/src/llvm-project/clang/lib/CodeGen/Targets/X86.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- X86.cpp ------------------------------------------------------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | |
9 | | #include "ABIInfoImpl.h" |
10 | | #include "TargetInfo.h" |
11 | | #include "clang/Basic/DiagnosticFrontend.h" |
12 | | #include "llvm/ADT/SmallBitVector.h" |
13 | | |
14 | | using namespace clang; |
15 | | using namespace clang::CodeGen; |
16 | | |
17 | | namespace { |
18 | | |
19 | | /// IsX86_MMXType - Return true if this is an MMX type. |
20 | 0 | bool IsX86_MMXType(llvm::Type *IRType) { |
21 | | // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. |
22 | 0 | return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && |
23 | 0 | cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && |
24 | 0 | IRType->getScalarSizeInBits() != 64; |
25 | 0 | } |
26 | | |
27 | | static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, |
28 | | StringRef Constraint, |
29 | 0 | llvm::Type* Ty) { |
30 | 0 | bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) |
31 | 0 | .Cases("y", "&y", "^Ym", true) |
32 | 0 | .Default(false); |
33 | 0 | if (IsMMXCons && Ty->isVectorTy()) { |
34 | 0 | if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() != |
35 | 0 | 64) { |
36 | | // Invalid MMX constraint |
37 | 0 | return nullptr; |
38 | 0 | } |
39 | | |
40 | 0 | return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); |
41 | 0 | } |
42 | | |
43 | 0 | if (Constraint == "k") { |
44 | 0 | llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGF.getLLVMContext()); |
45 | 0 | return llvm::FixedVectorType::get(Int1Ty, Ty->getScalarSizeInBits()); |
46 | 0 | } |
47 | | |
48 | | // No operation needed |
49 | 0 | return Ty; |
50 | 0 | } |
51 | | |
52 | | /// Returns true if this type can be passed in SSE registers with the |
53 | | /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. |
54 | 0 | static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { |
55 | 0 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
56 | 0 | if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { |
57 | 0 | if (BT->getKind() == BuiltinType::LongDouble) { |
58 | 0 | if (&Context.getTargetInfo().getLongDoubleFormat() == |
59 | 0 | &llvm::APFloat::x87DoubleExtended()) |
60 | 0 | return false; |
61 | 0 | } |
62 | 0 | return true; |
63 | 0 | } |
64 | 0 | } else if (const VectorType *VT = Ty->getAs<VectorType>()) { |
65 | | // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX |
66 | | // registers specially. |
67 | 0 | unsigned VecSize = Context.getTypeSize(VT); |
68 | 0 | if (VecSize == 128 || VecSize == 256 || VecSize == 512) |
69 | 0 | return true; |
70 | 0 | } |
71 | 0 | return false; |
72 | 0 | } |
73 | | |
74 | | /// Returns true if this aggregate is small enough to be passed in SSE registers |
75 | | /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. |
76 | 0 | static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { |
77 | 0 | return NumMembers <= 4; |
78 | 0 | } |
79 | | |
80 | | /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. |
81 | 0 | static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { |
82 | 0 | auto AI = ABIArgInfo::getDirect(T); |
83 | 0 | AI.setInReg(true); |
84 | 0 | AI.setCanBeFlattened(false); |
85 | 0 | return AI; |
86 | 0 | } |
87 | | |
88 | | //===----------------------------------------------------------------------===// |
89 | | // X86-32 ABI Implementation |
90 | | //===----------------------------------------------------------------------===// |
91 | | |
92 | | /// Similar to llvm::CCState, but for Clang. |
93 | | struct CCState { |
94 | | CCState(CGFunctionInfo &FI) |
95 | | : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()), |
96 | 0 | Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {} |
97 | | |
98 | | llvm::SmallBitVector IsPreassigned; |
99 | | unsigned CC = CallingConv::CC_C; |
100 | | unsigned FreeRegs = 0; |
101 | | unsigned FreeSSERegs = 0; |
102 | | RequiredArgs Required; |
103 | | bool IsDelegateCall = false; |
104 | | }; |
105 | | |
106 | | /// X86_32ABIInfo - The X86-32 ABI information. |
107 | | class X86_32ABIInfo : public ABIInfo { |
108 | | enum Class { |
109 | | Integer, |
110 | | Float |
111 | | }; |
112 | | |
113 | | static const unsigned MinABIStackAlignInBytes = 4; |
114 | | |
115 | | bool IsDarwinVectorABI; |
116 | | bool IsRetSmallStructInRegABI; |
117 | | bool IsWin32StructABI; |
118 | | bool IsSoftFloatABI; |
119 | | bool IsMCUABI; |
120 | | bool IsLinuxABI; |
121 | | unsigned DefaultNumRegisterParameters; |
122 | | |
123 | 0 | static bool isRegisterSize(unsigned Size) { |
124 | 0 | return (Size == 8 || Size == 16 || Size == 32 || Size == 64); |
125 | 0 | } |
126 | | |
127 | 0 | bool isHomogeneousAggregateBaseType(QualType Ty) const override { |
128 | | // FIXME: Assumes vectorcall is in use. |
129 | 0 | return isX86VectorTypeForVectorCall(getContext(), Ty); |
130 | 0 | } |
131 | | |
132 | | bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
133 | 0 | uint64_t NumMembers) const override { |
134 | | // FIXME: Assumes vectorcall is in use. |
135 | 0 | return isX86VectorCallAggregateSmallEnough(NumMembers); |
136 | 0 | } |
137 | | |
138 | | bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; |
139 | | |
140 | | /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
141 | | /// such that the argument will be passed in memory. |
142 | | ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; |
143 | | |
144 | | ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; |
145 | | |
146 | | /// Return the alignment to use for the given type on the stack. |
147 | | unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; |
148 | | |
149 | | Class classify(QualType Ty) const; |
150 | | ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; |
151 | | ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State, |
152 | | unsigned ArgIndex) const; |
153 | | |
154 | | /// Updates the number of available free registers, returns |
155 | | /// true if any registers were allocated. |
156 | | bool updateFreeRegs(QualType Ty, CCState &State) const; |
157 | | |
158 | | bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, |
159 | | bool &NeedsPadding) const; |
160 | | bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; |
161 | | |
162 | | bool canExpandIndirectArgument(QualType Ty) const; |
163 | | |
164 | | /// Rewrite the function info so that all memory arguments use |
165 | | /// inalloca. |
166 | | void rewriteWithInAlloca(CGFunctionInfo &FI) const; |
167 | | |
168 | | void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, |
169 | | CharUnits &StackOffset, ABIArgInfo &Info, |
170 | | QualType Type) const; |
171 | | void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; |
172 | | |
173 | | public: |
174 | | |
175 | | void computeInfo(CGFunctionInfo &FI) const override; |
176 | | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
177 | | QualType Ty) const override; |
178 | | |
179 | | X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, |
180 | | bool RetSmallStructInRegABI, bool Win32StructABI, |
181 | | unsigned NumRegisterParameters, bool SoftFloatABI) |
182 | | : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), |
183 | | IsRetSmallStructInRegABI(RetSmallStructInRegABI), |
184 | | IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), |
185 | | IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), |
186 | | IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || |
187 | | CGT.getTarget().getTriple().isOSCygMing()), |
188 | 0 | DefaultNumRegisterParameters(NumRegisterParameters) {} |
189 | | }; |
190 | | |
191 | | class X86_32SwiftABIInfo : public SwiftABIInfo { |
192 | | public: |
193 | | explicit X86_32SwiftABIInfo(CodeGenTypes &CGT) |
194 | 0 | : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {} |
195 | | |
196 | | bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys, |
197 | 0 | bool AsReturnValue) const override { |
198 | | // LLVM's x86-32 lowering currently only assigns up to three |
199 | | // integer registers and three fp registers. Oddly, it'll use up to |
200 | | // four vector registers for vectors, but those can overlap with the |
201 | | // scalar registers. |
202 | 0 | return occupiesMoreThan(ComponentTys, /*total=*/3); |
203 | 0 | } |
204 | | }; |
205 | | |
206 | | class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { |
207 | | public: |
208 | | X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, |
209 | | bool RetSmallStructInRegABI, bool Win32StructABI, |
210 | | unsigned NumRegisterParameters, bool SoftFloatABI) |
211 | | : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( |
212 | | CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, |
213 | 0 | NumRegisterParameters, SoftFloatABI)) { |
214 | 0 | SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT); |
215 | 0 | } |
216 | | |
217 | | static bool isStructReturnInRegABI( |
218 | | const llvm::Triple &Triple, const CodeGenOptions &Opts); |
219 | | |
220 | | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
221 | | CodeGen::CodeGenModule &CGM) const override; |
222 | | |
223 | 0 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { |
224 | | // Darwin uses different dwarf register numbers for EH. |
225 | 0 | if (CGM.getTarget().getTriple().isOSDarwin()) return 5; |
226 | 0 | return 4; |
227 | 0 | } |
228 | | |
229 | | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
230 | | llvm::Value *Address) const override; |
231 | | |
232 | | llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, |
233 | | StringRef Constraint, |
234 | 0 | llvm::Type* Ty) const override { |
235 | 0 | return X86AdjustInlineAsmType(CGF, Constraint, Ty); |
236 | 0 | } |
237 | | |
238 | | void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, |
239 | | std::string &Constraints, |
240 | | std::vector<llvm::Type *> &ResultRegTypes, |
241 | | std::vector<llvm::Type *> &ResultTruncRegTypes, |
242 | | std::vector<LValue> &ResultRegDests, |
243 | | std::string &AsmString, |
244 | | unsigned NumOutputs) const override; |
245 | | |
246 | 0 | StringRef getARCRetainAutoreleasedReturnValueMarker() const override { |
247 | 0 | return "movl\t%ebp, %ebp" |
248 | 0 | "\t\t// marker for objc_retainAutoreleaseReturnValue"; |
249 | 0 | } |
250 | | }; |
251 | | |
252 | | } |
253 | | |
254 | | /// Rewrite input constraint references after adding some output constraints. |
255 | | /// In the case where there is one output and one input and we add one output, |
256 | | /// we need to replace all operand references greater than or equal to 1: |
257 | | /// mov $0, $1 |
258 | | /// mov eax, $1 |
259 | | /// The result will be: |
260 | | /// mov $0, $2 |
261 | | /// mov eax, $2 |
262 | | static void rewriteInputConstraintReferences(unsigned FirstIn, |
263 | | unsigned NumNewOuts, |
264 | 0 | std::string &AsmString) { |
265 | 0 | std::string Buf; |
266 | 0 | llvm::raw_string_ostream OS(Buf); |
267 | 0 | size_t Pos = 0; |
268 | 0 | while (Pos < AsmString.size()) { |
269 | 0 | size_t DollarStart = AsmString.find('$', Pos); |
270 | 0 | if (DollarStart == std::string::npos) |
271 | 0 | DollarStart = AsmString.size(); |
272 | 0 | size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); |
273 | 0 | if (DollarEnd == std::string::npos) |
274 | 0 | DollarEnd = AsmString.size(); |
275 | 0 | OS << StringRef(&AsmString[Pos], DollarEnd - Pos); |
276 | 0 | Pos = DollarEnd; |
277 | 0 | size_t NumDollars = DollarEnd - DollarStart; |
278 | 0 | if (NumDollars % 2 != 0 && Pos < AsmString.size()) { |
279 | | // We have an operand reference. |
280 | 0 | size_t DigitStart = Pos; |
281 | 0 | if (AsmString[DigitStart] == '{') { |
282 | 0 | OS << '{'; |
283 | 0 | ++DigitStart; |
284 | 0 | } |
285 | 0 | size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); |
286 | 0 | if (DigitEnd == std::string::npos) |
287 | 0 | DigitEnd = AsmString.size(); |
288 | 0 | StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); |
289 | 0 | unsigned OperandIndex; |
290 | 0 | if (!OperandStr.getAsInteger(10, OperandIndex)) { |
291 | 0 | if (OperandIndex >= FirstIn) |
292 | 0 | OperandIndex += NumNewOuts; |
293 | 0 | OS << OperandIndex; |
294 | 0 | } else { |
295 | 0 | OS << OperandStr; |
296 | 0 | } |
297 | 0 | Pos = DigitEnd; |
298 | 0 | } |
299 | 0 | } |
300 | 0 | AsmString = std::move(OS.str()); |
301 | 0 | } |
302 | | |
303 | | /// Add output constraints for EAX:EDX because they are return registers. |
304 | | void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( |
305 | | CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, |
306 | | std::vector<llvm::Type *> &ResultRegTypes, |
307 | | std::vector<llvm::Type *> &ResultTruncRegTypes, |
308 | | std::vector<LValue> &ResultRegDests, std::string &AsmString, |
309 | 0 | unsigned NumOutputs) const { |
310 | 0 | uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); |
311 | | |
312 | | // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is |
313 | | // larger. |
314 | 0 | if (!Constraints.empty()) |
315 | 0 | Constraints += ','; |
316 | 0 | if (RetWidth <= 32) { |
317 | 0 | Constraints += "={eax}"; |
318 | 0 | ResultRegTypes.push_back(CGF.Int32Ty); |
319 | 0 | } else { |
320 | | // Use the 'A' constraint for EAX:EDX. |
321 | 0 | Constraints += "=A"; |
322 | 0 | ResultRegTypes.push_back(CGF.Int64Ty); |
323 | 0 | } |
324 | | |
325 | | // Truncate EAX or EAX:EDX to an integer of the appropriate size. |
326 | 0 | llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); |
327 | 0 | ResultTruncRegTypes.push_back(CoerceTy); |
328 | | |
329 | | // Coerce the integer by bitcasting the return slot pointer. |
330 | 0 | ReturnSlot.setAddress(ReturnSlot.getAddress(CGF).withElementType(CoerceTy)); |
331 | 0 | ResultRegDests.push_back(ReturnSlot); |
332 | |
|
333 | 0 | rewriteInputConstraintReferences(NumOutputs, 1, AsmString); |
334 | 0 | } |
335 | | |
336 | | /// shouldReturnTypeInRegister - Determine if the given type should be |
337 | | /// returned in a register (for the Darwin and MCU ABI). |
338 | | bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, |
339 | 0 | ASTContext &Context) const { |
340 | 0 | uint64_t Size = Context.getTypeSize(Ty); |
341 | | |
342 | | // For i386, type must be register sized. |
343 | | // For the MCU ABI, it only needs to be <= 8-byte |
344 | 0 | if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) |
345 | 0 | return false; |
346 | | |
347 | 0 | if (Ty->isVectorType()) { |
348 | | // 64- and 128- bit vectors inside structures are not returned in |
349 | | // registers. |
350 | 0 | if (Size == 64 || Size == 128) |
351 | 0 | return false; |
352 | | |
353 | 0 | return true; |
354 | 0 | } |
355 | | |
356 | | // If this is a builtin, pointer, enum, complex type, member pointer, or |
357 | | // member function pointer it is ok. |
358 | 0 | if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || |
359 | 0 | Ty->isAnyComplexType() || Ty->isEnumeralType() || |
360 | 0 | Ty->isBlockPointerType() || Ty->isMemberPointerType()) |
361 | 0 | return true; |
362 | | |
363 | | // Arrays are treated like records. |
364 | 0 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) |
365 | 0 | return shouldReturnTypeInRegister(AT->getElementType(), Context); |
366 | | |
367 | | // Otherwise, it must be a record type. |
368 | 0 | const RecordType *RT = Ty->getAs<RecordType>(); |
369 | 0 | if (!RT) return false; |
370 | | |
371 | | // FIXME: Traverse bases here too. |
372 | | |
373 | | // Structure types are passed in register if all fields would be |
374 | | // passed in a register. |
375 | 0 | for (const auto *FD : RT->getDecl()->fields()) { |
376 | | // Empty fields are ignored. |
377 | 0 | if (isEmptyField(Context, FD, true)) |
378 | 0 | continue; |
379 | | |
380 | | // Check fields recursively. |
381 | 0 | if (!shouldReturnTypeInRegister(FD->getType(), Context)) |
382 | 0 | return false; |
383 | 0 | } |
384 | 0 | return true; |
385 | 0 | } |
386 | | |
387 | 0 | static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { |
388 | | // Treat complex types as the element type. |
389 | 0 | if (const ComplexType *CTy = Ty->getAs<ComplexType>()) |
390 | 0 | Ty = CTy->getElementType(); |
391 | | |
392 | | // Check for a type which we know has a simple scalar argument-passing |
393 | | // convention without any padding. (We're specifically looking for 32 |
394 | | // and 64-bit integer and integer-equivalents, float, and double.) |
395 | 0 | if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && |
396 | 0 | !Ty->isEnumeralType() && !Ty->isBlockPointerType()) |
397 | 0 | return false; |
398 | | |
399 | 0 | uint64_t Size = Context.getTypeSize(Ty); |
400 | 0 | return Size == 32 || Size == 64; |
401 | 0 | } |
402 | | |
403 | | static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, |
404 | 0 | uint64_t &Size) { |
405 | 0 | for (const auto *FD : RD->fields()) { |
406 | | // Scalar arguments on the stack get 4 byte alignment on x86. If the |
407 | | // argument is smaller than 32-bits, expanding the struct will create |
408 | | // alignment padding. |
409 | 0 | if (!is32Or64BitBasicType(FD->getType(), Context)) |
410 | 0 | return false; |
411 | | |
412 | | // FIXME: Reject bit-fields wholesale; there are two problems, we don't know |
413 | | // how to expand them yet, and the predicate for telling if a bitfield still |
414 | | // counts as "basic" is more complicated than what we were doing previously. |
415 | 0 | if (FD->isBitField()) |
416 | 0 | return false; |
417 | | |
418 | 0 | Size += Context.getTypeSize(FD->getType()); |
419 | 0 | } |
420 | 0 | return true; |
421 | 0 | } |
422 | | |
423 | | static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, |
424 | 0 | uint64_t &Size) { |
425 | | // Don't do this if there are any non-empty bases. |
426 | 0 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
427 | 0 | if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), |
428 | 0 | Size)) |
429 | 0 | return false; |
430 | 0 | } |
431 | 0 | if (!addFieldSizes(Context, RD, Size)) |
432 | 0 | return false; |
433 | 0 | return true; |
434 | 0 | } |
435 | | |
436 | | /// Test whether an argument type which is to be passed indirectly (on the |
437 | | /// stack) would have the equivalent layout if it was expanded into separate |
438 | | /// arguments. If so, we prefer to do the latter to avoid inhibiting |
439 | | /// optimizations. |
440 | 0 | bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { |
441 | | // We can only expand structure types. |
442 | 0 | const RecordType *RT = Ty->getAs<RecordType>(); |
443 | 0 | if (!RT) |
444 | 0 | return false; |
445 | 0 | const RecordDecl *RD = RT->getDecl(); |
446 | 0 | uint64_t Size = 0; |
447 | 0 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
448 | 0 | if (!IsWin32StructABI) { |
449 | | // On non-Windows, we have to conservatively match our old bitcode |
