Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/Sema/SemaChecking.cpp
Line
Count
Source (jump to first uncovered line)
1
//===- SemaChecking.cpp - Extra Semantic Checking -------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
//  This file implements extra semantic analysis beyond what is enforced
10
//  by the C type system.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "clang/AST/APValue.h"
15
#include "clang/AST/ASTContext.h"
16
#include "clang/AST/Attr.h"
17
#include "clang/AST/AttrIterator.h"
18
#include "clang/AST/CharUnits.h"
19
#include "clang/AST/Decl.h"
20
#include "clang/AST/DeclBase.h"
21
#include "clang/AST/DeclCXX.h"
22
#include "clang/AST/DeclObjC.h"
23
#include "clang/AST/DeclarationName.h"
24
#include "clang/AST/EvaluatedExprVisitor.h"
25
#include "clang/AST/Expr.h"
26
#include "clang/AST/ExprCXX.h"
27
#include "clang/AST/ExprObjC.h"
28
#include "clang/AST/ExprOpenMP.h"
29
#include "clang/AST/FormatString.h"
30
#include "clang/AST/NSAPI.h"
31
#include "clang/AST/NonTrivialTypeVisitor.h"
32
#include "clang/AST/OperationKinds.h"
33
#include "clang/AST/RecordLayout.h"
34
#include "clang/AST/Stmt.h"
35
#include "clang/AST/TemplateBase.h"
36
#include "clang/AST/Type.h"
37
#include "clang/AST/TypeLoc.h"
38
#include "clang/AST/UnresolvedSet.h"
39
#include "clang/Basic/AddressSpaces.h"
40
#include "clang/Basic/CharInfo.h"
41
#include "clang/Basic/Diagnostic.h"
42
#include "clang/Basic/IdentifierTable.h"
43
#include "clang/Basic/LLVM.h"
44
#include "clang/Basic/LangOptions.h"
45
#include "clang/Basic/OpenCLOptions.h"
46
#include "clang/Basic/OperatorKinds.h"
47
#include "clang/Basic/PartialDiagnostic.h"
48
#include "clang/Basic/SourceLocation.h"
49
#include "clang/Basic/SourceManager.h"
50
#include "clang/Basic/Specifiers.h"
51
#include "clang/Basic/SyncScope.h"
52
#include "clang/Basic/TargetBuiltins.h"
53
#include "clang/Basic/TargetCXXABI.h"
54
#include "clang/Basic/TargetInfo.h"
55
#include "clang/Basic/TypeTraits.h"
56
#include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering.
57
#include "clang/Sema/Initialization.h"
58
#include "clang/Sema/Lookup.h"
59
#include "clang/Sema/Ownership.h"
60
#include "clang/Sema/Scope.h"
61
#include "clang/Sema/ScopeInfo.h"
62
#include "clang/Sema/Sema.h"
63
#include "clang/Sema/SemaInternal.h"
64
#include "llvm/ADT/APFloat.h"
65
#include "llvm/ADT/APInt.h"
66
#include "llvm/ADT/APSInt.h"
67
#include "llvm/ADT/ArrayRef.h"
68
#include "llvm/ADT/DenseMap.h"
69
#include "llvm/ADT/FoldingSet.h"
70
#include "llvm/ADT/STLExtras.h"
71
#include "llvm/ADT/SmallBitVector.h"
72
#include "llvm/ADT/SmallPtrSet.h"
73
#include "llvm/ADT/SmallString.h"
74
#include "llvm/ADT/SmallVector.h"
75
#include "llvm/ADT/StringExtras.h"
76
#include "llvm/ADT/StringRef.h"
77
#include "llvm/ADT/StringSet.h"
78
#include "llvm/ADT/StringSwitch.h"
79
#include "llvm/Support/AtomicOrdering.h"
80
#include "llvm/Support/Casting.h"
81
#include "llvm/Support/Compiler.h"
82
#include "llvm/Support/ConvertUTF.h"
83
#include "llvm/Support/ErrorHandling.h"
84
#include "llvm/Support/Format.h"
85
#include "llvm/Support/Locale.h"
86
#include "llvm/Support/MathExtras.h"
87
#include "llvm/Support/SaveAndRestore.h"
88
#include "llvm/Support/raw_ostream.h"
89
#include "llvm/TargetParser/RISCVTargetParser.h"
90
#include "llvm/TargetParser/Triple.h"
91
#include <algorithm>
92
#include <bitset>
93
#include <cassert>
94
#include <cctype>
95
#include <cstddef>
96
#include <cstdint>
97
#include <functional>
98
#include <limits>
99
#include <optional>
100
#include <string>
101
#include <tuple>
102
#include <utility>
103
104
using namespace clang;
105
using namespace sema;
106
107
SourceLocation Sema::getLocationOfStringLiteralByte(const StringLiteral *SL,
108
0
                                                    unsigned ByteNo) const {
109
0
  return SL->getLocationOfByte(ByteNo, getSourceManager(), LangOpts,
110
0
                               Context.getTargetInfo());
111
0
}
112
113
static constexpr unsigned short combineFAPK(Sema::FormatArgumentPassingKind A,
114
0
                                            Sema::FormatArgumentPassingKind B) {
115
0
  return (A << 8) | B;
116
0
}
117
118
/// Checks that a call expression's argument count is at least the desired
119
/// number. This is useful when doing custom type-checking on a variadic
120
/// function. Returns true on error.
121
static bool checkArgCountAtLeast(Sema &S, CallExpr *Call,
122
0
                                 unsigned MinArgCount) {
123
0
  unsigned ArgCount = Call->getNumArgs();
124
0
  if (ArgCount >= MinArgCount)
125
0
    return false;
126
127
0
  return S.Diag(Call->getEndLoc(), diag::err_typecheck_call_too_few_args)
128
0
         << 0 /*function call*/ << MinArgCount << ArgCount
129
0
         << /*is non object*/ 0 << Call->getSourceRange();
130
0
}
131
132
/// Checks that a call expression's argument count is at most the desired
133
/// number. This is useful when doing custom type-checking on a variadic
134
/// function. Returns true on error.
135
0
static bool checkArgCountAtMost(Sema &S, CallExpr *Call, unsigned MaxArgCount) {
136
0
  unsigned ArgCount = Call->getNumArgs();
137
0
  if (ArgCount <= MaxArgCount)
138
0
    return false;
139
0
  return S.Diag(Call->getEndLoc(),
140
0
                diag::err_typecheck_call_too_many_args_at_most)
141
0
         << 0 /*function call*/ << MaxArgCount << ArgCount
142
0
         << /*is non object*/ 0 << Call->getSourceRange();
143
0
}
144
145
/// Checks that a call expression's argument count is in the desired range. This
146
/// is useful when doing custom type-checking on a variadic function. Returns
147
/// true on error.
148
static bool checkArgCountRange(Sema &S, CallExpr *Call, unsigned MinArgCount,
149
0
                               unsigned MaxArgCount) {
150
0
  return checkArgCountAtLeast(S, Call, MinArgCount) ||
151
0
         checkArgCountAtMost(S, Call, MaxArgCount);
152
0
}
153
154
/// Checks that a call expression's argument count is the desired number.
155
/// This is useful when doing custom type-checking.  Returns true on error.
156
0
static bool checkArgCount(Sema &S, CallExpr *Call, unsigned DesiredArgCount) {
157
0
  unsigned ArgCount = Call->getNumArgs();
158
0
  if (ArgCount == DesiredArgCount)
159
0
    return false;
160
161
0
  if (checkArgCountAtLeast(S, Call, DesiredArgCount))
162
0
    return true;
163
0
  assert(ArgCount > DesiredArgCount && "should have diagnosed this");
164
165
  // Highlight all the excess arguments.
166
0
  SourceRange Range(Call->getArg(DesiredArgCount)->getBeginLoc(),
167
0
                    Call->getArg(ArgCount - 1)->getEndLoc());
168
169
0
  return S.Diag(Range.getBegin(), diag::err_typecheck_call_too_many_args)
170
0
         << 0 /*function call*/ << DesiredArgCount << ArgCount
171
0
         << /*is non object*/ 0 << Call->getArg(1)->getSourceRange();
172
0
}
173
174
0
static bool convertArgumentToType(Sema &S, Expr *&Value, QualType Ty) {
175
0
  if (Value->isTypeDependent())
176
0
    return false;
177
178
0
  InitializedEntity Entity =
179
0
      InitializedEntity::InitializeParameter(S.Context, Ty, false);
180
0
  ExprResult Result =
181
0
      S.PerformCopyInitialization(Entity, SourceLocation(), Value);
182
0
  if (Result.isInvalid())
183
0
    return true;
184
0
  Value = Result.get();
185
0
  return false;
186
0
}
187
188
/// Check that the first argument to __builtin_annotation is an integer
189
/// and the second argument is a non-wide string literal.
190
0
static bool SemaBuiltinAnnotation(Sema &S, CallExpr *TheCall) {
191
0
  if (checkArgCount(S, TheCall, 2))
192
0
    return true;
193
194
  // First argument should be an integer.
195
0
  Expr *ValArg = TheCall->getArg(0);
196
0
  QualType Ty = ValArg->getType();
197
0
  if (!Ty->isIntegerType()) {
198
0
    S.Diag(ValArg->getBeginLoc(), diag::err_builtin_annotation_first_arg)
199
0
        << ValArg->getSourceRange();
200
0
    return true;
201
0
  }
202
203
  // Second argument should be a constant string.
204
0
  Expr *StrArg = TheCall->getArg(1)->IgnoreParenCasts();
205
0
  StringLiteral *Literal = dyn_cast<StringLiteral>(StrArg);
206
0
  if (!Literal || !Literal->isOrdinary()) {
207
0
    S.Diag(StrArg->getBeginLoc(), diag::err_builtin_annotation_second_arg)
208
0
        << StrArg->getSourceRange();
209
0
    return true;
210
0
  }
211
212
0
  TheCall->setType(Ty);
213
0
  return false;
214
0
}
215
216
0
static bool SemaBuiltinMSVCAnnotation(Sema &S, CallExpr *TheCall) {
217
  // We need at least one argument.
218
0
  if (TheCall->getNumArgs() < 1) {
219
0
    S.Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
220
0
        << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0
221
0
        << TheCall->getCallee()->getSourceRange();
222
0
    return true;
223
0
  }
224
225
  // All arguments should be wide string literals.
226
0
  for (Expr *Arg : TheCall->arguments()) {
227
0
    auto *Literal = dyn_cast<StringLiteral>(Arg->IgnoreParenCasts());
228
0
    if (!Literal || !Literal->isWide()) {
229
0
      S.Diag(Arg->getBeginLoc(), diag::err_msvc_annotation_wide_str)
230
0
          << Arg->getSourceRange();
231
0
      return true;
232
0
    }
233
0
  }
234
235
0
  return false;
236
0
}
237
238
/// Check that the argument to __builtin_addressof is a glvalue, and set the
239
/// result type to the corresponding pointer type.
240
0
static bool SemaBuiltinAddressof(Sema &S, CallExpr *TheCall) {
241
0
  if (checkArgCount(S, TheCall, 1))
242
0
    return true;
243
244
0
  ExprResult Arg(TheCall->getArg(0));
245
0
  QualType ResultType = S.CheckAddressOfOperand(Arg, TheCall->getBeginLoc());
246
0
  if (ResultType.isNull())
247
0
    return true;
248
249
0
  TheCall->setArg(0, Arg.get());
250
0
  TheCall->setType(ResultType);
251
0
  return false;
252
0
}
253
254
/// Check that the argument to __builtin_function_start is a function.
255
0
static bool SemaBuiltinFunctionStart(Sema &S, CallExpr *TheCall) {
256
0
  if (checkArgCount(S, TheCall, 1))
257
0
    return true;
258
259
0
  ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
260
0
  if (Arg.isInvalid())
261
0
    return true;
262
263
0
  TheCall->setArg(0, Arg.get());
264
0
  const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(
265
0
      Arg.get()->getAsBuiltinConstantDeclRef(S.getASTContext()));
266
267
0
  if (!FD) {
268
0
    S.Diag(TheCall->getBeginLoc(), diag::err_function_start_invalid_type)
269
0
        << TheCall->getSourceRange();
270
0
    return true;
271
0
  }
272
273
0
  return !S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true,
274
0
                                              TheCall->getBeginLoc());
275
0
}
276
277
/// Check the number of arguments and set the result type to
278
/// the argument type.
279
0
static bool SemaBuiltinPreserveAI(Sema &S, CallExpr *TheCall) {
280
0
  if (checkArgCount(S, TheCall, 1))
281
0
    return true;
282
283
0
  TheCall->setType(TheCall->getArg(0)->getType());
284
0
  return false;
285
0
}
286
287
/// Check that the value argument for __builtin_is_aligned(value, alignment) and
288
/// __builtin_aligned_{up,down}(value, alignment) is an integer or a pointer
289
/// type (but not a function pointer) and that the alignment is a power-of-two.
290
0
static bool SemaBuiltinAlignment(Sema &S, CallExpr *TheCall, unsigned ID) {
291
0
  if (checkArgCount(S, TheCall, 2))
292
0
    return true;
293
294
0
  clang::Expr *Source = TheCall->getArg(0);
295
0
  bool IsBooleanAlignBuiltin = ID == Builtin::BI__builtin_is_aligned;
296
297
0
  auto IsValidIntegerType = [](QualType Ty) {
298
0
    return Ty->isIntegerType() && !Ty->isEnumeralType() && !Ty->isBooleanType();
299
0
  };
300
0
  QualType SrcTy = Source->getType();
301
  // We should also be able to use it with arrays (but not functions!).
302
0
  if (SrcTy->canDecayToPointerType() && SrcTy->isArrayType()) {
303
0
    SrcTy = S.Context.getDecayedType(SrcTy);
304
0
  }
305
0
  if ((!SrcTy->isPointerType() && !IsValidIntegerType(SrcTy)) ||
306
0
      SrcTy->isFunctionPointerType()) {
307
    // FIXME: this is not quite the right error message since we don't allow
308
    // floating point types, or member pointers.
309
0
    S.Diag(Source->getExprLoc(), diag::err_typecheck_expect_scalar_operand)
310
0
        << SrcTy;
311
0
    return true;
312
0
  }
313
314
0
  clang::Expr *AlignOp = TheCall->getArg(1);
315
0
  if (!IsValidIntegerType(AlignOp->getType())) {
316
0
    S.Diag(AlignOp->getExprLoc(), diag::err_typecheck_expect_int)
317
0
        << AlignOp->getType();
318
0
    return true;
319
0
  }
320
0
  Expr::EvalResult AlignResult;
321
0
  unsigned MaxAlignmentBits = S.Context.getIntWidth(SrcTy) - 1;
322
  // We can't check validity of alignment if it is value dependent.
323
0
  if (!AlignOp->isValueDependent() &&
324
0
      AlignOp->EvaluateAsInt(AlignResult, S.Context,
325
0
                             Expr::SE_AllowSideEffects)) {
326
0
    llvm::APSInt AlignValue = AlignResult.Val.getInt();
327
0
    llvm::APSInt MaxValue(
328
0
        llvm::APInt::getOneBitSet(MaxAlignmentBits + 1, MaxAlignmentBits));
329
0
    if (AlignValue < 1) {
330
0
      S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_small) << 1;
331
0
      return true;
332
0
    }
333
0
    if (llvm::APSInt::compareValues(AlignValue, MaxValue) > 0) {
334
0
      S.Diag(AlignOp->getExprLoc(), diag::err_alignment_too_big)
335
0
          << toString(MaxValue, 10);
336
0
      return true;
337
0
    }
338
0
    if (!AlignValue.isPowerOf2()) {
339
0
      S.Diag(AlignOp->getExprLoc(), diag::err_alignment_not_power_of_two);
340
0
      return true;
341
0
    }
342
0
    if (AlignValue == 1) {
343
0
      S.Diag(AlignOp->getExprLoc(), diag::warn_alignment_builtin_useless)
344
0
          << IsBooleanAlignBuiltin;
345
0
    }
346
0
  }
347
348
0
  ExprResult SrcArg = S.PerformCopyInitialization(
349
0
      InitializedEntity::InitializeParameter(S.Context, SrcTy, false),
350
0
      SourceLocation(), Source);
351
0
  if (SrcArg.isInvalid())
352
0
    return true;
353
0
  TheCall->setArg(0, SrcArg.get());
354
0
  ExprResult AlignArg =
355
0
      S.PerformCopyInitialization(InitializedEntity::InitializeParameter(
356
0
                                      S.Context, AlignOp->getType(), false),
357
0
                                  SourceLocation(), AlignOp);
358
0
  if (AlignArg.isInvalid())
359
0
    return true;
360
0
  TheCall->setArg(1, AlignArg.get());
361
  // For align_up/align_down, the return type is the same as the (potentially
362
  // decayed) argument type including qualifiers. For is_aligned(), the result
363
  // is always bool.
364
0
  TheCall->setType(IsBooleanAlignBuiltin ? S.Context.BoolTy : SrcTy);
365
0
  return false;
366
0
}
367
368
static bool SemaBuiltinOverflow(Sema &S, CallExpr *TheCall,
369
0
                                unsigned BuiltinID) {
370
0
  if (checkArgCount(S, TheCall, 3))
371
0
    return true;
372
373
0
  std::pair<unsigned, const char *> Builtins[] = {
374
0
    { Builtin::BI__builtin_add_overflow, "ckd_add" },
375
0
    { Builtin::BI__builtin_sub_overflow, "ckd_sub" },
376
0
    { Builtin::BI__builtin_mul_overflow, "ckd_mul" },
377
0
  };
378
379
0
  bool CkdOperation = llvm::any_of(Builtins, [&](const std::pair<unsigned,
380
0
    const char *> &P) {
381
0
    return BuiltinID == P.first && TheCall->getExprLoc().isMacroID() &&
382
0
         Lexer::getImmediateMacroName(TheCall->getExprLoc(),
383
0
         S.getSourceManager(), S.getLangOpts()) == P.second;
384
0
  });
385
386
0
  auto ValidCkdIntType = [](QualType QT) {
387
    // A valid checked integer type is an integer type other than a plain char,
388
    // bool, a bit-precise type, or an enumeration type.
389
0
    if (const auto *BT = QT.getCanonicalType()->getAs<BuiltinType>())
390
0
      return (BT->getKind() >= BuiltinType::Short &&
391
0
           BT->getKind() <= BuiltinType::Int128) || (
392
0
           BT->getKind() >= BuiltinType::UShort &&
393
0
           BT->getKind() <= BuiltinType::UInt128) ||
394
0
           BT->getKind() == BuiltinType::UChar ||
395
0
           BT->getKind() == BuiltinType::SChar;
396
0
    return false;
397
0
  };
398
399
  // First two arguments should be integers.
400
0
  for (unsigned I = 0; I < 2; ++I) {
401
0
    ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(I));
402
0
    if (Arg.isInvalid()) return true;
403
0
    TheCall->setArg(I, Arg.get());
404
405
0
    QualType Ty = Arg.get()->getType();
406
0
    bool IsValid = CkdOperation ? ValidCkdIntType(Ty) : Ty->isIntegerType();
407
0
    if (!IsValid) {
408
0
      S.Diag(Arg.get()->getBeginLoc(), diag::err_overflow_builtin_must_be_int)
409
0
          << CkdOperation << Ty << Arg.get()->getSourceRange();
410
0
      return true;
411
0
    }
412
0
  }
413
414
  // Third argument should be a pointer to a non-const integer.
415
  // IRGen correctly handles volatile, restrict, and address spaces, and
416
  // the other qualifiers aren't possible.
417
0
  {
418
0
    ExprResult Arg = S.DefaultFunctionArrayLvalueConversion(TheCall->getArg(2));
419
0
    if (Arg.isInvalid()) return true;
420
0
    TheCall->setArg(2, Arg.get());
421
422
0
    QualType Ty = Arg.get()->getType();
423
0
    const auto *PtrTy = Ty->getAs<PointerType>();
424
0
    if (!PtrTy ||
425
0
        !PtrTy->getPointeeType()->isIntegerType() ||
426
0
        (!ValidCkdIntType(PtrTy->getPointeeType()) && CkdOperation) ||
427
0
        PtrTy->getPointeeType().isConstQualified()) {
428
0
      S.Diag(Arg.get()->getBeginLoc(),
429
0
             diag::err_overflow_builtin_must_be_ptr_int)
430
0
        << CkdOperation << Ty << Arg.get()->getSourceRange();
431
0
      return true;
432
0
    }
433
0
  }
434
435
  // Disallow signed bit-precise integer args larger than 128 bits to mul
436
  // function until we improve backend support.
437
0
  if (BuiltinID == Builtin::BI__builtin_mul_overflow) {
438
0
    for (unsigned I = 0; I < 3; ++I) {
439
0
      const auto Arg = TheCall->getArg(I);
440
      // Third argument will be a pointer.
441
0
      auto Ty = I < 2 ? Arg->getType() : Arg->getType()->getPointeeType();
442
0
      if (Ty->isBitIntType() && Ty->isSignedIntegerType() &&
443
0
          S.getASTContext().getIntWidth(Ty) > 128)
444
0
        return S.Diag(Arg->getBeginLoc(),
445
0
                      diag::err_overflow_builtin_bit_int_max_size)
446
0
               << 128;
447
0
    }
448
0
  }
449
450
0
  return false;
451
0
}
452
453
namespace {
454
struct BuiltinDumpStructGenerator {
455
  Sema &S;
456
  CallExpr *TheCall;
457
  SourceLocation Loc = TheCall->getBeginLoc();
458
  SmallVector<Expr *, 32> Actions;
459
  DiagnosticErrorTrap ErrorTracker;
460
  PrintingPolicy Policy;
461
462
  BuiltinDumpStructGenerator(Sema &S, CallExpr *TheCall)
463
      : S(S), TheCall(TheCall), ErrorTracker(S.getDiagnostics()),
464
0
        Policy(S.Context.getPrintingPolicy()) {
465
0
    Policy.AnonymousTagLocations = false;
466
0
  }
467
468
0
  Expr *makeOpaqueValueExpr(Expr *Inner) {
469
0
    auto *OVE = new (S.Context)
470
0
        OpaqueValueExpr(Loc, Inner->getType(), Inner->getValueKind(),
471
0
                        Inner->getObjectKind(), Inner);
472
0
    Actions.push_back(OVE);
473
0
    return OVE;
474
0
  }
475
476
0
  Expr *getStringLiteral(llvm::StringRef Str) {
477
0
    Expr *Lit = S.Context.getPredefinedStringLiteralFromCache(Str);
478
    // Wrap the literal in parentheses to attach a source location.
479
0
    return new (S.Context) ParenExpr(Loc, Loc, Lit);
480
0
  }
481
482
  bool callPrintFunction(llvm::StringRef Format,
483
0
                         llvm::ArrayRef<Expr *> Exprs = {}) {
484
0
    SmallVector<Expr *, 8> Args;
485
0
    assert(TheCall->getNumArgs() >= 2);
486
0
    Args.reserve((TheCall->getNumArgs() - 2) + /*Format*/ 1 + Exprs.size());
487
0
    Args.assign(TheCall->arg_begin() + 2, TheCall->arg_end());
488
0
    Args.push_back(getStringLiteral(Format));
489
0
    Args.insert(Args.end(), Exprs.begin(), Exprs.end());
490
491
    // Register a note to explain why we're performing the call.
492
0
    Sema::CodeSynthesisContext Ctx;
493
0
    Ctx.Kind = Sema::CodeSynthesisContext::BuildingBuiltinDumpStructCall;
494
0
    Ctx.PointOfInstantiation = Loc;
495
0
    Ctx.CallArgs = Args.data();
496
0
    Ctx.NumCallArgs = Args.size();
497
0
    S.pushCodeSynthesisContext(Ctx);
498
499
0
    ExprResult RealCall =
500
0
        S.BuildCallExpr(/*Scope=*/nullptr, TheCall->getArg(1),
501
0
                        TheCall->getBeginLoc(), Args, TheCall->getRParenLoc());
502
503
0
    S.popCodeSynthesisContext();
504
0
    if (!RealCall.isInvalid())
505
0
      Actions.push_back(RealCall.get());
506
    // Bail out if we've hit any errors, even if we managed to build the
507
    // call. We don't want to produce more than one error.
508
0
    return RealCall.isInvalid() || ErrorTracker.hasErrorOccurred();
509
0
  }
510
511
0
  Expr *getIndentString(unsigned Depth) {
512
0
    if (!Depth)
513
0
      return nullptr;
514
515
0
    llvm::SmallString<32> Indent;
516
0
    Indent.resize(Depth * Policy.Indentation, ' ');
517
0
    return getStringLiteral(Indent);
518
0
  }
519
520
0
  Expr *getTypeString(QualType T) {
521
0
    return getStringLiteral(T.getAsString(Policy));
522
0
  }
523
524
0
  bool appendFormatSpecifier(QualType T, llvm::SmallVectorImpl<char> &Str) {
525
0
    llvm::raw_svector_ostream OS(Str);
526
527
    // Format 'bool', 'char', 'signed char', 'unsigned char' as numbers, rather
528
    // than trying to print a single character.
529
0
    if (auto *BT = T->getAs<BuiltinType>()) {
530
0
      switch (BT->getKind()) {
531
0
      case BuiltinType::Bool:
532
0
        OS << "%d";
533
0
        return true;
534
0
      case BuiltinType::Char_U:
535
0
      case BuiltinType::UChar:
536
0
        OS << "%hhu";
537
0
        return true;
538
0
      case BuiltinType::Char_S:
539
0
      case BuiltinType::SChar:
540
0
        OS << "%hhd";
541
0
        return true;
542
0
      default:
543
0
        break;
544
0
      }
545
0
    }
546
547
0
    analyze_printf::PrintfSpecifier Specifier;
548
0
    if (Specifier.fixType(T, S.getLangOpts(), S.Context, /*IsObjCLiteral=*/false)) {
549
      // We were able to guess how to format this.
550
0
      if (Specifier.getConversionSpecifier().getKind() ==
551
0
          analyze_printf::PrintfConversionSpecifier::sArg) {
552
        // Wrap double-quotes around a '%s' specifier and limit its maximum
553
        // length. Ideally we'd also somehow escape special characters in the
554
        // contents but printf doesn't support that.
555
        // FIXME: '%s' formatting is not safe in general.
556
0
        OS << '"';
557
0
        Specifier.setPrecision(analyze_printf::OptionalAmount(32u));
558
0
        Specifier.toString(OS);
559
0
        OS << '"';
560
        // FIXME: It would be nice to include a '...' if the string doesn't fit
561
        // in the length limit.
562
0
      } else {
563
0
        Specifier.toString(OS);
564
0
      }
565
0
      return true;
566
0
    }
567
568
0
    if (T->isPointerType()) {
569
      // Format all pointers with '%p'.
570
0
      OS << "%p";
571
0
      return true;
572
0
    }
573
574
0
    return false;
575
0
  }
576
577
0
  bool dumpUnnamedRecord(const RecordDecl *RD, Expr *E, unsigned Depth) {
578
0
    Expr *IndentLit = getIndentString(Depth);
579
0
    Expr *TypeLit = getTypeString(S.Context.getRecordType(RD));
580
0
    if (IndentLit ? callPrintFunction("%s%s", {IndentLit, TypeLit})
581
0
                  : callPrintFunction("%s", {TypeLit}))
582
0
      return true;
583
584
0
    return dumpRecordValue(RD, E, IndentLit, Depth);
585
0
  }
586
587
  // Dump a record value. E should be a pointer or lvalue referring to an RD.
588
  bool dumpRecordValue(const RecordDecl *RD, Expr *E, Expr *RecordIndent,
589
0
                       unsigned Depth) {
590
    // FIXME: Decide what to do if RD is a union. At least we should probably
591
    // turn off printing `const char*` members with `%s`, because that is very
592
    // likely to crash if that's not the active member. Whatever we decide, we
593
    // should document it.
594
595
    // Build an OpaqueValueExpr so we can refer to E more than once without
596
    // triggering re-evaluation.
597
0
    Expr *RecordArg = makeOpaqueValueExpr(E);
598
0
    bool RecordArgIsPtr = RecordArg->getType()->isPointerType();
599
600
0
    if (callPrintFunction(" {\n"))
601
0
      return true;
602
603
    // Dump each base class, regardless of whether they're aggregates.
604
0
    if (const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
605
0
      for (const auto &Base : CXXRD->bases()) {
606
0
        QualType BaseType =
607
0
            RecordArgIsPtr ? S.Context.getPointerType(Base.getType())
608
0
                           : S.Context.getLValueReferenceType(Base.getType());
609
0
        ExprResult BasePtr = S.BuildCStyleCastExpr(
610
0
            Loc, S.Context.getTrivialTypeSourceInfo(BaseType, Loc), Loc,
611
0
            RecordArg);
612
0
        if (BasePtr.isInvalid() ||
613
0
            dumpUnnamedRecord(Base.getType()->getAsRecordDecl(), BasePtr.get(),
614
0
                              Depth + 1))
615
0
          return true;
616
0
      }
617
0
    }
618
619
0
    Expr *FieldIndentArg = getIndentString(Depth + 1);
620
621
    // Dump each field.
622
0
    for (auto *D : RD->decls()) {
623
0
      auto *IFD = dyn_cast<IndirectFieldDecl>(D);
624
0
      auto *FD = IFD ? IFD->getAnonField() : dyn_cast<FieldDecl>(D);
625
0
      if (!FD || FD->isUnnamedBitfield() || FD->isAnonymousStructOrUnion())
626
0
        continue;
627
628
0
      llvm::SmallString<20> Format = llvm::StringRef("%s%s %s ");
629
0
      llvm::SmallVector<Expr *, 5> Args = {FieldIndentArg,
630
0
                                           getTypeString(FD->getType()),
631
0
                                           getStringLiteral(FD->getName())};
632
633
0
      if (FD->isBitField()) {
634
0
        Format += ": %zu ";
635
0
        QualType SizeT = S.Context.getSizeType();
636
0
        llvm::APInt BitWidth(S.Context.getIntWidth(SizeT),
637
0
                             FD->getBitWidthValue(S.Context));
638
0
        Args.push_back(IntegerLiteral::Create(S.Context, BitWidth, SizeT, Loc));
639
0
      }
640
641
0
      Format += "=";
642
643
0
      ExprResult Field =
644
0
          IFD ? S.BuildAnonymousStructUnionMemberReference(
645
0
                    CXXScopeSpec(), Loc, IFD,
646
0
                    DeclAccessPair::make(IFD, AS_public), RecordArg, Loc)
647
0
              : S.BuildFieldReferenceExpr(
648
0
                    RecordArg, RecordArgIsPtr, Loc, CXXScopeSpec(), FD,
649
0
                    DeclAccessPair::make(FD, AS_public),
650
0
                    DeclarationNameInfo(FD->getDeclName(), Loc));
651
0
      if (Field.isInvalid())
652
0
        return true;
653
654
0
      auto *InnerRD = FD->getType()->getAsRecordDecl();
655
0
      auto *InnerCXXRD = dyn_cast_or_null<CXXRecordDecl>(InnerRD);
656
0
      if (InnerRD && (!InnerCXXRD || InnerCXXRD->isAggregate())) {
657
        // Recursively print the values of members of aggregate record type.
658
0
        if (callPrintFunction(Format, Args) ||
659
0
            dumpRecordValue(InnerRD, Field.get(), FieldIndentArg, Depth + 1))
660
0
          return true;
661
0
      } else {
662
0
        Format += " ";
663
0
        if (appendFormatSpecifier(FD->getType(), Format)) {
664
          // We know how to print this field.
665
0
          Args.push_back(Field.get());
666
0
        } else {
667
          // We don't know how to print this field. Print out its address
668
          // with a format specifier that a smart tool will be able to
669
          // recognize and treat specially.
670
0
          Format += "*%p";
671
0
          ExprResult FieldAddr =
672
0
              S.BuildUnaryOp(nullptr, Loc, UO_AddrOf, Field.get());
673
0
          if (FieldAddr.isInvalid())
674
0
            return true;
675
0
          Args.push_back(FieldAddr.get());
676
0
        }
677
0
        Format += "\n";
678
0
        if (callPrintFunction(Format, Args))
679
0
          return true;
680
0
      }
681
0
    }
682
683
0
    return RecordIndent ? callPrintFunction("%s}\n", RecordIndent)
684
0
                        : callPrintFunction("}\n");
685
0
  }
686
687
0
  Expr *buildWrapper() {
688
0
    auto *Wrapper = PseudoObjectExpr::Create(S.Context, TheCall, Actions,
689
0
                                             PseudoObjectExpr::NoResult);
690
0
    TheCall->setType(Wrapper->getType());
691
0
    TheCall->setValueKind(Wrapper->getValueKind());
692
0
    return Wrapper;
693
0
  }
694
};
695
} // namespace
696
697
0
static ExprResult SemaBuiltinDumpStruct(Sema &S, CallExpr *TheCall) {
698
0
  if (checkArgCountAtLeast(S, TheCall, 2))
699
0
    return ExprError();
700
701
0
  ExprResult PtrArgResult = S.DefaultLvalueConversion(TheCall->getArg(0));
702
0
  if (PtrArgResult.isInvalid())
703
0
    return ExprError();
704
0
  TheCall->setArg(0, PtrArgResult.get());
705
706
  // First argument should be a pointer to a struct.
707
0
  QualType PtrArgType = PtrArgResult.get()->getType();
708
0
  if (!PtrArgType->isPointerType() ||
709
0
      !PtrArgType->getPointeeType()->isRecordType()) {
710
0
    S.Diag(PtrArgResult.get()->getBeginLoc(),
711
0
           diag::err_expected_struct_pointer_argument)
712
0
        << 1 << TheCall->getDirectCallee() << PtrArgType;
713
0
    return ExprError();
714
0
  }
715
0
  QualType Pointee = PtrArgType->getPointeeType();
716
0
  const RecordDecl *RD = Pointee->getAsRecordDecl();
717
  // Try to instantiate the class template as appropriate; otherwise, access to
718
  // its data() may lead to a crash.
719
0
  if (S.RequireCompleteType(PtrArgResult.get()->getBeginLoc(), Pointee,
720
0
                            diag::err_incomplete_type))
721
0
    return ExprError();
722
  // Second argument is a callable, but we can't fully validate it until we try
723
  // calling it.
724
0
  QualType FnArgType = TheCall->getArg(1)->getType();
725
0
  if (!FnArgType->isFunctionType() && !FnArgType->isFunctionPointerType() &&
726
0
      !FnArgType->isBlockPointerType() &&
727
0
      !(S.getLangOpts().CPlusPlus && FnArgType->isRecordType())) {
728
0
    auto *BT = FnArgType->getAs<BuiltinType>();
729
0
    switch (BT ? BT->getKind() : BuiltinType::Void) {
730
0
    case BuiltinType::Dependent:
731
0
    case BuiltinType::Overload:
732
0
    case BuiltinType::BoundMember:
733
0
    case BuiltinType::PseudoObject:
734
0
    case BuiltinType::UnknownAny:
735
0
    case BuiltinType::BuiltinFn:
736
      // This might be a callable.
737
0
      break;
738
739
0
    default:
740
0
      S.Diag(TheCall->getArg(1)->getBeginLoc(),
741
0
             diag::err_expected_callable_argument)
742
0
          << 2 << TheCall->getDirectCallee() << FnArgType;
743
0
      return ExprError();
744
0
    }
745
0
  }
746
747
0
  BuiltinDumpStructGenerator Generator(S, TheCall);
748
749
  // Wrap parentheses around the given pointer. This is not necessary for
750
  // correct code generation, but it means that when we pretty-print the call
751
  // arguments in our diagnostics we will produce '(&s)->n' instead of the
752
  // incorrect '&s->n'.
753
0
  Expr *PtrArg = PtrArgResult.get();
754
0
  PtrArg = new (S.Context)
755
0
      ParenExpr(PtrArg->getBeginLoc(),
756
0
                S.getLocForEndOfToken(PtrArg->getEndLoc()), PtrArg);
757
0
  if (Generator.dumpUnnamedRecord(RD, PtrArg, 0))
758
0
    return ExprError();
759
760
0
  return Generator.buildWrapper();
761
0
}
762
763
0
static bool SemaBuiltinCallWithStaticChain(Sema &S, CallExpr *BuiltinCall) {
764
0
  if (checkArgCount(S, BuiltinCall, 2))
765
0
    return true;
766
767
0
  SourceLocation BuiltinLoc = BuiltinCall->getBeginLoc();
768
0
  Expr *Builtin = BuiltinCall->getCallee()->IgnoreImpCasts();
769
0
  Expr *Call = BuiltinCall->getArg(0);
770
0
  Expr *Chain = BuiltinCall->getArg(1);
771
772
0
  if (Call->getStmtClass() != Stmt::CallExprClass) {
773
0
    S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_not_call)
774
0
        << Call->getSourceRange();
775
0
    return true;
776
0
  }
777
778
0
  auto CE = cast<CallExpr>(Call);
779
0
  if (CE->getCallee()->getType()->isBlockPointerType()) {
780
0
    S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_block_call)
781
0
        << Call->getSourceRange();
782
0
    return true;
783
0
  }
784
785
0
  const Decl *TargetDecl = CE->getCalleeDecl();
786
0
  if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(TargetDecl))
787
0
    if (FD->getBuiltinID()) {
788
0
      S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_builtin_call)
789
0
          << Call->getSourceRange();
790
0
      return true;
791
0
    }
792
793
0
  if (isa<CXXPseudoDestructorExpr>(CE->getCallee()->IgnoreParens())) {
794
0
    S.Diag(BuiltinLoc, diag::err_first_argument_to_cwsc_pdtor_call)
795
0
        << Call->getSourceRange();
796
0
    return true;
797
0
  }
798
799
0
  ExprResult ChainResult = S.UsualUnaryConversions(Chain);
800
0
  if (ChainResult.isInvalid())
801
0
    return true;
802
0
  if (!ChainResult.get()->getType()->isPointerType()) {
803
0
    S.Diag(BuiltinLoc, diag::err_second_argument_to_cwsc_not_pointer)
804
0
        << Chain->getSourceRange();
805
0
    return true;
806
0
  }
807
808
0
  QualType ReturnTy = CE->getCallReturnType(S.Context);
809
0
  QualType ArgTys[2] = { ReturnTy, ChainResult.get()->getType() };
810
0
  QualType BuiltinTy = S.Context.getFunctionType(
811
0
      ReturnTy, ArgTys, FunctionProtoType::ExtProtoInfo());
812
0
  QualType BuiltinPtrTy = S.Context.getPointerType(BuiltinTy);
813
814
0
  Builtin =
815
0
      S.ImpCastExprToType(Builtin, BuiltinPtrTy, CK_BuiltinFnToFnPtr).get();
816
817
0
  BuiltinCall->setType(CE->getType());
818
0
  BuiltinCall->setValueKind(CE->getValueKind());
819
0
  BuiltinCall->setObjectKind(CE->getObjectKind());
820
0
  BuiltinCall->setCallee(Builtin);
821
0
  BuiltinCall->setArg(1, ChainResult.get());
822
823
0
  return false;
824
0
}
825
826
namespace {
827
828
class ScanfDiagnosticFormatHandler
829
    : public analyze_format_string::FormatStringHandler {
830
  // Accepts the argument index (relative to the first destination index) of the
831
  // argument whose size we want.
832
  using ComputeSizeFunction =
833
      llvm::function_ref<std::optional<llvm::APSInt>(unsigned)>;
834
835
  // Accepts the argument index (relative to the first destination index), the
836
  // destination size, and the source size).
837
  using DiagnoseFunction =
838
      llvm::function_ref<void(unsigned, unsigned, unsigned)>;
839
840
  ComputeSizeFunction ComputeSizeArgument;
841
  DiagnoseFunction Diagnose;
842
843
public:
844
  ScanfDiagnosticFormatHandler(ComputeSizeFunction ComputeSizeArgument,
845
                               DiagnoseFunction Diagnose)
846
0
      : ComputeSizeArgument(ComputeSizeArgument), Diagnose(Diagnose) {}
847
848
  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
849
                            const char *StartSpecifier,
850
0
                            unsigned specifierLen) override {
851
0
    if (!FS.consumesDataArgument())
852
0
      return true;
853
854
0
    unsigned NulByte = 0;
855
0
    switch ((FS.getConversionSpecifier().getKind())) {
856
0
    default:
857
0
      return true;
858
0
    case analyze_format_string::ConversionSpecifier::sArg:
859
0
    case analyze_format_string::ConversionSpecifier::ScanListArg:
860
0
      NulByte = 1;
861
0
      break;
862
0
    case analyze_format_string::ConversionSpecifier::cArg:
863
0
      break;
864
0
    }
865
866
0
    analyze_format_string::OptionalAmount FW = FS.getFieldWidth();
867
0
    if (FW.getHowSpecified() !=
868
0
        analyze_format_string::OptionalAmount::HowSpecified::Constant)
869
0
      return true;
870
871
0
    unsigned SourceSize = FW.getConstantAmount() + NulByte;
872
873
0
    std::optional<llvm::APSInt> DestSizeAPS =
874
0
        ComputeSizeArgument(FS.getArgIndex());
875
0
    if (!DestSizeAPS)
876
0
      return true;
877
878
0
    unsigned DestSize = DestSizeAPS->getZExtValue();
879
880
0
    if (DestSize < SourceSize)
881
0
      Diagnose(FS.getArgIndex(), DestSize, SourceSize);
882
883
0
    return true;
884
0
  }
885
};
886
887
class EstimateSizeFormatHandler
888
    : public analyze_format_string::FormatStringHandler {
889
  size_t Size;
890
  /// Whether the format string contains Linux kernel's format specifier
891
  /// extension.
892
  bool IsKernelCompatible = true;
893
894
public:
895
  EstimateSizeFormatHandler(StringRef Format)
896
      : Size(std::min(Format.find(0), Format.size()) +
897
0
             1 /* null byte always written by sprintf */) {}
898
899
  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
900
                             const char *, unsigned SpecifierLen,
901
0
                             const TargetInfo &) override {
902
903
0
    const size_t FieldWidth = computeFieldWidth(FS);
904
0
    const size_t Precision = computePrecision(FS);
905
906
    // The actual format.
907
0
    switch (FS.getConversionSpecifier().getKind()) {
908
    // Just a char.
909
0
    case analyze_format_string::ConversionSpecifier::cArg:
910
0
    case analyze_format_string::ConversionSpecifier::CArg:
911
0
      Size += std::max(FieldWidth, (size_t)1);
912
0
      break;
913
    // Just an integer.
914
0
    case analyze_format_string::ConversionSpecifier::dArg:
915
0
    case analyze_format_string::ConversionSpecifier::DArg:
916
0
    case analyze_format_string::ConversionSpecifier::iArg:
917
0
    case analyze_format_string::ConversionSpecifier::oArg:
918
0
    case analyze_format_string::ConversionSpecifier::OArg:
919
0
    case analyze_format_string::ConversionSpecifier::uArg:
920
0
    case analyze_format_string::ConversionSpecifier::UArg:
921
0
    case analyze_format_string::ConversionSpecifier::xArg:
922
0
    case analyze_format_string::ConversionSpecifier::XArg:
923
0
      Size += std::max(FieldWidth, Precision);
924
0
      break;
925
926
    // %g style conversion switches between %f or %e style dynamically.
927
    // %g removes trailing zeros, and does not print decimal point if there are
928
    // no digits that follow it. Thus %g can print a single digit.
929
    // FIXME: If it is alternative form:
930
    // For g and G conversions, trailing zeros are not removed from the result.
931
0
    case analyze_format_string::ConversionSpecifier::gArg:
932
0
    case analyze_format_string::ConversionSpecifier::GArg:
933
0
      Size += 1;
934
0
      break;
935
936
    // Floating point number in the form '[+]ddd.ddd'.
937
0
    case analyze_format_string::ConversionSpecifier::fArg:
938
0
    case analyze_format_string::ConversionSpecifier::FArg:
939
0
      Size += std::max(FieldWidth, 1 /* integer part */ +
940
0
                                       (Precision ? 1 + Precision
941
0
                                                  : 0) /* period + decimal */);
942
0
      break;
943
944
    // Floating point number in the form '[-]d.ddde[+-]dd'.
945
0
    case analyze_format_string::ConversionSpecifier::eArg:
946
0
    case analyze_format_string::ConversionSpecifier::EArg:
947
0
      Size +=
948
0
          std::max(FieldWidth,
949
0
                   1 /* integer part */ +
950
0
                       (Precision ? 1 + Precision : 0) /* period + decimal */ +
951
0
                       1 /* e or E letter */ + 2 /* exponent */);
952
0
      break;
953
954
    // Floating point number in the form '[-]0xh.hhhhp±dd'.
955
0
    case analyze_format_string::ConversionSpecifier::aArg:
956
0
    case analyze_format_string::ConversionSpecifier::AArg:
957
0
      Size +=
958
0
          std::max(FieldWidth,
959
0
                   2 /* 0x */ + 1 /* integer part */ +
960
0
                       (Precision ? 1 + Precision : 0) /* period + decimal */ +
961
0
                       1 /* p or P letter */ + 1 /* + or - */ + 1 /* value */);
962
0
      break;
963
964
    // Just a string.
965
0
    case analyze_format_string::ConversionSpecifier::sArg:
966
0
    case analyze_format_string::ConversionSpecifier::SArg:
967
0
      Size += FieldWidth;
968
0
      break;
969
970
    // Just a pointer in the form '0xddd'.
971
0
    case analyze_format_string::ConversionSpecifier::pArg:
972
      // Linux kernel has its own extesion for `%p` specifier.
973
      // Kernel Document:
974
      // https://docs.kernel.org/core-api/printk-formats.html#pointer-types
975
0
      IsKernelCompatible = false;
976
0
      Size += std::max(FieldWidth, 2 /* leading 0x */ + Precision);
977
0
      break;
978
979
    // A plain percent.
980
0
    case analyze_format_string::ConversionSpecifier::PercentArg:
981
0
      Size += 1;
982
0
      break;
983
984
0
    default:
985
0
      break;
986
0
    }
987
988
0
    Size += FS.hasPlusPrefix() || FS.hasSpacePrefix();
989
990
0
    if (FS.hasAlternativeForm()) {
991
0
      switch (FS.getConversionSpecifier().getKind()) {
992
      // For o conversion, it increases the precision, if and only if necessary,
993
      // to force the first digit of the result to be a zero
994
      // (if the value and precision are both 0, a single 0 is printed)
995
0
      case analyze_format_string::ConversionSpecifier::oArg:
996
      // For b conversion, a nonzero result has 0b prefixed to it.
997
0
      case analyze_format_string::ConversionSpecifier::bArg:
998
      // For x (or X) conversion, a nonzero result has 0x (or 0X) prefixed to
999
      // it.
1000
0
      case analyze_format_string::ConversionSpecifier::xArg:
1001
0
      case analyze_format_string::ConversionSpecifier::XArg:
1002
        // Note: even when the prefix is added, if
1003
        // (prefix_width <= FieldWidth - formatted_length) holds,
1004
        // the prefix does not increase the format
1005
        // size. e.g.(("%#3x", 0xf) is "0xf")
1006
1007
        // If the result is zero, o, b, x, X adds nothing.
1008
0
        break;
1009
      // For a, A, e, E, f, F, g, and G conversions,
1010
      // the result of converting a floating-point number always contains a
1011
      // decimal-point
1012
0
      case analyze_format_string::ConversionSpecifier::aArg:
1013
0
      case analyze_format_string::ConversionSpecifier::AArg:
1014
0
      case analyze_format_string::ConversionSpecifier::eArg:
1015
0
      case analyze_format_string::ConversionSpecifier::EArg:
1016
0
      case analyze_format_string::ConversionSpecifier::fArg:
1017
0
      case analyze_format_string::ConversionSpecifier::FArg:
1018
0
      case analyze_format_string::ConversionSpecifier::gArg:
1019
0
      case analyze_format_string::ConversionSpecifier::GArg:
1020
0
        Size += (Precision ? 0 : 1);
1021
0
        break;
1022
      // For other conversions, the behavior is undefined.
1023
0
      default:
1024
0
        break;
1025
0
      }
1026
0
    }
1027
0
    assert(SpecifierLen <= Size && "no underflow");
1028
0
    Size -= SpecifierLen;
1029
0
    return true;
1030
0
  }
1031
1032
0
  size_t getSizeLowerBound() const { return Size; }
1033
0
  bool isKernelCompatible() const { return IsKernelCompatible; }
1034
1035
private:
1036
0
  static size_t computeFieldWidth(const analyze_printf::PrintfSpecifier &FS) {
1037
0
    const analyze_format_string::OptionalAmount &FW = FS.getFieldWidth();
1038
0
    size_t FieldWidth = 0;
1039
0
    if (FW.getHowSpecified() == analyze_format_string::OptionalAmount::Constant)
1040
0
      FieldWidth = FW.getConstantAmount();
1041
0
    return FieldWidth;
1042
0
  }
1043
1044
0
  static size_t computePrecision(const analyze_printf::PrintfSpecifier &FS) {
1045
0
    const analyze_format_string::OptionalAmount &FW = FS.getPrecision();
1046
0
    size_t Precision = 0;
1047
1048
    // See man 3 printf for default precision value based on the specifier.
1049
0
    switch (FW.getHowSpecified()) {
1050
0
    case analyze_format_string::OptionalAmount::NotSpecified:
1051
0
      switch (FS.getConversionSpecifier().getKind()) {
1052
0
      default:
1053
0
        break;
1054
0
      case analyze_format_string::ConversionSpecifier::dArg: // %d
1055
0
      case analyze_format_string::ConversionSpecifier::DArg: // %D
1056
0
      case analyze_format_string::ConversionSpecifier::iArg: // %i
1057
0
        Precision = 1;
1058
0
        break;
1059
0
      case analyze_format_string::ConversionSpecifier::oArg: // %d
1060
0
      case analyze_format_string::ConversionSpecifier::OArg: // %D
1061
0
      case analyze_format_string::ConversionSpecifier::uArg: // %d
1062
0
      case analyze_format_string::ConversionSpecifier::UArg: // %D
1063
0
      case analyze_format_string::ConversionSpecifier::xArg: // %d
1064
0
      case analyze_format_string::ConversionSpecifier::XArg: // %D
1065
0
        Precision = 1;
1066
0
        break;
1067
0
      case analyze_format_string::ConversionSpecifier::fArg: // %f
1068
0
      case analyze_format_string::ConversionSpecifier::FArg: // %F
1069
0
      case analyze_format_string::ConversionSpecifier::eArg: // %e
1070
0
      case analyze_format_string::ConversionSpecifier::EArg: // %E
1071
0
      case analyze_format_string::ConversionSpecifier::gArg: // %g
1072
0
      case analyze_format_string::ConversionSpecifier::GArg: // %G
1073
0
        Precision = 6;
1074
0
        break;
1075
0
      case analyze_format_string::ConversionSpecifier::pArg: // %d
1076
0
        Precision = 1;
1077
0
        break;
1078
0
      }
1079
0
      break;
1080
0
    case analyze_format_string::OptionalAmount::Constant:
1081
0
      Precision = FW.getConstantAmount();
1082
0
      break;
1083
0
    default:
1084
0
      break;
1085
0
    }
1086
0
    return Precision;
1087
0
  }
1088
};
1089
1090
} // namespace
1091
1092
static bool ProcessFormatStringLiteral(const Expr *FormatExpr,
1093
                                       StringRef &FormatStrRef, size_t &StrLen,
1094
0
                                       ASTContext &Context) {
1095
0
  if (const auto *Format = dyn_cast<StringLiteral>(FormatExpr);
1096
0
      Format && (Format->isOrdinary() || Format->isUTF8())) {
1097
0
    FormatStrRef = Format->getString();
1098
0
    const ConstantArrayType *T =
1099
0
        Context.getAsConstantArrayType(Format->getType());
1100
0
    assert(T && "String literal not of constant array type!");
1101
0
    size_t TypeSize = T->getSize().getZExtValue();
1102
    // In case there's a null byte somewhere.
1103
0
    StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, FormatStrRef.find(0));
1104
0
    return true;
1105
0
  }
1106
0
  return false;
1107
0
}
1108
1109
void Sema::checkFortifiedBuiltinMemoryFunction(FunctionDecl *FD,
1110
0
                                               CallExpr *TheCall) {
1111
0
  if (TheCall->isValueDependent() || TheCall->isTypeDependent() ||
1112
0
      isConstantEvaluatedContext())
1113
0
    return;
1114
1115
0
  bool UseDABAttr = false;
1116
0
  const FunctionDecl *UseDecl = FD;
1117
1118
0
  const auto *DABAttr = FD->getAttr<DiagnoseAsBuiltinAttr>();
1119
0
  if (DABAttr) {
1120
0
    UseDecl = DABAttr->getFunction();
1121
0
    assert(UseDecl && "Missing FunctionDecl in DiagnoseAsBuiltin attribute!");
1122
0
    UseDABAttr = true;
1123
0
  }
1124
1125
0
  unsigned BuiltinID = UseDecl->getBuiltinID(/*ConsiderWrappers=*/true);
1126
1127
0
  if (!BuiltinID)
1128
0
    return;
1129
1130
0
  const TargetInfo &TI = getASTContext().getTargetInfo();
1131
0
  unsigned SizeTypeWidth = TI.getTypeWidth(TI.getSizeType());
1132
1133
0
  auto TranslateIndex = [&](unsigned Index) -> std::optional<unsigned> {
1134
    // If we refer to a diagnose_as_builtin attribute, we need to change the
1135
    // argument index to refer to the arguments of the called function. Unless
1136
    // the index is out of bounds, which presumably means it's a variadic
1137
    // function.
1138
0
    if (!UseDABAttr)
1139
0
      return Index;
1140
0
    unsigned DABIndices = DABAttr->argIndices_size();
1141
0
    unsigned NewIndex = Index < DABIndices
1142
0
                            ? DABAttr->argIndices_begin()[Index]
1143
0
                            : Index - DABIndices + FD->getNumParams();
1144
0
    if (NewIndex >= TheCall->getNumArgs())
1145
0
      return std::nullopt;
1146
0
    return NewIndex;
1147
0
  };
1148
1149
0
  auto ComputeExplicitObjectSizeArgument =
1150
0
      [&](unsigned Index) -> std::optional<llvm::APSInt> {
1151
0
    std::optional<unsigned> IndexOptional = TranslateIndex(Index);
1152
0
    if (!IndexOptional)
1153
0
      return std::nullopt;
1154
0
    unsigned NewIndex = *IndexOptional;
1155
0
    Expr::EvalResult Result;
1156
0
    Expr *SizeArg = TheCall->getArg(NewIndex);
1157
0
    if (!SizeArg->EvaluateAsInt(Result, getASTContext()))
1158
0
      return std::nullopt;
1159
0
    llvm::APSInt Integer = Result.Val.getInt();
1160
0
    Integer.setIsUnsigned(true);
1161
0
    return Integer;
1162
0
  };
1163
1164
0
  auto ComputeSizeArgument =
1165
0
      [&](unsigned Index) -> std::optional<llvm::APSInt> {
1166
    // If the parameter has a pass_object_size attribute, then we should use its
1167
    // (potentially) more strict checking mode. Otherwise, conservatively assume
1168
    // type 0.
1169
0
    int BOSType = 0;
1170
    // This check can fail for variadic functions.
1171
0
    if (Index < FD->getNumParams()) {
1172
0
      if (const auto *POS =
1173
0
              FD->getParamDecl(Index)->getAttr<PassObjectSizeAttr>())
1174
0
        BOSType = POS->getType();
1175
0
    }
1176
1177
0
    std::optional<unsigned> IndexOptional = TranslateIndex(Index);
1178
0
    if (!IndexOptional)
1179
0
      return std::nullopt;
1180
0
    unsigned NewIndex = *IndexOptional;
1181
1182
0
    if (NewIndex >= TheCall->getNumArgs())
1183
0
      return std::nullopt;
1184
1185
0
    const Expr *ObjArg = TheCall->getArg(NewIndex);
1186
0
    uint64_t Result;
1187
0
    if (!ObjArg->tryEvaluateObjectSize(Result, getASTContext(), BOSType))
1188
0
      return std::nullopt;
1189
1190
    // Get the object size in the target's size_t width.
1191
0
    return llvm::APSInt::getUnsigned(Result).extOrTrunc(SizeTypeWidth);
1192
0
  };
1193
1194
0
  auto ComputeStrLenArgument =
1195
0
      [&](unsigned Index) -> std::optional<llvm::APSInt> {
1196
0
    std::optional<unsigned> IndexOptional = TranslateIndex(Index);
1197
0
    if (!IndexOptional)
1198
0
      return std::nullopt;
1199
0
    unsigned NewIndex = *IndexOptional;
1200
1201
0
    const Expr *ObjArg = TheCall->getArg(NewIndex);
1202
0
    uint64_t Result;
1203
0
    if (!ObjArg->tryEvaluateStrLen(Result, getASTContext()))
1204
0
      return std::nullopt;
1205
    // Add 1 for null byte.
1206
0
    return llvm::APSInt::getUnsigned(Result + 1).extOrTrunc(SizeTypeWidth);
1207
0
  };
1208
1209
0
  std::optional<llvm::APSInt> SourceSize;
1210
0
  std::optional<llvm::APSInt> DestinationSize;
1211
0
  unsigned DiagID = 0;
1212
0
  bool IsChkVariant = false;
1213
1214
0
  auto GetFunctionName = [&]() {
1215
0
    StringRef FunctionName = getASTContext().BuiltinInfo.getName(BuiltinID);
1216
    // Skim off the details of whichever builtin was called to produce a better
1217
    // diagnostic, as it's unlikely that the user wrote the __builtin
1218
    // explicitly.
1219
0
    if (IsChkVariant) {
1220
0
      FunctionName = FunctionName.drop_front(std::strlen("__builtin___"));
1221
0
      FunctionName = FunctionName.drop_back(std::strlen("_chk"));
1222
0
    } else {
1223
0
      FunctionName.consume_front("__builtin_");
1224
0
    }
1225
0
    return FunctionName;
1226
0
  };
1227
1228
0
  switch (BuiltinID) {
1229
0
  default:
1230
0
    return;
1231
0
  case Builtin::BI__builtin_strcpy:
1232
0
  case Builtin::BIstrcpy: {
1233
0
    DiagID = diag::warn_fortify_strlen_overflow;
1234
0
    SourceSize = ComputeStrLenArgument(1);
1235
0
    DestinationSize = ComputeSizeArgument(0);
1236
0
    break;
1237
0
  }
1238
1239
0
  case Builtin::BI__builtin___strcpy_chk: {
1240
0
    DiagID = diag::warn_fortify_strlen_overflow;
1241
0
    SourceSize = ComputeStrLenArgument(1);
1242
0
    DestinationSize = ComputeExplicitObjectSizeArgument(2);
1243
0
    IsChkVariant = true;
1244
0
    break;
1245
0
  }
1246
1247
0
  case Builtin::BIscanf:
1248
0
  case Builtin::BIfscanf:
1249
0
  case Builtin::BIsscanf: {
1250
0
    unsigned FormatIndex = 1;
1251
0
    unsigned DataIndex = 2;
1252
0
    if (BuiltinID == Builtin::BIscanf) {
1253
0
      FormatIndex = 0;
1254
0
      DataIndex = 1;
1255
0
    }
1256
1257
0
    const auto *FormatExpr =
1258
0
        TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
1259
1260
0
    StringRef FormatStrRef;
1261
0
    size_t StrLen;
1262
0
    if (!ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context))
1263
0
      return;
1264
1265
0
    auto Diagnose = [&](unsigned ArgIndex, unsigned DestSize,
1266
0
                        unsigned SourceSize) {
1267
0
      DiagID = diag::warn_fortify_scanf_overflow;
1268
0
      unsigned Index = ArgIndex + DataIndex;
1269
0
      StringRef FunctionName = GetFunctionName();
1270
0
      DiagRuntimeBehavior(TheCall->getArg(Index)->getBeginLoc(), TheCall,
1271
0
                          PDiag(DiagID) << FunctionName << (Index + 1)
1272
0
                                        << DestSize << SourceSize);
1273
0
    };
1274
1275
0
    auto ShiftedComputeSizeArgument = [&](unsigned Index) {
1276
0
      return ComputeSizeArgument(Index + DataIndex);
1277
0
    };
1278
0
    ScanfDiagnosticFormatHandler H(ShiftedComputeSizeArgument, Diagnose);
1279
0
    const char *FormatBytes = FormatStrRef.data();
1280
0
    analyze_format_string::ParseScanfString(H, FormatBytes,
1281
0
                                            FormatBytes + StrLen, getLangOpts(),
1282
0
                                            Context.getTargetInfo());
1283
1284
    // Unlike the other cases, in this one we have already issued the diagnostic
1285
    // here, so no need to continue (because unlike the other cases, here the
1286
    // diagnostic refers to the argument number).
1287
0
    return;
1288
0
  }
1289
1290
0
  case Builtin::BIsprintf:
1291
0
  case Builtin::BI__builtin___sprintf_chk: {
1292
0
    size_t FormatIndex = BuiltinID == Builtin::BIsprintf ? 1 : 3;
1293
0
    auto *FormatExpr = TheCall->getArg(FormatIndex)->IgnoreParenImpCasts();
1294
1295
0
    StringRef FormatStrRef;
1296
0
    size_t StrLen;
1297
0
    if (ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) {
1298
0
      EstimateSizeFormatHandler H(FormatStrRef);
1299
0
      const char *FormatBytes = FormatStrRef.data();
1300
0
      if (!analyze_format_string::ParsePrintfString(
1301
0
              H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
1302
0
              Context.getTargetInfo(), false)) {
1303
0
        DiagID = H.isKernelCompatible()
1304
0
                     ? diag::warn_format_overflow
1305
0
                     : diag::warn_format_overflow_non_kprintf;
1306
0
        SourceSize = llvm::APSInt::getUnsigned(H.getSizeLowerBound())
1307
0
                         .extOrTrunc(SizeTypeWidth);
1308
0
        if (BuiltinID == Builtin::BI__builtin___sprintf_chk) {
1309
0
          DestinationSize = ComputeExplicitObjectSizeArgument(2);
1310
0
          IsChkVariant = true;
1311
0
        } else {
1312
0
          DestinationSize = ComputeSizeArgument(0);
1313
0
        }
1314
0
        break;
1315
0
      }
1316
0
    }
1317
0
    return;
1318
0
  }
1319
0
  case Builtin::BI__builtin___memcpy_chk:
1320
0
  case Builtin::BI__builtin___memmove_chk:
1321
0
  case Builtin::BI__builtin___memset_chk:
1322
0
  case Builtin::BI__builtin___strlcat_chk:
1323
0
  case Builtin::BI__builtin___strlcpy_chk:
1324
0
  case Builtin::BI__builtin___strncat_chk:
1325
0
  case Builtin::BI__builtin___strncpy_chk:
1326
0
  case Builtin::BI__builtin___stpncpy_chk:
1327
0
  case Builtin::BI__builtin___memccpy_chk:
1328
0
  case Builtin::BI__builtin___mempcpy_chk: {
1329
0
    DiagID = diag::warn_builtin_chk_overflow;
1330
0
    SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 2);
1331
0
    DestinationSize =
1332
0
        ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1333
0
    IsChkVariant = true;
1334
0
    break;
1335
0
  }
1336
1337
0
  case Builtin::BI__builtin___snprintf_chk:
1338
0
  case Builtin::BI__builtin___vsnprintf_chk: {
1339
0
    DiagID = diag::warn_builtin_chk_overflow;
1340
0
    SourceSize = ComputeExplicitObjectSizeArgument(1);
1341
0
    DestinationSize = ComputeExplicitObjectSizeArgument(3);
1342
0
    IsChkVariant = true;
1343
0
    break;
1344
0
  }
1345
1346
0
  case Builtin::BIstrncat:
1347
0
  case Builtin::BI__builtin_strncat:
1348
0
  case Builtin::BIstrncpy:
1349
0
  case Builtin::BI__builtin_strncpy:
1350
0
  case Builtin::BIstpncpy:
1351
0
  case Builtin::BI__builtin_stpncpy: {
1352
    // Whether these functions overflow depends on the runtime strlen of the
1353
    // string, not just the buffer size, so emitting the "always overflow"
1354
    // diagnostic isn't quite right. We should still diagnose passing a buffer
1355
    // size larger than the destination buffer though; this is a runtime abort
1356
    // in _FORTIFY_SOURCE mode, and is quite suspicious otherwise.
1357
0
    DiagID = diag::warn_fortify_source_size_mismatch;
1358
0
    SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1359
0
    DestinationSize = ComputeSizeArgument(0);
1360
0
    break;
1361
0
  }
1362
1363
0
  case Builtin::BImemcpy:
1364
0
  case Builtin::BI__builtin_memcpy:
1365
0
  case Builtin::BImemmove:
1366
0
  case Builtin::BI__builtin_memmove:
1367
0
  case Builtin::BImemset:
1368
0
  case Builtin::BI__builtin_memset:
1369
0
  case Builtin::BImempcpy:
1370
0
  case Builtin::BI__builtin_mempcpy: {
1371
0
    DiagID = diag::warn_fortify_source_overflow;
1372
0
    SourceSize = ComputeExplicitObjectSizeArgument(TheCall->getNumArgs() - 1);
1373
0
    DestinationSize = ComputeSizeArgument(0);
1374
0
    break;
1375
0
  }
1376
0
  case Builtin::BIsnprintf:
1377
0
  case Builtin::BI__builtin_snprintf:
1378
0
  case Builtin::BIvsnprintf:
1379
0
  case Builtin::BI__builtin_vsnprintf: {
1380
0
    DiagID = diag::warn_fortify_source_size_mismatch;
1381
0
    SourceSize = ComputeExplicitObjectSizeArgument(1);
1382
0
    const auto *FormatExpr = TheCall->getArg(2)->IgnoreParenImpCasts();
1383
0
    StringRef FormatStrRef;
1384
0
    size_t StrLen;
1385
0
    if (SourceSize &&
1386
0
        ProcessFormatStringLiteral(FormatExpr, FormatStrRef, StrLen, Context)) {
1387
0
      EstimateSizeFormatHandler H(FormatStrRef);
1388
0
      const char *FormatBytes = FormatStrRef.data();
1389
0
      if (!analyze_format_string::ParsePrintfString(
1390
0
              H, FormatBytes, FormatBytes + StrLen, getLangOpts(),
1391
0
              Context.getTargetInfo(), /*isFreeBSDKPrintf=*/false)) {
1392
0
        llvm::APSInt FormatSize =
1393
0
            llvm::APSInt::getUnsigned(H.getSizeLowerBound())
1394
0
                .extOrTrunc(SizeTypeWidth);
1395
0
        if (FormatSize > *SourceSize && *SourceSize != 0) {
1396
0
          unsigned TruncationDiagID =
1397
0
              H.isKernelCompatible() ? diag::warn_format_truncation
1398
0
                                     : diag::warn_format_truncation_non_kprintf;
1399
0
          SmallString<16> SpecifiedSizeStr;
1400
0
          SmallString<16> FormatSizeStr;
1401
0
          SourceSize->toString(SpecifiedSizeStr, /*Radix=*/10);
1402
0
          FormatSize.toString(FormatSizeStr, /*Radix=*/10);
1403
0
          DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
1404
0
                              PDiag(TruncationDiagID)
1405
0
                                  << GetFunctionName() << SpecifiedSizeStr
1406
0
                                  << FormatSizeStr);
1407
0
        }
1408
0
      }
1409
0
    }
1410
0
    DestinationSize = ComputeSizeArgument(0);
1411
0
  }
1412
0
  }
1413
1414
0
  if (!SourceSize || !DestinationSize ||
1415
0
      llvm::APSInt::compareValues(*SourceSize, *DestinationSize) <= 0)
1416
0
    return;
1417
1418
0
  StringRef FunctionName = GetFunctionName();
1419
1420
0
  SmallString<16> DestinationStr;
1421
0
  SmallString<16> SourceStr;
1422
0
  DestinationSize->toString(DestinationStr, /*Radix=*/10);
1423
0
  SourceSize->toString(SourceStr, /*Radix=*/10);
1424
0
  DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
1425
0
                      PDiag(DiagID)
1426
0
                          << FunctionName << DestinationStr << SourceStr);
1427
0
}
1428
1429
static bool SemaBuiltinSEHScopeCheck(Sema &SemaRef, CallExpr *TheCall,
1430
                                     Scope::ScopeFlags NeededScopeFlags,
1431
0
                                     unsigned DiagID) {
1432
  // Scopes aren't available during instantiation. Fortunately, builtin
1433
  // functions cannot be template args so they cannot be formed through template
1434
  // instantiation. Therefore checking once during the parse is sufficient.
1435
0
  if (SemaRef.inTemplateInstantiation())
1436
0
    return false;
1437
1438
0
  Scope *S = SemaRef.getCurScope();
1439
0
  while (S && !S->isSEHExceptScope())
1440
0
    S = S->getParent();
1441
0
  if (!S || !(S->getFlags() & NeededScopeFlags)) {
1442
0
    auto *DRE = cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
1443
0
    SemaRef.Diag(TheCall->getExprLoc(), DiagID)
1444
0
        << DRE->getDecl()->getIdentifier();
1445
0
    return true;
1446
0
  }
1447
1448
0
  return false;
1449
0
}
1450
1451
0
static inline bool isBlockPointer(Expr *Arg) {
1452
0
  return Arg->getType()->isBlockPointerType();
1453
0
}
1454
1455
/// OpenCL C v2.0, s6.13.17.2 - Checks that the block parameters are all local
1456
/// void*, which is a requirement of device side enqueue.
1457
0
static bool checkOpenCLBlockArgs(Sema &S, Expr *BlockArg) {
1458
0
  const BlockPointerType *BPT =
1459
0
      cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
1460
0
  ArrayRef<QualType> Params =
1461
0
      BPT->getPointeeType()->castAs<FunctionProtoType>()->getParamTypes();
1462
0
  unsigned ArgCounter = 0;
1463
0
  bool IllegalParams = false;
1464
  // Iterate through the block parameters until either one is found that is not
1465
  // a local void*, or the block is valid.
1466
0
  for (ArrayRef<QualType>::iterator I = Params.begin(), E = Params.end();
1467
0
       I != E; ++I, ++ArgCounter) {
1468
0
    if (!(*I)->isPointerType() || !(*I)->getPointeeType()->isVoidType() ||
1469
0
        (*I)->getPointeeType().getQualifiers().getAddressSpace() !=
1470
0
            LangAS::opencl_local) {
1471
      // Get the location of the error. If a block literal has been passed
1472
      // (BlockExpr) then we can point straight to the offending argument,
1473
      // else we just point to the variable reference.
1474
0
      SourceLocation ErrorLoc;
1475
0
      if (isa<BlockExpr>(BlockArg)) {
1476
0
        BlockDecl *BD = cast<BlockExpr>(BlockArg)->getBlockDecl();
1477
0
        ErrorLoc = BD->getParamDecl(ArgCounter)->getBeginLoc();
1478
0
      } else if (isa<DeclRefExpr>(BlockArg)) {
1479
0
        ErrorLoc = cast<DeclRefExpr>(BlockArg)->getBeginLoc();
1480
0
      }
1481
0
      S.Diag(ErrorLoc,
1482
0
             diag::err_opencl_enqueue_kernel_blocks_non_local_void_args);
1483
0
      IllegalParams = true;
1484
0
    }
1485
0
  }
1486
1487
0
  return IllegalParams;
1488
0
}
1489
1490
0
static bool checkOpenCLSubgroupExt(Sema &S, CallExpr *Call) {
1491
  // OpenCL device can support extension but not the feature as extension
1492
  // requires subgroup independent forward progress, but subgroup independent
1493
  // forward progress is optional in OpenCL C 3.0 __opencl_c_subgroups feature.
1494
0
  if (!S.getOpenCLOptions().isSupported("cl_khr_subgroups", S.getLangOpts()) &&
1495
0
      !S.getOpenCLOptions().isSupported("__opencl_c_subgroups",
1496
0
                                        S.getLangOpts())) {
1497
0
    S.Diag(Call->getBeginLoc(), diag::err_opencl_requires_extension)
1498
0
        << 1 << Call->getDirectCallee()
1499
0
        << "cl_khr_subgroups or __opencl_c_subgroups";
1500
0
    return true;
1501
0
  }
1502
0
  return false;
1503
0
}
1504
1505
0
static bool SemaOpenCLBuiltinNDRangeAndBlock(Sema &S, CallExpr *TheCall) {
1506
0
  if (checkArgCount(S, TheCall, 2))
1507
0
    return true;
1508
1509
0
  if (checkOpenCLSubgroupExt(S, TheCall))
1510
0
    return true;
1511
1512
  // First argument is an ndrange_t type.
1513
0
  Expr *NDRangeArg = TheCall->getArg(0);
1514
0
  if (NDRangeArg->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
1515
0
    S.Diag(NDRangeArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1516
0
        << TheCall->getDirectCallee() << "'ndrange_t'";
1517
0
    return true;
1518
0
  }
1519
1520
0
  Expr *BlockArg = TheCall->getArg(1);
1521
0
  if (!isBlockPointer(BlockArg)) {
1522
0
    S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1523
0
        << TheCall->getDirectCallee() << "block";
1524
0
    return true;
1525
0
  }
1526
0
  return checkOpenCLBlockArgs(S, BlockArg);
1527
0
}
1528
1529
/// OpenCL C v2.0, s6.13.17.6 - Check the argument to the
1530
/// get_kernel_work_group_size
1531
/// and get_kernel_preferred_work_group_size_multiple builtin functions.
1532
0
static bool SemaOpenCLBuiltinKernelWorkGroupSize(Sema &S, CallExpr *TheCall) {
1533
0
  if (checkArgCount(S, TheCall, 1))
1534
0
    return true;
1535
1536
0
  Expr *BlockArg = TheCall->getArg(0);
1537
0
  if (!isBlockPointer(BlockArg)) {
1538
0
    S.Diag(BlockArg->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1539
0
        << TheCall->getDirectCallee() << "block";
1540
0
    return true;
1541
0
  }
1542
0
  return checkOpenCLBlockArgs(S, BlockArg);
1543
0
}
1544
1545
/// Diagnose integer type and any valid implicit conversion to it.
1546
static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E,
1547
                                      const QualType &IntType);
1548
1549
static bool checkOpenCLEnqueueLocalSizeArgs(Sema &S, CallExpr *TheCall,
1550
0
                                            unsigned Start, unsigned End) {
1551
0
  bool IllegalParams = false;
1552
0
  for (unsigned I = Start; I <= End; ++I)
1553
0
    IllegalParams |= checkOpenCLEnqueueIntType(S, TheCall->getArg(I),
1554
0
                                              S.Context.getSizeType());
1555
0
  return IllegalParams;
1556
0
}
1557
1558
/// OpenCL v2.0, s6.13.17.1 - Check that sizes are provided for all
1559
/// 'local void*' parameter of passed block.
1560
static bool checkOpenCLEnqueueVariadicArgs(Sema &S, CallExpr *TheCall,
1561
                                           Expr *BlockArg,
1562
0
                                           unsigned NumNonVarArgs) {
1563
0
  const BlockPointerType *BPT =
1564
0
      cast<BlockPointerType>(BlockArg->getType().getCanonicalType());
1565
0
  unsigned NumBlockParams =
1566
0
      BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams();
1567
0
  unsigned TotalNumArgs = TheCall->getNumArgs();
1568
1569
  // For each argument passed to the block, a corresponding uint needs to
1570
  // be passed to describe the size of the local memory.
1571
0
  if (TotalNumArgs != NumBlockParams + NumNonVarArgs) {
1572
0
    S.Diag(TheCall->getBeginLoc(),
1573
0
           diag::err_opencl_enqueue_kernel_local_size_args);
1574
0
    return true;
1575
0
  }
1576
1577
  // Check that the sizes of the local memory are specified by integers.
1578
0
  return checkOpenCLEnqueueLocalSizeArgs(S, TheCall, NumNonVarArgs,
1579
0
                                         TotalNumArgs - 1);
1580
0
}
1581
1582
/// OpenCL C v2.0, s6.13.17 - Enqueue kernel function contains four different
1583
/// overload formats specified in Table 6.13.17.1.
1584
/// int enqueue_kernel(queue_t queue,
1585
///                    kernel_enqueue_flags_t flags,
1586
///                    const ndrange_t ndrange,
1587
///                    void (^block)(void))
1588
/// int enqueue_kernel(queue_t queue,
1589
///                    kernel_enqueue_flags_t flags,
1590
///                    const ndrange_t ndrange,
1591
///                    uint num_events_in_wait_list,
1592
///                    clk_event_t *event_wait_list,
1593
///                    clk_event_t *event_ret,
1594
///                    void (^block)(void))
1595
/// int enqueue_kernel(queue_t queue,
1596
///                    kernel_enqueue_flags_t flags,
1597
///                    const ndrange_t ndrange,
1598
///                    void (^block)(local void*, ...),
1599
///                    uint size0, ...)
1600
/// int enqueue_kernel(queue_t queue,
1601
///                    kernel_enqueue_flags_t flags,
1602
///                    const ndrange_t ndrange,
1603
///                    uint num_events_in_wait_list,
1604
///                    clk_event_t *event_wait_list,
1605
///                    clk_event_t *event_ret,
1606
///                    void (^block)(local void*, ...),
1607
///                    uint size0, ...)
1608
0
static bool SemaOpenCLBuiltinEnqueueKernel(Sema &S, CallExpr *TheCall) {
1609
0
  unsigned NumArgs = TheCall->getNumArgs();
1610
1611
0
  if (NumArgs < 4) {
1612
0
    S.Diag(TheCall->getBeginLoc(),
1613
0
           diag::err_typecheck_call_too_few_args_at_least)
1614
0
        << 0 << 4 << NumArgs << /*is non object*/ 0;
1615
0
    return true;
1616
0
  }
1617
1618
0
  Expr *Arg0 = TheCall->getArg(0);
1619
0
  Expr *Arg1 = TheCall->getArg(1);
1620
0
  Expr *Arg2 = TheCall->getArg(2);
1621
0
  Expr *Arg3 = TheCall->getArg(3);
1622
1623
  // First argument always needs to be a queue_t type.
1624
0
  if (!Arg0->getType()->isQueueT()) {
1625
0
    S.Diag(TheCall->getArg(0)->getBeginLoc(),
1626
0
           diag::err_opencl_builtin_expected_type)
1627
0
        << TheCall->getDirectCallee() << S.Context.OCLQueueTy;
1628
0
    return true;
1629
0
  }
1630
1631
  // Second argument always needs to be a kernel_enqueue_flags_t enum value.
1632
0
  if (!Arg1->getType()->isIntegerType()) {
1633
0
    S.Diag(TheCall->getArg(1)->getBeginLoc(),
1634
0
           diag::err_opencl_builtin_expected_type)
1635
0
        << TheCall->getDirectCallee() << "'kernel_enqueue_flags_t' (i.e. uint)";
1636
0
    return true;
1637
0
  }
1638
1639
  // Third argument is always an ndrange_t type.
1640
0
  if (Arg2->getType().getUnqualifiedType().getAsString() != "ndrange_t") {
1641
0
    S.Diag(TheCall->getArg(2)->getBeginLoc(),
1642
0
           diag::err_opencl_builtin_expected_type)
1643
0
        << TheCall->getDirectCallee() << "'ndrange_t'";
1644
0
    return true;
1645
0
  }
1646
1647
  // With four arguments, there is only one form that the function could be
1648
  // called in: no events and no variable arguments.
1649
0
  if (NumArgs == 4) {
1650
    // check that the last argument is the right block type.
1651
0
    if (!isBlockPointer(Arg3)) {
1652
0
      S.Diag(Arg3->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1653
0
          << TheCall->getDirectCallee() << "block";
1654
0
      return true;
1655
0
    }
1656
    // we have a block type, check the prototype
1657
0
    const BlockPointerType *BPT =
1658
0
        cast<BlockPointerType>(Arg3->getType().getCanonicalType());
1659
0
    if (BPT->getPointeeType()->castAs<FunctionProtoType>()->getNumParams() > 0) {
1660
0
      S.Diag(Arg3->getBeginLoc(),
1661
0
             diag::err_opencl_enqueue_kernel_blocks_no_args);
1662
0
      return true;
1663
0
    }
1664
0
    return false;
1665
0
  }
1666
  // we can have block + varargs.
1667
0
  if (isBlockPointer(Arg3))
1668
0
    return (checkOpenCLBlockArgs(S, Arg3) ||
1669
0
            checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg3, 4));
1670
  // last two cases with either exactly 7 args or 7 args and varargs.
1671
0
  if (NumArgs >= 7) {
1672
    // check common block argument.
1673
0
    Expr *Arg6 = TheCall->getArg(6);
1674
0
    if (!isBlockPointer(Arg6)) {
1675
0
      S.Diag(Arg6->getBeginLoc(), diag::err_opencl_builtin_expected_type)
1676
0
          << TheCall->getDirectCallee() << "block";
1677
0
      return true;
1678
0
    }
1679
0
    if (checkOpenCLBlockArgs(S, Arg6))
1680
0
      return true;
1681
1682
    // Forth argument has to be any integer type.
1683
0
    if (!Arg3->getType()->isIntegerType()) {
1684
0
      S.Diag(TheCall->getArg(3)->getBeginLoc(),
1685
0
             diag::err_opencl_builtin_expected_type)
1686
0
          << TheCall->getDirectCallee() << "integer";
1687
0
      return true;
1688
0
    }
1689
    // check remaining common arguments.
1690
0
    Expr *Arg4 = TheCall->getArg(4);
1691
0
    Expr *Arg5 = TheCall->getArg(5);
1692
1693
    // Fifth argument is always passed as a pointer to clk_event_t.
1694
0
    if (!Arg4->isNullPointerConstant(S.Context,
1695
0
                                     Expr::NPC_ValueDependentIsNotNull) &&
1696
0
        !Arg4->getType()->getPointeeOrArrayElementType()->isClkEventT()) {
1697
0
      S.Diag(TheCall->getArg(4)->getBeginLoc(),
1698
0
             diag::err_opencl_builtin_expected_type)
1699
0
          << TheCall->getDirectCallee()
1700
0
          << S.Context.getPointerType(S.Context.OCLClkEventTy);
1701
0
      return true;
1702
0
    }
1703
1704
    // Sixth argument is always passed as a pointer to clk_event_t.
1705
0
    if (!Arg5->isNullPointerConstant(S.Context,
1706
0
                                     Expr::NPC_ValueDependentIsNotNull) &&
1707
0
        !(Arg5->getType()->isPointerType() &&
1708
0
          Arg5->getType()->getPointeeType()->isClkEventT())) {
1709
0
      S.Diag(TheCall->getArg(5)->getBeginLoc(),
1710
0
             diag::err_opencl_builtin_expected_type)
1711
0
          << TheCall->getDirectCallee()
1712
0
          << S.Context.getPointerType(S.Context.OCLClkEventTy);
1713
0
      return true;
1714
0
    }
1715
1716
0
    if (NumArgs == 7)
1717
0
      return false;
1718
1719
0
    return checkOpenCLEnqueueVariadicArgs(S, TheCall, Arg6, 7);
1720
0
  }
1721
1722
  // None of the specific case has been detected, give generic error
1723
0
  S.Diag(TheCall->getBeginLoc(),
1724
0
         diag::err_opencl_enqueue_kernel_incorrect_args);
1725
0
  return true;
1726
0
}
1727
1728
/// Returns OpenCL access qual.
1729
0
static OpenCLAccessAttr *getOpenCLArgAccess(const Decl *D) {
1730
0
    return D->getAttr<OpenCLAccessAttr>();
1731
0
}
1732
1733
/// Returns true if pipe element type is different from the pointer.
1734
0
static bool checkOpenCLPipeArg(Sema &S, CallExpr *Call) {
1735
0
  const Expr *Arg0 = Call->getArg(0);
1736
  // First argument type should always be pipe.
1737
0
  if (!Arg0->getType()->isPipeType()) {
1738
0
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1739
0
        << Call->getDirectCallee() << Arg0->getSourceRange();
1740
0
    return true;
1741
0
  }
1742
0
  OpenCLAccessAttr *AccessQual =
1743
0
      getOpenCLArgAccess(cast<DeclRefExpr>(Arg0)->getDecl());
1744
  // Validates the access qualifier is compatible with the call.
1745
  // OpenCL v2.0 s6.13.16 - The access qualifiers for pipe should only be
1746
  // read_only and write_only, and assumed to be read_only if no qualifier is
1747
  // specified.
1748
0
  switch (Call->getDirectCallee()->getBuiltinID()) {
1749
0
  case Builtin::BIread_pipe:
1750
0
  case Builtin::BIreserve_read_pipe:
1751
0
  case Builtin::BIcommit_read_pipe:
1752
0
  case Builtin::BIwork_group_reserve_read_pipe:
1753
0
  case Builtin::BIsub_group_reserve_read_pipe:
1754
0
  case Builtin::BIwork_group_commit_read_pipe:
1755
0
  case Builtin::BIsub_group_commit_read_pipe:
1756
0
    if (!(!AccessQual || AccessQual->isReadOnly())) {
1757
0
      S.Diag(Arg0->getBeginLoc(),
1758
0
             diag::err_opencl_builtin_pipe_invalid_access_modifier)
1759
0
          << "read_only" << Arg0->getSourceRange();
1760
0
      return true;
1761
0
    }
1762
0
    break;
1763
0
  case Builtin::BIwrite_pipe:
1764
0
  case Builtin::BIreserve_write_pipe:
1765
0
  case Builtin::BIcommit_write_pipe:
1766
0
  case Builtin::BIwork_group_reserve_write_pipe:
1767
0
  case Builtin::BIsub_group_reserve_write_pipe:
1768
0
  case Builtin::BIwork_group_commit_write_pipe:
1769
0
  case Builtin::BIsub_group_commit_write_pipe:
1770
0
    if (!(AccessQual && AccessQual->isWriteOnly())) {
1771
0
      S.Diag(Arg0->getBeginLoc(),
1772
0
             diag::err_opencl_builtin_pipe_invalid_access_modifier)
1773
0
          << "write_only" << Arg0->getSourceRange();
1774
0
      return true;
1775
0
    }
1776
0
    break;
1777
0
  default:
1778
0
    break;
1779
0
  }
1780
0
  return false;
1781
0
}
1782
1783
/// Returns true if pipe element type is different from the pointer.
1784
0
static bool checkOpenCLPipePacketType(Sema &S, CallExpr *Call, unsigned Idx) {
1785
0
  const Expr *Arg0 = Call->getArg(0);
1786
0
  const Expr *ArgIdx = Call->getArg(Idx);
1787
0
  const PipeType *PipeTy = cast<PipeType>(Arg0->getType());
1788
0
  const QualType EltTy = PipeTy->getElementType();
1789
0
  const PointerType *ArgTy = ArgIdx->getType()->getAs<PointerType>();
1790
  // The Idx argument should be a pointer and the type of the pointer and
1791
  // the type of pipe element should also be the same.
1792
0
  if (!ArgTy ||
1793
0
      !S.Context.hasSameType(
1794
0
          EltTy, ArgTy->getPointeeType()->getCanonicalTypeInternal())) {
1795
0
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1796
0
        << Call->getDirectCallee() << S.Context.getPointerType(EltTy)
1797
0
        << ArgIdx->getType() << ArgIdx->getSourceRange();
1798
0
    return true;
1799
0
  }
1800
0
  return false;
1801
0
}
1802
1803
// Performs semantic analysis for the read/write_pipe call.
1804
// \param S Reference to the semantic analyzer.
1805
// \param Call A pointer to the builtin call.
1806
// \return True if a semantic error has been found, false otherwise.
1807
0
static bool SemaBuiltinRWPipe(Sema &S, CallExpr *Call) {
1808
  // OpenCL v2.0 s6.13.16.2 - The built-in read/write
1809
  // functions have two forms.
1810
0
  switch (Call->getNumArgs()) {
1811
0
  case 2:
1812
0
    if (checkOpenCLPipeArg(S, Call))
1813
0
      return true;
1814
    // The call with 2 arguments should be
1815
    // read/write_pipe(pipe T, T*).
1816
    // Check packet type T.
1817
0
    if (checkOpenCLPipePacketType(S, Call, 1))
1818
0
      return true;
1819
0
    break;
1820
1821
0
  case 4: {
1822
0
    if (checkOpenCLPipeArg(S, Call))
1823
0
      return true;
1824
    // The call with 4 arguments should be
1825
    // read/write_pipe(pipe T, reserve_id_t, uint, T*).
1826
    // Check reserve_id_t.
1827
0
    if (!Call->getArg(1)->getType()->isReserveIDT()) {
1828
0
      S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1829
0
          << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1830
0
          << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1831
0
      return true;
1832
0
    }
1833
1834
    // Check the index.
1835
0
    const Expr *Arg2 = Call->getArg(2);
1836
0
    if (!Arg2->getType()->isIntegerType() &&
1837
0
        !Arg2->getType()->isUnsignedIntegerType()) {
1838
0
      S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1839
0
          << Call->getDirectCallee() << S.Context.UnsignedIntTy
1840
0
          << Arg2->getType() << Arg2->getSourceRange();
1841
0
      return true;
1842
0
    }
1843
1844
    // Check packet type T.
1845
0
    if (checkOpenCLPipePacketType(S, Call, 3))
1846
0
      return true;
1847
0
  } break;
1848
0
  default:
1849
0
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_arg_num)
1850
0
        << Call->getDirectCallee() << Call->getSourceRange();
1851
0
    return true;
1852
0
  }
1853
1854
0
  return false;
1855
0
}
1856
1857
// Performs a semantic analysis on the {work_group_/sub_group_
1858
//        /_}reserve_{read/write}_pipe
1859
// \param S Reference to the semantic analyzer.
1860
// \param Call The call to the builtin function to be analyzed.
1861
// \return True if a semantic error was found, false otherwise.
1862
0
static bool SemaBuiltinReserveRWPipe(Sema &S, CallExpr *Call) {
1863
0
  if (checkArgCount(S, Call, 2))
1864
0
    return true;
1865
1866
0
  if (checkOpenCLPipeArg(S, Call))
1867
0
    return true;
1868
1869
  // Check the reserve size.
1870
0
  if (!Call->getArg(1)->getType()->isIntegerType() &&
1871
0
      !Call->getArg(1)->getType()->isUnsignedIntegerType()) {
1872
0
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1873
0
        << Call->getDirectCallee() << S.Context.UnsignedIntTy
1874
0
        << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1875
0
    return true;
1876
0
  }
1877
1878
  // Since return type of reserve_read/write_pipe built-in function is
1879
  // reserve_id_t, which is not defined in the builtin def file , we used int
1880
  // as return type and need to override the return type of these functions.
1881
0
  Call->setType(S.Context.OCLReserveIDTy);
1882
1883
0
  return false;
1884
0
}
1885
1886
// Performs a semantic analysis on {work_group_/sub_group_
1887
//        /_}commit_{read/write}_pipe
1888
// \param S Reference to the semantic analyzer.
1889
// \param Call The call to the builtin function to be analyzed.
1890
// \return True if a semantic error was found, false otherwise.
1891
0
static bool SemaBuiltinCommitRWPipe(Sema &S, CallExpr *Call) {
1892
0
  if (checkArgCount(S, Call, 2))
1893
0
    return true;
1894
1895
0
  if (checkOpenCLPipeArg(S, Call))
1896
0
    return true;
1897
1898
  // Check reserve_id_t.
1899
0
  if (!Call->getArg(1)->getType()->isReserveIDT()) {
1900
0
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_invalid_arg)
1901
0
        << Call->getDirectCallee() << S.Context.OCLReserveIDTy
1902
0
        << Call->getArg(1)->getType() << Call->getArg(1)->getSourceRange();
1903
0
    return true;
1904
0
  }
1905
1906
0
  return false;
1907
0
}
1908
1909
// Performs a semantic analysis on the call to built-in Pipe
1910
//        Query Functions.
1911
// \param S Reference to the semantic analyzer.
1912
// \param Call The call to the builtin function to be analyzed.
1913
// \return True if a semantic error was found, false otherwise.
1914
0
static bool SemaBuiltinPipePackets(Sema &S, CallExpr *Call) {
1915
0
  if (checkArgCount(S, Call, 1))
1916
0
    return true;
1917
1918
0
  if (!Call->getArg(0)->getType()->isPipeType()) {
1919
0
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_pipe_first_arg)
1920
0
        << Call->getDirectCallee() << Call->getArg(0)->getSourceRange();
1921
0
    return true;
1922
0
  }
1923
1924
0
  return false;
1925
0
}
1926
1927
// OpenCL v2.0 s6.13.9 - Address space qualifier functions.
1928
// Performs semantic analysis for the to_global/local/private call.
1929
// \param S Reference to the semantic analyzer.
1930
// \param BuiltinID ID of the builtin function.
1931
// \param Call A pointer to the builtin call.
1932
// \return True if a semantic error has been found, false otherwise.
1933
static bool SemaOpenCLBuiltinToAddr(Sema &S, unsigned BuiltinID,
1934
0
                                    CallExpr *Call) {
1935
0
  if (checkArgCount(S, Call, 1))
1936
0
    return true;
1937
1938
0
  auto RT = Call->getArg(0)->getType();
1939
0
  if (!RT->isPointerType() || RT->getPointeeType()
1940
0
      .getAddressSpace() == LangAS::opencl_constant) {
1941
0
    S.Diag(Call->getBeginLoc(), diag::err_opencl_builtin_to_addr_invalid_arg)
1942
0
        << Call->getArg(0) << Call->getDirectCallee() << Call->getSourceRange();
1943
0
    return true;
1944
0
  }
1945
1946
0
  if (RT->getPointeeType().getAddressSpace() != LangAS::opencl_generic) {
1947
0
    S.Diag(Call->getArg(0)->getBeginLoc(),
1948
0
           diag::warn_opencl_generic_address_space_arg)
1949
0
        << Call->getDirectCallee()->getNameInfo().getAsString()
1950
0
        << Call->getArg(0)->getSourceRange();
1951
0
  }
1952
1953
0
  RT = RT->getPointeeType();
1954
0
  auto Qual = RT.getQualifiers();
1955
0
  switch (BuiltinID) {
1956
0
  case Builtin::BIto_global:
1957
0
    Qual.setAddressSpace(LangAS::opencl_global);
1958
0
    break;
1959
0
  case Builtin::BIto_local:
1960
0
    Qual.setAddressSpace(LangAS::opencl_local);
1961
0
    break;
1962
0
  case Builtin::BIto_private:
1963
0
    Qual.setAddressSpace(LangAS::opencl_private);
1964
0
    break;
1965
0
  default:
1966
0
    llvm_unreachable("Invalid builtin function");
1967
0
  }
1968
0
  Call->setType(S.Context.getPointerType(S.Context.getQualifiedType(
1969
0
      RT.getUnqualifiedType(), Qual)));
1970
1971
0
  return false;
1972
0
}
1973
1974
0
static ExprResult SemaBuiltinLaunder(Sema &S, CallExpr *TheCall) {
1975
0
  if (checkArgCount(S, TheCall, 1))
1976
0
    return ExprError();
1977
1978
  // Compute __builtin_launder's parameter type from the argument.
1979
  // The parameter type is:
1980
  //  * The type of the argument if it's not an array or function type,
1981
  //  Otherwise,
1982
  //  * The decayed argument type.
1983
0
  QualType ParamTy = [&]() {
1984
0
    QualType ArgTy = TheCall->getArg(0)->getType();
1985
0
    if (const ArrayType *Ty = ArgTy->getAsArrayTypeUnsafe())
1986
0
      return S.Context.getPointerType(Ty->getElementType());
1987
0
    if (ArgTy->isFunctionType()) {
1988
0
      return S.Context.getPointerType(ArgTy);
1989
0
    }
1990
0
    return ArgTy;
1991
0
  }();
1992
1993
0
  TheCall->setType(ParamTy);
1994
1995
0
  auto DiagSelect = [&]() -> std::optional<unsigned> {
1996
0
    if (!ParamTy->isPointerType())
1997
0
      return 0;
1998
0
    if (ParamTy->isFunctionPointerType())
1999
0
      return 1;
2000
0
    if (ParamTy->isVoidPointerType())
2001
0
      return 2;
2002
0
    return std::optional<unsigned>{};
2003
0
  }();
2004
0
  if (DiagSelect) {
2005
0
    S.Diag(TheCall->getBeginLoc(), diag::err_builtin_launder_invalid_arg)
2006
0
        << *DiagSelect << TheCall->getSourceRange();
2007
0
    return ExprError();
2008
0
  }
2009
2010
  // We either have an incomplete class type, or we have a class template
2011
  // whose instantiation has not been forced. Example:
2012
  //
2013
  //   template <class T> struct Foo { T value; };
2014
  //   Foo<int> *p = nullptr;
2015
  //   auto *d = __builtin_launder(p);
2016
0
  if (S.RequireCompleteType(TheCall->getBeginLoc(), ParamTy->getPointeeType(),
2017
0
                            diag::err_incomplete_type))
2018
0
    return ExprError();
2019
2020
0
  assert(ParamTy->getPointeeType()->isObjectType() &&
2021
0
         "Unhandled non-object pointer case");
2022
2023
0
  InitializedEntity Entity =
2024
0
      InitializedEntity::InitializeParameter(S.Context, ParamTy, false);
2025
0
  ExprResult Arg =
2026
0
      S.PerformCopyInitialization(Entity, SourceLocation(), TheCall->getArg(0));
2027
0
  if (Arg.isInvalid())
2028
0
    return ExprError();
2029
0
  TheCall->setArg(0, Arg.get());
2030
2031
0
  return TheCall;
2032
0
}
2033
2034
// Emit an error and return true if the current object format type is in the
2035
// list of unsupported types.
2036
static bool CheckBuiltinTargetNotInUnsupported(
2037
    Sema &S, unsigned BuiltinID, CallExpr *TheCall,
2038
0
    ArrayRef<llvm::Triple::ObjectFormatType> UnsupportedObjectFormatTypes) {
2039
0
  llvm::Triple::ObjectFormatType CurObjFormat =
2040
0
      S.getASTContext().getTargetInfo().getTriple().getObjectFormat();
2041
0
  if (llvm::is_contained(UnsupportedObjectFormatTypes, CurObjFormat)) {
2042
0
    S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
2043
0
        << TheCall->getSourceRange();
2044
0
    return true;
2045
0
  }
2046
0
  return false;
2047
0
}
2048
2049
// Emit an error and return true if the current architecture is not in the list
2050
// of supported architectures.
2051
static bool
2052
CheckBuiltinTargetInSupported(Sema &S, unsigned BuiltinID, CallExpr *TheCall,
2053
0
                              ArrayRef<llvm::Triple::ArchType> SupportedArchs) {
2054
0
  llvm::Triple::ArchType CurArch =
2055
0
      S.getASTContext().getTargetInfo().getTriple().getArch();
2056
0
  if (llvm::is_contained(SupportedArchs, CurArch))
2057
0
    return false;
2058
0
  S.Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
2059
0
      << TheCall->getSourceRange();
2060
0
  return true;
2061
0
}
2062
2063
static void CheckNonNullArgument(Sema &S, const Expr *ArgExpr,
2064
                                 SourceLocation CallSiteLoc);
2065
2066
bool Sema::CheckTSBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
2067
0
                                      CallExpr *TheCall) {
2068
0
  switch (TI.getTriple().getArch()) {
2069
0
  default:
2070
    // Some builtins don't require additional checking, so just consider these
2071
    // acceptable.
2072
0
    return false;
2073
0
  case llvm::Triple::arm:
2074
0
  case llvm::Triple::armeb:
2075
0
  case llvm::Triple::thumb:
2076
0
  case llvm::Triple::thumbeb:
2077
0
    return CheckARMBuiltinFunctionCall(TI, BuiltinID, TheCall);
2078
0
  case llvm::Triple::aarch64:
2079
0
  case llvm::Triple::aarch64_32:
2080
0
  case llvm::Triple::aarch64_be:
2081
0
    return CheckAArch64BuiltinFunctionCall(TI, BuiltinID, TheCall);
2082
0
  case llvm::Triple::bpfeb:
2083
0
  case llvm::Triple::bpfel:
2084
0
    return CheckBPFBuiltinFunctionCall(BuiltinID, TheCall);
2085
0
  case llvm::Triple::hexagon:
2086
0
    return CheckHexagonBuiltinFunctionCall(BuiltinID, TheCall);
2087
0
  case llvm::Triple::mips:
2088
0
  case llvm::Triple::mipsel:
2089
0
  case llvm::Triple::mips64:
2090
0
  case llvm::Triple::mips64el:
2091
0
    return CheckMipsBuiltinFunctionCall(TI, BuiltinID, TheCall);
2092
0
  case llvm::Triple::systemz:
2093
0
    return CheckSystemZBuiltinFunctionCall(BuiltinID, TheCall);
2094
0
  case llvm::Triple::x86:
2095
0
  case llvm::Triple::x86_64:
2096
0
    return CheckX86BuiltinFunctionCall(TI, BuiltinID, TheCall);
2097
0
  case llvm::Triple::ppc:
2098
0
  case llvm::Triple::ppcle:
2099
0
  case llvm::Triple::ppc64:
2100
0
  case llvm::Triple::ppc64le:
2101
0
    return CheckPPCBuiltinFunctionCall(TI, BuiltinID, TheCall);
2102
0
  case llvm::Triple::amdgcn:
2103
0
    return CheckAMDGCNBuiltinFunctionCall(BuiltinID, TheCall);
2104
0
  case llvm::Triple::riscv32:
2105
0
  case llvm::Triple::riscv64:
2106
0
    return CheckRISCVBuiltinFunctionCall(TI, BuiltinID, TheCall);
2107
0
  case llvm::Triple::loongarch32:
2108
0
  case llvm::Triple::loongarch64:
2109
0
    return CheckLoongArchBuiltinFunctionCall(TI, BuiltinID, TheCall);
2110
0
  case llvm::Triple::wasm32:
2111
0
  case llvm::Triple::wasm64:
2112
0
    return CheckWebAssemblyBuiltinFunctionCall(TI, BuiltinID, TheCall);
2113
0
  case llvm::Triple::nvptx:
2114
0
  case llvm::Triple::nvptx64:
2115
0
    return CheckNVPTXBuiltinFunctionCall(TI, BuiltinID, TheCall);
2116
0
  }
2117
0
}
2118
2119
// Check if \p Ty is a valid type for the elementwise math builtins. If it is
2120
// not a valid type, emit an error message and return true. Otherwise return
2121
// false.
2122
static bool checkMathBuiltinElementType(Sema &S, SourceLocation Loc,
2123
0
                                        QualType Ty) {
2124
0
  if (!Ty->getAs<VectorType>() && !ConstantMatrixType::isValidElementType(Ty)) {
2125
0
    return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
2126
0
           << 1 << /* vector, integer or float ty*/ 0 << Ty;
2127
0
  }
2128
2129
0
  return false;
2130
0
}
2131
2132
static bool checkFPMathBuiltinElementType(Sema &S, SourceLocation Loc,
2133
0
                                          QualType ArgTy, int ArgIndex) {
2134
0
  QualType EltTy = ArgTy;
2135
0
  if (auto *VecTy = EltTy->getAs<VectorType>())
2136
0
    EltTy = VecTy->getElementType();
2137
2138
0
  if (!EltTy->isRealFloatingType()) {
2139
0
    return S.Diag(Loc, diag::err_builtin_invalid_arg_type)
2140
0
           << ArgIndex << /* vector or float ty*/ 5 << ArgTy;
2141
0
  }
2142
2143
0
  return false;
2144
0
}
2145
2146
ExprResult
2147
Sema::CheckBuiltinFunctionCall(FunctionDecl *FDecl, unsigned BuiltinID,
2148
0
                               CallExpr *TheCall) {
2149
0
  ExprResult TheCallResult(TheCall);
2150
2151
  // Find out if any arguments are required to be integer constant expressions.
2152
0
  unsigned ICEArguments = 0;
2153
0
  ASTContext::GetBuiltinTypeError Error;
2154
0
  Context.GetBuiltinType(BuiltinID, Error, &ICEArguments);
2155
0
  if (Error != ASTContext::GE_None)
2156
0
    ICEArguments = 0;  // Don't diagnose previously diagnosed errors.
2157
2158
  // If any arguments are required to be ICE's, check and diagnose.
2159
0
  for (unsigned ArgNo = 0; ICEArguments != 0; ++ArgNo) {
2160
    // Skip arguments not required to be ICE's.
2161
0
    if ((ICEArguments & (1 << ArgNo)) == 0) continue;
2162
2163
0
    llvm::APSInt Result;
2164
    // If we don't have enough arguments, continue so we can issue better
2165
    // diagnostic in checkArgCount(...)
2166
0
    if (ArgNo < TheCall->getNumArgs() &&
2167
0
        SemaBuiltinConstantArg(TheCall, ArgNo, Result))
2168
0
      return true;
2169
0
    ICEArguments &= ~(1 << ArgNo);
2170
0
  }
2171
2172
0
  switch (BuiltinID) {
2173
0
  case Builtin::BI__builtin___CFStringMakeConstantString:
2174
    // CFStringMakeConstantString is currently not implemented for GOFF (i.e.,
2175
    // on z/OS) and for XCOFF (i.e., on AIX). Emit unsupported
2176
0
    if (CheckBuiltinTargetNotInUnsupported(
2177
0
            *this, BuiltinID, TheCall,
2178
0
            {llvm::Triple::GOFF, llvm::Triple::XCOFF}))
2179
0
      return ExprError();
2180
0
    assert(TheCall->getNumArgs() == 1 &&
2181
0
           "Wrong # arguments to builtin CFStringMakeConstantString");
2182
0
    if (CheckObjCString(TheCall->getArg(0)))
2183
0
      return ExprError();
2184
0
    break;
2185
0
  case Builtin::BI__builtin_ms_va_start:
2186
0
  case Builtin::BI__builtin_stdarg_start:
2187
0
  case Builtin::BI__builtin_va_start:
2188
0
    if (SemaBuiltinVAStart(BuiltinID, TheCall))
2189
0
      return ExprError();
2190
0
    break;
2191
0
  case Builtin::BI__va_start: {
2192
0
    switch (Context.getTargetInfo().getTriple().getArch()) {
2193
0
    case llvm::Triple::aarch64:
2194
0
    case llvm::Triple::arm:
2195
0
    case llvm::Triple::thumb:
2196
0
      if (SemaBuiltinVAStartARMMicrosoft(TheCall))
2197
0
        return ExprError();
2198
0
      break;
2199
0
    default:
2200
0
      if (SemaBuiltinVAStart(BuiltinID, TheCall))
2201
0
        return ExprError();
2202
0
      break;
2203
0
    }
2204
0
    break;
2205
0
  }
2206
2207
  // The acquire, release, and no fence variants are ARM and AArch64 only.
2208
0
  case Builtin::BI_interlockedbittestandset_acq:
2209
0
  case Builtin::BI_interlockedbittestandset_rel:
2210
0
  case Builtin::BI_interlockedbittestandset_nf:
2211
0
  case Builtin::BI_interlockedbittestandreset_acq:
2212
0
  case Builtin::BI_interlockedbittestandreset_rel:
2213
0
  case Builtin::BI_interlockedbittestandreset_nf:
2214
0
    if (CheckBuiltinTargetInSupported(
2215
0
            *this, BuiltinID, TheCall,
2216
0
            {llvm::Triple::arm, llvm::Triple::thumb, llvm::Triple::aarch64}))
2217
0
      return ExprError();
2218
0
    break;
2219
2220
  // The 64-bit bittest variants are x64, ARM, and AArch64 only.
2221
0
  case Builtin::BI_bittest64:
2222
0
  case Builtin::BI_bittestandcomplement64:
2223
0
  case Builtin::BI_bittestandreset64:
2224
0
  case Builtin::BI_bittestandset64:
2225
0
  case Builtin::BI_interlockedbittestandreset64:
2226
0
  case Builtin::BI_interlockedbittestandset64:
2227
0
    if (CheckBuiltinTargetInSupported(*this, BuiltinID, TheCall,
2228
0
                                      {llvm::Triple::x86_64, llvm::Triple::arm,
2229
0
                                       llvm::Triple::thumb,
2230
0
                                       llvm::Triple::aarch64}))
2231
0
      return ExprError();
2232
0
    break;
2233
2234
0
  case Builtin::BI__builtin_set_flt_rounds:
2235
0
    if (CheckBuiltinTargetInSupported(*this, BuiltinID, TheCall,
2236
0
                                      {llvm::Triple::x86, llvm::Triple::x86_64,
2237
0
                                       llvm::Triple::arm, llvm::Triple::thumb,
2238
0
                                       llvm::Triple::aarch64}))
2239
0
      return ExprError();
2240
0
    break;
2241
2242
0
  case Builtin::BI__builtin_isgreater:
2243
0
  case Builtin::BI__builtin_isgreaterequal:
2244
0
  case Builtin::BI__builtin_isless:
2245
0
  case Builtin::BI__builtin_islessequal:
2246
0
  case Builtin::BI__builtin_islessgreater:
2247
0
  case Builtin::BI__builtin_isunordered:
2248
0
    if (SemaBuiltinUnorderedCompare(TheCall))
2249
0
      return ExprError();
2250
0
    break;
2251
0
  case Builtin::BI__builtin_fpclassify:
2252
0
    if (SemaBuiltinFPClassification(TheCall, 6))
2253
0
      return ExprError();
2254
0
    break;
2255
0
  case Builtin::BI__builtin_isfpclass:
2256
0
    if (SemaBuiltinFPClassification(TheCall, 2))
2257
0
      return ExprError();
2258
0
    break;
2259
0
  case Builtin::BI__builtin_isfinite:
2260
0
  case Builtin::BI__builtin_isinf:
2261
0
  case Builtin::BI__builtin_isinf_sign:
2262
0
  case Builtin::BI__builtin_isnan:
2263
0
  case Builtin::BI__builtin_issignaling:
2264
0
  case Builtin::BI__builtin_isnormal:
2265
0
  case Builtin::BI__builtin_issubnormal:
2266
0
  case Builtin::BI__builtin_iszero:
2267
0
  case Builtin::BI__builtin_signbit:
2268
0
  case Builtin::BI__builtin_signbitf:
2269
0
  case Builtin::BI__builtin_signbitl:
2270
0
    if (SemaBuiltinFPClassification(TheCall, 1))
2271
0
      return ExprError();
2272
0
    break;
2273
0
  case Builtin::BI__builtin_shufflevector:
2274
0
    return SemaBuiltinShuffleVector(TheCall);
2275
    // TheCall will be freed by the smart pointer here, but that's fine, since
2276
    // SemaBuiltinShuffleVector guts it, but then doesn't release it.
2277
0
  case Builtin::BI__builtin_prefetch:
2278
0
    if (SemaBuiltinPrefetch(TheCall))
2279
0
      return ExprError();
2280
0
    break;
2281
0
  case Builtin::BI__builtin_alloca_with_align:
2282
0
  case Builtin::BI__builtin_alloca_with_align_uninitialized:
2283
0
    if (SemaBuiltinAllocaWithAlign(TheCall))
2284
0
      return ExprError();
2285
0
    [[fallthrough]];
2286
0
  case Builtin::BI__builtin_alloca:
2287
0
  case Builtin::BI__builtin_alloca_uninitialized:
2288
0
    Diag(TheCall->getBeginLoc(), diag::warn_alloca)
2289
0
        << TheCall->getDirectCallee();
2290
0
    break;
2291
0
  case Builtin::BI__arithmetic_fence:
2292
0
    if (SemaBuiltinArithmeticFence(TheCall))
2293
0
      return ExprError();
2294
0
    break;
2295
0
  case Builtin::BI__assume:
2296
0
  case Builtin::BI__builtin_assume:
2297
0
    if (SemaBuiltinAssume(TheCall))
2298
0
      return ExprError();
2299
0
    break;
2300
0
  case Builtin::BI__builtin_assume_aligned:
2301
0
    if (SemaBuiltinAssumeAligned(TheCall))
2302
0
      return ExprError();
2303
0
    break;
2304
0
  case Builtin::BI__builtin_dynamic_object_size:
2305
0
  case Builtin::BI__builtin_object_size:
2306
0
    if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 3))
2307
0
      return ExprError();
2308
0
    break;
2309
0
  case Builtin::BI__builtin_longjmp:
2310
0
    if (SemaBuiltinLongjmp(TheCall))
2311
0
      return ExprError();
2312
0
    break;
2313
0
  case Builtin::BI__builtin_setjmp:
2314
0
    if (SemaBuiltinSetjmp(TheCall))
2315
0
      return ExprError();
2316
0
    break;
2317
0
  case Builtin::BI__builtin_classify_type:
2318
0
    if (checkArgCount(*this, TheCall, 1)) return true;
2319
0
    TheCall->setType(Context.IntTy);
2320
0
    break;
2321
0
  case Builtin::BI__builtin_complex:
2322
0
    if (SemaBuiltinComplex(TheCall))
2323
0
      return ExprError();
2324
0
    break;
2325
0
  case Builtin::BI__builtin_constant_p: {
2326
0
    if (checkArgCount(*this, TheCall, 1)) return true;
2327
0
    ExprResult Arg = DefaultFunctionArrayLvalueConversion(TheCall->getArg(0));
2328
0
    if (Arg.isInvalid()) return true;
2329
0
    TheCall->setArg(0, Arg.get());
2330
0
    TheCall->setType(Context.IntTy);
2331
0
    break;
2332
0
  }
2333
0
  case Builtin::BI__builtin_launder:
2334
0
    return SemaBuiltinLaunder(*this, TheCall);
2335
0
  case Builtin::BI__sync_fetch_and_add:
2336
0
  case Builtin::BI__sync_fetch_and_add_1:
2337
0
  case Builtin::BI__sync_fetch_and_add_2:
2338
0
  case Builtin::BI__sync_fetch_and_add_4:
2339
0
  case Builtin::BI__sync_fetch_and_add_8:
2340
0
  case Builtin::BI__sync_fetch_and_add_16:
2341
0
  case Builtin::BI__sync_fetch_and_sub:
2342
0
  case Builtin::BI__sync_fetch_and_sub_1:
2343
0
  case Builtin::BI__sync_fetch_and_sub_2:
2344
0
  case Builtin::BI__sync_fetch_and_sub_4:
2345
0
  case Builtin::BI__sync_fetch_and_sub_8:
2346
0
  case Builtin::BI__sync_fetch_and_sub_16:
2347
0
  case Builtin::BI__sync_fetch_and_or:
2348
0
  case Builtin::BI__sync_fetch_and_or_1:
2349
0
  case Builtin::BI__sync_fetch_and_or_2:
2350
0
  case Builtin::BI__sync_fetch_and_or_4:
2351
0
  case Builtin::BI__sync_fetch_and_or_8:
2352
0
  case Builtin::BI__sync_fetch_and_or_16:
2353
0
  case Builtin::BI__sync_fetch_and_and:
2354
0
  case Builtin::BI__sync_fetch_and_and_1:
2355
0
  case Builtin::BI__sync_fetch_and_and_2:
2356
0
  case Builtin::BI__sync_fetch_and_and_4:
2357
0
  case Builtin::BI__sync_fetch_and_and_8:
2358
0
  case Builtin::BI__sync_fetch_and_and_16:
2359
0
  case Builtin::BI__sync_fetch_and_xor:
2360
0
  case Builtin::BI__sync_fetch_and_xor_1:
2361
0
  case Builtin::BI__sync_fetch_and_xor_2:
2362
0
  case Builtin::BI__sync_fetch_and_xor_4:
2363
0
  case Builtin::BI__sync_fetch_and_xor_8:
2364
0
  case Builtin::BI__sync_fetch_and_xor_16:
2365
0
  case Builtin::BI__sync_fetch_and_nand:
2366
0
  case Builtin::BI__sync_fetch_and_nand_1:
2367
0
  case Builtin::BI__sync_fetch_and_nand_2:
2368
0
  case Builtin::BI__sync_fetch_and_nand_4:
2369
0
  case Builtin::BI__sync_fetch_and_nand_8:
2370
0
  case Builtin::BI__sync_fetch_and_nand_16:
2371
0
  case Builtin::BI__sync_add_and_fetch:
2372
0
  case Builtin::BI__sync_add_and_fetch_1:
2373
0
  case Builtin::BI__sync_add_and_fetch_2:
2374
0
  case Builtin::BI__sync_add_and_fetch_4:
2375
0
  case Builtin::BI__sync_add_and_fetch_8:
2376
0
  case Builtin::BI__sync_add_and_fetch_16:
2377
0
  case Builtin::BI__sync_sub_and_fetch:
2378
0
  case Builtin::BI__sync_sub_and_fetch_1:
2379
0
  case Builtin::BI__sync_sub_and_fetch_2:
2380
0
  case Builtin::BI__sync_sub_and_fetch_4:
2381
0
  case Builtin::BI__sync_sub_and_fetch_8:
2382
0
  case Builtin::BI__sync_sub_and_fetch_16:
2383
0
  case Builtin::BI__sync_and_and_fetch:
2384
0
  case Builtin::BI__sync_and_and_fetch_1:
2385
0
  case Builtin::BI__sync_and_and_fetch_2:
2386
0
  case Builtin::BI__sync_and_and_fetch_4:
2387
0
  case Builtin::BI__sync_and_and_fetch_8:
2388
0
  case Builtin::BI__sync_and_and_fetch_16:
2389
0
  case Builtin::BI__sync_or_and_fetch:
2390
0
  case Builtin::BI__sync_or_and_fetch_1:
2391
0
  case Builtin::BI__sync_or_and_fetch_2:
2392
0
  case Builtin::BI__sync_or_and_fetch_4:
2393
0
  case Builtin::BI__sync_or_and_fetch_8:
2394
0
  case Builtin::BI__sync_or_and_fetch_16:
2395
0
  case Builtin::BI__sync_xor_and_fetch:
2396
0
  case Builtin::BI__sync_xor_and_fetch_1:
2397
0
  case Builtin::BI__sync_xor_and_fetch_2:
2398
0
  case Builtin::BI__sync_xor_and_fetch_4:
2399
0
  case Builtin::BI__sync_xor_and_fetch_8:
2400
0
  case Builtin::BI__sync_xor_and_fetch_16:
2401
0
  case Builtin::BI__sync_nand_and_fetch:
2402
0
  case Builtin::BI__sync_nand_and_fetch_1:
2403
0
  case Builtin::BI__sync_nand_and_fetch_2:
2404
0
  case Builtin::BI__sync_nand_and_fetch_4:
2405
0
  case Builtin::BI__sync_nand_and_fetch_8:
2406
0
  case Builtin::BI__sync_nand_and_fetch_16:
2407
0
  case Builtin::BI__sync_val_compare_and_swap:
2408
0
  case Builtin::BI__sync_val_compare_and_swap_1:
2409
0
  case Builtin::BI__sync_val_compare_and_swap_2:
2410
0
  case Builtin::BI__sync_val_compare_and_swap_4:
2411
0
  case Builtin::BI__sync_val_compare_and_swap_8:
2412
0
  case Builtin::BI__sync_val_compare_and_swap_16:
2413
0
  case Builtin::BI__sync_bool_compare_and_swap:
2414
0
  case Builtin::BI__sync_bool_compare_and_swap_1:
2415
0
  case Builtin::BI__sync_bool_compare_and_swap_2:
2416
0
  case Builtin::BI__sync_bool_compare_and_swap_4:
2417
0
  case Builtin::BI__sync_bool_compare_and_swap_8:
2418
0
  case Builtin::BI__sync_bool_compare_and_swap_16:
2419
0
  case Builtin::BI__sync_lock_test_and_set:
2420
0
  case Builtin::BI__sync_lock_test_and_set_1:
2421
0
  case Builtin::BI__sync_lock_test_and_set_2:
2422
0
  case Builtin::BI__sync_lock_test_and_set_4:
2423
0
  case Builtin::BI__sync_lock_test_and_set_8:
2424
0
  case Builtin::BI__sync_lock_test_and_set_16:
2425
0
  case Builtin::BI__sync_lock_release:
2426
0
  case Builtin::BI__sync_lock_release_1:
2427
0
  case Builtin::BI__sync_lock_release_2:
2428
0
  case Builtin::BI__sync_lock_release_4:
2429
0
  case Builtin::BI__sync_lock_release_8:
2430
0
  case Builtin::BI__sync_lock_release_16:
2431
0
  case Builtin::BI__sync_swap:
2432
0
  case Builtin::BI__sync_swap_1:
2433
0
  case Builtin::BI__sync_swap_2:
2434
0
  case Builtin::BI__sync_swap_4:
2435
0
  case Builtin::BI__sync_swap_8:
2436
0
  case Builtin::BI__sync_swap_16:
2437
0
    return SemaBuiltinAtomicOverloaded(TheCallResult);
2438
0
  case Builtin::BI__sync_synchronize:
2439
0
    Diag(TheCall->getBeginLoc(), diag::warn_atomic_implicit_seq_cst)
2440
0
        << TheCall->getCallee()->getSourceRange();
2441
0
    break;
2442
0
  case Builtin::BI__builtin_nontemporal_load:
2443
0
  case Builtin::BI__builtin_nontemporal_store:
2444
0
    return SemaBuiltinNontemporalOverloaded(TheCallResult);
2445
0
  case Builtin::BI__builtin_memcpy_inline: {
2446
0
    clang::Expr *SizeOp = TheCall->getArg(2);
2447
    // We warn about copying to or from `nullptr` pointers when `size` is
2448
    // greater than 0. When `size` is value dependent we cannot evaluate its
2449
    // value so we bail out.
2450
0
    if (SizeOp->isValueDependent())
2451
0
      break;
2452
0
    if (!SizeOp->EvaluateKnownConstInt(Context).isZero()) {
2453
0
      CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
2454
0
      CheckNonNullArgument(*this, TheCall->getArg(1), TheCall->getExprLoc());
2455
0
    }
2456
0
    break;
2457
0
  }
2458
0
  case Builtin::BI__builtin_memset_inline: {
2459
0
    clang::Expr *SizeOp = TheCall->getArg(2);
2460
    // We warn about filling to `nullptr` pointers when `size` is greater than
2461
    // 0. When `size` is value dependent we cannot evaluate its value so we bail
2462
    // out.
2463
0
    if (SizeOp->isValueDependent())
2464
0
      break;
2465
0
    if (!SizeOp->EvaluateKnownConstInt(Context).isZero())
2466
0
      CheckNonNullArgument(*this, TheCall->getArg(0), TheCall->getExprLoc());
2467
0
    break;
2468
0
  }
2469
0
#define BUILTIN(ID, TYPE, ATTRS)
2470
0
#define ATOMIC_BUILTIN(ID, TYPE, ATTRS) \
2471
0
  case Builtin::BI##ID: \
2472
0
    return SemaAtomicOpsOverloaded(TheCallResult, AtomicExpr::AO##ID);
2473
0
#include "clang/Basic/Builtins.def"
2474
0
  case Builtin::BI__annotation:
2475
0
    if (SemaBuiltinMSVCAnnotation(*this, TheCall))
2476
0
      return ExprError();
2477
0
    break;
2478
0
  case Builtin::BI__builtin_annotation:
2479
0
    if (SemaBuiltinAnnotation(*this, TheCall))
2480
0
      return ExprError();
2481
0
    break;
2482
0
  case Builtin::BI__builtin_addressof:
2483
0
    if (SemaBuiltinAddressof(*this, TheCall))
2484
0
      return ExprError();
2485
0
    break;
2486
0
  case Builtin::BI__builtin_function_start:
2487
0
    if (SemaBuiltinFunctionStart(*this, TheCall))
2488
0
      return ExprError();
2489
0
    break;
2490
0
  case Builtin::BI__builtin_is_aligned:
2491
0
  case Builtin::BI__builtin_align_up:
2492
0
  case Builtin::BI__builtin_align_down:
2493
0
    if (SemaBuiltinAlignment(*this, TheCall, BuiltinID))
2494
0
      return ExprError();
2495
0
    break;
2496
0
  case Builtin::BI__builtin_add_overflow:
2497
0
  case Builtin::BI__builtin_sub_overflow:
2498
0
  case Builtin::BI__builtin_mul_overflow:
2499
0
    if (SemaBuiltinOverflow(*this, TheCall, BuiltinID))
2500
0
      return ExprError();
2501
0
    break;
2502
0
  case Builtin::BI__builtin_operator_new:
2503
0
  case Builtin::BI__builtin_operator_delete: {
2504
0
    bool IsDelete = BuiltinID == Builtin::BI__builtin_operator_delete;
2505
0
    ExprResult Res =
2506
0
        SemaBuiltinOperatorNewDeleteOverloaded(TheCallResult, IsDelete);
2507
0
    if (Res.isInvalid())
2508
0
      CorrectDelayedTyposInExpr(TheCallResult.get());
2509
0
    return Res;
2510
0
  }
2511
0
  case Builtin::BI__builtin_dump_struct:
2512
0
    return SemaBuiltinDumpStruct(*this, TheCall);
2513
0
  case Builtin::BI__builtin_expect_with_probability: {
2514
    // We first want to ensure we are called with 3 arguments
2515
0
    if (checkArgCount(*this, TheCall, 3))
2516
0
      return ExprError();
2517
    // then check probability is constant float in range [0.0, 1.0]
2518
0
    const Expr *ProbArg = TheCall->getArg(2);
2519
0
    SmallVector<PartialDiagnosticAt, 8> Notes;
2520
0
    Expr::EvalResult Eval;
2521
0
    Eval.Diag = &Notes;
2522
0
    if ((!ProbArg->EvaluateAsConstantExpr(Eval, Context)) ||
2523
0
        !Eval.Val.isFloat()) {
2524
0
      Diag(ProbArg->getBeginLoc(), diag::err_probability_not_constant_float)
2525
0
          << ProbArg->getSourceRange();
2526
0
      for (const PartialDiagnosticAt &PDiag : Notes)
2527
0
        Diag(PDiag.first, PDiag.second);
2528
0
      return ExprError();
2529
0
    }
2530
0
    llvm::APFloat Probability = Eval.Val.getFloat();
2531
0
    bool LoseInfo = false;
2532
0
    Probability.convert(llvm::APFloat::IEEEdouble(),
2533
0
                        llvm::RoundingMode::Dynamic, &LoseInfo);
2534
0
    if (!(Probability >= llvm::APFloat(0.0) &&
2535
0
          Probability <= llvm::APFloat(1.0))) {
2536
0
      Diag(ProbArg->getBeginLoc(), diag::err_probability_out_of_range)
2537
0
          << ProbArg->getSourceRange();
2538
0
      return ExprError();
2539
0
    }
2540
0
    break;
2541
0
  }
2542
0
  case Builtin::BI__builtin_preserve_access_index:
2543
0
    if (SemaBuiltinPreserveAI(*this, TheCall))
2544
0
      return ExprError();
2545
0
    break;
2546
0
  case Builtin::BI__builtin_call_with_static_chain:
2547
0
    if (SemaBuiltinCallWithStaticChain(*this, TheCall))
2548
0
      return ExprError();
2549
0
    break;
2550
0
  case Builtin::BI__exception_code:
2551
0
  case Builtin::BI_exception_code:
2552
0
    if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHExceptScope,
2553
0
                                 diag::err_seh___except_block))
2554
0
      return ExprError();
2555
0
    break;
2556
0
  case Builtin::BI__exception_info:
2557
0
  case Builtin::BI_exception_info:
2558
0
    if (SemaBuiltinSEHScopeCheck(*this, TheCall, Scope::SEHFilterScope,
2559
0
                                 diag::err_seh___except_filter))
2560
0
      return ExprError();
2561
0
    break;
2562
0
  case Builtin::BI__GetExceptionInfo:
2563
0
    if (checkArgCount(*this, TheCall, 1))
2564
0
      return ExprError();
2565
2566
0
    if (CheckCXXThrowOperand(
2567
0
            TheCall->getBeginLoc(),
2568
0
            Context.getExceptionObjectType(FDecl->getParamDecl(0)->getType()),
2569
0
            TheCall))
2570
0
      return ExprError();
2571
2572
0
    TheCall->setType(Context.VoidPtrTy);
2573
0
    break;
2574
0
  case Builtin::BIaddressof:
2575
0
  case Builtin::BI__addressof:
2576
0
  case Builtin::BIforward:
2577
0
  case Builtin::BIforward_like:
2578
0
  case Builtin::BImove:
2579
0
  case Builtin::BImove_if_noexcept:
2580
0
  case Builtin::BIas_const: {
2581
    // These are all expected to be of the form
2582
    //   T &/&&/* f(U &/&&)
2583
    // where T and U only differ in qualification.
2584
0
    if (checkArgCount(*this, TheCall, 1))
2585
0
      return ExprError();
2586
0
    QualType Param = FDecl->getParamDecl(0)->getType();
2587
0
    QualType Result = FDecl->getReturnType();
2588
0
    bool ReturnsPointer = BuiltinID == Builtin::BIaddressof ||
2589
0
                          BuiltinID == Builtin::BI__addressof;
2590
0
    if (!(Param->isReferenceType() &&
2591
0
          (ReturnsPointer ? Result->isAnyPointerType()
2592
0
                          : Result->isReferenceType()) &&
2593
0
          Context.hasSameUnqualifiedType(Param->getPointeeType(),
2594
0
                                         Result->getPointeeType()))) {
2595
0
      Diag(TheCall->getBeginLoc(), diag::err_builtin_move_forward_unsupported)
2596
0
          << FDecl;
2597
0
      return ExprError();
2598
0
    }
2599
0
    break;
2600
0
  }
2601
  // OpenCL v2.0, s6.13.16 - Pipe functions
2602
0
  case Builtin::BIread_pipe:
2603
0
  case Builtin::BIwrite_pipe:
2604
    // Since those two functions are declared with var args, we need a semantic
2605
    // check for the argument.
2606
0
    if (SemaBuiltinRWPipe(*this, TheCall))
2607
0
      return ExprError();
2608
0
    break;
2609
0
  case Builtin::BIreserve_read_pipe:
2610
0
  case Builtin::BIreserve_write_pipe:
2611
0
  case Builtin::BIwork_group_reserve_read_pipe:
2612
0
  case Builtin::BIwork_group_reserve_write_pipe:
2613
0
    if (SemaBuiltinReserveRWPipe(*this, TheCall))
2614
0
      return ExprError();
2615
0
    break;
2616
0
  case Builtin::BIsub_group_reserve_read_pipe:
2617
0
  case Builtin::BIsub_group_reserve_write_pipe:
2618
0
    if (checkOpenCLSubgroupExt(*this, TheCall) ||
2619
0
        SemaBuiltinReserveRWPipe(*this, TheCall))
2620
0
      return ExprError();
2621
0
    break;
2622
0
  case Builtin::BIcommit_read_pipe:
2623
0
  case Builtin::BIcommit_write_pipe:
2624
0
  case Builtin::BIwork_group_commit_read_pipe:
2625
0
  case Builtin::BIwork_group_commit_write_pipe:
2626
0
    if (SemaBuiltinCommitRWPipe(*this, TheCall))
2627
0
      return ExprError();
2628
0
    break;
2629
0
  case Builtin::BIsub_group_commit_read_pipe:
2630
0
  case Builtin::BIsub_group_commit_write_pipe:
2631
0
    if (checkOpenCLSubgroupExt(*this, TheCall) ||
2632
0
        SemaBuiltinCommitRWPipe(*this, TheCall))
2633
0
      return ExprError();
2634
0
    break;
2635
0
  case Builtin::BIget_pipe_num_packets:
2636
0
  case Builtin::BIget_pipe_max_packets:
2637
0
    if (SemaBuiltinPipePackets(*this, TheCall))
2638
0
      return ExprError();
2639
0
    break;
2640
0
  case Builtin::BIto_global:
2641
0
  case Builtin::BIto_local:
2642
0
  case Builtin::BIto_private:
2643
0
    if (SemaOpenCLBuiltinToAddr(*this, BuiltinID, TheCall))
2644
0
      return ExprError();
2645
0
    break;
2646
  // OpenCL v2.0, s6.13.17 - Enqueue kernel functions.
2647
0
  case Builtin::BIenqueue_kernel:
2648
0
    if (SemaOpenCLBuiltinEnqueueKernel(*this, TheCall))
2649
0
      return ExprError();
2650
0
    break;
2651
0
  case Builtin::BIget_kernel_work_group_size:
2652
0
  case Builtin::BIget_kernel_preferred_work_group_size_multiple:
2653
0
    if (SemaOpenCLBuiltinKernelWorkGroupSize(*this, TheCall))
2654
0
      return ExprError();
2655
0
    break;
2656
0
  case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
2657
0
  case Builtin::BIget_kernel_sub_group_count_for_ndrange:
2658
0
    if (SemaOpenCLBuiltinNDRangeAndBlock(*this, TheCall))
2659
0
      return ExprError();
2660
0
    break;
2661
0
  case Builtin::BI__builtin_os_log_format:
2662
0
    Cleanup.setExprNeedsCleanups(true);
2663
0
    [[fallthrough]];
2664
0
  case Builtin::BI__builtin_os_log_format_buffer_size:
2665
0
    if (SemaBuiltinOSLogFormat(TheCall))
2666
0
      return ExprError();
2667
0
    break;
2668
0
  case Builtin::BI__builtin_frame_address:
2669
0
  case Builtin::BI__builtin_return_address: {
2670
0
    if (SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xFFFF))
2671
0
      return ExprError();
2672
2673
    // -Wframe-address warning if non-zero passed to builtin
2674
    // return/frame address.
