/src/llvm-project/clang/lib/CodeGen/Targets/PPC.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- PPC.cpp ------------------------------------------------------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | |
9 | | #include "ABIInfoImpl.h" |
10 | | #include "TargetInfo.h" |
11 | | |
12 | | using namespace clang; |
13 | | using namespace clang::CodeGen; |
14 | | |
15 | | static Address complexTempStructure(CodeGenFunction &CGF, Address VAListAddr, |
16 | | QualType Ty, CharUnits SlotSize, |
17 | 0 | CharUnits EltSize, const ComplexType *CTy) { |
18 | 0 | Address Addr = |
19 | 0 | emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, SlotSize * 2, |
20 | 0 | SlotSize, SlotSize, /*AllowHigher*/ true); |
21 | |
|
22 | 0 | Address RealAddr = Addr; |
23 | 0 | Address ImagAddr = RealAddr; |
24 | 0 | if (CGF.CGM.getDataLayout().isBigEndian()) { |
25 | 0 | RealAddr = |
26 | 0 | CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize - EltSize); |
27 | 0 | ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, |
28 | 0 | 2 * SlotSize - EltSize); |
29 | 0 | } else { |
30 | 0 | ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); |
31 | 0 | } |
32 | |
|
33 | 0 | llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); |
34 | 0 | RealAddr = RealAddr.withElementType(EltTy); |
35 | 0 | ImagAddr = ImagAddr.withElementType(EltTy); |
36 | 0 | llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); |
37 | 0 | llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); |
38 | |
|
39 | 0 | Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); |
40 | 0 | CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), |
41 | 0 | /*init*/ true); |
42 | 0 | return Temp; |
43 | 0 | } |
44 | | |
45 | | static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
46 | | llvm::Value *Address, bool Is64Bit, |
47 | 0 | bool IsAIX) { |
48 | | // This is calculated from the LLVM and GCC tables and verified |
49 | | // against gcc output. AFAIK all PPC ABIs use the same encoding. |
50 | |
|
51 | 0 | CodeGen::CGBuilderTy &Builder = CGF.Builder; |
52 | |
|
53 | 0 | llvm::IntegerType *i8 = CGF.Int8Ty; |
54 | 0 | llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); |
55 | 0 | llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); |
56 | 0 | llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); |
57 | | |
58 | | // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers |
59 | 0 | AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); |
60 | | |
61 | | // 32-63: fp0-31, the 8-byte floating-point registers |
62 | 0 | AssignToArrayRange(Builder, Address, Eight8, 32, 63); |
63 | | |
64 | | // 64-67 are various 4-byte or 8-byte special-purpose registers: |
65 | | // 64: mq |
66 | | // 65: lr |
67 | | // 66: ctr |
68 | | // 67: ap |
69 | 0 | AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); |
70 | | |
71 | | // 68-76 are various 4-byte special-purpose registers: |
72 | | // 68-75 cr0-7 |
73 | | // 76: xer |
74 | 0 | AssignToArrayRange(Builder, Address, Four8, 68, 76); |
75 | | |
76 | | // 77-108: v0-31, the 16-byte vector registers |
77 | 0 | AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); |
78 | | |
79 | | // 109: vrsave |
80 | | // 110: vscr |
81 | 0 | AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); |
82 | | |
83 | | // AIX does not utilize the rest of the registers. |
84 | 0 | if (IsAIX) |
85 | 0 | return false; |
86 | | |
87 | | // 111: spe_acc |
88 | | // 112: spefscr |
89 | | // 113: sfp |
90 | 0 | AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); |
91 | |
|
92 | 0 | if (!Is64Bit) |
93 | 0 | return false; |
94 | | |
95 | | // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 |
96 | | // or above CPU. |
97 | | // 64-bit only registers: |
98 | | // 114: tfhar |
99 | | // 115: tfiar |
100 | | // 116: texasr |
101 | 0 | AssignToArrayRange(Builder, Address, Eight8, 114, 116); |
102 | |
|
103 | 0 | return false; |
104 | 0 | } |
105 | | |
106 | | // AIX |
107 | | namespace { |
108 | | /// AIXABIInfo - The AIX XCOFF ABI information. |
109 | | class AIXABIInfo : public ABIInfo { |
110 | | const bool Is64Bit; |
111 | | const unsigned PtrByteSize; |
112 | | CharUnits getParamTypeAlignment(QualType Ty) const; |
113 | | |
114 | | public: |
115 | | AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) |
116 | 0 | : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} |
117 | | |
118 | | bool isPromotableTypeForABI(QualType Ty) const; |
119 | | |
120 | | ABIArgInfo classifyReturnType(QualType RetTy) const; |
121 | | ABIArgInfo classifyArgumentType(QualType Ty) const; |
122 | | |
123 | 0 | void computeInfo(CGFunctionInfo &FI) const override { |
124 | 0 | if (!getCXXABI().classifyReturnType(FI)) |
125 | 0 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
126 | |
|
127 | 0 | for (auto &I : FI.arguments()) |
128 | 0 | I.info = classifyArgumentType(I.type); |
129 | 0 | } |
130 | | |
131 | | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
132 | | QualType Ty) const override; |
133 | | }; |
134 | | |
135 | | class AIXTargetCodeGenInfo : public TargetCodeGenInfo { |
136 | | const bool Is64Bit; |
137 | | |
138 | | public: |
139 | | AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) |
140 | | : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), |