450 | | // prototypes in order to be ABI-compatible at the bitcode level. |
451 | 0 | if (!CXXRD->isCLike()) |
452 | 0 | return false; |
453 | 0 | } else { |
454 | | // Don't do this for dynamic classes. |
455 | 0 | if (CXXRD->isDynamicClass()) |
456 | 0 | return false; |
457 | 0 | } |
458 | 0 | if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) |
459 | 0 | return false; |
460 | 0 | } else { |
461 | 0 | if (!addFieldSizes(getContext(), RD, Size)) |
462 | 0 | return false; |
463 | 0 | } |
464 | | |
465 | | // We can do this if there was no alignment padding. |
466 | 0 | return Size == getContext().getTypeSize(Ty); |
467 | 0 | } |
468 | | |
469 | 0 | ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { |
470 | | // If the return value is indirect, then the hidden argument is consuming one |
471 | | // integer register. |
472 | 0 | if (State.FreeRegs) { |
473 | 0 | --State.FreeRegs; |
474 | 0 | if (!IsMCUABI) |
475 | 0 | return getNaturalAlignIndirectInReg(RetTy); |
476 | 0 | } |
477 | 0 | return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); |
478 | 0 | } |
479 | | |
480 | | ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, |
481 | 0 | CCState &State) const { |
482 | 0 | if (RetTy->isVoidType()) |
483 | 0 | return ABIArgInfo::getIgnore(); |
484 | | |
485 | 0 | const Type *Base = nullptr; |
486 | 0 | uint64_t NumElts = 0; |
487 | 0 | if ((State.CC == llvm::CallingConv::X86_VectorCall || |
488 | 0 | State.CC == llvm::CallingConv::X86_RegCall) && |
489 | 0 | isHomogeneousAggregate(RetTy, Base, NumElts)) { |
490 | | // The LLVM struct type for such an aggregate should lower properly. |
491 | 0 | return ABIArgInfo::getDirect(); |
492 | 0 | } |
493 | | |
494 | 0 | if (const VectorType *VT = RetTy->getAs<VectorType>()) { |
495 | | // On Darwin, some vectors are returned in registers. |
496 | 0 | if (IsDarwinVectorABI) { |
497 | 0 | uint64_t Size = getContext().getTypeSize(RetTy); |
498 | | |
499 | | // 128-bit vectors are a special case; they are returned in |
500 | | // registers and we need to make sure to pick a type the LLVM |
501 | | // backend will like. |
502 | 0 | if (Size == 128) |
503 | 0 | return ABIArgInfo::getDirect(llvm::FixedVectorType::get( |
504 | 0 | llvm::Type::getInt64Ty(getVMContext()), 2)); |
505 | | |
506 | | // Always return in register if it fits in a general purpose |
507 | | // register, or if it is 64 bits and has a single element. |
508 | 0 | if ((Size == 8 || Size == 16 || Size == 32) || |
509 | 0 | (Size == 64 && VT->getNumElements() == 1)) |
510 | 0 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), |
511 | 0 | Size)); |
512 | | |
513 | 0 | return getIndirectReturnResult(RetTy, State); |
514 | 0 | } |
515 | | |
516 | 0 | return ABIArgInfo::getDirect(); |
517 | 0 | } |
518 | | |
519 | 0 | if (isAggregateTypeForABI(RetTy)) { |
520 | 0 | if (const RecordType *RT = RetTy->getAs<RecordType>()) { |
521 | | // Structures with flexible arrays are always indirect. |
522 | 0 | if (RT->getDecl()->hasFlexibleArrayMember()) |
523 | 0 | return getIndirectReturnResult(RetTy, State); |
524 | 0 | } |
525 | | |
526 | | // If specified, structs and unions are always indirect. |
527 | 0 | if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) |
528 | 0 | return getIndirectReturnResult(RetTy, State); |
529 | | |
530 | | // Ignore empty structs/unions. |
531 | 0 | if (isEmptyRecord(getContext(), RetTy, true)) |
532 | 0 | return ABIArgInfo::getIgnore(); |
533 | | |
534 | | // Return complex of _Float16 as <2 x half> so the backend will use xmm0. |
535 | 0 | if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { |
536 | 0 | QualType ET = getContext().getCanonicalType(CT->getElementType()); |
537 | 0 | if (ET->isFloat16Type()) |
538 | 0 | return ABIArgInfo::getDirect(llvm::FixedVectorType::get( |
539 | 0 | llvm::Type::getHalfTy(getVMContext()), 2)); |
540 | 0 | } |
541 | | |
542 | | // Small structures which are register sized are generally returned |
543 | | // in a register. |
544 | 0 | if (shouldReturnTypeInRegister(RetTy, getContext())) { |
545 | 0 | uint64_t Size = getContext().getTypeSize(RetTy); |
546 | | |
547 | | // As a special-case, if the struct is a "single-element" struct, and |
548 | | // the field is of type "float" or "double", return it in a |
549 | | // floating-point register. (MSVC does not apply this special case.) |
550 | | // We apply a similar transformation for pointer types to improve the |
551 | | // quality of the generated IR. |
552 | 0 | if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) |
553 | 0 | if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) |
554 | 0 | || SeltTy->hasPointerRepresentation()) |
555 | 0 | return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); |
556 | | |
557 | | // FIXME: We should be able to narrow this integer in cases with dead |
558 | | // padding. |
559 | 0 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); |
560 | 0 | } |
561 | | |
562 | 0 | return getIndirectReturnResult(RetTy, State); |
563 | 0 | } |
564 | | |
565 | | // Treat an enum type as its underlying type. |
566 | 0 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
567 | 0 | RetTy = EnumTy->getDecl()->getIntegerType(); |
568 | |
|
569 | 0 | if (const auto *EIT = RetTy->getAs<BitIntType>()) |
570 | 0 | if (EIT->getNumBits() > 64) |
571 | 0 | return getIndirectReturnResult(RetTy, State); |
572 | | |
573 | 0 | return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) |
574 | 0 | : ABIArgInfo::getDirect()); |
575 | 0 | } |
576 | | |
577 | | unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, |
578 | 0 | unsigned Align) const { |
579 | | // Otherwise, if the alignment is less than or equal to the minimum ABI |
580 | | // alignment, just use the default; the backend will handle this. |
581 | 0 | if (Align <= MinABIStackAlignInBytes) |
582 | 0 | return 0; // Use default alignment. |
583 | | |
584 | 0 | if (IsLinuxABI) { |
585 | | // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't |
586 | | // want to spend any effort dealing with the ramifications of ABI breaks. |
587 | | // |
588 | | // If the vector type is __m128/__m256/__m512, return the default alignment. |
589 | 0 | if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) |
590 | 0 | return Align; |
591 | 0 | } |
592 | | // On non-Darwin, the stack type alignment is always 4. |
593 | 0 | if (!IsDarwinVectorABI) { |
594 | | // Set explicit alignment, since we may need to realign the top. |
595 | 0 | return MinABIStackAlignInBytes; |
596 | 0 | } |
597 | | |
598 | | // Otherwise, if the type contains an SSE vector type, the alignment is 16. |
599 | 0 | if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || |
600 | 0 | isRecordWithSIMDVectorType(getContext(), Ty))) |
601 | 0 | return 16; |
602 | | |
603 | 0 | return MinABIStackAlignInBytes; |
604 | 0 | } |
605 | | |
606 | | ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, |
607 | 0 | CCState &State) const { |
608 | 0 | if (!ByVal) { |
609 | 0 | if (State.FreeRegs) { |
610 | 0 | --State.FreeRegs; // Non-byval indirects just use one pointer. |
611 | 0 | if (!IsMCUABI) |
612 | 0 | return getNaturalAlignIndirectInReg(Ty); |
613 | 0 | } |
614 | 0 | return getNaturalAlignIndirect(Ty, false); |
615 | 0 | } |
616 | | |
617 | | // Compute the byval alignment. |
618 | 0 | unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; |
619 | 0 | unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); |
620 | 0 | if (StackAlign == 0) |
621 | 0 | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); |
622 | | |
623 | | // If the stack alignment is less than the type alignment, realign the |
624 | | // argument. |
625 | 0 | bool Realign = TypeAlign > StackAlign; |
626 | 0 | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), |
627 | 0 | /*ByVal=*/true, Realign); |
628 | 0 | } |
629 | | |
630 | 0 | X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { |
631 | 0 | const Type *T = isSingleElementStruct(Ty, getContext()); |
632 | 0 | if (!T) |
633 | 0 | T = Ty.getTypePtr(); |
634 | |
|
635 | 0 | if (const BuiltinType *BT = T->getAs<BuiltinType>()) { |
636 | 0 | BuiltinType::Kind K = BT->getKind(); |
637 | 0 | if (K == BuiltinType::Float || K == BuiltinType::Double) |
638 | 0 | return Float; |
639 | 0 | } |
640 | 0 | return Integer; |
641 | 0 | } |
642 | | |
643 | 0 | bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { |
644 | 0 | if (!IsSoftFloatABI) { |
645 | 0 | Class C = classify(Ty); |
646 | 0 | if (C == Float) |
647 | 0 | return false; |
648 | 0 | } |
649 | | |
650 | 0 | unsigned Size = getContext().getTypeSize(Ty); |
651 | 0 | unsigned SizeInRegs = (Size + 31) / 32; |
652 | |
|
653 | 0 | if (SizeInRegs == 0) |
654 | 0 | return false; |
655 | | |
656 | 0 | if (!IsMCUABI) { |
657 | 0 | if (SizeInRegs > State.FreeRegs) { |
658 | 0 | State.FreeRegs = 0; |
659 | 0 | return false; |
660 | 0 | } |
661 | 0 | } else { |
662 | | // The MCU psABI allows passing parameters in-reg even if there are |
663 | | // earlier parameters that are passed on the stack. Also, |
664 | | // it does not allow passing >8-byte structs in-register, |
665 | | // even if there are 3 free registers available. |
666 | 0 | if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) |
667 | 0 | return false; |
668 | 0 | } |
669 | | |
670 | 0 | State.FreeRegs -= SizeInRegs; |
671 | 0 | return true; |
672 | 0 | } |
673 | | |
674 | | bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, |
675 | | bool &InReg, |
676 | 0 | bool &NeedsPadding) const { |
677 | | // On Windows, aggregates other than HFAs are never passed in registers, and |
678 | | // they do not consume register slots. Homogenous floating-point aggregates |
679 | | // (HFAs) have already been dealt with at this point. |
680 | 0 | if (IsWin32StructABI && isAggregateTypeForABI(Ty)) |
681 | 0 | return false; |
682 | | |
683 | 0 | NeedsPadding = false; |
684 | 0 | InReg = !IsMCUABI; |
685 | |
|
686 | 0 | if (!updateFreeRegs(Ty, State)) |
687 | 0 | return false; |
688 | | |
689 | 0 | if (IsMCUABI) |
690 | 0 | return true; |
691 | | |
692 | 0 | if (State.CC == llvm::CallingConv::X86_FastCall || |
693 | 0 | State.CC == llvm::CallingConv::X86_VectorCall || |
694 | 0 | State.CC == llvm::CallingConv::X86_RegCall) { |
695 | 0 | if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) |
696 | 0 | NeedsPadding = true; |
697 | |
|
698 | 0 | return false; |
699 | 0 | } |
700 | | |
701 | 0 | return true; |
702 | 0 | } |
703 | | |
704 | 0 | bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { |
705 | 0 | bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) && |
706 | 0 | (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || |
707 | 0 | Ty->isReferenceType()); |
708 | |
|
709 | 0 | if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall || |
710 | 0 | State.CC == llvm::CallingConv::X86_VectorCall)) |
711 | 0 | return false; |
712 | | |
713 | 0 | if (!updateFreeRegs(Ty, State)) |
714 | 0 | return false; |
715 | | |
716 | 0 | if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall) |
717 | 0 | return false; |
718 | | |
719 | | // Return true to apply inreg to all legal parameters except for MCU targets. |
720 | 0 | return !IsMCUABI; |
721 | 0 | } |
722 | | |
723 | 0 | void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { |
724 | | // Vectorcall x86 works subtly different than in x64, so the format is |
725 | | // a bit different than the x64 version. First, all vector types (not HVAs) |
726 | | // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. |
727 | | // This differs from the x64 implementation, where the first 6 by INDEX get |
728 | | // registers. |
729 | | // In the second pass over the arguments, HVAs are passed in the remaining |
730 | | // vector registers if possible, or indirectly by address. The address will be |
731 | | // passed in ECX/EDX if available. Any other arguments are passed according to |
732 | | // the usual fastcall rules. |
733 | 0 | MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); |
734 | 0 | for (int I = 0, E = Args.size(); I < E; ++I) { |
735 | 0 | const Type *Base = nullptr; |
736 | 0 | uint64_t NumElts = 0; |
737 | 0 | const QualType &Ty = Args[I].type; |
738 | 0 | if ((Ty->isVectorType() || Ty->isBuiltinType()) && |
739 | 0 | isHomogeneousAggregate(Ty, Base, NumElts)) { |
740 | 0 | if (State.FreeSSERegs >= NumElts) { |
741 | 0 | State.FreeSSERegs -= NumElts; |
742 | 0 | Args[I].info = ABIArgInfo::getDirectInReg(); |
743 | 0 | State.IsPreassigned.set(I); |
744 | 0 | } |
745 | 0 | } |
746 | 0 | } |
747 | 0 | } |
748 | | |
749 | | ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State, |
750 | 0 | unsigned ArgIndex) const { |
751 | | // FIXME: Set alignment on indirect arguments. |
752 | 0 | bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; |
753 | 0 | bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; |
754 | 0 | bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; |
755 | |
|
756 | 0 | Ty = useFirstFieldIfTransparentUnion(Ty); |
757 | 0 | TypeInfo TI = getContext().getTypeInfo(Ty); |
758 | | |
759 | | // Check with the C++ ABI first. |
760 | 0 | const RecordType *RT = Ty->getAs<RecordType>(); |
761 | 0 | if (RT) { |
762 | 0 | CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); |
763 | 0 | if (RAA == CGCXXABI::RAA_Indirect) { |
764 | 0 | return getIndirectResult(Ty, false, State); |
765 | 0 | } else if (State.IsDelegateCall) { |
766 | | // Avoid having different alignments on delegate call args by always |
767 | | // setting the alignment to 4, which is what we do for inallocas. |
768 | 0 | ABIArgInfo Res = getIndirectResult(Ty, false, State); |
769 | 0 | Res.setIndirectAlign(CharUnits::fromQuantity(4)); |
770 | 0 | return Res; |
771 | 0 | } else if (RAA == CGCXXABI::RAA_DirectInMemory) { |
772 | | // The field index doesn't matter, we'll fix it up later. |
773 | 0 | return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); |
774 | 0 | } |
775 | 0 | } |
776 | | |
777 | | // Regcall uses the concept of a homogenous vector aggregate, similar |
778 | | // to other targets. |
779 | 0 | const Type *Base = nullptr; |
780 | 0 | uint64_t NumElts = 0; |
781 | 0 | if ((IsRegCall || IsVectorCall) && |
782 | 0 | isHomogeneousAggregate(Ty, Base, NumElts)) { |
783 | 0 | if (State.FreeSSERegs >= NumElts) { |
784 | 0 | State.FreeSSERegs -= NumElts; |
785 | | |
786 | | // Vectorcall passes HVAs directly and does not flatten them, but regcall |
787 | | // does. |
788 | 0 | if (IsVectorCall) |
789 | 0 | return getDirectX86Hva(); |
790 | | |
791 | 0 | if (Ty->isBuiltinType() || Ty->isVectorType()) |
792 | 0 | return ABIArgInfo::getDirect(); |
793 | 0 | return ABIArgInfo::getExpand(); |
794 | 0 | } |
795 | 0 | return getIndirectResult(Ty, /*ByVal=*/false, State); |
796 | 0 | } |
797 | | |
798 | 0 | if (isAggregateTypeForABI(Ty)) { |
799 | | // Structures with flexible arrays are always indirect. |
800 | | // FIXME: This should not be byval! |
801 | 0 | if (RT && RT->getDecl()->hasFlexibleArrayMember()) |
802 | 0 | return getIndirectResult(Ty, true, State); |
803 | | |
804 | | // Ignore empty structs/unions on non-Windows. |
805 | 0 | if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) |
806 | 0 | return ABIArgInfo::getIgnore(); |
807 | | |
808 | 0 | llvm::LLVMContext &LLVMContext = getVMContext(); |
809 | 0 | llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); |
810 | 0 | bool NeedsPadding = false; |
811 | 0 | bool InReg; |
812 | 0 | if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { |
813 | 0 | unsigned SizeInRegs = (TI.Width + 31) / 32; |
814 | 0 | SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); |
815 | 0 | llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); |
816 | 0 | if (InReg) |
817 | 0 | return ABIArgInfo::getDirectInReg(Result); |
818 | 0 | else |
819 | 0 | return ABIArgInfo::getDirect(Result); |
820 | 0 | } |
821 | 0 | llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; |
822 | | |
823 | | // Pass over-aligned aggregates to non-variadic functions on Windows |
824 | | // indirectly. This behavior was added in MSVC 2015. Use the required |
825 | | // alignment from the record layout, since that may be less than the |
826 | | // regular type alignment, and types with required alignment of less than 4 |
827 | | // bytes are not passed indirectly. |
828 | 0 | if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) { |
829 | 0 | unsigned AlignInBits = 0; |
830 | 0 | if (RT) { |
831 | 0 | const ASTRecordLayout &Layout = |
832 | 0 | getContext().getASTRecordLayout(RT->getDecl()); |
833 | 0 | AlignInBits = getContext().toBits(Layout.getRequiredAlignment()); |
834 | 0 | } else if (TI.isAlignRequired()) { |
835 | 0 | AlignInBits = TI.Align; |
836 | 0 | } |
837 | 0 | if (AlignInBits > 32) |
838 | 0 | return getIndirectResult(Ty, /*ByVal=*/false, State); |
839 | 0 | } |
840 | | |
841 | | // Expand small (<= 128-bit) record types when we know that the stack layout |
842 | | // of those arguments will match the struct. This is important because the |
843 | | // LLVM backend isn't smart enough to remove byval, which inhibits many |
844 | | // optimizations. |
845 | | // Don't do this for the MCU if there are still free integer registers |
846 | | // (see X86_64 ABI for full explanation). |
847 | 0 | if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && |
848 | 0 | canExpandIndirectArgument(Ty)) |
849 | 0 | return ABIArgInfo::getExpandWithPadding( |
850 | 0 | IsFastCall || IsVectorCall || IsRegCall, PaddingType); |
851 | | |
852 | 0 | return getIndirectResult(Ty, true, State); |
853 | 0 | } |
854 | | |
855 | 0 | if (const VectorType *VT = Ty->getAs<VectorType>()) { |
856 | | // On Windows, vectors are passed directly if registers are available, or |
857 | | // indirectly if not. This avoids the need to align argument memory. Pass |
858 | | // user-defined vector types larger than 512 bits indirectly for simplicity. |
859 | 0 | if (IsWin32StructABI) { |
860 | 0 | if (TI.Width <= 512 && State.FreeSSERegs > 0) { |
861 | 0 | --State.FreeSSERegs; |
862 | 0 | return ABIArgInfo::getDirectInReg(); |
863 | 0 | } |
864 | 0 | return getIndirectResult(Ty, /*ByVal=*/false, State); |
865 | 0 | } |
866 | | |
867 | | // On Darwin, some vectors are passed in memory, we handle this by passing |
868 | | // it as an i8/i16/i32/i64. |
869 | 0 | if (IsDarwinVectorABI) { |
870 | 0 | if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || |
871 | 0 | (TI.Width == 64 && VT->getNumElements() == 1)) |
872 | 0 | return ABIArgInfo::getDirect( |
873 | 0 | llvm::IntegerType::get(getVMContext(), TI.Width)); |
874 | 0 | } |
875 | | |
876 | 0 | if (IsX86_MMXType(CGT.ConvertType(Ty))) |
877 | 0 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); |
878 | | |
879 | 0 | return ABIArgInfo::getDirect(); |
880 | 0 | } |
881 | | |
882 | | |
883 | 0 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
884 | 0 | Ty = EnumTy->getDecl()->getIntegerType(); |
885 | |
|