2675
0
    Expr::EvalResult Result;
2676
0
    if (!TheCall->getArg(0)->isValueDependent() &&
2677
0
        TheCall->getArg(0)->EvaluateAsInt(Result, getASTContext()) &&
2678
0
        Result.Val.getInt() != 0)
2679
0
      Diag(TheCall->getBeginLoc(), diag::warn_frame_address)
2680
0
          << ((BuiltinID == Builtin::BI__builtin_return_address)
2681
0
                  ? "__builtin_return_address"
2682
0
                  : "__builtin_frame_address")
2683
0
          << TheCall->getSourceRange();
2684
0
    break;
2685
0
  }
2686
2687
0
  case Builtin::BI__builtin_nondeterministic_value: {
2688
0
    if (SemaBuiltinNonDeterministicValue(TheCall))
2689
0
      return ExprError();
2690
0
    break;
2691
0
  }
2692
2693
  // __builtin_elementwise_abs restricts the element type to signed integers or
2694
  // floating point types only.
2695
0
  case Builtin::BI__builtin_elementwise_abs: {
2696
0
    if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2697
0
      return ExprError();
2698
2699
0
    QualType ArgTy = TheCall->getArg(0)->getType();
2700
0
    QualType EltTy = ArgTy;
2701
2702
0
    if (auto *VecTy = EltTy->getAs<VectorType>())
2703
0
      EltTy = VecTy->getElementType();
2704
0
    if (EltTy->isUnsignedIntegerType()) {
2705
0
      Diag(TheCall->getArg(0)->getBeginLoc(),
2706
0
           diag::err_builtin_invalid_arg_type)
2707
0
          << 1 << /* signed integer or float ty*/ 3 << ArgTy;
2708
0
      return ExprError();
2709
0
    }
2710
0
    break;
2711
0
  }
2712
2713
  // These builtins restrict the element type to floating point
2714
  // types only.
2715
0
  case Builtin::BI__builtin_elementwise_ceil:
2716
0
  case Builtin::BI__builtin_elementwise_cos:
2717
0
  case Builtin::BI__builtin_elementwise_exp:
2718
0
  case Builtin::BI__builtin_elementwise_exp2:
2719
0
  case Builtin::BI__builtin_elementwise_floor:
2720
0
  case Builtin::BI__builtin_elementwise_log:
2721
0
  case Builtin::BI__builtin_elementwise_log2:
2722
0
  case Builtin::BI__builtin_elementwise_log10:
2723
0
  case Builtin::BI__builtin_elementwise_roundeven:
2724
0
  case Builtin::BI__builtin_elementwise_round:
2725
0
  case Builtin::BI__builtin_elementwise_rint:
2726
0
  case Builtin::BI__builtin_elementwise_nearbyint:
2727
0
  case Builtin::BI__builtin_elementwise_sin:
2728
0
  case Builtin::BI__builtin_elementwise_sqrt:
2729
0
  case Builtin::BI__builtin_elementwise_trunc:
2730
0
  case Builtin::BI__builtin_elementwise_canonicalize: {
2731
0
    if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2732
0
      return ExprError();
2733
2734
0
    QualType ArgTy = TheCall->getArg(0)->getType();
2735
0
    if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(),
2736
0
                                      ArgTy, 1))
2737
0
      return ExprError();
2738
0
    break;
2739
0
  }
2740
0
  case Builtin::BI__builtin_elementwise_fma: {
2741
0
    if (SemaBuiltinElementwiseTernaryMath(TheCall))
2742
0
      return ExprError();
2743
0
    break;
2744
0
  }
2745
2746
  // These builtins restrict the element type to floating point
2747
  // types only, and take in two arguments.
2748
0
  case Builtin::BI__builtin_elementwise_pow: {
2749
0
    if (SemaBuiltinElementwiseMath(TheCall))
2750
0
      return ExprError();
2751
2752
0
    QualType ArgTy = TheCall->getArg(0)->getType();
2753
0
    if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(),
2754
0
                                      ArgTy, 1) ||
2755
0
        checkFPMathBuiltinElementType(*this, TheCall->getArg(1)->getBeginLoc(),
2756
0
                                      ArgTy, 2))
2757
0
      return ExprError();
2758
0
    break;
2759
0
  }
2760
2761
  // These builtins restrict the element type to integer
2762
  // types only.
2763
0
  case Builtin::BI__builtin_elementwise_add_sat:
2764
0
  case Builtin::BI__builtin_elementwise_sub_sat: {
2765
0
    if (SemaBuiltinElementwiseMath(TheCall))
2766
0
      return ExprError();
2767
2768
0
    const Expr *Arg = TheCall->getArg(0);
2769
0
    QualType ArgTy = Arg->getType();
2770
0
    QualType EltTy = ArgTy;
2771
2772
0
    if (auto *VecTy = EltTy->getAs<VectorType>())
2773
0
      EltTy = VecTy->getElementType();
2774
2775
0
    if (!EltTy->isIntegerType()) {
2776
0
      Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2777
0
          << 1 << /* integer ty */ 6 << ArgTy;
2778
0
      return ExprError();
2779
0
    }
2780
0
    break;
2781
0
  }
2782
2783
0
  case Builtin::BI__builtin_elementwise_min:
2784
0
  case Builtin::BI__builtin_elementwise_max:
2785
0
    if (SemaBuiltinElementwiseMath(TheCall))
2786
0
      return ExprError();
2787
0
    break;
2788
2789
0
  case Builtin::BI__builtin_elementwise_bitreverse: {
2790
0
    if (PrepareBuiltinElementwiseMathOneArgCall(TheCall))
2791
0
      return ExprError();
2792
2793
0
    const Expr *Arg = TheCall->getArg(0);
2794
0
    QualType ArgTy = Arg->getType();
2795
0
    QualType EltTy = ArgTy;
2796
2797
0
    if (auto *VecTy = EltTy->getAs<VectorType>())
2798
0
      EltTy = VecTy->getElementType();
2799
2800
0
    if (!EltTy->isIntegerType()) {
2801
0
      Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2802
0
          << 1 << /* integer ty */ 6 << ArgTy;
2803
0
      return ExprError();
2804
0
    }
2805
0
    break;
2806
0
  }
2807
2808
0
  case Builtin::BI__builtin_elementwise_copysign: {
2809
0
    if (checkArgCount(*this, TheCall, 2))
2810
0
      return ExprError();
2811
2812
0
    ExprResult Magnitude = UsualUnaryConversions(TheCall->getArg(0));
2813
0
    ExprResult Sign = UsualUnaryConversions(TheCall->getArg(1));
2814
0
    if (Magnitude.isInvalid() || Sign.isInvalid())
2815
0
      return ExprError();
2816
2817
0
    QualType MagnitudeTy = Magnitude.get()->getType();
2818
0
    QualType SignTy = Sign.get()->getType();
2819
0
    if (checkFPMathBuiltinElementType(*this, TheCall->getArg(0)->getBeginLoc(),
2820
0
                                      MagnitudeTy, 1) ||
2821
0
        checkFPMathBuiltinElementType(*this, TheCall->getArg(1)->getBeginLoc(),
2822
0
                                      SignTy, 2)) {
2823
0
      return ExprError();
2824
0
    }
2825
2826
0
    if (MagnitudeTy.getCanonicalType() != SignTy.getCanonicalType()) {
2827
0
      return Diag(Sign.get()->getBeginLoc(),
2828
0
                  diag::err_typecheck_call_different_arg_types)
2829
0
             << MagnitudeTy << SignTy;
2830
0
    }
2831
2832
0
    TheCall->setArg(0, Magnitude.get());
2833
0
    TheCall->setArg(1, Sign.get());
2834
0
    TheCall->setType(Magnitude.get()->getType());
2835
0
    break;
2836
0
  }
2837
0
  case Builtin::BI__builtin_reduce_max:
2838
0
  case Builtin::BI__builtin_reduce_min: {
2839
0
    if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2840
0
      return ExprError();
2841
2842
0
    const Expr *Arg = TheCall->getArg(0);
2843
0
    const auto *TyA = Arg->getType()->getAs<VectorType>();
2844
0
    if (!TyA) {
2845
0
      Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2846
0
          << 1 << /* vector ty*/ 4 << Arg->getType();
2847
0
      return ExprError();
2848
0
    }
2849
2850
0
    TheCall->setType(TyA->getElementType());
2851
0
    break;
2852
0
  }
2853
2854
  // These builtins support vectors of integers only.
2855
  // TODO: ADD/MUL should support floating-point types.
2856
0
  case Builtin::BI__builtin_reduce_add:
2857
0
  case Builtin::BI__builtin_reduce_mul:
2858
0
  case Builtin::BI__builtin_reduce_xor:
2859
0
  case Builtin::BI__builtin_reduce_or:
2860
0
  case Builtin::BI__builtin_reduce_and: {
2861
0
    if (PrepareBuiltinReduceMathOneArgCall(TheCall))
2862
0
      return ExprError();
2863
2864
0
    const Expr *Arg = TheCall->getArg(0);
2865
0
    const auto *TyA = Arg->getType()->getAs<VectorType>();
2866
0
    if (!TyA || !TyA->getElementType()->isIntegerType()) {
2867
0
      Diag(Arg->getBeginLoc(), diag::err_builtin_invalid_arg_type)
2868
0
          << 1  << /* vector of integers */ 6 << Arg->getType();
2869
0
      return ExprError();
2870
0
    }
2871
0
    TheCall->setType(TyA->getElementType());
2872
0
    break;
2873
0
  }
2874
2875
0
  case Builtin::BI__builtin_matrix_transpose:
2876
0
    return SemaBuiltinMatrixTranspose(TheCall, TheCallResult);
2877
2878
0
  case Builtin::BI__builtin_matrix_column_major_load:
2879
0
    return SemaBuiltinMatrixColumnMajorLoad(TheCall, TheCallResult);
2880
2881
0
  case Builtin::BI__builtin_matrix_column_major_store:
2882
0
    return SemaBuiltinMatrixColumnMajorStore(TheCall, TheCallResult);
2883
2884
0
  case Builtin::BI__builtin_get_device_side_mangled_name: {
2885
0
    auto Check = [](CallExpr *TheCall) {
2886
0
      if (TheCall->getNumArgs() != 1)
2887
0
        return false;
2888
0
      auto *DRE = dyn_cast<DeclRefExpr>(TheCall->getArg(0)->IgnoreImpCasts());
2889
0
      if (!DRE)
2890
0
        return false;
2891
0
      auto *D = DRE->getDecl();
2892
0
      if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D))
2893
0
        return false;
2894
0
      return D->hasAttr<CUDAGlobalAttr>() || D->hasAttr<CUDADeviceAttr>() ||
2895
0
             D->hasAttr<CUDAConstantAttr>() || D->hasAttr<HIPManagedAttr>();
2896
0
    };
2897
0
    if (!Check(TheCall)) {
2898
0
      Diag(TheCall->getBeginLoc(),
2899
0
           diag::err_hip_invalid_args_builtin_mangled_name);
2900
0
      return ExprError();
2901
0
    }
2902
0
  }
2903
0
  }
2904
2905
  // Since the target specific builtins for each arch overlap, only check those
2906
  // of the arch we are compiling for.
2907
0
  if (Context.BuiltinInfo.isTSBuiltin(BuiltinID)) {
2908
0
    if (Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
2909
0
      assert(Context.getAuxTargetInfo() &&
2910
0
             "Aux Target Builtin, but not an aux target?");
2911
2912
0
      if (CheckTSBuiltinFunctionCall(
2913
0
              *Context.getAuxTargetInfo(),
2914
0
              Context.BuiltinInfo.getAuxBuiltinID(BuiltinID), TheCall))
2915
0
        return ExprError();
2916
0
    } else {
2917
0
      if (CheckTSBuiltinFunctionCall(Context.getTargetInfo(), BuiltinID,
2918
0
                                     TheCall))
2919
0
        return ExprError();
2920
0
    }
2921
0
  }
2922
2923
0
  return TheCallResult;
2924
0
}
2925
2926
// Get the valid immediate range for the specified NEON type code.
2927
0
static unsigned RFT(unsigned t, bool shift = false, bool ForceQuad = false) {
2928
0
  NeonTypeFlags Type(t);
2929
0
  int IsQuad = ForceQuad ? true : Type.isQuad();
2930
0
  switch (Type.getEltType()) {
2931
0
  case NeonTypeFlags::Int8:
2932
0
  case NeonTypeFlags::Poly8:
2933
0
    return shift ? 7 : (8 << IsQuad) - 1;
2934
0
  case NeonTypeFlags::Int16:
2935
0
  case NeonTypeFlags::Poly16:
2936
0
    return shift ? 15 : (4 << IsQuad) - 1;
2937
0
  case NeonTypeFlags::Int32:
2938
0
    return shift ? 31 : (2 << IsQuad) - 1;
2939
0
  case NeonTypeFlags::Int64:
2940
0
  case NeonTypeFlags::Poly64:
2941
0
    return shift ? 63 : (1 << IsQuad) - 1;
2942
0
  case NeonTypeFlags::Poly128:
2943
0
    return shift ? 127 : (1 << IsQuad) - 1;
2944
0
  case NeonTypeFlags::Float16:
2945
0
    assert(!shift && "cannot shift float types!");
2946
0
    return (4 << IsQuad) - 1;
2947
0
  case NeonTypeFlags::Float32:
2948
0
    assert(!shift && "cannot shift float types!");
2949
0
    return (2 << IsQuad) - 1;
2950
0
  case NeonTypeFlags::Float64:
2951
0
    assert(!shift && "cannot shift float types!");
2952
0
    return (1 << IsQuad) - 1;
2953
0
  case NeonTypeFlags::BFloat16:
2954
0
    assert(!shift && "cannot shift float types!");
2955
0
    return (4 << IsQuad) - 1;
2956
0
  }
2957
0
  llvm_unreachable("Invalid NeonTypeFlag!");
2958
0
}
2959
2960
/// getNeonEltType - Return the QualType corresponding to the elements of
2961
/// the vector type specified by the NeonTypeFlags.  This is used to check
2962
/// the pointer arguments for Neon load/store intrinsics.
2963
static QualType getNeonEltType(NeonTypeFlags Flags, ASTContext &Context,
2964
0
                               bool IsPolyUnsigned, bool IsInt64Long) {
2965
0
  switch (Flags.getEltType()) {
2966
0
  case NeonTypeFlags::Int8:
2967
0
    return Flags.isUnsigned() ? Context.UnsignedCharTy : Context.SignedCharTy;
2968
0
  case NeonTypeFlags::Int16:
2969
0
    return Flags.isUnsigned() ? Context.UnsignedShortTy : Context.ShortTy;
2970
0
  case NeonTypeFlags::Int32:
2971
0
    return Flags.isUnsigned() ? Context.UnsignedIntTy : Context.IntTy;
2972
0
  case NeonTypeFlags::Int64:
2973
0
    if (IsInt64Long)
2974
0
      return Flags.isUnsigned() ? Context.UnsignedLongTy : Context.LongTy;
2975
0
    else
2976
0
      return Flags.isUnsigned() ? Context.UnsignedLongLongTy
2977
0
                                : Context.LongLongTy;
2978
0
  case NeonTypeFlags::Poly8:
2979
0
    return IsPolyUnsigned ? Context.UnsignedCharTy : Context.SignedCharTy;
2980
0
  case NeonTypeFlags::Poly16:
2981
0
    return IsPolyUnsigned ? Context.UnsignedShortTy : Context.ShortTy;
2982
0
  case NeonTypeFlags::Poly64:
2983
0
    if (IsInt64Long)
2984
0
      return Context.UnsignedLongTy;
2985
0
    else
2986
0
      return Context.UnsignedLongLongTy;
2987
0
  case NeonTypeFlags::Poly128:
2988
0
    break;
2989
0
  case NeonTypeFlags::Float16:
2990
0
    return Context.HalfTy;
2991
0
  case NeonTypeFlags::Float32:
2992
0
    return Context.FloatTy;
2993
0
  case NeonTypeFlags::Float64:
2994
0
    return Context.DoubleTy;
2995
0
  case NeonTypeFlags::BFloat16:
2996
0
    return Context.BFloat16Ty;
2997
0
  }
2998
0
  llvm_unreachable("Invalid NeonTypeFlag!");
2999
0
}
3000
3001
enum ArmStreamingType {
3002
  ArmNonStreaming,
3003
  ArmStreaming,
3004
  ArmStreamingCompatible,
3005
  ArmStreamingOrSVE2p1
3006
};
3007
3008
bool Sema::ParseSVEImmChecks(
3009
0
    CallExpr *TheCall, SmallVector<std::tuple<int, int, int>, 3> &ImmChecks) {
3010
  // Perform all the immediate checks for this builtin call.
3011
0
  bool HasError = false;
3012
0
  for (auto &I : ImmChecks) {
3013
0
    int ArgNum, CheckTy, ElementSizeInBits;
3014
0
    std::tie(ArgNum, CheckTy, ElementSizeInBits) = I;
3015
3016
0
    typedef bool (*OptionSetCheckFnTy)(int64_t Value);
3017
3018
    // Function that checks whether the operand (ArgNum) is an immediate
3019
    // that is one of the predefined values.
3020
0
    auto CheckImmediateInSet = [&](OptionSetCheckFnTy CheckImm,
3021
0
                                   int ErrDiag) -> bool {
3022
      // We can't check the value of a dependent argument.
3023
0
      Expr *Arg = TheCall->getArg(ArgNum);
3024
0
      if (Arg->isTypeDependent() || Arg->isValueDependent())
3025
0
        return false;
3026
3027
      // Check constant-ness first.
3028
0
      llvm::APSInt Imm;
3029
0
      if (SemaBuiltinConstantArg(TheCall, ArgNum, Imm))
3030
0
        return true;
3031
3032
0
      if (!CheckImm(Imm.getSExtValue()))
3033
0
        return Diag(TheCall->getBeginLoc(), ErrDiag) << Arg->getSourceRange();
3034
0
      return false;
3035
0
    };
3036
3037
0
    switch ((SVETypeFlags::ImmCheckType)CheckTy) {
3038
0
    case SVETypeFlags::ImmCheck0_31:
3039
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 31))
3040
0
        HasError = true;
3041
0
      break;
3042
0
    case SVETypeFlags::ImmCheck0_13:
3043
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 13))
3044
0
        HasError = true;
3045
0
      break;
3046
0
    case SVETypeFlags::ImmCheck1_16:
3047
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 16))
3048
0
        HasError = true;
3049
0
      break;
3050
0
    case SVETypeFlags::ImmCheck0_7:
3051
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 7))
3052
0
        HasError = true;
3053
0
      break;
3054
0
    case SVETypeFlags::ImmCheck1_1:
3055
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 1))
3056
0
        HasError = true;
3057
0
      break;
3058
0
    case SVETypeFlags::ImmCheck1_3:
3059
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 3))
3060
0
        HasError = true;
3061
0
      break;
3062
0
    case SVETypeFlags::ImmCheck1_7:
3063
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, 7))
3064
0
        HasError = true;
3065
0
      break;
3066
0
    case SVETypeFlags::ImmCheckExtract:
3067
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
3068
0
                                      (2048 / ElementSizeInBits) - 1))
3069
0
        HasError = true;
3070
0
      break;
3071
0
    case SVETypeFlags::ImmCheckShiftRight:
3072
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1, ElementSizeInBits))
3073
0
        HasError = true;
3074
0
      break;
3075
0
    case SVETypeFlags::ImmCheckShiftRightNarrow:
3076
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 1,
3077
0
                                      ElementSizeInBits / 2))
3078
0
        HasError = true;
3079
0
      break;
3080
0
    case SVETypeFlags::ImmCheckShiftLeft:
3081
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
3082
0
                                      ElementSizeInBits - 1))
3083
0
        HasError = true;
3084
0
      break;
3085
0
    case SVETypeFlags::ImmCheckLaneIndex:
3086
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
3087
0
                                      (128 / (1 * ElementSizeInBits)) - 1))
3088
0
        HasError = true;
3089
0
      break;
3090
0
    case SVETypeFlags::ImmCheckLaneIndexCompRotate:
3091
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
3092
0
                                      (128 / (2 * ElementSizeInBits)) - 1))
3093
0
        HasError = true;
3094
0
      break;
3095
0
    case SVETypeFlags::ImmCheckLaneIndexDot:
3096
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0,
3097
0
                                      (128 / (4 * ElementSizeInBits)) - 1))
3098
0
        HasError = true;
3099
0
      break;
3100
0
    case SVETypeFlags::ImmCheckComplexRot90_270:
3101
0
      if (CheckImmediateInSet([](int64_t V) { return V == 90 || V == 270; },
3102
0
                              diag::err_rotation_argument_to_cadd))
3103
0
        HasError = true;
3104
0
      break;
3105
0
    case SVETypeFlags::ImmCheckComplexRotAll90:
3106
0
      if (CheckImmediateInSet(
3107
0
              [](int64_t V) {
3108
0
                return V == 0 || V == 90 || V == 180 || V == 270;
3109
0
              },
3110
0
              diag::err_rotation_argument_to_cmla))
3111
0
        HasError = true;
3112
0
      break;
3113
0
    case SVETypeFlags::ImmCheck0_1:
3114
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 1))
3115
0
        HasError = true;
3116
0
      break;
3117
0
    case SVETypeFlags::ImmCheck0_2:
3118
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 2))
3119
0
        HasError = true;
3120
0
      break;
3121
0
    case SVETypeFlags::ImmCheck0_3:
3122
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 3))
3123
0
        HasError = true;
3124
0
      break;
3125
0
    case SVETypeFlags::ImmCheck0_0:
3126
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 0))
3127
0
        HasError = true;
3128
0
      break;
3129
0
    case SVETypeFlags::ImmCheck0_15:
3130
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 15))
3131
0
        HasError = true;
3132
0
      break;
3133
0
    case SVETypeFlags::ImmCheck0_255:
3134
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, 255))
3135
0
        HasError = true;
3136
0
      break;
3137
0
    case SVETypeFlags::ImmCheck2_4_Mul2:
3138
0
      if (SemaBuiltinConstantArgRange(TheCall, ArgNum, 2, 4) ||
3139
0
          SemaBuiltinConstantArgMultiple(TheCall, ArgNum, 2))
3140
0
        HasError = true;
3141
0
      break;
3142
0
    }
3143
0
  }
3144
3145
0
  return HasError;
3146
0
}
3147
3148
0
static ArmStreamingType getArmStreamingFnType(const FunctionDecl *FD) {
3149
0
  if (FD->hasAttr<ArmLocallyStreamingAttr>())
3150
0
    return ArmStreaming;
3151
0
  if (const auto *T = FD->getType()->getAs<FunctionProtoType>()) {
3152
0
    if (T->getAArch64SMEAttributes() & FunctionType::SME_PStateSMEnabledMask)
3153
0
      return ArmStreaming;
3154
0
    if (T->getAArch64SMEAttributes() & FunctionType::SME_PStateSMCompatibleMask)
3155
0
      return ArmStreamingCompatible;
3156
0
  }
3157
0
  return ArmNonStreaming;
3158
0
}
3159
3160
static void checkArmStreamingBuiltin(Sema &S, CallExpr *TheCall,
3161
                                     const FunctionDecl *FD,
3162
0
                                     ArmStreamingType BuiltinType) {
3163
0
  ArmStreamingType FnType = getArmStreamingFnType(FD);
3164
0
  if (BuiltinType == ArmStreamingOrSVE2p1) {
3165
    // Check intrinsics that are available in [sve2p1 or sme/sme2].
3166
0
    llvm::StringMap<bool> CallerFeatureMap;
3167
0
    S.Context.getFunctionFeatureMap(CallerFeatureMap, FD);
3168
0
    if (Builtin::evaluateRequiredTargetFeatures("sve2p1", CallerFeatureMap))
3169
0
      BuiltinType = ArmStreamingCompatible;
3170
0
    else
3171
0
      BuiltinType = ArmStreaming;
3172
0
  }
3173
3174
0
  if (FnType == ArmStreaming && BuiltinType == ArmNonStreaming) {
3175
0
    S.Diag(TheCall->getBeginLoc(), diag::warn_attribute_arm_sm_incompat_builtin)
3176
0
        << TheCall->getSourceRange() << "streaming";
3177
0
  }
3178
3179
0
  if (FnType == ArmStreamingCompatible &&
3180
0
      BuiltinType != ArmStreamingCompatible) {
3181
0
    S.Diag(TheCall->getBeginLoc(), diag::warn_attribute_arm_sm_incompat_builtin)
3182
0
        << TheCall->getSourceRange() << "streaming compatible";
3183
0
    return;
3184
0
  }
3185
3186
0
  if (FnType == ArmNonStreaming && BuiltinType == ArmStreaming) {
3187
0
    S.Diag(TheCall->getBeginLoc(), diag::warn_attribute_arm_sm_incompat_builtin)
3188
0
        << TheCall->getSourceRange() << "non-streaming";
3189
0
  }
3190
0
}
3191
3192
0
static bool hasSMEZAState(const FunctionDecl *FD) {
3193
0
  if (auto *Attr = FD->getAttr<ArmNewAttr>())
3194
0
    if (Attr->isNewZA())
3195
0
      return true;
3196
0
  if (const auto *T = FD->getType()->getAs<FunctionProtoType>()) {
3197
0
    FunctionType::ArmStateValue State =
3198
0
        FunctionType::getArmZAState(T->getAArch64SMEAttributes());
3199
0
    if (State != FunctionType::ARM_None)
3200
0
      return true;
3201
0
  }
3202
0
  return false;
3203
0
}
3204
3205
0
static bool hasSMEZAState(unsigned BuiltinID) {
3206
0
  switch (BuiltinID) {
3207
0
  default:
3208
0
    return false;
3209
0
#define GET_SME_BUILTIN_HAS_ZA_STATE
3210
0
#include "clang/Basic/arm_sme_builtins_za_state.inc"
3211
0
#undef GET_SME_BUILTIN_HAS_ZA_STATE
3212
0
  }
3213
0
}
3214
3215
0
bool Sema::CheckSMEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3216
0
  if (const FunctionDecl *FD = getCurFunctionDecl()) {
3217
0
    std::optional<ArmStreamingType> BuiltinType;
3218
3219
0
    switch (BuiltinID) {
3220
0
#define GET_SME_STREAMING_ATTRS
3221
0
#include "clang/Basic/arm_sme_streaming_attrs.inc"
3222
0
#undef GET_SME_STREAMING_ATTRS
3223
0
    }
3224
3225
0
    if (BuiltinType)
3226
0
      checkArmStreamingBuiltin(*this, TheCall, FD, *BuiltinType);
3227
3228
0
    if (hasSMEZAState(BuiltinID) && !hasSMEZAState(FD))
3229
0
      Diag(TheCall->getBeginLoc(),
3230
0
           diag::warn_attribute_arm_za_builtin_no_za_state)
3231
0
          << TheCall->getSourceRange();
3232
0
  }
3233
3234
  // Range check SME intrinsics that take immediate values.
3235
0
  SmallVector<std::tuple<int, int, int>, 3> ImmChecks;
3236
3237
0
  switch (BuiltinID) {
3238
0
  default:
3239
0
    return false;
3240
0
#define GET_SME_IMMEDIATE_CHECK
3241
0
#include "clang/Basic/arm_sme_sema_rangechecks.inc"
3242
0
#undef GET_SME_IMMEDIATE_CHECK
3243
0
  }
3244
3245
0
  return ParseSVEImmChecks(TheCall, ImmChecks);
3246
0
}
3247
3248
0
bool Sema::CheckSVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3249
0
  if (const FunctionDecl *FD = getCurFunctionDecl()) {
3250
0
    std::optional<ArmStreamingType> BuiltinType;
3251
3252
0
    switch (BuiltinID) {
3253
0
#define GET_SVE_STREAMING_ATTRS
3254
0
#include "clang/Basic/arm_sve_streaming_attrs.inc"
3255
0
#undef GET_SVE_STREAMING_ATTRS
3256
0
    }
3257
0
    if (BuiltinType)
3258
0
      checkArmStreamingBuiltin(*this, TheCall, FD, *BuiltinType);
3259
0
  }
3260
  // Range check SVE intrinsics that take immediate values.
3261
0
  SmallVector<std::tuple<int, int, int>, 3> ImmChecks;
3262
3263
0
  switch (BuiltinID) {
3264
0
  default:
3265
0
    return false;
3266
0
#define GET_SVE_IMMEDIATE_CHECK
3267
0
#include "clang/Basic/arm_sve_sema_rangechecks.inc"
3268
0
#undef GET_SVE_IMMEDIATE_CHECK
3269
0
  }
3270
3271
0
  return ParseSVEImmChecks(TheCall, ImmChecks);
3272
0
}
3273
3274
bool Sema::CheckNeonBuiltinFunctionCall(const TargetInfo &TI,
3275
0
                                        unsigned BuiltinID, CallExpr *TheCall) {
3276
0
  if (const FunctionDecl *FD = getCurFunctionDecl()) {
3277
3278
0
    switch (BuiltinID) {
3279
0
    default:
3280
0
      break;
3281
0
#define GET_NEON_BUILTINS
3282
0
#define TARGET_BUILTIN(id, ...) case NEON::BI##id:
3283
0
#define BUILTIN(id, ...) case NEON::BI##id:
3284
0
#include "clang/Basic/arm_neon.inc"
3285
0
      checkArmStreamingBuiltin(*this, TheCall, FD, ArmNonStreaming);
3286
0
      break;
3287
0
#undef TARGET_BUILTIN
3288
0
#undef BUILTIN
3289
0
#undef GET_NEON_BUILTINS
3290
0
    }
3291
0
  }
3292
3293
0
  llvm::APSInt Result;
3294
0
  uint64_t mask = 0;
3295
0
  unsigned TV = 0;
3296
0
  int PtrArgNum = -1;
3297
0
  bool HasConstPtr = false;
3298
0
  switch (BuiltinID) {
3299
0
#define GET_NEON_OVERLOAD_CHECK
3300
0
#include "clang/Basic/arm_neon.inc"
3301
0
#include "clang/Basic/arm_fp16.inc"
3302
0
#undef GET_NEON_OVERLOAD_CHECK
3303
0
  }
3304
3305
  // For NEON intrinsics which are overloaded on vector element type, validate
3306
  // the immediate which specifies which variant to emit.
3307
0
  unsigned ImmArg = TheCall->getNumArgs()-1;
3308
0
  if (mask) {
3309
0
    if (SemaBuiltinConstantArg(TheCall, ImmArg, Result))
3310
0
      return true;
3311
3312
0
    TV = Result.getLimitedValue(64);
3313
0
    if ((TV > 63) || (mask & (1ULL << TV)) == 0)
3314
0
      return Diag(TheCall->getBeginLoc(), diag::err_invalid_neon_type_code)
3315
0
             << TheCall->getArg(ImmArg)->getSourceRange();
3316
0
  }
3317
3318
0
  if (PtrArgNum >= 0) {
3319
    // Check that pointer arguments have the specified type.
3320
0
    Expr *Arg = TheCall->getArg(PtrArgNum);
3321
0
    if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Arg))
3322
0
      Arg = ICE->getSubExpr();
3323
0
    ExprResult RHS = DefaultFunctionArrayLvalueConversion(Arg);
3324
0
    QualType RHSTy = RHS.get()->getType();
3325
3326
0
    llvm::Triple::ArchType Arch = TI.getTriple().getArch();
3327
0
    bool IsPolyUnsigned = Arch == llvm::Triple::aarch64 ||
3328
0
                          Arch == llvm::Triple::aarch64_32 ||
3329
0
                          Arch == llvm::Triple::aarch64_be;
3330
0
    bool IsInt64Long = TI.getInt64Type() == TargetInfo::SignedLong;
3331
0
    QualType EltTy =
3332
0
        getNeonEltType(NeonTypeFlags(TV), Context, IsPolyUnsigned, IsInt64Long);
3333
0
    if (HasConstPtr)
3334
0
      EltTy = EltTy.withConst();
3335
0
    QualType LHSTy = Context.getPointerType(EltTy);
3336
0
    AssignConvertType ConvTy;
3337
0
    ConvTy = CheckSingleAssignmentConstraints(LHSTy, RHS);
3338
0
    if (RHS.isInvalid())
3339
0
      return true;
3340
0
    if (DiagnoseAssignmentResult(ConvTy, Arg->getBeginLoc(), LHSTy, RHSTy,
3341
0
                                 RHS.get(), AA_Assigning))
3342
0
      return true;
3343
0
  }
3344
3345
  // For NEON intrinsics which take an immediate value as part of the
3346
  // instruction, range check them here.
3347
0
  unsigned i = 0, l = 0, u = 0;
3348
0
  switch (BuiltinID) {
3349
0
  default:
3350
0
    return false;
3351
0
  #define GET_NEON_IMMEDIATE_CHECK
3352
0
  #include "clang/Basic/arm_neon.inc"
3353
0
  #include "clang/Basic/arm_fp16.inc"
3354
0
  #undef GET_NEON_IMMEDIATE_CHECK
3355
0
  }
3356
3357
0
  return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
3358
0
}
3359
3360
0
bool Sema::CheckMVEBuiltinFunctionCall(unsigned BuiltinID, CallExpr *TheCall) {
3361
0
  switch (BuiltinID) {
3362
0
  default:
3363
0
    return false;
3364
0
  #include "clang/Basic/arm_mve_builtin_sema.inc"
3365
0
  }
3366
0
}
3367
3368
bool Sema::CheckCDEBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3369
0
                                       CallExpr *TheCall) {
3370
0
  bool Err = false;
3371
0
  switch (BuiltinID) {
3372
0
  default:
3373
0
    return false;
3374
0
#include "clang/Basic/arm_cde_builtin_sema.inc"
3375
0
  }
3376
3377
0
  if (Err)
3378
0
    return true;
3379
3380
0
  return CheckARMCoprocessorImmediate(TI, TheCall->getArg(0), /*WantCDE*/ true);
3381
0
}
3382
3383
bool Sema::CheckARMCoprocessorImmediate(const TargetInfo &TI,
3384
0
                                        const Expr *CoprocArg, bool WantCDE) {
3385
0
  if (isConstantEvaluatedContext())
3386
0
    return false;
3387
3388
  // We can't check the value of a dependent argument.
3389
0
  if (CoprocArg->isTypeDependent() || CoprocArg->isValueDependent())
3390
0
    return false;
3391
3392
0
  llvm::APSInt CoprocNoAP = *CoprocArg->getIntegerConstantExpr(Context);
3393
0
  int64_t CoprocNo = CoprocNoAP.getExtValue();
3394
0
  assert(CoprocNo >= 0 && "Coprocessor immediate must be non-negative");
3395
3396
0
  uint32_t CDECoprocMask = TI.getARMCDECoprocMask();
3397
0
  bool IsCDECoproc = CoprocNo <= 7 && (CDECoprocMask & (1 << CoprocNo));
3398
3399
0
  if (IsCDECoproc != WantCDE)
3400
0
    return Diag(CoprocArg->getBeginLoc(), diag::err_arm_invalid_coproc)
3401
0
           << (int)CoprocNo << (int)WantCDE << CoprocArg->getSourceRange();
3402
3403
0
  return false;
3404
0
}
3405
3406
bool Sema::CheckARMBuiltinExclusiveCall(unsigned BuiltinID, CallExpr *TheCall,
3407
0
                                        unsigned MaxWidth) {
3408
0
  assert((BuiltinID == ARM::BI__builtin_arm_ldrex ||
3409
0
          BuiltinID == ARM::BI__builtin_arm_ldaex ||
3410
0
          BuiltinID == ARM::BI__builtin_arm_strex ||
3411
0
          BuiltinID == ARM::BI__builtin_arm_stlex ||
3412
0
          BuiltinID == AArch64::BI__builtin_arm_ldrex ||
3413
0
          BuiltinID == AArch64::BI__builtin_arm_ldaex ||
3414
0
          BuiltinID == AArch64::BI__builtin_arm_strex ||
3415
0
          BuiltinID == AArch64::BI__builtin_arm_stlex) &&
3416
0
         "unexpected ARM builtin");
3417
0
  bool IsLdrex = BuiltinID == ARM::BI__builtin_arm_ldrex ||
3418
0
                 BuiltinID == ARM::BI__builtin_arm_ldaex ||
3419
0
                 BuiltinID == AArch64::BI__builtin_arm_ldrex ||
3420
0
                 BuiltinID == AArch64::BI__builtin_arm_ldaex;
3421
3422
0
  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
3423
3424
  // Ensure that we have the proper number of arguments.
3425
0
  if (checkArgCount(*this, TheCall, IsLdrex ? 1 : 2))
3426
0
    return true;
3427
3428
  // Inspect the pointer argument of the atomic builtin.  This should always be
3429
  // a pointer type, whose element is an integral scalar or pointer type.
3430
  // Because it is a pointer type, we don't have to worry about any implicit
3431
  // casts here.
3432
0
  Expr *PointerArg = TheCall->getArg(IsLdrex ? 0 : 1);
3433
0
  ExprResult PointerArgRes = DefaultFunctionArrayLvalueConversion(PointerArg);
3434
0
  if (PointerArgRes.isInvalid())
3435
0
    return true;
3436
0
  PointerArg = PointerArgRes.get();
3437
3438
0
  const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
3439
0
  if (!pointerType) {
3440
0
    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
3441
0
        << PointerArg->getType() << PointerArg->getSourceRange();
3442
0
    return true;
3443
0
  }
3444
3445
  // ldrex takes a "const volatile T*" and strex takes a "volatile T*". Our next
3446
  // task is to insert the appropriate casts into the AST. First work out just
3447
  // what the appropriate type is.
3448
0
  QualType ValType = pointerType->getPointeeType();
3449
0
  QualType AddrType = ValType.getUnqualifiedType().withVolatile();
3450
0
  if (IsLdrex)
3451
0
    AddrType.addConst();
3452
3453
  // Issue a warning if the cast is dodgy.
3454
0
  CastKind CastNeeded = CK_NoOp;
3455
0
  if (!AddrType.isAtLeastAsQualifiedAs(ValType)) {
3456
0
    CastNeeded = CK_BitCast;
3457
0
    Diag(DRE->getBeginLoc(), diag::ext_typecheck_convert_discards_qualifiers)
3458
0
        << PointerArg->getType() << Context.getPointerType(AddrType)
3459
0
        << AA_Passing << PointerArg->getSourceRange();
3460
0
  }
3461
3462
  // Finally, do the cast and replace the argument with the corrected version.
3463
0
  AddrType = Context.getPointerType(AddrType);
3464
0
  PointerArgRes = ImpCastExprToType(PointerArg, AddrType, CastNeeded);
3465
0
  if (PointerArgRes.isInvalid())
3466
0
    return true;
3467
0
  PointerArg = PointerArgRes.get();
3468
3469
0
  TheCall->setArg(IsLdrex ? 0 : 1, PointerArg);
3470
3471
  // In general, we allow ints, floats and pointers to be loaded and stored.
3472
0
  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
3473
0
      !ValType->isBlockPointerType() && !ValType->isFloatingType()) {
3474
0
    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intfltptr)
3475
0
        << PointerArg->getType() << PointerArg->getSourceRange();
3476
0
    return true;
3477
0
  }
3478
3479
  // But ARM doesn't have instructions to deal with 128-bit versions.
3480
0
  if (Context.getTypeSize(ValType) > MaxWidth) {
3481
0
    assert(MaxWidth == 64 && "Diagnostic unexpectedly inaccurate");
3482
0
    Diag(DRE->getBeginLoc(), diag::err_atomic_exclusive_builtin_pointer_size)
3483
0
        << PointerArg->getType() << PointerArg->getSourceRange();
3484
0
    return true;
3485
0
  }
3486
3487
0
  switch (ValType.getObjCLifetime()) {
3488
0
  case Qualifiers::OCL_None:
3489
0
  case Qualifiers::OCL_ExplicitNone:
3490
    // okay
3491
0
    break;
3492
3493
0
  case Qualifiers::OCL_Weak:
3494
0
  case Qualifiers::OCL_Strong:
3495
0
  case Qualifiers::OCL_Autoreleasing:
3496
0
    Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
3497
0
        << ValType << PointerArg->getSourceRange();
3498
0
    return true;
3499
0
  }
3500
3501
0
  if (IsLdrex) {
3502
0
    TheCall->setType(ValType);
3503
0
    return false;
3504
0
  }
3505
3506
  // Initialize the argument to be stored.
3507
0
  ExprResult ValArg = TheCall->getArg(0);
3508
0
  InitializedEntity Entity = InitializedEntity::InitializeParameter(
3509
0
      Context, ValType, /*consume*/ false);
3510
0
  ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
3511
0
  if (ValArg.isInvalid())
3512
0
    return true;
3513
0
  TheCall->setArg(0, ValArg.get());
3514
3515
  // __builtin_arm_strex always returns an int. It's marked as such in the .def,
3516
  // but the custom checker bypasses all default analysis.
3517
0
  TheCall->setType(Context.IntTy);
3518
0
  return false;
3519
0
}
3520
3521
bool Sema::CheckARMBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
3522
0
                                       CallExpr *TheCall) {
3523
0
  if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
3524
0
      BuiltinID == ARM::BI__builtin_arm_ldaex ||
3525
0
      BuiltinID == ARM::BI__builtin_arm_strex ||
3526
0
      BuiltinID == ARM::BI__builtin_arm_stlex) {
3527
0
    return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 64);
3528
0
  }
3529
3530
0
  if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
3531
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3532
0
      SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
3533
0
  }
3534
3535
0
  if (BuiltinID == ARM::BI__builtin_arm_rsr64 ||
3536
0
      BuiltinID == ARM::BI__builtin_arm_wsr64)
3537
0
    return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 3, false);
3538
3539
0
  if (BuiltinID == ARM::BI__builtin_arm_rsr ||
3540
0
      BuiltinID == ARM::BI__builtin_arm_rsrp ||
3541
0
      BuiltinID == ARM::BI__builtin_arm_wsr ||
3542
0
      BuiltinID == ARM::BI__builtin_arm_wsrp)
3543
0
    return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
3544
3545
0
  if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
3546
0
    return true;
3547
0
  if (CheckMVEBuiltinFunctionCall(BuiltinID, TheCall))
3548
0
    return true;
3549
0
  if (CheckCDEBuiltinFunctionCall(TI, BuiltinID, TheCall))
3550
0
    return true;
3551
3552
  // For intrinsics which take an immediate value as part of the instruction,
3553
  // range check them here.
3554
  // FIXME: VFP Intrinsics should error if VFP not present.
3555
0
  switch (BuiltinID) {
3556
0
  default: return false;
3557
0
  case ARM::BI__builtin_arm_ssat:
3558
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 1, 32);
3559
0
  case ARM::BI__builtin_arm_usat:
3560
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
3561
0
  case ARM::BI__builtin_arm_ssat16:
3562
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
3563
0
  case ARM::BI__builtin_arm_usat16:
3564
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
3565
0
  case ARM::BI__builtin_arm_vcvtr_f:
3566
0
  case ARM::BI__builtin_arm_vcvtr_d:
3567
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
3568
0
  case ARM::BI__builtin_arm_dmb:
3569
0
  case ARM::BI__builtin_arm_dsb:
3570
0
  case ARM::BI__builtin_arm_isb:
3571
0
  case ARM::BI__builtin_arm_dbg:
3572
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15);
3573
0
  case ARM::BI__builtin_arm_cdp:
3574
0
  case ARM::BI__builtin_arm_cdp2:
3575
0
  case ARM::BI__builtin_arm_mcr:
3576
0
  case ARM::BI__builtin_arm_mcr2:
3577
0
  case ARM::BI__builtin_arm_mrc:
3578
0
  case ARM::BI__builtin_arm_mrc2:
3579
0
  case ARM::BI__builtin_arm_mcrr:
3580
0
  case ARM::BI__builtin_arm_mcrr2:
3581
0
  case ARM::BI__builtin_arm_mrrc:
3582
0
  case ARM::BI__builtin_arm_mrrc2:
3583
0
  case ARM::BI__builtin_arm_ldc:
3584
0
  case ARM::BI__builtin_arm_ldcl:
3585
0
  case ARM::BI__builtin_arm_ldc2:
3586
0
  case ARM::BI__builtin_arm_ldc2l:
3587
0
  case ARM::BI__builtin_arm_stc:
3588
0
  case ARM::BI__builtin_arm_stcl:
3589
0
  case ARM::BI__builtin_arm_stc2:
3590
0
  case ARM::BI__builtin_arm_stc2l:
3591
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 15) ||
3592
0
           CheckARMCoprocessorImmediate(TI, TheCall->getArg(0),
3593
0
                                        /*WantCDE*/ false);
3594
0
  }
3595
0
}
3596
3597
bool Sema::CheckAArch64BuiltinFunctionCall(const TargetInfo &TI,
3598
                                           unsigned BuiltinID,
3599
0
                                           CallExpr *TheCall) {
3600
0
  if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
3601
0
      BuiltinID == AArch64::BI__builtin_arm_ldaex ||
3602
0
      BuiltinID == AArch64::BI__builtin_arm_strex ||
3603
0
      BuiltinID == AArch64::BI__builtin_arm_stlex) {
3604
0
    return CheckARMBuiltinExclusiveCall(BuiltinID, TheCall, 128);
3605
0
  }
3606
3607
0
  if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
3608
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
3609
0
           SemaBuiltinConstantArgRange(TheCall, 2, 0, 3) ||
3610
0
           SemaBuiltinConstantArgRange(TheCall, 3, 0, 1) ||
3611
0
           SemaBuiltinConstantArgRange(TheCall, 4, 0, 1);
3612
0
  }
3613
3614
0
  if (BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
3615
0
      BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
3616
0
      BuiltinID == AArch64::BI__builtin_arm_rsr128 ||
3617
0
      BuiltinID == AArch64::BI__builtin_arm_wsr128)
3618
0
    return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
3619
3620
  // Memory Tagging Extensions (MTE) Intrinsics
3621
0
  if (BuiltinID == AArch64::BI__builtin_arm_irg ||
3622
0
      BuiltinID == AArch64::BI__builtin_arm_addg ||
3623
0
      BuiltinID == AArch64::BI__builtin_arm_gmi ||
3624
0
      BuiltinID == AArch64::BI__builtin_arm_ldg ||
3625
0
      BuiltinID == AArch64::BI__builtin_arm_stg ||
3626
0
      BuiltinID == AArch64::BI__builtin_arm_subp) {
3627
0
    return SemaBuiltinARMMemoryTaggingCall(BuiltinID, TheCall);
3628
0
  }
3629
3630
0
  if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
3631
0
      BuiltinID == AArch64::BI__builtin_arm_rsrp ||
3632
0
      BuiltinID == AArch64::BI__builtin_arm_wsr ||
3633
0
      BuiltinID == AArch64::BI__builtin_arm_wsrp)
3634
0
    return SemaBuiltinARMSpecialReg(BuiltinID, TheCall, 0, 5, true);
3635
3636
  // Only check the valid encoding range. Any constant in this range would be
3637
  // converted to a register of the form S1_2_C3_C4_5. Let the hardware throw
3638
  // an exception for incorrect registers. This matches MSVC behavior.
3639
0
  if (BuiltinID == AArch64::BI_ReadStatusReg ||
3640
0
      BuiltinID == AArch64::BI_WriteStatusReg)
3641
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0x7fff);
3642
3643
0
  if (BuiltinID == AArch64::BI__getReg)
3644
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
3645
3646
0
  if (BuiltinID == AArch64::BI__break)
3647
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 0xffff);
3648
3649
0
  if (CheckNeonBuiltinFunctionCall(TI, BuiltinID, TheCall))
3650
0
    return true;
3651
3652
0
  if (CheckSVEBuiltinFunctionCall(BuiltinID, TheCall))
3653
0
    return true;
3654
3655
0
  if (CheckSMEBuiltinFunctionCall(BuiltinID, TheCall))
3656
0
    return true;
3657
3658
  // For intrinsics which take an immediate value as part of the instruction,
3659
  // range check them here.
3660
0
  unsigned i = 0, l = 0, u = 0;
3661
0
  switch (BuiltinID) {
3662
0
  default: return false;
3663
0
  case AArch64::BI__builtin_arm_dmb:
3664
0
  case AArch64::BI__builtin_arm_dsb:
3665
0
  case AArch64::BI__builtin_arm_isb: l = 0; u = 15; break;
3666
0
  case AArch64::BI__builtin_arm_tcancel: l = 0; u = 65535; break;
3667
0
  }
3668
3669
0
  return SemaBuiltinConstantArgRange(TheCall, i, l, u + l);
3670
0
}
3671
3672
0
static bool isValidBPFPreserveFieldInfoArg(Expr *Arg) {
3673
0
  if (Arg->getType()->getAsPlaceholderType())
3674
0
    return false;
3675
3676
  // The first argument needs to be a record field access.
3677
  // If it is an array element access, we delay decision
3678
  // to BPF backend to check whether the access is a
3679
  // field access or not.
3680
0
  return (Arg->IgnoreParens()->getObjectKind() == OK_BitField ||
3681
0
          isa<MemberExpr>(Arg->IgnoreParens()) ||
3682
0
          isa<ArraySubscriptExpr>(Arg->IgnoreParens()));
3683
0
}
3684
3685
0
static bool isValidBPFPreserveTypeInfoArg(Expr *Arg) {
3686
0
  QualType ArgType = Arg->getType();
3687
0
  if (ArgType->getAsPlaceholderType())
3688
0
    return false;
3689
3690
  // for TYPE_EXISTENCE/TYPE_MATCH/TYPE_SIZEOF reloc type
3691
  // format:
3692
  //   1. __builtin_preserve_type_info(*(<type> *)0, flag);
3693
  //   2. <type> var;
3694
  //      __builtin_preserve_type_info(var, flag);
3695
0
  if (!isa<DeclRefExpr>(Arg->IgnoreParens()) &&
3696
0
      !isa<UnaryOperator>(Arg->IgnoreParens()))
3697
0
    return false;
3698
3699
  // Typedef type.
3700
0
  if (ArgType->getAs<TypedefType>())
3701
0
    return true;
3702
3703
  // Record type or Enum type.
3704
0
  const Type *Ty = ArgType->getUnqualifiedDesugaredType();
3705
0
  if (const auto *RT = Ty->getAs<RecordType>()) {
3706
0
    if (!RT->getDecl()->getDeclName().isEmpty())
3707
0
      return true;
3708
0
  } else if (const auto *ET = Ty->getAs<EnumType>()) {
3709
0
    if (!ET->getDecl()->getDeclName().isEmpty())
3710
0
      return true;
3711
0
  }
3712
3713
0
  return false;
3714
0
}
3715
3716
0
static bool isValidBPFPreserveEnumValueArg(Expr *Arg) {
3717
0
  QualType ArgType = Arg->getType();
3718
0
  if (ArgType->getAsPlaceholderType())
3719
0
    return false;
3720
3721
  // for ENUM_VALUE_EXISTENCE/ENUM_VALUE reloc type
3722
  // format:
3723
  //   __builtin_preserve_enum_value(*(<enum_type> *)<enum_value>,
3724
  //                                 flag);
3725
0
  const auto *UO = dyn_cast<UnaryOperator>(Arg->IgnoreParens());
3726
0
  if (!UO)
3727
0
    return false;
3728
3729
0
  const auto *CE = dyn_cast<CStyleCastExpr>(UO->getSubExpr());
3730
0
  if (!CE)
3731
0
    return false;
3732
0
  if (CE->getCastKind() != CK_IntegralToPointer &&
3733
0
      CE->getCastKind() != CK_NullToPointer)
3734
0
    return false;
3735
3736
  // The integer must be from an EnumConstantDecl.
3737
0
  const auto *DR = dyn_cast<DeclRefExpr>(CE->getSubExpr());
3738
0
  if (!DR)
3739
0
    return false;
3740
3741
0
  const EnumConstantDecl *Enumerator =
3742
0
      dyn_cast<EnumConstantDecl>(DR->getDecl());
3743
0
  if (!Enumerator)
3744
0
    return false;
3745
3746
  // The type must be EnumType.
3747
0
  const Type *Ty = ArgType->getUnqualifiedDesugaredType();
3748
0
  const auto *ET = Ty->getAs<EnumType>();
3749
0
  if (!ET)
3750
0
    return false;
3751
3752
  // The enum value must be supported.
3753
0
  return llvm::is_contained(ET->getDecl()->enumerators(), Enumerator);
3754
0
}
3755
3756
bool Sema::CheckBPFBuiltinFunctionCall(unsigned BuiltinID,
3757
0
                                       CallExpr *TheCall) {
3758
0
  assert((BuiltinID == BPF::BI__builtin_preserve_field_info ||
3759
0
          BuiltinID == BPF::BI__builtin_btf_type_id ||
3760
0
          BuiltinID == BPF::BI__builtin_preserve_type_info ||
3761
0
          BuiltinID == BPF::BI__builtin_preserve_enum_value) &&
3762
0
         "unexpected BPF builtin");
3763
3764
0
  if (checkArgCount(*this, TheCall, 2))
3765
0
    return true;
3766
3767
  // The second argument needs to be a constant int
3768
0
  Expr *Arg = TheCall->getArg(1);
3769
0
  std::optional<llvm::APSInt> Value = Arg->getIntegerConstantExpr(Context);
3770
0
  diag::kind kind;
3771
0
  if (!Value) {
3772
0
    if (BuiltinID == BPF::BI__builtin_preserve_field_info)
3773
0
      kind = diag::err_preserve_field_info_not_const;
3774
0
    else if (BuiltinID == BPF::BI__builtin_btf_type_id)
3775
0
      kind = diag::err_btf_type_id_not_const;
3776
0
    else if (BuiltinID == BPF::BI__builtin_preserve_type_info)
3777
0
      kind = diag::err_preserve_type_info_not_const;
3778
0
    else
3779
0
      kind = diag::err_preserve_enum_value_not_const;
3780
0
    Diag(Arg->getBeginLoc(), kind) << 2 << Arg->getSourceRange();
3781
0
    return true;
3782
0
  }
3783
3784
  // The first argument
3785
0
  Arg = TheCall->getArg(0);
3786
0
  bool InvalidArg = false;
3787
0
  bool ReturnUnsignedInt = true;
3788
0
  if (BuiltinID == BPF::BI__builtin_preserve_field_info) {
3789
0
    if (!isValidBPFPreserveFieldInfoArg(Arg)) {
3790
0
      InvalidArg = true;
3791
0
      kind = diag::err_preserve_field_info_not_field;
3792
0
    }
3793
0
  } else if (BuiltinID == BPF::BI__builtin_preserve_type_info) {
3794
0
    if (!isValidBPFPreserveTypeInfoArg(Arg)) {
3795
0
      InvalidArg = true;
3796
0
      kind = diag::err_preserve_type_info_invalid;
3797
0
    }
3798
0
  } else if (BuiltinID == BPF::BI__builtin_preserve_enum_value) {
3799
0
    if (!isValidBPFPreserveEnumValueArg(Arg)) {
3800
0
      InvalidArg = true;
3801
0
      kind = diag::err_preserve_enum_value_invalid;
3802
0
    }
3803
0
    ReturnUnsignedInt = false;
3804
0
  } else if (BuiltinID == BPF::BI__builtin_btf_type_id) {
3805
0
    ReturnUnsignedInt = false;
3806
0
  }
3807
3808
0
  if (InvalidArg) {
3809
0
    Diag(Arg->getBeginLoc(), kind) << 1 << Arg->getSourceRange();
3810
0
    return true;
3811
0
  }
3812
3813
0
  if (ReturnUnsignedInt)
3814
0
    TheCall->setType(Context.UnsignedIntTy);
3815
0
  else
3816
0
    TheCall->setType(Context.UnsignedLongTy);
3817
0
  return false;
3818
0
}
3819
3820
0
bool Sema::CheckHexagonBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
3821
0
  struct ArgInfo {
3822
0
    uint8_t OpNum;
3823
0
    bool IsSigned;
3824
0
    uint8_t BitWidth;
3825
0
    uint8_t Align;
3826
0
  };
3827
0
  struct BuiltinInfo {
3828
0
    unsigned BuiltinID;
3829
0
    ArgInfo Infos[2];
3830
0
  };
3831
3832
0
  static BuiltinInfo Infos[] = {
3833
0
    { Hexagon::BI__builtin_circ_ldd,                  {{ 3, true,  4,  3 }} },
3834
0
    { Hexagon::BI__builtin_circ_ldw,                  {{ 3, true,  4,  2 }} },
3835
0
    { Hexagon::BI__builtin_circ_ldh,                  {{ 3, true,  4,  1 }} },
3836
0
    { Hexagon::BI__builtin_circ_lduh,                 {{ 3, true,  4,  1 }} },
3837
0
    { Hexagon::BI__builtin_circ_ldb,                  {{ 3, true,  4,  0 }} },
3838
0
    { Hexagon::BI__builtin_circ_ldub,                 {{ 3, true,  4,  0 }} },
3839
0
    { Hexagon::BI__builtin_circ_std,                  {{ 3, true,  4,  3 }} },
3840
0
    { Hexagon::BI__builtin_circ_stw,                  {{ 3, true,  4,  2 }} },
3841
0
    { Hexagon::BI__builtin_circ_sth,                  {{ 3, true,  4,  1 }} },
3842
0
    { Hexagon::BI__builtin_circ_sthhi,                {{ 3, true,  4,  1 }} },
3843
0
    { Hexagon::BI__builtin_circ_stb,                  {{ 3, true,  4,  0 }} },
3844
3845
0
    { Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci,    {{ 1, true,  4,  0 }} },
3846
0
    { Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci,     {{ 1, true,  4,  0 }} },
3847
0
    { Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci,    {{ 1, true,  4,  1 }} },
3848
0
    { Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci,     {{ 1, true,  4,  1 }} },
3849
0
    { Hexagon::BI__builtin_HEXAGON_L2_loadri_pci,     {{ 1, true,  4,  2 }} },
3850
0
    { Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci,     {{ 1, true,  4,  3 }} },
3851
0
    { Hexagon::BI__builtin_HEXAGON_S2_storerb_pci,    {{ 1, true,  4,  0 }} },
3852
0
    { Hexagon::BI__builtin_HEXAGON_S2_storerh_pci,    {{ 1, true,  4,  1 }} },
3853
0
    { Hexagon::BI__builtin_HEXAGON_S2_storerf_pci,    {{ 1, true,  4,  1 }} },
3854
0
    { Hexagon::BI__builtin_HEXAGON_S2_storeri_pci,    {{ 1, true,  4,  2 }} },
3855
0
    { Hexagon::BI__builtin_HEXAGON_S2_storerd_pci,    {{ 1, true,  4,  3 }} },
3856
3857
0
    { Hexagon::BI__builtin_HEXAGON_A2_combineii,      {{ 1, true,  8,  0 }} },
3858
0
    { Hexagon::BI__builtin_HEXAGON_A2_tfrih,          {{ 1, false, 16, 0 }} },
3859
0
    { Hexagon::BI__builtin_HEXAGON_A2_tfril,          {{ 1, false, 16, 0 }} },
3860
0
    { Hexagon::BI__builtin_HEXAGON_A2_tfrpi,          {{ 0, true,  8,  0 }} },
3861
0
    { Hexagon::BI__builtin_HEXAGON_A4_bitspliti,      {{ 1, false, 5,  0 }} },
3862
0
    { Hexagon::BI__builtin_HEXAGON_A4_cmpbeqi,        {{ 1, false, 8,  0 }} },
3863
0
    { Hexagon::BI__builtin_HEXAGON_A4_cmpbgti,        {{ 1, true,  8,  0 }} },
3864
0
    { Hexagon::BI__builtin_HEXAGON_A4_cround_ri,      {{ 1, false, 5,  0 }} },
3865
0
    { Hexagon::BI__builtin_HEXAGON_A4_round_ri,       {{ 1, false, 5,  0 }} },
3866
0
    { Hexagon::BI__builtin_HEXAGON_A4_round_ri_sat,   {{ 1, false, 5,  0 }} },
3867
0
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpbeqi,       {{ 1, false, 8,  0 }} },
3868
0
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgti,       {{ 1, true,  8,  0 }} },
3869
0
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpbgtui,      {{ 1, false, 7,  0 }} },
3870
0
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpheqi,       {{ 1, true,  8,  0 }} },
3871
0
    { Hexagon::BI__builtin_HEXAGON_A4_vcmphgti,       {{ 1, true,  8,  0 }} },
3872
0
    { Hexagon::BI__builtin_HEXAGON_A4_vcmphgtui,      {{ 1, false, 7,  0 }} },
3873
0
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpweqi,       {{ 1, true,  8,  0 }} },
3874
0
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgti,       {{ 1, true,  8,  0 }} },
3875
0
    { Hexagon::BI__builtin_HEXAGON_A4_vcmpwgtui,      {{ 1, false, 7,  0 }} },
3876
0
    { Hexagon::BI__builtin_HEXAGON_C2_bitsclri,       {{ 1, false, 6,  0 }} },
3877
0
    { Hexagon::BI__builtin_HEXAGON_C2_muxii,          {{ 2, true,  8,  0 }} },
3878
0
    { Hexagon::BI__builtin_HEXAGON_C4_nbitsclri,      {{ 1, false, 6,  0 }} },
3879
0
    { Hexagon::BI__builtin_HEXAGON_F2_dfclass,        {{ 1, false, 5,  0 }} },
3880
0
    { Hexagon::BI__builtin_HEXAGON_F2_dfimm_n,        {{ 0, false, 10, 0 }} },
3881
0
    { Hexagon::BI__builtin_HEXAGON_F2_dfimm_p,        {{ 0, false, 10, 0 }} },
3882
0
    { Hexagon::BI__builtin_HEXAGON_F2_sfclass,        {{ 1, false, 5,  0 }} },
3883
0
    { Hexagon::BI__builtin_HEXAGON_F2_sfimm_n,        {{ 0, false, 10, 0 }} },
3884
0
    { Hexagon::BI__builtin_HEXAGON_F2_sfimm_p,        {{ 0, false, 10, 0 }} },
3885
0
    { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addi,     {{ 2, false, 6,  0 }} },
3886
0
    { Hexagon::BI__builtin_HEXAGON_M4_mpyri_addr_u2,  {{ 1, false, 6,  2 }} },
3887
0
    { Hexagon::BI__builtin_HEXAGON_S2_addasl_rrri,    {{ 2, false, 3,  0 }} },
3888
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_acc,    {{ 2, false, 6,  0 }} },
3889
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_and,    {{ 2, false, 6,  0 }} },
3890
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p,        {{ 1, false, 6,  0 }} },
3891
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_nac,    {{ 2, false, 6,  0 }} },
3892
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_or,     {{ 2, false, 6,  0 }} },
3893
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_p_xacc,   {{ 2, false, 6,  0 }} },
3894
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_acc,    {{ 2, false, 5,  0 }} },
3895
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_and,    {{ 2, false, 5,  0 }} },
3896
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r,        {{ 1, false, 5,  0 }} },
3897
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_nac,    {{ 2, false, 5,  0 }} },
3898
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_or,     {{ 2, false, 5,  0 }} },
3899
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_sat,    {{ 1, false, 5,  0 }} },
3900
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_r_xacc,   {{ 2, false, 5,  0 }} },
3901
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vh,       {{ 1, false, 4,  0 }} },
3902
0
    { Hexagon::BI__builtin_HEXAGON_S2_asl_i_vw,       {{ 1, false, 5,  0 }} },
3903
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_acc,    {{ 2, false, 6,  0 }} },
3904
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_and,    {{ 2, false, 6,  0 }} },
3905
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p,        {{ 1, false, 6,  0 }} },
3906
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_nac,    {{ 2, false, 6,  0 }} },
3907
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_or,     {{ 2, false, 6,  0 }} },
3908
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd_goodsyntax,
3909
0
                                                      {{ 1, false, 6,  0 }} },
3910
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_p_rnd,    {{ 1, false, 6,  0 }} },
3911
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_acc,    {{ 2, false, 5,  0 }} },
3912
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_and,    {{ 2, false, 5,  0 }} },
3913
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r,        {{ 1, false, 5,  0 }} },
3914
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_nac,    {{ 2, false, 5,  0 }} },
3915
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_or,     {{ 2, false, 5,  0 }} },
3916
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd_goodsyntax,
3917
0
                                                      {{ 1, false, 5,  0 }} },
3918
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_r_rnd,    {{ 1, false, 5,  0 }} },
3919
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_svw_trun, {{ 1, false, 5,  0 }} },
3920
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vh,       {{ 1, false, 4,  0 }} },
3921
0
    { Hexagon::BI__builtin_HEXAGON_S2_asr_i_vw,       {{ 1, false, 5,  0 }} },
3922
0
    { Hexagon::BI__builtin_HEXAGON_S2_clrbit_i,       {{ 1, false, 5,  0 }} },
3923
0
    { Hexagon::BI__builtin_HEXAGON_S2_extractu,       {{ 1, false, 5,  0 },
3924
0
                                                       { 2, false, 5,  0 }} },
3925
0
    { Hexagon::BI__builtin_HEXAGON_S2_extractup,      {{ 1, false, 6,  0 },
3926
0
                                                       { 2, false, 6,  0 }} },
3927
0
    { Hexagon::BI__builtin_HEXAGON_S2_insert,         {{ 2, false, 5,  0 },
3928
0
                                                       { 3, false, 5,  0 }} },
3929
0
    { Hexagon::BI__builtin_HEXAGON_S2_insertp,        {{ 2, false, 6,  0 },
3930
0
                                                       { 3, false, 6,  0 }} },
3931
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_acc,    {{ 2, false, 6,  0 }} },
3932
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_and,    {{ 2, false, 6,  0 }} },
3933
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p,        {{ 1, false, 6,  0 }} },
3934
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_nac,    {{ 2, false, 6,  0 }} },
3935
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_or,     {{ 2, false, 6,  0 }} },
3936
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_p_xacc,   {{ 2, false, 6,  0 }} },
3937
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_acc,    {{ 2, false, 5,  0 }} },
3938
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_and,    {{ 2, false, 5,  0 }} },
3939
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r,        {{ 1, false, 5,  0 }} },
3940
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_nac,    {{ 2, false, 5,  0 }} },
3941
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_or,     {{ 2, false, 5,  0 }} },
3942
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_r_xacc,   {{ 2, false, 5,  0 }} },
3943
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vh,       {{ 1, false, 4,  0 }} },
3944
0
    { Hexagon::BI__builtin_HEXAGON_S2_lsr_i_vw,       {{ 1, false, 5,  0 }} },
3945
0
    { Hexagon::BI__builtin_HEXAGON_S2_setbit_i,       {{ 1, false, 5,  0 }} },
3946
0
    { Hexagon::BI__builtin_HEXAGON_S2_tableidxb_goodsyntax,
3947
0
                                                      {{ 2, false, 4,  0 },
3948
0
                                                       { 3, false, 5,  0 }} },
3949
0
    { Hexagon::BI__builtin_HEXAGON_S2_tableidxd_goodsyntax,
3950
0
                                                      {{ 2, false, 4,  0 },
3951
0
                                                       { 3, false, 5,  0 }} },
3952
0
    { Hexagon::BI__builtin_HEXAGON_S2_tableidxh_goodsyntax,
3953
0
                                                      {{ 2, false, 4,  0 },
3954
0
                                                       { 3, false, 5,  0 }} },
3955
0
    { Hexagon::BI__builtin_HEXAGON_S2_tableidxw_goodsyntax,
3956
0
                                                      {{ 2, false, 4,  0 },
3957
0
                                                       { 3, false, 5,  0 }} },
3958
0
    { Hexagon::BI__builtin_HEXAGON_S2_togglebit_i,    {{ 1, false, 5,  0 }} },
3959
0
    { Hexagon::BI__builtin_HEXAGON_S2_tstbit_i,       {{ 1, false, 5,  0 }} },
3960
0
    { Hexagon::BI__builtin_HEXAGON_S2_valignib,       {{ 2, false, 3,  0 }} },
3961
0
    { Hexagon::BI__builtin_HEXAGON_S2_vspliceib,      {{ 2, false, 3,  0 }} },
3962
0
    { Hexagon::BI__builtin_HEXAGON_S4_addi_asl_ri,    {{ 2, false, 5,  0 }} },
3963
0
    { Hexagon::BI__builtin_HEXAGON_S4_addi_lsr_ri,    {{ 2, false, 5,  0 }} },
3964
0
    { Hexagon::BI__builtin_HEXAGON_S4_andi_asl_ri,    {{ 2, false, 5,  0 }} },
3965
0
    { Hexagon::BI__builtin_HEXAGON_S4_andi_lsr_ri,    {{ 2, false, 5,  0 }} },
3966
0
    { Hexagon::BI__builtin_HEXAGON_S4_clbaddi,        {{ 1, true , 6,  0 }} },
3967
0
    { Hexagon::BI__builtin_HEXAGON_S4_clbpaddi,       {{ 1, true,  6,  0 }} },
3968
0
    { Hexagon::BI__builtin_HEXAGON_S4_extract,        {{ 1, false, 5,  0 },
3969
0
                                                       { 2, false, 5,  0 }} },
3970
0
    { Hexagon::BI__builtin_HEXAGON_S4_extractp,       {{ 1, false, 6,  0 },
3971
0
                                                       { 2, false, 6,  0 }} },
3972
0
    { Hexagon::BI__builtin_HEXAGON_S4_lsli,           {{ 0, true,  6,  0 }} },
3973
0
    { Hexagon::BI__builtin_HEXAGON_S4_ntstbit_i,      {{ 1, false, 5,  0 }} },
3974
0
    { Hexagon::BI__builtin_HEXAGON_S4_ori_asl_ri,     {{ 2, false, 5,  0 }} },
3975
0
    { Hexagon::BI__builtin_HEXAGON_S4_ori_lsr_ri,     {{ 2, false, 5,  0 }} },
3976
0
    { Hexagon::BI__builtin_HEXAGON_S4_subi_asl_ri,    {{ 2, false, 5,  0 }} },
3977
0
    { Hexagon::BI__builtin_HEXAGON_S4_subi_lsr_ri,    {{ 2, false, 5,  0 }} },
3978
0
    { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate_acc,  {{ 3, false, 2,  0 }} },
3979
0
    { Hexagon::BI__builtin_HEXAGON_S4_vrcrotate,      {{ 2, false, 2,  0 }} },
3980
0
    { Hexagon::BI__builtin_HEXAGON_S5_asrhub_rnd_sat_goodsyntax,
3981
0
                                                      {{ 1, false, 4,  0 }} },
3982
0
    { Hexagon::BI__builtin_HEXAGON_S5_asrhub_sat,     {{ 1, false, 4,  0 }} },
3983
0
    { Hexagon::BI__builtin_HEXAGON_S5_vasrhrnd_goodsyntax,
3984
0
                                                      {{ 1, false, 4,  0 }} },
3985
0
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p,        {{ 1, false, 6,  0 }} },
3986
0
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_acc,    {{ 2, false, 6,  0 }} },
3987
0
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_and,    {{ 2, false, 6,  0 }} },
3988
0
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_nac,    {{ 2, false, 6,  0 }} },
3989
0
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_or,     {{ 2, false, 6,  0 }} },
3990
0
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_p_xacc,   {{ 2, false, 6,  0 }} },
3991
0
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r,        {{ 1, false, 5,  0 }} },
3992
0
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_acc,    {{ 2, false, 5,  0 }} },
3993
0
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_and,    {{ 2, false, 5,  0 }} },
3994
0
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_nac,    {{ 2, false, 5,  0 }} },
3995
0
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_or,     {{ 2, false, 5,  0 }} },
3996
0
    { Hexagon::BI__builtin_HEXAGON_S6_rol_i_r_xacc,   {{ 2, false, 5,  0 }} },
3997
0
    { Hexagon::BI__builtin_HEXAGON_V6_valignbi,       {{ 2, false, 3,  0 }} },
3998
0
    { Hexagon::BI__builtin_HEXAGON_V6_valignbi_128B,  {{ 2, false, 3,  0 }} },
3999
0
    { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi,      {{ 2, false, 3,  0 }} },
4000
0
    { Hexagon::BI__builtin_HEXAGON_V6_vlalignbi_128B, {{ 2, false, 3,  0 }} },
4001
0
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi,      {{ 2, false, 1,  0 }} },
4002
0
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_128B, {{ 2, false, 1,  0 }} },
4003
0
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc,  {{ 3, false, 1,  0 }} },
4004
0
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpybusi_acc_128B,
4005
0
                                                      {{ 3, false, 1,  0 }} },
4006
0
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi,       {{ 2, false, 1,  0 }} },
4007
0
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_128B,  {{ 2, false, 1,  0 }} },
4008
0
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc,   {{ 3, false, 1,  0 }} },
4009
0
    { Hexagon::BI__builtin_HEXAGON_V6_vrmpyubi_acc_128B,
4010
0
                                                      {{ 3, false, 1,  0 }} },
4011
0
    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi,       {{ 2, false, 1,  0 }} },
4012
0
    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_128B,  {{ 2, false, 1,  0 }} },
4013
0
    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc,   {{ 3, false, 1,  0 }} },
4014
0
    { Hexagon::BI__builtin_HEXAGON_V6_vrsadubi_acc_128B,
4015
0
                                                      {{ 3, false, 1,  0 }} },
4016
4017
0
    { Hexagon::BI__builtin_HEXAGON_V6_v6mpyhubs10,    {{ 2, false, 2,  0 }} },
4018
0
    { Hexagon::BI__builtin_HEXAGON_V6_v6mpyhubs10_128B,
4019
0
                                                      {{ 2, false, 2,  0 }} },
4020
0
    { Hexagon::BI__builtin_HEXAGON_V6_v6mpyhubs10_vxx,
4021
0
                                                      {{ 3, false, 2,  0 }} },
4022
0
    { Hexagon::BI__builtin_HEXAGON_V6_v6mpyhubs10_vxx_128B,
4023
0
                                                      {{ 3, false, 2,  0 }} },
4024
0
    { Hexagon::BI__builtin_HEXAGON_V6_v6mpyvubs10,    {{ 2, false, 2,  0 }} },
4025
0
    { Hexagon::BI__builtin_HEXAGON_V6_v6mpyvubs10_128B,
4026
0
                                                      {{ 2, false, 2,  0 }} },
4027
0
    { Hexagon::BI__builtin_HEXAGON_V6_v6mpyvubs10_vxx,
4028
0
                                                      {{ 3, false, 2,  0 }} },
4029
0
    { Hexagon::BI__builtin_HEXAGON_V6_v6mpyvubs10_vxx_128B,
4030
0
                                                      {{ 3, false, 2,  0 }} },
4031
0
    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi,       {{ 2, false, 3,  0 }} },
4032
0
    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvbi_128B,  {{ 2, false, 3,  0 }} },
4033
0
    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci, {{ 3, false, 3,  0 }} },
4034
0
    { Hexagon::BI__builtin_HEXAGON_V6_vlutvvb_oracci_128B,
4035
0
                                                      {{ 3, false, 3,  0 }} },
4036
0
    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi,       {{ 2, false, 3,  0 }} },
4037
0
    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwhi_128B,  {{ 2, false, 3,  0 }} },
4038
0
    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci, {{ 3, false, 3,  0 }} },
4039
0
    { Hexagon::BI__builtin_HEXAGON_V6_vlutvwh_oracci_128B,
4040
0
                                                      {{ 3, false, 3,  0 }} },
4041
0
  };
4042
4043
  // Use a dynamically initialized static to sort the table exactly once on
4044
  // first run.
4045
0
  static const bool SortOnce =
4046
0
      (llvm::sort(Infos,
4047
0
                 [](const BuiltinInfo &LHS, const BuiltinInfo &RHS) {
4048
0
                   return LHS.BuiltinID < RHS.BuiltinID;
4049
0
                 }),
4050
0
       true);
4051
0
  (void)SortOnce;
4052
4053
0
  const BuiltinInfo *F = llvm::partition_point(
4054
0
      Infos, [=](const BuiltinInfo &BI) { return BI.BuiltinID < BuiltinID; });
4055
0
  if (F == std::end(Infos) || F->BuiltinID != BuiltinID)
4056
0
    return false;
4057
4058
0
  bool Error = false;
4059
4060
0
  for (const ArgInfo &A : F->Infos) {
4061
    // Ignore empty ArgInfo elements.
4062
0
    if (A.BitWidth == 0)
4063
0
      continue;
4064
4065
0
    int32_t Min = A.IsSigned ? -(1 << (A.BitWidth - 1)) : 0;
4066
0
    int32_t Max = (1 << (A.IsSigned ? A.BitWidth - 1 : A.BitWidth)) - 1;
4067
0
    if (!A.Align) {
4068
0
      Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
4069
0
    } else {
4070
0
      unsigned M = 1 << A.Align;
4071
0
      Min *= M;
4072
0
      Max *= M;
4073
0
      Error |= SemaBuiltinConstantArgRange(TheCall, A.OpNum, Min, Max);
4074
0
      Error |= SemaBuiltinConstantArgMultiple(TheCall, A.OpNum, M);
4075
0
    }
4076
0
  }
4077
0
  return Error;
4078
0
}
4079
4080
bool Sema::CheckHexagonBuiltinFunctionCall(unsigned BuiltinID,
4081
0
                                           CallExpr *TheCall) {
4082
0
  return CheckHexagonBuiltinArgument(BuiltinID, TheCall);
4083
0
}
4084
4085
bool Sema::CheckLoongArchBuiltinFunctionCall(const TargetInfo &TI,
4086
                                             unsigned BuiltinID,
4087
0
                                             CallExpr *TheCall) {
4088
0
  switch (BuiltinID) {
4089
0
  default:
4090
0
    break;
4091
  // Basic intrinsics.
4092
0
  case LoongArch::BI__builtin_loongarch_cacop_d:
4093
0
  case LoongArch::BI__builtin_loongarch_cacop_w: {
4094
0
    SemaBuiltinConstantArgRange(TheCall, 0, 0, llvm::maxUIntN(5));
4095
0
    SemaBuiltinConstantArgRange(TheCall, 2, llvm::minIntN(12),
4096
0
                                llvm::maxIntN(12));
4097
0
    break;
4098
0
  }
4099
0
  case LoongArch::BI__builtin_loongarch_break:
4100
0
  case LoongArch::BI__builtin_loongarch_dbar:
4101
0
  case LoongArch::BI__builtin_loongarch_ibar:
4102
0
  case LoongArch::BI__builtin_loongarch_syscall:
4103
    // Check if immediate is in [0, 32767].
4104
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 32767);
4105
0
  case LoongArch::BI__builtin_loongarch_csrrd_w:
4106
0
  case LoongArch::BI__builtin_loongarch_csrrd_d:
4107
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 16383);
4108
0
  case LoongArch::BI__builtin_loongarch_csrwr_w:
4109
0
  case LoongArch::BI__builtin_loongarch_csrwr_d:
4110
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 16383);
4111
0
  case LoongArch::BI__builtin_loongarch_csrxchg_w:
4112
0
  case LoongArch::BI__builtin_loongarch_csrxchg_d:
4113
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 16383);
4114
0
  case LoongArch::BI__builtin_loongarch_lddir_d:
4115
0
  case LoongArch::BI__builtin_loongarch_ldpte_d:
4116
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
4117
0
  case LoongArch::BI__builtin_loongarch_movfcsr2gr:
4118
0
  case LoongArch::BI__builtin_loongarch_movgr2fcsr:
4119
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, llvm::maxUIntN(2));
4120
4121
  // LSX intrinsics.
4122
0
  case LoongArch::BI__builtin_lsx_vbitclri_b:
4123
0
  case LoongArch::BI__builtin_lsx_vbitrevi_b:
4124
0
  case LoongArch::BI__builtin_lsx_vbitseti_b:
4125
0
  case LoongArch::BI__builtin_lsx_vsat_b:
4126
0
  case LoongArch::BI__builtin_lsx_vsat_bu:
4127
0
  case LoongArch::BI__builtin_lsx_vslli_b:
4128
0
  case LoongArch::BI__builtin_lsx_vsrai_b:
4129
0
  case LoongArch::BI__builtin_lsx_vsrari_b:
4130
0
  case LoongArch::BI__builtin_lsx_vsrli_b:
4131
0
  case LoongArch::BI__builtin_lsx_vsllwil_h_b:
4132
0
  case LoongArch::BI__builtin_lsx_vsllwil_hu_bu:
4133
0
  case LoongArch::BI__builtin_lsx_vrotri_b:
4134
0
  case LoongArch::BI__builtin_lsx_vsrlri_b:
4135
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 7);
4136
0
  case LoongArch::BI__builtin_lsx_vbitclri_h:
4137
0
  case LoongArch::BI__builtin_lsx_vbitrevi_h:
4138
0
  case LoongArch::BI__builtin_lsx_vbitseti_h:
4139
0
  case LoongArch::BI__builtin_lsx_vsat_h:
4140
0
  case LoongArch::BI__builtin_lsx_vsat_hu:
4141
0
  case LoongArch::BI__builtin_lsx_vslli_h:
4142
0
  case LoongArch::BI__builtin_lsx_vsrai_h:
4143
0
  case LoongArch::BI__builtin_lsx_vsrari_h:
4144
0
  case LoongArch::BI__builtin_lsx_vsrli_h:
4145
0
  case LoongArch::BI__builtin_lsx_vsllwil_w_h:
4146
0
  case LoongArch::BI__builtin_lsx_vsllwil_wu_hu:
4147
0
  case LoongArch::BI__builtin_lsx_vrotri_h:
4148
0
  case LoongArch::BI__builtin_lsx_vsrlri_h:
4149
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
4150
0
  case LoongArch::BI__builtin_lsx_vssrarni_b_h:
4151
0
  case LoongArch::BI__builtin_lsx_vssrarni_bu_h:
4152
0
  case LoongArch::BI__builtin_lsx_vssrani_b_h:
4153
0
  case LoongArch::BI__builtin_lsx_vssrani_bu_h:
4154
0
  case LoongArch::BI__builtin_lsx_vsrarni_b_h:
4155
0
  case LoongArch::BI__builtin_lsx_vsrlni_b_h:
4156
0
  case LoongArch::BI__builtin_lsx_vsrlrni_b_h:
4157
0
  case LoongArch::BI__builtin_lsx_vssrlni_b_h:
4158
0
  case LoongArch::BI__builtin_lsx_vssrlni_bu_h:
4159
0
  case LoongArch::BI__builtin_lsx_vssrlrni_b_h:
4160
0
  case LoongArch::BI__builtin_lsx_vssrlrni_bu_h:
4161
0
  case LoongArch::BI__builtin_lsx_vsrani_b_h:
4162
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
4163
0
  case LoongArch::BI__builtin_lsx_vslei_bu:
4164
0
  case LoongArch::BI__builtin_lsx_vslei_hu:
4165
0
  case LoongArch::BI__builtin_lsx_vslei_wu:
4166
0
  case LoongArch::BI__builtin_lsx_vslei_du:
4167
0
  case LoongArch::BI__builtin_lsx_vslti_bu:
4168
0
  case LoongArch::BI__builtin_lsx_vslti_hu:
4169
0
  case LoongArch::BI__builtin_lsx_vslti_wu:
4170
0
  case LoongArch::BI__builtin_lsx_vslti_du:
4171
0
  case LoongArch::BI__builtin_lsx_vmaxi_bu:
4172
0
  case LoongArch::BI__builtin_lsx_vmaxi_hu:
4173
0
  case LoongArch::BI__builtin_lsx_vmaxi_wu:
4174
0
  case LoongArch::BI__builtin_lsx_vmaxi_du:
4175
0
  case LoongArch::BI__builtin_lsx_vmini_bu:
4176
0
  case LoongArch::BI__builtin_lsx_vmini_hu:
4177
0
  case LoongArch::BI__builtin_lsx_vmini_wu:
4178
0
  case LoongArch::BI__builtin_lsx_vmini_du:
4179
0
  case LoongArch::BI__builtin_lsx_vaddi_bu:
4180
0
  case LoongArch::BI__builtin_lsx_vaddi_hu:
4181
0
  case LoongArch::BI__builtin_lsx_vaddi_wu:
4182
0
  case LoongArch::BI__builtin_lsx_vaddi_du:
4183
0
  case LoongArch::BI__builtin_lsx_vbitclri_w:
4184
0
  case LoongArch::BI__builtin_lsx_vbitrevi_w:
4185
0
  case LoongArch::BI__builtin_lsx_vbitseti_w:
4186
0
  case LoongArch::BI__builtin_lsx_vsat_w:
4187
0
  case LoongArch::BI__builtin_lsx_vsat_wu:
4188
0
  case LoongArch::BI__builtin_lsx_vslli_w:
4189
0
  case LoongArch::BI__builtin_lsx_vsrai_w:
4190
0
  case LoongArch::BI__builtin_lsx_vsrari_w:
4191
0
  case LoongArch::BI__builtin_lsx_vsrli_w:
4192
0
  case LoongArch::BI__builtin_lsx_vsllwil_d_w:
4193
0
  case LoongArch::BI__builtin_lsx_vsllwil_du_wu:
4194
0
  case LoongArch::BI__builtin_lsx_vsrlri_w:
4195
0
  case LoongArch::BI__builtin_lsx_vrotri_w:
4196
0
  case LoongArch::BI__builtin_lsx_vsubi_bu:
4197
0
  case LoongArch::BI__builtin_lsx_vsubi_hu:
4198
0
  case LoongArch::BI__builtin_lsx_vbsrl_v:
4199
0
  case LoongArch::BI__builtin_lsx_vbsll_v:
4200
0
  case LoongArch::BI__builtin_lsx_vsubi_wu:
4201
0
  case LoongArch::BI__builtin_lsx_vsubi_du:
4202
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
4203
0
  case LoongArch::BI__builtin_lsx_vssrarni_h_w:
4204
0
  case LoongArch::BI__builtin_lsx_vssrarni_hu_w:
4205
0
  case LoongArch::BI__builtin_lsx_vssrani_h_w:
4206
0
  case LoongArch::BI__builtin_lsx_vssrani_hu_w:
4207
0
  case LoongArch::BI__builtin_lsx_vsrarni_h_w:
4208
0
  case LoongArch::BI__builtin_lsx_vsrani_h_w:
4209
0
  case LoongArch::BI__builtin_lsx_vfrstpi_b:
4210
0
  case LoongArch::BI__builtin_lsx_vfrstpi_h:
4211
0
  case LoongArch::BI__builtin_lsx_vsrlni_h_w:
4212
0
  case LoongArch::BI__builtin_lsx_vsrlrni_h_w:
4213
0
  case LoongArch::BI__builtin_lsx_vssrlni_h_w:
4214
0
  case LoongArch::BI__builtin_lsx_vssrlni_hu_w:
4215
0
  case LoongArch::BI__builtin_lsx_vssrlrni_h_w:
4216
0
  case LoongArch::BI__builtin_lsx_vssrlrni_hu_w:
4217
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
4218
0
  case LoongArch::BI__builtin_lsx_vbitclri_d:
4219
0
  case LoongArch::BI__builtin_lsx_vbitrevi_d:
4220
0
  case LoongArch::BI__builtin_lsx_vbitseti_d:
4221
0
  case LoongArch::BI__builtin_lsx_vsat_d:
4222
0
  case LoongArch::BI__builtin_lsx_vsat_du:
4223
0
  case LoongArch::BI__builtin_lsx_vslli_d:
4224
0
  case LoongArch::BI__builtin_lsx_vsrai_d:
4225
0
  case LoongArch::BI__builtin_lsx_vsrli_d:
4226
0
  case LoongArch::BI__builtin_lsx_vsrari_d:
4227
0
  case LoongArch::BI__builtin_lsx_vrotri_d:
4228
0
  case LoongArch::BI__builtin_lsx_vsrlri_d:
4229
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 63);
4230
0
  case LoongArch::BI__builtin_lsx_vssrarni_w_d:
4231
0
  case LoongArch::BI__builtin_lsx_vssrarni_wu_d:
4232
0
  case LoongArch::BI__builtin_lsx_vssrani_w_d:
4233
0
  case LoongArch::BI__builtin_lsx_vssrani_wu_d:
4234
0
  case LoongArch::BI__builtin_lsx_vsrarni_w_d:
4235
0
  case LoongArch::BI__builtin_lsx_vsrlni_w_d:
4236
0
  case LoongArch::BI__builtin_lsx_vsrlrni_w_d:
4237
0
  case LoongArch::BI__builtin_lsx_vssrlni_w_d:
4238
0
  case LoongArch::BI__builtin_lsx_vssrlni_wu_d:
4239
0
  case LoongArch::BI__builtin_lsx_vssrlrni_w_d:
4240
0
  case LoongArch::BI__builtin_lsx_vssrlrni_wu_d:
4241
0
  case LoongArch::BI__builtin_lsx_vsrani_w_d:
4242
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 63);
4243
0
  case LoongArch::BI__builtin_lsx_vssrarni_d_q:
4244
0
  case LoongArch::BI__builtin_lsx_vssrarni_du_q:
4245
0
  case LoongArch::BI__builtin_lsx_vssrani_d_q:
4246
0
  case LoongArch::BI__builtin_lsx_vssrani_du_q:
4247
0
  case LoongArch::BI__builtin_lsx_vsrarni_d_q:
4248
0
  case LoongArch::BI__builtin_lsx_vssrlni_d_q:
4249
0
  case LoongArch::BI__builtin_lsx_vssrlni_du_q:
4250
0
  case LoongArch::BI__builtin_lsx_vssrlrni_d_q:
4251
0
  case LoongArch::BI__builtin_lsx_vssrlrni_du_q:
4252
0
  case LoongArch::BI__builtin_lsx_vsrani_d_q:
4253
0
  case LoongArch::BI__builtin_lsx_vsrlrni_d_q:
4254
0
  case LoongArch::BI__builtin_lsx_vsrlni_d_q:
4255
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 127);
4256
0
  case LoongArch::BI__builtin_lsx_vseqi_b:
4257
0
  case LoongArch::BI__builtin_lsx_vseqi_h:
4258
0
  case LoongArch::BI__builtin_lsx_vseqi_w:
4259
0
  case LoongArch::BI__builtin_lsx_vseqi_d:
4260
0
  case LoongArch::BI__builtin_lsx_vslti_b:
4261
0
  case LoongArch::BI__builtin_lsx_vslti_h:
4262
0
  case LoongArch::BI__builtin_lsx_vslti_w:
4263
0
  case LoongArch::BI__builtin_lsx_vslti_d:
4264
0
  case LoongArch::BI__builtin_lsx_vslei_b:
4265
0
  case LoongArch::BI__builtin_lsx_vslei_h:
4266
0
  case LoongArch::BI__builtin_lsx_vslei_w:
4267
0
  case LoongArch::BI__builtin_lsx_vslei_d:
4268
0
  case LoongArch::BI__builtin_lsx_vmaxi_b:
4269
0
  case LoongArch::BI__builtin_lsx_vmaxi_h:
4270
0
  case LoongArch::BI__builtin_lsx_vmaxi_w:
4271
0
  case LoongArch::BI__builtin_lsx_vmaxi_d:
4272
0
  case LoongArch::BI__builtin_lsx_vmini_b:
4273
0
  case LoongArch::BI__builtin_lsx_vmini_h:
4274
0
  case LoongArch::BI__builtin_lsx_vmini_w:
4275
0
  case LoongArch::BI__builtin_lsx_vmini_d:
4276
0
    return SemaBuiltinConstantArgRange(TheCall, 1, -16, 15);
4277
0
  case LoongArch::BI__builtin_lsx_vandi_b:
4278
0
  case LoongArch::BI__builtin_lsx_vnori_b:
4279
0
  case LoongArch::BI__builtin_lsx_vori_b:
4280
0
  case LoongArch::BI__builtin_lsx_vshuf4i_b:
4281
0
  case LoongArch::BI__builtin_lsx_vshuf4i_h:
4282
0
  case LoongArch::BI__builtin_lsx_vshuf4i_w:
4283
0
  case LoongArch::BI__builtin_lsx_vxori_b:
4284
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 255);
4285
0
  case LoongArch::BI__builtin_lsx_vbitseli_b:
4286
0
  case LoongArch::BI__builtin_lsx_vshuf4i_d:
4287
0
  case LoongArch::BI__builtin_lsx_vextrins_b:
4288
0
  case LoongArch::BI__builtin_lsx_vextrins_h:
4289
0
  case LoongArch::BI__builtin_lsx_vextrins_w:
4290
0
  case LoongArch::BI__builtin_lsx_vextrins_d:
4291
0
  case LoongArch::BI__builtin_lsx_vpermi_w:
4292
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 255);
4293
0
  case LoongArch::BI__builtin_lsx_vpickve2gr_b:
4294
0
  case LoongArch::BI__builtin_lsx_vpickve2gr_bu:
4295
0
  case LoongArch::BI__builtin_lsx_vreplvei_b:
4296
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
4297
0
  case LoongArch::BI__builtin_lsx_vinsgr2vr_b:
4298
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
4299
0
  case LoongArch::BI__builtin_lsx_vpickve2gr_h:
4300
0
  case LoongArch::BI__builtin_lsx_vpickve2gr_hu:
4301
0
  case LoongArch::BI__builtin_lsx_vreplvei_h:
4302
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 7);
4303
0
  case LoongArch::BI__builtin_lsx_vinsgr2vr_h:
4304
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
4305
0
  case LoongArch::BI__builtin_lsx_vpickve2gr_w:
4306
0
  case LoongArch::BI__builtin_lsx_vpickve2gr_wu:
4307
0
  case LoongArch::BI__builtin_lsx_vreplvei_w:
4308
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
4309
0
  case LoongArch::BI__builtin_lsx_vinsgr2vr_w:
4310
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
4311
0
  case LoongArch::BI__builtin_lsx_vpickve2gr_d:
4312
0
  case LoongArch::BI__builtin_lsx_vpickve2gr_du:
4313
0
  case LoongArch::BI__builtin_lsx_vreplvei_d:
4314
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
4315
0
  case LoongArch::BI__builtin_lsx_vinsgr2vr_d:
4316
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 1);
4317
0
  case LoongArch::BI__builtin_lsx_vstelm_b:
4318
0
    return SemaBuiltinConstantArgRange(TheCall, 2, -128, 127) ||
4319
0
           SemaBuiltinConstantArgRange(TheCall, 3, 0, 15);
4320
0
  case LoongArch::BI__builtin_lsx_vstelm_h:
4321
0
    return SemaBuiltinConstantArgRange(TheCall, 2, -256, 254) ||
4322
0
           SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
4323
0
  case LoongArch::BI__builtin_lsx_vstelm_w:
4324
0
    return SemaBuiltinConstantArgRange(TheCall, 2, -512, 508) ||
4325
0
           SemaBuiltinConstantArgRange(TheCall, 3, 0, 3);
4326
0
  case LoongArch::BI__builtin_lsx_vstelm_d:
4327
0
    return SemaBuiltinConstantArgRange(TheCall, 2, -1024, 1016) ||
4328
0
           SemaBuiltinConstantArgRange(TheCall, 3, 0, 1);
4329
0
  case LoongArch::BI__builtin_lsx_vldrepl_b:
4330
0
  case LoongArch::BI__builtin_lsx_vld:
4331
0
    return SemaBuiltinConstantArgRange(TheCall, 1, -2048, 2047);
4332
0
  case LoongArch::BI__builtin_lsx_vldrepl_h:
4333
0
    return SemaBuiltinConstantArgRange(TheCall, 1, -2048, 2046);
4334
0
  case LoongArch::BI__builtin_lsx_vldrepl_w:
4335
0
    return SemaBuiltinConstantArgRange(TheCall, 1, -2048, 2044);
4336
0
  case LoongArch::BI__builtin_lsx_vldrepl_d:
4337
0
    return SemaBuiltinConstantArgRange(TheCall, 1, -2048, 2040);
4338
0
  case LoongArch::BI__builtin_lsx_vst:
4339
0
    return SemaBuiltinConstantArgRange(TheCall, 2, -2048, 2047);
4340
0
  case LoongArch::BI__builtin_lsx_vldi:
4341
0
    return SemaBuiltinConstantArgRange(TheCall, 0, -4096, 4095);
4342
0
  case LoongArch::BI__builtin_lsx_vrepli_b:
4343
0
  case LoongArch::BI__builtin_lsx_vrepli_h:
4344
0
  case LoongArch::BI__builtin_lsx_vrepli_w:
4345
0
  case LoongArch::BI__builtin_lsx_vrepli_d:
4346
0
    return SemaBuiltinConstantArgRange(TheCall, 0, -512, 511);
4347
4348
  // LASX intrinsics.
4349
0
  case LoongArch::BI__builtin_lasx_xvbitclri_b:
4350
0
  case LoongArch::BI__builtin_lasx_xvbitrevi_b:
4351
0
  case LoongArch::BI__builtin_lasx_xvbitseti_b:
4352
0
  case LoongArch::BI__builtin_lasx_xvsat_b:
4353
0
  case LoongArch::BI__builtin_lasx_xvsat_bu:
4354
0
  case LoongArch::BI__builtin_lasx_xvslli_b:
4355
0
  case LoongArch::BI__builtin_lasx_xvsrai_b:
4356
0
  case LoongArch::BI__builtin_lasx_xvsrari_b:
4357
0
  case LoongArch::BI__builtin_lasx_xvsrli_b:
4358
0
  case LoongArch::BI__builtin_lasx_xvsllwil_h_b:
4359
0
  case LoongArch::BI__builtin_lasx_xvsllwil_hu_bu:
4360
0
  case LoongArch::BI__builtin_lasx_xvrotri_b:
4361
0
  case LoongArch::BI__builtin_lasx_xvsrlri_b:
4362
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 7);
4363
0
  case LoongArch::BI__builtin_lasx_xvbitclri_h:
4364
0
  case LoongArch::BI__builtin_lasx_xvbitrevi_h:
4365
0
  case LoongArch::BI__builtin_lasx_xvbitseti_h:
4366
0
  case LoongArch::BI__builtin_lasx_xvsat_h:
4367
0
  case LoongArch::BI__builtin_lasx_xvsat_hu:
4368
0
  case LoongArch::BI__builtin_lasx_xvslli_h:
4369
0
  case LoongArch::BI__builtin_lasx_xvsrai_h:
4370
0
  case LoongArch::BI__builtin_lasx_xvsrari_h:
4371
0
  case LoongArch::BI__builtin_lasx_xvsrli_h:
4372
0
  case LoongArch::BI__builtin_lasx_xvsllwil_w_h:
4373
0
  case LoongArch::BI__builtin_lasx_xvsllwil_wu_hu:
4374
0
  case LoongArch::BI__builtin_lasx_xvrotri_h:
4375
0
  case LoongArch::BI__builtin_lasx_xvsrlri_h:
4376
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
4377
0
  case LoongArch::BI__builtin_lasx_xvssrarni_b_h:
4378
0
  case LoongArch::BI__builtin_lasx_xvssrarni_bu_h:
4379
0
  case LoongArch::BI__builtin_lasx_xvssrani_b_h:
4380
0
  case LoongArch::BI__builtin_lasx_xvssrani_bu_h:
4381
0
  case LoongArch::BI__builtin_lasx_xvsrarni_b_h:
4382
0
  case LoongArch::BI__builtin_lasx_xvsrlni_b_h:
4383
0
  case LoongArch::BI__builtin_lasx_xvsrlrni_b_h:
4384
0
  case LoongArch::BI__builtin_lasx_xvssrlni_b_h:
4385
0
  case LoongArch::BI__builtin_lasx_xvssrlni_bu_h:
4386
0
  case LoongArch::BI__builtin_lasx_xvssrlrni_b_h:
4387
0
  case LoongArch::BI__builtin_lasx_xvssrlrni_bu_h:
4388
0
  case LoongArch::BI__builtin_lasx_xvsrani_b_h:
4389
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
4390
0
  case LoongArch::BI__builtin_lasx_xvslei_bu:
4391
0
  case LoongArch::BI__builtin_lasx_xvslei_hu:
4392
0
  case LoongArch::BI__builtin_lasx_xvslei_wu:
4393
0
  case LoongArch::BI__builtin_lasx_xvslei_du:
4394
0
  case LoongArch::BI__builtin_lasx_xvslti_bu:
4395
0
  case LoongArch::BI__builtin_lasx_xvslti_hu:
4396
0
  case LoongArch::BI__builtin_lasx_xvslti_wu:
4397
0
  case LoongArch::BI__builtin_lasx_xvslti_du:
4398
0
  case LoongArch::BI__builtin_lasx_xvmaxi_bu:
4399
0
  case LoongArch::BI__builtin_lasx_xvmaxi_hu:
4400
0
  case LoongArch::BI__builtin_lasx_xvmaxi_wu:
4401
0
  case LoongArch::BI__builtin_lasx_xvmaxi_du:
4402
0
  case LoongArch::BI__builtin_lasx_xvmini_bu:
4403
0
  case LoongArch::BI__builtin_lasx_xvmini_hu:
4404
0
  case LoongArch::BI__builtin_lasx_xvmini_wu:
4405
0
  case LoongArch::BI__builtin_lasx_xvmini_du:
4406
0
  case LoongArch::BI__builtin_lasx_xvaddi_bu:
4407
0
  case LoongArch::BI__builtin_lasx_xvaddi_hu:
4408
0
  case LoongArch::BI__builtin_lasx_xvaddi_wu:
4409
0
  case LoongArch::BI__builtin_lasx_xvaddi_du:
4410
0
  case LoongArch::BI__builtin_lasx_xvbitclri_w:
4411
0
  case LoongArch::BI__builtin_lasx_xvbitrevi_w:
4412
0
  case LoongArch::BI__builtin_lasx_xvbitseti_w:
4413
0
  case LoongArch::BI__builtin_lasx_xvsat_w:
4414
0
  case LoongArch::BI__builtin_lasx_xvsat_wu:
4415
0
  case LoongArch::BI__builtin_lasx_xvslli_w:
4416
0
  case LoongArch::BI__builtin_lasx_xvsrai_w:
4417
0
  case LoongArch::BI__builtin_lasx_xvsrari_w:
4418
0
  case LoongArch::BI__builtin_lasx_xvsrli_w:
4419
0
  case LoongArch::BI__builtin_lasx_xvsllwil_d_w:
4420
0
  case LoongArch::BI__builtin_lasx_xvsllwil_du_wu:
4421
0
  case LoongArch::BI__builtin_lasx_xvsrlri_w:
4422
0
  case LoongArch::BI__builtin_lasx_xvrotri_w:
4423
0
  case LoongArch::BI__builtin_lasx_xvsubi_bu:
4424
0
  case LoongArch::BI__builtin_lasx_xvsubi_hu:
4425
0
  case LoongArch::BI__builtin_lasx_xvsubi_wu:
4426
0
  case LoongArch::BI__builtin_lasx_xvsubi_du:
4427
0
  case LoongArch::BI__builtin_lasx_xvbsrl_v:
4428
0
  case LoongArch::BI__builtin_lasx_xvbsll_v:
4429
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
4430
0
  case LoongArch::BI__builtin_lasx_xvssrarni_h_w:
4431
0
  case LoongArch::BI__builtin_lasx_xvssrarni_hu_w:
4432
0
  case LoongArch::BI__builtin_lasx_xvssrani_h_w:
4433
0
  case LoongArch::BI__builtin_lasx_xvssrani_hu_w:
4434
0
  case LoongArch::BI__builtin_lasx_xvsrarni_h_w:
4435
0
  case LoongArch::BI__builtin_lasx_xvsrani_h_w:
4436
0
  case LoongArch::BI__builtin_lasx_xvfrstpi_b:
4437
0
  case LoongArch::BI__builtin_lasx_xvfrstpi_h:
4438
0
  case LoongArch::BI__builtin_lasx_xvsrlni_h_w:
4439
0
  case LoongArch::BI__builtin_lasx_xvsrlrni_h_w:
4440
0
  case LoongArch::BI__builtin_lasx_xvssrlni_h_w:
4441
0
  case LoongArch::BI__builtin_lasx_xvssrlni_hu_w:
4442
0
  case LoongArch::BI__builtin_lasx_xvssrlrni_h_w:
4443
0
  case LoongArch::BI__builtin_lasx_xvssrlrni_hu_w:
4444
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
4445
0
  case LoongArch::BI__builtin_lasx_xvbitclri_d:
4446
0
  case LoongArch::BI__builtin_lasx_xvbitrevi_d:
4447
0
  case LoongArch::BI__builtin_lasx_xvbitseti_d:
4448
0
  case LoongArch::BI__builtin_lasx_xvsat_d:
4449
0
  case LoongArch::BI__builtin_lasx_xvsat_du:
4450
0
  case LoongArch::BI__builtin_lasx_xvslli_d:
4451
0
  case LoongArch::BI__builtin_lasx_xvsrai_d:
4452
0
  case LoongArch::BI__builtin_lasx_xvsrli_d:
4453
0
  case LoongArch::BI__builtin_lasx_xvsrari_d:
4454
0
  case LoongArch::BI__builtin_lasx_xvrotri_d:
4455
0
  case LoongArch::BI__builtin_lasx_xvsrlri_d:
4456
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 63);
4457
0
  case LoongArch::BI__builtin_lasx_xvssrarni_w_d:
4458
0
  case LoongArch::BI__builtin_lasx_xvssrarni_wu_d:
4459
0
  case LoongArch::BI__builtin_lasx_xvssrani_w_d:
4460
0
  case LoongArch::BI__builtin_lasx_xvssrani_wu_d:
4461
0
  case LoongArch::BI__builtin_lasx_xvsrarni_w_d:
4462
0
  case LoongArch::BI__builtin_lasx_xvsrlni_w_d:
4463
0
  case LoongArch::BI__builtin_lasx_xvsrlrni_w_d:
4464
0
  case LoongArch::BI__builtin_lasx_xvssrlni_w_d:
4465
0
  case LoongArch::BI__builtin_lasx_xvssrlni_wu_d:
4466
0
  case LoongArch::BI__builtin_lasx_xvssrlrni_w_d:
4467
0
  case LoongArch::BI__builtin_lasx_xvssrlrni_wu_d:
4468
0
  case LoongArch::BI__builtin_lasx_xvsrani_w_d:
4469
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 63);
4470
0
  case LoongArch::BI__builtin_lasx_xvssrarni_d_q:
4471
0
  case LoongArch::BI__builtin_lasx_xvssrarni_du_q:
4472
0
  case LoongArch::BI__builtin_lasx_xvssrani_d_q:
4473
0
  case LoongArch::BI__builtin_lasx_xvssrani_du_q:
4474
0
  case LoongArch::BI__builtin_lasx_xvsrarni_d_q:
4475
0
  case LoongArch::BI__builtin_lasx_xvssrlni_d_q:
4476
0
  case LoongArch::BI__builtin_lasx_xvssrlni_du_q:
4477
0
  case LoongArch::BI__builtin_lasx_xvssrlrni_d_q:
4478
0
  case LoongArch::BI__builtin_lasx_xvssrlrni_du_q:
4479
0
  case LoongArch::BI__builtin_lasx_xvsrani_d_q:
4480
0
  case LoongArch::BI__builtin_lasx_xvsrlni_d_q:
4481
0
  case LoongArch::BI__builtin_lasx_xvsrlrni_d_q:
4482
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 127);
4483
0
  case LoongArch::BI__builtin_lasx_xvseqi_b:
4484
0
  case LoongArch::BI__builtin_lasx_xvseqi_h:
4485
0
  case LoongArch::BI__builtin_lasx_xvseqi_w:
4486
0
  case LoongArch::BI__builtin_lasx_xvseqi_d:
4487
0
  case LoongArch::BI__builtin_lasx_xvslti_b:
4488
0
  case LoongArch::BI__builtin_lasx_xvslti_h:
4489
0
  case LoongArch::BI__builtin_lasx_xvslti_w:
4490
0
  case LoongArch::BI__builtin_lasx_xvslti_d:
4491
0
  case LoongArch::BI__builtin_lasx_xvslei_b:
4492
0
  case LoongArch::BI__builtin_lasx_xvslei_h:
4493
0
  case LoongArch::BI__builtin_lasx_xvslei_w:
4494
0
  case LoongArch::BI__builtin_lasx_xvslei_d:
4495
0
  case LoongArch::BI__builtin_lasx_xvmaxi_b:
4496
0
  case LoongArch::BI__builtin_lasx_xvmaxi_h:
4497
0
  case LoongArch::BI__builtin_lasx_xvmaxi_w:
4498
0
  case LoongArch::BI__builtin_lasx_xvmaxi_d:
4499
0
  case LoongArch::BI__builtin_lasx_xvmini_b:
4500
0
  case LoongArch::BI__builtin_lasx_xvmini_h:
4501
0
  case LoongArch::BI__builtin_lasx_xvmini_w:
4502
0
  case LoongArch::BI__builtin_lasx_xvmini_d:
4503
0
    return SemaBuiltinConstantArgRange(TheCall, 1, -16, 15);
4504
0
  case LoongArch::BI__builtin_lasx_xvandi_b:
4505
0
  case LoongArch::BI__builtin_lasx_xvnori_b:
4506
0
  case LoongArch::BI__builtin_lasx_xvori_b:
4507
0
  case LoongArch::BI__builtin_lasx_xvshuf4i_b:
4508
0
  case LoongArch::BI__builtin_lasx_xvshuf4i_h:
4509
0
  case LoongArch::BI__builtin_lasx_xvshuf4i_w:
4510
0
  case LoongArch::BI__builtin_lasx_xvxori_b:
4511
0
  case LoongArch::BI__builtin_lasx_xvpermi_d:
4512
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 255);
4513
0
  case LoongArch::BI__builtin_lasx_xvbitseli_b:
4514
0
  case LoongArch::BI__builtin_lasx_xvshuf4i_d:
4515
0
  case LoongArch::BI__builtin_lasx_xvextrins_b:
4516
0
  case LoongArch::BI__builtin_lasx_xvextrins_h:
4517
0
  case LoongArch::BI__builtin_lasx_xvextrins_w:
4518
0
  case LoongArch::BI__builtin_lasx_xvextrins_d:
4519
0
  case LoongArch::BI__builtin_lasx_xvpermi_q:
4520
0
  case LoongArch::BI__builtin_lasx_xvpermi_w:
4521
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 255);
4522
0
  case LoongArch::BI__builtin_lasx_xvrepl128vei_b:
4523
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
4524
0
  case LoongArch::BI__builtin_lasx_xvrepl128vei_h:
4525
0
  case LoongArch::BI__builtin_lasx_xvpickve2gr_w:
4526
0
  case LoongArch::BI__builtin_lasx_xvpickve2gr_wu:
4527
0
  case LoongArch::BI__builtin_lasx_xvpickve_w_f:
4528
0
  case LoongArch::BI__builtin_lasx_xvpickve_w:
4529
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 7);
4530
0
  case LoongArch::BI__builtin_lasx_xvinsgr2vr_w:
4531
0
  case LoongArch::BI__builtin_lasx_xvinsve0_w:
4532
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
4533
0
  case LoongArch::BI__builtin_lasx_xvrepl128vei_w:
4534
0
  case LoongArch::BI__builtin_lasx_xvpickve2gr_d:
4535
0
  case LoongArch::BI__builtin_lasx_xvpickve2gr_du:
4536
0
  case LoongArch::BI__builtin_lasx_xvpickve_d_f:
4537
0
  case LoongArch::BI__builtin_lasx_xvpickve_d:
4538
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
4539
0
  case LoongArch::BI__builtin_lasx_xvinsve0_d:
4540
0
  case LoongArch::BI__builtin_lasx_xvinsgr2vr_d:
4541
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
4542
0
  case LoongArch::BI__builtin_lasx_xvstelm_b:
4543
0
    return SemaBuiltinConstantArgRange(TheCall, 2, -128, 127) ||
4544
0
           SemaBuiltinConstantArgRange(TheCall, 3, 0, 31);
4545
0
  case LoongArch::BI__builtin_lasx_xvstelm_h:
4546
0
    return SemaBuiltinConstantArgRange(TheCall, 2, -256, 254) ||
4547
0
           SemaBuiltinConstantArgRange(TheCall, 3, 0, 15);
4548
0
  case LoongArch::BI__builtin_lasx_xvstelm_w:
4549
0
    return SemaBuiltinConstantArgRange(TheCall, 2, -512, 508) ||
4550
0
           SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
4551
0
  case LoongArch::BI__builtin_lasx_xvstelm_d:
4552
0
    return SemaBuiltinConstantArgRange(TheCall, 2, -1024, 1016) ||
4553
0
           SemaBuiltinConstantArgRange(TheCall, 3, 0, 3);
4554
0
  case LoongArch::BI__builtin_lasx_xvrepl128vei_d:
4555
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
4556
0
  case LoongArch::BI__builtin_lasx_xvldrepl_b:
4557
0
  case LoongArch::BI__builtin_lasx_xvld:
4558
0
    return SemaBuiltinConstantArgRange(TheCall, 1, -2048, 2047);
4559
0
  case LoongArch::BI__builtin_lasx_xvldrepl_h:
4560
0
    return SemaBuiltinConstantArgRange(TheCall, 1, -2048, 2046);
4561
0
  case LoongArch::BI__builtin_lasx_xvldrepl_w:
4562
0
    return SemaBuiltinConstantArgRange(TheCall, 1, -2048, 2044);
4563
0
  case LoongArch::BI__builtin_lasx_xvldrepl_d:
4564
0
    return SemaBuiltinConstantArgRange(TheCall, 1, -2048, 2040);
4565
0
  case LoongArch::BI__builtin_lasx_xvst:
4566
0
    return SemaBuiltinConstantArgRange(TheCall, 2, -2048, 2047);
4567
0
  case LoongArch::BI__builtin_lasx_xvldi:
4568
0
    return SemaBuiltinConstantArgRange(TheCall, 0, -4096, 4095);
4569
0
  case LoongArch::BI__builtin_lasx_xvrepli_b:
4570
0
  case LoongArch::BI__builtin_lasx_xvrepli_h:
4571
0
  case LoongArch::BI__builtin_lasx_xvrepli_w:
4572
0
  case LoongArch::BI__builtin_lasx_xvrepli_d:
4573
0
    return SemaBuiltinConstantArgRange(TheCall, 0, -512, 511);
4574
0
  }
4575
0
  return false;
4576
0
}
4577
4578
bool Sema::CheckMipsBuiltinFunctionCall(const TargetInfo &TI,
4579
0
                                        unsigned BuiltinID, CallExpr *TheCall) {
4580
0
  return CheckMipsBuiltinCpu(TI, BuiltinID, TheCall) ||
4581
0
         CheckMipsBuiltinArgument(BuiltinID, TheCall);
4582
0
}
4583
4584
bool Sema::CheckMipsBuiltinCpu(const TargetInfo &TI, unsigned BuiltinID,
4585
0
                               CallExpr *TheCall) {
4586
4587
0
  if (Mips::BI__builtin_mips_addu_qb <= BuiltinID &&
4588
0
      BuiltinID <= Mips::BI__builtin_mips_lwx) {
4589
0
    if (!TI.hasFeature("dsp"))
4590
0
      return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_dsp);
4591
0
  }
4592
4593
0
  if (Mips::BI__builtin_mips_absq_s_qb <= BuiltinID &&
4594
0
      BuiltinID <= Mips::BI__builtin_mips_subuh_r_qb) {
4595
0
    if (!TI.hasFeature("dspr2"))
4596
0
      return Diag(TheCall->getBeginLoc(),
4597
0
                  diag::err_mips_builtin_requires_dspr2);
4598
0
  }
4599
4600
0
  if (Mips::BI__builtin_msa_add_a_b <= BuiltinID &&
4601
0
      BuiltinID <= Mips::BI__builtin_msa_xori_b) {
4602
0
    if (!TI.hasFeature("msa"))
4603
0
      return Diag(TheCall->getBeginLoc(), diag::err_mips_builtin_requires_msa);
4604
0
  }
4605
4606
0
  return false;
4607
0
}
4608
4609
// CheckMipsBuiltinArgument - Checks the constant value passed to the
4610
// intrinsic is correct. The switch statement is ordered by DSP, MSA. The
4611
// ordering for DSP is unspecified. MSA is ordered by the data format used
4612
// by the underlying instruction i.e., df/m, df/n and then by size.
4613
//
4614
// FIXME: The size tests here should instead be tablegen'd along with the
4615
//        definitions from include/clang/Basic/BuiltinsMips.def.
4616
// FIXME: GCC is strict on signedness for some of these intrinsics, we should
4617
//        be too.
4618
0
bool Sema::CheckMipsBuiltinArgument(unsigned BuiltinID, CallExpr *TheCall) {
4619
0
  unsigned i = 0, l = 0, u = 0, m = 0;
4620
0
  switch (BuiltinID) {
4621
0
  default: return false;
4622
0
  case Mips::BI__builtin_mips_wrdsp: i = 1; l = 0; u = 63; break;
4623
0
  case Mips::BI__builtin_mips_rddsp: i = 0; l = 0; u = 63; break;
4624
0
  case Mips::BI__builtin_mips_append: i = 2; l = 0; u = 31; break;
4625
0
  case Mips::BI__builtin_mips_balign: i = 2; l = 0; u = 3; break;
4626
0
  case Mips::BI__builtin_mips_precr_sra_ph_w: i = 2; l = 0; u = 31; break;
4627
0
  case Mips::BI__builtin_mips_precr_sra_r_ph_w: i = 2; l = 0; u = 31; break;
4628
0
  case Mips::BI__builtin_mips_prepend: i = 2; l = 0; u = 31; break;
4629
  // MSA intrinsics. Instructions (which the intrinsics maps to) which use the
4630
  // df/m field.
4631
  // These intrinsics take an unsigned 3 bit immediate.
4632
0
  case Mips::BI__builtin_msa_bclri_b:
4633
0
  case Mips::BI__builtin_msa_bnegi_b:
4634
0
  case Mips::BI__builtin_msa_bseti_b:
4635
0
  case Mips::BI__builtin_msa_sat_s_b:
4636
0
  case Mips::BI__builtin_msa_sat_u_b:
4637
0
  case Mips::BI__builtin_msa_slli_b:
4638
0
  case Mips::BI__builtin_msa_srai_b:
4639
0
  case Mips::BI__builtin_msa_srari_b:
4640
0
  case Mips::BI__builtin_msa_srli_b:
4641
0
  case Mips::BI__builtin_msa_srlri_b: i = 1; l = 0; u = 7; break;
4642
0
  case Mips::BI__builtin_msa_binsli_b:
4643
0
  case Mips::BI__builtin_msa_binsri_b: i = 2; l = 0; u = 7; break;
4644
  // These intrinsics take an unsigned 4 bit immediate.
4645
0
  case Mips::BI__builtin_msa_bclri_h:
4646
0
  case Mips::BI__builtin_msa_bnegi_h:
4647
0
  case Mips::BI__builtin_msa_bseti_h:
4648
0
  case Mips::BI__builtin_msa_sat_s_h:
4649
0
  case Mips::BI__builtin_msa_sat_u_h:
4650
0
  case Mips::BI__builtin_msa_slli_h:
4651
0
  case Mips::BI__builtin_msa_srai_h:
4652
0
  case Mips::BI__builtin_msa_srari_h:
4653
0
  case Mips::BI__builtin_msa_srli_h:
4654
0
  case Mips::BI__builtin_msa_srlri_h: i = 1; l = 0; u = 15; break;
4655
0
  case Mips::BI__builtin_msa_binsli_h:
4656
0
  case Mips::BI__builtin_msa_binsri_h: i = 2; l = 0; u = 15; break;
4657
  // These intrinsics take an unsigned 5 bit immediate.
4658
  // The first block of intrinsics actually have an unsigned 5 bit field,
4659
  // not a df/n field.
4660
0
  case Mips::BI__builtin_msa_cfcmsa:
4661
0
  case Mips::BI__builtin_msa_ctcmsa: i = 0; l = 0; u = 31; break;
4662
0
  case Mips::BI__builtin_msa_clei_u_b:
4663
0
  case Mips::BI__builtin_msa_clei_u_h:
4664
0
  case Mips::BI__builtin_msa_clei_u_w:
4665
0
  case Mips::BI__builtin_msa_clei_u_d:
4666
0
  case Mips::BI__builtin_msa_clti_u_b:
4667
0
  case Mips::BI__builtin_msa_clti_u_h:
4668
0
  case Mips::BI__builtin_msa_clti_u_w:
4669
0
  case Mips::BI__builtin_msa_clti_u_d:
4670
0
  case Mips::BI__builtin_msa_maxi_u_b:
4671
0
  case Mips::BI__builtin_msa_maxi_u_h:
4672
0
  case Mips::BI__builtin_msa_maxi_u_w:
4673
0
  case Mips::BI__builtin_msa_maxi_u_d:
4674
0
  case Mips::BI__builtin_msa_mini_u_b:
4675
0
  case Mips::BI__builtin_msa_mini_u_h:
4676
0
  case Mips::BI__builtin_msa_mini_u_w:
4677
0
  case Mips::BI__builtin_msa_mini_u_d:
4678
0
  case Mips::BI__builtin_msa_addvi_b:
4679
0
  case Mips::BI__builtin_msa_addvi_h:
4680
0
  case Mips::BI__builtin_msa_addvi_w:
4681
0
  case Mips::BI__builtin_msa_addvi_d:
4682
0
  case Mips::BI__builtin_msa_bclri_w:
4683
0
  case Mips::BI__builtin_msa_bnegi_w:
4684
0
  case Mips::BI__builtin_msa_bseti_w:
4685
0
  case Mips::BI__builtin_msa_sat_s_w:
4686
0
  case Mips::BI__builtin_msa_sat_u_w:
4687
0
  case Mips::BI__builtin_msa_slli_w:
4688
0
  case Mips::BI__builtin_msa_srai_w:
4689
0
  case Mips::BI__builtin_msa_srari_w:
4690
0
  case Mips::BI__builtin_msa_srli_w:
4691
0
  case Mips::BI__builtin_msa_srlri_w:
4692
0
  case Mips::BI__builtin_msa_subvi_b:
4693
0
  case Mips::BI__builtin_msa_subvi_h:
4694
0
  case Mips::BI__builtin_msa_subvi_w:
4695
0
  case Mips::BI__builtin_msa_subvi_d: i = 1; l = 0; u = 31; break;
4696
0
  case Mips::BI__builtin_msa_binsli_w:
4697
0
  case Mips::BI__builtin_msa_binsri_w: i = 2; l = 0; u = 31; break;
4698
  // These intrinsics take an unsigned 6 bit immediate.
4699
0
  case Mips::BI__builtin_msa_bclri_d:
4700
0
  case Mips::BI__builtin_msa_bnegi_d:
4701
0
  case Mips::BI__builtin_msa_bseti_d:
4702
0
  case Mips::BI__builtin_msa_sat_s_d:
4703
0
  case Mips::BI__builtin_msa_sat_u_d:
4704
0
  case Mips::BI__builtin_msa_slli_d:
4705
0
  case Mips::BI__builtin_msa_srai_d:
4706
0
  case Mips::BI__builtin_msa_srari_d:
4707
0
  case Mips::BI__builtin_msa_srli_d:
4708
0
  case Mips::BI__builtin_msa_srlri_d: i = 1; l = 0; u = 63; break;
4709
0
  case Mips::BI__builtin_msa_binsli_d:
4710
0
  case Mips::BI__builtin_msa_binsri_d: i = 2; l = 0; u = 63; break;
4711
  // These intrinsics take a signed 5 bit immediate.
4712
0
  case Mips::BI__builtin_msa_ceqi_b:
4713
0
  case Mips::BI__builtin_msa_ceqi_h:
4714
0
  case Mips::BI__builtin_msa_ceqi_w:
4715
0
  case Mips::BI__builtin_msa_ceqi_d:
4716
0
  case Mips::BI__builtin_msa_clti_s_b:
4717
0
  case Mips::BI__builtin_msa_clti_s_h:
4718
0
  case Mips::BI__builtin_msa_clti_s_w:
4719
0
  case Mips::BI__builtin_msa_clti_s_d:
4720
0
  case Mips::BI__builtin_msa_clei_s_b:
4721
0
  case Mips::BI__builtin_msa_clei_s_h:
4722
0
  case Mips::BI__builtin_msa_clei_s_w:
4723
0
  case Mips::BI__builtin_msa_clei_s_d:
4724
0
  case Mips::BI__builtin_msa_maxi_s_b:
4725
0
  case Mips::BI__builtin_msa_maxi_s_h:
4726
0
  case Mips::BI__builtin_msa_maxi_s_w:
4727
0
  case Mips::BI__builtin_msa_maxi_s_d:
4728
0
  case Mips::BI__builtin_msa_mini_s_b:
4729
0
  case Mips::BI__builtin_msa_mini_s_h:
4730
0
  case Mips::BI__builtin_msa_mini_s_w:
4731
0
  case Mips::BI__builtin_msa_mini_s_d: i = 1; l = -16; u = 15; break;
4732
  // These intrinsics take an unsigned 8 bit immediate.
4733
0
  case Mips::BI__builtin_msa_andi_b:
4734
0
  case Mips::BI__builtin_msa_nori_b:
4735
0
  case Mips::BI__builtin_msa_ori_b:
4736
0
  case Mips::BI__builtin_msa_shf_b:
4737
0
  case Mips::BI__builtin_msa_shf_h:
4738
0
  case Mips::BI__builtin_msa_shf_w:
4739
0
  case Mips::BI__builtin_msa_xori_b: i = 1; l = 0; u = 255; break;
4740
0
  case Mips::BI__builtin_msa_bseli_b:
4741
0
  case Mips::BI__builtin_msa_bmnzi_b:
4742
0
  case Mips::BI__builtin_msa_bmzi_b: i = 2; l = 0; u = 255; break;
4743
  // df/n format
4744
  // These intrinsics take an unsigned 4 bit immediate.
4745
0
  case Mips::BI__builtin_msa_copy_s_b:
4746
0
  case Mips::BI__builtin_msa_copy_u_b:
4747
0
  case Mips::BI__builtin_msa_insve_b:
4748
0
  case Mips::BI__builtin_msa_splati_b: i = 1; l = 0; u = 15; break;
4749
0
  case Mips::BI__builtin_msa_sldi_b: i = 2; l = 0; u = 15; break;
4750
  // These intrinsics take an unsigned 3 bit immediate.
4751
0
  case Mips::BI__builtin_msa_copy_s_h:
4752
0
  case Mips::BI__builtin_msa_copy_u_h:
4753
0
  case Mips::BI__builtin_msa_insve_h:
4754
0
  case Mips::BI__builtin_msa_splati_h: i = 1; l = 0; u = 7; break;
4755
0
  case Mips::BI__builtin_msa_sldi_h: i = 2; l = 0; u = 7; break;
4756
  // These intrinsics take an unsigned 2 bit immediate.
4757
0
  case Mips::BI__builtin_msa_copy_s_w:
4758
0
  case Mips::BI__builtin_msa_copy_u_w:
4759
0
  case Mips::BI__builtin_msa_insve_w:
4760
0
  case Mips::BI__builtin_msa_splati_w: i = 1; l = 0; u = 3; break;
4761
0
  case Mips::BI__builtin_msa_sldi_w: i = 2; l = 0; u = 3; break;
4762
  // These intrinsics take an unsigned 1 bit immediate.
4763
0
  case Mips::BI__builtin_msa_copy_s_d:
4764
0
  case Mips::BI__builtin_msa_copy_u_d:
4765
0
  case Mips::BI__builtin_msa_insve_d:
4766
0
  case Mips::BI__builtin_msa_splati_d: i = 1; l = 0; u = 1; break;
4767
0
  case Mips::BI__builtin_msa_sldi_d: i = 2; l = 0; u = 1; break;
4768
  // Memory offsets and immediate loads.
4769
  // These intrinsics take a signed 10 bit immediate.
4770
0
  case Mips::BI__builtin_msa_ldi_b: i = 0; l = -128; u = 255; break;
4771
0
  case Mips::BI__builtin_msa_ldi_h:
4772
0
  case Mips::BI__builtin_msa_ldi_w:
4773
0
  case Mips::BI__builtin_msa_ldi_d: i = 0; l = -512; u = 511; break;
4774
0
  case Mips::BI__builtin_msa_ld_b: i = 1; l = -512; u = 511; m = 1; break;
4775
0
  case Mips::BI__builtin_msa_ld_h: i = 1; l = -1024; u = 1022; m = 2; break;
4776
0
  case Mips::BI__builtin_msa_ld_w: i = 1; l = -2048; u = 2044; m = 4; break;
4777
0
  case Mips::BI__builtin_msa_ld_d: i = 1; l = -4096; u = 4088; m = 8; break;
4778
0
  case Mips::BI__builtin_msa_ldr_d: i = 1; l = -4096; u = 4088; m = 8; break;
4779
0
  case Mips::BI__builtin_msa_ldr_w: i = 1; l = -2048; u = 2044; m = 4; break;
4780
0
  case Mips::BI__builtin_msa_st_b: i = 2; l = -512; u = 511; m = 1; break;
4781
0
  case Mips::BI__builtin_msa_st_h: i = 2; l = -1024; u = 1022; m = 2; break;
4782
0
  case Mips::BI__builtin_msa_st_w: i = 2; l = -2048; u = 2044; m = 4; break;
4783
0
  case Mips::BI__builtin_msa_st_d: i = 2; l = -4096; u = 4088; m = 8; break;
4784
0
  case Mips::BI__builtin_msa_str_d: i = 2; l = -4096; u = 4088; m = 8; break;
4785
0
  case Mips::BI__builtin_msa_str_w: i = 2; l = -2048; u = 2044; m = 4; break;
4786
0
  }
4787
4788
0
  if (!m)
4789
0
    return SemaBuiltinConstantArgRange(TheCall, i, l, u);
4790
4791
0
  return SemaBuiltinConstantArgRange(TheCall, i, l, u) ||
4792
0
         SemaBuiltinConstantArgMultiple(TheCall, i, m);
4793
0
}
4794
4795
/// DecodePPCMMATypeFromStr - This decodes one PPC MMA type descriptor from Str,
4796
/// advancing the pointer over the consumed characters. The decoded type is
4797
/// returned. If the decoded type represents a constant integer with a
4798
/// constraint on its value then Mask is set to that value. The type descriptors
4799
/// used in Str are specific to PPC MMA builtins and are documented in the file
4800
/// defining the PPC builtins.
4801
static QualType DecodePPCMMATypeFromStr(ASTContext &Context, const char *&Str,
4802
0
                                        unsigned &Mask) {
4803
0
  bool RequireICE = false;
4804
0
  ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
4805
0
  switch (*Str++) {
4806
0
  case 'V':
4807
0
    return Context.getVectorType(Context.UnsignedCharTy, 16,
4808
0
                                 VectorKind::AltiVecVector);
4809
0
  case 'i': {
4810
0
    char *End;
4811
0
    unsigned size = strtoul(Str, &End, 10);
4812
0
    assert(End != Str && "Missing constant parameter constraint");
4813
0
    Str = End;
4814
0
    Mask = size;
4815
0
    return Context.IntTy;
4816
0
  }
4817
0
  case 'W': {
4818
0
    char *End;
4819
0
    unsigned size = strtoul(Str, &End, 10);
4820
0
    assert(End != Str && "Missing PowerPC MMA type size");
4821
0
    Str = End;
4822
0
    QualType Type;
4823
0
    switch (size) {
4824
0
  #define PPC_VECTOR_TYPE(typeName, Id, size) \
4825
0
    case size: Type = Context.Id##Ty; break;
4826
0
  #include "clang/Basic/PPCTypes.def"
4827
0
    default: llvm_unreachable("Invalid PowerPC MMA vector type");
4828
0
    }
4829
0
    bool CheckVectorArgs = false;
4830
0
    while (!CheckVectorArgs) {
4831
0
      switch (*Str++) {
4832
0
      case '*':
4833
0
        Type = Context.getPointerType(Type);
4834
0
        break;
4835
0
      case 'C':
4836
0
        Type = Type.withConst();
4837
0
        break;
4838
0
      default:
4839
0
        CheckVectorArgs = true;
4840
0
        --Str;
4841
0
        break;
4842
0
      }
4843
0
    }
4844
0
    return Type;
4845
0
  }
4846
0
  default:
4847
0
    return Context.DecodeTypeStr(--Str, Context, Error, RequireICE, true);
4848
0
  }
4849
0
}
4850
4851
0
static bool isPPC_64Builtin(unsigned BuiltinID) {
4852
  // These builtins only work on PPC 64bit targets.
