/src/llvm-project/clang/lib/CodeGen/Targets/AVR.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- AVR.cpp ------------------------------------------------------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | |
9 | | #include "ABIInfoImpl.h" |
10 | | #include "TargetInfo.h" |
11 | | #include "clang/Basic/DiagnosticFrontend.h" |
12 | | |
13 | | using namespace clang; |
14 | | using namespace clang::CodeGen; |
15 | | |
16 | | //===----------------------------------------------------------------------===// |
17 | | // AVR ABI Implementation. Documented at |
18 | | // https://gcc.gnu.org/wiki/avr-gcc#Calling_Convention |
19 | | // https://gcc.gnu.org/wiki/avr-gcc#Reduced_Tiny |
20 | | //===----------------------------------------------------------------------===// |
21 | | |
22 | | namespace { |
23 | | class AVRABIInfo : public DefaultABIInfo { |
24 | | private: |
25 | | // The total amount of registers can be used to pass parameters. It is 18 on |
26 | | // AVR, or 6 on AVRTiny. |
27 | | const unsigned ParamRegs; |
28 | | // The total amount of registers can be used to pass return value. It is 8 on |
29 | | // AVR, or 4 on AVRTiny. |
30 | | const unsigned RetRegs; |
31 | | |
32 | | public: |
33 | | AVRABIInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR) |
34 | 0 | : DefaultABIInfo(CGT), ParamRegs(NPR), RetRegs(NRR) {} |
35 | | |
36 | 0 | ABIArgInfo classifyReturnType(QualType Ty, bool &LargeRet) const { |
37 | | // On AVR, a return struct with size less than or equals to 8 bytes is |
38 | | // returned directly via registers R18-R25. On AVRTiny, a return struct |
39 | | // with size less than or equals to 4 bytes is returned directly via |
40 | | // registers R22-R25. |
41 | 0 | if (isAggregateTypeForABI(Ty) && |
42 | 0 | getContext().getTypeSize(Ty) <= RetRegs * 8) |
43 | 0 | return ABIArgInfo::getDirect(); |
44 | | // A return value (struct or scalar) with larger size is returned via a |
45 | | // stack slot, along with a pointer as the function's implicit argument. |
46 | 0 | if (getContext().getTypeSize(Ty) > RetRegs * 8) { |
47 | 0 | LargeRet = true; |
48 | 0 | return getNaturalAlignIndirect(Ty); |
49 | 0 | } |
50 | | // An i8 return value should not be extended to i16, since AVR has 8-bit |
51 | | // registers. |
52 | 0 | if (Ty->isIntegralOrEnumerationType() && getContext().getTypeSize(Ty) <= 8) |
53 | 0 | return ABIArgInfo::getDirect(); |
54 | | // Otherwise we follow the default way which is compatible. |
55 | 0 | return DefaultABIInfo::classifyReturnType(Ty); |
56 | 0 | } |
57 | | |
58 | 0 | ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegs) const { |
59 | 0 | unsigned TySize = getContext().getTypeSize(Ty); |
60 | | |
61 | | // An int8 type argument always costs two registers like an int16. |
62 | 0 | if (TySize == 8 && NumRegs >= 2) { |
63 | 0 | NumRegs -= 2; |
64 | 0 | return ABIArgInfo::getExtend(Ty); |
65 | 0 | } |
66 | | |
67 | | // If the argument size is an odd number of bytes, round up the size |
68 | | // to the next even number. |
69 | 0 | TySize = llvm::alignTo(TySize, 16); |
70 | | |
71 | | // Any type including an array/struct type can be passed in rgisters, |
72 | | // if there are enough registers left. |
73 | 0 | if (TySize <= NumRegs * 8) { |
74 | 0 | NumRegs -= TySize / 8; |
75 | 0 | return ABIArgInfo::getDirect(); |
76 | 0 | } |
77 | | |
78 | | // An argument is passed either completely in registers or completely in |
