/src/llvm-project/clang/lib/Sema/SemaExprCXX.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--- SemaExprCXX.cpp - Semantic Analysis for Expressions --------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | /// |
9 | | /// \file |
10 | | /// Implements semantic analysis for C++ expressions. |
11 | | /// |
12 | | //===----------------------------------------------------------------------===// |
13 | | |
14 | | #include "TreeTransform.h" |
15 | | #include "TypeLocBuilder.h" |
16 | | #include "clang/AST/ASTContext.h" |
17 | | #include "clang/AST/ASTLambda.h" |
18 | | #include "clang/AST/CXXInheritance.h" |
19 | | #include "clang/AST/CharUnits.h" |
20 | | #include "clang/AST/DeclObjC.h" |
21 | | #include "clang/AST/ExprCXX.h" |
22 | | #include "clang/AST/ExprConcepts.h" |
23 | | #include "clang/AST/ExprObjC.h" |
24 | | #include "clang/AST/RecursiveASTVisitor.h" |
25 | | #include "clang/AST/Type.h" |
26 | | #include "clang/AST/TypeLoc.h" |
27 | | #include "clang/Basic/AlignedAllocation.h" |
28 | | #include "clang/Basic/DiagnosticSema.h" |
29 | | #include "clang/Basic/PartialDiagnostic.h" |
30 | | #include "clang/Basic/TargetInfo.h" |
31 | | #include "clang/Basic/TokenKinds.h" |
32 | | #include "clang/Basic/TypeTraits.h" |
33 | | #include "clang/Lex/Preprocessor.h" |
34 | | #include "clang/Sema/DeclSpec.h" |
35 | | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
36 | | #include "clang/Sema/Initialization.h" |
37 | | #include "clang/Sema/Lookup.h" |
38 | | #include "clang/Sema/ParsedTemplate.h" |
39 | | #include "clang/Sema/Scope.h" |
40 | | #include "clang/Sema/ScopeInfo.h" |
41 | | #include "clang/Sema/SemaInternal.h" |
42 | | #include "clang/Sema/SemaLambda.h" |
43 | | #include "clang/Sema/Template.h" |
44 | | #include "clang/Sema/TemplateDeduction.h" |
45 | | #include "llvm/ADT/APInt.h" |
46 | | #include "llvm/ADT/STLExtras.h" |
47 | | #include "llvm/ADT/StringExtras.h" |
48 | | #include "llvm/Support/ErrorHandling.h" |
49 | | #include "llvm/Support/TypeSize.h" |
50 | | #include <optional> |
51 | | using namespace clang; |
52 | | using namespace sema; |
53 | | |
54 | | /// Handle the result of the special case name lookup for inheriting |
55 | | /// constructor declarations. 'NS::X::X' and 'NS::X<...>::X' are treated as |
56 | | /// constructor names in member using declarations, even if 'X' is not the |
57 | | /// name of the corresponding type. |
58 | | ParsedType Sema::getInheritingConstructorName(CXXScopeSpec &SS, |
59 | | SourceLocation NameLoc, |
60 | 0 | IdentifierInfo &Name) { |
61 | 0 | NestedNameSpecifier *NNS = SS.getScopeRep(); |
62 | | |
63 | | // Convert the nested-name-specifier into a type. |
64 | 0 | QualType Type; |
65 | 0 | switch (NNS->getKind()) { |
66 | 0 | case NestedNameSpecifier::TypeSpec: |
67 | 0 | case NestedNameSpecifier::TypeSpecWithTemplate: |
68 | 0 | Type = QualType(NNS->getAsType(), 0); |
69 | 0 | break; |
70 | | |
71 | 0 | case NestedNameSpecifier::Identifier: |
72 | | // Strip off the last layer of the nested-name-specifier and build a |
73 | | // typename type for it. |
74 | 0 | assert(NNS->getAsIdentifier() == &Name && "not a constructor name"); |
75 | 0 | Type = Context.getDependentNameType( |
76 | 0 | ElaboratedTypeKeyword::None, NNS->getPrefix(), NNS->getAsIdentifier()); |
77 | 0 | break; |
78 | | |
79 | 0 | case NestedNameSpecifier::Global: |
80 | 0 | case NestedNameSpecifier::Super: |
81 | 0 | case NestedNameSpecifier::Namespace: |
82 | 0 | case NestedNameSpecifier::NamespaceAlias: |
83 | 0 | llvm_unreachable("Nested name specifier is not a type for inheriting ctor"); |
84 | 0 | } |
85 | | |
86 | | // This reference to the type is located entirely at the location of the |
87 | | // final identifier in the qualified-id. |
88 | 0 | return CreateParsedType(Type, |
89 | 0 | Context.getTrivialTypeSourceInfo(Type, NameLoc)); |
90 | 0 | } |
91 | | |
92 | | ParsedType Sema::getConstructorName(IdentifierInfo &II, |
93 | | SourceLocation NameLoc, |
94 | | Scope *S, CXXScopeSpec &SS, |
95 | 0 | bool EnteringContext) { |
96 | 0 | CXXRecordDecl *CurClass = getCurrentClass(S, &SS); |
97 | 0 | assert(CurClass && &II == CurClass->getIdentifier() && |
98 | 0 | "not a constructor name"); |
99 | | |
100 | | // When naming a constructor as a member of a dependent context (eg, in a |
101 | | // friend declaration or an inherited constructor declaration), form an |
102 | | // unresolved "typename" type. |
103 | 0 | if (CurClass->isDependentContext() && !EnteringContext && SS.getScopeRep()) { |
104 | 0 | QualType T = Context.getDependentNameType(ElaboratedTypeKeyword::None, |
105 | 0 | SS.getScopeRep(), &II); |
106 | 0 | return ParsedType::make(T); |
107 | 0 | } |
108 | | |
109 | 0 | if (SS.isNotEmpty() && RequireCompleteDeclContext(SS, CurClass)) |
110 | 0 | return ParsedType(); |
111 | | |
112 | | // Find the injected-class-name declaration. Note that we make no attempt to |
113 | | // diagnose cases where the injected-class-name is shadowed: the only |
114 | | // declaration that can validly shadow the injected-class-name is a |
115 | | // non-static data member, and if the class contains both a non-static data |
116 | | // member and a constructor then it is ill-formed (we check that in |
117 | | // CheckCompletedCXXClass). |
118 | 0 | CXXRecordDecl *InjectedClassName = nullptr; |
119 | 0 | for (NamedDecl *ND : CurClass->lookup(&II)) { |
120 | 0 | auto *RD = dyn_cast<CXXRecordDecl>(ND); |
121 | 0 | if (RD && RD->isInjectedClassName()) { |
122 | 0 | InjectedClassName = RD; |
123 | 0 | break; |
124 | 0 | } |
125 | 0 | } |
126 | 0 | if (!InjectedClassName) { |
127 | 0 | if (!CurClass->isInvalidDecl()) { |
128 | | // FIXME: RequireCompleteDeclContext doesn't check dependent contexts |
129 | | // properly. Work around it here for now. |
130 | 0 | Diag(SS.getLastQualifierNameLoc(), |
131 | 0 | diag::err_incomplete_nested_name_spec) << CurClass << SS.getRange(); |
132 | 0 | } |
133 | 0 | return ParsedType(); |
134 | 0 | } |
135 | | |
136 | 0 | QualType T = Context.getTypeDeclType(InjectedClassName); |
137 | 0 | DiagnoseUseOfDecl(InjectedClassName, NameLoc); |
138 | 0 | MarkAnyDeclReferenced(NameLoc, InjectedClassName, /*OdrUse=*/false); |
139 | |
|
140 | 0 | return ParsedType::make(T); |
141 | 0 | } |
142 | | |
143 | | ParsedType Sema::getDestructorName(IdentifierInfo &II, SourceLocation NameLoc, |
144 | | Scope *S, CXXScopeSpec &SS, |
145 | | ParsedType ObjectTypePtr, |
146 | 88 | bool EnteringContext) { |
147 | | // Determine where to perform name lookup. |
148 | | |
149 | | // FIXME: This area of the standard is very messy, and the current |
150 | | // wording is rather unclear about which scopes we search for the |
151 | | // destructor name; see core issues 399 and 555. Issue 399 in |
152 | | // particular shows where the current description of destructor name |
153 | | // lookup is completely out of line with existing practice, e.g., |
154 | | // this appears to be ill-formed: |
155 | | // |
156 | | // namespace N { |
157 | | // template <typename T> struct S { |
158 | | // ~S(); |
159 | | // }; |
160 | | // } |
161 | | // |
162 | | // void f(N::S<int>* s) { |
163 | | // s->N::S<int>::~S(); |
164 | | // } |
165 | | // |
166 | | // See also PR6358 and PR6359. |
167 | | // |
168 | | // For now, we accept all the cases in which the name given could plausibly |
169 | | // be interpreted as a correct destructor name, issuing off-by-default |
170 | | // extension diagnostics on the cases that don't strictly conform to the |
171 | | // C++20 rules. This basically means we always consider looking in the |
172 | | // nested-name-specifier prefix, the complete nested-name-specifier, and |
173 | | // the scope, and accept if we find the expected type in any of the three |
174 | | // places. |
175 | | |
176 | 88 | if (SS.isInvalid()) |
177 | 0 | return nullptr; |
178 | | |
179 | | // Whether we've failed with a diagnostic already. |
180 | 88 | bool Failed = false; |
181 | | |
182 | 88 | llvm::SmallVector<NamedDecl*, 8> FoundDecls; |
183 | 88 | llvm::SmallPtrSet<CanonicalDeclPtr<Decl>, 8> FoundDeclSet; |
184 | | |
185 | | // If we have an object type, it's because we are in a |
186 | | // pseudo-destructor-expression or a member access expression, and |
187 | | // we know what type we're looking for. |
188 | 88 | QualType SearchType = |
189 | 88 | ObjectTypePtr ? GetTypeFromParser(ObjectTypePtr) : QualType(); |
190 | | |
191 | 88 | auto CheckLookupResult = [&](LookupResult &Found) -> ParsedType { |
192 | 88 | auto IsAcceptableResult = [&](NamedDecl *D) -> bool { |
193 | 29 | auto *Type = dyn_cast<TypeDecl>(D->getUnderlyingDecl()); |
194 | 29 | if (!Type) |
195 | 29 | return false; |
196 | | |
197 | 0 | if (SearchType.isNull() || SearchType->isDependentType()) |
198 | 0 | return true; |
199 | | |
200 | 0 | QualType T = Context.getTypeDeclType(Type); |
201 | 0 | return Context.hasSameUnqualifiedType(T, SearchType); |
202 | 0 | }; |
203 | | |
204 | 88 | unsigned NumAcceptableResults = 0; |
205 | 88 | for (NamedDecl *D : Found) { |
206 | 29 | if (IsAcceptableResult(D)) |
207 | 0 | ++NumAcceptableResults; |
208 | | |
209 | | // Don't list a class twice in the lookup failure diagnostic if it's |
210 | | // found by both its injected-class-name and by the name in the enclosing |
211 | | // scope. |
212 | 29 | if (auto *RD = dyn_cast<CXXRecordDecl>(D)) |
213 | 0 | if (RD->isInjectedClassName()) |
214 | 0 | D = cast<NamedDecl>(RD->getParent()); |
215 | | |
216 | 29 | if (FoundDeclSet.insert(D).second) |
217 | 29 | FoundDecls.push_back(D); |
218 | 29 | } |
219 | | |
220 | | // As an extension, attempt to "fix" an ambiguity by erasing all non-type |
221 | | // results, and all non-matching results if we have a search type. It's not |
222 | | // clear what the right behavior is if destructor lookup hits an ambiguity, |
223 | | // but other compilers do generally accept at least some kinds of |
224 | | // ambiguity. |
225 | 88 | if (Found.isAmbiguous() && NumAcceptableResults == 1) { |
226 | 0 | Diag(NameLoc, diag::ext_dtor_name_ambiguous); |
227 | 0 | LookupResult::Filter F = Found.makeFilter(); |
228 | 0 | while (F.hasNext()) { |
229 | 0 | NamedDecl *D = F.next(); |
230 | 0 | if (auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) |
231 | 0 | Diag(D->getLocation(), diag::note_destructor_type_here) |
232 | 0 | << Context.getTypeDeclType(TD); |
233 | 0 | else |
234 | 0 | Diag(D->getLocation(), diag::note_destructor_nontype_here); |
235 | |
|
236 | 0 | if (!IsAcceptableResult(D)) |
237 | 0 | F.erase(); |
238 | 0 | } |
239 | 0 | F.done(); |
240 | 0 | } |
241 | | |
242 | 88 | if (Found.isAmbiguous()) |
243 | 0 | Failed = true; |
244 | | |
245 | 88 | if (TypeDecl *Type = Found.getAsSingle<TypeDecl>()) { |
246 | 0 | if (IsAcceptableResult(Type)) { |
247 | 0 | QualType T = Context.getTypeDeclType(Type); |
248 | 0 | MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false); |
249 | 0 | return CreateParsedType( |
250 | 0 | Context.getElaboratedType(ElaboratedTypeKeyword::None, nullptr, T), |
251 | 0 | Context.getTrivialTypeSourceInfo(T, NameLoc)); |
252 | 0 | } |
253 | 0 | } |
254 | | |
255 | 88 | return nullptr; |
256 | 88 | }; |
257 | | |
258 | 88 | bool IsDependent = false; |
259 | | |
260 | 88 | auto LookupInObjectType = [&]() -> ParsedType { |
261 | 88 | if (Failed || SearchType.isNull()) |
262 | 88 | return nullptr; |
263 | | |
264 | 0 | IsDependent |= SearchType->isDependentType(); |
265 | |
|
266 | 0 | LookupResult Found(*this, &II, NameLoc, LookupDestructorName); |
267 | 0 | DeclContext *LookupCtx = computeDeclContext(SearchType); |
268 | 0 | if (!LookupCtx) |
269 | 0 | return nullptr; |
270 | 0 | LookupQualifiedName(Found, LookupCtx); |
271 | 0 | return CheckLookupResult(Found); |
272 | 0 | }; |
273 | | |
274 | 88 | auto LookupInNestedNameSpec = [&](CXXScopeSpec &LookupSS) -> ParsedType { |
275 | 0 | if (Failed) |
276 | 0 | return nullptr; |
277 | | |
278 | 0 | IsDependent |= isDependentScopeSpecifier(LookupSS); |
279 | 0 | DeclContext *LookupCtx = computeDeclContext(LookupSS, EnteringContext); |
280 | 0 | if (!LookupCtx) |
281 | 0 | return nullptr; |
282 | | |
283 | 0 | LookupResult Found(*this, &II, NameLoc, LookupDestructorName); |
284 | 0 | if (RequireCompleteDeclContext(LookupSS, LookupCtx)) { |
285 | 0 | Failed = true; |
286 | 0 | return nullptr; |
287 | 0 | } |
288 | 0 | LookupQualifiedName(Found, LookupCtx); |
289 | 0 | return CheckLookupResult(Found); |
290 | 0 | }; |
291 | | |
292 | 88 | auto LookupInScope = [&]() -> ParsedType { |
293 | 88 | if (Failed || !S) |
294 | 0 | return nullptr; |
295 | | |
296 | 88 | LookupResult Found(*this, &II, NameLoc, LookupDestructorName); |
297 | 88 | LookupName(Found, S); |
298 | 88 | return CheckLookupResult(Found); |
299 | 88 | }; |
300 | | |
301 | | // C++2a [basic.lookup.qual]p6: |
302 | | // In a qualified-id of the form |
303 | | // |
304 | | // nested-name-specifier[opt] type-name :: ~ type-name |
305 | | // |
306 | | // the second type-name is looked up in the same scope as the first. |
307 | | // |
308 | | // We interpret this as meaning that if you do a dual-scope lookup for the |
309 | | // first name, you also do a dual-scope lookup for the second name, per |
310 | | // C++ [basic.lookup.classref]p4: |
311 | | // |
312 | | // If the id-expression in a class member access is a qualified-id of the |
313 | | // form |
314 | | // |
315 | | // class-name-or-namespace-name :: ... |
316 | | // |
317 | | // the class-name-or-namespace-name following the . or -> is first looked |
318 | | // up in the class of the object expression and the name, if found, is used. |
319 | | // Otherwise, it is looked up in the context of the entire |
320 | | // postfix-expression. |
321 | | // |
322 | | // This looks in the same scopes as for an unqualified destructor name: |
323 | | // |
324 | | // C++ [basic.lookup.classref]p3: |
325 | | // If the unqualified-id is ~ type-name, the type-name is looked up |
326 | | // in the context of the entire postfix-expression. If the type T |
327 | | // of the object expression is of a class type C, the type-name is |
328 | | // also looked up in the scope of class C. At least one of the |
329 | | // lookups shall find a name that refers to cv T. |
330 | | // |
331 | | // FIXME: The intent is unclear here. Should type-name::~type-name look in |
332 | | // the scope anyway if it finds a non-matching name declared in the class? |
333 | | // If both lookups succeed and find a dependent result, which result should |
334 | | // we retain? (Same question for p->~type-name().) |
335 | | |
336 | 88 | if (NestedNameSpecifier *Prefix = |
337 | 88 | SS.isSet() ? SS.getScopeRep()->getPrefix() : nullptr) { |
338 | | // This is |
339 | | // |
340 | | // nested-name-specifier type-name :: ~ type-name |
341 | | // |
342 | | // Look for the second type-name in the nested-name-specifier. |
343 | 0 | CXXScopeSpec PrefixSS; |
344 | 0 | PrefixSS.Adopt(NestedNameSpecifierLoc(Prefix, SS.location_data())); |
345 | 0 | if (ParsedType T = LookupInNestedNameSpec(PrefixSS)) |
346 | 0 | return T; |
347 | 88 | } else { |
348 | | // This is one of |
349 | | // |
350 | | // type-name :: ~ type-name |
351 | | // ~ type-name |
352 | | // |
353 | | // Look in the scope and (if any) the object type. |
354 | 88 | if (ParsedType T = LookupInScope()) |
355 | 0 | return T; |
356 | 88 | if (ParsedType T = LookupInObjectType()) |
357 | 0 | return T; |
358 | 88 | } |
359 | | |
360 | 88 | if (Failed) |
361 | 0 | return nullptr; |
362 | | |
363 | 88 | if (IsDependent) { |
364 | | // We didn't find our type, but that's OK: it's dependent anyway. |
365 | | |
366 | | // FIXME: What if we have no nested-name-specifier? |
367 | 0 | QualType T = |
368 | 0 | CheckTypenameType(ElaboratedTypeKeyword::None, SourceLocation(), |
369 | 0 | SS.getWithLocInContext(Context), II, NameLoc); |
370 | 0 | return ParsedType::make(T); |
371 | 0 | } |
372 | | |
373 | | // The remaining cases are all non-standard extensions imitating the behavior |
374 | | // of various other compilers. |
375 | 88 | unsigned NumNonExtensionDecls = FoundDecls.size(); |
376 | | |
377 | 88 | if (SS.isSet()) { |
378 | | // For compatibility with older broken C++ rules and existing code, |
379 | | // |
380 | | // nested-name-specifier :: ~ type-name |
381 | | // |
382 | | // also looks for type-name within the nested-name-specifier. |
383 | 0 | if (ParsedType T = LookupInNestedNameSpec(SS)) { |
384 | 0 | Diag(SS.getEndLoc(), diag::ext_dtor_named_in_wrong_scope) |
385 | 0 | << SS.getRange() |
386 | 0 | << FixItHint::CreateInsertion(SS.getEndLoc(), |
387 | 0 | ("::" + II.getName()).str()); |
388 | 0 | return T; |
389 | 0 | } |
390 | | |
391 | | // For compatibility with other compilers and older versions of Clang, |
392 | | // |
393 | | // nested-name-specifier type-name :: ~ type-name |
394 | | // |
395 | | // also looks for type-name in the scope. Unfortunately, we can't |
396 | | // reasonably apply this fallback for dependent nested-name-specifiers. |
397 | 0 | if (SS.isValid() && SS.getScopeRep()->getPrefix()) { |
398 | 0 | if (ParsedType T = LookupInScope()) { |
399 | 0 | Diag(SS.getEndLoc(), diag::ext_qualified_dtor_named_in_lexical_scope) |
400 | 0 | << FixItHint::CreateRemoval(SS.getRange()); |
401 | 0 | Diag(FoundDecls.back()->getLocation(), diag::note_destructor_type_here) |
402 | 0 | << GetTypeFromParser(T); |
403 | 0 | return T; |
404 | 0 | } |
405 | 0 | } |
406 | 0 | } |
407 | | |
408 | | // We didn't find anything matching; tell the user what we did find (if |
409 | | // anything). |
410 | | |
411 | | // Don't tell the user about declarations we shouldn't have found. |
412 | 88 | FoundDecls.resize(NumNonExtensionDecls); |
413 | | |
414 | | // List types before non-types. |
415 | 88 | std::stable_sort(FoundDecls.begin(), FoundDecls.end(), |
416 | 88 | [](NamedDecl *A, NamedDecl *B) { |
417 | 0 | return isa<TypeDecl>(A->getUnderlyingDecl()) > |
418 | 0 | isa<TypeDecl>(B->getUnderlyingDecl()); |
419 | 0 | }); |
420 | | |
421 | | // Suggest a fixit to properly name the destroyed type. |
422 | 88 | auto MakeFixItHint = [&]{ |
423 | 88 | const CXXRecordDecl *Destroyed = nullptr; |
424 | | // FIXME: If we have a scope specifier, suggest its last component? |
425 | 88 | if (!SearchType.isNull()) |
426 | 0 | Destroyed = SearchType->getAsCXXRecordDecl(); |
427 | 88 | else if (S) |
428 | 88 | Destroyed = dyn_cast_or_null<CXXRecordDecl>(S->getEntity()); |
429 | 88 | if (Destroyed) |
430 | 0 | return FixItHint::CreateReplacement(SourceRange(NameLoc), |
431 | 0 | Destroyed->getNameAsString()); |
432 | 88 | return FixItHint(); |
433 | 88 | }; |
434 | | |
435 | 88 | if (FoundDecls.empty()) { |
436 | | // FIXME: Attempt typo-correction? |
437 | 59 | Diag(NameLoc, diag::err_undeclared_destructor_name) |
438 | 59 | << &II << MakeFixItHint(); |
439 | 59 | } else if (!SearchType.isNull() && FoundDecls.size() == 1) { |
440 | 0 | if (auto *TD = dyn_cast<TypeDecl>(FoundDecls[0]->getUnderlyingDecl())) { |
441 | 0 | assert(!SearchType.isNull() && |
442 | 0 | "should only reject a type result if we have a search type"); |
443 | 0 | QualType T = Context.getTypeDeclType(TD); |
444 | 0 | Diag(NameLoc, diag::err_destructor_expr_type_mismatch) |
445 | 0 | << T << SearchType << MakeFixItHint(); |
446 | 0 | } else { |
447 | 0 | Diag(NameLoc, diag::err_destructor_expr_nontype) |
448 | 0 | << &II << MakeFixItHint(); |
449 | 0 | } |
450 | 29 | } else { |
451 | 29 | Diag(NameLoc, SearchType.isNull() ? diag::err_destructor_name_nontype |
452 | 29 | : diag::err_destructor_expr_mismatch) |
453 | 29 | << &II << SearchType << MakeFixItHint(); |
454 | 29 | } |
455 | | |
456 | 29 | for (NamedDecl *FoundD : FoundDecls) { |
457 | 29 | if (auto *TD = dyn_cast<TypeDecl>(FoundD->getUnderlyingDecl())) |
458 | 0 | Diag(FoundD->getLocation(), diag::note_destructor_type_here) |
459 | 0 | << Context.getTypeDeclType(TD); |
460 | 29 | else |
461 | 29 | Diag(FoundD->getLocation(), diag::note_destructor_nontype_here) |
462 | 29 | << FoundD; |
463 | 29 | } |
464 | | |
465 | 88 | return nullptr; |
466 | 88 | } |
467 | | |
468 | | ParsedType Sema::getDestructorTypeForDecltype(const DeclSpec &DS, |
469 | 0 | ParsedType ObjectType) { |
470 | 0 | if (DS.getTypeSpecType() == DeclSpec::TST_error) |
471 | 0 | return nullptr; |
472 | | |
473 | 0 | if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { |
474 | 0 | Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); |
475 | 0 | return nullptr; |
476 | 0 | } |
477 | | |
478 | 0 | assert(DS.getTypeSpecType() == DeclSpec::TST_decltype && |
479 | 0 | "unexpected type in getDestructorType"); |
480 | 0 | QualType T = BuildDecltypeType(DS.getRepAsExpr()); |
481 | | |
482 | | // If we know the type of the object, check that the correct destructor |
483 | | // type was named now; we can give better diagnostics this way. |
484 | 0 | QualType SearchType = GetTypeFromParser(ObjectType); |
485 | 0 | if (!SearchType.isNull() && !SearchType->isDependentType() && |
486 | 0 | !Context.hasSameUnqualifiedType(T, SearchType)) { |
487 | 0 | Diag(DS.getTypeSpecTypeLoc(), diag::err_destructor_expr_type_mismatch) |
488 | 0 | << T << SearchType; |
489 | 0 | return nullptr; |
490 | 0 | } |
491 | | |
492 | 0 | return ParsedType::make(T); |
493 | 0 | } |
494 | | |
495 | | bool Sema::checkLiteralOperatorId(const CXXScopeSpec &SS, |
496 | 0 | const UnqualifiedId &Name, bool IsUDSuffix) { |
497 | 0 | assert(Name.getKind() == UnqualifiedIdKind::IK_LiteralOperatorId); |
498 | 0 | if (!IsUDSuffix) { |
499 | | // [over.literal] p8 |
500 | | // |
501 | | // double operator""_Bq(long double); // OK: not a reserved identifier |
502 | | // double operator"" _Bq(long double); // ill-formed, no diagnostic required |
503 | 0 | IdentifierInfo *II = Name.Identifier; |
504 | 0 | ReservedIdentifierStatus Status = II->isReserved(PP.getLangOpts()); |
505 | 0 | SourceLocation Loc = Name.getEndLoc(); |
506 | 0 | if (!PP.getSourceManager().isInSystemHeader(Loc)) { |
507 | 0 | if (auto Hint = FixItHint::CreateReplacement( |
508 | 0 | Name.getSourceRange(), |
509 | 0 | (StringRef("operator\"\"") + II->getName()).str()); |
510 | 0 | isReservedInAllContexts(Status)) { |
511 | 0 | Diag(Loc, diag::warn_reserved_extern_symbol) |
512 | 0 | << II << static_cast<int>(Status) << Hint; |
513 | 0 | } else { |
514 | 0 | Diag(Loc, diag::warn_deprecated_literal_operator_id) << II << Hint; |
515 | 0 | } |
516 | 0 | } |
517 | 0 | } |
518 | |
|
519 | 0 | if (!SS.isValid()) |
520 | 0 | return false; |
521 | | |
522 | 0 | switch (SS.getScopeRep()->getKind()) { |
523 | 0 | case NestedNameSpecifier::Identifier: |
524 | 0 | case NestedNameSpecifier::TypeSpec: |
525 | 0 | case NestedNameSpecifier::TypeSpecWithTemplate: |
526 | | // Per C++11 [over.literal]p2, literal operators can only be declared at |
527 | | // namespace scope. Therefore, this unqualified-id cannot name anything. |
528 | | // Reject it early, because we have no AST representation for this in the |
529 | | // case where the scope is dependent. |
530 | 0 | Diag(Name.getBeginLoc(), diag::err_literal_operator_id_outside_namespace) |
531 | 0 | << SS.getScopeRep(); |
532 | 0 | return true; |
533 | | |
534 | 0 | case NestedNameSpecifier::Global: |
535 | 0 | case NestedNameSpecifier::Super: |
536 | 0 | case NestedNameSpecifier::Namespace: |
537 | 0 | case NestedNameSpecifier::NamespaceAlias: |
538 | 0 | return false; |
539 | 0 | } |
540 | | |
541 | 0 | llvm_unreachable("unknown nested name specifier kind"); |
542 | 0 | } |
543 | | |
544 | | /// Build a C++ typeid expression with a type operand. |
545 | | ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, |
546 | | SourceLocation TypeidLoc, |
547 | | TypeSourceInfo *Operand, |
548 | 0 | SourceLocation RParenLoc) { |
549 | | // C++ [expr.typeid]p4: |
550 | | // The top-level cv-qualifiers of the lvalue expression or the type-id |
551 | | // that is the operand of typeid are always ignored. |
552 | | // If the type of the type-id is a class type or a reference to a class |
553 | | // type, the class shall be completely-defined. |
554 | 0 | Qualifiers Quals; |
555 | 0 | QualType T |
556 | 0 | = Context.getUnqualifiedArrayType(Operand->getType().getNonReferenceType(), |
557 | 0 | Quals); |
558 | 0 | if (T->getAs<RecordType>() && |
559 | 0 | RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) |
560 | 0 | return ExprError(); |
561 | | |
562 | 0 | if (T->isVariablyModifiedType()) |
563 | 0 | return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) << T); |
564 | | |
565 | 0 | if (CheckQualifiedFunctionForTypeId(T, TypeidLoc)) |
566 | 0 | return ExprError(); |
567 | | |
568 | 0 | return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), Operand, |
569 | 0 | SourceRange(TypeidLoc, RParenLoc)); |
570 | 0 | } |
571 | | |
572 | | /// Build a C++ typeid expression with an expression operand. |
573 | | ExprResult Sema::BuildCXXTypeId(QualType TypeInfoType, |
574 | | SourceLocation TypeidLoc, |
575 | | Expr *E, |
576 | 0 | SourceLocation RParenLoc) { |
577 | 0 | bool WasEvaluated = false; |
578 | 0 | if (E && !E->isTypeDependent()) { |
579 | 0 | if (E->hasPlaceholderType()) { |
580 | 0 | ExprResult result = CheckPlaceholderExpr(E); |
581 | 0 | if (result.isInvalid()) return ExprError(); |
582 | 0 | E = result.get(); |
583 | 0 | } |
584 | | |
585 | 0 | QualType T = E->getType(); |
586 | 0 | if (const RecordType *RecordT = T->getAs<RecordType>()) { |
587 | 0 | CXXRecordDecl *RecordD = cast<CXXRecordDecl>(RecordT->getDecl()); |
588 | | // C++ [expr.typeid]p3: |
589 | | // [...] If the type of the expression is a class type, the class |
590 | | // shall be completely-defined. |
591 | 0 | if (RequireCompleteType(TypeidLoc, T, diag::err_incomplete_typeid)) |
592 | 0 | return ExprError(); |
593 | | |
594 | | // C++ [expr.typeid]p3: |
595 | | // When typeid is applied to an expression other than an glvalue of a |
596 | | // polymorphic class type [...] [the] expression is an unevaluated |
597 | | // operand. [...] |
598 | 0 | if (RecordD->isPolymorphic() && E->isGLValue()) { |
599 | 0 | if (isUnevaluatedContext()) { |
600 | | // The operand was processed in unevaluated context, switch the |
601 | | // context and recheck the subexpression. |
602 | 0 | ExprResult Result = TransformToPotentiallyEvaluated(E); |
603 | 0 | if (Result.isInvalid()) |
604 | 0 | return ExprError(); |
605 | 0 | E = Result.get(); |
606 | 0 | } |
607 | | |
608 | | // We require a vtable to query the type at run time. |
609 | 0 | MarkVTableUsed(TypeidLoc, RecordD); |
610 | 0 | WasEvaluated = true; |
611 | 0 | } |
612 | 0 | } |
613 | | |
614 | 0 | ExprResult Result = CheckUnevaluatedOperand(E); |
615 | 0 | if (Result.isInvalid()) |
616 | 0 | return ExprError(); |
617 | 0 | E = Result.get(); |
618 | | |
619 | | // C++ [expr.typeid]p4: |
620 | | // [...] If the type of the type-id is a reference to a possibly |
621 | | // cv-qualified type, the result of the typeid expression refers to a |
622 | | // std::type_info object representing the cv-unqualified referenced |
623 | | // type. |
624 | 0 | Qualifiers Quals; |
625 | 0 | QualType UnqualT = Context.getUnqualifiedArrayType(T, Quals); |
626 | 0 | if (!Context.hasSameType(T, UnqualT)) { |
627 | 0 | T = UnqualT; |
628 | 0 | E = ImpCastExprToType(E, UnqualT, CK_NoOp, E->getValueKind()).get(); |
629 | 0 | } |
630 | 0 | } |
631 | | |
632 | 0 | if (E->getType()->isVariablyModifiedType()) |
633 | 0 | return ExprError(Diag(TypeidLoc, diag::err_variably_modified_typeid) |
634 | 0 | << E->getType()); |
635 | 0 | else if (!inTemplateInstantiation() && |
636 | 0 | E->HasSideEffects(Context, WasEvaluated)) { |
637 | | // The expression operand for typeid is in an unevaluated expression |
638 | | // context, so side effects could result in unintended consequences. |
639 | 0 | Diag(E->getExprLoc(), WasEvaluated |
640 | 0 | ? diag::warn_side_effects_typeid |
641 | 0 | : diag::warn_side_effects_unevaluated_context); |
642 | 0 | } |
643 | | |
644 | 0 | return new (Context) CXXTypeidExpr(TypeInfoType.withConst(), E, |
645 | 0 | SourceRange(TypeidLoc, RParenLoc)); |
646 | 0 | } |
647 | | |
648 | | /// ActOnCXXTypeidOfType - Parse typeid( type-id ) or typeid (expression); |
649 | | ExprResult |
650 | | Sema::ActOnCXXTypeid(SourceLocation OpLoc, SourceLocation LParenLoc, |
651 | 0 | bool isType, void *TyOrExpr, SourceLocation RParenLoc) { |
652 | | // typeid is not supported in OpenCL. |
653 | 0 | if (getLangOpts().OpenCLCPlusPlus) { |
654 | 0 | return ExprError(Diag(OpLoc, diag::err_openclcxx_not_supported) |
655 | 0 | << "typeid"); |
656 | 0 | } |
657 | | |
658 | | // Find the std::type_info type. |
659 | 0 | if (!getStdNamespace()) |
660 | 0 | return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
661 | | |
662 | 0 | if (!CXXTypeInfoDecl) { |
663 | 0 | IdentifierInfo *TypeInfoII = &PP.getIdentifierTable().get("type_info"); |
664 | 0 | LookupResult R(*this, TypeInfoII, SourceLocation(), LookupTagName); |
665 | 0 | LookupQualifiedName(R, getStdNamespace()); |
666 | 0 | CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); |
667 | | // Microsoft's typeinfo doesn't have type_info in std but in the global |
668 | | // namespace if _HAS_EXCEPTIONS is defined to 0. See PR13153. |
669 | 0 | if (!CXXTypeInfoDecl && LangOpts.MSVCCompat) { |
670 | 0 | LookupQualifiedName(R, Context.getTranslationUnitDecl()); |
671 | 0 | CXXTypeInfoDecl = R.getAsSingle<RecordDecl>(); |
672 | 0 | } |
673 | 0 | if (!CXXTypeInfoDecl) |
674 | 0 | return ExprError(Diag(OpLoc, diag::err_need_header_before_typeid)); |
675 | 0 | } |
676 | | |
677 | 0 | if (!getLangOpts().RTTI) { |
678 | 0 | return ExprError(Diag(OpLoc, diag::err_no_typeid_with_fno_rtti)); |
679 | 0 | } |
680 | | |
681 | 0 | QualType TypeInfoType = Context.getTypeDeclType(CXXTypeInfoDecl); |
682 | |
|
683 | 0 | if (isType) { |
684 | | // The operand is a type; handle it as such. |
685 | 0 | TypeSourceInfo *TInfo = nullptr; |
686 | 0 | QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), |
687 | 0 | &TInfo); |
688 | 0 | if (T.isNull()) |
689 | 0 | return ExprError(); |
690 | | |
691 | 0 | if (!TInfo) |
692 | 0 | TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); |
693 | |
|
694 | 0 | return BuildCXXTypeId(TypeInfoType, OpLoc, TInfo, RParenLoc); |
695 | 0 | } |
696 | | |
697 | | // The operand is an expression. |
698 | 0 | ExprResult Result = |
699 | 0 | BuildCXXTypeId(TypeInfoType, OpLoc, (Expr *)TyOrExpr, RParenLoc); |
700 | |
|
701 | 0 | if (!getLangOpts().RTTIData && !Result.isInvalid()) |
702 | 0 | if (auto *CTE = dyn_cast<CXXTypeidExpr>(Result.get())) |
703 | 0 | if (CTE->isPotentiallyEvaluated() && !CTE->isMostDerived(Context)) |
704 | 0 | Diag(OpLoc, diag::warn_no_typeid_with_rtti_disabled) |
705 | 0 | << (getDiagnostics().getDiagnosticOptions().getFormat() == |
706 | 0 | DiagnosticOptions::MSVC); |
707 | 0 | return Result; |
708 | 0 | } |
709 | | |
710 | | /// Grabs __declspec(uuid()) off a type, or returns 0 if we cannot resolve to |
711 | | /// a single GUID. |
712 | | static void |
713 | | getUuidAttrOfType(Sema &SemaRef, QualType QT, |
714 | 0 | llvm::SmallSetVector<const UuidAttr *, 1> &UuidAttrs) { |
715 | | // Optionally remove one level of pointer, reference or array indirection. |
716 | 0 | const Type *Ty = QT.getTypePtr(); |
717 | 0 | if (QT->isPointerType() || QT->isReferenceType()) |
718 | 0 | Ty = QT->getPointeeType().getTypePtr(); |
719 | 0 | else if (QT->isArrayType()) |
720 | 0 | Ty = Ty->getBaseElementTypeUnsafe(); |
721 | |
|
722 | 0 | const auto *TD = Ty->getAsTagDecl(); |
723 | 0 | if (!TD) |
724 | 0 | return; |
725 | | |
726 | 0 | if (const auto *Uuid = TD->getMostRecentDecl()->getAttr<UuidAttr>()) { |
727 | 0 | UuidAttrs.insert(Uuid); |
728 | 0 | return; |
729 | 0 | } |
730 | | |
731 | | // __uuidof can grab UUIDs from template arguments. |
732 | 0 | if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(TD)) { |
733 | 0 | const TemplateArgumentList &TAL = CTSD->getTemplateArgs(); |
734 | 0 | for (const TemplateArgument &TA : TAL.asArray()) { |
735 | 0 | const UuidAttr *UuidForTA = nullptr; |
736 | 0 | if (TA.getKind() == TemplateArgument::Type) |
737 | 0 | getUuidAttrOfType(SemaRef, TA.getAsType(), UuidAttrs); |
738 | 0 | else if (TA.getKind() == TemplateArgument::Declaration) |
739 | 0 | getUuidAttrOfType(SemaRef, TA.getAsDecl()->getType(), UuidAttrs); |
740 | |
|
741 | 0 | if (UuidForTA) |
742 | 0 | UuidAttrs.insert(UuidForTA); |
743 | 0 | } |
744 | 0 | } |
745 | 0 | } |
746 | | |
747 | | /// Build a Microsoft __uuidof expression with a type operand. |
748 | | ExprResult Sema::BuildCXXUuidof(QualType Type, |
749 | | SourceLocation TypeidLoc, |
750 | | TypeSourceInfo *Operand, |
751 | 0 | SourceLocation RParenLoc) { |
752 | 0 | MSGuidDecl *Guid = nullptr; |
753 | 0 | if (!Operand->getType()->isDependentType()) { |
754 | 0 | llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; |
755 | 0 | getUuidAttrOfType(*this, Operand->getType(), UuidAttrs); |
756 | 0 | if (UuidAttrs.empty()) |
757 | 0 | return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); |
758 | 0 | if (UuidAttrs.size() > 1) |
759 | 0 | return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); |
760 | 0 | Guid = UuidAttrs.back()->getGuidDecl(); |
761 | 0 | } |
762 | | |
763 | 0 | return new (Context) |
764 | 0 | CXXUuidofExpr(Type, Operand, Guid, SourceRange(TypeidLoc, RParenLoc)); |
765 | 0 | } |
766 | | |
767 | | /// Build a Microsoft __uuidof expression with an expression operand. |
768 | | ExprResult Sema::BuildCXXUuidof(QualType Type, SourceLocation TypeidLoc, |
769 | 0 | Expr *E, SourceLocation RParenLoc) { |
770 | 0 | MSGuidDecl *Guid = nullptr; |
771 | 0 | if (!E->getType()->isDependentType()) { |
772 | 0 | if (E->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
773 | | // A null pointer results in {00000000-0000-0000-0000-000000000000}. |
774 | 0 | Guid = Context.getMSGuidDecl(MSGuidDecl::Parts{}); |
