Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/Sema/SemaDeclObjC.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- SemaDeclObjC.cpp - Semantic Analysis for ObjC Declarations -------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
//  This file implements semantic analysis for Objective C declarations.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "TypeLocBuilder.h"
14
#include "clang/AST/ASTConsumer.h"
15
#include "clang/AST/ASTContext.h"
16
#include "clang/AST/ASTMutationListener.h"
17
#include "clang/AST/DeclObjC.h"
18
#include "clang/AST/Expr.h"
19
#include "clang/AST/ExprObjC.h"
20
#include "clang/AST/RecursiveASTVisitor.h"
21
#include "clang/Basic/SourceManager.h"
22
#include "clang/Basic/TargetInfo.h"
23
#include "clang/Sema/DeclSpec.h"
24
#include "clang/Sema/Lookup.h"
25
#include "clang/Sema/Scope.h"
26
#include "clang/Sema/ScopeInfo.h"
27
#include "clang/Sema/SemaInternal.h"
28
#include "llvm/ADT/DenseMap.h"
29
#include "llvm/ADT/DenseSet.h"
30
31
using namespace clang;
32
33
/// Check whether the given method, which must be in the 'init'
34
/// family, is a valid member of that family.
35
///
36
/// \param receiverTypeIfCall - if null, check this as if declaring it;
37
///   if non-null, check this as if making a call to it with the given
38
///   receiver type
39
///
40
/// \return true to indicate that there was an error and appropriate
41
///   actions were taken
42
bool Sema::checkInitMethod(ObjCMethodDecl *method,
43
0
                           QualType receiverTypeIfCall) {
44
0
  if (method->isInvalidDecl()) return true;
45
46
  // This castAs is safe: methods that don't return an object
47
  // pointer won't be inferred as inits and will reject an explicit
48
  // objc_method_family(init).
49
50
  // We ignore protocols here.  Should we?  What about Class?
51
52
0
  const ObjCObjectType *result =
53
0
      method->getReturnType()->castAs<ObjCObjectPointerType>()->getObjectType();
54
55
0
  if (result->isObjCId()) {
56
0
    return false;
57
0
  } else if (result->isObjCClass()) {
58
    // fall through: always an error
59
0
  } else {
60
0
    ObjCInterfaceDecl *resultClass = result->getInterface();
61
0
    assert(resultClass && "unexpected object type!");
62
63
    // It's okay for the result type to still be a forward declaration
64
    // if we're checking an interface declaration.
65
0
    if (!resultClass->hasDefinition()) {
66
0
      if (receiverTypeIfCall.isNull() &&
67
0
          !isa<ObjCImplementationDecl>(method->getDeclContext()))
68
0
        return false;
69
70
    // Otherwise, we try to compare class types.
71
0
    } else {
72
      // If this method was declared in a protocol, we can't check
73
      // anything unless we have a receiver type that's an interface.
74
0
      const ObjCInterfaceDecl *receiverClass = nullptr;
75
0
      if (isa<ObjCProtocolDecl>(method->getDeclContext())) {
76
0
        if (receiverTypeIfCall.isNull())
77
0
          return false;
78
79
0
        receiverClass = receiverTypeIfCall->castAs<ObjCObjectPointerType>()
80
0
          ->getInterfaceDecl();
81
82
        // This can be null for calls to e.g. id<Foo>.
83
0
        if (!receiverClass) return false;
84
0
      } else {
85
0
        receiverClass = method->getClassInterface();
86
0
        assert(receiverClass && "method not associated with a class!");
87
0
      }
88
89
      // If either class is a subclass of the other, it's fine.
90
0
      if (receiverClass->isSuperClassOf(resultClass) ||
91
0
          resultClass->isSuperClassOf(receiverClass))
92
0
        return false;
93
0
    }
94
0
  }
95
96
0
  SourceLocation loc = method->getLocation();
97
98
  // If we're in a system header, and this is not a call, just make
99
  // the method unusable.
100
0
  if (receiverTypeIfCall.isNull() && getSourceManager().isInSystemHeader(loc)) {
101
0
    method->addAttr(UnavailableAttr::CreateImplicit(Context, "",
102
0
                      UnavailableAttr::IR_ARCInitReturnsUnrelated, loc));
103
0
    return true;
104
0
  }
105
106
  // Otherwise, it's an error.
107
0
  Diag(loc, diag::err_arc_init_method_unrelated_result_type);
108
0
  method->setInvalidDecl();
109
0
  return true;
110
0
}
111
112
/// Issue a warning if the parameter of the overridden method is non-escaping
113
/// but the parameter of the overriding method is not.
114
static bool diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
115
0
                             Sema &S) {
116
0
  if (OldD->hasAttr<NoEscapeAttr>() && !NewD->hasAttr<NoEscapeAttr>()) {
117
0
    S.Diag(NewD->getLocation(), diag::warn_overriding_method_missing_noescape);
118
0
    S.Diag(OldD->getLocation(), diag::note_overridden_marked_noescape);
119
0
    return false;
120
0
  }
121
122
0
  return true;
123
0
}
124
125
/// Produce additional diagnostics if a category conforms to a protocol that
126
/// defines a method taking a non-escaping parameter.
127
static void diagnoseNoescape(const ParmVarDecl *NewD, const ParmVarDecl *OldD,
128
                             const ObjCCategoryDecl *CD,
129
0
                             const ObjCProtocolDecl *PD, Sema &S) {
130
0
  if (!diagnoseNoescape(NewD, OldD, S))
131
0
    S.Diag(CD->getLocation(), diag::note_cat_conform_to_noescape_prot)
132
0
        << CD->IsClassExtension() << PD
133
0
        << cast<ObjCMethodDecl>(NewD->getDeclContext());
134
0
}
135
136
void Sema::CheckObjCMethodOverride(ObjCMethodDecl *NewMethod,
137
0
                                   const ObjCMethodDecl *Overridden) {
138
0
  if (Overridden->hasRelatedResultType() &&
139
0
      !NewMethod->hasRelatedResultType()) {
140
    // This can only happen when the method follows a naming convention that
141
    // implies a related result type, and the original (overridden) method has
142
    // a suitable return type, but the new (overriding) method does not have
143
    // a suitable return type.
144
0
    QualType ResultType = NewMethod->getReturnType();
145
0
    SourceRange ResultTypeRange = NewMethod->getReturnTypeSourceRange();
146
147
    // Figure out which class this method is part of, if any.
148
0
    ObjCInterfaceDecl *CurrentClass
149
0
      = dyn_cast<ObjCInterfaceDecl>(NewMethod->getDeclContext());
150
0
    if (!CurrentClass) {
151
0
      DeclContext *DC = NewMethod->getDeclContext();
152
0
      if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(DC))
153
0
        CurrentClass = Cat->getClassInterface();
154
0
      else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(DC))
155
0
        CurrentClass = Impl->getClassInterface();
156
0
      else if (ObjCCategoryImplDecl *CatImpl
157
0
               = dyn_cast<ObjCCategoryImplDecl>(DC))
158
0
        CurrentClass = CatImpl->getClassInterface();
159
0
    }
160
161
0
    if (CurrentClass) {
162
0
      Diag(NewMethod->getLocation(),
163
0
           diag::warn_related_result_type_compatibility_class)
164
0
        << Context.getObjCInterfaceType(CurrentClass)
165
0
        << ResultType
166
0
        << ResultTypeRange;
167
0
    } else {
168
0
      Diag(NewMethod->getLocation(),
169
0
           diag::warn_related_result_type_compatibility_protocol)
170
0
        << ResultType
171
0
        << ResultTypeRange;
172
0
    }
173
174
0
    if (ObjCMethodFamily Family = Overridden->getMethodFamily())
175
0
      Diag(Overridden->getLocation(),
176
0
           diag::note_related_result_type_family)
177
0
        << /*overridden method*/ 0
178
0
        << Family;
179
0
    else
180
0
      Diag(Overridden->getLocation(),
181
0
           diag::note_related_result_type_overridden);
182
0
  }
183
184
0
  if ((NewMethod->hasAttr<NSReturnsRetainedAttr>() !=
185
0
       Overridden->hasAttr<NSReturnsRetainedAttr>())) {
186
0
    Diag(NewMethod->getLocation(),
187
0
         getLangOpts().ObjCAutoRefCount
188
0
             ? diag::err_nsreturns_retained_attribute_mismatch
189
0
             : diag::warn_nsreturns_retained_attribute_mismatch)
190
0
        << 1;
191
0
    Diag(Overridden->getLocation(), diag::note_previous_decl) << "method";
192
0
  }
193
0
  if ((NewMethod->hasAttr<NSReturnsNotRetainedAttr>() !=
194
0
       Overridden->hasAttr<NSReturnsNotRetainedAttr>())) {
195
0
    Diag(NewMethod->getLocation(),
196
0
         getLangOpts().ObjCAutoRefCount
197
0
             ? diag::err_nsreturns_retained_attribute_mismatch
198
0
             : diag::warn_nsreturns_retained_attribute_mismatch)
199
0
        << 0;
200
0
    Diag(Overridden->getLocation(), diag::note_previous_decl)  << "method";
201
0
  }
202
203
0
  ObjCMethodDecl::param_const_iterator oi = Overridden->param_begin(),
204
0
                                       oe = Overridden->param_end();
205
0
  for (ObjCMethodDecl::param_iterator ni = NewMethod->param_begin(),
206
0
                                      ne = NewMethod->param_end();
207
0
       ni != ne && oi != oe; ++ni, ++oi) {
208
0
    const ParmVarDecl *oldDecl = (*oi);
209
0
    ParmVarDecl *newDecl = (*ni);
210
0
    if (newDecl->hasAttr<NSConsumedAttr>() !=
211
0
        oldDecl->hasAttr<NSConsumedAttr>()) {
212
0
      Diag(newDecl->getLocation(),
213
0
           getLangOpts().ObjCAutoRefCount
214
0
               ? diag::err_nsconsumed_attribute_mismatch
215
0
               : diag::warn_nsconsumed_attribute_mismatch);
216
0
      Diag(oldDecl->getLocation(), diag::note_previous_decl) << "parameter";
217
0
    }
218
219
0
    diagnoseNoescape(newDecl, oldDecl, *this);
220
0
  }
221
0
}
222
223
/// Check a method declaration for compatibility with the Objective-C
224
/// ARC conventions.
225
0
bool Sema::CheckARCMethodDecl(ObjCMethodDecl *method) {
226
0
  ObjCMethodFamily family = method->getMethodFamily();
227
0
  switch (family) {
228
0
  case OMF_None:
229
0
  case OMF_finalize:
230
0
  case OMF_retain:
231
0
  case OMF_release:
232
0
  case OMF_autorelease:
233
0
  case OMF_retainCount:
234
0
  case OMF_self:
235
0
  case OMF_initialize:
236
0
  case OMF_performSelector:
237
0
    return false;
238
239
0
  case OMF_dealloc:
240
0
    if (!Context.hasSameType(method->getReturnType(), Context.VoidTy)) {
241
0
      SourceRange ResultTypeRange = method->getReturnTypeSourceRange();
242
0
      if (ResultTypeRange.isInvalid())
243
0
        Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
244
0
            << method->getReturnType()
245
0
            << FixItHint::CreateInsertion(method->getSelectorLoc(0), "(void)");
246
0
      else
247
0
        Diag(method->getLocation(), diag::err_dealloc_bad_result_type)
248
0
            << method->getReturnType()
249
0
            << FixItHint::CreateReplacement(ResultTypeRange, "void");
250
0
      return true;
251
0
    }
252
0
    return false;
253
254
0
  case OMF_init:
255
    // If the method doesn't obey the init rules, don't bother annotating it.
256
0
    if (checkInitMethod(method, QualType()))
257
0
      return true;
258
259
0
    method->addAttr(NSConsumesSelfAttr::CreateImplicit(Context));
260
261
    // Don't add a second copy of this attribute, but otherwise don't
262
    // let it be suppressed.
263
0
    if (method->hasAttr<NSReturnsRetainedAttr>())
264
0
      return false;
265
0
    break;
266
267
0
  case OMF_alloc:
268
0
  case OMF_copy:
269
0
  case OMF_mutableCopy:
270
0
  case OMF_new:
271
0
    if (method->hasAttr<NSReturnsRetainedAttr>() ||
272
0
        method->hasAttr<NSReturnsNotRetainedAttr>() ||
273
0
        method->hasAttr<NSReturnsAutoreleasedAttr>())
274
0
      return false;
275
0
    break;
276
0
  }
277
278
0
  method->addAttr(NSReturnsRetainedAttr::CreateImplicit(Context));
279
0
  return false;
280
0
}
281
282
static void DiagnoseObjCImplementedDeprecations(Sema &S, const NamedDecl *ND,
283
0
                                                SourceLocation ImplLoc) {
284
0
  if (!ND)
285
0
    return;
286
0
  bool IsCategory = false;
287
0
  StringRef RealizedPlatform;
288
0
  AvailabilityResult Availability = ND->getAvailability(
289
0
      /*Message=*/nullptr, /*EnclosingVersion=*/VersionTuple(),
290
0
      &RealizedPlatform);
291
0
  if (Availability != AR_Deprecated) {
292
0
    if (isa<ObjCMethodDecl>(ND)) {
293
0
      if (Availability != AR_Unavailable)
294
0
        return;
295
0
      if (RealizedPlatform.empty())
296
0
        RealizedPlatform = S.Context.getTargetInfo().getPlatformName();
297
      // Warn about implementing unavailable methods, unless the unavailable
298
      // is for an app extension.
299
0
      if (RealizedPlatform.ends_with("_app_extension"))
300
0
        return;
301
0
      S.Diag(ImplLoc, diag::warn_unavailable_def);
302
0
      S.Diag(ND->getLocation(), diag::note_method_declared_at)
303
0
          << ND->getDeclName();
304
0
      return;
305
0
    }
306
0
    if (const auto *CD = dyn_cast<ObjCCategoryDecl>(ND)) {
307
0
      if (!CD->getClassInterface()->isDeprecated())
308
0
        return;
309
0
      ND = CD->getClassInterface();
310
0
      IsCategory = true;
311
0
    } else
312
0
      return;
313
0
  }
314
0
  S.Diag(ImplLoc, diag::warn_deprecated_def)
315
0
      << (isa<ObjCMethodDecl>(ND)
316
0
              ? /*Method*/ 0
317
0
              : isa<ObjCCategoryDecl>(ND) || IsCategory ? /*Category*/ 2
318
0
                                                        : /*Class*/ 1);
319
0
  if (isa<ObjCMethodDecl>(ND))
320
0
    S.Diag(ND->getLocation(), diag::note_method_declared_at)
321
0
        << ND->getDeclName();
322
0
  else
323
0
    S.Diag(ND->getLocation(), diag::note_previous_decl)
324
0
        << (isa<ObjCCategoryDecl>(ND) ? "category" : "class");
325
0
}
326
327
/// AddAnyMethodToGlobalPool - Add any method, instance or factory to global
328
/// pool.
329
0
void Sema::AddAnyMethodToGlobalPool(Decl *D) {
330
0
  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
331
332
  // If we don't have a valid method decl, simply return.
333
0
  if (!MDecl)
334
0
    return;
335
0
  if (MDecl->isInstanceMethod())
336
0
    AddInstanceMethodToGlobalPool(MDecl, true);
337
0
  else
338
0
    AddFactoryMethodToGlobalPool(MDecl, true);
339
0
}
340
341
/// HasExplicitOwnershipAttr - returns true when pointer to ObjC pointer
342
/// has explicit ownership attribute; false otherwise.
343
static bool
344
0
HasExplicitOwnershipAttr(Sema &S, ParmVarDecl *Param) {
345
0
  QualType T = Param->getType();
346
347
0
  if (const PointerType *PT = T->getAs<PointerType>()) {
348
0
    T = PT->getPointeeType();
349
0
  } else if (const ReferenceType *RT = T->getAs<ReferenceType>()) {
350
0
    T = RT->getPointeeType();
351
0
  } else {
352
0
    return true;
353
0
  }
354
355
  // If we have a lifetime qualifier, but it's local, we must have
356
  // inferred it. So, it is implicit.
357
0
  return !T.getLocalQualifiers().hasObjCLifetime();
358
0
}
359
360
/// ActOnStartOfObjCMethodDef - This routine sets up parameters; invisible
361
/// and user declared, in the method definition's AST.
362
0
void Sema::ActOnStartOfObjCMethodDef(Scope *FnBodyScope, Decl *D) {
363
0
  ImplicitlyRetainedSelfLocs.clear();
364
0
  assert((getCurMethodDecl() == nullptr) && "Methodparsing confused");
365
0
  ObjCMethodDecl *MDecl = dyn_cast_or_null<ObjCMethodDecl>(D);
366
367
0
  PushExpressionEvaluationContext(ExprEvalContexts.back().Context);
368
369
  // If we don't have a valid method decl, simply return.
370
0
  if (!MDecl)
371
0
    return;
372
373
0
  QualType ResultType = MDecl->getReturnType();
374
0
  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
375
0
      !MDecl->isInvalidDecl() &&
376
0
      RequireCompleteType(MDecl->getLocation(), ResultType,
377
0
                          diag::err_func_def_incomplete_result))
378
0
    MDecl->setInvalidDecl();
379
380
  // Allow all of Sema to see that we are entering a method definition.
381
0
  PushDeclContext(FnBodyScope, MDecl);
382
0
  PushFunctionScope();
383
384
  // Create Decl objects for each parameter, entrring them in the scope for
385
  // binding to their use.
386
387
  // Insert the invisible arguments, self and _cmd!
388
0
  MDecl->createImplicitParams(Context, MDecl->getClassInterface());
389
390
0
  PushOnScopeChains(MDecl->getSelfDecl(), FnBodyScope);
391
0
  PushOnScopeChains(MDecl->getCmdDecl(), FnBodyScope);
392
393
  // The ObjC parser requires parameter names so there's no need to check.
394
0
  CheckParmsForFunctionDef(MDecl->parameters(),
395
0
                           /*CheckParameterNames=*/false);
396
397
  // Introduce all of the other parameters into this scope.
398
0
  for (auto *Param : MDecl->parameters()) {
399
0
    if (!Param->isInvalidDecl() &&
400
0
        getLangOpts().ObjCAutoRefCount &&
401
0
        !HasExplicitOwnershipAttr(*this, Param))
402
0
      Diag(Param->getLocation(), diag::warn_arc_strong_pointer_objc_pointer) <<
403
0
            Param->getType();
404
405
0
    if (Param->getIdentifier())
406
0
      PushOnScopeChains(Param, FnBodyScope);
407
0
  }
408
409
  // In ARC, disallow definition of retain/release/autorelease/retainCount
410
0
  if (getLangOpts().ObjCAutoRefCount) {
411
0
    switch (MDecl->getMethodFamily()) {
412
0
    case OMF_retain:
413
0
    case OMF_retainCount:
414
0
    case OMF_release:
415
0
    case OMF_autorelease:
416
0
      Diag(MDecl->getLocation(), diag::err_arc_illegal_method_def)
417
0
        << 0 << MDecl->getSelector();
418
0
      break;
419
420
0
    case OMF_None:
421
0
    case OMF_dealloc:
422
0
    case OMF_finalize:
423
0
    case OMF_alloc:
424
0
    case OMF_init:
425
0
    case OMF_mutableCopy:
426
0
    case OMF_copy:
427
0
    case OMF_new:
428
0
    case OMF_self:
429
0
    case OMF_initialize:
430
0
    case OMF_performSelector:
431
0
      break;
432
0
    }
433
0
  }
434
435
  // Warn on deprecated methods under -Wdeprecated-implementations,
436
  // and prepare for warning on missing super calls.
437
0
  if (ObjCInterfaceDecl *IC = MDecl->getClassInterface()) {
438
0
    ObjCMethodDecl *IMD =
439
0
      IC->lookupMethod(MDecl->getSelector(), MDecl->isInstanceMethod());
440
441
0
    if (IMD) {
442
0
      ObjCImplDecl *ImplDeclOfMethodDef =
443
0
        dyn_cast<ObjCImplDecl>(MDecl->getDeclContext());
444
0
      ObjCContainerDecl *ContDeclOfMethodDecl =
445
0
        dyn_cast<ObjCContainerDecl>(IMD->getDeclContext());
446
0
      ObjCImplDecl *ImplDeclOfMethodDecl = nullptr;
447
0
      if (ObjCInterfaceDecl *OID = dyn_cast<ObjCInterfaceDecl>(ContDeclOfMethodDecl))
448
0
        ImplDeclOfMethodDecl = OID->getImplementation();
449
0
      else if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(ContDeclOfMethodDecl)) {
450
0
        if (CD->IsClassExtension()) {
451
0
          if (ObjCInterfaceDecl *OID = CD->getClassInterface())
452
0
            ImplDeclOfMethodDecl = OID->getImplementation();
453
0
        } else
454
0
            ImplDeclOfMethodDecl = CD->getImplementation();
455
0
      }
456
      // No need to issue deprecated warning if deprecated mehod in class/category
457
      // is being implemented in its own implementation (no overriding is involved).
458
0
      if (!ImplDeclOfMethodDecl || ImplDeclOfMethodDecl != ImplDeclOfMethodDef)
459
0
        DiagnoseObjCImplementedDeprecations(*this, IMD, MDecl->getLocation());
460
0
    }
461
462
0
    if (MDecl->getMethodFamily() == OMF_init) {
463
0
      if (MDecl->isDesignatedInitializerForTheInterface()) {
464
0
        getCurFunction()->ObjCIsDesignatedInit = true;
465
0
        getCurFunction()->ObjCWarnForNoDesignatedInitChain =
466
0
            IC->getSuperClass() != nullptr;
467
0
      } else if (IC->hasDesignatedInitializers()) {
468
0
        getCurFunction()->ObjCIsSecondaryInit = true;
469
0
        getCurFunction()->ObjCWarnForNoInitDelegation = true;
470
0
      }
471
0
    }
472
473
    // If this is "dealloc" or "finalize", set some bit here.
474
    // Then in ActOnSuperMessage() (SemaExprObjC), set it back to false.
475
    // Finally, in ActOnFinishFunctionBody() (SemaDecl), warn if flag is set.
476
    // Only do this if the current class actually has a superclass.
477
0
    if (const ObjCInterfaceDecl *SuperClass = IC->getSuperClass()) {
478
0
      ObjCMethodFamily Family = MDecl->getMethodFamily();
479
0
      if (Family == OMF_dealloc) {
480
0
        if (!(getLangOpts().ObjCAutoRefCount ||
481
0
              getLangOpts().getGC() == LangOptions::GCOnly))
482
0
          getCurFunction()->ObjCShouldCallSuper = true;
483
484
0
      } else if (Family == OMF_finalize) {
485
0
        if (Context.getLangOpts().getGC() != LangOptions::NonGC)
486
0
          getCurFunction()->ObjCShouldCallSuper = true;
487
488
0
      } else {
489
0
        const ObjCMethodDecl *SuperMethod =
490
0
          SuperClass->lookupMethod(MDecl->getSelector(),
491
0
                                   MDecl->isInstanceMethod());
492
0
        getCurFunction()->ObjCShouldCallSuper =
493
0
          (SuperMethod && SuperMethod->hasAttr<ObjCRequiresSuperAttr>());
494
0
      }
495
0
    }
496
0
  }
497
0
}
498
499
namespace {
500
501
// Callback to only accept typo corrections that are Objective-C classes.
502
// If an ObjCInterfaceDecl* is given to the constructor, then the validation
503
// function will reject corrections to that class.
504
class ObjCInterfaceValidatorCCC final : public CorrectionCandidateCallback {
505
 public:
506
0
  ObjCInterfaceValidatorCCC() : CurrentIDecl(nullptr) {}
507
  explicit ObjCInterfaceValidatorCCC(ObjCInterfaceDecl *IDecl)
508
0
      : CurrentIDecl(IDecl) {}
509
510
0
  bool ValidateCandidate(const TypoCorrection &candidate) override {
511
0
    ObjCInterfaceDecl *ID = candidate.getCorrectionDeclAs<ObjCInterfaceDecl>();
512
0
    return ID && !declaresSameEntity(ID, CurrentIDecl);
513
0
  }
514
515
0
  std::unique_ptr<CorrectionCandidateCallback> clone() override {
516
0
    return std::make_unique<ObjCInterfaceValidatorCCC>(*this);
517
0
  }
518
519
 private:
520
  ObjCInterfaceDecl *CurrentIDecl;
521
};
522
523
} // end anonymous namespace
524
525
static void diagnoseUseOfProtocols(Sema &TheSema,
526
                                   ObjCContainerDecl *CD,
527
                                   ObjCProtocolDecl *const *ProtoRefs,
528
                                   unsigned NumProtoRefs,
529
0
                                   const SourceLocation *ProtoLocs) {
530
0
  assert(ProtoRefs);
531
  // Diagnose availability in the context of the ObjC container.
532
0
  Sema::ContextRAII SavedContext(TheSema, CD);
533
0
  for (unsigned i = 0; i < NumProtoRefs; ++i) {
534
0
    (void)TheSema.DiagnoseUseOfDecl(ProtoRefs[i], ProtoLocs[i],
535
0
                                    /*UnknownObjCClass=*/nullptr,
536
0
                                    /*ObjCPropertyAccess=*/false,
537
0
                                    /*AvoidPartialAvailabilityChecks=*/true);
538
0
  }
539
0
}
540
541
void Sema::
542
ActOnSuperClassOfClassInterface(Scope *S,
543
                                SourceLocation AtInterfaceLoc,
544
                                ObjCInterfaceDecl *IDecl,
545
                                IdentifierInfo *ClassName,
546
                                SourceLocation ClassLoc,
547
                                IdentifierInfo *SuperName,
548
                                SourceLocation SuperLoc,
549
                                ArrayRef<ParsedType> SuperTypeArgs,
550
0
                                SourceRange SuperTypeArgsRange) {
551
  // Check if a different kind of symbol declared in this scope.
552
0
  NamedDecl *PrevDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
553
0
                                         LookupOrdinaryName);
554
555
0
  if (!PrevDecl) {
556
    // Try to correct for a typo in the superclass name without correcting
557
    // to the class we're defining.
558
0
    ObjCInterfaceValidatorCCC CCC(IDecl);
559
0
    if (TypoCorrection Corrected = CorrectTypo(
560
0
            DeclarationNameInfo(SuperName, SuperLoc), LookupOrdinaryName,
561
0
            TUScope, nullptr, CCC, CTK_ErrorRecovery)) {
562
0
      diagnoseTypo(Corrected, PDiag(diag::err_undef_superclass_suggest)
563
0
                   << SuperName << ClassName);
564
0
      PrevDecl = Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>();
565
0
    }
566
0
  }
567
568
0
  if (declaresSameEntity(PrevDecl, IDecl)) {
569
0
    Diag(SuperLoc, diag::err_recursive_superclass)
570
0
      << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
571
0
    IDecl->setEndOfDefinitionLoc(ClassLoc);
572
0
  } else {
573
0
    ObjCInterfaceDecl *SuperClassDecl =
574
0
    dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
575
0
    QualType SuperClassType;
576
577
    // Diagnose classes that inherit from deprecated classes.
578
0
    if (SuperClassDecl) {
579
0
      (void)DiagnoseUseOfDecl(SuperClassDecl, SuperLoc);
580
0
      SuperClassType = Context.getObjCInterfaceType(SuperClassDecl);
581
0
    }
582
583
0
    if (PrevDecl && !SuperClassDecl) {
584
      // The previous declaration was not a class decl. Check if we have a
585
      // typedef. If we do, get the underlying class type.
586
0
      if (const TypedefNameDecl *TDecl =
587
0
          dyn_cast_or_null<TypedefNameDecl>(PrevDecl)) {
588
0
        QualType T = TDecl->getUnderlyingType();
589
0
        if (T->isObjCObjectType()) {
590
0
          if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
591
0
            SuperClassDecl = dyn_cast<ObjCInterfaceDecl>(IDecl);
592
0
            SuperClassType = Context.getTypeDeclType(TDecl);
593
594
            // This handles the following case:
595
            // @interface NewI @end
596
            // typedef NewI DeprI __attribute__((deprecated("blah")))
597
            // @interface SI : DeprI /* warn here */ @end
598
0
            (void)DiagnoseUseOfDecl(const_cast<TypedefNameDecl*>(TDecl), SuperLoc);
599
0
          }
600
0
        }
601
0
      }
602
603
      // This handles the following case:
604
      //
605
      // typedef int SuperClass;
606
      // @interface MyClass : SuperClass {} @end
607
      //
608
0
      if (!SuperClassDecl) {
609
0
        Diag(SuperLoc, diag::err_redefinition_different_kind) << SuperName;
610
0
        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
611
0
      }
612
0
    }
613
614
0
    if (!isa_and_nonnull<TypedefNameDecl>(PrevDecl)) {
615
0
      if (!SuperClassDecl)
616
0
        Diag(SuperLoc, diag::err_undef_superclass)
617
0
          << SuperName << ClassName << SourceRange(AtInterfaceLoc, ClassLoc);
618
0
      else if (RequireCompleteType(SuperLoc,
619
0
                                   SuperClassType,
620
0
                                   diag::err_forward_superclass,
621
0
                                   SuperClassDecl->getDeclName(),
622
0
                                   ClassName,
623
0
                                   SourceRange(AtInterfaceLoc, ClassLoc))) {
624
0
        SuperClassDecl = nullptr;
625
0
        SuperClassType = QualType();
626
0
      }
627
0
    }
628
629
0
    if (SuperClassType.isNull()) {
630
0
      assert(!SuperClassDecl && "Failed to set SuperClassType?");
631
0
      return;
632
0
    }
633
634
    // Handle type arguments on the superclass.
635
0
    TypeSourceInfo *SuperClassTInfo = nullptr;
636
0
    if (!SuperTypeArgs.empty()) {
637
0
      TypeResult fullSuperClassType = actOnObjCTypeArgsAndProtocolQualifiers(
638
0
                                        S,
639
0
                                        SuperLoc,
640
0
                                        CreateParsedType(SuperClassType,
641
0
                                                         nullptr),
642
0
                                        SuperTypeArgsRange.getBegin(),
643
0
                                        SuperTypeArgs,
644
0
                                        SuperTypeArgsRange.getEnd(),
645
0
                                        SourceLocation(),
646
0
                                        { },
647
0
                                        { },
648
0
                                        SourceLocation());
649
0
      if (!fullSuperClassType.isUsable())
650
0
        return;
651
652
0
      SuperClassType = GetTypeFromParser(fullSuperClassType.get(),
653
0
                                         &SuperClassTInfo);
654
0
    }
655
656
0
    if (!SuperClassTInfo) {
657
0
      SuperClassTInfo = Context.getTrivialTypeSourceInfo(SuperClassType,
658
0
                                                         SuperLoc);
659
0
    }
660
661
0
    IDecl->setSuperClass(SuperClassTInfo);
662
0
    IDecl->setEndOfDefinitionLoc(SuperClassTInfo->getTypeLoc().getEndLoc());
663
0
  }
664
0
}
665
666
DeclResult Sema::actOnObjCTypeParam(Scope *S,
667
                                    ObjCTypeParamVariance variance,
668
                                    SourceLocation varianceLoc,
669
                                    unsigned index,
670
                                    IdentifierInfo *paramName,
671
                                    SourceLocation paramLoc,
672
                                    SourceLocation colonLoc,
673
0
                                    ParsedType parsedTypeBound) {
674
  // If there was an explicitly-provided type bound, check it.
675
0
  TypeSourceInfo *typeBoundInfo = nullptr;
676
0
  if (parsedTypeBound) {
677
    // The type bound can be any Objective-C pointer type.
678
0
    QualType typeBound = GetTypeFromParser(parsedTypeBound, &typeBoundInfo);
679
0
    if (typeBound->isObjCObjectPointerType()) {
680
      // okay
681
0
    } else if (typeBound->isObjCObjectType()) {
682
      // The user forgot the * on an Objective-C pointer type, e.g.,
683
      // "T : NSView".
684
0
      SourceLocation starLoc = getLocForEndOfToken(
685
0
                                 typeBoundInfo->getTypeLoc().getEndLoc());
686
0
      Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
687
0
           diag::err_objc_type_param_bound_missing_pointer)
688
0
        << typeBound << paramName
689
0
        << FixItHint::CreateInsertion(starLoc, " *");
690
691
      // Create a new type location builder so we can update the type
692
      // location information we have.
693
0
      TypeLocBuilder builder;
694
0
      builder.pushFullCopy(typeBoundInfo->getTypeLoc());
695
696
      // Create the Objective-C pointer type.
697
0
      typeBound = Context.getObjCObjectPointerType(typeBound);
698
0
      ObjCObjectPointerTypeLoc newT
699
0
        = builder.push<ObjCObjectPointerTypeLoc>(typeBound);
700
0
      newT.setStarLoc(starLoc);
701
702
      // Form the new type source information.
703
0
      typeBoundInfo = builder.getTypeSourceInfo(Context, typeBound);
704
0
    } else {
705
      // Not a valid type bound.
706
0
      Diag(typeBoundInfo->getTypeLoc().getBeginLoc(),
707
0
           diag::err_objc_type_param_bound_nonobject)
708
0
        << typeBound << paramName;
709
710
      // Forget the bound; we'll default to id later.
711
0
      typeBoundInfo = nullptr;
712
0
    }
713
714
    // Type bounds cannot have qualifiers (even indirectly) or explicit
715
    // nullability.
