Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/CodeGen/SwiftCallingConv.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- SwiftCallingConv.cpp - Lowering for the Swift calling convention -===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// Implementation of the abstract lowering for the Swift calling convention.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "clang/CodeGen/SwiftCallingConv.h"
14
#include "ABIInfo.h"
15
#include "CodeGenModule.h"
16
#include "TargetInfo.h"
17
#include "clang/Basic/TargetInfo.h"
18
#include <optional>
19
20
using namespace clang;
21
using namespace CodeGen;
22
using namespace swiftcall;
23
24
0
static const SwiftABIInfo &getSwiftABIInfo(CodeGenModule &CGM) {
25
0
  return CGM.getTargetCodeGenInfo().getSwiftABIInfo();
26
0
}
27
28
0
static bool isPowerOf2(unsigned n) {
29
0
  return n == (n & -n);
30
0
}
31
32
/// Given two types with the same size, try to find a common type.
33
0
static llvm::Type *getCommonType(llvm::Type *first, llvm::Type *second) {
34
0
  assert(first != second);
35
36
  // Allow pointers to merge with integers, but prefer the integer type.
37
0
  if (first->isIntegerTy()) {
38
0
    if (second->isPointerTy()) return first;
39
0
  } else if (first->isPointerTy()) {
40
0
    if (second->isIntegerTy()) return second;
41
0
    if (second->isPointerTy()) return first;
42
43
  // Allow two vectors to be merged (given that they have the same size).
44
  // This assumes that we never have two different vector register sets.
45
0
  } else if (auto firstVecTy = dyn_cast<llvm::VectorType>(first)) {
46
0
    if (auto secondVecTy = dyn_cast<llvm::VectorType>(second)) {
47
0
      if (auto commonTy = getCommonType(firstVecTy->getElementType(),
48
0
                                        secondVecTy->getElementType())) {
49
0
        return (commonTy == firstVecTy->getElementType() ? first : second);
50
0
      }
51
0
    }
52
0
  }
53
54
0
  return nullptr;
55
0
}
56
57
0
static CharUnits getTypeStoreSize(CodeGenModule &CGM, llvm::Type *type) {
58
0
  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeStoreSize(type));
59
0
}
60
61
0
static CharUnits getTypeAllocSize(CodeGenModule &CGM, llvm::Type *type) {
62
0
  return CharUnits::fromQuantity(CGM.getDataLayout().getTypeAllocSize(type));
63
0
}
64
65
0
void SwiftAggLowering::addTypedData(QualType type, CharUnits begin) {
66
  // Deal with various aggregate types as special cases:
67
68
  // Record types.
69
0
  if (auto recType = type->getAs<RecordType>()) {
70
0
    addTypedData(recType->getDecl(), begin);
71
72
  // Array types.
73
0
  } else if (type->isArrayType()) {
74
    // Incomplete array types (flexible array members?) don't provide
75
    // data to lay out, and the other cases shouldn't be possible.
76
0
    auto arrayType = CGM.getContext().getAsConstantArrayType(type);
77
0
    if (!arrayType) return;
78
79
0
    QualType eltType = arrayType->getElementType();
80
0
    auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
81
0
    for (uint64_t i = 0, e = arrayType->getSize().getZExtValue(); i != e; ++i) {
82
0
      addTypedData(eltType, begin + i * eltSize);
83
0
    }
84
85
  // Complex types.
86
0
  } else if (auto complexType = type->getAs<ComplexType>()) {
87
0
    auto eltType = complexType->getElementType();
88
0
    auto eltSize = CGM.getContext().getTypeSizeInChars(eltType);
89
0
    auto eltLLVMType = CGM.getTypes().ConvertType(eltType);
90
0
    addTypedData(eltLLVMType, begin, begin + eltSize);
91
0
    addTypedData(eltLLVMType, begin + eltSize, begin + 2 * eltSize);
92
93
  // Member pointer types.
94
0
  } else if (type->getAs<MemberPointerType>()) {
95
    // Just add it all as opaque.
96
0
    addOpaqueData(begin, begin + CGM.getContext().getTypeSizeInChars(type));
97
98
    // Atomic types.
99
0
  } else if (const auto *atomicType = type->getAs<AtomicType>()) {
100
0
    auto valueType = atomicType->getValueType();
101
0
    auto atomicSize = CGM.getContext().getTypeSizeInChars(atomicType);
102
0
    auto valueSize = CGM.getContext().getTypeSizeInChars(valueType);
103
104
0
    addTypedData(atomicType->getValueType(), begin);
105
106
    // Add atomic padding.
107
0
    auto atomicPadding = atomicSize - valueSize;
108
0
    if (atomicPadding > CharUnits::Zero())
109
0
      addOpaqueData(begin + valueSize, begin + atomicSize);
110
111
    // Everything else is scalar and should not convert as an LLVM aggregate.