141 | 0 | Is64Bit(Is64Bit) {} |
142 | 0 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
143 | 0 | return 1; // r1 is the dedicated stack pointer |
144 | 0 | } |
145 | | |
146 | | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
147 | | llvm::Value *Address) const override; |
148 | | }; |
149 | | } // namespace |
150 | | |
151 | | // Return true if the ABI requires Ty to be passed sign- or zero- |
152 | | // extended to 32/64 bits. |
153 | 0 | bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { |
154 | | // Treat an enum type as its underlying type. |
155 | 0 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
156 | 0 | Ty = EnumTy->getDecl()->getIntegerType(); |
157 | | |
158 | | // Promotable integer types are required to be promoted by the ABI. |
159 | 0 | if (getContext().isPromotableIntegerType(Ty)) |
160 | 0 | return true; |
161 | | |
162 | 0 | if (!Is64Bit) |
163 | 0 | return false; |
164 | | |
165 | | // For 64 bit mode, in addition to the usual promotable integer types, we also |
166 | | // need to extend all 32-bit types, since the ABI requires promotion to 64 |
167 | | // bits. |
168 | 0 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) |
169 | 0 | switch (BT->getKind()) { |
170 | 0 | case BuiltinType::Int: |
171 | 0 | case BuiltinType::UInt: |
172 | 0 | return true; |
173 | 0 | default: |
174 | 0 | break; |
175 | 0 | } |
176 | | |
177 | 0 | return false; |
178 | 0 | } |
179 | | |
180 | 0 | ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { |
181 | 0 | if (RetTy->isAnyComplexType()) |
182 | 0 | return ABIArgInfo::getDirect(); |
183 | | |
184 | 0 | if (RetTy->isVectorType()) |
185 | 0 | return ABIArgInfo::getDirect(); |
186 | | |
187 | 0 | if (RetTy->isVoidType()) |
188 | 0 | return ABIArgInfo::getIgnore(); |
189 | | |
190 | 0 | if (isAggregateTypeForABI(RetTy)) |
191 | 0 | return getNaturalAlignIndirect(RetTy); |
192 | | |
193 | 0 | return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) |
194 | 0 | : ABIArgInfo::getDirect()); |
195 | 0 | } |
196 | | |
197 | 0 | ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { |
198 | 0 | Ty = useFirstFieldIfTransparentUnion(Ty); |
199 | |
|
200 | 0 | if (Ty->isAnyComplexType()) |
201 | 0 | return ABIArgInfo::getDirect(); |
202 | | |
203 | 0 | if (Ty->isVectorType()) |
204 | 0 | return ABIArgInfo::getDirect(); |
205 | | |
206 | 0 | if (isAggregateTypeForABI(Ty)) { |
207 | | // Records with non-trivial destructors/copy-constructors should not be |
208 | | // passed by value. |
209 | 0 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
210 | 0 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
211 | | |
212 | 0 | CharUnits CCAlign = getParamTypeAlignment(Ty); |
213 | 0 | CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); |
214 | |
|
215 | 0 | return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, |
216 | 0 | /*Realign*/ TyAlign > CCAlign); |
217 | 0 | } |
218 | | |
219 | 0 | return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) |
220 | 0 | : ABIArgInfo::getDirect()); |
221 | 0 | } |
222 | | |
223 | 0 | CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { |
224 | | // Complex types are passed just like their elements. |
225 | 0 | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) |
226 | 0 | Ty = CTy->getElementType(); |
227 | |
|
228 | 0 | if (Ty->isVectorType()) |
229 | 0 | return CharUnits::fromQuantity(16); |
230 | | |
231 | | // If the structure contains a vector type, the alignment is 16. |
232 | 0 | if (isRecordWithSIMDVectorType(getContext(), Ty)) |
233 | 0 | return CharUnits::fromQuantity(16); |
234 | | |
235 | 0 | return CharUnits::fromQuantity(PtrByteSize); |
236 | 0 | } |
237 | | |
238 | | Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
239 | 0 | QualType Ty) const { |
240 | |
|
241 | 0 | auto TypeInfo = getContext().getTypeInfoInChars(Ty); |
242 | 0 | TypeInfo.Align = getParamTypeAlignment(Ty); |
243 | |
|
244 | 0 | CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); |
245 | | |
246 | | // If we have a complex type and the base type is smaller than the register |
247 | | // size, the ABI calls for the real and imaginary parts to be right-adjusted |
248 | | // in separate words in 32bit mode or doublewords in 64bit mode. However, |
249 | | // Clang expects us to produce a pointer to a structure with the two parts |
250 | | // packed tightly. So generate loads of the real and imaginary parts relative |
251 | | // to the va_list pointer, and store them to a temporary structure. We do the |
252 | | // same as the PPC64ABI here. |
253 | 0 | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { |
254 | 0 | CharUnits EltSize = TypeInfo.Width / 2; |
255 | 0 | if (EltSize < SlotSize) |
256 | 0 | return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); |
257 | 0 | } |
258 | | |
259 | 0 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, |
260 | 0 | SlotSize, /*AllowHigher*/ true); |
261 | 0 | } |
262 | | |
263 | | bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( |
264 | 0 | CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { |
265 | 0 | return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); |
266 | 0 | } |
267 | | |
268 | | // PowerPC-32 |
269 | | namespace { |
270 | | /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. |