716
0
    if (typeBoundInfo) {
717
0
      QualType typeBound = typeBoundInfo->getType();
718
0
      TypeLoc qual = typeBoundInfo->getTypeLoc().findExplicitQualifierLoc();
719
0
      if (qual || typeBound.hasQualifiers()) {
720
0
        bool diagnosed = false;
721
0
        SourceRange rangeToRemove;
722
0
        if (qual) {
723
0
          if (auto attr = qual.getAs<AttributedTypeLoc>()) {
724
0
            rangeToRemove = attr.getLocalSourceRange();
725
0
            if (attr.getTypePtr()->getImmediateNullability()) {
726
0
              Diag(attr.getBeginLoc(),
727
0
                   diag::err_objc_type_param_bound_explicit_nullability)
728
0
                  << paramName << typeBound
729
0
                  << FixItHint::CreateRemoval(rangeToRemove);
730
0
              diagnosed = true;
731
0
            }
732
0
          }
733
0
        }
734
735
0
        if (!diagnosed) {
736
0
          Diag(qual ? qual.getBeginLoc()
737
0
                    : typeBoundInfo->getTypeLoc().getBeginLoc(),
738
0
               diag::err_objc_type_param_bound_qualified)
739
0
              << paramName << typeBound
740
0
              << typeBound.getQualifiers().getAsString()
741
0
              << FixItHint::CreateRemoval(rangeToRemove);
742
0
        }
743
744
        // If the type bound has qualifiers other than CVR, we need to strip
745
        // them or we'll probably assert later when trying to apply new
746
        // qualifiers.
747
0
        Qualifiers quals = typeBound.getQualifiers();
748
0
        quals.removeCVRQualifiers();
749
0
        if (!quals.empty()) {
750
0
          typeBoundInfo =
751
0
             Context.getTrivialTypeSourceInfo(typeBound.getUnqualifiedType());
752
0
        }
753
0
      }
754
0
    }
755
0
  }
756
757
  // If there was no explicit type bound (or we removed it due to an error),
758
  // use 'id' instead.
759
0
  if (!typeBoundInfo) {
760
0
    colonLoc = SourceLocation();
761
0
    typeBoundInfo = Context.getTrivialTypeSourceInfo(Context.getObjCIdType());
762
0
  }
763
764
  // Create the type parameter.
765
0
  return ObjCTypeParamDecl::Create(Context, CurContext, variance, varianceLoc,
766
0
                                   index, paramLoc, paramName, colonLoc,
767
0
                                   typeBoundInfo);
768
0
}
769
770
ObjCTypeParamList *Sema::actOnObjCTypeParamList(Scope *S,
771
                                                SourceLocation lAngleLoc,
772
                                                ArrayRef<Decl *> typeParamsIn,
773
0
                                                SourceLocation rAngleLoc) {
774
  // We know that the array only contains Objective-C type parameters.
775
0
  ArrayRef<ObjCTypeParamDecl *>
776
0
    typeParams(
777
0
      reinterpret_cast<ObjCTypeParamDecl * const *>(typeParamsIn.data()),
778
0
      typeParamsIn.size());
779
780
  // Diagnose redeclarations of type parameters.
781
  // We do this now because Objective-C type parameters aren't pushed into
782
  // scope until later (after the instance variable block), but we want the
783
  // diagnostics to occur right after we parse the type parameter list.
784
0
  llvm::SmallDenseMap<IdentifierInfo *, ObjCTypeParamDecl *> knownParams;
785
0
  for (auto *typeParam : typeParams) {
786
0
    auto known = knownParams.find(typeParam->getIdentifier());
787
0
    if (known != knownParams.end()) {
788
0
      Diag(typeParam->getLocation(), diag::err_objc_type_param_redecl)
789
0
        << typeParam->getIdentifier()
790
0
        << SourceRange(known->second->getLocation());
791
792
0
      typeParam->setInvalidDecl();
793
0
    } else {
794
0
      knownParams.insert(std::make_pair(typeParam->getIdentifier(), typeParam));
795
796
      // Push the type parameter into scope.
797
0
      PushOnScopeChains(typeParam, S, /*AddToContext=*/false);
798
0
    }
799
0
  }
800
801
  // Create the parameter list.
802
0
  return ObjCTypeParamList::create(Context, lAngleLoc, typeParams, rAngleLoc);
803
0
}
804
805
0
void Sema::popObjCTypeParamList(Scope *S, ObjCTypeParamList *typeParamList) {
806
0
  for (auto *typeParam : *typeParamList) {
807
0
    if (!typeParam->isInvalidDecl()) {
808
0
      S->RemoveDecl(typeParam);
809
0
      IdResolver.RemoveDecl(typeParam);
810
0
    }
811
0
  }
812
0
}
813
814
namespace {
815
  /// The context in which an Objective-C type parameter list occurs, for use
816
  /// in diagnostics.
817
  enum class TypeParamListContext {
818
    ForwardDeclaration,
819
    Definition,
820
    Category,
821
    Extension
822
  };
823
} // end anonymous namespace
824
825
/// Check consistency between two Objective-C type parameter lists, e.g.,
826
/// between a category/extension and an \@interface or between an \@class and an
827
/// \@interface.
828
static bool checkTypeParamListConsistency(Sema &S,
829
                                          ObjCTypeParamList *prevTypeParams,
830
                                          ObjCTypeParamList *newTypeParams,
831
0
                                          TypeParamListContext newContext) {
832
  // If the sizes don't match, complain about that.
833
0
  if (prevTypeParams->size() != newTypeParams->size()) {
834
0
    SourceLocation diagLoc;
835
0
    if (newTypeParams->size() > prevTypeParams->size()) {
836
0
      diagLoc = newTypeParams->begin()[prevTypeParams->size()]->getLocation();
837
0
    } else {
838
0
      diagLoc = S.getLocForEndOfToken(newTypeParams->back()->getEndLoc());
839
0
    }
840
841
0
    S.Diag(diagLoc, diag::err_objc_type_param_arity_mismatch)
842
0
      << static_cast<unsigned>(newContext)
843
0
      << (newTypeParams->size() > prevTypeParams->size())
844
0
      << prevTypeParams->size()
845
0
      << newTypeParams->size();
846
847
0
    return true;
848
0
  }
849
850
  // Match up the type parameters.
851
0
  for (unsigned i = 0, n = prevTypeParams->size(); i != n; ++i) {
852
0
    ObjCTypeParamDecl *prevTypeParam = prevTypeParams->begin()[i];
853
0
    ObjCTypeParamDecl *newTypeParam = newTypeParams->begin()[i];
854
855
    // Check for consistency of the variance.
856
0
    if (newTypeParam->getVariance() != prevTypeParam->getVariance()) {
857
0
      if (newTypeParam->getVariance() == ObjCTypeParamVariance::Invariant &&
858
0
          newContext != TypeParamListContext::Definition) {
859
        // When the new type parameter is invariant and is not part
860
        // of the definition, just propagate the variance.
861
0
        newTypeParam->setVariance(prevTypeParam->getVariance());
862
0
      } else if (prevTypeParam->getVariance()
863
0
                   == ObjCTypeParamVariance::Invariant &&
864
0
                 !(isa<ObjCInterfaceDecl>(prevTypeParam->getDeclContext()) &&
865
0
                   cast<ObjCInterfaceDecl>(prevTypeParam->getDeclContext())
866
0
                     ->getDefinition() == prevTypeParam->getDeclContext())) {
867
        // When the old parameter is invariant and was not part of the
868
        // definition, just ignore the difference because it doesn't
869
        // matter.
870
0
      } else {
871
0
        {
872
          // Diagnose the conflict and update the second declaration.
873
0
          SourceLocation diagLoc = newTypeParam->getVarianceLoc();
874
0
          if (diagLoc.isInvalid())
875
0
            diagLoc = newTypeParam->getBeginLoc();
876
877
0
          auto diag = S.Diag(diagLoc,
878
0
                             diag::err_objc_type_param_variance_conflict)
879
0
                        << static_cast<unsigned>(newTypeParam->getVariance())
880
0
                        << newTypeParam->getDeclName()
881
0
                        << static_cast<unsigned>(prevTypeParam->getVariance())
882
0
                        << prevTypeParam->getDeclName();
883
0
          switch (prevTypeParam->getVariance()) {
884
0
          case ObjCTypeParamVariance::Invariant:
885
0
            diag << FixItHint::CreateRemoval(newTypeParam->getVarianceLoc());
886
0
            break;
887
888
0
          case ObjCTypeParamVariance::Covariant:
889
0
          case ObjCTypeParamVariance::Contravariant: {
890
0
            StringRef newVarianceStr
891
0
               = prevTypeParam->getVariance() == ObjCTypeParamVariance::Covariant
892
0
                   ? "__covariant"
893
0
                   : "__contravariant";
894
0
            if (newTypeParam->getVariance()
895
0
                  == ObjCTypeParamVariance::Invariant) {
896
0
              diag << FixItHint::CreateInsertion(newTypeParam->getBeginLoc(),
897
0
                                                 (newVarianceStr + " ").str());
898
0
            } else {
899
0
              diag << FixItHint::CreateReplacement(newTypeParam->getVarianceLoc(),
900
0
                                               newVarianceStr);
901
0
            }
902
0
          }
903
0
          }
904
0
        }
905
906
0
        S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
907
0
          << prevTypeParam->getDeclName();
908
909
        // Override the variance.
910
0
        newTypeParam->setVariance(prevTypeParam->getVariance());
911
0
      }
912
0
    }
913
914
    // If the bound types match, there's nothing to do.
915
0
    if (S.Context.hasSameType(prevTypeParam->getUnderlyingType(),
916
0
                              newTypeParam->getUnderlyingType()))
917
0
      continue;
918
919
    // If the new type parameter's bound was explicit, complain about it being
920
    // different from the original.
921
0
    if (newTypeParam->hasExplicitBound()) {
922
0
      SourceRange newBoundRange = newTypeParam->getTypeSourceInfo()
923
0
                                    ->getTypeLoc().getSourceRange();
924
0
      S.Diag(newBoundRange.getBegin(), diag::err_objc_type_param_bound_conflict)
925
0
        << newTypeParam->getUnderlyingType()
926
0
        << newTypeParam->getDeclName()
927
0
        << prevTypeParam->hasExplicitBound()
928
0
        << prevTypeParam->getUnderlyingType()
929
0
        << (newTypeParam->getDeclName() == prevTypeParam->getDeclName())
930
0
        << prevTypeParam->getDeclName()
931
0
        << FixItHint::CreateReplacement(
932
0
             newBoundRange,
933
0
             prevTypeParam->getUnderlyingType().getAsString(
934
0
               S.Context.getPrintingPolicy()));
935
936
0
      S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
937
0
        << prevTypeParam->getDeclName();
938
939
      // Override the new type parameter's bound type with the previous type,
940
      // so that it's consistent.
941
0
      S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
942
0
      continue;
943
0
    }
944
945
    // The new type parameter got the implicit bound of 'id'. That's okay for
946
    // categories and extensions (overwrite it later), but not for forward
947
    // declarations and @interfaces, because those must be standalone.
948
0
    if (newContext == TypeParamListContext::ForwardDeclaration ||
949
0
        newContext == TypeParamListContext::Definition) {
950
      // Diagnose this problem for forward declarations and definitions.
951
0
      SourceLocation insertionLoc
952
0
        = S.getLocForEndOfToken(newTypeParam->getLocation());
953
0
      std::string newCode
954
0
        = " : " + prevTypeParam->getUnderlyingType().getAsString(
955
0
                    S.Context.getPrintingPolicy());
956
0
      S.Diag(newTypeParam->getLocation(),
957
0
             diag::err_objc_type_param_bound_missing)
958
0
        << prevTypeParam->getUnderlyingType()
959
0
        << newTypeParam->getDeclName()
960
0
        << (newContext == TypeParamListContext::ForwardDeclaration)
961
0
        << FixItHint::CreateInsertion(insertionLoc, newCode);
962
963
0
      S.Diag(prevTypeParam->getLocation(), diag::note_objc_type_param_here)
964
0
        << prevTypeParam->getDeclName();
965
0
    }
966
967
    // Update the new type parameter's bound to match the previous one.
968
0
    S.Context.adjustObjCTypeParamBoundType(prevTypeParam, newTypeParam);
969
0
  }
970
971
0
  return false;
972
0
}
973
974
ObjCInterfaceDecl *Sema::ActOnStartClassInterface(
975
    Scope *S, SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
976
    SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
977
    IdentifierInfo *SuperName, SourceLocation SuperLoc,
978
    ArrayRef<ParsedType> SuperTypeArgs, SourceRange SuperTypeArgsRange,
979
    Decl *const *ProtoRefs, unsigned NumProtoRefs,
980
    const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
981
0
    const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
982
0
  assert(ClassName && "Missing class identifier");
983
984
  // Check for another declaration kind with the same name.
985
0
  NamedDecl *PrevDecl =
986
0
      LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
987
0
                       forRedeclarationInCurContext());
988
989
0
  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
990
0
    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
991
0
    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
992
0
  }
993
994
  // Create a declaration to describe this @interface.
995
0
  ObjCInterfaceDecl* PrevIDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
996
997
0
  if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
998
    // A previous decl with a different name is because of
999
    // @compatibility_alias, for example:
1000
    // \code
1001
    //   @class NewImage;
1002
    //   @compatibility_alias OldImage NewImage;
1003
    // \endcode
1004
    // A lookup for 'OldImage' will return the 'NewImage' decl.
1005
    //
1006
    // In such a case use the real declaration name, instead of the alias one,
1007
    // otherwise we will break IdentifierResolver and redecls-chain invariants.
1008
    // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
1009
    // has been aliased.
1010
0
    ClassName = PrevIDecl->getIdentifier();
1011
0
  }
1012
1013
  // If there was a forward declaration with type parameters, check
1014
  // for consistency.
1015
0
  if (PrevIDecl) {
1016
0
    if (ObjCTypeParamList *prevTypeParamList = PrevIDecl->getTypeParamList()) {
1017
0
      if (typeParamList) {
1018
        // Both have type parameter lists; check for consistency.
1019
0
        if (checkTypeParamListConsistency(*this, prevTypeParamList,
1020
0
                                          typeParamList,
1021
0
                                          TypeParamListContext::Definition)) {
1022
0
          typeParamList = nullptr;
1023
0
        }
1024
0
      } else {
1025
0
        Diag(ClassLoc, diag::err_objc_parameterized_forward_class_first)
1026
0
          << ClassName;
1027
0
        Diag(prevTypeParamList->getLAngleLoc(), diag::note_previous_decl)
1028
0
          << ClassName;
1029
1030
        // Clone the type parameter list.
1031
0
        SmallVector<ObjCTypeParamDecl *, 4> clonedTypeParams;
1032
0
        for (auto *typeParam : *prevTypeParamList) {
1033
0
          clonedTypeParams.push_back(
1034
0
            ObjCTypeParamDecl::Create(
1035
0
              Context,
1036
0
              CurContext,
1037
0
              typeParam->getVariance(),
1038
0
              SourceLocation(),
1039
0
              typeParam->getIndex(),
1040
0
              SourceLocation(),
1041
0
              typeParam->getIdentifier(),
1042
0
              SourceLocation(),
1043
0
              Context.getTrivialTypeSourceInfo(typeParam->getUnderlyingType())));
1044
0
        }
1045
1046
0
        typeParamList = ObjCTypeParamList::create(Context,
1047
0
                                                  SourceLocation(),
1048
0
                                                  clonedTypeParams,
1049
0
                                                  SourceLocation());
1050
0
      }
1051
0
    }
1052
0
  }
1053
1054
0
  ObjCInterfaceDecl *IDecl
1055
0
    = ObjCInterfaceDecl::Create(Context, CurContext, AtInterfaceLoc, ClassName,
1056
0
                                typeParamList, PrevIDecl, ClassLoc);
1057
0
  if (PrevIDecl) {
1058
    // Class already seen. Was it a definition?
1059
0
    if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
1060
0
      if (SkipBody && !hasVisibleDefinition(Def)) {
1061
0
        SkipBody->CheckSameAsPrevious = true;
1062
0
        SkipBody->New = IDecl;
1063
0
        SkipBody->Previous = Def;
1064
0
      } else {
1065
0
        Diag(AtInterfaceLoc, diag::err_duplicate_class_def)
1066
0
            << PrevIDecl->getDeclName();
1067
0
        Diag(Def->getLocation(), diag::note_previous_definition);
1068
0
        IDecl->setInvalidDecl();
1069
0
      }
1070
0
    }
1071
0
  }
1072
1073
0
  ProcessDeclAttributeList(TUScope, IDecl, AttrList);
1074
0
  AddPragmaAttributes(TUScope, IDecl);
1075
1076
  // Merge attributes from previous declarations.
1077
0
  if (PrevIDecl)
1078
0
    mergeDeclAttributes(IDecl, PrevIDecl);
1079
1080
0
  PushOnScopeChains(IDecl, TUScope);
1081
1082
  // Start the definition of this class. If we're in a redefinition case, there
1083
  // may already be a definition, so we'll end up adding to it.
1084
0
  if (SkipBody && SkipBody->CheckSameAsPrevious)
1085
0
    IDecl->startDuplicateDefinitionForComparison();
1086
0
  else if (!IDecl->hasDefinition())
1087
0
    IDecl->startDefinition();
1088
1089
0
  if (SuperName) {
1090
    // Diagnose availability in the context of the @interface.
1091
0
    ContextRAII SavedContext(*this, IDecl);
1092
1093
0
    ActOnSuperClassOfClassInterface(S, AtInterfaceLoc, IDecl,
1094
0
                                    ClassName, ClassLoc,
1095
0
                                    SuperName, SuperLoc, SuperTypeArgs,
1096
0
                                    SuperTypeArgsRange);
1097
0
  } else { // we have a root class.
1098
0
    IDecl->setEndOfDefinitionLoc(ClassLoc);
1099
0
  }
1100
1101
  // Check then save referenced protocols.
1102
0
  if (NumProtoRefs) {
1103
0
    diagnoseUseOfProtocols(*this, IDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1104
0
                           NumProtoRefs, ProtoLocs);
1105
0
    IDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1106
0
                           ProtoLocs, Context);
1107
0
    IDecl->setEndOfDefinitionLoc(EndProtoLoc);
1108
0
  }
1109
1110
0
  CheckObjCDeclScope(IDecl);
1111
0
  ActOnObjCContainerStartDefinition(IDecl);
1112
0
  return IDecl;
1113
0
}
1114
1115
/// ActOnTypedefedProtocols - this action finds protocol list as part of the
1116
/// typedef'ed use for a qualified super class and adds them to the list
1117
/// of the protocols.
1118
void Sema::ActOnTypedefedProtocols(SmallVectorImpl<Decl *> &ProtocolRefs,
1119
                                  SmallVectorImpl<SourceLocation> &ProtocolLocs,
1120
                                   IdentifierInfo *SuperName,
1121
0
                                   SourceLocation SuperLoc) {
1122
0
  if (!SuperName)
1123
0
    return;
1124
0
  NamedDecl* IDecl = LookupSingleName(TUScope, SuperName, SuperLoc,
1125
0
                                      LookupOrdinaryName);
1126
0
  if (!IDecl)
1127
0
    return;
1128
1129
0
  if (const TypedefNameDecl *TDecl = dyn_cast_or_null<TypedefNameDecl>(IDecl)) {
1130
0
    QualType T = TDecl->getUnderlyingType();
1131
0
    if (T->isObjCObjectType())
1132
0
      if (const ObjCObjectType *OPT = T->getAs<ObjCObjectType>()) {
1133
0
        ProtocolRefs.append(OPT->qual_begin(), OPT->qual_end());
1134
        // FIXME: Consider whether this should be an invalid loc since the loc
1135
        // is not actually pointing to a protocol name reference but to the
1136
        // typedef reference. Note that the base class name loc is also pointing
1137
        // at the typedef.
1138
0
        ProtocolLocs.append(OPT->getNumProtocols(), SuperLoc);
1139
0
      }
1140
0
  }
1141
0
}
1142
1143
/// ActOnCompatibilityAlias - this action is called after complete parsing of
1144
/// a \@compatibility_alias declaration. It sets up the alias relationships.
1145
Decl *Sema::ActOnCompatibilityAlias(SourceLocation AtLoc,
1146
                                    IdentifierInfo *AliasName,
1147
                                    SourceLocation AliasLocation,
1148
                                    IdentifierInfo *ClassName,
1149
0
                                    SourceLocation ClassLocation) {
1150
  // Look for previous declaration of alias name
1151
0
  NamedDecl *ADecl =
1152
0
      LookupSingleName(TUScope, AliasName, AliasLocation, LookupOrdinaryName,
1153
0
                       forRedeclarationInCurContext());
1154
0
  if (ADecl) {
1155
0
    Diag(AliasLocation, diag::err_conflicting_aliasing_type) << AliasName;
1156
0
    Diag(ADecl->getLocation(), diag::note_previous_declaration);
1157
0
    return nullptr;
1158
0
  }
1159
  // Check for class declaration
1160
0
  NamedDecl *CDeclU =
1161
0
      LookupSingleName(TUScope, ClassName, ClassLocation, LookupOrdinaryName,
1162
0
                       forRedeclarationInCurContext());
1163
0
  if (const TypedefNameDecl *TDecl =
1164
0
        dyn_cast_or_null<TypedefNameDecl>(CDeclU)) {
1165
0
    QualType T = TDecl->getUnderlyingType();
1166
0
    if (T->isObjCObjectType()) {
1167
0
      if (NamedDecl *IDecl = T->castAs<ObjCObjectType>()->getInterface()) {
1168
0
        ClassName = IDecl->getIdentifier();
1169
0
        CDeclU = LookupSingleName(TUScope, ClassName, ClassLocation,
1170
0
                                  LookupOrdinaryName,
1171
0
                                  forRedeclarationInCurContext());
1172
0
      }
1173
0
    }
1174
0
  }
1175
0
  ObjCInterfaceDecl *CDecl = dyn_cast_or_null<ObjCInterfaceDecl>(CDeclU);
1176
0
  if (!CDecl) {
1177
0
    Diag(ClassLocation, diag::warn_undef_interface) << ClassName;
1178
0
    if (CDeclU)
1179
0
      Diag(CDeclU->getLocation(), diag::note_previous_declaration);
1180
0
    return nullptr;
1181
0
  }
1182
1183
  // Everything checked out, instantiate a new alias declaration AST.
1184
0
  ObjCCompatibleAliasDecl *AliasDecl =
1185
0
    ObjCCompatibleAliasDecl::Create(Context, CurContext, AtLoc, AliasName, CDecl);
1186
1187
0
  if (!CheckObjCDeclScope(AliasDecl))
1188
0
    PushOnScopeChains(AliasDecl, TUScope);
1189
1190
0
  return AliasDecl;
1191
0
}
1192
1193
bool Sema::CheckForwardProtocolDeclarationForCircularDependency(
1194
  IdentifierInfo *PName,
1195
  SourceLocation &Ploc, SourceLocation PrevLoc,
1196
0
  const ObjCList<ObjCProtocolDecl> &PList) {
1197
1198
0
  bool res = false;
1199
0
  for (ObjCList<ObjCProtocolDecl>::iterator I = PList.begin(),
1200
0
       E = PList.end(); I != E; ++I) {
1201
0
    if (ObjCProtocolDecl *PDecl = LookupProtocol((*I)->getIdentifier(),
1202
0
                                                 Ploc)) {
1203
0
      if (PDecl->getIdentifier() == PName) {
1204
0
        Diag(Ploc, diag::err_protocol_has_circular_dependency);
1205
0
        Diag(PrevLoc, diag::note_previous_definition);
1206
0
        res = true;
1207
0
      }
1208
1209
0
      if (!PDecl->hasDefinition())
1210
0
        continue;
1211
1212
0
      if (CheckForwardProtocolDeclarationForCircularDependency(PName, Ploc,
1213
0
            PDecl->getLocation(), PDecl->getReferencedProtocols()))
1214
0
        res = true;
1215
0
    }
1216
0
  }
1217
0
  return res;
1218
0
}
1219
1220
ObjCProtocolDecl *Sema::ActOnStartProtocolInterface(
1221
    SourceLocation AtProtoInterfaceLoc, IdentifierInfo *ProtocolName,
1222
    SourceLocation ProtocolLoc, Decl *const *ProtoRefs, unsigned NumProtoRefs,
1223
    const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1224
0
    const ParsedAttributesView &AttrList, SkipBodyInfo *SkipBody) {
1225
0
  bool err = false;
1226
  // FIXME: Deal with AttrList.
1227
0
  assert(ProtocolName && "Missing protocol identifier");
1228
0
  ObjCProtocolDecl *PrevDecl = LookupProtocol(ProtocolName, ProtocolLoc,
1229
0
                                              forRedeclarationInCurContext());
1230
0
  ObjCProtocolDecl *PDecl = nullptr;
1231
0
  if (ObjCProtocolDecl *Def = PrevDecl? PrevDecl->getDefinition() : nullptr) {
1232
    // Create a new protocol that is completely distinct from previous
1233
    // declarations, and do not make this protocol available for name lookup.
1234
    // That way, we'll end up completely ignoring the duplicate.
1235
    // FIXME: Can we turn this into an error?
1236
0
    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1237
0
                                     ProtocolLoc, AtProtoInterfaceLoc,
1238
0
                                     /*PrevDecl=*/Def);
1239
1240
0
    if (SkipBody && !hasVisibleDefinition(Def)) {
1241
0
      SkipBody->CheckSameAsPrevious = true;
1242
0
      SkipBody->New = PDecl;
1243
0
      SkipBody->Previous = Def;
1244
0
    } else {
1245
      // If we already have a definition, complain.
1246
0
      Diag(ProtocolLoc, diag::warn_duplicate_protocol_def) << ProtocolName;
1247
0
      Diag(Def->getLocation(), diag::note_previous_definition);
1248
0
    }
1249
1250
    // If we are using modules, add the decl to the context in order to
1251
    // serialize something meaningful.
1252
0
    if (getLangOpts().Modules)
1253
0
      PushOnScopeChains(PDecl, TUScope);
1254
0
    PDecl->startDuplicateDefinitionForComparison();
1255
0
  } else {
1256
0
    if (PrevDecl) {
1257
      // Check for circular dependencies among protocol declarations. This can
1258
      // only happen if this protocol was forward-declared.
1259
0
      ObjCList<ObjCProtocolDecl> PList;
1260
0
      PList.set((ObjCProtocolDecl *const*)ProtoRefs, NumProtoRefs, Context);
1261
0
      err = CheckForwardProtocolDeclarationForCircularDependency(
1262
0
              ProtocolName, ProtocolLoc, PrevDecl->getLocation(), PList);
1263
0
    }
1264
1265
    // Create the new declaration.
1266
0
    PDecl = ObjCProtocolDecl::Create(Context, CurContext, ProtocolName,
1267
0
                                     ProtocolLoc, AtProtoInterfaceLoc,
1268
0
                                     /*PrevDecl=*/PrevDecl);
1269
1270
0
    PushOnScopeChains(PDecl, TUScope);
1271
0
    PDecl->startDefinition();
1272
0
  }
1273
1274
0
  ProcessDeclAttributeList(TUScope, PDecl, AttrList);
1275
0
  AddPragmaAttributes(TUScope, PDecl);
1276
1277
  // Merge attributes from previous declarations.
1278
0
  if (PrevDecl)
1279
0
    mergeDeclAttributes(PDecl, PrevDecl);
1280
1281
0
  if (!err && NumProtoRefs ) {
1282
    /// Check then save referenced protocols.
1283
0
    diagnoseUseOfProtocols(*this, PDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1284
0
                           NumProtoRefs, ProtoLocs);
1285
0
    PDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1286
0
                           ProtoLocs, Context);
1287
0
  }
1288
1289
0
  CheckObjCDeclScope(PDecl);
1290
0
  ActOnObjCContainerStartDefinition(PDecl);
1291
0
  return PDecl;
1292
0
}
1293
1294
static bool NestedProtocolHasNoDefinition(ObjCProtocolDecl *PDecl,
1295
0
                                          ObjCProtocolDecl *&UndefinedProtocol) {
1296
0
  if (!PDecl->hasDefinition() ||
1297
0
      !PDecl->getDefinition()->isUnconditionallyVisible()) {
1298
0
    UndefinedProtocol = PDecl;
1299
0
    return true;
1300
0
  }
1301
1302
0
  for (auto *PI : PDecl->protocols())
1303
0
    if (NestedProtocolHasNoDefinition(PI, UndefinedProtocol)) {
1304
0
      UndefinedProtocol = PI;
1305
0
      return true;
1306
0
    }
1307
0
  return false;
1308
0
}
1309
1310
/// FindProtocolDeclaration - This routine looks up protocols and
1311
/// issues an error if they are not declared. It returns list of
1312
/// protocol declarations in its 'Protocols' argument.
1313
void
1314
Sema::FindProtocolDeclaration(bool WarnOnDeclarations, bool ForObjCContainer,
1315
                              ArrayRef<IdentifierLocPair> ProtocolId,
1316
0
                              SmallVectorImpl<Decl *> &Protocols) {
1317
0
  for (const IdentifierLocPair &Pair : ProtocolId) {
1318
0
    ObjCProtocolDecl *PDecl = LookupProtocol(Pair.first, Pair.second);
1319
0
    if (!PDecl) {
1320
0
      DeclFilterCCC<ObjCProtocolDecl> CCC{};
1321
0
      TypoCorrection Corrected = CorrectTypo(
1322
0
          DeclarationNameInfo(Pair.first, Pair.second), LookupObjCProtocolName,
1323
0
          TUScope, nullptr, CCC, CTK_ErrorRecovery);
1324
0
      if ((PDecl = Corrected.getCorrectionDeclAs<ObjCProtocolDecl>()))
1325
0
        diagnoseTypo(Corrected, PDiag(diag::err_undeclared_protocol_suggest)
1326
0
                                    << Pair.first);
1327
0
    }
1328
1329
0
    if (!PDecl) {
1330
0
      Diag(Pair.second, diag::err_undeclared_protocol) << Pair.first;
1331
0
      continue;
1332
0
    }
1333
    // If this is a forward protocol declaration, get its definition.
1334
0
    if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
1335
0
      PDecl = PDecl->getDefinition();
1336
1337
    // For an objc container, delay protocol reference checking until after we
1338
    // can set the objc decl as the availability context, otherwise check now.
1339
0
    if (!ForObjCContainer) {
1340
0
      (void)DiagnoseUseOfDecl(PDecl, Pair.second);
1341
0
    }
1342
1343
    // If this is a forward declaration and we are supposed to warn in this
1344
    // case, do it.
1345
    // FIXME: Recover nicely in the hidden case.
1346
0
    ObjCProtocolDecl *UndefinedProtocol;
1347
1348
0
    if (WarnOnDeclarations &&
1349
0
        NestedProtocolHasNoDefinition(PDecl, UndefinedProtocol)) {
1350
0
      Diag(Pair.second, diag::warn_undef_protocolref) << Pair.first;
1351
0
      Diag(UndefinedProtocol->getLocation(), diag::note_protocol_decl_undefined)
1352
0
        << UndefinedProtocol;
1353
0
    }
1354
0
    Protocols.push_back(PDecl);
1355
0
  }
1356
0
}
1357
1358
namespace {
1359
// Callback to only accept typo corrections that are either
1360
// Objective-C protocols or valid Objective-C type arguments.
1361
class ObjCTypeArgOrProtocolValidatorCCC final
1362
    : public CorrectionCandidateCallback {
1363
  ASTContext &Context;
1364
  Sema::LookupNameKind LookupKind;
1365
 public:
1366
  ObjCTypeArgOrProtocolValidatorCCC(ASTContext &context,
1367
                                    Sema::LookupNameKind lookupKind)
1368
0
    : Context(context), LookupKind(lookupKind) { }
1369
1370
0
  bool ValidateCandidate(const TypoCorrection &candidate) override {
1371
    // If we're allowed to find protocols and we have a protocol, accept it.
1372
0
    if (LookupKind != Sema::LookupOrdinaryName) {
1373
0
      if (candidate.getCorrectionDeclAs<ObjCProtocolDecl>())
1374
0
        return true;
1375
0
    }
1376
1377
    // If we're allowed to find type names and we have one, accept it.
1378
0
    if (LookupKind != Sema::LookupObjCProtocolName) {
1379
      // If we have a type declaration, we might accept this result.
1380
0
      if (auto typeDecl = candidate.getCorrectionDeclAs<TypeDecl>()) {
1381
        // If we found a tag declaration outside of C++, skip it. This
1382
        // can happy because we look for any name when there is no
1383
        // bias to protocol or type names.
1384
0
        if (isa<RecordDecl>(typeDecl) && !Context.getLangOpts().CPlusPlus)
1385
0
          return false;
1386
1387
        // Make sure the type is something we would accept as a type
1388
        // argument.
1389
0
        auto type = Context.getTypeDeclType(typeDecl);
1390
0
        if (type->isObjCObjectPointerType() ||
1391
0
            type->isBlockPointerType() ||
1392
0
            type->isDependentType() ||
1393
0
            type->isObjCObjectType())
1394
0
          return true;
1395
1396
0
        return false;
1397
0
      }
1398
1399
      // If we have an Objective-C class type, accept it; there will
1400
      // be another fix to add the '*'.