4853
0
  switch (BuiltinID) {
4854
0
  case PPC::BI__builtin_divde:
4855
0
  case PPC::BI__builtin_divdeu:
4856
0
  case PPC::BI__builtin_bpermd:
4857
0
  case PPC::BI__builtin_pdepd:
4858
0
  case PPC::BI__builtin_pextd:
4859
0
  case PPC::BI__builtin_ppc_ldarx:
4860
0
  case PPC::BI__builtin_ppc_stdcx:
4861
0
  case PPC::BI__builtin_ppc_tdw:
4862
0
  case PPC::BI__builtin_ppc_trapd:
4863
0
  case PPC::BI__builtin_ppc_cmpeqb:
4864
0
  case PPC::BI__builtin_ppc_setb:
4865
0
  case PPC::BI__builtin_ppc_mulhd:
4866
0
  case PPC::BI__builtin_ppc_mulhdu:
4867
0
  case PPC::BI__builtin_ppc_maddhd:
4868
0
  case PPC::BI__builtin_ppc_maddhdu:
4869
0
  case PPC::BI__builtin_ppc_maddld:
4870
0
  case PPC::BI__builtin_ppc_load8r:
4871
0
  case PPC::BI__builtin_ppc_store8r:
4872
0
  case PPC::BI__builtin_ppc_insert_exp:
4873
0
  case PPC::BI__builtin_ppc_extract_sig:
4874
0
  case PPC::BI__builtin_ppc_addex:
4875
0
  case PPC::BI__builtin_darn:
4876
0
  case PPC::BI__builtin_darn_raw:
4877
0
  case PPC::BI__builtin_ppc_compare_and_swaplp:
4878
0
  case PPC::BI__builtin_ppc_fetch_and_addlp:
4879
0
  case PPC::BI__builtin_ppc_fetch_and_andlp:
4880
0
  case PPC::BI__builtin_ppc_fetch_and_orlp:
4881
0
  case PPC::BI__builtin_ppc_fetch_and_swaplp:
4882
0
    return true;
4883
0
  }
4884
0
  return false;
4885
0
}
4886
4887
/// Returns true if the argument consists of one contiguous run of 1s with any
4888
/// number of 0s on either side. The 1s are allowed to wrap from LSB to MSB, so
4889
/// 0x000FFF0, 0x0000FFFF, 0xFF0000FF, 0x0 are all runs. 0x0F0F0000 is not,
4890
/// since all 1s are not contiguous.
4891
0
bool Sema::SemaValueIsRunOfOnes(CallExpr *TheCall, unsigned ArgNum) {
4892
0
  llvm::APSInt Result;
4893
  // We can't check the value of a dependent argument.
4894
0
  Expr *Arg = TheCall->getArg(ArgNum);
4895
0
  if (Arg->isTypeDependent() || Arg->isValueDependent())
4896
0
    return false;
4897
4898
  // Check constant-ness first.
4899
0
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
4900
0
    return true;
4901
4902
  // Check contiguous run of 1s, 0xFF0000FF is also a run of 1s.
4903
0
  if (Result.isShiftedMask() || (~Result).isShiftedMask())
4904
0
    return false;
4905
4906
0
  return Diag(TheCall->getBeginLoc(),
4907
0
              diag::err_argument_not_contiguous_bit_field)
4908
0
         << ArgNum << Arg->getSourceRange();
4909
0
}
4910
4911
bool Sema::CheckPPCBuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
4912
0
                                       CallExpr *TheCall) {
4913
0
  unsigned i = 0, l = 0, u = 0;
4914
0
  bool IsTarget64Bit = TI.getTypeWidth(TI.getIntPtrType()) == 64;
4915
0
  llvm::APSInt Result;
4916
4917
0
  if (isPPC_64Builtin(BuiltinID) && !IsTarget64Bit)
4918
0
    return Diag(TheCall->getBeginLoc(), diag::err_64_bit_builtin_32_bit_tgt)
4919
0
           << TheCall->getSourceRange();
4920
4921
0
  switch (BuiltinID) {
4922
0
  default: return false;
4923
0
  case PPC::BI__builtin_altivec_crypto_vshasigmaw:
4924
0
  case PPC::BI__builtin_altivec_crypto_vshasigmad:
4925
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1) ||
4926
0
           SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
4927
0
  case PPC::BI__builtin_altivec_dss:
4928
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
4929
0
  case PPC::BI__builtin_tbegin:
4930
0
  case PPC::BI__builtin_tend:
4931
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 1);
4932
0
  case PPC::BI__builtin_tsr:
4933
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7);
4934
0
  case PPC::BI__builtin_tabortwc:
4935
0
  case PPC::BI__builtin_tabortdc:
4936
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
4937
0
  case PPC::BI__builtin_tabortwci:
4938
0
  case PPC::BI__builtin_tabortdci:
4939
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31) ||
4940
0
           SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
4941
  // According to GCC 'Basic PowerPC Built-in Functions Available on ISA 2.05',
4942
  // __builtin_(un)pack_longdouble are available only if long double uses IBM
4943
  // extended double representation.
4944
0
  case PPC::BI__builtin_unpack_longdouble:
4945
0
    if (SemaBuiltinConstantArgRange(TheCall, 1, 0, 1))
4946
0
      return true;
4947
0
    [[fallthrough]];
4948
0
  case PPC::BI__builtin_pack_longdouble:
4949
0
    if (&TI.getLongDoubleFormat() != &llvm::APFloat::PPCDoubleDouble())
4950
0
      return Diag(TheCall->getBeginLoc(), diag::err_ppc_builtin_requires_abi)
4951
0
             << "ibmlongdouble";
4952
0
    return false;
4953
0
  case PPC::BI__builtin_altivec_dst:
4954
0
  case PPC::BI__builtin_altivec_dstt:
4955
0
  case PPC::BI__builtin_altivec_dstst:
4956
0
  case PPC::BI__builtin_altivec_dststt:
4957
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
4958
0
  case PPC::BI__builtin_vsx_xxpermdi:
4959
0
  case PPC::BI__builtin_vsx_xxsldwi:
4960
0
    return SemaBuiltinVSX(TheCall);
4961
0
  case PPC::BI__builtin_unpack_vector_int128:
4962
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
4963
0
  case PPC::BI__builtin_altivec_vgnb:
4964
0
     return SemaBuiltinConstantArgRange(TheCall, 1, 2, 7);
4965
0
  case PPC::BI__builtin_vsx_xxeval:
4966
0
     return SemaBuiltinConstantArgRange(TheCall, 3, 0, 255);
4967
0
  case PPC::BI__builtin_altivec_vsldbi:
4968
0
     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
4969
0
  case PPC::BI__builtin_altivec_vsrdbi:
4970
0
     return SemaBuiltinConstantArgRange(TheCall, 2, 0, 7);
4971
0
  case PPC::BI__builtin_vsx_xxpermx:
4972
0
     return SemaBuiltinConstantArgRange(TheCall, 3, 0, 7);
4973
0
  case PPC::BI__builtin_ppc_tw:
4974
0
  case PPC::BI__builtin_ppc_tdw:
4975
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 1, 31);
4976
0
  case PPC::BI__builtin_ppc_cmprb:
4977
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 1);
4978
  // For __rlwnm, __rlwimi and __rldimi, the last parameter mask must
4979
  // be a constant that represents a contiguous bit field.
4980
0
  case PPC::BI__builtin_ppc_rlwnm:
4981
0
    return SemaValueIsRunOfOnes(TheCall, 2);
4982
0
  case PPC::BI__builtin_ppc_rlwimi:
4983
0
  case PPC::BI__builtin_ppc_rldimi:
4984
0
    return SemaBuiltinConstantArg(TheCall, 2, Result) ||
4985
0
           SemaValueIsRunOfOnes(TheCall, 3);
4986
0
  case PPC::BI__builtin_ppc_addex: {
4987
0
    if (SemaBuiltinConstantArgRange(TheCall, 2, 0, 3))
4988
0
      return true;
4989
    // Output warning for reserved values 1 to 3.
4990
0
    int ArgValue =
4991
0
        TheCall->getArg(2)->getIntegerConstantExpr(Context)->getSExtValue();
4992
0
    if (ArgValue != 0)
4993
0
      Diag(TheCall->getBeginLoc(), diag::warn_argument_undefined_behaviour)
4994
0
          << ArgValue;
4995
0
    return false;
4996
0
  }
4997
0
  case PPC::BI__builtin_ppc_mtfsb0:
4998
0
  case PPC::BI__builtin_ppc_mtfsb1:
4999
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 31);
5000
0
  case PPC::BI__builtin_ppc_mtfsf:
5001
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 255);
5002
0
  case PPC::BI__builtin_ppc_mtfsfi:
5003
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 7) ||
5004
0
           SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
5005
0
  case PPC::BI__builtin_ppc_alignx:
5006
0
    return SemaBuiltinConstantArgPower2(TheCall, 0);
5007
0
  case PPC::BI__builtin_ppc_rdlam:
5008
0
    return SemaValueIsRunOfOnes(TheCall, 2);
5009
0
  case PPC::BI__builtin_vsx_ldrmb:
5010
0
  case PPC::BI__builtin_vsx_strmb:
5011
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 1, 16);
5012
0
  case PPC::BI__builtin_altivec_vcntmbb:
5013
0
  case PPC::BI__builtin_altivec_vcntmbh:
5014
0
  case PPC::BI__builtin_altivec_vcntmbw:
5015
0
  case PPC::BI__builtin_altivec_vcntmbd:
5016
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 1);
5017
0
  case PPC::BI__builtin_vsx_xxgenpcvbm:
5018
0
  case PPC::BI__builtin_vsx_xxgenpcvhm:
5019
0
  case PPC::BI__builtin_vsx_xxgenpcvwm:
5020
0
  case PPC::BI__builtin_vsx_xxgenpcvdm:
5021
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3);
5022
0
  case PPC::BI__builtin_ppc_test_data_class: {
5023
    // Check if the first argument of the __builtin_ppc_test_data_class call is
5024
    // valid. The argument must be 'float' or 'double' or '__float128'.
5025
0
    QualType ArgType = TheCall->getArg(0)->getType();
5026
0
    if (ArgType != QualType(Context.FloatTy) &&
5027
0
        ArgType != QualType(Context.DoubleTy) &&
5028
0
        ArgType != QualType(Context.Float128Ty))
5029
0
      return Diag(TheCall->getBeginLoc(),
5030
0
                  diag::err_ppc_invalid_test_data_class_type);
5031
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 127);
5032
0
  }
5033
0
  case PPC::BI__builtin_ppc_maxfe:
5034
0
  case PPC::BI__builtin_ppc_minfe:
5035
0
  case PPC::BI__builtin_ppc_maxfl:
5036
0
  case PPC::BI__builtin_ppc_minfl:
5037
0
  case PPC::BI__builtin_ppc_maxfs:
5038
0
  case PPC::BI__builtin_ppc_minfs: {
5039
0
    if (Context.getTargetInfo().getTriple().isOSAIX() &&
5040
0
        (BuiltinID == PPC::BI__builtin_ppc_maxfe ||
5041
0
         BuiltinID == PPC::BI__builtin_ppc_minfe))
5042
0
      return Diag(TheCall->getBeginLoc(), diag::err_target_unsupported_type)
5043
0
             << "builtin" << true << 128 << QualType(Context.LongDoubleTy)
5044
0
             << false << Context.getTargetInfo().getTriple().str();
5045
    // Argument type should be exact.
5046
0
    QualType ArgType = QualType(Context.LongDoubleTy);
5047
0
    if (BuiltinID == PPC::BI__builtin_ppc_maxfl ||
5048
0
        BuiltinID == PPC::BI__builtin_ppc_minfl)
5049
0
      ArgType = QualType(Context.DoubleTy);
5050
0
    else if (BuiltinID == PPC::BI__builtin_ppc_maxfs ||
5051
0
             BuiltinID == PPC::BI__builtin_ppc_minfs)
5052
0
      ArgType = QualType(Context.FloatTy);
5053
0
    for (unsigned I = 0, E = TheCall->getNumArgs(); I < E; ++I)
5054
0
      if (TheCall->getArg(I)->getType() != ArgType)
5055
0
        return Diag(TheCall->getBeginLoc(),
5056
0
                    diag::err_typecheck_convert_incompatible)
5057
0
               << TheCall->getArg(I)->getType() << ArgType << 1 << 0 << 0;
5058
0
    return false;
5059
0
  }
5060
0
#define CUSTOM_BUILTIN(Name, Intr, Types, Acc, Feature)                                 \
5061
0
  case PPC::BI__builtin_##Name:                                                \
5062
0
    return SemaBuiltinPPCMMACall(TheCall, BuiltinID, Types);
5063
0
#include "clang/Basic/BuiltinsPPC.def"
5064
0
  }
5065
0
  return SemaBuiltinConstantArgRange(TheCall, i, l, u);
5066
0
}
5067
5068
// Check if the given type is a non-pointer PPC MMA type. This function is used
5069
// in Sema to prevent invalid uses of restricted PPC MMA types.
5070
0
bool Sema::CheckPPCMMAType(QualType Type, SourceLocation TypeLoc) {
5071
0
  if (Type->isPointerType() || Type->isArrayType())
5072
0
    return false;
5073
5074
0
  QualType CoreType = Type.getCanonicalType().getUnqualifiedType();
5075
0
#define PPC_VECTOR_TYPE(Name, Id, Size) || CoreType == Context.Id##Ty
5076
0
  if (false
5077
0
#include "clang/Basic/PPCTypes.def"
5078
0
     ) {
5079
0
    Diag(TypeLoc, diag::err_ppc_invalid_use_mma_type);
5080
0
    return true;
5081
0
  }
5082
0
  return false;
5083
0
}
5084
5085
bool Sema::CheckAMDGCNBuiltinFunctionCall(unsigned BuiltinID,
5086
0
                                          CallExpr *TheCall) {
5087
  // position of memory order and scope arguments in the builtin
5088
0
  unsigned OrderIndex, ScopeIndex;
5089
0
  switch (BuiltinID) {
5090
0
  case AMDGPU::BI__builtin_amdgcn_atomic_inc32:
5091
0
  case AMDGPU::BI__builtin_amdgcn_atomic_inc64:
5092
0
  case AMDGPU::BI__builtin_amdgcn_atomic_dec32:
5093
0
  case AMDGPU::BI__builtin_amdgcn_atomic_dec64:
5094
0
    OrderIndex = 2;
5095
0
    ScopeIndex = 3;
5096
0
    break;
5097
0
  case AMDGPU::BI__builtin_amdgcn_fence:
5098
0
    OrderIndex = 0;
5099
0
    ScopeIndex = 1;
5100
0
    break;
5101
0
  default:
5102
0
    return false;
5103
0
  }
5104
5105
0
  ExprResult Arg = TheCall->getArg(OrderIndex);
5106
0
  auto ArgExpr = Arg.get();
5107
0
  Expr::EvalResult ArgResult;
5108
5109
0
  if (!ArgExpr->EvaluateAsInt(ArgResult, Context))
5110
0
    return Diag(ArgExpr->getExprLoc(), diag::err_typecheck_expect_int)
5111
0
           << ArgExpr->getType();
5112
0
  auto Ord = ArgResult.Val.getInt().getZExtValue();
5113
5114
  // Check validity of memory ordering as per C11 / C++11's memody model.
5115
  // Only fence needs check. Atomic dec/inc allow all memory orders.
5116
0
  if (!llvm::isValidAtomicOrderingCABI(Ord))
5117
0
    return Diag(ArgExpr->getBeginLoc(),
5118
0
                diag::warn_atomic_op_has_invalid_memory_order)
5119
0
           << 0 << ArgExpr->getSourceRange();
5120
0
  switch (static_cast<llvm::AtomicOrderingCABI>(Ord)) {
5121
0
  case llvm::AtomicOrderingCABI::relaxed:
5122
0
  case llvm::AtomicOrderingCABI::consume:
5123
0
    if (BuiltinID == AMDGPU::BI__builtin_amdgcn_fence)
5124
0
      return Diag(ArgExpr->getBeginLoc(),
5125
0
                  diag::warn_atomic_op_has_invalid_memory_order)
5126
0
             << 0 << ArgExpr->getSourceRange();
5127
0
    break;
5128
0
  case llvm::AtomicOrderingCABI::acquire:
5129
0
  case llvm::AtomicOrderingCABI::release:
5130
0
  case llvm::AtomicOrderingCABI::acq_rel:
5131
0
  case llvm::AtomicOrderingCABI::seq_cst:
5132
0
    break;
5133
0
  }
5134
5135
0
  Arg = TheCall->getArg(ScopeIndex);
5136
0
  ArgExpr = Arg.get();
5137
0
  Expr::EvalResult ArgResult1;
5138
  // Check that sync scope is a constant literal
5139
0
  if (!ArgExpr->EvaluateAsConstantExpr(ArgResult1, Context))
5140
0
    return Diag(ArgExpr->getExprLoc(), diag::err_expr_not_string_literal)
5141
0
           << ArgExpr->getType();
5142
5143
0
  return false;
5144
0
}
5145
5146
0
bool Sema::CheckRISCVLMUL(CallExpr *TheCall, unsigned ArgNum) {
5147
0
  llvm::APSInt Result;
5148
5149
  // We can't check the value of a dependent argument.
5150
0
  Expr *Arg = TheCall->getArg(ArgNum);
5151
0
  if (Arg->isTypeDependent() || Arg->isValueDependent())
5152
0
    return false;
5153
5154
  // Check constant-ness first.
5155
0
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
5156
0
    return true;
5157
5158
0
  int64_t Val = Result.getSExtValue();
5159
0
  if ((Val >= 0 && Val <= 3) || (Val >= 5 && Val <= 7))
5160
0
    return false;
5161
5162
0
  return Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_invalid_lmul)
5163
0
         << Arg->getSourceRange();
5164
0
}
5165
5166
static bool CheckInvalidVLENandLMUL(const TargetInfo &TI, CallExpr *TheCall,
5167
0
                                    Sema &S, QualType Type, int EGW) {
5168
0
  assert((EGW == 128 || EGW == 256) && "EGW can only be 128 or 256 bits");
5169
5170
  // LMUL * VLEN >= EGW
5171
0
  ASTContext::BuiltinVectorTypeInfo Info =
5172
0
      S.Context.getBuiltinVectorTypeInfo(Type->castAs<BuiltinType>());
5173
0
  unsigned ElemSize = S.Context.getTypeSize(Info.ElementType);
5174
0
  unsigned MinElemCount = Info.EC.getKnownMinValue();
5175
5176
0
  unsigned EGS = EGW / ElemSize;
5177
  // If EGS is less than or equal to the minimum number of elements, then the
5178
  // type is valid.
5179
0
  if (EGS <= MinElemCount)
5180
0
    return false;
5181
5182
  // Otherwise, we need vscale to be at least EGS / MinElemCont.
5183
0
  assert(EGS % MinElemCount == 0);
5184
0
  unsigned VScaleFactor = EGS / MinElemCount;
5185
  // Vscale is VLEN/RVVBitsPerBlock.
5186
0
  unsigned MinRequiredVLEN = VScaleFactor * llvm::RISCV::RVVBitsPerBlock;
5187
0
  std::string RequiredExt = "zvl" + std::to_string(MinRequiredVLEN) + "b";
5188
0
  if (!TI.hasFeature(RequiredExt))
5189
0
    return S.Diag(TheCall->getBeginLoc(),
5190
0
        diag::err_riscv_type_requires_extension) << Type << RequiredExt;
5191
5192
0
  return false;
5193
0
}
5194
5195
bool Sema::CheckRISCVBuiltinFunctionCall(const TargetInfo &TI,
5196
                                         unsigned BuiltinID,
5197
0
                                         CallExpr *TheCall) {
5198
  // CodeGenFunction can also detect this, but this gives a better error
5199
  // message.
5200
0
  bool FeatureMissing = false;
5201
0
  SmallVector<StringRef> ReqFeatures;
5202
0
  StringRef Features = Context.BuiltinInfo.getRequiredFeatures(BuiltinID);
5203
0
  Features.split(ReqFeatures, ',', -1, false);
5204
5205
  // Check if each required feature is included
5206
0
  for (StringRef F : ReqFeatures) {
5207
0
    SmallVector<StringRef> ReqOpFeatures;
5208
0
    F.split(ReqOpFeatures, '|');
5209
5210
0
    if (llvm::none_of(ReqOpFeatures,
5211
0
                      [&TI](StringRef OF) { return TI.hasFeature(OF); })) {
5212
0
      std::string FeatureStrs;
5213
0
      bool IsExtension = true;
5214
0
      for (StringRef OF : ReqOpFeatures) {
5215
        // If the feature is 64bit, alter the string so it will print better in
5216
        // the diagnostic.
5217
0
        if (OF == "64bit") {
5218
0
          assert(ReqOpFeatures.size() == 1 && "Expected '64bit' to be alone");
5219
0
          OF = "RV64";
5220
0
          IsExtension = false;
5221
0
        }
5222
0
        if (OF == "32bit") {
5223
0
          assert(ReqOpFeatures.size() == 1 && "Expected '32bit' to be alone");
5224
0
          OF = "RV32";
5225
0
          IsExtension = false;
5226
0
        }
5227
5228
        // Convert features like "zbr" and "experimental-zbr" to "Zbr".
5229
0
        OF.consume_front("experimental-");
5230
0
        std::string FeatureStr = OF.str();
5231
0
        FeatureStr[0] = std::toupper(FeatureStr[0]);
5232
        // Combine strings.
5233
0
        FeatureStrs += FeatureStrs.empty() ? "" : ", ";
5234
0
        FeatureStrs += "'";
5235
0
        FeatureStrs += FeatureStr;
5236
0
        FeatureStrs += "'";
5237
0
      }
5238
      // Error message
5239
0
      FeatureMissing = true;
5240
0
      Diag(TheCall->getBeginLoc(), diag::err_riscv_builtin_requires_extension)
5241
0
          << IsExtension
5242
0
          << TheCall->getSourceRange() << StringRef(FeatureStrs);
5243
0
    }
5244
0
  }
5245
5246
0
  if (FeatureMissing)
5247
0
    return true;
5248
5249
  // vmulh.vv, vmulh.vx, vmulhu.vv, vmulhu.vx, vmulhsu.vv, vmulhsu.vx,
5250
  // vsmul.vv, vsmul.vx are not included for EEW=64 in Zve64*.
5251
0
  switch (BuiltinID) {
5252
0
  default:
5253
0
    break;
5254
0
  case RISCVVector::BI__builtin_rvv_vmulhsu_vv:
5255
0
  case RISCVVector::BI__builtin_rvv_vmulhsu_vx:
5256
0
  case RISCVVector::BI__builtin_rvv_vmulhsu_vv_tu:
5257
0
  case RISCVVector::BI__builtin_rvv_vmulhsu_vx_tu:
5258
0
  case RISCVVector::BI__builtin_rvv_vmulhsu_vv_m:
5259
0
  case RISCVVector::BI__builtin_rvv_vmulhsu_vx_m:
5260
0
  case RISCVVector::BI__builtin_rvv_vmulhsu_vv_mu:
5261
0
  case RISCVVector::BI__builtin_rvv_vmulhsu_vx_mu:
5262
0
  case RISCVVector::BI__builtin_rvv_vmulhsu_vv_tum:
5263
0
  case RISCVVector::BI__builtin_rvv_vmulhsu_vx_tum:
5264
0
  case RISCVVector::BI__builtin_rvv_vmulhsu_vv_tumu:
5265
0
  case RISCVVector::BI__builtin_rvv_vmulhsu_vx_tumu:
5266
0
  case RISCVVector::BI__builtin_rvv_vmulhu_vv:
5267
0
  case RISCVVector::BI__builtin_rvv_vmulhu_vx:
5268
0
  case RISCVVector::BI__builtin_rvv_vmulhu_vv_tu:
5269
0
  case RISCVVector::BI__builtin_rvv_vmulhu_vx_tu:
5270
0
  case RISCVVector::BI__builtin_rvv_vmulhu_vv_m:
5271
0
  case RISCVVector::BI__builtin_rvv_vmulhu_vx_m:
5272
0
  case RISCVVector::BI__builtin_rvv_vmulhu_vv_mu:
5273
0
  case RISCVVector::BI__builtin_rvv_vmulhu_vx_mu:
5274
0
  case RISCVVector::BI__builtin_rvv_vmulhu_vv_tum:
5275
0
  case RISCVVector::BI__builtin_rvv_vmulhu_vx_tum:
5276
0
  case RISCVVector::BI__builtin_rvv_vmulhu_vv_tumu:
5277
0
  case RISCVVector::BI__builtin_rvv_vmulhu_vx_tumu:
5278
0
  case RISCVVector::BI__builtin_rvv_vmulh_vv:
5279
0
  case RISCVVector::BI__builtin_rvv_vmulh_vx:
5280
0
  case RISCVVector::BI__builtin_rvv_vmulh_vv_tu:
5281
0
  case RISCVVector::BI__builtin_rvv_vmulh_vx_tu:
5282
0
  case RISCVVector::BI__builtin_rvv_vmulh_vv_m:
5283
0
  case RISCVVector::BI__builtin_rvv_vmulh_vx_m:
5284
0
  case RISCVVector::BI__builtin_rvv_vmulh_vv_mu:
5285
0
  case RISCVVector::BI__builtin_rvv_vmulh_vx_mu:
5286
0
  case RISCVVector::BI__builtin_rvv_vmulh_vv_tum:
5287
0
  case RISCVVector::BI__builtin_rvv_vmulh_vx_tum:
5288
0
  case RISCVVector::BI__builtin_rvv_vmulh_vv_tumu:
5289
0
  case RISCVVector::BI__builtin_rvv_vmulh_vx_tumu:
5290
0
  case RISCVVector::BI__builtin_rvv_vsmul_vv:
5291
0
  case RISCVVector::BI__builtin_rvv_vsmul_vx:
5292
0
  case RISCVVector::BI__builtin_rvv_vsmul_vv_tu:
5293
0
  case RISCVVector::BI__builtin_rvv_vsmul_vx_tu:
5294
0
  case RISCVVector::BI__builtin_rvv_vsmul_vv_m:
5295
0
  case RISCVVector::BI__builtin_rvv_vsmul_vx_m:
5296
0
  case RISCVVector::BI__builtin_rvv_vsmul_vv_mu:
5297
0
  case RISCVVector::BI__builtin_rvv_vsmul_vx_mu:
5298
0
  case RISCVVector::BI__builtin_rvv_vsmul_vv_tum:
5299
0
  case RISCVVector::BI__builtin_rvv_vsmul_vx_tum:
5300
0
  case RISCVVector::BI__builtin_rvv_vsmul_vv_tumu:
5301
0
  case RISCVVector::BI__builtin_rvv_vsmul_vx_tumu: {
5302
0
    ASTContext::BuiltinVectorTypeInfo Info = Context.getBuiltinVectorTypeInfo(
5303
0
        TheCall->getType()->castAs<BuiltinType>());
5304
5305
0
    if (Context.getTypeSize(Info.ElementType) == 64 && !TI.hasFeature("v"))
5306
0
      return Diag(TheCall->getBeginLoc(),
5307
0
                  diag::err_riscv_builtin_requires_extension)
5308
0
             << /* IsExtension */ true << TheCall->getSourceRange() << "v";
5309
5310
0
    break;
5311
0
  }
5312
0
  }
5313
5314
0
  switch (BuiltinID) {
5315
0
  case RISCVVector::BI__builtin_rvv_vsetvli:
5316
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 3) ||
5317
0
           CheckRISCVLMUL(TheCall, 2);
5318
0
  case RISCVVector::BI__builtin_rvv_vsetvlimax:
5319
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
5320
0
           CheckRISCVLMUL(TheCall, 1);
5321
0
  case RISCVVector::BI__builtin_rvv_vget_v: {
5322
0
    ASTContext::BuiltinVectorTypeInfo ResVecInfo =
5323
0
        Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(
5324
0
            TheCall->getType().getCanonicalType().getTypePtr()));
5325
0
    ASTContext::BuiltinVectorTypeInfo VecInfo =
5326
0
        Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(
5327
0
            TheCall->getArg(0)->getType().getCanonicalType().getTypePtr()));
5328
0
    unsigned MaxIndex;
5329
0
    if (VecInfo.NumVectors != 1) // vget for tuple type
5330
0
      MaxIndex = VecInfo.NumVectors;
5331
0
    else // vget for non-tuple type
5332
0
      MaxIndex = (VecInfo.EC.getKnownMinValue() * VecInfo.NumVectors) /
5333
0
                 (ResVecInfo.EC.getKnownMinValue() * ResVecInfo.NumVectors);
5334
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, MaxIndex - 1);
5335
0
  }
5336
0
  case RISCVVector::BI__builtin_rvv_vset_v: {
5337
0
    ASTContext::BuiltinVectorTypeInfo ResVecInfo =
5338
0
        Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(
5339
0
            TheCall->getType().getCanonicalType().getTypePtr()));
5340
0
    ASTContext::BuiltinVectorTypeInfo VecInfo =
5341
0
        Context.getBuiltinVectorTypeInfo(cast<BuiltinType>(
5342
0
            TheCall->getArg(2)->getType().getCanonicalType().getTypePtr()));
5343
0
    unsigned MaxIndex;
5344
0
    if (ResVecInfo.NumVectors != 1) // vset for tuple type
5345
0
      MaxIndex = ResVecInfo.NumVectors;
5346
0
    else // vset fo non-tuple type
5347
0
      MaxIndex = (ResVecInfo.EC.getKnownMinValue() * ResVecInfo.NumVectors) /
5348
0
                 (VecInfo.EC.getKnownMinValue() * VecInfo.NumVectors);
5349
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, MaxIndex - 1);
5350
0
  }
5351
  // Vector Crypto
5352
0
  case RISCVVector::BI__builtin_rvv_vaeskf1_vi_tu:
5353
0
  case RISCVVector::BI__builtin_rvv_vaeskf2_vi_tu:
5354
0
  case RISCVVector::BI__builtin_rvv_vaeskf2_vi:
5355
0
  case RISCVVector::BI__builtin_rvv_vsm4k_vi_tu: {
5356
0
    QualType Op1Type = TheCall->getArg(0)->getType();
5357
0
    QualType Op2Type = TheCall->getArg(1)->getType();
5358
0
    return CheckInvalidVLENandLMUL(TI, TheCall, *this, Op1Type, 128) ||
5359
0
           CheckInvalidVLENandLMUL(TI, TheCall, *this, Op2Type, 128) ||
5360
0
           SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
5361
0
  }
5362
0
  case RISCVVector::BI__builtin_rvv_vsm3c_vi_tu:
5363
0
  case RISCVVector::BI__builtin_rvv_vsm3c_vi: {
5364
0
    QualType Op1Type = TheCall->getArg(0)->getType();
5365
0
    return CheckInvalidVLENandLMUL(TI, TheCall, *this, Op1Type, 256) ||
5366
0
           SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
5367
0
  }
5368
0
  case RISCVVector::BI__builtin_rvv_vaeskf1_vi:
5369
0
  case RISCVVector::BI__builtin_rvv_vsm4k_vi: {
5370
0
    QualType Op1Type = TheCall->getArg(0)->getType();
5371
0
    return CheckInvalidVLENandLMUL(TI, TheCall, *this, Op1Type, 128) ||
5372
0
           SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
5373
0
  }
5374
0
  case RISCVVector::BI__builtin_rvv_vaesdf_vv:
5375
0
  case RISCVVector::BI__builtin_rvv_vaesdf_vs:
5376
0
  case RISCVVector::BI__builtin_rvv_vaesdm_vv:
5377
0
  case RISCVVector::BI__builtin_rvv_vaesdm_vs:
5378
0
  case RISCVVector::BI__builtin_rvv_vaesef_vv:
5379
0
  case RISCVVector::BI__builtin_rvv_vaesef_vs:
5380
0
  case RISCVVector::BI__builtin_rvv_vaesem_vv:
5381
0
  case RISCVVector::BI__builtin_rvv_vaesem_vs:
5382
0
  case RISCVVector::BI__builtin_rvv_vaesz_vs:
5383
0
  case RISCVVector::BI__builtin_rvv_vsm4r_vv:
5384
0
  case RISCVVector::BI__builtin_rvv_vsm4r_vs:
5385
0
  case RISCVVector::BI__builtin_rvv_vaesdf_vv_tu:
5386
0
  case RISCVVector::BI__builtin_rvv_vaesdf_vs_tu:
5387
0
  case RISCVVector::BI__builtin_rvv_vaesdm_vv_tu:
5388
0
  case RISCVVector::BI__builtin_rvv_vaesdm_vs_tu:
5389
0
  case RISCVVector::BI__builtin_rvv_vaesef_vv_tu:
5390
0
  case RISCVVector::BI__builtin_rvv_vaesef_vs_tu:
5391
0
  case RISCVVector::BI__builtin_rvv_vaesem_vv_tu:
5392
0
  case RISCVVector::BI__builtin_rvv_vaesem_vs_tu:
5393
0
  case RISCVVector::BI__builtin_rvv_vaesz_vs_tu:
5394
0
  case RISCVVector::BI__builtin_rvv_vsm4r_vv_tu:
5395
0
  case RISCVVector::BI__builtin_rvv_vsm4r_vs_tu: {
5396
0
    QualType Op1Type = TheCall->getArg(0)->getType();
5397
0
    QualType Op2Type = TheCall->getArg(1)->getType();
5398
0
    return CheckInvalidVLENandLMUL(TI, TheCall, *this, Op1Type, 128) ||
5399
0
           CheckInvalidVLENandLMUL(TI, TheCall, *this, Op2Type, 128);
5400
0
  }
5401
0
  case RISCVVector::BI__builtin_rvv_vsha2ch_vv:
5402
0
  case RISCVVector::BI__builtin_rvv_vsha2cl_vv:
5403
0
  case RISCVVector::BI__builtin_rvv_vsha2ms_vv:
5404
0
  case RISCVVector::BI__builtin_rvv_vsha2ch_vv_tu:
5405
0
  case RISCVVector::BI__builtin_rvv_vsha2cl_vv_tu:
5406
0
  case RISCVVector::BI__builtin_rvv_vsha2ms_vv_tu: {
5407
0
    QualType Op1Type = TheCall->getArg(0)->getType();
5408
0
    QualType Op2Type = TheCall->getArg(1)->getType();
5409
0
    QualType Op3Type = TheCall->getArg(2)->getType();
5410
0
    ASTContext::BuiltinVectorTypeInfo Info =
5411
0
        Context.getBuiltinVectorTypeInfo(Op1Type->castAs<BuiltinType>());
5412
0
    uint64_t ElemSize = Context.getTypeSize(Info.ElementType);
5413
0
    if (ElemSize == 64 && !TI.hasFeature("zvknhb"))
5414
0
      return Diag(TheCall->getBeginLoc(),
5415
0
                  diag::err_riscv_builtin_requires_extension)
5416
0
             << /* IsExtension */ true << TheCall->getSourceRange() << "zvknb";
5417
5418
0
    return CheckInvalidVLENandLMUL(TI, TheCall, *this, Op1Type, ElemSize * 4) ||
5419
0
           CheckInvalidVLENandLMUL(TI, TheCall, *this, Op2Type, ElemSize * 4) ||
5420
0
           CheckInvalidVLENandLMUL(TI, TheCall, *this, Op3Type, ElemSize * 4);
5421
0
  }
5422
5423
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u8mf8:
5424
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u8mf4:
5425
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u8mf2:
5426
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u8m1:
5427
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u8m2:
5428
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u8m4:
5429
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u8m8:
5430
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u16mf4:
5431
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u16mf2:
5432
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u16m1:
5433
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u16m2:
5434
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u16m4:
5435
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u16m8:
5436
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u32mf2:
5437
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u32m1:
5438
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u32m2:
5439
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u32m4:
5440
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u32m8:
5441
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u64m1:
5442
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u64m2:
5443
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u64m4:
5444
0
  case RISCVVector::BI__builtin_rvv_sf_vc_i_se_u64m8:
5445
    // bit_27_26, bit_24_20, bit_11_7, simm5
5446
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
5447
0
           SemaBuiltinConstantArgRange(TheCall, 1, 0, 31) ||
5448
0
           SemaBuiltinConstantArgRange(TheCall, 2, 0, 31) ||
5449
0
           SemaBuiltinConstantArgRange(TheCall, 3, -16, 15);
5450
0
  case RISCVVector::BI__builtin_rvv_sf_vc_iv_se:
5451
    // bit_27_26, bit_11_7, vs2, simm5
5452
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
5453
0
           SemaBuiltinConstantArgRange(TheCall, 1, 0, 31) ||
5454
0
           SemaBuiltinConstantArgRange(TheCall, 3, -16, 15);
5455
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_i:
5456
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_i_se:
5457
    // bit_27_26, bit_24_20, simm5
5458
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
5459
0
           SemaBuiltinConstantArgRange(TheCall, 1, 0, 31) ||
5460
0
           SemaBuiltinConstantArgRange(TheCall, 2, -16, 15);
5461
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_iv:
5462
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_iv_se:
5463
    // bit_27_26, vs2, simm5
5464
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
5465
0
           SemaBuiltinConstantArgRange(TheCall, 2, -16, 15);
5466
0
  case RISCVVector::BI__builtin_rvv_sf_vc_ivv_se:
5467
0
  case RISCVVector::BI__builtin_rvv_sf_vc_ivw_se:
5468
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_ivv:
5469
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_ivw:
5470
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_ivv_se:
5471
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_ivw_se:
5472
    // bit_27_26, vd, vs2, simm5
5473
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
5474
0
           SemaBuiltinConstantArgRange(TheCall, 3, -16, 15);
5475
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u8mf8:
5476
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u8mf4:
5477
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u8mf2:
5478
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u8m1:
5479
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u8m2:
5480
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u8m4:
5481
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u8m8:
5482
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u16mf4:
5483
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u16mf2:
5484
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u16m1:
5485
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u16m2:
5486
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u16m4:
5487
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u16m8:
5488
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u32mf2:
5489
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u32m1:
5490
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u32m2:
5491
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u32m4:
5492
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u32m8:
5493
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u64m1:
5494
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u64m2:
5495
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u64m4:
5496
0
  case RISCVVector::BI__builtin_rvv_sf_vc_x_se_u64m8:
5497
    // bit_27_26, bit_24_20, bit_11_7, xs1
5498
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
5499
0
           SemaBuiltinConstantArgRange(TheCall, 1, 0, 31) ||
5500
0
           SemaBuiltinConstantArgRange(TheCall, 2, 0, 31);
5501
0
  case RISCVVector::BI__builtin_rvv_sf_vc_xv_se:
5502
0
  case RISCVVector::BI__builtin_rvv_sf_vc_vv_se:
5503
    // bit_27_26, bit_11_7, vs2, xs1/vs1
5504
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_x:
5505
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_x_se:
5506
    // bit_27_26, bit_24-20, xs1
5507
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3) ||
5508
0
           SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
5509
0
  case RISCVVector::BI__builtin_rvv_sf_vc_vvv_se:
5510
0
  case RISCVVector::BI__builtin_rvv_sf_vc_xvv_se:
5511
0
  case RISCVVector::BI__builtin_rvv_sf_vc_vvw_se:
5512
0
  case RISCVVector::BI__builtin_rvv_sf_vc_xvw_se:
5513
    // bit_27_26, vd, vs2, xs1
5514
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_xv:
5515
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_vv:
5516
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_xv_se:
5517
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_vv_se:
5518
    // bit_27_26, vs2, xs1/vs1
5519
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_xvv:
5520
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_vvv:
5521
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_xvw:
5522
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_vvw:
5523
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_xvv_se:
5524
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_vvv_se:
5525
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_xvw_se:
5526
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_vvw_se:
5527
    // bit_27_26, vd, vs2, xs1/vs1
5528
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 3);
5529
0
  case RISCVVector::BI__builtin_rvv_sf_vc_fv_se:
5530
    // bit_26, bit_11_7, vs2, fs1
5531
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 1) ||
5532
0
           SemaBuiltinConstantArgRange(TheCall, 1, 0, 31);
5533
0
  case RISCVVector::BI__builtin_rvv_sf_vc_fvv_se:
5534
0
  case RISCVVector::BI__builtin_rvv_sf_vc_fvw_se:
5535
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_fvv:
5536
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_fvw:
5537
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_fvv_se:
5538
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_fvw_se:
5539
    // bit_26, vd, vs2, fs1
5540
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_fv:
5541
0
  case RISCVVector::BI__builtin_rvv_sf_vc_v_fv_se:
5542
    // bit_26, vs2, fs1
5543
0
    return SemaBuiltinConstantArgRange(TheCall, 0, 0, 1);
5544
  // Check if byteselect is in [0, 3]
5545
0
  case RISCV::BI__builtin_riscv_aes32dsi:
5546
0
  case RISCV::BI__builtin_riscv_aes32dsmi:
5547
0
  case RISCV::BI__builtin_riscv_aes32esi:
5548
0
  case RISCV::BI__builtin_riscv_aes32esmi:
5549
0
  case RISCV::BI__builtin_riscv_sm4ks:
5550
0
  case RISCV::BI__builtin_riscv_sm4ed:
5551
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
5552
  // Check if rnum is in [0, 10]
5553
0
  case RISCV::BI__builtin_riscv_aes64ks1i:
5554
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 10);
5555
  // Check if value range for vxrm is in [0, 3]
5556
0
  case RISCVVector::BI__builtin_rvv_vaaddu_vv:
5557
0
  case RISCVVector::BI__builtin_rvv_vaaddu_vx:
5558
0
  case RISCVVector::BI__builtin_rvv_vaadd_vv:
5559
0
  case RISCVVector::BI__builtin_rvv_vaadd_vx:
5560
0
  case RISCVVector::BI__builtin_rvv_vasubu_vv:
5561
0
  case RISCVVector::BI__builtin_rvv_vasubu_vx:
5562
0
  case RISCVVector::BI__builtin_rvv_vasub_vv:
5563
0
  case RISCVVector::BI__builtin_rvv_vasub_vx:
5564
0
  case RISCVVector::BI__builtin_rvv_vsmul_vv:
5565
0
  case RISCVVector::BI__builtin_rvv_vsmul_vx:
5566
0
  case RISCVVector::BI__builtin_rvv_vssra_vv:
5567
0
  case RISCVVector::BI__builtin_rvv_vssra_vx:
5568
0
  case RISCVVector::BI__builtin_rvv_vssrl_vv:
5569
0
  case RISCVVector::BI__builtin_rvv_vssrl_vx:
5570
0
  case RISCVVector::BI__builtin_rvv_vnclip_wv:
5571
0
  case RISCVVector::BI__builtin_rvv_vnclip_wx:
5572
0
  case RISCVVector::BI__builtin_rvv_vnclipu_wv:
5573
0
  case RISCVVector::BI__builtin_rvv_vnclipu_wx:
5574
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 3);
5575
0
  case RISCVVector::BI__builtin_rvv_vaaddu_vv_tu:
5576
0
  case RISCVVector::BI__builtin_rvv_vaaddu_vx_tu:
5577
0
  case RISCVVector::BI__builtin_rvv_vaadd_vv_tu:
5578
0
  case RISCVVector::BI__builtin_rvv_vaadd_vx_tu:
5579
0
  case RISCVVector::BI__builtin_rvv_vasubu_vv_tu:
5580
0
  case RISCVVector::BI__builtin_rvv_vasubu_vx_tu:
5581
0
  case RISCVVector::BI__builtin_rvv_vasub_vv_tu:
5582
0
  case RISCVVector::BI__builtin_rvv_vasub_vx_tu:
5583
0
  case RISCVVector::BI__builtin_rvv_vsmul_vv_tu:
5584
0
  case RISCVVector::BI__builtin_rvv_vsmul_vx_tu:
5585
0
  case RISCVVector::BI__builtin_rvv_vssra_vv_tu:
5586
0
  case RISCVVector::BI__builtin_rvv_vssra_vx_tu:
5587
0
  case RISCVVector::BI__builtin_rvv_vssrl_vv_tu:
5588
0
  case RISCVVector::BI__builtin_rvv_vssrl_vx_tu:
5589
0
  case RISCVVector::BI__builtin_rvv_vnclip_wv_tu:
5590
0
  case RISCVVector::BI__builtin_rvv_vnclip_wx_tu:
5591
0
  case RISCVVector::BI__builtin_rvv_vnclipu_wv_tu:
5592
0
  case RISCVVector::BI__builtin_rvv_vnclipu_wx_tu:
5593
0
  case RISCVVector::BI__builtin_rvv_vaaddu_vv_m:
5594
0
  case RISCVVector::BI__builtin_rvv_vaaddu_vx_m:
5595
0
  case RISCVVector::BI__builtin_rvv_vaadd_vv_m:
5596
0
  case RISCVVector::BI__builtin_rvv_vaadd_vx_m:
5597
0
  case RISCVVector::BI__builtin_rvv_vasubu_vv_m:
5598
0
  case RISCVVector::BI__builtin_rvv_vasubu_vx_m:
5599
0
  case RISCVVector::BI__builtin_rvv_vasub_vv_m:
5600
0
  case RISCVVector::BI__builtin_rvv_vasub_vx_m:
5601
0
  case RISCVVector::BI__builtin_rvv_vsmul_vv_m:
5602
0
  case RISCVVector::BI__builtin_rvv_vsmul_vx_m:
5603
0
  case RISCVVector::BI__builtin_rvv_vssra_vv_m:
5604
0
  case RISCVVector::BI__builtin_rvv_vssra_vx_m:
5605
0
  case RISCVVector::BI__builtin_rvv_vssrl_vv_m:
5606
0
  case RISCVVector::BI__builtin_rvv_vssrl_vx_m:
5607
0
  case RISCVVector::BI__builtin_rvv_vnclip_wv_m:
5608
0
  case RISCVVector::BI__builtin_rvv_vnclip_wx_m:
5609
0
  case RISCVVector::BI__builtin_rvv_vnclipu_wv_m:
5610
0
  case RISCVVector::BI__builtin_rvv_vnclipu_wx_m:
5611
0
    return SemaBuiltinConstantArgRange(TheCall, 3, 0, 3);
5612
0
  case RISCVVector::BI__builtin_rvv_vaaddu_vv_tum:
5613
0
  case RISCVVector::BI__builtin_rvv_vaaddu_vv_tumu:
5614
0
  case RISCVVector::BI__builtin_rvv_vaaddu_vv_mu:
5615
0
  case RISCVVector::BI__builtin_rvv_vaaddu_vx_tum:
5616
0
  case RISCVVector::BI__builtin_rvv_vaaddu_vx_tumu:
5617
0
  case RISCVVector::BI__builtin_rvv_vaaddu_vx_mu:
5618
0
  case RISCVVector::BI__builtin_rvv_vaadd_vv_tum:
5619
0
  case RISCVVector::BI__builtin_rvv_vaadd_vv_tumu:
5620
0
  case RISCVVector::BI__builtin_rvv_vaadd_vv_mu:
5621
0
  case RISCVVector::BI__builtin_rvv_vaadd_vx_tum:
5622
0
  case RISCVVector::BI__builtin_rvv_vaadd_vx_tumu:
5623
0
  case RISCVVector::BI__builtin_rvv_vaadd_vx_mu:
5624
0
  case RISCVVector::BI__builtin_rvv_vasubu_vv_tum:
5625
0
  case RISCVVector::BI__builtin_rvv_vasubu_vv_tumu:
5626
0
  case RISCVVector::BI__builtin_rvv_vasubu_vv_mu:
5627
0
  case RISCVVector::BI__builtin_rvv_vasubu_vx_tum:
5628
0
  case RISCVVector::BI__builtin_rvv_vasubu_vx_tumu:
5629
0
  case RISCVVector::BI__builtin_rvv_vasubu_vx_mu:
5630
0
  case RISCVVector::BI__builtin_rvv_vasub_vv_tum:
5631
0
  case RISCVVector::BI__builtin_rvv_vasub_vv_tumu:
5632
0
  case RISCVVector::BI__builtin_rvv_vasub_vv_mu:
5633
0
  case RISCVVector::BI__builtin_rvv_vasub_vx_tum:
5634
0
  case RISCVVector::BI__builtin_rvv_vasub_vx_tumu:
5635
0
  case RISCVVector::BI__builtin_rvv_vasub_vx_mu:
5636
0
  case RISCVVector::BI__builtin_rvv_vsmul_vv_mu:
5637
0
  case RISCVVector::BI__builtin_rvv_vsmul_vx_mu:
5638
0
  case RISCVVector::BI__builtin_rvv_vssra_vv_mu:
5639
0
  case RISCVVector::BI__builtin_rvv_vssra_vx_mu:
5640
0
  case RISCVVector::BI__builtin_rvv_vssrl_vv_mu:
5641
0
  case RISCVVector::BI__builtin_rvv_vssrl_vx_mu:
5642
0
  case RISCVVector::BI__builtin_rvv_vnclip_wv_mu:
5643
0
  case RISCVVector::BI__builtin_rvv_vnclip_wx_mu:
5644
0
  case RISCVVector::BI__builtin_rvv_vnclipu_wv_mu:
5645
0
  case RISCVVector::BI__builtin_rvv_vnclipu_wx_mu:
5646
0
  case RISCVVector::BI__builtin_rvv_vsmul_vv_tum:
5647
0
  case RISCVVector::BI__builtin_rvv_vsmul_vx_tum:
5648
0
  case RISCVVector::BI__builtin_rvv_vssra_vv_tum:
5649
0
  case RISCVVector::BI__builtin_rvv_vssra_vx_tum:
5650
0
  case RISCVVector::BI__builtin_rvv_vssrl_vv_tum:
5651
0
  case RISCVVector::BI__builtin_rvv_vssrl_vx_tum:
5652
0
  case RISCVVector::BI__builtin_rvv_vnclip_wv_tum:
5653
0
  case RISCVVector::BI__builtin_rvv_vnclip_wx_tum:
5654
0
  case RISCVVector::BI__builtin_rvv_vnclipu_wv_tum:
5655
0
  case RISCVVector::BI__builtin_rvv_vnclipu_wx_tum:
5656
0
  case RISCVVector::BI__builtin_rvv_vsmul_vv_tumu:
5657
0
  case RISCVVector::BI__builtin_rvv_vsmul_vx_tumu:
5658
0
  case RISCVVector::BI__builtin_rvv_vssra_vv_tumu:
5659
0
  case RISCVVector::BI__builtin_rvv_vssra_vx_tumu:
5660
0
  case RISCVVector::BI__builtin_rvv_vssrl_vv_tumu:
5661
0
  case RISCVVector::BI__builtin_rvv_vssrl_vx_tumu:
5662
0
  case RISCVVector::BI__builtin_rvv_vnclip_wv_tumu:
5663
0
  case RISCVVector::BI__builtin_rvv_vnclip_wx_tumu:
5664
0
  case RISCVVector::BI__builtin_rvv_vnclipu_wv_tumu:
5665
0
  case RISCVVector::BI__builtin_rvv_vnclipu_wx_tumu:
5666
0
    return SemaBuiltinConstantArgRange(TheCall, 4, 0, 3);
5667
0
  case RISCVVector::BI__builtin_rvv_vfsqrt_v_rm:
5668
0
  case RISCVVector::BI__builtin_rvv_vfrec7_v_rm:
5669
0
  case RISCVVector::BI__builtin_rvv_vfcvt_x_f_v_rm:
5670
0
  case RISCVVector::BI__builtin_rvv_vfcvt_xu_f_v_rm:
5671
0
  case RISCVVector::BI__builtin_rvv_vfcvt_f_x_v_rm:
5672
0
  case RISCVVector::BI__builtin_rvv_vfcvt_f_xu_v_rm:
5673
0
  case RISCVVector::BI__builtin_rvv_vfwcvt_x_f_v_rm:
5674
0
  case RISCVVector::BI__builtin_rvv_vfwcvt_xu_f_v_rm:
5675
0
  case RISCVVector::BI__builtin_rvv_vfncvt_x_f_w_rm:
5676
0
  case RISCVVector::BI__builtin_rvv_vfncvt_xu_f_w_rm:
5677
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_x_w_rm:
5678
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_xu_w_rm:
5679
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_f_w_rm:
5680
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 4);
5681
0
  case RISCVVector::BI__builtin_rvv_vfadd_vv_rm:
5682
0
  case RISCVVector::BI__builtin_rvv_vfadd_vf_rm:
5683
0
  case RISCVVector::BI__builtin_rvv_vfsub_vv_rm:
5684
0
  case RISCVVector::BI__builtin_rvv_vfsub_vf_rm:
5685
0
  case RISCVVector::BI__builtin_rvv_vfrsub_vf_rm:
5686
0
  case RISCVVector::BI__builtin_rvv_vfwadd_vv_rm:
5687
0
  case RISCVVector::BI__builtin_rvv_vfwadd_vf_rm:
5688
0
  case RISCVVector::BI__builtin_rvv_vfwsub_vv_rm:
5689
0
  case RISCVVector::BI__builtin_rvv_vfwsub_vf_rm:
5690
0
  case RISCVVector::BI__builtin_rvv_vfwadd_wv_rm:
5691
0
  case RISCVVector::BI__builtin_rvv_vfwadd_wf_rm:
5692
0
  case RISCVVector::BI__builtin_rvv_vfwsub_wv_rm:
5693
0
  case RISCVVector::BI__builtin_rvv_vfwsub_wf_rm:
5694
0
  case RISCVVector::BI__builtin_rvv_vfmul_vv_rm:
5695
0
  case RISCVVector::BI__builtin_rvv_vfmul_vf_rm:
5696
0
  case RISCVVector::BI__builtin_rvv_vfdiv_vv_rm:
5697
0
  case RISCVVector::BI__builtin_rvv_vfdiv_vf_rm:
5698
0
  case RISCVVector::BI__builtin_rvv_vfrdiv_vf_rm:
5699
0
  case RISCVVector::BI__builtin_rvv_vfwmul_vv_rm:
5700
0
  case RISCVVector::BI__builtin_rvv_vfwmul_vf_rm:
5701
0
  case RISCVVector::BI__builtin_rvv_vfredosum_vs_rm:
5702
0
  case RISCVVector::BI__builtin_rvv_vfredusum_vs_rm:
5703
0
  case RISCVVector::BI__builtin_rvv_vfwredosum_vs_rm:
5704
0
  case RISCVVector::BI__builtin_rvv_vfwredusum_vs_rm:
5705
0
  case RISCVVector::BI__builtin_rvv_vfsqrt_v_rm_tu:
5706
0
  case RISCVVector::BI__builtin_rvv_vfrec7_v_rm_tu:
5707
0
  case RISCVVector::BI__builtin_rvv_vfcvt_x_f_v_rm_tu:
5708
0
  case RISCVVector::BI__builtin_rvv_vfcvt_xu_f_v_rm_tu:
5709
0
  case RISCVVector::BI__builtin_rvv_vfcvt_f_x_v_rm_tu:
5710
0
  case RISCVVector::BI__builtin_rvv_vfcvt_f_xu_v_rm_tu:
5711
0
  case RISCVVector::BI__builtin_rvv_vfwcvt_x_f_v_rm_tu:
5712
0
  case RISCVVector::BI__builtin_rvv_vfwcvt_xu_f_v_rm_tu:
5713
0
  case RISCVVector::BI__builtin_rvv_vfncvt_x_f_w_rm_tu:
5714
0
  case RISCVVector::BI__builtin_rvv_vfncvt_xu_f_w_rm_tu:
5715
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_x_w_rm_tu:
5716
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_xu_w_rm_tu:
5717
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_f_w_rm_tu:
5718
0
  case RISCVVector::BI__builtin_rvv_vfsqrt_v_rm_m:
5719
0
  case RISCVVector::BI__builtin_rvv_vfrec7_v_rm_m:
5720
0
  case RISCVVector::BI__builtin_rvv_vfcvt_x_f_v_rm_m:
5721
0
  case RISCVVector::BI__builtin_rvv_vfcvt_xu_f_v_rm_m:
5722
0
  case RISCVVector::BI__builtin_rvv_vfcvt_f_x_v_rm_m:
5723
0
  case RISCVVector::BI__builtin_rvv_vfcvt_f_xu_v_rm_m:
5724
0
  case RISCVVector::BI__builtin_rvv_vfwcvt_x_f_v_rm_m:
5725
0
  case RISCVVector::BI__builtin_rvv_vfwcvt_xu_f_v_rm_m:
5726
0
  case RISCVVector::BI__builtin_rvv_vfncvt_x_f_w_rm_m:
5727
0
  case RISCVVector::BI__builtin_rvv_vfncvt_xu_f_w_rm_m:
5728
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_x_w_rm_m:
5729
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_xu_w_rm_m:
5730
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_f_w_rm_m:
5731
0
    return SemaBuiltinConstantArgRange(TheCall, 2, 0, 4);
5732
0
  case RISCVVector::BI__builtin_rvv_vfadd_vv_rm_tu:
5733
0
  case RISCVVector::BI__builtin_rvv_vfadd_vf_rm_tu:
5734
0
  case RISCVVector::BI__builtin_rvv_vfsub_vv_rm_tu:
5735
0
  case RISCVVector::BI__builtin_rvv_vfsub_vf_rm_tu:
5736
0
  case RISCVVector::BI__builtin_rvv_vfrsub_vf_rm_tu:
5737
0
  case RISCVVector::BI__builtin_rvv_vfwadd_vv_rm_tu:
5738
0
  case RISCVVector::BI__builtin_rvv_vfwadd_vf_rm_tu:
5739
0
  case RISCVVector::BI__builtin_rvv_vfwsub_vv_rm_tu:
5740
0
  case RISCVVector::BI__builtin_rvv_vfwsub_vf_rm_tu:
5741
0
  case RISCVVector::BI__builtin_rvv_vfwadd_wv_rm_tu:
5742
0
  case RISCVVector::BI__builtin_rvv_vfwadd_wf_rm_tu:
5743
0
  case RISCVVector::BI__builtin_rvv_vfwsub_wv_rm_tu:
5744
0
  case RISCVVector::BI__builtin_rvv_vfwsub_wf_rm_tu:
5745
0
  case RISCVVector::BI__builtin_rvv_vfmul_vv_rm_tu:
5746
0
  case RISCVVector::BI__builtin_rvv_vfmul_vf_rm_tu:
5747
0
  case RISCVVector::BI__builtin_rvv_vfdiv_vv_rm_tu:
5748
0
  case RISCVVector::BI__builtin_rvv_vfdiv_vf_rm_tu:
5749
0
  case RISCVVector::BI__builtin_rvv_vfrdiv_vf_rm_tu:
5750
0
  case RISCVVector::BI__builtin_rvv_vfwmul_vv_rm_tu:
5751
0
  case RISCVVector::BI__builtin_rvv_vfwmul_vf_rm_tu:
5752
0
  case RISCVVector::BI__builtin_rvv_vfredosum_vs_rm_tu:
5753
0
  case RISCVVector::BI__builtin_rvv_vfredusum_vs_rm_tu:
5754
0
  case RISCVVector::BI__builtin_rvv_vfwredosum_vs_rm_tu:
5755
0
  case RISCVVector::BI__builtin_rvv_vfwredusum_vs_rm_tu:
5756
0
  case RISCVVector::BI__builtin_rvv_vfmacc_vv_rm:
5757
0
  case RISCVVector::BI__builtin_rvv_vfmacc_vf_rm:
5758
0
  case RISCVVector::BI__builtin_rvv_vfnmacc_vv_rm:
5759
0
  case RISCVVector::BI__builtin_rvv_vfnmacc_vf_rm:
5760
0
  case RISCVVector::BI__builtin_rvv_vfmsac_vv_rm:
5761
0
  case RISCVVector::BI__builtin_rvv_vfmsac_vf_rm:
5762
0
  case RISCVVector::BI__builtin_rvv_vfnmsac_vv_rm:
5763
0
  case RISCVVector::BI__builtin_rvv_vfnmsac_vf_rm:
5764
0
  case RISCVVector::BI__builtin_rvv_vfmadd_vv_rm:
5765
0
  case RISCVVector::BI__builtin_rvv_vfmadd_vf_rm:
5766
0
  case RISCVVector::BI__builtin_rvv_vfnmadd_vv_rm:
5767
0
  case RISCVVector::BI__builtin_rvv_vfnmadd_vf_rm:
5768
0
  case RISCVVector::BI__builtin_rvv_vfmsub_vv_rm:
5769
0
  case RISCVVector::BI__builtin_rvv_vfmsub_vf_rm:
5770
0
  case RISCVVector::BI__builtin_rvv_vfnmsub_vv_rm:
5771
0
  case RISCVVector::BI__builtin_rvv_vfnmsub_vf_rm:
5772
0
  case RISCVVector::BI__builtin_rvv_vfwmacc_vv_rm:
5773
0
  case RISCVVector::BI__builtin_rvv_vfwmacc_vf_rm:
5774
0
  case RISCVVector::BI__builtin_rvv_vfwnmacc_vv_rm:
5775
0
  case RISCVVector::BI__builtin_rvv_vfwnmacc_vf_rm:
5776
0
  case RISCVVector::BI__builtin_rvv_vfwmsac_vv_rm:
5777
0
  case RISCVVector::BI__builtin_rvv_vfwmsac_vf_rm:
5778
0
  case RISCVVector::BI__builtin_rvv_vfwnmsac_vv_rm:
5779
0
  case RISCVVector::BI__builtin_rvv_vfwnmsac_vf_rm:
5780
0
  case RISCVVector::BI__builtin_rvv_vfmacc_vv_rm_tu:
5781
0
  case RISCVVector::BI__builtin_rvv_vfmacc_vf_rm_tu:
5782
0
  case RISCVVector::BI__builtin_rvv_vfnmacc_vv_rm_tu:
5783
0
  case RISCVVector::BI__builtin_rvv_vfnmacc_vf_rm_tu:
5784
0
  case RISCVVector::BI__builtin_rvv_vfmsac_vv_rm_tu:
5785
0
  case RISCVVector::BI__builtin_rvv_vfmsac_vf_rm_tu:
5786
0
  case RISCVVector::BI__builtin_rvv_vfnmsac_vv_rm_tu:
5787
0
  case RISCVVector::BI__builtin_rvv_vfnmsac_vf_rm_tu:
5788
0
  case RISCVVector::BI__builtin_rvv_vfmadd_vv_rm_tu:
5789
0
  case RISCVVector::BI__builtin_rvv_vfmadd_vf_rm_tu:
5790
0
  case RISCVVector::BI__builtin_rvv_vfnmadd_vv_rm_tu:
5791
0
  case RISCVVector::BI__builtin_rvv_vfnmadd_vf_rm_tu:
5792
0
  case RISCVVector::BI__builtin_rvv_vfmsub_vv_rm_tu:
5793
0
  case RISCVVector::BI__builtin_rvv_vfmsub_vf_rm_tu:
5794
0
  case RISCVVector::BI__builtin_rvv_vfnmsub_vv_rm_tu:
5795
0
  case RISCVVector::BI__builtin_rvv_vfnmsub_vf_rm_tu:
5796
0
  case RISCVVector::BI__builtin_rvv_vfwmacc_vv_rm_tu:
5797
0
  case RISCVVector::BI__builtin_rvv_vfwmacc_vf_rm_tu:
5798
0
  case RISCVVector::BI__builtin_rvv_vfwnmacc_vv_rm_tu:
5799
0
  case RISCVVector::BI__builtin_rvv_vfwnmacc_vf_rm_tu:
5800
0
  case RISCVVector::BI__builtin_rvv_vfwmsac_vv_rm_tu:
5801
0
  case RISCVVector::BI__builtin_rvv_vfwmsac_vf_rm_tu:
5802
0
  case RISCVVector::BI__builtin_rvv_vfwnmsac_vv_rm_tu:
5803
0
  case RISCVVector::BI__builtin_rvv_vfwnmsac_vf_rm_tu:
5804
0
  case RISCVVector::BI__builtin_rvv_vfadd_vv_rm_m:
5805
0
  case RISCVVector::BI__builtin_rvv_vfadd_vf_rm_m:
5806
0
  case RISCVVector::BI__builtin_rvv_vfsub_vv_rm_m:
5807
0
  case RISCVVector::BI__builtin_rvv_vfsub_vf_rm_m:
5808
0
  case RISCVVector::BI__builtin_rvv_vfrsub_vf_rm_m:
5809
0
  case RISCVVector::BI__builtin_rvv_vfwadd_vv_rm_m:
5810
0
  case RISCVVector::BI__builtin_rvv_vfwadd_vf_rm_m:
5811
0
  case RISCVVector::BI__builtin_rvv_vfwsub_vv_rm_m:
5812
0
  case RISCVVector::BI__builtin_rvv_vfwsub_vf_rm_m:
5813
0
  case RISCVVector::BI__builtin_rvv_vfwadd_wv_rm_m:
5814
0
  case RISCVVector::BI__builtin_rvv_vfwadd_wf_rm_m:
5815
0
  case RISCVVector::BI__builtin_rvv_vfwsub_wv_rm_m:
5816
0
  case RISCVVector::BI__builtin_rvv_vfwsub_wf_rm_m:
5817
0
  case RISCVVector::BI__builtin_rvv_vfmul_vv_rm_m:
5818
0
  case RISCVVector::BI__builtin_rvv_vfmul_vf_rm_m:
5819
0
  case RISCVVector::BI__builtin_rvv_vfdiv_vv_rm_m:
5820
0
  case RISCVVector::BI__builtin_rvv_vfdiv_vf_rm_m:
5821
0
  case RISCVVector::BI__builtin_rvv_vfrdiv_vf_rm_m:
5822
0
  case RISCVVector::BI__builtin_rvv_vfwmul_vv_rm_m:
5823
0
  case RISCVVector::BI__builtin_rvv_vfwmul_vf_rm_m:
5824
0
  case RISCVVector::BI__builtin_rvv_vfredosum_vs_rm_m:
5825
0
  case RISCVVector::BI__builtin_rvv_vfredusum_vs_rm_m:
5826
0
  case RISCVVector::BI__builtin_rvv_vfwredosum_vs_rm_m:
5827
0
  case RISCVVector::BI__builtin_rvv_vfwredusum_vs_rm_m:
5828
0
  case RISCVVector::BI__builtin_rvv_vfsqrt_v_rm_tum:
5829
0
  case RISCVVector::BI__builtin_rvv_vfrec7_v_rm_tum:
5830
0
  case RISCVVector::BI__builtin_rvv_vfcvt_x_f_v_rm_tum:
5831
0
  case RISCVVector::BI__builtin_rvv_vfcvt_xu_f_v_rm_tum:
5832
0
  case RISCVVector::BI__builtin_rvv_vfcvt_f_x_v_rm_tum:
5833
0
  case RISCVVector::BI__builtin_rvv_vfcvt_f_xu_v_rm_tum:
5834
0
  case RISCVVector::BI__builtin_rvv_vfwcvt_x_f_v_rm_tum:
5835
0
  case RISCVVector::BI__builtin_rvv_vfwcvt_xu_f_v_rm_tum:
5836
0
  case RISCVVector::BI__builtin_rvv_vfncvt_x_f_w_rm_tum:
5837
0
  case RISCVVector::BI__builtin_rvv_vfncvt_xu_f_w_rm_tum:
5838
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_x_w_rm_tum:
5839
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_xu_w_rm_tum:
5840
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_f_w_rm_tum:
5841
0
  case RISCVVector::BI__builtin_rvv_vfsqrt_v_rm_tumu:
5842
0
  case RISCVVector::BI__builtin_rvv_vfrec7_v_rm_tumu:
5843
0
  case RISCVVector::BI__builtin_rvv_vfcvt_x_f_v_rm_tumu:
5844
0
  case RISCVVector::BI__builtin_rvv_vfcvt_xu_f_v_rm_tumu:
5845
0
  case RISCVVector::BI__builtin_rvv_vfcvt_f_x_v_rm_tumu:
5846
0
  case RISCVVector::BI__builtin_rvv_vfcvt_f_xu_v_rm_tumu:
5847
0
  case RISCVVector::BI__builtin_rvv_vfwcvt_x_f_v_rm_tumu:
5848
0
  case RISCVVector::BI__builtin_rvv_vfwcvt_xu_f_v_rm_tumu:
5849
0
  case RISCVVector::BI__builtin_rvv_vfncvt_x_f_w_rm_tumu:
5850
0
  case RISCVVector::BI__builtin_rvv_vfncvt_xu_f_w_rm_tumu:
5851
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_x_w_rm_tumu:
5852
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_xu_w_rm_tumu:
5853
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_f_w_rm_tumu:
5854
0
  case RISCVVector::BI__builtin_rvv_vfsqrt_v_rm_mu:
5855
0
  case RISCVVector::BI__builtin_rvv_vfrec7_v_rm_mu:
5856
0
  case RISCVVector::BI__builtin_rvv_vfcvt_x_f_v_rm_mu:
5857
0
  case RISCVVector::BI__builtin_rvv_vfcvt_xu_f_v_rm_mu:
5858
0
  case RISCVVector::BI__builtin_rvv_vfcvt_f_x_v_rm_mu:
5859
0
  case RISCVVector::BI__builtin_rvv_vfcvt_f_xu_v_rm_mu:
5860
0
  case RISCVVector::BI__builtin_rvv_vfwcvt_x_f_v_rm_mu:
5861
0
  case RISCVVector::BI__builtin_rvv_vfwcvt_xu_f_v_rm_mu:
5862
0
  case RISCVVector::BI__builtin_rvv_vfncvt_x_f_w_rm_mu:
5863
0
  case RISCVVector::BI__builtin_rvv_vfncvt_xu_f_w_rm_mu:
5864
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_x_w_rm_mu:
5865
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_xu_w_rm_mu:
5866
0
  case RISCVVector::BI__builtin_rvv_vfncvt_f_f_w_rm_mu:
5867
0
    return SemaBuiltinConstantArgRange(TheCall, 3, 0, 4);
5868
0
  case RISCVVector::BI__builtin_rvv_vfmacc_vv_rm_m:
5869
0
  case RISCVVector::BI__builtin_rvv_vfmacc_vf_rm_m:
5870
0
  case RISCVVector::BI__builtin_rvv_vfnmacc_vv_rm_m:
5871
0
  case RISCVVector::BI__builtin_rvv_vfnmacc_vf_rm_m:
5872
0
  case RISCVVector::BI__builtin_rvv_vfmsac_vv_rm_m:
5873
0
  case RISCVVector::BI__builtin_rvv_vfmsac_vf_rm_m:
5874
0
  case RISCVVector::BI__builtin_rvv_vfnmsac_vv_rm_m:
5875
0
  case RISCVVector::BI__builtin_rvv_vfnmsac_vf_rm_m:
5876
0
  case RISCVVector::BI__builtin_rvv_vfmadd_vv_rm_m:
5877
0
  case RISCVVector::BI__builtin_rvv_vfmadd_vf_rm_m:
5878
0
  case RISCVVector::BI__builtin_rvv_vfnmadd_vv_rm_m:
5879
0
  case RISCVVector::BI__builtin_rvv_vfnmadd_vf_rm_m:
5880
0
  case RISCVVector::BI__builtin_rvv_vfmsub_vv_rm_m:
5881
0
  case RISCVVector::BI__builtin_rvv_vfmsub_vf_rm_m:
5882
0
  case RISCVVector::BI__builtin_rvv_vfnmsub_vv_rm_m:
5883
0
  case RISCVVector::BI__builtin_rvv_vfnmsub_vf_rm_m:
5884
0
  case RISCVVector::BI__builtin_rvv_vfwmacc_vv_rm_m:
5885
0
  case RISCVVector::BI__builtin_rvv_vfwmacc_vf_rm_m:
5886
0
  case RISCVVector::BI__builtin_rvv_vfwnmacc_vv_rm_m:
5887
0
  case RISCVVector::BI__builtin_rvv_vfwnmacc_vf_rm_m:
5888
0
  case RISCVVector::BI__builtin_rvv_vfwmsac_vv_rm_m:
5889
0
  case RISCVVector::BI__builtin_rvv_vfwmsac_vf_rm_m:
5890
0
  case RISCVVector::BI__builtin_rvv_vfwnmsac_vv_rm_m:
5891
0
  case RISCVVector::BI__builtin_rvv_vfwnmsac_vf_rm_m:
5892
0
  case RISCVVector::BI__builtin_rvv_vfadd_vv_rm_tum:
5893
0
  case RISCVVector::BI__builtin_rvv_vfadd_vf_rm_tum:
5894
0
  case RISCVVector::BI__builtin_rvv_vfsub_vv_rm_tum:
5895
0
  case RISCVVector::BI__builtin_rvv_vfsub_vf_rm_tum:
5896
0
  case RISCVVector::BI__builtin_rvv_vfrsub_vf_rm_tum:
5897
0
  case RISCVVector::BI__builtin_rvv_vfwadd_vv_rm_tum:
5898
0
  case RISCVVector::BI__builtin_rvv_vfwadd_vf_rm_tum:
5899
0
  case RISCVVector::BI__builtin_rvv_vfwsub_vv_rm_tum:
5900
0
  case RISCVVector::BI__builtin_rvv_vfwsub_vf_rm_tum:
5901
0
  case RISCVVector::BI__builtin_rvv_vfwadd_wv_rm_tum:
5902
0
  case RISCVVector::BI__builtin_rvv_vfwadd_wf_rm_tum:
5903
0
  case RISCVVector::BI__builtin_rvv_vfwsub_wv_rm_tum:
5904
0
  case RISCVVector::BI__builtin_rvv_vfwsub_wf_rm_tum:
5905
0
  case RISCVVector::BI__builtin_rvv_vfmul_vv_rm_tum:
5906
0
  case RISCVVector::BI__builtin_rvv_vfmul_vf_rm_tum:
5907
0
  case RISCVVector::BI__builtin_rvv_vfdiv_vv_rm_tum:
5908
0
  case RISCVVector::BI__builtin_rvv_vfdiv_vf_rm_tum:
5909
0
  case RISCVVector::BI__builtin_rvv_vfrdiv_vf_rm_tum:
5910
0
  case RISCVVector::BI__builtin_rvv_vfwmul_vv_rm_tum:
5911
0
  case RISCVVector::BI__builtin_rvv_vfwmul_vf_rm_tum:
5912
0
  case RISCVVector::BI__builtin_rvv_vfmacc_vv_rm_tum:
5913
0
  case RISCVVector::BI__builtin_rvv_vfmacc_vf_rm_tum:
5914
0
  case RISCVVector::BI__builtin_rvv_vfnmacc_vv_rm_tum:
5915
0
  case RISCVVector::BI__builtin_rvv_vfnmacc_vf_rm_tum:
5916
0
  case RISCVVector::BI__builtin_rvv_vfmsac_vv_rm_tum:
5917
0
  case RISCVVector::BI__builtin_rvv_vfmsac_vf_rm_tum:
5918
0
  case RISCVVector::BI__builtin_rvv_vfnmsac_vv_rm_tum:
5919
0
  case RISCVVector::BI__builtin_rvv_vfnmsac_vf_rm_tum:
5920
0
  case RISCVVector::BI__builtin_rvv_vfmadd_vv_rm_tum:
5921
0
  case RISCVVector::BI__builtin_rvv_vfmadd_vf_rm_tum:
5922
0
  case RISCVVector::BI__builtin_rvv_vfnmadd_vv_rm_tum:
5923
0
  case RISCVVector::BI__builtin_rvv_vfnmadd_vf_rm_tum:
5924
0
  case RISCVVector::BI__builtin_rvv_vfmsub_vv_rm_tum:
5925
0
  case RISCVVector::BI__builtin_rvv_vfmsub_vf_rm_tum:
5926
0
  case RISCVVector::BI__builtin_rvv_vfnmsub_vv_rm_tum:
5927
0
  case RISCVVector::BI__builtin_rvv_vfnmsub_vf_rm_tum:
5928
0
  case RISCVVector::BI__builtin_rvv_vfwmacc_vv_rm_tum:
5929
0
  case RISCVVector::BI__builtin_rvv_vfwmacc_vf_rm_tum:
5930
0
  case RISCVVector::BI__builtin_rvv_vfwnmacc_vv_rm_tum:
5931
0
  case RISCVVector::BI__builtin_rvv_vfwnmacc_vf_rm_tum:
5932
0
  case RISCVVector::BI__builtin_rvv_vfwmsac_vv_rm_tum:
5933
0
  case RISCVVector::BI__builtin_rvv_vfwmsac_vf_rm_tum:
5934
0
  case RISCVVector::BI__builtin_rvv_vfwnmsac_vv_rm_tum:
5935
0
  case RISCVVector::BI__builtin_rvv_vfwnmsac_vf_rm_tum:
5936
0
  case RISCVVector::BI__builtin_rvv_vfredosum_vs_rm_tum:
5937
0
  case RISCVVector::BI__builtin_rvv_vfredusum_vs_rm_tum:
5938
0
  case RISCVVector::BI__builtin_rvv_vfwredosum_vs_rm_tum:
5939
0
  case RISCVVector::BI__builtin_rvv_vfwredusum_vs_rm_tum:
5940
0
  case RISCVVector::BI__builtin_rvv_vfadd_vv_rm_tumu:
5941
0
  case RISCVVector::BI__builtin_rvv_vfadd_vf_rm_tumu:
5942
0
  case RISCVVector::BI__builtin_rvv_vfsub_vv_rm_tumu:
5943
0
  case RISCVVector::BI__builtin_rvv_vfsub_vf_rm_tumu:
5944
0
  case RISCVVector::BI__builtin_rvv_vfrsub_vf_rm_tumu:
5945
0
  case RISCVVector::BI__builtin_rvv_vfwadd_vv_rm_tumu:
5946
0
  case RISCVVector::BI__builtin_rvv_vfwadd_vf_rm_tumu:
5947
0
  case RISCVVector::BI__builtin_rvv_vfwsub_vv_rm_tumu:
5948
0
  case RISCVVector::BI__builtin_rvv_vfwsub_vf_rm_tumu:
5949
0
  case RISCVVector::BI__builtin_rvv_vfwadd_wv_rm_tumu:
5950
0
  case RISCVVector::BI__builtin_rvv_vfwadd_wf_rm_tumu:
5951
0
  case RISCVVector::BI__builtin_rvv_vfwsub_wv_rm_tumu:
5952
0
  case RISCVVector::BI__builtin_rvv_vfwsub_wf_rm_tumu:
5953
0
  case RISCVVector::BI__builtin_rvv_vfmul_vv_rm_tumu:
5954
0
  case RISCVVector::BI__builtin_rvv_vfmul_vf_rm_tumu:
5955
0
  case RISCVVector::BI__builtin_rvv_vfdiv_vv_rm_tumu:
5956
0
  case RISCVVector::BI__builtin_rvv_vfdiv_vf_rm_tumu:
5957
0
  case RISCVVector::BI__builtin_rvv_vfrdiv_vf_rm_tumu:
5958
0
  case RISCVVector::BI__builtin_rvv_vfwmul_vv_rm_tumu:
5959
0
  case RISCVVector::BI__builtin_rvv_vfwmul_vf_rm_tumu:
5960
0
  case RISCVVector::BI__builtin_rvv_vfmacc_vv_rm_tumu:
5961
0
  case RISCVVector::BI__builtin_rvv_vfmacc_vf_rm_tumu:
5962
0
  case RISCVVector::BI__builtin_rvv_vfnmacc_vv_rm_tumu:
5963
0
  case RISCVVector::BI__builtin_rvv_vfnmacc_vf_rm_tumu:
5964
0
  case RISCVVector::BI__builtin_rvv_vfmsac_vv_rm_tumu:
5965
0
  case RISCVVector::BI__builtin_rvv_vfmsac_vf_rm_tumu:
5966
0
  case RISCVVector::BI__builtin_rvv_vfnmsac_vv_rm_tumu:
5967
0
  case RISCVVector::BI__builtin_rvv_vfnmsac_vf_rm_tumu:
5968
0
  case RISCVVector::BI__builtin_rvv_vfmadd_vv_rm_tumu:
5969
0
  case RISCVVector::BI__builtin_rvv_vfmadd_vf_rm_tumu:
5970
0
  case RISCVVector::BI__builtin_rvv_vfnmadd_vv_rm_tumu:
5971
0
  case RISCVVector::BI__builtin_rvv_vfnmadd_vf_rm_tumu:
5972
0
  case RISCVVector::BI__builtin_rvv_vfmsub_vv_rm_tumu:
5973
0
  case RISCVVector::BI__builtin_rvv_vfmsub_vf_rm_tumu:
5974
0
  case RISCVVector::BI__builtin_rvv_vfnmsub_vv_rm_tumu:
5975
0
  case RISCVVector::BI__builtin_rvv_vfnmsub_vf_rm_tumu:
5976
0
  case RISCVVector::BI__builtin_rvv_vfwmacc_vv_rm_tumu:
5977
0
  case RISCVVector::BI__builtin_rvv_vfwmacc_vf_rm_tumu:
5978
0
  case RISCVVector::BI__builtin_rvv_vfwnmacc_vv_rm_tumu:
5979
0
  case RISCVVector::BI__builtin_rvv_vfwnmacc_vf_rm_tumu:
5980
0
  case RISCVVector::BI__builtin_rvv_vfwmsac_vv_rm_tumu:
5981
0
  case RISCVVector::BI__builtin_rvv_vfwmsac_vf_rm_tumu:
5982
0
  case RISCVVector::BI__builtin_rvv_vfwnmsac_vv_rm_tumu:
5983
0
  case RISCVVector::BI__builtin_rvv_vfwnmsac_vf_rm_tumu:
5984
0
  case RISCVVector::BI__builtin_rvv_vfadd_vv_rm_mu:
5985
0
  case RISCVVector::BI__builtin_rvv_vfadd_vf_rm_mu:
5986
0
  case RISCVVector::BI__builtin_rvv_vfsub_vv_rm_mu:
5987
0
  case RISCVVector::BI__builtin_rvv_vfsub_vf_rm_mu:
5988
0
  case RISCVVector::BI__builtin_rvv_vfrsub_vf_rm_mu:
5989
0
  case RISCVVector::BI__builtin_rvv_vfwadd_vv_rm_mu:
5990
0
  case RISCVVector::BI__builtin_rvv_vfwadd_vf_rm_mu:
5991
0
  case RISCVVector::BI__builtin_rvv_vfwsub_vv_rm_mu:
5992
0
  case RISCVVector::BI__builtin_rvv_vfwsub_vf_rm_mu:
5993
0
  case RISCVVector::BI__builtin_rvv_vfwadd_wv_rm_mu:
5994
0
  case RISCVVector::BI__builtin_rvv_vfwadd_wf_rm_mu:
5995
0
  case RISCVVector::BI__builtin_rvv_vfwsub_wv_rm_mu:
5996
0
  case RISCVVector::BI__builtin_rvv_vfwsub_wf_rm_mu:
5997
0
  case RISCVVector::BI__builtin_rvv_vfmul_vv_rm_mu:
5998
0
  case RISCVVector::BI__builtin_rvv_vfmul_vf_rm_mu:
5999
0
  case RISCVVector::BI__builtin_rvv_vfdiv_vv_rm_mu:
6000
0
  case RISCVVector::BI__builtin_rvv_vfdiv_vf_rm_mu:
6001
0
  case RISCVVector::BI__builtin_rvv_vfrdiv_vf_rm_mu:
6002
0
  case RISCVVector::BI__builtin_rvv_vfwmul_vv_rm_mu:
6003
0
  case RISCVVector::BI__builtin_rvv_vfwmul_vf_rm_mu:
6004
0
  case RISCVVector::BI__builtin_rvv_vfmacc_vv_rm_mu:
6005
0
  case RISCVVector::BI__builtin_rvv_vfmacc_vf_rm_mu:
6006
0
  case RISCVVector::BI__builtin_rvv_vfnmacc_vv_rm_mu:
6007
0
  case RISCVVector::BI__builtin_rvv_vfnmacc_vf_rm_mu:
6008
0
  case RISCVVector::BI__builtin_rvv_vfmsac_vv_rm_mu:
6009
0
  case RISCVVector::BI__builtin_rvv_vfmsac_vf_rm_mu:
6010
0
  case RISCVVector::BI__builtin_rvv_vfnmsac_vv_rm_mu:
6011
0
  case RISCVVector::BI__builtin_rvv_vfnmsac_vf_rm_mu:
6012
0
  case RISCVVector::BI__builtin_rvv_vfmadd_vv_rm_mu:
6013
0
  case RISCVVector::BI__builtin_rvv_vfmadd_vf_rm_mu:
6014
0
  case RISCVVector::BI__builtin_rvv_vfnmadd_vv_rm_mu:
6015
0
  case RISCVVector::BI__builtin_rvv_vfnmadd_vf_rm_mu:
6016
0
  case RISCVVector::BI__builtin_rvv_vfmsub_vv_rm_mu:
6017
0
  case RISCVVector::BI__builtin_rvv_vfmsub_vf_rm_mu:
6018
0
  case RISCVVector::BI__builtin_rvv_vfnmsub_vv_rm_mu:
6019
0
  case RISCVVector::BI__builtin_rvv_vfnmsub_vf_rm_mu:
6020
0
  case RISCVVector::BI__builtin_rvv_vfwmacc_vv_rm_mu:
6021
0
  case RISCVVector::BI__builtin_rvv_vfwmacc_vf_rm_mu:
6022
0
  case RISCVVector::BI__builtin_rvv_vfwnmacc_vv_rm_mu:
6023
0
  case RISCVVector::BI__builtin_rvv_vfwnmacc_vf_rm_mu:
6024
0
  case RISCVVector::BI__builtin_rvv_vfwmsac_vv_rm_mu:
6025
0
  case RISCVVector::BI__builtin_rvv_vfwmsac_vf_rm_mu:
6026
0
  case RISCVVector::BI__builtin_rvv_vfwnmsac_vv_rm_mu:
6027
0
  case RISCVVector::BI__builtin_rvv_vfwnmsac_vf_rm_mu:
6028
0
    return SemaBuiltinConstantArgRange(TheCall, 4, 0, 4);
6029
0
  case RISCV::BI__builtin_riscv_ntl_load:
6030
0
  case RISCV::BI__builtin_riscv_ntl_store:
6031
0
    DeclRefExpr *DRE =
6032
0
        cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
6033
0
    assert((BuiltinID == RISCV::BI__builtin_riscv_ntl_store ||
6034
0
            BuiltinID == RISCV::BI__builtin_riscv_ntl_load) &&
6035
0
           "Unexpected RISC-V nontemporal load/store builtin!");
6036
0
    bool IsStore = BuiltinID == RISCV::BI__builtin_riscv_ntl_store;
6037
0
    unsigned NumArgs = IsStore ? 3 : 2;
6038
6039
0
    if (checkArgCountAtLeast(*this, TheCall, NumArgs - 1))
6040
0
      return true;
6041
6042
0
    if (checkArgCountAtMost(*this, TheCall, NumArgs))
6043
0
      return true;
6044
6045
    // Domain value should be compile-time constant.
6046
    // 2 <= domain <= 5
6047
0
    if (TheCall->getNumArgs() == NumArgs &&
6048
0
        SemaBuiltinConstantArgRange(TheCall, NumArgs - 1, 2, 5))
6049
0
      return true;
6050
6051
0
    Expr *PointerArg = TheCall->getArg(0);
6052
0
    ExprResult PointerArgResult =
6053
0
        DefaultFunctionArrayLvalueConversion(PointerArg);
6054
6055
0
    if (PointerArgResult.isInvalid())
6056
0
      return true;
6057
0
    PointerArg = PointerArgResult.get();
6058
6059
0
    const PointerType *PtrType = PointerArg->getType()->getAs<PointerType>();
6060
0
    if (!PtrType) {
6061
0
      Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
6062
0
          << PointerArg->getType() << PointerArg->getSourceRange();
6063
0
      return true;
6064
0
    }
6065
6066
0
    QualType ValType = PtrType->getPointeeType();
6067
0
    ValType = ValType.getUnqualifiedType();
6068
0
    if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
6069
0
        !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
6070
0
        !ValType->isVectorType() && !ValType->isRVVSizelessBuiltinType()) {
6071
0
      Diag(DRE->getBeginLoc(),
6072
0
           diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
6073
0
          << PointerArg->getType() << PointerArg->getSourceRange();
6074
0
      return true;
6075
0
    }
6076
6077
0
    if (!IsStore) {
6078
0
      TheCall->setType(ValType);
6079
0
      return false;
6080
0
    }
6081
6082
0
    ExprResult ValArg = TheCall->getArg(1);
6083
0
    InitializedEntity Entity = InitializedEntity::InitializeParameter(
6084
0
        Context, ValType, /*consume*/ false);
6085
0
    ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
6086
0
    if (ValArg.isInvalid())
6087
0
      return true;
6088
6089
0
    TheCall->setArg(1, ValArg.get());
6090
0
    TheCall->setType(Context.VoidTy);
6091
0
    return false;
6092
0
  }
6093
6094
0
  return false;
6095
0
}
6096
6097
bool Sema::CheckSystemZBuiltinFunctionCall(unsigned BuiltinID,
6098
0
                                           CallExpr *TheCall) {
6099
0
  if (BuiltinID == SystemZ::BI__builtin_tabort) {
6100
0
    Expr *Arg = TheCall->getArg(0);
6101
0
    if (std::optional<llvm::APSInt> AbortCode =
6102
0
            Arg->getIntegerConstantExpr(Context))
6103
0
      if (AbortCode->getSExtValue() >= 0 && AbortCode->getSExtValue() < 256)
6104
0
        return Diag(Arg->getBeginLoc(), diag::err_systemz_invalid_tabort_code)
6105
0
               << Arg->getSourceRange();
6106
0
  }
6107
6108
  // For intrinsics which take an immediate value as part of the instruction,
6109
  // range check them here.
6110
0
  unsigned i = 0, l = 0, u = 0;
6111
0
  switch (BuiltinID) {
6112
0
  default: return false;
6113
0
  case SystemZ::BI__builtin_s390_lcbb: i = 1; l = 0; u = 15; break;
6114
0
  case SystemZ::BI__builtin_s390_verimb:
6115
0
  case SystemZ::BI__builtin_s390_verimh:
6116
0
  case SystemZ::BI__builtin_s390_verimf:
6117
0
  case SystemZ::BI__builtin_s390_verimg: i = 3; l = 0; u = 255; break;
6118
0
  case SystemZ::BI__builtin_s390_vfaeb:
6119
0
  case SystemZ::BI__builtin_s390_vfaeh:
6120
0
  case SystemZ::BI__builtin_s390_vfaef:
6121
0
  case SystemZ::BI__builtin_s390_vfaebs:
6122
0
  case SystemZ::BI__builtin_s390_vfaehs:
6123
0
  case SystemZ::BI__builtin_s390_vfaefs:
6124
0
  case SystemZ::BI__builtin_s390_vfaezb:
6125
0
  case SystemZ::BI__builtin_s390_vfaezh:
6126
0
  case SystemZ::BI__builtin_s390_vfaezf:
6127
0
  case SystemZ::BI__builtin_s390_vfaezbs:
6128
0
  case SystemZ::BI__builtin_s390_vfaezhs:
6129
0
  case SystemZ::BI__builtin_s390_vfaezfs: i = 2; l = 0; u = 15; break;
6130
0
  case SystemZ::BI__builtin_s390_vfisb:
6131
0
  case SystemZ::BI__builtin_s390_vfidb:
6132
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15) ||
6133
0
           SemaBuiltinConstantArgRange(TheCall, 2, 0, 15);
6134
0
  case SystemZ::BI__builtin_s390_vftcisb:
6135
0
  case SystemZ::BI__builtin_s390_vftcidb: i = 1; l = 0; u = 4095; break;
6136
0
  case SystemZ::BI__builtin_s390_vlbb: i = 1; l = 0; u = 15; break;
6137
0
  case SystemZ::BI__builtin_s390_vpdi: i = 2; l = 0; u = 15; break;
6138
0
  case SystemZ::BI__builtin_s390_vsldb: i = 2; l = 0; u = 15; break;
6139
0
  case SystemZ::BI__builtin_s390_vstrcb:
6140
0
  case SystemZ::BI__builtin_s390_vstrch:
6141
0
  case SystemZ::BI__builtin_s390_vstrcf:
6142
0
  case SystemZ::BI__builtin_s390_vstrczb:
6143
0
  case SystemZ::BI__builtin_s390_vstrczh:
6144
0
  case SystemZ::BI__builtin_s390_vstrczf:
6145
0
  case SystemZ::BI__builtin_s390_vstrcbs:
6146
0
  case SystemZ::BI__builtin_s390_vstrchs:
6147
0
  case SystemZ::BI__builtin_s390_vstrcfs:
6148
0
  case SystemZ::BI__builtin_s390_vstrczbs:
6149
0
  case SystemZ::BI__builtin_s390_vstrczhs:
6150
0
  case SystemZ::BI__builtin_s390_vstrczfs: i = 3; l = 0; u = 15; break;
6151
0
  case SystemZ::BI__builtin_s390_vmslg: i = 3; l = 0; u = 15; break;
6152
0
  case SystemZ::BI__builtin_s390_vfminsb:
6153
0
  case SystemZ::BI__builtin_s390_vfmaxsb:
6154
0
  case SystemZ::BI__builtin_s390_vfmindb:
6155
0
  case SystemZ::BI__builtin_s390_vfmaxdb: i = 2; l = 0; u = 15; break;
6156
0
  case SystemZ::BI__builtin_s390_vsld: i = 2; l = 0; u = 7; break;
6157
0
  case SystemZ::BI__builtin_s390_vsrd: i = 2; l = 0; u = 7; break;
6158
0
  case SystemZ::BI__builtin_s390_vclfnhs:
6159
0
  case SystemZ::BI__builtin_s390_vclfnls:
6160
0
  case SystemZ::BI__builtin_s390_vcfn:
6161
0
  case SystemZ::BI__builtin_s390_vcnf: i = 1; l = 0; u = 15; break;
6162
0
  case SystemZ::BI__builtin_s390_vcrnfs: i = 2; l = 0; u = 15; break;
6163
0
  }
6164
0
  return SemaBuiltinConstantArgRange(TheCall, i, l, u);
6165
0
}
6166
6167
bool Sema::CheckWebAssemblyBuiltinFunctionCall(const TargetInfo &TI,
6168
                                               unsigned BuiltinID,
6169
0
                                               CallExpr *TheCall) {
6170
0
  switch (BuiltinID) {
6171
0
  case WebAssembly::BI__builtin_wasm_ref_null_extern:
6172
0
    return BuiltinWasmRefNullExtern(TheCall);
6173
0
  case WebAssembly::BI__builtin_wasm_ref_null_func:
6174
0
    return BuiltinWasmRefNullFunc(TheCall);
6175
0
  case WebAssembly::BI__builtin_wasm_table_get:
6176
0
    return BuiltinWasmTableGet(TheCall);
6177
0
  case WebAssembly::BI__builtin_wasm_table_set:
6178
0
    return BuiltinWasmTableSet(TheCall);
6179
0
  case WebAssembly::BI__builtin_wasm_table_size:
6180
0
    return BuiltinWasmTableSize(TheCall);
6181
0
  case WebAssembly::BI__builtin_wasm_table_grow:
6182
0
    return BuiltinWasmTableGrow(TheCall);
6183
0
  case WebAssembly::BI__builtin_wasm_table_fill:
6184
0
    return BuiltinWasmTableFill(TheCall);
6185
0
  case WebAssembly::BI__builtin_wasm_table_copy:
6186
0
    return BuiltinWasmTableCopy(TheCall);
6187
0
  }
6188
6189
0
  return false;
6190
0
}
6191
6192
0
void Sema::checkRVVTypeSupport(QualType Ty, SourceLocation Loc, Decl *D) {
6193
0
  const TargetInfo &TI = Context.getTargetInfo();
6194
6195
0
  ASTContext::BuiltinVectorTypeInfo Info =
6196
0
      Context.getBuiltinVectorTypeInfo(Ty->castAs<BuiltinType>());
6197
0
  unsigned EltSize = Context.getTypeSize(Info.ElementType);
6198
0
  unsigned MinElts = Info.EC.getKnownMinValue();
6199
6200
  // (ELEN, LMUL) pairs of (8, mf8), (16, mf4), (32, mf2), (64, m1) requires at
6201
  // least zve64x
6202
0
  if (((EltSize == 64 && Info.ElementType->isIntegerType()) || MinElts == 1) &&
6203
0
      !TI.hasFeature("zve64x"))
6204
0
    Diag(Loc, diag::err_riscv_type_requires_extension, D) << Ty << "zve64x";
6205
0
  else if (Info.ElementType->isFloat16Type() && !TI.hasFeature("zvfh") &&
6206
0
           !TI.hasFeature("zvfhmin"))
6207
0
    Diag(Loc, diag::err_riscv_type_requires_extension, D)
6208
0
        << Ty << "zvfh or zvfhmin";
6209
0
  else if (Info.ElementType->isBFloat16Type() &&
6210
0
           !TI.hasFeature("experimental-zvfbfmin"))
6211
0
    Diag(Loc, diag::err_riscv_type_requires_extension, D) << Ty << "zvfbfmin";
6212
0
  else if (Info.ElementType->isSpecificBuiltinType(BuiltinType::Float) &&
6213
0
           !TI.hasFeature("zve32f"))
6214
0
    Diag(Loc, diag::err_riscv_type_requires_extension, D) << Ty << "zve32f";
6215
0
  else if (Info.ElementType->isSpecificBuiltinType(BuiltinType::Double) &&
6216
0
           !TI.hasFeature("zve64d"))
6217
0
    Diag(Loc, diag::err_riscv_type_requires_extension, D) << Ty << "zve64d";
6218
  // Given that caller already checked isRVVType() before calling this function,
6219
  // if we don't have at least zve32x supported, then we need to emit error.
6220
0
  else if (!TI.hasFeature("zve32x"))
6221
0
    Diag(Loc, diag::err_riscv_type_requires_extension, D) << Ty << "zve32x";
6222
0
}
6223
6224
bool Sema::CheckNVPTXBuiltinFunctionCall(const TargetInfo &TI,
6225
                                         unsigned BuiltinID,
6226
0
                                         CallExpr *TheCall) {
6227
0
  switch (BuiltinID) {
6228
0
  case NVPTX::BI__nvvm_cp_async_ca_shared_global_4:
6229
0
  case NVPTX::BI__nvvm_cp_async_ca_shared_global_8:
6230
0
  case NVPTX::BI__nvvm_cp_async_ca_shared_global_16:
6231
0
  case NVPTX::BI__nvvm_cp_async_cg_shared_global_16:
6232
0
    return checkArgCountAtMost(*this, TheCall, 3);
6233
0
  }
6234
6235
0
  return false;
6236
0
}
6237
6238
/// SemaBuiltinCpuSupports - Handle __builtin_cpu_supports(char *).
6239
/// This checks that the target supports __builtin_cpu_supports and
6240
/// that the string argument is constant and valid.
6241
static bool SemaBuiltinCpuSupports(Sema &S, const TargetInfo &TI,
6242
0
                                   CallExpr *TheCall) {
6243
0
  Expr *Arg = TheCall->getArg(0);
6244
6245
  // Check if the argument is a string literal.
6246
0
  if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
6247
0
    return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
6248
0
           << Arg->getSourceRange();
6249
6250
  // Check the contents of the string.
6251
0
  StringRef Feature =
6252
0
      cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
6253
0
  if (!TI.validateCpuSupports(Feature))
6254
0
    return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_supports)
6255
0
           << Arg->getSourceRange();
6256
0
  return false;
6257
0
}
6258
6259
/// SemaBuiltinCpuIs - Handle __builtin_cpu_is(char *).
6260
/// This checks that the target supports __builtin_cpu_is and
6261
/// that the string argument is constant and valid.
6262
0
static bool SemaBuiltinCpuIs(Sema &S, const TargetInfo &TI, CallExpr *TheCall) {
6263
0
  Expr *Arg = TheCall->getArg(0);
6264
6265
  // Check if the argument is a string literal.
6266
0
  if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
6267
0
    return S.Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
6268
0
           << Arg->getSourceRange();
6269
6270
  // Check the contents of the string.
6271
0
  StringRef Feature =
6272
0
      cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
6273
0
  if (!TI.validateCpuIs(Feature))
6274
0
    return S.Diag(TheCall->getBeginLoc(), diag::err_invalid_cpu_is)
6275
0
           << Arg->getSourceRange();
6276
0
  return false;
6277
0
}
6278
6279
// Check if the rounding mode is legal.
6280
0
bool Sema::CheckX86BuiltinRoundingOrSAE(unsigned BuiltinID, CallExpr *TheCall) {
6281
  // Indicates if this instruction has rounding control or just SAE.
6282
0
  bool HasRC = false;
6283
6284
0
  unsigned ArgNum = 0;
6285
0
  switch (BuiltinID) {
6286
0
  default:
6287
0
    return false;
6288
0
  case X86::BI__builtin_ia32_vcvttsd2si32:
6289
0
  case X86::BI__builtin_ia32_vcvttsd2si64:
6290
0
  case X86::BI__builtin_ia32_vcvttsd2usi32:
6291
0
  case X86::BI__builtin_ia32_vcvttsd2usi64:
6292
0
  case X86::BI__builtin_ia32_vcvttss2si32:
6293
0
  case X86::BI__builtin_ia32_vcvttss2si64:
6294
0
  case X86::BI__builtin_ia32_vcvttss2usi32:
6295
0
  case X86::BI__builtin_ia32_vcvttss2usi64:
6296
0
  case X86::BI__builtin_ia32_vcvttsh2si32:
6297
0
  case X86::BI__builtin_ia32_vcvttsh2si64:
6298
0
  case X86::BI__builtin_ia32_vcvttsh2usi32:
6299
0
  case X86::BI__builtin_ia32_vcvttsh2usi64:
6300
0
    ArgNum = 1;
6301
0
    break;
6302
0
  case X86::BI__builtin_ia32_maxpd512:
6303
0
  case X86::BI__builtin_ia32_maxps512:
6304
0
  case X86::BI__builtin_ia32_minpd512:
6305
0
  case X86::BI__builtin_ia32_minps512:
6306
0
  case X86::BI__builtin_ia32_maxph512:
6307
0
  case X86::BI__builtin_ia32_minph512:
6308
0
    ArgNum = 2;
6309
0
    break;
6310
0
  case X86::BI__builtin_ia32_vcvtph2pd512_mask:
6311
0
  case X86::BI__builtin_ia32_vcvtph2psx512_mask:
6312
0
  case X86::BI__builtin_ia32_cvtps2pd512_mask:
6313
0
  case X86::BI__builtin_ia32_cvttpd2dq512_mask:
6314
0
  case X86::BI__builtin_ia32_cvttpd2qq512_mask:
6315
0
  case X86::BI__builtin_ia32_cvttpd2udq512_mask:
6316
0
  case X86::BI__builtin_ia32_cvttpd2uqq512_mask:
6317
0
  case X86::BI__builtin_ia32_cvttps2dq512_mask:
6318
0
  case X86::BI__builtin_ia32_cvttps2qq512_mask:
6319
0
  case X86::BI__builtin_ia32_cvttps2udq512_mask:
6320
0
  case X86::BI__builtin_ia32_cvttps2uqq512_mask:
6321
0
  case X86::BI__builtin_ia32_vcvttph2w512_mask:
6322
0
  case X86::BI__builtin_ia32_vcvttph2uw512_mask:
6323
0
  case X86::BI__builtin_ia32_vcvttph2dq512_mask:
6324
0
  case X86::BI__builtin_ia32_vcvttph2udq512_mask:
6325
0
  case X86::BI__builtin_ia32_vcvttph2qq512_mask:
6326
0
  case X86::BI__builtin_ia32_vcvttph2uqq512_mask:
6327
0
  case X86::BI__builtin_ia32_exp2pd_mask:
6328
0
  case X86::BI__builtin_ia32_exp2ps_mask:
6329
0
  case X86::BI__builtin_ia32_getexppd512_mask:
6330
0
  case X86::BI__builtin_ia32_getexpps512_mask:
6331
0
  case X86::BI__builtin_ia32_getexpph512_mask:
6332
0
  case X86::BI__builtin_ia32_rcp28pd_mask:
6333
0
  case X86::BI__builtin_ia32_rcp28ps_mask:
6334
0
  case X86::BI__builtin_ia32_rsqrt28pd_mask:
6335
0
  case X86::BI__builtin_ia32_rsqrt28ps_mask:
6336
0
  case X86::BI__builtin_ia32_vcomisd:
6337
0
  case X86::BI__builtin_ia32_vcomiss:
6338
0
  case X86::BI__builtin_ia32_vcomish:
6339
0
  case X86::BI__builtin_ia32_vcvtph2ps512_mask:
6340
0
    ArgNum = 3;
6341
0
    break;
6342
0
  case X86::BI__builtin_ia32_cmppd512_mask:
6343
0
  case X86::BI__builtin_ia32_cmpps512_mask:
6344
0
  case X86::BI__builtin_ia32_cmpsd_mask:
6345
0
  case X86::BI__builtin_ia32_cmpss_mask:
6346
0
  case X86::BI__builtin_ia32_cmpsh_mask:
6347
0
  case X86::BI__builtin_ia32_vcvtsh2sd_round_mask:
6348
0
  case X86::BI__builtin_ia32_vcvtsh2ss_round_mask:
6349
0
  case X86::BI__builtin_ia32_cvtss2sd_round_mask:
6350
0
  case X86::BI__builtin_ia32_getexpsd128_round_mask:
6351
0
  case X86::BI__builtin_ia32_getexpss128_round_mask:
6352
0
  case X86::BI__builtin_ia32_getexpsh128_round_mask:
6353
0
  case X86::BI__builtin_ia32_getmantpd512_mask:
6354
0
  case X86::BI__builtin_ia32_getmantps512_mask:
6355
0
  case X86::BI__builtin_ia32_getmantph512_mask:
6356
0
  case X86::BI__builtin_ia32_maxsd_round_mask:
6357
0
  case X86::BI__builtin_ia32_maxss_round_mask:
6358
0
  case X86::BI__builtin_ia32_maxsh_round_mask:
6359
0
  case X86::BI__builtin_ia32_minsd_round_mask:
6360
0
  case X86::BI__builtin_ia32_minss_round_mask:
6361
0
  case X86::BI__builtin_ia32_minsh_round_mask:
6362
0
  case X86::BI__builtin_ia32_rcp28sd_round_mask:
6363
0
  case X86::BI__builtin_ia32_rcp28ss_round_mask:
6364
0
  case X86::BI__builtin_ia32_reducepd512_mask:
6365
0
  case X86::BI__builtin_ia32_reduceps512_mask:
6366
0
  case X86::BI__builtin_ia32_reduceph512_mask:
6367
0
  case X86::BI__builtin_ia32_rndscalepd_mask:
6368
0
  case X86::BI__builtin_ia32_rndscaleps_mask:
6369
0
  case X86::BI__builtin_ia32_rndscaleph_mask:
6370
0
  case X86::BI__builtin_ia32_rsqrt28sd_round_mask:
6371
0
  case X86::BI__builtin_ia32_rsqrt28ss_round_mask:
6372
0
    ArgNum = 4;
6373
0
    break;
6374
0
  case X86::BI__builtin_ia32_fixupimmpd512_mask:
6375
0
  case X86::BI__builtin_ia32_fixupimmpd512_maskz:
6376
0
  case X86::BI__builtin_ia32_fixupimmps512_mask:
6377
0
  case X86::BI__builtin_ia32_fixupimmps512_maskz:
6378
0
  case X86::BI__builtin_ia32_fixupimmsd_mask:
6379
0
  case X86::BI__builtin_ia32_fixupimmsd_maskz:
6380
0
  case X86::BI__builtin_ia32_fixupimmss_mask:
6381
0
  case X86::BI__builtin_ia32_fixupimmss_maskz:
6382
0
  case X86::BI__builtin_ia32_getmantsd_round_mask:
6383
0
  case X86::BI__builtin_ia32_getmantss_round_mask:
6384
0
  case X86::BI__builtin_ia32_getmantsh_round_mask:
6385
0
  case X86::BI__builtin_ia32_rangepd512_mask:
6386
0
  case X86::BI__builtin_ia32_rangeps512_mask:
6387
0
  case X86::BI__builtin_ia32_rangesd128_round_mask:
6388
0
  case X86::BI__builtin_ia32_rangess128_round_mask:
6389
0
  case X86::BI__builtin_ia32_reducesd_mask:
6390
0
  case X86::BI__builtin_ia32_reducess_mask:
6391
0
  case X86::BI__builtin_ia32_reducesh_mask:
6392
0
  case X86::BI__builtin_ia32_rndscalesd_round_mask:
6393
0
  case X86::BI__builtin_ia32_rndscaless_round_mask:
6394
0
  case X86::BI__builtin_ia32_rndscalesh_round_mask:
6395
0
    ArgNum = 5;
6396
0
    break;
6397
0
  case X86::BI__builtin_ia32_vcvtsd2si64:
6398
0
  case X86::BI__builtin_ia32_vcvtsd2si32:
6399
0
  case X86::BI__builtin_ia32_vcvtsd2usi32:
6400
0
  case X86::BI__builtin_ia32_vcvtsd2usi64:
6401
0
  case X86::BI__builtin_ia32_vcvtss2si32:
6402
0
  case X86::BI__builtin_ia32_vcvtss2si64:
6403
0
  case X86::BI__builtin_ia32_vcvtss2usi32:
6404
0
  case X86::BI__builtin_ia32_vcvtss2usi64:
6405
0
  case X86::BI__builtin_ia32_vcvtsh2si32:
6406
0
  case X86::BI__builtin_ia32_vcvtsh2si64:
6407
0
  case X86::BI__builtin_ia32_vcvtsh2usi32:
6408
0
  case X86::BI__builtin_ia32_vcvtsh2usi64:
6409
0
  case X86::BI__builtin_ia32_sqrtpd512:
6410
0
  case X86::BI__builtin_ia32_sqrtps512:
6411
0
  case X86::BI__builtin_ia32_sqrtph512:
6412
0
    ArgNum = 1;
6413
0
    HasRC = true;
6414
0
    break;
6415
0
  case X86::BI__builtin_ia32_addph512:
6416
0
  case X86::BI__builtin_ia32_divph512:
6417
0
  case X86::BI__builtin_ia32_mulph512:
6418
0
  case X86::BI__builtin_ia32_subph512:
6419
0
  case X86::BI__builtin_ia32_addpd512:
6420
0
  case X86::BI__builtin_ia32_addps512:
6421
0
  case X86::BI__builtin_ia32_divpd512:
6422
0
  case X86::BI__builtin_ia32_divps512:
6423
0
  case X86::BI__builtin_ia32_mulpd512:
6424
0
  case X86::BI__builtin_ia32_mulps512:
6425
0
  case X86::BI__builtin_ia32_subpd512:
6426
0
  case X86::BI__builtin_ia32_subps512:
6427
0
  case X86::BI__builtin_ia32_cvtsi2sd64:
6428
0
  case X86::BI__builtin_ia32_cvtsi2ss32:
6429
0
  case X86::BI__builtin_ia32_cvtsi2ss64:
6430
0
  case X86::BI__builtin_ia32_cvtusi2sd64:
6431
0
  case X86::BI__builtin_ia32_cvtusi2ss32:
6432
0
  case X86::BI__builtin_ia32_cvtusi2ss64:
6433
0
  case X86::BI__builtin_ia32_vcvtusi2sh:
6434
0
  case X86::BI__builtin_ia32_vcvtusi642sh:
6435
0
  case X86::BI__builtin_ia32_vcvtsi2sh:
6436
0
  case X86::BI__builtin_ia32_vcvtsi642sh:
6437
0
    ArgNum = 2;
6438
0
    HasRC = true;
6439
0
    break;
6440
0
  case X86::BI__builtin_ia32_cvtdq2ps512_mask:
6441
0
  case X86::BI__builtin_ia32_cvtudq2ps512_mask:
6442
0
  case X86::BI__builtin_ia32_vcvtpd2ph512_mask:
6443
0
  case X86::BI__builtin_ia32_vcvtps2phx512_mask:
6444
0
  case X86::BI__builtin_ia32_cvtpd2ps512_mask:
6445
0
  case X86::BI__builtin_ia32_cvtpd2dq512_mask:
6446
0
  case X86::BI__builtin_ia32_cvtpd2qq512_mask:
6447
0
  case X86::BI__builtin_ia32_cvtpd2udq512_mask:
6448
0
  case X86::BI__builtin_ia32_cvtpd2uqq512_mask:
6449
0
  case X86::BI__builtin_ia32_cvtps2dq512_mask:
6450
0
  case X86::BI__builtin_ia32_cvtps2qq512_mask:
6451
0
  case X86::BI__builtin_ia32_cvtps2udq512_mask:
6452
0
  case X86::BI__builtin_ia32_cvtps2uqq512_mask:
6453
0
  case X86::BI__builtin_ia32_cvtqq2pd512_mask:
6454
0
  case X86::BI__builtin_ia32_cvtqq2ps512_mask:
6455
0
  case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
6456
0
  case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
6457
0
  case X86::BI__builtin_ia32_vcvtdq2ph512_mask:
6458
0
  case X86::BI__builtin_ia32_vcvtudq2ph512_mask:
6459
0
  case X86::BI__builtin_ia32_vcvtw2ph512_mask:
6460
0
  case X86::BI__builtin_ia32_vcvtuw2ph512_mask:
6461
0
  case X86::BI__builtin_ia32_vcvtph2w512_mask:
6462
0
  case X86::BI__builtin_ia32_vcvtph2uw512_mask:
6463
0
  case X86::BI__builtin_ia32_vcvtph2dq512_mask:
6464
0
  case X86::BI__builtin_ia32_vcvtph2udq512_mask:
6465
0
  case X86::BI__builtin_ia32_vcvtph2qq512_mask:
6466
0
  case X86::BI__builtin_ia32_vcvtph2uqq512_mask:
6467
0
  case X86::BI__builtin_ia32_vcvtqq2ph512_mask:
6468
0
  case X86::BI__builtin_ia32_vcvtuqq2ph512_mask:
6469
0
    ArgNum = 3;
6470
0
    HasRC = true;
6471
0
    break;
6472
0
  case X86::BI__builtin_ia32_addsh_round_mask:
6473
0
  case X86::BI__builtin_ia32_addss_round_mask:
6474
0
  case X86::BI__builtin_ia32_addsd_round_mask:
6475
0
  case X86::BI__builtin_ia32_divsh_round_mask:
6476
0
  case X86::BI__builtin_ia32_divss_round_mask:
6477
0
  case X86::BI__builtin_ia32_divsd_round_mask:
6478
0
  case X86::BI__builtin_ia32_mulsh_round_mask:
6479
0
  case X86::BI__builtin_ia32_mulss_round_mask:
6480
0
  case X86::BI__builtin_ia32_mulsd_round_mask:
6481
0
  case X86::BI__builtin_ia32_subsh_round_mask:
6482
0
  case X86::BI__builtin_ia32_subss_round_mask:
6483
0
  case X86::BI__builtin_ia32_subsd_round_mask:
6484
0
  case X86::BI__builtin_ia32_scalefph512_mask:
6485
0
  case X86::BI__builtin_ia32_scalefpd512_mask:
6486
0
  case X86::BI__builtin_ia32_scalefps512_mask:
6487
0
  case X86::BI__builtin_ia32_scalefsd_round_mask:
6488
0
  case X86::BI__builtin_ia32_scalefss_round_mask:
6489
0
  case X86::BI__builtin_ia32_scalefsh_round_mask:
6490
0
  case X86::BI__builtin_ia32_cvtsd2ss_round_mask:
6491
0
  case X86::BI__builtin_ia32_vcvtss2sh_round_mask:
6492
0
  case X86::BI__builtin_ia32_vcvtsd2sh_round_mask:
6493
0
  case X86::BI__builtin_ia32_sqrtsd_round_mask:
6494
0
  case X86::BI__builtin_ia32_sqrtss_round_mask:
6495
0
  case X86::BI__builtin_ia32_sqrtsh_round_mask:
6496
0
  case X86::BI__builtin_ia32_vfmaddsd3_mask:
6497
0
  case X86::BI__builtin_ia32_vfmaddsd3_maskz:
6498
0
  case X86::BI__builtin_ia32_vfmaddsd3_mask3:
6499
0
  case X86::BI__builtin_ia32_vfmaddss3_mask:
6500
0
  case X86::BI__builtin_ia32_vfmaddss3_maskz:
6501
0
  case X86::BI__builtin_ia32_vfmaddss3_mask3:
6502
0
  case X86::BI__builtin_ia32_vfmaddsh3_mask:
6503
0
  case X86::BI__builtin_ia32_vfmaddsh3_maskz:
6504
0
  case X86::BI__builtin_ia32_vfmaddsh3_mask3:
6505
0
  case X86::BI__builtin_ia32_vfmaddpd512_mask:
6506
0
  case X86::BI__builtin_ia32_vfmaddpd512_maskz:
6507
0
  case X86::BI__builtin_ia32_vfmaddpd512_mask3:
6508
0
  case X86::BI__builtin_ia32_vfmsubpd512_mask3:
6509
0
  case X86::BI__builtin_ia32_vfmaddps512_mask:
6510
0
  case X86::BI__builtin_ia32_vfmaddps512_maskz:
6511
0
  case X86::BI__builtin_ia32_vfmaddps512_mask3:
6512
0
  case X86::BI__builtin_ia32_vfmsubps512_mask3:
6513
0
  case X86::BI__builtin_ia32_vfmaddph512_mask:
6514
0
  case X86::BI__builtin_ia32_vfmaddph512_maskz:
6515
0
  case X86::BI__builtin_ia32_vfmaddph512_mask3:
6516
0
  case X86::BI__builtin_ia32_vfmsubph512_mask3:
6517
0
  case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
6518
0
  case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
6519
0
  case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
6520
0
  case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
6521
0
  case X86::BI__builtin_ia32_vfmaddsubps512_mask:
6522
0
  case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
6523
0
  case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
6524
0
  case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
6525
0
  case X86::BI__builtin_ia32_vfmaddsubph512_mask:
6526
0
  case X86::BI__builtin_ia32_vfmaddsubph512_maskz:
6527
0
  case X86::BI__builtin_ia32_vfmaddsubph512_mask3:
6528
0
  case X86::BI__builtin_ia32_vfmsubaddph512_mask3:
6529
0
  case X86::BI__builtin_ia32_vfmaddcsh_mask:
6530
0
  case X86::BI__builtin_ia32_vfmaddcsh_round_mask:
6531
0
  case X86::BI__builtin_ia32_vfmaddcsh_round_mask3:
6532
0
  case X86::BI__builtin_ia32_vfmaddcph512_mask:
6533
0
  case X86::BI__builtin_ia32_vfmaddcph512_maskz:
6534
0
  case X86::BI__builtin_ia32_vfmaddcph512_mask3:
6535
0
  case X86::BI__builtin_ia32_vfcmaddcsh_mask:
6536
0
  case X86::BI__builtin_ia32_vfcmaddcsh_round_mask:
6537
0
  case X86::BI__builtin_ia32_vfcmaddcsh_round_mask3:
6538
0
  case X86::BI__builtin_ia32_vfcmaddcph512_mask:
6539
0
  case X86::BI__builtin_ia32_vfcmaddcph512_maskz:
6540
0
  case X86::BI__builtin_ia32_vfcmaddcph512_mask3:
6541
0
  case X86::BI__builtin_ia32_vfmulcsh_mask:
6542
0
  case X86::BI__builtin_ia32_vfmulcph512_mask:
6543
0
  case X86::BI__builtin_ia32_vfcmulcsh_mask:
6544
0
  case X86::BI__builtin_ia32_vfcmulcph512_mask:
6545
0
    ArgNum = 4;
6546
0
    HasRC = true;
6547
0
    break;
6548
0
  }
6549
6550
0
  llvm::APSInt Result;
6551
6552
  // We can't check the value of a dependent argument.
6553
0
  Expr *Arg = TheCall->getArg(ArgNum);
6554
0
  if (Arg->isTypeDependent() || Arg->isValueDependent())
6555
0
    return false;
6556
6557
  // Check constant-ness first.
6558
0
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6559
0
    return true;
6560
6561
  // Make sure rounding mode is either ROUND_CUR_DIRECTION or ROUND_NO_EXC bit
6562
  // is set. If the intrinsic has rounding control(bits 1:0), make sure its only
6563
  // combined with ROUND_NO_EXC. If the intrinsic does not have rounding
6564
  // control, allow ROUND_NO_EXC and ROUND_CUR_DIRECTION together.
6565
0
  if (Result == 4/*ROUND_CUR_DIRECTION*/ ||
6566
0
      Result == 8/*ROUND_NO_EXC*/ ||
6567
0
      (!HasRC && Result == 12/*ROUND_CUR_DIRECTION|ROUND_NO_EXC*/) ||
6568
0
      (HasRC && Result.getZExtValue() >= 8 && Result.getZExtValue() <= 11))
6569
0
    return false;
6570
6571
0
  return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_rounding)
6572
0
         << Arg->getSourceRange();
6573
0
}
6574
6575
// Check if the gather/scatter scale is legal.
6576
bool Sema::CheckX86BuiltinGatherScatterScale(unsigned BuiltinID,
6577
0
                                             CallExpr *TheCall) {
6578
0
  unsigned ArgNum = 0;
6579
0
  switch (BuiltinID) {
6580
0
  default:
6581
0
    return false;
6582
0
  case X86::BI__builtin_ia32_gatherpfdpd:
6583
0
  case X86::BI__builtin_ia32_gatherpfdps:
6584
0
  case X86::BI__builtin_ia32_gatherpfqpd:
6585
0
  case X86::BI__builtin_ia32_gatherpfqps:
6586
0
  case X86::BI__builtin_ia32_scatterpfdpd:
6587
0
  case X86::BI__builtin_ia32_scatterpfdps:
6588
0
  case X86::BI__builtin_ia32_scatterpfqpd:
6589
0
  case X86::BI__builtin_ia32_scatterpfqps:
6590
0
    ArgNum = 3;
6591
0
    break;
6592
0
  case X86::BI__builtin_ia32_gatherd_pd:
6593
0
  case X86::BI__builtin_ia32_gatherd_pd256:
6594
0
  case X86::BI__builtin_ia32_gatherq_pd:
6595
0
  case X86::BI__builtin_ia32_gatherq_pd256:
6596
0
  case X86::BI__builtin_ia32_gatherd_ps:
6597
0
  case X86::BI__builtin_ia32_gatherd_ps256:
6598
0
  case X86::BI__builtin_ia32_gatherq_ps:
6599
0
  case X86::BI__builtin_ia32_gatherq_ps256:
6600
0
  case X86::BI__builtin_ia32_gatherd_q:
6601
0
  case X86::BI__builtin_ia32_gatherd_q256:
6602
0
  case X86::BI__builtin_ia32_gatherq_q:
6603
0
  case X86::BI__builtin_ia32_gatherq_q256:
6604
0
  case X86::BI__builtin_ia32_gatherd_d:
6605
0
  case X86::BI__builtin_ia32_gatherd_d256:
6606
0
  case X86::BI__builtin_ia32_gatherq_d:
6607
0
  case X86::BI__builtin_ia32_gatherq_d256:
6608
0
  case X86::BI__builtin_ia32_gather3div2df:
6609
0
  case X86::BI__builtin_ia32_gather3div2di:
6610
0
  case X86::BI__builtin_ia32_gather3div4df:
6611
0
  case X86::BI__builtin_ia32_gather3div4di:
6612
0
  case X86::BI__builtin_ia32_gather3div4sf:
6613
0
  case X86::BI__builtin_ia32_gather3div4si:
6614
0
  case X86::BI__builtin_ia32_gather3div8sf:
6615
0
  case X86::BI__builtin_ia32_gather3div8si:
6616
0
  case X86::BI__builtin_ia32_gather3siv2df:
6617
0
  case X86::BI__builtin_ia32_gather3siv2di:
6618
0
  case X86::BI__builtin_ia32_gather3siv4df:
6619
0
  case X86::BI__builtin_ia32_gather3siv4di:
6620
0
  case X86::BI__builtin_ia32_gather3siv4sf:
6621
0
  case X86::BI__builtin_ia32_gather3siv4si:
6622
0
  case X86::BI__builtin_ia32_gather3siv8sf:
6623
0
  case X86::BI__builtin_ia32_gather3siv8si:
6624
0
  case X86::BI__builtin_ia32_gathersiv8df:
6625
0
  case X86::BI__builtin_ia32_gathersiv16sf:
6626
0
  case X86::BI__builtin_ia32_gatherdiv8df:
6627
0
  case X86::BI__builtin_ia32_gatherdiv16sf:
6628
0
  case X86::BI__builtin_ia32_gathersiv8di:
6629
0
  case X86::BI__builtin_ia32_gathersiv16si:
6630
0
  case X86::BI__builtin_ia32_gatherdiv8di:
6631
0
  case X86::BI__builtin_ia32_gatherdiv16si:
6632
0
  case X86::BI__builtin_ia32_scatterdiv2df:
6633
0
  case X86::BI__builtin_ia32_scatterdiv2di:
6634
0
  case X86::BI__builtin_ia32_scatterdiv4df:
6635
0
  case X86::BI__builtin_ia32_scatterdiv4di:
6636
0
  case X86::BI__builtin_ia32_scatterdiv4sf:
6637
0
  case X86::BI__builtin_ia32_scatterdiv4si:
6638
0
  case X86::BI__builtin_ia32_scatterdiv8sf:
6639
0
  case X86::BI__builtin_ia32_scatterdiv8si:
6640
0
  case X86::BI__builtin_ia32_scattersiv2df:
6641
0
  case X86::BI__builtin_ia32_scattersiv2di:
6642
0
  case X86::BI__builtin_ia32_scattersiv4df:
6643
0
  case X86::BI__builtin_ia32_scattersiv4di:
6644
0
  case X86::BI__builtin_ia32_scattersiv4sf:
6645
0
  case X86::BI__builtin_ia32_scattersiv4si:
6646
0
  case X86::BI__builtin_ia32_scattersiv8sf:
6647
0
  case X86::BI__builtin_ia32_scattersiv8si:
6648
0
  case X86::BI__builtin_ia32_scattersiv8df:
6649
0
  case X86::BI__builtin_ia32_scattersiv16sf:
6650
0
  case X86::BI__builtin_ia32_scatterdiv8df:
6651
0
  case X86::BI__builtin_ia32_scatterdiv16sf:
6652
0
  case X86::BI__builtin_ia32_scattersiv8di:
6653
0
  case X86::BI__builtin_ia32_scattersiv16si:
6654
0
  case X86::BI__builtin_ia32_scatterdiv8di:
6655
0
  case X86::BI__builtin_ia32_scatterdiv16si:
6656
0
    ArgNum = 4;
6657
0
    break;
6658
0
  }
6659
6660
0
  llvm::APSInt Result;
6661
6662
  // We can't check the value of a dependent argument.
6663
0
  Expr *Arg = TheCall->getArg(ArgNum);
6664
0
  if (Arg->isTypeDependent() || Arg->isValueDependent())
6665
0
    return false;
6666
6667
  // Check constant-ness first.
6668
0
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6669
0
    return true;
6670
6671
0
  if (Result == 1 || Result == 2 || Result == 4 || Result == 8)
6672
0
    return false;
6673
6674
0
  return Diag(TheCall->getBeginLoc(), diag::err_x86_builtin_invalid_scale)
6675
0
         << Arg->getSourceRange();
6676
0
}
6677
6678
enum { TileRegLow = 0, TileRegHigh = 7 };
6679
6680
bool Sema::CheckX86BuiltinTileArgumentsRange(CallExpr *TheCall,
6681
0
                                             ArrayRef<int> ArgNums) {
6682
0
  for (int ArgNum : ArgNums) {
6683
0
    if (SemaBuiltinConstantArgRange(TheCall, ArgNum, TileRegLow, TileRegHigh))
6684
0
      return true;
6685
0
  }
6686
0
  return false;
6687
0
}
6688
6689
bool Sema::CheckX86BuiltinTileDuplicate(CallExpr *TheCall,
6690
0
                                        ArrayRef<int> ArgNums) {
6691
  // Because the max number of tile register is TileRegHigh + 1, so here we use
6692
  // each bit to represent the usage of them in bitset.
6693
0
  std::bitset<TileRegHigh + 1> ArgValues;
6694
0
  for (int ArgNum : ArgNums) {
6695
0
    Expr *Arg = TheCall->getArg(ArgNum);
6696
0
    if (Arg->isTypeDependent() || Arg->isValueDependent())
6697
0
      continue;
6698
6699
0
    llvm::APSInt Result;
6700
0
    if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
6701
0
      return true;
6702
0
    int ArgExtValue = Result.getExtValue();
6703
0
    assert((ArgExtValue >= TileRegLow && ArgExtValue <= TileRegHigh) &&
6704
0
           "Incorrect tile register num.");
6705
0
    if (ArgValues.test(ArgExtValue))
6706
0
      return Diag(TheCall->getBeginLoc(),
6707
0
                  diag::err_x86_builtin_tile_arg_duplicate)
6708
0
             << TheCall->getArg(ArgNum)->getSourceRange();
6709
0
    ArgValues.set(ArgExtValue);
6710
0
  }
6711
0
  return false;
6712
0
}
6713
6714
bool Sema::CheckX86BuiltinTileRangeAndDuplicate(CallExpr *TheCall,
6715
0
                                                ArrayRef<int> ArgNums) {
6716
0
  return CheckX86BuiltinTileArgumentsRange(TheCall, ArgNums) ||
6717
0
         CheckX86BuiltinTileDuplicate(TheCall, ArgNums);
6718
0
}
6719
6720
0
bool Sema::CheckX86BuiltinTileArguments(unsigned BuiltinID, CallExpr *TheCall) {
6721
0
  switch (BuiltinID) {
6722
0
  default:
6723
0
    return false;
6724
0
  case X86::BI__builtin_ia32_tileloadd64:
6725
0
  case X86::BI__builtin_ia32_tileloaddt164:
6726
0
  case X86::BI__builtin_ia32_tilestored64:
6727
0
  case X86::BI__builtin_ia32_tilezero:
6728
0
    return CheckX86BuiltinTileArgumentsRange(TheCall, 0);
6729
0
  case X86::BI__builtin_ia32_tdpbssd:
6730
0
  case X86::BI__builtin_ia32_tdpbsud:
6731
0
  case X86::BI__builtin_ia32_tdpbusd:
6732
0
  case X86::BI__builtin_ia32_tdpbuud:
6733
0
  case X86::BI__builtin_ia32_tdpbf16ps:
6734
0
  case X86::BI__builtin_ia32_tdpfp16ps:
6735
0
  case X86::BI__builtin_ia32_tcmmimfp16ps:
6736
0
  case X86::BI__builtin_ia32_tcmmrlfp16ps:
6737
0
    return CheckX86BuiltinTileRangeAndDuplicate(TheCall, {0, 1, 2});
6738
0
  }
6739
0
}
6740
0
static bool isX86_32Builtin(unsigned BuiltinID) {
6741
  // These builtins only work on x86-32 targets.
6742
0
  switch (BuiltinID) {
6743
0
  case X86::BI__builtin_ia32_readeflags_u32:
6744
0
  case X86::BI__builtin_ia32_writeeflags_u32:
6745
0
    return true;
6746
0
  }
6747
6748
0
  return false;
6749
0
}
6750
6751
bool Sema::CheckX86BuiltinFunctionCall(const TargetInfo &TI, unsigned BuiltinID,
6752
0
                                       CallExpr *TheCall) {
6753
0
  if (BuiltinID == X86::BI__builtin_cpu_supports)
6754
0
    return SemaBuiltinCpuSupports(*this, TI, TheCall);
6755
6756
0
  if (BuiltinID == X86::BI__builtin_cpu_is)
6757
0
    return SemaBuiltinCpuIs(*this, TI, TheCall);
6758
6759
  // Check for 32-bit only builtins on a 64-bit target.
6760
0
  const llvm::Triple &TT = TI.getTriple();
6761
0
  if (TT.getArch() != llvm::Triple::x86 && isX86_32Builtin(BuiltinID))
6762
0
    return Diag(TheCall->getCallee()->getBeginLoc(),
6763
0
                diag::err_32_bit_builtin_64_bit_tgt);
6764
6765
  // If the intrinsic has rounding or SAE make sure its valid.
6766
0
  if (CheckX86BuiltinRoundingOrSAE(BuiltinID, TheCall))
6767
0
    return true;
6768
6769
  // If the intrinsic has a gather/scatter scale immediate make sure its valid.
6770
0
  if (CheckX86BuiltinGatherScatterScale(BuiltinID, TheCall))
6771
0
    return true;
6772
6773
  // If the intrinsic has a tile arguments, make sure they are valid.
6774
0
  if (CheckX86BuiltinTileArguments(BuiltinID, TheCall))
6775
0
    return true;
6776
6777
  // For intrinsics which take an immediate value as part of the instruction,
6778
  // range check them here.