271 | | class PPC32_SVR4_ABIInfo : public DefaultABIInfo { |
272 | | bool IsSoftFloatABI; |
273 | | bool IsRetSmallStructInRegABI; |
274 | | |
275 | | CharUnits getParamTypeAlignment(QualType Ty) const; |
276 | | |
277 | | public: |
278 | | PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, |
279 | | bool RetSmallStructInRegABI) |
280 | | : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), |
281 | 0 | IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} |
282 | | |
283 | | ABIArgInfo classifyReturnType(QualType RetTy) const; |
284 | | |
285 | 0 | void computeInfo(CGFunctionInfo &FI) const override { |
286 | 0 | if (!getCXXABI().classifyReturnType(FI)) |
287 | 0 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
288 | 0 | for (auto &I : FI.arguments()) |
289 | 0 | I.info = classifyArgumentType(I.type); |
290 | 0 | } |
291 | | |
292 | | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
293 | | QualType Ty) const override; |
294 | | }; |
295 | | |
296 | | class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { |
297 | | public: |
298 | | PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, |
299 | | bool RetSmallStructInRegABI) |
300 | | : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( |
301 | 0 | CGT, SoftFloatABI, RetSmallStructInRegABI)) {} |
302 | | |
303 | | static bool isStructReturnInRegABI(const llvm::Triple &Triple, |
304 | | const CodeGenOptions &Opts); |
305 | | |
306 | 0 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
307 | | // This is recovered from gcc output. |
308 | 0 | return 1; // r1 is the dedicated stack pointer |
309 | 0 | } |
310 | | |
311 | | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
312 | | llvm::Value *Address) const override; |
313 | | }; |
314 | | } |
315 | | |
316 | 0 | CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { |
317 | | // Complex types are passed just like their elements. |
318 | 0 | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) |
319 | 0 | Ty = CTy->getElementType(); |
320 | |
|
321 | 0 | if (Ty->isVectorType()) |
322 | 0 | return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 |
323 | 0 | : 4); |
324 | | |
325 | | // For single-element float/vector structs, we consider the whole type |
326 | | // to have the same alignment requirements as its single element. |
327 | 0 | const Type *AlignTy = nullptr; |
328 | 0 | if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { |
329 | 0 | const BuiltinType *BT = EltType->getAs<BuiltinType>(); |
330 | 0 | if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || |
331 | 0 | (BT && BT->isFloatingPoint())) |
332 | 0 | AlignTy = EltType; |
333 | 0 | } |
334 | |
|
335 | 0 | if (AlignTy) |
336 | 0 | return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); |
337 | 0 | return CharUnits::fromQuantity(4); |
338 | 0 | } |
339 | | |
340 | 0 | ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { |
341 | 0 | uint64_t Size; |
342 | | |
343 | | // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. |
344 | 0 | if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && |
345 | 0 | (Size = getContext().getTypeSize(RetTy)) <= 64) { |
346 | | // System V ABI (1995), page 3-22, specified: |
347 | | // > A structure or union whose size is less than or equal to 8 bytes |
348 | | // > shall be returned in r3 and r4, as if it were first stored in the |
349 | | // > 8-byte aligned memory area and then the low addressed word were |
350 | | // > loaded into r3 and the high-addressed word into r4. Bits beyond |
351 | | // > the last member of the structure or union are not defined. |
352 | | // |
353 | | // GCC for big-endian PPC32 inserts the pad before the first member, |
354 | | // not "beyond the last member" of the struct. To stay compatible |
355 | | // with GCC, we coerce the struct to an integer of the same size. |
356 | | // LLVM will extend it and return i32 in r3, or i64 in r3:r4. |
357 | 0 | if (Size == 0) |
358 | 0 | return ABIArgInfo::getIgnore(); |
359 | 0 | else { |
360 | 0 | llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); |
361 | 0 | return ABIArgInfo::getDirect(CoerceTy); |
362 | 0 | } |
363 | 0 | } |
364 | | |
365 | 0 | return DefaultABIInfo::classifyReturnType(RetTy); |
366 | 0 | } |
367 | | |
368 | | // TODO: this implementation is now likely redundant with |
369 | | // DefaultABIInfo::EmitVAArg. |
370 | | Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, |
371 | 0 | QualType Ty) const { |
372 | 0 | if (getTarget().getTriple().isOSDarwin()) { |
373 | 0 | auto TI = getContext().getTypeInfoInChars(Ty); |
374 | 0 | TI.Align = getParamTypeAlignment(Ty); |
375 | |
|
376 | 0 | CharUnits SlotSize = CharUnits::fromQuantity(4); |
377 | 0 | return emitVoidPtrVAArg(CGF, VAList, Ty, |
378 | 0 | classifyArgumentType(Ty).isIndirect(), TI, SlotSize, |
379 | 0 | /*AllowHigherAlign=*/true); |
380 | 0 | } |
381 | | |
382 | 0 | const unsigned OverflowLimit = 8; |
383 | 0 | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { |
384 | | // TODO: Implement this. For now ignore. |
385 | 0 | (void)CTy; |
386 | 0 | return Address::invalid(); // FIXME? |
387 | 0 | } |
388 | | |
389 | | // struct __va_list_tag { |
390 | | // unsigned char gpr; |
391 | | // unsigned char fpr; |
392 | | // unsigned short reserved; |
393 | | // void *overflow_arg_area; |
394 | | // void *reg_save_area; |
