Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/Sema/SemaCXXScopeSpec.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements C++ semantic analysis for scope specifiers.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "TypeLocBuilder.h"
14
#include "clang/AST/ASTContext.h"
15
#include "clang/AST/DeclTemplate.h"
16
#include "clang/AST/ExprCXX.h"
17
#include "clang/AST/NestedNameSpecifier.h"
18
#include "clang/Basic/PartialDiagnostic.h"
19
#include "clang/Sema/DeclSpec.h"
20
#include "clang/Sema/Lookup.h"
21
#include "clang/Sema/SemaInternal.h"
22
#include "clang/Sema/Template.h"
23
#include "llvm/ADT/STLExtras.h"
24
using namespace clang;
25
26
/// Find the current instantiation that associated with the given type.
27
static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
28
0
                                                DeclContext *CurContext) {
29
0
  if (T.isNull())
30
0
    return nullptr;
31
32
0
  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
33
0
  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
34
0
    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
35
0
    if (!Record->isDependentContext() ||
36
0
        Record->isCurrentInstantiation(CurContext))
37
0
      return Record;
38
39
0
    return nullptr;
40
0
  } else if (isa<InjectedClassNameType>(Ty))
41
0
    return cast<InjectedClassNameType>(Ty)->getDecl();
42
0
  else
43
0
    return nullptr;
44
0
}
45
46
/// Compute the DeclContext that is associated with the given type.
47
///
48
/// \param T the type for which we are attempting to find a DeclContext.
49
///
50
/// \returns the declaration context represented by the type T,
51
/// or NULL if the declaration context cannot be computed (e.g., because it is
52
/// dependent and not the current instantiation).
53
0
DeclContext *Sema::computeDeclContext(QualType T) {
54
0
  if (!T->isDependentType())
55
0
    if (const TagType *Tag = T->getAs<TagType>())
56
0
      return Tag->getDecl();
57
58
0
  return ::getCurrentInstantiationOf(T, CurContext);
59
0
}
60
61
/// Compute the DeclContext that is associated with the given
62
/// scope specifier.
63
///
64
/// \param SS the C++ scope specifier as it appears in the source
65
///
66
/// \param EnteringContext when true, we will be entering the context of
67
/// this scope specifier, so we can retrieve the declaration context of a
68
/// class template or class template partial specialization even if it is
69
/// not the current instantiation.
70
///
71
/// \returns the declaration context represented by the scope specifier @p SS,
72
/// or NULL if the declaration context cannot be computed (e.g., because it is
73
/// dependent and not the current instantiation).
74
DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
75
0
                                      bool EnteringContext) {
76
0
  if (!SS.isSet() || SS.isInvalid())
77
0
    return nullptr;
78
79
0
  NestedNameSpecifier *NNS = SS.getScopeRep();
80
0
  if (NNS->isDependent()) {
81
    // If this nested-name-specifier refers to the current
82
    // instantiation, return its DeclContext.
83
0
    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
84
0
      return Record;
85
86
0
    if (EnteringContext) {
87
0
      const Type *NNSType = NNS->getAsType();
88
0
      if (!NNSType) {
89
0
        return nullptr;
90
0
      }
91
92
      // Look through type alias templates, per C++0x [temp.dep.type]p1.
93
0
      NNSType = Context.getCanonicalType(NNSType);
94
0
      if (const TemplateSpecializationType *SpecType
95
0
            = NNSType->getAs<TemplateSpecializationType>()) {
96
        // We are entering the context of the nested name specifier, so try to
97
        // match the nested name specifier to either a primary class template
98
        // or a class template partial specialization.
99
0
        if (ClassTemplateDecl *ClassTemplate
100
0
              = dyn_cast_or_null<ClassTemplateDecl>(
101
0
                            SpecType->getTemplateName().getAsTemplateDecl())) {
102
0
          QualType ContextType =
103
0
              Context.getCanonicalType(QualType(SpecType, 0));
104
105
          // FIXME: The fallback on the search of partial
106
          // specialization using ContextType should be eventually removed since
107
          // it doesn't handle the case of constrained template parameters
108
          // correctly. Currently removing this fallback would change the
109
          // diagnostic output for invalid code in a number of tests.
110
0
          ClassTemplatePartialSpecializationDecl *PartialSpec = nullptr;
111
0
          ArrayRef<TemplateParameterList *> TemplateParamLists =
112
0
              SS.getTemplateParamLists();
113
0
          if (!TemplateParamLists.empty()) {
114
0
            unsigned Depth = ClassTemplate->getTemplateParameters()->getDepth();
115
0
            auto L = find_if(TemplateParamLists,
116
0
                             [Depth](TemplateParameterList *TPL) {
117
0
                               return TPL->getDepth() == Depth;
118
0
                             });
119
0
            if (L != TemplateParamLists.end()) {
120
0
              void *Pos = nullptr;
121
0
              PartialSpec = ClassTemplate->findPartialSpecialization(
122
0
                  SpecType->template_arguments(), *L, Pos);
123
0
            }
124
0
          } else {
125
0
            PartialSpec = ClassTemplate->findPartialSpecialization(ContextType);
126
0
          }
127
128
0
          if (PartialSpec) {
129
            // A declaration of the partial specialization must be visible.
130
            // We can always recover here, because this only happens when we're
131
            // entering the context, and that can't happen in a SFINAE context.
132
0
            assert(!isSFINAEContext() && "partial specialization scope "
133
0
                                         "specifier in SFINAE context?");
134
0
            if (PartialSpec->hasDefinition() &&
135
0
                !hasReachableDefinition(PartialSpec))
136
0
              diagnoseMissingImport(SS.getLastQualifierNameLoc(), PartialSpec,
137
0
                                    MissingImportKind::PartialSpecialization,
138
0
                                    true);
139
0
            return PartialSpec;
140
0
          }
141
142
          // If the type of the nested name specifier is the same as the
143
          // injected class name of the named class template, we're entering
144
          // into that class template definition.