775 | 0 | } else { |
776 | 0 | llvm::SmallSetVector<const UuidAttr *, 1> UuidAttrs; |
777 | 0 | getUuidAttrOfType(*this, E->getType(), UuidAttrs); |
778 | 0 | if (UuidAttrs.empty()) |
779 | 0 | return ExprError(Diag(TypeidLoc, diag::err_uuidof_without_guid)); |
780 | 0 | if (UuidAttrs.size() > 1) |
781 | 0 | return ExprError(Diag(TypeidLoc, diag::err_uuidof_with_multiple_guids)); |
782 | 0 | Guid = UuidAttrs.back()->getGuidDecl(); |
783 | 0 | } |
784 | 0 | } |
785 | | |
786 | 0 | return new (Context) |
787 | 0 | CXXUuidofExpr(Type, E, Guid, SourceRange(TypeidLoc, RParenLoc)); |
788 | 0 | } |
789 | | |
790 | | /// ActOnCXXUuidof - Parse __uuidof( type-id ) or __uuidof (expression); |
791 | | ExprResult |
792 | | Sema::ActOnCXXUuidof(SourceLocation OpLoc, SourceLocation LParenLoc, |
793 | 0 | bool isType, void *TyOrExpr, SourceLocation RParenLoc) { |
794 | 0 | QualType GuidType = Context.getMSGuidType(); |
795 | 0 | GuidType.addConst(); |
796 | |
|
797 | 0 | if (isType) { |
798 | | // The operand is a type; handle it as such. |
799 | 0 | TypeSourceInfo *TInfo = nullptr; |
800 | 0 | QualType T = GetTypeFromParser(ParsedType::getFromOpaquePtr(TyOrExpr), |
801 | 0 | &TInfo); |
802 | 0 | if (T.isNull()) |
803 | 0 | return ExprError(); |
804 | | |
805 | 0 | if (!TInfo) |
806 | 0 | TInfo = Context.getTrivialTypeSourceInfo(T, OpLoc); |
807 | |
|
808 | 0 | return BuildCXXUuidof(GuidType, OpLoc, TInfo, RParenLoc); |
809 | 0 | } |
810 | | |
811 | | // The operand is an expression. |
812 | 0 | return BuildCXXUuidof(GuidType, OpLoc, (Expr*)TyOrExpr, RParenLoc); |
813 | 0 | } |
814 | | |
815 | | /// ActOnCXXBoolLiteral - Parse {true,false} literals. |
816 | | ExprResult |
817 | 0 | Sema::ActOnCXXBoolLiteral(SourceLocation OpLoc, tok::TokenKind Kind) { |
818 | 0 | assert((Kind == tok::kw_true || Kind == tok::kw_false) && |
819 | 0 | "Unknown C++ Boolean value!"); |
820 | 0 | return new (Context) |
821 | 0 | CXXBoolLiteralExpr(Kind == tok::kw_true, Context.BoolTy, OpLoc); |
822 | 0 | } |
823 | | |
824 | | /// ActOnCXXNullPtrLiteral - Parse 'nullptr'. |
825 | | ExprResult |
826 | 0 | Sema::ActOnCXXNullPtrLiteral(SourceLocation Loc) { |
827 | 0 | return new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc); |
828 | 0 | } |
829 | | |
830 | | /// ActOnCXXThrow - Parse throw expressions. |
831 | | ExprResult |
832 | 0 | Sema::ActOnCXXThrow(Scope *S, SourceLocation OpLoc, Expr *Ex) { |
833 | 0 | bool IsThrownVarInScope = false; |
834 | 0 | if (Ex) { |
835 | | // C++0x [class.copymove]p31: |
836 | | // When certain criteria are met, an implementation is allowed to omit the |
837 | | // copy/move construction of a class object [...] |
838 | | // |
839 | | // - in a throw-expression, when the operand is the name of a |
840 | | // non-volatile automatic object (other than a function or catch- |
841 | | // clause parameter) whose scope does not extend beyond the end of the |
842 | | // innermost enclosing try-block (if there is one), the copy/move |
843 | | // operation from the operand to the exception object (15.1) can be |
844 | | // omitted by constructing the automatic object directly into the |
845 | | // exception object |
846 | 0 | if (const auto *DRE = dyn_cast<DeclRefExpr>(Ex->IgnoreParens())) |
847 | 0 | if (const auto *Var = dyn_cast<VarDecl>(DRE->getDecl()); |
848 | 0 | Var && Var->hasLocalStorage() && |
849 | 0 | !Var->getType().isVolatileQualified()) { |
850 | 0 | for (; S; S = S->getParent()) { |
851 | 0 | if (S->isDeclScope(Var)) { |
852 | 0 | IsThrownVarInScope = true; |
853 | 0 | break; |
854 | 0 | } |
855 | | |
856 | | // FIXME: Many of the scope checks here seem incorrect. |
857 | 0 | if (S->getFlags() & |
858 | 0 | (Scope::FnScope | Scope::ClassScope | Scope::BlockScope | |
859 | 0 | Scope::ObjCMethodScope | Scope::TryScope)) |
860 | 0 | break; |
861 | 0 | } |
862 | 0 | } |
863 | 0 | } |
864 | |
|
865 | 0 | return BuildCXXThrow(OpLoc, Ex, IsThrownVarInScope); |
866 | 0 | } |
867 | | |
868 | | ExprResult Sema::BuildCXXThrow(SourceLocation OpLoc, Expr *Ex, |
869 | 0 | bool IsThrownVarInScope) { |
870 | 0 | const llvm::Triple &T = Context.getTargetInfo().getTriple(); |
871 | 0 | const bool IsOpenMPGPUTarget = |
872 | 0 | getLangOpts().OpenMPIsTargetDevice && (T.isNVPTX() || T.isAMDGCN()); |
873 | | // Don't report an error if 'throw' is used in system headers or in an OpenMP |
874 | | // target region compiled for a GPU architecture. |
875 | 0 | if (!IsOpenMPGPUTarget && !getLangOpts().CXXExceptions && |
876 | 0 | !getSourceManager().isInSystemHeader(OpLoc) && !getLangOpts().CUDA) { |
877 | | // Delay error emission for the OpenMP device code. |
878 | 0 | targetDiag(OpLoc, diag::err_exceptions_disabled) << "throw"; |
879 | 0 | } |
880 | | |
881 | | // In OpenMP target regions, we replace 'throw' with a trap on GPU targets. |
882 | 0 | if (IsOpenMPGPUTarget) |
883 | 0 | targetDiag(OpLoc, diag::warn_throw_not_valid_on_target) << T.str(); |
884 | | |
885 | | // Exceptions aren't allowed in CUDA device code. |
886 | 0 | if (getLangOpts().CUDA) |
887 | 0 | CUDADiagIfDeviceCode(OpLoc, diag::err_cuda_device_exceptions) |
888 | 0 | << "throw" << CurrentCUDATarget(); |
889 | |
|
890 | 0 | if (getCurScope() && getCurScope()->isOpenMPSimdDirectiveScope()) |
891 | 0 | Diag(OpLoc, diag::err_omp_simd_region_cannot_use_stmt) << "throw"; |
892 | |
|
893 | 0 | if (Ex && !Ex->isTypeDependent()) { |
894 | | // Initialize the exception result. This implicitly weeds out |
895 | | // abstract types or types with inaccessible copy constructors. |
896 | | |
897 | | // C++0x [class.copymove]p31: |
898 | | // When certain criteria are met, an implementation is allowed to omit the |
899 | | // copy/move construction of a class object [...] |
900 | | // |
901 | | // - in a throw-expression, when the operand is the name of a |
902 | | // non-volatile automatic object (other than a function or |
903 | | // catch-clause |
904 | | // parameter) whose scope does not extend beyond the end of the |
905 | | // innermost enclosing try-block (if there is one), the copy/move |
906 | | // operation from the operand to the exception object (15.1) can be |
907 | | // omitted by constructing the automatic object directly into the |
908 | | // exception object |
909 | 0 | NamedReturnInfo NRInfo = |
910 | 0 | IsThrownVarInScope ? getNamedReturnInfo(Ex) : NamedReturnInfo(); |
911 | |
|
912 | 0 | QualType ExceptionObjectTy = Context.getExceptionObjectType(Ex->getType()); |
913 | 0 | if (CheckCXXThrowOperand(OpLoc, ExceptionObjectTy, Ex)) |
914 | 0 | return ExprError(); |
915 | | |
916 | 0 | InitializedEntity Entity = |
917 | 0 | InitializedEntity::InitializeException(OpLoc, ExceptionObjectTy); |
918 | 0 | ExprResult Res = PerformMoveOrCopyInitialization(Entity, NRInfo, Ex); |
919 | 0 | if (Res.isInvalid()) |
920 | 0 | return ExprError(); |
921 | 0 | Ex = Res.get(); |
922 | 0 | } |
923 | | |
924 | | // PPC MMA non-pointer types are not allowed as throw expr types. |
925 | 0 | if (Ex && Context.getTargetInfo().getTriple().isPPC64()) |
926 | 0 | CheckPPCMMAType(Ex->getType(), Ex->getBeginLoc()); |
927 | |
|
928 | 0 | return new (Context) |
929 | 0 | CXXThrowExpr(Ex, Context.VoidTy, OpLoc, IsThrownVarInScope); |
930 | 0 | } |
931 | | |
932 | | static void |
933 | | collectPublicBases(CXXRecordDecl *RD, |
934 | | llvm::DenseMap<CXXRecordDecl *, unsigned> &SubobjectsSeen, |
935 | | llvm::SmallPtrSetImpl<CXXRecordDecl *> &VBases, |
936 | | llvm::SetVector<CXXRecordDecl *> &PublicSubobjectsSeen, |
937 | 0 | bool ParentIsPublic) { |
938 | 0 | for (const CXXBaseSpecifier &BS : RD->bases()) { |
939 | 0 | CXXRecordDecl *BaseDecl = BS.getType()->getAsCXXRecordDecl(); |
940 | 0 | bool NewSubobject; |
941 | | // Virtual bases constitute the same subobject. Non-virtual bases are |
942 | | // always distinct subobjects. |
943 | 0 | if (BS.isVirtual()) |
944 | 0 | NewSubobject = VBases.insert(BaseDecl).second; |
945 | 0 | else |
946 | 0 | NewSubobject = true; |
947 | |
|
948 | 0 | if (NewSubobject) |
949 | 0 | ++SubobjectsSeen[BaseDecl]; |
950 | | |
951 | | // Only add subobjects which have public access throughout the entire chain. |
952 | 0 | bool PublicPath = ParentIsPublic && BS.getAccessSpecifier() == AS_public; |
953 | 0 | if (PublicPath) |
954 | 0 | PublicSubobjectsSeen.insert(BaseDecl); |
955 | | |
956 | | // Recurse on to each base subobject. |
957 | 0 | collectPublicBases(BaseDecl, SubobjectsSeen, VBases, PublicSubobjectsSeen, |
958 | 0 | PublicPath); |
959 | 0 | } |
960 | 0 | } |
961 | | |
962 | | static void getUnambiguousPublicSubobjects( |
963 | 0 | CXXRecordDecl *RD, llvm::SmallVectorImpl<CXXRecordDecl *> &Objects) { |
964 | 0 | llvm::DenseMap<CXXRecordDecl *, unsigned> SubobjectsSeen; |
965 | 0 | llvm::SmallSet<CXXRecordDecl *, 2> VBases; |
966 | 0 | llvm::SetVector<CXXRecordDecl *> PublicSubobjectsSeen; |
967 | 0 | SubobjectsSeen[RD] = 1; |
968 | 0 | PublicSubobjectsSeen.insert(RD); |
969 | 0 | collectPublicBases(RD, SubobjectsSeen, VBases, PublicSubobjectsSeen, |
970 | 0 | /*ParentIsPublic=*/true); |
971 | |
|
972 | 0 | for (CXXRecordDecl *PublicSubobject : PublicSubobjectsSeen) { |
973 | | // Skip ambiguous objects. |
974 | 0 | if (SubobjectsSeen[PublicSubobject] > 1) |
975 | 0 | continue; |
976 | | |
977 | 0 | Objects.push_back(PublicSubobject); |
978 | 0 | } |
979 | 0 | } |
980 | | |
981 | | /// CheckCXXThrowOperand - Validate the operand of a throw. |
982 | | bool Sema::CheckCXXThrowOperand(SourceLocation ThrowLoc, |
983 | 0 | QualType ExceptionObjectTy, Expr *E) { |
984 | | // If the type of the exception would be an incomplete type or a pointer |
985 | | // to an incomplete type other than (cv) void the program is ill-formed. |
986 | 0 | QualType Ty = ExceptionObjectTy; |
987 | 0 | bool isPointer = false; |
988 | 0 | if (const PointerType* Ptr = Ty->getAs<PointerType>()) { |
989 | 0 | Ty = Ptr->getPointeeType(); |
990 | 0 | isPointer = true; |
991 | 0 | } |
992 | | |
993 | | // Cannot throw WebAssembly reference type. |
994 | 0 | if (Ty.isWebAssemblyReferenceType()) { |
995 | 0 | Diag(ThrowLoc, diag::err_wasm_reftype_tc) << 0 << E->getSourceRange(); |
996 | 0 | return true; |
997 | 0 | } |
998 | | |
999 | | // Cannot throw WebAssembly table. |
1000 | 0 | if (isPointer && Ty.isWebAssemblyReferenceType()) { |
1001 | 0 | Diag(ThrowLoc, diag::err_wasm_table_art) << 2 << E->getSourceRange(); |
1002 | 0 | return true; |
1003 | 0 | } |
1004 | | |
1005 | 0 | if (!isPointer || !Ty->isVoidType()) { |
1006 | 0 | if (RequireCompleteType(ThrowLoc, Ty, |
1007 | 0 | isPointer ? diag::err_throw_incomplete_ptr |
1008 | 0 | : diag::err_throw_incomplete, |
1009 | 0 | E->getSourceRange())) |
1010 | 0 | return true; |
1011 | | |
1012 | 0 | if (!isPointer && Ty->isSizelessType()) { |
1013 | 0 | Diag(ThrowLoc, diag::err_throw_sizeless) << Ty << E->getSourceRange(); |
1014 | 0 | return true; |
1015 | 0 | } |
1016 | | |
1017 | 0 | if (RequireNonAbstractType(ThrowLoc, ExceptionObjectTy, |
1018 | 0 | diag::err_throw_abstract_type, E)) |
1019 | 0 | return true; |
1020 | 0 | } |
1021 | | |
1022 | | // If the exception has class type, we need additional handling. |
1023 | 0 | CXXRecordDecl *RD = Ty->getAsCXXRecordDecl(); |
1024 | 0 | if (!RD) |
1025 | 0 | return false; |
1026 | | |
1027 | | // If we are throwing a polymorphic class type or pointer thereof, |
1028 | | // exception handling will make use of the vtable. |
1029 | 0 | MarkVTableUsed(ThrowLoc, RD); |
1030 | | |
1031 | | // If a pointer is thrown, the referenced object will not be destroyed. |
1032 | 0 | if (isPointer) |
1033 | 0 | return false; |
1034 | | |
1035 | | // If the class has a destructor, we must be able to call it. |
1036 | 0 | if (!RD->hasIrrelevantDestructor()) { |
1037 | 0 | if (CXXDestructorDecl *Destructor = LookupDestructor(RD)) { |
1038 | 0 | MarkFunctionReferenced(E->getExprLoc(), Destructor); |
1039 | 0 | CheckDestructorAccess(E->getExprLoc(), Destructor, |
1040 | 0 | PDiag(diag::err_access_dtor_exception) << Ty); |
1041 | 0 | if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) |
1042 | 0 | return true; |
1043 | 0 | } |
1044 | 0 | } |
1045 | | |
1046 | | // The MSVC ABI creates a list of all types which can catch the exception |
1047 | | // object. This list also references the appropriate copy constructor to call |
1048 | | // if the object is caught by value and has a non-trivial copy constructor. |
1049 | 0 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
1050 | | // We are only interested in the public, unambiguous bases contained within |
1051 | | // the exception object. Bases which are ambiguous or otherwise |
1052 | | // inaccessible are not catchable types. |
1053 | 0 | llvm::SmallVector<CXXRecordDecl *, 2> UnambiguousPublicSubobjects; |
1054 | 0 | getUnambiguousPublicSubobjects(RD, UnambiguousPublicSubobjects); |
1055 | |
|
1056 | 0 | for (CXXRecordDecl *Subobject : UnambiguousPublicSubobjects) { |
1057 | | // Attempt to lookup the copy constructor. Various pieces of machinery |
1058 | | // will spring into action, like template instantiation, which means this |
1059 | | // cannot be a simple walk of the class's decls. Instead, we must perform |
1060 | | // lookup and overload resolution. |
1061 | 0 | CXXConstructorDecl *CD = LookupCopyingConstructor(Subobject, 0); |
1062 | 0 | if (!CD || CD->isDeleted()) |
1063 | 0 | continue; |
1064 | | |
1065 | | // Mark the constructor referenced as it is used by this throw expression. |
1066 | 0 | MarkFunctionReferenced(E->getExprLoc(), CD); |
1067 | | |
1068 | | // Skip this copy constructor if it is trivial, we don't need to record it |
1069 | | // in the catchable type data. |
1070 | 0 | if (CD->isTrivial()) |
1071 | 0 | continue; |
1072 | | |
1073 | | // The copy constructor is non-trivial, create a mapping from this class |
1074 | | // type to this constructor. |
1075 | | // N.B. The selection of copy constructor is not sensitive to this |
1076 | | // particular throw-site. Lookup will be performed at the catch-site to |
1077 | | // ensure that the copy constructor is, in fact, accessible (via |
1078 | | // friendship or any other means). |
1079 | 0 | Context.addCopyConstructorForExceptionObject(Subobject, CD); |
1080 | | |
1081 | | // We don't keep the instantiated default argument expressions around so |
1082 | | // we must rebuild them here. |
1083 | 0 | for (unsigned I = 1, E = CD->getNumParams(); I != E; ++I) { |
1084 | 0 | if (CheckCXXDefaultArgExpr(ThrowLoc, CD, CD->getParamDecl(I))) |
1085 | 0 | return true; |
1086 | 0 | } |
1087 | 0 | } |
1088 | 0 | } |
1089 | | |
1090 | | // Under the Itanium C++ ABI, memory for the exception object is allocated by |
1091 | | // the runtime with no ability for the compiler to request additional |
1092 | | // alignment. Warn if the exception type requires alignment beyond the minimum |
1093 | | // guaranteed by the target C++ runtime. |
1094 | 0 | if (Context.getTargetInfo().getCXXABI().isItaniumFamily()) { |
1095 | 0 | CharUnits TypeAlign = Context.getTypeAlignInChars(Ty); |
1096 | 0 | CharUnits ExnObjAlign = Context.getExnObjectAlignment(); |
1097 | 0 | if (ExnObjAlign < TypeAlign) { |
1098 | 0 | Diag(ThrowLoc, diag::warn_throw_underaligned_obj); |
1099 | 0 | Diag(ThrowLoc, diag::note_throw_underaligned_obj) |
1100 | 0 | << Ty << (unsigned)TypeAlign.getQuantity() |
1101 | 0 | << (unsigned)ExnObjAlign.getQuantity(); |
1102 | 0 | } |
1103 | 0 | } |
1104 | 0 | if (!isPointer && getLangOpts().AssumeNothrowExceptionDtor) { |
1105 | 0 | if (CXXDestructorDecl *Dtor = RD->getDestructor()) { |
1106 | 0 | auto Ty = Dtor->getType(); |
1107 | 0 | if (auto *FT = Ty.getTypePtr()->getAs<FunctionProtoType>()) { |
1108 | 0 | if (!isUnresolvedExceptionSpec(FT->getExceptionSpecType()) && |
1109 | 0 | !FT->isNothrow()) |
1110 | 0 | Diag(ThrowLoc, diag::err_throw_object_throwing_dtor) << RD; |
1111 | 0 | } |
1112 | 0 | } |
1113 | 0 | } |
1114 | |
|
1115 | 0 | return false; |
1116 | 0 | } |
1117 | | |
1118 | | static QualType adjustCVQualifiersForCXXThisWithinLambda( |
1119 | | ArrayRef<FunctionScopeInfo *> FunctionScopes, QualType ThisTy, |
1120 | 0 | DeclContext *CurSemaContext, ASTContext &ASTCtx) { |
1121 | |
|
1122 | 0 | QualType ClassType = ThisTy->getPointeeType(); |
1123 | 0 | LambdaScopeInfo *CurLSI = nullptr; |
1124 | 0 | DeclContext *CurDC = CurSemaContext; |
1125 | | |
1126 | | // Iterate through the stack of lambdas starting from the innermost lambda to |
1127 | | // the outermost lambda, checking if '*this' is ever captured by copy - since |
1128 | | // that could change the cv-qualifiers of the '*this' object. |
1129 | | // The object referred to by '*this' starts out with the cv-qualifiers of its |
1130 | | // member function. We then start with the innermost lambda and iterate |
1131 | | // outward checking to see if any lambda performs a by-copy capture of '*this' |
1132 | | // - and if so, any nested lambda must respect the 'constness' of that |
1133 | | // capturing lamdbda's call operator. |
1134 | | // |
1135 | | |
1136 | | // Since the FunctionScopeInfo stack is representative of the lexical |
1137 | | // nesting of the lambda expressions during initial parsing (and is the best |
1138 | | // place for querying information about captures about lambdas that are |
1139 | | // partially processed) and perhaps during instantiation of function templates |
1140 | | // that contain lambda expressions that need to be transformed BUT not |
1141 | | // necessarily during instantiation of a nested generic lambda's function call |
1142 | | // operator (which might even be instantiated at the end of the TU) - at which |
1143 | | // time the DeclContext tree is mature enough to query capture information |
1144 | | // reliably - we use a two pronged approach to walk through all the lexically |
1145 | | // enclosing lambda expressions: |
1146 | | // |
1147 | | // 1) Climb down the FunctionScopeInfo stack as long as each item represents |
1148 | | // a Lambda (i.e. LambdaScopeInfo) AND each LSI's 'closure-type' is lexically |
1149 | | // enclosed by the call-operator of the LSI below it on the stack (while |
1150 | | // tracking the enclosing DC for step 2 if needed). Note the topmost LSI on |
1151 | | // the stack represents the innermost lambda. |
1152 | | // |
1153 | | // 2) If we run out of enclosing LSI's, check if the enclosing DeclContext |
1154 | | // represents a lambda's call operator. If it does, we must be instantiating |
1155 | | // a generic lambda's call operator (represented by the Current LSI, and |
1156 | | // should be the only scenario where an inconsistency between the LSI and the |
1157 | | // DeclContext should occur), so climb out the DeclContexts if they |
1158 | | // represent lambdas, while querying the corresponding closure types |
1159 | | // regarding capture information. |
1160 | | |
1161 | | // 1) Climb down the function scope info stack. |
1162 | 0 | for (int I = FunctionScopes.size(); |
1163 | 0 | I-- && isa<LambdaScopeInfo>(FunctionScopes[I]) && |
1164 | 0 | (!CurLSI || !CurLSI->Lambda || CurLSI->Lambda->getDeclContext() == |
1165 | 0 | cast<LambdaScopeInfo>(FunctionScopes[I])->CallOperator); |
1166 | 0 | CurDC = getLambdaAwareParentOfDeclContext(CurDC)) { |
1167 | 0 | CurLSI = cast<LambdaScopeInfo>(FunctionScopes[I]); |
1168 | |
|
1169 | 0 | if (!CurLSI->isCXXThisCaptured()) |
1170 | 0 | continue; |
1171 | | |
1172 | 0 | auto C = CurLSI->getCXXThisCapture(); |
1173 | |
|
1174 | 0 | if (C.isCopyCapture()) { |
1175 | 0 | if (CurLSI->lambdaCaptureShouldBeConst()) |
1176 | 0 | ClassType.addConst(); |
1177 | 0 | return ASTCtx.getPointerType(ClassType); |
1178 | 0 | } |
1179 | 0 | } |
1180 | | |
1181 | | // 2) We've run out of ScopeInfos but check 1. if CurDC is a lambda (which |
1182 | | // can happen during instantiation of its nested generic lambda call |
1183 | | // operator); 2. if we're in a lambda scope (lambda body). |
1184 | 0 | if (CurLSI && isLambdaCallOperator(CurDC)) { |
1185 | 0 | assert(isGenericLambdaCallOperatorSpecialization(CurLSI->CallOperator) && |
1186 | 0 | "While computing 'this' capture-type for a generic lambda, when we " |
1187 | 0 | "run out of enclosing LSI's, yet the enclosing DC is a " |
1188 | 0 | "lambda-call-operator we must be (i.e. Current LSI) in a generic " |
1189 | 0 | "lambda call oeprator"); |
1190 | 0 | assert(CurDC == getLambdaAwareParentOfDeclContext(CurLSI->CallOperator)); |
1191 | | |
1192 | 0 | auto IsThisCaptured = |
1193 | 0 | [](CXXRecordDecl *Closure, bool &IsByCopy, bool &IsConst) { |
1194 | 0 | IsConst = false; |
1195 | 0 | IsByCopy = false; |
1196 | 0 | for (auto &&C : Closure->captures()) { |
1197 | 0 | if (C.capturesThis()) { |
1198 | 0 | if (C.getCaptureKind() == LCK_StarThis) |
1199 | 0 | IsByCopy = true; |
1200 | 0 | if (Closure->getLambdaCallOperator()->isConst()) |
1201 | 0 | IsConst = true; |
1202 | 0 | return true; |
1203 | 0 | } |
1204 | 0 | } |
1205 | 0 | return false; |
1206 | 0 | }; |
1207 | |
|
1208 | 0 | bool IsByCopyCapture = false; |
1209 | 0 | bool IsConstCapture = false; |
1210 | 0 | CXXRecordDecl *Closure = cast<CXXRecordDecl>(CurDC->getParent()); |
1211 | 0 | while (Closure && |
1212 | 0 | IsThisCaptured(Closure, IsByCopyCapture, IsConstCapture)) { |
1213 | 0 | if (IsByCopyCapture) { |
1214 | 0 | if (IsConstCapture) |
1215 | 0 | ClassType.addConst(); |
1216 | 0 | return ASTCtx.getPointerType(ClassType); |
1217 | 0 | } |
1218 | 0 | Closure = isLambdaCallOperator(Closure->getParent()) |
1219 | 0 | ? cast<CXXRecordDecl>(Closure->getParent()->getParent()) |
1220 | 0 | : nullptr; |
1221 | 0 | } |
1222 | 0 | } |
1223 | 0 | return ASTCtx.getPointerType(ClassType); |
1224 | 0 | } |
1225 | | |
1226 | 0 | QualType Sema::getCurrentThisType() { |
1227 | 0 | DeclContext *DC = getFunctionLevelDeclContext(); |
1228 | 0 | QualType ThisTy = CXXThisTypeOverride; |
1229 | |
|
1230 | 0 | if (CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(DC)) { |
1231 | 0 | if (method && method->isImplicitObjectMemberFunction()) |
1232 | 0 | ThisTy = method->getThisType().getNonReferenceType(); |
1233 | 0 | } |
1234 | |
|
1235 | 0 | if (ThisTy.isNull() && isLambdaCallWithImplicitObjectParameter(CurContext) && |
1236 | 0 | inTemplateInstantiation() && isa<CXXRecordDecl>(DC)) { |
1237 | | |
1238 | | // This is a lambda call operator that is being instantiated as a default |
1239 | | // initializer. DC must point to the enclosing class type, so we can recover |
1240 | | // the 'this' type from it. |
1241 | 0 | QualType ClassTy = Context.getTypeDeclType(cast<CXXRecordDecl>(DC)); |
1242 | | // There are no cv-qualifiers for 'this' within default initializers, |
1243 | | // per [expr.prim.general]p4. |
1244 | 0 | ThisTy = Context.getPointerType(ClassTy); |
1245 | 0 | } |
1246 | | |
1247 | | // If we are within a lambda's call operator, the cv-qualifiers of 'this' |
1248 | | // might need to be adjusted if the lambda or any of its enclosing lambda's |
1249 | | // captures '*this' by copy. |
1250 | 0 | if (!ThisTy.isNull() && isLambdaCallOperator(CurContext)) |
1251 | 0 | return adjustCVQualifiersForCXXThisWithinLambda(FunctionScopes, ThisTy, |
1252 | 0 | CurContext, Context); |
1253 | 0 | return ThisTy; |
1254 | 0 | } |
1255 | | |
1256 | | Sema::CXXThisScopeRAII::CXXThisScopeRAII(Sema &S, |
1257 | | Decl *ContextDecl, |
1258 | | Qualifiers CXXThisTypeQuals, |
1259 | | bool Enabled) |
1260 | | : S(S), OldCXXThisTypeOverride(S.CXXThisTypeOverride), Enabled(false) |
1261 | 0 | { |
1262 | 0 | if (!Enabled || !ContextDecl) |
1263 | 0 | return; |
1264 | | |
1265 | 0 | CXXRecordDecl *Record = nullptr; |
1266 | 0 | if (ClassTemplateDecl *Template = dyn_cast<ClassTemplateDecl>(ContextDecl)) |
1267 | 0 | Record = Template->getTemplatedDecl(); |
1268 | 0 | else |
1269 | 0 | Record = cast<CXXRecordDecl>(ContextDecl); |
1270 | |
|
1271 | 0 | QualType T = S.Context.getRecordType(Record); |
1272 | 0 | T = S.getASTContext().getQualifiedType(T, CXXThisTypeQuals); |
1273 | |
|
1274 | 0 | S.CXXThisTypeOverride = |
1275 | 0 | S.Context.getLangOpts().HLSL ? T : S.Context.getPointerType(T); |
1276 | |
|
1277 | 0 | this->Enabled = true; |
1278 | 0 | } |
1279 | | |
1280 | | |
1281 | 0 | Sema::CXXThisScopeRAII::~CXXThisScopeRAII() { |
1282 | 0 | if (Enabled) { |
1283 | 0 | S.CXXThisTypeOverride = OldCXXThisTypeOverride; |
1284 | 0 | } |
1285 | 0 | } |
1286 | | |
1287 | 0 | static void buildLambdaThisCaptureFixit(Sema &Sema, LambdaScopeInfo *LSI) { |
1288 | 0 | SourceLocation DiagLoc = LSI->IntroducerRange.getEnd(); |
1289 | 0 | assert(!LSI->isCXXThisCaptured()); |
1290 | | // [=, this] {}; // until C++20: Error: this when = is the default |
1291 | 0 | if (LSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval && |
1292 | 0 | !Sema.getLangOpts().CPlusPlus20) |
1293 | 0 | return; |
1294 | 0 | Sema.Diag(DiagLoc, diag::note_lambda_this_capture_fixit) |
1295 | 0 | << FixItHint::CreateInsertion( |
1296 | 0 | DiagLoc, LSI->NumExplicitCaptures > 0 ? ", this" : "this"); |
1297 | 0 | } |
1298 | | |
1299 | | bool Sema::CheckCXXThisCapture(SourceLocation Loc, const bool Explicit, |
1300 | | bool BuildAndDiagnose, const unsigned *const FunctionScopeIndexToStopAt, |
1301 | 0 | const bool ByCopy) { |
1302 | | // We don't need to capture this in an unevaluated context. |
1303 | 0 | if (isUnevaluatedContext() && !Explicit) |
1304 | 0 | return true; |
1305 | | |
1306 | 0 | assert((!ByCopy || Explicit) && "cannot implicitly capture *this by value"); |
1307 | | |
1308 | 0 | const int MaxFunctionScopesIndex = FunctionScopeIndexToStopAt |
1309 | 0 | ? *FunctionScopeIndexToStopAt |
1310 | 0 | : FunctionScopes.size() - 1; |
1311 | | |
1312 | | // Check that we can capture the *enclosing object* (referred to by '*this') |
1313 | | // by the capturing-entity/closure (lambda/block/etc) at |
1314 | | // MaxFunctionScopesIndex-deep on the FunctionScopes stack. |
1315 | | |
1316 | | // Note: The *enclosing object* can only be captured by-value by a |
1317 | | // closure that is a lambda, using the explicit notation: |
1318 | | // [*this] { ... }. |
1319 | | // Every other capture of the *enclosing object* results in its by-reference |
1320 | | // capture. |
1321 | | |
1322 | | // For a closure 'L' (at MaxFunctionScopesIndex in the FunctionScopes |
1323 | | // stack), we can capture the *enclosing object* only if: |
1324 | | // - 'L' has an explicit byref or byval capture of the *enclosing object* |
1325 | | // - or, 'L' has an implicit capture. |
1326 | | // AND |
1327 | | // -- there is no enclosing closure |
1328 | | // -- or, there is some enclosing closure 'E' that has already captured the |
1329 | | // *enclosing object*, and every intervening closure (if any) between 'E' |
1330 | | // and 'L' can implicitly capture the *enclosing object*. |
1331 | | // -- or, every enclosing closure can implicitly capture the |
1332 | | // *enclosing object* |
1333 | | |
1334 | |
|
1335 | 0 | unsigned NumCapturingClosures = 0; |
1336 | 0 | for (int idx = MaxFunctionScopesIndex; idx >= 0; idx--) { |
1337 | 0 | if (CapturingScopeInfo *CSI = |
1338 | 0 | dyn_cast<CapturingScopeInfo>(FunctionScopes[idx])) { |
1339 | 0 | if (CSI->CXXThisCaptureIndex != 0) { |
1340 | | // 'this' is already being captured; there isn't anything more to do. |
1341 | 0 | CSI->Captures[CSI->CXXThisCaptureIndex - 1].markUsed(BuildAndDiagnose); |
1342 | 0 | break; |
1343 | 0 | } |
1344 | 0 | LambdaScopeInfo *LSI = dyn_cast<LambdaScopeInfo>(CSI); |
1345 | 0 | if (LSI && isGenericLambdaCallOperatorSpecialization(LSI->CallOperator)) { |
1346 | | // This context can't implicitly capture 'this'; fail out. |
1347 | 0 | if (BuildAndDiagnose) { |
1348 | 0 | LSI->CallOperator->setInvalidDecl(); |
1349 | 0 | Diag(Loc, diag::err_this_capture) |
1350 | 0 | << (Explicit && idx == MaxFunctionScopesIndex); |
1351 | 0 | if (!Explicit) |
1352 | 0 | buildLambdaThisCaptureFixit(*this, LSI); |
1353 | 0 | } |
1354 | 0 | return true; |
1355 | 0 | } |
1356 | 0 | if (CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByref || |
1357 | 0 | CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_LambdaByval || |
1358 | 0 | CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_Block || |
1359 | 0 | CSI->ImpCaptureStyle == CapturingScopeInfo::ImpCap_CapturedRegion || |
1360 | 0 | (Explicit && idx == MaxFunctionScopesIndex)) { |
1361 | | // Regarding (Explicit && idx == MaxFunctionScopesIndex): only the first |
1362 | | // iteration through can be an explicit capture, all enclosing closures, |
1363 | | // if any, must perform implicit captures. |
1364 | | |
1365 | | // This closure can capture 'this'; continue looking upwards. |
1366 | 0 | NumCapturingClosures++; |
1367 | 0 | continue; |
1368 | 0 | } |
1369 | | // This context can't implicitly capture 'this'; fail out. |
1370 | 0 | if (BuildAndDiagnose) { |
1371 | 0 | LSI->CallOperator->setInvalidDecl(); |
1372 | 0 | Diag(Loc, diag::err_this_capture) |
1373 | 0 | << (Explicit && idx == MaxFunctionScopesIndex); |
1374 | 0 | } |
1375 | 0 | if (!Explicit) |
1376 | 0 | buildLambdaThisCaptureFixit(*this, LSI); |
1377 | 0 | return true; |
1378 | 0 | } |
1379 | 0 | break; |
1380 | 0 | } |
1381 | 0 | if (!BuildAndDiagnose) return false; |
1382 | | |
1383 | | // If we got here, then the closure at MaxFunctionScopesIndex on the |
1384 | | // FunctionScopes stack, can capture the *enclosing object*, so capture it |
1385 | | // (including implicit by-reference captures in any enclosing closures). |
1386 | | |
1387 | | // In the loop below, respect the ByCopy flag only for the closure requesting |
1388 | | // the capture (i.e. first iteration through the loop below). Ignore it for |
1389 | | // all enclosing closure's up to NumCapturingClosures (since they must be |
1390 | | // implicitly capturing the *enclosing object* by reference (see loop |
1391 | | // above)). |
1392 | 0 | assert((!ByCopy || |
1393 | 0 | isa<LambdaScopeInfo>(FunctionScopes[MaxFunctionScopesIndex])) && |
1394 | 0 | "Only a lambda can capture the enclosing object (referred to by " |
1395 | 0 | "*this) by copy"); |
1396 | 0 | QualType ThisTy = getCurrentThisType(); |
1397 | 0 | for (int idx = MaxFunctionScopesIndex; NumCapturingClosures; |
1398 | 0 | --idx, --NumCapturingClosures) { |
1399 | 0 | CapturingScopeInfo *CSI = cast<CapturingScopeInfo>(FunctionScopes[idx]); |
1400 | | |
1401 | | // The type of the corresponding data member (not a 'this' pointer if 'by |
1402 | | // copy'). |
1403 | 0 | QualType CaptureType = ByCopy ? ThisTy->getPointeeType() : ThisTy; |
1404 | |
|
1405 | 0 | bool isNested = NumCapturingClosures > 1; |
1406 | 0 | CSI->addThisCapture(isNested, Loc, CaptureType, ByCopy); |
1407 | 0 | } |
1408 | 0 | return false; |
1409 | 0 | } |
1410 | | |
1411 | 0 | ExprResult Sema::ActOnCXXThis(SourceLocation Loc) { |
1412 | | /// C++ 9.3.2: In the body of a non-static member function, the keyword this |
1413 | | /// is a non-lvalue expression whose value is the address of the object for |
1414 | | /// which the function is called. |
1415 | 0 | QualType ThisTy = getCurrentThisType(); |
1416 | |
|
1417 | 0 | if (ThisTy.isNull()) { |
1418 | 0 | DeclContext *DC = getFunctionLevelDeclContext(); |
1419 | |
|
1420 | 0 | if (const auto *Method = dyn_cast<CXXMethodDecl>(DC); |
1421 | 0 | Method && Method->isExplicitObjectMemberFunction()) { |
1422 | 0 | return Diag(Loc, diag::err_invalid_this_use) << 1; |
1423 | 0 | } |
1424 | | |
1425 | 0 | if (isLambdaCallWithExplicitObjectParameter(CurContext)) |
1426 | 0 | return Diag(Loc, diag::err_invalid_this_use) << 1; |
1427 | | |
1428 | 0 | return Diag(Loc, diag::err_invalid_this_use) << 0; |
1429 | 0 | } |
1430 | | |
1431 | 0 | return BuildCXXThisExpr(Loc, ThisTy, /*IsImplicit=*/false); |
1432 | 0 | } |
1433 | | |
1434 | | Expr *Sema::BuildCXXThisExpr(SourceLocation Loc, QualType Type, |
1435 | 0 | bool IsImplicit) { |
1436 | 0 | auto *This = CXXThisExpr::Create(Context, Loc, Type, IsImplicit); |
1437 | 0 | MarkThisReferenced(This); |
1438 | 0 | return This; |
1439 | 0 | } |
1440 | | |
1441 | 0 | void Sema::MarkThisReferenced(CXXThisExpr *This) { |
1442 | 0 | CheckCXXThisCapture(This->getExprLoc()); |
1443 | 0 | } |
1444 | | |
1445 | 0 | bool Sema::isThisOutsideMemberFunctionBody(QualType BaseType) { |
1446 | | // If we're outside the body of a member function, then we'll have a specified |
1447 | | // type for 'this'. |
1448 | 0 | if (CXXThisTypeOverride.isNull()) |
1449 | 0 | return false; |
1450 | | |
1451 | | // Determine whether we're looking into a class that's currently being |
1452 | | // defined. |
1453 | 0 | CXXRecordDecl *Class = BaseType->getAsCXXRecordDecl(); |
1454 | 0 | return Class && Class->isBeingDefined(); |
1455 | 0 | } |
1456 | | |
1457 | | /// Parse construction of a specified type. |
1458 | | /// Can be interpreted either as function-style casting ("int(x)") |
1459 | | /// or class type construction ("ClassType(x,y,z)") |
1460 | | /// or creation of a value-initialized type ("int()"). |
1461 | | ExprResult |
1462 | | Sema::ActOnCXXTypeConstructExpr(ParsedType TypeRep, |
1463 | | SourceLocation LParenOrBraceLoc, |
1464 | | MultiExprArg exprs, |
1465 | | SourceLocation RParenOrBraceLoc, |
1466 | 0 | bool ListInitialization) { |
1467 | 0 | if (!TypeRep) |
1468 | 0 | return ExprError(); |
1469 | | |
1470 | 0 | TypeSourceInfo *TInfo; |
1471 | 0 | QualType Ty = GetTypeFromParser(TypeRep, &TInfo); |
1472 | 0 | if (!TInfo) |
1473 | 0 | TInfo = Context.getTrivialTypeSourceInfo(Ty, SourceLocation()); |
1474 | |
|
1475 | 0 | auto Result = BuildCXXTypeConstructExpr(TInfo, LParenOrBraceLoc, exprs, |
1476 | 0 | RParenOrBraceLoc, ListInitialization); |
1477 | | // Avoid creating a non-type-dependent expression that contains typos. |
1478 | | // Non-type-dependent expressions are liable to be discarded without |
1479 | | // checking for embedded typos. |
1480 | 0 | if (!Result.isInvalid() && Result.get()->isInstantiationDependent() && |
