/src/llvm-project/clang/lib/Sema/SemaDecl.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file implements semantic analysis for declarations. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "TypeLocBuilder.h" |
14 | | #include "clang/AST/ASTConsumer.h" |
15 | | #include "clang/AST/ASTContext.h" |
16 | | #include "clang/AST/ASTLambda.h" |
17 | | #include "clang/AST/CXXInheritance.h" |
18 | | #include "clang/AST/CharUnits.h" |
19 | | #include "clang/AST/CommentDiagnostic.h" |
20 | | #include "clang/AST/Decl.h" |
21 | | #include "clang/AST/DeclCXX.h" |
22 | | #include "clang/AST/DeclObjC.h" |
23 | | #include "clang/AST/DeclTemplate.h" |
24 | | #include "clang/AST/EvaluatedExprVisitor.h" |
25 | | #include "clang/AST/Expr.h" |
26 | | #include "clang/AST/ExprCXX.h" |
27 | | #include "clang/AST/NonTrivialTypeVisitor.h" |
28 | | #include "clang/AST/Randstruct.h" |
29 | | #include "clang/AST/StmtCXX.h" |
30 | | #include "clang/AST/Type.h" |
31 | | #include "clang/Basic/Builtins.h" |
32 | | #include "clang/Basic/HLSLRuntime.h" |
33 | | #include "clang/Basic/PartialDiagnostic.h" |
34 | | #include "clang/Basic/SourceManager.h" |
35 | | #include "clang/Basic/TargetInfo.h" |
36 | | #include "clang/Lex/HeaderSearch.h" // TODO: Sema shouldn't depend on Lex |
37 | | #include "clang/Lex/Lexer.h" // TODO: Extract static functions to fix layering. |
38 | | #include "clang/Lex/ModuleLoader.h" // TODO: Sema shouldn't depend on Lex |
39 | | #include "clang/Lex/Preprocessor.h" // Included for isCodeCompletionEnabled() |
40 | | #include "clang/Sema/CXXFieldCollector.h" |
41 | | #include "clang/Sema/DeclSpec.h" |
42 | | #include "clang/Sema/DelayedDiagnostic.h" |
43 | | #include "clang/Sema/Initialization.h" |
44 | | #include "clang/Sema/Lookup.h" |
45 | | #include "clang/Sema/ParsedTemplate.h" |
46 | | #include "clang/Sema/Scope.h" |
47 | | #include "clang/Sema/ScopeInfo.h" |
48 | | #include "clang/Sema/SemaInternal.h" |
49 | | #include "clang/Sema/Template.h" |
50 | | #include "llvm/ADT/SmallString.h" |
51 | | #include "llvm/ADT/StringExtras.h" |
52 | | #include "llvm/TargetParser/Triple.h" |
53 | | #include <algorithm> |
54 | | #include <cstring> |
55 | | #include <functional> |
56 | | #include <optional> |
57 | | #include <unordered_map> |
58 | | |
59 | | using namespace clang; |
60 | | using namespace sema; |
61 | | |
62 | 703 | Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) { |
63 | 703 | if (OwnedType) { |
64 | 0 | Decl *Group[2] = { OwnedType, Ptr }; |
65 | 0 | return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2)); |
66 | 0 | } |
67 | | |
68 | 703 | return DeclGroupPtrTy::make(DeclGroupRef(Ptr)); |
69 | 703 | } |
70 | | |
71 | | namespace { |
72 | | |
73 | | class TypeNameValidatorCCC final : public CorrectionCandidateCallback { |
74 | | public: |
75 | | TypeNameValidatorCCC(bool AllowInvalid, bool WantClass = false, |
76 | | bool AllowTemplates = false, |
77 | | bool AllowNonTemplates = true) |
78 | | : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass), |
79 | 10.2k | AllowTemplates(AllowTemplates), AllowNonTemplates(AllowNonTemplates) { |
80 | 10.2k | WantExpressionKeywords = false; |
81 | 10.2k | WantCXXNamedCasts = false; |
82 | 10.2k | WantRemainingKeywords = false; |
83 | 10.2k | } |
84 | | |
85 | 199 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
86 | 199 | if (NamedDecl *ND = candidate.getCorrectionDecl()) { |
87 | 199 | if (!AllowInvalidDecl && ND->isInvalidDecl()) |
88 | 186 | return false; |
89 | | |
90 | 13 | if (getAsTypeTemplateDecl(ND)) |
91 | 0 | return AllowTemplates; |
92 | | |
93 | 13 | bool IsType = isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND); |
94 | 13 | if (!IsType) |
95 | 13 | return false; |
96 | | |
97 | 0 | if (AllowNonTemplates) |
98 | 0 | return true; |
99 | | |
100 | | // An injected-class-name of a class template (specialization) is valid |
101 | | // as a template or as a non-template. |
102 | 0 | if (AllowTemplates) { |
103 | 0 | auto *RD = dyn_cast<CXXRecordDecl>(ND); |
104 | 0 | if (!RD || !RD->isInjectedClassName()) |
105 | 0 | return false; |
106 | 0 | RD = cast<CXXRecordDecl>(RD->getDeclContext()); |
107 | 0 | return RD->getDescribedClassTemplate() || |
108 | 0 | isa<ClassTemplateSpecializationDecl>(RD); |
109 | 0 | } |
110 | | |
111 | 0 | return false; |
112 | 0 | } |
113 | | |
114 | 0 | return !WantClassName && candidate.isKeyword(); |
115 | 199 | } |
116 | | |
117 | 1.44k | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
118 | 1.44k | return std::make_unique<TypeNameValidatorCCC>(*this); |
119 | 1.44k | } |
120 | | |
121 | | private: |
122 | | bool AllowInvalidDecl; |
123 | | bool WantClassName; |
124 | | bool AllowTemplates; |
125 | | bool AllowNonTemplates; |
126 | | }; |
127 | | |
128 | | } // end anonymous namespace |
129 | | |
130 | | /// Determine whether the token kind starts a simple-type-specifier. |
131 | 0 | bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const { |
132 | 0 | switch (Kind) { |
133 | | // FIXME: Take into account the current language when deciding whether a |
134 | | // token kind is a valid type specifier |
135 | 0 | case tok::kw_short: |
136 | 0 | case tok::kw_long: |
137 | 0 | case tok::kw___int64: |
138 | 0 | case tok::kw___int128: |
139 | 0 | case tok::kw_signed: |
140 | 0 | case tok::kw_unsigned: |
141 | 0 | case tok::kw_void: |
142 | 0 | case tok::kw_char: |
143 | 0 | case tok::kw_int: |
144 | 0 | case tok::kw_half: |
145 | 0 | case tok::kw_float: |
146 | 0 | case tok::kw_double: |
147 | 0 | case tok::kw___bf16: |
148 | 0 | case tok::kw__Float16: |
149 | 0 | case tok::kw___float128: |
150 | 0 | case tok::kw___ibm128: |
151 | 0 | case tok::kw_wchar_t: |
152 | 0 | case tok::kw_bool: |
153 | 0 | case tok::kw__Accum: |
154 | 0 | case tok::kw__Fract: |
155 | 0 | case tok::kw__Sat: |
156 | 0 | #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait: |
157 | 0 | #include "clang/Basic/TransformTypeTraits.def" |
158 | 0 | case tok::kw___auto_type: |
159 | 0 | return true; |
160 | | |
161 | 0 | case tok::annot_typename: |
162 | 0 | case tok::kw_char16_t: |
163 | 0 | case tok::kw_char32_t: |
164 | 0 | case tok::kw_typeof: |
165 | 0 | case tok::annot_decltype: |
166 | 0 | case tok::kw_decltype: |
167 | 0 | return getLangOpts().CPlusPlus; |
168 | | |
169 | 0 | case tok::kw_char8_t: |
170 | 0 | return getLangOpts().Char8; |
171 | | |
172 | 0 | default: |
173 | 0 | break; |
174 | 0 | } |
175 | | |
176 | 0 | return false; |
177 | 0 | } |
178 | | |
179 | | namespace { |
180 | | enum class UnqualifiedTypeNameLookupResult { |
181 | | NotFound, |
182 | | FoundNonType, |
183 | | FoundType |
184 | | }; |
185 | | } // end anonymous namespace |
186 | | |
187 | | /// Tries to perform unqualified lookup of the type decls in bases for |
188 | | /// dependent class. |
189 | | /// \return \a NotFound if no any decls is found, \a FoundNotType if found not a |
190 | | /// type decl, \a FoundType if only type decls are found. |
191 | | static UnqualifiedTypeNameLookupResult |
192 | | lookupUnqualifiedTypeNameInBase(Sema &S, const IdentifierInfo &II, |
193 | | SourceLocation NameLoc, |
194 | 0 | const CXXRecordDecl *RD) { |
195 | 0 | if (!RD->hasDefinition()) |
196 | 0 | return UnqualifiedTypeNameLookupResult::NotFound; |
197 | | // Look for type decls in base classes. |
198 | 0 | UnqualifiedTypeNameLookupResult FoundTypeDecl = |
199 | 0 | UnqualifiedTypeNameLookupResult::NotFound; |
200 | 0 | for (const auto &Base : RD->bases()) { |
201 | 0 | const CXXRecordDecl *BaseRD = nullptr; |
202 | 0 | if (auto *BaseTT = Base.getType()->getAs<TagType>()) |
203 | 0 | BaseRD = BaseTT->getAsCXXRecordDecl(); |
204 | 0 | else if (auto *TST = Base.getType()->getAs<TemplateSpecializationType>()) { |
205 | | // Look for type decls in dependent base classes that have known primary |
206 | | // templates. |
207 | 0 | if (!TST || !TST->isDependentType()) |
208 | 0 | continue; |
209 | 0 | auto *TD = TST->getTemplateName().getAsTemplateDecl(); |
210 | 0 | if (!TD) |
211 | 0 | continue; |
212 | 0 | if (auto *BasePrimaryTemplate = |
213 | 0 | dyn_cast_or_null<CXXRecordDecl>(TD->getTemplatedDecl())) { |
214 | 0 | if (BasePrimaryTemplate->getCanonicalDecl() != RD->getCanonicalDecl()) |
215 | 0 | BaseRD = BasePrimaryTemplate; |
216 | 0 | else if (auto *CTD = dyn_cast<ClassTemplateDecl>(TD)) { |
217 | 0 | if (const ClassTemplatePartialSpecializationDecl *PS = |
218 | 0 | CTD->findPartialSpecialization(Base.getType())) |
219 | 0 | if (PS->getCanonicalDecl() != RD->getCanonicalDecl()) |
220 | 0 | BaseRD = PS; |
221 | 0 | } |
222 | 0 | } |
223 | 0 | } |
224 | 0 | if (BaseRD) { |
225 | 0 | for (NamedDecl *ND : BaseRD->lookup(&II)) { |
226 | 0 | if (!isa<TypeDecl>(ND)) |
227 | 0 | return UnqualifiedTypeNameLookupResult::FoundNonType; |
228 | 0 | FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; |
229 | 0 | } |
230 | 0 | if (FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound) { |
231 | 0 | switch (lookupUnqualifiedTypeNameInBase(S, II, NameLoc, BaseRD)) { |
232 | 0 | case UnqualifiedTypeNameLookupResult::FoundNonType: |
233 | 0 | return UnqualifiedTypeNameLookupResult::FoundNonType; |
234 | 0 | case UnqualifiedTypeNameLookupResult::FoundType: |
235 | 0 | FoundTypeDecl = UnqualifiedTypeNameLookupResult::FoundType; |
236 | 0 | break; |
237 | 0 | case UnqualifiedTypeNameLookupResult::NotFound: |
238 | 0 | break; |
239 | 0 | } |
240 | 0 | } |
241 | 0 | } |
242 | 0 | } |
243 | | |
244 | 0 | return FoundTypeDecl; |
245 | 0 | } |
246 | | |
247 | | static ParsedType recoverFromTypeInKnownDependentBase(Sema &S, |
248 | | const IdentifierInfo &II, |
249 | 0 | SourceLocation NameLoc) { |
250 | | // Lookup in the parent class template context, if any. |
251 | 0 | const CXXRecordDecl *RD = nullptr; |
252 | 0 | UnqualifiedTypeNameLookupResult FoundTypeDecl = |
253 | 0 | UnqualifiedTypeNameLookupResult::NotFound; |
254 | 0 | for (DeclContext *DC = S.CurContext; |
255 | 0 | DC && FoundTypeDecl == UnqualifiedTypeNameLookupResult::NotFound; |
256 | 0 | DC = DC->getParent()) { |
257 | | // Look for type decls in dependent base classes that have known primary |
258 | | // templates. |
259 | 0 | RD = dyn_cast<CXXRecordDecl>(DC); |
260 | 0 | if (RD && RD->getDescribedClassTemplate()) |
261 | 0 | FoundTypeDecl = lookupUnqualifiedTypeNameInBase(S, II, NameLoc, RD); |
262 | 0 | } |
263 | 0 | if (FoundTypeDecl != UnqualifiedTypeNameLookupResult::FoundType) |
264 | 0 | return nullptr; |
265 | | |
266 | | // We found some types in dependent base classes. Recover as if the user |
267 | | // wrote 'typename MyClass::II' instead of 'II'. We'll fully resolve the |
268 | | // lookup during template instantiation. |
269 | 0 | S.Diag(NameLoc, diag::ext_found_in_dependent_base) << &II; |
270 | |
|
271 | 0 | ASTContext &Context = S.Context; |
272 | 0 | auto *NNS = NestedNameSpecifier::Create(Context, nullptr, false, |
273 | 0 | cast<Type>(Context.getRecordType(RD))); |
274 | 0 | QualType T = |
275 | 0 | Context.getDependentNameType(ElaboratedTypeKeyword::Typename, NNS, &II); |
276 | |
|
277 | 0 | CXXScopeSpec SS; |
278 | 0 | SS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); |
279 | |
|
280 | 0 | TypeLocBuilder Builder; |
281 | 0 | DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); |
282 | 0 | DepTL.setNameLoc(NameLoc); |
283 | 0 | DepTL.setElaboratedKeywordLoc(SourceLocation()); |
284 | 0 | DepTL.setQualifierLoc(SS.getWithLocInContext(Context)); |
285 | 0 | return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); |
286 | 0 | } |
287 | | |
288 | | /// Build a ParsedType for a simple-type-specifier with a nested-name-specifier. |
289 | | static ParsedType buildNamedType(Sema &S, const CXXScopeSpec *SS, QualType T, |
290 | | SourceLocation NameLoc, |
291 | 0 | bool WantNontrivialTypeSourceInfo = true) { |
292 | 0 | switch (T->getTypeClass()) { |
293 | 0 | case Type::DeducedTemplateSpecialization: |
294 | 0 | case Type::Enum: |
295 | 0 | case Type::InjectedClassName: |
296 | 0 | case Type::Record: |
297 | 0 | case Type::Typedef: |
298 | 0 | case Type::UnresolvedUsing: |
299 | 0 | case Type::Using: |
300 | 0 | break; |
301 | | // These can never be qualified so an ElaboratedType node |
302 | | // would carry no additional meaning. |
303 | 0 | case Type::ObjCInterface: |
304 | 0 | case Type::ObjCTypeParam: |
305 | 0 | case Type::TemplateTypeParm: |
306 | 0 | return ParsedType::make(T); |
307 | 0 | default: |
308 | 0 | llvm_unreachable("Unexpected Type Class"); |
309 | 0 | } |
310 | | |
311 | 0 | if (!SS || SS->isEmpty()) |
312 | 0 | return ParsedType::make(S.Context.getElaboratedType( |
313 | 0 | ElaboratedTypeKeyword::None, nullptr, T, nullptr)); |
314 | | |
315 | 0 | QualType ElTy = S.getElaboratedType(ElaboratedTypeKeyword::None, *SS, T); |
316 | 0 | if (!WantNontrivialTypeSourceInfo) |
317 | 0 | return ParsedType::make(ElTy); |
318 | | |
319 | 0 | TypeLocBuilder Builder; |
320 | 0 | Builder.pushTypeSpec(T).setNameLoc(NameLoc); |
321 | 0 | ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(ElTy); |
322 | 0 | ElabTL.setElaboratedKeywordLoc(SourceLocation()); |
323 | 0 | ElabTL.setQualifierLoc(SS->getWithLocInContext(S.Context)); |
324 | 0 | return S.CreateParsedType(ElTy, Builder.getTypeSourceInfo(S.Context, ElTy)); |
325 | 0 | } |
326 | | |
327 | | /// If the identifier refers to a type name within this scope, |
328 | | /// return the declaration of that type. |
329 | | /// |
330 | | /// This routine performs ordinary name lookup of the identifier II |
331 | | /// within the given scope, with optional C++ scope specifier SS, to |
332 | | /// determine whether the name refers to a type. If so, returns an |
333 | | /// opaque pointer (actually a QualType) corresponding to that |
334 | | /// type. Otherwise, returns NULL. |
335 | | ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc, |
336 | | Scope *S, CXXScopeSpec *SS, bool isClassName, |
337 | | bool HasTrailingDot, ParsedType ObjectTypePtr, |
338 | | bool IsCtorOrDtorName, |
339 | | bool WantNontrivialTypeSourceInfo, |
340 | | bool IsClassTemplateDeductionContext, |
341 | | ImplicitTypenameContext AllowImplicitTypename, |
342 | 12.9k | IdentifierInfo **CorrectedII) { |
343 | | // FIXME: Consider allowing this outside C++1z mode as an extension. |
344 | 12.9k | bool AllowDeducedTemplate = IsClassTemplateDeductionContext && |
345 | 12.9k | getLangOpts().CPlusPlus17 && !IsCtorOrDtorName && |
346 | 12.9k | !isClassName && !HasTrailingDot; |
347 | | |
348 | | // Determine where we will perform name lookup. |
349 | 12.9k | DeclContext *LookupCtx = nullptr; |
350 | 12.9k | if (ObjectTypePtr) { |
351 | 0 | QualType ObjectType = ObjectTypePtr.get(); |
352 | 0 | if (ObjectType->isRecordType()) |
353 | 0 | LookupCtx = computeDeclContext(ObjectType); |
354 | 12.9k | } else if (SS && SS->isNotEmpty()) { |
355 | 0 | LookupCtx = computeDeclContext(*SS, false); |
356 | |
|
357 | 0 | if (!LookupCtx) { |
358 | 0 | if (isDependentScopeSpecifier(*SS)) { |
359 | | // C++ [temp.res]p3: |
360 | | // A qualified-id that refers to a type and in which the |
361 | | // nested-name-specifier depends on a template-parameter (14.6.2) |
362 | | // shall be prefixed by the keyword typename to indicate that the |
363 | | // qualified-id denotes a type, forming an |
364 | | // elaborated-type-specifier (7.1.5.3). |
365 | | // |
366 | | // We therefore do not perform any name lookup if the result would |
367 | | // refer to a member of an unknown specialization. |
368 | | // In C++2a, in several contexts a 'typename' is not required. Also |
369 | | // allow this as an extension. |
370 | 0 | if (AllowImplicitTypename == ImplicitTypenameContext::No && |
371 | 0 | !isClassName && !IsCtorOrDtorName) |
372 | 0 | return nullptr; |
373 | 0 | bool IsImplicitTypename = !isClassName && !IsCtorOrDtorName; |
374 | 0 | if (IsImplicitTypename) { |
375 | 0 | SourceLocation QualifiedLoc = SS->getRange().getBegin(); |
376 | 0 | if (getLangOpts().CPlusPlus20) |
377 | 0 | Diag(QualifiedLoc, diag::warn_cxx17_compat_implicit_typename); |
378 | 0 | else |
379 | 0 | Diag(QualifiedLoc, diag::ext_implicit_typename) |
380 | 0 | << SS->getScopeRep() << II.getName() |
381 | 0 | << FixItHint::CreateInsertion(QualifiedLoc, "typename "); |
382 | 0 | } |
383 | | |
384 | | // We know from the grammar that this name refers to a type, |
385 | | // so build a dependent node to describe the type. |
386 | 0 | if (WantNontrivialTypeSourceInfo) |
387 | 0 | return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc, |
388 | 0 | (ImplicitTypenameContext)IsImplicitTypename) |
389 | 0 | .get(); |
390 | | |
391 | 0 | NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context); |
392 | 0 | QualType T = CheckTypenameType( |
393 | 0 | IsImplicitTypename ? ElaboratedTypeKeyword::Typename |
394 | 0 | : ElaboratedTypeKeyword::None, |
395 | 0 | SourceLocation(), QualifierLoc, II, NameLoc); |
396 | 0 | return ParsedType::make(T); |
397 | 0 | } |
398 | | |
399 | 0 | return nullptr; |
400 | 0 | } |
401 | | |
402 | 0 | if (!LookupCtx->isDependentContext() && |
403 | 0 | RequireCompleteDeclContext(*SS, LookupCtx)) |
404 | 0 | return nullptr; |
405 | 0 | } |
406 | | |
407 | | // FIXME: LookupNestedNameSpecifierName isn't the right kind of |
408 | | // lookup for class-names. |
409 | 12.9k | LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName : |
410 | 12.9k | LookupOrdinaryName; |
411 | 12.9k | LookupResult Result(*this, &II, NameLoc, Kind); |
412 | 12.9k | if (LookupCtx) { |
413 | | // Perform "qualified" name lookup into the declaration context we |
414 | | // computed, which is either the type of the base of a member access |
415 | | // expression or the declaration context associated with a prior |
416 | | // nested-name-specifier. |
417 | 0 | LookupQualifiedName(Result, LookupCtx); |
418 | |
|
419 | 0 | if (ObjectTypePtr && Result.empty()) { |
420 | | // C++ [basic.lookup.classref]p3: |
421 | | // If the unqualified-id is ~type-name, the type-name is looked up |
422 | | // in the context of the entire postfix-expression. If the type T of |
423 | | // the object expression is of a class type C, the type-name is also |
424 | | // looked up in the scope of class C. At least one of the lookups shall |
425 | | // find a name that refers to (possibly cv-qualified) T. |
426 | 0 | LookupName(Result, S); |
427 | 0 | } |
428 | 12.9k | } else { |
429 | | // Perform unqualified name lookup. |
430 | 12.9k | LookupName(Result, S); |
431 | | |
432 | | // For unqualified lookup in a class template in MSVC mode, look into |
433 | | // dependent base classes where the primary class template is known. |
434 | 12.9k | if (Result.empty() && getLangOpts().MSVCCompat && (!SS || SS->isEmpty())) { |
435 | 0 | if (ParsedType TypeInBase = |
436 | 0 | recoverFromTypeInKnownDependentBase(*this, II, NameLoc)) |
437 | 0 | return TypeInBase; |
438 | 0 | } |
439 | 12.9k | } |
440 | | |
441 | 12.9k | NamedDecl *IIDecl = nullptr; |
442 | 12.9k | UsingShadowDecl *FoundUsingShadow = nullptr; |
443 | 12.9k | switch (Result.getResultKind()) { |
444 | 8.51k | case LookupResult::NotFound: |
445 | 8.51k | if (CorrectedII) { |
446 | 0 | TypeNameValidatorCCC CCC(/*AllowInvalid=*/true, isClassName, |
447 | 0 | AllowDeducedTemplate); |
448 | 0 | TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(), Kind, |
449 | 0 | S, SS, CCC, CTK_ErrorRecovery); |
450 | 0 | IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo(); |
451 | 0 | TemplateTy Template; |
452 | 0 | bool MemberOfUnknownSpecialization; |
453 | 0 | UnqualifiedId TemplateName; |
454 | 0 | TemplateName.setIdentifier(NewII, NameLoc); |
455 | 0 | NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier(); |
456 | 0 | CXXScopeSpec NewSS, *NewSSPtr = SS; |
457 | 0 | if (SS && NNS) { |
458 | 0 | NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc)); |
459 | 0 | NewSSPtr = &NewSS; |
460 | 0 | } |
461 | 0 | if (Correction && (NNS || NewII != &II) && |
462 | | // Ignore a correction to a template type as the to-be-corrected |
463 | | // identifier is not a template (typo correction for template names |
464 | | // is handled elsewhere). |
465 | 0 | !(getLangOpts().CPlusPlus && NewSSPtr && |
466 | 0 | isTemplateName(S, *NewSSPtr, false, TemplateName, nullptr, false, |
467 | 0 | Template, MemberOfUnknownSpecialization))) { |
468 | 0 | ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr, |
469 | 0 | isClassName, HasTrailingDot, ObjectTypePtr, |
470 | 0 | IsCtorOrDtorName, |
471 | 0 | WantNontrivialTypeSourceInfo, |
472 | 0 | IsClassTemplateDeductionContext); |
473 | 0 | if (Ty) { |
474 | 0 | diagnoseTypo(Correction, |
475 | 0 | PDiag(diag::err_unknown_type_or_class_name_suggest) |
476 | 0 | << Result.getLookupName() << isClassName); |
477 | 0 | if (SS && NNS) |
478 | 0 | SS->MakeTrivial(Context, NNS, SourceRange(NameLoc)); |
479 | 0 | *CorrectedII = NewII; |
480 | 0 | return Ty; |
481 | 0 | } |
482 | 0 | } |
483 | 0 | } |
484 | 8.51k | Result.suppressDiagnostics(); |
485 | 8.51k | return nullptr; |
486 | 0 | case LookupResult::NotFoundInCurrentInstantiation: |
487 | 0 | if (AllowImplicitTypename == ImplicitTypenameContext::Yes) { |
488 | 0 | QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None, |
489 | 0 | SS->getScopeRep(), &II); |
490 | 0 | TypeLocBuilder TLB; |
491 | 0 | DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(T); |
492 | 0 | TL.setElaboratedKeywordLoc(SourceLocation()); |
493 | 0 | TL.setQualifierLoc(SS->getWithLocInContext(Context)); |
494 | 0 | TL.setNameLoc(NameLoc); |
495 | 0 | return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T)); |
496 | 0 | } |
497 | 0 | [[fallthrough]]; |
498 | 0 | case LookupResult::FoundOverloaded: |
499 | 0 | case LookupResult::FoundUnresolvedValue: |
500 | 0 | Result.suppressDiagnostics(); |
501 | 0 | return nullptr; |
502 | | |
503 | 0 | case LookupResult::Ambiguous: |
504 | | // Recover from type-hiding ambiguities by hiding the type. We'll |
505 | | // do the lookup again when looking for an object, and we can |
506 | | // diagnose the error then. If we don't do this, then the error |
507 | | // about hiding the type will be immediately followed by an error |
508 | | // that only makes sense if the identifier was treated like a type. |
509 | 0 | if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) { |
510 | 0 | Result.suppressDiagnostics(); |
511 | 0 | return nullptr; |
512 | 0 | } |
513 | | |
514 | | // Look to see if we have a type anywhere in the list of results. |
515 | 0 | for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end(); |
516 | 0 | Res != ResEnd; ++Res) { |
517 | 0 | NamedDecl *RealRes = (*Res)->getUnderlyingDecl(); |
518 | 0 | if (isa<TypeDecl, ObjCInterfaceDecl, UnresolvedUsingIfExistsDecl>( |
519 | 0 | RealRes) || |
520 | 0 | (AllowDeducedTemplate && getAsTypeTemplateDecl(RealRes))) { |
521 | 0 | if (!IIDecl || |
522 | | // Make the selection of the recovery decl deterministic. |
523 | 0 | RealRes->getLocation() < IIDecl->getLocation()) { |
524 | 0 | IIDecl = RealRes; |
525 | 0 | FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Res); |
526 | 0 | } |
527 | 0 | } |
528 | 0 | } |
529 | |
|
530 | 0 | if (!IIDecl) { |
531 | | // None of the entities we found is a type, so there is no way |
532 | | // to even assume that the result is a type. In this case, don't |
533 | | // complain about the ambiguity. The parser will either try to |
534 | | // perform this lookup again (e.g., as an object name), which |
535 | | // will produce the ambiguity, or will complain that it expected |
536 | | // a type name. |
537 | 0 | Result.suppressDiagnostics(); |
538 | 0 | return nullptr; |
539 | 0 | } |
540 | | |
541 | | // We found a type within the ambiguous lookup; diagnose the |
542 | | // ambiguity and then return that type. This might be the right |
543 | | // answer, or it might not be, but it suppresses any attempt to |
544 | | // perform the name lookup again. |
545 | 0 | break; |
546 | | |
547 | 4.47k | case LookupResult::Found: |
548 | 4.47k | IIDecl = Result.getFoundDecl(); |
549 | 4.47k | FoundUsingShadow = dyn_cast<UsingShadowDecl>(*Result.begin()); |
550 | 4.47k | break; |
551 | 12.9k | } |
552 | | |
553 | 4.47k | assert(IIDecl && "Didn't find decl"); |
554 | | |
555 | 0 | QualType T; |
556 | 4.47k | if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) { |
557 | | // C++ [class.qual]p2: A lookup that would find the injected-class-name |
558 | | // instead names the constructors of the class, except when naming a class. |
559 | | // This is ill-formed when we're not actually forming a ctor or dtor name. |
560 | 0 | auto *LookupRD = dyn_cast_or_null<CXXRecordDecl>(LookupCtx); |
561 | 0 | auto *FoundRD = dyn_cast<CXXRecordDecl>(TD); |
562 | 0 | if (!isClassName && !IsCtorOrDtorName && LookupRD && FoundRD && |
563 | 0 | FoundRD->isInjectedClassName() && |
564 | 0 | declaresSameEntity(LookupRD, cast<Decl>(FoundRD->getParent()))) |
565 | 0 | Diag(NameLoc, diag::err_out_of_line_qualified_id_type_names_constructor) |
566 | 0 | << &II << /*Type*/1; |
567 | |
|
568 | 0 | DiagnoseUseOfDecl(IIDecl, NameLoc); |
569 | |
|
570 | 0 | T = Context.getTypeDeclType(TD); |
571 | 0 | MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false); |
572 | 4.47k | } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) { |
573 | 0 | (void)DiagnoseUseOfDecl(IDecl, NameLoc); |
574 | 0 | if (!HasTrailingDot) |
575 | 0 | T = Context.getObjCInterfaceType(IDecl); |
576 | 0 | FoundUsingShadow = nullptr; // FIXME: Target must be a TypeDecl. |
577 | 4.47k | } else if (auto *UD = dyn_cast<UnresolvedUsingIfExistsDecl>(IIDecl)) { |
578 | 0 | (void)DiagnoseUseOfDecl(UD, NameLoc); |
579 | | // Recover with 'int' |
580 | 0 | return ParsedType::make(Context.IntTy); |
581 | 4.47k | } else if (AllowDeducedTemplate) { |
582 | 2.67k | if (auto *TD = getAsTypeTemplateDecl(IIDecl)) { |
583 | 0 | assert(!FoundUsingShadow || FoundUsingShadow->getTargetDecl() == TD); |
584 | 0 | TemplateName Template = |
585 | 0 | FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); |
586 | 0 | T = Context.getDeducedTemplateSpecializationType(Template, QualType(), |
587 | 0 | false); |
588 | | // Don't wrap in a further UsingType. |
589 | 0 | FoundUsingShadow = nullptr; |
590 | 0 | } |
591 | 2.67k | } |
592 | | |
593 | 4.47k | if (T.isNull()) { |
594 | | // If it's not plausibly a type, suppress diagnostics. |
595 | 4.47k | Result.suppressDiagnostics(); |
596 | 4.47k | return nullptr; |
597 | 4.47k | } |
598 | | |
599 | 0 | if (FoundUsingShadow) |
600 | 0 | T = Context.getUsingType(FoundUsingShadow, T); |
601 | |
|
602 | 0 | return buildNamedType(*this, SS, T, NameLoc, WantNontrivialTypeSourceInfo); |
603 | 4.47k | } |
604 | | |
605 | | // Builds a fake NNS for the given decl context. |
606 | | static NestedNameSpecifier * |
607 | 0 | synthesizeCurrentNestedNameSpecifier(ASTContext &Context, DeclContext *DC) { |
608 | 0 | for (;; DC = DC->getLookupParent()) { |
609 | 0 | DC = DC->getPrimaryContext(); |
610 | 0 | auto *ND = dyn_cast<NamespaceDecl>(DC); |
611 | 0 | if (ND && !ND->isInline() && !ND->isAnonymousNamespace()) |
612 | 0 | return NestedNameSpecifier::Create(Context, nullptr, ND); |
613 | 0 | else if (auto *RD = dyn_cast<CXXRecordDecl>(DC)) |
614 | 0 | return NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), |
615 | 0 | RD->getTypeForDecl()); |
616 | 0 | else if (isa<TranslationUnitDecl>(DC)) |
617 | 0 | return NestedNameSpecifier::GlobalSpecifier(Context); |
618 | 0 | } |
619 | 0 | llvm_unreachable("something isn't in TU scope?"); |
620 | 0 | } |
621 | | |
622 | | /// Find the parent class with dependent bases of the innermost enclosing method |
623 | | /// context. Do not look for enclosing CXXRecordDecls directly, or we will end |
624 | | /// up allowing unqualified dependent type names at class-level, which MSVC |
625 | | /// correctly rejects. |
626 | | static const CXXRecordDecl * |
627 | 0 | findRecordWithDependentBasesOfEnclosingMethod(const DeclContext *DC) { |
628 | 0 | for (; DC && DC->isDependentContext(); DC = DC->getLookupParent()) { |
629 | 0 | DC = DC->getPrimaryContext(); |
630 | 0 | if (const auto *MD = dyn_cast<CXXMethodDecl>(DC)) |
631 | 0 | if (MD->getParent()->hasAnyDependentBases()) |
632 | 0 | return MD->getParent(); |
633 | 0 | } |
634 | 0 | return nullptr; |
635 | 0 | } |
636 | | |
637 | | ParsedType Sema::ActOnMSVCUnknownTypeName(const IdentifierInfo &II, |
638 | | SourceLocation NameLoc, |
639 | 0 | bool IsTemplateTypeArg) { |
640 | 0 | assert(getLangOpts().MSVCCompat && "shouldn't be called in non-MSVC mode"); |
641 | | |
642 | 0 | NestedNameSpecifier *NNS = nullptr; |
643 | 0 | if (IsTemplateTypeArg && getCurScope()->isTemplateParamScope()) { |
644 | | // If we weren't able to parse a default template argument, delay lookup |
645 | | // until instantiation time by making a non-dependent DependentTypeName. We |
646 | | // pretend we saw a NestedNameSpecifier referring to the current scope, and |
647 | | // lookup is retried. |
648 | | // FIXME: This hurts our diagnostic quality, since we get errors like "no |
649 | | // type named 'Foo' in 'current_namespace'" when the user didn't write any |
650 | | // name specifiers. |
651 | 0 | NNS = synthesizeCurrentNestedNameSpecifier(Context, CurContext); |
652 | 0 | Diag(NameLoc, diag::ext_ms_delayed_template_argument) << &II; |
653 | 0 | } else if (const CXXRecordDecl *RD = |
654 | 0 | findRecordWithDependentBasesOfEnclosingMethod(CurContext)) { |
655 | | // Build a DependentNameType that will perform lookup into RD at |
656 | | // instantiation time. |
657 | 0 | NNS = NestedNameSpecifier::Create(Context, nullptr, RD->isTemplateDecl(), |
658 | 0 | RD->getTypeForDecl()); |
659 | | |
660 | | // Diagnose that this identifier was undeclared, and retry the lookup during |
661 | | // template instantiation. |
662 | 0 | Diag(NameLoc, diag::ext_undeclared_unqual_id_with_dependent_base) << &II |
663 | 0 | << RD; |
664 | 0 | } else { |
665 | | // This is not a situation that we should recover from. |
666 | 0 | return ParsedType(); |
667 | 0 | } |
668 | | |
669 | 0 | QualType T = |
670 | 0 | Context.getDependentNameType(ElaboratedTypeKeyword::None, NNS, &II); |
671 | | |
672 | | // Build type location information. We synthesized the qualifier, so we have |
673 | | // to build a fake NestedNameSpecifierLoc. |
674 | 0 | NestedNameSpecifierLocBuilder NNSLocBuilder; |
675 | 0 | NNSLocBuilder.MakeTrivial(Context, NNS, SourceRange(NameLoc)); |
676 | 0 | NestedNameSpecifierLoc QualifierLoc = NNSLocBuilder.getWithLocInContext(Context); |
677 | |
|
678 | 0 | TypeLocBuilder Builder; |
679 | 0 | DependentNameTypeLoc DepTL = Builder.push<DependentNameTypeLoc>(T); |
680 | 0 | DepTL.setNameLoc(NameLoc); |
681 | 0 | DepTL.setElaboratedKeywordLoc(SourceLocation()); |
682 | 0 | DepTL.setQualifierLoc(QualifierLoc); |
683 | 0 | return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T)); |
684 | 0 | } |
685 | | |
686 | | /// isTagName() - This method is called *for error recovery purposes only* |
687 | | /// to determine if the specified name is a valid tag name ("struct foo"). If |
688 | | /// so, this returns the TST for the tag corresponding to it (TST_enum, |
689 | | /// TST_union, TST_struct, TST_interface, TST_class). This is used to diagnose |
690 | | /// cases in C where the user forgot to specify the tag. |
691 | 10.6k | DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) { |
692 | | // Do a tag name lookup in this scope. |
693 | 10.6k | LookupResult R(*this, &II, SourceLocation(), LookupTagName); |
694 | 10.6k | LookupName(R, S, false); |
695 | 10.6k | R.suppressDiagnostics(); |
696 | 10.6k | if (R.getResultKind() == LookupResult::Found) |
697 | 0 | if (const TagDecl *TD = R.getAsSingle<TagDecl>()) { |
698 | 0 | switch (TD->getTagKind()) { |
699 | 0 | case TagTypeKind::Struct: |
700 | 0 | return DeclSpec::TST_struct; |
701 | 0 | case TagTypeKind::Interface: |
702 | 0 | return DeclSpec::TST_interface; |
703 | 0 | case TagTypeKind::Union: |
704 | 0 | return DeclSpec::TST_union; |
705 | 0 | case TagTypeKind::Class: |
706 | 0 | return DeclSpec::TST_class; |
707 | 0 | case TagTypeKind::Enum: |
708 | 0 | return DeclSpec::TST_enum; |
709 | 0 | } |
710 | 0 | } |
711 | | |
712 | 10.6k | return DeclSpec::TST_unspecified; |
713 | 10.6k | } |
714 | | |
715 | | /// isMicrosoftMissingTypename - In Microsoft mode, within class scope, |
716 | | /// if a CXXScopeSpec's type is equal to the type of one of the base classes |
717 | | /// then downgrade the missing typename error to a warning. |
718 | | /// This is needed for MSVC compatibility; Example: |
719 | | /// @code |
720 | | /// template<class T> class A { |
721 | | /// public: |
722 | | /// typedef int TYPE; |
723 | | /// }; |
724 | | /// template<class T> class B : public A<T> { |
725 | | /// public: |
726 | | /// A<T>::TYPE a; // no typename required because A<T> is a base class. |
727 | | /// }; |
728 | | /// @endcode |
729 | 0 | bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) { |
730 | 0 | if (CurContext->isRecord()) { |
731 | 0 | if (SS->getScopeRep()->getKind() == NestedNameSpecifier::Super) |
732 | 0 | return true; |
733 | | |
734 | 0 | const Type *Ty = SS->getScopeRep()->getAsType(); |
735 | |
|
736 | 0 | CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext); |
737 | 0 | for (const auto &Base : RD->bases()) |
738 | 0 | if (Ty && Context.hasSameUnqualifiedType(QualType(Ty, 1), Base.getType())) |
739 | 0 | return true; |
740 | 0 | return S->isFunctionPrototypeScope(); |
741 | 0 | } |
742 | 0 | return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope(); |
743 | 0 | } |
744 | | |
745 | | void Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II, |
746 | | SourceLocation IILoc, |
747 | | Scope *S, |
748 | | CXXScopeSpec *SS, |
749 | | ParsedType &SuggestedType, |
750 | 10.2k | bool IsTemplateName) { |
751 | | // Don't report typename errors for editor placeholders. |
752 | 10.2k | if (II->isEditorPlaceholder()) |
753 | 0 | return; |
754 | | // We don't have anything to suggest (yet). |
755 | 10.2k | SuggestedType = nullptr; |
756 | | |
757 | | // There may have been a typo in the name of the type. Look up typo |
758 | | // results, in case we have something that we can suggest. |
759 | 10.2k | TypeNameValidatorCCC CCC(/*AllowInvalid=*/false, /*WantClass=*/false, |
760 | 10.2k | /*AllowTemplates=*/IsTemplateName, |
761 | 10.2k | /*AllowNonTemplates=*/!IsTemplateName); |
762 | 10.2k | if (TypoCorrection Corrected = |
763 | 10.2k | CorrectTypo(DeclarationNameInfo(II, IILoc), LookupOrdinaryName, S, SS, |
764 | 10.2k | CCC, CTK_ErrorRecovery)) { |
765 | | // FIXME: Support error recovery for the template-name case. |
766 | 0 | bool CanRecover = !IsTemplateName; |
767 | 0 | if (Corrected.isKeyword()) { |
768 | | // We corrected to a keyword. |
769 | 0 | diagnoseTypo(Corrected, |
770 | 0 | PDiag(IsTemplateName ? diag::err_no_template_suggest |
771 | 0 | : diag::err_unknown_typename_suggest) |
772 | 0 | << II); |
773 | 0 | II = Corrected.getCorrectionAsIdentifierInfo(); |
774 | 0 | } else { |
775 | | // We found a similarly-named type or interface; suggest that. |
776 | 0 | if (!SS || !SS->isSet()) { |
777 | 0 | diagnoseTypo(Corrected, |
778 | 0 | PDiag(IsTemplateName ? diag::err_no_template_suggest |
779 | 0 | : diag::err_unknown_typename_suggest) |
780 | 0 | << II, CanRecover); |
781 | 0 | } else if (DeclContext *DC = computeDeclContext(*SS, false)) { |
782 | 0 | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); |
783 | 0 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
784 | 0 | II->getName().equals(CorrectedStr); |
785 | 0 | diagnoseTypo(Corrected, |
786 | 0 | PDiag(IsTemplateName |
787 | 0 | ? diag::err_no_member_template_suggest |
788 | 0 | : diag::err_unknown_nested_typename_suggest) |
789 | 0 | << II << DC << DroppedSpecifier << SS->getRange(), |
790 | 0 | CanRecover); |
791 | 0 | } else { |
792 | 0 | llvm_unreachable("could not have corrected a typo here"); |
793 | 0 | } |
794 | |
|
795 | 0 | if (!CanRecover) |
796 | 0 | return; |
797 | | |
798 | 0 | CXXScopeSpec tmpSS; |
799 | 0 | if (Corrected.getCorrectionSpecifier()) |
800 | 0 | tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(), |
801 | 0 | SourceRange(IILoc)); |
802 | | // FIXME: Support class template argument deduction here. |
803 | 0 | SuggestedType = |
804 | 0 | getTypeName(*Corrected.getCorrectionAsIdentifierInfo(), IILoc, S, |
805 | 0 | tmpSS.isSet() ? &tmpSS : SS, false, false, nullptr, |
806 | 0 | /*IsCtorOrDtorName=*/false, |
807 | 0 | /*WantNontrivialTypeSourceInfo=*/true); |
808 | 0 | } |
809 | 0 | return; |
810 | 0 | } |
811 | | |
812 | 10.2k | if (getLangOpts().CPlusPlus && !IsTemplateName) { |
813 | | // See if II is a class template that the user forgot to pass arguments to. |
814 | 4.87k | UnqualifiedId Name; |
815 | 4.87k | Name.setIdentifier(II, IILoc); |
816 | 4.87k | CXXScopeSpec EmptySS; |
817 | 4.87k | TemplateTy TemplateResult; |
818 | 4.87k | bool MemberOfUnknownSpecialization; |
819 | 4.87k | if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false, |
820 | 4.87k | Name, nullptr, true, TemplateResult, |
821 | 4.87k | MemberOfUnknownSpecialization) == TNK_Type_template) { |
822 | 0 | diagnoseMissingTemplateArguments(TemplateResult.get(), IILoc); |
823 | 0 | return; |
824 | 0 | } |
825 | 4.87k | } |
826 | | |
827 | | // FIXME: Should we move the logic that tries to recover from a missing tag |
828 | | // (struct, union, enum) from Parser::ParseImplicitInt here, instead? |
829 | | |
830 | 10.2k | if (!SS || (!SS->isSet() && !SS->isInvalid())) |
831 | 10.2k | Diag(IILoc, IsTemplateName ? diag::err_no_template |
832 | 10.2k | : diag::err_unknown_typename) |
833 | 10.2k | << II; |
834 | 0 | else if (DeclContext *DC = computeDeclContext(*SS, false)) |
835 | 0 | Diag(IILoc, IsTemplateName ? diag::err_no_member_template |
836 | 0 | : diag::err_typename_nested_not_found) |
837 | 0 | << II << DC << SS->getRange(); |
838 | 0 | else if (SS->isValid() && SS->getScopeRep()->containsErrors()) { |
839 | 0 | SuggestedType = |
840 | 0 | ActOnTypenameType(S, SourceLocation(), *SS, *II, IILoc).get(); |
841 | 0 | } else if (isDependentScopeSpecifier(*SS)) { |
842 | 0 | unsigned DiagID = diag::err_typename_missing; |
843 | 0 | if (getLangOpts().MSVCCompat && isMicrosoftMissingTypename(SS, S)) |
844 | 0 | DiagID = diag::ext_typename_missing; |
845 | |
|
846 | 0 | Diag(SS->getRange().getBegin(), DiagID) |
847 | 0 | << SS->getScopeRep() << II->getName() |
848 | 0 | << SourceRange(SS->getRange().getBegin(), IILoc) |
849 | 0 | << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename "); |
850 | 0 | SuggestedType = ActOnTypenameType(S, SourceLocation(), |
851 | 0 | *SS, *II, IILoc).get(); |
852 | 0 | } else { |
853 | 0 | assert(SS && SS->isInvalid() && |
854 | 0 | "Invalid scope specifier has already been diagnosed"); |
855 | 0 | } |
856 | 10.2k | } |
857 | | |
858 | | /// Determine whether the given result set contains either a type name |
859 | | /// or |
860 | 0 | static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) { |
861 | 0 | bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus && |
862 | 0 | NextToken.is(tok::less); |
863 | |
|
864 | 0 | for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) { |
865 | 0 | if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I)) |
866 | 0 | return true; |
867 | | |
868 | 0 | if (CheckTemplate && isa<TemplateDecl>(*I)) |
869 | 0 | return true; |
870 | 0 | } |
871 | | |
872 | 0 | return false; |
873 | 0 | } |
874 | | |
875 | | static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result, |
876 | | Scope *S, CXXScopeSpec &SS, |
877 | | IdentifierInfo *&Name, |
878 | 0 | SourceLocation NameLoc) { |
879 | 0 | LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName); |
880 | 0 | SemaRef.LookupParsedName(R, S, &SS); |
881 | 0 | if (TagDecl *Tag = R.getAsSingle<TagDecl>()) { |
882 | 0 | StringRef FixItTagName; |
883 | 0 | switch (Tag->getTagKind()) { |
884 | 0 | case TagTypeKind::Class: |
885 | 0 | FixItTagName = "class "; |
886 | 0 | break; |
887 | | |
888 | 0 | case TagTypeKind::Enum: |
889 | 0 | FixItTagName = "enum "; |
890 | 0 | break; |
891 | | |
892 | 0 | case TagTypeKind::Struct: |
893 | 0 | FixItTagName = "struct "; |
894 | 0 | break; |
895 | | |
896 | 0 | case TagTypeKind::Interface: |
897 | 0 | FixItTagName = "__interface "; |
898 | 0 | break; |
899 | | |
900 | 0 | case TagTypeKind::Union: |
901 | 0 | FixItTagName = "union "; |
902 | 0 | break; |
903 | 0 | } |
904 | | |
905 | 0 | StringRef TagName = FixItTagName.drop_back(); |
906 | 0 | SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag) |
907 | 0 | << Name << TagName << SemaRef.getLangOpts().CPlusPlus |
908 | 0 | << FixItHint::CreateInsertion(NameLoc, FixItTagName); |
909 | |
|
910 | 0 | for (LookupResult::iterator I = Result.begin(), IEnd = Result.end(); |
911 | 0 | I != IEnd; ++I) |
912 | 0 | SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) |
913 | 0 | << Name << TagName; |
914 | | |
915 | | // Replace lookup results with just the tag decl. |
916 | 0 | Result.clear(Sema::LookupTagName); |
917 | 0 | SemaRef.LookupParsedName(Result, S, &SS); |
918 | 0 | return true; |
919 | 0 | } |
920 | | |
921 | 0 | return false; |
922 | 0 | } |
923 | | |
924 | | Sema::NameClassification Sema::ClassifyName(Scope *S, CXXScopeSpec &SS, |
925 | | IdentifierInfo *&Name, |
926 | | SourceLocation NameLoc, |
927 | | const Token &NextToken, |
928 | 178 | CorrectionCandidateCallback *CCC) { |
929 | 178 | DeclarationNameInfo NameInfo(Name, NameLoc); |
930 | 178 | ObjCMethodDecl *CurMethod = getCurMethodDecl(); |
931 | | |
932 | 178 | assert(NextToken.isNot(tok::coloncolon) && |
933 | 178 | "parse nested name specifiers before calling ClassifyName"); |
934 | 178 | if (getLangOpts().CPlusPlus && SS.isSet() && |
935 | 178 | isCurrentClassName(*Name, S, &SS)) { |
936 | | // Per [class.qual]p2, this names the constructors of SS, not the |
937 | | // injected-class-name. We don't have a classification for that. |
938 | | // There's not much point caching this result, since the parser |
939 | | // will reject it later. |
940 | 0 | return NameClassification::Unknown(); |
941 | 0 | } |
942 | | |
943 | 178 | LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); |
944 | 178 | LookupParsedName(Result, S, &SS, !CurMethod); |
945 | | |
946 | 178 | if (SS.isInvalid()) |
947 | 0 | return NameClassification::Error(); |
948 | | |
949 | | // For unqualified lookup in a class template in MSVC mode, look into |
950 | | // dependent base classes where the primary class template is known. |
951 | 178 | if (Result.empty() && SS.isEmpty() && getLangOpts().MSVCCompat) { |
952 | 0 | if (ParsedType TypeInBase = |
953 | 0 | recoverFromTypeInKnownDependentBase(*this, *Name, NameLoc)) |
954 | 0 | return TypeInBase; |
955 | 0 | } |
956 | | |
957 | | // Perform lookup for Objective-C instance variables (including automatically |
958 | | // synthesized instance variables), if we're in an Objective-C method. |
959 | | // FIXME: This lookup really, really needs to be folded in to the normal |
960 | | // unqualified lookup mechanism. |
961 | 178 | if (SS.isEmpty() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) { |
962 | 0 | DeclResult Ivar = LookupIvarInObjCMethod(Result, S, Name); |
963 | 0 | if (Ivar.isInvalid()) |
964 | 0 | return NameClassification::Error(); |
965 | 0 | if (Ivar.isUsable()) |
966 | 0 | return NameClassification::NonType(cast<NamedDecl>(Ivar.get())); |
967 | | |
968 | | // We defer builtin creation until after ivar lookup inside ObjC methods. |
969 | 0 | if (Result.empty()) |
970 | 0 | LookupBuiltin(Result); |
971 | 0 | } |
972 | | |
973 | 178 | bool SecondTry = false; |
974 | 178 | bool IsFilteredTemplateName = false; |
975 | | |
976 | 178 | Corrected: |
977 | 178 | switch (Result.getResultKind()) { |
978 | 135 | case LookupResult::NotFound: |
979 | | // If an unqualified-id is followed by a '(', then we have a function |
980 | | // call. |
981 | 135 | if (SS.isEmpty() && NextToken.is(tok::l_paren)) { |
982 | | // In C++, this is an ADL-only call. |
983 | | // FIXME: Reference? |
984 | 0 | if (getLangOpts().CPlusPlus) |
985 | 0 | return NameClassification::UndeclaredNonType(); |
986 | | |
987 | | // C90 6.3.2.2: |
988 | | // If the expression that precedes the parenthesized argument list in a |
989 | | // function call consists solely of an identifier, and if no |
990 | | // declaration is visible for this identifier, the identifier is |
991 | | // implicitly declared exactly as if, in the innermost block containing |
992 | | // the function call, the declaration |
993 | | // |
994 | | // extern int identifier (); |
995 | | // |
996 | | // appeared. |
997 | | // |
998 | | // We also allow this in C99 as an extension. However, this is not |
999 | | // allowed in all language modes as functions without prototypes may not |
1000 | | // be supported. |
1001 | 0 | if (getLangOpts().implicitFunctionsAllowed()) { |
1002 | 0 | if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) |
1003 | 0 | return NameClassification::NonType(D); |
1004 | 0 | } |
1005 | 0 | } |
1006 | | |
1007 | 135 | if (getLangOpts().CPlusPlus20 && SS.isEmpty() && NextToken.is(tok::less)) { |
1008 | | // In C++20 onwards, this could be an ADL-only call to a function |
1009 | | // template, and we're required to assume that this is a template name. |
1010 | | // |
1011 | | // FIXME: Find a way to still do typo correction in this case. |
1012 | 0 | TemplateName Template = |
1013 | 0 | Context.getAssumedTemplateName(NameInfo.getName()); |
1014 | 0 | return NameClassification::UndeclaredTemplate(Template); |
1015 | 0 | } |
1016 | | |
1017 | | // In C, we first see whether there is a tag type by the same name, in |
1018 | | // which case it's likely that the user just forgot to write "enum", |
1019 | | // "struct", or "union". |
1020 | 135 | if (!getLangOpts().CPlusPlus && !SecondTry && |
1021 | 135 | isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { |
1022 | 0 | break; |
1023 | 0 | } |
1024 | | |
1025 | | // Perform typo correction to determine if there is another name that is |
1026 | | // close to this name. |
1027 | 135 | if (!SecondTry && CCC) { |
1028 | 135 | SecondTry = true; |
1029 | 135 | if (TypoCorrection Corrected = |
1030 | 135 | CorrectTypo(Result.getLookupNameInfo(), Result.getLookupKind(), S, |
1031 | 135 | &SS, *CCC, CTK_ErrorRecovery)) { |
1032 | 0 | unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest; |
1033 | 0 | unsigned QualifiedDiag = diag::err_no_member_suggest; |
1034 | |
|
1035 | 0 | NamedDecl *FirstDecl = Corrected.getFoundDecl(); |
1036 | 0 | NamedDecl *UnderlyingFirstDecl = Corrected.getCorrectionDecl(); |
1037 | 0 | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && |
1038 | 0 | UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) { |
1039 | 0 | UnqualifiedDiag = diag::err_no_template_suggest; |
1040 | 0 | QualifiedDiag = diag::err_no_member_template_suggest; |
1041 | 0 | } else if (UnderlyingFirstDecl && |
1042 | 0 | (isa<TypeDecl>(UnderlyingFirstDecl) || |
1043 | 0 | isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) || |
1044 | 0 | isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) { |
1045 | 0 | UnqualifiedDiag = diag::err_unknown_typename_suggest; |
1046 | 0 | QualifiedDiag = diag::err_unknown_nested_typename_suggest; |
1047 | 0 | } |
1048 | |
|
1049 | 0 | if (SS.isEmpty()) { |
1050 | 0 | diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name); |
1051 | 0 | } else {// FIXME: is this even reachable? Test it. |
1052 | 0 | std::string CorrectedStr(Corrected.getAsString(getLangOpts())); |
1053 | 0 | bool DroppedSpecifier = Corrected.WillReplaceSpecifier() && |
1054 | 0 | Name->getName().equals(CorrectedStr); |
1055 | 0 | diagnoseTypo(Corrected, PDiag(QualifiedDiag) |
1056 | 0 | << Name << computeDeclContext(SS, false) |
1057 | 0 | << DroppedSpecifier << SS.getRange()); |
1058 | 0 | } |
1059 | | |
1060 | | // Update the name, so that the caller has the new name. |
1061 | 0 | Name = Corrected.getCorrectionAsIdentifierInfo(); |
1062 | | |
1063 | | // Typo correction corrected to a keyword. |
1064 | 0 | if (Corrected.isKeyword()) |
1065 | 0 | return Name; |
1066 | | |
1067 | | // Also update the LookupResult... |
1068 | | // FIXME: This should probably go away at some point |
1069 | 0 | Result.clear(); |
1070 | 0 | Result.setLookupName(Corrected.getCorrection()); |
1071 | 0 | if (FirstDecl) |
1072 | 0 | Result.addDecl(FirstDecl); |
1073 | | |
1074 | | // If we found an Objective-C instance variable, let |
1075 | | // LookupInObjCMethod build the appropriate expression to |
1076 | | // reference the ivar. |
1077 | | // FIXME: This is a gross hack. |
1078 | 0 | if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) { |
1079 | 0 | DeclResult R = |
1080 | 0 | LookupIvarInObjCMethod(Result, S, Ivar->getIdentifier()); |
1081 | 0 | if (R.isInvalid()) |
1082 | 0 | return NameClassification::Error(); |
1083 | 0 | if (R.isUsable()) |
1084 | 0 | return NameClassification::NonType(Ivar); |
1085 | 0 | } |
1086 | | |
1087 | 0 | goto Corrected; |
1088 | 0 | } |
1089 | 135 | } |
1090 | | |
1091 | | // We failed to correct; just fall through and let the parser deal with it. |
1092 | 135 | Result.suppressDiagnostics(); |
1093 | 135 | return NameClassification::Unknown(); |
1094 | | |
1095 | 0 | case LookupResult::NotFoundInCurrentInstantiation: { |
1096 | | // We performed name lookup into the current instantiation, and there were |
1097 | | // dependent bases, so we treat this result the same way as any other |
1098 | | // dependent nested-name-specifier. |
1099 | | |
1100 | | // C++ [temp.res]p2: |
1101 | | // A name used in a template declaration or definition and that is |
1102 | | // dependent on a template-parameter is assumed not to name a type |
1103 | | // unless the applicable name lookup finds a type name or the name is |
1104 | | // qualified by the keyword typename. |
1105 | | // |
1106 | | // FIXME: If the next token is '<', we might want to ask the parser to |
1107 | | // perform some heroics to see if we actually have a |
1108 | | // template-argument-list, which would indicate a missing 'template' |
1109 | | // keyword here. |
1110 | 0 | return NameClassification::DependentNonType(); |
1111 | 135 | } |
1112 | | |
1113 | 43 | case LookupResult::Found: |
1114 | 43 | case LookupResult::FoundOverloaded: |
1115 | 43 | case LookupResult::FoundUnresolvedValue: |
1116 | 43 | break; |
1117 | | |
1118 | 0 | case LookupResult::Ambiguous: |
1119 | 0 | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && |
1120 | 0 | hasAnyAcceptableTemplateNames(Result, /*AllowFunctionTemplates=*/true, |
1121 | 0 | /*AllowDependent=*/false)) { |
1122 | | // C++ [temp.local]p3: |
1123 | | // A lookup that finds an injected-class-name (10.2) can result in an |
1124 | | // ambiguity in certain cases (for example, if it is found in more than |
1125 | | // one base class). If all of the injected-class-names that are found |
1126 | | // refer to specializations of the same class template, and if the name |
1127 | | // is followed by a template-argument-list, the reference refers to the |
1128 | | // class template itself and not a specialization thereof, and is not |
1129 | | // ambiguous. |
1130 | | // |
1131 | | // This filtering can make an ambiguous result into an unambiguous one, |
1132 | | // so try again after filtering out template names. |
1133 | 0 | FilterAcceptableTemplateNames(Result); |
1134 | 0 | if (!Result.isAmbiguous()) { |
1135 | 0 | IsFilteredTemplateName = true; |
1136 | 0 | break; |
1137 | 0 | } |
1138 | 0 | } |
1139 | | |
1140 | | // Diagnose the ambiguity and return an error. |
1141 | 0 | return NameClassification::Error(); |
1142 | 178 | } |
1143 | | |
1144 | 43 | if (getLangOpts().CPlusPlus && NextToken.is(tok::less) && |
1145 | 43 | (IsFilteredTemplateName || |
1146 | 0 | hasAnyAcceptableTemplateNames( |
1147 | 0 | Result, /*AllowFunctionTemplates=*/true, |
1148 | 0 | /*AllowDependent=*/false, |
1149 | 0 | /*AllowNonTemplateFunctions*/ SS.isEmpty() && |
1150 | 0 | getLangOpts().CPlusPlus20))) { |
1151 | | // C++ [temp.names]p3: |
1152 | | // After name lookup (3.4) finds that a name is a template-name or that |
1153 | | // an operator-function-id or a literal- operator-id refers to a set of |
1154 | | // overloaded functions any member of which is a function template if |
1155 | | // this is followed by a <, the < is always taken as the delimiter of a |
1156 | | // template-argument-list and never as the less-than operator. |
1157 | | // C++2a [temp.names]p2: |
1158 | | // A name is also considered to refer to a template if it is an |
1159 | | // unqualified-id followed by a < and name lookup finds either one |
1160 | | // or more functions or finds nothing. |
1161 | 0 | if (!IsFilteredTemplateName) |
1162 | 0 | FilterAcceptableTemplateNames(Result); |
1163 | |
|
1164 | 0 | bool IsFunctionTemplate; |
1165 | 0 | bool IsVarTemplate; |
1166 | 0 | TemplateName Template; |
1167 | 0 | if (Result.end() - Result.begin() > 1) { |
1168 | 0 | IsFunctionTemplate = true; |
1169 | 0 | Template = Context.getOverloadedTemplateName(Result.begin(), |
1170 | 0 | Result.end()); |
1171 | 0 | } else if (!Result.empty()) { |
1172 | 0 | auto *TD = cast<TemplateDecl>(getAsTemplateNameDecl( |
1173 | 0 | *Result.begin(), /*AllowFunctionTemplates=*/true, |
1174 | 0 | /*AllowDependent=*/false)); |
1175 | 0 | IsFunctionTemplate = isa<FunctionTemplateDecl>(TD); |
1176 | 0 | IsVarTemplate = isa<VarTemplateDecl>(TD); |
1177 | |
|
1178 | 0 | UsingShadowDecl *FoundUsingShadow = |
1179 | 0 | dyn_cast<UsingShadowDecl>(*Result.begin()); |
1180 | 0 | assert(!FoundUsingShadow || |
1181 | 0 | TD == cast<TemplateDecl>(FoundUsingShadow->getTargetDecl())); |
1182 | 0 | Template = |
1183 | 0 | FoundUsingShadow ? TemplateName(FoundUsingShadow) : TemplateName(TD); |
1184 | 0 | if (SS.isNotEmpty()) |
1185 | 0 | Template = Context.getQualifiedTemplateName(SS.getScopeRep(), |
1186 | 0 | /*TemplateKeyword=*/false, |
1187 | 0 | Template); |
1188 | 0 | } else { |
1189 | | // All results were non-template functions. This is a function template |
1190 | | // name. |
1191 | 0 | IsFunctionTemplate = true; |
1192 | 0 | Template = Context.getAssumedTemplateName(NameInfo.getName()); |
1193 | 0 | } |
1194 | | |
1195 | 0 | if (IsFunctionTemplate) { |
1196 | | // Function templates always go through overload resolution, at which |
1197 | | // point we'll perform the various checks (e.g., accessibility) we need |
1198 | | // to based on which function we selected. |
1199 | 0 | Result.suppressDiagnostics(); |
1200 | |
|
1201 | 0 | return NameClassification::FunctionTemplate(Template); |
1202 | 0 | } |
1203 | | |
1204 | 0 | return IsVarTemplate ? NameClassification::VarTemplate(Template) |
1205 | 0 | : NameClassification::TypeTemplate(Template); |
1206 | 0 | } |
1207 | | |
1208 | 43 | auto BuildTypeFor = [&](TypeDecl *Type, NamedDecl *Found) { |
1209 | 0 | QualType T = Context.getTypeDeclType(Type); |
1210 | 0 | if (const auto *USD = dyn_cast<UsingShadowDecl>(Found)) |
1211 | 0 | T = Context.getUsingType(USD, T); |
1212 | 0 | return buildNamedType(*this, &SS, T, NameLoc); |
1213 | 0 | }; |
1214 | | |
1215 | 43 | NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl(); |
1216 | 43 | if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) { |
1217 | 0 | DiagnoseUseOfDecl(Type, NameLoc); |
1218 | 0 | MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); |
1219 | 0 | return BuildTypeFor(Type, *Result.begin()); |
1220 | 0 | } |
1221 | | |
1222 | 43 | ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl); |
1223 | 43 | if (!Class) { |
1224 | | // FIXME: It's unfortunate that we don't have a Type node for handling this. |
1225 | 43 | if (ObjCCompatibleAliasDecl *Alias = |
1226 | 43 | dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl)) |
1227 | 0 | Class = Alias->getClassInterface(); |
1228 | 43 | } |
1229 | | |
1230 | 43 | if (Class) { |
1231 | 0 | DiagnoseUseOfDecl(Class, NameLoc); |
1232 | |
|
1233 | 0 | if (NextToken.is(tok::period)) { |
1234 | | // Interface. <something> is parsed as a property reference expression. |
1235 | | // Just return "unknown" as a fall-through for now. |
1236 | 0 | Result.suppressDiagnostics(); |
1237 | 0 | return NameClassification::Unknown(); |
1238 | 0 | } |
1239 | | |
1240 | 0 | QualType T = Context.getObjCInterfaceType(Class); |
1241 | 0 | return ParsedType::make(T); |
1242 | 0 | } |
1243 | | |
1244 | 43 | if (isa<ConceptDecl>(FirstDecl)) |
1245 | 0 | return NameClassification::Concept( |
1246 | 0 | TemplateName(cast<TemplateDecl>(FirstDecl))); |
1247 | | |
1248 | 43 | if (auto *EmptyD = dyn_cast<UnresolvedUsingIfExistsDecl>(FirstDecl)) { |
1249 | 0 | (void)DiagnoseUseOfDecl(EmptyD, NameLoc); |
1250 | 0 | return NameClassification::Error(); |
1251 | 0 | } |
1252 | | |
1253 | | // We can have a type template here if we're classifying a template argument. |
1254 | 43 | if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl) && |
1255 | 43 | !isa<VarTemplateDecl>(FirstDecl)) |
1256 | 0 | return NameClassification::TypeTemplate( |
1257 | 0 | TemplateName(cast<TemplateDecl>(FirstDecl))); |
1258 | | |
1259 | | // Check for a tag type hidden by a non-type decl in a few cases where it |
1260 | | // seems likely a type is wanted instead of the non-type that was found. |
1261 | 43 | bool NextIsOp = NextToken.isOneOf(tok::amp, tok::star); |
1262 | 43 | if ((NextToken.is(tok::identifier) || |
1263 | 43 | (NextIsOp && |
1264 | 43 | FirstDecl->getUnderlyingDecl()->isFunctionOrFunctionTemplate())) && |
1265 | 43 | isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) { |
1266 | 0 | TypeDecl *Type = Result.getAsSingle<TypeDecl>(); |
1267 | 0 | DiagnoseUseOfDecl(Type, NameLoc); |
1268 | 0 | return BuildTypeFor(Type, *Result.begin()); |
1269 | 0 | } |
1270 | | |
1271 | | // If we already know which single declaration is referenced, just annotate |
1272 | | // that declaration directly. Defer resolving even non-overloaded class |
1273 | | // member accesses, as we need to defer certain access checks until we know |
1274 | | // the context. |
1275 | 43 | bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); |
1276 | 43 | if (Result.isSingleResult() && !ADL && |
1277 | 43 | (!FirstDecl->isCXXClassMember() || isa<EnumConstantDecl>(FirstDecl))) |
1278 | 43 | return NameClassification::NonType(Result.getRepresentativeDecl()); |
1279 | | |
1280 | | // Otherwise, this is an overload set that we will need to resolve later. |
1281 | 0 | Result.suppressDiagnostics(); |
1282 | 0 | return NameClassification::OverloadSet(UnresolvedLookupExpr::Create( |
1283 | 0 | Context, Result.getNamingClass(), SS.getWithLocInContext(Context), |
1284 | 0 | Result.getLookupNameInfo(), ADL, Result.isOverloadedResult(), |
1285 | 0 | Result.begin(), Result.end())); |
1286 | 43 | } |
1287 | | |
1288 | | ExprResult |
1289 | | Sema::ActOnNameClassifiedAsUndeclaredNonType(IdentifierInfo *Name, |
1290 | 0 | SourceLocation NameLoc) { |
1291 | 0 | assert(getLangOpts().CPlusPlus && "ADL-only call in C?"); |
1292 | 0 | CXXScopeSpec SS; |
1293 | 0 | LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName); |
1294 | 0 | return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true); |
1295 | 0 | } |
1296 | | |
1297 | | ExprResult |
1298 | | Sema::ActOnNameClassifiedAsDependentNonType(const CXXScopeSpec &SS, |
1299 | | IdentifierInfo *Name, |
1300 | | SourceLocation NameLoc, |
1301 | 0 | bool IsAddressOfOperand) { |
1302 | 0 | DeclarationNameInfo NameInfo(Name, NameLoc); |
1303 | 0 | return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(), |
1304 | 0 | NameInfo, IsAddressOfOperand, |
1305 | 0 | /*TemplateArgs=*/nullptr); |
1306 | 0 | } |
1307 | | |
1308 | | ExprResult Sema::ActOnNameClassifiedAsNonType(Scope *S, const CXXScopeSpec &SS, |
1309 | | NamedDecl *Found, |
1310 | | SourceLocation NameLoc, |
1311 | 42 | const Token &NextToken) { |
1312 | 42 | if (getCurMethodDecl() && SS.isEmpty()) |
1313 | 0 | if (auto *Ivar = dyn_cast<ObjCIvarDecl>(Found->getUnderlyingDecl())) |
1314 | 0 | return BuildIvarRefExpr(S, NameLoc, Ivar); |
1315 | | |
1316 | | // Reconstruct the lookup result. |
1317 | 42 | LookupResult Result(*this, Found->getDeclName(), NameLoc, LookupOrdinaryName); |
1318 | 42 | Result.addDecl(Found); |
1319 | 42 | Result.resolveKind(); |
1320 | | |
1321 | 42 | bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren)); |
1322 | 42 | return BuildDeclarationNameExpr(SS, Result, ADL, /*AcceptInvalidDecl=*/true); |
1323 | 42 | } |
1324 | | |
1325 | 0 | ExprResult Sema::ActOnNameClassifiedAsOverloadSet(Scope *S, Expr *E) { |
1326 | | // For an implicit class member access, transform the result into a member |
1327 | | // access expression if necessary. |
1328 | 0 | auto *ULE = cast<UnresolvedLookupExpr>(E); |
1329 | 0 | if ((*ULE->decls_begin())->isCXXClassMember()) { |
1330 | 0 | CXXScopeSpec SS; |
1331 | 0 | SS.Adopt(ULE->getQualifierLoc()); |
1332 | | |
1333 | | // Reconstruct the lookup result. |
1334 | 0 | LookupResult Result(*this, ULE->getName(), ULE->getNameLoc(), |
1335 | 0 | LookupOrdinaryName); |
1336 | 0 | Result.setNamingClass(ULE->getNamingClass()); |
1337 | 0 | for (auto I = ULE->decls_begin(), E = ULE->decls_end(); I != E; ++I) |
1338 | 0 | Result.addDecl(*I, I.getAccess()); |
1339 | 0 | Result.resolveKind(); |
1340 | 0 | return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, |
1341 | 0 | nullptr, S); |
1342 | 0 | } |
1343 | | |
1344 | | // Otherwise, this is already in the form we needed, and no further checks |
1345 | | // are necessary. |
1346 | 0 | return ULE; |
1347 | 0 | } |
1348 | | |
1349 | | Sema::TemplateNameKindForDiagnostics |
1350 | 0 | Sema::getTemplateNameKindForDiagnostics(TemplateName Name) { |
1351 | 0 | auto *TD = Name.getAsTemplateDecl(); |
1352 | 0 | if (!TD) |
1353 | 0 | return TemplateNameKindForDiagnostics::DependentTemplate; |
1354 | 0 | if (isa<ClassTemplateDecl>(TD)) |
1355 | 0 | return TemplateNameKindForDiagnostics::ClassTemplate; |
1356 | 0 | if (isa<FunctionTemplateDecl>(TD)) |
1357 | 0 | return TemplateNameKindForDiagnostics::FunctionTemplate; |
1358 | 0 | if (isa<VarTemplateDecl>(TD)) |
1359 | 0 | return TemplateNameKindForDiagnostics::VarTemplate; |
1360 | 0 | if (isa<TypeAliasTemplateDecl>(TD)) |
1361 | 0 | return TemplateNameKindForDiagnostics::AliasTemplate; |
1362 | 0 | if (isa<TemplateTemplateParmDecl>(TD)) |
1363 | 0 | return TemplateNameKindForDiagnostics::TemplateTemplateParam; |
1364 | 0 | if (isa<ConceptDecl>(TD)) |
1365 | 0 | return TemplateNameKindForDiagnostics::Concept; |
1366 | 0 | return TemplateNameKindForDiagnostics::DependentTemplate; |
1367 | 0 | } |
1368 | | |
1369 | 51 | void Sema::PushDeclContext(Scope *S, DeclContext *DC) { |
1370 | 51 | assert(DC->getLexicalParent() == CurContext && |
1371 | 51 | "The next DeclContext should be lexically contained in the current one."); |
1372 | 0 | CurContext = DC; |
1373 | 51 | S->setEntity(DC); |
1374 | 51 | } |
1375 | | |
1376 | 5 | void Sema::PopDeclContext() { |
1377 | 5 | assert(CurContext && "DeclContext imbalance!"); |
1378 | | |
1379 | 0 | CurContext = CurContext->getLexicalParent(); |
1380 | 5 | assert(CurContext && "Popped translation unit!"); |
1381 | 5 | } |
1382 | | |
1383 | | Sema::SkippedDefinitionContext Sema::ActOnTagStartSkippedDefinition(Scope *S, |
1384 | 0 | Decl *D) { |
1385 | | // Unlike PushDeclContext, the context to which we return is not necessarily |
1386 | | // the containing DC of TD, because the new context will be some pre-existing |
1387 | | // TagDecl definition instead of a fresh one. |
1388 | 0 | auto Result = static_cast<SkippedDefinitionContext>(CurContext); |
1389 | 0 | CurContext = cast<TagDecl>(D)->getDefinition(); |
1390 | 0 | assert(CurContext && "skipping definition of undefined tag"); |
1391 | | // Start lookups from the parent of the current context; we don't want to look |
1392 | | // into the pre-existing complete definition. |
1393 | 0 | S->setEntity(CurContext->getLookupParent()); |
1394 | 0 | return Result; |
1395 | 0 | } |
1396 | | |
1397 | 0 | void Sema::ActOnTagFinishSkippedDefinition(SkippedDefinitionContext Context) { |
1398 | 0 | CurContext = static_cast<decltype(CurContext)>(Context); |
1399 | 0 | } |
1400 | | |
1401 | | /// EnterDeclaratorContext - Used when we must lookup names in the context |
1402 | | /// of a declarator's nested name specifier. |
1403 | | /// |
1404 | 0 | void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) { |
1405 | | // C++0x [basic.lookup.unqual]p13: |
1406 | | // A name used in the definition of a static data member of class |
1407 | | // X (after the qualified-id of the static member) is looked up as |
1408 | | // if the name was used in a member function of X. |
1409 | | // C++0x [basic.lookup.unqual]p14: |
1410 | | // If a variable member of a namespace is defined outside of the |
1411 | | // scope of its namespace then any name used in the definition of |
1412 | | // the variable member (after the declarator-id) is looked up as |
1413 | | // if the definition of the variable member occurred in its |
1414 | | // namespace. |
1415 | | // Both of these imply that we should push a scope whose context |
1416 | | // is the semantic context of the declaration. We can't use |
1417 | | // PushDeclContext here because that context is not necessarily |
1418 | | // lexically contained in the current context. Fortunately, |
1419 | | // the containing scope should have the appropriate information. |
1420 | |
|
1421 | 0 | assert(!S->getEntity() && "scope already has entity"); |
1422 | | |
1423 | 0 | #ifndef NDEBUG |
1424 | 0 | Scope *Ancestor = S->getParent(); |
1425 | 0 | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); |
1426 | 0 | assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch"); |
1427 | 0 | #endif |
1428 | | |
1429 | 0 | CurContext = DC; |
1430 | 0 | S->setEntity(DC); |
1431 | |
|
1432 | 0 | if (S->getParent()->isTemplateParamScope()) { |
1433 | | // Also set the corresponding entities for all immediately-enclosing |
1434 | | // template parameter scopes. |
1435 | 0 | EnterTemplatedContext(S->getParent(), DC); |
1436 | 0 | } |
1437 | 0 | } |
1438 | | |
1439 | 0 | void Sema::ExitDeclaratorContext(Scope *S) { |
1440 | 0 | assert(S->getEntity() == CurContext && "Context imbalance!"); |
1441 | | |
1442 | | // Switch back to the lexical context. The safety of this is |
1443 | | // enforced by an assert in EnterDeclaratorContext. |
1444 | 0 | Scope *Ancestor = S->getParent(); |
1445 | 0 | while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent(); |
1446 | 0 | CurContext = Ancestor->getEntity(); |
1447 | | |
1448 | | // We don't need to do anything with the scope, which is going to |
1449 | | // disappear. |
1450 | 0 | } |
1451 | | |
1452 | 0 | void Sema::EnterTemplatedContext(Scope *S, DeclContext *DC) { |
1453 | 0 | assert(S->isTemplateParamScope() && |
1454 | 0 | "expected to be initializing a template parameter scope"); |
1455 | | |
1456 | | // C++20 [temp.local]p7: |
1457 | | // In the definition of a member of a class template that appears outside |
1458 | | // of the class template definition, the name of a member of the class |
1459 | | // template hides the name of a template-parameter of any enclosing class |
1460 | | // templates (but not a template-parameter of the member if the member is a |
1461 | | // class or function template). |
1462 | | // C++20 [temp.local]p9: |
1463 | | // In the definition of a class template or in the definition of a member |
1464 | | // of such a template that appears outside of the template definition, for |
1465 | | // each non-dependent base class (13.8.2.1), if the name of the base class |
1466 | | // or the name of a member of the base class is the same as the name of a |
1467 | | // template-parameter, the base class name or member name hides the |
1468 | | // template-parameter name (6.4.10). |
1469 | | // |
1470 | | // This means that a template parameter scope should be searched immediately |
1471 | | // after searching the DeclContext for which it is a template parameter |
1472 | | // scope. For example, for |
1473 | | // template<typename T> template<typename U> template<typename V> |
1474 | | // void N::A<T>::B<U>::f(...) |
1475 | | // we search V then B<U> (and base classes) then U then A<T> (and base |
1476 | | // classes) then T then N then ::. |
1477 | 0 | unsigned ScopeDepth = getTemplateDepth(S); |
1478 | 0 | for (; S && S->isTemplateParamScope(); S = S->getParent(), --ScopeDepth) { |
1479 | 0 | DeclContext *SearchDCAfterScope = DC; |
1480 | 0 | for (; DC; DC = DC->getLookupParent()) { |
1481 | 0 | if (const TemplateParameterList *TPL = |
1482 | 0 | cast<Decl>(DC)->getDescribedTemplateParams()) { |
1483 | 0 | unsigned DCDepth = TPL->getDepth() + 1; |
1484 | 0 | if (DCDepth > ScopeDepth) |
1485 | 0 | continue; |
1486 | 0 | if (ScopeDepth == DCDepth) |
1487 | 0 | SearchDCAfterScope = DC = DC->getLookupParent(); |
1488 | 0 | break; |
1489 | 0 | } |
1490 | 0 | } |
1491 | 0 | S->setLookupEntity(SearchDCAfterScope); |
1492 | 0 | } |
1493 | 0 | } |
1494 | | |
1495 | 0 | void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) { |
1496 | | // We assume that the caller has already called |
1497 | | // ActOnReenterTemplateScope so getTemplatedDecl() works. |
1498 | 0 | FunctionDecl *FD = D->getAsFunction(); |
1499 | 0 | if (!FD) |
1500 | 0 | return; |
1501 | | |
1502 | | // Same implementation as PushDeclContext, but enters the context |
1503 | | // from the lexical parent, rather than the top-level class. |
1504 | 0 | assert(CurContext == FD->getLexicalParent() && |
1505 | 0 | "The next DeclContext should be lexically contained in the current one."); |
1506 | 0 | CurContext = FD; |
1507 | 0 | S->setEntity(CurContext); |
1508 | |
|
1509 | 0 | for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) { |
1510 | 0 | ParmVarDecl *Param = FD->getParamDecl(P); |
1511 | | // If the parameter has an identifier, then add it to the scope |
1512 | 0 | if (Param->getIdentifier()) { |
1513 | 0 | S->AddDecl(Param); |
1514 | 0 | IdResolver.AddDecl(Param); |
1515 | 0 | } |
1516 | 0 | } |
1517 | 0 | } |
1518 | | |
1519 | 0 | void Sema::ActOnExitFunctionContext() { |
1520 | | // Same implementation as PopDeclContext, but returns to the lexical parent, |
1521 | | // rather than the top-level class. |
1522 | 0 | assert(CurContext && "DeclContext imbalance!"); |
1523 | 0 | CurContext = CurContext->getLexicalParent(); |
1524 | 0 | assert(CurContext && "Popped translation unit!"); |
1525 | 0 | } |
1526 | | |
1527 | | /// Determine whether overloading is allowed for a new function |
1528 | | /// declaration considering prior declarations of the same name. |
1529 | | /// |
1530 | | /// This routine determines whether overloading is possible, not |
1531 | | /// whether a new declaration actually overloads a previous one. |
1532 | | /// It will return true in C++ (where overloads are alway permitted) |
1533 | | /// or, as a C extension, when either the new declaration or a |
1534 | | /// previous one is declared with the 'overloadable' attribute. |
1535 | | static bool AllowOverloadingOfFunction(const LookupResult &Previous, |
1536 | | ASTContext &Context, |
1537 | 3 | const FunctionDecl *New) { |
1538 | 3 | if (Context.getLangOpts().CPlusPlus || New->hasAttr<OverloadableAttr>()) |
1539 | 0 | return true; |
1540 | | |
1541 | | // Multiversion function declarations are not overloads in the |
1542 | | // usual sense of that term, but lookup will report that an |
1543 | | // overload set was found if more than one multiversion function |
1544 | | // declaration is present for the same name. It is therefore |
1545 | | // inadequate to assume that some prior declaration(s) had |
1546 | | // the overloadable attribute; checking is required. Since one |
1547 | | // declaration is permitted to omit the attribute, it is necessary |
1548 | | // to check at least two; hence the 'any_of' check below. Note that |
1549 | | // the overloadable attribute is implicitly added to declarations |
1550 | | // that were required to have it but did not. |
1551 | 3 | if (Previous.getResultKind() == LookupResult::FoundOverloaded) { |
1552 | 0 | return llvm::any_of(Previous, [](const NamedDecl *ND) { |
1553 | 0 | return ND->hasAttr<OverloadableAttr>(); |
1554 | 0 | }); |
1555 | 3 | } else if (Previous.getResultKind() == LookupResult::Found) |
1556 | 3 | return Previous.getFoundDecl()->hasAttr<OverloadableAttr>(); |
1557 | | |
1558 | 0 | return false; |
1559 | 3 | } |
1560 | | |
1561 | | /// Add this decl to the scope shadowed decl chains. |
1562 | 5.41k | void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) { |
1563 | | // Move up the scope chain until we find the nearest enclosing |
1564 | | // non-transparent context. The declaration will be introduced into this |
1565 | | // scope. |
1566 | 5.41k | while (S->getEntity() && S->getEntity()->isTransparentContext()) |
1567 | 0 | S = S->getParent(); |
1568 | | |
1569 | | // Add scoped declarations into their context, so that they can be |
1570 | | // found later. Declarations without a context won't be inserted |
1571 | | // into any context. |
1572 | 5.41k | if (AddToContext) |
1573 | 5.41k | CurContext->addDecl(D); |
1574 | | |
1575 | | // Out-of-line definitions shouldn't be pushed into scope in C++, unless they |
1576 | | // are function-local declarations. |
1577 | 5.41k | if (getLangOpts().CPlusPlus && D->isOutOfLine() && !S->getFnParent()) |
1578 | 0 | return; |
1579 | | |
1580 | | // Template instantiations should also not be pushed into scope. |
1581 | 5.41k | if (isa<FunctionDecl>(D) && |
1582 | 5.41k | cast<FunctionDecl>(D)->isFunctionTemplateSpecialization()) |
1583 | 0 | return; |
1584 | | |
1585 | | // If this replaces anything in the current scope, |
1586 | 5.41k | IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()), |
1587 | 5.41k | IEnd = IdResolver.end(); |
1588 | 25.2k | for (; I != IEnd; ++I) { |
1589 | 20.0k | if (S->isDeclScope(*I) && D->declarationReplaces(*I)) { |
1590 | 183 | S->RemoveDecl(*I); |
1591 | 183 | IdResolver.RemoveDecl(*I); |
1592 | | |
1593 | | // Should only need to replace one decl. |
1594 | 183 | break; |
1595 | 183 | } |
1596 | 20.0k | } |
1597 | | |
1598 | 5.41k | S->AddDecl(D); |
1599 | | |
1600 | 5.41k | if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) { |
1601 | | // Implicitly-generated labels may end up getting generated in an order that |
1602 | | // isn't strictly lexical, which breaks name lookup. Be careful to insert |
1603 | | // the label at the appropriate place in the identifier chain. |
1604 | 0 | for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) { |
1605 | 0 | DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext(); |
1606 | 0 | if (IDC == CurContext) { |
1607 | 0 | if (!S->isDeclScope(*I)) |
1608 | 0 | continue; |
1609 | 0 | } else if (IDC->Encloses(CurContext)) |
1610 | 0 | break; |
1611 | 0 | } |
1612 | |
|
1613 | 0 | IdResolver.InsertDeclAfter(I, D); |
1614 | 5.41k | } else { |
1615 | 5.41k | IdResolver.AddDecl(D); |
1616 | 5.41k | } |
1617 | 5.41k | warnOnReservedIdentifier(D); |
1618 | 5.41k | } |
1619 | | |
1620 | | bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S, |
1621 | 2.19k | bool AllowInlineNamespace) const { |
1622 | 2.19k | return IdResolver.isDeclInScope(D, Ctx, S, AllowInlineNamespace); |
1623 | 2.19k | } |
1624 | | |
1625 | 0 | Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) { |
1626 | 0 | DeclContext *TargetDC = DC->getPrimaryContext(); |
1627 | 0 | do { |
1628 | 0 | if (DeclContext *ScopeDC = S->getEntity()) |
1629 | 0 | if (ScopeDC->getPrimaryContext() == TargetDC) |
1630 | 0 | return S; |
1631 | 0 | } while ((S = S->getParent())); |
1632 | | |
1633 | 0 | return nullptr; |
1634 | 0 | } |
1635 | | |
1636 | | static bool isOutOfScopePreviousDeclaration(NamedDecl *, |
1637 | | DeclContext*, |
1638 | | ASTContext&); |
1639 | | |
1640 | | /// Filters out lookup results that don't fall within the given scope |
1641 | | /// as determined by isDeclInScope. |
1642 | | void Sema::FilterLookupForScope(LookupResult &R, DeclContext *Ctx, Scope *S, |
1643 | | bool ConsiderLinkage, |
1644 | 5.08k | bool AllowInlineNamespace) { |
1645 | 5.08k | LookupResult::Filter F = R.makeFilter(); |
1646 | 7.28k | while (F.hasNext()) { |
1647 | 2.19k | NamedDecl *D = F.next(); |
1648 | | |
1649 | 2.19k | if (isDeclInScope(D, Ctx, S, AllowInlineNamespace)) |
1650 | 2.19k | continue; |
1651 | | |
1652 | 0 | if (ConsiderLinkage && isOutOfScopePreviousDeclaration(D, Ctx, Context)) |
1653 | 0 | continue; |
1654 | | |
1655 | 0 | F.erase(); |
1656 | 0 | } |
1657 | | |
1658 | 5.08k | F.done(); |
1659 | 5.08k | } |
1660 | | |
1661 | | /// We've determined that \p New is a redeclaration of \p Old. Check that they |
1662 | | /// have compatible owning modules. |
1663 | 183 | bool Sema::CheckRedeclarationModuleOwnership(NamedDecl *New, NamedDecl *Old) { |
1664 | | // [module.interface]p7: |
1665 | | // A declaration is attached to a module as follows: |
1666 | | // - If the declaration is a non-dependent friend declaration that nominates a |
1667 | | // function with a declarator-id that is a qualified-id or template-id or that |
1668 | | // nominates a class other than with an elaborated-type-specifier with neither |
1669 | | // a nested-name-specifier nor a simple-template-id, it is attached to the |
1670 | | // module to which the friend is attached ([basic.link]). |
1671 | 183 | if (New->getFriendObjectKind() && |
1672 | 183 | Old->getOwningModuleForLinkage() != New->getOwningModuleForLinkage()) { |
1673 | 0 | New->setLocalOwningModule(Old->getOwningModule()); |
1674 | 0 | makeMergedDefinitionVisible(New); |
1675 | 0 | return false; |
1676 | 0 | } |
1677 | | |
1678 | 183 | Module *NewM = New->getOwningModule(); |
1679 | 183 | Module *OldM = Old->getOwningModule(); |
1680 | | |
1681 | 183 | if (NewM && NewM->isPrivateModule()) |
1682 | 0 | NewM = NewM->Parent; |
1683 | 183 | if (OldM && OldM->isPrivateModule()) |
1684 | 0 | OldM = OldM->Parent; |
1685 | | |
1686 | 183 | if (NewM == OldM) |
1687 | 183 | return false; |
1688 | | |
1689 | 0 | if (NewM && OldM) { |
1690 | | // A module implementation unit has visibility of the decls in its |
1691 | | // implicitly imported interface. |
1692 | 0 | if (NewM->isModuleImplementation() && OldM == ThePrimaryInterface) |
1693 | 0 | return false; |
1694 | | |
1695 | | // Partitions are part of the module, but a partition could import another |
1696 | | // module, so verify that the PMIs agree. |
1697 | 0 | if ((NewM->isModulePartition() || OldM->isModulePartition()) && |
1698 | 0 | NewM->getPrimaryModuleInterfaceName() == |
1699 | 0 | OldM->getPrimaryModuleInterfaceName()) |
1700 | 0 | return false; |
1701 | 0 | } |
1702 | | |
1703 | 0 | bool NewIsModuleInterface = NewM && NewM->isNamedModule(); |
1704 | 0 | bool OldIsModuleInterface = OldM && OldM->isNamedModule(); |
1705 | 0 | if (NewIsModuleInterface || OldIsModuleInterface) { |
1706 | | // C++ Modules TS [basic.def.odr] 6.2/6.7 [sic]: |
1707 | | // if a declaration of D [...] appears in the purview of a module, all |
1708 | | // other such declarations shall appear in the purview of the same module |
1709 | 0 | Diag(New->getLocation(), diag::err_mismatched_owning_module) |
1710 | 0 | << New |
1711 | 0 | << NewIsModuleInterface |
1712 | 0 | << (NewIsModuleInterface ? NewM->getFullModuleName() : "") |
1713 | 0 | << OldIsModuleInterface |
1714 | 0 | << (OldIsModuleInterface ? OldM->getFullModuleName() : ""); |
1715 | 0 | Diag(Old->getLocation(), diag::note_previous_declaration); |
1716 | 0 | New->setInvalidDecl(); |
1717 | 0 | return true; |
1718 | 0 | } |
1719 | | |
1720 | 0 | return false; |
1721 | 0 | } |
1722 | | |
1723 | | // [module.interface]p6: |
1724 | | // A redeclaration of an entity X is implicitly exported if X was introduced by |
1725 | | // an exported declaration; otherwise it shall not be exported. |
1726 | 183 | bool Sema::CheckRedeclarationExported(NamedDecl *New, NamedDecl *Old) { |
1727 | | // [module.interface]p1: |
1728 | | // An export-declaration shall inhabit a namespace scope. |
1729 | | // |
1730 | | // So it is meaningless to talk about redeclaration which is not at namespace |
1731 | | // scope. |
1732 | 183 | if (!New->getLexicalDeclContext() |
1733 | 183 | ->getNonTransparentContext() |
1734 | 183 | ->isFileContext() || |
1735 | 183 | !Old->getLexicalDeclContext() |
1736 | 183 | ->getNonTransparentContext() |
1737 | 183 | ->isFileContext()) |
1738 | 0 | return false; |
1739 | | |
1740 | 183 | bool IsNewExported = New->isInExportDeclContext(); |
1741 | 183 | bool IsOldExported = Old->isInExportDeclContext(); |
1742 | | |
1743 | | // It should be irrevelant if both of them are not exported. |
1744 | 183 | if (!IsNewExported && !IsOldExported) |
1745 | 183 | return false; |
1746 | | |
1747 | 0 | if (IsOldExported) |
1748 | 0 | return false; |
1749 | | |
1750 | 0 | assert(IsNewExported); |
1751 | | |
1752 | 0 | auto Lk = Old->getFormalLinkage(); |
1753 | 0 | int S = 0; |
1754 | 0 | if (Lk == Linkage::Internal) |
1755 | 0 | S = 1; |
1756 | 0 | else if (Lk == Linkage::Module) |
1757 | 0 | S = 2; |
1758 | 0 | Diag(New->getLocation(), diag::err_redeclaration_non_exported) << New << S; |
1759 | 0 | Diag(Old->getLocation(), diag::note_previous_declaration); |
1760 | 0 | return true; |
1761 | 0 | } |
1762 | | |
1763 | | // A wrapper function for checking the semantic restrictions of |
1764 | | // a redeclaration within a module. |
1765 | 183 | bool Sema::CheckRedeclarationInModule(NamedDecl *New, NamedDecl *Old) { |
1766 | 183 | if (CheckRedeclarationModuleOwnership(New, Old)) |
1767 | 0 | return true; |
1768 | | |
1769 | 183 | if (CheckRedeclarationExported(New, Old)) |
1770 | 0 | return true; |
1771 | | |
1772 | 183 | return false; |
1773 | 183 | } |
1774 | | |
1775 | | // Check the redefinition in C++20 Modules. |
1776 | | // |
1777 | | // [basic.def.odr]p14: |
1778 | | // For any definable item D with definitions in multiple translation units, |
1779 | | // - if D is a non-inline non-templated function or variable, or |
1780 | | // - if the definitions in different translation units do not satisfy the |
1781 | | // following requirements, |
1782 | | // the program is ill-formed; a diagnostic is required only if the definable |
1783 | | // item is attached to a named module and a prior definition is reachable at |
1784 | | // the point where a later definition occurs. |
1785 | | // - Each such definition shall not be attached to a named module |
1786 | | // ([module.unit]). |
1787 | | // - Each such definition shall consist of the same sequence of tokens, ... |
1788 | | // ... |
1789 | | // |
1790 | | // Return true if the redefinition is not allowed. Return false otherwise. |
1791 | | bool Sema::IsRedefinitionInModule(const NamedDecl *New, |
1792 | 0 | const NamedDecl *Old) const { |
1793 | 0 | assert(getASTContext().isSameEntity(New, Old) && |
1794 | 0 | "New and Old are not the same definition, we should diagnostic it " |
1795 | 0 | "immediately instead of checking it."); |
1796 | 0 | assert(const_cast<Sema *>(this)->isReachable(New) && |
1797 | 0 | const_cast<Sema *>(this)->isReachable(Old) && |
1798 | 0 | "We shouldn't see unreachable definitions here."); |
1799 | | |
1800 | 0 | Module *NewM = New->getOwningModule(); |
1801 | 0 | Module *OldM = Old->getOwningModule(); |
1802 | | |
1803 | | // We only checks for named modules here. The header like modules is skipped. |
1804 | | // FIXME: This is not right if we import the header like modules in the module |
1805 | | // purview. |
1806 | | // |
1807 | | // For example, assuming "header.h" provides definition for `D`. |
1808 | | // ```C++ |
1809 | | // //--- M.cppm |
1810 | | // export module M; |
1811 | | // import "header.h"; // or #include "header.h" but import it by clang modules |
1812 | | // actually. |
1813 | | // |
1814 | | // //--- Use.cpp |
1815 | | // import M; |
1816 | | // import "header.h"; // or uses clang modules. |
1817 | | // ``` |
1818 | | // |
1819 | | // In this case, `D` has multiple definitions in multiple TU (M.cppm and |
1820 | | // Use.cpp) and `D` is attached to a named module `M`. The compiler should |
1821 | | // reject it. But the current implementation couldn't detect the case since we |
1822 | | // don't record the information about the importee modules. |
1823 | | // |
1824 | | // But this might not be painful in practice. Since the design of C++20 Named |
1825 | | // Modules suggests us to use headers in global module fragment instead of |
1826 | | // module purview. |
1827 | 0 | if (NewM && NewM->isHeaderLikeModule()) |
1828 | 0 | NewM = nullptr; |
1829 | 0 | if (OldM && OldM->isHeaderLikeModule()) |
1830 | 0 | OldM = nullptr; |
1831 | |
|
1832 | 0 | if (!NewM && !OldM) |
1833 | 0 | return true; |
1834 | | |
1835 | | // [basic.def.odr]p14.3 |
1836 | | // Each such definition shall not be attached to a named module |
1837 | | // ([module.unit]). |
1838 | 0 | if ((NewM && NewM->isNamedModule()) || (OldM && OldM->isNamedModule())) |
1839 | 0 | return true; |
1840 | | |
1841 | | // Then New and Old lives in the same TU if their share one same module unit. |
1842 | 0 | if (NewM) |
1843 | 0 | NewM = NewM->getTopLevelModule(); |
1844 | 0 | if (OldM) |
1845 | 0 | OldM = OldM->getTopLevelModule(); |
1846 | 0 | return OldM == NewM; |
1847 | 0 | } |
1848 | | |
1849 | 0 | static bool isUsingDeclNotAtClassScope(NamedDecl *D) { |
1850 | 0 | if (D->getDeclContext()->isFileContext()) |
1851 | 0 | return false; |
1852 | | |
1853 | 0 | return isa<UsingShadowDecl>(D) || |
1854 | 0 | isa<UnresolvedUsingTypenameDecl>(D) || |
1855 | 0 | isa<UnresolvedUsingValueDecl>(D); |
1856 | 0 | } |
1857 | | |
1858 | | /// Removes using shadow declarations not at class scope from the lookup |
1859 | | /// results. |
1860 | 0 | static void RemoveUsingDecls(LookupResult &R) { |
1861 | 0 | LookupResult::Filter F = R.makeFilter(); |
1862 | 0 | while (F.hasNext()) |
1863 | 0 | if (isUsingDeclNotAtClassScope(F.next())) |
1864 | 0 | F.erase(); |
1865 | |
|
1866 | 0 | F.done(); |
1867 | 0 | } |
1868 | | |
1869 | | /// Check for this common pattern: |
1870 | | /// @code |
1871 | | /// class S { |
1872 | | /// S(const S&); // DO NOT IMPLEMENT |
1873 | | /// void operator=(const S&); // DO NOT IMPLEMENT |
1874 | | /// }; |
1875 | | /// @endcode |
1876 | 0 | static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) { |
1877 | | // FIXME: Should check for private access too but access is set after we get |
1878 | | // the decl here. |
1879 | 0 | if (D->doesThisDeclarationHaveABody()) |
1880 | 0 | return false; |
1881 | | |
1882 | 0 | if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D)) |
1883 | 0 | return CD->isCopyConstructor(); |
1884 | 0 | return D->isCopyAssignmentOperator(); |
1885 | 0 | } |
1886 | | |
1887 | | // We need this to handle |
1888 | | // |
1889 | | // typedef struct { |
1890 | | // void *foo() { return 0; } |
1891 | | // } A; |
1892 | | // |
1893 | | // When we see foo we don't know if after the typedef we will get 'A' or '*A' |
1894 | | // for example. If 'A', foo will have external linkage. If we have '*A', |
1895 | | // foo will have no linkage. Since we can't know until we get to the end |
1896 | | // of the typedef, this function finds out if D might have non-external linkage. |
1897 | | // Callers should verify at the end of the TU if it D has external linkage or |
1898 | | // not. |
1899 | 6 | bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) { |
1900 | 6 | const DeclContext *DC = D->getDeclContext(); |
1901 | 6 | while (!DC->isTranslationUnit()) { |
1902 | 0 | if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){ |
1903 | 0 | if (!RD->hasNameForLinkage()) |
1904 | 0 | return true; |
1905 | 0 | } |
1906 | 0 | DC = DC->getParent(); |
1907 | 0 | } |
1908 | | |
1909 | 6 | return !D->isExternallyVisible(); |
1910 | 6 | } |
1911 | | |
1912 | | // FIXME: This needs to be refactored; some other isInMainFile users want |
1913 | | // these semantics. |
1914 | 502 | static bool isMainFileLoc(const Sema &S, SourceLocation Loc) { |
1915 | 502 | if (S.TUKind != TU_Complete || S.getLangOpts().IsHeaderFile) |
1916 | 0 | return false; |
1917 | 502 | return S.SourceMgr.isInMainFile(Loc); |
1918 | 502 | } |
1919 | | |
1920 | 5.27k | bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const { |
1921 | 5.27k | assert(D); |
1922 | | |
1923 | 5.27k | if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>()) |
1924 | 4.76k | return false; |
1925 | | |
1926 | | // Ignore all entities declared within templates, and out-of-line definitions |
1927 | | // of members of class templates. |
1928 | 508 | if (D->getDeclContext()->isDependentContext() || |
1929 | 508 | D->getLexicalDeclContext()->isDependentContext()) |
1930 | 0 | return false; |
1931 | | |
1932 | 508 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
1933 | 6 | if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
1934 | 0 | return false; |
1935 | | // A non-out-of-line declaration of a member specialization was implicitly |
1936 | | // instantiated; it's the out-of-line declaration that we're interested in. |
1937 | 6 | if (FD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && |
1938 | 6 | FD->getMemberSpecializationInfo() && !FD->isOutOfLine()) |
1939 | 0 | return false; |
1940 | | |
1941 | 6 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
1942 | 0 | if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD)) |
1943 | 0 | return false; |
1944 | 6 | } else { |
1945 | | // 'static inline' functions are defined in headers; don't warn. |
1946 | 6 | if (FD->isInlined() && !isMainFileLoc(*this, FD->getLocation())) |
1947 | 0 | return false; |
1948 | 6 | } |
1949 | | |
1950 | 6 | if (FD->doesThisDeclarationHaveABody() && |
1951 | 6 | Context.DeclMustBeEmitted(FD)) |
1952 | 0 | return false; |
1953 | 502 | } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
1954 | | // Constants and utility variables are defined in headers with internal |
1955 | | // linkage; don't warn. (Unlike functions, there isn't a convenient marker |
1956 | | // like "inline".) |
1957 | 502 | if (!isMainFileLoc(*this, VD->getLocation())) |
1958 | 0 | return false; |
1959 | | |
1960 | 502 | if (Context.DeclMustBeEmitted(VD)) |
1961 | 502 | return false; |
1962 | | |
1963 | 0 | if (VD->isStaticDataMember() && |
1964 | 0 | VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) |
1965 | 0 | return false; |
1966 | 0 | if (VD->isStaticDataMember() && |
1967 | 0 | VD->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && |
1968 | 0 | VD->getMemberSpecializationInfo() && !VD->isOutOfLine()) |
1969 | 0 | return false; |
1970 | | |
1971 | 0 | if (VD->isInline() && !isMainFileLoc(*this, VD->getLocation())) |
1972 | 0 | return false; |
1973 | 0 | } else { |
1974 | 0 | return false; |
1975 | 0 | } |
1976 | | |
1977 | | // Only warn for unused decls internal to the translation unit. |
1978 | | // FIXME: This seems like a bogus check; it suppresses -Wunused-function |
1979 | | // for inline functions defined in the main source file, for instance. |
1980 | 6 | return mightHaveNonExternalLinkage(D); |
1981 | 508 | } |
1982 | | |
1983 | 5.08k | void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) { |
1984 | 5.08k | if (!D) |
1985 | 0 | return; |
1986 | | |
1987 | 5.08k | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
1988 | 19 | const FunctionDecl *First = FD->getFirstDecl(); |
1989 | 19 | if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First)) |
1990 | 0 | return; // First should already be in the vector. |
1991 | 19 | } |
1992 | | |
1993 | 5.08k | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
1994 | 5.07k | const VarDecl *First = VD->getFirstDecl(); |
1995 | 5.07k | if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First)) |
1996 | 0 | return; // First should already be in the vector. |
1997 | 5.07k | } |
1998 | | |
1999 | 5.08k | if (ShouldWarnIfUnusedFileScopedDecl(D)) |
2000 | 0 | UnusedFileScopedDecls.push_back(D); |
2001 | 5.08k | } |
2002 | | |
2003 | | static bool ShouldDiagnoseUnusedDecl(const LangOptions &LangOpts, |
2004 | 0 | const NamedDecl *D) { |
2005 | 0 | if (D->isInvalidDecl()) |
2006 | 0 | return false; |
2007 | | |
2008 | 0 | if (const auto *DD = dyn_cast<DecompositionDecl>(D)) { |
2009 | | // For a decomposition declaration, warn if none of the bindings are |
2010 | | // referenced, instead of if the variable itself is referenced (which |
2011 | | // it is, by the bindings' expressions). |
2012 | 0 | bool IsAllPlaceholders = true; |
2013 | 0 | for (const auto *BD : DD->bindings()) { |
2014 | 0 | if (BD->isReferenced()) |
2015 | 0 | return false; |
2016 | 0 | IsAllPlaceholders = IsAllPlaceholders && BD->isPlaceholderVar(LangOpts); |
2017 | 0 | } |
2018 | 0 | if (IsAllPlaceholders) |
2019 | 0 | return false; |
2020 | 0 | } else if (!D->getDeclName()) { |
2021 | 0 | return false; |
2022 | 0 | } else if (D->isReferenced() || D->isUsed()) { |
2023 | 0 | return false; |
2024 | 0 | } |
2025 | | |
2026 | 0 | if (D->isPlaceholderVar(LangOpts)) |
2027 | 0 | return false; |
2028 | | |
2029 | 0 | if (D->hasAttr<UnusedAttr>() || D->hasAttr<ObjCPreciseLifetimeAttr>() || |
2030 | 0 | D->hasAttr<CleanupAttr>()) |
2031 | 0 | return false; |
2032 | | |
2033 | 0 | if (isa<LabelDecl>(D)) |
2034 | 0 | return true; |
2035 | | |
2036 | | // Except for labels, we only care about unused decls that are local to |
2037 | | // functions. |
2038 | 0 | bool WithinFunction = D->getDeclContext()->isFunctionOrMethod(); |
2039 | 0 | if (const auto *R = dyn_cast<CXXRecordDecl>(D->getDeclContext())) |
2040 | | // For dependent types, the diagnostic is deferred. |
2041 | 0 | WithinFunction = |
2042 | 0 | WithinFunction || (R->isLocalClass() && !R->isDependentType()); |
2043 | 0 | if (!WithinFunction) |
2044 | 0 | return false; |
2045 | | |
2046 | 0 | if (isa<TypedefNameDecl>(D)) |
2047 | 0 | return true; |
2048 | | |
2049 | | // White-list anything that isn't a local variable. |
2050 | 0 | if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) |
2051 | 0 | return false; |
2052 | | |
2053 | | // Types of valid local variables should be complete, so this should succeed. |
2054 | 0 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
2055 | |
|
2056 | 0 | const Expr *Init = VD->getInit(); |
2057 | 0 | if (const auto *Cleanups = dyn_cast_if_present<ExprWithCleanups>(Init)) |
2058 | 0 | Init = Cleanups->getSubExpr(); |
2059 | |
|
2060 | 0 | const auto *Ty = VD->getType().getTypePtr(); |
2061 | | |
2062 | | // Only look at the outermost level of typedef. |
2063 | 0 | if (const TypedefType *TT = Ty->getAs<TypedefType>()) { |
2064 | | // Allow anything marked with __attribute__((unused)). |
2065 | 0 | if (TT->getDecl()->hasAttr<UnusedAttr>()) |
2066 | 0 | return false; |
2067 | 0 | } |
2068 | | |
2069 | | // Warn for reference variables whose initializtion performs lifetime |
2070 | | // extension. |
2071 | 0 | if (const auto *MTE = dyn_cast_if_present<MaterializeTemporaryExpr>(Init); |
2072 | 0 | MTE && MTE->getExtendingDecl()) { |
2073 | 0 | Ty = VD->getType().getNonReferenceType().getTypePtr(); |
2074 | 0 | Init = MTE->getSubExpr()->IgnoreImplicitAsWritten(); |
2075 | 0 | } |
2076 | | |
2077 | | // If we failed to complete the type for some reason, or if the type is |
2078 | | // dependent, don't diagnose the variable. |
2079 | 0 | if (Ty->isIncompleteType() || Ty->isDependentType()) |
2080 | 0 | return false; |
2081 | | |
2082 | | // Look at the element type to ensure that the warning behaviour is |
2083 | | // consistent for both scalars and arrays. |
2084 | 0 | Ty = Ty->getBaseElementTypeUnsafe(); |
2085 | |
|
2086 | 0 | if (const TagType *TT = Ty->getAs<TagType>()) { |
2087 | 0 | const TagDecl *Tag = TT->getDecl(); |
2088 | 0 | if (Tag->hasAttr<UnusedAttr>()) |
2089 | 0 | return false; |
2090 | | |
2091 | 0 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Tag)) { |
2092 | 0 | if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>()) |
2093 | 0 | return false; |
2094 | | |
2095 | 0 | if (Init) { |
2096 | 0 | const auto *Construct = dyn_cast<CXXConstructExpr>(Init); |
2097 | 0 | if (Construct && !Construct->isElidable()) { |
2098 | 0 | const CXXConstructorDecl *CD = Construct->getConstructor(); |
2099 | 0 | if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>() && |
2100 | 0 | (VD->getInit()->isValueDependent() || !VD->evaluateValue())) |
2101 | 0 | return false; |
2102 | 0 | } |
2103 | | |
2104 | | // Suppress the warning if we don't know how this is constructed, and |
2105 | | // it could possibly be non-trivial constructor. |
2106 | 0 | if (Init->isTypeDependent()) { |
2107 | 0 | for (const CXXConstructorDecl *Ctor : RD->ctors()) |
2108 | 0 | if (!Ctor->isTrivial()) |
2109 | 0 | return false; |
2110 | 0 | } |
2111 | | |
2112 | | // Suppress the warning if the constructor is unresolved because |
2113 | | // its arguments are dependent. |
2114 | 0 | if (isa<CXXUnresolvedConstructExpr>(Init)) |
2115 | 0 | return false; |
2116 | 0 | } |
2117 | 0 | } |
2118 | 0 | } |
2119 | | |
2120 | | // TODO: __attribute__((unused)) templates? |
2121 | 0 | } |
2122 | | |
2123 | 0 | return true; |
2124 | 0 | } |
2125 | | |
2126 | | static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx, |
2127 | 0 | FixItHint &Hint) { |
2128 | 0 | if (isa<LabelDecl>(D)) { |
2129 | 0 | SourceLocation AfterColon = Lexer::findLocationAfterToken( |
2130 | 0 | D->getEndLoc(), tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), |
2131 | 0 | /*SkipTrailingWhitespaceAndNewline=*/false); |
2132 | 0 | if (AfterColon.isInvalid()) |
2133 | 0 | return; |
2134 | 0 | Hint = FixItHint::CreateRemoval( |
2135 | 0 | CharSourceRange::getCharRange(D->getBeginLoc(), AfterColon)); |
2136 | 0 | } |
2137 | 0 | } |
2138 | | |
2139 | 0 | void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D) { |
2140 | 0 | DiagnoseUnusedNestedTypedefs( |
2141 | 0 | D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); }); |
2142 | 0 | } |
2143 | | |
2144 | | void Sema::DiagnoseUnusedNestedTypedefs(const RecordDecl *D, |
2145 | 0 | DiagReceiverTy DiagReceiver) { |
2146 | 0 | if (D->getTypeForDecl()->isDependentType()) |
2147 | 0 | return; |
2148 | | |
2149 | 0 | for (auto *TmpD : D->decls()) { |
2150 | 0 | if (const auto *T = dyn_cast<TypedefNameDecl>(TmpD)) |
2151 | 0 | DiagnoseUnusedDecl(T, DiagReceiver); |
2152 | 0 | else if(const auto *R = dyn_cast<RecordDecl>(TmpD)) |
2153 | 0 | DiagnoseUnusedNestedTypedefs(R, DiagReceiver); |
2154 | 0 | } |
2155 | 0 | } |
2156 | | |
2157 | 0 | void Sema::DiagnoseUnusedDecl(const NamedDecl *D) { |
2158 | 0 | DiagnoseUnusedDecl( |
2159 | 0 | D, [this](SourceLocation Loc, PartialDiagnostic PD) { Diag(Loc, PD); }); |
2160 | 0 | } |
2161 | | |
2162 | | /// DiagnoseUnusedDecl - Emit warnings about declarations that are not used |
2163 | | /// unless they are marked attr(unused). |
2164 | 0 | void Sema::DiagnoseUnusedDecl(const NamedDecl *D, DiagReceiverTy DiagReceiver) { |
2165 | 0 | if (!ShouldDiagnoseUnusedDecl(getLangOpts(), D)) |
2166 | 0 | return; |
2167 | | |
2168 | 0 | if (auto *TD = dyn_cast<TypedefNameDecl>(D)) { |
2169 | | // typedefs can be referenced later on, so the diagnostics are emitted |
2170 | | // at end-of-translation-unit. |
2171 | 0 | UnusedLocalTypedefNameCandidates.insert(TD); |
2172 | 0 | return; |
2173 | 0 | } |
2174 | | |
2175 | 0 | FixItHint Hint; |
2176 | 0 | GenerateFixForUnusedDecl(D, Context, Hint); |
2177 | |
|
2178 | 0 | unsigned DiagID; |
2179 | 0 | if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable()) |
2180 | 0 | DiagID = diag::warn_unused_exception_param; |
2181 | 0 | else if (isa<LabelDecl>(D)) |
2182 | 0 | DiagID = diag::warn_unused_label; |
2183 | 0 | else |
2184 | 0 | DiagID = diag::warn_unused_variable; |
2185 | |
|
2186 | 0 | SourceLocation DiagLoc = D->getLocation(); |
2187 | 0 | DiagReceiver(DiagLoc, PDiag(DiagID) << D << Hint << SourceRange(DiagLoc)); |
2188 | 0 | } |
2189 | | |
2190 | | void Sema::DiagnoseUnusedButSetDecl(const VarDecl *VD, |
2191 | 0 | DiagReceiverTy DiagReceiver) { |
2192 | | // If it's not referenced, it can't be set. If it has the Cleanup attribute, |
2193 | | // it's not really unused. |
2194 | 0 | if (!VD->isReferenced() || !VD->getDeclName() || VD->hasAttr<CleanupAttr>()) |
2195 | 0 | return; |
2196 | | |
2197 | | // In C++, `_` variables behave as if they were maybe_unused |
2198 | 0 | if (VD->hasAttr<UnusedAttr>() || VD->isPlaceholderVar(getLangOpts())) |
2199 | 0 | return; |
2200 | | |
2201 | 0 | const auto *Ty = VD->getType().getTypePtr()->getBaseElementTypeUnsafe(); |
2202 | |
|
2203 | 0 | if (Ty->isReferenceType() || Ty->isDependentType()) |
2204 | 0 | return; |
2205 | | |
2206 | 0 | if (const TagType *TT = Ty->getAs<TagType>()) { |
2207 | 0 | const TagDecl *Tag = TT->getDecl(); |
2208 | 0 | if (Tag->hasAttr<UnusedAttr>()) |
2209 | 0 | return; |
2210 | | // In C++, don't warn for record types that don't have WarnUnusedAttr, to |
2211 | | // mimic gcc's behavior. |
2212 | 0 | if (const auto *RD = dyn_cast<CXXRecordDecl>(Tag); |
2213 | 0 | RD && !RD->hasAttr<WarnUnusedAttr>()) |
2214 | 0 | return; |
2215 | 0 | } |
2216 | | |
2217 | | // Don't warn about __block Objective-C pointer variables, as they might |
2218 | | // be assigned in the block but not used elsewhere for the purpose of lifetime |
2219 | | // extension. |
2220 | 0 | if (VD->hasAttr<BlocksAttr>() && Ty->isObjCObjectPointerType()) |
2221 | 0 | return; |
2222 | | |
2223 | | // Don't warn about Objective-C pointer variables with precise lifetime |
2224 | | // semantics; they can be used to ensure ARC releases the object at a known |
2225 | | // time, which may mean assignment but no other references. |
2226 | 0 | if (VD->hasAttr<ObjCPreciseLifetimeAttr>() && Ty->isObjCObjectPointerType()) |
2227 | 0 | return; |
2228 | | |
2229 | 0 | auto iter = RefsMinusAssignments.find(VD); |
2230 | 0 | if (iter == RefsMinusAssignments.end()) |
2231 | 0 | return; |
2232 | | |
2233 | 0 | assert(iter->getSecond() >= 0 && |
2234 | 0 | "Found a negative number of references to a VarDecl"); |
2235 | 0 | if (iter->getSecond() != 0) |
2236 | 0 | return; |
2237 | 0 | unsigned DiagID = isa<ParmVarDecl>(VD) ? diag::warn_unused_but_set_parameter |
2238 | 0 | : diag::warn_unused_but_set_variable; |
2239 | 0 | DiagReceiver(VD->getLocation(), PDiag(DiagID) << VD); |
2240 | 0 | } |
2241 | | |
2242 | | static void CheckPoppedLabel(LabelDecl *L, Sema &S, |
2243 | 0 | Sema::DiagReceiverTy DiagReceiver) { |
2244 | | // Verify that we have no forward references left. If so, there was a goto |
2245 | | // or address of a label taken, but no definition of it. Label fwd |
2246 | | // definitions are indicated with a null substmt which is also not a resolved |
2247 | | // MS inline assembly label name. |
2248 | 0 | bool Diagnose = false; |
2249 | 0 | if (L->isMSAsmLabel()) |
2250 | 0 | Diagnose = !L->isResolvedMSAsmLabel(); |
2251 | 0 | else |
2252 | 0 | Diagnose = L->getStmt() == nullptr; |
2253 | 0 | if (Diagnose) |
2254 | 0 | DiagReceiver(L->getLocation(), S.PDiag(diag::err_undeclared_label_use) |
2255 | 0 | << L); |
2256 | 0 | } |
2257 | | |
2258 | 144 | void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) { |
2259 | 144 | S->applyNRVO(); |
2260 | | |
2261 | 144 | if (S->decl_empty()) return; |
2262 | 40 | assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) && |
2263 | 40 | "Scope shouldn't contain decls!"); |
2264 | | |
2265 | | /// We visit the decls in non-deterministic order, but we want diagnostics |
2266 | | /// emitted in deterministic order. Collect any diagnostic that may be emitted |
2267 | | /// and sort the diagnostics before emitting them, after we visited all decls. |
2268 | 0 | struct LocAndDiag { |
2269 | 40 | SourceLocation Loc; |
2270 | 40 | std::optional<SourceLocation> PreviousDeclLoc; |
2271 | 40 | PartialDiagnostic PD; |
2272 | 40 | }; |
2273 | 40 | SmallVector<LocAndDiag, 16> DeclDiags; |
2274 | 40 | auto addDiag = [&DeclDiags](SourceLocation Loc, PartialDiagnostic PD) { |
2275 | 0 | DeclDiags.push_back(LocAndDiag{Loc, std::nullopt, std::move(PD)}); |
2276 | 0 | }; |
2277 | 40 | auto addDiagWithPrev = [&DeclDiags](SourceLocation Loc, |
2278 | 40 | SourceLocation PreviousDeclLoc, |
2279 | 40 | PartialDiagnostic PD) { |
2280 | 0 | DeclDiags.push_back(LocAndDiag{Loc, PreviousDeclLoc, std::move(PD)}); |
2281 | 0 | }; |
2282 | | |
2283 | 40 | for (auto *TmpD : S->decls()) { |
2284 | 40 | assert(TmpD && "This decl didn't get pushed??"); |
2285 | | |
2286 | 0 | assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?"); |
2287 | 0 | NamedDecl *D = cast<NamedDecl>(TmpD); |
2288 | | |
2289 | | // Diagnose unused variables in this scope. |
2290 | 40 | if (!S->hasUnrecoverableErrorOccurred()) { |
2291 | 0 | DiagnoseUnusedDecl(D, addDiag); |
2292 | 0 | if (const auto *RD = dyn_cast<RecordDecl>(D)) |
2293 | 0 | DiagnoseUnusedNestedTypedefs(RD, addDiag); |
2294 | 0 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) { |
2295 | 0 | DiagnoseUnusedButSetDecl(VD, addDiag); |
2296 | 0 | RefsMinusAssignments.erase(VD); |
2297 | 0 | } |
2298 | 0 | } |
2299 | | |
2300 | 40 | if (!D->getDeclName()) continue; |
2301 | | |
2302 | | // If this was a forward reference to a label, verify it was defined. |
2303 | 21 | if (LabelDecl *LD = dyn_cast<LabelDecl>(D)) |
2304 | 0 | CheckPoppedLabel(LD, *this, addDiag); |
2305 | | |
2306 | | // Remove this name from our lexical scope, and warn on it if we haven't |
2307 | | // already. |
2308 | 21 | IdResolver.RemoveDecl(D); |
2309 | 21 | auto ShadowI = ShadowingDecls.find(D); |
2310 | 21 | if (ShadowI != ShadowingDecls.end()) { |
2311 | 0 | if (const auto *FD = dyn_cast<FieldDecl>(ShadowI->second)) { |
2312 | 0 | addDiagWithPrev(D->getLocation(), FD->getLocation(), |
2313 | 0 | PDiag(diag::warn_ctor_parm_shadows_field) |
2314 | 0 | << D << FD << FD->getParent()); |
2315 | 0 | } |
2316 | 0 | ShadowingDecls.erase(ShadowI); |
2317 | 0 | } |
2318 | | |
2319 | 21 | if (!getLangOpts().CPlusPlus && S->isClassScope()) { |
2320 | 0 | if (auto *FD = dyn_cast<FieldDecl>(TmpD); |
2321 | 0 | FD && FD->hasAttr<CountedByAttr>()) |
2322 | 0 | CheckCountedByAttr(S, FD); |
2323 | 0 | } |
2324 | 21 | } |
2325 | | |
2326 | 40 | llvm::sort(DeclDiags, |
2327 | 40 | [](const LocAndDiag &LHS, const LocAndDiag &RHS) -> bool { |
2328 | | // The particular order for diagnostics is not important, as long |
2329 | | // as the order is deterministic. Using the raw location is going |
2330 | | // to generally be in source order unless there are macro |
2331 | | // expansions involved. |
2332 | 0 | return LHS.Loc.getRawEncoding() < RHS.Loc.getRawEncoding(); |
2333 | 0 | }); |
2334 | 40 | for (const LocAndDiag &D : DeclDiags) { |
2335 | 0 | Diag(D.Loc, D.PD); |
2336 | 0 | if (D.PreviousDeclLoc) |
2337 | 0 | Diag(*D.PreviousDeclLoc, diag::note_previous_declaration); |
2338 | 0 | } |
2339 | 40 | } |
2340 | | |
2341 | | /// Look for an Objective-C class in the translation unit. |
2342 | | /// |
2343 | | /// \param Id The name of the Objective-C class we're looking for. If |
2344 | | /// typo-correction fixes this name, the Id will be updated |
2345 | | /// to the fixed name. |
2346 | | /// |
2347 | | /// \param IdLoc The location of the name in the translation unit. |
2348 | | /// |
2349 | | /// \param DoTypoCorrection If true, this routine will attempt typo correction |
2350 | | /// if there is no class with the given name. |
2351 | | /// |
2352 | | /// \returns The declaration of the named Objective-C class, or NULL if the |
2353 | | /// class could not be found. |
2354 | | ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id, |
2355 | | SourceLocation IdLoc, |
2356 | 0 | bool DoTypoCorrection) { |
2357 | | // The third "scope" argument is 0 since we aren't enabling lazy built-in |
2358 | | // creation from this context. |
2359 | 0 | NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName); |
2360 | |
|
2361 | 0 | if (!IDecl && DoTypoCorrection) { |
2362 | | // Perform typo correction at the given location, but only if we |
2363 | | // find an Objective-C class name. |
2364 | 0 | DeclFilterCCC<ObjCInterfaceDecl> CCC{}; |
2365 | 0 | if (TypoCorrection C = |
2366 | 0 | CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName, |
2367 | 0 | TUScope, nullptr, CCC, CTK_ErrorRecovery)) { |
2368 | 0 | diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id); |
2369 | 0 | IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>(); |
2370 | 0 | Id = IDecl->getIdentifier(); |
2371 | 0 | } |
2372 | 0 | } |
2373 | 0 | ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl); |
2374 | | // This routine must always return a class definition, if any. |
2375 | 0 | if (Def && Def->getDefinition()) |
2376 | 0 | Def = Def->getDefinition(); |
2377 | 0 | return Def; |
2378 | 0 | } |
2379 | | |
2380 | | /// getNonFieldDeclScope - Retrieves the innermost scope, starting |
2381 | | /// from S, where a non-field would be declared. This routine copes |
2382 | | /// with the difference between C and C++ scoping rules in structs and |
2383 | | /// unions. For example, the following code is well-formed in C but |
2384 | | /// ill-formed in C++: |
2385 | | /// @code |
2386 | | /// struct S6 { |
2387 | | /// enum { BAR } e; |
2388 | | /// }; |
2389 | | /// |
2390 | | /// void test_S6() { |
2391 | | /// struct S6 a; |
2392 | | /// a.e = BAR; |
2393 | | /// } |
2394 | | /// @endcode |
2395 | | /// For the declaration of BAR, this routine will return a different |
2396 | | /// scope. The scope S will be the scope of the unnamed enumeration |
2397 | | /// within S6. In C++, this routine will return the scope associated |
2398 | | /// with S6, because the enumeration's scope is a transparent |
2399 | | /// context but structures can contain non-field names. In C, this |
2400 | | /// routine will return the translation unit scope, since the |
2401 | | /// enumeration's scope is a transparent context and structures cannot |
2402 | | /// contain non-field names. |
2403 | 0 | Scope *Sema::getNonFieldDeclScope(Scope *S) { |
2404 | 0 | while (((S->getFlags() & Scope::DeclScope) == 0) || |
2405 | 0 | (S->getEntity() && S->getEntity()->isTransparentContext()) || |
2406 | 0 | (S->isClassScope() && !getLangOpts().CPlusPlus)) |
2407 | 0 | S = S->getParent(); |
2408 | 0 | return S; |
2409 | 0 | } |
2410 | | |
2411 | | static StringRef getHeaderName(Builtin::Context &BuiltinInfo, unsigned ID, |
2412 | 0 | ASTContext::GetBuiltinTypeError Error) { |
2413 | 0 | switch (Error) { |
2414 | 0 | case ASTContext::GE_None: |
2415 | 0 | return ""; |
2416 | 0 | case ASTContext::GE_Missing_type: |
2417 | 0 | return BuiltinInfo.getHeaderName(ID); |
2418 | 0 | case ASTContext::GE_Missing_stdio: |
2419 | 0 | return "stdio.h"; |
2420 | 0 | case ASTContext::GE_Missing_setjmp: |
2421 | 0 | return "setjmp.h"; |
2422 | 0 | case ASTContext::GE_Missing_ucontext: |
2423 | 0 | return "ucontext.h"; |
2424 | 0 | } |
2425 | 0 | llvm_unreachable("unhandled error kind"); |
2426 | 0 | } |
2427 | | |
2428 | | FunctionDecl *Sema::CreateBuiltin(IdentifierInfo *II, QualType Type, |
2429 | 0 | unsigned ID, SourceLocation Loc) { |
2430 | 0 | DeclContext *Parent = Context.getTranslationUnitDecl(); |
2431 | |
|
2432 | 0 | if (getLangOpts().CPlusPlus) { |
2433 | 0 | LinkageSpecDecl *CLinkageDecl = LinkageSpecDecl::Create( |
2434 | 0 | Context, Parent, Loc, Loc, LinkageSpecLanguageIDs::C, false); |
2435 | 0 | CLinkageDecl->setImplicit(); |
2436 | 0 | Parent->addDecl(CLinkageDecl); |
2437 | 0 | Parent = CLinkageDecl; |
2438 | 0 | } |
2439 | |
|
2440 | 0 | FunctionDecl *New = FunctionDecl::Create(Context, Parent, Loc, Loc, II, Type, |
2441 | 0 | /*TInfo=*/nullptr, SC_Extern, |
2442 | 0 | getCurFPFeatures().isFPConstrained(), |
2443 | 0 | false, Type->isFunctionProtoType()); |
2444 | 0 | New->setImplicit(); |
2445 | 0 | New->addAttr(BuiltinAttr::CreateImplicit(Context, ID)); |
2446 | | |
2447 | | // Create Decl objects for each parameter, adding them to the |
2448 | | // FunctionDecl. |
2449 | 0 | if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(Type)) { |
2450 | 0 | SmallVector<ParmVarDecl *, 16> Params; |
2451 | 0 | for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { |
2452 | 0 | ParmVarDecl *parm = ParmVarDecl::Create( |
2453 | 0 | Context, New, SourceLocation(), SourceLocation(), nullptr, |
2454 | 0 | FT->getParamType(i), /*TInfo=*/nullptr, SC_None, nullptr); |
2455 | 0 | parm->setScopeInfo(0, i); |
2456 | 0 | Params.push_back(parm); |
2457 | 0 | } |
2458 | 0 | New->setParams(Params); |
2459 | 0 | } |
2460 | |
|
2461 | 0 | AddKnownFunctionAttributes(New); |
2462 | 0 | return New; |
2463 | 0 | } |
2464 | | |
2465 | | /// LazilyCreateBuiltin - The specified Builtin-ID was first used at |
2466 | | /// file scope. lazily create a decl for it. ForRedeclaration is true |
2467 | | /// if we're creating this built-in in anticipation of redeclaring the |
2468 | | /// built-in. |
2469 | | NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned ID, |
2470 | | Scope *S, bool ForRedeclaration, |
2471 | 0 | SourceLocation Loc) { |
2472 | 0 | LookupNecessaryTypesForBuiltin(S, ID); |
2473 | |
|
2474 | 0 | ASTContext::GetBuiltinTypeError Error; |
2475 | 0 | QualType R = Context.GetBuiltinType(ID, Error); |
2476 | 0 | if (Error) { |
2477 | 0 | if (!ForRedeclaration) |
2478 | 0 | return nullptr; |
2479 | | |
2480 | | // If we have a builtin without an associated type we should not emit a |
2481 | | // warning when we were not able to find a type for it. |
2482 | 0 | if (Error == ASTContext::GE_Missing_type || |
2483 | 0 | Context.BuiltinInfo.allowTypeMismatch(ID)) |
2484 | 0 | return nullptr; |
2485 | | |
2486 | | // If we could not find a type for setjmp it is because the jmp_buf type was |
2487 | | // not defined prior to the setjmp declaration. |
2488 | 0 | if (Error == ASTContext::GE_Missing_setjmp) { |
2489 | 0 | Diag(Loc, diag::warn_implicit_decl_no_jmp_buf) |
2490 | 0 | << Context.BuiltinInfo.getName(ID); |
2491 | 0 | return nullptr; |
2492 | 0 | } |
2493 | | |
2494 | | // Generally, we emit a warning that the declaration requires the |
2495 | | // appropriate header. |
2496 | 0 | Diag(Loc, diag::warn_implicit_decl_requires_sysheader) |
2497 | 0 | << getHeaderName(Context.BuiltinInfo, ID, Error) |
2498 | 0 | << Context.BuiltinInfo.getName(ID); |
2499 | 0 | return nullptr; |
2500 | 0 | } |
2501 | | |
2502 | 0 | if (!ForRedeclaration && |
2503 | 0 | (Context.BuiltinInfo.isPredefinedLibFunction(ID) || |
2504 | 0 | Context.BuiltinInfo.isHeaderDependentFunction(ID))) { |
2505 | 0 | Diag(Loc, LangOpts.C99 ? diag::ext_implicit_lib_function_decl_c99 |
2506 | 0 | : diag::ext_implicit_lib_function_decl) |
2507 | 0 | << Context.BuiltinInfo.getName(ID) << R; |
2508 | 0 | if (const char *Header = Context.BuiltinInfo.getHeaderName(ID)) |
2509 | 0 | Diag(Loc, diag::note_include_header_or_declare) |
2510 | 0 | << Header << Context.BuiltinInfo.getName(ID); |
2511 | 0 | } |
2512 | |
|
2513 | 0 | if (R.isNull()) |
2514 | 0 | return nullptr; |
2515 | | |
2516 | 0 | FunctionDecl *New = CreateBuiltin(II, R, ID, Loc); |
2517 | 0 | RegisterLocallyScopedExternCDecl(New, S); |
2518 | | |
2519 | | // TUScope is the translation-unit scope to insert this function into. |
2520 | | // FIXME: This is hideous. We need to teach PushOnScopeChains to |
2521 | | // relate Scopes to DeclContexts, and probably eliminate CurContext |
2522 | | // entirely, but we're not there yet. |
2523 | 0 | DeclContext *SavedContext = CurContext; |
2524 | 0 | CurContext = New->getDeclContext(); |
2525 | 0 | PushOnScopeChains(New, TUScope); |
2526 | 0 | CurContext = SavedContext; |
2527 | 0 | return New; |
2528 | 0 | } |
2529 | | |
2530 | | /// Typedef declarations don't have linkage, but they still denote the same |
2531 | | /// entity if their types are the same. |
2532 | | /// FIXME: This is notionally doing the same thing as ASTReaderDecl's |
2533 | | /// isSameEntity. |
2534 | | static void filterNonConflictingPreviousTypedefDecls(Sema &S, |
2535 | | TypedefNameDecl *Decl, |
2536 | 0 | LookupResult &Previous) { |
2537 | | // This is only interesting when modules are enabled. |
2538 | 0 | if (!S.getLangOpts().Modules && !S.getLangOpts().ModulesLocalVisibility) |
2539 | 0 | return; |
2540 | | |
2541 | | // Empty sets are uninteresting. |
2542 | 0 | if (Previous.empty()) |
2543 | 0 | return; |
2544 | | |
2545 | 0 | LookupResult::Filter Filter = Previous.makeFilter(); |
2546 | 0 | while (Filter.hasNext()) { |
2547 | 0 | NamedDecl *Old = Filter.next(); |
2548 | | |
2549 | | // Non-hidden declarations are never ignored. |
2550 | 0 | if (S.isVisible(Old)) |
2551 | 0 | continue; |
2552 | | |
2553 | | // Declarations of the same entity are not ignored, even if they have |
2554 | | // different linkages. |
2555 | 0 | if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { |
2556 | 0 | if (S.Context.hasSameType(OldTD->getUnderlyingType(), |
2557 | 0 | Decl->getUnderlyingType())) |
2558 | 0 | continue; |
2559 | | |
2560 | | // If both declarations give a tag declaration a typedef name for linkage |
2561 | | // purposes, then they declare the same entity. |
2562 | 0 | if (OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true) && |
2563 | 0 | Decl->getAnonDeclWithTypedefName()) |
2564 | 0 | continue; |
2565 | 0 | } |
2566 | | |
2567 | 0 | Filter.erase(); |
2568 | 0 | } |
2569 | |
|
2570 | 0 | Filter.done(); |
2571 | 0 | } |
2572 | | |
2573 | 0 | bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) { |
2574 | 0 | QualType OldType; |
2575 | 0 | if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old)) |
2576 | 0 | OldType = OldTypedef->getUnderlyingType(); |
2577 | 0 | else |
2578 | 0 | OldType = Context.getTypeDeclType(Old); |
2579 | 0 | QualType NewType = New->getUnderlyingType(); |
2580 | |
|
2581 | 0 | if (NewType->isVariablyModifiedType()) { |
2582 | | // Must not redefine a typedef with a variably-modified type. |
2583 | 0 | int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; |
2584 | 0 | Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef) |
2585 | 0 | << Kind << NewType; |
2586 | 0 | if (Old->getLocation().isValid()) |
2587 | 0 | notePreviousDefinition(Old, New->getLocation()); |
2588 | 0 | New->setInvalidDecl(); |
2589 | 0 | return true; |
2590 | 0 | } |
2591 | | |
2592 | 0 | if (OldType != NewType && |
2593 | 0 | !OldType->isDependentType() && |
2594 | 0 | !NewType->isDependentType() && |
2595 | 0 | !Context.hasSameType(OldType, NewType)) { |
2596 | 0 | int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0; |
2597 | 0 | Diag(New->getLocation(), diag::err_redefinition_different_typedef) |
2598 | 0 | << Kind << NewType << OldType; |
2599 | 0 | if (Old->getLocation().isValid()) |
2600 | 0 | notePreviousDefinition(Old, New->getLocation()); |
2601 | 0 | New->setInvalidDecl(); |
2602 | 0 | return true; |
2603 | 0 | } |
2604 | 0 | return false; |
2605 | 0 | } |
2606 | | |
2607 | | /// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the |
2608 | | /// same name and scope as a previous declaration 'Old'. Figure out |
2609 | | /// how to resolve this situation, merging decls or emitting |
2610 | | /// diagnostics as appropriate. If there was an error, set New to be invalid. |
2611 | | /// |
2612 | | void Sema::MergeTypedefNameDecl(Scope *S, TypedefNameDecl *New, |
2613 | 0 | LookupResult &OldDecls) { |
2614 | | // If the new decl is known invalid already, don't bother doing any |
2615 | | // merging checks. |
2616 | 0 | if (New->isInvalidDecl()) return; |
2617 | | |
2618 | | // Allow multiple definitions for ObjC built-in typedefs. |
2619 | | // FIXME: Verify the underlying types are equivalent! |
2620 | 0 | if (getLangOpts().ObjC) { |
2621 | 0 | const IdentifierInfo *TypeID = New->getIdentifier(); |
2622 | 0 | switch (TypeID->getLength()) { |
2623 | 0 | default: break; |
2624 | 0 | case 2: |
2625 | 0 | { |
2626 | 0 | if (!TypeID->isStr("id")) |
2627 | 0 | break; |
2628 | 0 | QualType T = New->getUnderlyingType(); |
2629 | 0 | if (!T->isPointerType()) |
2630 | 0 | break; |
2631 | 0 | if (!T->isVoidPointerType()) { |
2632 | 0 | QualType PT = T->castAs<PointerType>()->getPointeeType(); |
2633 | 0 | if (!PT->isStructureType()) |
2634 | 0 | break; |
2635 | 0 | } |
2636 | 0 | Context.setObjCIdRedefinitionType(T); |
2637 | | // Install the built-in type for 'id', ignoring the current definition. |
2638 | 0 | New->setTypeForDecl(Context.getObjCIdType().getTypePtr()); |
2639 | 0 | return; |
2640 | 0 | } |
2641 | 0 | case 5: |
2642 | 0 | if (!TypeID->isStr("Class")) |
2643 | 0 | break; |
2644 | 0 | Context.setObjCClassRedefinitionType(New->getUnderlyingType()); |
2645 | | // Install the built-in type for 'Class', ignoring the current definition. |
2646 | 0 | New->setTypeForDecl(Context.getObjCClassType().getTypePtr()); |
2647 | 0 | return; |
2648 | 0 | case 3: |
2649 | 0 | if (!TypeID->isStr("SEL")) |
2650 | 0 | break; |
2651 | 0 | Context.setObjCSelRedefinitionType(New->getUnderlyingType()); |
2652 | | // Install the built-in type for 'SEL', ignoring the current definition. |
2653 | 0 | New->setTypeForDecl(Context.getObjCSelType().getTypePtr()); |
2654 | 0 | return; |
2655 | 0 | } |
2656 | | // Fall through - the typedef name was not a builtin type. |
2657 | 0 | } |
2658 | | |
2659 | | // Verify the old decl was also a type. |
2660 | 0 | TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>(); |
2661 | 0 | if (!Old) { |