145
0
          QualType Injected =
146
0
              ClassTemplate->getInjectedClassNameSpecialization();
147
0
          if (Context.hasSameType(Injected, ContextType))
148
0
            return ClassTemplate->getTemplatedDecl();
149
0
        }
150
0
      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
151
        // The nested name specifier refers to a member of a class template.
152
0
        return RecordT->getDecl();
153
0
      }
154
0
    }
155
156
0
    return nullptr;
157
0
  }
158
159
0
  switch (NNS->getKind()) {
160
0
  case NestedNameSpecifier::Identifier:
161
0
    llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
162
163
0
  case NestedNameSpecifier::Namespace:
164
0
    return NNS->getAsNamespace();
165
166
0
  case NestedNameSpecifier::NamespaceAlias:
167
0
    return NNS->getAsNamespaceAlias()->getNamespace();
168
169
0
  case NestedNameSpecifier::TypeSpec:
170
0
  case NestedNameSpecifier::TypeSpecWithTemplate: {
171
0
    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
172
0
    assert(Tag && "Non-tag type in nested-name-specifier");
173
0
    return Tag->getDecl();
174
0
  }
175
176
0
  case NestedNameSpecifier::Global:
177
0
    return Context.getTranslationUnitDecl();
178
179
0
  case NestedNameSpecifier::Super:
180
0
    return NNS->getAsRecordDecl();
181
0
  }
182
183
0
  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
184
0
}
185
186
0
bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
187
0
  if (!SS.isSet() || SS.isInvalid())
188
0
    return false;
189
190
0
  return SS.getScopeRep()->isDependent();
191
0
}
192
193
/// If the given nested name specifier refers to the current
194
/// instantiation, return the declaration that corresponds to that
195
/// current instantiation (C++0x [temp.dep.type]p1).
196
///
197
/// \param NNS a dependent nested name specifier.
198
0
CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
199
0
  assert(getLangOpts().CPlusPlus && "Only callable in C++");
200
0
  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
201
202
0
  if (!NNS->getAsType())
203
0
    return nullptr;
204
205
0
  QualType T = QualType(NNS->getAsType(), 0);
206
0
  return ::getCurrentInstantiationOf(T, CurContext);
207
0
}
208
209
/// Require that the context specified by SS be complete.
210
///
211
/// If SS refers to a type, this routine checks whether the type is
212
/// complete enough (or can be made complete enough) for name lookup
213
/// into the DeclContext. A type that is not yet completed can be
214
/// considered "complete enough" if it is a class/struct/union/enum
215
/// that is currently being defined. Or, if we have a type that names
216
/// a class template specialization that is not a complete type, we
217
/// will attempt to instantiate that class template.
218
bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
219
0
                                      DeclContext *DC) {
220
0
  assert(DC && "given null context");
221
222
0
  TagDecl *tag = dyn_cast<TagDecl>(DC);
223
224
  // If this is a dependent type, then we consider it complete.
225
  // FIXME: This is wrong; we should require a (visible) definition to
226
  // exist in this case too.
227
0
  if (!tag || tag->isDependentContext())
228
0
    return false;
229
230
  // Grab the tag definition, if there is one.
231
0
  QualType type = Context.getTypeDeclType(tag);
232
0
  tag = type->getAsTagDecl();
233
234
  // If we're currently defining this type, then lookup into the
235
  // type is okay: don't complain that it isn't complete yet.
236
0
  if (tag->isBeingDefined())
237
0
    return false;
238
239
0
  SourceLocation loc = SS.getLastQualifierNameLoc();
240
0
  if (loc.isInvalid()) loc = SS.getRange().getBegin();
241
242
  // The type must be complete.
243
0
  if (RequireCompleteType(loc, type, diag::err_incomplete_nested_name_spec,
244
0
                          SS.getRange())) {
245
0
    SS.SetInvalid(SS.getRange());
246
0
    return true;
247
0
  }
248
249
0
  if (auto *EnumD = dyn_cast<EnumDecl>(tag))
250
    // Fixed enum types and scoped enum instantiations are complete, but they
251
    // aren't valid as scopes until we see or instantiate their definition.
252
0
    return RequireCompleteEnumDecl(EnumD, loc, &SS);
253
254
0
  return false;
255
0
}
256
257
/// Require that the EnumDecl is completed with its enumerators defined or
258
/// instantiated. SS, if provided, is the ScopeRef parsed.
259
///
260
bool Sema::RequireCompleteEnumDecl(EnumDecl *EnumD, SourceLocation L,
261
0
                                   CXXScopeSpec *SS) {
262
0
  if (EnumD->isCompleteDefinition()) {
263
    // If we know about the definition but it is not visible, complain.
264
0
    NamedDecl *SuggestedDef = nullptr;
265
0
    if (!hasReachableDefinition(EnumD, &SuggestedDef,
266
0
                                /*OnlyNeedComplete*/ false)) {
267
      // If the user is going to see an error here, recover by making the
268
      // definition visible.
269
0
      bool TreatAsComplete = !isSFINAEContext();
270
0
      diagnoseMissingImport(L, SuggestedDef, MissingImportKind::Definition,
271
0
                            /*Recover*/ TreatAsComplete);
272
0
      return !TreatAsComplete;
273
0
    }
274
0
    return false;
275
0
  }
276
277
  // Try to instantiate the definition, if this is a specialization of an
278
  // enumeration temploid.