112
0
  } else {
113
    // We intentionally convert as !ForMem because we want to preserve
114
    // that a type was an i1.
115
0
    auto *llvmType = CGM.getTypes().ConvertType(type);
116
0
    addTypedData(llvmType, begin);
117
0
  }
118
0
}
119
120
0
void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin) {
121
0
  addTypedData(record, begin, CGM.getContext().getASTRecordLayout(record));
122
0
}
123
124
void SwiftAggLowering::addTypedData(const RecordDecl *record, CharUnits begin,
125
0
                                    const ASTRecordLayout &layout) {
126
  // Unions are a special case.
127
0
  if (record->isUnion()) {
128
0
    for (auto *field : record->fields()) {
129
0
      if (field->isBitField()) {
130
0
        addBitFieldData(field, begin, 0);
131
0
      } else {
132
0
        addTypedData(field->getType(), begin);
133
0
      }
134
0
    }
135
0
    return;
136
0
  }
137
138
  // Note that correctness does not rely on us adding things in
139
  // their actual order of layout; it's just somewhat more efficient
140
  // for the builder.
141
142
  // With that in mind, add "early" C++ data.
143
0
  auto cxxRecord = dyn_cast<CXXRecordDecl>(record);
144
0
  if (cxxRecord) {
145
    //   - a v-table pointer, if the class adds its own
146
0
    if (layout.hasOwnVFPtr()) {
147
0
      addTypedData(CGM.Int8PtrTy, begin);
148
0
    }
149
150
    //   - non-virtual bases
151
0
    for (auto &baseSpecifier : cxxRecord->bases()) {
152
0
      if (baseSpecifier.isVirtual()) continue;
153
154
0
      auto baseRecord = baseSpecifier.getType()->getAsCXXRecordDecl();
155
0
      addTypedData(baseRecord, begin + layout.getBaseClassOffset(baseRecord));
156
0
    }
157
158
    //   - a vbptr if the class adds its own
159
0
    if (layout.hasOwnVBPtr()) {
160
0
      addTypedData(CGM.Int8PtrTy, begin + layout.getVBPtrOffset());
161
0
    }
162
0
  }
163
164
  // Add fields.
165
0
  for (auto *field : record->fields()) {
166
0
    auto fieldOffsetInBits = layout.getFieldOffset(field->getFieldIndex());
167
0
    if (field->isBitField()) {
168
0
      addBitFieldData(field, begin, fieldOffsetInBits);
169
0
    } else {
170
0
      addTypedData(field->getType(),
171
0
              begin + CGM.getContext().toCharUnitsFromBits(fieldOffsetInBits));
172
0
    }
173
0
  }
174
175
  // Add "late" C++ data:
176
0
  if (cxxRecord) {
177
    //   - virtual bases
178
0
    for (auto &vbaseSpecifier : cxxRecord->vbases()) {
179
0
      auto baseRecord = vbaseSpecifier.getType()->getAsCXXRecordDecl();
180
0
      addTypedData(baseRecord, begin + layout.getVBaseClassOffset(baseRecord));
181
0
    }
182
0
  }
183
0
}
184
185
void SwiftAggLowering::addBitFieldData(const FieldDecl *bitfield,
186
                                       CharUnits recordBegin,
187
0
                                       uint64_t bitfieldBitBegin) {
188
0
  assert(bitfield->isBitField());
189
0
  auto &ctx = CGM.getContext();
190
0
  auto width = bitfield->getBitWidthValue(ctx);
191
192
  // We can ignore zero-width bit-fields.
193
0
  if (width == 0) return;
194
195
  // toCharUnitsFromBits rounds down.
196
0
  CharUnits bitfieldByteBegin = ctx.toCharUnitsFromBits(bitfieldBitBegin);
197
198
  // Find the offset of the last byte that is partially occupied by the
199
  // bit-field; since we otherwise expect exclusive ends, the end is the
200
  // next byte.
201
0
  uint64_t bitfieldBitLast = bitfieldBitBegin + width - 1;
202
0
  CharUnits bitfieldByteEnd =
203
0
    ctx.toCharUnitsFromBits(bitfieldBitLast) + CharUnits::One();
204
0
  addOpaqueData(recordBegin + bitfieldByteBegin,
205
0
                recordBegin + bitfieldByteEnd);
206
0
}
207
208
0
void SwiftAggLowering::addTypedData(llvm::Type *type, CharUnits begin) {
209
0
  assert(type && "didn't provide type for typed data");
210
0
  addTypedData(type, begin, begin + getTypeStoreSize(CGM, type));
211
0
}
212
213
void SwiftAggLowering::addTypedData(llvm::Type *type,
214
0
                                    CharUnits begin, CharUnits end) {
215
0
  assert(type && "didn't provide type for typed data");
216
0
  assert(getTypeStoreSize(CGM, type) == end - begin);
217
218
  // Legalize vector types.