2662 | 0 | Diag(New->getLocation(), diag::err_redefinition_different_kind) |
2663 | 0 | << New->getDeclName(); |
2664 | |
|
2665 | 0 | NamedDecl *OldD = OldDecls.getRepresentativeDecl(); |
2666 | 0 | if (OldD->getLocation().isValid()) |
2667 | 0 | notePreviousDefinition(OldD, New->getLocation()); |
2668 | |
|
2669 | 0 | return New->setInvalidDecl(); |
2670 | 0 | } |
2671 | | |
2672 | | // If the old declaration is invalid, just give up here. |
2673 | 0 | if (Old->isInvalidDecl()) |
2674 | 0 | return New->setInvalidDecl(); |
2675 | | |
2676 | 0 | if (auto *OldTD = dyn_cast<TypedefNameDecl>(Old)) { |
2677 | 0 | auto *OldTag = OldTD->getAnonDeclWithTypedefName(/*AnyRedecl*/true); |
2678 | 0 | auto *NewTag = New->getAnonDeclWithTypedefName(); |
2679 | 0 | NamedDecl *Hidden = nullptr; |
2680 | 0 | if (OldTag && NewTag && |
2681 | 0 | OldTag->getCanonicalDecl() != NewTag->getCanonicalDecl() && |
2682 | 0 | !hasVisibleDefinition(OldTag, &Hidden)) { |
2683 | | // There is a definition of this tag, but it is not visible. Use it |
2684 | | // instead of our tag. |
2685 | 0 | New->setTypeForDecl(OldTD->getTypeForDecl()); |
2686 | 0 | if (OldTD->isModed()) |
2687 | 0 | New->setModedTypeSourceInfo(OldTD->getTypeSourceInfo(), |
2688 | 0 | OldTD->getUnderlyingType()); |
2689 | 0 | else |
2690 | 0 | New->setTypeSourceInfo(OldTD->getTypeSourceInfo()); |
2691 | | |
2692 | | // Make the old tag definition visible. |
2693 | 0 | makeMergedDefinitionVisible(Hidden); |
2694 | | |
2695 | | // If this was an unscoped enumeration, yank all of its enumerators |
2696 | | // out of the scope. |
2697 | 0 | if (isa<EnumDecl>(NewTag)) { |
2698 | 0 | Scope *EnumScope = getNonFieldDeclScope(S); |
2699 | 0 | for (auto *D : NewTag->decls()) { |
2700 | 0 | auto *ED = cast<EnumConstantDecl>(D); |
2701 | 0 | assert(EnumScope->isDeclScope(ED)); |
2702 | 0 | EnumScope->RemoveDecl(ED); |
2703 | 0 | IdResolver.RemoveDecl(ED); |
2704 | 0 | ED->getLexicalDeclContext()->removeDecl(ED); |
2705 | 0 | } |
2706 | 0 | } |
2707 | 0 | } |
2708 | 0 | } |
2709 | | |
2710 | | // If the typedef types are not identical, reject them in all languages and |
2711 | | // with any extensions enabled. |
2712 | 0 | if (isIncompatibleTypedef(Old, New)) |
2713 | 0 | return; |
2714 | | |
2715 | | // The types match. Link up the redeclaration chain and merge attributes if |
2716 | | // the old declaration was a typedef. |
2717 | 0 | if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) { |
2718 | 0 | New->setPreviousDecl(Typedef); |
2719 | 0 | mergeDeclAttributes(New, Old); |
2720 | 0 | } |
2721 | |
|
2722 | 0 | if (getLangOpts().MicrosoftExt) |
2723 | 0 | return; |
2724 | | |
2725 | 0 | if (getLangOpts().CPlusPlus) { |
2726 | | // C++ [dcl.typedef]p2: |
2727 | | // In a given non-class scope, a typedef specifier can be used to |
2728 | | // redefine the name of any type declared in that scope to refer |
2729 | | // to the type to which it already refers. |
2730 | 0 | if (!isa<CXXRecordDecl>(CurContext)) |
2731 | 0 | return; |
2732 | | |
2733 | | // C++0x [dcl.typedef]p4: |
2734 | | // In a given class scope, a typedef specifier can be used to redefine |
2735 | | // any class-name declared in that scope that is not also a typedef-name |
2736 | | // to refer to the type to which it already refers. |
2737 | | // |
2738 | | // This wording came in via DR424, which was a correction to the |
2739 | | // wording in DR56, which accidentally banned code like: |
2740 | | // |
2741 | | // struct S { |
2742 | | // typedef struct A { } A; |
2743 | | // }; |
2744 | | // |
2745 | | // in the C++03 standard. We implement the C++0x semantics, which |
2746 | | // allow the above but disallow |
2747 | | // |
2748 | | // struct S { |
2749 | | // typedef int I; |
2750 | | // typedef int I; |
2751 | | // }; |
2752 | | // |
2753 | | // since that was the intent of DR56. |
2754 | 0 | if (!isa<TypedefNameDecl>(Old)) |
2755 | 0 | return; |
2756 | | |
2757 | 0 | Diag(New->getLocation(), diag::err_redefinition) |
2758 | 0 | << New->getDeclName(); |
2759 | 0 | notePreviousDefinition(Old, New->getLocation()); |
2760 | 0 | return New->setInvalidDecl(); |
2761 | 0 | } |
2762 | | |
2763 | | // Modules always permit redefinition of typedefs, as does C11. |
2764 | 0 | if (getLangOpts().Modules || getLangOpts().C11) |
2765 | 0 | return; |
2766 | | |
2767 | | // If we have a redefinition of a typedef in C, emit a warning. This warning |
2768 | | // is normally mapped to an error, but can be controlled with |
2769 | | // -Wtypedef-redefinition. If either the original or the redefinition is |
2770 | | // in a system header, don't emit this for compatibility with GCC. |
2771 | 0 | if (getDiagnostics().getSuppressSystemWarnings() && |
2772 | | // Some standard types are defined implicitly in Clang (e.g. OpenCL). |
2773 | 0 | (Old->isImplicit() || |
2774 | 0 | Context.getSourceManager().isInSystemHeader(Old->getLocation()) || |
2775 | 0 | Context.getSourceManager().isInSystemHeader(New->getLocation()))) |
2776 | 0 | return; |
2777 | | |
2778 | 0 | Diag(New->getLocation(), diag::ext_redefinition_of_typedef) |
2779 | 0 | << New->getDeclName(); |
2780 | 0 | notePreviousDefinition(Old, New->getLocation()); |
2781 | 0 | } |
2782 | | |
2783 | | /// DeclhasAttr - returns true if decl Declaration already has the target |
2784 | | /// attribute. |
2785 | 0 | static bool DeclHasAttr(const Decl *D, const Attr *A) { |
2786 | 0 | const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A); |
2787 | 0 | const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A); |
2788 | 0 | for (const auto *i : D->attrs()) |
2789 | 0 | if (i->getKind() == A->getKind()) { |
2790 | 0 | if (Ann) { |
2791 | 0 | if (Ann->getAnnotation() == cast<AnnotateAttr>(i)->getAnnotation()) |
2792 | 0 | return true; |
2793 | 0 | continue; |
2794 | 0 | } |
2795 | | // FIXME: Don't hardcode this check |
2796 | 0 | if (OA && isa<OwnershipAttr>(i)) |
2797 | 0 | return OA->getOwnKind() == cast<OwnershipAttr>(i)->getOwnKind(); |
2798 | 0 | return true; |
2799 | 0 | } |
2800 | | |
2801 | 0 | return false; |
2802 | 0 | } |
2803 | | |
2804 | 0 | static bool isAttributeTargetADefinition(Decl *D) { |
2805 | 0 | if (VarDecl *VD = dyn_cast<VarDecl>(D)) |
2806 | 0 | return VD->isThisDeclarationADefinition(); |
2807 | 0 | if (TagDecl *TD = dyn_cast<TagDecl>(D)) |
2808 | 0 | return TD->isCompleteDefinition() || TD->isBeingDefined(); |
2809 | 0 | return true; |
2810 | 0 | } |
2811 | | |
2812 | | /// Merge alignment attributes from \p Old to \p New, taking into account the |
2813 | | /// special semantics of C11's _Alignas specifier and C++11's alignas attribute. |
2814 | | /// |
2815 | | /// \return \c true if any attributes were added to \p New. |
2816 | 0 | static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) { |
2817 | | // Look for alignas attributes on Old, and pick out whichever attribute |
2818 | | // specifies the strictest alignment requirement. |
2819 | 0 | AlignedAttr *OldAlignasAttr = nullptr; |
2820 | 0 | AlignedAttr *OldStrictestAlignAttr = nullptr; |
2821 | 0 | unsigned OldAlign = 0; |
2822 | 0 | for (auto *I : Old->specific_attrs<AlignedAttr>()) { |
2823 | | // FIXME: We have no way of representing inherited dependent alignments |
2824 | | // in a case like: |
2825 | | // template<int A, int B> struct alignas(A) X; |
2826 | | // template<int A, int B> struct alignas(B) X {}; |
2827 | | // For now, we just ignore any alignas attributes which are not on the |
2828 | | // definition in such a case. |
2829 | 0 | if (I->isAlignmentDependent()) |
2830 | 0 | return false; |
2831 | | |
2832 | 0 | if (I->isAlignas()) |
2833 | 0 | OldAlignasAttr = I; |
2834 | |
|
2835 | 0 | unsigned Align = I->getAlignment(S.Context); |
2836 | 0 | if (Align > OldAlign) { |
2837 | 0 | OldAlign = Align; |
2838 | 0 | OldStrictestAlignAttr = I; |
2839 | 0 | } |
2840 | 0 | } |
2841 | | |
2842 | | // Look for alignas attributes on New. |
2843 | 0 | AlignedAttr *NewAlignasAttr = nullptr; |
2844 | 0 | unsigned NewAlign = 0; |
2845 | 0 | for (auto *I : New->specific_attrs<AlignedAttr>()) { |
2846 | 0 | if (I->isAlignmentDependent()) |
2847 | 0 | return false; |
2848 | | |
2849 | 0 | if (I->isAlignas()) |
2850 | 0 | NewAlignasAttr = I; |
2851 | |
|
2852 | 0 | unsigned Align = I->getAlignment(S.Context); |
2853 | 0 | if (Align > NewAlign) |
2854 | 0 | NewAlign = Align; |
2855 | 0 | } |
2856 | | |
2857 | 0 | if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) { |
2858 | | // Both declarations have 'alignas' attributes. We require them to match. |
2859 | | // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but |
2860 | | // fall short. (If two declarations both have alignas, they must both match |
2861 | | // every definition, and so must match each other if there is a definition.) |
2862 | | |
2863 | | // If either declaration only contains 'alignas(0)' specifiers, then it |
2864 | | // specifies the natural alignment for the type. |
2865 | 0 | if (OldAlign == 0 || NewAlign == 0) { |
2866 | 0 | QualType Ty; |
2867 | 0 | if (ValueDecl *VD = dyn_cast<ValueDecl>(New)) |
2868 | 0 | Ty = VD->getType(); |
2869 | 0 | else |
2870 | 0 | Ty = S.Context.getTagDeclType(cast<TagDecl>(New)); |
2871 | |
|
2872 | 0 | if (OldAlign == 0) |
2873 | 0 | OldAlign = S.Context.getTypeAlign(Ty); |
2874 | 0 | if (NewAlign == 0) |
2875 | 0 | NewAlign = S.Context.getTypeAlign(Ty); |
2876 | 0 | } |
2877 | |
|
2878 | 0 | if (OldAlign != NewAlign) { |
2879 | 0 | S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch) |
2880 | 0 | << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity() |
2881 | 0 | << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity(); |
2882 | 0 | S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration); |
2883 | 0 | } |
2884 | 0 | } |
2885 | |
|
2886 | 0 | if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) { |
2887 | | // C++11 [dcl.align]p6: |
2888 | | // if any declaration of an entity has an alignment-specifier, |
2889 | | // every defining declaration of that entity shall specify an |
2890 | | // equivalent alignment. |
2891 | | // C11 6.7.5/7: |
2892 | | // If the definition of an object does not have an alignment |
2893 | | // specifier, any other declaration of that object shall also |
2894 | | // have no alignment specifier. |
2895 | 0 | S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition) |
2896 | 0 | << OldAlignasAttr; |
2897 | 0 | S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration) |
2898 | 0 | << OldAlignasAttr; |
2899 | 0 | } |
2900 | |
|
2901 | 0 | bool AnyAdded = false; |
2902 | | |
2903 | | // Ensure we have an attribute representing the strictest alignment. |
2904 | 0 | if (OldAlign > NewAlign) { |
2905 | 0 | AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context); |
2906 | 0 | Clone->setInherited(true); |
2907 | 0 | New->addAttr(Clone); |
2908 | 0 | AnyAdded = true; |
2909 | 0 | } |
2910 | | |
2911 | | // Ensure we have an alignas attribute if the old declaration had one. |
2912 | 0 | if (OldAlignasAttr && !NewAlignasAttr && |
2913 | 0 | !(AnyAdded && OldStrictestAlignAttr->isAlignas())) { |
2914 | 0 | AlignedAttr *Clone = OldAlignasAttr->clone(S.Context); |
2915 | 0 | Clone->setInherited(true); |
2916 | 0 | New->addAttr(Clone); |
2917 | 0 | AnyAdded = true; |
2918 | 0 | } |
2919 | |
|
2920 | 0 | return AnyAdded; |
2921 | 0 | } |
2922 | | |
2923 | | #define WANT_DECL_MERGE_LOGIC |
2924 | | #include "clang/Sema/AttrParsedAttrImpl.inc" |
2925 | | #undef WANT_DECL_MERGE_LOGIC |
2926 | | |
2927 | | static bool mergeDeclAttribute(Sema &S, NamedDecl *D, |
2928 | | const InheritableAttr *Attr, |
2929 | 0 | Sema::AvailabilityMergeKind AMK) { |
2930 | | // Diagnose any mutual exclusions between the attribute that we want to add |
2931 | | // and attributes that already exist on the declaration. |
2932 | 0 | if (!DiagnoseMutualExclusions(S, D, Attr)) |
2933 | 0 | return false; |
2934 | | |
2935 | | // This function copies an attribute Attr from a previous declaration to the |
2936 | | // new declaration D if the new declaration doesn't itself have that attribute |
2937 | | // yet or if that attribute allows duplicates. |
2938 | | // If you're adding a new attribute that requires logic different from |
2939 | | // "use explicit attribute on decl if present, else use attribute from |
2940 | | // previous decl", for example if the attribute needs to be consistent |
2941 | | // between redeclarations, you need to call a custom merge function here. |
2942 | 0 | InheritableAttr *NewAttr = nullptr; |
2943 | 0 | if (const auto *AA = dyn_cast<AvailabilityAttr>(Attr)) |
2944 | 0 | NewAttr = S.mergeAvailabilityAttr( |
2945 | 0 | D, *AA, AA->getPlatform(), AA->isImplicit(), AA->getIntroduced(), |
2946 | 0 | AA->getDeprecated(), AA->getObsoleted(), AA->getUnavailable(), |
2947 | 0 | AA->getMessage(), AA->getStrict(), AA->getReplacement(), AMK, |
2948 | 0 | AA->getPriority()); |
2949 | 0 | else if (const auto *VA = dyn_cast<VisibilityAttr>(Attr)) |
2950 | 0 | NewAttr = S.mergeVisibilityAttr(D, *VA, VA->getVisibility()); |
2951 | 0 | else if (const auto *VA = dyn_cast<TypeVisibilityAttr>(Attr)) |
2952 | 0 | NewAttr = S.mergeTypeVisibilityAttr(D, *VA, VA->getVisibility()); |
2953 | 0 | else if (const auto *ImportA = dyn_cast<DLLImportAttr>(Attr)) |
2954 | 0 | NewAttr = S.mergeDLLImportAttr(D, *ImportA); |
2955 | 0 | else if (const auto *ExportA = dyn_cast<DLLExportAttr>(Attr)) |
2956 | 0 | NewAttr = S.mergeDLLExportAttr(D, *ExportA); |
2957 | 0 | else if (const auto *EA = dyn_cast<ErrorAttr>(Attr)) |
2958 | 0 | NewAttr = S.mergeErrorAttr(D, *EA, EA->getUserDiagnostic()); |
2959 | 0 | else if (const auto *FA = dyn_cast<FormatAttr>(Attr)) |
2960 | 0 | NewAttr = S.mergeFormatAttr(D, *FA, FA->getType(), FA->getFormatIdx(), |
2961 | 0 | FA->getFirstArg()); |
2962 | 0 | else if (const auto *SA = dyn_cast<SectionAttr>(Attr)) |
2963 | 0 | NewAttr = S.mergeSectionAttr(D, *SA, SA->getName()); |
2964 | 0 | else if (const auto *CSA = dyn_cast<CodeSegAttr>(Attr)) |
2965 | 0 | NewAttr = S.mergeCodeSegAttr(D, *CSA, CSA->getName()); |
2966 | 0 | else if (const auto *IA = dyn_cast<MSInheritanceAttr>(Attr)) |
2967 | 0 | NewAttr = S.mergeMSInheritanceAttr(D, *IA, IA->getBestCase(), |
2968 | 0 | IA->getInheritanceModel()); |
2969 | 0 | else if (const auto *AA = dyn_cast<AlwaysInlineAttr>(Attr)) |
2970 | 0 | NewAttr = S.mergeAlwaysInlineAttr(D, *AA, |
2971 | 0 | &S.Context.Idents.get(AA->getSpelling())); |
2972 | 0 | else if (S.getLangOpts().CUDA && isa<FunctionDecl>(D) && |
2973 | 0 | (isa<CUDAHostAttr>(Attr) || isa<CUDADeviceAttr>(Attr) || |
2974 | 0 | isa<CUDAGlobalAttr>(Attr))) { |
2975 | | // CUDA target attributes are part of function signature for |
2976 | | // overloading purposes and must not be merged. |
2977 | 0 | return false; |
2978 | 0 | } else if (const auto *MA = dyn_cast<MinSizeAttr>(Attr)) |
2979 | 0 | NewAttr = S.mergeMinSizeAttr(D, *MA); |
2980 | 0 | else if (const auto *SNA = dyn_cast<SwiftNameAttr>(Attr)) |
2981 | 0 | NewAttr = S.mergeSwiftNameAttr(D, *SNA, SNA->getName()); |
2982 | 0 | else if (const auto *OA = dyn_cast<OptimizeNoneAttr>(Attr)) |
2983 | 0 | NewAttr = S.mergeOptimizeNoneAttr(D, *OA); |
2984 | 0 | else if (const auto *InternalLinkageA = dyn_cast<InternalLinkageAttr>(Attr)) |
2985 | 0 | NewAttr = S.mergeInternalLinkageAttr(D, *InternalLinkageA); |
2986 | 0 | else if (isa<AlignedAttr>(Attr)) |
2987 | | // AlignedAttrs are handled separately, because we need to handle all |
2988 | | // such attributes on a declaration at the same time. |
2989 | 0 | NewAttr = nullptr; |
2990 | 0 | else if ((isa<DeprecatedAttr>(Attr) || isa<UnavailableAttr>(Attr)) && |
2991 | 0 | (AMK == Sema::AMK_Override || |
2992 | 0 | AMK == Sema::AMK_ProtocolImplementation || |
2993 | 0 | AMK == Sema::AMK_OptionalProtocolImplementation)) |
2994 | 0 | NewAttr = nullptr; |
2995 | 0 | else if (const auto *UA = dyn_cast<UuidAttr>(Attr)) |
2996 | 0 | NewAttr = S.mergeUuidAttr(D, *UA, UA->getGuid(), UA->getGuidDecl()); |
2997 | 0 | else if (const auto *IMA = dyn_cast<WebAssemblyImportModuleAttr>(Attr)) |
2998 | 0 | NewAttr = S.mergeImportModuleAttr(D, *IMA); |
2999 | 0 | else if (const auto *INA = dyn_cast<WebAssemblyImportNameAttr>(Attr)) |
3000 | 0 | NewAttr = S.mergeImportNameAttr(D, *INA); |
3001 | 0 | else if (const auto *TCBA = dyn_cast<EnforceTCBAttr>(Attr)) |
3002 | 0 | NewAttr = S.mergeEnforceTCBAttr(D, *TCBA); |
3003 | 0 | else if (const auto *TCBLA = dyn_cast<EnforceTCBLeafAttr>(Attr)) |
3004 | 0 | NewAttr = S.mergeEnforceTCBLeafAttr(D, *TCBLA); |
3005 | 0 | else if (const auto *BTFA = dyn_cast<BTFDeclTagAttr>(Attr)) |
3006 | 0 | NewAttr = S.mergeBTFDeclTagAttr(D, *BTFA); |
3007 | 0 | else if (const auto *NT = dyn_cast<HLSLNumThreadsAttr>(Attr)) |
3008 | 0 | NewAttr = |
3009 | 0 | S.mergeHLSLNumThreadsAttr(D, *NT, NT->getX(), NT->getY(), NT->getZ()); |
3010 | 0 | else if (const auto *SA = dyn_cast<HLSLShaderAttr>(Attr)) |
3011 | 0 | NewAttr = S.mergeHLSLShaderAttr(D, *SA, SA->getType()); |
3012 | 0 | else if (Attr->shouldInheritEvenIfAlreadyPresent() || !DeclHasAttr(D, Attr)) |
3013 | 0 | NewAttr = cast<InheritableAttr>(Attr->clone(S.Context)); |
3014 | | |
3015 | 0 | if (NewAttr) { |
3016 | 0 | NewAttr->setInherited(true); |
3017 | 0 | D->addAttr(NewAttr); |
3018 | 0 | if (isa<MSInheritanceAttr>(NewAttr)) |
3019 | 0 | S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D)); |
3020 | 0 | return true; |
3021 | 0 | } |
3022 | | |
3023 | 0 | return false; |
3024 | 0 | } |
3025 | | |
3026 | 0 | static const NamedDecl *getDefinition(const Decl *D) { |
3027 | 0 | if (const TagDecl *TD = dyn_cast<TagDecl>(D)) |
3028 | 0 | return TD->getDefinition(); |
3029 | 0 | if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { |
3030 | 0 | const VarDecl *Def = VD->getDefinition(); |
3031 | 0 | if (Def) |
3032 | 0 | return Def; |
3033 | 0 | return VD->getActingDefinition(); |
3034 | 0 | } |
3035 | 0 | if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
3036 | 0 | const FunctionDecl *Def = nullptr; |
3037 | 0 | if (FD->isDefined(Def, true)) |
3038 | 0 | return Def; |
3039 | 0 | } |
3040 | 0 | return nullptr; |
3041 | 0 | } |
3042 | | |
3043 | 0 | static bool hasAttribute(const Decl *D, attr::Kind Kind) { |
3044 | 0 | for (const auto *Attribute : D->attrs()) |
3045 | 0 | if (Attribute->getKind() == Kind) |
3046 | 0 | return true; |
3047 | 0 | return false; |
3048 | 0 | } |
3049 | | |
3050 | | /// checkNewAttributesAfterDef - If we already have a definition, check that |
3051 | | /// there are no new attributes in this declaration. |
3052 | 0 | static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) { |
3053 | 0 | if (!New->hasAttrs()) |
3054 | 0 | return; |
3055 | | |
3056 | 0 | const NamedDecl *Def = getDefinition(Old); |
3057 | 0 | if (!Def || Def == New) |
3058 | 0 | return; |
3059 | | |
3060 | 0 | AttrVec &NewAttributes = New->getAttrs(); |
3061 | 0 | for (unsigned I = 0, E = NewAttributes.size(); I != E;) { |
3062 | 0 | const Attr *NewAttribute = NewAttributes[I]; |
3063 | |
|
3064 | 0 | if (isa<AliasAttr>(NewAttribute) || isa<IFuncAttr>(NewAttribute)) { |
3065 | 0 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(New)) { |
3066 | 0 | Sema::SkipBodyInfo SkipBody; |
3067 | 0 | S.CheckForFunctionRedefinition(FD, cast<FunctionDecl>(Def), &SkipBody); |
3068 | | |
3069 | | // If we're skipping this definition, drop the "alias" attribute. |
3070 | 0 | if (SkipBody.ShouldSkip) { |
3071 | 0 | NewAttributes.erase(NewAttributes.begin() + I); |
3072 | 0 | --E; |
3073 | 0 | continue; |
3074 | 0 | } |
3075 | 0 | } else { |
3076 | 0 | VarDecl *VD = cast<VarDecl>(New); |
3077 | 0 | unsigned Diag = cast<VarDecl>(Def)->isThisDeclarationADefinition() == |
3078 | 0 | VarDecl::TentativeDefinition |
3079 | 0 | ? diag::err_alias_after_tentative |
3080 | 0 | : diag::err_redefinition; |
3081 | 0 | S.Diag(VD->getLocation(), Diag) << VD->getDeclName(); |
3082 | 0 | if (Diag == diag::err_redefinition) |
3083 | 0 | S.notePreviousDefinition(Def, VD->getLocation()); |
3084 | 0 | else |
3085 | 0 | S.Diag(Def->getLocation(), diag::note_previous_definition); |
3086 | 0 | VD->setInvalidDecl(); |
3087 | 0 | } |
3088 | 0 | ++I; |
3089 | 0 | continue; |
3090 | 0 | } |
3091 | | |
3092 | 0 | if (const VarDecl *VD = dyn_cast<VarDecl>(Def)) { |
3093 | | // Tentative definitions are only interesting for the alias check above. |
3094 | 0 | if (VD->isThisDeclarationADefinition() != VarDecl::Definition) { |
3095 | 0 | ++I; |
3096 | 0 | continue; |
3097 | 0 | } |
3098 | 0 | } |
3099 | | |
3100 | 0 | if (hasAttribute(Def, NewAttribute->getKind())) { |
3101 | 0 | ++I; |
3102 | 0 | continue; // regular attr merging will take care of validating this. |
3103 | 0 | } |
3104 | | |
3105 | 0 | if (isa<C11NoReturnAttr>(NewAttribute)) { |
3106 | | // C's _Noreturn is allowed to be added to a function after it is defined. |
3107 | 0 | ++I; |
3108 | 0 | continue; |
3109 | 0 | } else if (isa<UuidAttr>(NewAttribute)) { |
3110 | | // msvc will allow a subsequent definition to add an uuid to a class |
3111 | 0 | ++I; |
3112 | 0 | continue; |
3113 | 0 | } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) { |
3114 | 0 | if (AA->isAlignas()) { |
3115 | | // C++11 [dcl.align]p6: |
3116 | | // if any declaration of an entity has an alignment-specifier, |
3117 | | // every defining declaration of that entity shall specify an |
3118 | | // equivalent alignment. |
3119 | | // C11 6.7.5/7: |
3120 | | // If the definition of an object does not have an alignment |
3121 | | // specifier, any other declaration of that object shall also |
3122 | | // have no alignment specifier. |
3123 | 0 | S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition) |
3124 | 0 | << AA; |
3125 | 0 | S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration) |
3126 | 0 | << AA; |
3127 | 0 | NewAttributes.erase(NewAttributes.begin() + I); |
3128 | 0 | --E; |
3129 | 0 | continue; |
3130 | 0 | } |
3131 | 0 | } else if (isa<LoaderUninitializedAttr>(NewAttribute)) { |
3132 | | // If there is a C definition followed by a redeclaration with this |
3133 | | // attribute then there are two different definitions. In C++, prefer the |
3134 | | // standard diagnostics. |
3135 | 0 | if (!S.getLangOpts().CPlusPlus) { |
3136 | 0 | S.Diag(NewAttribute->getLocation(), |
3137 | 0 | diag::err_loader_uninitialized_redeclaration); |
3138 | 0 | S.Diag(Def->getLocation(), diag::note_previous_definition); |
3139 | 0 | NewAttributes.erase(NewAttributes.begin() + I); |
3140 | 0 | --E; |
3141 | 0 | continue; |
3142 | 0 | } |
3143 | 0 | } else if (isa<SelectAnyAttr>(NewAttribute) && |
3144 | 0 | cast<VarDecl>(New)->isInline() && |
3145 | 0 | !cast<VarDecl>(New)->isInlineSpecified()) { |
3146 | | // Don't warn about applying selectany to implicitly inline variables. |
3147 | | // Older compilers and language modes would require the use of selectany |
3148 | | // to make such variables inline, and it would have no effect if we |
3149 | | // honored it. |
3150 | 0 | ++I; |
3151 | 0 | continue; |
3152 | 0 | } else if (isa<OMPDeclareVariantAttr>(NewAttribute)) { |
3153 | | // We allow to add OMP[Begin]DeclareVariantAttr to be added to |
3154 | | // declarations after definitions. |
3155 | 0 | ++I; |
3156 | 0 | continue; |
3157 | 0 | } |
3158 | | |
3159 | 0 | S.Diag(NewAttribute->getLocation(), |
3160 | 0 | diag::warn_attribute_precede_definition); |
3161 | 0 | S.Diag(Def->getLocation(), diag::note_previous_definition); |
3162 | 0 | NewAttributes.erase(NewAttributes.begin() + I); |
3163 | 0 | --E; |
3164 | 0 | } |
3165 | 0 | } |
3166 | | |
3167 | | static void diagnoseMissingConstinit(Sema &S, const VarDecl *InitDecl, |
3168 | | const ConstInitAttr *CIAttr, |
3169 | 0 | bool AttrBeforeInit) { |
3170 | 0 | SourceLocation InsertLoc = InitDecl->getInnerLocStart(); |
3171 | | |
3172 | | // Figure out a good way to write this specifier on the old declaration. |
3173 | | // FIXME: We should just use the spelling of CIAttr, but we don't preserve |
3174 | | // enough of the attribute list spelling information to extract that without |
3175 | | // heroics. |
3176 | 0 | std::string SuitableSpelling; |
3177 | 0 | if (S.getLangOpts().CPlusPlus20) |
3178 | 0 | SuitableSpelling = std::string( |
3179 | 0 | S.PP.getLastMacroWithSpelling(InsertLoc, {tok::kw_constinit})); |
3180 | 0 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) |
3181 | 0 | SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( |
3182 | 0 | InsertLoc, {tok::l_square, tok::l_square, |
3183 | 0 | S.PP.getIdentifierInfo("clang"), tok::coloncolon, |
3184 | 0 | S.PP.getIdentifierInfo("require_constant_initialization"), |
3185 | 0 | tok::r_square, tok::r_square})); |
3186 | 0 | if (SuitableSpelling.empty()) |
3187 | 0 | SuitableSpelling = std::string(S.PP.getLastMacroWithSpelling( |
3188 | 0 | InsertLoc, {tok::kw___attribute, tok::l_paren, tok::r_paren, |
3189 | 0 | S.PP.getIdentifierInfo("require_constant_initialization"), |
3190 | 0 | tok::r_paren, tok::r_paren})); |
3191 | 0 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus20) |
3192 | 0 | SuitableSpelling = "constinit"; |
3193 | 0 | if (SuitableSpelling.empty() && S.getLangOpts().CPlusPlus11) |
3194 | 0 | SuitableSpelling = "[[clang::require_constant_initialization]]"; |
3195 | 0 | if (SuitableSpelling.empty()) |
3196 | 0 | SuitableSpelling = "__attribute__((require_constant_initialization))"; |
3197 | 0 | SuitableSpelling += " "; |
3198 | |
|
3199 | 0 | if (AttrBeforeInit) { |
3200 | | // extern constinit int a; |
3201 | | // int a = 0; // error (missing 'constinit'), accepted as extension |
3202 | 0 | assert(CIAttr->isConstinit() && "should not diagnose this for attribute"); |
3203 | 0 | S.Diag(InitDecl->getLocation(), diag::ext_constinit_missing) |
3204 | 0 | << InitDecl << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); |
3205 | 0 | S.Diag(CIAttr->getLocation(), diag::note_constinit_specified_here); |
3206 | 0 | } else { |
3207 | | // int a = 0; |
3208 | | // constinit extern int a; // error (missing 'constinit') |
3209 | 0 | S.Diag(CIAttr->getLocation(), |
3210 | 0 | CIAttr->isConstinit() ? diag::err_constinit_added_too_late |
3211 | 0 | : diag::warn_require_const_init_added_too_late) |
3212 | 0 | << FixItHint::CreateRemoval(SourceRange(CIAttr->getLocation())); |
3213 | 0 | S.Diag(InitDecl->getLocation(), diag::note_constinit_missing_here) |
3214 | 0 | << CIAttr->isConstinit() |
3215 | 0 | << FixItHint::CreateInsertion(InsertLoc, SuitableSpelling); |
3216 | 0 | } |
3217 | 0 | } |
3218 | | |
3219 | | /// mergeDeclAttributes - Copy attributes from the Old decl to the New one. |
3220 | | void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old, |
3221 | 193 | AvailabilityMergeKind AMK) { |
3222 | 193 | if (UsedAttr *OldAttr = Old->getMostRecentDecl()->getAttr<UsedAttr>()) { |
3223 | 0 | UsedAttr *NewAttr = OldAttr->clone(Context); |
3224 | 0 | NewAttr->setInherited(true); |
3225 | 0 | New->addAttr(NewAttr); |
3226 | 0 | } |
3227 | 193 | if (RetainAttr *OldAttr = Old->getMostRecentDecl()->getAttr<RetainAttr>()) { |
3228 | 0 | RetainAttr *NewAttr = OldAttr->clone(Context); |
3229 | 0 | NewAttr->setInherited(true); |
3230 | 0 | New->addAttr(NewAttr); |
3231 | 0 | } |
3232 | | |
3233 | 193 | if (!Old->hasAttrs() && !New->hasAttrs()) |
3234 | 193 | return; |
3235 | | |
3236 | | // [dcl.constinit]p1: |
3237 | | // If the [constinit] specifier is applied to any declaration of a |
3238 | | // variable, it shall be applied to the initializing declaration. |
3239 | 0 | const auto *OldConstInit = Old->getAttr<ConstInitAttr>(); |
3240 | 0 | const auto *NewConstInit = New->getAttr<ConstInitAttr>(); |
3241 | 0 | if (bool(OldConstInit) != bool(NewConstInit)) { |
3242 | 0 | const auto *OldVD = cast<VarDecl>(Old); |
3243 | 0 | auto *NewVD = cast<VarDecl>(New); |
3244 | | |
3245 | | // Find the initializing declaration. Note that we might not have linked |
3246 | | // the new declaration into the redeclaration chain yet. |
3247 | 0 | const VarDecl *InitDecl = OldVD->getInitializingDeclaration(); |
3248 | 0 | if (!InitDecl && |
3249 | 0 | (NewVD->hasInit() || NewVD->isThisDeclarationADefinition())) |
3250 | 0 | InitDecl = NewVD; |
3251 | |
|
3252 | 0 | if (InitDecl == NewVD) { |
3253 | | // This is the initializing declaration. If it would inherit 'constinit', |
3254 | | // that's ill-formed. (Note that we do not apply this to the attribute |
3255 | | // form). |
3256 | 0 | if (OldConstInit && OldConstInit->isConstinit()) |
3257 | 0 | diagnoseMissingConstinit(*this, NewVD, OldConstInit, |
3258 | 0 | /*AttrBeforeInit=*/true); |
3259 | 0 | } else if (NewConstInit) { |
3260 | | // This is the first time we've been told that this declaration should |
3261 | | // have a constant initializer. If we already saw the initializing |
3262 | | // declaration, this is too late. |
3263 | 0 | if (InitDecl && InitDecl != NewVD) { |
3264 | 0 | diagnoseMissingConstinit(*this, InitDecl, NewConstInit, |
3265 | 0 | /*AttrBeforeInit=*/false); |
3266 | 0 | NewVD->dropAttr<ConstInitAttr>(); |
3267 | 0 | } |
3268 | 0 | } |
3269 | 0 | } |
3270 | | |
3271 | | // Attributes declared post-definition are currently ignored. |
3272 | 0 | checkNewAttributesAfterDef(*this, New, Old); |
3273 | |
|
3274 | 0 | if (AsmLabelAttr *NewA = New->getAttr<AsmLabelAttr>()) { |
3275 | 0 | if (AsmLabelAttr *OldA = Old->getAttr<AsmLabelAttr>()) { |
3276 | 0 | if (!OldA->isEquivalent(NewA)) { |
3277 | | // This redeclaration changes __asm__ label. |
3278 | 0 | Diag(New->getLocation(), diag::err_different_asm_label); |
3279 | 0 | Diag(OldA->getLocation(), diag::note_previous_declaration); |
3280 | 0 | } |
3281 | 0 | } else if (Old->isUsed()) { |
3282 | | // This redeclaration adds an __asm__ label to a declaration that has |
3283 | | // already been ODR-used. |
3284 | 0 | Diag(New->getLocation(), diag::err_late_asm_label_name) |
3285 | 0 | << isa<FunctionDecl>(Old) << New->getAttr<AsmLabelAttr>()->getRange(); |
3286 | 0 | } |
3287 | 0 | } |
3288 | | |
3289 | | // Re-declaration cannot add abi_tag's. |
3290 | 0 | if (const auto *NewAbiTagAttr = New->getAttr<AbiTagAttr>()) { |
3291 | 0 | if (const auto *OldAbiTagAttr = Old->getAttr<AbiTagAttr>()) { |
3292 | 0 | for (const auto &NewTag : NewAbiTagAttr->tags()) { |
3293 | 0 | if (!llvm::is_contained(OldAbiTagAttr->tags(), NewTag)) { |
3294 | 0 | Diag(NewAbiTagAttr->getLocation(), |
3295 | 0 | diag::err_new_abi_tag_on_redeclaration) |
3296 | 0 | << NewTag; |
3297 | 0 | Diag(OldAbiTagAttr->getLocation(), diag::note_previous_declaration); |
3298 | 0 | } |
3299 | 0 | } |
3300 | 0 | } else { |
3301 | 0 | Diag(NewAbiTagAttr->getLocation(), diag::err_abi_tag_on_redeclaration); |
3302 | 0 | Diag(Old->getLocation(), diag::note_previous_declaration); |
3303 | 0 | } |
3304 | 0 | } |
3305 | | |
3306 | | // This redeclaration adds a section attribute. |
3307 | 0 | if (New->hasAttr<SectionAttr>() && !Old->hasAttr<SectionAttr>()) { |
3308 | 0 | if (auto *VD = dyn_cast<VarDecl>(New)) { |
3309 | 0 | if (VD->isThisDeclarationADefinition() == VarDecl::DeclarationOnly) { |
3310 | 0 | Diag(New->getLocation(), diag::warn_attribute_section_on_redeclaration); |
3311 | 0 | Diag(Old->getLocation(), diag::note_previous_declaration); |
3312 | 0 | } |
3313 | 0 | } |
3314 | 0 | } |
3315 | | |
3316 | | // Redeclaration adds code-seg attribute. |
3317 | 0 | const auto *NewCSA = New->getAttr<CodeSegAttr>(); |
3318 | 0 | if (NewCSA && !Old->hasAttr<CodeSegAttr>() && |
3319 | 0 | !NewCSA->isImplicit() && isa<CXXMethodDecl>(New)) { |
3320 | 0 | Diag(New->getLocation(), diag::warn_mismatched_section) |
3321 | 0 | << 0 /*codeseg*/; |
3322 | 0 | Diag(Old->getLocation(), diag::note_previous_declaration); |
3323 | 0 | } |
3324 | |
|
3325 | 0 | if (!Old->hasAttrs()) |
3326 | 0 | return; |
3327 | | |
3328 | 0 | bool foundAny = New->hasAttrs(); |
3329 | | |
3330 | | // Ensure that any moving of objects within the allocated map is done before |
3331 | | // we process them. |
3332 | 0 | if (!foundAny) New->setAttrs(AttrVec()); |
3333 | |
|
3334 | 0 | for (auto *I : Old->specific_attrs<InheritableAttr>()) { |
3335 | | // Ignore deprecated/unavailable/availability attributes if requested. |
3336 | 0 | AvailabilityMergeKind LocalAMK = AMK_None; |
3337 | 0 | if (isa<DeprecatedAttr>(I) || |
3338 | 0 | isa<UnavailableAttr>(I) || |
3339 | 0 | isa<AvailabilityAttr>(I)) { |
3340 | 0 | switch (AMK) { |
3341 | 0 | case AMK_None: |
3342 | 0 | continue; |
3343 | | |
3344 | 0 | case AMK_Redeclaration: |
3345 | 0 | case AMK_Override: |
3346 | 0 | case AMK_ProtocolImplementation: |
3347 | 0 | case AMK_OptionalProtocolImplementation: |
3348 | 0 | LocalAMK = AMK; |
3349 | 0 | break; |
3350 | 0 | } |
3351 | 0 | } |
3352 | | |
3353 | | // Already handled. |
3354 | 0 | if (isa<UsedAttr>(I) || isa<RetainAttr>(I)) |
3355 | 0 | continue; |
3356 | | |
3357 | 0 | if (mergeDeclAttribute(*this, New, I, LocalAMK)) |
3358 | 0 | foundAny = true; |
3359 | 0 | } |
3360 | | |
3361 | 0 | if (mergeAlignedAttrs(*this, New, Old)) |
3362 | 0 | foundAny = true; |
3363 | |
|
3364 | 0 | if (!foundAny) New->dropAttrs(); |
3365 | 0 | } |
3366 | | |
3367 | | /// mergeParamDeclAttributes - Copy attributes from the old parameter |
3368 | | /// to the new one. |
3369 | | static void mergeParamDeclAttributes(ParmVarDecl *newDecl, |
3370 | | const ParmVarDecl *oldDecl, |
3371 | 0 | Sema &S) { |
3372 | | // C++11 [dcl.attr.depend]p2: |
3373 | | // The first declaration of a function shall specify the |
3374 | | // carries_dependency attribute for its declarator-id if any declaration |
3375 | | // of the function specifies the carries_dependency attribute. |
3376 | 0 | const CarriesDependencyAttr *CDA = newDecl->getAttr<CarriesDependencyAttr>(); |
3377 | 0 | if (CDA && !oldDecl->hasAttr<CarriesDependencyAttr>()) { |
3378 | 0 | S.Diag(CDA->getLocation(), |
3379 | 0 | diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/; |
3380 | | // Find the first declaration of the parameter. |
3381 | | // FIXME: Should we build redeclaration chains for function parameters? |
3382 | 0 | const FunctionDecl *FirstFD = |
3383 | 0 | cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl(); |
3384 | 0 | const ParmVarDecl *FirstVD = |
3385 | 0 | FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex()); |
3386 | 0 | S.Diag(FirstVD->getLocation(), |
3387 | 0 | diag::note_carries_dependency_missing_first_decl) << 1/*Param*/; |
3388 | 0 | } |
3389 | | |
3390 | | // HLSL parameter declarations for inout and out must match between |
3391 | | // declarations. In HLSL inout and out are ambiguous at the call site, but |
3392 | | // have different calling behavior, so you cannot overload a method based on a |
3393 | | // difference between inout and out annotations. |
3394 | 0 | if (S.getLangOpts().HLSL) { |
3395 | 0 | const auto *NDAttr = newDecl->getAttr<HLSLParamModifierAttr>(); |
3396 | 0 | const auto *ODAttr = oldDecl->getAttr<HLSLParamModifierAttr>(); |
3397 | | // We don't need to cover the case where one declaration doesn't have an |
3398 | | // attribute. The only possible case there is if one declaration has an `in` |
3399 | | // attribute and the other declaration has no attribute. This case is |
3400 | | // allowed since parameters are `in` by default. |
3401 | 0 | if (NDAttr && ODAttr && |
3402 | 0 | NDAttr->getSpellingListIndex() != ODAttr->getSpellingListIndex()) { |
3403 | 0 | S.Diag(newDecl->getLocation(), diag::err_hlsl_param_qualifier_mismatch) |
3404 | 0 | << NDAttr << newDecl; |
3405 | 0 | S.Diag(oldDecl->getLocation(), diag::note_previous_declaration_as) |
3406 | 0 | << ODAttr; |
3407 | 0 | } |
3408 | 0 | } |
3409 | |
|
3410 | 0 | if (!oldDecl->hasAttrs()) |
3411 | 0 | return; |
3412 | | |
3413 | 0 | bool foundAny = newDecl->hasAttrs(); |
3414 | | |
3415 | | // Ensure that any moving of objects within the allocated map is |
3416 | | // done before we process them. |
3417 | 0 | if (!foundAny) newDecl->setAttrs(AttrVec()); |
3418 | |
|
3419 | 0 | for (const auto *I : oldDecl->specific_attrs<InheritableParamAttr>()) { |
3420 | 0 | if (!DeclHasAttr(newDecl, I)) { |
3421 | 0 | InheritableAttr *newAttr = |
3422 | 0 | cast<InheritableParamAttr>(I->clone(S.Context)); |
3423 | 0 | newAttr->setInherited(true); |
3424 | 0 | newDecl->addAttr(newAttr); |
3425 | 0 | foundAny = true; |
3426 | 0 | } |
3427 | 0 | } |
3428 | |
|
3429 | 0 | if (!foundAny) newDecl->dropAttrs(); |
3430 | 0 | } |
3431 | | |
3432 | | static bool EquivalentArrayTypes(QualType Old, QualType New, |
3433 | 0 | const ASTContext &Ctx) { |
3434 | |
|
3435 | 0 | auto NoSizeInfo = [&Ctx](QualType Ty) { |
3436 | 0 | if (Ty->isIncompleteArrayType() || Ty->isPointerType()) |
3437 | 0 | return true; |
3438 | 0 | if (const auto *VAT = Ctx.getAsVariableArrayType(Ty)) |
3439 | 0 | return VAT->getSizeModifier() == ArraySizeModifier::Star; |
3440 | 0 | return false; |
3441 | 0 | }; |
3442 | | |
3443 | | // `type[]` is equivalent to `type *` and `type[*]`. |
3444 | 0 | if (NoSizeInfo(Old) && NoSizeInfo(New)) |
3445 | 0 | return true; |
3446 | | |
3447 | | // Don't try to compare VLA sizes, unless one of them has the star modifier. |
3448 | 0 | if (Old->isVariableArrayType() && New->isVariableArrayType()) { |
3449 | 0 | const auto *OldVAT = Ctx.getAsVariableArrayType(Old); |
3450 | 0 | const auto *NewVAT = Ctx.getAsVariableArrayType(New); |
3451 | 0 | if ((OldVAT->getSizeModifier() == ArraySizeModifier::Star) ^ |
3452 | 0 | (NewVAT->getSizeModifier() == ArraySizeModifier::Star)) |
3453 | 0 | return false; |
3454 | 0 | return true; |
3455 | 0 | } |
3456 | | |
3457 | | // Only compare size, ignore Size modifiers and CVR. |
3458 | 0 | if (Old->isConstantArrayType() && New->isConstantArrayType()) { |
3459 | 0 | return Ctx.getAsConstantArrayType(Old)->getSize() == |
3460 | 0 | Ctx.getAsConstantArrayType(New)->getSize(); |
3461 | 0 | } |
3462 | | |
3463 | | // Don't try to compare dependent sized array |
3464 | 0 | if (Old->isDependentSizedArrayType() && New->isDependentSizedArrayType()) { |
3465 | 0 | return true; |
3466 | 0 | } |
3467 | | |
3468 | 0 | return Old == New; |
3469 | 0 | } |
3470 | | |
3471 | | static void mergeParamDeclTypes(ParmVarDecl *NewParam, |
3472 | | const ParmVarDecl *OldParam, |
3473 | 0 | Sema &S) { |
3474 | 0 | if (auto Oldnullability = OldParam->getType()->getNullability()) { |
3475 | 0 | if (auto Newnullability = NewParam->getType()->getNullability()) { |
3476 | 0 | if (*Oldnullability != *Newnullability) { |
3477 | 0 | S.Diag(NewParam->getLocation(), diag::warn_mismatched_nullability_attr) |
3478 | 0 | << DiagNullabilityKind( |
3479 | 0 | *Newnullability, |
3480 | 0 | ((NewParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) |
3481 | 0 | != 0)) |
3482 | 0 | << DiagNullabilityKind( |
3483 | 0 | *Oldnullability, |
3484 | 0 | ((OldParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability) |
3485 | 0 | != 0)); |
3486 | 0 | S.Diag(OldParam->getLocation(), diag::note_previous_declaration); |
3487 | 0 | } |
3488 | 0 | } else { |
3489 | 0 | QualType NewT = NewParam->getType(); |
3490 | 0 | NewT = S.Context.getAttributedType( |
3491 | 0 | AttributedType::getNullabilityAttrKind(*Oldnullability), |
3492 | 0 | NewT, NewT); |
3493 | 0 | NewParam->setType(NewT); |
3494 | 0 | } |
3495 | 0 | } |
3496 | 0 | const auto *OldParamDT = dyn_cast<DecayedType>(OldParam->getType()); |
3497 | 0 | const auto *NewParamDT = dyn_cast<DecayedType>(NewParam->getType()); |
3498 | 0 | if (OldParamDT && NewParamDT && |
3499 | 0 | OldParamDT->getPointeeType() == NewParamDT->getPointeeType()) { |
3500 | 0 | QualType OldParamOT = OldParamDT->getOriginalType(); |
3501 | 0 | QualType NewParamOT = NewParamDT->getOriginalType(); |
3502 | 0 | if (!EquivalentArrayTypes(OldParamOT, NewParamOT, S.getASTContext())) { |
3503 | 0 | S.Diag(NewParam->getLocation(), diag::warn_inconsistent_array_form) |
3504 | 0 | << NewParam << NewParamOT; |
3505 | 0 | S.Diag(OldParam->getLocation(), diag::note_previous_declaration_as) |
3506 | 0 | << OldParamOT; |
3507 | 0 | } |
3508 | 0 | } |
3509 | 0 | } |
3510 | | |
3511 | | namespace { |
3512 | | |
3513 | | /// Used in MergeFunctionDecl to keep track of function parameters in |
3514 | | /// C. |
3515 | | struct GNUCompatibleParamWarning { |
3516 | | ParmVarDecl *OldParm; |
3517 | | ParmVarDecl *NewParm; |
3518 | | QualType PromotedType; |
3519 | | }; |
3520 | | |
3521 | | } // end anonymous namespace |
3522 | | |
3523 | | // Determine whether the previous declaration was a definition, implicit |
3524 | | // declaration, or a declaration. |
3525 | | template <typename T> |
3526 | | static std::pair<diag::kind, SourceLocation> |
3527 | 193 | getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { |
3528 | 193 | diag::kind PrevDiag; |
3529 | 193 | SourceLocation OldLocation = Old->getLocation(); |
3530 | 193 | if (Old->isThisDeclarationADefinition()) |
3531 | 193 | PrevDiag = diag::note_previous_definition; |
3532 | 0 | else if (Old->isImplicit()) { |
3533 | 0 | PrevDiag = diag::note_previous_implicit_declaration; |
3534 | 0 | if (const auto *FD = dyn_cast<FunctionDecl>(Old)) { |
3535 | 0 | if (FD->getBuiltinID()) |
3536 | 0 | PrevDiag = diag::note_previous_builtin_declaration; |
3537 | 0 | } |
3538 | 0 | if (OldLocation.isInvalid()) |
3539 | 0 | OldLocation = New->getLocation(); |
3540 | 0 | } else |
3541 | 0 | PrevDiag = diag::note_previous_declaration; |
3542 | 193 | return std::make_pair(PrevDiag, OldLocation); |
3543 | 193 | } Unexecuted instantiation: SemaDecl.cpp:std::__1::pair<unsigned int, clang::SourceLocation> getNoteDiagForInvalidRedeclaration<clang::FunctionDecl>(clang::FunctionDecl const*, clang::FunctionDecl const*) SemaDecl.cpp:std::__1::pair<unsigned int, clang::SourceLocation> getNoteDiagForInvalidRedeclaration<clang::VarDecl>(clang::VarDecl const*, clang::VarDecl const*) Line | Count | Source | 3527 | 193 | getNoteDiagForInvalidRedeclaration(const T *Old, const T *New) { | 3528 | 193 | diag::kind PrevDiag; | 3529 | 193 | SourceLocation OldLocation = Old->getLocation(); | 3530 | 193 | if (Old->isThisDeclarationADefinition()) | 3531 | 193 | PrevDiag = diag::note_previous_definition; | 3532 | 0 | else if (Old->isImplicit()) { | 3533 | 0 | PrevDiag = diag::note_previous_implicit_declaration; | 3534 | 0 | if (const auto *FD = dyn_cast<FunctionDecl>(Old)) { | 3535 | 0 | if (FD->getBuiltinID()) | 3536 | 0 | PrevDiag = diag::note_previous_builtin_declaration; | 3537 | 0 | } | 3538 | 0 | if (OldLocation.isInvalid()) | 3539 | 0 | OldLocation = New->getLocation(); | 3540 | 0 | } else | 3541 | 0 | PrevDiag = diag::note_previous_declaration; | 3542 | 193 | return std::make_pair(PrevDiag, OldLocation); | 3543 | 193 | } |
|
3544 | | |
3545 | | /// canRedefineFunction - checks if a function can be redefined. Currently, |
3546 | | /// only extern inline functions can be redefined, and even then only in |
3547 | | /// GNU89 mode. |
3548 | | static bool canRedefineFunction(const FunctionDecl *FD, |
3549 | 0 | const LangOptions& LangOpts) { |
3550 | 0 | return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) && |
3551 | 0 | !LangOpts.CPlusPlus && |
3552 | 0 | FD->isInlineSpecified() && |
3553 | 0 | FD->getStorageClass() == SC_Extern); |
3554 | 0 | } |
3555 | | |
3556 | 0 | const AttributedType *Sema::getCallingConvAttributedType(QualType T) const { |
3557 | 0 | const AttributedType *AT = T->getAs<AttributedType>(); |
3558 | 0 | while (AT && !AT->isCallingConv()) |
3559 | 0 | AT = AT->getModifiedType()->getAs<AttributedType>(); |
3560 | 0 | return AT; |
3561 | 0 | } |
3562 | | |
3563 | | template <typename T> |
3564 | 183 | static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { |
3565 | 183 | const DeclContext *DC = Old->getDeclContext(); |
3566 | 183 | if (DC->isRecord()) |
3567 | 0 | return false; |
3568 | | |
3569 | 183 | LanguageLinkage OldLinkage = Old->getLanguageLinkage(); |
3570 | 183 | if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) |
3571 | 0 | return true; |
3572 | 183 | if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) |
3573 | 0 | return true; |
3574 | 183 | return false; |
3575 | 183 | } Unexecuted instantiation: SemaDecl.cpp:bool haveIncompatibleLanguageLinkages<clang::FunctionDecl>(clang::FunctionDecl const*, clang::FunctionDecl const*) SemaDecl.cpp:bool haveIncompatibleLanguageLinkages<clang::VarDecl>(clang::VarDecl const*, clang::VarDecl const*) Line | Count | Source | 3564 | 183 | static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) { | 3565 | 183 | const DeclContext *DC = Old->getDeclContext(); | 3566 | 183 | if (DC->isRecord()) | 3567 | 0 | return false; | 3568 | | | 3569 | 183 | LanguageLinkage OldLinkage = Old->getLanguageLinkage(); | 3570 | 183 | if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext()) | 3571 | 0 | return true; | 3572 | 183 | if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext()) | 3573 | 0 | return true; | 3574 | 183 | return false; | 3575 | 183 | } |
|
3576 | | |
3577 | 0 | template<typename T> static bool isExternC(T *D) { return D->isExternC(); }Unexecuted instantiation: SemaDecl.cpp:bool isExternC<clang::FunctionDecl>(clang::FunctionDecl*) Unexecuted instantiation: SemaDecl.cpp:bool isExternC<clang::VarDecl>(clang::VarDecl*) |
3578 | 0 | static bool isExternC(VarTemplateDecl *) { return false; } |
3579 | 0 | static bool isExternC(FunctionTemplateDecl *) { return false; } |
3580 | | |
3581 | | /// Check whether a redeclaration of an entity introduced by a |
3582 | | /// using-declaration is valid, given that we know it's not an overload |
3583 | | /// (nor a hidden tag declaration). |
3584 | | template<typename ExpectedDecl> |
3585 | | static bool checkUsingShadowRedecl(Sema &S, UsingShadowDecl *OldS, |
3586 | 0 | ExpectedDecl *New) { |
3587 | | // C++11 [basic.scope.declarative]p4: |
3588 | | // Given a set of declarations in a single declarative region, each of |
3589 | | // which specifies the same unqualified name, |
3590 | | // -- they shall all refer to the same entity, or all refer to functions |
3591 | | // and function templates; or |
3592 | | // -- exactly one declaration shall declare a class name or enumeration |
3593 | | // name that is not a typedef name and the other declarations shall all |
3594 | | // refer to the same variable or enumerator, or all refer to functions |
3595 | | // and function templates; in this case the class name or enumeration |
3596 | | // name is hidden (3.3.10). |
3597 | | |
3598 | | // C++11 [namespace.udecl]p14: |
3599 | | // If a function declaration in namespace scope or block scope has the |
3600 | | // same name and the same parameter-type-list as a function introduced |
3601 | | // by a using-declaration, and the declarations do not declare the same |
3602 | | // function, the program is ill-formed. |
3603 | |
|
3604 | 0 | auto *Old = dyn_cast<ExpectedDecl>(OldS->getTargetDecl()); |
3605 | 0 | if (Old && |
3606 | 0 | !Old->getDeclContext()->getRedeclContext()->Equals( |
3607 | 0 | New->getDeclContext()->getRedeclContext()) && |
3608 | 0 | !(isExternC(Old) && isExternC(New))) |
3609 | 0 | Old = nullptr; |
3610 | |
|
3611 | 0 | if (!Old) { |
3612 | 0 | S.Diag(New->getLocation(), diag::err_using_decl_conflict_reverse); |
3613 | 0 | S.Diag(OldS->getTargetDecl()->getLocation(), diag::note_using_decl_target); |
3614 | 0 | S.Diag(OldS->getIntroducer()->getLocation(), diag::note_using_decl) << 0; |
3615 | 0 | return true; |
3616 | 0 | } |
3617 | 0 | return false; |
3618 | 0 | } Unexecuted instantiation: SemaDecl.cpp:bool checkUsingShadowRedecl<clang::FunctionTemplateDecl>(clang::Sema&, clang::UsingShadowDecl*, clang::FunctionTemplateDecl*) Unexecuted instantiation: SemaDecl.cpp:bool checkUsingShadowRedecl<clang::FunctionDecl>(clang::Sema&, clang::UsingShadowDecl*, clang::FunctionDecl*) Unexecuted instantiation: SemaDecl.cpp:bool checkUsingShadowRedecl<clang::VarTemplateDecl>(clang::Sema&, clang::UsingShadowDecl*, clang::VarTemplateDecl*) Unexecuted instantiation: SemaDecl.cpp:bool checkUsingShadowRedecl<clang::VarDecl>(clang::Sema&, clang::UsingShadowDecl*, clang::VarDecl*) |
3619 | | |
3620 | | static bool hasIdenticalPassObjectSizeAttrs(const FunctionDecl *A, |
3621 | 0 | const FunctionDecl *B) { |
3622 | 0 | assert(A->getNumParams() == B->getNumParams()); |
3623 | | |
3624 | 0 | auto AttrEq = [](const ParmVarDecl *A, const ParmVarDecl *B) { |
3625 | 0 | const auto *AttrA = A->getAttr<PassObjectSizeAttr>(); |
3626 | 0 | const auto *AttrB = B->getAttr<PassObjectSizeAttr>(); |
3627 | 0 | if (AttrA == AttrB) |
3628 | 0 | return true; |
3629 | 0 | return AttrA && AttrB && AttrA->getType() == AttrB->getType() && |
3630 | 0 | AttrA->isDynamic() == AttrB->isDynamic(); |
3631 | 0 | }; |
3632 | |
|
3633 | 0 | return std::equal(A->param_begin(), A->param_end(), B->param_begin(), AttrEq); |
3634 | 0 | } |
3635 | | |
3636 | | /// If necessary, adjust the semantic declaration context for a qualified |
3637 | | /// declaration to name the correct inline namespace within the qualifier. |
3638 | | static void adjustDeclContextForDeclaratorDecl(DeclaratorDecl *NewD, |
3639 | 193 | DeclaratorDecl *OldD) { |
3640 | | // The only case where we need to update the DeclContext is when |
3641 | | // redeclaration lookup for a qualified name finds a declaration |
3642 | | // in an inline namespace within the context named by the qualifier: |
3643 | | // |
3644 | | // inline namespace N { int f(); } |
3645 | | // int ::f(); // Sema DC needs adjusting from :: to N::. |
3646 | | // |
3647 | | // For unqualified declarations, the semantic context *can* change |
3648 | | // along the redeclaration chain (for local extern declarations, |
3649 | | // extern "C" declarations, and friend declarations in particular). |
3650 | 193 | if (!NewD->getQualifier()) |
3651 | 193 | return; |
3652 | | |
3653 | | // NewD is probably already in the right context. |
3654 | 0 | auto *NamedDC = NewD->getDeclContext()->getRedeclContext(); |
3655 | 0 | auto *SemaDC = OldD->getDeclContext()->getRedeclContext(); |
3656 | 0 | if (NamedDC->Equals(SemaDC)) |
3657 | 0 | return; |
3658 | | |
3659 | 0 | assert((NamedDC->InEnclosingNamespaceSetOf(SemaDC) || |
3660 | 0 | NewD->isInvalidDecl() || OldD->isInvalidDecl()) && |
3661 | 0 | "unexpected context for redeclaration"); |
3662 | | |
3663 | 0 | auto *LexDC = NewD->getLexicalDeclContext(); |
3664 | 0 | auto FixSemaDC = [=](NamedDecl *D) { |
3665 | 0 | if (!D) |
3666 | 0 | return; |
3667 | 0 | D->setDeclContext(SemaDC); |
3668 | 0 | D->setLexicalDeclContext(LexDC); |
3669 | 0 | }; |
3670 | |
|
3671 | 0 | FixSemaDC(NewD); |
3672 | 0 | if (auto *FD = dyn_cast<FunctionDecl>(NewD)) |
3673 | 0 | FixSemaDC(FD->getDescribedFunctionTemplate()); |
3674 | 0 | else if (auto *VD = dyn_cast<VarDecl>(NewD)) |
3675 | 0 | FixSemaDC(VD->getDescribedVarTemplate()); |
3676 | 0 | } |
3677 | | |
3678 | | /// MergeFunctionDecl - We just parsed a function 'New' from |
3679 | | /// declarator D which has the same name and scope as a previous |
3680 | | /// declaration 'Old'. Figure out how to resolve this situation, |
3681 | | /// merging decls or emitting diagnostics as appropriate. |
3682 | | /// |
3683 | | /// In C++, New and Old must be declarations that are not |
3684 | | /// overloaded. Use IsOverload to determine whether New and Old are |
3685 | | /// overloaded, and to select the Old declaration that New should be |
3686 | | /// merged with. |
3687 | | /// |
3688 | | /// Returns true if there was an error, false otherwise. |
3689 | | bool Sema::MergeFunctionDecl(FunctionDecl *New, NamedDecl *&OldD, Scope *S, |
3690 | 3 | bool MergeTypeWithOld, bool NewDeclIsDefn) { |
3691 | | // Verify the old decl was also a function. |
3692 | 3 | FunctionDecl *Old = OldD->getAsFunction(); |
3693 | 3 | if (!Old) { |
3694 | 3 | if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) { |
3695 | 0 | if (New->getFriendObjectKind()) { |
3696 | 0 | Diag(New->getLocation(), diag::err_using_decl_friend); |
3697 | 0 | Diag(Shadow->getTargetDecl()->getLocation(), |
3698 | 0 | diag::note_using_decl_target); |
3699 | 0 | Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) |
3700 | 0 | << 0; |
3701 | 0 | return true; |
3702 | 0 | } |
3703 | | |
3704 | | // Check whether the two declarations might declare the same function or |
3705 | | // function template. |
3706 | 0 | if (FunctionTemplateDecl *NewTemplate = |
3707 | 0 | New->getDescribedFunctionTemplate()) { |
3708 | 0 | if (checkUsingShadowRedecl<FunctionTemplateDecl>(*this, Shadow, |
3709 | 0 | NewTemplate)) |
3710 | 0 | return true; |
3711 | 0 | OldD = Old = cast<FunctionTemplateDecl>(Shadow->getTargetDecl()) |
3712 | 0 | ->getAsFunction(); |
3713 | 0 | } else { |
3714 | 0 | if (checkUsingShadowRedecl<FunctionDecl>(*this, Shadow, New)) |
3715 | 0 | return true; |
3716 | 0 | OldD = Old = cast<FunctionDecl>(Shadow->getTargetDecl()); |
3717 | 0 | } |
3718 | 3 | } else { |
3719 | 3 | Diag(New->getLocation(), diag::err_redefinition_different_kind) |
3720 | 3 | << New->getDeclName(); |
3721 | 3 | notePreviousDefinition(OldD, New->getLocation()); |
3722 | 3 | return true; |
3723 | 3 | } |
3724 | 3 | } |
3725 | | |
3726 | | // If the old declaration was found in an inline namespace and the new |
3727 | | // declaration was qualified, update the DeclContext to match. |
3728 | 0 | adjustDeclContextForDeclaratorDecl(New, Old); |
3729 | | |
3730 | | // If the old declaration is invalid, just give up here. |
3731 | 0 | if (Old->isInvalidDecl()) |
3732 | 0 | return true; |
3733 | | |
3734 | | // Disallow redeclaration of some builtins. |
3735 | 0 | if (!getASTContext().canBuiltinBeRedeclared(Old)) { |
3736 | 0 | Diag(New->getLocation(), diag::err_builtin_redeclare) << Old->getDeclName(); |
3737 | 0 | Diag(Old->getLocation(), diag::note_previous_builtin_declaration) |
3738 | 0 | << Old << Old->getType(); |
3739 | 0 | return true; |
3740 | 0 | } |
3741 | | |
3742 | 0 | diag::kind PrevDiag; |
3743 | 0 | SourceLocation OldLocation; |
3744 | 0 | std::tie(PrevDiag, OldLocation) = |
3745 | 0 | getNoteDiagForInvalidRedeclaration(Old, New); |
3746 | | |
3747 | | // Don't complain about this if we're in GNU89 mode and the old function |
3748 | | // is an extern inline function. |
3749 | | // Don't complain about specializations. They are not supposed to have |
3750 | | // storage classes. |
3751 | 0 | if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) && |
3752 | 0 | New->getStorageClass() == SC_Static && |
3753 | 0 | Old->hasExternalFormalLinkage() && |
3754 | 0 | !New->getTemplateSpecializationInfo() && |
3755 | 0 | !canRedefineFunction(Old, getLangOpts())) { |
3756 | 0 | if (getLangOpts().MicrosoftExt) { |
3757 | 0 | Diag(New->getLocation(), diag::ext_static_non_static) << New; |
3758 | 0 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
3759 | 0 | } else { |
3760 | 0 | Diag(New->getLocation(), diag::err_static_non_static) << New; |
3761 | 0 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
3762 | 0 | return true; |
3763 | 0 | } |
3764 | 0 | } |
3765 | | |
3766 | 0 | if (const auto *ILA = New->getAttr<InternalLinkageAttr>()) |
3767 | 0 | if (!Old->hasAttr<InternalLinkageAttr>()) { |
3768 | 0 | Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) |
3769 | 0 | << ILA; |
3770 | 0 | Diag(Old->getLocation(), diag::note_previous_declaration); |
3771 | 0 | New->dropAttr<InternalLinkageAttr>(); |
3772 | 0 | } |
3773 | |
|
3774 | 0 | if (auto *EA = New->getAttr<ErrorAttr>()) { |
3775 | 0 | if (!Old->hasAttr<ErrorAttr>()) { |
3776 | 0 | Diag(EA->getLocation(), diag::err_attribute_missing_on_first_decl) << EA; |
3777 | 0 | Diag(Old->getLocation(), diag::note_previous_declaration); |
3778 | 0 | New->dropAttr<ErrorAttr>(); |
3779 | 0 | } |
3780 | 0 | } |
3781 | |
|
3782 | 0 | if (CheckRedeclarationInModule(New, Old)) |
3783 | 0 | return true; |
3784 | | |
3785 | 0 | if (!getLangOpts().CPlusPlus) { |
3786 | 0 | bool OldOvl = Old->hasAttr<OverloadableAttr>(); |
3787 | 0 | if (OldOvl != New->hasAttr<OverloadableAttr>() && !Old->isImplicit()) { |
3788 | 0 | Diag(New->getLocation(), diag::err_attribute_overloadable_mismatch) |
3789 | 0 | << New << OldOvl; |
3790 | | |
3791 | | // Try our best to find a decl that actually has the overloadable |
3792 | | // attribute for the note. In most cases (e.g. programs with only one |
3793 | | // broken declaration/definition), this won't matter. |
3794 | | // |
3795 | | // FIXME: We could do this if we juggled some extra state in |
3796 | | // OverloadableAttr, rather than just removing it. |
3797 | 0 | const Decl *DiagOld = Old; |
3798 | 0 | if (OldOvl) { |
3799 | 0 | auto OldIter = llvm::find_if(Old->redecls(), [](const Decl *D) { |
3800 | 0 | const auto *A = D->getAttr<OverloadableAttr>(); |
3801 | 0 | return A && !A->isImplicit(); |
3802 | 0 | }); |
3803 | | // If we've implicitly added *all* of the overloadable attrs to this |
3804 | | // chain, emitting a "previous redecl" note is pointless. |
3805 | 0 | DiagOld = OldIter == Old->redecls_end() ? nullptr : *OldIter; |
3806 | 0 | } |
3807 | |
|
3808 | 0 | if (DiagOld) |
3809 | 0 | Diag(DiagOld->getLocation(), |
3810 | 0 | diag::note_attribute_overloadable_prev_overload) |
3811 | 0 | << OldOvl; |
3812 | |
|
3813 | 0 | if (OldOvl) |
3814 | 0 | New->addAttr(OverloadableAttr::CreateImplicit(Context)); |
3815 | 0 | else |
3816 | 0 | New->dropAttr<OverloadableAttr>(); |
3817 | 0 | } |
3818 | 0 | } |
3819 | | |
3820 | | // It is not permitted to redeclare an SME function with different SME |
3821 | | // attributes. |
3822 | 0 | if (IsInvalidSMECallConversion(Old->getType(), New->getType())) { |
3823 | 0 | Diag(New->getLocation(), diag::err_sme_attr_mismatch) |
3824 | 0 | << New->getType() << Old->getType(); |
3825 | 0 | Diag(OldLocation, diag::note_previous_declaration); |
3826 | 0 | return true; |
3827 | 0 | } |
3828 | | |
3829 | | // If a function is first declared with a calling convention, but is later |
3830 | | // declared or defined without one, all following decls assume the calling |
3831 | | // convention of the first. |
3832 | | // |
3833 | | // It's OK if a function is first declared without a calling convention, |
3834 | | // but is later declared or defined with the default calling convention. |
3835 | | // |
3836 | | // To test if either decl has an explicit calling convention, we look for |
3837 | | // AttributedType sugar nodes on the type as written. If they are missing or |
3838 | | // were canonicalized away, we assume the calling convention was implicit. |
3839 | | // |
3840 | | // Note also that we DO NOT return at this point, because we still have |
3841 | | // other tests to run. |
3842 | 0 | QualType OldQType = Context.getCanonicalType(Old->getType()); |
3843 | 0 | QualType NewQType = Context.getCanonicalType(New->getType()); |
3844 | 0 | const FunctionType *OldType = cast<FunctionType>(OldQType); |
3845 | 0 | const FunctionType *NewType = cast<FunctionType>(NewQType); |
3846 | 0 | FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); |
3847 | 0 | FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); |
3848 | 0 | bool RequiresAdjustment = false; |
3849 | |
|
3850 | 0 | if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) { |
3851 | 0 | FunctionDecl *First = Old->getFirstDecl(); |
3852 | 0 | const FunctionType *FT = |
3853 | 0 | First->getType().getCanonicalType()->castAs<FunctionType>(); |
3854 | 0 | FunctionType::ExtInfo FI = FT->getExtInfo(); |
3855 | 0 | bool NewCCExplicit = getCallingConvAttributedType(New->getType()); |
3856 | 0 | if (!NewCCExplicit) { |
3857 | | // Inherit the CC from the previous declaration if it was specified |
3858 | | // there but not here. |
3859 | 0 | NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); |
3860 | 0 | RequiresAdjustment = true; |
3861 | 0 | } else if (Old->getBuiltinID()) { |
3862 | | // Builtin attribute isn't propagated to the new one yet at this point, |
3863 | | // so we check if the old one is a builtin. |
3864 | | |
3865 | | // Calling Conventions on a Builtin aren't really useful and setting a |
3866 | | // default calling convention and cdecl'ing some builtin redeclarations is |
3867 | | // common, so warn and ignore the calling convention on the redeclaration. |
3868 | 0 | Diag(New->getLocation(), diag::warn_cconv_unsupported) |
3869 | 0 | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) |
3870 | 0 | << (int)CallingConventionIgnoredReason::BuiltinFunction; |
3871 | 0 | NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC()); |
3872 | 0 | RequiresAdjustment = true; |
3873 | 0 | } else { |
3874 | | // Calling conventions aren't compatible, so complain. |
3875 | 0 | bool FirstCCExplicit = getCallingConvAttributedType(First->getType()); |
3876 | 0 | Diag(New->getLocation(), diag::err_cconv_change) |
3877 | 0 | << FunctionType::getNameForCallConv(NewTypeInfo.getCC()) |
3878 | 0 | << !FirstCCExplicit |
3879 | 0 | << (!FirstCCExplicit ? "" : |
3880 | 0 | FunctionType::getNameForCallConv(FI.getCC())); |
3881 | | |
3882 | | // Put the note on the first decl, since it is the one that matters. |
3883 | 0 | Diag(First->getLocation(), diag::note_previous_declaration); |
3884 | 0 | return true; |
3885 | 0 | } |
3886 | 0 | } |
3887 | | |
3888 | | // FIXME: diagnose the other way around? |
3889 | 0 | if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) { |
3890 | 0 | NewTypeInfo = NewTypeInfo.withNoReturn(true); |
3891 | 0 | RequiresAdjustment = true; |
3892 | 0 | } |
3893 | | |
3894 | | // Merge regparm attribute. |
3895 | 0 | if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() || |
3896 | 0 | OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) { |
3897 | 0 | if (NewTypeInfo.getHasRegParm()) { |
3898 | 0 | Diag(New->getLocation(), diag::err_regparm_mismatch) |
3899 | 0 | << NewType->getRegParmType() |
3900 | 0 | << OldType->getRegParmType(); |
3901 | 0 | Diag(OldLocation, diag::note_previous_declaration); |
3902 | 0 | return true; |
3903 | 0 | } |
3904 | | |
3905 | 0 | NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm()); |
3906 | 0 | RequiresAdjustment = true; |
3907 | 0 | } |
3908 | | |
3909 | | // Merge ns_returns_retained attribute. |
3910 | 0 | if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) { |
3911 | 0 | if (NewTypeInfo.getProducesResult()) { |
3912 | 0 | Diag(New->getLocation(), diag::err_function_attribute_mismatch) |
3913 | 0 | << "'ns_returns_retained'"; |
3914 | 0 | Diag(OldLocation, diag::note_previous_declaration); |
3915 | 0 | return true; |
3916 | 0 | } |
3917 | | |
3918 | 0 | NewTypeInfo = NewTypeInfo.withProducesResult(true); |
3919 | 0 | RequiresAdjustment = true; |
3920 | 0 | } |
3921 | | |
3922 | 0 | if (OldTypeInfo.getNoCallerSavedRegs() != |
3923 | 0 | NewTypeInfo.getNoCallerSavedRegs()) { |
3924 | 0 | if (NewTypeInfo.getNoCallerSavedRegs()) { |
3925 | 0 | AnyX86NoCallerSavedRegistersAttr *Attr = |
3926 | 0 | New->getAttr<AnyX86NoCallerSavedRegistersAttr>(); |
3927 | 0 | Diag(New->getLocation(), diag::err_function_attribute_mismatch) << Attr; |
3928 | 0 | Diag(OldLocation, diag::note_previous_declaration); |
3929 | 0 | return true; |
3930 | 0 | } |
3931 | | |
3932 | 0 | NewTypeInfo = NewTypeInfo.withNoCallerSavedRegs(true); |
3933 | 0 | RequiresAdjustment = true; |
3934 | 0 | } |
3935 | | |
3936 | 0 | if (RequiresAdjustment) { |
3937 | 0 | const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>(); |
3938 | 0 | AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo); |
3939 | 0 | New->setType(QualType(AdjustedType, 0)); |
3940 | 0 | NewQType = Context.getCanonicalType(New->getType()); |
3941 | 0 | } |
3942 | | |
3943 | | // If this redeclaration makes the function inline, we may need to add it to |
3944 | | // UndefinedButUsed. |
3945 | 0 | if (!Old->isInlined() && New->isInlined() && |
3946 | 0 | !New->hasAttr<GNUInlineAttr>() && |
3947 | 0 | !getLangOpts().GNUInline && |
3948 | 0 | Old->isUsed(false) && |
3949 | 0 | !Old->isDefined() && !New->isThisDeclarationADefinition()) |
3950 | 0 | UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), |
3951 | 0 | SourceLocation())); |
3952 | | |
3953 | | // If this redeclaration makes it newly gnu_inline, we don't want to warn |
3954 | | // about it. |
3955 | 0 | if (New->hasAttr<GNUInlineAttr>() && |
3956 | 0 | Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) { |
3957 | 0 | UndefinedButUsed.erase(Old->getCanonicalDecl()); |
3958 | 0 | } |
3959 | | |
3960 | | // If pass_object_size params don't match up perfectly, this isn't a valid |
3961 | | // redeclaration. |
3962 | 0 | if (Old->getNumParams() > 0 && Old->getNumParams() == New->getNumParams() && |
3963 | 0 | !hasIdenticalPassObjectSizeAttrs(Old, New)) { |
3964 | 0 | Diag(New->getLocation(), diag::err_different_pass_object_size_params) |
3965 | 0 | << New->getDeclName(); |
3966 | 0 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
3967 | 0 | return true; |
3968 | 0 | } |
3969 | | |
3970 | 0 | if (getLangOpts().CPlusPlus) { |
3971 | 0 | OldQType = Context.getCanonicalType(Old->getType()); |
3972 | 0 | NewQType = Context.getCanonicalType(New->getType()); |
3973 | | |
3974 | | // Go back to the type source info to compare the declared return types, |
3975 | | // per C++1y [dcl.type.auto]p13: |
3976 | | // Redeclarations or specializations of a function or function template |
3977 | | // with a declared return type that uses a placeholder type shall also |
3978 | | // use that placeholder, not a deduced type. |
3979 | 0 | QualType OldDeclaredReturnType = Old->getDeclaredReturnType(); |
3980 | 0 | QualType NewDeclaredReturnType = New->getDeclaredReturnType(); |
3981 | 0 | if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) && |
3982 | 0 | canFullyTypeCheckRedeclaration(New, Old, NewDeclaredReturnType, |
3983 | 0 | OldDeclaredReturnType)) { |
3984 | 0 | QualType ResQT; |
3985 | 0 | if (NewDeclaredReturnType->isObjCObjectPointerType() && |
3986 | 0 | OldDeclaredReturnType->isObjCObjectPointerType()) |
3987 | | // FIXME: This does the wrong thing for a deduced return type. |
3988 | 0 | ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType); |
3989 | 0 | if (ResQT.isNull()) { |
3990 | 0 | if (New->isCXXClassMember() && New->isOutOfLine()) |
3991 | 0 | Diag(New->getLocation(), diag::err_member_def_does_not_match_ret_type) |
3992 | 0 | << New << New->getReturnTypeSourceRange(); |
3993 | 0 | else |
3994 | 0 | Diag(New->getLocation(), diag::err_ovl_diff_return_type) |
3995 | 0 | << New->getReturnTypeSourceRange(); |
3996 | 0 | Diag(OldLocation, PrevDiag) << Old << Old->getType() |
3997 | 0 | << Old->getReturnTypeSourceRange(); |
3998 | 0 | return true; |
3999 | 0 | } |
4000 | 0 | else |
4001 | 0 | NewQType = ResQT; |
4002 | 0 | } |
4003 | | |
4004 | 0 | QualType OldReturnType = OldType->getReturnType(); |
4005 | 0 | QualType NewReturnType = cast<FunctionType>(NewQType)->getReturnType(); |
4006 | 0 | if (OldReturnType != NewReturnType) { |
4007 | | // If this function has a deduced return type and has already been |
4008 | | // defined, copy the deduced value from the old declaration. |
4009 | 0 | AutoType *OldAT = Old->getReturnType()->getContainedAutoType(); |
4010 | 0 | if (OldAT && OldAT->isDeduced()) { |
4011 | 0 | QualType DT = OldAT->getDeducedType(); |
4012 | 0 | if (DT.isNull()) { |
4013 | 0 | New->setType(SubstAutoTypeDependent(New->getType())); |
4014 | 0 | NewQType = Context.getCanonicalType(SubstAutoTypeDependent(NewQType)); |
4015 | 0 | } else { |
4016 | 0 | New->setType(SubstAutoType(New->getType(), DT)); |
4017 | 0 | NewQType = Context.getCanonicalType(SubstAutoType(NewQType, DT)); |
4018 | 0 | } |
4019 | 0 | } |
4020 | 0 | } |
4021 | |
|
4022 | 0 | const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old); |
4023 | 0 | CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New); |
4024 | 0 | if (OldMethod && NewMethod) { |
4025 | | // Preserve triviality. |
4026 | 0 | NewMethod->setTrivial(OldMethod->isTrivial()); |
4027 | | |
4028 | | // MSVC allows explicit template specialization at class scope: |
4029 | | // 2 CXXMethodDecls referring to the same function will be injected. |
4030 | | // We don't want a redeclaration error. |
4031 | 0 | bool IsClassScopeExplicitSpecialization = |
4032 | 0 | OldMethod->isFunctionTemplateSpecialization() && |
4033 | 0 | NewMethod->isFunctionTemplateSpecialization(); |
4034 | 0 | bool isFriend = NewMethod->getFriendObjectKind(); |
4035 | |
|
4036 | 0 | if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() && |
4037 | 0 | !IsClassScopeExplicitSpecialization) { |
4038 | | // -- Member function declarations with the same name and the |
4039 | | // same parameter types cannot be overloaded if any of them |
4040 | | // is a static member function declaration. |
4041 | 0 | if (OldMethod->isStatic() != NewMethod->isStatic()) { |
4042 | 0 | Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member); |
4043 | 0 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
4044 | 0 | return true; |
4045 | 0 | } |
4046 | | |
4047 | | // C++ [class.mem]p1: |
4048 | | // [...] A member shall not be declared twice in the |
4049 | | // member-specification, except that a nested class or member |
4050 | | // class template can be declared and then later defined. |
4051 | 0 | if (!inTemplateInstantiation()) { |
4052 | 0 | unsigned NewDiag; |
4053 | 0 | if (isa<CXXConstructorDecl>(OldMethod)) |
4054 | 0 | NewDiag = diag::err_constructor_redeclared; |
4055 | 0 | else if (isa<CXXDestructorDecl>(NewMethod)) |
4056 | 0 | NewDiag = diag::err_destructor_redeclared; |
4057 | 0 | else if (isa<CXXConversionDecl>(NewMethod)) |
4058 | 0 | NewDiag = diag::err_conv_function_redeclared; |
4059 | 0 | else |
4060 | 0 | NewDiag = diag::err_member_redeclared; |
4061 | |
|
4062 | 0 | Diag(New->getLocation(), NewDiag); |
4063 | 0 | } else { |
4064 | 0 | Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation) |
4065 | 0 | << New << New->getType(); |
4066 | 0 | } |
4067 | 0 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
4068 | 0 | return true; |
4069 | | |
4070 | | // Complain if this is an explicit declaration of a special |
4071 | | // member that was initially declared implicitly. |
4072 | | // |
4073 | | // As an exception, it's okay to befriend such methods in order |
4074 | | // to permit the implicit constructor/destructor/operator calls. |
4075 | 0 | } else if (OldMethod->isImplicit()) { |
4076 | 0 | if (isFriend) { |
4077 | 0 | NewMethod->setImplicit(); |
4078 | 0 | } else { |
4079 | 0 | Diag(NewMethod->getLocation(), |
4080 | 0 | diag::err_definition_of_implicitly_declared_member) |
4081 | 0 | << New << getSpecialMember(OldMethod); |
4082 | 0 | return true; |
4083 | 0 | } |
4084 | 0 | } else if (OldMethod->getFirstDecl()->isExplicitlyDefaulted() && !isFriend) { |
4085 | 0 | Diag(NewMethod->getLocation(), |
4086 | 0 | diag::err_definition_of_explicitly_defaulted_member) |
4087 | 0 | << getSpecialMember(OldMethod); |
4088 | 0 | return true; |
4089 | 0 | } |
4090 | 0 | } |
4091 | | |
4092 | | // C++1z [over.load]p2 |
4093 | | // Certain function declarations cannot be overloaded: |
4094 | | // -- Function declarations that differ only in the return type, |
4095 | | // the exception specification, or both cannot be overloaded. |
4096 | | |
4097 | | // Check the exception specifications match. This may recompute the type of |
4098 | | // both Old and New if it resolved exception specifications, so grab the |
4099 | | // types again after this. Because this updates the type, we do this before |
4100 | | // any of the other checks below, which may update the "de facto" NewQType |
4101 | | // but do not necessarily update the type of New. |
4102 | 0 | if (CheckEquivalentExceptionSpec(Old, New)) |
4103 | 0 | return true; |
4104 | | |
4105 | | // C++11 [dcl.attr.noreturn]p1: |
4106 | | // The first declaration of a function shall specify the noreturn |
4107 | | // attribute if any declaration of that function specifies the noreturn |
4108 | | // attribute. |
4109 | 0 | if (const auto *NRA = New->getAttr<CXX11NoReturnAttr>()) |
4110 | 0 | if (!Old->hasAttr<CXX11NoReturnAttr>()) { |
4111 | 0 | Diag(NRA->getLocation(), diag::err_attribute_missing_on_first_decl) |
4112 | 0 | << NRA; |
4113 | 0 | Diag(Old->getLocation(), diag::note_previous_declaration); |
4114 | 0 | } |
4115 | | |
4116 | | // C++11 [dcl.attr.depend]p2: |
4117 | | // The first declaration of a function shall specify the |
4118 | | // carries_dependency attribute for its declarator-id if any declaration |
4119 | | // of the function specifies the carries_dependency attribute. |
4120 | 0 | const CarriesDependencyAttr *CDA = New->getAttr<CarriesDependencyAttr>(); |
4121 | 0 | if (CDA && !Old->hasAttr<CarriesDependencyAttr>()) { |
4122 | 0 | Diag(CDA->getLocation(), |
4123 | 0 | diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/; |
4124 | 0 | Diag(Old->getFirstDecl()->getLocation(), |
4125 | 0 | diag::note_carries_dependency_missing_first_decl) << 0/*Function*/; |
4126 | 0 | } |
4127 | | |
4128 | | // (C++98 8.3.5p3): |
4129 | | // All declarations for a function shall agree exactly in both the |
4130 | | // return type and the parameter-type-list. |
4131 | | // We also want to respect all the extended bits except noreturn. |
4132 | | |
4133 | | // noreturn should now match unless the old type info didn't have it. |
4134 | 0 | QualType OldQTypeForComparison = OldQType; |
4135 | 0 | if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) { |
4136 | 0 | auto *OldType = OldQType->castAs<FunctionProtoType>(); |
4137 | 0 | const FunctionType *OldTypeForComparison |
4138 | 0 | = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true)); |
4139 | 0 | OldQTypeForComparison = QualType(OldTypeForComparison, 0); |
4140 | 0 | assert(OldQTypeForComparison.isCanonical()); |
4141 | 0 | } |
4142 | | |
4143 | 0 | if (haveIncompatibleLanguageLinkages(Old, New)) { |
4144 | | // As a special case, retain the language linkage from previous |
4145 | | // declarations of a friend function as an extension. |
4146 | | // |
4147 | | // This liberal interpretation of C++ [class.friend]p3 matches GCC/MSVC |
4148 | | // and is useful because there's otherwise no way to specify language |
4149 | | // linkage within class scope. |
4150 | | // |
4151 | | // Check cautiously as the friend object kind isn't yet complete. |
4152 | 0 | if (New->getFriendObjectKind() != Decl::FOK_None) { |
4153 | 0 | Diag(New->getLocation(), diag::ext_retained_language_linkage) << New; |
4154 | 0 | Diag(OldLocation, PrevDiag); |
4155 | 0 | } else { |
4156 | 0 | Diag(New->getLocation(), diag::err_different_language_linkage) << New; |
4157 | 0 | Diag(OldLocation, PrevDiag); |
4158 | 0 | return true; |
4159 | 0 | } |
4160 | 0 | } |
4161 | | |
4162 | | // If the function types are compatible, merge the declarations. Ignore the |
4163 | | // exception specifier because it was already checked above in |
4164 | | // CheckEquivalentExceptionSpec, and we don't want follow-on diagnostics |
4165 | | // about incompatible types under -fms-compatibility. |
4166 | 0 | if (Context.hasSameFunctionTypeIgnoringExceptionSpec(OldQTypeForComparison, |
4167 | 0 | NewQType)) |
4168 | 0 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
4169 | | |
4170 | | // If the types are imprecise (due to dependent constructs in friends or |
4171 | | // local extern declarations), it's OK if they differ. We'll check again |
4172 | | // during instantiation. |
4173 | 0 | if (!canFullyTypeCheckRedeclaration(New, Old, NewQType, OldQType)) |
4174 | 0 | return false; |
4175 | | |
4176 | | // Fall through for conflicting redeclarations and redefinitions. |
4177 | 0 | } |
4178 | | |
4179 | | // C: Function types need to be compatible, not identical. This handles |
4180 | | // duplicate function decls like "void f(int); void f(enum X);" properly. |
4181 | 0 | if (!getLangOpts().CPlusPlus) { |
4182 | | // C99 6.7.5.3p15: ...If one type has a parameter type list and the other |
4183 | | // type is specified by a function definition that contains a (possibly |
4184 | | // empty) identifier list, both shall agree in the number of parameters |
4185 | | // and the type of each parameter shall be compatible with the type that |
4186 | | // results from the application of default argument promotions to the |
4187 | | // type of the corresponding identifier. ... |
4188 | | // This cannot be handled by ASTContext::typesAreCompatible() because that |
4189 | | // doesn't know whether the function type is for a definition or not when |
4190 | | // eventually calling ASTContext::mergeFunctionTypes(). The only situation |
4191 | | // we need to cover here is that the number of arguments agree as the |
4192 | | // default argument promotion rules were already checked by |
4193 | | // ASTContext::typesAreCompatible(). |
4194 | 0 | if (Old->hasPrototype() && !New->hasWrittenPrototype() && NewDeclIsDefn && |
4195 | 0 | Old->getNumParams() != New->getNumParams() && !Old->isImplicit()) { |
4196 | 0 | if (Old->hasInheritedPrototype()) |
4197 | 0 | Old = Old->getCanonicalDecl(); |
4198 | 0 | Diag(New->getLocation(), diag::err_conflicting_types) << New; |
4199 | 0 | Diag(Old->getLocation(), PrevDiag) << Old << Old->getType(); |
4200 | 0 | return true; |
4201 | 0 | } |
4202 | | |
4203 | | // If we are merging two functions where only one of them has a prototype, |
4204 | | // we may have enough information to decide to issue a diagnostic that the |
4205 | | // function without a protoype will change behavior in C23. This handles |
4206 | | // cases like: |
4207 | | // void i(); void i(int j); |
4208 | | // void i(int j); void i(); |
4209 | | // void i(); void i(int j) {} |
4210 | | // See ActOnFinishFunctionBody() for other cases of the behavior change |
4211 | | // diagnostic. See GetFullTypeForDeclarator() for handling of a function |
4212 | | // type without a prototype. |
4213 | 0 | if (New->hasWrittenPrototype() != Old->hasWrittenPrototype() && |
4214 | 0 | !New->isImplicit() && !Old->isImplicit()) { |
4215 | 0 | const FunctionDecl *WithProto, *WithoutProto; |
4216 | 0 | if (New->hasWrittenPrototype()) { |
4217 | 0 | WithProto = New; |
4218 | 0 | WithoutProto = Old; |
4219 | 0 | } else { |
4220 | 0 | WithProto = Old; |
4221 | 0 | WithoutProto = New; |
4222 | 0 | } |
4223 | |
|
4224 | 0 | if (WithProto->getNumParams() != 0) { |
4225 | 0 | if (WithoutProto->getBuiltinID() == 0 && !WithoutProto->isImplicit()) { |
4226 | | // The one without the prototype will be changing behavior in C23, so |
4227 | | // warn about that one so long as it's a user-visible declaration. |
4228 | 0 | bool IsWithoutProtoADef = false, IsWithProtoADef = false; |
4229 | 0 | if (WithoutProto == New) |
4230 | 0 | IsWithoutProtoADef = NewDeclIsDefn; |
4231 | 0 | else |
4232 | 0 | IsWithProtoADef = NewDeclIsDefn; |
4233 | 0 | Diag(WithoutProto->getLocation(), |
4234 | 0 | diag::warn_non_prototype_changes_behavior) |
4235 | 0 | << IsWithoutProtoADef << (WithoutProto->getNumParams() ? 0 : 1) |
4236 | 0 | << (WithoutProto == Old) << IsWithProtoADef; |
4237 | | |
4238 | | // The reason the one without the prototype will be changing behavior |
4239 | | // is because of the one with the prototype, so note that so long as |
4240 | | // it's a user-visible declaration. There is one exception to this: |
4241 | | // when the new declaration is a definition without a prototype, the |
4242 | | // old declaration with a prototype is not the cause of the issue, |
4243 | | // and that does not need to be noted because the one with a |
4244 | | // prototype will not change behavior in C23. |
4245 | 0 | if (WithProto->getBuiltinID() == 0 && !WithProto->isImplicit() && |
4246 | 0 | !IsWithoutProtoADef) |
4247 | 0 | Diag(WithProto->getLocation(), diag::note_conflicting_prototype); |
4248 | 0 | } |
4249 | 0 | } |
4250 | 0 | } |
4251 | |
|
4252 | 0 | if (Context.typesAreCompatible(OldQType, NewQType)) { |
4253 | 0 | const FunctionType *OldFuncType = OldQType->getAs<FunctionType>(); |
4254 | 0 | const FunctionType *NewFuncType = NewQType->getAs<FunctionType>(); |
4255 | 0 | const FunctionProtoType *OldProto = nullptr; |
4256 | 0 | if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) && |
4257 | 0 | (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) { |
4258 | | // The old declaration provided a function prototype, but the |
4259 | | // new declaration does not. Merge in the prototype. |
4260 | 0 | assert(!OldProto->hasExceptionSpec() && "Exception spec in C"); |
4261 | 0 | NewQType = Context.getFunctionType(NewFuncType->getReturnType(), |
4262 | 0 | OldProto->getParamTypes(), |
4263 | 0 | OldProto->getExtProtoInfo()); |
4264 | 0 | New->setType(NewQType); |
4265 | 0 | New->setHasInheritedPrototype(); |
4266 | | |
4267 | | // Synthesize parameters with the same types. |
4268 | 0 | SmallVector<ParmVarDecl *, 16> Params; |
4269 | 0 | for (const auto &ParamType : OldProto->param_types()) { |
4270 | 0 | ParmVarDecl *Param = ParmVarDecl::Create( |
4271 | 0 | Context, New, SourceLocation(), SourceLocation(), nullptr, |
4272 | 0 | ParamType, /*TInfo=*/nullptr, SC_None, nullptr); |
4273 | 0 | Param->setScopeInfo(0, Params.size()); |
4274 | 0 | Param->setImplicit(); |
4275 | 0 | Params.push_back(Param); |
4276 | 0 | } |
4277 | |
|
4278 | 0 | New->setParams(Params); |
4279 | 0 | } |
4280 | | |
4281 | 0 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
4282 | 0 | } |
4283 | 0 | } |
4284 | | |
4285 | | // Check if the function types are compatible when pointer size address |
4286 | | // spaces are ignored. |
4287 | 0 | if (Context.hasSameFunctionTypeIgnoringPtrSizes(OldQType, NewQType)) |
4288 | 0 | return false; |
4289 | | |
4290 | | // GNU C permits a K&R definition to follow a prototype declaration |
4291 | | // if the declared types of the parameters in the K&R definition |
4292 | | // match the types in the prototype declaration, even when the |
4293 | | // promoted types of the parameters from the K&R definition differ |
4294 | | // from the types in the prototype. GCC then keeps the types from |
4295 | | // the prototype. |
4296 | | // |
4297 | | // If a variadic prototype is followed by a non-variadic K&R definition, |
4298 | | // the K&R definition becomes variadic. This is sort of an edge case, but |
4299 | | // it's legal per the standard depending on how you read C99 6.7.5.3p15 and |
4300 | | // C99 6.9.1p8. |
4301 | 0 | if (!getLangOpts().CPlusPlus && |
4302 | 0 | Old->hasPrototype() && !New->hasPrototype() && |
4303 | 0 | New->getType()->getAs<FunctionProtoType>() && |
4304 | 0 | Old->getNumParams() == New->getNumParams()) { |
4305 | 0 | SmallVector<QualType, 16> ArgTypes; |
4306 | 0 | SmallVector<GNUCompatibleParamWarning, 16> Warnings; |
4307 | 0 | const FunctionProtoType *OldProto |
4308 | 0 | = Old->getType()->getAs<FunctionProtoType>(); |
4309 | 0 | const FunctionProtoType *NewProto |
4310 | 0 | = New->getType()->getAs<FunctionProtoType>(); |
4311 | | |
4312 | | // Determine whether this is the GNU C extension. |
4313 | 0 | QualType MergedReturn = Context.mergeTypes(OldProto->getReturnType(), |
4314 | 0 | NewProto->getReturnType()); |
4315 | 0 | bool LooseCompatible = !MergedReturn.isNull(); |
4316 | 0 | for (unsigned Idx = 0, End = Old->getNumParams(); |
4317 | 0 | LooseCompatible && Idx != End; ++Idx) { |
4318 | 0 | ParmVarDecl *OldParm = Old->getParamDecl(Idx); |
4319 | 0 | ParmVarDecl *NewParm = New->getParamDecl(Idx); |
4320 | 0 | if (Context.typesAreCompatible(OldParm->getType(), |
4321 | 0 | NewProto->getParamType(Idx))) { |
4322 | 0 | ArgTypes.push_back(NewParm->getType()); |
4323 | 0 | } else if (Context.typesAreCompatible(OldParm->getType(), |
4324 | 0 | NewParm->getType(), |
4325 | 0 | /*CompareUnqualified=*/true)) { |
4326 | 0 | GNUCompatibleParamWarning Warn = { OldParm, NewParm, |
4327 | 0 | NewProto->getParamType(Idx) }; |
4328 | 0 | Warnings.push_back(Warn); |
4329 | 0 | ArgTypes.push_back(NewParm->getType()); |
4330 | 0 | } else |
4331 | 0 | LooseCompatible = false; |
4332 | 0 | } |
4333 | |
|
4334 | 0 | if (LooseCompatible) { |
4335 | 0 | for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) { |
4336 | 0 | Diag(Warnings[Warn].NewParm->getLocation(), |
4337 | 0 | diag::ext_param_promoted_not_compatible_with_prototype) |
4338 | 0 | << Warnings[Warn].PromotedType |
4339 | 0 | << Warnings[Warn].OldParm->getType(); |
4340 | 0 | if (Warnings[Warn].OldParm->getLocation().isValid()) |
4341 | 0 | Diag(Warnings[Warn].OldParm->getLocation(), |
4342 | 0 | diag::note_previous_declaration); |
4343 | 0 | } |
4344 | |
|
4345 | 0 | if (MergeTypeWithOld) |
4346 | 0 | New->setType(Context.getFunctionType(MergedReturn, ArgTypes, |
4347 | 0 | OldProto->getExtProtoInfo())); |
4348 | 0 | return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld); |
4349 | 0 | } |
4350 | | |
4351 | | // Fall through to diagnose conflicting types. |
4352 | 0 | } |
4353 | | |
4354 | | // A function that has already been declared has been redeclared or |
4355 | | // defined with a different type; show an appropriate diagnostic. |
4356 | | |
4357 | | // If the previous declaration was an implicitly-generated builtin |
4358 | | // declaration, then at the very least we should use a specialized note. |
4359 | 0 | unsigned BuiltinID; |
4360 | 0 | if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) { |
4361 | | // If it's actually a library-defined builtin function like 'malloc' |
4362 | | // or 'printf', just warn about the incompatible redeclaration. |
4363 | 0 | if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) { |
4364 | 0 | Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New; |
4365 | 0 | Diag(OldLocation, diag::note_previous_builtin_declaration) |
4366 | 0 | << Old << Old->getType(); |
4367 | 0 | return false; |
4368 | 0 | } |
4369 | | |
4370 | 0 | PrevDiag = diag::note_previous_builtin_declaration; |
4371 | 0 | } |
4372 | | |
4373 | 0 | Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName(); |
4374 | 0 | Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
4375 | 0 | return true; |
4376 | 0 | } |
4377 | | |
4378 | | /// Completes the merge of two function declarations that are |
4379 | | /// known to be compatible. |
4380 | | /// |
4381 | | /// This routine handles the merging of attributes and other |
4382 | | /// properties of function declarations from the old declaration to |
4383 | | /// the new declaration, once we know that New is in fact a |
4384 | | /// redeclaration of Old. |
4385 | | /// |
4386 | | /// \returns false |
4387 | | bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old, |
4388 | 0 | Scope *S, bool MergeTypeWithOld) { |
4389 | | // Merge the attributes |
4390 | 0 | mergeDeclAttributes(New, Old); |
4391 | | |
4392 | | // Merge "pure" flag. |
4393 | 0 | if (Old->isPure()) |
4394 | 0 | New->setPure(); |
4395 | | |
4396 | | // Merge "used" flag. |
4397 | 0 | if (Old->getMostRecentDecl()->isUsed(false)) |
4398 | 0 | New->setIsUsed(); |
4399 | | |
4400 | | // Merge attributes from the parameters. These can mismatch with K&R |
4401 | | // declarations. |
4402 | 0 | if (New->getNumParams() == Old->getNumParams()) |
4403 | 0 | for (unsigned i = 0, e = New->getNumParams(); i != e; ++i) { |
4404 | 0 | ParmVarDecl *NewParam = New->getParamDecl(i); |
4405 | 0 | ParmVarDecl *OldParam = Old->getParamDecl(i); |
4406 | 0 | mergeParamDeclAttributes(NewParam, OldParam, *this); |
4407 | 0 | mergeParamDeclTypes(NewParam, OldParam, *this); |
4408 | 0 | } |
4409 | |
|
4410 | 0 | if (getLangOpts().CPlusPlus) |
4411 | 0 | return MergeCXXFunctionDecl(New, Old, S); |
4412 | | |
4413 | | // Merge the function types so the we get the composite types for the return |
4414 | | // and argument types. Per C11 6.2.7/4, only update the type if the old decl |
4415 | | // was visible. |
4416 | 0 | QualType Merged = Context.mergeTypes(Old->getType(), New->getType()); |
4417 | 0 | if (!Merged.isNull() && MergeTypeWithOld) |
4418 | 0 | New->setType(Merged); |
4419 | |
|
4420 | 0 | return false; |
4421 | 0 | } |
4422 | | |
4423 | | void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod, |
4424 | 0 | ObjCMethodDecl *oldMethod) { |
4425 | | // Merge the attributes, including deprecated/unavailable |
4426 | 0 | AvailabilityMergeKind MergeKind = |
4427 | 0 | isa<ObjCProtocolDecl>(oldMethod->getDeclContext()) |
4428 | 0 | ? (oldMethod->isOptional() ? AMK_OptionalProtocolImplementation |
4429 | 0 | : AMK_ProtocolImplementation) |
4430 | 0 | : isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration |
4431 | 0 | : AMK_Override; |
4432 | |
|
4433 | 0 | mergeDeclAttributes(newMethod, oldMethod, MergeKind); |
4434 | | |
4435 | | // Merge attributes from the parameters. |
4436 | 0 | ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(), |
4437 | 0 | oe = oldMethod->param_end(); |
4438 | 0 | for (ObjCMethodDecl::param_iterator |
4439 | 0 | ni = newMethod->param_begin(), ne = newMethod->param_end(); |
4440 | 0 | ni != ne && oi != oe; ++ni, ++oi) |
4441 | 0 | mergeParamDeclAttributes(*ni, *oi, *this); |
4442 | |
|
4443 | 0 | CheckObjCMethodOverride(newMethod, oldMethod); |
4444 | 0 | } |
4445 | | |
4446 | 10 | static void diagnoseVarDeclTypeMismatch(Sema &S, VarDecl *New, VarDecl* Old) { |
4447 | 10 | assert(!S.Context.hasSameType(New->getType(), Old->getType())); |
4448 | | |
4449 | 10 | S.Diag(New->getLocation(), New->isThisDeclarationADefinition() |
4450 | 10 | ? diag::err_redefinition_different_type |
4451 | 10 | : diag::err_redeclaration_different_type) |
4452 | 10 | << New->getDeclName() << New->getType() << Old->getType(); |
4453 | | |
4454 | 10 | diag::kind PrevDiag; |
4455 | 10 | SourceLocation OldLocation; |
4456 | 10 | std::tie(PrevDiag, OldLocation) |
4457 | 10 | = getNoteDiagForInvalidRedeclaration(Old, New); |
4458 | 10 | S.Diag(OldLocation, PrevDiag) << Old << Old->getType(); |
4459 | 10 | New->setInvalidDecl(); |
4460 | 10 | } |
4461 | | |
4462 | | /// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and |
4463 | | /// scope as a previous declaration 'Old'. Figure out how to merge their types, |
4464 | | /// emitting diagnostics as appropriate. |
4465 | | /// |
4466 | | /// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back |
4467 | | /// to here in AddInitializerToDecl. We can't check them before the initializer |
4468 | | /// is attached. |
4469 | | void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, |
4470 | 193 | bool MergeTypeWithOld) { |
4471 | 193 | if (New->isInvalidDecl() || Old->isInvalidDecl() || New->getType()->containsErrors() || Old->getType()->containsErrors()) |
4472 | 129 | return; |
4473 | | |
4474 | 64 | QualType MergedT; |
4475 | 64 | if (getLangOpts().CPlusPlus) { |
4476 | 0 | if (New->getType()->isUndeducedType()) { |
4477 | | // We don't know what the new type is until the initializer is attached. |
4478 | 0 | return; |
4479 | 0 | } else if (Context.hasSameType(New->getType(), Old->getType())) { |
4480 | | // These could still be something that needs exception specs checked. |
4481 | 0 | return MergeVarDeclExceptionSpecs(New, Old); |
4482 | 0 | } |
4483 | | // C++ [basic.link]p10: |
4484 | | // [...] the types specified by all declarations referring to a given |
4485 | | // object or function shall be identical, except that declarations for an |
4486 | | // array object can specify array types that differ by the presence or |
4487 | | // absence of a major array bound (8.3.4). |
4488 | 0 | else if (Old->getType()->isArrayType() && New->getType()->isArrayType()) { |
4489 | 0 | const ArrayType *OldArray = Context.getAsArrayType(Old->getType()); |
4490 | 0 | const ArrayType *NewArray = Context.getAsArrayType(New->getType()); |
4491 | | |
4492 | | // We are merging a variable declaration New into Old. If it has an array |
4493 | | // bound, and that bound differs from Old's bound, we should diagnose the |
4494 | | // mismatch. |
4495 | 0 | if (!NewArray->isIncompleteArrayType() && !NewArray->isDependentType()) { |
4496 | 0 | for (VarDecl *PrevVD = Old->getMostRecentDecl(); PrevVD; |
4497 | 0 | PrevVD = PrevVD->getPreviousDecl()) { |
4498 | 0 | QualType PrevVDTy = PrevVD->getType(); |
4499 | 0 | if (PrevVDTy->isIncompleteArrayType() || PrevVDTy->isDependentType()) |
4500 | 0 | continue; |
4501 | | |
4502 | 0 | if (!Context.hasSameType(New->getType(), PrevVDTy)) |
4503 | 0 | return diagnoseVarDeclTypeMismatch(*this, New, PrevVD); |
4504 | 0 | } |
4505 | 0 | } |
4506 | | |
4507 | 0 | if (OldArray->isIncompleteArrayType() && NewArray->isArrayType()) { |
4508 | 0 | if (Context.hasSameType(OldArray->getElementType(), |
4509 | 0 | NewArray->getElementType())) |
4510 | 0 | MergedT = New->getType(); |
4511 | 0 | } |
4512 | | // FIXME: Check visibility. New is hidden but has a complete type. If New |
4513 | | // has no array bound, it should not inherit one from Old, if Old is not |
4514 | | // visible. |
4515 | 0 | else if (OldArray->isArrayType() && NewArray->isIncompleteArrayType()) { |
4516 | 0 | if (Context.hasSameType(OldArray->getElementType(), |
4517 | 0 | NewArray->getElementType())) |
4518 | 0 | MergedT = Old->getType(); |
4519 | 0 | } |
4520 | 0 | } |
4521 | 0 | else if (New->getType()->isObjCObjectPointerType() && |
4522 | 0 | Old->getType()->isObjCObjectPointerType()) { |
4523 | 0 | MergedT = Context.mergeObjCGCQualifiers(New->getType(), |
4524 | 0 | Old->getType()); |
4525 | 0 | } |
4526 | 64 | } else { |
4527 | | // C 6.2.7p2: |
4528 | | // All declarations that refer to the same object or function shall have |
4529 | | // compatible type. |
4530 | 64 | MergedT = Context.mergeTypes(New->getType(), Old->getType()); |
4531 | 64 | } |
4532 | 64 | if (MergedT.isNull()) { |
4533 | | // It's OK if we couldn't merge types if either type is dependent, for a |
4534 | | // block-scope variable. In other cases (static data members of class |
4535 | | // templates, variable templates, ...), we require the types to be |
4536 | | // equivalent. |
4537 | | // FIXME: The C++ standard doesn't say anything about this. |
4538 | 10 | if ((New->getType()->isDependentType() || |
4539 | 10 | Old->getType()->isDependentType()) && New->isLocalVarDecl()) { |
4540 | | // If the old type was dependent, we can't merge with it, so the new type |
4541 | | // becomes dependent for now. We'll reproduce the original type when we |
4542 | | // instantiate the TypeSourceInfo for the variable. |
4543 | 0 | if (!New->getType()->isDependentType() && MergeTypeWithOld) |
4544 | 0 | New->setType(Context.DependentTy); |
4545 | 0 | return; |
4546 | 0 | } |
4547 | 10 | return diagnoseVarDeclTypeMismatch(*this, New, Old); |
4548 | 10 | } |
4549 | | |
4550 | | // Don't actually update the type on the new declaration if the old |
4551 | | // declaration was an extern declaration in a different scope. |
4552 | 54 | if (MergeTypeWithOld) |
4553 | 54 | New->setType(MergedT); |
4554 | 54 | } |
4555 | | |
4556 | | static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD, |
4557 | 193 | LookupResult &Previous) { |
4558 | | // C11 6.2.7p4: |
4559 | | // For an identifier with internal or external linkage declared |
4560 | | // in a scope in which a prior declaration of that identifier is |
4561 | | // visible, if the prior declaration specifies internal or |
4562 | | // external linkage, the type of the identifier at the later |
4563 | | // declaration becomes the composite type. |
4564 | | // |
4565 | | // If the variable isn't visible, we do not merge with its type. |
4566 | 193 | if (Previous.isShadowed()) |
4567 | 0 | return false; |
4568 | | |
4569 | 193 | if (S.getLangOpts().CPlusPlus) { |
4570 | | // C++11 [dcl.array]p3: |
4571 | | // If there is a preceding declaration of the entity in the same |
4572 | | // scope in which the bound was specified, an omitted array bound |
4573 | | // is taken to be the same as in that earlier declaration. |
4574 | 0 | return NewVD->isPreviousDeclInSameBlockScope() || |
4575 | 0 | (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() && |
4576 | 0 | !NewVD->getLexicalDeclContext()->isFunctionOrMethod()); |
4577 | 193 | } else { |
4578 | | // If the old declaration was function-local, don't merge with its |
4579 | | // type unless we're in the same function. |
4580 | 193 | return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() || |
4581 | 193 | OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext(); |
4582 | 193 | } |
4583 | 193 | } |
4584 | | |
4585 | | /// MergeVarDecl - We just parsed a variable 'New' which has the same name |
4586 | | /// and scope as a previous declaration 'Old'. Figure out how to resolve this |
4587 | | /// situation, merging decls or emitting diagnostics as appropriate. |
4588 | | /// |
4589 | | /// Tentative definition rules (C99 6.9.2p2) are checked by |
4590 | | /// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative |
4591 | | /// definitions here, since the initializer hasn't been attached. |
4592 | | /// |
4593 | 194 | void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) { |
4594 | | // If the new decl is already invalid, don't do any other checking. |
4595 | 194 | if (New->isInvalidDecl()) |
4596 | 0 | return; |
4597 | | |
4598 | 194 | if (!shouldLinkPossiblyHiddenDecl(Previous, New)) |
4599 | 0 | return; |
4600 | | |
4601 | 194 | VarTemplateDecl *NewTemplate = New->getDescribedVarTemplate(); |
4602 | | |
4603 | | // Verify the old decl was also a variable or variable template. |
4604 | 194 | VarDecl *Old = nullptr; |
4605 | 194 | VarTemplateDecl *OldTemplate = nullptr; |
4606 | 194 | if (Previous.isSingleResult()) { |
4607 | 194 | if (NewTemplate) { |
4608 | 0 | OldTemplate = dyn_cast<VarTemplateDecl>(Previous.getFoundDecl()); |
4609 | 0 | Old = OldTemplate ? OldTemplate->getTemplatedDecl() : nullptr; |
4610 | |
|
4611 | 0 | if (auto *Shadow = |
4612 | 0 | dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) |
4613 | 0 | if (checkUsingShadowRedecl<VarTemplateDecl>(*this, Shadow, NewTemplate)) |
4614 | 0 | return New->setInvalidDecl(); |
4615 | 194 | } else { |
4616 | 194 | Old = dyn_cast<VarDecl>(Previous.getFoundDecl()); |
4617 | | |
4618 | 194 | if (auto *Shadow = |
4619 | 194 | dyn_cast<UsingShadowDecl>(Previous.getRepresentativeDecl())) |
4620 | 0 | if (checkUsingShadowRedecl<VarDecl>(*this, Shadow, New)) |
4621 | 0 | return New->setInvalidDecl(); |
4622 | 194 | } |
4623 | 194 | } |
4624 | 194 | if (!Old) { |
4625 | 1 | Diag(New->getLocation(), diag::err_redefinition_different_kind) |
4626 | 1 | << New->getDeclName(); |
4627 | 1 | notePreviousDefinition(Previous.getRepresentativeDecl(), |
4628 | 1 | New->getLocation()); |
4629 | 1 | return New->setInvalidDecl(); |
4630 | 1 | } |
4631 | | |
4632 | | // If the old declaration was found in an inline namespace and the new |
4633 | | // declaration was qualified, update the DeclContext to match. |
4634 | 193 | adjustDeclContextForDeclaratorDecl(New, Old); |
4635 | | |
4636 | | // Ensure the template parameters are compatible. |
4637 | 193 | if (NewTemplate && |
4638 | 193 | !TemplateParameterListsAreEqual(NewTemplate->getTemplateParameters(), |
4639 | 0 | OldTemplate->getTemplateParameters(), |
4640 | 0 | /*Complain=*/true, TPL_TemplateMatch)) |
4641 | 0 | return New->setInvalidDecl(); |
4642 | | |
4643 | | // C++ [class.mem]p1: |
4644 | | // A member shall not be declared twice in the member-specification [...] |
4645 | | // |
4646 | | // Here, we need only consider static data members. |
4647 | 193 | if (Old->isStaticDataMember() && !New->isOutOfLine()) { |
4648 | 0 | Diag(New->getLocation(), diag::err_duplicate_member) |
4649 | 0 | << New->getIdentifier(); |
4650 | 0 | Diag(Old->getLocation(), diag::note_previous_declaration); |
4651 | 0 | New->setInvalidDecl(); |
4652 | 0 | } |
4653 | | |
4654 | 193 | mergeDeclAttributes(New, Old); |
4655 | | // Warn if an already-declared variable is made a weak_import in a subsequent |
4656 | | // declaration |
4657 | 193 | if (New->hasAttr<WeakImportAttr>() && |
4658 | 193 | Old->getStorageClass() == SC_None && |
4659 | 193 | !Old->hasAttr<WeakImportAttr>()) { |
4660 | 0 | Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName(); |
4661 | 0 | Diag(Old->getLocation(), diag::note_previous_declaration); |
4662 | | // Remove weak_import attribute on new declaration. |
4663 | 0 | New->dropAttr<WeakImportAttr>(); |
4664 | 0 | } |
4665 | | |
4666 | 193 | if (const auto *ILA = New->getAttr<InternalLinkageAttr>()) |
4667 | 0 | if (!Old->hasAttr<InternalLinkageAttr>()) { |
4668 | 0 | Diag(New->getLocation(), diag::err_attribute_missing_on_first_decl) |
4669 | 0 | << ILA; |
4670 | 0 | Diag(Old->getLocation(), diag::note_previous_declaration); |
4671 | 0 | New->dropAttr<InternalLinkageAttr>(); |
4672 | 0 | } |
4673 | | |
4674 | | // Merge the types. |
4675 | 193 | VarDecl *MostRecent = Old->getMostRecentDecl(); |
4676 | 193 | if (MostRecent != Old) { |
4677 | 0 | MergeVarDeclTypes(New, MostRecent, |
4678 | 0 | mergeTypeWithPrevious(*this, New, MostRecent, Previous)); |
4679 | 0 | if (New->isInvalidDecl()) |
4680 | 0 | return; |
4681 | 0 | } |
4682 | | |
4683 | 193 | MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous)); |
4684 | 193 | if (New->isInvalidDecl()) |
4685 | 10 | return; |
4686 | | |
4687 | 183 | diag::kind PrevDiag; |
4688 | 183 | SourceLocation OldLocation; |
4689 | 183 | std::tie(PrevDiag, OldLocation) = |
4690 | 183 | getNoteDiagForInvalidRedeclaration(Old, New); |
4691 | | |
4692 | | // [dcl.stc]p8: Check if we have a non-static decl followed by a static. |
4693 | 183 | if (New->getStorageClass() == SC_Static && |
4694 | 183 | !New->isStaticDataMember() && |
4695 | 183 | Old->hasExternalFormalLinkage()) { |
4696 | 0 | if (getLangOpts().MicrosoftExt) { |
4697 | 0 | Diag(New->getLocation(), diag::ext_static_non_static) |
4698 | 0 | << New->getDeclName(); |
4699 | 0 | Diag(OldLocation, PrevDiag); |
4700 | 0 | } else { |
4701 | 0 | Diag(New->getLocation(), diag::err_static_non_static) |
4702 | 0 | << New->getDeclName(); |
4703 | 0 | Diag(OldLocation, PrevDiag); |
4704 | 0 | return New->setInvalidDecl(); |
4705 | 0 | } |
4706 | 0 | } |
4707 | | // C99 6.2.2p4: |
4708 | | // For an identifier declared with the storage-class specifier |
4709 | | // extern in a scope in which a prior declaration of that |
4710 | | // identifier is visible,23) if the prior declaration specifies |
4711 | | // internal or external linkage, the linkage of the identifier at |
4712 | | // the later declaration is the same as the linkage specified at |
4713 | | // the prior declaration. If no prior declaration is visible, or |
4714 | | // if the prior declaration specifies no linkage, then the |
4715 | | // identifier has external linkage. |
4716 | 183 | if (New->hasExternalStorage() && Old->hasLinkage()) |
4717 | 0 | /* Okay */; |
4718 | 183 | else if (New->getCanonicalDecl()->getStorageClass() != SC_Static && |
4719 | 183 | !New->isStaticDataMember() && |
4720 | 183 | Old->getCanonicalDecl()->getStorageClass() == SC_Static) { |
4721 | 0 | Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName(); |
4722 | 0 | Diag(OldLocation, PrevDiag); |
4723 | 0 | return New->setInvalidDecl(); |
4724 | 0 | } |
4725 | | |
4726 | | // Check if extern is followed by non-extern and vice-versa. |
4727 | 183 | if (New->hasExternalStorage() && |
4728 | 183 | !Old->hasLinkage() && Old->isLocalVarDeclOrParm()) { |
4729 | 0 | Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName(); |
4730 | 0 | Diag(OldLocation, PrevDiag); |
4731 | 0 | return New->setInvalidDecl(); |
4732 | 0 | } |
4733 | 183 | if (Old->hasLinkage() && New->isLocalVarDeclOrParm() && |
4734 | 183 | !New->hasExternalStorage()) { |
4735 | 0 | Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName(); |
4736 | 0 | Diag(OldLocation, PrevDiag); |
4737 | 0 | return New->setInvalidDecl(); |
4738 | 0 | } |
4739 | | |
4740 | 183 | if (CheckRedeclarationInModule(New, Old)) |
4741 | 0 | return; |
4742 | | |
4743 | | // Variables with external linkage are analyzed in FinalizeDeclaratorGroup. |
4744 | | |
4745 | | // FIXME: The test for external storage here seems wrong? We still |
4746 | | // need to check for mismatches. |
4747 | 183 | if (!New->hasExternalStorage() && !New->isFileVarDecl() && |
4748 | | // Don't complain about out-of-line definitions of static members. |
4749 | 183 | !(Old->getLexicalDeclContext()->isRecord() && |
4750 | 0 | !New->getLexicalDeclContext()->isRecord())) { |
4751 | 0 | Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName(); |
4752 | 0 | Diag(OldLocation, PrevDiag); |
4753 | 0 | return New->setInvalidDecl(); |
4754 | 0 | } |
4755 | | |
4756 | 183 | if (New->isInline() && !Old->getMostRecentDecl()->isInline()) { |
4757 | 0 | if (VarDecl *Def = Old->getDefinition()) { |
4758 | | // C++1z [dcl.fcn.spec]p4: |
4759 | | // If the definition of a variable appears in a translation unit before |
4760 | | // its first declaration as inline, the program is ill-formed. |
4761 | 0 | Diag(New->getLocation(), diag::err_inline_decl_follows_def) << New; |
4762 | 0 | Diag(Def->getLocation(), diag::note_previous_definition); |
4763 | 0 | } |
4764 | 0 | } |
4765 | | |
4766 | | // If this redeclaration makes the variable inline, we may need to add it to |
4767 | | // UndefinedButUsed. |
4768 | 183 | if (!Old->isInline() && New->isInline() && Old->isUsed(false) && |
4769 | 183 | !Old->getDefinition() && !New->isThisDeclarationADefinition()) |
4770 | 0 | UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(), |
4771 | 0 | SourceLocation())); |
4772 | | |
4773 | 183 | if (New->getTLSKind() != Old->getTLSKind()) { |
4774 | 0 | if (!Old->getTLSKind()) { |
4775 | 0 | Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName(); |
4776 | 0 | Diag(OldLocation, PrevDiag); |
4777 | 0 | } else if (!New->getTLSKind()) { |
4778 | 0 | Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName(); |
4779 | 0 | Diag(OldLocation, PrevDiag); |
4780 | 0 | } else { |
4781 | | // Do not allow redeclaration to change the variable between requiring |
4782 | | // static and dynamic initialization. |
4783 | | // FIXME: GCC allows this, but uses the TLS keyword on the first |
4784 | | // declaration to determine the kind. Do we need to be compatible here? |
4785 | 0 | Diag(New->getLocation(), diag::err_thread_thread_different_kind) |
4786 | 0 | << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic); |
4787 | 0 | Diag(OldLocation, PrevDiag); |
4788 | 0 | } |
4789 | 0 | } |
4790 | | |
4791 | | // C++ doesn't have tentative definitions, so go right ahead and check here. |
4792 | 183 | if (getLangOpts().CPlusPlus) { |
4793 | 0 | if (Old->isStaticDataMember() && Old->getCanonicalDecl()->isInline() && |
4794 | 0 | Old->getCanonicalDecl()->isConstexpr()) { |
4795 | | // This definition won't be a definition any more once it's been merged. |
4796 | 0 | Diag(New->getLocation(), |
4797 | 0 | diag::warn_deprecated_redundant_constexpr_static_def); |
4798 | 0 | } else if (New->isThisDeclarationADefinition() == VarDecl::Definition) { |
4799 | 0 | VarDecl *Def = Old->getDefinition(); |
4800 | 0 | if (Def && checkVarDeclRedefinition(Def, New)) |
4801 | 0 | return; |
4802 | 0 | } |
4803 | 0 | } |
4804 | | |
4805 | 183 | if (haveIncompatibleLanguageLinkages(Old, New)) { |
4806 | 0 | Diag(New->getLocation(), diag::err_different_language_linkage) << New; |
4807 | 0 | Diag(OldLocation, PrevDiag); |
4808 | 0 | New->setInvalidDecl(); |
4809 | 0 | return; |
4810 | 0 | } |
4811 | | |
4812 | | // Merge "used" flag. |
4813 | 183 | if (Old->getMostRecentDecl()->isUsed(false)) |
4814 | 6 | New->setIsUsed(); |
4815 | | |
4816 | | // Keep a chain of previous declarations. |
4817 | 183 | New->setPreviousDecl(Old); |
4818 | 183 | if (NewTemplate) |
4819 | 0 | NewTemplate->setPreviousDecl(OldTemplate); |
4820 | | |
4821 | | // Inherit access appropriately. |
4822 | 183 | New->setAccess(Old->getAccess()); |
4823 | 183 | if (NewTemplate) |
4824 | 0 | NewTemplate->setAccess(New->getAccess()); |
4825 | | |
4826 | 183 | if (Old->isInline()) |
4827 | 0 | New->setImplicitlyInline(); |
4828 | 183 | } |
4829 | | |
4830 | 4 | void Sema::notePreviousDefinition(const NamedDecl *Old, SourceLocation New) { |
4831 | 4 | SourceManager &SrcMgr = getSourceManager(); |
4832 | 4 | auto FNewDecLoc = SrcMgr.getDecomposedLoc(New); |
4833 | 4 | auto FOldDecLoc = SrcMgr.getDecomposedLoc(Old->getLocation()); |
4834 | 4 | auto *FNew = SrcMgr.getFileEntryForID(FNewDecLoc.first); |
4835 | 4 | auto FOld = SrcMgr.getFileEntryRefForID(FOldDecLoc.first); |
4836 | 4 | auto &HSI = PP.getHeaderSearchInfo(); |
4837 | 4 | StringRef HdrFilename = |
4838 | 4 | SrcMgr.getFilename(SrcMgr.getSpellingLoc(Old->getLocation())); |
4839 | | |
4840 | 4 | auto noteFromModuleOrInclude = [&](Module *Mod, |
4841 | 4 | SourceLocation IncLoc) -> bool { |
4842 | | // Redefinition errors with modules are common with non modular mapped |
4843 | | // headers, example: a non-modular header H in module A that also gets |
4844 | | // included directly in a TU. Pointing twice to the same header/definition |
4845 | | // is confusing, try to get better diagnostics when modules is on. |
4846 | 0 | if (IncLoc.isValid()) { |
4847 | 0 | if (Mod) { |
4848 | 0 | Diag(IncLoc, diag::note_redefinition_modules_same_file) |
4849 | 0 | << HdrFilename.str() << Mod->getFullModuleName(); |
4850 | 0 | if (!Mod->DefinitionLoc.isInvalid()) |
4851 | 0 | Diag(Mod->DefinitionLoc, diag::note_defined_here) |
4852 | 0 | << Mod->getFullModuleName(); |
4853 | 0 | } else { |
4854 | 0 | Diag(IncLoc, diag::note_redefinition_include_same_file) |
4855 | 0 | << HdrFilename.str(); |
4856 | 0 | } |
4857 | 0 | return true; |
4858 | 0 | } |
4859 | | |
4860 | 0 | return false; |
4861 | 0 | }; |
4862 | | |
4863 | | // Is it the same file and same offset? Provide more information on why |
4864 | | // this leads to a redefinition error. |
4865 | 4 | if (FNew == FOld && FNewDecLoc.second == FOldDecLoc.second) { |
4866 | 0 | SourceLocation OldIncLoc = SrcMgr.getIncludeLoc(FOldDecLoc.first); |
4867 | 0 | SourceLocation NewIncLoc = SrcMgr.getIncludeLoc(FNewDecLoc.first); |
4868 | 0 | bool EmittedDiag = |
4869 | 0 | noteFromModuleOrInclude(Old->getOwningModule(), OldIncLoc); |
4870 | 0 | EmittedDiag |= noteFromModuleOrInclude(getCurrentModule(), NewIncLoc); |
4871 | | |
4872 | | // If the header has no guards, emit a note suggesting one. |
4873 | 0 | if (FOld && !HSI.isFileMultipleIncludeGuarded(*FOld)) |
4874 | 0 | Diag(Old->getLocation(), diag::note_use_ifdef_guards); |
4875 | |
|
4876 | 0 | if (EmittedDiag) |
4877 | 0 | return; |
4878 | 0 | } |
4879 | | |
4880 | | // Redefinition coming from different files or couldn't do better above. |
4881 | 4 | if (Old->getLocation().isValid()) |
4882 | 4 | Diag(Old->getLocation(), diag::note_previous_definition); |
4883 | 4 | } |
4884 | | |
4885 | | /// We've just determined that \p Old and \p New both appear to be definitions |
4886 | | /// of the same variable. Either diagnose or fix the problem. |
4887 | 0 | bool Sema::checkVarDeclRedefinition(VarDecl *Old, VarDecl *New) { |
4888 | 0 | if (!hasVisibleDefinition(Old) && |
4889 | 0 | (New->getFormalLinkage() == Linkage::Internal || New->isInline() || |
4890 | 0 | isa<VarTemplateSpecializationDecl>(New) || |
4891 | 0 | New->getDescribedVarTemplate() || New->getNumTemplateParameterLists() || |
4892 | 0 | New->getDeclContext()->isDependentContext())) { |
4893 | | // The previous definition is hidden, and multiple definitions are |
4894 | | // permitted (in separate TUs). Demote this to a declaration. |
4895 | 0 | New->demoteThisDefinitionToDeclaration(); |
4896 | | |
4897 | | // Make the canonical definition visible. |
4898 | 0 | if (auto *OldTD = Old->getDescribedVarTemplate()) |
4899 | 0 | makeMergedDefinitionVisible(OldTD); |
4900 | 0 | makeMergedDefinitionVisible(Old); |
4901 | 0 | return false; |
4902 | 0 | } else { |
4903 | 0 | Diag(New->getLocation(), diag::err_redefinition) << New; |
4904 | 0 | notePreviousDefinition(Old, New->getLocation()); |
4905 | 0 | New->setInvalidDecl(); |
4906 | 0 | return true; |
4907 | 0 | } |
4908 | 0 | } |
4909 | | |
4910 | | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with |
4911 | | /// no declarator (e.g. "struct foo;") is parsed. |
4912 | | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, |
4913 | | DeclSpec &DS, |
4914 | | const ParsedAttributesView &DeclAttrs, |
4915 | 39 | RecordDecl *&AnonRecord) { |
4916 | 39 | return ParsedFreeStandingDeclSpec( |
4917 | 39 | S, AS, DS, DeclAttrs, MultiTemplateParamsArg(), false, AnonRecord); |
4918 | 39 | } |
4919 | | |
4920 | | // The MS ABI changed between VS2013 and VS2015 with regard to numbers used to |
4921 | | // disambiguate entities defined in different scopes. |
4922 | | // While the VS2015 ABI fixes potential miscompiles, it is also breaks |
4923 | | // compatibility. |
4924 | | // We will pick our mangling number depending on which version of MSVC is being |
4925 | | // targeted. |
4926 | 0 | static unsigned getMSManglingNumber(const LangOptions &LO, Scope *S) { |
4927 | 0 | return LO.isCompatibleWithMSVC(LangOptions::MSVC2015) |
4928 | 0 | ? S->getMSCurManglingNumber() |
4929 | 0 | : S->getMSLastManglingNumber(); |
4930 | 0 | } |
4931 | | |
4932 | 0 | void Sema::handleTagNumbering(const TagDecl *Tag, Scope *TagScope) { |
4933 | 0 | if (!Context.getLangOpts().CPlusPlus) |
4934 | 0 | return; |
4935 | | |
4936 | 0 | if (isa<CXXRecordDecl>(Tag->getParent())) { |
4937 | | // If this tag is the direct child of a class, number it if |
4938 | | // it is anonymous. |
4939 | 0 | if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl()) |
4940 | 0 | return; |
4941 | 0 | MangleNumberingContext &MCtx = |
4942 | 0 | Context.getManglingNumberContext(Tag->getParent()); |
4943 | 0 | Context.setManglingNumber( |
4944 | 0 | Tag, MCtx.getManglingNumber( |
4945 | 0 | Tag, getMSManglingNumber(getLangOpts(), TagScope))); |
4946 | 0 | return; |
4947 | 0 | } |
4948 | | |
4949 | | // If this tag isn't a direct child of a class, number it if it is local. |
4950 | 0 | MangleNumberingContext *MCtx; |
4951 | 0 | Decl *ManglingContextDecl; |
4952 | 0 | std::tie(MCtx, ManglingContextDecl) = |
4953 | 0 | getCurrentMangleNumberContext(Tag->getDeclContext()); |
4954 | 0 | if (MCtx) { |
4955 | 0 | Context.setManglingNumber( |
4956 | 0 | Tag, MCtx->getManglingNumber( |
4957 | 0 | Tag, getMSManglingNumber(getLangOpts(), TagScope))); |
4958 | 0 | } |
4959 | 0 | } |
4960 | | |
4961 | | namespace { |
4962 | | struct NonCLikeKind { |
4963 | | enum { |
4964 | | None, |
4965 | | BaseClass, |
4966 | | DefaultMemberInit, |
4967 | | Lambda, |
4968 | | Friend, |
4969 | | OtherMember, |
4970 | | Invalid, |
4971 | | } Kind = None; |
4972 | | SourceRange Range; |
4973 | | |
4974 | 0 | explicit operator bool() { return Kind != None; } |
4975 | | }; |
4976 | | } |
4977 | | |
4978 | | /// Determine whether a class is C-like, according to the rules of C++ |
4979 | | /// [dcl.typedef] for anonymous classes with typedef names for linkage. |
4980 | 0 | static NonCLikeKind getNonCLikeKindForAnonymousStruct(const CXXRecordDecl *RD) { |
4981 | 0 | if (RD->isInvalidDecl()) |
4982 | 0 | return {NonCLikeKind::Invalid, {}}; |
4983 | | |
4984 | | // C++ [dcl.typedef]p9: [P1766R1] |
4985 | | // An unnamed class with a typedef name for linkage purposes shall not |
4986 | | // |
4987 | | // -- have any base classes |
4988 | 0 | if (RD->getNumBases()) |
4989 | 0 | return {NonCLikeKind::BaseClass, |
4990 | 0 | SourceRange(RD->bases_begin()->getBeginLoc(), |
4991 | 0 | RD->bases_end()[-1].getEndLoc())}; |
4992 | 0 | bool Invalid = false; |
4993 | 0 | for (Decl *D : RD->decls()) { |
4994 | | // Don't complain about things we already diagnosed. |
4995 | 0 | if (D->isInvalidDecl()) { |
4996 | 0 | Invalid = true; |
4997 | 0 | continue; |
4998 | 0 | } |
4999 | | |
5000 | | // -- have any [...] default member initializers |
5001 | 0 | if (auto *FD = dyn_cast<FieldDecl>(D)) { |
5002 | 0 | if (FD->hasInClassInitializer()) { |
5003 | 0 | auto *Init = FD->getInClassInitializer(); |
5004 | 0 | return {NonCLikeKind::DefaultMemberInit, |
5005 | 0 | Init ? Init->getSourceRange() : D->getSourceRange()}; |
5006 | 0 | } |
5007 | 0 | continue; |
5008 | 0 | } |
5009 | | |
5010 | | // FIXME: We don't allow friend declarations. This violates the wording of |
5011 | | // P1766, but not the intent. |
5012 | 0 | if (isa<FriendDecl>(D)) |
5013 | 0 | return {NonCLikeKind::Friend, D->getSourceRange()}; |
5014 | | |
5015 | | // -- declare any members other than non-static data members, member |
5016 | | // enumerations, or member classes, |
5017 | 0 | if (isa<StaticAssertDecl>(D) || isa<IndirectFieldDecl>(D) || |
5018 | 0 | isa<EnumDecl>(D)) |
5019 | 0 | continue; |
5020 | 0 | auto *MemberRD = dyn_cast<CXXRecordDecl>(D); |
5021 | 0 | if (!MemberRD) { |
5022 | 0 | if (D->isImplicit()) |
5023 | 0 | continue; |
5024 | 0 | return {NonCLikeKind::OtherMember, D->getSourceRange()}; |
5025 | 0 | } |
5026 | | |
5027 | | // -- contain a lambda-expression, |
5028 | 0 | if (MemberRD->isLambda()) |
5029 | 0 | return {NonCLikeKind::Lambda, MemberRD->getSourceRange()}; |
5030 | | |
5031 | | // and all member classes shall also satisfy these requirements |
5032 | | // (recursively). |
5033 | 0 | if (MemberRD->isThisDeclarationADefinition()) { |
5034 | 0 | if (auto Kind = getNonCLikeKindForAnonymousStruct(MemberRD)) |
5035 | 0 | return Kind; |
5036 | 0 | } |
5037 | 0 | } |
5038 | | |
5039 | 0 | return {Invalid ? NonCLikeKind::Invalid : NonCLikeKind::None, {}}; |
5040 | 0 | } |
5041 | | |
5042 | | void Sema::setTagNameForLinkagePurposes(TagDecl *TagFromDeclSpec, |
5043 | 0 | TypedefNameDecl *NewTD) { |
5044 | 0 | if (TagFromDeclSpec->isInvalidDecl()) |
5045 | 0 | return; |
5046 | | |
5047 | | // Do nothing if the tag already has a name for linkage purposes. |
5048 | 0 | if (TagFromDeclSpec->hasNameForLinkage()) |
5049 | 0 | return; |
5050 | | |
5051 | | // A well-formed anonymous tag must always be a TUK_Definition. |
5052 | 0 | assert(TagFromDeclSpec->isThisDeclarationADefinition()); |
5053 | | |
5054 | | // The type must match the tag exactly; no qualifiers allowed. |
5055 | 0 | if (!Context.hasSameType(NewTD->getUnderlyingType(), |
5056 | 0 | Context.getTagDeclType(TagFromDeclSpec))) { |
5057 | 0 | if (getLangOpts().CPlusPlus) |
5058 | 0 | Context.addTypedefNameForUnnamedTagDecl(TagFromDeclSpec, NewTD); |
5059 | 0 | return; |
5060 | 0 | } |
5061 | | |
5062 | | // C++ [dcl.typedef]p9: [P1766R1, applied as DR] |
5063 | | // An unnamed class with a typedef name for linkage purposes shall [be |
5064 | | // C-like]. |
5065 | | // |
5066 | | // FIXME: Also diagnose if we've already computed the linkage. That ideally |
5067 | | // shouldn't happen, but there are constructs that the language rule doesn't |
5068 | | // disallow for which we can't reasonably avoid computing linkage early. |
5069 | 0 | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TagFromDeclSpec); |
5070 | 0 | NonCLikeKind NonCLike = RD ? getNonCLikeKindForAnonymousStruct(RD) |
5071 | 0 | : NonCLikeKind(); |
5072 | 0 | bool ChangesLinkage = TagFromDeclSpec->hasLinkageBeenComputed(); |
5073 | 0 | if (NonCLike || ChangesLinkage) { |
5074 | 0 | if (NonCLike.Kind == NonCLikeKind::Invalid) |
5075 | 0 | return; |
5076 | | |
5077 | 0 | unsigned DiagID = diag::ext_non_c_like_anon_struct_in_typedef; |
5078 | 0 | if (ChangesLinkage) { |
5079 | | // If the linkage changes, we can't accept this as an extension. |
5080 | 0 | if (NonCLike.Kind == NonCLikeKind::None) |
5081 | 0 | DiagID = diag::err_typedef_changes_linkage; |
5082 | 0 | else |
5083 | 0 | DiagID = diag::err_non_c_like_anon_struct_in_typedef; |
5084 | 0 | } |
5085 | |
|
5086 | 0 | SourceLocation FixitLoc = |
5087 | 0 | getLocForEndOfToken(TagFromDeclSpec->getInnerLocStart()); |
5088 | 0 | llvm::SmallString<40> TextToInsert; |
5089 | 0 | TextToInsert += ' '; |
5090 | 0 | TextToInsert += NewTD->getIdentifier()->getName(); |
5091 | |
|
5092 | 0 | Diag(FixitLoc, DiagID) |
5093 | 0 | << isa<TypeAliasDecl>(NewTD) |
5094 | 0 | << FixItHint::CreateInsertion(FixitLoc, TextToInsert); |
5095 | 0 | if (NonCLike.Kind != NonCLikeKind::None) { |
5096 | 0 | Diag(NonCLike.Range.getBegin(), diag::note_non_c_like_anon_struct) |
5097 | 0 | << NonCLike.Kind - 1 << NonCLike.Range; |
5098 | 0 | } |
5099 | 0 | Diag(NewTD->getLocation(), diag::note_typedef_for_linkage_here) |
5100 | 0 | << NewTD << isa<TypeAliasDecl>(NewTD); |
5101 | |
|
5102 | 0 | if (ChangesLinkage) |
5103 | 0 | return; |
5104 | 0 | } |
5105 | | |
5106 | | // Otherwise, set this as the anon-decl typedef for the tag. |
5107 | 0 | TagFromDeclSpec->setTypedefNameForAnonDecl(NewTD); |
5108 | 0 | } |
5109 | | |
5110 | 0 | static unsigned GetDiagnosticTypeSpecifierID(const DeclSpec &DS) { |
5111 | 0 | DeclSpec::TST T = DS.getTypeSpecType(); |
5112 | 0 | switch (T) { |
5113 | 0 | case DeclSpec::TST_class: |
5114 | 0 | return 0; |
5115 | 0 | case DeclSpec::TST_struct: |
5116 | 0 | return 1; |
5117 | 0 | case DeclSpec::TST_interface: |
5118 | 0 | return 2; |
5119 | 0 | case DeclSpec::TST_union: |
5120 | 0 | return 3; |
5121 | 0 | case DeclSpec::TST_enum: |
5122 | 0 | if (const auto *ED = dyn_cast<EnumDecl>(DS.getRepAsDecl())) { |
5123 | 0 | if (ED->isScopedUsingClassTag()) |
5124 | 0 | return 5; |
5125 | 0 | if (ED->isScoped()) |
5126 | 0 | return 6; |
5127 | 0 | } |
5128 | 0 | return 4; |
5129 | 0 | default: |
5130 | 0 | llvm_unreachable("unexpected type specifier"); |
5131 | 0 | } |
5132 | 0 | } |
5133 | | /// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with |
5134 | | /// no declarator (e.g. "struct foo;") is parsed. It also accepts template |
5135 | | /// parameters to cope with template friend declarations. |
5136 | | Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS, |
