInitializer())
1743
0
      continue;
1744
1745
0
    const VTableLayout &VTLayout =
1746
0
      VFTContext.getVFTableLayout(RD, Info->FullOffsetInMDC);
1747
1748
0
    llvm::Constant *RTTI = nullptr;
1749
0
    if (any_of(VTLayout.vtable_components(),
1750
0
               [](const VTableComponent &VTC) { return VTC.isRTTIKind(); }))
1751
0
      RTTI = getMSCompleteObjectLocator(RD, *Info);
1752
1753
0
    ConstantInitBuilder builder(CGM);
1754
0
    auto components = builder.beginStruct();
1755
0
    CGVT.createVTableInitializer(components, VTLayout, RTTI,
1756
0
                                 VTable->hasLocalLinkage());
1757
0
    components.finishAndSetAsInitializer(VTable);
1758
1759
0
    emitVTableTypeMetadata(*Info, RD, VTable);
1760
0
  }
1761
0
}
1762
1763
bool MicrosoftCXXABI::isVirtualOffsetNeededForVTableField(
1764
0
    CodeGenFunction &CGF, CodeGenFunction::VPtr Vptr) {
1765
0
  return Vptr.NearestVBase != nullptr;
1766
0
}
1767
1768
llvm::Value *MicrosoftCXXABI::getVTableAddressPointInStructor(
1769
    CodeGenFunction &CGF, const CXXRecordDecl *VTableClass, BaseSubobject Base,
1770
0
    const CXXRecordDecl *NearestVBase) {
1771
0
  llvm::Constant *VTableAddressPoint = getVTableAddressPoint(Base, VTableClass);
1772
0
  if (!VTableAddressPoint) {
1773
0
    assert(Base.getBase()->getNumVBases() &&
1774
0
           !getContext().getASTRecordLayout(Base.getBase()).hasOwnVFPtr());
1775
0
  }
1776
0
  return VTableAddressPoint;
1777
0
}
1778
1779
static void mangleVFTableName(MicrosoftMangleContext &MangleContext,
1780
                              const CXXRecordDecl *RD, const VPtrInfo &VFPtr,
1781
0
                              SmallString<256> &Name) {
1782
0
  llvm::raw_svector_ostream Out(Name);
1783
0
  MangleContext.mangleCXXVFTable(RD, VFPtr.MangledPath, Out);
1784
0
}
1785
1786
llvm::Constant *
1787
MicrosoftCXXABI::getVTableAddressPoint(BaseSubobject Base,
1788
0
                                       const CXXRecordDecl *VTableClass) {
1789
0
  (void)getAddrOfVTable(VTableClass, Base.getBaseOffset());
1790
0
  VFTableIdTy ID(VTableClass, Base.getBaseOffset());
1791
0
  return VFTablesMap[ID];
1792
0
}
1793
1794
llvm::Constant *MicrosoftCXXABI::getVTableAddressPointForConstExpr(
1795
0
    BaseSubobject Base, const CXXRecordDecl *VTableClass) {
1796
0
  llvm::Constant *VFTable = getVTableAddressPoint(Base, VTableClass);
1797
0
  assert(VFTable && "Couldn't find a vftable for the given base?");
1798
0
  return VFTable;
1799
0
}
1800
1801
llvm::GlobalVariable *MicrosoftCXXABI::getAddrOfVTable(const CXXRecordDecl *RD,
1802
0
                                                       CharUnits VPtrOffset) {
1803
  // getAddrOfVTable may return 0 if asked to get an address of a vtable which
1804
  // shouldn't be used in the given record type. We want to cache this result in
1805
  // VFTablesMap, thus a simple zero check is not sufficient.
1806
1807
0
  VFTableIdTy ID(RD, VPtrOffset);
1808
0
  VTablesMapTy::iterator I;
1809
0
  bool Inserted;
1810
0
  std::tie(I, Inserted) = VTablesMap.insert(std::make_pair(ID, nullptr));
1811
0
  if (!Inserted)
1812
0
    return I->second;
1813
1814
0
  llvm::GlobalVariable *&VTable = I->second;
1815
1816
0
  MicrosoftVTableContext &VTContext = CGM.getMicrosoftVTableContext();
1817
0
  const VPtrInfoVector &VFPtrs = VTContext.getVFPtrOffsets(RD);
1818
1819
0
  if (DeferredVFTables.insert(RD).second) {
1820
    // We haven't processed this record type before.
1821
    // Queue up this vtable for possible deferred emission.
1822
0
    CGM.addDeferredVTable(RD);
1823
1824
0
#ifndef NDEBUG
1825
    // Create all the vftables at once in order to make sure each vftable has
1826
    // a unique mangled name.
1827
0
    llvm::StringSet<> ObservedMangledNames;
1828
0
    for (size_t J = 0, F = VFPtrs.size(); J != F; ++J) {
1829
0
      SmallString<256> Name;
1830
0
      mangleVFTableName(getMangleContext(), RD, *VFPtrs[J], Name);
1831
0
      if (!ObservedMangledNames.insert(Name.str()).second)
1832
0
        llvm_unreachable("Already saw this mangling before?");
1833
0
    }
1834
0
#endif
1835
0
  }
1836
1837
0
  const std::unique_ptr<VPtrInfo> *VFPtrI =
1838
0
      llvm::find_if(VFPtrs, [&](const std::unique_ptr<VPtrInfo> &VPI) {
1839
0
        return VPI->FullOffsetInMDC == VPtrOffset;
1840
0
      });
1841
0
  if (VFPtrI == VFPtrs.end()) {
1842
0
    VFTablesMap[ID] = nullptr;
1843
0
    return nullptr;
1844
0
  }
1845
0
  const std::unique_ptr<VPtrInfo> &VFPtr = *VFPtrI;
1846
1847
0
  SmallString<256> VFTableName;
1848
0
  mangleVFTableName(getMangleContext(), RD, *VFPtr, VFTableName);
1849
1850
  // Classes marked __declspec(dllimport) need vftables generated on the
1851
  // import-side in order to support features like constexpr.  No other
1852
  // translation unit relies on the emission of the local vftable, translation
1853
  // units are expected to generate them as needed.
1854
  //
1855
  // Because of this unique behavior, we maintain this logic here instead of
1856
  // getVTableLinkage.
1857
0
  llvm::GlobalValue::LinkageTypes VFTableLinkage =
1858
0
      RD->hasAttr<DLLImportAttr>() ? llvm::GlobalValue::LinkOnceODRLinkage
1859
0
                                   : CGM.getVTableLinkage(RD);
1860
0
  bool VFTableComesFromAnotherTU =
1861
0
      llvm::GlobalValue::isAvailableExternallyLinkage(VFTableLinkage) ||
1862
0
      llvm::GlobalValue::isExternalLinkage(VFTableLinkage);
1863
0
  bool VTableAliasIsRequred =
1864
0
      !VFTableComesFromAnotherTU && getContext().getLangOpts().RTTIData;
1865
1866
0
  if (llvm::GlobalValue *VFTable =
1867
0
          CGM.getModule().getNamedGlobal(VFTableName)) {
1868
0
    VFTablesMap[ID] = VFTable;
1869
0
    VTable = VTableAliasIsRequred
1870
0
                 ? cast<llvm::GlobalVariable>(
1871
0
                       cast<llvm::GlobalAlias>(VFTable)->getAliaseeObject())
1872
0
                 : cast<llvm::GlobalVariable>(VFTable);
1873
0
    return VTable;
1874
0
  }
1875
1876
0
  const VTableLayout &VTLayout =
1877
0
      VTContext.getVFTableLayout(RD, VFPtr->FullOffsetInMDC);
1878
0
  llvm::GlobalValue::LinkageTypes VTableLinkage =
1879
0
      VTableAliasIsRequred ? llvm::GlobalValue::PrivateLinkage : VFTableLinkage;
1880
1881
0
  StringRef VTableName = VTableAliasIsRequred ? StringRef() : VFTableName.str();
1882
1883
0
  llvm::Type *VTableType = CGM.getVTables().getVTableType(VTLayout);
1884
1885
  // Create a backing variable for the contents of VTable.  The VTable may
1886
  // or may not include space for a pointer to RTTI data.
1887
0
  llvm::GlobalValue *VFTable;
1888
0
  VTable = new llvm::GlobalVariable(CGM.getModule(), VTableType,
1889
0
                                    /*isConstant=*/true, VTableLinkage,
1890
0
                                    /*Initializer=*/nullptr, VTableName);
1891
0
  VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1892
1893
0
  llvm::Comdat *C = nullptr;
1894
0
  if (!VFTableComesFromAnotherTU &&
1895
0
      llvm::GlobalValue::isWeakForLinker(VFTableLinkage))
1896
0
    C = CGM.getModule().getOrInsertComdat(VFTableName.str());
1897
1898
  // Only insert a pointer into the VFTable for RTTI data if we are not
1899
  // importing it.  We never reference the RTTI data directly so there is no
1900
  // need to make room for it.
1901
0
  if (VTableAliasIsRequred) {
1902
0
    llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.Int32Ty, 0),
1903
0
                                 llvm::ConstantInt::get(CGM.Int32Ty, 0),
1904
0
                                 llvm::ConstantInt::get(CGM.Int32Ty, 1)};
1905
    // Create a GEP which points just after the first entry in the VFTable,
1906
    // this should be the location of the first virtual method.
1907
0
    llvm::Constant *VTableGEP = llvm::ConstantExpr::getInBoundsGetElementPtr(
1908
0
        VTable->getValueType(), VTable, GEPIndices);
1909
0
    if (llvm::GlobalValue::isWeakForLinker(VFTableLinkage)) {
1910
0
      VFTableLinkage = llvm::GlobalValue::ExternalLinkage;
1911
0
      if (C)
1912
0
        C->setSelectionKind(llvm::Comdat::Largest);
1913
0
    }
1914
0
    VFTable = llvm::GlobalAlias::create(CGM.Int8PtrTy,
1915
0
                                        /*AddressSpace=*/0, VFTableLinkage,
1916
0
                                        VFTableName.str(), VTableGEP,
1917
0
                                        &CGM.getModule());
1918
0
    VFTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
1919
0
  } else {
1920
    // We don't need a GlobalAlias to be a symbol for the VTable if we won't
1921
    // be referencing any RTTI data.
1922
    // The GlobalVariable will end up being an appropriate definition of the
1923
    // VFTable.
1924
0
    VFTable = VTable;
1925
0
  }
1926
0
  if (C)
1927
0
    VTable->setComdat(C);
1928
1929
0
  if (RD->hasAttr<DLLExportAttr>())
1930
0
    VFTable->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
1931
1932
0
  VFTablesMap[ID] = VFTable;
1933
0
  return VTable;
1934
0
}
1935
1936
CGCallee MicrosoftCXXABI::getVirtualFunctionPointer(CodeGenFunction &CGF,
1937
                                                    GlobalDecl GD,
1938
                                                    Address This,
1939
                                                    llvm::Type *Ty,
1940
0
                                                    SourceLocation Loc) {
1941
0
  CGBuilderTy &Builder = CGF.Builder;
1942
1943
0
  Ty = Ty->getPointerTo();
1944
0
  Address VPtr =
1945
0
      adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
1946
1947
0
  auto *MethodDecl = cast<CXXMethodDecl>(GD.getDecl());
1948
0
  llvm::Value *VTable = CGF.GetVTablePtr(VPtr, Ty->getPointerTo(),
1949
0
                                         MethodDecl->getParent());
1950
1951
0
  MicrosoftVTableContext &VFTContext = CGM.getMicrosoftVTableContext();
1952
0
  MethodVFTableLocation ML = VFTContext.getMethodVFTableLocation(GD);
1953
1954
  // Compute the identity of the most derived class whose virtual table is
1955
  // located at the MethodVFTableLocation ML.
1956
0
  auto getObjectWithVPtr = [&] {
1957
0
    return llvm::find_if(VFTContext.getVFPtrOffsets(
1958
0
                             ML.VBase ? ML.VBase : MethodDecl->getParent()),
1959
0
                         [&](const std::unique_ptr<VPtrInfo> &Info) {
1960
0
                           return Info->FullOffsetInMDC == ML.VFPtrOffset;
1961
0
                         })
1962
0
        ->get()
1963
0
        ->ObjectWithVPtr;
1964
0
  };
1965
1966
0
  llvm::Value *VFunc;
1967
0
  if (CGF.ShouldEmitVTableTypeCheckedLoad(MethodDecl->getParent())) {
1968
0
    VFunc = CGF.EmitVTableTypeCheckedLoad(
1969
0
        getObjectWithVPtr(), VTable, Ty,
1970
0
        ML.Index *
1971
0
            CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default) /
1972
0
            8);
1973
0
  } else {
1974
0
    if (CGM.getCodeGenOpts().PrepareForLTO)
1975
0
      CGF.EmitTypeMetadataCodeForVCall(getObjectWithVPtr(), VTable, Loc);
1976
1977
0
    llvm::Value *VFuncPtr =
1978
0
        Builder.CreateConstInBoundsGEP1_64(Ty, VTable, ML.Index, "vfn");
1979
0
    VFunc = Builder.CreateAlignedLoad(Ty, VFuncPtr, CGF.getPointerAlign());
1980
0
  }
1981
1982
0
  CGCallee Callee(GD, VFunc);
1983
0
  return Callee;
1984
0
}
1985
1986
llvm::Value *MicrosoftCXXABI::EmitVirtualDestructorCall(
1987
    CodeGenFunction &CGF, const CXXDestructorDecl *Dtor, CXXDtorType DtorType,
1988
0
    Address This, DeleteOrMemberCallExpr E) {
1989
0
  auto *CE = E.dyn_cast<const CXXMemberCallExpr *>();
1990
0
  auto *D = E.dyn_cast<const CXXDeleteExpr *>();
1991
0
  assert((CE != nullptr) ^ (D != nullptr));
1992
0
  assert(CE == nullptr || CE->arg_begin() == CE->arg_end());
1993
0
  assert(DtorType == Dtor_Deleting || DtorType == Dtor_Complete);
1994
1995
  // We have only one destructor in the vftable but can get both behaviors
1996
  // by passing an implicit int parameter.
1997
0
  GlobalDecl GD(Dtor, Dtor_Deleting);
1998
0
  const CGFunctionInfo *FInfo =
1999
0
      &CGM.getTypes().arrangeCXXStructorDeclaration(GD);
2000
0
  llvm::FunctionType *Ty = CGF.CGM.getTypes().GetFunctionType(*FInfo);
2001
0
  CGCallee Callee = CGCallee::forVirtual(CE, GD, This, Ty);
2002
2003
0
  ASTContext &Context = getContext();
2004
0
  llvm::Value *ImplicitParam = llvm::ConstantInt::get(
2005
0
      llvm::IntegerType::getInt32Ty(CGF.getLLVMContext()),
2006
0
      DtorType == Dtor_Deleting);
2007
2008
0
  QualType ThisTy;
2009
0
  if (CE) {
2010
0
    ThisTy = CE->getObjectType();
2011
0
  } else {
2012
0
    ThisTy = D->getDestroyedType();
2013
0
  }
2014
2015
0
  This = adjustThisArgumentForVirtualFunctionCall(CGF, GD, This, true);
2016
0
  RValue RV = CGF.EmitCXXDestructorCall(GD, Callee, This.getPointer(), ThisTy,
2017
0
                                        ImplicitParam, Context.IntTy, CE);
2018
0
  return RV.getScalarVal();
2019
0
}
2020
2021
const VBTableGlobals &
2022
0
MicrosoftCXXABI::enumerateVBTables(const CXXRecordDecl *RD) {
2023
  // At this layer, we can key the cache off of a single class, which is much
2024
  // easier than caching each vbtable individually.
2025
0
  llvm::DenseMap<const CXXRecordDecl*, VBTableGlobals>::iterator Entry;
2026
0
  bool Added;
2027
0
  std::tie(Entry, Added) =
2028
0
      VBTablesMap.insert(std::make_pair(RD, VBTableGlobals()));
2029
0
  VBTableGlobals &VBGlobals = Entry->second;
2030
0
  if (!Added)
2031
0
    return VBGlobals;
2032
2033
0
  MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2034
0
  VBGlobals.VBTables = &Context.enumerateVBTables(RD);
2035
2036
  // Cache the globals for all vbtables so we don't have to recompute the
2037
  // mangled names.
2038
0
  llvm::GlobalVariable::LinkageTypes Linkage = CGM.getVTableLinkage(RD);
2039
0
  for (VPtrInfoVector::const_iterator I = VBGlobals.VBTables->begin(),
2040
0
                                      E = VBGlobals.VBTables->end();
2041
0
       I != E; ++I) {
2042
0
    VBGlobals.Globals.push_back(getAddrOfVBTable(**I, RD, Linkage));
2043
0
  }
2044
2045
0
  return VBGlobals;
2046
0
}
2047
2048
llvm::Function *
2049
MicrosoftCXXABI::EmitVirtualMemPtrThunk(const CXXMethodDecl *MD,
2050
0
                                        const MethodVFTableLocation &ML) {
2051
0
  assert(!isa<CXXConstructorDecl>(MD) && !isa<CXXDestructorDecl>(MD) &&
2052
0
         "can't form pointers to ctors or virtual dtors");
2053
2054
  // Calculate the mangled name.
2055
0
  SmallString<256> ThunkName;
2056
0
  llvm::raw_svector_ostream Out(ThunkName);
2057
0
  getMangleContext().mangleVirtualMemPtrThunk(MD, ML, Out);
2058
2059
  // If the thunk has been generated previously, just return it.
2060
0
  if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
2061
0
    return cast<llvm::Function>(GV);
2062
2063
  // Create the llvm::Function.
2064
0
  const CGFunctionInfo &FnInfo =
2065
0
      CGM.getTypes().arrangeUnprototypedMustTailThunk(MD);
2066
0
  llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
2067
0
  llvm::Function *ThunkFn =
2068
0
      llvm::Function::Create(ThunkTy, llvm::Function::ExternalLinkage,
2069
0
                             ThunkName.str(), &CGM.getModule());
2070
0
  assert(ThunkFn->getName() == ThunkName && "name was uniqued!");
2071
2072
0
  ThunkFn->setLinkage(MD->isExternallyVisible()
2073
0
                          ? llvm::GlobalValue::LinkOnceODRLinkage
2074
0
                          : llvm::GlobalValue::InternalLinkage);
2075
0
  if (MD->isExternallyVisible())
2076
0
    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
2077
2078
0
  CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn, /*IsThunk=*/false);
2079
0
  CGM.SetLLVMFunctionAttributesForDefinition(MD, ThunkFn);
2080
2081
  // Add the "thunk" attribute so that LLVM knows that the return type is
2082
  // meaningless. These thunks can be used to call functions with differing
2083
  // return types, and the caller is required to cast the prototype
2084
  // appropriately to extract the correct value.
2085
0
  ThunkFn->addFnAttr("thunk");
2086
2087
  // These thunks can be compared, so they are not unnamed.
2088
0
  ThunkFn->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::None);
2089
2090
  // Start codegen.
2091
0
  CodeGenFunction CGF(CGM);
2092
0
  CGF.CurGD = GlobalDecl(MD);
2093
0
  CGF.CurFuncIsThunk = true;
2094
2095
  // Build FunctionArgs, but only include the implicit 'this' parameter
2096
  // declaration.
