/src/llvm-project/clang/lib/CodeGen/Targets/LoongArch.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- LoongArch.cpp ------------------------------------------------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | |
9 | | #include "ABIInfoImpl.h" |
10 | | #include "TargetInfo.h" |
11 | | |
12 | | using namespace clang; |
13 | | using namespace clang::CodeGen; |
14 | | |
15 | | // LoongArch ABI Implementation. Documented at |
16 | | // https://loongson.github.io/LoongArch-Documentation/LoongArch-ELF-ABI-EN.html |
17 | | // |
18 | | //===----------------------------------------------------------------------===// |
19 | | |
20 | | namespace { |
21 | | class LoongArchABIInfo : public DefaultABIInfo { |
22 | | private: |
23 | | // Size of the integer ('r') registers in bits. |
24 | | unsigned GRLen; |
25 | | // Size of the floating point ('f') registers in bits. |
26 | | unsigned FRLen; |
27 | | // Number of general-purpose argument registers. |
28 | | static const int NumGARs = 8; |
29 | | // Number of floating-point argument registers. |
30 | | static const int NumFARs = 8; |
31 | | bool detectFARsEligibleStructHelper(QualType Ty, CharUnits CurOff, |
32 | | llvm::Type *&Field1Ty, |
33 | | CharUnits &Field1Off, |
34 | | llvm::Type *&Field2Ty, |
35 | | CharUnits &Field2Off) const; |
36 | | |
37 | | public: |
38 | | LoongArchABIInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen, unsigned FRLen) |
39 | 0 | : DefaultABIInfo(CGT), GRLen(GRLen), FRLen(FRLen) {} |
40 | | |
41 | | void computeInfo(CGFunctionInfo &FI) const override; |
42 | | |
43 | | ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &GARsLeft, |
44 | | int &FARsLeft) const; |
45 | | ABIArgInfo classifyReturnType(QualType RetTy) const; |
46 | | |
47 | | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
48 | | QualType Ty) const override; |
49 | | |
50 | | ABIArgInfo extendType(QualType Ty) const; |
51 | | |
52 | | bool detectFARsEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, |
53 | | CharUnits &Field1Off, llvm::Type *&Field2Ty, |
54 | | CharUnits &Field2Off, int &NeededArgGPRs, |
55 | | int &NeededArgFPRs) const; |
56 | | ABIArgInfo coerceAndExpandFARsEligibleStruct(llvm::Type *Field1Ty, |
57 | | CharUnits Field1Off, |
58 | | llvm::Type *Field2Ty, |
59 | | CharUnits Field2Off) const; |
60 | | }; |
61 | | } // end anonymous namespace |
62 | | |
63 | 0 | void LoongArchABIInfo::computeInfo(CGFunctionInfo &FI) const { |
64 | 0 | QualType RetTy = FI.getReturnType(); |
65 | 0 | if (!getCXXABI().classifyReturnType(FI)) |
66 | 0 | FI.getReturnInfo() = classifyReturnType(RetTy); |
67 | | |
68 | | // IsRetIndirect is true if classifyArgumentType indicated the value should |
69 | | // be passed indirect, or if the type size is a scalar greater than 2*GRLen |
70 | | // and not a complex type with elements <= FRLen. e.g. fp128 is passed direct |
71 | | // in LLVM IR, relying on the backend lowering code to rewrite the argument |
72 | | // list and pass indirectly on LA32. |
73 | 0 | bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; |
74 | 0 | if (!IsRetIndirect && RetTy->isScalarType() && |
75 | 0 | getContext().getTypeSize(RetTy) > (2 * GRLen)) { |
76 | 0 | if (RetTy->isComplexType() && FRLen) { |
77 | 0 | QualType EltTy = RetTy->castAs<ComplexType>()->getElementType(); |
78 | 0 | IsRetIndirect = getContext().getTypeSize(EltTy) > FRLen; |