886 | 0 | bool InReg = shouldPrimitiveUseInReg(Ty, State); |
887 | |
|
888 | 0 | if (isPromotableIntegerTypeForABI(Ty)) { |
889 | 0 | if (InReg) |
890 | 0 | return ABIArgInfo::getExtendInReg(Ty); |
891 | 0 | return ABIArgInfo::getExtend(Ty); |
892 | 0 | } |
893 | | |
894 | 0 | if (const auto *EIT = Ty->getAs<BitIntType>()) { |
895 | 0 | if (EIT->getNumBits() <= 64) { |
896 | 0 | if (InReg) |
897 | 0 | return ABIArgInfo::getDirectInReg(); |
898 | 0 | return ABIArgInfo::getDirect(); |
899 | 0 | } |
900 | 0 | return getIndirectResult(Ty, /*ByVal=*/false, State); |
901 | 0 | } |
902 | | |
903 | 0 | if (InReg) |
904 | 0 | return ABIArgInfo::getDirectInReg(); |
905 | 0 | return ABIArgInfo::getDirect(); |
906 | 0 | } |
907 | | |
908 | 0 | void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
909 | 0 | CCState State(FI); |
910 | 0 | if (IsMCUABI) |
911 | 0 | State.FreeRegs = 3; |
912 | 0 | else if (State.CC == llvm::CallingConv::X86_FastCall) { |
913 | 0 | State.FreeRegs = 2; |
914 | 0 | State.FreeSSERegs = 3; |
915 | 0 | } else if (State.CC == llvm::CallingConv::X86_VectorCall) { |
916 | 0 | State.FreeRegs = 2; |
917 | 0 | State.FreeSSERegs = 6; |
918 | 0 | } else if (FI.getHasRegParm()) |
919 | 0 | State.FreeRegs = FI.getRegParm(); |
920 | 0 | else if (State.CC == llvm::CallingConv::X86_RegCall) { |
921 | 0 | State.FreeRegs = 5; |
922 | 0 | State.FreeSSERegs = 8; |
923 | 0 | } else if (IsWin32StructABI) { |
924 | | // Since MSVC 2015, the first three SSE vectors have been passed in |
925 | | // registers. The rest are passed indirectly. |
926 | 0 | State.FreeRegs = DefaultNumRegisterParameters; |
927 | 0 | State.FreeSSERegs = 3; |
928 | 0 | } else |
929 | 0 | State.FreeRegs = DefaultNumRegisterParameters; |
930 | |
|
931 | 0 | if (!::classifyReturnType(getCXXABI(), FI, *this)) { |
932 | 0 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); |
933 | 0 | } else if (FI.getReturnInfo().isIndirect()) { |
934 | | // The C++ ABI is not aware of register usage, so we have to check if the |
935 | | // return value was sret and put it in a register ourselves if appropriate. |
936 | 0 | if (State.FreeRegs) { |
937 | 0 | --State.FreeRegs; // The sret parameter consumes a register. |
938 | 0 | if (!IsMCUABI) |
939 | 0 | FI.getReturnInfo().setInReg(true); |
940 | 0 | } |
941 | 0 | } |
942 | | |
943 | | // The chain argument effectively gives us another free register. |
944 | 0 | if (FI.isChainCall()) |
945 | 0 | ++State.FreeRegs; |
946 | | |
947 | | // For vectorcall, do a first pass over the arguments, assigning FP and vector |
948 | | // arguments to XMM registers as available. |
949 | 0 | if (State.CC == llvm::CallingConv::X86_VectorCall) |
950 | 0 | runVectorCallFirstPass(FI, State); |
951 | |
|
952 | 0 | bool UsedInAlloca = false; |
953 | 0 | MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); |
954 | 0 | for (unsigned I = 0, E = Args.size(); I < E; ++I) { |
955 | | // Skip arguments that have already been assigned. |
956 | 0 | if (State.IsPreassigned.test(I)) |
957 | 0 | continue; |
958 | | |
959 | 0 | Args[I].info = |
960 | 0 | classifyArgumentType(Args[I].type, State, I); |
961 | 0 | UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); |
962 | 0 | } |
963 | | |
964 | | // If we needed to use inalloca for any argument, do a second pass and rewrite |
965 | | // all the memory arguments to use inalloca. |
966 | 0 | if (UsedInAlloca) |
967 | 0 | rewriteWithInAlloca(FI); |
968 | 0 | } |
969 | | |
970 | | void |
971 | | X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, |
972 | | CharUnits &StackOffset, ABIArgInfo &Info, |
973 | 0 | QualType Type) const { |
974 | | // Arguments are always 4-byte-aligned. |
975 | 0 | CharUnits WordSize = CharUnits::fromQuantity(4); |
976 | 0 | assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); |
977 | | |
978 | | // sret pointers and indirect things will require an extra pointer |
979 | | // indirection, unless they are byval. Most things are byval, and will not |
980 | | // require this indirection. |
981 | 0 | bool IsIndirect = false; |
982 | 0 | if (Info.isIndirect() && !Info.getIndirectByVal()) |
983 | 0 | IsIndirect = true; |
984 | 0 | Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); |
985 | 0 | llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); |
986 | 0 | if (IsIndirect) |
987 | 0 | LLTy = llvm::PointerType::getUnqual(getVMContext()); |
988 | 0 | FrameFields.push_back(LLTy); |
989 | 0 | StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); |
990 | | |
991 | | // Insert padding bytes to respect alignment. |
992 | 0 | CharUnits FieldEnd = StackOffset; |
993 | 0 | StackOffset = FieldEnd.alignTo(WordSize); |
994 | 0 | if (StackOffset != FieldEnd) { |
995 | 0 | CharUnits NumBytes = StackOffset - FieldEnd; |
996 | 0 | llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); |
997 | 0 | Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); |
998 | 0 | FrameFields.push_back(Ty); |
999 | 0 | } |
1000 | 0 | } |
1001 | | |
1002 | 0 | static bool isArgInAlloca(const ABIArgInfo &Info) { |
1003 | | // Leave ignored and inreg arguments alone. |
1004 | 0 | switch (Info.getKind()) { |
1005 | 0 | case ABIArgInfo::InAlloca: |
1006 | 0 | return true; |
1007 | 0 | case ABIArgInfo::Ignore: |
1008 | 0 | case ABIArgInfo::IndirectAliased: |
1009 | 0 | return false; |
1010 | 0 | case ABIArgInfo::Indirect: |
1011 | 0 | case ABIArgInfo::Direct: |
1012 | 0 | case ABIArgInfo::Extend: |
1013 | 0 | return !Info.getInReg(); |
1014 | 0 | case ABIArgInfo::Expand: |
1015 | 0 | case ABIArgInfo::CoerceAndExpand: |
1016 | | // These are aggregate types which are never passed in registers when |
1017 | | // inalloca is involved. |
1018 | 0 | return true; |
1019 | 0 | } |
1020 | 0 | llvm_unreachable("invalid enum"); |
1021 | 0 | } |
1022 | | |
1023 | 0 | void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { |
1024 | 0 | assert(IsWin32StructABI && "inalloca only supported on win32"); |
1025 | | |
1026 | | // Build a packed struct type for all of the arguments in memory. |
1027 | 0 | SmallVector<llvm::Type *, 6> FrameFields; |
1028 | | |
1029 | | // The stack alignment is always 4. |
1030 | 0 | CharUnits StackAlign = CharUnits::fromQuantity(4); |
1031 | |
|
1032 | 0 | CharUnits StackOffset; |
1033 | 0 | CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); |
1034 | | |
1035 | | // Put 'this' into the struct before 'sret', if necessary. |
1036 | 0 | bool IsThisCall = |
1037 | 0 | FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; |
1038 | 0 | ABIArgInfo &Ret = FI.getReturnInfo(); |
1039 | 0 | if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && |
1040 | 0 | isArgInAlloca(I->info)) { |
1041 | 0 | addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); |
1042 | 0 | ++I; |
1043 | 0 | } |
1044 | | |
1045 | | // Put the sret parameter into the inalloca struct if it's in memory. |
1046 | 0 | if (Ret.isIndirect() && !Ret.getInReg()) { |
1047 | 0 | addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); |
1048 | | // On Windows, the hidden sret parameter is always returned in eax. |
1049 | 0 | Ret.setInAllocaSRet(IsWin32StructABI); |
1050 | 0 | } |
1051 | | |
1052 | | // Skip the 'this' parameter in ecx. |
1053 | 0 | if (IsThisCall) |
1054 | 0 | ++I; |
1055 | | |
1056 | | // Put arguments passed in memory into the struct. |
1057 | 0 | for (; I != E; ++I) { |
1058 | 0 | if (isArgInAlloca(I->info)) |
1059 | 0 | addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); |
1060 | 0 | } |
1061 | |
|
1062 | 0 | FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, |
1063 | 0 | /*isPacked=*/true), |
1064 | 0 | StackAlign); |
1065 | 0 | } |
1066 | | |
1067 | | Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, |
1068 | 0 | Address VAListAddr, QualType Ty) const { |
1069 | |
|
1070 | 0 | auto TypeInfo = getContext().getTypeInfoInChars(Ty); |
1071 | | |
1072 | | // x86-32 changes the alignment of certain arguments on the stack. |
1073 | | // |
1074 | | // Just messing with TypeInfo like this works because we never pass |
1075 | | // anything indirectly. |
1076 | 0 | TypeInfo.Align = CharUnits::fromQuantity( |
1077 | 0 | getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); |
1078 | |
|
1079 | 0 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, |
1080 | 0 | TypeInfo, CharUnits::fromQuantity(4), |
1081 | 0 | /*AllowHigherAlign*/ true); |
1082 | 0 | } |
1083 | | |
1084 | | bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( |
1085 | 0 | const llvm::Triple &Triple, const CodeGenOptions &Opts) { |
1086 | 0 | assert(Triple.getArch() == llvm::Triple::x86); |
1087 | | |
1088 | 0 | switch (Opts.getStructReturnConvention()) { |
1089 | 0 | case CodeGenOptions::SRCK_Default: |
1090 | 0 | break; |
1091 | 0 | case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return |
1092 | 0 | return false; |
1093 | 0 | case CodeGenOptions::SRCK_InRegs: // -freg-struct-return |
1094 | 0 | return true; |
1095 | 0 | } |
1096 | | |
1097 | 0 | if (Triple.isOSDarwin() || Triple.isOSIAMCU()) |
1098 | 0 | return true; |
1099 | | |
1100 | 0 | switch (Triple.getOS()) { |
1101 | 0 | case llvm::Triple::DragonFly: |
1102 | 0 | case llvm::Triple::FreeBSD: |
1103 | 0 | case llvm::Triple::OpenBSD: |
1104 | 0 | case llvm::Triple::Win32: |
1105 | 0 | return true; |
1106 | 0 | default: |
1107 | 0 | return false; |
1108 | 0 | } |
1109 | 0 | } |
1110 | | |
1111 | | static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, |
1112 | 0 | CodeGen::CodeGenModule &CGM) { |
1113 | 0 | if (!FD->hasAttr<AnyX86InterruptAttr>()) |
1114 | 0 | return; |
1115 | | |
1116 | 0 | llvm::Function *Fn = cast<llvm::Function>(GV); |
1117 | 0 | Fn->setCallingConv(llvm::CallingConv::X86_INTR); |
1118 | 0 | if (FD->getNumParams() == 0) |
1119 | 0 | return; |
1120 | | |
1121 | 0 | auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); |
1122 | 0 | llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); |
1123 | 0 | llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( |
1124 | 0 | Fn->getContext(), ByValTy); |
1125 | 0 | Fn->addParamAttr(0, NewAttr); |
1126 | 0 | } |
1127 | | |
1128 | | void X86_32TargetCodeGenInfo::setTargetAttributes( |
1129 | 0 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { |
1130 | 0 | if (GV->isDeclaration()) |
1131 | 0 | return; |
1132 | 0 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
1133 | 0 | if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { |
1134 | 0 | llvm::Function *Fn = cast<llvm::Function>(GV); |
1135 | 0 | Fn->addFnAttr("stackrealign"); |
1136 | 0 | } |
1137 | |
|
1138 | 0 | addX86InterruptAttrs(FD, GV, CGM); |
1139 | 0 | } |
1140 | 0 | } |
1141 | | |
1142 | | bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( |
1143 | | CodeGen::CodeGenFunction &CGF, |
1144 | 0 | llvm::Value *Address) const { |
1145 | 0 | CodeGen::CGBuilderTy &Builder = CGF.Builder; |
1146 | |
|
1147 | 0 | llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); |
1148 | | |
1149 | | // 0-7 are the eight integer registers; the order is different |
1150 | | // on Darwin (for EH), but the range is the same. |
1151 | | // 8 is %eip. |
1152 | 0 | AssignToArrayRange(Builder, Address, Four8, 0, 8); |
1153 | |
|
1154 | 0 | if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { |
1155 | | // 12-16 are st(0..4). Not sure why we stop at 4. |
1156 | | // These have size 16, which is sizeof(long double) on |
1157 | | // platforms with 8-byte alignment for that type. |
1158 | 0 | llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); |
1159 | 0 | AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); |
1160 | |
|
1161 | 0 | } else { |
1162 | | // 9 is %eflags, which doesn't get a size on Darwin for some |
1163 | | // reason. |
1164 | 0 | Builder.CreateAlignedStore( |
1165 | 0 | Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), |
1166 | 0 | CharUnits::One()); |
1167 | | |
1168 | | // 11-16 are st(0..5). Not sure why we stop at 5. |
1169 | | // These have size 12, which is sizeof(long double) on |
1170 | | // platforms with 4-byte alignment for that type. |
1171 | 0 | llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); |
1172 | 0 | AssignToArrayRange(Builder, Address, Twelve8, 11, 16); |
1173 | 0 | } |
1174 | |
|
1175 | 0 | return false; |
1176 | 0 | } |
1177 | | |
1178 | | //===----------------------------------------------------------------------===// |
1179 | | // X86-64 ABI Implementation |
1180 | | //===----------------------------------------------------------------------===// |
1181 | | |
1182 | | |
1183 | | namespace { |
1184 | | |
1185 | | /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. |
1186 | 0 | static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { |
1187 | 0 | switch (AVXLevel) { |
1188 | 0 | case X86AVXABILevel::AVX512: |
1189 | 0 | return 512; |
1190 | 0 | case X86AVXABILevel::AVX: |
1191 | 0 | return 256; |
1192 | 0 | case X86AVXABILevel::None: |
1193 | 0 | return 128; |
1194 | 0 | } |
1195 | 0 | llvm_unreachable("Unknown AVXLevel"); |
1196 | 0 | } |
1197 | | |
1198 | | /// X86_64ABIInfo - The X86_64 ABI information. |
1199 | | class X86_64ABIInfo : public ABIInfo { |
1200 | | enum Class { |
1201 | | Integer = 0, |
1202 | | SSE, |
1203 | | SSEUp, |
1204 | | X87, |
1205 | | X87Up, |
1206 | | ComplexX87, |
1207 | | NoClass, |
1208 | | Memory |
1209 | | }; |
1210 | | |
1211 | | /// merge - Implement the X86_64 ABI merging algorithm. |
1212 | | /// |
1213 | | /// Merge an accumulating classification \arg Accum with a field |
1214 | | /// classification \arg Field. |
1215 | | /// |
1216 | | /// \param Accum - The accumulating classification. This should |
1217 | | /// always be either NoClass or the result of a previous merge |
1218 | | /// call. In addition, this should never be Memory (the caller |
1219 | | /// should just return Memory for the aggregate). |
1220 | | static Class merge(Class Accum, Class Field); |
1221 | | |
1222 | | /// postMerge - Implement the X86_64 ABI post merging algorithm. |
1223 | | /// |
1224 | | /// Post merger cleanup, reduces a malformed Hi and Lo pair to |
1225 | | /// final MEMORY or SSE classes when necessary. |
1226 | | /// |
1227 | | /// \param AggregateSize - The size of the current aggregate in |
1228 | | /// the classification process. |
1229 | | /// |
1230 | | /// \param Lo - The classification for the parts of the type |
1231 | | /// residing in the low word of the containing object. |
1232 | | /// |
1233 | | /// \param Hi - The classification for the parts of the type |
1234 | | /// residing in the higher words of the containing object. |
1235 | | /// |
1236 | | void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; |
1237 | | |
1238 | | /// classify - Determine the x86_64 register classes in which the |
1239 | | /// given type T should be passed. |
1240 | | /// |
1241 | | /// \param Lo - The classification for the parts of the type |
1242 | | /// residing in the low word of the containing object. |
1243 | | /// |
1244 | | /// \param Hi - The classification for the parts of the type |
1245 | | /// residing in the high word of the containing object. |
1246 | | /// |
1247 | | /// \param OffsetBase - The bit offset of this type in the |
1248 | | /// containing object. Some parameters are classified different |
1249 | | /// depending on whether they straddle an eightbyte boundary. |
1250 | | /// |
1251 | | /// \param isNamedArg - Whether the argument in question is a "named" |
1252 | | /// argument, as used in AMD64-ABI 3.5.7. |
1253 | | /// |
1254 | | /// \param IsRegCall - Whether the calling conversion is regcall. |
1255 | | /// |
1256 | | /// If a word is unused its result will be NoClass; if a type should |
1257 | | /// be passed in Memory then at least the classification of \arg Lo |
1258 | | /// will be Memory. |
1259 | | /// |
1260 | | /// The \arg Lo class will be NoClass iff the argument is ignored. |
1261 | | /// |
1262 | | /// If the \arg Lo class is ComplexX87, then the \arg Hi class will |
1263 | | /// also be ComplexX87. |
1264 | | void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, |
1265 | | bool isNamedArg, bool IsRegCall = false) const; |
1266 | | |
1267 | | llvm::Type *GetByteVectorType(QualType Ty) const; |
1268 | | llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, |
1269 | | unsigned IROffset, QualType SourceTy, |
1270 | | unsigned SourceOffset) const; |
1271 | | llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, |
1272 | | unsigned IROffset, QualType SourceTy, |
1273 | | unsigned SourceOffset) const; |
1274 | | |
1275 | | /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
1276 | | /// such that the argument will be returned in memory. |
1277 | | ABIArgInfo getIndirectReturnResult(QualType Ty) const; |
1278 | | |
1279 | | /// getIndirectResult - Give a source type \arg Ty, return a suitable result |
1280 | | /// such that the argument will be passed in memory. |
1281 | | /// |
1282 | | /// \param freeIntRegs - The number of free integer registers remaining |
1283 | | /// available. |
1284 | | ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; |
1285 | | |
1286 | | ABIArgInfo classifyReturnType(QualType RetTy) const; |
1287 | | |
1288 | | ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, |
1289 | | unsigned &neededInt, unsigned &neededSSE, |
1290 | | bool isNamedArg, |
1291 | | bool IsRegCall = false) const; |
1292 | | |
1293 | | ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, |
1294 | | unsigned &NeededSSE, |
1295 | | unsigned &MaxVectorWidth) const; |
1296 | | |
1297 | | ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, |
1298 | | unsigned &NeededSSE, |
1299 | | unsigned &MaxVectorWidth) const; |
1300 | | |
1301 | | bool IsIllegalVectorType(QualType Ty) const; |
1302 | | |
1303 | | /// The 0.98 ABI revision clarified a lot of ambiguities, |
1304 | | /// unfortunately in ways that were not always consistent with |
1305 | | /// certain previous compilers. In particular, platforms which |
1306 | | /// required strict binary compatibility with older versions of GCC |
1307 | | /// may need to exempt themselves. |
1308 | 0 | bool honorsRevision0_98() const { |
1309 | 0 | return !getTarget().getTriple().isOSDarwin(); |
1310 | 0 | } |
1311 | | |
1312 | | /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to |
1313 | | /// classify it as INTEGER (for compatibility with older clang compilers). |
1314 | 0 | bool classifyIntegerMMXAsSSE() const { |
1315 | | // Clang <= 3.8 did not do this. |
1316 | 0 | if (getContext().getLangOpts().getClangABICompat() <= |
1317 | 0 | LangOptions::ClangABI::Ver3_8) |
1318 | 0 | return false; |
1319 | | |
1320 | 0 | const llvm::Triple &Triple = getTarget().getTriple(); |
1321 | 0 | if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD()) |
1322 | 0 | return false; |
1323 | 0 | return true; |
1324 | 0 | } |
1325 | | |
1326 | | // GCC classifies vectors of __int128 as memory. |
1327 | 0 | bool passInt128VectorsInMem() const { |
1328 | | // Clang <= 9.0 did not do this. |