1481 | 0 | !Result.get()->isTypeDependent()) |
1482 | 0 | Result = CorrectDelayedTyposInExpr(Result.get()); |
1483 | 0 | else if (Result.isInvalid()) |
1484 | 0 | Result = CreateRecoveryExpr(TInfo->getTypeLoc().getBeginLoc(), |
1485 | 0 | RParenOrBraceLoc, exprs, Ty); |
1486 | 0 | return Result; |
1487 | 0 | } |
1488 | | |
1489 | | ExprResult |
1490 | | Sema::BuildCXXTypeConstructExpr(TypeSourceInfo *TInfo, |
1491 | | SourceLocation LParenOrBraceLoc, |
1492 | | MultiExprArg Exprs, |
1493 | | SourceLocation RParenOrBraceLoc, |
1494 | 0 | bool ListInitialization) { |
1495 | 0 | QualType Ty = TInfo->getType(); |
1496 | 0 | SourceLocation TyBeginLoc = TInfo->getTypeLoc().getBeginLoc(); |
1497 | |
|
1498 | 0 | assert((!ListInitialization || Exprs.size() == 1) && |
1499 | 0 | "List initialization must have exactly one expression."); |
1500 | 0 | SourceRange FullRange = SourceRange(TyBeginLoc, RParenOrBraceLoc); |
1501 | |
|
1502 | 0 | InitializedEntity Entity = |
1503 | 0 | InitializedEntity::InitializeTemporary(Context, TInfo); |
1504 | 0 | InitializationKind Kind = |
1505 | 0 | Exprs.size() |
1506 | 0 | ? ListInitialization |
1507 | 0 | ? InitializationKind::CreateDirectList( |
1508 | 0 | TyBeginLoc, LParenOrBraceLoc, RParenOrBraceLoc) |
1509 | 0 | : InitializationKind::CreateDirect(TyBeginLoc, LParenOrBraceLoc, |
1510 | 0 | RParenOrBraceLoc) |
1511 | 0 | : InitializationKind::CreateValue(TyBeginLoc, LParenOrBraceLoc, |
1512 | 0 | RParenOrBraceLoc); |
1513 | | |
1514 | | // C++17 [expr.type.conv]p1: |
1515 | | // If the type is a placeholder for a deduced class type, [...perform class |
1516 | | // template argument deduction...] |
1517 | | // C++23: |
1518 | | // Otherwise, if the type contains a placeholder type, it is replaced by the |
1519 | | // type determined by placeholder type deduction. |
1520 | 0 | DeducedType *Deduced = Ty->getContainedDeducedType(); |
1521 | 0 | if (Deduced && !Deduced->isDeduced() && |
1522 | 0 | isa<DeducedTemplateSpecializationType>(Deduced)) { |
1523 | 0 | Ty = DeduceTemplateSpecializationFromInitializer(TInfo, Entity, |
1524 | 0 | Kind, Exprs); |
1525 | 0 | if (Ty.isNull()) |
1526 | 0 | return ExprError(); |
1527 | 0 | Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); |
1528 | 0 | } else if (Deduced && !Deduced->isDeduced()) { |
1529 | 0 | MultiExprArg Inits = Exprs; |
1530 | 0 | if (ListInitialization) { |
1531 | 0 | auto *ILE = cast<InitListExpr>(Exprs[0]); |
1532 | 0 | Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); |
1533 | 0 | } |
1534 | |
|
1535 | 0 | if (Inits.empty()) |
1536 | 0 | return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_init_no_expression) |
1537 | 0 | << Ty << FullRange); |
1538 | 0 | if (Inits.size() > 1) { |
1539 | 0 | Expr *FirstBad = Inits[1]; |
1540 | 0 | return ExprError(Diag(FirstBad->getBeginLoc(), |
1541 | 0 | diag::err_auto_expr_init_multiple_expressions) |
1542 | 0 | << Ty << FullRange); |
1543 | 0 | } |
1544 | 0 | if (getLangOpts().CPlusPlus23) { |
1545 | 0 | if (Ty->getAs<AutoType>()) |
1546 | 0 | Diag(TyBeginLoc, diag::warn_cxx20_compat_auto_expr) << FullRange; |
1547 | 0 | } |
1548 | 0 | Expr *Deduce = Inits[0]; |
1549 | 0 | if (isa<InitListExpr>(Deduce)) |
1550 | 0 | return ExprError( |
1551 | 0 | Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) |
1552 | 0 | << ListInitialization << Ty << FullRange); |
1553 | 0 | QualType DeducedType; |
1554 | 0 | TemplateDeductionInfo Info(Deduce->getExprLoc()); |
1555 | 0 | TemplateDeductionResult Result = |
1556 | 0 | DeduceAutoType(TInfo->getTypeLoc(), Deduce, DeducedType, Info); |
1557 | 0 | if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) |
1558 | 0 | return ExprError(Diag(TyBeginLoc, diag::err_auto_expr_deduction_failure) |
1559 | 0 | << Ty << Deduce->getType() << FullRange |
1560 | 0 | << Deduce->getSourceRange()); |
1561 | 0 | if (DeducedType.isNull()) { |
1562 | 0 | assert(Result == TDK_AlreadyDiagnosed); |
1563 | 0 | return ExprError(); |
1564 | 0 | } |
1565 | | |
1566 | 0 | Ty = DeducedType; |
1567 | 0 | Entity = InitializedEntity::InitializeTemporary(TInfo, Ty); |
1568 | 0 | } |
1569 | | |
1570 | 0 | if (Ty->isDependentType() || CallExpr::hasAnyTypeDependentArguments(Exprs)) |
1571 | 0 | return CXXUnresolvedConstructExpr::Create( |
1572 | 0 | Context, Ty.getNonReferenceType(), TInfo, LParenOrBraceLoc, Exprs, |
1573 | 0 | RParenOrBraceLoc, ListInitialization); |
1574 | | |
1575 | | // C++ [expr.type.conv]p1: |
1576 | | // If the expression list is a parenthesized single expression, the type |
1577 | | // conversion expression is equivalent (in definedness, and if defined in |
1578 | | // meaning) to the corresponding cast expression. |
1579 | 0 | if (Exprs.size() == 1 && !ListInitialization && |
1580 | 0 | !isa<InitListExpr>(Exprs[0])) { |
1581 | 0 | Expr *Arg = Exprs[0]; |
1582 | 0 | return BuildCXXFunctionalCastExpr(TInfo, Ty, LParenOrBraceLoc, Arg, |
1583 | 0 | RParenOrBraceLoc); |
1584 | 0 | } |
1585 | | |
1586 | | // For an expression of the form T(), T shall not be an array type. |
1587 | 0 | QualType ElemTy = Ty; |
1588 | 0 | if (Ty->isArrayType()) { |
1589 | 0 | if (!ListInitialization) |
1590 | 0 | return ExprError(Diag(TyBeginLoc, diag::err_value_init_for_array_type) |
1591 | 0 | << FullRange); |
1592 | 0 | ElemTy = Context.getBaseElementType(Ty); |
1593 | 0 | } |
1594 | | |
1595 | | // Only construct objects with object types. |
1596 | | // The standard doesn't explicitly forbid function types here, but that's an |
1597 | | // obvious oversight, as there's no way to dynamically construct a function |
1598 | | // in general. |
1599 | 0 | if (Ty->isFunctionType()) |
1600 | 0 | return ExprError(Diag(TyBeginLoc, diag::err_init_for_function_type) |
1601 | 0 | << Ty << FullRange); |
1602 | | |
1603 | | // C++17 [expr.type.conv]p2: |
1604 | | // If the type is cv void and the initializer is (), the expression is a |
1605 | | // prvalue of the specified type that performs no initialization. |
1606 | 0 | if (!Ty->isVoidType() && |
1607 | 0 | RequireCompleteType(TyBeginLoc, ElemTy, |
1608 | 0 | diag::err_invalid_incomplete_type_use, FullRange)) |
1609 | 0 | return ExprError(); |
1610 | | |
1611 | | // Otherwise, the expression is a prvalue of the specified type whose |
1612 | | // result object is direct-initialized (11.6) with the initializer. |
1613 | 0 | InitializationSequence InitSeq(*this, Entity, Kind, Exprs); |
1614 | 0 | ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Exprs); |
1615 | |
|
1616 | 0 | if (Result.isInvalid()) |
1617 | 0 | return Result; |
1618 | | |
1619 | 0 | Expr *Inner = Result.get(); |
1620 | 0 | if (CXXBindTemporaryExpr *BTE = dyn_cast_or_null<CXXBindTemporaryExpr>(Inner)) |
1621 | 0 | Inner = BTE->getSubExpr(); |
1622 | 0 | if (auto *CE = dyn_cast<ConstantExpr>(Inner); |
1623 | 0 | CE && CE->isImmediateInvocation()) |
1624 | 0 | Inner = CE->getSubExpr(); |
1625 | 0 | if (!isa<CXXTemporaryObjectExpr>(Inner) && |
1626 | 0 | !isa<CXXScalarValueInitExpr>(Inner)) { |
1627 | | // If we created a CXXTemporaryObjectExpr, that node also represents the |
1628 | | // functional cast. Otherwise, create an explicit cast to represent |
1629 | | // the syntactic form of a functional-style cast that was used here. |
1630 | | // |
1631 | | // FIXME: Creating a CXXFunctionalCastExpr around a CXXConstructExpr |
1632 | | // would give a more consistent AST representation than using a |
1633 | | // CXXTemporaryObjectExpr. It's also weird that the functional cast |
1634 | | // is sometimes handled by initialization and sometimes not. |
1635 | 0 | QualType ResultType = Result.get()->getType(); |
1636 | 0 | SourceRange Locs = ListInitialization |
1637 | 0 | ? SourceRange() |
1638 | 0 | : SourceRange(LParenOrBraceLoc, RParenOrBraceLoc); |
1639 | 0 | Result = CXXFunctionalCastExpr::Create( |
1640 | 0 | Context, ResultType, Expr::getValueKindForType(Ty), TInfo, CK_NoOp, |
1641 | 0 | Result.get(), /*Path=*/nullptr, CurFPFeatureOverrides(), |
1642 | 0 | Locs.getBegin(), Locs.getEnd()); |
1643 | 0 | } |
1644 | |
|
1645 | 0 | return Result; |
1646 | 0 | } |
1647 | | |
1648 | 0 | bool Sema::isUsualDeallocationFunction(const CXXMethodDecl *Method) { |
1649 | | // [CUDA] Ignore this function, if we can't call it. |
1650 | 0 | const FunctionDecl *Caller = getCurFunctionDecl(/*AllowLambda=*/true); |
1651 | 0 | if (getLangOpts().CUDA) { |
1652 | 0 | auto CallPreference = IdentifyCUDAPreference(Caller, Method); |
1653 | | // If it's not callable at all, it's not the right function. |
1654 | 0 | if (CallPreference < CFP_WrongSide) |
1655 | 0 | return false; |
1656 | 0 | if (CallPreference == CFP_WrongSide) { |
1657 | | // Maybe. We have to check if there are better alternatives. |
1658 | 0 | DeclContext::lookup_result R = |
1659 | 0 | Method->getDeclContext()->lookup(Method->getDeclName()); |
1660 | 0 | for (const auto *D : R) { |
1661 | 0 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { |
1662 | 0 | if (IdentifyCUDAPreference(Caller, FD) > CFP_WrongSide) |
1663 | 0 | return false; |
1664 | 0 | } |
1665 | 0 | } |
1666 | | // We've found no better variants. |
1667 | 0 | } |
1668 | 0 | } |
1669 | | |
1670 | 0 | SmallVector<const FunctionDecl*, 4> PreventedBy; |
1671 | 0 | bool Result = Method->isUsualDeallocationFunction(PreventedBy); |
1672 | |
|
1673 | 0 | if (Result || !getLangOpts().CUDA || PreventedBy.empty()) |
1674 | 0 | return Result; |
1675 | | |
1676 | | // In case of CUDA, return true if none of the 1-argument deallocator |
1677 | | // functions are actually callable. |
1678 | 0 | return llvm::none_of(PreventedBy, [&](const FunctionDecl *FD) { |
1679 | 0 | assert(FD->getNumParams() == 1 && |
1680 | 0 | "Only single-operand functions should be in PreventedBy"); |
1681 | 0 | return IdentifyCUDAPreference(Caller, FD) >= CFP_HostDevice; |
1682 | 0 | }); |
1683 | 0 | } |
1684 | | |
1685 | | /// Determine whether the given function is a non-placement |
1686 | | /// deallocation function. |
1687 | 0 | static bool isNonPlacementDeallocationFunction(Sema &S, FunctionDecl *FD) { |
1688 | 0 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) |
1689 | 0 | return S.isUsualDeallocationFunction(Method); |
1690 | | |
1691 | 0 | if (FD->getOverloadedOperator() != OO_Delete && |
1692 | 0 | FD->getOverloadedOperator() != OO_Array_Delete) |
1693 | 0 | return false; |
1694 | | |
1695 | 0 | unsigned UsualParams = 1; |
1696 | |
|
1697 | 0 | if (S.getLangOpts().SizedDeallocation && UsualParams < FD->getNumParams() && |
1698 | 0 | S.Context.hasSameUnqualifiedType( |
1699 | 0 | FD->getParamDecl(UsualParams)->getType(), |
1700 | 0 | S.Context.getSizeType())) |
1701 | 0 | ++UsualParams; |
1702 | |
|
1703 | 0 | if (S.getLangOpts().AlignedAllocation && UsualParams < FD->getNumParams() && |
1704 | 0 | S.Context.hasSameUnqualifiedType( |
1705 | 0 | FD->getParamDecl(UsualParams)->getType(), |
1706 | 0 | S.Context.getTypeDeclType(S.getStdAlignValT()))) |
1707 | 0 | ++UsualParams; |
1708 | |
|
1709 | 0 | return UsualParams == FD->getNumParams(); |
1710 | 0 | } |
1711 | | |
1712 | | namespace { |
1713 | | struct UsualDeallocFnInfo { |
1714 | 0 | UsualDeallocFnInfo() : Found(), FD(nullptr) {} |
1715 | | UsualDeallocFnInfo(Sema &S, DeclAccessPair Found) |
1716 | | : Found(Found), FD(dyn_cast<FunctionDecl>(Found->getUnderlyingDecl())), |
1717 | | Destroying(false), HasSizeT(false), HasAlignValT(false), |
1718 | 0 | CUDAPref(Sema::CFP_Native) { |
1719 | | // A function template declaration is never a usual deallocation function. |
1720 | 0 | if (!FD) |
1721 | 0 | return; |
1722 | 0 | unsigned NumBaseParams = 1; |
1723 | 0 | if (FD->isDestroyingOperatorDelete()) { |
1724 | 0 | Destroying = true; |
1725 | 0 | ++NumBaseParams; |
1726 | 0 | } |
1727 | |
|
1728 | 0 | if (NumBaseParams < FD->getNumParams() && |
1729 | 0 | S.Context.hasSameUnqualifiedType( |
1730 | 0 | FD->getParamDecl(NumBaseParams)->getType(), |
1731 | 0 | S.Context.getSizeType())) { |
1732 | 0 | ++NumBaseParams; |
1733 | 0 | HasSizeT = true; |
1734 | 0 | } |
1735 | |
|
1736 | 0 | if (NumBaseParams < FD->getNumParams() && |
1737 | 0 | FD->getParamDecl(NumBaseParams)->getType()->isAlignValT()) { |
1738 | 0 | ++NumBaseParams; |
1739 | 0 | HasAlignValT = true; |
1740 | 0 | } |
1741 | | |
1742 | | // In CUDA, determine how much we'd like / dislike to call this. |
1743 | 0 | if (S.getLangOpts().CUDA) |
1744 | 0 | CUDAPref = S.IdentifyCUDAPreference( |
1745 | 0 | S.getCurFunctionDecl(/*AllowLambda=*/true), FD); |
1746 | 0 | } |
1747 | | |
1748 | 0 | explicit operator bool() const { return FD; } |
1749 | | |
1750 | | bool isBetterThan(const UsualDeallocFnInfo &Other, bool WantSize, |
1751 | 0 | bool WantAlign) const { |
1752 | | // C++ P0722: |
1753 | | // A destroying operator delete is preferred over a non-destroying |
1754 | | // operator delete. |
1755 | 0 | if (Destroying != Other.Destroying) |
1756 | 0 | return Destroying; |
1757 | | |
1758 | | // C++17 [expr.delete]p10: |
1759 | | // If the type has new-extended alignment, a function with a parameter |
1760 | | // of type std::align_val_t is preferred; otherwise a function without |
1761 | | // such a parameter is preferred |
1762 | 0 | if (HasAlignValT != Other.HasAlignValT) |
1763 | 0 | return HasAlignValT == WantAlign; |
1764 | | |
1765 | 0 | if (HasSizeT != Other.HasSizeT) |
1766 | 0 | return HasSizeT == WantSize; |
1767 | | |
1768 | | // Use CUDA call preference as a tiebreaker. |
1769 | 0 | return CUDAPref > Other.CUDAPref; |
1770 | 0 | } |
1771 | | |
1772 | | DeclAccessPair Found; |
1773 | | FunctionDecl *FD; |
1774 | | bool Destroying, HasSizeT, HasAlignValT; |
1775 | | Sema::CUDAFunctionPreference CUDAPref; |
1776 | | }; |
1777 | | } |
1778 | | |
1779 | | /// Determine whether a type has new-extended alignment. This may be called when |
1780 | | /// the type is incomplete (for a delete-expression with an incomplete pointee |
1781 | | /// type), in which case it will conservatively return false if the alignment is |
1782 | | /// not known. |
1783 | 0 | static bool hasNewExtendedAlignment(Sema &S, QualType AllocType) { |
1784 | 0 | return S.getLangOpts().AlignedAllocation && |
1785 | 0 | S.getASTContext().getTypeAlignIfKnown(AllocType) > |
1786 | 0 | S.getASTContext().getTargetInfo().getNewAlign(); |
1787 | 0 | } |
1788 | | |
1789 | | /// Select the correct "usual" deallocation function to use from a selection of |
1790 | | /// deallocation functions (either global or class-scope). |
1791 | | static UsualDeallocFnInfo resolveDeallocationOverload( |
1792 | | Sema &S, LookupResult &R, bool WantSize, bool WantAlign, |
1793 | 0 | llvm::SmallVectorImpl<UsualDeallocFnInfo> *BestFns = nullptr) { |
1794 | 0 | UsualDeallocFnInfo Best; |
1795 | |
|
1796 | 0 | for (auto I = R.begin(), E = R.end(); I != E; ++I) { |
1797 | 0 | UsualDeallocFnInfo Info(S, I.getPair()); |
1798 | 0 | if (!Info || !isNonPlacementDeallocationFunction(S, Info.FD) || |
1799 | 0 | Info.CUDAPref == Sema::CFP_Never) |
1800 | 0 | continue; |
1801 | | |
1802 | 0 | if (!Best) { |
1803 | 0 | Best = Info; |
1804 | 0 | if (BestFns) |
1805 | 0 | BestFns->push_back(Info); |
1806 | 0 | continue; |
1807 | 0 | } |
1808 | | |
1809 | 0 | if (Best.isBetterThan(Info, WantSize, WantAlign)) |
1810 | 0 | continue; |
1811 | | |
1812 | | // If more than one preferred function is found, all non-preferred |
1813 | | // functions are eliminated from further consideration. |
1814 | 0 | if (BestFns && Info.isBetterThan(Best, WantSize, WantAlign)) |
1815 | 0 | BestFns->clear(); |
1816 | |
|
1817 | 0 | Best = Info; |
1818 | 0 | if (BestFns) |
1819 | 0 | BestFns->push_back(Info); |
1820 | 0 | } |
1821 | |
|
1822 | 0 | return Best; |
1823 | 0 | } |
1824 | | |
1825 | | /// Determine whether a given type is a class for which 'delete[]' would call |
1826 | | /// a member 'operator delete[]' with a 'size_t' parameter. This implies that |
1827 | | /// we need to store the array size (even if the type is |
1828 | | /// trivially-destructible). |
1829 | | static bool doesUsualArrayDeleteWantSize(Sema &S, SourceLocation loc, |
1830 | 0 | QualType allocType) { |
1831 | 0 | const RecordType *record = |
1832 | 0 | allocType->getBaseElementTypeUnsafe()->getAs<RecordType>(); |
1833 | 0 | if (!record) return false; |
1834 | | |
1835 | | // Try to find an operator delete[] in class scope. |
1836 | | |
1837 | 0 | DeclarationName deleteName = |
1838 | 0 | S.Context.DeclarationNames.getCXXOperatorName(OO_Array_Delete); |
1839 | 0 | LookupResult ops(S, deleteName, loc, Sema::LookupOrdinaryName); |
1840 | 0 | S.LookupQualifiedName(ops, record->getDecl()); |
1841 | | |
1842 | | // We're just doing this for information. |
1843 | 0 | ops.suppressDiagnostics(); |
1844 | | |
1845 | | // Very likely: there's no operator delete[]. |
1846 | 0 | if (ops.empty()) return false; |
1847 | | |
1848 | | // If it's ambiguous, it should be illegal to call operator delete[] |
1849 | | // on this thing, so it doesn't matter if we allocate extra space or not. |
1850 | 0 | if (ops.isAmbiguous()) return false; |
1851 | | |
1852 | | // C++17 [expr.delete]p10: |
1853 | | // If the deallocation functions have class scope, the one without a |
1854 | | // parameter of type std::size_t is selected. |
1855 | 0 | auto Best = resolveDeallocationOverload( |
1856 | 0 | S, ops, /*WantSize*/false, |
1857 | 0 | /*WantAlign*/hasNewExtendedAlignment(S, allocType)); |
1858 | 0 | return Best && Best.HasSizeT; |
1859 | 0 | } |
1860 | | |
1861 | | /// Parsed a C++ 'new' expression (C++ 5.3.4). |
1862 | | /// |
1863 | | /// E.g.: |
1864 | | /// @code new (memory) int[size][4] @endcode |
1865 | | /// or |
1866 | | /// @code ::new Foo(23, "hello") @endcode |
1867 | | /// |
1868 | | /// \param StartLoc The first location of the expression. |
1869 | | /// \param UseGlobal True if 'new' was prefixed with '::'. |
1870 | | /// \param PlacementLParen Opening paren of the placement arguments. |
1871 | | /// \param PlacementArgs Placement new arguments. |
1872 | | /// \param PlacementRParen Closing paren of the placement arguments. |
1873 | | /// \param TypeIdParens If the type is in parens, the source range. |
1874 | | /// \param D The type to be allocated, as well as array dimensions. |
1875 | | /// \param Initializer The initializing expression or initializer-list, or null |
1876 | | /// if there is none. |
1877 | | ExprResult |
1878 | | Sema::ActOnCXXNew(SourceLocation StartLoc, bool UseGlobal, |
1879 | | SourceLocation PlacementLParen, MultiExprArg PlacementArgs, |
1880 | | SourceLocation PlacementRParen, SourceRange TypeIdParens, |
1881 | 0 | Declarator &D, Expr *Initializer) { |
1882 | 0 | std::optional<Expr *> ArraySize; |
1883 | | // If the specified type is an array, unwrap it and save the expression. |
1884 | 0 | if (D.getNumTypeObjects() > 0 && |
1885 | 0 | D.getTypeObject(0).Kind == DeclaratorChunk::Array) { |
1886 | 0 | DeclaratorChunk &Chunk = D.getTypeObject(0); |
1887 | 0 | if (D.getDeclSpec().hasAutoTypeSpec()) |
1888 | 0 | return ExprError(Diag(Chunk.Loc, diag::err_new_array_of_auto) |
1889 | 0 | << D.getSourceRange()); |
1890 | 0 | if (Chunk.Arr.hasStatic) |
1891 | 0 | return ExprError(Diag(Chunk.Loc, diag::err_static_illegal_in_new) |
1892 | 0 | << D.getSourceRange()); |
1893 | 0 | if (!Chunk.Arr.NumElts && !Initializer) |
1894 | 0 | return ExprError(Diag(Chunk.Loc, diag::err_array_new_needs_size) |
1895 | 0 | << D.getSourceRange()); |
1896 | | |
1897 | 0 | ArraySize = static_cast<Expr*>(Chunk.Arr.NumElts); |
1898 | 0 | D.DropFirstTypeObject(); |
1899 | 0 | } |
1900 | | |
1901 | | // Every dimension shall be of constant size. |
1902 | 0 | if (ArraySize) { |
1903 | 0 | for (unsigned I = 0, N = D.getNumTypeObjects(); I < N; ++I) { |
1904 | 0 | if (D.getTypeObject(I).Kind != DeclaratorChunk::Array) |
1905 | 0 | break; |
1906 | | |
1907 | 0 | DeclaratorChunk::ArrayTypeInfo &Array = D.getTypeObject(I).Arr; |
1908 | 0 | if (Expr *NumElts = (Expr *)Array.NumElts) { |
1909 | 0 | if (!NumElts->isTypeDependent() && !NumElts->isValueDependent()) { |
1910 | | // FIXME: GCC permits constant folding here. We should either do so consistently |
1911 | | // or not do so at all, rather than changing behavior in C++14 onwards. |
1912 | 0 | if (getLangOpts().CPlusPlus14) { |
1913 | | // C++1y [expr.new]p6: Every constant-expression in a noptr-new-declarator |
1914 | | // shall be a converted constant expression (5.19) of type std::size_t |
1915 | | // and shall evaluate to a strictly positive value. |
1916 | 0 | llvm::APSInt Value(Context.getIntWidth(Context.getSizeType())); |
1917 | 0 | Array.NumElts |
1918 | 0 | = CheckConvertedConstantExpression(NumElts, Context.getSizeType(), Value, |
1919 | 0 | CCEK_ArrayBound) |
1920 | 0 | .get(); |
1921 | 0 | } else { |
1922 | 0 | Array.NumElts = |
1923 | 0 | VerifyIntegerConstantExpression( |
1924 | 0 | NumElts, nullptr, diag::err_new_array_nonconst, AllowFold) |
1925 | 0 | .get(); |
1926 | 0 | } |
1927 | 0 | if (!Array.NumElts) |
1928 | 0 | return ExprError(); |
1929 | 0 | } |
1930 | 0 | } |
1931 | 0 | } |
1932 | 0 | } |
1933 | | |
1934 | 0 | TypeSourceInfo *TInfo = GetTypeForDeclarator(D, /*Scope=*/nullptr); |
1935 | 0 | QualType AllocType = TInfo->getType(); |
1936 | 0 | if (D.isInvalidType()) |
1937 | 0 | return ExprError(); |
1938 | | |
1939 | 0 | SourceRange DirectInitRange; |
1940 | 0 | if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) |
1941 | 0 | DirectInitRange = List->getSourceRange(); |
1942 | |
|
1943 | 0 | return BuildCXXNew(SourceRange(StartLoc, D.getEndLoc()), UseGlobal, |
1944 | 0 | PlacementLParen, PlacementArgs, PlacementRParen, |
1945 | 0 | TypeIdParens, AllocType, TInfo, ArraySize, DirectInitRange, |
1946 | 0 | Initializer); |
1947 | 0 | } |
1948 | | |
1949 | | static bool isLegalArrayNewInitializer(CXXNewInitializationStyle Style, |
1950 | 0 | Expr *Init) { |
1951 | 0 | if (!Init) |
1952 | 0 | return true; |
1953 | 0 | if (ParenListExpr *PLE = dyn_cast<ParenListExpr>(Init)) |
1954 | 0 | return PLE->getNumExprs() == 0; |
1955 | 0 | if (isa<ImplicitValueInitExpr>(Init)) |
1956 | 0 | return true; |
1957 | 0 | else if (CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) |
1958 | 0 | return !CCE->isListInitialization() && |
1959 | 0 | CCE->getConstructor()->isDefaultConstructor(); |
1960 | 0 | else if (Style == CXXNewInitializationStyle::List) { |
1961 | 0 | assert(isa<InitListExpr>(Init) && |
1962 | 0 | "Shouldn't create list CXXConstructExprs for arrays."); |
1963 | 0 | return true; |
1964 | 0 | } |
1965 | 0 | return false; |
1966 | 0 | } |
1967 | | |
1968 | | bool |
1969 | 0 | Sema::isUnavailableAlignedAllocationFunction(const FunctionDecl &FD) const { |
1970 | 0 | if (!getLangOpts().AlignedAllocationUnavailable) |
1971 | 0 | return false; |
1972 | 0 | if (FD.isDefined()) |
1973 | 0 | return false; |
1974 | 0 | std::optional<unsigned> AlignmentParam; |
1975 | 0 | if (FD.isReplaceableGlobalAllocationFunction(&AlignmentParam) && |
1976 | 0 | AlignmentParam) |
1977 | 0 | return true; |
1978 | 0 | return false; |
1979 | 0 | } |
1980 | | |
1981 | | // Emit a diagnostic if an aligned allocation/deallocation function that is not |
1982 | | // implemented in the standard library is selected. |
1983 | | void Sema::diagnoseUnavailableAlignedAllocation(const FunctionDecl &FD, |
1984 | 0 | SourceLocation Loc) { |
1985 | 0 | if (isUnavailableAlignedAllocationFunction(FD)) { |
1986 | 0 | const llvm::Triple &T = getASTContext().getTargetInfo().getTriple(); |
1987 | 0 | StringRef OSName = AvailabilityAttr::getPlatformNameSourceSpelling( |
1988 | 0 | getASTContext().getTargetInfo().getPlatformName()); |
1989 | 0 | VersionTuple OSVersion = alignedAllocMinVersion(T.getOS()); |
1990 | |
|
1991 | 0 | OverloadedOperatorKind Kind = FD.getDeclName().getCXXOverloadedOperator(); |
1992 | 0 | bool IsDelete = Kind == OO_Delete || Kind == OO_Array_Delete; |
1993 | 0 | Diag(Loc, diag::err_aligned_allocation_unavailable) |
1994 | 0 | << IsDelete << FD.getType().getAsString() << OSName |
1995 | 0 | << OSVersion.getAsString() << OSVersion.empty(); |
1996 | 0 | Diag(Loc, diag::note_silence_aligned_allocation_unavailable); |
1997 | 0 | } |
1998 | 0 | } |
1999 | | |
2000 | | ExprResult Sema::BuildCXXNew(SourceRange Range, bool UseGlobal, |
2001 | | SourceLocation PlacementLParen, |
2002 | | MultiExprArg PlacementArgs, |
2003 | | SourceLocation PlacementRParen, |
2004 | | SourceRange TypeIdParens, QualType AllocType, |
2005 | | TypeSourceInfo *AllocTypeInfo, |
2006 | | std::optional<Expr *> ArraySize, |
2007 | 0 | SourceRange DirectInitRange, Expr *Initializer) { |
2008 | 0 | SourceRange TypeRange = AllocTypeInfo->getTypeLoc().getSourceRange(); |
2009 | 0 | SourceLocation StartLoc = Range.getBegin(); |
2010 | |
|
2011 | 0 | CXXNewInitializationStyle InitStyle; |
2012 | 0 | if (DirectInitRange.isValid()) { |
2013 | 0 | assert(Initializer && "Have parens but no initializer."); |
2014 | 0 | InitStyle = CXXNewInitializationStyle::Call; |
2015 | 0 | } else if (Initializer && isa<InitListExpr>(Initializer)) |
2016 | 0 | InitStyle = CXXNewInitializationStyle::List; |
2017 | 0 | else { |
2018 | 0 | assert((!Initializer || isa<ImplicitValueInitExpr>(Initializer) || |
2019 | 0 | isa<CXXConstructExpr>(Initializer)) && |
2020 | 0 | "Initializer expression that cannot have been implicitly created."); |
2021 | 0 | InitStyle = CXXNewInitializationStyle::None; |
2022 | 0 | } |
2023 | | |
2024 | 0 | MultiExprArg Exprs(&Initializer, Initializer ? 1 : 0); |
2025 | 0 | if (ParenListExpr *List = dyn_cast_or_null<ParenListExpr>(Initializer)) { |
2026 | 0 | assert(InitStyle == CXXNewInitializationStyle::Call && |
2027 | 0 | "paren init for non-call init"); |
2028 | 0 | Exprs = MultiExprArg(List->getExprs(), List->getNumExprs()); |
2029 | 0 | } |
2030 | | |
2031 | | // C++11 [expr.new]p15: |
2032 | | // A new-expression that creates an object of type T initializes that |
2033 | | // object as follows: |
2034 | 0 | InitializationKind Kind = [&] { |
2035 | 0 | switch (InitStyle) { |
2036 | | // - If the new-initializer is omitted, the object is default- |
2037 | | // initialized (8.5); if no initialization is performed, |
2038 | | // the object has indeterminate value |
2039 | 0 | case CXXNewInitializationStyle::None: |
2040 | 0 | case CXXNewInitializationStyle::Implicit: |
2041 | 0 | return InitializationKind::CreateDefault(TypeRange.getBegin()); |
2042 | | // - Otherwise, the new-initializer is interpreted according to the |
2043 | | // initialization rules of 8.5 for direct-initialization. |
2044 | 0 | case CXXNewInitializationStyle::Call: |
2045 | 0 | return InitializationKind::CreateDirect(TypeRange.getBegin(), |
2046 | 0 | DirectInitRange.getBegin(), |
2047 | 0 | DirectInitRange.getEnd()); |
2048 | 0 | case CXXNewInitializationStyle::List: |
2049 | 0 | return InitializationKind::CreateDirectList(TypeRange.getBegin(), |
2050 | 0 | Initializer->getBeginLoc(), |
2051 | 0 | Initializer->getEndLoc()); |
2052 | 0 | } |
2053 | 0 | llvm_unreachable("Unknown initialization kind"); |
2054 | 0 | }(); |
2055 | | |
2056 | | // C++11 [dcl.spec.auto]p6. Deduce the type which 'auto' stands in for. |
2057 | 0 | auto *Deduced = AllocType->getContainedDeducedType(); |
2058 | 0 | if (Deduced && !Deduced->isDeduced() && |
2059 | 0 | isa<DeducedTemplateSpecializationType>(Deduced)) { |
2060 | 0 | if (ArraySize) |
2061 | 0 | return ExprError( |
2062 | 0 | Diag(*ArraySize ? (*ArraySize)->getExprLoc() : TypeRange.getBegin(), |
2063 | 0 | diag::err_deduced_class_template_compound_type) |
2064 | 0 | << /*array*/ 2 |
2065 | 0 | << (*ArraySize ? (*ArraySize)->getSourceRange() : TypeRange)); |
2066 | | |
2067 | 0 | InitializedEntity Entity |
2068 | 0 | = InitializedEntity::InitializeNew(StartLoc, AllocType); |
2069 | 0 | AllocType = DeduceTemplateSpecializationFromInitializer( |
2070 | 0 | AllocTypeInfo, Entity, Kind, Exprs); |
2071 | 0 | if (AllocType.isNull()) |
2072 | 0 | return ExprError(); |
2073 | 0 | } else if (Deduced && !Deduced->isDeduced()) { |
2074 | 0 | MultiExprArg Inits = Exprs; |
2075 | 0 | bool Braced = (InitStyle == CXXNewInitializationStyle::List); |
2076 | 0 | if (Braced) { |
2077 | 0 | auto *ILE = cast<InitListExpr>(Exprs[0]); |
2078 | 0 | Inits = MultiExprArg(ILE->getInits(), ILE->getNumInits()); |
2079 | 0 | } |
2080 | |
|
2081 | 0 | if (InitStyle == CXXNewInitializationStyle::None || |
2082 | 0 | InitStyle == CXXNewInitializationStyle::Implicit || Inits.empty()) |
2083 | 0 | return ExprError(Diag(StartLoc, diag::err_auto_new_requires_ctor_arg) |
2084 | 0 | << AllocType << TypeRange); |
2085 | 0 | if (Inits.size() > 1) { |
2086 | 0 | Expr *FirstBad = Inits[1]; |
2087 | 0 | return ExprError(Diag(FirstBad->getBeginLoc(), |
2088 | 0 | diag::err_auto_new_ctor_multiple_expressions) |
2089 | 0 | << AllocType << TypeRange); |
2090 | 0 | } |
2091 | 0 | if (Braced && !getLangOpts().CPlusPlus17) |
2092 | 0 | Diag(Initializer->getBeginLoc(), diag::ext_auto_new_list_init) |
2093 | 0 | << AllocType << TypeRange; |
2094 | 0 | Expr *Deduce = Inits[0]; |
2095 | 0 | if (isa<InitListExpr>(Deduce)) |
2096 | 0 | return ExprError( |
2097 | 0 | Diag(Deduce->getBeginLoc(), diag::err_auto_expr_init_paren_braces) |
2098 | 0 | << Braced << AllocType << TypeRange); |
2099 | 0 | QualType DeducedType; |
2100 | 0 | TemplateDeductionInfo Info(Deduce->getExprLoc()); |
2101 | 0 | TemplateDeductionResult Result = |
2102 | 0 | DeduceAutoType(AllocTypeInfo->getTypeLoc(), Deduce, DeducedType, Info); |
2103 | 0 | if (Result != TDK_Success && Result != TDK_AlreadyDiagnosed) |
2104 | 0 | return ExprError(Diag(StartLoc, diag::err_auto_new_deduction_failure) |
2105 | 0 | << AllocType << Deduce->getType() << TypeRange |
2106 | 0 | << Deduce->getSourceRange()); |
2107 | 0 | if (DeducedType.isNull()) { |
2108 | 0 | assert(Result == TDK_AlreadyDiagnosed); |
2109 | 0 | return ExprError(); |
2110 | 0 | } |
2111 | 0 | AllocType = DeducedType; |
2112 | 0 | } |
2113 | | |
2114 | | // Per C++0x [expr.new]p5, the type being constructed may be a |
2115 | | // typedef of an array type. |
2116 | 0 | if (!ArraySize) { |
2117 | 0 | if (const ConstantArrayType *Array |
2118 | 0 | = Context.getAsConstantArrayType(AllocType)) { |
2119 | 0 | ArraySize = IntegerLiteral::Create(Context, Array->getSize(), |
2120 | 0 | Context.getSizeType(), |
2121 | 0 | TypeRange.getEnd()); |
2122 | 0 | AllocType = Array->getElementType(); |
2123 | 0 | } |
2124 | 0 | } |
2125 | |
|
2126 | 0 | if (CheckAllocatedType(AllocType, TypeRange.getBegin(), TypeRange)) |
2127 | 0 | return ExprError(); |
2128 | | |
2129 | 0 | if (ArraySize && !checkArrayElementAlignment(AllocType, TypeRange.getBegin())) |
2130 | 0 | return ExprError(); |
2131 | | |
2132 | | // In ARC, infer 'retaining' for the allocated |
2133 | 0 | if (getLangOpts().ObjCAutoRefCount && |
2134 | 0 | AllocType.getObjCLifetime() == Qualifiers::OCL_None && |
2135 | 0 | AllocType->isObjCLifetimeType()) { |
2136 | 0 | AllocType = Context.getLifetimeQualifiedType(AllocType, |
2137 | 0 | AllocType->getObjCARCImplicitLifetime()); |
2138 | 0 | } |
2139 | |
|
2140 | 0 | QualType ResultType = Context.getPointerType(AllocType); |
2141 | |
|
2142 | 0 | if (ArraySize && *ArraySize && |
2143 | 0 | (*ArraySize)->getType()->isNonOverloadPlaceholderType()) { |
2144 | 0 | ExprResult result = CheckPlaceholderExpr(*ArraySize); |
2145 | 0 | if (result.isInvalid()) return ExprError(); |
2146 | 0 | ArraySize = result.get(); |
2147 | 0 | } |
2148 | | // C++98 5.3.4p6: "The expression in a direct-new-declarator shall have |
2149 | | // integral or enumeration type with a non-negative value." |
2150 | | // C++11 [expr.new]p6: The expression [...] shall be of integral or unscoped |
2151 | | // enumeration type, or a class type for which a single non-explicit |
2152 | | // conversion function to integral or unscoped enumeration type exists. |
2153 | | // C++1y [expr.new]p6: The expression [...] is implicitly converted to |
2154 | | // std::size_t. |
2155 | 0 | std::optional<uint64_t> KnownArraySize; |
2156 | 0 | if (ArraySize && *ArraySize && !(*ArraySize)->isTypeDependent()) { |
2157 | 0 | ExprResult ConvertedSize; |
2158 | 0 | if (getLangOpts().CPlusPlus14) { |
2159 | 0 | assert(Context.getTargetInfo().getIntWidth() && "Builtin type of size 0?"); |
2160 | | |
2161 | 0 | ConvertedSize = PerformImplicitConversion(*ArraySize, Context.getSizeType(), |
2162 | 0 | AA_Converting); |
2163 | |
|
2164 | 0 | if (!ConvertedSize.isInvalid() && |
2165 | 0 | (*ArraySize)->getType()->getAs<RecordType>()) |
2166 | | // Diagnose the compatibility of this conversion. |
2167 | 0 | Diag(StartLoc, diag::warn_cxx98_compat_array_size_conversion) |
2168 | 0 | << (*ArraySize)->getType() << 0 << "'size_t'"; |
2169 | 0 | } else { |
2170 | 0 | class SizeConvertDiagnoser : public ICEConvertDiagnoser { |
2171 | 0 | protected: |
2172 | 0 | Expr *ArraySize; |
2173 | |
|
2174 | 0 | public: |
2175 | 0 | SizeConvertDiagnoser(Expr *ArraySize) |
2176 | 0 | : ICEConvertDiagnoser(/*AllowScopedEnumerations*/false, false, false), |
2177 | 0 | ArraySize(ArraySize) {} |
2178 | |
|
2179 | 0 | SemaDiagnosticBuilder diagnoseNotInt(Sema &S, SourceLocation Loc, |
2180 | 0 | QualType T) override { |
2181 | 0 | return S.Diag(Loc, diag::err_array_size_not_integral) |
2182 | 0 | << S.getLangOpts().CPlusPlus11 << T; |
2183 | 0 | } |
2184 | |
|
2185 | 0 | SemaDiagnosticBuilder diagnoseIncomplete( |
2186 | 0 | Sema &S, SourceLocation Loc, QualType T) override { |
2187 | 0 | return S.Diag(Loc, diag::err_array_size_incomplete_type) |
2188 | 0 | << T << ArraySize->getSourceRange(); |
2189 | 0 | } |
2190 | |
|
2191 | 0 | SemaDiagnosticBuilder diagnoseExplicitConv( |
2192 | 0 | Sema &S, SourceLocation Loc, QualType T, QualType ConvTy) override { |
2193 | 0 | return S.Diag(Loc, diag::err_array_size_explicit_conversion) << T << ConvTy; |
2194 | 0 | } |
2195 | |
|
2196 | 0 | SemaDiagnosticBuilder noteExplicitConv( |
2197 | 0 | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
