/src/llvm-project/clang/lib/Driver/ToolChains/Cuda.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--- Cuda.cpp - Cuda Tool and ToolChain Implementations -----*- C++ -*-===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | |
9 | | #include "Cuda.h" |
10 | | #include "CommonArgs.h" |
11 | | #include "clang/Basic/Cuda.h" |
12 | | #include "clang/Config/config.h" |
13 | | #include "clang/Driver/Compilation.h" |
14 | | #include "clang/Driver/Distro.h" |
15 | | #include "clang/Driver/Driver.h" |
16 | | #include "clang/Driver/DriverDiagnostic.h" |
17 | | #include "clang/Driver/InputInfo.h" |
18 | | #include "clang/Driver/Options.h" |
19 | | #include "llvm/ADT/StringExtras.h" |
20 | | #include "llvm/Option/ArgList.h" |
21 | | #include "llvm/Support/FileSystem.h" |
22 | | #include "llvm/Support/FormatAdapters.h" |
23 | | #include "llvm/Support/FormatVariadic.h" |
24 | | #include "llvm/Support/Path.h" |
25 | | #include "llvm/Support/Process.h" |
26 | | #include "llvm/Support/Program.h" |
27 | | #include "llvm/Support/VirtualFileSystem.h" |
28 | | #include "llvm/TargetParser/Host.h" |
29 | | #include "llvm/TargetParser/TargetParser.h" |
30 | | #include <system_error> |
31 | | |
32 | | using namespace clang::driver; |
33 | | using namespace clang::driver::toolchains; |
34 | | using namespace clang::driver::tools; |
35 | | using namespace clang; |
36 | | using namespace llvm::opt; |
37 | | |
38 | | namespace { |
39 | | |
40 | 0 | CudaVersion getCudaVersion(uint32_t raw_version) { |
41 | 0 | if (raw_version < 7050) |
42 | 0 | return CudaVersion::CUDA_70; |
43 | 0 | if (raw_version < 8000) |
44 | 0 | return CudaVersion::CUDA_75; |
45 | 0 | if (raw_version < 9000) |
46 | 0 | return CudaVersion::CUDA_80; |
47 | 0 | if (raw_version < 9010) |
48 | 0 | return CudaVersion::CUDA_90; |
49 | 0 | if (raw_version < 9020) |
50 | 0 | return CudaVersion::CUDA_91; |
51 | 0 | if (raw_version < 10000) |
52 | 0 | return CudaVersion::CUDA_92; |
53 | 0 | if (raw_version < 10010) |
54 | 0 | return CudaVersion::CUDA_100; |
55 | 0 | if (raw_version < 10020) |
56 | 0 | return CudaVersion::CUDA_101; |
57 | 0 | if (raw_version < 11000) |
58 | 0 | return CudaVersion::CUDA_102; |
59 | 0 | if (raw_version < 11010) |
60 | 0 | return CudaVersion::CUDA_110; |
61 | 0 | if (raw_version < 11020) |
62 | 0 | return CudaVersion::CUDA_111; |
63 | 0 | if (raw_version < 11030) |
64 | 0 | return CudaVersion::CUDA_112; |
65 | 0 | if (raw_version < 11040) |
66 | 0 | return CudaVersion::CUDA_113; |
67 | 0 | if (raw_version < 11050) |
68 | 0 | return CudaVersion::CUDA_114; |
69 | 0 | if (raw_version < 11060) |
70 | 0 | return CudaVersion::CUDA_115; |
71 | 0 | if (raw_version < 11070) |
72 | 0 | return CudaVersion::CUDA_116; |
73 | 0 | if (raw_version < 11080) |
74 | 0 | return CudaVersion::CUDA_117; |
75 | 0 | if (raw_version < 11090) |
76 | 0 | return CudaVersion::CUDA_118; |
77 | 0 | if (raw_version < 12010) |
78 | 0 | return CudaVersion::CUDA_120; |
79 | 0 | if (raw_version < 12020) |
80 | 0 | return CudaVersion::CUDA_121; |
81 | 0 | if (raw_version < 12030) |
82 | 0 | return CudaVersion::CUDA_122; |
83 | 0 | if (raw_version < 12040) |
84 | 0 | return CudaVersion::CUDA_123; |
85 | 0 | return CudaVersion::NEW; |
86 | 0 | } |
87 | | |
88 | 0 | CudaVersion parseCudaHFile(llvm::StringRef Input) { |
89 | | // Helper lambda which skips the words if the line starts with them or returns |
90 | | // std::nullopt otherwise. |
91 | 0 | auto StartsWithWords = |
92 | 0 | [](llvm::StringRef Line, |
93 | 0 | const SmallVector<StringRef, 3> words) -> std::optional<StringRef> { |
94 | 0 | for (StringRef word : words) { |
95 | 0 | if (!Line.consume_front(word)) |
96 | 0 | return {}; |
97 | 0 | Line = Line.ltrim(); |
98 | 0 | } |
99 | 0 | return Line; |
100 | 0 | }; |
101 | |
|
102 | 0 | Input = Input.ltrim(); |
103 | 0 | while (!Input.empty()) { |
104 | 0 | if (auto Line = |
105 | 0 | StartsWithWords(Input.ltrim(), {"#", "define", "CUDA_VERSION"})) { |
106 | 0 | uint32_t RawVersion; |
107 | 0 | Line->consumeInteger(10, RawVersion); |
108 | 0 | return getCudaVersion(RawVersion); |
109 | 0 | } |
110 | | // Find next non-empty line. |
111 | 0 | Input = Input.drop_front(Input.find_first_of("\n\r")).ltrim(); |
112 | 0 | } |
113 | 0 | return CudaVersion::UNKNOWN; |
114 | 0 | } |
115 | | } // namespace |
116 | | |
117 | 0 | void CudaInstallationDetector::WarnIfUnsupportedVersion() { |
118 | 0 | if (Version > CudaVersion::PARTIALLY_SUPPORTED) { |
119 | 0 | std::string VersionString = CudaVersionToString(Version); |
120 | 0 | if (!VersionString.empty()) |
121 | 0 | VersionString.insert(0, " "); |
122 | 0 | D.Diag(diag::warn_drv_new_cuda_version) |
123 | 0 | << VersionString |
124 | 0 | << (CudaVersion::PARTIALLY_SUPPORTED != CudaVersion::FULLY_SUPPORTED) |
125 | 0 | << CudaVersionToString(CudaVersion::PARTIALLY_SUPPORTED); |
126 | 0 | } else if (Version > CudaVersion::FULLY_SUPPORTED) |
127 | 0 | D.Diag(diag::warn_drv_partially_supported_cuda_version) |
128 | 0 | << CudaVersionToString(Version); |
129 | 0 | } |
130 | | |
131 | | CudaInstallationDetector::CudaInstallationDetector( |
132 | | const Driver &D, const llvm::Triple &HostTriple, |
133 | | const llvm::opt::ArgList &Args) |
134 | 0 | : D(D) { |
135 | 0 | struct Candidate { |
136 | 0 | std::string Path; |
137 | 0 | bool StrictChecking; |
138 | |
|
139 | 0 | Candidate(std::string Path, bool StrictChecking = false) |
140 | 0 | : Path(Path), StrictChecking(StrictChecking) {} |
141 | 0 | }; |
142 | 0 | SmallVector<Candidate, 4> Candidates; |
143 | | |
144 | | // In decreasing order so we prefer newer versions to older versions. |
145 | 0 | std::initializer_list<const char *> Versions = {"8.0", "7.5", "7.0"}; |
146 | 0 | auto &FS = D.getVFS(); |
147 | |
|
148 | 0 | if (Args.hasArg(clang::driver::options::OPT_cuda_path_EQ)) { |
149 | 0 | Candidates.emplace_back( |