1329 | 0 | if (getContext().getLangOpts().getClangABICompat() <= |
1330 | 0 | LangOptions::ClangABI::Ver9) |
1331 | 0 | return false; |
1332 | | |
1333 | 0 | const llvm::Triple &T = getTarget().getTriple(); |
1334 | 0 | return T.isOSLinux() || T.isOSNetBSD(); |
1335 | 0 | } |
1336 | | |
1337 | | X86AVXABILevel AVXLevel; |
1338 | | // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on |
1339 | | // 64-bit hardware. |
1340 | | bool Has64BitPointers; |
1341 | | |
1342 | | public: |
1343 | | X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) |
1344 | | : ABIInfo(CGT), AVXLevel(AVXLevel), |
1345 | 46 | Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {} |
1346 | | |
1347 | 0 | bool isPassedUsingAVXType(QualType type) const { |
1348 | 0 | unsigned neededInt, neededSSE; |
1349 | | // The freeIntRegs argument doesn't matter here. |
1350 | 0 | ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, |
1351 | 0 | /*isNamedArg*/true); |
1352 | 0 | if (info.isDirect()) { |
1353 | 0 | llvm::Type *ty = info.getCoerceToType(); |
1354 | 0 | if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) |
1355 | 0 | return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128; |
1356 | 0 | } |
1357 | 0 | return false; |
1358 | 0 | } |
1359 | | |
1360 | | void computeInfo(CGFunctionInfo &FI) const override; |
1361 | | |
1362 | | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
1363 | | QualType Ty) const override; |
1364 | | Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, |
1365 | | QualType Ty) const override; |
1366 | | |
1367 | 0 | bool has64BitPointers() const { |
1368 | 0 | return Has64BitPointers; |
1369 | 0 | } |
1370 | | }; |
1371 | | |
1372 | | /// WinX86_64ABIInfo - The Windows X86_64 ABI information. |
1373 | | class WinX86_64ABIInfo : public ABIInfo { |
1374 | | public: |
1375 | | WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) |
1376 | | : ABIInfo(CGT), AVXLevel(AVXLevel), |
1377 | 0 | IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} |
1378 | | |
1379 | | void computeInfo(CGFunctionInfo &FI) const override; |
1380 | | |
1381 | | Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
1382 | | QualType Ty) const override; |
1383 | | |
1384 | 0 | bool isHomogeneousAggregateBaseType(QualType Ty) const override { |
1385 | | // FIXME: Assumes vectorcall is in use. |
1386 | 0 | return isX86VectorTypeForVectorCall(getContext(), Ty); |
1387 | 0 | } |
1388 | | |
1389 | | bool isHomogeneousAggregateSmallEnough(const Type *Ty, |
1390 | 0 | uint64_t NumMembers) const override { |
1391 | | // FIXME: Assumes vectorcall is in use. |
1392 | 0 | return isX86VectorCallAggregateSmallEnough(NumMembers); |
1393 | 0 | } |
1394 | | |
1395 | | private: |
1396 | | ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, |
1397 | | bool IsVectorCall, bool IsRegCall) const; |
1398 | | ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, |
1399 | | const ABIArgInfo ¤t) const; |
1400 | | |
1401 | | X86AVXABILevel AVXLevel; |
1402 | | |
1403 | | bool IsMingw64; |
1404 | | }; |
1405 | | |
1406 | | class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { |
1407 | | public: |
1408 | | X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) |
1409 | 46 | : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) { |
1410 | 46 | SwiftInfo = |
1411 | 46 | std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true); |
1412 | 46 | } |
1413 | | |
1414 | | /// Disable tail call on x86-64. The epilogue code before the tail jump blocks |
1415 | | /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. |
1416 | 0 | bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } |
1417 | | |
1418 | 0 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { |
1419 | 0 | return 7; |
1420 | 0 | } |
1421 | | |
1422 | | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
1423 | 0 | llvm::Value *Address) const override { |
1424 | 0 | llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); |
1425 | | |
1426 | | // 0-15 are the 16 integer registers. |
1427 | | // 16 is %rip. |
1428 | 0 | AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); |
1429 | 0 | return false; |
1430 | 0 | } |
1431 | | |
1432 | | llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, |
1433 | | StringRef Constraint, |
1434 | 0 | llvm::Type* Ty) const override { |
1435 | 0 | return X86AdjustInlineAsmType(CGF, Constraint, Ty); |
1436 | 0 | } |
1437 | | |
1438 | | bool isNoProtoCallVariadic(const CallArgList &args, |
1439 | 0 | const FunctionNoProtoType *fnType) const override { |
1440 | | // The default CC on x86-64 sets %al to the number of SSA |
1441 | | // registers used, and GCC sets this when calling an unprototyped |
1442 | | // function, so we override the default behavior. However, don't do |
1443 | | // that when AVX types are involved: the ABI explicitly states it is |
1444 | | // undefined, and it doesn't work in practice because of how the ABI |
1445 | | // defines varargs anyway. |
1446 | 0 | if (fnType->getCallConv() == CC_C) { |
1447 | 0 | bool HasAVXType = false; |
1448 | 0 | for (CallArgList::const_iterator |
1449 | 0 | it = args.begin(), ie = args.end(); it != ie; ++it) { |
1450 | 0 | if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) { |
1451 | 0 | HasAVXType = true; |
1452 | 0 | break; |
1453 | 0 | } |
1454 | 0 | } |
1455 | |
|
1456 | 0 | if (!HasAVXType) |
1457 | 0 | return true; |
1458 | 0 | } |
1459 | | |
1460 | 0 | return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); |
1461 | 0 | } |
1462 | | |
1463 | | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
1464 | 0 | CodeGen::CodeGenModule &CGM) const override { |
1465 | 0 | if (GV->isDeclaration()) |
1466 | 0 | return; |
1467 | 0 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
1468 | 0 | if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { |
1469 | 0 | llvm::Function *Fn = cast<llvm::Function>(GV); |
1470 | 0 | Fn->addFnAttr("stackrealign"); |
1471 | 0 | } |
1472 | |
|
1473 | 0 | addX86InterruptAttrs(FD, GV, CGM); |
1474 | 0 | } |
1475 | 0 | } |
1476 | | |
1477 | | void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, |
1478 | | const FunctionDecl *Caller, |
1479 | | const FunctionDecl *Callee, |
1480 | | const CallArgList &Args) const override; |
1481 | | }; |
1482 | | } // namespace |
1483 | | |
1484 | | static void initFeatureMaps(const ASTContext &Ctx, |
1485 | | llvm::StringMap<bool> &CallerMap, |
1486 | | const FunctionDecl *Caller, |
1487 | | llvm::StringMap<bool> &CalleeMap, |
1488 | 0 | const FunctionDecl *Callee) { |
1489 | 0 | if (CalleeMap.empty() && CallerMap.empty()) { |
1490 | | // The caller is potentially nullptr in the case where the call isn't in a |
1491 | | // function. In this case, the getFunctionFeatureMap ensures we just get |
1492 | | // the TU level setting (since it cannot be modified by 'target'.. |
1493 | 0 | Ctx.getFunctionFeatureMap(CallerMap, Caller); |
1494 | 0 | Ctx.getFunctionFeatureMap(CalleeMap, Callee); |
1495 | 0 | } |
1496 | 0 | } |
1497 | | |
1498 | | static bool checkAVXParamFeature(DiagnosticsEngine &Diag, |
1499 | | SourceLocation CallLoc, |
1500 | | const llvm::StringMap<bool> &CallerMap, |
1501 | | const llvm::StringMap<bool> &CalleeMap, |
1502 | | QualType Ty, StringRef Feature, |
1503 | 0 | bool IsArgument) { |
1504 | 0 | bool CallerHasFeat = CallerMap.lookup(Feature); |
1505 | 0 | bool CalleeHasFeat = CalleeMap.lookup(Feature); |
1506 | 0 | if (!CallerHasFeat && !CalleeHasFeat) |
1507 | 0 | return Diag.Report(CallLoc, diag::warn_avx_calling_convention) |
1508 | 0 | << IsArgument << Ty << Feature; |
1509 | | |
1510 | | // Mixing calling conventions here is very clearly an error. |
1511 | 0 | if (!CallerHasFeat || !CalleeHasFeat) |
1512 | 0 | return Diag.Report(CallLoc, diag::err_avx_calling_convention) |
1513 | 0 | << IsArgument << Ty << Feature; |
1514 | | |
1515 | | // Else, both caller and callee have the required feature, so there is no need |
1516 | | // to diagnose. |
1517 | 0 | return false; |
1518 | 0 | } |
1519 | | |
1520 | | static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag, |
1521 | | SourceLocation CallLoc, |
1522 | | const llvm::StringMap<bool> &CallerMap, |
1523 | | const llvm::StringMap<bool> &CalleeMap, |
1524 | 0 | QualType Ty, bool IsArgument) { |
1525 | 0 | bool Caller256 = CallerMap.lookup("avx512f") && !CallerMap.lookup("evex512"); |
1526 | 0 | bool Callee256 = CalleeMap.lookup("avx512f") && !CalleeMap.lookup("evex512"); |
1527 | | |
1528 | | // Forbid 512-bit or larger vector pass or return when we disabled ZMM |
1529 | | // instructions. |
1530 | 0 | if (Caller256 || Callee256) |
1531 | 0 | return Diag.Report(CallLoc, diag::err_avx_calling_convention) |
1532 | 0 | << IsArgument << Ty << "evex512"; |
1533 | | |
1534 | 0 | return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, |
1535 | 0 | "avx512f", IsArgument); |
1536 | 0 | } |
1537 | | |
1538 | | static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, |
1539 | | SourceLocation CallLoc, |
1540 | | const llvm::StringMap<bool> &CallerMap, |
1541 | | const llvm::StringMap<bool> &CalleeMap, QualType Ty, |
1542 | 0 | bool IsArgument) { |
1543 | 0 | uint64_t Size = Ctx.getTypeSize(Ty); |
1544 | 0 | if (Size > 256) |
1545 | 0 | return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, |
1546 | 0 | IsArgument); |
1547 | | |
1548 | 0 | if (Size > 128) |
1549 | 0 | return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", |
1550 | 0 | IsArgument); |
1551 | | |
1552 | 0 | return false; |
1553 | 0 | } |
1554 | | |
1555 | | void X86_64TargetCodeGenInfo::checkFunctionCallABI( |
1556 | | CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, |
1557 | 0 | const FunctionDecl *Callee, const CallArgList &Args) const { |
1558 | 0 | llvm::StringMap<bool> CallerMap; |
1559 | 0 | llvm::StringMap<bool> CalleeMap; |
1560 | 0 | unsigned ArgIndex = 0; |
1561 | | |
1562 | | // We need to loop through the actual call arguments rather than the |
1563 | | // function's parameters, in case this variadic. |
1564 | 0 | for (const CallArg &Arg : Args) { |
1565 | | // The "avx" feature changes how vectors >128 in size are passed. "avx512f" |
1566 | | // additionally changes how vectors >256 in size are passed. Like GCC, we |
1567 | | // warn when a function is called with an argument where this will change. |
1568 | | // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, |
1569 | | // the caller and callee features are mismatched. |
1570 | | // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can |
1571 | | // change its ABI with attribute-target after this call. |
1572 | 0 | if (Arg.getType()->isVectorType() && |
1573 | 0 | CGM.getContext().getTypeSize(Arg.getType()) > 128) { |
1574 | 0 | initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); |
1575 | 0 | QualType Ty = Arg.getType(); |
1576 | | // The CallArg seems to have desugared the type already, so for clearer |
1577 | | // diagnostics, replace it with the type in the FunctionDecl if possible. |
1578 | 0 | if (ArgIndex < Callee->getNumParams()) |
1579 | 0 | Ty = Callee->getParamDecl(ArgIndex)->getType(); |
1580 | |
|
1581 | 0 | if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, |
1582 | 0 | CalleeMap, Ty, /*IsArgument*/ true)) |
1583 | 0 | return; |
1584 | 0 | } |
1585 | 0 | ++ArgIndex; |
1586 | 0 | } |
1587 | | |
1588 | | // Check return always, as we don't have a good way of knowing in codegen |
1589 | | // whether this value is used, tail-called, etc. |
1590 | 0 | if (Callee->getReturnType()->isVectorType() && |
1591 | 0 | CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { |
1592 | 0 | initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); |
1593 | 0 | checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, |
1594 | 0 | CalleeMap, Callee->getReturnType(), |
1595 | 0 | /*IsArgument*/ false); |
1596 | 0 | } |
1597 | 0 | } |
1598 | | |
1599 | 0 | std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) { |
1600 | | // If the argument does not end in .lib, automatically add the suffix. |
1601 | | // If the argument contains a space, enclose it in quotes. |
1602 | | // This matches the behavior of MSVC. |
1603 | 0 | bool Quote = Lib.contains(' '); |
1604 | 0 | std::string ArgStr = Quote ? "\"" : ""; |
1605 | 0 | ArgStr += Lib; |
1606 | 0 | if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a")) |
1607 | 0 | ArgStr += ".lib"; |
1608 | 0 | ArgStr += Quote ? "\"" : ""; |
1609 | 0 | return ArgStr; |
1610 | 0 | } |
1611 | | |
1612 | | namespace { |
1613 | | class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { |
1614 | | public: |
1615 | | WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, |
1616 | | bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, |
1617 | | unsigned NumRegisterParameters) |
1618 | | : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, |
1619 | 0 | Win32StructABI, NumRegisterParameters, false) {} |
1620 | | |
1621 | | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
1622 | | CodeGen::CodeGenModule &CGM) const override; |
1623 | | |
1624 | | void getDependentLibraryOption(llvm::StringRef Lib, |
1625 | 0 | llvm::SmallString<24> &Opt) const override { |
1626 | 0 | Opt = "/DEFAULTLIB:"; |
1627 | 0 | Opt += qualifyWindowsLibrary(Lib); |
1628 | 0 | } |
1629 | | |
1630 | | void getDetectMismatchOption(llvm::StringRef Name, |
1631 | | llvm::StringRef Value, |
1632 | 0 | llvm::SmallString<32> &Opt) const override { |
1633 | 0 | Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; |
1634 | 0 | } |
1635 | | }; |
1636 | | } // namespace |
1637 | | |
1638 | | void WinX86_32TargetCodeGenInfo::setTargetAttributes( |
1639 | 0 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { |
1640 | 0 | X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); |
1641 | 0 | if (GV->isDeclaration()) |
1642 | 0 | return; |
1643 | 0 | addStackProbeTargetAttributes(D, GV, CGM); |
1644 | 0 | } |
1645 | | |
1646 | | namespace { |
1647 | | class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { |
1648 | | public: |
1649 | | WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, |
1650 | | X86AVXABILevel AVXLevel) |
1651 | 0 | : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) { |
1652 | 0 | SwiftInfo = |
1653 | 0 | std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true); |
1654 | 0 | } |
1655 | | |
1656 | | void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, |
1657 | | CodeGen::CodeGenModule &CGM) const override; |
1658 | | |
1659 | 0 | int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { |
1660 | 0 | return 7; |
1661 | 0 | } |
1662 | | |
1663 | | bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, |
1664 | 0 | llvm::Value *Address) const override { |
1665 | 0 | llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); |
1666 | | |
1667 | | // 0-15 are the 16 integer registers. |
1668 | | // 16 is %rip. |
1669 | 0 | AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); |
1670 | 0 | return false; |
1671 | 0 | } |
1672 | | |
1673 | | void getDependentLibraryOption(llvm::StringRef Lib, |
1674 | 0 | llvm::SmallString<24> &Opt) const override { |
1675 | 0 | Opt = "/DEFAULTLIB:"; |
1676 | 0 | Opt += qualifyWindowsLibrary(Lib); |
1677 | 0 | } |
1678 | | |
1679 | | void getDetectMismatchOption(llvm::StringRef Name, |
1680 | | llvm::StringRef Value, |
1681 | 0 | llvm::SmallString<32> &Opt) const override { |
1682 | 0 | Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; |
1683 | 0 | } |
1684 | | }; |
1685 | | } // namespace |
1686 | | |
1687 | | void WinX86_64TargetCodeGenInfo::setTargetAttributes( |
1688 | 0 | const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { |
1689 | 0 | TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); |
1690 | 0 | if (GV->isDeclaration()) |
1691 | 0 | return; |
1692 | 0 | if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { |
1693 | 0 | if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { |
1694 | 0 | llvm::Function *Fn = cast<llvm::Function>(GV); |
1695 | 0 | Fn->addFnAttr("stackrealign"); |
1696 | 0 | } |
1697 | |
|
1698 | 0 | addX86InterruptAttrs(FD, GV, CGM); |
1699 | 0 | } |
1700 | |
|
1701 | 0 | addStackProbeTargetAttributes(D, GV, CGM); |
1702 | 0 | } |
1703 | | |
1704 | | void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, |
1705 | 0 | Class &Hi) const { |
1706 | | // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: |
1707 | | // |
1708 | | // (a) If one of the classes is Memory, the whole argument is passed in |
1709 | | // memory. |
1710 | | // |
1711 | | // (b) If X87UP is not preceded by X87, the whole argument is passed in |
1712 | | // memory. |
1713 | | // |
1714 | | // (c) If the size of the aggregate exceeds two eightbytes and the first |
1715 | | // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole |
1716 | | // argument is passed in memory. NOTE: This is necessary to keep the |
1717 | | // ABI working for processors that don't support the __m256 type. |
1718 | | // |
1719 | | // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. |
1720 | | // |
1721 | | // Some of these are enforced by the merging logic. Others can arise |
1722 | | // only with unions; for example: |
1723 | | // union { _Complex double; unsigned; } |
1724 | | // |
1725 | | // Note that clauses (b) and (c) were added in 0.98. |
1726 | | // |
1727 | 0 | if (Hi == Memory) |
1728 | 0 | Lo = Memory; |
1729 | 0 | if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) |
1730 | 0 | Lo = Memory; |
1731 | 0 | if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) |
1732 | 0 | Lo = Memory; |
1733 | 0 | if (Hi == SSEUp && Lo != SSE) |
1734 | 0 | Hi = SSE; |
1735 | 0 | } |
1736 | | |
1737 | 0 | X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { |
1738 | | // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is |
1739 | | // classified recursively so that always two fields are |
1740 | | // considered. The resulting class is calculated according to |
1741 | | // the classes of the fields in the eightbyte: |
1742 | | // |
1743 | | // (a) If both classes are equal, this is the resulting class. |
1744 | | // |
1745 | | // (b) If one of the classes is NO_CLASS, the resulting class is |
1746 | | // the other class. |
1747 | | // |
1748 | | // (c) If one of the classes is MEMORY, the result is the MEMORY |
1749 | | // class. |
1750 | | // |
1751 | | // (d) If one of the classes is INTEGER, the result is the |
1752 | | // INTEGER. |
1753 | | // |
1754 | | // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, |
1755 | | // MEMORY is used as class. |
1756 | | // |
1757 | | // (f) Otherwise class SSE is used. |
1758 | | |
1759 | | // Accum should never be memory (we should have returned) or |
1760 | | // ComplexX87 (because this cannot be passed in a structure). |
1761 | 0 | assert((Accum != Memory && Accum != ComplexX87) && |
1762 | 0 | "Invalid accumulated classification during merge."); |
1763 | 0 | if (Accum == Field || Field == NoClass) |
1764 | 0 | return Accum; |