2097
0
  FunctionArgList FunctionArgs;
2098
0
  buildThisParam(CGF, FunctionArgs);
2099
2100
  // Start defining the function.
2101
0
  CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
2102
0
                    FunctionArgs, MD->getLocation(), SourceLocation());
2103
2104
0
  ApplyDebugLocation AL(CGF, MD->getLocation());
2105
0
  setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
2106
2107
  // Load the vfptr and then callee from the vftable.  The callee should have
2108
  // adjusted 'this' so that the vfptr is at offset zero.
2109
0
  llvm::Type *ThunkPtrTy = ThunkTy->getPointerTo();
2110
0
  llvm::Value *VTable = CGF.GetVTablePtr(
2111
0
      getThisAddress(CGF), ThunkPtrTy->getPointerTo(), MD->getParent());
2112
2113
0
  llvm::Value *VFuncPtr = CGF.Builder.CreateConstInBoundsGEP1_64(
2114
0
      ThunkPtrTy, VTable, ML.Index, "vfn");
2115
0
  llvm::Value *Callee =
2116
0
    CGF.Builder.CreateAlignedLoad(ThunkPtrTy, VFuncPtr, CGF.getPointerAlign());
2117
2118
0
  CGF.EmitMustTailThunk(MD, getThisValue(CGF), {ThunkTy, Callee});
2119
2120
0
  return ThunkFn;
2121
0
}
2122
2123
0
void MicrosoftCXXABI::emitVirtualInheritanceTables(const CXXRecordDecl *RD) {
2124
0
  const VBTableGlobals &VBGlobals = enumerateVBTables(RD);
2125
0
  for (unsigned I = 0, E = VBGlobals.VBTables->size(); I != E; ++I) {
2126
0
    const std::unique_ptr<VPtrInfo>& VBT = (*VBGlobals.VBTables)[I];
2127
0
    llvm::GlobalVariable *GV = VBGlobals.Globals[I];
2128
0
    if (GV->isDeclaration())
2129
0
      emitVBTableDefinition(*VBT, RD, GV);
2130
0
  }
2131
0
}
2132
2133
llvm::GlobalVariable *
2134
MicrosoftCXXABI::getAddrOfVBTable(const VPtrInfo &VBT, const CXXRecordDecl *RD,
2135
0
                                  llvm::GlobalVariable::LinkageTypes Linkage) {
2136
0
  SmallString<256> OutName;
2137
0
  llvm::raw_svector_ostream Out(OutName);
2138
0
  getMangleContext().mangleCXXVBTable(RD, VBT.MangledPath, Out);
2139
0
  StringRef Name = OutName.str();
2140
2141
0
  llvm::ArrayType *VBTableType =
2142
0
      llvm::ArrayType::get(CGM.IntTy, 1 + VBT.ObjectWithVPtr->getNumVBases());
2143
2144
0
  assert(!CGM.getModule().getNamedGlobal(Name) &&
2145
0
         "vbtable with this name already exists: mangling bug?");
2146
0
  CharUnits Alignment =
2147
0
      CGM.getContext().getTypeAlignInChars(CGM.getContext().IntTy);
2148
0
  llvm::GlobalVariable *GV = CGM.CreateOrReplaceCXXRuntimeVariable(
2149
0
      Name, VBTableType, Linkage, Alignment.getAsAlign());
2150
0
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
2151
2152
0
  if (RD->hasAttr<DLLImportAttr>())
2153
0
    GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass);
2154
0
  else if (RD->hasAttr<DLLExportAttr>())
2155
0
    GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass);
2156
2157
0
  if (!GV->hasExternalLinkage())
2158
0
    emitVBTableDefinition(VBT, RD, GV);
2159
2160
0
  return GV;
2161
0
}
2162
2163
void MicrosoftCXXABI::emitVBTableDefinition(const VPtrInfo &VBT,
2164
                                            const CXXRecordDecl *RD,
2165
0
                                            llvm::GlobalVariable *GV) const {
2166
0
  const CXXRecordDecl *ObjectWithVPtr = VBT.ObjectWithVPtr;
2167
2168
0
  assert(RD->getNumVBases() && ObjectWithVPtr->getNumVBases() &&
2169
0
         "should only emit vbtables for classes with vbtables");
2170
2171
0
  const ASTRecordLayout &BaseLayout =
2172
0
      getContext().getASTRecordLayout(VBT.IntroducingObject);
2173
0
  const ASTRecordLayout &DerivedLayout = getContext().getASTRecordLayout(RD);
2174
2175
0
  SmallVector<llvm::Constant *, 4> Offsets(1 + ObjectWithVPtr->getNumVBases(),
2176
0
                                           nullptr);
2177
2178
  // The offset from ObjectWithVPtr's vbptr to itself always leads.
2179
0
  CharUnits VBPtrOffset = BaseLayout.getVBPtrOffset();
2180
0
  Offsets[0] = llvm::ConstantInt::get(CGM.IntTy, -VBPtrOffset.getQuantity());
2181
2182
0
  MicrosoftVTableContext &Context = CGM.getMicrosoftVTableContext();
2183
0
  for (const auto &I : ObjectWithVPtr->vbases()) {
2184
0
    const CXXRecordDecl *VBase = I.getType()->getAsCXXRecordDecl();
2185
0
    CharUnits Offset = DerivedLayout.getVBaseClassOffset(VBase);
2186
0
    assert(!Offset.isNegative());
2187
2188
    // Make it relative to the subobject vbptr.
2189
0
    CharUnits CompleteVBPtrOffset = VBT.NonVirtualOffset + VBPtrOffset;
2190
0
    if (VBT.getVBaseWithVPtr())
2191
0
      CompleteVBPtrOffset +=
2192
0
          DerivedLayout.getVBaseClassOffset(VBT.getVBaseWithVPtr());
2193
0
    Offset -= CompleteVBPtrOffset;
2194
2195
0
    unsigned VBIndex = Context.getVBTableIndex(ObjectWithVPtr, VBase);
2196
0
    assert(Offsets[VBIndex] == nullptr && "The same vbindex seen twice?");
2197
0
    Offsets[VBIndex] = llvm::ConstantInt::get(CGM.IntTy, Offset.getQuantity());
2198
0
  }
2199
2200
0
  assert(Offsets.size() ==
2201
0
         cast<llvm::ArrayType>(GV->getValueType())->getNumElements());
2202
0
  llvm::ArrayType *VBTableType =
2203
0
    llvm::ArrayType::get(CGM.IntTy, Offsets.size());
2204
0
  llvm::Constant *Init = llvm::ConstantArray::get(VBTableType, Offsets);
2205
0
  GV->setInitializer(Init);
2206
2207
0
  if (RD->hasAttr<DLLImportAttr>())
2208
0
    GV->setLinkage(llvm::GlobalVariable::AvailableExternallyLinkage);
2209
0
}
2210
2211
llvm::Value *MicrosoftCXXABI::performThisAdjustment(CodeGenFunction &CGF,
2212
                                                    Address This,
2213
0
                                                    const ThisAdjustment &TA) {
2214
0
  if (TA.isEmpty())
2215
0
    return This.getPointer();
2216
2217
0
  This = This.withElementType(CGF.Int8Ty);
2218
2219
0
  llvm::Value *V;
2220
0
  if (TA.Virtual.isEmpty()) {
2221
0
    V = This.getPointer();
2222
0
  } else {
2223
0
    assert(TA.Virtual.Microsoft.VtordispOffset < 0);
2224
    // Adjust the this argument based on the vtordisp value.
2225
0
    Address VtorDispPtr =
2226
0
        CGF.Builder.CreateConstInBoundsByteGEP(This,
2227
0
                 CharUnits::fromQuantity(TA.Virtual.Microsoft.VtordispOffset));
2228
0
    VtorDispPtr = VtorDispPtr.withElementType(CGF.Int32Ty);
2229
0
    llvm::Value *VtorDisp = CGF.Builder.CreateLoad(VtorDispPtr, "vtordisp");
2230
0
    V = CGF.Builder.CreateGEP(This.getElementType(), This.getPointer(),
2231
0
                              CGF.Builder.CreateNeg(VtorDisp));
2232
2233
    // Unfortunately, having applied the vtordisp means that we no
2234
    // longer really have a known alignment for the vbptr step.
2235
    // We'll assume the vbptr is pointer-aligned.
2236
2237
0
    if (TA.Virtual.Microsoft.VBPtrOffset) {
2238
      // If the final overrider is defined in a virtual base other than the one
2239
      // that holds the vfptr, we have to use a vtordispex thunk which looks up
2240
      // the vbtable of the derived class.
2241
0
      assert(TA.Virtual.Microsoft.VBPtrOffset > 0);
2242
0
      assert(TA.Virtual.Microsoft.VBOffsetOffset >= 0);
2243
0
      llvm::Value *VBPtr;
2244
0
      llvm::Value *VBaseOffset = GetVBaseOffsetFromVBPtr(
2245
0
          CGF, Address(V, CGF.Int8Ty, CGF.getPointerAlign()),
2246
0
          -TA.Virtual.Microsoft.VBPtrOffset,
2247
0
          TA.Virtual.Microsoft.VBOffsetOffset, &VBPtr);
2248
0
      V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset);
2249
0
    }
2250
0
  }
2251
2252
0
  if (TA.NonVirtual) {
2253
    // Non-virtual adjustment might result in a pointer outside the allocated
2254
    // object, e.g. if the final overrider class is laid out after the virtual
2255
    // base that declares a method in the most derived class.
2256
0
    V = CGF.Builder.CreateConstGEP1_32(CGF.Int8Ty, V, TA.NonVirtual);
2257
0
  }
2258
2259
  // Don't need to bitcast back, the call CodeGen will handle this.
2260
0
  return V;
2261
0
}
2262
2263
llvm::Value *
2264
MicrosoftCXXABI::performReturnAdjustment(CodeGenFunction &CGF, Address Ret,
2265
0
                                         const ReturnAdjustment &RA) {
2266
0
  if (RA.isEmpty())
2267
0
    return Ret.getPointer();
2268
2269
0
  Ret = Ret.withElementType(CGF.Int8Ty);
2270
2271
0
  llvm::Value *V = Ret.getPointer();
2272
0
  if (RA.Virtual.Microsoft.VBIndex) {
2273
0
    assert(RA.Virtual.Microsoft.VBIndex > 0);
2274
0
    int32_t IntSize = CGF.getIntSize().getQuantity();
2275
0
    llvm::Value *VBPtr;
2276
0
    llvm::Value *VBaseOffset =
2277
0
        GetVBaseOffsetFromVBPtr(CGF, Ret, RA.Virtual.Microsoft.VBPtrOffset,
2278
0
                                IntSize * RA.Virtual.Microsoft.VBIndex, &VBPtr);
2279
0
    V = CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, VBPtr, VBaseOffset);
2280
0
  }
2281
2282
0
  if (RA.NonVirtual)
2283
0
    V = CGF.Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, V, RA.NonVirtual);
2284
2285
0
  return V;
2286
0
}
2287
2288
bool MicrosoftCXXABI::requiresArrayCookie(const CXXDeleteExpr *expr,
2289
0
                                   QualType elementType) {
2290
  // Microsoft seems to completely ignore the possibility of a
2291
  // two-argument usual deallocation function.
2292
0
  return elementType.isDestructedType();
2293
0
}
2294
2295
0
bool MicrosoftCXXABI::requiresArrayCookie(const CXXNewExpr *expr) {
2296
  // Microsoft seems to completely ignore the possibility of a
2297
  // two-argument usual deallocation function.
2298
0
  return expr->getAllocatedType().isDestructedType();
2299
0
}
2300
2301
0
CharUnits MicrosoftCXXABI::getArrayCookieSizeImpl(QualType type) {
2302
  // The array cookie is always a size_t; we then pad that out to the
2303
  // alignment of the element type.
2304
0
  ASTContext &Ctx = getContext();
2305
0
  return std::max(Ctx.getTypeSizeInChars(Ctx.getSizeType()),
2306
0
                  Ctx.getTypeAlignInChars(type));
2307
0
}
2308
2309
llvm::Value *MicrosoftCXXABI::readArrayCookieImpl(CodeGenFunction &CGF,
2310
                                                  Address allocPtr,
2311
0
                                                  CharUnits cookieSize) {
2312
0
  Address numElementsPtr = allocPtr.withElementType(CGF.SizeTy);
2313
0
  return CGF.Builder.CreateLoad(numElementsPtr);
2314
0
}
2315
2316
Address MicrosoftCXXABI::InitializeArrayCookie(CodeGenFunction &CGF,
2317
                                               Address newPtr,
2318
                                               llvm::Value *numElements,
2319
                                               const CXXNewExpr *expr,
2320
0
                                               QualType elementType) {
2321
0
  assert(requiresArrayCookie(expr));
2322
2323
  // The size of the cookie.
2324
0
  CharUnits cookieSize = getArrayCookieSizeImpl(elementType);
2325
2326
  // Compute an offset to the cookie.
2327
0
  Address cookiePtr = newPtr;
2328
2329
  // Write the number of elements into the appropriate slot.
2330
0
  Address numElementsPtr = cookiePtr.withElementType(CGF.SizeTy);
2331
0
  CGF.Builder.CreateStore(numElements, numElementsPtr);
2332
2333
  // Finally, compute a pointer to the actual data buffer by skipping
2334
  // over the cookie completely.
2335
0
  return CGF.Builder.CreateConstInBoundsByteGEP(newPtr, cookieSize);
2336
0
}
2337
2338
static void emitGlobalDtorWithTLRegDtor(CodeGenFunction &CGF, const VarDecl &VD,
2339
                                        llvm::FunctionCallee Dtor,
2340
0
                                        llvm::Constant *Addr) {
2341
  // Create a function which calls the destructor.
2342
0
  llvm::Constant *DtorStub = CGF.createAtExitStub(VD, Dtor, Addr);
2343
2344
  // extern "C" int __tlregdtor(void (*f)(void));
2345
0
  llvm::FunctionType *TLRegDtorTy = llvm::FunctionType::get(
2346
0
      CGF.IntTy, DtorStub->getType(), /*isVarArg=*/false);
2347
2348
0
  llvm::FunctionCallee TLRegDtor = CGF.CGM.CreateRuntimeFunction(
2349
0
      TLRegDtorTy, "__tlregdtor", llvm::AttributeList(), /*Local=*/true);
2350
0
  if (llvm::Function *TLRegDtorFn =
2351
0
          dyn_cast<llvm::Function>(TLRegDtor.getCallee()))
2352
0
    TLRegDtorFn->setDoesNotThrow();
2353
2354
0
  CGF.EmitNounwindRuntimeCall(TLRegDtor, DtorStub);
2355
0
}
2356
2357
void MicrosoftCXXABI::registerGlobalDtor(CodeGenFunction &CGF, const VarDecl &D,
2358
                                         llvm::FunctionCallee Dtor,
2359
0
                                         llvm::Constant *Addr) {
2360
0
  if (D.isNoDestroy(CGM.getContext()))
2361
0
    return;
2362
2363
0
  if (D.getTLSKind())
2364
0
    return emitGlobalDtorWithTLRegDtor(CGF, D, Dtor, Addr);
2365
2366
  // HLSL doesn't support atexit.
2367
0
  if (CGM.getLangOpts().HLSL)
2368
0
    return CGM.AddCXXDtorEntry(Dtor, Addr);
2369
2370
  // The default behavior is to use atexit.
2371
0
  CGF.registerGlobalDtorWithAtExit(D, Dtor, Addr);
2372
0
}
2373
2374
void MicrosoftCXXABI::EmitThreadLocalInitFuncs(
2375
    CodeGenModule &CGM, ArrayRef<const VarDecl *> CXXThreadLocals,
2376
    ArrayRef<llvm::Function *> CXXThreadLocalInits,
2377
0
    ArrayRef<const VarDecl *> CXXThreadLocalInitVars) {
2378
0
  if (CXXThreadLocalInits.empty())
2379
0
    return;
2380
2381
0
  CGM.AppendLinkerOptions(CGM.getTarget().getTriple().getArch() ==
2382
0
                                  llvm::Triple::x86
2383
0
                              ? "/include:___dyn_tls_init@12"
2384
0
                              : "/include:__dyn_tls_init");
2385
2386
  // This will create a GV in the .CRT$XDU section.  It will point to our
2387
  // initialization function.  The CRT will call all of these function
2388
  // pointers at start-up time and, eventually, at thread-creation time.
2389
0
  auto AddToXDU = [&CGM](llvm::Function *InitFunc) {
2390
0
    llvm::GlobalVariable *InitFuncPtr = new llvm::GlobalVariable(
2391
0
        CGM.getModule(), InitFunc->getType(), /*isConstant=*/true,
2392
0
        llvm::GlobalVariable::InternalLinkage, InitFunc,
2393
0
        Twine(InitFunc->getName(), "$initializer$"));
2394
0
    InitFuncPtr->setSection(".CRT$XDU");
2395
    // This variable has discardable linkage, we have to add it to @llvm.used to
2396
    // ensure it won't get discarded.
2397
0
    CGM.addUsedGlobal(InitFuncPtr);
2398
0
    return InitFuncPtr;
2399
0
  };
2400
2401
0
  std::vector<llvm::Function *> NonComdatInits;
2402
0
  for (size_t I = 0, E = CXXThreadLocalInitVars.size(); I != E; ++I) {
2403
0
    llvm::GlobalVariable *GV = cast<llvm::GlobalVariable>(
2404
0
        CGM.GetGlobalValue(CGM.getMangledName(CXXThreadLocalInitVars[I])));
2405
0
    llvm::Function *F = CXXThreadLocalInits[I];
2406
2407
    // If the GV is already in a comdat group, then we have to join it.
2408
0
    if (llvm::Comdat *C = GV->getComdat())
2409
0
      AddToXDU(F)->setComdat(C);
2410
0
    else
2411
0
      NonComdatInits.push_back(F);
2412
0
  }
2413
2414
0
  if (!NonComdatInits.empty()) {
2415
0
    llvm::FunctionType *FTy =
2416
0
        llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
2417
0
    llvm::Function *InitFunc = CGM.CreateGlobalInitOrCleanUpFunction(
2418
0
        FTy, "__tls_init", CGM.getTypes().arrangeNullaryFunction(),
2419
0
        SourceLocation(), /*TLS=*/true);
2420
0
    CodeGenFunction(CGM).GenerateCXXGlobalInitFunc(InitFunc, NonComdatInits);
2421
2422
0
    AddToXDU(InitFunc);
2423
0
  }
2424
0
}
2425
2426
0
static llvm::GlobalValue *getTlsGuardVar(CodeGenModule &CGM) {
2427
  // __tls_guard comes from the MSVC runtime and reflects
2428
  // whether TLS has been initialized for a particular thread.
2429
  // It is set from within __dyn_tls_init by the runtime.
2430
  // Every library and executable has its own variable.
2431
0
  llvm::Type *VTy = llvm::Type::getInt8Ty(CGM.getLLVMContext());
2432
0
  llvm::Constant *TlsGuardConstant =
2433
0
      CGM.CreateRuntimeVariable(VTy, "__tls_guard");
2434
0
  llvm::GlobalValue *TlsGuard = cast<llvm::GlobalValue>(TlsGuardConstant);
2435
2436
0
  TlsGuard->setThreadLocal(true);
2437
2438
0
  return TlsGuard;
2439
0
}
2440
2441
0
static llvm::FunctionCallee getDynTlsOnDemandInitFn(CodeGenModule &CGM) {
2442
  // __dyn_tls_on_demand_init comes from the MSVC runtime and triggers
2443
  // dynamic TLS initialization by calling __dyn_tls_init internally.