395 | | // }; |
396 | | |
397 | 0 | bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; |
398 | 0 | bool isInt = !Ty->isFloatingType(); |
399 | 0 | bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; |
400 | | |
401 | | // All aggregates are passed indirectly? That doesn't seem consistent |
402 | | // with the argument-lowering code. |
403 | 0 | bool isIndirect = isAggregateTypeForABI(Ty); |
404 | |
|
405 | 0 | CGBuilderTy &Builder = CGF.Builder; |
406 | | |
407 | | // The calling convention either uses 1-2 GPRs or 1 FPR. |
408 | 0 | Address NumRegsAddr = Address::invalid(); |
409 | 0 | if (isInt || IsSoftFloatABI) { |
410 | 0 | NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); |
411 | 0 | } else { |
412 | 0 | NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); |
413 | 0 | } |
414 | |
|
415 | 0 | llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); |
416 | | |
417 | | // "Align" the register count when TY is i64. |
418 | 0 | if (isI64 || (isF64 && IsSoftFloatABI)) { |
419 | 0 | NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); |
420 | 0 | NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); |
421 | 0 | } |
422 | |
|
423 | 0 | llvm::Value *CC = |
424 | 0 | Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); |
425 | |
|
426 | 0 | llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); |
427 | 0 | llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); |
428 | 0 | llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); |
429 | |
|
430 | 0 | Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); |
431 | |
|
432 | 0 | llvm::Type *DirectTy = CGF.ConvertType(Ty), *ElementTy = DirectTy; |
433 | 0 | if (isIndirect) |
434 | 0 | DirectTy = CGF.UnqualPtrTy; |
435 | | |
436 | | // Case 1: consume registers. |
437 | 0 | Address RegAddr = Address::invalid(); |
438 | 0 | { |
439 | 0 | CGF.EmitBlock(UsingRegs); |
440 | |
|
441 | 0 | Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); |
442 | 0 | RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), CGF.Int8Ty, |
443 | 0 | CharUnits::fromQuantity(8)); |
444 | 0 | assert(RegAddr.getElementType() == CGF.Int8Ty); |
445 | | |
446 | | // Floating-point registers start after the general-purpose registers. |
447 | 0 | if (!(isInt || IsSoftFloatABI)) { |
448 | 0 | RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, |
449 | 0 | CharUnits::fromQuantity(32)); |
450 | 0 | } |
451 | | |
452 | | // Get the address of the saved value by scaling the number of |
453 | | // registers we've used by the number of |
454 | 0 | CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); |
455 | 0 | llvm::Value *RegOffset = |
456 | 0 | Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); |
457 | 0 | RegAddr = Address( |
458 | 0 | Builder.CreateInBoundsGEP(CGF.Int8Ty, RegAddr.getPointer(), RegOffset), |
459 | 0 | DirectTy, RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); |
460 | | |
461 | | // Increase the used-register count. |
462 | 0 | NumRegs = |
463 | 0 | Builder.CreateAdd(NumRegs, |
464 | 0 | Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); |
465 | 0 | Builder.CreateStore(NumRegs, NumRegsAddr); |
466 | |
|
467 | 0 | CGF.EmitBranch(Cont); |
468 | 0 | } |
469 | | |
470 | | // Case 2: consume space in the overflow area. |
471 | 0 | Address MemAddr = Address::invalid(); |
472 | 0 | { |
473 | 0 | CGF.EmitBlock(UsingOverflow); |
474 | |
|
475 | 0 | Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); |
476 | | |
477 | | // Everything in the overflow area is rounded up to a size of at least 4. |
478 | 0 | CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); |
479 | |
|
480 | 0 | CharUnits Size; |
481 | 0 | if (!isIndirect) { |
482 | 0 | auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); |
483 | 0 | Size = TypeInfo.Width.alignTo(OverflowAreaAlign); |
484 | 0 | } else { |
485 | 0 | Size = CGF.getPointerSize(); |
486 | 0 | } |
487 | |
|
488 | 0 | Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); |
489 | 0 | Address OverflowArea = |
490 | 0 | Address(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), CGF.Int8Ty, |
491 | 0 | OverflowAreaAlign); |
492 | | // Round up address of argument to alignment |
493 | 0 | CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); |
494 | 0 | if (Align > OverflowAreaAlign) { |
495 | 0 | llvm::Value *Ptr = OverflowArea.getPointer(); |
496 | 0 | OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), |
497 | 0 | OverflowArea.getElementType(), Align); |
498 | 0 | } |
499 | |
|
500 | 0 | MemAddr = OverflowArea.withElementType(DirectTy); |
501 | | |
502 | | // Increase the overflow area. |
503 | 0 | OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); |
504 | 0 | Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); |
505 | 0 | CGF.EmitBranch(Cont); |
506 | 0 | } |
507 | |
|
508 | 0 | CGF.EmitBlock(Cont); |
509 | | |
510 | | // Merge the cases with a phi. |
511 | 0 | Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, |
512 | 0 | "vaarg.addr"); |
513 | | |
514 | | // Load the pointer if the argument was passed indirectly. |
515 | 0 | if (isIndirect) { |
516 | 0 | Result = Address(Builder.CreateLoad(Result, "aggr"), ElementTy, |
517 | 0 | getContext().getTypeAlignInChars(Ty)); |
518 | 0 | } |
519 | |
|
520 | 0 | return Result; |
521 | 0 | } |
522 | | |