219
0
  if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
220
0
    SmallVector<llvm::Type*, 4> componentTys;
221
0
    legalizeVectorType(CGM, end - begin, vecTy, componentTys);
222
0
    assert(componentTys.size() >= 1);
223
224
    // Walk the initial components.
225
0
    for (size_t i = 0, e = componentTys.size(); i != e - 1; ++i) {
226
0
      llvm::Type *componentTy = componentTys[i];
227
0
      auto componentSize = getTypeStoreSize(CGM, componentTy);
228
0
      assert(componentSize < end - begin);
229
0
      addLegalTypedData(componentTy, begin, begin + componentSize);
230
0
      begin += componentSize;
231
0
    }
232
233
0
    return addLegalTypedData(componentTys.back(), begin, end);
234
0
  }
235
236
  // Legalize integer types.
237
0
  if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
238
0
    if (!isLegalIntegerType(CGM, intTy))
239
0
      return addOpaqueData(begin, end);
240
0
  }
241
242
  // All other types should be legal.
243
0
  return addLegalTypedData(type, begin, end);
244
0
}
245
246
void SwiftAggLowering::addLegalTypedData(llvm::Type *type,
247
0
                                         CharUnits begin, CharUnits end) {
248
  // Require the type to be naturally aligned.
249
0
  if (!begin.isZero() && !begin.isMultipleOf(getNaturalAlignment(CGM, type))) {
250
251
    // Try splitting vector types.
252
0
    if (auto vecTy = dyn_cast<llvm::VectorType>(type)) {
253
0
      auto split = splitLegalVectorType(CGM, end - begin, vecTy);
254
0
      auto eltTy = split.first;
255
0
      auto numElts = split.second;
256
257
0
      auto eltSize = (end - begin) / numElts;
258
0
      assert(eltSize == getTypeStoreSize(CGM, eltTy));
259
0
      for (size_t i = 0, e = numElts; i != e; ++i) {
260
0
        addLegalTypedData(eltTy, begin, begin + eltSize);
261
0
        begin += eltSize;
262
0
      }
263
0
      assert(begin == end);
264
0
      return;
265
0
    }
266
267
0
    return addOpaqueData(begin, end);
268
0
  }
269
270
0
  addEntry(type, begin, end);
271
0
}
272
273
void SwiftAggLowering::addEntry(llvm::Type *type,
274
0
                                CharUnits begin, CharUnits end) {
275
0
  assert((!type ||
276
0
          (!isa<llvm::StructType>(type) && !isa<llvm::ArrayType>(type))) &&
277
0
         "cannot add aggregate-typed data");
278
0
  assert(!type || begin.isMultipleOf(getNaturalAlignment(CGM, type)));
279
280
  // Fast path: we can just add entries to the end.
281
0
  if (Entries.empty() || Entries.back().End <= begin) {
282
0
    Entries.push_back({begin, end, type});
283
0
    return;
284
0
  }
285
286
  // Find the first existing entry that ends after the start of the new data.
287
  // TODO: do a binary search if Entries is big enough for it to matter.
288
0
  size_t index = Entries.size() - 1;
289
0
  while (index != 0) {
290
0
    if (Entries[index - 1].End <= begin) break;
291
0
    --index;
292
0
  }
293
294
  // The entry ends after the start of the new data.
295
  // If the entry starts after the end of the new data, there's no conflict.
296
0
  if (Entries[index].Begin >= end) {
297
    // This insertion is potentially O(n), but the way we generally build
298
    // these layouts makes that unlikely to matter: we'd need a union of
299
    // several very large types.
300
0
    Entries.insert(Entries.begin() + index, {begin, end, type});
301
0
    return;
302
0
  }
303
304
  // Otherwise, the ranges overlap.  The new range might also overlap
305
  // with later ranges.
306
0
restartAfterSplit:
307
308
  // Simplest case: an exact overlap.
309
0
  if (Entries[index].Begin == begin && Entries[index].End == end) {
310
    // If the types match exactly, great.
311
0
    if (Entries[index].Type == type) return;
312
313
    // If either type is opaque, make the entry opaque and return.
314
0
    if (Entries[index].Type == nullptr) {
315
0
      return;
316
0
    } else if (type == nullptr) {
317
0
      Entries[index].Type = nullptr;
318
0
      return;
319
0
    }
320
321
    // If they disagree in an ABI-agnostic way, just resolve the conflict
322
    // arbitrarily.
323
0
    if (auto entryType = getCommonType(Entries[index].Type, type)) {
324
0
      Entries[index].Type = entryType;
325
0
      return;
326
0
    }
327
328
    // Otherwise, make the entry opaque.
329
0
    Entries[index].Type = nullptr;
330
0
    return;
331
0
  }
332
333
  // Okay, we have an overlapping conflict of some sort.
334
335
  // If we have a vector type, split it.