6779
0
  int i = 0, l = 0, u = 0;
6780
0
  switch (BuiltinID) {
6781
0
  default:
6782
0
    return false;
6783
0
  case X86::BI__builtin_ia32_vec_ext_v2si:
6784
0
  case X86::BI__builtin_ia32_vec_ext_v2di:
6785
0
  case X86::BI__builtin_ia32_vextractf128_pd256:
6786
0
  case X86::BI__builtin_ia32_vextractf128_ps256:
6787
0
  case X86::BI__builtin_ia32_vextractf128_si256:
6788
0
  case X86::BI__builtin_ia32_extract128i256:
6789
0
  case X86::BI__builtin_ia32_extractf64x4_mask:
6790
0
  case X86::BI__builtin_ia32_extracti64x4_mask:
6791
0
  case X86::BI__builtin_ia32_extractf32x8_mask:
6792
0
  case X86::BI__builtin_ia32_extracti32x8_mask:
6793
0
  case X86::BI__builtin_ia32_extractf64x2_256_mask:
6794
0
  case X86::BI__builtin_ia32_extracti64x2_256_mask:
6795
0
  case X86::BI__builtin_ia32_extractf32x4_256_mask:
6796
0
  case X86::BI__builtin_ia32_extracti32x4_256_mask:
6797
0
    i = 1; l = 0; u = 1;
6798
0
    break;
6799
0
  case X86::BI__builtin_ia32_vec_set_v2di:
6800
0
  case X86::BI__builtin_ia32_vinsertf128_pd256:
6801
0
  case X86::BI__builtin_ia32_vinsertf128_ps256:
6802
0
  case X86::BI__builtin_ia32_vinsertf128_si256:
6803
0
  case X86::BI__builtin_ia32_insert128i256:
6804
0
  case X86::BI__builtin_ia32_insertf32x8:
6805
0
  case X86::BI__builtin_ia32_inserti32x8:
6806
0
  case X86::BI__builtin_ia32_insertf64x4:
6807
0
  case X86::BI__builtin_ia32_inserti64x4:
6808
0
  case X86::BI__builtin_ia32_insertf64x2_256:
6809
0
  case X86::BI__builtin_ia32_inserti64x2_256:
6810
0
  case X86::BI__builtin_ia32_insertf32x4_256:
6811
0
  case X86::BI__builtin_ia32_inserti32x4_256:
6812
0
    i = 2; l = 0; u = 1;
6813
0
    break;
6814
0
  case X86::BI__builtin_ia32_vpermilpd:
6815
0
  case X86::BI__builtin_ia32_vec_ext_v4hi:
6816
0
  case X86::BI__builtin_ia32_vec_ext_v4si:
6817
0
  case X86::BI__builtin_ia32_vec_ext_v4sf:
6818
0
  case X86::BI__builtin_ia32_vec_ext_v4di:
6819
0
  case X86::BI__builtin_ia32_extractf32x4_mask:
6820
0
  case X86::BI__builtin_ia32_extracti32x4_mask:
6821
0
  case X86::BI__builtin_ia32_extractf64x2_512_mask:
6822
0
  case X86::BI__builtin_ia32_extracti64x2_512_mask:
6823
0
    i = 1; l = 0; u = 3;
6824
0
    break;
6825
0
  case X86::BI_mm_prefetch:
6826
0
  case X86::BI__builtin_ia32_vec_ext_v8hi:
6827
0
  case X86::BI__builtin_ia32_vec_ext_v8si:
6828
0
    i = 1; l = 0; u = 7;
6829
0
    break;
6830
0
  case X86::BI__builtin_ia32_sha1rnds4:
6831
0
  case X86::BI__builtin_ia32_blendpd:
6832
0
  case X86::BI__builtin_ia32_shufpd:
6833
0
  case X86::BI__builtin_ia32_vec_set_v4hi:
6834
0
  case X86::BI__builtin_ia32_vec_set_v4si:
6835
0
  case X86::BI__builtin_ia32_vec_set_v4di:
6836
0
  case X86::BI__builtin_ia32_shuf_f32x4_256:
6837
0
  case X86::BI__builtin_ia32_shuf_f64x2_256:
6838
0
  case X86::BI__builtin_ia32_shuf_i32x4_256:
6839
0
  case X86::BI__builtin_ia32_shuf_i64x2_256:
6840
0
  case X86::BI__builtin_ia32_insertf64x2_512:
6841
0
  case X86::BI__builtin_ia32_inserti64x2_512:
6842
0
  case X86::BI__builtin_ia32_insertf32x4:
6843
0
  case X86::BI__builtin_ia32_inserti32x4:
6844
0
    i = 2; l = 0; u = 3;
6845
0
    break;
6846
0
  case X86::BI__builtin_ia32_vpermil2pd:
6847
0
  case X86::BI__builtin_ia32_vpermil2pd256:
6848
0
  case X86::BI__builtin_ia32_vpermil2ps:
6849
0
  case X86::BI__builtin_ia32_vpermil2ps256:
6850
0
    i = 3; l = 0; u = 3;
6851
0
    break;
6852
0
  case X86::BI__builtin_ia32_cmpb128_mask:
6853
0
  case X86::BI__builtin_ia32_cmpw128_mask:
6854
0
  case X86::BI__builtin_ia32_cmpd128_mask:
6855
0
  case X86::BI__builtin_ia32_cmpq128_mask:
6856
0
  case X86::BI__builtin_ia32_cmpb256_mask:
6857
0
  case X86::BI__builtin_ia32_cmpw256_mask:
6858
0
  case X86::BI__builtin_ia32_cmpd256_mask:
6859
0
  case X86::BI__builtin_ia32_cmpq256_mask:
6860
0
  case X86::BI__builtin_ia32_cmpb512_mask:
6861
0
  case X86::BI__builtin_ia32_cmpw512_mask:
6862
0
  case X86::BI__builtin_ia32_cmpd512_mask:
6863
0
  case X86::BI__builtin_ia32_cmpq512_mask:
6864
0
  case X86::BI__builtin_ia32_ucmpb128_mask:
6865
0
  case X86::BI__builtin_ia32_ucmpw128_mask:
6866
0
  case X86::BI__builtin_ia32_ucmpd128_mask:
6867
0
  case X86::BI__builtin_ia32_ucmpq128_mask:
6868
0
  case X86::BI__builtin_ia32_ucmpb256_mask:
6869
0
  case X86::BI__builtin_ia32_ucmpw256_mask:
6870
0
  case X86::BI__builtin_ia32_ucmpd256_mask:
6871
0
  case X86::BI__builtin_ia32_ucmpq256_mask:
6872
0
  case X86::BI__builtin_ia32_ucmpb512_mask:
6873
0
  case X86::BI__builtin_ia32_ucmpw512_mask:
6874
0
  case X86::BI__builtin_ia32_ucmpd512_mask:
6875
0
  case X86::BI__builtin_ia32_ucmpq512_mask:
6876
0
  case X86::BI__builtin_ia32_vpcomub:
6877
0
  case X86::BI__builtin_ia32_vpcomuw:
6878
0
  case X86::BI__builtin_ia32_vpcomud:
6879
0
  case X86::BI__builtin_ia32_vpcomuq:
6880
0
  case X86::BI__builtin_ia32_vpcomb:
6881
0
  case X86::BI__builtin_ia32_vpcomw:
6882
0
  case X86::BI__builtin_ia32_vpcomd:
6883
0
  case X86::BI__builtin_ia32_vpcomq:
6884
0
  case X86::BI__builtin_ia32_vec_set_v8hi:
6885
0
  case X86::BI__builtin_ia32_vec_set_v8si:
6886
0
    i = 2; l = 0; u = 7;
6887
0
    break;
6888
0
  case X86::BI__builtin_ia32_vpermilpd256:
6889
0
  case X86::BI__builtin_ia32_roundps:
6890
0
  case X86::BI__builtin_ia32_roundpd:
6891
0
  case X86::BI__builtin_ia32_roundps256:
6892
0
  case X86::BI__builtin_ia32_roundpd256:
6893
0
  case X86::BI__builtin_ia32_getmantpd128_mask:
6894
0
  case X86::BI__builtin_ia32_getmantpd256_mask:
6895
0
  case X86::BI__builtin_ia32_getmantps128_mask:
6896
0
  case X86::BI__builtin_ia32_getmantps256_mask:
6897
0
  case X86::BI__builtin_ia32_getmantpd512_mask:
6898
0
  case X86::BI__builtin_ia32_getmantps512_mask:
6899
0
  case X86::BI__builtin_ia32_getmantph128_mask:
6900
0
  case X86::BI__builtin_ia32_getmantph256_mask:
6901
0
  case X86::BI__builtin_ia32_getmantph512_mask:
6902
0
  case X86::BI__builtin_ia32_vec_ext_v16qi:
6903
0
  case X86::BI__builtin_ia32_vec_ext_v16hi:
6904
0
    i = 1; l = 0; u = 15;
6905
0
    break;
6906
0
  case X86::BI__builtin_ia32_pblendd128:
6907
0
  case X86::BI__builtin_ia32_blendps:
6908
0
  case X86::BI__builtin_ia32_blendpd256:
6909
0
  case X86::BI__builtin_ia32_shufpd256:
6910
0
  case X86::BI__builtin_ia32_roundss:
6911
0
  case X86::BI__builtin_ia32_roundsd:
6912
0
  case X86::BI__builtin_ia32_rangepd128_mask:
6913
0
  case X86::BI__builtin_ia32_rangepd256_mask:
6914
0
  case X86::BI__builtin_ia32_rangepd512_mask:
6915
0
  case X86::BI__builtin_ia32_rangeps128_mask:
6916
0
  case X86::BI__builtin_ia32_rangeps256_mask:
6917
0
  case X86::BI__builtin_ia32_rangeps512_mask:
6918
0
  case X86::BI__builtin_ia32_getmantsd_round_mask:
6919
0
  case X86::BI__builtin_ia32_getmantss_round_mask:
6920
0
  case X86::BI__builtin_ia32_getmantsh_round_mask:
6921
0
  case X86::BI__builtin_ia32_vec_set_v16qi:
6922
0
  case X86::BI__builtin_ia32_vec_set_v16hi:
6923
0
    i = 2; l = 0; u = 15;
6924
0
    break;
6925
0
  case X86::BI__builtin_ia32_vec_ext_v32qi:
6926
0
    i = 1; l = 0; u = 31;
6927
0
    break;
6928
0
  case X86::BI__builtin_ia32_cmpps:
6929
0
  case X86::BI__builtin_ia32_cmpss:
6930
0
  case X86::BI__builtin_ia32_cmppd:
6931
0
  case X86::BI__builtin_ia32_cmpsd:
6932
0
  case X86::BI__builtin_ia32_cmpps256:
6933
0
  case X86::BI__builtin_ia32_cmppd256:
6934
0
  case X86::BI__builtin_ia32_cmpps128_mask:
6935
0
  case X86::BI__builtin_ia32_cmppd128_mask:
6936
0
  case X86::BI__builtin_ia32_cmpps256_mask:
6937
0
  case X86::BI__builtin_ia32_cmppd256_mask:
6938
0
  case X86::BI__builtin_ia32_cmpps512_mask:
6939
0
  case X86::BI__builtin_ia32_cmppd512_mask:
6940
0
  case X86::BI__builtin_ia32_cmpsd_mask:
6941
0
  case X86::BI__builtin_ia32_cmpss_mask:
6942
0
  case X86::BI__builtin_ia32_vec_set_v32qi:
6943
0
    i = 2; l = 0; u = 31;
6944
0
    break;
6945
0
  case X86::BI__builtin_ia32_permdf256:
6946
0
  case X86::BI__builtin_ia32_permdi256:
6947
0
  case X86::BI__builtin_ia32_permdf512:
6948
0
  case X86::BI__builtin_ia32_permdi512:
6949
0
  case X86::BI__builtin_ia32_vpermilps:
6950
0
  case X86::BI__builtin_ia32_vpermilps256:
6951
0
  case X86::BI__builtin_ia32_vpermilpd512:
6952
0
  case X86::BI__builtin_ia32_vpermilps512:
6953
0
  case X86::BI__builtin_ia32_pshufd:
6954
0
  case X86::BI__builtin_ia32_pshufd256:
6955
0
  case X86::BI__builtin_ia32_pshufd512:
6956
0
  case X86::BI__builtin_ia32_pshufhw:
6957
0
  case X86::BI__builtin_ia32_pshufhw256:
6958
0
  case X86::BI__builtin_ia32_pshufhw512:
6959
0
  case X86::BI__builtin_ia32_pshuflw:
6960
0
  case X86::BI__builtin_ia32_pshuflw256:
6961
0
  case X86::BI__builtin_ia32_pshuflw512:
6962
0
  case X86::BI__builtin_ia32_vcvtps2ph:
6963
0
  case X86::BI__builtin_ia32_vcvtps2ph_mask:
6964
0
  case X86::BI__builtin_ia32_vcvtps2ph256:
6965
0
  case X86::BI__builtin_ia32_vcvtps2ph256_mask:
6966
0
  case X86::BI__builtin_ia32_vcvtps2ph512_mask:
6967
0
  case X86::BI__builtin_ia32_rndscaleps_128_mask:
6968
0
  case X86::BI__builtin_ia32_rndscalepd_128_mask:
6969
0
  case X86::BI__builtin_ia32_rndscaleps_256_mask:
6970
0
  case X86::BI__builtin_ia32_rndscalepd_256_mask:
6971
0
  case X86::BI__builtin_ia32_rndscaleps_mask:
6972
0
  case X86::BI__builtin_ia32_rndscalepd_mask:
6973
0
  case X86::BI__builtin_ia32_rndscaleph_mask:
6974
0
  case X86::BI__builtin_ia32_reducepd128_mask:
6975
0
  case X86::BI__builtin_ia32_reducepd256_mask:
6976
0
  case X86::BI__builtin_ia32_reducepd512_mask:
6977
0
  case X86::BI__builtin_ia32_reduceps128_mask:
6978
0
  case X86::BI__builtin_ia32_reduceps256_mask:
6979
0
  case X86::BI__builtin_ia32_reduceps512_mask:
6980
0
  case X86::BI__builtin_ia32_reduceph128_mask:
6981
0
  case X86::BI__builtin_ia32_reduceph256_mask:
6982
0
  case X86::BI__builtin_ia32_reduceph512_mask:
6983
0
  case X86::BI__builtin_ia32_prold512:
6984
0
  case X86::BI__builtin_ia32_prolq512:
6985
0
  case X86::BI__builtin_ia32_prold128:
6986
0
  case X86::BI__builtin_ia32_prold256:
6987
0
  case X86::BI__builtin_ia32_prolq128:
6988
0
  case X86::BI__builtin_ia32_prolq256:
6989
0
  case X86::BI__builtin_ia32_prord512:
6990
0
  case X86::BI__builtin_ia32_prorq512:
6991
0
  case X86::BI__builtin_ia32_prord128:
6992
0
  case X86::BI__builtin_ia32_prord256:
6993
0
  case X86::BI__builtin_ia32_prorq128:
6994
0
  case X86::BI__builtin_ia32_prorq256:
6995
0
  case X86::BI__builtin_ia32_fpclasspd128_mask:
6996
0
  case X86::BI__builtin_ia32_fpclasspd256_mask:
6997
0
  case X86::BI__builtin_ia32_fpclassps128_mask:
6998
0
  case X86::BI__builtin_ia32_fpclassps256_mask:
6999
0
  case X86::BI__builtin_ia32_fpclassps512_mask:
7000
0
  case X86::BI__builtin_ia32_fpclasspd512_mask:
7001
0
  case X86::BI__builtin_ia32_fpclassph128_mask:
7002
0
  case X86::BI__builtin_ia32_fpclassph256_mask:
7003
0
  case X86::BI__builtin_ia32_fpclassph512_mask:
7004
0
  case X86::BI__builtin_ia32_fpclasssd_mask:
7005
0
  case X86::BI__builtin_ia32_fpclassss_mask:
7006
0
  case X86::BI__builtin_ia32_fpclasssh_mask:
7007
0
  case X86::BI__builtin_ia32_pslldqi128_byteshift:
7008
0
  case X86::BI__builtin_ia32_pslldqi256_byteshift:
7009
0
  case X86::BI__builtin_ia32_pslldqi512_byteshift:
7010
0
  case X86::BI__builtin_ia32_psrldqi128_byteshift:
7011
0
  case X86::BI__builtin_ia32_psrldqi256_byteshift:
7012
0
  case X86::BI__builtin_ia32_psrldqi512_byteshift:
7013
0
  case X86::BI__builtin_ia32_kshiftliqi:
7014
0
  case X86::BI__builtin_ia32_kshiftlihi:
7015
0
  case X86::BI__builtin_ia32_kshiftlisi:
7016
0
  case X86::BI__builtin_ia32_kshiftlidi:
7017
0
  case X86::BI__builtin_ia32_kshiftriqi:
7018
0
  case X86::BI__builtin_ia32_kshiftrihi:
7019
0
  case X86::BI__builtin_ia32_kshiftrisi:
7020
0
  case X86::BI__builtin_ia32_kshiftridi:
7021
0
    i = 1; l = 0; u = 255;
7022
0
    break;
7023
0
  case X86::BI__builtin_ia32_vperm2f128_pd256:
7024
0
  case X86::BI__builtin_ia32_vperm2f128_ps256:
7025
0
  case X86::BI__builtin_ia32_vperm2f128_si256:
7026
0
  case X86::BI__builtin_ia32_permti256:
7027
0
  case X86::BI__builtin_ia32_pblendw128:
7028
0
  case X86::BI__builtin_ia32_pblendw256:
7029
0
  case X86::BI__builtin_ia32_blendps256:
7030
0
  case X86::BI__builtin_ia32_pblendd256:
7031
0
  case X86::BI__builtin_ia32_palignr128:
7032
0
  case X86::BI__builtin_ia32_palignr256:
7033
0
  case X86::BI__builtin_ia32_palignr512:
7034
0
  case X86::BI__builtin_ia32_alignq512:
7035
0
  case X86::BI__builtin_ia32_alignd512:
7036
0
  case X86::BI__builtin_ia32_alignd128:
7037
0
  case X86::BI__builtin_ia32_alignd256:
7038
0
  case X86::BI__builtin_ia32_alignq128:
7039
0
  case X86::BI__builtin_ia32_alignq256:
7040
0
  case X86::BI__builtin_ia32_vcomisd:
7041
0
  case X86::BI__builtin_ia32_vcomiss:
7042
0
  case X86::BI__builtin_ia32_shuf_f32x4:
7043
0
  case X86::BI__builtin_ia32_shuf_f64x2:
7044
0
  case X86::BI__builtin_ia32_shuf_i32x4:
7045
0
  case X86::BI__builtin_ia32_shuf_i64x2:
7046
0
  case X86::BI__builtin_ia32_shufpd512:
7047
0
  case X86::BI__builtin_ia32_shufps:
7048
0
  case X86::BI__builtin_ia32_shufps256:
7049
0
  case X86::BI__builtin_ia32_shufps512:
7050
0
  case X86::BI__builtin_ia32_dbpsadbw128:
7051
0
  case X86::BI__builtin_ia32_dbpsadbw256:
7052
0
  case X86::BI__builtin_ia32_dbpsadbw512:
7053
0
  case X86::BI__builtin_ia32_vpshldd128:
7054
0
  case X86::BI__builtin_ia32_vpshldd256:
7055
0
  case X86::BI__builtin_ia32_vpshldd512:
7056
0
  case X86::BI__builtin_ia32_vpshldq128:
7057
0
  case X86::BI__builtin_ia32_vpshldq256:
7058
0
  case X86::BI__builtin_ia32_vpshldq512:
7059
0
  case X86::BI__builtin_ia32_vpshldw128:
7060
0
  case X86::BI__builtin_ia32_vpshldw256:
7061
0
  case X86::BI__builtin_ia32_vpshldw512:
7062
0
  case X86::BI__builtin_ia32_vpshrdd128:
7063
0
  case X86::BI__builtin_ia32_vpshrdd256:
7064
0
  case X86::BI__builtin_ia32_vpshrdd512:
7065
0
  case X86::BI__builtin_ia32_vpshrdq128:
7066
0
  case X86::BI__builtin_ia32_vpshrdq256:
7067
0
  case X86::BI__builtin_ia32_vpshrdq512:
7068
0
  case X86::BI__builtin_ia32_vpshrdw128:
7069
0
  case X86::BI__builtin_ia32_vpshrdw256:
7070
0
  case X86::BI__builtin_ia32_vpshrdw512:
7071
0
    i = 2; l = 0; u = 255;
7072
0
    break;
7073
0
  case X86::BI__builtin_ia32_fixupimmpd512_mask:
7074
0
  case X86::BI__builtin_ia32_fixupimmpd512_maskz:
7075
0
  case X86::BI__builtin_ia32_fixupimmps512_mask:
7076
0
  case X86::BI__builtin_ia32_fixupimmps512_maskz:
7077
0
  case X86::BI__builtin_ia32_fixupimmsd_mask:
7078
0
  case X86::BI__builtin_ia32_fixupimmsd_maskz:
7079
0
  case X86::BI__builtin_ia32_fixupimmss_mask:
7080
0
  case X86::BI__builtin_ia32_fixupimmss_maskz:
7081
0
  case X86::BI__builtin_ia32_fixupimmpd128_mask:
7082
0
  case X86::BI__builtin_ia32_fixupimmpd128_maskz:
7083
0
  case X86::BI__builtin_ia32_fixupimmpd256_mask:
7084
0
  case X86::BI__builtin_ia32_fixupimmpd256_maskz:
7085
0
  case X86::BI__builtin_ia32_fixupimmps128_mask:
7086
0
  case X86::BI__builtin_ia32_fixupimmps128_maskz:
7087
0
  case X86::BI__builtin_ia32_fixupimmps256_mask:
7088
0
  case X86::BI__builtin_ia32_fixupimmps256_maskz:
7089
0
  case X86::BI__builtin_ia32_pternlogd512_mask:
7090
0
  case X86::BI__builtin_ia32_pternlogd512_maskz:
7091
0
  case X86::BI__builtin_ia32_pternlogq512_mask:
7092
0
  case X86::BI__builtin_ia32_pternlogq512_maskz:
7093
0
  case X86::BI__builtin_ia32_pternlogd128_mask:
7094
0
  case X86::BI__builtin_ia32_pternlogd128_maskz:
7095
0
  case X86::BI__builtin_ia32_pternlogd256_mask:
7096
0
  case X86::BI__builtin_ia32_pternlogd256_maskz:
7097
0
  case X86::BI__builtin_ia32_pternlogq128_mask:
7098
0
  case X86::BI__builtin_ia32_pternlogq128_maskz:
7099
0
  case X86::BI__builtin_ia32_pternlogq256_mask:
7100
0
  case X86::BI__builtin_ia32_pternlogq256_maskz:
7101
0
  case X86::BI__builtin_ia32_vsm3rnds2:
7102
0
    i = 3; l = 0; u = 255;
7103
0
    break;
7104
0
  case X86::BI__builtin_ia32_gatherpfdpd:
7105
0
  case X86::BI__builtin_ia32_gatherpfdps:
7106
0
  case X86::BI__builtin_ia32_gatherpfqpd:
7107
0
  case X86::BI__builtin_ia32_gatherpfqps:
7108
0
  case X86::BI__builtin_ia32_scatterpfdpd:
7109
0
  case X86::BI__builtin_ia32_scatterpfdps:
7110
0
  case X86::BI__builtin_ia32_scatterpfqpd:
7111
0
  case X86::BI__builtin_ia32_scatterpfqps:
7112
0
    i = 4; l = 2; u = 3;
7113
0
    break;
7114
0
  case X86::BI__builtin_ia32_reducesd_mask:
7115
0
  case X86::BI__builtin_ia32_reducess_mask:
7116
0
  case X86::BI__builtin_ia32_rndscalesd_round_mask:
7117
0
  case X86::BI__builtin_ia32_rndscaless_round_mask:
7118
0
  case X86::BI__builtin_ia32_rndscalesh_round_mask:
7119
0
  case X86::BI__builtin_ia32_reducesh_mask:
7120
0
    i = 4; l = 0; u = 255;
7121
0
    break;
7122
0
  case X86::BI__builtin_ia32_cmpccxadd32:
7123
0
  case X86::BI__builtin_ia32_cmpccxadd64:
7124
0
    i = 3; l = 0; u = 15;
7125
0
    break;
7126
0
  }
7127
7128
  // Note that we don't force a hard error on the range check here, allowing
7129
  // template-generated or macro-generated dead code to potentially have out-of-
7130
  // range values. These need to code generate, but don't need to necessarily
7131
  // make any sense. We use a warning that defaults to an error.
7132
0
  return SemaBuiltinConstantArgRange(TheCall, i, l, u, /*RangeIsError*/ false);
7133
0
}
7134
7135
/// Given a FunctionDecl's FormatAttr, attempts to populate the FomatStringInfo
7136
/// parameter with the FormatAttr's correct format_idx and firstDataArg.
7137
/// Returns true when the format fits the function and the FormatStringInfo has
7138
/// been populated.
7139
bool Sema::getFormatStringInfo(const FormatAttr *Format, bool IsCXXMember,
7140
0
                               bool IsVariadic, FormatStringInfo *FSI) {
7141
0
  if (Format->getFirstArg() == 0)
7142
0
    FSI->ArgPassingKind = FAPK_VAList;
7143
0
  else if (IsVariadic)
7144
0
    FSI->ArgPassingKind = FAPK_Variadic;
7145
0
  else
7146
0
    FSI->ArgPassingKind = FAPK_Fixed;
7147
0
  FSI->FormatIdx = Format->getFormatIdx() - 1;
7148
0
  FSI->FirstDataArg =
7149
0
      FSI->ArgPassingKind == FAPK_VAList ? 0 : Format->getFirstArg() - 1;
7150
7151
  // The way the format attribute works in GCC, the implicit this argument
7152
  // of member functions is counted. However, it doesn't appear in our own
7153
  // lists, so decrement format_idx in that case.
7154
0
  if (IsCXXMember) {
7155
0
    if(FSI->FormatIdx == 0)
7156
0
      return false;
7157
0
    --FSI->FormatIdx;
7158
0
    if (FSI->FirstDataArg != 0)
7159
0
      --FSI->FirstDataArg;
7160
0
  }
7161
0
  return true;
7162
0
}
7163
7164
/// Checks if a the given expression evaluates to null.
7165
///
7166
/// Returns true if the value evaluates to null.
7167
0
static bool CheckNonNullExpr(Sema &S, const Expr *Expr) {
7168
  // If the expression has non-null type, it doesn't evaluate to null.
7169
0
  if (auto nullability = Expr->IgnoreImplicit()->getType()->getNullability()) {
7170
0
    if (*nullability == NullabilityKind::NonNull)
7171
0
      return false;
7172
0
  }
7173
7174
  // As a special case, transparent unions initialized with zero are
7175
  // considered null for the purposes of the nonnull attribute.
7176
0
  if (const RecordType *UT = Expr->getType()->getAsUnionType()) {
7177
0
    if (UT->getDecl()->hasAttr<TransparentUnionAttr>())
7178
0
      if (const CompoundLiteralExpr *CLE =
7179
0
          dyn_cast<CompoundLiteralExpr>(Expr))
7180
0
        if (const InitListExpr *ILE =
7181
0
            dyn_cast<InitListExpr>(CLE->getInitializer()))
7182
0
          Expr = ILE->getInit(0);
7183
0
  }
7184
7185
0
  bool Result;
7186
0
  return (!Expr->isValueDependent() &&
7187
0
          Expr->EvaluateAsBooleanCondition(Result, S.Context) &&
7188
0
          !Result);
7189
0
}
7190
7191
static void CheckNonNullArgument(Sema &S,
7192
                                 const Expr *ArgExpr,
7193
0
                                 SourceLocation CallSiteLoc) {
7194
0
  if (CheckNonNullExpr(S, ArgExpr))
7195
0
    S.DiagRuntimeBehavior(CallSiteLoc, ArgExpr,
7196
0
                          S.PDiag(diag::warn_null_arg)
7197
0
                              << ArgExpr->getSourceRange());
7198
0
}
7199
7200
0
bool Sema::GetFormatNSStringIdx(const FormatAttr *Format, unsigned &Idx) {
7201
0
  FormatStringInfo FSI;
7202
0
  if ((GetFormatStringType(Format) == FST_NSString) &&
7203
0
      getFormatStringInfo(Format, false, true, &FSI)) {
7204
0
    Idx = FSI.FormatIdx;
7205
0
    return true;
7206
0
  }
7207
0
  return false;
7208
0
}
7209
7210
/// Diagnose use of %s directive in an NSString which is being passed
7211
/// as formatting string to formatting method.
7212
static void
7213
DiagnoseCStringFormatDirectiveInCFAPI(Sema &S,
7214
                                        const NamedDecl *FDecl,
7215
                                        Expr **Args,
7216
0
                                        unsigned NumArgs) {
7217
0
  unsigned Idx = 0;
7218
0
  bool Format = false;
7219
0
  ObjCStringFormatFamily SFFamily = FDecl->getObjCFStringFormattingFamily();
7220
0
  if (SFFamily == ObjCStringFormatFamily::SFF_CFString) {
7221
0
    Idx = 2;
7222
0
    Format = true;
7223
0
  }
7224
0
  else
7225
0
    for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
7226
0
      if (S.GetFormatNSStringIdx(I, Idx)) {
7227
0
        Format = true;
7228
0
        break;
7229
0
      }
7230
0
    }
7231
0
  if (!Format || NumArgs <= Idx)
7232
0
    return;
7233
0
  const Expr *FormatExpr = Args[Idx];
7234
0
  if (const CStyleCastExpr *CSCE = dyn_cast<CStyleCastExpr>(FormatExpr))
7235
0
    FormatExpr = CSCE->getSubExpr();
7236
0
  const StringLiteral *FormatString;
7237
0
  if (const ObjCStringLiteral *OSL =
7238
0
      dyn_cast<ObjCStringLiteral>(FormatExpr->IgnoreParenImpCasts()))
7239
0
    FormatString = OSL->getString();
7240
0
  else
7241
0
    FormatString = dyn_cast<StringLiteral>(FormatExpr->IgnoreParenImpCasts());
7242
0
  if (!FormatString)
7243
0
    return;
7244
0
  if (S.FormatStringHasSArg(FormatString)) {
7245
0
    S.Diag(FormatExpr->getExprLoc(), diag::warn_objc_cdirective_format_string)
7246
0
      << "%s" << 1 << 1;
7247
0
    S.Diag(FDecl->getLocation(), diag::note_entity_declared_at)
7248
0
      << FDecl->getDeclName();
7249
0
  }
7250
0
}
7251
7252
/// Determine whether the given type has a non-null nullability annotation.
7253
0
static bool isNonNullType(QualType type) {
7254
0
  if (auto nullability = type->getNullability())
7255
0
    return *nullability == NullabilityKind::NonNull;
7256
7257
0
  return false;
7258
0
}
7259
7260
static void CheckNonNullArguments(Sema &S,
7261
                                  const NamedDecl *FDecl,
7262
                                  const FunctionProtoType *Proto,
7263
                                  ArrayRef<const Expr *> Args,
7264
0
                                  SourceLocation CallSiteLoc) {
7265
0
  assert((FDecl || Proto) && "Need a function declaration or prototype");
7266
7267
  // Already checked by constant evaluator.
7268
0
  if (S.isConstantEvaluatedContext())
7269
0
    return;
7270
  // Check the attributes attached to the method/function itself.
7271
0
  llvm::SmallBitVector NonNullArgs;
7272
0
  if (FDecl) {
7273
    // Handle the nonnull attribute on the function/method declaration itself.
7274
0
    for (const auto *NonNull : FDecl->specific_attrs<NonNullAttr>()) {
7275
0
      if (!NonNull->args_size()) {
7276
        // Easy case: all pointer arguments are nonnull.
7277
0
        for (const auto *Arg : Args)
7278
0
          if (S.isValidPointerAttrType(Arg->getType()))
7279
0
            CheckNonNullArgument(S, Arg, CallSiteLoc);
7280
0
        return;
7281
0
      }
7282
7283
0
      for (const ParamIdx &Idx : NonNull->args()) {
7284
0
        unsigned IdxAST = Idx.getASTIndex();
7285
0
        if (IdxAST >= Args.size())
7286
0
          continue;
7287
0
        if (NonNullArgs.empty())
7288
0
          NonNullArgs.resize(Args.size());
7289
0
        NonNullArgs.set(IdxAST);
7290
0
      }
7291
0
    }
7292
0
  }
7293
7294
0
  if (FDecl && (isa<FunctionDecl>(FDecl) || isa<ObjCMethodDecl>(FDecl))) {
7295
    // Handle the nonnull attribute on the parameters of the
7296
    // function/method.
7297
0
    ArrayRef<ParmVarDecl*> parms;
7298
0
    if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(FDecl))
7299
0
      parms = FD->parameters();
7300
0
    else
7301
0
      parms = cast<ObjCMethodDecl>(FDecl)->parameters();
7302
7303
0
    unsigned ParamIndex = 0;
7304
0
    for (ArrayRef<ParmVarDecl*>::iterator I = parms.begin(), E = parms.end();
7305
0
         I != E; ++I, ++ParamIndex) {
7306
0
      const ParmVarDecl *PVD = *I;
7307
0
      if (PVD->hasAttr<NonNullAttr>() || isNonNullType(PVD->getType())) {
7308
0
        if (NonNullArgs.empty())
7309
0
          NonNullArgs.resize(Args.size());
7310
7311
0
        NonNullArgs.set(ParamIndex);
7312
0
      }
7313
0
    }
7314
0
  } else {
7315
    // If we have a non-function, non-method declaration but no
7316
    // function prototype, try to dig out the function prototype.
7317
0
    if (!Proto) {
7318
0
      if (const ValueDecl *VD = dyn_cast<ValueDecl>(FDecl)) {
7319
0
        QualType type = VD->getType().getNonReferenceType();
7320
0
        if (auto pointerType = type->getAs<PointerType>())
7321
0
          type = pointerType->getPointeeType();
7322
0
        else if (auto blockType = type->getAs<BlockPointerType>())
7323
0
          type = blockType->getPointeeType();
7324
        // FIXME: data member pointers?
7325
7326
        // Dig out the function prototype, if there is one.
7327
0
        Proto = type->getAs<FunctionProtoType>();
7328
0
      }
7329
0
    }
7330
7331
    // Fill in non-null argument information from the nullability
7332
    // information on the parameter types (if we have them).
7333
0
    if (Proto) {
7334
0
      unsigned Index = 0;
7335
0
      for (auto paramType : Proto->getParamTypes()) {
7336
0
        if (isNonNullType(paramType)) {
7337
0
          if (NonNullArgs.empty())
7338
0
            NonNullArgs.resize(Args.size());
7339
7340
0
          NonNullArgs.set(Index);
7341
0
        }
7342
7343
0
        ++Index;
7344
0
      }
7345
0
    }
7346
0
  }
7347
7348
  // Check for non-null arguments.
7349
0
  for (unsigned ArgIndex = 0, ArgIndexEnd = NonNullArgs.size();
7350
0
       ArgIndex != ArgIndexEnd; ++ArgIndex) {
7351
0
    if (NonNullArgs[ArgIndex])
7352
0
      CheckNonNullArgument(S, Args[ArgIndex], Args[ArgIndex]->getExprLoc());
7353
0
  }
7354
0
}
7355
7356
// 16 byte ByVal alignment not due to a vector member is not honoured by XL
7357
// on AIX. Emit a warning here that users are generating binary incompatible
7358
// code to be safe.
7359
// Here we try to get information about the alignment of the struct member
7360
// from the struct passed to the caller function. We only warn when the struct
7361
// is passed byval, hence the series of checks and early returns if we are a not
7362
// passing a struct byval.
7363
0
void Sema::checkAIXMemberAlignment(SourceLocation Loc, const Expr *Arg) {
7364
0
  const auto *ICE = dyn_cast<ImplicitCastExpr>(Arg->IgnoreParens());
7365
0
  if (!ICE)
7366
0
    return;
7367
7368
0
  const auto *DR = dyn_cast<DeclRefExpr>(ICE->getSubExpr());
7369
0
  if (!DR)
7370
0
    return;
7371
7372
0
  const auto *PD = dyn_cast<ParmVarDecl>(DR->getDecl());
7373
0
  if (!PD || !PD->getType()->isRecordType())
7374
0
    return;
7375
7376
0
  QualType ArgType = Arg->getType();
7377
0
  for (const FieldDecl *FD :
7378
0
       ArgType->castAs<RecordType>()->getDecl()->fields()) {
7379
0
    if (const auto *AA = FD->getAttr<AlignedAttr>()) {
7380
0
      CharUnits Alignment =
7381
0
          Context.toCharUnitsFromBits(AA->getAlignment(Context));
7382
0
      if (Alignment.getQuantity() == 16) {
7383
0
        Diag(FD->getLocation(), diag::warn_not_xl_compatible) << FD;
7384
0
        Diag(Loc, diag::note_misaligned_member_used_here) << PD;
7385
0
      }
7386
0
    }
7387
0
  }
7388
0
}
7389
7390
/// Warn if a pointer or reference argument passed to a function points to an
7391
/// object that is less aligned than the parameter. This can happen when
7392
/// creating a typedef with a lower alignment than the original type and then
7393
/// calling functions defined in terms of the original type.
7394
void Sema::CheckArgAlignment(SourceLocation Loc, NamedDecl *FDecl,
7395
                             StringRef ParamName, QualType ArgTy,
7396
0
                             QualType ParamTy) {
7397
7398
  // If a function accepts a pointer or reference type
7399
0
  if (!ParamTy->isPointerType() && !ParamTy->isReferenceType())
7400
0
    return;
7401
7402
  // If the parameter is a pointer type, get the pointee type for the
7403
  // argument too. If the parameter is a reference type, don't try to get
7404
  // the pointee type for the argument.
7405
0
  if (ParamTy->isPointerType())
7406
0
    ArgTy = ArgTy->getPointeeType();
7407
7408
  // Remove reference or pointer
7409
0
  ParamTy = ParamTy->getPointeeType();
7410
7411
  // Find expected alignment, and the actual alignment of the passed object.
7412
  // getTypeAlignInChars requires complete types
7413
0
  if (ArgTy.isNull() || ParamTy->isDependentType() ||
7414
0
      ParamTy->isIncompleteType() || ArgTy->isIncompleteType() ||
7415
0
      ParamTy->isUndeducedType() || ArgTy->isUndeducedType())
7416
0
    return;
7417
7418
0
  CharUnits ParamAlign = Context.getTypeAlignInChars(ParamTy);
7419
0
  CharUnits ArgAlign = Context.getTypeAlignInChars(ArgTy);
7420
7421
  // If the argument is less aligned than the parameter, there is a
7422
  // potential alignment issue.
7423
0
  if (ArgAlign < ParamAlign)
7424
0
    Diag(Loc, diag::warn_param_mismatched_alignment)
7425
0
        << (int)ArgAlign.getQuantity() << (int)ParamAlign.getQuantity()
7426
0
        << ParamName << (FDecl != nullptr) << FDecl;
7427
0
}
7428
7429
/// Handles the checks for format strings, non-POD arguments to vararg
7430
/// functions, NULL arguments passed to non-NULL parameters, diagnose_if
7431
/// attributes and AArch64 SME attributes.
7432
void Sema::checkCall(NamedDecl *FDecl, const FunctionProtoType *Proto,
7433
                     const Expr *ThisArg, ArrayRef<const Expr *> Args,
7434
                     bool IsMemberFunction, SourceLocation Loc,
7435
0
                     SourceRange Range, VariadicCallType CallType) {
7436
  // FIXME: We should check as much as we can in the template definition.
7437
0
  if (CurContext->isDependentContext())
7438
0
    return;
7439
7440
  // Printf and scanf checking.
7441
0
  llvm::SmallBitVector CheckedVarArgs;
7442
0
  if (FDecl) {
7443
0
    for (const auto *I : FDecl->specific_attrs<FormatAttr>()) {
7444
      // Only create vector if there are format attributes.
7445
0
      CheckedVarArgs.resize(Args.size());
7446
7447
0
      CheckFormatArguments(I, Args, IsMemberFunction, CallType, Loc, Range,
7448
0
                           CheckedVarArgs);
7449
0
    }
7450
0
  }
7451
7452
  // Refuse POD arguments that weren't caught by the format string
7453
  // checks above.
7454
0
  auto *FD = dyn_cast_or_null<FunctionDecl>(FDecl);
7455
0
  if (CallType != VariadicDoesNotApply &&
7456
0
      (!FD || FD->getBuiltinID() != Builtin::BI__noop)) {
7457
0
    unsigned NumParams = Proto ? Proto->getNumParams()
7458
0
                       : FDecl && isa<FunctionDecl>(FDecl)
7459
0
                           ? cast<FunctionDecl>(FDecl)->getNumParams()
7460
0
                       : FDecl && isa<ObjCMethodDecl>(FDecl)
7461
0
                           ? cast<ObjCMethodDecl>(FDecl)->param_size()
7462
0
                       : 0;
7463
7464
0
    for (unsigned ArgIdx = NumParams; ArgIdx < Args.size(); ++ArgIdx) {
7465
      // Args[ArgIdx] can be null in malformed code.
7466
0
      if (const Expr *Arg = Args[ArgIdx]) {
7467
0
        if (CheckedVarArgs.empty() || !CheckedVarArgs[ArgIdx])
7468
0
          checkVariadicArgument(Arg, CallType);
7469
0
      }
7470
0
    }
7471
0
  }
7472
7473
0
  if (FDecl || Proto) {
7474
0
    CheckNonNullArguments(*this, FDecl, Proto, Args, Loc);
7475
7476
    // Type safety checking.
7477
0
    if (FDecl) {
7478
0
      for (const auto *I : FDecl->specific_attrs<ArgumentWithTypeTagAttr>())
7479
0
        CheckArgumentWithTypeTag(I, Args, Loc);
7480
0
    }
7481
0
  }
7482
7483
  // Check that passed arguments match the alignment of original arguments.
7484
  // Try to get the missing prototype from the declaration.
7485
0
  if (!Proto && FDecl) {
7486
0
    const auto *FT = FDecl->getFunctionType();
7487
0
    if (isa_and_nonnull<FunctionProtoType>(FT))
7488
0
      Proto = cast<FunctionProtoType>(FDecl->getFunctionType());
7489
0
  }
7490
0
  if (Proto) {
7491
    // For variadic functions, we may have more args than parameters.
7492
    // For some K&R functions, we may have less args than parameters.
7493
0
    const auto N = std::min<unsigned>(Proto->getNumParams(), Args.size());
7494
0
    for (unsigned ArgIdx = 0; ArgIdx < N; ++ArgIdx) {
7495
      // Args[ArgIdx] can be null in malformed code.
7496
0
      if (const Expr *Arg = Args[ArgIdx]) {
7497
0
        if (Arg->containsErrors())
7498
0
          continue;
7499
7500
0
        if (Context.getTargetInfo().getTriple().isOSAIX() && FDecl && Arg &&
7501
0
            FDecl->hasLinkage() &&
7502
0
            FDecl->getFormalLinkage() != Linkage::Internal &&
7503
0
            CallType == VariadicDoesNotApply)
7504
0
          checkAIXMemberAlignment((Arg->getExprLoc()), Arg);
7505
7506
0
        QualType ParamTy = Proto->getParamType(ArgIdx);
7507
0
        QualType ArgTy = Arg->getType();
7508
0
        CheckArgAlignment(Arg->getExprLoc(), FDecl, std::to_string(ArgIdx + 1),
7509
0
                          ArgTy, ParamTy);
7510
0
      }
7511
0
    }
7512
7513
    // If the callee has an AArch64 SME attribute to indicate that it is an
7514
    // __arm_streaming function, then the caller requires SME to be available.
7515
0
    FunctionProtoType::ExtProtoInfo ExtInfo = Proto->getExtProtoInfo();
7516
0
    if (ExtInfo.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask) {
7517
0
      if (auto *CallerFD = dyn_cast<FunctionDecl>(CurContext)) {
7518
0
        llvm::StringMap<bool> CallerFeatureMap;
7519
0
        Context.getFunctionFeatureMap(CallerFeatureMap, CallerFD);
7520
0
        if (!CallerFeatureMap.contains("sme"))
7521
0
          Diag(Loc, diag::err_sme_call_in_non_sme_target);
7522
0
      } else if (!Context.getTargetInfo().hasFeature("sme")) {
7523
0
        Diag(Loc, diag::err_sme_call_in_non_sme_target);
7524
0
      }
7525
0
    }
7526
7527
    // If the callee uses AArch64 SME ZA state but the caller doesn't define
7528
    // any, then this is an error.
7529
0
    FunctionType::ArmStateValue ArmZAState =
7530
0
        FunctionType::getArmZAState(ExtInfo.AArch64SMEAttributes);
7531
0
    if (ArmZAState != FunctionType::ARM_None) {
7532
0
      bool CallerHasZAState = false;
7533
0
      if (const auto *CallerFD = dyn_cast<FunctionDecl>(CurContext)) {
7534
0
        auto *Attr = CallerFD->getAttr<ArmNewAttr>();
7535
0
        if (Attr && Attr->isNewZA())
7536
0
          CallerHasZAState = true;
7537
0
        else if (const auto *FPT =
7538
0
                     CallerFD->getType()->getAs<FunctionProtoType>())
7539
0
          CallerHasZAState = FunctionType::getArmZAState(
7540
0
                                 FPT->getExtProtoInfo().AArch64SMEAttributes) !=
7541
0
                             FunctionType::ARM_None;
7542
0
      }
7543
7544
0
      if (!CallerHasZAState)
7545
0
        Diag(Loc, diag::err_sme_za_call_no_za_state);
7546
0
    }
7547
0
  }
7548
7549
0
  if (FDecl && FDecl->hasAttr<AllocAlignAttr>()) {
7550
0
    auto *AA = FDecl->getAttr<AllocAlignAttr>();
7551
0
    const Expr *Arg = Args[AA->getParamIndex().getASTIndex()];
7552
0
    if (!Arg->isValueDependent()) {
7553
0
      Expr::EvalResult Align;
7554
0
      if (Arg->EvaluateAsInt(Align, Context)) {
7555
0
        const llvm::APSInt &I = Align.Val.getInt();
7556
0
        if (!I.isPowerOf2())
7557
0
          Diag(Arg->getExprLoc(), diag::warn_alignment_not_power_of_two)
7558
0
              << Arg->getSourceRange();
7559
7560
0
        if (I > Sema::MaximumAlignment)
7561
0
          Diag(Arg->getExprLoc(), diag::warn_assume_aligned_too_great)
7562
0
              << Arg->getSourceRange() << Sema::MaximumAlignment;
7563
0
      }
7564
0
    }
7565
0
  }
7566
7567
0
  if (FD)
7568
0
    diagnoseArgDependentDiagnoseIfAttrs(FD, ThisArg, Args, Loc);
7569
0
}
7570
7571
/// CheckConstructorCall - Check a constructor call for correctness and safety
7572
/// properties not enforced by the C type system.
7573
void Sema::CheckConstructorCall(FunctionDecl *FDecl, QualType ThisType,
7574
                                ArrayRef<const Expr *> Args,
7575
                                const FunctionProtoType *Proto,
7576
0
                                SourceLocation Loc) {
7577
0
  VariadicCallType CallType =
7578
0
      Proto->isVariadic() ? VariadicConstructor : VariadicDoesNotApply;
7579
7580
0
  auto *Ctor = cast<CXXConstructorDecl>(FDecl);
7581
0
  CheckArgAlignment(
7582
0
      Loc, FDecl, "'this'", Context.getPointerType(ThisType),
7583
0
      Context.getPointerType(Ctor->getFunctionObjectParameterType()));
7584
7585
0
  checkCall(FDecl, Proto, /*ThisArg=*/nullptr, Args, /*IsMemberFunction=*/true,
7586
0
            Loc, SourceRange(), CallType);
7587
0
}
7588
7589
/// CheckFunctionCall - Check a direct function call for various correctness
7590
/// and safety properties not strictly enforced by the C type system.
7591
bool Sema::CheckFunctionCall(FunctionDecl *FDecl, CallExpr *TheCall,
7592
0
                             const FunctionProtoType *Proto) {
7593
0
  bool IsMemberOperatorCall = isa<CXXOperatorCallExpr>(TheCall) &&
7594
0
                              isa<CXXMethodDecl>(FDecl);
7595
0
  bool IsMemberFunction = isa<CXXMemberCallExpr>(TheCall) ||
7596
0
                          IsMemberOperatorCall;
7597
0
  VariadicCallType CallType = getVariadicCallType(FDecl, Proto,
7598
0
                                                  TheCall->getCallee());
7599
0
  Expr** Args = TheCall->getArgs();
7600
0
  unsigned NumArgs = TheCall->getNumArgs();
7601
7602
0
  Expr *ImplicitThis = nullptr;
7603
0
  if (IsMemberOperatorCall && !FDecl->isStatic() &&
7604
0
      !FDecl->hasCXXExplicitFunctionObjectParameter()) {
7605
    // If this is a call to a non-static member operator, hide the first
7606
    // argument from checkCall.
7607
    // FIXME: Our choice of AST representation here is less than ideal.
7608
0
    ImplicitThis = Args[0];
7609
0
    ++Args;
7610
0
    --NumArgs;
7611
0
  } else if (IsMemberFunction && !FDecl->isStatic() &&
7612
0
             !FDecl->hasCXXExplicitFunctionObjectParameter())
7613
0
    ImplicitThis =
7614
0
        cast<CXXMemberCallExpr>(TheCall)->getImplicitObjectArgument();
7615
7616
0
  if (ImplicitThis) {
7617
    // ImplicitThis may or may not be a pointer, depending on whether . or -> is
7618
    // used.
7619
0
    QualType ThisType = ImplicitThis->getType();
7620
0
    if (!ThisType->isPointerType()) {
7621
0
      assert(!ThisType->isReferenceType());
7622
0
      ThisType = Context.getPointerType(ThisType);
7623
0
    }
7624
7625
0
    QualType ThisTypeFromDecl = Context.getPointerType(
7626
0
        cast<CXXMethodDecl>(FDecl)->getFunctionObjectParameterType());
7627
7628
0
    CheckArgAlignment(TheCall->getRParenLoc(), FDecl, "'this'", ThisType,
7629
0
                      ThisTypeFromDecl);
7630
0
  }
7631
7632
0
  checkCall(FDecl, Proto, ImplicitThis, llvm::ArrayRef(Args, NumArgs),
7633
0
            IsMemberFunction, TheCall->getRParenLoc(),
7634
0
            TheCall->getCallee()->getSourceRange(), CallType);
7635
7636
0
  IdentifierInfo *FnInfo = FDecl->getIdentifier();
7637
  // None of the checks below are needed for functions that don't have
7638
  // simple names (e.g., C++ conversion functions).
7639
0
  if (!FnInfo)
7640
0
    return false;
7641
7642
  // Enforce TCB except for builtin calls, which are always allowed.
7643
0
  if (FDecl->getBuiltinID() == 0)
7644
0
    CheckTCBEnforcement(TheCall->getExprLoc(), FDecl);
7645
7646
0
  CheckAbsoluteValueFunction(TheCall, FDecl);
7647
0
  CheckMaxUnsignedZero(TheCall, FDecl);
7648
7649
0
  if (getLangOpts().ObjC)
7650
0
    DiagnoseCStringFormatDirectiveInCFAPI(*this, FDecl, Args, NumArgs);
7651
7652
0
  unsigned CMId = FDecl->getMemoryFunctionKind();
7653
7654
  // Handle memory setting and copying functions.
7655
0
  switch (CMId) {
7656
0
  case 0:
7657
0
    return false;
7658
0
  case Builtin::BIstrlcpy: // fallthrough
7659
0
  case Builtin::BIstrlcat:
7660
0
    CheckStrlcpycatArguments(TheCall, FnInfo);
7661
0
    break;
7662
0
  case Builtin::BIstrncat:
7663
0
    CheckStrncatArguments(TheCall, FnInfo);
7664
0
    break;
7665
0
  case Builtin::BIfree:
7666
0
    CheckFreeArguments(TheCall);
7667
0
    break;
7668
0
  default:
7669
0
    CheckMemaccessArguments(TheCall, CMId, FnInfo);
7670
0
  }
7671
7672
0
  return false;
7673
0
}
7674
7675
bool Sema::CheckObjCMethodCall(ObjCMethodDecl *Method, SourceLocation lbrac,
7676
0
                               ArrayRef<const Expr *> Args) {
7677
0
  VariadicCallType CallType =
7678
0
      Method->isVariadic() ? VariadicMethod : VariadicDoesNotApply;
7679
7680
0
  checkCall(Method, nullptr, /*ThisArg=*/nullptr, Args,
7681
0
            /*IsMemberFunction=*/false, lbrac, Method->getSourceRange(),
7682
0
            CallType);
7683
7684
0
  CheckTCBEnforcement(lbrac, Method);
7685
7686
0
  return false;
7687
0
}
7688
7689
bool Sema::CheckPointerCall(NamedDecl *NDecl, CallExpr *TheCall,
7690
0
                            const FunctionProtoType *Proto) {
7691
0
  QualType Ty;
7692
0
  if (const auto *V = dyn_cast<VarDecl>(NDecl))
7693
0
    Ty = V->getType().getNonReferenceType();
7694
0
  else if (const auto *F = dyn_cast<FieldDecl>(NDecl))
7695
0
    Ty = F->getType().getNonReferenceType();
7696
0
  else
7697
0
    return false;
7698
7699
0
  if (!Ty->isBlockPointerType() && !Ty->isFunctionPointerType() &&
7700
0
      !Ty->isFunctionProtoType())
7701
0
    return false;
7702
7703
0
  VariadicCallType CallType;
7704
0
  if (!Proto || !Proto->isVariadic()) {
7705
0
    CallType = VariadicDoesNotApply;
7706
0
  } else if (Ty->isBlockPointerType()) {
7707
0
    CallType = VariadicBlock;
7708
0
  } else { // Ty->isFunctionPointerType()
7709
0
    CallType = VariadicFunction;
7710
0
  }
7711
7712
0
  checkCall(NDecl, Proto, /*ThisArg=*/nullptr,
7713
0
            llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
7714
0
            /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
7715
0
            TheCall->getCallee()->getSourceRange(), CallType);
7716
7717
0
  return false;
7718
0
}
7719
7720
/// Checks function calls when a FunctionDecl or a NamedDecl is not available,
7721
/// such as function pointers returned from functions.
7722
0
bool Sema::CheckOtherCall(CallExpr *TheCall, const FunctionProtoType *Proto) {
7723
0
  VariadicCallType CallType = getVariadicCallType(/*FDecl=*/nullptr, Proto,
7724
0
                                                  TheCall->getCallee());
7725
0
  checkCall(/*FDecl=*/nullptr, Proto, /*ThisArg=*/nullptr,
7726
0
            llvm::ArrayRef(TheCall->getArgs(), TheCall->getNumArgs()),
7727
0
            /*IsMemberFunction=*/false, TheCall->getRParenLoc(),
7728
0
            TheCall->getCallee()->getSourceRange(), CallType);
7729
7730
0
  return false;
7731
0
}
7732
7733
0
static bool isValidOrderingForOp(int64_t Ordering, AtomicExpr::AtomicOp Op) {
7734
0
  if (!llvm::isValidAtomicOrderingCABI(Ordering))
7735
0
    return false;
7736
7737
0
  auto OrderingCABI = (llvm::AtomicOrderingCABI)Ordering;
7738
0
  switch (Op) {
7739
0
  case AtomicExpr::AO__c11_atomic_init:
7740
0
  case AtomicExpr::AO__opencl_atomic_init:
7741
0
    llvm_unreachable("There is no ordering argument for an init");
7742
7743
0
  case AtomicExpr::AO__c11_atomic_load:
7744
0
  case AtomicExpr::AO__opencl_atomic_load:
7745
0
  case AtomicExpr::AO__hip_atomic_load:
7746
0
  case AtomicExpr::AO__atomic_load_n:
7747
0
  case AtomicExpr::AO__atomic_load:
7748
0
  case AtomicExpr::AO__scoped_atomic_load_n:
7749
0
  case AtomicExpr::AO__scoped_atomic_load:
7750
0
    return OrderingCABI != llvm::AtomicOrderingCABI::release &&
7751
0
           OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
7752
7753
0
  case AtomicExpr::AO__c11_atomic_store:
7754
0
  case AtomicExpr::AO__opencl_atomic_store:
7755
0
  case AtomicExpr::AO__hip_atomic_store:
7756
0
  case AtomicExpr::AO__atomic_store:
7757
0
  case AtomicExpr::AO__atomic_store_n:
7758
0
  case AtomicExpr::AO__scoped_atomic_store:
7759
0
  case AtomicExpr::AO__scoped_atomic_store_n:
7760
0
    return OrderingCABI != llvm::AtomicOrderingCABI::consume &&
7761
0
           OrderingCABI != llvm::AtomicOrderingCABI::acquire &&
7762
0
           OrderingCABI != llvm::AtomicOrderingCABI::acq_rel;
7763
7764
0
  default:
7765
0
    return true;
7766
0
  }
7767
0
}
7768
7769
ExprResult Sema::SemaAtomicOpsOverloaded(ExprResult TheCallResult,
7770
0
                                         AtomicExpr::AtomicOp Op) {
7771
0
  CallExpr *TheCall = cast<CallExpr>(TheCallResult.get());
7772
0
  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
7773
0
  MultiExprArg Args{TheCall->getArgs(), TheCall->getNumArgs()};
7774
0
  return BuildAtomicExpr({TheCall->getBeginLoc(), TheCall->getEndLoc()},
7775
0
                         DRE->getSourceRange(), TheCall->getRParenLoc(), Args,
7776
0
                         Op);
7777
0
}
7778
7779
ExprResult Sema::BuildAtomicExpr(SourceRange CallRange, SourceRange ExprRange,
7780
                                 SourceLocation RParenLoc, MultiExprArg Args,
7781
                                 AtomicExpr::AtomicOp Op,
7782
0
                                 AtomicArgumentOrder ArgOrder) {
7783
  // All the non-OpenCL operations take one of the following forms.
7784
  // The OpenCL operations take the __c11 forms with one extra argument for
7785
  // synchronization scope.
7786
0
  enum {
7787
    // C    __c11_atomic_init(A *, C)
7788
0
    Init,
7789
7790
    // C    __c11_atomic_load(A *, int)
7791
0
    Load,
7792
7793
    // void __atomic_load(A *, CP, int)
7794
0
    LoadCopy,
7795
7796
    // void __atomic_store(A *, CP, int)
7797
0
    Copy,
7798
7799
    // C    __c11_atomic_add(A *, M, int)
7800
0
    Arithmetic,
7801
7802
    // C    __atomic_exchange_n(A *, CP, int)
7803
0
    Xchg,
7804
7805
    // void __atomic_exchange(A *, C *, CP, int)
7806
0
    GNUXchg,
7807
7808
    // bool __c11_atomic_compare_exchange_strong(A *, C *, CP, int, int)
7809
0
    C11CmpXchg,
7810
7811
    // bool __atomic_compare_exchange(A *, C *, CP, bool, int, int)
7812
0
    GNUCmpXchg
7813
0
  } Form = Init;
7814
7815
0
  const unsigned NumForm = GNUCmpXchg + 1;
7816
0
  const unsigned NumArgs[] = { 2, 2, 3, 3, 3, 3, 4, 5, 6 };
7817
0
  const unsigned NumVals[] = { 1, 0, 1, 1, 1, 1, 2, 2, 3 };
7818
  // where:
7819
  //   C is an appropriate type,
7820
  //   A is volatile _Atomic(C) for __c11 builtins and is C for GNU builtins,
7821
  //   CP is C for __c11 builtins and GNU _n builtins and is C * otherwise,
7822
  //   M is C if C is an integer, and ptrdiff_t if C is a pointer, and
7823
  //   the int parameters are for orderings.
7824
7825
0
  static_assert(sizeof(NumArgs)/sizeof(NumArgs[0]) == NumForm
7826
0
      && sizeof(NumVals)/sizeof(NumVals[0]) == NumForm,
7827
0
      "need to update code for modified forms");
7828
0
  static_assert(AtomicExpr::AO__c11_atomic_init == 0 &&
7829
0
                    AtomicExpr::AO__c11_atomic_fetch_min + 1 ==
7830
0
                        AtomicExpr::AO__atomic_load,
7831
0
                "need to update code for modified C11 atomics");
7832
0
  bool IsOpenCL = Op >= AtomicExpr::AO__opencl_atomic_init &&
7833
0
                  Op <= AtomicExpr::AO__opencl_atomic_fetch_max;
7834
0
  bool IsHIP = Op >= AtomicExpr::AO__hip_atomic_load &&
7835
0
               Op <= AtomicExpr::AO__hip_atomic_fetch_max;
7836
0
  bool IsScoped = Op >= AtomicExpr::AO__scoped_atomic_load &&
7837
0
                  Op <= AtomicExpr::AO__scoped_atomic_fetch_max;
7838
0
  bool IsC11 = (Op >= AtomicExpr::AO__c11_atomic_init &&
7839
0
               Op <= AtomicExpr::AO__c11_atomic_fetch_min) ||
7840
0
               IsOpenCL;
7841
0
  bool IsN = Op == AtomicExpr::AO__atomic_load_n ||
7842
0
             Op == AtomicExpr::AO__atomic_store_n ||
7843
0
             Op == AtomicExpr::AO__atomic_exchange_n ||
7844
0
             Op == AtomicExpr::AO__atomic_compare_exchange_n ||
7845
0
             Op == AtomicExpr::AO__scoped_atomic_load_n ||
7846
0
             Op == AtomicExpr::AO__scoped_atomic_store_n ||
7847
0
             Op == AtomicExpr::AO__scoped_atomic_exchange_n ||
7848
0
             Op == AtomicExpr::AO__scoped_atomic_compare_exchange_n;
7849
  // Bit mask for extra allowed value types other than integers for atomic
7850
  // arithmetic operations. Add/sub allow pointer and floating point. Min/max
7851
  // allow floating point.
7852
0
  enum ArithOpExtraValueType {
7853
0
    AOEVT_None = 0,
7854
0
    AOEVT_Pointer = 1,
7855
0
    AOEVT_FP = 2,
7856
0
  };
7857
0
  unsigned ArithAllows = AOEVT_None;
7858
7859
0
  switch (Op) {
7860
0
  case AtomicExpr::AO__c11_atomic_init:
7861
0
  case AtomicExpr::AO__opencl_atomic_init:
7862
0
    Form = Init;
7863
0
    break;
7864
7865
0
  case AtomicExpr::AO__c11_atomic_load:
7866
0
  case AtomicExpr::AO__opencl_atomic_load:
7867
0
  case AtomicExpr::AO__hip_atomic_load:
7868
0
  case AtomicExpr::AO__atomic_load_n:
7869
0
  case AtomicExpr::AO__scoped_atomic_load_n:
7870
0
    Form = Load;
7871
0
    break;
7872
7873
0
  case AtomicExpr::AO__atomic_load:
7874
0
  case AtomicExpr::AO__scoped_atomic_load:
7875
0
    Form = LoadCopy;
7876
0
    break;
7877
7878
0
  case AtomicExpr::AO__c11_atomic_store:
7879
0
  case AtomicExpr::AO__opencl_atomic_store:
7880
0
  case AtomicExpr::AO__hip_atomic_store:
7881
0
  case AtomicExpr::AO__atomic_store:
7882
0
  case AtomicExpr::AO__atomic_store_n:
7883
0
  case AtomicExpr::AO__scoped_atomic_store:
7884
0
  case AtomicExpr::AO__scoped_atomic_store_n:
7885
0
    Form = Copy;
7886
0
    break;
7887
0
  case AtomicExpr::AO__atomic_fetch_add:
7888
0
  case AtomicExpr::AO__atomic_fetch_sub:
7889
0
  case AtomicExpr::AO__atomic_add_fetch:
7890
0
  case AtomicExpr::AO__atomic_sub_fetch:
7891
0
  case AtomicExpr::AO__scoped_atomic_fetch_add:
7892
0
  case AtomicExpr::AO__scoped_atomic_fetch_sub:
7893
0
  case AtomicExpr::AO__scoped_atomic_add_fetch:
7894
0
  case AtomicExpr::AO__scoped_atomic_sub_fetch:
7895
0
  case AtomicExpr::AO__c11_atomic_fetch_add:
7896
0
  case AtomicExpr::AO__c11_atomic_fetch_sub:
7897
0
  case AtomicExpr::AO__opencl_atomic_fetch_add:
7898
0
  case AtomicExpr::AO__opencl_atomic_fetch_sub:
7899
0
  case AtomicExpr::AO__hip_atomic_fetch_add:
7900
0
  case AtomicExpr::AO__hip_atomic_fetch_sub:
7901
0
    ArithAllows = AOEVT_Pointer | AOEVT_FP;
7902
0
    Form = Arithmetic;
7903
0
    break;
7904
0
  case AtomicExpr::AO__atomic_fetch_max:
7905
0
  case AtomicExpr::AO__atomic_fetch_min:
7906
0
  case AtomicExpr::AO__atomic_max_fetch:
7907
0
  case AtomicExpr::AO__atomic_min_fetch:
7908
0
  case AtomicExpr::AO__scoped_atomic_fetch_max:
7909
0
  case AtomicExpr::AO__scoped_atomic_fetch_min:
7910
0
  case AtomicExpr::AO__scoped_atomic_max_fetch:
7911
0
  case AtomicExpr::AO__scoped_atomic_min_fetch:
7912
0
  case AtomicExpr::AO__c11_atomic_fetch_max:
7913
0
  case AtomicExpr::AO__c11_atomic_fetch_min:
7914
0
  case AtomicExpr::AO__opencl_atomic_fetch_max:
7915
0
  case AtomicExpr::AO__opencl_atomic_fetch_min:
7916
0
  case AtomicExpr::AO__hip_atomic_fetch_max:
7917
0
  case AtomicExpr::AO__hip_atomic_fetch_min:
7918
0
    ArithAllows = AOEVT_FP;
7919
0
    Form = Arithmetic;
7920
0
    break;
7921
0
  case AtomicExpr::AO__c11_atomic_fetch_and:
7922
0
  case AtomicExpr::AO__c11_atomic_fetch_or:
7923
0
  case AtomicExpr::AO__c11_atomic_fetch_xor:
7924
0
  case AtomicExpr::AO__hip_atomic_fetch_and:
7925
0
  case AtomicExpr::AO__hip_atomic_fetch_or:
7926
0
  case AtomicExpr::AO__hip_atomic_fetch_xor:
7927
0
  case AtomicExpr::AO__c11_atomic_fetch_nand:
7928
0
  case AtomicExpr::AO__opencl_atomic_fetch_and:
7929
0
  case AtomicExpr::AO__opencl_atomic_fetch_or:
7930
0
  case AtomicExpr::AO__opencl_atomic_fetch_xor:
7931
0
  case AtomicExpr::AO__atomic_fetch_and:
7932
0
  case AtomicExpr::AO__atomic_fetch_or:
7933
0
  case AtomicExpr::AO__atomic_fetch_xor:
7934
0
  case AtomicExpr::AO__atomic_fetch_nand:
7935
0
  case AtomicExpr::AO__atomic_and_fetch:
7936
0
  case AtomicExpr::AO__atomic_or_fetch:
7937
0
  case AtomicExpr::AO__atomic_xor_fetch:
7938
0
  case AtomicExpr::AO__atomic_nand_fetch:
7939
0
  case AtomicExpr::AO__scoped_atomic_fetch_and:
7940
0
  case AtomicExpr::AO__scoped_atomic_fetch_or:
7941
0
  case AtomicExpr::AO__scoped_atomic_fetch_xor:
7942
0
  case AtomicExpr::AO__scoped_atomic_fetch_nand:
7943
0
  case AtomicExpr::AO__scoped_atomic_and_fetch:
7944
0
  case AtomicExpr::AO__scoped_atomic_or_fetch:
7945
0
  case AtomicExpr::AO__scoped_atomic_xor_fetch:
7946
0
  case AtomicExpr::AO__scoped_atomic_nand_fetch:
7947
0
    Form = Arithmetic;
7948
0
    break;
7949
7950
0
  case AtomicExpr::AO__c11_atomic_exchange:
7951
0
  case AtomicExpr::AO__hip_atomic_exchange:
7952
0
  case AtomicExpr::AO__opencl_atomic_exchange:
7953
0
  case AtomicExpr::AO__atomic_exchange_n:
7954
0
  case AtomicExpr::AO__scoped_atomic_exchange_n:
7955
0
    Form = Xchg;
7956
0
    break;
7957
7958
0
  case AtomicExpr::AO__atomic_exchange:
7959
0
  case AtomicExpr::AO__scoped_atomic_exchange:
7960
0
    Form = GNUXchg;
7961
0
    break;
7962
7963
0
  case AtomicExpr::AO__c11_atomic_compare_exchange_strong:
7964
0
  case AtomicExpr::AO__c11_atomic_compare_exchange_weak:
7965
0
  case AtomicExpr::AO__hip_atomic_compare_exchange_strong:
7966
0
  case AtomicExpr::AO__opencl_atomic_compare_exchange_strong:
7967
0
  case AtomicExpr::AO__opencl_atomic_compare_exchange_weak:
7968
0
  case AtomicExpr::AO__hip_atomic_compare_exchange_weak:
7969
0
    Form = C11CmpXchg;
7970
0
    break;
7971
7972
0
  case AtomicExpr::AO__atomic_compare_exchange:
7973
0
  case AtomicExpr::AO__atomic_compare_exchange_n:
7974
0
  case AtomicExpr::AO__scoped_atomic_compare_exchange:
7975
0
  case AtomicExpr::AO__scoped_atomic_compare_exchange_n:
7976
0
    Form = GNUCmpXchg;
7977
0
    break;
7978
0
  }
7979
7980
0
  unsigned AdjustedNumArgs = NumArgs[Form];
7981
0
  if ((IsOpenCL || IsHIP || IsScoped) &&
7982
0
      Op != AtomicExpr::AO__opencl_atomic_init)
7983
0
    ++AdjustedNumArgs;
7984
  // Check we have the right number of arguments.
7985
0
  if (Args.size() < AdjustedNumArgs) {
7986
0
    Diag(CallRange.getEnd(), diag::err_typecheck_call_too_few_args)
7987
0
        << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
7988
0
        << /*is non object*/ 0 << ExprRange;
7989
0
    return ExprError();
7990
0
  } else if (Args.size() > AdjustedNumArgs) {
7991
0
    Diag(Args[AdjustedNumArgs]->getBeginLoc(),
7992
0
         diag::err_typecheck_call_too_many_args)
7993
0
        << 0 << AdjustedNumArgs << static_cast<unsigned>(Args.size())
7994
0
        << /*is non object*/ 0 << ExprRange;
7995
0
    return ExprError();
7996
0
  }
7997
7998
  // Inspect the first argument of the atomic operation.
7999
0
  Expr *Ptr = Args[0];
8000
0
  ExprResult ConvertedPtr = DefaultFunctionArrayLvalueConversion(Ptr);
8001
0
  if (ConvertedPtr.isInvalid())
8002
0
    return ExprError();
8003
8004
0
  Ptr = ConvertedPtr.get();
8005
0
  const PointerType *pointerType = Ptr->getType()->getAs<PointerType>();
8006
0
  if (!pointerType) {
8007
0
    Diag(ExprRange.getBegin(), diag::err_atomic_builtin_must_be_pointer)
8008
0
        << Ptr->getType() << Ptr->getSourceRange();
8009
0
    return ExprError();
8010
0
  }
8011
8012
  // For a __c11 builtin, this should be a pointer to an _Atomic type.
8013
0
  QualType AtomTy = pointerType->getPointeeType(); // 'A'
8014
0
  QualType ValType = AtomTy; // 'C'
8015
0
  if (IsC11) {
8016
0
    if (!AtomTy->isAtomicType()) {
8017
0
      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic)
8018
0
          << Ptr->getType() << Ptr->getSourceRange();
8019
0
      return ExprError();
8020
0
    }
8021
0
    if ((Form != Load && Form != LoadCopy && AtomTy.isConstQualified()) ||
8022
0
        AtomTy.getAddressSpace() == LangAS::opencl_constant) {
8023
0
      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_atomic)
8024
0
          << (AtomTy.isConstQualified() ? 0 : 1) << Ptr->getType()
8025
0
          << Ptr->getSourceRange();
8026
0
      return ExprError();
8027
0
    }
8028
0
    ValType = AtomTy->castAs<AtomicType>()->getValueType();
8029
0
  } else if (Form != Load && Form != LoadCopy) {
8030
0
    if (ValType.isConstQualified()) {
8031
0
      Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_non_const_pointer)
8032
0
          << Ptr->getType() << Ptr->getSourceRange();
8033
0
      return ExprError();
8034
0
    }
8035
0
  }
8036
8037
  // For an arithmetic operation, the implied arithmetic must be well-formed.
8038
0
  if (Form == Arithmetic) {
8039
    // GCC does not enforce these rules for GNU atomics, but we do to help catch
8040
    // trivial type errors.
8041
0
    auto IsAllowedValueType = [&](QualType ValType,
8042
0
                                  unsigned AllowedType) -> bool {
8043
0
      if (ValType->isIntegerType())
8044
0
        return true;
8045
0
      if (ValType->isPointerType())
8046
0
        return AllowedType & AOEVT_Pointer;
8047
0
      if (!(ValType->isFloatingType() && (AllowedType & AOEVT_FP)))
8048
0
        return false;
8049
      // LLVM Parser does not allow atomicrmw with x86_fp80 type.
8050
0
      if (ValType->isSpecificBuiltinType(BuiltinType::LongDouble) &&
8051
0
          &Context.getTargetInfo().getLongDoubleFormat() ==
8052
0
              &llvm::APFloat::x87DoubleExtended())
8053
0
        return false;
8054
0
      return true;
8055
0
    };
8056
0
    if (!IsAllowedValueType(ValType, ArithAllows)) {
8057
0
      auto DID = ArithAllows & AOEVT_FP
8058
0
                     ? (ArithAllows & AOEVT_Pointer
8059
0
                            ? diag::err_atomic_op_needs_atomic_int_ptr_or_fp
8060
0
                            : diag::err_atomic_op_needs_atomic_int_or_fp)
8061
0
                     : diag::err_atomic_op_needs_atomic_int;
8062
0
      Diag(ExprRange.getBegin(), DID)
8063
0
          << IsC11 << Ptr->getType() << Ptr->getSourceRange();
8064
0
      return ExprError();
8065
0
    }
8066
0
    if (IsC11 && ValType->isPointerType() &&
8067
0
        RequireCompleteType(Ptr->getBeginLoc(), ValType->getPointeeType(),
8068
0
                            diag::err_incomplete_type)) {
8069
0
      return ExprError();
8070
0
    }
8071
0
  } else if (IsN && !ValType->isIntegerType() && !ValType->isPointerType()) {
8072
    // For __atomic_*_n operations, the value type must be a scalar integral or
8073
    // pointer type which is 1, 2, 4, 8 or 16 bytes in length.
8074
0
    Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_atomic_int_or_ptr)
8075
0
        << IsC11 << Ptr->getType() << Ptr->getSourceRange();
8076
0
    return ExprError();
8077
0
  }
8078
8079
0
  if (!IsC11 && !AtomTy.isTriviallyCopyableType(Context) &&
8080
0
      !AtomTy->isScalarType()) {
8081
    // For GNU atomics, require a trivially-copyable type. This is not part of
8082
    // the GNU atomics specification but we enforce it for consistency with
8083
    // other atomics which generally all require a trivially-copyable type. This
8084
    // is because atomics just copy bits.
8085
0
    Diag(ExprRange.getBegin(), diag::err_atomic_op_needs_trivial_copy)
8086
0
        << Ptr->getType() << Ptr->getSourceRange();
8087
0
    return ExprError();
8088
0
  }
8089
8090
0
  switch (ValType.getObjCLifetime()) {
8091
0
  case Qualifiers::OCL_None:
8092
0
  case Qualifiers::OCL_ExplicitNone:
8093
    // okay
8094
0
    break;
8095
8096
0
  case Qualifiers::OCL_Weak:
8097
0
  case Qualifiers::OCL_Strong:
8098
0
  case Qualifiers::OCL_Autoreleasing:
8099
    // FIXME: Can this happen? By this point, ValType should be known
8100
    // to be trivially copyable.
8101
0
    Diag(ExprRange.getBegin(), diag::err_arc_atomic_ownership)
8102
0
        << ValType << Ptr->getSourceRange();
8103
0
    return ExprError();
8104
0
  }
8105
8106
  // All atomic operations have an overload which takes a pointer to a volatile
8107
  // 'A'.  We shouldn't let the volatile-ness of the pointee-type inject itself
8108
  // into the result or the other operands. Similarly atomic_load takes a
8109
  // pointer to a const 'A'.
8110
0
  ValType.removeLocalVolatile();
8111
0
  ValType.removeLocalConst();
8112
0
  QualType ResultType = ValType;
8113
0
  if (Form == Copy || Form == LoadCopy || Form == GNUXchg ||
8114
0
      Form == Init)
8115
0
    ResultType = Context.VoidTy;
8116
0
  else if (Form == C11CmpXchg || Form == GNUCmpXchg)
8117
0
    ResultType = Context.BoolTy;
8118
8119
  // The type of a parameter passed 'by value'. In the GNU atomics, such
8120
  // arguments are actually passed as pointers.
8121
0
  QualType ByValType = ValType; // 'CP'
8122
0
  bool IsPassedByAddress = false;
8123
0
  if (!IsC11 && !IsHIP && !IsN) {
8124
0
    ByValType = Ptr->getType();
8125
0
    IsPassedByAddress = true;
8126
0
  }
8127
8128
0
  SmallVector<Expr *, 5> APIOrderedArgs;
8129
0
  if (ArgOrder == Sema::AtomicArgumentOrder::AST) {
8130
0
    APIOrderedArgs.push_back(Args[0]);
8131
0
    switch (Form) {
8132
0
    case Init:
8133
0
    case Load:
8134
0
      APIOrderedArgs.push_back(Args[1]); // Val1/Order
8135
0
      break;
8136
0
    case LoadCopy:
8137
0
    case Copy:
8138
0
    case Arithmetic:
8139
0
    case Xchg:
8140
0
      APIOrderedArgs.push_back(Args[2]); // Val1
8141
0
      APIOrderedArgs.push_back(Args[1]); // Order
8142
0
      break;
8143
0
    case GNUXchg:
8144
0
      APIOrderedArgs.push_back(Args[2]); // Val1
8145
0
      APIOrderedArgs.push_back(Args[3]); // Val2
8146
0
      APIOrderedArgs.push_back(Args[1]); // Order
8147
0
      break;
8148
0
    case C11CmpXchg:
8149
0
      APIOrderedArgs.push_back(Args[2]); // Val1
8150
0
      APIOrderedArgs.push_back(Args[4]); // Val2
8151
0
      APIOrderedArgs.push_back(Args[1]); // Order
8152
0
      APIOrderedArgs.push_back(Args[3]); // OrderFail
8153
0
      break;
8154
0
    case GNUCmpXchg:
8155
0
      APIOrderedArgs.push_back(Args[2]); // Val1
8156
0
      APIOrderedArgs.push_back(Args[4]); // Val2
8157
0
      APIOrderedArgs.push_back(Args[5]); // Weak
8158
0
      APIOrderedArgs.push_back(Args[1]); // Order
8159
0
      APIOrderedArgs.push_back(Args[3]); // OrderFail
8160
0
      break;
8161
0
    }
8162
0
  } else
8163
0
    APIOrderedArgs.append(Args.begin(), Args.end());
8164
8165
  // The first argument's non-CV pointer type is used to deduce the type of
8166
  // subsequent arguments, except for:
8167
  //  - weak flag (always converted to bool)
8168
  //  - memory order (always converted to int)
8169
  //  - scope  (always converted to int)
8170
0
  for (unsigned i = 0; i != APIOrderedArgs.size(); ++i) {
8171
0
    QualType Ty;
8172
0
    if (i < NumVals[Form] + 1) {
8173
0
      switch (i) {
8174
0
      case 0:
8175
        // The first argument is always a pointer. It has a fixed type.
8176
        // It is always dereferenced, a nullptr is undefined.
8177
0
        CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
8178
        // Nothing else to do: we already know all we want about this pointer.
8179
0
        continue;
8180
0
      case 1:
8181
        // The second argument is the non-atomic operand. For arithmetic, this
8182
        // is always passed by value, and for a compare_exchange it is always
8183
        // passed by address. For the rest, GNU uses by-address and C11 uses
8184
        // by-value.
8185
0
        assert(Form != Load);
8186
0
        if (Form == Arithmetic && ValType->isPointerType())
8187
0
          Ty = Context.getPointerDiffType();
8188
0
        else if (Form == Init || Form == Arithmetic)
8189
0
          Ty = ValType;
8190
0
        else if (Form == Copy || Form == Xchg) {
8191
0
          if (IsPassedByAddress) {
8192
            // The value pointer is always dereferenced, a nullptr is undefined.
8193
0
            CheckNonNullArgument(*this, APIOrderedArgs[i],
8194
0
                                 ExprRange.getBegin());
8195
0
          }
8196
0
          Ty = ByValType;
8197
0
        } else {
8198
0
          Expr *ValArg = APIOrderedArgs[i];
8199
          // The value pointer is always dereferenced, a nullptr is undefined.
8200
0
          CheckNonNullArgument(*this, ValArg, ExprRange.getBegin());
8201
0
          LangAS AS = LangAS::Default;
8202
          // Keep address space of non-atomic pointer type.
8203
0
          if (const PointerType *PtrTy =
8204
0
                  ValArg->getType()->getAs<PointerType>()) {
8205
0
            AS = PtrTy->getPointeeType().getAddressSpace();
8206
0
          }
8207
0
          Ty = Context.getPointerType(
8208
0
              Context.getAddrSpaceQualType(ValType.getUnqualifiedType(), AS));
8209
0
        }
8210
0
        break;
8211
0
      case 2:
8212
        // The third argument to compare_exchange / GNU exchange is the desired
8213
        // value, either by-value (for the C11 and *_n variant) or as a pointer.
8214
0
        if (IsPassedByAddress)
8215
0
          CheckNonNullArgument(*this, APIOrderedArgs[i], ExprRange.getBegin());
8216
0
        Ty = ByValType;
8217
0
        break;
8218
0
      case 3:
8219
        // The fourth argument to GNU compare_exchange is a 'weak' flag.
8220
0
        Ty = Context.BoolTy;
8221
0
        break;
8222
0
      }
8223
0
    } else {
8224
      // The order(s) and scope are always converted to int.
8225
0
      Ty = Context.IntTy;
8226
0
    }
8227
8228
0
    InitializedEntity Entity =
8229
0
        InitializedEntity::InitializeParameter(Context, Ty, false);
8230
0
    ExprResult Arg = APIOrderedArgs[i];
8231
0
    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
8232
0
    if (Arg.isInvalid())
8233
0
      return true;
8234
0
    APIOrderedArgs[i] = Arg.get();
8235
0
  }
8236
8237
  // Permute the arguments into a 'consistent' order.
8238
0
  SmallVector<Expr*, 5> SubExprs;
8239
0
  SubExprs.push_back(Ptr);
8240
0
  switch (Form) {
8241
0
  case Init:
8242
    // Note, AtomicExpr::getVal1() has a special case for this atomic.
8243
0
    SubExprs.push_back(APIOrderedArgs[1]); // Val1
8244
0
    break;
8245
0
  case Load:
8246
0
    SubExprs.push_back(APIOrderedArgs[1]); // Order
8247
0
    break;
8248
0
  case LoadCopy:
8249
0
  case Copy:
8250
0
  case Arithmetic:
8251
0
  case Xchg:
8252
0
    SubExprs.push_back(APIOrderedArgs[2]); // Order
8253
0
    SubExprs.push_back(APIOrderedArgs[1]); // Val1
8254
0
    break;
8255
0
  case GNUXchg:
8256
    // Note, AtomicExpr::getVal2() has a special case for this atomic.
8257
0
    SubExprs.push_back(APIOrderedArgs[3]); // Order
8258
0
    SubExprs.push_back(APIOrderedArgs[1]); // Val1
8259
0
    SubExprs.push_back(APIOrderedArgs[2]); // Val2
8260
0
    break;
8261
0
  case C11CmpXchg:
8262
0
    SubExprs.push_back(APIOrderedArgs[3]); // Order
8263
0
    SubExprs.push_back(APIOrderedArgs[1]); // Val1
8264
0
    SubExprs.push_back(APIOrderedArgs[4]); // OrderFail
8265
0
    SubExprs.push_back(APIOrderedArgs[2]); // Val2
8266
0
    break;
8267
0
  case GNUCmpXchg:
8268
0
    SubExprs.push_back(APIOrderedArgs[4]); // Order
8269
0
    SubExprs.push_back(APIOrderedArgs[1]); // Val1
8270
0
    SubExprs.push_back(APIOrderedArgs[5]); // OrderFail
8271
0
    SubExprs.push_back(APIOrderedArgs[2]); // Val2
8272
0
    SubExprs.push_back(APIOrderedArgs[3]); // Weak
8273
0
    break;
8274
0
  }
8275
8276
  // If the memory orders are constants, check they are valid.
8277
0
  if (SubExprs.size() >= 2 && Form != Init) {
8278
0
    std::optional<llvm::APSInt> Success =
8279
0
        SubExprs[1]->getIntegerConstantExpr(Context);
8280
0
    if (Success && !isValidOrderingForOp(Success->getSExtValue(), Op)) {
8281
0
      Diag(SubExprs[1]->getBeginLoc(),
8282
0
           diag::warn_atomic_op_has_invalid_memory_order)
8283
0
          << /*success=*/(Form == C11CmpXchg || Form == GNUCmpXchg)
8284
0
          << SubExprs[1]->getSourceRange();
8285
0
    }
8286
0
    if (SubExprs.size() >= 5) {
8287
0
      if (std::optional<llvm::APSInt> Failure =
8288
0
              SubExprs[3]->getIntegerConstantExpr(Context)) {
8289
0
        if (!llvm::is_contained(
8290
0
                {llvm::AtomicOrderingCABI::relaxed,
8291
0
                 llvm::AtomicOrderingCABI::consume,
8292
0
                 llvm::AtomicOrderingCABI::acquire,
8293
0
                 llvm::AtomicOrderingCABI::seq_cst},
8294
0
                (llvm::AtomicOrderingCABI)Failure->getSExtValue())) {
8295
0
          Diag(SubExprs[3]->getBeginLoc(),
8296
0
               diag::warn_atomic_op_has_invalid_memory_order)
8297
0
              << /*failure=*/2 << SubExprs[3]->getSourceRange();
8298
0
        }
8299
0
      }
8300
0
    }
8301
0
  }
8302
8303
0
  if (auto ScopeModel = AtomicExpr::getScopeModel(Op)) {
8304
0
    auto *Scope = Args[Args.size() - 1];
8305
0
    if (std::optional<llvm::APSInt> Result =
8306
0
            Scope->getIntegerConstantExpr(Context)) {
8307
0
      if (!ScopeModel->isValid(Result->getZExtValue()))
8308
0
        Diag(Scope->getBeginLoc(), diag::err_atomic_op_has_invalid_synch_scope)
8309
0
            << Scope->getSourceRange();
8310
0
    }
8311
0
    SubExprs.push_back(Scope);
8312
0
  }
8313
8314
0
  AtomicExpr *AE = new (Context)
8315
0
      AtomicExpr(ExprRange.getBegin(), SubExprs, ResultType, Op, RParenLoc);
8316
8317
0
  if ((Op == AtomicExpr::AO__c11_atomic_load ||
8318
0
       Op == AtomicExpr::AO__c11_atomic_store ||
8319
0
       Op == AtomicExpr::AO__opencl_atomic_load ||
8320
0
       Op == AtomicExpr::AO__hip_atomic_load ||
8321
0
       Op == AtomicExpr::AO__opencl_atomic_store ||
8322
0
       Op == AtomicExpr::AO__hip_atomic_store) &&
8323
0
      Context.AtomicUsesUnsupportedLibcall(AE))
8324
0
    Diag(AE->getBeginLoc(), diag::err_atomic_load_store_uses_lib)
8325
0
        << ((Op == AtomicExpr::AO__c11_atomic_load ||
8326
0
             Op == AtomicExpr::AO__opencl_atomic_load ||
8327
0
             Op == AtomicExpr::AO__hip_atomic_load)
8328
0
                ? 0
8329
0
                : 1);
8330
8331
0
  if (ValType->isBitIntType()) {
8332
0
    Diag(Ptr->getExprLoc(), diag::err_atomic_builtin_bit_int_prohibit);
8333
0
    return ExprError();
8334
0
  }
8335
8336
0
  return AE;
8337
0
}
8338
8339
/// checkBuiltinArgument - Given a call to a builtin function, perform
8340
/// normal type-checking on the given argument, updating the call in
8341
/// place.  This is useful when a builtin function requires custom
8342
/// type-checking for some of its arguments but not necessarily all of
8343
/// them.
8344
///
8345
/// Returns true on error.
8346
0
static bool checkBuiltinArgument(Sema &S, CallExpr *E, unsigned ArgIndex) {
8347
0
  FunctionDecl *Fn = E->getDirectCallee();
8348
0
  assert(Fn && "builtin call without direct callee!");
8349
8350
0
  ParmVarDecl *Param = Fn->getParamDecl(ArgIndex);
8351
0
  InitializedEntity Entity =
8352
0
    InitializedEntity::InitializeParameter(S.Context, Param);
8353
8354
0
  ExprResult Arg = E->getArg(ArgIndex);
8355
0
  Arg = S.PerformCopyInitialization(Entity, SourceLocation(), Arg);
8356
0
  if (Arg.isInvalid())
8357
0
    return true;
8358
8359
0
  E->setArg(ArgIndex, Arg.get());
8360
0
  return false;
8361
0
}
8362
8363
0
bool Sema::BuiltinWasmRefNullExtern(CallExpr *TheCall) {
8364
0
  if (TheCall->getNumArgs() != 0)
8365
0
    return true;
8366
8367
0
  TheCall->setType(Context.getWebAssemblyExternrefType());
8368
8369
0
  return false;
8370
0
}
8371
8372
0
bool Sema::BuiltinWasmRefNullFunc(CallExpr *TheCall) {
8373
0
  if (TheCall->getNumArgs() != 0) {
8374
0
    Diag(TheCall->getBeginLoc(), diag::err_typecheck_call_too_many_args)
8375
0
        << 0 /*function call*/ << /*expected*/ 0 << TheCall->getNumArgs()
8376
0
        << /*is non object*/ 0;
8377
0
    return true;
8378
0
  }
8379
8380
  // This custom type checking code ensures that the nodes are as expected
8381
  // in order to later on generate the necessary builtin.
8382
0
  QualType Pointee = Context.getFunctionType(Context.VoidTy, {}, {});
8383
0
  QualType Type = Context.getPointerType(Pointee);
8384
0
  Pointee = Context.getAddrSpaceQualType(Pointee, LangAS::wasm_funcref);
8385
0
  Type = Context.getAttributedType(attr::WebAssemblyFuncref, Type,
8386
0
                                   Context.getPointerType(Pointee));
8387
0
  TheCall->setType(Type);
8388
8389
0
  return false;
8390
0
}
8391
8392
/// We have a call to a function like __sync_fetch_and_add, which is an
8393
/// overloaded function based on the pointer type of its first argument.
8394
/// The main BuildCallExpr routines have already promoted the types of
8395
/// arguments because all of these calls are prototyped as void(...).
8396
///
8397
/// This function goes through and does final semantic checking for these
8398
/// builtins, as well as generating any warnings.
8399
ExprResult
8400
0
Sema::SemaBuiltinAtomicOverloaded(ExprResult TheCallResult) {
8401
0
  CallExpr *TheCall = static_cast<CallExpr *>(TheCallResult.get());
8402
0
  Expr *Callee = TheCall->getCallee();
8403
0
  DeclRefExpr *DRE = cast<DeclRefExpr>(Callee->IgnoreParenCasts());
8404
0
  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
8405
8406
  // Ensure that we have at least one argument to do type inference from.
8407
0
  if (TheCall->getNumArgs() < 1) {
8408
0
    Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
8409
0
        << 0 << 1 << TheCall->getNumArgs() << /*is non object*/ 0
8410
0
        << Callee->getSourceRange();
8411
0
    return ExprError();
8412
0
  }
8413
8414
  // Inspect the first argument of the atomic builtin.  This should always be
8415
  // a pointer type, whose element is an integral scalar or pointer type.
8416
  // Because it is a pointer type, we don't have to worry about any implicit
8417
  // casts here.
8418
  // FIXME: We don't allow floating point scalars as input.
8419
0
  Expr *FirstArg = TheCall->getArg(0);
8420
0
  ExprResult FirstArgResult = DefaultFunctionArrayLvalueConversion(FirstArg);
8421
0
  if (FirstArgResult.isInvalid())
8422
0
    return ExprError();
8423
0
  FirstArg = FirstArgResult.get();
8424
0
  TheCall->setArg(0, FirstArg);
8425
8426
0
  const PointerType *pointerType = FirstArg->getType()->getAs<PointerType>();
8427
0
  if (!pointerType) {
8428
0
    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer)
8429
0
        << FirstArg->getType() << FirstArg->getSourceRange();
8430
0
    return ExprError();
8431
0
  }
8432
8433
0
  QualType ValType = pointerType->getPointeeType();
8434
0
  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
8435
0
      !ValType->isBlockPointerType()) {
8436
0
    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_must_be_pointer_intptr)
8437
0
        << FirstArg->getType() << FirstArg->getSourceRange();
8438
0
    return ExprError();
8439
0
  }
8440
8441
0
  if (ValType.isConstQualified()) {
8442
0
    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_cannot_be_const)
8443
0
        << FirstArg->getType() << FirstArg->getSourceRange();
8444
0
    return ExprError();
8445
0
  }
8446
8447
0
  switch (ValType.getObjCLifetime()) {
8448
0
  case Qualifiers::OCL_None:
8449
0
  case Qualifiers::OCL_ExplicitNone:
8450
    // okay
8451
0
    break;
8452
8453
0
  case Qualifiers::OCL_Weak:
8454
0
  case Qualifiers::OCL_Strong:
8455
0
  case Qualifiers::OCL_Autoreleasing:
8456
0
    Diag(DRE->getBeginLoc(), diag::err_arc_atomic_ownership)
8457
0
        << ValType << FirstArg->getSourceRange();
8458
0
    return ExprError();
8459
0
  }
8460
8461
  // Strip any qualifiers off ValType.
8462
0
  ValType = ValType.getUnqualifiedType();
8463
8464
  // The majority of builtins return a value, but a few have special return
8465
  // types, so allow them to override appropriately below.
8466
0
  QualType ResultType = ValType;
8467
8468
  // We need to figure out which concrete builtin this maps onto.  For example,
8469
  // __sync_fetch_and_add with a 2 byte object turns into
8470
  // __sync_fetch_and_add_2.
8471
0
#define BUILTIN_ROW(x) \
8472
0
  { Builtin::BI##x##_1, Builtin::BI##x##_2, Builtin::BI##x##_4, \
8473
0
    Builtin::BI##x##_8, Builtin::BI##x##_16 }
8474
8475
0
  static const unsigned BuiltinIndices[][5] = {
8476
0
    BUILTIN_ROW(__sync_fetch_and_add),
8477
0
    BUILTIN_ROW(__sync_fetch_and_sub),
8478
0
    BUILTIN_ROW(__sync_fetch_and_or),
8479
0
    BUILTIN_ROW(__sync_fetch_and_and),
8480
0
    BUILTIN_ROW(__sync_fetch_and_xor),
8481
0
    BUILTIN_ROW(__sync_fetch_and_nand),
8482
8483
0
    BUILTIN_ROW(__sync_add_and_fetch),
8484
0
    BUILTIN_ROW(__sync_sub_and_fetch),
8485
0
    BUILTIN_ROW(__sync_and_and_fetch),
8486
0
    BUILTIN_ROW(__sync_or_and_fetch),
8487
0
    BUILTIN_ROW(__sync_xor_and_fetch),
8488
0
    BUILTIN_ROW(__sync_nand_and_fetch),
8489
8490
0
    BUILTIN_ROW(__sync_val_compare_and_swap),
8491
0
    BUILTIN_ROW(__sync_bool_compare_and_swap),
8492
0
    BUILTIN_ROW(__sync_lock_test_and_set),
8493
0
    BUILTIN_ROW(__sync_lock_release),
8494
0
    BUILTIN_ROW(__sync_swap)
8495
0
  };
8496
0
#undef BUILTIN_ROW
8497
8498
  // Determine the index of the size.
8499
0
  unsigned SizeIndex;
8500
0
  switch (Context.getTypeSizeInChars(ValType).getQuantity()) {
8501
0
  case 1: SizeIndex = 0; break;
8502
0
  case 2: SizeIndex = 1; break;
8503
0
  case 4: SizeIndex = 2; break;
8504
0
  case 8: SizeIndex = 3; break;
8505
0
  case 16: SizeIndex = 4; break;
8506
0
  default:
8507
0
    Diag(DRE->getBeginLoc(), diag::err_atomic_builtin_pointer_size)
8508
0
        << FirstArg->getType() << FirstArg->getSourceRange();
8509
0
    return ExprError();
8510
0
  }
8511
8512
  // Each of these builtins has one pointer argument, followed by some number of
8513
  // values (0, 1 or 2) followed by a potentially empty varags list of stuff
8514
  // that we ignore.  Find out which row of BuiltinIndices to read from as well
8515
  // as the number of fixed args.
8516
0
  unsigned BuiltinID = FDecl->getBuiltinID();
8517
0
  unsigned BuiltinIndex, NumFixed = 1;
8518
0
  bool WarnAboutSemanticsChange = false;
8519
0
  switch (BuiltinID) {
8520
0
  default: llvm_unreachable("Unknown overloaded atomic builtin!");
8521
0
  case Builtin::BI__sync_fetch_and_add:
8522
0
  case Builtin::BI__sync_fetch_and_add_1:
8523
0
  case Builtin::BI__sync_fetch_and_add_2:
8524
0
  case Builtin::BI__sync_fetch_and_add_4:
8525
0
  case Builtin::BI__sync_fetch_and_add_8:
8526
0
  case Builtin::BI__sync_fetch_and_add_16:
8527
0
    BuiltinIndex = 0;
8528
0
    break;
8529
8530
0
  case Builtin::BI__sync_fetch_and_sub:
8531
0
  case Builtin::BI__sync_fetch_and_sub_1:
8532
0
  case Builtin::BI__sync_fetch_and_sub_2:
8533
0
  case Builtin::BI__sync_fetch_and_sub_4:
8534
0
  case Builtin::BI__sync_fetch_and_sub_8:
8535
0
  case Builtin::BI__sync_fetch_and_sub_16:
8536
0
    BuiltinIndex = 1;
8537
0
    break;
8538
8539
0
  case Builtin::BI__sync_fetch_and_or:
8540
0
  case Builtin::BI__sync_fetch_and_or_1:
8541
0
  case Builtin::BI__sync_fetch_and_or_2:
8542
0
  case Builtin::BI__sync_fetch_and_or_4:
8543
0
  case Builtin::BI__sync_fetch_and_or_8:
8544
0
  case Builtin::BI__sync_fetch_and_or_16:
8545
0
    BuiltinIndex = 2;
8546
0
    break;
8547
8548
0
  case Builtin::BI__sync_fetch_and_and:
8549
0
  case Builtin::BI__sync_fetch_and_and_1:
8550
0
  case Builtin::BI__sync_fetch_and_and_2:
8551
0
  case Builtin::BI__sync_fetch_and_and_4:
8552
0
  case Builtin::BI__sync_fetch_and_and_8:
8553
0
  case Builtin::BI__sync_fetch_and_and_16:
8554
0
    BuiltinIndex = 3;
8555
0
    break;
8556
8557
0
  case Builtin::BI__sync_fetch_and_xor:
8558
0
  case Builtin::BI__sync_fetch_and_xor_1:
8559
0
  case Builtin::BI__sync_fetch_and_xor_2:
8560
0
  case Builtin::BI__sync_fetch_and_xor_4:
8561
0
  case Builtin::BI__sync_fetch_and_xor_8:
8562
0
  case Builtin::BI__sync_fetch_and_xor_16:
8563
0
    BuiltinIndex = 4;
8564
0
    break;
8565
8566
0
  case Builtin::BI__sync_fetch_and_nand:
8567
0
  case Builtin::BI__sync_fetch_and_nand_1:
8568
0
  case Builtin::BI__sync_fetch_and_nand_2:
8569
0
  case Builtin::BI__sync_fetch_and_nand_4:
8570
0
  case Builtin::BI__sync_fetch_and_nand_8:
8571
0
  case Builtin::BI__sync_fetch_and_nand_16:
8572
0
    BuiltinIndex = 5;
8573
0
    WarnAboutSemanticsChange = true;
8574
0
    break;
8575
8576
0
  case Builtin::BI__sync_add_and_fetch:
8577
0
  case Builtin::BI__sync_add_and_fetch_1:
8578
0
  case Builtin::BI__sync_add_and_fetch_2:
8579
0
  case Builtin::BI__sync_add_and_fetch_4:
8580
0
  case Builtin::BI__sync_add_and_fetch_8:
8581
0
  case Builtin::BI__sync_add_and_fetch_16:
8582
0
    BuiltinIndex = 6;
8583
0
    break;
8584
8585
0
  case Builtin::BI__sync_sub_and_fetch:
8586
0
  case Builtin::BI__sync_sub_and_fetch_1:
8587
0
  case Builtin::BI__sync_sub_and_fetch_2:
8588
0
  case Builtin::BI__sync_sub_and_fetch_4:
8589
0
  case Builtin::BI__sync_sub_and_fetch_8:
8590
0
  case Builtin::BI__sync_sub_and_fetch_16:
8591
0
    BuiltinIndex = 7;
8592
0
    break;
8593
8594
0
  case Builtin::BI__sync_and_and_fetch:
8595
0
  case Builtin::BI__sync_and_and_fetch_1:
8596
0
  case Builtin::BI__sync_and_and_fetch_2:
8597
0
  case Builtin::BI__sync_and_and_fetch_4:
8598
0
  case Builtin::BI__sync_and_and_fetch_8:
8599
0
  case Builtin::BI__sync_and_and_fetch_16:
8600
0
    BuiltinIndex = 8;
8601
0
    break;
8602
8603
0
  case Builtin::BI__sync_or_and_fetch:
8604
0
  case Builtin::BI__sync_or_and_fetch_1:
8605
0
  case Builtin::BI__sync_or_and_fetch_2:
8606
0
  case Builtin::BI__sync_or_and_fetch_4:
8607
0
  case Builtin::BI__sync_or_and_fetch_8:
8608
0
  case Builtin::BI__sync_or_and_fetch_16:
8609
0
    BuiltinIndex = 9;
8610
0
    break;
8611
8612
0
  case Builtin::BI__sync_xor_and_fetch:
8613
0
  case Builtin::BI__sync_xor_and_fetch_1:
8614
0
  case Builtin::BI__sync_xor_and_fetch_2:
8615
0
  case Builtin::BI__sync_xor_and_fetch_4:
8616
0
  case Builtin::BI__sync_xor_and_fetch_8:
8617
0
  case Builtin::BI__sync_xor_and_fetch_16:
8618
0
    BuiltinIndex = 10;
8619
0
    break;
8620
8621
0
  case Builtin::BI__sync_nand_and_fetch:
8622
0
  case Builtin::BI__sync_nand_and_fetch_1:
8623
0
  case Builtin::BI__sync_nand_and_fetch_2:
8624
0
  case Builtin::BI__sync_nand_and_fetch_4:
8625
0
  case Builtin::BI__sync_nand_and_fetch_8:
8626
0
  case Builtin::BI__sync_nand_and_fetch_16:
8627
0
    BuiltinIndex = 11;
8628
0
    WarnAboutSemanticsChange = true;
8629
0
    break;
8630
8631
0
  case Builtin::BI__sync_val_compare_and_swap:
8632
0
  case Builtin::BI__sync_val_compare_and_swap_1:
8633
0
  case Builtin::BI__sync_val_compare_and_swap_2:
8634
0
  case Builtin::BI__sync_val_compare_and_swap_4:
8635
0
  case Builtin::BI__sync_val_compare_and_swap_8:
8636
0
  case Builtin::BI__sync_val_compare_and_swap_16:
8637
0
    BuiltinIndex = 12;
8638
0
    NumFixed = 2;
8639
0
    break;
8640
8641
0
  case Builtin::BI__sync_bool_compare_and_swap:
8642
0
  case Builtin::BI__sync_bool_compare_and_swap_1:
8643
0
  case Builtin::BI__sync_bool_compare_and_swap_2:
8644
0
  case Builtin::BI__sync_bool_compare_and_swap_4:
8645
0
  case Builtin::BI__sync_bool_compare_and_swap_8:
8646
0
  case Builtin::BI__sync_bool_compare_and_swap_16:
8647
0
    BuiltinIndex = 13;
8648
0
    NumFixed = 2;
8649
0
    ResultType = Context.BoolTy;
8650
0
    break;
8651
8652
0
  case Builtin::BI__sync_lock_test_and_set:
8653
0
  case Builtin::BI__sync_lock_test_and_set_1:
8654
0
  case Builtin::BI__sync_lock_test_and_set_2:
8655
0
  case Builtin::BI__sync_lock_test_and_set_4:
8656
0
  case Builtin::BI__sync_lock_test_and_set_8:
8657
0
  case Builtin::BI__sync_lock_test_and_set_16:
8658
0
    BuiltinIndex = 14;
8659
0
    break;
8660
8661
0
  case Builtin::BI__sync_lock_release:
8662
0
  case Builtin::BI__sync_lock_release_1:
8663
0
  case Builtin::BI__sync_lock_release_2:
8664
0
  case Builtin::BI__sync_lock_release_4:
8665
0
  case Builtin::BI__sync_lock_release_8:
8666
0
  case Builtin::BI__sync_lock_release_16:
8667
0
    BuiltinIndex = 15;
8668
0
    NumFixed = 0;
8669
0
    ResultType = Context.VoidTy;
8670
0
    break;
8671
8672
0
  case Builtin::BI__sync_swap:
8673
0
  case Builtin::BI__sync_swap_1:
8674
0
  case Builtin::BI__sync_swap_2:
8675
0
  case Builtin::BI__sync_swap_4:
8676
0
  case Builtin::BI__sync_swap_8:
8677
0
  case Builtin::BI__sync_swap_16:
8678
0
    BuiltinIndex = 16;
8679
0
    break;
8680
0
  }
8681
8682
  // Now that we know how many fixed arguments we expect, first check that we
8683
  // have at least that many.
8684
0
  if (TheCall->getNumArgs() < 1+NumFixed) {
8685
0
    Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args_at_least)
8686
0
        << 0 << 1 + NumFixed << TheCall->getNumArgs() << /*is non object*/ 0
8687
0
        << Callee->getSourceRange();
8688
0
    return ExprError();
8689
0
  }
8690
8691
0
  Diag(TheCall->getEndLoc(), diag::warn_atomic_implicit_seq_cst)
8692
0
      << Callee->getSourceRange();
8693
8694
0
  if (WarnAboutSemanticsChange) {
8695
0
    Diag(TheCall->getEndLoc(), diag::warn_sync_fetch_and_nand_semantics_change)
8696
0
        << Callee->getSourceRange();
8697
0
  }
8698
8699
  // Get the decl for the concrete builtin from this, we can tell what the
8700
  // concrete integer type we should convert to is.
8701
0
  unsigned NewBuiltinID = BuiltinIndices[BuiltinIndex][SizeIndex];
8702
0
  StringRef NewBuiltinName = Context.BuiltinInfo.getName(NewBuiltinID);
8703
0
  FunctionDecl *NewBuiltinDecl;
8704
0
  if (NewBuiltinID == BuiltinID)
8705
0
    NewBuiltinDecl = FDecl;
8706
0
  else {
8707
    // Perform builtin lookup to avoid redeclaring it.
8708
0
    DeclarationName DN(&Context.Idents.get(NewBuiltinName));
8709
0
    LookupResult Res(*this, DN, DRE->getBeginLoc(), LookupOrdinaryName);
8710
0
    LookupName(Res, TUScope, /*AllowBuiltinCreation=*/true);
8711
0
    assert(Res.getFoundDecl());
8712
0
    NewBuiltinDecl = dyn_cast<FunctionDecl>(Res.getFoundDecl());
8713
0
    if (!NewBuiltinDecl)
8714
0
      return ExprError();
8715
0
  }
8716
8717
  // The first argument --- the pointer --- has a fixed type; we
8718
  // deduce the types of the rest of the arguments accordingly.  Walk
8719
  // the remaining arguments, converting them to the deduced value type.
8720
0
  for (unsigned i = 0; i != NumFixed; ++i) {
8721
0
    ExprResult Arg = TheCall->getArg(i+1);
8722
8723
    // GCC does an implicit conversion to the pointer or integer ValType.  This
8724
    // can fail in some cases (1i -> int**), check for this error case now.
8725
    // Initialize the argument.
8726
0
    InitializedEntity Entity = InitializedEntity::InitializeParameter(Context,
8727
0
                                                   ValType, /*consume*/ false);
8728
0
    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
8729
0
    if (Arg.isInvalid())
8730
0
      return ExprError();
8731
8732
    // Okay, we have something that *can* be converted to the right type.  Check
8733
    // to see if there is a potentially weird extension going on here.  This can
8734
    // happen when you do an atomic operation on something like an char* and
8735
    // pass in 42.  The 42 gets converted to char.  This is even more strange
8736
    // for things like 45.123 -> char, etc.
8737
    // FIXME: Do this check.
8738
0
    TheCall->setArg(i+1, Arg.get());
8739
0
  }
8740
8741
  // Create a new DeclRefExpr to refer to the new decl.
8742
0
  DeclRefExpr *NewDRE = DeclRefExpr::Create(
8743
0
      Context, DRE->getQualifierLoc(), SourceLocation(), NewBuiltinDecl,
8744
0
      /*enclosing*/ false, DRE->getLocation(), Context.BuiltinFnTy,
8745
0
      DRE->getValueKind(), nullptr, nullptr, DRE->isNonOdrUse());
8746
8747
  // Set the callee in the CallExpr.
8748
  // FIXME: This loses syntactic information.
8749
0
  QualType CalleePtrTy = Context.getPointerType(NewBuiltinDecl->getType());
8750
0
  ExprResult PromotedCall = ImpCastExprToType(NewDRE, CalleePtrTy,
8751
0
                                              CK_BuiltinFnToFnPtr);
8752
0
  TheCall->setCallee(PromotedCall.get());
8753
8754
  // Change the result type of the call to match the original value type. This
8755
  // is arbitrary, but the codegen for these builtins ins design to handle it
8756
  // gracefully.
8757
0
  TheCall->setType(ResultType);
8758
8759
  // Prohibit problematic uses of bit-precise integer types with atomic
8760
  // builtins. The arguments would have already been converted to the first
8761
  // argument's type, so only need to check the first argument.
8762
0
  const auto *BitIntValType = ValType->getAs<BitIntType>();
8763
0
  if (BitIntValType && !llvm::isPowerOf2_64(BitIntValType->getNumBits())) {
8764
0
    Diag(FirstArg->getExprLoc(), diag::err_atomic_builtin_ext_int_size);
8765
0
    return ExprError();
8766
0
  }
8767
8768
0
  return TheCallResult;
8769
0
}
8770
8771
/// SemaBuiltinNontemporalOverloaded - We have a call to
8772
/// __builtin_nontemporal_store or __builtin_nontemporal_load, which is an
8773
/// overloaded function based on the pointer type of its last argument.
8774
///
8775
/// This function goes through and does final semantic checking for these
8776
/// builtins.
8777
0
ExprResult Sema::SemaBuiltinNontemporalOverloaded(ExprResult TheCallResult) {
8778
0
  CallExpr *TheCall = (CallExpr *)TheCallResult.get();
8779
0
  DeclRefExpr *DRE =
8780
0
      cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
8781
0
  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
8782
0
  unsigned BuiltinID = FDecl->getBuiltinID();
8783
0
  assert((BuiltinID == Builtin::BI__builtin_nontemporal_store ||
8784
0
          BuiltinID == Builtin::BI__builtin_nontemporal_load) &&
8785
0
         "Unexpected nontemporal load/store builtin!");
8786
0
  bool isStore = BuiltinID == Builtin::BI__builtin_nontemporal_store;
8787
0
  unsigned numArgs = isStore ? 2 : 1;
8788
8789
  // Ensure that we have the proper number of arguments.
8790
0
  if (checkArgCount(*this, TheCall, numArgs))
8791
0
    return ExprError();
8792
8793
  // Inspect the last argument of the nontemporal builtin.  This should always
8794
  // be a pointer type, from which we imply the type of the memory access.
8795
  // Because it is a pointer type, we don't have to worry about any implicit
8796
  // casts here.
8797
0
  Expr *PointerArg = TheCall->getArg(numArgs - 1);
8798
0
  ExprResult PointerArgResult =
8799
0
      DefaultFunctionArrayLvalueConversion(PointerArg);
8800
8801
0
  if (PointerArgResult.isInvalid())
8802
0
    return ExprError();
8803
0
  PointerArg = PointerArgResult.get();
8804
0
  TheCall->setArg(numArgs - 1, PointerArg);
8805
8806
0
  const PointerType *pointerType = PointerArg->getType()->getAs<PointerType>();
8807
0
  if (!pointerType) {
8808
0
    Diag(DRE->getBeginLoc(), diag::err_nontemporal_builtin_must_be_pointer)
8809
0
        << PointerArg->getType() << PointerArg->getSourceRange();
8810
0
    return ExprError();
8811
0
  }
8812
8813
0
  QualType ValType = pointerType->getPointeeType();
8814
8815
  // Strip any qualifiers off ValType.
8816
0
  ValType = ValType.getUnqualifiedType();
8817
0
  if (!ValType->isIntegerType() && !ValType->isAnyPointerType() &&
8818
0
      !ValType->isBlockPointerType() && !ValType->isFloatingType() &&
8819
0
      !ValType->isVectorType()) {
8820
0
    Diag(DRE->getBeginLoc(),
8821
0
         diag::err_nontemporal_builtin_must_be_pointer_intfltptr_or_vector)
8822
0
        << PointerArg->getType() << PointerArg->getSourceRange();
8823
0
    return ExprError();
8824
0
  }
8825
8826
0
  if (!isStore) {
8827
0
    TheCall->setType(ValType);
8828
0
    return TheCallResult;
8829
0
  }
8830
8831
0
  ExprResult ValArg = TheCall->getArg(0);
8832
0
  InitializedEntity Entity = InitializedEntity::InitializeParameter(
8833
0
      Context, ValType, /*consume*/ false);
8834
0
  ValArg = PerformCopyInitialization(Entity, SourceLocation(), ValArg);
8835
0
  if (ValArg.isInvalid())
8836
0
    return ExprError();
8837
8838
0
  TheCall->setArg(0, ValArg.get());
8839
0
  TheCall->setType(Context.VoidTy);
8840
0
  return TheCallResult;
8841
0
}
8842
8843
/// CheckObjCString - Checks that the argument to the builtin
8844
/// CFString constructor is correct
8845
/// Note: It might also make sense to do the UTF-16 conversion here (would
8846
/// simplify the backend).
8847
0
bool Sema::CheckObjCString(Expr *Arg) {
8848
0
  Arg = Arg->IgnoreParenCasts();
8849
0
  StringLiteral *Literal = dyn_cast<StringLiteral>(Arg);
8850
8851
0
  if (!Literal || !Literal->isOrdinary()) {
8852
0
    Diag(Arg->getBeginLoc(), diag::err_cfstring_literal_not_string_constant)
8853
0
        << Arg->getSourceRange();
8854
0
    return true;
8855
0
  }
8856
8857
0
  if (Literal->containsNonAsciiOrNull()) {
8858
0
    StringRef String = Literal->getString();
8859
0
    unsigned NumBytes = String.size();
8860
0
    SmallVector<llvm::UTF16, 128> ToBuf(NumBytes);
8861
0
    const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data();
8862
0
    llvm::UTF16 *ToPtr = &ToBuf[0];
8863
8864
0
    llvm::ConversionResult Result =
8865
0
        llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr,
8866
0
                                 ToPtr + NumBytes, llvm::strictConversion);
8867
    // Check for conversion failure.
8868
0
    if (Result != llvm::conversionOK)
8869
0
      Diag(Arg->getBeginLoc(), diag::warn_cfstring_truncated)
8870
0
          << Arg->getSourceRange();
8871
0
  }
8872
0
  return false;
8873
0
}
8874
8875
/// CheckObjCString - Checks that the format string argument to the os_log()
8876
/// and os_trace() functions is correct, and converts it to const char *.
8877
0
ExprResult Sema::CheckOSLogFormatStringArg(Expr *Arg) {
8878
0
  Arg = Arg->IgnoreParenCasts();
8879
0
  auto *Literal = dyn_cast<StringLiteral>(Arg);
8880
0
  if (!Literal) {
8881
0
    if (auto *ObjcLiteral = dyn_cast<ObjCStringLiteral>(Arg)) {
8882
0
      Literal = ObjcLiteral->getString();
8883
0
    }
8884
0
  }
8885
8886
0
  if (!Literal || (!Literal->isOrdinary() && !Literal->isUTF8())) {
8887
0
    return ExprError(
8888
0
        Diag(Arg->getBeginLoc(), diag::err_os_log_format_not_string_constant)
8889
0
        << Arg->getSourceRange());
8890
0
  }
8891
8892
0
  ExprResult Result(Literal);
8893
0
  QualType ResultTy = Context.getPointerType(Context.CharTy.withConst());
8894
0
  InitializedEntity Entity =
8895
0
      InitializedEntity::InitializeParameter(Context, ResultTy, false);
8896
0
  Result = PerformCopyInitialization(Entity, SourceLocation(), Result);
8897
0
  return Result;
8898
0
}
8899
8900
/// Check that the user is calling the appropriate va_start builtin for the
8901
/// target and calling convention.
8902
0
static bool checkVAStartABI(Sema &S, unsigned BuiltinID, Expr *Fn) {
8903
0
  const llvm::Triple &TT = S.Context.getTargetInfo().getTriple();
8904
0
  bool IsX64 = TT.getArch() == llvm::Triple::x86_64;
8905
0
  bool IsAArch64 = (TT.getArch() == llvm::Triple::aarch64 ||
8906
0
                    TT.getArch() == llvm::Triple::aarch64_32);
8907
0
  bool IsWindows = TT.isOSWindows();
8908
0
  bool IsMSVAStart = BuiltinID == Builtin::BI__builtin_ms_va_start;
8909
0
  if (IsX64 || IsAArch64) {
8910
0
    CallingConv CC = CC_C;
8911
0
    if (const FunctionDecl *FD = S.getCurFunctionDecl())
8912
0
      CC = FD->getType()->castAs<FunctionType>()->getCallConv();
8913
0
    if (IsMSVAStart) {
8914
      // Don't allow this in System V ABI functions.
8915
0
      if (CC == CC_X86_64SysV || (!IsWindows && CC != CC_Win64))
8916
0
        return S.Diag(Fn->getBeginLoc(),
8917
0
                      diag::err_ms_va_start_used_in_sysv_function);
8918
0
    } else {
8919
      // On x86-64/AArch64 Unix, don't allow this in Win64 ABI functions.
8920
      // On x64 Windows, don't allow this in System V ABI functions.
8921
      // (Yes, that means there's no corresponding way to support variadic
8922
      // System V ABI functions on Windows.)
8923
0
      if ((IsWindows && CC == CC_X86_64SysV) ||
8924
0
          (!IsWindows && CC == CC_Win64))
8925
0
        return S.Diag(Fn->getBeginLoc(),
8926
0
                      diag::err_va_start_used_in_wrong_abi_function)
8927
0
               << !IsWindows;
8928
0
    }
8929
0
    return false;
8930
0
  }
8931
8932
0
  if (IsMSVAStart)
8933
0
    return S.Diag(Fn->getBeginLoc(), diag::err_builtin_x64_aarch64_only);
8934
0
  return false;
8935
0
}
8936
8937
static bool checkVAStartIsInVariadicFunction(Sema &S, Expr *Fn,
8938
0
                                             ParmVarDecl **LastParam = nullptr) {
8939
  // Determine whether the current function, block, or obj-c method is variadic
8940
  // and get its parameter list.
8941
0
  bool IsVariadic = false;
8942
0
  ArrayRef<ParmVarDecl *> Params;
8943
0
  DeclContext *Caller = S.CurContext;
8944
0
  if (auto *Block = dyn_cast<BlockDecl>(Caller)) {
8945
0
    IsVariadic = Block->isVariadic();
8946
0
    Params = Block->parameters();
8947
0
  } else if (auto *FD = dyn_cast<FunctionDecl>(Caller)) {
8948
0
    IsVariadic = FD->isVariadic();
8949
0
    Params = FD->parameters();
8950
0
  } else if (auto *MD = dyn_cast<ObjCMethodDecl>(Caller)) {
8951
0
    IsVariadic = MD->isVariadic();
8952
    // FIXME: This isn't correct for methods (results in bogus warning).
8953
0
    Params = MD->parameters();
8954
0
  } else if (isa<CapturedDecl>(Caller)) {
8955
    // We don't support va_start in a CapturedDecl.
8956
0
    S.Diag(Fn->getBeginLoc(), diag::err_va_start_captured_stmt);
8957
0
    return true;
8958
0
  } else {
8959
    // This must be some other declcontext that parses exprs.
8960
0
    S.Diag(Fn->getBeginLoc(), diag::err_va_start_outside_function);
8961
0
    return true;
8962
0
  }
8963
8964
0
  if (!IsVariadic) {
8965
0
    S.Diag(Fn->getBeginLoc(), diag::err_va_start_fixed_function);
8966
0
    return true;
8967
0
  }
8968
8969
0
  if (LastParam)
8970
0
    *LastParam = Params.empty() ? nullptr : Params.back();
8971
8972
0
  return false;
8973
0
}
8974
8975
/// Check the arguments to '__builtin_va_start' or '__builtin_ms_va_start'
8976
/// for validity.  Emit an error and return true on failure; return false
8977
/// on success.
8978
0
bool Sema::SemaBuiltinVAStart(unsigned BuiltinID, CallExpr *TheCall) {
8979
0
  Expr *Fn = TheCall->getCallee();
8980
8981
0
  if (checkVAStartABI(*this, BuiltinID, Fn))
8982
0
    return true;
8983
8984
  // In C23 mode, va_start only needs one argument. However, the builtin still
8985
  // requires two arguments (which matches the behavior of the GCC builtin),
8986
  // <stdarg.h> passes `0` as the second argument in C23 mode.
8987
0
  if (checkArgCount(*this, TheCall, 2))
8988
0
    return true;
8989
8990
  // Type-check the first argument normally.
8991
0
  if (checkBuiltinArgument(*this, TheCall, 0))
8992
0
    return true;
8993
8994
  // Check that the current function is variadic, and get its last parameter.
8995
0
  ParmVarDecl *LastParam;
8996
0
  if (checkVAStartIsInVariadicFunction(*this, Fn, &LastParam))
8997
0
    return true;
8998
8999
  // Verify that the second argument to the builtin is the last argument of the
9000
  // current function or method. In C23 mode, if the second argument is an
9001
  // integer constant expression with value 0, then we don't bother with this
9002
  // check.
9003
0
  bool SecondArgIsLastNamedArgument = false;
9004
0
  const Expr *Arg = TheCall->getArg(1)->IgnoreParenCasts();
9005
0
  if (std::optional<llvm::APSInt> Val =
9006
0
          TheCall->getArg(1)->getIntegerConstantExpr(Context);
9007
0
      Val && LangOpts.C23 && *Val == 0)
9008
0
    return false;
9009
9010
  // These are valid if SecondArgIsLastNamedArgument is false after the next
9011
  // block.
9012
0
  QualType Type;
9013
0
  SourceLocation ParamLoc;
9014
0
  bool IsCRegister = false;
9015
9016
0
  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Arg)) {
9017
0
    if (const ParmVarDecl *PV = dyn_cast<ParmVarDecl>(DR->getDecl())) {
9018
0
      SecondArgIsLastNamedArgument = PV == LastParam;
9019
9020
0
      Type = PV->getType();
9021
0
      ParamLoc = PV->getLocation();
9022
0
      IsCRegister =
9023
0
          PV->getStorageClass() == SC_Register && !getLangOpts().CPlusPlus;
9024
0
    }
9025
0
  }
9026
9027
0
  if (!SecondArgIsLastNamedArgument)
9028
0
    Diag(TheCall->getArg(1)->getBeginLoc(),
9029
0
         diag::warn_second_arg_of_va_start_not_last_named_param);
9030
0
  else if (IsCRegister || Type->isReferenceType() ||
9031
0
           Type->isSpecificBuiltinType(BuiltinType::Float) || [=] {
9032
             // Promotable integers are UB, but enumerations need a bit of
9033
             // extra checking to see what their promotable type actually is.
9034
0
             if (!Context.isPromotableIntegerType(Type))
9035
0
               return false;
9036
0
             if (!Type->isEnumeralType())
9037
0
               return true;
9038
0
             const EnumDecl *ED = Type->castAs<EnumType>()->getDecl();
9039
0
             return !(ED &&
9040
0
                      Context.typesAreCompatible(ED->getPromotionType(), Type));
9041
0
           }()) {
9042
0
    unsigned Reason = 0;
9043
0
    if (Type->isReferenceType())  Reason = 1;
9044
0
    else if (IsCRegister)         Reason = 2;
9045
0
    Diag(Arg->getBeginLoc(), diag::warn_va_start_type_is_undefined) << Reason;
9046
0
    Diag(ParamLoc, diag::note_parameter_type) << Type;
9047
0
  }
9048
9049
0
  return false;
9050
0
}
9051
9052
0
bool Sema::SemaBuiltinVAStartARMMicrosoft(CallExpr *Call) {
9053
0
  auto IsSuitablyTypedFormatArgument = [this](const Expr *Arg) -> bool {
9054
0
    const LangOptions &LO = getLangOpts();
9055
9056
0
    if (LO.CPlusPlus)
9057
0
      return Arg->getType()
9058
0
                 .getCanonicalType()
9059
0
                 .getTypePtr()
9060
0
                 ->getPointeeType()
9061
0
                 .withoutLocalFastQualifiers() == Context.CharTy;
9062
9063
    // In C, allow aliasing through `char *`, this is required for AArch64 at
9064
    // least.
9065
0
    return true;
9066
0
  };
9067
9068
  // void __va_start(va_list *ap, const char *named_addr, size_t slot_size,
9069
  //                 const char *named_addr);
9070
9071
0
  Expr *Func = Call->getCallee();
9072
9073
0
  if (Call->getNumArgs() < 3)
9074
0
    return Diag(Call->getEndLoc(),
9075
0
                diag::err_typecheck_call_too_few_args_at_least)
9076
0
           << 0 /*function call*/ << 3 << Call->getNumArgs()
9077
0
           << /*is non object*/ 0;
9078
9079
  // Type-check the first argument normally.
9080
0
  if (checkBuiltinArgument(*this, Call, 0))
9081
0
    return true;
9082
9083
  // Check that the current function is variadic.
9084
0
  if (checkVAStartIsInVariadicFunction(*this, Func))
9085
0
    return true;
9086
9087
  // __va_start on Windows does not validate the parameter qualifiers
9088
9089
0
  const Expr *Arg1 = Call->getArg(1)->IgnoreParens();
9090
0
  const Type *Arg1Ty = Arg1->getType().getCanonicalType().getTypePtr();
9091
9092
0
  const Expr *Arg2 = Call->getArg(2)->IgnoreParens();
9093
0
  const Type *Arg2Ty = Arg2->getType().getCanonicalType().getTypePtr();
9094
9095
0
  const QualType &ConstCharPtrTy =
9096
0
      Context.getPointerType(Context.CharTy.withConst());
9097
0
  if (!Arg1Ty->isPointerType() || !IsSuitablyTypedFormatArgument(Arg1))
9098
0
    Diag(Arg1->getBeginLoc(), diag::err_typecheck_convert_incompatible)
9099
0
        << Arg1->getType() << ConstCharPtrTy << 1 /* different class */
9100
0
        << 0                                      /* qualifier difference */
9101
0
        << 3                                      /* parameter mismatch */
9102
0
        << 2 << Arg1->getType() << ConstCharPtrTy;
9103
9104
0
  const QualType SizeTy = Context.getSizeType();
9105
0
  if (Arg2Ty->getCanonicalTypeInternal().withoutLocalFastQualifiers() != SizeTy)
9106
0
    Diag(Arg2->getBeginLoc(), diag::err_typecheck_convert_incompatible)
9107
0
        << Arg2->getType() << SizeTy << 1 /* different class */
9108
0
        << 0                              /* qualifier difference */
9109
0
        << 3                              /* parameter mismatch */
9110
0
        << 3 << Arg2->getType() << SizeTy;
9111
9112
0
  return false;
9113
0
}
9114
9115
/// SemaBuiltinUnorderedCompare - Handle functions like __builtin_isgreater and
9116
/// friends.  This is declared to take (...), so we have to check everything.
9117
0
bool Sema::SemaBuiltinUnorderedCompare(CallExpr *TheCall) {
9118
0
  if (checkArgCount(*this, TheCall, 2))
9119
0
    return true;
9120
9121
0
  ExprResult OrigArg0 = TheCall->getArg(0);
9122
0
  ExprResult OrigArg1 = TheCall->getArg(1);
9123
9124
  // Do standard promotions between the two arguments, returning their common
9125
  // type.
9126
0
  QualType Res = UsualArithmeticConversions(
9127
0
      OrigArg0, OrigArg1, TheCall->getExprLoc(), ACK_Comparison);
9128
0
  if (OrigArg0.isInvalid() || OrigArg1.isInvalid())
9129
0
    return true;
9130
9131
  // Make sure any conversions are pushed back into the call; this is
9132
  // type safe since unordered compare builtins are declared as "_Bool
9133
  // foo(...)".
9134
0
  TheCall->setArg(0, OrigArg0.get());
9135
0
  TheCall->setArg(1, OrigArg1.get());
9136
9137
0
  if (OrigArg0.get()->isTypeDependent() || OrigArg1.get()->isTypeDependent())
9138
0
    return false;
9139
9140
  // If the common type isn't a real floating type, then the arguments were
9141
  // invalid for this operation.
9142
0
  if (Res.isNull() || !Res->isRealFloatingType())
9143
0
    return Diag(OrigArg0.get()->getBeginLoc(),
9144
0
                diag::err_typecheck_call_invalid_ordered_compare)
9145
0
           << OrigArg0.get()->getType() << OrigArg1.get()->getType()
9146
0
           << SourceRange(OrigArg0.get()->getBeginLoc(),
9147
0
                          OrigArg1.get()->getEndLoc());
9148
9149
0
  return false;
9150
0
}
9151
9152
/// SemaBuiltinSemaBuiltinFPClassification - Handle functions like
9153
/// __builtin_isnan and friends.  This is declared to take (...), so we have
9154
/// to check everything.
9155
0
bool Sema::SemaBuiltinFPClassification(CallExpr *TheCall, unsigned NumArgs) {
9156
0
  if (checkArgCount(*this, TheCall, NumArgs))
9157
0
    return true;
9158
9159
0
  bool IsFPClass = NumArgs == 2;
9160
9161
  // Find out position of floating-point argument.
9162
0
  unsigned FPArgNo = IsFPClass ? 0 : NumArgs - 1;
9163
9164
  // We can count on all parameters preceding the floating-point just being int.
9165
  // Try all of those.
9166
0
  for (unsigned i = 0; i < FPArgNo; ++i) {
9167
0
    Expr *Arg = TheCall->getArg(i);
9168
9169
0
    if (Arg->isTypeDependent())
9170
0
      return false;
9171
9172
0
    ExprResult Res = PerformImplicitConversion(Arg, Context.IntTy, AA_Passing);
9173
9174
0
    if (Res.isInvalid())
9175
0
      return true;
9176
0
    TheCall->setArg(i, Res.get());
9177
0
  }
9178
9179
0
  Expr *OrigArg = TheCall->getArg(FPArgNo);
9180
9181
0
  if (OrigArg->isTypeDependent())
9182
0
    return false;
9183
9184
  // Usual Unary Conversions will convert half to float, which we want for
9185
  // machines that use fp16 conversion intrinsics. Else, we wnat to leave the
9186
  // type how it is, but do normal L->Rvalue conversions.
9187
0
  if (Context.getTargetInfo().useFP16ConversionIntrinsics())
9188
0
    OrigArg = UsualUnaryConversions(OrigArg).get();
9189
0
  else
9190
0
    OrigArg = DefaultFunctionArrayLvalueConversion(OrigArg).get();
9191
0
  TheCall->setArg(FPArgNo, OrigArg);
9192
9193
0
  QualType VectorResultTy;
9194
0
  QualType ElementTy = OrigArg->getType();
9195
  // TODO: When all classification function are implemented with is_fpclass,
9196
  // vector argument can be supported in all of them.
9197
0
  if (ElementTy->isVectorType() && IsFPClass) {
9198
0
    VectorResultTy = GetSignedVectorType(ElementTy);
9199
0
    ElementTy = ElementTy->getAs<VectorType>()->getElementType();
9200
0
  }
9201
9202
  // This operation requires a non-_Complex floating-point number.
9203
0
  if (!ElementTy->isRealFloatingType())
9204
0
    return Diag(OrigArg->getBeginLoc(),
9205
0
                diag::err_typecheck_call_invalid_unary_fp)
9206
0
           << OrigArg->getType() << OrigArg->getSourceRange();
9207
9208
  // __builtin_isfpclass has integer parameter that specify test mask. It is
9209
  // passed in (...), so it should be analyzed completely here.
9210
0
  if (IsFPClass)
9211
0
    if (SemaBuiltinConstantArgRange(TheCall, 1, 0, llvm::fcAllFlags))
9212
0
      return true;
9213
9214
  // TODO: enable this code to all classification functions.
9215
0
  if (IsFPClass) {
9216
0
    QualType ResultTy;
9217
0
    if (!VectorResultTy.isNull())
9218
0
      ResultTy = VectorResultTy;
9219
0
    else
9220
0
      ResultTy = Context.IntTy;
9221
0
    TheCall->setType(ResultTy);
9222
0
  }
9223
9224
0
  return false;
9225
0
}
9226
9227
/// Perform semantic analysis for a call to __builtin_complex.