150 | 0 | Args.getLastArgValue(clang::driver::options::OPT_cuda_path_EQ).str()); |
151 | 0 | } else if (HostTriple.isOSWindows()) { |
152 | 0 | for (const char *Ver : Versions) |
153 | 0 | Candidates.emplace_back( |
154 | 0 | D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" + |
155 | 0 | Ver); |
156 | 0 | } else { |
157 | 0 | if (!Args.hasArg(clang::driver::options::OPT_cuda_path_ignore_env)) { |
158 | | // Try to find ptxas binary. If the executable is located in a directory |
159 | | // called 'bin/', its parent directory might be a good guess for a valid |
160 | | // CUDA installation. |
161 | | // However, some distributions might installs 'ptxas' to /usr/bin. In that |
162 | | // case the candidate would be '/usr' which passes the following checks |
163 | | // because '/usr/include' exists as well. To avoid this case, we always |
164 | | // check for the directory potentially containing files for libdevice, |
165 | | // even if the user passes -nocudalib. |
166 | 0 | if (llvm::ErrorOr<std::string> ptxas = |
167 | 0 | llvm::sys::findProgramByName("ptxas")) { |
168 | 0 | SmallString<256> ptxasAbsolutePath; |
169 | 0 | llvm::sys::fs::real_path(*ptxas, ptxasAbsolutePath); |
170 | |
|
171 | 0 | StringRef ptxasDir = llvm::sys::path::parent_path(ptxasAbsolutePath); |
172 | 0 | if (llvm::sys::path::filename(ptxasDir) == "bin") |
173 | 0 | Candidates.emplace_back( |
174 | 0 | std::string(llvm::sys::path::parent_path(ptxasDir)), |
175 | 0 | /*StrictChecking=*/true); |
176 | 0 | } |
177 | 0 | } |
178 | |
|
179 | 0 | Candidates.emplace_back(D.SysRoot + "/usr/local/cuda"); |
180 | 0 | for (const char *Ver : Versions) |
181 | 0 | Candidates.emplace_back(D.SysRoot + "/usr/local/cuda-" + Ver); |
182 | |
|
183 | 0 | Distro Dist(FS, llvm::Triple(llvm::sys::getProcessTriple())); |
184 | 0 | if (Dist.IsDebian() || Dist.IsUbuntu()) |
185 | | // Special case for Debian to have nvidia-cuda-toolkit work |
186 | | // out of the box. More info on http://bugs.debian.org/882505 |
187 | 0 | Candidates.emplace_back(D.SysRoot + "/usr/lib/cuda"); |
188 | 0 | } |
189 | |
|
190 | 0 | bool NoCudaLib = Args.hasArg(options::OPT_nogpulib); |
191 | |
|
192 | 0 | for (const auto &Candidate : Candidates) { |
193 | 0 | InstallPath = Candidate.Path; |
194 | 0 | if (InstallPath.empty() || !FS.exists(InstallPath)) |
195 | 0 | continue; |
196 | | |
197 | 0 | BinPath = InstallPath + "/bin"; |
198 | 0 | IncludePath = InstallPath + "/include"; |
199 | 0 | LibDevicePath = InstallPath + "/nvvm/libdevice"; |
200 | |
|
201 | 0 | if (!(FS.exists(IncludePath) && FS.exists(BinPath))) |
202 | 0 | continue; |
203 | 0 | bool CheckLibDevice = (!NoCudaLib || Candidate.StrictChecking); |
204 | 0 | if (CheckLibDevice && !FS.exists(LibDevicePath)) |
205 | 0 | continue; |
206 | | |
207 | 0 | Version = CudaVersion::UNKNOWN; |
208 | 0 | if (auto CudaHFile = FS.getBufferForFile(InstallPath + "/include/cuda.h")) |
209 | 0 | Version = parseCudaHFile((*CudaHFile)->getBuffer()); |
210 | | // As the last resort, make an educated guess between CUDA-7.0, which had |
211 | | // old-style libdevice bitcode, and an unknown recent CUDA version. |
212 | 0 | if (Version == CudaVersion::UNKNOWN) { |
213 | 0 | Version = FS.exists(LibDevicePath + "/libdevice.10.bc") |
214 | 0 | ? CudaVersion::NEW |
215 | 0 | : CudaVersion::CUDA_70; |
216 | 0 | } |
217 | |
|
218 | 0 | if (Version >= CudaVersion::CUDA_90) { |
219 | | // CUDA-9+ uses single libdevice file for all GPU variants. |
220 | 0 | std::string FilePath = LibDevicePath + "/libdevice.10.bc"; |
221 | 0 | if (FS.exists(FilePath)) { |
222 | 0 | for (int Arch = (int)CudaArch::SM_30, E = (int)CudaArch::LAST; Arch < E; |
223 | 0 | ++Arch) { |
224 | 0 | CudaArch GpuArch = static_cast<CudaArch>(Arch); |
225 | 0 | if (!IsNVIDIAGpuArch(GpuArch)) |
226 | 0 | continue; |
227 | 0 | std::string GpuArchName(CudaArchToString(GpuArch)); |
228 | 0 | LibDeviceMap[GpuArchName] = FilePath; |
229 | 0 | } |
230 | 0 | } |
231 | 0 | } else { |
232 | 0 | std::error_code EC; |
233 | 0 | for (llvm::vfs::directory_iterator LI = FS.dir_begin(LibDevicePath, EC), |
234 | 0 | LE; |
235 | 0 | !EC && LI != LE; LI = LI.increment(EC)) { |
236 | 0 | StringRef FilePath = LI->path(); |
237 | 0 | StringRef FileName = llvm::sys::path::filename(FilePath); |
238 | | // Process all bitcode filenames that look like |
239 | | // libdevice.compute_XX.YY.bc |
240 | 0 | const StringRef LibDeviceName = "libdevice."; |
241 | 0 | if (!(FileName.starts_with(LibDeviceName) && FileName.ends_with(".bc"))) |
242 | 0 | continue; |
243 | 0 | StringRef GpuArch = FileName.slice( |
244 | 0 | LibDeviceName.size(), FileName.find('.', LibDeviceName.size())); |
245 | 0 | LibDeviceMap[GpuArch] = FilePath.str(); |
246 | | // Insert map entries for specific devices with this compute |
247 | | // capability. NVCC's choice of the libdevice library version is |
248 | | // rather peculiar and depends on the CUDA version. |
249 | 0 | if (GpuArch == "compute_20") { |
250 | 0 | LibDeviceMap["sm_20"] = std::string(FilePath); |
251 | 0 | LibDeviceMap["sm_21"] = std::string(FilePath); |
252 | 0 | LibDeviceMap["sm_32"] = std::string(FilePath); |
253 | 0 | } else if (GpuArch == "compute_30") { |
254 | 0 | LibDeviceMap["sm_30"] = std::string(FilePath); |
255 | 0 | if (Version < CudaVersion::CUDA_80) { |
256 | 0 | LibDeviceMap["sm_50"] = std::string(FilePath); |
257 | 0 | LibDeviceMap["sm_52"] = std::string(FilePath); |
258 | 0 | LibDeviceMap["sm_53"] = std::string(FilePath); |
259 | 0 | } |
260 | 0 | LibDeviceMap["sm_60"] = std::string(FilePath); |
261 | 0 | LibDeviceMap["sm_61"] = std::string(FilePath); |
262 | 0 | LibDeviceMap["sm_62"] = std::string(FilePath); |
263 | 0 | } else if (GpuArch == "compute_35") { |
264 | 0 | LibDeviceMap["sm_35"] = std::string(FilePath); |
265 | 0 | LibDeviceMap["sm_37"] = std::string(FilePath); |
266 | 0 | } else if (GpuArch == "compute_50") { |
267 | 0 | if (Version >= CudaVersion::CUDA_80) { |