279
0
  if (EnumDecl *Pattern = EnumD->getInstantiatedFromMemberEnum()) {
280
0
    MemberSpecializationInfo *MSI = EnumD->getMemberSpecializationInfo();
281
0
    if (MSI->getTemplateSpecializationKind() != TSK_ExplicitSpecialization) {
282
0
      if (InstantiateEnum(L, EnumD, Pattern,
283
0
                          getTemplateInstantiationArgs(EnumD),
284
0
                          TSK_ImplicitInstantiation)) {
285
0
        if (SS)
286
0
          SS->SetInvalid(SS->getRange());
287
0
        return true;
288
0
      }
289
0
      return false;
290
0
    }
291
0
  }
292
293
0
  if (SS) {
294
0
    Diag(L, diag::err_incomplete_nested_name_spec)
295
0
        << QualType(EnumD->getTypeForDecl(), 0) << SS->getRange();
296
0
    SS->SetInvalid(SS->getRange());
297
0
  } else {
298
0
    Diag(L, diag::err_incomplete_enum) << QualType(EnumD->getTypeForDecl(), 0);
299
0
    Diag(EnumD->getLocation(), diag::note_declared_at);
300
0
  }
301
302
0
  return true;
303
0
}
304
305
bool Sema::ActOnCXXGlobalScopeSpecifier(SourceLocation CCLoc,
306
0
                                        CXXScopeSpec &SS) {
307
0
  SS.MakeGlobal(Context, CCLoc);
308
0
  return false;
309
0
}
310
311
bool Sema::ActOnSuperScopeSpecifier(SourceLocation SuperLoc,
312
                                    SourceLocation ColonColonLoc,
313
0
                                    CXXScopeSpec &SS) {
314
0
  if (getCurLambda()) {
315
0
    Diag(SuperLoc, diag::err_super_in_lambda_unsupported);
316
0
    return true;
317
0
  }
318
319
0
  CXXRecordDecl *RD = nullptr;
320
0
  for (Scope *S = getCurScope(); S; S = S->getParent()) {
321
0
    if (S->isFunctionScope()) {
322
0
      if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(S->getEntity()))
323
0
        RD = MD->getParent();
324
0
      break;
325
0
    }
326
0
    if (S->isClassScope()) {
327
0
      RD = cast<CXXRecordDecl>(S->getEntity());
328
0
      break;
329
0
    }
330
0
  }
331
332
0
  if (!RD) {
333
0
    Diag(SuperLoc, diag::err_invalid_super_scope);
334
0
    return true;
335
0
  } else if (RD->getNumBases() == 0) {
336
0
    Diag(SuperLoc, diag::err_no_base_classes) << RD->getName();
337
0
    return true;
338
0
  }
339
340
0
  SS.MakeSuper(Context, RD, SuperLoc, ColonColonLoc);
341
0
  return false;
342
0
}
343
344
/// Determines whether the given declaration is an valid acceptable
345
/// result for name lookup of a nested-name-specifier.
346
/// \param SD Declaration checked for nested-name-specifier.
347
/// \param IsExtension If not null and the declaration is accepted as an
348
/// extension, the pointed variable is assigned true.
349
bool Sema::isAcceptableNestedNameSpecifier(const NamedDecl *SD,
350
148
                                           bool *IsExtension) {
351
148
  if (!SD)
352
148
    return false;
353
354
0
  SD = SD->getUnderlyingDecl();
355
356
  // Namespace and namespace aliases are fine.
357
0
  if (isa<NamespaceDecl>(SD))
358
0
    return true;
359
360
0
  if (!isa<TypeDecl>(SD))
361
0
    return false;
362
363
  // Determine whether we have a class (or, in C++11, an enum) or
364
  // a typedef thereof. If so, build the nested-name-specifier.
365
0
  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
366
0
  if (T->isDependentType())
367
0
    return true;
368
0
  if (const TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
369
0
    if (TD->getUnderlyingType()->isRecordType())
370
0
      return true;
371
0
    if (TD->getUnderlyingType()->isEnumeralType()) {
372
0
      if (Context.getLangOpts().CPlusPlus11)
373
0
        return true;
374
0
      if (IsExtension)
375
0
        *IsExtension = true;
376
0
    }
377
0
  } else if (isa<RecordDecl>(SD)) {
378
0
    return true;
379
0
  } else if (isa<EnumDecl>(SD)) {
380
0
    if (Context.getLangOpts().CPlusPlus11)
381
0
      return true;
382
0
    if (IsExtension)
383
0
      *IsExtension = true;
384
0
  }
385
386
0
  return false;
387
0
}
388
389
/// If the given nested-name-specifier begins with a bare identifier
390
/// (e.g., Base::), perform name lookup for that identifier as a
391
/// nested-name-specifier within the given scope, and return the result of that
392
/// name lookup.
393
0
NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
394
0
  if (!S || !NNS)
395
0
    return nullptr;
396
397
0
  while (NNS->getPrefix())
398
0
    NNS = NNS->getPrefix();
399
400
0
  if (NNS->getKind() != NestedNameSpecifier::Identifier)
401
0
    return nullptr;
402
403
0
  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
404
0
                     LookupNestedNameSpecifierName);
405
0
  LookupName(Found, S);
406
0
  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
407
408
0
  if (!Found.isSingleResult())
409
0
    return nullptr;
410
411
0
  NamedDecl *Result = Found.getFoundDecl();
412
0
  if (isAcceptableNestedNameSpecifier(Result))
413
0
    return Result;
414
415
0
  return nullptr;
416
0
}
417
418
namespace {
419
420
// Callback to only accept typo corrections that can be a valid C++ member
421
// initializer: either a non-static field member or a base class.
422
class NestedNameSpecifierValidatorCCC final
423
    : public CorrectionCandidateCallback {
424
public:
425
  explicit NestedNameSpecifierValidatorCCC(Sema &SRef)
426
1
      : SRef(SRef) {}
427
428
0
  bool ValidateCandidate(const TypoCorrection &candidate) override {
429
0
    return SRef.isAcceptableNestedNameSpecifier(candidate.getCorrectionDecl());
430
0
  }
431
432
1
  std::unique_ptr<CorrectionCandidateCallback> clone() override {
433
1
    return std::make_unique<NestedNameSpecifierValidatorCCC>(*this);
434
1
  }
435
436
 private:
437
  Sema &SRef;
438
};
439
440
}
441
442
/// Build a new nested-name-specifier for "identifier::", as described
443
/// by ActOnCXXNestedNameSpecifier.