336
0
  if (auto vecTy = dyn_cast_or_null<llvm::VectorType>(type)) {
337
0
    auto eltTy = vecTy->getElementType();
338
0
    CharUnits eltSize =
339
0
        (end - begin) / cast<llvm::FixedVectorType>(vecTy)->getNumElements();
340
0
    assert(eltSize == getTypeStoreSize(CGM, eltTy));
341
0
    for (unsigned i = 0,
342
0
                  e = cast<llvm::FixedVectorType>(vecTy)->getNumElements();
343
0
         i != e; ++i) {
344
0
      addEntry(eltTy, begin, begin + eltSize);
345
0
      begin += eltSize;
346
0
    }
347
0
    assert(begin == end);
348
0
    return;
349
0
  }
350
351
  // If the entry is a vector type, split it and try again.
352
0
  if (Entries[index].Type && Entries[index].Type->isVectorTy()) {
353
0
    splitVectorEntry(index);
354
0
    goto restartAfterSplit;
355
0
  }
356
357
  // Okay, we have no choice but to make the existing entry opaque.
358
359
0
  Entries[index].Type = nullptr;
360
361
  // Stretch the start of the entry to the beginning of the range.
362
0
  if (begin < Entries[index].Begin) {
363
0
    Entries[index].Begin = begin;
364
0
    assert(index == 0 || begin >= Entries[index - 1].End);
365
0
  }
366
367
  // Stretch the end of the entry to the end of the range; but if we run
368
  // into the start of the next entry, just leave the range there and repeat.
369
0
  while (end > Entries[index].End) {
370
0
    assert(Entries[index].Type == nullptr);
371
372
    // If the range doesn't overlap the next entry, we're done.
373
0
    if (index == Entries.size() - 1 || end <= Entries[index + 1].Begin) {
374
0
      Entries[index].End = end;
375
0
      break;
376
0
    }
377
378
    // Otherwise, stretch to the start of the next entry.
379
0
    Entries[index].End = Entries[index + 1].Begin;
380
381
    // Continue with the next entry.
382
0
    index++;
383
384
    // This entry needs to be made opaque if it is not already.
385
0
    if (Entries[index].Type == nullptr)
386
0
      continue;
387
388
    // Split vector entries unless we completely subsume them.
389
0
    if (Entries[index].Type->isVectorTy() &&
390
0
        end < Entries[index].End) {
391
0
      splitVectorEntry(index);
392
0
    }
393
394
    // Make the entry opaque.
395
0
    Entries[index].Type = nullptr;
396
0
  }
397
0
}
398
399
/// Replace the entry of vector type at offset 'index' with a sequence
400
/// of its component vectors.
401
0
void SwiftAggLowering::splitVectorEntry(unsigned index) {
402
0
  auto vecTy = cast<llvm::VectorType>(Entries[index].Type);
403
0
  auto split = splitLegalVectorType(CGM, Entries[index].getWidth(), vecTy);
404
405
0
  auto eltTy = split.first;
406
0
  CharUnits eltSize = getTypeStoreSize(CGM, eltTy);
407
0
  auto numElts = split.second;
408
0
  Entries.insert(Entries.begin() + index + 1, numElts - 1, StorageEntry());
409
410
0
  CharUnits begin = Entries[index].Begin;
411
0
  for (unsigned i = 0; i != numElts; ++i) {
412
0
    unsigned idx = index + i;
413
0
    Entries[idx].Type = eltTy;
414
0
    Entries[idx].Begin = begin;
415
0
    Entries[idx].End = begin + eltSize;
416
0
    begin += eltSize;
417
0
  }
418
0
}
419
420
/// Given a power-of-two unit size, return the offset of the aligned unit
421
/// of that size which contains the given offset.
422
///
423
/// In other words, round down to the nearest multiple of the unit size.
424
0
static CharUnits getOffsetAtStartOfUnit(CharUnits offset, CharUnits unitSize) {
425
0
  assert(isPowerOf2(unitSize.getQuantity()));
426
0
  auto unitMask = ~(unitSize.getQuantity() - 1);
427
0
  return CharUnits::fromQuantity(offset.getQuantity() & unitMask);
428
0
}
429
430
static bool areBytesInSameUnit(CharUnits first, CharUnits second,
431
0
                               CharUnits chunkSize) {
432
0
  return getOffsetAtStartOfUnit(first, chunkSize)
433
0
      == getOffsetAtStartOfUnit(second, chunkSize);
434
0
}
435
436
0
static bool isMergeableEntryType(llvm::Type *type) {
437
  // Opaquely-typed memory is always mergeable.
438
0
  if (type == nullptr) return true;
439
440
  // Pointers and integers are always mergeable.  In theory we should not
441
  // merge pointers, but (1) it doesn't currently matter in practice because
442
  // the chunk size is never greater than the size of a pointer and (2)
443
  // Swift IRGen uses integer types for a lot of things that are "really"
444
  // just storing pointers (like std::optional<SomePointer>).  If we ever have a
445
  // target that would otherwise combine pointers, we should put some effort
446
  // into fixing those cases in Swift IRGen and then call out pointer types
447
  // here.