268 | 0 | LibDeviceMap["sm_50"] = std::string(FilePath); |
269 | 0 | LibDeviceMap["sm_52"] = std::string(FilePath); |
270 | 0 | LibDeviceMap["sm_53"] = std::string(FilePath); |
271 | 0 | } |
272 | 0 | } |
273 | 0 | } |
274 | 0 | } |
275 | | |
276 | | // Check that we have found at least one libdevice that we can link in if |
277 | | // -nocudalib hasn't been specified. |
278 | 0 | if (LibDeviceMap.empty() && !NoCudaLib) |
279 | 0 | continue; |
280 | | |
281 | 0 | IsValid = true; |
282 | 0 | break; |
283 | 0 | } |
284 | 0 | } |
285 | | |
286 | | void CudaInstallationDetector::AddCudaIncludeArgs( |
287 | 0 | const ArgList &DriverArgs, ArgStringList &CC1Args) const { |
288 | 0 | if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { |
289 | | // Add cuda_wrappers/* to our system include path. This lets us wrap |
290 | | // standard library headers. |
291 | 0 | SmallString<128> P(D.ResourceDir); |
292 | 0 | llvm::sys::path::append(P, "include"); |
293 | 0 | llvm::sys::path::append(P, "cuda_wrappers"); |
294 | 0 | CC1Args.push_back("-internal-isystem"); |
295 | 0 | CC1Args.push_back(DriverArgs.MakeArgString(P)); |
296 | 0 | } |
297 | |
|
298 | 0 | if (DriverArgs.hasArg(options::OPT_nogpuinc)) |
299 | 0 | return; |
300 | | |
301 | 0 | if (!isValid()) { |
302 | 0 | D.Diag(diag::err_drv_no_cuda_installation); |
303 | 0 | return; |
304 | 0 | } |
305 | | |
306 | 0 | CC1Args.push_back("-include"); |
307 | 0 | CC1Args.push_back("__clang_cuda_runtime_wrapper.h"); |
308 | 0 | } |
309 | | |
310 | | void CudaInstallationDetector::CheckCudaVersionSupportsArch( |
311 | 0 | CudaArch Arch) const { |
312 | 0 | if (Arch == CudaArch::UNKNOWN || Version == CudaVersion::UNKNOWN || |
313 | 0 | ArchsWithBadVersion[(int)Arch]) |
314 | 0 | return; |
315 | | |
316 | 0 | auto MinVersion = MinVersionForCudaArch(Arch); |
317 | 0 | auto MaxVersion = MaxVersionForCudaArch(Arch); |
318 | 0 | if (Version < MinVersion || Version > MaxVersion) { |
319 | 0 | ArchsWithBadVersion[(int)Arch] = true; |
320 | 0 | D.Diag(diag::err_drv_cuda_version_unsupported) |
321 | 0 | << CudaArchToString(Arch) << CudaVersionToString(MinVersion) |
322 | 0 | << CudaVersionToString(MaxVersion) << InstallPath |
323 | 0 | << CudaVersionToString(Version); |
324 | 0 | } |
325 | 0 | } |
326 | | |
327 | 0 | void CudaInstallationDetector::print(raw_ostream &OS) const { |
328 | 0 | if (isValid()) |
329 | 0 | OS << "Found CUDA installation: " << InstallPath << ", version " |
330 | 0 | << CudaVersionToString(Version) << "\n"; |
331 | 0 | } |
332 | | |
333 | | namespace { |
334 | | /// Debug info level for the NVPTX devices. We may need to emit different debug |
335 | | /// info level for the host and for the device itselfi. This type controls |
336 | | /// emission of the debug info for the devices. It either prohibits disable info |
337 | | /// emission completely, or emits debug directives only, or emits same debug |
338 | | /// info as for the host. |
339 | | enum DeviceDebugInfoLevel { |
340 | | DisableDebugInfo, /// Do not emit debug info for the devices. |
341 | | DebugDirectivesOnly, /// Emit only debug directives. |
342 | | EmitSameDebugInfoAsHost, /// Use the same debug info level just like for the |
343 | | /// host. |
344 | | }; |
345 | | } // anonymous namespace |
346 | | |
347 | | /// Define debug info level for the NVPTX devices. If the debug info for both |
348 | | /// the host and device are disabled (-g0/-ggdb0 or no debug options at all). If |
349 | | /// only debug directives are requested for the both host and device |
350 | | /// (-gline-directvies-only), or the debug info only for the device is disabled |
351 | | /// (optimization is on and --cuda-noopt-device-debug was not specified), the |
352 | | /// debug directves only must be emitted for the device. Otherwise, use the same |
353 | | /// debug info level just like for the host (with the limitations of only |
354 | | /// supported DWARF2 standard). |
355 | 0 | static DeviceDebugInfoLevel mustEmitDebugInfo(const ArgList &Args) { |
356 | 0 | const Arg *A = Args.getLastArg(options::OPT_O_Group); |
357 | 0 | bool IsDebugEnabled = !A || A->getOption().matches(options::OPT_O0) || |
358 | 0 | Args.hasFlag(options::OPT_cuda_noopt_device_debug, |
359 | 0 | options::OPT_no_cuda_noopt_device_debug, |
360 | 0 | /*Default=*/false); |
361 | 0 | if (const Arg *A = Args.getLastArg(options::OPT_g_Group)) { |
362 | 0 | const Option &Opt = A->getOption(); |
363 | 0 | if (Opt.matches(options::OPT_gN_Group)) { |
364 | 0 | if (Opt.matches(options::OPT_g0) || Opt.matches(options::OPT_ggdb0)) |
365 | 0 | return DisableDebugInfo; |
366 | 0 | if (Opt.matches(options::OPT_gline_directives_only)) |
367 | 0 | return DebugDirectivesOnly; |
368 | 0 | } |
369 | 0 | return IsDebugEnabled ? EmitSameDebugInfoAsHost : DebugDirectivesOnly; |
370 | 0 | } |
371 | 0 | return willEmitRemarks(Args) ? DebugDirectivesOnly : DisableDebugInfo; |
372 | 0 | } |
373 | | |
374 | | void NVPTX::Assembler::ConstructJob(Compilation &C, const JobAction &JA, |
375 | | const InputInfo &Output, |
376 | | const InputInfoList &Inputs, |
377 | | const ArgList &Args, |
378 | 0 | const char *LinkingOutput) const { |
379 | 0 | const auto &TC = |
380 | 0 | static_cast<const toolchains::NVPTXToolChain &>(getToolChain()); |
381 | 0 | assert(TC.getTriple().isNVPTX() && "Wrong platform"); |
382 | | |
383 | 0 | StringRef GPUArchName; |
384 | | // If this is a CUDA action we need to extract the device architecture |
385 | | // from the Job's associated architecture, otherwise use the -march=arch |
386 | | // option. This option may come from -Xopenmp-target flag or the default |
387 | | // value. |
388 | 0 | if (JA.isDeviceOffloading(Action::OFK_Cuda)) { |
389 | 0 | GPUArchName = JA.getOffloadingArch(); |
390 | 0 | } else { |
391 | 0 | GPUArchName = Args.getLastArgValue(options::OPT_march_EQ); |