9228
0
bool Sema::SemaBuiltinComplex(CallExpr *TheCall) {
9229
0
  if (checkArgCount(*this, TheCall, 2))
9230
0
    return true;
9231
9232
0
  bool Dependent = false;
9233
0
  for (unsigned I = 0; I != 2; ++I) {
9234
0
    Expr *Arg = TheCall->getArg(I);
9235
0
    QualType T = Arg->getType();
9236
0
    if (T->isDependentType()) {
9237
0
      Dependent = true;
9238
0
      continue;
9239
0
    }
9240
9241
    // Despite supporting _Complex int, GCC requires a real floating point type
9242
    // for the operands of __builtin_complex.
9243
0
    if (!T->isRealFloatingType()) {
9244
0
      return Diag(Arg->getBeginLoc(), diag::err_typecheck_call_requires_real_fp)
9245
0
             << Arg->getType() << Arg->getSourceRange();
9246
0
    }
9247
9248
0
    ExprResult Converted = DefaultLvalueConversion(Arg);
9249
0
    if (Converted.isInvalid())
9250
0
      return true;
9251
0
    TheCall->setArg(I, Converted.get());
9252
0
  }
9253
9254
0
  if (Dependent) {
9255
0
    TheCall->setType(Context.DependentTy);
9256
0
    return false;
9257
0
  }
9258
9259
0
  Expr *Real = TheCall->getArg(0);
9260
0
  Expr *Imag = TheCall->getArg(1);
9261
0
  if (!Context.hasSameType(Real->getType(), Imag->getType())) {
9262
0
    return Diag(Real->getBeginLoc(),
9263
0
                diag::err_typecheck_call_different_arg_types)
9264
0
           << Real->getType() << Imag->getType()
9265
0
           << Real->getSourceRange() << Imag->getSourceRange();
9266
0
  }
9267
9268
  // We don't allow _Complex _Float16 nor _Complex __fp16 as type specifiers;
9269
  // don't allow this builtin to form those types either.
9270
  // FIXME: Should we allow these types?
9271
0
  if (Real->getType()->isFloat16Type())
9272
0
    return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
9273
0
           << "_Float16";
9274
0
  if (Real->getType()->isHalfType())
9275
0
    return Diag(TheCall->getBeginLoc(), diag::err_invalid_complex_spec)
9276
0
           << "half";
9277
9278
0
  TheCall->setType(Context.getComplexType(Real->getType()));
9279
0
  return false;
9280
0
}
9281
9282
// Customized Sema Checking for VSX builtins that have the following signature:
9283
// vector [...] builtinName(vector [...], vector [...], const int);
9284
// Which takes the same type of vectors (any legal vector type) for the first
9285
// two arguments and takes compile time constant for the third argument.
9286
// Example builtins are :
9287
// vector double vec_xxpermdi(vector double, vector double, int);
9288
// vector short vec_xxsldwi(vector short, vector short, int);
9289
0
bool Sema::SemaBuiltinVSX(CallExpr *TheCall) {
9290
0
  unsigned ExpectedNumArgs = 3;
9291
0
  if (checkArgCount(*this, TheCall, ExpectedNumArgs))
9292
0
    return true;
9293
9294
  // Check the third argument is a compile time constant
9295
0
  if (!TheCall->getArg(2)->isIntegerConstantExpr(Context))
9296
0
    return Diag(TheCall->getBeginLoc(),
9297
0
                diag::err_vsx_builtin_nonconstant_argument)
9298
0
           << 3 /* argument index */ << TheCall->getDirectCallee()
9299
0
           << SourceRange(TheCall->getArg(2)->getBeginLoc(),
9300
0
                          TheCall->getArg(2)->getEndLoc());
9301
9302
0
  QualType Arg1Ty = TheCall->getArg(0)->getType();
9303
0
  QualType Arg2Ty = TheCall->getArg(1)->getType();
9304
9305
  // Check the type of argument 1 and argument 2 are vectors.
9306
0
  SourceLocation BuiltinLoc = TheCall->getBeginLoc();
9307
0
  if ((!Arg1Ty->isVectorType() && !Arg1Ty->isDependentType()) ||
9308
0
      (!Arg2Ty->isVectorType() && !Arg2Ty->isDependentType())) {
9309
0
    return Diag(BuiltinLoc, diag::err_vec_builtin_non_vector)
9310
0
           << TheCall->getDirectCallee()
9311
0
           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
9312
0
                          TheCall->getArg(1)->getEndLoc());
9313
0
  }
9314
9315
  // Check the first two arguments are the same type.
9316
0
  if (!Context.hasSameUnqualifiedType(Arg1Ty, Arg2Ty)) {
9317
0
    return Diag(BuiltinLoc, diag::err_vec_builtin_incompatible_vector)
9318
0
           << TheCall->getDirectCallee()
9319
0
           << SourceRange(TheCall->getArg(0)->getBeginLoc(),
9320
0
                          TheCall->getArg(1)->getEndLoc());
9321
0
  }
9322
9323
  // When default clang type checking is turned off and the customized type
9324
  // checking is used, the returning type of the function must be explicitly
9325
  // set. Otherwise it is _Bool by default.
9326
0
  TheCall->setType(Arg1Ty);
9327
9328
0
  return false;
9329
0
}
9330
9331
/// SemaBuiltinShuffleVector - Handle __builtin_shufflevector.
9332
// This is declared to take (...), so we have to check everything.
9333
0
ExprResult Sema::SemaBuiltinShuffleVector(CallExpr *TheCall) {
9334
0
  if (TheCall->getNumArgs() < 2)
9335
0
    return ExprError(Diag(TheCall->getEndLoc(),
9336
0
                          diag::err_typecheck_call_too_few_args_at_least)
9337
0
                     << 0 /*function call*/ << 2 << TheCall->getNumArgs()
9338
0
                     << /*is non object*/ 0 << TheCall->getSourceRange());
9339
9340
  // Determine which of the following types of shufflevector we're checking:
9341
  // 1) unary, vector mask: (lhs, mask)
9342
  // 2) binary, scalar mask: (lhs, rhs, index, ..., index)
9343
0
  QualType resType = TheCall->getArg(0)->getType();
9344
0
  unsigned numElements = 0;
9345
9346
0
  if (!TheCall->getArg(0)->isTypeDependent() &&
9347
0
      !TheCall->getArg(1)->isTypeDependent()) {
9348
0
    QualType LHSType = TheCall->getArg(0)->getType();
9349
0
    QualType RHSType = TheCall->getArg(1)->getType();
9350
9351
0
    if (!LHSType->isVectorType() || !RHSType->isVectorType())
9352
0
      return ExprError(
9353
0
          Diag(TheCall->getBeginLoc(), diag::err_vec_builtin_non_vector)
9354
0
          << TheCall->getDirectCallee()
9355
0
          << SourceRange(TheCall->getArg(0)->getBeginLoc(),
9356
0
                         TheCall->getArg(1)->getEndLoc()));
9357
9358
0
    numElements = LHSType->castAs<VectorType>()->getNumElements();
9359
0
    unsigned numResElements = TheCall->getNumArgs() - 2;
9360
9361
    // Check to see if we have a call with 2 vector arguments, the unary shuffle
9362
    // with mask.  If so, verify that RHS is an integer vector type with the
9363
    // same number of elts as lhs.
9364
0
    if (TheCall->getNumArgs() == 2) {
9365
0
      if (!RHSType->hasIntegerRepresentation() ||
9366
0
          RHSType->castAs<VectorType>()->getNumElements() != numElements)
9367
0
        return ExprError(Diag(TheCall->getBeginLoc(),
9368
0
                              diag::err_vec_builtin_incompatible_vector)
9369
0
                         << TheCall->getDirectCallee()
9370
0
                         << SourceRange(TheCall->getArg(1)->getBeginLoc(),
9371
0
                                        TheCall->getArg(1)->getEndLoc()));
9372
0
    } else if (!Context.hasSameUnqualifiedType(LHSType, RHSType)) {
9373
0
      return ExprError(Diag(TheCall->getBeginLoc(),
9374
0
                            diag::err_vec_builtin_incompatible_vector)
9375
0
                       << TheCall->getDirectCallee()
9376
0
                       << SourceRange(TheCall->getArg(0)->getBeginLoc(),
9377
0
                                      TheCall->getArg(1)->getEndLoc()));
9378
0
    } else if (numElements != numResElements) {
9379
0
      QualType eltType = LHSType->castAs<VectorType>()->getElementType();
9380
0
      resType =
9381
0
          Context.getVectorType(eltType, numResElements, VectorKind::Generic);
9382
0
    }
9383
0
  }
9384
9385
0
  for (unsigned i = 2; i < TheCall->getNumArgs(); i++) {
9386
0
    if (TheCall->getArg(i)->isTypeDependent() ||
9387
0
        TheCall->getArg(i)->isValueDependent())
9388
0
      continue;
9389
9390
0
    std::optional<llvm::APSInt> Result;
9391
0
    if (!(Result = TheCall->getArg(i)->getIntegerConstantExpr(Context)))
9392
0
      return ExprError(Diag(TheCall->getBeginLoc(),
9393
0
                            diag::err_shufflevector_nonconstant_argument)
9394
0
                       << TheCall->getArg(i)->getSourceRange());
9395
9396
    // Allow -1 which will be translated to undef in the IR.
9397
0
    if (Result->isSigned() && Result->isAllOnes())
9398
0
      continue;
9399
9400
0
    if (Result->getActiveBits() > 64 ||
9401
0
        Result->getZExtValue() >= numElements * 2)
9402
0
      return ExprError(Diag(TheCall->getBeginLoc(),
9403
0
                            diag::err_shufflevector_argument_too_large)
9404
0
                       << TheCall->getArg(i)->getSourceRange());
9405
0
  }
9406
9407
0
  SmallVector<Expr*, 32> exprs;
9408
9409
0
  for (unsigned i = 0, e = TheCall->getNumArgs(); i != e; i++) {
9410
0
    exprs.push_back(TheCall->getArg(i));
9411
0
    TheCall->setArg(i, nullptr);
9412
0
  }
9413
9414
0
  return new (Context) ShuffleVectorExpr(Context, exprs, resType,
9415
0
                                         TheCall->getCallee()->getBeginLoc(),
9416
0
                                         TheCall->getRParenLoc());
9417
0
}
9418
9419
/// SemaConvertVectorExpr - Handle __builtin_convertvector
9420
ExprResult Sema::SemaConvertVectorExpr(Expr *E, TypeSourceInfo *TInfo,
9421
                                       SourceLocation BuiltinLoc,
9422
0
                                       SourceLocation RParenLoc) {
9423
0
  ExprValueKind VK = VK_PRValue;
9424
0
  ExprObjectKind OK = OK_Ordinary;
9425
0
  QualType DstTy = TInfo->getType();
9426
0
  QualType SrcTy = E->getType();
9427
9428
0
  if (!SrcTy->isVectorType() && !SrcTy->isDependentType())
9429
0
    return ExprError(Diag(BuiltinLoc,
9430
0
                          diag::err_convertvector_non_vector)
9431
0
                     << E->getSourceRange());
9432
0
  if (!DstTy->isVectorType() && !DstTy->isDependentType())
9433
0
    return ExprError(Diag(BuiltinLoc, diag::err_builtin_non_vector_type)
9434
0
                     << "second"
9435
0
                     << "__builtin_convertvector");
9436
9437
0
  if (!SrcTy->isDependentType() && !DstTy->isDependentType()) {
9438
0
    unsigned SrcElts = SrcTy->castAs<VectorType>()->getNumElements();
9439
0
    unsigned DstElts = DstTy->castAs<VectorType>()->getNumElements();
9440
0
    if (SrcElts != DstElts)
9441
0
      return ExprError(Diag(BuiltinLoc,
9442
0
                            diag::err_convertvector_incompatible_vector)
9443
0
                       << E->getSourceRange());
9444
0
  }
9445
9446
0
  return new (Context)
9447
0
      ConvertVectorExpr(E, TInfo, DstTy, VK, OK, BuiltinLoc, RParenLoc);
9448
0
}
9449
9450
/// SemaBuiltinPrefetch - Handle __builtin_prefetch.
9451
// This is declared to take (const void*, ...) and can take two
9452
// optional constant int args.
9453
0
bool Sema::SemaBuiltinPrefetch(CallExpr *TheCall) {
9454
0
  unsigned NumArgs = TheCall->getNumArgs();
9455
9456
0
  if (NumArgs > 3)
9457
0
    return Diag(TheCall->getEndLoc(),
9458
0
                diag::err_typecheck_call_too_many_args_at_most)
9459
0
           << 0 /*function call*/ << 3 << NumArgs << /*is non object*/ 0
9460
0
           << TheCall->getSourceRange();
9461
9462
  // Argument 0 is checked for us and the remaining arguments must be
9463
  // constant integers.
9464
0
  for (unsigned i = 1; i != NumArgs; ++i)
9465
0
    if (SemaBuiltinConstantArgRange(TheCall, i, 0, i == 1 ? 1 : 3))
9466
0
      return true;
9467
9468
0
  return false;
9469
0
}
9470
9471
/// SemaBuiltinArithmeticFence - Handle __arithmetic_fence.
9472
0
bool Sema::SemaBuiltinArithmeticFence(CallExpr *TheCall) {
9473
0
  if (!Context.getTargetInfo().checkArithmeticFenceSupported())
9474
0
    return Diag(TheCall->getBeginLoc(), diag::err_builtin_target_unsupported)
9475
0
           << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
9476
0
  if (checkArgCount(*this, TheCall, 1))
9477
0
    return true;
9478
0
  Expr *Arg = TheCall->getArg(0);
9479
0
  if (Arg->isInstantiationDependent())
9480
0
    return false;
9481
9482
0
  QualType ArgTy = Arg->getType();
9483
0
  if (!ArgTy->hasFloatingRepresentation())
9484
0
    return Diag(TheCall->getEndLoc(), diag::err_typecheck_expect_flt_or_vector)
9485
0
           << ArgTy;
9486
0
  if (Arg->isLValue()) {
9487
0
    ExprResult FirstArg = DefaultLvalueConversion(Arg);
9488
0
    TheCall->setArg(0, FirstArg.get());
9489
0
  }
9490
0
  TheCall->setType(TheCall->getArg(0)->getType());
9491
0
  return false;
9492
0
}
9493
9494
/// SemaBuiltinAssume - Handle __assume (MS Extension).
9495
// __assume does not evaluate its arguments, and should warn if its argument
9496
// has side effects.
9497
0
bool Sema::SemaBuiltinAssume(CallExpr *TheCall) {
9498
0
  Expr *Arg = TheCall->getArg(0);
9499
0
  if (Arg->isInstantiationDependent()) return false;
9500
9501
0
  if (Arg->HasSideEffects(Context))
9502
0
    Diag(Arg->getBeginLoc(), diag::warn_assume_side_effects)
9503
0
        << Arg->getSourceRange()
9504
0
        << cast<FunctionDecl>(TheCall->getCalleeDecl())->getIdentifier();
9505
9506
0
  return false;
9507
0
}
9508
9509
/// Handle __builtin_alloca_with_align. This is declared
9510
/// as (size_t, size_t) where the second size_t must be a power of 2 greater
9511
/// than 8.
9512
0
bool Sema::SemaBuiltinAllocaWithAlign(CallExpr *TheCall) {
9513
  // The alignment must be a constant integer.
9514
0
  Expr *Arg = TheCall->getArg(1);
9515
9516
  // We can't check the value of a dependent argument.
9517
0
  if (!Arg->isTypeDependent() && !Arg->isValueDependent()) {
9518
0
    if (const auto *UE =
9519
0
            dyn_cast<UnaryExprOrTypeTraitExpr>(Arg->IgnoreParenImpCasts()))
9520
0
      if (UE->getKind() == UETT_AlignOf ||
9521
0
          UE->getKind() == UETT_PreferredAlignOf)
9522
0
        Diag(TheCall->getBeginLoc(), diag::warn_alloca_align_alignof)
9523
0
            << Arg->getSourceRange();
9524
9525
0
    llvm::APSInt Result = Arg->EvaluateKnownConstInt(Context);
9526
9527
0
    if (!Result.isPowerOf2())
9528
0
      return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
9529
0
             << Arg->getSourceRange();
9530
9531
0
    if (Result < Context.getCharWidth())
9532
0
      return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_small)
9533
0
             << (unsigned)Context.getCharWidth() << Arg->getSourceRange();
9534
9535
0
    if (Result > std::numeric_limits<int32_t>::max())
9536
0
      return Diag(TheCall->getBeginLoc(), diag::err_alignment_too_big)
9537
0
             << std::numeric_limits<int32_t>::max() << Arg->getSourceRange();
9538
0
  }
9539
9540
0
  return false;
9541
0
}
9542
9543
/// Handle __builtin_assume_aligned. This is declared
9544
/// as (const void*, size_t, ...) and can take one optional constant int arg.
9545
0
bool Sema::SemaBuiltinAssumeAligned(CallExpr *TheCall) {
9546
0
  if (checkArgCountRange(*this, TheCall, 2, 3))
9547
0
    return true;
9548
9549
0
  unsigned NumArgs = TheCall->getNumArgs();
9550
0
  Expr *FirstArg = TheCall->getArg(0);
9551
9552
0
  {
9553
0
    ExprResult FirstArgResult =
9554
0
        DefaultFunctionArrayLvalueConversion(FirstArg);
9555
0
    if (checkBuiltinArgument(*this, TheCall, 0))
9556
0
      return true;
9557
    /// In-place updation of FirstArg by checkBuiltinArgument is ignored.
9558
0
    TheCall->setArg(0, FirstArgResult.get());
9559
0
  }
9560
9561
  // The alignment must be a constant integer.
9562
0
  Expr *SecondArg = TheCall->getArg(1);
9563
9564
  // We can't check the value of a dependent argument.
9565
0
  if (!SecondArg->isValueDependent()) {
9566
0
    llvm::APSInt Result;
9567
0
    if (SemaBuiltinConstantArg(TheCall, 1, Result))
9568
0
      return true;
9569
9570
0
    if (!Result.isPowerOf2())
9571
0
      return Diag(TheCall->getBeginLoc(), diag::err_alignment_not_power_of_two)
9572
0
             << SecondArg->getSourceRange();
9573
9574
0
    if (Result > Sema::MaximumAlignment)
9575
0
      Diag(TheCall->getBeginLoc(), diag::warn_assume_aligned_too_great)
9576
0
          << SecondArg->getSourceRange() << Sema::MaximumAlignment;
9577
0
  }
9578
9579
0
  if (NumArgs > 2) {
9580
0
    Expr *ThirdArg = TheCall->getArg(2);
9581
0
    if (convertArgumentToType(*this, ThirdArg, Context.getSizeType()))
9582
0
      return true;
9583
0
    TheCall->setArg(2, ThirdArg);
9584
0
  }
9585
9586
0
  return false;
9587
0
}
9588
9589
0
bool Sema::SemaBuiltinOSLogFormat(CallExpr *TheCall) {
9590
0
  unsigned BuiltinID =
9591
0
      cast<FunctionDecl>(TheCall->getCalleeDecl())->getBuiltinID();
9592
0
  bool IsSizeCall = BuiltinID == Builtin::BI__builtin_os_log_format_buffer_size;
9593
9594
0
  unsigned NumArgs = TheCall->getNumArgs();
9595
0
  unsigned NumRequiredArgs = IsSizeCall ? 1 : 2;
9596
0
  if (NumArgs < NumRequiredArgs) {
9597
0
    return Diag(TheCall->getEndLoc(), diag::err_typecheck_call_too_few_args)
9598
0
           << 0 /* function call */ << NumRequiredArgs << NumArgs
9599
0
           << /*is non object*/ 0 << TheCall->getSourceRange();
9600
0
  }
9601
0
  if (NumArgs >= NumRequiredArgs + 0x100) {
9602
0
    return Diag(TheCall->getEndLoc(),
9603
0
                diag::err_typecheck_call_too_many_args_at_most)
9604
0
           << 0 /* function call */ << (NumRequiredArgs + 0xff) << NumArgs
9605
0
           << /*is non object*/ 0 << TheCall->getSourceRange();
9606
0
  }
9607
0
  unsigned i = 0;
9608
9609
  // For formatting call, check buffer arg.
9610
0
  if (!IsSizeCall) {
9611
0
    ExprResult Arg(TheCall->getArg(i));
9612
0
    InitializedEntity Entity = InitializedEntity::InitializeParameter(
9613
0
        Context, Context.VoidPtrTy, false);
9614
0
    Arg = PerformCopyInitialization(Entity, SourceLocation(), Arg);
9615
0
    if (Arg.isInvalid())
9616
0
      return true;
9617
0
    TheCall->setArg(i, Arg.get());
9618
0
    i++;
9619
0
  }
9620
9621
  // Check string literal arg.
9622
0
  unsigned FormatIdx = i;
9623
0
  {
9624
0
    ExprResult Arg = CheckOSLogFormatStringArg(TheCall->getArg(i));
9625
0
    if (Arg.isInvalid())
9626
0
      return true;
9627
0
    TheCall->setArg(i, Arg.get());
9628
0
    i++;
9629
0
  }
9630
9631
  // Make sure variadic args are scalar.
9632
0
  unsigned FirstDataArg = i;
9633
0
  while (i < NumArgs) {
9634
0
    ExprResult Arg = DefaultVariadicArgumentPromotion(
9635
0
        TheCall->getArg(i), VariadicFunction, nullptr);
9636
0
    if (Arg.isInvalid())
9637
0
      return true;
9638
0
    CharUnits ArgSize = Context.getTypeSizeInChars(Arg.get()->getType());
9639
0
    if (ArgSize.getQuantity() >= 0x100) {
9640
0
      return Diag(Arg.get()->getEndLoc(), diag::err_os_log_argument_too_big)
9641
0
             << i << (int)ArgSize.getQuantity() << 0xff
9642
0
             << TheCall->getSourceRange();
9643
0
    }
9644
0
    TheCall->setArg(i, Arg.get());
9645
0
    i++;
9646
0
  }
9647
9648
  // Check formatting specifiers. NOTE: We're only doing this for the non-size
9649
  // call to avoid duplicate diagnostics.
9650
0
  if (!IsSizeCall) {
9651
0
    llvm::SmallBitVector CheckedVarArgs(NumArgs, false);
9652
0
    ArrayRef<const Expr *> Args(TheCall->getArgs(), TheCall->getNumArgs());
9653
0
    bool Success = CheckFormatArguments(
9654
0
        Args, FAPK_Variadic, FormatIdx, FirstDataArg, FST_OSLog,
9655
0
        VariadicFunction, TheCall->getBeginLoc(), SourceRange(),
9656
0
        CheckedVarArgs);
9657
0
    if (!Success)
9658
0
      return true;
9659
0
  }
9660
9661
0
  if (IsSizeCall) {
9662
0
    TheCall->setType(Context.getSizeType());
9663
0
  } else {
9664
0
    TheCall->setType(Context.VoidPtrTy);
9665
0
  }
9666
0
  return false;
9667
0
}
9668
9669
/// SemaBuiltinConstantArg - Handle a check if argument ArgNum of CallExpr
9670
/// TheCall is a constant expression.
9671
bool Sema::SemaBuiltinConstantArg(CallExpr *TheCall, int ArgNum,
9672
0
                                  llvm::APSInt &Result) {
9673
0
  Expr *Arg = TheCall->getArg(ArgNum);
9674
0
  DeclRefExpr *DRE =cast<DeclRefExpr>(TheCall->getCallee()->IgnoreParenCasts());
9675
0
  FunctionDecl *FDecl = cast<FunctionDecl>(DRE->getDecl());
9676
9677
0
  if (Arg->isTypeDependent() || Arg->isValueDependent()) return false;
9678
9679
0
  std::optional<llvm::APSInt> R;
9680
0
  if (!(R = Arg->getIntegerConstantExpr(Context)))
9681
0
    return Diag(TheCall->getBeginLoc(), diag::err_constant_integer_arg_type)
9682
0
           << FDecl->getDeclName() << Arg->getSourceRange();
9683
0
  Result = *R;
9684
0
  return false;
9685
0
}
9686
9687
/// SemaBuiltinConstantArgRange - Handle a check if argument ArgNum of CallExpr
9688
/// TheCall is a constant expression in the range [Low, High].
9689
bool Sema::SemaBuiltinConstantArgRange(CallExpr *TheCall, int ArgNum,
9690
0
                                       int Low, int High, bool RangeIsError) {
9691
0
  if (isConstantEvaluatedContext())
9692
0
    return false;
9693
0
  llvm::APSInt Result;
9694
9695
  // We can't check the value of a dependent argument.
9696
0
  Expr *Arg = TheCall->getArg(ArgNum);
9697
0
  if (Arg->isTypeDependent() || Arg->isValueDependent())
9698
0
    return false;
9699
9700
  // Check constant-ness first.
9701
0
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
9702
0
    return true;
9703
9704
0
  if (Result.getSExtValue() < Low || Result.getSExtValue() > High) {
9705
0
    if (RangeIsError)
9706
0
      return Diag(TheCall->getBeginLoc(), diag::err_argument_invalid_range)
9707
0
             << toString(Result, 10) << Low << High << Arg->getSourceRange();
9708
0
    else
9709
      // Defer the warning until we know if the code will be emitted so that
9710
      // dead code can ignore this.
9711
0
      DiagRuntimeBehavior(TheCall->getBeginLoc(), TheCall,
9712
0
                          PDiag(diag::warn_argument_invalid_range)
9713
0
                              << toString(Result, 10) << Low << High
9714
0
                              << Arg->getSourceRange());
9715
0
  }
9716
9717
0
  return false;
9718
0
}
9719
9720
/// SemaBuiltinConstantArgMultiple - Handle a check if argument ArgNum of CallExpr
9721
/// TheCall is a constant expression is a multiple of Num..
9722
bool Sema::SemaBuiltinConstantArgMultiple(CallExpr *TheCall, int ArgNum,
9723
0
                                          unsigned Num) {
9724
0
  llvm::APSInt Result;
9725
9726
  // We can't check the value of a dependent argument.
9727
0
  Expr *Arg = TheCall->getArg(ArgNum);
9728
0
  if (Arg->isTypeDependent() || Arg->isValueDependent())
9729
0
    return false;
9730
9731
  // Check constant-ness first.
9732
0
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
9733
0
    return true;
9734
9735
0
  if (Result.getSExtValue() % Num != 0)
9736
0
    return Diag(TheCall->getBeginLoc(), diag::err_argument_not_multiple)
9737
0
           << Num << Arg->getSourceRange();
9738
9739
0
  return false;
9740
0
}
9741
9742
/// SemaBuiltinConstantArgPower2 - Check if argument ArgNum of TheCall is a
9743
/// constant expression representing a power of 2.
9744
0
bool Sema::SemaBuiltinConstantArgPower2(CallExpr *TheCall, int ArgNum) {
9745
0
  llvm::APSInt Result;
9746
9747
  // We can't check the value of a dependent argument.
9748
0
  Expr *Arg = TheCall->getArg(ArgNum);
9749
0
  if (Arg->isTypeDependent() || Arg->isValueDependent())
9750
0
    return false;
9751
9752
  // Check constant-ness first.
9753
0
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
9754
0
    return true;
9755
9756
  // Bit-twiddling to test for a power of 2: for x > 0, x & (x-1) is zero if
9757
  // and only if x is a power of 2.
9758
0
  if (Result.isStrictlyPositive() && (Result & (Result - 1)) == 0)
9759
0
    return false;
9760
9761
0
  return Diag(TheCall->getBeginLoc(), diag::err_argument_not_power_of_2)
9762
0
         << Arg->getSourceRange();
9763
0
}
9764
9765
0
static bool IsShiftedByte(llvm::APSInt Value) {
9766
0
  if (Value.isNegative())
9767
0
    return false;
9768
9769
  // Check if it's a shifted byte, by shifting it down
9770
0
  while (true) {
9771
    // If the value fits in the bottom byte, the check passes.
9772
0
    if (Value < 0x100)
9773
0
      return true;
9774
9775
    // Otherwise, if the value has _any_ bits in the bottom byte, the check
9776
    // fails.
9777
0
    if ((Value & 0xFF) != 0)
9778
0
      return false;
9779
9780
    // If the bottom 8 bits are all 0, but something above that is nonzero,
9781
    // then shifting the value right by 8 bits won't affect whether it's a
9782
    // shifted byte or not. So do that, and go round again.
9783
0
    Value >>= 8;
9784
0
  }
9785
0
}
9786
9787
/// SemaBuiltinConstantArgShiftedByte - Check if argument ArgNum of TheCall is
9788
/// a constant expression representing an arbitrary byte value shifted left by
9789
/// a multiple of 8 bits.
9790
bool Sema::SemaBuiltinConstantArgShiftedByte(CallExpr *TheCall, int ArgNum,
9791
0
                                             unsigned ArgBits) {
9792
0
  llvm::APSInt Result;
9793
9794
  // We can't check the value of a dependent argument.
9795
0
  Expr *Arg = TheCall->getArg(ArgNum);
9796
0
  if (Arg->isTypeDependent() || Arg->isValueDependent())
9797
0
    return false;
9798
9799
  // Check constant-ness first.
9800
0
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
9801
0
    return true;
9802
9803
  // Truncate to the given size.
9804
0
  Result = Result.getLoBits(ArgBits);
9805
0
  Result.setIsUnsigned(true);
9806
9807
0
  if (IsShiftedByte(Result))
9808
0
    return false;
9809
9810
0
  return Diag(TheCall->getBeginLoc(), diag::err_argument_not_shifted_byte)
9811
0
         << Arg->getSourceRange();
9812
0
}
9813
9814
/// SemaBuiltinConstantArgShiftedByteOr0xFF - Check if argument ArgNum of
9815
/// TheCall is a constant expression representing either a shifted byte value,
9816
/// or a value of the form 0x??FF (i.e. a member of the arithmetic progression
9817
/// 0x00FF, 0x01FF, ..., 0xFFFF). This strange range check is needed for some
9818
/// Arm MVE intrinsics.
9819
bool Sema::SemaBuiltinConstantArgShiftedByteOrXXFF(CallExpr *TheCall,
9820
                                                   int ArgNum,
9821
0
                                                   unsigned ArgBits) {
9822
0
  llvm::APSInt Result;
9823
9824
  // We can't check the value of a dependent argument.
9825
0
  Expr *Arg = TheCall->getArg(ArgNum);
9826
0
  if (Arg->isTypeDependent() || Arg->isValueDependent())
9827
0
    return false;
9828
9829
  // Check constant-ness first.
9830
0
  if (SemaBuiltinConstantArg(TheCall, ArgNum, Result))
9831
0
    return true;
9832
9833
  // Truncate to the given size.
9834
0
  Result = Result.getLoBits(ArgBits);
9835
0
  Result.setIsUnsigned(true);
9836
9837
  // Check to see if it's in either of the required forms.
9838
0
  if (IsShiftedByte(Result) ||
9839
0
      (Result > 0 && Result < 0x10000 && (Result & 0xFF) == 0xFF))
9840
0
    return false;
9841
9842
0
  return Diag(TheCall->getBeginLoc(),
9843
0
              diag::err_argument_not_shifted_byte_or_xxff)
9844
0
         << Arg->getSourceRange();
9845
0
}
9846
9847
/// SemaBuiltinARMMemoryTaggingCall - Handle calls of memory tagging extensions
9848
0
bool Sema::SemaBuiltinARMMemoryTaggingCall(unsigned BuiltinID, CallExpr *TheCall) {
9849
0
  if (BuiltinID == AArch64::BI__builtin_arm_irg) {
9850
0
    if (checkArgCount(*this, TheCall, 2))
9851
0
      return true;
9852
0
    Expr *Arg0 = TheCall->getArg(0);
9853
0
    Expr *Arg1 = TheCall->getArg(1);
9854
9855
0
    ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
9856
0
    if (FirstArg.isInvalid())
9857
0
      return true;
9858
0
    QualType FirstArgType = FirstArg.get()->getType();
9859
0
    if (!FirstArgType->isAnyPointerType())
9860
0
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
9861
0
               << "first" << FirstArgType << Arg0->getSourceRange();
9862
0
    TheCall->setArg(0, FirstArg.get());
9863
9864
0
    ExprResult SecArg = DefaultLvalueConversion(Arg1);
9865
0
    if (SecArg.isInvalid())
9866
0
      return true;
9867
0
    QualType SecArgType = SecArg.get()->getType();
9868
0
    if (!SecArgType->isIntegerType())
9869
0
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
9870
0
               << "second" << SecArgType << Arg1->getSourceRange();
9871
9872
    // Derive the return type from the pointer argument.
9873
0
    TheCall->setType(FirstArgType);
9874
0
    return false;
9875
0
  }
9876
9877
0
  if (BuiltinID == AArch64::BI__builtin_arm_addg) {
9878
0
    if (checkArgCount(*this, TheCall, 2))
9879
0
      return true;
9880
9881
0
    Expr *Arg0 = TheCall->getArg(0);
9882
0
    ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
9883
0
    if (FirstArg.isInvalid())
9884
0
      return true;
9885
0
    QualType FirstArgType = FirstArg.get()->getType();
9886
0
    if (!FirstArgType->isAnyPointerType())
9887
0
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
9888
0
               << "first" << FirstArgType << Arg0->getSourceRange();
9889
0
    TheCall->setArg(0, FirstArg.get());
9890
9891
    // Derive the return type from the pointer argument.
9892
0
    TheCall->setType(FirstArgType);
9893
9894
    // Second arg must be an constant in range [0,15]
9895
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, 15);
9896
0
  }
9897
9898
0
  if (BuiltinID == AArch64::BI__builtin_arm_gmi) {
9899
0
    if (checkArgCount(*this, TheCall, 2))
9900
0
      return true;
9901
0
    Expr *Arg0 = TheCall->getArg(0);
9902
0
    Expr *Arg1 = TheCall->getArg(1);
9903
9904
0
    ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
9905
0
    if (FirstArg.isInvalid())
9906
0
      return true;
9907
0
    QualType FirstArgType = FirstArg.get()->getType();
9908
0
    if (!FirstArgType->isAnyPointerType())
9909
0
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
9910
0
               << "first" << FirstArgType << Arg0->getSourceRange();
9911
9912
0
    QualType SecArgType = Arg1->getType();
9913
0
    if (!SecArgType->isIntegerType())
9914
0
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_integer)
9915
0
               << "second" << SecArgType << Arg1->getSourceRange();
9916
0
    TheCall->setType(Context.IntTy);
9917
0
    return false;
9918
0
  }
9919
9920
0
  if (BuiltinID == AArch64::BI__builtin_arm_ldg ||
9921
0
      BuiltinID == AArch64::BI__builtin_arm_stg) {
9922
0
    if (checkArgCount(*this, TheCall, 1))
9923
0
      return true;
9924
0
    Expr *Arg0 = TheCall->getArg(0);
9925
0
    ExprResult FirstArg = DefaultFunctionArrayLvalueConversion(Arg0);
9926
0
    if (FirstArg.isInvalid())
9927
0
      return true;
9928
9929
0
    QualType FirstArgType = FirstArg.get()->getType();
9930
0
    if (!FirstArgType->isAnyPointerType())
9931
0
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_must_be_pointer)
9932
0
               << "first" << FirstArgType << Arg0->getSourceRange();
9933
0
    TheCall->setArg(0, FirstArg.get());
9934
9935
    // Derive the return type from the pointer argument.
9936
0
    if (BuiltinID == AArch64::BI__builtin_arm_ldg)
9937
0
      TheCall->setType(FirstArgType);
9938
0
    return false;
9939
0
  }
9940
9941
0
  if (BuiltinID == AArch64::BI__builtin_arm_subp) {
9942
0
    Expr *ArgA = TheCall->getArg(0);
9943
0
    Expr *ArgB = TheCall->getArg(1);
9944
9945
0
    ExprResult ArgExprA = DefaultFunctionArrayLvalueConversion(ArgA);
9946
0
    ExprResult ArgExprB = DefaultFunctionArrayLvalueConversion(ArgB);
9947
9948
0
    if (ArgExprA.isInvalid() || ArgExprB.isInvalid())
9949
0
      return true;
9950
9951
0
    QualType ArgTypeA = ArgExprA.get()->getType();
9952
0
    QualType ArgTypeB = ArgExprB.get()->getType();
9953
9954
0
    auto isNull = [&] (Expr *E) -> bool {
9955
0
      return E->isNullPointerConstant(
9956
0
                        Context, Expr::NPC_ValueDependentIsNotNull); };
9957
9958
    // argument should be either a pointer or null
9959
0
    if (!ArgTypeA->isAnyPointerType() && !isNull(ArgA))
9960
0
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
9961
0
        << "first" << ArgTypeA << ArgA->getSourceRange();
9962
9963
0
    if (!ArgTypeB->isAnyPointerType() && !isNull(ArgB))
9964
0
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_arg_null_or_pointer)
9965
0
        << "second" << ArgTypeB << ArgB->getSourceRange();
9966
9967
    // Ensure Pointee types are compatible
9968
0
    if (ArgTypeA->isAnyPointerType() && !isNull(ArgA) &&
9969
0
        ArgTypeB->isAnyPointerType() && !isNull(ArgB)) {
9970
0
      QualType pointeeA = ArgTypeA->getPointeeType();
9971
0
      QualType pointeeB = ArgTypeB->getPointeeType();
9972
0
      if (!Context.typesAreCompatible(
9973
0
             Context.getCanonicalType(pointeeA).getUnqualifiedType(),
9974
0
             Context.getCanonicalType(pointeeB).getUnqualifiedType())) {
9975
0
        return Diag(TheCall->getBeginLoc(), diag::err_typecheck_sub_ptr_compatible)
9976
0
          << ArgTypeA <<  ArgTypeB << ArgA->getSourceRange()
9977
0
          << ArgB->getSourceRange();
9978
0
      }
9979
0
    }
9980
9981
    // at least one argument should be pointer type
9982
0
    if (!ArgTypeA->isAnyPointerType() && !ArgTypeB->isAnyPointerType())
9983
0
      return Diag(TheCall->getBeginLoc(), diag::err_memtag_any2arg_pointer)
9984
0
        <<  ArgTypeA << ArgTypeB << ArgA->getSourceRange();
9985
9986
0
    if (isNull(ArgA)) // adopt type of the other pointer
9987
0
      ArgExprA = ImpCastExprToType(ArgExprA.get(), ArgTypeB, CK_NullToPointer);
9988
9989
0
    if (isNull(ArgB))
9990
0
      ArgExprB = ImpCastExprToType(ArgExprB.get(), ArgTypeA, CK_NullToPointer);
9991
9992
0
    TheCall->setArg(0, ArgExprA.get());
9993
0
    TheCall->setArg(1, ArgExprB.get());
9994
0
    TheCall->setType(Context.LongLongTy);
9995
0
    return false;
9996
0
  }
9997
0
  assert(false && "Unhandled ARM MTE intrinsic");
9998
0
  return true;
9999
0
}
10000
10001
/// SemaBuiltinARMSpecialReg - Handle a check if argument ArgNum of CallExpr
10002
/// TheCall is an ARM/AArch64 special register string literal.
10003
bool Sema::SemaBuiltinARMSpecialReg(unsigned BuiltinID, CallExpr *TheCall,
10004
                                    int ArgNum, unsigned ExpectedFieldNum,
10005
0
                                    bool AllowName) {
10006
0
  bool IsARMBuiltin = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
10007
0
                      BuiltinID == ARM::BI__builtin_arm_wsr64 ||
10008
0
                      BuiltinID == ARM::BI__builtin_arm_rsr ||
10009
0
                      BuiltinID == ARM::BI__builtin_arm_rsrp ||
10010
0
                      BuiltinID == ARM::BI__builtin_arm_wsr ||
10011
0
                      BuiltinID == ARM::BI__builtin_arm_wsrp;
10012
0
  bool IsAArch64Builtin = BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
10013
0
                          BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
10014
0
                          BuiltinID == AArch64::BI__builtin_arm_rsr128 ||
10015
0
                          BuiltinID == AArch64::BI__builtin_arm_wsr128 ||
10016
0
                          BuiltinID == AArch64::BI__builtin_arm_rsr ||
10017
0
                          BuiltinID == AArch64::BI__builtin_arm_rsrp ||
10018
0
                          BuiltinID == AArch64::BI__builtin_arm_wsr ||
10019
0
                          BuiltinID == AArch64::BI__builtin_arm_wsrp;
10020
0
  assert((IsARMBuiltin || IsAArch64Builtin) && "Unexpected ARM builtin.");
10021
10022
  // We can't check the value of a dependent argument.
10023
0
  Expr *Arg = TheCall->getArg(ArgNum);
10024
0
  if (Arg->isTypeDependent() || Arg->isValueDependent())
10025
0
    return false;
10026
10027
  // Check if the argument is a string literal.
10028
0
  if (!isa<StringLiteral>(Arg->IgnoreParenImpCasts()))
10029
0
    return Diag(TheCall->getBeginLoc(), diag::err_expr_not_string_literal)
10030
0
           << Arg->getSourceRange();
10031
10032
  // Check the type of special register given.
10033
0
  StringRef Reg = cast<StringLiteral>(Arg->IgnoreParenImpCasts())->getString();
10034
0
  SmallVector<StringRef, 6> Fields;
10035
0
  Reg.split(Fields, ":");
10036
10037
0
  if (Fields.size() != ExpectedFieldNum && !(AllowName && Fields.size() == 1))
10038
0
    return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
10039
0
           << Arg->getSourceRange();
10040
10041
  // If the string is the name of a register then we cannot check that it is
10042
  // valid here but if the string is of one the forms described in ACLE then we
10043
  // can check that the supplied fields are integers and within the valid
10044
  // ranges.
10045
0
  if (Fields.size() > 1) {
10046
0
    bool FiveFields = Fields.size() == 5;
10047
10048
0
    bool ValidString = true;
10049
0
    if (IsARMBuiltin) {
10050
0
      ValidString &= Fields[0].starts_with_insensitive("cp") ||
10051
0
                     Fields[0].starts_with_insensitive("p");
10052
0
      if (ValidString)
10053
0
        Fields[0] = Fields[0].drop_front(
10054
0
            Fields[0].starts_with_insensitive("cp") ? 2 : 1);
10055
10056
0
      ValidString &= Fields[2].starts_with_insensitive("c");
10057
0
      if (ValidString)
10058
0
        Fields[2] = Fields[2].drop_front(1);
10059
10060
0
      if (FiveFields) {
10061
0
        ValidString &= Fields[3].starts_with_insensitive("c");
10062
0
        if (ValidString)
10063
0
          Fields[3] = Fields[3].drop_front(1);
10064
0
      }
10065
0
    }
10066
10067
0
    SmallVector<int, 5> Ranges;
10068
0
    if (FiveFields)
10069
0
      Ranges.append({IsAArch64Builtin ? 1 : 15, 7, 15, 15, 7});
10070
0
    else
10071
0
      Ranges.append({15, 7, 15});
10072
10073
0
    for (unsigned i=0; i<Fields.size(); ++i) {
10074
0
      int IntField;
10075
0
      ValidString &= !Fields[i].getAsInteger(10, IntField);
10076
0
      ValidString &= (IntField >= 0 && IntField <= Ranges[i]);
10077
0
    }
10078
10079
0
    if (!ValidString)
10080
0
      return Diag(TheCall->getBeginLoc(), diag::err_arm_invalid_specialreg)
10081
0
             << Arg->getSourceRange();
10082
0
  } else if (IsAArch64Builtin && Fields.size() == 1) {
10083
    // This code validates writes to PSTATE registers.
10084
10085
    // Not a write.
10086
0
    if (TheCall->getNumArgs() != 2)
10087
0
      return false;
10088
10089
    // The 128-bit system register accesses do not touch PSTATE.
10090
0
    if (BuiltinID == AArch64::BI__builtin_arm_rsr128 ||
10091
0
        BuiltinID == AArch64::BI__builtin_arm_wsr128)
10092
0
      return false;
10093
10094
    // These are the named PSTATE accesses using "MSR (immediate)" instructions,
10095
    // along with the upper limit on the immediates allowed.
10096
0
    auto MaxLimit = llvm::StringSwitch<std::optional<unsigned>>(Reg)
10097
0
      .CaseLower("spsel", 15)
10098
0
      .CaseLower("daifclr", 15)
10099
0
      .CaseLower("daifset", 15)
10100
0
      .CaseLower("pan", 15)
10101
0
      .CaseLower("uao", 15)
10102
0
      .CaseLower("dit", 15)
10103
0
      .CaseLower("ssbs", 15)
10104
0
      .CaseLower("tco", 15)
10105
0
      .CaseLower("allint", 1)
10106
0
      .CaseLower("pm", 1)
10107
0
      .Default(std::nullopt);
10108
10109
    // If this is not a named PSTATE, just continue without validating, as this
10110
    // will be lowered to an "MSR (register)" instruction directly
10111
0
    if (!MaxLimit)
10112
0
      return false;
10113
10114
    // Here we only allow constants in the range for that pstate, as required by
10115
    // the ACLE.
10116
    //
10117
    // While clang also accepts the names of system registers in its ACLE
10118
    // intrinsics, we prevent this with the PSTATE names used in MSR (immediate)
10119
    // as the value written via a register is different to the value used as an
10120
    // immediate to have the same effect. e.g., for the instruction `msr tco,
10121
    // x0`, it is bit 25 of register x0 that is written into PSTATE.TCO, but
10122
    // with `msr tco, #imm`, it is bit 0 of xN that is written into PSTATE.TCO.
10123
    //
10124
    // If a programmer wants to codegen the MSR (register) form of `msr tco,
10125
    // xN`, they can still do so by specifying the register using five
10126
    // colon-separated numbers in a string.
10127
0
    return SemaBuiltinConstantArgRange(TheCall, 1, 0, *MaxLimit);
10128
0
  }
10129
10130
0
  return false;
10131
0
}
10132
10133
/// SemaBuiltinPPCMMACall - Check the call to a PPC MMA builtin for validity.
10134
/// Emit an error and return true on failure; return false on success.
10135
/// TypeStr is a string containing the type descriptor of the value returned by
10136
/// the builtin and the descriptors of the expected type of the arguments.
10137
bool Sema::SemaBuiltinPPCMMACall(CallExpr *TheCall, unsigned BuiltinID,
10138
0
                                 const char *TypeStr) {
10139
10140
0
  assert((TypeStr[0] != '\0') &&
10141
0
         "Invalid types in PPC MMA builtin declaration");
10142
10143
0
  unsigned Mask = 0;
10144
0
  unsigned ArgNum = 0;
10145
10146
  // The first type in TypeStr is the type of the value returned by the
10147
  // builtin. So we first read that type and change the type of TheCall.
10148
0
  QualType type = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
10149
0
  TheCall->setType(type);
10150
10151
0
  while (*TypeStr != '\0') {
10152
0
    Mask = 0;
10153
0
    QualType ExpectedType = DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
10154
0
    if (ArgNum >= TheCall->getNumArgs()) {
10155
0
      ArgNum++;
10156
0
      break;
10157
0
    }
10158
10159
0
    Expr *Arg = TheCall->getArg(ArgNum);
10160
0
    QualType PassedType = Arg->getType();
10161
0
    QualType StrippedRVType = PassedType.getCanonicalType();
10162
10163
    // Strip Restrict/Volatile qualifiers.
10164
0
    if (StrippedRVType.isRestrictQualified() ||
10165
0
        StrippedRVType.isVolatileQualified())
10166
0
      StrippedRVType = StrippedRVType.getCanonicalType().getUnqualifiedType();
10167
10168
    // The only case where the argument type and expected type are allowed to
10169
    // mismatch is if the argument type is a non-void pointer (or array) and
10170
    // expected type is a void pointer.
10171
0
    if (StrippedRVType != ExpectedType)
10172
0
      if (!(ExpectedType->isVoidPointerType() &&
10173
0
            (StrippedRVType->isPointerType() || StrippedRVType->isArrayType())))
10174
0
        return Diag(Arg->getBeginLoc(),
10175
0
                    diag::err_typecheck_convert_incompatible)
10176
0
               << PassedType << ExpectedType << 1 << 0 << 0;
10177
10178
    // If the value of the Mask is not 0, we have a constraint in the size of
10179
    // the integer argument so here we ensure the argument is a constant that
10180
    // is in the valid range.
10181
0
    if (Mask != 0 &&
10182
0
        SemaBuiltinConstantArgRange(TheCall, ArgNum, 0, Mask, true))
10183
0
      return true;
10184
10185
0
    ArgNum++;
10186
0
  }
10187
10188
  // In case we exited early from the previous loop, there are other types to
10189
  // read from TypeStr. So we need to read them all to ensure we have the right
10190
  // number of arguments in TheCall and if it is not the case, to display a
10191
  // better error message.
10192
0
  while (*TypeStr != '\0') {
10193
0
    (void) DecodePPCMMATypeFromStr(Context, TypeStr, Mask);
10194
0
    ArgNum++;
10195
0
  }
10196
0
  if (checkArgCount(*this, TheCall, ArgNum))
10197
0
    return true;
10198
10199
0
  return false;
10200
0
}
10201
10202
/// SemaBuiltinLongjmp - Handle __builtin_longjmp(void *env[5], int val).
10203
/// This checks that the target supports __builtin_longjmp and
10204
/// that val is a constant 1.
10205
0
bool Sema::SemaBuiltinLongjmp(CallExpr *TheCall) {
10206
0
  if (!Context.getTargetInfo().hasSjLjLowering())
10207
0
    return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_unsupported)
10208
0
           << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
10209
10210
0
  Expr *Arg = TheCall->getArg(1);
10211
0
  llvm::APSInt Result;
10212
10213
  // TODO: This is less than ideal. Overload this to take a value.
10214
0
  if (SemaBuiltinConstantArg(TheCall, 1, Result))
10215
0
    return true;
10216
10217
0
  if (Result != 1)
10218
0
    return Diag(TheCall->getBeginLoc(), diag::err_builtin_longjmp_invalid_val)
10219
0
           << SourceRange(Arg->getBeginLoc(), Arg->getEndLoc());
10220
10221
0
  return false;
10222
0
}
10223
10224
/// SemaBuiltinSetjmp - Handle __builtin_setjmp(void *env[5]).
10225
/// This checks that the target supports __builtin_setjmp.
10226
0
bool Sema::SemaBuiltinSetjmp(CallExpr *TheCall) {
10227
0
  if (!Context.getTargetInfo().hasSjLjLowering())
10228
0
    return Diag(TheCall->getBeginLoc(), diag::err_builtin_setjmp_unsupported)
10229
0
           << SourceRange(TheCall->getBeginLoc(), TheCall->getEndLoc());
10230
0
  return false;
10231
0
}
10232
10233
namespace {
10234
10235
class UncoveredArgHandler {
10236
  enum { Unknown = -1, AllCovered = -2 };
10237
10238
  signed FirstUncoveredArg = Unknown;
10239
  SmallVector<const Expr *, 4> DiagnosticExprs;
10240
10241
public:
10242
0
  UncoveredArgHandler() = default;
10243
10244
0
  bool hasUncoveredArg() const {
10245
0
    return (FirstUncoveredArg >= 0);
10246
0
  }
10247
10248
0
  unsigned getUncoveredArg() const {
10249
0
    assert(hasUncoveredArg() && "no uncovered argument");
10250
0
    return FirstUncoveredArg;
10251
0
  }
10252
10253
0
  void setAllCovered() {
10254
    // A string has been found with all arguments covered, so clear out
10255
    // the diagnostics.
10256
0
    DiagnosticExprs.clear();
10257
0
    FirstUncoveredArg = AllCovered;
10258
0
  }
10259
10260
0
  void Update(signed NewFirstUncoveredArg, const Expr *StrExpr) {
10261
0
    assert(NewFirstUncoveredArg >= 0 && "Outside range");
10262
10263
    // Don't update if a previous string covers all arguments.
10264
0
    if (FirstUncoveredArg == AllCovered)
10265
0
      return;
10266
10267
    // UncoveredArgHandler tracks the highest uncovered argument index
10268
    // and with it all the strings that match this index.
10269
0
    if (NewFirstUncoveredArg == FirstUncoveredArg)
10270
0
      DiagnosticExprs.push_back(StrExpr);
10271
0
    else if (NewFirstUncoveredArg > FirstUncoveredArg) {
10272
0
      DiagnosticExprs.clear();
10273
0
      DiagnosticExprs.push_back(StrExpr);
10274
0
      FirstUncoveredArg = NewFirstUncoveredArg;
10275
0
    }
10276
0
  }
10277
10278
  void Diagnose(Sema &S, bool IsFunctionCall, const Expr *ArgExpr);
10279
};
10280
10281
enum StringLiteralCheckType {
10282
  SLCT_NotALiteral,
10283
  SLCT_UncheckedLiteral,
10284
  SLCT_CheckedLiteral
10285
};
10286
10287
} // namespace
10288
10289
static void sumOffsets(llvm::APSInt &Offset, llvm::APSInt Addend,
10290
                                     BinaryOperatorKind BinOpKind,
10291
0
                                     bool AddendIsRight) {
10292
0
  unsigned BitWidth = Offset.getBitWidth();
10293
0
  unsigned AddendBitWidth = Addend.getBitWidth();
10294
  // There might be negative interim results.
10295
0
  if (Addend.isUnsigned()) {
10296
0
    Addend = Addend.zext(++AddendBitWidth);
10297
0
    Addend.setIsSigned(true);
10298
0
  }
10299
  // Adjust the bit width of the APSInts.
10300
0
  if (AddendBitWidth > BitWidth) {
10301
0
    Offset = Offset.sext(AddendBitWidth);
10302
0
    BitWidth = AddendBitWidth;
10303
0
  } else if (BitWidth > AddendBitWidth) {
10304
0
    Addend = Addend.sext(BitWidth);
10305
0
  }
10306
10307
0
  bool Ov = false;
10308
0
  llvm::APSInt ResOffset = Offset;
10309
0
  if (BinOpKind == BO_Add)
10310
0
    ResOffset = Offset.sadd_ov(Addend, Ov);
10311
0
  else {
10312
0
    assert(AddendIsRight && BinOpKind == BO_Sub &&
10313
0
           "operator must be add or sub with addend on the right");
10314
0
    ResOffset = Offset.ssub_ov(Addend, Ov);
10315
0
  }
10316
10317
  // We add an offset to a pointer here so we should support an offset as big as
10318
  // possible.
10319
0
  if (Ov) {
10320
0
    assert(BitWidth <= std::numeric_limits<unsigned>::max() / 2 &&
10321
0
           "index (intermediate) result too big");
10322
0
    Offset = Offset.sext(2 * BitWidth);
10323
0
    sumOffsets(Offset, Addend, BinOpKind, AddendIsRight);
10324
0
    return;
10325
0
  }
10326
10327
0
  Offset = ResOffset;
10328
0
}
10329
10330
namespace {
10331
10332
// This is a wrapper class around StringLiteral to support offsetted string
10333
// literals as format strings. It takes the offset into account when returning
10334
// the string and its length or the source locations to display notes correctly.
10335
class FormatStringLiteral {
10336
  const StringLiteral *FExpr;
10337
  int64_t Offset;
10338
10339
 public:
10340
  FormatStringLiteral(const StringLiteral *fexpr, int64_t Offset = 0)
10341
0
      : FExpr(fexpr), Offset(Offset) {}
10342
10343
0
  StringRef getString() const {
10344
0
    return FExpr->getString().drop_front(Offset);
10345
0
  }
10346
10347
0
  unsigned getByteLength() const {
10348
0
    return FExpr->getByteLength() - getCharByteWidth() * Offset;
10349
0
  }
10350
10351
0
  unsigned getLength() const { return FExpr->getLength() - Offset; }
10352
0
  unsigned getCharByteWidth() const { return FExpr->getCharByteWidth(); }
10353
10354
0
  StringLiteralKind getKind() const { return FExpr->getKind(); }
10355
10356
0
  QualType getType() const { return FExpr->getType(); }
10357
10358
0
  bool isAscii() const { return FExpr->isOrdinary(); }
10359
0
  bool isWide() const { return FExpr->isWide(); }
10360
0
  bool isUTF8() const { return FExpr->isUTF8(); }
10361
0
  bool isUTF16() const { return FExpr->isUTF16(); }
10362
0
  bool isUTF32() const { return FExpr->isUTF32(); }
10363
0
  bool isPascal() const { return FExpr->isPascal(); }
10364
10365
  SourceLocation getLocationOfByte(
10366
      unsigned ByteNo, const SourceManager &SM, const LangOptions &Features,
10367
      const TargetInfo &Target, unsigned *StartToken = nullptr,
10368
0
      unsigned *StartTokenByteOffset = nullptr) const {
10369
0
    return FExpr->getLocationOfByte(ByteNo + Offset, SM, Features, Target,
10370
0
                                    StartToken, StartTokenByteOffset);
10371
0
  }
10372
10373
0
  SourceLocation getBeginLoc() const LLVM_READONLY {
10374
0
    return FExpr->getBeginLoc().getLocWithOffset(Offset);
10375
0
  }
10376
10377
0
  SourceLocation getEndLoc() const LLVM_READONLY { return FExpr->getEndLoc(); }
10378
};
10379
10380
} // namespace
10381
10382
static void CheckFormatString(
10383
    Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr,
10384
    ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
10385
    unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
10386
    bool inFunctionCall, Sema::VariadicCallType CallType,
10387
    llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
10388
    bool IgnoreStringsWithoutSpecifiers);
10389
10390
static const Expr *maybeConstEvalStringLiteral(ASTContext &Context,
10391
                                               const Expr *E);
10392
10393
// Determine if an expression is a string literal or constant string.
10394
// If this function returns false on the arguments to a function expecting a
10395
// format string, we will usually need to emit a warning.
10396
// True string literals are then checked by CheckFormatString.
10397
static StringLiteralCheckType
10398
checkFormatStringExpr(Sema &S, const Expr *E, ArrayRef<const Expr *> Args,
10399
                      Sema::FormatArgumentPassingKind APK, unsigned format_idx,
10400
                      unsigned firstDataArg, Sema::FormatStringType Type,
10401
                      Sema::VariadicCallType CallType, bool InFunctionCall,
10402
                      llvm::SmallBitVector &CheckedVarArgs,
10403
                      UncoveredArgHandler &UncoveredArg, llvm::APSInt Offset,
10404
0
                      bool IgnoreStringsWithoutSpecifiers = false) {
10405
0
  if (S.isConstantEvaluatedContext())
10406
0
    return SLCT_NotALiteral;
10407
0
tryAgain:
10408
0
  assert(Offset.isSigned() && "invalid offset");
10409
10410
0
  if (E->isTypeDependent() || E->isValueDependent())
10411
0
    return SLCT_NotALiteral;
10412
10413
0
  E = E->IgnoreParenCasts();
10414
10415
0
  if (E->isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull))
10416
    // Technically -Wformat-nonliteral does not warn about this case.
10417
    // The behavior of printf and friends in this case is implementation
10418
    // dependent.  Ideally if the format string cannot be null then
10419
    // it should have a 'nonnull' attribute in the function prototype.
10420
0
    return SLCT_UncheckedLiteral;
10421
10422
0
  switch (E->getStmtClass()) {
10423
0
  case Stmt::InitListExprClass:
10424
    // Handle expressions like {"foobar"}.
10425
0
    if (const clang::Expr *SLE = maybeConstEvalStringLiteral(S.Context, E)) {
10426
0
      return checkFormatStringExpr(S, SLE, Args, APK, format_idx, firstDataArg,
10427
0
                                   Type, CallType, /*InFunctionCall*/ false,
10428
0
                                   CheckedVarArgs, UncoveredArg, Offset,
10429
0
                                   IgnoreStringsWithoutSpecifiers);
10430
0
    }
10431
0
    return SLCT_NotALiteral;
10432
0
  case Stmt::BinaryConditionalOperatorClass:
10433
0
  case Stmt::ConditionalOperatorClass: {
10434
    // The expression is a literal if both sub-expressions were, and it was
10435
    // completely checked only if both sub-expressions were checked.
10436
0
    const AbstractConditionalOperator *C =
10437
0
        cast<AbstractConditionalOperator>(E);
10438
10439
    // Determine whether it is necessary to check both sub-expressions, for
10440
    // example, because the condition expression is a constant that can be
10441
    // evaluated at compile time.
10442
0
    bool CheckLeft = true, CheckRight = true;
10443
10444
0
    bool Cond;
10445
0
    if (C->getCond()->EvaluateAsBooleanCondition(
10446
0
            Cond, S.getASTContext(), S.isConstantEvaluatedContext())) {
10447
0
      if (Cond)
10448
0
        CheckRight = false;
10449
0
      else
10450
0
        CheckLeft = false;
10451
0
    }
10452
10453
    // We need to maintain the offsets for the right and the left hand side
10454
    // separately to check if every possible indexed expression is a valid
10455
    // string literal. They might have different offsets for different string
10456
    // literals in the end.
10457
0
    StringLiteralCheckType Left;
10458
0
    if (!CheckLeft)
10459
0
      Left = SLCT_UncheckedLiteral;
10460
0
    else {
10461
0
      Left = checkFormatStringExpr(S, C->getTrueExpr(), Args, APK, format_idx,
10462
0
                                   firstDataArg, Type, CallType, InFunctionCall,
10463
0
                                   CheckedVarArgs, UncoveredArg, Offset,
10464
0
                                   IgnoreStringsWithoutSpecifiers);
10465
0
      if (Left == SLCT_NotALiteral || !CheckRight) {
10466
0
        return Left;
10467
0
      }
10468
0
    }
10469
10470
0
    StringLiteralCheckType Right = checkFormatStringExpr(
10471
0
        S, C->getFalseExpr(), Args, APK, format_idx, firstDataArg, Type,
10472
0
        CallType, InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
10473
0
        IgnoreStringsWithoutSpecifiers);
10474
10475
0
    return (CheckLeft && Left < Right) ? Left : Right;
10476
0
  }
10477
10478
0
  case Stmt::ImplicitCastExprClass:
10479
0
    E = cast<ImplicitCastExpr>(E)->getSubExpr();
10480
0
    goto tryAgain;
10481
10482
0
  case Stmt::OpaqueValueExprClass:
10483
0
    if (const Expr *src = cast<OpaqueValueExpr>(E)->getSourceExpr()) {
10484
0
      E = src;
10485
0
      goto tryAgain;
10486
0
    }
10487
0
    return SLCT_NotALiteral;
10488
10489
0
  case Stmt::PredefinedExprClass:
10490
    // While __func__, etc., are technically not string literals, they
10491
    // cannot contain format specifiers and thus are not a security
10492
    // liability.
10493
0
    return SLCT_UncheckedLiteral;
10494
10495
0
  case Stmt::DeclRefExprClass: {
10496
0
    const DeclRefExpr *DR = cast<DeclRefExpr>(E);
10497
10498
    // As an exception, do not flag errors for variables binding to
10499
    // const string literals.
10500
0
    if (const VarDecl *VD = dyn_cast<VarDecl>(DR->getDecl())) {
10501
0
      bool isConstant = false;
10502
0
      QualType T = DR->getType();
10503
10504
0
      if (const ArrayType *AT = S.Context.getAsArrayType(T)) {
10505
0
        isConstant = AT->getElementType().isConstant(S.Context);
10506
0
      } else if (const PointerType *PT = T->getAs<PointerType>()) {
10507
0
        isConstant = T.isConstant(S.Context) &&
10508
0
                     PT->getPointeeType().isConstant(S.Context);
10509
0
      } else if (T->isObjCObjectPointerType()) {
10510
        // In ObjC, there is usually no "const ObjectPointer" type,
10511
        // so don't check if the pointee type is constant.
10512
0
        isConstant = T.isConstant(S.Context);
10513
0
      }
10514
10515
0
      if (isConstant) {
10516
0
        if (const Expr *Init = VD->getAnyInitializer()) {
10517
          // Look through initializers like const char c[] = { "foo" }
10518
0
          if (const InitListExpr *InitList = dyn_cast<InitListExpr>(Init)) {
10519
0
            if (InitList->isStringLiteralInit())
10520
0
              Init = InitList->getInit(0)->IgnoreParenImpCasts();
10521
0
          }
10522
0
          return checkFormatStringExpr(
10523
0
              S, Init, Args, APK, format_idx, firstDataArg, Type, CallType,
10524
0
              /*InFunctionCall*/ false, CheckedVarArgs, UncoveredArg, Offset);
10525
0
        }
10526
0
      }
10527
10528
      // When the format argument is an argument of this function, and this
10529
      // function also has the format attribute, there are several interactions
10530
      // for which there shouldn't be a warning. For instance, when calling
10531
      // v*printf from a function that has the printf format attribute, we
10532
      // should not emit a warning about using `fmt`, even though it's not
10533
      // constant, because the arguments have already been checked for the
10534
      // caller of `logmessage`:
10535
      //
10536
      //  __attribute__((format(printf, 1, 2)))
10537
      //  void logmessage(char const *fmt, ...) {
10538
      //    va_list ap;
10539
      //    va_start(ap, fmt);
10540
      //    vprintf(fmt, ap);  /* do not emit a warning about "fmt" */
10541
      //    ...
10542
      // }
10543
      //
10544
      // Another interaction that we need to support is calling a variadic
10545
      // format function from a format function that has fixed arguments. For
10546
      // instance:
10547
      //
10548
      //  __attribute__((format(printf, 1, 2)))
10549
      //  void logstring(char const *fmt, char const *str) {
10550
      //    printf(fmt, str);  /* do not emit a warning about "fmt" */
10551
      //  }
10552
      //
10553
      // Same (and perhaps more relatably) for the variadic template case:
10554
      //
10555
      //  template<typename... Args>
10556
      //  __attribute__((format(printf, 1, 2)))
10557
      //  void log(const char *fmt, Args&&... args) {
10558
      //    printf(fmt, forward<Args>(args)...);
10559
      //           /* do not emit a warning about "fmt" */
10560
      //  }
10561
      //
10562
      // Due to implementation difficulty, we only check the format, not the
10563
      // format arguments, in all cases.
10564
      //
10565
0
      if (const auto *PV = dyn_cast<ParmVarDecl>(VD)) {
10566
0
        if (const auto *D = dyn_cast<Decl>(PV->getDeclContext())) {
10567
0
          for (const auto *PVFormat : D->specific_attrs<FormatAttr>()) {
10568
0
            bool IsCXXMember = false;
10569
0
            if (const auto *MD = dyn_cast<CXXMethodDecl>(D))
10570
0
              IsCXXMember = MD->isInstance();
10571
10572
0
            bool IsVariadic = false;
10573
0
            if (const FunctionType *FnTy = D->getFunctionType())
10574
0
              IsVariadic = cast<FunctionProtoType>(FnTy)->isVariadic();
10575
0
            else if (const auto *BD = dyn_cast<BlockDecl>(D))
10576
0
              IsVariadic = BD->isVariadic();
10577
0
            else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(D))
10578
0
              IsVariadic = OMD->isVariadic();
10579
10580
0
            Sema::FormatStringInfo CallerFSI;
10581
0
            if (Sema::getFormatStringInfo(PVFormat, IsCXXMember, IsVariadic,
10582
0
                                          &CallerFSI)) {
10583
              // We also check if the formats are compatible.
10584
              // We can't pass a 'scanf' string to a 'printf' function.
10585
0
              if (PV->getFunctionScopeIndex() == CallerFSI.FormatIdx &&
10586
0
                  Type == S.GetFormatStringType(PVFormat)) {
10587
                // Lastly, check that argument passing kinds transition in a
10588
                // way that makes sense:
10589
                // from a caller with FAPK_VAList, allow FAPK_VAList
10590
                // from a caller with FAPK_Fixed, allow FAPK_Fixed
10591
                // from a caller with FAPK_Fixed, allow FAPK_Variadic
10592
                // from a caller with FAPK_Variadic, allow FAPK_VAList
10593
0
                switch (combineFAPK(CallerFSI.ArgPassingKind, APK)) {
10594
0
                case combineFAPK(Sema::FAPK_VAList, Sema::FAPK_VAList):
10595
0
                case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Fixed):
10596
0
                case combineFAPK(Sema::FAPK_Fixed, Sema::FAPK_Variadic):
10597
0
                case combineFAPK(Sema::FAPK_Variadic, Sema::FAPK_VAList):
10598
0
                  return SLCT_UncheckedLiteral;
10599
0
                }
10600
0
              }
10601
0
            }
10602
0
          }
10603
0
        }
10604
0
      }
10605
0
    }
10606
10607
0
    return SLCT_NotALiteral;
10608
0
  }
10609
10610
0
  case Stmt::CallExprClass:
10611
0
  case Stmt::CXXMemberCallExprClass: {
10612
0
    const CallExpr *CE = cast<CallExpr>(E);
10613
0
    if (const NamedDecl *ND = dyn_cast_or_null<NamedDecl>(CE->getCalleeDecl())) {
10614
0
      bool IsFirst = true;
10615
0
      StringLiteralCheckType CommonResult;
10616
0
      for (const auto *FA : ND->specific_attrs<FormatArgAttr>()) {
10617
0
        const Expr *Arg = CE->getArg(FA->getFormatIdx().getASTIndex());
10618
0
        StringLiteralCheckType Result = checkFormatStringExpr(
10619
0
            S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
10620
0
            InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
10621
0
            IgnoreStringsWithoutSpecifiers);
10622
0
        if (IsFirst) {
10623
0
          CommonResult = Result;
10624
0
          IsFirst = false;
10625
0
        }
10626
0
      }
10627
0
      if (!IsFirst)
10628
0
        return CommonResult;
10629
10630
0
      if (const auto *FD = dyn_cast<FunctionDecl>(ND)) {
10631
0
        unsigned BuiltinID = FD->getBuiltinID();
10632
0
        if (BuiltinID == Builtin::BI__builtin___CFStringMakeConstantString ||
10633
0
            BuiltinID == Builtin::BI__builtin___NSStringMakeConstantString) {
10634
0
          const Expr *Arg = CE->getArg(0);
10635
0
          return checkFormatStringExpr(
10636
0
              S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
10637
0
              InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
10638
0
              IgnoreStringsWithoutSpecifiers);
10639
0
        }
10640
0
      }
10641
0
    }
10642
0
    if (const Expr *SLE = maybeConstEvalStringLiteral(S.Context, E))
10643
0
      return checkFormatStringExpr(S, SLE, Args, APK, format_idx, firstDataArg,
10644
0
                                   Type, CallType, /*InFunctionCall*/ false,
10645
0
                                   CheckedVarArgs, UncoveredArg, Offset,
10646
0
                                   IgnoreStringsWithoutSpecifiers);
10647
0
    return SLCT_NotALiteral;
10648
0
  }
10649
0
  case Stmt::ObjCMessageExprClass: {
10650
0
    const auto *ME = cast<ObjCMessageExpr>(E);
10651
0
    if (const auto *MD = ME->getMethodDecl()) {
10652
0
      if (const auto *FA = MD->getAttr<FormatArgAttr>()) {
10653
        // As a special case heuristic, if we're using the method -[NSBundle
10654
        // localizedStringForKey:value:table:], ignore any key strings that lack
10655
        // format specifiers. The idea is that if the key doesn't have any
10656
        // format specifiers then its probably just a key to map to the
10657
        // localized strings. If it does have format specifiers though, then its
10658
        // likely that the text of the key is the format string in the
10659
        // programmer's language, and should be checked.
10660
0
        const ObjCInterfaceDecl *IFace;
10661
0
        if (MD->isInstanceMethod() && (IFace = MD->getClassInterface()) &&
10662
0
            IFace->getIdentifier()->isStr("NSBundle") &&
10663
0
            MD->getSelector().isKeywordSelector(
10664
0
                {"localizedStringForKey", "value", "table"})) {
10665
0
          IgnoreStringsWithoutSpecifiers = true;
10666
0
        }
10667
10668
0
        const Expr *Arg = ME->getArg(FA->getFormatIdx().getASTIndex());
10669
0
        return checkFormatStringExpr(
10670
0
            S, Arg, Args, APK, format_idx, firstDataArg, Type, CallType,
10671
0
            InFunctionCall, CheckedVarArgs, UncoveredArg, Offset,
10672
0
            IgnoreStringsWithoutSpecifiers);
10673
0
      }
10674
0
    }
10675
10676
0
    return SLCT_NotALiteral;
10677
0
  }
10678
0
  case Stmt::ObjCStringLiteralClass:
10679
0
  case Stmt::StringLiteralClass: {
10680
0
    const StringLiteral *StrE = nullptr;
10681
10682
0
    if (const ObjCStringLiteral *ObjCFExpr = dyn_cast<ObjCStringLiteral>(E))
10683
0
      StrE = ObjCFExpr->getString();
10684
0
    else
10685
0
      StrE = cast<StringLiteral>(E);
10686
10687
0
    if (StrE) {
10688
0
      if (Offset.isNegative() || Offset > StrE->getLength()) {
10689
        // TODO: It would be better to have an explicit warning for out of
10690
        // bounds literals.
10691
0
        return SLCT_NotALiteral;
10692
0
      }
10693
0
      FormatStringLiteral FStr(StrE, Offset.sextOrTrunc(64).getSExtValue());
10694
0
      CheckFormatString(S, &FStr, E, Args, APK, format_idx, firstDataArg, Type,
10695
0
                        InFunctionCall, CallType, CheckedVarArgs, UncoveredArg,
10696
0
                        IgnoreStringsWithoutSpecifiers);
10697
0
      return SLCT_CheckedLiteral;
10698
0
    }
10699
10700
0
    return SLCT_NotALiteral;
10701
0
  }
10702
0
  case Stmt::BinaryOperatorClass: {
10703
0
    const BinaryOperator *BinOp = cast<BinaryOperator>(E);
10704
10705
    // A string literal + an int offset is still a string literal.
10706
0
    if (BinOp->isAdditiveOp()) {
10707
0
      Expr::EvalResult LResult, RResult;
10708
10709
0
      bool LIsInt = BinOp->getLHS()->EvaluateAsInt(
10710
0
          LResult, S.Context, Expr::SE_NoSideEffects,
10711
0
          S.isConstantEvaluatedContext());
10712
0
      bool RIsInt = BinOp->getRHS()->EvaluateAsInt(
10713
0
          RResult, S.Context, Expr::SE_NoSideEffects,
10714
0
          S.isConstantEvaluatedContext());
10715
10716
0
      if (LIsInt != RIsInt) {
10717
0
        BinaryOperatorKind BinOpKind = BinOp->getOpcode();
10718
10719
0
        if (LIsInt) {
10720
0
          if (BinOpKind == BO_Add) {
10721
0
            sumOffsets(Offset, LResult.Val.getInt(), BinOpKind, RIsInt);
10722
0
            E = BinOp->getRHS();
10723
0
            goto tryAgain;
10724
0
          }
10725
0
        } else {
10726
0
          sumOffsets(Offset, RResult.Val.getInt(), BinOpKind, RIsInt);
10727
0
          E = BinOp->getLHS();
10728
0
          goto tryAgain;
10729
0
        }
10730
0
      }
10731
0
    }
10732
10733
0
    return SLCT_NotALiteral;
10734
0
  }
10735
0
  case Stmt::UnaryOperatorClass: {
10736
0
    const UnaryOperator *UnaOp = cast<UnaryOperator>(E);
10737
0
    auto ASE = dyn_cast<ArraySubscriptExpr>(UnaOp->getSubExpr());
10738
0
    if (UnaOp->getOpcode() == UO_AddrOf && ASE) {
10739
0
      Expr::EvalResult IndexResult;
10740
0
      if (ASE->getRHS()->EvaluateAsInt(IndexResult, S.Context,
10741
0
                                       Expr::SE_NoSideEffects,
10742
0
                                       S.isConstantEvaluatedContext())) {
10743
0
        sumOffsets(Offset, IndexResult.Val.getInt(), BO_Add,
10744
0
                   /*RHS is int*/ true);
10745
0
        E = ASE->getBase();
10746
0
        goto tryAgain;
10747
0
      }
10748
0
    }
10749
10750
0
    return SLCT_NotALiteral;
10751
0
  }
10752
10753
0
  default:
10754
0
    return SLCT_NotALiteral;
10755
0
  }
10756
0
}
10757
10758
// If this expression can be evaluated at compile-time,
10759
// check if the result is a StringLiteral and return it
10760
// otherwise return nullptr
10761
static const Expr *maybeConstEvalStringLiteral(ASTContext &Context,
10762
0
                                               const Expr *E) {
10763
0
  Expr::EvalResult Result;
10764
0
  if (E->EvaluateAsRValue(Result, Context) && Result.Val.isLValue()) {
10765
0
    const auto *LVE = Result.Val.getLValueBase().dyn_cast<const Expr *>();
10766
0
    if (isa_and_nonnull<StringLiteral>(LVE))
10767
0
      return LVE;
10768
0
  }
10769
0
  return nullptr;
10770
0
}
10771
10772
0
Sema::FormatStringType Sema::GetFormatStringType(const FormatAttr *Format) {
10773
0
  return llvm::StringSwitch<FormatStringType>(Format->getType()->getName())
10774
0
      .Case("scanf", FST_Scanf)
10775
0
      .Cases("printf", "printf0", FST_Printf)
10776
0
      .Cases("NSString", "CFString", FST_NSString)
10777
0
      .Case("strftime", FST_Strftime)
10778
0
      .Case("strfmon", FST_Strfmon)
10779
0
      .Cases("kprintf", "cmn_err", "vcmn_err", "zcmn_err", FST_Kprintf)
10780
0
      .Case("freebsd_kprintf", FST_FreeBSDKPrintf)
10781
0
      .Case("os_trace", FST_OSLog)
10782
0
      .Case("os_log", FST_OSLog)
10783
0
      .Default(FST_Unknown);
10784
0
}
10785
10786
/// CheckFormatArguments - Check calls to printf and scanf (and similar
10787
/// functions) for correct use of format strings.
10788
/// Returns true if a format string has been fully checked.
10789
bool Sema::CheckFormatArguments(const FormatAttr *Format,
10790
                                ArrayRef<const Expr *> Args, bool IsCXXMember,
10791
                                VariadicCallType CallType, SourceLocation Loc,
10792
                                SourceRange Range,
10793
0
                                llvm::SmallBitVector &CheckedVarArgs) {
10794
0
  FormatStringInfo FSI;
10795
0
  if (getFormatStringInfo(Format, IsCXXMember, CallType != VariadicDoesNotApply,
10796
0
                          &FSI))
10797
0
    return CheckFormatArguments(Args, FSI.ArgPassingKind, FSI.FormatIdx,
10798
0
                                FSI.FirstDataArg, GetFormatStringType(Format),
10799
0
                                CallType, Loc, Range, CheckedVarArgs);
10800
0
  return false;
10801
0
}
10802
10803
bool Sema::CheckFormatArguments(ArrayRef<const Expr *> Args,
10804
                                Sema::FormatArgumentPassingKind APK,
10805
                                unsigned format_idx, unsigned firstDataArg,
10806
                                FormatStringType Type,
10807
                                VariadicCallType CallType, SourceLocation Loc,
10808
                                SourceRange Range,
10809
0
                                llvm::SmallBitVector &CheckedVarArgs) {
10810
  // CHECK: printf/scanf-like function is called with no format string.
10811
0
  if (format_idx >= Args.size()) {
10812
0
    Diag(Loc, diag::warn_missing_format_string) << Range;
10813
0
    return false;
10814
0
  }
10815
10816
0
  const Expr *OrigFormatExpr = Args[format_idx]->IgnoreParenCasts();
10817
10818
  // CHECK: format string is not a string literal.
10819
  //
10820
  // Dynamically generated format strings are difficult to
10821
  // automatically vet at compile time.  Requiring that format strings
10822
  // are string literals: (1) permits the checking of format strings by
10823
  // the compiler and thereby (2) can practically remove the source of
10824
  // many format string exploits.
10825
10826
  // Format string can be either ObjC string (e.g. @"%d") or
10827
  // C string (e.g. "%d")
10828
  // ObjC string uses the same format specifiers as C string, so we can use
10829
  // the same format string checking logic for both ObjC and C strings.
10830
0
  UncoveredArgHandler UncoveredArg;
10831
0
  StringLiteralCheckType CT = checkFormatStringExpr(
10832
0
      *this, OrigFormatExpr, Args, APK, format_idx, firstDataArg, Type,
10833
0
      CallType,
10834
0
      /*IsFunctionCall*/ true, CheckedVarArgs, UncoveredArg,
10835
0
      /*no string offset*/ llvm::APSInt(64, false) = 0);
10836
10837
  // Generate a diagnostic where an uncovered argument is detected.
10838
0
  if (UncoveredArg.hasUncoveredArg()) {
10839
0
    unsigned ArgIdx = UncoveredArg.getUncoveredArg() + firstDataArg;
10840
0
    assert(ArgIdx < Args.size() && "ArgIdx outside bounds");
10841
0
    UncoveredArg.Diagnose(*this, /*IsFunctionCall*/true, Args[ArgIdx]);
10842
0
  }
10843
10844
0
  if (CT != SLCT_NotALiteral)
10845
    // Literal format string found, check done!
10846
0
    return CT == SLCT_CheckedLiteral;
10847
10848
  // Strftime is particular as it always uses a single 'time' argument,
10849
  // so it is safe to pass a non-literal string.
10850
0
  if (Type == FST_Strftime)
10851
0
    return false;
10852
10853
  // Do not emit diag when the string param is a macro expansion and the
10854
  // format is either NSString or CFString. This is a hack to prevent
10855
  // diag when using the NSLocalizedString and CFCopyLocalizedString macros
10856
  // which are usually used in place of NS and CF string literals.
10857
0
  SourceLocation FormatLoc = Args[format_idx]->getBeginLoc();
10858
0
  if (Type == FST_NSString && SourceMgr.isInSystemMacro(FormatLoc))
10859
0
    return false;
10860
10861
  // If there are no arguments specified, warn with -Wformat-security, otherwise
10862
  // warn only with -Wformat-nonliteral.
10863
0
  if (Args.size() == firstDataArg) {
10864
0
    Diag(FormatLoc, diag::warn_format_nonliteral_noargs)
10865
0
      << OrigFormatExpr->getSourceRange();
10866
0
    switch (Type) {
10867
0
    default:
10868
0
      break;
10869
0
    case FST_Kprintf:
10870
0
    case FST_FreeBSDKPrintf:
10871
0
    case FST_Printf:
10872
0
      Diag(FormatLoc, diag::note_format_security_fixit)
10873
0
        << FixItHint::CreateInsertion(FormatLoc, "\"%s\", ");
10874
0
      break;
10875
0
    case FST_NSString:
10876
0
      Diag(FormatLoc, diag::note_format_security_fixit)
10877
0
        << FixItHint::CreateInsertion(FormatLoc, "@\"%@\", ");
10878
0
      break;
10879
0
    }
10880
0
  } else {
10881
0
    Diag(FormatLoc, diag::warn_format_nonliteral)
10882
0
      << OrigFormatExpr->getSourceRange();
10883
0
  }
10884
0
  return false;
10885
0
}
10886
10887
namespace {
10888
10889
class CheckFormatHandler : public analyze_format_string::FormatStringHandler {
10890
protected:
10891
  Sema &S;
10892
  const FormatStringLiteral *FExpr;
10893
  const Expr *OrigFormatExpr;
10894
  const Sema::FormatStringType FSType;
10895
  const unsigned FirstDataArg;
10896
  const unsigned NumDataArgs;
10897
  const char *Beg; // Start of format string.
10898
  const Sema::FormatArgumentPassingKind ArgPassingKind;
10899
  ArrayRef<const Expr *> Args;
10900
  unsigned FormatIdx;
10901
  llvm::SmallBitVector CoveredArgs;
10902
  bool usesPositionalArgs = false;
10903
  bool atFirstArg = true;
10904
  bool inFunctionCall;
10905
  Sema::VariadicCallType CallType;
10906
  llvm::SmallBitVector &CheckedVarArgs;
10907
  UncoveredArgHandler &UncoveredArg;
10908
10909
public:
10910
  CheckFormatHandler(Sema &s, const FormatStringLiteral *fexpr,
10911
                     const Expr *origFormatExpr,
10912
                     const Sema::FormatStringType type, unsigned firstDataArg,
10913
                     unsigned numDataArgs, const char *beg,
10914
                     Sema::FormatArgumentPassingKind APK,
10915
                     ArrayRef<const Expr *> Args, unsigned formatIdx,
10916
                     bool inFunctionCall, Sema::VariadicCallType callType,
10917
                     llvm::SmallBitVector &CheckedVarArgs,
10918
                     UncoveredArgHandler &UncoveredArg)
10919
      : S(s), FExpr(fexpr), OrigFormatExpr(origFormatExpr), FSType(type),
10920
        FirstDataArg(firstDataArg), NumDataArgs(numDataArgs), Beg(beg),
10921
        ArgPassingKind(APK), Args(Args), FormatIdx(formatIdx),
10922
        inFunctionCall(inFunctionCall), CallType(callType),
10923
0
        CheckedVarArgs(CheckedVarArgs), UncoveredArg(UncoveredArg) {
10924
0
    CoveredArgs.resize(numDataArgs);
10925
0
    CoveredArgs.reset();
10926
0
  }
10927
10928
  void DoneProcessing();
10929
10930
  void HandleIncompleteSpecifier(const char *startSpecifier,
10931
                                 unsigned specifierLen) override;
10932
10933
  void HandleInvalidLengthModifier(
10934
                           const analyze_format_string::FormatSpecifier &FS,
10935
                           const analyze_format_string::ConversionSpecifier &CS,
10936
                           const char *startSpecifier, unsigned specifierLen,
10937
                           unsigned DiagID);
10938
10939
  void HandleNonStandardLengthModifier(
10940
                    const analyze_format_string::FormatSpecifier &FS,
10941
                    const char *startSpecifier, unsigned specifierLen);
10942
10943
  void HandleNonStandardConversionSpecifier(
10944
                    const analyze_format_string::ConversionSpecifier &CS,
10945
                    const char *startSpecifier, unsigned specifierLen);
10946
10947
  void HandlePosition(const char *startPos, unsigned posLen) override;
10948
10949
  void HandleInvalidPosition(const char *startSpecifier,
10950
                             unsigned specifierLen,
10951
                             analyze_format_string::PositionContext p) override;
10952
10953
  void HandleZeroPosition(const char *startPos, unsigned posLen) override;
10954
10955
  void HandleNullChar(const char *nullCharacter) override;
10956
10957
  template <typename Range>
10958
  static void
10959
  EmitFormatDiagnostic(Sema &S, bool inFunctionCall, const Expr *ArgumentExpr,
10960
                       const PartialDiagnostic &PDiag, SourceLocation StringLoc,
10961
                       bool IsStringLocation, Range StringRange,
10962
                       ArrayRef<FixItHint> Fixit = std::nullopt);
10963
10964
protected:
10965
  bool HandleInvalidConversionSpecifier(unsigned argIndex, SourceLocation Loc,
10966
                                        const char *startSpec,
10967
                                        unsigned specifierLen,
10968
                                        const char *csStart, unsigned csLen);
10969
10970
  void HandlePositionalNonpositionalArgs(SourceLocation Loc,
10971
                                         const char *startSpec,
10972
                                         unsigned specifierLen);
10973
10974
  SourceRange getFormatStringRange();
10975
  CharSourceRange getSpecifierRange(const char *startSpecifier,
10976
                                    unsigned specifierLen);
10977
  SourceLocation getLocationOfByte(const char *x);
10978
10979
  const Expr *getDataArg(unsigned i) const;
10980
10981
  bool CheckNumArgs(const analyze_format_string::FormatSpecifier &FS,
10982
                    const analyze_format_string::ConversionSpecifier &CS,
10983
                    const char *startSpecifier, unsigned specifierLen,
10984
                    unsigned argIndex);
10985
10986
  template <typename Range>
10987
  void EmitFormatDiagnostic(PartialDiagnostic PDiag, SourceLocation StringLoc,
10988
                            bool IsStringLocation, Range StringRange,
10989
                            ArrayRef<FixItHint> Fixit = std::nullopt);
10990
};
10991
10992
} // namespace
10993
10994
0
SourceRange CheckFormatHandler::getFormatStringRange() {
10995
0
  return OrigFormatExpr->getSourceRange();
10996
0
}
10997
10998
CharSourceRange CheckFormatHandler::
10999
0
getSpecifierRange(const char *startSpecifier, unsigned specifierLen) {
11000
0
  SourceLocation Start = getLocationOfByte(startSpecifier);
11001
0
  SourceLocation End   = getLocationOfByte(startSpecifier + specifierLen - 1);
11002
11003
  // Advance the end SourceLocation by one due to half-open ranges.
11004
0
  End = End.getLocWithOffset(1);
11005
11006
0
  return CharSourceRange::getCharRange(Start, End);
11007
0
}
11008
11009
0
SourceLocation CheckFormatHandler::getLocationOfByte(const char *x) {
11010
0
  return FExpr->getLocationOfByte(x - Beg, S.getSourceManager(),
11011
0
                                  S.getLangOpts(), S.Context.getTargetInfo());
11012
0
}
11013
11014
void CheckFormatHandler::HandleIncompleteSpecifier(const char *startSpecifier,
11015
0
                                                   unsigned specifierLen){
11016
0
  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_incomplete_specifier),
11017
0
                       getLocationOfByte(startSpecifier),
11018
0
                       /*IsStringLocation*/true,
11019
0
                       getSpecifierRange(startSpecifier, specifierLen));
11020
0
}
11021
11022
void CheckFormatHandler::HandleInvalidLengthModifier(
11023
    const analyze_format_string::FormatSpecifier &FS,
11024
    const analyze_format_string::ConversionSpecifier &CS,
11025
0
    const char *startSpecifier, unsigned specifierLen, unsigned DiagID) {
11026
0
  using namespace analyze_format_string;
11027
11028
0
  const LengthModifier &LM = FS.getLengthModifier();
11029
0
  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
11030
11031
  // See if we know how to fix this length modifier.
11032
0
  std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
11033
0
  if (FixedLM) {
11034
0
    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
11035
0
                         getLocationOfByte(LM.getStart()),
11036
0
                         /*IsStringLocation*/true,
11037
0
                         getSpecifierRange(startSpecifier, specifierLen));
11038
11039
0
    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
11040
0
      << FixedLM->toString()
11041
0
      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
11042
11043
0
  } else {
11044
0
    FixItHint Hint;
11045
0
    if (DiagID == diag::warn_format_nonsensical_length)
11046
0
      Hint = FixItHint::CreateRemoval(LMRange);
11047
11048
0
    EmitFormatDiagnostic(S.PDiag(DiagID) << LM.toString() << CS.toString(),
11049
0
                         getLocationOfByte(LM.getStart()),
11050
0
                         /*IsStringLocation*/true,
11051
0
                         getSpecifierRange(startSpecifier, specifierLen),
11052
0
                         Hint);
11053
0
  }
11054
0
}
11055
11056
void CheckFormatHandler::HandleNonStandardLengthModifier(
11057
    const analyze_format_string::FormatSpecifier &FS,
11058
0
    const char *startSpecifier, unsigned specifierLen) {
11059
0
  using namespace analyze_format_string;
11060
11061
0
  const LengthModifier &LM = FS.getLengthModifier();
11062
0
  CharSourceRange LMRange = getSpecifierRange(LM.getStart(), LM.getLength());
11063
11064
  // See if we know how to fix this length modifier.
11065
0
  std::optional<LengthModifier> FixedLM = FS.getCorrectedLengthModifier();
11066
0
  if (FixedLM) {
11067
0
    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
11068
0
                           << LM.toString() << 0,
11069
0
                         getLocationOfByte(LM.getStart()),
11070
0
                         /*IsStringLocation*/true,
11071
0
                         getSpecifierRange(startSpecifier, specifierLen));
11072
11073
0
    S.Diag(getLocationOfByte(LM.getStart()), diag::note_format_fix_specifier)
11074
0
      << FixedLM->toString()
11075
0
      << FixItHint::CreateReplacement(LMRange, FixedLM->toString());
11076
11077
0
  } else {
11078
0
    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
11079
0
                           << LM.toString() << 0,
11080
0
                         getLocationOfByte(LM.getStart()),
11081
0
                         /*IsStringLocation*/true,
11082
0
                         getSpecifierRange(startSpecifier, specifierLen));
11083
0
  }
11084
0
}
11085
11086
void CheckFormatHandler::HandleNonStandardConversionSpecifier(
11087
    const analyze_format_string::ConversionSpecifier &CS,
11088
0
    const char *startSpecifier, unsigned specifierLen) {
11089
0
  using namespace analyze_format_string;
11090
11091
  // See if we know how to fix this conversion specifier.
11092
0
  std::optional<ConversionSpecifier> FixedCS = CS.getStandardSpecifier();
11093
0
  if (FixedCS) {
11094
0
    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
11095
0
                          << CS.toString() << /*conversion specifier*/1,
11096
0
                         getLocationOfByte(CS.getStart()),
11097
0
                         /*IsStringLocation*/true,
11098
0
                         getSpecifierRange(startSpecifier, specifierLen));
11099
11100
0
    CharSourceRange CSRange = getSpecifierRange(CS.getStart(), CS.getLength());
11101
0
    S.Diag(getLocationOfByte(CS.getStart()), diag::note_format_fix_specifier)
11102
0
      << FixedCS->toString()
11103
0
      << FixItHint::CreateReplacement(CSRange, FixedCS->toString());
11104
0
  } else {
11105
0
    EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard)
11106
0
                          << CS.toString() << /*conversion specifier*/1,
11107
0
                         getLocationOfByte(CS.getStart()),
11108
0
                         /*IsStringLocation*/true,
11109
0
                         getSpecifierRange(startSpecifier, specifierLen));
11110
0
  }
11111
0
}
11112
11113
void CheckFormatHandler::HandlePosition(const char *startPos,
11114
0
                                        unsigned posLen) {
11115
0
  EmitFormatDiagnostic(S.PDiag(diag::warn_format_non_standard_positional_arg),
11116
0
                               getLocationOfByte(startPos),
11117
0
                               /*IsStringLocation*/true,
11118
0
                               getSpecifierRange(startPos, posLen));
11119
0
}
11120
11121
void CheckFormatHandler::HandleInvalidPosition(
11122
    const char *startSpecifier, unsigned specifierLen,
11123
0
    analyze_format_string::PositionContext p) {
11124
0
  EmitFormatDiagnostic(
11125
0
      S.PDiag(diag::warn_format_invalid_positional_specifier) << (unsigned)p,
11126
0
      getLocationOfByte(startSpecifier), /*IsStringLocation*/ true,
11127
0
      getSpecifierRange(startSpecifier, specifierLen));
11128
0
}
11129
11130
void CheckFormatHandler::HandleZeroPosition(const char *startPos,
11131
0
                                            unsigned posLen) {
11132
0
  EmitFormatDiagnostic(S.PDiag(diag::warn_format_zero_positional_specifier),
11133
0
                               getLocationOfByte(startPos),
11134
0
                               /*IsStringLocation*/true,
11135
0
                               getSpecifierRange(startPos, posLen));
11136
0
}
11137
11138
0
void CheckFormatHandler::HandleNullChar(const char *nullCharacter) {
11139
0
  if (!isa<ObjCStringLiteral>(OrigFormatExpr)) {
11140
    // The presence of a null character is likely an error.
11141
0
    EmitFormatDiagnostic(
11142
0
      S.PDiag(diag::warn_printf_format_string_contains_null_char),
11143
0
      getLocationOfByte(nullCharacter), /*IsStringLocation*/true,
11144
0
      getFormatStringRange());
11145
0
  }
11146
0
}
11147
11148
// Note that this may return NULL if there was an error parsing or building
11149
// one of the argument expressions.
11150
0
const Expr *CheckFormatHandler::getDataArg(unsigned i) const {
11151
0
  return Args[FirstDataArg + i];
11152
0
}
11153
11154
0
void CheckFormatHandler::DoneProcessing() {
11155
  // Does the number of data arguments exceed the number of
11156
  // format conversions in the format string?
11157
0
  if (ArgPassingKind != Sema::FAPK_VAList) {
11158
    // Find any arguments that weren't covered.
11159
0
    CoveredArgs.flip();
11160
0
    signed notCoveredArg = CoveredArgs.find_first();
11161
0
    if (notCoveredArg >= 0) {
11162
0
      assert((unsigned)notCoveredArg < NumDataArgs);
11163
0
      UncoveredArg.Update(notCoveredArg, OrigFormatExpr);
11164
0
    } else {
11165
0
      UncoveredArg.setAllCovered();
11166
0
    }
11167
0
  }
11168
0
}
11169
11170
void UncoveredArgHandler::Diagnose(Sema &S, bool IsFunctionCall,
11171
0
                                   const Expr *ArgExpr) {
11172
0
  assert(hasUncoveredArg() && !DiagnosticExprs.empty() &&
11173
0
         "Invalid state");
11174
11175
0
  if (!ArgExpr)
11176
0
    return;
11177
11178
0
  SourceLocation Loc = ArgExpr->getBeginLoc();
11179
11180
0
  if (S.getSourceManager().isInSystemMacro(Loc))
11181
0
    return;
11182
11183
0
  PartialDiagnostic PDiag = S.PDiag(diag::warn_printf_data_arg_not_used);
11184
0
  for (auto E : DiagnosticExprs)
11185
0
    PDiag << E->getSourceRange();
11186
11187
0
  CheckFormatHandler::EmitFormatDiagnostic(
11188
0
                                  S, IsFunctionCall, DiagnosticExprs[0],
11189
0
                                  PDiag, Loc, /*IsStringLocation*/false,
11190
0
                                  DiagnosticExprs[0]->getSourceRange());
11191
0
}
11192
11193
bool
11194
CheckFormatHandler::HandleInvalidConversionSpecifier(unsigned argIndex,
11195
                                                     SourceLocation Loc,
11196
                                                     const char *startSpec,
11197
                                                     unsigned specifierLen,
11198
                                                     const char *csStart,
11199
0
                                                     unsigned csLen) {
11200
0
  bool keepGoing = true;
11201
0
  if (argIndex < NumDataArgs) {
11202
    // Consider the argument coverered, even though the specifier doesn't
11203
    // make sense.
11204
0
    CoveredArgs.set(argIndex);
11205
0
  }
11206
0
  else {
11207
    // If argIndex exceeds the number of data arguments we
11208
    // don't issue a warning because that is just a cascade of warnings (and
11209
    // they may have intended '%%' anyway). We don't want to continue processing
11210
    // the format string after this point, however, as we will like just get
11211
    // gibberish when trying to match arguments.
11212
0
    keepGoing = false;
11213
0
  }
11214
11215
0
  StringRef Specifier(csStart, csLen);
11216
11217
  // If the specifier in non-printable, it could be the first byte of a UTF-8
11218
  // sequence. In that case, print the UTF-8 code point. If not, print the byte
11219
  // hex value.
11220
0
  std::string CodePointStr;
11221
0
  if (!llvm::sys::locale::isPrint(*csStart)) {
11222
0
    llvm::UTF32 CodePoint;
11223
0
    const llvm::UTF8 **B = reinterpret_cast<const llvm::UTF8 **>(&csStart);
11224
0
    const llvm::UTF8 *E =
11225
0
        reinterpret_cast<const llvm::UTF8 *>(csStart + csLen);
11226
0
    llvm::ConversionResult Result =
11227
0
        llvm::convertUTF8Sequence(B, E, &CodePoint, llvm::strictConversion);
11228
11229
0
    if (Result != llvm::conversionOK) {
11230
0
      unsigned char FirstChar = *csStart;
11231
0
      CodePoint = (llvm::UTF32)FirstChar;
11232
0
    }
11233
11234
0
    llvm::raw_string_ostream OS(CodePointStr);
11235
0
    if (CodePoint < 256)
11236
0
      OS << "\\x" << llvm::format("%02x", CodePoint);
11237
0
    else if (CodePoint <= 0xFFFF)
11238
0
      OS << "\\u" << llvm::format("%04x", CodePoint);
11239
0
    else
11240
0
      OS << "\\U" << llvm::format("%08x", CodePoint);
11241
0
    OS.flush();
11242
0
    Specifier = CodePointStr;
11243
0
  }
11244
11245
0
  EmitFormatDiagnostic(
11246
0
      S.PDiag(diag::warn_format_invalid_conversion) << Specifier, Loc,
11247
0
      /*IsStringLocation*/ true, getSpecifierRange(startSpec, specifierLen));
11248
11249
0
  return keepGoing;
11250
0
}
11251
11252
void
11253
CheckFormatHandler::HandlePositionalNonpositionalArgs(SourceLocation Loc,
11254
                                                      const char *startSpec,
11255
0
                                                      unsigned specifierLen) {
11256
0
  EmitFormatDiagnostic(
11257
0
    S.PDiag(diag::warn_format_mix_positional_nonpositional_args),
11258
0
    Loc, /*isStringLoc*/true, getSpecifierRange(startSpec, specifierLen));
11259
0
}
11260
11261
bool
11262
CheckFormatHandler::CheckNumArgs(
11263
  const analyze_format_string::FormatSpecifier &FS,
11264
  const analyze_format_string::ConversionSpecifier &CS,
11265
0
  const char *startSpecifier, unsigned specifierLen, unsigned argIndex) {
11266
11267
0
  if (argIndex >= NumDataArgs) {
11268
0
    PartialDiagnostic PDiag = FS.usesPositionalArg()
11269
0
      ? (S.PDiag(diag::warn_printf_positional_arg_exceeds_data_args)
11270
0
           << (argIndex+1) << NumDataArgs)
11271
0
      : S.PDiag(diag::warn_printf_insufficient_data_args);
11272
0
    EmitFormatDiagnostic(
11273
0
      PDiag, getLocationOfByte(CS.getStart()), /*IsStringLocation*/true,
11274
0
      getSpecifierRange(startSpecifier, specifierLen));
11275
11276
    // Since more arguments than conversion tokens are given, by extension
11277
    // all arguments are covered, so mark this as so.
11278
0
    UncoveredArg.setAllCovered();
11279
0
    return false;
11280
0
  }
11281
0
  return true;
11282
0
}
11283
11284
template<typename Range>
11285
void CheckFormatHandler::EmitFormatDiagnostic(PartialDiagnostic PDiag,
11286
                                              SourceLocation Loc,
11287
                                              bool IsStringLocation,
11288
                                              Range StringRange,
11289
0
                                              ArrayRef<FixItHint> FixIt) {
11290
0
  EmitFormatDiagnostic(S, inFunctionCall, Args[FormatIdx], PDiag,
11291
0
                       Loc, IsStringLocation, StringRange, FixIt);
11292
0
}
Unexecuted instantiation: SemaChecking.cpp:void (anonymous namespace)::CheckFormatHandler::EmitFormatDiagnostic<clang::SourceRange>(clang::PartialDiagnostic, clang::SourceLocation, bool, clang::SourceRange, llvm::ArrayRef<clang::FixItHint>)
Unexecuted instantiation: SemaChecking.cpp:void (anonymous namespace)::CheckFormatHandler::EmitFormatDiagnostic<clang::CharSourceRange>(clang::PartialDiagnostic, clang::SourceLocation, bool, clang::CharSourceRange, llvm::ArrayRef<clang::FixItHint>)
11293
11294
/// If the format string is not within the function call, emit a note
11295
/// so that the function call and string are in diagnostic messages.
11296
///
11297
/// \param InFunctionCall if true, the format string is within the function
11298
/// call and only one diagnostic message will be produced.  Otherwise, an
11299
/// extra note will be emitted pointing to location of the format string.
11300
///
11301
/// \param ArgumentExpr the expression that is passed as the format string
11302
/// argument in the function call.  Used for getting locations when two
11303
/// diagnostics are emitted.
11304
///
11305
/// \param PDiag the callee should already have provided any strings for the
11306
/// diagnostic message.  This function only adds locations and fixits
11307
/// to diagnostics.
11308
///
11309
/// \param Loc primary location for diagnostic.  If two diagnostics are
11310
/// required, one will be at Loc and a new SourceLocation will be created for
11311
/// the other one.
11312
///
11313
/// \param IsStringLocation if true, Loc points to the format string should be
11314
/// used for the note.  Otherwise, Loc points to the argument list and will
11315
/// be used with PDiag.
11316
///
11317
/// \param StringRange some or all of the string to highlight.  This is
11318
/// templated so it can accept either a CharSourceRange or a SourceRange.
11319
///
11320
/// \param FixIt optional fix it hint for the format string.
11321
template <typename Range>
11322
void CheckFormatHandler::EmitFormatDiagnostic(
11323
    Sema &S, bool InFunctionCall, const Expr *ArgumentExpr,
11324
    const PartialDiagnostic &PDiag, SourceLocation Loc, bool IsStringLocation,
11325
0
    Range StringRange, ArrayRef<FixItHint> FixIt) {
11326
0
  if (InFunctionCall) {
11327
0
    const Sema::SemaDiagnosticBuilder &D = S.Diag(Loc, PDiag);
11328
0
    D << StringRange;
11329
0
    D << FixIt;
11330
0
  } else {
11331
0
    S.Diag(IsStringLocation ? ArgumentExpr->getExprLoc() : Loc, PDiag)
11332
0
      << ArgumentExpr->getSourceRange();
11333
11334
0
    const Sema::SemaDiagnosticBuilder &Note =
11335
0
      S.Diag(IsStringLocation ? Loc : StringRange.getBegin(),
11336
0
             diag::note_format_string_defined);
11337
11338
0
    Note << StringRange;
11339
0
    Note << FixIt;
11340
0
  }
11341
0
}
Unexecuted instantiation: SemaChecking.cpp:void (anonymous namespace)::CheckFormatHandler::EmitFormatDiagnostic<clang::SourceRange>(clang::Sema&, bool, clang::Expr const*, clang::PartialDiagnostic const&, clang::SourceLocation, bool, clang::SourceRange, llvm::ArrayRef<clang::FixItHint>)
Unexecuted instantiation: SemaChecking.cpp:void (anonymous namespace)::CheckFormatHandler::EmitFormatDiagnostic<clang::CharSourceRange>(clang::Sema&, bool, clang::Expr const*, clang::PartialDiagnostic const&, clang::SourceLocation, bool, clang::CharSourceRange, llvm::ArrayRef<clang::FixItHint>)
11342
11343
//===--- CHECK: Printf format string checking ------------------------------===//
11344
11345
namespace {
11346
11347
class CheckPrintfHandler : public CheckFormatHandler {
11348
public:
11349
  CheckPrintfHandler(Sema &s, const FormatStringLiteral *fexpr,
11350
                     const Expr *origFormatExpr,
11351
                     const Sema::FormatStringType type, unsigned firstDataArg,
11352
                     unsigned numDataArgs, bool isObjC, const char *beg,
11353
                     Sema::FormatArgumentPassingKind APK,
11354
                     ArrayRef<const Expr *> Args, unsigned formatIdx,
11355
                     bool inFunctionCall, Sema::VariadicCallType CallType,
11356
                     llvm::SmallBitVector &CheckedVarArgs,
11357
                     UncoveredArgHandler &UncoveredArg)
11358
      : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
11359
                           numDataArgs, beg, APK, Args, formatIdx,
11360
                           inFunctionCall, CallType, CheckedVarArgs,
11361
0
                           UncoveredArg) {}
11362
11363
0
  bool isObjCContext() const { return FSType == Sema::FST_NSString; }
11364
11365
  /// Returns true if '%@' specifiers are allowed in the format string.
11366
0
  bool allowsObjCArg() const {
11367
0
    return FSType == Sema::FST_NSString || FSType == Sema::FST_OSLog ||
11368
0
           FSType == Sema::FST_OSTrace;
11369
0
  }
11370
11371
  bool HandleInvalidPrintfConversionSpecifier(
11372
                                      const analyze_printf::PrintfSpecifier &FS,
11373
                                      const char *startSpecifier,
11374
                                      unsigned specifierLen) override;
11375
11376
  void handleInvalidMaskType(StringRef MaskType) override;
11377
11378
  bool HandlePrintfSpecifier(const analyze_printf::PrintfSpecifier &FS,
11379
                             const char *startSpecifier, unsigned specifierLen,
11380
                             const TargetInfo &Target) override;
11381
  bool checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
11382
                       const char *StartSpecifier,
11383
                       unsigned SpecifierLen,
11384
                       const Expr *E);
11385
11386
  bool HandleAmount(const analyze_format_string::OptionalAmount &Amt, unsigned k,
11387
                    const char *startSpecifier, unsigned specifierLen);
11388
  void HandleInvalidAmount(const analyze_printf::PrintfSpecifier &FS,
11389
                           const analyze_printf::OptionalAmount &Amt,
11390
                           unsigned type,
11391
                           const char *startSpecifier, unsigned specifierLen);
11392
  void HandleFlag(const analyze_printf::PrintfSpecifier &FS,
11393
                  const analyze_printf::OptionalFlag &flag,
11394
                  const char *startSpecifier, unsigned specifierLen);
11395
  void HandleIgnoredFlag(const analyze_printf::PrintfSpecifier &FS,
11396
                         const analyze_printf::OptionalFlag &ignoredFlag,
11397
                         const analyze_printf::OptionalFlag &flag,
11398
                         const char *startSpecifier, unsigned specifierLen);
11399
  bool checkForCStrMembers(const analyze_printf::ArgType &AT,
11400
                           const Expr *E);
11401
11402
  void HandleEmptyObjCModifierFlag(const char *startFlag,
11403
                                   unsigned flagLen) override;
11404
11405
  void HandleInvalidObjCModifierFlag(const char *startFlag,
11406
                                            unsigned flagLen) override;
11407
11408
  void HandleObjCFlagsWithNonObjCConversion(const char *flagsStart,
11409
                                           const char *flagsEnd,
11410
                                           const char *conversionPosition)
11411
                                             override;
11412
};
11413
11414
} // namespace
11415
11416
bool CheckPrintfHandler::HandleInvalidPrintfConversionSpecifier(
11417
                                      const analyze_printf::PrintfSpecifier &FS,
11418
                                      const char *startSpecifier,
11419
0
                                      unsigned specifierLen) {
11420
0
  const analyze_printf::PrintfConversionSpecifier &CS =
11421
0
    FS.getConversionSpecifier();
11422
11423
0
  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
11424
0
                                          getLocationOfByte(CS.getStart()),
11425
0
                                          startSpecifier, specifierLen,
11426
0
                                          CS.getStart(), CS.getLength());
11427
0
}
11428
11429
0
void CheckPrintfHandler::handleInvalidMaskType(StringRef MaskType) {
11430
0
  S.Diag(getLocationOfByte(MaskType.data()), diag::err_invalid_mask_type_size);
11431
0
}
11432
11433
bool CheckPrintfHandler::HandleAmount(
11434
    const analyze_format_string::OptionalAmount &Amt, unsigned k,
11435
0
    const char *startSpecifier, unsigned specifierLen) {
11436
0
  if (Amt.hasDataArgument()) {
11437
0
    if (ArgPassingKind != Sema::FAPK_VAList) {
11438
0
      unsigned argIndex = Amt.getArgIndex();
11439
0
      if (argIndex >= NumDataArgs) {
11440
0
        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_missing_arg)
11441
0
                                 << k,
11442
0
                             getLocationOfByte(Amt.getStart()),
11443
0
                             /*IsStringLocation*/ true,
11444
0
                             getSpecifierRange(startSpecifier, specifierLen));
11445
        // Don't do any more checking.  We will just emit
11446
        // spurious errors.
11447
0
        return false;
11448
0
      }
11449
11450
      // Type check the data argument.  It should be an 'int'.
11451
      // Although not in conformance with C99, we also allow the argument to be
11452
      // an 'unsigned int' as that is a reasonably safe case.  GCC also
11453
      // doesn't emit a warning for that case.
11454
0
      CoveredArgs.set(argIndex);
11455
0
      const Expr *Arg = getDataArg(argIndex);
11456
0
      if (!Arg)
11457
0
        return false;
11458
11459
0
      QualType T = Arg->getType();
11460
11461
0
      const analyze_printf::ArgType &AT = Amt.getArgType(S.Context);
11462
0
      assert(AT.isValid());
11463
11464
0
      if (!AT.matchesType(S.Context, T)) {
11465
0
        EmitFormatDiagnostic(S.PDiag(diag::warn_printf_asterisk_wrong_type)
11466
0
                               << k << AT.getRepresentativeTypeName(S.Context)
11467
0
                               << T << Arg->getSourceRange(),
11468
0
                             getLocationOfByte(Amt.getStart()),
11469
0
                             /*IsStringLocation*/true,
11470
0
                             getSpecifierRange(startSpecifier, specifierLen));
11471
        // Don't do any more checking.  We will just emit
11472
        // spurious errors.
11473
0
        return false;
11474
0
      }
11475
0
    }
11476
0
  }
11477
0
  return true;
11478
0
}
11479
11480
void CheckPrintfHandler::HandleInvalidAmount(
11481
                                      const analyze_printf::PrintfSpecifier &FS,
11482
                                      const analyze_printf::OptionalAmount &Amt,
11483
                                      unsigned type,
11484
                                      const char *startSpecifier,
11485
0
                                      unsigned specifierLen) {
11486
0
  const analyze_printf::PrintfConversionSpecifier &CS =
11487
0
    FS.getConversionSpecifier();
11488
11489
0
  FixItHint fixit =
11490
0
    Amt.getHowSpecified() == analyze_printf::OptionalAmount::Constant
11491
0
      ? FixItHint::CreateRemoval(getSpecifierRange(Amt.getStart(),
11492
0
                                 Amt.getConstantLength()))
11493
0
      : FixItHint();
11494
11495
0
  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_optional_amount)
11496
0
                         << type << CS.toString(),
11497
0
                       getLocationOfByte(Amt.getStart()),
11498
0
                       /*IsStringLocation*/true,
11499
0
                       getSpecifierRange(startSpecifier, specifierLen),
11500
0
                       fixit);
11501
0
}
11502
11503
void CheckPrintfHandler::HandleFlag(const analyze_printf::PrintfSpecifier &FS,
11504
                                    const analyze_printf::OptionalFlag &flag,
11505
                                    const char *startSpecifier,
11506
0
                                    unsigned specifierLen) {
11507
  // Warn about pointless flag with a fixit removal.
11508
0
  const analyze_printf::PrintfConversionSpecifier &CS =
11509
0
    FS.getConversionSpecifier();
11510
0
  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_nonsensical_flag)
11511
0
                         << flag.toString() << CS.toString(),
11512
0
                       getLocationOfByte(flag.getPosition()),
11513
0
                       /*IsStringLocation*/true,
11514
0
                       getSpecifierRange(startSpecifier, specifierLen),
11515
0
                       FixItHint::CreateRemoval(
11516
0
                         getSpecifierRange(flag.getPosition(), 1)));
11517
0
}
11518
11519
void CheckPrintfHandler::HandleIgnoredFlag(
11520
                                const analyze_printf::PrintfSpecifier &FS,
11521
                                const analyze_printf::OptionalFlag &ignoredFlag,
11522
                                const analyze_printf::OptionalFlag &flag,
11523
                                const char *startSpecifier,
11524
0
                                unsigned specifierLen) {
11525
  // Warn about ignored flag with a fixit removal.
11526
0
  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_ignored_flag)
11527
0
                         << ignoredFlag.toString() << flag.toString(),
11528
0
                       getLocationOfByte(ignoredFlag.getPosition()),
11529
0
                       /*IsStringLocation*/true,
11530
0
                       getSpecifierRange(startSpecifier, specifierLen),
11531
0
                       FixItHint::CreateRemoval(
11532
0
                         getSpecifierRange(ignoredFlag.getPosition(), 1)));
11533
0
}
11534
11535
void CheckPrintfHandler::HandleEmptyObjCModifierFlag(const char *startFlag,
11536
0
                                                     unsigned flagLen) {
11537
  // Warn about an empty flag.
11538
0
  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_empty_objc_flag),
11539
0
                       getLocationOfByte(startFlag),
11540
0
                       /*IsStringLocation*/true,
11541
0
                       getSpecifierRange(startFlag, flagLen));
11542
0
}
11543
11544
void CheckPrintfHandler::HandleInvalidObjCModifierFlag(const char *startFlag,
11545
0
                                                       unsigned flagLen) {
11546
  // Warn about an invalid flag.
11547
0
  auto Range = getSpecifierRange(startFlag, flagLen);
11548
0
  StringRef flag(startFlag, flagLen);
11549
0
  EmitFormatDiagnostic(S.PDiag(diag::warn_printf_invalid_objc_flag) << flag,
11550
0
                      getLocationOfByte(startFlag),
11551
0
                      /*IsStringLocation*/true,
11552
0
                      Range, FixItHint::CreateRemoval(Range));
11553
0
}
11554
11555
void CheckPrintfHandler::HandleObjCFlagsWithNonObjCConversion(
11556
0
    const char *flagsStart, const char *flagsEnd, const char *conversionPosition) {
11557
    // Warn about using '[...]' without a '@' conversion.
11558
0
    auto Range = getSpecifierRange(flagsStart, flagsEnd - flagsStart + 1);
11559
0
    auto diag = diag::warn_printf_ObjCflags_without_ObjCConversion;
11560
0
    EmitFormatDiagnostic(S.PDiag(diag) << StringRef(conversionPosition, 1),
11561
0
                         getLocationOfByte(conversionPosition),
11562
0
                         /*IsStringLocation*/true,
11563
0
                         Range, FixItHint::CreateRemoval(Range));
11564
0
}
11565
11566
// Determines if the specified is a C++ class or struct containing
11567
// a member with the specified name and kind (e.g. a CXXMethodDecl named
11568
// "c_str()").
11569
template<typename MemberKind>
11570
static llvm::SmallPtrSet<MemberKind*, 1>
11571
0
CXXRecordMembersNamed(StringRef Name, Sema &S, QualType Ty) {
11572
0
  const RecordType *RT = Ty->getAs<RecordType>();
11573
0
  llvm::SmallPtrSet<MemberKind*, 1> Results;
11574
11575
0
  if (!RT)
11576
0
    return Results;
11577
0
  const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
11578
0
  if (!RD || !RD->getDefinition())
11579
0
    return Results;
11580
11581
0
  LookupResult R(S, &S.Context.Idents.get(Name), SourceLocation(),
11582
0
                 Sema::LookupMemberName);
11583
0
  R.suppressDiagnostics();
11584
11585
  // We just need to include all members of the right kind turned up by the
11586
  // filter, at this point.
11587
0
  if (S.LookupQualifiedName(R, RT->getDecl()))
11588
0
    for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
11589
0
      NamedDecl *decl = (*I)->getUnderlyingDecl();
11590
0
      if (MemberKind *FK = dyn_cast<MemberKind>(decl))
11591
0
        Results.insert(FK);
11592
0
    }
11593
0
  return Results;
11594
0
}
11595
11596
/// Check if we could call '.c_str()' on an object.
11597
///
11598
/// FIXME: This returns the wrong results in some cases (if cv-qualifiers don't
11599
/// allow the call, or if it would be ambiguous).
11600
0
bool Sema::hasCStrMethod(const Expr *E) {
11601
0
  using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
11602
11603
0
  MethodSet Results =
11604
0
      CXXRecordMembersNamed<CXXMethodDecl>("c_str", *this, E->getType());
11605
0
  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
11606
0
       MI != ME; ++MI)
11607
0
    if ((*MI)->getMinRequiredArguments() == 0)
11608
0
      return true;
11609
0
  return false;
11610
0
}
11611
11612
// Check if a (w)string was passed when a (w)char* was needed, and offer a
11613
// better diagnostic if so. AT is assumed to be valid.
11614
// Returns true when a c_str() conversion method is found.
11615
bool CheckPrintfHandler::checkForCStrMembers(
11616
0
    const analyze_printf::ArgType &AT, const Expr *E) {
11617
0
  using MethodSet = llvm::SmallPtrSet<CXXMethodDecl *, 1>;
11618
11619
0
  MethodSet Results =
11620
0
      CXXRecordMembersNamed<CXXMethodDecl>("c_str", S, E->getType());
11621
11622
0
  for (MethodSet::iterator MI = Results.begin(), ME = Results.end();
11623
0
       MI != ME; ++MI) {
11624
0
    const CXXMethodDecl *Method = *MI;
11625
0
    if (Method->getMinRequiredArguments() == 0 &&
11626
0
        AT.matchesType(S.Context, Method->getReturnType())) {
11627
      // FIXME: Suggest parens if the expression needs them.
11628
0
      SourceLocation EndLoc = S.getLocForEndOfToken(E->getEndLoc());
11629
0
      S.Diag(E->getBeginLoc(), diag::note_printf_c_str)
11630
0
          << "c_str()" << FixItHint::CreateInsertion(EndLoc, ".c_str()");
11631
0
      return true;
11632
0
    }
11633
0
  }
11634
11635
0
  return false;
11636
0
}
11637
11638
bool CheckPrintfHandler::HandlePrintfSpecifier(
11639
    const analyze_printf::PrintfSpecifier &FS, const char *startSpecifier,
11640
0
    unsigned specifierLen, const TargetInfo &Target) {
11641
0
  using namespace analyze_format_string;
11642
0
  using namespace analyze_printf;
11643
11644
0
  const PrintfConversionSpecifier &CS = FS.getConversionSpecifier();
11645
11646
0
  if (FS.consumesDataArgument()) {
11647
0
    if (atFirstArg) {
11648
0
        atFirstArg = false;
11649
0
        usesPositionalArgs = FS.usesPositionalArg();
11650
0
    }
11651
0
    else if (usesPositionalArgs != FS.usesPositionalArg()) {
11652
0
      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
11653
0
                                        startSpecifier, specifierLen);
11654
0
      return false;
11655
0
    }
11656
0
  }
11657
11658
  // First check if the field width, precision, and conversion specifier
11659
  // have matching data arguments.
11660
0
  if (!HandleAmount(FS.getFieldWidth(), /* field width */ 0,
11661
0
                    startSpecifier, specifierLen)) {
11662
0
    return false;
11663
0
  }
11664
11665
0
  if (!HandleAmount(FS.getPrecision(), /* precision */ 1,
11666
0
                    startSpecifier, specifierLen)) {
11667
0
    return false;
11668
0
  }
11669
11670
0
  if (!CS.consumesDataArgument()) {
11671
    // FIXME: Technically specifying a precision or field width here
11672
    // makes no sense.  Worth issuing a warning at some point.
11673
0
    return true;
11674
0
  }
11675
11676
  // Consume the argument.
11677
0
  unsigned argIndex = FS.getArgIndex();
11678
0
  if (argIndex < NumDataArgs) {
11679
    // The check to see if the argIndex is valid will come later.
11680
    // We set the bit here because we may exit early from this
11681
    // function if we encounter some other error.
11682
0
    CoveredArgs.set(argIndex);
11683
0
  }
11684
11685
  // FreeBSD kernel extensions.
11686
0
  if (CS.getKind() == ConversionSpecifier::FreeBSDbArg ||
11687
0
      CS.getKind() == ConversionSpecifier::FreeBSDDArg) {
11688
    // We need at least two arguments.
11689
0
    if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex + 1))
11690
0
      return false;
11691
11692
    // Claim the second argument.
11693
0
    CoveredArgs.set(argIndex + 1);
11694
11695
    // Type check the first argument (int for %b, pointer for %D)
11696
0
    const Expr *Ex = getDataArg(argIndex);
11697
0
    const analyze_printf::ArgType &AT =
11698
0
      (CS.getKind() == ConversionSpecifier::FreeBSDbArg) ?
11699
0
        ArgType(S.Context.IntTy) : ArgType::CPointerTy;
11700
0
    if (AT.isValid() && !AT.matchesType(S.Context, Ex->getType()))
11701
0
      EmitFormatDiagnostic(
11702
0
          S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
11703
0
              << AT.getRepresentativeTypeName(S.Context) << Ex->getType()
11704
0
              << false << Ex->getSourceRange(),
11705
0
          Ex->getBeginLoc(), /*IsStringLocation*/ false,
11706
0
          getSpecifierRange(startSpecifier, specifierLen));
11707
11708
    // Type check the second argument (char * for both %b and %D)
11709
0
    Ex = getDataArg(argIndex + 1);
11710
0
    const analyze_printf::ArgType &AT2 = ArgType::CStrTy;
11711
0
    if (AT2.isValid() && !AT2.matchesType(S.Context, Ex->getType()))
11712
0
      EmitFormatDiagnostic(
11713
0
          S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
11714
0
              << AT2.getRepresentativeTypeName(S.Context) << Ex->getType()
11715
0
              << false << Ex->getSourceRange(),
11716
0
          Ex->getBeginLoc(), /*IsStringLocation*/ false,
11717
0
          getSpecifierRange(startSpecifier, specifierLen));
11718
11719
0
     return true;
11720
0
  }
11721
11722
  // Check for using an Objective-C specific conversion specifier
11723
  // in a non-ObjC literal.
11724
0
  if (!allowsObjCArg() && CS.isObjCArg()) {
11725
0
    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
11726
0
                                                  specifierLen);
11727
0
  }
11728
11729
  // %P can only be used with os_log.
11730
0
  if (FSType != Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::PArg) {
11731
0
    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
11732
0
                                                  specifierLen);
11733
0
  }
11734
11735
  // %n is not allowed with os_log.
11736
0
  if (FSType == Sema::FST_OSLog && CS.getKind() == ConversionSpecifier::nArg) {
11737
0
    EmitFormatDiagnostic(S.PDiag(diag::warn_os_log_format_narg),
11738
0
                         getLocationOfByte(CS.getStart()),
11739
0
                         /*IsStringLocation*/ false,
11740
0
                         getSpecifierRange(startSpecifier, specifierLen));
11741
11742
0
    return true;
11743
0
  }
11744
11745
  // Only scalars are allowed for os_trace.
11746
0
  if (FSType == Sema::FST_OSTrace &&
11747
0
      (CS.getKind() == ConversionSpecifier::PArg ||
11748
0
       CS.getKind() == ConversionSpecifier::sArg ||
11749
0
       CS.getKind() == ConversionSpecifier::ObjCObjArg)) {
11750
0
    return HandleInvalidPrintfConversionSpecifier(FS, startSpecifier,
11751
0
                                                  specifierLen);
11752
0
  }
11753
11754
  // Check for use of public/private annotation outside of os_log().
11755
0
  if (FSType != Sema::FST_OSLog) {
11756
0
    if (FS.isPublic().isSet()) {
11757
0
      EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
11758
0
                               << "public",
11759
0
                           getLocationOfByte(FS.isPublic().getPosition()),
11760
0
                           /*IsStringLocation*/ false,
11761
0
                           getSpecifierRange(startSpecifier, specifierLen));
11762
0
    }
11763
0
    if (FS.isPrivate().isSet()) {
11764
0
      EmitFormatDiagnostic(S.PDiag(diag::warn_format_invalid_annotation)
11765
0
                               << "private",
11766
0
                           getLocationOfByte(FS.isPrivate().getPosition()),
11767
0
                           /*IsStringLocation*/ false,
11768
0
                           getSpecifierRange(startSpecifier, specifierLen));
11769
0
    }
11770
0
  }
11771
11772
0
  const llvm::Triple &Triple = Target.getTriple();
11773
0
  if (CS.getKind() == ConversionSpecifier::nArg &&
11774
0
      (Triple.isAndroid() || Triple.isOSFuchsia())) {
11775
0
    EmitFormatDiagnostic(S.PDiag(diag::warn_printf_narg_not_supported),
11776
0
                         getLocationOfByte(CS.getStart()),
11777
0
                         /*IsStringLocation*/ false,
11778
0
                         getSpecifierRange(startSpecifier, specifierLen));
11779
0
  }
11780
11781
  // Check for invalid use of field width
11782
0
  if (!FS.hasValidFieldWidth()) {
11783
0
    HandleInvalidAmount(FS, FS.getFieldWidth(), /* field width */ 0,
11784
0
        startSpecifier, specifierLen);
11785
0
  }
11786
11787
  // Check for invalid use of precision
11788
0
  if (!FS.hasValidPrecision()) {
11789
0
    HandleInvalidAmount(FS, FS.getPrecision(), /* precision */ 1,
11790
0
        startSpecifier, specifierLen);
11791
0
  }
11792
11793
  // Precision is mandatory for %P specifier.
11794
0
  if (CS.getKind() == ConversionSpecifier::PArg &&
11795
0
      FS.getPrecision().getHowSpecified() == OptionalAmount::NotSpecified) {
11796
0
    EmitFormatDiagnostic(S.PDiag(diag::warn_format_P_no_precision),
11797
0
                         getLocationOfByte(startSpecifier),
11798
0
                         /*IsStringLocation*/ false,
11799
0
                         getSpecifierRange(startSpecifier, specifierLen));
11800
0
  }
11801
11802
  // Check each flag does not conflict with any other component.
11803
0
  if (!FS.hasValidThousandsGroupingPrefix())
11804
0
    HandleFlag(FS, FS.hasThousandsGrouping(), startSpecifier, specifierLen);
11805
0
  if (!FS.hasValidLeadingZeros())
11806
0
    HandleFlag(FS, FS.hasLeadingZeros(), startSpecifier, specifierLen);
11807
0
  if (!FS.hasValidPlusPrefix())
11808
0
    HandleFlag(FS, FS.hasPlusPrefix(), startSpecifier, specifierLen);
11809
0
  if (!FS.hasValidSpacePrefix())
11810
0
    HandleFlag(FS, FS.hasSpacePrefix(), startSpecifier, specifierLen);
11811
0
  if (!FS.hasValidAlternativeForm())
11812
0
    HandleFlag(FS, FS.hasAlternativeForm(), startSpecifier, specifierLen);
11813
0
  if (!FS.hasValidLeftJustified())
11814
0
    HandleFlag(FS, FS.isLeftJustified(), startSpecifier, specifierLen);
11815
11816
  // Check that flags are not ignored by another flag
11817
0
  if (FS.hasSpacePrefix() && FS.hasPlusPrefix()) // ' ' ignored by '+'
11818
0
    HandleIgnoredFlag(FS, FS.hasSpacePrefix(), FS.hasPlusPrefix(),
11819
0
        startSpecifier, specifierLen);
11820
0
  if (FS.hasLeadingZeros() && FS.isLeftJustified()) // '0' ignored by '-'
11821
0
    HandleIgnoredFlag(FS, FS.hasLeadingZeros(), FS.isLeftJustified(),
11822
0
            startSpecifier, specifierLen);
11823
11824
  // Check the length modifier is valid with the given conversion specifier.
11825
0
  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
11826
0
                                 S.getLangOpts()))
11827
0
    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
11828
0
                                diag::warn_format_nonsensical_length);
11829
0
  else if (!FS.hasStandardLengthModifier())
11830
0
    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
11831
0
  else if (!FS.hasStandardLengthConversionCombination())
11832
0
    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
11833
0
                                diag::warn_format_non_standard_conversion_spec);
11834
11835
0
  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
11836
0
    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
11837
11838
  // The remaining checks depend on the data arguments.
11839
0
  if (ArgPassingKind == Sema::FAPK_VAList)
11840
0
    return true;
11841
11842
0
  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
11843
0
    return false;
11844
11845
0
  const Expr *Arg = getDataArg(argIndex);
11846
0
  if (!Arg)
11847
0
    return true;
11848
11849
0
  return checkFormatExpr(FS, startSpecifier, specifierLen, Arg);
11850
0
}
11851
11852
0
static bool requiresParensToAddCast(const Expr *E) {
11853
  // FIXME: We should have a general way to reason about operator
11854
  // precedence and whether parens are actually needed here.
11855
  // Take care of a few common cases where they aren't.
11856
0
  const Expr *Inside = E->IgnoreImpCasts();
11857
0
  if (const PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(Inside))
11858
0
    Inside = POE->getSyntacticForm()->IgnoreImpCasts();
11859
11860
0
  switch (Inside->getStmtClass()) {
11861
0
  case Stmt::ArraySubscriptExprClass:
11862
0
  case Stmt::CallExprClass:
11863
0
  case Stmt::CharacterLiteralClass:
11864
0
  case Stmt::CXXBoolLiteralExprClass:
11865
0
  case Stmt::DeclRefExprClass:
11866
0
  case Stmt::FloatingLiteralClass:
11867
0
  case Stmt::IntegerLiteralClass:
11868
0
  case Stmt::MemberExprClass:
11869
0
  case Stmt::ObjCArrayLiteralClass:
11870
0
  case Stmt::ObjCBoolLiteralExprClass:
11871
0
  case Stmt::ObjCBoxedExprClass:
11872
0
  case Stmt::ObjCDictionaryLiteralClass:
11873
0
  case Stmt::ObjCEncodeExprClass:
11874
0
  case Stmt::ObjCIvarRefExprClass:
11875
0
  case Stmt::ObjCMessageExprClass:
11876
0
  case Stmt::ObjCPropertyRefExprClass:
11877
0
  case Stmt::ObjCStringLiteralClass:
11878
0
  case Stmt::ObjCSubscriptRefExprClass:
11879
0
  case Stmt::ParenExprClass:
11880
0
  case Stmt::StringLiteralClass:
11881
0
  case Stmt::UnaryOperatorClass:
11882
0
    return false;
11883
0
  default:
11884
0
    return true;
11885
0
  }
11886
0
}
11887
11888
static std::pair<QualType, StringRef>
11889
shouldNotPrintDirectly(const ASTContext &Context,
11890
                       QualType IntendedTy,
11891
0
                       const Expr *E) {
11892
  // Use a 'while' to peel off layers of typedefs.