1401
0
      if (candidate.getCorrectionDeclAs<ObjCInterfaceDecl>())
1402
0
        return true;
1403
1404
0
      return false;
1405
0
    }
1406
1407
0
    return false;
1408
0
  }
1409
1410
0
  std::unique_ptr<CorrectionCandidateCallback> clone() override {
1411
0
    return std::make_unique<ObjCTypeArgOrProtocolValidatorCCC>(*this);
1412
0
  }
1413
};
1414
} // end anonymous namespace
1415
1416
void Sema::DiagnoseTypeArgsAndProtocols(IdentifierInfo *ProtocolId,
1417
                                        SourceLocation ProtocolLoc,
1418
                                        IdentifierInfo *TypeArgId,
1419
                                        SourceLocation TypeArgLoc,
1420
0
                                        bool SelectProtocolFirst) {
1421
0
  Diag(TypeArgLoc, diag::err_objc_type_args_and_protocols)
1422
0
      << SelectProtocolFirst << TypeArgId << ProtocolId
1423
0
      << SourceRange(ProtocolLoc);
1424
0
}
1425
1426
void Sema::actOnObjCTypeArgsOrProtocolQualifiers(
1427
       Scope *S,
1428
       ParsedType baseType,
1429
       SourceLocation lAngleLoc,
1430
       ArrayRef<IdentifierInfo *> identifiers,
1431
       ArrayRef<SourceLocation> identifierLocs,
1432
       SourceLocation rAngleLoc,
1433
       SourceLocation &typeArgsLAngleLoc,
1434
       SmallVectorImpl<ParsedType> &typeArgs,
1435
       SourceLocation &typeArgsRAngleLoc,
1436
       SourceLocation &protocolLAngleLoc,
1437
       SmallVectorImpl<Decl *> &protocols,
1438
       SourceLocation &protocolRAngleLoc,
1439
0
       bool warnOnIncompleteProtocols) {
1440
  // Local function that updates the declaration specifiers with
1441
  // protocol information.
1442
0
  unsigned numProtocolsResolved = 0;
1443
0
  auto resolvedAsProtocols = [&] {
1444
0
    assert(numProtocolsResolved == identifiers.size() && "Unresolved protocols");
1445
1446
    // Determine whether the base type is a parameterized class, in
1447
    // which case we want to warn about typos such as
1448
    // "NSArray<NSObject>" (that should be NSArray<NSObject *>).
1449
0
    ObjCInterfaceDecl *baseClass = nullptr;
1450
0
    QualType base = GetTypeFromParser(baseType, nullptr);
1451
0
    bool allAreTypeNames = false;
1452
0
    SourceLocation firstClassNameLoc;
1453
0
    if (!base.isNull()) {
1454
0
      if (const auto *objcObjectType = base->getAs<ObjCObjectType>()) {
1455
0
        baseClass = objcObjectType->getInterface();
1456
0
        if (baseClass) {
1457
0
          if (auto typeParams = baseClass->getTypeParamList()) {
1458
0
            if (typeParams->size() == numProtocolsResolved) {
1459
              // Note that we should be looking for type names, too.
1460
0
              allAreTypeNames = true;
1461
0
            }
1462
0
          }
1463
0
        }
1464
0
      }
1465
0
    }
1466
1467
0
    for (unsigned i = 0, n = protocols.size(); i != n; ++i) {
1468
0
      ObjCProtocolDecl *&proto
1469
0
        = reinterpret_cast<ObjCProtocolDecl *&>(protocols[i]);
1470
      // For an objc container, delay protocol reference checking until after we
1471
      // can set the objc decl as the availability context, otherwise check now.
1472
0
      if (!warnOnIncompleteProtocols) {
1473
0
        (void)DiagnoseUseOfDecl(proto, identifierLocs[i]);
1474
0
      }
1475
1476
      // If this is a forward protocol declaration, get its definition.
1477
0
      if (!proto->isThisDeclarationADefinition() && proto->getDefinition())
1478
0
        proto = proto->getDefinition();
1479
1480
      // If this is a forward declaration and we are supposed to warn in this
1481
      // case, do it.
1482
      // FIXME: Recover nicely in the hidden case.
1483
0
      ObjCProtocolDecl *forwardDecl = nullptr;
1484
0
      if (warnOnIncompleteProtocols &&
1485
0
          NestedProtocolHasNoDefinition(proto, forwardDecl)) {
1486
0
        Diag(identifierLocs[i], diag::warn_undef_protocolref)
1487
0
          << proto->getDeclName();
1488
0
        Diag(forwardDecl->getLocation(), diag::note_protocol_decl_undefined)
1489
0
          << forwardDecl;
1490
0
      }
1491
1492
      // If everything this far has been a type name (and we care
1493
      // about such things), check whether this name refers to a type
1494
      // as well.
1495
0
      if (allAreTypeNames) {
1496
0
        if (auto *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1497
0
                                          LookupOrdinaryName)) {
1498
0
          if (isa<ObjCInterfaceDecl>(decl)) {
1499
0
            if (firstClassNameLoc.isInvalid())
1500
0
              firstClassNameLoc = identifierLocs[i];
1501
0
          } else if (!isa<TypeDecl>(decl)) {
1502
            // Not a type.
1503
0
            allAreTypeNames = false;
1504
0
          }
1505
0
        } else {
1506
0
          allAreTypeNames = false;
1507
0
        }
1508
0
      }
1509
0
    }
1510
1511
    // All of the protocols listed also have type names, and at least
1512
    // one is an Objective-C class name. Check whether all of the
1513
    // protocol conformances are declared by the base class itself, in
1514
    // which case we warn.
1515
0
    if (allAreTypeNames && firstClassNameLoc.isValid()) {
1516
0
      llvm::SmallPtrSet<ObjCProtocolDecl*, 8> knownProtocols;
1517
0
      Context.CollectInheritedProtocols(baseClass, knownProtocols);
1518
0
      bool allProtocolsDeclared = true;
1519
0
      for (auto *proto : protocols) {
1520
0
        if (knownProtocols.count(static_cast<ObjCProtocolDecl *>(proto)) == 0) {
1521
0
          allProtocolsDeclared = false;
1522
0
          break;
1523
0
        }
1524
0
      }
1525
1526
0
      if (allProtocolsDeclared) {
1527
0
        Diag(firstClassNameLoc, diag::warn_objc_redundant_qualified_class_type)
1528
0
          << baseClass->getDeclName() << SourceRange(lAngleLoc, rAngleLoc)
1529
0
          << FixItHint::CreateInsertion(getLocForEndOfToken(firstClassNameLoc),
1530
0
                                        " *");
1531
0
      }
1532
0
    }
1533
1534
0
    protocolLAngleLoc = lAngleLoc;
1535
0
    protocolRAngleLoc = rAngleLoc;
1536
0
    assert(protocols.size() == identifierLocs.size());
1537
0
  };
1538
1539
  // Attempt to resolve all of the identifiers as protocols.
1540
0
  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1541
0
    ObjCProtocolDecl *proto = LookupProtocol(identifiers[i], identifierLocs[i]);
1542
0
    protocols.push_back(proto);
1543
0
    if (proto)
1544
0
      ++numProtocolsResolved;
1545
0
  }
1546
1547
  // If all of the names were protocols, these were protocol qualifiers.
1548
0
  if (numProtocolsResolved == identifiers.size())
1549
0
    return resolvedAsProtocols();
1550
1551
  // Attempt to resolve all of the identifiers as type names or
1552
  // Objective-C class names. The latter is technically ill-formed,
1553
  // but is probably something like \c NSArray<NSView *> missing the
1554
  // \c*.
1555
0
  typedef llvm::PointerUnion<TypeDecl *, ObjCInterfaceDecl *> TypeOrClassDecl;
1556
0
  SmallVector<TypeOrClassDecl, 4> typeDecls;
1557
0
  unsigned numTypeDeclsResolved = 0;
1558
0
  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1559
0
    NamedDecl *decl = LookupSingleName(S, identifiers[i], identifierLocs[i],
1560
0
                                       LookupOrdinaryName);
1561
0
    if (!decl) {
1562
0
      typeDecls.push_back(TypeOrClassDecl());
1563
0
      continue;
1564
0
    }
1565
1566
0
    if (auto typeDecl = dyn_cast<TypeDecl>(decl)) {
1567
0
      typeDecls.push_back(typeDecl);
1568
0
      ++numTypeDeclsResolved;
1569
0
      continue;
1570
0
    }
1571
1572
0
    if (auto objcClass = dyn_cast<ObjCInterfaceDecl>(decl)) {
1573
0
      typeDecls.push_back(objcClass);
1574
0
      ++numTypeDeclsResolved;
1575
0
      continue;
1576
0
    }
1577
1578
0
    typeDecls.push_back(TypeOrClassDecl());
1579
0
  }
1580
1581
0
  AttributeFactory attrFactory;
1582
1583
  // Local function that forms a reference to the given type or
1584
  // Objective-C class declaration.
1585
0
  auto resolveTypeReference = [&](TypeOrClassDecl typeDecl, SourceLocation loc)
1586
0
                                -> TypeResult {
1587
    // Form declaration specifiers. They simply refer to the type.
1588
0
    DeclSpec DS(attrFactory);
1589
0
    const char* prevSpec; // unused
1590
0
    unsigned diagID; // unused
1591
0
    QualType type;
1592
0
    if (auto *actualTypeDecl = typeDecl.dyn_cast<TypeDecl *>())
1593
0
      type = Context.getTypeDeclType(actualTypeDecl);
1594
0
    else
1595
0
      type = Context.getObjCInterfaceType(typeDecl.get<ObjCInterfaceDecl *>());
1596
0
    TypeSourceInfo *parsedTSInfo = Context.getTrivialTypeSourceInfo(type, loc);
1597
0
    ParsedType parsedType = CreateParsedType(type, parsedTSInfo);
1598
0
    DS.SetTypeSpecType(DeclSpec::TST_typename, loc, prevSpec, diagID,
1599
0
                       parsedType, Context.getPrintingPolicy());
1600
    // Use the identifier location for the type source range.
1601
0
    DS.SetRangeStart(loc);
1602
0
    DS.SetRangeEnd(loc);
1603
1604
    // Form the declarator.
1605
0
    Declarator D(DS, ParsedAttributesView::none(), DeclaratorContext::TypeName);
1606
1607
    // If we have a typedef of an Objective-C class type that is missing a '*',
1608
    // add the '*'.
1609
0
    if (type->getAs<ObjCInterfaceType>()) {
1610
0
      SourceLocation starLoc = getLocForEndOfToken(loc);
1611
0
      D.AddTypeInfo(DeclaratorChunk::getPointer(/*TypeQuals=*/0, starLoc,
1612
0
                                                SourceLocation(),
1613
0
                                                SourceLocation(),
1614
0
                                                SourceLocation(),
1615
0
                                                SourceLocation(),
1616
0
                                                SourceLocation()),
1617
0
                                                starLoc);
1618
1619
      // Diagnose the missing '*'.
1620
0
      Diag(loc, diag::err_objc_type_arg_missing_star)
1621
0
        << type
1622
0
        << FixItHint::CreateInsertion(starLoc, " *");
1623
0
    }
1624
1625
    // Convert this to a type.
1626
0
    return ActOnTypeName(S, D);
1627
0
  };
1628
1629
  // Local function that updates the declaration specifiers with
1630
  // type argument information.
1631
0
  auto resolvedAsTypeDecls = [&] {
1632
    // We did not resolve these as protocols.
1633
0
    protocols.clear();
1634
1635
0
    assert(numTypeDeclsResolved == identifiers.size() && "Unresolved type decl");
1636
    // Map type declarations to type arguments.
1637
0
    for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1638
      // Map type reference to a type.
1639
0
      TypeResult type = resolveTypeReference(typeDecls[i], identifierLocs[i]);
1640
0
      if (!type.isUsable()) {
1641
0
        typeArgs.clear();
1642
0
        return;
1643
0
      }
1644
1645
0
      typeArgs.push_back(type.get());
1646
0
    }
1647
1648
0
    typeArgsLAngleLoc = lAngleLoc;
1649
0
    typeArgsRAngleLoc = rAngleLoc;
1650
0
  };
1651
1652
  // If all of the identifiers can be resolved as type names or
1653
  // Objective-C class names, we have type arguments.
1654
0
  if (numTypeDeclsResolved == identifiers.size())
1655
0
    return resolvedAsTypeDecls();
1656
1657
  // Error recovery: some names weren't found, or we have a mix of
1658
  // type and protocol names. Go resolve all of the unresolved names
1659
  // and complain if we can't find a consistent answer.
1660
0
  LookupNameKind lookupKind = LookupAnyName;
1661
0
  for (unsigned i = 0, n = identifiers.size(); i != n; ++i) {
1662
    // If we already have a protocol or type. Check whether it is the
1663
    // right thing.
1664
0
    if (protocols[i] || typeDecls[i]) {
1665
      // If we haven't figured out whether we want types or protocols
1666
      // yet, try to figure it out from this name.
1667
0
      if (lookupKind == LookupAnyName) {
1668
        // If this name refers to both a protocol and a type (e.g., \c
1669
        // NSObject), don't conclude anything yet.
1670
0
        if (protocols[i] && typeDecls[i])
1671
0
          continue;
1672
1673
        // Otherwise, let this name decide whether we'll be correcting
1674
        // toward types or protocols.
1675
0
        lookupKind = protocols[i] ? LookupObjCProtocolName
1676
0
                                  : LookupOrdinaryName;
1677
0
        continue;
1678
0
      }
1679
1680
      // If we want protocols and we have a protocol, there's nothing
1681
      // more to do.
1682
0
      if (lookupKind == LookupObjCProtocolName && protocols[i])
1683
0
        continue;
1684
1685
      // If we want types and we have a type declaration, there's
1686
      // nothing more to do.
1687
0
      if (lookupKind == LookupOrdinaryName && typeDecls[i])
1688
0
        continue;
1689
1690
      // We have a conflict: some names refer to protocols and others
1691
      // refer to types.
1692
0
      DiagnoseTypeArgsAndProtocols(identifiers[0], identifierLocs[0],
1693
0
                                   identifiers[i], identifierLocs[i],
1694
0
                                   protocols[i] != nullptr);
1695
1696
0
      protocols.clear();
1697
0
      typeArgs.clear();
1698
0
      return;
1699
0
    }
1700
1701
    // Perform typo correction on the name.
1702
0
    ObjCTypeArgOrProtocolValidatorCCC CCC(Context, lookupKind);
1703
0
    TypoCorrection corrected =
1704
0
        CorrectTypo(DeclarationNameInfo(identifiers[i], identifierLocs[i]),
1705
0
                    lookupKind, S, nullptr, CCC, CTK_ErrorRecovery);
1706
0
    if (corrected) {
1707
      // Did we find a protocol?
1708
0
      if (auto proto = corrected.getCorrectionDeclAs<ObjCProtocolDecl>()) {
1709
0
        diagnoseTypo(corrected,
1710
0
                     PDiag(diag::err_undeclared_protocol_suggest)
1711
0
                       << identifiers[i]);
1712
0
        lookupKind = LookupObjCProtocolName;
1713
0
        protocols[i] = proto;
1714
0
        ++numProtocolsResolved;
1715
0
        continue;
1716
0
      }
1717
1718
      // Did we find a type?
1719
0
      if (auto typeDecl = corrected.getCorrectionDeclAs<TypeDecl>()) {
1720
0
        diagnoseTypo(corrected,
1721
0
                     PDiag(diag::err_unknown_typename_suggest)
1722
0
                       << identifiers[i]);
1723
0
        lookupKind = LookupOrdinaryName;
1724
0
        typeDecls[i] = typeDecl;
1725
0
        ++numTypeDeclsResolved;
1726
0
        continue;
1727
0
      }
1728
1729
      // Did we find an Objective-C class?
1730
0
      if (auto objcClass = corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
1731
0
        diagnoseTypo(corrected,
1732
0
                     PDiag(diag::err_unknown_type_or_class_name_suggest)
1733
0
                       << identifiers[i] << true);
1734
0
        lookupKind = LookupOrdinaryName;
1735
0
        typeDecls[i] = objcClass;
1736
0
        ++numTypeDeclsResolved;
1737
0
        continue;
1738
0
      }
1739
0
    }
1740
1741
    // We couldn't find anything.
1742
0
    Diag(identifierLocs[i],
1743
0
         (lookupKind == LookupAnyName ? diag::err_objc_type_arg_missing
1744
0
          : lookupKind == LookupObjCProtocolName ? diag::err_undeclared_protocol
1745
0
          : diag::err_unknown_typename))
1746
0
      << identifiers[i];
1747
0
    protocols.clear();
1748
0
    typeArgs.clear();
1749
0
    return;
1750
0
  }
1751
1752
  // If all of the names were (corrected to) protocols, these were
1753
  // protocol qualifiers.
1754
0
  if (numProtocolsResolved == identifiers.size())
1755
0
    return resolvedAsProtocols();
1756
1757
  // Otherwise, all of the names were (corrected to) types.
1758
0
  assert(numTypeDeclsResolved == identifiers.size() && "Not all types?");
1759
0
  return resolvedAsTypeDecls();
1760
0
}
1761
1762
/// DiagnoseClassExtensionDupMethods - Check for duplicate declaration of
1763
/// a class method in its extension.
1764
///
1765
void Sema::DiagnoseClassExtensionDupMethods(ObjCCategoryDecl *CAT,
1766
0
                                            ObjCInterfaceDecl *ID) {
1767
0
  if (!ID)
1768
0
    return;  // Possibly due to previous error
1769
1770
0
  llvm::DenseMap<Selector, const ObjCMethodDecl*> MethodMap;
1771
0
  for (auto *MD : ID->methods())
1772
0
    MethodMap[MD->getSelector()] = MD;
1773
1774
0
  if (MethodMap.empty())
1775
0
    return;
1776
0
  for (const auto *Method : CAT->methods()) {
1777
0
    const ObjCMethodDecl *&PrevMethod = MethodMap[Method->getSelector()];
1778
0
    if (PrevMethod &&
1779
0
        (PrevMethod->isInstanceMethod() == Method->isInstanceMethod()) &&
1780
0
        !MatchTwoMethodDeclarations(Method, PrevMethod)) {
1781
0
      Diag(Method->getLocation(), diag::err_duplicate_method_decl)
1782
0
            << Method->getDeclName();
1783
0
      Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
1784
0
    }
1785
0
  }
1786
0
}
1787
1788
/// ActOnForwardProtocolDeclaration - Handle \@protocol foo;
1789
Sema::DeclGroupPtrTy
1790
Sema::ActOnForwardProtocolDeclaration(SourceLocation AtProtocolLoc,
1791
                                      ArrayRef<IdentifierLocPair> IdentList,
1792
0
                                      const ParsedAttributesView &attrList) {
1793
0
  SmallVector<Decl *, 8> DeclsInGroup;
1794
0
  for (const IdentifierLocPair &IdentPair : IdentList) {
1795
0
    IdentifierInfo *Ident = IdentPair.first;
1796
0
    ObjCProtocolDecl *PrevDecl = LookupProtocol(Ident, IdentPair.second,
1797
0
                                                forRedeclarationInCurContext());
1798
0
    ObjCProtocolDecl *PDecl
1799
0
      = ObjCProtocolDecl::Create(Context, CurContext, Ident,
1800
0
                                 IdentPair.second, AtProtocolLoc,
1801
0
                                 PrevDecl);
1802
1803
0
    PushOnScopeChains(PDecl, TUScope);
1804
0
    CheckObjCDeclScope(PDecl);
1805
1806
0
    ProcessDeclAttributeList(TUScope, PDecl, attrList);
1807
0
    AddPragmaAttributes(TUScope, PDecl);
1808
1809
0
    if (PrevDecl)
1810
0
      mergeDeclAttributes(PDecl, PrevDecl);
1811
1812
0
    DeclsInGroup.push_back(PDecl);
1813
0
  }
1814
1815
0
  return BuildDeclaratorGroup(DeclsInGroup);
1816
0
}
1817
1818
ObjCCategoryDecl *Sema::ActOnStartCategoryInterface(
1819
    SourceLocation AtInterfaceLoc, IdentifierInfo *ClassName,
1820
    SourceLocation ClassLoc, ObjCTypeParamList *typeParamList,
1821
    IdentifierInfo *CategoryName, SourceLocation CategoryLoc,
1822
    Decl *const *ProtoRefs, unsigned NumProtoRefs,
1823
    const SourceLocation *ProtoLocs, SourceLocation EndProtoLoc,
1824
0
    const ParsedAttributesView &AttrList) {
1825
0
  ObjCCategoryDecl *CDecl;
1826
0
  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1827
1828
  /// Check that class of this category is already completely declared.
1829
1830
0
  if (!IDecl
1831
0
      || RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1832
0
                             diag::err_category_forward_interface,
1833
0
                             CategoryName == nullptr)) {
1834
    // Create an invalid ObjCCategoryDecl to serve as context for
1835
    // the enclosing method declarations.  We mark the decl invalid
1836
    // to make it clear that this isn't a valid AST.
1837
0
    CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1838
0
                                     ClassLoc, CategoryLoc, CategoryName,
1839
0
                                     IDecl, typeParamList);
1840
0
    CDecl->setInvalidDecl();
1841
0
    CurContext->addDecl(CDecl);
1842
1843
0
    if (!IDecl)
1844
0
      Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1845
0
    ActOnObjCContainerStartDefinition(CDecl);
1846
0
    return CDecl;
1847
0
  }
1848
1849
0
  if (!CategoryName && IDecl->getImplementation()) {
1850
0
    Diag(ClassLoc, diag::err_class_extension_after_impl) << ClassName;
1851
0
    Diag(IDecl->getImplementation()->getLocation(),
1852
0
          diag::note_implementation_declared);
1853
0
  }
1854
1855
0
  if (CategoryName) {
1856
    /// Check for duplicate interface declaration for this category
1857
0
    if (ObjCCategoryDecl *Previous
1858
0
          = IDecl->FindCategoryDeclaration(CategoryName)) {
1859
      // Class extensions can be declared multiple times, categories cannot.
1860
0
      Diag(CategoryLoc, diag::warn_dup_category_def)
1861
0
        << ClassName << CategoryName;
1862
0
      Diag(Previous->getLocation(), diag::note_previous_definition);
1863
0
    }
1864
0
  }
1865
1866
  // If we have a type parameter list, check it.
1867
0
  if (typeParamList) {
1868
0
    if (auto prevTypeParamList = IDecl->getTypeParamList()) {
1869
0
      if (checkTypeParamListConsistency(*this, prevTypeParamList, typeParamList,
1870
0
                                        CategoryName
1871
0
                                          ? TypeParamListContext::Category
1872
0
                                          : TypeParamListContext::Extension))
1873
0
        typeParamList = nullptr;
1874
0
    } else {
1875
0
      Diag(typeParamList->getLAngleLoc(),
1876
0
           diag::err_objc_parameterized_category_nonclass)
1877
0
        << (CategoryName != nullptr)
1878
0
        << ClassName
1879
0
        << typeParamList->getSourceRange();
1880
1881
0
      typeParamList = nullptr;
1882
0
    }
1883
0
  }
1884
1885
0
  CDecl = ObjCCategoryDecl::Create(Context, CurContext, AtInterfaceLoc,
1886
0
                                   ClassLoc, CategoryLoc, CategoryName, IDecl,
1887
0
                                   typeParamList);
1888
  // FIXME: PushOnScopeChains?
1889
0
  CurContext->addDecl(CDecl);
1890
1891
  // Process the attributes before looking at protocols to ensure that the
1892
  // availability attribute is attached to the category to provide availability
1893
  // checking for protocol uses.
1894
0
  ProcessDeclAttributeList(TUScope, CDecl, AttrList);
1895
0
  AddPragmaAttributes(TUScope, CDecl);
1896
1897
0
  if (NumProtoRefs) {
1898
0
    diagnoseUseOfProtocols(*this, CDecl, (ObjCProtocolDecl*const*)ProtoRefs,
1899
0
                           NumProtoRefs, ProtoLocs);
1900
0
    CDecl->setProtocolList((ObjCProtocolDecl*const*)ProtoRefs, NumProtoRefs,
1901
0
                           ProtoLocs, Context);
1902
    // Protocols in the class extension belong to the class.
1903
0
    if (CDecl->IsClassExtension())
1904
0
     IDecl->mergeClassExtensionProtocolList((ObjCProtocolDecl*const*)ProtoRefs,
1905
0
                                            NumProtoRefs, Context);
1906
0
  }
1907
1908
0
  CheckObjCDeclScope(CDecl);
1909
0
  ActOnObjCContainerStartDefinition(CDecl);
1910
0
  return CDecl;
1911
0
}
1912
1913
/// ActOnStartCategoryImplementation - Perform semantic checks on the
1914
/// category implementation declaration and build an ObjCCategoryImplDecl
1915
/// object.
1916
ObjCCategoryImplDecl *Sema::ActOnStartCategoryImplementation(
1917
    SourceLocation AtCatImplLoc, IdentifierInfo *ClassName,
1918
    SourceLocation ClassLoc, IdentifierInfo *CatName, SourceLocation CatLoc,
1919
0
    const ParsedAttributesView &Attrs) {
1920
0
  ObjCInterfaceDecl *IDecl = getObjCInterfaceDecl(ClassName, ClassLoc, true);
1921
0
  ObjCCategoryDecl *CatIDecl = nullptr;
1922
0
  if (IDecl && IDecl->hasDefinition()) {
1923
0
    CatIDecl = IDecl->FindCategoryDeclaration(CatName);
1924
0
    if (!CatIDecl) {
1925
      // Category @implementation with no corresponding @interface.
1926
      // Create and install one.
1927
0
      CatIDecl = ObjCCategoryDecl::Create(Context, CurContext, AtCatImplLoc,
1928
0
                                          ClassLoc, CatLoc,
1929
0
                                          CatName, IDecl,
1930
0
                                          /*typeParamList=*/nullptr);
1931
0
      CatIDecl->setImplicit();
1932
0
    }
1933
0
  }
1934
1935
0
  ObjCCategoryImplDecl *CDecl =
1936
0
    ObjCCategoryImplDecl::Create(Context, CurContext, CatName, IDecl,
1937
0
                                 ClassLoc, AtCatImplLoc, CatLoc);
1938
  /// Check that class of this category is already completely declared.
1939
0
  if (!IDecl) {
1940
0
    Diag(ClassLoc, diag::err_undef_interface) << ClassName;
1941
0
    CDecl->setInvalidDecl();
1942
0
  } else if (RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1943
0
                                 diag::err_undef_interface)) {
1944
0
    CDecl->setInvalidDecl();
1945
0
  }
1946
1947
0
  ProcessDeclAttributeList(TUScope, CDecl, Attrs);
1948
0
  AddPragmaAttributes(TUScope, CDecl);
1949
1950
  // FIXME: PushOnScopeChains?
1951
0
  CurContext->addDecl(CDecl);
1952
1953
  // If the interface has the objc_runtime_visible attribute, we
1954
  // cannot implement a category for it.
1955
0
  if (IDecl && IDecl->hasAttr<ObjCRuntimeVisibleAttr>()) {
1956
0
    Diag(ClassLoc, diag::err_objc_runtime_visible_category)
1957
0
      << IDecl->getDeclName();
1958
0
  }
1959
1960
  /// Check that CatName, category name, is not used in another implementation.
1961
0
  if (CatIDecl) {
1962
0
    if (CatIDecl->getImplementation()) {
1963
0
      Diag(ClassLoc, diag::err_dup_implementation_category) << ClassName
1964
0
        << CatName;
1965
0
      Diag(CatIDecl->getImplementation()->getLocation(),
1966
0
           diag::note_previous_definition);
1967
0
      CDecl->setInvalidDecl();
1968
0
    } else {
1969
0
      CatIDecl->setImplementation(CDecl);
1970
      // Warn on implementating category of deprecated class under
1971
      // -Wdeprecated-implementations flag.
1972
0
      DiagnoseObjCImplementedDeprecations(*this, CatIDecl,
1973
0
                                          CDecl->getLocation());
1974
0
    }
1975
0
  }
1976
1977
0
  CheckObjCDeclScope(CDecl);
1978
0
  ActOnObjCContainerStartDefinition(CDecl);
1979
0
  return CDecl;
1980
0
}
1981
1982
ObjCImplementationDecl *Sema::ActOnStartClassImplementation(
1983
    SourceLocation AtClassImplLoc, IdentifierInfo *ClassName,
1984
    SourceLocation ClassLoc, IdentifierInfo *SuperClassname,
1985
0
    SourceLocation SuperClassLoc, const ParsedAttributesView &Attrs) {
1986
0
  ObjCInterfaceDecl *IDecl = nullptr;
1987
  // Check for another declaration kind with the same name.
1988
0
  NamedDecl *PrevDecl
1989
0
    = LookupSingleName(TUScope, ClassName, ClassLoc, LookupOrdinaryName,
1990
0
                       forRedeclarationInCurContext());
1991
0
  if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
1992
0
    Diag(ClassLoc, diag::err_redefinition_different_kind) << ClassName;
1993
0
    Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1994
0
  } else if ((IDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl))) {
1995
    // FIXME: This will produce an error if the definition of the interface has
1996
    // been imported from a module but is not visible.
1997
0
    RequireCompleteType(ClassLoc, Context.getObjCInterfaceType(IDecl),
1998
0
                        diag::warn_undef_interface);
1999
0
  } else {
2000
    // We did not find anything with the name ClassName; try to correct for
2001
    // typos in the class name.
2002
0
    ObjCInterfaceValidatorCCC CCC{};
2003
0
    TypoCorrection Corrected =
2004
0
        CorrectTypo(DeclarationNameInfo(ClassName, ClassLoc),
2005
0
                    LookupOrdinaryName, TUScope, nullptr, CCC, CTK_NonError);
2006
0
    if (Corrected.getCorrectionDeclAs<ObjCInterfaceDecl>()) {
2007
      // Suggest the (potentially) correct interface name. Don't provide a
2008
      // code-modification hint or use the typo name for recovery, because
2009
      // this is just a warning. The program may actually be correct.
2010
0
      diagnoseTypo(Corrected,
2011
0
                   PDiag(diag::warn_undef_interface_suggest) << ClassName,
2012
0
                   /*ErrorRecovery*/false);
2013
0
    } else {
2014
0
      Diag(ClassLoc, diag::warn_undef_interface) << ClassName;
2015
0
    }
2016
0
  }
2017
2018
  // Check that super class name is valid class name
2019
0
  ObjCInterfaceDecl *SDecl = nullptr;
2020
0
  if (SuperClassname) {
2021
    // Check if a different kind of symbol declared in this scope.
2022
0
    PrevDecl = LookupSingleName(TUScope, SuperClassname, SuperClassLoc,
2023
0
                                LookupOrdinaryName);
2024
0
    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
2025
0
      Diag(SuperClassLoc, diag::err_redefinition_different_kind)
2026
0
        << SuperClassname;
2027
0
      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2028
0
    } else {
2029
0
      SDecl = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
2030
0
      if (SDecl && !SDecl->hasDefinition())
2031
0
        SDecl = nullptr;
2032
0
      if (!SDecl)
2033
0
        Diag(SuperClassLoc, diag::err_undef_superclass)
2034
0
          << SuperClassname << ClassName;
2035
0
      else if (IDecl && !declaresSameEntity(IDecl->getSuperClass(), SDecl)) {
2036
        // This implementation and its interface do not have the same
2037
        // super class.
2038
0
        Diag(SuperClassLoc, diag::err_conflicting_super_class)
2039
0
          << SDecl->getDeclName();
2040
0
        Diag(SDecl->getLocation(), diag::note_previous_definition);
2041
0
      }
2042
0
    }
2043
0
  }
2044
2045
0
  if (!IDecl) {
2046
    // Legacy case of @implementation with no corresponding @interface.
2047
    // Build, chain & install the interface decl into the identifier.
2048
2049
    // FIXME: Do we support attributes on the @implementation? If so we should
2050
    // copy them over.
2051
0
    IDecl = ObjCInterfaceDecl::Create(Context, CurContext, AtClassImplLoc,
2052
0
                                      ClassName, /*typeParamList=*/nullptr,
2053
0
                                      /*PrevDecl=*/nullptr, ClassLoc,
2054
0
                                      true);
2055
0
    AddPragmaAttributes(TUScope, IDecl);
2056
0
    IDecl->startDefinition();
2057
0
    if (SDecl) {
2058
0
      IDecl->setSuperClass(Context.getTrivialTypeSourceInfo(
2059
0
                             Context.getObjCInterfaceType(SDecl),
2060
0
                             SuperClassLoc));
2061
0
      IDecl->setEndOfDefinitionLoc(SuperClassLoc);
2062
0
    } else {
2063
0
      IDecl->setEndOfDefinitionLoc(ClassLoc);
2064
0
    }
2065
2066
0
    PushOnScopeChains(IDecl, TUScope);
2067
0
  } else {
2068
    // Mark the interface as being completed, even if it was just as
2069
    //   @class ....;
2070
    // declaration; the user cannot reopen it.
2071
0
    if (!IDecl->hasDefinition())
2072
0
      IDecl->startDefinition();
2073
0
  }
2074
2075
0
  ObjCImplementationDecl* IMPDecl =
2076
0
    ObjCImplementationDecl::Create(Context, CurContext, IDecl, SDecl,
2077
0
                                   ClassLoc, AtClassImplLoc, SuperClassLoc);
2078
2079
0
  ProcessDeclAttributeList(TUScope, IMPDecl, Attrs);
2080
0
  AddPragmaAttributes(TUScope, IMPDecl);
2081
2082
0
  if (CheckObjCDeclScope(IMPDecl)) {
2083
0
    ActOnObjCContainerStartDefinition(IMPDecl);
2084
0
    return IMPDecl;
2085
0
  }
2086
2087
  // Check that there is no duplicate implementation of this class.