5137 | | DeclSpec &DS, |
5138 | | const ParsedAttributesView &DeclAttrs, |
5139 | | MultiTemplateParamsArg TemplateParams, |
5140 | | bool IsExplicitInstantiation, |
5141 | 39 | RecordDecl *&AnonRecord) { |
5142 | 39 | Decl *TagD = nullptr; |
5143 | 39 | TagDecl *Tag = nullptr; |
5144 | 39 | if (DS.getTypeSpecType() == DeclSpec::TST_class || |
5145 | 39 | DS.getTypeSpecType() == DeclSpec::TST_struct || |
5146 | 39 | DS.getTypeSpecType() == DeclSpec::TST_interface || |
5147 | 39 | DS.getTypeSpecType() == DeclSpec::TST_union || |
5148 | 39 | DS.getTypeSpecType() == DeclSpec::TST_enum) { |
5149 | 0 | TagD = DS.getRepAsDecl(); |
5150 | |
|
5151 | 0 | if (!TagD) // We probably had an error |
5152 | 0 | return nullptr; |
5153 | | |
5154 | | // Note that the above type specs guarantee that the |
5155 | | // type rep is a Decl, whereas in many of the others |
5156 | | // it's a Type. |
5157 | 0 | if (isa<TagDecl>(TagD)) |
5158 | 0 | Tag = cast<TagDecl>(TagD); |
5159 | 0 | else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD)) |
5160 | 0 | Tag = CTD->getTemplatedDecl(); |
5161 | 0 | } |
5162 | | |
5163 | 39 | if (Tag) { |
5164 | 0 | handleTagNumbering(Tag, S); |
5165 | 0 | Tag->setFreeStanding(); |
5166 | 0 | if (Tag->isInvalidDecl()) |
5167 | 0 | return Tag; |
5168 | 0 | } |
5169 | | |
5170 | 39 | if (unsigned TypeQuals = DS.getTypeQualifiers()) { |
5171 | | // Enforce C99 6.7.3p2: "Types other than pointer types derived from object |
5172 | | // or incomplete types shall not be restrict-qualified." |
5173 | 0 | if (TypeQuals & DeclSpec::TQ_restrict) |
5174 | 0 | Diag(DS.getRestrictSpecLoc(), |
5175 | 0 | diag::err_typecheck_invalid_restrict_not_pointer_noarg) |
5176 | 0 | << DS.getSourceRange(); |
5177 | 0 | } |
5178 | | |
5179 | 39 | if (DS.isInlineSpecified()) |
5180 | 0 | Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) |
5181 | 0 | << getLangOpts().CPlusPlus17; |
5182 | | |
5183 | 39 | if (DS.hasConstexprSpecifier()) { |
5184 | | // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations |
5185 | | // and definitions of functions and variables. |
5186 | | // C++2a [dcl.constexpr]p1: The consteval specifier shall be applied only to |
5187 | | // the declaration of a function or function template |
5188 | 0 | if (Tag) |
5189 | 0 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag) |
5190 | 0 | << GetDiagnosticTypeSpecifierID(DS) |
5191 | 0 | << static_cast<int>(DS.getConstexprSpecifier()); |
5192 | 0 | else |
5193 | 0 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_wrong_decl_kind) |
5194 | 0 | << static_cast<int>(DS.getConstexprSpecifier()); |
5195 | | // Don't emit warnings after this error. |
5196 | 0 | return TagD; |
5197 | 0 | } |
5198 | | |
5199 | 39 | DiagnoseFunctionSpecifiers(DS); |
5200 | | |
5201 | 39 | if (DS.isFriendSpecified()) { |
5202 | | // If we're dealing with a decl but not a TagDecl, assume that |
5203 | | // whatever routines created it handled the friendship aspect. |
5204 | 0 | if (TagD && !Tag) |
5205 | 0 | return nullptr; |
5206 | 0 | return ActOnFriendTypeDecl(S, DS, TemplateParams); |
5207 | 0 | } |
5208 | | |
5209 | 39 | const CXXScopeSpec &SS = DS.getTypeSpecScope(); |
5210 | 39 | bool IsExplicitSpecialization = |
5211 | 39 | !TemplateParams.empty() && TemplateParams.back()->size() == 0; |
5212 | 39 | if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() && |
5213 | 39 | !IsExplicitInstantiation && !IsExplicitSpecialization && |
5214 | 39 | !isa<ClassTemplatePartialSpecializationDecl>(Tag)) { |
5215 | | // Per C++ [dcl.type.elab]p1, a class declaration cannot have a |
5216 | | // nested-name-specifier unless it is an explicit instantiation |
5217 | | // or an explicit specialization. |
5218 | | // |
5219 | | // FIXME: We allow class template partial specializations here too, per the |
5220 | | // obvious intent of DR1819. |
5221 | | // |
5222 | | // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either. |
5223 | 0 | Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier) |
5224 | 0 | << GetDiagnosticTypeSpecifierID(DS) << SS.getRange(); |
5225 | 0 | return nullptr; |
5226 | 0 | } |
5227 | | |
5228 | | // Track whether this decl-specifier declares anything. |
5229 | 39 | bool DeclaresAnything = true; |
5230 | | |
5231 | | // Handle anonymous struct definitions. |
5232 | 39 | if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) { |
5233 | 0 | if (!Record->getDeclName() && Record->isCompleteDefinition() && |
5234 | 0 | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) { |
5235 | 0 | if (getLangOpts().CPlusPlus || |
5236 | 0 | Record->getDeclContext()->isRecord()) { |
5237 | | // If CurContext is a DeclContext that can contain statements, |
5238 | | // RecursiveASTVisitor won't visit the decls that |
5239 | | // BuildAnonymousStructOrUnion() will put into CurContext. |
5240 | | // Also store them here so that they can be part of the |
5241 | | // DeclStmt that gets created in this case. |
5242 | | // FIXME: Also return the IndirectFieldDecls created by |
5243 | | // BuildAnonymousStructOr union, for the same reason? |
5244 | 0 | if (CurContext->isFunctionOrMethod()) |
5245 | 0 | AnonRecord = Record; |
5246 | 0 | return BuildAnonymousStructOrUnion(S, DS, AS, Record, |
5247 | 0 | Context.getPrintingPolicy()); |
5248 | 0 | } |
5249 | | |
5250 | 0 | DeclaresAnything = false; |
5251 | 0 | } |
5252 | 0 | } |
5253 | | |
5254 | | // C11 6.7.2.1p2: |
5255 | | // A struct-declaration that does not declare an anonymous structure or |
5256 | | // anonymous union shall contain a struct-declarator-list. |
5257 | | // |
5258 | | // This rule also existed in C89 and C99; the grammar for struct-declaration |
5259 | | // did not permit a struct-declaration without a struct-declarator-list. |
5260 | 39 | if (!getLangOpts().CPlusPlus && CurContext->isRecord() && |
5261 | 39 | DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) { |
5262 | | // Check for Microsoft C extension: anonymous struct/union member. |
5263 | | // Handle 2 kinds of anonymous struct/union: |
5264 | | // struct STRUCT; |
5265 | | // union UNION; |
5266 | | // and |
5267 | | // STRUCT_TYPE; <- where STRUCT_TYPE is a typedef struct. |
5268 | | // UNION_TYPE; <- where UNION_TYPE is a typedef union. |
5269 | 0 | if ((Tag && Tag->getDeclName()) || |
5270 | 0 | DS.getTypeSpecType() == DeclSpec::TST_typename) { |
5271 | 0 | RecordDecl *Record = nullptr; |
5272 | 0 | if (Tag) |
5273 | 0 | Record = dyn_cast<RecordDecl>(Tag); |
5274 | 0 | else if (const RecordType *RT = |
5275 | 0 | DS.getRepAsType().get()->getAsStructureType()) |
5276 | 0 | Record = RT->getDecl(); |
5277 | 0 | else if (const RecordType *UT = DS.getRepAsType().get()->getAsUnionType()) |
5278 | 0 | Record = UT->getDecl(); |
5279 | |
|
5280 | 0 | if (Record && getLangOpts().MicrosoftExt) { |
5281 | 0 | Diag(DS.getBeginLoc(), diag::ext_ms_anonymous_record) |
5282 | 0 | << Record->isUnion() << DS.getSourceRange(); |
5283 | 0 | return BuildMicrosoftCAnonymousStruct(S, DS, Record); |
5284 | 0 | } |
5285 | | |
5286 | 0 | DeclaresAnything = false; |
5287 | 0 | } |
5288 | 0 | } |
5289 | | |
5290 | | // Skip all the checks below if we have a type error. |
5291 | 39 | if (DS.getTypeSpecType() == DeclSpec::TST_error || |
5292 | 39 | (TagD && TagD->isInvalidDecl())) |
5293 | 31 | return TagD; |
5294 | | |
5295 | 8 | if (getLangOpts().CPlusPlus && |
5296 | 8 | DS.getStorageClassSpec() != DeclSpec::SCS_typedef) |
5297 | 0 | if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag)) |
5298 | 0 | if (Enum->enumerator_begin() == Enum->enumerator_end() && |
5299 | 0 | !Enum->getIdentifier() && !Enum->isInvalidDecl()) |
5300 | 0 | DeclaresAnything = false; |
5301 | | |
5302 | 8 | if (!DS.isMissingDeclaratorOk()) { |
5303 | | // Customize diagnostic for a typedef missing a name. |
5304 | 8 | if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) |
5305 | 0 | Diag(DS.getBeginLoc(), diag::ext_typedef_without_a_name) |
5306 | 0 | << DS.getSourceRange(); |
5307 | 8 | else |
5308 | 8 | DeclaresAnything = false; |
5309 | 8 | } |
5310 | | |
5311 | 8 | if (DS.isModulePrivateSpecified() && |
5312 | 8 | Tag && Tag->getDeclContext()->isFunctionOrMethod()) |
5313 | 0 | Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class) |
5314 | 0 | << llvm::to_underlying(Tag->getTagKind()) |
5315 | 0 | << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc()); |
5316 | | |
5317 | 8 | ActOnDocumentableDecl(TagD); |
5318 | | |
5319 | | // C 6.7/2: |
5320 | | // A declaration [...] shall declare at least a declarator [...], a tag, |
5321 | | // or the members of an enumeration. |
5322 | | // C++ [dcl.dcl]p3: |
5323 | | // [If there are no declarators], and except for the declaration of an |
5324 | | // unnamed bit-field, the decl-specifier-seq shall introduce one or more |
5325 | | // names into the program, or shall redeclare a name introduced by a |
5326 | | // previous declaration. |
5327 | 8 | if (!DeclaresAnything) { |
5328 | | // In C, we allow this as a (popular) extension / bug. Don't bother |
5329 | | // producing further diagnostics for redundant qualifiers after this. |
5330 | 8 | Diag(DS.getBeginLoc(), (IsExplicitInstantiation || !TemplateParams.empty()) |
5331 | 8 | ? diag::err_no_declarators |
5332 | 8 | : diag::ext_no_declarators) |
5333 | 8 | << DS.getSourceRange(); |
5334 | 8 | return TagD; |
5335 | 8 | } |
5336 | | |
5337 | | // C++ [dcl.stc]p1: |
5338 | | // If a storage-class-specifier appears in a decl-specifier-seq, [...] the |
5339 | | // init-declarator-list of the declaration shall not be empty. |
5340 | | // C++ [dcl.fct.spec]p1: |
5341 | | // If a cv-qualifier appears in a decl-specifier-seq, the |
5342 | | // init-declarator-list of the declaration shall not be empty. |
5343 | | // |
5344 | | // Spurious qualifiers here appear to be valid in C. |
5345 | 0 | unsigned DiagID = diag::warn_standalone_specifier; |
5346 | 0 | if (getLangOpts().CPlusPlus) |
5347 | 0 | DiagID = diag::ext_standalone_specifier; |
5348 | | |
5349 | | // Note that a linkage-specification sets a storage class, but |
5350 | | // 'extern "C" struct foo;' is actually valid and not theoretically |
5351 | | // useless. |
5352 | 0 | if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) { |
5353 | 0 | if (SCS == DeclSpec::SCS_mutable) |
5354 | | // Since mutable is not a viable storage class specifier in C, there is |
5355 | | // no reason to treat it as an extension. Instead, diagnose as an error. |
5356 | 0 | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_nonmember); |
5357 | 0 | else if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef) |
5358 | 0 | Diag(DS.getStorageClassSpecLoc(), DiagID) |
5359 | 0 | << DeclSpec::getSpecifierName(SCS); |
5360 | 0 | } |
5361 | |
|
5362 | 0 | if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) |
5363 | 0 | Diag(DS.getThreadStorageClassSpecLoc(), DiagID) |
5364 | 0 | << DeclSpec::getSpecifierName(TSCS); |
5365 | 0 | if (DS.getTypeQualifiers()) { |
5366 | 0 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) |
5367 | 0 | Diag(DS.getConstSpecLoc(), DiagID) << "const"; |
5368 | 0 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) |
5369 | 0 | Diag(DS.getConstSpecLoc(), DiagID) << "volatile"; |
5370 | | // Restrict is covered above. |
5371 | 0 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) |
5372 | 0 | Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic"; |
5373 | 0 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) |
5374 | 0 | Diag(DS.getUnalignedSpecLoc(), DiagID) << "__unaligned"; |
5375 | 0 | } |
5376 | | |
5377 | | // Warn about ignored type attributes, for example: |
5378 | | // __attribute__((aligned)) struct A; |
5379 | | // Attributes should be placed after tag to apply to type declaration. |
5380 | 0 | if (!DS.getAttributes().empty() || !DeclAttrs.empty()) { |
5381 | 0 | DeclSpec::TST TypeSpecType = DS.getTypeSpecType(); |
5382 | 0 | if (TypeSpecType == DeclSpec::TST_class || |
5383 | 0 | TypeSpecType == DeclSpec::TST_struct || |
5384 | 0 | TypeSpecType == DeclSpec::TST_interface || |
5385 | 0 | TypeSpecType == DeclSpec::TST_union || |
5386 | 0 | TypeSpecType == DeclSpec::TST_enum) { |
5387 | |
|
5388 | 0 | auto EmitAttributeDiagnostic = [this, &DS](const ParsedAttr &AL) { |
5389 | 0 | unsigned DiagnosticId = diag::warn_declspec_attribute_ignored; |
5390 | 0 | if (AL.isAlignas() && !getLangOpts().CPlusPlus) |
5391 | 0 | DiagnosticId = diag::warn_attribute_ignored; |
5392 | 0 | else if (AL.isRegularKeywordAttribute()) |
5393 | 0 | DiagnosticId = diag::err_declspec_keyword_has_no_effect; |
5394 | 0 | else |
5395 | 0 | DiagnosticId = diag::warn_declspec_attribute_ignored; |
5396 | 0 | Diag(AL.getLoc(), DiagnosticId) |
5397 | 0 | << AL << GetDiagnosticTypeSpecifierID(DS); |
5398 | 0 | }; |
5399 | |
|
5400 | 0 | llvm::for_each(DS.getAttributes(), EmitAttributeDiagnostic); |
5401 | 0 | llvm::for_each(DeclAttrs, EmitAttributeDiagnostic); |
5402 | 0 | } |
5403 | 0 | } |
5404 | |
|
5405 | 0 | return TagD; |
5406 | 8 | } |
5407 | | |
5408 | | /// We are trying to inject an anonymous member into the given scope; |
5409 | | /// check if there's an existing declaration that can't be overloaded. |
5410 | | /// |
5411 | | /// \return true if this is a forbidden redeclaration |
5412 | | static bool CheckAnonMemberRedeclaration(Sema &SemaRef, Scope *S, |
5413 | | DeclContext *Owner, |
5414 | | DeclarationName Name, |
5415 | | SourceLocation NameLoc, bool IsUnion, |
5416 | 0 | StorageClass SC) { |
5417 | 0 | LookupResult R(SemaRef, Name, NameLoc, |
5418 | 0 | Owner->isRecord() ? Sema::LookupMemberName |
5419 | 0 | : Sema::LookupOrdinaryName, |
5420 | 0 | Sema::ForVisibleRedeclaration); |
5421 | 0 | if (!SemaRef.LookupName(R, S)) return false; |
5422 | | |
5423 | | // Pick a representative declaration. |
5424 | 0 | NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl(); |
5425 | 0 | assert(PrevDecl && "Expected a non-null Decl"); |
5426 | | |
5427 | 0 | if (!SemaRef.isDeclInScope(PrevDecl, Owner, S)) |
5428 | 0 | return false; |
5429 | | |
5430 | 0 | if (SC == StorageClass::SC_None && |
5431 | 0 | PrevDecl->isPlaceholderVar(SemaRef.getLangOpts()) && |
5432 | 0 | (Owner->isFunctionOrMethod() || Owner->isRecord())) { |
5433 | 0 | if (!Owner->isRecord()) |
5434 | 0 | SemaRef.DiagPlaceholderVariableDefinition(NameLoc); |
5435 | 0 | return false; |
5436 | 0 | } |
5437 | | |
5438 | 0 | SemaRef.Diag(NameLoc, diag::err_anonymous_record_member_redecl) |
5439 | 0 | << IsUnion << Name; |
5440 | 0 | SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
5441 | |
|
5442 | 0 | return true; |
5443 | 0 | } |
5444 | | |
5445 | 39 | void Sema::ActOnDefinedDeclarationSpecifier(Decl *D) { |
5446 | 39 | if (auto *RD = dyn_cast_if_present<RecordDecl>(D)) |
5447 | 0 | DiagPlaceholderFieldDeclDefinitions(RD); |
5448 | 39 | } |
5449 | | |
5450 | | /// Emit diagnostic warnings for placeholder members. |
5451 | | /// We can only do that after the class is fully constructed, |
5452 | | /// as anonymous union/structs can insert placeholders |
5453 | | /// in their parent scope (which might be a Record). |
5454 | 0 | void Sema::DiagPlaceholderFieldDeclDefinitions(RecordDecl *Record) { |
5455 | 0 | if (!getLangOpts().CPlusPlus) |
5456 | 0 | return; |
5457 | | |
5458 | | // This function can be parsed before we have validated the |
5459 | | // structure as an anonymous struct |
5460 | 0 | if (Record->isAnonymousStructOrUnion()) |
5461 | 0 | return; |
5462 | | |
5463 | 0 | const NamedDecl *First = 0; |
5464 | 0 | for (const Decl *D : Record->decls()) { |
5465 | 0 | const NamedDecl *ND = dyn_cast<NamedDecl>(D); |
5466 | 0 | if (!ND || !ND->isPlaceholderVar(getLangOpts())) |
5467 | 0 | continue; |
5468 | 0 | if (!First) |
5469 | 0 | First = ND; |
5470 | 0 | else |
5471 | 0 | DiagPlaceholderVariableDefinition(ND->getLocation()); |
5472 | 0 | } |
5473 | 0 | } |
5474 | | |
5475 | | /// InjectAnonymousStructOrUnionMembers - Inject the members of the |
5476 | | /// anonymous struct or union AnonRecord into the owning context Owner |
5477 | | /// and scope S. This routine will be invoked just after we realize |
5478 | | /// that an unnamed union or struct is actually an anonymous union or |
5479 | | /// struct, e.g., |
5480 | | /// |
5481 | | /// @code |
5482 | | /// union { |
5483 | | /// int i; |
5484 | | /// float f; |
5485 | | /// }; // InjectAnonymousStructOrUnionMembers called here to inject i and |
5486 | | /// // f into the surrounding scope.x |
5487 | | /// @endcode |
5488 | | /// |
5489 | | /// This routine is recursive, injecting the names of nested anonymous |
5490 | | /// structs/unions into the owning context and scope as well. |
5491 | | static bool |
5492 | | InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S, DeclContext *Owner, |
5493 | | RecordDecl *AnonRecord, AccessSpecifier AS, |
5494 | | StorageClass SC, |
5495 | 0 | SmallVectorImpl<NamedDecl *> &Chaining) { |
5496 | 0 | bool Invalid = false; |
5497 | | |
5498 | | // Look every FieldDecl and IndirectFieldDecl with a name. |
5499 | 0 | for (auto *D : AnonRecord->decls()) { |
5500 | 0 | if ((isa<FieldDecl>(D) || isa<IndirectFieldDecl>(D)) && |
5501 | 0 | cast<NamedDecl>(D)->getDeclName()) { |
5502 | 0 | ValueDecl *VD = cast<ValueDecl>(D); |
5503 | 0 | if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(), |
5504 | 0 | VD->getLocation(), AnonRecord->isUnion(), |
5505 | 0 | SC)) { |
5506 | | // C++ [class.union]p2: |
5507 | | // The names of the members of an anonymous union shall be |
5508 | | // distinct from the names of any other entity in the |
5509 | | // scope in which the anonymous union is declared. |
5510 | 0 | Invalid = true; |
5511 | 0 | } else { |
5512 | | // C++ [class.union]p2: |
5513 | | // For the purpose of name lookup, after the anonymous union |
5514 | | // definition, the members of the anonymous union are |
5515 | | // considered to have been defined in the scope in which the |
5516 | | // anonymous union is declared. |
5517 | 0 | unsigned OldChainingSize = Chaining.size(); |
5518 | 0 | if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD)) |
5519 | 0 | Chaining.append(IF->chain_begin(), IF->chain_end()); |
5520 | 0 | else |
5521 | 0 | Chaining.push_back(VD); |
5522 | |
|
5523 | 0 | assert(Chaining.size() >= 2); |
5524 | 0 | NamedDecl **NamedChain = |
5525 | 0 | new (SemaRef.Context)NamedDecl*[Chaining.size()]; |
5526 | 0 | for (unsigned i = 0; i < Chaining.size(); i++) |
5527 | 0 | NamedChain[i] = Chaining[i]; |
5528 | |
|
5529 | 0 | IndirectFieldDecl *IndirectField = IndirectFieldDecl::Create( |
5530 | 0 | SemaRef.Context, Owner, VD->getLocation(), VD->getIdentifier(), |
5531 | 0 | VD->getType(), {NamedChain, Chaining.size()}); |
5532 | |
|
5533 | 0 | for (const auto *Attr : VD->attrs()) |
5534 | 0 | IndirectField->addAttr(Attr->clone(SemaRef.Context)); |
5535 | |
|
5536 | 0 | IndirectField->setAccess(AS); |
5537 | 0 | IndirectField->setImplicit(); |
5538 | 0 | SemaRef.PushOnScopeChains(IndirectField, S); |
5539 | | |
5540 | | // That includes picking up the appropriate access specifier. |
5541 | 0 | if (AS != AS_none) IndirectField->setAccess(AS); |
5542 | |
|
5543 | 0 | Chaining.resize(OldChainingSize); |
5544 | 0 | } |
5545 | 0 | } |
5546 | 0 | } |
5547 | |
|
5548 | 0 | return Invalid; |
5549 | 0 | } |
5550 | | |
5551 | | /// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to |
5552 | | /// a VarDecl::StorageClass. Any error reporting is up to the caller: |
5553 | | /// illegal input values are mapped to SC_None. |
5554 | | static StorageClass |
5555 | 5.07k | StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) { |
5556 | 5.07k | DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec(); |
5557 | 5.07k | assert(StorageClassSpec != DeclSpec::SCS_typedef && |
5558 | 5.07k | "Parser allowed 'typedef' as storage class VarDecl."); |
5559 | 0 | switch (StorageClassSpec) { |
5560 | 5.07k | case DeclSpec::SCS_unspecified: return SC_None; |
5561 | 0 | case DeclSpec::SCS_extern: |
5562 | 0 | if (DS.isExternInLinkageSpec()) |
5563 | 0 | return SC_None; |
5564 | 0 | return SC_Extern; |
5565 | 0 | case DeclSpec::SCS_static: return SC_Static; |
5566 | 0 | case DeclSpec::SCS_auto: return SC_Auto; |
5567 | 0 | case DeclSpec::SCS_register: return SC_Register; |
5568 | 0 | case DeclSpec::SCS_private_extern: return SC_PrivateExtern; |
5569 | | // Illegal SCSs map to None: error reporting is up to the caller. |
5570 | 0 | case DeclSpec::SCS_mutable: // Fall through. |
5571 | 0 | case DeclSpec::SCS_typedef: return SC_None; |
5572 | 5.07k | } |
5573 | 0 | llvm_unreachable("unknown storage class specifier"); |
5574 | 0 | } |
5575 | | |
5576 | 0 | static SourceLocation findDefaultInitializer(const CXXRecordDecl *Record) { |
5577 | 0 | assert(Record->hasInClassInitializer()); |
5578 | | |
5579 | 0 | for (const auto *I : Record->decls()) { |
5580 | 0 | const auto *FD = dyn_cast<FieldDecl>(I); |
5581 | 0 | if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) |
5582 | 0 | FD = IFD->getAnonField(); |
5583 | 0 | if (FD && FD->hasInClassInitializer()) |
5584 | 0 | return FD->getLocation(); |
5585 | 0 | } |
5586 | | |
5587 | 0 | llvm_unreachable("couldn't find in-class initializer"); |
5588 | 0 | } |
5589 | | |
5590 | | static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, |
5591 | 0 | SourceLocation DefaultInitLoc) { |
5592 | 0 | if (!Parent->isUnion() || !Parent->hasInClassInitializer()) |
5593 | 0 | return; |
5594 | | |
5595 | 0 | S.Diag(DefaultInitLoc, diag::err_multiple_mem_union_initialization); |
5596 | 0 | S.Diag(findDefaultInitializer(Parent), diag::note_previous_initializer) << 0; |
5597 | 0 | } |
5598 | | |
5599 | | static void checkDuplicateDefaultInit(Sema &S, CXXRecordDecl *Parent, |
5600 | 0 | CXXRecordDecl *AnonUnion) { |
5601 | 0 | if (!Parent->isUnion() || !Parent->hasInClassInitializer()) |
5602 | 0 | return; |
5603 | | |
5604 | 0 | checkDuplicateDefaultInit(S, Parent, findDefaultInitializer(AnonUnion)); |
5605 | 0 | } |
5606 | | |
5607 | | /// BuildAnonymousStructOrUnion - Handle the declaration of an |
5608 | | /// anonymous structure or union. Anonymous unions are a C++ feature |
5609 | | /// (C++ [class.union]) and a C11 feature; anonymous structures |
5610 | | /// are a C11 feature and GNU C++ extension. |
5611 | | Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS, |
5612 | | AccessSpecifier AS, |
5613 | | RecordDecl *Record, |
5614 | 0 | const PrintingPolicy &Policy) { |
5615 | 0 | DeclContext *Owner = Record->getDeclContext(); |
5616 | | |
5617 | | // Diagnose whether this anonymous struct/union is an extension. |
5618 | 0 | if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11) |
5619 | 0 | Diag(Record->getLocation(), diag::ext_anonymous_union); |
5620 | 0 | else if (!Record->isUnion() && getLangOpts().CPlusPlus) |
5621 | 0 | Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct); |
5622 | 0 | else if (!Record->isUnion() && !getLangOpts().C11) |
5623 | 0 | Diag(Record->getLocation(), diag::ext_c11_anonymous_struct); |
5624 | | |
5625 | | // C and C++ require different kinds of checks for anonymous |
5626 | | // structs/unions. |
5627 | 0 | bool Invalid = false; |
5628 | 0 | if (getLangOpts().CPlusPlus) { |
5629 | 0 | const char *PrevSpec = nullptr; |
5630 | 0 | if (Record->isUnion()) { |
5631 | | // C++ [class.union]p6: |
5632 | | // C++17 [class.union.anon]p2: |
5633 | | // Anonymous unions declared in a named namespace or in the |
5634 | | // global namespace shall be declared static. |
5635 | 0 | unsigned DiagID; |
5636 | 0 | DeclContext *OwnerScope = Owner->getRedeclContext(); |
5637 | 0 | if (DS.getStorageClassSpec() != DeclSpec::SCS_static && |
5638 | 0 | (OwnerScope->isTranslationUnit() || |
5639 | 0 | (OwnerScope->isNamespace() && |
5640 | 0 | !cast<NamespaceDecl>(OwnerScope)->isAnonymousNamespace()))) { |
5641 | 0 | Diag(Record->getLocation(), diag::err_anonymous_union_not_static) |
5642 | 0 | << FixItHint::CreateInsertion(Record->getLocation(), "static "); |
5643 | | |
5644 | | // Recover by adding 'static'. |
5645 | 0 | DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(), |
5646 | 0 | PrevSpec, DiagID, Policy); |
5647 | 0 | } |
5648 | | // C++ [class.union]p6: |
5649 | | // A storage class is not allowed in a declaration of an |
5650 | | // anonymous union in a class scope. |
5651 | 0 | else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified && |
5652 | 0 | isa<RecordDecl>(Owner)) { |
5653 | 0 | Diag(DS.getStorageClassSpecLoc(), |
5654 | 0 | diag::err_anonymous_union_with_storage_spec) |
5655 | 0 | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); |
5656 | | |
5657 | | // Recover by removing the storage specifier. |
5658 | 0 | DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, |
5659 | 0 | SourceLocation(), |
5660 | 0 | PrevSpec, DiagID, Context.getPrintingPolicy()); |
5661 | 0 | } |
5662 | 0 | } |
5663 | | |
5664 | | // Ignore const/volatile/restrict qualifiers. |
5665 | 0 | if (DS.getTypeQualifiers()) { |
5666 | 0 | if (DS.getTypeQualifiers() & DeclSpec::TQ_const) |
5667 | 0 | Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified) |
5668 | 0 | << Record->isUnion() << "const" |
5669 | 0 | << FixItHint::CreateRemoval(DS.getConstSpecLoc()); |
5670 | 0 | if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) |
5671 | 0 | Diag(DS.getVolatileSpecLoc(), |
5672 | 0 | diag::ext_anonymous_struct_union_qualified) |
5673 | 0 | << Record->isUnion() << "volatile" |
5674 | 0 | << FixItHint::CreateRemoval(DS.getVolatileSpecLoc()); |
5675 | 0 | if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict) |
5676 | 0 | Diag(DS.getRestrictSpecLoc(), |
5677 | 0 | diag::ext_anonymous_struct_union_qualified) |
5678 | 0 | << Record->isUnion() << "restrict" |
5679 | 0 | << FixItHint::CreateRemoval(DS.getRestrictSpecLoc()); |
5680 | 0 | if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) |
5681 | 0 | Diag(DS.getAtomicSpecLoc(), |
5682 | 0 | diag::ext_anonymous_struct_union_qualified) |
5683 | 0 | << Record->isUnion() << "_Atomic" |
5684 | 0 | << FixItHint::CreateRemoval(DS.getAtomicSpecLoc()); |
5685 | 0 | if (DS.getTypeQualifiers() & DeclSpec::TQ_unaligned) |
5686 | 0 | Diag(DS.getUnalignedSpecLoc(), |
5687 | 0 | diag::ext_anonymous_struct_union_qualified) |
5688 | 0 | << Record->isUnion() << "__unaligned" |
5689 | 0 | << FixItHint::CreateRemoval(DS.getUnalignedSpecLoc()); |
5690 | |
|
5691 | 0 | DS.ClearTypeQualifiers(); |
5692 | 0 | } |
5693 | | |
5694 | | // C++ [class.union]p2: |
5695 | | // The member-specification of an anonymous union shall only |
5696 | | // define non-static data members. [Note: nested types and |
5697 | | // functions cannot be declared within an anonymous union. ] |
5698 | 0 | for (auto *Mem : Record->decls()) { |
5699 | | // Ignore invalid declarations; we already diagnosed them. |
5700 | 0 | if (Mem->isInvalidDecl()) |
5701 | 0 | continue; |
5702 | | |
5703 | 0 | if (auto *FD = dyn_cast<FieldDecl>(Mem)) { |
5704 | | // C++ [class.union]p3: |
5705 | | // An anonymous union shall not have private or protected |
5706 | | // members (clause 11). |
5707 | 0 | assert(FD->getAccess() != AS_none); |
5708 | 0 | if (FD->getAccess() != AS_public) { |
5709 | 0 | Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member) |
5710 | 0 | << Record->isUnion() << (FD->getAccess() == AS_protected); |
5711 | 0 | Invalid = true; |
5712 | 0 | } |
5713 | | |
5714 | | // C++ [class.union]p1 |
5715 | | // An object of a class with a non-trivial constructor, a non-trivial |
5716 | | // copy constructor, a non-trivial destructor, or a non-trivial copy |
5717 | | // assignment operator cannot be a member of a union, nor can an |
5718 | | // array of such objects. |
5719 | 0 | if (CheckNontrivialField(FD)) |
5720 | 0 | Invalid = true; |
5721 | 0 | } else if (Mem->isImplicit()) { |
5722 | | // Any implicit members are fine. |
5723 | 0 | } else if (isa<TagDecl>(Mem) && Mem->getDeclContext() != Record) { |
5724 | | // This is a type that showed up in an |
5725 | | // elaborated-type-specifier inside the anonymous struct or |
5726 | | // union, but which actually declares a type outside of the |
5727 | | // anonymous struct or union. It's okay. |
5728 | 0 | } else if (auto *MemRecord = dyn_cast<RecordDecl>(Mem)) { |
5729 | 0 | if (!MemRecord->isAnonymousStructOrUnion() && |
5730 | 0 | MemRecord->getDeclName()) { |
5731 | | // Visual C++ allows type definition in anonymous struct or union. |
5732 | 0 | if (getLangOpts().MicrosoftExt) |
5733 | 0 | Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type) |
5734 | 0 | << Record->isUnion(); |
5735 | 0 | else { |
5736 | | // This is a nested type declaration. |
5737 | 0 | Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type) |
5738 | 0 | << Record->isUnion(); |
5739 | 0 | Invalid = true; |
5740 | 0 | } |
5741 | 0 | } else { |
5742 | | // This is an anonymous type definition within another anonymous type. |
5743 | | // This is a popular extension, provided by Plan9, MSVC and GCC, but |
5744 | | // not part of standard C++. |
5745 | 0 | Diag(MemRecord->getLocation(), |
5746 | 0 | diag::ext_anonymous_record_with_anonymous_type) |
5747 | 0 | << Record->isUnion(); |
5748 | 0 | } |
5749 | 0 | } else if (isa<AccessSpecDecl>(Mem)) { |
5750 | | // Any access specifier is fine. |
5751 | 0 | } else if (isa<StaticAssertDecl>(Mem)) { |
5752 | | // In C++1z, static_assert declarations are also fine. |
5753 | 0 | } else { |
5754 | | // We have something that isn't a non-static data |
5755 | | // member. Complain about it. |
5756 | 0 | unsigned DK = diag::err_anonymous_record_bad_member; |
5757 | 0 | if (isa<TypeDecl>(Mem)) |
5758 | 0 | DK = diag::err_anonymous_record_with_type; |
5759 | 0 | else if (isa<FunctionDecl>(Mem)) |
5760 | 0 | DK = diag::err_anonymous_record_with_function; |
5761 | 0 | else if (isa<VarDecl>(Mem)) |
5762 | 0 | DK = diag::err_anonymous_record_with_static; |
5763 | | |
5764 | | // Visual C++ allows type definition in anonymous struct or union. |
5765 | 0 | if (getLangOpts().MicrosoftExt && |
5766 | 0 | DK == diag::err_anonymous_record_with_type) |
5767 | 0 | Diag(Mem->getLocation(), diag::ext_anonymous_record_with_type) |
5768 | 0 | << Record->isUnion(); |
5769 | 0 | else { |
5770 | 0 | Diag(Mem->getLocation(), DK) << Record->isUnion(); |
5771 | 0 | Invalid = true; |
5772 | 0 | } |
5773 | 0 | } |
5774 | 0 | } |
5775 | | |
5776 | | // C++11 [class.union]p8 (DR1460): |
5777 | | // At most one variant member of a union may have a |
5778 | | // brace-or-equal-initializer. |
5779 | 0 | if (cast<CXXRecordDecl>(Record)->hasInClassInitializer() && |
5780 | 0 | Owner->isRecord()) |
5781 | 0 | checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Owner), |
5782 | 0 | cast<CXXRecordDecl>(Record)); |
5783 | 0 | } |
5784 | |
|
5785 | 0 | if (!Record->isUnion() && !Owner->isRecord()) { |
5786 | 0 | Diag(Record->getLocation(), diag::err_anonymous_struct_not_member) |
5787 | 0 | << getLangOpts().CPlusPlus; |
5788 | 0 | Invalid = true; |
5789 | 0 | } |
5790 | | |
5791 | | // C++ [dcl.dcl]p3: |
5792 | | // [If there are no declarators], and except for the declaration of an |
5793 | | // unnamed bit-field, the decl-specifier-seq shall introduce one or more |
5794 | | // names into the program |
5795 | | // C++ [class.mem]p2: |
5796 | | // each such member-declaration shall either declare at least one member |
5797 | | // name of the class or declare at least one unnamed bit-field |
5798 | | // |
5799 | | // For C this is an error even for a named struct, and is diagnosed elsewhere. |
5800 | 0 | if (getLangOpts().CPlusPlus && Record->field_empty()) |
5801 | 0 | Diag(DS.getBeginLoc(), diag::ext_no_declarators) << DS.getSourceRange(); |
5802 | | |
5803 | | // Mock up a declarator. |
5804 | 0 | Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::Member); |
5805 | 0 | StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS); |
5806 | 0 | TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); |
5807 | 0 | assert(TInfo && "couldn't build declarator info for anonymous struct/union"); |
5808 | | |
5809 | | // Create a declaration for this anonymous struct/union. |
5810 | 0 | NamedDecl *Anon = nullptr; |
5811 | 0 | if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) { |
5812 | 0 | Anon = FieldDecl::Create( |
5813 | 0 | Context, OwningClass, DS.getBeginLoc(), Record->getLocation(), |
5814 | 0 | /*IdentifierInfo=*/nullptr, Context.getTypeDeclType(Record), TInfo, |
5815 | 0 | /*BitWidth=*/nullptr, /*Mutable=*/false, |
5816 | 0 | /*InitStyle=*/ICIS_NoInit); |
5817 | 0 | Anon->setAccess(AS); |
5818 | 0 | ProcessDeclAttributes(S, Anon, Dc); |
5819 | |
|
5820 | 0 | if (getLangOpts().CPlusPlus) |
5821 | 0 | FieldCollector->Add(cast<FieldDecl>(Anon)); |
5822 | 0 | } else { |
5823 | 0 | DeclSpec::SCS SCSpec = DS.getStorageClassSpec(); |
5824 | 0 | if (SCSpec == DeclSpec::SCS_mutable) { |
5825 | | // mutable can only appear on non-static class members, so it's always |
5826 | | // an error here |
5827 | 0 | Diag(Record->getLocation(), diag::err_mutable_nonmember); |
5828 | 0 | Invalid = true; |
5829 | 0 | SC = SC_None; |
5830 | 0 | } |
5831 | |
|
5832 | 0 | Anon = VarDecl::Create(Context, Owner, DS.getBeginLoc(), |
5833 | 0 | Record->getLocation(), /*IdentifierInfo=*/nullptr, |
5834 | 0 | Context.getTypeDeclType(Record), TInfo, SC); |
5835 | 0 | ProcessDeclAttributes(S, Anon, Dc); |
5836 | | |
5837 | | // Default-initialize the implicit variable. This initialization will be |
5838 | | // trivial in almost all cases, except if a union member has an in-class |
5839 | | // initializer: |
5840 | | // union { int n = 0; }; |
5841 | 0 | ActOnUninitializedDecl(Anon); |
5842 | 0 | } |
5843 | 0 | Anon->setImplicit(); |
5844 | | |
5845 | | // Mark this as an anonymous struct/union type. |
5846 | 0 | Record->setAnonymousStructOrUnion(true); |
5847 | | |
5848 | | // Add the anonymous struct/union object to the current |
5849 | | // context. We'll be referencing this object when we refer to one of |
5850 | | // its members. |
5851 | 0 | Owner->addDecl(Anon); |
5852 | | |
5853 | | // Inject the members of the anonymous struct/union into the owning |
5854 | | // context and into the identifier resolver chain for name lookup |
5855 | | // purposes. |
5856 | 0 | SmallVector<NamedDecl*, 2> Chain; |
5857 | 0 | Chain.push_back(Anon); |
5858 | |
|
5859 | 0 | if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS, SC, |
5860 | 0 | Chain)) |
5861 | 0 | Invalid = true; |
5862 | |
|
5863 | 0 | if (VarDecl *NewVD = dyn_cast<VarDecl>(Anon)) { |
5864 | 0 | if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { |
5865 | 0 | MangleNumberingContext *MCtx; |
5866 | 0 | Decl *ManglingContextDecl; |
5867 | 0 | std::tie(MCtx, ManglingContextDecl) = |
5868 | 0 | getCurrentMangleNumberContext(NewVD->getDeclContext()); |
5869 | 0 | if (MCtx) { |
5870 | 0 | Context.setManglingNumber( |
5871 | 0 | NewVD, MCtx->getManglingNumber( |
5872 | 0 | NewVD, getMSManglingNumber(getLangOpts(), S))); |
5873 | 0 | Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); |
5874 | 0 | } |
5875 | 0 | } |
5876 | 0 | } |
5877 | |
|
5878 | 0 | if (Invalid) |
5879 | 0 | Anon->setInvalidDecl(); |
5880 | |
|
5881 | 0 | return Anon; |
5882 | 0 | } |
5883 | | |
5884 | | /// BuildMicrosoftCAnonymousStruct - Handle the declaration of an |
5885 | | /// Microsoft C anonymous structure. |
5886 | | /// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx |
5887 | | /// Example: |
5888 | | /// |
5889 | | /// struct A { int a; }; |
5890 | | /// struct B { struct A; int b; }; |
5891 | | /// |
5892 | | /// void foo() { |
5893 | | /// B var; |
5894 | | /// var.a = 3; |
5895 | | /// } |
5896 | | /// |
5897 | | Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS, |
5898 | 0 | RecordDecl *Record) { |
5899 | 0 | assert(Record && "expected a record!"); |
5900 | | |
5901 | | // Mock up a declarator. |
5902 | 0 | Declarator Dc(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName); |
5903 | 0 | TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S); |
5904 | 0 | assert(TInfo && "couldn't build declarator info for anonymous struct"); |
5905 | | |
5906 | 0 | auto *ParentDecl = cast<RecordDecl>(CurContext); |
5907 | 0 | QualType RecTy = Context.getTypeDeclType(Record); |
5908 | | |
5909 | | // Create a declaration for this anonymous struct. |
5910 | 0 | NamedDecl *Anon = |
5911 | 0 | FieldDecl::Create(Context, ParentDecl, DS.getBeginLoc(), DS.getBeginLoc(), |
5912 | 0 | /*IdentifierInfo=*/nullptr, RecTy, TInfo, |
5913 | 0 | /*BitWidth=*/nullptr, /*Mutable=*/false, |
5914 | 0 | /*InitStyle=*/ICIS_NoInit); |
5915 | 0 | Anon->setImplicit(); |
5916 | | |
5917 | | // Add the anonymous struct object to the current context. |
5918 | 0 | CurContext->addDecl(Anon); |
5919 | | |
5920 | | // Inject the members of the anonymous struct into the current |
5921 | | // context and into the identifier resolver chain for name lookup |
5922 | | // purposes. |
5923 | 0 | SmallVector<NamedDecl*, 2> Chain; |
5924 | 0 | Chain.push_back(Anon); |
5925 | |
|
5926 | 0 | RecordDecl *RecordDef = Record->getDefinition(); |
5927 | 0 | if (RequireCompleteSizedType(Anon->getLocation(), RecTy, |
5928 | 0 | diag::err_field_incomplete_or_sizeless) || |
5929 | 0 | InjectAnonymousStructOrUnionMembers( |
5930 | 0 | *this, S, CurContext, RecordDef, AS_none, |
5931 | 0 | StorageClassSpecToVarDeclStorageClass(DS), Chain)) { |
5932 | 0 | Anon->setInvalidDecl(); |
5933 | 0 | ParentDecl->setInvalidDecl(); |
5934 | 0 | } |
5935 | |
|
5936 | 0 | return Anon; |
5937 | 0 | } |
5938 | | |
5939 | | /// GetNameForDeclarator - Determine the full declaration name for the |
5940 | | /// given Declarator. |
5941 | 10.1k | DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) { |
5942 | 10.1k | return GetNameFromUnqualifiedId(D.getName()); |
5943 | 10.1k | } |
5944 | | |
5945 | | /// Retrieves the declaration name from a parsed unqualified-id. |
5946 | | DeclarationNameInfo |
5947 | 10.7k | Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) { |
5948 | 10.7k | DeclarationNameInfo NameInfo; |
5949 | 10.7k | NameInfo.setLoc(Name.StartLocation); |
5950 | | |
5951 | 10.7k | switch (Name.getKind()) { |
5952 | | |
5953 | 0 | case UnqualifiedIdKind::IK_ImplicitSelfParam: |
5954 | 10.7k | case UnqualifiedIdKind::IK_Identifier: |
5955 | 10.7k | NameInfo.setName(Name.Identifier); |
5956 | 10.7k | return NameInfo; |
5957 | | |
5958 | 0 | case UnqualifiedIdKind::IK_DeductionGuideName: { |
5959 | | // C++ [temp.deduct.guide]p3: |
5960 | | // The simple-template-id shall name a class template specialization. |
5961 | | // The template-name shall be the same identifier as the template-name |
5962 | | // of the simple-template-id. |
5963 | | // These together intend to imply that the template-name shall name a |
5964 | | // class template. |
5965 | | // FIXME: template<typename T> struct X {}; |
5966 | | // template<typename T> using Y = X<T>; |
5967 | | // Y(int) -> Y<int>; |
5968 | | // satisfies these rules but does not name a class template. |
5969 | 0 | TemplateName TN = Name.TemplateName.get().get(); |
5970 | 0 | auto *Template = TN.getAsTemplateDecl(); |
5971 | 0 | if (!Template || !isa<ClassTemplateDecl>(Template)) { |
5972 | 0 | Diag(Name.StartLocation, |
5973 | 0 | diag::err_deduction_guide_name_not_class_template) |
5974 | 0 | << (int)getTemplateNameKindForDiagnostics(TN) << TN; |
5975 | 0 | if (Template) |
5976 | 0 | NoteTemplateLocation(*Template); |
5977 | 0 | return DeclarationNameInfo(); |
5978 | 0 | } |
5979 | | |
5980 | 0 | NameInfo.setName( |
5981 | 0 | Context.DeclarationNames.getCXXDeductionGuideName(Template)); |
5982 | 0 | return NameInfo; |
5983 | 0 | } |
5984 | | |
5985 | 0 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
5986 | 0 | NameInfo.setName(Context.DeclarationNames.getCXXOperatorName( |
5987 | 0 | Name.OperatorFunctionId.Operator)); |
5988 | 0 | NameInfo.setCXXOperatorNameRange(SourceRange( |
5989 | 0 | Name.OperatorFunctionId.SymbolLocations[0], Name.EndLocation)); |
5990 | 0 | return NameInfo; |
5991 | | |
5992 | 0 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
5993 | 0 | NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName( |
5994 | 0 | Name.Identifier)); |
5995 | 0 | NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation); |
5996 | 0 | return NameInfo; |
5997 | | |
5998 | 0 | case UnqualifiedIdKind::IK_ConversionFunctionId: { |
5999 | 0 | TypeSourceInfo *TInfo; |
6000 | 0 | QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo); |
6001 | 0 | if (Ty.isNull()) |
6002 | 0 | return DeclarationNameInfo(); |
6003 | 0 | NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName( |
6004 | 0 | Context.getCanonicalType(Ty))); |
6005 | 0 | NameInfo.setNamedTypeInfo(TInfo); |
6006 | 0 | return NameInfo; |
6007 | 0 | } |
6008 | | |
6009 | 0 | case UnqualifiedIdKind::IK_ConstructorName: { |
6010 | 0 | TypeSourceInfo *TInfo; |
6011 | 0 | QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo); |
6012 | 0 | if (Ty.isNull()) |
6013 | 0 | return DeclarationNameInfo(); |
6014 | 0 | NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( |
6015 | 0 | Context.getCanonicalType(Ty))); |
6016 | 0 | NameInfo.setNamedTypeInfo(TInfo); |
6017 | 0 | return NameInfo; |
6018 | 0 | } |
6019 | | |
6020 | 0 | case UnqualifiedIdKind::IK_ConstructorTemplateId: { |
6021 | | // In well-formed code, we can only have a constructor |
6022 | | // template-id that refers to the current context, so go there |
6023 | | // to find the actual type being constructed. |
6024 | 0 | CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext); |
6025 | 0 | if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name) |
6026 | 0 | return DeclarationNameInfo(); |
6027 | | |
6028 | | // Determine the type of the class being constructed. |
6029 | 0 | QualType CurClassType = Context.getTypeDeclType(CurClass); |
6030 | | |
6031 | | // FIXME: Check two things: that the template-id names the same type as |
6032 | | // CurClassType, and that the template-id does not occur when the name |
6033 | | // was qualified. |
6034 | |
|
6035 | 0 | NameInfo.setName(Context.DeclarationNames.getCXXConstructorName( |
6036 | 0 | Context.getCanonicalType(CurClassType))); |
6037 | | // FIXME: should we retrieve TypeSourceInfo? |
6038 | 0 | NameInfo.setNamedTypeInfo(nullptr); |
6039 | 0 | return NameInfo; |
6040 | 0 | } |
6041 | | |
6042 | 0 | case UnqualifiedIdKind::IK_DestructorName: { |
6043 | 0 | TypeSourceInfo *TInfo; |
6044 | 0 | QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo); |
6045 | 0 | if (Ty.isNull()) |
6046 | 0 | return DeclarationNameInfo(); |
6047 | 0 | NameInfo.setName(Context.DeclarationNames.getCXXDestructorName( |
6048 | 0 | Context.getCanonicalType(Ty))); |
6049 | 0 | NameInfo.setNamedTypeInfo(TInfo); |
6050 | 0 | return NameInfo; |
6051 | 0 | } |
6052 | | |
6053 | 0 | case UnqualifiedIdKind::IK_TemplateId: { |
6054 | 0 | TemplateName TName = Name.TemplateId->Template.get(); |
6055 | 0 | SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc; |
6056 | 0 | return Context.getNameForTemplate(TName, TNameLoc); |
6057 | 0 | } |
6058 | | |
6059 | 10.7k | } // switch (Name.getKind()) |
6060 | | |
6061 | 0 | llvm_unreachable("Unknown name kind"); |
6062 | 0 | } |
6063 | | |
6064 | 0 | static QualType getCoreType(QualType Ty) { |
6065 | 0 | do { |
6066 | 0 | if (Ty->isPointerType() || Ty->isReferenceType()) |
6067 | 0 | Ty = Ty->getPointeeType(); |
6068 | 0 | else if (Ty->isArrayType()) |
6069 | 0 | Ty = Ty->castAsArrayTypeUnsafe()->getElementType(); |
6070 | 0 | else |
6071 | 0 | return Ty.withoutLocalFastQualifiers(); |
6072 | 0 | } while (true); |
6073 | 0 | } |
6074 | | |
6075 | | /// hasSimilarParameters - Determine whether the C++ functions Declaration |
6076 | | /// and Definition have "nearly" matching parameters. This heuristic is |
6077 | | /// used to improve diagnostics in the case where an out-of-line function |
6078 | | /// definition doesn't match any declaration within the class or namespace. |
6079 | | /// Also sets Params to the list of indices to the parameters that differ |
6080 | | /// between the declaration and the definition. If hasSimilarParameters |
6081 | | /// returns true and Params is empty, then all of the parameters match. |
6082 | | static bool hasSimilarParameters(ASTContext &Context, |
6083 | | FunctionDecl *Declaration, |
6084 | | FunctionDecl *Definition, |
6085 | 0 | SmallVectorImpl<unsigned> &Params) { |
6086 | 0 | Params.clear(); |
6087 | 0 | if (Declaration->param_size() != Definition->param_size()) |
6088 | 0 | return false; |
6089 | 0 | for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) { |
6090 | 0 | QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType(); |
6091 | 0 | QualType DefParamTy = Definition->getParamDecl(Idx)->getType(); |
6092 | | |
6093 | | // The parameter types are identical |
6094 | 0 | if (Context.hasSameUnqualifiedType(DefParamTy, DeclParamTy)) |
6095 | 0 | continue; |
6096 | | |
6097 | 0 | QualType DeclParamBaseTy = getCoreType(DeclParamTy); |
6098 | 0 | QualType DefParamBaseTy = getCoreType(DefParamTy); |
6099 | 0 | const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier(); |
6100 | 0 | const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier(); |
6101 | |
|
6102 | 0 | if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) || |
6103 | 0 | (DeclTyName && DeclTyName == DefTyName)) |
6104 | 0 | Params.push_back(Idx); |
6105 | 0 | else // The two parameters aren't even close |
6106 | 0 | return false; |
6107 | 0 | } |
6108 | | |
6109 | 0 | return true; |
6110 | 0 | } |
6111 | | |
6112 | | /// RebuildDeclaratorInCurrentInstantiation - Checks whether the given |
6113 | | /// declarator needs to be rebuilt in the current instantiation. |
6114 | | /// Any bits of declarator which appear before the name are valid for |
6115 | | /// consideration here. That's specifically the type in the decl spec |
6116 | | /// and the base type in any member-pointer chunks. |
6117 | | static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D, |
6118 | 0 | DeclarationName Name) { |
6119 | | // The types we specifically need to rebuild are: |
6120 | | // - typenames, typeofs, and decltypes |
6121 | | // - types which will become injected class names |
6122 | | // Of course, we also need to rebuild any type referencing such a |
6123 | | // type. It's safest to just say "dependent", but we call out a |
6124 | | // few cases here. |
6125 | |
|
6126 | 0 | DeclSpec &DS = D.getMutableDeclSpec(); |
6127 | 0 | switch (DS.getTypeSpecType()) { |
6128 | 0 | case DeclSpec::TST_typename: |
6129 | 0 | case DeclSpec::TST_typeofType: |
6130 | 0 | case DeclSpec::TST_typeof_unqualType: |
6131 | 0 | #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case DeclSpec::TST_##Trait: |
6132 | 0 | #include "clang/Basic/TransformTypeTraits.def" |
6133 | 0 | case DeclSpec::TST_atomic: { |
6134 | | // Grab the type from the parser. |
6135 | 0 | TypeSourceInfo *TSI = nullptr; |
6136 | 0 | QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI); |
6137 | 0 | if (T.isNull() || !T->isInstantiationDependentType()) break; |
6138 | | |
6139 | | // Make sure there's a type source info. This isn't really much |
6140 | | // of a waste; most dependent types should have type source info |
6141 | | // attached already. |
6142 | 0 | if (!TSI) |
6143 | 0 | TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc()); |
6144 | | |
6145 | | // Rebuild the type in the current instantiation. |
6146 | 0 | TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name); |
6147 | 0 | if (!TSI) return true; |
6148 | | |
6149 | | // Store the new type back in the decl spec. |
6150 | 0 | ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI); |
6151 | 0 | DS.UpdateTypeRep(LocType); |
6152 | 0 | break; |
6153 | 0 | } |
6154 | | |
6155 | 0 | case DeclSpec::TST_decltype: |
6156 | 0 | case DeclSpec::TST_typeof_unqualExpr: |
6157 | 0 | case DeclSpec::TST_typeofExpr: { |
6158 | 0 | Expr *E = DS.getRepAsExpr(); |
6159 | 0 | ExprResult Result = S.RebuildExprInCurrentInstantiation(E); |
6160 | 0 | if (Result.isInvalid()) return true; |
6161 | 0 | DS.UpdateExprRep(Result.get()); |
6162 | 0 | break; |
6163 | 0 | } |
6164 | | |
6165 | 0 | default: |
6166 | | // Nothing to do for these decl specs. |
6167 | 0 | break; |
6168 | 0 | } |
6169 | | |
6170 | | // It doesn't matter what order we do this in. |
6171 | 0 | for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) { |
6172 | 0 | DeclaratorChunk &Chunk = D.getTypeObject(I); |
6173 | | |
6174 | | // The only type information in the declarator which can come |
6175 | | // before the declaration name is the base type of a member |
6176 | | // pointer. |
6177 | 0 | if (Chunk.Kind != DeclaratorChunk::MemberPointer) |
6178 | 0 | continue; |
6179 | | |
6180 | | // Rebuild the scope specifier in-place. |
6181 | 0 | CXXScopeSpec &SS = Chunk.Mem.Scope(); |
6182 | 0 | if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS)) |
6183 | 0 | return true; |
6184 | 0 | } |
6185 | | |
6186 | 0 | return false; |
6187 | 0 | } |
6188 | | |
6189 | | /// Returns true if the declaration is declared in a system header or from a |
6190 | | /// system macro. |
6191 | 15 | static bool isFromSystemHeader(SourceManager &SM, const Decl *D) { |
6192 | 15 | return SM.isInSystemHeader(D->getLocation()) || |
6193 | 15 | SM.isInSystemMacro(D->getLocation()); |
6194 | 15 | } |
6195 | | |
6196 | 5.41k | void Sema::warnOnReservedIdentifier(const NamedDecl *D) { |
6197 | | // Avoid warning twice on the same identifier, and don't warn on redeclaration |
6198 | | // of system decl. |
6199 | 5.41k | if (D->getPreviousDecl() || D->isImplicit()) |
6200 | 505 | return; |
6201 | 4.90k | ReservedIdentifierStatus Status = D->isReserved(getLangOpts()); |
6202 | 4.90k | if (Status != ReservedIdentifierStatus::NotReserved && |
6203 | 4.90k | !isFromSystemHeader(Context.getSourceManager(), D)) { |
6204 | 15 | Diag(D->getLocation(), diag::warn_reserved_extern_symbol) |
6205 | 15 | << D << static_cast<int>(Status); |
6206 | 15 | } |
6207 | 4.90k | } |
6208 | | |
6209 | 5.08k | Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) { |
6210 | 5.08k | D.setFunctionDefinitionKind(FunctionDefinitionKind::Declaration); |
6211 | | |
6212 | | // Check if we are in an `omp begin/end declare variant` scope. Handle this |
6213 | | // declaration only if the `bind_to_declaration` extension is set. |
6214 | 5.08k | SmallVector<FunctionDecl *, 4> Bases; |
6215 | 5.08k | if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope()) |
6216 | 0 | if (getOMPTraitInfoForSurroundingScope()->isExtensionActive(llvm::omp::TraitProperty:: |
6217 | 0 | implementation_extension_bind_to_declaration)) |
6218 | 0 | ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( |
6219 | 0 | S, D, MultiTemplateParamsArg(), Bases); |
6220 | | |
6221 | 5.08k | Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg()); |
6222 | | |
6223 | 5.08k | if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() && |
6224 | 5.08k | Dcl && Dcl->getDeclContext()->isFileContext()) |
6225 | 0 | Dcl->setTopLevelDeclInObjCContainer(); |
6226 | | |
6227 | 5.08k | if (!Bases.empty()) |
6228 | 0 | ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases); |
6229 | | |
6230 | 5.08k | return Dcl; |
6231 | 5.08k | } |
6232 | | |
6233 | | /// DiagnoseClassNameShadow - Implement C++ [class.mem]p13: |
6234 | | /// If T is the name of a class, then each of the following shall have a |
6235 | | /// name different from T: |
6236 | | /// - every static data member of class T; |
6237 | | /// - every member function of class T |
6238 | | /// - every member of class T that is itself a type; |
6239 | | /// \returns true if the declaration name violates these rules. |
6240 | | bool Sema::DiagnoseClassNameShadow(DeclContext *DC, |
6241 | 5.07k | DeclarationNameInfo NameInfo) { |
6242 | 5.07k | DeclarationName Name = NameInfo.getName(); |
6243 | | |
6244 | 5.07k | CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC); |
6245 | 5.07k | while (Record && Record->isAnonymousStructOrUnion()) |
6246 | 0 | Record = dyn_cast<CXXRecordDecl>(Record->getParent()); |
6247 | 5.07k | if (Record && Record->getIdentifier() && Record->getDeclName() == Name) { |
6248 | 0 | Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name; |
6249 | 0 | return true; |
6250 | 0 | } |
6251 | | |
6252 | 5.07k | return false; |
6253 | 5.07k | } |
6254 | | |
6255 | | /// Diagnose a declaration whose declarator-id has the given |
6256 | | /// nested-name-specifier. |
6257 | | /// |
6258 | | /// \param SS The nested-name-specifier of the declarator-id. |
6259 | | /// |
6260 | | /// \param DC The declaration context to which the nested-name-specifier |
6261 | | /// resolves. |
6262 | | /// |
6263 | | /// \param Name The name of the entity being declared. |
6264 | | /// |
6265 | | /// \param Loc The location of the name of the entity being declared. |
6266 | | /// |
6267 | | /// \param IsTemplateId Whether the name is a (simple-)template-id, and thus |
6268 | | /// we're declaring an explicit / partial specialization / instantiation. |
6269 | | /// |
6270 | | /// \returns true if we cannot safely recover from this error, false otherwise. |
6271 | | bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC, |
6272 | | DeclarationName Name, |
6273 | 0 | SourceLocation Loc, bool IsTemplateId) { |
6274 | 0 | DeclContext *Cur = CurContext; |
6275 | 0 | while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur)) |
6276 | 0 | Cur = Cur->getParent(); |
6277 | | |
6278 | | // If the user provided a superfluous scope specifier that refers back to the |
6279 | | // class in which the entity is already declared, diagnose and ignore it. |
6280 | | // |
6281 | | // class X { |
6282 | | // void X::f(); |
6283 | | // }; |
6284 | | // |
6285 | | // Note, it was once ill-formed to give redundant qualification in all |
6286 | | // contexts, but that rule was removed by DR482. |
6287 | 0 | if (Cur->Equals(DC)) { |
6288 | 0 | if (Cur->isRecord()) { |
6289 | 0 | Diag(Loc, LangOpts.MicrosoftExt ? diag::warn_member_extra_qualification |
6290 | 0 | : diag::err_member_extra_qualification) |
6291 | 0 | << Name << FixItHint::CreateRemoval(SS.getRange()); |
6292 | 0 | SS.clear(); |
6293 | 0 | } else { |
6294 | 0 | Diag(Loc, diag::warn_namespace_member_extra_qualification) << Name; |
6295 | 0 | } |
6296 | 0 | return false; |
6297 | 0 | } |
6298 | | |
6299 | | // Check whether the qualifying scope encloses the scope of the original |
6300 | | // declaration. For a template-id, we perform the checks in |
6301 | | // CheckTemplateSpecializationScope. |
6302 | 0 | if (!Cur->Encloses(DC) && !IsTemplateId) { |
6303 | 0 | if (Cur->isRecord()) |
6304 | 0 | Diag(Loc, diag::err_member_qualification) |
6305 | 0 | << Name << SS.getRange(); |
6306 | 0 | else if (isa<TranslationUnitDecl>(DC)) |
6307 | 0 | Diag(Loc, diag::err_invalid_declarator_global_scope) |
6308 | 0 | << Name << SS.getRange(); |
6309 | 0 | else if (isa<FunctionDecl>(Cur)) |
6310 | 0 | Diag(Loc, diag::err_invalid_declarator_in_function) |
6311 | 0 | << Name << SS.getRange(); |
6312 | 0 | else if (isa<BlockDecl>(Cur)) |
6313 | 0 | Diag(Loc, diag::err_invalid_declarator_in_block) |
6314 | 0 | << Name << SS.getRange(); |
6315 | 0 | else if (isa<ExportDecl>(Cur)) { |
6316 | 0 | if (!isa<NamespaceDecl>(DC)) |
6317 | 0 | Diag(Loc, diag::err_export_non_namespace_scope_name) |
6318 | 0 | << Name << SS.getRange(); |
6319 | 0 | else |
6320 | | // The cases that DC is not NamespaceDecl should be handled in |
6321 | | // CheckRedeclarationExported. |
6322 | 0 | return false; |
6323 | 0 | } else |
6324 | 0 | Diag(Loc, diag::err_invalid_declarator_scope) |
6325 | 0 | << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange(); |
6326 | | |
6327 | 0 | return true; |
6328 | 0 | } |
6329 | | |
6330 | 0 | if (Cur->isRecord()) { |
6331 | | // Cannot qualify members within a class. |
6332 | 0 | Diag(Loc, diag::err_member_qualification) |
6333 | 0 | << Name << SS.getRange(); |
6334 | 0 | SS.clear(); |
6335 | | |
6336 | | // C++ constructors and destructors with incorrect scopes can break |
6337 | | // our AST invariants by having the wrong underlying types. If |
6338 | | // that's the case, then drop this declaration entirely. |
6339 | 0 | if ((Name.getNameKind() == DeclarationName::CXXConstructorName || |
6340 | 0 | Name.getNameKind() == DeclarationName::CXXDestructorName) && |
6341 | 0 | !Context.hasSameType(Name.getCXXNameType(), |
6342 | 0 | Context.getTypeDeclType(cast<CXXRecordDecl>(Cur)))) |
6343 | 0 | return true; |
6344 | | |
6345 | 0 | return false; |
6346 | 0 | } |
6347 | | |
6348 | | // C++11 [dcl.meaning]p1: |
6349 | | // [...] "The nested-name-specifier of the qualified declarator-id shall |
6350 | | // not begin with a decltype-specifer" |
6351 | 0 | NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data()); |
6352 | 0 | while (SpecLoc.getPrefix()) |
6353 | 0 | SpecLoc = SpecLoc.getPrefix(); |
6354 | 0 | if (isa_and_nonnull<DecltypeType>( |
6355 | 0 | SpecLoc.getNestedNameSpecifier()->getAsType())) |
6356 | 0 | Diag(Loc, diag::err_decltype_in_declarator) |
6357 | 0 | << SpecLoc.getTypeLoc().getSourceRange(); |
6358 | |
|
6359 | 0 | return false; |
6360 | 0 | } |
6361 | | |
6362 | | NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D, |
6363 | 5.08k | MultiTemplateParamsArg TemplateParamLists) { |
6364 | | // TODO: consider using NameInfo for diagnostic. |
6365 | 5.08k | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
6366 | 5.08k | DeclarationName Name = NameInfo.getName(); |
6367 | | |
6368 | | // All of these full declarators require an identifier. If it doesn't have |
6369 | | // one, the ParsedFreeStandingDeclSpec action should be used. |
6370 | 5.08k | if (D.isDecompositionDeclarator()) { |
6371 | 0 | return ActOnDecompositionDeclarator(S, D, TemplateParamLists); |
6372 | 5.08k | } else if (!Name) { |
6373 | 0 | if (!D.isInvalidType()) // Reject this if we think it is valid. |
6374 | 0 | Diag(D.getDeclSpec().getBeginLoc(), diag::err_declarator_need_ident) |
6375 | 0 | << D.getDeclSpec().getSourceRange() << D.getSourceRange(); |
6376 | 0 | return nullptr; |
6377 | 5.08k | } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType)) |
6378 | 0 | return nullptr; |
6379 | | |
6380 | | // The scope passed in may not be a decl scope. Zip up the scope tree until |
6381 | | // we find one that is. |
6382 | 5.08k | while ((S->getFlags() & Scope::DeclScope) == 0 || |
6383 | 5.08k | (S->getFlags() & Scope::TemplateParamScope) != 0) |
6384 | 0 | S = S->getParent(); |
6385 | | |
6386 | 5.08k | DeclContext *DC = CurContext; |
6387 | 5.08k | if (D.getCXXScopeSpec().isInvalid()) |
6388 | 0 | D.setInvalidType(); |
6389 | 5.08k | else if (D.getCXXScopeSpec().isSet()) { |
6390 | 0 | if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(), |
6391 | 0 | UPPC_DeclarationQualifier)) |
6392 | 0 | return nullptr; |
6393 | | |
6394 | 0 | bool EnteringContext = !D.getDeclSpec().isFriendSpecified(); |
6395 | 0 | DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext); |
6396 | 0 | if (!DC || isa<EnumDecl>(DC)) { |
6397 | | // If we could not compute the declaration context, it's because the |
6398 | | // declaration context is dependent but does not refer to a class, |
6399 | | // class template, or class template partial specialization. Complain |
6400 | | // and return early, to avoid the coming semantic disaster. |
6401 | 0 | Diag(D.getIdentifierLoc(), |
6402 | 0 | diag::err_template_qualified_declarator_no_match) |
6403 | 0 | << D.getCXXScopeSpec().getScopeRep() |
6404 | 0 | << D.getCXXScopeSpec().getRange(); |
6405 | 0 | return nullptr; |
6406 | 0 | } |
6407 | 0 | bool IsDependentContext = DC->isDependentContext(); |
6408 | |
|
6409 | 0 | if (!IsDependentContext && |
6410 | 0 | RequireCompleteDeclContext(D.getCXXScopeSpec(), DC)) |
6411 | 0 | return nullptr; |
6412 | | |
6413 | | // If a class is incomplete, do not parse entities inside it. |
6414 | 0 | if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) { |
6415 | 0 | Diag(D.getIdentifierLoc(), |
6416 | 0 | diag::err_member_def_undefined_record) |
6417 | 0 | << Name << DC << D.getCXXScopeSpec().getRange(); |
6418 | 0 | return nullptr; |
6419 | 0 | } |
6420 | 0 | if (!D.getDeclSpec().isFriendSpecified()) { |
6421 | 0 | if (diagnoseQualifiedDeclaration( |
6422 | 0 | D.getCXXScopeSpec(), DC, Name, D.getIdentifierLoc(), |
6423 | 0 | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId)) { |
6424 | 0 | if (DC->isRecord()) |
6425 | 0 | return nullptr; |
6426 | | |
6427 | 0 | D.setInvalidType(); |
6428 | 0 | } |
6429 | 0 | } |
6430 | | |
6431 | | // Check whether we need to rebuild the type of the given |
6432 | | // declaration in the current instantiation. |
6433 | 0 | if (EnteringContext && IsDependentContext && |
6434 | 0 | TemplateParamLists.size() != 0) { |
6435 | 0 | ContextRAII SavedContext(*this, DC); |
6436 | 0 | if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name)) |
6437 | 0 | D.setInvalidType(); |
6438 | 0 | } |
6439 | 0 | } |
6440 | | |
6441 | 5.08k | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
6442 | 5.08k | QualType R = TInfo->getType(); |
6443 | | |
6444 | 5.08k | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, |
6445 | 5.08k | UPPC_DeclarationType)) |
6446 | 0 | D.setInvalidType(); |
6447 | | |
6448 | 5.08k | LookupResult Previous(*this, NameInfo, LookupOrdinaryName, |
6449 | 5.08k | forRedeclarationInCurContext()); |
6450 | | |
6451 | | // See if this is a redefinition of a variable in the same scope. |
6452 | 5.08k | if (!D.getCXXScopeSpec().isSet()) { |
6453 | 5.08k | bool IsLinkageLookup = false; |
6454 | 5.08k | bool CreateBuiltins = false; |
6455 | | |
6456 | | // If the declaration we're planning to build will be a function |
6457 | | // or object with linkage, then look for another declaration with |
6458 | | // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6). |
6459 | | // |
6460 | | // If the declaration we're planning to build will be declared with |
6461 | | // external linkage in the translation unit, create any builtin with |
6462 | | // the same name. |
6463 | 5.08k | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) |
6464 | 0 | /* Do nothing*/; |
6465 | 5.08k | else if (CurContext->isFunctionOrMethod() && |
6466 | 5.08k | (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern || |
6467 | 0 | R->isFunctionType())) { |
6468 | 0 | IsLinkageLookup = true; |
6469 | 0 | CreateBuiltins = |
6470 | 0 | CurContext->getEnclosingNamespaceContext()->isTranslationUnit(); |
6471 | 5.08k | } else if (CurContext->getRedeclContext()->isTranslationUnit() && |
6472 | 5.08k | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static) |
6473 | 5.08k | CreateBuiltins = true; |
6474 | | |
6475 | 5.08k | if (IsLinkageLookup) { |
6476 | 0 | Previous.clear(LookupRedeclarationWithLinkage); |
6477 | 0 | Previous.setRedeclarationKind(ForExternalRedeclaration); |
6478 | 0 | } |
6479 | | |
6480 | 5.08k | LookupName(Previous, S, CreateBuiltins); |
6481 | 5.08k | } else { // Something like "int foo::x;" |
6482 | 0 | LookupQualifiedName(Previous, DC); |
6483 | | |
6484 | | // C++ [dcl.meaning]p1: |
6485 | | // When the declarator-id is qualified, the declaration shall refer to a |
6486 | | // previously declared member of the class or namespace to which the |
6487 | | // qualifier refers (or, in the case of a namespace, of an element of the |
6488 | | // inline namespace set of that namespace (7.3.1)) or to a specialization |
6489 | | // thereof; [...] |
6490 | | // |
6491 | | // Note that we already checked the context above, and that we do not have |
6492 | | // enough information to make sure that Previous contains the declaration |
6493 | | // we want to match. For example, given: |
6494 | | // |
6495 | | // class X { |
6496 | | // void f(); |
6497 | | // void f(float); |
6498 | | // }; |
6499 | | // |
6500 | | // void X::f(int) { } // ill-formed |
6501 | | // |
6502 | | // In this case, Previous will point to the overload set |
6503 | | // containing the two f's declared in X, but neither of them |
6504 | | // matches. |
6505 | |
|
6506 | 0 | RemoveUsingDecls(Previous); |
6507 | 0 | } |
6508 | | |
6509 | 5.08k | if (Previous.isSingleResult() && |
6510 | 5.08k | Previous.getFoundDecl()->isTemplateParameter()) { |
6511 | | // Maybe we will complain about the shadowed template parameter. |
6512 | 0 | if (!D.isInvalidType()) |
6513 | 0 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), |
6514 | 0 | Previous.getFoundDecl()); |
6515 | | |
6516 | | // Just pretend that we didn't see the previous declaration. |
6517 | 0 | Previous.clear(); |
6518 | 0 | } |
6519 | | |
6520 | 5.08k | if (!R->isFunctionType() && DiagnoseClassNameShadow(DC, NameInfo)) |
6521 | | // Forget that the previous declaration is the injected-class-name. |
6522 | 0 | Previous.clear(); |
6523 | | |
6524 | | // In C++, the previous declaration we find might be a tag type |
6525 | | // (class or enum). In this case, the new declaration will hide the |
6526 | | // tag type. Note that this applies to functions, function templates, and |
6527 | | // variables, but not to typedefs (C++ [dcl.typedef]p4) or variable templates. |
6528 | 5.08k | if (Previous.isSingleTagDecl() && |
6529 | 5.08k | D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && |
6530 | 5.08k | (TemplateParamLists.size() == 0 || R->isFunctionType())) |
6531 | 0 | Previous.clear(); |
6532 | | |
6533 | | // Check that there are no default arguments other than in the parameters |
6534 | | // of a function declaration (C++ only). |
6535 | 5.08k | if (getLangOpts().CPlusPlus) |
6536 | 2.58k | CheckExtraCXXDefaultArguments(D); |
6537 | | |
6538 | 5.08k | NamedDecl *New; |
6539 | | |
6540 | 5.08k | bool AddToScope = true; |
6541 | 5.08k | if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) { |
6542 | 0 | if (TemplateParamLists.size()) { |
6543 | 0 | Diag(D.getIdentifierLoc(), diag::err_template_typedef); |
6544 | 0 | return nullptr; |
6545 | 0 | } |
6546 | | |
6547 | 0 | New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous); |
6548 | 5.08k | } else if (R->isFunctionType()) { |
6549 | 19 | New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous, |
6550 | 19 | TemplateParamLists, |
6551 | 19 | AddToScope); |
6552 | 5.07k | } else { |
6553 | 5.07k | New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists, |
6554 | 5.07k | AddToScope); |
6555 | 5.07k | } |
6556 | | |
6557 | 5.08k | if (!New) |
6558 | 0 | return nullptr; |
6559 | | |
6560 | | // If this has an identifier and is not a function template specialization, |
6561 | | // add it to the scope stack. |
6562 | 5.08k | if (New->getDeclName() && AddToScope) |
6563 | 5.08k | PushOnScopeChains(New, S); |
6564 | | |
6565 | 5.08k | if (isInOpenMPDeclareTargetContext()) |
6566 | 0 | checkDeclIsAllowedInOpenMPTarget(nullptr, New); |
6567 | | |
6568 | 5.08k | return New; |
6569 | 5.08k | } |
6570 | | |
6571 | | /// Helper method to turn variable array types into constant array |
6572 | | /// types in certain situations which would otherwise be errors (for |
6573 | | /// GCC compatibility). |
6574 | | static QualType TryToFixInvalidVariablyModifiedType(QualType T, |
6575 | | ASTContext &Context, |
6576 | | bool &SizeIsNegative, |
6577 | 2 | llvm::APSInt &Oversized) { |
6578 | | // This method tries to turn a variable array into a constant |
6579 | | // array even when the size isn't an ICE. This is necessary |
6580 | | // for compatibility with code that depends on gcc's buggy |
6581 | | // constant expression folding, like struct {char x[(int)(char*)2];} |
6582 | 2 | SizeIsNegative = false; |
6583 | 2 | Oversized = 0; |
6584 | | |
6585 | 2 | if (T->isDependentType()) |
6586 | 0 | return QualType(); |
6587 | | |
6588 | 2 | QualifierCollector Qs; |
6589 | 2 | const Type *Ty = Qs.strip(T); |
6590 | | |
6591 | 2 | if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) { |
6592 | 0 | QualType Pointee = PTy->getPointeeType(); |
6593 | 0 | QualType FixedType = |
6594 | 0 | TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative, |
6595 | 0 | Oversized); |
6596 | 0 | if (FixedType.isNull()) return FixedType; |
6597 | 0 | FixedType = Context.getPointerType(FixedType); |
6598 | 0 | return Qs.apply(Context, FixedType); |
6599 | 0 | } |
6600 | 2 | if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) { |
6601 | 0 | QualType Inner = PTy->getInnerType(); |
6602 | 0 | QualType FixedType = |
6603 | 0 | TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative, |
6604 | 0 | Oversized); |
6605 | 0 | if (FixedType.isNull()) return FixedType; |
6606 | 0 | FixedType = Context.getParenType(FixedType); |
6607 | 0 | return Qs.apply(Context, FixedType); |
6608 | 0 | } |
6609 | | |
6610 | 2 | const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T); |
6611 | 2 | if (!VLATy) |
6612 | 0 | return QualType(); |
6613 | | |
6614 | 2 | QualType ElemTy = VLATy->getElementType(); |
6615 | 2 | if (ElemTy->isVariablyModifiedType()) { |
6616 | 0 | ElemTy = TryToFixInvalidVariablyModifiedType(ElemTy, Context, |
6617 | 0 | SizeIsNegative, Oversized); |
6618 | 0 | if (ElemTy.isNull()) |
6619 | 0 | return QualType(); |
6620 | 0 | } |
6621 | | |
6622 | 2 | Expr::EvalResult Result; |
6623 | 2 | if (!VLATy->getSizeExpr() || |
6624 | 2 | !VLATy->getSizeExpr()->EvaluateAsInt(Result, Context)) |
6625 | 2 | return QualType(); |
6626 | | |
6627 | 0 | llvm::APSInt Res = Result.Val.getInt(); |
6628 | | |
6629 | | // Check whether the array size is negative. |
6630 | 0 | if (Res.isSigned() && Res.isNegative()) { |
6631 | 0 | SizeIsNegative = true; |
6632 | 0 | return QualType(); |
6633 | 0 | } |
6634 | | |
6635 | | // Check whether the array is too large to be addressed. |
6636 | 0 | unsigned ActiveSizeBits = |
6637 | 0 | (!ElemTy->isDependentType() && !ElemTy->isVariablyModifiedType() && |
6638 | 0 | !ElemTy->isIncompleteType() && !ElemTy->isUndeducedType()) |
6639 | 0 | ? ConstantArrayType::getNumAddressingBits(Context, ElemTy, Res) |
6640 | 0 | : Res.getActiveBits(); |
6641 | 0 | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) { |
6642 | 0 | Oversized = Res; |
6643 | 0 | return QualType(); |
6644 | 0 | } |
6645 | | |
6646 | 0 | QualType FoldedArrayType = Context.getConstantArrayType( |
6647 | 0 | ElemTy, Res, VLATy->getSizeExpr(), ArraySizeModifier::Normal, 0); |
6648 | 0 | return Qs.apply(Context, FoldedArrayType); |
6649 | 0 | } |
6650 | | |
6651 | | static void |
6652 | 0 | FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) { |
6653 | 0 | SrcTL = SrcTL.getUnqualifiedLoc(); |
6654 | 0 | DstTL = DstTL.getUnqualifiedLoc(); |
6655 | 0 | if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) { |
6656 | 0 | PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>(); |
6657 | 0 | FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(), |
6658 | 0 | DstPTL.getPointeeLoc()); |
6659 | 0 | DstPTL.setStarLoc(SrcPTL.getStarLoc()); |
6660 | 0 | return; |
6661 | 0 | } |
6662 | 0 | if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) { |
6663 | 0 | ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>(); |
6664 | 0 | FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(), |
6665 | 0 | DstPTL.getInnerLoc()); |
6666 | 0 | DstPTL.setLParenLoc(SrcPTL.getLParenLoc()); |
6667 | 0 | DstPTL.setRParenLoc(SrcPTL.getRParenLoc()); |
6668 | 0 | return; |
6669 | 0 | } |
6670 | 0 | ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>(); |
6671 | 0 | ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>(); |
6672 | 0 | TypeLoc SrcElemTL = SrcATL.getElementLoc(); |
6673 | 0 | TypeLoc DstElemTL = DstATL.getElementLoc(); |
6674 | 0 | if (VariableArrayTypeLoc SrcElemATL = |
6675 | 0 | SrcElemTL.getAs<VariableArrayTypeLoc>()) { |
6676 | 0 | ConstantArrayTypeLoc DstElemATL = DstElemTL.castAs<ConstantArrayTypeLoc>(); |
6677 | 0 | FixInvalidVariablyModifiedTypeLoc(SrcElemATL, DstElemATL); |
6678 | 0 | } else { |
6679 | 0 | DstElemTL.initializeFullCopy(SrcElemTL); |
6680 | 0 | } |
6681 | 0 | DstATL.setLBracketLoc(SrcATL.getLBracketLoc()); |
6682 | 0 | DstATL.setSizeExpr(SrcATL.getSizeExpr()); |
6683 | 0 | DstATL.setRBracketLoc(SrcATL.getRBracketLoc()); |
6684 | 0 | } |
6685 | | |
6686 | | /// Helper method to turn variable array types into constant array |
6687 | | /// types in certain situations which would otherwise be errors (for |
6688 | | /// GCC compatibility). |
6689 | | static TypeSourceInfo* |
6690 | | TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo, |
6691 | | ASTContext &Context, |
6692 | | bool &SizeIsNegative, |
6693 | 2 | llvm::APSInt &Oversized) { |
6694 | 2 | QualType FixedTy |
6695 | 2 | = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context, |
6696 | 2 | SizeIsNegative, Oversized); |
6697 | 2 | if (FixedTy.isNull()) |
6698 | 2 | return nullptr; |
6699 | 0 | TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy); |
6700 | 0 | FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(), |
6701 | 0 | FixedTInfo->getTypeLoc()); |
6702 | 0 | return FixedTInfo; |
6703 | 2 | } |
6704 | | |
6705 | | /// Attempt to fold a variable-sized type to a constant-sized type, returning |
6706 | | /// true if we were successful. |
6707 | | bool Sema::tryToFixVariablyModifiedVarType(TypeSourceInfo *&TInfo, |
6708 | | QualType &T, SourceLocation Loc, |
6709 | 0 | unsigned FailedFoldDiagID) { |
6710 | 0 | bool SizeIsNegative; |
6711 | 0 | llvm::APSInt Oversized; |
6712 | 0 | TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( |
6713 | 0 | TInfo, Context, SizeIsNegative, Oversized); |
6714 | 0 | if (FixedTInfo) { |
6715 | 0 | Diag(Loc, diag::ext_vla_folded_to_constant); |
6716 | 0 | TInfo = FixedTInfo; |
6717 | 0 | T = FixedTInfo->getType(); |
6718 | 0 | return true; |
6719 | 0 | } |
6720 | | |
6721 | 0 | if (SizeIsNegative) |
6722 | 0 | Diag(Loc, diag::err_typecheck_negative_array_size); |
6723 | 0 | else if (Oversized.getBoolValue()) |
6724 | 0 | Diag(Loc, diag::err_array_too_large) << toString(Oversized, 10); |
6725 | 0 | else if (FailedFoldDiagID) |
6726 | 0 | Diag(Loc, FailedFoldDiagID); |
6727 | 0 | return false; |
6728 | 0 | } |
6729 | | |
6730 | | /// Register the given locally-scoped extern "C" declaration so |
6731 | | /// that it can be found later for redeclarations. We include any extern "C" |
6732 | | /// declaration that is not visible in the translation unit here, not just |
6733 | | /// function-scope declarations. |
6734 | | void |
6735 | 291 | Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) { |
6736 | 291 | if (!getLangOpts().CPlusPlus && |
6737 | 291 | ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit()) |
6738 | | // Don't need to track declarations in the TU in C. |
6739 | 291 | return; |
6740 | | |
6741 | | // Note that we have a locally-scoped external with this name. |
6742 | 0 | Context.getExternCContextDecl()->makeDeclVisibleInContext(ND); |
6743 | 0 | } |
6744 | | |
6745 | 291 | NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) { |
6746 | | // FIXME: We can have multiple results via __attribute__((overloadable)). |
6747 | 291 | auto Result = Context.getExternCContextDecl()->lookup(Name); |
6748 | 291 | return Result.empty() ? nullptr : *Result.begin(); |
6749 | 291 | } |
6750 | | |
6751 | | /// Diagnose function specifiers on a declaration of an identifier that |
6752 | | /// does not identify a function. |
6753 | 5.14k | void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) { |
6754 | | // FIXME: We should probably indicate the identifier in question to avoid |
6755 | | // confusion for constructs like "virtual int a(), b;" |
6756 | 5.14k | if (DS.isVirtualSpecified()) |
6757 | 0 | Diag(DS.getVirtualSpecLoc(), |
6758 | 0 | diag::err_virtual_non_function); |
6759 | | |
6760 | 5.14k | if (DS.hasExplicitSpecifier()) |
6761 | 0 | Diag(DS.getExplicitSpecLoc(), |
6762 | 0 | diag::err_explicit_non_function); |
6763 | | |
6764 | 5.14k | if (DS.isNoreturnSpecified()) |
6765 | 0 | Diag(DS.getNoreturnSpecLoc(), |
6766 | 0 | diag::err_noreturn_non_function); |
6767 | 5.14k | } |
6768 | | |
6769 | | NamedDecl* |
6770 | | Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC, |
6771 | 0 | TypeSourceInfo *TInfo, LookupResult &Previous) { |
6772 | | // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1). |
6773 | 0 | if (D.getCXXScopeSpec().isSet()) { |
6774 | 0 | Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator) |
6775 | 0 | << D.getCXXScopeSpec().getRange(); |
6776 | 0 | D.setInvalidType(); |
6777 | | // Pretend we didn't see the scope specifier. |
6778 | 0 | DC = CurContext; |
6779 | 0 | Previous.clear(); |
6780 | 0 | } |
6781 | |
|
6782 | 0 | DiagnoseFunctionSpecifiers(D.getDeclSpec()); |
6783 | |
|
6784 | 0 | if (D.getDeclSpec().isInlineSpecified()) |
6785 | 0 | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) |
6786 | 0 | << getLangOpts().CPlusPlus17; |
6787 | 0 | if (D.getDeclSpec().hasConstexprSpecifier()) |
6788 | 0 | Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr) |
6789 | 0 | << 1 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); |
6790 | |
|
6791 | 0 | if (D.getName().getKind() != UnqualifiedIdKind::IK_Identifier) { |
6792 | 0 | if (D.getName().getKind() == UnqualifiedIdKind::IK_DeductionGuideName) |
6793 | 0 | Diag(D.getName().StartLocation, |
6794 | 0 | diag::err_deduction_guide_invalid_specifier) |
6795 | 0 | << "typedef"; |
6796 | 0 | else |
6797 | 0 | Diag(D.getName().StartLocation, diag::err_typedef_not_identifier) |
6798 | 0 | << D.getName().getSourceRange(); |
6799 | 0 | return nullptr; |
6800 | 0 | } |
6801 | | |
6802 | 0 | TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo); |
6803 | 0 | if (!NewTD) return nullptr; |
6804 | | |
6805 | | // Handle attributes prior to checking for duplicates in MergeVarDecl |
6806 | 0 | ProcessDeclAttributes(S, NewTD, D); |
6807 | |
|
6808 | 0 | CheckTypedefForVariablyModifiedType(S, NewTD); |
6809 | |
|
6810 | 0 | bool Redeclaration = D.isRedeclaration(); |
6811 | 0 | NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration); |
6812 | 0 | D.setRedeclaration(Redeclaration); |
6813 | 0 | return ND; |
6814 | 0 | } |
6815 | | |
6816 | | void |
6817 | 0 | Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) { |
6818 | | // C99 6.7.7p2: If a typedef name specifies a variably modified type |
6819 | | // then it shall have block scope. |
6820 | | // Note that variably modified types must be fixed before merging the decl so |
6821 | | // that redeclarations will match. |
6822 | 0 | TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo(); |
6823 | 0 | QualType T = TInfo->getType(); |
6824 | 0 | if (T->isVariablyModifiedType()) { |
6825 | 0 | setFunctionHasBranchProtectedScope(); |
6826 | |
|
6827 | 0 | if (S->getFnParent() == nullptr) { |
6828 | 0 | bool SizeIsNegative; |
6829 | 0 | llvm::APSInt Oversized; |
6830 | 0 | TypeSourceInfo *FixedTInfo = |
6831 | 0 | TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context, |
6832 | 0 | SizeIsNegative, |
6833 | 0 | Oversized); |
6834 | 0 | if (FixedTInfo) { |
6835 | 0 | Diag(NewTD->getLocation(), diag::ext_vla_folded_to_constant); |
6836 | 0 | NewTD->setTypeSourceInfo(FixedTInfo); |
6837 | 0 | } else { |
6838 | 0 | if (SizeIsNegative) |
6839 | 0 | Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size); |
6840 | 0 | else if (T->isVariableArrayType()) |
6841 | 0 | Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope); |
6842 | 0 | else if (Oversized.getBoolValue()) |
6843 | 0 | Diag(NewTD->getLocation(), diag::err_array_too_large) |
6844 | 0 | << toString(Oversized, 10); |
6845 | 0 | else |
6846 | 0 | Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope); |
6847 | 0 | NewTD->setInvalidDecl(); |
6848 | 0 | } |
6849 | 0 | } |
6850 | 0 | } |
6851 | 0 | } |
6852 | | |
6853 | | /// ActOnTypedefNameDecl - Perform semantic checking for a declaration which |
6854 | | /// declares a typedef-name, either using the 'typedef' type specifier or via |
6855 | | /// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'. |
6856 | | NamedDecl* |
6857 | | Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD, |
6858 | 0 | LookupResult &Previous, bool &Redeclaration) { |
6859 | | |
6860 | | // Find the shadowed declaration before filtering for scope. |
6861 | 0 | NamedDecl *ShadowedDecl = getShadowedDeclaration(NewTD, Previous); |
6862 | | |
6863 | | // Merge the decl with the existing one if appropriate. If the decl is |
6864 | | // in an outer scope, it isn't the same thing. |
6865 | 0 | FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/false, |
6866 | 0 | /*AllowInlineNamespace*/false); |
6867 | 0 | filterNonConflictingPreviousTypedefDecls(*this, NewTD, Previous); |
6868 | 0 | if (!Previous.empty()) { |
6869 | 0 | Redeclaration = true; |
6870 | 0 | MergeTypedefNameDecl(S, NewTD, Previous); |
6871 | 0 | } else { |
6872 | 0 | inferGslPointerAttribute(NewTD); |
6873 | 0 | } |
6874 | |
|
6875 | 0 | if (ShadowedDecl && !Redeclaration) |
6876 | 0 | CheckShadow(NewTD, ShadowedDecl, Previous); |
6877 | | |
6878 | | // If this is the C FILE type, notify the AST context. |
6879 | 0 | if (IdentifierInfo *II = NewTD->getIdentifier()) |
6880 | 0 | if (!NewTD->isInvalidDecl() && |
6881 | 0 | NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { |
6882 | 0 | switch (II->getInterestingIdentifierID()) { |
6883 | 0 | case tok::InterestingIdentifierKind::FILE: |
6884 | 0 | Context.setFILEDecl(NewTD); |
6885 | 0 | break; |
6886 | 0 | case tok::InterestingIdentifierKind::jmp_buf: |
6887 | 0 | Context.setjmp_bufDecl(NewTD); |
6888 | 0 | break; |
6889 | 0 | case tok::InterestingIdentifierKind::sigjmp_buf: |
6890 | 0 | Context.setsigjmp_bufDecl(NewTD); |
6891 | 0 | break; |
6892 | 0 | case tok::InterestingIdentifierKind::ucontext_t: |
6893 | 0 | Context.setucontext_tDecl(NewTD); |
6894 | 0 | break; |
6895 | 0 | case tok::InterestingIdentifierKind::float_t: |
6896 | 0 | case tok::InterestingIdentifierKind::double_t: |
6897 | 0 | NewTD->addAttr(AvailableOnlyInDefaultEvalMethodAttr::Create(Context)); |
6898 | 0 | break; |
6899 | 0 | default: |
6900 | 0 | break; |
6901 | 0 | } |
6902 | 0 | } |
6903 | | |
6904 | 0 | return NewTD; |
6905 | 0 | } |
6906 | | |
6907 | | /// Determines whether the given declaration is an out-of-scope |
6908 | | /// previous declaration. |
6909 | | /// |
6910 | | /// This routine should be invoked when name lookup has found a |
6911 | | /// previous declaration (PrevDecl) that is not in the scope where a |
6912 | | /// new declaration by the same name is being introduced. If the new |
6913 | | /// declaration occurs in a local scope, previous declarations with |
6914 | | /// linkage may still be considered previous declarations (C99 |
6915 | | /// 6.2.2p4-5, C++ [basic.link]p6). |
6916 | | /// |
6917 | | /// \param PrevDecl the previous declaration found by name |
6918 | | /// lookup |
6919 | | /// |
6920 | | /// \param DC the context in which the new declaration is being |
6921 | | /// declared. |
6922 | | /// |
6923 | | /// \returns true if PrevDecl is an out-of-scope previous declaration |
6924 | | /// for a new delcaration with the same name. |
6925 | | static bool |
6926 | | isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC, |
6927 | 0 | ASTContext &Context) { |
6928 | 0 | if (!PrevDecl) |
6929 | 0 | return false; |
6930 | | |
6931 | 0 | if (!PrevDecl->hasLinkage()) |
6932 | 0 | return false; |
6933 | | |
6934 | 0 | if (Context.getLangOpts().CPlusPlus) { |
6935 | | // C++ [basic.link]p6: |
6936 | | // If there is a visible declaration of an entity with linkage |
6937 | | // having the same name and type, ignoring entities declared |
6938 | | // outside the innermost enclosing namespace scope, the block |
6939 | | // scope declaration declares that same entity and receives the |
6940 | | // linkage of the previous declaration. |
6941 | 0 | DeclContext *OuterContext = DC->getRedeclContext(); |
6942 | 0 | if (!OuterContext->isFunctionOrMethod()) |
6943 | | // This rule only applies to block-scope declarations. |
6944 | 0 | return false; |
6945 | | |
6946 | 0 | DeclContext *PrevOuterContext = PrevDecl->getDeclContext(); |
6947 | 0 | if (PrevOuterContext->isRecord()) |
6948 | | // We found a member function: ignore it. |
6949 | 0 | return false; |
6950 | | |
6951 | | // Find the innermost enclosing namespace for the new and |
6952 | | // previous declarations. |
6953 | 0 | OuterContext = OuterContext->getEnclosingNamespaceContext(); |
6954 | 0 | PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext(); |
6955 | | |
6956 | | // The previous declaration is in a different namespace, so it |
6957 | | // isn't the same function. |
6958 | 0 | if (!OuterContext->Equals(PrevOuterContext)) |
6959 | 0 | return false; |
6960 | 0 | } |
6961 | | |
6962 | 0 | return true; |
6963 | 0 | } |
6964 | | |
6965 | 2.58k | static void SetNestedNameSpecifier(Sema &S, DeclaratorDecl *DD, Declarator &D) { |
6966 | 2.58k | CXXScopeSpec &SS = D.getCXXScopeSpec(); |
6967 | 2.58k | if (!SS.isSet()) return; |
6968 | 0 | DD->setQualifierInfo(SS.getWithLocInContext(S.Context)); |
6969 | 0 | } |
6970 | | |
6971 | 0 | bool Sema::inferObjCARCLifetime(ValueDecl *decl) { |
6972 | 0 | QualType type = decl->getType(); |
6973 | 0 | Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime(); |
6974 | 0 | if (lifetime == Qualifiers::OCL_Autoreleasing) { |
6975 | | // Various kinds of declaration aren't allowed to be __autoreleasing. |
6976 | 0 | unsigned kind = -1U; |
6977 | 0 | if (VarDecl *var = dyn_cast<VarDecl>(decl)) { |
6978 | 0 | if (var->hasAttr<BlocksAttr>()) |
6979 | 0 | kind = 0; // __block |
6980 | 0 | else if (!var->hasLocalStorage()) |
6981 | 0 | kind = 1; // global |
6982 | 0 | } else if (isa<ObjCIvarDecl>(decl)) { |
6983 | 0 | kind = 3; // ivar |
6984 | 0 | } else if (isa<FieldDecl>(decl)) { |
6985 | 0 | kind = 2; // field |
6986 | 0 | } |
6987 | |
|
6988 | 0 | if (kind != -1U) { |
6989 | 0 | Diag(decl->getLocation(), diag::err_arc_autoreleasing_var) |
6990 | 0 | << kind; |
6991 | 0 | } |
6992 | 0 | } else if (lifetime == Qualifiers::OCL_None) { |
6993 | | // Try to infer lifetime. |
6994 | 0 | if (!type->isObjCLifetimeType()) |
6995 | 0 | return false; |
6996 | | |
6997 | 0 | lifetime = type->getObjCARCImplicitLifetime(); |
6998 | 0 | type = Context.getLifetimeQualifiedType(type, lifetime); |
6999 | 0 | decl->setType(type); |
7000 | 0 | } |
7001 | | |
7002 | 0 | if (VarDecl *var = dyn_cast<VarDecl>(decl)) { |
7003 | | // Thread-local variables cannot have lifetime. |
7004 | 0 | if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone && |
7005 | 0 | var->getTLSKind()) { |
7006 | 0 | Diag(var->getLocation(), diag::err_arc_thread_ownership) |
7007 | 0 | << var->getType(); |
7008 | 0 | return true; |
7009 | 0 | } |
7010 | 0 | } |
7011 | | |
7012 | 0 | return false; |
7013 | 0 | } |
7014 | | |
7015 | 0 | void Sema::deduceOpenCLAddressSpace(ValueDecl *Decl) { |
7016 | 0 | if (Decl->getType().hasAddressSpace()) |
7017 | 0 | return; |
7018 | 0 | if (Decl->getType()->isDependentType()) |
7019 | 0 | return; |
7020 | 0 | if (VarDecl *Var = dyn_cast<VarDecl>(Decl)) { |
7021 | 0 | QualType Type = Var->getType(); |
7022 | 0 | if (Type->isSamplerT() || Type->isVoidType()) |
7023 | 0 | return; |
7024 | 0 | LangAS ImplAS = LangAS::opencl_private; |
7025 | | // OpenCL C v3.0 s6.7.8 - For OpenCL C 2.0 or with the |
7026 | | // __opencl_c_program_scope_global_variables feature, the address space |
7027 | | // for a variable at program scope or a static or extern variable inside |
7028 | | // a function are inferred to be __global. |
7029 | 0 | if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts()) && |
7030 | 0 | Var->hasGlobalStorage()) |
7031 | 0 | ImplAS = LangAS::opencl_global; |
7032 | | // If the original type from a decayed type is an array type and that array |
7033 | | // type has no address space yet, deduce it now. |
7034 | 0 | if (auto DT = dyn_cast<DecayedType>(Type)) { |
7035 | 0 | auto OrigTy = DT->getOriginalType(); |
7036 | 0 | if (!OrigTy.hasAddressSpace() && OrigTy->isArrayType()) { |
7037 | | // Add the address space to the original array type and then propagate |
7038 | | // that to the element type through `getAsArrayType`. |
7039 | 0 | OrigTy = Context.getAddrSpaceQualType(OrigTy, ImplAS); |
7040 | 0 | OrigTy = QualType(Context.getAsArrayType(OrigTy), 0); |
7041 | | // Re-generate the decayed type. |
7042 | 0 | Type = Context.getDecayedType(OrigTy); |
7043 | 0 | } |
7044 | 0 | } |
7045 | 0 | Type = Context.getAddrSpaceQualType(Type, ImplAS); |
7046 | | // Apply any qualifiers (including address space) from the array type to |
7047 | | // the element type. This implements C99 6.7.3p8: "If the specification of |
7048 | | // an array type includes any type qualifiers, the element type is so |
7049 | | // qualified, not the array type." |
7050 | 0 | if (Type->isArrayType()) |
7051 | 0 | Type = QualType(Context.getAsArrayType(Type), 0); |
7052 | 0 | Decl->setType(Type); |
7053 | 0 | } |
7054 | 0 | } |
7055 | | |
7056 | 5.08k | static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) { |
7057 | | // Ensure that an auto decl is deduced otherwise the checks below might cache |
7058 | | // the wrong linkage. |
7059 | 5.08k | assert(S.ParsingInitForAutoVars.count(&ND) == 0); |
7060 | | |
7061 | | // 'weak' only applies to declarations with external linkage. |
7062 | 5.08k | if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) { |
7063 | 0 | if (!ND.isExternallyVisible()) { |
7064 | 0 | S.Diag(Attr->getLocation(), diag::err_attribute_weak_static); |
7065 | 0 | ND.dropAttr<WeakAttr>(); |
7066 | 0 | } |
7067 | 0 | } |
7068 | 5.08k | if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) { |
7069 | 0 | if (ND.isExternallyVisible()) { |
7070 | 0 | S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static); |
7071 | 0 | ND.dropAttr<WeakRefAttr>(); |
7072 | 0 | ND.dropAttr<AliasAttr>(); |
7073 | 0 | } |
7074 | 0 | } |
7075 | | |
7076 | 5.08k | if (auto *VD = dyn_cast<VarDecl>(&ND)) { |
7077 | 5.07k | if (VD->hasInit()) { |
7078 | 20 | if (const auto *Attr = VD->getAttr<AliasAttr>()) { |
7079 | 0 | assert(VD->isThisDeclarationADefinition() && |
7080 | 0 | !VD->isExternallyVisible() && "Broken AliasAttr handled late!"); |
7081 | 0 | S.Diag(Attr->getLocation(), diag::err_alias_is_definition) << VD << 0; |
7082 | 0 | VD->dropAttr<AliasAttr>(); |
7083 | 0 | } |
7084 | 20 | } |
7085 | 5.07k | } |
7086 | | |
7087 | | // 'selectany' only applies to externally visible variable declarations. |
7088 | | // It does not apply to functions. |
7089 | 5.08k | if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) { |
7090 | 0 | if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) { |
7091 | 0 | S.Diag(Attr->getLocation(), |
7092 | 0 | diag::err_attribute_selectany_non_extern_data); |
7093 | 0 | ND.dropAttr<SelectAnyAttr>(); |
7094 | 0 | } |
7095 | 0 | } |
7096 | | |
7097 | 5.08k | if (const InheritableAttr *Attr = getDLLAttr(&ND)) { |
7098 | 0 | auto *VD = dyn_cast<VarDecl>(&ND); |
7099 | 0 | bool IsAnonymousNS = false; |
7100 | 0 | bool IsMicrosoft = S.Context.getTargetInfo().getCXXABI().isMicrosoft(); |
7101 | 0 | if (VD) { |
7102 | 0 | const NamespaceDecl *NS = dyn_cast<NamespaceDecl>(VD->getDeclContext()); |
7103 | 0 | while (NS && !IsAnonymousNS) { |
7104 | 0 | IsAnonymousNS = NS->isAnonymousNamespace(); |
7105 | 0 | NS = dyn_cast<NamespaceDecl>(NS->getParent()); |
7106 | 0 | } |
7107 | 0 | } |
7108 | | // dll attributes require external linkage. Static locals may have external |
7109 | | // linkage but still cannot be explicitly imported or exported. |
7110 | | // In Microsoft mode, a variable defined in anonymous namespace must have |
7111 | | // external linkage in order to be exported. |
7112 | 0 | bool AnonNSInMicrosoftMode = IsAnonymousNS && IsMicrosoft; |
7113 | 0 | if ((ND.isExternallyVisible() && AnonNSInMicrosoftMode) || |
7114 | 0 | (!AnonNSInMicrosoftMode && |
7115 | 0 | (!ND.isExternallyVisible() || (VD && VD->isStaticLocal())))) { |
7116 | 0 | S.Diag(ND.getLocation(), diag::err_attribute_dll_not_extern) |
7117 | 0 | << &ND << Attr; |
7118 | 0 | ND.setInvalidDecl(); |
7119 | 0 | } |
7120 | 0 | } |
7121 | | |
7122 | | // Check the attributes on the function type, if any. |
7123 | 5.08k | if (const auto *FD = dyn_cast<FunctionDecl>(&ND)) { |
7124 | | // Don't declare this variable in the second operand of the for-statement; |
7125 | | // GCC miscompiles that by ending its lifetime before evaluating the |
7126 | | // third operand. See gcc.gnu.org/PR86769. |
7127 | 19 | AttributedTypeLoc ATL; |
7128 | 19 | for (TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc(); |
7129 | 19 | (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); |
7130 | 19 | TL = ATL.getModifiedLoc()) { |
7131 | | // The [[lifetimebound]] attribute can be applied to the implicit object |
7132 | | // parameter of a non-static member function (other than a ctor or dtor) |
7133 | | // by applying it to the function type. |
7134 | 0 | if (const auto *A = ATL.getAttrAs<LifetimeBoundAttr>()) { |
7135 | 0 | const auto *MD = dyn_cast<CXXMethodDecl>(FD); |
7136 | 0 | if (!MD || MD->isStatic()) { |
7137 | 0 | S.Diag(A->getLocation(), diag::err_lifetimebound_no_object_param) |
7138 | 0 | << !MD << A->getRange(); |
7139 | 0 | } else if (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD)) { |
7140 | 0 | S.Diag(A->getLocation(), diag::err_lifetimebound_ctor_dtor) |
7141 | 0 | << isa<CXXDestructorDecl>(MD) << A->getRange(); |
7142 | 0 | } |
7143 | 0 | } |
7144 | 0 | } |
7145 | 19 | } |
7146 | 5.08k | } |
7147 | | |
7148 | | static void checkDLLAttributeRedeclaration(Sema &S, NamedDecl *OldDecl, |
7149 | | NamedDecl *NewDecl, |
7150 | | bool IsSpecialization, |
7151 | 199 | bool IsDefinition) { |
7152 | 199 | if (OldDecl->isInvalidDecl() || NewDecl->isInvalidDecl()) |
7153 | 143 | return; |
7154 | | |
7155 | 56 | bool IsTemplate = false; |
7156 | 56 | if (TemplateDecl *OldTD = dyn_cast<TemplateDecl>(OldDecl)) { |
7157 | 0 | OldDecl = OldTD->getTemplatedDecl(); |
7158 | 0 | IsTemplate = true; |
7159 | 0 | if (!IsSpecialization) |
7160 | 0 | IsDefinition = false; |
7161 | 0 | } |
7162 | 56 | if (TemplateDecl *NewTD = dyn_cast<TemplateDecl>(NewDecl)) { |
7163 | 0 | NewDecl = NewTD->getTemplatedDecl(); |
7164 | 0 | IsTemplate = true; |
7165 | 0 | } |
7166 | | |
7167 | 56 | if (!OldDecl || !NewDecl) |
7168 | 0 | return; |
7169 | | |
7170 | 56 | const DLLImportAttr *OldImportAttr = OldDecl->getAttr<DLLImportAttr>(); |
7171 | 56 | const DLLExportAttr *OldExportAttr = OldDecl->getAttr<DLLExportAttr>(); |
7172 | 56 | const DLLImportAttr *NewImportAttr = NewDecl->getAttr<DLLImportAttr>(); |
7173 | 56 | const DLLExportAttr *NewExportAttr = NewDecl->getAttr<DLLExportAttr>(); |
7174 | | |
7175 | | // dllimport and dllexport are inheritable attributes so we have to exclude |
7176 | | // inherited attribute instances. |
7177 | 56 | bool HasNewAttr = (NewImportAttr && !NewImportAttr->isInherited()) || |
7178 | 56 | (NewExportAttr && !NewExportAttr->isInherited()); |
7179 | | |
7180 | | // A redeclaration is not allowed to add a dllimport or dllexport attribute, |
7181 | | // the only exception being explicit specializations. |
7182 | | // Implicitly generated declarations are also excluded for now because there |
7183 | | // is no other way to switch these to use dllimport or dllexport. |
7184 | 56 | bool AddsAttr = !(OldImportAttr || OldExportAttr) && HasNewAttr; |
7185 | | |
7186 | 56 | if (AddsAttr && !IsSpecialization && !OldDecl->isImplicit()) { |
7187 | | // Allow with a warning for free functions and global variables. |
7188 | 0 | bool JustWarn = false; |
7189 | 0 | if (!OldDecl->isCXXClassMember()) { |
7190 | 0 | auto *VD = dyn_cast<VarDecl>(OldDecl); |
7191 | 0 | if (VD && !VD->getDescribedVarTemplate()) |
7192 | 0 | JustWarn = true; |
7193 | 0 | auto *FD = dyn_cast<FunctionDecl>(OldDecl); |
7194 | 0 | if (FD && FD->getTemplatedKind() == FunctionDecl::TK_NonTemplate) |
7195 | 0 | JustWarn = true; |
7196 | 0 | } |
7197 | | |
7198 | | // We cannot change a declaration that's been used because IR has already |
7199 | | // been emitted. Dllimported functions will still work though (modulo |
7200 | | // address equality) as they can use the thunk. |
7201 | 0 | if (OldDecl->isUsed()) |
7202 | 0 | if (!isa<FunctionDecl>(OldDecl) || !NewImportAttr) |
7203 | 0 | JustWarn = false; |
7204 | |
|
7205 | 0 | unsigned DiagID = JustWarn ? diag::warn_attribute_dll_redeclaration |
7206 | 0 | : diag::err_attribute_dll_redeclaration; |
7207 | 0 | S.Diag(NewDecl->getLocation(), DiagID) |
7208 | 0 | << NewDecl |
7209 | 0 | << (NewImportAttr ? (const Attr *)NewImportAttr : NewExportAttr); |
7210 | 0 | S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); |
7211 | 0 | if (!JustWarn) { |
7212 | 0 | NewDecl->setInvalidDecl(); |
7213 | 0 | return; |
7214 | 0 | } |
7215 | 0 | } |
7216 | | |
7217 | | // A redeclaration is not allowed to drop a dllimport attribute, the only |
7218 | | // exceptions being inline function definitions (except for function |
7219 | | // templates), local extern declarations, qualified friend declarations or |
7220 | | // special MSVC extension: in the last case, the declaration is treated as if |
7221 | | // it were marked dllexport. |
7222 | 56 | bool IsInline = false, IsStaticDataMember = false, IsQualifiedFriend = false; |
7223 | 56 | bool IsMicrosoftABI = S.Context.getTargetInfo().shouldDLLImportComdatSymbols(); |
7224 | 56 | if (const auto *VD = dyn_cast<VarDecl>(NewDecl)) { |
7225 | | // Ignore static data because out-of-line definitions are diagnosed |
7226 | | // separately. |
7227 | 56 | IsStaticDataMember = VD->isStaticDataMember(); |
7228 | 56 | IsDefinition = VD->isThisDeclarationADefinition(S.Context) != |
7229 | 56 | VarDecl::DeclarationOnly; |
7230 | 56 | } else if (const auto *FD = dyn_cast<FunctionDecl>(NewDecl)) { |
7231 | 0 | IsInline = FD->isInlined(); |
7232 | 0 | IsQualifiedFriend = FD->getQualifier() && |
7233 | 0 | FD->getFriendObjectKind() == Decl::FOK_Declared; |
7234 | 0 | } |
7235 | | |
7236 | 56 | if (OldImportAttr && !HasNewAttr && |
7237 | 56 | (!IsInline || (IsMicrosoftABI && IsTemplate)) && !IsStaticDataMember && |
7238 | 56 | !NewDecl->isLocalExternDecl() && !IsQualifiedFriend) { |
7239 | 0 | if (IsMicrosoftABI && IsDefinition) { |
7240 | 0 | if (IsSpecialization) { |
7241 | 0 | S.Diag( |
7242 | 0 | NewDecl->getLocation(), |
7243 | 0 | diag::err_attribute_dllimport_function_specialization_definition); |
7244 | 0 | S.Diag(OldImportAttr->getLocation(), diag::note_attribute); |
7245 | 0 | NewDecl->dropAttr<DLLImportAttr>(); |
7246 | 0 | } else { |
7247 | 0 | S.Diag(NewDecl->getLocation(), |
7248 | 0 | diag::warn_redeclaration_without_import_attribute) |
7249 | 0 | << NewDecl; |
7250 | 0 | S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); |
7251 | 0 | NewDecl->dropAttr<DLLImportAttr>(); |
7252 | 0 | NewDecl->addAttr(DLLExportAttr::CreateImplicit( |
7253 | 0 | S.Context, NewImportAttr->getRange())); |
7254 | 0 | } |
7255 | 0 | } else if (IsMicrosoftABI && IsSpecialization) { |
7256 | 0 | assert(!IsDefinition); |
7257 | | // MSVC allows this. Keep the inherited attribute. |
7258 | 0 | } else { |
7259 | 0 | S.Diag(NewDecl->getLocation(), |
7260 | 0 | diag::warn_redeclaration_without_attribute_prev_attribute_ignored) |
7261 | 0 | << NewDecl << OldImportAttr; |
7262 | 0 | S.Diag(OldDecl->getLocation(), diag::note_previous_declaration); |
7263 | 0 | S.Diag(OldImportAttr->getLocation(), diag::note_previous_attribute); |
7264 | 0 | OldDecl->dropAttr<DLLImportAttr>(); |
7265 | 0 | NewDecl->dropAttr<DLLImportAttr>(); |
7266 | 0 | } |
7267 | 56 | } else if (IsInline && OldImportAttr && !IsMicrosoftABI) { |
7268 | | // In MinGW, seeing a function declared inline drops the dllimport |
7269 | | // attribute. |
7270 | 0 | OldDecl->dropAttr<DLLImportAttr>(); |
7271 | 0 | NewDecl->dropAttr<DLLImportAttr>(); |
7272 | 0 | S.Diag(NewDecl->getLocation(), |
7273 | 0 | diag::warn_dllimport_dropped_from_inline_function) |
7274 | 0 | << NewDecl << OldImportAttr; |
7275 | 0 | } |
7276 | | |
7277 | | // A specialization of a class template member function is processed here |
7278 | | // since it's a redeclaration. If the parent class is dllexport, the |
7279 | | // specialization inherits that attribute. This doesn't happen automatically |
7280 | | // since the parent class isn't instantiated until later. |
7281 | 56 | if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDecl)) { |
7282 | 0 | if (MD->getTemplatedKind() == FunctionDecl::TK_MemberSpecialization && |
7283 | 0 | !NewImportAttr && !NewExportAttr) { |
7284 | 0 | if (const DLLExportAttr *ParentExportAttr = |
7285 | 0 | MD->getParent()->getAttr<DLLExportAttr>()) { |
7286 | 0 | DLLExportAttr *NewAttr = ParentExportAttr->clone(S.Context); |
7287 | 0 | NewAttr->setInherited(true); |
7288 | 0 | NewDecl->addAttr(NewAttr); |
7289 | 0 | } |
7290 | 0 | } |
7291 | 0 | } |
7292 | 56 | } |
7293 | | |
7294 | | /// Given that we are within the definition of the given function, |
7295 | | /// will that definition behave like C99's 'inline', where the |
7296 | | /// definition is discarded except for optimization purposes? |
7297 | 0 | static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) { |
7298 | | // Try to avoid calling GetGVALinkageForFunction. |
7299 | | |
7300 | | // All cases of this require the 'inline' keyword. |
7301 | 0 | if (!FD->isInlined()) return false; |
7302 | | |
7303 | | // This is only possible in C++ with the gnu_inline attribute. |
7304 | 0 | if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>()) |
7305 | 0 | return false; |
7306 | | |
7307 | | // Okay, go ahead and call the relatively-more-expensive function. |
7308 | 0 | return S.Context.GetGVALinkageForFunction(FD) == GVA_AvailableExternally; |
7309 | 0 | } |
7310 | | |
7311 | | /// Determine whether a variable is extern "C" prior to attaching |
7312 | | /// an initializer. We can't just call isExternC() here, because that |
7313 | | /// will also compute and cache whether the declaration is externally |
7314 | | /// visible, which might change when we attach the initializer. |
7315 | | /// |
7316 | | /// This can only be used if the declaration is known to not be a |
7317 | | /// redeclaration of an internal linkage declaration. |
7318 | | /// |
7319 | | /// For instance: |
7320 | | /// |
7321 | | /// auto x = []{}; |
7322 | | /// |
7323 | | /// Attaching the initializer here makes this declaration not externally |
7324 | | /// visible, because its type has internal linkage. |
7325 | | /// |
7326 | | /// FIXME: This is a hack. |
7327 | | template<typename T> |
7328 | 291 | static bool isIncompleteDeclExternC(Sema &S, const T *D) { |
7329 | 291 | if (S.getLangOpts().CPlusPlus) { |
7330 | | // In C++, the overloadable attribute negates the effects of extern "C". |
7331 | 0 | if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) |
7332 | 0 | return false; |
7333 | | |
7334 | | // So do CUDA's host/device attributes. |
7335 | 0 | if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || |
7336 | 0 | D->template hasAttr<CUDAHostAttr>())) |
7337 | 0 | return false; |
7338 | 0 | } |
7339 | 291 | return D->isExternC(); |
7340 | 291 | } SemaDecl.cpp:bool isIncompleteDeclExternC<clang::VarDecl>(clang::Sema&, clang::VarDecl const*) Line | Count | Source | 7328 | 285 | static bool isIncompleteDeclExternC(Sema &S, const T *D) { | 7329 | 285 | if (S.getLangOpts().CPlusPlus) { | 7330 | | // In C++, the overloadable attribute negates the effects of extern "C". | 7331 | 0 | if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) | 7332 | 0 | return false; | 7333 | | | 7334 | | // So do CUDA's host/device attributes. | 7335 | 0 | if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || | 7336 | 0 | D->template hasAttr<CUDAHostAttr>())) | 7337 | 0 | return false; | 7338 | 0 | } | 7339 | 285 | return D->isExternC(); | 7340 | 285 | } |
SemaDecl.cpp:bool isIncompleteDeclExternC<clang::FunctionDecl>(clang::Sema&, clang::FunctionDecl const*) Line | Count | Source | 7328 | 6 | static bool isIncompleteDeclExternC(Sema &S, const T *D) { | 7329 | 6 | if (S.getLangOpts().CPlusPlus) { | 7330 | | // In C++, the overloadable attribute negates the effects of extern "C". | 7331 | 0 | if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>()) | 7332 | 0 | return false; | 7333 | | | 7334 | | // So do CUDA's host/device attributes. | 7335 | 0 | if (S.getLangOpts().CUDA && (D->template hasAttr<CUDADeviceAttr>() || | 7336 | 0 | D->template hasAttr<CUDAHostAttr>())) | 7337 | 0 | return false; | 7338 | 0 | } | 7339 | 6 | return D->isExternC(); | 7340 | 6 | } |
|
7341 | | |
7342 | 5.07k | static bool shouldConsiderLinkage(const VarDecl *VD) { |
7343 | 5.07k | const DeclContext *DC = VD->getDeclContext()->getRedeclContext(); |
7344 | 5.07k | if (DC->isFunctionOrMethod() || isa<OMPDeclareReductionDecl>(DC) || |
7345 | 5.07k | isa<OMPDeclareMapperDecl>(DC)) |
7346 | 0 | return VD->hasExternalStorage(); |
7347 | 5.07k | if (DC->isFileContext()) |
7348 | 5.07k | return true; |
7349 | 0 | if (DC->isRecord()) |
7350 | 0 | return false; |
7351 | 0 | if (DC->getDeclKind() == Decl::HLSLBuffer) |
7352 | 0 | return false; |
7353 | | |
7354 | 0 | if (isa<RequiresExprBodyDecl>(DC)) |
7355 | 0 | return false; |
7356 | 0 | llvm_unreachable("Unexpected context"); |
7357 | 0 | } |
7358 | | |
7359 | 19 | static bool shouldConsiderLinkage(const FunctionDecl *FD) { |
7360 | 19 | const DeclContext *DC = FD->getDeclContext()->getRedeclContext(); |
7361 | 19 | if (DC->isFileContext() || DC->isFunctionOrMethod() || |
7362 | 19 | isa<OMPDeclareReductionDecl>(DC) || isa<OMPDeclareMapperDecl>(DC)) |
7363 | 19 | return true; |
7364 | 0 | if (DC->isRecord()) |
7365 | 0 | return false; |
7366 | 0 | llvm_unreachable("Unexpected context"); |
7367 | 0 | } |
7368 | | |
7369 | | static bool hasParsedAttr(Scope *S, const Declarator &PD, |
7370 | 5.07k | ParsedAttr::Kind Kind) { |
7371 | | // Check decl attributes on the DeclSpec. |
7372 | 5.07k | if (PD.getDeclSpec().getAttributes().hasAttribute(Kind)) |
7373 | 0 | return true; |
7374 | | |
7375 | | // Walk the declarator structure, checking decl attributes that were in a type |
7376 | | // position to the decl itself. |
7377 | 5.55k | for (unsigned I = 0, E = PD.getNumTypeObjects(); I != E; ++I) { |
7378 | 485 | if (PD.getTypeObject(I).getAttrs().hasAttribute(Kind)) |
7379 | 0 | return true; |
7380 | 485 | } |
7381 | | |
7382 | | // Finally, check attributes on the decl itself. |
7383 | 5.07k | return PD.getAttributes().hasAttribute(Kind) || |
7384 | 5.07k | PD.getDeclarationAttributes().hasAttribute(Kind); |
7385 | 5.07k | } |
7386 | | |
7387 | | /// Adjust the \c DeclContext for a function or variable that might be a |
7388 | | /// function-local external declaration. |
7389 | 19 | bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) { |
7390 | 19 | if (!DC->isFunctionOrMethod()) |
7391 | 19 | return false; |
7392 | | |
7393 | | // If this is a local extern function or variable declared within a function |
7394 | | // template, don't add it into the enclosing namespace scope until it is |
7395 | | // instantiated; it might have a dependent type right now. |
7396 | 0 | if (DC->isDependentContext()) |
7397 | 0 | return true; |
7398 | | |
7399 | | // C++11 [basic.link]p7: |
7400 | | // When a block scope declaration of an entity with linkage is not found to |
7401 | | // refer to some other declaration, then that entity is a member of the |
7402 | | // innermost enclosing namespace. |
7403 | | // |
7404 | | // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a |
7405 | | // semantically-enclosing namespace, not a lexically-enclosing one. |
7406 | 0 | while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC)) |
7407 | 0 | DC = DC->getParent(); |
7408 | 0 | return true; |
7409 | 0 | } |
7410 | | |
7411 | | /// Returns true if given declaration has external C language linkage. |
7412 | 0 | static bool isDeclExternC(const Decl *D) { |
7413 | 0 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) |
7414 | 0 | return FD->isExternC(); |
7415 | 0 | if (const auto *VD = dyn_cast<VarDecl>(D)) |
7416 | 0 | return VD->isExternC(); |
7417 | | |
7418 | 0 | llvm_unreachable("Unknown type of decl!"); |
7419 | 0 | } |
7420 | | |
7421 | | /// Returns true if there hasn't been any invalid type diagnosed. |
7422 | 0 | static bool diagnoseOpenCLTypes(Sema &Se, VarDecl *NewVD) { |
7423 | 0 | DeclContext *DC = NewVD->getDeclContext(); |
7424 | 0 | QualType R = NewVD->getType(); |
7425 | | |
7426 | | // OpenCL v2.0 s6.9.b - Image type can only be used as a function argument. |
7427 | | // OpenCL v2.0 s6.13.16.1 - Pipe type can only be used as a function |
7428 | | // argument. |
7429 | 0 | if (R->isImageType() || R->isPipeType()) { |
7430 | 0 | Se.Diag(NewVD->getLocation(), |
7431 | 0 | diag::err_opencl_type_can_only_be_used_as_function_parameter) |
7432 | 0 | << R; |
7433 | 0 | NewVD->setInvalidDecl(); |
7434 | 0 | return false; |
7435 | 0 | } |
7436 | | |
7437 | | // OpenCL v1.2 s6.9.r: |
7438 | | // The event type cannot be used to declare a program scope variable. |
7439 | | // OpenCL v2.0 s6.9.q: |
7440 | | // The clk_event_t and reserve_id_t types cannot be declared in program |
7441 | | // scope. |
7442 | 0 | if (NewVD->hasGlobalStorage() && !NewVD->isStaticLocal()) { |
7443 | 0 | if (R->isReserveIDT() || R->isClkEventT() || R->isEventT()) { |
7444 | 0 | Se.Diag(NewVD->getLocation(), |
7445 | 0 | diag::err_invalid_type_for_program_scope_var) |
7446 | 0 | << R; |
7447 | 0 | NewVD->setInvalidDecl(); |
7448 | 0 | return false; |
7449 | 0 | } |
7450 | 0 | } |
7451 | | |
7452 | | // OpenCL v1.0 s6.8.a.3: Pointers to functions are not allowed. |
7453 | 0 | if (!Se.getOpenCLOptions().isAvailableOption("__cl_clang_function_pointers", |
7454 | 0 | Se.getLangOpts())) { |
7455 | 0 | QualType NR = R.getCanonicalType(); |
7456 | 0 | while (NR->isPointerType() || NR->isMemberFunctionPointerType() || |
7457 | 0 | NR->isReferenceType()) { |
7458 | 0 | if (NR->isFunctionPointerType() || NR->isMemberFunctionPointerType() || |
7459 | 0 | NR->isFunctionReferenceType()) { |
7460 | 0 | Se.Diag(NewVD->getLocation(), diag::err_opencl_function_pointer) |
7461 | 0 | << NR->isReferenceType(); |
7462 | 0 | NewVD->setInvalidDecl(); |
7463 | 0 | return false; |
7464 | 0 | } |
7465 | 0 | NR = NR->getPointeeType(); |
7466 | 0 | } |
7467 | 0 | } |
7468 | | |
7469 | 0 | if (!Se.getOpenCLOptions().isAvailableOption("cl_khr_fp16", |
7470 | 0 | Se.getLangOpts())) { |
7471 | | // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and |
7472 | | // half array type (unless the cl_khr_fp16 extension is enabled). |
7473 | 0 | if (Se.Context.getBaseElementType(R)->isHalfType()) { |
7474 | 0 | Se.Diag(NewVD->getLocation(), diag::err_opencl_half_declaration) << R; |
7475 | 0 | NewVD->setInvalidDecl(); |
7476 | 0 | return false; |
7477 | 0 | } |
7478 | 0 | } |
7479 | | |
7480 | | // OpenCL v1.2 s6.9.r: |
7481 | | // The event type cannot be used with the __local, __constant and __global |
7482 | | // address space qualifiers. |
7483 | 0 | if (R->isEventT()) { |
7484 | 0 | if (R.getAddressSpace() != LangAS::opencl_private) { |
7485 | 0 | Se.Diag(NewVD->getBeginLoc(), diag::err_event_t_addr_space_qual); |
7486 | 0 | NewVD->setInvalidDecl(); |
7487 | 0 | return false; |
7488 | 0 | } |
7489 | 0 | } |
7490 | | |
7491 | 0 | if (R->isSamplerT()) { |
7492 | | // OpenCL v1.2 s6.9.b p4: |
7493 | | // The sampler type cannot be used with the __local and __global address |
7494 | | // space qualifiers. |
7495 | 0 | if (R.getAddressSpace() == LangAS::opencl_local || |
7496 | 0 | R.getAddressSpace() == LangAS::opencl_global) { |
7497 | 0 | Se.Diag(NewVD->getLocation(), diag::err_wrong_sampler_addressspace); |
7498 | 0 | NewVD->setInvalidDecl(); |
7499 | 0 | } |
7500 | | |
7501 | | // OpenCL v1.2 s6.12.14.1: |
7502 | | // A global sampler must be declared with either the constant address |
7503 | | // space qualifier or with the const qualifier. |
7504 | 0 | if (DC->isTranslationUnit() && |
7505 | 0 | !(R.getAddressSpace() == LangAS::opencl_constant || |
7506 | 0 | R.isConstQualified())) { |
7507 | 0 | Se.Diag(NewVD->getLocation(), diag::err_opencl_nonconst_global_sampler); |
7508 | 0 | NewVD->setInvalidDecl(); |
7509 | 0 | } |
7510 | 0 | if (NewVD->isInvalidDecl()) |
7511 | 0 | return false; |
7512 | 0 | } |
7513 | | |
7514 | 0 | return true; |
7515 | 0 | } |
7516 | | |
7517 | | template <typename AttrTy> |
7518 | 0 | static void copyAttrFromTypedefToDecl(Sema &S, Decl *D, const TypedefType *TT) { |
7519 | 0 | const TypedefNameDecl *TND = TT->getDecl(); |
7520 | 0 | if (const auto *Attribute = TND->getAttr<AttrTy>()) { |
7521 | 0 | AttrTy *Clone = Attribute->clone(S.Context); |
7522 | 0 | Clone->setInherited(true); |
7523 | 0 | D->addAttr(Clone); |
7524 | 0 | } |
7525 | 0 | } |
7526 | | |
7527 | | // This function emits warning and a corresponding note based on the |
7528 | | // ReadOnlyPlacementAttr attribute. The warning checks that all global variable |
7529 | | // declarations of an annotated type must be const qualified. |
7530 | 5.07k | void emitReadOnlyPlacementAttrWarning(Sema &S, const VarDecl *VD) { |
7531 | 5.07k | QualType VarType = VD->getType().getCanonicalType(); |
7532 | | |
7533 | | // Ignore local declarations (for now) and those with const qualification. |
7534 | | // TODO: Local variables should not be allowed if their type declaration has |
7535 | | // ReadOnlyPlacementAttr attribute. To be handled in follow-up patch. |
7536 | 5.07k | if (!VD || VD->hasLocalStorage() || VD->getType().isConstQualified()) |
7537 | 0 | return; |
7538 | | |
7539 | 5.07k | if (VarType->isArrayType()) { |
7540 | | // Retrieve element type for array declarations. |
7541 | 43 | VarType = S.getASTContext().getBaseElementType(VarType); |
7542 | 43 | } |
7543 | | |
7544 | 5.07k | const RecordDecl *RD = VarType->getAsRecordDecl(); |
7545 | | |
7546 | | // Check if the record declaration is present and if it has any attributes. |
7547 | 5.07k | if (RD == nullptr) |
7548 | 5.07k | return; |
7549 | | |
7550 | 0 | if (const auto *ConstDecl = RD->getAttr<ReadOnlyPlacementAttr>()) { |
7551 | 0 | S.Diag(VD->getLocation(), diag::warn_var_decl_not_read_only) << RD; |
7552 | 0 | S.Diag(ConstDecl->getLocation(), diag::note_enforce_read_only_placement); |
7553 | 0 | return; |
7554 | 0 | } |
7555 | 0 | } |
7556 | | |
7557 | | NamedDecl *Sema::ActOnVariableDeclarator( |
7558 | | Scope *S, Declarator &D, DeclContext *DC, TypeSourceInfo *TInfo, |
7559 | | LookupResult &Previous, MultiTemplateParamsArg TemplateParamLists, |
7560 | 5.07k | bool &AddToScope, ArrayRef<BindingDecl *> Bindings) { |
7561 | 5.07k | QualType R = TInfo->getType(); |
7562 | 5.07k | DeclarationName Name = GetNameForDeclarator(D).getName(); |
7563 | | |
7564 | 5.07k | IdentifierInfo *II = Name.getAsIdentifierInfo(); |
7565 | 5.07k | bool IsPlaceholderVariable = false; |
7566 | | |
7567 | 5.07k | if (D.isDecompositionDeclarator()) { |
7568 | | // Take the name of the first declarator as our name for diagnostic |
7569 | | // purposes. |
7570 | 0 | auto &Decomp = D.getDecompositionDeclarator(); |
7571 | 0 | if (!Decomp.bindings().empty()) { |
7572 | 0 | II = Decomp.bindings()[0].Name; |
7573 | 0 | Name = II; |
7574 | 0 | } |
7575 | 5.07k | } else if (!II) { |
7576 | 0 | Diag(D.getIdentifierLoc(), diag::err_bad_variable_name) << Name; |
7577 | 0 | return nullptr; |
7578 | 0 | } |
7579 | | |
7580 | | |
7581 | 5.07k | DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec(); |
7582 | 5.07k | StorageClass SC = StorageClassSpecToVarDeclStorageClass(D.getDeclSpec()); |
7583 | | |
7584 | 5.07k | if (LangOpts.CPlusPlus && (DC->isClosure() || DC->isFunctionOrMethod()) && |
7585 | 5.07k | SC != SC_Static && SC != SC_Extern && II && II->isPlaceholder()) { |
7586 | 0 | IsPlaceholderVariable = true; |
7587 | 0 | if (!Previous.empty()) { |
7588 | 0 | NamedDecl *PrevDecl = *Previous.begin(); |
7589 | 0 | bool SameDC = PrevDecl->getDeclContext()->getRedeclContext()->Equals( |
7590 | 0 | DC->getRedeclContext()); |
7591 | 0 | if (SameDC && isDeclInScope(PrevDecl, CurContext, S, false)) |
7592 | 0 | DiagPlaceholderVariableDefinition(D.getIdentifierLoc()); |
7593 | 0 | } |
7594 | 0 | } |
7595 | | |
7596 | | // dllimport globals without explicit storage class are treated as extern. We |
7597 | | // have to change the storage class this early to get the right DeclContext. |
7598 | 5.07k | if (SC == SC_None && !DC->isRecord() && |
7599 | 5.07k | hasParsedAttr(S, D, ParsedAttr::AT_DLLImport) && |
7600 | 5.07k | !hasParsedAttr(S, D, ParsedAttr::AT_DLLExport)) |
7601 | 0 | SC = SC_Extern; |
7602 | | |
7603 | 5.07k | DeclContext *OriginalDC = DC; |
7604 | 5.07k | bool IsLocalExternDecl = SC == SC_Extern && |
7605 | 5.07k | adjustContextForLocalExternDecl(DC); |
7606 | | |
7607 | 5.07k | if (SCSpec == DeclSpec::SCS_mutable) { |
7608 | | // mutable can only appear on non-static class members, so it's always |
7609 | | // an error here |
7610 | 0 | Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember); |
7611 | 0 | D.setInvalidType(); |
7612 | 0 | SC = SC_None; |
7613 | 0 | } |
7614 | | |
7615 | 5.07k | if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register && |
7616 | 5.07k | !D.getAsmLabel() && !getSourceManager().isInSystemMacro( |
7617 | 0 | D.getDeclSpec().getStorageClassSpecLoc())) { |
7618 | | // In C++11, the 'register' storage class specifier is deprecated. |
7619 | | // Suppress the warning in system macros, it's used in macros in some |
7620 | | // popular C system headers, such as in glibc's htonl() macro. |
7621 | 0 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
7622 | 0 | getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class |
7623 | 0 | : diag::warn_deprecated_register) |
7624 | 0 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
7625 | 0 | } |
7626 | | |
7627 | 5.07k | DiagnoseFunctionSpecifiers(D.getDeclSpec()); |
7628 | | |
7629 | 5.07k | if (!DC->isRecord() && S->getFnParent() == nullptr) { |
7630 | | // C99 6.9p2: The storage-class specifiers auto and register shall not |
7631 | | // appear in the declaration specifiers in an external declaration. |
7632 | | // Global Register+Asm is a GNU extension we support. |
7633 | 5.07k | if (SC == SC_Auto || (SC == SC_Register && !D.getAsmLabel())) { |
7634 | 0 | Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope); |
7635 | 0 | D.setInvalidType(); |
7636 | 0 | } |
7637 | 5.07k | } |
7638 | | |
7639 | | // If this variable has a VLA type and an initializer, try to |
7640 | | // fold to a constant-sized type. This is otherwise invalid. |
7641 | 5.07k | if (D.hasInitializer() && R->isVariableArrayType()) |
7642 | 0 | tryToFixVariablyModifiedVarType(TInfo, R, D.getIdentifierLoc(), |
7643 | 0 | /*DiagID=*/0); |
7644 | | |
7645 | 5.07k | bool IsMemberSpecialization = false; |
7646 | 5.07k | bool IsVariableTemplateSpecialization = false; |
7647 | 5.07k | bool IsPartialSpecialization = false; |
7648 | 5.07k | bool IsVariableTemplate = false; |
7649 | 5.07k | VarDecl *NewVD = nullptr; |
7650 | 5.07k | VarTemplateDecl *NewTemplate = nullptr; |
7651 | 5.07k | TemplateParameterList *TemplateParams = nullptr; |
7652 | 5.07k | if (!getLangOpts().CPlusPlus) { |
7653 | 2.48k | NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), |
7654 | 2.48k | II, R, TInfo, SC); |
7655 | | |
7656 | 2.48k | if (R->getContainedDeducedType()) |
7657 | 0 | ParsingInitForAutoVars.insert(NewVD); |
7658 | | |
7659 | 2.48k | if (D.isInvalidType()) |
7660 | 2.00k | NewVD->setInvalidDecl(); |
7661 | | |
7662 | 2.48k | if (NewVD->getType().hasNonTrivialToPrimitiveDestructCUnion() && |
7663 | 2.48k | NewVD->hasLocalStorage()) |
7664 | 0 | checkNonTrivialCUnion(NewVD->getType(), NewVD->getLocation(), |
7665 | 0 | NTCUC_AutoVar, NTCUK_Destruct); |
7666 | 2.58k | } else { |
7667 | 2.58k | bool Invalid = false; |
7668 | | |
7669 | 2.58k | if (DC->isRecord() && !CurContext->isRecord()) { |
7670 | | // This is an out-of-line definition of a static data member. |
7671 | 0 | switch (SC) { |
7672 | 0 | case SC_None: |
7673 | 0 | break; |
7674 | 0 | case SC_Static: |
7675 | 0 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
7676 | 0 | diag::err_static_out_of_line) |
7677 | 0 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
7678 | 0 | break; |
7679 | 0 | case SC_Auto: |
7680 | 0 | case SC_Register: |
7681 | 0 | case SC_Extern: |
7682 | | // [dcl.stc] p2: The auto or register specifiers shall be applied only |
7683 | | // to names of variables declared in a block or to function parameters. |
7684 | | // [dcl.stc] p6: The extern specifier cannot be used in the declaration |
7685 | | // of class members |
7686 | |
|
7687 | 0 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
7688 | 0 | diag::err_storage_class_for_static_member) |
7689 | 0 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
7690 | 0 | break; |
7691 | 0 | case SC_PrivateExtern: |
7692 | 0 | llvm_unreachable("C storage class in c++!"); |
7693 | 0 | } |
7694 | 0 | } |
7695 | | |
7696 | 2.58k | if (SC == SC_Static && CurContext->isRecord()) { |
7697 | 0 | if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) { |
7698 | | // Walk up the enclosing DeclContexts to check for any that are |
7699 | | // incompatible with static data members. |
7700 | 0 | const DeclContext *FunctionOrMethod = nullptr; |
7701 | 0 | const CXXRecordDecl *AnonStruct = nullptr; |
7702 | 0 | for (DeclContext *Ctxt = DC; Ctxt; Ctxt = Ctxt->getParent()) { |