444
///
445
/// \param S Scope in which the nested-name-specifier occurs.
446
/// \param IdInfo Parser information about an identifier in the
447
///        nested-name-spec.
448
/// \param EnteringContext If true, enter the context specified by the
449
///        nested-name-specifier.
450
/// \param SS Optional nested name specifier preceding the identifier.
451
/// \param ScopeLookupResult Provides the result of name lookup within the
452
///        scope of the nested-name-specifier that was computed at template
453
///        definition time.
454
/// \param ErrorRecoveryLookup Specifies if the method is called to improve
455
///        error recovery and what kind of recovery is performed.
456
/// \param IsCorrectedToColon If not null, suggestion of replace '::' -> ':'
457
///        are allowed.  The bool value pointed by this parameter is set to
458
///       'true' if the identifier is treated as if it was followed by ':',
459
///        not '::'.
460
/// \param OnlyNamespace If true, only considers namespaces in lookup.
461
///
462
/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
463
/// that it contains an extra parameter \p ScopeLookupResult, which provides
464
/// the result of name lookup within the scope of the nested-name-specifier
465
/// that was computed at template definition time.
466
///
467
/// If ErrorRecoveryLookup is true, then this call is used to improve error
468
/// recovery.  This means that it should not emit diagnostics, it should
469
/// just return true on failure.  It also means it should only return a valid
470
/// scope if it *knows* that the result is correct.  It should not return in a
471
/// dependent context, for example. Nor will it extend \p SS with the scope
472
/// specifier.
473
bool Sema::BuildCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
474
                                       bool EnteringContext, CXXScopeSpec &SS,
475
                                       NamedDecl *ScopeLookupResult,
476
                                       bool ErrorRecoveryLookup,
477
                                       bool *IsCorrectedToColon,
478
148
                                       bool OnlyNamespace) {
479
148
  if (IdInfo.Identifier->isEditorPlaceholder())
480
0
    return true;
481
148
  LookupResult Found(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
482
148
                     OnlyNamespace ? LookupNamespaceName
483
148
                                   : LookupNestedNameSpecifierName);
484
148
  QualType ObjectType = GetTypeFromParser(IdInfo.ObjectType);
485
486
  // Determine where to perform name lookup
487
148
  DeclContext *LookupCtx = nullptr;
488
148
  bool isDependent = false;
489
148
  if (IsCorrectedToColon)
490
0
    *IsCorrectedToColon = false;
491
148
  if (!ObjectType.isNull()) {
492
    // This nested-name-specifier occurs in a member access expression, e.g.,
493
    // x->B::f, and we are looking into the type of the object.
494
0
    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
495
0
    LookupCtx = computeDeclContext(ObjectType);
496
0
    isDependent = ObjectType->isDependentType();
497
148
  } else if (SS.isSet()) {
498
    // This nested-name-specifier occurs after another nested-name-specifier,
499
    // so look into the context associated with the prior nested-name-specifier.
500
0
    LookupCtx = computeDeclContext(SS, EnteringContext);
501
0
    isDependent = isDependentScopeSpecifier(SS);
502
0
    Found.setContextRange(SS.getRange());
503
0
  }
504
505
0
  bool ObjectTypeSearchedInScope = false;
506
148
  if (LookupCtx) {
507
    // Perform "qualified" name lookup into the declaration context we
508
    // computed, which is either the type of the base of a member access
509
    // expression or the declaration context associated with a prior
510
    // nested-name-specifier.
511
512
    // The declaration context must be complete.
513
0
    if (!LookupCtx->isDependentContext() &&
514
0
        RequireCompleteDeclContext(SS, LookupCtx))
515
0
      return true;
516
517
0
    LookupQualifiedName(Found, LookupCtx);
518
519
0
    if (!ObjectType.isNull() && Found.empty()) {
520
      // C++ [basic.lookup.classref]p4:
521
      //   If the id-expression in a class member access is a qualified-id of
522
      //   the form
523
      //
524
      //        class-name-or-namespace-name::...
525
      //
526
      //   the class-name-or-namespace-name following the . or -> operator is
527
      //   looked up both in the context of the entire postfix-expression and in
528
      //   the scope of the class of the object expression. If the name is found
529
      //   only in the scope of the class of the object expression, the name
530
      //   shall refer to a class-name. If the name is found only in the
531
      //   context of the entire postfix-expression, the name shall refer to a
532
      //   class-name or namespace-name. [...]
533
      //
534
      // Qualified name lookup into a class will not find a namespace-name,
535
      // so we do not need to diagnose that case specifically. However,
536
      // this qualified name lookup may find nothing. In that case, perform
537
      // unqualified name lookup in the given scope (if available) or
538
      // reconstruct the result from when name lookup was performed at template
539
      // definition time.
540
0
      if (S)
541
0
        LookupName(Found, S);
542
0
      else if (ScopeLookupResult)
543
0
        Found.addDecl(ScopeLookupResult);
544
545
0
      ObjectTypeSearchedInScope = true;
546
0
    }
547
148
  } else if (!isDependent) {
548
    // Perform unqualified name lookup in the current scope.
549
148
    LookupName(Found, S);
550
148
  }
551
552
148
  if (Found.isAmbiguous())
553
0
    return true;
554
555
  // If we performed lookup into a dependent context and did not find anything,
556
  // that's fine: just build a dependent nested-name-specifier.
557
148
  if (Found.empty() && isDependent &&
558
148
      !(LookupCtx && LookupCtx->isRecord() &&
559
0
        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
560
0
         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
561
    // Don't speculate if we're just trying to improve error recovery.