2088
0
  if (IDecl->getImplementation()) {
2089
    // FIXME: Don't leak everything!
2090
0
    Diag(ClassLoc, diag::err_dup_implementation_class) << ClassName;
2091
0
    Diag(IDecl->getImplementation()->getLocation(),
2092
0
         diag::note_previous_definition);
2093
0
    IMPDecl->setInvalidDecl();
2094
0
  } else { // add it to the list.
2095
0
    IDecl->setImplementation(IMPDecl);
2096
0
    PushOnScopeChains(IMPDecl, TUScope);
2097
    // Warn on implementating deprecated class under
2098
    // -Wdeprecated-implementations flag.
2099
0
    DiagnoseObjCImplementedDeprecations(*this, IDecl, IMPDecl->getLocation());
2100
0
  }
2101
2102
  // If the superclass has the objc_runtime_visible attribute, we
2103
  // cannot implement a subclass of it.
2104
0
  if (IDecl->getSuperClass() &&
2105
0
      IDecl->getSuperClass()->hasAttr<ObjCRuntimeVisibleAttr>()) {
2106
0
    Diag(ClassLoc, diag::err_objc_runtime_visible_subclass)
2107
0
      << IDecl->getDeclName()
2108
0
      << IDecl->getSuperClass()->getDeclName();
2109
0
  }
2110
2111
0
  ActOnObjCContainerStartDefinition(IMPDecl);
2112
0
  return IMPDecl;
2113
0
}
2114
2115
Sema::DeclGroupPtrTy
2116
0
Sema::ActOnFinishObjCImplementation(Decl *ObjCImpDecl, ArrayRef<Decl *> Decls) {
2117
0
  SmallVector<Decl *, 64> DeclsInGroup;
2118
0
  DeclsInGroup.reserve(Decls.size() + 1);
2119
2120
0
  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2121
0
    Decl *Dcl = Decls[i];
2122
0
    if (!Dcl)
2123
0
      continue;
2124
0
    if (Dcl->getDeclContext()->isFileContext())
2125
0
      Dcl->setTopLevelDeclInObjCContainer();
2126
0
    DeclsInGroup.push_back(Dcl);
2127
0
  }
2128
2129
0
  DeclsInGroup.push_back(ObjCImpDecl);
2130
2131
0
  return BuildDeclaratorGroup(DeclsInGroup);
2132
0
}
2133
2134
void Sema::CheckImplementationIvars(ObjCImplementationDecl *ImpDecl,
2135
                                    ObjCIvarDecl **ivars, unsigned numIvars,
2136
0
                                    SourceLocation RBrace) {
2137
0
  assert(ImpDecl && "missing implementation decl");
2138
0
  ObjCInterfaceDecl* IDecl = ImpDecl->getClassInterface();
2139
0
  if (!IDecl)
2140
0
    return;
2141
  /// Check case of non-existing \@interface decl.
2142
  /// (legacy objective-c \@implementation decl without an \@interface decl).
2143
  /// Add implementations's ivar to the synthesize class's ivar list.
2144
0
  if (IDecl->isImplicitInterfaceDecl()) {
2145
0
    IDecl->setEndOfDefinitionLoc(RBrace);
2146
    // Add ivar's to class's DeclContext.
2147
0
    for (unsigned i = 0, e = numIvars; i != e; ++i) {
2148
0
      ivars[i]->setLexicalDeclContext(ImpDecl);
2149
      // In a 'fragile' runtime the ivar was added to the implicit
2150
      // ObjCInterfaceDecl while in a 'non-fragile' runtime the ivar is
2151
      // only in the ObjCImplementationDecl. In the non-fragile case the ivar
2152
      // therefore also needs to be propagated to the ObjCInterfaceDecl.
2153
0
      if (!LangOpts.ObjCRuntime.isFragile())
2154
0
        IDecl->makeDeclVisibleInContext(ivars[i]);
2155
0
      ImpDecl->addDecl(ivars[i]);
2156
0
    }
2157
2158
0
    return;
2159
0
  }
2160
  // If implementation has empty ivar list, just return.
2161
0
  if (numIvars == 0)
2162
0
    return;
2163
2164
0
  assert(ivars && "missing @implementation ivars");
2165
0
  if (LangOpts.ObjCRuntime.isNonFragile()) {
2166
0
    if (ImpDecl->getSuperClass())
2167
0
      Diag(ImpDecl->getLocation(), diag::warn_on_superclass_use);
2168
0
    for (unsigned i = 0; i < numIvars; i++) {
2169
0
      ObjCIvarDecl* ImplIvar = ivars[i];
2170
0
      if (const ObjCIvarDecl *ClsIvar =
2171
0
            IDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2172
0
        Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2173
0
        Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2174
0
        continue;
2175
0
      }
2176
      // Check class extensions (unnamed categories) for duplicate ivars.
2177
0
      for (const auto *CDecl : IDecl->visible_extensions()) {
2178
0
        if (const ObjCIvarDecl *ClsExtIvar =
2179
0
            CDecl->getIvarDecl(ImplIvar->getIdentifier())) {
2180
0
          Diag(ImplIvar->getLocation(), diag::err_duplicate_ivar_declaration);
2181
0
          Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
2182
0
          continue;
2183
0
        }
2184
0
      }
2185
      // Instance ivar to Implementation's DeclContext.
2186
0
      ImplIvar->setLexicalDeclContext(ImpDecl);
2187
0
      IDecl->makeDeclVisibleInContext(ImplIvar);
2188
0
      ImpDecl->addDecl(ImplIvar);
2189
0
    }
2190
0
    return;
2191
0
  }
2192
  // Check interface's Ivar list against those in the implementation.
2193
  // names and types must match.
2194
  //
2195
0
  unsigned j = 0;
2196
0
  ObjCInterfaceDecl::ivar_iterator
2197
0
    IVI = IDecl->ivar_begin(), IVE = IDecl->ivar_end();
2198
0
  for (; numIvars > 0 && IVI != IVE; ++IVI) {
2199
0
    ObjCIvarDecl* ImplIvar = ivars[j++];
2200
0
    ObjCIvarDecl* ClsIvar = *IVI;
2201
0
    assert (ImplIvar && "missing implementation ivar");
2202
0
    assert (ClsIvar && "missing class ivar");
2203
2204
    // First, make sure the types match.
2205
0
    if (!Context.hasSameType(ImplIvar->getType(), ClsIvar->getType())) {
2206
0
      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_type)
2207
0
        << ImplIvar->getIdentifier()
2208
0
        << ImplIvar->getType() << ClsIvar->getType();
2209
0
      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2210
0
    } else if (ImplIvar->isBitField() && ClsIvar->isBitField() &&
2211
0
               ImplIvar->getBitWidthValue(Context) !=
2212
0
               ClsIvar->getBitWidthValue(Context)) {
2213
0
      Diag(ImplIvar->getBitWidth()->getBeginLoc(),
2214
0
           diag::err_conflicting_ivar_bitwidth)
2215
0
          << ImplIvar->getIdentifier();
2216
0
      Diag(ClsIvar->getBitWidth()->getBeginLoc(),
2217
0
           diag::note_previous_definition);
2218
0
    }
2219
    // Make sure the names are identical.
2220
0
    if (ImplIvar->getIdentifier() != ClsIvar->getIdentifier()) {
2221
0
      Diag(ImplIvar->getLocation(), diag::err_conflicting_ivar_name)
2222
0
        << ImplIvar->getIdentifier() << ClsIvar->getIdentifier();
2223
0
      Diag(ClsIvar->getLocation(), diag::note_previous_definition);
2224
0
    }
2225
0
    --numIvars;
2226
0
  }
2227
2228
0
  if (numIvars > 0)
2229
0
    Diag(ivars[j]->getLocation(), diag::err_inconsistent_ivar_count);
2230
0
  else if (IVI != IVE)
2231
0
    Diag(IVI->getLocation(), diag::err_inconsistent_ivar_count);
2232
0
}
2233
2234
static void WarnUndefinedMethod(Sema &S, ObjCImplDecl *Impl,
2235
                                ObjCMethodDecl *method, bool &IncompleteImpl,
2236
                                unsigned DiagID,
2237
0
                                NamedDecl *NeededFor = nullptr) {
2238
  // No point warning no definition of method which is 'unavailable'.
2239
0
  if (method->getAvailability() == AR_Unavailable)
2240
0
    return;
2241
2242
  // FIXME: For now ignore 'IncompleteImpl'.
2243
  // Previously we grouped all unimplemented methods under a single
2244
  // warning, but some users strongly voiced that they would prefer
2245
  // separate warnings.  We will give that approach a try, as that
2246
  // matches what we do with protocols.
2247
0
  {
2248
0
    const Sema::SemaDiagnosticBuilder &B = S.Diag(Impl->getLocation(), DiagID);
2249
0
    B << method;
2250
0
    if (NeededFor)
2251
0
      B << NeededFor;
2252
2253
    // Add an empty definition at the end of the @implementation.
2254
0
    std::string FixItStr;
2255
0
    llvm::raw_string_ostream Out(FixItStr);
2256
0
    method->print(Out, Impl->getASTContext().getPrintingPolicy());
2257
0
    Out << " {\n}\n\n";
2258
2259
0
    SourceLocation Loc = Impl->getAtEndRange().getBegin();
2260
0
    B << FixItHint::CreateInsertion(Loc, FixItStr);
2261
0
  }
2262
2263
  // Issue a note to the original declaration.
2264
0
  SourceLocation MethodLoc = method->getBeginLoc();
2265
0
  if (MethodLoc.isValid())
2266
0
    S.Diag(MethodLoc, diag::note_method_declared_at) << method;
2267
0
}
2268
2269
/// Determines if type B can be substituted for type A.  Returns true if we can
2270
/// guarantee that anything that the user will do to an object of type A can
2271
/// also be done to an object of type B.  This is trivially true if the two
2272
/// types are the same, or if B is a subclass of A.  It becomes more complex
2273
/// in cases where protocols are involved.
2274
///
2275
/// Object types in Objective-C describe the minimum requirements for an
2276
/// object, rather than providing a complete description of a type.  For
2277
/// example, if A is a subclass of B, then B* may refer to an instance of A.
2278
/// The principle of substitutability means that we may use an instance of A
2279
/// anywhere that we may use an instance of B - it will implement all of the
2280
/// ivars of B and all of the methods of B.
2281
///
2282
/// This substitutability is important when type checking methods, because
2283
/// the implementation may have stricter type definitions than the interface.
2284
/// The interface specifies minimum requirements, but the implementation may
2285
/// have more accurate ones.  For example, a method may privately accept
2286
/// instances of B, but only publish that it accepts instances of A.  Any
2287
/// object passed to it will be type checked against B, and so will implicitly
2288
/// by a valid A*.  Similarly, a method may return a subclass of the class that
2289
/// it is declared as returning.
2290
///
2291
/// This is most important when considering subclassing.  A method in a
2292
/// subclass must accept any object as an argument that its superclass's
2293
/// implementation accepts.  It may, however, accept a more general type
2294
/// without breaking substitutability (i.e. you can still use the subclass
2295
/// anywhere that you can use the superclass, but not vice versa).  The
2296
/// converse requirement applies to return types: the return type for a
2297
/// subclass method must be a valid object of the kind that the superclass
2298
/// advertises, but it may be specified more accurately.  This avoids the need
2299
/// for explicit down-casting by callers.
2300
///
2301
/// Note: This is a stricter requirement than for assignment.
2302
static bool isObjCTypeSubstitutable(ASTContext &Context,
2303
                                    const ObjCObjectPointerType *A,
2304
                                    const ObjCObjectPointerType *B,
2305
0
                                    bool rejectId) {
2306
  // Reject a protocol-unqualified id.
2307
0
  if (rejectId && B->isObjCIdType()) return false;
2308
2309
  // If B is a qualified id, then A must also be a qualified id and it must
2310
  // implement all of the protocols in B.  It may not be a qualified class.
2311
  // For example, MyClass<A> can be assigned to id<A>, but MyClass<A> is a
2312
  // stricter definition so it is not substitutable for id<A>.
2313
0
  if (B->isObjCQualifiedIdType()) {
2314
0
    return A->isObjCQualifiedIdType() &&
2315
0
           Context.ObjCQualifiedIdTypesAreCompatible(A, B, false);
2316
0
  }
2317
2318
  /*
2319
  // id is a special type that bypasses type checking completely.  We want a
2320
  // warning when it is used in one place but not another.
2321
  if (C.isObjCIdType(A) || C.isObjCIdType(B)) return false;
2322
2323
2324
  // If B is a qualified id, then A must also be a qualified id (which it isn't
2325
  // if we've got this far)
2326
  if (B->isObjCQualifiedIdType()) return false;
2327
  */
2328
2329
  // Now we know that A and B are (potentially-qualified) class types.  The
2330
  // normal rules for assignment apply.
2331
0
  return Context.canAssignObjCInterfaces(A, B);
2332
0
}
2333
2334
0
static SourceRange getTypeRange(TypeSourceInfo *TSI) {
2335
0
  return (TSI ? TSI->getTypeLoc().getSourceRange() : SourceRange());
2336
0
}
2337
2338
/// Determine whether two set of Objective-C declaration qualifiers conflict.
2339
static bool objcModifiersConflict(Decl::ObjCDeclQualifier x,
2340
0
                                  Decl::ObjCDeclQualifier y) {
2341
0
  return (x & ~Decl::OBJC_TQ_CSNullability) !=
2342
0
         (y & ~Decl::OBJC_TQ_CSNullability);
2343
0
}
2344
2345
static bool CheckMethodOverrideReturn(Sema &S,
2346
                                      ObjCMethodDecl *MethodImpl,
2347
                                      ObjCMethodDecl *MethodDecl,
2348
                                      bool IsProtocolMethodDecl,
2349
                                      bool IsOverridingMode,
2350
0
                                      bool Warn) {
2351
0
  if (IsProtocolMethodDecl &&
2352
0
      objcModifiersConflict(MethodDecl->getObjCDeclQualifier(),
2353
0
                            MethodImpl->getObjCDeclQualifier())) {
2354
0
    if (Warn) {
2355
0
      S.Diag(MethodImpl->getLocation(),
2356
0
             (IsOverridingMode
2357
0
                  ? diag::warn_conflicting_overriding_ret_type_modifiers
2358
0
                  : diag::warn_conflicting_ret_type_modifiers))
2359
0
          << MethodImpl->getDeclName()
2360
0
          << MethodImpl->getReturnTypeSourceRange();
2361
0
      S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration)
2362
0
          << MethodDecl->getReturnTypeSourceRange();
2363
0
    }
2364
0
    else
2365
0
      return false;
2366
0
  }
2367
0
  if (Warn && IsOverridingMode &&
2368
0
      !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2369
0
      !S.Context.hasSameNullabilityTypeQualifier(MethodImpl->getReturnType(),
2370
0
                                                 MethodDecl->getReturnType(),
2371
0
                                                 false)) {
2372
0
    auto nullabilityMethodImpl = *MethodImpl->getReturnType()->getNullability();
2373
0
    auto nullabilityMethodDecl = *MethodDecl->getReturnType()->getNullability();
2374
0
    S.Diag(MethodImpl->getLocation(),
2375
0
           diag::warn_conflicting_nullability_attr_overriding_ret_types)
2376
0
        << DiagNullabilityKind(nullabilityMethodImpl,
2377
0
                               ((MethodImpl->getObjCDeclQualifier() &
2378
0
                                 Decl::OBJC_TQ_CSNullability) != 0))
2379
0
        << DiagNullabilityKind(nullabilityMethodDecl,
2380
0
                               ((MethodDecl->getObjCDeclQualifier() &
2381
0
                                 Decl::OBJC_TQ_CSNullability) != 0));
2382
0
    S.Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2383
0
  }
2384
2385
0
  if (S.Context.hasSameUnqualifiedType(MethodImpl->getReturnType(),
2386
0
                                       MethodDecl->getReturnType()))
2387
0
    return true;
2388
0
  if (!Warn)
2389
0
    return false;
2390
2391
0
  unsigned DiagID =
2392
0
    IsOverridingMode ? diag::warn_conflicting_overriding_ret_types
2393
0
                     : diag::warn_conflicting_ret_types;
2394
2395
  // Mismatches between ObjC pointers go into a different warning
2396
  // category, and sometimes they're even completely explicitly allowed.
2397
0
  if (const ObjCObjectPointerType *ImplPtrTy =
2398
0
          MethodImpl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2399
0
    if (const ObjCObjectPointerType *IfacePtrTy =
2400
0
            MethodDecl->getReturnType()->getAs<ObjCObjectPointerType>()) {
2401
      // Allow non-matching return types as long as they don't violate
2402
      // the principle of substitutability.  Specifically, we permit
2403
      // return types that are subclasses of the declared return type,
2404
      // or that are more-qualified versions of the declared type.
2405
0
      if (isObjCTypeSubstitutable(S.Context, IfacePtrTy, ImplPtrTy, false))
2406
0
        return false;
2407
2408
0
      DiagID =
2409
0
        IsOverridingMode ? diag::warn_non_covariant_overriding_ret_types
2410
0
                         : diag::warn_non_covariant_ret_types;
2411
0
    }
2412
0
  }
2413
2414
0
  S.Diag(MethodImpl->getLocation(), DiagID)
2415
0
      << MethodImpl->getDeclName() << MethodDecl->getReturnType()
2416
0
      << MethodImpl->getReturnType()
2417
0
      << MethodImpl->getReturnTypeSourceRange();
2418
0
  S.Diag(MethodDecl->getLocation(), IsOverridingMode
2419
0
                                        ? diag::note_previous_declaration
2420
0
                                        : diag::note_previous_definition)
2421
0
      << MethodDecl->getReturnTypeSourceRange();
2422
0
  return false;
2423
0
}
2424
2425
static bool CheckMethodOverrideParam(Sema &S,
2426
                                     ObjCMethodDecl *MethodImpl,
2427
                                     ObjCMethodDecl *MethodDecl,
2428
                                     ParmVarDecl *ImplVar,
2429
                                     ParmVarDecl *IfaceVar,
2430
                                     bool IsProtocolMethodDecl,
2431
                                     bool IsOverridingMode,
2432
0
                                     bool Warn) {
2433
0
  if (IsProtocolMethodDecl &&
2434
0
      objcModifiersConflict(ImplVar->getObjCDeclQualifier(),
2435
0
                            IfaceVar->getObjCDeclQualifier())) {
2436
0
    if (Warn) {
2437
0
      if (IsOverridingMode)
2438
0
        S.Diag(ImplVar->getLocation(),
2439
0
               diag::warn_conflicting_overriding_param_modifiers)
2440
0
            << getTypeRange(ImplVar->getTypeSourceInfo())
2441
0
            << MethodImpl->getDeclName();
2442
0
      else S.Diag(ImplVar->getLocation(),
2443
0
             diag::warn_conflicting_param_modifiers)
2444
0
          << getTypeRange(ImplVar->getTypeSourceInfo())
2445
0
          << MethodImpl->getDeclName();
2446
0
      S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration)
2447
0
          << getTypeRange(IfaceVar->getTypeSourceInfo());
2448
0
    }
2449
0
    else
2450
0
      return false;
2451
0
  }
2452
2453
0
  QualType ImplTy = ImplVar->getType();
2454
0
  QualType IfaceTy = IfaceVar->getType();
2455
0
  if (Warn && IsOverridingMode &&
2456
0
      !isa<ObjCImplementationDecl>(MethodImpl->getDeclContext()) &&
2457
0
      !S.Context.hasSameNullabilityTypeQualifier(ImplTy, IfaceTy, true)) {
2458
0
    S.Diag(ImplVar->getLocation(),
2459
0
           diag::warn_conflicting_nullability_attr_overriding_param_types)
2460
0
        << DiagNullabilityKind(*ImplTy->getNullability(),
2461
0
                               ((ImplVar->getObjCDeclQualifier() &
2462
0
                                 Decl::OBJC_TQ_CSNullability) != 0))
2463
0
        << DiagNullabilityKind(*IfaceTy->getNullability(),
2464
0
                               ((IfaceVar->getObjCDeclQualifier() &
2465
0
                                 Decl::OBJC_TQ_CSNullability) != 0));
2466
0
    S.Diag(IfaceVar->getLocation(), diag::note_previous_declaration);
2467
0
  }
2468
0
  if (S.Context.hasSameUnqualifiedType(ImplTy, IfaceTy))
2469
0
    return true;
2470
2471
0
  if (!Warn)
2472
0
    return false;
2473
0
  unsigned DiagID =
2474
0
    IsOverridingMode ? diag::warn_conflicting_overriding_param_types
2475
0
                     : diag::warn_conflicting_param_types;
2476
2477
  // Mismatches between ObjC pointers go into a different warning
2478
  // category, and sometimes they're even completely explicitly allowed..
2479
0
  if (const ObjCObjectPointerType *ImplPtrTy =
2480
0
        ImplTy->getAs<ObjCObjectPointerType>()) {
2481
0
    if (const ObjCObjectPointerType *IfacePtrTy =
2482
0
          IfaceTy->getAs<ObjCObjectPointerType>()) {
2483
      // Allow non-matching argument types as long as they don't
2484
      // violate the principle of substitutability.  Specifically, the
2485
      // implementation must accept any objects that the superclass
2486
      // accepts, however it may also accept others.
2487
0
      if (isObjCTypeSubstitutable(S.Context, ImplPtrTy, IfacePtrTy, true))
2488
0
        return false;
2489
2490
0
      DiagID =
2491
0
      IsOverridingMode ? diag::warn_non_contravariant_overriding_param_types
2492
0
                       : diag::warn_non_contravariant_param_types;
2493
0
    }
2494
0
  }
2495
2496
0
  S.Diag(ImplVar->getLocation(), DiagID)
2497
0
    << getTypeRange(ImplVar->getTypeSourceInfo())
2498
0
    << MethodImpl->getDeclName() << IfaceTy << ImplTy;
2499
0
  S.Diag(IfaceVar->getLocation(),
2500
0
         (IsOverridingMode ? diag::note_previous_declaration
2501
0
                           : diag::note_previous_definition))
2502
0
    << getTypeRange(IfaceVar->getTypeSourceInfo());
2503
0
  return false;
2504
0
}
2505
2506
/// In ARC, check whether the conventional meanings of the two methods
2507
/// match.  If they don't, it's a hard error.
2508
static bool checkMethodFamilyMismatch(Sema &S, ObjCMethodDecl *impl,
2509
0
                                      ObjCMethodDecl *decl) {
2510
0
  ObjCMethodFamily implFamily = impl->getMethodFamily();
2511
0
  ObjCMethodFamily declFamily = decl->getMethodFamily();
2512
0
  if (implFamily == declFamily) return false;
2513
2514
  // Since conventions are sorted by selector, the only possibility is
2515
  // that the types differ enough to cause one selector or the other
2516
  // to fall out of the family.
2517
0
  assert(implFamily == OMF_None || declFamily == OMF_None);
2518
2519
  // No further diagnostics required on invalid declarations.
2520
0
  if (impl->isInvalidDecl() || decl->isInvalidDecl()) return true;
2521
2522
0
  const ObjCMethodDecl *unmatched = impl;
2523
0
  ObjCMethodFamily family = declFamily;
2524
0
  unsigned errorID = diag::err_arc_lost_method_convention;
2525
0
  unsigned noteID = diag::note_arc_lost_method_convention;
2526
0
  if (declFamily == OMF_None) {
2527
0
    unmatched = decl;
2528
0
    family = implFamily;
2529
0
    errorID = diag::err_arc_gained_method_convention;
2530
0
    noteID = diag::note_arc_gained_method_convention;
2531
0
  }
2532
2533
  // Indexes into a %select clause in the diagnostic.
2534
0
  enum FamilySelector {
2535
0
    F_alloc, F_copy, F_mutableCopy = F_copy, F_init, F_new
2536
0
  };
2537
0
  FamilySelector familySelector = FamilySelector();
2538
2539
0
  switch (family) {
2540
0
  case OMF_None: llvm_unreachable("logic error, no method convention");
2541
0
  case OMF_retain:
2542
0
  case OMF_release:
2543
0
  case OMF_autorelease:
2544
0
  case OMF_dealloc:
2545
0
  case OMF_finalize:
2546
0
  case OMF_retainCount:
2547
0
  case OMF_self:
2548
0
  case OMF_initialize:
2549
0
  case OMF_performSelector:
2550
    // Mismatches for these methods don't change ownership
2551
    // conventions, so we don't care.
2552
0
    return false;
2553
2554
0
  case OMF_init: familySelector = F_init; break;
2555
0
  case OMF_alloc: familySelector = F_alloc; break;
2556
0
  case OMF_copy: familySelector = F_copy; break;
2557
0
  case OMF_mutableCopy: familySelector = F_mutableCopy; break;
2558
0
  case OMF_new: familySelector = F_new; break;
2559
0
  }
2560
2561
0
  enum ReasonSelector { R_NonObjectReturn, R_UnrelatedReturn };
2562
0
  ReasonSelector reasonSelector;
2563
2564
  // The only reason these methods don't fall within their families is
2565
  // due to unusual result types.
2566
0
  if (unmatched->getReturnType()->isObjCObjectPointerType()) {
2567
0
    reasonSelector = R_UnrelatedReturn;
2568
0
  } else {
2569
0
    reasonSelector = R_NonObjectReturn;
2570
0
  }
2571
2572
0
  S.Diag(impl->getLocation(), errorID) << int(familySelector) << int(reasonSelector);
2573
0
  S.Diag(decl->getLocation(), noteID) << int(familySelector) << int(reasonSelector);
2574
2575
0
  return true;
2576
0
}
2577
2578
void Sema::WarnConflictingTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2579
                                       ObjCMethodDecl *MethodDecl,
2580
0
                                       bool IsProtocolMethodDecl) {
2581
0
  if (getLangOpts().ObjCAutoRefCount &&
2582
0
      checkMethodFamilyMismatch(*this, ImpMethodDecl, MethodDecl))
2583
0
    return;
2584
2585
0
  CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2586
0
                            IsProtocolMethodDecl, false,
2587
0
                            true);
2588
2589
0
  for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2590
0
       IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2591
0
       EF = MethodDecl->param_end();
2592
0
       IM != EM && IF != EF; ++IM, ++IF) {
2593
0
    CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl, *IM, *IF,
2594
0
                             IsProtocolMethodDecl, false, true);
2595
0
  }
2596
2597
0
  if (ImpMethodDecl->isVariadic() != MethodDecl->isVariadic()) {
2598
0
    Diag(ImpMethodDecl->getLocation(),
2599
0
         diag::warn_conflicting_variadic);
2600
0
    Diag(MethodDecl->getLocation(), diag::note_previous_declaration);
2601
0
  }
2602
0
}
2603
2604
void Sema::CheckConflictingOverridingMethod(ObjCMethodDecl *Method,
2605
                                       ObjCMethodDecl *Overridden,
2606
0
                                       bool IsProtocolMethodDecl) {
2607
2608
0
  CheckMethodOverrideReturn(*this, Method, Overridden,
2609
0
                            IsProtocolMethodDecl, true,
2610
0
                            true);
2611
2612
0
  for (ObjCMethodDecl::param_iterator IM = Method->param_begin(),
2613
0
       IF = Overridden->param_begin(), EM = Method->param_end(),
2614
0
       EF = Overridden->param_end();
2615
0
       IM != EM && IF != EF; ++IM, ++IF) {
2616
0
    CheckMethodOverrideParam(*this, Method, Overridden, *IM, *IF,
2617
0
                             IsProtocolMethodDecl, true, true);
2618
0
  }
2619
2620
0
  if (Method->isVariadic() != Overridden->isVariadic()) {
2621
0
    Diag(Method->getLocation(),
2622
0
         diag::warn_conflicting_overriding_variadic);
2623
0
    Diag(Overridden->getLocation(), diag::note_previous_declaration);
2624
0
  }
2625
0
}
2626
2627
/// WarnExactTypedMethods - This routine issues a warning if method
2628
/// implementation declaration matches exactly that of its declaration.
2629
void Sema::WarnExactTypedMethods(ObjCMethodDecl *ImpMethodDecl,
2630
                                 ObjCMethodDecl *MethodDecl,
2631
0
                                 bool IsProtocolMethodDecl) {
2632
  // don't issue warning when protocol method is optional because primary
2633
  // class is not required to implement it and it is safe for protocol
2634
  // to implement it.
2635
0
  if (MethodDecl->getImplementationControl() ==
2636
0
      ObjCImplementationControl::Optional)
2637
0
    return;
2638
  // don't issue warning when primary class's method is
2639
  // deprecated/unavailable.
2640
0
  if (MethodDecl->hasAttr<UnavailableAttr>() ||
2641
0
      MethodDecl->hasAttr<DeprecatedAttr>())
2642
0
    return;
2643
2644
0
  bool match = CheckMethodOverrideReturn(*this, ImpMethodDecl, MethodDecl,
2645
0
                                      IsProtocolMethodDecl, false, false);
2646
0
  if (match)
2647
0
    for (ObjCMethodDecl::param_iterator IM = ImpMethodDecl->param_begin(),
2648
0
         IF = MethodDecl->param_begin(), EM = ImpMethodDecl->param_end(),
2649
0
         EF = MethodDecl->param_end();
2650
0
         IM != EM && IF != EF; ++IM, ++IF) {
2651
0
      match = CheckMethodOverrideParam(*this, ImpMethodDecl, MethodDecl,
2652
0
                                       *IM, *IF,
2653
0
                                       IsProtocolMethodDecl, false, false);
2654
0
      if (!match)
2655
0
        break;
2656
0
    }
2657
0
  if (match)
2658
0
    match = (ImpMethodDecl->isVariadic() == MethodDecl->isVariadic());
2659
0
  if (match)
2660
0
    match = !(MethodDecl->isClassMethod() &&
2661
0
              MethodDecl->getSelector() == GetNullarySelector("load", Context));
2662
2663
0
  if (match) {
2664
0
    Diag(ImpMethodDecl->getLocation(),
2665
0
         diag::warn_category_method_impl_match);
2666
0
    Diag(MethodDecl->getLocation(), diag::note_method_declared_at)
2667
0
      << MethodDecl->getDeclName();
2668
0
  }
2669
0
}
2670
2671
/// FIXME: Type hierarchies in Objective-C can be deep. We could most likely
2672
/// improve the efficiency of selector lookups and type checking by associating
2673
/// with each protocol / interface / category the flattened instance tables. If
2674
/// we used an immutable set to keep the table then it wouldn't add significant
2675
/// memory cost and it would be handy for lookups.
2676
2677
typedef llvm::DenseSet<IdentifierInfo*> ProtocolNameSet;
2678
typedef std::unique_ptr<ProtocolNameSet> LazyProtocolNameSet;
2679
2680
static void findProtocolsWithExplicitImpls(const ObjCProtocolDecl *PDecl,
2681
0
                                           ProtocolNameSet &PNS) {
2682
0
  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>())
2683
0
    PNS.insert(PDecl->getIdentifier());
2684
0
  for (const auto *PI : PDecl->protocols())
2685
0
    findProtocolsWithExplicitImpls(PI, PNS);
2686
0
}
2687
2688
/// Recursively populates a set with all conformed protocols in a class
2689
/// hierarchy that have the 'objc_protocol_requires_explicit_implementation'
2690
/// attribute.
2691
static void findProtocolsWithExplicitImpls(const ObjCInterfaceDecl *Super,
2692
0
                                           ProtocolNameSet &PNS) {
2693
0
  if (!Super)
2694
0
    return;
2695
2696
0
  for (const auto *I : Super->all_referenced_protocols())
2697
0
    findProtocolsWithExplicitImpls(I, PNS);
2698
2699
0
  findProtocolsWithExplicitImpls(Super->getSuperClass(), PNS);
2700
0
}
2701
2702
/// CheckProtocolMethodDefs - This routine checks unimplemented methods
2703
/// Declared in protocol, and those referenced by it.
2704
static void CheckProtocolMethodDefs(
2705
    Sema &S, ObjCImplDecl *Impl, ObjCProtocolDecl *PDecl, bool &IncompleteImpl,
2706
    const Sema::SelectorSet &InsMap, const Sema::SelectorSet &ClsMap,
2707
0
    ObjCContainerDecl *CDecl, LazyProtocolNameSet &ProtocolsExplictImpl) {
2708
0
  ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl);
2709
0
  ObjCInterfaceDecl *IDecl = C ? C->getClassInterface()
2710
0
                               : dyn_cast<ObjCInterfaceDecl>(CDecl);
2711
0
  assert (IDecl && "CheckProtocolMethodDefs - IDecl is null");
2712
2713
0
  ObjCInterfaceDecl *Super = IDecl->getSuperClass();
2714
0
  ObjCInterfaceDecl *NSIDecl = nullptr;
2715
2716
  // If this protocol is marked 'objc_protocol_requires_explicit_implementation'
2717
  // then we should check if any class in the super class hierarchy also
2718
  // conforms to this protocol, either directly or via protocol inheritance.
2719
  // If so, we can skip checking this protocol completely because we
2720
  // know that a parent class already satisfies this protocol.
2721
  //
2722
  // Note: we could generalize this logic for all protocols, and merely
2723
  // add the limit on looking at the super class chain for just
2724
  // specially marked protocols.  This may be a good optimization.  This
2725
  // change is restricted to 'objc_protocol_requires_explicit_implementation'
2726
  // protocols for now for controlled evaluation.