2198 | 0 | return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) |
2199 | 0 | << ConvTy->isEnumeralType() << ConvTy; |
2200 | 0 | } |
2201 | |
|
2202 | 0 | SemaDiagnosticBuilder diagnoseAmbiguous( |
2203 | 0 | Sema &S, SourceLocation Loc, QualType T) override { |
2204 | 0 | return S.Diag(Loc, diag::err_array_size_ambiguous_conversion) << T; |
2205 | 0 | } |
2206 | |
|
2207 | 0 | SemaDiagnosticBuilder noteAmbiguous( |
2208 | 0 | Sema &S, CXXConversionDecl *Conv, QualType ConvTy) override { |
2209 | 0 | return S.Diag(Conv->getLocation(), diag::note_array_size_conversion) |
2210 | 0 | << ConvTy->isEnumeralType() << ConvTy; |
2211 | 0 | } |
2212 | |
|
2213 | 0 | SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, |
2214 | 0 | QualType T, |
2215 | 0 | QualType ConvTy) override { |
2216 | 0 | return S.Diag(Loc, |
2217 | 0 | S.getLangOpts().CPlusPlus11 |
2218 | 0 | ? diag::warn_cxx98_compat_array_size_conversion |
2219 | 0 | : diag::ext_array_size_conversion) |
2220 | 0 | << T << ConvTy->isEnumeralType() << ConvTy; |
2221 | 0 | } |
2222 | 0 | } SizeDiagnoser(*ArraySize); |
2223 | |
|
2224 | 0 | ConvertedSize = PerformContextualImplicitConversion(StartLoc, *ArraySize, |
2225 | 0 | SizeDiagnoser); |
2226 | 0 | } |
2227 | 0 | if (ConvertedSize.isInvalid()) |
2228 | 0 | return ExprError(); |
2229 | | |
2230 | 0 | ArraySize = ConvertedSize.get(); |
2231 | 0 | QualType SizeType = (*ArraySize)->getType(); |
2232 | |
|
2233 | 0 | if (!SizeType->isIntegralOrUnscopedEnumerationType()) |
2234 | 0 | return ExprError(); |
2235 | | |
2236 | | // C++98 [expr.new]p7: |
2237 | | // The expression in a direct-new-declarator shall have integral type |
2238 | | // with a non-negative value. |
2239 | | // |
2240 | | // Let's see if this is a constant < 0. If so, we reject it out of hand, |
2241 | | // per CWG1464. Otherwise, if it's not a constant, we must have an |
2242 | | // unparenthesized array type. |
2243 | | |
2244 | | // We've already performed any required implicit conversion to integer or |
2245 | | // unscoped enumeration type. |
2246 | | // FIXME: Per CWG1464, we are required to check the value prior to |
2247 | | // converting to size_t. This will never find a negative array size in |
2248 | | // C++14 onwards, because Value is always unsigned here! |
2249 | 0 | if (std::optional<llvm::APSInt> Value = |
2250 | 0 | (*ArraySize)->getIntegerConstantExpr(Context)) { |
2251 | 0 | if (Value->isSigned() && Value->isNegative()) { |
2252 | 0 | return ExprError(Diag((*ArraySize)->getBeginLoc(), |
2253 | 0 | diag::err_typecheck_negative_array_size) |
2254 | 0 | << (*ArraySize)->getSourceRange()); |
2255 | 0 | } |
2256 | | |
2257 | 0 | if (!AllocType->isDependentType()) { |
2258 | 0 | unsigned ActiveSizeBits = |
2259 | 0 | ConstantArrayType::getNumAddressingBits(Context, AllocType, *Value); |
2260 | 0 | if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) |
2261 | 0 | return ExprError( |
2262 | 0 | Diag((*ArraySize)->getBeginLoc(), diag::err_array_too_large) |
2263 | 0 | << toString(*Value, 10) << (*ArraySize)->getSourceRange()); |
2264 | 0 | } |
2265 | | |
2266 | 0 | KnownArraySize = Value->getZExtValue(); |
2267 | 0 | } else if (TypeIdParens.isValid()) { |
2268 | | // Can't have dynamic array size when the type-id is in parentheses. |
2269 | 0 | Diag((*ArraySize)->getBeginLoc(), diag::ext_new_paren_array_nonconst) |
2270 | 0 | << (*ArraySize)->getSourceRange() |
2271 | 0 | << FixItHint::CreateRemoval(TypeIdParens.getBegin()) |
2272 | 0 | << FixItHint::CreateRemoval(TypeIdParens.getEnd()); |
2273 | |
|
2274 | 0 | TypeIdParens = SourceRange(); |
2275 | 0 | } |
2276 | | |
2277 | | // Note that we do *not* convert the argument in any way. It can |
2278 | | // be signed, larger than size_t, whatever. |
2279 | 0 | } |
2280 | | |
2281 | 0 | FunctionDecl *OperatorNew = nullptr; |
2282 | 0 | FunctionDecl *OperatorDelete = nullptr; |
2283 | 0 | unsigned Alignment = |
2284 | 0 | AllocType->isDependentType() ? 0 : Context.getTypeAlign(AllocType); |
2285 | 0 | unsigned NewAlignment = Context.getTargetInfo().getNewAlign(); |
2286 | 0 | bool PassAlignment = getLangOpts().AlignedAllocation && |
2287 | 0 | Alignment > NewAlignment; |
2288 | |
|
2289 | 0 | AllocationFunctionScope Scope = UseGlobal ? AFS_Global : AFS_Both; |
2290 | 0 | if (!AllocType->isDependentType() && |
2291 | 0 | !Expr::hasAnyTypeDependentArguments(PlacementArgs) && |
2292 | 0 | FindAllocationFunctions( |
2293 | 0 | StartLoc, SourceRange(PlacementLParen, PlacementRParen), Scope, Scope, |
2294 | 0 | AllocType, ArraySize.has_value(), PassAlignment, PlacementArgs, |
2295 | 0 | OperatorNew, OperatorDelete)) |
2296 | 0 | return ExprError(); |
2297 | | |
2298 | | // If this is an array allocation, compute whether the usual array |
2299 | | // deallocation function for the type has a size_t parameter. |
2300 | 0 | bool UsualArrayDeleteWantsSize = false; |
2301 | 0 | if (ArraySize && !AllocType->isDependentType()) |
2302 | 0 | UsualArrayDeleteWantsSize = |
2303 | 0 | doesUsualArrayDeleteWantSize(*this, StartLoc, AllocType); |
2304 | |
|
2305 | 0 | SmallVector<Expr *, 8> AllPlaceArgs; |
2306 | 0 | if (OperatorNew) { |
2307 | 0 | auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); |
2308 | 0 | VariadicCallType CallType = Proto->isVariadic() ? VariadicFunction |
2309 | 0 | : VariadicDoesNotApply; |
2310 | | |
2311 | | // We've already converted the placement args, just fill in any default |
2312 | | // arguments. Skip the first parameter because we don't have a corresponding |
2313 | | // argument. Skip the second parameter too if we're passing in the |
2314 | | // alignment; we've already filled it in. |
2315 | 0 | unsigned NumImplicitArgs = PassAlignment ? 2 : 1; |
2316 | 0 | if (GatherArgumentsForCall(PlacementLParen, OperatorNew, Proto, |
2317 | 0 | NumImplicitArgs, PlacementArgs, AllPlaceArgs, |
2318 | 0 | CallType)) |
2319 | 0 | return ExprError(); |
2320 | | |
2321 | 0 | if (!AllPlaceArgs.empty()) |
2322 | 0 | PlacementArgs = AllPlaceArgs; |
2323 | | |
2324 | | // We would like to perform some checking on the given `operator new` call, |
2325 | | // but the PlacementArgs does not contain the implicit arguments, |
2326 | | // namely allocation size and maybe allocation alignment, |
2327 | | // so we need to conjure them. |
2328 | |
|
2329 | 0 | QualType SizeTy = Context.getSizeType(); |
2330 | 0 | unsigned SizeTyWidth = Context.getTypeSize(SizeTy); |
2331 | |
|
2332 | 0 | llvm::APInt SingleEltSize( |
2333 | 0 | SizeTyWidth, Context.getTypeSizeInChars(AllocType).getQuantity()); |
2334 | | |
2335 | | // How many bytes do we want to allocate here? |
2336 | 0 | std::optional<llvm::APInt> AllocationSize; |
2337 | 0 | if (!ArraySize && !AllocType->isDependentType()) { |
2338 | | // For non-array operator new, we only want to allocate one element. |
2339 | 0 | AllocationSize = SingleEltSize; |
2340 | 0 | } else if (KnownArraySize && !AllocType->isDependentType()) { |
2341 | | // For array operator new, only deal with static array size case. |
2342 | 0 | bool Overflow; |
2343 | 0 | AllocationSize = llvm::APInt(SizeTyWidth, *KnownArraySize) |
2344 | 0 | .umul_ov(SingleEltSize, Overflow); |
2345 | 0 | (void)Overflow; |
2346 | 0 | assert( |
2347 | 0 | !Overflow && |
2348 | 0 | "Expected that all the overflows would have been handled already."); |
2349 | 0 | } |
2350 | | |
2351 | 0 | IntegerLiteral AllocationSizeLiteral( |
2352 | 0 | Context, AllocationSize.value_or(llvm::APInt::getZero(SizeTyWidth)), |
2353 | 0 | SizeTy, SourceLocation()); |
2354 | | // Otherwise, if we failed to constant-fold the allocation size, we'll |
2355 | | // just give up and pass-in something opaque, that isn't a null pointer. |
2356 | 0 | OpaqueValueExpr OpaqueAllocationSize(SourceLocation(), SizeTy, VK_PRValue, |
2357 | 0 | OK_Ordinary, /*SourceExpr=*/nullptr); |
2358 | | |
2359 | | // Let's synthesize the alignment argument in case we will need it. |
2360 | | // Since we *really* want to allocate these on stack, this is slightly ugly |
2361 | | // because there might not be a `std::align_val_t` type. |
2362 | 0 | EnumDecl *StdAlignValT = getStdAlignValT(); |
2363 | 0 | QualType AlignValT = |
2364 | 0 | StdAlignValT ? Context.getTypeDeclType(StdAlignValT) : SizeTy; |
2365 | 0 | IntegerLiteral AlignmentLiteral( |
2366 | 0 | Context, |
2367 | 0 | llvm::APInt(Context.getTypeSize(SizeTy), |
2368 | 0 | Alignment / Context.getCharWidth()), |
2369 | 0 | SizeTy, SourceLocation()); |
2370 | 0 | ImplicitCastExpr DesiredAlignment(ImplicitCastExpr::OnStack, AlignValT, |
2371 | 0 | CK_IntegralCast, &AlignmentLiteral, |
2372 | 0 | VK_PRValue, FPOptionsOverride()); |
2373 | | |
2374 | | // Adjust placement args by prepending conjured size and alignment exprs. |
2375 | 0 | llvm::SmallVector<Expr *, 8> CallArgs; |
2376 | 0 | CallArgs.reserve(NumImplicitArgs + PlacementArgs.size()); |
2377 | 0 | CallArgs.emplace_back(AllocationSize |
2378 | 0 | ? static_cast<Expr *>(&AllocationSizeLiteral) |
2379 | 0 | : &OpaqueAllocationSize); |
2380 | 0 | if (PassAlignment) |
2381 | 0 | CallArgs.emplace_back(&DesiredAlignment); |
2382 | 0 | CallArgs.insert(CallArgs.end(), PlacementArgs.begin(), PlacementArgs.end()); |
2383 | |
|
2384 | 0 | DiagnoseSentinelCalls(OperatorNew, PlacementLParen, CallArgs); |
2385 | |
|
2386 | 0 | checkCall(OperatorNew, Proto, /*ThisArg=*/nullptr, CallArgs, |
2387 | 0 | /*IsMemberFunction=*/false, StartLoc, Range, CallType); |
2388 | | |
2389 | | // Warn if the type is over-aligned and is being allocated by (unaligned) |
2390 | | // global operator new. |
2391 | 0 | if (PlacementArgs.empty() && !PassAlignment && |
2392 | 0 | (OperatorNew->isImplicit() || |
2393 | 0 | (OperatorNew->getBeginLoc().isValid() && |
2394 | 0 | getSourceManager().isInSystemHeader(OperatorNew->getBeginLoc())))) { |
2395 | 0 | if (Alignment > NewAlignment) |
2396 | 0 | Diag(StartLoc, diag::warn_overaligned_type) |
2397 | 0 | << AllocType |
2398 | 0 | << unsigned(Alignment / Context.getCharWidth()) |
2399 | 0 | << unsigned(NewAlignment / Context.getCharWidth()); |
2400 | 0 | } |
2401 | 0 | } |
2402 | | |
2403 | | // Array 'new' can't have any initializers except empty parentheses. |
2404 | | // Initializer lists are also allowed, in C++11. Rely on the parser for the |
2405 | | // dialect distinction. |
2406 | 0 | if (ArraySize && !isLegalArrayNewInitializer(InitStyle, Initializer)) { |
2407 | 0 | SourceRange InitRange(Exprs.front()->getBeginLoc(), |
2408 | 0 | Exprs.back()->getEndLoc()); |
2409 | 0 | Diag(StartLoc, diag::err_new_array_init_args) << InitRange; |
2410 | 0 | return ExprError(); |
2411 | 0 | } |
2412 | | |
2413 | | // If we can perform the initialization, and we've not already done so, |
2414 | | // do it now. |
2415 | 0 | if (!AllocType->isDependentType() && |
2416 | 0 | !Expr::hasAnyTypeDependentArguments(Exprs)) { |
2417 | | // The type we initialize is the complete type, including the array bound. |
2418 | 0 | QualType InitType; |
2419 | 0 | if (KnownArraySize) |
2420 | 0 | InitType = Context.getConstantArrayType( |
2421 | 0 | AllocType, |
2422 | 0 | llvm::APInt(Context.getTypeSize(Context.getSizeType()), |
2423 | 0 | *KnownArraySize), |
2424 | 0 | *ArraySize, ArraySizeModifier::Normal, 0); |
2425 | 0 | else if (ArraySize) |
2426 | 0 | InitType = Context.getIncompleteArrayType(AllocType, |
2427 | 0 | ArraySizeModifier::Normal, 0); |
2428 | 0 | else |
2429 | 0 | InitType = AllocType; |
2430 | |
|
2431 | 0 | InitializedEntity Entity |
2432 | 0 | = InitializedEntity::InitializeNew(StartLoc, InitType); |
2433 | 0 | InitializationSequence InitSeq(*this, Entity, Kind, Exprs); |
2434 | 0 | ExprResult FullInit = InitSeq.Perform(*this, Entity, Kind, Exprs); |
2435 | 0 | if (FullInit.isInvalid()) |
2436 | 0 | return ExprError(); |
2437 | | |
2438 | | // FullInit is our initializer; strip off CXXBindTemporaryExprs, because |
2439 | | // we don't want the initialized object to be destructed. |
2440 | | // FIXME: We should not create these in the first place. |
2441 | 0 | if (CXXBindTemporaryExpr *Binder = |
2442 | 0 | dyn_cast_or_null<CXXBindTemporaryExpr>(FullInit.get())) |
2443 | 0 | FullInit = Binder->getSubExpr(); |
2444 | |
|
2445 | 0 | Initializer = FullInit.get(); |
2446 | | // We don't know that we're generating an implicit initializer until now, so |
2447 | | // we have to update the initialization style as well. |
2448 | | // |
2449 | | // FIXME: it would be nice to determine the correct initialization style |
2450 | | // earlier so InitStyle doesn't need adjusting. |
2451 | 0 | if (InitStyle == CXXNewInitializationStyle::None && Initializer) { |
2452 | 0 | InitStyle = CXXNewInitializationStyle::Implicit; |
2453 | 0 | } |
2454 | | |
2455 | | // FIXME: If we have a KnownArraySize, check that the array bound of the |
2456 | | // initializer is no greater than that constant value. |
2457 | |
|
2458 | 0 | if (ArraySize && !*ArraySize) { |
2459 | 0 | auto *CAT = Context.getAsConstantArrayType(Initializer->getType()); |
2460 | 0 | if (CAT) { |
2461 | | // FIXME: Track that the array size was inferred rather than explicitly |
2462 | | // specified. |
2463 | 0 | ArraySize = IntegerLiteral::Create( |
2464 | 0 | Context, CAT->getSize(), Context.getSizeType(), TypeRange.getEnd()); |
2465 | 0 | } else { |
2466 | 0 | Diag(TypeRange.getEnd(), diag::err_new_array_size_unknown_from_init) |
2467 | 0 | << Initializer->getSourceRange(); |
2468 | 0 | } |
2469 | 0 | } |
2470 | 0 | } |
2471 | | |
2472 | | // Mark the new and delete operators as referenced. |
2473 | 0 | if (OperatorNew) { |
2474 | 0 | if (DiagnoseUseOfDecl(OperatorNew, StartLoc)) |
2475 | 0 | return ExprError(); |
2476 | 0 | MarkFunctionReferenced(StartLoc, OperatorNew); |
2477 | 0 | } |
2478 | 0 | if (OperatorDelete) { |
2479 | 0 | if (DiagnoseUseOfDecl(OperatorDelete, StartLoc)) |
2480 | 0 | return ExprError(); |
2481 | 0 | MarkFunctionReferenced(StartLoc, OperatorDelete); |
2482 | 0 | } |
2483 | | |
2484 | 0 | return CXXNewExpr::Create(Context, UseGlobal, OperatorNew, OperatorDelete, |
2485 | 0 | PassAlignment, UsualArrayDeleteWantsSize, |
2486 | 0 | PlacementArgs, TypeIdParens, ArraySize, InitStyle, |
2487 | 0 | Initializer, ResultType, AllocTypeInfo, Range, |
2488 | 0 | DirectInitRange); |
2489 | 0 | } |
2490 | | |
2491 | | /// Checks that a type is suitable as the allocated type |
2492 | | /// in a new-expression. |
2493 | | bool Sema::CheckAllocatedType(QualType AllocType, SourceLocation Loc, |
2494 | 0 | SourceRange R) { |
2495 | | // C++ 5.3.4p1: "[The] type shall be a complete object type, but not an |
2496 | | // abstract class type or array thereof. |
2497 | 0 | if (AllocType->isFunctionType()) |
2498 | 0 | return Diag(Loc, diag::err_bad_new_type) |
2499 | 0 | << AllocType << 0 << R; |
2500 | 0 | else if (AllocType->isReferenceType()) |
2501 | 0 | return Diag(Loc, diag::err_bad_new_type) |
2502 | 0 | << AllocType << 1 << R; |
2503 | 0 | else if (!AllocType->isDependentType() && |
2504 | 0 | RequireCompleteSizedType( |
2505 | 0 | Loc, AllocType, diag::err_new_incomplete_or_sizeless_type, R)) |
2506 | 0 | return true; |
2507 | 0 | else if (RequireNonAbstractType(Loc, AllocType, |
2508 | 0 | diag::err_allocation_of_abstract_type)) |
2509 | 0 | return true; |
2510 | 0 | else if (AllocType->isVariablyModifiedType()) |
2511 | 0 | return Diag(Loc, diag::err_variably_modified_new_type) |
2512 | 0 | << AllocType; |
2513 | 0 | else if (AllocType.getAddressSpace() != LangAS::Default && |
2514 | 0 | !getLangOpts().OpenCLCPlusPlus) |
2515 | 0 | return Diag(Loc, diag::err_address_space_qualified_new) |
2516 | 0 | << AllocType.getUnqualifiedType() |
2517 | 0 | << AllocType.getQualifiers().getAddressSpaceAttributePrintValue(); |
2518 | 0 | else if (getLangOpts().ObjCAutoRefCount) { |
2519 | 0 | if (const ArrayType *AT = Context.getAsArrayType(AllocType)) { |
2520 | 0 | QualType BaseAllocType = Context.getBaseElementType(AT); |
2521 | 0 | if (BaseAllocType.getObjCLifetime() == Qualifiers::OCL_None && |
2522 | 0 | BaseAllocType->isObjCLifetimeType()) |
2523 | 0 | return Diag(Loc, diag::err_arc_new_array_without_ownership) |
2524 | 0 | << BaseAllocType; |
2525 | 0 | } |
2526 | 0 | } |
2527 | | |
2528 | 0 | return false; |
2529 | 0 | } |
2530 | | |
2531 | | static bool resolveAllocationOverload( |
2532 | | Sema &S, LookupResult &R, SourceRange Range, SmallVectorImpl<Expr *> &Args, |
2533 | | bool &PassAlignment, FunctionDecl *&Operator, |
2534 | 0 | OverloadCandidateSet *AlignedCandidates, Expr *AlignArg, bool Diagnose) { |
2535 | 0 | OverloadCandidateSet Candidates(R.getNameLoc(), |
2536 | 0 | OverloadCandidateSet::CSK_Normal); |
2537 | 0 | for (LookupResult::iterator Alloc = R.begin(), AllocEnd = R.end(); |
2538 | 0 | Alloc != AllocEnd; ++Alloc) { |
2539 | | // Even member operator new/delete are implicitly treated as |
2540 | | // static, so don't use AddMemberCandidate. |
2541 | 0 | NamedDecl *D = (*Alloc)->getUnderlyingDecl(); |
2542 | |
|
2543 | 0 | if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { |
2544 | 0 | S.AddTemplateOverloadCandidate(FnTemplate, Alloc.getPair(), |
2545 | 0 | /*ExplicitTemplateArgs=*/nullptr, Args, |
2546 | 0 | Candidates, |
2547 | 0 | /*SuppressUserConversions=*/false); |
2548 | 0 | continue; |
2549 | 0 | } |
2550 | | |
2551 | 0 | FunctionDecl *Fn = cast<FunctionDecl>(D); |
2552 | 0 | S.AddOverloadCandidate(Fn, Alloc.getPair(), Args, Candidates, |
2553 | 0 | /*SuppressUserConversions=*/false); |
2554 | 0 | } |
2555 | | |
2556 | | // Do the resolution. |
2557 | 0 | OverloadCandidateSet::iterator Best; |
2558 | 0 | switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { |
2559 | 0 | case OR_Success: { |
2560 | | // Got one! |
2561 | 0 | FunctionDecl *FnDecl = Best->Function; |
2562 | 0 | if (S.CheckAllocationAccess(R.getNameLoc(), Range, R.getNamingClass(), |
2563 | 0 | Best->FoundDecl) == Sema::AR_inaccessible) |
2564 | 0 | return true; |
2565 | | |
2566 | 0 | Operator = FnDecl; |
2567 | 0 | return false; |
2568 | 0 | } |
2569 | | |
2570 | 0 | case OR_No_Viable_Function: |
2571 | | // C++17 [expr.new]p13: |
2572 | | // If no matching function is found and the allocated object type has |
2573 | | // new-extended alignment, the alignment argument is removed from the |
2574 | | // argument list, and overload resolution is performed again. |
2575 | 0 | if (PassAlignment) { |
2576 | 0 | PassAlignment = false; |
2577 | 0 | AlignArg = Args[1]; |
2578 | 0 | Args.erase(Args.begin() + 1); |
2579 | 0 | return resolveAllocationOverload(S, R, Range, Args, PassAlignment, |
2580 | 0 | Operator, &Candidates, AlignArg, |
2581 | 0 | Diagnose); |
2582 | 0 | } |
2583 | | |
2584 | | // MSVC will fall back on trying to find a matching global operator new |
2585 | | // if operator new[] cannot be found. Also, MSVC will leak by not |
2586 | | // generating a call to operator delete or operator delete[], but we |
2587 | | // will not replicate that bug. |
2588 | | // FIXME: Find out how this interacts with the std::align_val_t fallback |
2589 | | // once MSVC implements it. |
2590 | 0 | if (R.getLookupName().getCXXOverloadedOperator() == OO_Array_New && |
2591 | 0 | S.Context.getLangOpts().MSVCCompat) { |
2592 | 0 | R.clear(); |
2593 | 0 | R.setLookupName(S.Context.DeclarationNames.getCXXOperatorName(OO_New)); |
2594 | 0 | S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); |
2595 | | // FIXME: This will give bad diagnostics pointing at the wrong functions. |
2596 | 0 | return resolveAllocationOverload(S, R, Range, Args, PassAlignment, |
2597 | 0 | Operator, /*Candidates=*/nullptr, |
2598 | 0 | /*AlignArg=*/nullptr, Diagnose); |
2599 | 0 | } |
2600 | | |
2601 | 0 | if (Diagnose) { |
2602 | | // If this is an allocation of the form 'new (p) X' for some object |
2603 | | // pointer p (or an expression that will decay to such a pointer), |
2604 | | // diagnose the missing inclusion of <new>. |
2605 | 0 | if (!R.isClassLookup() && Args.size() == 2 && |
2606 | 0 | (Args[1]->getType()->isObjectPointerType() || |
2607 | 0 | Args[1]->getType()->isArrayType())) { |
2608 | 0 | S.Diag(R.getNameLoc(), diag::err_need_header_before_placement_new) |
2609 | 0 | << R.getLookupName() << Range; |
2610 | | // Listing the candidates is unlikely to be useful; skip it. |
2611 | 0 | return true; |
2612 | 0 | } |
2613 | | |
2614 | | // Finish checking all candidates before we note any. This checking can |
2615 | | // produce additional diagnostics so can't be interleaved with our |
2616 | | // emission of notes. |
2617 | | // |
2618 | | // For an aligned allocation, separately check the aligned and unaligned |
2619 | | // candidates with their respective argument lists. |
2620 | 0 | SmallVector<OverloadCandidate*, 32> Cands; |
2621 | 0 | SmallVector<OverloadCandidate*, 32> AlignedCands; |
2622 | 0 | llvm::SmallVector<Expr*, 4> AlignedArgs; |
2623 | 0 | if (AlignedCandidates) { |
2624 | 0 | auto IsAligned = [](OverloadCandidate &C) { |
2625 | 0 | return C.Function->getNumParams() > 1 && |
2626 | 0 | C.Function->getParamDecl(1)->getType()->isAlignValT(); |
2627 | 0 | }; |
2628 | 0 | auto IsUnaligned = [&](OverloadCandidate &C) { return !IsAligned(C); }; |
2629 | |
|
2630 | 0 | AlignedArgs.reserve(Args.size() + 1); |
2631 | 0 | AlignedArgs.push_back(Args[0]); |
2632 | 0 | AlignedArgs.push_back(AlignArg); |
2633 | 0 | AlignedArgs.append(Args.begin() + 1, Args.end()); |
2634 | 0 | AlignedCands = AlignedCandidates->CompleteCandidates( |
2635 | 0 | S, OCD_AllCandidates, AlignedArgs, R.getNameLoc(), IsAligned); |
2636 | |
|
2637 | 0 | Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, |
2638 | 0 | R.getNameLoc(), IsUnaligned); |
2639 | 0 | } else { |
2640 | 0 | Cands = Candidates.CompleteCandidates(S, OCD_AllCandidates, Args, |
2641 | 0 | R.getNameLoc()); |
2642 | 0 | } |
2643 | |
|
2644 | 0 | S.Diag(R.getNameLoc(), diag::err_ovl_no_viable_function_in_call) |
2645 | 0 | << R.getLookupName() << Range; |
2646 | 0 | if (AlignedCandidates) |
2647 | 0 | AlignedCandidates->NoteCandidates(S, AlignedArgs, AlignedCands, "", |
2648 | 0 | R.getNameLoc()); |
2649 | 0 | Candidates.NoteCandidates(S, Args, Cands, "", R.getNameLoc()); |
2650 | 0 | } |
2651 | 0 | return true; |
2652 | | |
2653 | 0 | case OR_Ambiguous: |
2654 | 0 | if (Diagnose) { |
2655 | 0 | Candidates.NoteCandidates( |
2656 | 0 | PartialDiagnosticAt(R.getNameLoc(), |
2657 | 0 | S.PDiag(diag::err_ovl_ambiguous_call) |
2658 | 0 | << R.getLookupName() << Range), |
2659 | 0 | S, OCD_AmbiguousCandidates, Args); |
2660 | 0 | } |
2661 | 0 | return true; |
2662 | | |
2663 | 0 | case OR_Deleted: { |
2664 | 0 | if (Diagnose) { |
2665 | 0 | Candidates.NoteCandidates( |
2666 | 0 | PartialDiagnosticAt(R.getNameLoc(), |
2667 | 0 | S.PDiag(diag::err_ovl_deleted_call) |
2668 | 0 | << R.getLookupName() << Range), |
2669 | 0 | S, OCD_AllCandidates, Args); |
2670 | 0 | } |
2671 | 0 | return true; |
2672 | 0 | } |
2673 | 0 | } |
2674 | 0 | llvm_unreachable("Unreachable, bad result from BestViableFunction"); |
2675 | 0 | } |
2676 | | |
2677 | | bool Sema::FindAllocationFunctions(SourceLocation StartLoc, SourceRange Range, |
2678 | | AllocationFunctionScope NewScope, |
2679 | | AllocationFunctionScope DeleteScope, |
2680 | | QualType AllocType, bool IsArray, |
2681 | | bool &PassAlignment, MultiExprArg PlaceArgs, |
2682 | | FunctionDecl *&OperatorNew, |
2683 | | FunctionDecl *&OperatorDelete, |
2684 | 0 | bool Diagnose) { |
2685 | | // --- Choosing an allocation function --- |
2686 | | // C++ 5.3.4p8 - 14 & 18 |
2687 | | // 1) If looking in AFS_Global scope for allocation functions, only look in |
2688 | | // the global scope. Else, if AFS_Class, only look in the scope of the |
2689 | | // allocated class. If AFS_Both, look in both. |
2690 | | // 2) If an array size is given, look for operator new[], else look for |
2691 | | // operator new. |
2692 | | // 3) The first argument is always size_t. Append the arguments from the |
2693 | | // placement form. |
2694 | |
|
2695 | 0 | SmallVector<Expr*, 8> AllocArgs; |
2696 | 0 | AllocArgs.reserve((PassAlignment ? 2 : 1) + PlaceArgs.size()); |
2697 | | |
2698 | | // We don't care about the actual value of these arguments. |
2699 | | // FIXME: Should the Sema create the expression and embed it in the syntax |
2700 | | // tree? Or should the consumer just recalculate the value? |
2701 | | // FIXME: Using a dummy value will interact poorly with attribute enable_if. |
2702 | 0 | QualType SizeTy = Context.getSizeType(); |
2703 | 0 | unsigned SizeTyWidth = Context.getTypeSize(SizeTy); |
2704 | 0 | IntegerLiteral Size(Context, llvm::APInt::getZero(SizeTyWidth), SizeTy, |
2705 | 0 | SourceLocation()); |
2706 | 0 | AllocArgs.push_back(&Size); |
2707 | |
|
2708 | 0 | QualType AlignValT = Context.VoidTy; |
2709 | 0 | if (PassAlignment) { |
2710 | 0 | DeclareGlobalNewDelete(); |
2711 | 0 | AlignValT = Context.getTypeDeclType(getStdAlignValT()); |
2712 | 0 | } |
2713 | 0 | CXXScalarValueInitExpr Align(AlignValT, nullptr, SourceLocation()); |
2714 | 0 | if (PassAlignment) |
2715 | 0 | AllocArgs.push_back(&Align); |
2716 | |
|
2717 | 0 | AllocArgs.insert(AllocArgs.end(), PlaceArgs.begin(), PlaceArgs.end()); |
2718 | | |
2719 | | // C++ [expr.new]p8: |
2720 | | // If the allocated type is a non-array type, the allocation |
2721 | | // function's name is operator new and the deallocation function's |
2722 | | // name is operator delete. If the allocated type is an array |
2723 | | // type, the allocation function's name is operator new[] and the |
2724 | | // deallocation function's name is operator delete[]. |
2725 | 0 | DeclarationName NewName = Context.DeclarationNames.getCXXOperatorName( |
2726 | 0 | IsArray ? OO_Array_New : OO_New); |
2727 | |
|
2728 | 0 | QualType AllocElemType = Context.getBaseElementType(AllocType); |
2729 | | |
2730 | | // Find the allocation function. |
2731 | 0 | { |
2732 | 0 | LookupResult R(*this, NewName, StartLoc, LookupOrdinaryName); |
2733 | | |
2734 | | // C++1z [expr.new]p9: |
2735 | | // If the new-expression begins with a unary :: operator, the allocation |
2736 | | // function's name is looked up in the global scope. Otherwise, if the |
2737 | | // allocated type is a class type T or array thereof, the allocation |
2738 | | // function's name is looked up in the scope of T. |
2739 | 0 | if (AllocElemType->isRecordType() && NewScope != AFS_Global) |
2740 | 0 | LookupQualifiedName(R, AllocElemType->getAsCXXRecordDecl()); |
2741 | | |
2742 | | // We can see ambiguity here if the allocation function is found in |
2743 | | // multiple base classes. |
2744 | 0 | if (R.isAmbiguous()) |
2745 | 0 | return true; |
2746 | | |
2747 | | // If this lookup fails to find the name, or if the allocated type is not |
2748 | | // a class type, the allocation function's name is looked up in the |
2749 | | // global scope. |
2750 | 0 | if (R.empty()) { |
2751 | 0 | if (NewScope == AFS_Class) |
2752 | 0 | return true; |
2753 | | |
2754 | 0 | LookupQualifiedName(R, Context.getTranslationUnitDecl()); |
2755 | 0 | } |
2756 | | |
2757 | 0 | if (getLangOpts().OpenCLCPlusPlus && R.empty()) { |
2758 | 0 | if (PlaceArgs.empty()) { |
2759 | 0 | Diag(StartLoc, diag::err_openclcxx_not_supported) << "default new"; |
2760 | 0 | } else { |
2761 | 0 | Diag(StartLoc, diag::err_openclcxx_placement_new); |
2762 | 0 | } |
2763 | 0 | return true; |
2764 | 0 | } |
2765 | | |
2766 | 0 | assert(!R.empty() && "implicitly declared allocation functions not found"); |
2767 | 0 | assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); |
2768 | | |
2769 | | // We do our own custom access checks below. |
2770 | 0 | R.suppressDiagnostics(); |
2771 | |
|
2772 | 0 | if (resolveAllocationOverload(*this, R, Range, AllocArgs, PassAlignment, |
2773 | 0 | OperatorNew, /*Candidates=*/nullptr, |
2774 | 0 | /*AlignArg=*/nullptr, Diagnose)) |
2775 | 0 | return true; |
2776 | 0 | } |
2777 | | |
2778 | | // We don't need an operator delete if we're running under -fno-exceptions. |
2779 | 0 | if (!getLangOpts().Exceptions) { |
2780 | 0 | OperatorDelete = nullptr; |
2781 | 0 | return false; |
2782 | 0 | } |
2783 | | |
2784 | | // Note, the name of OperatorNew might have been changed from array to |
2785 | | // non-array by resolveAllocationOverload. |
2786 | 0 | DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( |
2787 | 0 | OperatorNew->getDeclName().getCXXOverloadedOperator() == OO_Array_New |
2788 | 0 | ? OO_Array_Delete |
2789 | 0 | : OO_Delete); |
2790 | | |
2791 | | // C++ [expr.new]p19: |
2792 | | // |
2793 | | // If the new-expression begins with a unary :: operator, the |
2794 | | // deallocation function's name is looked up in the global |
2795 | | // scope. Otherwise, if the allocated type is a class type T or an |
2796 | | // array thereof, the deallocation function's name is looked up in |
2797 | | // the scope of T. If this lookup fails to find the name, or if |
2798 | | // the allocated type is not a class type or array thereof, the |
2799 | | // deallocation function's name is looked up in the global scope. |
2800 | 0 | LookupResult FoundDelete(*this, DeleteName, StartLoc, LookupOrdinaryName); |
2801 | 0 | if (AllocElemType->isRecordType() && DeleteScope != AFS_Global) { |
2802 | 0 | auto *RD = |
2803 | 0 | cast<CXXRecordDecl>(AllocElemType->castAs<RecordType>()->getDecl()); |
2804 | 0 | LookupQualifiedName(FoundDelete, RD); |
2805 | 0 | } |
2806 | 0 | if (FoundDelete.isAmbiguous()) |
2807 | 0 | return true; // FIXME: clean up expressions? |
2808 | | |
2809 | | // Filter out any destroying operator deletes. We can't possibly call such a |
2810 | | // function in this context, because we're handling the case where the object |
2811 | | // was not successfully constructed. |
2812 | | // FIXME: This is not covered by the language rules yet. |
2813 | 0 | { |
2814 | 0 | LookupResult::Filter Filter = FoundDelete.makeFilter(); |
2815 | 0 | while (Filter.hasNext()) { |
2816 | 0 | auto *FD = dyn_cast<FunctionDecl>(Filter.next()->getUnderlyingDecl()); |
2817 | 0 | if (FD && FD->isDestroyingOperatorDelete()) |
2818 | 0 | Filter.erase(); |
2819 | 0 | } |
2820 | 0 | Filter.done(); |
2821 | 0 | } |
2822 | |
|
2823 | 0 | bool FoundGlobalDelete = FoundDelete.empty(); |
2824 | 0 | if (FoundDelete.empty()) { |
2825 | 0 | FoundDelete.clear(LookupOrdinaryName); |
2826 | |
|
2827 | 0 | if (DeleteScope == AFS_Class) |
2828 | 0 | return true; |
2829 | | |
2830 | 0 | DeclareGlobalNewDelete(); |
2831 | 0 | LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); |
2832 | 0 | } |
2833 | | |
2834 | 0 | FoundDelete.suppressDiagnostics(); |
2835 | |
|
2836 | 0 | SmallVector<std::pair<DeclAccessPair,FunctionDecl*>, 2> Matches; |
2837 | | |
2838 | | // Whether we're looking for a placement operator delete is dictated |
2839 | | // by whether we selected a placement operator new, not by whether |
2840 | | // we had explicit placement arguments. This matters for things like |
2841 | | // struct A { void *operator new(size_t, int = 0); ... }; |
2842 | | // A *a = new A() |
2843 | | // |
2844 | | // We don't have any definition for what a "placement allocation function" |
2845 | | // is, but we assume it's any allocation function whose |
2846 | | // parameter-declaration-clause is anything other than (size_t). |
2847 | | // |
2848 | | // FIXME: Should (size_t, std::align_val_t) also be considered non-placement? |
2849 | | // This affects whether an exception from the constructor of an overaligned |
2850 | | // type uses the sized or non-sized form of aligned operator delete. |
2851 | 0 | bool isPlacementNew = !PlaceArgs.empty() || OperatorNew->param_size() != 1 || |
2852 | 0 | OperatorNew->isVariadic(); |
2853 | |
|
2854 | 0 | if (isPlacementNew) { |
2855 | | // C++ [expr.new]p20: |
2856 | | // A declaration of a placement deallocation function matches the |
2857 | | // declaration of a placement allocation function if it has the |
2858 | | // same number of parameters and, after parameter transformations |
2859 | | // (8.3.5), all parameter types except the first are |
2860 | | // identical. [...] |
2861 | | // |
2862 | | // To perform this comparison, we compute the function type that |
2863 | | // the deallocation function should have, and use that type both |
2864 | | // for template argument deduction and for comparison purposes. |
2865 | 0 | QualType ExpectedFunctionType; |
2866 | 0 | { |
2867 | 0 | auto *Proto = OperatorNew->getType()->castAs<FunctionProtoType>(); |
2868 | |
|
2869 | 0 | SmallVector<QualType, 4> ArgTypes; |
2870 | 0 | ArgTypes.push_back(Context.VoidPtrTy); |
2871 | 0 | for (unsigned I = 1, N = Proto->getNumParams(); I < N; ++I) |
2872 | 0 | ArgTypes.push_back(Proto->getParamType(I)); |
2873 | |
|
2874 | 0 | FunctionProtoType::ExtProtoInfo EPI; |
2875 | | // FIXME: This is not part of the standard's rule. |
2876 | 0 | EPI.Variadic = Proto->isVariadic(); |
2877 | |
|
2878 | 0 | ExpectedFunctionType |
2879 | 0 | = Context.getFunctionType(Context.VoidTy, ArgTypes, EPI); |
2880 | 0 | } |
2881 | |
|
2882 | 0 | for (LookupResult::iterator D = FoundDelete.begin(), |
2883 | 0 | DEnd = FoundDelete.end(); |
2884 | 0 | D != DEnd; ++D) { |
2885 | 0 | FunctionDecl *Fn = nullptr; |
2886 | 0 | if (FunctionTemplateDecl *FnTmpl = |
2887 | 0 | dyn_cast<FunctionTemplateDecl>((*D)->getUnderlyingDecl())) { |
2888 | | // Perform template argument deduction to try to match the |
2889 | | // expected function type. |
2890 | 0 | TemplateDeductionInfo Info(StartLoc); |
2891 | 0 | if (DeduceTemplateArguments(FnTmpl, nullptr, ExpectedFunctionType, Fn, |
2892 | 0 | Info)) |
2893 | 0 | continue; |
2894 | 0 | } else |
2895 | 0 | Fn = cast<FunctionDecl>((*D)->getUnderlyingDecl()); |
2896 | | |
2897 | 0 | if (Context.hasSameType(adjustCCAndNoReturn(Fn->getType(), |
2898 | 0 | ExpectedFunctionType, |
2899 | 0 | /*AdjustExcpetionSpec*/true), |
2900 | 0 | ExpectedFunctionType)) |
2901 | 0 | Matches.push_back(std::make_pair(D.getPair(), Fn)); |