448
449
  // Floating-point and vector types should never be merged.
450
  // Most such types are too large and highly-aligned to ever trigger merging
451
  // in practice, but it's important for the rule to cover at least 'half'
452
  // and 'float', as well as things like small vectors of 'i1' or 'i8'.
453
0
  return (!type->isFloatingPointTy() && !type->isVectorTy());
454
0
}
455
456
bool SwiftAggLowering::shouldMergeEntries(const StorageEntry &first,
457
                                          const StorageEntry &second,
458
0
                                          CharUnits chunkSize) {
459
  // Only merge entries that overlap the same chunk.  We test this first
460
  // despite being a bit more expensive because this is the condition that
461
  // tends to prevent merging.
462
0
  if (!areBytesInSameUnit(first.End - CharUnits::One(), second.Begin,
463
0
                          chunkSize))
464
0
    return false;
465
466
0
  return (isMergeableEntryType(first.Type) &&
467
0
          isMergeableEntryType(second.Type));
468
0
}
469
470
0
void SwiftAggLowering::finish() {
471
0
  if (Entries.empty()) {
472
0
    Finished = true;
473
0
    return;
474
0
  }
475
476
  // We logically split the layout down into a series of chunks of this size,
477
  // which is generally the size of a pointer.
478
0
  const CharUnits chunkSize = getMaximumVoluntaryIntegerSize(CGM);
479
480
  // First pass: if two entries should be merged, make them both opaque
481
  // and stretch one to meet the next.
482
  // Also, remember if there are any opaque entries.
483
0
  bool hasOpaqueEntries = (Entries[0].Type == nullptr);
484
0
  for (size_t i = 1, e = Entries.size(); i != e; ++i) {
485
0
    if (shouldMergeEntries(Entries[i - 1], Entries[i], chunkSize)) {
486
0
      Entries[i - 1].Type = nullptr;
487
0
      Entries[i].Type = nullptr;
488
0
      Entries[i - 1].End = Entries[i].Begin;
489
0
      hasOpaqueEntries = true;
490
491
0
    } else if (Entries[i].Type == nullptr) {
492
0
      hasOpaqueEntries = true;
493
0
    }
494
0
  }
495
496
  // The rest of the algorithm leaves non-opaque entries alone, so if we
497
  // have no opaque entries, we're done.
498
0
  if (!hasOpaqueEntries) {
499
0
    Finished = true;
500
0
    return;
501
0
  }
502
503
  // Okay, move the entries to a temporary and rebuild Entries.
504
0
  auto orig = std::move(Entries);
505
0
  assert(Entries.empty());
506
507
0
  for (size_t i = 0, e = orig.size(); i != e; ++i) {
508
    // Just copy over non-opaque entries.
509
0
    if (orig[i].Type != nullptr) {
510
0
      Entries.push_back(orig[i]);
511
0
      continue;
512
0
    }
513
514
    // Scan forward to determine the full extent of the next opaque range.
515
    // We know from the first pass that only contiguous ranges will overlap
516
    // the same aligned chunk.
517
0
    auto begin = orig[i].Begin;
518
0
    auto end = orig[i].End;
519
0
    while (i + 1 != e &&
520
0
           orig[i + 1].Type == nullptr &&
521
0
           end == orig[i + 1].Begin) {
522
0
      end = orig[i + 1].End;
523
0
      i++;
524
0
    }
525
526
    // Add an entry per intersected chunk.
527
0
    do {
528
      // Find the smallest aligned storage unit in the maximal aligned
529
      // storage unit containing 'begin' that contains all the bytes in
530
      // the intersection between the range and this chunk.
531
0
      CharUnits localBegin = begin;
532
0
      CharUnits chunkBegin = getOffsetAtStartOfUnit(localBegin, chunkSize);
533
0
      CharUnits chunkEnd = chunkBegin + chunkSize;
534
0
      CharUnits localEnd = std::min(end, chunkEnd);
535
536
      // Just do a simple loop over ever-increasing unit sizes.
537
0
      CharUnits unitSize = CharUnits::One();
538
0
      CharUnits unitBegin, unitEnd;
539
0
      for (; ; unitSize *= 2) {
540
0
        assert(unitSize <= chunkSize);
541
0
        unitBegin = getOffsetAtStartOfUnit(localBegin, unitSize);
542
0
        unitEnd = unitBegin + unitSize;
543
0
        if (unitEnd >= localEnd) break;
544
0
      }
545
546
      // Add an entry for this unit.
547
0
      auto entryTy =
548
0
        llvm::IntegerType::get(CGM.getLLVMContext(),
549
0
                               CGM.getContext().toBits(unitSize));
550
0
      Entries.push_back({unitBegin, unitEnd, entryTy});
551
552
      // The next chunk starts where this chunk left off.