2727
0
  if (PDecl->hasAttr<ObjCExplicitProtocolImplAttr>()) {
2728
0
    if (!ProtocolsExplictImpl) {
2729
0
      ProtocolsExplictImpl.reset(new ProtocolNameSet);
2730
0
      findProtocolsWithExplicitImpls(Super, *ProtocolsExplictImpl);
2731
0
    }
2732
0
    if (ProtocolsExplictImpl->contains(PDecl->getIdentifier()))
2733
0
      return;
2734
2735
    // If no super class conforms to the protocol, we should not search
2736
    // for methods in the super class to implicitly satisfy the protocol.
2737
0
    Super = nullptr;
2738
0
  }
2739
2740
0
  if (S.getLangOpts().ObjCRuntime.isNeXTFamily()) {
2741
    // check to see if class implements forwardInvocation method and objects
2742
    // of this class are derived from 'NSProxy' so that to forward requests
2743
    // from one object to another.
2744
    // Under such conditions, which means that every method possible is
2745
    // implemented in the class, we should not issue "Method definition not
2746
    // found" warnings.
2747
    // FIXME: Use a general GetUnarySelector method for this.
2748
0
    IdentifierInfo* II = &S.Context.Idents.get("forwardInvocation");
2749
0
    Selector fISelector = S.Context.Selectors.getSelector(1, &II);
2750
0
    if (InsMap.count(fISelector))
2751
      // Is IDecl derived from 'NSProxy'? If so, no instance methods
2752
      // need be implemented in the implementation.
2753
0
      NSIDecl = IDecl->lookupInheritedClass(&S.Context.Idents.get("NSProxy"));
2754
0
  }
2755
2756
  // If this is a forward protocol declaration, get its definition.
2757
0
  if (!PDecl->isThisDeclarationADefinition() &&
2758
0
      PDecl->getDefinition())
2759
0
    PDecl = PDecl->getDefinition();
2760
2761
  // If a method lookup fails locally we still need to look and see if
2762
  // the method was implemented by a base class or an inherited
2763
  // protocol. This lookup is slow, but occurs rarely in correct code
2764
  // and otherwise would terminate in a warning.
2765
2766
  // check unimplemented instance methods.
2767
0
  if (!NSIDecl)
2768
0
    for (auto *method : PDecl->instance_methods()) {
2769
0
      if (method->getImplementationControl() !=
2770
0
              ObjCImplementationControl::Optional &&
2771
0
          !method->isPropertyAccessor() &&
2772
0
          !InsMap.count(method->getSelector()) &&
2773
0
          (!Super || !Super->lookupMethod(
2774
0
                         method->getSelector(), true /* instance */,
2775
0
                         false /* shallowCategory */, true /* followsSuper */,
2776
0
                         nullptr /* category */))) {
2777
        // If a method is not implemented in the category implementation but
2778
        // has been declared in its primary class, superclass,
2779
        // or in one of their protocols, no need to issue the warning.
2780
        // This is because method will be implemented in the primary class
2781
        // or one of its super class implementation.
2782
2783
        // Ugly, but necessary. Method declared in protocol might have
2784
        // have been synthesized due to a property declared in the class which
2785
        // uses the protocol.
2786
0
        if (ObjCMethodDecl *MethodInClass = IDecl->lookupMethod(
2787
0
                method->getSelector(), true /* instance */,
2788
0
                true /* shallowCategoryLookup */, false /* followSuper */))
2789
0
          if (C || MethodInClass->isPropertyAccessor())
2790
0
            continue;
2791
0
        unsigned DIAG = diag::warn_unimplemented_protocol_method;
2792
0
        if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2793
0
          WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2794
0
        }
2795
0
      }
2796
0
    }
2797
  // check unimplemented class methods
2798
0
  for (auto *method : PDecl->class_methods()) {
2799
0
    if (method->getImplementationControl() !=
2800
0
            ObjCImplementationControl::Optional &&
2801
0
        !ClsMap.count(method->getSelector()) &&
2802
0
        (!Super || !Super->lookupMethod(
2803
0
                       method->getSelector(), false /* class method */,
2804
0
                       false /* shallowCategoryLookup */,
2805
0
                       true /* followSuper */, nullptr /* category */))) {
2806
      // See above comment for instance method lookups.
2807
0
      if (C && IDecl->lookupMethod(method->getSelector(),
2808
0
                                   false /* class */,
2809
0
                                   true /* shallowCategoryLookup */,
2810
0
                                   false /* followSuper */))
2811
0
        continue;
2812
2813
0
      unsigned DIAG = diag::warn_unimplemented_protocol_method;
2814
0
      if (!S.Diags.isIgnored(DIAG, Impl->getLocation())) {
2815
0
        WarnUndefinedMethod(S, Impl, method, IncompleteImpl, DIAG, PDecl);
2816
0
      }
2817
0
    }
2818
0
  }
2819
  // Check on this protocols's referenced protocols, recursively.
2820
0
  for (auto *PI : PDecl->protocols())
2821
0
    CheckProtocolMethodDefs(S, Impl, PI, IncompleteImpl, InsMap, ClsMap, CDecl,
2822
0
                            ProtocolsExplictImpl);
2823
0
}
2824
2825
/// MatchAllMethodDeclarations - Check methods declared in interface
2826
/// or protocol against those declared in their implementations.
2827
///
2828
void Sema::MatchAllMethodDeclarations(const SelectorSet &InsMap,
2829
                                      const SelectorSet &ClsMap,
2830
                                      SelectorSet &InsMapSeen,
2831
                                      SelectorSet &ClsMapSeen,
2832
                                      ObjCImplDecl* IMPDecl,
2833
                                      ObjCContainerDecl* CDecl,
2834
                                      bool &IncompleteImpl,
2835
                                      bool ImmediateClass,
2836
0
                                      bool WarnCategoryMethodImpl) {
2837
  // Check and see if instance methods in class interface have been
2838
  // implemented in the implementation class. If so, their types match.
2839
0
  for (auto *I : CDecl->instance_methods()) {
2840
0
    if (!InsMapSeen.insert(I->getSelector()).second)
2841
0
      continue;
2842
0
    if (!I->isPropertyAccessor() &&
2843
0
        !InsMap.count(I->getSelector())) {
2844
0
      if (ImmediateClass)
2845
0
        WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl,
2846
0
                            diag::warn_undef_method_impl);
2847
0
      continue;
2848
0
    } else {
2849
0
      ObjCMethodDecl *ImpMethodDecl =
2850
0
        IMPDecl->getInstanceMethod(I->getSelector());
2851
0
      assert(CDecl->getInstanceMethod(I->getSelector(), true/*AllowHidden*/) &&
2852
0
             "Expected to find the method through lookup as well");
2853
      // ImpMethodDecl may be null as in a @dynamic property.
2854
0
      if (ImpMethodDecl) {
2855
        // Skip property accessor function stubs.
2856
0
        if (ImpMethodDecl->isSynthesizedAccessorStub())
2857
0
          continue;
2858
0
        if (!WarnCategoryMethodImpl)
2859
0
          WarnConflictingTypedMethods(ImpMethodDecl, I,
2860
0
                                      isa<ObjCProtocolDecl>(CDecl));
2861
0
        else if (!I->isPropertyAccessor())
2862
0
          WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2863
0
      }
2864
0
    }
2865
0
  }
2866
2867
  // Check and see if class methods in class interface have been
2868
  // implemented in the implementation class. If so, their types match.
2869
0
  for (auto *I : CDecl->class_methods()) {
2870
0
    if (!ClsMapSeen.insert(I->getSelector()).second)
2871
0
      continue;
2872
0
    if (!I->isPropertyAccessor() &&
2873
0
        !ClsMap.count(I->getSelector())) {
2874
0
      if (ImmediateClass)
2875
0
        WarnUndefinedMethod(*this, IMPDecl, I, IncompleteImpl,
2876
0
                            diag::warn_undef_method_impl);
2877
0
    } else {
2878
0
      ObjCMethodDecl *ImpMethodDecl =
2879
0
        IMPDecl->getClassMethod(I->getSelector());
2880
0
      assert(CDecl->getClassMethod(I->getSelector(), true/*AllowHidden*/) &&
2881
0
             "Expected to find the method through lookup as well");
2882
      // ImpMethodDecl may be null as in a @dynamic property.
2883
0
      if (ImpMethodDecl) {
2884
        // Skip property accessor function stubs.
2885
0
        if (ImpMethodDecl->isSynthesizedAccessorStub())
2886
0
          continue;
2887
0
        if (!WarnCategoryMethodImpl)
2888
0
          WarnConflictingTypedMethods(ImpMethodDecl, I,
2889
0
                                      isa<ObjCProtocolDecl>(CDecl));
2890
0
        else if (!I->isPropertyAccessor())
2891
0
          WarnExactTypedMethods(ImpMethodDecl, I, isa<ObjCProtocolDecl>(CDecl));
2892
0
      }
2893
0
    }
2894
0
  }
2895
2896
0
  if (ObjCProtocolDecl *PD = dyn_cast<ObjCProtocolDecl> (CDecl)) {
2897
    // Also, check for methods declared in protocols inherited by
2898
    // this protocol.
2899
0
    for (auto *PI : PD->protocols())
2900
0
      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2901
0
                                 IMPDecl, PI, IncompleteImpl, false,
2902
0
                                 WarnCategoryMethodImpl);
2903
0
  }
2904
2905
0
  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
2906
    // when checking that methods in implementation match their declaration,
2907
    // i.e. when WarnCategoryMethodImpl is false, check declarations in class
2908
    // extension; as well as those in categories.
2909
0
    if (!WarnCategoryMethodImpl) {
2910
0
      for (auto *Cat : I->visible_categories())
2911
0
        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2912
0
                                   IMPDecl, Cat, IncompleteImpl,
2913
0
                                   ImmediateClass && Cat->IsClassExtension(),
2914
0
                                   WarnCategoryMethodImpl);
2915
0
    } else {
2916
      // Also methods in class extensions need be looked at next.
2917
0
      for (auto *Ext : I->visible_extensions())
2918
0
        MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2919
0
                                   IMPDecl, Ext, IncompleteImpl, false,
2920
0
                                   WarnCategoryMethodImpl);
2921
0
    }
2922
2923
    // Check for any implementation of a methods declared in protocol.
2924
0
    for (auto *PI : I->all_referenced_protocols())
2925
0
      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2926
0
                                 IMPDecl, PI, IncompleteImpl, false,
2927
0
                                 WarnCategoryMethodImpl);
2928
2929
    // FIXME. For now, we are not checking for exact match of methods
2930
    // in category implementation and its primary class's super class.
2931
0
    if (!WarnCategoryMethodImpl && I->getSuperClass())
2932
0
      MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2933
0
                                 IMPDecl,
2934
0
                                 I->getSuperClass(), IncompleteImpl, false);
2935
0
  }
2936
0
}
2937
2938
/// CheckCategoryVsClassMethodMatches - Checks that methods implemented in
2939
/// category matches with those implemented in its primary class and
2940
/// warns each time an exact match is found.
2941
void Sema::CheckCategoryVsClassMethodMatches(
2942
0
                                  ObjCCategoryImplDecl *CatIMPDecl) {
2943
  // Get category's primary class.
2944
0
  ObjCCategoryDecl *CatDecl = CatIMPDecl->getCategoryDecl();
2945
0
  if (!CatDecl)
2946
0
    return;
2947
0
  ObjCInterfaceDecl *IDecl = CatDecl->getClassInterface();
2948
0
  if (!IDecl)
2949
0
    return;
2950
0
  ObjCInterfaceDecl *SuperIDecl = IDecl->getSuperClass();
2951
0
  SelectorSet InsMap, ClsMap;
2952
2953
0
  for (const auto *I : CatIMPDecl->instance_methods()) {
2954
0
    Selector Sel = I->getSelector();
2955
    // When checking for methods implemented in the category, skip over
2956
    // those declared in category class's super class. This is because
2957
    // the super class must implement the method.
2958
0
    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, true))
2959
0
      continue;
2960
0
    InsMap.insert(Sel);
2961
0
  }
2962
2963
0
  for (const auto *I : CatIMPDecl->class_methods()) {
2964
0
    Selector Sel = I->getSelector();
2965
0
    if (SuperIDecl && SuperIDecl->lookupMethod(Sel, false))
2966
0
      continue;
2967
0
    ClsMap.insert(Sel);
2968
0
  }
2969
0
  if (InsMap.empty() && ClsMap.empty())
2970
0
    return;
2971
2972
0
  SelectorSet InsMapSeen, ClsMapSeen;
2973
0
  bool IncompleteImpl = false;
2974
0
  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
2975
0
                             CatIMPDecl, IDecl,
2976
0
                             IncompleteImpl, false,
2977
0
                             true /*WarnCategoryMethodImpl*/);
2978
0
}
2979
2980
void Sema::ImplMethodsVsClassMethods(Scope *S, ObjCImplDecl* IMPDecl,
2981
                                     ObjCContainerDecl* CDecl,
2982
0
                                     bool IncompleteImpl) {
2983
0
  SelectorSet InsMap;
2984
  // Check and see if instance methods in class interface have been
2985
  // implemented in the implementation class.
2986
0
  for (const auto *I : IMPDecl->instance_methods())
2987
0
    InsMap.insert(I->getSelector());
2988
2989
  // Add the selectors for getters/setters of @dynamic properties.
2990
0
  for (const auto *PImpl : IMPDecl->property_impls()) {
2991
    // We only care about @dynamic implementations.
2992
0
    if (PImpl->getPropertyImplementation() != ObjCPropertyImplDecl::Dynamic)
2993
0
      continue;
2994
2995
0
    const auto *P = PImpl->getPropertyDecl();
2996
0
    if (!P) continue;
2997
2998
0
    InsMap.insert(P->getGetterName());
2999
0
    if (!P->getSetterName().isNull())
3000
0
      InsMap.insert(P->getSetterName());
3001
0
  }
3002
3003
  // Check and see if properties declared in the interface have either 1)
3004
  // an implementation or 2) there is a @synthesize/@dynamic implementation
3005
  // of the property in the @implementation.
3006
0
  if (const ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(CDecl)) {
3007
0
    bool SynthesizeProperties = LangOpts.ObjCDefaultSynthProperties &&
3008
0
                                LangOpts.ObjCRuntime.isNonFragile() &&
3009
0
                                !IDecl->isObjCRequiresPropertyDefs();
3010
0
    DiagnoseUnimplementedProperties(S, IMPDecl, CDecl, SynthesizeProperties);
3011
0
  }
3012
3013
  // Diagnose null-resettable synthesized setters.
3014
0
  diagnoseNullResettableSynthesizedSetters(IMPDecl);
3015
3016
0
  SelectorSet ClsMap;
3017
0
  for (const auto *I : IMPDecl->class_methods())
3018
0
    ClsMap.insert(I->getSelector());
3019
3020
  // Check for type conflict of methods declared in a class/protocol and
3021
  // its implementation; if any.
3022
0
  SelectorSet InsMapSeen, ClsMapSeen;
3023
0
  MatchAllMethodDeclarations(InsMap, ClsMap, InsMapSeen, ClsMapSeen,
3024
0
                             IMPDecl, CDecl,
3025
0
                             IncompleteImpl, true);
3026
3027
  // check all methods implemented in category against those declared
3028
  // in its primary class.
3029
0
  if (ObjCCategoryImplDecl *CatDecl =
3030
0
        dyn_cast<ObjCCategoryImplDecl>(IMPDecl))
3031
0
    CheckCategoryVsClassMethodMatches(CatDecl);
3032
3033
  // Check the protocol list for unimplemented methods in the @implementation
3034
  // class.
3035
  // Check and see if class methods in class interface have been
3036
  // implemented in the implementation class.
3037
3038
0
  LazyProtocolNameSet ExplicitImplProtocols;
3039
3040
0
  if (ObjCInterfaceDecl *I = dyn_cast<ObjCInterfaceDecl> (CDecl)) {
3041
0
    for (auto *PI : I->all_referenced_protocols())
3042
0
      CheckProtocolMethodDefs(*this, IMPDecl, PI, IncompleteImpl, InsMap,
3043
0
                              ClsMap, I, ExplicitImplProtocols);
3044
0
  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(CDecl)) {
3045
    // For extended class, unimplemented methods in its protocols will
3046
    // be reported in the primary class.
3047
0
    if (!C->IsClassExtension()) {
3048
0
      for (auto *P : C->protocols())
3049
0
        CheckProtocolMethodDefs(*this, IMPDecl, P, IncompleteImpl, InsMap,
3050
0
                                ClsMap, CDecl, ExplicitImplProtocols);
3051
0
      DiagnoseUnimplementedProperties(S, IMPDecl, CDecl,
3052
0
                                      /*SynthesizeProperties=*/false);
3053
0
    }
3054
0
  } else
3055
0
    llvm_unreachable("invalid ObjCContainerDecl type.");
3056
0
}
3057
3058
Sema::DeclGroupPtrTy
3059
Sema::ActOnForwardClassDeclaration(SourceLocation AtClassLoc,
3060
                                   IdentifierInfo **IdentList,
3061
                                   SourceLocation *IdentLocs,
3062
                                   ArrayRef<ObjCTypeParamList *> TypeParamLists,
3063
0
                                   unsigned NumElts) {
3064
0
  SmallVector<Decl *, 8> DeclsInGroup;
3065
0
  for (unsigned i = 0; i != NumElts; ++i) {
3066
    // Check for another declaration kind with the same name.
3067
0
    NamedDecl *PrevDecl
3068
0
      = LookupSingleName(TUScope, IdentList[i], IdentLocs[i],
3069
0
                         LookupOrdinaryName, forRedeclarationInCurContext());
3070
0
    if (PrevDecl && !isa<ObjCInterfaceDecl>(PrevDecl)) {
3071
      // GCC apparently allows the following idiom:
3072
      //
3073
      // typedef NSObject < XCElementTogglerP > XCElementToggler;
3074
      // @class XCElementToggler;
3075
      //
3076
      // Here we have chosen to ignore the forward class declaration
3077
      // with a warning. Since this is the implied behavior.
3078
0
      TypedefNameDecl *TDD = dyn_cast<TypedefNameDecl>(PrevDecl);
3079
0
      if (!TDD || !TDD->getUnderlyingType()->isObjCObjectType()) {
3080
0
        Diag(AtClassLoc, diag::err_redefinition_different_kind) << IdentList[i];
3081
0
        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3082
0
      } else {
3083
        // a forward class declaration matching a typedef name of a class refers
3084
        // to the underlying class. Just ignore the forward class with a warning
3085
        // as this will force the intended behavior which is to lookup the
3086
        // typedef name.
3087
0
        if (isa<ObjCObjectType>(TDD->getUnderlyingType())) {
3088
0
          Diag(AtClassLoc, diag::warn_forward_class_redefinition)
3089
0
              << IdentList[i];
3090
0
          Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3091
0
          continue;
3092
0
        }
3093
0
      }
3094
0
    }
3095
3096
    // Create a declaration to describe this forward declaration.
3097
0
    ObjCInterfaceDecl *PrevIDecl
3098
0
      = dyn_cast_or_null<ObjCInterfaceDecl>(PrevDecl);
3099
3100
0
    IdentifierInfo *ClassName = IdentList[i];
3101
0
    if (PrevIDecl && PrevIDecl->getIdentifier() != ClassName) {
3102
      // A previous decl with a different name is because of
3103
      // @compatibility_alias, for example:
3104
      // \code
3105
      //   @class NewImage;
3106
      //   @compatibility_alias OldImage NewImage;
3107
      // \endcode
3108
      // A lookup for 'OldImage' will return the 'NewImage' decl.
3109
      //
3110
      // In such a case use the real declaration name, instead of the alias one,
3111
      // otherwise we will break IdentifierResolver and redecls-chain invariants.
3112
      // FIXME: If necessary, add a bit to indicate that this ObjCInterfaceDecl
3113
      // has been aliased.
3114
0
      ClassName = PrevIDecl->getIdentifier();
3115
0
    }
3116
3117
    // If this forward declaration has type parameters, compare them with the
3118
    // type parameters of the previous declaration.
3119
0
    ObjCTypeParamList *TypeParams = TypeParamLists[i];
3120
0
    if (PrevIDecl && TypeParams) {
3121
0
      if (ObjCTypeParamList *PrevTypeParams = PrevIDecl->getTypeParamList()) {
3122
        // Check for consistency with the previous declaration.
3123
0
        if (checkTypeParamListConsistency(
3124
0
              *this, PrevTypeParams, TypeParams,
3125
0
              TypeParamListContext::ForwardDeclaration)) {
3126
0
          TypeParams = nullptr;
3127
0
        }
3128
0
      } else if (ObjCInterfaceDecl *Def = PrevIDecl->getDefinition()) {
3129
        // The @interface does not have type parameters. Complain.
3130
0
        Diag(IdentLocs[i], diag::err_objc_parameterized_forward_class)
3131
0
          << ClassName
3132
0
          << TypeParams->getSourceRange();
3133
0
        Diag(Def->getLocation(), diag::note_defined_here)
3134
0
          << ClassName;
3135
3136
0
        TypeParams = nullptr;
3137
0
      }
3138
0
    }
3139
3140
0
    ObjCInterfaceDecl *IDecl
3141
0
      = ObjCInterfaceDecl::Create(Context, CurContext, AtClassLoc,
3142
0
                                  ClassName, TypeParams, PrevIDecl,
3143
0
                                  IdentLocs[i]);
3144
0
    IDecl->setAtEndRange(IdentLocs[i]);
3145
3146
0
    if (PrevIDecl)
3147
0
      mergeDeclAttributes(IDecl, PrevIDecl);
3148
3149
0
    PushOnScopeChains(IDecl, TUScope);
3150
0
    CheckObjCDeclScope(IDecl);
3151
0
    DeclsInGroup.push_back(IDecl);
3152
0
  }
3153
3154
0
  return BuildDeclaratorGroup(DeclsInGroup);
3155
0
}
3156
3157
static bool tryMatchRecordTypes(ASTContext &Context,
3158
                                Sema::MethodMatchStrategy strategy,
3159
                                const Type *left, const Type *right);
3160
3161
static bool matchTypes(ASTContext &Context, Sema::MethodMatchStrategy strategy,
3162
0
                       QualType leftQT, QualType rightQT) {
3163
0
  const Type *left =
3164
0
    Context.getCanonicalType(leftQT).getUnqualifiedType().getTypePtr();
3165
0
  const Type *right =
3166
0
    Context.getCanonicalType(rightQT).getUnqualifiedType().getTypePtr();
3167
3168
0
  if (left == right) return true;
3169
3170
  // If we're doing a strict match, the types have to match exactly.
3171
0
  if (strategy == Sema::MMS_strict) return false;
3172
3173
0
  if (left->isIncompleteType() || right->isIncompleteType()) return false;
3174
3175
  // Otherwise, use this absurdly complicated algorithm to try to
3176
  // validate the basic, low-level compatibility of the two types.
3177
3178
  // As a minimum, require the sizes and alignments to match.
3179
0
  TypeInfo LeftTI = Context.getTypeInfo(left);
3180
0
  TypeInfo RightTI = Context.getTypeInfo(right);
3181
0
  if (LeftTI.Width != RightTI.Width)
3182
0
    return false;
3183
3184
0
  if (LeftTI.Align != RightTI.Align)
3185
0
    return false;
3186
3187
  // Consider all the kinds of non-dependent canonical types:
3188
  // - functions and arrays aren't possible as return and parameter types
3189
3190
  // - vector types of equal size can be arbitrarily mixed
3191
0
  if (isa<VectorType>(left)) return isa<VectorType>(right);
3192
0
  if (isa<VectorType>(right)) return false;
3193
3194
  // - references should only match references of identical type
3195
  // - structs, unions, and Objective-C objects must match more-or-less
3196
  //   exactly
3197
  // - everything else should be a scalar
3198
0
  if (!left->isScalarType() || !right->isScalarType())
3199
0
    return tryMatchRecordTypes(Context, strategy, left, right);
3200
3201
  // Make scalars agree in kind, except count bools as chars, and group
3202
  // all non-member pointers together.
3203
0
  Type::ScalarTypeKind leftSK = left->getScalarTypeKind();
3204
0
  Type::ScalarTypeKind rightSK = right->getScalarTypeKind();
3205
0
  if (leftSK == Type::STK_Bool) leftSK = Type::STK_Integral;
3206
0
  if (rightSK == Type::STK_Bool) rightSK = Type::STK_Integral;
3207
0
  if (leftSK == Type::STK_CPointer || leftSK == Type::STK_BlockPointer)
3208
0
    leftSK = Type::STK_ObjCObjectPointer;
3209
0
  if (rightSK == Type::STK_CPointer || rightSK == Type::STK_BlockPointer)
3210
0
    rightSK = Type::STK_ObjCObjectPointer;
3211
3212
  // Note that data member pointers and function member pointers don't
3213
  // intermix because of the size differences.
3214
3215
0
  return (leftSK == rightSK);
3216
0
}
3217
3218
static bool tryMatchRecordTypes(ASTContext &Context,
3219
                                Sema::MethodMatchStrategy strategy,
3220
0
                                const Type *lt, const Type *rt) {
3221
0
  assert(lt && rt && lt != rt);
3222
3223
0
  if (!isa<RecordType>(lt) || !isa<RecordType>(rt)) return false;
3224
0
  RecordDecl *left = cast<RecordType>(lt)->getDecl();
3225
0
  RecordDecl *right = cast<RecordType>(rt)->getDecl();
3226
3227
  // Require union-hood to match.
3228
0
  if (left->isUnion() != right->isUnion()) return false;
3229
3230
  // Require an exact match if either is non-POD.
3231
0
  if ((isa<CXXRecordDecl>(left) && !cast<CXXRecordDecl>(left)->isPOD()) ||
3232
0
      (isa<CXXRecordDecl>(right) && !cast<CXXRecordDecl>(right)->isPOD()))
3233
0
    return false;
3234
3235
  // Require size and alignment to match.
3236
0
  TypeInfo LeftTI = Context.getTypeInfo(lt);
3237
0
  TypeInfo RightTI = Context.getTypeInfo(rt);
3238
0
  if (LeftTI.Width != RightTI.Width)
3239
0
    return false;
3240
3241
0
  if (LeftTI.Align != RightTI.Align)
3242
0
    return false;
3243
3244
  // Require fields to match.
3245
0
  RecordDecl::field_iterator li = left->field_begin(), le = left->field_end();
3246
0
  RecordDecl::field_iterator ri = right->field_begin(), re = right->field_end();
3247
0
  for (; li != le && ri != re; ++li, ++ri) {
3248
0
    if (!matchTypes(Context, strategy, li->getType(), ri->getType()))
3249
0
      return false;
3250
0
  }
3251
0
  return (li == le && ri == re);
3252
0
}
3253
3254
/// MatchTwoMethodDeclarations - Checks that two methods have matching type and
3255
/// returns true, or false, accordingly.
3256
/// TODO: Handle protocol list; such as id<p1,p2> in type comparisons
3257
bool Sema::MatchTwoMethodDeclarations(const ObjCMethodDecl *left,
3258
                                      const ObjCMethodDecl *right,
3259
0
                                      MethodMatchStrategy strategy) {
3260
0
  if (!matchTypes(Context, strategy, left->getReturnType(),
3261
0
                  right->getReturnType()))
3262
0
    return false;
3263
3264
  // If either is hidden, it is not considered to match.
3265
0
  if (!left->isUnconditionallyVisible() || !right->isUnconditionallyVisible())
3266
0
    return false;
3267
3268
0
  if (left->isDirectMethod() != right->isDirectMethod())
3269
0
    return false;
3270
3271
0
  if (getLangOpts().ObjCAutoRefCount &&
3272
0
      (left->hasAttr<NSReturnsRetainedAttr>()
3273
0
         != right->hasAttr<NSReturnsRetainedAttr>() ||
3274
0
       left->hasAttr<NSConsumesSelfAttr>()
3275
0
         != right->hasAttr<NSConsumesSelfAttr>()))
3276
0
    return false;
3277
3278
0
  ObjCMethodDecl::param_const_iterator
3279
0
    li = left->param_begin(), le = left->param_end(), ri = right->param_begin(),
3280
0
    re = right->param_end();
3281
3282
0
  for (; li != le && ri != re; ++li, ++ri) {
3283
0
    assert(ri != right->param_end() && "Param mismatch");
3284
0
    const ParmVarDecl *lparm = *li, *rparm = *ri;
3285
3286
0
    if (!matchTypes(Context, strategy, lparm->getType(), rparm->getType()))
3287
0
      return false;
3288
3289
0
    if (getLangOpts().ObjCAutoRefCount &&
3290
0
        lparm->hasAttr<NSConsumedAttr>() != rparm->hasAttr<NSConsumedAttr>())
3291
0
      return false;
3292
0
  }
3293
0
  return true;
3294
0
}
3295
3296
static bool isMethodContextSameForKindofLookup(ObjCMethodDecl *Method,
3297
0
                                               ObjCMethodDecl *MethodInList) {
3298
0
  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3299
0
  auto *MethodInListProtocol =
3300
0
      dyn_cast<ObjCProtocolDecl>(MethodInList->getDeclContext());
3301
  // If this method belongs to a protocol but the method in list does not, or
3302
  // vice versa, we say the context is not the same.
3303
0
  if ((MethodProtocol && !MethodInListProtocol) ||
3304
0
      (!MethodProtocol && MethodInListProtocol))
3305
0
    return false;
3306
3307
0
  if (MethodProtocol && MethodInListProtocol)
3308
0
    return true;
3309
3310
0
  ObjCInterfaceDecl *MethodInterface = Method->getClassInterface();
3311
0
  ObjCInterfaceDecl *MethodInListInterface =
3312
0
      MethodInList->getClassInterface();
3313
0
  return MethodInterface == MethodInListInterface;
3314
0
}
3315
3316
void Sema::addMethodToGlobalList(ObjCMethodList *List,
3317
0
                                 ObjCMethodDecl *Method) {
3318
  // Record at the head of the list whether there were 0, 1, or >= 2 methods
3319
  // inside categories.
3320
0
  if (ObjCCategoryDecl *CD =
3321
0
          dyn_cast<ObjCCategoryDecl>(Method->getDeclContext()))
3322
0
    if (!CD->IsClassExtension() && List->getBits() < 2)
3323
0
      List->setBits(List->getBits() + 1);
3324
3325
  // If the list is empty, make it a singleton list.
3326
0
  if (List->getMethod() == nullptr) {
3327
0
    List->setMethod(Method);
3328
0
    List->setNext(nullptr);
3329
0
    return;
3330
0
  }
3331
3332
  // We've seen a method with this name, see if we have already seen this type
3333
  // signature.
3334
0
  ObjCMethodList *Previous = List;
3335
0
  ObjCMethodList *ListWithSameDeclaration = nullptr;
3336
0
  for (; List; Previous = List, List = List->getNext()) {
3337
    // If we are building a module, keep all of the methods.
3338
0
    if (getLangOpts().isCompilingModule())
3339
0
      continue;
3340
3341
0
    bool SameDeclaration = MatchTwoMethodDeclarations(Method,
3342
0
                                                      List->getMethod());
3343
    // Looking for method with a type bound requires the correct context exists.
3344
    // We need to insert a method into the list if the context is different.
3345
    // If the method's declaration matches the list
3346
    // a> the method belongs to a different context: we need to insert it, in
3347
    //    order to emit the availability message, we need to prioritize over
3348
    //    availability among the methods with the same declaration.
3349
    // b> the method belongs to the same context: there is no need to insert a
3350
    //    new entry.
3351
    // If the method's declaration does not match the list, we insert it to the
3352
    // end.
3353
0
    if (!SameDeclaration ||
3354
0
        !isMethodContextSameForKindofLookup(Method, List->getMethod())) {
3355
      // Even if two method types do not match, we would like to say
3356
      // there is more than one declaration so unavailability/deprecated
3357
      // warning is not too noisy.
3358
0
      if (!Method->isDefined())
3359
0
        List->setHasMoreThanOneDecl(true);
3360
3361
      // For methods with the same declaration, the one that is deprecated
3362
      // should be put in the front for better diagnostics.
3363
0
      if (Method->isDeprecated() && SameDeclaration &&
3364
0
          !ListWithSameDeclaration && !List->getMethod()->isDeprecated())
3365
0
        ListWithSameDeclaration = List;
3366
3367
0
      if (Method->isUnavailable() && SameDeclaration &&
3368
0
          !ListWithSameDeclaration &&
3369
0
          List->getMethod()->getAvailability() < AR_Deprecated)
3370
0
        ListWithSameDeclaration = List;
3371
0
      continue;
3372
0
    }
3373
3374
0
    ObjCMethodDecl *PrevObjCMethod = List->getMethod();
3375
3376
    // Propagate the 'defined' bit.
3377
0
    if (Method->isDefined())
3378
0
      PrevObjCMethod->setDefined(true);
3379
0
    else {
3380
      // Objective-C doesn't allow an @interface for a class after its
3381
      // @implementation. So if Method is not defined and there already is
3382
      // an entry for this type signature, Method has to be for a different
3383
      // class than PrevObjCMethod.
3384
0
      List->setHasMoreThanOneDecl(true);
3385
0
    }
3386
3387
    // If a method is deprecated, push it in the global pool.
3388
    // This is used for better diagnostics.