2902 | 0 | } |
2903 | |
|
2904 | 0 | if (getLangOpts().CUDA) |
2905 | 0 | EraseUnwantedCUDAMatches(getCurFunctionDecl(/*AllowLambda=*/true), |
2906 | 0 | Matches); |
2907 | 0 | } else { |
2908 | | // C++1y [expr.new]p22: |
2909 | | // For a non-placement allocation function, the normal deallocation |
2910 | | // function lookup is used |
2911 | | // |
2912 | | // Per [expr.delete]p10, this lookup prefers a member operator delete |
2913 | | // without a size_t argument, but prefers a non-member operator delete |
2914 | | // with a size_t where possible (which it always is in this case). |
2915 | 0 | llvm::SmallVector<UsualDeallocFnInfo, 4> BestDeallocFns; |
2916 | 0 | UsualDeallocFnInfo Selected = resolveDeallocationOverload( |
2917 | 0 | *this, FoundDelete, /*WantSize*/ FoundGlobalDelete, |
2918 | 0 | /*WantAlign*/ hasNewExtendedAlignment(*this, AllocElemType), |
2919 | 0 | &BestDeallocFns); |
2920 | 0 | if (Selected) |
2921 | 0 | Matches.push_back(std::make_pair(Selected.Found, Selected.FD)); |
2922 | 0 | else { |
2923 | | // If we failed to select an operator, all remaining functions are viable |
2924 | | // but ambiguous. |
2925 | 0 | for (auto Fn : BestDeallocFns) |
2926 | 0 | Matches.push_back(std::make_pair(Fn.Found, Fn.FD)); |
2927 | 0 | } |
2928 | 0 | } |
2929 | | |
2930 | | // C++ [expr.new]p20: |
2931 | | // [...] If the lookup finds a single matching deallocation |
2932 | | // function, that function will be called; otherwise, no |
2933 | | // deallocation function will be called. |
2934 | 0 | if (Matches.size() == 1) { |
2935 | 0 | OperatorDelete = Matches[0].second; |
2936 | | |
2937 | | // C++1z [expr.new]p23: |
2938 | | // If the lookup finds a usual deallocation function (3.7.4.2) |
2939 | | // with a parameter of type std::size_t and that function, considered |
2940 | | // as a placement deallocation function, would have been |
2941 | | // selected as a match for the allocation function, the program |
2942 | | // is ill-formed. |
2943 | 0 | if (getLangOpts().CPlusPlus11 && isPlacementNew && |
2944 | 0 | isNonPlacementDeallocationFunction(*this, OperatorDelete)) { |
2945 | 0 | UsualDeallocFnInfo Info(*this, |
2946 | 0 | DeclAccessPair::make(OperatorDelete, AS_public)); |
2947 | | // Core issue, per mail to core reflector, 2016-10-09: |
2948 | | // If this is a member operator delete, and there is a corresponding |
2949 | | // non-sized member operator delete, this isn't /really/ a sized |
2950 | | // deallocation function, it just happens to have a size_t parameter. |
2951 | 0 | bool IsSizedDelete = Info.HasSizeT; |
2952 | 0 | if (IsSizedDelete && !FoundGlobalDelete) { |
2953 | 0 | auto NonSizedDelete = |
2954 | 0 | resolveDeallocationOverload(*this, FoundDelete, /*WantSize*/false, |
2955 | 0 | /*WantAlign*/Info.HasAlignValT); |
2956 | 0 | if (NonSizedDelete && !NonSizedDelete.HasSizeT && |
2957 | 0 | NonSizedDelete.HasAlignValT == Info.HasAlignValT) |
2958 | 0 | IsSizedDelete = false; |
2959 | 0 | } |
2960 | |
|
2961 | 0 | if (IsSizedDelete) { |
2962 | 0 | SourceRange R = PlaceArgs.empty() |
2963 | 0 | ? SourceRange() |
2964 | 0 | : SourceRange(PlaceArgs.front()->getBeginLoc(), |
2965 | 0 | PlaceArgs.back()->getEndLoc()); |
2966 | 0 | Diag(StartLoc, diag::err_placement_new_non_placement_delete) << R; |
2967 | 0 | if (!OperatorDelete->isImplicit()) |
2968 | 0 | Diag(OperatorDelete->getLocation(), diag::note_previous_decl) |
2969 | 0 | << DeleteName; |
2970 | 0 | } |
2971 | 0 | } |
2972 | |
|
2973 | 0 | CheckAllocationAccess(StartLoc, Range, FoundDelete.getNamingClass(), |
2974 | 0 | Matches[0].first); |
2975 | 0 | } else if (!Matches.empty()) { |
2976 | | // We found multiple suitable operators. Per [expr.new]p20, that means we |
2977 | | // call no 'operator delete' function, but we should at least warn the user. |
2978 | | // FIXME: Suppress this warning if the construction cannot throw. |
2979 | 0 | Diag(StartLoc, diag::warn_ambiguous_suitable_delete_function_found) |
2980 | 0 | << DeleteName << AllocElemType; |
2981 | |
|
2982 | 0 | for (auto &Match : Matches) |
2983 | 0 | Diag(Match.second->getLocation(), |
2984 | 0 | diag::note_member_declared_here) << DeleteName; |
2985 | 0 | } |
2986 | |
|
2987 | 0 | return false; |
2988 | 0 | } |
2989 | | |
2990 | | /// DeclareGlobalNewDelete - Declare the global forms of operator new and |
2991 | | /// delete. These are: |
2992 | | /// @code |
2993 | | /// // C++03: |
2994 | | /// void* operator new(std::size_t) throw(std::bad_alloc); |
2995 | | /// void* operator new[](std::size_t) throw(std::bad_alloc); |
2996 | | /// void operator delete(void *) throw(); |
2997 | | /// void operator delete[](void *) throw(); |
2998 | | /// // C++11: |
2999 | | /// void* operator new(std::size_t); |
3000 | | /// void* operator new[](std::size_t); |
3001 | | /// void operator delete(void *) noexcept; |
3002 | | /// void operator delete[](void *) noexcept; |
3003 | | /// // C++1y: |
3004 | | /// void* operator new(std::size_t); |
3005 | | /// void* operator new[](std::size_t); |
3006 | | /// void operator delete(void *) noexcept; |
3007 | | /// void operator delete[](void *) noexcept; |
3008 | | /// void operator delete(void *, std::size_t) noexcept; |
3009 | | /// void operator delete[](void *, std::size_t) noexcept; |
3010 | | /// @endcode |
3011 | | /// Note that the placement and nothrow forms of new are *not* implicitly |
3012 | | /// declared. Their use requires including \<new\>. |
3013 | 0 | void Sema::DeclareGlobalNewDelete() { |
3014 | 0 | if (GlobalNewDeleteDeclared) |
3015 | 0 | return; |
3016 | | |
3017 | | // The implicitly declared new and delete operators |
3018 | | // are not supported in OpenCL. |
3019 | 0 | if (getLangOpts().OpenCLCPlusPlus) |
3020 | 0 | return; |
3021 | | |
3022 | | // C++ [basic.stc.dynamic.general]p2: |
3023 | | // The library provides default definitions for the global allocation |
3024 | | // and deallocation functions. Some global allocation and deallocation |
3025 | | // functions are replaceable ([new.delete]); these are attached to the |
3026 | | // global module ([module.unit]). |
3027 | 0 | if (getLangOpts().CPlusPlusModules && getCurrentModule()) |
3028 | 0 | PushGlobalModuleFragment(SourceLocation()); |
3029 | | |
3030 | | // C++ [basic.std.dynamic]p2: |
3031 | | // [...] The following allocation and deallocation functions (18.4) are |
3032 | | // implicitly declared in global scope in each translation unit of a |
3033 | | // program |
3034 | | // |
3035 | | // C++03: |
3036 | | // void* operator new(std::size_t) throw(std::bad_alloc); |
3037 | | // void* operator new[](std::size_t) throw(std::bad_alloc); |
3038 | | // void operator delete(void*) throw(); |
3039 | | // void operator delete[](void*) throw(); |
3040 | | // C++11: |
3041 | | // void* operator new(std::size_t); |
3042 | | // void* operator new[](std::size_t); |
3043 | | // void operator delete(void*) noexcept; |
3044 | | // void operator delete[](void*) noexcept; |
3045 | | // C++1y: |
3046 | | // void* operator new(std::size_t); |
3047 | | // void* operator new[](std::size_t); |
3048 | | // void operator delete(void*) noexcept; |
3049 | | // void operator delete[](void*) noexcept; |
3050 | | // void operator delete(void*, std::size_t) noexcept; |
3051 | | // void operator delete[](void*, std::size_t) noexcept; |
3052 | | // |
3053 | | // These implicit declarations introduce only the function names operator |
3054 | | // new, operator new[], operator delete, operator delete[]. |
3055 | | // |
3056 | | // Here, we need to refer to std::bad_alloc, so we will implicitly declare |
3057 | | // "std" or "bad_alloc" as necessary to form the exception specification. |
3058 | | // However, we do not make these implicit declarations visible to name |
3059 | | // lookup. |
3060 | 0 | if (!StdBadAlloc && !getLangOpts().CPlusPlus11) { |
3061 | | // The "std::bad_alloc" class has not yet been declared, so build it |
3062 | | // implicitly. |
3063 | 0 | StdBadAlloc = CXXRecordDecl::Create( |
3064 | 0 | Context, TagTypeKind::Class, getOrCreateStdNamespace(), |
3065 | 0 | SourceLocation(), SourceLocation(), |
3066 | 0 | &PP.getIdentifierTable().get("bad_alloc"), nullptr); |
3067 | 0 | getStdBadAlloc()->setImplicit(true); |
3068 | | |
3069 | | // The implicitly declared "std::bad_alloc" should live in global module |
3070 | | // fragment. |
3071 | 0 | if (TheGlobalModuleFragment) { |
3072 | 0 | getStdBadAlloc()->setModuleOwnershipKind( |
3073 | 0 | Decl::ModuleOwnershipKind::ReachableWhenImported); |
3074 | 0 | getStdBadAlloc()->setLocalOwningModule(TheGlobalModuleFragment); |
3075 | 0 | } |
3076 | 0 | } |
3077 | 0 | if (!StdAlignValT && getLangOpts().AlignedAllocation) { |
3078 | | // The "std::align_val_t" enum class has not yet been declared, so build it |
3079 | | // implicitly. |
3080 | 0 | auto *AlignValT = EnumDecl::Create( |
3081 | 0 | Context, getOrCreateStdNamespace(), SourceLocation(), SourceLocation(), |
3082 | 0 | &PP.getIdentifierTable().get("align_val_t"), nullptr, true, true, true); |
3083 | | |
3084 | | // The implicitly declared "std::align_val_t" should live in global module |
3085 | | // fragment. |
3086 | 0 | if (TheGlobalModuleFragment) { |
3087 | 0 | AlignValT->setModuleOwnershipKind( |
3088 | 0 | Decl::ModuleOwnershipKind::ReachableWhenImported); |
3089 | 0 | AlignValT->setLocalOwningModule(TheGlobalModuleFragment); |
3090 | 0 | } |
3091 | |
|
3092 | 0 | AlignValT->setIntegerType(Context.getSizeType()); |
3093 | 0 | AlignValT->setPromotionType(Context.getSizeType()); |
3094 | 0 | AlignValT->setImplicit(true); |
3095 | |
|
3096 | 0 | StdAlignValT = AlignValT; |
3097 | 0 | } |
3098 | |
|
3099 | 0 | GlobalNewDeleteDeclared = true; |
3100 | |
|
3101 | 0 | QualType VoidPtr = Context.getPointerType(Context.VoidTy); |
3102 | 0 | QualType SizeT = Context.getSizeType(); |
3103 | |
|
3104 | 0 | auto DeclareGlobalAllocationFunctions = [&](OverloadedOperatorKind Kind, |
3105 | 0 | QualType Return, QualType Param) { |
3106 | 0 | llvm::SmallVector<QualType, 3> Params; |
3107 | 0 | Params.push_back(Param); |
3108 | | |
3109 | | // Create up to four variants of the function (sized/aligned). |
3110 | 0 | bool HasSizedVariant = getLangOpts().SizedDeallocation && |
3111 | 0 | (Kind == OO_Delete || Kind == OO_Array_Delete); |
3112 | 0 | bool HasAlignedVariant = getLangOpts().AlignedAllocation; |
3113 | |
|
3114 | 0 | int NumSizeVariants = (HasSizedVariant ? 2 : 1); |
3115 | 0 | int NumAlignVariants = (HasAlignedVariant ? 2 : 1); |
3116 | 0 | for (int Sized = 0; Sized < NumSizeVariants; ++Sized) { |
3117 | 0 | if (Sized) |
3118 | 0 | Params.push_back(SizeT); |
3119 | |
|
3120 | 0 | for (int Aligned = 0; Aligned < NumAlignVariants; ++Aligned) { |
3121 | 0 | if (Aligned) |
3122 | 0 | Params.push_back(Context.getTypeDeclType(getStdAlignValT())); |
3123 | |
|
3124 | 0 | DeclareGlobalAllocationFunction( |
3125 | 0 | Context.DeclarationNames.getCXXOperatorName(Kind), Return, Params); |
3126 | |
|
3127 | 0 | if (Aligned) |
3128 | 0 | Params.pop_back(); |
3129 | 0 | } |
3130 | 0 | } |
3131 | 0 | }; |
3132 | |
|
3133 | 0 | DeclareGlobalAllocationFunctions(OO_New, VoidPtr, SizeT); |
3134 | 0 | DeclareGlobalAllocationFunctions(OO_Array_New, VoidPtr, SizeT); |
3135 | 0 | DeclareGlobalAllocationFunctions(OO_Delete, Context.VoidTy, VoidPtr); |
3136 | 0 | DeclareGlobalAllocationFunctions(OO_Array_Delete, Context.VoidTy, VoidPtr); |
3137 | |
|
3138 | 0 | if (getLangOpts().CPlusPlusModules && getCurrentModule()) |
3139 | 0 | PopGlobalModuleFragment(); |
3140 | 0 | } |
3141 | | |
3142 | | /// DeclareGlobalAllocationFunction - Declares a single implicit global |
3143 | | /// allocation function if it doesn't already exist. |
3144 | | void Sema::DeclareGlobalAllocationFunction(DeclarationName Name, |
3145 | | QualType Return, |
3146 | 0 | ArrayRef<QualType> Params) { |
3147 | 0 | DeclContext *GlobalCtx = Context.getTranslationUnitDecl(); |
3148 | | |
3149 | | // Check if this function is already declared. |
3150 | 0 | DeclContext::lookup_result R = GlobalCtx->lookup(Name); |
3151 | 0 | for (DeclContext::lookup_iterator Alloc = R.begin(), AllocEnd = R.end(); |
3152 | 0 | Alloc != AllocEnd; ++Alloc) { |
3153 | | // Only look at non-template functions, as it is the predefined, |
3154 | | // non-templated allocation function we are trying to declare here. |
3155 | 0 | if (FunctionDecl *Func = dyn_cast<FunctionDecl>(*Alloc)) { |
3156 | 0 | if (Func->getNumParams() == Params.size()) { |
3157 | 0 | llvm::SmallVector<QualType, 3> FuncParams; |
3158 | 0 | for (auto *P : Func->parameters()) |
3159 | 0 | FuncParams.push_back( |
3160 | 0 | Context.getCanonicalType(P->getType().getUnqualifiedType())); |
3161 | 0 | if (llvm::ArrayRef(FuncParams) == Params) { |
3162 | | // Make the function visible to name lookup, even if we found it in |
3163 | | // an unimported module. It either is an implicitly-declared global |
3164 | | // allocation function, or is suppressing that function. |
3165 | 0 | Func->setVisibleDespiteOwningModule(); |
3166 | 0 | return; |
3167 | 0 | } |
3168 | 0 | } |
3169 | 0 | } |
3170 | 0 | } |
3171 | | |
3172 | 0 | FunctionProtoType::ExtProtoInfo EPI(Context.getDefaultCallingConvention( |
3173 | 0 | /*IsVariadic=*/false, /*IsCXXMethod=*/false, /*IsBuiltin=*/true)); |
3174 | |
|
3175 | 0 | QualType BadAllocType; |
3176 | 0 | bool HasBadAllocExceptionSpec |
3177 | 0 | = (Name.getCXXOverloadedOperator() == OO_New || |
3178 | 0 | Name.getCXXOverloadedOperator() == OO_Array_New); |
3179 | 0 | if (HasBadAllocExceptionSpec) { |
3180 | 0 | if (!getLangOpts().CPlusPlus11) { |
3181 | 0 | BadAllocType = Context.getTypeDeclType(getStdBadAlloc()); |
3182 | 0 | assert(StdBadAlloc && "Must have std::bad_alloc declared"); |
3183 | 0 | EPI.ExceptionSpec.Type = EST_Dynamic; |
3184 | 0 | EPI.ExceptionSpec.Exceptions = llvm::ArrayRef(BadAllocType); |
3185 | 0 | } |
3186 | 0 | if (getLangOpts().NewInfallible) { |
3187 | 0 | EPI.ExceptionSpec.Type = EST_DynamicNone; |
3188 | 0 | } |
3189 | 0 | } else { |
3190 | 0 | EPI.ExceptionSpec = |
3191 | 0 | getLangOpts().CPlusPlus11 ? EST_BasicNoexcept : EST_DynamicNone; |
3192 | 0 | } |
3193 | | |
3194 | 0 | auto CreateAllocationFunctionDecl = [&](Attr *ExtraAttr) { |
3195 | 0 | QualType FnType = Context.getFunctionType(Return, Params, EPI); |
3196 | 0 | FunctionDecl *Alloc = FunctionDecl::Create( |
3197 | 0 | Context, GlobalCtx, SourceLocation(), SourceLocation(), Name, FnType, |
3198 | 0 | /*TInfo=*/nullptr, SC_None, getCurFPFeatures().isFPConstrained(), false, |
3199 | 0 | true); |
3200 | 0 | Alloc->setImplicit(); |
3201 | | // Global allocation functions should always be visible. |
3202 | 0 | Alloc->setVisibleDespiteOwningModule(); |
3203 | |
|
3204 | 0 | if (HasBadAllocExceptionSpec && getLangOpts().NewInfallible && |
3205 | 0 | !getLangOpts().CheckNew) |
3206 | 0 | Alloc->addAttr( |
3207 | 0 | ReturnsNonNullAttr::CreateImplicit(Context, Alloc->getLocation())); |
3208 | | |
3209 | | // C++ [basic.stc.dynamic.general]p2: |
3210 | | // The library provides default definitions for the global allocation |
3211 | | // and deallocation functions. Some global allocation and deallocation |
3212 | | // functions are replaceable ([new.delete]); these are attached to the |
3213 | | // global module ([module.unit]). |
3214 | | // |
3215 | | // In the language wording, these functions are attched to the global |
3216 | | // module all the time. But in the implementation, the global module |
3217 | | // is only meaningful when we're in a module unit. So here we attach |
3218 | | // these allocation functions to global module conditionally. |
3219 | 0 | if (TheGlobalModuleFragment) { |
3220 | 0 | Alloc->setModuleOwnershipKind( |
3221 | 0 | Decl::ModuleOwnershipKind::ReachableWhenImported); |
3222 | 0 | Alloc->setLocalOwningModule(TheGlobalModuleFragment); |
3223 | 0 | } |
3224 | |
|
3225 | 0 | Alloc->addAttr(VisibilityAttr::CreateImplicit( |
3226 | 0 | Context, LangOpts.GlobalAllocationFunctionVisibilityHidden |
3227 | 0 | ? VisibilityAttr::Hidden |
3228 | 0 | : VisibilityAttr::Default)); |
3229 | |
|
3230 | 0 | llvm::SmallVector<ParmVarDecl *, 3> ParamDecls; |
3231 | 0 | for (QualType T : Params) { |
3232 | 0 | ParamDecls.push_back(ParmVarDecl::Create( |
3233 | 0 | Context, Alloc, SourceLocation(), SourceLocation(), nullptr, T, |
3234 | 0 | /*TInfo=*/nullptr, SC_None, nullptr)); |
3235 | 0 | ParamDecls.back()->setImplicit(); |
3236 | 0 | } |
3237 | 0 | Alloc->setParams(ParamDecls); |
3238 | 0 | if (ExtraAttr) |
3239 | 0 | Alloc->addAttr(ExtraAttr); |
3240 | 0 | AddKnownFunctionAttributesForReplaceableGlobalAllocationFunction(Alloc); |
3241 | 0 | Context.getTranslationUnitDecl()->addDecl(Alloc); |
3242 | 0 | IdResolver.tryAddTopLevelDecl(Alloc, Name); |
3243 | 0 | }; |
3244 | |
|
3245 | 0 | if (!LangOpts.CUDA) |
3246 | 0 | CreateAllocationFunctionDecl(nullptr); |
3247 | 0 | else { |
3248 | | // Host and device get their own declaration so each can be |
3249 | | // defined or re-declared independently. |
3250 | 0 | CreateAllocationFunctionDecl(CUDAHostAttr::CreateImplicit(Context)); |
3251 | 0 | CreateAllocationFunctionDecl(CUDADeviceAttr::CreateImplicit(Context)); |
3252 | 0 | } |
3253 | 0 | } |
3254 | | |
3255 | | FunctionDecl *Sema::FindUsualDeallocationFunction(SourceLocation StartLoc, |
3256 | | bool CanProvideSize, |
3257 | | bool Overaligned, |
3258 | 0 | DeclarationName Name) { |
3259 | 0 | DeclareGlobalNewDelete(); |
3260 | |
|
3261 | 0 | LookupResult FoundDelete(*this, Name, StartLoc, LookupOrdinaryName); |
3262 | 0 | LookupQualifiedName(FoundDelete, Context.getTranslationUnitDecl()); |
3263 | | |
3264 | | // FIXME: It's possible for this to result in ambiguity, through a |
3265 | | // user-declared variadic operator delete or the enable_if attribute. We |
3266 | | // should probably not consider those cases to be usual deallocation |
3267 | | // functions. But for now we just make an arbitrary choice in that case. |
3268 | 0 | auto Result = resolveDeallocationOverload(*this, FoundDelete, CanProvideSize, |
3269 | 0 | Overaligned); |
3270 | 0 | assert(Result.FD && "operator delete missing from global scope?"); |
3271 | 0 | return Result.FD; |
3272 | 0 | } |
3273 | | |
3274 | | FunctionDecl *Sema::FindDeallocationFunctionForDestructor(SourceLocation Loc, |
3275 | 0 | CXXRecordDecl *RD) { |
3276 | 0 | DeclarationName Name = Context.DeclarationNames.getCXXOperatorName(OO_Delete); |
3277 | |
|
3278 | 0 | FunctionDecl *OperatorDelete = nullptr; |
3279 | 0 | if (FindDeallocationFunction(Loc, RD, Name, OperatorDelete)) |
3280 | 0 | return nullptr; |
3281 | 0 | if (OperatorDelete) |
3282 | 0 | return OperatorDelete; |
3283 | | |
3284 | | // If there's no class-specific operator delete, look up the global |
3285 | | // non-array delete. |
3286 | 0 | return FindUsualDeallocationFunction( |
3287 | 0 | Loc, true, hasNewExtendedAlignment(*this, Context.getRecordType(RD)), |
3288 | 0 | Name); |
3289 | 0 | } |
3290 | | |
3291 | | bool Sema::FindDeallocationFunction(SourceLocation StartLoc, CXXRecordDecl *RD, |
3292 | | DeclarationName Name, |
3293 | | FunctionDecl *&Operator, bool Diagnose, |
3294 | 0 | bool WantSize, bool WantAligned) { |
3295 | 0 | LookupResult Found(*this, Name, StartLoc, LookupOrdinaryName); |
3296 | | // Try to find operator delete/operator delete[] in class scope. |
3297 | 0 | LookupQualifiedName(Found, RD); |
3298 | |
|
3299 | 0 | if (Found.isAmbiguous()) |
3300 | 0 | return true; |
3301 | | |
3302 | 0 | Found.suppressDiagnostics(); |
3303 | |
|
3304 | 0 | bool Overaligned = |
3305 | 0 | WantAligned || hasNewExtendedAlignment(*this, Context.getRecordType(RD)); |
3306 | | |
3307 | | // C++17 [expr.delete]p10: |
3308 | | // If the deallocation functions have class scope, the one without a |
3309 | | // parameter of type std::size_t is selected. |
3310 | 0 | llvm::SmallVector<UsualDeallocFnInfo, 4> Matches; |
3311 | 0 | resolveDeallocationOverload(*this, Found, /*WantSize*/ WantSize, |
3312 | 0 | /*WantAlign*/ Overaligned, &Matches); |
3313 | | |
3314 | | // If we could find an overload, use it. |
3315 | 0 | if (Matches.size() == 1) { |
3316 | 0 | Operator = cast<CXXMethodDecl>(Matches[0].FD); |
3317 | | |
3318 | | // FIXME: DiagnoseUseOfDecl? |
3319 | 0 | if (Operator->isDeleted()) { |
3320 | 0 | if (Diagnose) { |
3321 | 0 | Diag(StartLoc, diag::err_deleted_function_use); |
3322 | 0 | NoteDeletedFunction(Operator); |
3323 | 0 | } |
3324 | 0 | return true; |
3325 | 0 | } |
3326 | | |
3327 | 0 | if (CheckAllocationAccess(StartLoc, SourceRange(), Found.getNamingClass(), |
3328 | 0 | Matches[0].Found, Diagnose) == AR_inaccessible) |
3329 | 0 | return true; |
3330 | | |
3331 | 0 | return false; |
3332 | 0 | } |
3333 | | |
3334 | | // We found multiple suitable operators; complain about the ambiguity. |
3335 | | // FIXME: The standard doesn't say to do this; it appears that the intent |
3336 | | // is that this should never happen. |
3337 | 0 | if (!Matches.empty()) { |
3338 | 0 | if (Diagnose) { |
3339 | 0 | Diag(StartLoc, diag::err_ambiguous_suitable_delete_member_function_found) |
3340 | 0 | << Name << RD; |
3341 | 0 | for (auto &Match : Matches) |
3342 | 0 | Diag(Match.FD->getLocation(), diag::note_member_declared_here) << Name; |
3343 | 0 | } |
3344 | 0 | return true; |
3345 | 0 | } |
3346 | | |
3347 | | // We did find operator delete/operator delete[] declarations, but |
3348 | | // none of them were suitable. |
3349 | 0 | if (!Found.empty()) { |
3350 | 0 | if (Diagnose) { |
3351 | 0 | Diag(StartLoc, diag::err_no_suitable_delete_member_function_found) |
3352 | 0 | << Name << RD; |
3353 | |
|
3354 | 0 | for (NamedDecl *D : Found) |
3355 | 0 | Diag(D->getUnderlyingDecl()->getLocation(), |
3356 | 0 | diag::note_member_declared_here) << Name; |
3357 | 0 | } |
3358 | 0 | return true; |
3359 | 0 | } |
3360 | | |
3361 | 0 | Operator = nullptr; |
3362 | 0 | return false; |
3363 | 0 | } |
3364 | | |
3365 | | namespace { |
3366 | | /// Checks whether delete-expression, and new-expression used for |
3367 | | /// initializing deletee have the same array form. |
3368 | | class MismatchingNewDeleteDetector { |
3369 | | public: |
3370 | | enum MismatchResult { |
3371 | | /// Indicates that there is no mismatch or a mismatch cannot be proven. |
3372 | | NoMismatch, |
3373 | | /// Indicates that variable is initialized with mismatching form of \a new. |
3374 | | VarInitMismatches, |
3375 | | /// Indicates that member is initialized with mismatching form of \a new. |
3376 | | MemberInitMismatches, |
3377 | | /// Indicates that 1 or more constructors' definitions could not been |
3378 | | /// analyzed, and they will be checked again at the end of translation unit. |
3379 | | AnalyzeLater |
3380 | | }; |
3381 | | |
3382 | | /// \param EndOfTU True, if this is the final analysis at the end of |
3383 | | /// translation unit. False, if this is the initial analysis at the point |
3384 | | /// delete-expression was encountered. |
3385 | | explicit MismatchingNewDeleteDetector(bool EndOfTU) |
3386 | | : Field(nullptr), IsArrayForm(false), EndOfTU(EndOfTU), |
3387 | 0 | HasUndefinedConstructors(false) {} |
3388 | | |
3389 | | /// Checks whether pointee of a delete-expression is initialized with |
3390 | | /// matching form of new-expression. |
3391 | | /// |
3392 | | /// If return value is \c VarInitMismatches or \c MemberInitMismatches at the |
3393 | | /// point where delete-expression is encountered, then a warning will be |
3394 | | /// issued immediately. If return value is \c AnalyzeLater at the point where |
3395 | | /// delete-expression is seen, then member will be analyzed at the end of |
3396 | | /// translation unit. \c AnalyzeLater is returned iff at least one constructor |
3397 | | /// couldn't be analyzed. If at least one constructor initializes the member |
3398 | | /// with matching type of new, the return value is \c NoMismatch. |
3399 | | MismatchResult analyzeDeleteExpr(const CXXDeleteExpr *DE); |
3400 | | /// Analyzes a class member. |
3401 | | /// \param Field Class member to analyze. |
3402 | | /// \param DeleteWasArrayForm Array form-ness of the delete-expression used |
3403 | | /// for deleting the \p Field. |
3404 | | MismatchResult analyzeField(FieldDecl *Field, bool DeleteWasArrayForm); |
3405 | | FieldDecl *Field; |
3406 | | /// List of mismatching new-expressions used for initialization of the pointee |
3407 | | llvm::SmallVector<const CXXNewExpr *, 4> NewExprs; |
3408 | | /// Indicates whether delete-expression was in array form. |
3409 | | bool IsArrayForm; |
3410 | | |
3411 | | private: |
3412 | | const bool EndOfTU; |
3413 | | /// Indicates that there is at least one constructor without body. |
3414 | | bool HasUndefinedConstructors; |
3415 | | /// Returns \c CXXNewExpr from given initialization expression. |
3416 | | /// \param E Expression used for initializing pointee in delete-expression. |
3417 | | /// E can be a single-element \c InitListExpr consisting of new-expression. |
3418 | | const CXXNewExpr *getNewExprFromInitListOrExpr(const Expr *E); |
3419 | | /// Returns whether member is initialized with mismatching form of |
3420 | | /// \c new either by the member initializer or in-class initialization. |
3421 | | /// |
3422 | | /// If bodies of all constructors are not visible at the end of translation |
3423 | | /// unit or at least one constructor initializes member with the matching |
3424 | | /// form of \c new, mismatch cannot be proven, and this function will return |
3425 | | /// \c NoMismatch. |
3426 | | MismatchResult analyzeMemberExpr(const MemberExpr *ME); |
3427 | | /// Returns whether variable is initialized with mismatching form of |
3428 | | /// \c new. |
3429 | | /// |
3430 | | /// If variable is initialized with matching form of \c new or variable is not |
3431 | | /// initialized with a \c new expression, this function will return true. |
3432 | | /// If variable is initialized with mismatching form of \c new, returns false. |
3433 | | /// \param D Variable to analyze. |
3434 | | bool hasMatchingVarInit(const DeclRefExpr *D); |
3435 | | /// Checks whether the constructor initializes pointee with mismatching |
3436 | | /// form of \c new. |
3437 | | /// |
3438 | | /// Returns true, if member is initialized with matching form of \c new in |
3439 | | /// member initializer list. Returns false, if member is initialized with the |
3440 | | /// matching form of \c new in this constructor's initializer or given |
3441 | | /// constructor isn't defined at the point where delete-expression is seen, or |
3442 | | /// member isn't initialized by the constructor. |
3443 | | bool hasMatchingNewInCtor(const CXXConstructorDecl *CD); |
3444 | | /// Checks whether member is initialized with matching form of |
3445 | | /// \c new in member initializer list. |
3446 | | bool hasMatchingNewInCtorInit(const CXXCtorInitializer *CI); |
3447 | | /// Checks whether member is initialized with mismatching form of \c new by |
3448 | | /// in-class initializer. |
3449 | | MismatchResult analyzeInClassInitializer(); |
3450 | | }; |
3451 | | } |
3452 | | |
3453 | | MismatchingNewDeleteDetector::MismatchResult |
3454 | 0 | MismatchingNewDeleteDetector::analyzeDeleteExpr(const CXXDeleteExpr *DE) { |
3455 | 0 | NewExprs.clear(); |
3456 | 0 | assert(DE && "Expected delete-expression"); |
3457 | 0 | IsArrayForm = DE->isArrayForm(); |
3458 | 0 | const Expr *E = DE->getArgument()->IgnoreParenImpCasts(); |
3459 | 0 | if (const MemberExpr *ME = dyn_cast<const MemberExpr>(E)) { |
3460 | 0 | return analyzeMemberExpr(ME); |
3461 | 0 | } else if (const DeclRefExpr *D = dyn_cast<const DeclRefExpr>(E)) { |
3462 | 0 | if (!hasMatchingVarInit(D)) |
3463 | 0 | return VarInitMismatches; |
3464 | 0 | } |
3465 | 0 | return NoMismatch; |
3466 | 0 | } |
3467 | | |
3468 | | const CXXNewExpr * |
3469 | 0 | MismatchingNewDeleteDetector::getNewExprFromInitListOrExpr(const Expr *E) { |
3470 | 0 | assert(E != nullptr && "Expected a valid initializer expression"); |
3471 | 0 | E = E->IgnoreParenImpCasts(); |
3472 | 0 | if (const InitListExpr *ILE = dyn_cast<const InitListExpr>(E)) { |
3473 | 0 | if (ILE->getNumInits() == 1) |
3474 | 0 | E = dyn_cast<const CXXNewExpr>(ILE->getInit(0)->IgnoreParenImpCasts()); |
3475 | 0 | } |
3476 | |
|
3477 | 0 | return dyn_cast_or_null<const CXXNewExpr>(E); |
3478 | 0 | } |
3479 | | |
3480 | | bool MismatchingNewDeleteDetector::hasMatchingNewInCtorInit( |
3481 | 0 | const CXXCtorInitializer *CI) { |
3482 | 0 | const CXXNewExpr *NE = nullptr; |
3483 | 0 | if (Field == CI->getMember() && |
3484 | 0 | (NE = getNewExprFromInitListOrExpr(CI->getInit()))) { |
3485 | 0 | if (NE->isArray() == IsArrayForm) |
3486 | 0 | return true; |
3487 | 0 | else |
3488 | 0 | NewExprs.push_back(NE); |
3489 | 0 | } |
3490 | 0 | return false; |
3491 | 0 | } |
3492 | | |
3493 | | bool MismatchingNewDeleteDetector::hasMatchingNewInCtor( |
3494 | 0 | const CXXConstructorDecl *CD) { |
3495 | 0 | if (CD->isImplicit()) |
3496 | 0 | return false; |
3497 | 0 | const FunctionDecl *Definition = CD; |
3498 | 0 | if (!CD->isThisDeclarationADefinition() && !CD->isDefined(Definition)) { |
3499 | 0 | HasUndefinedConstructors = true; |
3500 | 0 | return EndOfTU; |
3501 | 0 | } |
3502 | 0 | for (const auto *CI : cast<const CXXConstructorDecl>(Definition)->inits()) { |
3503 | 0 | if (hasMatchingNewInCtorInit(CI)) |
3504 | 0 | return true; |
3505 | 0 | } |
3506 | 0 | return false; |
3507 | 0 | } |
3508 | | |
3509 | | MismatchingNewDeleteDetector::MismatchResult |
3510 | 0 | MismatchingNewDeleteDetector::analyzeInClassInitializer() { |
3511 | 0 | assert(Field != nullptr && "This should be called only for members"); |
3512 | 0 | const Expr *InitExpr = Field->getInClassInitializer(); |
3513 | 0 | if (!InitExpr) |
3514 | 0 | return EndOfTU ? NoMismatch : AnalyzeLater; |
3515 | 0 | if (const CXXNewExpr *NE = getNewExprFromInitListOrExpr(InitExpr)) { |
3516 | 0 | if (NE->isArray() != IsArrayForm) { |
3517 | 0 | NewExprs.push_back(NE); |
3518 | 0 | return MemberInitMismatches; |
3519 | 0 | } |
3520 | 0 | } |
3521 | 0 | return NoMismatch; |
3522 | 0 | } |
3523 | | |
3524 | | MismatchingNewDeleteDetector::MismatchResult |
3525 | | MismatchingNewDeleteDetector::analyzeField(FieldDecl *Field, |
3526 | 0 | bool DeleteWasArrayForm) { |
3527 | 0 | assert(Field != nullptr && "Analysis requires a valid class member."); |
3528 | 0 | this->Field = Field; |
3529 | 0 | IsArrayForm = DeleteWasArrayForm; |
3530 | 0 | const CXXRecordDecl *RD = cast<const CXXRecordDecl>(Field->getParent()); |
3531 | 0 | for (const auto *CD : RD->ctors()) { |
3532 | 0 | if (hasMatchingNewInCtor(CD)) |
3533 | 0 | return NoMismatch; |
3534 | 0 | } |
3535 | 0 | if (HasUndefinedConstructors) |
3536 | 0 | return EndOfTU ? NoMismatch : AnalyzeLater; |
3537 | 0 | if (!NewExprs.empty()) |
3538 | 0 | return MemberInitMismatches; |
3539 | 0 | return Field->hasInClassInitializer() ? analyzeInClassInitializer() |
3540 | 0 | : NoMismatch; |
3541 | 0 | } |
3542 | | |
3543 | | MismatchingNewDeleteDetector::MismatchResult |
3544 | 0 | MismatchingNewDeleteDetector::analyzeMemberExpr(const MemberExpr *ME) { |
3545 | 0 | assert(ME != nullptr && "Expected a member expression"); |
3546 | 0 | if (FieldDecl *F = dyn_cast<FieldDecl>(ME->getMemberDecl())) |
3547 | 0 | return analyzeField(F, IsArrayForm); |
3548 | 0 | return NoMismatch; |
3549 | 0 | } |
3550 | | |
3551 | 0 | bool MismatchingNewDeleteDetector::hasMatchingVarInit(const DeclRefExpr *D) { |
3552 | 0 | const CXXNewExpr *NE = nullptr; |
3553 | 0 | if (const VarDecl *VD = dyn_cast<const VarDecl>(D->getDecl())) { |
3554 | 0 | if (VD->hasInit() && (NE = getNewExprFromInitListOrExpr(VD->getInit())) && |
3555 | 0 | NE->isArray() != IsArrayForm) { |
3556 | 0 | NewExprs.push_back(NE); |
3557 | 0 | } |
3558 | 0 | } |
3559 | 0 | return NewExprs.empty(); |
3560 | 0 | } |
3561 | | |
3562 | | static void |
3563 | | DiagnoseMismatchedNewDelete(Sema &SemaRef, SourceLocation DeleteLoc, |
3564 | 0 | const MismatchingNewDeleteDetector &Detector) { |
3565 | 0 | SourceLocation EndOfDelete = SemaRef.getLocForEndOfToken(DeleteLoc); |
3566 | 0 | FixItHint H; |
3567 | 0 | if (!Detector.IsArrayForm) |
3568 | 0 | H = FixItHint::CreateInsertion(EndOfDelete, "[]"); |
3569 | 0 | else { |
3570 | 0 | SourceLocation RSquare = Lexer::findLocationAfterToken( |
3571 | 0 | DeleteLoc, tok::l_square, SemaRef.getSourceManager(), |
3572 | 0 | SemaRef.getLangOpts(), true); |
3573 | 0 | if (RSquare.isValid()) |
3574 | 0 | H = FixItHint::CreateRemoval(SourceRange(EndOfDelete, RSquare)); |
3575 | 0 | } |
3576 | 0 | SemaRef.Diag(DeleteLoc, diag::warn_mismatched_delete_new) |
3577 | 0 | << Detector.IsArrayForm << H; |
3578 | |
|
3579 | 0 | for (const auto *NE : Detector.NewExprs) |
3580 | 0 | SemaRef.Diag(NE->getExprLoc(), diag::note_allocated_here) |
3581 | 0 | << Detector.IsArrayForm; |
3582 | 0 | } |
3583 | | |
3584 | 0 | void Sema::AnalyzeDeleteExprMismatch(const CXXDeleteExpr *DE) { |
3585 | 0 | if (Diags.isIgnored(diag::warn_mismatched_delete_new, SourceLocation())) |
3586 | 0 | return; |
3587 | 0 | MismatchingNewDeleteDetector Detector(/*EndOfTU=*/false); |
3588 | 0 | switch (Detector.analyzeDeleteExpr(DE)) { |
3589 | 0 | case MismatchingNewDeleteDetector::VarInitMismatches: |
3590 | 0 | case MismatchingNewDeleteDetector::MemberInitMismatches: { |
3591 | 0 | DiagnoseMismatchedNewDelete(*this, DE->getBeginLoc(), Detector); |
3592 | 0 | break; |
3593 | 0 | } |
3594 | 0 | case MismatchingNewDeleteDetector::AnalyzeLater: { |
3595 | 0 | DeleteExprs[Detector.Field].push_back( |
3596 | 0 | std::make_pair(DE->getBeginLoc(), DE->isArrayForm())); |
3597 | 0 | break; |
3598 | 0 | } |
3599 | 0 | case MismatchingNewDeleteDetector::NoMismatch: |
3600 | 0 | break; |
3601 | 0 | } |
3602 | 0 | } |
3603 | | |
3604 | | void Sema::AnalyzeDeleteExprMismatch(FieldDecl *Field, SourceLocation DeleteLoc, |