2444
0
  llvm::FunctionType *FTy =
2445
0
      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()), {},
2446
0
                              /*isVarArg=*/false);
2447
0
  return CGM.CreateRuntimeFunction(
2448
0
      FTy, "__dyn_tls_on_demand_init",
2449
0
      llvm::AttributeList::get(CGM.getLLVMContext(),
2450
0
                               llvm::AttributeList::FunctionIndex,
2451
0
                               llvm::Attribute::NoUnwind),
2452
0
      /*Local=*/true);
2453
0
}
2454
2455
static void emitTlsGuardCheck(CodeGenFunction &CGF, llvm::GlobalValue *TlsGuard,
2456
                              llvm::BasicBlock *DynInitBB,
2457
0
                              llvm::BasicBlock *ContinueBB) {
2458
0
  llvm::LoadInst *TlsGuardValue =
2459
0
      CGF.Builder.CreateLoad(Address(TlsGuard, CGF.Int8Ty, CharUnits::One()));
2460
0
  llvm::Value *CmpResult =
2461
0
      CGF.Builder.CreateICmpEQ(TlsGuardValue, CGF.Builder.getInt8(0));
2462
0
  CGF.Builder.CreateCondBr(CmpResult, DynInitBB, ContinueBB);
2463
0
}
2464
2465
static void emitDynamicTlsInitializationCall(CodeGenFunction &CGF,
2466
                                             llvm::GlobalValue *TlsGuard,
2467
0
                                             llvm::BasicBlock *ContinueBB) {
2468
0
  llvm::FunctionCallee Initializer = getDynTlsOnDemandInitFn(CGF.CGM);
2469
0
  llvm::Function *InitializerFunction =
2470
0
      cast<llvm::Function>(Initializer.getCallee());
2471
0
  llvm::CallInst *CallVal = CGF.Builder.CreateCall(InitializerFunction);
2472
0
  CallVal->setCallingConv(InitializerFunction->getCallingConv());
2473
2474
0
  CGF.Builder.CreateBr(ContinueBB);
2475
0
}
2476
2477
0
static void emitDynamicTlsInitialization(CodeGenFunction &CGF) {
2478
0
  llvm::BasicBlock *DynInitBB =
2479
0
      CGF.createBasicBlock("dyntls.dyn_init", CGF.CurFn);
2480
0
  llvm::BasicBlock *ContinueBB =
2481
0
      CGF.createBasicBlock("dyntls.continue", CGF.CurFn);
2482
2483
0
  llvm::GlobalValue *TlsGuard = getTlsGuardVar(CGF.CGM);
2484
2485
0
  emitTlsGuardCheck(CGF, TlsGuard, DynInitBB, ContinueBB);
2486
0
  CGF.Builder.SetInsertPoint(DynInitBB);
2487
0
  emitDynamicTlsInitializationCall(CGF, TlsGuard, ContinueBB);
2488
0
  CGF.Builder.SetInsertPoint(ContinueBB);
2489
0
}
2490
2491
LValue MicrosoftCXXABI::EmitThreadLocalVarDeclLValue(CodeGenFunction &CGF,
2492
                                                     const VarDecl *VD,
2493
0
                                                     QualType LValType) {
2494
  // Dynamic TLS initialization works by checking the state of a
2495
  // guard variable (__tls_guard) to see whether TLS initialization
2496
  // for a thread has happend yet.
2497
  // If not, the initialization is triggered on-demand
2498
  // by calling __dyn_tls_on_demand_init.
2499
0
  emitDynamicTlsInitialization(CGF);
2500
2501
  // Emit the variable just like any regular global variable.
2502
2503
0
  llvm::Value *V = CGF.CGM.GetAddrOfGlobalVar(VD);
2504
0
  llvm::Type *RealVarTy = CGF.getTypes().ConvertTypeForMem(VD->getType());
2505
2506
0
  CharUnits Alignment = CGF.getContext().getDeclAlign(VD);
2507
0
  Address Addr(V, RealVarTy, Alignment);
2508
2509
0
  LValue LV = VD->getType()->isReferenceType()
2510
0
                  ? CGF.EmitLoadOfReferenceLValue(Addr, VD->getType(),
2511
0
                                                  AlignmentSource::Decl)
2512
0
                  : CGF.MakeAddrLValue(Addr, LValType, AlignmentSource::Decl);
2513
0
  return LV;
2514
0
}
2515
2516
0
static ConstantAddress getInitThreadEpochPtr(CodeGenModule &CGM) {
2517
0
  StringRef VarName("_Init_thread_epoch");
2518
0
  CharUnits Align = CGM.getIntAlign();
2519
0
  if (auto *GV = CGM.getModule().getNamedGlobal(VarName))
2520
0
    return ConstantAddress(GV, GV->getValueType(), Align);
2521
0
  auto *GV = new llvm::GlobalVariable(
2522
0
      CGM.getModule(), CGM.IntTy,
2523
0
      /*isConstant=*/false, llvm::GlobalVariable::ExternalLinkage,
2524
0
      /*Initializer=*/nullptr, VarName,
2525
0
      /*InsertBefore=*/nullptr, llvm::GlobalVariable::GeneralDynamicTLSModel);
2526
0
  GV->setAlignment(Align.getAsAlign());
2527
0
  return ConstantAddress(GV, GV->getValueType(), Align);
2528
0
}
2529
2530
0
static llvm::FunctionCallee getInitThreadHeaderFn(CodeGenModule &CGM) {
2531
0
  llvm::FunctionType *FTy =
2532
0
      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2533
0
                              CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2534
0
  return CGM.CreateRuntimeFunction(
2535
0
      FTy, "_Init_thread_header",
2536
0
      llvm::AttributeList::get(CGM.getLLVMContext(),
2537
0
                               llvm::AttributeList::FunctionIndex,
2538
0
                               llvm::Attribute::NoUnwind),
2539
0
      /*Local=*/true);
2540
0
}
2541
2542
0
static llvm::FunctionCallee getInitThreadFooterFn(CodeGenModule &CGM) {
2543
0
  llvm::FunctionType *FTy =
2544
0
      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2545
0
                              CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2546
0
  return CGM.CreateRuntimeFunction(
2547
0
      FTy, "_Init_thread_footer",
2548
0
      llvm::AttributeList::get(CGM.getLLVMContext(),
2549
0
                               llvm::AttributeList::FunctionIndex,
2550
0
                               llvm::Attribute::NoUnwind),
2551
0
      /*Local=*/true);
2552
0
}
2553
2554
0
static llvm::FunctionCallee getInitThreadAbortFn(CodeGenModule &CGM) {
2555
0
  llvm::FunctionType *FTy =
2556
0
      llvm::FunctionType::get(llvm::Type::getVoidTy(CGM.getLLVMContext()),
2557
0
                              CGM.IntTy->getPointerTo(), /*isVarArg=*/false);
2558
0
  return CGM.CreateRuntimeFunction(
2559
0
      FTy, "_Init_thread_abort",
2560
0
      llvm::AttributeList::get(CGM.getLLVMContext(),
2561
0
                               llvm::AttributeList::FunctionIndex,
2562
0
                               llvm::Attribute::NoUnwind),
2563
0
      /*Local=*/true);
2564
0
}
2565
2566
namespace {
2567
struct ResetGuardBit final : EHScopeStack::Cleanup {
2568
  Address Guard;
2569
  unsigned GuardNum;
2570
  ResetGuardBit(Address Guard, unsigned GuardNum)
2571
0
      : Guard(Guard), GuardNum(GuardNum) {}
2572
2573
0
  void Emit(CodeGenFunction &CGF, Flags flags) override {
2574
    // Reset the bit in the mask so that the static variable may be
2575
    // reinitialized.
2576
0
    CGBuilderTy &Builder = CGF.Builder;
2577
0
    llvm::LoadInst *LI = Builder.CreateLoad(Guard);
2578
0
    llvm::ConstantInt *Mask =
2579
0
        llvm::ConstantInt::get(CGF.IntTy, ~(1ULL << GuardNum));
2580
0
    Builder.CreateStore(Builder.CreateAnd(LI, Mask), Guard);
2581
0
  }
2582
};
2583
2584
struct CallInitThreadAbort final : EHScopeStack::Cleanup {
2585
  llvm::Value *Guard;
2586
0
  CallInitThreadAbort(Address Guard) : Guard(Guard.getPointer()) {}
2587
2588
0
  void Emit(CodeGenFunction &CGF, Flags flags) override {
2589
    // Calling _Init_thread_abort will reset the guard's state.
2590
0
    CGF.EmitNounwindRuntimeCall(getInitThreadAbortFn(CGF.CGM), Guard);
2591
0
  }
2592
};
2593
}
2594
2595
void MicrosoftCXXABI::EmitGuardedInit(CodeGenFunction &CGF, const VarDecl &D,
2596
                                      llvm::GlobalVariable *GV,
2597
0
                                      bool PerformInit) {
2598
  // MSVC only uses guards for static locals.
2599
0
  if (!D.isStaticLocal()) {
2600
0
    assert(GV->hasWeakLinkage() || GV->hasLinkOnceLinkage());
2601
    // GlobalOpt is allowed to discard the initializer, so use linkonce_odr.
2602
0
    llvm::Function *F = CGF.CurFn;
2603
0
    F->setLinkage(llvm::GlobalValue::LinkOnceODRLinkage);
2604
0
    F->setComdat(CGM.getModule().getOrInsertComdat(F->getName()));
2605
0
    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2606
0
    return;
2607
0
  }
2608
2609
0
  bool ThreadlocalStatic = D.getTLSKind();
2610
0
  bool ThreadsafeStatic = getContext().getLangOpts().ThreadsafeStatics;
2611
2612
  // Thread-safe static variables which aren't thread-specific have a
2613
  // per-variable guard.
2614
0
  bool HasPerVariableGuard = ThreadsafeStatic && !ThreadlocalStatic;
2615
2616
0
  CGBuilderTy &Builder = CGF.Builder;
2617
0
  llvm::IntegerType *GuardTy = CGF.Int32Ty;
2618
0
  llvm::ConstantInt *Zero = llvm::ConstantInt::get(GuardTy, 0);
2619
0
  CharUnits GuardAlign = CharUnits::fromQuantity(4);
2620
2621
  // Get the guard variable for this function if we have one already.
2622
0
  GuardInfo *GI = nullptr;
2623
0
  if (ThreadlocalStatic)
2624
0
    GI = &ThreadLocalGuardVariableMap[D.getDeclContext()];
2625
0
  else if (!ThreadsafeStatic)
2626
0
    GI = &GuardVariableMap[D.getDeclContext()];
2627
2628
0
  llvm::GlobalVariable *GuardVar = GI ? GI->Guard : nullptr;
2629
0
  unsigned GuardNum;
2630
0
  if (D.isExternallyVisible()) {
2631
    // Externally visible variables have to be numbered in Sema to properly
2632
    // handle unreachable VarDecls.
2633
0
    GuardNum = getContext().getStaticLocalNumber(&D);
2634
0
    assert(GuardNum > 0);
2635
0
    GuardNum--;
2636
0
  } else if (HasPerVariableGuard) {
2637
0
    GuardNum = ThreadSafeGuardNumMap[D.getDeclContext()]++;
2638
0
  } else {
2639
    // Non-externally visible variables are numbered here in CodeGen.
2640
0
    GuardNum = GI->BitIndex++;
2641
0
  }
2642
2643
0
  if (!HasPerVariableGuard && GuardNum >= 32) {
2644
0
    if (D.isExternallyVisible())
2645
0
      ErrorUnsupportedABI(CGF, "more than 32 guarded initializations");
2646
0
    GuardNum %= 32;
2647
0
    GuardVar = nullptr;
2648
0
  }
2649
2650
0
  if (!GuardVar) {
2651
    // Mangle the name for the guard.
2652
0
    SmallString<256> GuardName;
2653
0
    {
2654
0
      llvm::raw_svector_ostream Out(GuardName);
2655
0
      if (HasPerVariableGuard)
2656
0
        getMangleContext().mangleThreadSafeStaticGuardVariable(&D, GuardNum,
2657
0
                                                               Out);
2658
0
      else
2659
0
        getMangleContext().mangleStaticGuardVariable(&D, Out);
2660
0
    }
2661
2662
    // Create the guard variable with a zero-initializer. Just absorb linkage,
2663
    // visibility and dll storage class from the guarded variable.
2664
0
    GuardVar =
2665
0
        new llvm::GlobalVariable(CGM.getModule(), GuardTy, /*isConstant=*/false,
2666
0
                                 GV->getLinkage(), Zero, GuardName.str());
2667
0
    GuardVar->setVisibility(GV->getVisibility());
2668
0
    GuardVar->setDLLStorageClass(GV->getDLLStorageClass());
2669
0
    GuardVar->setAlignment(GuardAlign.getAsAlign());
2670
0
    if (GuardVar->isWeakForLinker())
2671
0
      GuardVar->setComdat(
2672
0
          CGM.getModule().getOrInsertComdat(GuardVar->getName()));
2673
0
    if (D.getTLSKind())
2674
0
      CGM.setTLSMode(GuardVar, D);
2675
0
    if (GI && !HasPerVariableGuard)
2676
0
      GI->Guard = GuardVar;
2677
0
  }
2678
2679
0
  ConstantAddress GuardAddr(GuardVar, GuardTy, GuardAlign);
2680
2681
0
  assert(GuardVar->getLinkage() == GV->getLinkage() &&
2682
0
         "static local from the same function had different linkage");
2683
2684
0
  if (!HasPerVariableGuard) {
2685
    // Pseudo code for the test:
2686
    // if (!(GuardVar & MyGuardBit)) {
2687
    //   GuardVar |= MyGuardBit;
2688
    //   ... initialize the object ...;
2689
    // }
2690
2691
    // Test our bit from the guard variable.
2692
0
    llvm::ConstantInt *Bit = llvm::ConstantInt::get(GuardTy, 1ULL << GuardNum);
2693
0
    llvm::LoadInst *LI = Builder.CreateLoad(GuardAddr);
2694
0
    llvm::Value *NeedsInit =
2695
0
        Builder.CreateICmpEQ(Builder.CreateAnd(LI, Bit), Zero);
2696
0
    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2697
0
    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2698
0
    CGF.EmitCXXGuardedInitBranch(NeedsInit, InitBlock, EndBlock,
2699
0
                                 CodeGenFunction::GuardKind::VariableGuard, &D);
2700
2701
    // Set our bit in the guard variable and emit the initializer and add a global
2702
    // destructor if appropriate.
2703
0
    CGF.EmitBlock(InitBlock);
2704
0
    Builder.CreateStore(Builder.CreateOr(LI, Bit), GuardAddr);
2705
0
    CGF.EHStack.pushCleanup<ResetGuardBit>(EHCleanup, GuardAddr, GuardNum);
2706
0
    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2707
0
    CGF.PopCleanupBlock();
2708
0
    Builder.CreateBr(EndBlock);
2709
2710
    // Continue.
2711
0
    CGF.EmitBlock(EndBlock);
2712
0
  } else {
2713
    // Pseudo code for the test:
2714
    // if (TSS > _Init_thread_epoch) {
2715
    //   _Init_thread_header(&TSS);
2716
    //   if (TSS == -1) {
2717
    //     ... initialize the object ...;
2718
    //     _Init_thread_footer(&TSS);
2719
    //   }
2720
    // }
2721
    //
2722
    // The algorithm is almost identical to what can be found in the appendix
2723
    // found in N2325.
2724
2725
    // This BasicBLock determines whether or not we have any work to do.
2726
0
    llvm::LoadInst *FirstGuardLoad = Builder.CreateLoad(GuardAddr);
2727
0
    FirstGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2728
0
    llvm::LoadInst *InitThreadEpoch =
2729
0
        Builder.CreateLoad(getInitThreadEpochPtr(CGM));
2730
0
    llvm::Value *IsUninitialized =
2731
0
        Builder.CreateICmpSGT(FirstGuardLoad, InitThreadEpoch);
2732
0
    llvm::BasicBlock *AttemptInitBlock = CGF.createBasicBlock("init.attempt");
2733
0
    llvm::BasicBlock *EndBlock = CGF.createBasicBlock("init.end");
2734
0
    CGF.EmitCXXGuardedInitBranch(IsUninitialized, AttemptInitBlock, EndBlock,
2735
0
                                 CodeGenFunction::GuardKind::VariableGuard, &D);
2736
2737
    // This BasicBlock attempts to determine whether or not this thread is
2738
    // responsible for doing the initialization.
2739
0
    CGF.EmitBlock(AttemptInitBlock);
2740
0
    CGF.EmitNounwindRuntimeCall(getInitThreadHeaderFn(CGM),
2741
0
                                GuardAddr.getPointer());
2742
0
    llvm::LoadInst *SecondGuardLoad = Builder.CreateLoad(GuardAddr);
2743
0
    SecondGuardLoad->setOrdering(llvm::AtomicOrdering::Unordered);
2744
0
    llvm::Value *ShouldDoInit =
2745
0
        Builder.CreateICmpEQ(SecondGuardLoad, getAllOnesInt());
2746
0
    llvm::BasicBlock *InitBlock = CGF.createBasicBlock("init");
2747
0
    Builder.CreateCondBr(ShouldDoInit, InitBlock, EndBlock);
2748
2749
    // Ok, we ended up getting selected as the initializing thread.
2750
0
    CGF.EmitBlock(InitBlock);
2751
0
    CGF.EHStack.pushCleanup<CallInitThreadAbort>(EHCleanup, GuardAddr);
2752
0
    CGF.EmitCXXGlobalVarDeclInit(D, GV, PerformInit);
2753
0
    CGF.PopCleanupBlock();
2754
0
    CGF.EmitNounwindRuntimeCall(getInitThreadFooterFn(CGM),
2755
0
                                GuardAddr.getPointer());
2756
0
    Builder.CreateBr(EndBlock);
2757
2758
0
    CGF.EmitBlock(EndBlock);
2759
0
  }
2760
0
}
2761
2762
0
bool MicrosoftCXXABI::isZeroInitializable(const MemberPointerType *MPT) {
2763
  // Null-ness for function memptrs only depends on the first field, which is
2764
  // the function pointer.  The rest don't matter, so we can zero initialize.
2765
0
  if (MPT->isMemberFunctionPointer())
2766
0
    return true;
2767
2768
  // The virtual base adjustment field is always -1 for null, so if we have one
2769
  // we can't zero initialize.  The field offset is sometimes also -1 if 0 is a
2770
  // valid field offset.