79 | 0 | } else { |
80 | | // This is a normal scalar > 2*GRLen, such as fp128 on LA32. |
81 | 0 | IsRetIndirect = true; |
82 | 0 | } |
83 | 0 | } |
84 | | |
85 | | // We must track the number of GARs and FARs used in order to conform to the |
86 | | // LoongArch ABI. As GAR usage is different for variadic arguments, we must |
87 | | // also track whether we are examining a vararg or not. |
88 | 0 | int GARsLeft = IsRetIndirect ? NumGARs - 1 : NumGARs; |
89 | 0 | int FARsLeft = FRLen ? NumFARs : 0; |
90 | 0 | int NumFixedArgs = FI.getNumRequiredArgs(); |
91 | |
|
92 | 0 | int ArgNum = 0; |
93 | 0 | for (auto &ArgInfo : FI.arguments()) { |
94 | 0 | ArgInfo.info = classifyArgumentType( |
95 | 0 | ArgInfo.type, /*IsFixed=*/ArgNum < NumFixedArgs, GARsLeft, FARsLeft); |
96 | 0 | ArgNum++; |
97 | 0 | } |
98 | 0 | } |
99 | | |
100 | | // Returns true if the struct is a potential candidate to be passed in FARs (and |
101 | | // GARs). If this function returns true, the caller is responsible for checking |
102 | | // that if there is only a single field then that field is a float. |
103 | | bool LoongArchABIInfo::detectFARsEligibleStructHelper( |
104 | | QualType Ty, CharUnits CurOff, llvm::Type *&Field1Ty, CharUnits &Field1Off, |
105 | 0 | llvm::Type *&Field2Ty, CharUnits &Field2Off) const { |
106 | 0 | bool IsInt = Ty->isIntegralOrEnumerationType(); |
107 | 0 | bool IsFloat = Ty->isRealFloatingType(); |
108 | |
|
109 | 0 | if (IsInt || IsFloat) { |
110 | 0 | uint64_t Size = getContext().getTypeSize(Ty); |
111 | 0 | if (IsInt && Size > GRLen) |
112 | 0 | return false; |
113 | | // Can't be eligible if larger than the FP registers. Half precision isn't |
114 | | // currently supported on LoongArch and the ABI hasn't been confirmed, so |
115 | | // default to the integer ABI in that case. |
116 | 0 | if (IsFloat && (Size > FRLen || Size < 32)) |
117 | 0 | return false; |
118 | | // Can't be eligible if an integer type was already found (int+int pairs |
119 | | // are not eligible). |
120 | 0 | if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) |
121 | 0 | return false; |
122 | 0 | if (!Field1Ty) { |
123 | 0 | Field1Ty = CGT.ConvertType(Ty); |
124 | 0 | Field1Off = CurOff; |
125 | 0 | return true; |
126 | 0 | } |
127 | 0 | if (!Field2Ty) { |
128 | 0 | Field2Ty = CGT.ConvertType(Ty); |
129 | 0 | Field2Off = CurOff; |
130 | 0 | return true; |
131 | 0 | } |
132 | 0 | return false; |
133 | 0 | } |
134 | | |
135 | 0 | if (auto CTy = Ty->getAs<ComplexType>()) { |
136 | 0 | if (Field1Ty) |
137 | 0 | return false; |
138 | 0 | QualType EltTy = CTy->getElementType(); |
139 | 0 | if (getContext().getTypeSize(EltTy) > FRLen) |
140 | 0 | return false; |
141 | 0 | Field1Ty = CGT.ConvertType(EltTy); |
142 | 0 | Field1Off = CurOff; |
143 | 0 | Field2Ty = Field1Ty; |
144 | 0 | Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); |
145 | 0 | return true; |
146 | 0 | } |
147 | | |
148 | 0 | if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { |
149 | 0 | uint64_t ArraySize = ATy->getSize().getZExtValue(); |
150 | 0 | QualType EltTy = ATy->getElementType(); |
151 | | // Non-zero-length arrays of empty records make the struct ineligible to be |
152 | | // passed via FARs in C++. |
153 | 0 | if (const auto *RTy = EltTy->getAs<RecordType>()) { |
154 | 0 | if (ArraySize != 0 && isa<CXXRecordDecl>(RTy->getDecl()) && |