3389
0
    if (Method->isDeprecated()) {
3390
0
      if (!PrevObjCMethod->isDeprecated())
3391
0
        List->setMethod(Method);
3392
0
    }
3393
    // If the new method is unavailable, push it into global pool
3394
    // unless previous one is deprecated.
3395
0
    if (Method->isUnavailable()) {
3396
0
      if (PrevObjCMethod->getAvailability() < AR_Deprecated)
3397
0
        List->setMethod(Method);
3398
0
    }
3399
3400
0
    return;
3401
0
  }
3402
3403
  // We have a new signature for an existing method - add it.
3404
  // This is extremely rare. Only 1% of Cocoa selectors are "overloaded".
3405
0
  ObjCMethodList *Mem = BumpAlloc.Allocate<ObjCMethodList>();
3406
3407
  // We insert it right before ListWithSameDeclaration.
3408
0
  if (ListWithSameDeclaration) {
3409
0
    auto *List = new (Mem) ObjCMethodList(*ListWithSameDeclaration);
3410
    // FIXME: should we clear the other bits in ListWithSameDeclaration?
3411
0
    ListWithSameDeclaration->setMethod(Method);
3412
0
    ListWithSameDeclaration->setNext(List);
3413
0
    return;
3414
0
  }
3415
3416
0
  Previous->setNext(new (Mem) ObjCMethodList(Method));
3417
0
}
3418
3419
/// Read the contents of the method pool for a given selector from
3420
/// external storage.
3421
0
void Sema::ReadMethodPool(Selector Sel) {
3422
0
  assert(ExternalSource && "We need an external AST source");
3423
0
  ExternalSource->ReadMethodPool(Sel);
3424
0
}
3425
3426
0
void Sema::updateOutOfDateSelector(Selector Sel) {
3427
0
  if (!ExternalSource)
3428
0
    return;
3429
0
  ExternalSource->updateOutOfDateSelector(Sel);
3430
0
}
3431
3432
void Sema::AddMethodToGlobalPool(ObjCMethodDecl *Method, bool impl,
3433
0
                                 bool instance) {
3434
  // Ignore methods of invalid containers.
3435
0
  if (cast<Decl>(Method->getDeclContext())->isInvalidDecl())
3436
0
    return;
3437
3438
0
  if (ExternalSource)
3439
0
    ReadMethodPool(Method->getSelector());
3440
3441
0
  GlobalMethodPool::iterator Pos = MethodPool.find(Method->getSelector());
3442
0
  if (Pos == MethodPool.end())
3443
0
    Pos = MethodPool
3444
0
              .insert(std::make_pair(Method->getSelector(),
3445
0
                                     GlobalMethodPool::Lists()))
3446
0
              .first;
3447
3448
0
  Method->setDefined(impl);
3449
3450
0
  ObjCMethodList &Entry = instance ? Pos->second.first : Pos->second.second;
3451
0
  addMethodToGlobalList(&Entry, Method);
3452
0
}
3453
3454
/// Determines if this is an "acceptable" loose mismatch in the global
3455
/// method pool.  This exists mostly as a hack to get around certain
3456
/// global mismatches which we can't afford to make warnings / errors.
3457
/// Really, what we want is a way to take a method out of the global
3458
/// method pool.
3459
static bool isAcceptableMethodMismatch(ObjCMethodDecl *chosen,
3460
0
                                       ObjCMethodDecl *other) {
3461
0
  if (!chosen->isInstanceMethod())
3462
0
    return false;
3463
3464
0
  if (chosen->isDirectMethod() != other->isDirectMethod())
3465
0
    return false;
3466
3467
0
  Selector sel = chosen->getSelector();
3468
0
  if (!sel.isUnarySelector() || sel.getNameForSlot(0) != "length")
3469
0
    return false;
3470
3471
  // Don't complain about mismatches for -length if the method we
3472
  // chose has an integral result type.
3473
0
  return (chosen->getReturnType()->isIntegerType());
3474
0
}
3475
3476
/// Return true if the given method is wthin the type bound.
3477
static bool FilterMethodsByTypeBound(ObjCMethodDecl *Method,
3478
0
                                     const ObjCObjectType *TypeBound) {
3479
0
  if (!TypeBound)
3480
0
    return true;
3481
3482
0
  if (TypeBound->isObjCId())
3483
    // FIXME: should we handle the case of bounding to id<A, B> differently?
3484
0
    return true;
3485
3486
0
  auto *BoundInterface = TypeBound->getInterface();
3487
0
  assert(BoundInterface && "unexpected object type!");
3488
3489
  // Check if the Method belongs to a protocol. We should allow any method
3490
  // defined in any protocol, because any subclass could adopt the protocol.
3491
0
  auto *MethodProtocol = dyn_cast<ObjCProtocolDecl>(Method->getDeclContext());
3492
0
  if (MethodProtocol) {
3493
0
    return true;
3494
0
  }
3495
3496
  // If the Method belongs to a class, check if it belongs to the class
3497
  // hierarchy of the class bound.
3498
0
  if (ObjCInterfaceDecl *MethodInterface = Method->getClassInterface()) {
3499
    // We allow methods declared within classes that are part of the hierarchy
3500
    // of the class bound (superclass of, subclass of, or the same as the class
3501
    // bound).
3502
0
    return MethodInterface == BoundInterface ||
3503
0
           MethodInterface->isSuperClassOf(BoundInterface) ||
3504
0
           BoundInterface->isSuperClassOf(MethodInterface);
3505
0
  }
3506
0
  llvm_unreachable("unknown method context");
3507
0
}
3508
3509
/// We first select the type of the method: Instance or Factory, then collect
3510
/// all methods with that type.
3511
bool Sema::CollectMultipleMethodsInGlobalPool(
3512
    Selector Sel, SmallVectorImpl<ObjCMethodDecl *> &Methods,
3513
    bool InstanceFirst, bool CheckTheOther,
3514
0
    const ObjCObjectType *TypeBound) {
3515
0
  if (ExternalSource)
3516
0
    ReadMethodPool(Sel);
3517
3518
0
  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3519
0
  if (Pos == MethodPool.end())
3520
0
    return false;
3521
3522
  // Gather the non-hidden methods.
3523
0
  ObjCMethodList &MethList = InstanceFirst ? Pos->second.first :
3524
0
                             Pos->second.second;
3525
0
  for (ObjCMethodList *M = &MethList; M; M = M->getNext())
3526
0
    if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3527
0
      if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3528
0
        Methods.push_back(M->getMethod());
3529
0
    }
3530
3531
  // Return if we find any method with the desired kind.
3532
0
  if (!Methods.empty())
3533
0
    return Methods.size() > 1;
3534
3535
0
  if (!CheckTheOther)
3536
0
    return false;
3537
3538
  // Gather the other kind.
3539
0
  ObjCMethodList &MethList2 = InstanceFirst ? Pos->second.second :
3540
0
                              Pos->second.first;
3541
0
  for (ObjCMethodList *M = &MethList2; M; M = M->getNext())
3542
0
    if (M->getMethod() && M->getMethod()->isUnconditionallyVisible()) {
3543
0
      if (FilterMethodsByTypeBound(M->getMethod(), TypeBound))
3544
0
        Methods.push_back(M->getMethod());
3545
0
    }
3546
3547
0
  return Methods.size() > 1;
3548
0
}
3549
3550
bool Sema::AreMultipleMethodsInGlobalPool(
3551
    Selector Sel, ObjCMethodDecl *BestMethod, SourceRange R,
3552
0
    bool receiverIdOrClass, SmallVectorImpl<ObjCMethodDecl *> &Methods) {
3553
  // Diagnose finding more than one method in global pool.
3554
0
  SmallVector<ObjCMethodDecl *, 4> FilteredMethods;
3555
0
  FilteredMethods.push_back(BestMethod);
3556
3557
0
  for (auto *M : Methods)
3558
0
    if (M != BestMethod && !M->hasAttr<UnavailableAttr>())
3559
0
      FilteredMethods.push_back(M);
3560
3561
0
  if (FilteredMethods.size() > 1)
3562
0
    DiagnoseMultipleMethodInGlobalPool(FilteredMethods, Sel, R,
3563
0
                                       receiverIdOrClass);
3564
3565
0
  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3566
  // Test for no method in the pool which should not trigger any warning by
3567
  // caller.
3568
0
  if (Pos == MethodPool.end())
3569
0
    return true;
3570
0
  ObjCMethodList &MethList =
3571
0
    BestMethod->isInstanceMethod() ? Pos->second.first : Pos->second.second;
3572
0
  return MethList.hasMoreThanOneDecl();
3573
0
}
3574
3575
ObjCMethodDecl *Sema::LookupMethodInGlobalPool(Selector Sel, SourceRange R,
3576
                                               bool receiverIdOrClass,
3577
0
                                               bool instance) {
3578
0
  if (ExternalSource)
3579
0
    ReadMethodPool(Sel);
3580
3581
0
  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3582
0
  if (Pos == MethodPool.end())
3583
0
    return nullptr;
3584
3585
  // Gather the non-hidden methods.
3586
0
  ObjCMethodList &MethList = instance ? Pos->second.first : Pos->second.second;
3587
0
  SmallVector<ObjCMethodDecl *, 4> Methods;
3588
0
  for (ObjCMethodList *M = &MethList; M; M = M->getNext()) {
3589
0
    if (M->getMethod() && M->getMethod()->isUnconditionallyVisible())
3590
0
      return M->getMethod();
3591
0
  }
3592
0
  return nullptr;
3593
0
}
3594
3595
void Sema::DiagnoseMultipleMethodInGlobalPool(SmallVectorImpl<ObjCMethodDecl*> &Methods,
3596
                                              Selector Sel, SourceRange R,
3597
0
                                              bool receiverIdOrClass) {
3598
  // We found multiple methods, so we may have to complain.
3599
0
  bool issueDiagnostic = false, issueError = false;
3600
3601
  // We support a warning which complains about *any* difference in
3602
  // method signature.
3603
0
  bool strictSelectorMatch =
3604
0
  receiverIdOrClass &&
3605
0
  !Diags.isIgnored(diag::warn_strict_multiple_method_decl, R.getBegin());
3606
0
  if (strictSelectorMatch) {
3607
0
    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3608
0
      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_strict)) {
3609
0
        issueDiagnostic = true;
3610
0
        break;
3611
0
      }
3612
0
    }
3613
0
  }
3614
3615
  // If we didn't see any strict differences, we won't see any loose
3616
  // differences.  In ARC, however, we also need to check for loose
3617
  // mismatches, because most of them are errors.
3618
0
  if (!strictSelectorMatch ||
3619
0
      (issueDiagnostic && getLangOpts().ObjCAutoRefCount))
3620
0
    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3621
      // This checks if the methods differ in type mismatch.
3622
0
      if (!MatchTwoMethodDeclarations(Methods[0], Methods[I], MMS_loose) &&
3623
0
          !isAcceptableMethodMismatch(Methods[0], Methods[I])) {
3624
0
        issueDiagnostic = true;
3625
0
        if (getLangOpts().ObjCAutoRefCount)
3626
0
          issueError = true;
3627
0
        break;
3628
0
      }
3629
0
    }
3630
3631
0
  if (issueDiagnostic) {
3632
0
    if (issueError)
3633
0
      Diag(R.getBegin(), diag::err_arc_multiple_method_decl) << Sel << R;
3634
0
    else if (strictSelectorMatch)
3635
0
      Diag(R.getBegin(), diag::warn_strict_multiple_method_decl) << Sel << R;
3636
0
    else
3637
0
      Diag(R.getBegin(), diag::warn_multiple_method_decl) << Sel << R;
3638
3639
0
    Diag(Methods[0]->getBeginLoc(),
3640
0
         issueError ? diag::note_possibility : diag::note_using)
3641
0
        << Methods[0]->getSourceRange();
3642
0
    for (unsigned I = 1, N = Methods.size(); I != N; ++I) {
3643
0
      Diag(Methods[I]->getBeginLoc(), diag::note_also_found)
3644
0
          << Methods[I]->getSourceRange();
3645
0
    }
3646
0
  }
3647
0
}
3648
3649
0
ObjCMethodDecl *Sema::LookupImplementedMethodInGlobalPool(Selector Sel) {
3650
0
  GlobalMethodPool::iterator Pos = MethodPool.find(Sel);
3651
0
  if (Pos == MethodPool.end())
3652
0
    return nullptr;
3653
3654
0
  GlobalMethodPool::Lists &Methods = Pos->second;
3655
0
  for (const ObjCMethodList *Method = &Methods.first; Method;
3656
0
       Method = Method->getNext())
3657
0
    if (Method->getMethod() &&
3658
0
        (Method->getMethod()->isDefined() ||
3659
0
         Method->getMethod()->isPropertyAccessor()))
3660
0
      return Method->getMethod();
3661
3662
0
  for (const ObjCMethodList *Method = &Methods.second; Method;
3663
0
       Method = Method->getNext())
3664
0
    if (Method->getMethod() &&
3665
0
        (Method->getMethod()->isDefined() ||
3666
0
         Method->getMethod()->isPropertyAccessor()))
3667
0
      return Method->getMethod();
3668
0
  return nullptr;
3669
0
}
3670
3671
static void
3672
HelperSelectorsForTypoCorrection(
3673
                      SmallVectorImpl<const ObjCMethodDecl *> &BestMethod,
3674
0
                      StringRef Typo, const ObjCMethodDecl * Method) {
3675
0
  const unsigned MaxEditDistance = 1;
3676
0
  unsigned BestEditDistance = MaxEditDistance + 1;
3677
0
  std::string MethodName = Method->getSelector().getAsString();
3678
3679
0
  unsigned MinPossibleEditDistance = abs((int)MethodName.size() - (int)Typo.size());
3680
0
  if (MinPossibleEditDistance > 0 &&
3681
0
      Typo.size() / MinPossibleEditDistance < 1)
3682
0
    return;
3683
0
  unsigned EditDistance = Typo.edit_distance(MethodName, true, MaxEditDistance);
3684
0
  if (EditDistance > MaxEditDistance)
3685
0
    return;
3686
0
  if (EditDistance == BestEditDistance)
3687
0
    BestMethod.push_back(Method);
3688
0
  else if (EditDistance < BestEditDistance) {
3689
0
    BestMethod.clear();
3690
0
    BestMethod.push_back(Method);
3691
0
  }
3692
0
}
3693
3694
static bool HelperIsMethodInObjCType(Sema &S, Selector Sel,
3695
0
                                     QualType ObjectType) {
3696
0
  if (ObjectType.isNull())
3697
0
    return true;
3698
0
  if (S.LookupMethodInObjectType(Sel, ObjectType, true/*Instance method*/))
3699
0
    return true;
3700
0
  return S.LookupMethodInObjectType(Sel, ObjectType, false/*Class method*/) !=
3701
0
         nullptr;
3702
0
}
3703
3704
const ObjCMethodDecl *
3705
Sema::SelectorsForTypoCorrection(Selector Sel,
3706
0
                                 QualType ObjectType) {
3707
0
  unsigned NumArgs = Sel.getNumArgs();
3708
0
  SmallVector<const ObjCMethodDecl *, 8> Methods;
3709
0
  bool ObjectIsId = true, ObjectIsClass = true;
3710
0
  if (ObjectType.isNull())
3711
0
    ObjectIsId = ObjectIsClass = false;
3712
0
  else if (!ObjectType->isObjCObjectPointerType())
3713
0
    return nullptr;
3714
0
  else if (const ObjCObjectPointerType *ObjCPtr =
3715
0
           ObjectType->getAsObjCInterfacePointerType()) {
3716
0
    ObjectType = QualType(ObjCPtr->getInterfaceType(), 0);
3717
0
    ObjectIsId = ObjectIsClass = false;
3718
0
  }
3719
0
  else if (ObjectType->isObjCIdType() || ObjectType->isObjCQualifiedIdType())
3720
0
    ObjectIsClass = false;
3721
0
  else if (ObjectType->isObjCClassType() || ObjectType->isObjCQualifiedClassType())
3722
0
    ObjectIsId = false;
3723
0
  else
3724
0
    return nullptr;
3725
3726
0
  for (GlobalMethodPool::iterator b = MethodPool.begin(),
3727
0
       e = MethodPool.end(); b != e; b++) {
3728
    // instance methods
3729
0
    for (ObjCMethodList *M = &b->second.first; M; M=M->getNext())
3730
0
      if (M->getMethod() &&
3731
0
          (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3732
0
          (M->getMethod()->getSelector() != Sel)) {
3733
0
        if (ObjectIsId)
3734
0
          Methods.push_back(M->getMethod());
3735
0
        else if (!ObjectIsClass &&
3736
0
                 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3737
0
                                          ObjectType))
3738
0
          Methods.push_back(M->getMethod());
3739
0
      }
3740
    // class methods
3741
0
    for (ObjCMethodList *M = &b->second.second; M; M=M->getNext())
3742
0
      if (M->getMethod() &&
3743
0
          (M->getMethod()->getSelector().getNumArgs() == NumArgs) &&
3744
0
          (M->getMethod()->getSelector() != Sel)) {
3745
0
        if (ObjectIsClass)
3746
0
          Methods.push_back(M->getMethod());
3747
0
        else if (!ObjectIsId &&
3748
0
                 HelperIsMethodInObjCType(*this, M->getMethod()->getSelector(),
3749
0
                                          ObjectType))
3750
0
          Methods.push_back(M->getMethod());
3751
0
      }
3752
0
  }
3753
3754
0
  SmallVector<const ObjCMethodDecl *, 8> SelectedMethods;
3755
0
  for (unsigned i = 0, e = Methods.size(); i < e; i++) {
3756
0
    HelperSelectorsForTypoCorrection(SelectedMethods,
3757
0
                                     Sel.getAsString(), Methods[i]);
3758
0
  }
3759
0
  return (SelectedMethods.size() == 1) ? SelectedMethods[0] : nullptr;
3760
0
}
3761
3762
/// DiagnoseDuplicateIvars -
3763
/// Check for duplicate ivars in the entire class at the start of
3764
/// \@implementation. This becomes necessary because class extension can
3765
/// add ivars to a class in random order which will not be known until
3766
/// class's \@implementation is seen.
3767
void Sema::DiagnoseDuplicateIvars(ObjCInterfaceDecl *ID,
3768
0
                                  ObjCInterfaceDecl *SID) {
3769
0
  for (auto *Ivar : ID->ivars()) {
3770
0
    if (Ivar->isInvalidDecl())
3771
0
      continue;
3772
0
    if (IdentifierInfo *II = Ivar->getIdentifier()) {
3773
0
      ObjCIvarDecl* prevIvar = SID->lookupInstanceVariable(II);
3774
0
      if (prevIvar) {
3775
0
        Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3776
0
        Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3777
0
        Ivar->setInvalidDecl();
3778
0
      }
3779
0
    }
3780
0
  }
3781
0
}
3782
3783
/// Diagnose attempts to define ARC-__weak ivars when __weak is disabled.
3784
0
static void DiagnoseWeakIvars(Sema &S, ObjCImplementationDecl *ID) {
3785
0
  if (S.getLangOpts().ObjCWeak) return;
3786
3787
0
  for (auto ivar = ID->getClassInterface()->all_declared_ivar_begin();
3788
0
         ivar; ivar = ivar->getNextIvar()) {
3789
0
    if (ivar->isInvalidDecl()) continue;
3790
0
    if (ivar->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
3791
0
      if (S.getLangOpts().ObjCWeakRuntime) {
3792
0
        S.Diag(ivar->getLocation(), diag::err_arc_weak_disabled);
3793
0
      } else {
3794
0
        S.Diag(ivar->getLocation(), diag::err_arc_weak_no_runtime);
3795
0
      }
3796
0
    }
3797
0
  }
3798
0
}
3799
3800
/// Diagnose attempts to use flexible array member with retainable object type.
3801
static void DiagnoseRetainableFlexibleArrayMember(Sema &S,
3802
0
                                                  ObjCInterfaceDecl *ID) {
3803
0
  if (!S.getLangOpts().ObjCAutoRefCount)
3804
0
    return;
3805
3806
0
  for (auto ivar = ID->all_declared_ivar_begin(); ivar;
3807
0
       ivar = ivar->getNextIvar()) {
3808
0
    if (ivar->isInvalidDecl())
3809
0
      continue;
3810
0
    QualType IvarTy = ivar->getType();
3811
0
    if (IvarTy->isIncompleteArrayType() &&
3812
0
        (IvarTy.getObjCLifetime() != Qualifiers::OCL_ExplicitNone) &&
3813
0
        IvarTy->isObjCLifetimeType()) {
3814
0
      S.Diag(ivar->getLocation(), diag::err_flexible_array_arc_retainable);
3815
0
      ivar->setInvalidDecl();
3816
0
    }
3817
0
  }
3818
0
}
3819
3820
0
Sema::ObjCContainerKind Sema::getObjCContainerKind() const {
3821
0
  switch (CurContext->getDeclKind()) {
3822
0
    case Decl::ObjCInterface:
3823
0
      return Sema::OCK_Interface;
3824
0
    case Decl::ObjCProtocol:
3825
0
      return Sema::OCK_Protocol;
3826
0
    case Decl::ObjCCategory:
3827
0
      if (cast<ObjCCategoryDecl>(CurContext)->IsClassExtension())
3828
0
        return Sema::OCK_ClassExtension;
3829
0
      return Sema::OCK_Category;
3830
0
    case Decl::ObjCImplementation:
3831
0
      return Sema::OCK_Implementation;
3832
0
    case Decl::ObjCCategoryImpl:
3833
0
      return Sema::OCK_CategoryImplementation;
3834
3835
0
    default:
3836
0
      return Sema::OCK_None;
3837
0
  }
3838
0
}
3839
3840
0
static bool IsVariableSizedType(QualType T) {
3841
0
  if (T->isIncompleteArrayType())
3842
0
    return true;
3843
0
  const auto *RecordTy = T->getAs<RecordType>();
3844
0
  return (RecordTy && RecordTy->getDecl()->hasFlexibleArrayMember());
3845
0
}
3846
3847
0
static void DiagnoseVariableSizedIvars(Sema &S, ObjCContainerDecl *OCD) {
3848
0
  ObjCInterfaceDecl *IntfDecl = nullptr;
3849
0
  ObjCInterfaceDecl::ivar_range Ivars = llvm::make_range(
3850
0
      ObjCInterfaceDecl::ivar_iterator(), ObjCInterfaceDecl::ivar_iterator());
3851
0
  if ((IntfDecl = dyn_cast<ObjCInterfaceDecl>(OCD))) {
3852
0
    Ivars = IntfDecl->ivars();
3853
0
  } else if (auto *ImplDecl = dyn_cast<ObjCImplementationDecl>(OCD)) {
3854
0
    IntfDecl = ImplDecl->getClassInterface();
3855
0
    Ivars = ImplDecl->ivars();
3856
0
  } else if (auto *CategoryDecl = dyn_cast<ObjCCategoryDecl>(OCD)) {
3857
0
    if (CategoryDecl->IsClassExtension()) {
3858
0
      IntfDecl = CategoryDecl->getClassInterface();
3859
0
      Ivars = CategoryDecl->ivars();
3860
0
    }
3861
0
  }
3862
3863
  // Check if variable sized ivar is in interface and visible to subclasses.
3864
0
  if (!isa<ObjCInterfaceDecl>(OCD)) {
3865
0
    for (auto *ivar : Ivars) {
3866
0
      if (!ivar->isInvalidDecl() && IsVariableSizedType(ivar->getType())) {
3867
0
        S.Diag(ivar->getLocation(), diag::warn_variable_sized_ivar_visibility)
3868
0
            << ivar->getDeclName() << ivar->getType();
3869
0
      }
3870
0
    }
3871
0
  }
3872
3873
  // Subsequent checks require interface decl.
3874
0
  if (!IntfDecl)
3875
0
    return;
3876
3877
  // Check if variable sized ivar is followed by another ivar.
3878
0
  for (ObjCIvarDecl *ivar = IntfDecl->all_declared_ivar_begin(); ivar;
3879
0
       ivar = ivar->getNextIvar()) {
3880
0
    if (ivar->isInvalidDecl() || !ivar->getNextIvar())
3881
0
      continue;
3882
0
    QualType IvarTy = ivar->getType();
3883
0
    bool IsInvalidIvar = false;
3884
0
    if (IvarTy->isIncompleteArrayType()) {
3885
0
      S.Diag(ivar->getLocation(), diag::err_flexible_array_not_at_end)
3886
0
          << ivar->getDeclName() << IvarTy
3887
0
          << llvm::to_underlying(TagTypeKind::Class); // Use "class" for Obj-C.
3888
0
      IsInvalidIvar = true;
3889
0
    } else if (const RecordType *RecordTy = IvarTy->getAs<RecordType>()) {
3890
0
      if (RecordTy->getDecl()->hasFlexibleArrayMember()) {
3891
0
        S.Diag(ivar->getLocation(),
3892
0
               diag::err_objc_variable_sized_type_not_at_end)
3893
0
            << ivar->getDeclName() << IvarTy;
3894
0
        IsInvalidIvar = true;
3895
0
      }
3896
0
    }
3897
0
    if (IsInvalidIvar) {
3898
0
      S.Diag(ivar->getNextIvar()->getLocation(),
3899
0
             diag::note_next_ivar_declaration)
3900
0
          << ivar->getNextIvar()->getSynthesize();
3901
0
      ivar->setInvalidDecl();
3902
0
    }
3903
0
  }
3904
3905
  // Check if ObjC container adds ivars after variable sized ivar in superclass.
3906
  // Perform the check only if OCD is the first container to declare ivars to
3907
  // avoid multiple warnings for the same ivar.
3908
0
  ObjCIvarDecl *FirstIvar =
3909
0
      (Ivars.begin() == Ivars.end()) ? nullptr : *Ivars.begin();
3910
0
  if (FirstIvar && (FirstIvar == IntfDecl->all_declared_ivar_begin())) {
3911
0
    const ObjCInterfaceDecl *SuperClass = IntfDecl->getSuperClass();
3912
0
    while (SuperClass && SuperClass->ivar_empty())
3913
0
      SuperClass = SuperClass->getSuperClass();
3914
0
    if (SuperClass) {
3915
0
      auto IvarIter = SuperClass->ivar_begin();
3916
0
      std::advance(IvarIter, SuperClass->ivar_size() - 1);
3917
0
      const ObjCIvarDecl *LastIvar = *IvarIter;
3918
0
      if (IsVariableSizedType(LastIvar->getType())) {
3919
0
        S.Diag(FirstIvar->getLocation(),
3920
0
               diag::warn_superclass_variable_sized_type_not_at_end)
3921
0
            << FirstIvar->getDeclName() << LastIvar->getDeclName()
3922
0
            << LastIvar->getType() << SuperClass->getDeclName();
3923
0
        S.Diag(LastIvar->getLocation(), diag::note_entity_declared_at)
3924
0
            << LastIvar->getDeclName();
3925
0
      }
3926
0
    }
3927
0
  }
3928
0
}
3929
3930
static void DiagnoseCategoryDirectMembersProtocolConformance(
3931
    Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl);
3932
3933
static void DiagnoseCategoryDirectMembersProtocolConformance(
3934
    Sema &S, ObjCCategoryDecl *CDecl,
3935
0
    const llvm::iterator_range<ObjCProtocolList::iterator> &Protocols) {
3936
0
  for (auto *PI : Protocols)
3937
0
    DiagnoseCategoryDirectMembersProtocolConformance(S, PI, CDecl);
3938
0
}
3939
3940
static void DiagnoseCategoryDirectMembersProtocolConformance(
3941
0
    Sema &S, ObjCProtocolDecl *PDecl, ObjCCategoryDecl *CDecl) {
3942
0
  if (!PDecl->isThisDeclarationADefinition() && PDecl->getDefinition())
3943
0
    PDecl = PDecl->getDefinition();
3944
3945
0
  llvm::SmallVector<const Decl *, 4> DirectMembers;
3946
0
  const auto *IDecl = CDecl->getClassInterface();
3947
0
  for (auto *MD : PDecl->methods()) {
3948
0
    if (!MD->isPropertyAccessor()) {
3949
0
      if (const auto *CMD =
3950
0
              IDecl->getMethod(MD->getSelector(), MD->isInstanceMethod())) {
3951
0
        if (CMD->isDirectMethod())
3952
0
          DirectMembers.push_back(CMD);
3953
0
      }
3954
0
    }
3955
0
  }
3956
0
  for (auto *PD : PDecl->properties()) {
3957
0
    if (const auto *CPD = IDecl->FindPropertyVisibleInPrimaryClass(
3958
0
            PD->getIdentifier(),
3959
0
            PD->isClassProperty()
3960
0
                ? ObjCPropertyQueryKind::OBJC_PR_query_class
3961
0
                : ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
3962
0
      if (CPD->isDirectProperty())
3963
0
        DirectMembers.push_back(CPD);
3964
0
    }
3965
0
  }
3966
0
  if (!DirectMembers.empty()) {
3967
0
    S.Diag(CDecl->getLocation(), diag::err_objc_direct_protocol_conformance)
3968
0
        << CDecl->IsClassExtension() << CDecl << PDecl << IDecl;
3969
0
    for (const auto *MD : DirectMembers)
3970
0
      S.Diag(MD->getLocation(), diag::note_direct_member_here);
3971
0
    return;
3972
0
  }
3973
3974
  // Check on this protocols's referenced protocols, recursively.
3975
0
  DiagnoseCategoryDirectMembersProtocolConformance(S, CDecl,
3976
0
                                                   PDecl->protocols());
3977
0
}
3978
3979
// Note: For class/category implementations, allMethods is always null.
3980
Decl *Sema::ActOnAtEnd(Scope *S, SourceRange AtEnd, ArrayRef<Decl *> allMethods,
3981
0
                       ArrayRef<DeclGroupPtrTy> allTUVars) {
3982
0
  if (getObjCContainerKind() == Sema::OCK_None)
3983
0
    return nullptr;
3984
3985
0
  assert(AtEnd.isValid() && "Invalid location for '@end'");
3986
3987
0
  auto *OCD = cast<ObjCContainerDecl>(CurContext);
3988
0
  Decl *ClassDecl = OCD;
3989
3990
0
  bool isInterfaceDeclKind =
3991
0
        isa<ObjCInterfaceDecl>(ClassDecl) || isa<ObjCCategoryDecl>(ClassDecl)
3992
0
         || isa<ObjCProtocolDecl>(ClassDecl);
3993
0
  bool checkIdenticalMethods = isa<ObjCImplementationDecl>(ClassDecl);
3994
3995
  // Make synthesized accessor stub functions visible.
3996
  // ActOnPropertyImplDecl() creates them as not visible in case
3997
  // they are overridden by an explicit method that is encountered
3998
  // later.
3999
0
  if (auto *OID = dyn_cast<ObjCImplementationDecl>(CurContext)) {
4000
0
    for (auto *PropImpl : OID->property_impls()) {
4001
0
      if (auto *Getter = PropImpl->getGetterMethodDecl())
4002
0
        if (Getter->isSynthesizedAccessorStub())
4003
0
          OID->addDecl(Getter);
4004
0
      if (auto *Setter = PropImpl->getSetterMethodDecl())
4005
0
        if (Setter->isSynthesizedAccessorStub())
4006
0
          OID->addDecl(Setter);
4007
0
    }
4008
0
  }
4009
4010
  // FIXME: Remove these and use the ObjCContainerDecl/DeclContext.
4011
0
  llvm::DenseMap<Selector, const ObjCMethodDecl*> InsMap;
4012
0
  llvm::DenseMap<Selector, const ObjCMethodDecl*> ClsMap;
4013
4014
0
  for (unsigned i = 0, e = allMethods.size(); i != e; i++ ) {
4015
0
    ObjCMethodDecl *Method =
4016
0
      cast_or_null<ObjCMethodDecl>(allMethods[i]);
4017
4018
0
    if (!Method) continue;  // Already issued a diagnostic.
4019
0
    if (Method->isInstanceMethod()) {
4020
      /// Check for instance method of the same name with incompatible types
4021
0
      const ObjCMethodDecl *&PrevMethod = InsMap[Method->getSelector()];
4022
0
      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4023
0
                              : false;
4024
0
      if ((isInterfaceDeclKind && PrevMethod && !match)
4025
0
          || (checkIdenticalMethods && match)) {
4026
0
          Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4027
0
            << Method->getDeclName();
4028
0
          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4029
0
        Method->setInvalidDecl();
4030
0
      } else {
4031
0
        if (PrevMethod) {
4032
0
          Method->setAsRedeclaration(PrevMethod);
4033
0
          if (!Context.getSourceManager().isInSystemHeader(
4034
0
                 Method->getLocation()))
4035
0
            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4036
0
              << Method->getDeclName();
4037
0
          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4038
0
        }
4039
0
        InsMap[Method->getSelector()] = Method;
4040
        /// The following allows us to typecheck messages to "id".