523 | | bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( |
524 | 0 | const llvm::Triple &Triple, const CodeGenOptions &Opts) { |
525 | 0 | assert(Triple.isPPC32()); |
526 | | |
527 | 0 | switch (Opts.getStructReturnConvention()) { |
528 | 0 | case CodeGenOptions::SRCK_Default: |
529 | 0 | break; |
530 | 0 | case CodeGenOptions::SRCK_OnStack: // -maix-struct-return |
531 | 0 | return false; |
532 | 0 | case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return |
533 | 0 | return true; |
534 | 0 | } |
535 | | |
536 | 0 | if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) |
537 | 0 | return true; |
538 | | |
539 | 0 | return false; |
540 | 0 | } |
541 | | |
542 | | bool |
543 | | PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
544 | 0 | llvm::Value *Address) const { |
545 | 0 | return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, |
546 | 0 | /*IsAIX*/ false); |
547 | 0 | } |
548 | | |
549 | | // PowerPC-64 |
550 | | |
551 | | namespace { |
552 | | |
553 | | /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. |
554 | | class PPC64_SVR4_ABIInfo : public ABIInfo { |
555 | | static const unsigned GPRBits = 64; |
556 | | PPC64_SVR4_ABIKind Kind; |
557 | | bool IsSoftFloatABI; |
558 | | |
559 | | public: |
560 | | PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, PPC64_SVR4_ABIKind Kind, |
561 | | bool SoftFloatABI) |
562 | 0 | : ABIInfo(CGT), Kind(Kind), IsSoftFloatABI(SoftFloatABI) {} |
563 | | |
564 | | bool isPromotableTypeForABI(QualType Ty) const; |
565 | | CharUnits getParamTypeAlignment(QualType Ty) const; |
566 | | |
567 | | ABIArgInfo classifyReturnType(QualType RetTy) const; |
568 | | ABIArgInfo classifyArgumentType(QualType Ty) const; |
569 | | |
570 | | bool isHomogeneousAggregateBaseType(QualType Ty) const override; |
571 | | bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
572 | | uint64_t Members) const override; |
573 | | |
574 | | // TODO: We can add more logic to computeInfo to improve performance. |
575 | | // Example: For aggregate arguments that fit in a register, we could |
576 | | // use getDirectInReg (as is done below for structs containing a single |
577 | | // floating-point value) to avoid pushing them to memory on function |
578 | | // entry. This would require changing the logic in PPCISelLowering |
579 | | // when lowering the parameters in the caller and args in the callee. |
580 | 0 | void computeInfo(CGFunctionInfo &FI) const override { |
581 | 0 | if (!getCXXABI().classifyReturnType(FI)) |
582 | 0 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
583 | 0 | for (auto &I : FI.arguments()) { |
584 | | // We rely on the default argument classification for the most part. |
585 | | // One exception: An aggregate containing a single floating-point |
586 | | // or vector item must be passed in a register if one is available. |
587 | 0 | const Type *T = isSingleElementStruct(I.type, getContext()); |
588 | 0 | if (T) { |
589 | 0 | const BuiltinType *BT = T->getAs<BuiltinType>(); |
590 | 0 | if ((T->isVectorType() && getContext().getTypeSize(T) == 128) || |
591 | 0 | (BT && BT->isFloatingPoint())) { |
592 | 0 | QualType QT(T, 0); |
593 | 0 | I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); |
594 | 0 | continue; |
595 | 0 | } |
596 | 0 | } |
597 | 0 | I.info = classifyArgumentType(I.type); |
598 | 0 | } |
599 | 0 | } |
600 | | |
601 | | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
602 | | QualType Ty) const override; |
603 | | }; |
604 | | |
605 | | class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { |
606 | | |
607 | | public: |
608 | | PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, PPC64_SVR4_ABIKind Kind, |
609 | | bool SoftFloatABI) |
610 | | : TargetCodeGenInfo( |
611 | 0 | std::make_unique<PPC64_SVR4_ABIInfo>(CGT, Kind, SoftFloatABI)) { |
612 | 0 | SwiftInfo = |
613 | 0 | std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/false); |
614 | 0 | } |
615 | | |
616 | 0 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
617 | | // This is recovered from gcc output. |
618 | 0 | return 1; // r1 is the dedicated stack pointer |
619 | 0 | } |
620 | | |
621 | | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
622 | | llvm::Value *Address) const override; |
623 | | void emitTargetMetadata(CodeGen::CodeGenModule &CGM, |
624 | | const llvm::MapVector<GlobalDecl, StringRef> |
625 | | &MangledDeclNames) const override; |
626 | | }; |
627 | | |
628 | | class PPC64TargetCodeGenInfo : public TargetCodeGenInfo { |
629 | | public: |
630 | | PPC64TargetCodeGenInfo(CodeGenTypes &CGT) |
631 | 0 | : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} |
632 | | |
633 | 0 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { |
634 | | // This is recovered from gcc output. |
635 | 0 | return 1; // r1 is the dedicated stack pointer |
636 | 0 | } |
637 | | |
638 | | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
639 | | llvm::Value *Address) const override; |
640 | | }; |
641 | | } |
642 | | |
643 | | // Return true if the ABI requires Ty to be passed sign- or zero- |
644 | | // extended to 64 bits. |
645 | | bool |
646 | 0 | PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { |
647 | | // Treat an enum type as its underlying type. |
648 | 0 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