7703 | 0 | if (Ctxt->isFunctionOrMethod()) { |
7704 | 0 | FunctionOrMethod = Ctxt; |
7705 | 0 | break; |
7706 | 0 | } |
7707 | 0 | const CXXRecordDecl *ParentDecl = dyn_cast<CXXRecordDecl>(Ctxt); |
7708 | 0 | if (ParentDecl && !ParentDecl->getDeclName()) { |
7709 | 0 | AnonStruct = ParentDecl; |
7710 | 0 | break; |
7711 | 0 | } |
7712 | 0 | } |
7713 | 0 | if (FunctionOrMethod) { |
7714 | | // C++ [class.static.data]p5: A local class shall not have static data |
7715 | | // members. |
7716 | 0 | Diag(D.getIdentifierLoc(), |
7717 | 0 | diag::err_static_data_member_not_allowed_in_local_class) |
7718 | 0 | << Name << RD->getDeclName() |
7719 | 0 | << llvm::to_underlying(RD->getTagKind()); |
7720 | 0 | } else if (AnonStruct) { |
7721 | | // C++ [class.static.data]p4: Unnamed classes and classes contained |
7722 | | // directly or indirectly within unnamed classes shall not contain |
7723 | | // static data members. |
7724 | 0 | Diag(D.getIdentifierLoc(), |
7725 | 0 | diag::err_static_data_member_not_allowed_in_anon_struct) |
7726 | 0 | << Name << llvm::to_underlying(AnonStruct->getTagKind()); |
7727 | 0 | Invalid = true; |
7728 | 0 | } else if (RD->isUnion()) { |
7729 | | // C++98 [class.union]p1: If a union contains a static data member, |
7730 | | // the program is ill-formed. C++11 drops this restriction. |
7731 | 0 | Diag(D.getIdentifierLoc(), |
7732 | 0 | getLangOpts().CPlusPlus11 |
7733 | 0 | ? diag::warn_cxx98_compat_static_data_member_in_union |
7734 | 0 | : diag::ext_static_data_member_in_union) << Name; |
7735 | 0 | } |
7736 | 0 | } |
7737 | 0 | } |
7738 | | |
7739 | | // Match up the template parameter lists with the scope specifier, then |
7740 | | // determine whether we have a template or a template specialization. |
7741 | 2.58k | bool InvalidScope = false; |
7742 | 2.58k | TemplateParams = MatchTemplateParametersToScopeSpecifier( |
7743 | 2.58k | D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), |
7744 | 2.58k | D.getCXXScopeSpec(), |
7745 | 2.58k | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId |
7746 | 2.58k | ? D.getName().TemplateId |
7747 | 2.58k | : nullptr, |
7748 | 2.58k | TemplateParamLists, |
7749 | 2.58k | /*never a friend*/ false, IsMemberSpecialization, InvalidScope); |
7750 | 2.58k | Invalid |= InvalidScope; |
7751 | | |
7752 | 2.58k | if (TemplateParams) { |
7753 | 0 | if (!TemplateParams->size() && |
7754 | 0 | D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { |
7755 | | // There is an extraneous 'template<>' for this variable. Complain |
7756 | | // about it, but allow the declaration of the variable. |
7757 | 0 | Diag(TemplateParams->getTemplateLoc(), |
7758 | 0 | diag::err_template_variable_noparams) |
7759 | 0 | << II |
7760 | 0 | << SourceRange(TemplateParams->getTemplateLoc(), |
7761 | 0 | TemplateParams->getRAngleLoc()); |
7762 | 0 | TemplateParams = nullptr; |
7763 | 0 | } else { |
7764 | | // Check that we can declare a template here. |
7765 | 0 | if (CheckTemplateDeclScope(S, TemplateParams)) |
7766 | 0 | return nullptr; |
7767 | | |
7768 | 0 | if (D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId) { |
7769 | | // This is an explicit specialization or a partial specialization. |
7770 | 0 | IsVariableTemplateSpecialization = true; |
7771 | 0 | IsPartialSpecialization = TemplateParams->size() > 0; |
7772 | 0 | } else { // if (TemplateParams->size() > 0) |
7773 | | // This is a template declaration. |
7774 | 0 | IsVariableTemplate = true; |
7775 | | |
7776 | | // Only C++1y supports variable templates (N3651). |
7777 | 0 | Diag(D.getIdentifierLoc(), |
7778 | 0 | getLangOpts().CPlusPlus14 |
7779 | 0 | ? diag::warn_cxx11_compat_variable_template |
7780 | 0 | : diag::ext_variable_template); |
7781 | 0 | } |
7782 | 0 | } |
7783 | 2.58k | } else { |
7784 | | // Check that we can declare a member specialization here. |
7785 | 2.58k | if (!TemplateParamLists.empty() && IsMemberSpecialization && |
7786 | 2.58k | CheckTemplateDeclScope(S, TemplateParamLists.back())) |
7787 | 0 | return nullptr; |
7788 | 2.58k | assert((Invalid || |
7789 | 2.58k | D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) && |
7790 | 2.58k | "should have a 'template<>' for this decl"); |
7791 | 2.58k | } |
7792 | | |
7793 | 2.58k | if (IsVariableTemplateSpecialization) { |
7794 | 0 | SourceLocation TemplateKWLoc = |
7795 | 0 | TemplateParamLists.size() > 0 |
7796 | 0 | ? TemplateParamLists[0]->getTemplateLoc() |
7797 | 0 | : SourceLocation(); |
7798 | 0 | DeclResult Res = ActOnVarTemplateSpecialization( |
7799 | 0 | S, D, TInfo, TemplateKWLoc, TemplateParams, SC, |
7800 | 0 | IsPartialSpecialization); |
7801 | 0 | if (Res.isInvalid()) |
7802 | 0 | return nullptr; |
7803 | 0 | NewVD = cast<VarDecl>(Res.get()); |
7804 | 0 | AddToScope = false; |
7805 | 2.58k | } else if (D.isDecompositionDeclarator()) { |
7806 | 0 | NewVD = DecompositionDecl::Create(Context, DC, D.getBeginLoc(), |
7807 | 0 | D.getIdentifierLoc(), R, TInfo, SC, |
7808 | 0 | Bindings); |
7809 | 0 | } else |
7810 | 2.58k | NewVD = VarDecl::Create(Context, DC, D.getBeginLoc(), |
7811 | 2.58k | D.getIdentifierLoc(), II, R, TInfo, SC); |
7812 | | |
7813 | | // If this is supposed to be a variable template, create it as such. |
7814 | 2.58k | if (IsVariableTemplate) { |
7815 | 0 | NewTemplate = |
7816 | 0 | VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name, |
7817 | 0 | TemplateParams, NewVD); |
7818 | 0 | NewVD->setDescribedVarTemplate(NewTemplate); |
7819 | 0 | } |
7820 | | |
7821 | | // If this decl has an auto type in need of deduction, make a note of the |
7822 | | // Decl so we can diagnose uses of it in its own initializer. |
7823 | 2.58k | if (R->getContainedDeducedType()) |
7824 | 0 | ParsingInitForAutoVars.insert(NewVD); |
7825 | | |
7826 | 2.58k | if (D.isInvalidType() || Invalid) { |
7827 | 2.58k | NewVD->setInvalidDecl(); |
7828 | 2.58k | if (NewTemplate) |
7829 | 0 | NewTemplate->setInvalidDecl(); |
7830 | 2.58k | } |
7831 | | |
7832 | 2.58k | SetNestedNameSpecifier(*this, NewVD, D); |
7833 | | |
7834 | | // If we have any template parameter lists that don't directly belong to |
7835 | | // the variable (matching the scope specifier), store them. |
7836 | | // An explicit variable template specialization does not own any template |
7837 | | // parameter lists. |
7838 | 2.58k | bool IsExplicitSpecialization = |
7839 | 2.58k | IsVariableTemplateSpecialization && !IsPartialSpecialization; |
7840 | 2.58k | unsigned VDTemplateParamLists = |
7841 | 2.58k | (TemplateParams && !IsExplicitSpecialization) ? 1 : 0; |
7842 | 2.58k | if (TemplateParamLists.size() > VDTemplateParamLists) |
7843 | 0 | NewVD->setTemplateParameterListsInfo( |
7844 | 0 | Context, TemplateParamLists.drop_back(VDTemplateParamLists)); |
7845 | 2.58k | } |
7846 | | |
7847 | 5.07k | if (D.getDeclSpec().isInlineSpecified()) { |
7848 | 0 | if (!getLangOpts().CPlusPlus) { |
7849 | 0 | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) |
7850 | 0 | << 0; |
7851 | 0 | } else if (CurContext->isFunctionOrMethod()) { |
7852 | | // 'inline' is not allowed on block scope variable declaration. |
7853 | 0 | Diag(D.getDeclSpec().getInlineSpecLoc(), |
7854 | 0 | diag::err_inline_declaration_block_scope) << Name |
7855 | 0 | << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); |
7856 | 0 | } else { |
7857 | 0 | Diag(D.getDeclSpec().getInlineSpecLoc(), |
7858 | 0 | getLangOpts().CPlusPlus17 ? diag::warn_cxx14_compat_inline_variable |
7859 | 0 | : diag::ext_inline_variable); |
7860 | 0 | NewVD->setInlineSpecified(); |
7861 | 0 | } |
7862 | 0 | } |
7863 | | |
7864 | | // Set the lexical context. If the declarator has a C++ scope specifier, the |
7865 | | // lexical context will be different from the semantic context. |
7866 | 5.07k | NewVD->setLexicalDeclContext(CurContext); |
7867 | 5.07k | if (NewTemplate) |
7868 | 0 | NewTemplate->setLexicalDeclContext(CurContext); |
7869 | | |
7870 | 5.07k | if (IsLocalExternDecl) { |
7871 | 0 | if (D.isDecompositionDeclarator()) |
7872 | 0 | for (auto *B : Bindings) |
7873 | 0 | B->setLocalExternDecl(); |
7874 | 0 | else |
7875 | 0 | NewVD->setLocalExternDecl(); |
7876 | 0 | } |
7877 | | |
7878 | 5.07k | bool EmitTLSUnsupportedError = false; |
7879 | 5.07k | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) { |
7880 | | // C++11 [dcl.stc]p4: |
7881 | | // When thread_local is applied to a variable of block scope the |
7882 | | // storage-class-specifier static is implied if it does not appear |
7883 | | // explicitly. |
7884 | | // Core issue: 'static' is not implied if the variable is declared |
7885 | | // 'extern'. |
7886 | 0 | if (NewVD->hasLocalStorage() && |
7887 | 0 | (SCSpec != DeclSpec::SCS_unspecified || |
7888 | 0 | TSCS != DeclSpec::TSCS_thread_local || |
7889 | 0 | !DC->isFunctionOrMethod())) |
7890 | 0 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
7891 | 0 | diag::err_thread_non_global) |
7892 | 0 | << DeclSpec::getSpecifierName(TSCS); |
7893 | 0 | else if (!Context.getTargetInfo().isTLSSupported()) { |
7894 | 0 | if (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice || |
7895 | 0 | getLangOpts().SYCLIsDevice) { |
7896 | | // Postpone error emission until we've collected attributes required to |
7897 | | // figure out whether it's a host or device variable and whether the |
7898 | | // error should be ignored. |
7899 | 0 | EmitTLSUnsupportedError = true; |
7900 | | // We still need to mark the variable as TLS so it shows up in AST with |
7901 | | // proper storage class for other tools to use even if we're not going |
7902 | | // to emit any code for it. |
7903 | 0 | NewVD->setTSCSpec(TSCS); |
7904 | 0 | } else |
7905 | 0 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
7906 | 0 | diag::err_thread_unsupported); |
7907 | 0 | } else |
7908 | 0 | NewVD->setTSCSpec(TSCS); |
7909 | 0 | } |
7910 | | |
7911 | 5.07k | switch (D.getDeclSpec().getConstexprSpecifier()) { |
7912 | 5.07k | case ConstexprSpecKind::Unspecified: |
7913 | 5.07k | break; |
7914 | | |
7915 | 0 | case ConstexprSpecKind::Consteval: |
7916 | 0 | Diag(D.getDeclSpec().getConstexprSpecLoc(), |
7917 | 0 | diag::err_constexpr_wrong_decl_kind) |
7918 | 0 | << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); |
7919 | 0 | [[fallthrough]]; |
7920 | |
|
7921 | 0 | case ConstexprSpecKind::Constexpr: |
7922 | 0 | NewVD->setConstexpr(true); |
7923 | | // C++1z [dcl.spec.constexpr]p1: |
7924 | | // A static data member declared with the constexpr specifier is |
7925 | | // implicitly an inline variable. |
7926 | 0 | if (NewVD->isStaticDataMember() && |
7927 | 0 | (getLangOpts().CPlusPlus17 || |
7928 | 0 | Context.getTargetInfo().getCXXABI().isMicrosoft())) |
7929 | 0 | NewVD->setImplicitlyInline(); |
7930 | 0 | break; |
7931 | | |
7932 | 0 | case ConstexprSpecKind::Constinit: |
7933 | 0 | if (!NewVD->hasGlobalStorage()) |
7934 | 0 | Diag(D.getDeclSpec().getConstexprSpecLoc(), |
7935 | 0 | diag::err_constinit_local_variable); |
7936 | 0 | else |
7937 | 0 | NewVD->addAttr( |
7938 | 0 | ConstInitAttr::Create(Context, D.getDeclSpec().getConstexprSpecLoc(), |
7939 | 0 | ConstInitAttr::Keyword_constinit)); |
7940 | 0 | break; |
7941 | 5.07k | } |
7942 | | |
7943 | | // C99 6.7.4p3 |
7944 | | // An inline definition of a function with external linkage shall |
7945 | | // not contain a definition of a modifiable object with static or |
7946 | | // thread storage duration... |
7947 | | // We only apply this when the function is required to be defined |
7948 | | // elsewhere, i.e. when the function is not 'extern inline'. Note |
7949 | | // that a local variable with thread storage duration still has to |
7950 | | // be marked 'static'. Also note that it's possible to get these |
7951 | | // semantics in C++ using __attribute__((gnu_inline)). |
7952 | 5.07k | if (SC == SC_Static && S->getFnParent() != nullptr && |
7953 | 5.07k | !NewVD->getType().isConstQualified()) { |
7954 | 0 | FunctionDecl *CurFD = getCurFunctionDecl(); |
7955 | 0 | if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) { |
7956 | 0 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
7957 | 0 | diag::warn_static_local_in_extern_inline); |
7958 | 0 | MaybeSuggestAddingStaticToDecl(CurFD); |
7959 | 0 | } |
7960 | 0 | } |
7961 | | |
7962 | 5.07k | if (D.getDeclSpec().isModulePrivateSpecified()) { |
7963 | 0 | if (IsVariableTemplateSpecialization) |
7964 | 0 | Diag(NewVD->getLocation(), diag::err_module_private_specialization) |
7965 | 0 | << (IsPartialSpecialization ? 1 : 0) |
7966 | 0 | << FixItHint::CreateRemoval( |
7967 | 0 | D.getDeclSpec().getModulePrivateSpecLoc()); |
7968 | 0 | else if (IsMemberSpecialization) |
7969 | 0 | Diag(NewVD->getLocation(), diag::err_module_private_specialization) |
7970 | 0 | << 2 |
7971 | 0 | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); |
7972 | 0 | else if (NewVD->hasLocalStorage()) |
7973 | 0 | Diag(NewVD->getLocation(), diag::err_module_private_local) |
7974 | 0 | << 0 << NewVD |
7975 | 0 | << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) |
7976 | 0 | << FixItHint::CreateRemoval( |
7977 | 0 | D.getDeclSpec().getModulePrivateSpecLoc()); |
7978 | 0 | else { |
7979 | 0 | NewVD->setModulePrivate(); |
7980 | 0 | if (NewTemplate) |
7981 | 0 | NewTemplate->setModulePrivate(); |
7982 | 0 | for (auto *B : Bindings) |
7983 | 0 | B->setModulePrivate(); |
7984 | 0 | } |
7985 | 0 | } |
7986 | | |
7987 | 5.07k | if (getLangOpts().OpenCL) { |
7988 | 0 | deduceOpenCLAddressSpace(NewVD); |
7989 | |
|
7990 | 0 | DeclSpec::TSCS TSC = D.getDeclSpec().getThreadStorageClassSpec(); |
7991 | 0 | if (TSC != TSCS_unspecified) { |
7992 | 0 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
7993 | 0 | diag::err_opencl_unknown_type_specifier) |
7994 | 0 | << getLangOpts().getOpenCLVersionString() |
7995 | 0 | << DeclSpec::getSpecifierName(TSC) << 1; |
7996 | 0 | NewVD->setInvalidDecl(); |
7997 | 0 | } |
7998 | 0 | } |
7999 | | |
8000 | | // WebAssembly tables are always in address space 1 (wasm_var). Don't apply |
8001 | | // address space if the table has local storage (semantic checks elsewhere |
8002 | | // will produce an error anyway). |
8003 | 5.07k | if (const auto *ATy = dyn_cast<ArrayType>(NewVD->getType())) { |
8004 | 43 | if (ATy && ATy->getElementType().isWebAssemblyReferenceType() && |
8005 | 43 | !NewVD->hasLocalStorage()) { |
8006 | 0 | QualType Type = Context.getAddrSpaceQualType( |
8007 | 0 | NewVD->getType(), Context.getLangASForBuiltinAddressSpace(1)); |
8008 | 0 | NewVD->setType(Type); |
8009 | 0 | } |
8010 | 43 | } |
8011 | | |
8012 | | // Handle attributes prior to checking for duplicates in MergeVarDecl |
8013 | 5.07k | ProcessDeclAttributes(S, NewVD, D); |
8014 | | |
8015 | | // FIXME: This is probably the wrong location to be doing this and we should |
8016 | | // probably be doing this for more attributes (especially for function |
8017 | | // pointer attributes such as format, warn_unused_result, etc.). Ideally |
8018 | | // the code to copy attributes would be generated by TableGen. |
8019 | 5.07k | if (R->isFunctionPointerType()) |
8020 | 0 | if (const auto *TT = R->getAs<TypedefType>()) |
8021 | 0 | copyAttrFromTypedefToDecl<AllocSizeAttr>(*this, NewVD, TT); |
8022 | | |
8023 | 5.07k | if (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice || |
8024 | 5.07k | getLangOpts().SYCLIsDevice) { |
8025 | 0 | if (EmitTLSUnsupportedError && |
8026 | 0 | ((getLangOpts().CUDA && DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) || |
8027 | 0 | (getLangOpts().OpenMPIsTargetDevice && |
8028 | 0 | OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(NewVD)))) |
8029 | 0 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
8030 | 0 | diag::err_thread_unsupported); |
8031 | |
|
8032 | 0 | if (EmitTLSUnsupportedError && |
8033 | 0 | (LangOpts.SYCLIsDevice || |
8034 | 0 | (LangOpts.OpenMP && LangOpts.OpenMPIsTargetDevice))) |
8035 | 0 | targetDiag(D.getIdentifierLoc(), diag::err_thread_unsupported); |
8036 | | // CUDA B.2.5: "__shared__ and __constant__ variables have implied static |
8037 | | // storage [duration]." |
8038 | 0 | if (SC == SC_None && S->getFnParent() != nullptr && |
8039 | 0 | (NewVD->hasAttr<CUDASharedAttr>() || |
8040 | 0 | NewVD->hasAttr<CUDAConstantAttr>())) { |
8041 | 0 | NewVD->setStorageClass(SC_Static); |
8042 | 0 | } |
8043 | 0 | } |
8044 | | |
8045 | | // Ensure that dllimport globals without explicit storage class are treated as |
8046 | | // extern. The storage class is set above using parsed attributes. Now we can |
8047 | | // check the VarDecl itself. |
8048 | 5.07k | assert(!NewVD->hasAttr<DLLImportAttr>() || |
8049 | 5.07k | NewVD->getAttr<DLLImportAttr>()->isInherited() || |
8050 | 5.07k | NewVD->isStaticDataMember() || NewVD->getStorageClass() != SC_None); |
8051 | | |
8052 | | // In auto-retain/release, infer strong retension for variables of |
8053 | | // retainable type. |
8054 | 5.07k | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD)) |
8055 | 0 | NewVD->setInvalidDecl(); |
8056 | | |
8057 | | // Handle GNU asm-label extension (encoded as an attribute). |
8058 | 5.07k | if (Expr *E = (Expr*)D.getAsmLabel()) { |
8059 | | // The parser guarantees this is a string. |
8060 | 0 | StringLiteral *SE = cast<StringLiteral>(E); |
8061 | 0 | StringRef Label = SE->getString(); |
8062 | 0 | if (S->getFnParent() != nullptr) { |
8063 | 0 | switch (SC) { |
8064 | 0 | case SC_None: |
8065 | 0 | case SC_Auto: |
8066 | 0 | Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label; |
8067 | 0 | break; |
8068 | 0 | case SC_Register: |
8069 | | // Local Named register |
8070 | 0 | if (!Context.getTargetInfo().isValidGCCRegisterName(Label) && |
8071 | 0 | DeclAttrsMatchCUDAMode(getLangOpts(), getCurFunctionDecl())) |
8072 | 0 | Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; |
8073 | 0 | break; |
8074 | 0 | case SC_Static: |
8075 | 0 | case SC_Extern: |
8076 | 0 | case SC_PrivateExtern: |
8077 | 0 | break; |
8078 | 0 | } |
8079 | 0 | } else if (SC == SC_Register) { |
8080 | | // Global Named register |
8081 | 0 | if (DeclAttrsMatchCUDAMode(getLangOpts(), NewVD)) { |
8082 | 0 | const auto &TI = Context.getTargetInfo(); |
8083 | 0 | bool HasSizeMismatch; |
8084 | |
|
8085 | 0 | if (!TI.isValidGCCRegisterName(Label)) |
8086 | 0 | Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label; |
8087 | 0 | else if (!TI.validateGlobalRegisterVariable(Label, |
8088 | 0 | Context.getTypeSize(R), |
8089 | 0 | HasSizeMismatch)) |
8090 | 0 | Diag(E->getExprLoc(), diag::err_asm_invalid_global_var_reg) << Label; |
8091 | 0 | else if (HasSizeMismatch) |
8092 | 0 | Diag(E->getExprLoc(), diag::err_asm_register_size_mismatch) << Label; |
8093 | 0 | } |
8094 | |
|
8095 | 0 | if (!R->isIntegralType(Context) && !R->isPointerType()) { |
8096 | 0 | Diag(D.getBeginLoc(), diag::err_asm_bad_register_type); |
8097 | 0 | NewVD->setInvalidDecl(true); |
8098 | 0 | } |
8099 | 0 | } |
8100 | | |
8101 | 0 | NewVD->addAttr(AsmLabelAttr::Create(Context, Label, |
8102 | 0 | /*IsLiteralLabel=*/true, |
8103 | 0 | SE->getStrTokenLoc(0))); |
8104 | 5.07k | } else if (!ExtnameUndeclaredIdentifiers.empty()) { |
8105 | 0 | llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = |
8106 | 0 | ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier()); |
8107 | 0 | if (I != ExtnameUndeclaredIdentifiers.end()) { |
8108 | 0 | if (isDeclExternC(NewVD)) { |
8109 | 0 | NewVD->addAttr(I->second); |
8110 | 0 | ExtnameUndeclaredIdentifiers.erase(I); |
8111 | 0 | } else |
8112 | 0 | Diag(NewVD->getLocation(), diag::warn_redefine_extname_not_applied) |
8113 | 0 | << /*Variable*/1 << NewVD; |
8114 | 0 | } |
8115 | 0 | } |
8116 | | |
8117 | | // Find the shadowed declaration before filtering for scope. |
8118 | 5.07k | NamedDecl *ShadowedDecl = D.getCXXScopeSpec().isEmpty() |
8119 | 5.07k | ? getShadowedDeclaration(NewVD, Previous) |
8120 | 5.07k | : nullptr; |
8121 | | |
8122 | | // Don't consider existing declarations that are in a different |
8123 | | // scope and are out-of-semantic-context declarations (if the new |
8124 | | // declaration has linkage). |
8125 | 5.07k | FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewVD), |
8126 | 5.07k | D.getCXXScopeSpec().isNotEmpty() || |
8127 | 5.07k | IsMemberSpecialization || |
8128 | 5.07k | IsVariableTemplateSpecialization); |
8129 | | |
8130 | | // Check whether the previous declaration is in the same block scope. This |
8131 | | // affects whether we merge types with it, per C++11 [dcl.array]p3. |
8132 | 5.07k | if (getLangOpts().CPlusPlus && |
8133 | 5.07k | NewVD->isLocalVarDecl() && NewVD->hasExternalStorage()) |
8134 | 0 | NewVD->setPreviousDeclInSameBlockScope( |
8135 | 0 | Previous.isSingleResult() && !Previous.isShadowed() && |
8136 | 0 | isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false)); |
8137 | | |
8138 | 5.07k | if (!getLangOpts().CPlusPlus) { |
8139 | 2.48k | D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); |
8140 | 2.58k | } else { |
8141 | | // If this is an explicit specialization of a static data member, check it. |
8142 | 2.58k | if (IsMemberSpecialization && !NewVD->isInvalidDecl() && |
8143 | 2.58k | CheckMemberSpecialization(NewVD, Previous)) |
8144 | 0 | NewVD->setInvalidDecl(); |
8145 | | |
8146 | | // Merge the decl with the existing one if appropriate. |
8147 | 2.58k | if (!Previous.empty()) { |
8148 | 1.05k | if (Previous.isSingleResult() && |
8149 | 1.05k | isa<FieldDecl>(Previous.getFoundDecl()) && |
8150 | 1.05k | D.getCXXScopeSpec().isSet()) { |
8151 | | // The user tried to define a non-static data member |
8152 | | // out-of-line (C++ [dcl.meaning]p1). |
8153 | 0 | Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line) |
8154 | 0 | << D.getCXXScopeSpec().getRange(); |
8155 | 0 | Previous.clear(); |
8156 | 0 | NewVD->setInvalidDecl(); |
8157 | 0 | } |
8158 | 1.53k | } else if (D.getCXXScopeSpec().isSet()) { |
8159 | | // No previous declaration in the qualifying scope. |
8160 | 0 | Diag(D.getIdentifierLoc(), diag::err_no_member) |
8161 | 0 | << Name << computeDeclContext(D.getCXXScopeSpec(), true) |
8162 | 0 | << D.getCXXScopeSpec().getRange(); |
8163 | 0 | NewVD->setInvalidDecl(); |
8164 | 0 | } |
8165 | | |
8166 | 2.58k | if (!IsVariableTemplateSpecialization && !IsPlaceholderVariable) |
8167 | 2.58k | D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous)); |
8168 | | |
8169 | | // CheckVariableDeclaration will set NewVD as invalid if something is in |
8170 | | // error like WebAssembly tables being declared as arrays with a non-zero |
8171 | | // size, but then parsing continues and emits further errors on that line. |
8172 | | // To avoid that we check here if it happened and return nullptr. |
8173 | 2.58k | if (NewVD->getType()->isWebAssemblyTableType() && NewVD->isInvalidDecl()) |
8174 | 0 | return nullptr; |
8175 | | |
8176 | 2.58k | if (NewTemplate) { |
8177 | 0 | VarTemplateDecl *PrevVarTemplate = |
8178 | 0 | NewVD->getPreviousDecl() |
8179 | 0 | ? NewVD->getPreviousDecl()->getDescribedVarTemplate() |
8180 | 0 | : nullptr; |
8181 | | |
8182 | | // Check the template parameter list of this declaration, possibly |
8183 | | // merging in the template parameter list from the previous variable |
8184 | | // template declaration. |
8185 | 0 | if (CheckTemplateParameterList( |
8186 | 0 | TemplateParams, |
8187 | 0 | PrevVarTemplate ? PrevVarTemplate->getTemplateParameters() |
8188 | 0 | : nullptr, |
8189 | 0 | (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() && |
8190 | 0 | DC->isDependentContext()) |
8191 | 0 | ? TPC_ClassTemplateMember |
8192 | 0 | : TPC_VarTemplate)) |
8193 | 0 | NewVD->setInvalidDecl(); |
8194 | | |
8195 | | // If we are providing an explicit specialization of a static variable |
8196 | | // template, make a note of that. |
8197 | 0 | if (PrevVarTemplate && |
8198 | 0 | PrevVarTemplate->getInstantiatedFromMemberTemplate()) |
8199 | 0 | PrevVarTemplate->setMemberSpecialization(); |
8200 | 0 | } |
8201 | 2.58k | } |
8202 | | |
8203 | | // Diagnose shadowed variables iff this isn't a redeclaration. |
8204 | 5.07k | if (!IsPlaceholderVariable && ShadowedDecl && !D.isRedeclaration()) |
8205 | 0 | CheckShadow(NewVD, ShadowedDecl, Previous); |
8206 | | |
8207 | 5.07k | ProcessPragmaWeak(S, NewVD); |
8208 | | |
8209 | | // If this is the first declaration of an extern C variable, update |
8210 | | // the map of such variables. |
8211 | 5.07k | if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() && |
8212 | 5.07k | isIncompleteDeclExternC(*this, NewVD)) |
8213 | 285 | RegisterLocallyScopedExternCDecl(NewVD, S); |
8214 | | |
8215 | 5.07k | if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) { |
8216 | 0 | MangleNumberingContext *MCtx; |
8217 | 0 | Decl *ManglingContextDecl; |
8218 | 0 | std::tie(MCtx, ManglingContextDecl) = |
8219 | 0 | getCurrentMangleNumberContext(NewVD->getDeclContext()); |
8220 | 0 | if (MCtx) { |
8221 | 0 | Context.setManglingNumber( |
8222 | 0 | NewVD, MCtx->getManglingNumber( |
8223 | 0 | NewVD, getMSManglingNumber(getLangOpts(), S))); |
8224 | 0 | Context.setStaticLocalNumber(NewVD, MCtx->getStaticLocalNumber(NewVD)); |
8225 | 0 | } |
8226 | 0 | } |
8227 | | |
8228 | | // Special handling of variable named 'main'. |
8229 | 5.07k | if (Name.getAsIdentifierInfo() && Name.getAsIdentifierInfo()->isStr("main") && |
8230 | 5.07k | NewVD->getDeclContext()->getRedeclContext()->isTranslationUnit() && |
8231 | 5.07k | !getLangOpts().Freestanding && !NewVD->getDescribedVarTemplate()) { |
8232 | | |
8233 | | // C++ [basic.start.main]p3 |
8234 | | // A program that declares a variable main at global scope is ill-formed. |
8235 | 0 | if (getLangOpts().CPlusPlus) |
8236 | 0 | Diag(D.getBeginLoc(), diag::err_main_global_variable); |
8237 | | |
8238 | | // In C, and external-linkage variable named main results in undefined |
8239 | | // behavior. |
8240 | 0 | else if (NewVD->hasExternalFormalLinkage()) |
8241 | 0 | Diag(D.getBeginLoc(), diag::warn_main_redefined); |
8242 | 0 | } |
8243 | | |
8244 | 5.07k | if (D.isRedeclaration() && !Previous.empty()) { |
8245 | 194 | NamedDecl *Prev = Previous.getRepresentativeDecl(); |
8246 | 194 | checkDLLAttributeRedeclaration(*this, Prev, NewVD, IsMemberSpecialization, |
8247 | 194 | D.isFunctionDefinition()); |
8248 | 194 | } |
8249 | | |
8250 | 5.07k | if (NewTemplate) { |
8251 | 0 | if (NewVD->isInvalidDecl()) |
8252 | 0 | NewTemplate->setInvalidDecl(); |
8253 | 0 | ActOnDocumentableDecl(NewTemplate); |
8254 | 0 | return NewTemplate; |
8255 | 0 | } |
8256 | | |
8257 | 5.07k | if (IsMemberSpecialization && !NewVD->isInvalidDecl()) |
8258 | 0 | CompleteMemberSpecialization(NewVD, Previous); |
8259 | | |
8260 | 5.07k | emitReadOnlyPlacementAttrWarning(*this, NewVD); |
8261 | | |
8262 | 5.07k | return NewVD; |
8263 | 5.07k | } |
8264 | | |
8265 | | /// Enum describing the %select options in diag::warn_decl_shadow. |
8266 | | enum ShadowedDeclKind { |
8267 | | SDK_Local, |
8268 | | SDK_Global, |
8269 | | SDK_StaticMember, |
8270 | | SDK_Field, |
8271 | | SDK_Typedef, |
8272 | | SDK_Using, |
8273 | | SDK_StructuredBinding |
8274 | | }; |
8275 | | |
8276 | | /// Determine what kind of declaration we're shadowing. |
8277 | | static ShadowedDeclKind computeShadowedDeclKind(const NamedDecl *ShadowedDecl, |
8278 | 0 | const DeclContext *OldDC) { |
8279 | 0 | if (isa<TypeAliasDecl>(ShadowedDecl)) |
8280 | 0 | return SDK_Using; |
8281 | 0 | else if (isa<TypedefDecl>(ShadowedDecl)) |
8282 | 0 | return SDK_Typedef; |
8283 | 0 | else if (isa<BindingDecl>(ShadowedDecl)) |
8284 | 0 | return SDK_StructuredBinding; |
8285 | 0 | else if (isa<RecordDecl>(OldDC)) |
8286 | 0 | return isa<FieldDecl>(ShadowedDecl) ? SDK_Field : SDK_StaticMember; |
8287 | | |
8288 | 0 | return OldDC->isFileContext() ? SDK_Global : SDK_Local; |
8289 | 0 | } |
8290 | | |
8291 | | /// Return the location of the capture if the given lambda captures the given |
8292 | | /// variable \p VD, or an invalid source location otherwise. |
8293 | | static SourceLocation getCaptureLocation(const LambdaScopeInfo *LSI, |
8294 | 0 | const VarDecl *VD) { |
8295 | 0 | for (const Capture &Capture : LSI->Captures) { |
8296 | 0 | if (Capture.isVariableCapture() && Capture.getVariable() == VD) |
8297 | 0 | return Capture.getLocation(); |
8298 | 0 | } |
8299 | 0 | return SourceLocation(); |
8300 | 0 | } |
8301 | | |
8302 | | static bool shouldWarnIfShadowedDecl(const DiagnosticsEngine &Diags, |
8303 | 5.07k | const LookupResult &R) { |
8304 | | // Only diagnose if we're shadowing an unambiguous field or variable. |
8305 | 5.07k | if (R.getResultKind() != LookupResult::Found) |
8306 | 2.87k | return false; |
8307 | | |
8308 | | // Return false if warning is ignored. |
8309 | 2.19k | return !Diags.isIgnored(diag::warn_decl_shadow, R.getNameLoc()); |
8310 | 5.07k | } |
8311 | | |
8312 | | /// Return the declaration shadowed by the given variable \p D, or null |
8313 | | /// if it doesn't shadow any declaration or shadowing warnings are disabled. |
8314 | | NamedDecl *Sema::getShadowedDeclaration(const VarDecl *D, |
8315 | 5.07k | const LookupResult &R) { |
8316 | 5.07k | if (!shouldWarnIfShadowedDecl(Diags, R)) |
8317 | 5.07k | return nullptr; |
8318 | | |
8319 | | // Don't diagnose declarations at file scope. |
8320 | 0 | if (D->hasGlobalStorage() && !D->isStaticLocal()) |
8321 | 0 | return nullptr; |
8322 | | |
8323 | 0 | NamedDecl *ShadowedDecl = R.getFoundDecl(); |
8324 | 0 | return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl |
8325 | 0 | : nullptr; |
8326 | 0 | } |
8327 | | |
8328 | | /// Return the declaration shadowed by the given typedef \p D, or null |
8329 | | /// if it doesn't shadow any declaration or shadowing warnings are disabled. |
8330 | | NamedDecl *Sema::getShadowedDeclaration(const TypedefNameDecl *D, |
8331 | 0 | const LookupResult &R) { |
8332 | | // Don't warn if typedef declaration is part of a class |
8333 | 0 | if (D->getDeclContext()->isRecord()) |
8334 | 0 | return nullptr; |
8335 | | |
8336 | 0 | if (!shouldWarnIfShadowedDecl(Diags, R)) |
8337 | 0 | return nullptr; |
8338 | | |
8339 | 0 | NamedDecl *ShadowedDecl = R.getFoundDecl(); |
8340 | 0 | return isa<TypedefNameDecl>(ShadowedDecl) ? ShadowedDecl : nullptr; |
8341 | 0 | } |
8342 | | |
8343 | | /// Return the declaration shadowed by the given variable \p D, or null |
8344 | | /// if it doesn't shadow any declaration or shadowing warnings are disabled. |
8345 | | NamedDecl *Sema::getShadowedDeclaration(const BindingDecl *D, |
8346 | 0 | const LookupResult &R) { |
8347 | 0 | if (!shouldWarnIfShadowedDecl(Diags, R)) |
8348 | 0 | return nullptr; |
8349 | | |
8350 | 0 | NamedDecl *ShadowedDecl = R.getFoundDecl(); |
8351 | 0 | return isa<VarDecl, FieldDecl, BindingDecl>(ShadowedDecl) ? ShadowedDecl |
8352 | 0 | : nullptr; |
8353 | 0 | } |
8354 | | |
8355 | | /// Diagnose variable or built-in function shadowing. Implements |
8356 | | /// -Wshadow. |
8357 | | /// |
8358 | | /// This method is called whenever a VarDecl is added to a "useful" |
8359 | | /// scope. |
8360 | | /// |
8361 | | /// \param ShadowedDecl the declaration that is shadowed by the given variable |
8362 | | /// \param R the lookup of the name |
8363 | | /// |
8364 | | void Sema::CheckShadow(NamedDecl *D, NamedDecl *ShadowedDecl, |
8365 | 0 | const LookupResult &R) { |
8366 | 0 | DeclContext *NewDC = D->getDeclContext(); |
8367 | |
|
8368 | 0 | if (FieldDecl *FD = dyn_cast<FieldDecl>(ShadowedDecl)) { |
8369 | | // Fields are not shadowed by variables in C++ static methods. |
8370 | 0 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC)) |
8371 | 0 | if (MD->isStatic()) |
8372 | 0 | return; |
8373 | | |
8374 | | // Fields shadowed by constructor parameters are a special case. Usually |
8375 | | // the constructor initializes the field with the parameter. |
8376 | 0 | if (isa<CXXConstructorDecl>(NewDC)) |
8377 | 0 | if (const auto PVD = dyn_cast<ParmVarDecl>(D)) { |
8378 | | // Remember that this was shadowed so we can either warn about its |
8379 | | // modification or its existence depending on warning settings. |
8380 | 0 | ShadowingDecls.insert({PVD->getCanonicalDecl(), FD}); |
8381 | 0 | return; |
8382 | 0 | } |
8383 | 0 | } |
8384 | | |
8385 | 0 | if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl)) |
8386 | 0 | if (shadowedVar->isExternC()) { |
8387 | | // For shadowing external vars, make sure that we point to the global |
8388 | | // declaration, not a locally scoped extern declaration. |
8389 | 0 | for (auto *I : shadowedVar->redecls()) |
8390 | 0 | if (I->isFileVarDecl()) { |
8391 | 0 | ShadowedDecl = I; |
8392 | 0 | break; |
8393 | 0 | } |
8394 | 0 | } |
8395 | |
|
8396 | 0 | DeclContext *OldDC = ShadowedDecl->getDeclContext()->getRedeclContext(); |
8397 | |
|
8398 | 0 | unsigned WarningDiag = diag::warn_decl_shadow; |
8399 | 0 | SourceLocation CaptureLoc; |
8400 | 0 | if (isa<VarDecl>(D) && isa<VarDecl>(ShadowedDecl) && NewDC && |
8401 | 0 | isa<CXXMethodDecl>(NewDC)) { |
8402 | 0 | if (const auto *RD = dyn_cast<CXXRecordDecl>(NewDC->getParent())) { |
8403 | 0 | if (RD->isLambda() && OldDC->Encloses(NewDC->getLexicalParent())) { |
8404 | 0 | if (RD->getLambdaCaptureDefault() == LCD_None) { |
8405 | | // Try to avoid warnings for lambdas with an explicit capture list. |
8406 | 0 | const auto *LSI = cast<LambdaScopeInfo>(getCurFunction()); |
8407 | | // Warn only when the lambda captures the shadowed decl explicitly. |
8408 | 0 | CaptureLoc = getCaptureLocation(LSI, cast<VarDecl>(ShadowedDecl)); |
8409 | 0 | if (CaptureLoc.isInvalid()) |
8410 | 0 | WarningDiag = diag::warn_decl_shadow_uncaptured_local; |
8411 | 0 | } else { |
8412 | | // Remember that this was shadowed so we can avoid the warning if the |
8413 | | // shadowed decl isn't captured and the warning settings allow it. |
8414 | 0 | cast<LambdaScopeInfo>(getCurFunction()) |
8415 | 0 | ->ShadowingDecls.push_back( |
8416 | 0 | {cast<VarDecl>(D), cast<VarDecl>(ShadowedDecl)}); |
8417 | 0 | return; |
8418 | 0 | } |
8419 | 0 | } |
8420 | | |
8421 | 0 | if (cast<VarDecl>(ShadowedDecl)->hasLocalStorage()) { |
8422 | | // A variable can't shadow a local variable in an enclosing scope, if |
8423 | | // they are separated by a non-capturing declaration context. |
8424 | 0 | for (DeclContext *ParentDC = NewDC; |
8425 | 0 | ParentDC && !ParentDC->Equals(OldDC); |
8426 | 0 | ParentDC = getLambdaAwareParentOfDeclContext(ParentDC)) { |
8427 | | // Only block literals, captured statements, and lambda expressions |
8428 | | // can capture; other scopes don't. |
8429 | 0 | if (!isa<BlockDecl>(ParentDC) && !isa<CapturedDecl>(ParentDC) && |
8430 | 0 | !isLambdaCallOperator(ParentDC)) { |
8431 | 0 | return; |
8432 | 0 | } |
8433 | 0 | } |
8434 | 0 | } |
8435 | 0 | } |
8436 | 0 | } |
8437 | | |
8438 | | // Never warn about shadowing a placeholder variable. |
8439 | 0 | if (ShadowedDecl->isPlaceholderVar(getLangOpts())) |
8440 | 0 | return; |
8441 | | |
8442 | | // Only warn about certain kinds of shadowing for class members. |
8443 | 0 | if (NewDC && NewDC->isRecord()) { |
8444 | | // In particular, don't warn about shadowing non-class members. |
8445 | 0 | if (!OldDC->isRecord()) |
8446 | 0 | return; |
8447 | | |
8448 | | // TODO: should we warn about static data members shadowing |
8449 | | // static data members from base classes? |
8450 | | |
8451 | | // TODO: don't diagnose for inaccessible shadowed members. |
8452 | | // This is hard to do perfectly because we might friend the |
8453 | | // shadowing context, but that's just a false negative. |
8454 | 0 | } |
8455 | | |
8456 | | |
8457 | 0 | DeclarationName Name = R.getLookupName(); |
8458 | | |
8459 | | // Emit warning and note. |
8460 | 0 | ShadowedDeclKind Kind = computeShadowedDeclKind(ShadowedDecl, OldDC); |
8461 | 0 | Diag(R.getNameLoc(), WarningDiag) << Name << Kind << OldDC; |
8462 | 0 | if (!CaptureLoc.isInvalid()) |
8463 | 0 | Diag(CaptureLoc, diag::note_var_explicitly_captured_here) |
8464 | 0 | << Name << /*explicitly*/ 1; |
8465 | 0 | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); |
8466 | 0 | } |
8467 | | |
8468 | | /// Diagnose shadowing for variables shadowed in the lambda record \p LambdaRD |
8469 | | /// when these variables are captured by the lambda. |
8470 | 0 | void Sema::DiagnoseShadowingLambdaDecls(const LambdaScopeInfo *LSI) { |
8471 | 0 | for (const auto &Shadow : LSI->ShadowingDecls) { |
8472 | 0 | const VarDecl *ShadowedDecl = Shadow.ShadowedDecl; |
8473 | | // Try to avoid the warning when the shadowed decl isn't captured. |
8474 | 0 | SourceLocation CaptureLoc = getCaptureLocation(LSI, ShadowedDecl); |
8475 | 0 | const DeclContext *OldDC = ShadowedDecl->getDeclContext(); |
8476 | 0 | Diag(Shadow.VD->getLocation(), CaptureLoc.isInvalid() |
8477 | 0 | ? diag::warn_decl_shadow_uncaptured_local |
8478 | 0 | : diag::warn_decl_shadow) |
8479 | 0 | << Shadow.VD->getDeclName() |
8480 | 0 | << computeShadowedDeclKind(ShadowedDecl, OldDC) << OldDC; |
8481 | 0 | if (!CaptureLoc.isInvalid()) |
8482 | 0 | Diag(CaptureLoc, diag::note_var_explicitly_captured_here) |
8483 | 0 | << Shadow.VD->getDeclName() << /*explicitly*/ 0; |
8484 | 0 | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); |
8485 | 0 | } |
8486 | 0 | } |
8487 | | |
8488 | | /// Check -Wshadow without the advantage of a previous lookup. |
8489 | 0 | void Sema::CheckShadow(Scope *S, VarDecl *D) { |
8490 | 0 | if (Diags.isIgnored(diag::warn_decl_shadow, D->getLocation())) |
8491 | 0 | return; |
8492 | | |
8493 | 0 | LookupResult R(*this, D->getDeclName(), D->getLocation(), |
8494 | 0 | Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); |
8495 | 0 | LookupName(R, S); |
8496 | 0 | if (NamedDecl *ShadowedDecl = getShadowedDeclaration(D, R)) |
8497 | 0 | CheckShadow(D, ShadowedDecl, R); |
8498 | 0 | } |
8499 | | |
8500 | | /// Check if 'E', which is an expression that is about to be modified, refers |
8501 | | /// to a constructor parameter that shadows a field. |
8502 | 0 | void Sema::CheckShadowingDeclModification(Expr *E, SourceLocation Loc) { |
8503 | | // Quickly ignore expressions that can't be shadowing ctor parameters. |
8504 | 0 | if (!getLangOpts().CPlusPlus || ShadowingDecls.empty()) |
8505 | 0 | return; |
8506 | 0 | E = E->IgnoreParenImpCasts(); |
8507 | 0 | auto *DRE = dyn_cast<DeclRefExpr>(E); |
8508 | 0 | if (!DRE) |
8509 | 0 | return; |
8510 | 0 | const NamedDecl *D = cast<NamedDecl>(DRE->getDecl()->getCanonicalDecl()); |
8511 | 0 | auto I = ShadowingDecls.find(D); |
8512 | 0 | if (I == ShadowingDecls.end()) |
8513 | 0 | return; |
8514 | 0 | const NamedDecl *ShadowedDecl = I->second; |
8515 | 0 | const DeclContext *OldDC = ShadowedDecl->getDeclContext(); |
8516 | 0 | Diag(Loc, diag::warn_modifying_shadowing_decl) << D << OldDC; |
8517 | 0 | Diag(D->getLocation(), diag::note_var_declared_here) << D; |
8518 | 0 | Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration); |
8519 | | |
8520 | | // Avoid issuing multiple warnings about the same decl. |
8521 | 0 | ShadowingDecls.erase(I); |
8522 | 0 | } |
8523 | | |
8524 | | /// Check for conflict between this global or extern "C" declaration and |
8525 | | /// previous global or extern "C" declarations. This is only used in C++. |
8526 | | template<typename T> |
8527 | | static bool checkGlobalOrExternCConflict( |
8528 | 0 | Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) { |
8529 | 0 | assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\""); |
8530 | 0 | NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName()); |
8531 | |
|
8532 | 0 | if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) { |
8533 | | // The common case: this global doesn't conflict with any extern "C" |
8534 | | // declaration. |
8535 | 0 | return false; |
8536 | 0 | } |
8537 | | |
8538 | 0 | if (Prev) { |
8539 | 0 | if (!IsGlobal || isIncompleteDeclExternC(S, ND)) { |
8540 | | // Both the old and new declarations have C language linkage. This is a |
8541 | | // redeclaration. |
8542 | 0 | Previous.clear(); |
8543 | 0 | Previous.addDecl(Prev); |
8544 | 0 | return true; |
8545 | 0 | } |
8546 | | |
8547 | | // This is a global, non-extern "C" declaration, and there is a previous |
8548 | | // non-global extern "C" declaration. Diagnose if this is a variable |
8549 | | // declaration. |
8550 | 0 | if (!isa<VarDecl>(ND)) |
8551 | 0 | return false; |
8552 | 0 | } else { |
8553 | | // The declaration is extern "C". Check for any declaration in the |
8554 | | // translation unit which might conflict. |
8555 | 0 | if (IsGlobal) { |
8556 | | // We have already performed the lookup into the translation unit. |
8557 | 0 | IsGlobal = false; |
8558 | 0 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
8559 | 0 | I != E; ++I) { |
8560 | 0 | if (isa<VarDecl>(*I)) { |
8561 | 0 | Prev = *I; |
8562 | 0 | break; |
8563 | 0 | } |
8564 | 0 | } |
8565 | 0 | } else { |
8566 | 0 | DeclContext::lookup_result R = |
8567 | 0 | S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName()); |
8568 | 0 | for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end(); |
8569 | 0 | I != E; ++I) { |
8570 | 0 | if (isa<VarDecl>(*I)) { |
8571 | 0 | Prev = *I; |
8572 | 0 | break; |
8573 | 0 | } |
8574 | | // FIXME: If we have any other entity with this name in global scope, |
8575 | | // the declaration is ill-formed, but that is a defect: it breaks the |
8576 | | // 'stat' hack, for instance. Only variables can have mangled name |
8577 | | // clashes with extern "C" declarations, so only they deserve a |
8578 | | // diagnostic. |
8579 | 0 | } |
8580 | 0 | } |
8581 | |
|
8582 | 0 | if (!Prev) |
8583 | 0 | return false; |
8584 | 0 | } |
8585 | | |
8586 | | // Use the first declaration's location to ensure we point at something which |
8587 | | // is lexically inside an extern "C" linkage-spec. |
8588 | 0 | assert(Prev && "should have found a previous declaration to diagnose"); |
8589 | 0 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev)) |
8590 | 0 | Prev = FD->getFirstDecl(); |
8591 | 0 | else |
8592 | 0 | Prev = cast<VarDecl>(Prev)->getFirstDecl(); |
8593 | |
|
8594 | 0 | S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict) |
8595 | 0 | << IsGlobal << ND; |
8596 | 0 | S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict) |
8597 | 0 | << IsGlobal; |
8598 | 0 | return false; |
8599 | 0 | } Unexecuted instantiation: SemaDecl.cpp:bool checkGlobalOrExternCConflict<clang::VarDecl>(clang::Sema&, clang::VarDecl const*, bool, clang::LookupResult&) Unexecuted instantiation: SemaDecl.cpp:bool checkGlobalOrExternCConflict<clang::FunctionDecl>(clang::Sema&, clang::FunctionDecl const*, bool, clang::LookupResult&) |
8600 | | |
8601 | | /// Apply special rules for handling extern "C" declarations. Returns \c true |
8602 | | /// if we have found that this is a redeclaration of some prior entity. |
8603 | | /// |
8604 | | /// Per C++ [dcl.link]p6: |
8605 | | /// Two declarations [for a function or variable] with C language linkage |
8606 | | /// with the same name that appear in different scopes refer to the same |
8607 | | /// [entity]. An entity with C language linkage shall not be declared with |
8608 | | /// the same name as an entity in global scope. |
8609 | | template<typename T> |
8610 | | static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND, |
8611 | 291 | LookupResult &Previous) { |
8612 | 291 | if (!S.getLangOpts().CPlusPlus) { |
8613 | | // In C, when declaring a global variable, look for a corresponding 'extern' |
8614 | | // variable declared in function scope. We don't need this in C++, because |
8615 | | // we find local extern decls in the surrounding file-scope DeclContext. |
8616 | 291 | if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { |
8617 | 291 | if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { |
8618 | 0 | Previous.clear(); |
8619 | 0 | Previous.addDecl(Prev); |
8620 | 0 | return true; |
8621 | 0 | } |
8622 | 291 | } |
8623 | 291 | return false; |
8624 | 291 | } |
8625 | | |
8626 | | // A declaration in the translation unit can conflict with an extern "C" |
8627 | | // declaration. |
8628 | 0 | if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) |
8629 | 0 | return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); |
8630 | | |
8631 | | // An extern "C" declaration can conflict with a declaration in the |
8632 | | // translation unit or can be a redeclaration of an extern "C" declaration |
8633 | | // in another scope. |
8634 | 0 | if (isIncompleteDeclExternC(S,ND)) |
8635 | 0 | return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); |
8636 | | |
8637 | | // Neither global nor extern "C": nothing to do. |
8638 | 0 | return false; |
8639 | 0 | } SemaDecl.cpp:bool checkForConflictWithNonVisibleExternC<clang::VarDecl>(clang::Sema&, clang::VarDecl const*, clang::LookupResult&) Line | Count | Source | 8611 | 285 | LookupResult &Previous) { | 8612 | 285 | if (!S.getLangOpts().CPlusPlus) { | 8613 | | // In C, when declaring a global variable, look for a corresponding 'extern' | 8614 | | // variable declared in function scope. We don't need this in C++, because | 8615 | | // we find local extern decls in the surrounding file-scope DeclContext. | 8616 | 285 | if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | 8617 | 285 | if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { | 8618 | 0 | Previous.clear(); | 8619 | 0 | Previous.addDecl(Prev); | 8620 | 0 | return true; | 8621 | 0 | } | 8622 | 285 | } | 8623 | 285 | return false; | 8624 | 285 | } | 8625 | | | 8626 | | // A declaration in the translation unit can conflict with an extern "C" | 8627 | | // declaration. | 8628 | 0 | if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) | 8629 | 0 | return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); | 8630 | | | 8631 | | // An extern "C" declaration can conflict with a declaration in the | 8632 | | // translation unit or can be a redeclaration of an extern "C" declaration | 8633 | | // in another scope. | 8634 | 0 | if (isIncompleteDeclExternC(S,ND)) | 8635 | 0 | return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); | 8636 | | | 8637 | | // Neither global nor extern "C": nothing to do. | 8638 | 0 | return false; | 8639 | 0 | } |
SemaDecl.cpp:bool checkForConflictWithNonVisibleExternC<clang::FunctionDecl>(clang::Sema&, clang::FunctionDecl const*, clang::LookupResult&) Line | Count | Source | 8611 | 6 | LookupResult &Previous) { | 8612 | 6 | if (!S.getLangOpts().CPlusPlus) { | 8613 | | // In C, when declaring a global variable, look for a corresponding 'extern' | 8614 | | // variable declared in function scope. We don't need this in C++, because | 8615 | | // we find local extern decls in the surrounding file-scope DeclContext. | 8616 | 6 | if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) { | 8617 | 6 | if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) { | 8618 | 0 | Previous.clear(); | 8619 | 0 | Previous.addDecl(Prev); | 8620 | 0 | return true; | 8621 | 0 | } | 8622 | 6 | } | 8623 | 6 | return false; | 8624 | 6 | } | 8625 | | | 8626 | | // A declaration in the translation unit can conflict with an extern "C" | 8627 | | // declaration. | 8628 | 0 | if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) | 8629 | 0 | return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous); | 8630 | | | 8631 | | // An extern "C" declaration can conflict with a declaration in the | 8632 | | // translation unit or can be a redeclaration of an extern "C" declaration | 8633 | | // in another scope. | 8634 | 0 | if (isIncompleteDeclExternC(S,ND)) | 8635 | 0 | return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous); | 8636 | | | 8637 | | // Neither global nor extern "C": nothing to do. | 8638 | 0 | return false; | 8639 | 0 | } |
|
8640 | | |
8641 | 5.07k | void Sema::CheckVariableDeclarationType(VarDecl *NewVD) { |
8642 | | // If the decl is already known invalid, don't check it. |
8643 | 5.07k | if (NewVD->isInvalidDecl()) |
8644 | 4.58k | return; |
8645 | | |
8646 | 481 | QualType T = NewVD->getType(); |
8647 | | |
8648 | | // Defer checking an 'auto' type until its initializer is attached. |
8649 | 481 | if (T->isUndeducedType()) |
8650 | 0 | return; |
8651 | | |
8652 | 481 | if (NewVD->hasAttrs()) |
8653 | 0 | CheckAlignasUnderalignment(NewVD); |
8654 | | |
8655 | 481 | if (T->isObjCObjectType()) { |
8656 | 0 | Diag(NewVD->getLocation(), diag::err_statically_allocated_object) |
8657 | 0 | << FixItHint::CreateInsertion(NewVD->getLocation(), "*"); |
8658 | 0 | T = Context.getObjCObjectPointerType(T); |
8659 | 0 | NewVD->setType(T); |
8660 | 0 | } |
8661 | | |
8662 | | // Emit an error if an address space was applied to decl with local storage. |
8663 | | // This includes arrays of objects with address space qualifiers, but not |
8664 | | // automatic variables that point to other address spaces. |
8665 | | // ISO/IEC TR 18037 S5.1.2 |
8666 | 481 | if (!getLangOpts().OpenCL && NewVD->hasLocalStorage() && |
8667 | 481 | T.getAddressSpace() != LangAS::Default) { |
8668 | 0 | Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 0; |
8669 | 0 | NewVD->setInvalidDecl(); |
8670 | 0 | return; |
8671 | 0 | } |
8672 | | |
8673 | | // OpenCL v1.2 s6.8 - The static qualifier is valid only in program |
8674 | | // scope. |
8675 | 481 | if (getLangOpts().OpenCLVersion == 120 && |
8676 | 481 | !getOpenCLOptions().isAvailableOption("cl_clang_storage_class_specifiers", |
8677 | 0 | getLangOpts()) && |
8678 | 481 | NewVD->isStaticLocal()) { |
8679 | 0 | Diag(NewVD->getLocation(), diag::err_static_function_scope); |
8680 | 0 | NewVD->setInvalidDecl(); |
8681 | 0 | return; |
8682 | 0 | } |
8683 | | |
8684 | 481 | if (getLangOpts().OpenCL) { |
8685 | 0 | if (!diagnoseOpenCLTypes(*this, NewVD)) |
8686 | 0 | return; |
8687 | | |
8688 | | // OpenCL v2.0 s6.12.5 - The __block storage type is not supported. |
8689 | 0 | if (NewVD->hasAttr<BlocksAttr>()) { |
8690 | 0 | Diag(NewVD->getLocation(), diag::err_opencl_block_storage_type); |
8691 | 0 | return; |
8692 | 0 | } |
8693 | | |
8694 | 0 | if (T->isBlockPointerType()) { |
8695 | | // OpenCL v2.0 s6.12.5 - Any block declaration must be const qualified and |
8696 | | // can't use 'extern' storage class. |
8697 | 0 | if (!T.isConstQualified()) { |
8698 | 0 | Diag(NewVD->getLocation(), diag::err_opencl_invalid_block_declaration) |
8699 | 0 | << 0 /*const*/; |
8700 | 0 | NewVD->setInvalidDecl(); |
8701 | 0 | return; |
8702 | 0 | } |
8703 | 0 | if (NewVD->hasExternalStorage()) { |
8704 | 0 | Diag(NewVD->getLocation(), diag::err_opencl_extern_block_declaration); |
8705 | 0 | NewVD->setInvalidDecl(); |
8706 | 0 | return; |
8707 | 0 | } |
8708 | 0 | } |
8709 | | |
8710 | | // FIXME: Adding local AS in C++ for OpenCL might make sense. |
8711 | 0 | if (NewVD->isFileVarDecl() || NewVD->isStaticLocal() || |
8712 | 0 | NewVD->hasExternalStorage()) { |
8713 | 0 | if (!T->isSamplerT() && !T->isDependentType() && |
8714 | 0 | !(T.getAddressSpace() == LangAS::opencl_constant || |
8715 | 0 | (T.getAddressSpace() == LangAS::opencl_global && |
8716 | 0 | getOpenCLOptions().areProgramScopeVariablesSupported( |
8717 | 0 | getLangOpts())))) { |
8718 | 0 | int Scope = NewVD->isStaticLocal() | NewVD->hasExternalStorage() << 1; |
8719 | 0 | if (getOpenCLOptions().areProgramScopeVariablesSupported(getLangOpts())) |
8720 | 0 | Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) |
8721 | 0 | << Scope << "global or constant"; |
8722 | 0 | else |
8723 | 0 | Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space) |
8724 | 0 | << Scope << "constant"; |
8725 | 0 | NewVD->setInvalidDecl(); |
8726 | 0 | return; |
8727 | 0 | } |
8728 | 0 | } else { |
8729 | 0 | if (T.getAddressSpace() == LangAS::opencl_global) { |
8730 | 0 | Diag(NewVD->getLocation(), diag::err_opencl_function_variable) |
8731 | 0 | << 1 /*is any function*/ << "global"; |
8732 | 0 | NewVD->setInvalidDecl(); |
8733 | 0 | return; |
8734 | 0 | } |
8735 | 0 | if (T.getAddressSpace() == LangAS::opencl_constant || |
8736 | 0 | T.getAddressSpace() == LangAS::opencl_local) { |
8737 | 0 | FunctionDecl *FD = getCurFunctionDecl(); |
8738 | | // OpenCL v1.1 s6.5.2 and s6.5.3: no local or constant variables |
8739 | | // in functions. |
8740 | 0 | if (FD && !FD->hasAttr<OpenCLKernelAttr>()) { |
8741 | 0 | if (T.getAddressSpace() == LangAS::opencl_constant) |
8742 | 0 | Diag(NewVD->getLocation(), diag::err_opencl_function_variable) |
8743 | 0 | << 0 /*non-kernel only*/ << "constant"; |
8744 | 0 | else |
8745 | 0 | Diag(NewVD->getLocation(), diag::err_opencl_function_variable) |
8746 | 0 | << 0 /*non-kernel only*/ << "local"; |
8747 | 0 | NewVD->setInvalidDecl(); |
8748 | 0 | return; |
8749 | 0 | } |
8750 | | // OpenCL v2.0 s6.5.2 and s6.5.3: local and constant variables must be |
8751 | | // in the outermost scope of a kernel function. |
8752 | 0 | if (FD && FD->hasAttr<OpenCLKernelAttr>()) { |
8753 | 0 | if (!getCurScope()->isFunctionScope()) { |
8754 | 0 | if (T.getAddressSpace() == LangAS::opencl_constant) |
8755 | 0 | Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) |
8756 | 0 | << "constant"; |
8757 | 0 | else |
8758 | 0 | Diag(NewVD->getLocation(), diag::err_opencl_addrspace_scope) |
8759 | 0 | << "local"; |
8760 | 0 | NewVD->setInvalidDecl(); |
8761 | 0 | return; |
8762 | 0 | } |
8763 | 0 | } |
8764 | 0 | } else if (T.getAddressSpace() != LangAS::opencl_private && |
8765 | | // If we are parsing a template we didn't deduce an addr |
8766 | | // space yet. |
8767 | 0 | T.getAddressSpace() != LangAS::Default) { |
8768 | | // Do not allow other address spaces on automatic variable. |
8769 | 0 | Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl) << 1; |
8770 | 0 | NewVD->setInvalidDecl(); |
8771 | 0 | return; |
8772 | 0 | } |
8773 | 0 | } |
8774 | 0 | } |
8775 | | |
8776 | 481 | if (NewVD->hasLocalStorage() && T.isObjCGCWeak() |
8777 | 481 | && !NewVD->hasAttr<BlocksAttr>()) { |
8778 | 0 | if (getLangOpts().getGC() != LangOptions::NonGC) |
8779 | 0 | Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local); |
8780 | 0 | else { |
8781 | 0 | assert(!getLangOpts().ObjCAutoRefCount); |
8782 | 0 | Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local); |
8783 | 0 | } |
8784 | 0 | } |
8785 | | |
8786 | | // WebAssembly tables must be static with a zero length and can't be |
8787 | | // declared within functions. |
8788 | 481 | if (T->isWebAssemblyTableType()) { |
8789 | 0 | if (getCurScope()->getParent()) { // Parent is null at top-level |
8790 | 0 | Diag(NewVD->getLocation(), diag::err_wasm_table_in_function); |
8791 | 0 | NewVD->setInvalidDecl(); |
8792 | 0 | return; |
8793 | 0 | } |
8794 | 0 | if (NewVD->getStorageClass() != SC_Static) { |
8795 | 0 | Diag(NewVD->getLocation(), diag::err_wasm_table_must_be_static); |
8796 | 0 | NewVD->setInvalidDecl(); |
8797 | 0 | return; |
8798 | 0 | } |
8799 | 0 | const auto *ATy = dyn_cast<ConstantArrayType>(T.getTypePtr()); |
8800 | 0 | if (!ATy || ATy->getSize().getSExtValue() != 0) { |
8801 | 0 | Diag(NewVD->getLocation(), |
8802 | 0 | diag::err_typecheck_wasm_table_must_have_zero_length); |
8803 | 0 | NewVD->setInvalidDecl(); |
8804 | 0 | return; |
8805 | 0 | } |
8806 | 0 | } |
8807 | | |
8808 | 481 | bool isVM = T->isVariablyModifiedType(); |
8809 | 481 | if (isVM || NewVD->hasAttr<CleanupAttr>() || |
8810 | 481 | NewVD->hasAttr<BlocksAttr>()) |
8811 | 2 | setFunctionHasBranchProtectedScope(); |
8812 | | |
8813 | 481 | if ((isVM && NewVD->hasLinkage()) || |
8814 | 481 | (T->isVariableArrayType() && NewVD->hasGlobalStorage())) { |
8815 | 2 | bool SizeIsNegative; |
8816 | 2 | llvm::APSInt Oversized; |
8817 | 2 | TypeSourceInfo *FixedTInfo = TryToFixInvalidVariablyModifiedTypeSourceInfo( |
8818 | 2 | NewVD->getTypeSourceInfo(), Context, SizeIsNegative, Oversized); |
8819 | 2 | QualType FixedT; |
8820 | 2 | if (FixedTInfo && T == NewVD->getTypeSourceInfo()->getType()) |
8821 | 0 | FixedT = FixedTInfo->getType(); |
8822 | 2 | else if (FixedTInfo) { |
8823 | | // Type and type-as-written are canonically different. We need to fix up |
8824 | | // both types separately. |
8825 | 0 | FixedT = TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative, |
8826 | 0 | Oversized); |
8827 | 0 | } |
8828 | 2 | if ((!FixedTInfo || FixedT.isNull()) && T->isVariableArrayType()) { |
8829 | 2 | const VariableArrayType *VAT = Context.getAsVariableArrayType(T); |
8830 | | // FIXME: This won't give the correct result for |
8831 | | // int a[10][n]; |
8832 | 2 | SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange(); |
8833 | | |
8834 | 2 | if (NewVD->isFileVarDecl()) |
8835 | 2 | Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope) |
8836 | 2 | << SizeRange; |
8837 | 0 | else if (NewVD->isStaticLocal()) |
8838 | 0 | Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage) |
8839 | 0 | << SizeRange; |
8840 | 0 | else |
8841 | 0 | Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage) |
8842 | 0 | << SizeRange; |
8843 | 2 | NewVD->setInvalidDecl(); |
8844 | 2 | return; |
8845 | 2 | } |
8846 | | |
8847 | 0 | if (!FixedTInfo) { |
8848 | 0 | if (NewVD->isFileVarDecl()) |
8849 | 0 | Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope); |
8850 | 0 | else |
8851 | 0 | Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage); |
8852 | 0 | NewVD->setInvalidDecl(); |
8853 | 0 | return; |
8854 | 0 | } |
8855 | | |
8856 | 0 | Diag(NewVD->getLocation(), diag::ext_vla_folded_to_constant); |
8857 | 0 | NewVD->setType(FixedT); |
8858 | 0 | NewVD->setTypeSourceInfo(FixedTInfo); |
8859 | 0 | } |
8860 | | |
8861 | 479 | if (T->isVoidType()) { |
8862 | | // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names |
8863 | | // of objects and functions. |
8864 | 0 | if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) { |
8865 | 0 | Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type) |
8866 | 0 | << T; |
8867 | 0 | NewVD->setInvalidDecl(); |
8868 | 0 | return; |
8869 | 0 | } |
8870 | 0 | } |
8871 | | |
8872 | 479 | if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) { |
8873 | 0 | Diag(NewVD->getLocation(), diag::err_block_on_nonlocal); |
8874 | 0 | NewVD->setInvalidDecl(); |
8875 | 0 | return; |
8876 | 0 | } |
8877 | | |
8878 | 479 | if (!NewVD->hasLocalStorage() && T->isSizelessType() && |
8879 | 479 | !T.isWebAssemblyReferenceType()) { |
8880 | 0 | Diag(NewVD->getLocation(), diag::err_sizeless_nonlocal) << T; |
8881 | 0 | NewVD->setInvalidDecl(); |
8882 | 0 | return; |
8883 | 0 | } |
8884 | | |
8885 | 479 | if (isVM && NewVD->hasAttr<BlocksAttr>()) { |
8886 | 0 | Diag(NewVD->getLocation(), diag::err_block_on_vm); |
8887 | 0 | NewVD->setInvalidDecl(); |
8888 | 0 | return; |
8889 | 0 | } |
8890 | | |
8891 | 479 | if (NewVD->isConstexpr() && !T->isDependentType() && |
8892 | 479 | RequireLiteralType(NewVD->getLocation(), T, |
8893 | 0 | diag::err_constexpr_var_non_literal)) { |
8894 | 0 | NewVD->setInvalidDecl(); |
8895 | 0 | return; |
8896 | 0 | } |
8897 | | |
8898 | | // PPC MMA non-pointer types are not allowed as non-local variable types. |
8899 | 479 | if (Context.getTargetInfo().getTriple().isPPC64() && |
8900 | 479 | !NewVD->isLocalVarDecl() && |
8901 | 479 | CheckPPCMMAType(T, NewVD->getLocation())) { |
8902 | 0 | NewVD->setInvalidDecl(); |
8903 | 0 | return; |
8904 | 0 | } |
8905 | | |
8906 | | // Check that SVE types are only used in functions with SVE available. |
8907 | 479 | if (T->isSVESizelessBuiltinType() && isa<FunctionDecl>(CurContext)) { |
8908 | 0 | const FunctionDecl *FD = cast<FunctionDecl>(CurContext); |
8909 | 0 | llvm::StringMap<bool> CallerFeatureMap; |
8910 | 0 | Context.getFunctionFeatureMap(CallerFeatureMap, FD); |
8911 | 0 | if (!Builtin::evaluateRequiredTargetFeatures( |
8912 | 0 | "sve", CallerFeatureMap)) { |
8913 | 0 | Diag(NewVD->getLocation(), diag::err_sve_vector_in_non_sve_target) << T; |
8914 | 0 | NewVD->setInvalidDecl(); |
8915 | 0 | return; |
8916 | 0 | } |
8917 | 0 | } |
8918 | | |
8919 | 479 | if (T->isRVVSizelessBuiltinType()) |
8920 | 0 | checkRVVTypeSupport(T, NewVD->getLocation(), cast<Decl>(CurContext)); |
8921 | 479 | } |
8922 | | |
8923 | | /// Perform semantic checking on a newly-created variable |
8924 | | /// declaration. |
8925 | | /// |
8926 | | /// This routine performs all of the type-checking required for a |
8927 | | /// variable declaration once it has been built. It is used both to |
8928 | | /// check variables after they have been parsed and their declarators |
8929 | | /// have been translated into a declaration, and to check variables |
8930 | | /// that have been instantiated from a template. |
8931 | | /// |
8932 | | /// Sets NewVD->isInvalidDecl() if an error was encountered. |
8933 | | /// |
8934 | | /// Returns true if the variable declaration is a redeclaration. |
8935 | 5.07k | bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) { |
8936 | 5.07k | CheckVariableDeclarationType(NewVD); |
8937 | | |
8938 | | // If the decl is already known invalid, don't check it. |
8939 | 5.07k | if (NewVD->isInvalidDecl()) |
8940 | 4.59k | return false; |
8941 | | |
8942 | | // If we did not find anything by this name, look for a non-visible |
8943 | | // extern "C" declaration with the same name. |
8944 | 479 | if (Previous.empty() && |
8945 | 479 | checkForConflictWithNonVisibleExternC(*this, NewVD, Previous)) |
8946 | 0 | Previous.setShadowed(); |
8947 | | |
8948 | 479 | if (!Previous.empty()) { |
8949 | 194 | MergeVarDecl(NewVD, Previous); |
8950 | 194 | return true; |
8951 | 194 | } |
8952 | 285 | return false; |
8953 | 479 | } |
8954 | | |
8955 | | /// AddOverriddenMethods - See if a method overrides any in the base classes, |
8956 | | /// and if so, check that it's a valid override and remember it. |
8957 | 0 | bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) { |
8958 | 0 | llvm::SmallPtrSet<const CXXMethodDecl*, 4> Overridden; |
8959 | | |
8960 | | // Look for methods in base classes that this method might override. |
8961 | 0 | CXXBasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/false, |
8962 | 0 | /*DetectVirtual=*/false); |
8963 | 0 | auto VisitBase = [&] (const CXXBaseSpecifier *Specifier, CXXBasePath &Path) { |
8964 | 0 | CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); |
8965 | 0 | DeclarationName Name = MD->getDeclName(); |
8966 | |
|
8967 | 0 | if (Name.getNameKind() == DeclarationName::CXXDestructorName) { |
8968 | | // We really want to find the base class destructor here. |
8969 | 0 | QualType T = Context.getTypeDeclType(BaseRecord); |
8970 | 0 | CanQualType CT = Context.getCanonicalType(T); |
8971 | 0 | Name = Context.DeclarationNames.getCXXDestructorName(CT); |
8972 | 0 | } |
8973 | |
|
8974 | 0 | for (NamedDecl *BaseND : BaseRecord->lookup(Name)) { |
8975 | 0 | CXXMethodDecl *BaseMD = |
8976 | 0 | dyn_cast<CXXMethodDecl>(BaseND->getCanonicalDecl()); |
8977 | 0 | if (!BaseMD || !BaseMD->isVirtual() || |
8978 | 0 | IsOverride(MD, BaseMD, /*UseMemberUsingDeclRules=*/false, |
8979 | 0 | /*ConsiderCudaAttrs=*/true)) |
8980 | 0 | continue; |
8981 | 0 | if (!CheckExplicitObjectOverride(MD, BaseMD)) |
8982 | 0 | continue; |
8983 | 0 | if (Overridden.insert(BaseMD).second) { |
8984 | 0 | MD->addOverriddenMethod(BaseMD); |
8985 | 0 | CheckOverridingFunctionReturnType(MD, BaseMD); |
8986 | 0 | CheckOverridingFunctionAttributes(MD, BaseMD); |
8987 | 0 | CheckOverridingFunctionExceptionSpec(MD, BaseMD); |
8988 | 0 | CheckIfOverriddenFunctionIsMarkedFinal(MD, BaseMD); |
8989 | 0 | } |
8990 | | |
8991 | | // A method can only override one function from each base class. We |
8992 | | // don't track indirectly overridden methods from bases of bases. |
8993 | 0 | return true; |
8994 | 0 | } |
8995 | | |
8996 | 0 | return false; |
8997 | 0 | }; |
8998 | |
|
8999 | 0 | DC->lookupInBases(VisitBase, Paths); |
9000 | 0 | return !Overridden.empty(); |
9001 | 0 | } |
9002 | | |
9003 | | namespace { |
9004 | | // Struct for holding all of the extra arguments needed by |
9005 | | // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator. |
9006 | | struct ActOnFDArgs { |
9007 | | Scope *S; |
9008 | | Declarator &D; |
9009 | | MultiTemplateParamsArg TemplateParamLists; |
9010 | | bool AddToScope; |
9011 | | }; |
9012 | | } // end anonymous namespace |
9013 | | |
9014 | | namespace { |
9015 | | |
9016 | | // Callback to only accept typo corrections that have a non-zero edit distance. |
9017 | | // Also only accept corrections that have the same parent decl. |
9018 | | class DifferentNameValidatorCCC final : public CorrectionCandidateCallback { |
9019 | | public: |
9020 | | DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD, |
9021 | | CXXRecordDecl *Parent) |
9022 | | : Context(Context), OriginalFD(TypoFD), |
9023 | 0 | ExpectedParent(Parent ? Parent->getCanonicalDecl() : nullptr) {} |
9024 | | |
9025 | 0 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
9026 | 0 | if (candidate.getEditDistance() == 0) |
9027 | 0 | return false; |
9028 | | |
9029 | 0 | SmallVector<unsigned, 1> MismatchedParams; |
9030 | 0 | for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(), |
9031 | 0 | CDeclEnd = candidate.end(); |
9032 | 0 | CDecl != CDeclEnd; ++CDecl) { |
9033 | 0 | FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); |
9034 | |
|
9035 | 0 | if (FD && !FD->hasBody() && |
9036 | 0 | hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) { |
9037 | 0 | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) { |
9038 | 0 | CXXRecordDecl *Parent = MD->getParent(); |
9039 | 0 | if (Parent && Parent->getCanonicalDecl() == ExpectedParent) |
9040 | 0 | return true; |
9041 | 0 | } else if (!ExpectedParent) { |
9042 | 0 | return true; |
9043 | 0 | } |
9044 | 0 | } |
9045 | 0 | } |
9046 | | |
9047 | 0 | return false; |
9048 | 0 | } |
9049 | | |
9050 | 0 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
9051 | 0 | return std::make_unique<DifferentNameValidatorCCC>(*this); |
9052 | 0 | } |
9053 | | |
9054 | | private: |
9055 | | ASTContext &Context; |
9056 | | FunctionDecl *OriginalFD; |
9057 | | CXXRecordDecl *ExpectedParent; |
9058 | | }; |
9059 | | |
9060 | | } // end anonymous namespace |
9061 | | |
9062 | 0 | void Sema::MarkTypoCorrectedFunctionDefinition(const NamedDecl *F) { |
9063 | 0 | TypoCorrectedFunctionDefinitions.insert(F); |
9064 | 0 | } |
9065 | | |
9066 | | /// Generate diagnostics for an invalid function redeclaration. |
9067 | | /// |
9068 | | /// This routine handles generating the diagnostic messages for an invalid |
9069 | | /// function redeclaration, including finding possible similar declarations |
9070 | | /// or performing typo correction if there are no previous declarations with |
9071 | | /// the same name. |
9072 | | /// |
9073 | | /// Returns a NamedDecl iff typo correction was performed and substituting in |
9074 | | /// the new declaration name does not cause new errors. |
9075 | | static NamedDecl *DiagnoseInvalidRedeclaration( |
9076 | | Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD, |
9077 | 0 | ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) { |
9078 | 0 | DeclarationName Name = NewFD->getDeclName(); |
9079 | 0 | DeclContext *NewDC = NewFD->getDeclContext(); |
9080 | 0 | SmallVector<unsigned, 1> MismatchedParams; |
9081 | 0 | SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches; |
9082 | 0 | TypoCorrection Correction; |
9083 | 0 | bool IsDefinition = ExtraArgs.D.isFunctionDefinition(); |
9084 | 0 | unsigned DiagMsg = |
9085 | 0 | IsLocalFriend ? diag::err_no_matching_local_friend : |
9086 | 0 | NewFD->getFriendObjectKind() ? diag::err_qualified_friend_no_match : |
9087 | 0 | diag::err_member_decl_does_not_match; |
9088 | 0 | LookupResult Prev(SemaRef, Name, NewFD->getLocation(), |
9089 | 0 | IsLocalFriend ? Sema::LookupLocalFriendName |
9090 | 0 | : Sema::LookupOrdinaryName, |
9091 | 0 | Sema::ForVisibleRedeclaration); |
9092 | |
|
9093 | 0 | NewFD->setInvalidDecl(); |
9094 | 0 | if (IsLocalFriend) |
9095 | 0 | SemaRef.LookupName(Prev, S); |
9096 | 0 | else |
9097 | 0 | SemaRef.LookupQualifiedName(Prev, NewDC); |
9098 | 0 | assert(!Prev.isAmbiguous() && |
9099 | 0 | "Cannot have an ambiguity in previous-declaration lookup"); |
9100 | 0 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); |
9101 | 0 | DifferentNameValidatorCCC CCC(SemaRef.Context, NewFD, |
9102 | 0 | MD ? MD->getParent() : nullptr); |
9103 | 0 | if (!Prev.empty()) { |
9104 | 0 | for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end(); |
9105 | 0 | Func != FuncEnd; ++Func) { |
9106 | 0 | FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func); |
9107 | 0 | if (FD && |
9108 | 0 | hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { |
9109 | | // Add 1 to the index so that 0 can mean the mismatch didn't |
9110 | | // involve a parameter |
9111 | 0 | unsigned ParamNum = |
9112 | 0 | MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1; |
9113 | 0 | NearMatches.push_back(std::make_pair(FD, ParamNum)); |
9114 | 0 | } |
9115 | 0 | } |
9116 | | // If the qualified name lookup yielded nothing, try typo correction |
9117 | 0 | } else if ((Correction = SemaRef.CorrectTypo( |
9118 | 0 | Prev.getLookupNameInfo(), Prev.getLookupKind(), S, |
9119 | 0 | &ExtraArgs.D.getCXXScopeSpec(), CCC, Sema::CTK_ErrorRecovery, |
9120 | 0 | IsLocalFriend ? nullptr : NewDC))) { |
9121 | | // Set up everything for the call to ActOnFunctionDeclarator |
9122 | 0 | ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(), |
9123 | 0 | ExtraArgs.D.getIdentifierLoc()); |
9124 | 0 | Previous.clear(); |
9125 | 0 | Previous.setLookupName(Correction.getCorrection()); |
9126 | 0 | for (TypoCorrection::decl_iterator CDecl = Correction.begin(), |
9127 | 0 | CDeclEnd = Correction.end(); |
9128 | 0 | CDecl != CDeclEnd; ++CDecl) { |
9129 | 0 | FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl); |
9130 | 0 | if (FD && !FD->hasBody() && |
9131 | 0 | hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) { |
9132 | 0 | Previous.addDecl(FD); |
9133 | 0 | } |
9134 | 0 | } |
9135 | 0 | bool wasRedeclaration = ExtraArgs.D.isRedeclaration(); |
9136 | |
|
9137 | 0 | NamedDecl *Result; |
9138 | | // Retry building the function declaration with the new previous |
9139 | | // declarations, and with errors suppressed. |
9140 | 0 | { |
9141 | | // Trap errors. |
9142 | 0 | Sema::SFINAETrap Trap(SemaRef); |
9143 | | |
9144 | | // TODO: Refactor ActOnFunctionDeclarator so that we can call only the |
9145 | | // pieces need to verify the typo-corrected C++ declaration and hopefully |
9146 | | // eliminate the need for the parameter pack ExtraArgs. |
9147 | 0 | Result = SemaRef.ActOnFunctionDeclarator( |
9148 | 0 | ExtraArgs.S, ExtraArgs.D, |
9149 | 0 | Correction.getCorrectionDecl()->getDeclContext(), |
9150 | 0 | NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists, |
9151 | 0 | ExtraArgs.AddToScope); |
9152 | |
|
9153 | 0 | if (Trap.hasErrorOccurred()) |
9154 | 0 | Result = nullptr; |
9155 | 0 | } |
9156 | |
|
9157 | 0 | if (Result) { |
9158 | | // Determine which correction we picked. |
9159 | 0 | Decl *Canonical = Result->getCanonicalDecl(); |
9160 | 0 | for (LookupResult::iterator I = Previous.begin(), E = Previous.end(); |
9161 | 0 | I != E; ++I) |
9162 | 0 | if ((*I)->getCanonicalDecl() == Canonical) |
9163 | 0 | Correction.setCorrectionDecl(*I); |
9164 | | |
9165 | | // Let Sema know about the correction. |
9166 | 0 | SemaRef.MarkTypoCorrectedFunctionDefinition(Result); |
9167 | 0 | SemaRef.diagnoseTypo( |
9168 | 0 | Correction, |
9169 | 0 | SemaRef.PDiag(IsLocalFriend |
9170 | 0 | ? diag::err_no_matching_local_friend_suggest |
9171 | 0 | : diag::err_member_decl_does_not_match_suggest) |
9172 | 0 | << Name << NewDC << IsDefinition); |
9173 | 0 | return Result; |
9174 | 0 | } |
9175 | | |
9176 | | // Pretend the typo correction never occurred |
9177 | 0 | ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(), |
9178 | 0 | ExtraArgs.D.getIdentifierLoc()); |
9179 | 0 | ExtraArgs.D.setRedeclaration(wasRedeclaration); |
9180 | 0 | Previous.clear(); |
9181 | 0 | Previous.setLookupName(Name); |
9182 | 0 | } |
9183 | | |
9184 | 0 | SemaRef.Diag(NewFD->getLocation(), DiagMsg) |
9185 | 0 | << Name << NewDC << IsDefinition << NewFD->getLocation(); |
9186 | |
|
9187 | 0 | bool NewFDisConst = false; |
9188 | 0 | if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) |
9189 | 0 | NewFDisConst = NewMD->isConst(); |
9190 | |
|
9191 | 0 | for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator |
9192 | 0 | NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end(); |
9193 | 0 | NearMatch != NearMatchEnd; ++NearMatch) { |
9194 | 0 | FunctionDecl *FD = NearMatch->first; |
9195 | 0 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); |
9196 | 0 | bool FDisConst = MD && MD->isConst(); |
9197 | 0 | bool IsMember = MD || !IsLocalFriend; |
9198 | | |
9199 | | // FIXME: These notes are poorly worded for the local friend case. |
9200 | 0 | if (unsigned Idx = NearMatch->second) { |
9201 | 0 | ParmVarDecl *FDParam = FD->getParamDecl(Idx-1); |
9202 | 0 | SourceLocation Loc = FDParam->getTypeSpecStartLoc(); |
9203 | 0 | if (Loc.isInvalid()) Loc = FD->getLocation(); |
9204 | 0 | SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match |
9205 | 0 | : diag::note_local_decl_close_param_match) |
9206 | 0 | << Idx << FDParam->getType() |
9207 | 0 | << NewFD->getParamDecl(Idx - 1)->getType(); |
9208 | 0 | } else if (FDisConst != NewFDisConst) { |
9209 | 0 | SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match) |
9210 | 0 | << NewFDisConst << FD->getSourceRange().getEnd() |
9211 | 0 | << (NewFDisConst |
9212 | 0 | ? FixItHint::CreateRemoval(ExtraArgs.D.getFunctionTypeInfo() |
9213 | 0 | .getConstQualifierLoc()) |
9214 | 0 | : FixItHint::CreateInsertion(ExtraArgs.D.getFunctionTypeInfo() |
9215 | 0 | .getRParenLoc() |
9216 | 0 | .getLocWithOffset(1), |
9217 | 0 | " const")); |
9218 | 0 | } else |
9219 | 0 | SemaRef.Diag(FD->getLocation(), |
9220 | 0 | IsMember ? diag::note_member_def_close_match |
9221 | 0 | : diag::note_local_decl_close_match); |
9222 | 0 | } |
9223 | 0 | return nullptr; |
9224 | 0 | } |
9225 | | |
9226 | 19 | static StorageClass getFunctionStorageClass(Sema &SemaRef, Declarator &D) { |
9227 | 19 | switch (D.getDeclSpec().getStorageClassSpec()) { |
9228 | 0 | default: llvm_unreachable("Unknown storage class!"); |
9229 | 0 | case DeclSpec::SCS_auto: |
9230 | 0 | case DeclSpec::SCS_register: |
9231 | 0 | case DeclSpec::SCS_mutable: |
9232 | 0 | SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
9233 | 0 | diag::err_typecheck_sclass_func); |
9234 | 0 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
9235 | 0 | D.setInvalidType(); |
9236 | 0 | break; |
9237 | 19 | case DeclSpec::SCS_unspecified: break; |
9238 | 0 | case DeclSpec::SCS_extern: |
9239 | 0 | if (D.getDeclSpec().isExternInLinkageSpec()) |
9240 | 0 | return SC_None; |
9241 | 0 | return SC_Extern; |
9242 | 0 | case DeclSpec::SCS_static: { |
9243 | 0 | if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) { |
9244 | | // C99 6.7.1p5: |
9245 | | // The declaration of an identifier for a function that has |
9246 | | // block scope shall have no explicit storage-class specifier |
9247 | | // other than extern |
9248 | | // See also (C++ [dcl.stc]p4). |
9249 | 0 | SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
9250 | 0 | diag::err_static_block_func); |
9251 | 0 | break; |
9252 | 0 | } else |
9253 | 0 | return SC_Static; |
9254 | 0 | } |
9255 | 0 | case DeclSpec::SCS_private_extern: return SC_PrivateExtern; |
9256 | 19 | } |
9257 | | |
9258 | | // No explicit storage class has already been returned |
9259 | 19 | return SC_None; |
9260 | 19 | } |
9261 | | |
9262 | | static FunctionDecl *CreateNewFunctionDecl(Sema &SemaRef, Declarator &D, |
9263 | | DeclContext *DC, QualType &R, |
9264 | | TypeSourceInfo *TInfo, |
9265 | | StorageClass SC, |
9266 | 19 | bool &IsVirtualOkay) { |
9267 | 19 | DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D); |
9268 | 19 | DeclarationName Name = NameInfo.getName(); |
9269 | | |
9270 | 19 | FunctionDecl *NewFD = nullptr; |
9271 | 19 | bool isInline = D.getDeclSpec().isInlineSpecified(); |
9272 | | |
9273 | 19 | if (!SemaRef.getLangOpts().CPlusPlus) { |
9274 | | // Determine whether the function was written with a prototype. This is |
9275 | | // true when: |
9276 | | // - there is a prototype in the declarator, or |
9277 | | // - the type R of the function is some kind of typedef or other non- |
9278 | | // attributed reference to a type name (which eventually refers to a |
9279 | | // function type). Note, we can't always look at the adjusted type to |
9280 | | // check this case because attributes may cause a non-function |
9281 | | // declarator to still have a function type. e.g., |
9282 | | // typedef void func(int a); |
9283 | | // __attribute__((noreturn)) func other_func; // This has a prototype |
9284 | 18 | bool HasPrototype = |
9285 | 18 | (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) || |
9286 | 18 | (D.getDeclSpec().isTypeRep() && |
9287 | 10 | SemaRef.GetTypeFromParser(D.getDeclSpec().getRepAsType(), nullptr) |
9288 | 0 | ->isFunctionProtoType()) || |
9289 | 18 | (!R->getAsAdjusted<FunctionType>() && R->isFunctionProtoType()); |
9290 | 18 | assert( |
9291 | 18 | (HasPrototype || !SemaRef.getLangOpts().requiresStrictPrototypes()) && |
9292 | 18 | "Strict prototypes are required"); |
9293 | | |
9294 | 0 | NewFD = FunctionDecl::Create( |
9295 | 18 | SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC, |
9296 | 18 | SemaRef.getCurFPFeatures().isFPConstrained(), isInline, HasPrototype, |
9297 | 18 | ConstexprSpecKind::Unspecified, |
9298 | 18 | /*TrailingRequiresClause=*/nullptr); |
9299 | 18 | if (D.isInvalidType()) |
9300 | 2 | NewFD->setInvalidDecl(); |
9301 | | |
9302 | 18 | return NewFD; |
9303 | 18 | } |
9304 | | |
9305 | 1 | ExplicitSpecifier ExplicitSpecifier = D.getDeclSpec().getExplicitSpecifier(); |
9306 | | |
9307 | 1 | ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); |
9308 | 1 | if (ConstexprKind == ConstexprSpecKind::Constinit) { |
9309 | 0 | SemaRef.Diag(D.getDeclSpec().getConstexprSpecLoc(), |
9310 | 0 | diag::err_constexpr_wrong_decl_kind) |
9311 | 0 | << static_cast<int>(ConstexprKind); |
9312 | 0 | ConstexprKind = ConstexprSpecKind::Unspecified; |
9313 | 0 | D.getMutableDeclSpec().ClearConstexprSpec(); |
9314 | 0 | } |
9315 | 1 | Expr *TrailingRequiresClause = D.getTrailingRequiresClause(); |
9316 | | |
9317 | 1 | SemaRef.CheckExplicitObjectMemberFunction(DC, D, Name, R); |
9318 | | |
9319 | 1 | if (Name.getNameKind() == DeclarationName::CXXConstructorName) { |
9320 | | // This is a C++ constructor declaration. |
9321 | 0 | assert(DC->isRecord() && |
9322 | 0 | "Constructors can only be declared in a member context"); |
9323 | | |
9324 | 0 | R = SemaRef.CheckConstructorDeclarator(D, R, SC); |
9325 | 0 | return CXXConstructorDecl::Create( |
9326 | 0 | SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, |
9327 | 0 | TInfo, ExplicitSpecifier, SemaRef.getCurFPFeatures().isFPConstrained(), |
9328 | 0 | isInline, /*isImplicitlyDeclared=*/false, ConstexprKind, |
9329 | 0 | InheritedConstructor(), TrailingRequiresClause); |
9330 | |
|
9331 | 1 | } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) { |
9332 | | // This is a C++ destructor declaration. |
9333 | 0 | if (DC->isRecord()) { |
9334 | 0 | R = SemaRef.CheckDestructorDeclarator(D, R, SC); |
9335 | 0 | CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); |
9336 | 0 | CXXDestructorDecl *NewDD = CXXDestructorDecl::Create( |
9337 | 0 | SemaRef.Context, Record, D.getBeginLoc(), NameInfo, R, TInfo, |
9338 | 0 | SemaRef.getCurFPFeatures().isFPConstrained(), isInline, |
9339 | 0 | /*isImplicitlyDeclared=*/false, ConstexprKind, |
9340 | 0 | TrailingRequiresClause); |
9341 | | // User defined destructors start as not selected if the class definition is still |
9342 | | // not done. |
9343 | 0 | if (Record->isBeingDefined()) |
9344 | 0 | NewDD->setIneligibleOrNotSelected(true); |
9345 | | |
9346 | | // If the destructor needs an implicit exception specification, set it |
9347 | | // now. FIXME: It'd be nice to be able to create the right type to start |
9348 | | // with, but the type needs to reference the destructor declaration. |
9349 | 0 | if (SemaRef.getLangOpts().CPlusPlus11) |
9350 | 0 | SemaRef.AdjustDestructorExceptionSpec(NewDD); |
9351 | |
|
9352 | 0 | IsVirtualOkay = true; |
9353 | 0 | return NewDD; |
9354 | |
|
9355 | 0 | } else { |
9356 | 0 | SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member); |
9357 | 0 | D.setInvalidType(); |
9358 | | |
9359 | | // Create a FunctionDecl to satisfy the function definition parsing |
9360 | | // code path. |
9361 | 0 | return FunctionDecl::Create( |
9362 | 0 | SemaRef.Context, DC, D.getBeginLoc(), D.getIdentifierLoc(), Name, R, |
9363 | 0 | TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline, |
9364 | 0 | /*hasPrototype=*/true, ConstexprKind, TrailingRequiresClause); |
9365 | 0 | } |
9366 | |
|
9367 | 1 | } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) { |
9368 | 0 | if (!DC->isRecord()) { |
9369 | 0 | SemaRef.Diag(D.getIdentifierLoc(), |
9370 | 0 | diag::err_conv_function_not_member); |
9371 | 0 | return nullptr; |
9372 | 0 | } |
9373 | | |
9374 | 0 | SemaRef.CheckConversionDeclarator(D, R, SC); |
9375 | 0 | if (D.isInvalidType()) |
9376 | 0 | return nullptr; |
9377 | | |
9378 | 0 | IsVirtualOkay = true; |
9379 | 0 | return CXXConversionDecl::Create( |
9380 | 0 | SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, |
9381 | 0 | TInfo, SemaRef.getCurFPFeatures().isFPConstrained(), isInline, |
9382 | 0 | ExplicitSpecifier, ConstexprKind, SourceLocation(), |
9383 | 0 | TrailingRequiresClause); |
9384 | |
|
9385 | 1 | } else if (Name.getNameKind() == DeclarationName::CXXDeductionGuideName) { |
9386 | 0 | if (TrailingRequiresClause) |
9387 | 0 | SemaRef.Diag(TrailingRequiresClause->getBeginLoc(), |
9388 | 0 | diag::err_trailing_requires_clause_on_deduction_guide) |
9389 | 0 | << TrailingRequiresClause->getSourceRange(); |
9390 | 0 | if (SemaRef.CheckDeductionGuideDeclarator(D, R, SC)) |
9391 | 0 | return nullptr; |
9392 | 0 | return CXXDeductionGuideDecl::Create(SemaRef.Context, DC, D.getBeginLoc(), |
9393 | 0 | ExplicitSpecifier, NameInfo, R, TInfo, |
9394 | 0 | D.getEndLoc()); |
9395 | 1 | } else if (DC->isRecord()) { |
9396 | | // If the name of the function is the same as the name of the record, |
9397 | | // then this must be an invalid constructor that has a return type. |
9398 | | // (The parser checks for a return type and makes the declarator a |
9399 | | // constructor if it has no return type). |
9400 | 0 | if (Name.getAsIdentifierInfo() && |
9401 | 0 | Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){ |
9402 | 0 | SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type) |
9403 | 0 | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) |
9404 | 0 | << SourceRange(D.getIdentifierLoc()); |
9405 | 0 | return nullptr; |
9406 | 0 | } |
9407 | | |
9408 | | // This is a C++ method declaration. |
9409 | 0 | CXXMethodDecl *Ret = CXXMethodDecl::Create( |
9410 | 0 | SemaRef.Context, cast<CXXRecordDecl>(DC), D.getBeginLoc(), NameInfo, R, |
9411 | 0 | TInfo, SC, SemaRef.getCurFPFeatures().isFPConstrained(), isInline, |
9412 | 0 | ConstexprKind, SourceLocation(), TrailingRequiresClause); |
9413 | 0 | IsVirtualOkay = !Ret->isStatic(); |
9414 | 0 | return Ret; |
9415 | 1 | } else { |
9416 | 1 | bool isFriend = |
9417 | 1 | SemaRef.getLangOpts().CPlusPlus && D.getDeclSpec().isFriendSpecified(); |
9418 | 1 | if (!isFriend && SemaRef.CurContext->isRecord()) |
9419 | 0 | return nullptr; |
9420 | | |
9421 | | // Determine whether the function was written with a |
9422 | | // prototype. This true when: |
9423 | | // - we're in C++ (where every function has a prototype), |
9424 | 1 | return FunctionDecl::Create( |
9425 | 1 | SemaRef.Context, DC, D.getBeginLoc(), NameInfo, R, TInfo, SC, |
9426 | 1 | SemaRef.getCurFPFeatures().isFPConstrained(), isInline, |
9427 | 1 | true /*HasPrototype*/, ConstexprKind, TrailingRequiresClause); |
9428 | 1 | } |
9429 | 1 | } |
9430 | | |
9431 | | enum OpenCLParamType { |
9432 | | ValidKernelParam, |
9433 | | PtrPtrKernelParam, |
9434 | | PtrKernelParam, |
9435 | | InvalidAddrSpacePtrKernelParam, |
9436 | | InvalidKernelParam, |
9437 | | RecordKernelParam |
9438 | | }; |
9439 | | |
9440 | 0 | static bool isOpenCLSizeDependentType(ASTContext &C, QualType Ty) { |
9441 | | // Size dependent types are just typedefs to normal integer types |
9442 | | // (e.g. unsigned long), so we cannot distinguish them from other typedefs to |
9443 | | // integers other than by their names. |
9444 | 0 | StringRef SizeTypeNames[] = {"size_t", "intptr_t", "uintptr_t", "ptrdiff_t"}; |
9445 | | |
9446 | | // Remove typedefs one by one until we reach a typedef |
9447 | | // for a size dependent type. |
9448 | 0 | QualType DesugaredTy = Ty; |
9449 | 0 | do { |
9450 | 0 | ArrayRef<StringRef> Names(SizeTypeNames); |
9451 | 0 | auto Match = llvm::find(Names, DesugaredTy.getUnqualifiedType().getAsString()); |
9452 | 0 | if (Names.end() != Match) |
9453 | 0 | return true; |
9454 | | |
9455 | 0 | Ty = DesugaredTy; |
9456 | 0 | DesugaredTy = Ty.getSingleStepDesugaredType(C); |
9457 | 0 | } while (DesugaredTy != Ty); |
9458 | | |
9459 | 0 | return false; |
9460 | 0 | } |
9461 | | |
9462 | 0 | static OpenCLParamType getOpenCLKernelParameterType(Sema &S, QualType PT) { |
9463 | 0 | if (PT->isDependentType()) |
9464 | 0 | return InvalidKernelParam; |
9465 | | |
9466 | 0 | if (PT->isPointerType() || PT->isReferenceType()) { |
9467 | 0 | QualType PointeeType = PT->getPointeeType(); |
9468 | 0 | if (PointeeType.getAddressSpace() == LangAS::opencl_generic || |
9469 | 0 | PointeeType.getAddressSpace() == LangAS::opencl_private || |
9470 | 0 | PointeeType.getAddressSpace() == LangAS::Default) |
9471 | 0 | return InvalidAddrSpacePtrKernelParam; |
9472 | | |
9473 | 0 | if (PointeeType->isPointerType()) { |
9474 | | // This is a pointer to pointer parameter. |
9475 | | // Recursively check inner type. |
9476 | 0 | OpenCLParamType ParamKind = getOpenCLKernelParameterType(S, PointeeType); |
9477 | 0 | if (ParamKind == InvalidAddrSpacePtrKernelParam || |
9478 | 0 | ParamKind == InvalidKernelParam) |
9479 | 0 | return ParamKind; |
9480 | | |
9481 | | // OpenCL v3.0 s6.11.a: |
9482 | | // A restriction to pass pointers to pointers only applies to OpenCL C |
9483 | | // v1.2 or below. |
9484 | 0 | if (S.getLangOpts().getOpenCLCompatibleVersion() > 120) |
9485 | 0 | return ValidKernelParam; |
9486 | | |
9487 | 0 | return PtrPtrKernelParam; |
9488 | 0 | } |
9489 | | |
9490 | | // C++ for OpenCL v1.0 s2.4: |
9491 | | // Moreover the types used in parameters of the kernel functions must be: |
9492 | | // Standard layout types for pointer parameters. The same applies to |
9493 | | // reference if an implementation supports them in kernel parameters. |
9494 | 0 | if (S.getLangOpts().OpenCLCPlusPlus && |
9495 | 0 | !S.getOpenCLOptions().isAvailableOption( |
9496 | 0 | "__cl_clang_non_portable_kernel_param_types", S.getLangOpts())) { |
9497 | 0 | auto CXXRec = PointeeType.getCanonicalType()->getAsCXXRecordDecl(); |
9498 | 0 | bool IsStandardLayoutType = true; |
9499 | 0 | if (CXXRec) { |
9500 | | // If template type is not ODR-used its definition is only available |
9501 | | // in the template definition not its instantiation. |
9502 | | // FIXME: This logic doesn't work for types that depend on template |
9503 | | // parameter (PR58590). |
9504 | 0 | if (!CXXRec->hasDefinition()) |
9505 | 0 | CXXRec = CXXRec->getTemplateInstantiationPattern(); |
9506 | 0 | if (!CXXRec || !CXXRec->hasDefinition() || !CXXRec->isStandardLayout()) |
9507 | 0 | IsStandardLayoutType = false; |
9508 | 0 | } |
9509 | 0 | if (!PointeeType->isAtomicType() && !PointeeType->isVoidType() && |
9510 | 0 | !IsStandardLayoutType) |
9511 | 0 | return InvalidKernelParam; |
9512 | 0 | } |
9513 | | |
9514 | | // OpenCL v1.2 s6.9.p: |
9515 | | // A restriction to pass pointers only applies to OpenCL C v1.2 or below. |
9516 | 0 | if (S.getLangOpts().getOpenCLCompatibleVersion() > 120) |
9517 | 0 | return ValidKernelParam; |
9518 | | |
9519 | 0 | return PtrKernelParam; |
9520 | 0 | } |
9521 | | |
9522 | | // OpenCL v1.2 s6.9.k: |
9523 | | // Arguments to kernel functions in a program cannot be declared with the |
9524 | | // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and |
9525 | | // uintptr_t or a struct and/or union that contain fields declared to be one |
9526 | | // of these built-in scalar types. |
9527 | 0 | if (isOpenCLSizeDependentType(S.getASTContext(), PT)) |
9528 | 0 | return InvalidKernelParam; |
9529 | | |
9530 | 0 | if (PT->isImageType()) |
9531 | 0 | return PtrKernelParam; |
9532 | | |
9533 | 0 | if (PT->isBooleanType() || PT->isEventT() || PT->isReserveIDT()) |
9534 | 0 | return InvalidKernelParam; |
9535 | | |
9536 | | // OpenCL extension spec v1.2 s9.5: |
9537 | | // This extension adds support for half scalar and vector types as built-in |
9538 | | // types that can be used for arithmetic operations, conversions etc. |
9539 | 0 | if (!S.getOpenCLOptions().isAvailableOption("cl_khr_fp16", S.getLangOpts()) && |
9540 | 0 | PT->isHalfType()) |
9541 | 0 | return InvalidKernelParam; |
9542 | | |
9543 | | // Look into an array argument to check if it has a forbidden type. |
9544 | 0 | if (PT->isArrayType()) { |
9545 | 0 | const Type *UnderlyingTy = PT->getPointeeOrArrayElementType(); |
9546 | | // Call ourself to check an underlying type of an array. Since the |
9547 | | // getPointeeOrArrayElementType returns an innermost type which is not an |
9548 | | // array, this recursive call only happens once. |
9549 | 0 | return getOpenCLKernelParameterType(S, QualType(UnderlyingTy, 0)); |
9550 | 0 | } |
9551 | | |
9552 | | // C++ for OpenCL v1.0 s2.4: |
9553 | | // Moreover the types used in parameters of the kernel functions must be: |
9554 | | // Trivial and standard-layout types C++17 [basic.types] (plain old data |
9555 | | // types) for parameters passed by value; |
9556 | 0 | if (S.getLangOpts().OpenCLCPlusPlus && |
9557 | 0 | !S.getOpenCLOptions().isAvailableOption( |
9558 | 0 | "__cl_clang_non_portable_kernel_param_types", S.getLangOpts()) && |
9559 | 0 | !PT->isOpenCLSpecificType() && !PT.isPODType(S.Context)) |
9560 | 0 | return InvalidKernelParam; |
9561 | | |
9562 | 0 | if (PT->isRecordType()) |
9563 | 0 | return RecordKernelParam; |
9564 | | |
9565 | 0 | return ValidKernelParam; |
9566 | 0 | } |
9567 | | |
9568 | | static void checkIsValidOpenCLKernelParameter( |
9569 | | Sema &S, |
9570 | | Declarator &D, |
9571 | | ParmVarDecl *Param, |
9572 | 0 | llvm::SmallPtrSetImpl<const Type *> &ValidTypes) { |
9573 | 0 | QualType PT = Param->getType(); |
9574 | | |
9575 | | // Cache the valid types we encounter to avoid rechecking structs that are |
9576 | | // used again |
9577 | 0 | if (ValidTypes.count(PT.getTypePtr())) |
9578 | 0 | return; |
9579 | | |
9580 | 0 | switch (getOpenCLKernelParameterType(S, PT)) { |
9581 | 0 | case PtrPtrKernelParam: |
9582 | | // OpenCL v3.0 s6.11.a: |
9583 | | // A kernel function argument cannot be declared as a pointer to a pointer |
9584 | | // type. [...] This restriction only applies to OpenCL C 1.2 or below. |
9585 | 0 | S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param); |
9586 | 0 | D.setInvalidType(); |
9587 | 0 | return; |
9588 | | |
9589 | 0 | case InvalidAddrSpacePtrKernelParam: |
9590 | | // OpenCL v1.0 s6.5: |
9591 | | // __kernel function arguments declared to be a pointer of a type can point |
9592 | | // to one of the following address spaces only : __global, __local or |
9593 | | // __constant. |
9594 | 0 | S.Diag(Param->getLocation(), diag::err_kernel_arg_address_space); |
9595 | 0 | D.setInvalidType(); |
9596 | 0 | return; |
9597 | | |
9598 | | // OpenCL v1.2 s6.9.k: |
9599 | | // Arguments to kernel functions in a program cannot be declared with the |
9600 | | // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and |
9601 | | // uintptr_t or a struct and/or union that contain fields declared to be |
9602 | | // one of these built-in scalar types. |
9603 | | |
9604 | 0 | case InvalidKernelParam: |
9605 | | // OpenCL v1.2 s6.8 n: |
9606 | | // A kernel function argument cannot be declared |
9607 | | // of event_t type. |
9608 | | // Do not diagnose half type since it is diagnosed as invalid argument |
9609 | | // type for any function elsewhere. |
9610 | 0 | if (!PT->isHalfType()) { |
9611 | 0 | S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; |
9612 | | |
9613 | | // Explain what typedefs are involved. |
9614 | 0 | const TypedefType *Typedef = nullptr; |
9615 | 0 | while ((Typedef = PT->getAs<TypedefType>())) { |
9616 | 0 | SourceLocation Loc = Typedef->getDecl()->getLocation(); |
9617 | | // SourceLocation may be invalid for a built-in type. |
9618 | 0 | if (Loc.isValid()) |
9619 | 0 | S.Diag(Loc, diag::note_entity_declared_at) << PT; |
9620 | 0 | PT = Typedef->desugar(); |
9621 | 0 | } |
9622 | 0 | } |
9623 | |
|
9624 | 0 | D.setInvalidType(); |
9625 | 0 | return; |
9626 | | |
9627 | 0 | case PtrKernelParam: |
9628 | 0 | case ValidKernelParam: |
9629 | 0 | ValidTypes.insert(PT.getTypePtr()); |
9630 | 0 | return; |
9631 | | |
9632 | 0 | case RecordKernelParam: |
9633 | 0 | break; |
9634 | 0 | } |
9635 | | |
9636 | | // Track nested structs we will inspect |
9637 | 0 | SmallVector<const Decl *, 4> VisitStack; |
9638 | | |
9639 | | // Track where we are in the nested structs. Items will migrate from |
9640 | | // VisitStack to HistoryStack as we do the DFS for bad field. |
9641 | 0 | SmallVector<const FieldDecl *, 4> HistoryStack; |
9642 | 0 | HistoryStack.push_back(nullptr); |
9643 | | |
9644 | | // At this point we already handled everything except of a RecordType or |
9645 | | // an ArrayType of a RecordType. |
9646 | 0 | assert((PT->isArrayType() || PT->isRecordType()) && "Unexpected type."); |
9647 | 0 | const RecordType *RecTy = |
9648 | 0 | PT->getPointeeOrArrayElementType()->getAs<RecordType>(); |
9649 | 0 | const RecordDecl *OrigRecDecl = RecTy->getDecl(); |
9650 | |
|
9651 | 0 | VisitStack.push_back(RecTy->getDecl()); |
9652 | 0 | assert(VisitStack.back() && "First decl null?"); |
9653 | | |
9654 | 0 | do { |
9655 | 0 | const Decl *Next = VisitStack.pop_back_val(); |
9656 | 0 | if (!Next) { |
9657 | 0 | assert(!HistoryStack.empty()); |
9658 | | // Found a marker, we have gone up a level |
9659 | 0 | if (const FieldDecl *Hist = HistoryStack.pop_back_val()) |
9660 | 0 | ValidTypes.insert(Hist->getType().getTypePtr()); |
9661 | |
|
9662 | 0 | continue; |
9663 | 0 | } |
9664 | | |
9665 | | // Adds everything except the original parameter declaration (which is not a |
9666 | | // field itself) to the history stack. |
9667 | 0 | const RecordDecl *RD; |
9668 | 0 | if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) { |
9669 | 0 | HistoryStack.push_back(Field); |
9670 | |
|
9671 | 0 | QualType FieldTy = Field->getType(); |
9672 | | // Other field types (known to be valid or invalid) are handled while we |
9673 | | // walk around RecordDecl::fields(). |
9674 | 0 | assert((FieldTy->isArrayType() || FieldTy->isRecordType()) && |
9675 | 0 | "Unexpected type."); |
9676 | 0 | const Type *FieldRecTy = FieldTy->getPointeeOrArrayElementType(); |
9677 | |
|
9678 | 0 | RD = FieldRecTy->castAs<RecordType>()->getDecl(); |
9679 | 0 | } else { |
9680 | 0 | RD = cast<RecordDecl>(Next); |
9681 | 0 | } |
9682 | | |
9683 | | // Add a null marker so we know when we've gone back up a level |
9684 | 0 | VisitStack.push_back(nullptr); |
9685 | |
|
9686 | 0 | for (const auto *FD : RD->fields()) { |
9687 | 0 | QualType QT = FD->getType(); |
9688 | |
|
9689 | 0 | if (ValidTypes.count(QT.getTypePtr())) |
9690 | 0 | continue; |
9691 | | |
9692 | 0 | OpenCLParamType ParamType = getOpenCLKernelParameterType(S, QT); |
9693 | 0 | if (ParamType == ValidKernelParam) |
9694 | 0 | continue; |
9695 | | |
9696 | 0 | if (ParamType == RecordKernelParam) { |
9697 | 0 | VisitStack.push_back(FD); |
9698 | 0 | continue; |
9699 | 0 | } |
9700 | | |
9701 | | // OpenCL v1.2 s6.9.p: |
9702 | | // Arguments to kernel functions that are declared to be a struct or union |
9703 | | // do not allow OpenCL objects to be passed as elements of the struct or |
9704 | | // union. This restriction was lifted in OpenCL v2.0 with the introduction |
9705 | | // of SVM. |
9706 | 0 | if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam || |
9707 | 0 | ParamType == InvalidAddrSpacePtrKernelParam) { |
9708 | 0 | S.Diag(Param->getLocation(), |
9709 | 0 | diag::err_record_with_pointers_kernel_param) |
9710 | 0 | << PT->isUnionType() |
9711 | 0 | << PT; |
9712 | 0 | } else { |
9713 | 0 | S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT; |
9714 | 0 | } |
9715 | |
|
9716 | 0 | S.Diag(OrigRecDecl->getLocation(), diag::note_within_field_of_type) |
9717 | 0 | << OrigRecDecl->getDeclName(); |
9718 | | |
9719 | | // We have an error, now let's go back up through history and show where |
9720 | | // the offending field came from |
9721 | 0 | for (ArrayRef<const FieldDecl *>::const_iterator |
9722 | 0 | I = HistoryStack.begin() + 1, |
9723 | 0 | E = HistoryStack.end(); |
9724 | 0 | I != E; ++I) { |
9725 | 0 | const FieldDecl *OuterField = *I; |
9726 | 0 | S.Diag(OuterField->getLocation(), diag::note_within_field_of_type) |
9727 | 0 | << OuterField->getType(); |
9728 | 0 | } |
9729 | |
|
9730 | 0 | S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here) |
9731 | 0 | << QT->isPointerType() |
9732 | 0 | << QT; |
9733 | 0 | D.setInvalidType(); |
9734 | 0 | return; |
9735 | 0 | } |
9736 | 0 | } while (!VisitStack.empty()); |
9737 | 0 | } |
9738 | | |
9739 | | /// Find the DeclContext in which a tag is implicitly declared if we see an |
9740 | | /// elaborated type specifier in the specified context, and lookup finds |
9741 | | /// nothing. |
9742 | 18 | static DeclContext *getTagInjectionContext(DeclContext *DC) { |
9743 | 18 | while (!DC->isFileContext() && !DC->isFunctionOrMethod()) |
9744 | 0 | DC = DC->getParent(); |
9745 | 18 | return DC; |
9746 | 18 | } |
9747 | | |
9748 | | /// Find the Scope in which a tag is implicitly declared if we see an |
9749 | | /// elaborated type specifier in the specified context, and lookup finds |
9750 | | /// nothing. |
9751 | 0 | static Scope *getTagInjectionScope(Scope *S, const LangOptions &LangOpts) { |
9752 | 0 | while (S->isClassScope() || |
9753 | 0 | (LangOpts.CPlusPlus && |
9754 | 0 | S->isFunctionPrototypeScope()) || |
9755 | 0 | ((S->getFlags() & Scope::DeclScope) == 0) || |
9756 | 0 | (S->getEntity() && S->getEntity()->isTransparentContext())) |
9757 | 0 | S = S->getParent(); |
9758 | 0 | return S; |
9759 | 0 | } |
9760 | | |
9761 | | /// Determine whether a declaration matches a known function in namespace std. |
9762 | | static bool isStdBuiltin(ASTContext &Ctx, FunctionDecl *FD, |
9763 | 0 | unsigned BuiltinID) { |
9764 | 0 | switch (BuiltinID) { |
9765 | 0 | case Builtin::BI__GetExceptionInfo: |
9766 | | // No type checking whatsoever. |
9767 | 0 | return Ctx.getTargetInfo().getCXXABI().isMicrosoft(); |
9768 | | |
9769 | 0 | case Builtin::BIaddressof: |
9770 | 0 | case Builtin::BI__addressof: |
9771 | 0 | case Builtin::BIforward: |
9772 | 0 | case Builtin::BIforward_like: |
9773 | 0 | case Builtin::BImove: |
9774 | 0 | case Builtin::BImove_if_noexcept: |
9775 | 0 | case Builtin::BIas_const: { |
9776 | | // Ensure that we don't treat the algorithm |
9777 | | // OutputIt std::move(InputIt, InputIt, OutputIt) |
9778 | | // as the builtin std::move. |
9779 | 0 | const auto *FPT = FD->getType()->castAs<FunctionProtoType>(); |
9780 | 0 | return FPT->getNumParams() == 1 && !FPT->isVariadic(); |
9781 | 0 | } |
9782 | | |
9783 | 0 | default: |
9784 | 0 | return false; |
9785 | 0 | } |
9786 | 0 | } |
9787 | | |
9788 | | NamedDecl* |
9789 | | Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC, |
9790 | | TypeSourceInfo *TInfo, LookupResult &Previous, |
9791 | | MultiTemplateParamsArg TemplateParamListsRef, |
9792 | 19 | bool &AddToScope) { |
9793 | 19 | QualType R = TInfo->getType(); |
9794 | | |
9795 | 19 | assert(R->isFunctionType()); |
9796 | 19 | if (R.getCanonicalType()->castAs<FunctionType>()->getCmseNSCallAttr()) |
9797 | 0 | Diag(D.getIdentifierLoc(), diag::err_function_decl_cmse_ns_call); |
9798 | | |
9799 | 19 | SmallVector<TemplateParameterList *, 4> TemplateParamLists; |
9800 | 19 | llvm::append_range(TemplateParamLists, TemplateParamListsRef); |
9801 | 19 | if (TemplateParameterList *Invented = D.getInventedTemplateParameterList()) { |
9802 | 0 | if (!TemplateParamLists.empty() && |
9803 | 0 | Invented->getDepth() == TemplateParamLists.back()->getDepth()) |
9804 | 0 | TemplateParamLists.back() = Invented; |
9805 | 0 | else |
9806 | 0 | TemplateParamLists.push_back(Invented); |
9807 | 0 | } |
9808 | | |
9809 | | // TODO: consider using NameInfo for diagnostic. |
9810 | 19 | DeclarationNameInfo NameInfo = GetNameForDeclarator(D); |
9811 | 19 | DeclarationName Name = NameInfo.getName(); |
9812 | 19 | StorageClass SC = getFunctionStorageClass(*this, D); |
9813 | | |
9814 | 19 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
9815 | 0 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
9816 | 0 | diag::err_invalid_thread) |
9817 | 0 | << DeclSpec::getSpecifierName(TSCS); |
9818 | | |
9819 | 19 | if (D.isFirstDeclarationOfMember()) |
9820 | 0 | adjustMemberFunctionCC( |
9821 | 0 | R, !(D.isStaticMember() || D.isExplicitObjectMemberFunction()), |
9822 | 0 | D.isCtorOrDtor(), D.getIdentifierLoc()); |
9823 | | |
9824 | 19 | bool isFriend = false; |
9825 | 19 | FunctionTemplateDecl *FunctionTemplate = nullptr; |
9826 | 19 | bool isMemberSpecialization = false; |
9827 | 19 | bool isFunctionTemplateSpecialization = false; |
9828 | | |
9829 | 19 | bool HasExplicitTemplateArgs = false; |
9830 | 19 | TemplateArgumentListInfo TemplateArgs; |
9831 | | |
9832 | 19 | bool isVirtualOkay = false; |
9833 | | |
9834 | 19 | DeclContext *OriginalDC = DC; |
9835 | 19 | bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC); |
9836 | | |
9837 | 19 | FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC, |
9838 | 19 | isVirtualOkay); |
9839 | 19 | if (!NewFD) return nullptr; |
9840 | | |
9841 | 19 | if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer()) |
9842 | 0 | NewFD->setTopLevelDeclInObjCContainer(); |
9843 | | |
9844 | | // Set the lexical context. If this is a function-scope declaration, or has a |
9845 | | // C++ scope specifier, or is the object of a friend declaration, the lexical |
9846 | | // context will be different from the semantic context. |
9847 | 19 | NewFD->setLexicalDeclContext(CurContext); |
9848 | | |
9849 | 19 | if (IsLocalExternDecl) |
9850 | 0 | NewFD->setLocalExternDecl(); |
9851 | | |
9852 | 19 | if (getLangOpts().CPlusPlus) { |
9853 | | // The rules for implicit inlines changed in C++20 for methods and friends |
9854 | | // with an in-class definition (when such a definition is not attached to |
9855 | | // the global module). User-specified 'inline' overrides this (set when |
9856 | | // the function decl is created above). |
9857 | | // FIXME: We need a better way to separate C++ standard and clang modules. |
9858 | 1 | bool ImplicitInlineCXX20 = !getLangOpts().CPlusPlusModules || |
9859 | 1 | !NewFD->getOwningModule() || |
9860 | 1 | NewFD->getOwningModule()->isGlobalModule() || |
9861 | 1 | NewFD->getOwningModule()->isHeaderLikeModule(); |
9862 | 1 | bool isInline = D.getDeclSpec().isInlineSpecified(); |
9863 | 1 | bool isVirtual = D.getDeclSpec().isVirtualSpecified(); |
9864 | 1 | bool hasExplicit = D.getDeclSpec().hasExplicitSpecifier(); |
9865 | 1 | isFriend = D.getDeclSpec().isFriendSpecified(); |
9866 | 1 | if (isFriend && !isInline && D.isFunctionDefinition()) { |
9867 | | // Pre-C++20 [class.friend]p5 |
9868 | | // A function can be defined in a friend declaration of a |
9869 | | // class . . . . Such a function is implicitly inline. |
9870 | | // Post C++20 [class.friend]p7 |
9871 | | // Such a function is implicitly an inline function if it is attached |
9872 | | // to the global module. |
9873 | 0 | NewFD->setImplicitlyInline(ImplicitInlineCXX20); |
9874 | 0 | } |
9875 | | |
9876 | | // If this is a method defined in an __interface, and is not a constructor |
9877 | | // or an overloaded operator, then set the pure flag (isVirtual will already |
9878 | | // return true). |
9879 | 1 | if (const CXXRecordDecl *Parent = |
9880 | 1 | dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) { |
9881 | 0 | if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided()) |
9882 | 0 | NewFD->setPure(true); |
9883 | | |
9884 | | // C++ [class.union]p2 |
9885 | | // A union can have member functions, but not virtual functions. |
9886 | 0 | if (isVirtual && Parent->isUnion()) { |
9887 | 0 | Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_in_union); |
9888 | 0 | NewFD->setInvalidDecl(); |
9889 | 0 | } |
9890 | 0 | if ((Parent->isClass() || Parent->isStruct()) && |
9891 | 0 | Parent->hasAttr<SYCLSpecialClassAttr>() && |
9892 | 0 | NewFD->getKind() == Decl::Kind::CXXMethod && NewFD->getIdentifier() && |
9893 | 0 | NewFD->getName() == "__init" && D.isFunctionDefinition()) { |
9894 | 0 | if (auto *Def = Parent->getDefinition()) |
9895 | 0 | Def->setInitMethod(true); |
9896 | 0 | } |
9897 | 0 | } |
9898 | | |
9899 | 1 | SetNestedNameSpecifier(*this, NewFD, D); |
9900 | 1 | isMemberSpecialization = false; |
9901 | 1 | isFunctionTemplateSpecialization = false; |
9902 | 1 | if (D.isInvalidType()) |
9903 | 1 | NewFD->setInvalidDecl(); |
9904 | | |
9905 | | // Match up the template parameter lists with the scope specifier, then |
9906 | | // determine whether we have a template or a template specialization. |
9907 | 1 | bool Invalid = false; |
9908 | 1 | TemplateIdAnnotation *TemplateId = |
9909 | 1 | D.getName().getKind() == UnqualifiedIdKind::IK_TemplateId |
9910 | 1 | ? D.getName().TemplateId |
9911 | 1 | : nullptr; |
9912 | 1 | TemplateParameterList *TemplateParams = |
9913 | 1 | MatchTemplateParametersToScopeSpecifier( |
9914 | 1 | D.getDeclSpec().getBeginLoc(), D.getIdentifierLoc(), |
9915 | 1 | D.getCXXScopeSpec(), TemplateId, TemplateParamLists, isFriend, |
9916 | 1 | isMemberSpecialization, Invalid); |
9917 | 1 | if (TemplateParams) { |
9918 | | // Check that we can declare a template here. |
9919 | 0 | if (CheckTemplateDeclScope(S, TemplateParams)) |
9920 | 0 | NewFD->setInvalidDecl(); |
9921 | |
|
9922 | 0 | if (TemplateParams->size() > 0) { |
9923 | | // This is a function template |
9924 | | |
9925 | | // A destructor cannot be a template. |
9926 | 0 | if (Name.getNameKind() == DeclarationName::CXXDestructorName) { |
9927 | 0 | Diag(NewFD->getLocation(), diag::err_destructor_template); |
9928 | 0 | NewFD->setInvalidDecl(); |
9929 | | // Function template with explicit template arguments. |
9930 | 0 | } else if (TemplateId) { |
9931 | 0 | Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec) |
9932 | 0 | << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc); |
9933 | 0 | NewFD->setInvalidDecl(); |
9934 | 0 | } |
9935 | | |
9936 | | // If we're adding a template to a dependent context, we may need to |
9937 | | // rebuilding some of the types used within the template parameter list, |
9938 | | // now that we know what the current instantiation is. |
9939 | 0 | if (DC->isDependentContext()) { |
9940 | 0 | ContextRAII SavedContext(*this, DC); |
9941 | 0 | if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams)) |
9942 | 0 | Invalid = true; |
9943 | 0 | } |
9944 | |
|
9945 | 0 | FunctionTemplate = FunctionTemplateDecl::Create(Context, DC, |
9946 | 0 | NewFD->getLocation(), |
9947 | 0 | Name, TemplateParams, |
9948 | 0 | NewFD); |
9949 | 0 | FunctionTemplate->setLexicalDeclContext(CurContext); |
9950 | 0 | NewFD->setDescribedFunctionTemplate(FunctionTemplate); |
9951 | | |
9952 | | // For source fidelity, store the other template param lists. |
9953 | 0 | if (TemplateParamLists.size() > 1) { |
9954 | 0 | NewFD->setTemplateParameterListsInfo(Context, |
9955 | 0 | ArrayRef<TemplateParameterList *>(TemplateParamLists) |
9956 | 0 | .drop_back(1)); |
9957 | 0 | } |
9958 | 0 | } else { |
9959 | | // This is a function template specialization. |
9960 | 0 | isFunctionTemplateSpecialization = true; |
9961 | | // For source fidelity, store all the template param lists. |
9962 | 0 | if (TemplateParamLists.size() > 0) |
9963 | 0 | NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); |
9964 | | |
9965 | | // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);". |
9966 | 0 | if (isFriend) { |
9967 | | // We want to remove the "template<>", found here. |
9968 | 0 | SourceRange RemoveRange = TemplateParams->getSourceRange(); |
9969 | | |
9970 | | // If we remove the template<> and the name is not a |
9971 | | // template-id, we're actually silently creating a problem: |
9972 | | // the friend declaration will refer to an untemplated decl, |
9973 | | // and clearly the user wants a template specialization. So |
9974 | | // we need to insert '<>' after the name. |
9975 | 0 | SourceLocation InsertLoc; |
9976 | 0 | if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { |
9977 | 0 | InsertLoc = D.getName().getSourceRange().getEnd(); |
9978 | 0 | InsertLoc = getLocForEndOfToken(InsertLoc); |
9979 | 0 | } |
9980 | |
|
9981 | 0 | Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend) |
9982 | 0 | << Name << RemoveRange |
9983 | 0 | << FixItHint::CreateRemoval(RemoveRange) |
9984 | 0 | << FixItHint::CreateInsertion(InsertLoc, "<>"); |
9985 | 0 | Invalid = true; |
9986 | | |
9987 | | // Recover by faking up an empty template argument list. |
9988 | 0 | HasExplicitTemplateArgs = true; |
9989 | 0 | TemplateArgs.setLAngleLoc(InsertLoc); |
9990 | 0 | TemplateArgs.setRAngleLoc(InsertLoc); |
9991 | 0 | } |
9992 | 0 | } |
9993 | 1 | } else { |
9994 | | // Check that we can declare a template here. |
9995 | 1 | if (!TemplateParamLists.empty() && isMemberSpecialization && |
9996 | 1 | CheckTemplateDeclScope(S, TemplateParamLists.back())) |
9997 | 0 | NewFD->setInvalidDecl(); |
9998 | | |
9999 | | // All template param lists were matched against the scope specifier: |
10000 | | // this is NOT (an explicit specialization of) a template. |
10001 | 1 | if (TemplateParamLists.size() > 0) |
10002 | | // For source fidelity, store all the template param lists. |
10003 | 0 | NewFD->setTemplateParameterListsInfo(Context, TemplateParamLists); |
10004 | | |
10005 | | // "friend void foo<>(int);" is an implicit specialization decl. |
10006 | 1 | if (isFriend && TemplateId) |
10007 | 0 | isFunctionTemplateSpecialization = true; |
10008 | 1 | } |
10009 | | |
10010 | | // If this is a function template specialization and the unqualified-id of |
10011 | | // the declarator-id is a template-id, convert the template argument list |
10012 | | // into our AST format and check for unexpanded packs. |
10013 | 1 | if (isFunctionTemplateSpecialization && TemplateId) { |
10014 | 0 | HasExplicitTemplateArgs = true; |
10015 | |
|
10016 | 0 | TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc); |
10017 | 0 | TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc); |
10018 | 0 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
10019 | 0 | TemplateId->NumArgs); |
10020 | 0 | translateTemplateArguments(TemplateArgsPtr, TemplateArgs); |
10021 | | |
10022 | | // FIXME: Should we check for unexpanded packs if this was an (invalid) |
10023 | | // declaration of a function template partial specialization? Should we |
10024 | | // consider the unexpanded pack context to be a partial specialization? |
10025 | 0 | for (const TemplateArgumentLoc &ArgLoc : TemplateArgs.arguments()) { |
10026 | 0 | if (DiagnoseUnexpandedParameterPack( |
10027 | 0 | ArgLoc, isFriend ? UPPC_FriendDeclaration |
10028 | 0 | : UPPC_ExplicitSpecialization)) |
10029 | 0 | NewFD->setInvalidDecl(); |
10030 | 0 | } |
10031 | 0 | } |
10032 | | |
10033 | 1 | if (Invalid) { |
10034 | 0 | NewFD->setInvalidDecl(); |
10035 | 0 | if (FunctionTemplate) |
10036 | 0 | FunctionTemplate->setInvalidDecl(); |
10037 | 0 | } |
10038 | | |
10039 | | // C++ [dcl.fct.spec]p5: |
10040 | | // The virtual specifier shall only be used in declarations of |
10041 | | // nonstatic class member functions that appear within a |
10042 | | // member-specification of a class declaration; see 10.3. |
10043 | | // |
10044 | 1 | if (isVirtual && !NewFD->isInvalidDecl()) { |
10045 | 0 | if (!isVirtualOkay) { |
10046 | 0 | Diag(D.getDeclSpec().getVirtualSpecLoc(), |
10047 | 0 | diag::err_virtual_non_function); |
10048 | 0 | } else if (!CurContext->isRecord()) { |
10049 | | // 'virtual' was specified outside of the class. |
10050 | 0 | Diag(D.getDeclSpec().getVirtualSpecLoc(), |
10051 | 0 | diag::err_virtual_out_of_class) |
10052 | 0 | << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); |
10053 | 0 | } else if (NewFD->getDescribedFunctionTemplate()) { |
10054 | | // C++ [temp.mem]p3: |
10055 | | // A member function template shall not be virtual. |
10056 | 0 | Diag(D.getDeclSpec().getVirtualSpecLoc(), |
10057 | 0 | diag::err_virtual_member_function_template) |
10058 | 0 | << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc()); |
10059 | 0 | } else { |
10060 | | // Okay: Add virtual to the method. |
10061 | 0 | NewFD->setVirtualAsWritten(true); |
10062 | 0 | } |
10063 | |
|
10064 | 0 | if (getLangOpts().CPlusPlus14 && |
10065 | 0 | NewFD->getReturnType()->isUndeducedType()) |
10066 | 0 | Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual); |
10067 | 0 | } |
10068 | | |
10069 | 1 | if (getLangOpts().CPlusPlus14 && |
10070 | 1 | (NewFD->isDependentContext() || |
10071 | 1 | (isFriend && CurContext->isDependentContext())) && |
10072 | 1 | NewFD->getReturnType()->isUndeducedType()) { |
10073 | | // If the function template is referenced directly (for instance, as a |
10074 | | // member of the current instantiation), pretend it has a dependent type. |
10075 | | // This is not really justified by the standard, but is the only sane |
10076 | | // thing to do. |
10077 | | // FIXME: For a friend function, we have not marked the function as being |
10078 | | // a friend yet, so 'isDependentContext' on the FD doesn't work. |
10079 | 0 | const FunctionProtoType *FPT = |
10080 | 0 | NewFD->getType()->castAs<FunctionProtoType>(); |
10081 | 0 | QualType Result = SubstAutoTypeDependent(FPT->getReturnType()); |
10082 | 0 | NewFD->setType(Context.getFunctionType(Result, FPT->getParamTypes(), |
10083 | 0 | FPT->getExtProtoInfo())); |
10084 | 0 | } |
10085 | | |
10086 | | // C++ [dcl.fct.spec]p3: |
10087 | | // The inline specifier shall not appear on a block scope function |
10088 | | // declaration. |
10089 | 1 | if (isInline && !NewFD->isInvalidDecl()) { |
10090 | 0 | if (CurContext->isFunctionOrMethod()) { |
10091 | | // 'inline' is not allowed on block scope function declaration. |
10092 | 0 | Diag(D.getDeclSpec().getInlineSpecLoc(), |
10093 | 0 | diag::err_inline_declaration_block_scope) << Name |
10094 | 0 | << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc()); |
10095 | 0 | } |
10096 | 0 | } |
10097 | | |
10098 | | // C++ [dcl.fct.spec]p6: |
10099 | | // The explicit specifier shall be used only in the declaration of a |
10100 | | // constructor or conversion function within its class definition; |
10101 | | // see 12.3.1 and 12.3.2. |
10102 | 1 | if (hasExplicit && !NewFD->isInvalidDecl() && |
10103 | 1 | !isa<CXXDeductionGuideDecl>(NewFD)) { |
10104 | 0 | if (!CurContext->isRecord()) { |
10105 | | // 'explicit' was specified outside of the class. |
10106 | 0 | Diag(D.getDeclSpec().getExplicitSpecLoc(), |
10107 | 0 | diag::err_explicit_out_of_class) |
10108 | 0 | << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); |
10109 | 0 | } else if (!isa<CXXConstructorDecl>(NewFD) && |
10110 | 0 | !isa<CXXConversionDecl>(NewFD)) { |
10111 | | // 'explicit' was specified on a function that wasn't a constructor |
10112 | | // or conversion function. |
10113 | 0 | Diag(D.getDeclSpec().getExplicitSpecLoc(), |
10114 | 0 | diag::err_explicit_non_ctor_or_conv_function) |
10115 | 0 | << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecRange()); |
10116 | 0 | } |
10117 | 0 | } |
10118 | | |
10119 | 1 | ConstexprSpecKind ConstexprKind = D.getDeclSpec().getConstexprSpecifier(); |
10120 | 1 | if (ConstexprKind != ConstexprSpecKind::Unspecified) { |
10121 | | // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors |
10122 | | // are implicitly inline. |
10123 | 0 | NewFD->setImplicitlyInline(); |
10124 | | |
10125 | | // C++11 [dcl.constexpr]p3: functions declared constexpr are required to |
10126 | | // be either constructors or to return a literal type. Therefore, |
10127 | | // destructors cannot be declared constexpr. |
10128 | 0 | if (isa<CXXDestructorDecl>(NewFD) && |
10129 | 0 | (!getLangOpts().CPlusPlus20 || |
10130 | 0 | ConstexprKind == ConstexprSpecKind::Consteval)) { |
10131 | 0 | Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor) |
10132 | 0 | << static_cast<int>(ConstexprKind); |
10133 | 0 | NewFD->setConstexprKind(getLangOpts().CPlusPlus20 |
10134 | 0 | ? ConstexprSpecKind::Unspecified |
10135 | 0 | : ConstexprSpecKind::Constexpr); |
10136 | 0 | } |
10137 | | // C++20 [dcl.constexpr]p2: An allocation function, or a |
10138 | | // deallocation function shall not be declared with the consteval |
10139 | | // specifier. |
10140 | 0 | if (ConstexprKind == ConstexprSpecKind::Consteval && |
10141 | 0 | (NewFD->getOverloadedOperator() == OO_New || |
10142 | 0 | NewFD->getOverloadedOperator() == OO_Array_New || |
10143 | 0 | NewFD->getOverloadedOperator() == OO_Delete || |
10144 | 0 | NewFD->getOverloadedOperator() == OO_Array_Delete)) { |
10145 | 0 | Diag(D.getDeclSpec().getConstexprSpecLoc(), |
10146 | 0 | diag::err_invalid_consteval_decl_kind) |
10147 | 0 | << NewFD; |
10148 | 0 | NewFD->setConstexprKind(ConstexprSpecKind::Constexpr); |
10149 | 0 | } |
10150 | 0 | } |
10151 | | |
10152 | | // If __module_private__ was specified, mark the function accordingly. |
10153 | 1 | if (D.getDeclSpec().isModulePrivateSpecified()) { |
10154 | 0 | if (isFunctionTemplateSpecialization) { |
10155 | 0 | SourceLocation ModulePrivateLoc |
10156 | 0 | = D.getDeclSpec().getModulePrivateSpecLoc(); |
10157 | 0 | Diag(ModulePrivateLoc, diag::err_module_private_specialization) |
10158 | 0 | << 0 |
10159 | 0 | << FixItHint::CreateRemoval(ModulePrivateLoc); |
10160 | 0 | } else { |
10161 | 0 | NewFD->setModulePrivate(); |
10162 | 0 | if (FunctionTemplate) |
10163 | 0 | FunctionTemplate->setModulePrivate(); |
10164 | 0 | } |
10165 | 0 | } |
10166 | | |
10167 | 1 | if (isFriend) { |
10168 | 0 | if (FunctionTemplate) { |
10169 | 0 | FunctionTemplate->setObjectOfFriendDecl(); |
10170 | 0 | FunctionTemplate->setAccess(AS_public); |
10171 | 0 | } |
10172 | 0 | NewFD->setObjectOfFriendDecl(); |
10173 | 0 | NewFD->setAccess(AS_public); |
10174 | 0 | } |
10175 | | |
10176 | | // If a function is defined as defaulted or deleted, mark it as such now. |
10177 | | // We'll do the relevant checks on defaulted / deleted functions later. |
10178 | 1 | switch (D.getFunctionDefinitionKind()) { |
10179 | 1 | case FunctionDefinitionKind::Declaration: |
10180 | 1 | case FunctionDefinitionKind::Definition: |
10181 | 1 | break; |
10182 | | |
10183 | 0 | case FunctionDefinitionKind::Defaulted: |
10184 | 0 | NewFD->setDefaulted(); |
10185 | 0 | break; |
10186 | | |
10187 | 0 | case FunctionDefinitionKind::Deleted: |
10188 | 0 | NewFD->setDeletedAsWritten(); |
10189 | 0 | break; |
10190 | 1 | } |
10191 | | |
10192 | 1 | if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && |
10193 | 1 | D.isFunctionDefinition() && !isInline) { |
10194 | | // Pre C++20 [class.mfct]p2: |
10195 | | // A member function may be defined (8.4) in its class definition, in |
10196 | | // which case it is an inline member function (7.1.2) |
10197 | | // Post C++20 [class.mfct]p1: |
10198 | | // If a member function is attached to the global module and is defined |
10199 | | // in its class definition, it is inline. |
10200 | 0 | NewFD->setImplicitlyInline(ImplicitInlineCXX20); |
10201 | 0 | } |
10202 | | |
10203 | 1 | if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) && |
10204 | 1 | !CurContext->isRecord()) { |
10205 | | // C++ [class.static]p1: |
10206 | | // A data or function member of a class may be declared static |
10207 | | // in a class definition, in which case it is a static member of |
10208 | | // the class. |
10209 | | |
10210 | | // Complain about the 'static' specifier if it's on an out-of-line |
10211 | | // member function definition. |
10212 | | |
10213 | | // MSVC permits the use of a 'static' storage specifier on an out-of-line |
10214 | | // member function template declaration and class member template |
10215 | | // declaration (MSVC versions before 2015), warn about this. |
10216 | 0 | Diag(D.getDeclSpec().getStorageClassSpecLoc(), |
10217 | 0 | ((!getLangOpts().isCompatibleWithMSVC(LangOptions::MSVC2015) && |
10218 | 0 | cast<CXXRecordDecl>(DC)->getDescribedClassTemplate()) || |
10219 | 0 | (getLangOpts().MSVCCompat && NewFD->getDescribedFunctionTemplate())) |
10220 | 0 | ? diag::ext_static_out_of_line : diag::err_static_out_of_line) |
10221 | 0 | << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc()); |
10222 | 0 | } |
10223 | | |
10224 | | // C++11 [except.spec]p15: |