4041
0
        AddInstanceMethodToGlobalPool(Method);
4042
0
      }
4043
0
    } else {
4044
      /// Check for class method of the same name with incompatible types
4045
0
      const ObjCMethodDecl *&PrevMethod = ClsMap[Method->getSelector()];
4046
0
      bool match = PrevMethod ? MatchTwoMethodDeclarations(Method, PrevMethod)
4047
0
                              : false;
4048
0
      if ((isInterfaceDeclKind && PrevMethod && !match)
4049
0
          || (checkIdenticalMethods && match)) {
4050
0
        Diag(Method->getLocation(), diag::err_duplicate_method_decl)
4051
0
          << Method->getDeclName();
4052
0
        Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4053
0
        Method->setInvalidDecl();
4054
0
      } else {
4055
0
        if (PrevMethod) {
4056
0
          Method->setAsRedeclaration(PrevMethod);
4057
0
          if (!Context.getSourceManager().isInSystemHeader(
4058
0
                 Method->getLocation()))
4059
0
            Diag(Method->getLocation(), diag::warn_duplicate_method_decl)
4060
0
              << Method->getDeclName();
4061
0
          Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4062
0
        }
4063
0
        ClsMap[Method->getSelector()] = Method;
4064
0
        AddFactoryMethodToGlobalPool(Method);
4065
0
      }
4066
0
    }
4067
0
  }
4068
0
  if (isa<ObjCInterfaceDecl>(ClassDecl)) {
4069
    // Nothing to do here.
4070
0
  } else if (ObjCCategoryDecl *C = dyn_cast<ObjCCategoryDecl>(ClassDecl)) {
4071
    // Categories are used to extend the class by declaring new methods.
4072
    // By the same token, they are also used to add new properties. No
4073
    // need to compare the added property to those in the class.
4074
4075
0
    if (C->IsClassExtension()) {
4076
0
      ObjCInterfaceDecl *CCPrimary = C->getClassInterface();
4077
0
      DiagnoseClassExtensionDupMethods(C, CCPrimary);
4078
0
    }
4079
4080
0
    DiagnoseCategoryDirectMembersProtocolConformance(*this, C, C->protocols());
4081
0
  }
4082
0
  if (ObjCContainerDecl *CDecl = dyn_cast<ObjCContainerDecl>(ClassDecl)) {
4083
0
    if (CDecl->getIdentifier())
4084
      // ProcessPropertyDecl is responsible for diagnosing conflicts with any
4085
      // user-defined setter/getter. It also synthesizes setter/getter methods
4086
      // and adds them to the DeclContext and global method pools.
4087
0
      for (auto *I : CDecl->properties())
4088
0
        ProcessPropertyDecl(I);
4089
0
    CDecl->setAtEndRange(AtEnd);
4090
0
  }
4091
0
  if (ObjCImplementationDecl *IC=dyn_cast<ObjCImplementationDecl>(ClassDecl)) {
4092
0
    IC->setAtEndRange(AtEnd);
4093
0
    if (ObjCInterfaceDecl* IDecl = IC->getClassInterface()) {
4094
      // Any property declared in a class extension might have user
4095
      // declared setter or getter in current class extension or one
4096
      // of the other class extensions. Mark them as synthesized as
4097
      // property will be synthesized when property with same name is
4098
      // seen in the @implementation.
4099
0
      for (const auto *Ext : IDecl->visible_extensions()) {
4100
0
        for (const auto *Property : Ext->instance_properties()) {
4101
          // Skip over properties declared @dynamic
4102
0
          if (const ObjCPropertyImplDecl *PIDecl
4103
0
              = IC->FindPropertyImplDecl(Property->getIdentifier(),
4104
0
                                         Property->getQueryKind()))
4105
0
            if (PIDecl->getPropertyImplementation()
4106
0
                  == ObjCPropertyImplDecl::Dynamic)
4107
0
              continue;
4108
4109
0
          for (const auto *Ext : IDecl->visible_extensions()) {
4110
0
            if (ObjCMethodDecl *GetterMethod =
4111
0
                    Ext->getInstanceMethod(Property->getGetterName()))
4112
0
              GetterMethod->setPropertyAccessor(true);
4113
0
            if (!Property->isReadOnly())
4114
0
              if (ObjCMethodDecl *SetterMethod
4115
0
                    = Ext->getInstanceMethod(Property->getSetterName()))
4116
0
                SetterMethod->setPropertyAccessor(true);
4117
0
          }
4118
0
        }
4119
0
      }
4120
0
      ImplMethodsVsClassMethods(S, IC, IDecl);
4121
0
      AtomicPropertySetterGetterRules(IC, IDecl);
4122
0
      DiagnoseOwningPropertyGetterSynthesis(IC);
4123
0
      DiagnoseUnusedBackingIvarInAccessor(S, IC);
4124
0
      if (IDecl->hasDesignatedInitializers())
4125
0
        DiagnoseMissingDesignatedInitOverrides(IC, IDecl);
4126
0
      DiagnoseWeakIvars(*this, IC);
4127
0
      DiagnoseRetainableFlexibleArrayMember(*this, IDecl);
4128
4129
0
      bool HasRootClassAttr = IDecl->hasAttr<ObjCRootClassAttr>();
4130
0
      if (IDecl->getSuperClass() == nullptr) {
4131
        // This class has no superclass, so check that it has been marked with
4132
        // __attribute((objc_root_class)).
4133
0
        if (!HasRootClassAttr) {
4134
0
          SourceLocation DeclLoc(IDecl->getLocation());
4135
0
          SourceLocation SuperClassLoc(getLocForEndOfToken(DeclLoc));
4136
0
          Diag(DeclLoc, diag::warn_objc_root_class_missing)
4137
0
            << IDecl->getIdentifier();
4138
          // See if NSObject is in the current scope, and if it is, suggest
4139
          // adding " : NSObject " to the class declaration.
4140
0
          NamedDecl *IF = LookupSingleName(TUScope,
4141
0
                                           NSAPIObj->getNSClassId(NSAPI::ClassId_NSObject),
4142
0
                                           DeclLoc, LookupOrdinaryName);
4143
0
          ObjCInterfaceDecl *NSObjectDecl = dyn_cast_or_null<ObjCInterfaceDecl>(IF);
4144
0
          if (NSObjectDecl && NSObjectDecl->getDefinition()) {
4145
0
            Diag(SuperClassLoc, diag::note_objc_needs_superclass)
4146
0
              << FixItHint::CreateInsertion(SuperClassLoc, " : NSObject ");
4147
0
          } else {
4148
0
            Diag(SuperClassLoc, diag::note_objc_needs_superclass);
4149
0
          }
4150
0
        }
4151
0
      } else if (HasRootClassAttr) {
4152
        // Complain that only root classes may have this attribute.
4153
0
        Diag(IDecl->getLocation(), diag::err_objc_root_class_subclass);
4154
0
      }
4155
4156
0
      if (const ObjCInterfaceDecl *Super = IDecl->getSuperClass()) {
4157
        // An interface can subclass another interface with a
4158
        // objc_subclassing_restricted attribute when it has that attribute as
4159
        // well (because of interfaces imported from Swift). Therefore we have
4160
        // to check if we can subclass in the implementation as well.
4161
0
        if (IDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4162
0
            Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4163
0
          Diag(IC->getLocation(), diag::err_restricted_superclass_mismatch);
4164
0
          Diag(Super->getLocation(), diag::note_class_declared);
4165
0
        }
4166
0
      }
4167
4168
0
      if (IDecl->hasAttr<ObjCClassStubAttr>())
4169
0
        Diag(IC->getLocation(), diag::err_implementation_of_class_stub);
4170
4171
0
      if (LangOpts.ObjCRuntime.isNonFragile()) {
4172
0
        while (IDecl->getSuperClass()) {
4173
0
          DiagnoseDuplicateIvars(IDecl, IDecl->getSuperClass());
4174
0
          IDecl = IDecl->getSuperClass();
4175
0
        }
4176
0
      }
4177
0
    }
4178
0
    SetIvarInitializers(IC);
4179
0
  } else if (ObjCCategoryImplDecl* CatImplClass =
4180
0
                                   dyn_cast<ObjCCategoryImplDecl>(ClassDecl)) {
4181
0
    CatImplClass->setAtEndRange(AtEnd);
4182
4183
    // Find category interface decl and then check that all methods declared
4184
    // in this interface are implemented in the category @implementation.
4185
0
    if (ObjCInterfaceDecl* IDecl = CatImplClass->getClassInterface()) {
4186
0
      if (ObjCCategoryDecl *Cat
4187
0
            = IDecl->FindCategoryDeclaration(CatImplClass->getIdentifier())) {
4188
0
        ImplMethodsVsClassMethods(S, CatImplClass, Cat);
4189
0
      }
4190
0
    }
4191
0
  } else if (const auto *IntfDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl)) {
4192
0
    if (const ObjCInterfaceDecl *Super = IntfDecl->getSuperClass()) {
4193
0
      if (!IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>() &&
4194
0
          Super->hasAttr<ObjCSubclassingRestrictedAttr>()) {
4195
0
        Diag(IntfDecl->getLocation(), diag::err_restricted_superclass_mismatch);
4196
0
        Diag(Super->getLocation(), diag::note_class_declared);
4197
0
      }
4198
0
    }
4199
4200
0
    if (IntfDecl->hasAttr<ObjCClassStubAttr>() &&
4201
0
        !IntfDecl->hasAttr<ObjCSubclassingRestrictedAttr>())
4202
0
      Diag(IntfDecl->getLocation(), diag::err_class_stub_subclassing_mismatch);
4203
0
  }
4204
0
  DiagnoseVariableSizedIvars(*this, OCD);
4205
0
  if (isInterfaceDeclKind) {
4206
    // Reject invalid vardecls.
4207
0
    for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4208
0
      DeclGroupRef DG = allTUVars[i].get();
4209
0
      for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4210
0
        if (VarDecl *VDecl = dyn_cast<VarDecl>(*I)) {
4211
0
          if (!VDecl->hasExternalStorage())
4212
0
            Diag(VDecl->getLocation(), diag::err_objc_var_decl_inclass);
4213
0
        }
4214
0
    }
4215
0
  }
4216
0
  ActOnObjCContainerFinishDefinition();
4217
4218
0
  for (unsigned i = 0, e = allTUVars.size(); i != e; i++) {
4219
0
    DeclGroupRef DG = allTUVars[i].get();
4220
0
    for (DeclGroupRef::iterator I = DG.begin(), E = DG.end(); I != E; ++I)
4221
0
      (*I)->setTopLevelDeclInObjCContainer();
4222
0
    Consumer.HandleTopLevelDeclInObjCContainer(DG);
4223
0
  }
4224
4225
0
  ActOnDocumentableDecl(ClassDecl);
4226
0
  return ClassDecl;
4227
0
}
4228
4229
/// CvtQTToAstBitMask - utility routine to produce an AST bitmask for
4230
/// objective-c's type qualifier from the parser version of the same info.
4231
static Decl::ObjCDeclQualifier
4232
0
CvtQTToAstBitMask(ObjCDeclSpec::ObjCDeclQualifier PQTVal) {
4233
0
  return (Decl::ObjCDeclQualifier) (unsigned) PQTVal;
4234
0
}
4235
4236
/// Check whether the declared result type of the given Objective-C
4237
/// method declaration is compatible with the method's class.
4238
///
4239
static Sema::ResultTypeCompatibilityKind
4240
CheckRelatedResultTypeCompatibility(Sema &S, ObjCMethodDecl *Method,
4241
0
                                    ObjCInterfaceDecl *CurrentClass) {
4242
0
  QualType ResultType = Method->getReturnType();
4243
4244
  // If an Objective-C method inherits its related result type, then its
4245
  // declared result type must be compatible with its own class type. The
4246
  // declared result type is compatible if:
4247
0
  if (const ObjCObjectPointerType *ResultObjectType
4248
0
                                = ResultType->getAs<ObjCObjectPointerType>()) {
4249
    //   - it is id or qualified id, or
4250
0
    if (ResultObjectType->isObjCIdType() ||
4251
0
        ResultObjectType->isObjCQualifiedIdType())
4252
0
      return Sema::RTC_Compatible;
4253
4254
0
    if (CurrentClass) {
4255
0
      if (ObjCInterfaceDecl *ResultClass
4256
0
                                      = ResultObjectType->getInterfaceDecl()) {
4257
        //   - it is the same as the method's class type, or
4258
0
        if (declaresSameEntity(CurrentClass, ResultClass))
4259
0
          return Sema::RTC_Compatible;
4260
4261
        //   - it is a superclass of the method's class type
4262
0
        if (ResultClass->isSuperClassOf(CurrentClass))
4263
0
          return Sema::RTC_Compatible;
4264
0
      }
4265
0
    } else {
4266
      // Any Objective-C pointer type might be acceptable for a protocol
4267
      // method; we just don't know.
4268
0
      return Sema::RTC_Unknown;
4269
0
    }
4270
0
  }
4271
4272
0
  return Sema::RTC_Incompatible;
4273
0
}
4274
4275
namespace {
4276
/// A helper class for searching for methods which a particular method
4277
/// overrides.
4278
class OverrideSearch {
4279
public:
4280
  const ObjCMethodDecl *Method;
4281
  llvm::SmallSetVector<ObjCMethodDecl*, 4> Overridden;
4282
  bool Recursive;
4283
4284
public:
4285
0
  OverrideSearch(Sema &S, const ObjCMethodDecl *method) : Method(method) {
4286
0
    Selector selector = method->getSelector();
4287
4288
    // Bypass this search if we've never seen an instance/class method
4289
    // with this selector before.
4290
0
    Sema::GlobalMethodPool::iterator it = S.MethodPool.find(selector);
4291
0
    if (it == S.MethodPool.end()) {
4292
0
      if (!S.getExternalSource()) return;
4293
0
      S.ReadMethodPool(selector);
4294
4295
0
      it = S.MethodPool.find(selector);
4296
0
      if (it == S.MethodPool.end())
4297
0
        return;
4298
0
    }
4299
0
    const ObjCMethodList &list =
4300
0
      method->isInstanceMethod() ? it->second.first : it->second.second;
4301
0
    if (!list.getMethod()) return;
4302
4303
0
    const ObjCContainerDecl *container
4304
0
      = cast<ObjCContainerDecl>(method->getDeclContext());
4305
4306
    // Prevent the search from reaching this container again.  This is
4307
    // important with categories, which override methods from the
4308
    // interface and each other.
4309
0
    if (const ObjCCategoryDecl *Category =
4310
0
            dyn_cast<ObjCCategoryDecl>(container)) {
4311
0
      searchFromContainer(container);
4312
0
      if (const ObjCInterfaceDecl *Interface = Category->getClassInterface())
4313
0
        searchFromContainer(Interface);
4314
0
    } else {
4315
0
      searchFromContainer(container);
4316
0
    }
4317
0
  }
4318
4319
  typedef decltype(Overridden)::iterator iterator;
4320
0
  iterator begin() const { return Overridden.begin(); }
4321
0
  iterator end() const { return Overridden.end(); }
4322
4323
private:
4324
0
  void searchFromContainer(const ObjCContainerDecl *container) {
4325
0
    if (container->isInvalidDecl()) return;
4326
4327
0
    switch (container->getDeclKind()) {
4328
0
#define OBJCCONTAINER(type, base) \
4329
0
    case Decl::type: \
4330
0
      searchFrom(cast<type##Decl>(container)); \
4331
0
      break;
4332
0
#define ABSTRACT_DECL(expansion)
4333
0
#define DECL(type, base) \
4334
0
    case Decl::type:
4335
0
#include "clang/AST/DeclNodes.inc"
4336
0
      llvm_unreachable("not an ObjC container!");
4337
0
    }
4338
0
  }
4339
4340
0
  void searchFrom(const ObjCProtocolDecl *protocol) {
4341
0
    if (!protocol->hasDefinition())
4342
0
      return;
4343
4344
    // A method in a protocol declaration overrides declarations from
4345
    // referenced ("parent") protocols.
4346
0
    search(protocol->getReferencedProtocols());
4347
0
  }
4348
4349
0
  void searchFrom(const ObjCCategoryDecl *category) {
4350
    // A method in a category declaration overrides declarations from
4351
    // the main class and from protocols the category references.
4352
    // The main class is handled in the constructor.
4353
0
    search(category->getReferencedProtocols());
4354
0
  }
4355
4356
0
  void searchFrom(const ObjCCategoryImplDecl *impl) {
4357
    // A method in a category definition that has a category
4358
    // declaration overrides declarations from the category
4359
    // declaration.
4360
0
    if (ObjCCategoryDecl *category = impl->getCategoryDecl()) {
4361
0
      search(category);
4362
0
      if (ObjCInterfaceDecl *Interface = category->getClassInterface())
4363
0
        search(Interface);
4364
4365
    // Otherwise it overrides declarations from the class.
4366
0
    } else if (const auto *Interface = impl->getClassInterface()) {
4367
0
      search(Interface);
4368
0
    }
4369
0
  }
4370
4371
0
  void searchFrom(const ObjCInterfaceDecl *iface) {
4372
    // A method in a class declaration overrides declarations from
4373
0
    if (!iface->hasDefinition())
4374
0
      return;
4375
4376
    //   - categories,
4377
0
    for (auto *Cat : iface->known_categories())
4378
0
      search(Cat);
4379
4380
    //   - the super class, and
4381
0
    if (ObjCInterfaceDecl *super = iface->getSuperClass())
4382
0
      search(super);
4383
4384
    //   - any referenced protocols.
4385
0
    search(iface->getReferencedProtocols());
4386
0
  }
4387
4388
0
  void searchFrom(const ObjCImplementationDecl *impl) {
4389
    // A method in a class implementation overrides declarations from
4390
    // the class interface.
4391
0
    if (const auto *Interface = impl->getClassInterface())
4392
0
      search(Interface);
4393
0
  }
4394
4395
0
  void search(const ObjCProtocolList &protocols) {
4396
0
    for (const auto *Proto : protocols)
4397
0
      search(Proto);
4398
0
  }
4399
4400
0
  void search(const ObjCContainerDecl *container) {
4401
    // Check for a method in this container which matches this selector.
4402
0
    ObjCMethodDecl *meth = container->getMethod(Method->getSelector(),
4403
0
                                                Method->isInstanceMethod(),
4404
0
                                                /*AllowHidden=*/true);
4405
4406
    // If we find one, record it and bail out.
4407
0
    if (meth) {
4408
0
      Overridden.insert(meth);
4409
0
      return;
4410
0
    }
4411
4412
    // Otherwise, search for methods that a hypothetical method here
4413
    // would have overridden.
4414
4415
    // Note that we're now in a recursive case.
4416
0
    Recursive = true;
4417
4418
0
    searchFromContainer(container);
4419
0
  }
4420
};
4421
} // end anonymous namespace
4422
4423
void Sema::CheckObjCMethodDirectOverrides(ObjCMethodDecl *method,
4424
0
                                          ObjCMethodDecl *overridden) {
4425
0
  if (overridden->isDirectMethod()) {
4426
0
    const auto *attr = overridden->getAttr<ObjCDirectAttr>();
4427
0
    Diag(method->getLocation(), diag::err_objc_override_direct_method);
4428
0
    Diag(attr->getLocation(), diag::note_previous_declaration);
4429
0
  } else if (method->isDirectMethod()) {
4430
0
    const auto *attr = method->getAttr<ObjCDirectAttr>();
4431
0
    Diag(attr->getLocation(), diag::err_objc_direct_on_override)
4432
0
        << isa<ObjCProtocolDecl>(overridden->getDeclContext());
4433
0
    Diag(overridden->getLocation(), diag::note_previous_declaration);
4434
0
  }
4435
0
}
4436
4437
void Sema::CheckObjCMethodOverrides(ObjCMethodDecl *ObjCMethod,
4438
                                    ObjCInterfaceDecl *CurrentClass,
4439
0
                                    ResultTypeCompatibilityKind RTC) {
4440
0
  if (!ObjCMethod)
4441
0
    return;
4442
0
  auto IsMethodInCurrentClass = [CurrentClass](const ObjCMethodDecl *M) {
4443
    // Checking canonical decl works across modules.
4444
0
    return M->getClassInterface()->getCanonicalDecl() ==
4445
0
           CurrentClass->getCanonicalDecl();
4446
0
  };
4447
  // Search for overridden methods and merge information down from them.
4448
0
  OverrideSearch overrides(*this, ObjCMethod);
4449
  // Keep track if the method overrides any method in the class's base classes,
4450
  // its protocols, or its categories' protocols; we will keep that info
4451
  // in the ObjCMethodDecl.
4452
  // For this info, a method in an implementation is not considered as
4453
  // overriding the same method in the interface or its categories.
4454
0
  bool hasOverriddenMethodsInBaseOrProtocol = false;
4455
0
  for (ObjCMethodDecl *overridden : overrides) {
4456
0
    if (!hasOverriddenMethodsInBaseOrProtocol) {
4457
0
      if (isa<ObjCProtocolDecl>(overridden->getDeclContext()) ||
4458
0
          !IsMethodInCurrentClass(overridden) || overridden->isOverriding()) {
4459
0
        CheckObjCMethodDirectOverrides(ObjCMethod, overridden);
4460
0
        hasOverriddenMethodsInBaseOrProtocol = true;
4461
0
      } else if (isa<ObjCImplDecl>(ObjCMethod->getDeclContext())) {
4462
        // OverrideSearch will return as "overridden" the same method in the
4463
        // interface. For hasOverriddenMethodsInBaseOrProtocol, we need to
4464
        // check whether a category of a base class introduced a method with the
4465
        // same selector, after the interface method declaration.
4466
        // To avoid unnecessary lookups in the majority of cases, we use the
4467
        // extra info bits in GlobalMethodPool to check whether there were any
4468
        // category methods with this selector.
4469
0
        GlobalMethodPool::iterator It =
4470
0
            MethodPool.find(ObjCMethod->getSelector());
4471
0
        if (It != MethodPool.end()) {
4472
0
          ObjCMethodList &List =
4473
0
            ObjCMethod->isInstanceMethod()? It->second.first: It->second.second;
4474
0
          unsigned CategCount = List.getBits();
4475
0
          if (CategCount > 0) {
4476
            // If the method is in a category we'll do lookup if there were at
4477
            // least 2 category methods recorded, otherwise only one will do.
4478
0
            if (CategCount > 1 ||
4479
0
                !isa<ObjCCategoryImplDecl>(overridden->getDeclContext())) {
4480
0
              OverrideSearch overrides(*this, overridden);
4481
0
              for (ObjCMethodDecl *SuperOverridden : overrides) {
4482
0
                if (isa<ObjCProtocolDecl>(SuperOverridden->getDeclContext()) ||
4483
0
                    !IsMethodInCurrentClass(SuperOverridden)) {
4484
0
                  CheckObjCMethodDirectOverrides(ObjCMethod, SuperOverridden);
4485
0
                  hasOverriddenMethodsInBaseOrProtocol = true;
4486
0
                  overridden->setOverriding(true);
4487
0
                  break;
4488
0
                }
4489
0
              }
4490
0
            }
4491
0
          }
4492
0
        }
4493
0
      }
4494
0
    }
4495
4496
    // Propagate down the 'related result type' bit from overridden methods.
4497
0
    if (RTC != Sema::RTC_Incompatible && overridden->hasRelatedResultType())
4498
0
      ObjCMethod->setRelatedResultType();
4499
4500
    // Then merge the declarations.
4501
0
    mergeObjCMethodDecls(ObjCMethod, overridden);
4502
4503
0
    if (ObjCMethod->isImplicit() && overridden->isImplicit())
4504
0
      continue; // Conflicting properties are detected elsewhere.
4505
4506
    // Check for overriding methods
4507
0
    if (isa<ObjCInterfaceDecl>(ObjCMethod->getDeclContext()) ||
4508
0
        isa<ObjCImplementationDecl>(ObjCMethod->getDeclContext()))
4509
0
      CheckConflictingOverridingMethod(ObjCMethod, overridden,
4510
0
              isa<ObjCProtocolDecl>(overridden->getDeclContext()));
4511
4512
0
    if (CurrentClass && overridden->getDeclContext() != CurrentClass &&
4513
0
        isa<ObjCInterfaceDecl>(overridden->getDeclContext()) &&
4514
0
        !overridden->isImplicit() /* not meant for properties */) {
4515
0
      ObjCMethodDecl::param_iterator ParamI = ObjCMethod->param_begin(),
4516
0
                                          E = ObjCMethod->param_end();
4517
0
      ObjCMethodDecl::param_iterator PrevI = overridden->param_begin(),
4518
0
                                     PrevE = overridden->param_end();
4519
0
      for (; ParamI != E && PrevI != PrevE; ++ParamI, ++PrevI) {
4520
0
        assert(PrevI != overridden->param_end() && "Param mismatch");
4521
0
        QualType T1 = Context.getCanonicalType((*ParamI)->getType());
4522
0
        QualType T2 = Context.getCanonicalType((*PrevI)->getType());
4523
        // If type of argument of method in this class does not match its
4524
        // respective argument type in the super class method, issue warning;
4525
0
        if (!Context.typesAreCompatible(T1, T2)) {
4526
0
          Diag((*ParamI)->getLocation(), diag::ext_typecheck_base_super)
4527
0
            << T1 << T2;
4528
0
          Diag(overridden->getLocation(), diag::note_previous_declaration);
4529
0
          break;
4530
0
        }
4531
0
      }
4532
0
    }
4533
0
  }
4534
4535
0
  ObjCMethod->setOverriding(hasOverriddenMethodsInBaseOrProtocol);
4536
0
}
4537
4538
/// Merge type nullability from for a redeclaration of the same entity,
4539
/// producing the updated type of the redeclared entity.
4540
static QualType mergeTypeNullabilityForRedecl(Sema &S, SourceLocation loc,
4541
                                              QualType type,
4542
                                              bool usesCSKeyword,
4543
                                              SourceLocation prevLoc,
4544
                                              QualType prevType,
4545
0
                                              bool prevUsesCSKeyword) {
4546
  // Determine the nullability of both types.
4547
0
  auto nullability = type->getNullability();
4548
0
  auto prevNullability = prevType->getNullability();
4549
4550
  // Easy case: both have nullability.
4551
0
  if (nullability.has_value() == prevNullability.has_value()) {
4552
    // Neither has nullability; continue.
4553
0
    if (!nullability)
4554
0
      return type;
4555
4556
    // The nullabilities are equivalent; do nothing.
4557
0
    if (*nullability == *prevNullability)
4558
0
      return type;
4559
4560
    // Complain about mismatched nullability.
4561
0
    S.Diag(loc, diag::err_nullability_conflicting)
4562
0
      << DiagNullabilityKind(*nullability, usesCSKeyword)
4563
0
      << DiagNullabilityKind(*prevNullability, prevUsesCSKeyword);
4564
0
    return type;
4565
0
  }
4566
4567
  // If it's the redeclaration that has nullability, don't change anything.
4568
0
  if (nullability)
4569
0
    return type;
4570
4571
  // Otherwise, provide the result with the same nullability.
4572
0
  return S.Context.getAttributedType(
4573
0
           AttributedType::getNullabilityAttrKind(*prevNullability),
4574
0
           type, type);
4575
0
}
4576
4577
/// Merge information from the declaration of a method in the \@interface
4578
/// (or a category/extension) into the corresponding method in the
4579
/// @implementation (for a class or category).
4580
static void mergeInterfaceMethodToImpl(Sema &S,
4581
                                       ObjCMethodDecl *method,
4582
0
                                       ObjCMethodDecl *prevMethod) {
4583
  // Merge the objc_requires_super attribute.
4584
0
  if (prevMethod->hasAttr<ObjCRequiresSuperAttr>() &&
4585
0
      !method->hasAttr<ObjCRequiresSuperAttr>()) {
4586
    // merge the attribute into implementation.
4587
0
    method->addAttr(
4588
0
      ObjCRequiresSuperAttr::CreateImplicit(S.Context,
4589
0
                                            method->getLocation()));
4590
0
  }
4591
4592
  // Merge nullability of the result type.
4593
0
  QualType newReturnType
4594
0
    = mergeTypeNullabilityForRedecl(
4595
0
        S, method->getReturnTypeSourceRange().getBegin(),
4596
0
        method->getReturnType(),
4597
0
        method->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4598
0
        prevMethod->getReturnTypeSourceRange().getBegin(),
4599
0
        prevMethod->getReturnType(),
4600
0
        prevMethod->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4601
0
  method->setReturnType(newReturnType);
4602
4603
  // Handle each of the parameters.
4604
0
  unsigned numParams = method->param_size();
4605
0
  unsigned numPrevParams = prevMethod->param_size();
4606
0
  for (unsigned i = 0, n = std::min(numParams, numPrevParams); i != n; ++i) {
4607
0
    ParmVarDecl *param = method->param_begin()[i];
4608
0
    ParmVarDecl *prevParam = prevMethod->param_begin()[i];
4609
4610
    // Merge nullability.
4611
0
    QualType newParamType
4612
0
      = mergeTypeNullabilityForRedecl(
4613
0
          S, param->getLocation(), param->getType(),
4614
0
          param->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability,
4615
0
          prevParam->getLocation(), prevParam->getType(),
4616
0
          prevParam->getObjCDeclQualifier() & Decl::OBJC_TQ_CSNullability);
4617
0
    param->setType(newParamType);
4618
0
  }
4619
0
}
4620
4621
/// Verify that the method parameters/return value have types that are supported
4622
/// by the x86 target.
4623
static void checkObjCMethodX86VectorTypes(Sema &SemaRef,
4624
0
                                          const ObjCMethodDecl *Method) {
4625
0
  assert(SemaRef.getASTContext().getTargetInfo().getTriple().getArch() ==
4626
0
             llvm::Triple::x86 &&
4627
0
         "x86-specific check invoked for a different target");
4628
0
  SourceLocation Loc;
4629
0
  QualType T;
4630
0
  for (const ParmVarDecl *P : Method->parameters()) {
4631
0
    if (P->getType()->isVectorType()) {
4632
0
      Loc = P->getBeginLoc();
4633
0
      T = P->getType();
4634
0
      break;
4635
0
    }
4636
0
  }
4637
0
  if (Loc.isInvalid()) {
4638
0
    if (Method->getReturnType()->isVectorType()) {
4639
0
      Loc = Method->getReturnTypeSourceRange().getBegin();
4640
0
      T = Method->getReturnType();
4641
0
    } else
4642
0
      return;
4643
0
  }
4644
4645
  // Vector parameters/return values are not supported by objc_msgSend on x86 in
4646
  // iOS < 9 and macOS < 10.11.
4647
0
  const auto &Triple = SemaRef.getASTContext().getTargetInfo().getTriple();
4648
0
  VersionTuple AcceptedInVersion;
4649
0
  if (Triple.getOS() == llvm::Triple::IOS)
4650
0
    AcceptedInVersion = VersionTuple(/*Major=*/9);
4651
0
  else if (Triple.isMacOSX())
4652
0
    AcceptedInVersion = VersionTuple(/*Major=*/10, /*Minor=*/11);
4653
0
  else
4654
0
    return;
4655
0
  if (SemaRef.getASTContext().getTargetInfo().getPlatformMinVersion() >=
4656
0
      AcceptedInVersion)
4657
0
    return;
4658
0
  SemaRef.Diag(Loc, diag::err_objc_method_unsupported_param_ret_type)
4659
0
      << T << (Method->getReturnType()->isVectorType() ? /*return value*/ 1
4660
0
                                                       : /*parameter*/ 0)
4661
0
      << (Triple.isMacOSX() ? "macOS 10.11" : "iOS 9");
4662
0
}
4663
4664
0
static void mergeObjCDirectMembers(Sema &S, Decl *CD, ObjCMethodDecl *Method) {
4665
0
  if (!Method->isDirectMethod() && !Method->hasAttr<UnavailableAttr>() &&
4666
0
      CD->hasAttr<ObjCDirectMembersAttr>()) {
4667
0
    Method->addAttr(
4668
0
        ObjCDirectAttr::CreateImplicit(S.Context, Method->getLocation()));
4669
0
  }
4670
0
}
4671
4672
static void checkObjCDirectMethodClashes(Sema &S, ObjCInterfaceDecl *IDecl,
4673
                                         ObjCMethodDecl *Method,
4674
0
                                         ObjCImplDecl *ImpDecl = nullptr) {
4675
0
  auto Sel = Method->getSelector();
4676
0
  bool isInstance = Method->isInstanceMethod();
4677
0
  bool diagnosed = false;
4678
4679
0
  auto diagClash = [&](const ObjCMethodDecl *IMD) {
4680
0
    if (diagnosed || IMD->isImplicit())
4681
0
      return;
4682
0
    if (Method->isDirectMethod() || IMD->isDirectMethod()) {
4683
0
      S.Diag(Method->getLocation(), diag::err_objc_direct_duplicate_decl)
4684
0
          << Method->isDirectMethod() << /* method */ 0 << IMD->isDirectMethod()
4685
0
          << Method->getDeclName();
4686
0
      S.Diag(IMD->getLocation(), diag::note_previous_declaration);
4687
0
      diagnosed = true;
4688
0
    }
4689
0
  };
4690
4691
  // Look for any other declaration of this method anywhere we can see in this
4692
  // compilation unit.
4693
  //
4694
  // We do not use IDecl->lookupMethod() because we have specific needs:
4695
  //
4696
  // - we absolutely do not need to walk protocols, because
4697
  //   diag::err_objc_direct_on_protocol has already been emitted
4698
  //   during parsing if there's a conflict,
4699
  //
4700
  // - when we do not find a match in a given @interface container,
4701
  //   we need to attempt looking it up in the @implementation block if the
4702
  //   translation unit sees it to find more clashes.