649 | 0 | Ty = EnumTy->getDecl()->getIntegerType(); |
650 | | |
651 | | // Promotable integer types are required to be promoted by the ABI. |
652 | 0 | if (isPromotableIntegerTypeForABI(Ty)) |
653 | 0 | return true; |
654 | | |
655 | | // In addition to the usual promotable integer types, we also need to |
656 | | // extend all 32-bit types, since the ABI requires promotion to 64 bits. |
657 | 0 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) |
658 | 0 | switch (BT->getKind()) { |
659 | 0 | case BuiltinType::Int: |
660 | 0 | case BuiltinType::UInt: |
661 | 0 | return true; |
662 | 0 | default: |
663 | 0 | break; |
664 | 0 | } |
665 | | |
666 | 0 | if (const auto *EIT = Ty->getAs<BitIntType>()) |
667 | 0 | if (EIT->getNumBits() < 64) |
668 | 0 | return true; |
669 | | |
670 | 0 | return false; |
671 | 0 | } |
672 | | |
673 | | /// isAlignedParamType - Determine whether a type requires 16-byte or |
674 | | /// higher alignment in the parameter area. Always returns at least 8. |
675 | 0 | CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { |
676 | | // Complex types are passed just like their elements. |
677 | 0 | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) |
678 | 0 | Ty = CTy->getElementType(); |
679 | |
|
680 | 0 | auto FloatUsesVector = [this](QualType Ty){ |
681 | 0 | return Ty->isRealFloatingType() && &getContext().getFloatTypeSemantics( |
682 | 0 | Ty) == &llvm::APFloat::IEEEquad(); |
683 | 0 | }; |
684 | | |
685 | | // Only vector types of size 16 bytes need alignment (larger types are |
686 | | // passed via reference, smaller types are not aligned). |
687 | 0 | if (Ty->isVectorType()) { |
688 | 0 | return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); |
689 | 0 | } else if (FloatUsesVector(Ty)) { |
690 | | // According to ABI document section 'Optional Save Areas': If extended |
691 | | // precision floating-point values in IEEE BINARY 128 QUADRUPLE PRECISION |
692 | | // format are supported, map them to a single quadword, quadword aligned. |
693 | 0 | return CharUnits::fromQuantity(16); |
694 | 0 | } |
695 | | |
696 | | // For single-element float/vector structs, we consider the whole type |
697 | | // to have the same alignment requirements as its single element. |
698 | 0 | const Type *AlignAsType = nullptr; |
699 | 0 | const Type *EltType = isSingleElementStruct(Ty, getContext()); |
700 | 0 | if (EltType) { |
701 | 0 | const BuiltinType *BT = EltType->getAs<BuiltinType>(); |
702 | 0 | if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || |
703 | 0 | (BT && BT->isFloatingPoint())) |
704 | 0 | AlignAsType = EltType; |
705 | 0 | } |
706 | | |
707 | | // Likewise for ELFv2 homogeneous aggregates. |
708 | 0 | const Type *Base = nullptr; |
709 | 0 | uint64_t Members = 0; |
710 | 0 | if (!AlignAsType && Kind == PPC64_SVR4_ABIKind::ELFv2 && |
711 | 0 | isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) |
712 | 0 | AlignAsType = Base; |
713 | | |
714 | | // With special case aggregates, only vector base types need alignment. |
715 | 0 | if (AlignAsType) { |
716 | 0 | bool UsesVector = AlignAsType->isVectorType() || |
717 | 0 | FloatUsesVector(QualType(AlignAsType, 0)); |
718 | 0 | return CharUnits::fromQuantity(UsesVector ? 16 : 8); |
719 | 0 | } |
720 | | |
721 | | // Otherwise, we only need alignment for any aggregate type that |
722 | | // has an alignment requirement of >= 16 bytes. |
723 | 0 | if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { |
724 | 0 | return CharUnits::fromQuantity(16); |
725 | 0 | } |
726 | | |
727 | 0 | return CharUnits::fromQuantity(8); |
728 | 0 | } |
729 | | |
730 | 0 | bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { |
731 | | // Homogeneous aggregates for ELFv2 must have base types of float, |
732 | | // double, long double, or 128-bit vectors. |
733 | 0 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
734 | 0 | if (BT->getKind() == BuiltinType::Float || |
735 | 0 | BT->getKind() == BuiltinType::Double || |
736 | 0 | BT->getKind() == BuiltinType::LongDouble || |
737 | 0 | BT->getKind() == BuiltinType::Ibm128 || |
738 | 0 | (getContext().getTargetInfo().hasFloat128Type() && |
739 | 0 | (BT->getKind() == BuiltinType::Float128))) { |
740 | 0 | if (IsSoftFloatABI) |
741 | 0 | return false; |
742 | 0 | return true; |
743 | 0 | } |
744 | 0 | } |
745 | 0 | if (const VectorType *VT = Ty->getAs<VectorType>()) { |
746 | 0 | if (getContext().getTypeSize(VT) == 128) |
747 | 0 | return true; |
748 | 0 | } |
749 | 0 | return false; |
750 | 0 | } |
751 | | |
752 | | bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( |
753 | 0 | const Type *Base, uint64_t Members) const { |
754 | | // Vector and fp128 types require one register, other floating point types |
755 | | // require one or two registers depending on their size. |
756 | 0 | uint32_t NumRegs = |
757 | 0 | ((getContext().getTargetInfo().hasFloat128Type() && |
758 | 0 | Base->isFloat128Type()) || |
759 | 0 | Base->isVectorType()) ? 1 |
760 | 0 | : (getContext().getTypeSize(Base) + 63) / 64; |
761 | | |
762 | | // Homogeneous Aggregates may occupy at most 8 registers. |
763 | 0 | return Members * NumRegs <= 8; |
764 | 0 | } |
765 | | |
766 | | ABIArgInfo |
767 | 0 | PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { |
768 | 0 | Ty = useFirstFieldIfTransparentUnion(Ty); |
769 | |
|
770 | 0 | if (Ty->isAnyComplexType()) |
771 | 0 | return ABIArgInfo::getDirect(); |
772 | | |
773 | | // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) |
774 | | // or via reference (larger than 16 bytes). |
775 | 0 | if (Ty->isVectorType()) { |
776 | 0 | uint64_t Size = getContext().getTypeSize(Ty); |
777 | 0 | if (Size > 128) |
778 | 0 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
779 | 0 | else if (Size < 128) { |
780 | 0 | llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); |
781 | 0 | return ABIArgInfo::getDirect(CoerceTy); |
782 | 0 | } |
783 | 0 | } |
784 | | |
785 | 0 | if (const auto *EIT = Ty->getAs<BitIntType>()) |
786 | 0 | if (EIT->getNumBits() > 128) |
787 | 0 | return getNaturalAlignIndirect(Ty, /*ByVal=*/true); |
788 | | |
789 | 0 | if (isAggregateTypeForABI(Ty)) { |
790 | 0 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
791 | 0 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
792 | | |
793 | 0 | uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); |
794 | 0 | uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); |
795 | | |
796 | | // ELFv2 homogeneous aggregates are passed as array types. |
797 | 0 | const Type *Base = nullptr; |
798 | 0 | uint64_t Members = 0; |
799 | 0 | if (Kind == PPC64_SVR4_ABIKind::ELFv2 && |
800 | 0 | isHomogeneousAggregate(Ty, Base, Members)) { |
801 | 0 | llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); |
802 | 0 | llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); |
803 | 0 | return ABIArgInfo::getDirect(CoerceTy); |
804 | 0 | } |
805 | | |
806 | | // If an aggregate may end up fully in registers, we do not |
807 | | // use the ByVal method, but pass the aggregate as array. |
808 | | // This is usually beneficial since we avoid forcing the |
809 | | // back-end to store the argument to memory. |
810 | 0 | uint64_t Bits = getContext().getTypeSize(Ty); |
811 | 0 | if (Bits > 0 && Bits <= 8 * GPRBits) { |
812 | 0 | llvm::Type *CoerceTy; |
813 | | |
814 | | // Types up to 8 bytes are passed as integer type (which will be |
815 | | // properly aligned in the argument save area doubleword). |
816 | 0 | if (Bits <= GPRBits) |
817 | 0 | CoerceTy = |
818 | 0 | llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); |
819 | | // Larger types are passed as arrays, with the base type selected |
820 | | // according to the required alignment in the save area. |
821 | 0 | else { |
822 | 0 | uint64_t RegBits = ABIAlign * 8; |
823 | 0 | uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; |
824 | 0 | llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); |
825 | 0 | CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); |
826 | 0 | } |
827 | |
|
828 | 0 | return ABIArgInfo::getDirect(CoerceTy); |
829 | 0 | } |
830 | | |
831 | | // All other aggregates are passed ByVal. |
832 | 0 | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), |
833 | 0 | /*ByVal=*/true, |
834 | 0 | /*Realign=*/TyAlign > ABIAlign); |
835 | 0 | } |
836 | | |
837 | 0 | return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) |
838 | 0 | : ABIArgInfo::getDirect()); |
839 | 0 | } |
840 | | |
841 | | ABIArgInfo |
842 | 0 | PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { |
843 | 0 | if (RetTy->isVoidType()) |
844 | 0 | return ABIArgInfo::getIgnore(); |
845 | | |
846 | 0 | if (RetTy->isAnyComplexType()) |
847 | 0 | return ABIArgInfo::getDirect(); |
848 | | |
849 | | // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) |
850 | | // or via reference (larger than 16 bytes). |
851 | 0 | if (RetTy->isVectorType()) { |
852 | 0 | uint64_t Size = getContext().getTypeSize(RetTy); |
853 | 0 | if (Size > 128) |
854 | 0 | return getNaturalAlignIndirect(RetTy); |
855 | 0 | else if (Size < 128) { |
856 | 0 | llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); |
857 | 0 | return ABIArgInfo::getDirect(CoerceTy); |
858 | 0 | } |
859 | 0 | } |
860 | | |
861 | 0 | if (const auto *EIT = RetTy->getAs<BitIntType>()) |
862 | 0 | if (EIT->getNumBits() > 128) |
863 | 0 | return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); |
864 | | |
865 | 0 | if (isAggregateTypeForABI(RetTy)) { |
866 | | // ELFv2 homogeneous aggregates are returned as array types. |
867 | 0 | const Type *Base = nullptr; |
868 | 0 | uint64_t Members = 0; |
869 | 0 | if (Kind == PPC64_SVR4_ABIKind::ELFv2 && |
870 | 0 | isHomogeneousAggregate(RetTy, Base, Members)) { |
871 | 0 | llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); |
872 | 0 | llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); |
873 | 0 | return ABIArgInfo::getDirect(CoerceTy); |
874 | 0 | } |
875 | | |
876 | | // ELFv2 small aggregates are returned in up to two registers. |
877 | 0 | uint64_t Bits = getContext().getTypeSize(RetTy); |
878 | 0 | if (Kind == PPC64_SVR4_ABIKind::ELFv2 && Bits <= 2 * GPRBits) { |
879 | 0 | if (Bits == 0) |
880 | 0 | return ABIArgInfo::getIgnore(); |
881 | | |
882 | 0 | llvm::Type *CoerceTy; |
883 | 0 | if (Bits > GPRBits) { |
884 | 0 | CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); |
885 | 0 | CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); |
886 | 0 | } else |
887 | 0 | CoerceTy = |
888 | 0 | llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); |