11893
0
  QualType TyTy = IntendedTy;
11894
0
  while (const TypedefType *UserTy = TyTy->getAs<TypedefType>()) {
11895
0
    StringRef Name = UserTy->getDecl()->getName();
11896
0
    QualType CastTy = llvm::StringSwitch<QualType>(Name)
11897
0
      .Case("CFIndex", Context.getNSIntegerType())
11898
0
      .Case("NSInteger", Context.getNSIntegerType())
11899
0
      .Case("NSUInteger", Context.getNSUIntegerType())
11900
0
      .Case("SInt32", Context.IntTy)
11901
0
      .Case("UInt32", Context.UnsignedIntTy)
11902
0
      .Default(QualType());
11903
11904
0
    if (!CastTy.isNull())
11905
0
      return std::make_pair(CastTy, Name);
11906
11907
0
    TyTy = UserTy->desugar();
11908
0
  }
11909
11910
  // Strip parens if necessary.
11911
0
  if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
11912
0
    return shouldNotPrintDirectly(Context,
11913
0
                                  PE->getSubExpr()->getType(),
11914
0
                                  PE->getSubExpr());
11915
11916
  // If this is a conditional expression, then its result type is constructed
11917
  // via usual arithmetic conversions and thus there might be no necessary
11918
  // typedef sugar there.  Recurse to operands to check for NSInteger &
11919
  // Co. usage condition.
11920
0
  if (const ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
11921
0
    QualType TrueTy, FalseTy;
11922
0
    StringRef TrueName, FalseName;
11923
11924
0
    std::tie(TrueTy, TrueName) =
11925
0
      shouldNotPrintDirectly(Context,
11926
0
                             CO->getTrueExpr()->getType(),
11927
0
                             CO->getTrueExpr());
11928
0
    std::tie(FalseTy, FalseName) =
11929
0
      shouldNotPrintDirectly(Context,
11930
0
                             CO->getFalseExpr()->getType(),
11931
0
                             CO->getFalseExpr());
11932
11933
0
    if (TrueTy == FalseTy)
11934
0
      return std::make_pair(TrueTy, TrueName);
11935
0
    else if (TrueTy.isNull())
11936
0
      return std::make_pair(FalseTy, FalseName);
11937
0
    else if (FalseTy.isNull())
11938
0
      return std::make_pair(TrueTy, TrueName);
11939
0
  }
11940
11941
0
  return std::make_pair(QualType(), StringRef());
11942
0
}
11943
11944
/// Return true if \p ICE is an implicit argument promotion of an arithmetic
11945
/// type. Bit-field 'promotions' from a higher ranked type to a lower ranked
11946
/// type do not count.
11947
static bool
11948
0
isArithmeticArgumentPromotion(Sema &S, const ImplicitCastExpr *ICE) {
11949
0
  QualType From = ICE->getSubExpr()->getType();
11950
0
  QualType To = ICE->getType();
11951
  // It's an integer promotion if the destination type is the promoted
11952
  // source type.
11953
0
  if (ICE->getCastKind() == CK_IntegralCast &&
11954
0
      S.Context.isPromotableIntegerType(From) &&
11955
0
      S.Context.getPromotedIntegerType(From) == To)
11956
0
    return true;
11957
  // Look through vector types, since we do default argument promotion for
11958
  // those in OpenCL.
11959
0
  if (const auto *VecTy = From->getAs<ExtVectorType>())
11960
0
    From = VecTy->getElementType();
11961
0
  if (const auto *VecTy = To->getAs<ExtVectorType>())
11962
0
    To = VecTy->getElementType();
11963
  // It's a floating promotion if the source type is a lower rank.
11964
0
  return ICE->getCastKind() == CK_FloatingCast &&
11965
0
         S.Context.getFloatingTypeOrder(From, To) < 0;
11966
0
}
11967
11968
bool
11969
CheckPrintfHandler::checkFormatExpr(const analyze_printf::PrintfSpecifier &FS,
11970
                                    const char *StartSpecifier,
11971
                                    unsigned SpecifierLen,
11972
0
                                    const Expr *E) {
11973
0
  using namespace analyze_format_string;
11974
0
  using namespace analyze_printf;
11975
11976
  // Now type check the data expression that matches the
11977
  // format specifier.
11978
0
  const analyze_printf::ArgType &AT = FS.getArgType(S.Context, isObjCContext());
11979
0
  if (!AT.isValid())
11980
0
    return true;
11981
11982
0
  QualType ExprTy = E->getType();
11983
0
  while (const TypeOfExprType *TET = dyn_cast<TypeOfExprType>(ExprTy)) {
11984
0
    ExprTy = TET->getUnderlyingExpr()->getType();
11985
0
  }
11986
11987
  // When using the format attribute in C++, you can receive a function or an
11988
  // array that will necessarily decay to a pointer when passed to the final
11989
  // format consumer. Apply decay before type comparison.
11990
0
  if (ExprTy->canDecayToPointerType())
11991
0
    ExprTy = S.Context.getDecayedType(ExprTy);
11992
11993
  // Diagnose attempts to print a boolean value as a character. Unlike other
11994
  // -Wformat diagnostics, this is fine from a type perspective, but it still
11995
  // doesn't make sense.
11996
0
  if (FS.getConversionSpecifier().getKind() == ConversionSpecifier::cArg &&
11997
0
      E->isKnownToHaveBooleanValue()) {
11998
0
    const CharSourceRange &CSR =
11999
0
        getSpecifierRange(StartSpecifier, SpecifierLen);
12000
0
    SmallString<4> FSString;
12001
0
    llvm::raw_svector_ostream os(FSString);
12002
0
    FS.toString(os);
12003
0
    EmitFormatDiagnostic(S.PDiag(diag::warn_format_bool_as_character)
12004
0
                             << FSString,
12005
0
                         E->getExprLoc(), false, CSR);
12006
0
    return true;
12007
0
  }
12008
12009
0
  ArgType::MatchKind ImplicitMatch = ArgType::NoMatch;
12010
0
  ArgType::MatchKind Match = AT.matchesType(S.Context, ExprTy);
12011
0
  if (Match == ArgType::Match)
12012
0
    return true;
12013
12014
  // NoMatchPromotionTypeConfusion should be only returned in ImplictCastExpr
12015
0
  assert(Match != ArgType::NoMatchPromotionTypeConfusion);
12016
12017
  // Look through argument promotions for our error message's reported type.
12018
  // This includes the integral and floating promotions, but excludes array
12019
  // and function pointer decay (seeing that an argument intended to be a
12020
  // string has type 'char [6]' is probably more confusing than 'char *') and
12021
  // certain bitfield promotions (bitfields can be 'demoted' to a lesser type).
12022
0
  if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
12023
0
    if (isArithmeticArgumentPromotion(S, ICE)) {
12024
0
      E = ICE->getSubExpr();
12025
0
      ExprTy = E->getType();
12026
12027
      // Check if we didn't match because of an implicit cast from a 'char'
12028
      // or 'short' to an 'int'.  This is done because printf is a varargs
12029
      // function.
12030
0
      if (ICE->getType() == S.Context.IntTy ||
12031
0
          ICE->getType() == S.Context.UnsignedIntTy) {
12032
        // All further checking is done on the subexpression
12033
0
        ImplicitMatch = AT.matchesType(S.Context, ExprTy);
12034
0
        if (ImplicitMatch == ArgType::Match)
12035
0
          return true;
12036
0
      }
12037
0
    }
12038
0
  } else if (const CharacterLiteral *CL = dyn_cast<CharacterLiteral>(E)) {
12039
    // Special case for 'a', which has type 'int' in C.
12040
    // Note, however, that we do /not/ want to treat multibyte constants like
12041
    // 'MooV' as characters! This form is deprecated but still exists. In
12042
    // addition, don't treat expressions as of type 'char' if one byte length
12043
    // modifier is provided.
12044
0
    if (ExprTy == S.Context.IntTy &&
12045
0
        FS.getLengthModifier().getKind() != LengthModifier::AsChar)
12046
0
      if (llvm::isUIntN(S.Context.getCharWidth(), CL->getValue())) {
12047
0
        ExprTy = S.Context.CharTy;
12048
        // To improve check results, we consider a character literal in C
12049
        // to be a 'char' rather than an 'int'. 'printf("%hd", 'a');' is
12050
        // more likely a type confusion situation, so we will suggest to
12051
        // use '%hhd' instead by discarding the MatchPromotion.
12052
0
        if (Match == ArgType::MatchPromotion)
12053
0
          Match = ArgType::NoMatch;
12054
0
      }
12055
0
  }
12056
0
  if (Match == ArgType::MatchPromotion) {
12057
    // WG14 N2562 only clarified promotions in *printf
12058
    // For NSLog in ObjC, just preserve -Wformat behavior
12059
0
    if (!S.getLangOpts().ObjC &&
12060
0
        ImplicitMatch != ArgType::NoMatchPromotionTypeConfusion &&
12061
0
        ImplicitMatch != ArgType::NoMatchTypeConfusion)
12062
0
      return true;
12063
0
    Match = ArgType::NoMatch;
12064
0
  }
12065
0
  if (ImplicitMatch == ArgType::NoMatchPedantic ||
12066
0
      ImplicitMatch == ArgType::NoMatchTypeConfusion)
12067
0
    Match = ImplicitMatch;
12068
0
  assert(Match != ArgType::MatchPromotion);
12069
12070
  // Look through unscoped enums to their underlying type.
12071
0
  bool IsEnum = false;
12072
0
  bool IsScopedEnum = false;
12073
0
  QualType IntendedTy = ExprTy;
12074
0
  if (auto EnumTy = ExprTy->getAs<EnumType>()) {
12075
0
    IntendedTy = EnumTy->getDecl()->getIntegerType();
12076
0
    if (EnumTy->isUnscopedEnumerationType()) {
12077
0
      ExprTy = IntendedTy;
12078
      // This controls whether we're talking about the underlying type or not,
12079
      // which we only want to do when it's an unscoped enum.
12080
0
      IsEnum = true;
12081
0
    } else {
12082
0
      IsScopedEnum = true;
12083
0
    }
12084
0
  }
12085
12086
  // %C in an Objective-C context prints a unichar, not a wchar_t.
12087
  // If the argument is an integer of some kind, believe the %C and suggest
12088
  // a cast instead of changing the conversion specifier.
12089
0
  if (isObjCContext() &&
12090
0
      FS.getConversionSpecifier().getKind() == ConversionSpecifier::CArg) {
12091
0
    if (ExprTy->isIntegralOrUnscopedEnumerationType() &&
12092
0
        !ExprTy->isCharType()) {
12093
      // 'unichar' is defined as a typedef of unsigned short, but we should
12094
      // prefer using the typedef if it is visible.
12095
0
      IntendedTy = S.Context.UnsignedShortTy;
12096
12097
      // While we are here, check if the value is an IntegerLiteral that happens
12098
      // to be within the valid range.
12099
0
      if (const IntegerLiteral *IL = dyn_cast<IntegerLiteral>(E)) {
12100
0
        const llvm::APInt &V = IL->getValue();
12101
0
        if (V.getActiveBits() <= S.Context.getTypeSize(IntendedTy))
12102
0
          return true;
12103
0
      }
12104
12105
0
      LookupResult Result(S, &S.Context.Idents.get("unichar"), E->getBeginLoc(),
12106
0
                          Sema::LookupOrdinaryName);
12107
0
      if (S.LookupName(Result, S.getCurScope())) {
12108
0
        NamedDecl *ND = Result.getFoundDecl();
12109
0
        if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(ND))
12110
0
          if (TD->getUnderlyingType() == IntendedTy)
12111
0
            IntendedTy = S.Context.getTypedefType(TD);
12112
0
      }
12113
0
    }
12114
0
  }
12115
12116
  // Special-case some of Darwin's platform-independence types by suggesting
12117
  // casts to primitive types that are known to be large enough.
12118
0
  bool ShouldNotPrintDirectly = false; StringRef CastTyName;
12119
0
  if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
12120
0
    QualType CastTy;
12121
0
    std::tie(CastTy, CastTyName) = shouldNotPrintDirectly(S.Context, IntendedTy, E);
12122
0
    if (!CastTy.isNull()) {
12123
      // %zi/%zu and %td/%tu are OK to use for NSInteger/NSUInteger of type int
12124
      // (long in ASTContext). Only complain to pedants or when they're the
12125
      // underlying type of a scoped enum (which always needs a cast).
12126
0
      if (!IsScopedEnum &&
12127
0
          (CastTyName == "NSInteger" || CastTyName == "NSUInteger") &&
12128
0
          (AT.isSizeT() || AT.isPtrdiffT()) &&
12129
0
          AT.matchesType(S.Context, CastTy))
12130
0
        Match = ArgType::NoMatchPedantic;
12131
0
      IntendedTy = CastTy;
12132
0
      ShouldNotPrintDirectly = true;
12133
0
    }
12134
0
  }
12135
12136
  // We may be able to offer a FixItHint if it is a supported type.
12137
0
  PrintfSpecifier fixedFS = FS;
12138
0
  bool Success =
12139
0
      fixedFS.fixType(IntendedTy, S.getLangOpts(), S.Context, isObjCContext());
12140
12141
0
  if (Success) {
12142
    // Get the fix string from the fixed format specifier
12143
0
    SmallString<16> buf;
12144
0
    llvm::raw_svector_ostream os(buf);
12145
0
    fixedFS.toString(os);
12146
12147
0
    CharSourceRange SpecRange = getSpecifierRange(StartSpecifier, SpecifierLen);
12148
12149
0
    if (IntendedTy == ExprTy && !ShouldNotPrintDirectly && !IsScopedEnum) {
12150
0
      unsigned Diag;
12151
0
      switch (Match) {
12152
0
      case ArgType::Match:
12153
0
      case ArgType::MatchPromotion:
12154
0
      case ArgType::NoMatchPromotionTypeConfusion:
12155
0
        llvm_unreachable("expected non-matching");
12156
0
      case ArgType::NoMatchPedantic:
12157
0
        Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
12158
0
        break;
12159
0
      case ArgType::NoMatchTypeConfusion:
12160
0
        Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
12161
0
        break;
12162
0
      case ArgType::NoMatch:
12163
0
        Diag = diag::warn_format_conversion_argument_type_mismatch;
12164
0
        break;
12165
0
      }
12166
12167
      // In this case, the specifier is wrong and should be changed to match
12168
      // the argument.
12169
0
      EmitFormatDiagnostic(S.PDiag(Diag)
12170
0
                               << AT.getRepresentativeTypeName(S.Context)
12171
0
                               << IntendedTy << IsEnum << E->getSourceRange(),
12172
0
                           E->getBeginLoc(),
12173
0
                           /*IsStringLocation*/ false, SpecRange,
12174
0
                           FixItHint::CreateReplacement(SpecRange, os.str()));
12175
0
    } else {
12176
      // The canonical type for formatting this value is different from the
12177
      // actual type of the expression. (This occurs, for example, with Darwin's
12178
      // NSInteger on 32-bit platforms, where it is typedef'd as 'int', but
12179
      // should be printed as 'long' for 64-bit compatibility.)
12180
      // Rather than emitting a normal format/argument mismatch, we want to
12181
      // add a cast to the recommended type (and correct the format string
12182
      // if necessary). We should also do so for scoped enumerations.
12183
0
      SmallString<16> CastBuf;
12184
0
      llvm::raw_svector_ostream CastFix(CastBuf);
12185
0
      CastFix << (S.LangOpts.CPlusPlus ? "static_cast<" : "(");
12186
0
      IntendedTy.print(CastFix, S.Context.getPrintingPolicy());
12187
0
      CastFix << (S.LangOpts.CPlusPlus ? ">" : ")");
12188
12189
0
      SmallVector<FixItHint,4> Hints;
12190
0
      if (AT.matchesType(S.Context, IntendedTy) != ArgType::Match ||
12191
0
          ShouldNotPrintDirectly)
12192
0
        Hints.push_back(FixItHint::CreateReplacement(SpecRange, os.str()));
12193
12194
0
      if (const CStyleCastExpr *CCast = dyn_cast<CStyleCastExpr>(E)) {
12195
        // If there's already a cast present, just replace it.
12196
0
        SourceRange CastRange(CCast->getLParenLoc(), CCast->getRParenLoc());
12197
0
        Hints.push_back(FixItHint::CreateReplacement(CastRange, CastFix.str()));
12198
12199
0
      } else if (!requiresParensToAddCast(E) && !S.LangOpts.CPlusPlus) {
12200
        // If the expression has high enough precedence,
12201
        // just write the C-style cast.
12202
0
        Hints.push_back(
12203
0
            FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
12204
0
      } else {
12205
        // Otherwise, add parens around the expression as well as the cast.
12206
0
        CastFix << "(";
12207
0
        Hints.push_back(
12208
0
            FixItHint::CreateInsertion(E->getBeginLoc(), CastFix.str()));
12209
12210
        // We don't use getLocForEndOfToken because it returns invalid source
12211
        // locations for macro expansions (by design).
12212
0
        SourceLocation EndLoc = S.SourceMgr.getSpellingLoc(E->getEndLoc());
12213
0
        SourceLocation After = EndLoc.getLocWithOffset(
12214
0
            Lexer::MeasureTokenLength(EndLoc, S.SourceMgr, S.LangOpts));
12215
0
        Hints.push_back(FixItHint::CreateInsertion(After, ")"));
12216
0
      }
12217
12218
0
      if (ShouldNotPrintDirectly && !IsScopedEnum) {
12219
        // The expression has a type that should not be printed directly.
12220
        // We extract the name from the typedef because we don't want to show
12221
        // the underlying type in the diagnostic.
12222
0
        StringRef Name;
12223
0
        if (const auto *TypedefTy = ExprTy->getAs<TypedefType>())
12224
0
          Name = TypedefTy->getDecl()->getName();
12225
0
        else
12226
0
          Name = CastTyName;
12227
0
        unsigned Diag = Match == ArgType::NoMatchPedantic
12228
0
                            ? diag::warn_format_argument_needs_cast_pedantic
12229
0
                            : diag::warn_format_argument_needs_cast;
12230
0
        EmitFormatDiagnostic(S.PDiag(Diag) << Name << IntendedTy << IsEnum
12231
0
                                           << E->getSourceRange(),
12232
0
                             E->getBeginLoc(), /*IsStringLocation=*/false,
12233
0
                             SpecRange, Hints);
12234
0
      } else {
12235
        // In this case, the expression could be printed using a different
12236
        // specifier, but we've decided that the specifier is probably correct
12237
        // and we should cast instead. Just use the normal warning message.
12238
0
        EmitFormatDiagnostic(
12239
0
            S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
12240
0
                << AT.getRepresentativeTypeName(S.Context) << ExprTy << IsEnum
12241
0
                << E->getSourceRange(),
12242
0
            E->getBeginLoc(), /*IsStringLocation*/ false, SpecRange, Hints);
12243
0
      }
12244
0
    }
12245
0
  } else {
12246
0
    const CharSourceRange &CSR = getSpecifierRange(StartSpecifier,
12247
0
                                                   SpecifierLen);
12248
    // Since the warning for passing non-POD types to variadic functions
12249
    // was deferred until now, we emit a warning for non-POD
12250
    // arguments here.
12251
0
    bool EmitTypeMismatch = false;
12252
0
    switch (S.isValidVarArgType(ExprTy)) {
12253
0
    case Sema::VAK_Valid:
12254
0
    case Sema::VAK_ValidInCXX11: {
12255
0
      unsigned Diag;
12256
0
      switch (Match) {
12257
0
      case ArgType::Match:
12258
0
      case ArgType::MatchPromotion:
12259
0
      case ArgType::NoMatchPromotionTypeConfusion:
12260
0
        llvm_unreachable("expected non-matching");
12261
0
      case ArgType::NoMatchPedantic:
12262
0
        Diag = diag::warn_format_conversion_argument_type_mismatch_pedantic;
12263
0
        break;
12264
0
      case ArgType::NoMatchTypeConfusion:
12265
0
        Diag = diag::warn_format_conversion_argument_type_mismatch_confusion;
12266
0
        break;
12267
0
      case ArgType::NoMatch:
12268
0
        Diag = diag::warn_format_conversion_argument_type_mismatch;
12269
0
        break;
12270
0
      }
12271
12272
0
      EmitFormatDiagnostic(
12273
0
          S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context) << ExprTy
12274
0
                        << IsEnum << CSR << E->getSourceRange(),
12275
0
          E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
12276
0
      break;
12277
0
    }
12278
0
    case Sema::VAK_Undefined:
12279
0
    case Sema::VAK_MSVCUndefined:
12280
0
      if (CallType == Sema::VariadicDoesNotApply) {
12281
0
        EmitTypeMismatch = true;
12282
0
      } else {
12283
0
        EmitFormatDiagnostic(
12284
0
            S.PDiag(diag::warn_non_pod_vararg_with_format_string)
12285
0
                << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
12286
0
                << AT.getRepresentativeTypeName(S.Context) << CSR
12287
0
                << E->getSourceRange(),
12288
0
            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
12289
0
        checkForCStrMembers(AT, E);
12290
0
      }
12291
0
      break;
12292
12293
0
    case Sema::VAK_Invalid:
12294
0
      if (CallType == Sema::VariadicDoesNotApply)
12295
0
        EmitTypeMismatch = true;
12296
0
      else if (ExprTy->isObjCObjectType())
12297
0
        EmitFormatDiagnostic(
12298
0
            S.PDiag(diag::err_cannot_pass_objc_interface_to_vararg_format)
12299
0
                << S.getLangOpts().CPlusPlus11 << ExprTy << CallType
12300
0
                << AT.getRepresentativeTypeName(S.Context) << CSR
12301
0
                << E->getSourceRange(),
12302
0
            E->getBeginLoc(), /*IsStringLocation*/ false, CSR);
12303
0
      else
12304
        // FIXME: If this is an initializer list, suggest removing the braces
12305
        // or inserting a cast to the target type.
12306
0
        S.Diag(E->getBeginLoc(), diag::err_cannot_pass_to_vararg_format)
12307
0
            << isa<InitListExpr>(E) << ExprTy << CallType
12308
0
            << AT.getRepresentativeTypeName(S.Context) << E->getSourceRange();
12309
0
      break;
12310
0
    }
12311
12312
0
    if (EmitTypeMismatch) {
12313
      // The function is not variadic, so we do not generate warnings about
12314
      // being allowed to pass that object as a variadic argument. Instead,
12315
      // since there are inherently no printf specifiers for types which cannot
12316
      // be passed as variadic arguments, emit a plain old specifier mismatch
12317
      // argument.
12318
0
      EmitFormatDiagnostic(
12319
0
          S.PDiag(diag::warn_format_conversion_argument_type_mismatch)
12320
0
              << AT.getRepresentativeTypeName(S.Context) << ExprTy << false
12321
0
              << E->getSourceRange(),
12322
0
          E->getBeginLoc(), false, CSR);
12323
0
    }
12324
12325
0
    assert(FirstDataArg + FS.getArgIndex() < CheckedVarArgs.size() &&
12326
0
           "format string specifier index out of range");
12327
0
    CheckedVarArgs[FirstDataArg + FS.getArgIndex()] = true;
12328
0
  }
12329
12330
0
  return true;
12331
0
}
12332
12333
//===--- CHECK: Scanf format string checking ------------------------------===//
12334
12335
namespace {
12336
12337
class CheckScanfHandler : public CheckFormatHandler {
12338
public:
12339
  CheckScanfHandler(Sema &s, const FormatStringLiteral *fexpr,
12340
                    const Expr *origFormatExpr, Sema::FormatStringType type,
12341
                    unsigned firstDataArg, unsigned numDataArgs,
12342
                    const char *beg, Sema::FormatArgumentPassingKind APK,
12343
                    ArrayRef<const Expr *> Args, unsigned formatIdx,
12344
                    bool inFunctionCall, Sema::VariadicCallType CallType,
12345
                    llvm::SmallBitVector &CheckedVarArgs,
12346
                    UncoveredArgHandler &UncoveredArg)
12347
      : CheckFormatHandler(s, fexpr, origFormatExpr, type, firstDataArg,
12348
                           numDataArgs, beg, APK, Args, formatIdx,
12349
                           inFunctionCall, CallType, CheckedVarArgs,
12350
0
                           UncoveredArg) {}
12351
12352
  bool HandleScanfSpecifier(const analyze_scanf::ScanfSpecifier &FS,
12353
                            const char *startSpecifier,
12354
                            unsigned specifierLen) override;
12355
12356
  bool HandleInvalidScanfConversionSpecifier(
12357
          const analyze_scanf::ScanfSpecifier &FS,
12358
          const char *startSpecifier,
12359
          unsigned specifierLen) override;
12360
12361
  void HandleIncompleteScanList(const char *start, const char *end) override;
12362
};
12363
12364
} // namespace
12365
12366
void CheckScanfHandler::HandleIncompleteScanList(const char *start,
12367
0
                                                 const char *end) {
12368
0
  EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_scanlist_incomplete),
12369
0
                       getLocationOfByte(end), /*IsStringLocation*/true,
12370
0
                       getSpecifierRange(start, end - start));
12371
0
}
12372
12373
bool CheckScanfHandler::HandleInvalidScanfConversionSpecifier(
12374
                                        const analyze_scanf::ScanfSpecifier &FS,
12375
                                        const char *startSpecifier,
12376
0
                                        unsigned specifierLen) {
12377
0
  const analyze_scanf::ScanfConversionSpecifier &CS =
12378
0
    FS.getConversionSpecifier();
12379
12380
0
  return HandleInvalidConversionSpecifier(FS.getArgIndex(),
12381
0
                                          getLocationOfByte(CS.getStart()),
12382
0
                                          startSpecifier, specifierLen,
12383
0
                                          CS.getStart(), CS.getLength());
12384
0
}
12385
12386
bool CheckScanfHandler::HandleScanfSpecifier(
12387
                                       const analyze_scanf::ScanfSpecifier &FS,
12388
                                       const char *startSpecifier,
12389
0
                                       unsigned specifierLen) {
12390
0
  using namespace analyze_scanf;
12391
0
  using namespace analyze_format_string;
12392
12393
0
  const ScanfConversionSpecifier &CS = FS.getConversionSpecifier();
12394
12395
  // Handle case where '%' and '*' don't consume an argument.  These shouldn't
12396
  // be used to decide if we are using positional arguments consistently.
12397
0
  if (FS.consumesDataArgument()) {
12398
0
    if (atFirstArg) {
12399
0
      atFirstArg = false;
12400
0
      usesPositionalArgs = FS.usesPositionalArg();
12401
0
    }
12402
0
    else if (usesPositionalArgs != FS.usesPositionalArg()) {
12403
0
      HandlePositionalNonpositionalArgs(getLocationOfByte(CS.getStart()),
12404
0
                                        startSpecifier, specifierLen);
12405
0
      return false;
12406
0
    }
12407
0
  }
12408
12409
  // Check if the field with is non-zero.
12410
0
  const OptionalAmount &Amt = FS.getFieldWidth();
12411
0
  if (Amt.getHowSpecified() == OptionalAmount::Constant) {
12412
0
    if (Amt.getConstantAmount() == 0) {
12413
0
      const CharSourceRange &R = getSpecifierRange(Amt.getStart(),
12414
0
                                                   Amt.getConstantLength());
12415
0
      EmitFormatDiagnostic(S.PDiag(diag::warn_scanf_nonzero_width),
12416
0
                           getLocationOfByte(Amt.getStart()),
12417
0
                           /*IsStringLocation*/true, R,
12418
0
                           FixItHint::CreateRemoval(R));
12419
0
    }
12420
0
  }
12421
12422
0
  if (!FS.consumesDataArgument()) {
12423
    // FIXME: Technically specifying a precision or field width here
12424
    // makes no sense.  Worth issuing a warning at some point.
12425
0
    return true;
12426
0
  }
12427
12428
  // Consume the argument.
12429
0
  unsigned argIndex = FS.getArgIndex();
12430
0
  if (argIndex < NumDataArgs) {
12431
      // The check to see if the argIndex is valid will come later.
12432
      // We set the bit here because we may exit early from this
12433
      // function if we encounter some other error.
12434
0
    CoveredArgs.set(argIndex);
12435
0
  }
12436
12437
  // Check the length modifier is valid with the given conversion specifier.
12438
0
  if (!FS.hasValidLengthModifier(S.getASTContext().getTargetInfo(),
12439
0
                                 S.getLangOpts()))
12440
0
    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
12441
0
                                diag::warn_format_nonsensical_length);
12442
0
  else if (!FS.hasStandardLengthModifier())
12443
0
    HandleNonStandardLengthModifier(FS, startSpecifier, specifierLen);
12444
0
  else if (!FS.hasStandardLengthConversionCombination())
12445
0
    HandleInvalidLengthModifier(FS, CS, startSpecifier, specifierLen,
12446
0
                                diag::warn_format_non_standard_conversion_spec);
12447
12448
0
  if (!FS.hasStandardConversionSpecifier(S.getLangOpts()))
12449
0
    HandleNonStandardConversionSpecifier(CS, startSpecifier, specifierLen);
12450
12451
  // The remaining checks depend on the data arguments.
12452
0
  if (ArgPassingKind == Sema::FAPK_VAList)
12453
0
    return true;
12454
12455
0
  if (!CheckNumArgs(FS, CS, startSpecifier, specifierLen, argIndex))
12456
0
    return false;
12457
12458
  // Check that the argument type matches the format specifier.
12459
0
  const Expr *Ex = getDataArg(argIndex);
12460
0
  if (!Ex)
12461
0
    return true;
12462
12463
0
  const analyze_format_string::ArgType &AT = FS.getArgType(S.Context);
12464
12465
0
  if (!AT.isValid()) {
12466
0
    return true;
12467
0
  }
12468
12469
0
  analyze_format_string::ArgType::MatchKind Match =
12470
0
      AT.matchesType(S.Context, Ex->getType());
12471
0
  bool Pedantic = Match == analyze_format_string::ArgType::NoMatchPedantic;
12472
0
  if (Match == analyze_format_string::ArgType::Match)
12473
0
    return true;
12474
12475
0
  ScanfSpecifier fixedFS = FS;
12476
0
  bool Success = fixedFS.fixType(Ex->getType(), Ex->IgnoreImpCasts()->getType(),
12477
0
                                 S.getLangOpts(), S.Context);
12478
12479
0
  unsigned Diag =
12480
0
      Pedantic ? diag::warn_format_conversion_argument_type_mismatch_pedantic
12481
0
               : diag::warn_format_conversion_argument_type_mismatch;
12482
12483
0
  if (Success) {
12484
    // Get the fix string from the fixed format specifier.
12485
0
    SmallString<128> buf;
12486
0
    llvm::raw_svector_ostream os(buf);
12487
0
    fixedFS.toString(os);
12488
12489
0
    EmitFormatDiagnostic(
12490
0
        S.PDiag(Diag) << AT.getRepresentativeTypeName(S.Context)
12491
0
                      << Ex->getType() << false << Ex->getSourceRange(),
12492
0
        Ex->getBeginLoc(),
12493
0
        /*IsStringLocation*/ false,
12494
0
        getSpecifierRange(startSpecifier, specifierLen),
12495
0
        FixItHint::CreateReplacement(
12496
0
            getSpecifierRange(startSpecifier, specifierLen), os.str()));
12497
0
  } else {
12498
0
    EmitFormatDiagnostic(S.PDiag(Diag)
12499
0
                             << AT.getRepresentativeTypeName(S.Context)
12500
0
                             << Ex->getType() << false << Ex->getSourceRange(),
12501
0
                         Ex->getBeginLoc(),
12502
0
                         /*IsStringLocation*/ false,
12503
0
                         getSpecifierRange(startSpecifier, specifierLen));
12504
0
  }
12505
12506
0
  return true;
12507
0
}
12508
12509
static void CheckFormatString(
12510
    Sema &S, const FormatStringLiteral *FExpr, const Expr *OrigFormatExpr,
12511
    ArrayRef<const Expr *> Args, Sema::FormatArgumentPassingKind APK,
12512
    unsigned format_idx, unsigned firstDataArg, Sema::FormatStringType Type,
12513
    bool inFunctionCall, Sema::VariadicCallType CallType,
12514
    llvm::SmallBitVector &CheckedVarArgs, UncoveredArgHandler &UncoveredArg,
12515
0
    bool IgnoreStringsWithoutSpecifiers) {
12516
  // CHECK: is the format string a wide literal?
12517
0
  if (!FExpr->isAscii() && !FExpr->isUTF8()) {
12518
0
    CheckFormatHandler::EmitFormatDiagnostic(
12519
0
        S, inFunctionCall, Args[format_idx],
12520
0
        S.PDiag(diag::warn_format_string_is_wide_literal), FExpr->getBeginLoc(),
12521
0
        /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
12522
0
    return;
12523
0
  }
12524
12525
  // Str - The format string.  NOTE: this is NOT null-terminated!
12526
0
  StringRef StrRef = FExpr->getString();
12527
0
  const char *Str = StrRef.data();
12528
  // Account for cases where the string literal is truncated in a declaration.
12529
0
  const ConstantArrayType *T =
12530
0
    S.Context.getAsConstantArrayType(FExpr->getType());
12531
0
  assert(T && "String literal not of constant array type!");
12532
0
  size_t TypeSize = T->getSize().getZExtValue();
12533
0
  size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
12534
0
  const unsigned numDataArgs = Args.size() - firstDataArg;
12535
12536
0
  if (IgnoreStringsWithoutSpecifiers &&
12537
0
      !analyze_format_string::parseFormatStringHasFormattingSpecifiers(
12538
0
          Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
12539
0
    return;
12540
12541
  // Emit a warning if the string literal is truncated and does not contain an
12542
  // embedded null character.
12543
0
  if (TypeSize <= StrRef.size() && !StrRef.substr(0, TypeSize).contains('\0')) {
12544
0
    CheckFormatHandler::EmitFormatDiagnostic(
12545
0
        S, inFunctionCall, Args[format_idx],
12546
0
        S.PDiag(diag::warn_printf_format_string_not_null_terminated),
12547
0
        FExpr->getBeginLoc(),
12548
0
        /*IsStringLocation=*/true, OrigFormatExpr->getSourceRange());
12549
0
    return;
12550
0
  }
12551
12552
  // CHECK: empty format string?
12553
0
  if (StrLen == 0 && numDataArgs > 0) {
12554
0
    CheckFormatHandler::EmitFormatDiagnostic(
12555
0
        S, inFunctionCall, Args[format_idx],
12556
0
        S.PDiag(diag::warn_empty_format_string), FExpr->getBeginLoc(),
12557
0
        /*IsStringLocation*/ true, OrigFormatExpr->getSourceRange());
12558
0
    return;
12559
0
  }
12560
12561
0
  if (Type == Sema::FST_Printf || Type == Sema::FST_NSString ||
12562
0
      Type == Sema::FST_FreeBSDKPrintf || Type == Sema::FST_OSLog ||
12563
0
      Type == Sema::FST_OSTrace) {
12564
0
    CheckPrintfHandler H(
12565
0
        S, FExpr, OrigFormatExpr, Type, firstDataArg, numDataArgs,
12566
0
        (Type == Sema::FST_NSString || Type == Sema::FST_OSTrace), Str, APK,
12567
0
        Args, format_idx, inFunctionCall, CallType, CheckedVarArgs,
12568
0
        UncoveredArg);
12569
12570
0
    if (!analyze_format_string::ParsePrintfString(
12571
0
            H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo(),
12572
0
            Type == Sema::FST_FreeBSDKPrintf))
12573
0
      H.DoneProcessing();
12574
0
  } else if (Type == Sema::FST_Scanf) {
12575
0
    CheckScanfHandler H(S, FExpr, OrigFormatExpr, Type, firstDataArg,
12576
0
                        numDataArgs, Str, APK, Args, format_idx, inFunctionCall,
12577
0
                        CallType, CheckedVarArgs, UncoveredArg);
12578
12579
0
    if (!analyze_format_string::ParseScanfString(
12580
0
            H, Str, Str + StrLen, S.getLangOpts(), S.Context.getTargetInfo()))
12581
0
      H.DoneProcessing();
12582
0
  } // TODO: handle other formats
12583
0
}
12584
12585
0
bool Sema::FormatStringHasSArg(const StringLiteral *FExpr) {
12586
  // Str - The format string.  NOTE: this is NOT null-terminated!
12587
0
  StringRef StrRef = FExpr->getString();
12588
0
  const char *Str = StrRef.data();
12589
  // Account for cases where the string literal is truncated in a declaration.
12590
0
  const ConstantArrayType *T = Context.getAsConstantArrayType(FExpr->getType());
12591
0
  assert(T && "String literal not of constant array type!");
12592
0
  size_t TypeSize = T->getSize().getZExtValue();
12593
0
  size_t StrLen = std::min(std::max(TypeSize, size_t(1)) - 1, StrRef.size());
12594
0
  return analyze_format_string::ParseFormatStringHasSArg(Str, Str + StrLen,
12595
0
                                                         getLangOpts(),
12596
0
                                                         Context.getTargetInfo());
12597
0
}
12598
12599
//===--- CHECK: Warn on use of wrong absolute value function. -------------===//
12600
12601
// Returns the related absolute value function that is larger, of 0 if one
12602
// does not exist.
12603
0
static unsigned getLargerAbsoluteValueFunction(unsigned AbsFunction) {
12604
0
  switch (AbsFunction) {
12605
0
  default:
12606
0
    return 0;
12607
12608
0
  case Builtin::BI__builtin_abs:
12609
0
    return Builtin::BI__builtin_labs;
12610
0
  case Builtin::BI__builtin_labs:
12611
0
    return Builtin::BI__builtin_llabs;
12612
0
  case Builtin::BI__builtin_llabs:
12613
0
    return 0;
12614
12615
0
  case Builtin::BI__builtin_fabsf:
12616
0
    return Builtin::BI__builtin_fabs;
12617
0
  case Builtin::BI__builtin_fabs:
12618
0
    return Builtin::BI__builtin_fabsl;
12619
0
  case Builtin::BI__builtin_fabsl:
12620
0
    return 0;
12621
12622
0
  case Builtin::BI__builtin_cabsf:
12623
0
    return Builtin::BI__builtin_cabs;
12624
0
  case Builtin::BI__builtin_cabs:
12625
0
    return Builtin::BI__builtin_cabsl;
12626
0
  case Builtin::BI__builtin_cabsl:
12627
0
    return 0;
12628
12629
0
  case Builtin::BIabs:
12630
0
    return Builtin::BIlabs;
12631
0
  case Builtin::BIlabs:
12632
0
    return Builtin::BIllabs;
12633
0
  case Builtin::BIllabs:
12634
0
    return 0;
12635
12636
0
  case Builtin::BIfabsf:
12637
0
    return Builtin::BIfabs;
12638
0
  case Builtin::BIfabs:
12639
0
    return Builtin::BIfabsl;
12640
0
  case Builtin::BIfabsl:
12641
0
    return 0;
12642
12643
0
  case Builtin::BIcabsf:
12644
0
   return Builtin::BIcabs;
12645
0
  case Builtin::BIcabs:
12646
0
    return Builtin::BIcabsl;
12647
0
  case Builtin::BIcabsl:
12648
0
    return 0;
12649
0
  }
12650
0
}
12651
12652
// Returns the argument type of the absolute value function.
12653
static QualType getAbsoluteValueArgumentType(ASTContext &Context,
12654
0
                                             unsigned AbsType) {
12655
0
  if (AbsType == 0)
12656
0
    return QualType();
12657
12658
0
  ASTContext::GetBuiltinTypeError Error = ASTContext::GE_None;
12659
0
  QualType BuiltinType = Context.GetBuiltinType(AbsType, Error);
12660
0
  if (Error != ASTContext::GE_None)
12661
0
    return QualType();
12662
12663
0
  const FunctionProtoType *FT = BuiltinType->getAs<FunctionProtoType>();
12664
0
  if (!FT)
12665
0
    return QualType();
12666
12667
0
  if (FT->getNumParams() != 1)
12668
0
    return QualType();
12669
12670
0
  return FT->getParamType(0);
12671
0
}
12672
12673
// Returns the best absolute value function, or zero, based on type and
12674
// current absolute value function.
12675
static unsigned getBestAbsFunction(ASTContext &Context, QualType ArgType,
12676
0
                                   unsigned AbsFunctionKind) {
12677
0
  unsigned BestKind = 0;
12678
0
  uint64_t ArgSize = Context.getTypeSize(ArgType);
12679
0
  for (unsigned Kind = AbsFunctionKind; Kind != 0;
12680
0
       Kind = getLargerAbsoluteValueFunction(Kind)) {
12681
0
    QualType ParamType = getAbsoluteValueArgumentType(Context, Kind);
12682
0
    if (Context.getTypeSize(ParamType) >= ArgSize) {
12683
0
      if (BestKind == 0)
12684
0
        BestKind = Kind;
12685
0
      else if (Context.hasSameType(ParamType, ArgType)) {
12686
0
        BestKind = Kind;
12687
0
        break;
12688
0
      }
12689
0
    }
12690
0
  }
12691
0
  return BestKind;
12692
0
}
12693
12694
enum AbsoluteValueKind {
12695
  AVK_Integer,
12696
  AVK_Floating,
12697
  AVK_Complex
12698
};
12699
12700
0
static AbsoluteValueKind getAbsoluteValueKind(QualType T) {
12701
0
  if (T->isIntegralOrEnumerationType())
12702
0
    return AVK_Integer;
12703
0
  if (T->isRealFloatingType())
12704
0
    return AVK_Floating;
12705
0
  if (T->isAnyComplexType())
12706
0
    return AVK_Complex;
12707
12708
0
  llvm_unreachable("Type not integer, floating, or complex");
12709
0
}
12710
12711
// Changes the absolute value function to a different type.  Preserves whether
12712
// the function is a builtin.
12713
static unsigned changeAbsFunction(unsigned AbsKind,
12714
0
                                  AbsoluteValueKind ValueKind) {
12715
0
  switch (ValueKind) {
12716
0
  case AVK_Integer:
12717
0
    switch (AbsKind) {
12718
0
    default:
12719
0
      return 0;
12720
0
    case Builtin::BI__builtin_fabsf:
12721
0
    case Builtin::BI__builtin_fabs:
12722
0
    case Builtin::BI__builtin_fabsl:
12723
0
    case Builtin::BI__builtin_cabsf:
12724
0
    case Builtin::BI__builtin_cabs:
12725
0
    case Builtin::BI__builtin_cabsl:
12726
0
      return Builtin::BI__builtin_abs;
12727
0
    case Builtin::BIfabsf:
12728
0
    case Builtin::BIfabs:
12729
0
    case Builtin::BIfabsl:
12730
0
    case Builtin::BIcabsf:
12731
0
    case Builtin::BIcabs:
12732
0
    case Builtin::BIcabsl:
12733
0
      return Builtin::BIabs;
12734
0
    }
12735
0
  case AVK_Floating:
12736
0
    switch (AbsKind) {
12737
0
    default:
12738
0
      return 0;
12739
0
    case Builtin::BI__builtin_abs:
12740
0
    case Builtin::BI__builtin_labs:
12741
0
    case Builtin::BI__builtin_llabs:
12742
0
    case Builtin::BI__builtin_cabsf:
12743
0
    case Builtin::BI__builtin_cabs:
12744
0
    case Builtin::BI__builtin_cabsl:
12745
0
      return Builtin::BI__builtin_fabsf;
12746
0
    case Builtin::BIabs:
12747
0
    case Builtin::BIlabs:
12748
0
    case Builtin::BIllabs:
12749
0
    case Builtin::BIcabsf:
12750
0
    case Builtin::BIcabs:
12751
0
    case Builtin::BIcabsl:
12752
0
      return Builtin::BIfabsf;
12753
0
    }
12754
0
  case AVK_Complex:
12755
0
    switch (AbsKind) {
12756
0
    default:
12757
0
      return 0;
12758
0
    case Builtin::BI__builtin_abs:
12759
0
    case Builtin::BI__builtin_labs:
12760
0
    case Builtin::BI__builtin_llabs:
12761
0
    case Builtin::BI__builtin_fabsf:
12762
0
    case Builtin::BI__builtin_fabs:
12763
0
    case Builtin::BI__builtin_fabsl:
12764
0
      return Builtin::BI__builtin_cabsf;
12765
0
    case Builtin::BIabs:
12766
0
    case Builtin::BIlabs:
12767
0
    case Builtin::BIllabs:
12768
0
    case Builtin::BIfabsf:
12769
0
    case Builtin::BIfabs:
12770
0
    case Builtin::BIfabsl:
12771
0
      return Builtin::BIcabsf;
12772
0
    }
12773
0
  }
12774
0
  llvm_unreachable("Unable to convert function");
12775
0
}
12776
12777
0
static unsigned getAbsoluteValueFunctionKind(const FunctionDecl *FDecl) {
12778
0
  const IdentifierInfo *FnInfo = FDecl->getIdentifier();
12779
0
  if (!FnInfo)
12780
0
    return 0;
12781
12782
0
  switch (FDecl->getBuiltinID()) {
12783
0
  default:
12784
0
    return 0;
12785
0
  case Builtin::BI__builtin_abs:
12786
0
  case Builtin::BI__builtin_fabs:
12787
0
  case Builtin::BI__builtin_fabsf:
12788
0
  case Builtin::BI__builtin_fabsl:
12789
0
  case Builtin::BI__builtin_labs:
12790
0
  case Builtin::BI__builtin_llabs:
12791
0
  case Builtin::BI__builtin_cabs:
12792
0
  case Builtin::BI__builtin_cabsf:
12793
0
  case Builtin::BI__builtin_cabsl:
12794
0
  case Builtin::BIabs:
12795
0
  case Builtin::BIlabs:
12796
0
  case Builtin::BIllabs:
12797
0
  case Builtin::BIfabs:
12798
0
  case Builtin::BIfabsf:
12799
0
  case Builtin::BIfabsl:
12800
0
  case Builtin::BIcabs:
12801
0
  case Builtin::BIcabsf:
12802
0
  case Builtin::BIcabsl:
12803
0
    return FDecl->getBuiltinID();
12804
0
  }
12805
0
  llvm_unreachable("Unknown Builtin type");
12806
0
}
12807
12808
// If the replacement is valid, emit a note with replacement function.
12809
// Additionally, suggest including the proper header if not already included.
12810
static void emitReplacement(Sema &S, SourceLocation Loc, SourceRange Range,
12811
0
                            unsigned AbsKind, QualType ArgType) {
12812
0
  bool EmitHeaderHint = true;
12813
0
  const char *HeaderName = nullptr;
12814
0
  StringRef FunctionName;
12815
0
  if (S.getLangOpts().CPlusPlus && !ArgType->isAnyComplexType()) {
12816
0
    FunctionName = "std::abs";
12817
0
    if (ArgType->isIntegralOrEnumerationType()) {
12818
0
      HeaderName = "cstdlib";
12819
0
    } else if (ArgType->isRealFloatingType()) {
12820
0
      HeaderName = "cmath";
12821
0
    } else {
12822
0
      llvm_unreachable("Invalid Type");
12823
0
    }
12824
12825
    // Lookup all std::abs
12826
0
    if (NamespaceDecl *Std = S.getStdNamespace()) {
12827
0
      LookupResult R(S, &S.Context.Idents.get("abs"), Loc, Sema::LookupAnyName);
12828
0
      R.suppressDiagnostics();
12829
0
      S.LookupQualifiedName(R, Std);
12830
12831
0
      for (const auto *I : R) {
12832
0
        const FunctionDecl *FDecl = nullptr;
12833
0
        if (const UsingShadowDecl *UsingD = dyn_cast<UsingShadowDecl>(I)) {
12834
0
          FDecl = dyn_cast<FunctionDecl>(UsingD->getTargetDecl());
12835
0
        } else {
12836
0
          FDecl = dyn_cast<FunctionDecl>(I);
12837
0
        }
12838
0
        if (!FDecl)
12839
0
          continue;
12840
12841
        // Found std::abs(), check that they are the right ones.
12842
0
        if (FDecl->getNumParams() != 1)
12843
0
          continue;
12844
12845
        // Check that the parameter type can handle the argument.
12846
0
        QualType ParamType = FDecl->getParamDecl(0)->getType();
12847
0
        if (getAbsoluteValueKind(ArgType) == getAbsoluteValueKind(ParamType) &&
12848
0
            S.Context.getTypeSize(ArgType) <=
12849
0
                S.Context.getTypeSize(ParamType)) {
12850
          // Found a function, don't need the header hint.
12851
0
          EmitHeaderHint = false;
12852
0
          break;
12853
0
        }
12854
0
      }
12855
0
    }
12856
0
  } else {
12857
0
    FunctionName = S.Context.BuiltinInfo.getName(AbsKind);
12858
0
    HeaderName = S.Context.BuiltinInfo.getHeaderName(AbsKind);
12859
12860
0
    if (HeaderName) {
12861
0
      DeclarationName DN(&S.Context.Idents.get(FunctionName));
12862
0
      LookupResult R(S, DN, Loc, Sema::LookupAnyName);
12863
0
      R.suppressDiagnostics();
12864
0
      S.LookupName(R, S.getCurScope());
12865
12866
0
      if (R.isSingleResult()) {
12867
0
        FunctionDecl *FD = dyn_cast<FunctionDecl>(R.getFoundDecl());
12868
0
        if (FD && FD->getBuiltinID() == AbsKind) {
12869
0
          EmitHeaderHint = false;
12870
0
        } else {
12871
0
          return;
12872
0
        }
12873
0
      } else if (!R.empty()) {
12874
0
        return;
12875
0
      }
12876
0
    }
12877
0
  }
12878
12879
0
  S.Diag(Loc, diag::note_replace_abs_function)
12880
0
      << FunctionName << FixItHint::CreateReplacement(Range, FunctionName);
12881
12882
0
  if (!HeaderName)
12883
0
    return;
12884
12885
0
  if (!EmitHeaderHint)
12886
0
    return;
12887
12888
0
  S.Diag(Loc, diag::note_include_header_or_declare) << HeaderName
12889
0
                                                    << FunctionName;
12890
0
}
12891
12892
template <std::size_t StrLen>
12893
static bool IsStdFunction(const FunctionDecl *FDecl,
12894
0
                          const char (&Str)[StrLen]) {
12895
0
  if (!FDecl)
12896
0
    return false;
12897
0
  if (!FDecl->getIdentifier() || !FDecl->getIdentifier()->isStr(Str))
12898
0
    return false;
12899
0
  if (!FDecl->isInStdNamespace())
12900
0
    return false;
12901
12902
0
  return true;
12903
0
}
12904
12905
// Warn when using the wrong abs() function.
12906
void Sema::CheckAbsoluteValueFunction(const CallExpr *Call,
12907
0
                                      const FunctionDecl *FDecl) {
12908
0
  if (Call->getNumArgs() != 1)
12909
0
    return;
12910
12911
0
  unsigned AbsKind = getAbsoluteValueFunctionKind(FDecl);
12912
0
  bool IsStdAbs = IsStdFunction(FDecl, "abs");
12913
0
  if (AbsKind == 0 && !IsStdAbs)
12914
0
    return;
12915
12916
0
  QualType ArgType = Call->getArg(0)->IgnoreParenImpCasts()->getType();
12917
0
  QualType ParamType = Call->getArg(0)->getType();
12918
12919
  // Unsigned types cannot be negative.  Suggest removing the absolute value
12920
  // function call.
12921
0
  if (ArgType->isUnsignedIntegerType()) {
12922
0
    StringRef FunctionName =
12923
0
        IsStdAbs ? "std::abs" : Context.BuiltinInfo.getName(AbsKind);
12924
0
    Diag(Call->getExprLoc(), diag::warn_unsigned_abs) << ArgType << ParamType;
12925
0
    Diag(Call->getExprLoc(), diag::note_remove_abs)
12926
0
        << FunctionName
12927
0
        << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange());
12928
0
    return;
12929
0
  }
12930
12931
  // Taking the absolute value of a pointer is very suspicious, they probably
12932
  // wanted to index into an array, dereference a pointer, call a function, etc.
12933
0
  if (ArgType->isPointerType() || ArgType->canDecayToPointerType()) {
12934
0
    unsigned DiagType = 0;
12935
0
    if (ArgType->isFunctionType())
12936
0
      DiagType = 1;
12937
0
    else if (ArgType->isArrayType())
12938
0
      DiagType = 2;
12939
12940
0
    Diag(Call->getExprLoc(), diag::warn_pointer_abs) << DiagType << ArgType;
12941
0
    return;
12942
0
  }
12943
12944
  // std::abs has overloads which prevent most of the absolute value problems
12945
  // from occurring.
12946
0
  if (IsStdAbs)
12947
0
    return;
12948
12949
0
  AbsoluteValueKind ArgValueKind = getAbsoluteValueKind(ArgType);
12950
0
  AbsoluteValueKind ParamValueKind = getAbsoluteValueKind(ParamType);
12951
12952
  // The argument and parameter are the same kind.  Check if they are the right
12953
  // size.
12954
0
  if (ArgValueKind == ParamValueKind) {
12955
0
    if (Context.getTypeSize(ArgType) <= Context.getTypeSize(ParamType))
12956
0
      return;
12957
12958
0
    unsigned NewAbsKind = getBestAbsFunction(Context, ArgType, AbsKind);
12959
0
    Diag(Call->getExprLoc(), diag::warn_abs_too_small)
12960
0
        << FDecl << ArgType << ParamType;
12961
12962
0
    if (NewAbsKind == 0)
12963
0
      return;
12964
12965
0
    emitReplacement(*this, Call->getExprLoc(),
12966
0
                    Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
12967
0
    return;
12968
0
  }
12969
12970
  // ArgValueKind != ParamValueKind
12971
  // The wrong type of absolute value function was used.  Attempt to find the
12972
  // proper one.
12973
0
  unsigned NewAbsKind = changeAbsFunction(AbsKind, ArgValueKind);
12974
0
  NewAbsKind = getBestAbsFunction(Context, ArgType, NewAbsKind);
12975
0
  if (NewAbsKind == 0)
12976
0
    return;
12977
12978
0
  Diag(Call->getExprLoc(), diag::warn_wrong_absolute_value_type)
12979
0
      << FDecl << ParamValueKind << ArgValueKind;
12980
12981
0
  emitReplacement(*this, Call->getExprLoc(),
12982
0
                  Call->getCallee()->getSourceRange(), NewAbsKind, ArgType);
12983
0
}
12984
12985
//===--- CHECK: Warn on use of std::max and unsigned zero. r---------------===//
12986
void Sema::CheckMaxUnsignedZero(const CallExpr *Call,
12987
0
                                const FunctionDecl *FDecl) {
12988
0
  if (!Call || !FDecl) return;
12989
12990
  // Ignore template specializations and macros.
12991
0
  if (inTemplateInstantiation()) return;
12992
0
  if (Call->getExprLoc().isMacroID()) return;
12993
12994
  // Only care about the one template argument, two function parameter std::max
12995
0
  if (Call->getNumArgs() != 2) return;
12996
0
  if (!IsStdFunction(FDecl, "max")) return;
12997
0
  const auto * ArgList = FDecl->getTemplateSpecializationArgs();
12998
0
  if (!ArgList) return;
12999
0
  if (ArgList->size() != 1) return;
13000
13001
  // Check that template type argument is unsigned integer.
13002
0
  const auto& TA = ArgList->get(0);
13003
0
  if (TA.getKind() != TemplateArgument::Type) return;
13004
0
  QualType ArgType = TA.getAsType();
13005
0
  if (!ArgType->isUnsignedIntegerType()) return;
13006
13007
  // See if either argument is a literal zero.
13008
0
  auto IsLiteralZeroArg = [](const Expr* E) -> bool {
13009
0
    const auto *MTE = dyn_cast<MaterializeTemporaryExpr>(E);
13010
0
    if (!MTE) return false;
13011
0
    const auto *Num = dyn_cast<IntegerLiteral>(MTE->getSubExpr());
13012
0
    if (!Num) return false;
13013
0
    if (Num->getValue() != 0) return false;
13014
0
    return true;
13015
0
  };
13016
13017
0
  const Expr *FirstArg = Call->getArg(0);
13018
0
  const Expr *SecondArg = Call->getArg(1);
13019
0
  const bool IsFirstArgZero = IsLiteralZeroArg(FirstArg);
13020
0
  const bool IsSecondArgZero = IsLiteralZeroArg(SecondArg);
13021
13022
  // Only warn when exactly one argument is zero.
13023
0
  if (IsFirstArgZero == IsSecondArgZero) return;
13024
13025
0
  SourceRange FirstRange = FirstArg->getSourceRange();
13026
0
  SourceRange SecondRange = SecondArg->getSourceRange();
13027
13028
0
  SourceRange ZeroRange = IsFirstArgZero ? FirstRange : SecondRange;
13029
13030
0
  Diag(Call->getExprLoc(), diag::warn_max_unsigned_zero)
13031
0
      << IsFirstArgZero << Call->getCallee()->getSourceRange() << ZeroRange;
13032
13033
  // Deduce what parts to remove so that "std::max(0u, foo)" becomes "(foo)".
13034
0
  SourceRange RemovalRange;
13035
0
  if (IsFirstArgZero) {
13036
0
    RemovalRange = SourceRange(FirstRange.getBegin(),
13037
0
                               SecondRange.getBegin().getLocWithOffset(-1));
13038
0
  } else {
13039
0
    RemovalRange = SourceRange(getLocForEndOfToken(FirstRange.getEnd()),
13040
0
                               SecondRange.getEnd());
13041
0
  }
13042
13043
0
  Diag(Call->getExprLoc(), diag::note_remove_max_call)
13044
0
        << FixItHint::CreateRemoval(Call->getCallee()->getSourceRange())
13045
0
        << FixItHint::CreateRemoval(RemovalRange);
13046
0
}
13047
13048
//===--- CHECK: Standard memory functions ---------------------------------===//
13049
13050
/// Takes the expression passed to the size_t parameter of functions
13051
/// such as memcmp, strncat, etc and warns if it's a comparison.
13052
///
13053
/// This is to catch typos like `if (memcmp(&a, &b, sizeof(a) > 0))`.
13054
static bool CheckMemorySizeofForComparison(Sema &S, const Expr *E,
13055
                                           IdentifierInfo *FnName,
13056
                                           SourceLocation FnLoc,
13057
0
                                           SourceLocation RParenLoc) {
13058
0
  const BinaryOperator *Size = dyn_cast<BinaryOperator>(E);
13059
0
  if (!Size)
13060
0
    return false;
13061
13062
  // if E is binop and op is <=>, >, <, >=, <=, ==, &&, ||:
13063
0
  if (!Size->isComparisonOp() && !Size->isLogicalOp())
13064
0
    return false;
13065
13066
0
  SourceRange SizeRange = Size->getSourceRange();
13067
0
  S.Diag(Size->getOperatorLoc(), diag::warn_memsize_comparison)
13068
0
      << SizeRange << FnName;
13069
0
  S.Diag(FnLoc, diag::note_memsize_comparison_paren)
13070
0
      << FnName
13071
0
      << FixItHint::CreateInsertion(
13072
0
             S.getLocForEndOfToken(Size->getLHS()->getEndLoc()), ")")
13073
0
      << FixItHint::CreateRemoval(RParenLoc);
13074
0
  S.Diag(SizeRange.getBegin(), diag::note_memsize_comparison_cast_silence)
13075
0
      << FixItHint::CreateInsertion(SizeRange.getBegin(), "(size_t)(")
13076
0
      << FixItHint::CreateInsertion(S.getLocForEndOfToken(SizeRange.getEnd()),
13077
0
                                    ")");
13078
13079
0
  return true;
13080
0
}
13081
13082
/// Determine whether the given type is or contains a dynamic class type
13083
/// (e.g., whether it has a vtable).
13084
static const CXXRecordDecl *getContainedDynamicClass(QualType T,
13085
0
                                                     bool &IsContained) {
13086
  // Look through array types while ignoring qualifiers.
13087
0
  const Type *Ty = T->getBaseElementTypeUnsafe();
13088
0
  IsContained = false;
13089
13090
0
  const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl();
13091
0
  RD = RD ? RD->getDefinition() : nullptr;
13092
0
  if (!RD || RD->isInvalidDecl())
13093
0
    return nullptr;
13094
13095
0
  if (RD->isDynamicClass())
13096
0
    return RD;
13097
13098
  // Check all the fields.  If any bases were dynamic, the class is dynamic.
13099
  // It's impossible for a class to transitively contain itself by value, so
13100
  // infinite recursion is impossible.
13101
0
  for (auto *FD : RD->fields()) {
13102
0
    bool SubContained;
13103
0
    if (const CXXRecordDecl *ContainedRD =
13104
0
            getContainedDynamicClass(FD->getType(), SubContained)) {
13105
0
      IsContained = true;
13106
0
      return ContainedRD;
13107
0
    }
13108
0
  }
13109
13110
0
  return nullptr;
13111
0
}
13112
13113
0
static const UnaryExprOrTypeTraitExpr *getAsSizeOfExpr(const Expr *E) {
13114
0
  if (const auto *Unary = dyn_cast<UnaryExprOrTypeTraitExpr>(E))
13115
0
    if (Unary->getKind() == UETT_SizeOf)
13116
0
      return Unary;
13117
0
  return nullptr;
13118
0
}
13119
13120
/// If E is a sizeof expression, returns its argument expression,
13121
/// otherwise returns NULL.
13122
0
static const Expr *getSizeOfExprArg(const Expr *E) {
13123
0
  if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
13124
0
    if (!SizeOf->isArgumentType())
13125
0
      return SizeOf->getArgumentExpr()->IgnoreParenImpCasts();
13126
0
  return nullptr;
13127
0
}
13128
13129
/// If E is a sizeof expression, returns its argument type.
13130
0
static QualType getSizeOfArgType(const Expr *E) {
13131
0
  if (const UnaryExprOrTypeTraitExpr *SizeOf = getAsSizeOfExpr(E))
13132
0
    return SizeOf->getTypeOfArgument();
13133
0
  return QualType();
13134
0
}
13135
13136
namespace {
13137
13138
struct SearchNonTrivialToInitializeField
13139
    : DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField> {
13140
  using Super =
13141
      DefaultInitializedTypeVisitor<SearchNonTrivialToInitializeField>;
13142
13143
0
  SearchNonTrivialToInitializeField(const Expr *E, Sema &S) : E(E), S(S) {}
13144
13145
  void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType FT,
13146
0
                     SourceLocation SL) {
13147
0
    if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
13148
0
      asDerived().visitArray(PDIK, AT, SL);
13149
0
      return;
13150
0
    }
13151
13152
0
    Super::visitWithKind(PDIK, FT, SL);
13153
0
  }
13154
13155
0
  void visitARCStrong(QualType FT, SourceLocation SL) {
13156
0
    S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
13157
0
  }
13158
0
  void visitARCWeak(QualType FT, SourceLocation SL) {
13159
0
    S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 1);
13160
0
  }
13161
0
  void visitStruct(QualType FT, SourceLocation SL) {
13162
0
    for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
13163
0
      visit(FD->getType(), FD->getLocation());
13164
0
  }
13165
  void visitArray(QualType::PrimitiveDefaultInitializeKind PDIK,
13166
0
                  const ArrayType *AT, SourceLocation SL) {
13167
0
    visit(getContext().getBaseElementType(AT), SL);
13168
0
  }
13169
0
  void visitTrivial(QualType FT, SourceLocation SL) {}
13170
13171
0
  static void diag(QualType RT, const Expr *E, Sema &S) {
13172
0
    SearchNonTrivialToInitializeField(E, S).visitStruct(RT, SourceLocation());
13173
0
  }
13174
13175
0
  ASTContext &getContext() { return S.getASTContext(); }
13176
13177
  const Expr *E;
13178
  Sema &S;
13179
};
13180
13181
struct SearchNonTrivialToCopyField
13182
    : CopiedTypeVisitor<SearchNonTrivialToCopyField, false> {
13183
  using Super = CopiedTypeVisitor<SearchNonTrivialToCopyField, false>;
13184
13185
0
  SearchNonTrivialToCopyField(const Expr *E, Sema &S) : E(E), S(S) {}
13186
13187
  void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType FT,
13188
0
                     SourceLocation SL) {
13189
0
    if (const auto *AT = asDerived().getContext().getAsArrayType(FT)) {
13190
0
      asDerived().visitArray(PCK, AT, SL);
13191
0
      return;
13192
0
    }
13193
13194
0
    Super::visitWithKind(PCK, FT, SL);
13195
0
  }
13196
13197
0
  void visitARCStrong(QualType FT, SourceLocation SL) {
13198
0
    S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
13199
0
  }
13200
0
  void visitARCWeak(QualType FT, SourceLocation SL) {
13201
0
    S.DiagRuntimeBehavior(SL, E, S.PDiag(diag::note_nontrivial_field) << 0);
13202
0
  }
13203
0
  void visitStruct(QualType FT, SourceLocation SL) {
13204
0
    for (const FieldDecl *FD : FT->castAs<RecordType>()->getDecl()->fields())
13205
0
      visit(FD->getType(), FD->getLocation());
13206
0
  }
13207
  void visitArray(QualType::PrimitiveCopyKind PCK, const ArrayType *AT,
13208
0
                  SourceLocation SL) {
13209
0
    visit(getContext().getBaseElementType(AT), SL);
13210
0
  }
13211
  void preVisit(QualType::PrimitiveCopyKind PCK, QualType FT,
13212
0
                SourceLocation SL) {}
13213
0
  void visitTrivial(QualType FT, SourceLocation SL) {}
13214
0
  void visitVolatileTrivial(QualType FT, SourceLocation SL) {}
13215
13216
0
  static void diag(QualType RT, const Expr *E, Sema &S) {
13217
0
    SearchNonTrivialToCopyField(E, S).visitStruct(RT, SourceLocation());
13218
0
  }
13219
13220
0
  ASTContext &getContext() { return S.getASTContext(); }
13221
13222
  const Expr *E;
13223
  Sema &S;
13224
};
13225
13226
}
13227
13228
/// Detect if \c SizeofExpr is likely to calculate the sizeof an object.
13229
0
static bool doesExprLikelyComputeSize(const Expr *SizeofExpr) {
13230
0
  SizeofExpr = SizeofExpr->IgnoreParenImpCasts();
13231
13232
0
  if (const auto *BO = dyn_cast<BinaryOperator>(SizeofExpr)) {
13233
0
    if (BO->getOpcode() != BO_Mul && BO->getOpcode() != BO_Add)
13234
0
      return false;
13235
13236
0
    return doesExprLikelyComputeSize(BO->getLHS()) ||
13237
0
           doesExprLikelyComputeSize(BO->getRHS());
13238
0
  }
13239
13240
0
  return getAsSizeOfExpr(SizeofExpr) != nullptr;
13241
0
}
13242
13243
/// Check if the ArgLoc originated from a macro passed to the call at CallLoc.
13244
///
13245
/// \code
13246
///   #define MACRO 0
13247
///   foo(MACRO);
13248
///   foo(0);
13249
/// \endcode
13250
///
13251
/// This should return true for the first call to foo, but not for the second
13252
/// (regardless of whether foo is a macro or function).
13253
static bool isArgumentExpandedFromMacro(SourceManager &SM,
13254
                                        SourceLocation CallLoc,
13255
0
                                        SourceLocation ArgLoc) {
13256
0
  if (!CallLoc.isMacroID())
13257
0
    return SM.getFileID(CallLoc) != SM.getFileID(ArgLoc);
13258
13259
0
  return SM.getFileID(SM.getImmediateMacroCallerLoc(CallLoc)) !=
13260
0
         SM.getFileID(SM.getImmediateMacroCallerLoc(ArgLoc));
13261
0
}
13262
13263
/// Diagnose cases like 'memset(buf, sizeof(buf), 0)', which should have the
13264
/// last two arguments transposed.
13265
0
static void CheckMemaccessSize(Sema &S, unsigned BId, const CallExpr *Call) {
13266
0
  if (BId != Builtin::BImemset && BId != Builtin::BIbzero)
13267
0
    return;
13268
13269
0
  const Expr *SizeArg =
13270
0
    Call->getArg(BId == Builtin::BImemset ? 2 : 1)->IgnoreImpCasts();
13271
13272
0
  auto isLiteralZero = [](const Expr *E) {
13273
0
    return (isa<IntegerLiteral>(E) &&
13274
0
            cast<IntegerLiteral>(E)->getValue() == 0) ||
13275
0
           (isa<CharacterLiteral>(E) &&
13276
0
            cast<CharacterLiteral>(E)->getValue() == 0);
13277
0
  };
13278
13279
  // If we're memsetting or bzeroing 0 bytes, then this is likely an error.
13280
0
  SourceLocation CallLoc = Call->getRParenLoc();
13281
0
  SourceManager &SM = S.getSourceManager();
13282
0
  if (isLiteralZero(SizeArg) &&
13283
0
      !isArgumentExpandedFromMacro(SM, CallLoc, SizeArg->getExprLoc())) {
13284
13285
0
    SourceLocation DiagLoc = SizeArg->getExprLoc();
13286
13287
    // Some platforms #define bzero to __builtin_memset. See if this is the
13288
    // case, and if so, emit a better diagnostic.
13289
0
    if (BId == Builtin::BIbzero ||
13290
0
        (CallLoc.isMacroID() && Lexer::getImmediateMacroName(
13291
0
                                    CallLoc, SM, S.getLangOpts()) == "bzero")) {
13292
0
      S.Diag(DiagLoc, diag::warn_suspicious_bzero_size);
13293
0
      S.Diag(DiagLoc, diag::note_suspicious_bzero_size_silence);
13294
0
    } else if (!isLiteralZero(Call->getArg(1)->IgnoreImpCasts())) {
13295
0
      S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 0;
13296
0
      S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 0;
13297
0
    }
13298
0
    return;
13299
0
  }
13300
13301
  // If the second argument to a memset is a sizeof expression and the third
13302
  // isn't, this is also likely an error. This should catch
13303
  // 'memset(buf, sizeof(buf), 0xff)'.
13304
0
  if (BId == Builtin::BImemset &&
13305
0
      doesExprLikelyComputeSize(Call->getArg(1)) &&
13306
0
      !doesExprLikelyComputeSize(Call->getArg(2))) {
13307
0
    SourceLocation DiagLoc = Call->getArg(1)->getExprLoc();
13308
0
    S.Diag(DiagLoc, diag::warn_suspicious_sizeof_memset) << 1;
13309
0
    S.Diag(DiagLoc, diag::note_suspicious_sizeof_memset_silence) << 1;
13310
0
    return;
13311
0
  }
13312
0
}
13313
13314
/// Check for dangerous or invalid arguments to memset().
13315
///
13316
/// This issues warnings on known problematic, dangerous or unspecified
13317
/// arguments to the standard 'memset', 'memcpy', 'memmove', and 'memcmp'
13318
/// function calls.
13319
///
13320
/// \param Call The call expression to diagnose.
13321
void Sema::CheckMemaccessArguments(const CallExpr *Call,
13322
                                   unsigned BId,
13323
0
                                   IdentifierInfo *FnName) {
13324
0
  assert(BId != 0);
13325
13326
  // It is possible to have a non-standard definition of memset.  Validate
13327
  // we have enough arguments, and if not, abort further checking.
13328
0
  unsigned ExpectedNumArgs =
13329
0
      (BId == Builtin::BIstrndup || BId == Builtin::BIbzero ? 2 : 3);
13330
0
  if (Call->getNumArgs() < ExpectedNumArgs)
13331
0
    return;
13332
13333
0
  unsigned LastArg = (BId == Builtin::BImemset || BId == Builtin::BIbzero ||
13334
0
                      BId == Builtin::BIstrndup ? 1 : 2);
13335
0
  unsigned LenArg =
13336
0
      (BId == Builtin::BIbzero || BId == Builtin::BIstrndup ? 1 : 2);
13337
0
  const Expr *LenExpr = Call->getArg(LenArg)->IgnoreParenImpCasts();
13338
13339
0
  if (CheckMemorySizeofForComparison(*this, LenExpr, FnName,
13340
0
                                     Call->getBeginLoc(), Call->getRParenLoc()))
13341
0
    return;
13342
13343
  // Catch cases like 'memset(buf, sizeof(buf), 0)'.
13344
0
  CheckMemaccessSize(*this, BId, Call);
13345
13346
  // We have special checking when the length is a sizeof expression.
13347
0
  QualType SizeOfArgTy = getSizeOfArgType(LenExpr);
13348
0
  const Expr *SizeOfArg = getSizeOfExprArg(LenExpr);
13349
0
  llvm::FoldingSetNodeID SizeOfArgID;
13350
13351
  // Although widely used, 'bzero' is not a standard function. Be more strict
13352
  // with the argument types before allowing diagnostics and only allow the
13353
  // form bzero(ptr, sizeof(...)).
13354
0
  QualType FirstArgTy = Call->getArg(0)->IgnoreParenImpCasts()->getType();
13355
0
  if (BId == Builtin::BIbzero && !FirstArgTy->getAs<PointerType>())
13356
0
    return;
13357
13358
0
  for (unsigned ArgIdx = 0; ArgIdx != LastArg; ++ArgIdx) {
13359
0
    const Expr *Dest = Call->getArg(ArgIdx)->IgnoreParenImpCasts();
13360
0
    SourceRange ArgRange = Call->getArg(ArgIdx)->getSourceRange();
13361
13362
0
    QualType DestTy = Dest->getType();
13363
0
    QualType PointeeTy;
13364
0
    if (const PointerType *DestPtrTy = DestTy->getAs<PointerType>()) {
13365
0
      PointeeTy = DestPtrTy->getPointeeType();
13366
13367
      // Never warn about void type pointers. This can be used to suppress
13368
      // false positives.
13369
0
      if (PointeeTy->isVoidType())
13370
0
        continue;
13371
13372
      // Catch "memset(p, 0, sizeof(p))" -- needs to be sizeof(*p). Do this by
13373
      // actually comparing the expressions for equality. Because computing the
13374
      // expression IDs can be expensive, we only do this if the diagnostic is
13375
      // enabled.
13376
0
      if (SizeOfArg &&
13377
0
          !Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess,
13378
0
                           SizeOfArg->getExprLoc())) {
13379
        // We only compute IDs for expressions if the warning is enabled, and
13380
        // cache the sizeof arg's ID.
13381
0
        if (SizeOfArgID == llvm::FoldingSetNodeID())
13382
0
          SizeOfArg->Profile(SizeOfArgID, Context, true);
13383
0
        llvm::FoldingSetNodeID DestID;
13384
0
        Dest->Profile(DestID, Context, true);
13385
0
        if (DestID == SizeOfArgID) {
13386
          // TODO: For strncpy() and friends, this could suggest sizeof(dst)
13387
          //       over sizeof(src) as well.
13388
0
          unsigned ActionIdx = 0; // Default is to suggest dereferencing.
13389
0
          StringRef ReadableName = FnName->getName();
13390
13391
0
          if (const UnaryOperator *UnaryOp = dyn_cast<UnaryOperator>(Dest))
13392
0
            if (UnaryOp->getOpcode() == UO_AddrOf)
13393
0
              ActionIdx = 1; // If its an address-of operator, just remove it.
13394
0
          if (!PointeeTy->isIncompleteType() &&
13395
0
              (Context.getTypeSize(PointeeTy) == Context.getCharWidth()))
13396
0
            ActionIdx = 2; // If the pointee's size is sizeof(char),
13397
                           // suggest an explicit length.
13398
13399
          // If the function is defined as a builtin macro, do not show macro
13400
          // expansion.
13401
0
          SourceLocation SL = SizeOfArg->getExprLoc();
13402
0
          SourceRange DSR = Dest->getSourceRange();
13403
0
          SourceRange SSR = SizeOfArg->getSourceRange();
13404
0
          SourceManager &SM = getSourceManager();
13405
13406
0
          if (SM.isMacroArgExpansion(SL)) {
13407
0
            ReadableName = Lexer::getImmediateMacroName(SL, SM, LangOpts);
13408
0
            SL = SM.getSpellingLoc(SL);
13409
0
            DSR = SourceRange(SM.getSpellingLoc(DSR.getBegin()),
13410
0
                             SM.getSpellingLoc(DSR.getEnd()));
13411
0
            SSR = SourceRange(SM.getSpellingLoc(SSR.getBegin()),
13412
0
                             SM.getSpellingLoc(SSR.getEnd()));
13413
0
          }
13414
13415
0
          DiagRuntimeBehavior(SL, SizeOfArg,
13416
0
                              PDiag(diag::warn_sizeof_pointer_expr_memaccess)
13417
0
                                << ReadableName
13418
0
                                << PointeeTy
13419
0
                                << DestTy
13420
0
                                << DSR
13421
0
                                << SSR);
13422
0
          DiagRuntimeBehavior(SL, SizeOfArg,
13423
0
                         PDiag(diag::warn_sizeof_pointer_expr_memaccess_note)
13424
0
                                << ActionIdx
13425
0
                                << SSR);
13426
13427
0
          break;
13428
0
        }
13429
0
      }
13430
13431
      // Also check for cases where the sizeof argument is the exact same
13432
      // type as the memory argument, and where it points to a user-defined
13433
      // record type.
13434
0
      if (SizeOfArgTy != QualType()) {
13435
0
        if (PointeeTy->isRecordType() &&
13436
0
            Context.typesAreCompatible(SizeOfArgTy, DestTy)) {
13437
0
          DiagRuntimeBehavior(LenExpr->getExprLoc(), Dest,
13438
0
                              PDiag(diag::warn_sizeof_pointer_type_memaccess)
13439
0
                                << FnName << SizeOfArgTy << ArgIdx
13440
0
                                << PointeeTy << Dest->getSourceRange()
13441
0
                                << LenExpr->getSourceRange());
13442
0
          break;
13443
0
        }
13444
0
      }
13445
0
    } else if (DestTy->isArrayType()) {
13446
0
      PointeeTy = DestTy;
13447
0
    }
13448
13449
0
    if (PointeeTy == QualType())
13450
0
      continue;
13451
13452
    // Always complain about dynamic classes.
13453
0
    bool IsContained;
13454
0
    if (const CXXRecordDecl *ContainedRD =
13455
0
            getContainedDynamicClass(PointeeTy, IsContained)) {
13456
13457
0
      unsigned OperationType = 0;
13458
0
      const bool IsCmp = BId == Builtin::BImemcmp || BId == Builtin::BIbcmp;
13459
      // "overwritten" if we're warning about the destination for any call
13460
      // but memcmp; otherwise a verb appropriate to the call.
13461
0
      if (ArgIdx != 0 || IsCmp) {
13462
0
        if (BId == Builtin::BImemcpy)
13463
0
          OperationType = 1;
13464
0
        else if(BId == Builtin::BImemmove)
13465
0
          OperationType = 2;
13466
0
        else if (IsCmp)
13467
0
          OperationType = 3;
13468
0
      }
13469
13470
0
      DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
13471
0
                          PDiag(diag::warn_dyn_class_memaccess)
13472
0
                              << (IsCmp ? ArgIdx + 2 : ArgIdx) << FnName
13473
0
                              << IsContained << ContainedRD << OperationType
13474
0
                              << Call->getCallee()->getSourceRange());
13475
0
    } else if (PointeeTy.hasNonTrivialObjCLifetime() &&
13476
0
             BId != Builtin::BImemset)
13477
0
      DiagRuntimeBehavior(
13478
0
        Dest->getExprLoc(), Dest,
13479
0
        PDiag(diag::warn_arc_object_memaccess)
13480
0
          << ArgIdx << FnName << PointeeTy
13481
0
          << Call->getCallee()->getSourceRange());
13482
0
    else if (const auto *RT = PointeeTy->getAs<RecordType>()) {
13483
0
      if ((BId == Builtin::BImemset || BId == Builtin::BIbzero) &&
13484
0
          RT->getDecl()->isNonTrivialToPrimitiveDefaultInitialize()) {
13485
0
        DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
13486
0
                            PDiag(diag::warn_cstruct_memaccess)
13487
0
                                << ArgIdx << FnName << PointeeTy << 0);
13488
0
        SearchNonTrivialToInitializeField::diag(PointeeTy, Dest, *this);
13489
0
      } else if ((BId == Builtin::BImemcpy || BId == Builtin::BImemmove) &&
13490
0
                 RT->getDecl()->isNonTrivialToPrimitiveCopy()) {
13491
0
        DiagRuntimeBehavior(Dest->getExprLoc(), Dest,
13492
0
                            PDiag(diag::warn_cstruct_memaccess)
13493
0
                                << ArgIdx << FnName << PointeeTy << 1);
13494
0
        SearchNonTrivialToCopyField::diag(PointeeTy, Dest, *this);
13495
0
      } else {
13496
0
        continue;
13497
0
      }
13498
0
    } else
13499
0
      continue;
13500
13501
0
    DiagRuntimeBehavior(
13502
0
      Dest->getExprLoc(), Dest,
13503
0
      PDiag(diag::note_bad_memaccess_silence)
13504
0
        << FixItHint::CreateInsertion(ArgRange.getBegin(), "(void*)"));
13505
0
    break;
13506
0
  }
13507
0
}
13508
13509
// A little helper routine: ignore addition and subtraction of integer literals.
13510
// This intentionally does not ignore all integer constant expressions because
13511
// we don't want to remove sizeof().
13512
0
static const Expr *ignoreLiteralAdditions(const Expr *Ex, ASTContext &Ctx) {
13513
0
  Ex = Ex->IgnoreParenCasts();
13514
13515
0
  while (true) {
13516
0
    const BinaryOperator * BO = dyn_cast<BinaryOperator>(Ex);
13517
0
    if (!BO || !BO->isAdditiveOp())
13518
0
      break;
13519
13520
0
    const Expr *RHS = BO->getRHS()->IgnoreParenCasts();
13521
0
    const Expr *LHS = BO->getLHS()->IgnoreParenCasts();
13522
13523
0
    if (isa<IntegerLiteral>(RHS))
13524
0
      Ex = LHS;
13525
0
    else if (isa<IntegerLiteral>(LHS))
13526
0
      Ex = RHS;
13527
0
    else
13528
0
      break;
13529
0
  }
13530
13531
0
  return Ex;
13532
0
}
13533
13534
static bool isConstantSizeArrayWithMoreThanOneElement(QualType Ty,
13535
0
                                                      ASTContext &Context) {
13536
  // Only handle constant-sized or VLAs, but not flexible members.
13537
0
  if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(Ty)) {
13538
    // Only issue the FIXIT for arrays of size > 1.
13539
0
    if (CAT->getSize().getSExtValue() <= 1)
13540
0
      return false;
13541
0
  } else if (!Ty->isVariableArrayType()) {
13542
0
    return false;
13543
0
  }
13544
0
  return true;
13545
0
}
13546
13547
// Warn if the user has made the 'size' argument to strlcpy or strlcat
13548
// be the size of the source, instead of the destination.
13549
void Sema::CheckStrlcpycatArguments(const CallExpr *Call,
13550
0
                                    IdentifierInfo *FnName) {
13551
13552
  // Don't crash if the user has the wrong number of arguments
13553
0
  unsigned NumArgs = Call->getNumArgs();
13554
0
  if ((NumArgs != 3) && (NumArgs != 4))
13555
0
    return;
13556
13557
0
  const Expr *SrcArg = ignoreLiteralAdditions(Call->getArg(1), Context);
13558
0
  const Expr *SizeArg = ignoreLiteralAdditions(Call->getArg(2), Context);
13559
0
  const Expr *CompareWithSrc = nullptr;
13560
13561
0
  if (CheckMemorySizeofForComparison(*this, SizeArg, FnName,
13562
0
                                     Call->getBeginLoc(), Call->getRParenLoc()))
13563
0
    return;
13564
13565
  // Look for 'strlcpy(dst, x, sizeof(x))'
13566
0
  if (const Expr *Ex = getSizeOfExprArg(SizeArg))
13567
0
    CompareWithSrc = Ex;
13568
0
  else {
13569
    // Look for 'strlcpy(dst, x, strlen(x))'
13570
0
    if (const CallExpr *SizeCall = dyn_cast<CallExpr>(SizeArg)) {
13571
0
      if (SizeCall->getBuiltinCallee() == Builtin::BIstrlen &&
13572
0
          SizeCall->getNumArgs() == 1)
13573
0
        CompareWithSrc = ignoreLiteralAdditions(SizeCall->getArg(0), Context);
13574
0
    }
13575
0
  }
13576
13577
0
  if (!CompareWithSrc)
13578
0
    return;
13579
13580
  // Determine if the argument to sizeof/strlen is equal to the source
13581
  // argument.  In principle there's all kinds of things you could do
13582
  // here, for instance creating an == expression and evaluating it with
13583
  // EvaluateAsBooleanCondition, but this uses a more direct technique:
13584
0
  const DeclRefExpr *SrcArgDRE = dyn_cast<DeclRefExpr>(SrcArg);
13585
0
  if (!SrcArgDRE)
13586
0
    return;
13587
13588
0
  const DeclRefExpr *CompareWithSrcDRE = dyn_cast<DeclRefExpr>(CompareWithSrc);
13589
0
  if (!CompareWithSrcDRE ||
13590
0
      SrcArgDRE->getDecl() != CompareWithSrcDRE->getDecl())
13591
0
    return;
13592
13593
0
  const Expr *OriginalSizeArg = Call->getArg(2);
13594
0
  Diag(CompareWithSrcDRE->getBeginLoc(), diag::warn_strlcpycat_wrong_size)
13595
0
      << OriginalSizeArg->getSourceRange() << FnName;
13596
13597
  // Output a FIXIT hint if the destination is an array (rather than a
13598
  // pointer to an array).  This could be enhanced to handle some
13599
  // pointers if we know the actual size, like if DstArg is 'array+2'
13600
  // we could say 'sizeof(array)-2'.
13601
0
  const Expr *DstArg = Call->getArg(0)->IgnoreParenImpCasts();
13602
0
  if (!isConstantSizeArrayWithMoreThanOneElement(DstArg->getType(), Context))
13603
0
    return;
13604
13605
0
  SmallString<128> sizeString;
13606
0
  llvm::raw_svector_ostream OS(sizeString);
13607
0
  OS << "sizeof(";
13608
0
  DstArg->printPretty(OS, nullptr, getPrintingPolicy());
13609
0
  OS << ")";
13610
13611
0
  Diag(OriginalSizeArg->getBeginLoc(), diag::note_strlcpycat_wrong_size)
13612
0
      << FixItHint::CreateReplacement(OriginalSizeArg->getSourceRange(),
13613
0
                                      OS.str());
13614
0
}
13615
13616
/// Check if two expressions refer to the same declaration.
13617
0
static bool referToTheSameDecl(const Expr *E1, const Expr *E2) {
13618
0
  if (const DeclRefExpr *D1 = dyn_cast_or_null<DeclRefExpr>(E1))
13619
0
    if (const DeclRefExpr *D2 = dyn_cast_or_null<DeclRefExpr>(E2))
13620
0
      return D1->getDecl() == D2->getDecl();
13621
0
  return false;
13622
0
}
13623
13624
0
static const Expr *getStrlenExprArg(const Expr *E) {
13625
0
  if (const CallExpr *CE = dyn_cast<CallExpr>(E)) {
13626
0
    const FunctionDecl *FD = CE->getDirectCallee();
13627
0
    if (!FD || FD->getMemoryFunctionKind() != Builtin::BIstrlen)
13628
0
      return nullptr;
13629
0
    return CE->getArg(0)->IgnoreParenCasts();
13630
0
  }
13631
0
  return nullptr;
13632
0
}
13633
13634
// Warn on anti-patterns as the 'size' argument to strncat.
13635
// The correct size argument should look like following:
13636
//   strncat(dst, src, sizeof(dst) - strlen(dest) - 1);
13637
void Sema::CheckStrncatArguments(const CallExpr *CE,
13638
0
                                 IdentifierInfo *FnName) {
13639
  // Don't crash if the user has the wrong number of arguments.
13640
0
  if (CE->getNumArgs() < 3)
13641
0
    return;
13642
0
  const Expr *DstArg = CE->getArg(0)->IgnoreParenCasts();
13643
0
  const Expr *SrcArg = CE->getArg(1)->IgnoreParenCasts();
13644
0
  const Expr *LenArg = CE->getArg(2)->IgnoreParenCasts();
13645
13646
0
  if (CheckMemorySizeofForComparison(*this, LenArg, FnName, CE->getBeginLoc(),
13647
0
                                     CE->getRParenLoc()))
13648
0
    return;
13649
13650
  // Identify common expressions, which are wrongly used as the size argument
13651
  // to strncat and may lead to buffer overflows.
13652
0
  unsigned PatternType = 0;
13653
0
  if (const Expr *SizeOfArg = getSizeOfExprArg(LenArg)) {
13654
    // - sizeof(dst)
13655
0
    if (referToTheSameDecl(SizeOfArg, DstArg))
13656
0
      PatternType = 1;
13657
    // - sizeof(src)
13658
0
    else if (referToTheSameDecl(SizeOfArg, SrcArg))
13659
0
      PatternType = 2;
13660
0
  } else if (const BinaryOperator *BE = dyn_cast<BinaryOperator>(LenArg)) {
13661
0
    if (BE->getOpcode() == BO_Sub) {
13662
0
      const Expr *L = BE->getLHS()->IgnoreParenCasts();
13663
0
      const Expr *R = BE->getRHS()->IgnoreParenCasts();
13664
      // - sizeof(dst) - strlen(dst)
13665
0
      if (referToTheSameDecl(DstArg, getSizeOfExprArg(L)) &&
13666
0
          referToTheSameDecl(DstArg, getStrlenExprArg(R)))
13667
0
        PatternType = 1;
13668
      // - sizeof(src) - (anything)
13669
0
      else if (referToTheSameDecl(SrcArg, getSizeOfExprArg(L)))
13670
0
        PatternType = 2;
13671
0
    }
13672
0
  }
13673
13674
0
  if (PatternType == 0)
13675
0
    return;
13676
13677
  // Generate the diagnostic.
13678
0
  SourceLocation SL = LenArg->getBeginLoc();
13679
0
  SourceRange SR = LenArg->getSourceRange();
13680
0
  SourceManager &SM = getSourceManager();
13681
13682
  // If the function is defined as a builtin macro, do not show macro expansion.
13683
0
  if (SM.isMacroArgExpansion(SL)) {
13684
0
    SL = SM.getSpellingLoc(SL);
13685
0
    SR = SourceRange(SM.getSpellingLoc(SR.getBegin()),
13686
0
                     SM.getSpellingLoc(SR.getEnd()));
13687
0
  }
13688
13689
  // Check if the destination is an array (rather than a pointer to an array).
13690
0
  QualType DstTy = DstArg->getType();
13691
0
  bool isKnownSizeArray = isConstantSizeArrayWithMoreThanOneElement(DstTy,
13692
0
                                                                    Context);
13693
0
  if (!isKnownSizeArray) {
13694
0
    if (PatternType == 1)
13695
0
      Diag(SL, diag::warn_strncat_wrong_size) << SR;
13696
0
    else
13697
0
      Diag(SL, diag::warn_strncat_src_size) << SR;
13698
0
    return;
13699
0
  }
13700
13701
0
  if (PatternType == 1)
13702
0
    Diag(SL, diag::warn_strncat_large_size) << SR;
13703
0
  else
13704
0
    Diag(SL, diag::warn_strncat_src_size) << SR;
13705
13706
0
  SmallString<128> sizeString;
13707
0
  llvm::raw_svector_ostream OS(sizeString);
13708
0
  OS << "sizeof(";
13709
0
  DstArg->printPretty(OS, nullptr, getPrintingPolicy());
13710
0
  OS << ") - ";
13711
0
  OS << "strlen(";
13712
0
  DstArg->printPretty(OS, nullptr, getPrintingPolicy());
13713
0
  OS << ") - 1";
13714
13715
0
  Diag(SL, diag::note_strncat_wrong_size)
13716
0
    << FixItHint::CreateReplacement(SR, OS.str());
13717
0
}
13718
13719
namespace {
13720
void CheckFreeArgumentsOnLvalue(Sema &S, const std::string &CalleeName,
13721
0
                                const UnaryOperator *UnaryExpr, const Decl *D) {
13722
0
  if (isa<FieldDecl, FunctionDecl, VarDecl>(D)) {
13723
0
    S.Diag(UnaryExpr->getBeginLoc(), diag::warn_free_nonheap_object)
13724
0
        << CalleeName << 0 /*object: */ << cast<NamedDecl>(D);
13725
0
    return;
13726
0
  }
13727
0
}
13728
13729
void CheckFreeArgumentsAddressof(Sema &S, const std::string &CalleeName,
13730
0
                                 const UnaryOperator *UnaryExpr) {
13731
0
  if (const auto *Lvalue = dyn_cast<DeclRefExpr>(UnaryExpr->getSubExpr())) {
13732
0
    const Decl *D = Lvalue->getDecl();
13733
0
    if (isa<DeclaratorDecl>(D))
13734
0
      if (!dyn_cast<DeclaratorDecl>(D)->getType()->isReferenceType())
13735
0
        return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr, D);
13736
0
  }
13737
13738
0
  if (const auto *Lvalue = dyn_cast<MemberExpr>(UnaryExpr->getSubExpr()))
13739
0
    return CheckFreeArgumentsOnLvalue(S, CalleeName, UnaryExpr,
13740
0
                                      Lvalue->getMemberDecl());
13741
0
}
13742
13743
void CheckFreeArgumentsPlus(Sema &S, const std::string &CalleeName,
13744
0
                            const UnaryOperator *UnaryExpr) {
13745
0
  const auto *Lambda = dyn_cast<LambdaExpr>(
13746
0
      UnaryExpr->getSubExpr()->IgnoreImplicitAsWritten()->IgnoreParens());
13747
0
  if (!Lambda)
13748
0
    return;
13749
13750
0
  S.Diag(Lambda->getBeginLoc(), diag::warn_free_nonheap_object)
13751
0
      << CalleeName << 2 /*object: lambda expression*/;
13752
0
}
13753
13754
void CheckFreeArgumentsStackArray(Sema &S, const std::string &CalleeName,
13755
0
                                  const DeclRefExpr *Lvalue) {
13756
0
  const auto *Var = dyn_cast<VarDecl>(Lvalue->getDecl());
13757
0
  if (Var == nullptr)
13758
0
    return;
13759
13760
0
  S.Diag(Lvalue->getBeginLoc(), diag::warn_free_nonheap_object)
13761
0
      << CalleeName << 0 /*object: */ << Var;
13762
0
}
13763
13764
void CheckFreeArgumentsCast(Sema &S, const std::string &CalleeName,
13765
0
                            const CastExpr *Cast) {
13766
0
  SmallString<128> SizeString;
13767
0
  llvm::raw_svector_ostream OS(SizeString);
13768
13769
0
  clang::CastKind Kind = Cast->getCastKind();
13770
0
  if (Kind == clang::CK_BitCast &&
13771
0
      !Cast->getSubExpr()->getType()->isFunctionPointerType())
13772
0
    return;
13773
0
  if (Kind == clang::CK_IntegralToPointer &&
13774
0
      !isa<IntegerLiteral>(
13775
0
          Cast->getSubExpr()->IgnoreParenImpCasts()->IgnoreParens()))
13776
0
    return;
13777
13778
0
  switch (Cast->getCastKind()) {
13779
0
  case clang::CK_BitCast:
13780
0
  case clang::CK_IntegralToPointer:
13781
0
  case clang::CK_FunctionToPointerDecay:
13782
0
    OS << '\'';
13783
0
    Cast->printPretty(OS, nullptr, S.getPrintingPolicy());
13784
0
    OS << '\'';
13785
0
    break;
13786
0
  default:
13787
0
    return;
13788
0
  }
13789
13790
0
  S.Diag(Cast->getBeginLoc(), diag::warn_free_nonheap_object)
13791
0
      << CalleeName << 0 /*object: */ << OS.str();
13792
0
}
13793
} // namespace
13794
13795
/// Alerts the user that they are attempting to free a non-malloc'd object.
13796
0
void Sema::CheckFreeArguments(const CallExpr *E) {
13797
0
  const std::string CalleeName =
13798
0
      cast<FunctionDecl>(E->getCalleeDecl())->getQualifiedNameAsString();
13799
13800
0
  { // Prefer something that doesn't involve a cast to make things simpler.
13801
0
    const Expr *Arg = E->getArg(0)->IgnoreParenCasts();
13802
0
    if (const auto *UnaryExpr = dyn_cast<UnaryOperator>(Arg))
13803
0
      switch (UnaryExpr->getOpcode()) {
13804
0
      case UnaryOperator::Opcode::UO_AddrOf:
13805
0
        return CheckFreeArgumentsAddressof(*this, CalleeName, UnaryExpr);
13806
0
      case UnaryOperator::Opcode::UO_Plus:
13807
0
        return CheckFreeArgumentsPlus(*this, CalleeName, UnaryExpr);
13808
0
      default:
13809
0
        break;
13810
0
      }
13811
13812
0
    if (const auto *Lvalue = dyn_cast<DeclRefExpr>(Arg))
13813
0
      if (Lvalue->getType()->isArrayType())
13814
0
        return CheckFreeArgumentsStackArray(*this, CalleeName, Lvalue);
13815
13816
0
    if (const auto *Label = dyn_cast<AddrLabelExpr>(Arg)) {
13817
0
      Diag(Label->getBeginLoc(), diag::warn_free_nonheap_object)
13818
0
          << CalleeName << 0 /*object: */ << Label->getLabel()->getIdentifier();
13819
0
      return;
13820
0
    }
13821
13822
0
    if (isa<BlockExpr>(Arg)) {
13823
0
      Diag(Arg->getBeginLoc(), diag::warn_free_nonheap_object)
13824
0
          << CalleeName << 1 /*object: block*/;
13825
0
      return;
13826
0
    }
13827
0
  }
13828
  // Maybe the cast was important, check after the other cases.
13829
0
  if (const auto *Cast = dyn_cast<CastExpr>(E->getArg(0)))
13830
0
    return CheckFreeArgumentsCast(*this, CalleeName, Cast);
13831
0
}
13832
13833
void
13834
Sema::CheckReturnValExpr(Expr *RetValExp, QualType lhsType,
13835
                         SourceLocation ReturnLoc,
13836
                         bool isObjCMethod,
13837
                         const AttrVec *Attrs,
13838
0
                         const FunctionDecl *FD) {
13839
  // Check if the return value is null but should not be.
13840
0
  if (((Attrs && hasSpecificAttr<ReturnsNonNullAttr>(*Attrs)) ||
13841
0
       (!isObjCMethod && isNonNullType(lhsType))) &&
13842
0
      CheckNonNullExpr(*this, RetValExp))
13843
0
    Diag(ReturnLoc, diag::warn_null_ret)
13844
0
      << (isObjCMethod ? 1 : 0) << RetValExp->getSourceRange();
13845
13846
  // C++11 [basic.stc.dynamic.allocation]p4:
13847
  //   If an allocation function declared with a non-throwing
13848
  //   exception-specification fails to allocate storage, it shall return
13849
  //   a null pointer. Any other allocation function that fails to allocate
13850
  //   storage shall indicate failure only by throwing an exception [...]
13851
0
  if (FD) {
13852
0
    OverloadedOperatorKind Op = FD->getOverloadedOperator();
13853
0
    if (Op == OO_New || Op == OO_Array_New) {
13854
0
      const FunctionProtoType *Proto
13855
0
        = FD->getType()->castAs<FunctionProtoType>();
13856
0
      if (!Proto->isNothrow(/*ResultIfDependent*/true) &&
13857
0
          CheckNonNullExpr(*this, RetValExp))
13858
0
        Diag(ReturnLoc, diag::warn_operator_new_returns_null)
13859
0
          << FD << getLangOpts().CPlusPlus11;
13860
0
    }
13861
0
  }
13862
13863
0
  if (RetValExp && RetValExp->getType()->isWebAssemblyTableType()) {
13864
0
    Diag(ReturnLoc, diag::err_wasm_table_art) << 1;
13865
0
  }
13866
13867
  // PPC MMA non-pointer types are not allowed as return type. Checking the type
13868
  // here prevent the user from using a PPC MMA type as trailing return type.
13869
0
  if (Context.getTargetInfo().getTriple().isPPC64())
13870
0
    CheckPPCMMAType(RetValExp->getType(), ReturnLoc);
13871
0
}
13872
13873
/// Check for comparisons of floating-point values using == and !=. Issue a
13874
/// warning if the comparison is not likely to do what the programmer intended.
13875
void Sema::CheckFloatComparison(SourceLocation Loc, Expr *LHS, Expr *RHS,
13876
0
                                BinaryOperatorKind Opcode) {
13877
0
  if (!BinaryOperator::isEqualityOp(Opcode))
13878
0
    return;
13879
13880
  // Match and capture subexpressions such as "(float) X == 0.1".
13881
0
  FloatingLiteral *FPLiteral;
13882
0
  CastExpr *FPCast;
13883
0
  auto getCastAndLiteral = [&FPLiteral, &FPCast](Expr *L, Expr *R) {
13884
0
    FPLiteral = dyn_cast<FloatingLiteral>(L->IgnoreParens());
13885
0
    FPCast = dyn_cast<CastExpr>(R->IgnoreParens());
13886
0
    return FPLiteral && FPCast;
13887
0
  };
13888
13889
0
  if (getCastAndLiteral(LHS, RHS) || getCastAndLiteral(RHS, LHS)) {
13890
0
    auto *SourceTy = FPCast->getSubExpr()->getType()->getAs<BuiltinType>();
13891
0
    auto *TargetTy = FPLiteral->getType()->getAs<BuiltinType>();
13892
0
    if (SourceTy && TargetTy && SourceTy->isFloatingPoint() &&
13893
0
        TargetTy->isFloatingPoint()) {
13894
0
      bool Lossy;
13895
0
      llvm::APFloat TargetC = FPLiteral->getValue();
13896
0
      TargetC.convert(Context.getFloatTypeSemantics(QualType(SourceTy, 0)),
13897
0
                      llvm::APFloat::rmNearestTiesToEven, &Lossy);
13898
0
      if (Lossy) {
13899
        // If the literal cannot be represented in the source type, then a
13900
        // check for == is always false and check for != is always true.
13901
0
        Diag(Loc, diag::warn_float_compare_literal)
13902
0
            << (Opcode == BO_EQ) << QualType(SourceTy, 0)
13903
0
            << LHS->getSourceRange() << RHS->getSourceRange();
13904
0
        return;
13905
0
      }
13906
0
    }
13907
0
  }
13908
13909
  // Match a more general floating-point equality comparison (-Wfloat-equal).
13910
0
  Expr* LeftExprSansParen = LHS->IgnoreParenImpCasts();
13911
0
  Expr* RightExprSansParen = RHS->IgnoreParenImpCasts();
13912
13913
  // Special case: check for x == x (which is OK).
13914
  // Do not emit warnings for such cases.
13915
0
  if (auto *DRL = dyn_cast<DeclRefExpr>(LeftExprSansParen))
13916
0
    if (auto *DRR = dyn_cast<DeclRefExpr>(RightExprSansParen))
13917
0
      if (DRL->getDecl() == DRR->getDecl())
13918
0
        return;
13919
13920
  // Special case: check for comparisons against literals that can be exactly
13921
  //  represented by APFloat.  In such cases, do not emit a warning.  This
13922
  //  is a heuristic: often comparison against such literals are used to
13923
  //  detect if a value in a variable has not changed.  This clearly can
13924
  //  lead to false negatives.
13925
0
  if (FloatingLiteral* FLL = dyn_cast<FloatingLiteral>(LeftExprSansParen)) {
13926
0
    if (FLL->isExact())
13927
0
      return;
13928
0
  } else
13929
0
    if (FloatingLiteral* FLR = dyn_cast<FloatingLiteral>(RightExprSansParen))
13930
0
      if (FLR->isExact())
13931
0
        return;
13932
13933
  // Check for comparisons with builtin types.
13934
0
  if (CallExpr* CL = dyn_cast<CallExpr>(LeftExprSansParen))
13935
0
    if (CL->getBuiltinCallee())
13936
0
      return;
13937
13938
0
  if (CallExpr* CR = dyn_cast<CallExpr>(RightExprSansParen))
13939
0
    if (CR->getBuiltinCallee())
13940
0
      return;
13941
13942
  // Emit the diagnostic.
13943
0
  Diag(Loc, diag::warn_floatingpoint_eq)
13944
0
    << LHS->getSourceRange() << RHS->getSourceRange();
13945
0
}
13946
13947
//===--- CHECK: Integer mixed-sign comparisons (-Wsign-compare) --------===//
13948
//===--- CHECK: Lossy implicit conversions (-Wconversion) --------------===//
13949
13950
namespace {
13951
13952
/// Structure recording the 'active' range of an integer-valued
13953
/// expression.
13954
struct IntRange {
13955
  /// The number of bits active in the int. Note that this includes exactly one
13956
  /// sign bit if !NonNegative.
13957
  unsigned Width;
13958
13959
  /// True if the int is known not to have negative values. If so, all leading
13960
  /// bits before Width are known zero, otherwise they are known to be the
13961
  /// same as the MSB within Width.
13962
  bool NonNegative;
13963
13964
  IntRange(unsigned Width, bool NonNegative)
13965
0
      : Width(Width), NonNegative(NonNegative) {}
13966
13967
  /// Number of bits excluding the sign bit.
13968
0
  unsigned valueBits() const {
13969
0
    return NonNegative ? Width : Width - 1;
13970
0
  }
13971
13972
  /// Returns the range of the bool type.
13973
0
  static IntRange forBoolType() {
13974
0
    return IntRange(1, true);
13975
0
  }
13976
13977
  /// Returns the range of an opaque value of the given integral type.
13978
0
  static IntRange forValueOfType(ASTContext &C, QualType T) {
13979
0
    return forValueOfCanonicalType(C,
13980
0
                          T->getCanonicalTypeInternal().getTypePtr());
13981
0
  }
13982
13983
  /// Returns the range of an opaque value of a canonical integral type.
13984
0
  static IntRange forValueOfCanonicalType(ASTContext &C, const Type *T) {
13985
0
    assert(T->isCanonicalUnqualified());
13986
13987
0
    if (const VectorType *VT = dyn_cast<VectorType>(T))
13988
0
      T = VT->getElementType().getTypePtr();
13989
0
    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
13990
0
      T = CT->getElementType().getTypePtr();
13991
0
    if (const AtomicType *AT = dyn_cast<AtomicType>(T))
13992
0
      T = AT->getValueType().getTypePtr();
13993
13994
0
    if (!C.getLangOpts().CPlusPlus) {
13995
      // For enum types in C code, use the underlying datatype.
13996
0
      if (const EnumType *ET = dyn_cast<EnumType>(T))
13997
0
        T = ET->getDecl()->getIntegerType().getDesugaredType(C).getTypePtr();
13998
0
    } else if (const EnumType *ET = dyn_cast<EnumType>(T)) {
13999
      // For enum types in C++, use the known bit width of the enumerators.
14000
0
      EnumDecl *Enum = ET->getDecl();
14001
      // In C++11, enums can have a fixed underlying type. Use this type to
14002
      // compute the range.
14003
0
      if (Enum->isFixed()) {
14004
0
        return IntRange(C.getIntWidth(QualType(T, 0)),
14005
0
                        !ET->isSignedIntegerOrEnumerationType());
14006
0
      }
14007
14008
0
      unsigned NumPositive = Enum->getNumPositiveBits();
14009
0
      unsigned NumNegative = Enum->getNumNegativeBits();
14010
14011
0
      if (NumNegative == 0)
14012
0
        return IntRange(NumPositive, true/*NonNegative*/);
14013
0
      else
14014
0
        return IntRange(std::max(NumPositive + 1, NumNegative),
14015
0
                        false/*NonNegative*/);
14016
0
    }
14017
14018
0
    if (const auto *EIT = dyn_cast<BitIntType>(T))
14019
0
      return IntRange(EIT->getNumBits(), EIT->isUnsigned());
14020
14021
0
    const BuiltinType *BT = cast<BuiltinType>(T);
14022
0
    assert(BT->isInteger());
14023
14024
0
    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
14025
0
  }
14026
14027
  /// Returns the "target" range of a canonical integral type, i.e.
14028
  /// the range of values expressible in the type.
14029
  ///
14030
  /// This matches forValueOfCanonicalType except that enums have the
14031
  /// full range of their type, not the range of their enumerators.
14032
0
  static IntRange forTargetOfCanonicalType(ASTContext &C, const Type *T) {
14033
0
    assert(T->isCanonicalUnqualified());
14034
14035
0
    if (const VectorType *VT = dyn_cast<VectorType>(T))
14036
0
      T = VT->getElementType().getTypePtr();
14037
0
    if (const ComplexType *CT = dyn_cast<ComplexType>(T))
14038
0
      T = CT->getElementType().getTypePtr();
14039
0
    if (const AtomicType *AT = dyn_cast<AtomicType>(T))
14040
0
      T = AT->getValueType().getTypePtr();
14041
0
    if (const EnumType *ET = dyn_cast<EnumType>(T))
14042
0
      T = C.getCanonicalType(ET->getDecl()->getIntegerType()).getTypePtr();
14043
14044
0
    if (const auto *EIT = dyn_cast<BitIntType>(T))
14045
0
      return IntRange(EIT->getNumBits(), EIT->isUnsigned());
14046
14047
0
    const BuiltinType *BT = cast<BuiltinType>(T);
14048
0
    assert(BT->isInteger());
14049
14050
0
    return IntRange(C.getIntWidth(QualType(T, 0)), BT->isUnsignedInteger());
14051
0
  }
14052
14053
  /// Returns the supremum of two ranges: i.e. their conservative merge.
14054
0
  static IntRange join(IntRange L, IntRange R) {
14055
0
    bool Unsigned = L.NonNegative && R.NonNegative;
14056
0
    return IntRange(std::max(L.valueBits(), R.valueBits()) + !Unsigned,
14057
0
                    L.NonNegative && R.NonNegative);
14058
0
  }
14059
14060
  /// Return the range of a bitwise-AND of the two ranges.
14061
0
  static IntRange bit_and(IntRange L, IntRange R) {
14062
0
    unsigned Bits = std::max(L.Width, R.Width);
14063
0
    bool NonNegative = false;
14064
0
    if (L.NonNegative) {
14065
0
      Bits = std::min(Bits, L.Width);
14066
0
      NonNegative = true;
14067
0
    }
14068
0
    if (R.NonNegative) {
14069
0
      Bits = std::min(Bits, R.Width);
14070
0
      NonNegative = true;
14071
0
    }
14072
0
    return IntRange(Bits, NonNegative);
14073
0
  }
14074
14075
  /// Return the range of a sum of the two ranges.
14076
0
  static IntRange sum(IntRange L, IntRange R) {
14077
0
    bool Unsigned = L.NonNegative && R.NonNegative;
14078
0
    return IntRange(std::max(L.valueBits(), R.valueBits()) + 1 + !Unsigned,
14079
0
                    Unsigned);
14080
0
  }
14081
14082
  /// Return the range of a difference of the two ranges.
14083
0
  static IntRange difference(IntRange L, IntRange R) {
14084
    // We need a 1-bit-wider range if:
14085
    //   1) LHS can be negative: least value can be reduced.
14086
    //   2) RHS can be negative: greatest value can be increased.
14087
0
    bool CanWiden = !L.NonNegative || !R.NonNegative;
14088
0
    bool Unsigned = L.NonNegative && R.Width == 0;
14089
0
    return IntRange(std::max(L.valueBits(), R.valueBits()) + CanWiden +
14090
0
                        !Unsigned,
14091
0
                    Unsigned);
14092
0
  }
14093
14094
  /// Return the range of a product of the two ranges.
14095
0
  static IntRange product(IntRange L, IntRange R) {
14096
    // If both LHS and RHS can be negative, we can form
14097
    //   -2^L * -2^R = 2^(L + R)
14098
    // which requires L + R + 1 value bits to represent.
14099
0
    bool CanWiden = !L.NonNegative && !R.NonNegative;
14100
0
    bool Unsigned = L.NonNegative && R.NonNegative;
14101
0
    return IntRange(L.valueBits() + R.valueBits() + CanWiden + !Unsigned,
14102
0
                    Unsigned);
14103
0
  }
14104
14105
  /// Return the range of a remainder operation between the two ranges.
14106
0
  static IntRange rem(IntRange L, IntRange R) {
14107
    // The result of a remainder can't be larger than the result of
14108
    // either side. The sign of the result is the sign of the LHS.
14109
0
    bool Unsigned = L.NonNegative;
14110
0
    return IntRange(std::min(L.valueBits(), R.valueBits()) + !Unsigned,
14111
0
                    Unsigned);
14112
0
  }
14113
};
14114
14115
} // namespace
14116
14117
static IntRange GetValueRange(ASTContext &C, llvm::APSInt &value,
14118
0
                              unsigned MaxWidth) {
14119
0
  if (value.isSigned() && value.isNegative())
14120
0
    return IntRange(value.getSignificantBits(), false);
14121
14122
0
  if (value.getBitWidth() > MaxWidth)
14123
0
    value = value.trunc(MaxWidth);
14124
14125
  // isNonNegative() just checks the sign bit without considering
14126
  // signedness.
14127
0
  return IntRange(value.getActiveBits(), true);
14128
0
}
14129
14130
static IntRange GetValueRange(ASTContext &C, APValue &result, QualType Ty,
14131
0
                              unsigned MaxWidth) {
14132
0
  if (result.isInt())
14133
0
    return GetValueRange(C, result.getInt(), MaxWidth);
14134
14135
0
  if (result.isVector()) {
14136
0
    IntRange R = GetValueRange(C, result.getVectorElt(0), Ty, MaxWidth);
14137
0
    for (unsigned i = 1, e = result.getVectorLength(); i != e; ++i) {
14138
0
      IntRange El = GetValueRange(C, result.getVectorElt(i), Ty, MaxWidth);
14139
0
      R = IntRange::join(R, El);
14140
0
    }
14141
0
    return R;
14142
0
  }
14143
14144
0
  if (result.isComplexInt()) {
14145
0
    IntRange R = GetValueRange(C, result.getComplexIntReal(), MaxWidth);
14146
0
    IntRange I = GetValueRange(C, result.getComplexIntImag(), MaxWidth);
14147
0
    return IntRange::join(R, I);
14148
0
  }
14149
14150
  // This can happen with lossless casts to intptr_t of "based" lvalues.
14151
  // Assume it might use arbitrary bits.
14152
  // FIXME: The only reason we need to pass the type in here is to get
14153
  // the sign right on this one case.  It would be nice if APValue
14154
  // preserved this.
14155
0
  assert(result.isLValue() || result.isAddrLabelDiff());
14156
0
  return IntRange(MaxWidth, Ty->isUnsignedIntegerOrEnumerationType());
14157
0
}
14158
14159
0
static QualType GetExprType(const Expr *E) {
14160
0
  QualType Ty = E->getType();
14161
0
  if (const AtomicType *AtomicRHS = Ty->getAs<AtomicType>())
14162
0
    Ty = AtomicRHS->getValueType();
14163
0
  return Ty;
14164
0
}
14165
14166
/// Pseudo-evaluate the given integer expression, estimating the
14167
/// range of values it might take.
14168
///
14169
/// \param MaxWidth The width to which the value will be truncated.
14170
/// \param Approximate If \c true, return a likely range for the result: in
14171
///        particular, assume that arithmetic on narrower types doesn't leave
14172
///        those types. If \c false, return a range including all possible
14173
///        result values.
14174
static IntRange GetExprRange(ASTContext &C, const Expr *E, unsigned MaxWidth,
14175
0
                             bool InConstantContext, bool Approximate) {
14176
0
  E = E->IgnoreParens();
14177
14178
  // Try a full evaluation first.
14179
0
  Expr::EvalResult result;
14180
0
  if (E->EvaluateAsRValue(result, C, InConstantContext))
14181
0
    return GetValueRange(C, result.Val, GetExprType(E), MaxWidth);
14182
14183
  // I think we only want to look through implicit casts here; if the
14184
  // user has an explicit widening cast, we should treat the value as
14185
  // being of the new, wider type.
14186
0
  if (const auto *CE = dyn_cast<ImplicitCastExpr>(E)) {
14187
0
    if (CE->getCastKind() == CK_NoOp || CE->getCastKind() == CK_LValueToRValue)
14188
0
      return GetExprRange(C, CE->getSubExpr(), MaxWidth, InConstantContext,
14189
0
                          Approximate);
14190
14191
0
    IntRange OutputTypeRange = IntRange::forValueOfType(C, GetExprType(CE));
14192
14193
0
    bool isIntegerCast = CE->getCastKind() == CK_IntegralCast ||
14194
0
                         CE->getCastKind() == CK_BooleanToSignedIntegral;
14195
14196
    // Assume that non-integer casts can span the full range of the type.
14197
0
    if (!isIntegerCast)
14198
0
      return OutputTypeRange;
14199
14200
0
    IntRange SubRange = GetExprRange(C, CE->getSubExpr(),
14201
0
                                     std::min(MaxWidth, OutputTypeRange.Width),
14202
0
                                     InConstantContext, Approximate);
14203
14204
    // Bail out if the subexpr's range is as wide as the cast type.
14205
0
    if (SubRange.Width >= OutputTypeRange.Width)
14206
0
      return OutputTypeRange;
14207
14208
    // Otherwise, we take the smaller width, and we're non-negative if
14209
    // either the output type or the subexpr is.
14210
0
    return IntRange(SubRange.Width,
14211
0
                    SubRange.NonNegative || OutputTypeRange.NonNegative);
14212
0
  }
14213
14214
0
  if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
14215
    // If we can fold the condition, just take that operand.
14216
0
    bool CondResult;
14217
0
    if (CO->getCond()->EvaluateAsBooleanCondition(CondResult, C))
14218
0
      return GetExprRange(C,
14219
0
                          CondResult ? CO->getTrueExpr() : CO->getFalseExpr(),
14220
0
                          MaxWidth, InConstantContext, Approximate);
14221
14222
    // Otherwise, conservatively merge.
14223
    // GetExprRange requires an integer expression, but a throw expression
14224
    // results in a void type.
14225
0
    Expr *E = CO->getTrueExpr();
14226
0
    IntRange L = E->getType()->isVoidType()
14227
0
                     ? IntRange{0, true}
14228
0
                     : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
14229
0
    E = CO->getFalseExpr();
14230
0
    IntRange R = E->getType()->isVoidType()
14231
0
                     ? IntRange{0, true}
14232
0
                     : GetExprRange(C, E, MaxWidth, InConstantContext, Approximate);
14233
0
    return IntRange::join(L, R);
14234
0
  }
14235
14236
0
  if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
14237
0
    IntRange (*Combine)(IntRange, IntRange) = IntRange::join;
14238
14239
0
    switch (BO->getOpcode()) {
14240
0
    case BO_Cmp:
14241
0
      llvm_unreachable("builtin <=> should have class type");
14242
14243
    // Boolean-valued operations are single-bit and positive.
14244
0
    case BO_LAnd:
14245
0
    case BO_LOr:
14246
0
    case BO_LT:
14247
0
    case BO_GT:
14248
0
    case BO_LE:
14249
0
    case BO_GE:
14250
0
    case BO_EQ:
14251
0
    case BO_NE:
14252
0
      return IntRange::forBoolType();
14253
14254
    // The type of the assignments is the type of the LHS, so the RHS
14255
    // is not necessarily the same type.
14256
0
    case BO_MulAssign:
14257
0
    case BO_DivAssign:
14258
0
    case BO_RemAssign:
14259
0
    case BO_AddAssign:
14260
0
    case BO_SubAssign:
14261
0
    case BO_XorAssign:
14262
0
    case BO_OrAssign:
14263
      // TODO: bitfields?
14264
0
      return IntRange::forValueOfType(C, GetExprType(E));
14265
14266
    // Simple assignments just pass through the RHS, which will have
14267
    // been coerced to the LHS type.
14268
0
    case BO_Assign:
14269
      // TODO: bitfields?
14270
0
      return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
14271
0
                          Approximate);
14272
14273
    // Operations with opaque sources are black-listed.
14274
0
    case BO_PtrMemD:
14275
0
    case BO_PtrMemI:
14276
0
      return IntRange::forValueOfType(C, GetExprType(E));
14277
14278
    // Bitwise-and uses the *infinum* of the two source ranges.
14279
0
    case BO_And:
14280
0
    case BO_AndAssign:
14281
0
      Combine = IntRange::bit_and;
14282
0
      break;
14283
14284
    // Left shift gets black-listed based on a judgement call.
14285
0
    case BO_Shl:
14286
      // ...except that we want to treat '1 << (blah)' as logically
14287
      // positive.  It's an important idiom.
14288
0
      if (IntegerLiteral *I
14289
0
            = dyn_cast<IntegerLiteral>(BO->getLHS()->IgnoreParenCasts())) {
14290
0
        if (I->getValue() == 1) {
14291
0
          IntRange R = IntRange::forValueOfType(C, GetExprType(E));
14292
0
          return IntRange(R.Width, /*NonNegative*/ true);
14293
0
        }
14294
0
      }
14295
0
      [[fallthrough]];
14296
14297
0
    case BO_ShlAssign:
14298
0
      return IntRange::forValueOfType(C, GetExprType(E));
14299
14300
    // Right shift by a constant can narrow its left argument.
14301
0
    case BO_Shr:
14302
0
    case BO_ShrAssign: {
14303
0
      IntRange L = GetExprRange(C, BO->getLHS(), MaxWidth, InConstantContext,
14304
0
                                Approximate);
14305
14306
      // If the shift amount is a positive constant, drop the width by
14307
      // that much.
14308
0
      if (std::optional<llvm::APSInt> shift =
14309
0
              BO->getRHS()->getIntegerConstantExpr(C)) {
14310
0
        if (shift->isNonNegative()) {
14311
0
          if (shift->uge(L.Width))
14312
0
            L.Width = (L.NonNegative ? 0 : 1);
14313
0
          else
14314
0
            L.Width -= shift->getZExtValue();
14315
0
        }
14316
0
      }
14317
14318
0
      return L;
14319
0
    }
14320
14321
    // Comma acts as its right operand.
14322
0
    case BO_Comma:
14323
0
      return GetExprRange(C, BO->getRHS(), MaxWidth, InConstantContext,
14324
0
                          Approximate);
14325
14326
0
    case BO_Add:
14327
0
      if (!Approximate)
14328
0
        Combine = IntRange::sum;
14329
0
      break;
14330
14331
0
    case BO_Sub:
14332
0
      if (BO->getLHS()->getType()->isPointerType())
14333
0
        return IntRange::forValueOfType(C, GetExprType(E));
14334
0
      if (!Approximate)
14335
0
        Combine = IntRange::difference;
14336
0
      break;
14337
14338
0
    case BO_Mul:
14339
0
      if (!Approximate)
14340
0
        Combine = IntRange::product;
14341
0
      break;
14342
14343
    // The width of a division result is mostly determined by the size
14344
    // of the LHS.
14345
0
    case BO_Div: {
14346
      // Don't 'pre-truncate' the operands.
14347
0
      unsigned opWidth = C.getIntWidth(GetExprType(E));
14348
0
      IntRange L = GetExprRange(C, BO->getLHS(), opWidth, InConstantContext,
14349
0
                                Approximate);
14350
14351
      // If the divisor is constant, use that.
14352
0
      if (std::optional<llvm::APSInt> divisor =
14353
0
              BO->getRHS()->getIntegerConstantExpr(C)) {
14354
0
        unsigned log2 = divisor->logBase2(); // floor(log_2(divisor))
14355
0
        if (log2 >= L.Width)
14356
0
          L.Width = (L.NonNegative ? 0 : 1);
14357
0
        else
14358
0
          L.Width = std::min(L.Width - log2, MaxWidth);
14359
0
        return L;
14360
0
      }
14361
14362
      // Otherwise, just use the LHS's width.
14363
      // FIXME: This is wrong if the LHS could be its minimal value and the RHS
14364
      // could be -1.
14365
0
      IntRange R = GetExprRange(C, BO->getRHS(), opWidth, InConstantContext,
14366
0
                                Approximate);
14367
0
      return IntRange(L.Width, L.NonNegative && R.NonNegative);
14368
0
    }
14369
14370
0
    case BO_Rem:
14371
0
      Combine = IntRange::rem;
14372
0
      break;
14373
14374
    // The default behavior is okay for these.
14375
0
    case BO_Xor:
14376
0
    case BO_Or:
14377
0
      break;
14378
0
    }
14379
14380
    // Combine the two ranges, but limit the result to the type in which we
14381
    // performed the computation.
14382
0
    QualType T = GetExprType(E);
14383
0
    unsigned opWidth = C.getIntWidth(T);
14384
0
    IntRange L =
14385
0
        GetExprRange(C, BO->getLHS(), opWidth, InConstantContext, Approximate);
14386
0
    IntRange R =
14387
0
        GetExprRange(C, BO->getRHS(), opWidth, InConstantContext, Approximate);
14388
0
    IntRange C = Combine(L, R);
14389
0
    C.NonNegative |= T->isUnsignedIntegerOrEnumerationType();
14390
0
    C.Width = std::min(C.Width, MaxWidth);
14391
0
    return C;
14392
0
  }
14393
14394
0
  if (const auto *UO = dyn_cast<UnaryOperator>(E)) {
14395
0
    switch (UO->getOpcode()) {
14396
    // Boolean-valued operations are white-listed.
14397
0
    case UO_LNot:
14398
0
      return IntRange::forBoolType();
14399
14400
    // Operations with opaque sources are black-listed.
14401
0
    case UO_Deref:
14402
0
    case UO_AddrOf: // should be impossible
14403
0
      return IntRange::forValueOfType(C, GetExprType(E));
14404
14405
0
    default:
14406
0
      return GetExprRange(C, UO->getSubExpr(), MaxWidth, InConstantContext,
14407
0
                          Approximate);
14408
0
    }
14409
0
  }
14410
14411
0
  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
14412
0
    return GetExprRange(C, OVE->getSourceExpr(), MaxWidth, InConstantContext,
14413
0
                        Approximate);
14414
14415
0
  if (const auto *BitField = E->getSourceBitField())
14416
0
    return IntRange(BitField->getBitWidthValue(C),
14417
0
                    BitField->getType()->isUnsignedIntegerOrEnumerationType());
14418
14419
0
  return IntRange::forValueOfType(C, GetExprType(E));
14420
0
}
14421
14422
static IntRange GetExprRange(ASTContext &C, const Expr *E,
14423
0
                             bool InConstantContext, bool Approximate) {
14424
0
  return GetExprRange(C, E, C.getIntWidth(GetExprType(E)), InConstantContext,
14425
0
                      Approximate);
14426
0
}
14427
14428
/// Checks whether the given value, which currently has the given
14429
/// source semantics, has the same value when coerced through the
14430
/// target semantics.
14431
static bool IsSameFloatAfterCast(const llvm::APFloat &value,
14432
                                 const llvm::fltSemantics &Src,
14433
0
                                 const llvm::fltSemantics &Tgt) {
14434
0
  llvm::APFloat truncated = value;
14435
14436
0
  bool ignored;
14437
0
  truncated.convert(Src, llvm::APFloat::rmNearestTiesToEven, &ignored);
14438
0
  truncated.convert(Tgt, llvm::APFloat::rmNearestTiesToEven, &ignored);
14439
14440
0
  return truncated.bitwiseIsEqual(value);
14441
0
}
14442
14443
/// Checks whether the given value, which currently has the given
14444
/// source semantics, has the same value when coerced through the
14445
/// target semantics.
14446
///
14447
/// The value might be a vector of floats (or a complex number).
14448
static bool IsSameFloatAfterCast(const APValue &value,
14449
                                 const llvm::fltSemantics &Src,
14450
0
                                 const llvm::fltSemantics &Tgt) {
14451
0
  if (value.isFloat())
14452
0
    return IsSameFloatAfterCast(value.getFloat(), Src, Tgt);
14453
14454
0
  if (value.isVector()) {
14455
0
    for (unsigned i = 0, e = value.getVectorLength(); i != e; ++i)
14456
0
      if (!IsSameFloatAfterCast(value.getVectorElt(i), Src, Tgt))
14457
0
        return false;
14458
0
    return true;
14459
0
  }
14460
14461
0
  assert(value.isComplexFloat());
14462
0
  return (IsSameFloatAfterCast(value.getComplexFloatReal(), Src, Tgt) &&
14463
0
          IsSameFloatAfterCast(value.getComplexFloatImag(), Src, Tgt));
14464
0
}
14465
14466
static void AnalyzeImplicitConversions(Sema &S, Expr *E, SourceLocation CC,
14467
                                       bool IsListInit = false);
14468
14469
0
static bool IsEnumConstOrFromMacro(Sema &S, Expr *E) {
14470
  // Suppress cases where we are comparing against an enum constant.
14471
0
  if (const DeclRefExpr *DR =
14472
0
      dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
14473
0
    if (isa<EnumConstantDecl>(DR->getDecl()))
14474
0
      return true;
14475
14476
  // Suppress cases where the value is expanded from a macro, unless that macro
14477
  // is how a language represents a boolean literal. This is the case in both C
14478
  // and Objective-C.
14479
0
  SourceLocation BeginLoc = E->getBeginLoc();
14480
0
  if (BeginLoc.isMacroID()) {
14481
0
    StringRef MacroName = Lexer::getImmediateMacroName(
14482
0
        BeginLoc, S.getSourceManager(), S.getLangOpts());
14483
0
    return MacroName != "YES" && MacroName != "NO" &&
14484
0
           MacroName != "true" && MacroName != "false";
14485
0
  }
14486
14487
0
  return false;
14488
0
}
14489
14490
0
static bool isKnownToHaveUnsignedValue(Expr *E) {
14491
0
  return E->getType()->isIntegerType() &&
14492
0
         (!E->getType()->isSignedIntegerType() ||
14493
0
          !E->IgnoreParenImpCasts()->getType()->isSignedIntegerType());
14494
0
}
14495
14496
namespace {
14497
/// The promoted range of values of a type. In general this has the
14498
/// following structure:
14499
///
14500
///     |-----------| . . . |-----------|
14501
///     ^           ^       ^           ^
14502
///    Min       HoleMin  HoleMax      Max
14503
///
14504
/// ... where there is only a hole if a signed type is promoted to unsigned
14505
/// (in which case Min and Max are the smallest and largest representable
14506
/// values).
14507
struct PromotedRange {
14508
  // Min, or HoleMax if there is a hole.
14509
  llvm::APSInt PromotedMin;
14510
  // Max, or HoleMin if there is a hole.
14511
  llvm::APSInt PromotedMax;
14512
14513
0
  PromotedRange(IntRange R, unsigned BitWidth, bool Unsigned) {
14514
0
    if (R.Width == 0)
14515
0
      PromotedMin = PromotedMax = llvm::APSInt(BitWidth, Unsigned);
14516
0
    else if (R.Width >= BitWidth && !Unsigned) {
14517
      // Promotion made the type *narrower*. This happens when promoting
14518
      // a < 32-bit unsigned / <= 32-bit signed bit-field to 'signed int'.
14519
      // Treat all values of 'signed int' as being in range for now.
14520
0
      PromotedMin = llvm::APSInt::getMinValue(BitWidth, Unsigned);
14521
0
      PromotedMax = llvm::APSInt::getMaxValue(BitWidth, Unsigned);
14522
0
    } else {
14523
0
      PromotedMin = llvm::APSInt::getMinValue(R.Width, R.NonNegative)
14524
0
                        .extOrTrunc(BitWidth);
14525
0
      PromotedMin.setIsUnsigned(Unsigned);
14526
14527
0
      PromotedMax = llvm::APSInt::getMaxValue(R.Width, R.NonNegative)
14528
0
                        .extOrTrunc(BitWidth);
14529
0
      PromotedMax.setIsUnsigned(Unsigned);
14530
0
    }
14531
0
  }
14532
14533
  // Determine whether this range is contiguous (has no hole).
14534
0
  bool isContiguous() const { return PromotedMin <= PromotedMax; }
14535
14536
  // Where a constant value is within the range.