1765 | 0 | if (Field == Memory) |
1766 | 0 | return Memory; |
1767 | 0 | if (Accum == NoClass) |
1768 | 0 | return Field; |
1769 | 0 | if (Accum == Integer || Field == Integer) |
1770 | 0 | return Integer; |
1771 | 0 | if (Field == X87 || Field == X87Up || Field == ComplexX87 || |
1772 | 0 | Accum == X87 || Accum == X87Up) |
1773 | 0 | return Memory; |
1774 | 0 | return SSE; |
1775 | 0 | } |
1776 | | |
1777 | | void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, |
1778 | 0 | Class &Hi, bool isNamedArg, bool IsRegCall) const { |
1779 | | // FIXME: This code can be simplified by introducing a simple value class for |
1780 | | // Class pairs with appropriate constructor methods for the various |
1781 | | // situations. |
1782 | | |
1783 | | // FIXME: Some of the split computations are wrong; unaligned vectors |
1784 | | // shouldn't be passed in registers for example, so there is no chance they |
1785 | | // can straddle an eightbyte. Verify & simplify. |
1786 | |
|
1787 | 0 | Lo = Hi = NoClass; |
1788 | |
|
1789 | 0 | Class &Current = OffsetBase < 64 ? Lo : Hi; |
1790 | 0 | Current = Memory; |
1791 | |
|
1792 | 0 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
1793 | 0 | BuiltinType::Kind k = BT->getKind(); |
1794 | |
|
1795 | 0 | if (k == BuiltinType::Void) { |
1796 | 0 | Current = NoClass; |
1797 | 0 | } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { |
1798 | 0 | Lo = Integer; |
1799 | 0 | Hi = Integer; |
1800 | 0 | } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { |
1801 | 0 | Current = Integer; |
1802 | 0 | } else if (k == BuiltinType::Float || k == BuiltinType::Double || |
1803 | 0 | k == BuiltinType::Float16 || k == BuiltinType::BFloat16) { |
1804 | 0 | Current = SSE; |
1805 | 0 | } else if (k == BuiltinType::Float128) { |
1806 | 0 | Lo = SSE; |
1807 | 0 | Hi = SSEUp; |
1808 | 0 | } else if (k == BuiltinType::LongDouble) { |
1809 | 0 | const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); |
1810 | 0 | if (LDF == &llvm::APFloat::IEEEquad()) { |
1811 | 0 | Lo = SSE; |
1812 | 0 | Hi = SSEUp; |
1813 | 0 | } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { |
1814 | 0 | Lo = X87; |
1815 | 0 | Hi = X87Up; |
1816 | 0 | } else if (LDF == &llvm::APFloat::IEEEdouble()) { |
1817 | 0 | Current = SSE; |
1818 | 0 | } else |
1819 | 0 | llvm_unreachable("unexpected long double representation!"); |
1820 | 0 | } |
1821 | | // FIXME: _Decimal32 and _Decimal64 are SSE. |
1822 | | // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). |
1823 | 0 | return; |
1824 | 0 | } |
1825 | | |
1826 | 0 | if (const EnumType *ET = Ty->getAs<EnumType>()) { |
1827 | | // Classify the underlying integer type. |
1828 | 0 | classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); |
1829 | 0 | return; |
1830 | 0 | } |
1831 | | |
1832 | 0 | if (Ty->hasPointerRepresentation()) { |
1833 | 0 | Current = Integer; |
1834 | 0 | return; |
1835 | 0 | } |
1836 | | |
1837 | 0 | if (Ty->isMemberPointerType()) { |
1838 | 0 | if (Ty->isMemberFunctionPointerType()) { |
1839 | 0 | if (Has64BitPointers) { |
1840 | | // If Has64BitPointers, this is an {i64, i64}, so classify both |
1841 | | // Lo and Hi now. |
1842 | 0 | Lo = Hi = Integer; |
1843 | 0 | } else { |
1844 | | // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that |
1845 | | // straddles an eightbyte boundary, Hi should be classified as well. |
1846 | 0 | uint64_t EB_FuncPtr = (OffsetBase) / 64; |
1847 | 0 | uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; |
1848 | 0 | if (EB_FuncPtr != EB_ThisAdj) { |
1849 | 0 | Lo = Hi = Integer; |
1850 | 0 | } else { |
1851 | 0 | Current = Integer; |
1852 | 0 | } |
1853 | 0 | } |
1854 | 0 | } else { |
1855 | 0 | Current = Integer; |
1856 | 0 | } |
1857 | 0 | return; |
1858 | 0 | } |
1859 | | |
1860 | 0 | if (const VectorType *VT = Ty->getAs<VectorType>()) { |
1861 | 0 | uint64_t Size = getContext().getTypeSize(VT); |
1862 | 0 | if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { |
1863 | | // gcc passes the following as integer: |
1864 | | // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> |
1865 | | // 2 bytes - <2 x char>, <1 x short> |
1866 | | // 1 byte - <1 x char> |
1867 | 0 | Current = Integer; |
1868 | | |
1869 | | // If this type crosses an eightbyte boundary, it should be |
1870 | | // split. |
1871 | 0 | uint64_t EB_Lo = (OffsetBase) / 64; |
1872 | 0 | uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; |
1873 | 0 | if (EB_Lo != EB_Hi) |
1874 | 0 | Hi = Lo; |
1875 | 0 | } else if (Size == 64) { |
1876 | 0 | QualType ElementType = VT->getElementType(); |
1877 | | |
1878 | | // gcc passes <1 x double> in memory. :( |
1879 | 0 | if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) |
1880 | 0 | return; |
1881 | | |
1882 | | // gcc passes <1 x long long> as SSE but clang used to unconditionally |
1883 | | // pass them as integer. For platforms where clang is the de facto |
1884 | | // platform compiler, we must continue to use integer. |
1885 | 0 | if (!classifyIntegerMMXAsSSE() && |
1886 | 0 | (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || |
1887 | 0 | ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || |
1888 | 0 | ElementType->isSpecificBuiltinType(BuiltinType::Long) || |
1889 | 0 | ElementType->isSpecificBuiltinType(BuiltinType::ULong))) |
1890 | 0 | Current = Integer; |
1891 | 0 | else |
1892 | 0 | Current = SSE; |
1893 | | |
1894 | | // If this type crosses an eightbyte boundary, it should be |
1895 | | // split. |
1896 | 0 | if (OffsetBase && OffsetBase != 64) |
1897 | 0 | Hi = Lo; |
1898 | 0 | } else if (Size == 128 || |
1899 | 0 | (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { |
1900 | 0 | QualType ElementType = VT->getElementType(); |
1901 | | |
1902 | | // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( |
1903 | 0 | if (passInt128VectorsInMem() && Size != 128 && |
1904 | 0 | (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || |
1905 | 0 | ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) |
1906 | 0 | return; |
1907 | | |
1908 | | // Arguments of 256-bits are split into four eightbyte chunks. The |
1909 | | // least significant one belongs to class SSE and all the others to class |
1910 | | // SSEUP. The original Lo and Hi design considers that types can't be |
1911 | | // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. |
1912 | | // This design isn't correct for 256-bits, but since there're no cases |
1913 | | // where the upper parts would need to be inspected, avoid adding |
1914 | | // complexity and just consider Hi to match the 64-256 part. |
1915 | | // |
1916 | | // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in |
1917 | | // registers if they are "named", i.e. not part of the "..." of a |
1918 | | // variadic function. |
1919 | | // |
1920 | | // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are |
1921 | | // split into eight eightbyte chunks, one SSE and seven SSEUP. |
1922 | 0 | Lo = SSE; |
1923 | 0 | Hi = SSEUp; |
1924 | 0 | } |
1925 | 0 | return; |
1926 | 0 | } |
1927 | | |
1928 | 0 | if (const ComplexType *CT = Ty->getAs<ComplexType>()) { |
1929 | 0 | QualType ET = getContext().getCanonicalType(CT->getElementType()); |
1930 | |
|
1931 | 0 | uint64_t Size = getContext().getTypeSize(Ty); |
1932 | 0 | if (ET->isIntegralOrEnumerationType()) { |
1933 | 0 | if (Size <= 64) |
1934 | 0 | Current = Integer; |
1935 | 0 | else if (Size <= 128) |
1936 | 0 | Lo = Hi = Integer; |
1937 | 0 | } else if (ET->isFloat16Type() || ET == getContext().FloatTy || |
1938 | 0 | ET->isBFloat16Type()) { |
1939 | 0 | Current = SSE; |
1940 | 0 | } else if (ET == getContext().DoubleTy) { |
1941 | 0 | Lo = Hi = SSE; |
1942 | 0 | } else if (ET == getContext().LongDoubleTy) { |
1943 | 0 | const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); |
1944 | 0 | if (LDF == &llvm::APFloat::IEEEquad()) |
1945 | 0 | Current = Memory; |
1946 | 0 | else if (LDF == &llvm::APFloat::x87DoubleExtended()) |
1947 | 0 | Current = ComplexX87; |
1948 | 0 | else if (LDF == &llvm::APFloat::IEEEdouble()) |
1949 | 0 | Lo = Hi = SSE; |
1950 | 0 | else |
1951 | 0 | llvm_unreachable("unexpected long double representation!"); |
1952 | 0 | } |
1953 | | |
1954 | | // If this complex type crosses an eightbyte boundary then it |
1955 | | // should be split. |
1956 | 0 | uint64_t EB_Real = (OffsetBase) / 64; |
1957 | 0 | uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; |
1958 | 0 | if (Hi == NoClass && EB_Real != EB_Imag) |
1959 | 0 | Hi = Lo; |
1960 | |
|
1961 | 0 | return; |
1962 | 0 | } |
1963 | | |
1964 | 0 | if (const auto *EITy = Ty->getAs<BitIntType>()) { |
1965 | 0 | if (EITy->getNumBits() <= 64) |
1966 | 0 | Current = Integer; |
1967 | 0 | else if (EITy->getNumBits() <= 128) |
1968 | 0 | Lo = Hi = Integer; |
1969 | | // Larger values need to get passed in memory. |
1970 | 0 | return; |
1971 | 0 | } |
1972 | | |
1973 | 0 | if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { |
1974 | | // Arrays are treated like structures. |
1975 | |
|
1976 | 0 | uint64_t Size = getContext().getTypeSize(Ty); |
1977 | | |
1978 | | // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
1979 | | // than eight eightbytes, ..., it has class MEMORY. |
1980 | | // regcall ABI doesn't have limitation to an object. The only limitation |
1981 | | // is the free registers, which will be checked in computeInfo. |
1982 | 0 | if (!IsRegCall && Size > 512) |
1983 | 0 | return; |
1984 | | |
1985 | | // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned |
1986 | | // fields, it has class MEMORY. |
1987 | | // |
1988 | | // Only need to check alignment of array base. |
1989 | 0 | if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) |
1990 | 0 | return; |
1991 | | |
1992 | | // Otherwise implement simplified merge. We could be smarter about |
1993 | | // this, but it isn't worth it and would be harder to verify. |
1994 | 0 | Current = NoClass; |
1995 | 0 | uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); |
1996 | 0 | uint64_t ArraySize = AT->getSize().getZExtValue(); |
1997 | | |
1998 | | // The only case a 256-bit wide vector could be used is when the array |
1999 | | // contains a single 256-bit element. Since Lo and Hi logic isn't extended |
2000 | | // to work for sizes wider than 128, early check and fallback to memory. |
2001 | | // |
2002 | 0 | if (Size > 128 && |
2003 | 0 | (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) |
2004 | 0 | return; |
2005 | | |
2006 | 0 | for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { |
2007 | 0 | Class FieldLo, FieldHi; |
2008 | 0 | classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); |
2009 | 0 | Lo = merge(Lo, FieldLo); |
2010 | 0 | Hi = merge(Hi, FieldHi); |
2011 | 0 | if (Lo == Memory || Hi == Memory) |
2012 | 0 | break; |
2013 | 0 | } |
2014 | |
|
2015 | 0 | postMerge(Size, Lo, Hi); |
2016 | 0 | assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); |
2017 | 0 | return; |
2018 | 0 | } |
2019 | | |
2020 | 0 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
2021 | 0 | uint64_t Size = getContext().getTypeSize(Ty); |
2022 | | |
2023 | | // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger |
2024 | | // than eight eightbytes, ..., it has class MEMORY. |
2025 | 0 | if (Size > 512) |
2026 | 0 | return; |
2027 | | |
2028 | | // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial |
2029 | | // copy constructor or a non-trivial destructor, it is passed by invisible |
2030 | | // reference. |
2031 | 0 | if (getRecordArgABI(RT, getCXXABI())) |
2032 | 0 | return; |
2033 | | |
2034 | 0 | const RecordDecl *RD = RT->getDecl(); |
2035 | | |
2036 | | // Assume variable sized types are passed in memory. |
2037 | 0 | if (RD->hasFlexibleArrayMember()) |
2038 | 0 | return; |
2039 | | |
2040 | 0 | const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); |
2041 | | |
2042 | | // Reset Lo class, this will be recomputed. |
2043 | 0 | Current = NoClass; |
2044 | | |
2045 | | // If this is a C++ record, classify the bases first. |
2046 | 0 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
2047 | 0 | for (const auto &I : CXXRD->bases()) { |
2048 | 0 | assert(!I.isVirtual() && !I.getType()->isDependentType() && |
2049 | 0 | "Unexpected base class!"); |
2050 | 0 | const auto *Base = |
2051 | 0 | cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); |
2052 | | |
2053 | | // Classify this field. |
2054 | | // |
2055 | | // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a |
2056 | | // single eightbyte, each is classified separately. Each eightbyte gets |
2057 | | // initialized to class NO_CLASS. |
2058 | 0 | Class FieldLo, FieldHi; |
2059 | 0 | uint64_t Offset = |
2060 | 0 | OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); |
2061 | 0 | classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); |
2062 | 0 | Lo = merge(Lo, FieldLo); |
2063 | 0 | Hi = merge(Hi, FieldHi); |
2064 | 0 | if (Lo == Memory || Hi == Memory) { |
2065 | 0 | postMerge(Size, Lo, Hi); |
2066 | 0 | return; |
2067 | 0 | } |
2068 | 0 | } |
2069 | 0 | } |
2070 | | |
2071 | | // Classify the fields one at a time, merging the results. |
2072 | 0 | unsigned idx = 0; |
2073 | 0 | bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= |
2074 | 0 | LangOptions::ClangABI::Ver11 || |
2075 | 0 | getContext().getTargetInfo().getTriple().isPS(); |
2076 | 0 | bool IsUnion = RT->isUnionType() && !UseClang11Compat; |
2077 | |
|
2078 | 0 | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
2079 | 0 | i != e; ++i, ++idx) { |
2080 | 0 | uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
2081 | 0 | bool BitField = i->isBitField(); |
2082 | | |
2083 | | // Ignore padding bit-fields. |
2084 | 0 | if (BitField && i->isUnnamedBitfield()) |
2085 | 0 | continue; |
2086 | | |
2087 | | // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than |
2088 | | // eight eightbytes, or it contains unaligned fields, it has class MEMORY. |
2089 | | // |
2090 | | // The only case a 256-bit or a 512-bit wide vector could be used is when |
2091 | | // the struct contains a single 256-bit or 512-bit element. Early check |
2092 | | // and fallback to memory. |
2093 | | // |
2094 | | // FIXME: Extended the Lo and Hi logic properly to work for size wider |
2095 | | // than 128. |
2096 | 0 | if (Size > 128 && |
2097 | 0 | ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || |
2098 | 0 | Size > getNativeVectorSizeForAVXABI(AVXLevel))) { |
2099 | 0 | Lo = Memory; |
2100 | 0 | postMerge(Size, Lo, Hi); |
2101 | 0 | return; |
2102 | 0 | } |
2103 | | // Note, skip this test for bit-fields, see below. |
2104 | 0 | if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { |
2105 | 0 | Lo = Memory; |
2106 | 0 | postMerge(Size, Lo, Hi); |
2107 | 0 | return; |
2108 | 0 | } |
2109 | | |
2110 | | // Classify this field. |
2111 | | // |
2112 | | // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate |
2113 | | // exceeds a single eightbyte, each is classified |
2114 | | // separately. Each eightbyte gets initialized to class |
2115 | | // NO_CLASS. |
2116 | 0 | Class FieldLo, FieldHi; |
2117 | | |
2118 | | // Bit-fields require special handling, they do not force the |
2119 | | // structure to be passed in memory even if unaligned, and |
2120 | | // therefore they can straddle an eightbyte. |
2121 | 0 | if (BitField) { |
2122 | 0 | assert(!i->isUnnamedBitfield()); |
2123 | 0 | uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); |
2124 | 0 | uint64_t Size = i->getBitWidthValue(getContext()); |
2125 | |
|
2126 | 0 | uint64_t EB_Lo = Offset / 64; |
2127 | 0 | uint64_t EB_Hi = (Offset + Size - 1) / 64; |
2128 | |
|
2129 | 0 | if (EB_Lo) { |
2130 | 0 | assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); |
2131 | 0 | FieldLo = NoClass; |
2132 | 0 | FieldHi = Integer; |
2133 | 0 | } else { |
2134 | 0 | FieldLo = Integer; |
2135 | 0 | FieldHi = EB_Hi ? Integer : NoClass; |
2136 | 0 | } |
2137 | 0 | } else |
2138 | 0 | classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); |
2139 | 0 | Lo = merge(Lo, FieldLo); |
2140 | 0 | Hi = merge(Hi, FieldHi); |
2141 | 0 | if (Lo == Memory || Hi == Memory) |
2142 | 0 | break; |
2143 | 0 | } |
2144 | | |
2145 | 0 | postMerge(Size, Lo, Hi); |
2146 | 0 | } |
2147 | 0 | } |
2148 | | |
2149 | 0 | ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { |
2150 | | // If this is a scalar LLVM value then assume LLVM will pass it in the right |
2151 | | // place naturally. |
2152 | 0 | if (!isAggregateTypeForABI(Ty)) { |
2153 | | // Treat an enum type as its underlying type. |
2154 | 0 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
2155 | 0 | Ty = EnumTy->getDecl()->getIntegerType(); |
2156 | |
|
2157 | 0 | if (Ty->isBitIntType()) |
2158 | 0 | return getNaturalAlignIndirect(Ty); |
2159 | | |
2160 | 0 | return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) |
2161 | 0 | : ABIArgInfo::getDirect()); |
2162 | 0 | } |
2163 | | |
2164 | 0 | return getNaturalAlignIndirect(Ty); |
2165 | 0 | } |
2166 | | |
2167 | 0 | bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { |
2168 | 0 | if (const VectorType *VecTy = Ty->getAs<VectorType>()) { |
2169 | 0 | uint64_t Size = getContext().getTypeSize(VecTy); |
2170 | 0 | unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); |
2171 | 0 | if (Size <= 64 || Size > LargestVector) |
2172 | 0 | return true; |
2173 | 0 | QualType EltTy = VecTy->getElementType(); |
2174 | 0 | if (passInt128VectorsInMem() && |
2175 | 0 | (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || |
2176 | 0 | EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) |
2177 | 0 | return true; |
2178 | 0 | } |
2179 | | |
2180 | 0 | return false; |
2181 | 0 | } |
2182 | | |
2183 | | ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, |
2184 | 0 | unsigned freeIntRegs) const { |
2185 | | // If this is a scalar LLVM value then assume LLVM will pass it in the right |
2186 | | // place naturally. |
2187 | | // |
2188 | | // This assumption is optimistic, as there could be free registers available |
2189 | | // when we need to pass this argument in memory, and LLVM could try to pass |
2190 | | // the argument in the free register. This does not seem to happen currently, |
2191 | | // but this code would be much safer if we could mark the argument with |
2192 | | // 'onstack'. See PR12193. |
2193 | 0 | if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && |
2194 | 0 | !Ty->isBitIntType()) { |
2195 | | // Treat an enum type as its underlying type. |
2196 | 0 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
2197 | 0 | Ty = EnumTy->getDecl()->getIntegerType(); |
2198 | |
|
2199 | 0 | return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) |
2200 | 0 | : ABIArgInfo::getDirect()); |
2201 | 0 | } |
2202 | | |
2203 | 0 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) |
2204 | 0 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
2205 | | |
2206 | | // Compute the byval alignment. We specify the alignment of the byval in all |