10225 | | // A deallocation function with no exception-specification is treated |
10226 | | // as if it were specified with noexcept(true). |
10227 | 1 | const FunctionProtoType *FPT = R->getAs<FunctionProtoType>(); |
10228 | 1 | if ((Name.getCXXOverloadedOperator() == OO_Delete || |
10229 | 1 | Name.getCXXOverloadedOperator() == OO_Array_Delete) && |
10230 | 1 | getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) |
10231 | 0 | NewFD->setType(Context.getFunctionType( |
10232 | 0 | FPT->getReturnType(), FPT->getParamTypes(), |
10233 | 0 | FPT->getExtProtoInfo().withExceptionSpec(EST_BasicNoexcept))); |
10234 | | |
10235 | | // C++20 [dcl.inline]/7 |
10236 | | // If an inline function or variable that is attached to a named module |
10237 | | // is declared in a definition domain, it shall be defined in that |
10238 | | // domain. |
10239 | | // So, if the current declaration does not have a definition, we must |
10240 | | // check at the end of the TU (or when the PMF starts) to see that we |
10241 | | // have a definition at that point. |
10242 | 1 | if (isInline && !D.isFunctionDefinition() && getLangOpts().CPlusPlus20 && |
10243 | 1 | NewFD->hasOwningModule() && NewFD->getOwningModule()->isNamedModule()) { |
10244 | 0 | PendingInlineFuncDecls.insert(NewFD); |
10245 | 0 | } |
10246 | 1 | } |
10247 | | |
10248 | | // Filter out previous declarations that don't match the scope. |
10249 | 19 | FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD), |
10250 | 19 | D.getCXXScopeSpec().isNotEmpty() || |
10251 | 19 | isMemberSpecialization || |
10252 | 19 | isFunctionTemplateSpecialization); |
10253 | | |
10254 | | // Handle GNU asm-label extension (encoded as an attribute). |
10255 | 19 | if (Expr *E = (Expr*) D.getAsmLabel()) { |
10256 | | // The parser guarantees this is a string. |
10257 | 0 | StringLiteral *SE = cast<StringLiteral>(E); |
10258 | 0 | NewFD->addAttr(AsmLabelAttr::Create(Context, SE->getString(), |
10259 | 0 | /*IsLiteralLabel=*/true, |
10260 | 0 | SE->getStrTokenLoc(0))); |
10261 | 19 | } else if (!ExtnameUndeclaredIdentifiers.empty()) { |
10262 | 0 | llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I = |
10263 | 0 | ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier()); |
10264 | 0 | if (I != ExtnameUndeclaredIdentifiers.end()) { |
10265 | 0 | if (isDeclExternC(NewFD)) { |
10266 | 0 | NewFD->addAttr(I->second); |
10267 | 0 | ExtnameUndeclaredIdentifiers.erase(I); |
10268 | 0 | } else |
10269 | 0 | Diag(NewFD->getLocation(), diag::warn_redefine_extname_not_applied) |
10270 | 0 | << /*Variable*/0 << NewFD; |
10271 | 0 | } |
10272 | 0 | } |
10273 | | |
10274 | | // Copy the parameter declarations from the declarator D to the function |
10275 | | // declaration NewFD, if they are available. First scavenge them into Params. |
10276 | 19 | SmallVector<ParmVarDecl*, 16> Params; |
10277 | 19 | unsigned FTIIdx; |
10278 | 19 | if (D.isFunctionDeclarator(FTIIdx)) { |
10279 | 19 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(FTIIdx).Fun; |
10280 | | |
10281 | | // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs |
10282 | | // function that takes no arguments, not a function that takes a |
10283 | | // single void argument. |
10284 | | // We let through "const void" here because Sema::GetTypeForDeclarator |
10285 | | // already checks for that case. |
10286 | 19 | if (FTIHasNonVoidParameters(FTI) && FTI.Params[0].Param) { |
10287 | 18 | for (unsigned i = 0, e = FTI.NumParams; i != e; ++i) { |
10288 | 9 | ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); |
10289 | 9 | assert(Param->getDeclContext() != NewFD && "Was set before ?"); |
10290 | 0 | Param->setDeclContext(NewFD); |
10291 | 9 | Params.push_back(Param); |
10292 | | |
10293 | 9 | if (Param->isInvalidDecl()) |
10294 | 8 | NewFD->setInvalidDecl(); |
10295 | 9 | } |
10296 | 9 | } |
10297 | | |
10298 | 19 | if (!getLangOpts().CPlusPlus) { |
10299 | | // In C, find all the tag declarations from the prototype and move them |
10300 | | // into the function DeclContext. Remove them from the surrounding tag |
10301 | | // injection context of the function, which is typically but not always |
10302 | | // the TU. |
10303 | 18 | DeclContext *PrototypeTagContext = |
10304 | 18 | getTagInjectionContext(NewFD->getLexicalDeclContext()); |
10305 | 18 | for (NamedDecl *NonParmDecl : FTI.getDeclsInPrototype()) { |
10306 | 0 | auto *TD = dyn_cast<TagDecl>(NonParmDecl); |
10307 | | |
10308 | | // We don't want to reparent enumerators. Look at their parent enum |
10309 | | // instead. |
10310 | 0 | if (!TD) { |
10311 | 0 | if (auto *ECD = dyn_cast<EnumConstantDecl>(NonParmDecl)) |
10312 | 0 | TD = cast<EnumDecl>(ECD->getDeclContext()); |
10313 | 0 | } |
10314 | 0 | if (!TD) |
10315 | 0 | continue; |
10316 | 0 | DeclContext *TagDC = TD->getLexicalDeclContext(); |
10317 | 0 | if (!TagDC->containsDecl(TD)) |
10318 | 0 | continue; |
10319 | 0 | TagDC->removeDecl(TD); |
10320 | 0 | TD->setDeclContext(NewFD); |
10321 | 0 | NewFD->addDecl(TD); |
10322 | | |
10323 | | // Preserve the lexical DeclContext if it is not the surrounding tag |
10324 | | // injection context of the FD. In this example, the semantic context of |
10325 | | // E will be f and the lexical context will be S, while both the |
10326 | | // semantic and lexical contexts of S will be f: |
10327 | | // void f(struct S { enum E { a } f; } s); |
10328 | 0 | if (TagDC != PrototypeTagContext) |
10329 | 0 | TD->setLexicalDeclContext(TagDC); |
10330 | 0 | } |
10331 | 18 | } |
10332 | 19 | } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) { |
10333 | | // When we're declaring a function with a typedef, typeof, etc as in the |
10334 | | // following example, we'll need to synthesize (unnamed) |
10335 | | // parameters for use in the declaration. |
10336 | | // |
10337 | | // @code |
10338 | | // typedef void fn(int); |
10339 | | // fn f; |
10340 | | // @endcode |
10341 | | |
10342 | | // Synthesize a parameter for each argument type. |
10343 | 0 | for (const auto &AI : FT->param_types()) { |
10344 | 0 | ParmVarDecl *Param = |
10345 | 0 | BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), AI); |
10346 | 0 | Param->setScopeInfo(0, Params.size()); |
10347 | 0 | Params.push_back(Param); |
10348 | 0 | } |
10349 | 0 | } else { |
10350 | 0 | assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 && |
10351 | 0 | "Should not need args for typedef of non-prototype fn"); |
10352 | 0 | } |
10353 | | |
10354 | | // Finally, we know we have the right number of parameters, install them. |
10355 | 0 | NewFD->setParams(Params); |
10356 | | |
10357 | 19 | if (D.getDeclSpec().isNoreturnSpecified()) |
10358 | 0 | NewFD->addAttr( |
10359 | 0 | C11NoReturnAttr::Create(Context, D.getDeclSpec().getNoreturnSpecLoc())); |
10360 | | |
10361 | | // Functions returning a variably modified type violate C99 6.7.5.2p2 |
10362 | | // because all functions have linkage. |
10363 | 19 | if (!NewFD->isInvalidDecl() && |
10364 | 19 | NewFD->getReturnType()->isVariablyModifiedType()) { |
10365 | 0 | Diag(NewFD->getLocation(), diag::err_vm_func_decl); |
10366 | 0 | NewFD->setInvalidDecl(); |
10367 | 0 | } |
10368 | | |
10369 | | // Apply an implicit SectionAttr if '#pragma clang section text' is active |
10370 | 19 | if (PragmaClangTextSection.Valid && D.isFunctionDefinition() && |
10371 | 19 | !NewFD->hasAttr<SectionAttr>()) |
10372 | 0 | NewFD->addAttr(PragmaClangTextSectionAttr::CreateImplicit( |
10373 | 0 | Context, PragmaClangTextSection.SectionName, |
10374 | 0 | PragmaClangTextSection.PragmaLocation)); |
10375 | | |
10376 | | // Apply an implicit SectionAttr if #pragma code_seg is active. |
10377 | 19 | if (CodeSegStack.CurrentValue && D.isFunctionDefinition() && |
10378 | 19 | !NewFD->hasAttr<SectionAttr>()) { |
10379 | 0 | NewFD->addAttr(SectionAttr::CreateImplicit( |
10380 | 0 | Context, CodeSegStack.CurrentValue->getString(), |
10381 | 0 | CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate)); |
10382 | 0 | if (UnifySection(CodeSegStack.CurrentValue->getString(), |
10383 | 0 | ASTContext::PSF_Implicit | ASTContext::PSF_Execute | |
10384 | 0 | ASTContext::PSF_Read, |
10385 | 0 | NewFD)) |
10386 | 0 | NewFD->dropAttr<SectionAttr>(); |
10387 | 0 | } |
10388 | | |
10389 | | // Apply an implicit StrictGuardStackCheckAttr if #pragma strict_gs_check is |
10390 | | // active. |
10391 | 19 | if (StrictGuardStackCheckStack.CurrentValue && D.isFunctionDefinition() && |
10392 | 19 | !NewFD->hasAttr<StrictGuardStackCheckAttr>()) |
10393 | 0 | NewFD->addAttr(StrictGuardStackCheckAttr::CreateImplicit( |
10394 | 0 | Context, PragmaClangTextSection.PragmaLocation)); |
10395 | | |
10396 | | // Apply an implicit CodeSegAttr from class declspec or |
10397 | | // apply an implicit SectionAttr from #pragma code_seg if active. |
10398 | 19 | if (!NewFD->hasAttr<CodeSegAttr>()) { |
10399 | 19 | if (Attr *SAttr = getImplicitCodeSegOrSectionAttrForFunction(NewFD, |
10400 | 19 | D.isFunctionDefinition())) { |
10401 | 0 | NewFD->addAttr(SAttr); |
10402 | 0 | } |
10403 | 19 | } |
10404 | | |
10405 | | // Handle attributes. |
10406 | 19 | ProcessDeclAttributes(S, NewFD, D); |
10407 | 19 | const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>(); |
10408 | 19 | if (NewTVA && !NewTVA->isDefaultVersion() && |
10409 | 19 | !Context.getTargetInfo().hasFeature("fmv")) { |
10410 | | // Don't add to scope fmv functions declarations if fmv disabled |
10411 | 0 | AddToScope = false; |
10412 | 0 | return NewFD; |
10413 | 0 | } |
10414 | | |
10415 | 19 | if (getLangOpts().OpenCL || getLangOpts().HLSL) { |
10416 | | // Neither OpenCL nor HLSL allow an address space qualifyer on a return |
10417 | | // type. |
10418 | | // |
10419 | | // OpenCL v1.1 s6.5: Using an address space qualifier in a function return |
10420 | | // type declaration will generate a compilation error. |
10421 | 0 | LangAS AddressSpace = NewFD->getReturnType().getAddressSpace(); |
10422 | 0 | if (AddressSpace != LangAS::Default) { |
10423 | 0 | Diag(NewFD->getLocation(), diag::err_return_value_with_address_space); |
10424 | 0 | NewFD->setInvalidDecl(); |
10425 | 0 | } |
10426 | 0 | } |
10427 | | |
10428 | 19 | if (!getLangOpts().CPlusPlus) { |
10429 | | // Perform semantic checking on the function declaration. |
10430 | 18 | if (!NewFD->isInvalidDecl() && NewFD->isMain()) |
10431 | 0 | CheckMain(NewFD, D.getDeclSpec()); |
10432 | | |
10433 | 18 | if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) |
10434 | 0 | CheckMSVCRTEntryPoint(NewFD); |
10435 | | |
10436 | 18 | if (!NewFD->isInvalidDecl()) |
10437 | 9 | D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, |
10438 | 9 | isMemberSpecialization, |
10439 | 9 | D.isFunctionDefinition())); |
10440 | 9 | else if (!Previous.empty()) |
10441 | | // Recover gracefully from an invalid redeclaration. |
10442 | 2 | D.setRedeclaration(true); |
10443 | 18 | assert((NewFD->isInvalidDecl() || !D.isRedeclaration() || |
10444 | 18 | Previous.getResultKind() != LookupResult::FoundOverloaded) && |
10445 | 18 | "previous declaration set still overloaded"); |
10446 | | |
10447 | | // Diagnose no-prototype function declarations with calling conventions that |
10448 | | // don't support variadic calls. Only do this in C and do it after merging |
10449 | | // possibly prototyped redeclarations. |
10450 | 0 | const FunctionType *FT = NewFD->getType()->castAs<FunctionType>(); |
10451 | 18 | if (isa<FunctionNoProtoType>(FT) && !D.isFunctionDefinition()) { |
10452 | 10 | CallingConv CC = FT->getExtInfo().getCC(); |
10453 | 10 | if (!supportsVariadicCall(CC)) { |
10454 | | // Windows system headers sometimes accidentally use stdcall without |
10455 | | // (void) parameters, so we relax this to a warning. |
10456 | 0 | int DiagID = |
10457 | 0 | CC == CC_X86StdCall ? diag::warn_cconv_knr : diag::err_cconv_knr; |
10458 | 0 | Diag(NewFD->getLocation(), DiagID) |
10459 | 0 | << FunctionType::getNameForCallConv(CC); |
10460 | 0 | } |
10461 | 10 | } |
10462 | | |
10463 | 18 | if (NewFD->getReturnType().hasNonTrivialToPrimitiveDestructCUnion() || |
10464 | 18 | NewFD->getReturnType().hasNonTrivialToPrimitiveCopyCUnion()) |
10465 | 0 | checkNonTrivialCUnion(NewFD->getReturnType(), |
10466 | 0 | NewFD->getReturnTypeSourceRange().getBegin(), |
10467 | 0 | NTCUC_FunctionReturn, NTCUK_Destruct|NTCUK_Copy); |
10468 | 18 | } else { |
10469 | | // C++11 [replacement.functions]p3: |
10470 | | // The program's definitions shall not be specified as inline. |
10471 | | // |
10472 | | // N.B. We diagnose declarations instead of definitions per LWG issue 2340. |
10473 | | // |
10474 | | // Suppress the diagnostic if the function is __attribute__((used)), since |
10475 | | // that forces an external definition to be emitted. |
10476 | 1 | if (D.getDeclSpec().isInlineSpecified() && |
10477 | 1 | NewFD->isReplaceableGlobalAllocationFunction() && |
10478 | 1 | !NewFD->hasAttr<UsedAttr>()) |
10479 | 0 | Diag(D.getDeclSpec().getInlineSpecLoc(), |
10480 | 0 | diag::ext_operator_new_delete_declared_inline) |
10481 | 0 | << NewFD->getDeclName(); |
10482 | | |
10483 | | // We do not add HD attributes to specializations here because |
10484 | | // they may have different constexpr-ness compared to their |
10485 | | // templates and, after maybeAddCUDAHostDeviceAttrs() is applied, |
10486 | | // may end up with different effective targets. Instead, a |
10487 | | // specialization inherits its target attributes from its template |
10488 | | // in the CheckFunctionTemplateSpecialization() call below. |
10489 | 1 | if (getLangOpts().CUDA && !isFunctionTemplateSpecialization) |
10490 | 0 | maybeAddCUDAHostDeviceAttrs(NewFD, Previous); |
10491 | | |
10492 | | // Handle explict specializations of function templates |
10493 | | // and friend function declarations with an explicit |
10494 | | // template argument list. |
10495 | 1 | if (isFunctionTemplateSpecialization) { |
10496 | 0 | bool isDependentSpecialization = false; |
10497 | 0 | if (isFriend) { |
10498 | | // For friend function specializations, this is a dependent |
10499 | | // specialization if its semantic context is dependent, its |
10500 | | // type is dependent, or if its template-id is dependent. |
10501 | 0 | isDependentSpecialization = |
10502 | 0 | DC->isDependentContext() || NewFD->getType()->isDependentType() || |
10503 | 0 | (HasExplicitTemplateArgs && |
10504 | 0 | TemplateSpecializationType:: |
10505 | 0 | anyInstantiationDependentTemplateArguments( |
10506 | 0 | TemplateArgs.arguments())); |
10507 | 0 | assert((!isDependentSpecialization || |
10508 | 0 | (HasExplicitTemplateArgs == isDependentSpecialization)) && |
10509 | 0 | "dependent friend function specialization without template " |
10510 | 0 | "args"); |
10511 | 0 | } else { |
10512 | | // For class-scope explicit specializations of function templates, |
10513 | | // if the lexical context is dependent, then the specialization |
10514 | | // is dependent. |
10515 | 0 | isDependentSpecialization = |
10516 | 0 | CurContext->isRecord() && CurContext->isDependentContext(); |
10517 | 0 | } |
10518 | | |
10519 | 0 | TemplateArgumentListInfo *ExplicitTemplateArgs = |
10520 | 0 | HasExplicitTemplateArgs ? &TemplateArgs : nullptr; |
10521 | 0 | if (isDependentSpecialization) { |
10522 | | // If it's a dependent specialization, it may not be possible |
10523 | | // to determine the primary template (for explicit specializations) |
10524 | | // or befriended declaration (for friends) until the enclosing |
10525 | | // template is instantiated. In such cases, we store the declarations |
10526 | | // found by name lookup and defer resolution until instantiation. |
10527 | 0 | if (CheckDependentFunctionTemplateSpecialization( |
10528 | 0 | NewFD, ExplicitTemplateArgs, Previous)) |
10529 | 0 | NewFD->setInvalidDecl(); |
10530 | 0 | } else if (!NewFD->isInvalidDecl()) { |
10531 | 0 | if (CheckFunctionTemplateSpecialization(NewFD, ExplicitTemplateArgs, |
10532 | 0 | Previous)) |
10533 | 0 | NewFD->setInvalidDecl(); |
10534 | 0 | } |
10535 | | |
10536 | | // C++ [dcl.stc]p1: |
10537 | | // A storage-class-specifier shall not be specified in an explicit |
10538 | | // specialization (14.7.3) |
10539 | | // FIXME: We should be checking this for dependent specializations. |
10540 | 0 | FunctionTemplateSpecializationInfo *Info = |
10541 | 0 | NewFD->getTemplateSpecializationInfo(); |
10542 | 0 | if (Info && SC != SC_None) { |
10543 | 0 | if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass()) |
10544 | 0 | Diag(NewFD->getLocation(), |
10545 | 0 | diag::err_explicit_specialization_inconsistent_storage_class) |
10546 | 0 | << SC |
10547 | 0 | << FixItHint::CreateRemoval( |
10548 | 0 | D.getDeclSpec().getStorageClassSpecLoc()); |
10549 | | |
10550 | 0 | else |
10551 | 0 | Diag(NewFD->getLocation(), |
10552 | 0 | diag::ext_explicit_specialization_storage_class) |
10553 | 0 | << FixItHint::CreateRemoval( |
10554 | 0 | D.getDeclSpec().getStorageClassSpecLoc()); |
10555 | 0 | } |
10556 | 1 | } else if (isMemberSpecialization && isa<CXXMethodDecl>(NewFD)) { |
10557 | 0 | if (CheckMemberSpecialization(NewFD, Previous)) |
10558 | 0 | NewFD->setInvalidDecl(); |
10559 | 0 | } |
10560 | | |
10561 | | // Perform semantic checking on the function declaration. |
10562 | 1 | if (!NewFD->isInvalidDecl() && NewFD->isMain()) |
10563 | 0 | CheckMain(NewFD, D.getDeclSpec()); |
10564 | | |
10565 | 1 | if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint()) |
10566 | 0 | CheckMSVCRTEntryPoint(NewFD); |
10567 | | |
10568 | 1 | if (!NewFD->isInvalidDecl()) |
10569 | 0 | D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous, |
10570 | 0 | isMemberSpecialization, |
10571 | 0 | D.isFunctionDefinition())); |
10572 | 1 | else if (!Previous.empty()) |
10573 | | // Recover gracefully from an invalid redeclaration. |
10574 | 0 | D.setRedeclaration(true); |
10575 | | |
10576 | 1 | assert((NewFD->isInvalidDecl() || NewFD->isMultiVersion() || |
10577 | 1 | !D.isRedeclaration() || |
10578 | 1 | Previous.getResultKind() != LookupResult::FoundOverloaded) && |
10579 | 1 | "previous declaration set still overloaded"); |
10580 | | |
10581 | 1 | NamedDecl *PrincipalDecl = (FunctionTemplate |
10582 | 1 | ? cast<NamedDecl>(FunctionTemplate) |
10583 | 1 | : NewFD); |
10584 | | |
10585 | 1 | if (isFriend && NewFD->getPreviousDecl()) { |
10586 | 0 | AccessSpecifier Access = AS_public; |
10587 | 0 | if (!NewFD->isInvalidDecl()) |
10588 | 0 | Access = NewFD->getPreviousDecl()->getAccess(); |
10589 | |
|
10590 | 0 | NewFD->setAccess(Access); |
10591 | 0 | if (FunctionTemplate) FunctionTemplate->setAccess(Access); |
10592 | 0 | } |
10593 | | |
10594 | 1 | if (NewFD->isOverloadedOperator() && !DC->isRecord() && |
10595 | 1 | PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary)) |
10596 | 0 | PrincipalDecl->setNonMemberOperator(); |
10597 | | |
10598 | | // If we have a function template, check the template parameter |
10599 | | // list. This will check and merge default template arguments. |
10600 | 1 | if (FunctionTemplate) { |
10601 | 0 | FunctionTemplateDecl *PrevTemplate = |
10602 | 0 | FunctionTemplate->getPreviousDecl(); |
10603 | 0 | CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(), |
10604 | 0 | PrevTemplate ? PrevTemplate->getTemplateParameters() |
10605 | 0 | : nullptr, |
10606 | 0 | D.getDeclSpec().isFriendSpecified() |
10607 | 0 | ? (D.isFunctionDefinition() |
10608 | 0 | ? TPC_FriendFunctionTemplateDefinition |
10609 | 0 | : TPC_FriendFunctionTemplate) |
10610 | 0 | : (D.getCXXScopeSpec().isSet() && |
10611 | 0 | DC && DC->isRecord() && |
10612 | 0 | DC->isDependentContext()) |
10613 | 0 | ? TPC_ClassTemplateMember |
10614 | 0 | : TPC_FunctionTemplate); |
10615 | 0 | } |
10616 | | |
10617 | 1 | if (NewFD->isInvalidDecl()) { |
10618 | | // Ignore all the rest of this. |
10619 | 1 | } else if (!D.isRedeclaration()) { |
10620 | 0 | struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists, |
10621 | 0 | AddToScope }; |
10622 | | // Fake up an access specifier if it's supposed to be a class member. |
10623 | 0 | if (isa<CXXRecordDecl>(NewFD->getDeclContext())) |
10624 | 0 | NewFD->setAccess(AS_public); |
10625 | | |
10626 | | // Qualified decls generally require a previous declaration. |
10627 | 0 | if (D.getCXXScopeSpec().isSet()) { |
10628 | | // ...with the major exception of templated-scope or |
10629 | | // dependent-scope friend declarations. |
10630 | | |
10631 | | // TODO: we currently also suppress this check in dependent |
10632 | | // contexts because (1) the parameter depth will be off when |
10633 | | // matching friend templates and (2) we might actually be |
10634 | | // selecting a friend based on a dependent factor. But there |
10635 | | // are situations where these conditions don't apply and we |
10636 | | // can actually do this check immediately. |
10637 | | // |
10638 | | // Unless the scope is dependent, it's always an error if qualified |
10639 | | // redeclaration lookup found nothing at all. Diagnose that now; |
10640 | | // nothing will diagnose that error later. |
10641 | 0 | if (isFriend && |
10642 | 0 | (D.getCXXScopeSpec().getScopeRep()->isDependent() || |
10643 | 0 | (!Previous.empty() && CurContext->isDependentContext()))) { |
10644 | | // ignore these |
10645 | 0 | } else if (NewFD->isCPUDispatchMultiVersion() || |
10646 | 0 | NewFD->isCPUSpecificMultiVersion()) { |
10647 | | // ignore this, we allow the redeclaration behavior here to create new |
10648 | | // versions of the function. |
10649 | 0 | } else { |
10650 | | // The user tried to provide an out-of-line definition for a |
10651 | | // function that is a member of a class or namespace, but there |
10652 | | // was no such member function declared (C++ [class.mfct]p2, |
10653 | | // C++ [namespace.memdef]p2). For example: |
10654 | | // |
10655 | | // class X { |
10656 | | // void f() const; |
10657 | | // }; |
10658 | | // |
10659 | | // void X::f() { } // ill-formed |
10660 | | // |
10661 | | // Complain about this problem, and attempt to suggest close |
10662 | | // matches (e.g., those that differ only in cv-qualifiers and |
10663 | | // whether the parameter types are references). |
10664 | |
|
10665 | 0 | if (NamedDecl *Result = DiagnoseInvalidRedeclaration( |
10666 | 0 | *this, Previous, NewFD, ExtraArgs, false, nullptr)) { |
10667 | 0 | AddToScope = ExtraArgs.AddToScope; |
10668 | 0 | return Result; |
10669 | 0 | } |
10670 | 0 | } |
10671 | | |
10672 | | // Unqualified local friend declarations are required to resolve |
10673 | | // to something. |
10674 | 0 | } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) { |
10675 | 0 | if (NamedDecl *Result = DiagnoseInvalidRedeclaration( |
10676 | 0 | *this, Previous, NewFD, ExtraArgs, true, S)) { |
10677 | 0 | AddToScope = ExtraArgs.AddToScope; |
10678 | 0 | return Result; |
10679 | 0 | } |
10680 | 0 | } |
10681 | 0 | } else if (!D.isFunctionDefinition() && |
10682 | 0 | isa<CXXMethodDecl>(NewFD) && NewFD->isOutOfLine() && |
10683 | 0 | !isFriend && !isFunctionTemplateSpecialization && |
10684 | 0 | !isMemberSpecialization) { |
10685 | | // An out-of-line member function declaration must also be a |
10686 | | // definition (C++ [class.mfct]p2). |
10687 | | // Note that this is not the case for explicit specializations of |
10688 | | // function templates or member functions of class templates, per |
10689 | | // C++ [temp.expl.spec]p2. We also allow these declarations as an |
10690 | | // extension for compatibility with old SWIG code which likes to |
10691 | | // generate them. |
10692 | 0 | Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration) |
10693 | 0 | << D.getCXXScopeSpec().getRange(); |
10694 | 0 | } |
10695 | 1 | } |
10696 | | |
10697 | 19 | if (getLangOpts().HLSL && D.isFunctionDefinition()) { |
10698 | | // Any top level function could potentially be specified as an entry. |
10699 | 0 | if (!NewFD->isInvalidDecl() && S->getDepth() == 0 && Name.isIdentifier()) |
10700 | 0 | ActOnHLSLTopLevelFunction(NewFD); |
10701 | |
|
10702 | 0 | if (NewFD->hasAttr<HLSLShaderAttr>()) |
10703 | 0 | CheckHLSLEntryPoint(NewFD); |
10704 | 0 | } |
10705 | | |
10706 | | // If this is the first declaration of a library builtin function, add |
10707 | | // attributes as appropriate. |
10708 | 19 | if (!D.isRedeclaration()) { |
10709 | 14 | if (IdentifierInfo *II = Previous.getLookupName().getAsIdentifierInfo()) { |
10710 | 14 | if (unsigned BuiltinID = II->getBuiltinID()) { |
10711 | 0 | bool InStdNamespace = Context.BuiltinInfo.isInStdNamespace(BuiltinID); |
10712 | 0 | if (!InStdNamespace && |
10713 | 0 | NewFD->getDeclContext()->getRedeclContext()->isFileContext()) { |
10714 | 0 | if (NewFD->getLanguageLinkage() == CLanguageLinkage) { |
10715 | | // Validate the type matches unless this builtin is specified as |
10716 | | // matching regardless of its declared type. |
10717 | 0 | if (Context.BuiltinInfo.allowTypeMismatch(BuiltinID)) { |
10718 | 0 | NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); |
10719 | 0 | } else { |
10720 | 0 | ASTContext::GetBuiltinTypeError Error; |
10721 | 0 | LookupNecessaryTypesForBuiltin(S, BuiltinID); |
10722 | 0 | QualType BuiltinType = Context.GetBuiltinType(BuiltinID, Error); |
10723 | |
|
10724 | 0 | if (!Error && !BuiltinType.isNull() && |
10725 | 0 | Context.hasSameFunctionTypeIgnoringExceptionSpec( |
10726 | 0 | NewFD->getType(), BuiltinType)) |
10727 | 0 | NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); |
10728 | 0 | } |
10729 | 0 | } |
10730 | 0 | } else if (InStdNamespace && NewFD->isInStdNamespace() && |
10731 | 0 | isStdBuiltin(Context, NewFD, BuiltinID)) { |
10732 | 0 | NewFD->addAttr(BuiltinAttr::CreateImplicit(Context, BuiltinID)); |
10733 | 0 | } |
10734 | 0 | } |
10735 | 14 | } |
10736 | 14 | } |
10737 | | |
10738 | 19 | ProcessPragmaWeak(S, NewFD); |
10739 | 19 | checkAttributesAfterMerging(*this, *NewFD); |
10740 | | |
10741 | 19 | AddKnownFunctionAttributes(NewFD); |
10742 | | |
10743 | 19 | if (NewFD->hasAttr<OverloadableAttr>() && |
10744 | 19 | !NewFD->getType()->getAs<FunctionProtoType>()) { |
10745 | 0 | Diag(NewFD->getLocation(), |
10746 | 0 | diag::err_attribute_overloadable_no_prototype) |
10747 | 0 | << NewFD; |
10748 | 0 | NewFD->dropAttr<OverloadableAttr>(); |
10749 | 0 | } |
10750 | | |
10751 | | // If there's a #pragma GCC visibility in scope, and this isn't a class |
10752 | | // member, set the visibility of this function. |
10753 | 19 | if (!DC->isRecord() && NewFD->isExternallyVisible()) |
10754 | 19 | AddPushedVisibilityAttribute(NewFD); |
10755 | | |
10756 | | // If there's a #pragma clang arc_cf_code_audited in scope, consider |
10757 | | // marking the function. |
10758 | 19 | AddCFAuditedAttribute(NewFD); |
10759 | | |
10760 | | // If this is a function definition, check if we have to apply any |
10761 | | // attributes (i.e. optnone and no_builtin) due to a pragma. |
10762 | 19 | if (D.isFunctionDefinition()) { |
10763 | 0 | AddRangeBasedOptnone(NewFD); |
10764 | 0 | AddImplicitMSFunctionNoBuiltinAttr(NewFD); |
10765 | 0 | AddSectionMSAllocText(NewFD); |
10766 | 0 | ModifyFnAttributesMSPragmaOptimize(NewFD); |
10767 | 0 | } |
10768 | | |
10769 | | // If this is the first declaration of an extern C variable, update |
10770 | | // the map of such variables. |
10771 | 19 | if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() && |
10772 | 19 | isIncompleteDeclExternC(*this, NewFD)) |
10773 | 6 | RegisterLocallyScopedExternCDecl(NewFD, S); |
10774 | | |
10775 | | // Set this FunctionDecl's range up to the right paren. |
10776 | 19 | NewFD->setRangeEnd(D.getSourceRange().getEnd()); |
10777 | | |
10778 | 19 | if (D.isRedeclaration() && !Previous.empty()) { |
10779 | 5 | NamedDecl *Prev = Previous.getRepresentativeDecl(); |
10780 | 5 | checkDLLAttributeRedeclaration(*this, Prev, NewFD, |
10781 | 5 | isMemberSpecialization || |
10782 | 5 | isFunctionTemplateSpecialization, |
10783 | 5 | D.isFunctionDefinition()); |
10784 | 5 | } |
10785 | | |
10786 | 19 | if (getLangOpts().CUDA) { |
10787 | 0 | IdentifierInfo *II = NewFD->getIdentifier(); |
10788 | 0 | if (II && II->isStr(getCudaConfigureFuncName()) && |
10789 | 0 | !NewFD->isInvalidDecl() && |
10790 | 0 | NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) { |
10791 | 0 | if (!R->castAs<FunctionType>()->getReturnType()->isScalarType()) |
10792 | 0 | Diag(NewFD->getLocation(), diag::err_config_scalar_return) |
10793 | 0 | << getCudaConfigureFuncName(); |
10794 | 0 | Context.setcudaConfigureCallDecl(NewFD); |
10795 | 0 | } |
10796 | | |
10797 | | // Variadic functions, other than a *declaration* of printf, are not allowed |
10798 | | // in device-side CUDA code, unless someone passed |
10799 | | // -fcuda-allow-variadic-functions. |
10800 | 0 | if (!getLangOpts().CUDAAllowVariadicFunctions && NewFD->isVariadic() && |
10801 | 0 | (NewFD->hasAttr<CUDADeviceAttr>() || |
10802 | 0 | NewFD->hasAttr<CUDAGlobalAttr>()) && |
10803 | 0 | !(II && II->isStr("printf") && NewFD->isExternC() && |
10804 | 0 | !D.isFunctionDefinition())) { |
10805 | 0 | Diag(NewFD->getLocation(), diag::err_variadic_device_fn); |
10806 | 0 | } |
10807 | 0 | } |
10808 | | |
10809 | 19 | MarkUnusedFileScopedDecl(NewFD); |
10810 | | |
10811 | | |
10812 | | |
10813 | 19 | if (getLangOpts().OpenCL && NewFD->hasAttr<OpenCLKernelAttr>()) { |
10814 | | // OpenCL v1.2 s6.8 static is invalid for kernel functions. |
10815 | 0 | if (SC == SC_Static) { |
10816 | 0 | Diag(D.getIdentifierLoc(), diag::err_static_kernel); |
10817 | 0 | D.setInvalidType(); |
10818 | 0 | } |
10819 | | |
10820 | | // OpenCL v1.2, s6.9 -- Kernels can only have return type void. |
10821 | 0 | if (!NewFD->getReturnType()->isVoidType()) { |
10822 | 0 | SourceRange RTRange = NewFD->getReturnTypeSourceRange(); |
10823 | 0 | Diag(D.getIdentifierLoc(), diag::err_expected_kernel_void_return_type) |
10824 | 0 | << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void") |
10825 | 0 | : FixItHint()); |
10826 | 0 | D.setInvalidType(); |
10827 | 0 | } |
10828 | |
|
10829 | 0 | llvm::SmallPtrSet<const Type *, 16> ValidTypes; |
10830 | 0 | for (auto *Param : NewFD->parameters()) |
10831 | 0 | checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes); |
10832 | |
|
10833 | 0 | if (getLangOpts().OpenCLCPlusPlus) { |
10834 | 0 | if (DC->isRecord()) { |
10835 | 0 | Diag(D.getIdentifierLoc(), diag::err_method_kernel); |
10836 | 0 | D.setInvalidType(); |
10837 | 0 | } |
10838 | 0 | if (FunctionTemplate) { |
10839 | 0 | Diag(D.getIdentifierLoc(), diag::err_template_kernel); |
10840 | 0 | D.setInvalidType(); |
10841 | 0 | } |
10842 | 0 | } |
10843 | 0 | } |
10844 | | |
10845 | 19 | if (getLangOpts().CPlusPlus) { |
10846 | | // Precalculate whether this is a friend function template with a constraint |
10847 | | // that depends on an enclosing template, per [temp.friend]p9. |
10848 | 1 | if (isFriend && FunctionTemplate && |
10849 | 1 | FriendConstraintsDependOnEnclosingTemplate(NewFD)) { |
10850 | 0 | NewFD->setFriendConstraintRefersToEnclosingTemplate(true); |
10851 | | |
10852 | | // C++ [temp.friend]p9: |
10853 | | // A friend function template with a constraint that depends on a |
10854 | | // template parameter from an enclosing template shall be a definition. |
10855 | 0 | if (!D.isFunctionDefinition()) { |
10856 | 0 | Diag(NewFD->getBeginLoc(), |
10857 | 0 | diag::err_friend_decl_with_enclosing_temp_constraint_must_be_def); |
10858 | 0 | NewFD->setInvalidDecl(); |
10859 | 0 | } |
10860 | 0 | } |
10861 | | |
10862 | 1 | if (FunctionTemplate) { |
10863 | 0 | if (NewFD->isInvalidDecl()) |
10864 | 0 | FunctionTemplate->setInvalidDecl(); |
10865 | 0 | return FunctionTemplate; |
10866 | 0 | } |
10867 | | |
10868 | 1 | if (isMemberSpecialization && !NewFD->isInvalidDecl()) |
10869 | 0 | CompleteMemberSpecialization(NewFD, Previous); |
10870 | 1 | } |
10871 | | |
10872 | 19 | for (const ParmVarDecl *Param : NewFD->parameters()) { |
10873 | 9 | QualType PT = Param->getType(); |
10874 | | |
10875 | | // OpenCL 2.0 pipe restrictions forbids pipe packet types to be non-value |
10876 | | // types. |
10877 | 9 | if (getLangOpts().getOpenCLCompatibleVersion() >= 200) { |
10878 | 0 | if(const PipeType *PipeTy = PT->getAs<PipeType>()) { |
10879 | 0 | QualType ElemTy = PipeTy->getElementType(); |
10880 | 0 | if (ElemTy->isReferenceType() || ElemTy->isPointerType()) { |
10881 | 0 | Diag(Param->getTypeSpecStartLoc(), diag::err_reference_pipe_type ); |
10882 | 0 | D.setInvalidType(); |
10883 | 0 | } |
10884 | 0 | } |
10885 | 0 | } |
10886 | | // WebAssembly tables can't be used as function parameters. |
10887 | 9 | if (Context.getTargetInfo().getTriple().isWasm()) { |
10888 | 0 | if (PT->getUnqualifiedDesugaredType()->isWebAssemblyTableType()) { |
10889 | 0 | Diag(Param->getTypeSpecStartLoc(), |
10890 | 0 | diag::err_wasm_table_as_function_parameter); |
10891 | 0 | D.setInvalidType(); |
10892 | 0 | } |
10893 | 0 | } |
10894 | 9 | } |
10895 | | |
10896 | | // Diagnose availability attributes. Availability cannot be used on functions |
10897 | | // that are run during load/unload. |
10898 | 19 | if (const auto *attr = NewFD->getAttr<AvailabilityAttr>()) { |
10899 | 0 | if (NewFD->hasAttr<ConstructorAttr>()) { |
10900 | 0 | Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) |
10901 | 0 | << 1; |
10902 | 0 | NewFD->dropAttr<AvailabilityAttr>(); |
10903 | 0 | } |
10904 | 0 | if (NewFD->hasAttr<DestructorAttr>()) { |
10905 | 0 | Diag(attr->getLocation(), diag::warn_availability_on_static_initializer) |
10906 | 0 | << 2; |
10907 | 0 | NewFD->dropAttr<AvailabilityAttr>(); |
10908 | 0 | } |
10909 | 0 | } |
10910 | | |
10911 | | // Diagnose no_builtin attribute on function declaration that are not a |
10912 | | // definition. |
10913 | | // FIXME: We should really be doing this in |
10914 | | // SemaDeclAttr.cpp::handleNoBuiltinAttr, unfortunately we only have access to |
10915 | | // the FunctionDecl and at this point of the code |
10916 | | // FunctionDecl::isThisDeclarationADefinition() which always returns `false` |
10917 | | // because Sema::ActOnStartOfFunctionDef has not been called yet. |
10918 | 19 | if (const auto *NBA = NewFD->getAttr<NoBuiltinAttr>()) |
10919 | 0 | switch (D.getFunctionDefinitionKind()) { |
10920 | 0 | case FunctionDefinitionKind::Defaulted: |
10921 | 0 | case FunctionDefinitionKind::Deleted: |
10922 | 0 | Diag(NBA->getLocation(), |
10923 | 0 | diag::err_attribute_no_builtin_on_defaulted_deleted_function) |
10924 | 0 | << NBA->getSpelling(); |
10925 | 0 | break; |
10926 | 0 | case FunctionDefinitionKind::Declaration: |
10927 | 0 | Diag(NBA->getLocation(), diag::err_attribute_no_builtin_on_non_definition) |
10928 | 0 | << NBA->getSpelling(); |
10929 | 0 | break; |
10930 | 0 | case FunctionDefinitionKind::Definition: |
10931 | 0 | break; |
10932 | 0 | } |
10933 | | |
10934 | 19 | return NewFD; |
10935 | 19 | } |
10936 | | |
10937 | | /// Return a CodeSegAttr from a containing class. The Microsoft docs say |
10938 | | /// when __declspec(code_seg) "is applied to a class, all member functions of |
10939 | | /// the class and nested classes -- this includes compiler-generated special |
10940 | | /// member functions -- are put in the specified segment." |
10941 | | /// The actual behavior is a little more complicated. The Microsoft compiler |
10942 | | /// won't check outer classes if there is an active value from #pragma code_seg. |
10943 | | /// The CodeSeg is always applied from the direct parent but only from outer |
10944 | | /// classes when the #pragma code_seg stack is empty. See: |
10945 | | /// https://reviews.llvm.org/D22931, the Microsoft feedback page is no longer |
10946 | | /// available since MS has removed the page. |
10947 | 19 | static Attr *getImplicitCodeSegAttrFromClass(Sema &S, const FunctionDecl *FD) { |
10948 | 19 | const auto *Method = dyn_cast<CXXMethodDecl>(FD); |
10949 | 19 | if (!Method) |
10950 | 19 | return nullptr; |
10951 | 0 | const CXXRecordDecl *Parent = Method->getParent(); |
10952 | 0 | if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { |
10953 | 0 | Attr *NewAttr = SAttr->clone(S.getASTContext()); |
10954 | 0 | NewAttr->setImplicit(true); |
10955 | 0 | return NewAttr; |
10956 | 0 | } |
10957 | | |
10958 | | // The Microsoft compiler won't check outer classes for the CodeSeg |
10959 | | // when the #pragma code_seg stack is active. |
10960 | 0 | if (S.CodeSegStack.CurrentValue) |
10961 | 0 | return nullptr; |
10962 | | |
10963 | 0 | while ((Parent = dyn_cast<CXXRecordDecl>(Parent->getParent()))) { |
10964 | 0 | if (const auto *SAttr = Parent->getAttr<CodeSegAttr>()) { |
10965 | 0 | Attr *NewAttr = SAttr->clone(S.getASTContext()); |
10966 | 0 | NewAttr->setImplicit(true); |
10967 | 0 | return NewAttr; |
10968 | 0 | } |
10969 | 0 | } |
10970 | 0 | return nullptr; |
10971 | 0 | } |
10972 | | |
10973 | | /// Returns an implicit CodeSegAttr if a __declspec(code_seg) is found on a |
10974 | | /// containing class. Otherwise it will return implicit SectionAttr if the |
10975 | | /// function is a definition and there is an active value on CodeSegStack |
10976 | | /// (from the current #pragma code-seg value). |
10977 | | /// |
10978 | | /// \param FD Function being declared. |
10979 | | /// \param IsDefinition Whether it is a definition or just a declaration. |
10980 | | /// \returns A CodeSegAttr or SectionAttr to apply to the function or |
10981 | | /// nullptr if no attribute should be added. |
10982 | | Attr *Sema::getImplicitCodeSegOrSectionAttrForFunction(const FunctionDecl *FD, |
10983 | 19 | bool IsDefinition) { |
10984 | 19 | if (Attr *A = getImplicitCodeSegAttrFromClass(*this, FD)) |
10985 | 0 | return A; |
10986 | 19 | if (!FD->hasAttr<SectionAttr>() && IsDefinition && |
10987 | 19 | CodeSegStack.CurrentValue) |
10988 | 0 | return SectionAttr::CreateImplicit( |
10989 | 0 | getASTContext(), CodeSegStack.CurrentValue->getString(), |
10990 | 0 | CodeSegStack.CurrentPragmaLocation, SectionAttr::Declspec_allocate); |
10991 | 19 | return nullptr; |
10992 | 19 | } |
10993 | | |
10994 | | /// Determines if we can perform a correct type check for \p D as a |
10995 | | /// redeclaration of \p PrevDecl. If not, we can generally still perform a |
10996 | | /// best-effort check. |
10997 | | /// |
10998 | | /// \param NewD The new declaration. |
10999 | | /// \param OldD The old declaration. |
11000 | | /// \param NewT The portion of the type of the new declaration to check. |
11001 | | /// \param OldT The portion of the type of the old declaration to check. |
11002 | | bool Sema::canFullyTypeCheckRedeclaration(ValueDecl *NewD, ValueDecl *OldD, |
11003 | 0 | QualType NewT, QualType OldT) { |
11004 | 0 | if (!NewD->getLexicalDeclContext()->isDependentContext()) |
11005 | 0 | return true; |
11006 | | |
11007 | | // For dependently-typed local extern declarations and friends, we can't |
11008 | | // perform a correct type check in general until instantiation: |
11009 | | // |
11010 | | // int f(); |
11011 | | // template<typename T> void g() { T f(); } |
11012 | | // |
11013 | | // (valid if g() is only instantiated with T = int). |
11014 | 0 | if (NewT->isDependentType() && |
11015 | 0 | (NewD->isLocalExternDecl() || NewD->getFriendObjectKind())) |
11016 | 0 | return false; |
11017 | | |
11018 | | // Similarly, if the previous declaration was a dependent local extern |
11019 | | // declaration, we don't really know its type yet. |
11020 | 0 | if (OldT->isDependentType() && OldD->isLocalExternDecl()) |
11021 | 0 | return false; |
11022 | | |
11023 | 0 | return true; |
11024 | 0 | } |
11025 | | |
11026 | | /// Checks if the new declaration declared in dependent context must be |
11027 | | /// put in the same redeclaration chain as the specified declaration. |
11028 | | /// |
11029 | | /// \param D Declaration that is checked. |
11030 | | /// \param PrevDecl Previous declaration found with proper lookup method for the |
11031 | | /// same declaration name. |
11032 | | /// \returns True if D must be added to the redeclaration chain which PrevDecl |
11033 | | /// belongs to. |
11034 | | /// |
11035 | 0 | bool Sema::shouldLinkDependentDeclWithPrevious(Decl *D, Decl *PrevDecl) { |
11036 | 0 | if (!D->getLexicalDeclContext()->isDependentContext()) |
11037 | 0 | return true; |
11038 | | |
11039 | | // Don't chain dependent friend function definitions until instantiation, to |
11040 | | // permit cases like |
11041 | | // |
11042 | | // void func(); |
11043 | | // template<typename T> class C1 { friend void func() {} }; |
11044 | | // template<typename T> class C2 { friend void func() {} }; |
11045 | | // |
11046 | | // ... which is valid if only one of C1 and C2 is ever instantiated. |
11047 | | // |
11048 | | // FIXME: This need only apply to function definitions. For now, we proxy |
11049 | | // this by checking for a file-scope function. We do not want this to apply |
11050 | | // to friend declarations nominating member functions, because that gets in |
11051 | | // the way of access checks. |
11052 | 0 | if (D->getFriendObjectKind() && D->getDeclContext()->isFileContext()) |
11053 | 0 | return false; |
11054 | | |
11055 | 0 | auto *VD = dyn_cast<ValueDecl>(D); |
11056 | 0 | auto *PrevVD = dyn_cast<ValueDecl>(PrevDecl); |
11057 | 0 | return !VD || !PrevVD || |
11058 | 0 | canFullyTypeCheckRedeclaration(VD, PrevVD, VD->getType(), |
11059 | 0 | PrevVD->getType()); |
11060 | 0 | } |
11061 | | |
11062 | | /// Check the target or target_version attribute of the function for |
11063 | | /// MultiVersion validity. |
11064 | | /// |
11065 | | /// Returns true if there was an error, false otherwise. |
11066 | 0 | static bool CheckMultiVersionValue(Sema &S, const FunctionDecl *FD) { |
11067 | 0 | const auto *TA = FD->getAttr<TargetAttr>(); |
11068 | 0 | const auto *TVA = FD->getAttr<TargetVersionAttr>(); |
11069 | 0 | assert( |
11070 | 0 | (TA || TVA) && |
11071 | 0 | "MultiVersion candidate requires a target or target_version attribute"); |
11072 | 0 | const TargetInfo &TargetInfo = S.Context.getTargetInfo(); |
11073 | 0 | enum ErrType { Feature = 0, Architecture = 1 }; |
11074 | |
|
11075 | 0 | if (TA) { |
11076 | 0 | ParsedTargetAttr ParseInfo = |
11077 | 0 | S.getASTContext().getTargetInfo().parseTargetAttr(TA->getFeaturesStr()); |
11078 | 0 | if (!ParseInfo.CPU.empty() && !TargetInfo.validateCpuIs(ParseInfo.CPU)) { |
11079 | 0 | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) |
11080 | 0 | << Architecture << ParseInfo.CPU; |
11081 | 0 | return true; |
11082 | 0 | } |
11083 | 0 | for (const auto &Feat : ParseInfo.Features) { |
11084 | 0 | auto BareFeat = StringRef{Feat}.substr(1); |
11085 | 0 | if (Feat[0] == '-') { |
11086 | 0 | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) |
11087 | 0 | << Feature << ("no-" + BareFeat).str(); |
11088 | 0 | return true; |
11089 | 0 | } |
11090 | | |
11091 | 0 | if (!TargetInfo.validateCpuSupports(BareFeat) || |
11092 | 0 | !TargetInfo.isValidFeatureName(BareFeat)) { |
11093 | 0 | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) |
11094 | 0 | << Feature << BareFeat; |
11095 | 0 | return true; |
11096 | 0 | } |
11097 | 0 | } |
11098 | 0 | } |
11099 | | |
11100 | 0 | if (TVA) { |
11101 | 0 | llvm::SmallVector<StringRef, 8> Feats; |
11102 | 0 | TVA->getFeatures(Feats); |
11103 | 0 | for (const auto &Feat : Feats) { |
11104 | 0 | if (!TargetInfo.validateCpuSupports(Feat)) { |
11105 | 0 | S.Diag(FD->getLocation(), diag::err_bad_multiversion_option) |
11106 | 0 | << Feature << Feat; |
11107 | 0 | return true; |
11108 | 0 | } |
11109 | 0 | } |
11110 | 0 | } |
11111 | 0 | return false; |
11112 | 0 | } |
11113 | | |
11114 | | // Provide a white-list of attributes that are allowed to be combined with |
11115 | | // multiversion functions. |
11116 | | static bool AttrCompatibleWithMultiVersion(attr::Kind Kind, |
11117 | 0 | MultiVersionKind MVKind) { |
11118 | | // Note: this list/diagnosis must match the list in |
11119 | | // checkMultiversionAttributesAllSame. |
11120 | 0 | switch (Kind) { |
11121 | 0 | default: |
11122 | 0 | return false; |
11123 | 0 | case attr::Used: |
11124 | 0 | return MVKind == MultiVersionKind::Target; |
11125 | 0 | case attr::NonNull: |
11126 | 0 | case attr::NoThrow: |
11127 | 0 | return true; |
11128 | 0 | } |
11129 | 0 | } |
11130 | | |
11131 | | static bool checkNonMultiVersionCompatAttributes(Sema &S, |
11132 | | const FunctionDecl *FD, |
11133 | | const FunctionDecl *CausedFD, |
11134 | 0 | MultiVersionKind MVKind) { |
11135 | 0 | const auto Diagnose = [FD, CausedFD, MVKind](Sema &S, const Attr *A) { |
11136 | 0 | S.Diag(FD->getLocation(), diag::err_multiversion_disallowed_other_attr) |
11137 | 0 | << static_cast<unsigned>(MVKind) << A; |
11138 | 0 | if (CausedFD) |
11139 | 0 | S.Diag(CausedFD->getLocation(), diag::note_multiversioning_caused_here); |
11140 | 0 | return true; |
11141 | 0 | }; |
11142 | |
|
11143 | 0 | for (const Attr *A : FD->attrs()) { |
11144 | 0 | switch (A->getKind()) { |
11145 | 0 | case attr::CPUDispatch: |
11146 | 0 | case attr::CPUSpecific: |
11147 | 0 | if (MVKind != MultiVersionKind::CPUDispatch && |
11148 | 0 | MVKind != MultiVersionKind::CPUSpecific) |
11149 | 0 | return Diagnose(S, A); |
11150 | 0 | break; |
11151 | 0 | case attr::Target: |
11152 | 0 | if (MVKind != MultiVersionKind::Target) |
11153 | 0 | return Diagnose(S, A); |
11154 | 0 | break; |
11155 | 0 | case attr::TargetVersion: |
11156 | 0 | if (MVKind != MultiVersionKind::TargetVersion) |
11157 | 0 | return Diagnose(S, A); |
11158 | 0 | break; |
11159 | 0 | case attr::TargetClones: |
11160 | 0 | if (MVKind != MultiVersionKind::TargetClones) |
11161 | 0 | return Diagnose(S, A); |
11162 | 0 | break; |
11163 | 0 | default: |
11164 | 0 | if (!AttrCompatibleWithMultiVersion(A->getKind(), MVKind)) |
11165 | 0 | return Diagnose(S, A); |
11166 | 0 | break; |
11167 | 0 | } |
11168 | 0 | } |
11169 | 0 | return false; |
11170 | 0 | } |
11171 | | |
11172 | | bool Sema::areMultiversionVariantFunctionsCompatible( |
11173 | | const FunctionDecl *OldFD, const FunctionDecl *NewFD, |
11174 | | const PartialDiagnostic &NoProtoDiagID, |
11175 | | const PartialDiagnosticAt &NoteCausedDiagIDAt, |
11176 | | const PartialDiagnosticAt &NoSupportDiagIDAt, |
11177 | | const PartialDiagnosticAt &DiffDiagIDAt, bool TemplatesSupported, |
11178 | 0 | bool ConstexprSupported, bool CLinkageMayDiffer) { |
11179 | 0 | enum DoesntSupport { |
11180 | 0 | FuncTemplates = 0, |
11181 | 0 | VirtFuncs = 1, |
11182 | 0 | DeducedReturn = 2, |
11183 | 0 | Constructors = 3, |
11184 | 0 | Destructors = 4, |
11185 | 0 | DeletedFuncs = 5, |
11186 | 0 | DefaultedFuncs = 6, |
11187 | 0 | ConstexprFuncs = 7, |
11188 | 0 | ConstevalFuncs = 8, |
11189 | 0 | Lambda = 9, |
11190 | 0 | }; |
11191 | 0 | enum Different { |
11192 | 0 | CallingConv = 0, |
11193 | 0 | ReturnType = 1, |
11194 | 0 | ConstexprSpec = 2, |
11195 | 0 | InlineSpec = 3, |
11196 | 0 | Linkage = 4, |
11197 | 0 | LanguageLinkage = 5, |
11198 | 0 | }; |
11199 | |
|
11200 | 0 | if (NoProtoDiagID.getDiagID() != 0 && OldFD && |
11201 | 0 | !OldFD->getType()->getAs<FunctionProtoType>()) { |
11202 | 0 | Diag(OldFD->getLocation(), NoProtoDiagID); |
11203 | 0 | Diag(NoteCausedDiagIDAt.first, NoteCausedDiagIDAt.second); |
11204 | 0 | return true; |
11205 | 0 | } |
11206 | | |
11207 | 0 | if (NoProtoDiagID.getDiagID() != 0 && |
11208 | 0 | !NewFD->getType()->getAs<FunctionProtoType>()) |
11209 | 0 | return Diag(NewFD->getLocation(), NoProtoDiagID); |
11210 | | |
11211 | 0 | if (!TemplatesSupported && |
11212 | 0 | NewFD->getTemplatedKind() == FunctionDecl::TK_FunctionTemplate) |
11213 | 0 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
11214 | 0 | << FuncTemplates; |
11215 | | |
11216 | 0 | if (const auto *NewCXXFD = dyn_cast<CXXMethodDecl>(NewFD)) { |
11217 | 0 | if (NewCXXFD->isVirtual()) |
11218 | 0 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
11219 | 0 | << VirtFuncs; |
11220 | | |
11221 | 0 | if (isa<CXXConstructorDecl>(NewCXXFD)) |
11222 | 0 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
11223 | 0 | << Constructors; |
11224 | | |
11225 | 0 | if (isa<CXXDestructorDecl>(NewCXXFD)) |
11226 | 0 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
11227 | 0 | << Destructors; |
11228 | 0 | } |
11229 | | |
11230 | 0 | if (NewFD->isDeleted()) |
11231 | 0 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
11232 | 0 | << DeletedFuncs; |
11233 | | |
11234 | 0 | if (NewFD->isDefaulted()) |
11235 | 0 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
11236 | 0 | << DefaultedFuncs; |
11237 | | |
11238 | 0 | if (!ConstexprSupported && NewFD->isConstexpr()) |
11239 | 0 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
11240 | 0 | << (NewFD->isConsteval() ? ConstevalFuncs : ConstexprFuncs); |
11241 | | |
11242 | 0 | QualType NewQType = Context.getCanonicalType(NewFD->getType()); |
11243 | 0 | const auto *NewType = cast<FunctionType>(NewQType); |
11244 | 0 | QualType NewReturnType = NewType->getReturnType(); |
11245 | |
|
11246 | 0 | if (NewReturnType->isUndeducedType()) |
11247 | 0 | return Diag(NoSupportDiagIDAt.first, NoSupportDiagIDAt.second) |
11248 | 0 | << DeducedReturn; |
11249 | | |
11250 | | // Ensure the return type is identical. |
11251 | 0 | if (OldFD) { |
11252 | 0 | QualType OldQType = Context.getCanonicalType(OldFD->getType()); |
11253 | 0 | const auto *OldType = cast<FunctionType>(OldQType); |
11254 | 0 | FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo(); |
11255 | 0 | FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo(); |
11256 | |
|
11257 | 0 | if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) |
11258 | 0 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << CallingConv; |
11259 | | |
11260 | 0 | QualType OldReturnType = OldType->getReturnType(); |
11261 | |
|
11262 | 0 | if (OldReturnType != NewReturnType) |
11263 | 0 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ReturnType; |
11264 | | |
11265 | 0 | if (OldFD->getConstexprKind() != NewFD->getConstexprKind()) |
11266 | 0 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << ConstexprSpec; |
11267 | | |
11268 | 0 | if (OldFD->isInlineSpecified() != NewFD->isInlineSpecified()) |
11269 | 0 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << InlineSpec; |
11270 | | |
11271 | 0 | if (OldFD->getFormalLinkage() != NewFD->getFormalLinkage()) |
11272 | 0 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << Linkage; |
11273 | | |
11274 | 0 | if (!CLinkageMayDiffer && OldFD->isExternC() != NewFD->isExternC()) |
11275 | 0 | return Diag(DiffDiagIDAt.first, DiffDiagIDAt.second) << LanguageLinkage; |
11276 | | |
11277 | 0 | if (CheckEquivalentExceptionSpec( |
11278 | 0 | OldFD->getType()->getAs<FunctionProtoType>(), OldFD->getLocation(), |
11279 | 0 | NewFD->getType()->getAs<FunctionProtoType>(), NewFD->getLocation())) |
11280 | 0 | return true; |
11281 | 0 | } |
11282 | 0 | return false; |
11283 | 0 | } |
11284 | | |
11285 | | static bool CheckMultiVersionAdditionalRules(Sema &S, const FunctionDecl *OldFD, |
11286 | | const FunctionDecl *NewFD, |
11287 | | bool CausesMV, |
11288 | 0 | MultiVersionKind MVKind) { |
11289 | 0 | if (!S.getASTContext().getTargetInfo().supportsMultiVersioning()) { |
11290 | 0 | S.Diag(NewFD->getLocation(), diag::err_multiversion_not_supported); |
11291 | 0 | if (OldFD) |
11292 | 0 | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); |
11293 | 0 | return true; |
11294 | 0 | } |
11295 | | |
11296 | 0 | bool IsCPUSpecificCPUDispatchMVKind = |
11297 | 0 | MVKind == MultiVersionKind::CPUDispatch || |
11298 | 0 | MVKind == MultiVersionKind::CPUSpecific; |
11299 | |
|
11300 | 0 | if (CausesMV && OldFD && |
11301 | 0 | checkNonMultiVersionCompatAttributes(S, OldFD, NewFD, MVKind)) |
11302 | 0 | return true; |
11303 | | |
11304 | 0 | if (checkNonMultiVersionCompatAttributes(S, NewFD, nullptr, MVKind)) |
11305 | 0 | return true; |
11306 | | |
11307 | | // Only allow transition to MultiVersion if it hasn't been used. |
11308 | 0 | if (OldFD && CausesMV && OldFD->isUsed(false)) |
11309 | 0 | return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); |
11310 | | |
11311 | 0 | return S.areMultiversionVariantFunctionsCompatible( |
11312 | 0 | OldFD, NewFD, S.PDiag(diag::err_multiversion_noproto), |
11313 | 0 | PartialDiagnosticAt(NewFD->getLocation(), |
11314 | 0 | S.PDiag(diag::note_multiversioning_caused_here)), |
11315 | 0 | PartialDiagnosticAt(NewFD->getLocation(), |
11316 | 0 | S.PDiag(diag::err_multiversion_doesnt_support) |
11317 | 0 | << static_cast<unsigned>(MVKind)), |
11318 | 0 | PartialDiagnosticAt(NewFD->getLocation(), |
11319 | 0 | S.PDiag(diag::err_multiversion_diff)), |
11320 | 0 | /*TemplatesSupported=*/false, |
11321 | 0 | /*ConstexprSupported=*/!IsCPUSpecificCPUDispatchMVKind, |
11322 | 0 | /*CLinkageMayDiffer=*/false); |
11323 | 0 | } |
11324 | | |
11325 | | /// Check the validity of a multiversion function declaration that is the |
11326 | | /// first of its kind. Also sets the multiversion'ness' of the function itself. |
11327 | | /// |
11328 | | /// This sets NewFD->isInvalidDecl() to true if there was an error. |
11329 | | /// |
11330 | | /// Returns true if there was an error, false otherwise. |
11331 | 0 | static bool CheckMultiVersionFirstFunction(Sema &S, FunctionDecl *FD) { |
11332 | 0 | MultiVersionKind MVKind = FD->getMultiVersionKind(); |
11333 | 0 | assert(MVKind != MultiVersionKind::None && |
11334 | 0 | "Function lacks multiversion attribute"); |
11335 | 0 | const auto *TA = FD->getAttr<TargetAttr>(); |
11336 | 0 | const auto *TVA = FD->getAttr<TargetVersionAttr>(); |
11337 | | // Target and target_version only causes MV if it is default, otherwise this |
11338 | | // is a normal function. |
11339 | 0 | if ((TA && !TA->isDefaultVersion()) || (TVA && !TVA->isDefaultVersion())) |
11340 | 0 | return false; |
11341 | | |
11342 | 0 | if ((TA || TVA) && CheckMultiVersionValue(S, FD)) { |
11343 | 0 | FD->setInvalidDecl(); |
11344 | 0 | return true; |
11345 | 0 | } |
11346 | | |
11347 | 0 | if (CheckMultiVersionAdditionalRules(S, nullptr, FD, true, MVKind)) { |
11348 | 0 | FD->setInvalidDecl(); |
11349 | 0 | return true; |
11350 | 0 | } |
11351 | | |
11352 | 0 | FD->setIsMultiVersion(); |
11353 | 0 | return false; |
11354 | 0 | } |
11355 | | |
11356 | 0 | static bool PreviousDeclsHaveMultiVersionAttribute(const FunctionDecl *FD) { |
11357 | 0 | for (const Decl *D = FD->getPreviousDecl(); D; D = D->getPreviousDecl()) { |
11358 | 0 | if (D->getAsFunction()->getMultiVersionKind() != MultiVersionKind::None) |
11359 | 0 | return true; |
11360 | 0 | } |
11361 | | |
11362 | 0 | return false; |
11363 | 0 | } |
11364 | | |
11365 | | static bool CheckTargetCausesMultiVersioning(Sema &S, FunctionDecl *OldFD, |
11366 | | FunctionDecl *NewFD, |
11367 | | bool &Redeclaration, |
11368 | | NamedDecl *&OldDecl, |
11369 | 0 | LookupResult &Previous) { |
11370 | 0 | const auto *NewTA = NewFD->getAttr<TargetAttr>(); |
11371 | 0 | const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>(); |
11372 | 0 | const auto *OldTA = OldFD->getAttr<TargetAttr>(); |
11373 | 0 | const auto *OldTVA = OldFD->getAttr<TargetVersionAttr>(); |
11374 | | // If the old decl is NOT MultiVersioned yet, and we don't cause that |
11375 | | // to change, this is a simple redeclaration. |
11376 | 0 | if ((NewTA && !NewTA->isDefaultVersion() && |
11377 | 0 | (!OldTA || OldTA->getFeaturesStr() == NewTA->getFeaturesStr())) || |
11378 | 0 | (NewTVA && !NewTVA->isDefaultVersion() && |
11379 | 0 | (!OldTVA || OldTVA->getName() == NewTVA->getName()))) |
11380 | 0 | return false; |
11381 | | |
11382 | | // Otherwise, this decl causes MultiVersioning. |
11383 | 0 | if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, true, |
11384 | 0 | NewTVA ? MultiVersionKind::TargetVersion |
11385 | 0 | : MultiVersionKind::Target)) { |
11386 | 0 | NewFD->setInvalidDecl(); |
11387 | 0 | return true; |
11388 | 0 | } |
11389 | | |
11390 | 0 | if (CheckMultiVersionValue(S, NewFD)) { |
11391 | 0 | NewFD->setInvalidDecl(); |
11392 | 0 | return true; |
11393 | 0 | } |
11394 | | |
11395 | | // If this is 'default', permit the forward declaration. |
11396 | 0 | if (!OldFD->isMultiVersion() && |
11397 | 0 | ((NewTA && NewTA->isDefaultVersion() && !OldTA) || |
11398 | 0 | (NewTVA && NewTVA->isDefaultVersion() && !OldTVA))) { |
11399 | 0 | Redeclaration = true; |
11400 | 0 | OldDecl = OldFD; |
11401 | 0 | OldFD->setIsMultiVersion(); |
11402 | 0 | NewFD->setIsMultiVersion(); |
11403 | 0 | return false; |
11404 | 0 | } |
11405 | | |
11406 | 0 | if (CheckMultiVersionValue(S, OldFD)) { |
11407 | 0 | S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); |
11408 | 0 | NewFD->setInvalidDecl(); |
11409 | 0 | return true; |
11410 | 0 | } |
11411 | | |
11412 | 0 | if (NewTA) { |
11413 | 0 | ParsedTargetAttr OldParsed = |
11414 | 0 | S.getASTContext().getTargetInfo().parseTargetAttr( |
11415 | 0 | OldTA->getFeaturesStr()); |
11416 | 0 | llvm::sort(OldParsed.Features); |
11417 | 0 | ParsedTargetAttr NewParsed = |
11418 | 0 | S.getASTContext().getTargetInfo().parseTargetAttr( |
11419 | 0 | NewTA->getFeaturesStr()); |
11420 | | // Sort order doesn't matter, it just needs to be consistent. |
11421 | 0 | llvm::sort(NewParsed.Features); |
11422 | 0 | if (OldParsed == NewParsed) { |
11423 | 0 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); |
11424 | 0 | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); |
11425 | 0 | NewFD->setInvalidDecl(); |
11426 | 0 | return true; |
11427 | 0 | } |
11428 | 0 | } |
11429 | | |
11430 | 0 | if (NewTVA) { |
11431 | 0 | llvm::SmallVector<StringRef, 8> Feats; |
11432 | 0 | OldTVA->getFeatures(Feats); |
11433 | 0 | llvm::sort(Feats); |
11434 | 0 | llvm::SmallVector<StringRef, 8> NewFeats; |
11435 | 0 | NewTVA->getFeatures(NewFeats); |
11436 | 0 | llvm::sort(NewFeats); |
11437 | |
|
11438 | 0 | if (Feats == NewFeats) { |
11439 | 0 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); |
11440 | 0 | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); |
11441 | 0 | NewFD->setInvalidDecl(); |
11442 | 0 | return true; |
11443 | 0 | } |
11444 | 0 | } |
11445 | | |
11446 | 0 | for (const auto *FD : OldFD->redecls()) { |
11447 | 0 | const auto *CurTA = FD->getAttr<TargetAttr>(); |
11448 | 0 | const auto *CurTVA = FD->getAttr<TargetVersionAttr>(); |
11449 | | // We allow forward declarations before ANY multiversioning attributes, but |
11450 | | // nothing after the fact. |
11451 | 0 | if (PreviousDeclsHaveMultiVersionAttribute(FD) && |
11452 | 0 | ((NewTA && (!CurTA || CurTA->isInherited())) || |
11453 | 0 | (NewTVA && (!CurTVA || CurTVA->isInherited())))) { |
11454 | 0 | S.Diag(FD->getLocation(), diag::err_multiversion_required_in_redecl) |
11455 | 0 | << (NewTA ? 0 : 2); |
11456 | 0 | S.Diag(NewFD->getLocation(), diag::note_multiversioning_caused_here); |
11457 | 0 | NewFD->setInvalidDecl(); |
11458 | 0 | return true; |
11459 | 0 | } |
11460 | 0 | } |
11461 | | |
11462 | 0 | OldFD->setIsMultiVersion(); |
11463 | 0 | NewFD->setIsMultiVersion(); |
11464 | 0 | Redeclaration = false; |
11465 | 0 | OldDecl = nullptr; |
11466 | 0 | Previous.clear(); |
11467 | 0 | return false; |
11468 | 0 | } |
11469 | | |
11470 | | static bool MultiVersionTypesCompatible(MultiVersionKind Old, |
11471 | 0 | MultiVersionKind New) { |
11472 | 0 | if (Old == New || Old == MultiVersionKind::None || |
11473 | 0 | New == MultiVersionKind::None) |
11474 | 0 | return true; |
11475 | | |
11476 | 0 | return (Old == MultiVersionKind::CPUDispatch && |
11477 | 0 | New == MultiVersionKind::CPUSpecific) || |
11478 | 0 | (Old == MultiVersionKind::CPUSpecific && |
11479 | 0 | New == MultiVersionKind::CPUDispatch); |
11480 | 0 | } |
11481 | | |
11482 | | /// Check the validity of a new function declaration being added to an existing |
11483 | | /// multiversioned declaration collection. |
11484 | | static bool CheckMultiVersionAdditionalDecl( |
11485 | | Sema &S, FunctionDecl *OldFD, FunctionDecl *NewFD, |
11486 | | MultiVersionKind NewMVKind, const CPUDispatchAttr *NewCPUDisp, |
11487 | | const CPUSpecificAttr *NewCPUSpec, const TargetClonesAttr *NewClones, |
11488 | 0 | bool &Redeclaration, NamedDecl *&OldDecl, LookupResult &Previous) { |
11489 | 0 | const auto *NewTA = NewFD->getAttr<TargetAttr>(); |
11490 | 0 | const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>(); |
11491 | 0 | MultiVersionKind OldMVKind = OldFD->getMultiVersionKind(); |
11492 | | // Disallow mixing of multiversioning types. |
11493 | 0 | if (!MultiVersionTypesCompatible(OldMVKind, NewMVKind)) { |
11494 | 0 | S.Diag(NewFD->getLocation(), diag::err_multiversion_types_mixed); |
11495 | 0 | S.Diag(OldFD->getLocation(), diag::note_previous_declaration); |
11496 | 0 | NewFD->setInvalidDecl(); |
11497 | 0 | return true; |
11498 | 0 | } |
11499 | | |
11500 | 0 | ParsedTargetAttr NewParsed; |
11501 | 0 | if (NewTA) { |
11502 | 0 | NewParsed = S.getASTContext().getTargetInfo().parseTargetAttr( |
11503 | 0 | NewTA->getFeaturesStr()); |
11504 | 0 | llvm::sort(NewParsed.Features); |
11505 | 0 | } |
11506 | 0 | llvm::SmallVector<StringRef, 8> NewFeats; |
11507 | 0 | if (NewTVA) { |
11508 | 0 | NewTVA->getFeatures(NewFeats); |
11509 | 0 | llvm::sort(NewFeats); |
11510 | 0 | } |
11511 | |
|
11512 | 0 | bool UseMemberUsingDeclRules = |
11513 | 0 | S.CurContext->isRecord() && !NewFD->getFriendObjectKind(); |
11514 | |
|
11515 | 0 | bool MayNeedOverloadableChecks = |
11516 | 0 | AllowOverloadingOfFunction(Previous, S.Context, NewFD); |
11517 | | |
11518 | | // Next, check ALL non-invalid non-overloads to see if this is a redeclaration |
11519 | | // of a previous member of the MultiVersion set. |
11520 | 0 | for (NamedDecl *ND : Previous) { |
11521 | 0 | FunctionDecl *CurFD = ND->getAsFunction(); |
11522 | 0 | if (!CurFD || CurFD->isInvalidDecl()) |
11523 | 0 | continue; |
11524 | 0 | if (MayNeedOverloadableChecks && |
11525 | 0 | S.IsOverload(NewFD, CurFD, UseMemberUsingDeclRules)) |
11526 | 0 | continue; |
11527 | | |
11528 | 0 | if (NewMVKind == MultiVersionKind::None && |
11529 | 0 | OldMVKind == MultiVersionKind::TargetVersion) { |
11530 | 0 | NewFD->addAttr(TargetVersionAttr::CreateImplicit( |
11531 | 0 | S.Context, "default", NewFD->getSourceRange())); |
11532 | 0 | NewFD->setIsMultiVersion(); |
11533 | 0 | NewMVKind = MultiVersionKind::TargetVersion; |
11534 | 0 | if (!NewTVA) { |
11535 | 0 | NewTVA = NewFD->getAttr<TargetVersionAttr>(); |
11536 | 0 | NewTVA->getFeatures(NewFeats); |
11537 | 0 | llvm::sort(NewFeats); |
11538 | 0 | } |
11539 | 0 | } |
11540 | |
|
11541 | 0 | switch (NewMVKind) { |
11542 | 0 | case MultiVersionKind::None: |
11543 | 0 | assert(OldMVKind == MultiVersionKind::TargetClones && |
11544 | 0 | "Only target_clones can be omitted in subsequent declarations"); |
11545 | 0 | break; |
11546 | 0 | case MultiVersionKind::Target: { |
11547 | 0 | const auto *CurTA = CurFD->getAttr<TargetAttr>(); |
11548 | 0 | if (CurTA->getFeaturesStr() == NewTA->getFeaturesStr()) { |
11549 | 0 | NewFD->setIsMultiVersion(); |
11550 | 0 | Redeclaration = true; |
11551 | 0 | OldDecl = ND; |
11552 | 0 | return false; |
11553 | 0 | } |
11554 | | |
11555 | 0 | ParsedTargetAttr CurParsed = |
11556 | 0 | S.getASTContext().getTargetInfo().parseTargetAttr( |
11557 | 0 | CurTA->getFeaturesStr()); |
11558 | 0 | llvm::sort(CurParsed.Features); |
11559 | 0 | if (CurParsed == NewParsed) { |
11560 | 0 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); |
11561 | 0 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
11562 | 0 | NewFD->setInvalidDecl(); |
11563 | 0 | return true; |
11564 | 0 | } |
11565 | 0 | break; |
11566 | 0 | } |
11567 | 0 | case MultiVersionKind::TargetVersion: { |
11568 | 0 | const auto *CurTVA = CurFD->getAttr<TargetVersionAttr>(); |
11569 | 0 | if (CurTVA->getName() == NewTVA->getName()) { |
11570 | 0 | NewFD->setIsMultiVersion(); |
11571 | 0 | Redeclaration = true; |
11572 | 0 | OldDecl = ND; |
11573 | 0 | return false; |
11574 | 0 | } |
11575 | 0 | llvm::SmallVector<StringRef, 8> CurFeats; |
11576 | 0 | if (CurTVA) { |
11577 | 0 | CurTVA->getFeatures(CurFeats); |
11578 | 0 | llvm::sort(CurFeats); |
11579 | 0 | } |
11580 | 0 | if (CurFeats == NewFeats) { |
11581 | 0 | S.Diag(NewFD->getLocation(), diag::err_multiversion_duplicate); |
11582 | 0 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
11583 | 0 | NewFD->setInvalidDecl(); |
11584 | 0 | return true; |
11585 | 0 | } |
11586 | 0 | break; |
11587 | 0 | } |
11588 | 0 | case MultiVersionKind::TargetClones: { |
11589 | 0 | const auto *CurClones = CurFD->getAttr<TargetClonesAttr>(); |
11590 | 0 | Redeclaration = true; |
11591 | 0 | OldDecl = CurFD; |
11592 | 0 | NewFD->setIsMultiVersion(); |
11593 | |
|
11594 | 0 | if (CurClones && NewClones && |
11595 | 0 | (CurClones->featuresStrs_size() != NewClones->featuresStrs_size() || |
11596 | 0 | !std::equal(CurClones->featuresStrs_begin(), |
11597 | 0 | CurClones->featuresStrs_end(), |
11598 | 0 | NewClones->featuresStrs_begin()))) { |
11599 | 0 | S.Diag(NewFD->getLocation(), diag::err_target_clone_doesnt_match); |
11600 | 0 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
11601 | 0 | NewFD->setInvalidDecl(); |
11602 | 0 | return true; |
11603 | 0 | } |
11604 | | |
11605 | 0 | return false; |
11606 | 0 | } |
11607 | 0 | case MultiVersionKind::CPUSpecific: |
11608 | 0 | case MultiVersionKind::CPUDispatch: { |
11609 | 0 | const auto *CurCPUSpec = CurFD->getAttr<CPUSpecificAttr>(); |
11610 | 0 | const auto *CurCPUDisp = CurFD->getAttr<CPUDispatchAttr>(); |
11611 | | // Handle CPUDispatch/CPUSpecific versions. |
11612 | | // Only 1 CPUDispatch function is allowed, this will make it go through |
11613 | | // the redeclaration errors. |
11614 | 0 | if (NewMVKind == MultiVersionKind::CPUDispatch && |
11615 | 0 | CurFD->hasAttr<CPUDispatchAttr>()) { |
11616 | 0 | if (CurCPUDisp->cpus_size() == NewCPUDisp->cpus_size() && |
11617 | 0 | std::equal( |
11618 | 0 | CurCPUDisp->cpus_begin(), CurCPUDisp->cpus_end(), |
11619 | 0 | NewCPUDisp->cpus_begin(), |
11620 | 0 | [](const IdentifierInfo *Cur, const IdentifierInfo *New) { |
11621 | 0 | return Cur->getName() == New->getName(); |
11622 | 0 | })) { |
11623 | 0 | NewFD->setIsMultiVersion(); |
11624 | 0 | Redeclaration = true; |
11625 | 0 | OldDecl = ND; |
11626 | 0 | return false; |
11627 | 0 | } |
11628 | | |
11629 | | // If the declarations don't match, this is an error condition. |
11630 | 0 | S.Diag(NewFD->getLocation(), diag::err_cpu_dispatch_mismatch); |
11631 | 0 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
11632 | 0 | NewFD->setInvalidDecl(); |
11633 | 0 | return true; |
11634 | 0 | } |
11635 | 0 | if (NewMVKind == MultiVersionKind::CPUSpecific && CurCPUSpec) { |
11636 | 0 | if (CurCPUSpec->cpus_size() == NewCPUSpec->cpus_size() && |
11637 | 0 | std::equal( |
11638 | 0 | CurCPUSpec->cpus_begin(), CurCPUSpec->cpus_end(), |
11639 | 0 | NewCPUSpec->cpus_begin(), |
11640 | 0 | [](const IdentifierInfo *Cur, const IdentifierInfo *New) { |
11641 | 0 | return Cur->getName() == New->getName(); |
11642 | 0 | })) { |
11643 | 0 | NewFD->setIsMultiVersion(); |
11644 | 0 | Redeclaration = true; |
11645 | 0 | OldDecl = ND; |
11646 | 0 | return false; |
11647 | 0 | } |
11648 | | |
11649 | | // Only 1 version of CPUSpecific is allowed for each CPU. |
11650 | 0 | for (const IdentifierInfo *CurII : CurCPUSpec->cpus()) { |
11651 | 0 | for (const IdentifierInfo *NewII : NewCPUSpec->cpus()) { |
11652 | 0 | if (CurII == NewII) { |
11653 | 0 | S.Diag(NewFD->getLocation(), diag::err_cpu_specific_multiple_defs) |
11654 | 0 | << NewII; |
11655 | 0 | S.Diag(CurFD->getLocation(), diag::note_previous_declaration); |
11656 | 0 | NewFD->setInvalidDecl(); |
11657 | 0 | return true; |
11658 | 0 | } |
11659 | 0 | } |
11660 | 0 | } |
11661 | 0 | } |
11662 | 0 | break; |
11663 | 0 | } |
11664 | 0 | } |
11665 | 0 | } |
11666 | | |
11667 | | // Else, this is simply a non-redecl case. Checking the 'value' is only |
11668 | | // necessary in the Target case, since The CPUSpecific/Dispatch cases are |
11669 | | // handled in the attribute adding step. |
11670 | 0 | if ((NewMVKind == MultiVersionKind::TargetVersion || |
11671 | 0 | NewMVKind == MultiVersionKind::Target) && |
11672 | 0 | CheckMultiVersionValue(S, NewFD)) { |
11673 | 0 | NewFD->setInvalidDecl(); |
11674 | 0 | return true; |
11675 | 0 | } |
11676 | | |
11677 | 0 | if (CheckMultiVersionAdditionalRules(S, OldFD, NewFD, |
11678 | 0 | !OldFD->isMultiVersion(), NewMVKind)) { |
11679 | 0 | NewFD->setInvalidDecl(); |
11680 | 0 | return true; |
11681 | 0 | } |
11682 | | |
11683 | | // Permit forward declarations in the case where these two are compatible. |
11684 | 0 | if (!OldFD->isMultiVersion()) { |
11685 | 0 | OldFD->setIsMultiVersion(); |
11686 | 0 | NewFD->setIsMultiVersion(); |
11687 | 0 | Redeclaration = true; |
11688 | 0 | OldDecl = OldFD; |
11689 | 0 | return false; |
11690 | 0 | } |
11691 | | |
11692 | 0 | NewFD->setIsMultiVersion(); |
11693 | 0 | Redeclaration = false; |
11694 | 0 | OldDecl = nullptr; |
11695 | 0 | Previous.clear(); |
11696 | 0 | return false; |
11697 | 0 | } |
11698 | | |
11699 | | /// Check the validity of a mulitversion function declaration. |
11700 | | /// Also sets the multiversion'ness' of the function itself. |
11701 | | /// |
11702 | | /// This sets NewFD->isInvalidDecl() to true if there was an error. |
11703 | | /// |
11704 | | /// Returns true if there was an error, false otherwise. |
11705 | | static bool CheckMultiVersionFunction(Sema &S, FunctionDecl *NewFD, |
11706 | | bool &Redeclaration, NamedDecl *&OldDecl, |
11707 | 9 | LookupResult &Previous) { |
11708 | 9 | const auto *NewTA = NewFD->getAttr<TargetAttr>(); |
11709 | 9 | const auto *NewTVA = NewFD->getAttr<TargetVersionAttr>(); |
11710 | 9 | const auto *NewCPUDisp = NewFD->getAttr<CPUDispatchAttr>(); |
11711 | 9 | const auto *NewCPUSpec = NewFD->getAttr<CPUSpecificAttr>(); |
11712 | 9 | const auto *NewClones = NewFD->getAttr<TargetClonesAttr>(); |
11713 | 9 | MultiVersionKind MVKind = NewFD->getMultiVersionKind(); |
11714 | | |
11715 | | // Main isn't allowed to become a multiversion function, however it IS |
11716 | | // permitted to have 'main' be marked with the 'target' optimization hint, |
11717 | | // for 'target_version' only default is allowed. |
11718 | 9 | if (NewFD->isMain()) { |
11719 | 0 | if (MVKind != MultiVersionKind::None && |
11720 | 0 | !(MVKind == MultiVersionKind::Target && !NewTA->isDefaultVersion()) && |
11721 | 0 | !(MVKind == MultiVersionKind::TargetVersion && |
11722 | 0 | NewTVA->isDefaultVersion())) { |
11723 | 0 | S.Diag(NewFD->getLocation(), diag::err_multiversion_not_allowed_on_main); |
11724 | 0 | NewFD->setInvalidDecl(); |
11725 | 0 | return true; |
11726 | 0 | } |
11727 | 0 | return false; |
11728 | 0 | } |
11729 | | |
11730 | | // Target attribute on AArch64 is not used for multiversioning |
11731 | 9 | if (NewTA && S.getASTContext().getTargetInfo().getTriple().isAArch64()) |
11732 | 0 | return false; |
11733 | | |
11734 | 9 | if (!OldDecl || !OldDecl->getAsFunction() || |
11735 | 9 | OldDecl->getDeclContext()->getRedeclContext() != |
11736 | 9 | NewFD->getDeclContext()->getRedeclContext()) { |
11737 | | // If there's no previous declaration, AND this isn't attempting to cause |
11738 | | // multiversioning, this isn't an error condition. |
11739 | 9 | if (MVKind == MultiVersionKind::None) |
11740 | 9 | return false; |
11741 | 0 | return CheckMultiVersionFirstFunction(S, NewFD); |
11742 | 9 | } |
11743 | | |
11744 | 0 | FunctionDecl *OldFD = OldDecl->getAsFunction(); |
11745 | |
|
11746 | 0 | if (!OldFD->isMultiVersion() && MVKind == MultiVersionKind::None) { |
11747 | 0 | if (NewTVA || !OldFD->getAttr<TargetVersionAttr>()) |
11748 | 0 | return false; |
11749 | 0 | if (!NewFD->getType()->getAs<FunctionProtoType>()) { |
11750 | | // Multiversion declaration doesn't have prototype. |
11751 | 0 | S.Diag(NewFD->getLocation(), diag::err_multiversion_noproto); |
11752 | 0 | NewFD->setInvalidDecl(); |
11753 | 0 | } else { |
11754 | | // No "target_version" attribute is equivalent to "default" attribute. |
11755 | 0 | NewFD->addAttr(TargetVersionAttr::CreateImplicit( |
11756 | 0 | S.Context, "default", NewFD->getSourceRange())); |
11757 | 0 | NewFD->setIsMultiVersion(); |
11758 | 0 | OldFD->setIsMultiVersion(); |
11759 | 0 | OldDecl = OldFD; |
11760 | 0 | Redeclaration = true; |
11761 | 0 | } |
11762 | 0 | return true; |
11763 | 0 | } |
11764 | | |
11765 | | // Multiversioned redeclarations aren't allowed to omit the attribute, except |
11766 | | // for target_clones and target_version. |
11767 | 0 | if (OldFD->isMultiVersion() && MVKind == MultiVersionKind::None && |
11768 | 0 | OldFD->getMultiVersionKind() != MultiVersionKind::TargetClones && |
11769 | 0 | OldFD->getMultiVersionKind() != MultiVersionKind::TargetVersion) { |
11770 | 0 | S.Diag(NewFD->getLocation(), diag::err_multiversion_required_in_redecl) |
11771 | 0 | << (OldFD->getMultiVersionKind() != MultiVersionKind::Target); |
11772 | 0 | NewFD->setInvalidDecl(); |
11773 | 0 | return true; |
11774 | 0 | } |
11775 | | |
11776 | 0 | if (!OldFD->isMultiVersion()) { |
11777 | 0 | switch (MVKind) { |
11778 | 0 | case MultiVersionKind::Target: |
11779 | 0 | case MultiVersionKind::TargetVersion: |
11780 | 0 | return CheckTargetCausesMultiVersioning(S, OldFD, NewFD, Redeclaration, |
11781 | 0 | OldDecl, Previous); |
11782 | 0 | case MultiVersionKind::TargetClones: |
11783 | 0 | if (OldFD->isUsed(false)) { |
11784 | 0 | NewFD->setInvalidDecl(); |
11785 | 0 | return S.Diag(NewFD->getLocation(), diag::err_multiversion_after_used); |
11786 | 0 | } |
11787 | 0 | OldFD->setIsMultiVersion(); |
11788 | 0 | break; |
11789 | | |
11790 | 0 | case MultiVersionKind::CPUDispatch: |
11791 | 0 | case MultiVersionKind::CPUSpecific: |
11792 | 0 | case MultiVersionKind::None: |
11793 | 0 | break; |
11794 | 0 | } |
11795 | 0 | } |
11796 | | |
11797 | | // At this point, we have a multiversion function decl (in OldFD) AND an |
11798 | | // appropriate attribute in the current function decl. Resolve that these are |
11799 | | // still compatible with previous declarations. |
11800 | 0 | return CheckMultiVersionAdditionalDecl(S, OldFD, NewFD, MVKind, NewCPUDisp, |
11801 | 0 | NewCPUSpec, NewClones, Redeclaration, |
11802 | 0 | OldDecl, Previous); |
11803 | 0 | } |
11804 | | |
11805 | | /// Perform semantic checking of a new function declaration. |
11806 | | /// |
11807 | | /// Performs semantic analysis of the new function declaration |
11808 | | /// NewFD. This routine performs all semantic checking that does not |
11809 | | /// require the actual declarator involved in the declaration, and is |
11810 | | /// used both for the declaration of functions as they are parsed |
11811 | | /// (called via ActOnDeclarator) and for the declaration of functions |
11812 | | /// that have been instantiated via C++ template instantiation (called |
11813 | | /// via InstantiateDecl). |
11814 | | /// |
11815 | | /// \param IsMemberSpecialization whether this new function declaration is |
11816 | | /// a member specialization (that replaces any definition provided by the |
11817 | | /// previous declaration). |
11818 | | /// |
11819 | | /// This sets NewFD->isInvalidDecl() to true if there was an error. |
11820 | | /// |
11821 | | /// \returns true if the function declaration is a redeclaration. |
11822 | | bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD, |
11823 | | LookupResult &Previous, |
11824 | | bool IsMemberSpecialization, |
11825 | 9 | bool DeclIsDefn) { |
11826 | 9 | assert(!NewFD->getReturnType()->isVariablyModifiedType() && |
11827 | 9 | "Variably modified return types are not handled here"); |
11828 | | |
11829 | | // Determine whether the type of this function should be merged with |
11830 | | // a previous visible declaration. This never happens for functions in C++, |
11831 | | // and always happens in C if the previous declaration was visible. |
11832 | 9 | bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus && |
11833 | 9 | !Previous.isShadowed(); |
11834 | | |
11835 | 9 | bool Redeclaration = false; |
11836 | 9 | NamedDecl *OldDecl = nullptr; |
11837 | 9 | bool MayNeedOverloadableChecks = false; |
11838 | | |
11839 | | // Merge or overload the declaration with an existing declaration of |
11840 | | // the same name, if appropriate. |
11841 | 9 | if (!Previous.empty()) { |
11842 | | // Determine whether NewFD is an overload of PrevDecl or |
11843 | | // a declaration that requires merging. If it's an overload, |
11844 | | // there's no more work to do here; we'll just add the new |
11845 | | // function to the scope. |
11846 | 3 | if (!AllowOverloadingOfFunction(Previous, Context, NewFD)) { |
11847 | 3 | NamedDecl *Candidate = Previous.getRepresentativeDecl(); |
11848 | 3 | if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) { |
11849 | 3 | Redeclaration = true; |
11850 | 3 | OldDecl = Candidate; |
11851 | 3 | } |
11852 | 3 | } else { |
11853 | 0 | MayNeedOverloadableChecks = true; |
11854 | 0 | switch (CheckOverload(S, NewFD, Previous, OldDecl, |
11855 | 0 | /*NewIsUsingDecl*/ false)) { |
11856 | 0 | case Ovl_Match: |
11857 | 0 | Redeclaration = true; |
11858 | 0 | break; |
11859 | | |
11860 | 0 | case Ovl_NonFunction: |
11861 | 0 | Redeclaration = true; |
11862 | 0 | break; |
11863 | | |
11864 | 0 | case Ovl_Overload: |
11865 | 0 | Redeclaration = false; |
11866 | 0 | break; |
11867 | 0 | } |
11868 | 0 | } |
11869 | 3 | } |
11870 | | |
11871 | | // Check for a previous extern "C" declaration with this name. |
11872 | 9 | if (!Redeclaration && |
11873 | 9 | checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) { |
11874 | 0 | if (!Previous.empty()) { |
11875 | | // This is an extern "C" declaration with the same name as a previous |
11876 | | // declaration, and thus redeclares that entity... |
11877 | 0 | Redeclaration = true; |
11878 | 0 | OldDecl = Previous.getFoundDecl(); |
11879 | 0 | MergeTypeWithPrevious = false; |
11880 | | |
11881 | | // ... except in the presence of __attribute__((overloadable)). |
11882 | 0 | if (OldDecl->hasAttr<OverloadableAttr>() || |
11883 | 0 | NewFD->hasAttr<OverloadableAttr>()) { |
11884 | 0 | if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) { |
11885 | 0 | MayNeedOverloadableChecks = true; |
11886 | 0 | Redeclaration = false; |
11887 | 0 | OldDecl = nullptr; |
11888 | 0 | } |
11889 | 0 | } |
11890 | 0 | } |
11891 | 0 | } |
11892 | | |
11893 | 9 | if (CheckMultiVersionFunction(*this, NewFD, Redeclaration, OldDecl, Previous)) |
11894 | 0 | return Redeclaration; |
11895 | | |
11896 | | // PPC MMA non-pointer types are not allowed as function return types. |
11897 | 9 | if (Context.getTargetInfo().getTriple().isPPC64() && |
11898 | 9 | CheckPPCMMAType(NewFD->getReturnType(), NewFD->getLocation())) { |
11899 | 0 | NewFD->setInvalidDecl(); |
11900 | 0 | } |
11901 | | |
11902 | | // C++11 [dcl.constexpr]p8: |
11903 | | // A constexpr specifier for a non-static member function that is not |
11904 | | // a constructor declares that member function to be const. |
11905 | | // |
11906 | | // This needs to be delayed until we know whether this is an out-of-line |
11907 | | // definition of a static member function. |
11908 | | // |
11909 | | // This rule is not present in C++1y, so we produce a backwards |
11910 | | // compatibility warning whenever it happens in C++11. |
11911 | 9 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD); |
11912 | 9 | if (!getLangOpts().CPlusPlus14 && MD && MD->isConstexpr() && |
11913 | 9 | !MD->isStatic() && !isa<CXXConstructorDecl>(MD) && |
11914 | 9 | !isa<CXXDestructorDecl>(MD) && !MD->getMethodQualifiers().hasConst()) { |
11915 | 0 | CXXMethodDecl *OldMD = nullptr; |
11916 | 0 | if (OldDecl) |
11917 | 0 | OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl->getAsFunction()); |
11918 | 0 | if (!OldMD || !OldMD->isStatic()) { |
11919 | 0 | const FunctionProtoType *FPT = |
11920 | 0 | MD->getType()->castAs<FunctionProtoType>(); |
11921 | 0 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
11922 | 0 | EPI.TypeQuals.addConst(); |
11923 | 0 | MD->setType(Context.getFunctionType(FPT->getReturnType(), |
11924 | 0 | FPT->getParamTypes(), EPI)); |
11925 | | |
11926 | | // Warn that we did this, if we're not performing template instantiation. |
11927 | | // In that case, we'll have warned already when the template was defined. |
11928 | 0 | if (!inTemplateInstantiation()) { |
11929 | 0 | SourceLocation AddConstLoc; |
11930 | 0 | if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc() |
11931 | 0 | .IgnoreParens().getAs<FunctionTypeLoc>()) |
11932 | 0 | AddConstLoc = getLocForEndOfToken(FTL.getRParenLoc()); |
11933 | |
|
11934 | 0 | Diag(MD->getLocation(), diag::warn_cxx14_compat_constexpr_not_const) |
11935 | 0 | << FixItHint::CreateInsertion(AddConstLoc, " const"); |
11936 | 0 | } |
11937 | 0 | } |
11938 | 0 | } |
11939 | | |
11940 | 9 | if (Redeclaration) { |
11941 | | // NewFD and OldDecl represent declarations that need to be |
11942 | | // merged. |
11943 | 3 | if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious, |
11944 | 3 | DeclIsDefn)) { |
11945 | 3 | NewFD->setInvalidDecl(); |
11946 | 3 | return Redeclaration; |
11947 | 3 | } |
11948 | | |
11949 | 0 | Previous.clear(); |
11950 | 0 | Previous.addDecl(OldDecl); |
11951 | |
|
11952 | 0 | if (FunctionTemplateDecl *OldTemplateDecl = |
11953 | 0 | dyn_cast<FunctionTemplateDecl>(OldDecl)) { |
11954 | 0 | auto *OldFD = OldTemplateDecl->getTemplatedDecl(); |
11955 | 0 | FunctionTemplateDecl *NewTemplateDecl |
11956 | 0 | = NewFD->getDescribedFunctionTemplate(); |
11957 | 0 | assert(NewTemplateDecl && "Template/non-template mismatch"); |
11958 | | |
11959 | | // The call to MergeFunctionDecl above may have created some state in |
11960 | | // NewTemplateDecl that needs to be merged with OldTemplateDecl before we |
11961 | | // can add it as a redeclaration. |
11962 | 0 | NewTemplateDecl->mergePrevDecl(OldTemplateDecl); |
11963 | |
|
11964 | 0 | NewFD->setPreviousDeclaration(OldFD); |
11965 | 0 | if (NewFD->isCXXClassMember()) { |
11966 | 0 | NewFD->setAccess(OldTemplateDecl->getAccess()); |
11967 | 0 | NewTemplateDecl->setAccess(OldTemplateDecl->getAccess()); |
11968 | 0 | } |
11969 | | |
11970 | | // If this is an explicit specialization of a member that is a function |
11971 | | // template, mark it as a member specialization. |
11972 | 0 | if (IsMemberSpecialization && |
11973 | 0 | NewTemplateDecl->getInstantiatedFromMemberTemplate()) { |
11974 | 0 | NewTemplateDecl->setMemberSpecialization(); |
11975 | 0 | assert(OldTemplateDecl->isMemberSpecialization()); |
11976 | | // Explicit specializations of a member template do not inherit deleted |
11977 | | // status from the parent member template that they are specializing. |
11978 | 0 | if (OldFD->isDeleted()) { |
11979 | | // FIXME: This assert will not hold in the presence of modules. |
11980 | 0 | assert(OldFD->getCanonicalDecl() == OldFD); |
11981 | | // FIXME: We need an update record for this AST mutation. |
11982 | 0 | OldFD->setDeletedAsWritten(false); |
11983 | 0 | } |
11984 | 0 | } |
11985 | |
|
11986 | 0 | } else { |
11987 | 0 | if (shouldLinkDependentDeclWithPrevious(NewFD, OldDecl)) { |
11988 | 0 | auto *OldFD = cast<FunctionDecl>(OldDecl); |
11989 | | // This needs to happen first so that 'inline' propagates. |
11990 | 0 | NewFD->setPreviousDeclaration(OldFD); |
11991 | 0 | if (NewFD->isCXXClassMember()) |
11992 | 0 | NewFD->setAccess(OldFD->getAccess()); |
11993 | 0 | } |
11994 | 0 | } |
11995 | 6 | } else if (!getLangOpts().CPlusPlus && MayNeedOverloadableChecks && |
11996 | 6 | !NewFD->getAttr<OverloadableAttr>()) { |
11997 | 0 | assert((Previous.empty() || |
11998 | 0 | llvm::any_of(Previous, |
11999 | 0 | [](const NamedDecl *ND) { |
12000 | 0 | return ND->hasAttr<OverloadableAttr>(); |
12001 | 0 | })) && |
12002 | 0 | "Non-redecls shouldn't happen without overloadable present"); |
12003 | | |
12004 | 0 | auto OtherUnmarkedIter = llvm::find_if(Previous, [](const NamedDecl *ND) { |
12005 | 0 | const auto *FD = dyn_cast<FunctionDecl>(ND); |
12006 | 0 | return FD && !FD->hasAttr<OverloadableAttr>(); |
12007 | 0 | }); |
12008 | |
|
12009 | 0 | if (OtherUnmarkedIter != Previous.end()) { |
12010 | 0 | Diag(NewFD->getLocation(), |
12011 | 0 | diag::err_attribute_overloadable_multiple_unmarked_overloads); |
12012 | 0 | Diag((*OtherUnmarkedIter)->getLocation(), |
12013 | 0 | diag::note_attribute_overloadable_prev_overload) |
12014 | 0 | << false; |
12015 | |
|
12016 | 0 | NewFD->addAttr(OverloadableAttr::CreateImplicit(Context)); |
12017 | 0 | } |
12018 | 0 | } |
12019 | | |
12020 | 6 | if (LangOpts.OpenMP) |
12021 | 0 | ActOnFinishedFunctionDefinitionInOpenMPAssumeScope(NewFD); |
12022 | | |
12023 | | // Semantic checking for this function declaration (in isolation). |
12024 | | |
12025 | 6 | if (getLangOpts().CPlusPlus) { |
12026 | | // C++-specific checks. |
12027 | 0 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) { |
12028 | 0 | CheckConstructor(Constructor); |
12029 | 0 | } else if (CXXDestructorDecl *Destructor = |
12030 | 0 | dyn_cast<CXXDestructorDecl>(NewFD)) { |
12031 | | // We check here for invalid destructor names. |
12032 | | // If we have a friend destructor declaration that is dependent, we can't |
12033 | | // diagnose right away because cases like this are still valid: |
12034 | | // template <class T> struct A { friend T::X::~Y(); }; |
12035 | | // struct B { struct Y { ~Y(); }; using X = Y; }; |
12036 | | // template struct A<B>; |
12037 | 0 | if (NewFD->getFriendObjectKind() == Decl::FriendObjectKind::FOK_None || |
12038 | 0 | !Destructor->getFunctionObjectParameterType()->isDependentType()) { |
12039 | 0 | CXXRecordDecl *Record = Destructor->getParent(); |
12040 | 0 | QualType ClassType = Context.getTypeDeclType(Record); |
12041 | |
|
12042 | 0 | DeclarationName Name = Context.DeclarationNames.getCXXDestructorName( |
12043 | 0 | Context.getCanonicalType(ClassType)); |
12044 | 0 | if (NewFD->getDeclName() != Name) { |
12045 | 0 | Diag(NewFD->getLocation(), diag::err_destructor_name); |
12046 | 0 | NewFD->setInvalidDecl(); |
12047 | 0 | return Redeclaration; |
12048 | 0 | } |
12049 | 0 | } |
12050 | 0 | } else if (auto *Guide = dyn_cast<CXXDeductionGuideDecl>(NewFD)) { |
12051 | 0 | if (auto *TD = Guide->getDescribedFunctionTemplate()) |
12052 | 0 | CheckDeductionGuideTemplate(TD); |
12053 | | |
12054 | | // A deduction guide is not on the list of entities that can be |
12055 | | // explicitly specialized. |
12056 | 0 | if (Guide->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) |
12057 | 0 | Diag(Guide->getBeginLoc(), diag::err_deduction_guide_specialized) |
12058 | 0 | << /*explicit specialization*/ 1; |
12059 | 0 | } |
12060 | | |
12061 | | // Find any virtual functions that this function overrides. |
12062 | 0 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) { |
12063 | 0 | if (!Method->isFunctionTemplateSpecialization() && |
12064 | 0 | !Method->getDescribedFunctionTemplate() && |
12065 | 0 | Method->isCanonicalDecl()) { |
12066 | 0 | AddOverriddenMethods(Method->getParent(), Method); |
12067 | 0 | } |
12068 | 0 | if (Method->isVirtual() && NewFD->getTrailingRequiresClause()) |
12069 | | // C++2a [class.virtual]p6 |
12070 | | // A virtual method shall not have a requires-clause. |
12071 | 0 | Diag(NewFD->getTrailingRequiresClause()->getBeginLoc(), |
12072 | 0 | diag::err_constrained_virtual_method); |
12073 | |
|
12074 | 0 | if (Method->isStatic()) |
12075 | 0 | checkThisInStaticMemberFunctionType(Method); |
12076 | 0 | } |
12077 | |
|
12078 | 0 | if (Expr *TRC = NewFD->getTrailingRequiresClause()) { |
12079 | | // C++20: dcl.decl.general p4: |
12080 | | // The optional requires-clause ([temp.pre]) in an init-declarator or |
12081 | | // member-declarator shall be present only if the declarator declares a |
12082 | | // templated function ([dcl.fct]). |
12083 | | // |
12084 | | // [temp.pre]/8: |
12085 | | // An entity is templated if it is |
12086 | | // - a template, |
12087 | | // - an entity defined ([basic.def]) or created ([class.temporary]) in a |
12088 | | // templated entity, |
12089 | | // - a member of a templated entity, |
12090 | | // - an enumerator for an enumeration that is a templated entity, or |
12091 | | // - the closure type of a lambda-expression ([expr.prim.lambda.closure]) |
12092 | | // appearing in the declaration of a templated entity. [Note 6: A local |
12093 | | // class, a local or block variable, or a friend function defined in a |
12094 | | // templated entity is a templated entity. — end note] |
12095 | | // |
12096 | | // A templated function is a function template or a function that is |
12097 | | // templated. A templated class is a class template or a class that is |
12098 | | // templated. A templated variable is a variable template or a variable |
12099 | | // that is templated. |
12100 | |
|
12101 | 0 | bool IsTemplate = NewFD->getDescribedFunctionTemplate(); |
12102 | 0 | bool IsFriend = NewFD->getFriendObjectKind(); |
12103 | 0 | if (!IsTemplate && // -a template |
12104 | | // defined... in a templated entity |
12105 | 0 | !(DeclIsDefn && NewFD->isTemplated()) && |
12106 | | // a member of a templated entity |
12107 | 0 | !(isa<CXXMethodDecl>(NewFD) && NewFD->isTemplated()) && |
12108 | | // Don't complain about instantiations, they've already had these |
12109 | | // rules + others enforced. |
12110 | 0 | !NewFD->isTemplateInstantiation() && |
12111 | | // If the function violates [temp.friend]p9 because it is missing |
12112 | | // a definition, and adding a definition would make it templated, |
12113 | | // then let that error take precedence. |
12114 | 0 | !(!DeclIsDefn && IsFriend && NewFD->isTemplated())) { |
12115 | 0 | Diag(TRC->getBeginLoc(), diag::err_constrained_non_templated_function); |
12116 | 0 | } else if (!DeclIsDefn && !IsTemplate && IsFriend && |
12117 | 0 | !NewFD->isTemplateInstantiation()) { |
12118 | | // C++ [temp.friend]p9: |
12119 | | // A non-template friend declaration with a requires-clause shall be a |
12120 | | // definition. |
12121 | 0 | Diag(NewFD->getBeginLoc(), |
12122 | 0 | diag::err_non_temp_friend_decl_with_requires_clause_must_be_def); |
12123 | 0 | NewFD->setInvalidDecl(); |
12124 | 0 | } |
12125 | 0 | } |
12126 | |
|
12127 | 0 | if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD)) |
12128 | 0 | ActOnConversionDeclarator(Conversion); |
12129 | | |
12130 | | // Extra checking for C++ overloaded operators (C++ [over.oper]). |
12131 | 0 | if (NewFD->isOverloadedOperator() && |
12132 | 0 | CheckOverloadedOperatorDeclaration(NewFD)) { |
12133 | 0 | NewFD->setInvalidDecl(); |
12134 | 0 | return Redeclaration; |
12135 | 0 | } |
12136 | | |
12137 | | // Extra checking for C++0x literal operators (C++0x [over.literal]). |
12138 | 0 | if (NewFD->getLiteralIdentifier() && |
12139 | 0 | CheckLiteralOperatorDeclaration(NewFD)) { |
12140 | 0 | NewFD->setInvalidDecl(); |
12141 | 0 | return Redeclaration; |
12142 | 0 | } |
12143 | | |
12144 | | // In C++, check default arguments now that we have merged decls. Unless |
12145 | | // the lexical context is the class, because in this case this is done |
12146 | | // during delayed parsing anyway. |
12147 | 0 | if (!CurContext->isRecord()) |
12148 | 0 | CheckCXXDefaultArguments(NewFD); |
12149 | | |
12150 | | // If this function is declared as being extern "C", then check to see if |
12151 | | // the function returns a UDT (class, struct, or union type) that is not C |
12152 | | // compatible, and if it does, warn the user. |
12153 | | // But, issue any diagnostic on the first declaration only. |
12154 | 0 | if (Previous.empty() && NewFD->isExternC()) { |
12155 | 0 | QualType R = NewFD->getReturnType(); |
12156 | 0 | if (R->isIncompleteType() && !R->isVoidType()) |
12157 | 0 | Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete) |
12158 | 0 | << NewFD << R; |
12159 | 0 | else if (!R.isPODType(Context) && !R->isVoidType() && |
12160 | 0 | !R->isObjCObjectPointerType()) |
12161 | 0 | Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R; |
12162 | 0 | } |
12163 | | |
12164 | | // C++1z [dcl.fct]p6: |
12165 | | // [...] whether the function has a non-throwing exception-specification |
12166 | | // [is] part of the function type |
12167 | | // |
12168 | | // This results in an ABI break between C++14 and C++17 for functions whose |
12169 | | // declared type includes an exception-specification in a parameter or |
12170 | | // return type. (Exception specifications on the function itself are OK in |
12171 | | // most cases, and exception specifications are not permitted in most other |
12172 | | // contexts where they could make it into a mangling.) |
12173 | 0 | if (!getLangOpts().CPlusPlus17 && !NewFD->getPrimaryTemplate()) { |
12174 | 0 | auto HasNoexcept = [&](QualType T) -> bool { |
12175 | | // Strip off declarator chunks that could be between us and a function |
12176 | | // type. We don't need to look far, exception specifications are very |
12177 | | // restricted prior to C++17. |
12178 | 0 | if (auto *RT = T->getAs<ReferenceType>()) |
12179 | 0 | T = RT->getPointeeType(); |
12180 | 0 | else if (T->isAnyPointerType()) |
12181 | 0 | T = T->getPointeeType(); |
12182 | 0 | else if (auto *MPT = T->getAs<MemberPointerType>()) |
12183 | 0 | T = MPT->getPointeeType(); |
12184 | 0 | if (auto *FPT = T->getAs<FunctionProtoType>()) |
12185 | 0 | if (FPT->isNothrow()) |
12186 | 0 | return true; |
12187 | 0 | return false; |
12188 | 0 | }; |
12189 | |
|
12190 | 0 | auto *FPT = NewFD->getType()->castAs<FunctionProtoType>(); |
12191 | 0 | bool AnyNoexcept = HasNoexcept(FPT->getReturnType()); |
12192 | 0 | for (QualType T : FPT->param_types()) |
12193 | 0 | AnyNoexcept |= HasNoexcept(T); |
12194 | 0 | if (AnyNoexcept) |
12195 | 0 | Diag(NewFD->getLocation(), |
12196 | 0 | diag::warn_cxx17_compat_exception_spec_in_signature) |
12197 | 0 | << NewFD; |
12198 | 0 | } |
12199 | |
|
12200 | 0 | if (!Redeclaration && LangOpts.CUDA) |
12201 | 0 | checkCUDATargetOverload(NewFD, Previous); |
12202 | 0 | } |
12203 | | |
12204 | | // Check if the function definition uses any AArch64 SME features without |
12205 | | // having the '+sme' feature enabled. |
12206 | 6 | if (DeclIsDefn) { |
12207 | 0 | const auto *Attr = NewFD->getAttr<ArmNewAttr>(); |
12208 | 0 | bool UsesSM = NewFD->hasAttr<ArmLocallyStreamingAttr>(); |
12209 | 0 | bool UsesZA = Attr && Attr->isNewZA(); |
12210 | 0 | if (const auto *FPT = NewFD->getType()->getAs<FunctionProtoType>()) { |
12211 | 0 | FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo(); |
12212 | 0 | UsesSM |= |
12213 | 0 | EPI.AArch64SMEAttributes & FunctionType::SME_PStateSMEnabledMask; |
12214 | 0 | UsesZA |= FunctionType::getArmZAState(EPI.AArch64SMEAttributes) != |
12215 | 0 | FunctionType::ARM_None; |
12216 | 0 | } |
12217 | |
|
12218 | 0 | if (UsesSM || UsesZA) { |
12219 | 0 | llvm::StringMap<bool> FeatureMap; |
12220 | 0 | Context.getFunctionFeatureMap(FeatureMap, NewFD); |
12221 | 0 | if (!FeatureMap.contains("sme")) { |
12222 | 0 | if (UsesSM) |
12223 | 0 | Diag(NewFD->getLocation(), |
12224 | 0 | diag::err_sme_definition_using_sm_in_non_sme_target); |
12225 | 0 | else |
12226 | 0 | Diag(NewFD->getLocation(), |
12227 | 0 | diag::err_sme_definition_using_za_in_non_sme_target); |
12228 | 0 | } |
12229 | 0 | } |
12230 | 0 | } |
12231 | | |
12232 | 6 | return Redeclaration; |
12233 | 6 | } |
12234 | | |
12235 | 0 | void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) { |
12236 | | // C++11 [basic.start.main]p3: |
12237 | | // A program that [...] declares main to be inline, static or |
12238 | | // constexpr is ill-formed. |
12239 | | // C11 6.7.4p4: In a hosted environment, no function specifier(s) shall |
12240 | | // appear in a declaration of main. |
12241 | | // static main is not an error under C99, but we should warn about it. |
12242 | | // We accept _Noreturn main as an extension. |
12243 | 0 | if (FD->getStorageClass() == SC_Static) |
12244 | 0 | Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus |
12245 | 0 | ? diag::err_static_main : diag::warn_static_main) |
12246 | 0 | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); |
12247 | 0 | if (FD->isInlineSpecified()) |
12248 | 0 | Diag(DS.getInlineSpecLoc(), diag::err_inline_main) |
12249 | 0 | << FixItHint::CreateRemoval(DS.getInlineSpecLoc()); |
12250 | 0 | if (DS.isNoreturnSpecified()) { |
12251 | 0 | SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc(); |
12252 | 0 | SourceRange NoreturnRange(NoreturnLoc, getLocForEndOfToken(NoreturnLoc)); |
12253 | 0 | Diag(NoreturnLoc, diag::ext_noreturn_main); |
12254 | 0 | Diag(NoreturnLoc, diag::note_main_remove_noreturn) |
12255 | 0 | << FixItHint::CreateRemoval(NoreturnRange); |
12256 | 0 | } |
12257 | 0 | if (FD->isConstexpr()) { |
12258 | 0 | Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main) |
12259 | 0 | << FD->isConsteval() |
12260 | 0 | << FixItHint::CreateRemoval(DS.getConstexprSpecLoc()); |
12261 | 0 | FD->setConstexprKind(ConstexprSpecKind::Unspecified); |
12262 | 0 | } |
12263 | |
|
12264 | 0 | if (getLangOpts().OpenCL) { |
12265 | 0 | Diag(FD->getLocation(), diag::err_opencl_no_main) |
12266 | 0 | << FD->hasAttr<OpenCLKernelAttr>(); |
12267 | 0 | FD->setInvalidDecl(); |
12268 | 0 | return; |
12269 | 0 | } |
12270 | | |
12271 | | // Functions named main in hlsl are default entries, but don't have specific |
12272 | | // signatures they are required to conform to. |
12273 | 0 | if (getLangOpts().HLSL) |
12274 | 0 | return; |
12275 | | |
12276 | 0 | QualType T = FD->getType(); |
12277 | 0 | assert(T->isFunctionType() && "function decl is not of function type"); |
12278 | 0 | const FunctionType* FT = T->castAs<FunctionType>(); |
12279 | | |
12280 | | // Set default calling convention for main() |
12281 | 0 | if (FT->getCallConv() != CC_C) { |
12282 | 0 | FT = Context.adjustFunctionType(FT, FT->getExtInfo().withCallingConv(CC_C)); |
12283 | 0 | FD->setType(QualType(FT, 0)); |
12284 | 0 | T = Context.getCanonicalType(FD->getType()); |
12285 | 0 | } |
12286 | |
|
12287 | 0 | if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) { |
12288 | | // In C with GNU extensions we allow main() to have non-integer return |
12289 | | // type, but we should warn about the extension, and we disable the |
12290 | | // implicit-return-zero rule. |
12291 | | |
12292 | | // GCC in C mode accepts qualified 'int'. |
12293 | 0 | if (Context.hasSameUnqualifiedType(FT->getReturnType(), Context.IntTy)) |
12294 | 0 | FD->setHasImplicitReturnZero(true); |
12295 | 0 | else { |
12296 | 0 | Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint); |
12297 | 0 | SourceRange RTRange = FD->getReturnTypeSourceRange(); |
12298 | 0 | if (RTRange.isValid()) |
12299 | 0 | Diag(RTRange.getBegin(), diag::note_main_change_return_type) |
12300 | 0 | << FixItHint::CreateReplacement(RTRange, "int"); |
12301 | 0 | } |
12302 | 0 | } else { |
12303 | | // In C and C++, main magically returns 0 if you fall off the end; |
12304 | | // set the flag which tells us that. |
12305 | | // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3. |
12306 | | |
12307 | | // All the standards say that main() should return 'int'. |
12308 | 0 | if (Context.hasSameType(FT->getReturnType(), Context.IntTy)) |
12309 | 0 | FD->setHasImplicitReturnZero(true); |
12310 | 0 | else { |
12311 | | // Otherwise, this is just a flat-out error. |
12312 | 0 | SourceRange RTRange = FD->getReturnTypeSourceRange(); |
12313 | 0 | Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint) |
12314 | 0 | << (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "int") |
12315 | 0 | : FixItHint()); |
12316 | 0 | FD->setInvalidDecl(true); |
12317 | 0 | } |
12318 | 0 | } |
12319 | | |
12320 | | // Treat protoless main() as nullary. |
12321 | 0 | if (isa<FunctionNoProtoType>(FT)) return; |
12322 | | |
12323 | 0 | const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT); |
12324 | 0 | unsigned nparams = FTP->getNumParams(); |
12325 | 0 | assert(FD->getNumParams() == nparams); |
12326 | | |
12327 | 0 | bool HasExtraParameters = (nparams > 3); |
12328 | |
|
12329 | 0 | if (FTP->isVariadic()) { |
12330 | 0 | Diag(FD->getLocation(), diag::ext_variadic_main); |
12331 | | // FIXME: if we had information about the location of the ellipsis, we |
12332 | | // could add a FixIt hint to remove it as a parameter. |
12333 | 0 | } |
12334 | | |
12335 | | // Darwin passes an undocumented fourth argument of type char**. If |
12336 | | // other platforms start sprouting these, the logic below will start |
12337 | | // getting shifty. |
12338 | 0 | if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin()) |
12339 | 0 | HasExtraParameters = false; |
12340 | |
|
12341 | 0 | if (HasExtraParameters) { |
12342 | 0 | Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams; |
12343 | 0 | FD->setInvalidDecl(true); |
12344 | 0 | nparams = 3; |
12345 | 0 | } |
12346 | | |
12347 | | // FIXME: a lot of the following diagnostics would be improved |
12348 | | // if we had some location information about types. |
12349 | |
|
12350 | 0 | QualType CharPP = |
12351 | 0 | Context.getPointerType(Context.getPointerType(Context.CharTy)); |
12352 | 0 | QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP }; |
12353 | |
|
12354 | 0 | for (unsigned i = 0; i < nparams; ++i) { |
12355 | 0 | QualType AT = FTP->getParamType(i); |
12356 | |
|
12357 | 0 | bool mismatch = true; |
12358 | |
|
12359 | 0 | if (Context.hasSameUnqualifiedType(AT, Expected[i])) |
12360 | 0 | mismatch = false; |
12361 | 0 | else if (Expected[i] == CharPP) { |
12362 | | // As an extension, the following forms are okay: |
12363 | | // char const ** |
12364 | | // char const * const * |
12365 | | // char * const * |
12366 | |
|
12367 | 0 | QualifierCollector qs; |
12368 | 0 | const PointerType* PT; |
12369 | 0 | if ((PT = qs.strip(AT)->getAs<PointerType>()) && |
12370 | 0 | (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) && |
12371 | 0 | Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0), |
12372 | 0 | Context.CharTy)) { |
12373 | 0 | qs.removeConst(); |
12374 | 0 | mismatch = !qs.empty(); |
12375 | 0 | } |
12376 | 0 | } |
12377 | |
|
12378 | 0 | if (mismatch) { |
12379 | 0 | Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i]; |
12380 | | // TODO: suggest replacing given type with expected type |
12381 | 0 | FD->setInvalidDecl(true); |
12382 | 0 | } |
12383 | 0 | } |
12384 | |
|
12385 | 0 | if (nparams == 1 && !FD->isInvalidDecl()) { |
12386 | 0 | Diag(FD->getLocation(), diag::warn_main_one_arg); |
12387 | 0 | } |
12388 | |
|
12389 | 0 | if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { |
12390 | 0 | Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; |
12391 | 0 | FD->setInvalidDecl(); |
12392 | 0 | } |
12393 | 0 | } |
12394 | | |
12395 | 0 | static bool isDefaultStdCall(FunctionDecl *FD, Sema &S) { |
12396 | | |
12397 | | // Default calling convention for main and wmain is __cdecl |
12398 | 0 | if (FD->getName() == "main" || FD->getName() == "wmain") |
12399 | 0 | return false; |
12400 | | |
12401 | | // Default calling convention for MinGW is __cdecl |
12402 | 0 | const llvm::Triple &T = S.Context.getTargetInfo().getTriple(); |
12403 | 0 | if (T.isWindowsGNUEnvironment()) |
12404 | 0 | return false; |
12405 | | |
12406 | | // Default calling convention for WinMain, wWinMain and DllMain |
12407 | | // is __stdcall on 32 bit Windows |
12408 | 0 | if (T.isOSWindows() && T.getArch() == llvm::Triple::x86) |
12409 | 0 | return true; |
12410 | | |
12411 | 0 | return false; |
12412 | 0 | } |
12413 | | |
12414 | 0 | void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) { |
12415 | 0 | QualType T = FD->getType(); |
12416 | 0 | assert(T->isFunctionType() && "function decl is not of function type"); |
12417 | 0 | const FunctionType *FT = T->castAs<FunctionType>(); |
12418 | | |
12419 | | // Set an implicit return of 'zero' if the function can return some integral, |
12420 | | // enumeration, pointer or nullptr type. |
12421 | 0 | if (FT->getReturnType()->isIntegralOrEnumerationType() || |
12422 | 0 | FT->getReturnType()->isAnyPointerType() || |
12423 | 0 | FT->getReturnType()->isNullPtrType()) |
12424 | | // DllMain is exempt because a return value of zero means it failed. |
12425 | 0 | if (FD->getName() != "DllMain") |
12426 | 0 | FD->setHasImplicitReturnZero(true); |
12427 | | |
12428 | | // Explicity specified calling conventions are applied to MSVC entry points |
12429 | 0 | if (!hasExplicitCallingConv(T)) { |
12430 | 0 | if (isDefaultStdCall(FD, *this)) { |
12431 | 0 | if (FT->getCallConv() != CC_X86StdCall) { |
12432 | 0 | FT = Context.adjustFunctionType( |
12433 | 0 | FT, FT->getExtInfo().withCallingConv(CC_X86StdCall)); |
12434 | 0 | FD->setType(QualType(FT, 0)); |
12435 | 0 | } |
12436 | 0 | } else if (FT->getCallConv() != CC_C) { |
12437 | 0 | FT = Context.adjustFunctionType(FT, |
12438 | 0 | FT->getExtInfo().withCallingConv(CC_C)); |
12439 | 0 | FD->setType(QualType(FT, 0)); |
12440 | 0 | } |
12441 | 0 | } |
12442 | |
|
12443 | 0 | if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) { |
12444 | 0 | Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD; |
12445 | 0 | FD->setInvalidDecl(); |
12446 | 0 | } |
12447 | 0 | } |
12448 | | |
12449 | 0 | void Sema::ActOnHLSLTopLevelFunction(FunctionDecl *FD) { |
12450 | 0 | auto &TargetInfo = getASTContext().getTargetInfo(); |
12451 | |
|
12452 | 0 | if (FD->getName() != TargetInfo.getTargetOpts().HLSLEntry) |
12453 | 0 | return; |
12454 | | |
12455 | 0 | StringRef Env = TargetInfo.getTriple().getEnvironmentName(); |
12456 | 0 | HLSLShaderAttr::ShaderType ShaderType; |
12457 | 0 | if (HLSLShaderAttr::ConvertStrToShaderType(Env, ShaderType)) { |
12458 | 0 | if (const auto *Shader = FD->getAttr<HLSLShaderAttr>()) { |
12459 | | // The entry point is already annotated - check that it matches the |
12460 | | // triple. |
12461 | 0 | if (Shader->getType() != ShaderType) { |
12462 | 0 | Diag(Shader->getLocation(), diag::err_hlsl_entry_shader_attr_mismatch) |
12463 | 0 | << Shader; |
12464 | 0 | FD->setInvalidDecl(); |
12465 | 0 | } |
12466 | 0 | } else { |
12467 | | // Implicitly add the shader attribute if the entry function isn't |
12468 | | // explicitly annotated. |
12469 | 0 | FD->addAttr(HLSLShaderAttr::CreateImplicit(Context, ShaderType, |
12470 | 0 | FD->getBeginLoc())); |
12471 | 0 | } |
12472 | 0 | } else { |
12473 | 0 | switch (TargetInfo.getTriple().getEnvironment()) { |
12474 | 0 | case llvm::Triple::UnknownEnvironment: |
12475 | 0 | case llvm::Triple::Library: |
12476 | 0 | break; |
12477 | 0 | default: |
12478 | 0 | llvm_unreachable("Unhandled environment in triple"); |
12479 | 0 | } |
12480 | 0 | } |
12481 | 0 | } |
12482 | | |
12483 | 0 | void Sema::CheckHLSLEntryPoint(FunctionDecl *FD) { |
12484 | 0 | const auto *ShaderAttr = FD->getAttr<HLSLShaderAttr>(); |
12485 | 0 | assert(ShaderAttr && "Entry point has no shader attribute"); |
12486 | 0 | HLSLShaderAttr::ShaderType ST = ShaderAttr->getType(); |
12487 | |
|
12488 | 0 | switch (ST) { |
12489 | 0 | case HLSLShaderAttr::Pixel: |
12490 | 0 | case HLSLShaderAttr::Vertex: |
12491 | 0 | case HLSLShaderAttr::Geometry: |
12492 | 0 | case HLSLShaderAttr::Hull: |
12493 | 0 | case HLSLShaderAttr::Domain: |
12494 | 0 | case HLSLShaderAttr::RayGeneration: |
12495 | 0 | case HLSLShaderAttr::Intersection: |
12496 | 0 | case HLSLShaderAttr::AnyHit: |
12497 | 0 | case HLSLShaderAttr::ClosestHit: |
12498 | 0 | case HLSLShaderAttr::Miss: |
12499 | 0 | case HLSLShaderAttr::Callable: |
12500 | 0 | if (const auto *NT = FD->getAttr<HLSLNumThreadsAttr>()) { |
12501 | 0 | DiagnoseHLSLAttrStageMismatch(NT, ST, |
12502 | 0 | {HLSLShaderAttr::Compute, |
12503 | 0 | HLSLShaderAttr::Amplification, |
12504 | 0 | HLSLShaderAttr::Mesh}); |
12505 | 0 | FD->setInvalidDecl(); |
12506 | 0 | } |
12507 | 0 | break; |
12508 | | |
12509 | 0 | case HLSLShaderAttr::Compute: |
12510 | 0 | case HLSLShaderAttr::Amplification: |
12511 | 0 | case HLSLShaderAttr::Mesh: |
12512 | 0 | if (!FD->hasAttr<HLSLNumThreadsAttr>()) { |
12513 | 0 | Diag(FD->getLocation(), diag::err_hlsl_missing_numthreads) |
12514 | 0 | << HLSLShaderAttr::ConvertShaderTypeToStr(ST); |
12515 | 0 | FD->setInvalidDecl(); |
12516 | 0 | } |
12517 | 0 | break; |
12518 | 0 | } |
12519 | | |
12520 | 0 | for (ParmVarDecl *Param : FD->parameters()) { |
12521 | 0 | if (const auto *AnnotationAttr = Param->getAttr<HLSLAnnotationAttr>()) { |
12522 | 0 | CheckHLSLSemanticAnnotation(FD, Param, AnnotationAttr); |
12523 | 0 | } else { |
12524 | | // FIXME: Handle struct parameters where annotations are on struct fields. |
12525 | | // See: https://github.com/llvm/llvm-project/issues/57875 |
12526 | 0 | Diag(FD->getLocation(), diag::err_hlsl_missing_semantic_annotation); |
12527 | 0 | Diag(Param->getLocation(), diag::note_previous_decl) << Param; |
12528 | 0 | FD->setInvalidDecl(); |
12529 | 0 | } |
12530 | 0 | } |
12531 | | // FIXME: Verify return type semantic annotation. |
12532 | 0 | } |
12533 | | |
12534 | | void Sema::CheckHLSLSemanticAnnotation( |
12535 | | FunctionDecl *EntryPoint, const Decl *Param, |
12536 | 0 | const HLSLAnnotationAttr *AnnotationAttr) { |
12537 | 0 | auto *ShaderAttr = EntryPoint->getAttr<HLSLShaderAttr>(); |
12538 | 0 | assert(ShaderAttr && "Entry point has no shader attribute"); |
12539 | 0 | HLSLShaderAttr::ShaderType ST = ShaderAttr->getType(); |
12540 | |
|
12541 | 0 | switch (AnnotationAttr->getKind()) { |
12542 | 0 | case attr::HLSLSV_DispatchThreadID: |
12543 | 0 | case attr::HLSLSV_GroupIndex: |
12544 | 0 | if (ST == HLSLShaderAttr::Compute) |
12545 | 0 | return; |
12546 | 0 | DiagnoseHLSLAttrStageMismatch(AnnotationAttr, ST, |
12547 | 0 | {HLSLShaderAttr::Compute}); |
12548 | 0 | break; |
12549 | 0 | default: |
12550 | 0 | llvm_unreachable("Unknown HLSLAnnotationAttr"); |
12551 | 0 | } |
12552 | 0 | } |
12553 | | |
12554 | | void Sema::DiagnoseHLSLAttrStageMismatch( |
12555 | | const Attr *A, HLSLShaderAttr::ShaderType Stage, |
12556 | 0 | std::initializer_list<HLSLShaderAttr::ShaderType> AllowedStages) { |
12557 | 0 | SmallVector<StringRef, 8> StageStrings; |
12558 | 0 | llvm::transform(AllowedStages, std::back_inserter(StageStrings), |
12559 | 0 | [](HLSLShaderAttr::ShaderType ST) { |
12560 | 0 | return StringRef( |
12561 | 0 | HLSLShaderAttr::ConvertShaderTypeToStr(ST)); |
12562 | 0 | }); |
12563 | 0 | Diag(A->getLoc(), diag::err_hlsl_attr_unsupported_in_stage) |
12564 | 0 | << A << HLSLShaderAttr::ConvertShaderTypeToStr(Stage) |
12565 | 0 | << (AllowedStages.size() != 1) << join(StageStrings, ", "); |
12566 | 0 | } |
12567 | | |
12568 | 20 | bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) { |
12569 | | // FIXME: Need strict checking. In C89, we need to check for |
12570 | | // any assignment, increment, decrement, function-calls, or |
12571 | | // commas outside of a sizeof. In C99, it's the same list, |
12572 | | // except that the aforementioned are allowed in unevaluated |
12573 | | // expressions. Everything else falls under the |
12574 | | // "may accept other forms of constant expressions" exception. |
12575 | | // |
12576 | | // Regular C++ code will not end up here (exceptions: language extensions, |
12577 | | // OpenCL C++ etc), so the constant expression rules there don't matter. |
12578 | 20 | if (Init->isValueDependent()) { |
12579 | 12 | assert(Init->containsErrors() && |
12580 | 12 | "Dependent code should only occur in error-recovery path."); |
12581 | 0 | return true; |
12582 | 12 | } |
12583 | 8 | const Expr *Culprit; |
12584 | 8 | if (Init->isConstantInitializer(Context, false, &Culprit)) |
12585 | 3 | return false; |
12586 | 5 | Diag(Culprit->getExprLoc(), diag::err_init_element_not_constant) |
12587 | 5 | << Culprit->getSourceRange(); |
12588 | 5 | return true; |
12589 | 8 | } |
12590 | | |
12591 | | namespace { |
12592 | | // Visits an initialization expression to see if OrigDecl is evaluated in |
12593 | | // its own initialization and throws a warning if it does. |
12594 | | class SelfReferenceChecker |
12595 | | : public EvaluatedExprVisitor<SelfReferenceChecker> { |
12596 | | Sema &S; |
12597 | | Decl *OrigDecl; |
12598 | | bool isRecordType; |
12599 | | bool isPODType; |
12600 | | bool isReferenceType; |
12601 | | |
12602 | | bool isInitList; |
12603 | | llvm::SmallVector<unsigned, 4> InitFieldIndex; |
12604 | | |
12605 | | public: |
12606 | | typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited; |
12607 | | |
12608 | | SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context), |
12609 | 0 | S(S), OrigDecl(OrigDecl) { |
12610 | 0 | isPODType = false; |
12611 | 0 | isRecordType = false; |
12612 | 0 | isReferenceType = false; |
12613 | 0 | isInitList = false; |
12614 | 0 | if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) { |
12615 | 0 | isPODType = VD->getType().isPODType(S.Context); |
12616 | 0 | isRecordType = VD->getType()->isRecordType(); |
12617 | 0 | isReferenceType = VD->getType()->isReferenceType(); |
12618 | 0 | } |
12619 | 0 | } |
12620 | | |
12621 | | // For most expressions, just call the visitor. For initializer lists, |
12622 | | // track the index of the field being initialized since fields are |
12623 | | // initialized in order allowing use of previously initialized fields. |
12624 | 0 | void CheckExpr(Expr *E) { |
12625 | 0 | InitListExpr *InitList = dyn_cast<InitListExpr>(E); |
12626 | 0 | if (!InitList) { |
12627 | 0 | Visit(E); |
12628 | 0 | return; |
12629 | 0 | } |
12630 | | |
12631 | | // Track and increment the index here. |
12632 | 0 | isInitList = true; |
12633 | 0 | InitFieldIndex.push_back(0); |
12634 | 0 | for (auto *Child : InitList->children()) { |
12635 | 0 | CheckExpr(cast<Expr>(Child)); |
12636 | 0 | ++InitFieldIndex.back(); |
12637 | 0 | } |
12638 | 0 | InitFieldIndex.pop_back(); |
12639 | 0 | } |
12640 | | |
12641 | | // Returns true if MemberExpr is checked and no further checking is needed. |
12642 | | // Returns false if additional checking is required. |
12643 | 0 | bool CheckInitListMemberExpr(MemberExpr *E, bool CheckReference) { |
12644 | 0 | llvm::SmallVector<FieldDecl*, 4> Fields; |
12645 | 0 | Expr *Base = E; |
12646 | 0 | bool ReferenceField = false; |
12647 | | |
12648 | | // Get the field members used. |
12649 | 0 | while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { |
12650 | 0 | FieldDecl *FD = dyn_cast<FieldDecl>(ME->getMemberDecl()); |
12651 | 0 | if (!FD) |
12652 | 0 | return false; |
12653 | 0 | Fields.push_back(FD); |
12654 | 0 | if (FD->getType()->isReferenceType()) |
12655 | 0 | ReferenceField = true; |
12656 | 0 | Base = ME->getBase()->IgnoreParenImpCasts(); |
12657 | 0 | } |
12658 | | |
12659 | | // Keep checking only if the base Decl is the same. |
12660 | 0 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base); |
12661 | 0 | if (!DRE || DRE->getDecl() != OrigDecl) |
12662 | 0 | return false; |
12663 | | |
12664 | | // A reference field can be bound to an unininitialized field. |
12665 | 0 | if (CheckReference && !ReferenceField) |
12666 | 0 | return true; |
12667 | | |
12668 | | // Convert FieldDecls to their index number. |
12669 | 0 | llvm::SmallVector<unsigned, 4> UsedFieldIndex; |
12670 | 0 | for (const FieldDecl *I : llvm::reverse(Fields)) |
12671 | 0 | UsedFieldIndex.push_back(I->getFieldIndex()); |
12672 | | |
12673 | | // See if a warning is needed by checking the first difference in index |
12674 | | // numbers. If field being used has index less than the field being |
12675 | | // initialized, then the use is safe. |
12676 | 0 | for (auto UsedIter = UsedFieldIndex.begin(), |
12677 | 0 | UsedEnd = UsedFieldIndex.end(), |
12678 | 0 | OrigIter = InitFieldIndex.begin(), |
12679 | 0 | OrigEnd = InitFieldIndex.end(); |
12680 | 0 | UsedIter != UsedEnd && OrigIter != OrigEnd; ++UsedIter, ++OrigIter) { |
12681 | 0 | if (*UsedIter < *OrigIter) |
12682 | 0 | return true; |
12683 | 0 | if (*UsedIter > *OrigIter) |
12684 | 0 | break; |
12685 | 0 | } |
12686 | | |
12687 | | // TODO: Add a different warning which will print the field names. |
12688 | 0 | HandleDeclRefExpr(DRE); |
12689 | 0 | return true; |
12690 | 0 | } |
12691 | | |
12692 | | // For most expressions, the cast is directly above the DeclRefExpr. |
12693 | | // For conditional operators, the cast can be outside the conditional |
12694 | | // operator if both expressions are DeclRefExpr's. |
12695 | 0 | void HandleValue(Expr *E) { |
12696 | 0 | E = E->IgnoreParens(); |
12697 | 0 | if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) { |
12698 | 0 | HandleDeclRefExpr(DRE); |
12699 | 0 | return; |
12700 | 0 | } |
12701 | | |
12702 | 0 | if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) { |
12703 | 0 | Visit(CO->getCond()); |
12704 | 0 | HandleValue(CO->getTrueExpr()); |
12705 | 0 | HandleValue(CO->getFalseExpr()); |
12706 | 0 | return; |
12707 | 0 | } |
12708 | | |
12709 | 0 | if (BinaryConditionalOperator *BCO = |
12710 | 0 | dyn_cast<BinaryConditionalOperator>(E)) { |
12711 | 0 | Visit(BCO->getCond()); |
12712 | 0 | HandleValue(BCO->getFalseExpr()); |
12713 | 0 | return; |
12714 | 0 | } |
12715 | | |
12716 | 0 | if (OpaqueValueExpr *OVE = dyn_cast<OpaqueValueExpr>(E)) { |
12717 | 0 | HandleValue(OVE->getSourceExpr()); |
12718 | 0 | return; |
12719 | 0 | } |
12720 | | |
12721 | 0 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
12722 | 0 | if (BO->getOpcode() == BO_Comma) { |
12723 | 0 | Visit(BO->getLHS()); |
12724 | 0 | HandleValue(BO->getRHS()); |
12725 | 0 | return; |
12726 | 0 | } |
12727 | 0 | } |
12728 | | |
12729 | 0 | if (isa<MemberExpr>(E)) { |
12730 | 0 | if (isInitList) { |
12731 | 0 | if (CheckInitListMemberExpr(cast<MemberExpr>(E), |
12732 | 0 | false /*CheckReference*/)) |
12733 | 0 | return; |
12734 | 0 | } |
12735 | | |
12736 | 0 | Expr *Base = E->IgnoreParenImpCasts(); |
12737 | 0 | while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { |
12738 | | // Check for static member variables and don't warn on them. |
12739 | 0 | if (!isa<FieldDecl>(ME->getMemberDecl())) |
12740 | 0 | return; |
12741 | 0 | Base = ME->getBase()->IgnoreParenImpCasts(); |
12742 | 0 | } |
12743 | 0 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) |
12744 | 0 | HandleDeclRefExpr(DRE); |
12745 | 0 | return; |
12746 | 0 | } |
12747 | | |
12748 | 0 | Visit(E); |
12749 | 0 | } |
12750 | | |
12751 | | // Reference types not handled in HandleValue are handled here since all |
12752 | | // uses of references are bad, not just r-value uses. |
12753 | 0 | void VisitDeclRefExpr(DeclRefExpr *E) { |
12754 | 0 | if (isReferenceType) |
12755 | 0 | HandleDeclRefExpr(E); |
12756 | 0 | } |
12757 | | |
12758 | 0 | void VisitImplicitCastExpr(ImplicitCastExpr *E) { |
12759 | 0 | if (E->getCastKind() == CK_LValueToRValue) { |
12760 | 0 | HandleValue(E->getSubExpr()); |
12761 | 0 | return; |
12762 | 0 | } |
12763 | | |
12764 | 0 | Inherited::VisitImplicitCastExpr(E); |
12765 | 0 | } |
12766 | | |
12767 | 0 | void VisitMemberExpr(MemberExpr *E) { |
12768 | 0 | if (isInitList) { |
12769 | 0 | if (CheckInitListMemberExpr(E, true /*CheckReference*/)) |
12770 | 0 | return; |
12771 | 0 | } |
12772 | | |
12773 | | // Don't warn on arrays since they can be treated as pointers. |
12774 | 0 | if (E->getType()->canDecayToPointerType()) return; |
12775 | | |
12776 | | // Warn when a non-static method call is followed by non-static member |
12777 | | // field accesses, which is followed by a DeclRefExpr. |
12778 | 0 | CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl()); |
12779 | 0 | bool Warn = (MD && !MD->isStatic()); |
12780 | 0 | Expr *Base = E->getBase()->IgnoreParenImpCasts(); |
12781 | 0 | while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) { |
12782 | 0 | if (!isa<FieldDecl>(ME->getMemberDecl())) |
12783 | 0 | Warn = false; |
12784 | 0 | Base = ME->getBase()->IgnoreParenImpCasts(); |
12785 | 0 | } |
12786 | |
|
12787 | 0 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) { |
12788 | 0 | if (Warn) |
12789 | 0 | HandleDeclRefExpr(DRE); |
12790 | 0 | return; |
12791 | 0 | } |
12792 | | |
12793 | | // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr. |
12794 | | // Visit that expression. |
12795 | 0 | Visit(Base); |
12796 | 0 | } |
12797 | | |
12798 | 0 | void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) { |
12799 | 0 | Expr *Callee = E->getCallee(); |
12800 | |
|
12801 | 0 | if (isa<UnresolvedLookupExpr>(Callee)) |
12802 | 0 | return Inherited::VisitCXXOperatorCallExpr(E); |
12803 | | |
12804 | 0 | Visit(Callee); |
12805 | 0 | for (auto Arg: E->arguments()) |
12806 | 0 | HandleValue(Arg->IgnoreParenImpCasts()); |
12807 | 0 | } |
12808 | | |
12809 | 0 | void VisitUnaryOperator(UnaryOperator *E) { |
12810 | | // For POD record types, addresses of its own members are well-defined. |
12811 | 0 | if (E->getOpcode() == UO_AddrOf && isRecordType && |
12812 | 0 | isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) { |
12813 | 0 | if (!isPODType) |
12814 | 0 | HandleValue(E->getSubExpr()); |
12815 | 0 | return; |
12816 | 0 | } |
12817 | | |
12818 | 0 | if (E->isIncrementDecrementOp()) { |
12819 | 0 | HandleValue(E->getSubExpr()); |
12820 | 0 | return; |
12821 | 0 | } |
12822 | | |
12823 | 0 | Inherited::VisitUnaryOperator(E); |
12824 | 0 | } |
12825 | | |
12826 | 0 | void VisitObjCMessageExpr(ObjCMessageExpr *E) {} |
12827 | | |