155 | 0 | isEmptyRecord(getContext(), EltTy, true, true)) |
156 | 0 | return false; |
157 | 0 | } |
158 | 0 | CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); |
159 | 0 | for (uint64_t i = 0; i < ArraySize; ++i) { |
160 | 0 | if (!detectFARsEligibleStructHelper(EltTy, CurOff, Field1Ty, Field1Off, |
161 | 0 | Field2Ty, Field2Off)) |
162 | 0 | return false; |
163 | 0 | CurOff += EltSize; |
164 | 0 | } |
165 | 0 | return true; |
166 | 0 | } |
167 | | |
168 | 0 | if (const auto *RTy = Ty->getAs<RecordType>()) { |
169 | | // Structures with either a non-trivial destructor or a non-trivial |
170 | | // copy constructor are not eligible for the FP calling convention. |
171 | 0 | if (getRecordArgABI(Ty, CGT.getCXXABI())) |
172 | 0 | return false; |
173 | 0 | const RecordDecl *RD = RTy->getDecl(); |
174 | 0 | if (isEmptyRecord(getContext(), Ty, true, true) && |
175 | 0 | (!RD->isUnion() || !isa<CXXRecordDecl>(RD))) |
176 | 0 | return true; |
177 | | // Unions aren't eligible unless they're empty in C (which is caught above). |
178 | 0 | if (RD->isUnion()) |
179 | 0 | return false; |
180 | 0 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); |
181 | | // If this is a C++ record, check the bases first. |
182 | 0 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
183 | 0 | for (const CXXBaseSpecifier &B : CXXRD->bases()) { |
184 | 0 | const auto *BDecl = |
185 | 0 | cast<CXXRecordDecl>(B.getType()->castAs<RecordType>()->getDecl()); |
186 | 0 | if (!detectFARsEligibleStructHelper( |
187 | 0 | B.getType(), CurOff + Layout.getBaseClassOffset(BDecl), |
188 | 0 | Field1Ty, Field1Off, Field2Ty, Field2Off)) |
189 | 0 | return false; |
190 | 0 | } |
191 | 0 | } |
192 | 0 | for (const FieldDecl *FD : RD->fields()) { |
193 | 0 | QualType QTy = FD->getType(); |
194 | 0 | if (FD->isBitField()) { |
195 | 0 | unsigned BitWidth = FD->getBitWidthValue(getContext()); |
196 | | // Zero-width bitfields are ignored. |
197 | 0 | if (BitWidth == 0) |
198 | 0 | continue; |
199 | | // Allow a bitfield with a type greater than GRLen as long as the |
200 | | // bitwidth is GRLen or less. |
201 | 0 | if (getContext().getTypeSize(QTy) > GRLen && BitWidth <= GRLen) { |
202 | 0 | QTy = getContext().getIntTypeForBitwidth(GRLen, false); |
203 | 0 | } |
204 | 0 | } |
205 | | |
206 | 0 | if (!detectFARsEligibleStructHelper( |
207 | 0 | QTy, |
208 | 0 | CurOff + getContext().toCharUnitsFromBits( |
209 | 0 | Layout.getFieldOffset(FD->getFieldIndex())), |
210 | 0 | Field1Ty, Field1Off, Field2Ty, Field2Off)) |
211 | 0 | return false; |
212 | 0 | } |
213 | 0 | return Field1Ty != nullptr; |
214 | 0 | } |
215 | | |
216 | 0 | return false; |
217 | 0 | } |
218 | | |
219 | | // Determine if a struct is eligible to be passed in FARs (and GARs) (i.e., when |
220 | | // flattened it contains a single fp value, fp+fp, or int+fp of appropriate |
221 | | // size). If so, NeededFARs and NeededGARs are incremented appropriately. |
222 | | bool LoongArchABIInfo::detectFARsEligibleStruct( |
223 | | QualType Ty, llvm::Type *&Field1Ty, CharUnits &Field1Off, |
224 | | llvm::Type *&Field2Ty, CharUnits &Field2Off, int &NeededGARs, |
225 | 0 | int &NeededFARs) const { |
226 | 0 | Field1Ty = nullptr; |
227 | 0 | Field2Ty = nullptr; |
228 | 0 | NeededGARs = 0; |
229 | 0 | NeededFARs = 0; |
230 | 0 | if (!detectFARsEligibleStructHelper(Ty, CharUnits::Zero(), Field1Ty, |