2207 | | // cases so that the mid-level optimizer knows the alignment of the byval. |
2208 | 0 | unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); |
2209 | | |
2210 | | // Attempt to avoid passing indirect results using byval when possible. This |
2211 | | // is important for good codegen. |
2212 | | // |
2213 | | // We do this by coercing the value into a scalar type which the backend can |
2214 | | // handle naturally (i.e., without using byval). |
2215 | | // |
2216 | | // For simplicity, we currently only do this when we have exhausted all of the |
2217 | | // free integer registers. Doing this when there are free integer registers |
2218 | | // would require more care, as we would have to ensure that the coerced value |
2219 | | // did not claim the unused register. That would require either reording the |
2220 | | // arguments to the function (so that any subsequent inreg values came first), |
2221 | | // or only doing this optimization when there were no following arguments that |
2222 | | // might be inreg. |
2223 | | // |
2224 | | // We currently expect it to be rare (particularly in well written code) for |
2225 | | // arguments to be passed on the stack when there are still free integer |
2226 | | // registers available (this would typically imply large structs being passed |
2227 | | // by value), so this seems like a fair tradeoff for now. |
2228 | | // |
2229 | | // We can revisit this if the backend grows support for 'onstack' parameter |
2230 | | // attributes. See PR12193. |
2231 | 0 | if (freeIntRegs == 0) { |
2232 | 0 | uint64_t Size = getContext().getTypeSize(Ty); |
2233 | | |
2234 | | // If this type fits in an eightbyte, coerce it into the matching integral |
2235 | | // type, which will end up on the stack (with alignment 8). |
2236 | 0 | if (Align == 8 && Size <= 64) |
2237 | 0 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), |
2238 | 0 | Size)); |
2239 | 0 | } |
2240 | | |
2241 | 0 | return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); |
2242 | 0 | } |
2243 | | |
2244 | | /// The ABI specifies that a value should be passed in a full vector XMM/YMM |
2245 | | /// register. Pick an LLVM IR type that will be passed as a vector register. |
2246 | 0 | llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { |
2247 | | // Wrapper structs/arrays that only contain vectors are passed just like |
2248 | | // vectors; strip them off if present. |
2249 | 0 | if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) |
2250 | 0 | Ty = QualType(InnerTy, 0); |
2251 | |
|
2252 | 0 | llvm::Type *IRType = CGT.ConvertType(Ty); |
2253 | 0 | if (isa<llvm::VectorType>(IRType)) { |
2254 | | // Don't pass vXi128 vectors in their native type, the backend can't |
2255 | | // legalize them. |
2256 | 0 | if (passInt128VectorsInMem() && |
2257 | 0 | cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { |
2258 | | // Use a vXi64 vector. |
2259 | 0 | uint64_t Size = getContext().getTypeSize(Ty); |
2260 | 0 | return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), |
2261 | 0 | Size / 64); |
2262 | 0 | } |
2263 | | |
2264 | 0 | return IRType; |
2265 | 0 | } |
2266 | | |
2267 | 0 | if (IRType->getTypeID() == llvm::Type::FP128TyID) |
2268 | 0 | return IRType; |
2269 | | |
2270 | | // We couldn't find the preferred IR vector type for 'Ty'. |
2271 | 0 | uint64_t Size = getContext().getTypeSize(Ty); |
2272 | 0 | assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); |
2273 | | |
2274 | | |
2275 | | // Return a LLVM IR vector type based on the size of 'Ty'. |
2276 | 0 | return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), |
2277 | 0 | Size / 64); |
2278 | 0 | } |
2279 | | |
2280 | | /// BitsContainNoUserData - Return true if the specified [start,end) bit range |
2281 | | /// is known to either be off the end of the specified type or being in |
2282 | | /// alignment padding. The user type specified is known to be at most 128 bits |
2283 | | /// in size, and have passed through X86_64ABIInfo::classify with a successful |
2284 | | /// classification that put one of the two halves in the INTEGER class. |
2285 | | /// |
2286 | | /// It is conservatively correct to return false. |
2287 | | static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, |
2288 | 0 | unsigned EndBit, ASTContext &Context) { |
2289 | | // If the bytes being queried are off the end of the type, there is no user |
2290 | | // data hiding here. This handles analysis of builtins, vectors and other |
2291 | | // types that don't contain interesting padding. |
2292 | 0 | unsigned TySize = (unsigned)Context.getTypeSize(Ty); |
2293 | 0 | if (TySize <= StartBit) |
2294 | 0 | return true; |
2295 | | |
2296 | 0 | if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { |
2297 | 0 | unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); |
2298 | 0 | unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); |
2299 | | |
2300 | | // Check each element to see if the element overlaps with the queried range. |
2301 | 0 | for (unsigned i = 0; i != NumElts; ++i) { |
2302 | | // If the element is after the span we care about, then we're done.. |
2303 | 0 | unsigned EltOffset = i*EltSize; |
2304 | 0 | if (EltOffset >= EndBit) break; |
2305 | | |
2306 | 0 | unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; |
2307 | 0 | if (!BitsContainNoUserData(AT->getElementType(), EltStart, |
2308 | 0 | EndBit-EltOffset, Context)) |
2309 | 0 | return false; |
2310 | 0 | } |
2311 | | // If it overlaps no elements, then it is safe to process as padding. |
2312 | 0 | return true; |
2313 | 0 | } |
2314 | | |
2315 | 0 | if (const RecordType *RT = Ty->getAs<RecordType>()) { |
2316 | 0 | const RecordDecl *RD = RT->getDecl(); |
2317 | 0 | const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); |
2318 | | |
2319 | | // If this is a C++ record, check the bases first. |
2320 | 0 | if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { |
2321 | 0 | for (const auto &I : CXXRD->bases()) { |
2322 | 0 | assert(!I.isVirtual() && !I.getType()->isDependentType() && |
2323 | 0 | "Unexpected base class!"); |
2324 | 0 | const auto *Base = |
2325 | 0 | cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); |
2326 | | |
2327 | | // If the base is after the span we care about, ignore it. |
2328 | 0 | unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); |
2329 | 0 | if (BaseOffset >= EndBit) continue; |
2330 | | |
2331 | 0 | unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; |
2332 | 0 | if (!BitsContainNoUserData(I.getType(), BaseStart, |
2333 | 0 | EndBit-BaseOffset, Context)) |
2334 | 0 | return false; |
2335 | 0 | } |
2336 | 0 | } |
2337 | | |
2338 | | // Verify that no field has data that overlaps the region of interest. Yes |
2339 | | // this could be sped up a lot by being smarter about queried fields, |
2340 | | // however we're only looking at structs up to 16 bytes, so we don't care |
2341 | | // much. |
2342 | 0 | unsigned idx = 0; |
2343 | 0 | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); |
2344 | 0 | i != e; ++i, ++idx) { |
2345 | 0 | unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); |
2346 | | |
2347 | | // If we found a field after the region we care about, then we're done. |
2348 | 0 | if (FieldOffset >= EndBit) break; |
2349 | | |
2350 | 0 | unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; |
2351 | 0 | if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, |
2352 | 0 | Context)) |
2353 | 0 | return false; |
2354 | 0 | } |
2355 | | |
2356 | | // If nothing in this record overlapped the area of interest, then we're |
2357 | | // clean. |
2358 | 0 | return true; |
2359 | 0 | } |
2360 | | |
2361 | 0 | return false; |
2362 | 0 | } |
2363 | | |
2364 | | /// getFPTypeAtOffset - Return a floating point type at the specified offset. |
2365 | | static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, |
2366 | 0 | const llvm::DataLayout &TD) { |
2367 | 0 | if (IROffset == 0 && IRType->isFloatingPointTy()) |
2368 | 0 | return IRType; |
2369 | | |
2370 | | // If this is a struct, recurse into the field at the specified offset. |
2371 | 0 | if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { |
2372 | 0 | if (!STy->getNumContainedTypes()) |
2373 | 0 | return nullptr; |
2374 | | |
2375 | 0 | const llvm::StructLayout *SL = TD.getStructLayout(STy); |
2376 | 0 | unsigned Elt = SL->getElementContainingOffset(IROffset); |
2377 | 0 | IROffset -= SL->getElementOffset(Elt); |
2378 | 0 | return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); |
2379 | 0 | } |
2380 | | |
2381 | | // If this is an array, recurse into the field at the specified offset. |
2382 | 0 | if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { |
2383 | 0 | llvm::Type *EltTy = ATy->getElementType(); |
2384 | 0 | unsigned EltSize = TD.getTypeAllocSize(EltTy); |
2385 | 0 | IROffset -= IROffset / EltSize * EltSize; |
2386 | 0 | return getFPTypeAtOffset(EltTy, IROffset, TD); |
2387 | 0 | } |
2388 | | |
2389 | 0 | return nullptr; |
2390 | 0 | } |
2391 | | |
2392 | | /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the |
2393 | | /// low 8 bytes of an XMM register, corresponding to the SSE class. |
2394 | | llvm::Type *X86_64ABIInfo:: |
2395 | | GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, |
2396 | 0 | QualType SourceTy, unsigned SourceOffset) const { |
2397 | 0 | const llvm::DataLayout &TD = getDataLayout(); |
2398 | 0 | unsigned SourceSize = |
2399 | 0 | (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; |
2400 | 0 | llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); |
2401 | 0 | if (!T0 || T0->isDoubleTy()) |
2402 | 0 | return llvm::Type::getDoubleTy(getVMContext()); |
2403 | | |
2404 | | // Get the adjacent FP type. |
2405 | 0 | llvm::Type *T1 = nullptr; |
2406 | 0 | unsigned T0Size = TD.getTypeAllocSize(T0); |
2407 | 0 | if (SourceSize > T0Size) |
2408 | 0 | T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); |
2409 | 0 | if (T1 == nullptr) { |
2410 | | // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due |
2411 | | // to its alignment. |
2412 | 0 | if (T0->is16bitFPTy() && SourceSize > 4) |
2413 | 0 | T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); |
2414 | | // If we can't get a second FP type, return a simple half or float. |
2415 | | // avx512fp16-abi.c:pr51813_2 shows it works to return float for |
2416 | | // {float, i8} too. |
2417 | 0 | if (T1 == nullptr) |
2418 | 0 | return T0; |
2419 | 0 | } |
2420 | | |
2421 | 0 | if (T0->isFloatTy() && T1->isFloatTy()) |
2422 | 0 | return llvm::FixedVectorType::get(T0, 2); |
2423 | | |
2424 | 0 | if (T0->is16bitFPTy() && T1->is16bitFPTy()) { |
2425 | 0 | llvm::Type *T2 = nullptr; |
2426 | 0 | if (SourceSize > 4) |
2427 | 0 | T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); |
2428 | 0 | if (T2 == nullptr) |
2429 | 0 | return llvm::FixedVectorType::get(T0, 2); |
2430 | 0 | return llvm::FixedVectorType::get(T0, 4); |
2431 | 0 | } |
2432 | | |
2433 | 0 | if (T0->is16bitFPTy() || T1->is16bitFPTy()) |
2434 | 0 | return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); |
2435 | | |
2436 | 0 | return llvm::Type::getDoubleTy(getVMContext()); |
2437 | 0 | } |
2438 | | |
2439 | | |
2440 | | /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in |
2441 | | /// an 8-byte GPR. This means that we either have a scalar or we are talking |
2442 | | /// about the high or low part of an up-to-16-byte struct. This routine picks |
2443 | | /// the best LLVM IR type to represent this, which may be i64 or may be anything |
2444 | | /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, |
2445 | | /// etc). |
2446 | | /// |
2447 | | /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for |
2448 | | /// the source type. IROffset is an offset in bytes into the LLVM IR type that |
2449 | | /// the 8-byte value references. PrefType may be null. |
2450 | | /// |
2451 | | /// SourceTy is the source-level type for the entire argument. SourceOffset is |
2452 | | /// an offset into this that we're processing (which is always either 0 or 8). |
2453 | | /// |
2454 | | llvm::Type *X86_64ABIInfo:: |
2455 | | GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, |
2456 | 0 | QualType SourceTy, unsigned SourceOffset) const { |
2457 | | // If we're dealing with an un-offset LLVM IR type, then it means that we're |
2458 | | // returning an 8-byte unit starting with it. See if we can safely use it. |
2459 | 0 | if (IROffset == 0) { |
2460 | | // Pointers and int64's always fill the 8-byte unit. |
2461 | 0 | if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || |
2462 | 0 | IRType->isIntegerTy(64)) |
2463 | 0 | return IRType; |
2464 | | |
2465 | | // If we have a 1/2/4-byte integer, we can use it only if the rest of the |
2466 | | // goodness in the source type is just tail padding. This is allowed to |
2467 | | // kick in for struct {double,int} on the int, but not on |
2468 | | // struct{double,int,int} because we wouldn't return the second int. We |
2469 | | // have to do this analysis on the source type because we can't depend on |
2470 | | // unions being lowered a specific way etc. |
2471 | 0 | if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || |
2472 | 0 | IRType->isIntegerTy(32) || |
2473 | 0 | (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { |
2474 | 0 | unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : |
2475 | 0 | cast<llvm::IntegerType>(IRType)->getBitWidth(); |
2476 | |
|
2477 | 0 | if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, |
2478 | 0 | SourceOffset*8+64, getContext())) |
2479 | 0 | return IRType; |
2480 | 0 | } |
2481 | 0 | } |
2482 | | |
2483 | 0 | if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { |
2484 | | // If this is a struct, recurse into the field at the specified offset. |
2485 | 0 | const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); |
2486 | 0 | if (IROffset < SL->getSizeInBytes()) { |
2487 | 0 | unsigned FieldIdx = SL->getElementContainingOffset(IROffset); |
2488 | 0 | IROffset -= SL->getElementOffset(FieldIdx); |
2489 | |
|
2490 | 0 | return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, |
2491 | 0 | SourceTy, SourceOffset); |
2492 | 0 | } |
2493 | 0 | } |
2494 | | |
2495 | 0 | if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { |
2496 | 0 | llvm::Type *EltTy = ATy->getElementType(); |
2497 | 0 | unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); |
2498 | 0 | unsigned EltOffset = IROffset/EltSize*EltSize; |
2499 | 0 | return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, |
2500 | 0 | SourceOffset); |
2501 | 0 | } |
2502 | | |
2503 | | // Okay, we don't have any better idea of what to pass, so we pass this in an |
2504 | | // integer register that isn't too big to fit the rest of the struct. |
2505 | 0 | unsigned TySizeInBytes = |
2506 | 0 | (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); |
2507 | |
|
2508 | 0 | assert(TySizeInBytes != SourceOffset && "Empty field?"); |
2509 | | |
2510 | | // It is always safe to classify this as an integer type up to i64 that |
2511 | | // isn't larger than the structure. |
2512 | 0 | return llvm::IntegerType::get(getVMContext(), |
2513 | 0 | std::min(TySizeInBytes-SourceOffset, 8U)*8); |
2514 | 0 | } |
2515 | | |
2516 | | |
2517 | | /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally |
2518 | | /// be used as elements of a two register pair to pass or return, return a |
2519 | | /// first class aggregate to represent them. For example, if the low part of |
2520 | | /// a by-value argument should be passed as i32* and the high part as float, |
2521 | | /// return {i32*, float}. |
2522 | | static llvm::Type * |
2523 | | GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, |
2524 | 0 | const llvm::DataLayout &TD) { |
2525 | | // In order to correctly satisfy the ABI, we need to the high part to start |
2526 | | // at offset 8. If the high and low parts we inferred are both 4-byte types |
2527 | | // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have |
2528 | | // the second element at offset 8. Check for this: |
2529 | 0 | unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); |
2530 | 0 | llvm::Align HiAlign = TD.getABITypeAlign(Hi); |
2531 | 0 | unsigned HiStart = llvm::alignTo(LoSize, HiAlign); |
2532 | 0 | assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); |
2533 | | |
2534 | | // To handle this, we have to increase the size of the low part so that the |
2535 | | // second element will start at an 8 byte offset. We can't increase the size |
2536 | | // of the second element because it might make us access off the end of the |
2537 | | // struct. |
2538 | 0 | if (HiStart != 8) { |
2539 | | // There are usually two sorts of types the ABI generation code can produce |
2540 | | // for the low part of a pair that aren't 8 bytes in size: half, float or |
2541 | | // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and |
2542 | | // NaCl). |
2543 | | // Promote these to a larger type. |
2544 | 0 | if (Lo->isHalfTy() || Lo->isFloatTy()) |
2545 | 0 | Lo = llvm::Type::getDoubleTy(Lo->getContext()); |
2546 | 0 | else { |
2547 | 0 | assert((Lo->isIntegerTy() || Lo->isPointerTy()) |
2548 | 0 | && "Invalid/unknown lo type"); |
2549 | 0 | Lo = llvm::Type::getInt64Ty(Lo->getContext()); |
2550 | 0 | } |
2551 | 0 | } |
2552 | | |
2553 | 0 | llvm::StructType *Result = llvm::StructType::get(Lo, Hi); |
2554 | | |
2555 | | // Verify that the second element is at an 8-byte offset. |
2556 | 0 | assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && |
2557 | 0 | "Invalid x86-64 argument pair!"); |
2558 | 0 | return Result; |
2559 | 0 | } |
2560 | | |
2561 | | ABIArgInfo X86_64ABIInfo:: |
2562 | 0 | classifyReturnType(QualType RetTy) const { |
2563 | | // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the |
2564 | | // classification algorithm. |
2565 | 0 | X86_64ABIInfo::Class Lo, Hi; |
2566 | 0 | classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); |
2567 | | |
2568 | | // Check some invariants. |
2569 | 0 | assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); |
2570 | 0 | assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); |
2571 | | |
2572 | 0 | llvm::Type *ResType = nullptr; |
2573 | 0 | switch (Lo) { |
2574 | 0 | case NoClass: |
2575 | 0 | if (Hi == NoClass) |
2576 | 0 | return ABIArgInfo::getIgnore(); |
2577 | | // If the low part is just padding, it takes no register, leave ResType |
2578 | | // null. |
2579 | 0 | assert((Hi == SSE || Hi == Integer || Hi == X87Up) && |
2580 | 0 | "Unknown missing lo part"); |
2581 | 0 | break; |
2582 | | |
2583 | 0 | case SSEUp: |
2584 | 0 | case X87Up: |
2585 | 0 | llvm_unreachable("Invalid classification for lo word."); |
2586 | | |
2587 | | // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via |
2588 | | // hidden argument. |
2589 | 0 | case Memory: |
2590 | 0 | return getIndirectReturnResult(RetTy); |
2591 | | |