553
0
      begin = localEnd;
554
0
    } while (begin != end);
555
0
  }
556
557
  // Okay, finally finished.
558
0
  Finished = true;
559
0
}
560
561
0
void SwiftAggLowering::enumerateComponents(EnumerationCallback callback) const {
562
0
  assert(Finished && "haven't yet finished lowering");
563
564
0
  for (auto &entry : Entries) {
565
0
    callback(entry.Begin, entry.End, entry.Type);
566
0
  }
567
0
}
568
569
std::pair<llvm::StructType*, llvm::Type*>
570
0
SwiftAggLowering::getCoerceAndExpandTypes() const {
571
0
  assert(Finished && "haven't yet finished lowering");
572
573
0
  auto &ctx = CGM.getLLVMContext();
574
575
0
  if (Entries.empty()) {
576
0
    auto type = llvm::StructType::get(ctx);
577
0
    return { type, type };
578
0
  }
579
580
0
  SmallVector<llvm::Type*, 8> elts;
581
0
  CharUnits lastEnd = CharUnits::Zero();
582
0
  bool hasPadding = false;
583
0
  bool packed = false;
584
0
  for (auto &entry : Entries) {
585
0
    if (entry.Begin != lastEnd) {
586
0
      auto paddingSize = entry.Begin - lastEnd;
587
0
      assert(!paddingSize.isNegative());
588
589
0
      auto padding = llvm::ArrayType::get(llvm::Type::getInt8Ty(ctx),
590
0
                                          paddingSize.getQuantity());
591
0
      elts.push_back(padding);
592
0
      hasPadding = true;
593
0
    }
594
595
0
    if (!packed && !entry.Begin.isMultipleOf(CharUnits::fromQuantity(
596
0
                       CGM.getDataLayout().getABITypeAlign(entry.Type))))
597
0
      packed = true;
598
599
0
    elts.push_back(entry.Type);
600
601
0
    lastEnd = entry.Begin + getTypeAllocSize(CGM, entry.Type);
602
0
    assert(entry.End <= lastEnd);
603
0
  }
604
605
  // We don't need to adjust 'packed' to deal with possible tail padding
606
  // because we never do that kind of access through the coercion type.
607
0
  auto coercionType = llvm::StructType::get(ctx, elts, packed);
608
609
0
  llvm::Type *unpaddedType = coercionType;
610
0
  if (hasPadding) {
611
0
    elts.clear();
612
0
    for (auto &entry : Entries) {
613
0
      elts.push_back(entry.Type);
614
0
    }
615
0
    if (elts.size() == 1) {
616
0
      unpaddedType = elts[0];
617
0
    } else {
618
0
      unpaddedType = llvm::StructType::get(ctx, elts, /*packed*/ false);
619
0
    }
620
0
  } else if (Entries.size() == 1) {
621
0
    unpaddedType = Entries[0].Type;
622
0
  }
623
624
0
  return { coercionType, unpaddedType };
625
0
}
626
627
0
bool SwiftAggLowering::shouldPassIndirectly(bool asReturnValue) const {
628
0
  assert(Finished && "haven't yet finished lowering");
629
630
  // Empty types don't need to be passed indirectly.
631
0
  if (Entries.empty()) return false;
632
633
  // Avoid copying the array of types when there's just a single element.
634
0
  if (Entries.size() == 1) {
635
0
    return getSwiftABIInfo(CGM).shouldPassIndirectly(Entries.back().Type,
636
0
                                                     asReturnValue);
637
0
  }
638
639
0
  SmallVector<llvm::Type*, 8> componentTys;
640
0
  componentTys.reserve(Entries.size());
641
0
  for (auto &entry : Entries) {
642
0
    componentTys.push_back(entry.Type);
643
0
  }
644
0
  return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue);
645
0
}
646
647
bool swiftcall::shouldPassIndirectly(CodeGenModule &CGM,
648
                                     ArrayRef<llvm::Type*> componentTys,
649
0
                                     bool asReturnValue) {
650
0
  return getSwiftABIInfo(CGM).shouldPassIndirectly(componentTys, asReturnValue);
651
0
}
652
653
0
CharUnits swiftcall::getMaximumVoluntaryIntegerSize(CodeGenModule &CGM) {
654
  // Currently always the size of an ordinary pointer.
655
0
  return CGM.getContext().toCharUnitsFromBits(
656
0
      CGM.getContext().getTargetInfo().getPointerWidth(LangAS::Default));
657
0
}
658
659
0
CharUnits swiftcall::getNaturalAlignment(CodeGenModule &CGM, llvm::Type *type) {
660
  // For Swift's purposes, this is always just the store size of the type
661
  // rounded up to a power of 2.