231 | 0 | Field1Off, Field2Ty, Field2Off)) |
232 | 0 | return false; |
233 | 0 | if (!Field1Ty) |
234 | 0 | return false; |
235 | | // Not really a candidate if we have a single int but no float. |
236 | 0 | if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) |
237 | 0 | return false; |
238 | 0 | if (Field1Ty && Field1Ty->isFloatingPointTy()) |
239 | 0 | NeededFARs++; |
240 | 0 | else if (Field1Ty) |
241 | 0 | NeededGARs++; |
242 | 0 | if (Field2Ty && Field2Ty->isFloatingPointTy()) |
243 | 0 | NeededFARs++; |
244 | 0 | else if (Field2Ty) |
245 | 0 | NeededGARs++; |
246 | 0 | return true; |
247 | 0 | } |
248 | | |
249 | | // Call getCoerceAndExpand for the two-element flattened struct described by |
250 | | // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an |
251 | | // appropriate coerceToType and unpaddedCoerceToType. |
252 | | ABIArgInfo LoongArchABIInfo::coerceAndExpandFARsEligibleStruct( |
253 | | llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, |
254 | 0 | CharUnits Field2Off) const { |
255 | 0 | SmallVector<llvm::Type *, 3> CoerceElts; |
256 | 0 | SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; |
257 | 0 | if (!Field1Off.isZero()) |
258 | 0 | CoerceElts.push_back(llvm::ArrayType::get( |
259 | 0 | llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); |
260 | |
|
261 | 0 | CoerceElts.push_back(Field1Ty); |
262 | 0 | UnpaddedCoerceElts.push_back(Field1Ty); |
263 | |
|
264 | 0 | if (!Field2Ty) { |
265 | 0 | return ABIArgInfo::getCoerceAndExpand( |
266 | 0 | llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), |
267 | 0 | UnpaddedCoerceElts[0]); |
268 | 0 | } |
269 | | |
270 | 0 | CharUnits Field2Align = |
271 | 0 | CharUnits::fromQuantity(getDataLayout().getABITypeAlign(Field2Ty)); |
272 | 0 | CharUnits Field1End = |
273 | 0 | Field1Off + |
274 | 0 | CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); |
275 | 0 | CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); |
276 | |
|
277 | 0 | CharUnits Padding = CharUnits::Zero(); |
278 | 0 | if (Field2Off > Field2OffNoPadNoPack) |
279 | 0 | Padding = Field2Off - Field2OffNoPadNoPack; |
280 | 0 | else if (Field2Off != Field2Align && Field2Off > Field1End) |
281 | 0 | Padding = Field2Off - Field1End; |
282 | |
|
283 | 0 | bool IsPacked = !Field2Off.isMultipleOf(Field2Align); |
284 | |
|
285 | 0 | if (!Padding.isZero()) |
286 | 0 | CoerceElts.push_back(llvm::ArrayType::get( |
287 | 0 | llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); |
288 | |
|
289 | 0 | CoerceElts.push_back(Field2Ty); |
290 | 0 | UnpaddedCoerceElts.push_back(Field2Ty); |
291 | |
|
292 | 0 | return ABIArgInfo::getCoerceAndExpand( |
293 | 0 | llvm::StructType::get(getVMContext(), CoerceElts, IsPacked), |
294 | 0 | llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked)); |
295 | 0 | } |
296 | | |
297 | | ABIArgInfo LoongArchABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, |
298 | | int &GARsLeft, |
299 | 0 | int &FARsLeft) const { |
300 | 0 | assert(GARsLeft <= NumGARs && "GAR tracking underflow"); |
301 | 0 | Ty = useFirstFieldIfTransparentUnion(Ty); |
302 | | |
303 | | // Structures with either a non-trivial destructor or a non-trivial |
304 | | // copy constructor are always passed indirectly. |
305 | 0 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { |
306 | 0 | if (GARsLeft) |
307 | 0 | GARsLeft -= 1; |