2592 | | // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next |
2593 | | // available register of the sequence %rax, %rdx is used. |
2594 | 0 | case Integer: |
2595 | 0 | ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); |
2596 | | |
2597 | | // If we have a sign or zero extended integer, make sure to return Extend |
2598 | | // so that the parameter gets the right LLVM IR attributes. |
2599 | 0 | if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { |
2600 | | // Treat an enum type as its underlying type. |
2601 | 0 | if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) |
2602 | 0 | RetTy = EnumTy->getDecl()->getIntegerType(); |
2603 | |
|
2604 | 0 | if (RetTy->isIntegralOrEnumerationType() && |
2605 | 0 | isPromotableIntegerTypeForABI(RetTy)) |
2606 | 0 | return ABIArgInfo::getExtend(RetTy); |
2607 | 0 | } |
2608 | 0 | break; |
2609 | | |
2610 | | // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next |
2611 | | // available SSE register of the sequence %xmm0, %xmm1 is used. |
2612 | 0 | case SSE: |
2613 | 0 | ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); |
2614 | 0 | break; |
2615 | | |
2616 | | // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is |
2617 | | // returned on the X87 stack in %st0 as 80-bit x87 number. |
2618 | 0 | case X87: |
2619 | 0 | ResType = llvm::Type::getX86_FP80Ty(getVMContext()); |
2620 | 0 | break; |
2621 | | |
2622 | | // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real |
2623 | | // part of the value is returned in %st0 and the imaginary part in |
2624 | | // %st1. |
2625 | 0 | case ComplexX87: |
2626 | 0 | assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); |
2627 | 0 | ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), |
2628 | 0 | llvm::Type::getX86_FP80Ty(getVMContext())); |
2629 | 0 | break; |
2630 | 0 | } |
2631 | | |
2632 | 0 | llvm::Type *HighPart = nullptr; |
2633 | 0 | switch (Hi) { |
2634 | | // Memory was handled previously and X87 should |
2635 | | // never occur as a hi class. |
2636 | 0 | case Memory: |
2637 | 0 | case X87: |
2638 | 0 | llvm_unreachable("Invalid classification for hi word."); |
2639 | |
|
2640 | 0 | case ComplexX87: // Previously handled. |
2641 | 0 | case NoClass: |
2642 | 0 | break; |
2643 | | |
2644 | 0 | case Integer: |
2645 | 0 | HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); |
2646 | 0 | if (Lo == NoClass) // Return HighPart at offset 8 in memory. |
2647 | 0 | return ABIArgInfo::getDirect(HighPart, 8); |
2648 | 0 | break; |
2649 | 0 | case SSE: |
2650 | 0 | HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); |
2651 | 0 | if (Lo == NoClass) // Return HighPart at offset 8 in memory. |
2652 | 0 | return ABIArgInfo::getDirect(HighPart, 8); |
2653 | 0 | break; |
2654 | | |
2655 | | // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte |
2656 | | // is passed in the next available eightbyte chunk if the last used |
2657 | | // vector register. |
2658 | | // |
2659 | | // SSEUP should always be preceded by SSE, just widen. |
2660 | 0 | case SSEUp: |
2661 | 0 | assert(Lo == SSE && "Unexpected SSEUp classification."); |
2662 | 0 | ResType = GetByteVectorType(RetTy); |
2663 | 0 | break; |
2664 | | |
2665 | | // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is |
2666 | | // returned together with the previous X87 value in %st0. |
2667 | 0 | case X87Up: |
2668 | | // If X87Up is preceded by X87, we don't need to do |
2669 | | // anything. However, in some cases with unions it may not be |
2670 | | // preceded by X87. In such situations we follow gcc and pass the |
2671 | | // extra bits in an SSE reg. |
2672 | 0 | if (Lo != X87) { |
2673 | 0 | HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); |
2674 | 0 | if (Lo == NoClass) // Return HighPart at offset 8 in memory. |
2675 | 0 | return ABIArgInfo::getDirect(HighPart, 8); |
2676 | 0 | } |
2677 | 0 | break; |
2678 | 0 | } |
2679 | | |
2680 | | // If a high part was specified, merge it together with the low part. It is |
2681 | | // known to pass in the high eightbyte of the result. We do this by forming a |
2682 | | // first class struct aggregate with the high and low part: {low, high} |
2683 | 0 | if (HighPart) |
2684 | 0 | ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); |
2685 | |
|
2686 | 0 | return ABIArgInfo::getDirect(ResType); |
2687 | 0 | } |
2688 | | |
2689 | | ABIArgInfo |
2690 | | X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs, |
2691 | | unsigned &neededInt, unsigned &neededSSE, |
2692 | 0 | bool isNamedArg, bool IsRegCall) const { |
2693 | 0 | Ty = useFirstFieldIfTransparentUnion(Ty); |
2694 | |
|
2695 | 0 | X86_64ABIInfo::Class Lo, Hi; |
2696 | 0 | classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall); |
2697 | | |
2698 | | // Check some invariants. |
2699 | | // FIXME: Enforce these by construction. |
2700 | 0 | assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); |
2701 | 0 | assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); |
2702 | | |
2703 | 0 | neededInt = 0; |
2704 | 0 | neededSSE = 0; |
2705 | 0 | llvm::Type *ResType = nullptr; |
2706 | 0 | switch (Lo) { |
2707 | 0 | case NoClass: |
2708 | 0 | if (Hi == NoClass) |
2709 | 0 | return ABIArgInfo::getIgnore(); |
2710 | | // If the low part is just padding, it takes no register, leave ResType |
2711 | | // null. |
2712 | 0 | assert((Hi == SSE || Hi == Integer || Hi == X87Up) && |
2713 | 0 | "Unknown missing lo part"); |
2714 | 0 | break; |
2715 | | |
2716 | | // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument |
2717 | | // on the stack. |
2718 | 0 | case Memory: |
2719 | | |
2720 | | // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or |
2721 | | // COMPLEX_X87, it is passed in memory. |
2722 | 0 | case X87: |
2723 | 0 | case ComplexX87: |
2724 | 0 | if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) |
2725 | 0 | ++neededInt; |
2726 | 0 | return getIndirectResult(Ty, freeIntRegs); |
2727 | | |
2728 | 0 | case SSEUp: |
2729 | 0 | case X87Up: |
2730 | 0 | llvm_unreachable("Invalid classification for lo word."); |
2731 | | |
2732 | | // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next |
2733 | | // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 |
2734 | | // and %r9 is used. |
2735 | 0 | case Integer: |
2736 | 0 | ++neededInt; |
2737 | | |
2738 | | // Pick an 8-byte type based on the preferred type. |
2739 | 0 | ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); |
2740 | | |
2741 | | // If we have a sign or zero extended integer, make sure to return Extend |
2742 | | // so that the parameter gets the right LLVM IR attributes. |
2743 | 0 | if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { |
2744 | | // Treat an enum type as its underlying type. |
2745 | 0 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
2746 | 0 | Ty = EnumTy->getDecl()->getIntegerType(); |
2747 | |
|
2748 | 0 | if (Ty->isIntegralOrEnumerationType() && |
2749 | 0 | isPromotableIntegerTypeForABI(Ty)) |
2750 | 0 | return ABIArgInfo::getExtend(Ty); |
2751 | 0 | } |
2752 | | |
2753 | 0 | break; |
2754 | | |
2755 | | // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next |
2756 | | // available SSE register is used, the registers are taken in the |
2757 | | // order from %xmm0 to %xmm7. |
2758 | 0 | case SSE: { |
2759 | 0 | llvm::Type *IRType = CGT.ConvertType(Ty); |
2760 | 0 | ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); |
2761 | 0 | ++neededSSE; |
2762 | 0 | break; |
2763 | 0 | } |
2764 | 0 | } |
2765 | | |
2766 | 0 | llvm::Type *HighPart = nullptr; |
2767 | 0 | switch (Hi) { |
2768 | | // Memory was handled previously, ComplexX87 and X87 should |
2769 | | // never occur as hi classes, and X87Up must be preceded by X87, |
2770 | | // which is passed in memory. |
2771 | 0 | case Memory: |
2772 | 0 | case X87: |
2773 | 0 | case ComplexX87: |
2774 | 0 | llvm_unreachable("Invalid classification for hi word."); |
2775 | |
|
2776 | 0 | case NoClass: break; |
2777 | | |
2778 | 0 | case Integer: |
2779 | 0 | ++neededInt; |
2780 | | // Pick an 8-byte type based on the preferred type. |
2781 | 0 | HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); |
2782 | |
|
2783 | 0 | if (Lo == NoClass) // Pass HighPart at offset 8 in memory. |
2784 | 0 | return ABIArgInfo::getDirect(HighPart, 8); |
2785 | 0 | break; |
2786 | | |
2787 | | // X87Up generally doesn't occur here (long double is passed in |
2788 | | // memory), except in situations involving unions. |
2789 | 0 | case X87Up: |
2790 | 0 | case SSE: |
2791 | 0 | HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); |
2792 | |
|
2793 | 0 | if (Lo == NoClass) // Pass HighPart at offset 8 in memory. |
2794 | 0 | return ABIArgInfo::getDirect(HighPart, 8); |
2795 | | |
2796 | 0 | ++neededSSE; |
2797 | 0 | break; |
2798 | | |
2799 | | // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the |
2800 | | // eightbyte is passed in the upper half of the last used SSE |
2801 | | // register. This only happens when 128-bit vectors are passed. |
2802 | 0 | case SSEUp: |
2803 | 0 | assert(Lo == SSE && "Unexpected SSEUp classification"); |
2804 | 0 | ResType = GetByteVectorType(Ty); |
2805 | 0 | break; |
2806 | 0 | } |
2807 | | |
2808 | | // If a high part was specified, merge it together with the low part. It is |
2809 | | // known to pass in the high eightbyte of the result. We do this by forming a |
2810 | | // first class struct aggregate with the high and low part: {low, high} |
2811 | 0 | if (HighPart) |
2812 | 0 | ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); |
2813 | |
|
2814 | 0 | return ABIArgInfo::getDirect(ResType); |
2815 | 0 | } |
2816 | | |
2817 | | ABIArgInfo |
2818 | | X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, |
2819 | | unsigned &NeededSSE, |
2820 | 0 | unsigned &MaxVectorWidth) const { |
2821 | 0 | auto RT = Ty->getAs<RecordType>(); |
2822 | 0 | assert(RT && "classifyRegCallStructType only valid with struct types"); |
2823 | | |
2824 | 0 | if (RT->getDecl()->hasFlexibleArrayMember()) |
2825 | 0 | return getIndirectReturnResult(Ty); |
2826 | | |
2827 | | // Sum up bases |
2828 | 0 | if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { |
2829 | 0 | if (CXXRD->isDynamicClass()) { |
2830 | 0 | NeededInt = NeededSSE = 0; |
2831 | 0 | return getIndirectReturnResult(Ty); |
2832 | 0 | } |
2833 | | |
2834 | 0 | for (const auto &I : CXXRD->bases()) |
2835 | 0 | if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE, |
2836 | 0 | MaxVectorWidth) |
2837 | 0 | .isIndirect()) { |
2838 | 0 | NeededInt = NeededSSE = 0; |
2839 | 0 | return getIndirectReturnResult(Ty); |
2840 | 0 | } |
2841 | 0 | } |
2842 | | |
2843 | | // Sum up members |
2844 | 0 | for (const auto *FD : RT->getDecl()->fields()) { |
2845 | 0 | QualType MTy = FD->getType(); |
2846 | 0 | if (MTy->isRecordType() && !MTy->isUnionType()) { |
2847 | 0 | if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE, |
2848 | 0 | MaxVectorWidth) |
2849 | 0 | .isIndirect()) { |
2850 | 0 | NeededInt = NeededSSE = 0; |
2851 | 0 | return getIndirectReturnResult(Ty); |
2852 | 0 | } |
2853 | 0 | } else { |
2854 | 0 | unsigned LocalNeededInt, LocalNeededSSE; |
2855 | 0 | if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE, |
2856 | 0 | true, true) |
2857 | 0 | .isIndirect()) { |
2858 | 0 | NeededInt = NeededSSE = 0; |
2859 | 0 | return getIndirectReturnResult(Ty); |
2860 | 0 | } |
2861 | 0 | if (const auto *AT = getContext().getAsConstantArrayType(MTy)) |
2862 | 0 | MTy = AT->getElementType(); |
2863 | 0 | if (const auto *VT = MTy->getAs<VectorType>()) |
2864 | 0 | if (getContext().getTypeSize(VT) > MaxVectorWidth) |
2865 | 0 | MaxVectorWidth = getContext().getTypeSize(VT); |
2866 | 0 | NeededInt += LocalNeededInt; |
2867 | 0 | NeededSSE += LocalNeededSSE; |
2868 | 0 | } |
2869 | 0 | } |
2870 | | |
2871 | 0 | return ABIArgInfo::getDirect(); |
2872 | 0 | } |
2873 | | |
2874 | | ABIArgInfo |
2875 | | X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt, |
2876 | | unsigned &NeededSSE, |
2877 | 0 | unsigned &MaxVectorWidth) const { |
2878 | |
|
2879 | 0 | NeededInt = 0; |
2880 | 0 | NeededSSE = 0; |
2881 | 0 | MaxVectorWidth = 0; |
2882 | |
|
2883 | 0 | return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE, |
2884 | 0 | MaxVectorWidth); |
2885 | 0 | } |
2886 | | |
2887 | 0 | void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
2888 | |
|
2889 | 0 | const unsigned CallingConv = FI.getCallingConvention(); |
2890 | | // It is possible to force Win64 calling convention on any x86_64 target by |
2891 | | // using __attribute__((ms_abi)). In such case to correctly emit Win64 |
2892 | | // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. |
2893 | 0 | if (CallingConv == llvm::CallingConv::Win64) { |
2894 | 0 | WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); |
2895 | 0 | Win64ABIInfo.computeInfo(FI); |
2896 | 0 | return; |
2897 | 0 | } |
2898 | | |
2899 | 0 | bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; |
2900 | | |
2901 | | // Keep track of the number of assigned registers. |
2902 | 0 | unsigned FreeIntRegs = IsRegCall ? 11 : 6; |
2903 | 0 | unsigned FreeSSERegs = IsRegCall ? 16 : 8; |
2904 | 0 | unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0; |
2905 | |
|
2906 | 0 | if (!::classifyReturnType(getCXXABI(), FI, *this)) { |
2907 | 0 | if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && |
2908 | 0 | !FI.getReturnType()->getTypePtr()->isUnionType()) { |
2909 | 0 | FI.getReturnInfo() = classifyRegCallStructType( |
2910 | 0 | FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth); |
2911 | 0 | if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { |
2912 | 0 | FreeIntRegs -= NeededInt; |
2913 | 0 | FreeSSERegs -= NeededSSE; |
2914 | 0 | } else { |
2915 | 0 | FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); |
2916 | 0 | } |
2917 | 0 | } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && |
2918 | 0 | getContext().getCanonicalType(FI.getReturnType() |
2919 | 0 | ->getAs<ComplexType>() |
2920 | 0 | ->getElementType()) == |
2921 | 0 | getContext().LongDoubleTy) |
2922 | | // Complex Long Double Type is passed in Memory when Regcall |
2923 | | // calling convention is used. |
2924 | 0 | FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); |
2925 | 0 | else |
2926 | 0 | FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); |
2927 | 0 | } |
2928 | | |
2929 | | // If the return value is indirect, then the hidden argument is consuming one |
2930 | | // integer register. |
2931 | 0 | if (FI.getReturnInfo().isIndirect()) |
2932 | 0 | --FreeIntRegs; |
2933 | 0 | else if (NeededSSE && MaxVectorWidth > 0) |
2934 | 0 | FI.setMaxVectorWidth(MaxVectorWidth); |
2935 | | |
2936 | | // The chain argument effectively gives us another free register. |
2937 | 0 | if (FI.isChainCall()) |
2938 | 0 | ++FreeIntRegs; |
2939 | |
|
2940 | 0 | unsigned NumRequiredArgs = FI.getNumRequiredArgs(); |
2941 | | // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers |
2942 | | // get assigned (in left-to-right order) for passing as follows... |
2943 | 0 | unsigned ArgNo = 0; |
2944 | 0 | for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); |
2945 | 0 | it != ie; ++it, ++ArgNo) { |
2946 | 0 | bool IsNamedArg = ArgNo < NumRequiredArgs; |
2947 | |
|
2948 | 0 | if (IsRegCall && it->type->isStructureOrClassType()) |
2949 | 0 | it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE, |
2950 | 0 | MaxVectorWidth); |
2951 | 0 | else |
2952 | 0 | it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, |
2953 | 0 | NeededSSE, IsNamedArg); |
2954 | | |
2955 | | // AMD64-ABI 3.2.3p3: If there are no registers available for any |
2956 | | // eightbyte of an argument, the whole argument is passed on the |
2957 | | // stack. If registers have already been assigned for some |
2958 | | // eightbytes of such an argument, the assignments get reverted. |
2959 | 0 | if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { |
2960 | 0 | FreeIntRegs -= NeededInt; |
2961 | 0 | FreeSSERegs -= NeededSSE; |
2962 | 0 | if (MaxVectorWidth > FI.getMaxVectorWidth()) |
2963 | 0 | FI.setMaxVectorWidth(MaxVectorWidth); |
2964 | 0 | } else { |
2965 | 0 | it->info = getIndirectResult(it->type, FreeIntRegs); |
2966 | 0 | } |
2967 | 0 | } |
2968 | 0 | } |
2969 | | |
2970 | | static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, |
2971 | 0 | Address VAListAddr, QualType Ty) { |
2972 | 0 | Address overflow_arg_area_p = |
2973 | 0 | CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); |
2974 | 0 | llvm::Value *overflow_arg_area = |
2975 | 0 | CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); |
2976 | | |
2977 | | // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 |
2978 | | // byte boundary if alignment needed by type exceeds 8 byte boundary. |
2979 | | // It isn't stated explicitly in the standard, but in practice we use |
2980 | | // alignment greater than 16 where necessary. |
2981 | 0 | CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); |
2982 | 0 | if (Align > CharUnits::fromQuantity(8)) { |
2983 | 0 | overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, |
2984 | 0 | Align); |
2985 | 0 | } |
2986 | | |
2987 | | // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. |
2988 | 0 | llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
2989 | 0 | llvm::Value *Res = overflow_arg_area; |
2990 | | |
2991 | | // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: |
2992 | | // l->overflow_arg_area + sizeof(type). |
2993 | | // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to |
2994 | | // an 8 byte boundary. |
2995 | |
|
2996 | 0 | uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; |
2997 | 0 | llvm::Value *Offset = |
2998 | 0 | llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); |
2999 | 0 | overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, |
3000 | 0 | Offset, "overflow_arg_area.next"); |
3001 | 0 | CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); |
3002 | | |
3003 | | // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. |
3004 | 0 | return Address(Res, LTy, Align); |
3005 | 0 | } |
3006 | | |
3007 | | Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
3008 | 0 | QualType Ty) const { |
3009 | | // Assume that va_list type is correct; should be pointer to LLVM type: |
3010 | | // struct { |
3011 | | // i32 gp_offset; |
3012 | | // i32 fp_offset; |
3013 | | // i8* overflow_arg_area; |
3014 | | // i8* reg_save_area; |
3015 | | // }; |
3016 | 0 | unsigned neededInt, neededSSE; |
3017 | |
|
3018 | 0 | Ty = getContext().getCanonicalType(Ty); |
3019 | 0 | ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, |
3020 | 0 | /*isNamedArg*/false); |
3021 | | |
3022 | | // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed |
3023 | | // in the registers. If not go to step 7. |
3024 | 0 | if (!neededInt && !neededSSE) |
3025 | 0 | return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); |
3026 | | |