392 | 0 | assert(!GPUArchName.empty() && "Must have an architecture passed in."); |
393 | 0 | } |
394 | | |
395 | | // Obtain architecture from the action. |
396 | 0 | CudaArch gpu_arch = StringToCudaArch(GPUArchName); |
397 | 0 | assert(gpu_arch != CudaArch::UNKNOWN && |
398 | 0 | "Device action expected to have an architecture."); |
399 | | |
400 | | // Check that our installation's ptxas supports gpu_arch. |
401 | 0 | if (!Args.hasArg(options::OPT_no_cuda_version_check)) { |
402 | 0 | TC.CudaInstallation.CheckCudaVersionSupportsArch(gpu_arch); |
403 | 0 | } |
404 | |
|
405 | 0 | ArgStringList CmdArgs; |
406 | 0 | CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-m64" : "-m32"); |
407 | 0 | DeviceDebugInfoLevel DIKind = mustEmitDebugInfo(Args); |
408 | 0 | if (DIKind == EmitSameDebugInfoAsHost) { |
409 | | // ptxas does not accept -g option if optimization is enabled, so |
410 | | // we ignore the compiler's -O* options if we want debug info. |
411 | 0 | CmdArgs.push_back("-g"); |
412 | 0 | CmdArgs.push_back("--dont-merge-basicblocks"); |
413 | 0 | CmdArgs.push_back("--return-at-end"); |
414 | 0 | } else if (Arg *A = Args.getLastArg(options::OPT_O_Group)) { |
415 | | // Map the -O we received to -O{0,1,2,3}. |
416 | | // |
417 | | // TODO: Perhaps we should map host -O2 to ptxas -O3. -O3 is ptxas's |
418 | | // default, so it may correspond more closely to the spirit of clang -O2. |
419 | | |
420 | | // -O3 seems like the least-bad option when -Osomething is specified to |
421 | | // clang but it isn't handled below. |
422 | 0 | StringRef OOpt = "3"; |
423 | 0 | if (A->getOption().matches(options::OPT_O4) || |
424 | 0 | A->getOption().matches(options::OPT_Ofast)) |
425 | 0 | OOpt = "3"; |
426 | 0 | else if (A->getOption().matches(options::OPT_O0)) |
427 | 0 | OOpt = "0"; |
428 | 0 | else if (A->getOption().matches(options::OPT_O)) { |
429 | | // -Os, -Oz, and -O(anything else) map to -O2, for lack of better options. |
430 | 0 | OOpt = llvm::StringSwitch<const char *>(A->getValue()) |
431 | 0 | .Case("1", "1") |
432 | 0 | .Case("2", "2") |
433 | 0 | .Case("3", "3") |
434 | 0 | .Case("s", "2") |
435 | 0 | .Case("z", "2") |
436 | 0 | .Default("2"); |
437 | 0 | } |
438 | 0 | CmdArgs.push_back(Args.MakeArgString(llvm::Twine("-O") + OOpt)); |
439 | 0 | } else { |
440 | | // If no -O was passed, pass -O0 to ptxas -- no opt flag should correspond |
441 | | // to no optimizations, but ptxas's default is -O3. |
442 | 0 | CmdArgs.push_back("-O0"); |
443 | 0 | } |
444 | 0 | if (DIKind == DebugDirectivesOnly) |
445 | 0 | CmdArgs.push_back("-lineinfo"); |
446 | | |
447 | | // Pass -v to ptxas if it was passed to the driver. |
448 | 0 | if (Args.hasArg(options::OPT_v)) |
449 | 0 | CmdArgs.push_back("-v"); |
450 | |
|
451 | 0 | CmdArgs.push_back("--gpu-name"); |
452 | 0 | CmdArgs.push_back(Args.MakeArgString(CudaArchToString(gpu_arch))); |
453 | 0 | CmdArgs.push_back("--output-file"); |
454 | 0 | std::string OutputFileName = TC.getInputFilename(Output); |
455 | | |
456 | | // If we are invoking `nvlink` internally we need to output a `.cubin` file. |
457 | | // FIXME: This should hopefully be removed if NVIDIA updates their tooling. |
458 | 0 | if (!C.getInputArgs().getLastArg(options::OPT_c)) { |
459 | 0 | SmallString<256> Filename(Output.getFilename()); |
460 | 0 | llvm::sys::path::replace_extension(Filename, "cubin"); |
461 | 0 | OutputFileName = Filename.str(); |
462 | 0 | } |
463 | 0 | if (Output.isFilename() && OutputFileName != Output.getFilename()) |
464 | 0 | C.addTempFile(Args.MakeArgString(OutputFileName)); |
465 | |
|
466 | 0 | CmdArgs.push_back(Args.MakeArgString(OutputFileName)); |
467 | 0 | for (const auto &II : Inputs) |
468 | 0 | CmdArgs.push_back(Args.MakeArgString(II.getFilename())); |
469 | |
|
470 | 0 | for (const auto &A : Args.getAllArgValues(options::OPT_Xcuda_ptxas)) |
471 | 0 | CmdArgs.push_back(Args.MakeArgString(A)); |
472 | |
|
473 | 0 | bool Relocatable; |
474 | 0 | if (JA.isOffloading(Action::OFK_OpenMP)) |
475 | | // In OpenMP we need to generate relocatable code. |
476 | 0 | Relocatable = Args.hasFlag(options::OPT_fopenmp_relocatable_target, |
477 | 0 | options::OPT_fnoopenmp_relocatable_target, |
478 | 0 | /*Default=*/true); |
479 | 0 | else if (JA.isOffloading(Action::OFK_Cuda)) |
480 | | // In CUDA we generate relocatable code by default. |
481 | 0 | Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, |
482 | 0 | /*Default=*/false); |
483 | 0 | else |
484 | | // Otherwise, we are compiling directly and should create linkable output. |
485 | 0 | Relocatable = true; |
486 | |
|
487 | 0 | if (Relocatable) |
488 | 0 | CmdArgs.push_back("-c"); |
489 | |
|
490 | 0 | const char *Exec; |
491 | 0 | if (Arg *A = Args.getLastArg(options::OPT_ptxas_path_EQ)) |
492 | 0 | Exec = A->getValue(); |
493 | 0 | else |
494 | 0 | Exec = Args.MakeArgString(TC.GetProgramPath("ptxas")); |
495 | 0 | C.addCommand(std::make_unique<Command>( |
496 | 0 | JA, *this, |
497 | 0 | ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8, |
498 | 0 | "--options-file"}, |
499 | 0 | Exec, CmdArgs, Inputs, Output)); |
500 | 0 | } |
501 | | |
502 | 0 | static bool shouldIncludePTX(const ArgList &Args, const char *gpu_arch) { |
503 | 0 | bool includePTX = true; |
504 | 0 | for (Arg *A : Args) { |
505 | 0 | if (!(A->getOption().matches(options::OPT_cuda_include_ptx_EQ) || |
506 | 0 | A->getOption().matches(options::OPT_no_cuda_include_ptx_EQ))) |
507 | 0 | continue; |
508 | 0 | A->claim(); |
509 | 0 | const StringRef ArchStr = A->getValue(); |
510 | 0 | if (ArchStr == "all" || ArchStr == gpu_arch) { |
511 | 0 | includePTX = A->getOption().matches(options::OPT_cuda_include_ptx_EQ); |
512 | 0 | continue; |
513 | 0 | } |
514 | 0 | } |
515 | 0 | return includePTX; |
516 | 0 | } |
517 | | |
518 | | // All inputs to this linker must be from CudaDeviceActions, as we need to look |
519 | | // at the Inputs' Actions in order to figure out which GPU architecture they |