562
0
    if (ErrorRecoveryLookup)
563
0
      return true;
564
565
    // We were not able to compute the declaration context for a dependent
566
    // base object type or prior nested-name-specifier, so this
567
    // nested-name-specifier refers to an unknown specialization. Just build
568
    // a dependent nested-name-specifier.
569
0
    SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc, IdInfo.CCLoc);
570
0
    return false;
571
0
  }
572
573
148
  if (Found.empty() && !ErrorRecoveryLookup) {
574
    // If identifier is not found as class-name-or-namespace-name, but is found
575
    // as other entity, don't look for typos.
576
1
    LookupResult R(*this, Found.getLookupNameInfo(), LookupOrdinaryName);
577
1
    if (LookupCtx)
578
0
      LookupQualifiedName(R, LookupCtx);
579
1
    else if (S && !isDependent)
580
1
      LookupName(R, S);
581
1
    if (!R.empty()) {
582
      // Don't diagnose problems with this speculative lookup.
583
0
      R.suppressDiagnostics();
584
      // The identifier is found in ordinary lookup. If correction to colon is
585
      // allowed, suggest replacement to ':'.
586
0
      if (IsCorrectedToColon) {
587
0
        *IsCorrectedToColon = true;
588
0
        Diag(IdInfo.CCLoc, diag::err_nested_name_spec_is_not_class)
589
0
            << IdInfo.Identifier << getLangOpts().CPlusPlus
590
0
            << FixItHint::CreateReplacement(IdInfo.CCLoc, ":");
591
0
        if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
592
0
          Diag(ND->getLocation(), diag::note_declared_at);
593
0
        return true;
594
0
      }
595
      // Replacement '::' -> ':' is not allowed, just issue respective error.
596
0
      Diag(R.getNameLoc(), OnlyNamespace
597
0
                               ? unsigned(diag::err_expected_namespace_name)
598
0
                               : unsigned(diag::err_expected_class_or_namespace))
599
0
          << IdInfo.Identifier << getLangOpts().CPlusPlus;
600
0
      if (NamedDecl *ND = R.getAsSingle<NamedDecl>())
601
0
        Diag(ND->getLocation(), diag::note_entity_declared_at)
602
0
            << IdInfo.Identifier;
603
0
      return true;
604
0
    }
605
1
  }
606
607
148
  if (Found.empty() && !ErrorRecoveryLookup && !getLangOpts().MSVCCompat) {
608
    // We haven't found anything, and we're not recovering from a
609
    // different kind of error, so look for typos.
610
1
    DeclarationName Name = Found.getLookupName();
611
1
    Found.clear();
612
1
    NestedNameSpecifierValidatorCCC CCC(*this);
613
1
    if (TypoCorrection Corrected = CorrectTypo(
614
1
            Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS, CCC,
615
1
            CTK_ErrorRecovery, LookupCtx, EnteringContext)) {
616
0
      if (LookupCtx) {
617
0
        bool DroppedSpecifier =
618
0
            Corrected.WillReplaceSpecifier() &&
619
0
            Name.getAsString() == Corrected.getAsString(getLangOpts());
620
0
        if (DroppedSpecifier)
621
0
          SS.clear();
622
0
        diagnoseTypo(Corrected, PDiag(diag::err_no_member_suggest)
623
0
                                  << Name << LookupCtx << DroppedSpecifier
624
0
                                  << SS.getRange());
625
0
      } else
626
0
        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_var_use_suggest)
627
0
                                  << Name);
628
629
0
      if (Corrected.getCorrectionSpecifier())
630
0
        SS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
631
0
                       SourceRange(Found.getNameLoc()));
632
633
0
      if (NamedDecl *ND = Corrected.getFoundDecl())
634
0
        Found.addDecl(ND);
635
0
      Found.setLookupName(Corrected.getCorrection());
636
1
    } else {
637
1
      Found.setLookupName(IdInfo.Identifier);
638
1
    }
639
1
  }
640
641
148
  NamedDecl *SD =
642
148
      Found.isSingleResult() ? Found.getRepresentativeDecl() : nullptr;
643
148
  bool IsExtension = false;
644
148
  bool AcceptSpec = isAcceptableNestedNameSpecifier(SD, &IsExtension);
645
148
  if (!AcceptSpec && IsExtension) {
646
0
    AcceptSpec = true;
647
0
    Diag(IdInfo.IdentifierLoc, diag::ext_nested_name_spec_is_enum);
648
0
  }
649
148
  if (AcceptSpec) {
650
0
    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope &&
651
0
        !getLangOpts().CPlusPlus11) {
652
      // C++03 [basic.lookup.classref]p4:
653
      //   [...] If the name is found in both contexts, the
654
      //   class-name-or-namespace-name shall refer to the same entity.
655
      //
656
      // We already found the name in the scope of the object. Now, look
657
      // into the current scope (the scope of the postfix-expression) to
658
      // see if we can find the same name there. As above, if there is no
659
      // scope, reconstruct the result from the template instantiation itself.
660
      //
661
      // Note that C++11 does *not* perform this redundant lookup.
662
0
      NamedDecl *OuterDecl;
663
0
      if (S) {
664
0
        LookupResult FoundOuter(*this, IdInfo.Identifier, IdInfo.IdentifierLoc,
665
0
                                LookupNestedNameSpecifierName);
666
0
        LookupName(FoundOuter, S);
667
0
        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
668
0
      } else
669
0
        OuterDecl = ScopeLookupResult;
670
671
0
      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
672
0
          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
673
0
          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
674
0
           !Context.hasSameType(
675
0
                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
676
0
                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
677
0
        if (ErrorRecoveryLookup)
678
0
          return true;
679
680
0
         Diag(IdInfo.IdentifierLoc,
681
0
              diag::err_nested_name_member_ref_lookup_ambiguous)
682
0
           << IdInfo.Identifier;
683
0
         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
684
0
           << ObjectType;
685
0
         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
686
687
         // Fall through so that we'll pick the name we found in the object
688
         // type, since that's probably what the user wanted anyway.