79 | | // memory. Since there are not enough registers left, current argument |
80 | | // and all other unprocessed arguments should be passed in memory. |
81 | | // However we still need to return `ABIArgInfo::getDirect()` other than |
82 | | // `ABIInfo::getNaturalAlignIndirect(Ty)`, otherwise an extra stack slot |
83 | | // will be allocated, so the stack frame layout will be incompatible with |
84 | | // avr-gcc. |
85 | 0 | NumRegs = 0; |
86 | 0 | return ABIArgInfo::getDirect(); |
87 | 0 | } |
88 | | |
89 | 0 | void computeInfo(CGFunctionInfo &FI) const override { |
90 | | // Decide the return type. |
91 | 0 | bool LargeRet = false; |
92 | 0 | if (!getCXXABI().classifyReturnType(FI)) |
93 | 0 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), LargeRet); |
94 | | |
95 | | // Decide each argument type. The total number of registers can be used for |
96 | | // arguments depends on several factors: |
97 | | // 1. Arguments of varargs functions are passed on the stack. This applies |
98 | | // even to the named arguments. So no register can be used. |
99 | | // 2. Total 18 registers can be used on avr and 6 ones on avrtiny. |
100 | | // 3. If the return type is a struct with too large size, two registers |
101 | | // (out of 18/6) will be cost as an implicit pointer argument. |
102 | 0 | unsigned NumRegs = ParamRegs; |
103 | 0 | if (FI.isVariadic()) |
104 | 0 | NumRegs = 0; |
105 | 0 | else if (LargeRet) |
106 | 0 | NumRegs -= 2; |
107 | 0 | for (auto &I : FI.arguments()) |
108 | 0 | I.info = classifyArgumentType(I.type, NumRegs); |
109 | 0 | } |
110 | | }; |
111 | | |
112 | | class AVRTargetCodeGenInfo : public TargetCodeGenInfo { |
113 | | public: |
114 | | AVRTargetCodeGenInfo(CodeGenTypes &CGT, unsigned NPR, unsigned NRR) |
115 | 0 | : TargetCodeGenInfo(std::make_unique<AVRABIInfo>(CGT, NPR, NRR)) {} |
116 | | |
117 | | LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, |
118 | 0 | const VarDecl *D) const override { |
119 | | // Check if global/static variable is defined in address space |
120 | | // 1~6 (__flash, __flash1, __flash2, __flash3, __flash4, __flash5) |
121 | | // but not constant. |
122 | 0 | if (D) { |
123 | 0 | LangAS AS = D->getType().getAddressSpace(); |
124 | 0 | if (isTargetAddressSpace(AS) && 1 <= toTargetAddressSpace(AS) && |
125 | 0 | toTargetAddressSpace(AS) <= 6 && !D->getType().isConstQualified()) |
126 | 0 | CGM.getDiags().Report(D->getLocation(), |
127 | 0 | diag::err_verify_nonconst_addrspace) |
128 | 0 | << "__flash*"; |
129 | 0 | } |
130 | 0 | return TargetCodeGenInfo::getGlobalVarAddressSpace(CGM, D); |
131 | 0 | } |
132 | | |
133 | | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
134 | 0 | CodeGen::CodeGenModule &CGM) const override { |
135 | 0 | if (GV->isDeclaration()) |
136 | 0 | return; |
137 | 0 | const auto *FD = dyn_cast_or_null<FunctionDecl>(D); |
138 | 0 | if (!FD) return; |
139 | 0 | auto *Fn = cast<llvm::Function>(GV); |
140 | |
|
141 | 0 | if (FD->getAttr<AVRInterruptAttr>()) |
142 | 0 | Fn->addFnAttr("interrupt"); |
143 | |
|
144 | 0 | if (FD->getAttr<AVRSignalAttr>()) |
145 | 0 | Fn->addFnAttr("signal"); |
146 | 0 | } |
147 | | }; |
148 | | } |
149 | | |
150 | | std::unique_ptr<TargetCodeGenInfo> |
151 | | CodeGen::createAVRTargetCodeGenInfo(CodeGenModule &CGM, unsigned NPR, |
152 | 0 | unsigned NRR) { |
153 | 0 | return std::make_unique<AVRTargetCodeGenInfo>(CGM.getTypes(), NPR, NRR); |
154 | 0 | } |