520 | | // correspond to. |
521 | | void NVPTX::FatBinary::ConstructJob(Compilation &C, const JobAction &JA, |
522 | | const InputInfo &Output, |
523 | | const InputInfoList &Inputs, |
524 | | const ArgList &Args, |
525 | 0 | const char *LinkingOutput) const { |
526 | 0 | const auto &TC = |
527 | 0 | static_cast<const toolchains::CudaToolChain &>(getToolChain()); |
528 | 0 | assert(TC.getTriple().isNVPTX() && "Wrong platform"); |
529 | | |
530 | 0 | ArgStringList CmdArgs; |
531 | 0 | if (TC.CudaInstallation.version() <= CudaVersion::CUDA_100) |
532 | 0 | CmdArgs.push_back("--cuda"); |
533 | 0 | CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-64" : "-32"); |
534 | 0 | CmdArgs.push_back(Args.MakeArgString("--create")); |
535 | 0 | CmdArgs.push_back(Args.MakeArgString(Output.getFilename())); |
536 | 0 | if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost) |
537 | 0 | CmdArgs.push_back("-g"); |
538 | |
|
539 | 0 | for (const auto &II : Inputs) { |
540 | 0 | auto *A = II.getAction(); |
541 | 0 | assert(A->getInputs().size() == 1 && |
542 | 0 | "Device offload action is expected to have a single input"); |
543 | 0 | const char *gpu_arch_str = A->getOffloadingArch(); |
544 | 0 | assert(gpu_arch_str && |
545 | 0 | "Device action expected to have associated a GPU architecture!"); |
546 | 0 | CudaArch gpu_arch = StringToCudaArch(gpu_arch_str); |
547 | |
|
548 | 0 | if (II.getType() == types::TY_PP_Asm && |
549 | 0 | !shouldIncludePTX(Args, gpu_arch_str)) |
550 | 0 | continue; |
551 | | // We need to pass an Arch of the form "sm_XX" for cubin files and |
552 | | // "compute_XX" for ptx. |
553 | 0 | const char *Arch = (II.getType() == types::TY_PP_Asm) |
554 | 0 | ? CudaArchToVirtualArchString(gpu_arch) |
555 | 0 | : gpu_arch_str; |
556 | 0 | CmdArgs.push_back( |
557 | 0 | Args.MakeArgString(llvm::Twine("--image=profile=") + Arch + |
558 | 0 | ",file=" + getToolChain().getInputFilename(II))); |
559 | 0 | } |
560 | |
|
561 | 0 | for (const auto &A : Args.getAllArgValues(options::OPT_Xcuda_fatbinary)) |
562 | 0 | CmdArgs.push_back(Args.MakeArgString(A)); |
563 | |
|
564 | 0 | const char *Exec = Args.MakeArgString(TC.GetProgramPath("fatbinary")); |
565 | 0 | C.addCommand(std::make_unique<Command>( |
566 | 0 | JA, *this, |
567 | 0 | ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8, |
568 | 0 | "--options-file"}, |
569 | 0 | Exec, CmdArgs, Inputs, Output)); |
570 | 0 | } |
571 | | |
572 | | void NVPTX::Linker::ConstructJob(Compilation &C, const JobAction &JA, |
573 | | const InputInfo &Output, |
574 | | const InputInfoList &Inputs, |
575 | | const ArgList &Args, |
576 | 0 | const char *LinkingOutput) const { |
577 | 0 | const auto &TC = |
578 | 0 | static_cast<const toolchains::NVPTXToolChain &>(getToolChain()); |
579 | 0 | ArgStringList CmdArgs; |
580 | |
|
581 | 0 | assert(TC.getTriple().isNVPTX() && "Wrong platform"); |
582 | | |
583 | 0 | assert((Output.isFilename() || Output.isNothing()) && "Invalid output."); |
584 | 0 | if (Output.isFilename()) { |
585 | 0 | CmdArgs.push_back("-o"); |
586 | 0 | CmdArgs.push_back(Output.getFilename()); |
587 | 0 | } |
588 | |
|
589 | 0 | if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost) |
590 | 0 | CmdArgs.push_back("-g"); |
591 | |
|
592 | 0 | if (Args.hasArg(options::OPT_v)) |
593 | 0 | CmdArgs.push_back("-v"); |
594 | |
|
595 | 0 | StringRef GPUArch = Args.getLastArgValue(options::OPT_march_EQ); |
596 | 0 | assert(!GPUArch.empty() && "At least one GPU Arch required for nvlink."); |
597 | | |
598 | 0 | CmdArgs.push_back("-arch"); |
599 | 0 | CmdArgs.push_back(Args.MakeArgString(GPUArch)); |
600 | | |
601 | | // Add paths specified in LIBRARY_PATH environment variable as -L options. |
602 | 0 | addDirectoryList(Args, CmdArgs, "-L", "LIBRARY_PATH"); |
603 | | |
604 | | // Add paths for the default clang library path. |
605 | 0 | SmallString<256> DefaultLibPath = |
606 | 0 | llvm::sys::path::parent_path(TC.getDriver().Dir); |
607 | 0 | llvm::sys::path::append(DefaultLibPath, CLANG_INSTALL_LIBDIR_BASENAME); |
608 | 0 | CmdArgs.push_back(Args.MakeArgString(Twine("-L") + DefaultLibPath)); |
609 | |
|
610 | 0 | for (const auto &II : Inputs) { |
611 | 0 | if (II.getType() == types::TY_LLVM_IR || II.getType() == types::TY_LTO_IR || |
612 | 0 | II.getType() == types::TY_LTO_BC || II.getType() == types::TY_LLVM_BC) { |
613 | 0 | C.getDriver().Diag(diag::err_drv_no_linker_llvm_support) |
614 | 0 | << getToolChain().getTripleString(); |
615 | 0 | continue; |
616 | 0 | } |
617 | | |
618 | | // Currently, we only pass the input files to the linker, we do not pass |
619 | | // any libraries that may be valid only for the host. |
620 | 0 | if (!II.isFilename()) |
621 | 0 | continue; |
622 | | |
623 | | // The 'nvlink' application performs RDC-mode linking when given a '.o' |
624 | | // file and device linking when given a '.cubin' file. We always want to |
625 | | // perform device linking, so just rename any '.o' files. |
626 | | // FIXME: This should hopefully be removed if NVIDIA updates their tooling. |
627 | 0 | auto InputFile = getToolChain().getInputFilename(II); |
628 | 0 | if (llvm::sys::path::extension(InputFile) != ".cubin") { |
629 | | // If there are no actions above this one then this is direct input and we |
630 | | // can copy it. Otherwise the input is internal so a `.cubin` file should |
631 | | // exist. |
632 | 0 | if (II.getAction() && II.getAction()->getInputs().size() == 0) { |
633 | 0 | const char *CubinF = |
634 | 0 | Args.MakeArgString(getToolChain().getDriver().GetTemporaryPath( |
635 | 0 | llvm::sys::path::stem(InputFile), "cubin")); |
636 | 0 | if (llvm::sys::fs::copy_file(InputFile, C.addTempFile(CubinF))) |
637 | 0 | continue; |
638 | | |
639 | 0 | CmdArgs.push_back(CubinF); |
640 | 0 | } else { |
641 | 0 | SmallString<256> Filename(InputFile); |