308 | 0 | return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == |
309 | 0 | CGCXXABI::RAA_DirectInMemory); |
310 | 0 | } |
311 | | |
312 | 0 | uint64_t Size = getContext().getTypeSize(Ty); |
313 | | |
314 | | // Ignore empty struct or union whose size is zero, e.g. `struct { }` in C or |
315 | | // `struct { int a[0]; }` in C++. In C++, `struct { }` is empty but it's size |
316 | | // is 1 byte and g++ doesn't ignore it; clang++ matches this behaviour. |
317 | 0 | if (isEmptyRecord(getContext(), Ty, true) && Size == 0) |
318 | 0 | return ABIArgInfo::getIgnore(); |
319 | | |
320 | | // Pass floating point values via FARs if possible. |
321 | 0 | if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && |
322 | 0 | FRLen >= Size && FARsLeft) { |
323 | 0 | FARsLeft--; |
324 | 0 | return ABIArgInfo::getDirect(); |
325 | 0 | } |
326 | | |
327 | | // Complex types for the *f or *d ABI must be passed directly rather than |
328 | | // using CoerceAndExpand. |
329 | 0 | if (IsFixed && Ty->isComplexType() && FRLen && FARsLeft >= 2) { |
330 | 0 | QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); |
331 | 0 | if (getContext().getTypeSize(EltTy) <= FRLen) { |
332 | 0 | FARsLeft -= 2; |
333 | 0 | return ABIArgInfo::getDirect(); |
334 | 0 | } |
335 | 0 | } |
336 | | |
337 | 0 | if (IsFixed && FRLen && Ty->isStructureOrClassType()) { |
338 | 0 | llvm::Type *Field1Ty = nullptr; |
339 | 0 | llvm::Type *Field2Ty = nullptr; |
340 | 0 | CharUnits Field1Off = CharUnits::Zero(); |
341 | 0 | CharUnits Field2Off = CharUnits::Zero(); |
342 | 0 | int NeededGARs = 0; |
343 | 0 | int NeededFARs = 0; |
344 | 0 | bool IsCandidate = detectFARsEligibleStruct( |
345 | 0 | Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, NeededGARs, NeededFARs); |
346 | 0 | if (IsCandidate && NeededGARs <= GARsLeft && NeededFARs <= FARsLeft) { |
347 | 0 | GARsLeft -= NeededGARs; |
348 | 0 | FARsLeft -= NeededFARs; |
349 | 0 | return coerceAndExpandFARsEligibleStruct(Field1Ty, Field1Off, Field2Ty, |
350 | 0 | Field2Off); |
351 | 0 | } |
352 | 0 | } |
353 | | |
354 | 0 | uint64_t NeededAlign = getContext().getTypeAlign(Ty); |
355 | | // Determine the number of GARs needed to pass the current argument |
356 | | // according to the ABI. 2*GRLen-aligned varargs are passed in "aligned" |
357 | | // register pairs, so may consume 3 registers. |
358 | 0 | int NeededGARs = 1; |
359 | 0 | if (!IsFixed && NeededAlign == 2 * GRLen) |
360 | 0 | NeededGARs = 2 + (GARsLeft % 2); |
361 | 0 | else if (Size > GRLen && Size <= 2 * GRLen) |
362 | 0 | NeededGARs = 2; |
363 | |
|
364 | 0 | if (NeededGARs > GARsLeft) |
365 | 0 | NeededGARs = GARsLeft; |
366 | |
|
367 | 0 | GARsLeft -= NeededGARs; |
368 | |
|
369 | 0 | if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { |
370 | | // Treat an enum type as its underlying type. |
371 | 0 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
372 | 0 | Ty = EnumTy->getDecl()->getIntegerType(); |
373 | | |
374 | | // All integral types are promoted to GRLen width. |
375 | 0 | if (Size < GRLen && Ty->isIntegralOrEnumerationType()) |
376 | 0 | return extendType(Ty); |
377 | | |
378 | 0 | if (const auto *EIT = Ty->getAs<BitIntType>()) { |
379 | 0 | if (EIT->getNumBits() < GRLen) |
380 | 0 | return extendType(Ty); |
381 | 0 | if (EIT->getNumBits() > 128 || |
382 | 0 | (!getContext().getTargetInfo().hasInt128Type() && |
383 | 0 | EIT->getNumBits() > 64)) |