2771
0
  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2772
0
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2773
0
  return (!inheritanceModelHasVBTableOffsetField(Inheritance) &&
2774
0
          RD->nullFieldOffsetIsZero());
2775
0
}
2776
2777
llvm::Type *
2778
0
MicrosoftCXXABI::ConvertMemberPointerType(const MemberPointerType *MPT) {
2779
0
  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2780
0
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2781
0
  llvm::SmallVector<llvm::Type *, 4> fields;
2782
0
  if (MPT->isMemberFunctionPointer())
2783
0
    fields.push_back(CGM.VoidPtrTy);  // FunctionPointerOrVirtualThunk
2784
0
  else
2785
0
    fields.push_back(CGM.IntTy);  // FieldOffset
2786
2787
0
  if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
2788
0
                                       Inheritance))
2789
0
    fields.push_back(CGM.IntTy);
2790
0
  if (inheritanceModelHasVBPtrOffsetField(Inheritance))
2791
0
    fields.push_back(CGM.IntTy);
2792
0
  if (inheritanceModelHasVBTableOffsetField(Inheritance))
2793
0
    fields.push_back(CGM.IntTy);  // VirtualBaseAdjustmentOffset
2794
2795
0
  if (fields.size() == 1)
2796
0
    return fields[0];
2797
0
  return llvm::StructType::get(CGM.getLLVMContext(), fields);
2798
0
}
2799
2800
void MicrosoftCXXABI::
2801
GetNullMemberPointerFields(const MemberPointerType *MPT,
2802
0
                           llvm::SmallVectorImpl<llvm::Constant *> &fields) {
2803
0
  assert(fields.empty());
2804
0
  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
2805
0
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2806
0
  if (MPT->isMemberFunctionPointer()) {
2807
    // FunctionPointerOrVirtualThunk
2808
0
    fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
2809
0
  } else {
2810
0
    if (RD->nullFieldOffsetIsZero())
2811
0
      fields.push_back(getZeroInt());  // FieldOffset
2812
0
    else
2813
0
      fields.push_back(getAllOnesInt());  // FieldOffset
2814
0
  }
2815
2816
0
  if (inheritanceModelHasNVOffsetField(MPT->isMemberFunctionPointer(),
2817
0
                                       Inheritance))
2818
0
    fields.push_back(getZeroInt());
2819
0
  if (inheritanceModelHasVBPtrOffsetField(Inheritance))
2820
0
    fields.push_back(getZeroInt());
2821
0
  if (inheritanceModelHasVBTableOffsetField(Inheritance))
2822
0
    fields.push_back(getAllOnesInt());
2823
0
}
2824
2825
llvm::Constant *
2826
0
MicrosoftCXXABI::EmitNullMemberPointer(const MemberPointerType *MPT) {
2827
0
  llvm::SmallVector<llvm::Constant *, 4> fields;
2828
0
  GetNullMemberPointerFields(MPT, fields);
2829
0
  if (fields.size() == 1)
2830
0
    return fields[0];
2831
0
  llvm::Constant *Res = llvm::ConstantStruct::getAnon(fields);
2832
0
  assert(Res->getType() == ConvertMemberPointerType(MPT));
2833
0
  return Res;
2834
0
}
2835
2836
llvm::Constant *
2837
MicrosoftCXXABI::EmitFullMemberPointer(llvm::Constant *FirstField,
2838
                                       bool IsMemberFunction,
2839
                                       const CXXRecordDecl *RD,
2840
                                       CharUnits NonVirtualBaseAdjustment,
2841
0
                                       unsigned VBTableIndex) {
2842
0
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
2843
2844
  // Single inheritance class member pointer are represented as scalars instead
2845
  // of aggregates.
2846
0
  if (inheritanceModelHasOnlyOneField(IsMemberFunction, Inheritance))
2847
0
    return FirstField;
2848
2849
0
  llvm::SmallVector<llvm::Constant *, 4> fields;
2850
0
  fields.push_back(FirstField);
2851
2852
0
  if (inheritanceModelHasNVOffsetField(IsMemberFunction, Inheritance))
2853
0
    fields.push_back(llvm::ConstantInt::get(
2854
0
      CGM.IntTy, NonVirtualBaseAdjustment.getQuantity()));
2855
2856
0
  if (inheritanceModelHasVBPtrOffsetField(Inheritance)) {
2857
0
    CharUnits Offs = CharUnits::Zero();
2858
0
    if (VBTableIndex)
2859
0
      Offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
2860
0
    fields.push_back(llvm::ConstantInt::get(CGM.IntTy, Offs.getQuantity()));
2861
0
  }
2862
2863
  // The rest of the fields are adjusted by conversions to a more derived class.
2864
0
  if (inheritanceModelHasVBTableOffsetField(Inheritance))
2865
0
    fields.push_back(llvm::ConstantInt::get(CGM.IntTy, VBTableIndex));
2866
2867
0
  return llvm::ConstantStruct::getAnon(fields);
2868
0
}
2869
2870
llvm::Constant *
2871
MicrosoftCXXABI::EmitMemberDataPointer(const MemberPointerType *MPT,
2872
0
                                       CharUnits offset) {
2873
0
  return EmitMemberDataPointer(MPT->getMostRecentCXXRecordDecl(), offset);
2874
0
}
2875
2876
llvm::Constant *MicrosoftCXXABI::EmitMemberDataPointer(const CXXRecordDecl *RD,
2877
0
                                                       CharUnits offset) {
2878
0
  if (RD->getMSInheritanceModel() ==
2879
0
      MSInheritanceModel::Virtual)
2880
0
    offset -= getContext().getOffsetOfBaseWithVBPtr(RD);
2881
0
  llvm::Constant *FirstField =
2882
0
    llvm::ConstantInt::get(CGM.IntTy, offset.getQuantity());
2883
0
  return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/false, RD,
2884
0
                               CharUnits::Zero(), /*VBTableIndex=*/0);
2885
0
}
2886
2887
llvm::Constant *MicrosoftCXXABI::EmitMemberPointer(const APValue &MP,
2888
0
                                                   QualType MPType) {
2889
0
  const MemberPointerType *DstTy = MPType->castAs<MemberPointerType>();
2890
0
  const ValueDecl *MPD = MP.getMemberPointerDecl();
2891
0
  if (!MPD)
2892
0
    return EmitNullMemberPointer(DstTy);
2893
2894
0
  ASTContext &Ctx = getContext();
2895
0
  ArrayRef<const CXXRecordDecl *> MemberPointerPath = MP.getMemberPointerPath();
2896
2897
0
  llvm::Constant *C;
2898
0
  if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(MPD)) {
2899
0
    C = EmitMemberFunctionPointer(MD);
2900
0
  } else {
2901
    // For a pointer to data member, start off with the offset of the field in
2902
    // the class in which it was declared, and convert from there if necessary.
2903
    // For indirect field decls, get the outermost anonymous field and use the
2904
    // parent class.
2905
0
    CharUnits FieldOffset = Ctx.toCharUnitsFromBits(Ctx.getFieldOffset(MPD));
2906
0
    const FieldDecl *FD = dyn_cast<FieldDecl>(MPD);
2907
0
    if (!FD)
2908
0
      FD = cast<FieldDecl>(*cast<IndirectFieldDecl>(MPD)->chain_begin());
2909
0
    const CXXRecordDecl *RD = cast<CXXRecordDecl>(FD->getParent());
2910
0
    RD = RD->getMostRecentNonInjectedDecl();
2911
0
    C = EmitMemberDataPointer(RD, FieldOffset);
2912
0
  }
2913
2914
0
  if (!MemberPointerPath.empty()) {
2915
0
    const CXXRecordDecl *SrcRD = cast<CXXRecordDecl>(MPD->getDeclContext());
2916
0
    const Type *SrcRecTy = Ctx.getTypeDeclType(SrcRD).getTypePtr();
2917
0
    const MemberPointerType *SrcTy =
2918
0
        Ctx.getMemberPointerType(DstTy->getPointeeType(), SrcRecTy)
2919
0
            ->castAs<MemberPointerType>();
2920
2921
0
    bool DerivedMember = MP.isMemberPointerToDerivedMember();
2922
0
    SmallVector<const CXXBaseSpecifier *, 4> DerivedToBasePath;
2923
0
    const CXXRecordDecl *PrevRD = SrcRD;
2924
0
    for (const CXXRecordDecl *PathElem : MemberPointerPath) {
2925
0
      const CXXRecordDecl *Base = nullptr;
2926
0
      const CXXRecordDecl *Derived = nullptr;
2927
0
      if (DerivedMember) {
2928
0
        Base = PathElem;
2929
0
        Derived = PrevRD;
2930
0
      } else {
2931
0
        Base = PrevRD;
2932
0
        Derived = PathElem;
2933
0
      }
2934
0
      for (const CXXBaseSpecifier &BS : Derived->bases())
2935
0
        if (BS.getType()->getAsCXXRecordDecl()->getCanonicalDecl() ==
2936
0
            Base->getCanonicalDecl())
2937
0
          DerivedToBasePath.push_back(&BS);
2938
0
      PrevRD = PathElem;
2939
0
    }
2940
0
    assert(DerivedToBasePath.size() == MemberPointerPath.size());
2941
2942
0
    CastKind CK = DerivedMember ? CK_DerivedToBaseMemberPointer
2943
0
                                : CK_BaseToDerivedMemberPointer;
2944
0
    C = EmitMemberPointerConversion(SrcTy, DstTy, CK, DerivedToBasePath.begin(),
2945
0
                                    DerivedToBasePath.end(), C);
2946
0
  }
2947
0
  return C;
2948
0
}
2949
2950
llvm::Constant *
2951
0
MicrosoftCXXABI::EmitMemberFunctionPointer(const CXXMethodDecl *MD) {
2952
0
  assert(MD->isInstance() && "Member function must not be static!");
2953
2954
0
  CharUnits NonVirtualBaseAdjustment = CharUnits::Zero();
2955
0
  const CXXRecordDecl *RD = MD->getParent()->getMostRecentNonInjectedDecl();
2956
0
  CodeGenTypes &Types = CGM.getTypes();
2957
2958
0
  unsigned VBTableIndex = 0;
2959
0
  llvm::Constant *FirstField;
2960
0
  const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
2961
0
  if (!MD->isVirtual()) {
2962
0
    llvm::Type *Ty;
2963
    // Check whether the function has a computable LLVM signature.
2964
0
    if (Types.isFuncTypeConvertible(FPT)) {
2965
      // The function has a computable LLVM signature; use the correct type.
2966
0
      Ty = Types.GetFunctionType(Types.arrangeCXXMethodDeclaration(MD));
2967
0
    } else {
2968
      // Use an arbitrary non-function type to tell GetAddrOfFunction that the
2969
      // function type is incomplete.
2970
0
      Ty = CGM.PtrDiffTy;
2971
0
    }
2972
0
    FirstField = CGM.GetAddrOfFunction(MD, Ty);
2973
0
  } else {
2974
0
    auto &VTableContext = CGM.getMicrosoftVTableContext();
2975
0
    MethodVFTableLocation ML = VTableContext.getMethodVFTableLocation(MD);
2976
0
    FirstField = EmitVirtualMemPtrThunk(MD, ML);
2977
    // Include the vfptr adjustment if the method is in a non-primary vftable.
2978
0
    NonVirtualBaseAdjustment += ML.VFPtrOffset;
2979
0
    if (ML.VBase)
2980
0
      VBTableIndex = VTableContext.getVBTableIndex(RD, ML.VBase) * 4;
2981
0
  }
2982
2983
0
  if (VBTableIndex == 0 &&
2984
0
      RD->getMSInheritanceModel() ==
2985
0
          MSInheritanceModel::Virtual)
2986
0
    NonVirtualBaseAdjustment -= getContext().getOffsetOfBaseWithVBPtr(RD);
2987
2988
  // The rest of the fields are common with data member pointers.
2989
0
  return EmitFullMemberPointer(FirstField, /*IsMemberFunction=*/true, RD,
2990
0
                               NonVirtualBaseAdjustment, VBTableIndex);
2991
0
}
2992
2993
/// Member pointers are the same if they're either bitwise identical *or* both
2994
/// null.  Null-ness for function members is determined by the first field,
2995
/// while for data member pointers we must compare all fields.
2996
llvm::Value *
2997
MicrosoftCXXABI::EmitMemberPointerComparison(CodeGenFunction &CGF,
2998
                                             llvm::Value *L,
2999
                                             llvm::Value *R,
3000
                                             const MemberPointerType *MPT,
3001
0
                                             bool Inequality) {
3002
0
  CGBuilderTy &Builder = CGF.Builder;
3003
3004
  // Handle != comparisons by switching the sense of all boolean operations.
3005
0
  llvm::ICmpInst::Predicate Eq;
3006
0
  llvm::Instruction::BinaryOps And, Or;
3007
0
  if (Inequality) {
3008
0
    Eq = llvm::ICmpInst::ICMP_NE;
3009
0
    And = llvm::Instruction::Or;
3010
0
    Or = llvm::Instruction::And;
3011
0
  } else {
3012
0
    Eq = llvm::ICmpInst::ICMP_EQ;
3013
0
    And = llvm::Instruction::And;
3014
0
    Or = llvm::Instruction::Or;
3015
0
  }
3016
3017
  // If this is a single field member pointer (single inheritance), this is a
3018
  // single icmp.
3019
0
  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3020
0
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3021
0
  if (inheritanceModelHasOnlyOneField(MPT->isMemberFunctionPointer(),
3022
0
                                      Inheritance))
3023
0
    return Builder.CreateICmp(Eq, L, R);
3024
3025
  // Compare the first field.
3026
0
  llvm::Value *L0 = Builder.CreateExtractValue(L, 0, "lhs.0");
3027
0
  llvm::Value *R0 = Builder.CreateExtractValue(R, 0, "rhs.0");
3028
0
  llvm::Value *Cmp0 = Builder.CreateICmp(Eq, L0, R0, "memptr.cmp.first");
3029
3030
  // Compare everything other than the first field.
3031
0
  llvm::Value *Res = nullptr;
3032
0
  llvm::StructType *LType = cast<llvm::StructType>(L->getType());
3033
0
  for (unsigned I = 1, E = LType->getNumElements(); I != E; ++I) {
3034
0
    llvm::Value *LF = Builder.CreateExtractValue(L, I);
3035
0
    llvm::Value *RF = Builder.CreateExtractValue(R, I);
3036
0
    llvm::Value *Cmp = Builder.CreateICmp(Eq, LF, RF, "memptr.cmp.rest");
3037
0
    if (Res)
3038
0
      Res = Builder.CreateBinOp(And, Res, Cmp);
3039
0
    else
3040
0
      Res = Cmp;
3041
0
  }
3042
3043
  // Check if the first field is 0 if this is a function pointer.
3044
0
  if (MPT->isMemberFunctionPointer()) {
3045
    // (l1 == r1 && ...) || l0 == 0
3046
0
    llvm::Value *Zero = llvm::Constant::getNullValue(L0->getType());
3047
0
    llvm::Value *IsZero = Builder.CreateICmp(Eq, L0, Zero, "memptr.cmp.iszero");
3048
0
    Res = Builder.CreateBinOp(Or, Res, IsZero);
3049
0
  }
3050
3051
  // Combine the comparison of the first field, which must always be true for
3052
  // this comparison to succeeed.
3053
0
  return Builder.CreateBinOp(And, Res, Cmp0, "memptr.cmp");
3054
0
}
3055
3056
llvm::Value *
3057
MicrosoftCXXABI::EmitMemberPointerIsNotNull(CodeGenFunction &CGF,
3058
                                            llvm::Value *MemPtr,
3059
0
                                            const MemberPointerType *MPT) {
3060
0
  CGBuilderTy &Builder = CGF.Builder;
3061
0
  llvm::SmallVector<llvm::Constant *, 4> fields;
3062
  // We only need one field for member functions.
3063
0
  if (MPT->isMemberFunctionPointer())
3064
0
    fields.push_back(llvm::Constant::getNullValue(CGM.VoidPtrTy));
3065
0
  else
3066
0
    GetNullMemberPointerFields(MPT, fields);
3067
0
  assert(!fields.empty());
3068
0
  llvm::Value *FirstField = MemPtr;
3069
0
  if (MemPtr->getType()->isStructTy())
3070
0
    FirstField = Builder.CreateExtractValue(MemPtr, 0);
3071
0
  llvm::Value *Res = Builder.CreateICmpNE(FirstField, fields[0], "memptr.cmp0");
3072
3073
  // For function member pointers, we only need to test the function pointer
3074
  // field.  The other fields if any can be garbage.
3075
0
  if (MPT->isMemberFunctionPointer())
3076
0
    return Res;
3077
3078
  // Otherwise, emit a series of compares and combine the results.
3079
0
  for (int I = 1, E = fields.size(); I < E; ++I) {
3080
0
    llvm::Value *Field = Builder.CreateExtractValue(MemPtr, I);
3081
0
    llvm::Value *Next = Builder.CreateICmpNE(Field, fields[I], "memptr.cmp");
3082
0
    Res = Builder.CreateOr(Res, Next, "memptr.tobool");
3083
0
  }
3084
0
  return Res;
3085
0
}
3086
3087
bool MicrosoftCXXABI::MemberPointerConstantIsNull(const MemberPointerType *MPT,
3088
0
                                                  llvm::Constant *Val) {
3089
  // Function pointers are null if the pointer in the first field is null.
3090
0
  if (MPT->isMemberFunctionPointer()) {
3091
0
    llvm::Constant *FirstField = Val->getType()->isStructTy() ?
3092
0
      Val->getAggregateElement(0U) : Val;
3093
0
    return FirstField->isNullValue();
3094
0
  }
3095
3096
  // If it's not a function pointer and it's zero initializable, we can easily
3097
  // check zero.
3098
0
  if (isZeroInitializable(MPT) && Val->isNullValue())
3099
0
    return true;
3100
3101
  // Otherwise, break down all the fields for comparison.  Hopefully these
3102
  // little Constants are reused, while a big null struct might not be.
3103
0
  llvm::SmallVector<llvm::Constant *, 4> Fields;
3104
0
  GetNullMemberPointerFields(MPT, Fields);
3105
0
  if (Fields.size() == 1) {
3106
0
    assert(Val->getType()->isIntegerTy());
3107
0
    return Val == Fields[0];
3108
0
  }
3109
3110
0
  unsigned I, E;
3111
0
  for (I = 0, E = Fields.size(); I != E; ++I) {
3112
0
    if (Val->getAggregateElement(I) != Fields[I])
3113
0
      break;
3114
0
  }
3115
0
  return I == E;
3116
0
}
3117
3118
llvm::Value *
3119
MicrosoftCXXABI::GetVBaseOffsetFromVBPtr(CodeGenFunction &CGF,
3120
                                         Address This,
3121
                                         llvm::Value *VBPtrOffset,
3122
                                         llvm::Value *VBTableOffset,
3123
0
                                         llvm::Value **VBPtrOut) {
3124
0
  CGBuilderTy &Builder = CGF.Builder;
3125
  // Load the vbtable pointer from the vbptr in the instance.
3126
0
  llvm::Value *VBPtr = Builder.CreateInBoundsGEP(CGM.Int8Ty, This.getPointer(),
3127
0
                                                 VBPtrOffset, "vbptr");
3128
0
  if (VBPtrOut)
3129
0
    *VBPtrOut = VBPtr;
3130
3131
0
  CharUnits VBPtrAlign;
3132
0
  if (auto CI = dyn_cast<llvm::ConstantInt>(VBPtrOffset)) {
3133
0
    VBPtrAlign = This.getAlignment().alignmentAtOffset(
3134
0
                                   CharUnits::fromQuantity(CI->getSExtValue()));
3135
0
  } else {
3136
0
    VBPtrAlign = CGF.getPointerAlign();
3137
0
  }
3138
3139
0
  llvm::Value *VBTable = Builder.CreateAlignedLoad(
3140
0
      CGM.Int32Ty->getPointerTo(0), VBPtr, VBPtrAlign, "vbtable");
3141
3142
  // Translate from byte offset to table index. It improves analyzability.