689
0
       }
690
0
    }
691
692
0
    if (auto *TD = dyn_cast_or_null<TypedefNameDecl>(SD))
693
0
      MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
694
695
    // If we're just performing this lookup for error-recovery purposes,
696
    // don't extend the nested-name-specifier. Just return now.
697
0
    if (ErrorRecoveryLookup)
698
0
      return false;
699
700
    // The use of a nested name specifier may trigger deprecation warnings.
701
0
    DiagnoseUseOfDecl(SD, IdInfo.CCLoc);
702
703
0
    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
704
0
      SS.Extend(Context, Namespace, IdInfo.IdentifierLoc, IdInfo.CCLoc);
705
0
      return false;
706
0
    }
707
708
0
    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
709
0
      SS.Extend(Context, Alias, IdInfo.IdentifierLoc, IdInfo.CCLoc);
710
0
      return false;
711
0
    }
712
713
0
    QualType T =
714
0
        Context.getTypeDeclType(cast<TypeDecl>(SD->getUnderlyingDecl()));
715
716
0
    if (T->isEnumeralType())
717
0
      Diag(IdInfo.IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
718
719
0
    TypeLocBuilder TLB;
720
0
    if (const auto *USD = dyn_cast<UsingShadowDecl>(SD)) {
721
0
      T = Context.getUsingType(USD, T);
722
0
      TLB.pushTypeSpec(T).setNameLoc(IdInfo.IdentifierLoc);
723
0
    } else if (isa<InjectedClassNameType>(T)) {
724
0
      InjectedClassNameTypeLoc InjectedTL
725
0
        = TLB.push<InjectedClassNameTypeLoc>(T);
726
0
      InjectedTL.setNameLoc(IdInfo.IdentifierLoc);
727
0
    } else if (isa<RecordType>(T)) {
728
0
      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
729
0
      RecordTL.setNameLoc(IdInfo.IdentifierLoc);
730
0
    } else if (isa<TypedefType>(T)) {
731
0
      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
732
0
      TypedefTL.setNameLoc(IdInfo.IdentifierLoc);
733
0
    } else if (isa<EnumType>(T)) {
734
0
      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
735
0
      EnumTL.setNameLoc(IdInfo.IdentifierLoc);
736
0
    } else if (isa<TemplateTypeParmType>(T)) {
737
0
      TemplateTypeParmTypeLoc TemplateTypeTL
738
0
        = TLB.push<TemplateTypeParmTypeLoc>(T);
739
0
      TemplateTypeTL.setNameLoc(IdInfo.IdentifierLoc);
740
0
    } else if (isa<UnresolvedUsingType>(T)) {
741
0
      UnresolvedUsingTypeLoc UnresolvedTL
742
0
        = TLB.push<UnresolvedUsingTypeLoc>(T);
743
0
      UnresolvedTL.setNameLoc(IdInfo.IdentifierLoc);
744
0
    } else if (isa<SubstTemplateTypeParmType>(T)) {
745
0
      SubstTemplateTypeParmTypeLoc TL
746
0
        = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
747
0
      TL.setNameLoc(IdInfo.IdentifierLoc);
748
0
    } else if (isa<SubstTemplateTypeParmPackType>(T)) {
749
0
      SubstTemplateTypeParmPackTypeLoc TL
750
0
        = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
751
0
      TL.setNameLoc(IdInfo.IdentifierLoc);
752
0
    } else {
753
0
      llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
754
0
    }
755
756
0
    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
757
0
              IdInfo.CCLoc);
758
0
    return false;
759
0
  }
760
761
  // Otherwise, we have an error case.  If we don't want diagnostics, just
762
  // return an error now.
763
148
  if (ErrorRecoveryLookup)
764
147
    return true;
765
766
  // If we didn't find anything during our lookup, try again with
767
  // ordinary name lookup, which can help us produce better error
768
  // messages.
769
1
  if (Found.empty()) {
770
1
    Found.clear(LookupOrdinaryName);
771
1
    LookupName(Found, S);
772
1
  }
773
774
  // In Microsoft mode, if we are within a templated function and we can't
775
  // resolve Identifier, then extend the SS with Identifier. This will have
776
  // the effect of resolving Identifier during template instantiation.
777
  // The goal is to be able to resolve a function call whose
778
  // nested-name-specifier is located inside a dependent base class.