14537
  enum ComparisonResult {
14538
    LT = 0x1,
14539
    LE = 0x2,
14540
    GT = 0x4,
14541
    GE = 0x8,
14542
    EQ = 0x10,
14543
    NE = 0x20,
14544
    InRangeFlag = 0x40,
14545
14546
    Less = LE | LT | NE,
14547
    Min = LE | InRangeFlag,
14548
    InRange = InRangeFlag,
14549
    Max = GE | InRangeFlag,
14550
    Greater = GE | GT | NE,
14551
14552
    OnlyValue = LE | GE | EQ | InRangeFlag,
14553
    InHole = NE
14554
  };
14555
14556
0
  ComparisonResult compare(const llvm::APSInt &Value) const {
14557
0
    assert(Value.getBitWidth() == PromotedMin.getBitWidth() &&
14558
0
           Value.isUnsigned() == PromotedMin.isUnsigned());
14559
0
    if (!isContiguous()) {
14560
0
      assert(Value.isUnsigned() && "discontiguous range for signed compare");
14561
0
      if (Value.isMinValue()) return Min;
14562
0
      if (Value.isMaxValue()) return Max;
14563
0
      if (Value >= PromotedMin) return InRange;
14564
0
      if (Value <= PromotedMax) return InRange;
14565
0
      return InHole;
14566
0
    }
14567
14568
0
    switch (llvm::APSInt::compareValues(Value, PromotedMin)) {
14569
0
    case -1: return Less;
14570
0
    case 0: return PromotedMin == PromotedMax ? OnlyValue : Min;
14571
0
    case 1:
14572
0
      switch (llvm::APSInt::compareValues(Value, PromotedMax)) {
14573
0
      case -1: return InRange;
14574
0
      case 0: return Max;
14575
0
      case 1: return Greater;
14576
0
      }
14577
0
    }
14578
14579
0
    llvm_unreachable("impossible compare result");
14580
0
  }
14581
14582
  static std::optional<StringRef>
14583
0
  constantValue(BinaryOperatorKind Op, ComparisonResult R, bool ConstantOnRHS) {
14584
0
    if (Op == BO_Cmp) {
14585
0
      ComparisonResult LTFlag = LT, GTFlag = GT;
14586
0
      if (ConstantOnRHS) std::swap(LTFlag, GTFlag);
14587
14588
0
      if (R & EQ) return StringRef("'std::strong_ordering::equal'");
14589
0
      if (R & LTFlag) return StringRef("'std::strong_ordering::less'");
14590
0
      if (R & GTFlag) return StringRef("'std::strong_ordering::greater'");
14591
0
      return std::nullopt;
14592
0
    }
14593
14594
0
    ComparisonResult TrueFlag, FalseFlag;
14595
0
    if (Op == BO_EQ) {
14596
0
      TrueFlag = EQ;
14597
0
      FalseFlag = NE;
14598
0
    } else if (Op == BO_NE) {
14599
0
      TrueFlag = NE;
14600
0
      FalseFlag = EQ;
14601
0
    } else {
14602
0
      if ((Op == BO_LT || Op == BO_GE) ^ ConstantOnRHS) {
14603
0
        TrueFlag = LT;
14604
0
        FalseFlag = GE;
14605
0
      } else {
14606
0
        TrueFlag = GT;
14607
0
        FalseFlag = LE;
14608
0
      }
14609
0
      if (Op == BO_GE || Op == BO_LE)
14610
0
        std::swap(TrueFlag, FalseFlag);
14611
0
    }
14612
0
    if (R & TrueFlag)
14613
0
      return StringRef("true");
14614
0
    if (R & FalseFlag)
14615
0
      return StringRef("false");
14616
0
    return std::nullopt;
14617
0
  }
14618
};
14619
}
14620
14621
0
static bool HasEnumType(Expr *E) {
14622
  // Strip off implicit integral promotions.
14623
0
  while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) {
14624
0
    if (ICE->getCastKind() != CK_IntegralCast &&
14625
0
        ICE->getCastKind() != CK_NoOp)
14626
0
      break;
14627
0
    E = ICE->getSubExpr();
14628
0
  }
14629
14630
0
  return E->getType()->isEnumeralType();
14631
0
}
14632
14633
0
static int classifyConstantValue(Expr *Constant) {
14634
  // The values of this enumeration are used in the diagnostics
14635
  // diag::warn_out_of_range_compare and diag::warn_tautological_bool_compare.
14636
0
  enum ConstantValueKind {
14637
0
    Miscellaneous = 0,
14638
0
    LiteralTrue,
14639
0
    LiteralFalse
14640
0
  };
14641
0
  if (auto *BL = dyn_cast<CXXBoolLiteralExpr>(Constant))
14642
0
    return BL->getValue() ? ConstantValueKind::LiteralTrue
14643
0
                          : ConstantValueKind::LiteralFalse;
14644
0
  return ConstantValueKind::Miscellaneous;
14645
0
}
14646
14647
static bool CheckTautologicalComparison(Sema &S, BinaryOperator *E,
14648
                                        Expr *Constant, Expr *Other,
14649
                                        const llvm::APSInt &Value,
14650
0
                                        bool RhsConstant) {
14651
0
  if (S.inTemplateInstantiation())
14652
0
    return false;
14653
14654
0
  Expr *OriginalOther = Other;
14655
14656
0
  Constant = Constant->IgnoreParenImpCasts();
14657
0
  Other = Other->IgnoreParenImpCasts();
14658
14659
  // Suppress warnings on tautological comparisons between values of the same
14660
  // enumeration type. There are only two ways we could warn on this:
14661
  //  - If the constant is outside the range of representable values of
14662
  //    the enumeration. In such a case, we should warn about the cast
14663
  //    to enumeration type, not about the comparison.
14664
  //  - If the constant is the maximum / minimum in-range value. For an
14665
  //    enumeratin type, such comparisons can be meaningful and useful.
14666
0
  if (Constant->getType()->isEnumeralType() &&
14667
0
      S.Context.hasSameUnqualifiedType(Constant->getType(), Other->getType()))
14668
0
    return false;
14669
14670
0
  IntRange OtherValueRange = GetExprRange(
14671
0
      S.Context, Other, S.isConstantEvaluatedContext(), /*Approximate=*/false);
14672
14673
0
  QualType OtherT = Other->getType();
14674
0
  if (const auto *AT = OtherT->getAs<AtomicType>())
14675
0
    OtherT = AT->getValueType();
14676
0
  IntRange OtherTypeRange = IntRange::forValueOfType(S.Context, OtherT);
14677
14678
  // Special case for ObjC BOOL on targets where its a typedef for a signed char
14679
  // (Namely, macOS). FIXME: IntRange::forValueOfType should do this.
14680
0
  bool IsObjCSignedCharBool = S.getLangOpts().ObjC &&
14681
0
                              S.NSAPIObj->isObjCBOOLType(OtherT) &&
14682
0
                              OtherT->isSpecificBuiltinType(BuiltinType::SChar);
14683
14684
  // Whether we're treating Other as being a bool because of the form of
14685
  // expression despite it having another type (typically 'int' in C).
14686
0
  bool OtherIsBooleanDespiteType =
14687
0
      !OtherT->isBooleanType() && Other->isKnownToHaveBooleanValue();
14688
0
  if (OtherIsBooleanDespiteType || IsObjCSignedCharBool)
14689
0
    OtherTypeRange = OtherValueRange = IntRange::forBoolType();
14690
14691
  // Check if all values in the range of possible values of this expression
14692
  // lead to the same comparison outcome.
14693
0
  PromotedRange OtherPromotedValueRange(OtherValueRange, Value.getBitWidth(),
14694
0
                                        Value.isUnsigned());
14695
0
  auto Cmp = OtherPromotedValueRange.compare(Value);
14696
0
  auto Result = PromotedRange::constantValue(E->getOpcode(), Cmp, RhsConstant);
14697
0
  if (!Result)
14698
0
    return false;
14699
14700
  // Also consider the range determined by the type alone. This allows us to
14701
  // classify the warning under the proper diagnostic group.
14702
0
  bool TautologicalTypeCompare = false;
14703
0
  {
14704
0
    PromotedRange OtherPromotedTypeRange(OtherTypeRange, Value.getBitWidth(),
14705
0
                                         Value.isUnsigned());
14706
0
    auto TypeCmp = OtherPromotedTypeRange.compare(Value);
14707
0
    if (auto TypeResult = PromotedRange::constantValue(E->getOpcode(), TypeCmp,
14708
0
                                                       RhsConstant)) {
14709
0
      TautologicalTypeCompare = true;
14710
0
      Cmp = TypeCmp;
14711
0
      Result = TypeResult;
14712
0
    }
14713
0
  }
14714
14715
  // Don't warn if the non-constant operand actually always evaluates to the
14716
  // same value.
14717
0
  if (!TautologicalTypeCompare && OtherValueRange.Width == 0)
14718
0
    return false;
14719
14720
  // Suppress the diagnostic for an in-range comparison if the constant comes
14721
  // from a macro or enumerator. We don't want to diagnose
14722
  //
14723
  //   some_long_value <= INT_MAX
14724
  //
14725
  // when sizeof(int) == sizeof(long).
14726
0
  bool InRange = Cmp & PromotedRange::InRangeFlag;
14727
0
  if (InRange && IsEnumConstOrFromMacro(S, Constant))
14728
0
    return false;
14729
14730
  // A comparison of an unsigned bit-field against 0 is really a type problem,
14731
  // even though at the type level the bit-field might promote to 'signed int'.
14732
0
  if (Other->refersToBitField() && InRange && Value == 0 &&
14733
0
      Other->getType()->isUnsignedIntegerOrEnumerationType())
14734
0
    TautologicalTypeCompare = true;
14735
14736
  // If this is a comparison to an enum constant, include that
14737
  // constant in the diagnostic.
14738
0
  const EnumConstantDecl *ED = nullptr;
14739
0
  if (const DeclRefExpr *DR = dyn_cast<DeclRefExpr>(Constant))
14740
0
    ED = dyn_cast<EnumConstantDecl>(DR->getDecl());
14741
14742
  // Should be enough for uint128 (39 decimal digits)
14743
0
  SmallString<64> PrettySourceValue;
14744
0
  llvm::raw_svector_ostream OS(PrettySourceValue);
14745
0
  if (ED) {
14746
0
    OS << '\'' << *ED << "' (" << Value << ")";
14747
0
  } else if (auto *BL = dyn_cast<ObjCBoolLiteralExpr>(
14748
0
               Constant->IgnoreParenImpCasts())) {
14749
0
    OS << (BL->getValue() ? "YES" : "NO");
14750
0
  } else {
14751
0
    OS << Value;
14752
0
  }
14753
14754
0
  if (!TautologicalTypeCompare) {
14755
0
    S.Diag(E->getOperatorLoc(), diag::warn_tautological_compare_value_range)
14756
0
        << RhsConstant << OtherValueRange.Width << OtherValueRange.NonNegative
14757
0
        << E->getOpcodeStr() << OS.str() << *Result
14758
0
        << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
14759
0
    return true;
14760
0
  }
14761
14762
0
  if (IsObjCSignedCharBool) {
14763
0
    S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
14764
0
                          S.PDiag(diag::warn_tautological_compare_objc_bool)
14765
0
                              << OS.str() << *Result);
14766
0
    return true;
14767
0
  }
14768
14769
  // FIXME: We use a somewhat different formatting for the in-range cases and
14770
  // cases involving boolean values for historical reasons. We should pick a
14771
  // consistent way of presenting these diagnostics.
14772
0
  if (!InRange || Other->isKnownToHaveBooleanValue()) {
14773
14774
0
    S.DiagRuntimeBehavior(
14775
0
        E->getOperatorLoc(), E,
14776
0
        S.PDiag(!InRange ? diag::warn_out_of_range_compare
14777
0
                         : diag::warn_tautological_bool_compare)
14778
0
            << OS.str() << classifyConstantValue(Constant) << OtherT
14779
0
            << OtherIsBooleanDespiteType << *Result
14780
0
            << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange());
14781
0
  } else {
14782
0
    bool IsCharTy = OtherT.withoutLocalFastQualifiers() == S.Context.CharTy;
14783
0
    unsigned Diag =
14784
0
        (isKnownToHaveUnsignedValue(OriginalOther) && Value == 0)
14785
0
            ? (HasEnumType(OriginalOther)
14786
0
                   ? diag::warn_unsigned_enum_always_true_comparison
14787
0
                   : IsCharTy ? diag::warn_unsigned_char_always_true_comparison
14788
0
                              : diag::warn_unsigned_always_true_comparison)
14789
0
            : diag::warn_tautological_constant_compare;
14790
14791
0
    S.Diag(E->getOperatorLoc(), Diag)
14792
0
        << RhsConstant << OtherT << E->getOpcodeStr() << OS.str() << *Result
14793
0
        << E->getLHS()->getSourceRange() << E->getRHS()->getSourceRange();
14794
0
  }
14795
14796
0
  return true;
14797
0
}
14798
14799
/// Analyze the operands of the given comparison.  Implements the
14800
/// fallback case from AnalyzeComparison.
14801
0
static void AnalyzeImpConvsInComparison(Sema &S, BinaryOperator *E) {
14802
0
  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
14803
0
  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
14804
0
}
14805
14806
/// Implements -Wsign-compare.
14807
///
14808
/// \param E the binary operator to check for warnings
14809
0
static void AnalyzeComparison(Sema &S, BinaryOperator *E) {
14810
  // The type the comparison is being performed in.
14811
0
  QualType T = E->getLHS()->getType();
14812
14813
  // Only analyze comparison operators where both sides have been converted to
14814
  // the same type.
14815
0
  if (!S.Context.hasSameUnqualifiedType(T, E->getRHS()->getType()))
14816
0
    return AnalyzeImpConvsInComparison(S, E);
14817
14818
  // Don't analyze value-dependent comparisons directly.
14819
0
  if (E->isValueDependent())
14820
0
    return AnalyzeImpConvsInComparison(S, E);
14821
14822
0
  Expr *LHS = E->getLHS();
14823
0
  Expr *RHS = E->getRHS();
14824
14825
0
  if (T->isIntegralType(S.Context)) {
14826
0
    std::optional<llvm::APSInt> RHSValue =
14827
0
        RHS->getIntegerConstantExpr(S.Context);
14828
0
    std::optional<llvm::APSInt> LHSValue =
14829
0
        LHS->getIntegerConstantExpr(S.Context);
14830
14831
    // We don't care about expressions whose result is a constant.
14832
0
    if (RHSValue && LHSValue)
14833
0
      return AnalyzeImpConvsInComparison(S, E);
14834
14835
    // We only care about expressions where just one side is literal
14836
0
    if ((bool)RHSValue ^ (bool)LHSValue) {
14837
      // Is the constant on the RHS or LHS?
14838
0
      const bool RhsConstant = (bool)RHSValue;
14839
0
      Expr *Const = RhsConstant ? RHS : LHS;
14840
0
      Expr *Other = RhsConstant ? LHS : RHS;
14841
0
      const llvm::APSInt &Value = RhsConstant ? *RHSValue : *LHSValue;
14842
14843
      // Check whether an integer constant comparison results in a value
14844
      // of 'true' or 'false'.
14845
0
      if (CheckTautologicalComparison(S, E, Const, Other, Value, RhsConstant))
14846
0
        return AnalyzeImpConvsInComparison(S, E);
14847
0
    }
14848
0
  }
14849
14850
0
  if (!T->hasUnsignedIntegerRepresentation()) {
14851
    // We don't do anything special if this isn't an unsigned integral
14852
    // comparison:  we're only interested in integral comparisons, and
14853
    // signed comparisons only happen in cases we don't care to warn about.
14854
0
    return AnalyzeImpConvsInComparison(S, E);
14855
0
  }
14856
14857
0
  LHS = LHS->IgnoreParenImpCasts();
14858
0
  RHS = RHS->IgnoreParenImpCasts();
14859
14860
0
  if (!S.getLangOpts().CPlusPlus) {
14861
    // Avoid warning about comparison of integers with different signs when
14862
    // RHS/LHS has a `typeof(E)` type whose sign is different from the sign of
14863
    // the type of `E`.
14864
0
    if (const auto *TET = dyn_cast<TypeOfExprType>(LHS->getType()))
14865
0
      LHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
14866
0
    if (const auto *TET = dyn_cast<TypeOfExprType>(RHS->getType()))
14867
0
      RHS = TET->getUnderlyingExpr()->IgnoreParenImpCasts();
14868
0
  }
14869
14870
  // Check to see if one of the (unmodified) operands is of different
14871
  // signedness.
14872
0
  Expr *signedOperand, *unsignedOperand;
14873
0
  if (LHS->getType()->hasSignedIntegerRepresentation()) {
14874
0
    assert(!RHS->getType()->hasSignedIntegerRepresentation() &&
14875
0
           "unsigned comparison between two signed integer expressions?");
14876
0
    signedOperand = LHS;
14877
0
    unsignedOperand = RHS;
14878
0
  } else if (RHS->getType()->hasSignedIntegerRepresentation()) {
14879
0
    signedOperand = RHS;
14880
0
    unsignedOperand = LHS;
14881
0
  } else {
14882
0
    return AnalyzeImpConvsInComparison(S, E);
14883
0
  }
14884
14885
  // Otherwise, calculate the effective range of the signed operand.
14886
0
  IntRange signedRange =
14887
0
      GetExprRange(S.Context, signedOperand, S.isConstantEvaluatedContext(),
14888
0
                   /*Approximate=*/true);
14889
14890
  // Go ahead and analyze implicit conversions in the operands.  Note
14891
  // that we skip the implicit conversions on both sides.
14892
0
  AnalyzeImplicitConversions(S, LHS, E->getOperatorLoc());
14893
0
  AnalyzeImplicitConversions(S, RHS, E->getOperatorLoc());
14894
14895
  // If the signed range is non-negative, -Wsign-compare won't fire.
14896
0
  if (signedRange.NonNegative)
14897
0
    return;
14898
14899
  // For (in)equality comparisons, if the unsigned operand is a
14900
  // constant which cannot collide with a overflowed signed operand,
14901
  // then reinterpreting the signed operand as unsigned will not
14902
  // change the result of the comparison.
14903
0
  if (E->isEqualityOp()) {
14904
0
    unsigned comparisonWidth = S.Context.getIntWidth(T);
14905
0
    IntRange unsignedRange =
14906
0
        GetExprRange(S.Context, unsignedOperand, S.isConstantEvaluatedContext(),
14907
0
                     /*Approximate=*/true);
14908
14909
    // We should never be unable to prove that the unsigned operand is
14910
    // non-negative.
14911
0
    assert(unsignedRange.NonNegative && "unsigned range includes negative?");
14912
14913
0
    if (unsignedRange.Width < comparisonWidth)
14914
0
      return;
14915
0
  }
14916
14917
0
  S.DiagRuntimeBehavior(E->getOperatorLoc(), E,
14918
0
                        S.PDiag(diag::warn_mixed_sign_comparison)
14919
0
                            << LHS->getType() << RHS->getType()
14920
0
                            << LHS->getSourceRange() << RHS->getSourceRange());
14921
0
}
14922
14923
/// Analyzes an attempt to assign the given value to a bitfield.
14924
///
14925
/// Returns true if there was something fishy about the attempt.
14926
static bool AnalyzeBitFieldAssignment(Sema &S, FieldDecl *Bitfield, Expr *Init,
14927
0
                                      SourceLocation InitLoc) {
14928
0
  assert(Bitfield->isBitField());
14929
0
  if (Bitfield->isInvalidDecl())
14930
0
    return false;
14931
14932
  // White-list bool bitfields.
14933
0
  QualType BitfieldType = Bitfield->getType();
14934
0
  if (BitfieldType->isBooleanType())
14935
0
     return false;
14936
14937
0
  if (BitfieldType->isEnumeralType()) {
14938
0
    EnumDecl *BitfieldEnumDecl = BitfieldType->castAs<EnumType>()->getDecl();
14939
    // If the underlying enum type was not explicitly specified as an unsigned
14940
    // type and the enum contain only positive values, MSVC++ will cause an
14941
    // inconsistency by storing this as a signed type.
14942
0
    if (S.getLangOpts().CPlusPlus11 &&
14943
0
        !BitfieldEnumDecl->getIntegerTypeSourceInfo() &&
14944
0
        BitfieldEnumDecl->getNumPositiveBits() > 0 &&
14945
0
        BitfieldEnumDecl->getNumNegativeBits() == 0) {
14946
0
      S.Diag(InitLoc, diag::warn_no_underlying_type_specified_for_enum_bitfield)
14947
0
          << BitfieldEnumDecl;
14948
0
    }
14949
0
  }
14950
14951
  // Ignore value- or type-dependent expressions.
14952
0
  if (Bitfield->getBitWidth()->isValueDependent() ||
14953
0
      Bitfield->getBitWidth()->isTypeDependent() ||
14954
0
      Init->isValueDependent() ||
14955
0
      Init->isTypeDependent())
14956
0
    return false;
14957
14958
0
  Expr *OriginalInit = Init->IgnoreParenImpCasts();
14959
0
  unsigned FieldWidth = Bitfield->getBitWidthValue(S.Context);
14960
14961
0
  Expr::EvalResult Result;
14962
0
  if (!OriginalInit->EvaluateAsInt(Result, S.Context,
14963
0
                                   Expr::SE_AllowSideEffects)) {
14964
    // The RHS is not constant.  If the RHS has an enum type, make sure the
14965
    // bitfield is wide enough to hold all the values of the enum without
14966
    // truncation.
14967
0
    if (const auto *EnumTy = OriginalInit->getType()->getAs<EnumType>()) {
14968
0
      EnumDecl *ED = EnumTy->getDecl();
14969
0
      bool SignedBitfield = BitfieldType->isSignedIntegerType();
14970
14971
      // Enum types are implicitly signed on Windows, so check if there are any
14972
      // negative enumerators to see if the enum was intended to be signed or
14973
      // not.
14974
0
      bool SignedEnum = ED->getNumNegativeBits() > 0;
14975
14976
      // Check for surprising sign changes when assigning enum values to a
14977
      // bitfield of different signedness.  If the bitfield is signed and we
14978
      // have exactly the right number of bits to store this unsigned enum,
14979
      // suggest changing the enum to an unsigned type. This typically happens
14980
      // on Windows where unfixed enums always use an underlying type of 'int'.
14981
0
      unsigned DiagID = 0;
14982
0
      if (SignedEnum && !SignedBitfield) {
14983
0
        DiagID = diag::warn_unsigned_bitfield_assigned_signed_enum;
14984
0
      } else if (SignedBitfield && !SignedEnum &&
14985
0
                 ED->getNumPositiveBits() == FieldWidth) {
14986
0
        DiagID = diag::warn_signed_bitfield_enum_conversion;
14987
0
      }
14988
14989
0
      if (DiagID) {
14990
0
        S.Diag(InitLoc, DiagID) << Bitfield << ED;
14991
0
        TypeSourceInfo *TSI = Bitfield->getTypeSourceInfo();
14992
0
        SourceRange TypeRange =
14993
0
            TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange();
14994
0
        S.Diag(Bitfield->getTypeSpecStartLoc(), diag::note_change_bitfield_sign)
14995
0
            << SignedEnum << TypeRange;
14996
0
      }
14997
14998
      // Compute the required bitwidth. If the enum has negative values, we need
14999
      // one more bit than the normal number of positive bits to represent the
15000
      // sign bit.
15001
0
      unsigned BitsNeeded = SignedEnum ? std::max(ED->getNumPositiveBits() + 1,
15002
0
                                                  ED->getNumNegativeBits())
15003
0
                                       : ED->getNumPositiveBits();
15004
15005
      // Check the bitwidth.
15006
0
      if (BitsNeeded > FieldWidth) {
15007
0
        Expr *WidthExpr = Bitfield->getBitWidth();
15008
0
        S.Diag(InitLoc, diag::warn_bitfield_too_small_for_enum)
15009
0
            << Bitfield << ED;
15010
0
        S.Diag(WidthExpr->getExprLoc(), diag::note_widen_bitfield)
15011
0
            << BitsNeeded << ED << WidthExpr->getSourceRange();
15012
0
      }
15013
0
    }
15014
15015
0
    return false;
15016
0
  }
15017
15018
0
  llvm::APSInt Value = Result.Val.getInt();
15019
15020
0
  unsigned OriginalWidth = Value.getBitWidth();
15021
15022
  // In C, the macro 'true' from stdbool.h will evaluate to '1'; To reduce
15023
  // false positives where the user is demonstrating they intend to use the
15024
  // bit-field as a Boolean, check to see if the value is 1 and we're assigning
15025
  // to a one-bit bit-field to see if the value came from a macro named 'true'.
15026
0
  bool OneAssignedToOneBitBitfield = FieldWidth == 1 && Value == 1;
15027
0
  if (OneAssignedToOneBitBitfield && !S.LangOpts.CPlusPlus) {
15028
0
    SourceLocation MaybeMacroLoc = OriginalInit->getBeginLoc();
15029
0
    if (S.SourceMgr.isInSystemMacro(MaybeMacroLoc) &&
15030
0
        S.findMacroSpelling(MaybeMacroLoc, "true"))
15031
0
      return false;
15032
0
  }
15033
15034
0
  if (!Value.isSigned() || Value.isNegative())
15035
0
    if (UnaryOperator *UO = dyn_cast<UnaryOperator>(OriginalInit))
15036
0
      if (UO->getOpcode() == UO_Minus || UO->getOpcode() == UO_Not)
15037
0
        OriginalWidth = Value.getSignificantBits();
15038
15039
0
  if (OriginalWidth <= FieldWidth)
15040
0
    return false;
15041
15042
  // Compute the value which the bitfield will contain.
15043
0
  llvm::APSInt TruncatedValue = Value.trunc(FieldWidth);
15044
0
  TruncatedValue.setIsSigned(BitfieldType->isSignedIntegerType());
15045
15046
  // Check whether the stored value is equal to the original value.
15047
0
  TruncatedValue = TruncatedValue.extend(OriginalWidth);
15048
0
  if (llvm::APSInt::isSameValue(Value, TruncatedValue))
15049
0
    return false;
15050
15051
0
  std::string PrettyValue = toString(Value, 10);
15052
0
  std::string PrettyTrunc = toString(TruncatedValue, 10);
15053
15054
0
  S.Diag(InitLoc, OneAssignedToOneBitBitfield
15055
0
                      ? diag::warn_impcast_single_bit_bitield_precision_constant
15056
0
                      : diag::warn_impcast_bitfield_precision_constant)
15057
0
      << PrettyValue << PrettyTrunc << OriginalInit->getType()
15058
0
      << Init->getSourceRange();
15059
15060
0
  return true;
15061
0
}
15062
15063
/// Analyze the given simple or compound assignment for warning-worthy
15064
/// operations.
15065
0
static void AnalyzeAssignment(Sema &S, BinaryOperator *E) {
15066
  // Just recurse on the LHS.
15067
0
  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
15068
15069
  // We want to recurse on the RHS as normal unless we're assigning to
15070
  // a bitfield.
15071
0
  if (FieldDecl *Bitfield = E->getLHS()->getSourceBitField()) {
15072
0
    if (AnalyzeBitFieldAssignment(S, Bitfield, E->getRHS(),
15073
0
                                  E->getOperatorLoc())) {
15074
      // Recurse, ignoring any implicit conversions on the RHS.
15075
0
      return AnalyzeImplicitConversions(S, E->getRHS()->IgnoreParenImpCasts(),
15076
0
                                        E->getOperatorLoc());
15077
0
    }
15078
0
  }
15079
15080
0
  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
15081
15082
  // Diagnose implicitly sequentially-consistent atomic assignment.
15083
0
  if (E->getLHS()->getType()->isAtomicType())
15084
0
    S.Diag(E->getRHS()->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
15085
0
}
15086
15087
/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
15088
static void DiagnoseImpCast(Sema &S, Expr *E, QualType SourceType, QualType T,
15089
                            SourceLocation CContext, unsigned diag,
15090
0
                            bool pruneControlFlow = false) {
15091
0
  if (pruneControlFlow) {
15092
0
    S.DiagRuntimeBehavior(E->getExprLoc(), E,
15093
0
                          S.PDiag(diag)
15094
0
                              << SourceType << T << E->getSourceRange()
15095
0
                              << SourceRange(CContext));
15096
0
    return;
15097
0
  }
15098
0
  S.Diag(E->getExprLoc(), diag)
15099
0
    << SourceType << T << E->getSourceRange() << SourceRange(CContext);
15100
0
}
15101
15102
/// Diagnose an implicit cast;  purely a helper for CheckImplicitConversion.
15103
static void DiagnoseImpCast(Sema &S, Expr *E, QualType T,
15104
                            SourceLocation CContext,
15105
0
                            unsigned diag, bool pruneControlFlow = false) {
15106
0
  DiagnoseImpCast(S, E, E->getType(), T, CContext, diag, pruneControlFlow);
15107
0
}
15108
15109
1
static bool isObjCSignedCharBool(Sema &S, QualType Ty) {
15110
1
  return Ty->isSpecificBuiltinType(BuiltinType::SChar) &&
15111
1
      S.getLangOpts().ObjC && S.NSAPIObj->isObjCBOOLType(Ty);
15112
1
}
15113
15114
static void adornObjCBoolConversionDiagWithTernaryFixit(
15115
0
    Sema &S, Expr *SourceExpr, const Sema::SemaDiagnosticBuilder &Builder) {
15116
0
  Expr *Ignored = SourceExpr->IgnoreImplicit();
15117
0
  if (const auto *OVE = dyn_cast<OpaqueValueExpr>(Ignored))
15118
0
    Ignored = OVE->getSourceExpr();
15119
0
  bool NeedsParens = isa<AbstractConditionalOperator>(Ignored) ||
15120
0
                     isa<BinaryOperator>(Ignored) ||
15121
0
                     isa<CXXOperatorCallExpr>(Ignored);
15122
0
  SourceLocation EndLoc = S.getLocForEndOfToken(SourceExpr->getEndLoc());
15123
0
  if (NeedsParens)
15124
0
    Builder << FixItHint::CreateInsertion(SourceExpr->getBeginLoc(), "(")
15125
0
            << FixItHint::CreateInsertion(EndLoc, ")");
15126
0
  Builder << FixItHint::CreateInsertion(EndLoc, " ? YES : NO");
15127
0
}
15128
15129
/// Diagnose an implicit cast from a floating point value to an integer value.
15130
static void DiagnoseFloatingImpCast(Sema &S, Expr *E, QualType T,
15131
0
                                    SourceLocation CContext) {
15132
0
  const bool IsBool = T->isSpecificBuiltinType(BuiltinType::Bool);
15133
0
  const bool PruneWarnings = S.inTemplateInstantiation();
15134
15135
0
  Expr *InnerE = E->IgnoreParenImpCasts();
15136
  // We also want to warn on, e.g., "int i = -1.234"
15137
0
  if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(InnerE))
15138
0
    if (UOp->getOpcode() == UO_Minus || UOp->getOpcode() == UO_Plus)
15139
0
      InnerE = UOp->getSubExpr()->IgnoreParenImpCasts();
15140
15141
0
  const bool IsLiteral =
15142
0
      isa<FloatingLiteral>(E) || isa<FloatingLiteral>(InnerE);
15143
15144
0
  llvm::APFloat Value(0.0);
15145
0
  bool IsConstant =
15146
0
    E->EvaluateAsFloat(Value, S.Context, Expr::SE_AllowSideEffects);
15147
0
  if (!IsConstant) {
15148
0
    if (isObjCSignedCharBool(S, T)) {
15149
0
      return adornObjCBoolConversionDiagWithTernaryFixit(
15150
0
          S, E,
15151
0
          S.Diag(CContext, diag::warn_impcast_float_to_objc_signed_char_bool)
15152
0
              << E->getType());
15153
0
    }
15154
15155
0
    return DiagnoseImpCast(S, E, T, CContext,
15156
0
                           diag::warn_impcast_float_integer, PruneWarnings);
15157
0
  }
15158
15159
0
  bool isExact = false;
15160
15161
0
  llvm::APSInt IntegerValue(S.Context.getIntWidth(T),
15162
0
                            T->hasUnsignedIntegerRepresentation());
15163
0
  llvm::APFloat::opStatus Result = Value.convertToInteger(
15164
0
      IntegerValue, llvm::APFloat::rmTowardZero, &isExact);
15165
15166
  // FIXME: Force the precision of the source value down so we don't print
15167
  // digits which are usually useless (we don't really care here if we
15168
  // truncate a digit by accident in edge cases).  Ideally, APFloat::toString
15169
  // would automatically print the shortest representation, but it's a bit
15170
  // tricky to implement.
15171
0
  SmallString<16> PrettySourceValue;
15172
0
  unsigned precision = llvm::APFloat::semanticsPrecision(Value.getSemantics());
15173
0
  precision = (precision * 59 + 195) / 196;
15174
0
  Value.toString(PrettySourceValue, precision);
15175
15176
0
  if (isObjCSignedCharBool(S, T) && IntegerValue != 0 && IntegerValue != 1) {
15177
0
    return adornObjCBoolConversionDiagWithTernaryFixit(
15178
0
        S, E,
15179
0
        S.Diag(CContext, diag::warn_impcast_constant_value_to_objc_bool)
15180
0
            << PrettySourceValue);
15181
0
  }
15182
15183
0
  if (Result == llvm::APFloat::opOK && isExact) {
15184
0
    if (IsLiteral) return;
15185
0
    return DiagnoseImpCast(S, E, T, CContext, diag::warn_impcast_float_integer,
15186
0
                           PruneWarnings);
15187
0
  }
15188
15189
  // Conversion of a floating-point value to a non-bool integer where the
15190
  // integral part cannot be represented by the integer type is undefined.
15191
0
  if (!IsBool && Result == llvm::APFloat::opInvalidOp)
15192
0
    return DiagnoseImpCast(
15193
0
        S, E, T, CContext,
15194
0
        IsLiteral ? diag::warn_impcast_literal_float_to_integer_out_of_range
15195
0
                  : diag::warn_impcast_float_to_integer_out_of_range,
15196
0
        PruneWarnings);
15197
15198
0
  unsigned DiagID = 0;
15199
0
  if (IsLiteral) {
15200
    // Warn on floating point literal to integer.
15201
0
    DiagID = diag::warn_impcast_literal_float_to_integer;
15202
0
  } else if (IntegerValue == 0) {
15203
0
    if (Value.isZero()) {  // Skip -0.0 to 0 conversion.
15204
0
      return DiagnoseImpCast(S, E, T, CContext,
15205
0
                             diag::warn_impcast_float_integer, PruneWarnings);
15206
0
    }
15207
    // Warn on non-zero to zero conversion.
15208
0
    DiagID = diag::warn_impcast_float_to_integer_zero;
15209
0
  } else {
15210
0
    if (IntegerValue.isUnsigned()) {
15211
0
      if (!IntegerValue.isMaxValue()) {
15212
0
        return DiagnoseImpCast(S, E, T, CContext,
15213
0
                               diag::warn_impcast_float_integer, PruneWarnings);
15214
0
      }
15215
0
    } else {  // IntegerValue.isSigned()
15216
0
      if (!IntegerValue.isMaxSignedValue() &&
15217
0
          !IntegerValue.isMinSignedValue()) {
15218
0
        return DiagnoseImpCast(S, E, T, CContext,
15219
0
                               diag::warn_impcast_float_integer, PruneWarnings);
15220
0
      }
15221
0
    }
15222
    // Warn on evaluatable floating point expression to integer conversion.
15223
0
    DiagID = diag::warn_impcast_float_to_integer;
15224
0
  }
15225
15226
0
  SmallString<16> PrettyTargetValue;
15227
0
  if (IsBool)
15228
0
    PrettyTargetValue = Value.isZero() ? "false" : "true";
15229
0
  else
15230
0
    IntegerValue.toString(PrettyTargetValue);
15231
15232
0
  if (PruneWarnings) {
15233
0
    S.DiagRuntimeBehavior(E->getExprLoc(), E,
15234
0
                          S.PDiag(DiagID)
15235
0
                              << E->getType() << T.getUnqualifiedType()
15236
0
                              << PrettySourceValue << PrettyTargetValue
15237
0
                              << E->getSourceRange() << SourceRange(CContext));
15238
0
  } else {
15239
0
    S.Diag(E->getExprLoc(), DiagID)
15240
0
        << E->getType() << T.getUnqualifiedType() << PrettySourceValue
15241
0
        << PrettyTargetValue << E->getSourceRange() << SourceRange(CContext);
15242
0
  }
15243
0
}
15244
15245
/// Analyze the given compound assignment for the possible losing of
15246
/// floating-point precision.
15247
0
static void AnalyzeCompoundAssignment(Sema &S, BinaryOperator *E) {
15248
0
  assert(isa<CompoundAssignOperator>(E) &&
15249
0
         "Must be compound assignment operation");
15250
  // Recurse on the LHS and RHS in here
15251
0
  AnalyzeImplicitConversions(S, E->getLHS(), E->getOperatorLoc());
15252
0
  AnalyzeImplicitConversions(S, E->getRHS(), E->getOperatorLoc());
15253
15254
0
  if (E->getLHS()->getType()->isAtomicType())
15255
0
    S.Diag(E->getOperatorLoc(), diag::warn_atomic_implicit_seq_cst);
15256
15257
  // Now check the outermost expression
15258
0
  const auto *ResultBT = E->getLHS()->getType()->getAs<BuiltinType>();
15259
0
  const auto *RBT = cast<CompoundAssignOperator>(E)
15260
0
                        ->getComputationResultType()
15261
0
                        ->getAs<BuiltinType>();
15262
15263
  // The below checks assume source is floating point.
15264
0
  if (!ResultBT || !RBT || !RBT->isFloatingPoint()) return;
15265
15266
  // If source is floating point but target is an integer.
15267
0
  if (ResultBT->isInteger())
15268
0
    return DiagnoseImpCast(S, E, E->getRHS()->getType(), E->getLHS()->getType(),
15269
0
                           E->getExprLoc(), diag::warn_impcast_float_integer);
15270
15271
0
  if (!ResultBT->isFloatingPoint())
15272
0
    return;
15273
15274
  // If both source and target are floating points, warn about losing precision.
15275
0
  int Order = S.getASTContext().getFloatingTypeSemanticOrder(
15276
0
      QualType(ResultBT, 0), QualType(RBT, 0));
15277
0
  if (Order < 0 && !S.SourceMgr.isInSystemMacro(E->getOperatorLoc()))
15278
    // warn about dropping FP rank.
15279
0
    DiagnoseImpCast(S, E->getRHS(), E->getLHS()->getType(), E->getOperatorLoc(),
15280
0
                    diag::warn_impcast_float_result_precision);
15281
0
}
15282
15283
static std::string PrettyPrintInRange(const llvm::APSInt &Value,
15284
0
                                      IntRange Range) {
15285
0
  if (!Range.Width) return "0";
15286
15287
0
  llvm::APSInt ValueInRange = Value;
15288
0
  ValueInRange.setIsSigned(!Range.NonNegative);
15289
0
  ValueInRange = ValueInRange.trunc(Range.Width);
15290
0
  return toString(ValueInRange, 10);
15291
0
}
15292
15293
0
static bool IsImplicitBoolFloatConversion(Sema &S, Expr *Ex, bool ToBool) {
15294
0
  if (!isa<ImplicitCastExpr>(Ex))
15295
0
    return false;
15296
15297
0
  Expr *InnerE = Ex->IgnoreParenImpCasts();
15298
0
  const Type *Target = S.Context.getCanonicalType(Ex->getType()).getTypePtr();
15299
0
  const Type *Source =
15300
0
    S.Context.getCanonicalType(InnerE->getType()).getTypePtr();
15301
0
  if (Target->isDependentType())
15302
0
    return false;
15303
15304
0
  const BuiltinType *FloatCandidateBT =
15305
0
    dyn_cast<BuiltinType>(ToBool ? Source : Target);
15306
0
  const Type *BoolCandidateType = ToBool ? Target : Source;
15307
15308
0
  return (BoolCandidateType->isSpecificBuiltinType(BuiltinType::Bool) &&
15309
0
          FloatCandidateBT && (FloatCandidateBT->isFloatingPoint()));
15310
0
}
15311
15312
static void CheckImplicitArgumentConversions(Sema &S, CallExpr *TheCall,
15313
0
                                             SourceLocation CC) {
15314
0
  unsigned NumArgs = TheCall->getNumArgs();
15315
0
  for (unsigned i = 0; i < NumArgs; ++i) {
15316
0
    Expr *CurrA = TheCall->getArg(i);
15317
0
    if (!IsImplicitBoolFloatConversion(S, CurrA, true))
15318
0
      continue;
15319
15320
0
    bool IsSwapped = ((i > 0) &&
15321
0
        IsImplicitBoolFloatConversion(S, TheCall->getArg(i - 1), false));
15322
0
    IsSwapped |= ((i < (NumArgs - 1)) &&
15323
0
        IsImplicitBoolFloatConversion(S, TheCall->getArg(i + 1), false));
15324
0
    if (IsSwapped) {
15325
      // Warn on this floating-point to bool conversion.
15326
0
      DiagnoseImpCast(S, CurrA->IgnoreParenImpCasts(),
15327
0
                      CurrA->getType(), CC,
15328
0
                      diag::warn_impcast_floating_point_to_bool);
15329
0
    }
15330
0
  }
15331
0
}
15332
15333
static void DiagnoseNullConversion(Sema &S, Expr *E, QualType T,
15334
1
                                   SourceLocation CC) {
15335
1
  if (S.Diags.isIgnored(diag::warn_impcast_null_pointer_to_integer,
15336
1
                        E->getExprLoc()))
15337
0
    return;
15338
15339
  // Don't warn on functions which have return type nullptr_t.
15340
1
  if (isa<CallExpr>(E))
15341
0
    return;
15342
15343
  // Check for NULL (GNUNull) or nullptr (CXX11_nullptr).
15344
1
  const Expr *NewE = E->IgnoreParenImpCasts();
15345
1
  bool IsGNUNullExpr = isa<GNUNullExpr>(NewE);
15346
1
  bool HasNullPtrType = NewE->getType()->isNullPtrType();
15347
1
  if (!IsGNUNullExpr && !HasNullPtrType)
15348
1
    return;
15349
15350
  // Return if target type is a safe conversion.
15351
0
  if (T->isAnyPointerType() || T->isBlockPointerType() ||
15352
0
      T->isMemberPointerType() || !T->isScalarType() || T->isNullPtrType())
15353
0
    return;
15354
15355
0
  SourceLocation Loc = E->getSourceRange().getBegin();
15356
15357
  // Venture through the macro stacks to get to the source of macro arguments.
15358
  // The new location is a better location than the complete location that was
15359
  // passed in.
15360
0
  Loc = S.SourceMgr.getTopMacroCallerLoc(Loc);
15361
0
  CC = S.SourceMgr.getTopMacroCallerLoc(CC);
15362
15363
  // __null is usually wrapped in a macro.  Go up a macro if that is the case.
15364
0
  if (IsGNUNullExpr && Loc.isMacroID()) {
15365
0
    StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
15366
0
        Loc, S.SourceMgr, S.getLangOpts());
15367
0
    if (MacroName == "NULL")
15368
0
      Loc = S.SourceMgr.getImmediateExpansionRange(Loc).getBegin();
15369
0
  }
15370
15371
  // Only warn if the null and context location are in the same macro expansion.
15372
0
  if (S.SourceMgr.getFileID(Loc) != S.SourceMgr.getFileID(CC))
15373
0
    return;
15374
15375
0
  S.Diag(Loc, diag::warn_impcast_null_pointer_to_integer)
15376
0
      << HasNullPtrType << T << SourceRange(CC)
15377
0
      << FixItHint::CreateReplacement(Loc,
15378
0
                                      S.getFixItZeroLiteralForType(T, Loc));
15379
0
}
15380
15381
static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
15382
                                  ObjCArrayLiteral *ArrayLiteral);
15383
15384
static void
15385
checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
15386
                           ObjCDictionaryLiteral *DictionaryLiteral);
15387
15388
/// Check a single element within a collection literal against the
15389
/// target element type.
15390
static void checkObjCCollectionLiteralElement(Sema &S,
15391
                                              QualType TargetElementType,
15392
                                              Expr *Element,
15393
0
                                              unsigned ElementKind) {
15394
  // Skip a bitcast to 'id' or qualified 'id'.
15395
0
  if (auto ICE = dyn_cast<ImplicitCastExpr>(Element)) {
15396
0
    if (ICE->getCastKind() == CK_BitCast &&
15397
0
        ICE->getSubExpr()->getType()->getAs<ObjCObjectPointerType>())
15398
0
      Element = ICE->getSubExpr();
15399
0
  }
15400
15401
0
  QualType ElementType = Element->getType();
15402
0
  ExprResult ElementResult(Element);
15403
0
  if (ElementType->getAs<ObjCObjectPointerType>() &&
15404
0
      S.CheckSingleAssignmentConstraints(TargetElementType,
15405
0
                                         ElementResult,
15406
0
                                         false, false)
15407
0
        != Sema::Compatible) {
15408
0
    S.Diag(Element->getBeginLoc(), diag::warn_objc_collection_literal_element)
15409
0
        << ElementType << ElementKind << TargetElementType
15410
0
        << Element->getSourceRange();
15411
0
  }
15412
15413
0
  if (auto ArrayLiteral = dyn_cast<ObjCArrayLiteral>(Element))
15414
0
    checkObjCArrayLiteral(S, TargetElementType, ArrayLiteral);
15415
0
  else if (auto DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(Element))
15416
0
    checkObjCDictionaryLiteral(S, TargetElementType, DictionaryLiteral);
15417
0
}
15418
15419
/// Check an Objective-C array literal being converted to the given
15420
/// target type.
15421
static void checkObjCArrayLiteral(Sema &S, QualType TargetType,
15422
0
                                  ObjCArrayLiteral *ArrayLiteral) {
15423
0
  if (!S.NSArrayDecl)
15424
0
    return;
15425
15426
0
  const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
15427
0
  if (!TargetObjCPtr)
15428
0
    return;
15429
15430
0
  if (TargetObjCPtr->isUnspecialized() ||
15431
0
      TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
15432
0
        != S.NSArrayDecl->getCanonicalDecl())
15433
0
    return;
15434
15435
0
  auto TypeArgs = TargetObjCPtr->getTypeArgs();
15436
0
  if (TypeArgs.size() != 1)
15437
0
    return;
15438
15439
0
  QualType TargetElementType = TypeArgs[0];
15440
0
  for (unsigned I = 0, N = ArrayLiteral->getNumElements(); I != N; ++I) {
15441
0
    checkObjCCollectionLiteralElement(S, TargetElementType,
15442
0
                                      ArrayLiteral->getElement(I),
15443
0
                                      0);
15444
0
  }
15445
0
}
15446
15447
/// Check an Objective-C dictionary literal being converted to the given
15448
/// target type.
15449
static void
15450
checkObjCDictionaryLiteral(Sema &S, QualType TargetType,
15451
0
                           ObjCDictionaryLiteral *DictionaryLiteral) {
15452
0
  if (!S.NSDictionaryDecl)
15453
0
    return;
15454
15455
0
  const auto *TargetObjCPtr = TargetType->getAs<ObjCObjectPointerType>();
15456
0
  if (!TargetObjCPtr)
15457
0
    return;
15458
15459
0
  if (TargetObjCPtr->isUnspecialized() ||
15460
0
      TargetObjCPtr->getInterfaceDecl()->getCanonicalDecl()
15461
0
        != S.NSDictionaryDecl->getCanonicalDecl())
15462
0
    return;
15463
15464
0
  auto TypeArgs = TargetObjCPtr->getTypeArgs();
15465
0
  if (TypeArgs.size() != 2)
15466
0
    return;
15467
15468
0
  QualType TargetKeyType = TypeArgs[0];
15469
0
  QualType TargetObjectType = TypeArgs[1];
15470
0
  for (unsigned I = 0, N = DictionaryLiteral->getNumElements(); I != N; ++I) {
15471
0
    auto Element = DictionaryLiteral->getKeyValueElement(I);
15472
0
    checkObjCCollectionLiteralElement(S, TargetKeyType, Element.Key, 1);
15473
0
    checkObjCCollectionLiteralElement(S, TargetObjectType, Element.Value, 2);
15474
0
  }
15475
0
}
15476
15477
// Helper function to filter out cases for constant width constant conversion.
15478
// Don't warn on char array initialization or for non-decimal values.
15479
static bool isSameWidthConstantConversion(Sema &S, Expr *E, QualType T,
15480
0
                                          SourceLocation CC) {
15481
  // If initializing from a constant, and the constant starts with '0',
15482
  // then it is a binary, octal, or hexadecimal.  Allow these constants
15483
  // to fill all the bits, even if there is a sign change.
15484
0
  if (auto *IntLit = dyn_cast<IntegerLiteral>(E->IgnoreParenImpCasts())) {
15485
0
    const char FirstLiteralCharacter =
15486
0
        S.getSourceManager().getCharacterData(IntLit->getBeginLoc())[0];
15487
0
    if (FirstLiteralCharacter == '0')
15488
0
      return false;
15489
0
  }
15490
15491
  // If the CC location points to a '{', and the type is char, then assume
15492
  // assume it is an array initialization.
15493
0
  if (CC.isValid() && T->isCharType()) {
15494
0
    const char FirstContextCharacter =
15495
0
        S.getSourceManager().getCharacterData(CC)[0];
15496
0
    if (FirstContextCharacter == '{')
15497
0
      return false;
15498
0
  }
15499
15500
0
  return true;
15501
0
}
15502
15503
0
static const IntegerLiteral *getIntegerLiteral(Expr *E) {
15504
0
  const auto *IL = dyn_cast<IntegerLiteral>(E);
15505
0
  if (!IL) {
15506
0
    if (auto *UO = dyn_cast<UnaryOperator>(E)) {
15507
0
      if (UO->getOpcode() == UO_Minus)
15508
0
        return dyn_cast<IntegerLiteral>(UO->getSubExpr());
15509
0
    }
15510
0
  }
15511
15512
0
  return IL;
15513
0
}
15514
15515
0
static void DiagnoseIntInBoolContext(Sema &S, Expr *E) {
15516
0
  E = E->IgnoreParenImpCasts();
15517
0
  SourceLocation ExprLoc = E->getExprLoc();
15518
15519
0
  if (const auto *BO = dyn_cast<BinaryOperator>(E)) {
15520
0
    BinaryOperator::Opcode Opc = BO->getOpcode();
15521
0
    Expr::EvalResult Result;
15522
    // Do not diagnose unsigned shifts.
15523
0
    if (Opc == BO_Shl) {
15524
0
      const auto *LHS = getIntegerLiteral(BO->getLHS());
15525
0
      const auto *RHS = getIntegerLiteral(BO->getRHS());
15526
0
      if (LHS && LHS->getValue() == 0)
15527
0
        S.Diag(ExprLoc, diag::warn_left_shift_always) << 0;
15528
0
      else if (!E->isValueDependent() && LHS && RHS &&
15529
0
               RHS->getValue().isNonNegative() &&
15530
0
               E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects))
15531
0
        S.Diag(ExprLoc, diag::warn_left_shift_always)
15532
0
            << (Result.Val.getInt() != 0);
15533
0
      else if (E->getType()->isSignedIntegerType())
15534
0
        S.Diag(ExprLoc, diag::warn_left_shift_in_bool_context) << E;
15535
0
    }
15536
0
  }
15537
15538
0
  if (const auto *CO = dyn_cast<ConditionalOperator>(E)) {
15539
0
    const auto *LHS = getIntegerLiteral(CO->getTrueExpr());
15540
0
    const auto *RHS = getIntegerLiteral(CO->getFalseExpr());
15541
0
    if (!LHS || !RHS)
15542
0
      return;
15543
0
    if ((LHS->getValue() == 0 || LHS->getValue() == 1) &&
15544
0
        (RHS->getValue() == 0 || RHS->getValue() == 1))
15545
      // Do not diagnose common idioms.
15546
0
      return;
15547
0
    if (LHS->getValue() != 0 && RHS->getValue() != 0)
15548
0
      S.Diag(ExprLoc, diag::warn_integer_constants_in_conditional_always_true);
15549
0
  }
15550
0
}
15551
15552
static void CheckImplicitConversion(Sema &S, Expr *E, QualType T,
15553
                                    SourceLocation CC,
15554
                                    bool *ICContext = nullptr,
15555
1
                                    bool IsListInit = false) {
15556
1
  if (E->isTypeDependent() || E->isValueDependent()) return;
15557
15558
1
  const Type *Source = S.Context.getCanonicalType(E->getType()).getTypePtr();
15559
1
  const Type *Target = S.Context.getCanonicalType(T).getTypePtr();
15560
1
  if (Source == Target) return;
15561
1
  if (Target->isDependentType()) return;
15562
15563
  // If the conversion context location is invalid don't complain. We also
15564
  // don't want to emit a warning if the issue occurs from the expansion of
15565
  // a system macro. The problem is that 'getSpellingLoc()' is slow, so we
15566
  // delay this check as long as possible. Once we detect we are in that
15567
  // scenario, we just return.
15568
1
  if (CC.isInvalid())
15569
0
    return;
15570
15571
1
  if (Source->isAtomicType())
15572
0
    S.Diag(E->getExprLoc(), diag::warn_atomic_implicit_seq_cst);
15573
15574
  // Diagnose implicit casts to bool.
15575
1
  if (Target->isSpecificBuiltinType(BuiltinType::Bool)) {
15576
0
    if (isa<StringLiteral>(E))
15577
      // Warn on string literal to bool.  Checks for string literals in logical
15578
      // and expressions, for instance, assert(0 && "error here"), are
15579
      // prevented by a check in AnalyzeImplicitConversions().
15580
0
      return DiagnoseImpCast(S, E, T, CC,
15581
0
                             diag::warn_impcast_string_literal_to_bool);
15582
0
    if (isa<ObjCStringLiteral>(E) || isa<ObjCArrayLiteral>(E) ||
15583
0
        isa<ObjCDictionaryLiteral>(E) || isa<ObjCBoxedExpr>(E)) {
15584
      // This covers the literal expressions that evaluate to Objective-C
15585
      // objects.
15586
0
      return DiagnoseImpCast(S, E, T, CC,
15587
0
                             diag::warn_impcast_objective_c_literal_to_bool);
15588
0
    }
15589
0
    if (Source->isPointerType() || Source->canDecayToPointerType()) {
15590
      // Warn on pointer to bool conversion that is always true.
15591
0
      S.DiagnoseAlwaysNonNullPointer(E, Expr::NPCK_NotNull, /*IsEqual*/ false,
15592
0
                                     SourceRange(CC));
15593
0
    }
15594
0
  }
15595
15596
  // If the we're converting a constant to an ObjC BOOL on a platform where BOOL
15597
  // is a typedef for signed char (macOS), then that constant value has to be 1
15598
  // or 0.
15599
1
  if (isObjCSignedCharBool(S, T) && Source->isIntegralType(S.Context)) {
15600
0
    Expr::EvalResult Result;
15601
0
    if (E->EvaluateAsInt(Result, S.getASTContext(),
15602
0
                         Expr::SE_AllowSideEffects)) {
15603
0
      if (Result.Val.getInt() != 1 && Result.Val.getInt() != 0) {
15604
0
        adornObjCBoolConversionDiagWithTernaryFixit(
15605
0
            S, E,
15606
0
            S.Diag(CC, diag::warn_impcast_constant_value_to_objc_bool)
15607
0
                << toString(Result.Val.getInt(), 10));
15608
0
      }
15609
0
      return;
15610
0
    }
15611
0
  }
15612
15613
  // Check implicit casts from Objective-C collection literals to specialized
15614
  // collection types, e.g., NSArray<NSString *> *.
15615
1
  if (auto *ArrayLiteral = dyn_cast<ObjCArrayLiteral>(E))
15616
0
    checkObjCArrayLiteral(S, QualType(Target, 0), ArrayLiteral);
15617
1
  else if (auto *DictionaryLiteral = dyn_cast<ObjCDictionaryLiteral>(E))
15618
0
    checkObjCDictionaryLiteral(S, QualType(Target, 0), DictionaryLiteral);
15619
15620
  // Strip vector types.
15621
1
  if (isa<VectorType>(Source)) {
15622
0
    if (Target->isSveVLSBuiltinType() &&
15623
0
        (S.Context.areCompatibleSveTypes(QualType(Target, 0),
15624
0
                                         QualType(Source, 0)) ||
15625
0
         S.Context.areLaxCompatibleSveTypes(QualType(Target, 0),
15626
0
                                            QualType(Source, 0))))
15627
0
      return;
15628
15629
0
    if (Target->isRVVVLSBuiltinType() &&
15630
0
        (S.Context.areCompatibleRVVTypes(QualType(Target, 0),
15631
0
                                         QualType(Source, 0)) ||
15632
0
         S.Context.areLaxCompatibleRVVTypes(QualType(Target, 0),
15633
0
                                            QualType(Source, 0))))
15634
0
      return;
15635
15636
0
    if (!isa<VectorType>(Target)) {
15637
0
      if (S.SourceMgr.isInSystemMacro(CC))
15638
0
        return;
15639
0
      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_vector_scalar);
15640
0
    }
15641
15642
    // If the vector cast is cast between two vectors of the same size, it is
15643
    // a bitcast, not a conversion.
15644
0
    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
15645
0
      return;
15646
15647
0
    Source = cast<VectorType>(Source)->getElementType().getTypePtr();
15648
0
    Target = cast<VectorType>(Target)->getElementType().getTypePtr();
15649
0
  }
15650
1
  if (auto VecTy = dyn_cast<VectorType>(Target))
15651
0
    Target = VecTy->getElementType().getTypePtr();
15652
15653
  // Strip complex types.
15654
1
  if (isa<ComplexType>(Source)) {
15655
0
    if (!isa<ComplexType>(Target)) {
15656
0
      if (S.SourceMgr.isInSystemMacro(CC) || Target->isBooleanType())
15657
0
        return;
15658
15659
0
      return DiagnoseImpCast(S, E, T, CC,
15660
0
                             S.getLangOpts().CPlusPlus
15661
0
                                 ? diag::err_impcast_complex_scalar
15662
0
                                 : diag::warn_impcast_complex_scalar);
15663
0
    }
15664
15665
0
    Source = cast<ComplexType>(Source)->getElementType().getTypePtr();
15666
0
    Target = cast<ComplexType>(Target)->getElementType().getTypePtr();
15667
0
  }
15668
15669
1
  const BuiltinType *SourceBT = dyn_cast<BuiltinType>(Source);
15670
1
  const BuiltinType *TargetBT = dyn_cast<BuiltinType>(Target);
15671
15672
  // Strip SVE vector types
15673
1
  if (SourceBT && SourceBT->isSveVLSBuiltinType()) {
15674
    // Need the original target type for vector type checks
15675
0
    const Type *OriginalTarget = S.Context.getCanonicalType(T).getTypePtr();
15676
    // Handle conversion from scalable to fixed when msve-vector-bits is
15677
    // specified
15678
0
    if (S.Context.areCompatibleSveTypes(QualType(OriginalTarget, 0),
15679
0
                                        QualType(Source, 0)) ||
15680
0
        S.Context.areLaxCompatibleSveTypes(QualType(OriginalTarget, 0),
15681
0
                                           QualType(Source, 0)))
15682
0
      return;
15683
15684
    // If the vector cast is cast between two vectors of the same size, it is
15685
    // a bitcast, not a conversion.
15686
0
    if (S.Context.getTypeSize(Source) == S.Context.getTypeSize(Target))
15687
0
      return;
15688
15689
0
    Source = SourceBT->getSveEltType(S.Context).getTypePtr();
15690
0
  }
15691
15692
1
  if (TargetBT && TargetBT->isSveVLSBuiltinType())
15693
0
    Target = TargetBT->getSveEltType(S.Context).getTypePtr();
15694
15695
  // If the source is floating point...
15696
1
  if (SourceBT && SourceBT->isFloatingPoint()) {
15697
    // ...and the target is floating point...
15698
0
    if (TargetBT && TargetBT->isFloatingPoint()) {
15699
      // ...then warn if we're dropping FP rank.
15700
15701
0
      int Order = S.getASTContext().getFloatingTypeSemanticOrder(
15702
0
          QualType(SourceBT, 0), QualType(TargetBT, 0));
15703
0
      if (Order > 0) {
15704
        // Don't warn about float constants that are precisely
15705
        // representable in the target type.
15706
0
        Expr::EvalResult result;
15707
0
        if (E->EvaluateAsRValue(result, S.Context)) {
15708
          // Value might be a float, a float vector, or a float complex.
15709
0
          if (IsSameFloatAfterCast(result.Val,
15710
0
                   S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)),
15711
0
                   S.Context.getFloatTypeSemantics(QualType(SourceBT, 0))))
15712
0
            return;
15713
0
        }
15714
15715
0
        if (S.SourceMgr.isInSystemMacro(CC))
15716
0
          return;
15717
15718
0
        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_float_precision);
15719
0
      }
15720
      // ... or possibly if we're increasing rank, too
15721
0
      else if (Order < 0) {
15722
0
        if (S.SourceMgr.isInSystemMacro(CC))
15723
0
          return;
15724
15725
0
        DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_double_promotion);
15726
0
      }
15727
0
      return;
15728
0
    }
15729
15730
    // If the target is integral, always warn.
15731
0
    if (TargetBT && TargetBT->isInteger()) {
15732
0
      if (S.SourceMgr.isInSystemMacro(CC))
15733
0
        return;
15734
15735
0
      DiagnoseFloatingImpCast(S, E, T, CC);
15736
0
    }
15737
15738
    // Detect the case where a call result is converted from floating-point to
15739
    // to bool, and the final argument to the call is converted from bool, to
15740
    // discover this typo:
15741
    //
15742
    //    bool b = fabs(x < 1.0);  // should be "bool b = fabs(x) < 1.0;"
15743
    //
15744
    // FIXME: This is an incredibly special case; is there some more general
15745
    // way to detect this class of misplaced-parentheses bug?
15746
0
    if (Target->isBooleanType() && isa<CallExpr>(E)) {
15747
      // Check last argument of function call to see if it is an
15748
      // implicit cast from a type matching the type the result
15749
      // is being cast to.
15750
0
      CallExpr *CEx = cast<CallExpr>(E);
15751
0
      if (unsigned NumArgs = CEx->getNumArgs()) {
15752
0
        Expr *LastA = CEx->getArg(NumArgs - 1);
15753
0
        Expr *InnerE = LastA->IgnoreParenImpCasts();
15754
0
        if (isa<ImplicitCastExpr>(LastA) &&
15755
0
            InnerE->getType()->isBooleanType()) {
15756
          // Warn on this floating-point to bool conversion
15757
0
          DiagnoseImpCast(S, E, T, CC,
15758
0
                          diag::warn_impcast_floating_point_to_bool);
15759
0
        }
15760
0
      }
15761
0
    }
15762
0
    return;
15763
0
  }
15764
15765
  // Valid casts involving fixed point types should be accounted for here.
15766
1
  if (Source->isFixedPointType()) {
15767
0
    if (Target->isUnsaturatedFixedPointType()) {
15768
0
      Expr::EvalResult Result;
15769
0
      if (E->EvaluateAsFixedPoint(Result, S.Context, Expr::SE_AllowSideEffects,
15770
0
                                  S.isConstantEvaluatedContext())) {
15771
0
        llvm::APFixedPoint Value = Result.Val.getFixedPoint();
15772
0
        llvm::APFixedPoint MaxVal = S.Context.getFixedPointMax(T);
15773
0
        llvm::APFixedPoint MinVal = S.Context.getFixedPointMin(T);
15774
0
        if (Value > MaxVal || Value < MinVal) {
15775
0
          S.DiagRuntimeBehavior(E->getExprLoc(), E,
15776
0
                                S.PDiag(diag::warn_impcast_fixed_point_range)
15777
0
                                    << Value.toString() << T
15778
0
                                    << E->getSourceRange()
15779
0
                                    << clang::SourceRange(CC));
15780
0
          return;
15781
0
        }
15782
0
      }
15783
0
    } else if (Target->isIntegerType()) {
15784
0
      Expr::EvalResult Result;
15785
0
      if (!S.isConstantEvaluatedContext() &&
15786
0
          E->EvaluateAsFixedPoint(Result, S.Context,
15787
0
                                  Expr::SE_AllowSideEffects)) {
15788
0
        llvm::APFixedPoint FXResult = Result.Val.getFixedPoint();
15789
15790
0
        bool Overflowed;
15791
0
        llvm::APSInt IntResult = FXResult.convertToInt(
15792
0
            S.Context.getIntWidth(T),
15793
0
            Target->isSignedIntegerOrEnumerationType(), &Overflowed);
15794
15795
0
        if (Overflowed) {
15796
0
          S.DiagRuntimeBehavior(E->getExprLoc(), E,
15797
0
                                S.PDiag(diag::warn_impcast_fixed_point_range)
15798
0
                                    << FXResult.toString() << T
15799
0
                                    << E->getSourceRange()
15800
0
                                    << clang::SourceRange(CC));
15801
0
          return;
15802
0
        }
15803
0
      }
15804
0
    }
15805
1
  } else if (Target->isUnsaturatedFixedPointType()) {
15806
0
    if (Source->isIntegerType()) {
15807
0
      Expr::EvalResult Result;
15808
0
      if (!S.isConstantEvaluatedContext() &&
15809
0
          E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects)) {
15810
0
        llvm::APSInt Value = Result.Val.getInt();
15811
15812
0
        bool Overflowed;
15813
0
        llvm::APFixedPoint IntResult = llvm::APFixedPoint::getFromIntValue(
15814
0
            Value, S.Context.getFixedPointSemantics(T), &Overflowed);
15815
15816
0
        if (Overflowed) {
15817
0
          S.DiagRuntimeBehavior(E->getExprLoc(), E,
15818
0
                                S.PDiag(diag::warn_impcast_fixed_point_range)
15819
0
                                    << toString(Value, /*Radix=*/10) << T
15820
0
                                    << E->getSourceRange()
15821
0
                                    << clang::SourceRange(CC));
15822
0
          return;
15823
0
        }
15824
0
      }
15825
0
    }
15826
0
  }
15827
15828
  // If we are casting an integer type to a floating point type without
15829
  // initialization-list syntax, we might lose accuracy if the floating
15830
  // point type has a narrower significand than the integer type.
15831
1
  if (SourceBT && TargetBT && SourceBT->isIntegerType() &&
15832
1
      TargetBT->isFloatingType() && !IsListInit) {
15833
    // Determine the number of precision bits in the source integer type.
15834
0
    IntRange SourceRange =
15835
0
        GetExprRange(S.Context, E, S.isConstantEvaluatedContext(),
15836
0
                     /*Approximate=*/true);
15837
0
    unsigned int SourcePrecision = SourceRange.Width;
15838
15839
    // Determine the number of precision bits in the
15840
    // target floating point type.
15841
0
    unsigned int TargetPrecision = llvm::APFloatBase::semanticsPrecision(
15842
0
        S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
15843
15844
0
    if (SourcePrecision > 0 && TargetPrecision > 0 &&
15845
0
        SourcePrecision > TargetPrecision) {
15846
15847
0
      if (std::optional<llvm::APSInt> SourceInt =
15848
0
              E->getIntegerConstantExpr(S.Context)) {
15849
        // If the source integer is a constant, convert it to the target
15850
        // floating point type. Issue a warning if the value changes
15851
        // during the whole conversion.
15852
0
        llvm::APFloat TargetFloatValue(
15853
0
            S.Context.getFloatTypeSemantics(QualType(TargetBT, 0)));
15854
0
        llvm::APFloat::opStatus ConversionStatus =
15855
0
            TargetFloatValue.convertFromAPInt(
15856
0
                *SourceInt, SourceBT->isSignedInteger(),
15857
0
                llvm::APFloat::rmNearestTiesToEven);
15858
15859
0
        if (ConversionStatus != llvm::APFloat::opOK) {
15860
0
          SmallString<32> PrettySourceValue;
15861
0
          SourceInt->toString(PrettySourceValue, 10);
15862
0
          SmallString<32> PrettyTargetValue;
15863
0
          TargetFloatValue.toString(PrettyTargetValue, TargetPrecision);
15864
15865
0
          S.DiagRuntimeBehavior(
15866
0
              E->getExprLoc(), E,
15867
0
              S.PDiag(diag::warn_impcast_integer_float_precision_constant)
15868
0
                  << PrettySourceValue << PrettyTargetValue << E->getType() << T
15869
0
                  << E->getSourceRange() << clang::SourceRange(CC));
15870
0
        }
15871
0
      } else {
15872
        // Otherwise, the implicit conversion may lose precision.
15873
0
        DiagnoseImpCast(S, E, T, CC,
15874
0
                        diag::warn_impcast_integer_float_precision);
15875
0
      }
15876
0
    }
15877
0
  }
15878
15879
1
  DiagnoseNullConversion(S, E, T, CC);
15880
15881
1
  S.DiscardMisalignedMemberAddress(Target, E);
15882
15883
1
  if (Target->isBooleanType())
15884
0
    DiagnoseIntInBoolContext(S, E);
15885
15886
1
  if (!Source->isIntegerType() || !Target->isIntegerType())
15887
1
    return;
15888
15889
  // TODO: remove this early return once the false positives for constant->bool
15890
  // in templates, macros, etc, are reduced or removed.
15891
0
  if (Target->isSpecificBuiltinType(BuiltinType::Bool))
15892
0
    return;
15893
15894
0
  if (isObjCSignedCharBool(S, T) && !Source->isCharType() &&
15895
0
      !E->isKnownToHaveBooleanValue(/*Semantic=*/false)) {
15896
0
    return adornObjCBoolConversionDiagWithTernaryFixit(
15897
0
        S, E,
15898
0
        S.Diag(CC, diag::warn_impcast_int_to_objc_signed_char_bool)
15899
0
            << E->getType());
15900
0
  }
15901
15902
0
  IntRange SourceTypeRange =
15903
0
      IntRange::forTargetOfCanonicalType(S.Context, Source);
15904
0
  IntRange LikelySourceRange = GetExprRange(
15905
0
      S.Context, E, S.isConstantEvaluatedContext(), /*Approximate=*/true);
15906
0
  IntRange TargetRange = IntRange::forTargetOfCanonicalType(S.Context, Target);
15907
15908
0
  if (LikelySourceRange.Width > TargetRange.Width) {
15909
    // If the source is a constant, use a default-on diagnostic.
15910
    // TODO: this should happen for bitfield stores, too.
15911
0
    Expr::EvalResult Result;
15912
0
    if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects,
15913
0
                         S.isConstantEvaluatedContext())) {
15914
0
      llvm::APSInt Value(32);
15915
0
      Value = Result.Val.getInt();
15916
15917
0
      if (S.SourceMgr.isInSystemMacro(CC))
15918
0
        return;
15919
15920
0
      std::string PrettySourceValue = toString(Value, 10);
15921
0
      std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
15922
15923
0
      S.DiagRuntimeBehavior(
15924
0
          E->getExprLoc(), E,
15925
0
          S.PDiag(diag::warn_impcast_integer_precision_constant)
15926
0
              << PrettySourceValue << PrettyTargetValue << E->getType() << T
15927
0
              << E->getSourceRange() << SourceRange(CC));
15928
0
      return;
15929
0
    }
15930
15931
    // People want to build with -Wshorten-64-to-32 and not -Wconversion.
15932
0
    if (S.SourceMgr.isInSystemMacro(CC))
15933
0
      return;
15934
15935
0
    if (TargetRange.Width == 32 && S.Context.getIntWidth(E->getType()) == 64)
15936
0
      return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_64_32,
15937
0
                             /* pruneControlFlow */ true);
15938
0
    return DiagnoseImpCast(S, E, T, CC, diag::warn_impcast_integer_precision);
15939
0
  }
15940
15941
0
  if (TargetRange.Width > SourceTypeRange.Width) {
15942
0
    if (auto *UO = dyn_cast<UnaryOperator>(E))
15943
0
      if (UO->getOpcode() == UO_Minus)
15944
0
        if (Source->isUnsignedIntegerType()) {
15945
0
          if (Target->isUnsignedIntegerType())
15946
0
            return DiagnoseImpCast(S, E, T, CC,
15947
0
                                   diag::warn_impcast_high_order_zero_bits);
15948
0
          if (Target->isSignedIntegerType())
15949
0
            return DiagnoseImpCast(S, E, T, CC,
15950
0
                                   diag::warn_impcast_nonnegative_result);
15951
0
        }
15952
0
  }
15953
15954
0
  if (TargetRange.Width == LikelySourceRange.Width &&
15955
0
      !TargetRange.NonNegative && LikelySourceRange.NonNegative &&
15956
0
      Source->isSignedIntegerType()) {
15957
    // Warn when doing a signed to signed conversion, warn if the positive
15958
    // source value is exactly the width of the target type, which will
15959
    // cause a negative value to be stored.
15960
15961
0
    Expr::EvalResult Result;
15962
0
    if (E->EvaluateAsInt(Result, S.Context, Expr::SE_AllowSideEffects) &&
15963
0
        !S.SourceMgr.isInSystemMacro(CC)) {
15964
0
      llvm::APSInt Value = Result.Val.getInt();
15965
0
      if (isSameWidthConstantConversion(S, E, T, CC)) {
15966
0
        std::string PrettySourceValue = toString(Value, 10);
15967
0
        std::string PrettyTargetValue = PrettyPrintInRange(Value, TargetRange);
15968
15969
0
        S.DiagRuntimeBehavior(
15970
0
            E->getExprLoc(), E,
15971
0
            S.PDiag(diag::warn_impcast_integer_precision_constant)
15972
0
                << PrettySourceValue << PrettyTargetValue << E->getType() << T
15973
0
                << E->getSourceRange() << SourceRange(CC));
15974
0
        return;
15975
0
      }
15976
0
    }
15977
15978
    // Fall through for non-constants to give a sign conversion warning.
15979
0
  }
15980
15981
0
  if ((!isa<EnumType>(Target) || !isa<EnumType>(Source)) &&
15982
0
      ((TargetRange.NonNegative && !LikelySourceRange.NonNegative) ||
15983
0
       (!TargetRange.NonNegative && LikelySourceRange.NonNegative &&
15984
0
        LikelySourceRange.Width == TargetRange.Width))) {
15985
0
    if (S.SourceMgr.isInSystemMacro(CC))
15986
0
      return;
15987
15988
0
    if (SourceBT && SourceBT->isInteger() && TargetBT &&
15989
0
        TargetBT->isInteger() &&
15990
0
        Source->isSignedIntegerType() == Target->isSignedIntegerType()) {
15991
0
      return;
15992
0
    }
15993
15994
0
    unsigned DiagID = diag::warn_impcast_integer_sign;
15995
15996
    // Traditionally, gcc has warned about this under -Wsign-compare.
15997
    // We also want to warn about it in -Wconversion.
15998
    // So if -Wconversion is off, use a completely identical diagnostic
15999
    // in the sign-compare group.
16000
    // The conditional-checking code will
16001
0
    if (ICContext) {
16002
0
      DiagID = diag::warn_impcast_integer_sign_conditional;
16003
0
      *ICContext = true;
16004
0
    }
16005
16006
0
    return DiagnoseImpCast(S, E, T, CC, DiagID);
16007
0
  }
16008
16009
  // Diagnose conversions between different enumeration types.
16010
  // In C, we pretend that the type of an EnumConstantDecl is its enumeration
16011
  // type, to give us better diagnostics.
16012
0
  QualType SourceType = E->getType();
16013
0
  if (!S.getLangOpts().CPlusPlus) {
16014
0
    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
16015
0
      if (EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(DRE->getDecl())) {
16016
0
        EnumDecl *Enum = cast<EnumDecl>(ECD->getDeclContext());
16017
0
        SourceType = S.Context.getTypeDeclType(Enum);
16018
0
        Source = S.Context.getCanonicalType(SourceType).getTypePtr();
16019
0
      }
16020
0
  }
16021
16022
0
  if (const EnumType *SourceEnum = Source->getAs<EnumType>())
16023
0
    if (const EnumType *TargetEnum = Target->getAs<EnumType>())
16024
0
      if (SourceEnum->getDecl()->hasNameForLinkage() &&
16025
0
          TargetEnum->getDecl()->hasNameForLinkage() &&
16026
0
          SourceEnum != TargetEnum) {
16027
0
        if (S.SourceMgr.isInSystemMacro(CC))
16028
0
          return;
16029
16030
0
        return DiagnoseImpCast(S, E, SourceType, T, CC,
16031
0
                               diag::warn_impcast_different_enum_types);
16032
0
      }
16033
0
}
16034
16035
static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
16036
                                     SourceLocation CC, QualType T);
16037
16038
static void CheckConditionalOperand(Sema &S, Expr *E, QualType T,
16039
0
                                    SourceLocation CC, bool &ICContext) {
16040
0
  E = E->IgnoreParenImpCasts();
16041
  // Diagnose incomplete type for second or third operand in C.
16042
0
  if (!S.getLangOpts().CPlusPlus && E->getType()->isRecordType())
16043
0
    S.RequireCompleteExprType(E, diag::err_incomplete_type);
16044
16045
0
  if (auto *CO = dyn_cast<AbstractConditionalOperator>(E))
16046
0
    return CheckConditionalOperator(S, CO, CC, T);
16047
16048
0
  AnalyzeImplicitConversions(S, E, CC);
16049
0
  if (E->getType() != T)
16050
0
    return CheckImplicitConversion(S, E, T, CC, &ICContext);
16051
0
}
16052
16053
static void CheckConditionalOperator(Sema &S, AbstractConditionalOperator *E,
16054
0
                                     SourceLocation CC, QualType T) {
16055
0
  AnalyzeImplicitConversions(S, E->getCond(), E->getQuestionLoc());
16056
16057
0
  Expr *TrueExpr = E->getTrueExpr();
16058
0
  if (auto *BCO = dyn_cast<BinaryConditionalOperator>(E))
16059
0
    TrueExpr = BCO->getCommon();
16060
16061
0
  bool Suspicious = false;
16062
0
  CheckConditionalOperand(S, TrueExpr, T, CC, Suspicious);
16063
0
  CheckConditionalOperand(S, E->getFalseExpr(), T, CC, Suspicious);
16064
16065
0
  if (T->isBooleanType())
16066
0
    DiagnoseIntInBoolContext(S, E);
16067
16068
  // If -Wconversion would have warned about either of the candidates
16069
  // for a signedness conversion to the context type...
16070
0
  if (!Suspicious) return;
16071
16072
  // ...but it's currently ignored...
16073
0
  if (!S.Diags.isIgnored(diag::warn_impcast_integer_sign_conditional, CC))
16074
0
    return;
16075
16076
  // ...then check whether it would have warned about either of the
16077
  // candidates for a signedness conversion to the condition type.
16078
0
  if (E->getType() == T) return;
16079
16080
0
  Suspicious = false;
16081
0
  CheckImplicitConversion(S, TrueExpr->IgnoreParenImpCasts(),
16082
0
                          E->getType(), CC, &Suspicious);
16083
0
  if (!Suspicious)
16084
0
    CheckImplicitConversion(S, E->getFalseExpr()->IgnoreParenImpCasts(),
16085
0
                            E->getType(), CC, &Suspicious);
16086
0
}
16087
16088
/// Check conversion of given expression to boolean.
16089
/// Input argument E is a logical expression.
16090
2
static void CheckBoolLikeConversion(Sema &S, Expr *E, SourceLocation CC) {
16091
2
  if (S.getLangOpts().Bool)
16092
2
    return;
16093
0
  if (E->IgnoreParenImpCasts()->getType()->isAtomicType())
16094
0
    return;
16095
0
  CheckImplicitConversion(S, E->IgnoreParenImpCasts(), S.Context.BoolTy, CC);
16096
0
}
16097
16098
namespace {
16099
struct AnalyzeImplicitConversionsWorkItem {
16100
  Expr *E;
16101
  SourceLocation CC;
16102
  bool IsListInit;
16103
};
16104
}
16105
16106
/// Data recursive variant of AnalyzeImplicitConversions. Subexpressions
16107
/// that should be visited are added to WorkList.
16108
static void AnalyzeImplicitConversions(
16109
    Sema &S, AnalyzeImplicitConversionsWorkItem Item,
16110
8
    llvm::SmallVectorImpl<AnalyzeImplicitConversionsWorkItem> &WorkList) {
16111
8
  Expr *OrigE = Item.E;
16112
8
  SourceLocation CC = Item.CC;
16113
16114
8
  QualType T = OrigE->getType();
16115
8
  Expr *E = OrigE->IgnoreParenImpCasts();
16116
16117
  // Propagate whether we are in a C++ list initialization expression.
16118
  // If so, we do not issue warnings for implicit int-float conversion
16119
  // precision loss, because C++11 narrowing already handles it.
16120
8
  bool IsListInit = Item.IsListInit ||
16121
8
                    (isa<InitListExpr>(OrigE) && S.getLangOpts().CPlusPlus);
16122
16123
8
  if (E->isTypeDependent() || E->isValueDependent())
16124
0
    return;
16125
16126
8
  Expr *SourceExpr = E;
16127
  // Examine, but don't traverse into the source expression of an
16128
  // OpaqueValueExpr, since it may have multiple parents and we don't want to
16129
  // emit duplicate diagnostics. Its fine to examine the form or attempt to
16130
  // evaluate it in the context of checking the specific conversion to T though.
16131
8
  if (auto *OVE = dyn_cast<OpaqueValueExpr>(E))
16132
0
    if (auto *Src = OVE->getSourceExpr())
16133
0
      SourceExpr = Src;
16134
16135
8
  if (const auto *UO = dyn_cast<UnaryOperator>(SourceExpr))
16136
0
    if (UO->getOpcode() == UO_Not &&
16137
0
        UO->getSubExpr()->isKnownToHaveBooleanValue())
16138
0
      S.Diag(UO->getBeginLoc(), diag::warn_bitwise_negation_bool)
16139
0
          << OrigE->getSourceRange() << T->isBooleanType()
16140
0
          << FixItHint::CreateReplacement(UO->getBeginLoc(), "!");
16141
16142
8
  if (const auto *BO = dyn_cast<BinaryOperator>(SourceExpr))
16143
0
    if ((BO->getOpcode() == BO_And || BO->getOpcode() == BO_Or) &&
16144
0
        BO->getLHS()->isKnownToHaveBooleanValue() &&
16145
0
        BO->getRHS()->isKnownToHaveBooleanValue() &&
16146
0
        BO->getLHS()->HasSideEffects(S.Context) &&
16147
0
        BO->getRHS()->HasSideEffects(S.Context)) {
16148
0
      S.Diag(BO->getBeginLoc(), diag::warn_bitwise_instead_of_logical)
16149
0
          << (BO->getOpcode() == BO_And ? "&" : "|") << OrigE->getSourceRange()
16150
0
          << FixItHint::CreateReplacement(
16151
0
                 BO->getOperatorLoc(),
16152
0
                 (BO->getOpcode() == BO_And ? "&&" : "||"));
16153
0
      S.Diag(BO->getBeginLoc(), diag::note_cast_operand_to_int);
16154
0
    }
16155
16156
  // For conditional operators, we analyze the arguments as if they
16157
  // were being fed directly into the output.
16158
8
  if (auto *CO = dyn_cast<AbstractConditionalOperator>(SourceExpr)) {
16159
0
    CheckConditionalOperator(S, CO, CC, T);
16160
0
    return;
16161
0
  }
16162
16163
  // Check implicit argument conversions for function calls.
16164
8
  if (CallExpr *Call = dyn_cast<CallExpr>(SourceExpr))
16165
0
    CheckImplicitArgumentConversions(S, Call, CC);
16166
16167
  // Go ahead and check any implicit conversions we might have skipped.
16168
  // The non-canonical typecheck is just an optimization;
16169
  // CheckImplicitConversion will filter out dead implicit conversions.
16170
8
  if (SourceExpr->getType() != T)
16171
1
    CheckImplicitConversion(S, SourceExpr, T, CC, nullptr, IsListInit);
16172
16173
  // Now continue drilling into this expression.
16174
16175
8
  if (PseudoObjectExpr *POE = dyn_cast<PseudoObjectExpr>(E)) {
16176
    // The bound subexpressions in a PseudoObjectExpr are not reachable
16177
    // as transitive children.
16178
    // FIXME: Use a more uniform representation for this.
16179
0
    for (auto *SE : POE->semantics())
16180
0
      if (auto *OVE = dyn_cast<OpaqueValueExpr>(SE))
16181
0
        WorkList.push_back({OVE->getSourceExpr(), CC, IsListInit});
16182
0
  }
16183
16184
  // Skip past explicit casts.
16185
8
  if (auto *CE = dyn_cast<ExplicitCastExpr>(E)) {
16186
0
    E = CE->getSubExpr()->IgnoreParenImpCasts();
16187
0
    if (!CE->getType()->isVoidType() && E->getType()->isAtomicType())
16188
0
      S.Diag(E->getBeginLoc(), diag::warn_atomic_implicit_seq_cst);
16189
0
    WorkList.push_back({E, CC, IsListInit});
16190
0
    return;
16191
0
  }
16192
16193
8
  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
16194
    // Do a somewhat different check with comparison operators.
16195
0
    if (BO->isComparisonOp())
16196
0
      return AnalyzeComparison(S, BO);
16197
16198
    // And with simple assignments.
16199
0
    if (BO->getOpcode() == BO_Assign)
16200
0
      return AnalyzeAssignment(S, BO);
16201
    // And with compound assignments.
16202
0
    if (BO->isAssignmentOp())
16203
0
      return AnalyzeCompoundAssignment(S, BO);
16204
0
  }
16205
16206
  // These break the otherwise-useful invariant below.  Fortunately,
16207
  // we don't really need to recurse into them, because any internal
16208
  // expressions should have been analyzed already when they were
16209
  // built into statements.
16210
8
  if (isa<StmtExpr>(E)) return;
16211
16212
  // Don't descend into unevaluated contexts.
16213
8
  if (isa<UnaryExprOrTypeTraitExpr>(E)) return;
16214
16215
  // Now just recurse over the expression's children.
16216
8
  CC = E->getExprLoc();
16217
8
  BinaryOperator *BO = dyn_cast<BinaryOperator>(E);
16218
8
  bool IsLogicalAndOperator = BO && BO->getOpcode() == BO_LAnd;
16219
8
  for (Stmt *SubStmt : E->children()) {
16220
0
    Expr *ChildExpr = dyn_cast_or_null<Expr>(SubStmt);
16221
0
    if (!ChildExpr)
16222
0
      continue;
16223
16224
0
    if (auto *CSE = dyn_cast<CoroutineSuspendExpr>(E))
16225
0
      if (ChildExpr == CSE->getOperand())
16226
        // Do not recurse over a CoroutineSuspendExpr's operand.
16227
        // The operand is also a subexpression of getCommonExpr(), and
16228
        // recursing into it directly would produce duplicate diagnostics.
16229
0
        continue;
16230
16231
0
    if (IsLogicalAndOperator &&
16232
0
        isa<StringLiteral>(ChildExpr->IgnoreParenImpCasts()))
16233
      // Ignore checking string literals that are in logical and operators.
16234
      // This is a common pattern for asserts.
16235
0
      continue;
16236
0
    WorkList.push_back({ChildExpr, CC, IsListInit});
16237
0
  }
16238
16239
8
  if (BO && BO->isLogicalOp()) {
16240
0
    Expr *SubExpr = BO->getLHS()->IgnoreParenImpCasts();
16241
0
    if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
16242
0
      ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
16243
16244
0
    SubExpr = BO->getRHS()->IgnoreParenImpCasts();
16245
0
    if (!IsLogicalAndOperator || !isa<StringLiteral>(SubExpr))
16246
0
      ::CheckBoolLikeConversion(S, SubExpr, BO->getExprLoc());
16247
0
  }
16248
16249
8
  if (const UnaryOperator *U = dyn_cast<UnaryOperator>(E)) {
16250
0
    if (U->getOpcode() == UO_LNot) {
16251
0
      ::CheckBoolLikeConversion(S, U->getSubExpr(), CC);
16252
0
    } else if (U->getOpcode() != UO_AddrOf) {
16253
0
      if (U->getSubExpr()->getType()->isAtomicType())
16254
0
        S.Diag(U->getSubExpr()->getBeginLoc(),
16255
0
               diag::warn_atomic_implicit_seq_cst);
16256
0
    }
16257
0
  }
16258
8
}
16259
16260
/// AnalyzeImplicitConversions - Find and report any interesting
16261
/// implicit conversions in the given expression.  There are a couple
16262
/// of competing diagnostics here, -Wconversion and -Wsign-compare.
16263
static void AnalyzeImplicitConversions(Sema &S, Expr *OrigE, SourceLocation CC,
16264
8
                                       bool IsListInit/*= false*/) {
16265
8
  llvm::SmallVector<AnalyzeImplicitConversionsWorkItem, 16> WorkList;
16266
8
  WorkList.push_back({OrigE, CC, IsListInit});
16267
16
  while (!WorkList.empty())
16268
8
    AnalyzeImplicitConversions(S, WorkList.pop_back_val(), WorkList);
16269
8
}
16270
16271
/// Diagnose integer type and any valid implicit conversion to it.
16272
0
static bool checkOpenCLEnqueueIntType(Sema &S, Expr *E, const QualType &IntT) {
16273
  // Taking into account implicit conversions,
16274
  // allow any integer.
16275
0
  if (!E->getType()->isIntegerType()) {
16276
0
    S.Diag(E->getBeginLoc(),
16277
0
           diag::err_opencl_enqueue_kernel_invalid_local_size_type);
16278
0
    return true;
16279
0
  }
16280
  // Potentially emit standard warnings for implicit conversions if enabled
16281
  // using -Wconversion.
16282
0
  CheckImplicitConversion(S, E, IntT, E->getBeginLoc());
16283
0
  return false;
16284
0
}
16285
16286
// Helper function for Sema::DiagnoseAlwaysNonNullPointer.
16287
// Returns true when emitting a warning about taking the address of a reference.
16288
static bool CheckForReference(Sema &SemaRef, const Expr *E,
16289
0
                              const PartialDiagnostic &PD) {
16290
0
  E = E->IgnoreParenImpCasts();
16291
16292
0
  const FunctionDecl *FD = nullptr;
16293
16294
0
  if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
16295
0
    if (!DRE->getDecl()->getType()->isReferenceType())
16296
0
      return false;
16297
0
  } else if (const MemberExpr *M = dyn_cast<MemberExpr>(E)) {
16298
0
    if (!M->getMemberDecl()->getType()->isReferenceType())
16299
0
      return false;
16300
0
  } else if (const CallExpr *Call = dyn_cast<CallExpr>(E)) {
16301
0
    if (!Call->getCallReturnType(SemaRef.Context)->isReferenceType())
16302
0
      return false;
16303
0
    FD = Call->getDirectCallee();
16304
0
  } else {
16305
0
    return false;
16306
0
  }
16307
16308
0
  SemaRef.Diag(E->getExprLoc(), PD);
16309
16310
  // If possible, point to location of function.
16311
0
  if (FD) {
16312
0
    SemaRef.Diag(FD->getLocation(), diag::note_reference_is_return_value) << FD;
16313
0
  }
16314
16315
0
  return true;
16316
0
}
16317
16318
// Returns true if the SourceLocation is expanded from any macro body.
16319
// Returns false if the SourceLocation is invalid, is from not in a macro
16320
// expansion, or is from expanded from a top-level macro argument.
16321
0
static bool IsInAnyMacroBody(const SourceManager &SM, SourceLocation Loc) {
16322
0
  if (Loc.isInvalid())
16323
0
    return false;
16324
16325
0
  while (Loc.isMacroID()) {
16326
0
    if (SM.isMacroBodyExpansion(Loc))
16327
0
      return true;
16328
0
    Loc = SM.getImmediateMacroCallerLoc(Loc);
16329
0
  }
16330
16331
0
  return false;
16332
0
}
16333
16334
/// Diagnose pointers that are always non-null.
16335
/// \param E the expression containing the pointer
16336
/// \param NullKind NPCK_NotNull if E is a cast to bool, otherwise, E is
16337
/// compared to a null pointer
16338
/// \param IsEqual True when the comparison is equal to a null pointer
16339
/// \param Range Extra SourceRange to highlight in the diagnostic
16340
void Sema::DiagnoseAlwaysNonNullPointer(Expr *E,
16341
                                        Expr::NullPointerConstantKind NullKind,
16342
0
                                        bool IsEqual, SourceRange Range) {
16343
0
  if (!E)
16344
0
    return;
16345
16346
  // Don't warn inside macros.
16347
0
  if (E->getExprLoc().isMacroID()) {
16348
0
    const SourceManager &SM = getSourceManager();
16349
0
    if (IsInAnyMacroBody(SM, E->getExprLoc()) ||
16350
0
        IsInAnyMacroBody(SM, Range.getBegin()))
16351
0
      return;
16352
0
  }
16353
0
  E = E->IgnoreImpCasts();
16354
16355
0
  const bool IsCompare = NullKind != Expr::NPCK_NotNull;
16356
16357
0
  if (isa<CXXThisExpr>(E)) {
16358
0
    unsigned DiagID = IsCompare ? diag::warn_this_null_compare
16359
0
                                : diag::warn_this_bool_conversion;
16360
0
    Diag(E->getExprLoc(), DiagID) << E->getSourceRange() << Range << IsEqual;
16361
0
    return;
16362
0
  }
16363
16364
0
  bool IsAddressOf = false;
16365
16366
0
  if (auto *UO = dyn_cast<UnaryOperator>(E->IgnoreParens())) {
16367
0
    if (UO->getOpcode() != UO_AddrOf)
16368
0
      return;
16369
0
    IsAddressOf = true;
16370
0
    E = UO->getSubExpr();
16371
0
  }
16372
16373
0
  if (IsAddressOf) {
16374
0
    unsigned DiagID = IsCompare
16375
0
                          ? diag::warn_address_of_reference_null_compare
16376
0
                          : diag::warn_address_of_reference_bool_conversion;
16377
0
    PartialDiagnostic PD = PDiag(DiagID) << E->getSourceRange() << Range
16378
0
                                         << IsEqual;
16379
0
    if (CheckForReference(*this, E, PD)) {
16380
0
      return;
16381
0
    }
16382
0
  }
16383
16384
0
  auto ComplainAboutNonnullParamOrCall = [&](const Attr *NonnullAttr) {
16385
0
    bool IsParam = isa<NonNullAttr>(NonnullAttr);
16386
0
    std::string Str;
16387
0
    llvm::raw_string_ostream S(Str);
16388
0
    E->printPretty(S, nullptr, getPrintingPolicy());
16389
0
    unsigned DiagID = IsCompare ? diag::warn_nonnull_expr_compare
16390
0
                                : diag::warn_cast_nonnull_to_bool;
16391
0
    Diag(E->getExprLoc(), DiagID) << IsParam << S.str()
16392
0
      << E->getSourceRange() << Range << IsEqual;
16393
0
    Diag(NonnullAttr->getLocation(), diag::note_declared_nonnull) << IsParam;
16394
0
  };
16395
16396
  // If we have a CallExpr that is tagged with returns_nonnull, we can complain.
16397
0
  if (auto *Call = dyn_cast<CallExpr>(E->IgnoreParenImpCasts())) {
16398
0
    if (auto *Callee = Call->getDirectCallee()) {
16399
0
      if (const Attr *A = Callee->getAttr<ReturnsNonNullAttr>()) {
16400
0
        ComplainAboutNonnullParamOrCall(A);
16401
0
        return;
16402
0
      }
16403
0
    }
16404
0
  }
16405
16406
  // Expect to find a single Decl.  Skip anything more complicated.
16407
0
  ValueDecl *D = nullptr;
16408
0
  if (DeclRefExpr *R = dyn_cast<DeclRefExpr>(E)) {
16409
0
    D = R->getDecl();
16410
0
  } else if (MemberExpr *M = dyn_cast<MemberExpr>(E)) {
16411
0
    D = M->getMemberDecl();
16412
0
  }
16413
16414
  // Weak Decls can be null.
16415
0
  if (!D || D->isWeak())
16416
0
    return;
16417
16418
  // Check for parameter decl with nonnull attribute
16419
0
  if (const auto* PV = dyn_cast<ParmVarDecl>(D)) {
16420
0
    if (getCurFunction() &&
16421
0
        !getCurFunction()->ModifiedNonNullParams.count(PV)) {
16422
0
      if (const Attr *A = PV->getAttr<NonNullAttr>()) {
16423
0
        ComplainAboutNonnullParamOrCall(A);
16424
0
        return;
16425
0
      }
16426
16427
0
      if (const auto *FD = dyn_cast<FunctionDecl>(PV->getDeclContext())) {
16428
        // Skip function template not specialized yet.
16429
0
        if (FD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate)
16430
0
          return;
16431
0
        auto ParamIter = llvm::find(FD->parameters(), PV);
16432
0
        assert(ParamIter != FD->param_end());
16433
0
        unsigned ParamNo = std::distance(FD->param_begin(), ParamIter);
16434
16435
0
        for (const auto *NonNull : FD->specific_attrs<NonNullAttr>()) {
16436
0
          if (!NonNull->args_size()) {
16437
0
              ComplainAboutNonnullParamOrCall(NonNull);
16438
0
              return;
16439
0
          }
16440
16441
0
          for (const ParamIdx &ArgNo : NonNull->args()) {
16442
0
            if (ArgNo.getASTIndex() == ParamNo) {
16443
0
              ComplainAboutNonnullParamOrCall(NonNull);
16444
0
              return;
16445
0
            }
16446
0
          }
16447
0
        }
16448
0
      }
16449
0
    }
16450
0
  }
16451
16452
0
  QualType T = D->getType();
16453
0
  const bool IsArray = T->isArrayType();
16454
0
  const bool IsFunction = T->isFunctionType();
16455
16456
  // Address of function is used to silence the function warning.
16457
0
  if (IsAddressOf && IsFunction) {
16458
0
    return;
16459
0
  }
16460
16461
  // Found nothing.
16462
0
  if (!IsAddressOf && !IsFunction && !IsArray)
16463
0
    return;
16464
16465
  // Pretty print the expression for the diagnostic.
16466
0
  std::string Str;
16467
0
  llvm::raw_string_ostream S(Str);
16468
0
  E->printPretty(S, nullptr, getPrintingPolicy());
16469
16470
0
  unsigned DiagID = IsCompare ? diag::warn_null_pointer_compare
16471
0
                              : diag::warn_impcast_pointer_to_bool;
16472
0
  enum {
16473
0
    AddressOf,
16474
0
    FunctionPointer,
16475
0
    ArrayPointer
16476
0
  } DiagType;
16477
0
  if (IsAddressOf)
16478
0
    DiagType = AddressOf;
16479
0
  else if (IsFunction)
16480
0
    DiagType = FunctionPointer;
16481
0
  else if (IsArray)
16482
0
    DiagType = ArrayPointer;
16483
0
  else
16484
0
    llvm_unreachable("Could not determine diagnostic.");
16485
0
  Diag(E->getExprLoc(), DiagID) << DiagType << S.str() << E->getSourceRange()
16486
0
                                << Range << IsEqual;
16487
16488
0
  if (!IsFunction)
16489
0
    return;
16490
16491
  // Suggest '&' to silence the function warning.
16492
0
  Diag(E->getExprLoc(), diag::note_function_warning_silence)
16493
0
      << FixItHint::CreateInsertion(E->getBeginLoc(), "&");
16494
16495
  // Check to see if '()' fixit should be emitted.
16496
0
  QualType ReturnType;
16497
0
  UnresolvedSet<4> NonTemplateOverloads;
16498
0
  tryExprAsCall(*E, ReturnType, NonTemplateOverloads);
16499
0
  if (ReturnType.isNull())
16500
0
    return;
16501
16502
0
  if (IsCompare) {
16503
    // There are two cases here.  If there is null constant, the only suggest
16504
    // for a pointer return type.  If the null is 0, then suggest if the return
16505
    // type is a pointer or an integer type.
16506
0
    if (!ReturnType->isPointerType()) {
16507
0
      if (NullKind == Expr::NPCK_ZeroExpression ||
16508
0
          NullKind == Expr::NPCK_ZeroLiteral) {
16509
0
        if (!ReturnType->isIntegerType())
16510
0
          return;
16511
0
      } else {
16512
0
        return;
16513
0
      }
16514
0
    }
16515
0
  } else { // !IsCompare
16516
    // For function to bool, only suggest if the function pointer has bool
16517
    // return type.
16518
0
    if (!ReturnType->isSpecificBuiltinType(BuiltinType::Bool))
16519
0
      return;
16520
0
  }
16521
0
  Diag(E->getExprLoc(), diag::note_function_to_function_call)
16522
0
      << FixItHint::CreateInsertion(getLocForEndOfToken(E->getEndLoc()), "()");
16523
0
}
16524
16525
/// Diagnoses "dangerous" implicit conversions within the given
16526
/// expression (which is a full expression).  Implements -Wconversion
16527
/// and -Wsign-compare.
16528
///
16529
/// \param CC the "context" location of the implicit conversion, i.e.
16530
///   the most location of the syntactic entity requiring the implicit
16531
///   conversion
16532
20
void Sema::CheckImplicitConversions(Expr *E, SourceLocation CC) {
16533
  // Don't diagnose in unevaluated contexts.
16534
20
  if (isUnevaluatedContext())
16535
0
    return;
16536
16537
  // Don't diagnose for value- or type-dependent expressions.
16538
20
  if (E->isTypeDependent() || E->isValueDependent())
16539
12
    return;
16540
16541
  // Check for array bounds violations in cases where the check isn't triggered
16542
  // elsewhere for other Expr types (like BinaryOperators), e.g. when an
16543
  // ArraySubscriptExpr is on the RHS of a variable initialization.
16544
8
  CheckArrayAccess(E);
16545
16546
  // This is not the right CC for (e.g.) a variable initialization.
16547
8
  AnalyzeImplicitConversions(*this, E, CC);
16548
8
}
16549
16550
/// CheckBoolLikeConversion - Check conversion of given expression to boolean.
16551
/// Input argument E is a logical expression.
16552
2
void Sema::CheckBoolLikeConversion(Expr *E, SourceLocation CC) {
16553
2
  ::CheckBoolLikeConversion(*this, E, CC);
16554
2
}
16555
16556
/// Diagnose when expression is an integer constant expression and its evaluation
16557
/// results in integer overflow
16558
8
void Sema::CheckForIntOverflow (const Expr *E) {
16559
  // Use a work list to deal with nested struct initializers.
16560
8
  SmallVector<const Expr *, 2> Exprs(1, E);
16561
16562
8
  do {
16563
8
    const Expr *OriginalE = Exprs.pop_back_val();
16564
8
    const Expr *E = OriginalE->IgnoreParenCasts();
16565
16566
8
    if (isa<BinaryOperator, UnaryOperator>(E)) {
16567
0
      E->EvaluateForOverflow(Context);
16568
0
      continue;
16569
0
    }
16570
16571
8
    if (const auto *InitList = dyn_cast<InitListExpr>(OriginalE))
16572
0
      Exprs.append(InitList->inits().begin(), InitList->inits().end());
16573
8
    else if (isa<ObjCBoxedExpr>(OriginalE))
16574
0
      E->EvaluateForOverflow(Context);
16575
8
    else if (const auto *Call = dyn_cast<CallExpr>(E))
16576
0
      Exprs.append(Call->arg_begin(), Call->arg_end());
16577
8
    else if (const auto *Message = dyn_cast<ObjCMessageExpr>(E))
16578
0
      Exprs.append(Message->arg_begin(), Message->arg_end());
16579
8
    else if (const auto *Construct = dyn_cast<CXXConstructExpr>(E))
16580
0
      Exprs.append(Construct->arg_begin(), Construct->arg_end());
16581
8
    else if (const auto *Temporary = dyn_cast<CXXBindTemporaryExpr>(E))
16582
0
      Exprs.push_back(Temporary->getSubExpr());
16583
8
    else if (const auto *Array = dyn_cast<ArraySubscriptExpr>(E))
16584
0
      Exprs.push_back(Array->getIdx());
16585
8
    else if (const auto *Compound = dyn_cast<CompoundLiteralExpr>(E))
16586
0
      Exprs.push_back(Compound->getInitializer());
16587
8
    else if (const auto *New = dyn_cast<CXXNewExpr>(E);
16588
8
             New && New->isArray()) {
16589
0
      if (auto ArraySize = New->getArraySize())
16590
0
        Exprs.push_back(*ArraySize);
16591
0
    }
16592
8
  } while (!Exprs.empty());
16593
8
}
16594
16595
namespace {
16596
16597
/// Visitor for expressions which looks for unsequenced operations on the
16598
/// same object.
16599
class SequenceChecker : public ConstEvaluatedExprVisitor<SequenceChecker> {
16600
  using Base = ConstEvaluatedExprVisitor<SequenceChecker>;
16601
16602
  /// A tree of sequenced regions within an expression. Two regions are
16603
  /// unsequenced if one is an ancestor or a descendent of the other. When we
16604
  /// finish processing an expression with sequencing, such as a comma
16605
  /// expression, we fold its tree nodes into its parent, since they are
16606
  /// unsequenced with respect to nodes we will visit later.
16607
  class SequenceTree {
16608
    struct Value {
16609
8
      explicit Value(unsigned Parent) : Parent(Parent), Merged(false) {}
16610
      unsigned Parent : 31;
16611
      unsigned Merged : 1;
16612
    };
16613
    SmallVector<Value, 8> Values;
16614
16615
  public:
16616
    /// A region within an expression which may be sequenced with respect
16617
    /// to some other region.
16618
    class Seq {
16619
      friend class SequenceTree;
16620
16621
      unsigned Index;
16622
16623
8
      explicit Seq(unsigned N) : Index(N) {}
16624
16625
    public:
16626
12
      Seq() : Index(0) {}
16627
    };
16628
16629
8
    SequenceTree() { Values.push_back(Value(0)); }
16630
8
    Seq root() const { return Seq(0); }
16631
16632
    /// Create a new sequence of operations, which is an unsequenced
16633
    /// subset of \p Parent. This sequence of operations is sequenced with
16634
    /// respect to other children of \p Parent.
16635
0
    Seq allocate(Seq Parent) {
16636
0
      Values.push_back(Value(Parent.Index));
16637
0
      return Seq(Values.size() - 1);
16638
0
    }
16639
16640
    /// Merge a sequence of operations into its parent.
16641
0
    void merge(Seq S) {
16642
0
      Values[S.Index].Merged = true;
16643
0
    }
16644
16645
    /// Determine whether two operations are unsequenced. This operation
16646
    /// is asymmetric: \p Cur should be the more recent sequence, and \p Old
16647
    /// should have been merged into its parent as appropriate.
16648
0
    bool isUnsequenced(Seq Cur, Seq Old) {
16649
0
      unsigned C = representative(Cur.Index);
16650
0
      unsigned Target = representative(Old.Index);
16651
0
      while (C >= Target) {
16652
0
        if (C == Target)
16653
0
          return true;
16654
0
        C = Values[C].Parent;
16655
0
      }
16656
0
      return false;
16657
0
    }
16658
16659
  private:
16660
    /// Pick a representative for a sequence.
16661
0
    unsigned representative(unsigned K) {
16662
0
      if (Values[K].Merged)
16663
        // Perform path compression as we go.
16664
0
        return Values[K].Parent = representative(Values[K].Parent);
16665
0
      return K;
16666
0
    }
16667
  };
16668
16669
  /// An object for which we can track unsequenced uses.
16670
  using Object = const NamedDecl *;
16671
16672
  /// Different flavors of object usage which we track. We only track the
16673
  /// least-sequenced usage of each kind.
16674
  enum UsageKind {
16675
    /// A read of an object. Multiple unsequenced reads are OK.
16676
    UK_Use,
16677
16678
    /// A modification of an object which is sequenced before the value
16679
    /// computation of the expression, such as ++n in C++.
16680
    UK_ModAsValue,
16681
16682
    /// A modification of an object which is not sequenced before the value
16683
    /// computation of the expression, such as n++.
16684
    UK_ModAsSideEffect,
16685
16686
    UK_Count = UK_ModAsSideEffect + 1
16687
  };
16688
16689
  /// Bundle together a sequencing region and the expression corresponding
16690
  /// to a specific usage. One Usage is stored for each usage kind in UsageInfo.
16691
  struct Usage {
16692
    const Expr *UsageExpr = nullptr;
16693
    SequenceTree::Seq Seq;
16694
16695
12
    Usage() = default;
16696
  };
16697
16698
  struct UsageInfo {
16699
    Usage Uses[UK_Count];
16700
16701
    /// Have we issued a diagnostic for this object already?
16702
    bool Diagnosed = false;
16703
16704
    UsageInfo();
16705
  };
16706
  using UsageInfoMap = llvm::SmallDenseMap<Object, UsageInfo, 16>;
16707
16708
  Sema &SemaRef;
16709
16710
  /// Sequenced regions within the expression.
16711
  SequenceTree Tree;
16712
16713
  /// Declaration modifications and references which we have seen.
16714
  UsageInfoMap UsageMap;
16715
16716
  /// The region we are currently within.
16717
  SequenceTree::Seq Region;
16718
16719
  /// Filled in with declarations which were modified as a side-effect
16720
  /// (that is, post-increment operations).
16721
  SmallVectorImpl<std::pair<Object, Usage>> *ModAsSideEffect = nullptr;
16722
16723
  /// Expressions to check later. We defer checking these to reduce
16724
  /// stack usage.
16725
  SmallVectorImpl<const Expr *> &WorkList;
16726
16727
  /// RAII object wrapping the visitation of a sequenced subexpression of an
16728
  /// expression. At the end of this process, the side-effects of the evaluation
16729
  /// become sequenced with respect to the value computation of the result, so
16730
  /// we downgrade any UK_ModAsSideEffect within the evaluation to
16731
  /// UK_ModAsValue.
16732
  struct SequencedSubexpression {
16733
    SequencedSubexpression(SequenceChecker &Self)
16734
0
      : Self(Self), OldModAsSideEffect(Self.ModAsSideEffect) {
16735
0
      Self.ModAsSideEffect = &ModAsSideEffect;
16736
0
    }
16737
16738
0
    ~SequencedSubexpression() {
16739
0
      for (const std::pair<Object, Usage> &M : llvm::reverse(ModAsSideEffect)) {
16740
        // Add a new usage with usage kind UK_ModAsValue, and then restore
16741
        // the previous usage with UK_ModAsSideEffect (thus clearing it if
16742
        // the previous one was empty).
16743
0
        UsageInfo &UI = Self.UsageMap[M.first];
16744
0
        auto &SideEffectUsage = UI.Uses[UK_ModAsSideEffect];
16745
0
        Self.addUsage(M.first, UI, SideEffectUsage.UsageExpr, UK_ModAsValue);
16746
0
        SideEffectUsage = M.second;
16747
0
      }
16748
0
      Self.ModAsSideEffect = OldModAsSideEffect;
16749
0
    }
16750
16751
    SequenceChecker &Self;
16752
    SmallVector<std::pair<Object, Usage>, 4> ModAsSideEffect;
16753
    SmallVectorImpl<std::pair<Object, Usage>> *OldModAsSideEffect;
16754
  };
16755
16756
  /// RAII object wrapping the visitation of a subexpression which we might
16757
  /// choose to evaluate as a constant. If any subexpression is evaluated and
16758
  /// found to be non-constant, this allows us to suppress the evaluation of
16759
  /// the outer expression.
16760
  class EvaluationTracker {
16761
  public:
16762
    EvaluationTracker(SequenceChecker &Self)
16763
0
        : Self(Self), Prev(Self.EvalTracker) {
16764
0
      Self.EvalTracker = this;
16765
0
    }
16766
16767
0
    ~EvaluationTracker() {
16768
0
      Self.EvalTracker = Prev;
16769
0
      if (Prev)
16770
0
        Prev->EvalOK &= EvalOK;
16771
0
    }
16772
16773
0
    bool evaluate(const Expr *E, bool &Result) {
16774
0
      if (!EvalOK || E->isValueDependent())
16775
0
        return false;
16776
0
      EvalOK = E->EvaluateAsBooleanCondition(
16777
0
          Result, Self.SemaRef.Context,
16778
0
          Self.SemaRef.isConstantEvaluatedContext());
16779
0
      return EvalOK;
16780
0
    }
16781
16782
  private:
16783
    SequenceChecker &Self;
16784
    EvaluationTracker *Prev;
16785
    bool EvalOK = true;
16786
  } *EvalTracker = nullptr;
16787
16788
  /// Find the object which is produced by the specified expression,
16789
  /// if any.
16790
4
  Object getObject(const Expr *E, bool Mod) const {
16791
4
    E = E->IgnoreParenCasts();
16792
4
    if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) {
16793
0
      if (Mod && (UO->getOpcode() == UO_PreInc || UO->getOpcode() == UO_PreDec))
16794
0
        return getObject(UO->getSubExpr(), Mod);
16795
4
    } else if (const BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) {
16796
0
      if (BO->getOpcode() == BO_Comma)
16797
0
        return getObject(BO->getRHS(), Mod);
16798
0
      if (Mod && BO->isAssignmentOp())
16799
0
        return getObject(BO->getLHS(), Mod);
16800
4
    } else if (const MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
16801
      // FIXME: Check for more interesting cases, like "x.n = ++x.n".
16802
0
      if (isa<CXXThisExpr>(ME->getBase()->IgnoreParenCasts()))
16803
0
        return ME->getMemberDecl();
16804
4
    } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
16805
      // FIXME: If this is a reference, map through to its value.
16806
4
      return DRE->getDecl();
16807
0
    return nullptr;
16808
4
  }
16809
16810
  /// Note that an object \p O was modified or used by an expression
16811
  /// \p UsageExpr with usage kind \p UK. \p UI is the \p UsageInfo for
16812
  /// the object \p O as obtained via the \p UsageMap.
16813
4
  void addUsage(Object O, UsageInfo &UI, const Expr *UsageExpr, UsageKind UK) {
16814
    // Get the old usage for the given object and usage kind.
16815
4
    Usage &U = UI.Uses[UK];
16816
4
    if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq)) {
16817
      // If we have a modification as side effect and are in a sequenced
16818
      // subexpression, save the old Usage so that we can restore it later
16819
      // in SequencedSubexpression::~SequencedSubexpression.
16820
4
      if (UK == UK_ModAsSideEffect && ModAsSideEffect)
16821
0
        ModAsSideEffect->push_back(std::make_pair(O, U));
16822
      // Then record the new usage with the current sequencing region.
16823
4
      U.UsageExpr = UsageExpr;
16824
4
      U.Seq = Region;
16825
4
    }
16826
4
  }
16827
16828
  /// Check whether a modification or use of an object \p O in an expression
16829
  /// \p UsageExpr conflicts with a prior usage of kind \p OtherKind. \p UI is
16830
  /// the \p UsageInfo for the object \p O as obtained via the \p UsageMap.
16831
  /// \p IsModMod is true when we are checking for a mod-mod unsequenced
16832
  /// usage and false we are checking for a mod-use unsequenced usage.
16833
  void checkUsage(Object O, UsageInfo &UI, const Expr *UsageExpr,
16834
8
                  UsageKind OtherKind, bool IsModMod) {
16835
8
    if (UI.Diagnosed)
16836
0
      return;
16837
16838
8
    const Usage &U = UI.Uses[OtherKind];
16839
8
    if (!U.UsageExpr || !Tree.isUnsequenced(Region, U.Seq))
16840
8
      return;
16841
16842
0
    const Expr *Mod = U.UsageExpr;
16843
0
    const Expr *ModOrUse = UsageExpr;
16844
0
    if (OtherKind == UK_Use)
16845
0
      std::swap(Mod, ModOrUse);
16846
16847
0
    SemaRef.DiagRuntimeBehavior(
16848
0
        Mod->getExprLoc(), {Mod, ModOrUse},
16849
0
        SemaRef.PDiag(IsModMod ? diag::warn_unsequenced_mod_mod
16850
0
                               : diag::warn_unsequenced_mod_use)
16851
0
            << O << SourceRange(ModOrUse->getExprLoc()));
16852
0
    UI.Diagnosed = true;
16853
0
  }
16854
16855
  // A note on note{Pre, Post}{Use, Mod}:
16856
  //
16857
  // (It helps to follow the algorithm with an expression such as
16858
  //  "((++k)++, k) = k" or "k = (k++, k++)". Both contain unsequenced
16859
  //  operations before C++17 and both are well-defined in C++17).
16860
  //
16861
  // When visiting a node which uses/modify an object we first call notePreUse
16862
  // or notePreMod before visiting its sub-expression(s). At this point the
16863
  // children of the current node have not yet been visited and so the eventual
16864
  // uses/modifications resulting from the children of the current node have not
16865
  // been recorded yet.
16866
  //
16867
  // We then visit the children of the current node. After that notePostUse or
16868
  // notePostMod is called. These will 1) detect an unsequenced modification
16869
  // as side effect (as in "k++ + k") and 2) add a new usage with the
16870
  // appropriate usage kind.
16871
  //
16872
  // We also have to be careful that some operation sequences modification as
16873
  // side effect as well (for example: || or ,). To account for this we wrap
16874
  // the visitation of such a sub-expression (for example: the LHS of || or ,)
16875
  // with SequencedSubexpression. SequencedSubexpression is an RAII object
16876
  // which record usages which are modifications as side effect, and then
16877
  // downgrade them (or more accurately restore the previous usage which was a
16878
  // modification as side effect) when exiting the scope of the sequenced
16879
  // subexpression.
16880
16881
4
  void notePreUse(Object O, const Expr *UseExpr) {
16882
4
    UsageInfo &UI = UsageMap[O];
16883
    // Uses conflict with other modifications.
16884
4
    checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/false);
16885
4
  }
16886
16887
4
  void notePostUse(Object O, const Expr *UseExpr) {
16888
4
    UsageInfo &UI = UsageMap[O];
16889
4
    checkUsage(O, UI, UseExpr, /*OtherKind=*/UK_ModAsSideEffect,
16890
4
               /*IsModMod=*/false);
16891
4
    addUsage(O, UI, UseExpr, /*UsageKind=*/UK_Use);
16892
4
  }
16893
16894
0
  void notePreMod(Object O, const Expr *ModExpr) {
16895
0
    UsageInfo &UI = UsageMap[O];
16896
    // Modifications conflict with other modifications and with uses.
16897
0
    checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsValue, /*IsModMod=*/true);
16898
0
    checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_Use, /*IsModMod=*/false);
16899
0
  }
16900
16901
0
  void notePostMod(Object O, const Expr *ModExpr, UsageKind UK) {
16902
0
    UsageInfo &UI = UsageMap[O];
16903
0
    checkUsage(O, UI, ModExpr, /*OtherKind=*/UK_ModAsSideEffect,
16904
0
               /*IsModMod=*/true);
16905
0
    addUsage(O, UI, ModExpr, /*UsageKind=*/UK);
16906
0
  }
16907
16908
public:
16909
  SequenceChecker(Sema &S, const Expr *E,
16910
                  SmallVectorImpl<const Expr *> &WorkList)
16911
8
      : Base(S.Context), SemaRef(S), Region(Tree.root()), WorkList(WorkList) {
16912
8
    Visit(E);
16913
    // Silence a -Wunused-private-field since WorkList is now unused.
16914
    // TODO: Evaluate if it can be used, and if not remove it.
16915
8
    (void)this->WorkList;
16916
8
  }
16917
16918
0
  void VisitStmt(const Stmt *S) {
16919
    // Skip all statements which aren't expressions for now.
16920
0
  }
16921
16922
8
  void VisitExpr(const Expr *E) {
16923
    // By default, just recurse to evaluated subexpressions.
16924
8
    Base::VisitStmt(E);
16925
8
  }
16926
16927
0
  void VisitCoroutineSuspendExpr(const CoroutineSuspendExpr *CSE) {
16928
0
    for (auto *Sub : CSE->children()) {
16929
0
      const Expr *ChildExpr = dyn_cast_or_null<Expr>(Sub);
16930
0
      if (!ChildExpr)
16931
0
        continue;
16932
16933
0
      if (ChildExpr == CSE->getOperand())
16934
        // Do not recurse over a CoroutineSuspendExpr's operand.
16935
        // The operand is also a subexpression of getCommonExpr(), and
16936
        // recursing into it directly could confuse object management
16937
        // for the sake of sequence tracking.
16938
0
        continue;
16939
16940
0
      Visit(Sub);
16941
0
    }
16942
0
  }
16943
16944
5
  void VisitCastExpr(const CastExpr *E) {
16945
5
    Object O = Object();
16946
5
    if (E->getCastKind() == CK_LValueToRValue)
16947
4
      O = getObject(E->getSubExpr(), false);
16948
16949
5
    if (O)
16950
4
      notePreUse(O, E);
16951
5
    VisitExpr(E);
16952
5
    if (O)
16953
4
      notePostUse(O, E);
16954
5
  }
16955
16956
  void VisitSequencedExpressions(const Expr *SequencedBefore,
16957
0
                                 const Expr *SequencedAfter) {
16958
0
    SequenceTree::Seq BeforeRegion = Tree.allocate(Region);
16959
0
    SequenceTree::Seq AfterRegion = Tree.allocate(Region);
16960
0
    SequenceTree::Seq OldRegion = Region;
16961
16962
0
    {
16963
0
      SequencedSubexpression SeqBefore(*this);
16964
0
      Region = BeforeRegion;
16965
0
      Visit(SequencedBefore);
16966
0
    }
16967
16968
0
    Region = AfterRegion;
16969
0
    Visit(SequencedAfter);
16970
16971
0
    Region = OldRegion;
16972
16973
0
    Tree.merge(BeforeRegion);
16974
0
    Tree.merge(AfterRegion);
16975
0
  }
16976
16977
0
  void VisitArraySubscriptExpr(const ArraySubscriptExpr *ASE) {
16978
    // C++17 [expr.sub]p1:
16979
    //   The expression E1[E2] is identical (by definition) to *((E1)+(E2)). The
16980
    //   expression E1 is sequenced before the expression E2.
16981
0
    if (SemaRef.getLangOpts().CPlusPlus17)
16982
0
      VisitSequencedExpressions(ASE->getLHS(), ASE->getRHS());
16983
0
    else {
16984
0
      Visit(ASE->getLHS());
16985
0
      Visit(ASE->getRHS());
16986
0
    }
16987
0
  }
16988
16989
0
  void VisitBinPtrMemD(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
16990
0
  void VisitBinPtrMemI(const BinaryOperator *BO) { VisitBinPtrMem(BO); }
16991
0
  void VisitBinPtrMem(const BinaryOperator *BO) {
16992
    // C++17 [expr.mptr.oper]p4:
16993
    //  Abbreviating pm-expression.*cast-expression as E1.*E2, [...]
16994
    //  the expression E1 is sequenced before the expression E2.
16995
0
    if (SemaRef.getLangOpts().CPlusPlus17)
16996
0
      VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
16997
0
    else {
16998
0
      Visit(BO->getLHS());
16999
0
      Visit(BO->getRHS());
17000
0
    }
17001
0
  }
17002
17003
0
  void VisitBinShl(const BinaryOperator *BO) { VisitBinShlShr(BO); }
17004
0
  void VisitBinShr(const BinaryOperator *BO) { VisitBinShlShr(BO); }
17005
0
  void VisitBinShlShr(const BinaryOperator *BO) {
17006
    // C++17 [expr.shift]p4:
17007
    //  The expression E1 is sequenced before the expression E2.
17008
0
    if (SemaRef.getLangOpts().CPlusPlus17)
17009
0
      VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
17010
0
    else {
17011
0
      Visit(BO->getLHS());
17012
0
      Visit(BO->getRHS());
17013
0
    }
17014
0
  }
17015
17016
0
  void VisitBinComma(const BinaryOperator *BO) {
17017
    // C++11 [expr.comma]p1:
17018
    //   Every value computation and side effect associated with the left
17019
    //   expression is sequenced before every value computation and side
17020
    //   effect associated with the right expression.
17021
0
    VisitSequencedExpressions(BO->getLHS(), BO->getRHS());
17022
0
  }
17023
17024
0
  void VisitBinAssign(const BinaryOperator *BO) {
17025
0
    SequenceTree::Seq RHSRegion;
17026
0
    SequenceTree::Seq LHSRegion;
17027
0
    if (SemaRef.getLangOpts().CPlusPlus17) {
17028
0
      RHSRegion = Tree.allocate(Region);
17029
0
      LHSRegion = Tree.allocate(Region);
17030
0
    } else {
17031
0
      RHSRegion = Region;
17032
0
      LHSRegion = Region;
17033
0
    }
17034
0
    SequenceTree::Seq OldRegion = Region;
17035
17036
    // C++11 [expr.ass]p1:
17037
    //  [...] the assignment is sequenced after the value computation
17038
    //  of the right and left operands, [...]
17039
    //
17040
    // so check it before inspecting the operands and update the
17041
    // map afterwards.
17042
0
    Object O = getObject(BO->getLHS(), /*Mod=*/true);
17043
0
    if (O)
17044
0
      notePreMod(O, BO);
17045
17046
0
    if (SemaRef.getLangOpts().CPlusPlus17) {
17047
      // C++17 [expr.ass]p1:
17048
      //  [...] The right operand is sequenced before the left operand. [...]
17049
0
      {
17050
0
        SequencedSubexpression SeqBefore(*this);
17051
0
        Region = RHSRegion;
17052
0
        Visit(BO->getRHS());
17053
0
      }
17054
17055
0
      Region = LHSRegion;
17056
0
      Visit(BO->getLHS());
17057
17058
0
      if (O && isa<CompoundAssignOperator>(BO))
17059
0
        notePostUse(O, BO);
17060
17061
0
    } else {
17062
      // C++11 does not specify any sequencing between the LHS and RHS.
17063
0
      Region = LHSRegion;
17064
0
      Visit(BO->getLHS());
17065
17066
0
      if (O && isa<CompoundAssignOperator>(BO))
17067
0
        notePostUse(O, BO);
17068
17069
0
      Region = RHSRegion;
17070
0
      Visit(BO->getRHS());
17071
0
    }
17072
17073
    // C++11 [expr.ass]p1:
17074
    //  the assignment is sequenced [...] before the value computation of the
17075
    //  assignment expression.
17076
    // C11 6.5.16/3 has no such rule.
17077
0
    Region = OldRegion;
17078
0
    if (O)
17079
0
      notePostMod(O, BO,
17080
0
                  SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
17081
0
                                                  : UK_ModAsSideEffect);
17082
0
    if (SemaRef.getLangOpts().CPlusPlus17) {
17083
0
      Tree.merge(RHSRegion);
17084
0
      Tree.merge(LHSRegion);
17085
0
    }
17086
0
  }
17087
17088
0
  void VisitCompoundAssignOperator(const CompoundAssignOperator *CAO) {
17089
0
    VisitBinAssign(CAO);
17090
0
  }
17091
17092
0
  void VisitUnaryPreInc(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
17093
0
  void VisitUnaryPreDec(const UnaryOperator *UO) { VisitUnaryPreIncDec(UO); }
17094
0
  void VisitUnaryPreIncDec(const UnaryOperator *UO) {
17095
0
    Object O = getObject(UO->getSubExpr(), true);
17096
0
    if (!O)
17097
0
      return VisitExpr(UO);
17098
17099
0
    notePreMod(O, UO);
17100
0
    Visit(UO->getSubExpr());
17101
    // C++11 [expr.pre.incr]p1:
17102
    //   the expression ++x is equivalent to x+=1
17103
0
    notePostMod(O, UO,
17104
0
                SemaRef.getLangOpts().CPlusPlus ? UK_ModAsValue
17105
0
                                                : UK_ModAsSideEffect);
17106
0
  }
17107
17108
0
  void VisitUnaryPostInc(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
17109
0
  void VisitUnaryPostDec(const UnaryOperator *UO) { VisitUnaryPostIncDec(UO); }
17110
0
  void VisitUnaryPostIncDec(const UnaryOperator *UO) {
17111
0
    Object O = getObject(UO->getSubExpr(), true);
17112
0
    if (!O)
17113
0
      return VisitExpr(UO);
17114
17115
0
    notePreMod(O, UO);
17116
0
    Visit(UO->getSubExpr());
17117
0
    notePostMod(O, UO, UK_ModAsSideEffect);
17118
0
  }
17119
17120
0
  void VisitBinLOr(const BinaryOperator *BO) {
17121
    // C++11 [expr.log.or]p2:
17122
    //  If the second expression is evaluated, every value computation and
17123
    //  side effect associated with the first expression is sequenced before
17124
    //  every value computation and side effect associated with the
17125
    //  second expression.
17126
0
    SequenceTree::Seq LHSRegion = Tree.allocate(Region);
17127
0
    SequenceTree::Seq RHSRegion = Tree.allocate(Region);
17128
0
    SequenceTree::Seq OldRegion = Region;
17129
17130
0
    EvaluationTracker Eval(*this);
17131
0
    {
17132
0
      SequencedSubexpression Sequenced(*this);
17133
0
      Region = LHSRegion;
17134
0
      Visit(BO->getLHS());
17135
0
    }
17136
17137
    // C++11 [expr.log.or]p1:
17138
    //  [...] the second operand is not evaluated if the first operand
17139
    //  evaluates to true.
17140
0
    bool EvalResult = false;
17141
0
    bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
17142
0
    bool ShouldVisitRHS = !EvalOK || (EvalOK && !EvalResult);
17143
0
    if (ShouldVisitRHS) {
17144
0
      Region = RHSRegion;
17145
0
      Visit(BO->getRHS());
17146
0
    }
17147
17148
0
    Region = OldRegion;
17149
0
    Tree.merge(LHSRegion);
17150
0
    Tree.merge(RHSRegion);
17151
0
  }
17152
17153
0
  void VisitBinLAnd(const BinaryOperator *BO) {
17154
    // C++11 [expr.log.and]p2:
17155
    //  If the second expression is evaluated, every value computation and
17156
    //  side effect associated with the first expression is sequenced before
17157
    //  every value computation and side effect associated with the
17158
    //  second expression.
17159
0
    SequenceTree::Seq LHSRegion = Tree.allocate(Region);
17160
0
    SequenceTree::Seq RHSRegion = Tree.allocate(Region);
17161
0
    SequenceTree::Seq OldRegion = Region;
17162
17163
0
    EvaluationTracker Eval(*this);
17164
0
    {
17165
0
      SequencedSubexpression Sequenced(*this);
17166
0
      Region = LHSRegion;
17167
0
      Visit(BO->getLHS());
17168
0
    }
17169
17170
    // C++11 [expr.log.and]p1:
17171
    //  [...] the second operand is not evaluated if the first operand is false.
17172
0
    bool EvalResult = false;
17173
0
    bool EvalOK = Eval.evaluate(BO->getLHS(), EvalResult);
17174
0
    bool ShouldVisitRHS = !EvalOK || (EvalOK && EvalResult);
17175
0
    if (ShouldVisitRHS) {
17176
0
      Region = RHSRegion;
17177
0
      Visit(BO->getRHS());
17178
0
    }
17179
17180
0
    Region = OldRegion;
17181
0
    Tree.merge(LHSRegion);
17182
0
    Tree.merge(RHSRegion);
17183
0
  }
17184
17185
0
  void VisitAbstractConditionalOperator(const AbstractConditionalOperator *CO) {
17186
    // C++11 [expr.cond]p1:
17187
    //  [...] Every value computation and side effect associated with the first
17188
    //  expression is sequenced before every value computation and side effect
17189
    //  associated with the second or third expression.
17190
0
    SequenceTree::Seq ConditionRegion = Tree.allocate(Region);
17191
17192
    // No sequencing is specified between the true and false expression.
17193
    // However since exactly one of both is going to be evaluated we can
17194
    // consider them to be sequenced. This is needed to avoid warning on
17195
    // something like "x ? y+= 1 : y += 2;" in the case where we will visit
17196
    // both the true and false expressions because we can't evaluate x.
17197
    // This will still allow us to detect an expression like (pre C++17)
17198
    // "(x ? y += 1 : y += 2) = y".
17199
    //
17200
    // We don't wrap the visitation of the true and false expression with
17201
    // SequencedSubexpression because we don't want to downgrade modifications
17202
    // as side effect in the true and false expressions after the visition
17203
    // is done. (for example in the expression "(x ? y++ : y++) + y" we should
17204
    // not warn between the two "y++", but we should warn between the "y++"
17205
    // and the "y".
17206
0
    SequenceTree::Seq TrueRegion = Tree.allocate(Region);
17207
0
    SequenceTree::Seq FalseRegion = Tree.allocate(Region);
17208
0
    SequenceTree::Seq OldRegion = Region;
17209
17210
0
    EvaluationTracker Eval(*this);
17211
0
    {
17212
0
      SequencedSubexpression Sequenced(*this);
17213
0
      Region = ConditionRegion;
17214
0
      Visit(CO->getCond());
17215
0
    }
17216
17217
    // C++11 [expr.cond]p1:
17218
    // [...] The first expression is contextually converted to bool (Clause 4).
17219
    // It is evaluated and if it is true, the result of the conditional
17220
    // expression is the value of the second expression, otherwise that of the
17221
    // third expression. Only one of the second and third expressions is
17222
    // evaluated. [...]
17223
0
    bool EvalResult = false;
17224
0
    bool EvalOK = Eval.evaluate(CO->getCond(), EvalResult);
17225
0
    bool ShouldVisitTrueExpr = !EvalOK || (EvalOK && EvalResult);
17226
0
    bool ShouldVisitFalseExpr = !EvalOK || (EvalOK && !EvalResult);
17227
0
    if (ShouldVisitTrueExpr) {
17228
0
      Region = TrueRegion;
17229
0
      Visit(CO->getTrueExpr());
17230
0
    }
17231
0
    if (ShouldVisitFalseExpr) {
17232
0
      Region = FalseRegion;
17233
0
      Visit(CO->getFalseExpr());
17234
0
    }
17235
17236
0
    Region = OldRegion;
17237
0
    Tree.merge(ConditionRegion);
17238
0
    Tree.merge(TrueRegion);
17239
0
    Tree.merge(FalseRegion);
17240
0
  }
17241
17242
0
  void VisitCallExpr(const CallExpr *CE) {
17243
    // FIXME: CXXNewExpr and CXXDeleteExpr implicitly call functions.
17244
17245
0
    if (CE->isUnevaluatedBuiltinCall(Context))
17246
0
      return;
17247
17248
    // C++11 [intro.execution]p15:
17249
    //   When calling a function [...], every value computation and side effect
17250
    //   associated with any argument expression, or with the postfix expression
17251
    //   designating the called function, is sequenced before execution of every
17252
    //   expression or statement in the body of the function [and thus before
17253
    //   the value computation of its result].
17254
0
    SequencedSubexpression Sequenced(*this);
17255
0
    SemaRef.runWithSufficientStackSpace(CE->getExprLoc(), [&] {
17256
      // C++17 [expr.call]p5
17257
      //   The postfix-expression is sequenced before each expression in the
17258
      //   expression-list and any default argument. [...]