3143
0
  llvm::Value *VBTableIndex = Builder.CreateAShr(
3144
0
      VBTableOffset, llvm::ConstantInt::get(VBTableOffset->getType(), 2),
3145
0
      "vbtindex", /*isExact=*/true);
3146
3147
  // Load an i32 offset from the vb-table.
3148
0
  llvm::Value *VBaseOffs =
3149
0
      Builder.CreateInBoundsGEP(CGM.Int32Ty, VBTable, VBTableIndex);
3150
0
  return Builder.CreateAlignedLoad(CGM.Int32Ty, VBaseOffs,
3151
0
                                   CharUnits::fromQuantity(4), "vbase_offs");
3152
0
}
3153
3154
// Returns an adjusted base cast to i8*, since we do more address arithmetic on
3155
// it.
3156
llvm::Value *MicrosoftCXXABI::AdjustVirtualBase(
3157
    CodeGenFunction &CGF, const Expr *E, const CXXRecordDecl *RD,
3158
0
    Address Base, llvm::Value *VBTableOffset, llvm::Value *VBPtrOffset) {
3159
0
  CGBuilderTy &Builder = CGF.Builder;
3160
0
  Base = Base.withElementType(CGM.Int8Ty);
3161
0
  llvm::BasicBlock *OriginalBB = nullptr;
3162
0
  llvm::BasicBlock *SkipAdjustBB = nullptr;
3163
0
  llvm::BasicBlock *VBaseAdjustBB = nullptr;
3164
3165
  // In the unspecified inheritance model, there might not be a vbtable at all,
3166
  // in which case we need to skip the virtual base lookup.  If there is a
3167
  // vbtable, the first entry is a no-op entry that gives back the original
3168
  // base, so look for a virtual base adjustment offset of zero.
3169
0
  if (VBPtrOffset) {
3170
0
    OriginalBB = Builder.GetInsertBlock();
3171
0
    VBaseAdjustBB = CGF.createBasicBlock("memptr.vadjust");
3172
0
    SkipAdjustBB = CGF.createBasicBlock("memptr.skip_vadjust");
3173
0
    llvm::Value *IsVirtual =
3174
0
      Builder.CreateICmpNE(VBTableOffset, getZeroInt(),
3175
0
                           "memptr.is_vbase");
3176
0
    Builder.CreateCondBr(IsVirtual, VBaseAdjustBB, SkipAdjustBB);
3177
0
    CGF.EmitBlock(VBaseAdjustBB);
3178
0
  }
3179
3180
  // If we weren't given a dynamic vbptr offset, RD should be complete and we'll
3181
  // know the vbptr offset.
3182
0
  if (!VBPtrOffset) {
3183
0
    CharUnits offs = CharUnits::Zero();
3184
0
    if (!RD->hasDefinition()) {
3185
0
      DiagnosticsEngine &Diags = CGF.CGM.getDiags();
3186
0
      unsigned DiagID = Diags.getCustomDiagID(
3187
0
          DiagnosticsEngine::Error,
3188
0
          "member pointer representation requires a "
3189
0
          "complete class type for %0 to perform this expression");
3190
0
      Diags.Report(E->getExprLoc(), DiagID) << RD << E->getSourceRange();
3191
0
    } else if (RD->getNumVBases())
3192
0
      offs = getContext().getASTRecordLayout(RD).getVBPtrOffset();
3193
0
    VBPtrOffset = llvm::ConstantInt::get(CGM.IntTy, offs.getQuantity());
3194
0
  }
3195
0
  llvm::Value *VBPtr = nullptr;
3196
0
  llvm::Value *VBaseOffs =
3197
0
    GetVBaseOffsetFromVBPtr(CGF, Base, VBPtrOffset, VBTableOffset, &VBPtr);
3198
0
  llvm::Value *AdjustedBase =
3199
0
    Builder.CreateInBoundsGEP(CGM.Int8Ty, VBPtr, VBaseOffs);
3200
3201
  // Merge control flow with the case where we didn't have to adjust.
3202
0
  if (VBaseAdjustBB) {
3203
0
    Builder.CreateBr(SkipAdjustBB);
3204
0
    CGF.EmitBlock(SkipAdjustBB);
3205
0
    llvm::PHINode *Phi = Builder.CreatePHI(CGM.Int8PtrTy, 2, "memptr.base");
3206
0
    Phi->addIncoming(Base.getPointer(), OriginalBB);
3207
0
    Phi->addIncoming(AdjustedBase, VBaseAdjustBB);
3208
0
    return Phi;
3209
0
  }
3210
0
  return AdjustedBase;
3211
0
}
3212
3213
llvm::Value *MicrosoftCXXABI::EmitMemberDataPointerAddress(
3214
    CodeGenFunction &CGF, const Expr *E, Address Base, llvm::Value *MemPtr,
3215
0
    const MemberPointerType *MPT) {
3216
0
  assert(MPT->isMemberDataPointer());
3217
0
  CGBuilderTy &Builder = CGF.Builder;
3218
0
  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3219
0
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3220
3221
  // Extract the fields we need, regardless of model.  We'll apply them if we
3222
  // have them.
3223
0
  llvm::Value *FieldOffset = MemPtr;
3224
0
  llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3225
0
  llvm::Value *VBPtrOffset = nullptr;
3226
0
  if (MemPtr->getType()->isStructTy()) {
3227
    // We need to extract values.
3228
0
    unsigned I = 0;
3229
0
    FieldOffset = Builder.CreateExtractValue(MemPtr, I++);
3230
0
    if (inheritanceModelHasVBPtrOffsetField(Inheritance))
3231
0
      VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3232
0
    if (inheritanceModelHasVBTableOffsetField(Inheritance))
3233
0
      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3234
0
  }
3235
3236
0
  llvm::Value *Addr;
3237
0
  if (VirtualBaseAdjustmentOffset) {
3238
0
    Addr = AdjustVirtualBase(CGF, E, RD, Base, VirtualBaseAdjustmentOffset,
3239
0
                             VBPtrOffset);
3240
0
  } else {
3241
0
    Addr = Base.getPointer();
3242
0
  }
3243
3244
  // Apply the offset, which we assume is non-null.
3245
0
  return Builder.CreateInBoundsGEP(CGF.Int8Ty, Addr, FieldOffset,
3246
0
                                   "memptr.offset");
3247
0
}
3248
3249
llvm::Value *
3250
MicrosoftCXXABI::EmitMemberPointerConversion(CodeGenFunction &CGF,
3251
                                             const CastExpr *E,
3252
0
                                             llvm::Value *Src) {
3253
0
  assert(E->getCastKind() == CK_DerivedToBaseMemberPointer ||
3254
0
         E->getCastKind() == CK_BaseToDerivedMemberPointer ||
3255
0
         E->getCastKind() == CK_ReinterpretMemberPointer);
3256
3257
  // Use constant emission if we can.
3258
0
  if (isa<llvm::Constant>(Src))
3259
0
    return EmitMemberPointerConversion(E, cast<llvm::Constant>(Src));
3260
3261
  // We may be adding or dropping fields from the member pointer, so we need
3262
  // both types and the inheritance models of both records.
3263
0
  const MemberPointerType *SrcTy =
3264
0
    E->getSubExpr()->getType()->castAs<MemberPointerType>();
3265
0
  const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3266
0
  bool IsFunc = SrcTy->isMemberFunctionPointer();
3267
3268
  // If the classes use the same null representation, reinterpret_cast is a nop.
3269
0
  bool IsReinterpret = E->getCastKind() == CK_ReinterpretMemberPointer;
3270
0
  if (IsReinterpret && IsFunc)
3271
0
    return Src;
3272
3273
0
  CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3274
0
  CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3275
0
  if (IsReinterpret &&
3276
0
      SrcRD->nullFieldOffsetIsZero() == DstRD->nullFieldOffsetIsZero())
3277
0
    return Src;
3278
3279
0
  CGBuilderTy &Builder = CGF.Builder;
3280
3281
  // Branch past the conversion if Src is null.
3282
0
  llvm::Value *IsNotNull = EmitMemberPointerIsNotNull(CGF, Src, SrcTy);
3283
0
  llvm::Constant *DstNull = EmitNullMemberPointer(DstTy);
3284
3285
  // C++ 5.2.10p9: The null member pointer value is converted to the null member
3286
  //   pointer value of the destination type.
3287
0
  if (IsReinterpret) {
3288
    // For reinterpret casts, sema ensures that src and dst are both functions
3289
    // or data and have the same size, which means the LLVM types should match.
3290
0
    assert(Src->getType() == DstNull->getType());
3291
0
    return Builder.CreateSelect(IsNotNull, Src, DstNull);
3292
0
  }
3293
3294
0
  llvm::BasicBlock *OriginalBB = Builder.GetInsertBlock();
3295
0
  llvm::BasicBlock *ConvertBB = CGF.createBasicBlock("memptr.convert");
3296
0
  llvm::BasicBlock *ContinueBB = CGF.createBasicBlock("memptr.converted");
3297
0
  Builder.CreateCondBr(IsNotNull, ConvertBB, ContinueBB);
3298
0
  CGF.EmitBlock(ConvertBB);
3299
3300
0
  llvm::Value *Dst = EmitNonNullMemberPointerConversion(
3301
0
      SrcTy, DstTy, E->getCastKind(), E->path_begin(), E->path_end(), Src,
3302
0
      Builder);
3303
3304
0
  Builder.CreateBr(ContinueBB);
3305
3306
  // In the continuation, choose between DstNull and Dst.
3307
0
  CGF.EmitBlock(ContinueBB);
3308
0
  llvm::PHINode *Phi = Builder.CreatePHI(DstNull->getType(), 2, "memptr.converted");
3309
0
  Phi->addIncoming(DstNull, OriginalBB);
3310
0
  Phi->addIncoming(Dst, ConvertBB);
3311
0
  return Phi;
3312
0
}
3313
3314
llvm::Value *MicrosoftCXXABI::EmitNonNullMemberPointerConversion(
3315
    const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3316
    CastExpr::path_const_iterator PathBegin,
3317
    CastExpr::path_const_iterator PathEnd, llvm::Value *Src,
3318
0
    CGBuilderTy &Builder) {
3319
0
  const CXXRecordDecl *SrcRD = SrcTy->getMostRecentCXXRecordDecl();
3320
0
  const CXXRecordDecl *DstRD = DstTy->getMostRecentCXXRecordDecl();
3321
0
  MSInheritanceModel SrcInheritance = SrcRD->getMSInheritanceModel();
3322
0
  MSInheritanceModel DstInheritance = DstRD->getMSInheritanceModel();
3323
0
  bool IsFunc = SrcTy->isMemberFunctionPointer();
3324
0
  bool IsConstant = isa<llvm::Constant>(Src);
3325
3326
  // Decompose src.
3327
0
  llvm::Value *FirstField = Src;
3328
0
  llvm::Value *NonVirtualBaseAdjustment = getZeroInt();
3329
0
  llvm::Value *VirtualBaseAdjustmentOffset = getZeroInt();
3330
0
  llvm::Value *VBPtrOffset = getZeroInt();
3331
0
  if (!inheritanceModelHasOnlyOneField(IsFunc, SrcInheritance)) {
3332
    // We need to extract values.
3333
0
    unsigned I = 0;
3334
0
    FirstField = Builder.CreateExtractValue(Src, I++);
3335
0
    if (inheritanceModelHasNVOffsetField(IsFunc, SrcInheritance))
3336
0
      NonVirtualBaseAdjustment = Builder.CreateExtractValue(Src, I++);
3337
0
    if (inheritanceModelHasVBPtrOffsetField(SrcInheritance))
3338
0
      VBPtrOffset = Builder.CreateExtractValue(Src, I++);
3339
0
    if (inheritanceModelHasVBTableOffsetField(SrcInheritance))
3340
0
      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(Src, I++);
3341
0
  }
3342
3343
0
  bool IsDerivedToBase = (CK == CK_DerivedToBaseMemberPointer);
3344
0
  const MemberPointerType *DerivedTy = IsDerivedToBase ? SrcTy : DstTy;
3345
0
  const CXXRecordDecl *DerivedClass = DerivedTy->getMostRecentCXXRecordDecl();
3346
3347
  // For data pointers, we adjust the field offset directly.  For functions, we
3348
  // have a separate field.
3349
0
  llvm::Value *&NVAdjustField = IsFunc ? NonVirtualBaseAdjustment : FirstField;
3350
3351
  // The virtual inheritance model has a quirk: the virtual base table is always
3352
  // referenced when dereferencing a member pointer even if the member pointer
3353
  // is non-virtual.  This is accounted for by adjusting the non-virtual offset
3354
  // to point backwards to the top of the MDC from the first VBase.  Undo this
3355
  // adjustment to normalize the member pointer.
3356
0
  llvm::Value *SrcVBIndexEqZero =
3357
0
      Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3358
0
  if (SrcInheritance == MSInheritanceModel::Virtual) {
3359
0
    if (int64_t SrcOffsetToFirstVBase =
3360
0
            getContext().getOffsetOfBaseWithVBPtr(SrcRD).getQuantity()) {
3361
0
      llvm::Value *UndoSrcAdjustment = Builder.CreateSelect(
3362
0
          SrcVBIndexEqZero,
3363
0
          llvm::ConstantInt::get(CGM.IntTy, SrcOffsetToFirstVBase),
3364
0
          getZeroInt());
3365
0
      NVAdjustField = Builder.CreateNSWAdd(NVAdjustField, UndoSrcAdjustment);
3366
0
    }
3367
0
  }
3368
3369
  // A non-zero vbindex implies that we are dealing with a source member in a
3370
  // floating virtual base in addition to some non-virtual offset.  If the
3371
  // vbindex is zero, we are dealing with a source that exists in a non-virtual,
3372
  // fixed, base.  The difference between these two cases is that the vbindex +
3373
  // nvoffset *always* point to the member regardless of what context they are
3374
  // evaluated in so long as the vbindex is adjusted.  A member inside a fixed
3375
  // base requires explicit nv adjustment.
3376
0
  llvm::Constant *BaseClassOffset = llvm::ConstantInt::get(
3377
0
      CGM.IntTy,
3378
0
      CGM.computeNonVirtualBaseClassOffset(DerivedClass, PathBegin, PathEnd)
3379
0
          .getQuantity());
3380
3381
0
  llvm::Value *NVDisp;
3382
0
  if (IsDerivedToBase)
3383
0
    NVDisp = Builder.CreateNSWSub(NVAdjustField, BaseClassOffset, "adj");
3384
0
  else
3385
0
    NVDisp = Builder.CreateNSWAdd(NVAdjustField, BaseClassOffset, "adj");
3386
3387
0
  NVAdjustField = Builder.CreateSelect(SrcVBIndexEqZero, NVDisp, getZeroInt());
3388
3389
  // Update the vbindex to an appropriate value in the destination because
3390
  // SrcRD's vbtable might not be a strict prefix of the one in DstRD.
3391
0
  llvm::Value *DstVBIndexEqZero = SrcVBIndexEqZero;
3392
0
  if (inheritanceModelHasVBTableOffsetField(DstInheritance) &&
3393
0
      inheritanceModelHasVBTableOffsetField(SrcInheritance)) {
3394
0
    if (llvm::GlobalVariable *VDispMap =
3395
0
            getAddrOfVirtualDisplacementMap(SrcRD, DstRD)) {
3396
0
      llvm::Value *VBIndex = Builder.CreateExactUDiv(
3397
0
          VirtualBaseAdjustmentOffset, llvm::ConstantInt::get(CGM.IntTy, 4));
3398
0
      if (IsConstant) {
3399
0
        llvm::Constant *Mapping = VDispMap->getInitializer();
3400
0
        VirtualBaseAdjustmentOffset =
3401
0
            Mapping->getAggregateElement(cast<llvm::Constant>(VBIndex));
3402
0
      } else {
3403
0
        llvm::Value *Idxs[] = {getZeroInt(), VBIndex};
3404
0
        VirtualBaseAdjustmentOffset = Builder.CreateAlignedLoad(
3405
0
            CGM.IntTy, Builder.CreateInBoundsGEP(VDispMap->getValueType(),
3406
0
                                                 VDispMap, Idxs),
3407
0
            CharUnits::fromQuantity(4));
3408
0
      }
3409
3410
0
      DstVBIndexEqZero =
3411
0
          Builder.CreateICmpEQ(VirtualBaseAdjustmentOffset, getZeroInt());
3412
0
    }
3413
0
  }
3414
3415
  // Set the VBPtrOffset to zero if the vbindex is zero.  Otherwise, initialize
3416
  // it to the offset of the vbptr.
3417
0
  if (inheritanceModelHasVBPtrOffsetField(DstInheritance)) {
3418
0
    llvm::Value *DstVBPtrOffset = llvm::ConstantInt::get(
3419
0
        CGM.IntTy,
3420
0
        getContext().getASTRecordLayout(DstRD).getVBPtrOffset().getQuantity());
3421
0
    VBPtrOffset =
3422
0
        Builder.CreateSelect(DstVBIndexEqZero, getZeroInt(), DstVBPtrOffset);
3423
0
  }
3424
3425
  // Likewise, apply a similar adjustment so that dereferencing the member
3426
  // pointer correctly accounts for the distance between the start of the first
3427
  // virtual base and the top of the MDC.
3428
0
  if (DstInheritance == MSInheritanceModel::Virtual) {
3429
0
    if (int64_t DstOffsetToFirstVBase =
3430
0
            getContext().getOffsetOfBaseWithVBPtr(DstRD).getQuantity()) {
3431
0
      llvm::Value *DoDstAdjustment = Builder.CreateSelect(
3432
0
          DstVBIndexEqZero,
3433
0
          llvm::ConstantInt::get(CGM.IntTy, DstOffsetToFirstVBase),
3434
0
          getZeroInt());
3435
0
      NVAdjustField = Builder.CreateNSWSub(NVAdjustField, DoDstAdjustment);
3436
0
    }
3437
0
  }
3438
3439
  // Recompose dst from the null struct and the adjusted fields from src.