779
  // Example:
780
  //
781
  // class C {
782
  // public:
783
  //    static void foo2() {  }
784
  // };
785
  // template <class T> class A { public: typedef C D; };
786
  //
787
  // template <class T> class B : public A<T> {
788
  // public:
789
  //   void foo() { D::foo2(); }
790
  // };
791
1
  if (getLangOpts().MSVCCompat) {
792
0
    DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
793
0
    if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
794
0
      CXXRecordDecl *ContainingClass = dyn_cast<CXXRecordDecl>(DC->getParent());
795
0
      if (ContainingClass && ContainingClass->hasAnyDependentBases()) {
796
0
        Diag(IdInfo.IdentifierLoc,
797
0
             diag::ext_undeclared_unqual_id_with_dependent_base)
798
0
            << IdInfo.Identifier << ContainingClass;
799
0
        SS.Extend(Context, IdInfo.Identifier, IdInfo.IdentifierLoc,
800
0
                  IdInfo.CCLoc);
801
0
        return false;
802
0
      }
803
0
    }
804
0
  }
805
806
1
  if (!Found.empty()) {
807
0
    if (TypeDecl *TD = Found.getAsSingle<TypeDecl>()) {
808
0
      Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
809
0
          << Context.getTypeDeclType(TD) << getLangOpts().CPlusPlus;
810
0
    } else if (Found.getAsSingle<TemplateDecl>()) {
811
0
      ParsedType SuggestedType;
812
0
      DiagnoseUnknownTypeName(IdInfo.Identifier, IdInfo.IdentifierLoc, S, &SS,
813
0
                              SuggestedType);
814
0
    } else {
815
0
      Diag(IdInfo.IdentifierLoc, diag::err_expected_class_or_namespace)
816
0
          << IdInfo.Identifier << getLangOpts().CPlusPlus;
817
0
      if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
818
0
        Diag(ND->getLocation(), diag::note_entity_declared_at)
819
0
            << IdInfo.Identifier;
820
0
    }
821
1
  } else if (SS.isSet())
822
0
    Diag(IdInfo.IdentifierLoc, diag::err_no_member) << IdInfo.Identifier
823
0
        << LookupCtx << SS.getRange();
824
1
  else
825
1
    Diag(IdInfo.IdentifierLoc, diag::err_undeclared_var_use)
826
1
        << IdInfo.Identifier;
827
828
1
  return true;
829
1
}
830
831
bool Sema::ActOnCXXNestedNameSpecifier(Scope *S, NestedNameSpecInfo &IdInfo,
832
                                       bool EnteringContext, CXXScopeSpec &SS,
833
                                       bool *IsCorrectedToColon,
834
1
                                       bool OnlyNamespace) {
835
1
  if (SS.isInvalid())
836
0
    return true;
837
838
1
  return BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
839
1
                                     /*ScopeLookupResult=*/nullptr, false,
840
1
                                     IsCorrectedToColon, OnlyNamespace);
841
1
}
842
843
bool Sema::ActOnCXXNestedNameSpecifierDecltype(CXXScopeSpec &SS,
844
                                               const DeclSpec &DS,
845
0
                                               SourceLocation ColonColonLoc) {
846
0
  if (SS.isInvalid() || DS.getTypeSpecType() == DeclSpec::TST_error)
847
0
    return true;
848
849
0
  assert(DS.getTypeSpecType() == DeclSpec::TST_decltype);
850
851
0
  QualType T = BuildDecltypeType(DS.getRepAsExpr());
852
0
  if (T.isNull())
853
0
    return true;
854
855
0
  if (!T->isDependentType() && !T->getAs<TagType>()) {
856
0
    Diag(DS.getTypeSpecTypeLoc(), diag::err_expected_class_or_namespace)
857
0
      << T << getLangOpts().CPlusPlus;
858
0
    return true;
859
0
  }
860
861
0
  TypeLocBuilder TLB;
862
0
  DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T);
863
0
  DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc());
864
0
  DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd());
865
0
  SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
866
0
            ColonColonLoc);
867
0
  return false;
868
0
}
869
870
/// IsInvalidUnlessNestedName - This method is used for error recovery
871
/// purposes to determine whether the specified identifier is only valid as
872
/// a nested name specifier, for example a namespace name.  It is
873
/// conservatively correct to always return false from this method.
874
///
875
/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
876
bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
877
                                     NestedNameSpecInfo &IdInfo,
878
147
                                     bool EnteringContext) {
879
147
  if (SS.isInvalid())
880
0
    return false;
881
882
147
  return !BuildCXXNestedNameSpecifier(S, IdInfo, EnteringContext, SS,
883
147
                                      /*ScopeLookupResult=*/nullptr, true);
884
147
}
885
886
bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
887
                                       CXXScopeSpec &SS,
888
                                       SourceLocation TemplateKWLoc,
889
                                       TemplateTy OpaqueTemplate,
890
                                       SourceLocation TemplateNameLoc,
891
                                       SourceLocation LAngleLoc,
892
                                       ASTTemplateArgsPtr TemplateArgsIn,
893
                                       SourceLocation RAngleLoc,
894
                                       SourceLocation CCLoc,
895
0
                                       bool EnteringContext) {
896
0
  if (SS.isInvalid())
897
0
    return true;
898
899
0
  TemplateName Template = OpaqueTemplate.get();
900
901
  // Translate the parser's template argument list in our AST format.
902
0
  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
903
0
  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
904
905
0
  DependentTemplateName *DTN = Template.getAsDependentTemplateName();
906
0
  if (DTN && DTN->isIdentifier()) {
907
    // Handle a dependent template specialization for which we cannot resolve
908
    // the template name.
909
0
    assert(DTN->getQualifier() == SS.getScopeRep());
910
0
    QualType T = Context.getDependentTemplateSpecializationType(
911
0
        ElaboratedTypeKeyword::None, DTN->getQualifier(), DTN->getIdentifier(),
912
0
        TemplateArgs.arguments());
913
914
    // Create source-location information for this type.
915
0
    TypeLocBuilder Builder;
916
0
    DependentTemplateSpecializationTypeLoc SpecTL
917
0
      = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
918
0
    SpecTL.setElaboratedKeywordLoc(SourceLocation());
919
0
    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
920
0
    SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
921
0
    SpecTL.setTemplateNameLoc(TemplateNameLoc);
922
0
    SpecTL.setLAngleLoc(LAngleLoc);
923
0
    SpecTL.setRAngleLoc(RAngleLoc);
924
0
    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
925
0
      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
926
927
0
    SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
928
0
              CCLoc);
929
0
    return false;
930
0
  }
931
932
  // If we assumed an undeclared identifier was a template name, try to
933
  // typo-correct it now.
934
0
  if (Template.getAsAssumedTemplateName() &&
935
0
      resolveAssumedTemplateNameAsType(S, Template, TemplateNameLoc))
936
0
    return true;
937
938
0
  TemplateDecl *TD = Template.getAsTemplateDecl();
939
0
  if (Template.getAsOverloadedTemplate() || DTN ||
940
0
      isa<FunctionTemplateDecl>(TD) || isa<VarTemplateDecl>(TD)) {
941
0
    SourceRange R(TemplateNameLoc, RAngleLoc);
942
0
    if (SS.getRange().isValid())
943
0
      R.setBegin(SS.getRange().getBegin());
944
945
0
    Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
946
0
      << (TD && isa<VarTemplateDecl>(TD)) << Template << R;
947
0
    NoteAllFoundTemplates(Template);
948
0
    return true;
949
0
  }
950
951
  // We were able to resolve the template name to an actual template.