642 | 0 | llvm::sys::path::replace_extension(Filename, "cubin"); |
643 | 0 | CmdArgs.push_back(Args.MakeArgString(Filename)); |
644 | 0 | } |
645 | 0 | } else { |
646 | 0 | CmdArgs.push_back(Args.MakeArgString(InputFile)); |
647 | 0 | } |
648 | 0 | } |
649 | |
|
650 | 0 | C.addCommand(std::make_unique<Command>( |
651 | 0 | JA, *this, |
652 | 0 | ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8, |
653 | 0 | "--options-file"}, |
654 | 0 | Args.MakeArgString(getToolChain().GetProgramPath("nvlink")), CmdArgs, |
655 | 0 | Inputs, Output)); |
656 | 0 | } |
657 | | |
658 | | void NVPTX::getNVPTXTargetFeatures(const Driver &D, const llvm::Triple &Triple, |
659 | | const llvm::opt::ArgList &Args, |
660 | 0 | std::vector<StringRef> &Features) { |
661 | 0 | if (Args.hasArg(options::OPT_cuda_feature_EQ)) { |
662 | 0 | StringRef PtxFeature = |
663 | 0 | Args.getLastArgValue(options::OPT_cuda_feature_EQ, "+ptx42"); |
664 | 0 | Features.push_back(Args.MakeArgString(PtxFeature)); |
665 | 0 | return; |
666 | 0 | } |
667 | 0 | CudaInstallationDetector CudaInstallation(D, Triple, Args); |
668 | | |
669 | | // New CUDA versions often introduce new instructions that are only supported |
670 | | // by new PTX version, so we need to raise PTX level to enable them in NVPTX |
671 | | // back-end. |
672 | 0 | const char *PtxFeature = nullptr; |
673 | 0 | switch (CudaInstallation.version()) { |
674 | 0 | #define CASE_CUDA_VERSION(CUDA_VER, PTX_VER) \ |
675 | 0 | case CudaVersion::CUDA_##CUDA_VER: \ |
676 | 0 | PtxFeature = "+ptx" #PTX_VER; \ |
677 | 0 | break; |
678 | 0 | CASE_CUDA_VERSION(123, 83); |
679 | 0 | CASE_CUDA_VERSION(122, 82); |
680 | 0 | CASE_CUDA_VERSION(121, 81); |
681 | 0 | CASE_CUDA_VERSION(120, 80); |
682 | 0 | CASE_CUDA_VERSION(118, 78); |
683 | 0 | CASE_CUDA_VERSION(117, 77); |
684 | 0 | CASE_CUDA_VERSION(116, 76); |
685 | 0 | CASE_CUDA_VERSION(115, 75); |
686 | 0 | CASE_CUDA_VERSION(114, 74); |
687 | 0 | CASE_CUDA_VERSION(113, 73); |
688 | 0 | CASE_CUDA_VERSION(112, 72); |
689 | 0 | CASE_CUDA_VERSION(111, 71); |
690 | 0 | CASE_CUDA_VERSION(110, 70); |
691 | 0 | CASE_CUDA_VERSION(102, 65); |
692 | 0 | CASE_CUDA_VERSION(101, 64); |
693 | 0 | CASE_CUDA_VERSION(100, 63); |
694 | 0 | CASE_CUDA_VERSION(92, 61); |
695 | 0 | CASE_CUDA_VERSION(91, 61); |
696 | 0 | CASE_CUDA_VERSION(90, 60); |
697 | 0 | #undef CASE_CUDA_VERSION |
698 | 0 | default: |
699 | 0 | PtxFeature = "+ptx42"; |
700 | 0 | } |
701 | 0 | Features.push_back(PtxFeature); |
702 | 0 | } |
703 | | |
704 | | /// NVPTX toolchain. Our assembler is ptxas, and our linker is nvlink. This |
705 | | /// operates as a stand-alone version of the NVPTX tools without the host |
706 | | /// toolchain. |
707 | | NVPTXToolChain::NVPTXToolChain(const Driver &D, const llvm::Triple &Triple, |
708 | | const llvm::Triple &HostTriple, |
709 | | const ArgList &Args, bool Freestanding = false) |
710 | | : ToolChain(D, Triple, Args), CudaInstallation(D, HostTriple, Args), |
711 | 0 | Freestanding(Freestanding) { |
712 | 0 | if (CudaInstallation.isValid()) |
713 | 0 | getProgramPaths().push_back(std::string(CudaInstallation.getBinPath())); |
714 | | // Lookup binaries into the driver directory, this is used to |
715 | | // discover the 'nvptx-arch' executable. |
716 | 0 | getProgramPaths().push_back(getDriver().Dir); |
717 | 0 | } |
718 | | |
719 | | /// We only need the host triple to locate the CUDA binary utilities, use the |
720 | | /// system's default triple if not provided. |
721 | | NVPTXToolChain::NVPTXToolChain(const Driver &D, const llvm::Triple &Triple, |
722 | | const ArgList &Args) |
723 | | : NVPTXToolChain(D, Triple, llvm::Triple(LLVM_HOST_TRIPLE), Args, |
724 | 0 | /*Freestanding=*/true) {} |
725 | | |
726 | | llvm::opt::DerivedArgList * |
727 | | NVPTXToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args, |
728 | | StringRef BoundArch, |
729 | 0 | Action::OffloadKind DeviceOffloadKind) const { |
730 | 0 | DerivedArgList *DAL = |
731 | 0 | ToolChain::TranslateArgs(Args, BoundArch, DeviceOffloadKind); |
732 | 0 | if (!DAL) |
733 | 0 | DAL = new DerivedArgList(Args.getBaseArgs()); |
734 | |
|
735 | 0 | const OptTable &Opts = getDriver().getOpts(); |
736 | |
|
737 | 0 | for (Arg *A : Args) |
738 | 0 | if (!llvm::is_contained(*DAL, A)) |
739 | 0 | DAL->append(A); |
740 | |
|
741 | 0 | if (!DAL->hasArg(options::OPT_march_EQ)) |
742 | 0 | DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), |
743 | 0 | CudaArchToString(CudaArch::CudaDefault)); |
744 | |
|
745 | 0 | return DAL; |
746 | 0 | } |
747 | | |
748 | | void NVPTXToolChain::addClangTargetOptions( |
749 | | const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, |
750 | 0 | Action::OffloadKind DeviceOffloadingKind) const { |
751 | | // If we are compiling with a standalone NVPTX toolchain we want to try to |
752 | | // mimic a standard environment as much as possible. So we enable lowering |
753 | | // ctor / dtor functions to global symbols that can be registered. |
754 | 0 | if (Freestanding) |
755 | 0 | CC1Args.append({"-mllvm", "--nvptx-lower-global-ctor-dtor"}); |
756 | 0 | } |
757 | | |
758 | 0 | bool NVPTXToolChain::supportsDebugInfoOption(const llvm::opt::Arg *A) const { |
759 | 0 | const Option &O = A->getOption(); |
760 | 0 | return (O.matches(options::OPT_gN_Group) && |
761 | 0 | !O.matches(options::OPT_gmodules)) || |
762 | 0 | O.matches(options::OPT_g_Flag) || |
763 | 0 | O.matches(options::OPT_ggdbN_Group) || O.matches(options::OPT_ggdb) || |
764 | 0 | O.matches(options::OPT_gdwarf) || O.matches(options::OPT_gdwarf_2) || |
765 | 0 | O.matches(options::OPT_gdwarf_3) || O.matches(options::OPT_gdwarf_4) || |
766 | 0 | O.matches(options::OPT_gdwarf_5) || |
767 | 0 | O.matches(options::OPT_gcolumn_info); |
768 | 0 | } |
769 | | |
770 | | void NVPTXToolChain::adjustDebugInfoKind( |
771 | | llvm::codegenoptions::DebugInfoKind &DebugInfoKind, |
772 | 0 | const ArgList &Args) const { |