3440
0
  llvm::Value *Dst;
3441
0
  if (inheritanceModelHasOnlyOneField(IsFunc, DstInheritance)) {
3442
0
    Dst = FirstField;
3443
0
  } else {
3444
0
    Dst = llvm::UndefValue::get(ConvertMemberPointerType(DstTy));
3445
0
    unsigned Idx = 0;
3446
0
    Dst = Builder.CreateInsertValue(Dst, FirstField, Idx++);
3447
0
    if (inheritanceModelHasNVOffsetField(IsFunc, DstInheritance))
3448
0
      Dst = Builder.CreateInsertValue(Dst, NonVirtualBaseAdjustment, Idx++);
3449
0
    if (inheritanceModelHasVBPtrOffsetField(DstInheritance))
3450
0
      Dst = Builder.CreateInsertValue(Dst, VBPtrOffset, Idx++);
3451
0
    if (inheritanceModelHasVBTableOffsetField(DstInheritance))
3452
0
      Dst = Builder.CreateInsertValue(Dst, VirtualBaseAdjustmentOffset, Idx++);
3453
0
  }
3454
0
  return Dst;
3455
0
}
3456
3457
llvm::Constant *
3458
MicrosoftCXXABI::EmitMemberPointerConversion(const CastExpr *E,
3459
0
                                             llvm::Constant *Src) {
3460
0
  const MemberPointerType *SrcTy =
3461
0
      E->getSubExpr()->getType()->castAs<MemberPointerType>();
3462
0
  const MemberPointerType *DstTy = E->getType()->castAs<MemberPointerType>();
3463
3464
0
  CastKind CK = E->getCastKind();
3465
3466
0
  return EmitMemberPointerConversion(SrcTy, DstTy, CK, E->path_begin(),
3467
0
                                     E->path_end(), Src);
3468
0
}
3469
3470
llvm::Constant *MicrosoftCXXABI::EmitMemberPointerConversion(
3471
    const MemberPointerType *SrcTy, const MemberPointerType *DstTy, CastKind CK,
3472
    CastExpr::path_const_iterator PathBegin,
3473
0
    CastExpr::path_const_iterator PathEnd, llvm::Constant *Src) {
3474
0
  assert(CK == CK_DerivedToBaseMemberPointer ||
3475
0
         CK == CK_BaseToDerivedMemberPointer ||
3476
0
         CK == CK_ReinterpretMemberPointer);
3477
  // If src is null, emit a new null for dst.  We can't return src because dst
3478
  // might have a new representation.
3479
0
  if (MemberPointerConstantIsNull(SrcTy, Src))
3480
0
    return EmitNullMemberPointer(DstTy);
3481
3482
  // We don't need to do anything for reinterpret_casts of non-null member
3483
  // pointers.  We should only get here when the two type representations have
3484
  // the same size.
3485
0
  if (CK == CK_ReinterpretMemberPointer)
3486
0
    return Src;
3487
3488
0
  CGBuilderTy Builder(CGM, CGM.getLLVMContext());
3489
0
  auto *Dst = cast<llvm::Constant>(EmitNonNullMemberPointerConversion(
3490
0
      SrcTy, DstTy, CK, PathBegin, PathEnd, Src, Builder));
3491
3492
0
  return Dst;
3493
0
}
3494
3495
CGCallee MicrosoftCXXABI::EmitLoadOfMemberFunctionPointer(
3496
    CodeGenFunction &CGF, const Expr *E, Address This,
3497
    llvm::Value *&ThisPtrForCall, llvm::Value *MemPtr,
3498
0
    const MemberPointerType *MPT) {
3499
0
  assert(MPT->isMemberFunctionPointer());
3500
0
  const FunctionProtoType *FPT =
3501
0
    MPT->getPointeeType()->castAs<FunctionProtoType>();
3502
0
  const CXXRecordDecl *RD = MPT->getMostRecentCXXRecordDecl();
3503
0
  CGBuilderTy &Builder = CGF.Builder;
3504
3505
0
  MSInheritanceModel Inheritance = RD->getMSInheritanceModel();
3506
3507
  // Extract the fields we need, regardless of model.  We'll apply them if we
3508
  // have them.
3509
0
  llvm::Value *FunctionPointer = MemPtr;
3510
0
  llvm::Value *NonVirtualBaseAdjustment = nullptr;
3511
0
  llvm::Value *VirtualBaseAdjustmentOffset = nullptr;
3512
0
  llvm::Value *VBPtrOffset = nullptr;
3513
0
  if (MemPtr->getType()->isStructTy()) {
3514
    // We need to extract values.
3515
0
    unsigned I = 0;
3516
0
    FunctionPointer = Builder.CreateExtractValue(MemPtr, I++);
3517
0
    if (inheritanceModelHasNVOffsetField(MPT, Inheritance))
3518
0
      NonVirtualBaseAdjustment = Builder.CreateExtractValue(MemPtr, I++);
3519
0
    if (inheritanceModelHasVBPtrOffsetField(Inheritance))
3520
0
      VBPtrOffset = Builder.CreateExtractValue(MemPtr, I++);
3521
0
    if (inheritanceModelHasVBTableOffsetField(Inheritance))
3522
0
      VirtualBaseAdjustmentOffset = Builder.CreateExtractValue(MemPtr, I++);
3523
0
  }
3524
3525
0
  if (VirtualBaseAdjustmentOffset) {
3526
0
    ThisPtrForCall = AdjustVirtualBase(CGF, E, RD, This,
3527
0
                                   VirtualBaseAdjustmentOffset, VBPtrOffset);
3528
0
  } else {
3529
0
    ThisPtrForCall = This.getPointer();
3530
0
  }
3531
3532
0
  if (NonVirtualBaseAdjustment)
3533
0
    ThisPtrForCall = Builder.CreateInBoundsGEP(CGF.Int8Ty, ThisPtrForCall,
3534
0
                                               NonVirtualBaseAdjustment);
3535
3536
0
  CGCallee Callee(FPT, FunctionPointer);
3537
0
  return Callee;
3538
0
}
3539
3540
0
CGCXXABI *clang::CodeGen::CreateMicrosoftCXXABI(CodeGenModule &CGM) {
3541
0
  return new MicrosoftCXXABI(CGM);
3542
0
}
3543
3544
// MS RTTI Overview:
3545
// The run time type information emitted by cl.exe contains 5 distinct types of
3546
// structures.  Many of them reference each other.
3547
//
3548
// TypeInfo:  Static classes that are returned by typeid.
3549
//
3550
// CompleteObjectLocator:  Referenced by vftables.  They contain information
3551
//   required for dynamic casting, including OffsetFromTop.  They also contain
3552
//   a reference to the TypeInfo for the type and a reference to the
3553
//   CompleteHierarchyDescriptor for the type.
3554
//
3555
// ClassHierarchyDescriptor: Contains information about a class hierarchy.
3556
//   Used during dynamic_cast to walk a class hierarchy.  References a base
3557
//   class array and the size of said array.
3558
//
3559
// BaseClassArray: Contains a list of classes in a hierarchy.  BaseClassArray is
3560
//   somewhat of a misnomer because the most derived class is also in the list
3561
//   as well as multiple copies of virtual bases (if they occur multiple times
3562
//   in the hierarchy.)  The BaseClassArray contains one BaseClassDescriptor for
3563
//   every path in the hierarchy, in pre-order depth first order.  Note, we do
3564
//   not declare a specific llvm type for BaseClassArray, it's merely an array
3565
//   of BaseClassDescriptor pointers.
3566
//
3567
// BaseClassDescriptor: Contains information about a class in a class hierarchy.
3568
//   BaseClassDescriptor is also somewhat of a misnomer for the same reason that
3569
//   BaseClassArray is.  It contains information about a class within a
3570
//   hierarchy such as: is this base is ambiguous and what is its offset in the
3571
//   vbtable.  The names of the BaseClassDescriptors have all of their fields
3572
//   mangled into them so they can be aggressively deduplicated by the linker.
3573
3574
0
static llvm::GlobalVariable *getTypeInfoVTable(CodeGenModule &CGM) {
3575
0
  StringRef MangledName("??_7type_info@@6B@");
3576
0
  if (auto VTable = CGM.getModule().getNamedGlobal(MangledName))
3577
0
    return VTable;
3578
0
  return new llvm::GlobalVariable(CGM.getModule(), CGM.Int8PtrTy,
3579
0
                                  /*isConstant=*/true,
3580
0
                                  llvm::GlobalVariable::ExternalLinkage,
3581
0
                                  /*Initializer=*/nullptr, MangledName);
3582
0
}
3583
3584
namespace {
3585
3586
/// A Helper struct that stores information about a class in a class
3587
/// hierarchy.  The information stored in these structs struct is used during
3588
/// the generation of ClassHierarchyDescriptors and BaseClassDescriptors.
3589
// During RTTI creation, MSRTTIClasses are stored in a contiguous array with
3590
// implicit depth first pre-order tree connectivity.  getFirstChild and
3591
// getNextSibling allow us to walk the tree efficiently.
3592
struct MSRTTIClass {
3593
  enum {
3594
    IsPrivateOnPath = 1 | 8,
3595
    IsAmbiguous = 2,
3596
    IsPrivate = 4,
3597
    IsVirtual = 16,
3598
    HasHierarchyDescriptor = 64
3599
  };
3600
0
  MSRTTIClass(const CXXRecordDecl *RD) : RD(RD) {}
3601
  uint32_t initialize(const MSRTTIClass *Parent,
3602
                      const CXXBaseSpecifier *Specifier);
3603
3604
0
  MSRTTIClass *getFirstChild() { return this + 1; }
3605
0
  static MSRTTIClass *getNextChild(MSRTTIClass *Child) {
3606
0
    return Child + 1 + Child->NumBases;
3607
0
  }
3608
3609
  const CXXRecordDecl *RD, *VirtualRoot;
3610
  uint32_t Flags, NumBases, OffsetInVBase;
3611
};
3612
3613
/// Recursively initialize the base class array.
3614
uint32_t MSRTTIClass::initialize(const MSRTTIClass *Parent,
3615
0
                                 const CXXBaseSpecifier *Specifier) {
3616
0
  Flags = HasHierarchyDescriptor;
3617
0
  if (!Parent) {
3618
0
    VirtualRoot = nullptr;
3619
0
    OffsetInVBase = 0;
3620
0
  } else {
3621
0
    if (Specifier->getAccessSpecifier() != AS_public)
3622
0
      Flags |= IsPrivate | IsPrivateOnPath;
3623
0
    if (Specifier->isVirtual()) {
3624
0
      Flags |= IsVirtual;
3625
0
      VirtualRoot = RD;
3626
0
      OffsetInVBase = 0;
3627
0
    } else {
3628
0
      if (Parent->Flags & IsPrivateOnPath)
3629
0
        Flags |= IsPrivateOnPath;
3630
0
      VirtualRoot = Parent->VirtualRoot;
3631
0
      OffsetInVBase = Parent->OffsetInVBase + RD->getASTContext()
3632
0
          .getASTRecordLayout(Parent->RD).getBaseClassOffset(RD).getQuantity();
3633
0
    }
3634
0
  }
3635
0
  NumBases = 0;
3636
0
  MSRTTIClass *Child = getFirstChild();
3637
0
  for (const CXXBaseSpecifier &Base : RD->bases()) {
3638
0
    NumBases += Child->initialize(this, &Base) + 1;
3639
0
    Child = getNextChild(Child);
3640
0
  }
3641
0
  return NumBases;
3642
0
}
3643
3644
0
static llvm::GlobalValue::LinkageTypes getLinkageForRTTI(QualType Ty) {
3645
0
  switch (Ty->getLinkage()) {
3646
0
  case Linkage::Invalid:
3647
0
    llvm_unreachable("Linkage hasn't been computed!");
3648
3649
0
  case Linkage::None:
3650
0
  case Linkage::Internal:
3651
0
  case Linkage::UniqueExternal:
3652
0
    return llvm::GlobalValue::InternalLinkage;
3653
3654
0
  case Linkage::VisibleNone:
3655
0
  case Linkage::Module:
3656
0
  case Linkage::External:
3657
0
    return llvm::GlobalValue::LinkOnceODRLinkage;
3658
0
  }
3659
0
  llvm_unreachable("Invalid linkage!");
3660
0
}
3661
3662
/// An ephemeral helper class for building MS RTTI types.  It caches some
3663
/// calls to the module and information about the most derived class in a
3664
/// hierarchy.
3665
struct MSRTTIBuilder {
3666
  enum {
3667
    HasBranchingHierarchy = 1,
3668
    HasVirtualBranchingHierarchy = 2,
3669
    HasAmbiguousBases = 4
3670
  };
3671
3672
  MSRTTIBuilder(MicrosoftCXXABI &ABI, const CXXRecordDecl *RD)
3673
      : CGM(ABI.CGM), Context(CGM.getContext()),
3674
        VMContext(CGM.getLLVMContext()), Module(CGM.getModule()), RD(RD),
3675
        Linkage(getLinkageForRTTI(CGM.getContext().getTagDeclType(RD))),
3676
0
        ABI(ABI) {}
3677
3678
  llvm::GlobalVariable *getBaseClassDescriptor(const MSRTTIClass &Classes);
3679
  llvm::GlobalVariable *
3680
  getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes);
3681
  llvm::GlobalVariable *getClassHierarchyDescriptor();
3682
  llvm::GlobalVariable *getCompleteObjectLocator(const VPtrInfo &Info);
3683
3684
  CodeGenModule &CGM;
3685
  ASTContext &Context;
3686
  llvm::LLVMContext &VMContext;
3687
  llvm::Module &Module;
3688
  const CXXRecordDecl *RD;
3689
  llvm::GlobalVariable::LinkageTypes Linkage;
3690
  MicrosoftCXXABI &ABI;
3691
};
3692
3693
} // namespace
3694
3695
/// Recursively serializes a class hierarchy in pre-order depth first
3696
/// order.
3697
static void serializeClassHierarchy(SmallVectorImpl<MSRTTIClass> &Classes,
3698
0
                                    const CXXRecordDecl *RD) {
3699
0
  Classes.push_back(MSRTTIClass(RD));
3700
0
  for (const CXXBaseSpecifier &Base : RD->bases())
3701
0
    serializeClassHierarchy(Classes, Base.getType()->getAsCXXRecordDecl());
3702
0
}
3703
3704
/// Find ambiguity among base classes.
3705
static void
3706
0
detectAmbiguousBases(SmallVectorImpl<MSRTTIClass> &Classes) {
3707
0
  llvm::SmallPtrSet<const CXXRecordDecl *, 8> VirtualBases;
3708
0
  llvm::SmallPtrSet<const CXXRecordDecl *, 8> UniqueBases;
3709
0
  llvm::SmallPtrSet<const CXXRecordDecl *, 8> AmbiguousBases;
3710
0
  for (MSRTTIClass *Class = &Classes.front(); Class <= &Classes.back();) {
3711
0
    if ((Class->Flags & MSRTTIClass::IsVirtual) &&
3712
0
        !VirtualBases.insert(Class->RD).second) {
3713
0
      Class = MSRTTIClass::getNextChild(Class);
3714
0
      continue;
3715
0
    }
3716
0
    if (!UniqueBases.insert(Class->RD).second)
3717
0
      AmbiguousBases.insert(Class->RD);
3718
0
    Class++;
3719
0
  }
3720
0
  if (AmbiguousBases.empty())
3721
0
    return;
3722
0
  for (MSRTTIClass &Class : Classes)
3723
0
    if (AmbiguousBases.count(Class.RD))
3724
0
      Class.Flags |= MSRTTIClass::IsAmbiguous;
3725
0
}
3726
3727
0
llvm::GlobalVariable *MSRTTIBuilder::getClassHierarchyDescriptor() {
3728
0
  SmallString<256> MangledName;
3729
0
  {
3730
0
    llvm::raw_svector_ostream Out(MangledName);
3731
0
    ABI.getMangleContext().mangleCXXRTTIClassHierarchyDescriptor(RD, Out);
3732
0
  }
3733
3734
  // Check to see if we've already declared this ClassHierarchyDescriptor.
3735
0
  if (auto CHD = Module.getNamedGlobal(MangledName))
3736
0
    return CHD;
3737
3738
  // Serialize the class hierarchy and initialize the CHD Fields.
3739
0
  SmallVector<MSRTTIClass, 8> Classes;
3740
0
  serializeClassHierarchy(Classes, RD);
3741
0
  Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
3742
0
  detectAmbiguousBases(Classes);
3743
0
  int Flags = 0;
3744
0
  for (const MSRTTIClass &Class : Classes) {
3745
0
    if (Class.RD->getNumBases() > 1)
3746
0
      Flags |= HasBranchingHierarchy;
3747
    // Note: cl.exe does not calculate "HasAmbiguousBases" correctly.  We
3748
    // believe the field isn't actually used.
3749
0
    if (Class.Flags & MSRTTIClass::IsAmbiguous)
3750
0
      Flags |= HasAmbiguousBases;
3751
0
  }
3752
0
  if ((Flags & HasBranchingHierarchy) && RD->getNumVBases() != 0)
3753
0
    Flags |= HasVirtualBranchingHierarchy;
3754
  // These gep indices are used to get the address of the first element of the
3755
  // base class array.
3756
0
  llvm::Value *GEPIndices[] = {llvm::ConstantInt::get(CGM.IntTy, 0),
3757
0
                               llvm::ConstantInt::get(CGM.IntTy, 0)};
3758
3759
  // Forward-declare the class hierarchy descriptor
3760
0
  auto Type = ABI.getClassHierarchyDescriptorType();
3761
0
  auto CHD = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3762
0
                                      /*Initializer=*/nullptr,
3763
0
                                      MangledName);
3764
0
  if (CHD->isWeakForLinker())
3765
0
    CHD->setComdat(CGM.getModule().getOrInsertComdat(CHD->getName()));
3766
3767
0
  auto *Bases = getBaseClassArray(Classes);
3768
3769
  // Initialize the base class ClassHierarchyDescriptor.
3770
0
  llvm::Constant *Fields[] = {
3771
0
      llvm::ConstantInt::get(CGM.IntTy, 0), // reserved by the runtime
3772
0
      llvm::ConstantInt::get(CGM.IntTy, Flags),
3773
0
      llvm::ConstantInt::get(CGM.IntTy, Classes.size()),
3774
0
      ABI.getImageRelativeConstant(llvm::ConstantExpr::getInBoundsGetElementPtr(
3775
0
          Bases->getValueType(), Bases,
3776
0
          llvm::ArrayRef<llvm::Value *>(GEPIndices))),
3777
0
  };
3778
0
  CHD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3779
0
  return CHD;
3780
0
}
3781
3782
llvm::GlobalVariable *
3783
0
MSRTTIBuilder::getBaseClassArray(SmallVectorImpl<MSRTTIClass> &Classes) {
3784
0
  SmallString<256> MangledName;
3785
0
  {
3786
0
    llvm::raw_svector_ostream Out(MangledName);
3787
0
    ABI.getMangleContext().mangleCXXRTTIBaseClassArray(RD, Out);
3788
0
  }
3789
3790
  // Forward-declare the base class array.
3791
  // cl.exe pads the base class array with 1 (in 32 bit mode) or 4 (in 64 bit
3792
  // mode) bytes of padding.  We provide a pointer sized amount of padding by
3793
  // adding +1 to Classes.size().  The sections have pointer alignment and are
3794
  // marked pick-any so it shouldn't matter.
3795
0
  llvm::Type *PtrType = ABI.getImageRelativeType(
3796
0
      ABI.getBaseClassDescriptorType()->getPointerTo());
3797
0
  auto *ArrType = llvm::ArrayType::get(PtrType, Classes.size() + 1);
3798
0
  auto *BCA =
3799
0
      new llvm::GlobalVariable(Module, ArrType,
3800
0
                               /*isConstant=*/true, Linkage,
3801
0
                               /*Initializer=*/nullptr, MangledName);
3802
0
  if (BCA->isWeakForLinker())
3803
0
    BCA->setComdat(CGM.getModule().getOrInsertComdat(BCA->getName()));
3804
3805
  // Initialize the BaseClassArray.