12828 | 0 | void VisitCXXConstructExpr(CXXConstructExpr *E) { |
12829 | 0 | if (E->getConstructor()->isCopyConstructor()) { |
12830 | 0 | Expr *ArgExpr = E->getArg(0); |
12831 | 0 | if (InitListExpr *ILE = dyn_cast<InitListExpr>(ArgExpr)) |
12832 | 0 | if (ILE->getNumInits() == 1) |
12833 | 0 | ArgExpr = ILE->getInit(0); |
12834 | 0 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr)) |
12835 | 0 | if (ICE->getCastKind() == CK_NoOp) |
12836 | 0 | ArgExpr = ICE->getSubExpr(); |
12837 | 0 | HandleValue(ArgExpr); |
12838 | 0 | return; |
12839 | 0 | } |
12840 | 0 | Inherited::VisitCXXConstructExpr(E); |
12841 | 0 | } |
12842 | | |
12843 | 0 | void VisitCallExpr(CallExpr *E) { |
12844 | | // Treat std::move as a use. |
12845 | 0 | if (E->isCallToStdMove()) { |
12846 | 0 | HandleValue(E->getArg(0)); |
12847 | 0 | return; |
12848 | 0 | } |
12849 | | |
12850 | 0 | Inherited::VisitCallExpr(E); |
12851 | 0 | } |
12852 | | |
12853 | 0 | void VisitBinaryOperator(BinaryOperator *E) { |
12854 | 0 | if (E->isCompoundAssignmentOp()) { |
12855 | 0 | HandleValue(E->getLHS()); |
12856 | 0 | Visit(E->getRHS()); |
12857 | 0 | return; |
12858 | 0 | } |
12859 | | |
12860 | 0 | Inherited::VisitBinaryOperator(E); |
12861 | 0 | } |
12862 | | |
12863 | | // A custom visitor for BinaryConditionalOperator is needed because the |
12864 | | // regular visitor would check the condition and true expression separately |
12865 | | // but both point to the same place giving duplicate diagnostics. |
12866 | 0 | void VisitBinaryConditionalOperator(BinaryConditionalOperator *E) { |
12867 | 0 | Visit(E->getCond()); |
12868 | 0 | Visit(E->getFalseExpr()); |
12869 | 0 | } |
12870 | | |
12871 | 0 | void HandleDeclRefExpr(DeclRefExpr *DRE) { |
12872 | 0 | Decl* ReferenceDecl = DRE->getDecl(); |
12873 | 0 | if (OrigDecl != ReferenceDecl) return; |
12874 | 0 | unsigned diag; |
12875 | 0 | if (isReferenceType) { |
12876 | 0 | diag = diag::warn_uninit_self_reference_in_reference_init; |
12877 | 0 | } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) { |
12878 | 0 | diag = diag::warn_static_self_reference_in_init; |
12879 | 0 | } else if (isa<TranslationUnitDecl>(OrigDecl->getDeclContext()) || |
12880 | 0 | isa<NamespaceDecl>(OrigDecl->getDeclContext()) || |
12881 | 0 | DRE->getDecl()->getType()->isRecordType()) { |
12882 | 0 | diag = diag::warn_uninit_self_reference_in_init; |
12883 | 0 | } else { |
12884 | | // Local variables will be handled by the CFG analysis. |
12885 | 0 | return; |
12886 | 0 | } |
12887 | | |
12888 | 0 | S.DiagRuntimeBehavior(DRE->getBeginLoc(), DRE, |
12889 | 0 | S.PDiag(diag) |
12890 | 0 | << DRE->getDecl() << OrigDecl->getLocation() |
12891 | 0 | << DRE->getSourceRange()); |
12892 | 0 | } |
12893 | | }; |
12894 | | |
12895 | | /// CheckSelfReference - Warns if OrigDecl is used in expression E. |
12896 | | static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E, |
12897 | 0 | bool DirectInit) { |
12898 | | // Parameters arguments are occassionially constructed with itself, |
12899 | | // for instance, in recursive functions. Skip them. |
12900 | 0 | if (isa<ParmVarDecl>(OrigDecl)) |
12901 | 0 | return; |
12902 | | |
12903 | 0 | E = E->IgnoreParens(); |
12904 | | |
12905 | | // Skip checking T a = a where T is not a record or reference type. |
12906 | | // Doing so is a way to silence uninitialized warnings. |
12907 | 0 | if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType()) |
12908 | 0 | if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E)) |
12909 | 0 | if (ICE->getCastKind() == CK_LValueToRValue) |
12910 | 0 | if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr())) |
12911 | 0 | if (DRE->getDecl() == OrigDecl) |
12912 | 0 | return; |
12913 | | |
12914 | 0 | SelfReferenceChecker(S, OrigDecl).CheckExpr(E); |
12915 | 0 | } |
12916 | | } // end anonymous namespace |
12917 | | |
12918 | | namespace { |
12919 | | // Simple wrapper to add the name of a variable or (if no variable is |
12920 | | // available) a DeclarationName into a diagnostic. |
12921 | | struct VarDeclOrName { |
12922 | | VarDecl *VDecl; |
12923 | | DeclarationName Name; |
12924 | | |
12925 | | friend const Sema::SemaDiagnosticBuilder & |
12926 | 0 | operator<<(const Sema::SemaDiagnosticBuilder &Diag, VarDeclOrName VN) { |
12927 | 0 | return VN.VDecl ? Diag << VN.VDecl : Diag << VN.Name; |
12928 | 0 | } |
12929 | | }; |
12930 | | } // end anonymous namespace |
12931 | | |
12932 | | QualType Sema::deduceVarTypeFromInitializer(VarDecl *VDecl, |
12933 | | DeclarationName Name, QualType Type, |
12934 | | TypeSourceInfo *TSI, |
12935 | | SourceRange Range, bool DirectInit, |
12936 | 0 | Expr *Init) { |
12937 | 0 | bool IsInitCapture = !VDecl; |
12938 | 0 | assert((!VDecl || !VDecl->isInitCapture()) && |
12939 | 0 | "init captures are expected to be deduced prior to initialization"); |
12940 | | |
12941 | 0 | VarDeclOrName VN{VDecl, Name}; |
12942 | |
|
12943 | 0 | DeducedType *Deduced = Type->getContainedDeducedType(); |
12944 | 0 | assert(Deduced && "deduceVarTypeFromInitializer for non-deduced type"); |
12945 | | |
12946 | | // Diagnose auto array declarations in C23, unless it's a supported extension. |
12947 | 0 | if (getLangOpts().C23 && Type->isArrayType() && |
12948 | 0 | !isa_and_present<StringLiteral, InitListExpr>(Init)) { |
12949 | 0 | Diag(Range.getBegin(), diag::err_auto_not_allowed) |
12950 | 0 | << (int)Deduced->getContainedAutoType()->getKeyword() |
12951 | 0 | << /*in array decl*/ 23 << Range; |
12952 | 0 | return QualType(); |
12953 | 0 | } |
12954 | | |
12955 | | // C++11 [dcl.spec.auto]p3 |
12956 | 0 | if (!Init) { |
12957 | 0 | assert(VDecl && "no init for init capture deduction?"); |
12958 | | |
12959 | | // Except for class argument deduction, and then for an initializing |
12960 | | // declaration only, i.e. no static at class scope or extern. |
12961 | 0 | if (!isa<DeducedTemplateSpecializationType>(Deduced) || |
12962 | 0 | VDecl->hasExternalStorage() || |
12963 | 0 | VDecl->isStaticDataMember()) { |
12964 | 0 | Diag(VDecl->getLocation(), diag::err_auto_var_requires_init) |
12965 | 0 | << VDecl->getDeclName() << Type; |
12966 | 0 | return QualType(); |
12967 | 0 | } |
12968 | 0 | } |
12969 | | |
12970 | 0 | ArrayRef<Expr*> DeduceInits; |
12971 | 0 | if (Init) |
12972 | 0 | DeduceInits = Init; |
12973 | |
|
12974 | 0 | auto *PL = dyn_cast_if_present<ParenListExpr>(Init); |
12975 | 0 | if (DirectInit && PL) |
12976 | 0 | DeduceInits = PL->exprs(); |
12977 | |
|
12978 | 0 | if (isa<DeducedTemplateSpecializationType>(Deduced)) { |
12979 | 0 | assert(VDecl && "non-auto type for init capture deduction?"); |
12980 | 0 | InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); |
12981 | 0 | InitializationKind Kind = InitializationKind::CreateForInit( |
12982 | 0 | VDecl->getLocation(), DirectInit, Init); |
12983 | | // FIXME: Initialization should not be taking a mutable list of inits. |
12984 | 0 | SmallVector<Expr*, 8> InitsCopy(DeduceInits.begin(), DeduceInits.end()); |
12985 | 0 | return DeduceTemplateSpecializationFromInitializer(TSI, Entity, Kind, |
12986 | 0 | InitsCopy); |
12987 | 0 | } |
12988 | | |
12989 | 0 | if (DirectInit) { |
12990 | 0 | if (auto *IL = dyn_cast<InitListExpr>(Init)) |
12991 | 0 | DeduceInits = IL->inits(); |
12992 | 0 | } |
12993 | | |
12994 | | // Deduction only works if we have exactly one source expression. |
12995 | 0 | if (DeduceInits.empty()) { |
12996 | | // It isn't possible to write this directly, but it is possible to |
12997 | | // end up in this situation with "auto x(some_pack...);" |
12998 | 0 | Diag(Init->getBeginLoc(), IsInitCapture |
12999 | 0 | ? diag::err_init_capture_no_expression |
13000 | 0 | : diag::err_auto_var_init_no_expression) |
13001 | 0 | << VN << Type << Range; |
13002 | 0 | return QualType(); |
13003 | 0 | } |
13004 | | |
13005 | 0 | if (DeduceInits.size() > 1) { |
13006 | 0 | Diag(DeduceInits[1]->getBeginLoc(), |
13007 | 0 | IsInitCapture ? diag::err_init_capture_multiple_expressions |
13008 | 0 | : diag::err_auto_var_init_multiple_expressions) |
13009 | 0 | << VN << Type << Range; |
13010 | 0 | return QualType(); |
13011 | 0 | } |
13012 | | |
13013 | 0 | Expr *DeduceInit = DeduceInits[0]; |
13014 | 0 | if (DirectInit && isa<InitListExpr>(DeduceInit)) { |
13015 | 0 | Diag(Init->getBeginLoc(), IsInitCapture |
13016 | 0 | ? diag::err_init_capture_paren_braces |
13017 | 0 | : diag::err_auto_var_init_paren_braces) |
13018 | 0 | << isa<InitListExpr>(Init) << VN << Type << Range; |
13019 | 0 | return QualType(); |
13020 | 0 | } |
13021 | | |
13022 | | // Expressions default to 'id' when we're in a debugger. |
13023 | 0 | bool DefaultedAnyToId = false; |
13024 | 0 | if (getLangOpts().DebuggerCastResultToId && |
13025 | 0 | Init->getType() == Context.UnknownAnyTy && !IsInitCapture) { |
13026 | 0 | ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); |
13027 | 0 | if (Result.isInvalid()) { |
13028 | 0 | return QualType(); |
13029 | 0 | } |
13030 | 0 | Init = Result.get(); |
13031 | 0 | DefaultedAnyToId = true; |
13032 | 0 | } |
13033 | | |
13034 | | // C++ [dcl.decomp]p1: |
13035 | | // If the assignment-expression [...] has array type A and no ref-qualifier |
13036 | | // is present, e has type cv A |
13037 | 0 | if (VDecl && isa<DecompositionDecl>(VDecl) && |
13038 | 0 | Context.hasSameUnqualifiedType(Type, Context.getAutoDeductType()) && |
13039 | 0 | DeduceInit->getType()->isConstantArrayType()) |
13040 | 0 | return Context.getQualifiedType(DeduceInit->getType(), |
13041 | 0 | Type.getQualifiers()); |
13042 | | |
13043 | 0 | QualType DeducedType; |
13044 | 0 | TemplateDeductionInfo Info(DeduceInit->getExprLoc()); |
13045 | 0 | TemplateDeductionResult Result = |
13046 | 0 | DeduceAutoType(TSI->getTypeLoc(), DeduceInit, DeducedType, Info); |
13047 | 0 | if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) { |
13048 | 0 | if (!IsInitCapture) |
13049 | 0 | DiagnoseAutoDeductionFailure(VDecl, DeduceInit); |
13050 | 0 | else if (isa<InitListExpr>(Init)) |
13051 | 0 | Diag(Range.getBegin(), |
13052 | 0 | diag::err_init_capture_deduction_failure_from_init_list) |
13053 | 0 | << VN |
13054 | 0 | << (DeduceInit->getType().isNull() ? TSI->getType() |
13055 | 0 | : DeduceInit->getType()) |
13056 | 0 | << DeduceInit->getSourceRange(); |
13057 | 0 | else |
13058 | 0 | Diag(Range.getBegin(), diag::err_init_capture_deduction_failure) |
13059 | 0 | << VN << TSI->getType() |
13060 | 0 | << (DeduceInit->getType().isNull() ? TSI->getType() |
13061 | 0 | : DeduceInit->getType()) |
13062 | 0 | << DeduceInit->getSourceRange(); |
13063 | 0 | } |
13064 | | |
13065 | | // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using |
13066 | | // 'id' instead of a specific object type prevents most of our usual |
13067 | | // checks. |
13068 | | // We only want to warn outside of template instantiations, though: |
13069 | | // inside a template, the 'id' could have come from a parameter. |
13070 | 0 | if (!inTemplateInstantiation() && !DefaultedAnyToId && !IsInitCapture && |
13071 | 0 | !DeducedType.isNull() && DeducedType->isObjCIdType()) { |
13072 | 0 | SourceLocation Loc = TSI->getTypeLoc().getBeginLoc(); |
13073 | 0 | Diag(Loc, diag::warn_auto_var_is_id) << VN << Range; |
13074 | 0 | } |
13075 | |
|
13076 | 0 | return DeducedType; |
13077 | 0 | } |
13078 | | |
13079 | | bool Sema::DeduceVariableDeclarationType(VarDecl *VDecl, bool DirectInit, |
13080 | 0 | Expr *Init) { |
13081 | 0 | assert(!Init || !Init->containsErrors()); |
13082 | 0 | QualType DeducedType = deduceVarTypeFromInitializer( |
13083 | 0 | VDecl, VDecl->getDeclName(), VDecl->getType(), VDecl->getTypeSourceInfo(), |
13084 | 0 | VDecl->getSourceRange(), DirectInit, Init); |
13085 | 0 | if (DeducedType.isNull()) { |
13086 | 0 | VDecl->setInvalidDecl(); |
13087 | 0 | return true; |
13088 | 0 | } |
13089 | | |
13090 | 0 | VDecl->setType(DeducedType); |
13091 | 0 | assert(VDecl->isLinkageValid()); |
13092 | | |
13093 | | // In ARC, infer lifetime. |
13094 | 0 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl)) |
13095 | 0 | VDecl->setInvalidDecl(); |
13096 | |
|
13097 | 0 | if (getLangOpts().OpenCL) |
13098 | 0 | deduceOpenCLAddressSpace(VDecl); |
13099 | | |
13100 | | // If this is a redeclaration, check that the type we just deduced matches |
13101 | | // the previously declared type. |
13102 | 0 | if (VarDecl *Old = VDecl->getPreviousDecl()) { |
13103 | | // We never need to merge the type, because we cannot form an incomplete |
13104 | | // array of auto, nor deduce such a type. |
13105 | 0 | MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/ false); |
13106 | 0 | } |
13107 | | |
13108 | | // Check the deduced type is valid for a variable declaration. |
13109 | 0 | CheckVariableDeclarationType(VDecl); |
13110 | 0 | return VDecl->isInvalidDecl(); |
13111 | 0 | } |
13112 | | |
13113 | | void Sema::checkNonTrivialCUnionInInitializer(const Expr *Init, |
13114 | 0 | SourceLocation Loc) { |
13115 | 0 | if (auto *EWC = dyn_cast<ExprWithCleanups>(Init)) |
13116 | 0 | Init = EWC->getSubExpr(); |
13117 | |
|
13118 | 0 | if (auto *CE = dyn_cast<ConstantExpr>(Init)) |
13119 | 0 | Init = CE->getSubExpr(); |
13120 | |
|
13121 | 0 | QualType InitType = Init->getType(); |
13122 | 0 | assert((InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || |
13123 | 0 | InitType.hasNonTrivialToPrimitiveCopyCUnion()) && |
13124 | 0 | "shouldn't be called if type doesn't have a non-trivial C struct"); |
13125 | 0 | if (auto *ILE = dyn_cast<InitListExpr>(Init)) { |
13126 | 0 | for (auto *I : ILE->inits()) { |
13127 | 0 | if (!I->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion() && |
13128 | 0 | !I->getType().hasNonTrivialToPrimitiveCopyCUnion()) |
13129 | 0 | continue; |
13130 | 0 | SourceLocation SL = I->getExprLoc(); |
13131 | 0 | checkNonTrivialCUnionInInitializer(I, SL.isValid() ? SL : Loc); |
13132 | 0 | } |
13133 | 0 | return; |
13134 | 0 | } |
13135 | | |
13136 | 0 | if (isa<ImplicitValueInitExpr>(Init)) { |
13137 | 0 | if (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) |
13138 | 0 | checkNonTrivialCUnion(InitType, Loc, NTCUC_DefaultInitializedObject, |
13139 | 0 | NTCUK_Init); |
13140 | 0 | } else { |
13141 | | // Assume all other explicit initializers involving copying some existing |
13142 | | // object. |
13143 | | // TODO: ignore any explicit initializers where we can guarantee |
13144 | | // copy-elision. |
13145 | 0 | if (InitType.hasNonTrivialToPrimitiveCopyCUnion()) |
13146 | 0 | checkNonTrivialCUnion(InitType, Loc, NTCUC_CopyInit, NTCUK_Copy); |
13147 | 0 | } |
13148 | 0 | } |
13149 | | |
13150 | | namespace { |
13151 | | |
13152 | 0 | bool shouldIgnoreForRecordTriviality(const FieldDecl *FD) { |
13153 | | // Ignore unavailable fields. A field can be marked as unavailable explicitly |
13154 | | // in the source code or implicitly by the compiler if it is in a union |
13155 | | // defined in a system header and has non-trivial ObjC ownership |
13156 | | // qualifications. We don't want those fields to participate in determining |
13157 | | // whether the containing union is non-trivial. |
13158 | 0 | return FD->hasAttr<UnavailableAttr>(); |
13159 | 0 | } |
13160 | | |
13161 | | struct DiagNonTrivalCUnionDefaultInitializeVisitor |
13162 | | : DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, |
13163 | | void> { |
13164 | | using Super = |
13165 | | DefaultInitializedTypeVisitor<DiagNonTrivalCUnionDefaultInitializeVisitor, |
13166 | | void>; |
13167 | | |
13168 | | DiagNonTrivalCUnionDefaultInitializeVisitor( |
13169 | | QualType OrigTy, SourceLocation OrigLoc, |
13170 | | Sema::NonTrivialCUnionContext UseContext, Sema &S) |
13171 | 0 | : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} |
13172 | | |
13173 | | void visitWithKind(QualType::PrimitiveDefaultInitializeKind PDIK, QualType QT, |
13174 | 0 | const FieldDecl *FD, bool InNonTrivialUnion) { |
13175 | 0 | if (const auto *AT = S.Context.getAsArrayType(QT)) |
13176 | 0 | return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, |
13177 | 0 | InNonTrivialUnion); |
13178 | 0 | return Super::visitWithKind(PDIK, QT, FD, InNonTrivialUnion); |
13179 | 0 | } |
13180 | | |
13181 | | void visitARCStrong(QualType QT, const FieldDecl *FD, |
13182 | 0 | bool InNonTrivialUnion) { |
13183 | 0 | if (InNonTrivialUnion) |
13184 | 0 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
13185 | 0 | << 1 << 0 << QT << FD->getName(); |
13186 | 0 | } |
13187 | | |
13188 | 0 | void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
13189 | 0 | if (InNonTrivialUnion) |
13190 | 0 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
13191 | 0 | << 1 << 0 << QT << FD->getName(); |
13192 | 0 | } |
13193 | | |
13194 | 0 | void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
13195 | 0 | const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); |
13196 | 0 | if (RD->isUnion()) { |
13197 | 0 | if (OrigLoc.isValid()) { |
13198 | 0 | bool IsUnion = false; |
13199 | 0 | if (auto *OrigRD = OrigTy->getAsRecordDecl()) |
13200 | 0 | IsUnion = OrigRD->isUnion(); |
13201 | 0 | S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) |
13202 | 0 | << 0 << OrigTy << IsUnion << UseContext; |
13203 | | // Reset OrigLoc so that this diagnostic is emitted only once. |
13204 | 0 | OrigLoc = SourceLocation(); |
13205 | 0 | } |
13206 | 0 | InNonTrivialUnion = true; |
13207 | 0 | } |
13208 | |
|
13209 | 0 | if (InNonTrivialUnion) |
13210 | 0 | S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) |
13211 | 0 | << 0 << 0 << QT.getUnqualifiedType() << ""; |
13212 | |
|
13213 | 0 | for (const FieldDecl *FD : RD->fields()) |
13214 | 0 | if (!shouldIgnoreForRecordTriviality(FD)) |
13215 | 0 | asDerived().visit(FD->getType(), FD, InNonTrivialUnion); |
13216 | 0 | } |
13217 | | |
13218 | 0 | void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} |
13219 | | |
13220 | | // The non-trivial C union type or the struct/union type that contains a |
13221 | | // non-trivial C union. |
13222 | | QualType OrigTy; |
13223 | | SourceLocation OrigLoc; |
13224 | | Sema::NonTrivialCUnionContext UseContext; |
13225 | | Sema &S; |
13226 | | }; |
13227 | | |
13228 | | struct DiagNonTrivalCUnionDestructedTypeVisitor |
13229 | | : DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void> { |
13230 | | using Super = |
13231 | | DestructedTypeVisitor<DiagNonTrivalCUnionDestructedTypeVisitor, void>; |
13232 | | |
13233 | | DiagNonTrivalCUnionDestructedTypeVisitor( |
13234 | | QualType OrigTy, SourceLocation OrigLoc, |
13235 | | Sema::NonTrivialCUnionContext UseContext, Sema &S) |
13236 | 0 | : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} |
13237 | | |
13238 | | void visitWithKind(QualType::DestructionKind DK, QualType QT, |
13239 | 0 | const FieldDecl *FD, bool InNonTrivialUnion) { |
13240 | 0 | if (const auto *AT = S.Context.getAsArrayType(QT)) |
13241 | 0 | return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, |
13242 | 0 | InNonTrivialUnion); |
13243 | 0 | return Super::visitWithKind(DK, QT, FD, InNonTrivialUnion); |
13244 | 0 | } |
13245 | | |
13246 | | void visitARCStrong(QualType QT, const FieldDecl *FD, |
13247 | 0 | bool InNonTrivialUnion) { |
13248 | 0 | if (InNonTrivialUnion) |
13249 | 0 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
13250 | 0 | << 1 << 1 << QT << FD->getName(); |
13251 | 0 | } |
13252 | | |
13253 | 0 | void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
13254 | 0 | if (InNonTrivialUnion) |
13255 | 0 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
13256 | 0 | << 1 << 1 << QT << FD->getName(); |
13257 | 0 | } |
13258 | | |
13259 | 0 | void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
13260 | 0 | const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); |
13261 | 0 | if (RD->isUnion()) { |
13262 | 0 | if (OrigLoc.isValid()) { |
13263 | 0 | bool IsUnion = false; |
13264 | 0 | if (auto *OrigRD = OrigTy->getAsRecordDecl()) |
13265 | 0 | IsUnion = OrigRD->isUnion(); |
13266 | 0 | S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) |
13267 | 0 | << 1 << OrigTy << IsUnion << UseContext; |
13268 | | // Reset OrigLoc so that this diagnostic is emitted only once. |
13269 | 0 | OrigLoc = SourceLocation(); |
13270 | 0 | } |
13271 | 0 | InNonTrivialUnion = true; |
13272 | 0 | } |
13273 | |
|
13274 | 0 | if (InNonTrivialUnion) |
13275 | 0 | S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) |
13276 | 0 | << 0 << 1 << QT.getUnqualifiedType() << ""; |
13277 | |
|
13278 | 0 | for (const FieldDecl *FD : RD->fields()) |
13279 | 0 | if (!shouldIgnoreForRecordTriviality(FD)) |
13280 | 0 | asDerived().visit(FD->getType(), FD, InNonTrivialUnion); |
13281 | 0 | } |
13282 | | |
13283 | 0 | void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} |
13284 | | void visitCXXDestructor(QualType QT, const FieldDecl *FD, |
13285 | 0 | bool InNonTrivialUnion) {} |
13286 | | |
13287 | | // The non-trivial C union type or the struct/union type that contains a |
13288 | | // non-trivial C union. |
13289 | | QualType OrigTy; |
13290 | | SourceLocation OrigLoc; |
13291 | | Sema::NonTrivialCUnionContext UseContext; |
13292 | | Sema &S; |
13293 | | }; |
13294 | | |
13295 | | struct DiagNonTrivalCUnionCopyVisitor |
13296 | | : CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void> { |
13297 | | using Super = CopiedTypeVisitor<DiagNonTrivalCUnionCopyVisitor, false, void>; |
13298 | | |
13299 | | DiagNonTrivalCUnionCopyVisitor(QualType OrigTy, SourceLocation OrigLoc, |
13300 | | Sema::NonTrivialCUnionContext UseContext, |
13301 | | Sema &S) |
13302 | 0 | : OrigTy(OrigTy), OrigLoc(OrigLoc), UseContext(UseContext), S(S) {} |
13303 | | |
13304 | | void visitWithKind(QualType::PrimitiveCopyKind PCK, QualType QT, |
13305 | 0 | const FieldDecl *FD, bool InNonTrivialUnion) { |
13306 | 0 | if (const auto *AT = S.Context.getAsArrayType(QT)) |
13307 | 0 | return this->asDerived().visit(S.Context.getBaseElementType(AT), FD, |
13308 | 0 | InNonTrivialUnion); |
13309 | 0 | return Super::visitWithKind(PCK, QT, FD, InNonTrivialUnion); |
13310 | 0 | } |
13311 | | |
13312 | | void visitARCStrong(QualType QT, const FieldDecl *FD, |
13313 | 0 | bool InNonTrivialUnion) { |
13314 | 0 | if (InNonTrivialUnion) |
13315 | 0 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
13316 | 0 | << 1 << 2 << QT << FD->getName(); |
13317 | 0 | } |
13318 | | |
13319 | 0 | void visitARCWeak(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
13320 | 0 | if (InNonTrivialUnion) |
13321 | 0 | S.Diag(FD->getLocation(), diag::note_non_trivial_c_union) |
13322 | 0 | << 1 << 2 << QT << FD->getName(); |
13323 | 0 | } |
13324 | | |
13325 | 0 | void visitStruct(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) { |
13326 | 0 | const RecordDecl *RD = QT->castAs<RecordType>()->getDecl(); |
13327 | 0 | if (RD->isUnion()) { |
13328 | 0 | if (OrigLoc.isValid()) { |
13329 | 0 | bool IsUnion = false; |
13330 | 0 | if (auto *OrigRD = OrigTy->getAsRecordDecl()) |
13331 | 0 | IsUnion = OrigRD->isUnion(); |
13332 | 0 | S.Diag(OrigLoc, diag::err_non_trivial_c_union_in_invalid_context) |
13333 | 0 | << 2 << OrigTy << IsUnion << UseContext; |
13334 | | // Reset OrigLoc so that this diagnostic is emitted only once. |
13335 | 0 | OrigLoc = SourceLocation(); |
13336 | 0 | } |
13337 | 0 | InNonTrivialUnion = true; |
13338 | 0 | } |
13339 | |
|
13340 | 0 | if (InNonTrivialUnion) |
13341 | 0 | S.Diag(RD->getLocation(), diag::note_non_trivial_c_union) |
13342 | 0 | << 0 << 2 << QT.getUnqualifiedType() << ""; |
13343 | |
|
13344 | 0 | for (const FieldDecl *FD : RD->fields()) |
13345 | 0 | if (!shouldIgnoreForRecordTriviality(FD)) |
13346 | 0 | asDerived().visit(FD->getType(), FD, InNonTrivialUnion); |
13347 | 0 | } |
13348 | | |
13349 | | void preVisit(QualType::PrimitiveCopyKind PCK, QualType QT, |
13350 | 0 | const FieldDecl *FD, bool InNonTrivialUnion) {} |
13351 | 0 | void visitTrivial(QualType QT, const FieldDecl *FD, bool InNonTrivialUnion) {} |
13352 | | void visitVolatileTrivial(QualType QT, const FieldDecl *FD, |
13353 | 0 | bool InNonTrivialUnion) {} |
13354 | | |
13355 | | // The non-trivial C union type or the struct/union type that contains a |
13356 | | // non-trivial C union. |
13357 | | QualType OrigTy; |
13358 | | SourceLocation OrigLoc; |
13359 | | Sema::NonTrivialCUnionContext UseContext; |
13360 | | Sema &S; |
13361 | | }; |
13362 | | |
13363 | | } // namespace |
13364 | | |
13365 | | void Sema::checkNonTrivialCUnion(QualType QT, SourceLocation Loc, |
13366 | | NonTrivialCUnionContext UseContext, |
13367 | 0 | unsigned NonTrivialKind) { |
13368 | 0 | assert((QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || |
13369 | 0 | QT.hasNonTrivialToPrimitiveDestructCUnion() || |
13370 | 0 | QT.hasNonTrivialToPrimitiveCopyCUnion()) && |
13371 | 0 | "shouldn't be called if type doesn't have a non-trivial C union"); |
13372 | | |
13373 | 0 | if ((NonTrivialKind & NTCUK_Init) && |
13374 | 0 | QT.hasNonTrivialToPrimitiveDefaultInitializeCUnion()) |
13375 | 0 | DiagNonTrivalCUnionDefaultInitializeVisitor(QT, Loc, UseContext, *this) |
13376 | 0 | .visit(QT, nullptr, false); |
13377 | 0 | if ((NonTrivialKind & NTCUK_Destruct) && |
13378 | 0 | QT.hasNonTrivialToPrimitiveDestructCUnion()) |
13379 | 0 | DiagNonTrivalCUnionDestructedTypeVisitor(QT, Loc, UseContext, *this) |
13380 | 0 | .visit(QT, nullptr, false); |
13381 | 0 | if ((NonTrivialKind & NTCUK_Copy) && QT.hasNonTrivialToPrimitiveCopyCUnion()) |
13382 | 0 | DiagNonTrivalCUnionCopyVisitor(QT, Loc, UseContext, *this) |
13383 | 0 | .visit(QT, nullptr, false); |
13384 | 0 | } |
13385 | | |
13386 | | /// AddInitializerToDecl - Adds the initializer Init to the |
13387 | | /// declaration dcl. If DirectInit is true, this is C++ direct |
13388 | | /// initialization rather than copy initialization. |
13389 | 88 | void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) { |
13390 | | // If there is no declaration, there was an error parsing it. Just ignore |
13391 | | // the initializer. |
13392 | 88 | if (!RealDecl || RealDecl->isInvalidDecl()) { |
13393 | 68 | CorrectDelayedTyposInExpr(Init, dyn_cast_or_null<VarDecl>(RealDecl)); |
13394 | 68 | return; |
13395 | 68 | } |
13396 | | |
13397 | 20 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) { |
13398 | | // Pure-specifiers are handled in ActOnPureSpecifier. |
13399 | 0 | Diag(Method->getLocation(), diag::err_member_function_initialization) |
13400 | 0 | << Method->getDeclName() << Init->getSourceRange(); |
13401 | 0 | Method->setInvalidDecl(); |
13402 | 0 | return; |
13403 | 0 | } |
13404 | | |
13405 | 20 | VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); |
13406 | 20 | if (!VDecl) { |
13407 | 0 | assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here"); |
13408 | 0 | Diag(RealDecl->getLocation(), diag::err_illegal_initializer); |
13409 | 0 | RealDecl->setInvalidDecl(); |
13410 | 0 | return; |
13411 | 0 | } |
13412 | | |
13413 | | // WebAssembly tables can't be used to initialise a variable. |
13414 | 20 | if (Init && !Init->getType().isNull() && |
13415 | 20 | Init->getType()->isWebAssemblyTableType()) { |
13416 | 0 | Diag(Init->getExprLoc(), diag::err_wasm_table_art) << 0; |
13417 | 0 | VDecl->setInvalidDecl(); |
13418 | 0 | return; |
13419 | 0 | } |
13420 | | |
13421 | | // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for. |
13422 | 20 | if (VDecl->getType()->isUndeducedType()) { |
13423 | | // Attempt typo correction early so that the type of the init expression can |
13424 | | // be deduced based on the chosen correction if the original init contains a |
13425 | | // TypoExpr. |
13426 | 0 | ExprResult Res = CorrectDelayedTyposInExpr(Init, VDecl); |
13427 | 0 | if (!Res.isUsable()) { |
13428 | | // There are unresolved typos in Init, just drop them. |
13429 | | // FIXME: improve the recovery strategy to preserve the Init. |
13430 | 0 | RealDecl->setInvalidDecl(); |
13431 | 0 | return; |
13432 | 0 | } |
13433 | 0 | if (Res.get()->containsErrors()) { |
13434 | | // Invalidate the decl as we don't know the type for recovery-expr yet. |
13435 | 0 | RealDecl->setInvalidDecl(); |
13436 | 0 | VDecl->setInit(Res.get()); |
13437 | 0 | return; |
13438 | 0 | } |
13439 | 0 | Init = Res.get(); |
13440 | |
|
13441 | 0 | if (DeduceVariableDeclarationType(VDecl, DirectInit, Init)) |
13442 | 0 | return; |
13443 | 0 | } |
13444 | | |
13445 | | // dllimport cannot be used on variable definitions. |
13446 | 20 | if (VDecl->hasAttr<DLLImportAttr>() && !VDecl->isStaticDataMember()) { |
13447 | 0 | Diag(VDecl->getLocation(), diag::err_attribute_dllimport_data_definition); |
13448 | 0 | VDecl->setInvalidDecl(); |
13449 | 0 | return; |
13450 | 0 | } |
13451 | | |
13452 | | // C99 6.7.8p5. If the declaration of an identifier has block scope, and |
13453 | | // the identifier has external or internal linkage, the declaration shall |
13454 | | // have no initializer for the identifier. |
13455 | | // C++14 [dcl.init]p5 is the same restriction for C++. |
13456 | 20 | if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) { |
13457 | 0 | Diag(VDecl->getLocation(), diag::err_block_extern_cant_init); |
13458 | 0 | VDecl->setInvalidDecl(); |
13459 | 0 | return; |
13460 | 0 | } |
13461 | | |
13462 | 20 | if (!VDecl->getType()->isDependentType()) { |
13463 | | // A definition must end up with a complete type, which means it must be |
13464 | | // complete with the restriction that an array type might be completed by |
13465 | | // the initializer; note that later code assumes this restriction. |
13466 | 19 | QualType BaseDeclType = VDecl->getType(); |
13467 | 19 | if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType)) |
13468 | 0 | BaseDeclType = Array->getElementType(); |
13469 | 19 | if (RequireCompleteType(VDecl->getLocation(), BaseDeclType, |
13470 | 19 | diag::err_typecheck_decl_incomplete_type)) { |
13471 | 0 | RealDecl->setInvalidDecl(); |
13472 | 0 | return; |
13473 | 0 | } |
13474 | | |
13475 | | // The variable can not have an abstract class type. |
13476 | 19 | if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(), |
13477 | 19 | diag::err_abstract_type_in_decl, |
13478 | 19 | AbstractVariableType)) |
13479 | 0 | VDecl->setInvalidDecl(); |
13480 | 19 | } |
13481 | | |
13482 | | // C++ [module.import/6] external definitions are not permitted in header |
13483 | | // units. |
13484 | 20 | if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() && |
13485 | 20 | !VDecl->isInvalidDecl() && VDecl->isThisDeclarationADefinition() && |
13486 | 20 | VDecl->getFormalLinkage() == Linkage::External && !VDecl->isInline() && |
13487 | 20 | !VDecl->isTemplated() && !isa<VarTemplateSpecializationDecl>(VDecl)) { |
13488 | 0 | Diag(VDecl->getLocation(), diag::err_extern_def_in_header_unit); |
13489 | 0 | VDecl->setInvalidDecl(); |
13490 | 0 | } |
13491 | | |
13492 | | // If adding the initializer will turn this declaration into a definition, |
13493 | | // and we already have a definition for this variable, diagnose or otherwise |
13494 | | // handle the situation. |
13495 | 20 | if (VarDecl *Def = VDecl->getDefinition()) |
13496 | 0 | if (Def != VDecl && |
13497 | 0 | (!VDecl->isStaticDataMember() || VDecl->isOutOfLine()) && |
13498 | 0 | !VDecl->isThisDeclarationADemotedDefinition() && |
13499 | 0 | checkVarDeclRedefinition(Def, VDecl)) |
13500 | 0 | return; |
13501 | | |
13502 | 20 | if (getLangOpts().CPlusPlus) { |
13503 | | // C++ [class.static.data]p4 |
13504 | | // If a static data member is of const integral or const |
13505 | | // enumeration type, its declaration in the class definition can |
13506 | | // specify a constant-initializer which shall be an integral |
13507 | | // constant expression (5.19). In that case, the member can appear |
13508 | | // in integral constant expressions. The member shall still be |
13509 | | // defined in a namespace scope if it is used in the program and the |
13510 | | // namespace scope definition shall not contain an initializer. |
13511 | | // |
13512 | | // We already performed a redefinition check above, but for static |
13513 | | // data members we also need to check whether there was an in-class |
13514 | | // declaration with an initializer. |
13515 | 0 | if (VDecl->isStaticDataMember() && VDecl->getCanonicalDecl()->hasInit()) { |
13516 | 0 | Diag(Init->getExprLoc(), diag::err_static_data_member_reinitialization) |
13517 | 0 | << VDecl->getDeclName(); |
13518 | 0 | Diag(VDecl->getCanonicalDecl()->getInit()->getExprLoc(), |
13519 | 0 | diag::note_previous_initializer) |
13520 | 0 | << 0; |
13521 | 0 | return; |
13522 | 0 | } |
13523 | | |
13524 | 0 | if (VDecl->hasLocalStorage()) |
13525 | 0 | setFunctionHasBranchProtectedScope(); |
13526 | |
|
13527 | 0 | if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) { |
13528 | 0 | VDecl->setInvalidDecl(); |
13529 | 0 | return; |
13530 | 0 | } |
13531 | 0 | } |
13532 | | |
13533 | | // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside |
13534 | | // a kernel function cannot be initialized." |
13535 | 20 | if (VDecl->getType().getAddressSpace() == LangAS::opencl_local) { |
13536 | 0 | Diag(VDecl->getLocation(), diag::err_local_cant_init); |
13537 | 0 | VDecl->setInvalidDecl(); |
13538 | 0 | return; |
13539 | 0 | } |
13540 | | |
13541 | | // The LoaderUninitialized attribute acts as a definition (of undef). |
13542 | 20 | if (VDecl->hasAttr<LoaderUninitializedAttr>()) { |
13543 | 0 | Diag(VDecl->getLocation(), diag::err_loader_uninitialized_cant_init); |
13544 | 0 | VDecl->setInvalidDecl(); |
13545 | 0 | return; |
13546 | 0 | } |
13547 | | |
13548 | | // Get the decls type and save a reference for later, since |
13549 | | // CheckInitializerTypes may change it. |
13550 | 20 | QualType DclT = VDecl->getType(), SavT = DclT; |
13551 | | |
13552 | | // Expressions default to 'id' when we're in a debugger |
13553 | | // and we are assigning it to a variable of Objective-C pointer type. |
13554 | 20 | if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() && |
13555 | 20 | Init->getType() == Context.UnknownAnyTy) { |
13556 | 0 | ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType()); |
13557 | 0 | if (Result.isInvalid()) { |
13558 | 0 | VDecl->setInvalidDecl(); |
13559 | 0 | return; |
13560 | 0 | } |
13561 | 0 | Init = Result.get(); |
13562 | 0 | } |
13563 | | |
13564 | | // Perform the initialization. |
13565 | 20 | ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init); |
13566 | 20 | bool IsParenListInit = false; |
13567 | 20 | if (!VDecl->isInvalidDecl()) { |
13568 | 20 | InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl); |
13569 | 20 | InitializationKind Kind = InitializationKind::CreateForInit( |
13570 | 20 | VDecl->getLocation(), DirectInit, Init); |
13571 | | |
13572 | 20 | MultiExprArg Args = Init; |
13573 | 20 | if (CXXDirectInit) |
13574 | 0 | Args = MultiExprArg(CXXDirectInit->getExprs(), |
13575 | 0 | CXXDirectInit->getNumExprs()); |
13576 | | |
13577 | | // Try to correct any TypoExprs in the initialization arguments. |
13578 | 40 | for (size_t Idx = 0; Idx < Args.size(); ++Idx) { |
13579 | 20 | ExprResult Res = CorrectDelayedTyposInExpr( |
13580 | 20 | Args[Idx], VDecl, /*RecoverUncorrectedTypos=*/true, |
13581 | 20 | [this, Entity, Kind](Expr *E) { |
13582 | 0 | InitializationSequence Init(*this, Entity, Kind, MultiExprArg(E)); |
13583 | 0 | return Init.Failed() ? ExprError() : E; |
13584 | 0 | }); |
13585 | 20 | if (Res.isInvalid()) { |
13586 | 0 | VDecl->setInvalidDecl(); |
13587 | 20 | } else if (Res.get() != Args[Idx]) { |
13588 | 6 | Args[Idx] = Res.get(); |
13589 | 6 | } |
13590 | 20 | } |
13591 | 20 | if (VDecl->isInvalidDecl()) |
13592 | 0 | return; |
13593 | | |
13594 | 20 | InitializationSequence InitSeq(*this, Entity, Kind, Args, |
13595 | 20 | /*TopLevelOfInitList=*/false, |
13596 | 20 | /*TreatUnavailableAsInvalid=*/false); |
13597 | 20 | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT); |
13598 | 20 | if (Result.isInvalid()) { |
13599 | | // If the provided initializer fails to initialize the var decl, |
13600 | | // we attach a recovery expr for better recovery. |
13601 | 0 | auto RecoveryExpr = |
13602 | 0 | CreateRecoveryExpr(Init->getBeginLoc(), Init->getEndLoc(), Args); |
13603 | 0 | if (RecoveryExpr.get()) |
13604 | 0 | VDecl->setInit(RecoveryExpr.get()); |
13605 | 0 | return; |
13606 | 0 | } |
13607 | | |
13608 | 20 | Init = Result.getAs<Expr>(); |
13609 | 20 | IsParenListInit = !InitSeq.steps().empty() && |
13610 | 20 | InitSeq.step_begin()->Kind == |
13611 | 7 | InitializationSequence::SK_ParenthesizedListInit; |
13612 | 20 | QualType VDeclType = VDecl->getType(); |
13613 | 20 | if (Init && !Init->getType().isNull() && |
13614 | 20 | !Init->getType()->isDependentType() && !VDeclType->isDependentType() && |
13615 | 20 | Context.getAsIncompleteArrayType(VDeclType) && |
13616 | 20 | Context.getAsIncompleteArrayType(Init->getType())) { |
13617 | | // Bail out if it is not possible to deduce array size from the |
13618 | | // initializer. |
13619 | 0 | Diag(VDecl->getLocation(), diag::err_typecheck_decl_incomplete_type) |
13620 | 0 | << VDeclType; |
13621 | 0 | VDecl->setInvalidDecl(); |
13622 | 0 | return; |
13623 | 0 | } |
13624 | 20 | } |
13625 | | |
13626 | | // Check for self-references within variable initializers. |
13627 | | // Variables declared within a function/method body (except for references) |
13628 | | // are handled by a dataflow analysis. |
13629 | | // This is undefined behavior in C++, but valid in C. |
13630 | 20 | if (getLangOpts().CPlusPlus) |
13631 | 0 | if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() || |
13632 | 0 | VDecl->getType()->isReferenceType()) |
13633 | 0 | CheckSelfReference(*this, RealDecl, Init, DirectInit); |
13634 | | |
13635 | | // If the type changed, it means we had an incomplete type that was |
13636 | | // completed by the initializer. For example: |
13637 | | // int ary[] = { 1, 3, 5 }; |
13638 | | // "ary" transitions from an IncompleteArrayType to a ConstantArrayType. |
13639 | 20 | if (!VDecl->isInvalidDecl() && (DclT != SavT)) |
13640 | 0 | VDecl->setType(DclT); |
13641 | | |
13642 | 20 | if (!VDecl->isInvalidDecl()) { |
13643 | 20 | checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init); |
13644 | | |
13645 | 20 | if (VDecl->hasAttr<BlocksAttr>()) |
13646 | 0 | checkRetainCycles(VDecl, Init); |
13647 | | |
13648 | | // It is safe to assign a weak reference into a strong variable. |
13649 | | // Although this code can still have problems: |
13650 | | // id x = self.weakProp; |
13651 | | // id y = self.weakProp; |
13652 | | // we do not warn to warn spuriously when 'x' and 'y' are on separate |
13653 | | // paths through the function. This should be revisited if |
13654 | | // -Wrepeated-use-of-weak is made flow-sensitive. |
13655 | 20 | if (FunctionScopeInfo *FSI = getCurFunction()) |
13656 | 0 | if ((VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong || |
13657 | 0 | VDecl->getType().isNonWeakInMRRWithObjCWeak(Context)) && |
13658 | 0 | !Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, |
13659 | 0 | Init->getBeginLoc())) |
13660 | 0 | FSI->markSafeWeakUse(Init); |
13661 | 20 | } |
13662 | | |
13663 | | // The initialization is usually a full-expression. |
13664 | | // |
13665 | | // FIXME: If this is a braced initialization of an aggregate, it is not |
13666 | | // an expression, and each individual field initializer is a separate |
13667 | | // full-expression. For instance, in: |
13668 | | // |
13669 | | // struct Temp { ~Temp(); }; |
13670 | | // struct S { S(Temp); }; |
13671 | | // struct T { S a, b; } t = { Temp(), Temp() } |
13672 | | // |
13673 | | // we should destroy the first Temp before constructing the second. |
13674 | 20 | ExprResult Result = |
13675 | 20 | ActOnFinishFullExpr(Init, VDecl->getLocation(), |
13676 | 20 | /*DiscardedValue*/ false, VDecl->isConstexpr()); |
13677 | 20 | if (Result.isInvalid()) { |
13678 | 0 | VDecl->setInvalidDecl(); |
13679 | 0 | return; |
13680 | 0 | } |
13681 | 20 | Init = Result.get(); |
13682 | | |
13683 | | // Attach the initializer to the decl. |
13684 | 20 | VDecl->setInit(Init); |
13685 | | |
13686 | 20 | if (VDecl->isLocalVarDecl()) { |
13687 | | // Don't check the initializer if the declaration is malformed. |
13688 | 0 | if (VDecl->isInvalidDecl()) { |
13689 | | // do nothing |
13690 | | |
13691 | | // OpenCL v1.2 s6.5.3: __constant locals must be constant-initialized. |
13692 | | // This is true even in C++ for OpenCL. |
13693 | 0 | } else if (VDecl->getType().getAddressSpace() == LangAS::opencl_constant) { |
13694 | 0 | CheckForConstantInitializer(Init, DclT); |
13695 | | |
13696 | | // Otherwise, C++ does not restrict the initializer. |
13697 | 0 | } else if (getLangOpts().CPlusPlus) { |
13698 | | // do nothing |
13699 | | |
13700 | | // C99 6.7.8p4: All the expressions in an initializer for an object that has |
13701 | | // static storage duration shall be constant expressions or string literals. |
13702 | 0 | } else if (VDecl->getStorageClass() == SC_Static) { |
13703 | 0 | CheckForConstantInitializer(Init, DclT); |
13704 | | |
13705 | | // C89 is stricter than C99 for aggregate initializers. |
13706 | | // C89 6.5.7p3: All the expressions [...] in an initializer list |
13707 | | // for an object that has aggregate or union type shall be |
13708 | | // constant expressions. |
13709 | 0 | } else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() && |
13710 | 0 | isa<InitListExpr>(Init)) { |
13711 | 0 | const Expr *Culprit; |
13712 | 0 | if (!Init->isConstantInitializer(Context, false, &Culprit)) { |
13713 | 0 | Diag(Culprit->getExprLoc(), |
13714 | 0 | diag::ext_aggregate_init_not_constant) |
13715 | 0 | << Culprit->getSourceRange(); |
13716 | 0 | } |
13717 | 0 | } |
13718 | |
|
13719 | 0 | if (auto *E = dyn_cast<ExprWithCleanups>(Init)) |
13720 | 0 | if (auto *BE = dyn_cast<BlockExpr>(E->getSubExpr()->IgnoreParens())) |
13721 | 0 | if (VDecl->hasLocalStorage()) |
13722 | 0 | BE->getBlockDecl()->setCanAvoidCopyToHeap(); |
13723 | 20 | } else if (VDecl->isStaticDataMember() && !VDecl->isInline() && |
13724 | 20 | VDecl->getLexicalDeclContext()->isRecord()) { |
13725 | | // This is an in-class initialization for a static data member, e.g., |
13726 | | // |
13727 | | // struct S { |
13728 | | // static const int value = 17; |
13729 | | // }; |
13730 | | |
13731 | | // C++ [class.mem]p4: |
13732 | | // A member-declarator can contain a constant-initializer only |
13733 | | // if it declares a static member (9.4) of const integral or |
13734 | | // const enumeration type, see 9.4.2. |
13735 | | // |
13736 | | // C++11 [class.static.data]p3: |
13737 | | // If a non-volatile non-inline const static data member is of integral |
13738 | | // or enumeration type, its declaration in the class definition can |
13739 | | // specify a brace-or-equal-initializer in which every initializer-clause |
13740 | | // that is an assignment-expression is a constant expression. A static |
13741 | | // data member of literal type can be declared in the class definition |
13742 | | // with the constexpr specifier; if so, its declaration shall specify a |
13743 | | // brace-or-equal-initializer in which every initializer-clause that is |
13744 | | // an assignment-expression is a constant expression. |
13745 | | |
13746 | | // Do nothing on dependent types. |
13747 | 0 | if (DclT->isDependentType()) { |
13748 | | |
13749 | | // Allow any 'static constexpr' members, whether or not they are of literal |
13750 | | // type. We separately check that every constexpr variable is of literal |
13751 | | // type. |
13752 | 0 | } else if (VDecl->isConstexpr()) { |
13753 | | |
13754 | | // Require constness. |
13755 | 0 | } else if (!DclT.isConstQualified()) { |
13756 | 0 | Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const) |
13757 | 0 | << Init->getSourceRange(); |
13758 | 0 | VDecl->setInvalidDecl(); |
13759 | | |
13760 | | // We allow integer constant expressions in all cases. |
13761 | 0 | } else if (DclT->isIntegralOrEnumerationType()) { |
13762 | | // Check whether the expression is a constant expression. |
13763 | 0 | SourceLocation Loc; |
13764 | 0 | if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified()) |
13765 | | // In C++11, a non-constexpr const static data member with an |
13766 | | // in-class initializer cannot be volatile. |
13767 | 0 | Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile); |
13768 | 0 | else if (Init->isValueDependent()) |
13769 | 0 | ; // Nothing to check. |
13770 | 0 | else if (Init->isIntegerConstantExpr(Context, &Loc)) |
13771 | 0 | ; // Ok, it's an ICE! |
13772 | 0 | else if (Init->getType()->isScopedEnumeralType() && |
13773 | 0 | Init->isCXX11ConstantExpr(Context)) |
13774 | 0 | ; // Ok, it is a scoped-enum constant expression. |
13775 | 0 | else if (Init->isEvaluatable(Context)) { |
13776 | | // If we can constant fold the initializer through heroics, accept it, |
13777 | | // but report this as a use of an extension for -pedantic. |
13778 | 0 | Diag(Loc, diag::ext_in_class_initializer_non_constant) |
13779 | 0 | << Init->getSourceRange(); |
13780 | 0 | } else { |
13781 | | // Otherwise, this is some crazy unknown case. Report the issue at the |
13782 | | // location provided by the isIntegerConstantExpr failed check. |
13783 | 0 | Diag(Loc, diag::err_in_class_initializer_non_constant) |
13784 | 0 | << Init->getSourceRange(); |
13785 | 0 | VDecl->setInvalidDecl(); |
13786 | 0 | } |
13787 | | |
13788 | | // We allow foldable floating-point constants as an extension. |
13789 | 0 | } else if (DclT->isFloatingType()) { // also permits complex, which is ok |
13790 | | // In C++98, this is a GNU extension. In C++11, it is not, but we support |
13791 | | // it anyway and provide a fixit to add the 'constexpr'. |
13792 | 0 | if (getLangOpts().CPlusPlus11) { |
13793 | 0 | Diag(VDecl->getLocation(), |
13794 | 0 | diag::ext_in_class_initializer_float_type_cxx11) |
13795 | 0 | << DclT << Init->getSourceRange(); |
13796 | 0 | Diag(VDecl->getBeginLoc(), |
13797 | 0 | diag::note_in_class_initializer_float_type_cxx11) |
13798 | 0 | << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); |
13799 | 0 | } else { |
13800 | 0 | Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type) |
13801 | 0 | << DclT << Init->getSourceRange(); |
13802 | |
|
13803 | 0 | if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) { |
13804 | 0 | Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant) |
13805 | 0 | << Init->getSourceRange(); |
13806 | 0 | VDecl->setInvalidDecl(); |
13807 | 0 | } |
13808 | 0 | } |
13809 | | |
13810 | | // Suggest adding 'constexpr' in C++11 for literal types. |
13811 | 0 | } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) { |
13812 | 0 | Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type) |
13813 | 0 | << DclT << Init->getSourceRange() |
13814 | 0 | << FixItHint::CreateInsertion(VDecl->getBeginLoc(), "constexpr "); |
13815 | 0 | VDecl->setConstexpr(true); |
13816 | |
|
13817 | 0 | } else { |
13818 | 0 | Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type) |
13819 | 0 | << DclT << Init->getSourceRange(); |
13820 | 0 | VDecl->setInvalidDecl(); |
13821 | 0 | } |
13822 | 20 | } else if (VDecl->isFileVarDecl()) { |
13823 | | // In C, extern is typically used to avoid tentative definitions when |
13824 | | // declaring variables in headers, but adding an intializer makes it a |
13825 | | // definition. This is somewhat confusing, so GCC and Clang both warn on it. |
13826 | | // In C++, extern is often used to give implictly static const variables |
13827 | | // external linkage, so don't warn in that case. If selectany is present, |
13828 | | // this might be header code intended for C and C++ inclusion, so apply the |
13829 | | // C++ rules. |
13830 | 20 | if (VDecl->getStorageClass() == SC_Extern && |
13831 | 20 | ((!getLangOpts().CPlusPlus && !VDecl->hasAttr<SelectAnyAttr>()) || |
13832 | 0 | !Context.getBaseElementType(VDecl->getType()).isConstQualified()) && |
13833 | 20 | !(getLangOpts().CPlusPlus && VDecl->isExternC()) && |
13834 | 20 | !isTemplateInstantiation(VDecl->getTemplateSpecializationKind())) |
13835 | 0 | Diag(VDecl->getLocation(), diag::warn_extern_init); |
13836 | | |
13837 | | // In Microsoft C++ mode, a const variable defined in namespace scope has |
13838 | | // external linkage by default if the variable is declared with |
13839 | | // __declspec(dllexport). |
13840 | 20 | if (Context.getTargetInfo().getCXXABI().isMicrosoft() && |
13841 | 20 | getLangOpts().CPlusPlus && VDecl->getType().isConstQualified() && |
13842 | 20 | VDecl->hasAttr<DLLExportAttr>() && VDecl->getDefinition()) |
13843 | 0 | VDecl->setStorageClass(SC_Extern); |
13844 | | |
13845 | | // C99 6.7.8p4. All file scoped initializers need to be constant. |
13846 | 20 | if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) |
13847 | 20 | CheckForConstantInitializer(Init, DclT); |
13848 | 20 | } |
13849 | | |
13850 | 20 | QualType InitType = Init->getType(); |
13851 | 20 | if (!InitType.isNull() && |
13852 | 20 | (InitType.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || |
13853 | 20 | InitType.hasNonTrivialToPrimitiveCopyCUnion())) |
13854 | 0 | checkNonTrivialCUnionInInitializer(Init, Init->getExprLoc()); |
13855 | | |
13856 | | // We will represent direct-initialization similarly to copy-initialization: |
13857 | | // int x(1); -as-> int x = 1; |
13858 | | // ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); |
13859 | | // |
13860 | | // Clients that want to distinguish between the two forms, can check for |
13861 | | // direct initializer using VarDecl::getInitStyle(). |
13862 | | // A major benefit is that clients that don't particularly care about which |
13863 | | // exactly form was it (like the CodeGen) can handle both cases without |
13864 | | // special case code. |
13865 | | |
13866 | | // C++ 8.5p11: |
13867 | | // The form of initialization (using parentheses or '=') is generally |
13868 | | // insignificant, but does matter when the entity being initialized has a |
13869 | | // class type. |
13870 | 20 | if (CXXDirectInit) { |
13871 | 0 | assert(DirectInit && "Call-style initializer must be direct init."); |
13872 | 0 | VDecl->setInitStyle(IsParenListInit ? VarDecl::ParenListInit |
13873 | 0 | : VarDecl::CallInit); |
13874 | 20 | } else if (DirectInit) { |
13875 | | // This must be list-initialization. No other way is direct-initialization. |
13876 | 0 | VDecl->setInitStyle(VarDecl::ListInit); |
13877 | 0 | } |
13878 | | |
13879 | 20 | if (LangOpts.OpenMP && |
13880 | 20 | (LangOpts.OpenMPIsTargetDevice || !LangOpts.OMPTargetTriples.empty()) && |
13881 | 20 | VDecl->isFileVarDecl()) |
13882 | 0 | DeclsToCheckForDeferredDiags.insert(VDecl); |
13883 | 20 | CheckCompleteVariableDeclaration(VDecl); |
13884 | 20 | } |
13885 | | |
13886 | | /// ActOnInitializerError - Given that there was an error parsing an |
13887 | | /// initializer for the given declaration, try to at least re-establish |
13888 | | /// invariants such as whether a variable's type is either dependent or |
13889 | | /// complete. |
13890 | 294 | void Sema::ActOnInitializerError(Decl *D) { |
13891 | | // Our main concern here is re-establishing invariants like "a |
13892 | | // variable's type is either dependent or complete". |
13893 | 294 | if (!D || D->isInvalidDecl()) return; |
13894 | | |
13895 | 32 | VarDecl *VD = dyn_cast<VarDecl>(D); |
13896 | 32 | if (!VD) return; |
13897 | | |
13898 | | // Bindings are not usable if we can't make sense of the initializer. |
13899 | 32 | if (auto *DD = dyn_cast<DecompositionDecl>(D)) |
13900 | 0 | for (auto *BD : DD->bindings()) |
13901 | 0 | BD->setInvalidDecl(); |
13902 | | |
13903 | | // Auto types are meaningless if we can't make sense of the initializer. |
13904 | 32 | if (VD->getType()->isUndeducedType()) { |
13905 | 0 | D->setInvalidDecl(); |
13906 | 0 | return; |
13907 | 0 | } |
13908 | | |
13909 | 32 | QualType Ty = VD->getType(); |
13910 | 32 | if (Ty->isDependentType()) return; |
13911 | | |
13912 | | // Require a complete type. |
13913 | 32 | if (RequireCompleteType(VD->getLocation(), |
13914 | 32 | Context.getBaseElementType(Ty), |
13915 | 32 | diag::err_typecheck_decl_incomplete_type)) { |
13916 | 0 | VD->setInvalidDecl(); |
13917 | 0 | return; |
13918 | 0 | } |
13919 | | |
13920 | | // Require a non-abstract type. |
13921 | 32 | if (RequireNonAbstractType(VD->getLocation(), Ty, |
13922 | 32 | diag::err_abstract_type_in_decl, |
13923 | 32 | AbstractVariableType)) { |
13924 | 0 | VD->setInvalidDecl(); |
13925 | 0 | return; |
13926 | 0 | } |
13927 | | |
13928 | | // Don't bother complaining about constructors or destructors, |
13929 | | // though. |
13930 | 32 | } |
13931 | | |
13932 | 4.70k | void Sema::ActOnUninitializedDecl(Decl *RealDecl) { |
13933 | | // If there is no declaration, there was an error parsing it. Just ignore it. |
13934 | 4.70k | if (!RealDecl) |
13935 | 0 | return; |
13936 | | |
13937 | 4.70k | if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) { |
13938 | 4.68k | QualType Type = Var->getType(); |
13939 | | |
13940 | | // C++1z [dcl.dcl]p1 grammar implies that an initializer is mandatory. |
13941 | 4.68k | if (isa<DecompositionDecl>(RealDecl)) { |
13942 | 0 | Diag(Var->getLocation(), diag::err_decomp_decl_requires_init) << Var; |
13943 | 0 | Var->setInvalidDecl(); |
13944 | 0 | return; |
13945 | 0 | } |
13946 | | |
13947 | 4.68k | if (Type->isUndeducedType() && |
13948 | 4.68k | DeduceVariableDeclarationType(Var, false, nullptr)) |
13949 | 0 | return; |
13950 | | |
13951 | | // C++11 [class.static.data]p3: A static data member can be declared with |
13952 | | // the constexpr specifier; if so, its declaration shall specify |
13953 | | // a brace-or-equal-initializer. |
13954 | | // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to |
13955 | | // the definition of a variable [...] or the declaration of a static data |
13956 | | // member. |
13957 | 4.68k | if (Var->isConstexpr() && !Var->isThisDeclarationADefinition() && |
13958 | 4.68k | !Var->isThisDeclarationADemotedDefinition()) { |
13959 | 0 | if (Var->isStaticDataMember()) { |
13960 | | // C++1z removes the relevant rule; the in-class declaration is always |
13961 | | // a definition there. |
13962 | 0 | if (!getLangOpts().CPlusPlus17 && |
13963 | 0 | !Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
13964 | 0 | Diag(Var->getLocation(), |
13965 | 0 | diag::err_constexpr_static_mem_var_requires_init) |
13966 | 0 | << Var; |
13967 | 0 | Var->setInvalidDecl(); |
13968 | 0 | return; |
13969 | 0 | } |
13970 | 0 | } else { |
13971 | 0 | Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl); |
13972 | 0 | Var->setInvalidDecl(); |
13973 | 0 | return; |
13974 | 0 | } |
13975 | 0 | } |
13976 | | |
13977 | | // OpenCL v1.1 s6.5.3: variables declared in the constant address space must |
13978 | | // be initialized. |
13979 | 4.68k | if (!Var->isInvalidDecl() && |
13980 | 4.68k | Var->getType().getAddressSpace() == LangAS::opencl_constant && |
13981 | 4.68k | Var->getStorageClass() != SC_Extern && !Var->getInit()) { |
13982 | 0 | bool HasConstExprDefaultConstructor = false; |
13983 | 0 | if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { |
13984 | 0 | for (auto *Ctor : RD->ctors()) { |
13985 | 0 | if (Ctor->isConstexpr() && Ctor->getNumParams() == 0 && |
13986 | 0 | Ctor->getMethodQualifiers().getAddressSpace() == |
13987 | 0 | LangAS::opencl_constant) { |
13988 | 0 | HasConstExprDefaultConstructor = true; |
13989 | 0 | } |
13990 | 0 | } |
13991 | 0 | } |
13992 | 0 | if (!HasConstExprDefaultConstructor) { |
13993 | 0 | Diag(Var->getLocation(), diag::err_opencl_constant_no_init); |
13994 | 0 | Var->setInvalidDecl(); |
13995 | 0 | return; |
13996 | 0 | } |
13997 | 0 | } |
13998 | | |
13999 | 4.68k | if (!Var->isInvalidDecl() && RealDecl->hasAttr<LoaderUninitializedAttr>()) { |
14000 | 0 | if (Var->getStorageClass() == SC_Extern) { |
14001 | 0 | Diag(Var->getLocation(), diag::err_loader_uninitialized_extern_decl) |
14002 | 0 | << Var; |
14003 | 0 | Var->setInvalidDecl(); |
14004 | 0 | return; |
14005 | 0 | } |
14006 | 0 | if (RequireCompleteType(Var->getLocation(), Var->getType(), |
14007 | 0 | diag::err_typecheck_decl_incomplete_type)) { |
14008 | 0 | Var->setInvalidDecl(); |
14009 | 0 | return; |
14010 | 0 | } |
14011 | 0 | if (CXXRecordDecl *RD = Var->getType()->getAsCXXRecordDecl()) { |
14012 | 0 | if (!RD->hasTrivialDefaultConstructor()) { |
14013 | 0 | Diag(Var->getLocation(), diag::err_loader_uninitialized_trivial_ctor); |
14014 | 0 | Var->setInvalidDecl(); |
14015 | 0 | return; |
14016 | 0 | } |
14017 | 0 | } |
14018 | | // The declaration is unitialized, no need for further checks. |
14019 | 0 | return; |
14020 | 0 | } |
14021 | | |
14022 | 4.68k | VarDecl::DefinitionKind DefKind = Var->isThisDeclarationADefinition(); |
14023 | 4.68k | if (!Var->isInvalidDecl() && DefKind != VarDecl::DeclarationOnly && |
14024 | 4.68k | Var->getType().hasNonTrivialToPrimitiveDefaultInitializeCUnion()) |
14025 | 0 | checkNonTrivialCUnion(Var->getType(), Var->getLocation(), |
14026 | 0 | NTCUC_DefaultInitializedObject, NTCUK_Init); |
14027 | | |
14028 | | |
14029 | 4.68k | switch (DefKind) { |
14030 | 2.27k | case VarDecl::Definition: |
14031 | 2.27k | if (!Var->isStaticDataMember() || !Var->getAnyInitializer()) |
14032 | 2.27k | break; |
14033 | | |
14034 | | // We have an out-of-line definition of a static data member |
14035 | | // that has an in-class initializer, so we type-check this like |
14036 | | // a declaration. |
14037 | | // |
14038 | 2.27k | [[fallthrough]]; |
14039 | | |
14040 | 0 | case VarDecl::DeclarationOnly: |
14041 | | // It's only a declaration. |
14042 | | |
14043 | | // Block scope. C99 6.7p7: If an identifier for an object is |
14044 | | // declared with no linkage (C99 6.2.2p6), the type for the |
14045 | | // object shall be complete. |
14046 | 0 | if (!Type->isDependentType() && Var->isLocalVarDecl() && |
14047 | 0 | !Var->hasLinkage() && !Var->isInvalidDecl() && |
14048 | 0 | RequireCompleteType(Var->getLocation(), Type, |
14049 | 0 | diag::err_typecheck_decl_incomplete_type)) |
14050 | 0 | Var->setInvalidDecl(); |
14051 | | |
14052 | | // Make sure that the type is not abstract. |
14053 | 0 | if (!Type->isDependentType() && !Var->isInvalidDecl() && |
14054 | 0 | RequireNonAbstractType(Var->getLocation(), Type, |
14055 | 0 | diag::err_abstract_type_in_decl, |
14056 | 0 | AbstractVariableType)) |
14057 | 0 | Var->setInvalidDecl(); |
14058 | 0 | if (!Type->isDependentType() && !Var->isInvalidDecl() && |
14059 | 0 | Var->getStorageClass() == SC_PrivateExtern) { |
14060 | 0 | Diag(Var->getLocation(), diag::warn_private_extern); |
14061 | 0 | Diag(Var->getLocation(), diag::note_private_extern); |
14062 | 0 | } |
14063 | |
|
14064 | 0 | if (Context.getTargetInfo().allowDebugInfoForExternalRef() && |
14065 | 0 | !Var->isInvalidDecl()) |
14066 | 0 | ExternalDeclarations.push_back(Var); |
14067 | |
|
14068 | 0 | return; |
14069 | | |
14070 | 2.41k | case VarDecl::TentativeDefinition: |
14071 | | // File scope. C99 6.9.2p2: A declaration of an identifier for an |
14072 | | // object that has file scope without an initializer, and without a |
14073 | | // storage-class specifier or with the storage-class specifier "static", |
14074 | | // constitutes a tentative definition. Note: A tentative definition with |
14075 | | // external linkage is valid (C99 6.2.2p5). |
14076 | 2.41k | if (!Var->isInvalidDecl()) { |
14077 | 416 | if (const IncompleteArrayType *ArrayT |
14078 | 416 | = Context.getAsIncompleteArrayType(Type)) { |
14079 | 0 | if (RequireCompleteSizedType( |
14080 | 0 | Var->getLocation(), ArrayT->getElementType(), |
14081 | 0 | diag::err_array_incomplete_or_sizeless_type)) |
14082 | 0 | Var->setInvalidDecl(); |
14083 | 416 | } else if (Var->getStorageClass() == SC_Static) { |
14084 | | // C99 6.9.2p3: If the declaration of an identifier for an object is |
14085 | | // a tentative definition and has internal linkage (C99 6.2.2p3), the |
14086 | | // declared type shall not be an incomplete type. |
14087 | | // NOTE: code such as the following |
14088 | | // static struct s; |
14089 | | // struct s { int a; }; |
14090 | | // is accepted by gcc. Hence here we issue a warning instead of |
14091 | | // an error and we do not invalidate the static declaration. |
14092 | | // NOTE: to avoid multiple warnings, only check the first declaration. |
14093 | 0 | if (Var->isFirstDecl()) |
14094 | 0 | RequireCompleteType(Var->getLocation(), Type, |
14095 | 0 | diag::ext_typecheck_decl_incomplete_type); |
14096 | 0 | } |
14097 | 416 | } |
14098 | | |
14099 | | // Record the tentative definition; we're done. |
14100 | 2.41k | if (!Var->isInvalidDecl()) |
14101 | 416 | TentativeDefinitions.push_back(Var); |
14102 | 2.41k | return; |
14103 | 4.68k | } |
14104 | | |
14105 | | // Provide a specific diagnostic for uninitialized variable |
14106 | | // definitions with incomplete array type. |
14107 | 2.27k | if (Type->isIncompleteArrayType()) { |
14108 | 0 | if (Var->isConstexpr()) |
14109 | 0 | Diag(Var->getLocation(), diag::err_constexpr_var_requires_const_init) |
14110 | 0 | << Var; |
14111 | 0 | else |
14112 | 0 | Diag(Var->getLocation(), |
14113 | 0 | diag::err_typecheck_incomplete_array_needs_initializer); |
14114 | 0 | Var->setInvalidDecl(); |
14115 | 0 | return; |
14116 | 0 | } |
14117 | | |
14118 | | // Provide a specific diagnostic for uninitialized variable |
14119 | | // definitions with reference type. |
14120 | 2.27k | if (Type->isReferenceType()) { |
14121 | 53 | Diag(Var->getLocation(), diag::err_reference_var_requires_init) |
14122 | 53 | << Var << SourceRange(Var->getLocation(), Var->getLocation()); |
14123 | 53 | return; |
14124 | 53 | } |
14125 | | |
14126 | | // Do not attempt to type-check the default initializer for a |
14127 | | // variable with dependent type. |
14128 | 2.22k | if (Type->isDependentType()) |
14129 | 17 | return; |
14130 | | |
14131 | 2.20k | if (Var->isInvalidDecl()) |
14132 | 2.20k | return; |
14133 | | |
14134 | 0 | if (!Var->hasAttr<AliasAttr>()) { |
14135 | 0 | if (RequireCompleteType(Var->getLocation(), |
14136 | 0 | Context.getBaseElementType(Type), |
14137 | 0 | diag::err_typecheck_decl_incomplete_type)) { |
14138 | 0 | Var->setInvalidDecl(); |
14139 | 0 | return; |
14140 | 0 | } |
14141 | 0 | } else { |
14142 | 0 | return; |
14143 | 0 | } |
14144 | | |
14145 | | // The variable can not have an abstract class type. |
14146 | 0 | if (RequireNonAbstractType(Var->getLocation(), Type, |
14147 | 0 | diag::err_abstract_type_in_decl, |
14148 | 0 | AbstractVariableType)) { |
14149 | 0 | Var->setInvalidDecl(); |
14150 | 0 | return; |
14151 | 0 | } |
14152 | | |
14153 | | // Check for jumps past the implicit initializer. C++0x |
14154 | | // clarifies that this applies to a "variable with automatic |
14155 | | // storage duration", not a "local variable". |
14156 | | // C++11 [stmt.dcl]p3 |
14157 | | // A program that jumps from a point where a variable with automatic |
14158 | | // storage duration is not in scope to a point where it is in scope is |
14159 | | // ill-formed unless the variable has scalar type, class type with a |
14160 | | // trivial default constructor and a trivial destructor, a cv-qualified |
14161 | | // version of one of these types, or an array of one of the preceding |
14162 | | // types and is declared without an initializer. |
14163 | 0 | if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) { |
14164 | 0 | if (const RecordType *Record |
14165 | 0 | = Context.getBaseElementType(Type)->getAs<RecordType>()) { |
14166 | 0 | CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl()); |
14167 | | // Mark the function (if we're in one) for further checking even if the |
14168 | | // looser rules of C++11 do not require such checks, so that we can |
14169 | | // diagnose incompatibilities with C++98. |
14170 | 0 | if (!CXXRecord->isPOD()) |
14171 | 0 | setFunctionHasBranchProtectedScope(); |
14172 | 0 | } |
14173 | 0 | } |
14174 | | // In OpenCL, we can't initialize objects in the __local address space, |
14175 | | // even implicitly, so don't synthesize an implicit initializer. |
14176 | 0 | if (getLangOpts().OpenCL && |
14177 | 0 | Var->getType().getAddressSpace() == LangAS::opencl_local) |
14178 | 0 | return; |
14179 | | // C++03 [dcl.init]p9: |
14180 | | // If no initializer is specified for an object, and the |
14181 | | // object is of (possibly cv-qualified) non-POD class type (or |
14182 | | // array thereof), the object shall be default-initialized; if |
14183 | | // the object is of const-qualified type, the underlying class |
14184 | | // type shall have a user-declared default |
14185 | | // constructor. Otherwise, if no initializer is specified for |
14186 | | // a non- static object, the object and its subobjects, if |
14187 | | // any, have an indeterminate initial value); if the object |
14188 | | // or any of its subobjects are of const-qualified type, the |
14189 | | // program is ill-formed. |
14190 | | // C++0x [dcl.init]p11: |
14191 | | // If no initializer is specified for an object, the object is |
14192 | | // default-initialized; [...]. |
14193 | 0 | InitializedEntity Entity = InitializedEntity::InitializeVariable(Var); |
14194 | 0 | InitializationKind Kind |
14195 | 0 | = InitializationKind::CreateDefault(Var->getLocation()); |
14196 | |
|
14197 | 0 | InitializationSequence InitSeq(*this, Entity, Kind, std::nullopt); |
14198 | 0 | ExprResult Init = InitSeq.Perform(*this, Entity, Kind, std::nullopt); |
14199 | |
|
14200 | 0 | if (Init.get()) { |
14201 | 0 | Var->setInit(MaybeCreateExprWithCleanups(Init.get())); |
14202 | | // This is important for template substitution. |
14203 | 0 | Var->setInitStyle(VarDecl::CallInit); |
14204 | 0 | } else if (Init.isInvalid()) { |
14205 | | // If default-init fails, attach a recovery-expr initializer to track |
14206 | | // that initialization was attempted and failed. |
14207 | 0 | auto RecoveryExpr = |
14208 | 0 | CreateRecoveryExpr(Var->getLocation(), Var->getLocation(), {}); |
14209 | 0 | if (RecoveryExpr.get()) |
14210 | 0 | Var->setInit(RecoveryExpr.get()); |
14211 | 0 | } |
14212 | |
|
14213 | 0 | CheckCompleteVariableDeclaration(Var); |
14214 | 0 | } |
14215 | 4.70k | } |
14216 | | |
14217 | 0 | void Sema::ActOnCXXForRangeDecl(Decl *D) { |
14218 | | // If there is no declaration, there was an error parsing it. Ignore it. |
14219 | 0 | if (!D) |
14220 | 0 | return; |
14221 | | |
14222 | 0 | VarDecl *VD = dyn_cast<VarDecl>(D); |
14223 | 0 | if (!VD) { |
14224 | 0 | Diag(D->getLocation(), diag::err_for_range_decl_must_be_var); |
14225 | 0 | D->setInvalidDecl(); |
14226 | 0 | return; |
14227 | 0 | } |
14228 | | |
14229 | 0 | VD->setCXXForRangeDecl(true); |
14230 | | |
14231 | | // for-range-declaration cannot be given a storage class specifier. |
14232 | 0 | int Error = -1; |
14233 | 0 | switch (VD->getStorageClass()) { |
14234 | 0 | case SC_None: |
14235 | 0 | break; |
14236 | 0 | case SC_Extern: |
14237 | 0 | Error = 0; |
14238 | 0 | break; |
14239 | 0 | case SC_Static: |
14240 | 0 | Error = 1; |
14241 | 0 | break; |
14242 | 0 | case SC_PrivateExtern: |
14243 | 0 | Error = 2; |
14244 | 0 | break; |
14245 | 0 | case SC_Auto: |
14246 | 0 | Error = 3; |
14247 | 0 | break; |
14248 | 0 | case SC_Register: |
14249 | 0 | Error = 4; |
14250 | 0 | break; |
14251 | 0 | } |
14252 | | |
14253 | | // for-range-declaration cannot be given a storage class specifier con't. |
14254 | 0 | switch (VD->getTSCSpec()) { |
14255 | 0 | case TSCS_thread_local: |
14256 | 0 | Error = 6; |
14257 | 0 | break; |
14258 | 0 | case TSCS___thread: |
14259 | 0 | case TSCS__Thread_local: |
14260 | 0 | case TSCS_unspecified: |
14261 | 0 | break; |
14262 | 0 | } |
14263 | | |
14264 | 0 | if (Error != -1) { |
14265 | 0 | Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class) |
14266 | 0 | << VD << Error; |
14267 | 0 | D->setInvalidDecl(); |
14268 | 0 | } |
14269 | 0 | } |
14270 | | |
14271 | | StmtResult Sema::ActOnCXXForRangeIdentifier(Scope *S, SourceLocation IdentLoc, |
14272 | | IdentifierInfo *Ident, |
14273 | 0 | ParsedAttributes &Attrs) { |
14274 | | // C++1y [stmt.iter]p1: |
14275 | | // A range-based for statement of the form |
14276 | | // for ( for-range-identifier : for-range-initializer ) statement |
14277 | | // is equivalent to |
14278 | | // for ( auto&& for-range-identifier : for-range-initializer ) statement |
14279 | 0 | DeclSpec DS(Attrs.getPool().getFactory()); |
14280 | |
|
14281 | 0 | const char *PrevSpec; |
14282 | 0 | unsigned DiagID; |
14283 | 0 | DS.SetTypeSpecType(DeclSpec::TST_auto, IdentLoc, PrevSpec, DiagID, |
14284 | 0 | getPrintingPolicy()); |
14285 | |
|
14286 | 0 | Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::ForInit); |
14287 | 0 | D.SetIdentifier(Ident, IdentLoc); |
14288 | 0 | D.takeAttributes(Attrs); |
14289 | |
|
14290 | 0 | D.AddTypeInfo(DeclaratorChunk::getReference(0, IdentLoc, /*lvalue*/ false), |
14291 | 0 | IdentLoc); |
14292 | 0 | Decl *Var = ActOnDeclarator(S, D); |
14293 | 0 | cast<VarDecl>(Var)->setCXXForRangeDecl(true); |
14294 | 0 | FinalizeDeclaration(Var); |
14295 | 0 | return ActOnDeclStmt(FinalizeDeclaratorGroup(S, DS, Var), IdentLoc, |
14296 | 0 | Attrs.Range.getEnd().isValid() ? Attrs.Range.getEnd() |
14297 | 0 | : IdentLoc); |
14298 | 0 | } |
14299 | | |
14300 | 387 | void Sema::CheckCompleteVariableDeclaration(VarDecl *var) { |
14301 | 387 | if (var->isInvalidDecl()) return; |
14302 | | |
14303 | 387 | MaybeAddCUDAConstantAttr(var); |
14304 | | |
14305 | 387 | if (getLangOpts().OpenCL) { |
14306 | | // OpenCL v2.0 s6.12.5 - Every block variable declaration must have an |
14307 | | // initialiser |
14308 | 0 | if (var->getTypeSourceInfo()->getType()->isBlockPointerType() && |
14309 | 0 | !var->hasInit()) { |
14310 | 0 | Diag(var->getLocation(), diag::err_opencl_invalid_block_declaration) |
14311 | 0 | << 1 /*Init*/; |
14312 | 0 | var->setInvalidDecl(); |
14313 | 0 | return; |
14314 | 0 | } |
14315 | 0 | } |
14316 | | |
14317 | | // In Objective-C, don't allow jumps past the implicit initialization of a |
14318 | | // local retaining variable. |
14319 | 387 | if (getLangOpts().ObjC && |
14320 | 387 | var->hasLocalStorage()) { |
14321 | 0 | switch (var->getType().getObjCLifetime()) { |
14322 | 0 | case Qualifiers::OCL_None: |
14323 | 0 | case Qualifiers::OCL_ExplicitNone: |
14324 | 0 | case Qualifiers::OCL_Autoreleasing: |
14325 | 0 | break; |
14326 | | |
14327 | 0 | case Qualifiers::OCL_Weak: |
14328 | 0 | case Qualifiers::OCL_Strong: |
14329 | 0 | setFunctionHasBranchProtectedScope(); |
14330 | 0 | break; |
14331 | 0 | } |
14332 | 0 | } |
14333 | | |
14334 | 387 | if (var->hasLocalStorage() && |
14335 | 387 | var->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) |
14336 | 0 | setFunctionHasBranchProtectedScope(); |
14337 | | |
14338 | | // Warn about externally-visible variables being defined without a |
14339 | | // prior declaration. We only want to do this for global |
14340 | | // declarations, but we also specifically need to avoid doing it for |
14341 | | // class members because the linkage of an anonymous class can |
14342 | | // change if it's later given a typedef name. |
14343 | 387 | if (var->isThisDeclarationADefinition() && |
14344 | 387 | var->getDeclContext()->getRedeclContext()->isFileContext() && |
14345 | 387 | var->isExternallyVisible() && var->hasLinkage() && |
14346 | 387 | !var->isInline() && !var->getDescribedVarTemplate() && |
14347 | 387 | var->getStorageClass() != SC_Register && |
14348 | 387 | !isa<VarTemplatePartialSpecializationDecl>(var) && |
14349 | 387 | !isTemplateInstantiation(var->getTemplateSpecializationKind()) && |
14350 | 387 | !getDiagnostics().isIgnored(diag::warn_missing_variable_declarations, |
14351 | 387 | var->getLocation())) { |
14352 | | // Find a previous declaration that's not a definition. |
14353 | 0 | VarDecl *prev = var->getPreviousDecl(); |
14354 | 0 | while (prev && prev->isThisDeclarationADefinition()) |
14355 | 0 | prev = prev->getPreviousDecl(); |
14356 | |
|
14357 | 0 | if (!prev) { |
14358 | 0 | Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var; |
14359 | 0 | Diag(var->getTypeSpecStartLoc(), diag::note_static_for_internal_linkage) |
14360 | 0 | << /* variable */ 0; |
14361 | 0 | } |
14362 | 0 | } |
14363 | | |
14364 | | // Cache the result of checking for constant initialization. |
14365 | 387 | std::optional<bool> CacheHasConstInit; |
14366 | 387 | const Expr *CacheCulprit = nullptr; |
14367 | 387 | auto checkConstInit = [&]() mutable { |
14368 | 0 | if (!CacheHasConstInit) |
14369 | 0 | CacheHasConstInit = var->getInit()->isConstantInitializer( |
14370 | 0 | Context, var->getType()->isReferenceType(), &CacheCulprit); |
14371 | 0 | return *CacheHasConstInit; |
14372 | 0 | }; |
14373 | | |
14374 | 387 | if (var->getTLSKind() == VarDecl::TLS_Static) { |
14375 | 0 | if (var->getType().isDestructedType()) { |
14376 | | // GNU C++98 edits for __thread, [basic.start.term]p3: |
14377 | | // The type of an object with thread storage duration shall not |
14378 | | // have a non-trivial destructor. |
14379 | 0 | Diag(var->getLocation(), diag::err_thread_nontrivial_dtor); |
14380 | 0 | if (getLangOpts().CPlusPlus11) |
14381 | 0 | Diag(var->getLocation(), diag::note_use_thread_local); |
14382 | 0 | } else if (getLangOpts().CPlusPlus && var->hasInit()) { |
14383 | 0 | if (!checkConstInit()) { |
14384 | | // GNU C++98 edits for __thread, [basic.start.init]p4: |
14385 | | // An object of thread storage duration shall not require dynamic |
14386 | | // initialization. |
14387 | | // FIXME: Need strict checking here. |
14388 | 0 | Diag(CacheCulprit->getExprLoc(), diag::err_thread_dynamic_init) |
14389 | 0 | << CacheCulprit->getSourceRange(); |
14390 | 0 | if (getLangOpts().CPlusPlus11) |
14391 | 0 | Diag(var->getLocation(), diag::note_use_thread_local); |
14392 | 0 | } |
14393 | 0 | } |
14394 | 0 | } |
14395 | | |
14396 | | |
14397 | 387 | if (!var->getType()->isStructureType() && var->hasInit() && |
14398 | 387 | isa<InitListExpr>(var->getInit())) { |
14399 | 0 | const auto *ILE = cast<InitListExpr>(var->getInit()); |
14400 | 0 | unsigned NumInits = ILE->getNumInits(); |
14401 | 0 | if (NumInits > 2) |
14402 | 0 | for (unsigned I = 0; I < NumInits; ++I) { |
14403 | 0 | const auto *Init = ILE->getInit(I); |
14404 | 0 | if (!Init) |
14405 | 0 | break; |
14406 | 0 | const auto *SL = dyn_cast<StringLiteral>(Init->IgnoreImpCasts()); |
14407 | 0 | if (!SL) |
14408 | 0 | break; |
14409 | | |
14410 | 0 | unsigned NumConcat = SL->getNumConcatenated(); |
14411 | | // Diagnose missing comma in string array initialization. |
14412 | | // Do not warn when all the elements in the initializer are concatenated |
14413 | | // together. Do not warn for macros too. |
14414 | 0 | if (NumConcat == 2 && !SL->getBeginLoc().isMacroID()) { |
14415 | 0 | bool OnlyOneMissingComma = true; |
14416 | 0 | for (unsigned J = I + 1; J < NumInits; ++J) { |
14417 | 0 | const auto *Init = ILE->getInit(J); |
14418 | 0 | if (!Init) |
14419 | 0 | break; |
14420 | 0 | const auto *SLJ = dyn_cast<StringLiteral>(Init->IgnoreImpCasts()); |
14421 | 0 | if (!SLJ || SLJ->getNumConcatenated() > 1) { |
14422 | 0 | OnlyOneMissingComma = false; |
14423 | 0 | break; |
14424 | 0 | } |
14425 | 0 | } |
14426 | |
|
14427 | 0 | if (OnlyOneMissingComma) { |
14428 | 0 | SmallVector<FixItHint, 1> Hints; |
14429 | 0 | for (unsigned i = 0; i < NumConcat - 1; ++i) |
14430 | 0 | Hints.push_back(FixItHint::CreateInsertion( |
14431 | 0 | PP.getLocForEndOfToken(SL->getStrTokenLoc(i)), ",")); |
14432 | |
|
14433 | 0 | Diag(SL->getStrTokenLoc(1), |
14434 | 0 | diag::warn_concatenated_literal_array_init) |
14435 | 0 | << Hints; |
14436 | 0 | Diag(SL->getBeginLoc(), |
14437 | 0 | diag::note_concatenated_string_literal_silence); |
14438 | 0 | } |
14439 | | // In any case, stop now. |
14440 | 0 | break; |
14441 | 0 | } |
14442 | 0 | } |
14443 | 0 | } |
14444 | | |
14445 | | |
14446 | 387 | QualType type = var->getType(); |
14447 | | |
14448 | 387 | if (var->hasAttr<BlocksAttr>()) |
14449 | 0 | getCurFunction()->addByrefBlockVar(var); |
14450 | | |
14451 | 387 | Expr *Init = var->getInit(); |
14452 | 387 | bool GlobalStorage = var->hasGlobalStorage(); |
14453 | 387 | bool IsGlobal = GlobalStorage && !var->isStaticLocal(); |
14454 | 387 | QualType baseType = Context.getBaseElementType(type); |
14455 | 387 | bool HasConstInit = true; |
14456 | | |
14457 | | // Check whether the initializer is sufficiently constant. |
14458 | 387 | if (getLangOpts().CPlusPlus && !type->isDependentType() && Init && |
14459 | 387 | !Init->isValueDependent() && |
14460 | 387 | (GlobalStorage || var->isConstexpr() || |
14461 | 0 | var->mightBeUsableInConstantExpressions(Context))) { |
14462 | | // If this variable might have a constant initializer or might be usable in |
14463 | | // constant expressions, check whether or not it actually is now. We can't |
14464 | | // do this lazily, because the result might depend on things that change |
14465 | | // later, such as which constexpr functions happen to be defined. |
14466 | 0 | SmallVector<PartialDiagnosticAt, 8> Notes; |
14467 | 0 | if (!getLangOpts().CPlusPlus11) { |
14468 | | // Prior to C++11, in contexts where a constant initializer is required, |
14469 | | // the set of valid constant initializers is described by syntactic rules |
14470 | | // in [expr.const]p2-6. |
14471 | | // FIXME: Stricter checking for these rules would be useful for constinit / |
14472 | | // -Wglobal-constructors. |
14473 | 0 | HasConstInit = checkConstInit(); |
14474 | | |
14475 | | // Compute and cache the constant value, and remember that we have a |
14476 | | // constant initializer. |
14477 | 0 | if (HasConstInit) { |
14478 | 0 | (void)var->checkForConstantInitialization(Notes); |
14479 | 0 | Notes.clear(); |
14480 | 0 | } else if (CacheCulprit) { |
14481 | 0 | Notes.emplace_back(CacheCulprit->getExprLoc(), |
14482 | 0 | PDiag(diag::note_invalid_subexpr_in_const_expr)); |
14483 | 0 | Notes.back().second << CacheCulprit->getSourceRange(); |
14484 | 0 | } |
14485 | 0 | } else { |
14486 | | // Evaluate the initializer to see if it's a constant initializer. |
14487 | 0 | HasConstInit = var->checkForConstantInitialization(Notes); |
14488 | 0 | } |
14489 | |
|
14490 | 0 | if (HasConstInit) { |
14491 | | // FIXME: Consider replacing the initializer with a ConstantExpr. |
14492 | 0 | } else if (var->isConstexpr()) { |
14493 | 0 | SourceLocation DiagLoc = var->getLocation(); |
14494 | | // If the note doesn't add any useful information other than a source |
14495 | | // location, fold it into the primary diagnostic. |
14496 | 0 | if (Notes.size() == 1 && Notes[0].second.getDiagID() == |
14497 | 0 | diag::note_invalid_subexpr_in_const_expr) { |
14498 | 0 | DiagLoc = Notes[0].first; |
14499 | 0 | Notes.clear(); |
14500 | 0 | } |
14501 | 0 | Diag(DiagLoc, diag::err_constexpr_var_requires_const_init) |
14502 | 0 | << var << Init->getSourceRange(); |
14503 | 0 | for (unsigned I = 0, N = Notes.size(); I != N; ++I) |
14504 | 0 | Diag(Notes[I].first, Notes[I].second); |
14505 | 0 | } else if (GlobalStorage && var->hasAttr<ConstInitAttr>()) { |
14506 | 0 | auto *Attr = var->getAttr<ConstInitAttr>(); |
14507 | 0 | Diag(var->getLocation(), diag::err_require_constant_init_failed) |
14508 | 0 | << Init->getSourceRange(); |
14509 | 0 | Diag(Attr->getLocation(), diag::note_declared_required_constant_init_here) |
14510 | 0 | << Attr->getRange() << Attr->isConstinit(); |
14511 | 0 | for (auto &it : Notes) |
14512 | 0 | Diag(it.first, it.second); |
14513 | 0 | } else if (IsGlobal && |
14514 | 0 | !getDiagnostics().isIgnored(diag::warn_global_constructor, |
14515 | 0 | var->getLocation())) { |
14516 | | // Warn about globals which don't have a constant initializer. Don't |
14517 | | // warn about globals with a non-trivial destructor because we already |
14518 | | // warned about them. |
14519 | 0 | CXXRecordDecl *RD = baseType->getAsCXXRecordDecl(); |
14520 | 0 | if (!(RD && !RD->hasTrivialDestructor())) { |
14521 | | // checkConstInit() here permits trivial default initialization even in |
14522 | | // C++11 onwards, where such an initializer is not a constant initializer |
14523 | | // but nonetheless doesn't require a global constructor. |
14524 | 0 | if (!checkConstInit()) |
14525 | 0 | Diag(var->getLocation(), diag::warn_global_constructor) |
14526 | 0 | << Init->getSourceRange(); |
14527 | 0 | } |
14528 | 0 | } |
14529 | 0 | } |
14530 | | |
14531 | | // Apply section attributes and pragmas to global variables. |
14532 | 387 | if (GlobalStorage && var->isThisDeclarationADefinition() && |
14533 | 387 | !inTemplateInstantiation()) { |
14534 | 387 | PragmaStack<StringLiteral *> *Stack = nullptr; |
14535 | 387 | int SectionFlags = ASTContext::PSF_Read; |
14536 | 387 | bool MSVCEnv = |
14537 | 387 | Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment(); |
14538 | 387 | std::optional<QualType::NonConstantStorageReason> Reason; |
14539 | 387 | if (HasConstInit && |
14540 | 387 | !(Reason = var->getType().isNonConstantStorage(Context, true, false))) { |
14541 | 0 | Stack = &ConstSegStack; |
14542 | 387 | } else { |
14543 | 387 | SectionFlags |= ASTContext::PSF_Write; |
14544 | 387 | Stack = var->hasInit() && HasConstInit ? &DataSegStack : &BSSSegStack; |
14545 | 387 | } |
14546 | 387 | if (const SectionAttr *SA = var->getAttr<SectionAttr>()) { |
14547 | 0 | if (SA->getSyntax() == AttributeCommonInfo::AS_Declspec) |
14548 | 0 | SectionFlags |= ASTContext::PSF_Implicit; |
14549 | 0 | UnifySection(SA->getName(), SectionFlags, var); |
14550 | 387 | } else if (Stack->CurrentValue) { |
14551 | 0 | if (Stack != &ConstSegStack && MSVCEnv && |
14552 | 0 | ConstSegStack.CurrentValue != ConstSegStack.DefaultValue && |
14553 | 0 | var->getType().isConstQualified()) { |
14554 | 0 | assert((!Reason || Reason != QualType::NonConstantStorageReason:: |
14555 | 0 | NonConstNonReferenceType) && |
14556 | 0 | "This case should've already been handled elsewhere"); |
14557 | 0 | Diag(var->getLocation(), diag::warn_section_msvc_compat) |
14558 | 0 | << var << ConstSegStack.CurrentValue << (int)(!HasConstInit |
14559 | 0 | ? QualType::NonConstantStorageReason::NonTrivialCtor |
14560 | 0 | : *Reason); |
14561 | 0 | } |
14562 | 0 | SectionFlags |= ASTContext::PSF_Implicit; |
14563 | 0 | auto SectionName = Stack->CurrentValue->getString(); |
14564 | 0 | var->addAttr(SectionAttr::CreateImplicit(Context, SectionName, |
14565 | 0 | Stack->CurrentPragmaLocation, |
14566 | 0 | SectionAttr::Declspec_allocate)); |
14567 | 0 | if (UnifySection(SectionName, SectionFlags, var)) |
14568 | 0 | var->dropAttr<SectionAttr>(); |
14569 | 0 | } |
14570 | | |
14571 | | // Apply the init_seg attribute if this has an initializer. If the |
14572 | | // initializer turns out to not be dynamic, we'll end up ignoring this |
14573 | | // attribute. |
14574 | 387 | if (CurInitSeg && var->getInit()) |
14575 | 0 | var->addAttr(InitSegAttr::CreateImplicit(Context, CurInitSeg->getString(), |
14576 | 0 | CurInitSegLoc)); |
14577 | 387 | } |
14578 | | |
14579 | | // All the following checks are C++ only. |
14580 | 387 | if (!getLangOpts().CPlusPlus) { |
14581 | | // If this variable must be emitted, add it as an initializer for the |
14582 | | // current module. |
14583 | 387 | if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) |
14584 | 0 | Context.addModuleInitializer(ModuleScopes.back().Module, var); |
14585 | 387 | return; |
14586 | 387 | } |
14587 | | |
14588 | | // Require the destructor. |
14589 | 0 | if (!type->isDependentType()) |
14590 | 0 | if (const RecordType *recordType = baseType->getAs<RecordType>()) |
14591 | 0 | FinalizeVarWithDestructor(var, recordType); |
14592 | | |
14593 | | // If this variable must be emitted, add it as an initializer for the current |
14594 | | // module. |
14595 | 0 | if (Context.DeclMustBeEmitted(var) && !ModuleScopes.empty()) |
14596 | 0 | Context.addModuleInitializer(ModuleScopes.back().Module, var); |
14597 | | |
14598 | | // Build the bindings if this is a structured binding declaration. |
14599 | 0 | if (auto *DD = dyn_cast<DecompositionDecl>(var)) |
14600 | 0 | CheckCompleteDecompositionDeclaration(DD); |
14601 | 0 | } |
14602 | | |
14603 | | /// Check if VD needs to be dllexport/dllimport due to being in a |
14604 | | /// dllexport/import function. |
14605 | 0 | void Sema::CheckStaticLocalForDllExport(VarDecl *VD) { |
14606 | 0 | assert(VD->isStaticLocal()); |
14607 | | |
14608 | 0 | auto *FD = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); |
14609 | | |
14610 | | // Find outermost function when VD is in lambda function. |
14611 | 0 | while (FD && !getDLLAttr(FD) && |
14612 | 0 | !FD->hasAttr<DLLExportStaticLocalAttr>() && |
14613 | 0 | !FD->hasAttr<DLLImportStaticLocalAttr>()) { |
14614 | 0 | FD = dyn_cast_or_null<FunctionDecl>(FD->getParentFunctionOrMethod()); |
14615 | 0 | } |
14616 | |
|
14617 | 0 | if (!FD) |
14618 | 0 | return; |
14619 | | |
14620 | | // Static locals inherit dll attributes from their function. |
14621 | 0 | if (Attr *A = getDLLAttr(FD)) { |
14622 | 0 | auto *NewAttr = cast<InheritableAttr>(A->clone(getASTContext())); |
14623 | 0 | NewAttr->setInherited(true); |
14624 | 0 | VD->addAttr(NewAttr); |
14625 | 0 | } else if (Attr *A = FD->getAttr<DLLExportStaticLocalAttr>()) { |
14626 | 0 | auto *NewAttr = DLLExportAttr::CreateImplicit(getASTContext(), *A); |
14627 | 0 | NewAttr->setInherited(true); |
14628 | 0 | VD->addAttr(NewAttr); |
14629 | | |
14630 | | // Export this function to enforce exporting this static variable even |
14631 | | // if it is not used in this compilation unit. |
14632 | 0 | if (!FD->hasAttr<DLLExportAttr>()) |
14633 | 0 | FD->addAttr(NewAttr); |
14634 | |
|
14635 | 0 | } else if (Attr *A = FD->getAttr<DLLImportStaticLocalAttr>()) { |
14636 | 0 | auto *NewAttr = DLLImportAttr::CreateImplicit(getASTContext(), *A); |
14637 | 0 | NewAttr->setInherited(true); |
14638 | 0 | VD->addAttr(NewAttr); |
14639 | 0 | } |
14640 | 0 | } |
14641 | | |
14642 | 0 | void Sema::CheckThreadLocalForLargeAlignment(VarDecl *VD) { |
14643 | 0 | assert(VD->getTLSKind()); |
14644 | | |
14645 | | // Perform TLS alignment check here after attributes attached to the variable |
14646 | | // which may affect the alignment have been processed. Only perform the check |
14647 | | // if the target has a maximum TLS alignment (zero means no constraints). |
14648 | 0 | if (unsigned MaxAlign = Context.getTargetInfo().getMaxTLSAlign()) { |
14649 | | // Protect the check so that it's not performed on dependent types and |
14650 | | // dependent alignments (we can't determine the alignment in that case). |
14651 | 0 | if (!VD->hasDependentAlignment()) { |
14652 | 0 | CharUnits MaxAlignChars = Context.toCharUnitsFromBits(MaxAlign); |
14653 | 0 | if (Context.getDeclAlign(VD) > MaxAlignChars) { |
14654 | 0 | Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum) |
14655 | 0 | << (unsigned)Context.getDeclAlign(VD).getQuantity() << VD |
14656 | 0 | << (unsigned)MaxAlignChars.getQuantity(); |
14657 | 0 | } |
14658 | 0 | } |
14659 | 0 | } |
14660 | 0 | } |
14661 | | |
14662 | | /// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform |
14663 | | /// any semantic actions necessary after any initializer has been attached. |
14664 | 5.08k | void Sema::FinalizeDeclaration(Decl *ThisDecl) { |
14665 | | // Note that we are no longer parsing the initializer for this declaration. |
14666 | 5.08k | ParsingInitForAutoVars.erase(ThisDecl); |
14667 | | |
14668 | 5.08k | VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl); |
14669 | 5.08k | if (!VD) |
14670 | 19 | return; |
14671 | | |
14672 | | // Apply an implicit SectionAttr if '#pragma clang section bss|data|rodata' is active |
14673 | 5.07k | if (VD->hasGlobalStorage() && VD->isThisDeclarationADefinition() && |
14674 | 5.07k | !inTemplateInstantiation() && !VD->hasAttr<SectionAttr>()) { |
14675 | 5.07k | if (PragmaClangBSSSection.Valid) |
14676 | 0 | VD->addAttr(PragmaClangBSSSectionAttr::CreateImplicit( |
14677 | 0 | Context, PragmaClangBSSSection.SectionName, |
14678 | 0 | PragmaClangBSSSection.PragmaLocation)); |
14679 | 5.07k | if (PragmaClangDataSection.Valid) |
14680 | 0 | VD->addAttr(PragmaClangDataSectionAttr::CreateImplicit( |
14681 | 0 | Context, PragmaClangDataSection.SectionName, |
14682 | 0 | PragmaClangDataSection.PragmaLocation)); |
14683 | 5.07k | if (PragmaClangRodataSection.Valid) |
14684 | 0 | VD->addAttr(PragmaClangRodataSectionAttr::CreateImplicit( |
14685 | 0 | Context, PragmaClangRodataSection.SectionName, |
14686 | 0 | PragmaClangRodataSection.PragmaLocation)); |
14687 | 5.07k | if (PragmaClangRelroSection.Valid) |
14688 | 0 | VD->addAttr(PragmaClangRelroSectionAttr::CreateImplicit( |
14689 | 0 | Context, PragmaClangRelroSection.SectionName, |
14690 | 0 | PragmaClangRelroSection.PragmaLocation)); |
14691 | 5.07k | } |
14692 | | |
14693 | 5.07k | if (auto *DD = dyn_cast<DecompositionDecl>(ThisDecl)) { |
14694 | 0 | for (auto *BD : DD->bindings()) { |
14695 | 0 | FinalizeDeclaration(BD); |
14696 | 0 | } |
14697 | 0 | } |
14698 | | |
14699 | 5.07k | checkAttributesAfterMerging(*this, *VD); |
14700 | | |
14701 | 5.07k | if (VD->isStaticLocal()) |
14702 | 0 | CheckStaticLocalForDllExport(VD); |
14703 | | |
14704 | 5.07k | if (VD->getTLSKind()) |
14705 | 0 | CheckThreadLocalForLargeAlignment(VD); |
14706 | | |
14707 | | // Perform check for initializers of device-side global variables. |
14708 | | // CUDA allows empty constructors as initializers (see E.2.3.1, CUDA |
14709 | | // 7.5). We must also apply the same checks to all __shared__ |
14710 | | // variables whether they are local or not. CUDA also allows |
14711 | | // constant initializers for __constant__ and __device__ variables. |
14712 | 5.07k | if (getLangOpts().CUDA) |
14713 | 0 | checkAllowedCUDAInitializer(VD); |
14714 | | |
14715 | | // Grab the dllimport or dllexport attribute off of the VarDecl. |
14716 | 5.07k | const InheritableAttr *DLLAttr = getDLLAttr(VD); |
14717 | | |
14718 | | // Imported static data members cannot be defined out-of-line. |
14719 | 5.07k | if (const auto *IA = dyn_cast_or_null<DLLImportAttr>(DLLAttr)) { |
14720 | 0 | if (VD->isStaticDataMember() && VD->isOutOfLine() && |
14721 | 0 | VD->isThisDeclarationADefinition()) { |
14722 | | // We allow definitions of dllimport class template static data members |
14723 | | // with a warning. |
14724 | 0 | CXXRecordDecl *Context = |
14725 | 0 | cast<CXXRecordDecl>(VD->getFirstDecl()->getDeclContext()); |
14726 | 0 | bool IsClassTemplateMember = |
14727 | 0 | isa<ClassTemplatePartialSpecializationDecl>(Context) || |
14728 | 0 | Context->getDescribedClassTemplate(); |
14729 | |
|
14730 | 0 | Diag(VD->getLocation(), |
14731 | 0 | IsClassTemplateMember |
14732 | 0 | ? diag::warn_attribute_dllimport_static_field_definition |
14733 | 0 | : diag::err_attribute_dllimport_static_field_definition); |
14734 | 0 | Diag(IA->getLocation(), diag::note_attribute); |
14735 | 0 | if (!IsClassTemplateMember) |
14736 | 0 | VD->setInvalidDecl(); |
14737 | 0 | } |
14738 | 0 | } |
14739 | | |
14740 | | // dllimport/dllexport variables cannot be thread local, their TLS index |
14741 | | // isn't exported with the variable. |
14742 | 5.07k | if (DLLAttr && VD->getTLSKind()) { |
14743 | 0 | auto *F = dyn_cast_or_null<FunctionDecl>(VD->getParentFunctionOrMethod()); |
14744 | 0 | if (F && getDLLAttr(F)) { |
14745 | 0 | assert(VD->isStaticLocal()); |
14746 | | // But if this is a static local in a dlimport/dllexport function, the |
14747 | | // function will never be inlined, which means the var would never be |
14748 | | // imported, so having it marked import/export is safe. |
14749 | 0 | } else { |
14750 | 0 | Diag(VD->getLocation(), diag::err_attribute_dll_thread_local) << VD |
14751 | 0 | << DLLAttr; |
14752 | 0 | VD->setInvalidDecl(); |
14753 | 0 | } |
14754 | 0 | } |
14755 | | |
14756 | 5.07k | if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) { |
14757 | 0 | if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { |
14758 | 0 | Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition) |
14759 | 0 | << Attr; |
14760 | 0 | VD->dropAttr<UsedAttr>(); |
14761 | 0 | } |
14762 | 0 | } |
14763 | 5.07k | if (RetainAttr *Attr = VD->getAttr<RetainAttr>()) { |
14764 | 0 | if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) { |
14765 | 0 | Diag(Attr->getLocation(), diag::warn_attribute_ignored_on_non_definition) |
14766 | 0 | << Attr; |
14767 | 0 | VD->dropAttr<RetainAttr>(); |
14768 | 0 | } |
14769 | 0 | } |
14770 | | |
14771 | 5.07k | const DeclContext *DC = VD->getDeclContext(); |
14772 | | // If there's a #pragma GCC visibility in scope, and this isn't a class |
14773 | | // member, set the visibility of this variable. |
14774 | 5.07k | if (DC->getRedeclContext()->isFileContext() && VD->isExternallyVisible()) |
14775 | 5.07k | AddPushedVisibilityAttribute(VD); |
14776 | | |
14777 | | // FIXME: Warn on unused var template partial specializations. |
14778 | 5.07k | if (VD->isFileVarDecl() && !isa<VarTemplatePartialSpecializationDecl>(VD)) |
14779 | 5.07k | MarkUnusedFileScopedDecl(VD); |
14780 | | |
14781 | | // Now we have parsed the initializer and can update the table of magic |
14782 | | // tag values. |
14783 | 5.07k | if (!VD->hasAttr<TypeTagForDatatypeAttr>() || |
14784 | 5.07k | !VD->getType()->isIntegralOrEnumerationType()) |
14785 | 5.07k | return; |
14786 | | |
14787 | 0 | for (const auto *I : ThisDecl->specific_attrs<TypeTagForDatatypeAttr>()) { |
14788 | 0 | const Expr *MagicValueExpr = VD->getInit(); |
14789 | 0 | if (!MagicValueExpr) { |
14790 | 0 | continue; |
14791 | 0 | } |
14792 | 0 | std::optional<llvm::APSInt> MagicValueInt; |
14793 | 0 | if (!(MagicValueInt = MagicValueExpr->getIntegerConstantExpr(Context))) { |
14794 | 0 | Diag(I->getRange().getBegin(), |
14795 | 0 | diag::err_type_tag_for_datatype_not_ice) |
14796 | 0 | << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); |
14797 | 0 | continue; |
14798 | 0 | } |
14799 | 0 | if (MagicValueInt->getActiveBits() > 64) { |
14800 | 0 | Diag(I->getRange().getBegin(), |
14801 | 0 | diag::err_type_tag_for_datatype_too_large) |
14802 | 0 | << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange(); |
14803 | 0 | continue; |
14804 | 0 | } |
14805 | 0 | uint64_t MagicValue = MagicValueInt->getZExtValue(); |
14806 | 0 | RegisterTypeTagForDatatype(I->getArgumentKind(), |
14807 | 0 | MagicValue, |
14808 | 0 | I->getMatchingCType(), |
14809 | 0 | I->getLayoutCompatible(), |
14810 | 0 | I->getMustBeNull()); |
14811 | 0 | } |
14812 | 0 | } |
14813 | | |
14814 | 0 | static bool hasDeducedAuto(DeclaratorDecl *DD) { |
14815 | 0 | auto *VD = dyn_cast<VarDecl>(DD); |
14816 | 0 | return VD && !VD->getType()->hasAutoForTrailingReturnType(); |
14817 | 0 | } |
14818 | | |
14819 | | Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS, |
14820 | 5.06k | ArrayRef<Decl *> Group) { |
14821 | 5.06k | SmallVector<Decl*, 8> Decls; |
14822 | | |
14823 | 5.06k | if (DS.isTypeSpecOwned()) |
14824 | 0 | Decls.push_back(DS.getRepAsDecl()); |
14825 | | |
14826 | 5.06k | DeclaratorDecl *FirstDeclaratorInGroup = nullptr; |
14827 | 5.06k | DecompositionDecl *FirstDecompDeclaratorInGroup = nullptr; |
14828 | 5.06k | bool DiagnosedMultipleDecomps = false; |
14829 | 5.06k | DeclaratorDecl *FirstNonDeducedAutoInGroup = nullptr; |
14830 | 5.06k | bool DiagnosedNonDeducedAuto = false; |
14831 | | |
14832 | 10.1k | for (unsigned i = 0, e = Group.size(); i != e; ++i) { |
14833 | 5.08k | if (Decl *D = Group[i]) { |
14834 | | // Check if the Decl has been declared in '#pragma omp declare target' |
14835 | | // directive and has static storage duration. |
14836 | 5.08k | if (auto *VD = dyn_cast<VarDecl>(D); |
14837 | 5.08k | LangOpts.OpenMP && VD && VD->hasAttr<OMPDeclareTargetDeclAttr>() && |
14838 | 5.08k | VD->hasGlobalStorage()) |
14839 | 0 | ActOnOpenMPDeclareTargetInitializer(D); |
14840 | | // For declarators, there are some additional syntactic-ish checks we need |
14841 | | // to perform. |
14842 | 5.08k | if (auto *DD = dyn_cast<DeclaratorDecl>(D)) { |
14843 | 5.08k | if (!FirstDeclaratorInGroup) |
14844 | 5.06k | FirstDeclaratorInGroup = DD; |
14845 | 5.08k | if (!FirstDecompDeclaratorInGroup) |
14846 | 5.08k | FirstDecompDeclaratorInGroup = dyn_cast<DecompositionDecl>(D); |
14847 | 5.08k | if (!FirstNonDeducedAutoInGroup && DS.hasAutoTypeSpec() && |
14848 | 5.08k | !hasDeducedAuto(DD)) |
14849 | 0 | FirstNonDeducedAutoInGroup = DD; |
14850 | | |
14851 | 5.08k | if (FirstDeclaratorInGroup != DD) { |
14852 | | // A decomposition declaration cannot be combined with any other |
14853 | | // declaration in the same group. |
14854 | 27 | if (FirstDecompDeclaratorInGroup && !DiagnosedMultipleDecomps) { |
14855 | 0 | Diag(FirstDecompDeclaratorInGroup->getLocation(), |
14856 | 0 | diag::err_decomp_decl_not_alone) |
14857 | 0 | << FirstDeclaratorInGroup->getSourceRange() |
14858 | 0 | << DD->getSourceRange(); |
14859 | 0 | DiagnosedMultipleDecomps = true; |
14860 | 0 | } |
14861 | | |
14862 | | // A declarator that uses 'auto' in any way other than to declare a |
14863 | | // variable with a deduced type cannot be combined with any other |
14864 | | // declarator in the same group. |
14865 | 27 | if (FirstNonDeducedAutoInGroup && !DiagnosedNonDeducedAuto) { |
14866 | 0 | Diag(FirstNonDeducedAutoInGroup->getLocation(), |
14867 | 0 | diag::err_auto_non_deduced_not_alone) |
14868 | 0 | << FirstNonDeducedAutoInGroup->getType() |
14869 | 0 | ->hasAutoForTrailingReturnType() |
14870 | 0 | << FirstDeclaratorInGroup->getSourceRange() |
14871 | 0 | << DD->getSourceRange(); |
14872 | 0 | DiagnosedNonDeducedAuto = true; |
14873 | 0 | } |
14874 | 27 | } |
14875 | 5.08k | } |
14876 | | |
14877 | 5.08k | Decls.push_back(D); |
14878 | 5.08k | } |
14879 | 5.08k | } |
14880 | | |
14881 | 5.06k | if (DeclSpec::isDeclRep(DS.getTypeSpecType())) { |
14882 | 0 | if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) { |
14883 | 0 | handleTagNumbering(Tag, S); |
14884 | 0 | if (FirstDeclaratorInGroup && !Tag->hasNameForLinkage() && |
14885 | 0 | getLangOpts().CPlusPlus) |
14886 | 0 | Context.addDeclaratorForUnnamedTagDecl(Tag, FirstDeclaratorInGroup); |
14887 | 0 | } |
14888 | 0 | } |
14889 | | |
14890 | 5.06k | return BuildDeclaratorGroup(Decls); |
14891 | 5.06k | } |
14892 | | |
14893 | | /// BuildDeclaratorGroup - convert a list of declarations into a declaration |
14894 | | /// group, performing any necessary semantic checking. |
14895 | | Sema::DeclGroupPtrTy |
14896 | 5.06k | Sema::BuildDeclaratorGroup(MutableArrayRef<Decl *> Group) { |
14897 | | // C++14 [dcl.spec.auto]p7: (DR1347) |
14898 | | // If the type that replaces the placeholder type is not the same in each |
14899 | | // deduction, the program is ill-formed. |
14900 | 5.06k | if (Group.size() > 1) { |
14901 | 27 | QualType Deduced; |
14902 | 27 | VarDecl *DeducedDecl = nullptr; |
14903 | 78 | for (unsigned i = 0, e = Group.size(); i != e; ++i) { |
14904 | 53 | VarDecl *D = dyn_cast<VarDecl>(Group[i]); |
14905 | 53 | if (!D || D->isInvalidDecl()) |
14906 | 2 | break; |
14907 | 51 | DeducedType *DT = D->getType()->getContainedDeducedType(); |
14908 | 51 | if (!DT || DT->getDeducedType().isNull()) |
14909 | 51 | continue; |
14910 | 0 | if (Deduced.isNull()) { |
14911 | 0 | Deduced = DT->getDeducedType(); |
14912 | 0 | DeducedDecl = D; |
14913 | 0 | } else if (!Context.hasSameType(DT->getDeducedType(), Deduced)) { |
14914 | 0 | auto *AT = dyn_cast<AutoType>(DT); |
14915 | 0 | auto Dia = Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(), |
14916 | 0 | diag::err_auto_different_deductions) |
14917 | 0 | << (AT ? (unsigned)AT->getKeyword() : 3) << Deduced |
14918 | 0 | << DeducedDecl->getDeclName() << DT->getDeducedType() |
14919 | 0 | << D->getDeclName(); |
14920 | 0 | if (DeducedDecl->hasInit()) |
14921 | 0 | Dia << DeducedDecl->getInit()->getSourceRange(); |
14922 | 0 | if (D->getInit()) |
14923 | 0 | Dia << D->getInit()->getSourceRange(); |
14924 | 0 | D->setInvalidDecl(); |
14925 | 0 | break; |
14926 | 0 | } |
14927 | 0 | } |
14928 | 27 | } |
14929 | | |
14930 | 5.06k | ActOnDocumentableDecls(Group); |
14931 | | |
14932 | 5.06k | return DeclGroupPtrTy::make( |
14933 | 5.06k | DeclGroupRef::Create(Context, Group.data(), Group.size())); |
14934 | 5.06k | } |
14935 | | |
14936 | 8 | void Sema::ActOnDocumentableDecl(Decl *D) { |
14937 | 8 | ActOnDocumentableDecls(D); |
14938 | 8 | } |
14939 | | |
14940 | 5.07k | void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) { |
14941 | | // Don't parse the comment if Doxygen diagnostics are ignored. |
14942 | 5.07k | if (Group.empty() || !Group[0]) |
14943 | 8 | return; |
14944 | | |
14945 | 5.06k | if (Diags.isIgnored(diag::warn_doc_param_not_found, |
14946 | 5.06k | Group[0]->getLocation()) && |
14947 | 5.06k | Diags.isIgnored(diag::warn_unknown_comment_command_name, |
14948 | 5.06k | Group[0]->getLocation())) |
14949 | 5.06k | return; |
14950 | | |
14951 | 0 | if (Group.size() >= 2) { |
14952 | | // This is a decl group. Normally it will contain only declarations |
14953 | | // produced from declarator list. But in case we have any definitions or |
14954 | | // additional declaration references: |
14955 | | // 'typedef struct S {} S;' |
14956 | | // 'typedef struct S *S;' |
14957 | | // 'struct S *pS;' |
14958 | | // FinalizeDeclaratorGroup adds these as separate declarations. |
14959 | 0 | Decl *MaybeTagDecl = Group[0]; |
14960 | 0 | if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) { |
14961 | 0 | Group = Group.slice(1); |
14962 | 0 | } |
14963 | 0 | } |
14964 | | |
14965 | | // FIMXE: We assume every Decl in the group is in the same file. |
14966 | | // This is false when preprocessor constructs the group from decls in |
14967 | | // different files (e. g. macros or #include). |
14968 | 0 | Context.attachCommentsToJustParsedDecls(Group, &getPreprocessor()); |
14969 | 0 | } |
14970 | | |
14971 | | /// Common checks for a parameter-declaration that should apply to both function |
14972 | | /// parameters and non-type template parameters. |
14973 | 40 | void Sema::CheckFunctionOrTemplateParamDeclarator(Scope *S, Declarator &D) { |
14974 | | // Check that there are no default arguments inside the type of this |
14975 | | // parameter. |
14976 | 40 | if (getLangOpts().CPlusPlus) |
14977 | 6 | CheckExtraCXXDefaultArguments(D); |
14978 | | |
14979 | | // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1). |
14980 | 40 | if (D.getCXXScopeSpec().isSet()) { |
14981 | 0 | Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator) |
14982 | 0 | << D.getCXXScopeSpec().getRange(); |
14983 | 0 | } |
14984 | | |
14985 | | // [dcl.meaning]p1: An unqualified-id occurring in a declarator-id shall be a |
14986 | | // simple identifier except [...irrelevant cases...]. |
14987 | 40 | switch (D.getName().getKind()) { |
14988 | 40 | case UnqualifiedIdKind::IK_Identifier: |
14989 | 40 | break; |
14990 | | |
14991 | 0 | case UnqualifiedIdKind::IK_OperatorFunctionId: |
14992 | 0 | case UnqualifiedIdKind::IK_ConversionFunctionId: |
14993 | 0 | case UnqualifiedIdKind::IK_LiteralOperatorId: |
14994 | 0 | case UnqualifiedIdKind::IK_ConstructorName: |
14995 | 0 | case UnqualifiedIdKind::IK_DestructorName: |
14996 | 0 | case UnqualifiedIdKind::IK_ImplicitSelfParam: |
14997 | 0 | case UnqualifiedIdKind::IK_DeductionGuideName: |
14998 | 0 | Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name) |
14999 | 0 | << GetNameForDeclarator(D).getName(); |
15000 | 0 | break; |
15001 | | |
15002 | 0 | case UnqualifiedIdKind::IK_TemplateId: |
15003 | 0 | case UnqualifiedIdKind::IK_ConstructorTemplateId: |
15004 | | // GetNameForDeclarator would not produce a useful name in this case. |
15005 | 0 | Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name_template_id); |
15006 | 0 | break; |
15007 | 40 | } |
15008 | 40 | } |
15009 | | |
15010 | | static void CheckExplicitObjectParameter(Sema &S, ParmVarDecl *P, |
15011 | 40 | SourceLocation ExplicitThisLoc) { |
15012 | 40 | if (!ExplicitThisLoc.isValid()) |
15013 | 40 | return; |
15014 | 0 | assert(S.getLangOpts().CPlusPlus && |
15015 | 0 | "explicit parameter in non-cplusplus mode"); |
15016 | 0 | if (!S.getLangOpts().CPlusPlus23) |
15017 | 0 | S.Diag(ExplicitThisLoc, diag::err_cxx20_deducing_this) |
15018 | 0 | << P->getSourceRange(); |
15019 | | |
15020 | | // C++2b [dcl.fct/7] An explicit object parameter shall not be a function |
15021 | | // parameter pack. |
15022 | 0 | if (P->isParameterPack()) { |
15023 | 0 | S.Diag(P->getBeginLoc(), diag::err_explicit_object_parameter_pack) |
15024 | 0 | << P->getSourceRange(); |
15025 | 0 | return; |
15026 | 0 | } |
15027 | 0 | P->setExplicitObjectParameterLoc(ExplicitThisLoc); |
15028 | 0 | if (LambdaScopeInfo *LSI = S.getCurLambda()) |
15029 | 0 | LSI->ExplicitObjectParameter = P; |
15030 | 0 | } |
15031 | | |
15032 | | /// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator() |
15033 | | /// to introduce parameters into function prototype scope. |
15034 | | Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D, |
15035 | 40 | SourceLocation ExplicitThisLoc) { |
15036 | 40 | const DeclSpec &DS = D.getDeclSpec(); |
15037 | | |
15038 | | // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'. |
15039 | | |
15040 | | // C++03 [dcl.stc]p2 also permits 'auto'. |
15041 | 40 | StorageClass SC = SC_None; |
15042 | 40 | if (DS.getStorageClassSpec() == DeclSpec::SCS_register) { |
15043 | 0 | SC = SC_Register; |
15044 | | // In C++11, the 'register' storage class specifier is deprecated. |
15045 | | // In C++17, it is not allowed, but we tolerate it as an extension. |
15046 | 0 | if (getLangOpts().CPlusPlus11) { |
15047 | 0 | Diag(DS.getStorageClassSpecLoc(), |
15048 | 0 | getLangOpts().CPlusPlus17 ? diag::ext_register_storage_class |
15049 | 0 | : diag::warn_deprecated_register) |
15050 | 0 | << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); |
15051 | 0 | } |
15052 | 40 | } else if (getLangOpts().CPlusPlus && |
15053 | 40 | DS.getStorageClassSpec() == DeclSpec::SCS_auto) { |
15054 | 0 | SC = SC_Auto; |
15055 | 40 | } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) { |
15056 | 0 | Diag(DS.getStorageClassSpecLoc(), |
15057 | 0 | diag::err_invalid_storage_class_in_func_decl); |
15058 | 0 | D.getMutableDeclSpec().ClearStorageClassSpecs(); |
15059 | 0 | } |
15060 | | |
15061 | 40 | if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec()) |
15062 | 0 | Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread) |
15063 | 0 | << DeclSpec::getSpecifierName(TSCS); |
15064 | 40 | if (DS.isInlineSpecified()) |
15065 | 0 | Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function) |
15066 | 0 | << getLangOpts().CPlusPlus17; |
15067 | 40 | if (DS.hasConstexprSpecifier()) |
15068 | 0 | Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr) |
15069 | 0 | << 0 << static_cast<int>(D.getDeclSpec().getConstexprSpecifier()); |
15070 | | |
15071 | 40 | DiagnoseFunctionSpecifiers(DS); |
15072 | | |
15073 | 40 | CheckFunctionOrTemplateParamDeclarator(S, D); |
15074 | | |
15075 | 40 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
15076 | 40 | QualType parmDeclType = TInfo->getType(); |
15077 | | |
15078 | | // Check for redeclaration of parameters, e.g. int foo(int x, int x); |
15079 | 40 | IdentifierInfo *II = D.getIdentifier(); |
15080 | 40 | if (II) { |
15081 | 21 | LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName, |
15082 | 21 | ForVisibleRedeclaration); |
15083 | 21 | LookupName(R, S); |
15084 | 21 | if (!R.empty()) { |
15085 | 6 | NamedDecl *PrevDecl = *R.begin(); |
15086 | 6 | if (R.isSingleResult() && PrevDecl->isTemplateParameter()) { |
15087 | | // Maybe we will complain about the shadowed template parameter. |
15088 | 0 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
15089 | | // Just pretend that we didn't see the previous declaration. |
15090 | 0 | PrevDecl = nullptr; |
15091 | 0 | } |
15092 | 6 | if (PrevDecl && S->isDeclScope(PrevDecl)) { |
15093 | 0 | Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II; |
15094 | 0 | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
15095 | | // Recover by removing the name |
15096 | 0 | II = nullptr; |
15097 | 0 | D.SetIdentifier(nullptr, D.getIdentifierLoc()); |
15098 | 0 | D.setInvalidType(true); |
15099 | 0 | } |
15100 | 6 | } |
15101 | 21 | } |
15102 | | |
15103 | | // Temporarily put parameter variables in the translation unit, not |
15104 | | // the enclosing context. This prevents them from accidentally |
15105 | | // looking like class members in C++. |
15106 | 40 | ParmVarDecl *New = |
15107 | 40 | CheckParameter(Context.getTranslationUnitDecl(), D.getBeginLoc(), |
15108 | 40 | D.getIdentifierLoc(), II, parmDeclType, TInfo, SC); |
15109 | | |
15110 | 40 | if (D.isInvalidType()) |
15111 | 33 | New->setInvalidDecl(); |
15112 | | |
15113 | 40 | CheckExplicitObjectParameter(*this, New, ExplicitThisLoc); |
15114 | | |
15115 | 40 | assert(S->isFunctionPrototypeScope()); |
15116 | 0 | assert(S->getFunctionPrototypeDepth() >= 1); |
15117 | 0 | New->setScopeInfo(S->getFunctionPrototypeDepth() - 1, |
15118 | 40 | S->getNextFunctionPrototypeIndex()); |
15119 | | |
15120 | | // Add the parameter declaration into this scope. |
15121 | 40 | S->AddDecl(New); |
15122 | 40 | if (II) |
15123 | 21 | IdResolver.AddDecl(New); |
15124 | | |
15125 | 40 | ProcessDeclAttributes(S, New, D); |
15126 | | |
15127 | 40 | if (D.getDeclSpec().isModulePrivateSpecified()) |
15128 | 0 | Diag(New->getLocation(), diag::err_module_private_local) |
15129 | 0 | << 1 << New << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) |
15130 | 0 | << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc()); |
15131 | | |
15132 | 40 | if (New->hasAttr<BlocksAttr>()) { |
15133 | 0 | Diag(New->getLocation(), diag::err_block_on_nonlocal); |
15134 | 0 | } |
15135 | | |
15136 | 40 | if (getLangOpts().OpenCL) |
15137 | 0 | deduceOpenCLAddressSpace(New); |
15138 | | |
15139 | 40 | return New; |
15140 | 40 | } |
15141 | | |
15142 | | /// Synthesizes a variable for a parameter arising from a |
15143 | | /// typedef. |
15144 | | ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC, |
15145 | | SourceLocation Loc, |
15146 | 0 | QualType T) { |
15147 | | /* FIXME: setting StartLoc == Loc. |
15148 | | Would it be worth to modify callers so as to provide proper source |
15149 | | location for the unnamed parameters, embedding the parameter's type? */ |
15150 | 0 | ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, nullptr, |
15151 | 0 | T, Context.getTrivialTypeSourceInfo(T, Loc), |
15152 | 0 | SC_None, nullptr); |
15153 | 0 | Param->setImplicit(); |
15154 | 0 | return Param; |
15155 | 0 | } |
15156 | | |
15157 | 1 | void Sema::DiagnoseUnusedParameters(ArrayRef<ParmVarDecl *> Parameters) { |
15158 | | // Don't diagnose unused-parameter errors in template instantiations; we |
15159 | | // will already have done so in the template itself. |
15160 | 1 | if (inTemplateInstantiation()) |
15161 | 0 | return; |
15162 | | |
15163 | 1 | for (const ParmVarDecl *Parameter : Parameters) { |
15164 | 0 | if (!Parameter->isReferenced() && Parameter->getDeclName() && |
15165 | 0 | !Parameter->hasAttr<UnusedAttr>() && |
15166 | 0 | !Parameter->getIdentifier()->isPlaceholder()) { |
15167 | 0 | Diag(Parameter->getLocation(), diag::warn_unused_parameter) |
15168 | 0 | << Parameter->getDeclName(); |
15169 | 0 | } |
15170 | 0 | } |
15171 | 1 | } |
15172 | | |
15173 | | void Sema::DiagnoseSizeOfParametersAndReturnValue( |
15174 | 0 | ArrayRef<ParmVarDecl *> Parameters, QualType ReturnTy, NamedDecl *D) { |
15175 | 0 | if (LangOpts.NumLargeByValueCopy == 0) // No check. |
15176 | 0 | return; |
15177 | | |
15178 | | // Warn if the return value is pass-by-value and larger than the specified |
15179 | | // threshold. |
15180 | 0 | if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) { |
15181 | 0 | unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity(); |
15182 | 0 | if (Size > LangOpts.NumLargeByValueCopy) |
15183 | 0 | Diag(D->getLocation(), diag::warn_return_value_size) << D << Size; |
15184 | 0 | } |
15185 | | |
15186 | | // Warn if any parameter is pass-by-value and larger than the specified |
15187 | | // threshold. |
15188 | 0 | for (const ParmVarDecl *Parameter : Parameters) { |
15189 | 0 | QualType T = Parameter->getType(); |
15190 | 0 | if (T->isDependentType() || !T.isPODType(Context)) |
15191 | 0 | continue; |
15192 | 0 | unsigned Size = Context.getTypeSizeInChars(T).getQuantity(); |
15193 | 0 | if (Size > LangOpts.NumLargeByValueCopy) |
15194 | 0 | Diag(Parameter->getLocation(), diag::warn_parameter_size) |
15195 | 0 | << Parameter << Size; |
15196 | 0 | } |
15197 | 0 | } |
15198 | | |
15199 | | ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc, |
15200 | | SourceLocation NameLoc, IdentifierInfo *Name, |
15201 | | QualType T, TypeSourceInfo *TSInfo, |
15202 | 40 | StorageClass SC) { |
15203 | | // In ARC, infer a lifetime qualifier for appropriate parameter types. |
15204 | 40 | if (getLangOpts().ObjCAutoRefCount && |
15205 | 40 | T.getObjCLifetime() == Qualifiers::OCL_None && |
15206 | 40 | T->isObjCLifetimeType()) { |
15207 | |
|
15208 | 0 | Qualifiers::ObjCLifetime lifetime; |
15209 | | |
15210 | | // Special cases for arrays: |
15211 | | // - if it's const, use __unsafe_unretained |
15212 | | // - otherwise, it's an error |
15213 | 0 | if (T->isArrayType()) { |
15214 | 0 | if (!T.isConstQualified()) { |
15215 | 0 | if (DelayedDiagnostics.shouldDelayDiagnostics()) |
15216 | 0 | DelayedDiagnostics.add( |
15217 | 0 | sema::DelayedDiagnostic::makeForbiddenType( |
15218 | 0 | NameLoc, diag::err_arc_array_param_no_ownership, T, false)); |
15219 | 0 | else |
15220 | 0 | Diag(NameLoc, diag::err_arc_array_param_no_ownership) |
15221 | 0 | << TSInfo->getTypeLoc().getSourceRange(); |
15222 | 0 | } |
15223 | 0 | lifetime = Qualifiers::OCL_ExplicitNone; |
15224 | 0 | } else { |
15225 | 0 | lifetime = T->getObjCARCImplicitLifetime(); |
15226 | 0 | } |
15227 | 0 | T = Context.getLifetimeQualifiedType(T, lifetime); |
15228 | 0 | } |
15229 | | |
15230 | 40 | ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name, |
15231 | 40 | Context.getAdjustedParameterType(T), |
15232 | 40 | TSInfo, SC, nullptr); |
15233 | | |
15234 | | // Make a note if we created a new pack in the scope of a lambda, so that |
15235 | | // we know that references to that pack must also be expanded within the |
15236 | | // lambda scope. |
15237 | 40 | if (New->isParameterPack()) |
15238 | 0 | if (auto *LSI = getEnclosingLambda()) |
15239 | 0 | LSI->LocalPacks.push_back(New); |
15240 | | |
15241 | 40 | if (New->getType().hasNonTrivialToPrimitiveDestructCUnion() || |
15242 | 40 | New->getType().hasNonTrivialToPrimitiveCopyCUnion()) |
15243 | 0 | checkNonTrivialCUnion(New->getType(), New->getLocation(), |
15244 | 0 | NTCUC_FunctionParam, NTCUK_Destruct|NTCUK_Copy); |
15245 | | |
15246 | | // Parameter declarators cannot be interface types. All ObjC objects are |
15247 | | // passed by reference. |
15248 | 40 | if (T->isObjCObjectType()) { |
15249 | 0 | SourceLocation TypeEndLoc = |
15250 | 0 | getLocForEndOfToken(TSInfo->getTypeLoc().getEndLoc()); |
15251 | 0 | Diag(NameLoc, |
15252 | 0 | diag::err_object_cannot_be_passed_returned_by_value) << 1 << T |
15253 | 0 | << FixItHint::CreateInsertion(TypeEndLoc, "*"); |
15254 | 0 | T = Context.getObjCObjectPointerType(T); |
15255 | 0 | New->setType(T); |
15256 | 0 | } |
15257 | | |
15258 | | // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage |
15259 | | // duration shall not be qualified by an address-space qualifier." |
15260 | | // Since all parameters have automatic store duration, they can not have |
15261 | | // an address space. |
15262 | 40 | if (T.getAddressSpace() != LangAS::Default && |
15263 | | // OpenCL allows function arguments declared to be an array of a type |
15264 | | // to be qualified with an address space. |
15265 | 40 | !(getLangOpts().OpenCL && |
15266 | 0 | (T->isArrayType() || T.getAddressSpace() == LangAS::opencl_private)) && |
15267 | | // WebAssembly allows reference types as parameters. Funcref in particular |
15268 | | // lives in a different address space. |
15269 | 40 | !(T->isFunctionPointerType() && |
15270 | 0 | T.getAddressSpace() == LangAS::wasm_funcref)) { |
15271 | 0 | Diag(NameLoc, diag::err_arg_with_address_space); |
15272 | 0 | New->setInvalidDecl(); |
15273 | 0 | } |
15274 | | |
15275 | | // PPC MMA non-pointer types are not allowed as function argument types. |
15276 | 40 | if (Context.getTargetInfo().getTriple().isPPC64() && |
15277 | 40 | CheckPPCMMAType(New->getOriginalType(), New->getLocation())) { |
15278 | 0 | New->setInvalidDecl(); |
15279 | 0 | } |
15280 | | |
15281 | 40 | return New; |
15282 | 40 | } |
15283 | | |
15284 | | void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D, |
15285 | 0 | SourceLocation LocAfterDecls) { |
15286 | 0 | DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo(); |
15287 | | |
15288 | | // C99 6.9.1p6 "If a declarator includes an identifier list, each declaration |
15289 | | // in the declaration list shall have at least one declarator, those |
15290 | | // declarators shall only declare identifiers from the identifier list, and |
15291 | | // every identifier in the identifier list shall be declared. |
15292 | | // |
15293 | | // C89 3.7.1p5 "If a declarator includes an identifier list, only the |
15294 | | // identifiers it names shall be declared in the declaration list." |
15295 | | // |
15296 | | // This is why we only diagnose in C99 and later. Note, the other conditions |
15297 | | // listed are checked elsewhere. |
15298 | 0 | if (!FTI.hasPrototype) { |
15299 | 0 | for (int i = FTI.NumParams; i != 0; /* decrement in loop */) { |
15300 | 0 | --i; |
15301 | 0 | if (FTI.Params[i].Param == nullptr) { |
15302 | 0 | if (getLangOpts().C99) { |
15303 | 0 | SmallString<256> Code; |
15304 | 0 | llvm::raw_svector_ostream(Code) |
15305 | 0 | << " int " << FTI.Params[i].Ident->getName() << ";\n"; |
15306 | 0 | Diag(FTI.Params[i].IdentLoc, diag::ext_param_not_declared) |
15307 | 0 | << FTI.Params[i].Ident |
15308 | 0 | << FixItHint::CreateInsertion(LocAfterDecls, Code); |
15309 | 0 | } |
15310 | | |
15311 | | // Implicitly declare the argument as type 'int' for lack of a better |
15312 | | // type. |
15313 | 0 | AttributeFactory attrs; |
15314 | 0 | DeclSpec DS(attrs); |
15315 | 0 | const char* PrevSpec; // unused |
15316 | 0 | unsigned DiagID; // unused |
15317 | 0 | DS.SetTypeSpecType(DeclSpec::TST_int, FTI.Params[i].IdentLoc, PrevSpec, |
15318 | 0 | DiagID, Context.getPrintingPolicy()); |
15319 | | // Use the identifier location for the type source range. |
15320 | 0 | DS.SetRangeStart(FTI.Params[i].IdentLoc); |
15321 | 0 | DS.SetRangeEnd(FTI.Params[i].IdentLoc); |
15322 | 0 | Declarator ParamD(DS, ParsedAttributesView::none(), |
15323 | 0 | DeclaratorContext::KNRTypeList); |
15324 | 0 | ParamD.SetIdentifier(FTI.Params[i].Ident, FTI.Params[i].IdentLoc); |
15325 | 0 | FTI.Params[i].Param = ActOnParamDeclarator(S, ParamD); |
15326 | 0 | } |
15327 | 0 | } |
15328 | 0 | } |
15329 | 0 | } |
15330 | | |
15331 | | Decl * |
15332 | | Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D, |
15333 | | MultiTemplateParamsArg TemplateParameterLists, |
15334 | 0 | SkipBodyInfo *SkipBody, FnBodyKind BodyKind) { |
15335 | 0 | assert(getCurFunctionDecl() == nullptr && "Function parsing confused"); |
15336 | 0 | assert(D.isFunctionDeclarator() && "Not a function declarator!"); |
15337 | 0 | Scope *ParentScope = FnBodyScope->getParent(); |
15338 | | |
15339 | | // Check if we are in an `omp begin/end declare variant` scope. If we are, and |
15340 | | // we define a non-templated function definition, we will create a declaration |
15341 | | // instead (=BaseFD), and emit the definition with a mangled name afterwards. |
15342 | | // The base function declaration will have the equivalent of an `omp declare |
15343 | | // variant` annotation which specifies the mangled definition as a |
15344 | | // specialization function under the OpenMP context defined as part of the |
15345 | | // `omp begin declare variant`. |
15346 | 0 | SmallVector<FunctionDecl *, 4> Bases; |
15347 | 0 | if (LangOpts.OpenMP && isInOpenMPDeclareVariantScope()) |
15348 | 0 | ActOnStartOfFunctionDefinitionInOpenMPDeclareVariantScope( |
15349 | 0 | ParentScope, D, TemplateParameterLists, Bases); |
15350 | |
|
15351 | 0 | D.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); |
15352 | 0 | Decl *DP = HandleDeclarator(ParentScope, D, TemplateParameterLists); |
15353 | 0 | Decl *Dcl = ActOnStartOfFunctionDef(FnBodyScope, DP, SkipBody, BodyKind); |
15354 | |
|
15355 | 0 | if (!Bases.empty()) |
15356 | 0 | ActOnFinishedFunctionDefinitionInOpenMPDeclareVariantScope(Dcl, Bases); |
15357 | |
|
15358 | 0 | return Dcl; |
15359 | 0 | } |
15360 | | |
15361 | 0 | void Sema::ActOnFinishInlineFunctionDef(FunctionDecl *D) { |
15362 | 0 | Consumer.HandleInlineFunctionDefinition(D); |
15363 | 0 | } |
15364 | | |
15365 | | static bool FindPossiblePrototype(const FunctionDecl *FD, |
15366 | 0 | const FunctionDecl *&PossiblePrototype) { |
15367 | 0 | for (const FunctionDecl *Prev = FD->getPreviousDecl(); Prev; |
15368 | 0 | Prev = Prev->getPreviousDecl()) { |