3605 | 0 | bool DeleteWasArrayForm) { |
3606 | 0 | MismatchingNewDeleteDetector Detector(/*EndOfTU=*/true); |
3607 | 0 | switch (Detector.analyzeField(Field, DeleteWasArrayForm)) { |
3608 | 0 | case MismatchingNewDeleteDetector::VarInitMismatches: |
3609 | 0 | llvm_unreachable("This analysis should have been done for class members."); |
3610 | 0 | case MismatchingNewDeleteDetector::AnalyzeLater: |
3611 | 0 | llvm_unreachable("Analysis cannot be postponed any point beyond end of " |
3612 | 0 | "translation unit."); |
3613 | 0 | case MismatchingNewDeleteDetector::MemberInitMismatches: |
3614 | 0 | DiagnoseMismatchedNewDelete(*this, DeleteLoc, Detector); |
3615 | 0 | break; |
3616 | 0 | case MismatchingNewDeleteDetector::NoMismatch: |
3617 | 0 | break; |
3618 | 0 | } |
3619 | 0 | } |
3620 | | |
3621 | | /// ActOnCXXDelete - Parsed a C++ 'delete' expression (C++ 5.3.5), as in: |
3622 | | /// @code ::delete ptr; @endcode |
3623 | | /// or |
3624 | | /// @code delete [] ptr; @endcode |
3625 | | ExprResult |
3626 | | Sema::ActOnCXXDelete(SourceLocation StartLoc, bool UseGlobal, |
3627 | 0 | bool ArrayForm, Expr *ExE) { |
3628 | | // C++ [expr.delete]p1: |
3629 | | // The operand shall have a pointer type, or a class type having a single |
3630 | | // non-explicit conversion function to a pointer type. The result has type |
3631 | | // void. |
3632 | | // |
3633 | | // DR599 amends "pointer type" to "pointer to object type" in both cases. |
3634 | |
|
3635 | 0 | ExprResult Ex = ExE; |
3636 | 0 | FunctionDecl *OperatorDelete = nullptr; |
3637 | 0 | bool ArrayFormAsWritten = ArrayForm; |
3638 | 0 | bool UsualArrayDeleteWantsSize = false; |
3639 | |
|
3640 | 0 | if (!Ex.get()->isTypeDependent()) { |
3641 | | // Perform lvalue-to-rvalue cast, if needed. |
3642 | 0 | Ex = DefaultLvalueConversion(Ex.get()); |
3643 | 0 | if (Ex.isInvalid()) |
3644 | 0 | return ExprError(); |
3645 | | |
3646 | 0 | QualType Type = Ex.get()->getType(); |
3647 | |
|
3648 | 0 | class DeleteConverter : public ContextualImplicitConverter { |
3649 | 0 | public: |
3650 | 0 | DeleteConverter() : ContextualImplicitConverter(false, true) {} |
3651 | |
|
3652 | 0 | bool match(QualType ConvType) override { |
3653 | | // FIXME: If we have an operator T* and an operator void*, we must pick |
3654 | | // the operator T*. |
3655 | 0 | if (const PointerType *ConvPtrType = ConvType->getAs<PointerType>()) |
3656 | 0 | if (ConvPtrType->getPointeeType()->isIncompleteOrObjectType()) |
3657 | 0 | return true; |
3658 | 0 | return false; |
3659 | 0 | } |
3660 | |
|
3661 | 0 | SemaDiagnosticBuilder diagnoseNoMatch(Sema &S, SourceLocation Loc, |
3662 | 0 | QualType T) override { |
3663 | 0 | return S.Diag(Loc, diag::err_delete_operand) << T; |
3664 | 0 | } |
3665 | |
|
3666 | 0 | SemaDiagnosticBuilder diagnoseIncomplete(Sema &S, SourceLocation Loc, |
3667 | 0 | QualType T) override { |
3668 | 0 | return S.Diag(Loc, diag::err_delete_incomplete_class_type) << T; |
3669 | 0 | } |
3670 | |
|
3671 | 0 | SemaDiagnosticBuilder diagnoseExplicitConv(Sema &S, SourceLocation Loc, |
3672 | 0 | QualType T, |
3673 | 0 | QualType ConvTy) override { |
3674 | 0 | return S.Diag(Loc, diag::err_delete_explicit_conversion) << T << ConvTy; |
3675 | 0 | } |
3676 | |
|
3677 | 0 | SemaDiagnosticBuilder noteExplicitConv(Sema &S, CXXConversionDecl *Conv, |
3678 | 0 | QualType ConvTy) override { |
3679 | 0 | return S.Diag(Conv->getLocation(), diag::note_delete_conversion) |
3680 | 0 | << ConvTy; |
3681 | 0 | } |
3682 | |
|
3683 | 0 | SemaDiagnosticBuilder diagnoseAmbiguous(Sema &S, SourceLocation Loc, |
3684 | 0 | QualType T) override { |
3685 | 0 | return S.Diag(Loc, diag::err_ambiguous_delete_operand) << T; |
3686 | 0 | } |
3687 | |
|
3688 | 0 | SemaDiagnosticBuilder noteAmbiguous(Sema &S, CXXConversionDecl *Conv, |
3689 | 0 | QualType ConvTy) override { |
3690 | 0 | return S.Diag(Conv->getLocation(), diag::note_delete_conversion) |
3691 | 0 | << ConvTy; |
3692 | 0 | } |
3693 | |
|
3694 | 0 | SemaDiagnosticBuilder diagnoseConversion(Sema &S, SourceLocation Loc, |
3695 | 0 | QualType T, |
3696 | 0 | QualType ConvTy) override { |
3697 | 0 | llvm_unreachable("conversion functions are permitted"); |
3698 | 0 | } |
3699 | 0 | } Converter; |
3700 | |
|
3701 | 0 | Ex = PerformContextualImplicitConversion(StartLoc, Ex.get(), Converter); |
3702 | 0 | if (Ex.isInvalid()) |
3703 | 0 | return ExprError(); |
3704 | 0 | Type = Ex.get()->getType(); |
3705 | 0 | if (!Converter.match(Type)) |
3706 | | // FIXME: PerformContextualImplicitConversion should return ExprError |
3707 | | // itself in this case. |
3708 | 0 | return ExprError(); |
3709 | | |
3710 | 0 | QualType Pointee = Type->castAs<PointerType>()->getPointeeType(); |
3711 | 0 | QualType PointeeElem = Context.getBaseElementType(Pointee); |
3712 | |
|
3713 | 0 | if (Pointee.getAddressSpace() != LangAS::Default && |
3714 | 0 | !getLangOpts().OpenCLCPlusPlus) |
3715 | 0 | return Diag(Ex.get()->getBeginLoc(), |
3716 | 0 | diag::err_address_space_qualified_delete) |
3717 | 0 | << Pointee.getUnqualifiedType() |
3718 | 0 | << Pointee.getQualifiers().getAddressSpaceAttributePrintValue(); |
3719 | | |
3720 | 0 | CXXRecordDecl *PointeeRD = nullptr; |
3721 | 0 | if (Pointee->isVoidType() && !isSFINAEContext()) { |
3722 | | // The C++ standard bans deleting a pointer to a non-object type, which |
3723 | | // effectively bans deletion of "void*". However, most compilers support |
3724 | | // this, so we treat it as a warning unless we're in a SFINAE context. |
3725 | 0 | Diag(StartLoc, diag::ext_delete_void_ptr_operand) |
3726 | 0 | << Type << Ex.get()->getSourceRange(); |
3727 | 0 | } else if (Pointee->isFunctionType() || Pointee->isVoidType() || |
3728 | 0 | Pointee->isSizelessType()) { |
3729 | 0 | return ExprError(Diag(StartLoc, diag::err_delete_operand) |
3730 | 0 | << Type << Ex.get()->getSourceRange()); |
3731 | 0 | } else if (!Pointee->isDependentType()) { |
3732 | | // FIXME: This can result in errors if the definition was imported from a |
3733 | | // module but is hidden. |
3734 | 0 | if (!RequireCompleteType(StartLoc, Pointee, |
3735 | 0 | diag::warn_delete_incomplete, Ex.get())) { |
3736 | 0 | if (const RecordType *RT = PointeeElem->getAs<RecordType>()) |
3737 | 0 | PointeeRD = cast<CXXRecordDecl>(RT->getDecl()); |
3738 | 0 | } |
3739 | 0 | } |
3740 | | |
3741 | 0 | if (Pointee->isArrayType() && !ArrayForm) { |
3742 | 0 | Diag(StartLoc, diag::warn_delete_array_type) |
3743 | 0 | << Type << Ex.get()->getSourceRange() |
3744 | 0 | << FixItHint::CreateInsertion(getLocForEndOfToken(StartLoc), "[]"); |
3745 | 0 | ArrayForm = true; |
3746 | 0 | } |
3747 | |
|
3748 | 0 | DeclarationName DeleteName = Context.DeclarationNames.getCXXOperatorName( |
3749 | 0 | ArrayForm ? OO_Array_Delete : OO_Delete); |
3750 | |
|
3751 | 0 | if (PointeeRD) { |
3752 | 0 | if (!UseGlobal && |
3753 | 0 | FindDeallocationFunction(StartLoc, PointeeRD, DeleteName, |
3754 | 0 | OperatorDelete)) |
3755 | 0 | return ExprError(); |
3756 | | |
3757 | | // If we're allocating an array of records, check whether the |
3758 | | // usual operator delete[] has a size_t parameter. |
3759 | 0 | if (ArrayForm) { |
3760 | | // If the user specifically asked to use the global allocator, |
3761 | | // we'll need to do the lookup into the class. |
3762 | 0 | if (UseGlobal) |
3763 | 0 | UsualArrayDeleteWantsSize = |
3764 | 0 | doesUsualArrayDeleteWantSize(*this, StartLoc, PointeeElem); |
3765 | | |
3766 | | // Otherwise, the usual operator delete[] should be the |
3767 | | // function we just found. |
3768 | 0 | else if (OperatorDelete && isa<CXXMethodDecl>(OperatorDelete)) |
3769 | 0 | UsualArrayDeleteWantsSize = |
3770 | 0 | UsualDeallocFnInfo(*this, |
3771 | 0 | DeclAccessPair::make(OperatorDelete, AS_public)) |
3772 | 0 | .HasSizeT; |
3773 | 0 | } |
3774 | |
|
3775 | 0 | if (!PointeeRD->hasIrrelevantDestructor()) |
3776 | 0 | if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { |
3777 | 0 | MarkFunctionReferenced(StartLoc, |
3778 | 0 | const_cast<CXXDestructorDecl*>(Dtor)); |
3779 | 0 | if (DiagnoseUseOfDecl(Dtor, StartLoc)) |
3780 | 0 | return ExprError(); |
3781 | 0 | } |
3782 | | |
3783 | 0 | CheckVirtualDtorCall(PointeeRD->getDestructor(), StartLoc, |
3784 | 0 | /*IsDelete=*/true, /*CallCanBeVirtual=*/true, |
3785 | 0 | /*WarnOnNonAbstractTypes=*/!ArrayForm, |
3786 | 0 | SourceLocation()); |
3787 | 0 | } |
3788 | | |
3789 | 0 | if (!OperatorDelete) { |
3790 | 0 | if (getLangOpts().OpenCLCPlusPlus) { |
3791 | 0 | Diag(StartLoc, diag::err_openclcxx_not_supported) << "default delete"; |
3792 | 0 | return ExprError(); |
3793 | 0 | } |
3794 | | |
3795 | 0 | bool IsComplete = isCompleteType(StartLoc, Pointee); |
3796 | 0 | bool CanProvideSize = |
3797 | 0 | IsComplete && (!ArrayForm || UsualArrayDeleteWantsSize || |
3798 | 0 | Pointee.isDestructedType()); |
3799 | 0 | bool Overaligned = hasNewExtendedAlignment(*this, Pointee); |
3800 | | |
3801 | | // Look for a global declaration. |
3802 | 0 | OperatorDelete = FindUsualDeallocationFunction(StartLoc, CanProvideSize, |
3803 | 0 | Overaligned, DeleteName); |
3804 | 0 | } |
3805 | | |
3806 | 0 | MarkFunctionReferenced(StartLoc, OperatorDelete); |
3807 | | |
3808 | | // Check access and ambiguity of destructor if we're going to call it. |
3809 | | // Note that this is required even for a virtual delete. |
3810 | 0 | bool IsVirtualDelete = false; |
3811 | 0 | if (PointeeRD) { |
3812 | 0 | if (CXXDestructorDecl *Dtor = LookupDestructor(PointeeRD)) { |
3813 | 0 | CheckDestructorAccess(Ex.get()->getExprLoc(), Dtor, |
3814 | 0 | PDiag(diag::err_access_dtor) << PointeeElem); |
3815 | 0 | IsVirtualDelete = Dtor->isVirtual(); |
3816 | 0 | } |
3817 | 0 | } |
3818 | |
|
3819 | 0 | DiagnoseUseOfDecl(OperatorDelete, StartLoc); |
3820 | | |
3821 | | // Convert the operand to the type of the first parameter of operator |
3822 | | // delete. This is only necessary if we selected a destroying operator |
3823 | | // delete that we are going to call (non-virtually); converting to void* |
3824 | | // is trivial and left to AST consumers to handle. |
3825 | 0 | QualType ParamType = OperatorDelete->getParamDecl(0)->getType(); |
3826 | 0 | if (!IsVirtualDelete && !ParamType->getPointeeType()->isVoidType()) { |
3827 | 0 | Qualifiers Qs = Pointee.getQualifiers(); |
3828 | 0 | if (Qs.hasCVRQualifiers()) { |
3829 | | // Qualifiers are irrelevant to this conversion; we're only looking |
3830 | | // for access and ambiguity. |
3831 | 0 | Qs.removeCVRQualifiers(); |
3832 | 0 | QualType Unqual = Context.getPointerType( |
3833 | 0 | Context.getQualifiedType(Pointee.getUnqualifiedType(), Qs)); |
3834 | 0 | Ex = ImpCastExprToType(Ex.get(), Unqual, CK_NoOp); |
3835 | 0 | } |
3836 | 0 | Ex = PerformImplicitConversion(Ex.get(), ParamType, AA_Passing); |
3837 | 0 | if (Ex.isInvalid()) |
3838 | 0 | return ExprError(); |
3839 | 0 | } |
3840 | 0 | } |
3841 | | |
3842 | 0 | CXXDeleteExpr *Result = new (Context) CXXDeleteExpr( |
3843 | 0 | Context.VoidTy, UseGlobal, ArrayForm, ArrayFormAsWritten, |
3844 | 0 | UsualArrayDeleteWantsSize, OperatorDelete, Ex.get(), StartLoc); |
3845 | 0 | AnalyzeDeleteExprMismatch(Result); |
3846 | 0 | return Result; |
3847 | 0 | } |
3848 | | |
3849 | | static bool resolveBuiltinNewDeleteOverload(Sema &S, CallExpr *TheCall, |
3850 | | bool IsDelete, |
3851 | 0 | FunctionDecl *&Operator) { |
3852 | |
|
3853 | 0 | DeclarationName NewName = S.Context.DeclarationNames.getCXXOperatorName( |
3854 | 0 | IsDelete ? OO_Delete : OO_New); |
3855 | |
|
3856 | 0 | LookupResult R(S, NewName, TheCall->getBeginLoc(), Sema::LookupOrdinaryName); |
3857 | 0 | S.LookupQualifiedName(R, S.Context.getTranslationUnitDecl()); |
3858 | 0 | assert(!R.empty() && "implicitly declared allocation functions not found"); |
3859 | 0 | assert(!R.isAmbiguous() && "global allocation functions are ambiguous"); |
3860 | | |
3861 | | // We do our own custom access checks below. |
3862 | 0 | R.suppressDiagnostics(); |
3863 | |
|
3864 | 0 | SmallVector<Expr *, 8> Args(TheCall->arguments()); |
3865 | 0 | OverloadCandidateSet Candidates(R.getNameLoc(), |
3866 | 0 | OverloadCandidateSet::CSK_Normal); |
3867 | 0 | for (LookupResult::iterator FnOvl = R.begin(), FnOvlEnd = R.end(); |
3868 | 0 | FnOvl != FnOvlEnd; ++FnOvl) { |
3869 | | // Even member operator new/delete are implicitly treated as |
3870 | | // static, so don't use AddMemberCandidate. |
3871 | 0 | NamedDecl *D = (*FnOvl)->getUnderlyingDecl(); |
3872 | |
|
3873 | 0 | if (FunctionTemplateDecl *FnTemplate = dyn_cast<FunctionTemplateDecl>(D)) { |
3874 | 0 | S.AddTemplateOverloadCandidate(FnTemplate, FnOvl.getPair(), |
3875 | 0 | /*ExplicitTemplateArgs=*/nullptr, Args, |
3876 | 0 | Candidates, |
3877 | 0 | /*SuppressUserConversions=*/false); |
3878 | 0 | continue; |
3879 | 0 | } |
3880 | | |
3881 | 0 | FunctionDecl *Fn = cast<FunctionDecl>(D); |
3882 | 0 | S.AddOverloadCandidate(Fn, FnOvl.getPair(), Args, Candidates, |
3883 | 0 | /*SuppressUserConversions=*/false); |
3884 | 0 | } |
3885 | |
|
3886 | 0 | SourceRange Range = TheCall->getSourceRange(); |
3887 | | |
3888 | | // Do the resolution. |
3889 | 0 | OverloadCandidateSet::iterator Best; |
3890 | 0 | switch (Candidates.BestViableFunction(S, R.getNameLoc(), Best)) { |
3891 | 0 | case OR_Success: { |
3892 | | // Got one! |
3893 | 0 | FunctionDecl *FnDecl = Best->Function; |
3894 | 0 | assert(R.getNamingClass() == nullptr && |
3895 | 0 | "class members should not be considered"); |
3896 | | |
3897 | 0 | if (!FnDecl->isReplaceableGlobalAllocationFunction()) { |
3898 | 0 | S.Diag(R.getNameLoc(), diag::err_builtin_operator_new_delete_not_usual) |
3899 | 0 | << (IsDelete ? 1 : 0) << Range; |
3900 | 0 | S.Diag(FnDecl->getLocation(), diag::note_non_usual_function_declared_here) |
3901 | 0 | << R.getLookupName() << FnDecl->getSourceRange(); |
3902 | 0 | return true; |
3903 | 0 | } |
3904 | | |
3905 | 0 | Operator = FnDecl; |
3906 | 0 | return false; |
3907 | 0 | } |
3908 | | |
3909 | 0 | case OR_No_Viable_Function: |
3910 | 0 | Candidates.NoteCandidates( |
3911 | 0 | PartialDiagnosticAt(R.getNameLoc(), |
3912 | 0 | S.PDiag(diag::err_ovl_no_viable_function_in_call) |
3913 | 0 | << R.getLookupName() << Range), |
3914 | 0 | S, OCD_AllCandidates, Args); |
3915 | 0 | return true; |
3916 | | |
3917 | 0 | case OR_Ambiguous: |
3918 | 0 | Candidates.NoteCandidates( |
3919 | 0 | PartialDiagnosticAt(R.getNameLoc(), |
3920 | 0 | S.PDiag(diag::err_ovl_ambiguous_call) |
3921 | 0 | << R.getLookupName() << Range), |
3922 | 0 | S, OCD_AmbiguousCandidates, Args); |
3923 | 0 | return true; |
3924 | | |
3925 | 0 | case OR_Deleted: { |
3926 | 0 | Candidates.NoteCandidates( |
3927 | 0 | PartialDiagnosticAt(R.getNameLoc(), S.PDiag(diag::err_ovl_deleted_call) |
3928 | 0 | << R.getLookupName() << Range), |
3929 | 0 | S, OCD_AllCandidates, Args); |
3930 | 0 | return true; |
3931 | 0 | } |
3932 | 0 | } |
3933 | 0 | llvm_unreachable("Unreachable, bad result from BestViableFunction"); |
3934 | 0 | } |
3935 | | |
3936 | | ExprResult |
3937 | | Sema::SemaBuiltinOperatorNewDeleteOverloaded(ExprResult TheCallResult, |
3938 | 0 | bool IsDelete) { |
3939 | 0 | CallExpr *TheCall = cast<CallExpr>(TheCallResult.get()); |
3940 | 0 | if (!getLangOpts().CPlusPlus) { |
3941 | 0 | Diag(TheCall->getExprLoc(), diag::err_builtin_requires_language) |
3942 | 0 | << (IsDelete ? "__builtin_operator_delete" : "__builtin_operator_new") |
3943 | 0 | << "C++"; |
3944 | 0 | return ExprError(); |
3945 | 0 | } |
3946 | | // CodeGen assumes it can find the global new and delete to call, |
3947 | | // so ensure that they are declared. |
3948 | 0 | DeclareGlobalNewDelete(); |
3949 | |
|
3950 | 0 | FunctionDecl *OperatorNewOrDelete = nullptr; |
3951 | 0 | if (resolveBuiltinNewDeleteOverload(*this, TheCall, IsDelete, |
3952 | 0 | OperatorNewOrDelete)) |
3953 | 0 | return ExprError(); |
3954 | 0 | assert(OperatorNewOrDelete && "should be found"); |
3955 | | |
3956 | 0 | DiagnoseUseOfDecl(OperatorNewOrDelete, TheCall->getExprLoc()); |
3957 | 0 | MarkFunctionReferenced(TheCall->getExprLoc(), OperatorNewOrDelete); |
3958 | |
|
3959 | 0 | TheCall->setType(OperatorNewOrDelete->getReturnType()); |
3960 | 0 | for (unsigned i = 0; i != TheCall->getNumArgs(); ++i) { |
3961 | 0 | QualType ParamTy = OperatorNewOrDelete->getParamDecl(i)->getType(); |
3962 | 0 | InitializedEntity Entity = |
3963 | 0 | InitializedEntity::InitializeParameter(Context, ParamTy, false); |
3964 | 0 | ExprResult Arg = PerformCopyInitialization( |
3965 | 0 | Entity, TheCall->getArg(i)->getBeginLoc(), TheCall->getArg(i)); |
3966 | 0 | if (Arg.isInvalid()) |
3967 | 0 | return ExprError(); |
3968 | 0 | TheCall->setArg(i, Arg.get()); |
3969 | 0 | } |
3970 | 0 | auto Callee = dyn_cast<ImplicitCastExpr>(TheCall->getCallee()); |
3971 | 0 | assert(Callee && Callee->getCastKind() == CK_BuiltinFnToFnPtr && |
3972 | 0 | "Callee expected to be implicit cast to a builtin function pointer"); |
3973 | 0 | Callee->setType(OperatorNewOrDelete->getType()); |
3974 | |
|
3975 | 0 | return TheCallResult; |
3976 | 0 | } |
3977 | | |
3978 | | void Sema::CheckVirtualDtorCall(CXXDestructorDecl *dtor, SourceLocation Loc, |
3979 | | bool IsDelete, bool CallCanBeVirtual, |
3980 | | bool WarnOnNonAbstractTypes, |
3981 | 0 | SourceLocation DtorLoc) { |
3982 | 0 | if (!dtor || dtor->isVirtual() || !CallCanBeVirtual || isUnevaluatedContext()) |
3983 | 0 | return; |
3984 | | |
3985 | | // C++ [expr.delete]p3: |
3986 | | // In the first alternative (delete object), if the static type of the |
3987 | | // object to be deleted is different from its dynamic type, the static |
3988 | | // type shall be a base class of the dynamic type of the object to be |
3989 | | // deleted and the static type shall have a virtual destructor or the |
3990 | | // behavior is undefined. |
3991 | | // |
3992 | 0 | const CXXRecordDecl *PointeeRD = dtor->getParent(); |
3993 | | // Note: a final class cannot be derived from, no issue there |
3994 | 0 | if (!PointeeRD->isPolymorphic() || PointeeRD->hasAttr<FinalAttr>()) |
3995 | 0 | return; |
3996 | | |
3997 | | // If the superclass is in a system header, there's nothing that can be done. |
3998 | | // The `delete` (where we emit the warning) can be in a system header, |
3999 | | // what matters for this warning is where the deleted type is defined. |
4000 | 0 | if (getSourceManager().isInSystemHeader(PointeeRD->getLocation())) |
4001 | 0 | return; |
4002 | | |
4003 | 0 | QualType ClassType = dtor->getFunctionObjectParameterType(); |
4004 | 0 | if (PointeeRD->isAbstract()) { |
4005 | | // If the class is abstract, we warn by default, because we're |
4006 | | // sure the code has undefined behavior. |
4007 | 0 | Diag(Loc, diag::warn_delete_abstract_non_virtual_dtor) << (IsDelete ? 0 : 1) |
4008 | 0 | << ClassType; |
4009 | 0 | } else if (WarnOnNonAbstractTypes) { |
4010 | | // Otherwise, if this is not an array delete, it's a bit suspect, |
4011 | | // but not necessarily wrong. |
4012 | 0 | Diag(Loc, diag::warn_delete_non_virtual_dtor) << (IsDelete ? 0 : 1) |
4013 | 0 | << ClassType; |
4014 | 0 | } |
4015 | 0 | if (!IsDelete) { |
4016 | 0 | std::string TypeStr; |
4017 | 0 | ClassType.getAsStringInternal(TypeStr, getPrintingPolicy()); |
4018 | 0 | Diag(DtorLoc, diag::note_delete_non_virtual) |
4019 | 0 | << FixItHint::CreateInsertion(DtorLoc, TypeStr + "::"); |
4020 | 0 | } |
4021 | 0 | } |
4022 | | |
4023 | | Sema::ConditionResult Sema::ActOnConditionVariable(Decl *ConditionVar, |
4024 | | SourceLocation StmtLoc, |
4025 | 0 | ConditionKind CK) { |
4026 | 0 | ExprResult E = |
4027 | 0 | CheckConditionVariable(cast<VarDecl>(ConditionVar), StmtLoc, CK); |
4028 | 0 | if (E.isInvalid()) |
4029 | 0 | return ConditionError(); |
4030 | 0 | return ConditionResult(*this, ConditionVar, MakeFullExpr(E.get(), StmtLoc), |
4031 | 0 | CK == ConditionKind::ConstexprIf); |
4032 | 0 | } |
4033 | | |
4034 | | /// Check the use of the given variable as a C++ condition in an if, |
4035 | | /// while, do-while, or switch statement. |
4036 | | ExprResult Sema::CheckConditionVariable(VarDecl *ConditionVar, |
4037 | | SourceLocation StmtLoc, |
4038 | 0 | ConditionKind CK) { |
4039 | 0 | if (ConditionVar->isInvalidDecl()) |
4040 | 0 | return ExprError(); |
4041 | | |
4042 | 0 | QualType T = ConditionVar->getType(); |
4043 | | |
4044 | | // C++ [stmt.select]p2: |
4045 | | // The declarator shall not specify a function or an array. |
4046 | 0 | if (T->isFunctionType()) |
4047 | 0 | return ExprError(Diag(ConditionVar->getLocation(), |
4048 | 0 | diag::err_invalid_use_of_function_type) |
4049 | 0 | << ConditionVar->getSourceRange()); |
4050 | 0 | else if (T->isArrayType()) |
4051 | 0 | return ExprError(Diag(ConditionVar->getLocation(), |
4052 | 0 | diag::err_invalid_use_of_array_type) |
4053 | 0 | << ConditionVar->getSourceRange()); |
4054 | | |
4055 | 0 | ExprResult Condition = BuildDeclRefExpr( |
4056 | 0 | ConditionVar, ConditionVar->getType().getNonReferenceType(), VK_LValue, |
4057 | 0 | ConditionVar->getLocation()); |
4058 | |
|
4059 | 0 | switch (CK) { |
4060 | 0 | case ConditionKind::Boolean: |
4061 | 0 | return CheckBooleanCondition(StmtLoc, Condition.get()); |
4062 | | |
4063 | 0 | case ConditionKind::ConstexprIf: |
4064 | 0 | return CheckBooleanCondition(StmtLoc, Condition.get(), true); |
4065 | | |
4066 | 0 | case ConditionKind::Switch: |
4067 | 0 | return CheckSwitchCondition(StmtLoc, Condition.get()); |
4068 | 0 | } |
4069 | | |
4070 | 0 | llvm_unreachable("unexpected condition kind"); |
4071 | 0 | } |
4072 | | |
4073 | | /// CheckCXXBooleanCondition - Returns true if a conversion to bool is invalid. |
4074 | 0 | ExprResult Sema::CheckCXXBooleanCondition(Expr *CondExpr, bool IsConstexpr) { |
4075 | | // C++11 6.4p4: |
4076 | | // The value of a condition that is an initialized declaration in a statement |
4077 | | // other than a switch statement is the value of the declared variable |
4078 | | // implicitly converted to type bool. If that conversion is ill-formed, the |
4079 | | // program is ill-formed. |
4080 | | // The value of a condition that is an expression is the value of the |
4081 | | // expression, implicitly converted to bool. |
4082 | | // |
4083 | | // C++23 8.5.2p2 |
4084 | | // If the if statement is of the form if constexpr, the value of the condition |
4085 | | // is contextually converted to bool and the converted expression shall be |
4086 | | // a constant expression. |
4087 | | // |
4088 | |
|
4089 | 0 | ExprResult E = PerformContextuallyConvertToBool(CondExpr); |
4090 | 0 | if (!IsConstexpr || E.isInvalid() || E.get()->isValueDependent()) |
4091 | 0 | return E; |
4092 | | |
4093 | | // FIXME: Return this value to the caller so they don't need to recompute it. |
4094 | 0 | llvm::APSInt Cond; |
4095 | 0 | E = VerifyIntegerConstantExpression( |
4096 | 0 | E.get(), &Cond, |
4097 | 0 | diag::err_constexpr_if_condition_expression_is_not_constant); |
4098 | 0 | return E; |
4099 | 0 | } |
4100 | | |
4101 | | /// Helper function to determine whether this is the (deprecated) C++ |
4102 | | /// conversion from a string literal to a pointer to non-const char or |
4103 | | /// non-const wchar_t (for narrow and wide string literals, |
4104 | | /// respectively). |
4105 | | bool |
4106 | 0 | Sema::IsStringLiteralToNonConstPointerConversion(Expr *From, QualType ToType) { |
4107 | | // Look inside the implicit cast, if it exists. |
4108 | 0 | if (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(From)) |
4109 | 0 | From = Cast->getSubExpr(); |
4110 | | |
4111 | | // A string literal (2.13.4) that is not a wide string literal can |
4112 | | // be converted to an rvalue of type "pointer to char"; a wide |
4113 | | // string literal can be converted to an rvalue of type "pointer |
4114 | | // to wchar_t" (C++ 4.2p2). |
4115 | 0 | if (StringLiteral *StrLit = dyn_cast<StringLiteral>(From->IgnoreParens())) |
4116 | 0 | if (const PointerType *ToPtrType = ToType->getAs<PointerType>()) |
4117 | 0 | if (const BuiltinType *ToPointeeType |
4118 | 0 | = ToPtrType->getPointeeType()->getAs<BuiltinType>()) { |
4119 | | // This conversion is considered only when there is an |
4120 | | // explicit appropriate pointer target type (C++ 4.2p2). |
4121 | 0 | if (!ToPtrType->getPointeeType().hasQualifiers()) { |
4122 | 0 | switch (StrLit->getKind()) { |
4123 | 0 | case StringLiteralKind::UTF8: |
4124 | 0 | case StringLiteralKind::UTF16: |
4125 | 0 | case StringLiteralKind::UTF32: |
4126 | | // We don't allow UTF literals to be implicitly converted |
4127 | 0 | break; |
4128 | 0 | case StringLiteralKind::Ordinary: |
4129 | 0 | return (ToPointeeType->getKind() == BuiltinType::Char_U || |
4130 | 0 | ToPointeeType->getKind() == BuiltinType::Char_S); |
4131 | 0 | case StringLiteralKind::Wide: |
4132 | 0 | return Context.typesAreCompatible(Context.getWideCharType(), |
4133 | 0 | QualType(ToPointeeType, 0)); |
4134 | 0 | case StringLiteralKind::Unevaluated: |
4135 | 0 | assert(false && "Unevaluated string literal in expression"); |
4136 | 0 | break; |
4137 | 0 | } |
4138 | 0 | } |
4139 | 0 | } |
4140 | | |
4141 | 0 | return false; |
4142 | 0 | } |
4143 | | |
4144 | | static ExprResult BuildCXXCastArgument(Sema &S, |
4145 | | SourceLocation CastLoc, |
4146 | | QualType Ty, |
4147 | | CastKind Kind, |
4148 | | CXXMethodDecl *Method, |
4149 | | DeclAccessPair FoundDecl, |
4150 | | bool HadMultipleCandidates, |
4151 | 0 | Expr *From) { |
4152 | 0 | switch (Kind) { |
4153 | 0 | default: llvm_unreachable("Unhandled cast kind!"); |
4154 | 0 | case CK_ConstructorConversion: { |
4155 | 0 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Method); |
4156 | 0 | SmallVector<Expr*, 8> ConstructorArgs; |
4157 | |
|
4158 | 0 | if (S.RequireNonAbstractType(CastLoc, Ty, |
4159 | 0 | diag::err_allocation_of_abstract_type)) |
4160 | 0 | return ExprError(); |
4161 | | |
4162 | 0 | if (S.CompleteConstructorCall(Constructor, Ty, From, CastLoc, |
4163 | 0 | ConstructorArgs)) |
4164 | 0 | return ExprError(); |
4165 | | |
4166 | 0 | S.CheckConstructorAccess(CastLoc, Constructor, FoundDecl, |
4167 | 0 | InitializedEntity::InitializeTemporary(Ty)); |
4168 | 0 | if (S.DiagnoseUseOfDecl(Method, CastLoc)) |
4169 | 0 | return ExprError(); |
4170 | | |
4171 | 0 | ExprResult Result = S.BuildCXXConstructExpr( |
4172 | 0 | CastLoc, Ty, FoundDecl, cast<CXXConstructorDecl>(Method), |
4173 | 0 | ConstructorArgs, HadMultipleCandidates, |
4174 | 0 | /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, |
4175 | 0 | CXXConstructionKind::Complete, SourceRange()); |
4176 | 0 | if (Result.isInvalid()) |
4177 | 0 | return ExprError(); |
4178 | | |
4179 | 0 | return S.MaybeBindToTemporary(Result.getAs<Expr>()); |
4180 | 0 | } |
4181 | | |
4182 | 0 | case CK_UserDefinedConversion: { |
4183 | 0 | assert(!From->getType()->isPointerType() && "Arg can't have pointer type!"); |
4184 | | |
4185 | 0 | S.CheckMemberOperatorAccess(CastLoc, From, /*arg*/ nullptr, FoundDecl); |
4186 | 0 | if (S.DiagnoseUseOfDecl(Method, CastLoc)) |
4187 | 0 | return ExprError(); |
4188 | | |
4189 | | // Create an implicit call expr that calls it. |
4190 | 0 | CXXConversionDecl *Conv = cast<CXXConversionDecl>(Method); |
4191 | 0 | ExprResult Result = S.BuildCXXMemberCallExpr(From, FoundDecl, Conv, |
4192 | 0 | HadMultipleCandidates); |
4193 | 0 | if (Result.isInvalid()) |
4194 | 0 | return ExprError(); |
4195 | | // Record usage of conversion in an implicit cast. |
4196 | 0 | Result = ImplicitCastExpr::Create(S.Context, Result.get()->getType(), |
4197 | 0 | CK_UserDefinedConversion, Result.get(), |
4198 | 0 | nullptr, Result.get()->getValueKind(), |
4199 | 0 | S.CurFPFeatureOverrides()); |
4200 | |
|
4201 | 0 | return S.MaybeBindToTemporary(Result.get()); |
4202 | 0 | } |
4203 | 0 | } |
4204 | 0 | } |
4205 | | |
4206 | | /// PerformImplicitConversion - Perform an implicit conversion of the |
4207 | | /// expression From to the type ToType using the pre-computed implicit |
4208 | | /// conversion sequence ICS. Returns the converted |
4209 | | /// expression. Action is the kind of conversion we're performing, |
4210 | | /// used in the error message. |
4211 | | ExprResult |
4212 | | Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
4213 | | const ImplicitConversionSequence &ICS, |
4214 | | AssignmentAction Action, |
4215 | 0 | CheckedConversionKind CCK) { |
4216 | | // C++ [over.match.oper]p7: [...] operands of class type are converted [...] |
4217 | 0 | if (CCK == CCK_ForBuiltinOverloadedOp && !From->getType()->isRecordType()) |
4218 | 0 | return From; |
4219 | | |
4220 | 0 | switch (ICS.getKind()) { |
4221 | 0 | case ImplicitConversionSequence::StandardConversion: { |
4222 | 0 | ExprResult Res = PerformImplicitConversion(From, ToType, ICS.Standard, |
4223 | 0 | Action, CCK); |
4224 | 0 | if (Res.isInvalid()) |
4225 | 0 | return ExprError(); |
4226 | 0 | From = Res.get(); |
4227 | 0 | break; |
4228 | 0 | } |
4229 | | |
4230 | 0 | case ImplicitConversionSequence::UserDefinedConversion: { |
4231 | |
|
4232 | 0 | FunctionDecl *FD = ICS.UserDefined.ConversionFunction; |
4233 | 0 | CastKind CastKind; |
4234 | 0 | QualType BeforeToType; |
4235 | 0 | assert(FD && "no conversion function for user-defined conversion seq"); |
4236 | 0 | if (const CXXConversionDecl *Conv = dyn_cast<CXXConversionDecl>(FD)) { |
4237 | 0 | CastKind = CK_UserDefinedConversion; |
4238 | | |
4239 | | // If the user-defined conversion is specified by a conversion function, |
4240 | | // the initial standard conversion sequence converts the source type to |
4241 | | // the implicit object parameter of the conversion function. |
4242 | 0 | BeforeToType = Context.getTagDeclType(Conv->getParent()); |
4243 | 0 | } else { |
4244 | 0 | const CXXConstructorDecl *Ctor = cast<CXXConstructorDecl>(FD); |
4245 | 0 | CastKind = CK_ConstructorConversion; |
4246 | | // Do no conversion if dealing with ... for the first conversion. |
4247 | 0 | if (!ICS.UserDefined.EllipsisConversion) { |
4248 | | // If the user-defined conversion is specified by a constructor, the |
4249 | | // initial standard conversion sequence converts the source type to |
4250 | | // the type required by the argument of the constructor |
4251 | 0 | BeforeToType = Ctor->getParamDecl(0)->getType().getNonReferenceType(); |
4252 | 0 | } |
4253 | 0 | } |
4254 | | // Watch out for ellipsis conversion. |
4255 | 0 | if (!ICS.UserDefined.EllipsisConversion) { |
4256 | 0 | ExprResult Res = |
4257 | 0 | PerformImplicitConversion(From, BeforeToType, |
4258 | 0 | ICS.UserDefined.Before, AA_Converting, |
4259 | 0 | CCK); |
4260 | 0 | if (Res.isInvalid()) |
4261 | 0 | return ExprError(); |
4262 | 0 | From = Res.get(); |
4263 | 0 | } |
4264 | | |
4265 | 0 | ExprResult CastArg = BuildCXXCastArgument( |
4266 | 0 | *this, From->getBeginLoc(), ToType.getNonReferenceType(), CastKind, |
4267 | 0 | cast<CXXMethodDecl>(FD), ICS.UserDefined.FoundConversionFunction, |
4268 | 0 | ICS.UserDefined.HadMultipleCandidates, From); |
4269 | |
|
4270 | 0 | if (CastArg.isInvalid()) |
4271 | 0 | return ExprError(); |
4272 | | |
4273 | 0 | From = CastArg.get(); |
4274 | | |
4275 | | // C++ [over.match.oper]p7: |
4276 | | // [...] the second standard conversion sequence of a user-defined |
4277 | | // conversion sequence is not applied. |
4278 | 0 | if (CCK == CCK_ForBuiltinOverloadedOp) |
4279 | 0 | return From; |
4280 | | |
4281 | 0 | return PerformImplicitConversion(From, ToType, ICS.UserDefined.After, |
4282 | 0 | AA_Converting, CCK); |
4283 | 0 | } |
4284 | | |
4285 | 0 | case ImplicitConversionSequence::AmbiguousConversion: |
4286 | 0 | ICS.DiagnoseAmbiguousConversion(*this, From->getExprLoc(), |
4287 | 0 | PDiag(diag::err_typecheck_ambiguous_condition) |
4288 | 0 | << From->getSourceRange()); |
4289 | 0 | return ExprError(); |
4290 | | |
4291 | 0 | case ImplicitConversionSequence::EllipsisConversion: |
4292 | 0 | case ImplicitConversionSequence::StaticObjectArgumentConversion: |
4293 | 0 | llvm_unreachable("bad conversion"); |
4294 | |
|
4295 | 0 | case ImplicitConversionSequence::BadConversion: |
4296 | 0 | Sema::AssignConvertType ConvTy = |
4297 | 0 | CheckAssignmentConstraints(From->getExprLoc(), ToType, From->getType()); |
4298 | 0 | bool Diagnosed = DiagnoseAssignmentResult( |
4299 | 0 | ConvTy == Compatible ? Incompatible : ConvTy, From->getExprLoc(), |
4300 | 0 | ToType, From->getType(), From, Action); |
4301 | 0 | assert(Diagnosed && "failed to diagnose bad conversion"); (void)Diagnosed; |
4302 | 0 | return ExprError(); |
4303 | 0 | } |
4304 | | |
4305 | | // Everything went well. |
4306 | 0 | return From; |
4307 | 0 | } |
4308 | | |
4309 | | /// PerformImplicitConversion - Perform an implicit conversion of the |
4310 | | /// expression From to the type ToType by following the standard |
4311 | | /// conversion sequence SCS. Returns the converted |
4312 | | /// expression. Flavor is the context in which we're performing this |
4313 | | /// conversion, for use in error messages. |
4314 | | ExprResult |
4315 | | Sema::PerformImplicitConversion(Expr *From, QualType ToType, |
4316 | | const StandardConversionSequence& SCS, |
4317 | | AssignmentAction Action, |
4318 | 0 | CheckedConversionKind CCK) { |
4319 | 0 | bool CStyle = (CCK == CCK_CStyleCast || CCK == CCK_FunctionalCast); |
4320 | | |
4321 | | // Overall FIXME: we are recomputing too many types here and doing far too |
4322 | | // much extra work. What this means is that we need to keep track of more |
4323 | | // information that is computed when we try the implicit conversion initially, |
4324 | | // so that we don't need to recompute anything here. |
4325 | 0 | QualType FromType = From->getType(); |
4326 | |
|
4327 | 0 | if (SCS.CopyConstructor) { |
4328 | | // FIXME: When can ToType be a reference type? |
4329 | 0 | assert(!ToType->isReferenceType()); |
4330 | 0 | if (SCS.Second == ICK_Derived_To_Base) { |
4331 | 0 | SmallVector<Expr*, 8> ConstructorArgs; |