3806
0
  SmallVector<llvm::Constant *, 8> BaseClassArrayData;
3807
0
  for (MSRTTIClass &Class : Classes)
3808
0
    BaseClassArrayData.push_back(
3809
0
        ABI.getImageRelativeConstant(getBaseClassDescriptor(Class)));
3810
0
  BaseClassArrayData.push_back(llvm::Constant::getNullValue(PtrType));
3811
0
  BCA->setInitializer(llvm::ConstantArray::get(ArrType, BaseClassArrayData));
3812
0
  return BCA;
3813
0
}
3814
3815
llvm::GlobalVariable *
3816
0
MSRTTIBuilder::getBaseClassDescriptor(const MSRTTIClass &Class) {
3817
  // Compute the fields for the BaseClassDescriptor.  They are computed up front
3818
  // because they are mangled into the name of the object.
3819
0
  uint32_t OffsetInVBTable = 0;
3820
0
  int32_t VBPtrOffset = -1;
3821
0
  if (Class.VirtualRoot) {
3822
0
    auto &VTableContext = CGM.getMicrosoftVTableContext();
3823
0
    OffsetInVBTable = VTableContext.getVBTableIndex(RD, Class.VirtualRoot) * 4;
3824
0
    VBPtrOffset = Context.getASTRecordLayout(RD).getVBPtrOffset().getQuantity();
3825
0
  }
3826
3827
0
  SmallString<256> MangledName;
3828
0
  {
3829
0
    llvm::raw_svector_ostream Out(MangledName);
3830
0
    ABI.getMangleContext().mangleCXXRTTIBaseClassDescriptor(
3831
0
        Class.RD, Class.OffsetInVBase, VBPtrOffset, OffsetInVBTable,
3832
0
        Class.Flags, Out);
3833
0
  }
3834
3835
  // Check to see if we've already declared this object.
3836
0
  if (auto BCD = Module.getNamedGlobal(MangledName))
3837
0
    return BCD;
3838
3839
  // Forward-declare the base class descriptor.
3840
0
  auto Type = ABI.getBaseClassDescriptorType();
3841
0
  auto BCD =
3842
0
      new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3843
0
                               /*Initializer=*/nullptr, MangledName);
3844
0
  if (BCD->isWeakForLinker())
3845
0
    BCD->setComdat(CGM.getModule().getOrInsertComdat(BCD->getName()));
3846
3847
  // Initialize the BaseClassDescriptor.
3848
0
  llvm::Constant *Fields[] = {
3849
0
      ABI.getImageRelativeConstant(
3850
0
          ABI.getAddrOfRTTIDescriptor(Context.getTypeDeclType(Class.RD))),
3851
0
      llvm::ConstantInt::get(CGM.IntTy, Class.NumBases),
3852
0
      llvm::ConstantInt::get(CGM.IntTy, Class.OffsetInVBase),
3853
0
      llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset),
3854
0
      llvm::ConstantInt::get(CGM.IntTy, OffsetInVBTable),
3855
0
      llvm::ConstantInt::get(CGM.IntTy, Class.Flags),
3856
0
      ABI.getImageRelativeConstant(
3857
0
          MSRTTIBuilder(ABI, Class.RD).getClassHierarchyDescriptor()),
3858
0
  };
3859
0
  BCD->setInitializer(llvm::ConstantStruct::get(Type, Fields));
3860
0
  return BCD;
3861
0
}
3862
3863
llvm::GlobalVariable *
3864
0
MSRTTIBuilder::getCompleteObjectLocator(const VPtrInfo &Info) {
3865
0
  SmallString<256> MangledName;
3866
0
  {
3867
0
    llvm::raw_svector_ostream Out(MangledName);
3868
0
    ABI.getMangleContext().mangleCXXRTTICompleteObjectLocator(RD, Info.MangledPath, Out);
3869
0
  }
3870
3871
  // Check to see if we've already computed this complete object locator.
3872
0
  if (auto COL = Module.getNamedGlobal(MangledName))
3873
0
    return COL;
3874
3875
  // Compute the fields of the complete object locator.
3876
0
  int OffsetToTop = Info.FullOffsetInMDC.getQuantity();
3877
0
  int VFPtrOffset = 0;
3878
  // The offset includes the vtordisp if one exists.
3879
0
  if (const CXXRecordDecl *VBase = Info.getVBaseWithVPtr())
3880
0
    if (Context.getASTRecordLayout(RD)
3881
0
      .getVBaseOffsetsMap()
3882
0
      .find(VBase)
3883
0
      ->second.hasVtorDisp())
3884
0
      VFPtrOffset = Info.NonVirtualOffset.getQuantity() + 4;
3885
3886
  // Forward-declare the complete object locator.
3887
0
  llvm::StructType *Type = ABI.getCompleteObjectLocatorType();
3888
0
  auto COL = new llvm::GlobalVariable(Module, Type, /*isConstant=*/true, Linkage,
3889
0
    /*Initializer=*/nullptr, MangledName);
3890
3891
  // Initialize the CompleteObjectLocator.
3892
0
  llvm::Constant *Fields[] = {
3893
0
      llvm::ConstantInt::get(CGM.IntTy, ABI.isImageRelative()),
3894
0
      llvm::ConstantInt::get(CGM.IntTy, OffsetToTop),
3895
0
      llvm::ConstantInt::get(CGM.IntTy, VFPtrOffset),
3896
0
      ABI.getImageRelativeConstant(
3897
0
          CGM.GetAddrOfRTTIDescriptor(Context.getTypeDeclType(RD))),
3898
0
      ABI.getImageRelativeConstant(getClassHierarchyDescriptor()),
3899
0
      ABI.getImageRelativeConstant(COL),
3900
0
  };
3901
0
  llvm::ArrayRef<llvm::Constant *> FieldsRef(Fields);
3902
0
  if (!ABI.isImageRelative())
3903
0
    FieldsRef = FieldsRef.drop_back();
3904
0
  COL->setInitializer(llvm::ConstantStruct::get(Type, FieldsRef));
3905
0
  if (COL->isWeakForLinker())
3906
0
    COL->setComdat(CGM.getModule().getOrInsertComdat(COL->getName()));
3907
0
  return COL;
3908
0
}
3909
3910
static QualType decomposeTypeForEH(ASTContext &Context, QualType T,
3911
                                   bool &IsConst, bool &IsVolatile,
3912
0
                                   bool &IsUnaligned) {
3913
0
  T = Context.getExceptionObjectType(T);
3914
3915
  // C++14 [except.handle]p3:
3916
  //   A handler is a match for an exception object of type E if [...]
3917
  //     - the handler is of type cv T or const T& where T is a pointer type and
3918
  //       E is a pointer type that can be converted to T by [...]
3919
  //         - a qualification conversion
3920
0
  IsConst = false;
3921
0
  IsVolatile = false;
3922
0
  IsUnaligned = false;
3923
0
  QualType PointeeType = T->getPointeeType();
3924
0
  if (!PointeeType.isNull()) {
3925
0
    IsConst = PointeeType.isConstQualified();
3926
0
    IsVolatile = PointeeType.isVolatileQualified();
3927
0
    IsUnaligned = PointeeType.getQualifiers().hasUnaligned();
3928
0
  }
3929
3930
  // Member pointer types like "const int A::*" are represented by having RTTI
3931
  // for "int A::*" and separately storing the const qualifier.
3932
0
  if (const auto *MPTy = T->getAs<MemberPointerType>())
3933
0
    T = Context.getMemberPointerType(PointeeType.getUnqualifiedType(),
3934
0
                                     MPTy->getClass());
3935
3936
  // Pointer types like "const int * const *" are represented by having RTTI
3937
  // for "const int **" and separately storing the const qualifier.
3938
0
  if (T->isPointerType())
3939
0
    T = Context.getPointerType(PointeeType.getUnqualifiedType());
3940
3941
0
  return T;
3942
0
}
3943
3944
CatchTypeInfo
3945
MicrosoftCXXABI::getAddrOfCXXCatchHandlerType(QualType Type,
3946
0
                                              QualType CatchHandlerType) {
3947
  // TypeDescriptors for exceptions never have qualified pointer types,
3948
  // qualifiers are stored separately in order to support qualification
3949
  // conversions.
3950
0
  bool IsConst, IsVolatile, IsUnaligned;
3951
0
  Type =
3952
0
      decomposeTypeForEH(getContext(), Type, IsConst, IsVolatile, IsUnaligned);
3953
3954
0
  bool IsReference = CatchHandlerType->isReferenceType();
3955
3956
0
  uint32_t Flags = 0;
3957
0
  if (IsConst)
3958
0
    Flags |= 1;
3959
0
  if (IsVolatile)
3960
0
    Flags |= 2;
3961
0
  if (IsUnaligned)
3962
0
    Flags |= 4;
3963
0
  if (IsReference)
3964
0
    Flags |= 8;
3965
3966
0
  return CatchTypeInfo{getAddrOfRTTIDescriptor(Type)->stripPointerCasts(),
3967
0
                       Flags};
3968
0
}
3969
3970
/// Gets a TypeDescriptor.  Returns a llvm::Constant * rather than a
3971
/// llvm::GlobalVariable * because different type descriptors have different
3972
/// types, and need to be abstracted.  They are abstracting by casting the
3973
/// address to an Int8PtrTy.
3974
0
llvm::Constant *MicrosoftCXXABI::getAddrOfRTTIDescriptor(QualType Type) {
3975
0
  SmallString<256> MangledName;
3976
0
  {
3977
0
    llvm::raw_svector_ostream Out(MangledName);
3978
0
    getMangleContext().mangleCXXRTTI(Type, Out);
3979
0
  }
3980
3981
  // Check to see if we've already declared this TypeDescriptor.
3982
0
  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
3983
0
    return GV;
3984
3985
  // Note for the future: If we would ever like to do deferred emission of
3986
  // RTTI, check if emitting vtables opportunistically need any adjustment.
3987
3988
  // Compute the fields for the TypeDescriptor.
3989
0
  SmallString<256> TypeInfoString;
3990
0
  {
3991
0
    llvm::raw_svector_ostream Out(TypeInfoString);
3992
0
    getMangleContext().mangleCXXRTTIName(Type, Out);
3993
0
  }
3994
3995
  // Declare and initialize the TypeDescriptor.
3996
0
  llvm::Constant *Fields[] = {
3997
0
    getTypeInfoVTable(CGM),                        // VFPtr
3998
0
    llvm::ConstantPointerNull::get(CGM.Int8PtrTy), // Runtime data
3999
0
    llvm::ConstantDataArray::getString(CGM.getLLVMContext(), TypeInfoString)};
4000
0
  llvm::StructType *TypeDescriptorType =
4001
0
      getTypeDescriptorType(TypeInfoString);
4002
0
  auto *Var = new llvm::GlobalVariable(
4003
0
      CGM.getModule(), TypeDescriptorType, /*isConstant=*/false,
4004
0
      getLinkageForRTTI(Type),
4005
0
      llvm::ConstantStruct::get(TypeDescriptorType, Fields),
4006
0
      MangledName);
4007
0
  if (Var->isWeakForLinker())
4008
0
    Var->setComdat(CGM.getModule().getOrInsertComdat(Var->getName()));
4009
0
  return Var;
4010
0
}
4011
4012
/// Gets or a creates a Microsoft CompleteObjectLocator.
4013
llvm::GlobalVariable *
4014
MicrosoftCXXABI::getMSCompleteObjectLocator(const CXXRecordDecl *RD,
4015
0
                                            const VPtrInfo &Info) {
4016
0
  return MSRTTIBuilder(*this, RD).getCompleteObjectLocator(Info);
4017
0
}
4018
4019
0
void MicrosoftCXXABI::emitCXXStructor(GlobalDecl GD) {
4020
0
  if (auto *ctor = dyn_cast<CXXConstructorDecl>(GD.getDecl())) {
4021
    // There are no constructor variants, always emit the complete destructor.
4022
0
    llvm::Function *Fn =
4023
0
        CGM.codegenCXXStructor(GD.getWithCtorType(Ctor_Complete));
4024
0
    CGM.maybeSetTrivialComdat(*ctor, *Fn);
4025
0
    return;
4026
0
  }
4027
4028
0
  auto *dtor = cast<CXXDestructorDecl>(GD.getDecl());
4029
4030
  // Emit the base destructor if the base and complete (vbase) destructors are
4031
  // equivalent. This effectively implements -mconstructor-aliases as part of
4032
  // the ABI.
4033
0
  if (GD.getDtorType() == Dtor_Complete &&
4034
0
      dtor->getParent()->getNumVBases() == 0)
4035
0
    GD = GD.getWithDtorType(Dtor_Base);
4036
4037
  // The base destructor is equivalent to the base destructor of its
4038
  // base class if there is exactly one non-virtual base class with a
4039
  // non-trivial destructor, there are no fields with a non-trivial
4040
  // destructor, and the body of the destructor is trivial.
4041
0
  if (GD.getDtorType() == Dtor_Base && !CGM.TryEmitBaseDestructorAsAlias(dtor))
4042
0
    return;
4043
4044
0
  llvm::Function *Fn = CGM.codegenCXXStructor(GD);
4045
0
  if (Fn->isWeakForLinker())
4046
0
    Fn->setComdat(CGM.getModule().getOrInsertComdat(Fn->getName()));
4047
0
}
4048
4049
llvm::Function *
4050
MicrosoftCXXABI::getAddrOfCXXCtorClosure(const CXXConstructorDecl *CD,
4051
0
                                         CXXCtorType CT) {
4052
0
  assert(CT == Ctor_CopyingClosure || CT == Ctor_DefaultClosure);
4053
4054
  // Calculate the mangled name.
4055
0
  SmallString<256> ThunkName;
4056
0
  llvm::raw_svector_ostream Out(ThunkName);
4057
0
  getMangleContext().mangleName(GlobalDecl(CD, CT), Out);
4058
4059
  // If the thunk has been generated previously, just return it.
4060
0
  if (llvm::GlobalValue *GV = CGM.getModule().getNamedValue(ThunkName))
4061
0
    return cast<llvm::Function>(GV);
4062
4063
  // Create the llvm::Function.
4064
0
  const CGFunctionInfo &FnInfo = CGM.getTypes().arrangeMSCtorClosure(CD, CT);
4065
0
  llvm::FunctionType *ThunkTy = CGM.getTypes().GetFunctionType(FnInfo);
4066
0
  const CXXRecordDecl *RD = CD->getParent();
4067
0
  QualType RecordTy = getContext().getRecordType(RD);
4068
0
  llvm::Function *ThunkFn = llvm::Function::Create(
4069
0
      ThunkTy, getLinkageForRTTI(RecordTy), ThunkName.str(), &CGM.getModule());
4070
0
  ThunkFn->setCallingConv(static_cast<llvm::CallingConv::ID>(
4071
0
      FnInfo.getEffectiveCallingConvention()));
4072
0
  if (ThunkFn->isWeakForLinker())
4073
0
    ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
4074
0
  bool IsCopy = CT == Ctor_CopyingClosure;
4075
4076
  // Start codegen.
4077
0
  CodeGenFunction CGF(CGM);
4078
0
  CGF.CurGD = GlobalDecl(CD, Ctor_Complete);
4079
4080
  // Build FunctionArgs.
4081
0
  FunctionArgList FunctionArgs;
4082
4083
  // A constructor always starts with a 'this' pointer as its first argument.
4084
0
  buildThisParam(CGF, FunctionArgs);
4085
4086
  // Following the 'this' pointer is a reference to the source object that we
4087
  // are copying from.
4088
0
  ImplicitParamDecl SrcParam(
4089
0
      getContext(), /*DC=*/nullptr, SourceLocation(),
4090
0
      &getContext().Idents.get("src"),
4091
0
      getContext().getLValueReferenceType(RecordTy,
4092
0
                                          /*SpelledAsLValue=*/true),
4093
0
      ImplicitParamKind::Other);
4094
0
  if (IsCopy)
4095
0
    FunctionArgs.push_back(&SrcParam);
4096
4097
  // Constructors for classes which utilize virtual bases have an additional
4098
  // parameter which indicates whether or not it is being delegated to by a more
4099
  // derived constructor.
4100
0
  ImplicitParamDecl IsMostDerived(getContext(), /*DC=*/nullptr,
4101
0
                                  SourceLocation(),
4102
0
                                  &getContext().Idents.get("is_most_derived"),
4103
0
                                  getContext().IntTy, ImplicitParamKind::Other);
4104
  // Only add the parameter to the list if the class has virtual bases.
4105
0
  if (RD->getNumVBases() > 0)
4106
0
    FunctionArgs.push_back(&IsMostDerived);
4107
4108
  // Start defining the function.
4109
0
  auto NL = ApplyDebugLocation::CreateEmpty(CGF);
4110
0
  CGF.StartFunction(GlobalDecl(), FnInfo.getReturnType(), ThunkFn, FnInfo,
4111
0
                    FunctionArgs, CD->getLocation(), SourceLocation());
4112
  // Create a scope with an artificial location for the body of this function.
4113
0
  auto AL = ApplyDebugLocation::CreateArtificial(CGF);
4114
0
  setCXXABIThisValue(CGF, loadIncomingCXXThis(CGF));
4115
0
  llvm::Value *This = getThisValue(CGF);
4116
4117
0
  llvm::Value *SrcVal =
4118
0
      IsCopy ? CGF.Builder.CreateLoad(CGF.GetAddrOfLocalVar(&SrcParam), "src")
4119
0
             : nullptr;
4120
4121
0
  CallArgList Args;
4122
4123
  // Push the this ptr.
4124
0
  Args.add(RValue::get(This), CD->getThisType());
4125
4126
  // Push the src ptr.
4127
0
  if (SrcVal)
4128
0
    Args.add(RValue::get(SrcVal), SrcParam.getType());
4129
4130
  // Add the rest of the default arguments.
4131
0
  SmallVector<const Stmt *, 4> ArgVec;
4132
0
  ArrayRef<ParmVarDecl *> params = CD->parameters().drop_front(IsCopy ? 1 : 0);
4133
0
  for (const ParmVarDecl *PD : params) {
4134
0
    assert(PD->hasDefaultArg() && "ctor closure lacks default args");
4135
0
    ArgVec.push_back(PD->getDefaultArg());
4136
0
  }
4137
4138
0
  CodeGenFunction::RunCleanupsScope Cleanups(CGF);
4139
4140
0
  const auto *FPT = CD->getType()->castAs<FunctionProtoType>();
4141
0
  CGF.EmitCallArgs(Args, FPT, llvm::ArrayRef(ArgVec), CD, IsCopy ? 1 : 0);
4142
4143
  // Insert any ABI-specific implicit constructor arguments.
4144
0
  AddedStructorArgCounts ExtraArgs =
4145
0
      addImplicitConstructorArgs(CGF, CD, Ctor_Complete,
4146
0
                                 /*ForVirtualBase=*/false,
4147
0
                                 /*Delegating=*/false, Args);
4148
  // Call the destructor with our arguments.
4149
0
  llvm::Constant *CalleePtr =
4150
0
      CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4151
0
  CGCallee Callee =
4152
0
      CGCallee::forDirect(CalleePtr, GlobalDecl(CD, Ctor_Complete));
4153
0
  const CGFunctionInfo &CalleeInfo = CGM.getTypes().arrangeCXXConstructorCall(
4154
0
      Args, CD, Ctor_Complete, ExtraArgs.Prefix, ExtraArgs.Suffix);
4155
0
  CGF.EmitCall(CalleeInfo, Callee, ReturnValueSlot(), Args);
4156
4157
0
  Cleanups.ForceCleanup();
4158
4159
  // Emit the ret instruction, remove any temporary instructions created for the
4160
  // aid of CodeGen.