4703
4704
0
  if (auto *IMD = IDecl->getMethod(Sel, isInstance))
4705
0
    diagClash(IMD);
4706
0
  else if (auto *Impl = IDecl->getImplementation())
4707
0
    if (Impl != ImpDecl)
4708
0
      if (auto *IMD = IDecl->getImplementation()->getMethod(Sel, isInstance))
4709
0
        diagClash(IMD);
4710
4711
0
  for (const auto *Cat : IDecl->visible_categories())
4712
0
    if (auto *IMD = Cat->getMethod(Sel, isInstance))
4713
0
      diagClash(IMD);
4714
0
    else if (auto CatImpl = Cat->getImplementation())
4715
0
      if (CatImpl != ImpDecl)
4716
0
        if (auto *IMD = Cat->getMethod(Sel, isInstance))
4717
0
          diagClash(IMD);
4718
0
}
4719
4720
Decl *Sema::ActOnMethodDeclaration(
4721
    Scope *S, SourceLocation MethodLoc, SourceLocation EndLoc,
4722
    tok::TokenKind MethodType, ObjCDeclSpec &ReturnQT, ParsedType ReturnType,
4723
    ArrayRef<SourceLocation> SelectorLocs, Selector Sel,
4724
    // optional arguments. The number of types/arguments is obtained
4725
    // from the Sel.getNumArgs().
4726
    ObjCArgInfo *ArgInfo, DeclaratorChunk::ParamInfo *CParamInfo,
4727
    unsigned CNumArgs, // c-style args
4728
    const ParsedAttributesView &AttrList, tok::ObjCKeywordKind MethodDeclKind,
4729
82
    bool isVariadic, bool MethodDefinition) {
4730
  // Make sure we can establish a context for the method.
4731
82
  if (!CurContext->isObjCContainer()) {
4732
82
    Diag(MethodLoc, diag::err_missing_method_context);
4733
82
    return nullptr;
4734
82
  }
4735
4736
0
  Decl *ClassDecl = cast<ObjCContainerDecl>(CurContext);
4737
0
  QualType resultDeclType;
4738
4739
0
  bool HasRelatedResultType = false;
4740
0
  TypeSourceInfo *ReturnTInfo = nullptr;
4741
0
  if (ReturnType) {
4742
0
    resultDeclType = GetTypeFromParser(ReturnType, &ReturnTInfo);
4743
4744
0
    if (CheckFunctionReturnType(resultDeclType, MethodLoc))
4745
0
      return nullptr;
4746
4747
0
    QualType bareResultType = resultDeclType;
4748
0
    (void)AttributedType::stripOuterNullability(bareResultType);
4749
0
    HasRelatedResultType = (bareResultType == Context.getObjCInstanceType());
4750
0
  } else { // get the type for "id".
4751
0
    resultDeclType = Context.getObjCIdType();
4752
0
    Diag(MethodLoc, diag::warn_missing_method_return_type)
4753
0
      << FixItHint::CreateInsertion(SelectorLocs.front(), "(id)");
4754
0
  }
4755
4756
0
  ObjCMethodDecl *ObjCMethod = ObjCMethodDecl::Create(
4757
0
      Context, MethodLoc, EndLoc, Sel, resultDeclType, ReturnTInfo, CurContext,
4758
0
      MethodType == tok::minus, isVariadic,
4759
0
      /*isPropertyAccessor=*/false, /*isSynthesizedAccessorStub=*/false,
4760
0
      /*isImplicitlyDeclared=*/false, /*isDefined=*/false,
4761
0
      MethodDeclKind == tok::objc_optional
4762
0
          ? ObjCImplementationControl::Optional
4763
0
          : ObjCImplementationControl::Required,
4764
0
      HasRelatedResultType);
4765
4766
0
  SmallVector<ParmVarDecl*, 16> Params;
4767
4768
0
  for (unsigned i = 0, e = Sel.getNumArgs(); i != e; ++i) {
4769
0
    QualType ArgType;
4770
0
    TypeSourceInfo *DI;
4771
4772
0
    if (!ArgInfo[i].Type) {
4773
0
      ArgType = Context.getObjCIdType();
4774
0
      DI = nullptr;
4775
0
    } else {
4776
0
      ArgType = GetTypeFromParser(ArgInfo[i].Type, &DI);
4777
0
    }
4778
4779
0
    LookupResult R(*this, ArgInfo[i].Name, ArgInfo[i].NameLoc,
4780
0
                   LookupOrdinaryName, forRedeclarationInCurContext());
4781
0
    LookupName(R, S);
4782
0
    if (R.isSingleResult()) {
4783
0
      NamedDecl *PrevDecl = R.getFoundDecl();
4784
0
      if (S->isDeclScope(PrevDecl)) {
4785
0
        Diag(ArgInfo[i].NameLoc,
4786
0
             (MethodDefinition ? diag::warn_method_param_redefinition
4787
0
                               : diag::warn_method_param_declaration))
4788
0
          << ArgInfo[i].Name;
4789
0
        Diag(PrevDecl->getLocation(),
4790
0
             diag::note_previous_declaration);
4791
0
      }
4792
0
    }
4793
4794
0
    SourceLocation StartLoc = DI
4795
0
      ? DI->getTypeLoc().getBeginLoc()
4796
0
      : ArgInfo[i].NameLoc;
4797
4798
0
    ParmVarDecl* Param = CheckParameter(ObjCMethod, StartLoc,
4799
0
                                        ArgInfo[i].NameLoc, ArgInfo[i].Name,
4800
0
                                        ArgType, DI, SC_None);
4801
4802
0
    Param->setObjCMethodScopeInfo(i);
4803
4804
0
    Param->setObjCDeclQualifier(
4805
0
      CvtQTToAstBitMask(ArgInfo[i].DeclSpec.getObjCDeclQualifier()));
4806
4807
    // Apply the attributes to the parameter.
4808
0
    ProcessDeclAttributeList(TUScope, Param, ArgInfo[i].ArgAttrs);
4809
0
    AddPragmaAttributes(TUScope, Param);
4810
4811
0
    if (Param->hasAttr<BlocksAttr>()) {
4812
0
      Diag(Param->getLocation(), diag::err_block_on_nonlocal);
4813
0
      Param->setInvalidDecl();
4814
0
    }
4815
0
    S->AddDecl(Param);
4816
0
    IdResolver.AddDecl(Param);
4817
4818
0
    Params.push_back(Param);
4819
0
  }
4820
4821
0
  for (unsigned i = 0, e = CNumArgs; i != e; ++i) {
4822
0
    ParmVarDecl *Param = cast<ParmVarDecl>(CParamInfo[i].Param);
4823
0
    QualType ArgType = Param->getType();
4824
0
    if (ArgType.isNull())
4825
0
      ArgType = Context.getObjCIdType();
4826
0
    else
4827
      // Perform the default array/function conversions (C99 6.7.5.3p[7,8]).
4828
0
      ArgType = Context.getAdjustedParameterType(ArgType);
4829
4830
0
    Param->setDeclContext(ObjCMethod);
4831
0
    Params.push_back(Param);
4832
0
  }
4833
4834
0
  ObjCMethod->setMethodParams(Context, Params, SelectorLocs);
4835
0
  ObjCMethod->setObjCDeclQualifier(
4836
0
    CvtQTToAstBitMask(ReturnQT.getObjCDeclQualifier()));
4837
4838
0
  ProcessDeclAttributeList(TUScope, ObjCMethod, AttrList);
4839
0
  AddPragmaAttributes(TUScope, ObjCMethod);
4840
4841
  // Add the method now.
4842
0
  const ObjCMethodDecl *PrevMethod = nullptr;
4843
0
  if (ObjCImplDecl *ImpDecl = dyn_cast<ObjCImplDecl>(ClassDecl)) {
4844
0
    if (MethodType == tok::minus) {
4845
0
      PrevMethod = ImpDecl->getInstanceMethod(Sel);
4846
0
      ImpDecl->addInstanceMethod(ObjCMethod);
4847
0
    } else {
4848
0
      PrevMethod = ImpDecl->getClassMethod(Sel);
4849
0
      ImpDecl->addClassMethod(ObjCMethod);
4850
0
    }
4851
4852
    // If this method overrides a previous @synthesize declaration,
4853
    // register it with the property.  Linear search through all
4854
    // properties here, because the autosynthesized stub hasn't been
4855
    // made visible yet, so it can be overridden by a later
4856
    // user-specified implementation.
4857
0
    for (ObjCPropertyImplDecl *PropertyImpl : ImpDecl->property_impls()) {
4858
0
      if (auto *Setter = PropertyImpl->getSetterMethodDecl())
4859
0
        if (Setter->getSelector() == Sel &&
4860
0
            Setter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4861
0
          assert(Setter->isSynthesizedAccessorStub() && "autosynth stub expected");
4862
0
          PropertyImpl->setSetterMethodDecl(ObjCMethod);
4863
0
        }
4864
0
      if (auto *Getter = PropertyImpl->getGetterMethodDecl())
4865
0
        if (Getter->getSelector() == Sel &&
4866
0
            Getter->isInstanceMethod() == ObjCMethod->isInstanceMethod()) {
4867
0
          assert(Getter->isSynthesizedAccessorStub() && "autosynth stub expected");
4868
0
          PropertyImpl->setGetterMethodDecl(ObjCMethod);
4869
0
          break;
4870
0
        }
4871
0
    }
4872
4873
    // A method is either tagged direct explicitly, or inherits it from its
4874
    // canonical declaration.
4875
    //
4876
    // We have to do the merge upfront and not in mergeInterfaceMethodToImpl()
4877
    // because IDecl->lookupMethod() returns more possible matches than just
4878
    // the canonical declaration.
4879
0
    if (!ObjCMethod->isDirectMethod()) {
4880
0
      const ObjCMethodDecl *CanonicalMD = ObjCMethod->getCanonicalDecl();
4881
0
      if (CanonicalMD->isDirectMethod()) {
4882
0
        const auto *attr = CanonicalMD->getAttr<ObjCDirectAttr>();
4883
0
        ObjCMethod->addAttr(
4884
0
            ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4885
0
      }
4886
0
    }
4887
4888
    // Merge information from the @interface declaration into the
4889
    // @implementation.
4890
0
    if (ObjCInterfaceDecl *IDecl = ImpDecl->getClassInterface()) {
4891
0
      if (auto *IMD = IDecl->lookupMethod(ObjCMethod->getSelector(),
4892
0
                                          ObjCMethod->isInstanceMethod())) {
4893
0
        mergeInterfaceMethodToImpl(*this, ObjCMethod, IMD);
4894
4895
        // The Idecl->lookupMethod() above will find declarations for ObjCMethod
4896
        // in one of these places:
4897
        //
4898
        // (1) the canonical declaration in an @interface container paired
4899
        //     with the ImplDecl,
4900
        // (2) non canonical declarations in @interface not paired with the
4901
        //     ImplDecl for the same Class,
4902
        // (3) any superclass container.
4903
        //
4904
        // Direct methods only allow for canonical declarations in the matching
4905
        // container (case 1).
4906
        //
4907
        // Direct methods overriding a superclass declaration (case 3) is
4908
        // handled during overrides checks in CheckObjCMethodOverrides().
4909
        //
4910
        // We deal with same-class container mismatches (Case 2) here.
4911
0
        if (IDecl == IMD->getClassInterface()) {
4912
0
          auto diagContainerMismatch = [&] {
4913
0
            int decl = 0, impl = 0;
4914
4915
0
            if (auto *Cat = dyn_cast<ObjCCategoryDecl>(IMD->getDeclContext()))
4916
0
              decl = Cat->IsClassExtension() ? 1 : 2;
4917
4918
0
            if (isa<ObjCCategoryImplDecl>(ImpDecl))
4919
0
              impl = 1 + (decl != 0);
4920
4921
0
            Diag(ObjCMethod->getLocation(),
4922
0
                 diag::err_objc_direct_impl_decl_mismatch)
4923
0
                << decl << impl;
4924
0
            Diag(IMD->getLocation(), diag::note_previous_declaration);
4925
0
          };
4926
4927
0
          if (ObjCMethod->isDirectMethod()) {
4928
0
            const auto *attr = ObjCMethod->getAttr<ObjCDirectAttr>();
4929
0
            if (ObjCMethod->getCanonicalDecl() != IMD) {
4930
0
              diagContainerMismatch();
4931
0
            } else if (!IMD->isDirectMethod()) {
4932
0
              Diag(attr->getLocation(), diag::err_objc_direct_missing_on_decl);
4933
0
              Diag(IMD->getLocation(), diag::note_previous_declaration);
4934
0
            }
4935
0
          } else if (IMD->isDirectMethod()) {
4936
0
            const auto *attr = IMD->getAttr<ObjCDirectAttr>();
4937
0
            if (ObjCMethod->getCanonicalDecl() != IMD) {
4938
0
              diagContainerMismatch();
4939
0
            } else {
4940
0
              ObjCMethod->addAttr(
4941
0
                  ObjCDirectAttr::CreateImplicit(Context, attr->getLocation()));
4942
0
            }
4943
0
          }
4944
0
        }
4945
4946
        // Warn about defining -dealloc in a category.
4947
0
        if (isa<ObjCCategoryImplDecl>(ImpDecl) && IMD->isOverriding() &&
4948
0
            ObjCMethod->getSelector().getMethodFamily() == OMF_dealloc) {
4949
0
          Diag(ObjCMethod->getLocation(), diag::warn_dealloc_in_category)
4950
0
            << ObjCMethod->getDeclName();
4951
0
        }
4952
0
      } else {
4953
0
        mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod);
4954
0
        checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod, ImpDecl);
4955
0
      }
4956
4957
      // Warn if a method declared in a protocol to which a category or
4958
      // extension conforms is non-escaping and the implementation's method is
4959
      // escaping.
4960
0
      for (auto *C : IDecl->visible_categories())
4961
0
        for (auto &P : C->protocols())
4962
0
          if (auto *IMD = P->lookupMethod(ObjCMethod->getSelector(),
4963
0
                                          ObjCMethod->isInstanceMethod())) {
4964
0
            assert(ObjCMethod->parameters().size() ==
4965
0
                       IMD->parameters().size() &&
4966
0
                   "Methods have different number of parameters");
4967
0
            auto OI = IMD->param_begin(), OE = IMD->param_end();
4968
0
            auto NI = ObjCMethod->param_begin();
4969
0
            for (; OI != OE; ++OI, ++NI)
4970
0
              diagnoseNoescape(*NI, *OI, C, P, *this);
4971
0
          }
4972
0
    }
4973
0
  } else {
4974
0
    if (!isa<ObjCProtocolDecl>(ClassDecl)) {
4975
0
      mergeObjCDirectMembers(*this, ClassDecl, ObjCMethod);
4976
4977
0
      ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
4978
0
      if (!IDecl)
4979
0
        IDecl = cast<ObjCCategoryDecl>(ClassDecl)->getClassInterface();
4980
      // For valid code, we should always know the primary interface
4981
      // declaration by now, however for invalid code we'll keep parsing
4982
      // but we won't find the primary interface and IDecl will be nil.
4983
0
      if (IDecl)
4984
0
        checkObjCDirectMethodClashes(*this, IDecl, ObjCMethod);
4985
0
    }
4986
4987
0
    cast<DeclContext>(ClassDecl)->addDecl(ObjCMethod);
4988
0
  }
4989
4990
0
  if (PrevMethod) {
4991
    // You can never have two method definitions with the same name.
4992
0
    Diag(ObjCMethod->getLocation(), diag::err_duplicate_method_decl)
4993
0
      << ObjCMethod->getDeclName();
4994
0
    Diag(PrevMethod->getLocation(), diag::note_previous_declaration);
4995
0
    ObjCMethod->setInvalidDecl();
4996
0
    return ObjCMethod;
4997
0
  }
4998
4999
  // If this Objective-C method does not have a related result type, but we
5000
  // are allowed to infer related result types, try to do so based on the
5001
  // method family.
5002
0
  ObjCInterfaceDecl *CurrentClass = dyn_cast<ObjCInterfaceDecl>(ClassDecl);
5003
0
  if (!CurrentClass) {
5004
0
    if (ObjCCategoryDecl *Cat = dyn_cast<ObjCCategoryDecl>(ClassDecl))
5005
0
      CurrentClass = Cat->getClassInterface();
5006
0
    else if (ObjCImplDecl *Impl = dyn_cast<ObjCImplDecl>(ClassDecl))
5007
0
      CurrentClass = Impl->getClassInterface();
5008
0
    else if (ObjCCategoryImplDecl *CatImpl
5009
0
                                   = dyn_cast<ObjCCategoryImplDecl>(ClassDecl))
5010
0
      CurrentClass = CatImpl->getClassInterface();
5011
0
  }
5012
5013
0
  ResultTypeCompatibilityKind RTC
5014
0
    = CheckRelatedResultTypeCompatibility(*this, ObjCMethod, CurrentClass);
5015
5016
0
  CheckObjCMethodOverrides(ObjCMethod, CurrentClass, RTC);
5017
5018
0
  bool ARCError = false;
5019
0
  if (getLangOpts().ObjCAutoRefCount)
5020
0
    ARCError = CheckARCMethodDecl(ObjCMethod);
5021
5022
  // Infer the related result type when possible.
5023
0
  if (!ARCError && RTC == Sema::RTC_Compatible &&
5024
0
      !ObjCMethod->hasRelatedResultType() &&
5025
0
      LangOpts.ObjCInferRelatedResultType) {
5026
0
    bool InferRelatedResultType = false;
5027
0
    switch (ObjCMethod->getMethodFamily()) {
5028
0
    case OMF_None:
5029
0
    case OMF_copy:
5030
0
    case OMF_dealloc:
5031
0
    case OMF_finalize:
5032
0
    case OMF_mutableCopy:
5033
0
    case OMF_release:
5034
0
    case OMF_retainCount:
5035
0
    case OMF_initialize:
5036
0
    case OMF_performSelector:
5037
0
      break;
5038
5039
0
    case OMF_alloc:
5040
0
    case OMF_new:
5041
0
        InferRelatedResultType = ObjCMethod->isClassMethod();
5042
0
      break;
5043
5044
0
    case OMF_init:
5045
0
    case OMF_autorelease:
5046
0
    case OMF_retain:
5047
0
    case OMF_self:
5048
0
      InferRelatedResultType = ObjCMethod->isInstanceMethod();
5049
0
      break;
5050
0
    }
5051
5052
0
    if (InferRelatedResultType &&
5053
0
        !ObjCMethod->getReturnType()->isObjCIndependentClassType())
5054
0
      ObjCMethod->setRelatedResultType();
5055
0
  }
5056
5057
0
  if (MethodDefinition &&
5058
0
      Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86)
5059
0
    checkObjCMethodX86VectorTypes(*this, ObjCMethod);
5060
5061
  // + load method cannot have availability attributes. It get called on
5062
  // startup, so it has to have the availability of the deployment target.
5063
0
  if (const auto *attr = ObjCMethod->getAttr<AvailabilityAttr>()) {
5064
0
    if (ObjCMethod->isClassMethod() &&
5065
0
        ObjCMethod->getSelector().getAsString() == "load") {
5066
0
      Diag(attr->getLocation(), diag::warn_availability_on_static_initializer)
5067
0
          << 0;
5068
0
      ObjCMethod->dropAttr<AvailabilityAttr>();
5069
0
    }
5070
0
  }
5071
5072
  // Insert the invisible arguments, self and _cmd!
5073
0
  ObjCMethod->createImplicitParams(Context, ObjCMethod->getClassInterface());
5074
5075
0
  ActOnDocumentableDecl(ObjCMethod);
5076
5077
0
  return ObjCMethod;
5078
0
}
5079
5080
0
bool Sema::CheckObjCDeclScope(Decl *D) {
5081
  // Following is also an error. But it is caused by a missing @end
5082
  // and diagnostic is issued elsewhere.
5083
0
  if (isa<ObjCContainerDecl>(CurContext->getRedeclContext()))
5084
0
    return false;
5085
5086
  // If we switched context to translation unit while we are still lexically in
5087
  // an objc container, it means the parser missed emitting an error.
5088
0
  if (isa<TranslationUnitDecl>(getCurLexicalContext()->getRedeclContext()))
5089
0
    return false;
5090
5091
0
  Diag(D->getLocation(), diag::err_objc_decls_may_only_appear_in_global_scope);
5092
0
  D->setInvalidDecl();
5093
5094
0
  return true;
5095
0
}
5096
5097
/// Called whenever \@defs(ClassName) is encountered in the source.  Inserts the
5098
/// instance variables of ClassName into Decls.
5099
void Sema::ActOnDefs(Scope *S, Decl *TagD, SourceLocation DeclStart,
5100
                     IdentifierInfo *ClassName,
5101
0
                     SmallVectorImpl<Decl*> &Decls) {
5102
  // Check that ClassName is a valid class
5103
0
  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName, DeclStart);
5104
0
  if (!Class) {
5105
0
    Diag(DeclStart, diag::err_undef_interface) << ClassName;
5106
0
    return;
5107
0
  }
5108
0
  if (LangOpts.ObjCRuntime.isNonFragile()) {
5109
0
    Diag(DeclStart, diag::err_atdef_nonfragile_interface);
5110
0
    return;
5111
0
  }
5112
5113
  // Collect the instance variables
5114
0
  SmallVector<const ObjCIvarDecl*, 32> Ivars;
5115
0
  Context.DeepCollectObjCIvars(Class, true, Ivars);
5116
  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
5117
0
  for (unsigned i = 0; i < Ivars.size(); i++) {
5118
0
    const FieldDecl* ID = Ivars[i];
5119
0
    RecordDecl *Record = dyn_cast<RecordDecl>(TagD);
5120
0
    Decl *FD = ObjCAtDefsFieldDecl::Create(Context, Record,
5121
0
                                           /*FIXME: StartL=*/ID->getLocation(),
5122
0
                                           ID->getLocation(),
5123
0
                                           ID->getIdentifier(), ID->getType(),
5124
0
                                           ID->getBitWidth());
5125
0
    Decls.push_back(FD);
5126
0
  }
5127
5128
  // Introduce all of these fields into the appropriate scope.
5129
0
  for (SmallVectorImpl<Decl*>::iterator D = Decls.begin();
5130
0
       D != Decls.end(); ++D) {
5131
0
    FieldDecl *FD = cast<FieldDecl>(*D);
5132
0
    if (getLangOpts().CPlusPlus)
5133
0
      PushOnScopeChains(FD, S);
5134
0
    else if (RecordDecl *Record = dyn_cast<RecordDecl>(TagD))
5135
0
      Record->addDecl(FD);
5136
0
  }
5137
0
}
5138
5139
/// Build a type-check a new Objective-C exception variable declaration.
5140
VarDecl *Sema::BuildObjCExceptionDecl(TypeSourceInfo *TInfo, QualType T,
5141
                                      SourceLocation StartLoc,
5142
                                      SourceLocation IdLoc,
5143
                                      IdentifierInfo *Id,
5144
0
                                      bool Invalid) {
5145
  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5146
  // duration shall not be qualified by an address-space qualifier."
5147
  // Since all parameters have automatic store duration, they can not have
5148
  // an address space.
5149
0
  if (T.getAddressSpace() != LangAS::Default) {
5150
0
    Diag(IdLoc, diag::err_arg_with_address_space);
5151
0
    Invalid = true;
5152
0
  }
5153
5154
  // An @catch parameter must be an unqualified object pointer type;
5155
  // FIXME: Recover from "NSObject foo" by inserting the * in "NSObject *foo"?
5156
0
  if (Invalid) {
5157
    // Don't do any further checking.
5158
0
  } else if (T->isDependentType()) {
5159
    // Okay: we don't know what this type will instantiate to.
5160
0
  } else if (T->isObjCQualifiedIdType()) {
5161
0
    Invalid = true;
5162
0
    Diag(IdLoc, diag::err_illegal_qualifiers_on_catch_parm);
5163
0
  } else if (T->isObjCIdType()) {
5164
    // Okay: we don't know what this type will instantiate to.
5165
0
  } else if (!T->isObjCObjectPointerType()) {
5166
0
    Invalid = true;
5167
0
    Diag(IdLoc, diag::err_catch_param_not_objc_type);
5168
0
  } else if (!T->castAs<ObjCObjectPointerType>()->getInterfaceType()) {
5169
0
    Invalid = true;
5170
0
    Diag(IdLoc, diag::err_catch_param_not_objc_type);
5171
0
  }
5172
5173
0
  VarDecl *New = VarDecl::Create(Context, CurContext, StartLoc, IdLoc, Id,
5174
0
                                 T, TInfo, SC_None);
5175
0
  New->setExceptionVariable(true);
5176
5177
  // In ARC, infer 'retaining' for variables of retainable type.
5178
0
  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(New))
5179
0
    Invalid = true;
5180
5181
0
  if (Invalid)
5182
0
    New->setInvalidDecl();
5183
0
  return New;
5184
0
}
5185
5186
0
Decl *Sema::ActOnObjCExceptionDecl(Scope *S, Declarator &D) {
5187
0
  const DeclSpec &DS = D.getDeclSpec();
5188
5189
  // We allow the "register" storage class on exception variables because
5190
  // GCC did, but we drop it completely. Any other storage class is an error.
5191
0
  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5192
0
    Diag(DS.getStorageClassSpecLoc(), diag::warn_register_objc_catch_parm)
5193
0
      << FixItHint::CreateRemoval(SourceRange(DS.getStorageClassSpecLoc()));
5194
0
  } else if (DeclSpec::SCS SCS = DS.getStorageClassSpec()) {
5195
0
    Diag(DS.getStorageClassSpecLoc(), diag::err_storage_spec_on_catch_parm)
5196
0
      << DeclSpec::getSpecifierName(SCS);
5197
0
  }
5198
0
  if (DS.isInlineSpecified())
5199
0
    Diag(DS.getInlineSpecLoc(), diag::err_inline_non_function)
5200
0
        << getLangOpts().CPlusPlus17;
5201
0
  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5202
0
    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5203
0
         diag::err_invalid_thread)
5204
0
     << DeclSpec::getSpecifierName(TSCS);
5205
0
  D.getMutableDeclSpec().ClearStorageClassSpecs();
5206
5207
0
  DiagnoseFunctionSpecifiers(D.getDeclSpec());
5208
5209
  // Check that there are no default arguments inside the type of this
5210
  // exception object (C++ only).
5211
0
  if (getLangOpts().CPlusPlus)
5212
0
    CheckExtraCXXDefaultArguments(D);
5213
5214
0
  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5215
0
  QualType ExceptionType = TInfo->getType();
5216
5217
0
  VarDecl *New = BuildObjCExceptionDecl(TInfo, ExceptionType,
5218
0
                                        D.getSourceRange().getBegin(),
5219
0
                                        D.getIdentifierLoc(),
5220
0
                                        D.getIdentifier(),
5221
0
                                        D.isInvalidType());
5222
5223
  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5224
0
  if (D.getCXXScopeSpec().isSet()) {
5225
0
    Diag(D.getIdentifierLoc(), diag::err_qualified_objc_catch_parm)
5226
0
      << D.getCXXScopeSpec().getRange();
5227
0
    New->setInvalidDecl();
5228
0
  }
5229
5230
  // Add the parameter declaration into this scope.
5231
0
  S->AddDecl(New);
5232
0
  if (D.getIdentifier())
5233
0
    IdResolver.AddDecl(New);
5234
5235
0
  ProcessDeclAttributes(S, New, D);
5236
5237
0
  if (New->hasAttr<BlocksAttr>())
5238
0
    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5239
0
  return New;
5240
0
}
5241
5242
/// CollectIvarsToConstructOrDestruct - Collect those ivars which require
5243
/// initialization.
5244
void Sema::CollectIvarsToConstructOrDestruct(ObjCInterfaceDecl *OI,
5245
0
                                SmallVectorImpl<ObjCIvarDecl*> &Ivars) {
5246
0
  for (ObjCIvarDecl *Iv = OI->all_declared_ivar_begin(); Iv;
5247
0
       Iv= Iv->getNextIvar()) {
5248
0
    QualType QT = Context.getBaseElementType(Iv->getType());
5249
0
    if (QT->isRecordType())
5250
0
      Ivars.push_back(Iv);
5251
0
  }
5252
0
}
5253
5254
46
void Sema::DiagnoseUseOfUnimplementedSelectors() {
5255
  // Load referenced selectors from the external source.
5256
46
  if (ExternalSource) {
5257
0
    SmallVector<std::pair<Selector, SourceLocation>, 4> Sels;
5258
0
    ExternalSource->ReadReferencedSelectors(Sels);
5259
0
    for (unsigned I = 0, N = Sels.size(); I != N; ++I)
5260
0
      ReferencedSelectors[Sels[I].first] = Sels[I].second;
5261
0
  }
5262
5263
  // Warning will be issued only when selector table is
5264
  // generated (which means there is at lease one implementation
5265
  // in the TU). This is to match gcc's behavior.
5266
46
  if (ReferencedSelectors.empty() ||
5267
46
      !Context.AnyObjCImplementation())
5268
46
    return;
5269
0
  for (auto &SelectorAndLocation : ReferencedSelectors) {
5270
0
    Selector Sel = SelectorAndLocation.first;
5271
0
    SourceLocation Loc = SelectorAndLocation.second;
5272
0
    if (!LookupImplementedMethodInGlobalPool(Sel))
5273
0
      Diag(Loc, diag::warn_unimplemented_selector) << Sel;
5274
0
  }
5275
0
}
5276
5277
ObjCIvarDecl *
5278
Sema::GetIvarBackingPropertyAccessor(const ObjCMethodDecl *Method,
5279
0
                                     const ObjCPropertyDecl *&PDecl) const {
5280
0
  if (Method->isClassMethod())
5281
0
    return nullptr;
5282
0
  const ObjCInterfaceDecl *IDecl = Method->getClassInterface();
5283
0
  if (!IDecl)
5284
0
    return nullptr;
5285
0
  Method = IDecl->lookupMethod(Method->getSelector(), /*isInstance=*/true,
5286
0
                               /*shallowCategoryLookup=*/false,
5287
0
                               /*followSuper=*/false);
5288
0
  if (!Method || !Method->isPropertyAccessor())
5289
0
    return nullptr;
5290
0
  if ((PDecl = Method->findPropertyDecl()))
5291
0
    if (ObjCIvarDecl *IV = PDecl->getPropertyIvarDecl()) {
5292
      // property backing ivar must belong to property's class
5293
      // or be a private ivar in class's implementation.
5294
      // FIXME. fix the const-ness issue.
5295
0
      IV = const_cast<ObjCInterfaceDecl *>(IDecl)->lookupInstanceVariable(
5296
0
                                                        IV->getIdentifier());
5297
0
      return IV;
5298
0
    }
5299
0
  return nullptr;
5300
0
}
5301
5302
namespace {
5303
  /// Used by Sema::DiagnoseUnusedBackingIvarInAccessor to check if a property
5304
  /// accessor references the backing ivar.
5305
  class UnusedBackingIvarChecker :
5306
      public RecursiveASTVisitor<UnusedBackingIvarChecker> {
5307
  public:
5308
    Sema &S;
5309
    const ObjCMethodDecl *Method;
5310
    const ObjCIvarDecl *IvarD;
5311
    bool AccessedIvar;
5312
    bool InvokedSelfMethod;
5313
5314
    UnusedBackingIvarChecker(Sema &S, const ObjCMethodDecl *Method,
5315
                             const ObjCIvarDecl *IvarD)
5316
      : S(S), Method(Method), IvarD(IvarD),
5317
0
        AccessedIvar(false), InvokedSelfMethod(false) {
5318
0
      assert(IvarD);
5319
0
    }
5320
5321
0
    bool VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
5322
0
      if (E->getDecl() == IvarD) {
5323
0
        AccessedIvar = true;
5324
0
        return false;
5325
0
      }
5326
0
      return true;
5327
0
    }
5328
5329
0
    bool VisitObjCMessageExpr(ObjCMessageExpr *E) {
5330
0
      if (E->getReceiverKind() == ObjCMessageExpr::Instance &&
5331
0
          S.isSelfExpr(E->getInstanceReceiver(), Method)) {
5332
0
        InvokedSelfMethod = true;
5333
0
      }
5334
0
      return true;
5335
0
    }
5336
  };
5337
} // end anonymous namespace
5338
5339
void Sema::DiagnoseUnusedBackingIvarInAccessor(Scope *S,
5340
0
                                          const ObjCImplementationDecl *ImplD) {
5341
0
  if (S->hasUnrecoverableErrorOccurred())
5342
0
    return;
5343
5344
0
  for (const auto *CurMethod : ImplD->instance_methods()) {
5345
0
    unsigned DIAG = diag::warn_unused_property_backing_ivar;
5346
0
    SourceLocation Loc = CurMethod->getLocation();
5347
0
    if (Diags.isIgnored(DIAG, Loc))
5348
0
      continue;
5349
5350
0
    const ObjCPropertyDecl *PDecl;
5351
0
    const ObjCIvarDecl *IV = GetIvarBackingPropertyAccessor(CurMethod, PDecl);
5352
0
    if (!IV)
5353
0
      continue;
5354
5355
0
    if (CurMethod->isSynthesizedAccessorStub())
5356
0
      continue;
5357
5358
0
    UnusedBackingIvarChecker Checker(*this, CurMethod, IV);
5359
0
    Checker.TraverseStmt(CurMethod->getBody());
5360
0
    if (Checker.AccessedIvar)
5361
0
      continue;
5362
5363
    // Do not issue this warning if backing ivar is used somewhere and accessor
5364
    // implementation makes a self call. This is to prevent false positive in
5365
    // cases where the ivar is accessed by another method that the accessor
5366
    // delegates to.
5367
0
    if (!IV->isReferenced() || !Checker.InvokedSelfMethod) {
5368
0
      Diag(Loc, DIAG) << IV;
5369
0
      Diag(PDecl->getLocation(), diag::note_property_declare);
5370
0
    }
5371
0
  }
5372
0
}