4332 | 0 | if (CompleteConstructorCall( |
4333 | 0 | cast<CXXConstructorDecl>(SCS.CopyConstructor), ToType, From, |
4334 | 0 | /*FIXME:ConstructLoc*/ SourceLocation(), ConstructorArgs)) |
4335 | 0 | return ExprError(); |
4336 | 0 | return BuildCXXConstructExpr( |
4337 | 0 | /*FIXME:ConstructLoc*/ SourceLocation(), ToType, |
4338 | 0 | SCS.FoundCopyConstructor, SCS.CopyConstructor, ConstructorArgs, |
4339 | 0 | /*HadMultipleCandidates*/ false, |
4340 | 0 | /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, |
4341 | 0 | CXXConstructionKind::Complete, SourceRange()); |
4342 | 0 | } |
4343 | 0 | return BuildCXXConstructExpr( |
4344 | 0 | /*FIXME:ConstructLoc*/ SourceLocation(), ToType, |
4345 | 0 | SCS.FoundCopyConstructor, SCS.CopyConstructor, From, |
4346 | 0 | /*HadMultipleCandidates*/ false, |
4347 | 0 | /*ListInit*/ false, /*StdInitListInit*/ false, /*ZeroInit*/ false, |
4348 | 0 | CXXConstructionKind::Complete, SourceRange()); |
4349 | 0 | } |
4350 | | |
4351 | | // Resolve overloaded function references. |
4352 | 0 | if (Context.hasSameType(FromType, Context.OverloadTy)) { |
4353 | 0 | DeclAccessPair Found; |
4354 | 0 | FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(From, ToType, |
4355 | 0 | true, Found); |
4356 | 0 | if (!Fn) |
4357 | 0 | return ExprError(); |
4358 | | |
4359 | 0 | if (DiagnoseUseOfDecl(Fn, From->getBeginLoc())) |
4360 | 0 | return ExprError(); |
4361 | | |
4362 | 0 | ExprResult Res = FixOverloadedFunctionReference(From, Found, Fn); |
4363 | 0 | if (Res.isInvalid()) |
4364 | 0 | return ExprError(); |
4365 | | |
4366 | | // We might get back another placeholder expression if we resolved to a |
4367 | | // builtin. |
4368 | 0 | Res = CheckPlaceholderExpr(Res.get()); |
4369 | 0 | if (Res.isInvalid()) |
4370 | 0 | return ExprError(); |
4371 | | |
4372 | 0 | From = Res.get(); |
4373 | 0 | FromType = From->getType(); |
4374 | 0 | } |
4375 | | |
4376 | | // If we're converting to an atomic type, first convert to the corresponding |
4377 | | // non-atomic type. |
4378 | 0 | QualType ToAtomicType; |
4379 | 0 | if (const AtomicType *ToAtomic = ToType->getAs<AtomicType>()) { |
4380 | 0 | ToAtomicType = ToType; |
4381 | 0 | ToType = ToAtomic->getValueType(); |
4382 | 0 | } |
4383 | |
|
4384 | 0 | QualType InitialFromType = FromType; |
4385 | | // Perform the first implicit conversion. |
4386 | 0 | switch (SCS.First) { |
4387 | 0 | case ICK_Identity: |
4388 | 0 | if (const AtomicType *FromAtomic = FromType->getAs<AtomicType>()) { |
4389 | 0 | FromType = FromAtomic->getValueType().getUnqualifiedType(); |
4390 | 0 | From = ImplicitCastExpr::Create(Context, FromType, CK_AtomicToNonAtomic, |
4391 | 0 | From, /*BasePath=*/nullptr, VK_PRValue, |
4392 | 0 | FPOptionsOverride()); |
4393 | 0 | } |
4394 | 0 | break; |
4395 | | |
4396 | 0 | case ICK_Lvalue_To_Rvalue: { |
4397 | 0 | assert(From->getObjectKind() != OK_ObjCProperty); |
4398 | 0 | ExprResult FromRes = DefaultLvalueConversion(From); |
4399 | 0 | if (FromRes.isInvalid()) |
4400 | 0 | return ExprError(); |
4401 | | |
4402 | 0 | From = FromRes.get(); |
4403 | 0 | FromType = From->getType(); |
4404 | 0 | break; |
4405 | 0 | } |
4406 | | |
4407 | 0 | case ICK_Array_To_Pointer: |
4408 | 0 | FromType = Context.getArrayDecayedType(FromType); |
4409 | 0 | From = ImpCastExprToType(From, FromType, CK_ArrayToPointerDecay, VK_PRValue, |
4410 | 0 | /*BasePath=*/nullptr, CCK) |
4411 | 0 | .get(); |
4412 | 0 | break; |
4413 | | |
4414 | 0 | case ICK_Function_To_Pointer: |
4415 | 0 | FromType = Context.getPointerType(FromType); |
4416 | 0 | From = ImpCastExprToType(From, FromType, CK_FunctionToPointerDecay, |
4417 | 0 | VK_PRValue, /*BasePath=*/nullptr, CCK) |
4418 | 0 | .get(); |
4419 | 0 | break; |
4420 | | |
4421 | 0 | default: |
4422 | 0 | llvm_unreachable("Improper first standard conversion"); |
4423 | 0 | } |
4424 | | |
4425 | | // Perform the second implicit conversion |
4426 | 0 | switch (SCS.Second) { |
4427 | 0 | case ICK_Identity: |
4428 | | // C++ [except.spec]p5: |
4429 | | // [For] assignment to and initialization of pointers to functions, |
4430 | | // pointers to member functions, and references to functions: the |
4431 | | // target entity shall allow at least the exceptions allowed by the |
4432 | | // source value in the assignment or initialization. |
4433 | 0 | switch (Action) { |
4434 | 0 | case AA_Assigning: |
4435 | 0 | case AA_Initializing: |
4436 | | // Note, function argument passing and returning are initialization. |
4437 | 0 | case AA_Passing: |
4438 | 0 | case AA_Returning: |
4439 | 0 | case AA_Sending: |
4440 | 0 | case AA_Passing_CFAudited: |
4441 | 0 | if (CheckExceptionSpecCompatibility(From, ToType)) |
4442 | 0 | return ExprError(); |
4443 | 0 | break; |
4444 | | |
4445 | 0 | case AA_Casting: |
4446 | 0 | case AA_Converting: |
4447 | | // Casts and implicit conversions are not initialization, so are not |
4448 | | // checked for exception specification mismatches. |
4449 | 0 | break; |
4450 | 0 | } |
4451 | | // Nothing else to do. |
4452 | 0 | break; |
4453 | | |
4454 | 0 | case ICK_Integral_Promotion: |
4455 | 0 | case ICK_Integral_Conversion: |
4456 | 0 | if (ToType->isBooleanType()) { |
4457 | 0 | assert(FromType->castAs<EnumType>()->getDecl()->isFixed() && |
4458 | 0 | SCS.Second == ICK_Integral_Promotion && |
4459 | 0 | "only enums with fixed underlying type can promote to bool"); |
4460 | 0 | From = ImpCastExprToType(From, ToType, CK_IntegralToBoolean, VK_PRValue, |
4461 | 0 | /*BasePath=*/nullptr, CCK) |
4462 | 0 | .get(); |
4463 | 0 | } else { |
4464 | 0 | From = ImpCastExprToType(From, ToType, CK_IntegralCast, VK_PRValue, |
4465 | 0 | /*BasePath=*/nullptr, CCK) |
4466 | 0 | .get(); |
4467 | 0 | } |
4468 | 0 | break; |
4469 | | |
4470 | 0 | case ICK_Floating_Promotion: |
4471 | 0 | case ICK_Floating_Conversion: |
4472 | 0 | From = ImpCastExprToType(From, ToType, CK_FloatingCast, VK_PRValue, |
4473 | 0 | /*BasePath=*/nullptr, CCK) |
4474 | 0 | .get(); |
4475 | 0 | break; |
4476 | | |
4477 | 0 | case ICK_Complex_Promotion: |
4478 | 0 | case ICK_Complex_Conversion: { |
4479 | 0 | QualType FromEl = From->getType()->castAs<ComplexType>()->getElementType(); |
4480 | 0 | QualType ToEl = ToType->castAs<ComplexType>()->getElementType(); |
4481 | 0 | CastKind CK; |
4482 | 0 | if (FromEl->isRealFloatingType()) { |
4483 | 0 | if (ToEl->isRealFloatingType()) |
4484 | 0 | CK = CK_FloatingComplexCast; |
4485 | 0 | else |
4486 | 0 | CK = CK_FloatingComplexToIntegralComplex; |
4487 | 0 | } else if (ToEl->isRealFloatingType()) { |
4488 | 0 | CK = CK_IntegralComplexToFloatingComplex; |
4489 | 0 | } else { |
4490 | 0 | CK = CK_IntegralComplexCast; |
4491 | 0 | } |
4492 | 0 | From = ImpCastExprToType(From, ToType, CK, VK_PRValue, /*BasePath=*/nullptr, |
4493 | 0 | CCK) |
4494 | 0 | .get(); |
4495 | 0 | break; |
4496 | 0 | } |
4497 | | |
4498 | 0 | case ICK_Floating_Integral: |
4499 | 0 | if (ToType->isRealFloatingType()) |
4500 | 0 | From = ImpCastExprToType(From, ToType, CK_IntegralToFloating, VK_PRValue, |
4501 | 0 | /*BasePath=*/nullptr, CCK) |
4502 | 0 | .get(); |
4503 | 0 | else |
4504 | 0 | From = ImpCastExprToType(From, ToType, CK_FloatingToIntegral, VK_PRValue, |
4505 | 0 | /*BasePath=*/nullptr, CCK) |
4506 | 0 | .get(); |
4507 | 0 | break; |
4508 | | |
4509 | 0 | case ICK_Fixed_Point_Conversion: |
4510 | 0 | assert((FromType->isFixedPointType() || ToType->isFixedPointType()) && |
4511 | 0 | "Attempting implicit fixed point conversion without a fixed " |
4512 | 0 | "point operand"); |
4513 | 0 | if (FromType->isFloatingType()) |
4514 | 0 | From = ImpCastExprToType(From, ToType, CK_FloatingToFixedPoint, |
4515 | 0 | VK_PRValue, |
4516 | 0 | /*BasePath=*/nullptr, CCK).get(); |
4517 | 0 | else if (ToType->isFloatingType()) |
4518 | 0 | From = ImpCastExprToType(From, ToType, CK_FixedPointToFloating, |
4519 | 0 | VK_PRValue, |
4520 | 0 | /*BasePath=*/nullptr, CCK).get(); |
4521 | 0 | else if (FromType->isIntegralType(Context)) |
4522 | 0 | From = ImpCastExprToType(From, ToType, CK_IntegralToFixedPoint, |
4523 | 0 | VK_PRValue, |
4524 | 0 | /*BasePath=*/nullptr, CCK).get(); |
4525 | 0 | else if (ToType->isIntegralType(Context)) |
4526 | 0 | From = ImpCastExprToType(From, ToType, CK_FixedPointToIntegral, |
4527 | 0 | VK_PRValue, |
4528 | 0 | /*BasePath=*/nullptr, CCK).get(); |
4529 | 0 | else if (ToType->isBooleanType()) |
4530 | 0 | From = ImpCastExprToType(From, ToType, CK_FixedPointToBoolean, |
4531 | 0 | VK_PRValue, |
4532 | 0 | /*BasePath=*/nullptr, CCK).get(); |
4533 | 0 | else |
4534 | 0 | From = ImpCastExprToType(From, ToType, CK_FixedPointCast, |
4535 | 0 | VK_PRValue, |
4536 | 0 | /*BasePath=*/nullptr, CCK).get(); |
4537 | 0 | break; |
4538 | | |
4539 | 0 | case ICK_Compatible_Conversion: |
4540 | 0 | From = ImpCastExprToType(From, ToType, CK_NoOp, From->getValueKind(), |
4541 | 0 | /*BasePath=*/nullptr, CCK).get(); |
4542 | 0 | break; |
4543 | | |
4544 | 0 | case ICK_Writeback_Conversion: |
4545 | 0 | case ICK_Pointer_Conversion: { |
4546 | 0 | if (SCS.IncompatibleObjC && Action != AA_Casting) { |
4547 | | // Diagnose incompatible Objective-C conversions |
4548 | 0 | if (Action == AA_Initializing || Action == AA_Assigning) |
4549 | 0 | Diag(From->getBeginLoc(), |
4550 | 0 | diag::ext_typecheck_convert_incompatible_pointer) |
4551 | 0 | << ToType << From->getType() << Action << From->getSourceRange() |
4552 | 0 | << 0; |
4553 | 0 | else |
4554 | 0 | Diag(From->getBeginLoc(), |
4555 | 0 | diag::ext_typecheck_convert_incompatible_pointer) |
4556 | 0 | << From->getType() << ToType << Action << From->getSourceRange() |
4557 | 0 | << 0; |
4558 | |
|
4559 | 0 | if (From->getType()->isObjCObjectPointerType() && |
4560 | 0 | ToType->isObjCObjectPointerType()) |
4561 | 0 | EmitRelatedResultTypeNote(From); |
4562 | 0 | } else if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers() && |
4563 | 0 | !CheckObjCARCUnavailableWeakConversion(ToType, |
4564 | 0 | From->getType())) { |
4565 | 0 | if (Action == AA_Initializing) |
4566 | 0 | Diag(From->getBeginLoc(), diag::err_arc_weak_unavailable_assign); |
4567 | 0 | else |
4568 | 0 | Diag(From->getBeginLoc(), diag::err_arc_convesion_of_weak_unavailable) |
4569 | 0 | << (Action == AA_Casting) << From->getType() << ToType |
4570 | 0 | << From->getSourceRange(); |
4571 | 0 | } |
4572 | | |
4573 | | // Defer address space conversion to the third conversion. |
4574 | 0 | QualType FromPteeType = From->getType()->getPointeeType(); |
4575 | 0 | QualType ToPteeType = ToType->getPointeeType(); |
4576 | 0 | QualType NewToType = ToType; |
4577 | 0 | if (!FromPteeType.isNull() && !ToPteeType.isNull() && |
4578 | 0 | FromPteeType.getAddressSpace() != ToPteeType.getAddressSpace()) { |
4579 | 0 | NewToType = Context.removeAddrSpaceQualType(ToPteeType); |
4580 | 0 | NewToType = Context.getAddrSpaceQualType(NewToType, |
4581 | 0 | FromPteeType.getAddressSpace()); |
4582 | 0 | if (ToType->isObjCObjectPointerType()) |
4583 | 0 | NewToType = Context.getObjCObjectPointerType(NewToType); |
4584 | 0 | else if (ToType->isBlockPointerType()) |
4585 | 0 | NewToType = Context.getBlockPointerType(NewToType); |
4586 | 0 | else |
4587 | 0 | NewToType = Context.getPointerType(NewToType); |
4588 | 0 | } |
4589 | |
|
4590 | 0 | CastKind Kind; |
4591 | 0 | CXXCastPath BasePath; |
4592 | 0 | if (CheckPointerConversion(From, NewToType, Kind, BasePath, CStyle)) |
4593 | 0 | return ExprError(); |
4594 | | |
4595 | | // Make sure we extend blocks if necessary. |
4596 | | // FIXME: doing this here is really ugly. |
4597 | 0 | if (Kind == CK_BlockPointerToObjCPointerCast) { |
4598 | 0 | ExprResult E = From; |
4599 | 0 | (void) PrepareCastToObjCObjectPointer(E); |
4600 | 0 | From = E.get(); |
4601 | 0 | } |
4602 | 0 | if (getLangOpts().allowsNonTrivialObjCLifetimeQualifiers()) |
4603 | 0 | CheckObjCConversion(SourceRange(), NewToType, From, CCK); |
4604 | 0 | From = ImpCastExprToType(From, NewToType, Kind, VK_PRValue, &BasePath, CCK) |
4605 | 0 | .get(); |
4606 | 0 | break; |
4607 | 0 | } |
4608 | | |
4609 | 0 | case ICK_Pointer_Member: { |
4610 | 0 | CastKind Kind; |
4611 | 0 | CXXCastPath BasePath; |
4612 | 0 | if (CheckMemberPointerConversion(From, ToType, Kind, BasePath, CStyle)) |
4613 | 0 | return ExprError(); |
4614 | 0 | if (CheckExceptionSpecCompatibility(From, ToType)) |
4615 | 0 | return ExprError(); |
4616 | | |
4617 | | // We may not have been able to figure out what this member pointer resolved |
4618 | | // to up until this exact point. Attempt to lock-in it's inheritance model. |
4619 | 0 | if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { |
4620 | 0 | (void)isCompleteType(From->getExprLoc(), From->getType()); |
4621 | 0 | (void)isCompleteType(From->getExprLoc(), ToType); |
4622 | 0 | } |
4623 | |
|
4624 | 0 | From = |
4625 | 0 | ImpCastExprToType(From, ToType, Kind, VK_PRValue, &BasePath, CCK).get(); |
4626 | 0 | break; |
4627 | 0 | } |
4628 | | |
4629 | 0 | case ICK_Boolean_Conversion: |
4630 | | // Perform half-to-boolean conversion via float. |
4631 | 0 | if (From->getType()->isHalfType()) { |
4632 | 0 | From = ImpCastExprToType(From, Context.FloatTy, CK_FloatingCast).get(); |
4633 | 0 | FromType = Context.FloatTy; |
4634 | 0 | } |
4635 | |
|
4636 | 0 | From = ImpCastExprToType(From, Context.BoolTy, |
4637 | 0 | ScalarTypeToBooleanCastKind(FromType), VK_PRValue, |
4638 | 0 | /*BasePath=*/nullptr, CCK) |
4639 | 0 | .get(); |
4640 | 0 | break; |
4641 | | |
4642 | 0 | case ICK_Derived_To_Base: { |
4643 | 0 | CXXCastPath BasePath; |
4644 | 0 | if (CheckDerivedToBaseConversion( |
4645 | 0 | From->getType(), ToType.getNonReferenceType(), From->getBeginLoc(), |
4646 | 0 | From->getSourceRange(), &BasePath, CStyle)) |
4647 | 0 | return ExprError(); |
4648 | | |
4649 | 0 | From = ImpCastExprToType(From, ToType.getNonReferenceType(), |
4650 | 0 | CK_DerivedToBase, From->getValueKind(), |
4651 | 0 | &BasePath, CCK).get(); |
4652 | 0 | break; |
4653 | 0 | } |
4654 | | |
4655 | 0 | case ICK_Vector_Conversion: |
4656 | 0 | From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, |
4657 | 0 | /*BasePath=*/nullptr, CCK) |
4658 | 0 | .get(); |
4659 | 0 | break; |
4660 | | |
4661 | 0 | case ICK_SVE_Vector_Conversion: |
4662 | 0 | case ICK_RVV_Vector_Conversion: |
4663 | 0 | From = ImpCastExprToType(From, ToType, CK_BitCast, VK_PRValue, |
4664 | 0 | /*BasePath=*/nullptr, CCK) |
4665 | 0 | .get(); |
4666 | 0 | break; |
4667 | | |
4668 | 0 | case ICK_Vector_Splat: { |
4669 | | // Vector splat from any arithmetic type to a vector. |
4670 | 0 | Expr *Elem = prepareVectorSplat(ToType, From).get(); |
4671 | 0 | From = ImpCastExprToType(Elem, ToType, CK_VectorSplat, VK_PRValue, |
4672 | 0 | /*BasePath=*/nullptr, CCK) |
4673 | 0 | .get(); |
4674 | 0 | break; |
4675 | 0 | } |
4676 | | |
4677 | 0 | case ICK_Complex_Real: |
4678 | | // Case 1. x -> _Complex y |
4679 | 0 | if (const ComplexType *ToComplex = ToType->getAs<ComplexType>()) { |
4680 | 0 | QualType ElType = ToComplex->getElementType(); |
4681 | 0 | bool isFloatingComplex = ElType->isRealFloatingType(); |
4682 | | |
4683 | | // x -> y |
4684 | 0 | if (Context.hasSameUnqualifiedType(ElType, From->getType())) { |
4685 | | // do nothing |
4686 | 0 | } else if (From->getType()->isRealFloatingType()) { |
4687 | 0 | From = ImpCastExprToType(From, ElType, |
4688 | 0 | isFloatingComplex ? CK_FloatingCast : CK_FloatingToIntegral).get(); |
4689 | 0 | } else { |
4690 | 0 | assert(From->getType()->isIntegerType()); |
4691 | 0 | From = ImpCastExprToType(From, ElType, |
4692 | 0 | isFloatingComplex ? CK_IntegralToFloating : CK_IntegralCast).get(); |
4693 | 0 | } |
4694 | | // y -> _Complex y |
4695 | 0 | From = ImpCastExprToType(From, ToType, |
4696 | 0 | isFloatingComplex ? CK_FloatingRealToComplex |
4697 | 0 | : CK_IntegralRealToComplex).get(); |
4698 | | |
4699 | | // Case 2. _Complex x -> y |
4700 | 0 | } else { |
4701 | 0 | auto *FromComplex = From->getType()->castAs<ComplexType>(); |
4702 | 0 | QualType ElType = FromComplex->getElementType(); |
4703 | 0 | bool isFloatingComplex = ElType->isRealFloatingType(); |
4704 | | |
4705 | | // _Complex x -> x |
4706 | 0 | From = ImpCastExprToType(From, ElType, |
4707 | 0 | isFloatingComplex ? CK_FloatingComplexToReal |
4708 | 0 | : CK_IntegralComplexToReal, |
4709 | 0 | VK_PRValue, /*BasePath=*/nullptr, CCK) |
4710 | 0 | .get(); |
4711 | | |
4712 | | // x -> y |
4713 | 0 | if (Context.hasSameUnqualifiedType(ElType, ToType)) { |
4714 | | // do nothing |
4715 | 0 | } else if (ToType->isRealFloatingType()) { |
4716 | 0 | From = ImpCastExprToType(From, ToType, |
4717 | 0 | isFloatingComplex ? CK_FloatingCast |
4718 | 0 | : CK_IntegralToFloating, |
4719 | 0 | VK_PRValue, /*BasePath=*/nullptr, CCK) |
4720 | 0 | .get(); |
4721 | 0 | } else { |
4722 | 0 | assert(ToType->isIntegerType()); |
4723 | 0 | From = ImpCastExprToType(From, ToType, |
4724 | 0 | isFloatingComplex ? CK_FloatingToIntegral |
4725 | 0 | : CK_IntegralCast, |
4726 | 0 | VK_PRValue, /*BasePath=*/nullptr, CCK) |
4727 | 0 | .get(); |
4728 | 0 | } |
4729 | 0 | } |
4730 | 0 | break; |
4731 | | |
4732 | 0 | case ICK_Block_Pointer_Conversion: { |
4733 | 0 | LangAS AddrSpaceL = |
4734 | 0 | ToType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); |
4735 | 0 | LangAS AddrSpaceR = |
4736 | 0 | FromType->castAs<BlockPointerType>()->getPointeeType().getAddressSpace(); |
4737 | 0 | assert(Qualifiers::isAddressSpaceSupersetOf(AddrSpaceL, AddrSpaceR) && |
4738 | 0 | "Invalid cast"); |
4739 | 0 | CastKind Kind = |
4740 | 0 | AddrSpaceL != AddrSpaceR ? CK_AddressSpaceConversion : CK_BitCast; |
4741 | 0 | From = ImpCastExprToType(From, ToType.getUnqualifiedType(), Kind, |
4742 | 0 | VK_PRValue, /*BasePath=*/nullptr, CCK) |
4743 | 0 | .get(); |
4744 | 0 | break; |
4745 | 0 | } |
4746 | | |
4747 | 0 | case ICK_TransparentUnionConversion: { |
4748 | 0 | ExprResult FromRes = From; |
4749 | 0 | Sema::AssignConvertType ConvTy = |
4750 | 0 | CheckTransparentUnionArgumentConstraints(ToType, FromRes); |
4751 | 0 | if (FromRes.isInvalid()) |
4752 | 0 | return ExprError(); |
4753 | 0 | From = FromRes.get(); |
4754 | 0 | assert ((ConvTy == Sema::Compatible) && |
4755 | 0 | "Improper transparent union conversion"); |
4756 | 0 | (void)ConvTy; |
4757 | 0 | break; |
4758 | 0 | } |
4759 | | |
4760 | 0 | case ICK_Zero_Event_Conversion: |
4761 | 0 | case ICK_Zero_Queue_Conversion: |
4762 | 0 | From = ImpCastExprToType(From, ToType, |
4763 | 0 | CK_ZeroToOCLOpaqueType, |
4764 | 0 | From->getValueKind()).get(); |
4765 | 0 | break; |
4766 | | |
4767 | 0 | case ICK_Lvalue_To_Rvalue: |
4768 | 0 | case ICK_Array_To_Pointer: |
4769 | 0 | case ICK_Function_To_Pointer: |
4770 | 0 | case ICK_Function_Conversion: |
4771 | 0 | case ICK_Qualification: |
4772 | 0 | case ICK_Num_Conversion_Kinds: |
4773 | 0 | case ICK_C_Only_Conversion: |
4774 | 0 | case ICK_Incompatible_Pointer_Conversion: |
4775 | 0 | llvm_unreachable("Improper second standard conversion"); |
4776 | 0 | } |
4777 | | |
4778 | 0 | switch (SCS.Third) { |
4779 | 0 | case ICK_Identity: |
4780 | | // Nothing to do. |
4781 | 0 | break; |
4782 | | |
4783 | 0 | case ICK_Function_Conversion: |
4784 | | // If both sides are functions (or pointers/references to them), there could |
4785 | | // be incompatible exception declarations. |
4786 | 0 | if (CheckExceptionSpecCompatibility(From, ToType)) |
4787 | 0 | return ExprError(); |
4788 | | |
4789 | 0 | From = ImpCastExprToType(From, ToType, CK_NoOp, VK_PRValue, |
4790 | 0 | /*BasePath=*/nullptr, CCK) |
4791 | 0 | .get(); |
4792 | 0 | break; |
4793 | | |
4794 | 0 | case ICK_Qualification: { |
4795 | 0 | ExprValueKind VK = From->getValueKind(); |
4796 | 0 | CastKind CK = CK_NoOp; |
4797 | |
|
4798 | 0 | if (ToType->isReferenceType() && |
4799 | 0 | ToType->getPointeeType().getAddressSpace() != |
4800 | 0 | From->getType().getAddressSpace()) |
4801 | 0 | CK = CK_AddressSpaceConversion; |
4802 | |
|
4803 | 0 | if (ToType->isPointerType() && |
4804 | 0 | ToType->getPointeeType().getAddressSpace() != |
4805 | 0 | From->getType()->getPointeeType().getAddressSpace()) |
4806 | 0 | CK = CK_AddressSpaceConversion; |
4807 | |
|
4808 | 0 | if (!isCast(CCK) && |
4809 | 0 | !ToType->getPointeeType().getQualifiers().hasUnaligned() && |
4810 | 0 | From->getType()->getPointeeType().getQualifiers().hasUnaligned()) { |
4811 | 0 | Diag(From->getBeginLoc(), diag::warn_imp_cast_drops_unaligned) |
4812 | 0 | << InitialFromType << ToType; |
4813 | 0 | } |
4814 | |
|
4815 | 0 | From = ImpCastExprToType(From, ToType.getNonLValueExprType(Context), CK, VK, |
4816 | 0 | /*BasePath=*/nullptr, CCK) |
4817 | 0 | .get(); |
4818 | |
|
4819 | 0 | if (SCS.DeprecatedStringLiteralToCharPtr && |
4820 | 0 | !getLangOpts().WritableStrings) { |
4821 | 0 | Diag(From->getBeginLoc(), |
4822 | 0 | getLangOpts().CPlusPlus11 |
4823 | 0 | ? diag::ext_deprecated_string_literal_conversion |
4824 | 0 | : diag::warn_deprecated_string_literal_conversion) |
4825 | 0 | << ToType.getNonReferenceType(); |
4826 | 0 | } |
4827 | |
|
4828 | 0 | break; |
4829 | 0 | } |
4830 | | |
4831 | 0 | default: |
4832 | 0 | llvm_unreachable("Improper third standard conversion"); |
4833 | 0 | } |
4834 | | |
4835 | | // If this conversion sequence involved a scalar -> atomic conversion, perform |
4836 | | // that conversion now. |
4837 | 0 | if (!ToAtomicType.isNull()) { |
4838 | 0 | assert(Context.hasSameType( |
4839 | 0 | ToAtomicType->castAs<AtomicType>()->getValueType(), From->getType())); |
4840 | 0 | From = ImpCastExprToType(From, ToAtomicType, CK_NonAtomicToAtomic, |
4841 | 0 | VK_PRValue, nullptr, CCK) |
4842 | 0 | .get(); |
4843 | 0 | } |
4844 | | |
4845 | | // Materialize a temporary if we're implicitly converting to a reference |
4846 | | // type. This is not required by the C++ rules but is necessary to maintain |
4847 | | // AST invariants. |
4848 | 0 | if (ToType->isReferenceType() && From->isPRValue()) { |
4849 | 0 | ExprResult Res = TemporaryMaterializationConversion(From); |
4850 | 0 | if (Res.isInvalid()) |
4851 | 0 | return ExprError(); |
4852 | 0 | From = Res.get(); |
4853 | 0 | } |
4854 | | |
4855 | | // If this conversion sequence succeeded and involved implicitly converting a |
4856 | | // _Nullable type to a _Nonnull one, complain. |
4857 | 0 | if (!isCast(CCK)) |
4858 | 0 | diagnoseNullableToNonnullConversion(ToType, InitialFromType, |
4859 | 0 | From->getBeginLoc()); |
4860 | |
|
4861 | 0 | return From; |
4862 | 0 | } |
4863 | | |
4864 | | /// Check the completeness of a type in a unary type trait. |
4865 | | /// |
4866 | | /// If the particular type trait requires a complete type, tries to complete |
4867 | | /// it. If completing the type fails, a diagnostic is emitted and false |
4868 | | /// returned. If completing the type succeeds or no completion was required, |
4869 | | /// returns true. |
4870 | | static bool CheckUnaryTypeTraitTypeCompleteness(Sema &S, TypeTrait UTT, |
4871 | | SourceLocation Loc, |
4872 | 0 | QualType ArgTy) { |
4873 | | // C++0x [meta.unary.prop]p3: |
4874 | | // For all of the class templates X declared in this Clause, instantiating |
4875 | | // that template with a template argument that is a class template |
4876 | | // specialization may result in the implicit instantiation of the template |
4877 | | // argument if and only if the semantics of X require that the argument |
4878 | | // must be a complete type. |
4879 | | // We apply this rule to all the type trait expressions used to implement |
4880 | | // these class templates. We also try to follow any GCC documented behavior |
4881 | | // in these expressions to ensure portability of standard libraries. |
4882 | 0 | switch (UTT) { |
4883 | 0 | default: llvm_unreachable("not a UTT"); |
4884 | | // is_complete_type somewhat obviously cannot require a complete type. |
4885 | 0 | case UTT_IsCompleteType: |
4886 | | // Fall-through |
4887 | | |
4888 | | // These traits are modeled on the type predicates in C++0x |
4889 | | // [meta.unary.cat] and [meta.unary.comp]. They are not specified as |
4890 | | // requiring a complete type, as whether or not they return true cannot be |
4891 | | // impacted by the completeness of the type. |
4892 | 0 | case UTT_IsVoid: |
4893 | 0 | case UTT_IsIntegral: |
4894 | 0 | case UTT_IsFloatingPoint: |
4895 | 0 | case UTT_IsArray: |
4896 | 0 | case UTT_IsBoundedArray: |
4897 | 0 | case UTT_IsPointer: |
4898 | 0 | case UTT_IsNullPointer: |
4899 | 0 | case UTT_IsReferenceable: |
4900 | 0 | case UTT_IsLvalueReference: |
4901 | 0 | case UTT_IsRvalueReference: |
4902 | 0 | case UTT_IsMemberFunctionPointer: |
4903 | 0 | case UTT_IsMemberObjectPointer: |
4904 | 0 | case UTT_IsEnum: |
4905 | 0 | case UTT_IsScopedEnum: |
4906 | 0 | case UTT_IsUnion: |
4907 | 0 | case UTT_IsClass: |
4908 | 0 | case UTT_IsFunction: |
4909 | 0 | case UTT_IsReference: |
4910 | 0 | case UTT_IsArithmetic: |
4911 | 0 | case UTT_IsFundamental: |
4912 | 0 | case UTT_IsObject: |
4913 | 0 | case UTT_IsScalar: |
4914 | 0 | case UTT_IsCompound: |
4915 | 0 | case UTT_IsMemberPointer: |
4916 | | // Fall-through |
4917 | | |
4918 | | // These traits are modeled on type predicates in C++0x [meta.unary.prop] |
4919 | | // which requires some of its traits to have the complete type. However, |
4920 | | // the completeness of the type cannot impact these traits' semantics, and |
4921 | | // so they don't require it. This matches the comments on these traits in |
4922 | | // Table 49. |
4923 | 0 | case UTT_IsConst: |
4924 | 0 | case UTT_IsVolatile: |
4925 | 0 | case UTT_IsSigned: |
4926 | 0 | case UTT_IsUnboundedArray: |
4927 | 0 | case UTT_IsUnsigned: |
4928 | | |
4929 | | // This type trait always returns false, checking the type is moot. |
4930 | 0 | case UTT_IsInterfaceClass: |
4931 | 0 | return true; |
4932 | | |
4933 | | // C++14 [meta.unary.prop]: |
4934 | | // If T is a non-union class type, T shall be a complete type. |
4935 | 0 | case UTT_IsEmpty: |
4936 | 0 | case UTT_IsPolymorphic: |
4937 | 0 | case UTT_IsAbstract: |
4938 | 0 | if (const auto *RD = ArgTy->getAsCXXRecordDecl()) |
4939 | 0 | if (!RD->isUnion()) |
4940 | 0 | return !S.RequireCompleteType( |
4941 | 0 | Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); |
4942 | 0 | return true; |
4943 | | |
4944 | | // C++14 [meta.unary.prop]: |
4945 | | // If T is a class type, T shall be a complete type. |
4946 | 0 | case UTT_IsFinal: |
4947 | 0 | case UTT_IsSealed: |
4948 | 0 | if (ArgTy->getAsCXXRecordDecl()) |
4949 | 0 | return !S.RequireCompleteType( |
4950 | 0 | Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); |
4951 | 0 | return true; |
4952 | | |
4953 | | // LWG3823: T shall be an array type, a complete type, or cv void. |
4954 | 0 | case UTT_IsAggregate: |
4955 | 0 | if (ArgTy->isArrayType() || ArgTy->isVoidType()) |
4956 | 0 | return true; |
4957 | | |
4958 | 0 | return !S.RequireCompleteType( |
4959 | 0 | Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); |
4960 | | |
4961 | | // C++1z [meta.unary.prop]: |
4962 | | // remove_all_extents_t<T> shall be a complete type or cv void. |
4963 | 0 | case UTT_IsTrivial: |
4964 | 0 | case UTT_IsTriviallyCopyable: |
4965 | 0 | case UTT_IsStandardLayout: |
4966 | 0 | case UTT_IsPOD: |
4967 | 0 | case UTT_IsLiteral: |
4968 | | // By analogy, is_trivially_relocatable and is_trivially_equality_comparable |
4969 | | // impose the same constraints. |
4970 | 0 | case UTT_IsTriviallyRelocatable: |
4971 | 0 | case UTT_IsTriviallyEqualityComparable: |
4972 | 0 | case UTT_CanPassInRegs: |
4973 | | // Per the GCC type traits documentation, T shall be a complete type, cv void, |
4974 | | // or an array of unknown bound. But GCC actually imposes the same constraints |
4975 | | // as above. |
4976 | 0 | case UTT_HasNothrowAssign: |
4977 | 0 | case UTT_HasNothrowMoveAssign: |
4978 | 0 | case UTT_HasNothrowConstructor: |
4979 | 0 | case UTT_HasNothrowCopy: |
4980 | 0 | case UTT_HasTrivialAssign: |
4981 | 0 | case UTT_HasTrivialMoveAssign: |
4982 | 0 | case UTT_HasTrivialDefaultConstructor: |
4983 | 0 | case UTT_HasTrivialMoveConstructor: |
4984 | 0 | case UTT_HasTrivialCopy: |
4985 | 0 | case UTT_HasTrivialDestructor: |
4986 | 0 | case UTT_HasVirtualDestructor: |
4987 | 0 | ArgTy = QualType(ArgTy->getBaseElementTypeUnsafe(), 0); |
4988 | 0 | [[fallthrough]]; |
4989 | | |
4990 | | // C++1z [meta.unary.prop]: |
4991 | | // T shall be a complete type, cv void, or an array of unknown bound. |
4992 | 0 | case UTT_IsDestructible: |
4993 | 0 | case UTT_IsNothrowDestructible: |
4994 | 0 | case UTT_IsTriviallyDestructible: |
4995 | 0 | case UTT_HasUniqueObjectRepresentations: |
4996 | 0 | if (ArgTy->isIncompleteArrayType() || ArgTy->isVoidType()) |
4997 | 0 | return true; |
4998 | | |
4999 | 0 | return !S.RequireCompleteType( |
5000 | 0 | Loc, ArgTy, diag::err_incomplete_type_used_in_type_trait_expr); |
5001 | 0 | } |
5002 | 0 | } |
5003 | | |
5004 | | static bool HasNoThrowOperator(const RecordType *RT, OverloadedOperatorKind Op, |
5005 | | Sema &Self, SourceLocation KeyLoc, ASTContext &C, |
5006 | | bool (CXXRecordDecl::*HasTrivial)() const, |
5007 | | bool (CXXRecordDecl::*HasNonTrivial)() const, |
5008 | | bool (CXXMethodDecl::*IsDesiredOp)() const) |
5009 | 0 | { |
5010 | 0 | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
5011 | 0 | if ((RD->*HasTrivial)() && !(RD->*HasNonTrivial)()) |
5012 | 0 | return true; |
5013 | | |
5014 | 0 | DeclarationName Name = C.DeclarationNames.getCXXOperatorName(Op); |
5015 | 0 | DeclarationNameInfo NameInfo(Name, KeyLoc); |
5016 | 0 | LookupResult Res(Self, NameInfo, Sema::LookupOrdinaryName); |
5017 | 0 | if (Self.LookupQualifiedName(Res, RD)) { |
5018 | 0 | bool FoundOperator = false; |
5019 | 0 | Res.suppressDiagnostics(); |
5020 | 0 | for (LookupResult::iterator Op = Res.begin(), OpEnd = Res.end(); |
5021 | 0 | Op != OpEnd; ++Op) { |
5022 | 0 | if (isa<FunctionTemplateDecl>(*Op)) |
5023 | 0 | continue; |
5024 | | |
5025 | 0 | CXXMethodDecl *Operator = cast<CXXMethodDecl>(*Op); |
5026 | 0 | if((Operator->*IsDesiredOp)()) { |
5027 | 0 | FoundOperator = true; |
5028 | 0 | auto *CPT = Operator->getType()->castAs<FunctionProtoType>(); |
5029 | 0 | CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); |
5030 | 0 | if (!CPT || !CPT->isNothrow()) |
5031 | 0 | return false; |
5032 | 0 | } |
5033 | 0 | } |
5034 | 0 | return FoundOperator; |
5035 | 0 | } |
5036 | 0 | return false; |
5037 | 0 | } |
5038 | | |
5039 | | static bool EvaluateUnaryTypeTrait(Sema &Self, TypeTrait UTT, |
5040 | 0 | SourceLocation KeyLoc, QualType T) { |
5041 | 0 | assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); |
5042 | | |
5043 | 0 | ASTContext &C = Self.Context; |
5044 | 0 | switch(UTT) { |
5045 | 0 | default: llvm_unreachable("not a UTT"); |
5046 | | // Type trait expressions corresponding to the primary type category |
5047 | | // predicates in C++0x [meta.unary.cat]. |
5048 | 0 | case UTT_IsVoid: |
5049 | 0 | return T->isVoidType(); |
5050 | 0 | case UTT_IsIntegral: |
5051 | 0 | return T->isIntegralType(C); |
5052 | 0 | case UTT_IsFloatingPoint: |
5053 | 0 | return T->isFloatingType(); |
5054 | 0 | case UTT_IsArray: |
5055 | 0 | return T->isArrayType(); |
5056 | 0 | case UTT_IsBoundedArray: |
5057 | 0 | if (!T->isVariableArrayType()) { |
5058 | 0 | return T->isArrayType() && !T->isIncompleteArrayType(); |
5059 | 0 | } |
5060 | | |
5061 | 0 | Self.Diag(KeyLoc, diag::err_vla_unsupported) |
5062 | 0 | << 1 << tok::kw___is_bounded_array; |
5063 | 0 | return false; |
5064 | 0 | case UTT_IsUnboundedArray: |
5065 | 0 | if (!T->isVariableArrayType()) { |
5066 | 0 | return T->isIncompleteArrayType(); |
5067 | 0 | } |
5068 | | |
5069 | 0 | Self.Diag(KeyLoc, diag::err_vla_unsupported) |
5070 | 0 | << 1 << tok::kw___is_unbounded_array; |
5071 | 0 | return false; |
5072 | 0 | case UTT_IsPointer: |
5073 | 0 | return T->isAnyPointerType(); |
5074 | 0 | case UTT_IsNullPointer: |
5075 | 0 | return T->isNullPtrType(); |
5076 | 0 | case UTT_IsLvalueReference: |
5077 | 0 | return T->isLValueReferenceType(); |
5078 | 0 | case UTT_IsRvalueReference: |
5079 | 0 | return T->isRValueReferenceType(); |
5080 | 0 | case UTT_IsMemberFunctionPointer: |
5081 | 0 | return T->isMemberFunctionPointerType(); |
5082 | 0 | case UTT_IsMemberObjectPointer: |
5083 | 0 | return T->isMemberDataPointerType(); |
5084 | 0 | case UTT_IsEnum: |
5085 | 0 | return T->isEnumeralType(); |
5086 | 0 | case UTT_IsScopedEnum: |
5087 | 0 | return T->isScopedEnumeralType(); |
5088 | 0 | case UTT_IsUnion: |
5089 | 0 | return T->isUnionType(); |
5090 | 0 | case UTT_IsClass: |
5091 | 0 | return T->isClassType() || T->isStructureType() || T->isInterfaceType(); |
5092 | 0 | case UTT_IsFunction: |
5093 | 0 | return T->isFunctionType(); |
5094 | | |
5095 | | // Type trait expressions which correspond to the convenient composition |
5096 | | // predicates in C++0x [meta.unary.comp]. |
5097 | 0 | case UTT_IsReference: |
5098 | 0 | return T->isReferenceType(); |
5099 | 0 | case UTT_IsArithmetic: |
5100 | 0 | return T->isArithmeticType() && !T->isEnumeralType(); |
5101 | 0 | case UTT_IsFundamental: |
5102 | 0 | return T->isFundamentalType(); |
5103 | 0 | case UTT_IsObject: |
5104 | 0 | return T->isObjectType(); |
5105 | 0 | case UTT_IsScalar: |
5106 | | // Note: semantic analysis depends on Objective-C lifetime types to be |
5107 | | // considered scalar types. However, such types do not actually behave |
5108 | | // like scalar types at run time (since they may require retain/release |
5109 | | // operations), so we report them as non-scalar. |
5110 | 0 | if (T->isObjCLifetimeType()) { |
5111 | 0 | switch (T.getObjCLifetime()) { |
5112 | 0 | case Qualifiers::OCL_None: |
5113 | 0 | case Qualifiers::OCL_ExplicitNone: |
5114 | 0 | return true; |
5115 | | |
5116 | 0 | case Qualifiers::OCL_Strong: |
5117 | 0 | case Qualifiers::OCL_Weak: |
5118 | 0 | case Qualifiers::OCL_Autoreleasing: |