17259
0
      SequenceTree::Seq CalleeRegion;
17260
0
      SequenceTree::Seq OtherRegion;
17261
0
      if (SemaRef.getLangOpts().CPlusPlus17) {
17262
0
        CalleeRegion = Tree.allocate(Region);
17263
0
        OtherRegion = Tree.allocate(Region);
17264
0
      } else {
17265
0
        CalleeRegion = Region;
17266
0
        OtherRegion = Region;
17267
0
      }
17268
0
      SequenceTree::Seq OldRegion = Region;
17269
17270
      // Visit the callee expression first.
17271
0
      Region = CalleeRegion;
17272
0
      if (SemaRef.getLangOpts().CPlusPlus17) {
17273
0
        SequencedSubexpression Sequenced(*this);
17274
0
        Visit(CE->getCallee());
17275
0
      } else {
17276
0
        Visit(CE->getCallee());
17277
0
      }
17278
17279
      // Then visit the argument expressions.
17280
0
      Region = OtherRegion;
17281
0
      for (const Expr *Argument : CE->arguments())
17282
0
        Visit(Argument);
17283
17284
0
      Region = OldRegion;
17285
0
      if (SemaRef.getLangOpts().CPlusPlus17) {
17286
0
        Tree.merge(CalleeRegion);
17287
0
        Tree.merge(OtherRegion);
17288
0
      }
17289
0
    });
17290
0
  }
17291
17292
0
  void VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *CXXOCE) {
17293
    // C++17 [over.match.oper]p2:
17294
    //   [...] the operator notation is first transformed to the equivalent
17295
    //   function-call notation as summarized in Table 12 (where @ denotes one
17296
    //   of the operators covered in the specified subclause). However, the
17297
    //   operands are sequenced in the order prescribed for the built-in
17298
    //   operator (Clause 8).
17299
    //
17300
    // From the above only overloaded binary operators and overloaded call
17301
    // operators have sequencing rules in C++17 that we need to handle
17302
    // separately.
17303
0
    if (!SemaRef.getLangOpts().CPlusPlus17 ||
17304
0
        (CXXOCE->getNumArgs() != 2 && CXXOCE->getOperator() != OO_Call))
17305
0
      return VisitCallExpr(CXXOCE);
17306
17307
0
    enum {
17308
0
      NoSequencing,
17309
0
      LHSBeforeRHS,
17310
0
      RHSBeforeLHS,
17311
0
      LHSBeforeRest
17312
0
    } SequencingKind;
17313
0
    switch (CXXOCE->getOperator()) {
17314
0
    case OO_Equal:
17315
0
    case OO_PlusEqual:
17316
0
    case OO_MinusEqual:
17317
0
    case OO_StarEqual:
17318
0
    case OO_SlashEqual:
17319
0
    case OO_PercentEqual:
17320
0
    case OO_CaretEqual:
17321
0
    case OO_AmpEqual:
17322
0
    case OO_PipeEqual:
17323
0
    case OO_LessLessEqual:
17324
0
    case OO_GreaterGreaterEqual:
17325
0
      SequencingKind = RHSBeforeLHS;
17326
0
      break;
17327
17328
0
    case OO_LessLess:
17329
0
    case OO_GreaterGreater:
17330
0
    case OO_AmpAmp:
17331
0
    case OO_PipePipe:
17332
0
    case OO_Comma:
17333
0
    case OO_ArrowStar:
17334
0
    case OO_Subscript:
17335
0
      SequencingKind = LHSBeforeRHS;
17336
0
      break;
17337
17338
0
    case OO_Call:
17339
0
      SequencingKind = LHSBeforeRest;
17340
0
      break;
17341
17342
0
    default:
17343
0
      SequencingKind = NoSequencing;
17344
0
      break;
17345
0
    }
17346
17347
0
    if (SequencingKind == NoSequencing)
17348
0
      return VisitCallExpr(CXXOCE);
17349
17350
    // This is a call, so all subexpressions are sequenced before the result.
17351
0
    SequencedSubexpression Sequenced(*this);
17352
17353
0
    SemaRef.runWithSufficientStackSpace(CXXOCE->getExprLoc(), [&] {
17354
0
      assert(SemaRef.getLangOpts().CPlusPlus17 &&
17355
0
             "Should only get there with C++17 and above!");
17356
0
      assert((CXXOCE->getNumArgs() == 2 || CXXOCE->getOperator() == OO_Call) &&
17357
0
             "Should only get there with an overloaded binary operator"
17358
0
             " or an overloaded call operator!");
17359
17360
0
      if (SequencingKind == LHSBeforeRest) {
17361
0
        assert(CXXOCE->getOperator() == OO_Call &&
17362
0
               "We should only have an overloaded call operator here!");
17363
17364
        // This is very similar to VisitCallExpr, except that we only have the
17365
        // C++17 case. The postfix-expression is the first argument of the
17366
        // CXXOperatorCallExpr. The expressions in the expression-list, if any,
17367
        // are in the following arguments.
17368
        //
17369
        // Note that we intentionally do not visit the callee expression since
17370
        // it is just a decayed reference to a function.
17371
0
        SequenceTree::Seq PostfixExprRegion = Tree.allocate(Region);
17372
0
        SequenceTree::Seq ArgsRegion = Tree.allocate(Region);
17373
0
        SequenceTree::Seq OldRegion = Region;
17374
17375
0
        assert(CXXOCE->getNumArgs() >= 1 &&
17376
0
               "An overloaded call operator must have at least one argument"
17377
0
               " for the postfix-expression!");
17378
0
        const Expr *PostfixExpr = CXXOCE->getArgs()[0];
17379
0
        llvm::ArrayRef<const Expr *> Args(CXXOCE->getArgs() + 1,
17380
0
                                          CXXOCE->getNumArgs() - 1);
17381
17382
        // Visit the postfix-expression first.
17383
0
        {
17384
0
          Region = PostfixExprRegion;
17385
0
          SequencedSubexpression Sequenced(*this);
17386
0
          Visit(PostfixExpr);
17387
0
        }
17388
17389
        // Then visit the argument expressions.
17390
0
        Region = ArgsRegion;
17391
0
        for (const Expr *Arg : Args)
17392
0
          Visit(Arg);
17393
17394
0
        Region = OldRegion;
17395
0
        Tree.merge(PostfixExprRegion);
17396
0
        Tree.merge(ArgsRegion);
17397
0
      } else {
17398
0
        assert(CXXOCE->getNumArgs() == 2 &&
17399
0
               "Should only have two arguments here!");
17400
0
        assert((SequencingKind == LHSBeforeRHS ||
17401
0
                SequencingKind == RHSBeforeLHS) &&
17402
0
               "Unexpected sequencing kind!");
17403
17404
        // We do not visit the callee expression since it is just a decayed
17405
        // reference to a function.
17406
0
        const Expr *E1 = CXXOCE->getArg(0);
17407
0
        const Expr *E2 = CXXOCE->getArg(1);
17408
0
        if (SequencingKind == RHSBeforeLHS)
17409
0
          std::swap(E1, E2);
17410
17411
0
        return VisitSequencedExpressions(E1, E2);
17412
0
      }
17413
0
    });
17414
0
  }
17415
17416
0
  void VisitCXXConstructExpr(const CXXConstructExpr *CCE) {
17417
    // This is a call, so all subexpressions are sequenced before the result.
17418
0
    SequencedSubexpression Sequenced(*this);
17419
17420
0
    if (!CCE->isListInitialization())
17421
0
      return VisitExpr(CCE);
17422
17423
    // In C++11, list initializations are sequenced.
17424
0
    SmallVector<SequenceTree::Seq, 32> Elts;
17425
0
    SequenceTree::Seq Parent = Region;
17426
0
    for (CXXConstructExpr::const_arg_iterator I = CCE->arg_begin(),
17427
0
                                              E = CCE->arg_end();
17428
0
         I != E; ++I) {
17429
0
      Region = Tree.allocate(Parent);
17430
0
      Elts.push_back(Region);
17431
0
      Visit(*I);
17432
0
    }
17433
17434
    // Forget that the initializers are sequenced.
17435
0
    Region = Parent;
17436
0
    for (unsigned I = 0; I < Elts.size(); ++I)
17437
0
      Tree.merge(Elts[I]);
17438
0
  }
17439
17440
0
  void VisitInitListExpr(const InitListExpr *ILE) {
17441
0
    if (!SemaRef.getLangOpts().CPlusPlus11)
17442
0
      return VisitExpr(ILE);
17443
17444
    // In C++11, list initializations are sequenced.
17445
0
    SmallVector<SequenceTree::Seq, 32> Elts;
17446
0
    SequenceTree::Seq Parent = Region;
17447
0
    for (unsigned I = 0; I < ILE->getNumInits(); ++I) {
17448
0
      const Expr *E = ILE->getInit(I);
17449
0
      if (!E)
17450
0
        continue;
17451
0
      Region = Tree.allocate(Parent);
17452
0
      Elts.push_back(Region);
17453
0
      Visit(E);
17454
0
    }
17455
17456
    // Forget that the initializers are sequenced.
17457
0
    Region = Parent;
17458
0
    for (unsigned I = 0; I < Elts.size(); ++I)
17459
0
      Tree.merge(Elts[I]);
17460
0
  }
17461
};
17462
17463
4
SequenceChecker::UsageInfo::UsageInfo() = default;
17464
17465
} // namespace
17466
17467
8
void Sema::CheckUnsequencedOperations(const Expr *E) {
17468
8
  SmallVector<const Expr *, 8> WorkList;
17469
8
  WorkList.push_back(E);
17470
16
  while (!WorkList.empty()) {
17471
8
    const Expr *Item = WorkList.pop_back_val();
17472
8
    SequenceChecker(*this, Item, WorkList);
17473
8
  }
17474
8
}
17475
17476
void Sema::CheckCompletedExpr(Expr *E, SourceLocation CheckLoc,
17477
20
                              bool IsConstexpr) {
17478
20
  llvm::SaveAndRestore ConstantContext(isConstantEvaluatedOverride,
17479
20
                                       IsConstexpr || isa<ConstantExpr>(E));
17480
20
  CheckImplicitConversions(E, CheckLoc);
17481
20
  if (!E->isInstantiationDependent())
17482
8
    CheckUnsequencedOperations(E);
17483
20
  if (!IsConstexpr && !E->isValueDependent())
17484
8
    CheckForIntOverflow(E);
17485
20
  DiagnoseMisalignedMembers();
17486
20
}
17487
17488
void Sema::CheckBitFieldInitialization(SourceLocation InitLoc,
17489
                                       FieldDecl *BitField,
17490
0
                                       Expr *Init) {
17491
0
  (void) AnalyzeBitFieldAssignment(*this, BitField, Init, InitLoc);
17492
0
}
17493
17494
static void diagnoseArrayStarInParamType(Sema &S, QualType PType,
17495
0
                                         SourceLocation Loc) {
17496
0
  if (!PType->isVariablyModifiedType())
17497
0
    return;
17498
0
  if (const auto *PointerTy = dyn_cast<PointerType>(PType)) {
17499
0
    diagnoseArrayStarInParamType(S, PointerTy->getPointeeType(), Loc);
17500
0
    return;
17501
0
  }
17502
0
  if (const auto *ReferenceTy = dyn_cast<ReferenceType>(PType)) {
17503
0
    diagnoseArrayStarInParamType(S, ReferenceTy->getPointeeType(), Loc);
17504
0
    return;
17505
0
  }
17506
0
  if (const auto *ParenTy = dyn_cast<ParenType>(PType)) {
17507
0
    diagnoseArrayStarInParamType(S, ParenTy->getInnerType(), Loc);
17508
0
    return;
17509
0
  }
17510
17511
0
  const ArrayType *AT = S.Context.getAsArrayType(PType);
17512
0
  if (!AT)
17513
0
    return;
17514
17515
0
  if (AT->getSizeModifier() != ArraySizeModifier::Star) {
17516
0
    diagnoseArrayStarInParamType(S, AT->getElementType(), Loc);
17517
0
    return;
17518
0
  }
17519
17520
0
  S.Diag(Loc, diag::err_array_star_in_function_definition);
17521
0
}
17522
17523
/// CheckParmsForFunctionDef - Check that the parameters of the given
17524
/// function are appropriate for the definition of a function. This
17525
/// takes care of any checks that cannot be performed on the
17526
/// declaration itself, e.g., that the types of each of the function
17527
/// parameters are complete.
17528
bool Sema::CheckParmsForFunctionDef(ArrayRef<ParmVarDecl *> Parameters,
17529
0
                                    bool CheckParameterNames) {
17530
0
  bool HasInvalidParm = false;
17531
0
  for (ParmVarDecl *Param : Parameters) {
17532
0
    assert(Param && "null in a parameter list");
17533
    // C99 6.7.5.3p4: the parameters in a parameter type list in a
17534
    // function declarator that is part of a function definition of
17535
    // that function shall not have incomplete type.
17536
    //
17537
    // C++23 [dcl.fct.def.general]/p2
17538
    // The type of a parameter [...] for a function definition
17539
    // shall not be a (possibly cv-qualified) class type that is incomplete
17540
    // or abstract within the function body unless the function is deleted.
17541
0
    if (!Param->isInvalidDecl() &&
17542
0
        (RequireCompleteType(Param->getLocation(), Param->getType(),
17543
0
                             diag::err_typecheck_decl_incomplete_type) ||
17544
0
         RequireNonAbstractType(Param->getBeginLoc(), Param->getOriginalType(),
17545
0
                                diag::err_abstract_type_in_decl,
17546
0
                                AbstractParamType))) {
17547
0
      Param->setInvalidDecl();
17548
0
      HasInvalidParm = true;
17549
0
    }
17550
17551
    // C99 6.9.1p5: If the declarator includes a parameter type list, the
17552
    // declaration of each parameter shall include an identifier.
17553
0
    if (CheckParameterNames && Param->getIdentifier() == nullptr &&
17554
0
        !Param->isImplicit() && !getLangOpts().CPlusPlus) {
17555
      // Diagnose this as an extension in C17 and earlier.
17556
0
      if (!getLangOpts().C23)
17557
0
        Diag(Param->getLocation(), diag::ext_parameter_name_omitted_c23);
17558
0
    }
17559
17560
    // C99 6.7.5.3p12:
17561
    //   If the function declarator is not part of a definition of that
17562
    //   function, parameters may have incomplete type and may use the [*]
17563
    //   notation in their sequences of declarator specifiers to specify
17564
    //   variable length array types.
17565
0
    QualType PType = Param->getOriginalType();
17566
    // FIXME: This diagnostic should point the '[*]' if source-location
17567
    // information is added for it.
17568
0
    diagnoseArrayStarInParamType(*this, PType, Param->getLocation());
17569
17570
    // If the parameter is a c++ class type and it has to be destructed in the
17571
    // callee function, declare the destructor so that it can be called by the
17572
    // callee function. Do not perform any direct access check on the dtor here.
17573
0
    if (!Param->isInvalidDecl()) {
17574
0
      if (CXXRecordDecl *ClassDecl = Param->getType()->getAsCXXRecordDecl()) {
17575
0
        if (!ClassDecl->isInvalidDecl() &&
17576
0
            !ClassDecl->hasIrrelevantDestructor() &&
17577
0
            !ClassDecl->isDependentContext() &&
17578
0
            ClassDecl->isParamDestroyedInCallee()) {
17579
0
          CXXDestructorDecl *Destructor = LookupDestructor(ClassDecl);
17580
0
          MarkFunctionReferenced(Param->getLocation(), Destructor);
17581
0
          DiagnoseUseOfDecl(Destructor, Param->getLocation());
17582
0
        }
17583
0
      }
17584
0
    }
17585
17586
    // Parameters with the pass_object_size attribute only need to be marked
17587
    // constant at function definitions. Because we lack information about
17588
    // whether we're on a declaration or definition when we're instantiating the
17589
    // attribute, we need to check for constness here.
17590
0
    if (const auto *Attr = Param->getAttr<PassObjectSizeAttr>())
17591
0
      if (!Param->getType().isConstQualified())
17592
0
        Diag(Param->getLocation(), diag::err_attribute_pointers_only)
17593
0
            << Attr->getSpelling() << 1;
17594
17595
    // Check for parameter names shadowing fields from the class.
17596
0
    if (LangOpts.CPlusPlus && !Param->isInvalidDecl()) {
17597
      // The owning context for the parameter should be the function, but we
17598
      // want to see if this function's declaration context is a record.
17599
0
      DeclContext *DC = Param->getDeclContext();
17600
0
      if (DC && DC->isFunctionOrMethod()) {
17601
0
        if (auto *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
17602
0
          CheckShadowInheritedFields(Param->getLocation(), Param->getDeclName(),
17603
0
                                     RD, /*DeclIsField*/ false);
17604
0
      }
17605
0
    }
17606
17607
0
    if (!Param->isInvalidDecl() &&
17608
0
        Param->getOriginalType()->isWebAssemblyTableType()) {
17609
0
      Param->setInvalidDecl();
17610
0
      HasInvalidParm = true;
17611
0
      Diag(Param->getLocation(), diag::err_wasm_table_as_function_parameter);
17612
0
    }
17613
0
  }
17614
17615
0
  return HasInvalidParm;
17616
0
}
17617
17618
std::optional<std::pair<
17619
    CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr
17620
                                                                       *E,
17621
                                                                   ASTContext
17622
                                                                       &Ctx);
17623
17624
/// Compute the alignment and offset of the base class object given the
17625
/// derived-to-base cast expression and the alignment and offset of the derived
17626
/// class object.
17627
static std::pair<CharUnits, CharUnits>
17628
getDerivedToBaseAlignmentAndOffset(const CastExpr *CE, QualType DerivedType,
17629
                                   CharUnits BaseAlignment, CharUnits Offset,
17630
0
                                   ASTContext &Ctx) {
17631
0
  for (auto PathI = CE->path_begin(), PathE = CE->path_end(); PathI != PathE;
17632
0
       ++PathI) {
17633
0
    const CXXBaseSpecifier *Base = *PathI;
17634
0
    const CXXRecordDecl *BaseDecl = Base->getType()->getAsCXXRecordDecl();
17635
0
    if (Base->isVirtual()) {
17636
      // The complete object may have a lower alignment than the non-virtual
17637
      // alignment of the base, in which case the base may be misaligned. Choose
17638
      // the smaller of the non-virtual alignment and BaseAlignment, which is a
17639
      // conservative lower bound of the complete object alignment.
17640
0
      CharUnits NonVirtualAlignment =
17641
0
          Ctx.getASTRecordLayout(BaseDecl).getNonVirtualAlignment();
17642
0
      BaseAlignment = std::min(BaseAlignment, NonVirtualAlignment);
17643
0
      Offset = CharUnits::Zero();
17644
0
    } else {
17645
0
      const ASTRecordLayout &RL =
17646
0
          Ctx.getASTRecordLayout(DerivedType->getAsCXXRecordDecl());
17647
0
      Offset += RL.getBaseClassOffset(BaseDecl);
17648
0
    }
17649
0
    DerivedType = Base->getType();
17650
0
  }
17651
17652
0
  return std::make_pair(BaseAlignment, Offset);
17653
0
}
17654
17655
/// Compute the alignment and offset of a binary additive operator.
17656
static std::optional<std::pair<CharUnits, CharUnits>>
17657
getAlignmentAndOffsetFromBinAddOrSub(const Expr *PtrE, const Expr *IntE,
17658
0
                                     bool IsSub, ASTContext &Ctx) {
17659
0
  QualType PointeeType = PtrE->getType()->getPointeeType();
17660
17661
0
  if (!PointeeType->isConstantSizeType())
17662
0
    return std::nullopt;
17663
17664
0
  auto P = getBaseAlignmentAndOffsetFromPtr(PtrE, Ctx);
17665
17666
0
  if (!P)
17667
0
    return std::nullopt;
17668
17669
0
  CharUnits EltSize = Ctx.getTypeSizeInChars(PointeeType);
17670
0
  if (std::optional<llvm::APSInt> IdxRes = IntE->getIntegerConstantExpr(Ctx)) {
17671
0
    CharUnits Offset = EltSize * IdxRes->getExtValue();
17672
0
    if (IsSub)
17673
0
      Offset = -Offset;
17674
0
    return std::make_pair(P->first, P->second + Offset);
17675
0
  }
17676
17677
  // If the integer expression isn't a constant expression, compute the lower
17678
  // bound of the alignment using the alignment and offset of the pointer
17679
  // expression and the element size.
17680
0
  return std::make_pair(
17681
0
      P->first.alignmentAtOffset(P->second).alignmentAtOffset(EltSize),
17682
0
      CharUnits::Zero());
17683
0
}
17684
17685
/// This helper function takes an lvalue expression and returns the alignment of
17686
/// a VarDecl and a constant offset from the VarDecl.
17687
std::optional<std::pair<
17688
    CharUnits,
17689
    CharUnits>> static getBaseAlignmentAndOffsetFromLValue(const Expr *E,
17690
0
                                                           ASTContext &Ctx) {
17691
0
  E = E->IgnoreParens();
17692
0
  switch (E->getStmtClass()) {
17693
0
  default:
17694
0
    break;
17695
0
  case Stmt::CStyleCastExprClass:
17696
0
  case Stmt::CXXStaticCastExprClass:
17697
0
  case Stmt::ImplicitCastExprClass: {
17698
0
    auto *CE = cast<CastExpr>(E);
17699
0
    const Expr *From = CE->getSubExpr();
17700
0
    switch (CE->getCastKind()) {
17701
0
    default:
17702
0
      break;
17703
0
    case CK_NoOp:
17704
0
      return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
17705
0
    case CK_UncheckedDerivedToBase:
17706
0
    case CK_DerivedToBase: {
17707
0
      auto P = getBaseAlignmentAndOffsetFromLValue(From, Ctx);
17708
0
      if (!P)
17709
0
        break;
17710
0
      return getDerivedToBaseAlignmentAndOffset(CE, From->getType(), P->first,
17711
0
                                                P->second, Ctx);
17712
0
    }
17713
0
    }
17714
0
    break;
17715
0
  }
17716
0
  case Stmt::ArraySubscriptExprClass: {
17717
0
    auto *ASE = cast<ArraySubscriptExpr>(E);
17718
0
    return getAlignmentAndOffsetFromBinAddOrSub(ASE->getBase(), ASE->getIdx(),
17719
0
                                                false, Ctx);
17720
0
  }
17721
0
  case Stmt::DeclRefExprClass: {
17722
0
    if (auto *VD = dyn_cast<VarDecl>(cast<DeclRefExpr>(E)->getDecl())) {
17723
      // FIXME: If VD is captured by copy or is an escaping __block variable,
17724
      // use the alignment of VD's type.
17725
0
      if (!VD->getType()->isReferenceType()) {
17726
        // Dependent alignment cannot be resolved -> bail out.
17727
0
        if (VD->hasDependentAlignment())
17728
0
          break;
17729
0
        return std::make_pair(Ctx.getDeclAlign(VD), CharUnits::Zero());
17730
0
      }
17731
0
      if (VD->hasInit())
17732
0
        return getBaseAlignmentAndOffsetFromLValue(VD->getInit(), Ctx);
17733
0
    }
17734
0
    break;
17735
0
  }
17736
0
  case Stmt::MemberExprClass: {
17737
0
    auto *ME = cast<MemberExpr>(E);
17738
0
    auto *FD = dyn_cast<FieldDecl>(ME->getMemberDecl());
17739
0
    if (!FD || FD->getType()->isReferenceType() ||
17740
0
        FD->getParent()->isInvalidDecl())
17741
0
      break;
17742
0
    std::optional<std::pair<CharUnits, CharUnits>> P;
17743
0
    if (ME->isArrow())
17744
0
      P = getBaseAlignmentAndOffsetFromPtr(ME->getBase(), Ctx);
17745
0
    else
17746
0
      P = getBaseAlignmentAndOffsetFromLValue(ME->getBase(), Ctx);
17747
0
    if (!P)
17748
0
      break;
17749
0
    const ASTRecordLayout &Layout = Ctx.getASTRecordLayout(FD->getParent());
17750
0
    uint64_t Offset = Layout.getFieldOffset(FD->getFieldIndex());
17751
0
    return std::make_pair(P->first,
17752
0
                          P->second + CharUnits::fromQuantity(Offset));
17753
0
  }
17754
0
  case Stmt::UnaryOperatorClass: {
17755
0
    auto *UO = cast<UnaryOperator>(E);
17756
0
    switch (UO->getOpcode()) {
17757
0
    default:
17758
0
      break;
17759
0
    case UO_Deref:
17760
0
      return getBaseAlignmentAndOffsetFromPtr(UO->getSubExpr(), Ctx);
17761
0
    }
17762
0
    break;
17763
0
  }
17764
0
  case Stmt::BinaryOperatorClass: {
17765
0
    auto *BO = cast<BinaryOperator>(E);
17766
0
    auto Opcode = BO->getOpcode();
17767
0
    switch (Opcode) {
17768
0
    default:
17769
0
      break;
17770
0
    case BO_Comma:
17771
0
      return getBaseAlignmentAndOffsetFromLValue(BO->getRHS(), Ctx);
17772
0
    }
17773
0
    break;
17774
0
  }
17775
0
  }
17776
0
  return std::nullopt;
17777
0
}
17778
17779
/// This helper function takes a pointer expression and returns the alignment of
17780
/// a VarDecl and a constant offset from the VarDecl.
17781
std::optional<std::pair<
17782
    CharUnits, CharUnits>> static getBaseAlignmentAndOffsetFromPtr(const Expr
17783
                                                                       *E,
17784
                                                                   ASTContext
17785
0
                                                                       &Ctx) {
17786
0
  E = E->IgnoreParens();
17787
0
  switch (E->getStmtClass()) {
17788
0
  default:
17789
0
    break;
17790
0
  case Stmt::CStyleCastExprClass:
17791
0
  case Stmt::CXXStaticCastExprClass:
17792
0
  case Stmt::ImplicitCastExprClass: {
17793
0
    auto *CE = cast<CastExpr>(E);
17794
0
    const Expr *From = CE->getSubExpr();
17795
0
    switch (CE->getCastKind()) {
17796
0
    default:
17797
0
      break;
17798
0
    case CK_NoOp:
17799
0
      return getBaseAlignmentAndOffsetFromPtr(From, Ctx);
17800
0
    case CK_ArrayToPointerDecay:
17801
0
      return getBaseAlignmentAndOffsetFromLValue(From, Ctx);
17802
0
    case CK_UncheckedDerivedToBase:
17803
0
    case CK_DerivedToBase: {
17804
0
      auto P = getBaseAlignmentAndOffsetFromPtr(From, Ctx);
17805
0
      if (!P)
17806
0
        break;
17807
0
      return getDerivedToBaseAlignmentAndOffset(
17808
0
          CE, From->getType()->getPointeeType(), P->first, P->second, Ctx);
17809
0
    }
17810
0
    }
17811
0
    break;
17812
0
  }
17813
0
  case Stmt::CXXThisExprClass: {
17814
0
    auto *RD = E->getType()->getPointeeType()->getAsCXXRecordDecl();
17815
0
    CharUnits Alignment = Ctx.getASTRecordLayout(RD).getNonVirtualAlignment();
17816
0
    return std::make_pair(Alignment, CharUnits::Zero());
17817
0
  }
17818
0
  case Stmt::UnaryOperatorClass: {
17819
0
    auto *UO = cast<UnaryOperator>(E);
17820
0
    if (UO->getOpcode() == UO_AddrOf)
17821
0
      return getBaseAlignmentAndOffsetFromLValue(UO->getSubExpr(), Ctx);
17822
0
    break;
17823
0
  }
17824
0
  case Stmt::BinaryOperatorClass: {
17825
0
    auto *BO = cast<BinaryOperator>(E);
17826
0
    auto Opcode = BO->getOpcode();
17827
0
    switch (Opcode) {
17828
0
    default:
17829
0
      break;
17830
0
    case BO_Add:
17831
0
    case BO_Sub: {
17832
0
      const Expr *LHS = BO->getLHS(), *RHS = BO->getRHS();
17833
0
      if (Opcode == BO_Add && !RHS->getType()->isIntegralOrEnumerationType())
17834
0
        std::swap(LHS, RHS);
17835
0
      return getAlignmentAndOffsetFromBinAddOrSub(LHS, RHS, Opcode == BO_Sub,
17836
0
                                                  Ctx);
17837
0
    }
17838
0
    case BO_Comma:
17839
0
      return getBaseAlignmentAndOffsetFromPtr(BO->getRHS(), Ctx);
17840
0
    }
17841
0
    break;
17842
0
  }
17843
0
  }
17844
0
  return std::nullopt;
17845
0
}
17846
17847
0
static CharUnits getPresumedAlignmentOfPointer(const Expr *E, Sema &S) {
17848
  // See if we can compute the alignment of a VarDecl and an offset from it.
17849
0
  std::optional<std::pair<CharUnits, CharUnits>> P =
17850
0
      getBaseAlignmentAndOffsetFromPtr(E, S.Context);
17851
17852
0
  if (P)
17853
0
    return P->first.alignmentAtOffset(P->second);
17854
17855
  // If that failed, return the type's alignment.
17856
0
  return S.Context.getTypeAlignInChars(E->getType()->getPointeeType());
17857
0
}
17858
17859
/// CheckCastAlign - Implements -Wcast-align, which warns when a
17860
/// pointer cast increases the alignment requirements.
17861
0
void Sema::CheckCastAlign(Expr *Op, QualType T, SourceRange TRange) {
17862
  // This is actually a lot of work to potentially be doing on every
17863
  // cast; don't do it if we're ignoring -Wcast_align (as is the default).
17864
0
  if (getDiagnostics().isIgnored(diag::warn_cast_align, TRange.getBegin()))
17865
0
    return;
17866
17867
  // Ignore dependent types.
17868
0
  if (T->isDependentType() || Op->getType()->isDependentType())
17869
0
    return;
17870
17871
  // Require that the destination be a pointer type.
17872
0
  const PointerType *DestPtr = T->getAs<PointerType>();
17873
0
  if (!DestPtr) return;
17874
17875
  // If the destination has alignment 1, we're done.
17876
0
  QualType DestPointee = DestPtr->getPointeeType();
17877
0
  if (DestPointee->isIncompleteType()) return;
17878
0
  CharUnits DestAlign = Context.getTypeAlignInChars(DestPointee);
17879
0
  if (DestAlign.isOne()) return;
17880
17881
  // Require that the source be a pointer type.
17882
0
  const PointerType *SrcPtr = Op->getType()->getAs<PointerType>();
17883
0
  if (!SrcPtr) return;
17884
0
  QualType SrcPointee = SrcPtr->getPointeeType();
17885
17886
  // Explicitly allow casts from cv void*.  We already implicitly
17887
  // allowed casts to cv void*, since they have alignment 1.
17888
  // Also allow casts involving incomplete types, which implicitly
17889
  // includes 'void'.
17890
0
  if (SrcPointee->isIncompleteType()) return;
17891
17892
0
  CharUnits SrcAlign = getPresumedAlignmentOfPointer(Op, *this);
17893
17894
0
  if (SrcAlign >= DestAlign) return;
17895
17896
0
  Diag(TRange.getBegin(), diag::warn_cast_align)
17897
0
    << Op->getType() << T
17898
0
    << static_cast<unsigned>(SrcAlign.getQuantity())
17899
0
    << static_cast<unsigned>(DestAlign.getQuantity())
17900
0
    << TRange << Op->getSourceRange();
17901
0
}
17902
17903
void Sema::CheckArrayAccess(const Expr *BaseExpr, const Expr *IndexExpr,
17904
                            const ArraySubscriptExpr *ASE,
17905
0
                            bool AllowOnePastEnd, bool IndexNegated) {
17906
  // Already diagnosed by the constant evaluator.
17907
0
  if (isConstantEvaluatedContext())
17908
0
    return;
17909
17910
0
  IndexExpr = IndexExpr->IgnoreParenImpCasts();
17911
0
  if (IndexExpr->isValueDependent())
17912
0
    return;
17913
17914
0
  const Type *EffectiveType =
17915
0
      BaseExpr->getType()->getPointeeOrArrayElementType();
17916
0
  BaseExpr = BaseExpr->IgnoreParenCasts();
17917
0
  const ConstantArrayType *ArrayTy =
17918
0
      Context.getAsConstantArrayType(BaseExpr->getType());
17919
17920
0
  LangOptions::StrictFlexArraysLevelKind
17921
0
    StrictFlexArraysLevel = getLangOpts().getStrictFlexArraysLevel();
17922
17923
0
  const Type *BaseType =
17924
0
      ArrayTy == nullptr ? nullptr : ArrayTy->getElementType().getTypePtr();
17925
0
  bool IsUnboundedArray =
17926
0
      BaseType == nullptr || BaseExpr->isFlexibleArrayMemberLike(
17927
0
                                 Context, StrictFlexArraysLevel,
17928
0
                                 /*IgnoreTemplateOrMacroSubstitution=*/true);
17929
0
  if (EffectiveType->isDependentType() ||
17930
0
      (!IsUnboundedArray && BaseType->isDependentType()))
17931
0
    return;
17932
17933
0
  Expr::EvalResult Result;
17934
0
  if (!IndexExpr->EvaluateAsInt(Result, Context, Expr::SE_AllowSideEffects))
17935
0
    return;
17936
17937
0
  llvm::APSInt index = Result.Val.getInt();
17938
0
  if (IndexNegated) {
17939
0
    index.setIsUnsigned(false);
17940
0
    index = -index;
17941
0
  }
17942
17943
0
  if (IsUnboundedArray) {
17944
0
    if (EffectiveType->isFunctionType())
17945
0
      return;
17946
0
    if (index.isUnsigned() || !index.isNegative()) {
17947
0
      const auto &ASTC = getASTContext();
17948
0
      unsigned AddrBits = ASTC.getTargetInfo().getPointerWidth(
17949
0
          EffectiveType->getCanonicalTypeInternal().getAddressSpace());
17950
0
      if (index.getBitWidth() < AddrBits)
17951
0
        index = index.zext(AddrBits);
17952
0
      std::optional<CharUnits> ElemCharUnits =
17953
0
          ASTC.getTypeSizeInCharsIfKnown(EffectiveType);
17954
      // PR50741 - If EffectiveType has unknown size (e.g., if it's a void
17955
      // pointer) bounds-checking isn't meaningful.
17956
0
      if (!ElemCharUnits || ElemCharUnits->isZero())
17957
0
        return;
17958
0
      llvm::APInt ElemBytes(index.getBitWidth(), ElemCharUnits->getQuantity());
17959
      // If index has more active bits than address space, we already know
17960
      // we have a bounds violation to warn about.  Otherwise, compute
17961
      // address of (index + 1)th element, and warn about bounds violation
17962
      // only if that address exceeds address space.
17963
0
      if (index.getActiveBits() <= AddrBits) {
17964
0
        bool Overflow;
17965
0
        llvm::APInt Product(index);
17966
0
        Product += 1;
17967
0
        Product = Product.umul_ov(ElemBytes, Overflow);
17968
0
        if (!Overflow && Product.getActiveBits() <= AddrBits)
17969
0
          return;
17970
0
      }
17971
17972
      // Need to compute max possible elements in address space, since that
17973
      // is included in diag message.
17974
0
      llvm::APInt MaxElems = llvm::APInt::getMaxValue(AddrBits);
17975
0
      MaxElems = MaxElems.zext(std::max(AddrBits + 1, ElemBytes.getBitWidth()));
17976
0
      MaxElems += 1;
17977
0
      ElemBytes = ElemBytes.zextOrTrunc(MaxElems.getBitWidth());
17978
0
      MaxElems = MaxElems.udiv(ElemBytes);
17979
17980
0
      unsigned DiagID =
17981
0
          ASE ? diag::warn_array_index_exceeds_max_addressable_bounds
17982
0
              : diag::warn_ptr_arith_exceeds_max_addressable_bounds;
17983
17984
      // Diag message shows element size in bits and in "bytes" (platform-
17985
      // dependent CharUnits)
17986
0
      DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
17987
0
                          PDiag(DiagID)
17988
0
                              << toString(index, 10, true) << AddrBits
17989
0
                              << (unsigned)ASTC.toBits(*ElemCharUnits)
17990
0
                              << toString(ElemBytes, 10, false)
17991
0
                              << toString(MaxElems, 10, false)
17992
0
                              << (unsigned)MaxElems.getLimitedValue(~0U)
17993
0
                              << IndexExpr->getSourceRange());
17994
17995
0
      const NamedDecl *ND = nullptr;
17996
      // Try harder to find a NamedDecl to point at in the note.
17997
0
      while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
17998
0
        BaseExpr = ASE->getBase()->IgnoreParenCasts();
17999
0
      if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
18000
0
        ND = DRE->getDecl();
18001
0
      if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
18002
0
        ND = ME->getMemberDecl();
18003
18004
0
      if (ND)
18005
0
        DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
18006
0
                            PDiag(diag::note_array_declared_here) << ND);
18007
0
    }
18008
0
    return;
18009
0
  }
18010
18011
0
  if (index.isUnsigned() || !index.isNegative()) {
18012
    // It is possible that the type of the base expression after
18013
    // IgnoreParenCasts is incomplete, even though the type of the base
18014
    // expression before IgnoreParenCasts is complete (see PR39746 for an
18015
    // example). In this case we have no information about whether the array
18016
    // access exceeds the array bounds. However we can still diagnose an array
18017
    // access which precedes the array bounds.
18018
0
    if (BaseType->isIncompleteType())
18019
0
      return;
18020
18021
0
    llvm::APInt size = ArrayTy->getSize();
18022
18023
0
    if (BaseType != EffectiveType) {
18024
      // Make sure we're comparing apples to apples when comparing index to
18025
      // size.
18026
0
      uint64_t ptrarith_typesize = Context.getTypeSize(EffectiveType);
18027
0
      uint64_t array_typesize = Context.getTypeSize(BaseType);
18028
18029
      // Handle ptrarith_typesize being zero, such as when casting to void*.
18030
      // Use the size in bits (what "getTypeSize()" returns) rather than bytes.
18031
0
      if (!ptrarith_typesize)
18032
0
        ptrarith_typesize = Context.getCharWidth();
18033
18034
0
      if (ptrarith_typesize != array_typesize) {
18035
        // There's a cast to a different size type involved.
18036
0
        uint64_t ratio = array_typesize / ptrarith_typesize;
18037
18038
        // TODO: Be smarter about handling cases where array_typesize is not a
18039
        // multiple of ptrarith_typesize.
18040
0
        if (ptrarith_typesize * ratio == array_typesize)
18041
0
          size *= llvm::APInt(size.getBitWidth(), ratio);
18042
0
      }
18043
0
    }
18044
18045
0
    if (size.getBitWidth() > index.getBitWidth())
18046
0
      index = index.zext(size.getBitWidth());
18047
0
    else if (size.getBitWidth() < index.getBitWidth())
18048
0
      size = size.zext(index.getBitWidth());
18049
18050
    // For array subscripting the index must be less than size, but for pointer
18051
    // arithmetic also allow the index (offset) to be equal to size since
18052
    // computing the next address after the end of the array is legal and
18053
    // commonly done e.g. in C++ iterators and range-based for loops.
18054
0
    if (AllowOnePastEnd ? index.ule(size) : index.ult(size))
18055
0
      return;
18056
18057
    // Suppress the warning if the subscript expression (as identified by the
18058
    // ']' location) and the index expression are both from macro expansions
18059
    // within a system header.
18060
0
    if (ASE) {
18061
0
      SourceLocation RBracketLoc = SourceMgr.getSpellingLoc(
18062
0
          ASE->getRBracketLoc());
18063
0
      if (SourceMgr.isInSystemHeader(RBracketLoc)) {
18064
0
        SourceLocation IndexLoc =
18065
0
            SourceMgr.getSpellingLoc(IndexExpr->getBeginLoc());
18066
0
        if (SourceMgr.isWrittenInSameFile(RBracketLoc, IndexLoc))
18067
0
          return;
18068
0
      }
18069
0
    }
18070
18071
0
    unsigned DiagID = ASE ? diag::warn_array_index_exceeds_bounds
18072
0
                          : diag::warn_ptr_arith_exceeds_bounds;
18073
0
    unsigned CastMsg = (!ASE || BaseType == EffectiveType) ? 0 : 1;
18074
0
    QualType CastMsgTy = ASE ? ASE->getLHS()->getType() : QualType();
18075
18076
0
    DiagRuntimeBehavior(
18077
0
        BaseExpr->getBeginLoc(), BaseExpr,
18078
0
        PDiag(DiagID) << toString(index, 10, true) << ArrayTy->desugar()
18079
0
                      << CastMsg << CastMsgTy << IndexExpr->getSourceRange());
18080
0
  } else {
18081
0
    unsigned DiagID = diag::warn_array_index_precedes_bounds;
18082
0
    if (!ASE) {
18083
0
      DiagID = diag::warn_ptr_arith_precedes_bounds;
18084
0
      if (index.isNegative()) index = -index;
18085
0
    }
18086
18087
0
    DiagRuntimeBehavior(BaseExpr->getBeginLoc(), BaseExpr,
18088
0
                        PDiag(DiagID) << toString(index, 10, true)
18089
0
                                      << IndexExpr->getSourceRange());
18090
0
  }
18091
18092
0
  const NamedDecl *ND = nullptr;
18093
  // Try harder to find a NamedDecl to point at in the note.
18094
0
  while (const auto *ASE = dyn_cast<ArraySubscriptExpr>(BaseExpr))
18095
0
    BaseExpr = ASE->getBase()->IgnoreParenCasts();
18096
0
  if (const auto *DRE = dyn_cast<DeclRefExpr>(BaseExpr))
18097
0
    ND = DRE->getDecl();
18098
0
  if (const auto *ME = dyn_cast<MemberExpr>(BaseExpr))
18099
0
    ND = ME->getMemberDecl();
18100
18101
0
  if (ND)
18102
0
    DiagRuntimeBehavior(ND->getBeginLoc(), BaseExpr,
18103
0
                        PDiag(diag::note_array_declared_here) << ND);
18104
0
}
18105
18106
12
void Sema::CheckArrayAccess(const Expr *expr) {
18107
12
  int AllowOnePastEnd = 0;
18108
12
  while (expr) {
18109
12
    expr = expr->IgnoreParenImpCasts();
18110
12
    switch (expr->getStmtClass()) {
18111
0
      case Stmt::ArraySubscriptExprClass: {
18112
0
        const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(expr);
18113
0
        CheckArrayAccess(ASE->getBase(), ASE->getIdx(), ASE,
18114
0
                         AllowOnePastEnd > 0);
18115
0
        expr = ASE->getBase();
18116
0
        break;
18117
0
      }
18118
0
      case Stmt::MemberExprClass: {
18119
0
        expr = cast<MemberExpr>(expr)->getBase();
18120
0
        break;
18121
0
      }
18122
0
      case Stmt::OMPArraySectionExprClass: {
18123
0
        const OMPArraySectionExpr *ASE = cast<OMPArraySectionExpr>(expr);
18124
0
        if (ASE->getLowerBound())
18125
0
          CheckArrayAccess(ASE->getBase(), ASE->getLowerBound(),
18126
0
                           /*ASE=*/nullptr, AllowOnePastEnd > 0);
18127
0
        return;
18128
0
      }
18129
0
      case Stmt::UnaryOperatorClass: {
18130
        // Only unwrap the * and & unary operators
18131
0
        const UnaryOperator *UO = cast<UnaryOperator>(expr);
18132
0
        expr = UO->getSubExpr();
18133
0
        switch (UO->getOpcode()) {
18134
0
          case UO_AddrOf:
18135
0
            AllowOnePastEnd++;
18136
0
            break;
18137
0
          case UO_Deref:
18138
0
            AllowOnePastEnd--;
18139
0
            break;
18140
0
          default:
18141
0
            return;
18142
0
        }
18143
0
        break;
18144
0
      }
18145
0
      case Stmt::ConditionalOperatorClass: {
18146
0
        const ConditionalOperator *cond = cast<ConditionalOperator>(expr);
18147
0
        if (const Expr *lhs = cond->getLHS())
18148
0
          CheckArrayAccess(lhs);
18149
0
        if (const Expr *rhs = cond->getRHS())
18150
0
          CheckArrayAccess(rhs);
18151
0
        return;
18152
0
      }
18153
0
      case Stmt::CXXOperatorCallExprClass: {
18154
0
        const auto *OCE = cast<CXXOperatorCallExpr>(expr);
18155
0
        for (const auto *Arg : OCE->arguments())
18156
0
          CheckArrayAccess(Arg);
18157
0
        return;
18158
0
      }
18159
12
      default:
18160
12
        return;
18161
12
    }
18162
12
  }
18163
12
}
18164
18165
//===--- CHECK: Objective-C retain cycles ----------------------------------//
18166
18167
namespace {
18168
18169
struct RetainCycleOwner {
18170
  VarDecl *Variable = nullptr;
18171
  SourceRange Range;
18172
  SourceLocation Loc;
18173
  bool Indirect = false;
18174
18175
0
  RetainCycleOwner() = default;
18176
18177
0
  void setLocsFrom(Expr *e) {
18178
0
    Loc = e->getExprLoc();
18179
0
    Range = e->getSourceRange();
18180
0
  }
18181
};
18182
18183
} // namespace
18184
18185
/// Consider whether capturing the given variable can possibly lead to
18186
/// a retain cycle.
18187
0
static bool considerVariable(VarDecl *var, Expr *ref, RetainCycleOwner &owner) {
18188
  // In ARC, it's captured strongly iff the variable has __strong
18189
  // lifetime.  In MRR, it's captured strongly if the variable is
18190
  // __block and has an appropriate type.
18191
0
  if (var->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
18192
0
    return false;
18193
18194
0
  owner.Variable = var;
18195
0
  if (ref)
18196
0
    owner.setLocsFrom(ref);
18197
0
  return true;
18198
0
}
18199
18200
0
static bool findRetainCycleOwner(Sema &S, Expr *e, RetainCycleOwner &owner) {
18201
0
  while (true) {
18202
0
    e = e->IgnoreParens();
18203
0
    if (CastExpr *cast = dyn_cast<CastExpr>(e)) {
18204
0
      switch (cast->getCastKind()) {
18205
0
      case CK_BitCast:
18206
0
      case CK_LValueBitCast:
18207
0
      case CK_LValueToRValue:
18208
0
      case CK_ARCReclaimReturnedObject:
18209
0
        e = cast->getSubExpr();
18210
0
        continue;
18211
18212
0
      default:
18213
0
        return false;
18214
0
      }
18215
0
    }
18216
18217
0
    if (ObjCIvarRefExpr *ref = dyn_cast<ObjCIvarRefExpr>(e)) {
18218
0
      ObjCIvarDecl *ivar = ref->getDecl();
18219
0
      if (ivar->getType().getObjCLifetime() != Qualifiers::OCL_Strong)
18220
0
        return false;
18221
18222
      // Try to find a retain cycle in the base.
18223
0
      if (!findRetainCycleOwner(S, ref->getBase(), owner))
18224
0
        return false;
18225
18226
0
      if (ref->isFreeIvar()) owner.setLocsFrom(ref);
18227
0
      owner.Indirect = true;
18228
0
      return true;
18229
0
    }
18230
18231
0
    if (DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) {
18232
0
      VarDecl *var = dyn_cast<VarDecl>(ref->getDecl());
18233
0
      if (!var) return false;
18234
0
      return considerVariable(var, ref, owner);
18235
0
    }
18236
18237
0
    if (MemberExpr *member = dyn_cast<MemberExpr>(e)) {
18238
0
      if (member->isArrow()) return false;
18239
18240
      // Don't count this as an indirect ownership.
18241
0
      e = member->getBase();
18242
0
      continue;
18243
0
    }
18244
18245
0
    if (PseudoObjectExpr *pseudo = dyn_cast<PseudoObjectExpr>(e)) {
18246
      // Only pay attention to pseudo-objects on property references.
18247
0
      ObjCPropertyRefExpr *pre
18248
0
        = dyn_cast<ObjCPropertyRefExpr>(pseudo->getSyntacticForm()
18249
0
                                              ->IgnoreParens());
18250
0
      if (!pre) return false;
18251
0
      if (pre->isImplicitProperty()) return false;
18252
0
      ObjCPropertyDecl *property = pre->getExplicitProperty();
18253
0
      if (!property->isRetaining() &&
18254
0
          !(property->getPropertyIvarDecl() &&
18255
0
            property->getPropertyIvarDecl()->getType()
18256
0
              .getObjCLifetime() == Qualifiers::OCL_Strong))
18257
0
          return false;
18258
18259
0
      owner.Indirect = true;
18260
0
      if (pre->isSuperReceiver()) {
18261
0
        owner.Variable = S.getCurMethodDecl()->getSelfDecl();
18262
0
        if (!owner.Variable)
18263
0
          return false;
18264
0
        owner.Loc = pre->getLocation();
18265
0
        owner.Range = pre->getSourceRange();
18266
0
        return true;
18267
0
      }
18268
0
      e = const_cast<Expr*>(cast<OpaqueValueExpr>(pre->getBase())
18269
0
                              ->getSourceExpr());
18270
0
      continue;
18271
0
    }
18272
18273
    // Array ivars?
18274
18275
0
    return false;
18276
0
  }
18277
0
}
18278
18279
namespace {
18280
18281
  struct FindCaptureVisitor : EvaluatedExprVisitor<FindCaptureVisitor> {
18282
    VarDecl *Variable;
18283
    Expr *Capturer = nullptr;
18284
    bool VarWillBeReased = false;
18285
18286
    FindCaptureVisitor(ASTContext &Context, VarDecl *variable)
18287
        : EvaluatedExprVisitor<FindCaptureVisitor>(Context),
18288
0
          Variable(variable) {}
18289
18290
0
    void VisitDeclRefExpr(DeclRefExpr *ref) {
18291
0
      if (ref->getDecl() == Variable && !Capturer)
18292
0
        Capturer = ref;
18293
0
    }
18294
18295
0
    void VisitObjCIvarRefExpr(ObjCIvarRefExpr *ref) {
18296
0
      if (Capturer) return;
18297
0
      Visit(ref->getBase());
18298
0
      if (Capturer && ref->isFreeIvar())
18299
0
        Capturer = ref;
18300
0
    }
18301
18302
0
    void VisitBlockExpr(BlockExpr *block) {
18303
      // Look inside nested blocks
18304
0
      if (block->getBlockDecl()->capturesVariable(Variable))
18305
0
        Visit(block->getBlockDecl()->getBody());
18306
0
    }
18307
18308
0
    void VisitOpaqueValueExpr(OpaqueValueExpr *OVE) {
18309
0
      if (Capturer) return;
18310
0
      if (OVE->getSourceExpr())
18311
0
        Visit(OVE->getSourceExpr());
18312
0
    }
18313
18314
0
    void VisitBinaryOperator(BinaryOperator *BinOp) {
18315
0
      if (!Variable || VarWillBeReased || BinOp->getOpcode() != BO_Assign)
18316
0
        return;
18317
0
      Expr *LHS = BinOp->getLHS();
18318
0
      if (const DeclRefExpr *DRE = dyn_cast_or_null<DeclRefExpr>(LHS)) {
18319
0
        if (DRE->getDecl() != Variable)
18320
0
          return;
18321
0
        if (Expr *RHS = BinOp->getRHS()) {
18322
0
          RHS = RHS->IgnoreParenCasts();
18323
0
          std::optional<llvm::APSInt> Value;
18324
0
          VarWillBeReased =
18325
0
              (RHS && (Value = RHS->getIntegerConstantExpr(Context)) &&
18326
0
               *Value == 0);
18327
0
        }
18328
0
      }
18329
0
    }
18330
  };
18331
18332
} // namespace
18333
18334
/// Check whether the given argument is a block which captures a
18335
/// variable.
18336
0
static Expr *findCapturingExpr(Sema &S, Expr *e, RetainCycleOwner &owner) {
18337
0
  assert(owner.Variable && owner.Loc.isValid());
18338
18339
0
  e = e->IgnoreParenCasts();
18340
18341
  // Look through [^{...} copy] and Block_copy(^{...}).
18342
0
  if (ObjCMessageExpr *ME = dyn_cast<ObjCMessageExpr>(e)) {
18343
0
    Selector Cmd = ME->getSelector();
18344
0
    if (Cmd.isUnarySelector() && Cmd.getNameForSlot(0) == "copy") {
18345
0
      e = ME->getInstanceReceiver();
18346
0
      if (!e)
18347
0
        return nullptr;
18348
0
      e = e->IgnoreParenCasts();
18349
0
    }
18350
0
  } else if (CallExpr *CE = dyn_cast<CallExpr>(e)) {
18351
0
    if (CE->getNumArgs() == 1) {
18352
0
      FunctionDecl *Fn = dyn_cast_or_null<FunctionDecl>(CE->getCalleeDecl());
18353
0
      if (Fn) {
18354
0
        const IdentifierInfo *FnI = Fn->getIdentifier();
18355
0
        if (FnI && FnI->isStr("_Block_copy")) {
18356
0
          e = CE->getArg(0)->IgnoreParenCasts();
18357
0
        }
18358
0
      }
18359
0
    }
18360
0
  }
18361
18362
0
  BlockExpr *block = dyn_cast<BlockExpr>(e);
18363
0
  if (!block || !block->getBlockDecl()->capturesVariable(owner.Variable))
18364
0
    return nullptr;
18365
18366
0
  FindCaptureVisitor visitor(S.Context, owner.Variable);
18367
0
  visitor.Visit(block->getBlockDecl()->getBody());
18368
0
  return visitor.VarWillBeReased ? nullptr : visitor.Capturer;
18369
0
}
18370
18371
static void diagnoseRetainCycle(Sema &S, Expr *capturer,
18372
0
                                RetainCycleOwner &owner) {
18373
0
  assert(capturer);
18374
0
  assert(owner.Variable && owner.Loc.isValid());
18375
18376
0
  S.Diag(capturer->getExprLoc(), diag::warn_arc_retain_cycle)
18377
0
    << owner.Variable << capturer->getSourceRange();
18378
0
  S.Diag(owner.Loc, diag::note_arc_retain_cycle_owner)
18379
0
    << owner.Indirect << owner.Range;
18380
0
}
18381
18382
/// Check for a keyword selector that starts with the word 'add' or
18383
/// 'set'.
18384
0
static bool isSetterLikeSelector(Selector sel) {
18385
0
  if (sel.isUnarySelector()) return false;
18386
18387
0
  StringRef str = sel.getNameForSlot(0);
18388
0
  str = str.ltrim('_');
18389
0
  if (str.starts_with("set"))
18390
0
    str = str.substr(3);
18391
0
  else if (str.starts_with("add")) {
18392
    // Specially allow 'addOperationWithBlock:'.
18393
0
    if (sel.getNumArgs() == 1 && str.starts_with("addOperationWithBlock"))
18394
0
      return false;
18395
0
    str = str.substr(3);
18396
0
  } else
18397
0
    return false;
18398
18399
0
  if (str.empty()) return true;
18400
0
  return !isLowercase(str.front());
18401
0
}
18402
18403
static std::optional<int>
18404
0
GetNSMutableArrayArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
18405
0
  bool IsMutableArray = S.NSAPIObj->isSubclassOfNSClass(
18406
0
                                                Message->getReceiverInterface(),
18407
0
                                                NSAPI::ClassId_NSMutableArray);
18408
0
  if (!IsMutableArray) {
18409
0
    return std::nullopt;
18410
0
  }
18411
18412
0
  Selector Sel = Message->getSelector();
18413
18414
0
  std::optional<NSAPI::NSArrayMethodKind> MKOpt =
18415
0
      S.NSAPIObj->getNSArrayMethodKind(Sel);
18416
0
  if (!MKOpt) {
18417
0
    return std::nullopt;
18418
0
  }
18419
18420
0
  NSAPI::NSArrayMethodKind MK = *MKOpt;
18421
18422
0
  switch (MK) {
18423
0
    case NSAPI::NSMutableArr_addObject:
18424
0
    case NSAPI::NSMutableArr_insertObjectAtIndex:
18425
0
    case NSAPI::NSMutableArr_setObjectAtIndexedSubscript:
18426
0
      return 0;
18427
0
    case NSAPI::NSMutableArr_replaceObjectAtIndex:
18428
0
      return 1;
18429
18430
0
    default:
18431
0
      return std::nullopt;
18432
0
  }
18433
18434
0
  return std::nullopt;
18435
0
}
18436
18437
static std::optional<int>
18438
0
GetNSMutableDictionaryArgumentIndex(Sema &S, ObjCMessageExpr *Message) {
18439
0
  bool IsMutableDictionary = S.NSAPIObj->isSubclassOfNSClass(
18440
0
                                            Message->getReceiverInterface(),
18441
0
                                            NSAPI::ClassId_NSMutableDictionary);
18442
0
  if (!IsMutableDictionary) {
18443
0
    return std::nullopt;
18444
0
  }
18445
18446
0
  Selector Sel = Message->getSelector();
18447
18448
0
  std::optional<NSAPI::NSDictionaryMethodKind> MKOpt =
18449
0
      S.NSAPIObj->getNSDictionaryMethodKind(Sel);
18450
0
  if (!MKOpt) {
18451
0
    return std::nullopt;
18452
0
  }
18453
18454
0
  NSAPI::NSDictionaryMethodKind MK = *MKOpt;
18455
18456
0
  switch (MK) {
18457
0
    case NSAPI::NSMutableDict_setObjectForKey:
18458
0
    case NSAPI::NSMutableDict_setValueForKey:
18459
0
    case NSAPI::NSMutableDict_setObjectForKeyedSubscript:
18460
0
      return 0;
18461
18462
0
    default:
18463
0
      return std::nullopt;
18464
0
  }
18465
18466
0
  return std::nullopt;
18467
0
}
18468
18469
static std::optional<int> GetNSSetArgumentIndex(Sema &S,
18470
0
                                                ObjCMessageExpr *Message) {
18471
0
  bool IsMutableSet = S.NSAPIObj->isSubclassOfNSClass(
18472
0
                                                Message->getReceiverInterface(),
18473
0
                                                NSAPI::ClassId_NSMutableSet);
18474
18475
0
  bool IsMutableOrderedSet = S.NSAPIObj->isSubclassOfNSClass(
18476
0
                                            Message->getReceiverInterface(),
18477
0
                                            NSAPI::ClassId_NSMutableOrderedSet);
18478
0
  if (!IsMutableSet && !IsMutableOrderedSet) {
18479
0
    return std::nullopt;
18480
0
  }
18481
18482
0
  Selector Sel = Message->getSelector();
18483
18484
0
  std::optional<NSAPI::NSSetMethodKind> MKOpt =
18485
0
      S.NSAPIObj->getNSSetMethodKind(Sel);
18486
0
  if (!MKOpt) {
18487
0
    return std::nullopt;
18488
0
  }
18489
18490
0
  NSAPI::NSSetMethodKind MK = *MKOpt;
18491
18492
0
  switch (MK) {
18493
0
    case NSAPI::NSMutableSet_addObject:
18494
0
    case NSAPI::NSOrderedSet_setObjectAtIndex:
18495
0
    case NSAPI::NSOrderedSet_setObjectAtIndexedSubscript:
18496
0
    case NSAPI::NSOrderedSet_insertObjectAtIndex:
18497
0
      return 0;
18498
0
    case NSAPI::NSOrderedSet_replaceObjectAtIndexWithObject:
18499
0
      return 1;
18500
0
  }
18501
18502
0
  return std::nullopt;
18503
0
}
18504
18505
0
void Sema::CheckObjCCircularContainer(ObjCMessageExpr *Message) {
18506
0
  if (!Message->isInstanceMessage()) {
18507
0
    return;
18508
0
  }
18509
18510
0
  std::optional<int> ArgOpt;
18511
18512
0
  if (!(ArgOpt = GetNSMutableArrayArgumentIndex(*this, Message)) &&
18513
0
      !(ArgOpt = GetNSMutableDictionaryArgumentIndex(*this, Message)) &&
18514
0
      !(ArgOpt = GetNSSetArgumentIndex(*this, Message))) {
18515
0
    return;
18516
0
  }
18517
18518
0
  int ArgIndex = *ArgOpt;
18519
18520
0
  Expr *Arg = Message->getArg(ArgIndex)->IgnoreImpCasts();
18521
0
  if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Arg)) {
18522
0
    Arg = OE->getSourceExpr()->IgnoreImpCasts();
18523
0
  }
18524
18525
0
  if (Message->getReceiverKind() == ObjCMessageExpr::SuperInstance) {
18526
0
    if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
18527
0
      if (ArgRE->isObjCSelfExpr()) {
18528
0
        Diag(Message->getSourceRange().getBegin(),
18529
0
             diag::warn_objc_circular_container)
18530
0
          << ArgRE->getDecl() << StringRef("'super'");
18531
0
      }
18532
0
    }
18533
0
  } else {
18534
0
    Expr *Receiver = Message->getInstanceReceiver()->IgnoreImpCasts();
18535
18536
0
    if (OpaqueValueExpr *OE = dyn_cast<OpaqueValueExpr>(Receiver)) {
18537
0
      Receiver = OE->getSourceExpr()->IgnoreImpCasts();
18538
0
    }
18539
18540
0
    if (DeclRefExpr *ReceiverRE = dyn_cast<DeclRefExpr>(Receiver)) {
18541
0
      if (DeclRefExpr *ArgRE = dyn_cast<DeclRefExpr>(Arg)) {
18542
0
        if (ReceiverRE->getDecl() == ArgRE->getDecl()) {
18543
0
          ValueDecl *Decl = ReceiverRE->getDecl();
18544
0
          Diag(Message->getSourceRange().getBegin(),
18545
0
               diag::warn_objc_circular_container)
18546
0
            << Decl << Decl;
18547
0
          if (!ArgRE->isObjCSelfExpr()) {
18548
0
            Diag(Decl->getLocation(),
18549
0
                 diag::note_objc_circular_container_declared_here)
18550
0
              << Decl;
18551
0
          }
18552
0
        }
18553
0
      }
18554
0
    } else if (ObjCIvarRefExpr *IvarRE = dyn_cast<ObjCIvarRefExpr>(Receiver)) {
18555
0
      if (ObjCIvarRefExpr *IvarArgRE = dyn_cast<ObjCIvarRefExpr>(Arg)) {
18556
0
        if (IvarRE->getDecl() == IvarArgRE->getDecl()) {
18557
0
          ObjCIvarDecl *Decl = IvarRE->getDecl();
18558
0
          Diag(Message->getSourceRange().getBegin(),
18559
0
               diag::warn_objc_circular_container)
18560
0
            << Decl << Decl;
18561
0
          Diag(Decl->getLocation(),
18562
0
               diag::note_objc_circular_container_declared_here)
18563
0
            << Decl;
18564
0
        }
18565
0
      }
18566
0
    }
18567
0
  }
18568
0
}
18569
18570
/// Check a message send to see if it's likely to cause a retain cycle.
18571
0
void Sema::checkRetainCycles(ObjCMessageExpr *msg) {
18572
  // Only check instance methods whose selector looks like a setter.
18573
0
  if (!msg->isInstanceMessage() || !isSetterLikeSelector(msg->getSelector()))
18574
0
    return;
18575
18576
  // Try to find a variable that the receiver is strongly owned by.
18577
0
  RetainCycleOwner owner;
18578
0
  if (msg->getReceiverKind() == ObjCMessageExpr::Instance) {
18579
0
    if (!findRetainCycleOwner(*this, msg->getInstanceReceiver(), owner))
18580
0
      return;
18581
0
  } else {
18582
0
    assert(msg->getReceiverKind() == ObjCMessageExpr::SuperInstance);
18583
0
    owner.Variable = getCurMethodDecl()->getSelfDecl();
18584
0
    owner.Loc = msg->getSuperLoc();
18585
0
    owner.Range = msg->getSuperLoc();
18586
0
  }
18587
18588
  // Check whether the receiver is captured by any of the arguments.
18589
0
  const ObjCMethodDecl *MD = msg->getMethodDecl();
18590
0
  for (unsigned i = 0, e = msg->getNumArgs(); i != e; ++i) {
18591
0
    if (Expr *capturer = findCapturingExpr(*this, msg->getArg(i), owner)) {
18592
      // noescape blocks should not be retained by the method.
18593
0
      if (MD && MD->parameters()[i]->hasAttr<NoEscapeAttr>())
18594
0
        continue;
18595
0
      return diagnoseRetainCycle(*this, capturer, owner);
18596
0
    }
18597
0
  }
18598
0
}
18599
18600
/// Check a property assign to see if it's likely to cause a retain cycle.
18601
0
void Sema::checkRetainCycles(Expr *receiver, Expr *argument) {
18602
0
  RetainCycleOwner owner;
18603
0
  if (!findRetainCycleOwner(*this, receiver, owner))
18604
0
    return;
18605
18606
0
  if (Expr *capturer = findCapturingExpr(*this, argument, owner))
18607
0
    diagnoseRetainCycle(*this, capturer, owner);
18608
0
}
18609
18610
0
void Sema::checkRetainCycles(VarDecl *Var, Expr *Init) {
18611
0
  RetainCycleOwner Owner;
18612
0
  if (!considerVariable(Var, /*DeclRefExpr=*/nullptr, Owner))
18613
0
    return;
18614
18615
  // Because we don't have an expression for the variable, we have to set the
18616
  // location explicitly here.
18617
0
  Owner.Loc = Var->getLocation();
18618
0
  Owner.Range = Var->getSourceRange();
18619
18620
0
  if (Expr *Capturer = findCapturingExpr(*this, Init, Owner))
18621
0
    diagnoseRetainCycle(*this, Capturer, Owner);
18622
0
}
18623
18624
static bool checkUnsafeAssignLiteral(Sema &S, SourceLocation Loc,
18625
0
                                     Expr *RHS, bool isProperty) {
18626
  // Check if RHS is an Objective-C object literal, which also can get
18627
  // immediately zapped in a weak reference.  Note that we explicitly
18628
  // allow ObjCStringLiterals, since those are designed to never really die.
18629
0
  RHS = RHS->IgnoreParenImpCasts();
18630
18631
  // This enum needs to match with the 'select' in
18632
  // warn_objc_arc_literal_assign (off-by-1).
18633
0
  Sema::ObjCLiteralKind Kind = S.CheckLiteralKind(RHS);
18634
0
  if (Kind == Sema::LK_String || Kind == Sema::LK_None)
18635
0
    return false;
18636
18637
0
  S.Diag(Loc, diag::warn_arc_literal_assign)
18638
0
    << (unsigned) Kind
18639
0
    << (isProperty ? 0 : 1)
18640
0
    << RHS->getSourceRange();
18641
18642
0
  return true;
18643
0
}
18644
18645
static bool checkUnsafeAssignObject(Sema &S, SourceLocation Loc,
18646
                                    Qualifiers::ObjCLifetime LT,
18647
0
                                    Expr *RHS, bool isProperty) {
18648
  // Strip off any implicit cast added to get to the one ARC-specific.
18649
0
  while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
18650
0
    if (cast->getCastKind() == CK_ARCConsumeObject) {
18651
0
      S.Diag(Loc, diag::warn_arc_retained_assign)
18652
0
        << (LT == Qualifiers::OCL_ExplicitNone)
18653
0
        << (isProperty ? 0 : 1)
18654
0
        << RHS->getSourceRange();
18655
0
      return true;
18656
0
    }
18657
0
    RHS = cast->getSubExpr();
18658
0
  }
18659
18660
0
  if (LT == Qualifiers::OCL_Weak &&
18661
0
      checkUnsafeAssignLiteral(S, Loc, RHS, isProperty))
18662
0
    return true;
18663
18664
0
  return false;
18665
0
}
18666
18667
bool Sema::checkUnsafeAssigns(SourceLocation Loc,
18668
20
                              QualType LHS, Expr *RHS) {
18669
20
  Qualifiers::ObjCLifetime LT = LHS.getObjCLifetime();
18670
18671
20
  if (LT != Qualifiers::OCL_Weak && LT != Qualifiers::OCL_ExplicitNone)
18672
20
    return false;
18673
18674
0
  if (checkUnsafeAssignObject(*this, Loc, LT, RHS, false))
18675
0
    return true;
18676
18677
0
  return false;
18678
0
}
18679
18680
void Sema::checkUnsafeExprAssigns(SourceLocation Loc,
18681
0
                              Expr *LHS, Expr *RHS) {
18682
0
  QualType LHSType;
18683
  // PropertyRef on LHS type need be directly obtained from
18684
  // its declaration as it has a PseudoType.
18685
0
  ObjCPropertyRefExpr *PRE
18686
0
    = dyn_cast<ObjCPropertyRefExpr>(LHS->IgnoreParens());
18687
0
  if (PRE && !PRE->isImplicitProperty()) {
18688
0
    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
18689
0
    if (PD)
18690
0
      LHSType = PD->getType();
18691
0
  }
18692
18693
0
  if (LHSType.isNull())
18694
0
    LHSType = LHS->getType();
18695
18696
0
  Qualifiers::ObjCLifetime LT = LHSType.getObjCLifetime();
18697
18698
0
  if (LT == Qualifiers::OCL_Weak) {
18699
0
    if (!Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, Loc))
18700
0
      getCurFunction()->markSafeWeakUse(LHS);
18701
0
  }
18702
18703
0
  if (checkUnsafeAssigns(Loc, LHSType, RHS))
18704
0
    return;
18705
18706
  // FIXME. Check for other life times.
18707
0
  if (LT != Qualifiers::OCL_None)
18708
0
    return;
18709
18710
0
  if (PRE) {
18711
0
    if (PRE->isImplicitProperty())
18712
0
      return;
18713
0
    const ObjCPropertyDecl *PD = PRE->getExplicitProperty();
18714
0
    if (!PD)
18715
0
      return;
18716
18717
0
    unsigned Attributes = PD->getPropertyAttributes();
18718
0
    if (Attributes & ObjCPropertyAttribute::kind_assign) {
18719
      // when 'assign' attribute was not explicitly specified
18720
      // by user, ignore it and rely on property type itself
18721
      // for lifetime info.
18722
0
      unsigned AsWrittenAttr = PD->getPropertyAttributesAsWritten();
18723
0
      if (!(AsWrittenAttr & ObjCPropertyAttribute::kind_assign) &&
18724
0
          LHSType->isObjCRetainableType())
18725
0
        return;
18726
18727
0
      while (ImplicitCastExpr *cast = dyn_cast<ImplicitCastExpr>(RHS)) {
18728
0
        if (cast->getCastKind() == CK_ARCConsumeObject) {
18729
0
          Diag(Loc, diag::warn_arc_retained_property_assign)
18730
0
          << RHS->getSourceRange();
18731
0
          return;
18732
0
        }
18733
0
        RHS = cast->getSubExpr();
18734
0
      }
18735
0
    } else if (Attributes & ObjCPropertyAttribute::kind_weak) {
18736
0
      if (checkUnsafeAssignObject(*this, Loc, Qualifiers::OCL_Weak, RHS, true))
18737
0
        return;
18738
0
    }
18739
0
  }
18740
0
}
18741
18742
//===--- CHECK: Empty statement body (-Wempty-body) ---------------------===//
18743
18744
static bool ShouldDiagnoseEmptyStmtBody(const SourceManager &SourceMgr,
18745
                                        SourceLocation StmtLoc,
18746
0
                                        const NullStmt *Body) {
18747
  // Do not warn if the body is a macro that expands to nothing, e.g:
18748
  //
18749
  // #define CALL(x)
18750
  // if (condition)
18751
  //   CALL(0);
18752
0
  if (Body->hasLeadingEmptyMacro())
18753
0
    return false;
18754
18755
  // Get line numbers of statement and body.
18756
0
  bool StmtLineInvalid;
18757
0
  unsigned StmtLine = SourceMgr.getPresumedLineNumber(StmtLoc,
18758
0
                                                      &StmtLineInvalid);
18759
0
  if (StmtLineInvalid)
18760
0
    return false;
18761
18762
0
  bool BodyLineInvalid;
18763
0
  unsigned BodyLine = SourceMgr.getSpellingLineNumber(Body->getSemiLoc(),
18764
0
                                                      &BodyLineInvalid);
18765
0
  if (BodyLineInvalid)
18766
0
    return false;
18767
18768
  // Warn if null statement and body are on the same line.
18769
0
  if (StmtLine != BodyLine)
18770
0
    return false;
18771
18772
0
  return true;
18773
0
}
18774
18775
void Sema::DiagnoseEmptyStmtBody(SourceLocation StmtLoc,
18776
                                 const Stmt *Body,
18777
0
                                 unsigned DiagID) {
18778
  // Since this is a syntactic check, don't emit diagnostic for template
18779
  // instantiations, this just adds noise.
18780
0
  if (CurrentInstantiationScope)
18781
0
    return;
18782
18783
  // The body should be a null statement.
18784
0
  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
18785
0
  if (!NBody)
18786
0
    return;
18787
18788
  // Do the usual checks.
18789
0
  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
18790
0
    return;
18791
18792
0
  Diag(NBody->getSemiLoc(), DiagID);
18793
0
  Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
18794
0
}
18795
18796
void Sema::DiagnoseEmptyLoopBody(const Stmt *S,
18797
0
                                 const Stmt *PossibleBody) {
18798
0
  assert(!CurrentInstantiationScope); // Ensured by caller
18799
18800
0
  SourceLocation StmtLoc;
18801
0
  const Stmt *Body;
18802
0
  unsigned DiagID;
18803
0
  if (const ForStmt *FS = dyn_cast<ForStmt>(S)) {
18804
0
    StmtLoc = FS->getRParenLoc();
18805
0
    Body = FS->getBody();
18806
0
    DiagID = diag::warn_empty_for_body;
18807
0
  } else if (const WhileStmt *WS = dyn_cast<WhileStmt>(S)) {
18808
0
    StmtLoc = WS->getRParenLoc();
18809
0
    Body = WS->getBody();
18810
0
    DiagID = diag::warn_empty_while_body;
18811
0
  } else
18812
0
    return; // Neither `for' nor `while'.
18813
18814
  // The body should be a null statement.
18815
0
  const NullStmt *NBody = dyn_cast<NullStmt>(Body);
18816
0
  if (!NBody)
18817
0
    return;
18818
18819
  // Skip expensive checks if diagnostic is disabled.
18820
0
  if (Diags.isIgnored(DiagID, NBody->getSemiLoc()))
18821
0
    return;
18822
18823
  // Do the usual checks.
18824
0
  if (!ShouldDiagnoseEmptyStmtBody(SourceMgr, StmtLoc, NBody))
18825
0
    return;
18826
18827
  // `for(...);' and `while(...);' are popular idioms, so in order to keep
18828
  // noise level low, emit diagnostics only if for/while is followed by a
18829
  // CompoundStmt, e.g.:
18830
  //    for (int i = 0; i < n; i++);
18831
  //    {
18832
  //      a(i);
18833
  //    }
18834
  // or if for/while is followed by a statement with more indentation
18835
  // than for/while itself:
18836
  //    for (int i = 0; i < n; i++);
18837
  //      a(i);
18838
0
  bool ProbableTypo = isa<CompoundStmt>(PossibleBody);
18839
0
  if (!ProbableTypo) {
18840
0
    bool BodyColInvalid;
18841
0
    unsigned BodyCol = SourceMgr.getPresumedColumnNumber(
18842
0
        PossibleBody->getBeginLoc(), &BodyColInvalid);
18843
0
    if (BodyColInvalid)
18844
0
      return;
18845
18846
0
    bool StmtColInvalid;
18847
0
    unsigned StmtCol =
18848
0
        SourceMgr.getPresumedColumnNumber(S->getBeginLoc(), &StmtColInvalid);
18849
0
    if (StmtColInvalid)
18850
0
      return;
18851
18852
0
    if (BodyCol > StmtCol)
18853
0
      ProbableTypo = true;
18854
0
  }
18855
18856
0
  if (ProbableTypo) {
18857
0
    Diag(NBody->getSemiLoc(), DiagID);
18858
0
    Diag(NBody->getSemiLoc(), diag::note_empty_body_on_separate_line);
18859
0
  }
18860
0
}
18861
18862
//===--- CHECK: Warn on self move with std::move. -------------------------===//
18863
18864
/// DiagnoseSelfMove - Emits a warning if a value is moved to itself.
18865
void Sema::DiagnoseSelfMove(const Expr *LHSExpr, const Expr *RHSExpr,
18866
0
                             SourceLocation OpLoc) {
18867
0
  if (Diags.isIgnored(diag::warn_sizeof_pointer_expr_memaccess, OpLoc))
18868
0
    return;
18869
18870
0
  if (inTemplateInstantiation())
18871
0
    return;
18872
18873
  // Strip parens and casts away.
18874
0
  LHSExpr = LHSExpr->IgnoreParenImpCasts();
18875
0
  RHSExpr = RHSExpr->IgnoreParenImpCasts();
18876
18877
  // Check for a call expression
18878
0
  const CallExpr *CE = dyn_cast<CallExpr>(RHSExpr);
18879
0
  if (!CE || CE->getNumArgs() != 1)
18880
0
    return;
18881
18882
  // Check for a call to std::move
18883
0
  if (!CE->isCallToStdMove())
18884
0
    return;
18885
18886
  // Get argument from std::move
18887
0
  RHSExpr = CE->getArg(0);
18888
18889
0
  const DeclRefExpr *LHSDeclRef = dyn_cast<DeclRefExpr>(LHSExpr);
18890
0
  const DeclRefExpr *RHSDeclRef = dyn_cast<DeclRefExpr>(RHSExpr);
18891
18892
  // Two DeclRefExpr's, check that the decls are the same.
18893
0
  if (LHSDeclRef && RHSDeclRef) {
18894
0
    if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
18895
0
      return;
18896
0
    if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
18897
0
        RHSDeclRef->getDecl()->getCanonicalDecl())
18898
0
      return;
18899
18900
0
    auto D = Diag(OpLoc, diag::warn_self_move)
18901
0
             << LHSExpr->getType() << LHSExpr->getSourceRange()
18902
0
             << RHSExpr->getSourceRange();
18903
0
    if (const FieldDecl *F =
18904
0
            getSelfAssignmentClassMemberCandidate(RHSDeclRef->getDecl()))
18905
0
      D << 1 << F
18906
0
        << FixItHint::CreateInsertion(LHSDeclRef->getBeginLoc(), "this->");
18907
0
    else
18908
0
      D << 0;
18909
0
    return;
18910
0
  }
18911
18912
  // Member variables require a different approach to check for self moves.
18913
  // MemberExpr's are the same if every nested MemberExpr refers to the same
18914
  // Decl and that the base Expr's are DeclRefExpr's with the same Decl or
18915
  // the base Expr's are CXXThisExpr's.
18916
0
  const Expr *LHSBase = LHSExpr;
18917
0
  const Expr *RHSBase = RHSExpr;
18918
0
  const MemberExpr *LHSME = dyn_cast<MemberExpr>(LHSExpr);
18919
0
  const MemberExpr *RHSME = dyn_cast<MemberExpr>(RHSExpr);
18920
0
  if (!LHSME || !RHSME)
18921
0
    return;
18922
18923
0
  while (LHSME && RHSME) {
18924
0
    if (LHSME->getMemberDecl()->getCanonicalDecl() !=
18925
0
        RHSME->getMemberDecl()->getCanonicalDecl())
18926
0
      return;
18927
18928
0
    LHSBase = LHSME->getBase();
18929
0
    RHSBase = RHSME->getBase();
18930
0
    LHSME = dyn_cast<MemberExpr>(LHSBase);
18931
0
    RHSME = dyn_cast<MemberExpr>(RHSBase);
18932
0
  }
18933
18934
0
  LHSDeclRef = dyn_cast<DeclRefExpr>(LHSBase);
18935
0
  RHSDeclRef = dyn_cast<DeclRefExpr>(RHSBase);
18936
0
  if (LHSDeclRef && RHSDeclRef) {
18937
0
    if (!LHSDeclRef->getDecl() || !RHSDeclRef->getDecl())
18938
0
      return;
18939
0
    if (LHSDeclRef->getDecl()->getCanonicalDecl() !=
18940
0
        RHSDeclRef->getDecl()->getCanonicalDecl())
18941
0
      return;
18942
18943
0
    Diag(OpLoc, diag::warn_self_move)
18944
0
        << LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
18945
0
        << RHSExpr->getSourceRange();
18946
0
    return;
18947
0
  }
18948
18949
0
  if (isa<CXXThisExpr>(LHSBase) && isa<CXXThisExpr>(RHSBase))
18950
0
    Diag(OpLoc, diag::warn_self_move)
18951
0
        << LHSExpr->getType() << 0 << LHSExpr->getSourceRange()
18952
0
        << RHSExpr->getSourceRange();
18953
0
}
18954
18955
//===--- Layout compatibility ----------------------------------------------//
18956
18957
static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2);
18958
18959
/// Check if two enumeration types are layout-compatible.
18960
0
static bool isLayoutCompatible(ASTContext &C, EnumDecl *ED1, EnumDecl *ED2) {
18961
  // C++11 [dcl.enum] p8:
18962
  // Two enumeration types are layout-compatible if they have the same
18963
  // underlying type.
18964
0
  return ED1->isComplete() && ED2->isComplete() &&
18965
0
         C.hasSameType(ED1->getIntegerType(), ED2->getIntegerType());
18966
0
}
18967
18968
/// Check if two fields are layout-compatible.
18969
static bool isLayoutCompatible(ASTContext &C, FieldDecl *Field1,
18970
0
                               FieldDecl *Field2) {
18971
0
  if (!isLayoutCompatible(C, Field1->getType(), Field2->getType()))
18972
0
    return false;
18973
18974
0
  if (Field1->isBitField() != Field2->isBitField())
18975
0
    return false;
18976
18977
0
  if (Field1->isBitField()) {
18978
    // Make sure that the bit-fields are the same length.
18979
0
    unsigned Bits1 = Field1->getBitWidthValue(C);
18980
0
    unsigned Bits2 = Field2->getBitWidthValue(C);
18981
18982
0
    if (Bits1 != Bits2)
18983
0
      return false;
18984
0
  }
18985
18986
0
  return true;
18987
0
}
18988
18989
/// Check if two standard-layout structs are layout-compatible.
18990
/// (C++11 [class.mem] p17)
18991
static bool isLayoutCompatibleStruct(ASTContext &C, RecordDecl *RD1,
18992
0
                                     RecordDecl *RD2) {
18993
  // If both records are C++ classes, check that base classes match.
18994
0
  if (const CXXRecordDecl *D1CXX = dyn_cast<CXXRecordDecl>(RD1)) {
18995
    // If one of records is a CXXRecordDecl we are in C++ mode,
18996
    // thus the other one is a CXXRecordDecl, too.
18997
0
    const CXXRecordDecl *D2CXX = cast<CXXRecordDecl>(RD2);
18998
    // Check number of base classes.
18999
0
    if (D1CXX->getNumBases() != D2CXX->getNumBases())
19000
0
      return false;
19001
19002
    // Check the base classes.
19003
0
    for (CXXRecordDecl::base_class_const_iterator
19004
0
               Base1 = D1CXX->bases_begin(),
19005
0
           BaseEnd1 = D1CXX->bases_end(),
19006
0
              Base2 = D2CXX->bases_begin();
19007
0
         Base1 != BaseEnd1;
19008
0
         ++Base1, ++Base2) {
19009
0
      if (!isLayoutCompatible(C, Base1->getType(), Base2->getType()))
19010
0
        return false;
19011
0
    }
19012
0
  } else if (const CXXRecordDecl *D2CXX = dyn_cast<CXXRecordDecl>(RD2)) {
19013
    // If only RD2 is a C++ class, it should have zero base classes.
19014
0
    if (D2CXX->getNumBases() > 0)
19015
0
      return false;
19016
0
  }
19017
19018
  // Check the fields.
19019
0
  RecordDecl::field_iterator Field2 = RD2->field_begin(),
19020
0
                             Field2End = RD2->field_end(),
19021
0
                             Field1 = RD1->field_begin(),
19022
0
                             Field1End = RD1->field_end();
19023
0
  for ( ; Field1 != Field1End && Field2 != Field2End; ++Field1, ++Field2) {
19024
0
    if (!isLayoutCompatible(C, *Field1, *Field2))
19025
0
      return false;
19026
0
  }
19027
0
  if (Field1 != Field1End || Field2 != Field2End)
19028
0
    return false;
19029
19030
0
  return true;
19031
0
}
19032
19033
/// Check if two standard-layout unions are layout-compatible.
19034
/// (C++11 [class.mem] p18)
19035
static bool isLayoutCompatibleUnion(ASTContext &C, RecordDecl *RD1,
19036
0
                                    RecordDecl *RD2) {
19037
0
  llvm::SmallPtrSet<FieldDecl *, 8> UnmatchedFields;
19038
0
  for (auto *Field2 : RD2->fields())
19039
0
    UnmatchedFields.insert(Field2);
19040
19041
0
  for (auto *Field1 : RD1->fields()) {
19042
0
    llvm::SmallPtrSet<FieldDecl *, 8>::iterator
19043
0
        I = UnmatchedFields.begin(),
19044
0
        E = UnmatchedFields.end();
19045
19046
0
    for ( ; I != E; ++I) {
19047
0
      if (isLayoutCompatible(C, Field1, *I)) {
19048
0
        bool Result = UnmatchedFields.erase(*I);
19049
0
        (void) Result;
19050
0
        assert(Result);
19051
0
        break;
19052
0
      }
19053
0
    }
19054
0
    if (I == E)
19055
0
      return false;
19056
0
  }
19057
19058
0
  return UnmatchedFields.empty();
19059
0
}
19060
19061
static bool isLayoutCompatible(ASTContext &C, RecordDecl *RD1,
19062
0
                               RecordDecl *RD2) {
19063
0
  if (RD1->isUnion() != RD2->isUnion())
19064
0
    return false;
19065
19066
0
  if (RD1->isUnion())
19067
0
    return isLayoutCompatibleUnion(C, RD1, RD2);
19068
0
  else
19069
0
    return isLayoutCompatibleStruct(C, RD1, RD2);
19070
0
}
19071
19072
/// Check if two types are layout-compatible in C++11 sense.
19073
0
static bool isLayoutCompatible(ASTContext &C, QualType T1, QualType T2) {
19074
0
  if (T1.isNull() || T2.isNull())
19075
0
    return false;
19076
19077
  // C++11 [basic.types] p11:
19078
  // If two types T1 and T2 are the same type, then T1 and T2 are
19079
  // layout-compatible types.
19080
0
  if (C.hasSameType(T1, T2))
19081
0
    return true;
19082
19083
0
  T1 = T1.getCanonicalType().getUnqualifiedType();
19084
0
  T2 = T2.getCanonicalType().getUnqualifiedType();
19085
19086
0
  const Type::TypeClass TC1 = T1->getTypeClass();
19087
0
  const Type::TypeClass TC2 = T2->getTypeClass();
19088
19089
0
  if (TC1 != TC2)
19090
0
    return false;
19091
19092
0
  if (TC1 == Type::Enum) {
19093
0
    return isLayoutCompatible(C,
19094
0
                              cast<EnumType>(T1)->getDecl(),
19095
0
                              cast<EnumType>(T2)->getDecl());
19096
0
  } else if (TC1 == Type::Record) {
19097
0
    if (!T1->isStandardLayoutType() || !T2->isStandardLayoutType())
19098
0
      return false;
19099
19100
0
    return isLayoutCompatible(C,
19101
0
                              cast<RecordType>(T1)->getDecl(),
19102
0
                              cast<RecordType>(T2)->getDecl());
19103
0
  }
19104
19105
0
  return false;
19106
0
}
19107
19108
//===--- CHECK: pointer_with_type_tag attribute: datatypes should match ----//
19109
19110
/// Given a type tag expression find the type tag itself.
19111
///
19112
/// \param TypeExpr Type tag expression, as it appears in user's code.
19113
///
19114
/// \param VD Declaration of an identifier that appears in a type tag.
19115
///
19116
/// \param MagicValue Type tag magic value.
19117
///
19118
/// \param isConstantEvaluated whether the evalaution should be performed in
19119
19120
/// constant context.
19121
static bool FindTypeTagExpr(const Expr *TypeExpr, const ASTContext &Ctx,
19122
                            const ValueDecl **VD, uint64_t *MagicValue,
19123
0
                            bool isConstantEvaluated) {
19124
0
  while(true) {
19125
0
    if (!TypeExpr)
19126
0
      return false;
19127
19128
0
    TypeExpr = TypeExpr->IgnoreParenImpCasts()->IgnoreParenCasts();
19129
19130
0
    switch (TypeExpr->getStmtClass()) {
19131
0
    case Stmt::UnaryOperatorClass: {
19132
0
      const UnaryOperator *UO = cast<UnaryOperator>(TypeExpr);
19133
0
      if (UO->getOpcode() == UO_AddrOf || UO->getOpcode() == UO_Deref) {
19134
0
        TypeExpr = UO->getSubExpr();
19135
0
        continue;
19136
0
      }
19137
0
      return false;
19138
0
    }
19139
19140
0
    case Stmt::DeclRefExprClass: {
19141
0
      const DeclRefExpr *DRE = cast<DeclRefExpr>(TypeExpr);
19142
0
      *VD = DRE->getDecl();
19143
0
      return true;
19144
0
    }
19145
19146
0
    case Stmt::IntegerLiteralClass: {
19147
0
      const IntegerLiteral *IL = cast<IntegerLiteral>(TypeExpr);
19148
0
      llvm::APInt MagicValueAPInt = IL->getValue();
19149
0
      if (MagicValueAPInt.getActiveBits() <= 64) {
19150
0
        *MagicValue = MagicValueAPInt.getZExtValue();
19151
0
        return true;
19152
0
      } else
19153
0
        return false;
19154
0
    }
19155
19156
0
    case Stmt::BinaryConditionalOperatorClass:
19157
0
    case Stmt::ConditionalOperatorClass: {
19158
0
      const AbstractConditionalOperator *ACO =
19159
0
          cast<AbstractConditionalOperator>(TypeExpr);
19160
0
      bool Result;
19161
0
      if (ACO->getCond()->EvaluateAsBooleanCondition(Result, Ctx,
19162
0
                                                     isConstantEvaluated)) {
19163
0
        if (Result)
19164
0
          TypeExpr = ACO->getTrueExpr();
19165
0
        else
19166
0
          TypeExpr = ACO->getFalseExpr();
19167
0
        continue;
19168
0
      }
19169
0
      return false;
19170
0
    }
19171
19172
0
    case Stmt::BinaryOperatorClass: {
19173
0
      const BinaryOperator *BO = cast<BinaryOperator>(TypeExpr);
19174
0
      if (BO->getOpcode() == BO_Comma) {
19175
0
        TypeExpr = BO->getRHS();
19176
0
        continue;
19177
0
      }
19178
0
      return false;
19179
0
    }
19180
19181
0
    default:
19182
0
      return false;
19183
0
    }
19184
0
  }
19185
0
}
19186
19187
/// Retrieve the C type corresponding to type tag TypeExpr.
19188
///
19189
/// \param TypeExpr Expression that specifies a type tag.
19190
///
19191
/// \param MagicValues Registered magic values.
19192
///
19193
/// \param FoundWrongKind Set to true if a type tag was found, but of a wrong
19194
///        kind.
19195
///
19196
/// \param TypeInfo Information about the corresponding C type.
19197
///
19198
/// \param isConstantEvaluated whether the evalaution should be performed in
19199
/// constant context.
19200
///
19201
/// \returns true if the corresponding C type was found.
19202
static bool GetMatchingCType(
19203
    const IdentifierInfo *ArgumentKind, const Expr *TypeExpr,
19204
    const ASTContext &Ctx,
19205
    const llvm::DenseMap<Sema::TypeTagMagicValue, Sema::TypeTagData>
19206
        *MagicValues,
19207
    bool &FoundWrongKind, Sema::TypeTagData &TypeInfo,
19208
0
    bool isConstantEvaluated) {
19209
0
  FoundWrongKind = false;
19210
19211
  // Variable declaration that has type_tag_for_datatype attribute.
19212
0
  const ValueDecl *VD = nullptr;
19213
19214
0
  uint64_t MagicValue;
19215
19216
0
  if (!FindTypeTagExpr(TypeExpr, Ctx, &VD, &MagicValue, isConstantEvaluated))
19217
0
    return false;
19218
19219
0
  if (VD) {
19220
0
    if (TypeTagForDatatypeAttr *I = VD->getAttr<TypeTagForDatatypeAttr>()) {
19221
0
      if (I->getArgumentKind() != ArgumentKind) {
19222
0
        FoundWrongKind = true;
19223
0
        return false;
19224
0
      }
19225
0
      TypeInfo.Type = I->getMatchingCType();
19226
0
      TypeInfo.LayoutCompatible = I->getLayoutCompatible();
19227
0
      TypeInfo.MustBeNull = I->getMustBeNull();
19228
0
      return true;
19229
0
    }
19230
0
    return false;
19231
0
  }
19232
19233
0
  if (!MagicValues)
19234
0
    return false;
19235
19236
0
  llvm::DenseMap<Sema::TypeTagMagicValue,
19237
0
                 Sema::TypeTagData>::const_iterator I =
19238
0
      MagicValues->find(std::make_pair(ArgumentKind, MagicValue));
19239
0
  if (I == MagicValues->end())
19240
0
    return false;
19241
19242
0
  TypeInfo = I->second;
19243
0
  return true;
19244
0
}
19245
19246
void Sema::RegisterTypeTagForDatatype(const IdentifierInfo *ArgumentKind,
19247
                                      uint64_t MagicValue, QualType Type,
19248
                                      bool LayoutCompatible,
19249
0
                                      bool MustBeNull) {
19250
0
  if (!TypeTagForDatatypeMagicValues)
19251
0
    TypeTagForDatatypeMagicValues.reset(
19252
0
        new llvm::DenseMap<TypeTagMagicValue, TypeTagData>);
19253
19254
0
  TypeTagMagicValue Magic(ArgumentKind, MagicValue);
19255
0
  (*TypeTagForDatatypeMagicValues)[Magic] =
19256
0
      TypeTagData(Type, LayoutCompatible, MustBeNull);
19257
0
}
19258
19259
0
static bool IsSameCharType(QualType T1, QualType T2) {
19260
0
  const BuiltinType *BT1 = T1->getAs<BuiltinType>();
19261
0
  if (!BT1)
19262
0
    return false;
19263
19264
0
  const BuiltinType *BT2 = T2->getAs<BuiltinType>();
19265
0
  if (!BT2)
19266
0
    return false;
19267
19268
0
  BuiltinType::Kind T1Kind = BT1->getKind();
19269
0
  BuiltinType::Kind T2Kind = BT2->getKind();
19270
19271
0
  return (T1Kind == BuiltinType::SChar  && T2Kind == BuiltinType::Char_S) ||
19272
0
         (T1Kind == BuiltinType::UChar  && T2Kind == BuiltinType::Char_U) ||
19273
0
         (T1Kind == BuiltinType::Char_U && T2Kind == BuiltinType::UChar) ||
19274
0
         (T1Kind == BuiltinType::Char_S && T2Kind == BuiltinType::SChar);
19275
0
}
19276
19277
void Sema::CheckArgumentWithTypeTag(const ArgumentWithTypeTagAttr *Attr,
19278
                                    const ArrayRef<const Expr *> ExprArgs,
19279
0
                                    SourceLocation CallSiteLoc) {
19280
0
  const IdentifierInfo *ArgumentKind = Attr->getArgumentKind();
19281
0
  bool IsPointerAttr = Attr->getIsPointer();
19282
19283
  // Retrieve the argument representing the 'type_tag'.
19284
0
  unsigned TypeTagIdxAST = Attr->getTypeTagIdx().getASTIndex();
19285
0
  if (TypeTagIdxAST >= ExprArgs.size()) {
19286
0
    Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
19287
0
        << 0 << Attr->getTypeTagIdx().getSourceIndex();
19288
0
    return;
19289
0
  }
19290
0
  const Expr *TypeTagExpr = ExprArgs[TypeTagIdxAST];
19291
0
  bool FoundWrongKind;
19292
0
  TypeTagData TypeInfo;
19293
0
  if (!GetMatchingCType(ArgumentKind, TypeTagExpr, Context,
19294
0
                        TypeTagForDatatypeMagicValues.get(), FoundWrongKind,
19295
0
                        TypeInfo, isConstantEvaluatedContext())) {
19296
0
    if (FoundWrongKind)
19297
0
      Diag(TypeTagExpr->getExprLoc(),
19298
0
           diag::warn_type_tag_for_datatype_wrong_kind)
19299
0
        << TypeTagExpr->getSourceRange();
19300
0
    return;
19301
0
  }
19302
19303
  // Retrieve the argument representing the 'arg_idx'.
19304
0
  unsigned ArgumentIdxAST = Attr->getArgumentIdx().getASTIndex();
19305
0
  if (ArgumentIdxAST >= ExprArgs.size()) {
19306
0
    Diag(CallSiteLoc, diag::err_tag_index_out_of_range)
19307
0
        << 1 << Attr->getArgumentIdx().getSourceIndex();
19308
0
    return;
19309
0
  }
19310
0
  const Expr *ArgumentExpr = ExprArgs[ArgumentIdxAST];
19311
0
  if (IsPointerAttr) {
19312
    // Skip implicit cast of pointer to `void *' (as a function argument).
19313
0
    if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgumentExpr))
19314
0
      if (ICE->getType()->isVoidPointerType() &&
19315
0
          ICE->getCastKind() == CK_BitCast)
19316
0
        ArgumentExpr = ICE->getSubExpr();
19317
0
  }
19318
0
  QualType ArgumentType = ArgumentExpr->getType();
19319
19320
  // Passing a `void*' pointer shouldn't trigger a warning.
19321
0
  if (IsPointerAttr && ArgumentType->isVoidPointerType())
19322
0
    return;
19323
19324
0
  if (TypeInfo.MustBeNull) {
19325
    // Type tag with matching void type requires a null pointer.
19326
0
    if (!ArgumentExpr->isNullPointerConstant(Context,
19327
0
                                             Expr::NPC_ValueDependentIsNotNull)) {
19328
0
      Diag(ArgumentExpr->getExprLoc(),
19329
0
           diag::warn_type_safety_null_pointer_required)
19330
0
          << ArgumentKind->getName()
19331
0
          << ArgumentExpr->getSourceRange()
19332
0
          << TypeTagExpr->getSourceRange();
19333
0
    }
19334
0
    return;
19335
0
  }
19336
19337
0
  QualType RequiredType = TypeInfo.Type;
19338
0
  if (IsPointerAttr)
19339
0
    RequiredType = Context.getPointerType(RequiredType);
19340
19341
0
  bool mismatch = false;
19342
0
  if (!TypeInfo.LayoutCompatible) {
19343
0
    mismatch = !Context.hasSameType(ArgumentType, RequiredType);
19344
19345
    // C++11 [basic.fundamental] p1:
19346
    // Plain char, signed char, and unsigned char are three distinct types.
19347
    //
19348
    // But we treat plain `char' as equivalent to `signed char' or `unsigned
19349
    // char' depending on the current char signedness mode.
19350
0
    if (mismatch)
19351
0
      if ((IsPointerAttr && IsSameCharType(ArgumentType->getPointeeType(),
19352
0
                                           RequiredType->getPointeeType())) ||
19353
0
          (!IsPointerAttr && IsSameCharType(ArgumentType, RequiredType)))
19354
0
        mismatch = false;
19355
0
  } else
19356
0
    if (IsPointerAttr)
19357
0
      mismatch = !isLayoutCompatible(Context,
19358
0
                                     ArgumentType->getPointeeType(),
19359
0
                                     RequiredType->getPointeeType());
19360
0
    else
19361
0
      mismatch = !isLayoutCompatible(Context, ArgumentType, RequiredType);
19362
19363
0
  if (mismatch)
19364
0
    Diag(ArgumentExpr->getExprLoc(), diag::warn_type_safety_type_mismatch)
19365
0
        << ArgumentType << ArgumentKind
19366
0
        << TypeInfo.LayoutCompatible << RequiredType
19367
0
        << ArgumentExpr->getSourceRange()
19368
0
        << TypeTagExpr->getSourceRange();
19369
0
}
19370
19371
void Sema::AddPotentialMisalignedMembers(Expr *E, RecordDecl *RD, ValueDecl *MD,
19372
0
                                         CharUnits Alignment) {
19373
0
  MisalignedMembers.emplace_back(E, RD, MD, Alignment);
19374
0
}
19375
19376
20
void Sema::DiagnoseMisalignedMembers() {
19377
20
  for (MisalignedMember &m : MisalignedMembers) {
19378
0
    const NamedDecl *ND = m.RD;
19379
0
    if (ND->getName().empty()) {
19380
0
      if (const TypedefNameDecl *TD = m.RD->getTypedefNameForAnonDecl())
19381
0
        ND = TD;
19382
0
    }
19383
0
    Diag(m.E->getBeginLoc(), diag::warn_taking_address_of_packed_member)
19384
0
        << m.MD << ND << m.E->getSourceRange();
19385
0
  }
19386
20
  MisalignedMembers.clear();
19387
20
}
19388
19389
1
void Sema::DiscardMisalignedMemberAddress(const Type *T, Expr *E) {
19390
1
  E = E->IgnoreParens();
19391
1
  if (!T->isPointerType() && !T->isIntegerType() && !T->isDependentType())
19392
1
    return;
19393
0
  if (isa<UnaryOperator>(E) &&
19394
0
      cast<UnaryOperator>(E)->getOpcode() == UO_AddrOf) {
19395
0
    auto *Op = cast<UnaryOperator>(E)->getSubExpr()->IgnoreParens();
19396
0
    if (isa<MemberExpr>(Op)) {
19397
0
      auto *MA = llvm::find(MisalignedMembers, MisalignedMember(Op));
19398
0
      if (MA != MisalignedMembers.end() &&
19399
0
          (T->isDependentType() || T->isIntegerType() ||
19400
0
           (T->isPointerType() && (T->getPointeeType()->isIncompleteType() ||
19401
0
                                   Context.getTypeAlignInChars(
19402
0
                                       T->getPointeeType()) <= MA->Alignment))))
19403
0
        MisalignedMembers.erase(MA);
19404
0
    }
19405
0
  }
19406
0
}
19407
19408
void Sema::RefersToMemberWithReducedAlignment(
19409
    Expr *E,
19410
    llvm::function_ref<void(Expr *, RecordDecl *, FieldDecl *, CharUnits)>
19411
0
        Action) {
19412
0
  const auto *ME = dyn_cast<MemberExpr>(E);
19413
0
  if (!ME)
19414
0
    return;
19415
19416
  // No need to check expressions with an __unaligned-qualified type.
19417
0
  if (E->getType().getQualifiers().hasUnaligned())
19418
0
    return;
19419
19420
  // For a chain of MemberExpr like "a.b.c.d" this list
19421
  // will keep FieldDecl's like [d, c, b].
19422
0
  SmallVector<FieldDecl *, 4> ReverseMemberChain;
19423
0
  const MemberExpr *TopME = nullptr;
19424
0
  bool AnyIsPacked = false;
19425
0
  do {
19426
0
    QualType BaseType = ME->getBase()->getType();
19427
0
    if (BaseType->isDependentType())
19428
0
      return;
19429
0
    if (ME->isArrow())
19430
0
      BaseType = BaseType->getPointeeType();
19431
0
    RecordDecl *RD = BaseType->castAs<RecordType>()->getDecl();
19432
0
    if (RD->isInvalidDecl())
19433
0
      return;
19434
19435
0
    ValueDecl *MD = ME->getMemberDecl();
19436
0
    auto *FD = dyn_cast<FieldDecl>(MD);
19437
    // We do not care about non-data members.
19438
0
    if (!FD || FD->isInvalidDecl())
19439
0
      return;
19440
19441
0
    AnyIsPacked =
19442
0
        AnyIsPacked || (RD->hasAttr<PackedAttr>() || MD->hasAttr<PackedAttr>());
19443
0
    ReverseMemberChain.push_back(FD);
19444
19445
0
    TopME = ME;
19446
0
    ME = dyn_cast<MemberExpr>(ME->getBase()->IgnoreParens());
19447
0
  } while (ME);
19448
0
  assert(TopME && "We did not compute a topmost MemberExpr!");
19449
19450
  // Not the scope of this diagnostic.
19451
0
  if (!AnyIsPacked)
19452
0
    return;
19453
19454
0
  const Expr *TopBase = TopME->getBase()->IgnoreParenImpCasts();
19455
0
  const auto *DRE = dyn_cast<DeclRefExpr>(TopBase);
19456
  // TODO: The innermost base of the member expression may be too complicated.
19457
  // For now, just disregard these cases. This is left for future
19458
  // improvement.
19459
0
  if (!DRE && !isa<CXXThisExpr>(TopBase))
19460
0
      return;
19461
19462
  // Alignment expected by the whole expression.
19463
0
  CharUnits ExpectedAlignment = Context.getTypeAlignInChars(E->getType());
19464
19465
  // No need to do anything else with this case.
19466
0
  if (ExpectedAlignment.isOne())
19467
0
    return;
19468
19469
  // Synthesize offset of the whole access.
19470
0
  CharUnits Offset;
19471
0
  for (const FieldDecl *FD : llvm::reverse(ReverseMemberChain))
19472
0
    Offset += Context.toCharUnitsFromBits(Context.getFieldOffset(FD));
19473
19474
  // Compute the CompleteObjectAlignment as the alignment of the whole chain.
19475
0
  CharUnits CompleteObjectAlignment = Context.getTypeAlignInChars(
19476
0
      ReverseMemberChain.back()->getParent()->getTypeForDecl());
19477
19478
  // The base expression of the innermost MemberExpr may give
19479
  // stronger guarantees than the class containing the member.
19480
0
  if (DRE && !TopME->isArrow()) {
19481
0
    const ValueDecl *VD = DRE->getDecl();
19482
0
    if (!VD->getType()->isReferenceType())
19483
0
      CompleteObjectAlignment =
19484
0
          std::max(CompleteObjectAlignment, Context.getDeclAlign(VD));
19485
0
  }
19486
19487
  // Check if the synthesized offset fulfills the alignment.
19488
0
  if (Offset % ExpectedAlignment != 0 ||
19489
      // It may fulfill the offset it but the effective alignment may still be
19490
      // lower than the expected expression alignment.
19491
0
      CompleteObjectAlignment < ExpectedAlignment) {
19492
    // If this happens, we want to determine a sensible culprit of this.
19493
    // Intuitively, watching the chain of member expressions from right to
19494
    // left, we start with the required alignment (as required by the field
19495
    // type) but some packed attribute in that chain has reduced the alignment.
19496
    // It may happen that another packed structure increases it again. But if
19497
    // we are here such increase has not been enough. So pointing the first
19498
    // FieldDecl that either is packed or else its RecordDecl is,
19499
    // seems reasonable.
19500
0
    FieldDecl *FD = nullptr;
19501
0
    CharUnits Alignment;
19502
0
    for (FieldDecl *FDI : ReverseMemberChain) {
19503
0
      if (FDI->hasAttr<PackedAttr>() ||
19504
0
          FDI->getParent()->hasAttr<PackedAttr>()) {
19505
0
        FD = FDI;
19506
0
        Alignment = std::min(
19507
0
            Context.getTypeAlignInChars(FD->getType()),
19508
0
            Context.getTypeAlignInChars(FD->getParent()->getTypeForDecl()));
19509
0
        break;
19510
0
      }
19511
0
    }
19512
0
    assert(FD && "We did not find a packed FieldDecl!");
19513
0
    Action(E, FD->getParent(), FD, Alignment);
19514
0
  }
19515
0
}
19516
19517
0
void Sema::CheckAddressOfPackedMember(Expr *rhs) {
19518
0
  using namespace std::placeholders;
19519
19520
0
  RefersToMemberWithReducedAlignment(
19521
0
      rhs, std::bind(&Sema::AddPotentialMisalignedMembers, std::ref(*this), _1,
19522
0
                     _2, _3, _4));
19523
0
}
19524
19525
0
bool Sema::PrepareBuiltinElementwiseMathOneArgCall(CallExpr *TheCall) {
19526
0
  if (checkArgCount(*this, TheCall, 1))
19527
0
    return true;
19528
19529
0
  ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
19530
0
  if (A.isInvalid())
19531
0
    return true;
19532
19533
0
  TheCall->setArg(0, A.get());
19534
0
  QualType TyA = A.get()->getType();
19535
19536
0
  if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA))
19537
0
    return true;
19538
19539
0
  TheCall->setType(TyA);
19540
0
  return false;
19541
0
}
19542
19543
0
bool Sema::SemaBuiltinElementwiseMath(CallExpr *TheCall) {
19544
0
  if (checkArgCount(*this, TheCall, 2))
19545
0
    return true;
19546
19547
0
  ExprResult A = TheCall->getArg(0);
19548
0
  ExprResult B = TheCall->getArg(1);
19549
  // Do standard promotions between the two arguments, returning their common
19550
  // type.
19551
0
  QualType Res =
19552
0
      UsualArithmeticConversions(A, B, TheCall->getExprLoc(), ACK_Comparison);
19553
0
  if (A.isInvalid() || B.isInvalid())
19554
0
    return true;
19555
19556
0
  QualType TyA = A.get()->getType();
19557
0
  QualType TyB = B.get()->getType();
19558
19559
0
  if (Res.isNull() || TyA.getCanonicalType() != TyB.getCanonicalType())
19560
0
    return Diag(A.get()->getBeginLoc(),
19561
0
                diag::err_typecheck_call_different_arg_types)
19562
0
           << TyA << TyB;
19563
19564
0
  if (checkMathBuiltinElementType(*this, A.get()->getBeginLoc(), TyA))
19565
0
    return true;
19566
19567
0
  TheCall->setArg(0, A.get());
19568
0
  TheCall->setArg(1, B.get());
19569
0
  TheCall->setType(Res);
19570
0
  return false;
19571
0
}
19572
19573
0
bool Sema::SemaBuiltinElementwiseTernaryMath(CallExpr *TheCall) {
19574
0
  if (checkArgCount(*this, TheCall, 3))
19575
0
    return true;
19576
19577
0
  Expr *Args[3];
19578
0
  for (int I = 0; I < 3; ++I) {
19579
0
    ExprResult Converted = UsualUnaryConversions(TheCall->getArg(I));
19580
0
    if (Converted.isInvalid())
19581
0
      return true;
19582
0
    Args[I] = Converted.get();
19583
0
  }
19584
19585
0
  int ArgOrdinal = 1;
19586
0
  for (Expr *Arg : Args) {
19587
0
    if (checkFPMathBuiltinElementType(*this, Arg->getBeginLoc(), Arg->getType(),
19588
0
                                      ArgOrdinal++))
19589
0
      return true;
19590
0
  }
19591
19592
0
  for (int I = 1; I < 3; ++I) {
19593
0
    if (Args[0]->getType().getCanonicalType() !=
19594
0
        Args[I]->getType().getCanonicalType()) {
19595
0
      return Diag(Args[0]->getBeginLoc(),
19596
0
                  diag::err_typecheck_call_different_arg_types)
19597
0
             << Args[0]->getType() << Args[I]->getType();
19598
0
    }
19599
19600
0
    TheCall->setArg(I, Args[I]);
19601
0
  }
19602
19603
0
  TheCall->setType(Args[0]->getType());
19604
0
  return false;
19605
0
}
19606
19607
0
bool Sema::PrepareBuiltinReduceMathOneArgCall(CallExpr *TheCall) {
19608
0
  if (checkArgCount(*this, TheCall, 1))
19609
0
    return true;
19610
19611
0
  ExprResult A = UsualUnaryConversions(TheCall->getArg(0));
19612
0
  if (A.isInvalid())
19613
0
    return true;
19614
19615
0
  TheCall->setArg(0, A.get());
19616
0
  return false;
19617
0
}
19618
19619
0
bool Sema::SemaBuiltinNonDeterministicValue(CallExpr *TheCall) {
19620
0
  if (checkArgCount(*this, TheCall, 1))
19621
0
    return true;
19622
19623
0
  ExprResult Arg = TheCall->getArg(0);
19624
0
  QualType TyArg = Arg.get()->getType();
19625
19626
0
  if (!TyArg->isBuiltinType() && !TyArg->isVectorType())
19627
0
    return Diag(TheCall->getArg(0)->getBeginLoc(), diag::err_builtin_invalid_arg_type)
19628
0
           << 1 << /*vector, integer or floating point ty*/ 0 << TyArg;
19629
19630
0
  TheCall->setType(TyArg);
19631
0
  return false;
19632
0
}
19633
19634
ExprResult Sema::SemaBuiltinMatrixTranspose(CallExpr *TheCall,
19635
0
                                            ExprResult CallResult) {
19636
0
  if (checkArgCount(*this, TheCall, 1))
19637
0
    return ExprError();
19638
19639
0
  ExprResult MatrixArg = DefaultLvalueConversion(TheCall->getArg(0));
19640
0
  if (MatrixArg.isInvalid())
19641
0
    return MatrixArg;
19642
0
  Expr *Matrix = MatrixArg.get();
19643
19644
0
  auto *MType = Matrix->getType()->getAs<ConstantMatrixType>();
19645
0
  if (!MType) {
19646
0
    Diag(Matrix->getBeginLoc(), diag::err_builtin_invalid_arg_type)
19647
0
        << 1 << /* matrix ty*/ 1 << Matrix->getType();
19648
0
    return ExprError();
19649
0
  }
19650
19651
  // Create returned matrix type by swapping rows and columns of the argument
19652
  // matrix type.
19653
0
  QualType ResultType = Context.getConstantMatrixType(
19654
0
      MType->getElementType(), MType->getNumColumns(), MType->getNumRows());
19655
19656
  // Change the return type to the type of the returned matrix.
19657
0
  TheCall->setType(ResultType);
19658
19659
  // Update call argument to use the possibly converted matrix argument.
19660
0
  TheCall->setArg(0, Matrix);
19661
0
  return CallResult;
19662
0
}
19663
19664
// Get and verify the matrix dimensions.
19665
static std::optional<unsigned>
19666
0
getAndVerifyMatrixDimension(Expr *Expr, StringRef Name, Sema &S) {
19667
0
  SourceLocation ErrorPos;
19668
0
  std::optional<llvm::APSInt> Value =
19669
0
      Expr->getIntegerConstantExpr(S.Context, &ErrorPos);
19670
0
  if (!Value) {
19671
0
    S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_scalar_unsigned_arg)
19672
0
        << Name;
19673
0
    return {};
19674
0
  }
19675
0
  uint64_t Dim = Value->getZExtValue();
19676
0
  if (!ConstantMatrixType::isDimensionValid(Dim)) {
19677
0
    S.Diag(Expr->getBeginLoc(), diag::err_builtin_matrix_invalid_dimension)
19678
0
        << Name << ConstantMatrixType::getMaxElementsPerDimension();
19679
0
    return {};
19680
0
  }
19681
0
  return Dim;
19682
0
}
19683
19684
ExprResult Sema::SemaBuiltinMatrixColumnMajorLoad(CallExpr *TheCall,
19685
0
                                                  ExprResult CallResult) {
19686
0
  if (!getLangOpts().MatrixTypes) {
19687
0
    Diag(TheCall->getBeginLoc(), diag::err_builtin_matrix_disabled);
19688
0
    return ExprError();
19689
0
  }
19690
19691
0
  if (checkArgCount(*this, TheCall, 4))
19692
0
    return ExprError();
19693
19694
0
  unsigned PtrArgIdx = 0;
19695
0
  Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
19696
0
  Expr *RowsExpr = TheCall->getArg(1);
19697
0
  Expr *ColumnsExpr = TheCall->getArg(2);
19698
0
  Expr *StrideExpr = TheCall->getArg(3);
19699
19700
0
  bool ArgError = false;
19701
19702
  // Check pointer argument.
19703
0
  {
19704
0
    ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
19705
0
    if (PtrConv.isInvalid())
19706
0
      return PtrConv;
19707
0
    PtrExpr = PtrConv.get();
19708
0
    TheCall->setArg(0, PtrExpr);
19709
0
    if (PtrExpr->isTypeDependent()) {
19710
0
      TheCall->setType(Context.DependentTy);
19711
0
      return TheCall;
19712
0
    }
19713
0
  }
19714
19715
0
  auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
19716
0
  QualType ElementTy;
19717
0
  if (!PtrTy) {
19718
0
    Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
19719
0
        << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
19720
0
    ArgError = true;
19721
0
  } else {
19722
0
    ElementTy = PtrTy->getPointeeType().getUnqualifiedType();
19723
19724
0
    if (!ConstantMatrixType::isValidElementType(ElementTy)) {
19725
0
      Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
19726
0
          << PtrArgIdx + 1 << /* pointer to element ty*/ 2
19727
0
          << PtrExpr->getType();
19728
0
      ArgError = true;
19729
0
    }
19730
0
  }
19731
19732
  // Apply default Lvalue conversions and convert the expression to size_t.
19733
0
  auto ApplyArgumentConversions = [this](Expr *E) {
19734
0
    ExprResult Conv = DefaultLvalueConversion(E);
19735
0
    if (Conv.isInvalid())
19736
0
      return Conv;
19737
19738
0
    return tryConvertExprToType(Conv.get(), Context.getSizeType());
19739
0
  };
19740
19741
  // Apply conversion to row and column expressions.
19742
0
  ExprResult RowsConv = ApplyArgumentConversions(RowsExpr);
19743
0
  if (!RowsConv.isInvalid()) {
19744
0
    RowsExpr = RowsConv.get();
19745
0
    TheCall->setArg(1, RowsExpr);
19746
0
  } else
19747
0
    RowsExpr = nullptr;
19748
19749
0
  ExprResult ColumnsConv = ApplyArgumentConversions(ColumnsExpr);
19750
0
  if (!ColumnsConv.isInvalid()) {
19751
0
    ColumnsExpr = ColumnsConv.get();
19752
0
    TheCall->setArg(2, ColumnsExpr);
19753
0
  } else
19754
0
    ColumnsExpr = nullptr;
19755
19756
  // If any part of the result matrix type is still pending, just use
19757
  // Context.DependentTy, until all parts are resolved.
19758
0
  if ((RowsExpr && RowsExpr->isTypeDependent()) ||
19759
0
      (ColumnsExpr && ColumnsExpr->isTypeDependent())) {
19760
0
    TheCall->setType(Context.DependentTy);
19761
0
    return CallResult;
19762
0
  }
19763
19764
  // Check row and column dimensions.
19765
0
  std::optional<unsigned> MaybeRows;
19766
0
  if (RowsExpr)
19767
0
    MaybeRows = getAndVerifyMatrixDimension(RowsExpr, "row", *this);
19768
19769
0
  std::optional<unsigned> MaybeColumns;
19770
0
  if (ColumnsExpr)
19771
0
    MaybeColumns = getAndVerifyMatrixDimension(ColumnsExpr, "column", *this);
19772
19773
  // Check stride argument.
19774
0
  ExprResult StrideConv = ApplyArgumentConversions(StrideExpr);
19775
0
  if (StrideConv.isInvalid())
19776
0
    return ExprError();
19777
0
  StrideExpr = StrideConv.get();
19778
0
  TheCall->setArg(3, StrideExpr);
19779
19780
0
  if (MaybeRows) {
19781
0
    if (std::optional<llvm::APSInt> Value =
19782
0
            StrideExpr->getIntegerConstantExpr(Context)) {
19783
0
      uint64_t Stride = Value->getZExtValue();
19784
0
      if (Stride < *MaybeRows) {
19785
0
        Diag(StrideExpr->getBeginLoc(),
19786
0
             diag::err_builtin_matrix_stride_too_small);
19787
0
        ArgError = true;
19788
0
      }
19789
0
    }
19790
0
  }
19791
19792
0
  if (ArgError || !MaybeRows || !MaybeColumns)
19793
0
    return ExprError();
19794
19795
0
  TheCall->setType(
19796
0
      Context.getConstantMatrixType(ElementTy, *MaybeRows, *MaybeColumns));
19797
0
  return CallResult;
19798
0
}
19799
19800
ExprResult Sema::SemaBuiltinMatrixColumnMajorStore(CallExpr *TheCall,
19801
0
                                                   ExprResult CallResult) {
19802
0
  if (checkArgCount(*this, TheCall, 3))
19803
0
    return ExprError();
19804
19805
0
  unsigned PtrArgIdx = 1;
19806
0
  Expr *MatrixExpr = TheCall->getArg(0);
19807
0
  Expr *PtrExpr = TheCall->getArg(PtrArgIdx);
19808
0
  Expr *StrideExpr = TheCall->getArg(2);
19809
19810
0
  bool ArgError = false;
19811
19812
0
  {
19813
0
    ExprResult MatrixConv = DefaultLvalueConversion(MatrixExpr);
19814
0
    if (MatrixConv.isInvalid())
19815
0
      return MatrixConv;
19816
0
    MatrixExpr = MatrixConv.get();
19817
0
    TheCall->setArg(0, MatrixExpr);
19818
0
  }
19819
0
  if (MatrixExpr->isTypeDependent()) {
19820
0
    TheCall->setType(Context.DependentTy);
19821
0
    return TheCall;
19822
0
  }
19823
19824
0
  auto *MatrixTy = MatrixExpr->getType()->getAs<ConstantMatrixType>();
19825
0
  if (!MatrixTy) {
19826
0
    Diag(MatrixExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
19827
0
        << 1 << /*matrix ty */ 1 << MatrixExpr->getType();
19828
0
    ArgError = true;
19829
0
  }
19830
19831
0
  {
19832
0
    ExprResult PtrConv = DefaultFunctionArrayLvalueConversion(PtrExpr);
19833
0
    if (PtrConv.isInvalid())
19834
0
      return PtrConv;
19835
0
    PtrExpr = PtrConv.get();
19836
0
    TheCall->setArg(1, PtrExpr);
19837
0
    if (PtrExpr->isTypeDependent()) {
19838
0
      TheCall->setType(Context.DependentTy);
19839
0
      return TheCall;
19840
0
    }
19841
0
  }
19842
19843
  // Check pointer argument.
19844
0
  auto *PtrTy = PtrExpr->getType()->getAs<PointerType>();
19845
0
  if (!PtrTy) {
19846
0
    Diag(PtrExpr->getBeginLoc(), diag::err_builtin_invalid_arg_type)
19847
0
        << PtrArgIdx + 1 << /*pointer to element ty*/ 2 << PtrExpr->getType();
19848
0
    ArgError = true;
19849
0
  } else {
19850
0
    QualType ElementTy = PtrTy->getPointeeType();
19851
0
    if (ElementTy.isConstQualified()) {
19852
0
      Diag(PtrExpr->getBeginLoc(), diag::err_builtin_matrix_store_to_const);
19853
0
      ArgError = true;
19854
0
    }
19855
0
    ElementTy = ElementTy.getUnqualifiedType().getCanonicalType();
19856
0
    if (MatrixTy &&
19857
0
        !Context.hasSameType(ElementTy, MatrixTy->getElementType())) {
19858
0
      Diag(PtrExpr->getBeginLoc(),
19859
0
           diag::err_builtin_matrix_pointer_arg_mismatch)
19860
0
          << ElementTy << MatrixTy->getElementType();
19861
0
      ArgError = true;
19862
0
    }
19863
0
  }
19864
19865
  // Apply default Lvalue conversions and convert the stride expression to
19866
  // size_t.
19867
0
  {
19868
0
    ExprResult StrideConv = DefaultLvalueConversion(StrideExpr);
19869
0
    if (StrideConv.isInvalid())
19870
0
      return StrideConv;
19871
19872
0
    StrideConv = tryConvertExprToType(StrideConv.get(), Context.getSizeType());
19873
0
    if (StrideConv.isInvalid())
19874
0
      return StrideConv;
19875
0
    StrideExpr = StrideConv.get();
19876
0
    TheCall->setArg(2, StrideExpr);
19877
0
  }
19878
19879
  // Check stride argument.
19880
0
  if (MatrixTy) {
19881
0
    if (std::optional<llvm::APSInt> Value =
19882
0
            StrideExpr->getIntegerConstantExpr(Context)) {
19883
0
      uint64_t Stride = Value->getZExtValue();
19884
0
      if (Stride < MatrixTy->getNumRows()) {
19885
0
        Diag(StrideExpr->getBeginLoc(),
19886
0
             diag::err_builtin_matrix_stride_too_small);
19887
0
        ArgError = true;
19888
0
      }
19889
0
    }
19890
0
  }
19891
19892
0
  if (ArgError)
19893
0
    return ExprError();
19894
19895
0
  return CallResult;
19896
0
}
19897
19898
/// Checks the argument at the given index is a WebAssembly table and if it
19899
/// is, sets ElTy to the element type.
19900
static bool CheckWasmBuiltinArgIsTable(Sema &S, CallExpr *E, unsigned ArgIndex,
19901
0
                                       QualType &ElTy) {
19902
0
  Expr *ArgExpr = E->getArg(ArgIndex);
19903
0
  const auto *ATy = dyn_cast<ArrayType>(ArgExpr->getType());
19904
0
  if (!ATy || !ATy->getElementType().isWebAssemblyReferenceType()) {
19905
0
    return S.Diag(ArgExpr->getBeginLoc(),
19906
0
                  diag::err_wasm_builtin_arg_must_be_table_type)
19907
0
           << ArgIndex + 1 << ArgExpr->getSourceRange();
19908
0
  }
19909
0
  ElTy = ATy->getElementType();
19910
0
  return false;
19911
0
}
19912
19913
/// Checks the argument at the given index is an integer.
19914
static bool CheckWasmBuiltinArgIsInteger(Sema &S, CallExpr *E,
19915
0
                                         unsigned ArgIndex) {
19916
0
  Expr *ArgExpr = E->getArg(ArgIndex);
19917
0
  if (!ArgExpr->getType()->isIntegerType()) {
19918
0
    return S.Diag(ArgExpr->getBeginLoc(),
19919
0
                  diag::err_wasm_builtin_arg_must_be_integer_type)
19920
0
           << ArgIndex + 1 << ArgExpr->getSourceRange();
19921
0
  }
19922
0
  return false;
19923
0
}
19924
19925
/// Check that the first argument is a WebAssembly table, and the second
19926
/// is an index to use as index into the table.
19927
0
bool Sema::BuiltinWasmTableGet(CallExpr *TheCall) {
19928
0
  if (checkArgCount(*this, TheCall, 2))
19929
0
    return true;
19930
19931
0
  QualType ElTy;
19932
0
  if (CheckWasmBuiltinArgIsTable(*this, TheCall, 0, ElTy))
19933
0
    return true;
19934
19935
0
  if (CheckWasmBuiltinArgIsInteger(*this, TheCall, 1))
19936
0
    return true;
19937
19938
  // If all is well, we set the type of TheCall to be the type of the
19939
  // element of the table.
19940
  // i.e. a table.get on an externref table has type externref,
19941
  // or whatever the type of the table element is.
19942
0
  TheCall->setType(ElTy);
19943
19944
0
  return false;
19945
0
}
19946
19947
/// Check that the first argumnet is a WebAssembly table, the second is
19948
/// an index to use as index into the table and the third is the reference
19949
/// type to set into the table.
19950
0
bool Sema::BuiltinWasmTableSet(CallExpr *TheCall) {
19951
0
  if (checkArgCount(*this, TheCall, 3))
19952
0
    return true;
19953
19954
0
  QualType ElTy;
19955
0
  if (CheckWasmBuiltinArgIsTable(*this, TheCall, 0, ElTy))
19956
0
    return true;
19957
19958
0
  if (CheckWasmBuiltinArgIsInteger(*this, TheCall, 1))
19959
0
    return true;
19960
19961
0
  if (!Context.hasSameType(ElTy, TheCall->getArg(2)->getType()))
19962
0
    return true;
19963
19964
0
  return false;
19965
0
}
19966
19967
/// Check that the argument is a WebAssembly table.
19968
0
bool Sema::BuiltinWasmTableSize(CallExpr *TheCall) {
19969
0
  if (checkArgCount(*this, TheCall, 1))
19970
0
    return true;
19971
19972
0
  QualType ElTy;
19973
0
  if (CheckWasmBuiltinArgIsTable(*this, TheCall, 0, ElTy))
19974
0
    return true;
19975
19976
0
  return false;
19977
0
}
19978
19979
/// Check that the first argument is a WebAssembly table, the second is the
19980
/// value to use for new elements (of a type matching the table type), the
19981
/// third value is an integer.
19982
0
bool Sema::BuiltinWasmTableGrow(CallExpr *TheCall) {
19983
0
  if (checkArgCount(*this, TheCall, 3))
19984
0
    return true;
19985
19986
0
  QualType ElTy;
19987
0
  if (CheckWasmBuiltinArgIsTable(*this, TheCall, 0, ElTy))
19988
0
    return true;
19989
19990
0
  Expr *NewElemArg = TheCall->getArg(1);
19991
0
  if (!Context.hasSameType(ElTy, NewElemArg->getType())) {
19992
0
    return Diag(NewElemArg->getBeginLoc(),
19993
0
                diag::err_wasm_builtin_arg_must_match_table_element_type)
19994
0
           << 2 << 1 << NewElemArg->getSourceRange();
19995
0
  }
19996
19997
0
  if (CheckWasmBuiltinArgIsInteger(*this, TheCall, 2))
19998
0
    return true;
19999
20000
0
  return false;
20001
0
}
20002
20003
/// Check that the first argument is a WebAssembly table, the second is an
20004
/// integer, the third is the value to use to fill the table (of a type
20005
/// matching the table type), and the fourth is an integer.
20006
0
bool Sema::BuiltinWasmTableFill(CallExpr *TheCall) {
20007
0
  if (checkArgCount(*this, TheCall, 4))
20008
0
    return true;
20009
20010
0
  QualType ElTy;
20011
0
  if (CheckWasmBuiltinArgIsTable(*this, TheCall, 0, ElTy))
20012
0
    return true;
20013
20014
0
  if (CheckWasmBuiltinArgIsInteger(*this, TheCall, 1))
20015
0
    return true;
20016
20017
0
  Expr *NewElemArg = TheCall->getArg(2);
20018
0
  if (!Context.hasSameType(ElTy, NewElemArg->getType())) {
20019
0
    return Diag(NewElemArg->getBeginLoc(),
20020
0
                diag::err_wasm_builtin_arg_must_match_table_element_type)
20021
0
           << 3 << 1 << NewElemArg->getSourceRange();
20022
0
  }
20023
20024
0
  if (CheckWasmBuiltinArgIsInteger(*this, TheCall, 3))
20025
0
    return true;
20026
20027
0
  return false;
20028
0
}
20029
20030
/// Check that the first argument is a WebAssembly table, the second is also a
20031
/// WebAssembly table (of the same element type), and the third to fifth
20032
/// arguments are integers.
20033
0
bool Sema::BuiltinWasmTableCopy(CallExpr *TheCall) {
20034
0
  if (checkArgCount(*this, TheCall, 5))
20035
0
    return true;
20036
20037
0
  QualType XElTy;
20038
0
  if (CheckWasmBuiltinArgIsTable(*this, TheCall, 0, XElTy))
20039
0
    return true;
20040
20041
0
  QualType YElTy;
20042
0
  if (CheckWasmBuiltinArgIsTable(*this, TheCall, 1, YElTy))
20043
0
    return true;
20044
20045
0
  Expr *TableYArg = TheCall->getArg(1);
20046
0
  if (!Context.hasSameType(XElTy, YElTy)) {
20047
0
    return Diag(TableYArg->getBeginLoc(),
20048
0
                diag::err_wasm_builtin_arg_must_match_table_element_type)
20049
0
           << 2 << 1 << TableYArg->getSourceRange();
20050
0
  }
20051
20052
0
  for (int I = 2; I <= 4; I++) {
20053
0
    if (CheckWasmBuiltinArgIsInteger(*this, TheCall, I))
20054
0
      return true;
20055
0
  }
20056
20057
0
  return false;
20058
0
}
20059
20060
/// \brief Enforce the bounds of a TCB
20061
/// CheckTCBEnforcement - Enforces that every function in a named TCB only
20062
/// directly calls other functions in the same TCB as marked by the enforce_tcb
20063
/// and enforce_tcb_leaf attributes.
20064
void Sema::CheckTCBEnforcement(const SourceLocation CallExprLoc,
20065
0
                               const NamedDecl *Callee) {
20066
  // This warning does not make sense in code that has no runtime behavior.
20067
0
  if (isUnevaluatedContext())
20068
0
    return;
20069
20070
0
  const NamedDecl *Caller = getCurFunctionOrMethodDecl();
20071
20072
0
  if (!Caller || !Caller->hasAttr<EnforceTCBAttr>())
20073
0
    return;
20074
20075
  // Search through the enforce_tcb and enforce_tcb_leaf attributes to find
20076
  // all TCBs the callee is a part of.
20077
0
  llvm::StringSet<> CalleeTCBs;
20078
0
  for (const auto *A : Callee->specific_attrs<EnforceTCBAttr>())
20079
0
    CalleeTCBs.insert(A->getTCBName());
20080
0
  for (const auto *A : Callee->specific_attrs<EnforceTCBLeafAttr>())
20081
0
    CalleeTCBs.insert(A->getTCBName());
20082
20083
  // Go through the TCBs the caller is a part of and emit warnings if Caller
20084
  // is in a TCB that the Callee is not.
20085
0
  for (const auto *A : Caller->specific_attrs<EnforceTCBAttr>()) {
20086
0
    StringRef CallerTCB = A->getTCBName();
20087
0
    if (CalleeTCBs.count(CallerTCB) == 0) {
20088
0
      this->Diag(CallExprLoc, diag::warn_tcb_enforcement_violation)
20089
0
          << Callee << CallerTCB;
20090
0
    }
20091
0
  }
20092
0
}