952
  // Build an appropriate nested-name-specifier.
953
0
  QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
954
0
  if (T.isNull())
955
0
    return true;
956
957
  // Alias template specializations can produce types which are not valid
958
  // nested name specifiers.
959
0
  if (!T->isDependentType() && !T->getAs<TagType>()) {
960
0
    Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
961
0
    NoteAllFoundTemplates(Template);
962
0
    return true;
963
0
  }
964
965
  // Provide source-location information for the template specialization type.
966
0
  TypeLocBuilder Builder;
967
0
  TemplateSpecializationTypeLoc SpecTL
968
0
    = Builder.push<TemplateSpecializationTypeLoc>(T);
969
0
  SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
970
0
  SpecTL.setTemplateNameLoc(TemplateNameLoc);
971
0
  SpecTL.setLAngleLoc(LAngleLoc);
972
0
  SpecTL.setRAngleLoc(RAngleLoc);
973
0
  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
974
0
    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
975
976
977
0
  SS.Extend(Context, TemplateKWLoc, Builder.getTypeLocInContext(Context, T),
978
0
            CCLoc);
979
0
  return false;
980
0
}
981
982
namespace {
983
  /// A structure that stores a nested-name-specifier annotation,
984
  /// including both the nested-name-specifier
985
  struct NestedNameSpecifierAnnotation {
986
    NestedNameSpecifier *NNS;
987
  };
988
}
989
990
0
void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
991
0
  if (SS.isEmpty() || SS.isInvalid())
992
0
    return nullptr;
993
994
0
  void *Mem = Context.Allocate(
995
0
      (sizeof(NestedNameSpecifierAnnotation) + SS.location_size()),
996
0
      alignof(NestedNameSpecifierAnnotation));
997
0
  NestedNameSpecifierAnnotation *Annotation
998
0
    = new (Mem) NestedNameSpecifierAnnotation;
999
0
  Annotation->NNS = SS.getScopeRep();
1000
0
  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
1001
0
  return Annotation;
1002
0
}
1003
1004
void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
1005
                                                SourceRange AnnotationRange,
1006
0
                                                CXXScopeSpec &SS) {
1007
0
  if (!AnnotationPtr) {
1008
0
    SS.SetInvalid(AnnotationRange);
1009
0
    return;
1010
0
  }
1011
1012
0
  NestedNameSpecifierAnnotation *Annotation
1013
0
    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
1014
0
  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
1015
0
}
1016
1017
0
bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1018
0
  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1019
1020
  // Don't enter a declarator context when the current context is an Objective-C
1021
  // declaration.
1022
0
  if (isa<ObjCContainerDecl>(CurContext) || isa<ObjCMethodDecl>(CurContext))
1023
0
    return false;
1024
1025
0
  NestedNameSpecifier *Qualifier = SS.getScopeRep();
1026
1027
  // There are only two places a well-formed program may qualify a
1028
  // declarator: first, when defining a namespace or class member
1029
  // out-of-line, and second, when naming an explicitly-qualified
1030
  // friend function.  The latter case is governed by
1031
  // C++03 [basic.lookup.unqual]p10:
1032
  //   In a friend declaration naming a member function, a name used
1033
  //   in the function declarator and not part of a template-argument
1034
  //   in a template-id is first looked up in the scope of the member
1035
  //   function's class. If it is not found, or if the name is part of
1036
  //   a template-argument in a template-id, the look up is as
1037
  //   described for unqualified names in the definition of the class
1038
  //   granting friendship.
1039
  // i.e. we don't push a scope unless it's a class member.
1040
1041
0
  switch (Qualifier->getKind()) {
1042
0
  case NestedNameSpecifier::Global:
1043
0
  case NestedNameSpecifier::Namespace:
1044
0
  case NestedNameSpecifier::NamespaceAlias:
1045
    // These are always namespace scopes.  We never want to enter a
1046
    // namespace scope from anything but a file context.
1047
0
    return CurContext->getRedeclContext()->isFileContext();
1048
1049
0
  case NestedNameSpecifier::Identifier:
1050
0
  case NestedNameSpecifier::TypeSpec:
1051
0
  case NestedNameSpecifier::TypeSpecWithTemplate:
1052
0
  case NestedNameSpecifier::Super:
1053
    // These are never namespace scopes.
1054
0
    return true;
1055
0
  }
1056
1057
0
  llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
1058
0
}
1059
1060
/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
1061
/// scope or nested-name-specifier) is parsed, part of a declarator-id.
1062
/// After this method is called, according to [C++ 3.4.3p3], names should be
1063
/// looked up in the declarator-id's scope, until the declarator is parsed and
1064
/// ActOnCXXExitDeclaratorScope is called.
1065
/// The 'SS' should be a non-empty valid CXXScopeSpec.
1066
0
bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
1067
0
  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1068
1069
0
  if (SS.isInvalid()) return true;
1070
1071
0
  DeclContext *DC = computeDeclContext(SS, true);
1072
0
  if (!DC) return true;
1073
1074
  // Before we enter a declarator's context, we need to make sure that
1075
  // it is a complete declaration context.
1076
0
  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
1077
0
    return true;
1078
1079
0
  EnterDeclaratorContext(S, DC);
1080
1081
  // Rebuild the nested name specifier for the new scope.
1082
0
  if (DC->isDependentContext())
1083
0
    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
1084
1085
0
  return false;
1086
0
}
1087
1088
/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
1089
/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
1090
/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
1091
/// Used to indicate that names should revert to being looked up in the
1092
/// defining scope.
1093
0
void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
1094
0
  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
1095
0
  if (SS.isInvalid())
1096
0
    return;
1097
0
  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
1098
0
         "exiting declarator scope we never really entered");
1099
0
  ExitDeclaratorContext(S);
1100
0
}