889 | 0 | return ABIArgInfo::getDirect(CoerceTy); |
890 | 0 | } |
891 | | |
892 | | // All other aggregates are returned indirectly. |
893 | 0 | return getNaturalAlignIndirect(RetTy); |
894 | 0 | } |
895 | | |
896 | 0 | return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) |
897 | 0 | : ABIArgInfo::getDirect()); |
898 | 0 | } |
899 | | |
900 | | // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. |
901 | | Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
902 | 0 | QualType Ty) const { |
903 | 0 | auto TypeInfo = getContext().getTypeInfoInChars(Ty); |
904 | 0 | TypeInfo.Align = getParamTypeAlignment(Ty); |
905 | |
|
906 | 0 | CharUnits SlotSize = CharUnits::fromQuantity(8); |
907 | | |
908 | | // If we have a complex type and the base type is smaller than 8 bytes, |
909 | | // the ABI calls for the real and imaginary parts to be right-adjusted |
910 | | // in separate doublewords. However, Clang expects us to produce a |
911 | | // pointer to a structure with the two parts packed tightly. So generate |
912 | | // loads of the real and imaginary parts relative to the va_list pointer, |
913 | | // and store them to a temporary structure. |
914 | 0 | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { |
915 | 0 | CharUnits EltSize = TypeInfo.Width / 2; |
916 | 0 | if (EltSize < SlotSize) |
917 | 0 | return complexTempStructure(CGF, VAListAddr, Ty, SlotSize, EltSize, CTy); |
918 | 0 | } |
919 | | |
920 | | // Otherwise, just use the general rule. |
921 | | // |
922 | | // The PPC64 ABI passes some arguments in integer registers, even to variadic |
923 | | // functions. To allow va_list to use the simple "void*" representation, |
924 | | // variadic calls allocate space in the argument area for the integer argument |
925 | | // registers, and variadic functions spill their integer argument registers to |
926 | | // this area in their prologues. When aggregates smaller than a register are |
927 | | // passed this way, they are passed in the least significant bits of the |
928 | | // register, which means that after spilling on big-endian targets they will |
929 | | // be right-aligned in their argument slot. This is uncommon; for a variety of |
930 | | // reasons, other big-endian targets don't end up right-aligning aggregate |
931 | | // types this way, and so right-alignment only applies to fundamental types. |
932 | | // So on PPC64, we must force the use of right-alignment even for aggregates. |
933 | 0 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, |
934 | 0 | SlotSize, /*AllowHigher*/ true, |
935 | 0 | /*ForceRightAdjust*/ true); |
936 | 0 | } |
937 | | |
938 | | bool |
939 | | PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( |
940 | | CodeGen::CodeGenFunction &CGF, |
941 | 0 | llvm::Value *Address) const { |
942 | 0 | return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, |
943 | 0 | /*IsAIX*/ false); |
944 | 0 | } |
945 | | |
946 | | void PPC64_SVR4_TargetCodeGenInfo::emitTargetMetadata( |
947 | | CodeGen::CodeGenModule &CGM, |
948 | 0 | const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { |
949 | 0 | if (CGM.getTypes().isLongDoubleReferenced()) { |
950 | 0 | llvm::LLVMContext &Ctx = CGM.getLLVMContext(); |
951 | 0 | const auto *flt = &CGM.getTarget().getLongDoubleFormat(); |
952 | 0 | if (flt == &llvm::APFloat::PPCDoubleDouble()) |
953 | 0 | CGM.getModule().addModuleFlag(llvm::Module::Error, "float-abi", |
954 | 0 | llvm::MDString::get(Ctx, "doubledouble")); |
955 | 0 | else if (flt == &llvm::APFloat::IEEEquad()) |
956 | 0 | CGM.getModule().addModuleFlag(llvm::Module::Error, "float-abi", |
957 | 0 | llvm::MDString::get(Ctx, "ieeequad")); |
958 | 0 | else if (flt == &llvm::APFloat::IEEEdouble()) |
959 | 0 | CGM.getModule().addModuleFlag(llvm::Module::Error, "float-abi", |
960 | 0 | llvm::MDString::get(Ctx, "ieeedouble")); |
961 | 0 | } |
962 | 0 | } |
963 | | |
964 | | bool |
965 | | PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
966 | 0 | llvm::Value *Address) const { |
967 | 0 | return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, |
968 | 0 | /*IsAIX*/ false); |
969 | 0 | } |
970 | | |
971 | | std::unique_ptr<TargetCodeGenInfo> |
972 | 0 | CodeGen::createAIXTargetCodeGenInfo(CodeGenModule &CGM, bool Is64Bit) { |
973 | 0 | return std::make_unique<AIXTargetCodeGenInfo>(CGM.getTypes(), Is64Bit); |
974 | 0 | } |
975 | | |
976 | | std::unique_ptr<TargetCodeGenInfo> |
977 | 0 | CodeGen::createPPC32TargetCodeGenInfo(CodeGenModule &CGM, bool SoftFloatABI) { |
978 | 0 | bool RetSmallStructInRegABI = PPC32TargetCodeGenInfo::isStructReturnInRegABI( |
979 | 0 | CGM.getTriple(), CGM.getCodeGenOpts()); |
980 | 0 | return std::make_unique<PPC32TargetCodeGenInfo>(CGM.getTypes(), SoftFloatABI, |
981 | 0 | RetSmallStructInRegABI); |
982 | 0 | } |
983 | | |
984 | | std::unique_ptr<TargetCodeGenInfo> |
985 | 0 | CodeGen::createPPC64TargetCodeGenInfo(CodeGenModule &CGM) { |
986 | 0 | return std::make_unique<PPC64TargetCodeGenInfo>(CGM.getTypes()); |
987 | 0 | } |
988 | | |
989 | | std::unique_ptr<TargetCodeGenInfo> CodeGen::createPPC64_SVR4_TargetCodeGenInfo( |
990 | 0 | CodeGenModule &CGM, PPC64_SVR4_ABIKind Kind, bool SoftFloatABI) { |
991 | 0 | return std::make_unique<PPC64_SVR4_TargetCodeGenInfo>(CGM.getTypes(), Kind, |
992 | 0 | SoftFloatABI); |
993 | 0 | } |