3027 | | // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of |
3028 | | // general purpose registers needed to pass type and num_fp to hold |
3029 | | // the number of floating point registers needed. |
3030 | | |
3031 | | // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into |
3032 | | // registers. In the case: l->gp_offset > 48 - num_gp * 8 or |
3033 | | // l->fp_offset > 304 - num_fp * 16 go to step 7. |
3034 | | // |
3035 | | // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of |
3036 | | // register save space). |
3037 | | |
3038 | 0 | llvm::Value *InRegs = nullptr; |
3039 | 0 | Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); |
3040 | 0 | llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; |
3041 | 0 | if (neededInt) { |
3042 | 0 | gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); |
3043 | 0 | gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); |
3044 | 0 | InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); |
3045 | 0 | InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); |
3046 | 0 | } |
3047 | |
|
3048 | 0 | if (neededSSE) { |
3049 | 0 | fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); |
3050 | 0 | fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); |
3051 | 0 | llvm::Value *FitsInFP = |
3052 | 0 | llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); |
3053 | 0 | FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); |
3054 | 0 | InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; |
3055 | 0 | } |
3056 | |
|
3057 | 0 | llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); |
3058 | 0 | llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); |
3059 | 0 | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); |
3060 | 0 | CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); |
3061 | | |
3062 | | // Emit code to load the value if it was passed in registers. |
3063 | |
|
3064 | 0 | CGF.EmitBlock(InRegBlock); |
3065 | | |
3066 | | // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with |
3067 | | // an offset of l->gp_offset and/or l->fp_offset. This may require |
3068 | | // copying to a temporary location in case the parameter is passed |
3069 | | // in different register classes or requires an alignment greater |
3070 | | // than 8 for general purpose registers and 16 for XMM registers. |
3071 | | // |
3072 | | // FIXME: This really results in shameful code when we end up needing to |
3073 | | // collect arguments from different places; often what should result in a |
3074 | | // simple assembling of a structure from scattered addresses has many more |
3075 | | // loads than necessary. Can we clean this up? |
3076 | 0 | llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); |
3077 | 0 | llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( |
3078 | 0 | CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); |
3079 | |
|
3080 | 0 | Address RegAddr = Address::invalid(); |
3081 | 0 | if (neededInt && neededSSE) { |
3082 | | // FIXME: Cleanup. |
3083 | 0 | assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); |
3084 | 0 | llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); |
3085 | 0 | Address Tmp = CGF.CreateMemTemp(Ty); |
3086 | 0 | Tmp = Tmp.withElementType(ST); |
3087 | 0 | assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); |
3088 | 0 | llvm::Type *TyLo = ST->getElementType(0); |
3089 | 0 | llvm::Type *TyHi = ST->getElementType(1); |
3090 | 0 | assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && |
3091 | 0 | "Unexpected ABI info for mixed regs"); |
3092 | 0 | llvm::Value *GPAddr = |
3093 | 0 | CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); |
3094 | 0 | llvm::Value *FPAddr = |
3095 | 0 | CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); |
3096 | 0 | llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; |
3097 | 0 | llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; |
3098 | | |
3099 | | // Copy the first element. |
3100 | | // FIXME: Our choice of alignment here and below is probably pessimistic. |
3101 | 0 | llvm::Value *V = CGF.Builder.CreateAlignedLoad( |
3102 | 0 | TyLo, RegLoAddr, |
3103 | 0 | CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo))); |
3104 | 0 | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); |
3105 | | |
3106 | | // Copy the second element. |
3107 | 0 | V = CGF.Builder.CreateAlignedLoad( |
3108 | 0 | TyHi, RegHiAddr, |
3109 | 0 | CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi))); |
3110 | 0 | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); |
3111 | |
|
3112 | 0 | RegAddr = Tmp.withElementType(LTy); |
3113 | 0 | } else if (neededInt) { |
3114 | 0 | RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), |
3115 | 0 | LTy, CharUnits::fromQuantity(8)); |
3116 | | |
3117 | | // Copy to a temporary if necessary to ensure the appropriate alignment. |
3118 | 0 | auto TInfo = getContext().getTypeInfoInChars(Ty); |
3119 | 0 | uint64_t TySize = TInfo.Width.getQuantity(); |
3120 | 0 | CharUnits TyAlign = TInfo.Align; |
3121 | | |
3122 | | // Copy into a temporary if the type is more aligned than the |
3123 | | // register save area. |
3124 | 0 | if (TyAlign.getQuantity() > 8) { |
3125 | 0 | Address Tmp = CGF.CreateMemTemp(Ty); |
3126 | 0 | CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); |
3127 | 0 | RegAddr = Tmp; |
3128 | 0 | } |
3129 | |
|
3130 | 0 | } else if (neededSSE == 1) { |
3131 | 0 | RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), |
3132 | 0 | LTy, CharUnits::fromQuantity(16)); |
3133 | 0 | } else { |
3134 | 0 | assert(neededSSE == 2 && "Invalid number of needed registers!"); |
3135 | | // SSE registers are spaced 16 bytes apart in the register save |
3136 | | // area, we need to collect the two eightbytes together. |
3137 | | // The ABI isn't explicit about this, but it seems reasonable |
3138 | | // to assume that the slots are 16-byte aligned, since the stack is |
3139 | | // naturally 16-byte aligned and the prologue is expected to store |
3140 | | // all the SSE registers to the RSA. |
3141 | 0 | Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, |
3142 | 0 | fp_offset), |
3143 | 0 | CGF.Int8Ty, CharUnits::fromQuantity(16)); |
3144 | 0 | Address RegAddrHi = |
3145 | 0 | CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, |
3146 | 0 | CharUnits::fromQuantity(16)); |
3147 | 0 | llvm::Type *ST = AI.canHaveCoerceToType() |
3148 | 0 | ? AI.getCoerceToType() |
3149 | 0 | : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); |
3150 | 0 | llvm::Value *V; |
3151 | 0 | Address Tmp = CGF.CreateMemTemp(Ty); |
3152 | 0 | Tmp = Tmp.withElementType(ST); |
3153 | 0 | V = CGF.Builder.CreateLoad( |
3154 | 0 | RegAddrLo.withElementType(ST->getStructElementType(0))); |
3155 | 0 | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); |
3156 | 0 | V = CGF.Builder.CreateLoad( |
3157 | 0 | RegAddrHi.withElementType(ST->getStructElementType(1))); |
3158 | 0 | CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); |
3159 | |
|
3160 | 0 | RegAddr = Tmp.withElementType(LTy); |
3161 | 0 | } |
3162 | | |
3163 | | // AMD64-ABI 3.5.7p5: Step 5. Set: |
3164 | | // l->gp_offset = l->gp_offset + num_gp * 8 |
3165 | | // l->fp_offset = l->fp_offset + num_fp * 16. |
3166 | 0 | if (neededInt) { |
3167 | 0 | llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); |
3168 | 0 | CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), |
3169 | 0 | gp_offset_p); |
3170 | 0 | } |
3171 | 0 | if (neededSSE) { |
3172 | 0 | llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); |
3173 | 0 | CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), |
3174 | 0 | fp_offset_p); |
3175 | 0 | } |
3176 | 0 | CGF.EmitBranch(ContBlock); |
3177 | | |
3178 | | // Emit code to load the value if it was passed in memory. |
3179 | |
|
3180 | 0 | CGF.EmitBlock(InMemBlock); |
3181 | 0 | Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); |
3182 | | |
3183 | | // Return the appropriate result. |
3184 | |
|
3185 | 0 | CGF.EmitBlock(ContBlock); |
3186 | 0 | Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, |
3187 | 0 | "vaarg.addr"); |
3188 | 0 | return ResAddr; |
3189 | 0 | } |
3190 | | |
3191 | | Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, |
3192 | 0 | QualType Ty) const { |
3193 | | // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is |
3194 | | // not 1, 2, 4, or 8 bytes, must be passed by reference." |
3195 | 0 | uint64_t Width = getContext().getTypeSize(Ty); |
3196 | 0 | bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); |
3197 | |
|
3198 | 0 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, |
3199 | 0 | CGF.getContext().getTypeInfoInChars(Ty), |
3200 | 0 | CharUnits::fromQuantity(8), |
3201 | 0 | /*allowHigherAlign*/ false); |
3202 | 0 | } |
3203 | | |
3204 | | ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( |
3205 | 0 | QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { |
3206 | 0 | const Type *Base = nullptr; |
3207 | 0 | uint64_t NumElts = 0; |
3208 | |
|
3209 | 0 | if (!Ty->isBuiltinType() && !Ty->isVectorType() && |
3210 | 0 | isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { |
3211 | 0 | FreeSSERegs -= NumElts; |
3212 | 0 | return getDirectX86Hva(); |
3213 | 0 | } |
3214 | 0 | return current; |
3215 | 0 | } |
3216 | | |
3217 | | ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, |
3218 | | bool IsReturnType, bool IsVectorCall, |
3219 | 0 | bool IsRegCall) const { |
3220 | |
|
3221 | 0 | if (Ty->isVoidType()) |
3222 | 0 | return ABIArgInfo::getIgnore(); |
3223 | | |
3224 | 0 | if (const EnumType *EnumTy = Ty->getAs<EnumType>()) |
3225 | 0 | Ty = EnumTy->getDecl()->getIntegerType(); |
3226 | |
|
3227 | 0 | TypeInfo Info = getContext().getTypeInfo(Ty); |
3228 | 0 | uint64_t Width = Info.Width; |
3229 | 0 | CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); |
3230 | |
|
3231 | 0 | const RecordType *RT = Ty->getAs<RecordType>(); |
3232 | 0 | if (RT) { |
3233 | 0 | if (!IsReturnType) { |
3234 | 0 | if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) |
3235 | 0 | return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); |
3236 | 0 | } |
3237 | | |
3238 | 0 | if (RT->getDecl()->hasFlexibleArrayMember()) |
3239 | 0 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
3240 | |
|
3241 | 0 | } |
3242 | | |
3243 | 0 | const Type *Base = nullptr; |
3244 | 0 | uint64_t NumElts = 0; |
3245 | | // vectorcall adds the concept of a homogenous vector aggregate, similar to |
3246 | | // other targets. |
3247 | 0 | if ((IsVectorCall || IsRegCall) && |
3248 | 0 | isHomogeneousAggregate(Ty, Base, NumElts)) { |
3249 | 0 | if (IsRegCall) { |
3250 | 0 | if (FreeSSERegs >= NumElts) { |
3251 | 0 | FreeSSERegs -= NumElts; |
3252 | 0 | if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) |
3253 | 0 | return ABIArgInfo::getDirect(); |
3254 | 0 | return ABIArgInfo::getExpand(); |
3255 | 0 | } |
3256 | 0 | return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
3257 | 0 | } else if (IsVectorCall) { |
3258 | 0 | if (FreeSSERegs >= NumElts && |
3259 | 0 | (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { |
3260 | 0 | FreeSSERegs -= NumElts; |
3261 | 0 | return ABIArgInfo::getDirect(); |
3262 | 0 | } else if (IsReturnType) { |
3263 | 0 | return ABIArgInfo::getExpand(); |
3264 | 0 | } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { |
3265 | | // HVAs are delayed and reclassified in the 2nd step. |
3266 | 0 | return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
3267 | 0 | } |
3268 | 0 | } |
3269 | 0 | } |
3270 | | |
3271 | 0 | if (Ty->isMemberPointerType()) { |
3272 | | // If the member pointer is represented by an LLVM int or ptr, pass it |
3273 | | // directly. |
3274 | 0 | llvm::Type *LLTy = CGT.ConvertType(Ty); |
3275 | 0 | if (LLTy->isPointerTy() || LLTy->isIntegerTy()) |
3276 | 0 | return ABIArgInfo::getDirect(); |
3277 | 0 | } |
3278 | | |
3279 | 0 | if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { |
3280 | | // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is |
3281 | | // not 1, 2, 4, or 8 bytes, must be passed by reference." |
3282 | 0 | if (Width > 64 || !llvm::isPowerOf2_64(Width)) |
3283 | 0 | return getNaturalAlignIndirect(Ty, /*ByVal=*/false); |
3284 | | |
3285 | | // Otherwise, coerce it to a small integer. |
3286 | 0 | return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); |
3287 | 0 | } |
3288 | | |
3289 | 0 | if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { |
3290 | 0 | switch (BT->getKind()) { |
3291 | 0 | case BuiltinType::Bool: |
3292 | | // Bool type is always extended to the ABI, other builtin types are not |
3293 | | // extended. |
3294 | 0 | return ABIArgInfo::getExtend(Ty); |
3295 | | |
3296 | 0 | case BuiltinType::LongDouble: |
3297 | | // Mingw64 GCC uses the old 80 bit extended precision floating point |
3298 | | // unit. It passes them indirectly through memory. |
3299 | 0 | if (IsMingw64) { |
3300 | 0 | const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); |
3301 | 0 | if (LDF == &llvm::APFloat::x87DoubleExtended()) |
3302 | 0 | return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
3303 | 0 | } |
3304 | 0 | break; |
3305 | | |
3306 | 0 | case BuiltinType::Int128: |
3307 | 0 | case BuiltinType::UInt128: |
3308 | | // If it's a parameter type, the normal ABI rule is that arguments larger |
3309 | | // than 8 bytes are passed indirectly. GCC follows it. We follow it too, |
3310 | | // even though it isn't particularly efficient. |
3311 | 0 | if (!IsReturnType) |
3312 | 0 | return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
3313 | | |
3314 | | // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. |
3315 | | // Clang matches them for compatibility. |
3316 | 0 | return ABIArgInfo::getDirect(llvm::FixedVectorType::get( |
3317 | 0 | llvm::Type::getInt64Ty(getVMContext()), 2)); |
3318 | | |
3319 | 0 | default: |
3320 | 0 | break; |
3321 | 0 | } |
3322 | 0 | } |
3323 | | |
3324 | 0 | if (Ty->isBitIntType()) { |
3325 | | // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is |
3326 | | // not 1, 2, 4, or 8 bytes, must be passed by reference." |
3327 | | // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, |
3328 | | // or 8 bytes anyway as long is it fits in them, so we don't have to check |
3329 | | // the power of 2. |
3330 | 0 | if (Width <= 64) |
3331 | 0 | return ABIArgInfo::getDirect(); |
3332 | 0 | return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); |
3333 | 0 | } |
3334 | | |
3335 | 0 | return ABIArgInfo::getDirect(); |
3336 | 0 | } |
3337 | | |
3338 | 0 | void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { |
3339 | 0 | const unsigned CC = FI.getCallingConvention(); |
3340 | 0 | bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; |
3341 | 0 | bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; |
3342 | | |
3343 | | // If __attribute__((sysv_abi)) is in use, use the SysV argument |
3344 | | // classification rules. |
3345 | 0 | if (CC == llvm::CallingConv::X86_64_SysV) { |
3346 | 0 | X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); |
3347 | 0 | SysVABIInfo.computeInfo(FI); |
3348 | 0 | return; |
3349 | 0 | } |
3350 | | |
3351 | 0 | unsigned FreeSSERegs = 0; |
3352 | 0 | if (IsVectorCall) { |
3353 | | // We can use up to 4 SSE return registers with vectorcall. |
3354 | 0 | FreeSSERegs = 4; |
3355 | 0 | } else if (IsRegCall) { |
3356 | | // RegCall gives us 16 SSE registers. |
3357 | 0 | FreeSSERegs = 16; |
3358 | 0 | } |
3359 | |
|
3360 | 0 | if (!getCXXABI().classifyReturnType(FI)) |
3361 | 0 | FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, |
3362 | 0 | IsVectorCall, IsRegCall); |
3363 | |
|
3364 | 0 | if (IsVectorCall) { |
3365 | | // We can use up to 6 SSE register parameters with vectorcall. |
3366 | 0 | FreeSSERegs = 6; |
3367 | 0 | } else if (IsRegCall) { |
3368 | | // RegCall gives us 16 SSE registers, we can reuse the return registers. |
3369 | 0 | FreeSSERegs = 16; |
3370 | 0 | } |
3371 | |
|
3372 | 0 | unsigned ArgNum = 0; |
3373 | 0 | unsigned ZeroSSERegs = 0; |
3374 | 0 | for (auto &I : FI.arguments()) { |
3375 | | // Vectorcall in x64 only permits the first 6 arguments to be passed as |
3376 | | // XMM/YMM registers. After the sixth argument, pretend no vector |
3377 | | // registers are left. |
3378 | 0 | unsigned *MaybeFreeSSERegs = |
3379 | 0 | (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; |
3380 | 0 | I.info = |
3381 | 0 | classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); |
3382 | 0 | ++ArgNum; |
3383 | 0 | } |
3384 | |
|
3385 | 0 | if (IsVectorCall) { |
3386 | | // For vectorcall, assign aggregate HVAs to any free vector registers in a |
3387 | | // second pass. |
3388 | 0 | for (auto &I : FI.arguments()) |
3389 | 0 | I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); |
3390 | 0 | } |
3391 | 0 | } |
3392 | | |
3393 | | Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, |
3394 | 0 | QualType Ty) const { |
3395 | | // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is |
3396 | | // not 1, 2, 4, or 8 bytes, must be passed by reference." |
3397 | 0 | uint64_t Width = getContext().getTypeSize(Ty); |
3398 | 0 | bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); |
3399 | |
|
3400 | 0 | return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, |
3401 | 0 | CGF.getContext().getTypeInfoInChars(Ty), |
3402 | 0 | CharUnits::fromQuantity(8), |
3403 | 0 | /*allowHigherAlign*/ false); |
3404 | 0 | } |
3405 | | |
3406 | | std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo( |
3407 | | CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, |
3408 | 0 | unsigned NumRegisterParameters, bool SoftFloatABI) { |
3409 | 0 | bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI( |
3410 | 0 | CGM.getTriple(), CGM.getCodeGenOpts()); |
3411 | 0 | return std::make_unique<X86_32TargetCodeGenInfo>( |
3412 | 0 | CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, |
3413 | 0 | NumRegisterParameters, SoftFloatABI); |
3414 | 0 | } |
3415 | | |
3416 | | std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo( |
3417 | | CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, |
3418 | 0 | unsigned NumRegisterParameters) { |
3419 | 0 | bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI( |
3420 | 0 | CGM.getTriple(), CGM.getCodeGenOpts()); |
3421 | 0 | return std::make_unique<WinX86_32TargetCodeGenInfo>( |
3422 | 0 | CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, |
3423 | 0 | NumRegisterParameters); |
3424 | 0 | } |
3425 | | |
3426 | | std::unique_ptr<TargetCodeGenInfo> |
3427 | | CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM, |
3428 | 46 | X86AVXABILevel AVXLevel) { |
3429 | 46 | return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel); |
3430 | 46 | } |
3431 | | |
3432 | | std::unique_ptr<TargetCodeGenInfo> |
3433 | | CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM, |
3434 | 0 | X86AVXABILevel AVXLevel) { |
3435 | 0 | return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel); |
3436 | 0 | } |