15369 | | // Ignore any declarations that occur in function or method |
15370 | | // scope, because they aren't visible from the header. |
15371 | 0 | if (Prev->getLexicalDeclContext()->isFunctionOrMethod()) |
15372 | 0 | continue; |
15373 | | |
15374 | 0 | PossiblePrototype = Prev; |
15375 | 0 | return Prev->getType()->isFunctionProtoType(); |
15376 | 0 | } |
15377 | 0 | return false; |
15378 | 0 | } |
15379 | | |
15380 | | static bool |
15381 | | ShouldWarnAboutMissingPrototype(const FunctionDecl *FD, |
15382 | 0 | const FunctionDecl *&PossiblePrototype) { |
15383 | | // Don't warn about invalid declarations. |
15384 | 0 | if (FD->isInvalidDecl()) |
15385 | 0 | return false; |
15386 | | |
15387 | | // Or declarations that aren't global. |
15388 | 0 | if (!FD->isGlobal()) |
15389 | 0 | return false; |
15390 | | |
15391 | | // Don't warn about C++ member functions. |
15392 | 0 | if (isa<CXXMethodDecl>(FD)) |
15393 | 0 | return false; |
15394 | | |
15395 | | // Don't warn about 'main'. |
15396 | 0 | if (isa<TranslationUnitDecl>(FD->getDeclContext()->getRedeclContext())) |
15397 | 0 | if (IdentifierInfo *II = FD->getIdentifier()) |
15398 | 0 | if (II->isStr("main") || II->isStr("efi_main")) |
15399 | 0 | return false; |
15400 | | |
15401 | | // Don't warn about inline functions. |
15402 | 0 | if (FD->isInlined()) |
15403 | 0 | return false; |
15404 | | |
15405 | | // Don't warn about function templates. |
15406 | 0 | if (FD->getDescribedFunctionTemplate()) |
15407 | 0 | return false; |
15408 | | |
15409 | | // Don't warn about function template specializations. |
15410 | 0 | if (FD->isFunctionTemplateSpecialization()) |
15411 | 0 | return false; |
15412 | | |
15413 | | // Don't warn for OpenCL kernels. |
15414 | 0 | if (FD->hasAttr<OpenCLKernelAttr>()) |
15415 | 0 | return false; |
15416 | | |
15417 | | // Don't warn on explicitly deleted functions. |
15418 | 0 | if (FD->isDeleted()) |
15419 | 0 | return false; |
15420 | | |
15421 | | // Don't warn on implicitly local functions (such as having local-typed |
15422 | | // parameters). |
15423 | 0 | if (!FD->isExternallyVisible()) |
15424 | 0 | return false; |
15425 | | |
15426 | | // If we were able to find a potential prototype, don't warn. |
15427 | 0 | if (FindPossiblePrototype(FD, PossiblePrototype)) |
15428 | 0 | return false; |
15429 | | |
15430 | 0 | return true; |
15431 | 0 | } |
15432 | | |
15433 | | void |
15434 | | Sema::CheckForFunctionRedefinition(FunctionDecl *FD, |
15435 | | const FunctionDecl *EffectiveDefinition, |
15436 | 0 | SkipBodyInfo *SkipBody) { |
15437 | 0 | const FunctionDecl *Definition = EffectiveDefinition; |
15438 | 0 | if (!Definition && |
15439 | 0 | !FD->isDefined(Definition, /*CheckForPendingFriendDefinition*/ true)) |
15440 | 0 | return; |
15441 | | |
15442 | 0 | if (Definition->getFriendObjectKind() != Decl::FOK_None) { |
15443 | 0 | if (FunctionDecl *OrigDef = Definition->getInstantiatedFromMemberFunction()) { |
15444 | 0 | if (FunctionDecl *OrigFD = FD->getInstantiatedFromMemberFunction()) { |
15445 | | // A merged copy of the same function, instantiated as a member of |
15446 | | // the same class, is OK. |
15447 | 0 | if (declaresSameEntity(OrigFD, OrigDef) && |
15448 | 0 | declaresSameEntity(cast<Decl>(Definition->getLexicalDeclContext()), |
15449 | 0 | cast<Decl>(FD->getLexicalDeclContext()))) |
15450 | 0 | return; |
15451 | 0 | } |
15452 | 0 | } |
15453 | 0 | } |
15454 | | |
15455 | 0 | if (canRedefineFunction(Definition, getLangOpts())) |
15456 | 0 | return; |
15457 | | |
15458 | | // Don't emit an error when this is redefinition of a typo-corrected |
15459 | | // definition. |
15460 | 0 | if (TypoCorrectedFunctionDefinitions.count(Definition)) |
15461 | 0 | return; |
15462 | | |
15463 | | // If we don't have a visible definition of the function, and it's inline or |
15464 | | // a template, skip the new definition. |
15465 | 0 | if (SkipBody && !hasVisibleDefinition(Definition) && |
15466 | 0 | (Definition->getFormalLinkage() == Linkage::Internal || |
15467 | 0 | Definition->isInlined() || Definition->getDescribedFunctionTemplate() || |
15468 | 0 | Definition->getNumTemplateParameterLists())) { |
15469 | 0 | SkipBody->ShouldSkip = true; |
15470 | 0 | SkipBody->Previous = const_cast<FunctionDecl*>(Definition); |
15471 | 0 | if (auto *TD = Definition->getDescribedFunctionTemplate()) |
15472 | 0 | makeMergedDefinitionVisible(TD); |
15473 | 0 | makeMergedDefinitionVisible(const_cast<FunctionDecl*>(Definition)); |
15474 | 0 | return; |
15475 | 0 | } |
15476 | | |
15477 | 0 | if (getLangOpts().GNUMode && Definition->isInlineSpecified() && |
15478 | 0 | Definition->getStorageClass() == SC_Extern) |
15479 | 0 | Diag(FD->getLocation(), diag::err_redefinition_extern_inline) |
15480 | 0 | << FD << getLangOpts().CPlusPlus; |
15481 | 0 | else |
15482 | 0 | Diag(FD->getLocation(), diag::err_redefinition) << FD; |
15483 | |
|
15484 | 0 | Diag(Definition->getLocation(), diag::note_previous_definition); |
15485 | 0 | FD->setInvalidDecl(); |
15486 | 0 | } |
15487 | | |
15488 | 0 | LambdaScopeInfo *Sema::RebuildLambdaScopeInfo(CXXMethodDecl *CallOperator) { |
15489 | 0 | CXXRecordDecl *LambdaClass = CallOperator->getParent(); |
15490 | |
|
15491 | 0 | LambdaScopeInfo *LSI = PushLambdaScope(); |
15492 | 0 | LSI->CallOperator = CallOperator; |
15493 | 0 | LSI->Lambda = LambdaClass; |
15494 | 0 | LSI->ReturnType = CallOperator->getReturnType(); |
15495 | | // This function in calls in situation where the context of the call operator |
15496 | | // is not entered, so we set AfterParameterList to false, so that |
15497 | | // `tryCaptureVariable` finds explicit captures in the appropriate context. |
15498 | 0 | LSI->AfterParameterList = false; |
15499 | 0 | const LambdaCaptureDefault LCD = LambdaClass->getLambdaCaptureDefault(); |
15500 | |
|
15501 | 0 | if (LCD == LCD_None) |
15502 | 0 | LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None; |
15503 | 0 | else if (LCD == LCD_ByCopy) |
15504 | 0 | LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval; |
15505 | 0 | else if (LCD == LCD_ByRef) |
15506 | 0 | LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref; |
15507 | 0 | DeclarationNameInfo DNI = CallOperator->getNameInfo(); |
15508 | |
|
15509 | 0 | LSI->IntroducerRange = DNI.getCXXOperatorNameRange(); |
15510 | 0 | LSI->Mutable = !CallOperator->isConst(); |
15511 | 0 | if (CallOperator->isExplicitObjectMemberFunction()) |
15512 | 0 | LSI->ExplicitObjectParameter = CallOperator->getParamDecl(0); |
15513 | | |
15514 | | // Add the captures to the LSI so they can be noted as already |
15515 | | // captured within tryCaptureVar. |
15516 | 0 | auto I = LambdaClass->field_begin(); |
15517 | 0 | for (const auto &C : LambdaClass->captures()) { |
15518 | 0 | if (C.capturesVariable()) { |
15519 | 0 | ValueDecl *VD = C.getCapturedVar(); |
15520 | 0 | if (VD->isInitCapture()) |
15521 | 0 | CurrentInstantiationScope->InstantiatedLocal(VD, VD); |
15522 | 0 | const bool ByRef = C.getCaptureKind() == LCK_ByRef; |
15523 | 0 | LSI->addCapture(VD, /*IsBlock*/false, ByRef, |
15524 | 0 | /*RefersToEnclosingVariableOrCapture*/true, C.getLocation(), |
15525 | 0 | /*EllipsisLoc*/C.isPackExpansion() |
15526 | 0 | ? C.getEllipsisLoc() : SourceLocation(), |
15527 | 0 | I->getType(), /*Invalid*/false); |
15528 | |
|
15529 | 0 | } else if (C.capturesThis()) { |
15530 | 0 | LSI->addThisCapture(/*Nested*/ false, C.getLocation(), I->getType(), |
15531 | 0 | C.getCaptureKind() == LCK_StarThis); |
15532 | 0 | } else { |
15533 | 0 | LSI->addVLATypeCapture(C.getLocation(), I->getCapturedVLAType(), |
15534 | 0 | I->getType()); |
15535 | 0 | } |
15536 | 0 | ++I; |
15537 | 0 | } |
15538 | 0 | return LSI; |
15539 | 0 | } |
15540 | | |
15541 | | Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D, |
15542 | | SkipBodyInfo *SkipBody, |
15543 | 0 | FnBodyKind BodyKind) { |
15544 | 0 | if (!D) { |
15545 | | // Parsing the function declaration failed in some way. Push on a fake scope |
15546 | | // anyway so we can try to parse the function body. |
15547 | 0 | PushFunctionScope(); |
15548 | 0 | PushExpressionEvaluationContext(ExprEvalContexts.back().Context); |
15549 | 0 | return D; |
15550 | 0 | } |
15551 | | |
15552 | 0 | FunctionDecl *FD = nullptr; |
15553 | |
|
15554 | 0 | if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) |
15555 | 0 | FD = FunTmpl->getTemplatedDecl(); |
15556 | 0 | else |
15557 | 0 | FD = cast<FunctionDecl>(D); |
15558 | | |
15559 | | // Do not push if it is a lambda because one is already pushed when building |
15560 | | // the lambda in ActOnStartOfLambdaDefinition(). |
15561 | 0 | if (!isLambdaCallOperator(FD)) |
15562 | | // [expr.const]/p14.1 |
15563 | | // An expression or conversion is in an immediate function context if it is |
15564 | | // potentially evaluated and either: its innermost enclosing non-block scope |
15565 | | // is a function parameter scope of an immediate function. |
15566 | 0 | PushExpressionEvaluationContext( |
15567 | 0 | FD->isConsteval() ? ExpressionEvaluationContext::ImmediateFunctionContext |
15568 | 0 | : ExprEvalContexts.back().Context); |
15569 | | |
15570 | | // Each ExpressionEvaluationContextRecord also keeps track of whether the |
15571 | | // context is nested in an immediate function context, so smaller contexts |
15572 | | // that appear inside immediate functions (like variable initializers) are |
15573 | | // considered to be inside an immediate function context even though by |
15574 | | // themselves they are not immediate function contexts. But when a new |
15575 | | // function is entered, we need to reset this tracking, since the entered |
15576 | | // function might be not an immediate function. |
15577 | 0 | ExprEvalContexts.back().InImmediateFunctionContext = FD->isConsteval(); |
15578 | 0 | ExprEvalContexts.back().InImmediateEscalatingFunctionContext = |
15579 | 0 | getLangOpts().CPlusPlus20 && FD->isImmediateEscalating(); |
15580 | | |
15581 | | // Check for defining attributes before the check for redefinition. |
15582 | 0 | if (const auto *Attr = FD->getAttr<AliasAttr>()) { |
15583 | 0 | Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 0; |
15584 | 0 | FD->dropAttr<AliasAttr>(); |
15585 | 0 | FD->setInvalidDecl(); |
15586 | 0 | } |
15587 | 0 | if (const auto *Attr = FD->getAttr<IFuncAttr>()) { |
15588 | 0 | Diag(Attr->getLocation(), diag::err_alias_is_definition) << FD << 1; |
15589 | 0 | FD->dropAttr<IFuncAttr>(); |
15590 | 0 | FD->setInvalidDecl(); |
15591 | 0 | } |
15592 | 0 | if (const auto *Attr = FD->getAttr<TargetVersionAttr>()) { |
15593 | 0 | if (!Context.getTargetInfo().hasFeature("fmv") && |
15594 | 0 | !Attr->isDefaultVersion()) { |
15595 | | // If function multi versioning disabled skip parsing function body |
15596 | | // defined with non-default target_version attribute |
15597 | 0 | if (SkipBody) |
15598 | 0 | SkipBody->ShouldSkip = true; |
15599 | 0 | return nullptr; |
15600 | 0 | } |
15601 | 0 | } |
15602 | | |
15603 | 0 | if (auto *Ctor = dyn_cast<CXXConstructorDecl>(FD)) { |
15604 | 0 | if (Ctor->getTemplateSpecializationKind() == TSK_ExplicitSpecialization && |
15605 | 0 | Ctor->isDefaultConstructor() && |
15606 | 0 | Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
15607 | | // If this is an MS ABI dllexport default constructor, instantiate any |
15608 | | // default arguments. |
15609 | 0 | InstantiateDefaultCtorDefaultArgs(Ctor); |
15610 | 0 | } |
15611 | 0 | } |
15612 | | |
15613 | | // See if this is a redefinition. If 'will have body' (or similar) is already |
15614 | | // set, then these checks were already performed when it was set. |
15615 | 0 | if (!FD->willHaveBody() && !FD->isLateTemplateParsed() && |
15616 | 0 | !FD->isThisDeclarationInstantiatedFromAFriendDefinition()) { |
15617 | 0 | CheckForFunctionRedefinition(FD, nullptr, SkipBody); |
15618 | | |
15619 | | // If we're skipping the body, we're done. Don't enter the scope. |
15620 | 0 | if (SkipBody && SkipBody->ShouldSkip) |
15621 | 0 | return D; |
15622 | 0 | } |
15623 | | |
15624 | | // Mark this function as "will have a body eventually". This lets users to |
15625 | | // call e.g. isInlineDefinitionExternallyVisible while we're still parsing |
15626 | | // this function. |
15627 | 0 | FD->setWillHaveBody(); |
15628 | | |
15629 | | // If we are instantiating a generic lambda call operator, push |
15630 | | // a LambdaScopeInfo onto the function stack. But use the information |
15631 | | // that's already been calculated (ActOnLambdaExpr) to prime the current |
15632 | | // LambdaScopeInfo. |
15633 | | // When the template operator is being specialized, the LambdaScopeInfo, |
15634 | | // has to be properly restored so that tryCaptureVariable doesn't try |
15635 | | // and capture any new variables. In addition when calculating potential |
15636 | | // captures during transformation of nested lambdas, it is necessary to |
15637 | | // have the LSI properly restored. |
15638 | 0 | if (isGenericLambdaCallOperatorSpecialization(FD)) { |
15639 | 0 | assert(inTemplateInstantiation() && |
15640 | 0 | "There should be an active template instantiation on the stack " |
15641 | 0 | "when instantiating a generic lambda!"); |
15642 | 0 | RebuildLambdaScopeInfo(cast<CXXMethodDecl>(D)); |
15643 | 0 | } else { |
15644 | | // Enter a new function scope |
15645 | 0 | PushFunctionScope(); |
15646 | 0 | } |
15647 | | |
15648 | | // Builtin functions cannot be defined. |
15649 | 0 | if (unsigned BuiltinID = FD->getBuiltinID()) { |
15650 | 0 | if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) && |
15651 | 0 | !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) { |
15652 | 0 | Diag(FD->getLocation(), diag::err_builtin_definition) << FD; |
15653 | 0 | FD->setInvalidDecl(); |
15654 | 0 | } |
15655 | 0 | } |
15656 | | |
15657 | | // The return type of a function definition must be complete (C99 6.9.1p3). |
15658 | | // C++23 [dcl.fct.def.general]/p2 |
15659 | | // The type of [...] the return for a function definition |
15660 | | // shall not be a (possibly cv-qualified) class type that is incomplete |
15661 | | // or abstract within the function body unless the function is deleted. |
15662 | 0 | QualType ResultType = FD->getReturnType(); |
15663 | 0 | if (!ResultType->isDependentType() && !ResultType->isVoidType() && |
15664 | 0 | !FD->isInvalidDecl() && BodyKind != FnBodyKind::Delete && |
15665 | 0 | (RequireCompleteType(FD->getLocation(), ResultType, |
15666 | 0 | diag::err_func_def_incomplete_result) || |
15667 | 0 | RequireNonAbstractType(FD->getLocation(), FD->getReturnType(), |
15668 | 0 | diag::err_abstract_type_in_decl, |
15669 | 0 | AbstractReturnType))) |
15670 | 0 | FD->setInvalidDecl(); |
15671 | |
|
15672 | 0 | if (FnBodyScope) |
15673 | 0 | PushDeclContext(FnBodyScope, FD); |
15674 | | |
15675 | | // Check the validity of our function parameters |
15676 | 0 | if (BodyKind != FnBodyKind::Delete) |
15677 | 0 | CheckParmsForFunctionDef(FD->parameters(), |
15678 | 0 | /*CheckParameterNames=*/true); |
15679 | | |
15680 | | // Add non-parameter declarations already in the function to the current |
15681 | | // scope. |
15682 | 0 | if (FnBodyScope) { |
15683 | 0 | for (Decl *NPD : FD->decls()) { |
15684 | 0 | auto *NonParmDecl = dyn_cast<NamedDecl>(NPD); |
15685 | 0 | if (!NonParmDecl) |
15686 | 0 | continue; |
15687 | 0 | assert(!isa<ParmVarDecl>(NonParmDecl) && |
15688 | 0 | "parameters should not be in newly created FD yet"); |
15689 | | |
15690 | | // If the decl has a name, make it accessible in the current scope. |
15691 | 0 | if (NonParmDecl->getDeclName()) |
15692 | 0 | PushOnScopeChains(NonParmDecl, FnBodyScope, /*AddToContext=*/false); |
15693 | | |
15694 | | // Similarly, dive into enums and fish their constants out, making them |
15695 | | // accessible in this scope. |
15696 | 0 | if (auto *ED = dyn_cast<EnumDecl>(NonParmDecl)) { |
15697 | 0 | for (auto *EI : ED->enumerators()) |
15698 | 0 | PushOnScopeChains(EI, FnBodyScope, /*AddToContext=*/false); |
15699 | 0 | } |
15700 | 0 | } |
15701 | 0 | } |
15702 | | |
15703 | | // Introduce our parameters into the function scope |
15704 | 0 | for (auto *Param : FD->parameters()) { |
15705 | 0 | Param->setOwningFunction(FD); |
15706 | | |
15707 | | // If this has an identifier, add it to the scope stack. |
15708 | 0 | if (Param->getIdentifier() && FnBodyScope) { |
15709 | 0 | CheckShadow(FnBodyScope, Param); |
15710 | |
|
15711 | 0 | PushOnScopeChains(Param, FnBodyScope); |
15712 | 0 | } |
15713 | 0 | } |
15714 | | |
15715 | | // C++ [module.import/6] external definitions are not permitted in header |
15716 | | // units. Deleted and Defaulted functions are implicitly inline (but the |
15717 | | // inline state is not set at this point, so check the BodyKind explicitly). |
15718 | | // FIXME: Consider an alternate location for the test where the inlined() |
15719 | | // state is complete. |
15720 | 0 | if (getLangOpts().CPlusPlusModules && currentModuleIsHeaderUnit() && |
15721 | 0 | !FD->isInvalidDecl() && !FD->isInlined() && |
15722 | 0 | BodyKind != FnBodyKind::Delete && BodyKind != FnBodyKind::Default && |
15723 | 0 | FD->getFormalLinkage() == Linkage::External && !FD->isTemplated() && |
15724 | 0 | !FD->isTemplateInstantiation()) { |
15725 | 0 | assert(FD->isThisDeclarationADefinition()); |
15726 | 0 | Diag(FD->getLocation(), diag::err_extern_def_in_header_unit); |
15727 | 0 | FD->setInvalidDecl(); |
15728 | 0 | } |
15729 | | |
15730 | | // Ensure that the function's exception specification is instantiated. |
15731 | 0 | if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>()) |
15732 | 0 | ResolveExceptionSpec(D->getLocation(), FPT); |
15733 | | |
15734 | | // dllimport cannot be applied to non-inline function definitions. |
15735 | 0 | if (FD->hasAttr<DLLImportAttr>() && !FD->isInlined() && |
15736 | 0 | !FD->isTemplateInstantiation()) { |
15737 | 0 | assert(!FD->hasAttr<DLLExportAttr>()); |
15738 | 0 | Diag(FD->getLocation(), diag::err_attribute_dllimport_function_definition); |
15739 | 0 | FD->setInvalidDecl(); |
15740 | 0 | return D; |
15741 | 0 | } |
15742 | | // We want to attach documentation to original Decl (which might be |
15743 | | // a function template). |
15744 | 0 | ActOnDocumentableDecl(D); |
15745 | 0 | if (getCurLexicalContext()->isObjCContainer() && |
15746 | 0 | getCurLexicalContext()->getDeclKind() != Decl::ObjCCategoryImpl && |
15747 | 0 | getCurLexicalContext()->getDeclKind() != Decl::ObjCImplementation) |
15748 | 0 | Diag(FD->getLocation(), diag::warn_function_def_in_objc_container); |
15749 | |
|
15750 | 0 | return D; |
15751 | 0 | } |
15752 | | |
15753 | | /// Given the set of return statements within a function body, |
15754 | | /// compute the variables that are subject to the named return value |
15755 | | /// optimization. |
15756 | | /// |
15757 | | /// Each of the variables that is subject to the named return value |
15758 | | /// optimization will be marked as NRVO variables in the AST, and any |
15759 | | /// return statement that has a marked NRVO variable as its NRVO candidate can |
15760 | | /// use the named return value optimization. |
15761 | | /// |
15762 | | /// This function applies a very simplistic algorithm for NRVO: if every return |
15763 | | /// statement in the scope of a variable has the same NRVO candidate, that |
15764 | | /// candidate is an NRVO variable. |
15765 | 0 | void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) { |
15766 | 0 | ReturnStmt **Returns = Scope->Returns.data(); |
15767 | |
|
15768 | 0 | for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) { |
15769 | 0 | if (const VarDecl *NRVOCandidate = Returns[I]->getNRVOCandidate()) { |
15770 | 0 | if (!NRVOCandidate->isNRVOVariable()) |
15771 | 0 | Returns[I]->setNRVOCandidate(nullptr); |
15772 | 0 | } |
15773 | 0 | } |
15774 | 0 | } |
15775 | | |
15776 | 0 | bool Sema::canDelayFunctionBody(const Declarator &D) { |
15777 | | // We can't delay parsing the body of a constexpr function template (yet). |
15778 | 0 | if (D.getDeclSpec().hasConstexprSpecifier()) |
15779 | 0 | return false; |
15780 | | |
15781 | | // We can't delay parsing the body of a function template with a deduced |
15782 | | // return type (yet). |
15783 | 0 | if (D.getDeclSpec().hasAutoTypeSpec()) { |
15784 | | // If the placeholder introduces a non-deduced trailing return type, |
15785 | | // we can still delay parsing it. |
15786 | 0 | if (D.getNumTypeObjects()) { |
15787 | 0 | const auto &Outer = D.getTypeObject(D.getNumTypeObjects() - 1); |
15788 | 0 | if (Outer.Kind == DeclaratorChunk::Function && |
15789 | 0 | Outer.Fun.hasTrailingReturnType()) { |
15790 | 0 | QualType Ty = GetTypeFromParser(Outer.Fun.getTrailingReturnType()); |
15791 | 0 | return Ty.isNull() || !Ty->isUndeducedType(); |
15792 | 0 | } |
15793 | 0 | } |
15794 | 0 | return false; |
15795 | 0 | } |
15796 | | |
15797 | 0 | return true; |
15798 | 0 | } |
15799 | | |
15800 | 0 | bool Sema::canSkipFunctionBody(Decl *D) { |
15801 | | // We cannot skip the body of a function (or function template) which is |
15802 | | // constexpr, since we may need to evaluate its body in order to parse the |
15803 | | // rest of the file. |
15804 | | // We cannot skip the body of a function with an undeduced return type, |
15805 | | // because any callers of that function need to know the type. |
15806 | 0 | if (const FunctionDecl *FD = D->getAsFunction()) { |
15807 | 0 | if (FD->isConstexpr()) |
15808 | 0 | return false; |
15809 | | // We can't simply call Type::isUndeducedType here, because inside template |
15810 | | // auto can be deduced to a dependent type, which is not considered |
15811 | | // "undeduced". |
15812 | 0 | if (FD->getReturnType()->getContainedDeducedType()) |
15813 | 0 | return false; |
15814 | 0 | } |
15815 | 0 | return Consumer.shouldSkipFunctionBody(D); |
15816 | 0 | } |
15817 | | |
15818 | 0 | Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) { |
15819 | 0 | if (!Decl) |
15820 | 0 | return nullptr; |
15821 | 0 | if (FunctionDecl *FD = Decl->getAsFunction()) |
15822 | 0 | FD->setHasSkippedBody(); |
15823 | 0 | else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl)) |
15824 | 0 | MD->setHasSkippedBody(); |
15825 | 0 | return Decl; |
15826 | 0 | } |
15827 | | |
15828 | 0 | Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) { |
15829 | 0 | return ActOnFinishFunctionBody(D, BodyArg, /*IsInstantiation=*/false); |
15830 | 0 | } |
15831 | | |
15832 | | /// RAII object that pops an ExpressionEvaluationContext when exiting a function |
15833 | | /// body. |
15834 | | class ExitFunctionBodyRAII { |
15835 | | public: |
15836 | 0 | ExitFunctionBodyRAII(Sema &S, bool IsLambda) : S(S), IsLambda(IsLambda) {} |
15837 | 0 | ~ExitFunctionBodyRAII() { |
15838 | 0 | if (!IsLambda) |
15839 | 0 | S.PopExpressionEvaluationContext(); |
15840 | 0 | } |
15841 | | |
15842 | | private: |
15843 | | Sema &S; |
15844 | | bool IsLambda = false; |
15845 | | }; |
15846 | | |
15847 | 0 | static void diagnoseImplicitlyRetainedSelf(Sema &S) { |
15848 | 0 | llvm::DenseMap<const BlockDecl *, bool> EscapeInfo; |
15849 | |
|
15850 | 0 | auto IsOrNestedInEscapingBlock = [&](const BlockDecl *BD) { |
15851 | 0 | if (EscapeInfo.count(BD)) |
15852 | 0 | return EscapeInfo[BD]; |
15853 | | |
15854 | 0 | bool R = false; |
15855 | 0 | const BlockDecl *CurBD = BD; |
15856 | |
|
15857 | 0 | do { |
15858 | 0 | R = !CurBD->doesNotEscape(); |
15859 | 0 | if (R) |
15860 | 0 | break; |
15861 | 0 | CurBD = CurBD->getParent()->getInnermostBlockDecl(); |
15862 | 0 | } while (CurBD); |
15863 | | |
15864 | 0 | return EscapeInfo[BD] = R; |
15865 | 0 | }; |
15866 | | |
15867 | | // If the location where 'self' is implicitly retained is inside a escaping |
15868 | | // block, emit a diagnostic. |
15869 | 0 | for (const std::pair<SourceLocation, const BlockDecl *> &P : |
15870 | 0 | S.ImplicitlyRetainedSelfLocs) |
15871 | 0 | if (IsOrNestedInEscapingBlock(P.second)) |
15872 | 0 | S.Diag(P.first, diag::warn_implicitly_retains_self) |
15873 | 0 | << FixItHint::CreateInsertion(P.first, "self->"); |
15874 | 0 | } |
15875 | | |
15876 | 0 | void Sema::CheckCoroutineWrapper(FunctionDecl *FD) { |
15877 | 0 | RecordDecl *RD = FD->getReturnType()->getAsRecordDecl(); |
15878 | 0 | if (!RD || !RD->getUnderlyingDecl()->hasAttr<CoroReturnTypeAttr>()) |
15879 | 0 | return; |
15880 | | // Allow `get_return_object()`. |
15881 | 0 | if (FD->getDeclName().isIdentifier() && |
15882 | 0 | FD->getName().equals("get_return_object") && FD->param_empty()) |
15883 | 0 | return; |
15884 | 0 | if (!FD->hasAttr<CoroWrapperAttr>()) |
15885 | 0 | Diag(FD->getLocation(), diag::err_coroutine_return_type) << RD; |
15886 | 0 | } |
15887 | | |
15888 | | Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body, |
15889 | 0 | bool IsInstantiation) { |
15890 | 0 | FunctionScopeInfo *FSI = getCurFunction(); |
15891 | 0 | FunctionDecl *FD = dcl ? dcl->getAsFunction() : nullptr; |
15892 | |
|
15893 | 0 | if (FSI->UsesFPIntrin && FD && !FD->hasAttr<StrictFPAttr>()) |
15894 | 0 | FD->addAttr(StrictFPAttr::CreateImplicit(Context)); |
15895 | |
|
15896 | 0 | sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy(); |
15897 | 0 | sema::AnalysisBasedWarnings::Policy *ActivePolicy = nullptr; |
15898 | | |
15899 | | // If we skip function body, we can't tell if a function is a coroutine. |
15900 | 0 | if (getLangOpts().Coroutines && FD && !FD->hasSkippedBody()) { |
15901 | 0 | if (FSI->isCoroutine()) |
15902 | 0 | CheckCompletedCoroutineBody(FD, Body); |
15903 | 0 | else |
15904 | 0 | CheckCoroutineWrapper(FD); |
15905 | 0 | } |
15906 | |
|
15907 | 0 | { |
15908 | | // Do not call PopExpressionEvaluationContext() if it is a lambda because |
15909 | | // one is already popped when finishing the lambda in BuildLambdaExpr(). |
15910 | | // This is meant to pop the context added in ActOnStartOfFunctionDef(). |
15911 | 0 | ExitFunctionBodyRAII ExitRAII(*this, isLambdaCallOperator(FD)); |
15912 | 0 | if (FD) { |
15913 | 0 | FD->setBody(Body); |
15914 | 0 | FD->setWillHaveBody(false); |
15915 | 0 | CheckImmediateEscalatingFunctionDefinition(FD, FSI); |
15916 | |
|
15917 | 0 | if (getLangOpts().CPlusPlus14) { |
15918 | 0 | if (!FD->isInvalidDecl() && Body && !FD->isDependentContext() && |
15919 | 0 | FD->getReturnType()->isUndeducedType()) { |
15920 | | // For a function with a deduced result type to return void, |
15921 | | // the result type as written must be 'auto' or 'decltype(auto)', |
15922 | | // possibly cv-qualified or constrained, but not ref-qualified. |
15923 | 0 | if (!FD->getReturnType()->getAs<AutoType>()) { |
15924 | 0 | Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto) |
15925 | 0 | << FD->getReturnType(); |
15926 | 0 | FD->setInvalidDecl(); |
15927 | 0 | } else { |
15928 | | // Falling off the end of the function is the same as 'return;'. |
15929 | 0 | Expr *Dummy = nullptr; |
15930 | 0 | if (DeduceFunctionTypeFromReturnExpr( |
15931 | 0 | FD, dcl->getLocation(), Dummy, |
15932 | 0 | FD->getReturnType()->getAs<AutoType>())) |
15933 | 0 | FD->setInvalidDecl(); |
15934 | 0 | } |
15935 | 0 | } |
15936 | 0 | } else if (getLangOpts().CPlusPlus11 && isLambdaCallOperator(FD)) { |
15937 | | // In C++11, we don't use 'auto' deduction rules for lambda call |
15938 | | // operators because we don't support return type deduction. |
15939 | 0 | auto *LSI = getCurLambda(); |
15940 | 0 | if (LSI->HasImplicitReturnType) { |
15941 | 0 | deduceClosureReturnType(*LSI); |
15942 | | |
15943 | | // C++11 [expr.prim.lambda]p4: |
15944 | | // [...] if there are no return statements in the compound-statement |
15945 | | // [the deduced type is] the type void |
15946 | 0 | QualType RetType = |
15947 | 0 | LSI->ReturnType.isNull() ? Context.VoidTy : LSI->ReturnType; |
15948 | | |
15949 | | // Update the return type to the deduced type. |
15950 | 0 | const auto *Proto = FD->getType()->castAs<FunctionProtoType>(); |
15951 | 0 | FD->setType(Context.getFunctionType(RetType, Proto->getParamTypes(), |
15952 | 0 | Proto->getExtProtoInfo())); |
15953 | 0 | } |
15954 | 0 | } |
15955 | | |
15956 | | // If the function implicitly returns zero (like 'main') or is naked, |
15957 | | // don't complain about missing return statements. |
15958 | 0 | if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>()) |
15959 | 0 | WP.disableCheckFallThrough(); |
15960 | | |
15961 | | // MSVC permits the use of pure specifier (=0) on function definition, |
15962 | | // defined at class scope, warn about this non-standard construct. |
15963 | 0 | if (getLangOpts().MicrosoftExt && FD->isPure() && !FD->isOutOfLine()) |
15964 | 0 | Diag(FD->getLocation(), diag::ext_pure_function_definition); |
15965 | |
|
15966 | 0 | if (!FD->isInvalidDecl()) { |
15967 | | // Don't diagnose unused parameters of defaulted, deleted or naked |
15968 | | // functions. |
15969 | 0 | if (!FD->isDeleted() && !FD->isDefaulted() && !FD->hasSkippedBody() && |
15970 | 0 | !FD->hasAttr<NakedAttr>()) |
15971 | 0 | DiagnoseUnusedParameters(FD->parameters()); |
15972 | 0 | DiagnoseSizeOfParametersAndReturnValue(FD->parameters(), |
15973 | 0 | FD->getReturnType(), FD); |
15974 | | |
15975 | | // If this is a structor, we need a vtable. |
15976 | 0 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD)) |
15977 | 0 | MarkVTableUsed(FD->getLocation(), Constructor->getParent()); |
15978 | 0 | else if (CXXDestructorDecl *Destructor = |
15979 | 0 | dyn_cast<CXXDestructorDecl>(FD)) |
15980 | 0 | MarkVTableUsed(FD->getLocation(), Destructor->getParent()); |
15981 | | |
15982 | | // Try to apply the named return value optimization. We have to check |
15983 | | // if we can do this here because lambdas keep return statements around |
15984 | | // to deduce an implicit return type. |
15985 | 0 | if (FD->getReturnType()->isRecordType() && |
15986 | 0 | (!getLangOpts().CPlusPlus || !FD->isDependentContext())) |
15987 | 0 | computeNRVO(Body, FSI); |
15988 | 0 | } |
15989 | | |
15990 | | // GNU warning -Wmissing-prototypes: |
15991 | | // Warn if a global function is defined without a previous |
15992 | | // prototype declaration. This warning is issued even if the |
15993 | | // definition itself provides a prototype. The aim is to detect |
15994 | | // global functions that fail to be declared in header files. |
15995 | 0 | const FunctionDecl *PossiblePrototype = nullptr; |
15996 | 0 | if (ShouldWarnAboutMissingPrototype(FD, PossiblePrototype)) { |
15997 | 0 | Diag(FD->getLocation(), diag::warn_missing_prototype) << FD; |
15998 | |
|
15999 | 0 | if (PossiblePrototype) { |
16000 | | // We found a declaration that is not a prototype, |
16001 | | // but that could be a zero-parameter prototype |
16002 | 0 | if (TypeSourceInfo *TI = PossiblePrototype->getTypeSourceInfo()) { |
16003 | 0 | TypeLoc TL = TI->getTypeLoc(); |
16004 | 0 | if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>()) |
16005 | 0 | Diag(PossiblePrototype->getLocation(), |
16006 | 0 | diag::note_declaration_not_a_prototype) |
16007 | 0 | << (FD->getNumParams() != 0) |
16008 | 0 | << (FD->getNumParams() == 0 ? FixItHint::CreateInsertion( |
16009 | 0 | FTL.getRParenLoc(), "void") |
16010 | 0 | : FixItHint{}); |
16011 | 0 | } |
16012 | 0 | } else { |
16013 | | // Returns true if the token beginning at this Loc is `const`. |
16014 | 0 | auto isLocAtConst = [&](SourceLocation Loc, const SourceManager &SM, |
16015 | 0 | const LangOptions &LangOpts) { |
16016 | 0 | std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); |
16017 | 0 | if (LocInfo.first.isInvalid()) |
16018 | 0 | return false; |
16019 | | |
16020 | 0 | bool Invalid = false; |
16021 | 0 | StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); |
16022 | 0 | if (Invalid) |
16023 | 0 | return false; |
16024 | | |
16025 | 0 | if (LocInfo.second > Buffer.size()) |
16026 | 0 | return false; |
16027 | | |
16028 | 0 | const char *LexStart = Buffer.data() + LocInfo.second; |
16029 | 0 | StringRef StartTok(LexStart, Buffer.size() - LocInfo.second); |
16030 | |
|
16031 | 0 | return StartTok.consume_front("const") && |
16032 | 0 | (StartTok.empty() || isWhitespace(StartTok[0]) || |
16033 | 0 | StartTok.starts_with("/*") || StartTok.starts_with("//")); |
16034 | 0 | }; |
16035 | |
|
16036 | 0 | auto findBeginLoc = [&]() { |
16037 | | // If the return type has `const` qualifier, we want to insert |
16038 | | // `static` before `const` (and not before the typename). |
16039 | 0 | if ((FD->getReturnType()->isAnyPointerType() && |
16040 | 0 | FD->getReturnType()->getPointeeType().isConstQualified()) || |
16041 | 0 | FD->getReturnType().isConstQualified()) { |
16042 | | // But only do this if we can determine where the `const` is. |
16043 | |
|
16044 | 0 | if (isLocAtConst(FD->getBeginLoc(), getSourceManager(), |
16045 | 0 | getLangOpts())) |
16046 | | |
16047 | 0 | return FD->getBeginLoc(); |
16048 | 0 | } |
16049 | 0 | return FD->getTypeSpecStartLoc(); |
16050 | 0 | }; |
16051 | 0 | Diag(FD->getTypeSpecStartLoc(), |
16052 | 0 | diag::note_static_for_internal_linkage) |
16053 | 0 | << /* function */ 1 |
16054 | 0 | << (FD->getStorageClass() == SC_None |
16055 | 0 | ? FixItHint::CreateInsertion(findBeginLoc(), "static ") |
16056 | 0 | : FixItHint{}); |
16057 | 0 | } |
16058 | 0 | } |
16059 | | |
16060 | | // We might not have found a prototype because we didn't wish to warn on |
16061 | | // the lack of a missing prototype. Try again without the checks for |
16062 | | // whether we want to warn on the missing prototype. |
16063 | 0 | if (!PossiblePrototype) |
16064 | 0 | (void)FindPossiblePrototype(FD, PossiblePrototype); |
16065 | | |
16066 | | // If the function being defined does not have a prototype, then we may |
16067 | | // need to diagnose it as changing behavior in C23 because we now know |
16068 | | // whether the function accepts arguments or not. This only handles the |
16069 | | // case where the definition has no prototype but does have parameters |
16070 | | // and either there is no previous potential prototype, or the previous |
16071 | | // potential prototype also has no actual prototype. This handles cases |
16072 | | // like: |
16073 | | // void f(); void f(a) int a; {} |
16074 | | // void g(a) int a; {} |
16075 | | // See MergeFunctionDecl() for other cases of the behavior change |
16076 | | // diagnostic. See GetFullTypeForDeclarator() for handling of a function |
16077 | | // type without a prototype. |
16078 | 0 | if (!FD->hasWrittenPrototype() && FD->getNumParams() != 0 && |
16079 | 0 | (!PossiblePrototype || (!PossiblePrototype->hasWrittenPrototype() && |
16080 | 0 | !PossiblePrototype->isImplicit()))) { |
16081 | | // The function definition has parameters, so this will change behavior |
16082 | | // in C23. If there is a possible prototype, it comes before the |
16083 | | // function definition. |
16084 | | // FIXME: The declaration may have already been diagnosed as being |
16085 | | // deprecated in GetFullTypeForDeclarator() if it had no arguments, but |
16086 | | // there's no way to test for the "changes behavior" condition in |
16087 | | // SemaType.cpp when forming the declaration's function type. So, we do |
16088 | | // this awkward dance instead. |
16089 | | // |
16090 | | // If we have a possible prototype and it declares a function with a |
16091 | | // prototype, we don't want to diagnose it; if we have a possible |
16092 | | // prototype and it has no prototype, it may have already been |
16093 | | // diagnosed in SemaType.cpp as deprecated depending on whether |
16094 | | // -Wstrict-prototypes is enabled. If we already warned about it being |
16095 | | // deprecated, add a note that it also changes behavior. If we didn't |
16096 | | // warn about it being deprecated (because the diagnostic is not |
16097 | | // enabled), warn now that it is deprecated and changes behavior. |
16098 | | |
16099 | | // This K&R C function definition definitely changes behavior in C23, |
16100 | | // so diagnose it. |
16101 | 0 | Diag(FD->getLocation(), diag::warn_non_prototype_changes_behavior) |
16102 | 0 | << /*definition*/ 1 << /* not supported in C23 */ 0; |
16103 | | |
16104 | | // If we have a possible prototype for the function which is a user- |
16105 | | // visible declaration, we already tested that it has no prototype. |
16106 | | // This will change behavior in C23. This gets a warning rather than a |
16107 | | // note because it's the same behavior-changing problem as with the |
16108 | | // definition. |
16109 | 0 | if (PossiblePrototype) |
16110 | 0 | Diag(PossiblePrototype->getLocation(), |
16111 | 0 | diag::warn_non_prototype_changes_behavior) |
16112 | 0 | << /*declaration*/ 0 << /* conflicting */ 1 << /*subsequent*/ 1 |
16113 | 0 | << /*definition*/ 1; |
16114 | 0 | } |
16115 | | |
16116 | | // Warn on CPUDispatch with an actual body. |
16117 | 0 | if (FD->isMultiVersion() && FD->hasAttr<CPUDispatchAttr>() && Body) |
16118 | 0 | if (const auto *CmpndBody = dyn_cast<CompoundStmt>(Body)) |
16119 | 0 | if (!CmpndBody->body_empty()) |
16120 | 0 | Diag(CmpndBody->body_front()->getBeginLoc(), |
16121 | 0 | diag::warn_dispatch_body_ignored); |
16122 | |
|
16123 | 0 | if (auto *MD = dyn_cast<CXXMethodDecl>(FD)) { |
16124 | 0 | const CXXMethodDecl *KeyFunction; |
16125 | 0 | if (MD->isOutOfLine() && (MD = MD->getCanonicalDecl()) && |
16126 | 0 | MD->isVirtual() && |
16127 | 0 | (KeyFunction = Context.getCurrentKeyFunction(MD->getParent())) && |
16128 | 0 | MD == KeyFunction->getCanonicalDecl()) { |
16129 | | // Update the key-function state if necessary for this ABI. |
16130 | 0 | if (FD->isInlined() && |
16131 | 0 | !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) { |
16132 | 0 | Context.setNonKeyFunction(MD); |
16133 | | |
16134 | | // If the newly-chosen key function is already defined, then we |
16135 | | // need to mark the vtable as used retroactively. |
16136 | 0 | KeyFunction = Context.getCurrentKeyFunction(MD->getParent()); |
16137 | 0 | const FunctionDecl *Definition; |
16138 | 0 | if (KeyFunction && KeyFunction->isDefined(Definition)) |
16139 | 0 | MarkVTableUsed(Definition->getLocation(), MD->getParent(), true); |
16140 | 0 | } else { |
16141 | | // We just defined they key function; mark the vtable as used. |
16142 | 0 | MarkVTableUsed(FD->getLocation(), MD->getParent(), true); |
16143 | 0 | } |
16144 | 0 | } |
16145 | 0 | } |
16146 | |
|
16147 | 0 | assert( |
16148 | 0 | (FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) && |
16149 | 0 | "Function parsing confused"); |
16150 | 0 | } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) { |
16151 | 0 | assert(MD == getCurMethodDecl() && "Method parsing confused"); |
16152 | 0 | MD->setBody(Body); |
16153 | 0 | if (!MD->isInvalidDecl()) { |
16154 | 0 | DiagnoseSizeOfParametersAndReturnValue(MD->parameters(), |
16155 | 0 | MD->getReturnType(), MD); |
16156 | |
|
16157 | 0 | if (Body) |
16158 | 0 | computeNRVO(Body, FSI); |
16159 | 0 | } |
16160 | 0 | if (FSI->ObjCShouldCallSuper) { |
16161 | 0 | Diag(MD->getEndLoc(), diag::warn_objc_missing_super_call) |
16162 | 0 | << MD->getSelector().getAsString(); |
16163 | 0 | FSI->ObjCShouldCallSuper = false; |
16164 | 0 | } |
16165 | 0 | if (FSI->ObjCWarnForNoDesignatedInitChain) { |
16166 | 0 | const ObjCMethodDecl *InitMethod = nullptr; |
16167 | 0 | bool isDesignated = |
16168 | 0 | MD->isDesignatedInitializerForTheInterface(&InitMethod); |
16169 | 0 | assert(isDesignated && InitMethod); |
16170 | 0 | (void)isDesignated; |
16171 | |
|
16172 | 0 | auto superIsNSObject = [&](const ObjCMethodDecl *MD) { |
16173 | 0 | auto IFace = MD->getClassInterface(); |
16174 | 0 | if (!IFace) |
16175 | 0 | return false; |
16176 | 0 | auto SuperD = IFace->getSuperClass(); |
16177 | 0 | if (!SuperD) |
16178 | 0 | return false; |
16179 | 0 | return SuperD->getIdentifier() == |
16180 | 0 | NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject); |
16181 | 0 | }; |
16182 | | // Don't issue this warning for unavailable inits or direct subclasses |
16183 | | // of NSObject. |
16184 | 0 | if (!MD->isUnavailable() && !superIsNSObject(MD)) { |
16185 | 0 | Diag(MD->getLocation(), |
16186 | 0 | diag::warn_objc_designated_init_missing_super_call); |
16187 | 0 | Diag(InitMethod->getLocation(), |
16188 | 0 | diag::note_objc_designated_init_marked_here); |
16189 | 0 | } |
16190 | 0 | FSI->ObjCWarnForNoDesignatedInitChain = false; |
16191 | 0 | } |
16192 | 0 | if (FSI->ObjCWarnForNoInitDelegation) { |
16193 | | // Don't issue this warning for unavaialable inits. |
16194 | 0 | if (!MD->isUnavailable()) |
16195 | 0 | Diag(MD->getLocation(), |
16196 | 0 | diag::warn_objc_secondary_init_missing_init_call); |
16197 | 0 | FSI->ObjCWarnForNoInitDelegation = false; |
16198 | 0 | } |
16199 | |
|
16200 | 0 | diagnoseImplicitlyRetainedSelf(*this); |
16201 | 0 | } else { |
16202 | | // Parsing the function declaration failed in some way. Pop the fake scope |
16203 | | // we pushed on. |
16204 | 0 | PopFunctionScopeInfo(ActivePolicy, dcl); |
16205 | 0 | return nullptr; |
16206 | 0 | } |
16207 | | |
16208 | 0 | if (Body && FSI->HasPotentialAvailabilityViolations) |
16209 | 0 | DiagnoseUnguardedAvailabilityViolations(dcl); |
16210 | |
|
16211 | 0 | assert(!FSI->ObjCShouldCallSuper && |
16212 | 0 | "This should only be set for ObjC methods, which should have been " |
16213 | 0 | "handled in the block above."); |
16214 | | |
16215 | | // Verify and clean out per-function state. |
16216 | 0 | if (Body && (!FD || !FD->isDefaulted())) { |
16217 | | // C++ constructors that have function-try-blocks can't have return |
16218 | | // statements in the handlers of that block. (C++ [except.handle]p14) |
16219 | | // Verify this. |
16220 | 0 | if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body)) |
16221 | 0 | DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body)); |
16222 | | |
16223 | | // Verify that gotos and switch cases don't jump into scopes illegally. |
16224 | 0 | if (FSI->NeedsScopeChecking() && !PP.isCodeCompletionEnabled()) |
16225 | 0 | DiagnoseInvalidJumps(Body); |
16226 | |
|
16227 | 0 | if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) { |
16228 | 0 | if (!Destructor->getParent()->isDependentType()) |
16229 | 0 | CheckDestructor(Destructor); |
16230 | |
|
16231 | 0 | MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(), |
16232 | 0 | Destructor->getParent()); |
16233 | 0 | } |
16234 | | |
16235 | | // If any errors have occurred, clear out any temporaries that may have |
16236 | | // been leftover. This ensures that these temporaries won't be picked up |
16237 | | // for deletion in some later function. |
16238 | 0 | if (hasUncompilableErrorOccurred() || |
16239 | 0 | hasAnyUnrecoverableErrorsInThisFunction() || |
16240 | 0 | getDiagnostics().getSuppressAllDiagnostics()) { |
16241 | 0 | DiscardCleanupsInEvaluationContext(); |
16242 | 0 | } |
16243 | 0 | if (!hasUncompilableErrorOccurred() && !isa<FunctionTemplateDecl>(dcl)) { |
16244 | | // Since the body is valid, issue any analysis-based warnings that are |
16245 | | // enabled. |
16246 | 0 | ActivePolicy = &WP; |
16247 | 0 | } |
16248 | |
|
16249 | 0 | if (!IsInstantiation && FD && |
16250 | 0 | (FD->isConstexpr() || FD->hasAttr<MSConstexprAttr>()) && |
16251 | 0 | !FD->isInvalidDecl() && |
16252 | 0 | !CheckConstexprFunctionDefinition(FD, CheckConstexprKind::Diagnose)) |
16253 | 0 | FD->setInvalidDecl(); |
16254 | |
|
16255 | 0 | if (FD && FD->hasAttr<NakedAttr>()) { |
16256 | 0 | for (const Stmt *S : Body->children()) { |
16257 | | // Allow local register variables without initializer as they don't |
16258 | | // require prologue. |
16259 | 0 | bool RegisterVariables = false; |
16260 | 0 | if (auto *DS = dyn_cast<DeclStmt>(S)) { |
16261 | 0 | for (const auto *Decl : DS->decls()) { |
16262 | 0 | if (const auto *Var = dyn_cast<VarDecl>(Decl)) { |
16263 | 0 | RegisterVariables = |
16264 | 0 | Var->hasAttr<AsmLabelAttr>() && !Var->hasInit(); |
16265 | 0 | if (!RegisterVariables) |
16266 | 0 | break; |
16267 | 0 | } |
16268 | 0 | } |
16269 | 0 | } |
16270 | 0 | if (RegisterVariables) |
16271 | 0 | continue; |
16272 | 0 | if (!isa<AsmStmt>(S) && !isa<NullStmt>(S)) { |
16273 | 0 | Diag(S->getBeginLoc(), diag::err_non_asm_stmt_in_naked_function); |
16274 | 0 | Diag(FD->getAttr<NakedAttr>()->getLocation(), diag::note_attribute); |
16275 | 0 | FD->setInvalidDecl(); |
16276 | 0 | break; |
16277 | 0 | } |
16278 | 0 | } |
16279 | 0 | } |
16280 | |
|
16281 | 0 | assert(ExprCleanupObjects.size() == |
16282 | 0 | ExprEvalContexts.back().NumCleanupObjects && |
16283 | 0 | "Leftover temporaries in function"); |
16284 | 0 | assert(!Cleanup.exprNeedsCleanups() && |
16285 | 0 | "Unaccounted cleanups in function"); |
16286 | 0 | assert(MaybeODRUseExprs.empty() && |
16287 | 0 | "Leftover expressions for odr-use checking"); |
16288 | 0 | } |
16289 | 0 | } // Pops the ExitFunctionBodyRAII scope, which needs to happen before we pop |
16290 | | // the declaration context below. Otherwise, we're unable to transform |
16291 | | // 'this' expressions when transforming immediate context functions. |
16292 | | |
16293 | 0 | if (!IsInstantiation) |
16294 | 0 | PopDeclContext(); |
16295 | |
|
16296 | 0 | PopFunctionScopeInfo(ActivePolicy, dcl); |
16297 | | // If any errors have occurred, clear out any temporaries that may have |
16298 | | // been leftover. This ensures that these temporaries won't be picked up for |
16299 | | // deletion in some later function. |
16300 | 0 | if (hasUncompilableErrorOccurred()) { |
16301 | 0 | DiscardCleanupsInEvaluationContext(); |
16302 | 0 | } |
16303 | |
|
16304 | 0 | if (FD && ((LangOpts.OpenMP && (LangOpts.OpenMPIsTargetDevice || |
16305 | 0 | !LangOpts.OMPTargetTriples.empty())) || |
16306 | 0 | LangOpts.CUDA || LangOpts.SYCLIsDevice)) { |
16307 | 0 | auto ES = getEmissionStatus(FD); |
16308 | 0 | if (ES == Sema::FunctionEmissionStatus::Emitted || |
16309 | 0 | ES == Sema::FunctionEmissionStatus::Unknown) |
16310 | 0 | DeclsToCheckForDeferredDiags.insert(FD); |
16311 | 0 | } |
16312 | |
|
16313 | 0 | if (FD && !FD->isDeleted()) |
16314 | 0 | checkTypeSupport(FD->getType(), FD->getLocation(), FD); |
16315 | |
|
16316 | 0 | return dcl; |
16317 | 0 | } |
16318 | | |
16319 | | /// When we finish delayed parsing of an attribute, we must attach it to the |
16320 | | /// relevant Decl. |
16321 | | void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D, |
16322 | 0 | ParsedAttributes &Attrs) { |
16323 | | // Always attach attributes to the underlying decl. |
16324 | 0 | if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D)) |
16325 | 0 | D = TD->getTemplatedDecl(); |
16326 | 0 | ProcessDeclAttributeList(S, D, Attrs); |
16327 | |
|
16328 | 0 | if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D)) |
16329 | 0 | if (Method->isStatic()) |
16330 | 0 | checkThisInStaticMemberFunctionAttributes(Method); |
16331 | 0 | } |
16332 | | |
16333 | | /// ImplicitlyDefineFunction - An undeclared identifier was used in a function |
16334 | | /// call, forming a call to an implicitly defined function (per C99 6.5.1p2). |
16335 | | NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc, |
16336 | 0 | IdentifierInfo &II, Scope *S) { |
16337 | | // It is not valid to implicitly define a function in C23. |
16338 | 0 | assert(LangOpts.implicitFunctionsAllowed() && |
16339 | 0 | "Implicit function declarations aren't allowed in this language mode"); |
16340 | | |
16341 | | // Find the scope in which the identifier is injected and the corresponding |
16342 | | // DeclContext. |
16343 | | // FIXME: C89 does not say what happens if there is no enclosing block scope. |
16344 | | // In that case, we inject the declaration into the translation unit scope |
16345 | | // instead. |
16346 | 0 | Scope *BlockScope = S; |
16347 | 0 | while (!BlockScope->isCompoundStmtScope() && BlockScope->getParent()) |
16348 | 0 | BlockScope = BlockScope->getParent(); |
16349 | | |
16350 | | // Loop until we find a DeclContext that is either a function/method or the |
16351 | | // translation unit, which are the only two valid places to implicitly define |
16352 | | // a function. This avoids accidentally defining the function within a tag |
16353 | | // declaration, for example. |
16354 | 0 | Scope *ContextScope = BlockScope; |
16355 | 0 | while (!ContextScope->getEntity() || |
16356 | 0 | (!ContextScope->getEntity()->isFunctionOrMethod() && |
16357 | 0 | !ContextScope->getEntity()->isTranslationUnit())) |
16358 | 0 | ContextScope = ContextScope->getParent(); |
16359 | 0 | ContextRAII SavedContext(*this, ContextScope->getEntity()); |
16360 | | |
16361 | | // Before we produce a declaration for an implicitly defined |
16362 | | // function, see whether there was a locally-scoped declaration of |
16363 | | // this name as a function or variable. If so, use that |
16364 | | // (non-visible) declaration, and complain about it. |
16365 | 0 | NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II); |
16366 | 0 | if (ExternCPrev) { |
16367 | | // We still need to inject the function into the enclosing block scope so |
16368 | | // that later (non-call) uses can see it. |
16369 | 0 | PushOnScopeChains(ExternCPrev, BlockScope, /*AddToContext*/false); |
16370 | | |
16371 | | // C89 footnote 38: |
16372 | | // If in fact it is not defined as having type "function returning int", |
16373 | | // the behavior is undefined. |
16374 | 0 | if (!isa<FunctionDecl>(ExternCPrev) || |
16375 | 0 | !Context.typesAreCompatible( |
16376 | 0 | cast<FunctionDecl>(ExternCPrev)->getType(), |
16377 | 0 | Context.getFunctionNoProtoType(Context.IntTy))) { |
16378 | 0 | Diag(Loc, diag::ext_use_out_of_scope_declaration) |
16379 | 0 | << ExternCPrev << !getLangOpts().C99; |
16380 | 0 | Diag(ExternCPrev->getLocation(), diag::note_previous_declaration); |
16381 | 0 | return ExternCPrev; |
16382 | 0 | } |
16383 | 0 | } |
16384 | | |
16385 | | // Extension in C99 (defaults to error). Legal in C89, but warn about it. |
16386 | 0 | unsigned diag_id; |
16387 | 0 | if (II.getName().starts_with("__builtin_")) |
16388 | 0 | diag_id = diag::warn_builtin_unknown; |
16389 | | // OpenCL v2.0 s6.9.u - Implicit function declaration is not supported. |
16390 | 0 | else if (getLangOpts().C99) |
16391 | 0 | diag_id = diag::ext_implicit_function_decl_c99; |
16392 | 0 | else |
16393 | 0 | diag_id = diag::warn_implicit_function_decl; |
16394 | |
|
16395 | 0 | TypoCorrection Corrected; |
16396 | | // Because typo correction is expensive, only do it if the implicit |
16397 | | // function declaration is going to be treated as an error. |
16398 | | // |
16399 | | // Perform the correction before issuing the main diagnostic, as some |
16400 | | // consumers use typo-correction callbacks to enhance the main diagnostic. |
16401 | 0 | if (S && !ExternCPrev && |
16402 | 0 | (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error)) { |
16403 | 0 | DeclFilterCCC<FunctionDecl> CCC{}; |
16404 | 0 | Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc), LookupOrdinaryName, |
16405 | 0 | S, nullptr, CCC, CTK_NonError); |
16406 | 0 | } |
16407 | |
|
16408 | 0 | Diag(Loc, diag_id) << &II; |
16409 | 0 | if (Corrected) { |
16410 | | // If the correction is going to suggest an implicitly defined function, |
16411 | | // skip the correction as not being a particularly good idea. |
16412 | 0 | bool Diagnose = true; |
16413 | 0 | if (const auto *D = Corrected.getCorrectionDecl()) |
16414 | 0 | Diagnose = !D->isImplicit(); |
16415 | 0 | if (Diagnose) |
16416 | 0 | diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion), |
16417 | 0 | /*ErrorRecovery*/ false); |
16418 | 0 | } |
16419 | | |
16420 | | // If we found a prior declaration of this function, don't bother building |
16421 | | // another one. We've already pushed that one into scope, so there's nothing |
16422 | | // more to do. |
16423 | 0 | if (ExternCPrev) |
16424 | 0 | return ExternCPrev; |
16425 | | |
16426 | | // Set a Declarator for the implicit definition: int foo(); |
16427 | 0 | const char *Dummy; |
16428 | 0 | AttributeFactory attrFactory; |
16429 | 0 | DeclSpec DS(attrFactory); |
16430 | 0 | unsigned DiagID; |
16431 | 0 | bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID, |
16432 | 0 | Context.getPrintingPolicy()); |
16433 | 0 | (void)Error; // Silence warning. |
16434 | 0 | assert(!Error && "Error setting up implicit decl!"); |
16435 | 0 | SourceLocation NoLoc; |
16436 | 0 | Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::Block); |
16437 | 0 | D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false, |
16438 | 0 | /*IsAmbiguous=*/false, |
16439 | 0 | /*LParenLoc=*/NoLoc, |
16440 | 0 | /*Params=*/nullptr, |
16441 | 0 | /*NumParams=*/0, |
16442 | 0 | /*EllipsisLoc=*/NoLoc, |
16443 | 0 | /*RParenLoc=*/NoLoc, |
16444 | 0 | /*RefQualifierIsLvalueRef=*/true, |
16445 | 0 | /*RefQualifierLoc=*/NoLoc, |
16446 | 0 | /*MutableLoc=*/NoLoc, EST_None, |
16447 | 0 | /*ESpecRange=*/SourceRange(), |
16448 | 0 | /*Exceptions=*/nullptr, |
16449 | 0 | /*ExceptionRanges=*/nullptr, |
16450 | 0 | /*NumExceptions=*/0, |
16451 | 0 | /*NoexceptExpr=*/nullptr, |
16452 | 0 | /*ExceptionSpecTokens=*/nullptr, |
16453 | 0 | /*DeclsInPrototype=*/std::nullopt, |
16454 | 0 | Loc, Loc, D), |
16455 | 0 | std::move(DS.getAttributes()), SourceLocation()); |
16456 | 0 | D.SetIdentifier(&II, Loc); |
16457 | | |
16458 | | // Insert this function into the enclosing block scope. |
16459 | 0 | FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(BlockScope, D)); |
16460 | 0 | FD->setImplicit(); |
16461 | |
|
16462 | 0 | AddKnownFunctionAttributes(FD); |
16463 | |
|
16464 | 0 | return FD; |
16465 | 0 | } |
16466 | | |
16467 | | /// If this function is a C++ replaceable global allocation function |
16468 | | /// (C++2a [basic.stc.dynamic.allocation], C++2a [new.delete]), |
16469 | | /// adds any function attributes that we know a priori based on the standard. |
16470 | | /// |
16471 | | /// We need to check for duplicate attributes both here and where user-written |
16472 | | /// attributes are applied to declarations. |
16473 | | void Sema::AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction( |
16474 | 6 | FunctionDecl *FD) { |
16475 | 6 | if (FD->isInvalidDecl()) |
16476 | 0 | return; |
16477 | | |
16478 | 6 | if (FD->getDeclName().getCXXOverloadedOperator() != OO_New && |
16479 | 6 | FD->getDeclName().getCXXOverloadedOperator() != OO_Array_New) |
16480 | 6 | return; |
16481 | | |
16482 | 0 | std::optional<unsigned> AlignmentParam; |
16483 | 0 | bool IsNothrow = false; |
16484 | 0 | if (!FD->isReplaceableGlobalAllocationFunction(&AlignmentParam, &IsNothrow)) |
16485 | 0 | return; |
16486 | | |
16487 | | // C++2a [basic.stc.dynamic.allocation]p4: |
16488 | | // An allocation function that has a non-throwing exception specification |
16489 | | // indicates failure by returning a null pointer value. Any other allocation |
16490 | | // function never returns a null pointer value and indicates failure only by |
16491 | | // throwing an exception [...] |
16492 | | // |
16493 | | // However, -fcheck-new invalidates this possible assumption, so don't add |
16494 | | // NonNull when that is enabled. |
16495 | 0 | if (!IsNothrow && !FD->hasAttr<ReturnsNonNullAttr>() && |
16496 | 0 | !getLangOpts().CheckNew) |
16497 | 0 | FD->addAttr(ReturnsNonNullAttr::CreateImplicit(Context, FD->getLocation())); |
16498 | | |
16499 | | // C++2a [basic.stc.dynamic.allocation]p2: |
16500 | | // An allocation function attempts to allocate the requested amount of |
16501 | | // storage. [...] If the request succeeds, the value returned by a |
16502 | | // replaceable allocation function is a [...] pointer value p0 different |
16503 | | // from any previously returned value p1 [...] |
16504 | | // |
16505 | | // However, this particular information is being added in codegen, |
16506 | | // because there is an opt-out switch for it (-fno-assume-sane-operator-new) |
16507 | | |
16508 | | // C++2a [basic.stc.dynamic.allocation]p2: |
16509 | | // An allocation function attempts to allocate the requested amount of |
16510 | | // storage. If it is successful, it returns the address of the start of a |
16511 | | // block of storage whose length in bytes is at least as large as the |
16512 | | // requested size. |
16513 | 0 | if (!FD->hasAttr<AllocSizeAttr>()) { |
16514 | 0 | FD->addAttr(AllocSizeAttr::CreateImplicit( |
16515 | 0 | Context, /*ElemSizeParam=*/ParamIdx(1, FD), |
16516 | 0 | /*NumElemsParam=*/ParamIdx(), FD->getLocation())); |
16517 | 0 | } |
16518 | | |
16519 | | // C++2a [basic.stc.dynamic.allocation]p3: |
16520 | | // For an allocation function [...], the pointer returned on a successful |
16521 | | // call shall represent the address of storage that is aligned as follows: |
16522 | | // (3.1) If the allocation function takes an argument of type |
16523 | | // std​::​align_Âval_Ât, the storage will have the alignment |
16524 | | // specified by the value of this argument. |
16525 | 0 | if (AlignmentParam && !FD->hasAttr<AllocAlignAttr>()) { |
16526 | 0 | FD->addAttr(AllocAlignAttr::CreateImplicit( |
16527 | 0 | Context, ParamIdx(*AlignmentParam, FD), FD->getLocation())); |
16528 | 0 | } |
16529 | | |
16530 | | // FIXME: |
16531 | | // C++2a [basic.stc.dynamic.allocation]p3: |
16532 | | // For an allocation function [...], the pointer returned on a successful |
16533 | | // call shall represent the address of storage that is aligned as follows: |
16534 | | // (3.2) Otherwise, if the allocation function is named operator new[], |
16535 | | // the storage is aligned for any object that does not have |
16536 | | // new-extended alignment ([basic.align]) and is no larger than the |
16537 | | // requested size. |
16538 | | // (3.3) Otherwise, the storage is aligned for any object that does not |
16539 | | // have new-extended alignment and is of the requested size. |
16540 | 0 | } |
16541 | | |
16542 | | /// Adds any function attributes that we know a priori based on |
16543 | | /// the declaration of this function. |
16544 | | /// |
16545 | | /// These attributes can apply both to implicitly-declared builtins |
16546 | | /// (like __builtin___printf_chk) or to library-declared functions |
16547 | | /// like NSLog or printf. |
16548 | | /// |
16549 | | /// We need to check for duplicate attributes both here and where user-written |
16550 | | /// attributes are applied to declarations. |
16551 | 19 | void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) { |
16552 | 19 | if (FD->isInvalidDecl()) |
16553 | 13 | return; |
16554 | | |
16555 | | // If this is a built-in function, map its builtin attributes to |
16556 | | // actual attributes. |
16557 | 6 | if (unsigned BuiltinID = FD->getBuiltinID()) { |
16558 | | // Handle printf-formatting attributes. |
16559 | 0 | unsigned FormatIdx; |
16560 | 0 | bool HasVAListArg; |
16561 | 0 | if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) { |
16562 | 0 | if (!FD->hasAttr<FormatAttr>()) { |
16563 | 0 | const char *fmt = "printf"; |
16564 | 0 | unsigned int NumParams = FD->getNumParams(); |
16565 | 0 | if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf) |
16566 | 0 | FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType()) |
16567 | 0 | fmt = "NSString"; |
16568 | 0 | FD->addAttr(FormatAttr::CreateImplicit(Context, |
16569 | 0 | &Context.Idents.get(fmt), |
16570 | 0 | FormatIdx+1, |
16571 | 0 | HasVAListArg ? 0 : FormatIdx+2, |
16572 | 0 | FD->getLocation())); |
16573 | 0 | } |
16574 | 0 | } |
16575 | 0 | if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx, |
16576 | 0 | HasVAListArg)) { |
16577 | 0 | if (!FD->hasAttr<FormatAttr>()) |
16578 | 0 | FD->addAttr(FormatAttr::CreateImplicit(Context, |
16579 | 0 | &Context.Idents.get("scanf"), |
16580 | 0 | FormatIdx+1, |
16581 | 0 | HasVAListArg ? 0 : FormatIdx+2, |
16582 | 0 | FD->getLocation())); |
16583 | 0 | } |
16584 | | |
16585 | | // Handle automatically recognized callbacks. |
16586 | 0 | SmallVector<int, 4> Encoding; |
16587 | 0 | if (!FD->hasAttr<CallbackAttr>() && |
16588 | 0 | Context.BuiltinInfo.performsCallback(BuiltinID, Encoding)) |
16589 | 0 | FD->addAttr(CallbackAttr::CreateImplicit( |
16590 | 0 | Context, Encoding.data(), Encoding.size(), FD->getLocation())); |
16591 | | |
16592 | | // Mark const if we don't care about errno and/or floating point exceptions |
16593 | | // that are the only thing preventing the function from being const. This |
16594 | | // allows IRgen to use LLVM intrinsics for such functions. |
16595 | 0 | bool NoExceptions = |
16596 | 0 | getLangOpts().getDefaultExceptionMode() == LangOptions::FPE_Ignore; |
16597 | 0 | bool ConstWithoutErrnoAndExceptions = |
16598 | 0 | Context.BuiltinInfo.isConstWithoutErrnoAndExceptions(BuiltinID); |
16599 | 0 | bool ConstWithoutExceptions = |
16600 | 0 | Context.BuiltinInfo.isConstWithoutExceptions(BuiltinID); |
16601 | 0 | if (!FD->hasAttr<ConstAttr>() && |
16602 | 0 | (ConstWithoutErrnoAndExceptions || ConstWithoutExceptions) && |
16603 | 0 | (!ConstWithoutErrnoAndExceptions || |
16604 | 0 | (!getLangOpts().MathErrno && NoExceptions)) && |
16605 | 0 | (!ConstWithoutExceptions || NoExceptions)) |
16606 | 0 | FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); |
16607 | | |
16608 | | // We make "fma" on GNU or Windows const because we know it does not set |
16609 | | // errno in those environments even though it could set errno based on the |
16610 | | // C standard. |
16611 | 0 | const llvm::Triple &Trip = Context.getTargetInfo().getTriple(); |
16612 | 0 | if ((Trip.isGNUEnvironment() || Trip.isOSMSVCRT()) && |
16613 | 0 | !FD->hasAttr<ConstAttr>()) { |
16614 | 0 | switch (BuiltinID) { |
16615 | 0 | case Builtin::BI__builtin_fma: |
16616 | 0 | case Builtin::BI__builtin_fmaf: |
16617 | 0 | case Builtin::BI__builtin_fmal: |
16618 | 0 | case Builtin::BIfma: |
16619 | 0 | case Builtin::BIfmaf: |
16620 | 0 | case Builtin::BIfmal: |
16621 | 0 | FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); |
16622 | 0 | break; |
16623 | 0 | default: |
16624 | 0 | break; |
16625 | 0 | } |
16626 | 0 | } |
16627 | | |
16628 | 0 | if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) && |
16629 | 0 | !FD->hasAttr<ReturnsTwiceAttr>()) |
16630 | 0 | FD->addAttr(ReturnsTwiceAttr::CreateImplicit(Context, |
16631 | 0 | FD->getLocation())); |
16632 | 0 | if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->hasAttr<NoThrowAttr>()) |
16633 | 0 | FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); |
16634 | 0 | if (Context.BuiltinInfo.isPure(BuiltinID) && !FD->hasAttr<PureAttr>()) |
16635 | 0 | FD->addAttr(PureAttr::CreateImplicit(Context, FD->getLocation())); |
16636 | 0 | if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->hasAttr<ConstAttr>()) |
16637 | 0 | FD->addAttr(ConstAttr::CreateImplicit(Context, FD->getLocation())); |
16638 | 0 | if (getLangOpts().CUDA && Context.BuiltinInfo.isTSBuiltin(BuiltinID) && |
16639 | 0 | !FD->hasAttr<CUDADeviceAttr>() && !FD->hasAttr<CUDAHostAttr>()) { |
16640 | | // Add the appropriate attribute, depending on the CUDA compilation mode |
16641 | | // and which target the builtin belongs to. For example, during host |
16642 | | // compilation, aux builtins are __device__, while the rest are __host__. |
16643 | 0 | if (getLangOpts().CUDAIsDevice != |
16644 | 0 | Context.BuiltinInfo.isAuxBuiltinID(BuiltinID)) |
16645 | 0 | FD->addAttr(CUDADeviceAttr::CreateImplicit(Context, FD->getLocation())); |
16646 | 0 | else |
16647 | 0 | FD->addAttr(CUDAHostAttr::CreateImplicit(Context, FD->getLocation())); |
16648 | 0 | } |
16649 | | |
16650 | | // Add known guaranteed alignment for allocation functions. |
16651 | 0 | switch (BuiltinID) { |
16652 | 0 | case Builtin::BImemalign: |
16653 | 0 | case Builtin::BIaligned_alloc: |
16654 | 0 | if (!FD->hasAttr<AllocAlignAttr>()) |
16655 | 0 | FD->addAttr(AllocAlignAttr::CreateImplicit(Context, ParamIdx(1, FD), |
16656 | 0 | FD->getLocation())); |
16657 | 0 | break; |
16658 | 0 | default: |
16659 | 0 | break; |
16660 | 0 | } |
16661 | | |
16662 | | // Add allocsize attribute for allocation functions. |
16663 | 0 | switch (BuiltinID) { |
16664 | 0 | case Builtin::BIcalloc: |
16665 | 0 | FD->addAttr(AllocSizeAttr::CreateImplicit( |
16666 | 0 | Context, ParamIdx(1, FD), ParamIdx(2, FD), FD->getLocation())); |
16667 | 0 | break; |
16668 | 0 | case Builtin::BImemalign: |
16669 | 0 | case Builtin::BIaligned_alloc: |
16670 | 0 | case Builtin::BIrealloc: |
16671 | 0 | FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(2, FD), |
16672 | 0 | ParamIdx(), FD->getLocation())); |
16673 | 0 | break; |
16674 | 0 | case Builtin::BImalloc: |
16675 | 0 | FD->addAttr(AllocSizeAttr::CreateImplicit(Context, ParamIdx(1, FD), |
16676 | 0 | ParamIdx(), FD->getLocation())); |
16677 | 0 | break; |
16678 | 0 | default: |
16679 | 0 | break; |
16680 | 0 | } |
16681 | | |
16682 | | // Add lifetime attribute to std::move, std::fowrard et al. |
16683 | 0 | switch (BuiltinID) { |
16684 | 0 | case Builtin::BIaddressof: |
16685 | 0 | case Builtin::BI__addressof: |
16686 | 0 | case Builtin::BI__builtin_addressof: |
16687 | 0 | case Builtin::BIas_const: |
16688 | 0 | case Builtin::BIforward: |
16689 | 0 | case Builtin::BIforward_like: |
16690 | 0 | case Builtin::BImove: |
16691 | 0 | case Builtin::BImove_if_noexcept: |
16692 | 0 | if (ParmVarDecl *P = FD->getParamDecl(0u); |
16693 | 0 | !P->hasAttr<LifetimeBoundAttr>()) |
16694 | 0 | P->addAttr( |
16695 | 0 | LifetimeBoundAttr::CreateImplicit(Context, FD->getLocation())); |
16696 | 0 | break; |
16697 | 0 | default: |
16698 | 0 | break; |
16699 | 0 | } |
16700 | 0 | } |
16701 | | |
16702 | 6 | AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(FD); |
16703 | | |
16704 | | // If C++ exceptions are enabled but we are told extern "C" functions cannot |
16705 | | // throw, add an implicit nothrow attribute to any extern "C" function we come |
16706 | | // across. |
16707 | 6 | if (getLangOpts().CXXExceptions && getLangOpts().ExternCNoUnwind && |
16708 | 6 | FD->isExternC() && !FD->hasAttr<NoThrowAttr>()) { |
16709 | 0 | const auto *FPT = FD->getType()->getAs<FunctionProtoType>(); |
16710 | 0 | if (!FPT || FPT->getExceptionSpecType() == EST_None) |
16711 | 0 | FD->addAttr(NoThrowAttr::CreateImplicit(Context, FD->getLocation())); |
16712 | 0 | } |
16713 | | |
16714 | 6 | IdentifierInfo *Name = FD->getIdentifier(); |
16715 | 6 | if (!Name) |
16716 | 0 | return; |
16717 | 6 | if ((!getLangOpts().CPlusPlus && FD->getDeclContext()->isTranslationUnit()) || |
16718 | 6 | (isa<LinkageSpecDecl>(FD->getDeclContext()) && |
16719 | 0 | cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() == |
16720 | 6 | LinkageSpecLanguageIDs::C)) { |
16721 | | // Okay: this could be a libc/libm/Objective-C function we know |
16722 | | // about. |
16723 | 6 | } else |
16724 | 0 | return; |
16725 | | |
16726 | 6 | if (Name->isStr("asprintf") || Name->isStr("vasprintf")) { |
16727 | | // FIXME: asprintf and vasprintf aren't C99 functions. Should they be |
16728 | | // target-specific builtins, perhaps? |
16729 | 0 | if (!FD->hasAttr<FormatAttr>()) |
16730 | 0 | FD->addAttr(FormatAttr::CreateImplicit(Context, |
16731 | 0 | &Context.Idents.get("printf"), 2, |
16732 | 0 | Name->isStr("vasprintf") ? 0 : 3, |
16733 | 0 | FD->getLocation())); |
16734 | 0 | } |
16735 | | |
16736 | 6 | if (Name->isStr("__CFStringMakeConstantString")) { |
16737 | | // We already have a __builtin___CFStringMakeConstantString, |
16738 | | // but builds that use -fno-constant-cfstrings don't go through that. |
16739 | 0 | if (!FD->hasAttr<FormatArgAttr>()) |
16740 | 0 | FD->addAttr(FormatArgAttr::CreateImplicit(Context, ParamIdx(1, FD), |
16741 | 0 | FD->getLocation())); |
16742 | 0 | } |
16743 | 6 | } |
16744 | | |
16745 | | TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T, |
16746 | 0 | TypeSourceInfo *TInfo) { |
16747 | 0 | assert(D.getIdentifier() && "Wrong callback for declspec without declarator"); |
16748 | 0 | assert(!T.isNull() && "GetTypeForDeclarator() returned null type"); |
16749 | | |
16750 | 0 | if (!TInfo) { |
16751 | 0 | assert(D.isInvalidType() && "no declarator info for valid type"); |
16752 | 0 | TInfo = Context.getTrivialTypeSourceInfo(T); |
16753 | 0 | } |
16754 | | |
16755 | | // Scope manipulation handled by caller. |
16756 | 0 | TypedefDecl *NewTD = |
16757 | 0 | TypedefDecl::Create(Context, CurContext, D.getBeginLoc(), |
16758 | 0 | D.getIdentifierLoc(), D.getIdentifier(), TInfo); |
16759 | | |
16760 | | // Bail out immediately if we have an invalid declaration. |
16761 | 0 | if (D.isInvalidType()) { |
16762 | 0 | NewTD->setInvalidDecl(); |
16763 | 0 | return NewTD; |
16764 | 0 | } |
16765 | | |
16766 | 0 | if (D.getDeclSpec().isModulePrivateSpecified()) { |
16767 | 0 | if (CurContext->isFunctionOrMethod()) |
16768 | 0 | Diag(NewTD->getLocation(), diag::err_module_private_local) |
16769 | 0 | << 2 << NewTD |
16770 | 0 | << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc()) |
16771 | 0 | << FixItHint::CreateRemoval( |
16772 | 0 | D.getDeclSpec().getModulePrivateSpecLoc()); |
16773 | 0 | else |
16774 | 0 | NewTD->setModulePrivate(); |
16775 | 0 | } |
16776 | | |
16777 | | // C++ [dcl.typedef]p8: |
16778 | | // If the typedef declaration defines an unnamed class (or |
16779 | | // enum), the first typedef-name declared by the declaration |
16780 | | // to be that class type (or enum type) is used to denote the |
16781 | | // class type (or enum type) for linkage purposes only. |
16782 | | // We need to check whether the type was declared in the declaration. |
16783 | 0 | switch (D.getDeclSpec().getTypeSpecType()) { |
16784 | 0 | case TST_enum: |
16785 | 0 | case TST_struct: |
16786 | 0 | case TST_interface: |
16787 | 0 | case TST_union: |
16788 | 0 | case TST_class: { |
16789 | 0 | TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl()); |
16790 | 0 | setTagNameForLinkagePurposes(tagFromDeclSpec, NewTD); |
16791 | 0 | break; |
16792 | 0 | } |
16793 | | |
16794 | 0 | default: |
16795 | 0 | break; |
16796 | 0 | } |
16797 | | |
16798 | 0 | return NewTD; |
16799 | 0 | } |
16800 | | |
16801 | | /// Check that this is a valid underlying type for an enum declaration. |
16802 | 0 | bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) { |
16803 | 0 | SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc(); |
16804 | 0 | QualType T = TI->getType(); |
16805 | |
|
16806 | 0 | if (T->isDependentType()) |
16807 | 0 | return false; |
16808 | | |
16809 | | // This doesn't use 'isIntegralType' despite the error message mentioning |
16810 | | // integral type because isIntegralType would also allow enum types in C. |
16811 | 0 | if (const BuiltinType *BT = T->getAs<BuiltinType>()) |
16812 | 0 | if (BT->isInteger()) |
16813 | 0 | return false; |
16814 | | |
16815 | 0 | return Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) |
16816 | 0 | << T << T->isBitIntType(); |
16817 | 0 | } |
16818 | | |
16819 | | /// Check whether this is a valid redeclaration of a previous enumeration. |
16820 | | /// \return true if the redeclaration was invalid. |
16821 | | bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped, |
16822 | | QualType EnumUnderlyingTy, bool IsFixed, |
16823 | 0 | const EnumDecl *Prev) { |
16824 | 0 | if (IsScoped != Prev->isScoped()) { |
16825 | 0 | Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch) |
16826 | 0 | << Prev->isScoped(); |
16827 | 0 | Diag(Prev->getLocation(), diag::note_previous_declaration); |
16828 | 0 | return true; |
16829 | 0 | } |
16830 | | |
16831 | 0 | if (IsFixed && Prev->isFixed()) { |
16832 | 0 | if (!EnumUnderlyingTy->isDependentType() && |
16833 | 0 | !Prev->getIntegerType()->isDependentType() && |
16834 | 0 | !Context.hasSameUnqualifiedType(EnumUnderlyingTy, |
16835 | 0 | Prev->getIntegerType())) { |
16836 | | // TODO: Highlight the underlying type of the redeclaration. |
16837 | 0 | Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch) |
16838 | 0 | << EnumUnderlyingTy << Prev->getIntegerType(); |
16839 | 0 | Diag(Prev->getLocation(), diag::note_previous_declaration) |
16840 | 0 | << Prev->getIntegerTypeRange(); |
16841 | 0 | return true; |
16842 | 0 | } |
16843 | 0 | } else if (IsFixed != Prev->isFixed()) { |
16844 | 0 | Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch) |
16845 | 0 | << Prev->isFixed(); |
16846 | 0 | Diag(Prev->getLocation(), diag::note_previous_declaration); |
16847 | 0 | return true; |
16848 | 0 | } |
16849 | | |
16850 | 0 | return false; |
16851 | 0 | } |
16852 | | |
16853 | | /// Get diagnostic %select index for tag kind for |
16854 | | /// redeclaration diagnostic message. |
16855 | | /// WARNING: Indexes apply to particular diagnostics only! |
16856 | | /// |
16857 | | /// \returns diagnostic %select index. |
16858 | 0 | static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) { |
16859 | 0 | switch (Tag) { |
16860 | 0 | case TagTypeKind::Struct: |
16861 | 0 | return 0; |
16862 | 0 | case TagTypeKind::Interface: |
16863 | 0 | return 1; |
16864 | 0 | case TagTypeKind::Class: |
16865 | 0 | return 2; |
16866 | 0 | default: llvm_unreachable("Invalid tag kind for redecl diagnostic!"); |
16867 | 0 | } |
16868 | 0 | } |
16869 | | |
16870 | | /// Determine if tag kind is a class-key compatible with |
16871 | | /// class for redeclaration (class, struct, or __interface). |
16872 | | /// |
16873 | | /// \returns true iff the tag kind is compatible. |
16874 | | static bool isClassCompatTagKind(TagTypeKind Tag) |
16875 | 0 | { |
16876 | 0 | return Tag == TagTypeKind::Struct || Tag == TagTypeKind::Class || |
16877 | 0 | Tag == TagTypeKind::Interface; |
16878 | 0 | } |
16879 | | |
16880 | | Sema::NonTagKind Sema::getNonTagTypeDeclKind(const Decl *PrevDecl, |
16881 | 0 | TagTypeKind TTK) { |
16882 | 0 | if (isa<TypedefDecl>(PrevDecl)) |
16883 | 0 | return NTK_Typedef; |
16884 | 0 | else if (isa<TypeAliasDecl>(PrevDecl)) |
16885 | 0 | return NTK_TypeAlias; |
16886 | 0 | else if (isa<ClassTemplateDecl>(PrevDecl)) |
16887 | 0 | return NTK_Template; |
16888 | 0 | else if (isa<TypeAliasTemplateDecl>(PrevDecl)) |
16889 | 0 | return NTK_TypeAliasTemplate; |
16890 | 0 | else if (isa<TemplateTemplateParmDecl>(PrevDecl)) |
16891 | 0 | return NTK_TemplateTemplateArgument; |
16892 | 0 | switch (TTK) { |
16893 | 0 | case TagTypeKind::Struct: |
16894 | 0 | case TagTypeKind::Interface: |
16895 | 0 | case TagTypeKind::Class: |
16896 | 0 | return getLangOpts().CPlusPlus ? NTK_NonClass : NTK_NonStruct; |
16897 | 0 | case TagTypeKind::Union: |
16898 | 0 | return NTK_NonUnion; |
16899 | 0 | case TagTypeKind::Enum: |
16900 | 0 | return NTK_NonEnum; |
16901 | 0 | } |
16902 | 0 | llvm_unreachable("invalid TTK"); |
16903 | 0 | } |
16904 | | |
16905 | | /// Determine whether a tag with a given kind is acceptable |
16906 | | /// as a redeclaration of the given tag declaration. |
16907 | | /// |
16908 | | /// \returns true if the new tag kind is acceptable, false otherwise. |
16909 | | bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous, |
16910 | | TagTypeKind NewTag, bool isDefinition, |
16911 | | SourceLocation NewTagLoc, |
16912 | 0 | const IdentifierInfo *Name) { |
16913 | | // C++ [dcl.type.elab]p3: |
16914 | | // The class-key or enum keyword present in the |
16915 | | // elaborated-type-specifier shall agree in kind with the |
16916 | | // declaration to which the name in the elaborated-type-specifier |
16917 | | // refers. This rule also applies to the form of |
16918 | | // elaborated-type-specifier that declares a class-name or |
16919 | | // friend class since it can be construed as referring to the |
16920 | | // definition of the class. Thus, in any |
16921 | | // elaborated-type-specifier, the enum keyword shall be used to |
16922 | | // refer to an enumeration (7.2), the union class-key shall be |
16923 | | // used to refer to a union (clause 9), and either the class or |
16924 | | // struct class-key shall be used to refer to a class (clause 9) |
16925 | | // declared using the class or struct class-key. |
16926 | 0 | TagTypeKind OldTag = Previous->getTagKind(); |
16927 | 0 | if (OldTag != NewTag && |
16928 | 0 | !(isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag))) |
16929 | 0 | return false; |
16930 | | |
16931 | | // Tags are compatible, but we might still want to warn on mismatched tags. |
16932 | | // Non-class tags can't be mismatched at this point. |
16933 | 0 | if (!isClassCompatTagKind(NewTag)) |
16934 | 0 | return true; |
16935 | | |
16936 | | // Declarations for which -Wmismatched-tags is disabled are entirely ignored |
16937 | | // by our warning analysis. We don't want to warn about mismatches with (eg) |
16938 | | // declarations in system headers that are designed to be specialized, but if |
16939 | | // a user asks us to warn, we should warn if their code contains mismatched |
16940 | | // declarations. |
16941 | 0 | auto IsIgnoredLoc = [&](SourceLocation Loc) { |
16942 | 0 | return getDiagnostics().isIgnored(diag::warn_struct_class_tag_mismatch, |
16943 | 0 | Loc); |
16944 | 0 | }; |
16945 | 0 | if (IsIgnoredLoc(NewTagLoc)) |
16946 | 0 | return true; |
16947 | | |
16948 | 0 | auto IsIgnored = [&](const TagDecl *Tag) { |
16949 | 0 | return IsIgnoredLoc(Tag->getLocation()); |
16950 | 0 | }; |
16951 | 0 | while (IsIgnored(Previous)) { |
16952 | 0 | Previous = Previous->getPreviousDecl(); |
16953 | 0 | if (!Previous) |
16954 | 0 | return true; |
16955 | 0 | OldTag = Previous->getTagKind(); |
16956 | 0 | } |
16957 | | |
16958 | 0 | bool isTemplate = false; |
16959 | 0 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous)) |
16960 | 0 | isTemplate = Record->getDescribedClassTemplate(); |
16961 | |
|
16962 | 0 | if (inTemplateInstantiation()) { |
16963 | 0 | if (OldTag != NewTag) { |
16964 | | // In a template instantiation, do not offer fix-its for tag mismatches |
16965 | | // since they usually mess up the template instead of fixing the problem. |
16966 | 0 | Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) |
16967 | 0 | << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name |
16968 | 0 | << getRedeclDiagFromTagKind(OldTag); |
16969 | | // FIXME: Note previous location? |
16970 | 0 | } |
16971 | 0 | return true; |
16972 | 0 | } |
16973 | | |
16974 | 0 | if (isDefinition) { |
16975 | | // On definitions, check all previous tags and issue a fix-it for each |
16976 | | // one that doesn't match the current tag. |
16977 | 0 | if (Previous->getDefinition()) { |
16978 | | // Don't suggest fix-its for redefinitions. |
16979 | 0 | return true; |
16980 | 0 | } |
16981 | | |
16982 | 0 | bool previousMismatch = false; |
16983 | 0 | for (const TagDecl *I : Previous->redecls()) { |
16984 | 0 | if (I->getTagKind() != NewTag) { |
16985 | | // Ignore previous declarations for which the warning was disabled. |
16986 | 0 | if (IsIgnored(I)) |
16987 | 0 | continue; |
16988 | | |
16989 | 0 | if (!previousMismatch) { |
16990 | 0 | previousMismatch = true; |
16991 | 0 | Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch) |
16992 | 0 | << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name |
16993 | 0 | << getRedeclDiagFromTagKind(I->getTagKind()); |
16994 | 0 | } |
16995 | 0 | Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion) |
16996 | 0 | << getRedeclDiagFromTagKind(NewTag) |
16997 | 0 | << FixItHint::CreateReplacement(I->getInnerLocStart(), |
16998 | 0 | TypeWithKeyword::getTagTypeKindName(NewTag)); |
16999 | 0 | } |
17000 | 0 | } |
17001 | 0 | return true; |
17002 | 0 | } |
17003 | | |
17004 | | // Identify the prevailing tag kind: this is the kind of the definition (if |
17005 | | // there is a non-ignored definition), or otherwise the kind of the prior |
17006 | | // (non-ignored) declaration. |
17007 | 0 | const TagDecl *PrevDef = Previous->getDefinition(); |
17008 | 0 | if (PrevDef && IsIgnored(PrevDef)) |
17009 | 0 | PrevDef = nullptr; |
17010 | 0 | const TagDecl *Redecl = PrevDef ? PrevDef : Previous; |
17011 | 0 | if (Redecl->getTagKind() != NewTag) { |
17012 | 0 | Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch) |
17013 | 0 | << getRedeclDiagFromTagKind(NewTag) << isTemplate << Name |
17014 | 0 | << getRedeclDiagFromTagKind(OldTag); |
17015 | 0 | Diag(Redecl->getLocation(), diag::note_previous_use); |
17016 | | |
17017 | | // If there is a previous definition, suggest a fix-it. |
17018 | 0 | if (PrevDef) { |
17019 | 0 | Diag(NewTagLoc, diag::note_struct_class_suggestion) |
17020 | 0 | << getRedeclDiagFromTagKind(Redecl->getTagKind()) |
17021 | 0 | << FixItHint::CreateReplacement(SourceRange(NewTagLoc), |
17022 | 0 | TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind())); |
17023 | 0 | } |
17024 | 0 | } |
17025 | |
|
17026 | 0 | return true; |
17027 | 0 | } |
17028 | | |
17029 | | /// Add a minimal nested name specifier fixit hint to allow lookup of a tag name |
17030 | | /// from an outer enclosing namespace or file scope inside a friend declaration. |
17031 | | /// This should provide the commented out code in the following snippet: |
17032 | | /// namespace N { |
17033 | | /// struct X; |
17034 | | /// namespace M { |
17035 | | /// struct Y { friend struct /*N::*/ X; }; |
17036 | | /// } |
17037 | | /// } |
17038 | | static FixItHint createFriendTagNNSFixIt(Sema &SemaRef, NamedDecl *ND, Scope *S, |
17039 | 0 | SourceLocation NameLoc) { |
17040 | | // While the decl is in a namespace, do repeated lookup of that name and see |
17041 | | // if we get the same namespace back. If we do not, continue until |
17042 | | // translation unit scope, at which point we have a fully qualified NNS. |
17043 | 0 | SmallVector<IdentifierInfo *, 4> Namespaces; |
17044 | 0 | DeclContext *DC = ND->getDeclContext()->getRedeclContext(); |
17045 | 0 | for (; !DC->isTranslationUnit(); DC = DC->getParent()) { |
17046 | | // This tag should be declared in a namespace, which can only be enclosed by |
17047 | | // other namespaces. Bail if there's an anonymous namespace in the chain. |
17048 | 0 | NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(DC); |
17049 | 0 | if (!Namespace || Namespace->isAnonymousNamespace()) |
17050 | 0 | return FixItHint(); |
17051 | 0 | IdentifierInfo *II = Namespace->getIdentifier(); |
17052 | 0 | Namespaces.push_back(II); |
17053 | 0 | NamedDecl *Lookup = SemaRef.LookupSingleName( |
17054 | 0 | S, II, NameLoc, Sema::LookupNestedNameSpecifierName); |
17055 | 0 | if (Lookup == Namespace) |
17056 | 0 | break; |
17057 | 0 | } |
17058 | | |
17059 | | // Once we have all the namespaces, reverse them to go outermost first, and |
17060 | | // build an NNS. |
17061 | 0 | SmallString<64> Insertion; |
17062 | 0 | llvm::raw_svector_ostream OS(Insertion); |
17063 | 0 | if (DC->isTranslationUnit()) |
17064 | 0 | OS << "::"; |
17065 | 0 | std::reverse(Namespaces.begin(), Namespaces.end()); |
17066 | 0 | for (auto *II : Namespaces) |
17067 | 0 | OS << II->getName() << "::"; |
17068 | 0 | return FixItHint::CreateInsertion(NameLoc, Insertion); |
17069 | 0 | } |
17070 | | |
17071 | | /// Determine whether a tag originally declared in context \p OldDC can |
17072 | | /// be redeclared with an unqualified name in \p NewDC (assuming name lookup |
17073 | | /// found a declaration in \p OldDC as a previous decl, perhaps through a |
17074 | | /// using-declaration). |
17075 | | static bool isAcceptableTagRedeclContext(Sema &S, DeclContext *OldDC, |
17076 | 0 | DeclContext *NewDC) { |
17077 | 0 | OldDC = OldDC->getRedeclContext(); |
17078 | 0 | NewDC = NewDC->getRedeclContext(); |
17079 | |
|
17080 | 0 | if (OldDC->Equals(NewDC)) |
17081 | 0 | return true; |
17082 | | |
17083 | | // In MSVC mode, we allow a redeclaration if the contexts are related (either |
17084 | | // encloses the other). |
17085 | 0 | if (S.getLangOpts().MSVCCompat && |
17086 | 0 | (OldDC->Encloses(NewDC) || NewDC->Encloses(OldDC))) |
17087 | 0 | return true; |
17088 | | |
17089 | 0 | return false; |
17090 | 0 | } |
17091 | | |
17092 | | /// This is invoked when we see 'struct foo' or 'struct {'. In the |
17093 | | /// former case, Name will be non-null. In the later case, Name will be null. |
17094 | | /// TagSpec indicates what kind of tag this is. TUK indicates whether this is a |
17095 | | /// reference/declaration/definition of a tag. |
17096 | | /// |
17097 | | /// \param IsTypeSpecifier \c true if this is a type-specifier (or |
17098 | | /// trailing-type-specifier) other than one in an alias-declaration. |
17099 | | /// |
17100 | | /// \param SkipBody If non-null, will be set to indicate if the caller should |
17101 | | /// skip the definition of this tag and treat it as if it were a declaration. |
17102 | | DeclResult |
17103 | | Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK, SourceLocation KWLoc, |
17104 | | CXXScopeSpec &SS, IdentifierInfo *Name, SourceLocation NameLoc, |
17105 | | const ParsedAttributesView &Attrs, AccessSpecifier AS, |
17106 | | SourceLocation ModulePrivateLoc, |
17107 | | MultiTemplateParamsArg TemplateParameterLists, bool &OwnedDecl, |
17108 | | bool &IsDependent, SourceLocation ScopedEnumKWLoc, |
17109 | | bool ScopedEnumUsesClassTag, TypeResult UnderlyingType, |
17110 | | bool IsTypeSpecifier, bool IsTemplateParamOrArg, |
17111 | 0 | OffsetOfKind OOK, SkipBodyInfo *SkipBody) { |
17112 | | // If this is not a definition, it must have a name. |
17113 | 0 | IdentifierInfo *OrigName = Name; |
17114 | 0 | assert((Name != nullptr || TUK == TUK_Definition) && |
17115 | 0 | "Nameless record must be a definition!"); |
17116 | 0 | assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference); |
17117 | | |
17118 | 0 | OwnedDecl = false; |
17119 | 0 | TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec); |
17120 | 0 | bool ScopedEnum = ScopedEnumKWLoc.isValid(); |
17121 | | |
17122 | | // FIXME: Check member specializations more carefully. |
17123 | 0 | bool isMemberSpecialization = false; |
17124 | 0 | bool Invalid = false; |
17125 | | |
17126 | | // We only need to do this matching if we have template parameters |
17127 | | // or a scope specifier, which also conveniently avoids this work |
17128 | | // for non-C++ cases. |
17129 | 0 | if (TemplateParameterLists.size() > 0 || |
17130 | 0 | (SS.isNotEmpty() && TUK != TUK_Reference)) { |
17131 | 0 | if (TemplateParameterList *TemplateParams = |
17132 | 0 | MatchTemplateParametersToScopeSpecifier( |
17133 | 0 | KWLoc, NameLoc, SS, nullptr, TemplateParameterLists, |
17134 | 0 | TUK == TUK_Friend, isMemberSpecialization, Invalid)) { |
17135 | 0 | if (Kind == TagTypeKind::Enum) { |
17136 | 0 | Diag(KWLoc, diag::err_enum_template); |
17137 | 0 | return true; |
17138 | 0 | } |
17139 | | |
17140 | 0 | if (TemplateParams->size() > 0) { |
17141 | | // This is a declaration or definition of a class template (which may |
17142 | | // be a member of another template). |
17143 | |
|
17144 | 0 | if (Invalid) |
17145 | 0 | return true; |
17146 | | |
17147 | 0 | OwnedDecl = false; |
17148 | 0 | DeclResult Result = CheckClassTemplate( |
17149 | 0 | S, TagSpec, TUK, KWLoc, SS, Name, NameLoc, Attrs, TemplateParams, |
17150 | 0 | AS, ModulePrivateLoc, |
17151 | 0 | /*FriendLoc*/ SourceLocation(), TemplateParameterLists.size() - 1, |
17152 | 0 | TemplateParameterLists.data(), SkipBody); |
17153 | 0 | return Result.get(); |
17154 | 0 | } else { |
17155 | | // The "template<>" header is extraneous. |
17156 | 0 | Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams) |
17157 | 0 | << TypeWithKeyword::getTagTypeKindName(Kind) << Name; |
17158 | 0 | isMemberSpecialization = true; |
17159 | 0 | } |
17160 | 0 | } |
17161 | | |
17162 | 0 | if (!TemplateParameterLists.empty() && isMemberSpecialization && |
17163 | 0 | CheckTemplateDeclScope(S, TemplateParameterLists.back())) |
17164 | 0 | return true; |
17165 | 0 | } |
17166 | | |
17167 | | // Figure out the underlying type if this a enum declaration. We need to do |
17168 | | // this early, because it's needed to detect if this is an incompatible |
17169 | | // redeclaration. |
17170 | 0 | llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying; |
17171 | 0 | bool IsFixed = !UnderlyingType.isUnset() || ScopedEnum; |
17172 | |
|
17173 | 0 | if (Kind == TagTypeKind::Enum) { |
17174 | 0 | if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum)) { |
17175 | | // No underlying type explicitly specified, or we failed to parse the |
17176 | | // type, default to int. |
17177 | 0 | EnumUnderlying = Context.IntTy.getTypePtr(); |
17178 | 0 | } else if (UnderlyingType.get()) { |
17179 | | // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an |
17180 | | // integral type; any cv-qualification is ignored. |
17181 | 0 | TypeSourceInfo *TI = nullptr; |
17182 | 0 | GetTypeFromParser(UnderlyingType.get(), &TI); |
17183 | 0 | EnumUnderlying = TI; |
17184 | |
|
17185 | 0 | if (CheckEnumUnderlyingType(TI)) |
17186 | | // Recover by falling back to int. |
17187 | 0 | EnumUnderlying = Context.IntTy.getTypePtr(); |
17188 | |
|
17189 | 0 | if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI, |
17190 | 0 | UPPC_FixedUnderlyingType)) |
17191 | 0 | EnumUnderlying = Context.IntTy.getTypePtr(); |
17192 | |
|
17193 | 0 | } else if (Context.getTargetInfo().getTriple().isWindowsMSVCEnvironment()) { |
17194 | | // For MSVC ABI compatibility, unfixed enums must use an underlying type |
17195 | | // of 'int'. However, if this is an unfixed forward declaration, don't set |
17196 | | // the underlying type unless the user enables -fms-compatibility. This |
17197 | | // makes unfixed forward declared enums incomplete and is more conforming. |
17198 | 0 | if (TUK == TUK_Definition || getLangOpts().MSVCCompat) |
17199 | 0 | EnumUnderlying = Context.IntTy.getTypePtr(); |
17200 | 0 | } |
17201 | 0 | } |
17202 | |
|
17203 | 0 | DeclContext *SearchDC = CurContext; |
17204 | 0 | DeclContext *DC = CurContext; |
17205 | 0 | bool isStdBadAlloc = false; |
17206 | 0 | bool isStdAlignValT = false; |
17207 | |
|
17208 | 0 | RedeclarationKind Redecl = forRedeclarationInCurContext(); |
17209 | 0 | if (TUK == TUK_Friend || TUK == TUK_Reference) |
17210 | 0 | Redecl = NotForRedeclaration; |
17211 | | |
17212 | | /// Create a new tag decl in C/ObjC. Since the ODR-like semantics for ObjC/C |
17213 | | /// implemented asks for structural equivalence checking, the returned decl |
17214 | | /// here is passed back to the parser, allowing the tag body to be parsed. |
17215 | 0 | auto createTagFromNewDecl = [&]() -> TagDecl * { |
17216 | 0 | assert(!getLangOpts().CPlusPlus && "not meant for C++ usage"); |
17217 | | // If there is an identifier, use the location of the identifier as the |
17218 | | // location of the decl, otherwise use the location of the struct/union |
17219 | | // keyword. |
17220 | 0 | SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; |
17221 | 0 | TagDecl *New = nullptr; |
17222 | |
|
17223 | 0 | if (Kind == TagTypeKind::Enum) { |
17224 | 0 | New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, nullptr, |
17225 | 0 | ScopedEnum, ScopedEnumUsesClassTag, IsFixed); |
17226 | | // If this is an undefined enum, bail. |
17227 | 0 | if (TUK != TUK_Definition && !Invalid) |
17228 | 0 | return nullptr; |
17229 | 0 | if (EnumUnderlying) { |
17230 | 0 | EnumDecl *ED = cast<EnumDecl>(New); |
17231 | 0 | if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo *>()) |
17232 | 0 | ED->setIntegerTypeSourceInfo(TI); |
17233 | 0 | else |
17234 | 0 | ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0)); |
17235 | 0 | QualType EnumTy = ED->getIntegerType(); |
17236 | 0 | ED->setPromotionType(Context.isPromotableIntegerType(EnumTy) |
17237 | 0 | ? Context.getPromotedIntegerType(EnumTy) |
17238 | 0 | : EnumTy); |
17239 | 0 | } |
17240 | 0 | } else { // struct/union |
17241 | 0 | New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, |
17242 | 0 | nullptr); |
17243 | 0 | } |
17244 | | |
17245 | 0 | if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { |
17246 | | // Add alignment attributes if necessary; these attributes are checked |
17247 | | // when the ASTContext lays out the structure. |
17248 | | // |
17249 | | // It is important for implementing the correct semantics that this |
17250 | | // happen here (in ActOnTag). The #pragma pack stack is |
17251 | | // maintained as a result of parser callbacks which can occur at |
17252 | | // many points during the parsing of a struct declaration (because |
17253 | | // the #pragma tokens are effectively skipped over during the |
17254 | | // parsing of the struct). |
17255 | 0 | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { |
17256 | 0 | AddAlignmentAttributesForRecord(RD); |
17257 | 0 | AddMsStructLayoutForRecord(RD); |
17258 | 0 | } |
17259 | 0 | } |
17260 | 0 | New->setLexicalDeclContext(CurContext); |
17261 | 0 | return New; |
17262 | 0 | }; |
17263 | |
|
17264 | 0 | LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl); |
17265 | 0 | if (Name && SS.isNotEmpty()) { |
17266 | | // We have a nested-name tag ('struct foo::bar'). |
17267 | | |
17268 | | // Check for invalid 'foo::'. |
17269 | 0 | if (SS.isInvalid()) { |
17270 | 0 | Name = nullptr; |
17271 | 0 | goto CreateNewDecl; |
17272 | 0 | } |
17273 | | |
17274 | | // If this is a friend or a reference to a class in a dependent |
17275 | | // context, don't try to make a decl for it. |
17276 | 0 | if (TUK == TUK_Friend || TUK == TUK_Reference) { |
17277 | 0 | DC = computeDeclContext(SS, false); |
17278 | 0 | if (!DC) { |
17279 | 0 | IsDependent = true; |
17280 | 0 | return true; |
17281 | 0 | } |
17282 | 0 | } else { |
17283 | 0 | DC = computeDeclContext(SS, true); |
17284 | 0 | if (!DC) { |
17285 | 0 | Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec) |
17286 | 0 | << SS.getRange(); |
17287 | 0 | return true; |
17288 | 0 | } |
17289 | 0 | } |
17290 | | |
17291 | 0 | if (RequireCompleteDeclContext(SS, DC)) |
17292 | 0 | return true; |
17293 | | |
17294 | 0 | SearchDC = DC; |
17295 | | // Look-up name inside 'foo::'. |
17296 | 0 | LookupQualifiedName(Previous, DC); |
17297 | |
|
17298 | 0 | if (Previous.isAmbiguous()) |
17299 | 0 | return true; |
17300 | | |
17301 | 0 | if (Previous.empty()) { |
17302 | | // Name lookup did not find anything. However, if the |
17303 | | // nested-name-specifier refers to the current instantiation, |
17304 | | // and that current instantiation has any dependent base |
17305 | | // classes, we might find something at instantiation time: treat |
17306 | | // this as a dependent elaborated-type-specifier. |
17307 | | // But this only makes any sense for reference-like lookups. |
17308 | 0 | if (Previous.wasNotFoundInCurrentInstantiation() && |
17309 | 0 | (TUK == TUK_Reference || TUK == TUK_Friend)) { |
17310 | 0 | IsDependent = true; |
17311 | 0 | return true; |
17312 | 0 | } |
17313 | | |
17314 | | // A tag 'foo::bar' must already exist. |
17315 | 0 | Diag(NameLoc, diag::err_not_tag_in_scope) |
17316 | 0 | << llvm::to_underlying(Kind) << Name << DC << SS.getRange(); |
17317 | 0 | Name = nullptr; |
17318 | 0 | Invalid = true; |
17319 | 0 | goto CreateNewDecl; |
17320 | 0 | } |
17321 | 0 | } else if (Name) { |
17322 | | // C++14 [class.mem]p14: |
17323 | | // If T is the name of a class, then each of the following shall have a |
17324 | | // name different from T: |
17325 | | // -- every member of class T that is itself a type |
17326 | 0 | if (TUK != TUK_Reference && TUK != TUK_Friend && |
17327 | 0 | DiagnoseClassNameShadow(SearchDC, DeclarationNameInfo(Name, NameLoc))) |
17328 | 0 | return true; |
17329 | | |
17330 | | // If this is a named struct, check to see if there was a previous forward |
17331 | | // declaration or definition. |
17332 | | // FIXME: We're looking into outer scopes here, even when we |
17333 | | // shouldn't be. Doing so can result in ambiguities that we |
17334 | | // shouldn't be diagnosing. |
17335 | 0 | LookupName(Previous, S); |
17336 | | |
17337 | | // When declaring or defining a tag, ignore ambiguities introduced |
17338 | | // by types using'ed into this scope. |
17339 | 0 | if (Previous.isAmbiguous() && |
17340 | 0 | (TUK == TUK_Definition || TUK == TUK_Declaration)) { |
17341 | 0 | LookupResult::Filter F = Previous.makeFilter(); |
17342 | 0 | while (F.hasNext()) { |
17343 | 0 | NamedDecl *ND = F.next(); |
17344 | 0 | if (!ND->getDeclContext()->getRedeclContext()->Equals( |
17345 | 0 | SearchDC->getRedeclContext())) |
17346 | 0 | F.erase(); |
17347 | 0 | } |
17348 | 0 | F.done(); |
17349 | 0 | } |
17350 | | |
17351 | | // C++11 [namespace.memdef]p3: |
17352 | | // If the name in a friend declaration is neither qualified nor |
17353 | | // a template-id and the declaration is a function or an |
17354 | | // elaborated-type-specifier, the lookup to determine whether |
17355 | | // the entity has been previously declared shall not consider |
17356 | | // any scopes outside the innermost enclosing namespace. |
17357 | | // |
17358 | | // MSVC doesn't implement the above rule for types, so a friend tag |
17359 | | // declaration may be a redeclaration of a type declared in an enclosing |
17360 | | // scope. They do implement this rule for friend functions. |
17361 | | // |
17362 | | // Does it matter that this should be by scope instead of by |
17363 | | // semantic context? |
17364 | 0 | if (!Previous.empty() && TUK == TUK_Friend) { |
17365 | 0 | DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext(); |
17366 | 0 | LookupResult::Filter F = Previous.makeFilter(); |
17367 | 0 | bool FriendSawTagOutsideEnclosingNamespace = false; |
17368 | 0 | while (F.hasNext()) { |
17369 | 0 | NamedDecl *ND = F.next(); |
17370 | 0 | DeclContext *DC = ND->getDeclContext()->getRedeclContext(); |
17371 | 0 | if (DC->isFileContext() && |
17372 | 0 | !EnclosingNS->Encloses(ND->getDeclContext())) { |
17373 | 0 | if (getLangOpts().MSVCCompat) |
17374 | 0 | FriendSawTagOutsideEnclosingNamespace = true; |
17375 | 0 | else |
17376 | 0 | F.erase(); |
17377 | 0 | } |
17378 | 0 | } |
17379 | 0 | F.done(); |
17380 | | |
17381 | | // Diagnose this MSVC extension in the easy case where lookup would have |
17382 | | // unambiguously found something outside the enclosing namespace. |
17383 | 0 | if (Previous.isSingleResult() && FriendSawTagOutsideEnclosingNamespace) { |
17384 | 0 | NamedDecl *ND = Previous.getFoundDecl(); |
17385 | 0 | Diag(NameLoc, diag::ext_friend_tag_redecl_outside_namespace) |
17386 | 0 | << createFriendTagNNSFixIt(*this, ND, S, NameLoc); |
17387 | 0 | } |
17388 | 0 | } |
17389 | | |
17390 | | // Note: there used to be some attempt at recovery here. |
17391 | 0 | if (Previous.isAmbiguous()) |
17392 | 0 | return true; |
17393 | | |
17394 | 0 | if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) { |
17395 | | // FIXME: This makes sure that we ignore the contexts associated |
17396 | | // with C structs, unions, and enums when looking for a matching |
17397 | | // tag declaration or definition. See the similar lookup tweak |
17398 | | // in Sema::LookupName; is there a better way to deal with this? |
17399 | 0 | while (isa<RecordDecl, EnumDecl, ObjCContainerDecl>(SearchDC)) |
17400 | 0 | SearchDC = SearchDC->getParent(); |
17401 | 0 | } else if (getLangOpts().CPlusPlus) { |
17402 | | // Inside ObjCContainer want to keep it as a lexical decl context but go |
17403 | | // past it (most often to TranslationUnit) to find the semantic decl |
17404 | | // context. |
17405 | 0 | while (isa<ObjCContainerDecl>(SearchDC)) |
17406 | 0 | SearchDC = SearchDC->getParent(); |
17407 | 0 | } |
17408 | 0 | } else if (getLangOpts().CPlusPlus) { |
17409 | | // Don't use ObjCContainerDecl as the semantic decl context for anonymous |
17410 | | // TagDecl the same way as we skip it for named TagDecl. |
17411 | 0 | while (isa<ObjCContainerDecl>(SearchDC)) |
17412 | 0 | SearchDC = SearchDC->getParent(); |
17413 | 0 | } |
17414 | | |
17415 | 0 | if (Previous.isSingleResult() && |
17416 | 0 | Previous.getFoundDecl()->isTemplateParameter()) { |
17417 | | // Maybe we will complain about the shadowed template parameter. |
17418 | 0 | DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl()); |
17419 | | // Just pretend that we didn't see the previous declaration. |
17420 | 0 | Previous.clear(); |
17421 | 0 | } |
17422 | |
|
17423 | 0 | if (getLangOpts().CPlusPlus && Name && DC && StdNamespace && |
17424 | 0 | DC->Equals(getStdNamespace())) { |
17425 | 0 | if (Name->isStr("bad_alloc")) { |
17426 | | // This is a declaration of or a reference to "std::bad_alloc". |
17427 | 0 | isStdBadAlloc = true; |
17428 | | |
17429 | | // If std::bad_alloc has been implicitly declared (but made invisible to |
17430 | | // name lookup), fill in this implicit declaration as the previous |
17431 | | // declaration, so that the declarations get chained appropriately. |
17432 | 0 | if (Previous.empty() && StdBadAlloc) |
17433 | 0 | Previous.addDecl(getStdBadAlloc()); |
17434 | 0 | } else if (Name->isStr("align_val_t")) { |
17435 | 0 | isStdAlignValT = true; |
17436 | 0 | if (Previous.empty() && StdAlignValT) |
17437 | 0 | Previous.addDecl(getStdAlignValT()); |
17438 | 0 | } |
17439 | 0 | } |
17440 | | |
17441 | | // If we didn't find a previous declaration, and this is a reference |
17442 | | // (or friend reference), move to the correct scope. In C++, we |
17443 | | // also need to do a redeclaration lookup there, just in case |
17444 | | // there's a shadow friend decl. |
17445 | 0 | if (Name && Previous.empty() && |
17446 | 0 | (TUK == TUK_Reference || TUK == TUK_Friend || IsTemplateParamOrArg)) { |
17447 | 0 | if (Invalid) goto CreateNewDecl; |
17448 | 0 | assert(SS.isEmpty()); |
17449 | | |
17450 | 0 | if (TUK == TUK_Reference || IsTemplateParamOrArg) { |
17451 | | // C++ [basic.scope.pdecl]p5: |
17452 | | // -- for an elaborated-type-specifier of the form |
17453 | | // |
17454 | | // class-key identifier |
17455 | | // |
17456 | | // if the elaborated-type-specifier is used in the |
17457 | | // decl-specifier-seq or parameter-declaration-clause of a |
17458 | | // function defined in namespace scope, the identifier is |
17459 | | // declared as a class-name in the namespace that contains |
17460 | | // the declaration; otherwise, except as a friend |
17461 | | // declaration, the identifier is declared in the smallest |
17462 | | // non-class, non-function-prototype scope that contains the |
17463 | | // declaration. |
17464 | | // |
17465 | | // C99 6.7.2.3p8 has a similar (but not identical!) provision for |
17466 | | // C structs and unions. |
17467 | | // |
17468 | | // It is an error in C++ to declare (rather than define) an enum |
17469 | | // type, including via an elaborated type specifier. We'll |
17470 | | // diagnose that later; for now, declare the enum in the same |
17471 | | // scope as we would have picked for any other tag type. |
17472 | | // |
17473 | | // GNU C also supports this behavior as part of its incomplete |
17474 | | // enum types extension, while GNU C++ does not. |
17475 | | // |
17476 | | // Find the context where we'll be declaring the tag. |
17477 | | // FIXME: We would like to maintain the current DeclContext as the |
17478 | | // lexical context, |
17479 | 0 | SearchDC = getTagInjectionContext(SearchDC); |
17480 | | |
17481 | | // Find the scope where we'll be declaring the tag. |
17482 | 0 | S = getTagInjectionScope(S, getLangOpts()); |
17483 | 0 | } else { |
17484 | 0 | assert(TUK == TUK_Friend); |
17485 | 0 | CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(SearchDC); |
17486 | | |
17487 | | // C++ [namespace.memdef]p3: |
17488 | | // If a friend declaration in a non-local class first declares a |
17489 | | // class or function, the friend class or function is a member of |
17490 | | // the innermost enclosing namespace. |
17491 | 0 | SearchDC = RD->isLocalClass() ? RD->isLocalClass() |
17492 | 0 | : SearchDC->getEnclosingNamespaceContext(); |
17493 | 0 | } |
17494 | | |
17495 | | // In C++, we need to do a redeclaration lookup to properly |
17496 | | // diagnose some problems. |
17497 | | // FIXME: redeclaration lookup is also used (with and without C++) to find a |
17498 | | // hidden declaration so that we don't get ambiguity errors when using a |
17499 | | // type declared by an elaborated-type-specifier. In C that is not correct |
17500 | | // and we should instead merge compatible types found by lookup. |
17501 | 0 | if (getLangOpts().CPlusPlus) { |
17502 | | // FIXME: This can perform qualified lookups into function contexts, |
17503 | | // which are meaningless. |
17504 | 0 | Previous.setRedeclarationKind(forRedeclarationInCurContext()); |
17505 | 0 | LookupQualifiedName(Previous, SearchDC); |
17506 | 0 | } else { |
17507 | 0 | Previous.setRedeclarationKind(forRedeclarationInCurContext()); |
17508 | 0 | LookupName(Previous, S); |
17509 | 0 | } |
17510 | 0 | } |
17511 | | |
17512 | | // If we have a known previous declaration to use, then use it. |
17513 | 0 | if (Previous.empty() && SkipBody && SkipBody->Previous) |
17514 | 0 | Previous.addDecl(SkipBody->Previous); |
17515 | |
|
17516 | 0 | if (!Previous.empty()) { |
17517 | 0 | NamedDecl *PrevDecl = Previous.getFoundDecl(); |
17518 | 0 | NamedDecl *DirectPrevDecl = Previous.getRepresentativeDecl(); |
17519 | | |
17520 | | // It's okay to have a tag decl in the same scope as a typedef |
17521 | | // which hides a tag decl in the same scope. Finding this |
17522 | | // with a redeclaration lookup can only actually happen in C++. |
17523 | | // |
17524 | | // This is also okay for elaborated-type-specifiers, which is |
17525 | | // technically forbidden by the current standard but which is |
17526 | | // okay according to the likely resolution of an open issue; |
17527 | | // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407 |
17528 | 0 | if (getLangOpts().CPlusPlus) { |
17529 | 0 | if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) { |
17530 | 0 | if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) { |
17531 | 0 | TagDecl *Tag = TT->getDecl(); |
17532 | 0 | if (Tag->getDeclName() == Name && |
17533 | 0 | Tag->getDeclContext()->getRedeclContext() |
17534 | 0 | ->Equals(TD->getDeclContext()->getRedeclContext())) { |
17535 | 0 | PrevDecl = Tag; |
17536 | 0 | Previous.clear(); |
17537 | 0 | Previous.addDecl(Tag); |
17538 | 0 | Previous.resolveKind(); |
17539 | 0 | } |
17540 | 0 | } |
17541 | 0 | } |
17542 | 0 | } |
17543 | | |
17544 | | // If this is a redeclaration of a using shadow declaration, it must |
17545 | | // declare a tag in the same context. In MSVC mode, we allow a |
17546 | | // redefinition if either context is within the other. |
17547 | 0 | if (auto *Shadow = dyn_cast<UsingShadowDecl>(DirectPrevDecl)) { |
17548 | 0 | auto *OldTag = dyn_cast<TagDecl>(PrevDecl); |
17549 | 0 | if (SS.isEmpty() && TUK != TUK_Reference && TUK != TUK_Friend && |
17550 | 0 | isDeclInScope(Shadow, SearchDC, S, isMemberSpecialization) && |
17551 | 0 | !(OldTag && isAcceptableTagRedeclContext( |
17552 | 0 | *this, OldTag->getDeclContext(), SearchDC))) { |
17553 | 0 | Diag(KWLoc, diag::err_using_decl_conflict_reverse); |
17554 | 0 | Diag(Shadow->getTargetDecl()->getLocation(), |
17555 | 0 | diag::note_using_decl_target); |
17556 | 0 | Diag(Shadow->getIntroducer()->getLocation(), diag::note_using_decl) |
17557 | 0 | << 0; |
17558 | | // Recover by ignoring the old declaration. |
17559 | 0 | Previous.clear(); |
17560 | 0 | goto CreateNewDecl; |
17561 | 0 | } |
17562 | 0 | } |
17563 | | |
17564 | 0 | if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) { |
17565 | | // If this is a use of a previous tag, or if the tag is already declared |
17566 | | // in the same scope (so that the definition/declaration completes or |
17567 | | // rementions the tag), reuse the decl. |
17568 | 0 | if (TUK == TUK_Reference || TUK == TUK_Friend || |
17569 | 0 | isDeclInScope(DirectPrevDecl, SearchDC, S, |
17570 | 0 | SS.isNotEmpty() || isMemberSpecialization)) { |
17571 | | // Make sure that this wasn't declared as an enum and now used as a |
17572 | | // struct or something similar. |
17573 | 0 | if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, |
17574 | 0 | TUK == TUK_Definition, KWLoc, |
17575 | 0 | Name)) { |
17576 | 0 | bool SafeToContinue = |
17577 | 0 | (PrevTagDecl->getTagKind() != TagTypeKind::Enum && |
17578 | 0 | Kind != TagTypeKind::Enum); |
17579 | 0 | if (SafeToContinue) |
17580 | 0 | Diag(KWLoc, diag::err_use_with_wrong_tag) |
17581 | 0 | << Name |
17582 | 0 | << FixItHint::CreateReplacement(SourceRange(KWLoc), |
17583 | 0 | PrevTagDecl->getKindName()); |
17584 | 0 | else |
17585 | 0 | Diag(KWLoc, diag::err_use_with_wrong_tag) << Name; |
17586 | 0 | Diag(PrevTagDecl->getLocation(), diag::note_previous_use); |
17587 | |
|
17588 | 0 | if (SafeToContinue) |
17589 | 0 | Kind = PrevTagDecl->getTagKind(); |
17590 | 0 | else { |
17591 | | // Recover by making this an anonymous redefinition. |
17592 | 0 | Name = nullptr; |
17593 | 0 | Previous.clear(); |
17594 | 0 | Invalid = true; |
17595 | 0 | } |
17596 | 0 | } |
17597 | |
|
17598 | 0 | if (Kind == TagTypeKind::Enum && |
17599 | 0 | PrevTagDecl->getTagKind() == TagTypeKind::Enum) { |
17600 | 0 | const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl); |
17601 | 0 | if (TUK == TUK_Reference || TUK == TUK_Friend) |
17602 | 0 | return PrevTagDecl; |
17603 | | |
17604 | 0 | QualType EnumUnderlyingTy; |
17605 | 0 | if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) |
17606 | 0 | EnumUnderlyingTy = TI->getType().getUnqualifiedType(); |
17607 | 0 | else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>()) |
17608 | 0 | EnumUnderlyingTy = QualType(T, 0); |
17609 | | |
17610 | | // All conflicts with previous declarations are recovered by |
17611 | | // returning the previous declaration, unless this is a definition, |
17612 | | // in which case we want the caller to bail out. |
17613 | 0 | if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc, |
17614 | 0 | ScopedEnum, EnumUnderlyingTy, |
17615 | 0 | IsFixed, PrevEnum)) |
17616 | 0 | return TUK == TUK_Declaration ? PrevTagDecl : nullptr; |
17617 | 0 | } |
17618 | | |
17619 | | // C++11 [class.mem]p1: |
17620 | | // A member shall not be declared twice in the member-specification, |
17621 | | // except that a nested class or member class template can be declared |
17622 | | // and then later defined. |
17623 | 0 | if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() && |
17624 | 0 | S->isDeclScope(PrevDecl)) { |
17625 | 0 | Diag(NameLoc, diag::ext_member_redeclared); |
17626 | 0 | Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration); |
17627 | 0 | } |
17628 | |
|
17629 | 0 | if (!Invalid) { |
17630 | | // If this is a use, just return the declaration we found, unless |
17631 | | // we have attributes. |
17632 | 0 | if (TUK == TUK_Reference || TUK == TUK_Friend) { |
17633 | 0 | if (!Attrs.empty()) { |
17634 | | // FIXME: Diagnose these attributes. For now, we create a new |
17635 | | // declaration to hold them. |
17636 | 0 | } else if (TUK == TUK_Reference && |
17637 | 0 | (PrevTagDecl->getFriendObjectKind() == |
17638 | 0 | Decl::FOK_Undeclared || |
17639 | 0 | PrevDecl->getOwningModule() != getCurrentModule()) && |
17640 | 0 | SS.isEmpty()) { |
17641 | | // This declaration is a reference to an existing entity, but |
17642 | | // has different visibility from that entity: it either makes |
17643 | | // a friend visible or it makes a type visible in a new module. |
17644 | | // In either case, create a new declaration. We only do this if |
17645 | | // the declaration would have meant the same thing if no prior |
17646 | | // declaration were found, that is, if it was found in the same |
17647 | | // scope where we would have injected a declaration. |
17648 | 0 | if (!getTagInjectionContext(CurContext)->getRedeclContext() |
17649 | 0 | ->Equals(PrevDecl->getDeclContext()->getRedeclContext())) |
17650 | 0 | return PrevTagDecl; |
17651 | | // This is in the injected scope, create a new declaration in |
17652 | | // that scope. |
17653 | 0 | S = getTagInjectionScope(S, getLangOpts()); |
17654 | 0 | } else { |
17655 | 0 | return PrevTagDecl; |
17656 | 0 | } |
17657 | 0 | } |
17658 | | |
17659 | | // Diagnose attempts to redefine a tag. |
17660 | 0 | if (TUK == TUK_Definition) { |
17661 | 0 | if (NamedDecl *Def = PrevTagDecl->getDefinition()) { |
17662 | | // If we're defining a specialization and the previous definition |
17663 | | // is from an implicit instantiation, don't emit an error |
17664 | | // here; we'll catch this in the general case below. |
17665 | 0 | bool IsExplicitSpecializationAfterInstantiation = false; |
17666 | 0 | if (isMemberSpecialization) { |
17667 | 0 | if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def)) |
17668 | 0 | IsExplicitSpecializationAfterInstantiation = |
17669 | 0 | RD->getTemplateSpecializationKind() != |
17670 | 0 | TSK_ExplicitSpecialization; |
17671 | 0 | else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def)) |
17672 | 0 | IsExplicitSpecializationAfterInstantiation = |
17673 | 0 | ED->getTemplateSpecializationKind() != |
17674 | 0 | TSK_ExplicitSpecialization; |
17675 | 0 | } |
17676 | | |
17677 | | // Note that clang allows ODR-like semantics for ObjC/C, i.e., do |
17678 | | // not keep more that one definition around (merge them). However, |
17679 | | // ensure the decl passes the structural compatibility check in |
17680 | | // C11 6.2.7/1 (or 6.1.2.6/1 in C89). |
17681 | 0 | NamedDecl *Hidden = nullptr; |
17682 | 0 | if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) { |
17683 | | // There is a definition of this tag, but it is not visible. We |
17684 | | // explicitly make use of C++'s one definition rule here, and |
17685 | | // assume that this definition is identical to the hidden one |
17686 | | // we already have. Make the existing definition visible and |
17687 | | // use it in place of this one. |
17688 | 0 | if (!getLangOpts().CPlusPlus) { |
17689 | | // Postpone making the old definition visible until after we |
17690 | | // complete parsing the new one and do the structural |
17691 | | // comparison. |
17692 | 0 | SkipBody->CheckSameAsPrevious = true; |
17693 | 0 | SkipBody->New = createTagFromNewDecl(); |
17694 | 0 | SkipBody->Previous = Def; |
17695 | 0 | return Def; |
17696 | 0 | } else { |
17697 | 0 | SkipBody->ShouldSkip = true; |
17698 | 0 | SkipBody->Previous = Def; |
17699 | 0 | makeMergedDefinitionVisible(Hidden); |
17700 | | // Carry on and handle it like a normal definition. We'll |
17701 | | // skip starting the definitiion later. |
17702 | 0 | } |
17703 | 0 | } else if (!IsExplicitSpecializationAfterInstantiation) { |
17704 | | // A redeclaration in function prototype scope in C isn't |
17705 | | // visible elsewhere, so merely issue a warning. |
17706 | 0 | if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope()) |
17707 | 0 | Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name; |
17708 | 0 | else |
17709 | 0 | Diag(NameLoc, diag::err_redefinition) << Name; |
17710 | 0 | notePreviousDefinition(Def, |
17711 | 0 | NameLoc.isValid() ? NameLoc : KWLoc); |
17712 | | // If this is a redefinition, recover by making this |
17713 | | // struct be anonymous, which will make any later |
17714 | | // references get the previous definition. |
17715 | 0 | Name = nullptr; |
17716 | 0 | Previous.clear(); |
17717 | 0 | Invalid = true; |
17718 | 0 | } |
17719 | 0 | } else { |
17720 | | // If the type is currently being defined, complain |
17721 | | // about a nested redefinition. |
17722 | 0 | auto *TD = Context.getTagDeclType(PrevTagDecl)->getAsTagDecl(); |
17723 | 0 | if (TD->isBeingDefined()) { |
17724 | 0 | Diag(NameLoc, diag::err_nested_redefinition) << Name; |
17725 | 0 | Diag(PrevTagDecl->getLocation(), |
17726 | 0 | diag::note_previous_definition); |
17727 | 0 | Name = nullptr; |
17728 | 0 | Previous.clear(); |
17729 | 0 | Invalid = true; |
17730 | 0 | } |
17731 | 0 | } |
17732 | | |
17733 | | // Okay, this is definition of a previously declared or referenced |
17734 | | // tag. We're going to create a new Decl for it. |
17735 | 0 | } |
17736 | | |
17737 | | // Okay, we're going to make a redeclaration. If this is some kind |
17738 | | // of reference, make sure we build the redeclaration in the same DC |
17739 | | // as the original, and ignore the current access specifier. |
17740 | 0 | if (TUK == TUK_Friend || TUK == TUK_Reference) { |
17741 | 0 | SearchDC = PrevTagDecl->getDeclContext(); |
17742 | 0 | AS = AS_none; |
17743 | 0 | } |
17744 | 0 | } |
17745 | | // If we get here we have (another) forward declaration or we |
17746 | | // have a definition. Just create a new decl. |
17747 | |
|
17748 | 0 | } else { |
17749 | | // If we get here, this is a definition of a new tag type in a nested |
17750 | | // scope, e.g. "struct foo; void bar() { struct foo; }", just create a |
17751 | | // new decl/type. We set PrevDecl to NULL so that the entities |
17752 | | // have distinct types. |
17753 | 0 | Previous.clear(); |
17754 | 0 | } |
17755 | | // If we get here, we're going to create a new Decl. If PrevDecl |
17756 | | // is non-NULL, it's a definition of the tag declared by |
17757 | | // PrevDecl. If it's NULL, we have a new definition. |
17758 | | |
17759 | | // Otherwise, PrevDecl is not a tag, but was found with tag |
17760 | | // lookup. This is only actually possible in C++, where a few |
17761 | | // things like templates still live in the tag namespace. |
17762 | 0 | } else { |
17763 | | // Use a better diagnostic if an elaborated-type-specifier |
17764 | | // found the wrong kind of type on the first |
17765 | | // (non-redeclaration) lookup. |
17766 | 0 | if ((TUK == TUK_Reference || TUK == TUK_Friend) && |
17767 | 0 | !Previous.isForRedeclaration()) { |
17768 | 0 | NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); |
17769 | 0 | Diag(NameLoc, diag::err_tag_reference_non_tag) |
17770 | 0 | << PrevDecl << NTK << llvm::to_underlying(Kind); |
17771 | 0 | Diag(PrevDecl->getLocation(), diag::note_declared_at); |
17772 | 0 | Invalid = true; |
17773 | | |
17774 | | // Otherwise, only diagnose if the declaration is in scope. |
17775 | 0 | } else if (!isDeclInScope(DirectPrevDecl, SearchDC, S, |
17776 | 0 | SS.isNotEmpty() || isMemberSpecialization)) { |
17777 | | // do nothing |
17778 | | |
17779 | | // Diagnose implicit declarations introduced by elaborated types. |
17780 | 0 | } else if (TUK == TUK_Reference || TUK == TUK_Friend) { |
17781 | 0 | NonTagKind NTK = getNonTagTypeDeclKind(PrevDecl, Kind); |
17782 | 0 | Diag(NameLoc, diag::err_tag_reference_conflict) << NTK; |
17783 | 0 | Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; |
17784 | 0 | Invalid = true; |
17785 | | |
17786 | | // Otherwise it's a declaration. Call out a particularly common |
17787 | | // case here. |
17788 | 0 | } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) { |
17789 | 0 | unsigned Kind = 0; |
17790 | 0 | if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1; |
17791 | 0 | Diag(NameLoc, diag::err_tag_definition_of_typedef) |
17792 | 0 | << Name << Kind << TND->getUnderlyingType(); |
17793 | 0 | Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl; |
17794 | 0 | Invalid = true; |
17795 | | |
17796 | | // Otherwise, diagnose. |
17797 | 0 | } else { |
17798 | | // The tag name clashes with something else in the target scope, |
17799 | | // issue an error and recover by making this tag be anonymous. |
17800 | 0 | Diag(NameLoc, diag::err_redefinition_different_kind) << Name; |
17801 | 0 | notePreviousDefinition(PrevDecl, NameLoc); |
17802 | 0 | Name = nullptr; |
17803 | 0 | Invalid = true; |
17804 | 0 | } |
17805 | | |
17806 | | // The existing declaration isn't relevant to us; we're in a |
17807 | | // new scope, so clear out the previous declaration. |
17808 | 0 | Previous.clear(); |
17809 | 0 | } |
17810 | 0 | } |
17811 | | |
17812 | 0 | CreateNewDecl: |
17813 | |
|
17814 | 0 | TagDecl *PrevDecl = nullptr; |
17815 | 0 | if (Previous.isSingleResult()) |
17816 | 0 | PrevDecl = cast<TagDecl>(Previous.getFoundDecl()); |
17817 | | |
17818 | | // If there is an identifier, use the location of the identifier as the |
17819 | | // location of the decl, otherwise use the location of the struct/union |
17820 | | // keyword. |
17821 | 0 | SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc; |
17822 | | |
17823 | | // Otherwise, create a new declaration. If there is a previous |
17824 | | // declaration of the same entity, the two will be linked via |
17825 | | // PrevDecl. |
17826 | 0 | TagDecl *New; |
17827 | |
|
17828 | 0 | if (Kind == TagTypeKind::Enum) { |
17829 | | // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
17830 | | // enum X { A, B, C } D; D should chain to X. |
17831 | 0 | New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name, |
17832 | 0 | cast_or_null<EnumDecl>(PrevDecl), ScopedEnum, |
17833 | 0 | ScopedEnumUsesClassTag, IsFixed); |
17834 | |
|
17835 | 0 | if (isStdAlignValT && (!StdAlignValT || getStdAlignValT()->isImplicit())) |
17836 | 0 | StdAlignValT = cast<EnumDecl>(New); |
17837 | | |
17838 | | // If this is an undefined enum, warn. |
17839 | 0 | if (TUK != TUK_Definition && !Invalid) { |
17840 | 0 | TagDecl *Def; |
17841 | 0 | if (IsFixed && cast<EnumDecl>(New)->isFixed()) { |
17842 | | // C++0x: 7.2p2: opaque-enum-declaration. |
17843 | | // Conflicts are diagnosed above. Do nothing. |
17844 | 0 | } |
17845 | 0 | else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) { |
17846 | 0 | Diag(Loc, diag::ext_forward_ref_enum_def) |
17847 | 0 | << New; |