773 | 0 | switch (mustEmitDebugInfo(Args)) { |
774 | 0 | case DisableDebugInfo: |
775 | 0 | DebugInfoKind = llvm::codegenoptions::NoDebugInfo; |
776 | 0 | break; |
777 | 0 | case DebugDirectivesOnly: |
778 | 0 | DebugInfoKind = llvm::codegenoptions::DebugDirectivesOnly; |
779 | 0 | break; |
780 | 0 | case EmitSameDebugInfoAsHost: |
781 | | // Use same debug info level as the host. |
782 | 0 | break; |
783 | 0 | } |
784 | 0 | } |
785 | | |
786 | | /// CUDA toolchain. Our assembler is ptxas, and our "linker" is fatbinary, |
787 | | /// which isn't properly a linker but nonetheless performs the step of stitching |
788 | | /// together object files from the assembler into a single blob. |
789 | | |
790 | | CudaToolChain::CudaToolChain(const Driver &D, const llvm::Triple &Triple, |
791 | | const ToolChain &HostTC, const ArgList &Args) |
792 | 0 | : NVPTXToolChain(D, Triple, HostTC.getTriple(), Args), HostTC(HostTC) {} |
793 | | |
794 | | void CudaToolChain::addClangTargetOptions( |
795 | | const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, |
796 | 0 | Action::OffloadKind DeviceOffloadingKind) const { |
797 | 0 | HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind); |
798 | |
|
799 | 0 | StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ); |
800 | 0 | assert(!GpuArch.empty() && "Must have an explicit GPU arch."); |
801 | 0 | assert((DeviceOffloadingKind == Action::OFK_OpenMP || |
802 | 0 | DeviceOffloadingKind == Action::OFK_Cuda) && |
803 | 0 | "Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs."); |
804 | | |
805 | 0 | if (DeviceOffloadingKind == Action::OFK_Cuda) { |
806 | 0 | CC1Args.append( |
807 | 0 | {"-fcuda-is-device", "-mllvm", "-enable-memcpyopt-without-libcalls"}); |
808 | | |
809 | | // Unsized function arguments used for variadics were introduced in CUDA-9.0 |
810 | | // We still do not support generating code that actually uses variadic |
811 | | // arguments yet, but we do need to allow parsing them as recent CUDA |
812 | | // headers rely on that. https://github.com/llvm/llvm-project/issues/58410 |
813 | 0 | if (CudaInstallation.version() >= CudaVersion::CUDA_90) |
814 | 0 | CC1Args.push_back("-fcuda-allow-variadic-functions"); |
815 | 0 | } |
816 | |
|
817 | 0 | if (DriverArgs.hasArg(options::OPT_nogpulib)) |
818 | 0 | return; |
819 | | |
820 | 0 | if (DeviceOffloadingKind == Action::OFK_OpenMP && |
821 | 0 | DriverArgs.hasArg(options::OPT_S)) |
822 | 0 | return; |
823 | | |
824 | 0 | std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch); |
825 | 0 | if (LibDeviceFile.empty()) { |
826 | 0 | getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch; |
827 | 0 | return; |
828 | 0 | } |
829 | | |
830 | 0 | CC1Args.push_back("-mlink-builtin-bitcode"); |
831 | 0 | CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile)); |
832 | |
|
833 | 0 | clang::CudaVersion CudaInstallationVersion = CudaInstallation.version(); |
834 | |
|
835 | 0 | if (DriverArgs.hasFlag(options::OPT_fcuda_short_ptr, |
836 | 0 | options::OPT_fno_cuda_short_ptr, false)) |
837 | 0 | CC1Args.append({"-mllvm", "--nvptx-short-ptr"}); |
838 | |
|
839 | 0 | if (CudaInstallationVersion >= CudaVersion::UNKNOWN) |
840 | 0 | CC1Args.push_back( |
841 | 0 | DriverArgs.MakeArgString(Twine("-target-sdk-version=") + |
842 | 0 | CudaVersionToString(CudaInstallationVersion))); |
843 | |
|
844 | 0 | if (DeviceOffloadingKind == Action::OFK_OpenMP) { |
845 | 0 | if (CudaInstallationVersion < CudaVersion::CUDA_92) { |
846 | 0 | getDriver().Diag( |
847 | 0 | diag::err_drv_omp_offload_target_cuda_version_not_support) |
848 | 0 | << CudaVersionToString(CudaInstallationVersion); |
849 | 0 | return; |
850 | 0 | } |
851 | | |
852 | | // Link the bitcode library late if we're using device LTO. |
853 | 0 | if (getDriver().isUsingLTO(/* IsOffload */ true)) |
854 | 0 | return; |
855 | | |
856 | 0 | addOpenMPDeviceRTL(getDriver(), DriverArgs, CC1Args, GpuArch.str(), |
857 | 0 | getTriple()); |
858 | 0 | } |
859 | 0 | } |
860 | | |
861 | | llvm::DenormalMode CudaToolChain::getDefaultDenormalModeForType( |
862 | | const llvm::opt::ArgList &DriverArgs, const JobAction &JA, |
863 | 0 | const llvm::fltSemantics *FPType) const { |
864 | 0 | if (JA.getOffloadingDeviceKind() == Action::OFK_Cuda) { |
865 | 0 | if (FPType && FPType == &llvm::APFloat::IEEEsingle() && |
866 | 0 | DriverArgs.hasFlag(options::OPT_fgpu_flush_denormals_to_zero, |
867 | 0 | options::OPT_fno_gpu_flush_denormals_to_zero, false)) |
868 | 0 | return llvm::DenormalMode::getPreserveSign(); |
869 | 0 | } |
870 | | |
871 | 0 | assert(JA.getOffloadingDeviceKind() != Action::OFK_Host); |
872 | 0 | return llvm::DenormalMode::getIEEE(); |
873 | 0 | } |
874 | | |
875 | | void CudaToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs, |
876 | 0 | ArgStringList &CC1Args) const { |
877 | | // Check our CUDA version if we're going to include the CUDA headers. |
878 | 0 | if (!DriverArgs.hasArg(options::OPT_nogpuinc) && |
879 | 0 | !DriverArgs.hasArg(options::OPT_no_cuda_version_check)) { |
880 | 0 | StringRef Arch = DriverArgs.getLastArgValue(options::OPT_march_EQ); |
881 | 0 | assert(!Arch.empty() && "Must have an explicit GPU arch."); |
882 | 0 | CudaInstallation.CheckCudaVersionSupportsArch(StringToCudaArch(Arch)); |
883 | 0 | } |
884 | 0 | CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args); |
885 | 0 | } |
886 | | |
887 | 0 | std::string CudaToolChain::getInputFilename(const InputInfo &Input) const { |
888 | | // Only object files are changed, for example assembly files keep their .s |
889 | | // extensions. If the user requested device-only compilation don't change it. |
890 | 0 | if (Input.getType() != types::TY_Object || getDriver().offloadDeviceOnly()) |
891 | 0 | return ToolChain::getInputFilename(Input); |
892 | | |
893 | | // Replace extension for object files with cubin because nvlink relies on |
894 | | // these particular file names. |