662
0
  auto size = (unsigned long long) getTypeStoreSize(CGM, type).getQuantity();
663
0
  size = llvm::bit_ceil(size);
664
0
  assert(CGM.getDataLayout().getABITypeAlign(type) <= size);
665
0
  return CharUnits::fromQuantity(size);
666
0
}
667
668
bool swiftcall::isLegalIntegerType(CodeGenModule &CGM,
669
0
                                   llvm::IntegerType *intTy) {
670
0
  auto size = intTy->getBitWidth();
671
0
  switch (size) {
672
0
  case 1:
673
0
  case 8:
674
0
  case 16:
675
0
  case 32:
676
0
  case 64:
677
    // Just assume that the above are always legal.
678
0
    return true;
679
680
0
  case 128:
681
0
    return CGM.getContext().getTargetInfo().hasInt128Type();
682
683
0
  default:
684
0
    return false;
685
0
  }
686
0
}
687
688
bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
689
0
                                  llvm::VectorType *vectorTy) {
690
0
  return isLegalVectorType(
691
0
      CGM, vectorSize, vectorTy->getElementType(),
692
0
      cast<llvm::FixedVectorType>(vectorTy)->getNumElements());
693
0
}
694
695
bool swiftcall::isLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
696
0
                                  llvm::Type *eltTy, unsigned numElts) {
697
0
  assert(numElts > 1 && "illegal vector length");
698
0
  return getSwiftABIInfo(CGM).isLegalVectorType(vectorSize, eltTy, numElts);
699
0
}
700
701
std::pair<llvm::Type*, unsigned>
702
swiftcall::splitLegalVectorType(CodeGenModule &CGM, CharUnits vectorSize,
703
0
                                llvm::VectorType *vectorTy) {
704
0
  auto numElts = cast<llvm::FixedVectorType>(vectorTy)->getNumElements();
705
0
  auto eltTy = vectorTy->getElementType();
706
707
  // Try to split the vector type in half.
708
0
  if (numElts >= 4 && isPowerOf2(numElts)) {
709
0
    if (isLegalVectorType(CGM, vectorSize / 2, eltTy, numElts / 2))
710
0
      return {llvm::FixedVectorType::get(eltTy, numElts / 2), 2};
711
0
  }
712
713
0
  return {eltTy, numElts};
714
0
}
715
716
void swiftcall::legalizeVectorType(CodeGenModule &CGM, CharUnits origVectorSize,
717
                                   llvm::VectorType *origVectorTy,
718
0
                             llvm::SmallVectorImpl<llvm::Type*> &components) {
719
  // If it's already a legal vector type, use it.
720
0
  if (isLegalVectorType(CGM, origVectorSize, origVectorTy)) {
721
0
    components.push_back(origVectorTy);
722
0
    return;
723
0
  }
724
725
  // Try to split the vector into legal subvectors.
726
0
  auto numElts = cast<llvm::FixedVectorType>(origVectorTy)->getNumElements();
727
0
  auto eltTy = origVectorTy->getElementType();
728
0
  assert(numElts != 1);
729
730
  // The largest size that we're still considering making subvectors of.
731
  // Always a power of 2.
732
0
  unsigned logCandidateNumElts = llvm::Log2_32(numElts);
733
0
  unsigned candidateNumElts = 1U << logCandidateNumElts;
734
0
  assert(candidateNumElts <= numElts && candidateNumElts * 2 > numElts);
735
736
  // Minor optimization: don't check the legality of this exact size twice.
737
0
  if (candidateNumElts == numElts) {
738
0
    logCandidateNumElts--;
739
0
    candidateNumElts >>= 1;
740
0
  }
741
742
0
  CharUnits eltSize = (origVectorSize / numElts);
743
0
  CharUnits candidateSize = eltSize * candidateNumElts;
744
745
  // The sensibility of this algorithm relies on the fact that we never
746
  // have a legal non-power-of-2 vector size without having the power of 2
747
  // also be legal.
748
0
  while (logCandidateNumElts > 0) {
749
0
    assert(candidateNumElts == 1U << logCandidateNumElts);
750
0
    assert(candidateNumElts <= numElts);
751
0
    assert(candidateSize == eltSize * candidateNumElts);
752
753
    // Skip illegal vector sizes.
754
0
    if (!isLegalVectorType(CGM, candidateSize, eltTy, candidateNumElts)) {
755
0
      logCandidateNumElts--;
756
0
      candidateNumElts /= 2;
757
0
      candidateSize /= 2;
758
0
      continue;
759
0
    }
760
761
    // Add the right number of vectors of this size.
762
0
    auto numVecs = numElts >> logCandidateNumElts;
763
0
    components.append(numVecs,
764
0
                      llvm::FixedVectorType::get(eltTy, candidateNumElts));
765
0
    numElts -= (numVecs << logCandidateNumElts);
766
767
0
    if (numElts == 0) return;
768
769
    // It's possible that the number of elements remaining will be legal.
770
    // This can happen with e.g. <7 x float> when <3 x float> is legal.
771
    // This only needs to be separately checked if it's not a power of 2.