17848 | 0 | Diag(Def->getLocation(), diag::note_previous_definition); |
17849 | 0 | } else { |
17850 | 0 | unsigned DiagID = diag::ext_forward_ref_enum; |
17851 | 0 | if (getLangOpts().MSVCCompat) |
17852 | 0 | DiagID = diag::ext_ms_forward_ref_enum; |
17853 | 0 | else if (getLangOpts().CPlusPlus) |
17854 | 0 | DiagID = diag::err_forward_ref_enum; |
17855 | 0 | Diag(Loc, DiagID); |
17856 | 0 | } |
17857 | 0 | } |
17858 | |
|
17859 | 0 | if (EnumUnderlying) { |
17860 | 0 | EnumDecl *ED = cast<EnumDecl>(New); |
17861 | 0 | if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>()) |
17862 | 0 | ED->setIntegerTypeSourceInfo(TI); |
17863 | 0 | else |
17864 | 0 | ED->setIntegerType(QualType(EnumUnderlying.get<const Type *>(), 0)); |
17865 | 0 | QualType EnumTy = ED->getIntegerType(); |
17866 | 0 | ED->setPromotionType(Context.isPromotableIntegerType(EnumTy) |
17867 | 0 | ? Context.getPromotedIntegerType(EnumTy) |
17868 | 0 | : EnumTy); |
17869 | 0 | assert(ED->isComplete() && "enum with type should be complete"); |
17870 | 0 | } |
17871 | 0 | } else { |
17872 | | // struct/union/class |
17873 | | |
17874 | | // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.: |
17875 | | // struct X { int A; } D; D should chain to X. |
17876 | 0 | if (getLangOpts().CPlusPlus) { |
17877 | | // FIXME: Look for a way to use RecordDecl for simple structs. |
17878 | 0 | New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, |
17879 | 0 | cast_or_null<CXXRecordDecl>(PrevDecl)); |
17880 | |
|
17881 | 0 | if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit())) |
17882 | 0 | StdBadAlloc = cast<CXXRecordDecl>(New); |
17883 | 0 | } else |
17884 | 0 | New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name, |
17885 | 0 | cast_or_null<RecordDecl>(PrevDecl)); |
17886 | 0 | } |
17887 | | |
17888 | 0 | if (OOK != OOK_Outside && TUK == TUK_Definition && !getLangOpts().CPlusPlus) |
17889 | 0 | Diag(New->getLocation(), diag::ext_type_defined_in_offsetof) |
17890 | 0 | << (OOK == OOK_Macro) << New->getSourceRange(); |
17891 | | |
17892 | | // C++11 [dcl.type]p3: |
17893 | | // A type-specifier-seq shall not define a class or enumeration [...]. |
17894 | 0 | if (!Invalid && getLangOpts().CPlusPlus && |
17895 | 0 | (IsTypeSpecifier || IsTemplateParamOrArg) && TUK == TUK_Definition) { |
17896 | 0 | Diag(New->getLocation(), diag::err_type_defined_in_type_specifier) |
17897 | 0 | << Context.getTagDeclType(New); |
17898 | 0 | Invalid = true; |
17899 | 0 | } |
17900 | |
|
17901 | 0 | if (!Invalid && getLangOpts().CPlusPlus && TUK == TUK_Definition && |
17902 | 0 | DC->getDeclKind() == Decl::Enum) { |
17903 | 0 | Diag(New->getLocation(), diag::err_type_defined_in_enum) |
17904 | 0 | << Context.getTagDeclType(New); |
17905 | 0 | Invalid = true; |
17906 | 0 | } |
17907 | | |
17908 | | // Maybe add qualifier info. |
17909 | 0 | if (SS.isNotEmpty()) { |
17910 | 0 | if (SS.isSet()) { |
17911 | | // If this is either a declaration or a definition, check the |
17912 | | // nested-name-specifier against the current context. |
17913 | 0 | if ((TUK == TUK_Definition || TUK == TUK_Declaration) && |
17914 | 0 | diagnoseQualifiedDeclaration(SS, DC, OrigName, Loc, |
17915 | 0 | isMemberSpecialization)) |
17916 | 0 | Invalid = true; |
17917 | |
|
17918 | 0 | New->setQualifierInfo(SS.getWithLocInContext(Context)); |
17919 | 0 | if (TemplateParameterLists.size() > 0) { |
17920 | 0 | New->setTemplateParameterListsInfo(Context, TemplateParameterLists); |
17921 | 0 | } |
17922 | 0 | } |
17923 | 0 | else |
17924 | 0 | Invalid = true; |
17925 | 0 | } |
17926 | |
|
17927 | 0 | if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) { |
17928 | | // Add alignment attributes if necessary; these attributes are checked when |
17929 | | // the ASTContext lays out the structure. |
17930 | | // |
17931 | | // It is important for implementing the correct semantics that this |
17932 | | // happen here (in ActOnTag). The #pragma pack stack is |
17933 | | // maintained as a result of parser callbacks which can occur at |
17934 | | // many points during the parsing of a struct declaration (because |
17935 | | // the #pragma tokens are effectively skipped over during the |
17936 | | // parsing of the struct). |
17937 | 0 | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) { |
17938 | 0 | AddAlignmentAttributesForRecord(RD); |
17939 | 0 | AddMsStructLayoutForRecord(RD); |
17940 | 0 | } |
17941 | 0 | } |
17942 | |
|
17943 | 0 | if (ModulePrivateLoc.isValid()) { |
17944 | 0 | if (isMemberSpecialization) |
17945 | 0 | Diag(New->getLocation(), diag::err_module_private_specialization) |
17946 | 0 | << 2 |
17947 | 0 | << FixItHint::CreateRemoval(ModulePrivateLoc); |
17948 | | // __module_private__ does not apply to local classes. However, we only |
17949 | | // diagnose this as an error when the declaration specifiers are |
17950 | | // freestanding. Here, we just ignore the __module_private__. |
17951 | 0 | else if (!SearchDC->isFunctionOrMethod()) |
17952 | 0 | New->setModulePrivate(); |
17953 | 0 | } |
17954 | | |
17955 | | // If this is a specialization of a member class (of a class template), |
17956 | | // check the specialization. |
17957 | 0 | if (isMemberSpecialization && CheckMemberSpecialization(New, Previous)) |
17958 | 0 | Invalid = true; |
17959 | | |
17960 | | // If we're declaring or defining a tag in function prototype scope in C, |
17961 | | // note that this type can only be used within the function and add it to |
17962 | | // the list of decls to inject into the function definition scope. |
17963 | 0 | if ((Name || Kind == TagTypeKind::Enum) && |
17964 | 0 | getNonFieldDeclScope(S)->isFunctionPrototypeScope()) { |
17965 | 0 | if (getLangOpts().CPlusPlus) { |
17966 | | // C++ [dcl.fct]p6: |
17967 | | // Types shall not be defined in return or parameter types. |
17968 | 0 | if (TUK == TUK_Definition && !IsTypeSpecifier) { |
17969 | 0 | Diag(Loc, diag::err_type_defined_in_param_type) |
17970 | 0 | << Name; |
17971 | 0 | Invalid = true; |
17972 | 0 | } |
17973 | 0 | } else if (!PrevDecl) { |
17974 | 0 | Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New); |
17975 | 0 | } |
17976 | 0 | } |
17977 | |
|
17978 | 0 | if (Invalid) |
17979 | 0 | New->setInvalidDecl(); |
17980 | | |
17981 | | // Set the lexical context. If the tag has a C++ scope specifier, the |
17982 | | // lexical context will be different from the semantic context. |
17983 | 0 | New->setLexicalDeclContext(CurContext); |
17984 | | |
17985 | | // Mark this as a friend decl if applicable. |
17986 | | // In Microsoft mode, a friend declaration also acts as a forward |
17987 | | // declaration so we always pass true to setObjectOfFriendDecl to make |
17988 | | // the tag name visible. |
17989 | 0 | if (TUK == TUK_Friend) |
17990 | 0 | New->setObjectOfFriendDecl(getLangOpts().MSVCCompat); |
17991 | | |
17992 | | // Set the access specifier. |
17993 | 0 | if (!Invalid && SearchDC->isRecord()) |
17994 | 0 | SetMemberAccessSpecifier(New, PrevDecl, AS); |
17995 | |
|
17996 | 0 | if (PrevDecl) |
17997 | 0 | CheckRedeclarationInModule(New, PrevDecl); |
17998 | |
|
17999 | 0 | if (TUK == TUK_Definition && (!SkipBody || !SkipBody->ShouldSkip)) |
18000 | 0 | New->startDefinition(); |
18001 | |
|
18002 | 0 | ProcessDeclAttributeList(S, New, Attrs); |
18003 | 0 | AddPragmaAttributes(S, New); |
18004 | | |
18005 | | // If this has an identifier, add it to the scope stack. |
18006 | 0 | if (TUK == TUK_Friend) { |
18007 | | // We might be replacing an existing declaration in the lookup tables; |
18008 | | // if so, borrow its access specifier. |
18009 | 0 | if (PrevDecl) |
18010 | 0 | New->setAccess(PrevDecl->getAccess()); |
18011 | |
|
18012 | 0 | DeclContext *DC = New->getDeclContext()->getRedeclContext(); |
18013 | 0 | DC->makeDeclVisibleInContext(New); |
18014 | 0 | if (Name) // can be null along some error paths |
18015 | 0 | if (Scope *EnclosingScope = getScopeForDeclContext(S, DC)) |
18016 | 0 | PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false); |
18017 | 0 | } else if (Name) { |
18018 | 0 | S = getNonFieldDeclScope(S); |
18019 | 0 | PushOnScopeChains(New, S, true); |
18020 | 0 | } else { |
18021 | 0 | CurContext->addDecl(New); |
18022 | 0 | } |
18023 | | |
18024 | | // If this is the C FILE type, notify the AST context. |
18025 | 0 | if (IdentifierInfo *II = New->getIdentifier()) |
18026 | 0 | if (!New->isInvalidDecl() && |
18027 | 0 | New->getDeclContext()->getRedeclContext()->isTranslationUnit() && |
18028 | 0 | II->isStr("FILE")) |
18029 | 0 | Context.setFILEDecl(New); |
18030 | |
|
18031 | 0 | if (PrevDecl) |
18032 | 0 | mergeDeclAttributes(New, PrevDecl); |
18033 | |
|
18034 | 0 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(New)) |
18035 | 0 | inferGslOwnerPointerAttribute(CXXRD); |
18036 | | |
18037 | | // If there's a #pragma GCC visibility in scope, set the visibility of this |
18038 | | // record. |
18039 | 0 | AddPushedVisibilityAttribute(New); |
18040 | |
|
18041 | 0 | if (isMemberSpecialization && !New->isInvalidDecl()) |
18042 | 0 | CompleteMemberSpecialization(New, Previous); |
18043 | |
|
18044 | 0 | OwnedDecl = true; |
18045 | | // In C++, don't return an invalid declaration. We can't recover well from |
18046 | | // the cases where we make the type anonymous. |
18047 | 0 | if (Invalid && getLangOpts().CPlusPlus) { |
18048 | 0 | if (New->isBeingDefined()) |
18049 | 0 | if (auto RD = dyn_cast<RecordDecl>(New)) |
18050 | 0 | RD->completeDefinition(); |
18051 | 0 | return true; |
18052 | 0 | } else if (SkipBody && SkipBody->ShouldSkip) { |
18053 | 0 | return SkipBody->Previous; |
18054 | 0 | } else { |
18055 | 0 | return New; |
18056 | 0 | } |
18057 | 0 | } |
18058 | | |
18059 | 0 | void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) { |
18060 | 0 | AdjustDeclIfTemplate(TagD); |
18061 | 0 | TagDecl *Tag = cast<TagDecl>(TagD); |
18062 | | |
18063 | | // Enter the tag context. |
18064 | 0 | PushDeclContext(S, Tag); |
18065 | |
|
18066 | 0 | ActOnDocumentableDecl(TagD); |
18067 | | |
18068 | | // If there's a #pragma GCC visibility in scope, set the visibility of this |
18069 | | // record. |
18070 | 0 | AddPushedVisibilityAttribute(Tag); |
18071 | 0 | } |
18072 | | |
18073 | 0 | bool Sema::ActOnDuplicateDefinition(Decl *Prev, SkipBodyInfo &SkipBody) { |
18074 | 0 | if (!hasStructuralCompatLayout(Prev, SkipBody.New)) |
18075 | 0 | return false; |
18076 | | |
18077 | | // Make the previous decl visible. |
18078 | 0 | makeMergedDefinitionVisible(SkipBody.Previous); |
18079 | 0 | return true; |
18080 | 0 | } |
18081 | | |
18082 | 0 | void Sema::ActOnObjCContainerStartDefinition(ObjCContainerDecl *IDecl) { |
18083 | 0 | assert(IDecl->getLexicalParent() == CurContext && |
18084 | 0 | "The next DeclContext should be lexically contained in the current one."); |
18085 | 0 | CurContext = IDecl; |
18086 | 0 | } |
18087 | | |
18088 | | void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD, |
18089 | | SourceLocation FinalLoc, |
18090 | | bool IsFinalSpelledSealed, |
18091 | | bool IsAbstract, |
18092 | 0 | SourceLocation LBraceLoc) { |
18093 | 0 | AdjustDeclIfTemplate(TagD); |
18094 | 0 | CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD); |
18095 | |
|
18096 | 0 | FieldCollector->StartClass(); |
18097 | |
|
18098 | 0 | if (!Record->getIdentifier()) |
18099 | 0 | return; |
18100 | | |
18101 | 0 | if (IsAbstract) |
18102 | 0 | Record->markAbstract(); |
18103 | |
|
18104 | 0 | if (FinalLoc.isValid()) { |
18105 | 0 | Record->addAttr(FinalAttr::Create(Context, FinalLoc, |
18106 | 0 | IsFinalSpelledSealed |
18107 | 0 | ? FinalAttr::Keyword_sealed |
18108 | 0 | : FinalAttr::Keyword_final)); |
18109 | 0 | } |
18110 | | // C++ [class]p2: |
18111 | | // [...] The class-name is also inserted into the scope of the |
18112 | | // class itself; this is known as the injected-class-name. For |
18113 | | // purposes of access checking, the injected-class-name is treated |
18114 | | // as if it were a public member name. |
18115 | 0 | CXXRecordDecl *InjectedClassName = CXXRecordDecl::Create( |
18116 | 0 | Context, Record->getTagKind(), CurContext, Record->getBeginLoc(), |
18117 | 0 | Record->getLocation(), Record->getIdentifier(), |
18118 | 0 | /*PrevDecl=*/nullptr, |
18119 | 0 | /*DelayTypeCreation=*/true); |
18120 | 0 | Context.getTypeDeclType(InjectedClassName, Record); |
18121 | 0 | InjectedClassName->setImplicit(); |
18122 | 0 | InjectedClassName->setAccess(AS_public); |
18123 | 0 | if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate()) |
18124 | 0 | InjectedClassName->setDescribedClassTemplate(Template); |
18125 | 0 | PushOnScopeChains(InjectedClassName, S); |
18126 | 0 | assert(InjectedClassName->isInjectedClassName() && |
18127 | 0 | "Broken injected-class-name"); |
18128 | 0 | } |
18129 | | |
18130 | | void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD, |
18131 | 0 | SourceRange BraceRange) { |
18132 | 0 | AdjustDeclIfTemplate(TagD); |
18133 | 0 | TagDecl *Tag = cast<TagDecl>(TagD); |
18134 | 0 | Tag->setBraceRange(BraceRange); |
18135 | | |
18136 | | // Make sure we "complete" the definition even it is invalid. |
18137 | 0 | if (Tag->isBeingDefined()) { |
18138 | 0 | assert(Tag->isInvalidDecl() && "We should already have completed it"); |
18139 | 0 | if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) |
18140 | 0 | RD->completeDefinition(); |
18141 | 0 | } |
18142 | | |
18143 | 0 | if (auto *RD = dyn_cast<CXXRecordDecl>(Tag)) { |
18144 | 0 | FieldCollector->FinishClass(); |
18145 | 0 | if (RD->hasAttr<SYCLSpecialClassAttr>()) { |
18146 | 0 | auto *Def = RD->getDefinition(); |
18147 | 0 | assert(Def && "The record is expected to have a completed definition"); |
18148 | 0 | unsigned NumInitMethods = 0; |
18149 | 0 | for (auto *Method : Def->methods()) { |
18150 | 0 | if (!Method->getIdentifier()) |
18151 | 0 | continue; |
18152 | 0 | if (Method->getName() == "__init") |
18153 | 0 | NumInitMethods++; |
18154 | 0 | } |
18155 | 0 | if (NumInitMethods > 1 || !Def->hasInitMethod()) |
18156 | 0 | Diag(RD->getLocation(), diag::err_sycl_special_type_num_init_method); |
18157 | 0 | } |
18158 | 0 | } |
18159 | | |
18160 | | // Exit this scope of this tag's definition. |
18161 | 0 | PopDeclContext(); |
18162 | |
|
18163 | 0 | if (getCurLexicalContext()->isObjCContainer() && |
18164 | 0 | Tag->getDeclContext()->isFileContext()) |
18165 | 0 | Tag->setTopLevelDeclInObjCContainer(); |
18166 | | |
18167 | | // Notify the consumer that we've defined a tag. |
18168 | 0 | if (!Tag->isInvalidDecl()) |
18169 | 0 | Consumer.HandleTagDeclDefinition(Tag); |
18170 | | |
18171 | | // Clangs implementation of #pragma align(packed) differs in bitfield layout |
18172 | | // from XLs and instead matches the XL #pragma pack(1) behavior. |
18173 | 0 | if (Context.getTargetInfo().getTriple().isOSAIX() && |
18174 | 0 | AlignPackStack.hasValue()) { |
18175 | 0 | AlignPackInfo APInfo = AlignPackStack.CurrentValue; |
18176 | | // Only diagnose #pragma align(packed). |
18177 | 0 | if (!APInfo.IsAlignAttr() || APInfo.getAlignMode() != AlignPackInfo::Packed) |
18178 | 0 | return; |
18179 | 0 | const RecordDecl *RD = dyn_cast<RecordDecl>(Tag); |
18180 | 0 | if (!RD) |
18181 | 0 | return; |
18182 | | // Only warn if there is at least 1 bitfield member. |
18183 | 0 | if (llvm::any_of(RD->fields(), |
18184 | 0 | [](const FieldDecl *FD) { return FD->isBitField(); })) |
18185 | 0 | Diag(BraceRange.getBegin(), diag::warn_pragma_align_not_xl_compatible); |
18186 | 0 | } |
18187 | 0 | } |
18188 | | |
18189 | 0 | void Sema::ActOnObjCContainerFinishDefinition() { |
18190 | | // Exit this scope of this interface definition. |
18191 | 0 | PopDeclContext(); |
18192 | 0 | } |
18193 | | |
18194 | 0 | void Sema::ActOnObjCTemporaryExitContainerContext(ObjCContainerDecl *ObjCCtx) { |
18195 | 0 | assert(ObjCCtx == CurContext && "Mismatch of container contexts"); |
18196 | 0 | OriginalLexicalContext = ObjCCtx; |
18197 | 0 | ActOnObjCContainerFinishDefinition(); |
18198 | 0 | } |
18199 | | |
18200 | 0 | void Sema::ActOnObjCReenterContainerContext(ObjCContainerDecl *ObjCCtx) { |
18201 | 0 | ActOnObjCContainerStartDefinition(ObjCCtx); |
18202 | 0 | OriginalLexicalContext = nullptr; |
18203 | 0 | } |
18204 | | |
18205 | 0 | void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) { |
18206 | 0 | AdjustDeclIfTemplate(TagD); |
18207 | 0 | TagDecl *Tag = cast<TagDecl>(TagD); |
18208 | 0 | Tag->setInvalidDecl(); |
18209 | | |
18210 | | // Make sure we "complete" the definition even it is invalid. |
18211 | 0 | if (Tag->isBeingDefined()) { |
18212 | 0 | if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag)) |
18213 | 0 | RD->completeDefinition(); |
18214 | 0 | } |
18215 | | |
18216 | | // We're undoing ActOnTagStartDefinition here, not |
18217 | | // ActOnStartCXXMemberDeclarations, so we don't have to mess with |
18218 | | // the FieldCollector. |
18219 | |
|
18220 | 0 | PopDeclContext(); |
18221 | 0 | } |
18222 | | |
18223 | | // Note that FieldName may be null for anonymous bitfields. |
18224 | | ExprResult Sema::VerifyBitField(SourceLocation FieldLoc, |
18225 | | IdentifierInfo *FieldName, QualType FieldTy, |
18226 | 0 | bool IsMsStruct, Expr *BitWidth) { |
18227 | 0 | assert(BitWidth); |
18228 | 0 | if (BitWidth->containsErrors()) |
18229 | 0 | return ExprError(); |
18230 | | |
18231 | | // C99 6.7.2.1p4 - verify the field type. |
18232 | | // C++ 9.6p3: A bit-field shall have integral or enumeration type. |
18233 | 0 | if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) { |
18234 | | // Handle incomplete and sizeless types with a specific error. |
18235 | 0 | if (RequireCompleteSizedType(FieldLoc, FieldTy, |
18236 | 0 | diag::err_field_incomplete_or_sizeless)) |
18237 | 0 | return ExprError(); |
18238 | 0 | if (FieldName) |
18239 | 0 | return Diag(FieldLoc, diag::err_not_integral_type_bitfield) |
18240 | 0 | << FieldName << FieldTy << BitWidth->getSourceRange(); |
18241 | 0 | return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield) |
18242 | 0 | << FieldTy << BitWidth->getSourceRange(); |
18243 | 0 | } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth), |
18244 | 0 | UPPC_BitFieldWidth)) |
18245 | 0 | return ExprError(); |
18246 | | |
18247 | | // If the bit-width is type- or value-dependent, don't try to check |
18248 | | // it now. |
18249 | 0 | if (BitWidth->isValueDependent() || BitWidth->isTypeDependent()) |
18250 | 0 | return BitWidth; |
18251 | | |
18252 | 0 | llvm::APSInt Value; |
18253 | 0 | ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value, AllowFold); |
18254 | 0 | if (ICE.isInvalid()) |
18255 | 0 | return ICE; |
18256 | 0 | BitWidth = ICE.get(); |
18257 | | |
18258 | | // Zero-width bitfield is ok for anonymous field. |
18259 | 0 | if (Value == 0 && FieldName) |
18260 | 0 | return Diag(FieldLoc, diag::err_bitfield_has_zero_width) |
18261 | 0 | << FieldName << BitWidth->getSourceRange(); |
18262 | | |
18263 | 0 | if (Value.isSigned() && Value.isNegative()) { |
18264 | 0 | if (FieldName) |
18265 | 0 | return Diag(FieldLoc, diag::err_bitfield_has_negative_width) |
18266 | 0 | << FieldName << toString(Value, 10); |
18267 | 0 | return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width) |
18268 | 0 | << toString(Value, 10); |
18269 | 0 | } |
18270 | | |
18271 | | // The size of the bit-field must not exceed our maximum permitted object |
18272 | | // size. |
18273 | 0 | if (Value.getActiveBits() > ConstantArrayType::getMaxSizeBits(Context)) { |
18274 | 0 | return Diag(FieldLoc, diag::err_bitfield_too_wide) |
18275 | 0 | << !FieldName << FieldName << toString(Value, 10); |
18276 | 0 | } |
18277 | | |
18278 | 0 | if (!FieldTy->isDependentType()) { |
18279 | 0 | uint64_t TypeStorageSize = Context.getTypeSize(FieldTy); |
18280 | 0 | uint64_t TypeWidth = Context.getIntWidth(FieldTy); |
18281 | 0 | bool BitfieldIsOverwide = Value.ugt(TypeWidth); |
18282 | | |
18283 | | // Over-wide bitfields are an error in C or when using the MSVC bitfield |
18284 | | // ABI. |
18285 | 0 | bool CStdConstraintViolation = |
18286 | 0 | BitfieldIsOverwide && !getLangOpts().CPlusPlus; |
18287 | 0 | bool MSBitfieldViolation = |
18288 | 0 | Value.ugt(TypeStorageSize) && |
18289 | 0 | (IsMsStruct || Context.getTargetInfo().getCXXABI().isMicrosoft()); |
18290 | 0 | if (CStdConstraintViolation || MSBitfieldViolation) { |
18291 | 0 | unsigned DiagWidth = |
18292 | 0 | CStdConstraintViolation ? TypeWidth : TypeStorageSize; |
18293 | 0 | return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_width) |
18294 | 0 | << (bool)FieldName << FieldName << toString(Value, 10) |
18295 | 0 | << !CStdConstraintViolation << DiagWidth; |
18296 | 0 | } |
18297 | | |
18298 | | // Warn on types where the user might conceivably expect to get all |
18299 | | // specified bits as value bits: that's all integral types other than |
18300 | | // 'bool'. |
18301 | 0 | if (BitfieldIsOverwide && !FieldTy->isBooleanType() && FieldName) { |
18302 | 0 | Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_width) |
18303 | 0 | << FieldName << toString(Value, 10) |
18304 | 0 | << (unsigned)TypeWidth; |
18305 | 0 | } |
18306 | 0 | } |
18307 | | |
18308 | 0 | return BitWidth; |
18309 | 0 | } |
18310 | | |
18311 | | /// ActOnField - Each field of a C struct/union is passed into this in order |
18312 | | /// to create a FieldDecl object for it. |
18313 | | Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart, |
18314 | 0 | Declarator &D, Expr *BitfieldWidth) { |
18315 | 0 | FieldDecl *Res = HandleField(S, cast_if_present<RecordDecl>(TagD), DeclStart, |
18316 | 0 | D, BitfieldWidth, |
18317 | 0 | /*InitStyle=*/ICIS_NoInit, AS_public); |
18318 | 0 | return Res; |
18319 | 0 | } |
18320 | | |
18321 | | /// HandleField - Analyze a field of a C struct or a C++ data member. |
18322 | | /// |
18323 | | FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record, |
18324 | | SourceLocation DeclStart, |
18325 | | Declarator &D, Expr *BitWidth, |
18326 | | InClassInitStyle InitStyle, |
18327 | 0 | AccessSpecifier AS) { |
18328 | 0 | if (D.isDecompositionDeclarator()) { |
18329 | 0 | const DecompositionDeclarator &Decomp = D.getDecompositionDeclarator(); |
18330 | 0 | Diag(Decomp.getLSquareLoc(), diag::err_decomp_decl_context) |
18331 | 0 | << Decomp.getSourceRange(); |
18332 | 0 | return nullptr; |
18333 | 0 | } |
18334 | | |
18335 | 0 | IdentifierInfo *II = D.getIdentifier(); |
18336 | 0 | SourceLocation Loc = DeclStart; |
18337 | 0 | if (II) Loc = D.getIdentifierLoc(); |
18338 | |
|
18339 | 0 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
18340 | 0 | QualType T = TInfo->getType(); |
18341 | 0 | if (getLangOpts().CPlusPlus) { |
18342 | 0 | CheckExtraCXXDefaultArguments(D); |
18343 | |
|
18344 | 0 | if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo, |
18345 | 0 | UPPC_DataMemberType)) { |
18346 | 0 | D.setInvalidType(); |
18347 | 0 | T = Context.IntTy; |
18348 | 0 | TInfo = Context.getTrivialTypeSourceInfo(T, Loc); |
18349 | 0 | } |
18350 | 0 | } |
18351 | |
|
18352 | 0 | DiagnoseFunctionSpecifiers(D.getDeclSpec()); |
18353 | |
|
18354 | 0 | if (D.getDeclSpec().isInlineSpecified()) |
18355 | 0 | Diag(D.getDeclSpec().getInlineSpecLoc(), diag::err_inline_non_function) |
18356 | 0 | << getLangOpts().CPlusPlus17; |
18357 | 0 | if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) |
18358 | 0 | Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(), |
18359 | 0 | diag::err_invalid_thread) |
18360 | 0 | << DeclSpec::getSpecifierName(TSCS); |
18361 | | |
18362 | | // Check to see if this name was declared as a member previously |
18363 | 0 | NamedDecl *PrevDecl = nullptr; |
18364 | 0 | LookupResult Previous(*this, II, Loc, LookupMemberName, |
18365 | 0 | ForVisibleRedeclaration); |
18366 | 0 | LookupName(Previous, S); |
18367 | 0 | switch (Previous.getResultKind()) { |
18368 | 0 | case LookupResult::Found: |
18369 | 0 | case LookupResult::FoundUnresolvedValue: |
18370 | 0 | PrevDecl = Previous.getAsSingle<NamedDecl>(); |
18371 | 0 | break; |
18372 | | |
18373 | 0 | case LookupResult::FoundOverloaded: |
18374 | 0 | PrevDecl = Previous.getRepresentativeDecl(); |
18375 | 0 | break; |
18376 | | |
18377 | 0 | case LookupResult::NotFound: |
18378 | 0 | case LookupResult::NotFoundInCurrentInstantiation: |
18379 | 0 | case LookupResult::Ambiguous: |
18380 | 0 | break; |
18381 | 0 | } |
18382 | 0 | Previous.suppressDiagnostics(); |
18383 | |
|
18384 | 0 | if (PrevDecl && PrevDecl->isTemplateParameter()) { |
18385 | | // Maybe we will complain about the shadowed template parameter. |
18386 | 0 | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); |
18387 | | // Just pretend that we didn't see the previous declaration. |
18388 | 0 | PrevDecl = nullptr; |
18389 | 0 | } |
18390 | |
|
18391 | 0 | if (PrevDecl && !isDeclInScope(PrevDecl, Record, S)) |
18392 | 0 | PrevDecl = nullptr; |
18393 | |
|
18394 | 0 | bool Mutable |
18395 | 0 | = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable); |
18396 | 0 | SourceLocation TSSL = D.getBeginLoc(); |
18397 | 0 | FieldDecl *NewFD |
18398 | 0 | = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle, |
18399 | 0 | TSSL, AS, PrevDecl, &D); |
18400 | |
|
18401 | 0 | if (NewFD->isInvalidDecl()) |
18402 | 0 | Record->setInvalidDecl(); |
18403 | |
|
18404 | 0 | if (D.getDeclSpec().isModulePrivateSpecified()) |
18405 | 0 | NewFD->setModulePrivate(); |
18406 | |
|
18407 | 0 | if (NewFD->isInvalidDecl() && PrevDecl) { |
18408 | | // Don't introduce NewFD into scope; there's already something |
18409 | | // with the same name in the same scope. |
18410 | 0 | } else if (II) { |
18411 | 0 | PushOnScopeChains(NewFD, S); |
18412 | 0 | } else |
18413 | 0 | Record->addDecl(NewFD); |
18414 | |
|
18415 | 0 | return NewFD; |
18416 | 0 | } |
18417 | | |
18418 | | /// Build a new FieldDecl and check its well-formedness. |
18419 | | /// |
18420 | | /// This routine builds a new FieldDecl given the fields name, type, |
18421 | | /// record, etc. \p PrevDecl should refer to any previous declaration |
18422 | | /// with the same name and in the same scope as the field to be |
18423 | | /// created. |
18424 | | /// |
18425 | | /// \returns a new FieldDecl. |
18426 | | /// |
18427 | | /// \todo The Declarator argument is a hack. It will be removed once |
18428 | | FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T, |
18429 | | TypeSourceInfo *TInfo, |
18430 | | RecordDecl *Record, SourceLocation Loc, |
18431 | | bool Mutable, Expr *BitWidth, |
18432 | | InClassInitStyle InitStyle, |
18433 | | SourceLocation TSSL, |
18434 | | AccessSpecifier AS, NamedDecl *PrevDecl, |
18435 | 0 | Declarator *D) { |
18436 | 0 | IdentifierInfo *II = Name.getAsIdentifierInfo(); |
18437 | 0 | bool InvalidDecl = false; |
18438 | 0 | if (D) InvalidDecl = D->isInvalidType(); |
18439 | | |
18440 | | // If we receive a broken type, recover by assuming 'int' and |
18441 | | // marking this declaration as invalid. |
18442 | 0 | if (T.isNull() || T->containsErrors()) { |
18443 | 0 | InvalidDecl = true; |
18444 | 0 | T = Context.IntTy; |
18445 | 0 | } |
18446 | |
|
18447 | 0 | QualType EltTy = Context.getBaseElementType(T); |
18448 | 0 | if (!EltTy->isDependentType() && !EltTy->containsErrors()) { |
18449 | 0 | if (RequireCompleteSizedType(Loc, EltTy, |
18450 | 0 | diag::err_field_incomplete_or_sizeless)) { |
18451 | | // Fields of incomplete type force their record to be invalid. |
18452 | 0 | Record->setInvalidDecl(); |
18453 | 0 | InvalidDecl = true; |
18454 | 0 | } else { |
18455 | 0 | NamedDecl *Def; |
18456 | 0 | EltTy->isIncompleteType(&Def); |
18457 | 0 | if (Def && Def->isInvalidDecl()) { |
18458 | 0 | Record->setInvalidDecl(); |
18459 | 0 | InvalidDecl = true; |
18460 | 0 | } |
18461 | 0 | } |
18462 | 0 | } |
18463 | | |
18464 | | // TR 18037 does not allow fields to be declared with address space |
18465 | 0 | if (T.hasAddressSpace() || T->isDependentAddressSpaceType() || |
18466 | 0 | T->getBaseElementTypeUnsafe()->isDependentAddressSpaceType()) { |
18467 | 0 | Diag(Loc, diag::err_field_with_address_space); |
18468 | 0 | Record->setInvalidDecl(); |
18469 | 0 | InvalidDecl = true; |
18470 | 0 | } |
18471 | |
|
18472 | 0 | if (LangOpts.OpenCL) { |
18473 | | // OpenCL v1.2 s6.9b,r & OpenCL v2.0 s6.12.5 - The following types cannot be |
18474 | | // used as structure or union field: image, sampler, event or block types. |
18475 | 0 | if (T->isEventT() || T->isImageType() || T->isSamplerT() || |
18476 | 0 | T->isBlockPointerType()) { |
18477 | 0 | Diag(Loc, diag::err_opencl_type_struct_or_union_field) << T; |
18478 | 0 | Record->setInvalidDecl(); |
18479 | 0 | InvalidDecl = true; |
18480 | 0 | } |
18481 | | // OpenCL v1.2 s6.9.c: bitfields are not supported, unless Clang extension |
18482 | | // is enabled. |
18483 | 0 | if (BitWidth && !getOpenCLOptions().isAvailableOption( |
18484 | 0 | "__cl_clang_bitfields", LangOpts)) { |
18485 | 0 | Diag(Loc, diag::err_opencl_bitfields); |
18486 | 0 | InvalidDecl = true; |
18487 | 0 | } |
18488 | 0 | } |
18489 | | |
18490 | | // Anonymous bit-fields cannot be cv-qualified (CWG 2229). |
18491 | 0 | if (!InvalidDecl && getLangOpts().CPlusPlus && !II && BitWidth && |
18492 | 0 | T.hasQualifiers()) { |
18493 | 0 | InvalidDecl = true; |
18494 | 0 | Diag(Loc, diag::err_anon_bitfield_qualifiers); |
18495 | 0 | } |
18496 | | |
18497 | | // C99 6.7.2.1p8: A member of a structure or union may have any type other |
18498 | | // than a variably modified type. |
18499 | 0 | if (!InvalidDecl && T->isVariablyModifiedType()) { |
18500 | 0 | if (!tryToFixVariablyModifiedVarType( |
18501 | 0 | TInfo, T, Loc, diag::err_typecheck_field_variable_size)) |
18502 | 0 | InvalidDecl = true; |
18503 | 0 | } |
18504 | | |
18505 | | // Fields can not have abstract class types |
18506 | 0 | if (!InvalidDecl && RequireNonAbstractType(Loc, T, |
18507 | 0 | diag::err_abstract_type_in_decl, |
18508 | 0 | AbstractFieldType)) |
18509 | 0 | InvalidDecl = true; |
18510 | |
|
18511 | 0 | if (InvalidDecl) |
18512 | 0 | BitWidth = nullptr; |
18513 | | // If this is declared as a bit-field, check the bit-field. |
18514 | 0 | if (BitWidth) { |
18515 | 0 | BitWidth = |
18516 | 0 | VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth).get(); |
18517 | 0 | if (!BitWidth) { |
18518 | 0 | InvalidDecl = true; |
18519 | 0 | BitWidth = nullptr; |
18520 | 0 | } |
18521 | 0 | } |
18522 | | |
18523 | | // Check that 'mutable' is consistent with the type of the declaration. |
18524 | 0 | if (!InvalidDecl && Mutable) { |
18525 | 0 | unsigned DiagID = 0; |
18526 | 0 | if (T->isReferenceType()) |
18527 | 0 | DiagID = getLangOpts().MSVCCompat ? diag::ext_mutable_reference |
18528 | 0 | : diag::err_mutable_reference; |
18529 | 0 | else if (T.isConstQualified()) |
18530 | 0 | DiagID = diag::err_mutable_const; |
18531 | |
|
18532 | 0 | if (DiagID) { |
18533 | 0 | SourceLocation ErrLoc = Loc; |
18534 | 0 | if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid()) |
18535 | 0 | ErrLoc = D->getDeclSpec().getStorageClassSpecLoc(); |
18536 | 0 | Diag(ErrLoc, DiagID); |
18537 | 0 | if (DiagID != diag::ext_mutable_reference) { |
18538 | 0 | Mutable = false; |
18539 | 0 | InvalidDecl = true; |
18540 | 0 | } |
18541 | 0 | } |
18542 | 0 | } |
18543 | | |
18544 | | // C++11 [class.union]p8 (DR1460): |
18545 | | // At most one variant member of a union may have a |
18546 | | // brace-or-equal-initializer. |
18547 | 0 | if (InitStyle != ICIS_NoInit) |
18548 | 0 | checkDuplicateDefaultInit(*this, cast<CXXRecordDecl>(Record), Loc); |
18549 | |
|
18550 | 0 | FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo, |
18551 | 0 | BitWidth, Mutable, InitStyle); |
18552 | 0 | if (InvalidDecl) |
18553 | 0 | NewFD->setInvalidDecl(); |
18554 | |
|
18555 | 0 | if (PrevDecl && !isa<TagDecl>(PrevDecl) && |
18556 | 0 | !PrevDecl->isPlaceholderVar(getLangOpts())) { |
18557 | 0 | Diag(Loc, diag::err_duplicate_member) << II; |
18558 | 0 | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
18559 | 0 | NewFD->setInvalidDecl(); |
18560 | 0 | } |
18561 | |
|
18562 | 0 | if (!InvalidDecl && getLangOpts().CPlusPlus) { |
18563 | 0 | if (Record->isUnion()) { |
18564 | 0 | if (const RecordType *RT = EltTy->getAs<RecordType>()) { |
18565 | 0 | CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl()); |
18566 | 0 | if (RDecl->getDefinition()) { |
18567 | | // C++ [class.union]p1: An object of a class with a non-trivial |
18568 | | // constructor, a non-trivial copy constructor, a non-trivial |
18569 | | // destructor, or a non-trivial copy assignment operator |
18570 | | // cannot be a member of a union, nor can an array of such |
18571 | | // objects. |
18572 | 0 | if (CheckNontrivialField(NewFD)) |
18573 | 0 | NewFD->setInvalidDecl(); |
18574 | 0 | } |
18575 | 0 | } |
18576 | | |
18577 | | // C++ [class.union]p1: If a union contains a member of reference type, |
18578 | | // the program is ill-formed, except when compiling with MSVC extensions |
18579 | | // enabled. |
18580 | 0 | if (EltTy->isReferenceType()) { |
18581 | 0 | Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ? |
18582 | 0 | diag::ext_union_member_of_reference_type : |
18583 | 0 | diag::err_union_member_of_reference_type) |
18584 | 0 | << NewFD->getDeclName() << EltTy; |
18585 | 0 | if (!getLangOpts().MicrosoftExt) |
18586 | 0 | NewFD->setInvalidDecl(); |
18587 | 0 | } |
18588 | 0 | } |
18589 | 0 | } |
18590 | | |
18591 | | // FIXME: We need to pass in the attributes given an AST |
18592 | | // representation, not a parser representation. |
18593 | 0 | if (D) { |
18594 | | // FIXME: The current scope is almost... but not entirely... correct here. |
18595 | 0 | ProcessDeclAttributes(getCurScope(), NewFD, *D); |
18596 | |
|
18597 | 0 | if (NewFD->hasAttrs()) |
18598 | 0 | CheckAlignasUnderalignment(NewFD); |
18599 | 0 | } |
18600 | | |
18601 | | // In auto-retain/release, infer strong retension for fields of |
18602 | | // retainable type. |
18603 | 0 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD)) |
18604 | 0 | NewFD->setInvalidDecl(); |
18605 | |
|
18606 | 0 | if (T.isObjCGCWeak()) |
18607 | 0 | Diag(Loc, diag::warn_attribute_weak_on_field); |
18608 | | |
18609 | | // PPC MMA non-pointer types are not allowed as field types. |
18610 | 0 | if (Context.getTargetInfo().getTriple().isPPC64() && |
18611 | 0 | CheckPPCMMAType(T, NewFD->getLocation())) |
18612 | 0 | NewFD->setInvalidDecl(); |
18613 | |
|
18614 | 0 | NewFD->setAccess(AS); |
18615 | 0 | return NewFD; |
18616 | 0 | } |
18617 | | |
18618 | 0 | bool Sema::CheckNontrivialField(FieldDecl *FD) { |
18619 | 0 | assert(FD); |
18620 | 0 | assert(getLangOpts().CPlusPlus && "valid check only for C++"); |
18621 | | |
18622 | 0 | if (FD->isInvalidDecl() || FD->getType()->isDependentType()) |
18623 | 0 | return false; |
18624 | | |
18625 | 0 | QualType EltTy = Context.getBaseElementType(FD->getType()); |
18626 | 0 | if (const RecordType *RT = EltTy->getAs<RecordType>()) { |
18627 | 0 | CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl()); |
18628 | 0 | if (RDecl->getDefinition()) { |
18629 | | // We check for copy constructors before constructors |
18630 | | // because otherwise we'll never get complaints about |
18631 | | // copy constructors. |
18632 | |
|
18633 | 0 | CXXSpecialMember member = CXXInvalid; |
18634 | | // We're required to check for any non-trivial constructors. Since the |
18635 | | // implicit default constructor is suppressed if there are any |
18636 | | // user-declared constructors, we just need to check that there is a |
18637 | | // trivial default constructor and a trivial copy constructor. (We don't |
18638 | | // worry about move constructors here, since this is a C++98 check.) |
18639 | 0 | if (RDecl->hasNonTrivialCopyConstructor()) |
18640 | 0 | member = CXXCopyConstructor; |
18641 | 0 | else if (!RDecl->hasTrivialDefaultConstructor()) |
18642 | 0 | member = CXXDefaultConstructor; |
18643 | 0 | else if (RDecl->hasNonTrivialCopyAssignment()) |
18644 | 0 | member = CXXCopyAssignment; |
18645 | 0 | else if (RDecl->hasNonTrivialDestructor()) |
18646 | 0 | member = CXXDestructor; |
18647 | |
|
18648 | 0 | if (member != CXXInvalid) { |
18649 | 0 | if (!getLangOpts().CPlusPlus11 && |
18650 | 0 | getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) { |
18651 | | // Objective-C++ ARC: it is an error to have a non-trivial field of |
18652 | | // a union. However, system headers in Objective-C programs |
18653 | | // occasionally have Objective-C lifetime objects within unions, |
18654 | | // and rather than cause the program to fail, we make those |
18655 | | // members unavailable. |
18656 | 0 | SourceLocation Loc = FD->getLocation(); |
18657 | 0 | if (getSourceManager().isInSystemHeader(Loc)) { |
18658 | 0 | if (!FD->hasAttr<UnavailableAttr>()) |
18659 | 0 | FD->addAttr(UnavailableAttr::CreateImplicit(Context, "", |
18660 | 0 | UnavailableAttr::IR_ARCFieldWithOwnership, Loc)); |
18661 | 0 | return false; |
18662 | 0 | } |
18663 | 0 | } |
18664 | | |
18665 | 0 | Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ? |
18666 | 0 | diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member : |
18667 | 0 | diag::err_illegal_union_or_anon_struct_member) |
18668 | 0 | << FD->getParent()->isUnion() << FD->getDeclName() << member; |
18669 | 0 | DiagnoseNontrivial(RDecl, member); |
18670 | 0 | return !getLangOpts().CPlusPlus11; |
18671 | 0 | } |
18672 | 0 | } |
18673 | 0 | } |
18674 | | |
18675 | 0 | return false; |
18676 | 0 | } |
18677 | | |
18678 | | /// TranslateIvarVisibility - Translate visibility from a token ID to an |
18679 | | /// AST enum value. |
18680 | | static ObjCIvarDecl::AccessControl |
18681 | 0 | TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) { |
18682 | 0 | switch (ivarVisibility) { |
18683 | 0 | default: llvm_unreachable("Unknown visitibility kind"); |
18684 | 0 | case tok::objc_private: return ObjCIvarDecl::Private; |
18685 | 0 | case tok::objc_public: return ObjCIvarDecl::Public; |
18686 | 0 | case tok::objc_protected: return ObjCIvarDecl::Protected; |
18687 | 0 | case tok::objc_package: return ObjCIvarDecl::Package; |
18688 | 0 | } |
18689 | 0 | } |
18690 | | |
18691 | | /// ActOnIvar - Each ivar field of an objective-c class is passed into this |
18692 | | /// in order to create an IvarDecl object for it. |
18693 | | Decl *Sema::ActOnIvar(Scope *S, SourceLocation DeclStart, Declarator &D, |
18694 | 0 | Expr *BitWidth, tok::ObjCKeywordKind Visibility) { |
18695 | |
|
18696 | 0 | IdentifierInfo *II = D.getIdentifier(); |
18697 | 0 | SourceLocation Loc = DeclStart; |
18698 | 0 | if (II) Loc = D.getIdentifierLoc(); |
18699 | | |
18700 | | // FIXME: Unnamed fields can be handled in various different ways, for |
18701 | | // example, unnamed unions inject all members into the struct namespace! |
18702 | |
|
18703 | 0 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S); |
18704 | 0 | QualType T = TInfo->getType(); |
18705 | |
|
18706 | 0 | if (BitWidth) { |
18707 | | // 6.7.2.1p3, 6.7.2.1p4 |
18708 | 0 | BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).get(); |
18709 | 0 | if (!BitWidth) |
18710 | 0 | D.setInvalidType(); |
18711 | 0 | } else { |
18712 | | // Not a bitfield. |
18713 | | |
18714 | | // validate II. |
18715 | |
|
18716 | 0 | } |
18717 | 0 | if (T->isReferenceType()) { |
18718 | 0 | Diag(Loc, diag::err_ivar_reference_type); |
18719 | 0 | D.setInvalidType(); |
18720 | 0 | } |
18721 | | // C99 6.7.2.1p8: A member of a structure or union may have any type other |
18722 | | // than a variably modified type. |
18723 | 0 | else if (T->isVariablyModifiedType()) { |
18724 | 0 | if (!tryToFixVariablyModifiedVarType( |
18725 | 0 | TInfo, T, Loc, diag::err_typecheck_ivar_variable_size)) |
18726 | 0 | D.setInvalidType(); |
18727 | 0 | } |
18728 | | |
18729 | | // Get the visibility (access control) for this ivar. |
18730 | 0 | ObjCIvarDecl::AccessControl ac = |
18731 | 0 | Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility) |
18732 | 0 | : ObjCIvarDecl::None; |
18733 | | // Must set ivar's DeclContext to its enclosing interface. |
18734 | 0 | ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext); |
18735 | 0 | if (!EnclosingDecl || EnclosingDecl->isInvalidDecl()) |
18736 | 0 | return nullptr; |
18737 | 0 | ObjCContainerDecl *EnclosingContext; |
18738 | 0 | if (ObjCImplementationDecl *IMPDecl = |
18739 | 0 | dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { |
18740 | 0 | if (LangOpts.ObjCRuntime.isFragile()) { |
18741 | | // Case of ivar declared in an implementation. Context is that of its class. |
18742 | 0 | EnclosingContext = IMPDecl->getClassInterface(); |
18743 | 0 | assert(EnclosingContext && "Implementation has no class interface!"); |
18744 | 0 | } |
18745 | 0 | else |
18746 | 0 | EnclosingContext = EnclosingDecl; |
18747 | 0 | } else { |
18748 | 0 | if (ObjCCategoryDecl *CDecl = |
18749 | 0 | dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { |
18750 | 0 | if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) { |
18751 | 0 | Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension(); |
18752 | 0 | return nullptr; |
18753 | 0 | } |
18754 | 0 | } |
18755 | 0 | EnclosingContext = EnclosingDecl; |
18756 | 0 | } |
18757 | | |
18758 | | // Construct the decl. |
18759 | 0 | ObjCIvarDecl *NewID = ObjCIvarDecl::Create( |
18760 | 0 | Context, EnclosingContext, DeclStart, Loc, II, T, TInfo, ac, BitWidth); |
18761 | |
|
18762 | 0 | if (T->containsErrors()) |
18763 | 0 | NewID->setInvalidDecl(); |
18764 | |
|
18765 | 0 | if (II) { |
18766 | 0 | NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName, |
18767 | 0 | ForVisibleRedeclaration); |
18768 | 0 | if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S) |
18769 | 0 | && !isa<TagDecl>(PrevDecl)) { |
18770 | 0 | Diag(Loc, diag::err_duplicate_member) << II; |
18771 | 0 | Diag(PrevDecl->getLocation(), diag::note_previous_declaration); |
18772 | 0 | NewID->setInvalidDecl(); |
18773 | 0 | } |
18774 | 0 | } |
18775 | | |
18776 | | // Process attributes attached to the ivar. |
18777 | 0 | ProcessDeclAttributes(S, NewID, D); |
18778 | |
|
18779 | 0 | if (D.isInvalidType()) |
18780 | 0 | NewID->setInvalidDecl(); |
18781 | | |
18782 | | // In ARC, infer 'retaining' for ivars of retainable type. |
18783 | 0 | if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID)) |
18784 | 0 | NewID->setInvalidDecl(); |
18785 | |
|
18786 | 0 | if (D.getDeclSpec().isModulePrivateSpecified()) |
18787 | 0 | NewID->setModulePrivate(); |
18788 | |
|
18789 | 0 | if (II) { |
18790 | | // FIXME: When interfaces are DeclContexts, we'll need to add |
18791 | | // these to the interface. |
18792 | 0 | S->AddDecl(NewID); |
18793 | 0 | IdResolver.AddDecl(NewID); |
18794 | 0 | } |
18795 | |
|
18796 | 0 | if (LangOpts.ObjCRuntime.isNonFragile() && |
18797 | 0 | !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl)) |
18798 | 0 | Diag(Loc, diag::warn_ivars_in_interface); |
18799 | |
|
18800 | 0 | return NewID; |
18801 | 0 | } |
18802 | | |
18803 | | /// ActOnLastBitfield - This routine handles synthesized bitfields rules for |
18804 | | /// class and class extensions. For every class \@interface and class |
18805 | | /// extension \@interface, if the last ivar is a bitfield of any type, |
18806 | | /// then add an implicit `char :0` ivar to the end of that interface. |
18807 | | void Sema::ActOnLastBitfield(SourceLocation DeclLoc, |
18808 | 0 | SmallVectorImpl<Decl *> &AllIvarDecls) { |
18809 | 0 | if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty()) |
18810 | 0 | return; |
18811 | | |
18812 | 0 | Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1]; |
18813 | 0 | ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl); |
18814 | |
|
18815 | 0 | if (!Ivar->isBitField() || Ivar->isZeroLengthBitField(Context)) |
18816 | 0 | return; |
18817 | 0 | ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext); |
18818 | 0 | if (!ID) { |
18819 | 0 | if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) { |
18820 | 0 | if (!CD->IsClassExtension()) |
18821 | 0 | return; |
18822 | 0 | } |
18823 | | // No need to add this to end of @implementation. |
18824 | 0 | else |
18825 | 0 | return; |
18826 | 0 | } |
18827 | | // All conditions are met. Add a new bitfield to the tail end of ivars. |
18828 | 0 | llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0); |
18829 | 0 | Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc); |
18830 | |
|
18831 | 0 | Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext), |
18832 | 0 | DeclLoc, DeclLoc, nullptr, |
18833 | 0 | Context.CharTy, |
18834 | 0 | Context.getTrivialTypeSourceInfo(Context.CharTy, |
18835 | 0 | DeclLoc), |
18836 | 0 | ObjCIvarDecl::Private, BW, |
18837 | 0 | true); |
18838 | 0 | AllIvarDecls.push_back(Ivar); |
18839 | 0 | } |
18840 | | |
18841 | | /// [class.dtor]p4: |
18842 | | /// At the end of the definition of a class, overload resolution is |
18843 | | /// performed among the prospective destructors declared in that class with |
18844 | | /// an empty argument list to select the destructor for the class, also |
18845 | | /// known as the selected destructor. |
18846 | | /// |
18847 | | /// We do the overload resolution here, then mark the selected constructor in the AST. |
18848 | | /// Later CXXRecordDecl::getDestructor() will return the selected constructor. |
18849 | 0 | static void ComputeSelectedDestructor(Sema &S, CXXRecordDecl *Record) { |
18850 | 0 | if (!Record->hasUserDeclaredDestructor()) { |
18851 | 0 | return; |
18852 | 0 | } |
18853 | | |
18854 | 0 | SourceLocation Loc = Record->getLocation(); |
18855 | 0 | OverloadCandidateSet OCS(Loc, OverloadCandidateSet::CSK_Normal); |
18856 | |
|
18857 | 0 | for (auto *Decl : Record->decls()) { |
18858 | 0 | if (auto *DD = dyn_cast<CXXDestructorDecl>(Decl)) { |
18859 | 0 | if (DD->isInvalidDecl()) |
18860 | 0 | continue; |
18861 | 0 | S.AddOverloadCandidate(DD, DeclAccessPair::make(DD, DD->getAccess()), {}, |
18862 | 0 | OCS); |
18863 | 0 | assert(DD->isIneligibleOrNotSelected() && "Selecting a destructor but a destructor was already selected."); |
18864 | 0 | } |
18865 | 0 | } |
18866 | |
|
18867 | 0 | if (OCS.empty()) { |
18868 | 0 | return; |
18869 | 0 | } |
18870 | 0 | OverloadCandidateSet::iterator Best; |
18871 | 0 | unsigned Msg = 0; |
18872 | 0 | OverloadCandidateDisplayKind DisplayKind; |
18873 | |
|
18874 | 0 | switch (OCS.BestViableFunction(S, Loc, Best)) { |
18875 | 0 | case OR_Success: |
18876 | 0 | case OR_Deleted: |
18877 | 0 | Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(Best->Function)); |
18878 | 0 | break; |
18879 | | |
18880 | 0 | case OR_Ambiguous: |
18881 | 0 | Msg = diag::err_ambiguous_destructor; |
18882 | 0 | DisplayKind = OCD_AmbiguousCandidates; |
18883 | 0 | break; |
18884 | | |
18885 | 0 | case OR_No_Viable_Function: |
18886 | 0 | Msg = diag::err_no_viable_destructor; |
18887 | 0 | DisplayKind = OCD_AllCandidates; |
18888 | 0 | break; |
18889 | 0 | } |
18890 | | |
18891 | 0 | if (Msg) { |
18892 | | // OpenCL have got their own thing going with destructors. It's slightly broken, |
18893 | | // but we allow it. |
18894 | 0 | if (!S.LangOpts.OpenCL) { |
18895 | 0 | PartialDiagnostic Diag = S.PDiag(Msg) << Record; |
18896 | 0 | OCS.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, DisplayKind, {}); |
18897 | 0 | Record->setInvalidDecl(); |
18898 | 0 | } |
18899 | | // It's a bit hacky: At this point we've raised an error but we want the |
18900 | | // rest of the compiler to continue somehow working. However almost |
18901 | | // everything we'll try to do with the class will depend on there being a |
18902 | | // destructor. So let's pretend the first one is selected and hope for the |
18903 | | // best. |
18904 | 0 | Record->addedSelectedDestructor(dyn_cast<CXXDestructorDecl>(OCS.begin()->Function)); |
18905 | 0 | } |
18906 | 0 | } |
18907 | | |
18908 | | /// [class.mem.special]p5 |
18909 | | /// Two special member functions are of the same kind if: |
18910 | | /// - they are both default constructors, |
18911 | | /// - they are both copy or move constructors with the same first parameter |
18912 | | /// type, or |
18913 | | /// - they are both copy or move assignment operators with the same first |
18914 | | /// parameter type and the same cv-qualifiers and ref-qualifier, if any. |
18915 | | static bool AreSpecialMemberFunctionsSameKind(ASTContext &Context, |
18916 | | CXXMethodDecl *M1, |
18917 | | CXXMethodDecl *M2, |
18918 | 0 | Sema::CXXSpecialMember CSM) { |
18919 | | // We don't want to compare templates to non-templates: See |
18920 | | // https://github.com/llvm/llvm-project/issues/59206 |
18921 | 0 | if (CSM == Sema::CXXDefaultConstructor) |
18922 | 0 | return bool(M1->getDescribedFunctionTemplate()) == |
18923 | 0 | bool(M2->getDescribedFunctionTemplate()); |
18924 | | // FIXME: better resolve CWG |
18925 | | // https://cplusplus.github.io/CWG/issues/2787.html |
18926 | 0 | if (!Context.hasSameType(M1->getNonObjectParameter(0)->getType(), |
18927 | 0 | M2->getNonObjectParameter(0)->getType())) |
18928 | 0 | return false; |
18929 | 0 | if (!Context.hasSameType(M1->getFunctionObjectParameterReferenceType(), |
18930 | 0 | M2->getFunctionObjectParameterReferenceType())) |
18931 | 0 | return false; |
18932 | | |
18933 | 0 | return true; |
18934 | 0 | } |
18935 | | |
18936 | | /// [class.mem.special]p6: |
18937 | | /// An eligible special member function is a special member function for which: |
18938 | | /// - the function is not deleted, |
18939 | | /// - the associated constraints, if any, are satisfied, and |
18940 | | /// - no special member function of the same kind whose associated constraints |
18941 | | /// [CWG2595], if any, are satisfied is more constrained. |
18942 | | static void SetEligibleMethods(Sema &S, CXXRecordDecl *Record, |
18943 | | ArrayRef<CXXMethodDecl *> Methods, |
18944 | 0 | Sema::CXXSpecialMember CSM) { |
18945 | 0 | SmallVector<bool, 4> SatisfactionStatus; |
18946 | |
|
18947 | 0 | for (CXXMethodDecl *Method : Methods) { |
18948 | 0 | const Expr *Constraints = Method->getTrailingRequiresClause(); |
18949 | 0 | if (!Constraints) |
18950 | 0 | SatisfactionStatus.push_back(true); |
18951 | 0 | else { |
18952 | 0 | ConstraintSatisfaction Satisfaction; |
18953 | 0 | if (S.CheckFunctionConstraints(Method, Satisfaction)) |
18954 | 0 | SatisfactionStatus.push_back(false); |
18955 | 0 | else |
18956 | 0 | SatisfactionStatus.push_back(Satisfaction.IsSatisfied); |
18957 | 0 | } |
18958 | 0 | } |
18959 | |
|
18960 | 0 | for (size_t i = 0; i < Methods.size(); i++) { |
18961 | 0 | if (!SatisfactionStatus[i]) |
18962 | 0 | continue; |
18963 | 0 | CXXMethodDecl *Method = Methods[i]; |
18964 | 0 | CXXMethodDecl *OrigMethod = Method; |
18965 | 0 | if (FunctionDecl *MF = OrigMethod->getInstantiatedFromMemberFunction()) |
18966 | 0 | OrigMethod = cast<CXXMethodDecl>(MF); |
18967 | |
|
18968 | 0 | const Expr *Constraints = OrigMethod->getTrailingRequiresClause(); |
18969 | 0 | bool AnotherMethodIsMoreConstrained = false; |
18970 | 0 | for (size_t j = 0; j < Methods.size(); j++) { |
18971 | 0 | if (i == j || !SatisfactionStatus[j]) |
18972 | 0 | continue; |
18973 | 0 | CXXMethodDecl *OtherMethod = Methods[j]; |
18974 | 0 | if (FunctionDecl *MF = OtherMethod->getInstantiatedFromMemberFunction()) |
18975 | 0 | OtherMethod = cast<CXXMethodDecl>(MF); |
18976 | |
|
18977 | 0 | if (!AreSpecialMemberFunctionsSameKind(S.Context, OrigMethod, OtherMethod, |
18978 | 0 | CSM)) |
18979 | 0 | continue; |
18980 | | |
18981 | 0 | const Expr *OtherConstraints = OtherMethod->getTrailingRequiresClause(); |
18982 | 0 | if (!OtherConstraints) |
18983 | 0 | continue; |
18984 | 0 | if (!Constraints) { |
18985 | 0 | AnotherMethodIsMoreConstrained = true; |
18986 | 0 | break; |
18987 | 0 | } |
18988 | 0 | if (S.IsAtLeastAsConstrained(OtherMethod, {OtherConstraints}, OrigMethod, |
18989 | 0 | {Constraints}, |
18990 | 0 | AnotherMethodIsMoreConstrained)) { |
18991 | | // There was an error with the constraints comparison. Exit the loop |
18992 | | // and don't consider this function eligible. |
18993 | 0 | AnotherMethodIsMoreConstrained = true; |
18994 | 0 | } |
18995 | 0 | if (AnotherMethodIsMoreConstrained) |
18996 | 0 | break; |
18997 | 0 | } |
18998 | | // FIXME: Do not consider deleted methods as eligible after implementing |
18999 | | // DR1734 and DR1496. |
19000 | 0 | if (!AnotherMethodIsMoreConstrained) { |
19001 | 0 | Method->setIneligibleOrNotSelected(false); |
19002 | 0 | Record->addedEligibleSpecialMemberFunction(Method, 1 << CSM); |
19003 | 0 | } |
19004 | 0 | } |
19005 | 0 | } |
19006 | | |
19007 | | static void ComputeSpecialMemberFunctionsEligiblity(Sema &S, |
19008 | 0 | CXXRecordDecl *Record) { |
19009 | 0 | SmallVector<CXXMethodDecl *, 4> DefaultConstructors; |
19010 | 0 | SmallVector<CXXMethodDecl *, 4> CopyConstructors; |
19011 | 0 | SmallVector<CXXMethodDecl *, 4> MoveConstructors; |
19012 | 0 | SmallVector<CXXMethodDecl *, 4> CopyAssignmentOperators; |
19013 | 0 | SmallVector<CXXMethodDecl *, 4> MoveAssignmentOperators; |
19014 | |
|
19015 | 0 | for (auto *Decl : Record->decls()) { |
19016 | 0 | auto *MD = dyn_cast<CXXMethodDecl>(Decl); |
19017 | 0 | if (!MD) { |
19018 | 0 | auto *FTD = dyn_cast<FunctionTemplateDecl>(Decl); |
19019 | 0 | if (FTD) |
19020 | 0 | MD = dyn_cast<CXXMethodDecl>(FTD->getTemplatedDecl()); |
19021 | 0 | } |
19022 | 0 | if (!MD) |
19023 | 0 | continue; |
19024 | 0 | if (auto *CD = dyn_cast<CXXConstructorDecl>(MD)) { |
19025 | 0 | if (CD->isInvalidDecl()) |
19026 | 0 | continue; |
19027 | 0 | if (CD->isDefaultConstructor()) |
19028 | 0 | DefaultConstructors.push_back(MD); |
19029 | 0 | else if (CD->isCopyConstructor()) |
19030 | 0 | CopyConstructors.push_back(MD); |
19031 | 0 | else if (CD->isMoveConstructor()) |
19032 | 0 | MoveConstructors.push_back(MD); |
19033 | 0 | } else if (MD->isCopyAssignmentOperator()) { |
19034 | 0 | CopyAssignmentOperators.push_back(MD); |
19035 | 0 | } else if (MD->isMoveAssignmentOperator()) { |
19036 | 0 | MoveAssignmentOperators.push_back(MD); |
19037 | 0 | } |
19038 | 0 | } |
19039 | |
|
19040 | 0 | SetEligibleMethods(S, Record, DefaultConstructors, |
19041 | 0 | Sema::CXXDefaultConstructor); |
19042 | 0 | SetEligibleMethods(S, Record, CopyConstructors, Sema::CXXCopyConstructor); |
19043 | 0 | SetEligibleMethods(S, Record, MoveConstructors, Sema::CXXMoveConstructor); |
19044 | 0 | SetEligibleMethods(S, Record, CopyAssignmentOperators, |
19045 | 0 | Sema::CXXCopyAssignment); |
19046 | 0 | SetEligibleMethods(S, Record, MoveAssignmentOperators, |
19047 | 0 | Sema::CXXMoveAssignment); |
19048 | 0 | } |
19049 | | |
19050 | | void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl, |
19051 | | ArrayRef<Decl *> Fields, SourceLocation LBrac, |
19052 | | SourceLocation RBrac, |
19053 | 0 | const ParsedAttributesView &Attrs) { |
19054 | 0 | assert(EnclosingDecl && "missing record or interface decl"); |
19055 | | |
19056 | | // If this is an Objective-C @implementation or category and we have |
19057 | | // new fields here we should reset the layout of the interface since |
19058 | | // it will now change. |
19059 | 0 | if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) { |
19060 | 0 | ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl); |
19061 | 0 | switch (DC->getKind()) { |
19062 | 0 | default: break; |
19063 | 0 | case Decl::ObjCCategory: |
19064 | 0 | Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface()); |
19065 | 0 | break; |
19066 | 0 | case Decl::ObjCImplementation: |
19067 | 0 | Context. |
19068 | 0 | ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface()); |
19069 | 0 | break; |
19070 | 0 | } |
19071 | 0 | } |
19072 | | |
19073 | 0 | RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl); |
19074 | 0 | CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(EnclosingDecl); |
19075 | | |
19076 | | // Start counting up the number of named members; make sure to include |
19077 | | // members of anonymous structs and unions in the total. |
19078 | 0 | unsigned NumNamedMembers = 0; |
19079 | 0 | if (Record) { |
19080 | 0 | for (const auto *I : Record->decls()) { |
19081 | 0 | if (const auto *IFD = dyn_cast<IndirectFieldDecl>(I)) |
19082 | 0 | if (IFD->getDeclName()) |
19083 | 0 | ++NumNamedMembers; |
19084 | 0 | } |
19085 | 0 | } |
19086 | | |
19087 | | // Verify that all the fields are okay. |
19088 | 0 | SmallVector<FieldDecl*, 32> RecFields; |
19089 | |
|
19090 | 0 | for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end(); |
19091 | 0 | i != end; ++i) { |
19092 | 0 | FieldDecl *FD = cast<FieldDecl>(*i); |
19093 | | |
19094 | | // Get the type for the field. |
19095 | 0 | const Type *FDTy = FD->getType().getTypePtr(); |
19096 | |
|
19097 | 0 | if (!FD->isAnonymousStructOrUnion()) { |
19098 | | // Remember all fields written by the user. |
19099 | 0 | RecFields.push_back(FD); |
19100 | 0 | } |
19101 | | |
19102 | | // If the field is already invalid for some reason, don't emit more |
19103 | | // diagnostics about it. |
19104 | 0 | if (FD->isInvalidDecl()) { |
19105 | 0 | EnclosingDecl->setInvalidDecl(); |
19106 | 0 | continue; |
19107 | 0 | } |
19108 | | |
19109 | | // C99 6.7.2.1p2: |
19110 | | // A structure or union shall not contain a member with |
19111 | | // incomplete or function type (hence, a structure shall not |
19112 | | // contain an instance of itself, but may contain a pointer to |
19113 | | // an instance of itself), except that the last member of a |
19114 | | // structure with more than one named member may have incomplete |
19115 | | // array type; such a structure (and any union containing, |
19116 | | // possibly recursively, a member that is such a structure) |
19117 | | // shall not be a member of a structure or an element of an |
19118 | | // array. |
19119 | 0 | bool IsLastField = (i + 1 == Fields.end()); |
19120 | 0 | if (FDTy->isFunctionType()) { |
19121 | | // Field declared as a function. |
19122 | 0 | Diag(FD->getLocation(), diag::err_field_declared_as_function) |
19123 | 0 | << FD->getDeclName(); |
19124 | 0 | FD->setInvalidDecl(); |
19125 | 0 | EnclosingDecl->setInvalidDecl(); |
19126 | 0 | continue; |
19127 | 0 | } else if (FDTy->isIncompleteArrayType() && |
19128 | 0 | (Record || isa<ObjCContainerDecl>(EnclosingDecl))) { |
19129 | 0 | if (Record) { |
19130 | | // Flexible array member. |
19131 | | // Microsoft and g++ is more permissive regarding flexible array. |
19132 | | // It will accept flexible array in union and also |
19133 | | // as the sole element of a struct/class. |
19134 | 0 | unsigned DiagID = 0; |
19135 | 0 | if (!Record->isUnion() && !IsLastField) { |
19136 | 0 | Diag(FD->getLocation(), diag::err_flexible_array_not_at_end) |
19137 | 0 | << FD->getDeclName() << FD->getType() |
19138 | 0 | << llvm::to_underlying(Record->getTagKind()); |
19139 | 0 | Diag((*(i + 1))->getLocation(), diag::note_next_field_declaration); |
19140 | 0 | FD->setInvalidDecl(); |
19141 | 0 | EnclosingDecl->setInvalidDecl(); |
19142 | 0 | continue; |
19143 | 0 | } else if (Record->isUnion()) |
19144 | 0 | DiagID = getLangOpts().MicrosoftExt |
19145 | 0 | ? diag::ext_flexible_array_union_ms |
19146 | 0 | : getLangOpts().CPlusPlus |
19147 | 0 | ? diag::ext_flexible_array_union_gnu |
19148 | 0 | : diag::err_flexible_array_union; |
19149 | 0 | else if (NumNamedMembers < 1) |
19150 | 0 | DiagID = getLangOpts().MicrosoftExt |
19151 | 0 | ? diag::ext_flexible_array_empty_aggregate_ms |
19152 | 0 | : getLangOpts().CPlusPlus |
19153 | 0 | ? diag::ext_flexible_array_empty_aggregate_gnu |
19154 | 0 | : diag::err_flexible_array_empty_aggregate; |
19155 | | |
19156 | 0 | if (DiagID) |
19157 | 0 | Diag(FD->getLocation(), DiagID) |
19158 | 0 | << FD->getDeclName() << llvm::to_underlying(Record->getTagKind()); |
19159 | | // While the layout of types that contain virtual bases is not specified |
19160 | | // by the C++ standard, both the Itanium and Microsoft C++ ABIs place |
19161 | | // virtual bases after the derived members. This would make a flexible |
19162 | | // array member declared at the end of an object not adjacent to the end |
19163 | | // of the type. |
19164 | 0 | if (CXXRecord && CXXRecord->getNumVBases() != 0) |
19165 | 0 | Diag(FD->getLocation(), diag::err_flexible_array_virtual_base) |
19166 | 0 | << FD->getDeclName() << llvm::to_underlying(Record->getTagKind()); |
19167 | 0 | if (!getLangOpts().C99) |
19168 | 0 | Diag(FD->getLocation(), diag::ext_c99_flexible_array_member) |
19169 | 0 | << FD->getDeclName() << llvm::to_underlying(Record->getTagKind()); |
19170 | | |
19171 | | // If the element type has a non-trivial destructor, we would not |
19172 | | // implicitly destroy the elements, so disallow it for now. |
19173 | | // |
19174 | | // FIXME: GCC allows this. We should probably either implicitly delete |
19175 | | // the destructor of the containing class, or just allow this. |
19176 | 0 | QualType BaseElem = Context.getBaseElementType(FD->getType()); |
19177 | 0 | if (!BaseElem->isDependentType() && BaseElem.isDestructedType()) { |
19178 | 0 | Diag(FD->getLocation(), diag::err_flexible_array_has_nontrivial_dtor) |
19179 | 0 | << FD->getDeclName() << FD->getType(); |
19180 | 0 | FD->setInvalidDecl(); |
19181 | 0 | EnclosingDecl->setInvalidDecl(); |
19182 | 0 | continue; |
19183 | 0 | } |
19184 | | // Okay, we have a legal flexible array member at the end of the struct. |
19185 | 0 | Record->setHasFlexibleArrayMember(true); |
19186 | 0 | } else { |
19187 | | // In ObjCContainerDecl ivars with incomplete array type are accepted, |
19188 | | // unless they are followed by another ivar. That check is done |
19189 | | // elsewhere, after synthesized ivars are known. |
19190 | 0 | } |
19191 | 0 | } else if (!FDTy->isDependentType() && |
19192 | 0 | RequireCompleteSizedType( |
19193 | 0 | FD->getLocation(), FD->getType(), |
19194 | 0 | diag::err_field_incomplete_or_sizeless)) { |
19195 | | // Incomplete type |
19196 | 0 | FD->setInvalidDecl(); |
19197 | 0 | EnclosingDecl->setInvalidDecl(); |
19198 | 0 | continue; |
19199 | 0 | } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) { |
19200 | 0 | if (Record && FDTTy->getDecl()->hasFlexibleArrayMember()) { |
19201 | | // A type which contains a flexible array member is considered to be a |
19202 | | // flexible array member. |
19203 | 0 | Record->setHasFlexibleArrayMember(true); |
19204 | 0 | if (!Record->isUnion()) { |
19205 | | // If this is a struct/class and this is not the last element, reject |
19206 | | // it. Note that GCC supports variable sized arrays in the middle of |
19207 | | // structures. |
19208 | 0 | if (!IsLastField) |
19209 | 0 | Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct) |
19210 | 0 | << FD->getDeclName() << FD->getType(); |
19211 | 0 | else { |
19212 | | // We support flexible arrays at the end of structs in |
19213 | | // other structs as an extension. |
19214 | 0 | Diag(FD->getLocation(), diag::ext_flexible_array_in_struct) |
19215 | 0 | << FD->getDeclName(); |
19216 | 0 | } |
19217 | 0 | } |
19218 | 0 | } |
19219 | 0 | if (isa<ObjCContainerDecl>(EnclosingDecl) && |
19220 | 0 | RequireNonAbstractType(FD->getLocation(), FD->getType(), |
19221 | 0 | diag::err_abstract_type_in_decl, |
19222 | 0 | AbstractIvarType)) { |
19223 | | // Ivars can not have abstract class types |
19224 | 0 | FD->setInvalidDecl(); |
19225 | 0 | } |
19226 | 0 | if (Record && FDTTy->getDecl()->hasObjectMember()) |
19227 | 0 | Record->setHasObjectMember(true); |
19228 | 0 | if (Record && FDTTy->getDecl()->hasVolatileMember()) |
19229 | 0 | Record->setHasVolatileMember(true); |
19230 | 0 | } else if (FDTy->isObjCObjectType()) { |
19231 | | /// A field cannot be an Objective-c object |
19232 | 0 | Diag(FD->getLocation(), diag::err_statically_allocated_object) |
19233 | 0 | << FixItHint::CreateInsertion(FD->getLocation(), "*"); |
19234 | 0 | QualType T = Context.getObjCObjectPointerType(FD->getType()); |
19235 | 0 | FD->setType(T); |
19236 | 0 | } else if (Record && Record->isUnion() && |
19237 | 0 | FD->getType().hasNonTrivialObjCLifetime() && |
19238 | 0 | getSourceManager().isInSystemHeader(FD->getLocation()) && |
19239 | 0 | !getLangOpts().CPlusPlus && !FD->hasAttr<UnavailableAttr>() && |
19240 | 0 | (FD->getType().getObjCLifetime() != Qualifiers::OCL_Strong || |
19241 | 0 | !Context.hasDirectOwnershipQualifier(FD->getType()))) { |
19242 | | // For backward compatibility, fields of C unions declared in system |
19243 | | // headers that have non-trivial ObjC ownership qualifications are marked |
19244 | | // as unavailable unless the qualifier is explicit and __strong. This can |
19245 | | // break ABI compatibility between programs compiled with ARC and MRR, but |
19246 | | // is a better option than rejecting programs using those unions under |
19247 | | // ARC. |
19248 | 0 | FD->addAttr(UnavailableAttr::CreateImplicit( |
19249 | 0 | Context, "", UnavailableAttr::IR_ARCFieldWithOwnership, |
19250 | 0 | FD->getLocation())); |
19251 | 0 | } else if (getLangOpts().ObjC && |
19252 | 0 | getLangOpts().getGC() != LangOptions::NonGC && Record && |
19253 | 0 | !Record->hasObjectMember()) { |
19254 | 0 | if (FD->getType()->isObjCObjectPointerType() || |
19255 | 0 | FD->getType().isObjCGCStrong()) |
19256 | 0 | Record->setHasObjectMember(true); |
19257 | 0 | else if (Context.getAsArrayType(FD->getType())) { |
19258 | 0 | QualType BaseType = Context.getBaseElementType(FD->getType()); |
19259 | 0 | if (BaseType->isRecordType() && |
19260 | 0 | BaseType->castAs<RecordType>()->getDecl()->hasObjectMember()) |
19261 | 0 | Record->setHasObjectMember(true); |
19262 | 0 | else if (BaseType->isObjCObjectPointerType() || |
19263 | 0 | BaseType.isObjCGCStrong()) |
19264 | 0 | Record->setHasObjectMember(true); |
19265 | 0 | } |
19266 | 0 | } |
19267 | | |
19268 | 0 | if (Record && !getLangOpts().CPlusPlus && |
19269 | 0 | !shouldIgnoreForRecordTriviality(FD)) { |
19270 | 0 | QualType FT = FD->getType(); |
19271 | 0 | if (FT.isNonTrivialToPrimitiveDefaultInitialize()) { |
19272 | 0 | Record->setNonTrivialToPrimitiveDefaultInitialize(true); |
19273 | 0 | if (FT.hasNonTrivialToPrimitiveDefaultInitializeCUnion() || |
19274 | 0 | Record->isUnion()) |
19275 | 0 | Record->setHasNonTrivialToPrimitiveDefaultInitializeCUnion(true); |
19276 | 0 | } |
19277 | 0 | QualType::PrimitiveCopyKind PCK = FT.isNonTrivialToPrimitiveCopy(); |
19278 | 0 | if (PCK != QualType::PCK_Trivial && PCK != QualType::PCK_VolatileTrivial) { |
19279 | 0 | Record->setNonTrivialToPrimitiveCopy(true); |
19280 | 0 | if (FT.hasNonTrivialToPrimitiveCopyCUnion() || Record->isUnion()) |
19281 | 0 | Record->setHasNonTrivialToPrimitiveCopyCUnion(true); |
19282 | 0 | } |
19283 | 0 | if (FT.isDestructedType()) { |
19284 | 0 | Record->setNonTrivialToPrimitiveDestroy(true); |
19285 | 0 | Record->setParamDestroyedInCallee(true); |
19286 | 0 | if (FT.hasNonTrivialToPrimitiveDestructCUnion() || Record->isUnion()) |
19287 | 0 | Record->setHasNonTrivialToPrimitiveDestructCUnion(true); |
19288 | 0 | } |
19289 | |
|
19290 | 0 | if (const auto *RT = FT->getAs<RecordType>()) { |
19291 | 0 | if (RT->getDecl()->getArgPassingRestrictions() == |
19292 | 0 | RecordArgPassingKind::CanNeverPassInRegs) |
19293 | 0 | Record->setArgPassingRestrictions( |
19294 | 0 | RecordArgPassingKind::CanNeverPassInRegs); |
19295 | 0 | } else if (FT.getQualifiers().getObjCLifetime() == Qualifiers::OCL_Weak) |
19296 | 0 | Record->setArgPassingRestrictions( |
19297 | 0 | RecordArgPassingKind::CanNeverPassInRegs); |
19298 | 0 | } |
19299 | |
|
19300 | 0 | if (Record && FD->getType().isVolatileQualified()) |
19301 | 0 | Record->setHasVolatileMember(true); |
19302 | | // Keep track of the number of named members. |
19303 | 0 | if (FD->getIdentifier()) |
19304 | 0 | ++NumNamedMembers; |
19305 | 0 | } |
19306 | | |
19307 | | // Okay, we successfully defined 'Record'. |
19308 | 0 | if (Record) { |
19309 | 0 | bool Completed = false; |
19310 | 0 | if (CXXRecord) { |
19311 | 0 | if (!CXXRecord->isInvalidDecl()) { |
19312 | | // Set access bits correctly on the directly-declared conversions. |
19313 | 0 | for (CXXRecordDecl::conversion_iterator |
19314 | 0 | I = CXXRecord->conversion_begin(), |
19315 | 0 | E = CXXRecord->conversion_end(); I != E; ++I) |
19316 | 0 | I.setAccess((*I)->getAccess()); |
19317 | 0 | } |
19318 | | |
19319 | | // Add any implicitly-declared members to this class. |
19320 | 0 | AddImplicitlyDeclaredMembersToClass(CXXRecord); |
19321 | |
|
19322 | 0 | if (!CXXRecord->isDependentType()) { |
19323 | 0 | if (!CXXRecord->isInvalidDecl()) { |
19324 | | // If we have virtual base classes, we may end up finding multiple |
19325 | | // final overriders for a given virtual function. Check for this |
19326 | | // problem now. |
19327 | 0 | if (CXXRecord->getNumVBases()) { |
19328 | 0 | CXXFinalOverriderMap FinalOverriders; |
19329 | 0 | CXXRecord->getFinalOverriders(FinalOverriders); |
19330 | |
|
19331 | 0 | for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(), |
19332 | 0 | MEnd = FinalOverriders.end(); |
19333 | 0 | M != MEnd; ++M) { |
19334 | 0 | for (OverridingMethods::iterator SO = M->second.begin(), |
19335 | 0 | SOEnd = M->second.end(); |
19336 | 0 | SO != SOEnd; ++SO) { |
19337 | 0 | assert(SO->second.size() > 0 && |
19338 | 0 | "Virtual function without overriding functions?"); |
19339 | 0 | if (SO->second.size() == 1) |
19340 | 0 | continue; |
19341 | | |
19342 | | // C++ [class.virtual]p2: |
19343 | | // In a derived class, if a virtual member function of a base |
19344 | | // class subobject has more than one final overrider the |
19345 | | // program is ill-formed. |
19346 | 0 | Diag(Record->getLocation(), diag::err_multiple_final_overriders) |
19347 | 0 | << (const NamedDecl *)M->first << Record; |
19348 | 0 | Diag(M->first->getLocation(), |
19349 | 0 | diag::note_overridden_virtual_function); |
19350 | 0 | for (OverridingMethods::overriding_iterator |
19351 | 0 | OM = SO->second.begin(), |
19352 | 0 | OMEnd = SO->second.end(); |
19353 | 0 | OM != OMEnd; ++OM) |
19354 | 0 | Diag(OM->Method->getLocation(), diag::note_final_overrider) |
19355 | 0 | << (const NamedDecl *)M->first << OM->Method->getParent(); |
19356 | |
|
19357 | 0 | Record->setInvalidDecl(); |
19358 | 0 | } |
19359 | 0 | } |
19360 | 0 | CXXRecord->completeDefinition(&FinalOverriders); |
19361 | 0 | Completed = true; |
19362 | 0 | } |
19363 | 0 | } |
19364 | 0 | ComputeSelectedDestructor(*this, CXXRecord); |
19365 | 0 | ComputeSpecialMemberFunctionsEligiblity(*this, CXXRecord); |
19366 | 0 | } |
19367 | 0 | } |
19368 | |
|
19369 | 0 | if (!Completed) |
19370 | 0 | Record->completeDefinition(); |
19371 | | |
19372 | | // Handle attributes before checking the layout. |
19373 | 0 | ProcessDeclAttributeList(S, Record, Attrs); |
19374 | | |
19375 | | // Check to see if a FieldDecl is a pointer to a function. |
19376 | 0 | auto IsFunctionPointerOrForwardDecl = [&](const Decl *D) { |
19377 | 0 | const FieldDecl *FD = dyn_cast<FieldDecl>(D); |
19378 | 0 | if (!FD) { |
19379 | | // Check whether this is a forward declaration that was inserted by |
19380 | | // Clang. This happens when a non-forward declared / defined type is |
19381 | | // used, e.g.: |
19382 | | // |
19383 | | // struct foo { |
19384 | | // struct bar *(*f)(); |
19385 | | // struct bar *(*g)(); |
19386 | | // }; |
19387 | | // |
19388 | | // "struct bar" shows up in the decl AST as a "RecordDecl" with an |
19389 | | // incomplete definition. |
19390 | 0 | if (const auto *TD = dyn_cast<TagDecl>(D)) |
19391 | 0 | return !TD->isCompleteDefinition(); |
19392 | 0 | return false; |
19393 | 0 | } |
19394 | 0 | QualType FieldType = FD->getType().getDesugaredType(Context); |
19395 | 0 | if (isa<PointerType>(FieldType)) { |
19396 | 0 | QualType PointeeType = cast<PointerType>(FieldType)->getPointeeType(); |
19397 | 0 | return PointeeType.getDesugaredType(Context)->isFunctionType(); |
19398 | 0 | } |
19399 | 0 | return false; |
19400 | 0 | }; |
19401 | | |
19402 | | // Maybe randomize the record's decls. We automatically randomize a record |
19403 | | // of function pointers, unless it has the "no_randomize_layout" attribute. |
19404 | 0 | if (!getLangOpts().CPlusPlus && |
19405 | 0 | (Record->hasAttr<RandomizeLayoutAttr>() || |
19406 | 0 | (!Record->hasAttr<NoRandomizeLayoutAttr>() && |
19407 | 0 | llvm::all_of(Record->decls(), IsFunctionPointerOrForwardDecl))) && |
19408 | 0 | !Record->isUnion() && !getLangOpts().RandstructSeed.empty() && |
19409 | 0 | !Record->isRandomized()) { |
19410 | 0 | SmallVector<Decl *, 32> NewDeclOrdering; |
19411 | 0 | if (randstruct::randomizeStructureLayout(Context, Record, |
19412 | 0 | NewDeclOrdering)) |
19413 | 0 | Record->reorderDecls(NewDeclOrdering); |
19414 | 0 | } |
19415 | | |
19416 | | // We may have deferred checking for a deleted destructor. Check now. |
19417 | 0 | if (CXXRecord) { |
19418 | 0 | auto *Dtor = CXXRecord->getDestructor(); |
19419 | 0 | if (Dtor && Dtor->isImplicit() && |
19420 | 0 | ShouldDeleteSpecialMember(Dtor, CXXDestructor)) { |
19421 | 0 | CXXRecord->setImplicitDestructorIsDeleted(); |
19422 | 0 | SetDeclDeleted(Dtor, CXXRecord->getLocation()); |
19423 | 0 | } |
19424 | 0 | } |
19425 | |
|
19426 | 0 | if (Record->hasAttrs()) { |
19427 | 0 | CheckAlignasUnderalignment(Record); |
19428 | |
|
19429 | 0 | if (const MSInheritanceAttr *IA = Record->getAttr<MSInheritanceAttr>()) |
19430 | 0 | checkMSInheritanceAttrOnDefinition(cast<CXXRecordDecl>(Record), |
19431 | 0 | IA->getRange(), IA->getBestCase(), |
19432 | 0 | IA->getInheritanceModel()); |
19433 | 0 | } |
19434 | | |
19435 | | // Check if the structure/union declaration is a type that can have zero |
19436 | | // size in C. For C this is a language extension, for C++ it may cause |
19437 | | // compatibility problems. |
19438 | 0 | bool CheckForZeroSize; |
19439 | 0 | if (!getLangOpts().CPlusPlus) { |
19440 | 0 | CheckForZeroSize = true; |
19441 | 0 | } else { |
19442 | | // For C++ filter out types that cannot be referenced in C code. |
19443 | 0 | CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record); |
19444 | 0 | CheckForZeroSize = |
19445 | 0 | CXXRecord->getLexicalDeclContext()->isExternCContext() && |
19446 | 0 | !CXXRecord->isDependentType() && !inTemplateInstantiation() && |
19447 | 0 | CXXRecord->isCLike(); |
19448 | 0 | } |
19449 | 0 | if (CheckForZeroSize) { |
19450 | 0 | bool ZeroSize = true; |
19451 | 0 | bool IsEmpty = true; |
19452 | 0 | unsigned NonBitFields = 0; |
19453 | 0 | for (RecordDecl::field_iterator I = Record->field_begin(), |
19454 | 0 | E = Record->field_end(); |
19455 | 0 | (NonBitFields == 0 || ZeroSize) && I != E; ++I) { |
19456 | 0 | IsEmpty = false; |
19457 | 0 | if (I->isUnnamedBitfield()) { |
19458 | 0 | if (!I->isZeroLengthBitField(Context)) |
19459 | 0 | ZeroSize = false; |
19460 | 0 | } else { |
19461 | 0 | ++NonBitFields; |
19462 | 0 | QualType FieldType = I->getType(); |
19463 | 0 | if (FieldType->isIncompleteType() || |
19464 | 0 | !Context.getTypeSizeInChars(FieldType).isZero()) |
19465 | 0 | ZeroSize = false; |
19466 | 0 | } |
19467 | 0 | } |
19468 | | |
19469 | | // Empty structs are an extension in C (C99 6.7.2.1p7). They are |
19470 | | // allowed in C++, but warn if its declaration is inside |
19471 | | // extern "C" block. |
19472 | 0 | if (ZeroSize) { |
19473 | 0 | Diag(RecLoc, getLangOpts().CPlusPlus ? |
19474 | 0 | diag::warn_zero_size_struct_union_in_extern_c : |
19475 | 0 | diag::warn_zero_size_struct_union_compat) |
19476 | 0 | << IsEmpty << Record->isUnion() << (NonBitFields > 1); |
19477 | 0 | } |
19478 | | |
19479 | | // Structs without named members are extension in C (C99 6.7.2.1p7), |
19480 | | // but are accepted by GCC. |
19481 | 0 | if (NonBitFields == 0 && !getLangOpts().CPlusPlus) { |
19482 | 0 | Diag(RecLoc, IsEmpty ? diag::ext_empty_struct_union : |
19483 | 0 | diag::ext_no_named_members_in_struct_union) |
19484 | 0 | << Record->isUnion(); |
19485 | 0 | } |
19486 | 0 | } |
19487 | 0 | } else { |
19488 | 0 | ObjCIvarDecl **ClsFields = |
19489 | 0 | reinterpret_cast<ObjCIvarDecl**>(RecFields.data()); |
19490 | 0 | if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) { |
19491 | 0 | ID->setEndOfDefinitionLoc(RBrac); |
19492 | | // Add ivar's to class's DeclContext. |
19493 | 0 | for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { |
19494 | 0 | ClsFields[i]->setLexicalDeclContext(ID); |
19495 | 0 | ID->addDecl(ClsFields[i]); |
19496 | 0 | } |
19497 | | // Must enforce the rule that ivars in the base classes may not be |
19498 | | // duplicates. |
19499 | 0 | if (ID->getSuperClass()) |
19500 | 0 | DiagnoseDuplicateIvars(ID, ID->getSuperClass()); |
19501 | 0 | } else if (ObjCImplementationDecl *IMPDecl = |
19502 | 0 | dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) { |
19503 | 0 | assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl"); |
19504 | 0 | for (unsigned I = 0, N = RecFields.size(); I != N; ++I) |
19505 | | // Ivar declared in @implementation never belongs to the implementation. |
19506 | | // Only it is in implementation's lexical context. |
19507 | 0 | ClsFields[I]->setLexicalDeclContext(IMPDecl); |
19508 | 0 | CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac); |
19509 | 0 | IMPDecl->setIvarLBraceLoc(LBrac); |
19510 | 0 | IMPDecl->setIvarRBraceLoc(RBrac); |
19511 | 0 | } else if (ObjCCategoryDecl *CDecl = |
19512 | 0 | dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) { |
19513 | | // case of ivars in class extension; all other cases have been |
19514 | | // reported as errors elsewhere. |
19515 | | // FIXME. Class extension does not have a LocEnd field. |
19516 | | // CDecl->setLocEnd(RBrac); |
19517 | | // Add ivar's to class extension's DeclContext. |
19518 | | // Diagnose redeclaration of private ivars. |
19519 | 0 | ObjCInterfaceDecl *IDecl = CDecl->getClassInterface(); |
19520 | 0 | for (unsigned i = 0, e = RecFields.size(); i != e; ++i) { |
19521 | 0 | if (IDecl) { |
19522 | 0 | if (const ObjCIvarDecl *ClsIvar = |
19523 | 0 | IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) { |
19524 | 0 | Diag(ClsFields[i]->getLocation(), |
19525 | 0 | diag::err_duplicate_ivar_declaration); |
19526 | 0 | Diag(ClsIvar->getLocation(), diag::note_previous_definition); |
19527 | 0 | continue; |
19528 | 0 | } |
19529 | 0 | for (const auto *Ext : IDecl->known_extensions()) { |
19530 | 0 | if (const ObjCIvarDecl *ClsExtIvar |
19531 | 0 | = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) { |
19532 | 0 | Diag(ClsFields[i]->getLocation(), |
19533 | 0 | diag::err_duplicate_ivar_declaration); |
19534 | 0 | Diag(ClsExtIvar->getLocation(), diag::note_previous_definition); |
19535 | 0 | continue; |
19536 | 0 | } |
19537 | 0 | } |
19538 | 0 | } |
19539 | 0 | ClsFields[i]->setLexicalDeclContext(CDecl); |
19540 | 0 | CDecl->addDecl(ClsFields[i]); |
19541 | 0 | } |
19542 | 0 | CDecl->setIvarLBraceLoc(LBrac); |
19543 | 0 | CDecl->setIvarRBraceLoc(RBrac); |
19544 | 0 | } |
19545 | 0 | } |
19546 | 0 | } |
19547 | | |
19548 | | /// Determine whether the given integral value is representable within |
19549 | | /// the given type T. |
19550 | | static bool isRepresentableIntegerValue(ASTContext &Context, |
19551 | | llvm::APSInt &Value, |
19552 | 0 | QualType T) { |
19553 | 0 | assert((T->isIntegralType(Context) || T->isEnumeralType()) && |
19554 | 0 | "Integral type required!"); |
19555 | 0 | unsigned BitWidth = Context.getIntWidth(T); |
19556 | |
|
19557 | 0 | if (Value.isUnsigned() || Value.isNonNegative()) { |
19558 | 0 | if (T->isSignedIntegerOrEnumerationType()) |
19559 | 0 | --BitWidth; |
19560 | 0 | return Value.getActiveBits() <= BitWidth; |
19561 | 0 | } |
19562 | 0 | return Value.getSignificantBits() <= BitWidth; |
19563 | 0 | } |
19564 | | |
19565 | | // Given an integral type, return the next larger integral type |
19566 | | // (or a NULL type of no such type exists). |
19567 | 0 | static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) { |
19568 | | // FIXME: Int128/UInt128 support, which also needs to be introduced into |
19569 | | // enum checking below. |
19570 | 0 | assert((T->isIntegralType(Context) || |
19571 | 0 | T->isEnumeralType()) && "Integral type required!"); |
19572 | 0 | const unsigned NumTypes = 4; |
19573 | 0 | QualType SignedIntegralTypes[NumTypes] = { |
19574 | 0 | Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy |
19575 | 0 | }; |
19576 | 0 | QualType UnsignedIntegralTypes[NumTypes] = { |
19577 | 0 | Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy, |
19578 | 0 | Context.UnsignedLongLongTy |
19579 | 0 | }; |
19580 | |
|
19581 | 0 | unsigned BitWidth = Context.getTypeSize(T); |
19582 | 0 | QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes |
19583 | 0 | : UnsignedIntegralTypes; |
19584 | 0 | for (unsigned I = 0; I != NumTypes; ++I) |
19585 | 0 | if (Context.getTypeSize(Types[I]) > BitWidth) |
19586 | 0 | return Types[I]; |
19587 | | |
19588 | 0 | return QualType(); |
19589 | 0 | } |
19590 | | |
19591 | | EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum, |
19592 | | EnumConstantDecl *LastEnumConst, |
19593 | | SourceLocation IdLoc, |
19594 | | IdentifierInfo *Id, |
19595 | 0 | Expr *Val) { |
19596 | 0 | unsigned IntWidth = Context.getTargetInfo().getIntWidth(); |
19597 | 0 | llvm::APSInt EnumVal(IntWidth); |
19598 | 0 | QualType EltTy; |
19599 | |
|
19600 | 0 | if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue)) |
19601 | 0 | Val = nullptr; |
19602 | |
|
19603 | 0 | if (Val) |
19604 | 0 | Val = DefaultLvalueConversion(Val).get(); |
19605 | |
|
19606 | 0 | if (Val) { |
19607 | 0 | if (Enum->isDependentType() || Val->isTypeDependent() || |
19608 | 0 | Val->containsErrors()) |
19609 | 0 | EltTy = Context.DependentTy; |
19610 | 0 | else { |
19611 | | // FIXME: We don't allow folding in C++11 mode for an enum with a fixed |
19612 | | // underlying type, but do allow it in all other contexts. |
19613 | 0 | if (getLangOpts().CPlusPlus11 && Enum->isFixed()) { |
19614 | | // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the |
19615 | | // constant-expression in the enumerator-definition shall be a converted |
19616 | | // constant expression of the underlying type. |
19617 | 0 | EltTy = Enum->getIntegerType(); |
19618 | 0 | ExprResult Converted = |
19619 | 0 | CheckConvertedConstantExpression(Val, EltTy, EnumVal, |
19620 | 0 | CCEK_Enumerator); |
19621 | 0 | if (Converted.isInvalid()) |
19622 | 0 | Val = nullptr; |
19623 | 0 | else |
19624 | 0 | Val = Converted.get(); |
19625 | 0 | } else if (!Val->isValueDependent() && |
19626 | 0 | !(Val = |
19627 | 0 | VerifyIntegerConstantExpression(Val, &EnumVal, AllowFold) |
19628 | 0 | .get())) { |
19629 | | // C99 6.7.2.2p2: Make sure we have an integer constant expression. |
19630 | 0 | } else { |
19631 | 0 | if (Enum->isComplete()) { |
19632 | 0 | EltTy = Enum->getIntegerType(); |
19633 | | |
19634 | | // In Obj-C and Microsoft mode, require the enumeration value to be |
19635 | | // representable in the underlying type of the enumeration. In C++11, |
19636 | | // we perform a non-narrowing conversion as part of converted constant |
19637 | | // expression checking. |
19638 | 0 | if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) { |
19639 | 0 | if (Context.getTargetInfo() |
19640 | 0 | .getTriple() |
19641 | 0 | .isWindowsMSVCEnvironment()) { |
19642 | 0 | Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy; |
19643 | 0 | } else { |
19644 | 0 | Diag(IdLoc, diag::err_enumerator_too_large) << EltTy; |
19645 | 0 | } |
19646 | 0 | } |
19647 | | |
19648 | | // Cast to the underlying type. |
19649 | 0 | Val = ImpCastExprToType(Val, EltTy, |
19650 | 0 | EltTy->isBooleanType() ? CK_IntegralToBoolean |
19651 | 0 | : CK_IntegralCast) |
19652 | 0 | .get(); |
19653 | 0 | } else if (getLangOpts().CPlusPlus) { |
19654 | | // C++11 [dcl.enum]p5: |
19655 | | // If the underlying type is not fixed, the type of each enumerator |
19656 | | // is the type of its initializing value: |
19657 | | // - If an initializer is specified for an enumerator, the |
19658 | | // initializing value has the same type as the expression. |
19659 | 0 | EltTy = Val->getType(); |
19660 | 0 | } else { |
19661 | | // C99 6.7.2.2p2: |
19662 | | // The expression that defines the value of an enumeration constant |
19663 | | // shall be an integer constant expression that has a value |
19664 | | // representable as an int. |
19665 | | |
19666 | | // Complain if the value is not representable in an int. |
19667 | 0 | if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy)) |
19668 | 0 | Diag(IdLoc, diag::ext_enum_value_not_int) |
19669 | 0 | << toString(EnumVal, 10) << Val->getSourceRange() |
19670 | 0 | << (EnumVal.isUnsigned() || EnumVal.isNonNegative()); |
19671 | 0 | else if (!Context.hasSameType(Val->getType(), Context.IntTy)) { |
19672 | | // Force the type of the expression to 'int'. |
19673 | 0 | Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).get(); |
19674 | 0 | } |
19675 | 0 | EltTy = Val->getType(); |
19676 | 0 | } |
19677 | 0 | } |
19678 | 0 | } |
19679 | 0 | } |
19680 | |
|
19681 | 0 | if (!Val) { |
19682 | 0 | if (Enum->isDependentType()) |
19683 | 0 | EltTy = Context.DependentTy; |
19684 | 0 | else if (!LastEnumConst) { |
19685 | | // C++0x [dcl.enum]p5: |
19686 | | // If the underlying type is not fixed, the type of each enumerator |
19687 | | // is the type of its initializing value: |
19688 | | // - If no initializer is specified for the first enumerator, the |
19689 | | // initializing value has an unspecified integral type. |
19690 | | // |
19691 | | // GCC uses 'int' for its unspecified integral type, as does |
19692 | | // C99 6.7.2.2p3. |
19693 | 0 | if (Enum->isFixed()) { |
19694 | 0 | EltTy = Enum->getIntegerType(); |
19695 | 0 | } |
19696 | 0 | else { |
19697 | 0 | EltTy = Context.IntTy; |
19698 | 0 | } |
19699 | 0 | } else { |
19700 | | // Assign the last value + 1. |
19701 | 0 | EnumVal = LastEnumConst->getInitVal(); |
19702 | 0 | ++EnumVal; |
19703 | 0 | EltTy = LastEnumConst->getType(); |
19704 | | |
19705 | | // Check for overflow on increment. |
19706 | 0 | if (EnumVal < LastEnumConst->getInitVal()) { |
19707 | | // C++0x [dcl.enum]p5: |
19708 | | // If the underlying type is not fixed, the type of each enumerator |
19709 | | // is the type of its initializing value: |
19710 | | // |
19711 | | // - Otherwise the type of the initializing value is the same as |
19712 | | // the type of the initializing value of the preceding enumerator |
19713 | | // unless the incremented value is not representable in that type, |
19714 | | // in which case the type is an unspecified integral type |
19715 | | // sufficient to contain the incremented value. If no such type |
19716 | | // exists, the program is ill-formed. |
19717 | 0 | QualType T = getNextLargerIntegralType(Context, EltTy); |
19718 | 0 | if (T.isNull() || Enum->isFixed()) { |
19719 | | // There is no integral type larger enough to represent this |
19720 | | // value. Complain, then allow the value to wrap around. |
19721 | 0 | EnumVal = LastEnumConst->getInitVal(); |
19722 | 0 | EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2); |
19723 | 0 | ++EnumVal; |
19724 | 0 | if (Enum->isFixed()) |
19725 | | // When the underlying type is fixed, this is ill-formed. |
19726 | 0 | Diag(IdLoc, diag::err_enumerator_wrapped) |
19727 | 0 | << toString(EnumVal, 10) |
19728 | 0 | << EltTy; |
19729 | 0 | else |
19730 | 0 | Diag(IdLoc, diag::ext_enumerator_increment_too_large) |
19731 | 0 | << toString(EnumVal, 10); |
19732 | 0 | } else { |
19733 | 0 | EltTy = T; |
19734 | 0 | } |
19735 | | |
19736 | | // Retrieve the last enumerator's value, extent that type to the |
19737 | | // type that is supposed to be large enough to represent the incremented |
19738 | | // value, then increment. |
19739 | 0 | EnumVal = LastEnumConst->getInitVal(); |
19740 | 0 | EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); |
19741 | 0 | EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy)); |
19742 | 0 | ++EnumVal; |
19743 | | |
19744 | | // If we're not in C++, diagnose the overflow of enumerator values, |
19745 | | // which in C99 means that the enumerator value is not representable in |
19746 | | // an int (C99 6.7.2.2p2). However, we support GCC's extension that |
19747 | | // permits enumerator values that are representable in some larger |
19748 | | // integral type. |
19749 | 0 | if (!getLangOpts().CPlusPlus && !T.isNull()) |
19750 | 0 | Diag(IdLoc, diag::warn_enum_value_overflow); |
19751 | 0 | } else if (!getLangOpts().CPlusPlus && |
19752 | 0 | !EltTy->isDependentType() && |
19753 | 0 | !isRepresentableIntegerValue(Context, EnumVal, EltTy)) { |
19754 | | // Enforce C99 6.7.2.2p2 even when we compute the next value. |
19755 | 0 | Diag(IdLoc, diag::ext_enum_value_not_int) |
19756 | 0 | << toString(EnumVal, 10) << 1; |
19757 | 0 | } |
19758 | 0 | } |
19759 | 0 | } |
19760 | |
|
19761 | 0 | if (!EltTy->isDependentType()) { |
19762 | | // Make the enumerator value match the signedness and size of the |
19763 | | // enumerator's type. |
19764 | 0 | EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy)); |
19765 | 0 | EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType()); |
19766 | 0 | } |
19767 | |
|
19768 | 0 | return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy, |
19769 | 0 | Val, EnumVal); |
19770 | 0 | } |
19771 | | |
19772 | | Sema::SkipBodyInfo Sema::shouldSkipAnonEnumBody(Scope *S, IdentifierInfo *II, |
19773 | 0 | SourceLocation IILoc) { |
19774 | 0 | if (!(getLangOpts().Modules || getLangOpts().ModulesLocalVisibility) || |
19775 | 0 | !getLangOpts().CPlusPlus) |
19776 | 0 | return SkipBodyInfo(); |
19777 | | |
19778 | | // We have an anonymous enum definition. Look up the first enumerator to |
19779 | | // determine if we should merge the definition with an existing one and |
19780 | | // skip the body. |
19781 | 0 | NamedDecl *PrevDecl = LookupSingleName(S, II, IILoc, LookupOrdinaryName, |
19782 | 0 | forRedeclarationInCurContext()); |
19783 | 0 | auto *PrevECD = dyn_cast_or_null<EnumConstantDecl>(PrevDecl); |
19784 | 0 | if (!PrevECD) |
19785 | 0 | return SkipBodyInfo(); |
19786 | | |
19787 | 0 | EnumDecl *PrevED = cast<EnumDecl>(PrevECD->getDeclContext()); |
19788 | 0 | NamedDecl *Hidden; |
19789 | 0 | if (!PrevED->getDeclName() && !hasVisibleDefinition(PrevED, &Hidden)) { |
19790 | 0 | SkipBodyInfo Skip; |
19791 | 0 | Skip.Previous = Hidden; |
19792 | 0 | return Skip; |
19793 | 0 | } |
19794 | | |
19795 | 0 | return SkipBodyInfo(); |
19796 | 0 | } |
19797 | | |
19798 | | Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst, |
19799 | | SourceLocation IdLoc, IdentifierInfo *Id, |
19800 | | const ParsedAttributesView &Attrs, |
19801 | 0 | SourceLocation EqualLoc, Expr *Val) { |
19802 | 0 | EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl); |
19803 | 0 | EnumConstantDecl *LastEnumConst = |
19804 | 0 | cast_or_null<EnumConstantDecl>(lastEnumConst); |
19805 | | |
19806 | | // The scope passed in may not be a decl scope. Zip up the scope tree until |
19807 | | // we find one that is. |
19808 | 0 | S = getNonFieldDeclScope(S); |
19809 | | |
19810 | | // Verify that there isn't already something declared with this name in this |
19811 | | // scope. |
19812 | 0 | LookupResult R(*this, Id, IdLoc, LookupOrdinaryName, ForVisibleRedeclaration); |
19813 | 0 | LookupName(R, S); |
19814 | 0 | NamedDecl *PrevDecl = R.getAsSingle<NamedDecl>(); |
19815 | |
|
19816 | 0 | if (PrevDecl && PrevDecl->isTemplateParameter()) { |
19817 | | // Maybe we will complain about the shadowed template parameter. |
19818 | 0 | DiagnoseTemplateParameterShadow(IdLoc, PrevDecl); |
19819 | | // Just pretend that we didn't see the previous declaration. |
19820 | 0 | PrevDecl = nullptr; |
19821 | 0 | } |
19822 | | |
19823 | | // C++ [class.mem]p15: |
19824 | | // If T is the name of a class, then each of the following shall have a name |
19825 | | // different from T: |
19826 | | // - every enumerator of every member of class T that is an unscoped |
19827 | | // enumerated type |
19828 | 0 | if (getLangOpts().CPlusPlus && !TheEnumDecl->isScoped()) |
19829 | 0 | DiagnoseClassNameShadow(TheEnumDecl->getDeclContext(), |
19830 | 0 | DeclarationNameInfo(Id, IdLoc)); |
19831 | |
|
19832 | 0 | EnumConstantDecl *New = |
19833 | 0 | CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val); |
19834 | 0 | if (!New) |
19835 | 0 | return nullptr; |
19836 | | |
19837 | 0 | if (PrevDecl) { |
19838 | 0 | if (!TheEnumDecl->isScoped() && isa<ValueDecl>(PrevDecl)) { |
19839 | | // Check for other kinds of shadowing not already handled. |
19840 | 0 | CheckShadow(New, PrevDecl, R); |
19841 | 0 | } |
19842 | | |
19843 | | // When in C++, we may get a TagDecl with the same name; in this case the |
19844 | | // enum constant will 'hide' the tag. |
19845 | 0 | assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) && |
19846 | 0 | "Received TagDecl when not in C++!"); |
19847 | 0 | if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) { |
19848 | 0 | if (isa<EnumConstantDecl>(PrevDecl)) |
19849 | 0 | Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id; |
19850 | 0 | else |
19851 | 0 | Diag(IdLoc, diag::err_redefinition) << Id; |
19852 | 0 | notePreviousDefinition(PrevDecl, IdLoc); |
19853 | 0 | return nullptr; |
19854 | 0 | } |
19855 | 0 | } |
19856 | | |
19857 | | // Process attributes. |
19858 | 0 | ProcessDeclAttributeList(S, New, Attrs); |
19859 | 0 | AddPragmaAttributes(S, New); |
19860 | | |
19861 | | // Register this decl in the current scope stack. |
19862 | 0 | New->setAccess(TheEnumDecl->getAccess()); |
19863 | 0 | PushOnScopeChains(New, S); |
19864 | |
|
19865 | 0 | ActOnDocumentableDecl(New); |
19866 | |
|
19867 | 0 | return New; |
19868 | 0 | } |
19869 | | |
19870 | | // Returns true when the enum initial expression does not trigger the |
19871 | | // duplicate enum warning. A few common cases are exempted as follows: |
19872 | | // Element2 = Element1 |
19873 | | // Element2 = Element1 + 1 |
19874 | | // Element2 = Element1 - 1 |
19875 | | // Where Element2 and Element1 are from the same enum. |
19876 | 0 | static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) { |
19877 | 0 | Expr *InitExpr = ECD->getInitExpr(); |
19878 | 0 | if (!InitExpr) |
19879 | 0 | return true; |
19880 | 0 | InitExpr = InitExpr->IgnoreImpCasts(); |
19881 | |
|
19882 | 0 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) { |
19883 | 0 | if (!BO->isAdditiveOp()) |
19884 | 0 | return true; |
19885 | 0 | IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS()); |
19886 | 0 | if (!IL) |
19887 | 0 | return true; |
19888 | 0 | if (IL->getValue() != 1) |
19889 | 0 | return true; |
19890 | | |
19891 | 0 | InitExpr = BO->getLHS(); |
19892 | 0 | } |
19893 | | |
19894 | | // This checks if the elements are from the same enum. |
19895 | 0 | DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr); |
19896 | 0 | if (!DRE) |
19897 | 0 | return true; |
19898 | | |
19899 | 0 | EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl()); |
19900 | 0 | if (!EnumConstant) |
19901 | 0 | return true; |
19902 | | |
19903 | 0 | if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) != |
19904 | 0 | Enum) |
19905 | 0 | return true; |
19906 | | |
19907 | 0 | return false; |
19908 | 0 | } |
19909 | | |
19910 | | // Emits a warning when an element is implicitly set a value that |
19911 | | // a previous element has already been set to. |
19912 | | static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements, |
19913 | 0 | EnumDecl *Enum, QualType EnumType) { |
19914 | | // Avoid anonymous enums |
19915 | 0 | if (!Enum->getIdentifier()) |
19916 | 0 | return; |
19917 | | |
19918 | | // Only check for small enums. |
19919 | 0 | if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64) |
19920 | 0 | return; |
19921 | | |
19922 | 0 | if (S.Diags.isIgnored(diag::warn_duplicate_enum_values, Enum->getLocation())) |
19923 | 0 | return; |
19924 | | |
19925 | 0 | typedef SmallVector<EnumConstantDecl *, 3> ECDVector; |
19926 | 0 | typedef SmallVector<std::unique_ptr<ECDVector>, 3> DuplicatesVector; |
19927 | |
|
19928 | 0 | typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector; |
19929 | | |
19930 | | // DenseMaps cannot contain the all ones int64_t value, so use unordered_map. |
19931 | 0 | typedef std::unordered_map<int64_t, DeclOrVector> ValueToVectorMap; |
19932 | | |
19933 | | // Use int64_t as a key to avoid needing special handling for map keys. |
19934 | 0 | auto EnumConstantToKey = [](const EnumConstantDecl *D) { |
19935 | 0 | llvm::APSInt Val = D->getInitVal(); |
19936 | 0 | return Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(); |
19937 | 0 | }; |
19938 | |
|
19939 | 0 | DuplicatesVector DupVector; |
19940 | 0 | ValueToVectorMap EnumMap; |
19941 | | |
19942 | | // Populate the EnumMap with all values represented by enum constants without |
19943 | | // an initializer. |
19944 | 0 | for (auto *Element : Elements) { |
19945 | 0 | EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Element); |
19946 | | |
19947 | | // Null EnumConstantDecl means a previous diagnostic has been emitted for |
19948 | | // this constant. Skip this enum since it may be ill-formed. |
19949 | 0 | if (!ECD) { |
19950 | 0 | return; |
19951 | 0 | } |
19952 | | |
19953 | | // Constants with initializers are handled in the next loop. |
19954 | 0 | if (ECD->getInitExpr()) |
19955 | 0 | continue; |
19956 | | |
19957 | | // Duplicate values are handled in the next loop. |
19958 | 0 | EnumMap.insert({EnumConstantToKey(ECD), ECD}); |
19959 | 0 | } |
19960 | | |
19961 | 0 | if (EnumMap.size() == 0) |
19962 | 0 | return; |
19963 | | |
19964 | | // Create vectors for any values that has duplicates. |
19965 | 0 | for (auto *Element : Elements) { |
19966 | | // The last loop returned if any constant was null. |
19967 | 0 | EnumConstantDecl *ECD = cast<EnumConstantDecl>(Element); |
19968 | 0 | if (!ValidDuplicateEnum(ECD, Enum)) |
19969 | 0 | continue; |
19970 | | |
19971 | 0 | auto Iter = EnumMap.find(EnumConstantToKey(ECD)); |
19972 | 0 | if (Iter == EnumMap.end()) |
19973 | 0 | continue; |
19974 | | |
19975 | 0 | DeclOrVector& Entry = Iter->second; |
19976 | 0 | if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) { |
19977 | | // Ensure constants are different. |
19978 | 0 | if (D == ECD) |
19979 | 0 | continue; |
19980 | | |
19981 | | // Create new vector and push values onto it. |
19982 | 0 | auto Vec = std::make_unique<ECDVector>(); |
19983 | 0 | Vec->push_back(D); |
19984 | 0 | Vec->push_back(ECD); |
19985 | | |
19986 | | // Update entry to point to the duplicates vector. |
19987 | 0 | Entry = Vec.get(); |
19988 | | |
19989 | | // Store the vector somewhere we can consult later for quick emission of |
19990 | | // diagnostics. |
19991 | 0 | DupVector.emplace_back(std::move(Vec)); |
19992 | 0 | continue; |
19993 | 0 | } |
19994 | | |
19995 | 0 | ECDVector *Vec = Entry.get<ECDVector*>(); |
19996 | | // Make sure constants are not added more than once. |
19997 | 0 | if (*Vec->begin() == ECD) |
19998 | 0 | continue; |
19999 | | |
20000 | 0 | Vec->push_back(ECD); |
20001 | 0 | } |
20002 | | |
20003 | | // Emit diagnostics. |
20004 | 0 | for (const auto &Vec : DupVector) { |
20005 | 0 | assert(Vec->size() > 1 && "ECDVector should have at least 2 elements."); |
20006 | | |
20007 | | // Emit warning for one enum constant. |
20008 | 0 | auto *FirstECD = Vec->front(); |
20009 | 0 | S.Diag(FirstECD->getLocation(), diag::warn_duplicate_enum_values) |
20010 | 0 | << FirstECD << toString(FirstECD->getInitVal(), 10) |
20011 | 0 | << FirstECD->getSourceRange(); |
20012 | | |
20013 | | // Emit one note for each of the remaining enum constants with |
20014 | | // the same value. |
20015 | 0 | for (auto *ECD : llvm::drop_begin(*Vec)) |
20016 | 0 | S.Diag(ECD->getLocation(), diag::note_duplicate_element) |
20017 | 0 | << ECD << toString(ECD->getInitVal(), 10) |
20018 | 0 | << ECD->getSourceRange(); |
20019 | 0 | } |
20020 | 0 | } |
20021 | | |
20022 | | bool Sema::IsValueInFlagEnum(const EnumDecl *ED, const llvm::APInt &Val, |
20023 | 0 | bool AllowMask) const { |
20024 | 0 | assert(ED->isClosedFlag() && "looking for value in non-flag or open enum"); |
20025 | 0 | assert(ED->isCompleteDefinition() && "expected enum definition"); |
20026 | | |
20027 | 0 | auto R = FlagBitsCache.insert(std::make_pair(ED, llvm::APInt())); |
20028 | 0 | llvm::APInt &FlagBits = R.first->second; |
20029 | |
|
20030 | 0 | if (R.second) { |
20031 | 0 | for (auto *E : ED->enumerators()) { |
20032 | 0 | const auto &EVal = E->getInitVal(); |
20033 | | // Only single-bit enumerators introduce new flag values. |
20034 | 0 | if (EVal.isPowerOf2()) |
20035 | 0 | FlagBits = FlagBits.zext(EVal.getBitWidth()) | EVal; |
20036 | 0 | } |
20037 | 0 | } |
20038 | | |
20039 | | // A value is in a flag enum if either its bits are a subset of the enum's |
20040 | | // flag bits (the first condition) or we are allowing masks and the same is |
20041 | | // true of its complement (the second condition). When masks are allowed, we |
20042 | | // allow the common idiom of ~(enum1 | enum2) to be a valid enum value. |
20043 | | // |
20044 | | // While it's true that any value could be used as a mask, the assumption is |
20045 | | // that a mask will have all of the insignificant bits set. Anything else is |
20046 | | // likely a logic error. |
20047 | 0 | llvm::APInt FlagMask = ~FlagBits.zextOrTrunc(Val.getBitWidth()); |
20048 | 0 | return !(FlagMask & Val) || (AllowMask && !(FlagMask & ~Val)); |
20049 | 0 | } |
20050 | | |
20051 | | void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceRange BraceRange, |
20052 | | Decl *EnumDeclX, ArrayRef<Decl *> Elements, Scope *S, |
20053 | 0 | const ParsedAttributesView &Attrs) { |
20054 | 0 | EnumDecl *Enum = cast<EnumDecl>(EnumDeclX); |
20055 | 0 | QualType EnumType = Context.getTypeDeclType(Enum); |
20056 | |
|
20057 | 0 | ProcessDeclAttributeList(S, Enum, Attrs); |
20058 | |
|
20059 | 0 | if (Enum->isDependentType()) { |
20060 | 0 | for (unsigned i = 0, e = Elements.size(); i != e; ++i) { |
20061 | 0 | EnumConstantDecl *ECD = |
20062 | 0 | cast_or_null<EnumConstantDecl>(Elements[i]); |
20063 | 0 | if (!ECD) continue; |
20064 | | |
20065 | 0 | ECD->setType(EnumType); |
20066 | 0 | } |
20067 | |
|
20068 | 0 | Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0); |
20069 | 0 | return; |
20070 | 0 | } |
20071 | | |
20072 | | // TODO: If the result value doesn't fit in an int, it must be a long or long |
20073 | | // long value. ISO C does not support this, but GCC does as an extension, |
20074 | | // emit a warning. |
20075 | 0 | unsigned IntWidth = Context.getTargetInfo().getIntWidth(); |
20076 | 0 | unsigned CharWidth = Context.getTargetInfo().getCharWidth(); |
20077 | 0 | unsigned ShortWidth = Context.getTargetInfo().getShortWidth(); |
20078 | | |
20079 | | // Verify that all the values are okay, compute the size of the values, and |
20080 | | // reverse the list. |
20081 | 0 | unsigned NumNegativeBits = 0; |
20082 | 0 | unsigned NumPositiveBits = 0; |
20083 | |
|
20084 | 0 | for (unsigned i = 0, e = Elements.size(); i != e; ++i) { |
20085 | 0 | EnumConstantDecl *ECD = |
20086 | 0 | cast_or_null<EnumConstantDecl>(Elements[i]); |
20087 | 0 | if (!ECD) continue; // Already issued a diagnostic. |
20088 | | |
20089 | 0 | const llvm::APSInt &InitVal = ECD->getInitVal(); |
20090 | | |
20091 | | // Keep track of the size of positive and negative values. |
20092 | 0 | if (InitVal.isUnsigned() || InitVal.isNonNegative()) { |
20093 | | // If the enumerator is zero that should still be counted as a positive |
20094 | | // bit since we need a bit to store the value zero. |
20095 | 0 | unsigned ActiveBits = InitVal.getActiveBits(); |
20096 | 0 | NumPositiveBits = std::max({NumPositiveBits, ActiveBits, 1u}); |
20097 | 0 | } else { |
20098 | 0 | NumNegativeBits = |
20099 | 0 | std::max(NumNegativeBits, (unsigned)InitVal.getSignificantBits()); |
20100 | 0 | } |
20101 | 0 | } |
20102 | | |
20103 | | // If we have an empty set of enumerators we still need one bit. |
20104 | | // From [dcl.enum]p8 |
20105 | | // If the enumerator-list is empty, the values of the enumeration are as if |
20106 | | // the enumeration had a single enumerator with value 0 |
20107 | 0 | if (!NumPositiveBits && !NumNegativeBits) |
20108 | 0 | NumPositiveBits = 1; |
20109 | | |
20110 | | // Figure out the type that should be used for this enum. |
20111 | 0 | QualType BestType; |
20112 | 0 | unsigned BestWidth; |
20113 | | |
20114 | | // C++0x N3000 [conv.prom]p3: |
20115 | | // An rvalue of an unscoped enumeration type whose underlying |
20116 | | // type is not fixed can be converted to an rvalue of the first |
20117 | | // of the following types that can represent all the values of |
20118 | | // the enumeration: int, unsigned int, long int, unsigned long |
20119 | | // int, long long int, or unsigned long long int. |
20120 | | // C99 6.4.4.3p2: |
20121 | | // An identifier declared as an enumeration constant has type int. |
20122 | | // The C99 rule is modified by a gcc extension |
20123 | 0 | QualType BestPromotionType; |
20124 | |
|
20125 | 0 | bool Packed = Enum->hasAttr<PackedAttr>(); |
20126 | | // -fshort-enums is the equivalent to specifying the packed attribute on all |
20127 | | // enum definitions. |
20128 | 0 | if (LangOpts.ShortEnums) |
20129 | 0 | Packed = true; |
20130 | | |
20131 | | // If the enum already has a type because it is fixed or dictated by the |
20132 | | // target, promote that type instead of analyzing the enumerators. |
20133 | 0 | if (Enum->isComplete()) { |
20134 | 0 | BestType = Enum->getIntegerType(); |
20135 | 0 | if (Context.isPromotableIntegerType(BestType)) |
20136 | 0 | BestPromotionType = Context.getPromotedIntegerType(BestType); |
20137 | 0 | else |
20138 | 0 | BestPromotionType = BestType; |
20139 | |
|
20140 | 0 | BestWidth = Context.getIntWidth(BestType); |
20141 | 0 | } |
20142 | 0 | else if (NumNegativeBits) { |
20143 | | // If there is a negative value, figure out the smallest integer type (of |
20144 | | // int/long/longlong) that fits. |
20145 | | // If it's packed, check also if it fits a char or a short. |
20146 | 0 | if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) { |
20147 | 0 | BestType = Context.SignedCharTy; |
20148 | 0 | BestWidth = CharWidth; |
20149 | 0 | } else if (Packed && NumNegativeBits <= ShortWidth && |
20150 | 0 | NumPositiveBits < ShortWidth) { |
20151 | 0 | BestType = Context.ShortTy; |
20152 | 0 | BestWidth = ShortWidth; |
20153 | 0 | } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) { |
20154 | 0 | BestType = Context.IntTy; |
20155 | 0 | BestWidth = IntWidth; |
20156 | 0 | } else { |
20157 | 0 | BestWidth = Context.getTargetInfo().getLongWidth(); |
20158 | |
|
20159 | 0 | if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) { |
20160 | 0 | BestType = Context.LongTy; |
20161 | 0 | } else { |
20162 | 0 | BestWidth = Context.getTargetInfo().getLongLongWidth(); |
20163 | |
|
20164 | 0 | if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth) |
20165 | 0 | Diag(Enum->getLocation(), diag::ext_enum_too_large); |
20166 | 0 | BestType = Context.LongLongTy; |
20167 | 0 | } |
20168 | 0 | } |
20169 | 0 | BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType); |
20170 | 0 | } else { |
20171 | | // If there is no negative value, figure out the smallest type that fits |
20172 | | // all of the enumerator values. |
20173 | | // If it's packed, check also if it fits a char or a short. |
20174 | 0 | if (Packed && NumPositiveBits <= CharWidth) { |
20175 | 0 | BestType = Context.UnsignedCharTy; |
20176 | 0 | BestPromotionType = Context.IntTy; |
20177 | 0 | BestWidth = CharWidth; |
20178 | 0 | } else if (Packed && NumPositiveBits <= ShortWidth) { |
20179 | 0 | BestType = Context.UnsignedShortTy; |
20180 | 0 | BestPromotionType = Context.IntTy; |
20181 | 0 | BestWidth = ShortWidth; |
20182 | 0 | } else if (NumPositiveBits <= IntWidth) { |
20183 | 0 | BestType = Context.UnsignedIntTy; |
20184 | 0 | BestWidth = IntWidth; |
20185 | 0 | BestPromotionType |
20186 | 0 | = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) |
20187 | 0 | ? Context.UnsignedIntTy : Context.IntTy; |
20188 | 0 | } else if (NumPositiveBits <= |
20189 | 0 | (BestWidth = Context.getTargetInfo().getLongWidth())) { |
20190 | 0 | BestType = Context.UnsignedLongTy; |
20191 | 0 | BestPromotionType |
20192 | 0 | = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) |
20193 | 0 | ? Context.UnsignedLongTy : Context.LongTy; |
20194 | 0 | } else { |
20195 | 0 | BestWidth = Context.getTargetInfo().getLongLongWidth(); |
20196 | 0 | assert(NumPositiveBits <= BestWidth && |
20197 | 0 | "How could an initializer get larger than ULL?"); |
20198 | 0 | BestType = Context.UnsignedLongLongTy; |
20199 | 0 | BestPromotionType |
20200 | 0 | = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus) |
20201 | 0 | ? Context.UnsignedLongLongTy : Context.LongLongTy; |
20202 | 0 | } |
20203 | 0 | } |
20204 | | |
20205 | | // Loop over all of the enumerator constants, changing their types to match |
20206 | | // the type of the enum if needed. |
20207 | 0 | for (auto *D : Elements) { |
20208 | 0 | auto *ECD = cast_or_null<EnumConstantDecl>(D); |
20209 | 0 | if (!ECD) continue; // Already issued a diagnostic. |
20210 | | |
20211 | | // Standard C says the enumerators have int type, but we allow, as an |
20212 | | // extension, the enumerators to be larger than int size. If each |
20213 | | // enumerator value fits in an int, type it as an int, otherwise type it the |
20214 | | // same as the enumerator decl itself. This means that in "enum { X = 1U }" |
20215 | | // that X has type 'int', not 'unsigned'. |
20216 | | |
20217 | | // Determine whether the value fits into an int. |
20218 | 0 | llvm::APSInt InitVal = ECD->getInitVal(); |
20219 | | |
20220 | | // If it fits into an integer type, force it. Otherwise force it to match |
20221 | | // the enum decl type. |
20222 | 0 | QualType NewTy; |
20223 | 0 | unsigned NewWidth; |
20224 | 0 | bool NewSign; |
20225 | 0 | if (!getLangOpts().CPlusPlus && |
20226 | 0 | !Enum->isFixed() && |
20227 | 0 | isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) { |
20228 | 0 | NewTy = Context.IntTy; |
20229 | 0 | NewWidth = IntWidth; |
20230 | 0 | NewSign = true; |
20231 | 0 | } else if (ECD->getType() == BestType) { |
20232 | | // Already the right type! |
20233 | 0 | if (getLangOpts().CPlusPlus) |
20234 | | // C++ [dcl.enum]p4: Following the closing brace of an |
20235 | | // enum-specifier, each enumerator has the type of its |
20236 | | // enumeration. |
20237 | 0 | ECD->setType(EnumType); |
20238 | 0 | continue; |
20239 | 0 | } else { |
20240 | 0 | NewTy = BestType; |
20241 | 0 | NewWidth = BestWidth; |
20242 | 0 | NewSign = BestType->isSignedIntegerOrEnumerationType(); |
20243 | 0 | } |
20244 | | |
20245 | | // Adjust the APSInt value. |
20246 | 0 | InitVal = InitVal.extOrTrunc(NewWidth); |
20247 | 0 | InitVal.setIsSigned(NewSign); |
20248 | 0 | ECD->setInitVal(Context, InitVal); |
20249 | | |
20250 | | // Adjust the Expr initializer and type. |
20251 | 0 | if (ECD->getInitExpr() && |
20252 | 0 | !Context.hasSameType(NewTy, ECD->getInitExpr()->getType())) |
20253 | 0 | ECD->setInitExpr(ImplicitCastExpr::Create( |
20254 | 0 | Context, NewTy, CK_IntegralCast, ECD->getInitExpr(), |
20255 | 0 | /*base paths*/ nullptr, VK_PRValue, FPOptionsOverride())); |
20256 | 0 | if (getLangOpts().CPlusPlus) |
20257 | | // C++ [dcl.enum]p4: Following the closing brace of an |
20258 | | // enum-specifier, each enumerator has the type of its |
20259 | | // enumeration. |
20260 | 0 | ECD->setType(EnumType); |
20261 | 0 | else |
20262 | 0 | ECD->setType(NewTy); |
20263 | 0 | } |
20264 | |
|
20265 | 0 | Enum->completeDefinition(BestType, BestPromotionType, |
20266 | 0 | NumPositiveBits, NumNegativeBits); |
20267 | |
|
20268 | 0 | CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType); |
20269 | |
|
20270 | 0 | if (Enum->isClosedFlag()) { |
20271 | 0 | for (Decl *D : Elements) { |
20272 | 0 | EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(D); |
20273 | 0 | if (!ECD) continue; // Already issued a diagnostic. |
20274 | | |
20275 | 0 | llvm::APSInt InitVal = ECD->getInitVal(); |
20276 | 0 | if (InitVal != 0 && !InitVal.isPowerOf2() && |
20277 | 0 | !IsValueInFlagEnum(Enum, InitVal, true)) |
20278 | 0 | Diag(ECD->getLocation(), diag::warn_flag_enum_constant_out_of_range) |
20279 | 0 | << ECD << Enum; |
20280 | 0 | } |
20281 | 0 | } |
20282 | | |
20283 | | // Now that the enum type is defined, ensure it's not been underaligned. |
20284 | 0 | if (Enum->hasAttrs()) |
20285 | 0 | CheckAlignasUnderalignment(Enum); |
20286 | 0 | } |
20287 | | |
20288 | | Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr, |
20289 | | SourceLocation StartLoc, |
20290 | 0 | SourceLocation EndLoc) { |
20291 | 0 | StringLiteral *AsmString = cast<StringLiteral>(expr); |
20292 | |
|
20293 | 0 | FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext, |
20294 | 0 | AsmString, StartLoc, |
20295 | 0 | EndLoc); |
20296 | 0 | CurContext->addDecl(New); |
20297 | 0 | return New; |
20298 | 0 | } |
20299 | | |
20300 | 0 | Decl *Sema::ActOnTopLevelStmtDecl(Stmt *Statement) { |
20301 | 0 | auto *New = TopLevelStmtDecl::Create(Context, Statement); |
20302 | 0 | Context.getTranslationUnitDecl()->addDecl(New); |
20303 | 0 | return New; |
20304 | 0 | } |
20305 | | |
20306 | | void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name, |
20307 | | IdentifierInfo* AliasName, |
20308 | | SourceLocation PragmaLoc, |
20309 | | SourceLocation NameLoc, |
20310 | 0 | SourceLocation AliasNameLoc) { |
20311 | 0 | NamedDecl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, |
20312 | 0 | LookupOrdinaryName); |
20313 | 0 | AttributeCommonInfo Info(AliasName, SourceRange(AliasNameLoc), |
20314 | 0 | AttributeCommonInfo::Form::Pragma()); |
20315 | 0 | AsmLabelAttr *Attr = AsmLabelAttr::CreateImplicit( |
20316 | 0 | Context, AliasName->getName(), /*IsLiteralLabel=*/true, Info); |
20317 | | |
20318 | | // If a declaration that: |
20319 | | // 1) declares a function or a variable |
20320 | | // 2) has external linkage |
20321 | | // already exists, add a label attribute to it. |
20322 | 0 | if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { |
20323 | 0 | if (isDeclExternC(PrevDecl)) |
20324 | 0 | PrevDecl->addAttr(Attr); |
20325 | 0 | else |
20326 | 0 | Diag(PrevDecl->getLocation(), diag::warn_redefine_extname_not_applied) |
20327 | 0 | << /*Variable*/(isa<FunctionDecl>(PrevDecl) ? 0 : 1) << PrevDecl; |
20328 | | // Otherwise, add a label attribute to ExtnameUndeclaredIdentifiers. |
20329 | 0 | } else |
20330 | 0 | (void)ExtnameUndeclaredIdentifiers.insert(std::make_pair(Name, Attr)); |
20331 | 0 | } |
20332 | | |
20333 | | void Sema::ActOnPragmaWeakID(IdentifierInfo* Name, |
20334 | | SourceLocation PragmaLoc, |
20335 | 0 | SourceLocation NameLoc) { |
20336 | 0 | Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName); |
20337 | |
|
20338 | 0 | if (PrevDecl) { |
20339 | 0 | PrevDecl->addAttr(WeakAttr::CreateImplicit(Context, PragmaLoc)); |
20340 | 0 | } else { |
20341 | 0 | (void)WeakUndeclaredIdentifiers[Name].insert(WeakInfo(nullptr, NameLoc)); |
20342 | 0 | } |
20343 | 0 | } |
20344 | | |
20345 | | void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name, |
20346 | | IdentifierInfo* AliasName, |
20347 | | SourceLocation PragmaLoc, |
20348 | | SourceLocation NameLoc, |
20349 | 0 | SourceLocation AliasNameLoc) { |
20350 | 0 | Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc, |
20351 | 0 | LookupOrdinaryName); |
20352 | 0 | WeakInfo W = WeakInfo(Name, NameLoc); |
20353 | |
|
20354 | 0 | if (PrevDecl && (isa<FunctionDecl>(PrevDecl) || isa<VarDecl>(PrevDecl))) { |
20355 | 0 | if (!PrevDecl->hasAttr<AliasAttr>()) |
20356 | 0 | if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl)) |
20357 | 0 | DeclApplyPragmaWeak(TUScope, ND, W); |
20358 | 0 | } else { |
20359 | 0 | (void)WeakUndeclaredIdentifiers[AliasName].insert(W); |
20360 | 0 | } |
20361 | 0 | } |
20362 | | |
20363 | 23.9k | ObjCContainerDecl *Sema::getObjCDeclContext() const { |
20364 | 23.9k | return (dyn_cast_or_null<ObjCContainerDecl>(CurContext)); |
20365 | 23.9k | } |
20366 | | |
20367 | | Sema::FunctionEmissionStatus Sema::getEmissionStatus(const FunctionDecl *FD, |
20368 | 0 | bool Final) { |
20369 | 0 | assert(FD && "Expected non-null FunctionDecl"); |
20370 | | |
20371 | | // SYCL functions can be template, so we check if they have appropriate |
20372 | | // attribute prior to checking if it is a template. |
20373 | 0 | if (LangOpts.SYCLIsDevice && FD->hasAttr<SYCLKernelAttr>()) |
20374 | 0 | return FunctionEmissionStatus::Emitted; |
20375 | | |
20376 | | // Templates are emitted when they're instantiated. |
20377 | 0 | if (FD->isDependentContext()) |
20378 | 0 | return FunctionEmissionStatus::TemplateDiscarded; |
20379 | | |
20380 | | // Check whether this function is an externally visible definition. |
20381 | 0 | auto IsEmittedForExternalSymbol = [this, FD]() { |
20382 | | // We have to check the GVA linkage of the function's *definition* -- if we |
20383 | | // only have a declaration, we don't know whether or not the function will |
20384 | | // be emitted, because (say) the definition could include "inline". |
20385 | 0 | const FunctionDecl *Def = FD->getDefinition(); |
20386 | |
|
20387 | 0 | return Def && !isDiscardableGVALinkage( |
20388 | 0 | getASTContext().GetGVALinkageForFunction(Def)); |
20389 | 0 | }; |
20390 | |
|
20391 | 0 | if (LangOpts.OpenMPIsTargetDevice) { |
20392 | | // In OpenMP device mode we will not emit host only functions, or functions |
20393 | | // we don't need due to their linkage. |
20394 | 0 | std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = |
20395 | 0 | OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); |
20396 | | // DevTy may be changed later by |
20397 | | // #pragma omp declare target to(*) device_type(*). |
20398 | | // Therefore DevTy having no value does not imply host. The emission status |
20399 | | // will be checked again at the end of compilation unit with Final = true. |
20400 | 0 | if (DevTy) |
20401 | 0 | if (*DevTy == OMPDeclareTargetDeclAttr::DT_Host) |
20402 | 0 | return FunctionEmissionStatus::OMPDiscarded; |
20403 | | // If we have an explicit value for the device type, or we are in a target |
20404 | | // declare context, we need to emit all extern and used symbols. |
20405 | 0 | if (isInOpenMPDeclareTargetContext() || DevTy) |
20406 | 0 | if (IsEmittedForExternalSymbol()) |
20407 | 0 | return FunctionEmissionStatus::Emitted; |
20408 | | // Device mode only emits what it must, if it wasn't tagged yet and needed, |
20409 | | // we'll omit it. |
20410 | 0 | if (Final) |
20411 | 0 | return FunctionEmissionStatus::OMPDiscarded; |
20412 | 0 | } else if (LangOpts.OpenMP > 45) { |
20413 | | // In OpenMP host compilation prior to 5.0 everything was an emitted host |
20414 | | // function. In 5.0, no_host was introduced which might cause a function to |
20415 | | // be ommitted. |
20416 | 0 | std::optional<OMPDeclareTargetDeclAttr::DevTypeTy> DevTy = |
20417 | 0 | OMPDeclareTargetDeclAttr::getDeviceType(FD->getCanonicalDecl()); |
20418 | 0 | if (DevTy) |
20419 | 0 | if (*DevTy == OMPDeclareTargetDeclAttr::DT_NoHost) |
20420 | 0 | return FunctionEmissionStatus::OMPDiscarded; |
20421 | 0 | } |
20422 | | |
20423 | 0 | if (Final && LangOpts.OpenMP && !LangOpts.CUDA) |
20424 | 0 | return FunctionEmissionStatus::Emitted; |
20425 | | |
20426 | 0 | if (LangOpts.CUDA) { |
20427 | | // When compiling for device, host functions are never emitted. Similarly, |
20428 | | // when compiling for host, device and global functions are never emitted. |
20429 | | // (Technically, we do emit a host-side stub for global functions, but this |
20430 | | // doesn't count for our purposes here.) |
20431 | 0 | Sema::CUDAFunctionTarget T = IdentifyCUDATarget(FD); |
20432 | 0 | if (LangOpts.CUDAIsDevice && T == Sema::CFT_Host) |
20433 | 0 | return FunctionEmissionStatus::CUDADiscarded; |
20434 | 0 | if (!LangOpts.CUDAIsDevice && |
20435 | 0 | (T == Sema::CFT_Device || T == Sema::CFT_Global)) |
20436 | 0 | return FunctionEmissionStatus::CUDADiscarded; |
20437 | | |
20438 | 0 | if (IsEmittedForExternalSymbol()) |
20439 | 0 | return FunctionEmissionStatus::Emitted; |
20440 | 0 | } |
20441 | | |
20442 | | // Otherwise, the function is known-emitted if it's in our set of |
20443 | | // known-emitted functions. |
20444 | 0 | return FunctionEmissionStatus::Unknown; |
20445 | 0 | } |
20446 | | |
20447 | 0 | bool Sema::shouldIgnoreInHostDeviceCheck(FunctionDecl *Callee) { |
20448 | | // Host-side references to a __global__ function refer to the stub, so the |
20449 | | // function itself is never emitted and therefore should not be marked. |
20450 | | // If we have host fn calls kernel fn calls host+device, the HD function |
20451 | | // does not get instantiated on the host. We model this by omitting at the |
20452 | | // call to the kernel from the callgraph. This ensures that, when compiling |
20453 | | // for host, only HD functions actually called from the host get marked as |
20454 | | // known-emitted. |
20455 | 0 | return LangOpts.CUDA && !LangOpts.CUDAIsDevice && |
20456 | 0 | IdentifyCUDATarget(Callee) == CFT_Global; |
20457 | 0 | } |