895 | 0 | SmallString<256> Filename(ToolChain::getInputFilename(Input)); |
896 | 0 | llvm::sys::path::replace_extension(Filename, "cubin"); |
897 | 0 | return std::string(Filename.str()); |
898 | 0 | } |
899 | | |
900 | | llvm::opt::DerivedArgList * |
901 | | CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args, |
902 | | StringRef BoundArch, |
903 | 0 | Action::OffloadKind DeviceOffloadKind) const { |
904 | 0 | DerivedArgList *DAL = |
905 | 0 | HostTC.TranslateArgs(Args, BoundArch, DeviceOffloadKind); |
906 | 0 | if (!DAL) |
907 | 0 | DAL = new DerivedArgList(Args.getBaseArgs()); |
908 | |
|
909 | 0 | const OptTable &Opts = getDriver().getOpts(); |
910 | | |
911 | | // For OpenMP device offloading, append derived arguments. Make sure |
912 | | // flags are not duplicated. |
913 | | // Also append the compute capability. |
914 | 0 | if (DeviceOffloadKind == Action::OFK_OpenMP) { |
915 | 0 | for (Arg *A : Args) |
916 | 0 | if (!llvm::is_contained(*DAL, A)) |
917 | 0 | DAL->append(A); |
918 | |
|
919 | 0 | if (!DAL->hasArg(options::OPT_march_EQ)) { |
920 | 0 | StringRef Arch = BoundArch; |
921 | 0 | if (Arch.empty()) { |
922 | 0 | auto ArchsOrErr = getSystemGPUArchs(Args); |
923 | 0 | if (!ArchsOrErr) { |
924 | 0 | std::string ErrMsg = |
925 | 0 | llvm::formatv("{0}", llvm::fmt_consume(ArchsOrErr.takeError())); |
926 | 0 | getDriver().Diag(diag::err_drv_undetermined_gpu_arch) |
927 | 0 | << llvm::Triple::getArchTypeName(getArch()) << ErrMsg << "-march"; |
928 | 0 | Arch = CudaArchToString(CudaArch::CudaDefault); |
929 | 0 | } else { |
930 | 0 | Arch = Args.MakeArgString(ArchsOrErr->front()); |
931 | 0 | } |
932 | 0 | } |
933 | 0 | DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), Arch); |
934 | 0 | } |
935 | |
|
936 | 0 | return DAL; |
937 | 0 | } |
938 | | |
939 | 0 | for (Arg *A : Args) { |
940 | 0 | DAL->append(A); |
941 | 0 | } |
942 | |
|
943 | 0 | if (!BoundArch.empty()) { |
944 | 0 | DAL->eraseArg(options::OPT_march_EQ); |
945 | 0 | DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), |
946 | 0 | BoundArch); |
947 | 0 | } |
948 | 0 | return DAL; |
949 | 0 | } |
950 | | |
951 | | Expected<SmallVector<std::string>> |
952 | 0 | CudaToolChain::getSystemGPUArchs(const ArgList &Args) const { |
953 | | // Detect NVIDIA GPUs availible on the system. |
954 | 0 | std::string Program; |
955 | 0 | if (Arg *A = Args.getLastArg(options::OPT_nvptx_arch_tool_EQ)) |
956 | 0 | Program = A->getValue(); |
957 | 0 | else |
958 | 0 | Program = GetProgramPath("nvptx-arch"); |
959 | |
|
960 | 0 | auto StdoutOrErr = executeToolChainProgram(Program); |
961 | 0 | if (!StdoutOrErr) |
962 | 0 | return StdoutOrErr.takeError(); |
963 | | |
964 | 0 | SmallVector<std::string, 1> GPUArchs; |
965 | 0 | for (StringRef Arch : llvm::split((*StdoutOrErr)->getBuffer(), "\n")) |
966 | 0 | if (!Arch.empty()) |
967 | 0 | GPUArchs.push_back(Arch.str()); |
968 | |
|
969 | 0 | if (GPUArchs.empty()) |
970 | 0 | return llvm::createStringError(std::error_code(), |
971 | 0 | "No NVIDIA GPU detected in the system"); |
972 | | |
973 | 0 | return std::move(GPUArchs); |
974 | 0 | } |
975 | | |
976 | 0 | Tool *NVPTXToolChain::buildAssembler() const { |
977 | 0 | return new tools::NVPTX::Assembler(*this); |
978 | 0 | } |
979 | | |
980 | 0 | Tool *NVPTXToolChain::buildLinker() const { |
981 | 0 | return new tools::NVPTX::Linker(*this); |
982 | 0 | } |
983 | | |
984 | 0 | Tool *CudaToolChain::buildAssembler() const { |
985 | 0 | return new tools::NVPTX::Assembler(*this); |
986 | 0 | } |
987 | | |
988 | 0 | Tool *CudaToolChain::buildLinker() const { |
989 | 0 | return new tools::NVPTX::FatBinary(*this); |
990 | 0 | } |
991 | | |
992 | 0 | void CudaToolChain::addClangWarningOptions(ArgStringList &CC1Args) const { |
993 | 0 | HostTC.addClangWarningOptions(CC1Args); |
994 | 0 | } |
995 | | |
996 | | ToolChain::CXXStdlibType |
997 | 0 | CudaToolChain::GetCXXStdlibType(const ArgList &Args) const { |
998 | 0 | return HostTC.GetCXXStdlibType(Args); |
999 | 0 | } |
1000 | | |
1001 | | void CudaToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs, |
1002 | 0 | ArgStringList &CC1Args) const { |
1003 | 0 | HostTC.AddClangSystemIncludeArgs(DriverArgs, CC1Args); |
1004 | |
|
1005 | 0 | if (!DriverArgs.hasArg(options::OPT_nogpuinc) && CudaInstallation.isValid()) |
1006 | 0 | CC1Args.append( |
1007 | 0 | {"-internal-isystem", |
1008 | 0 | DriverArgs.MakeArgString(CudaInstallation.getIncludePath())}); |
1009 | 0 | } |
1010 | | |
1011 | | void CudaToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &Args, |
1012 | 0 | ArgStringList &CC1Args) const { |
1013 | 0 | HostTC.AddClangCXXStdlibIncludeArgs(Args, CC1Args); |
1014 | 0 | } |
1015 | | |
1016 | | void CudaToolChain::AddIAMCUIncludeArgs(const ArgList &Args, |
1017 | 0 | ArgStringList &CC1Args) const { |
1018 | 0 | HostTC.AddIAMCUIncludeArgs(Args, CC1Args); |
1019 | 0 | } |
1020 | | |
1021 | 0 | SanitizerMask CudaToolChain::getSupportedSanitizers() const { |
1022 | | // The CudaToolChain only supports sanitizers in the sense that it allows |
1023 | | // sanitizer arguments on the command line if they are supported by the host |
1024 | | // toolchain. The CudaToolChain will actually ignore any command line |
1025 | | // arguments for any of these "supported" sanitizers. That means that no |
1026 | | // sanitization of device code is actually supported at this time. |
1027 | | // |
1028 | | // This behavior is necessary because the host and device toolchains |
1029 | | // invocations often share the command line, so the device toolchain must |
1030 | | // tolerate flags meant only for the host toolchain. |
1031 | 0 | return HostTC.getSupportedSanitizers(); |
1032 | 0 | } |
1033 | | |
1034 | | VersionTuple CudaToolChain::computeMSVCVersion(const Driver *D, |
1035 | 0 | const ArgList &Args) const { |
1036 | 0 | return HostTC.computeMSVCVersion(D, Args); |
1037 | 0 | } |