772
0
    if (numElts > 2 && !isPowerOf2(numElts) &&
773
0
        isLegalVectorType(CGM, eltSize * numElts, eltTy, numElts)) {
774
0
      components.push_back(llvm::FixedVectorType::get(eltTy, numElts));
775
0
      return;
776
0
    }
777
778
    // Bring vecSize down to something no larger than numElts.
779
0
    do {
780
0
      logCandidateNumElts--;
781
0
      candidateNumElts /= 2;
782
0
      candidateSize /= 2;
783
0
    } while (candidateNumElts > numElts);
784
0
  }
785
786
  // Otherwise, just append a bunch of individual elements.
787
0
  components.append(numElts, eltTy);
788
0
}
789
790
bool swiftcall::mustPassRecordIndirectly(CodeGenModule &CGM,
791
0
                                         const RecordDecl *record) {
792
  // FIXME: should we not rely on the standard computation in Sema, just in
793
  // case we want to diverge from the platform ABI (e.g. on targets where
794
  // that uses the MSVC rule)?
795
0
  return !record->canPassInRegisters();
796
0
}
797
798
static ABIArgInfo classifyExpandedType(SwiftAggLowering &lowering,
799
                                       bool forReturn,
800
0
                                       CharUnits alignmentForIndirect) {
801
0
  if (lowering.empty()) {
802
0
    return ABIArgInfo::getIgnore();
803
0
  } else if (lowering.shouldPassIndirectly(forReturn)) {
804
0
    return ABIArgInfo::getIndirect(alignmentForIndirect, /*byval*/ false);
805
0
  } else {
806
0
    auto types = lowering.getCoerceAndExpandTypes();
807
0
    return ABIArgInfo::getCoerceAndExpand(types.first, types.second);
808
0
  }
809
0
}
810
811
static ABIArgInfo classifyType(CodeGenModule &CGM, CanQualType type,
812
0
                               bool forReturn) {
813
0
  if (auto recordType = dyn_cast<RecordType>(type)) {
814
0
    auto record = recordType->getDecl();
815
0
    auto &layout = CGM.getContext().getASTRecordLayout(record);
816
817
0
    if (mustPassRecordIndirectly(CGM, record))
818
0
      return ABIArgInfo::getIndirect(layout.getAlignment(), /*byval*/ false);
819
820
0
    SwiftAggLowering lowering(CGM);
821
0
    lowering.addTypedData(recordType->getDecl(), CharUnits::Zero(), layout);
822
0
    lowering.finish();
823
824
0
    return classifyExpandedType(lowering, forReturn, layout.getAlignment());
825
0
  }
826
827
  // Just assume that all of our target ABIs can support returning at least
828
  // two integer or floating-point values.
829
0
  if (isa<ComplexType>(type)) {
830
0
    return (forReturn ? ABIArgInfo::getDirect() : ABIArgInfo::getExpand());
831
0
  }
832
833
  // Vector types may need to be legalized.
834
0
  if (isa<VectorType>(type)) {
835
0
    SwiftAggLowering lowering(CGM);
836
0
    lowering.addTypedData(type, CharUnits::Zero());
837
0
    lowering.finish();
838
839
0
    CharUnits alignment = CGM.getContext().getTypeAlignInChars(type);
840
0
    return classifyExpandedType(lowering, forReturn, alignment);
841
0
  }
842
843
  // Member pointer types need to be expanded, but it's a simple form of
844
  // expansion that 'Direct' can handle.  Note that CanBeFlattened should be
845
  // true for this to work.
846
847
  // 'void' needs to be ignored.
848
0
  if (type->isVoidType()) {
849
0
    return ABIArgInfo::getIgnore();
850
0
  }
851
852
  // Everything else can be passed directly.
853
0
  return ABIArgInfo::getDirect();
854
0
}
855
856
0
ABIArgInfo swiftcall::classifyReturnType(CodeGenModule &CGM, CanQualType type) {
857
0
  return classifyType(CGM, type, /*forReturn*/ true);
858
0
}
859
860
ABIArgInfo swiftcall::classifyArgumentType(CodeGenModule &CGM,
861
0
                                           CanQualType type) {
862
0
  return classifyType(CGM, type, /*forReturn*/ false);
863
0
}
864
865
0
void swiftcall::computeABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
866
0
  auto &retInfo = FI.getReturnInfo();
867
0
  retInfo = classifyReturnType(CGM, FI.getReturnType());
868
869
0
  for (unsigned i = 0, e = FI.arg_size(); i != e; ++i) {
870
0
    auto &argInfo = FI.arg_begin()[i];
871
0
    argInfo.info = classifyArgumentType(CGM, argInfo.type);
872
0
  }
873
0
}
874
875
// Is swifterror lowered to a register by the target ABI.
876
0
bool swiftcall::isSwiftErrorLoweredInRegister(CodeGenModule &CGM) {
877
0
  return getSwiftABIInfo(CGM).isSwiftErrorInRegister();
878
0
}