4161
0
  CGF.FinishFunction(SourceLocation());
4162
4163
0
  return ThunkFn;
4164
0
}
4165
4166
llvm::Constant *MicrosoftCXXABI::getCatchableType(QualType T,
4167
                                                  uint32_t NVOffset,
4168
                                                  int32_t VBPtrOffset,
4169
0
                                                  uint32_t VBIndex) {
4170
0
  assert(!T->isReferenceType());
4171
4172
0
  CXXRecordDecl *RD = T->getAsCXXRecordDecl();
4173
0
  const CXXConstructorDecl *CD =
4174
0
      RD ? CGM.getContext().getCopyConstructorForExceptionObject(RD) : nullptr;
4175
0
  CXXCtorType CT = Ctor_Complete;
4176
0
  if (CD)
4177
0
    if (!hasDefaultCXXMethodCC(getContext(), CD) || CD->getNumParams() != 1)
4178
0
      CT = Ctor_CopyingClosure;
4179
4180
0
  uint32_t Size = getContext().getTypeSizeInChars(T).getQuantity();
4181
0
  SmallString<256> MangledName;
4182
0
  {
4183
0
    llvm::raw_svector_ostream Out(MangledName);
4184
0
    getMangleContext().mangleCXXCatchableType(T, CD, CT, Size, NVOffset,
4185
0
                                              VBPtrOffset, VBIndex, Out);
4186
0
  }
4187
0
  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4188
0
    return getImageRelativeConstant(GV);
4189
4190
  // The TypeDescriptor is used by the runtime to determine if a catch handler
4191
  // is appropriate for the exception object.
4192
0
  llvm::Constant *TD = getImageRelativeConstant(getAddrOfRTTIDescriptor(T));
4193
4194
  // The runtime is responsible for calling the copy constructor if the
4195
  // exception is caught by value.
4196
0
  llvm::Constant *CopyCtor;
4197
0
  if (CD) {
4198
0
    if (CT == Ctor_CopyingClosure)
4199
0
      CopyCtor = getAddrOfCXXCtorClosure(CD, Ctor_CopyingClosure);
4200
0
    else
4201
0
      CopyCtor = CGM.getAddrOfCXXStructor(GlobalDecl(CD, Ctor_Complete));
4202
0
  } else {
4203
0
    CopyCtor = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4204
0
  }
4205
0
  CopyCtor = getImageRelativeConstant(CopyCtor);
4206
4207
0
  bool IsScalar = !RD;
4208
0
  bool HasVirtualBases = false;
4209
0
  bool IsStdBadAlloc = false; // std::bad_alloc is special for some reason.
4210
0
  QualType PointeeType = T;
4211
0
  if (T->isPointerType())
4212
0
    PointeeType = T->getPointeeType();
4213
0
  if (const CXXRecordDecl *RD = PointeeType->getAsCXXRecordDecl()) {
4214
0
    HasVirtualBases = RD->getNumVBases() > 0;
4215
0
    if (IdentifierInfo *II = RD->getIdentifier())
4216
0
      IsStdBadAlloc = II->isStr("bad_alloc") && RD->isInStdNamespace();
4217
0
  }
4218
4219
  // Encode the relevant CatchableType properties into the Flags bitfield.
4220
  // FIXME: Figure out how bits 2 or 8 can get set.
4221
0
  uint32_t Flags = 0;
4222
0
  if (IsScalar)
4223
0
    Flags |= 1;
4224
0
  if (HasVirtualBases)
4225
0
    Flags |= 4;
4226
0
  if (IsStdBadAlloc)
4227
0
    Flags |= 16;
4228
4229
0
  llvm::Constant *Fields[] = {
4230
0
      llvm::ConstantInt::get(CGM.IntTy, Flags),       // Flags
4231
0
      TD,                                             // TypeDescriptor
4232
0
      llvm::ConstantInt::get(CGM.IntTy, NVOffset),    // NonVirtualAdjustment
4233
0
      llvm::ConstantInt::get(CGM.IntTy, VBPtrOffset), // OffsetToVBPtr
4234
0
      llvm::ConstantInt::get(CGM.IntTy, VBIndex),     // VBTableIndex
4235
0
      llvm::ConstantInt::get(CGM.IntTy, Size),        // Size
4236
0
      CopyCtor                                        // CopyCtor
4237
0
  };
4238
0
  llvm::StructType *CTType = getCatchableTypeType();
4239
0
  auto *GV = new llvm::GlobalVariable(
4240
0
      CGM.getModule(), CTType, /*isConstant=*/true, getLinkageForRTTI(T),
4241
0
      llvm::ConstantStruct::get(CTType, Fields), MangledName);
4242
0
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4243
0
  GV->setSection(".xdata");
4244
0
  if (GV->isWeakForLinker())
4245
0
    GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4246
0
  return getImageRelativeConstant(GV);
4247
0
}
4248
4249
0
llvm::GlobalVariable *MicrosoftCXXABI::getCatchableTypeArray(QualType T) {
4250
0
  assert(!T->isReferenceType());
4251
4252
  // See if we've already generated a CatchableTypeArray for this type before.
4253
0
  llvm::GlobalVariable *&CTA = CatchableTypeArrays[T];
4254
0
  if (CTA)
4255
0
    return CTA;
4256
4257
  // Ensure that we don't have duplicate entries in our CatchableTypeArray by
4258
  // using a SmallSetVector.  Duplicates may arise due to virtual bases
4259
  // occurring more than once in the hierarchy.
4260
0
  llvm::SmallSetVector<llvm::Constant *, 2> CatchableTypes;
4261
4262
  // C++14 [except.handle]p3:
4263
  //   A handler is a match for an exception object of type E if [...]
4264
  //     - the handler is of type cv T or cv T& and T is an unambiguous public
4265
  //       base class of E, or
4266
  //     - the handler is of type cv T or const T& where T is a pointer type and
4267
  //       E is a pointer type that can be converted to T by [...]
4268
  //         - a standard pointer conversion (4.10) not involving conversions to
4269
  //           pointers to private or protected or ambiguous classes
4270
0
  const CXXRecordDecl *MostDerivedClass = nullptr;
4271
0
  bool IsPointer = T->isPointerType();
4272
0
  if (IsPointer)
4273
0
    MostDerivedClass = T->getPointeeType()->getAsCXXRecordDecl();
4274
0
  else
4275
0
    MostDerivedClass = T->getAsCXXRecordDecl();
4276
4277
  // Collect all the unambiguous public bases of the MostDerivedClass.
4278
0
  if (MostDerivedClass) {
4279
0
    const ASTContext &Context = getContext();
4280
0
    const ASTRecordLayout &MostDerivedLayout =
4281
0
        Context.getASTRecordLayout(MostDerivedClass);
4282
0
    MicrosoftVTableContext &VTableContext = CGM.getMicrosoftVTableContext();
4283
0
    SmallVector<MSRTTIClass, 8> Classes;
4284
0
    serializeClassHierarchy(Classes, MostDerivedClass);
4285
0
    Classes.front().initialize(/*Parent=*/nullptr, /*Specifier=*/nullptr);
4286
0
    detectAmbiguousBases(Classes);
4287
0
    for (const MSRTTIClass &Class : Classes) {
4288
      // Skip any ambiguous or private bases.
4289
0
      if (Class.Flags &
4290
0
          (MSRTTIClass::IsPrivateOnPath | MSRTTIClass::IsAmbiguous))
4291
0
        continue;
4292
      // Write down how to convert from a derived pointer to a base pointer.
4293
0
      uint32_t OffsetInVBTable = 0;
4294
0
      int32_t VBPtrOffset = -1;
4295
0
      if (Class.VirtualRoot) {
4296
0
        OffsetInVBTable =
4297
0
          VTableContext.getVBTableIndex(MostDerivedClass, Class.VirtualRoot)*4;
4298
0
        VBPtrOffset = MostDerivedLayout.getVBPtrOffset().getQuantity();
4299
0
      }
4300
4301
      // Turn our record back into a pointer if the exception object is a
4302
      // pointer.
4303
0
      QualType RTTITy = QualType(Class.RD->getTypeForDecl(), 0);
4304
0
      if (IsPointer)
4305
0
        RTTITy = Context.getPointerType(RTTITy);
4306
0
      CatchableTypes.insert(getCatchableType(RTTITy, Class.OffsetInVBase,
4307
0
                                             VBPtrOffset, OffsetInVBTable));
4308
0
    }
4309
0
  }
4310
4311
  // C++14 [except.handle]p3:
4312
  //   A handler is a match for an exception object of type E if
4313
  //     - The handler is of type cv T or cv T& and E and T are the same type
4314
  //       (ignoring the top-level cv-qualifiers)
4315
0
  CatchableTypes.insert(getCatchableType(T));
4316
4317
  // C++14 [except.handle]p3:
4318
  //   A handler is a match for an exception object of type E if
4319
  //     - the handler is of type cv T or const T& where T is a pointer type and
4320
  //       E is a pointer type that can be converted to T by [...]
4321
  //         - a standard pointer conversion (4.10) not involving conversions to
4322
  //           pointers to private or protected or ambiguous classes
4323
  //
4324
  // C++14 [conv.ptr]p2:
4325
  //   A prvalue of type "pointer to cv T," where T is an object type, can be
4326
  //   converted to a prvalue of type "pointer to cv void".
4327
0
  if (IsPointer && T->getPointeeType()->isObjectType())
4328
0
    CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4329
4330
  // C++14 [except.handle]p3:
4331
  //   A handler is a match for an exception object of type E if [...]
4332
  //     - the handler is of type cv T or const T& where T is a pointer or
4333
  //       pointer to member type and E is std::nullptr_t.
4334
  //
4335
  // We cannot possibly list all possible pointer types here, making this
4336
  // implementation incompatible with the standard.  However, MSVC includes an
4337
  // entry for pointer-to-void in this case.  Let's do the same.
4338
0
  if (T->isNullPtrType())
4339
0
    CatchableTypes.insert(getCatchableType(getContext().VoidPtrTy));
4340
4341
0
  uint32_t NumEntries = CatchableTypes.size();
4342
0
  llvm::Type *CTType =
4343
0
      getImageRelativeType(getCatchableTypeType()->getPointerTo());
4344
0
  llvm::ArrayType *AT = llvm::ArrayType::get(CTType, NumEntries);
4345
0
  llvm::StructType *CTAType = getCatchableTypeArrayType(NumEntries);
4346
0
  llvm::Constant *Fields[] = {
4347
0
      llvm::ConstantInt::get(CGM.IntTy, NumEntries), // NumEntries
4348
0
      llvm::ConstantArray::get(
4349
0
          AT, llvm::ArrayRef(CatchableTypes.begin(),
4350
0
                             CatchableTypes.end())) // CatchableTypes
4351
0
  };
4352
0
  SmallString<256> MangledName;
4353
0
  {
4354
0
    llvm::raw_svector_ostream Out(MangledName);
4355
0
    getMangleContext().mangleCXXCatchableTypeArray(T, NumEntries, Out);
4356
0
  }
4357
0
  CTA = new llvm::GlobalVariable(
4358
0
      CGM.getModule(), CTAType, /*isConstant=*/true, getLinkageForRTTI(T),
4359
0
      llvm::ConstantStruct::get(CTAType, Fields), MangledName);
4360
0
  CTA->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4361
0
  CTA->setSection(".xdata");
4362
0
  if (CTA->isWeakForLinker())
4363
0
    CTA->setComdat(CGM.getModule().getOrInsertComdat(CTA->getName()));
4364
0
  return CTA;
4365
0
}
4366
4367
0
llvm::GlobalVariable *MicrosoftCXXABI::getThrowInfo(QualType T) {
4368
0
  bool IsConst, IsVolatile, IsUnaligned;
4369
0
  T = decomposeTypeForEH(getContext(), T, IsConst, IsVolatile, IsUnaligned);
4370
4371
  // The CatchableTypeArray enumerates the various (CV-unqualified) types that
4372
  // the exception object may be caught as.
4373
0
  llvm::GlobalVariable *CTA = getCatchableTypeArray(T);
4374
  // The first field in a CatchableTypeArray is the number of CatchableTypes.
4375
  // This is used as a component of the mangled name which means that we need to
4376
  // know what it is in order to see if we have previously generated the
4377
  // ThrowInfo.
4378
0
  uint32_t NumEntries =
4379
0
      cast<llvm::ConstantInt>(CTA->getInitializer()->getAggregateElement(0U))
4380
0
          ->getLimitedValue();
4381
4382
0
  SmallString<256> MangledName;
4383
0
  {
4384
0
    llvm::raw_svector_ostream Out(MangledName);
4385
0
    getMangleContext().mangleCXXThrowInfo(T, IsConst, IsVolatile, IsUnaligned,
4386
0
                                          NumEntries, Out);
4387
0
  }
4388
4389
  // Reuse a previously generated ThrowInfo if we have generated an appropriate
4390
  // one before.
4391
0
  if (llvm::GlobalVariable *GV = CGM.getModule().getNamedGlobal(MangledName))
4392
0
    return GV;
4393
4394
  // The RTTI TypeDescriptor uses an unqualified type but catch clauses must
4395
  // be at least as CV qualified.  Encode this requirement into the Flags
4396
  // bitfield.
4397
0
  uint32_t Flags = 0;
4398
0
  if (IsConst)
4399
0
    Flags |= 1;
4400
0
  if (IsVolatile)
4401
0
    Flags |= 2;
4402
0
  if (IsUnaligned)
4403
0
    Flags |= 4;
4404
4405
  // The cleanup-function (a destructor) must be called when the exception
4406
  // object's lifetime ends.
4407
0
  llvm::Constant *CleanupFn = llvm::Constant::getNullValue(CGM.Int8PtrTy);
4408
0
  if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl())
4409
0
    if (CXXDestructorDecl *DtorD = RD->getDestructor())
4410
0
      if (!DtorD->isTrivial())
4411
0
        CleanupFn = CGM.getAddrOfCXXStructor(GlobalDecl(DtorD, Dtor_Complete));
4412
  // This is unused as far as we can tell, initialize it to null.
4413
0
  llvm::Constant *ForwardCompat =
4414
0
      getImageRelativeConstant(llvm::Constant::getNullValue(CGM.Int8PtrTy));
4415
0
  llvm::Constant *PointerToCatchableTypes = getImageRelativeConstant(CTA);
4416
0
  llvm::StructType *TIType = getThrowInfoType();
4417
0
  llvm::Constant *Fields[] = {
4418
0
      llvm::ConstantInt::get(CGM.IntTy, Flags), // Flags
4419
0
      getImageRelativeConstant(CleanupFn),      // CleanupFn
4420
0
      ForwardCompat,                            // ForwardCompat
4421
0
      PointerToCatchableTypes                   // CatchableTypeArray
4422
0
  };
4423
0
  auto *GV = new llvm::GlobalVariable(
4424
0
      CGM.getModule(), TIType, /*isConstant=*/true, getLinkageForRTTI(T),
4425
0
      llvm::ConstantStruct::get(TIType, Fields), MangledName.str());
4426
0
  GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
4427
0
  GV->setSection(".xdata");
4428
0
  if (GV->isWeakForLinker())
4429
0
    GV->setComdat(CGM.getModule().getOrInsertComdat(GV->getName()));
4430
0
  return GV;
4431
0
}
4432
4433
0
void MicrosoftCXXABI::emitThrow(CodeGenFunction &CGF, const CXXThrowExpr *E) {
4434
0
  const Expr *SubExpr = E->getSubExpr();
4435
0
  assert(SubExpr && "SubExpr cannot be null");
4436
0
  QualType ThrowType = SubExpr->getType();
4437
  // The exception object lives on the stack and it's address is passed to the
4438
  // runtime function.
4439
0
  Address AI = CGF.CreateMemTemp(ThrowType);
4440
0
  CGF.EmitAnyExprToMem(SubExpr, AI, ThrowType.getQualifiers(),
4441
0
                       /*IsInit=*/true);
4442
4443
  // The so-called ThrowInfo is used to describe how the exception object may be
4444
  // caught.
4445
0
  llvm::GlobalVariable *TI = getThrowInfo(ThrowType);
4446
4447
  // Call into the runtime to throw the exception.
4448
0
  llvm::Value *Args[] = {
4449
0
    AI.getPointer(),
4450
0
    TI
4451
0
  };
4452
0
  CGF.EmitNoreturnRuntimeCallOrInvoke(getThrowFn(), Args);
4453
0
}
4454
4455
std::pair<llvm::Value *, const CXXRecordDecl *>
4456
MicrosoftCXXABI::LoadVTablePtr(CodeGenFunction &CGF, Address This,
4457
0
                               const CXXRecordDecl *RD) {
4458
0
  std::tie(This, std::ignore, RD) =
4459
0
      performBaseAdjustment(CGF, This, QualType(RD->getTypeForDecl(), 0));
4460
0
  return {CGF.GetVTablePtr(This, CGM.Int8PtrTy, RD), RD};
4461
0
}
4462
4463
bool MicrosoftCXXABI::isPermittedToBeHomogeneousAggregate(
4464
0
    const CXXRecordDecl *RD) const {
4465
  // All aggregates are permitted to be HFA on non-ARM platforms, which mostly
4466
  // affects vectorcall on x64/x86.
4467
0
  if (!CGM.getTarget().getTriple().isAArch64())
4468
0
    return true;
4469
  // MSVC Windows on Arm64 has its own rules for determining if a type is HFA
4470
  // that are inconsistent with the AAPCS64 ABI. The following are our best
4471
  // determination of those rules so far, based on observation of MSVC's
4472
  // behavior.
4473
0
  if (RD->isEmpty())
4474
0
    return false;
4475
0
  if (RD->isPolymorphic())
4476
0
    return false;
4477
0
  if (RD->hasNonTrivialCopyAssignment())
4478
0
    return false;
4479
0
  if (RD->hasNonTrivialDestructor())
4480
0
    return false;
4481
0
  if (RD->hasNonTrivialDefaultConstructor())
4482
0
    return false;
4483
  // These two are somewhat redundant given the caller
4484
  // (ABIInfo::isHomogeneousAggregate) checks the bases and fields, but that
4485
  // caller doesn't consider empty bases/fields to be non-homogenous, but it
4486
  // looks like Microsoft's AArch64 ABI does care about these empty types &
4487
  // anything containing/derived from one is non-homogeneous.
4488
  // Instead we could add another CXXABI entry point to query this property and
4489
  // have ABIInfo::isHomogeneousAggregate use that property.
4490
  // I don't think any other of the features listed above could be true of a
4491
  // base/field while not true of the outer struct. For example, if you have a
4492
  // base/field that has an non-trivial copy assignment/dtor/default ctor, then
4493
  // the outer struct's corresponding operation must be non-trivial.
4494
0
  for (const CXXBaseSpecifier &B : RD->bases()) {
4495
0
    if (const CXXRecordDecl *FRD = B.getType()->getAsCXXRecordDecl()) {
4496
0
      if (!isPermittedToBeHomogeneousAggregate(FRD))
4497
0
        return false;
4498
0
    }
4499
0
  }
4500
  // empty fields seem to be caught by the ABIInfo::isHomogeneousAggregate
4501
  // checking for padding - but maybe there are ways to end up with an empty
4502
  // field without padding? Not that I know of, so don't check fields here &
4503
  // rely on the padding check.
4504
0
  return true;
4505
0
}