384 | 0 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
385 | 0 | } |
386 | | |
387 | 0 | return ABIArgInfo::getDirect(); |
388 | 0 | } |
389 | | |
390 | | // Aggregates which are <= 2*GRLen will be passed in registers if possible, |
391 | | // so coerce to integers. |
392 | 0 | if (Size <= 2 * GRLen) { |
393 | | // Use a single GRLen int if possible, 2*GRLen if 2*GRLen alignment is |
394 | | // required, and a 2-element GRLen array if only GRLen alignment is |
395 | | // required. |
396 | 0 | if (Size <= GRLen) { |
397 | 0 | return ABIArgInfo::getDirect( |
398 | 0 | llvm::IntegerType::get(getVMContext(), GRLen)); |
399 | 0 | } |
400 | 0 | if (getContext().getTypeAlign(Ty) == 2 * GRLen) { |
401 | 0 | return ABIArgInfo::getDirect( |
402 | 0 | llvm::IntegerType::get(getVMContext(), 2 * GRLen)); |
403 | 0 | } |
404 | 0 | return ABIArgInfo::getDirect( |
405 | 0 | llvm::ArrayType::get(llvm::IntegerType::get(getVMContext(), GRLen), 2)); |
406 | 0 | } |
407 | 0 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
408 | 0 | } |
409 | | |
410 | 0 | ABIArgInfo LoongArchABIInfo::classifyReturnType(QualType RetTy) const { |
411 | 0 | if (RetTy->isVoidType()) |
412 | 0 | return ABIArgInfo::getIgnore(); |
413 | | // The rules for return and argument types are the same, so defer to |
414 | | // classifyArgumentType. |
415 | 0 | int GARsLeft = 2; |
416 | 0 | int FARsLeft = FRLen ? 2 : 0; |
417 | 0 | return classifyArgumentType(RetTy, /*IsFixed=*/true, GARsLeft, FARsLeft); |
418 | 0 | } |
419 | | |
420 | | Address LoongArchABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
421 | 0 | QualType Ty) const { |
422 | 0 | CharUnits SlotSize = CharUnits::fromQuantity(GRLen / 8); |
423 | | |
424 | | // Empty records are ignored for parameter passing purposes. |
425 | 0 | if (isEmptyRecord(getContext(), Ty, true)) |
426 | 0 | return Address(CGF.Builder.CreateLoad(VAListAddr), |
427 | 0 | CGF.ConvertTypeForMem(Ty), SlotSize); |
428 | | |
429 | 0 | auto TInfo = getContext().getTypeInfoInChars(Ty); |
430 | | |
431 | | // Arguments bigger than 2*GRLen bytes are passed indirectly. |
432 | 0 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, |
433 | 0 | /*IsIndirect=*/TInfo.Width > 2 * SlotSize, TInfo, |
434 | 0 | SlotSize, |
435 | 0 | /*AllowHigherAlign=*/true); |
436 | 0 | } |
437 | | |
438 | 0 | ABIArgInfo LoongArchABIInfo::extendType(QualType Ty) const { |
439 | 0 | int TySize = getContext().getTypeSize(Ty); |
440 | | // LA64 ABI requires unsigned 32 bit integers to be sign extended. |
441 | 0 | if (GRLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) |
442 | 0 | return ABIArgInfo::getSignExtend(Ty); |
443 | 0 | return ABIArgInfo::getExtend(Ty); |
444 | 0 | } |
445 | | |
446 | | namespace { |
447 | | class LoongArchTargetCodeGenInfo : public TargetCodeGenInfo { |
448 | | public: |
449 | | LoongArchTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned GRLen, |
450 | | unsigned FRLen) |
451 | | : TargetCodeGenInfo( |
452 | 0 | std::make_unique<LoongArchABIInfo>(CGT, GRLen, FRLen)) {} |
453 | | }; |
454 | | } // namespace |
455 | | |
456 | | std::unique_ptr<TargetCodeGenInfo> |
457 | | CodeGen::createLoongArchTargetCodeGenInfo(CodeGenModule &CGM, unsigned GRLen, |
458 | 0 | unsigned FLen) { |
459 | 0 | return std::make_unique<LoongArchTargetCodeGenInfo>(CGM.getTypes(), GRLen, |
460 | 0 | FLen); |
461 | 0 | } |