5119 | 0 | return false; |
5120 | 0 | } |
5121 | 0 | } |
5122 | | |
5123 | 0 | return T->isScalarType(); |
5124 | 0 | case UTT_IsCompound: |
5125 | 0 | return T->isCompoundType(); |
5126 | 0 | case UTT_IsMemberPointer: |
5127 | 0 | return T->isMemberPointerType(); |
5128 | | |
5129 | | // Type trait expressions which correspond to the type property predicates |
5130 | | // in C++0x [meta.unary.prop]. |
5131 | 0 | case UTT_IsConst: |
5132 | 0 | return T.isConstQualified(); |
5133 | 0 | case UTT_IsVolatile: |
5134 | 0 | return T.isVolatileQualified(); |
5135 | 0 | case UTT_IsTrivial: |
5136 | 0 | return T.isTrivialType(C); |
5137 | 0 | case UTT_IsTriviallyCopyable: |
5138 | 0 | return T.isTriviallyCopyableType(C); |
5139 | 0 | case UTT_IsStandardLayout: |
5140 | 0 | return T->isStandardLayoutType(); |
5141 | 0 | case UTT_IsPOD: |
5142 | 0 | return T.isPODType(C); |
5143 | 0 | case UTT_IsLiteral: |
5144 | 0 | return T->isLiteralType(C); |
5145 | 0 | case UTT_IsEmpty: |
5146 | 0 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
5147 | 0 | return !RD->isUnion() && RD->isEmpty(); |
5148 | 0 | return false; |
5149 | 0 | case UTT_IsPolymorphic: |
5150 | 0 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
5151 | 0 | return !RD->isUnion() && RD->isPolymorphic(); |
5152 | 0 | return false; |
5153 | 0 | case UTT_IsAbstract: |
5154 | 0 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
5155 | 0 | return !RD->isUnion() && RD->isAbstract(); |
5156 | 0 | return false; |
5157 | 0 | case UTT_IsAggregate: |
5158 | | // Report vector extensions and complex types as aggregates because they |
5159 | | // support aggregate initialization. GCC mirrors this behavior for vectors |
5160 | | // but not _Complex. |
5161 | 0 | return T->isAggregateType() || T->isVectorType() || T->isExtVectorType() || |
5162 | 0 | T->isAnyComplexType(); |
5163 | | // __is_interface_class only returns true when CL is invoked in /CLR mode and |
5164 | | // even then only when it is used with the 'interface struct ...' syntax |
5165 | | // Clang doesn't support /CLR which makes this type trait moot. |
5166 | 0 | case UTT_IsInterfaceClass: |
5167 | 0 | return false; |
5168 | 0 | case UTT_IsFinal: |
5169 | 0 | case UTT_IsSealed: |
5170 | 0 | if (const CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
5171 | 0 | return RD->hasAttr<FinalAttr>(); |
5172 | 0 | return false; |
5173 | 0 | case UTT_IsSigned: |
5174 | | // Enum types should always return false. |
5175 | | // Floating points should always return true. |
5176 | 0 | return T->isFloatingType() || |
5177 | 0 | (T->isSignedIntegerType() && !T->isEnumeralType()); |
5178 | 0 | case UTT_IsUnsigned: |
5179 | | // Enum types should always return false. |
5180 | 0 | return T->isUnsignedIntegerType() && !T->isEnumeralType(); |
5181 | | |
5182 | | // Type trait expressions which query classes regarding their construction, |
5183 | | // destruction, and copying. Rather than being based directly on the |
5184 | | // related type predicates in the standard, they are specified by both |
5185 | | // GCC[1] and the Embarcadero C++ compiler[2], and Clang implements those |
5186 | | // specifications. |
5187 | | // |
5188 | | // 1: http://gcc.gnu/.org/onlinedocs/gcc/Type-Traits.html |
5189 | | // 2: http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index |
5190 | | // |
5191 | | // Note that these builtins do not behave as documented in g++: if a class |
5192 | | // has both a trivial and a non-trivial special member of a particular kind, |
5193 | | // they return false! For now, we emulate this behavior. |
5194 | | // FIXME: This appears to be a g++ bug: more complex cases reveal that it |
5195 | | // does not correctly compute triviality in the presence of multiple special |
5196 | | // members of the same kind. Revisit this once the g++ bug is fixed. |
5197 | 0 | case UTT_HasTrivialDefaultConstructor: |
5198 | | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
5199 | | // If __is_pod (type) is true then the trait is true, else if type is |
5200 | | // a cv class or union type (or array thereof) with a trivial default |
5201 | | // constructor ([class.ctor]) then the trait is true, else it is false. |
5202 | 0 | if (T.isPODType(C)) |
5203 | 0 | return true; |
5204 | 0 | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) |
5205 | 0 | return RD->hasTrivialDefaultConstructor() && |
5206 | 0 | !RD->hasNonTrivialDefaultConstructor(); |
5207 | 0 | return false; |
5208 | 0 | case UTT_HasTrivialMoveConstructor: |
5209 | | // This trait is implemented by MSVC 2012 and needed to parse the |
5210 | | // standard library headers. Specifically this is used as the logic |
5211 | | // behind std::is_trivially_move_constructible (20.9.4.3). |
5212 | 0 | if (T.isPODType(C)) |
5213 | 0 | return true; |
5214 | 0 | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) |
5215 | 0 | return RD->hasTrivialMoveConstructor() && !RD->hasNonTrivialMoveConstructor(); |
5216 | 0 | return false; |
5217 | 0 | case UTT_HasTrivialCopy: |
5218 | | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
5219 | | // If __is_pod (type) is true or type is a reference type then |
5220 | | // the trait is true, else if type is a cv class or union type |
5221 | | // with a trivial copy constructor ([class.copy]) then the trait |
5222 | | // is true, else it is false. |
5223 | 0 | if (T.isPODType(C) || T->isReferenceType()) |
5224 | 0 | return true; |
5225 | 0 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
5226 | 0 | return RD->hasTrivialCopyConstructor() && |
5227 | 0 | !RD->hasNonTrivialCopyConstructor(); |
5228 | 0 | return false; |
5229 | 0 | case UTT_HasTrivialMoveAssign: |
5230 | | // This trait is implemented by MSVC 2012 and needed to parse the |
5231 | | // standard library headers. Specifically it is used as the logic |
5232 | | // behind std::is_trivially_move_assignable (20.9.4.3) |
5233 | 0 | if (T.isPODType(C)) |
5234 | 0 | return true; |
5235 | 0 | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) |
5236 | 0 | return RD->hasTrivialMoveAssignment() && !RD->hasNonTrivialMoveAssignment(); |
5237 | 0 | return false; |
5238 | 0 | case UTT_HasTrivialAssign: |
5239 | | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
5240 | | // If type is const qualified or is a reference type then the |
5241 | | // trait is false. Otherwise if __is_pod (type) is true then the |
5242 | | // trait is true, else if type is a cv class or union type with |
5243 | | // a trivial copy assignment ([class.copy]) then the trait is |
5244 | | // true, else it is false. |
5245 | | // Note: the const and reference restrictions are interesting, |
5246 | | // given that const and reference members don't prevent a class |
5247 | | // from having a trivial copy assignment operator (but do cause |
5248 | | // errors if the copy assignment operator is actually used, q.v. |
5249 | | // [class.copy]p12). |
5250 | |
|
5251 | 0 | if (T.isConstQualified()) |
5252 | 0 | return false; |
5253 | 0 | if (T.isPODType(C)) |
5254 | 0 | return true; |
5255 | 0 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
5256 | 0 | return RD->hasTrivialCopyAssignment() && |
5257 | 0 | !RD->hasNonTrivialCopyAssignment(); |
5258 | 0 | return false; |
5259 | 0 | case UTT_IsDestructible: |
5260 | 0 | case UTT_IsTriviallyDestructible: |
5261 | 0 | case UTT_IsNothrowDestructible: |
5262 | | // C++14 [meta.unary.prop]: |
5263 | | // For reference types, is_destructible<T>::value is true. |
5264 | 0 | if (T->isReferenceType()) |
5265 | 0 | return true; |
5266 | | |
5267 | | // Objective-C++ ARC: autorelease types don't require destruction. |
5268 | 0 | if (T->isObjCLifetimeType() && |
5269 | 0 | T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) |
5270 | 0 | return true; |
5271 | | |
5272 | | // C++14 [meta.unary.prop]: |
5273 | | // For incomplete types and function types, is_destructible<T>::value is |
5274 | | // false. |
5275 | 0 | if (T->isIncompleteType() || T->isFunctionType()) |
5276 | 0 | return false; |
5277 | | |
5278 | | // A type that requires destruction (via a non-trivial destructor or ARC |
5279 | | // lifetime semantics) is not trivially-destructible. |
5280 | 0 | if (UTT == UTT_IsTriviallyDestructible && T.isDestructedType()) |
5281 | 0 | return false; |
5282 | | |
5283 | | // C++14 [meta.unary.prop]: |
5284 | | // For object types and given U equal to remove_all_extents_t<T>, if the |
5285 | | // expression std::declval<U&>().~U() is well-formed when treated as an |
5286 | | // unevaluated operand (Clause 5), then is_destructible<T>::value is true |
5287 | 0 | if (auto *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { |
5288 | 0 | CXXDestructorDecl *Destructor = Self.LookupDestructor(RD); |
5289 | 0 | if (!Destructor) |
5290 | 0 | return false; |
5291 | | // C++14 [dcl.fct.def.delete]p2: |
5292 | | // A program that refers to a deleted function implicitly or |
5293 | | // explicitly, other than to declare it, is ill-formed. |
5294 | 0 | if (Destructor->isDeleted()) |
5295 | 0 | return false; |
5296 | 0 | if (C.getLangOpts().AccessControl && Destructor->getAccess() != AS_public) |
5297 | 0 | return false; |
5298 | 0 | if (UTT == UTT_IsNothrowDestructible) { |
5299 | 0 | auto *CPT = Destructor->getType()->castAs<FunctionProtoType>(); |
5300 | 0 | CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); |
5301 | 0 | if (!CPT || !CPT->isNothrow()) |
5302 | 0 | return false; |
5303 | 0 | } |
5304 | 0 | } |
5305 | 0 | return true; |
5306 | | |
5307 | 0 | case UTT_HasTrivialDestructor: |
5308 | | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html |
5309 | | // If __is_pod (type) is true or type is a reference type |
5310 | | // then the trait is true, else if type is a cv class or union |
5311 | | // type (or array thereof) with a trivial destructor |
5312 | | // ([class.dtor]) then the trait is true, else it is |
5313 | | // false. |
5314 | 0 | if (T.isPODType(C) || T->isReferenceType()) |
5315 | 0 | return true; |
5316 | | |
5317 | | // Objective-C++ ARC: autorelease types don't require destruction. |
5318 | 0 | if (T->isObjCLifetimeType() && |
5319 | 0 | T.getObjCLifetime() == Qualifiers::OCL_Autoreleasing) |
5320 | 0 | return true; |
5321 | | |
5322 | 0 | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) |
5323 | 0 | return RD->hasTrivialDestructor(); |
5324 | 0 | return false; |
5325 | | // TODO: Propagate nothrowness for implicitly declared special members. |
5326 | 0 | case UTT_HasNothrowAssign: |
5327 | | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
5328 | | // If type is const qualified or is a reference type then the |
5329 | | // trait is false. Otherwise if __has_trivial_assign (type) |
5330 | | // is true then the trait is true, else if type is a cv class |
5331 | | // or union type with copy assignment operators that are known |
5332 | | // not to throw an exception then the trait is true, else it is |
5333 | | // false. |
5334 | 0 | if (C.getBaseElementType(T).isConstQualified()) |
5335 | 0 | return false; |
5336 | 0 | if (T->isReferenceType()) |
5337 | 0 | return false; |
5338 | 0 | if (T.isPODType(C) || T->isObjCLifetimeType()) |
5339 | 0 | return true; |
5340 | | |
5341 | 0 | if (const RecordType *RT = T->getAs<RecordType>()) |
5342 | 0 | return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, |
5343 | 0 | &CXXRecordDecl::hasTrivialCopyAssignment, |
5344 | 0 | &CXXRecordDecl::hasNonTrivialCopyAssignment, |
5345 | 0 | &CXXMethodDecl::isCopyAssignmentOperator); |
5346 | 0 | return false; |
5347 | 0 | case UTT_HasNothrowMoveAssign: |
5348 | | // This trait is implemented by MSVC 2012 and needed to parse the |
5349 | | // standard library headers. Specifically this is used as the logic |
5350 | | // behind std::is_nothrow_move_assignable (20.9.4.3). |
5351 | 0 | if (T.isPODType(C)) |
5352 | 0 | return true; |
5353 | | |
5354 | 0 | if (const RecordType *RT = C.getBaseElementType(T)->getAs<RecordType>()) |
5355 | 0 | return HasNoThrowOperator(RT, OO_Equal, Self, KeyLoc, C, |
5356 | 0 | &CXXRecordDecl::hasTrivialMoveAssignment, |
5357 | 0 | &CXXRecordDecl::hasNonTrivialMoveAssignment, |
5358 | 0 | &CXXMethodDecl::isMoveAssignmentOperator); |
5359 | 0 | return false; |
5360 | 0 | case UTT_HasNothrowCopy: |
5361 | | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
5362 | | // If __has_trivial_copy (type) is true then the trait is true, else |
5363 | | // if type is a cv class or union type with copy constructors that are |
5364 | | // known not to throw an exception then the trait is true, else it is |
5365 | | // false. |
5366 | 0 | if (T.isPODType(C) || T->isReferenceType() || T->isObjCLifetimeType()) |
5367 | 0 | return true; |
5368 | 0 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) { |
5369 | 0 | if (RD->hasTrivialCopyConstructor() && |
5370 | 0 | !RD->hasNonTrivialCopyConstructor()) |
5371 | 0 | return true; |
5372 | | |
5373 | 0 | bool FoundConstructor = false; |
5374 | 0 | unsigned FoundTQs; |
5375 | 0 | for (const auto *ND : Self.LookupConstructors(RD)) { |
5376 | | // A template constructor is never a copy constructor. |
5377 | | // FIXME: However, it may actually be selected at the actual overload |
5378 | | // resolution point. |
5379 | 0 | if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) |
5380 | 0 | continue; |
5381 | | // UsingDecl itself is not a constructor |
5382 | 0 | if (isa<UsingDecl>(ND)) |
5383 | 0 | continue; |
5384 | 0 | auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); |
5385 | 0 | if (Constructor->isCopyConstructor(FoundTQs)) { |
5386 | 0 | FoundConstructor = true; |
5387 | 0 | auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); |
5388 | 0 | CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); |
5389 | 0 | if (!CPT) |
5390 | 0 | return false; |
5391 | | // TODO: check whether evaluating default arguments can throw. |
5392 | | // For now, we'll be conservative and assume that they can throw. |
5393 | 0 | if (!CPT->isNothrow() || CPT->getNumParams() > 1) |
5394 | 0 | return false; |
5395 | 0 | } |
5396 | 0 | } |
5397 | | |
5398 | 0 | return FoundConstructor; |
5399 | 0 | } |
5400 | 0 | return false; |
5401 | 0 | case UTT_HasNothrowConstructor: |
5402 | | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html |
5403 | | // If __has_trivial_constructor (type) is true then the trait is |
5404 | | // true, else if type is a cv class or union type (or array |
5405 | | // thereof) with a default constructor that is known not to |
5406 | | // throw an exception then the trait is true, else it is false. |
5407 | 0 | if (T.isPODType(C) || T->isObjCLifetimeType()) |
5408 | 0 | return true; |
5409 | 0 | if (CXXRecordDecl *RD = C.getBaseElementType(T)->getAsCXXRecordDecl()) { |
5410 | 0 | if (RD->hasTrivialDefaultConstructor() && |
5411 | 0 | !RD->hasNonTrivialDefaultConstructor()) |
5412 | 0 | return true; |
5413 | | |
5414 | 0 | bool FoundConstructor = false; |
5415 | 0 | for (const auto *ND : Self.LookupConstructors(RD)) { |
5416 | | // FIXME: In C++0x, a constructor template can be a default constructor. |
5417 | 0 | if (isa<FunctionTemplateDecl>(ND->getUnderlyingDecl())) |
5418 | 0 | continue; |
5419 | | // UsingDecl itself is not a constructor |
5420 | 0 | if (isa<UsingDecl>(ND)) |
5421 | 0 | continue; |
5422 | 0 | auto *Constructor = cast<CXXConstructorDecl>(ND->getUnderlyingDecl()); |
5423 | 0 | if (Constructor->isDefaultConstructor()) { |
5424 | 0 | FoundConstructor = true; |
5425 | 0 | auto *CPT = Constructor->getType()->castAs<FunctionProtoType>(); |
5426 | 0 | CPT = Self.ResolveExceptionSpec(KeyLoc, CPT); |
5427 | 0 | if (!CPT) |
5428 | 0 | return false; |
5429 | | // FIXME: check whether evaluating default arguments can throw. |
5430 | | // For now, we'll be conservative and assume that they can throw. |
5431 | 0 | if (!CPT->isNothrow() || CPT->getNumParams() > 0) |
5432 | 0 | return false; |
5433 | 0 | } |
5434 | 0 | } |
5435 | 0 | return FoundConstructor; |
5436 | 0 | } |
5437 | 0 | return false; |
5438 | 0 | case UTT_HasVirtualDestructor: |
5439 | | // http://gcc.gnu.org/onlinedocs/gcc/Type-Traits.html: |
5440 | | // If type is a class type with a virtual destructor ([class.dtor]) |
5441 | | // then the trait is true, else it is false. |
5442 | 0 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl()) |
5443 | 0 | if (CXXDestructorDecl *Destructor = Self.LookupDestructor(RD)) |
5444 | 0 | return Destructor->isVirtual(); |
5445 | 0 | return false; |
5446 | | |
5447 | | // These type trait expressions are modeled on the specifications for the |
5448 | | // Embarcadero C++0x type trait functions: |
5449 | | // http://docwiki.embarcadero.com/RADStudio/XE/en/Type_Trait_Functions_(C%2B%2B0x)_Index |
5450 | 0 | case UTT_IsCompleteType: |
5451 | | // http://docwiki.embarcadero.com/RADStudio/XE/en/Is_complete_type_(typename_T_): |
5452 | | // Returns True if and only if T is a complete type at the point of the |
5453 | | // function call. |
5454 | 0 | return !T->isIncompleteType(); |
5455 | 0 | case UTT_HasUniqueObjectRepresentations: |
5456 | 0 | return C.hasUniqueObjectRepresentations(T); |
5457 | 0 | case UTT_IsTriviallyRelocatable: |
5458 | 0 | return T.isTriviallyRelocatableType(C); |
5459 | 0 | case UTT_IsReferenceable: |
5460 | 0 | return T.isReferenceable(); |
5461 | 0 | case UTT_CanPassInRegs: |
5462 | 0 | if (CXXRecordDecl *RD = T->getAsCXXRecordDecl(); RD && !T.hasQualifiers()) |
5463 | 0 | return RD->canPassInRegisters(); |
5464 | 0 | Self.Diag(KeyLoc, diag::err_builtin_pass_in_regs_non_class) << T; |
5465 | 0 | return false; |
5466 | 0 | case UTT_IsTriviallyEqualityComparable: |
5467 | 0 | return T.isTriviallyEqualityComparableType(C); |
5468 | 0 | } |
5469 | 0 | } |
5470 | | |
5471 | | static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, |
5472 | | QualType RhsT, SourceLocation KeyLoc); |
5473 | | |
5474 | | static bool EvaluateBooleanTypeTrait(Sema &S, TypeTrait Kind, |
5475 | | SourceLocation KWLoc, |
5476 | | ArrayRef<TypeSourceInfo *> Args, |
5477 | | SourceLocation RParenLoc, |
5478 | 0 | bool IsDependent) { |
5479 | 0 | if (IsDependent) |
5480 | 0 | return false; |
5481 | | |
5482 | 0 | if (Kind <= UTT_Last) |
5483 | 0 | return EvaluateUnaryTypeTrait(S, Kind, KWLoc, Args[0]->getType()); |
5484 | | |
5485 | | // Evaluate ReferenceBindsToTemporary and ReferenceConstructsFromTemporary |
5486 | | // alongside the IsConstructible traits to avoid duplication. |
5487 | 0 | if (Kind <= BTT_Last && Kind != BTT_ReferenceBindsToTemporary && Kind != BTT_ReferenceConstructsFromTemporary) |
5488 | 0 | return EvaluateBinaryTypeTrait(S, Kind, Args[0]->getType(), |
5489 | 0 | Args[1]->getType(), RParenLoc); |
5490 | | |
5491 | 0 | switch (Kind) { |
5492 | 0 | case clang::BTT_ReferenceBindsToTemporary: |
5493 | 0 | case clang::BTT_ReferenceConstructsFromTemporary: |
5494 | 0 | case clang::TT_IsConstructible: |
5495 | 0 | case clang::TT_IsNothrowConstructible: |
5496 | 0 | case clang::TT_IsTriviallyConstructible: { |
5497 | | // C++11 [meta.unary.prop]: |
5498 | | // is_trivially_constructible is defined as: |
5499 | | // |
5500 | | // is_constructible<T, Args...>::value is true and the variable |
5501 | | // definition for is_constructible, as defined below, is known to call |
5502 | | // no operation that is not trivial. |
5503 | | // |
5504 | | // The predicate condition for a template specialization |
5505 | | // is_constructible<T, Args...> shall be satisfied if and only if the |
5506 | | // following variable definition would be well-formed for some invented |
5507 | | // variable t: |
5508 | | // |
5509 | | // T t(create<Args>()...); |
5510 | 0 | assert(!Args.empty()); |
5511 | | |
5512 | | // Precondition: T and all types in the parameter pack Args shall be |
5513 | | // complete types, (possibly cv-qualified) void, or arrays of |
5514 | | // unknown bound. |
5515 | 0 | for (const auto *TSI : Args) { |
5516 | 0 | QualType ArgTy = TSI->getType(); |
5517 | 0 | if (ArgTy->isVoidType() || ArgTy->isIncompleteArrayType()) |
5518 | 0 | continue; |
5519 | | |
5520 | 0 | if (S.RequireCompleteType(KWLoc, ArgTy, |
5521 | 0 | diag::err_incomplete_type_used_in_type_trait_expr)) |
5522 | 0 | return false; |
5523 | 0 | } |
5524 | | |
5525 | | // Make sure the first argument is not incomplete nor a function type. |
5526 | 0 | QualType T = Args[0]->getType(); |
5527 | 0 | if (T->isIncompleteType() || T->isFunctionType()) |
5528 | 0 | return false; |
5529 | | |
5530 | | // Make sure the first argument is not an abstract type. |
5531 | 0 | CXXRecordDecl *RD = T->getAsCXXRecordDecl(); |
5532 | 0 | if (RD && RD->isAbstract()) |
5533 | 0 | return false; |
5534 | | |
5535 | 0 | llvm::BumpPtrAllocator OpaqueExprAllocator; |
5536 | 0 | SmallVector<Expr *, 2> ArgExprs; |
5537 | 0 | ArgExprs.reserve(Args.size() - 1); |
5538 | 0 | for (unsigned I = 1, N = Args.size(); I != N; ++I) { |
5539 | 0 | QualType ArgTy = Args[I]->getType(); |
5540 | 0 | if (ArgTy->isObjectType() || ArgTy->isFunctionType()) |
5541 | 0 | ArgTy = S.Context.getRValueReferenceType(ArgTy); |
5542 | 0 | ArgExprs.push_back( |
5543 | 0 | new (OpaqueExprAllocator.Allocate<OpaqueValueExpr>()) |
5544 | 0 | OpaqueValueExpr(Args[I]->getTypeLoc().getBeginLoc(), |
5545 | 0 | ArgTy.getNonLValueExprType(S.Context), |
5546 | 0 | Expr::getValueKindForType(ArgTy))); |
5547 | 0 | } |
5548 | | |
5549 | | // Perform the initialization in an unevaluated context within a SFINAE |
5550 | | // trap at translation unit scope. |
5551 | 0 | EnterExpressionEvaluationContext Unevaluated( |
5552 | 0 | S, Sema::ExpressionEvaluationContext::Unevaluated); |
5553 | 0 | Sema::SFINAETrap SFINAE(S, /*AccessCheckingSFINAE=*/true); |
5554 | 0 | Sema::ContextRAII TUContext(S, S.Context.getTranslationUnitDecl()); |
5555 | 0 | InitializedEntity To( |
5556 | 0 | InitializedEntity::InitializeTemporary(S.Context, Args[0])); |
5557 | 0 | InitializationKind InitKind(InitializationKind::CreateDirect(KWLoc, KWLoc, |
5558 | 0 | RParenLoc)); |
5559 | 0 | InitializationSequence Init(S, To, InitKind, ArgExprs); |
5560 | 0 | if (Init.Failed()) |
5561 | 0 | return false; |
5562 | | |
5563 | 0 | ExprResult Result = Init.Perform(S, To, InitKind, ArgExprs); |
5564 | 0 | if (Result.isInvalid() || SFINAE.hasErrorOccurred()) |
5565 | 0 | return false; |
5566 | | |
5567 | 0 | if (Kind == clang::TT_IsConstructible) |
5568 | 0 | return true; |
5569 | | |
5570 | 0 | if (Kind == clang::BTT_ReferenceBindsToTemporary || Kind == clang::BTT_ReferenceConstructsFromTemporary) { |
5571 | 0 | if (!T->isReferenceType()) |
5572 | 0 | return false; |
5573 | | |
5574 | 0 | if (!Init.isDirectReferenceBinding()) |
5575 | 0 | return true; |
5576 | | |
5577 | 0 | if (Kind == clang::BTT_ReferenceBindsToTemporary) |
5578 | 0 | return false; |
5579 | | |
5580 | 0 | QualType U = Args[1]->getType(); |
5581 | 0 | if (U->isReferenceType()) |
5582 | 0 | return false; |
5583 | | |
5584 | 0 | QualType TPtr = S.Context.getPointerType(S.BuiltinRemoveReference(T, UnaryTransformType::RemoveCVRef, {})); |
5585 | 0 | QualType UPtr = S.Context.getPointerType(S.BuiltinRemoveReference(U, UnaryTransformType::RemoveCVRef, {})); |
5586 | 0 | return EvaluateBinaryTypeTrait(S, TypeTrait::BTT_IsConvertibleTo, UPtr, TPtr, RParenLoc); |
5587 | 0 | } |
5588 | | |
5589 | 0 | if (Kind == clang::TT_IsNothrowConstructible) |
5590 | 0 | return S.canThrow(Result.get()) == CT_Cannot; |
5591 | | |
5592 | 0 | if (Kind == clang::TT_IsTriviallyConstructible) { |
5593 | | // Under Objective-C ARC and Weak, if the destination has non-trivial |
5594 | | // Objective-C lifetime, this is a non-trivial construction. |
5595 | 0 | if (T.getNonReferenceType().hasNonTrivialObjCLifetime()) |
5596 | 0 | return false; |
5597 | | |
5598 | | // The initialization succeeded; now make sure there are no non-trivial |
5599 | | // calls. |
5600 | 0 | return !Result.get()->hasNonTrivialCall(S.Context); |
5601 | 0 | } |
5602 | | |
5603 | 0 | llvm_unreachable("unhandled type trait"); |
5604 | 0 | return false; |
5605 | 0 | } |
5606 | 0 | default: llvm_unreachable("not a TT"); |
5607 | 0 | } |
5608 | | |
5609 | 0 | return false; |
5610 | 0 | } |
5611 | | |
5612 | | namespace { |
5613 | | void DiagnoseBuiltinDeprecation(Sema& S, TypeTrait Kind, |
5614 | 0 | SourceLocation KWLoc) { |
5615 | 0 | TypeTrait Replacement; |
5616 | 0 | switch (Kind) { |
5617 | 0 | case UTT_HasNothrowAssign: |
5618 | 0 | case UTT_HasNothrowMoveAssign: |
5619 | 0 | Replacement = BTT_IsNothrowAssignable; |
5620 | 0 | break; |
5621 | 0 | case UTT_HasNothrowCopy: |
5622 | 0 | case UTT_HasNothrowConstructor: |
5623 | 0 | Replacement = TT_IsNothrowConstructible; |
5624 | 0 | break; |
5625 | 0 | case UTT_HasTrivialAssign: |
5626 | 0 | case UTT_HasTrivialMoveAssign: |
5627 | 0 | Replacement = BTT_IsTriviallyAssignable; |
5628 | 0 | break; |
5629 | 0 | case UTT_HasTrivialCopy: |
5630 | 0 | Replacement = UTT_IsTriviallyCopyable; |
5631 | 0 | break; |
5632 | 0 | case UTT_HasTrivialDefaultConstructor: |
5633 | 0 | case UTT_HasTrivialMoveConstructor: |
5634 | 0 | Replacement = TT_IsTriviallyConstructible; |
5635 | 0 | break; |
5636 | 0 | case UTT_HasTrivialDestructor: |
5637 | 0 | Replacement = UTT_IsTriviallyDestructible; |
5638 | 0 | break; |
5639 | 0 | default: |
5640 | 0 | return; |
5641 | 0 | } |
5642 | 0 | S.Diag(KWLoc, diag::warn_deprecated_builtin) |
5643 | 0 | << getTraitSpelling(Kind) << getTraitSpelling(Replacement); |
5644 | 0 | } |
5645 | | } |
5646 | | |
5647 | 0 | bool Sema::CheckTypeTraitArity(unsigned Arity, SourceLocation Loc, size_t N) { |
5648 | 0 | if (Arity && N != Arity) { |
5649 | 0 | Diag(Loc, diag::err_type_trait_arity) |
5650 | 0 | << Arity << 0 << (Arity > 1) << (int)N << SourceRange(Loc); |
5651 | 0 | return false; |
5652 | 0 | } |
5653 | | |
5654 | 0 | if (!Arity && N == 0) { |
5655 | 0 | Diag(Loc, diag::err_type_trait_arity) |
5656 | 0 | << 1 << 1 << 1 << (int)N << SourceRange(Loc); |
5657 | 0 | return false; |
5658 | 0 | } |
5659 | 0 | return true; |
5660 | 0 | } |
5661 | | |
5662 | | enum class TypeTraitReturnType { |
5663 | | Bool, |
5664 | | }; |
5665 | | |
5666 | 0 | static TypeTraitReturnType GetReturnType(TypeTrait Kind) { |
5667 | 0 | return TypeTraitReturnType::Bool; |
5668 | 0 | } |
5669 | | |
5670 | | ExprResult Sema::BuildTypeTrait(TypeTrait Kind, SourceLocation KWLoc, |
5671 | | ArrayRef<TypeSourceInfo *> Args, |
5672 | 0 | SourceLocation RParenLoc) { |
5673 | 0 | if (!CheckTypeTraitArity(getTypeTraitArity(Kind), KWLoc, Args.size())) |
5674 | 0 | return ExprError(); |
5675 | | |
5676 | 0 | if (Kind <= UTT_Last && !CheckUnaryTypeTraitTypeCompleteness( |
5677 | 0 | *this, Kind, KWLoc, Args[0]->getType())) |
5678 | 0 | return ExprError(); |
5679 | | |
5680 | 0 | DiagnoseBuiltinDeprecation(*this, Kind, KWLoc); |
5681 | |
|
5682 | 0 | bool Dependent = false; |
5683 | 0 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
5684 | 0 | if (Args[I]->getType()->isDependentType()) { |
5685 | 0 | Dependent = true; |
5686 | 0 | break; |
5687 | 0 | } |
5688 | 0 | } |
5689 | |
|
5690 | 0 | switch (GetReturnType(Kind)) { |
5691 | 0 | case TypeTraitReturnType::Bool: { |
5692 | 0 | bool Result = EvaluateBooleanTypeTrait(*this, Kind, KWLoc, Args, RParenLoc, |
5693 | 0 | Dependent); |
5694 | 0 | return TypeTraitExpr::Create(Context, Context.getLogicalOperationType(), |
5695 | 0 | KWLoc, Kind, Args, RParenLoc, Result); |
5696 | 0 | } |
5697 | 0 | } |
5698 | 0 | llvm_unreachable("unhandled type trait return type"); |
5699 | 0 | } |
5700 | | |
5701 | | ExprResult Sema::ActOnTypeTrait(TypeTrait Kind, SourceLocation KWLoc, |
5702 | | ArrayRef<ParsedType> Args, |
5703 | 0 | SourceLocation RParenLoc) { |
5704 | 0 | SmallVector<TypeSourceInfo *, 4> ConvertedArgs; |
5705 | 0 | ConvertedArgs.reserve(Args.size()); |
5706 | |
|
5707 | 0 | for (unsigned I = 0, N = Args.size(); I != N; ++I) { |
5708 | 0 | TypeSourceInfo *TInfo; |
5709 | 0 | QualType T = GetTypeFromParser(Args[I], &TInfo); |
5710 | 0 | if (!TInfo) |
5711 | 0 | TInfo = Context.getTrivialTypeSourceInfo(T, KWLoc); |
5712 | |
|
5713 | 0 | ConvertedArgs.push_back(TInfo); |
5714 | 0 | } |
5715 | |
|
5716 | 0 | return BuildTypeTrait(Kind, KWLoc, ConvertedArgs, RParenLoc); |
5717 | 0 | } |
5718 | | |
5719 | | static bool EvaluateBinaryTypeTrait(Sema &Self, TypeTrait BTT, QualType LhsT, |
5720 | 0 | QualType RhsT, SourceLocation KeyLoc) { |
5721 | 0 | assert(!LhsT->isDependentType() && !RhsT->isDependentType() && |
5722 | 0 | "Cannot evaluate traits of dependent types"); |
5723 | | |
5724 | 0 | switch(BTT) { |
5725 | 0 | case BTT_IsBaseOf: { |
5726 | | // C++0x [meta.rel]p2 |
5727 | | // Base is a base class of Derived without regard to cv-qualifiers or |
5728 | | // Base and Derived are not unions and name the same class type without |
5729 | | // regard to cv-qualifiers. |
5730 | |
|
5731 | 0 | const RecordType *lhsRecord = LhsT->getAs<RecordType>(); |
5732 | 0 | const RecordType *rhsRecord = RhsT->getAs<RecordType>(); |
5733 | 0 | if (!rhsRecord || !lhsRecord) { |
5734 | 0 | const ObjCObjectType *LHSObjTy = LhsT->getAs<ObjCObjectType>(); |
5735 | 0 | const ObjCObjectType *RHSObjTy = RhsT->getAs<ObjCObjectType>(); |
5736 | 0 | if (!LHSObjTy || !RHSObjTy) |
5737 | 0 | return false; |
5738 | | |
5739 | 0 | ObjCInterfaceDecl *BaseInterface = LHSObjTy->getInterface(); |
5740 | 0 | ObjCInterfaceDecl *DerivedInterface = RHSObjTy->getInterface(); |
5741 | 0 | if (!BaseInterface || !DerivedInterface) |
5742 | 0 | return false; |
5743 | | |
5744 | 0 | if (Self.RequireCompleteType( |
5745 | 0 | KeyLoc, RhsT, diag::err_incomplete_type_used_in_type_trait_expr)) |
5746 | 0 | return false; |
5747 | | |
5748 | 0 | return BaseInterface->isSuperClassOf(DerivedInterface); |
5749 | 0 | } |
5750 | | |
5751 | 0 | assert(Self.Context.hasSameUnqualifiedType(LhsT, RhsT) |
5752 | 0 | == (lhsRecord == rhsRecord)); |
5753 | | |
5754 | | // Unions are never base classes, and never have base classes. |
5755 | | // It doesn't matter if they are complete or not. See PR#41843 |
5756 | 0 | if (lhsRecord && lhsRecord->getDecl()->isUnion()) |
5757 | 0 | return false; |
5758 | 0 | if (rhsRecord && rhsRecord->getDecl()->isUnion()) |
5759 | 0 | return false; |
5760 | | |
5761 | 0 | if (lhsRecord == rhsRecord) |
5762 | 0 | return true; |
5763 | | |
5764 | | // C++0x [meta.rel]p2: |
5765 | | // If Base and Derived are class types and are different types |
5766 | | // (ignoring possible cv-qualifiers) then Derived shall be a |
5767 | | // complete type. |
5768 | 0 | if (Self.RequireCompleteType(KeyLoc, RhsT, |
5769 | 0 | diag::err_incomplete_type_used_in_type_trait_expr)) |
5770 | 0 | return false; |
5771 | | |
5772 | 0 | return cast<CXXRecordDecl>(rhsRecord->getDecl()) |
5773 | 0 | ->isDerivedFrom(cast<CXXRecordDecl>(lhsRecord->getDecl())); |
5774 | 0 | } |
5775 | 0 | case BTT_IsSame: |
5776 | 0 | return Self.Context.hasSameType(LhsT, RhsT); |
5777 | 0 | case BTT_TypeCompatible: { |
5778 | | // GCC ignores cv-qualifiers on arrays for this builtin. |
5779 | 0 | Qualifiers LhsQuals, RhsQuals; |
5780 | 0 | QualType Lhs = Self.getASTContext().getUnqualifiedArrayType(LhsT, LhsQuals); |
5781 | 0 | QualType Rhs = Self.getASTContext().getUnqualifiedArrayType(RhsT, RhsQuals); |
5782 | 0 | return Self.Context.typesAreCompatible(Lhs, Rhs); |
5783 | 0 | } |
5784 | 0 | case BTT_IsConvertible: |
5785 | 0 | case BTT_IsConvertibleTo: { |
5786 | | // C++0x [meta.rel]p4: |
5787 | | // Given the following function prototype: |
5788 | | // |
5789 | | // template <class T> |
5790 | | // typename add_rvalue_reference<T>::type create(); |
5791 | | // |
5792 | | // the predicate condition for a template specialization |
5793 | | // is_convertible<From, To> shall be satisfied if and only if |
5794 | | // the return expression in the following code would be |
5795 | | // well-formed, including any implicit conversions to the return |
5796 | | // type of the function: |
5797 | | // |
5798 | | // To test() { |
5799 | | // return create<From>(); |
5800 | | // } |
5801 | | // |
5802 | | // Access checking is performed as if in a context unrelated to To and |
5803 | | // From. Only the validity of the immediate context of the expression |
5804 | | // of the return-statement (including conversions to the return type) |
5805 | | // is considered. |
5806 | | // |
5807 | | // We model the initialization as a copy-initialization of a temporary |
5808 | | // of the appropriate type, which for this expression is identical to the |
5809 | | // return statement (since NRVO doesn't apply). |
5810 | | |
5811 | | // Functions aren't allowed to return function or array types. |
5812 | 0 | if (RhsT->isFunctionType() || RhsT->isArrayType()) |
5813 | 0 | return false; |
5814 | | |
5815 | | // A return statement in a void function must have void type. |
5816 | 0 | if (RhsT->isVoidType()) |
5817 | 0 | return LhsT->isVoidType(); |
5818 | | |
5819 | | // A function definition requires a complete, non-abstract return type. |
5820 | 0 | if (!Self.isCompleteType(KeyLoc, RhsT) || Self.isAbstractType(KeyLoc, RhsT)) |
5821 | 0 | return false; |
5822 | | |
5823 | | // Compute the result of add_rvalue_reference. |
5824 | 0 | if (LhsT->isObjectType() || LhsT->isFunctionType()) |
5825 | 0 | LhsT = Self.Context.getRValueReferenceType(LhsT); |
5826 | | |
5827 | | // Build a fake source and destination for initialization. |
5828 | 0 | InitializedEntity To(InitializedEntity::InitializeTemporary(RhsT)); |
5829 | 0 | OpaqueValueExpr From(KeyLoc, LhsT.getNonLValueExprType(Self.Context), |
5830 | 0 | Expr::getValueKindForType(LhsT)); |
5831 | 0 | Expr *FromPtr = &From; |
5832 | 0 | InitializationKind Kind(InitializationKind::CreateCopy(KeyLoc, |
5833 | 0 | SourceLocation())); |
5834 | | |
5835 | | // Perform the initialization in an unevaluated context within a SFINAE |
5836 | | // trap at translation unit scope. |
5837 | 0 | EnterExpressionEvaluationContext Unevaluated( |
5838 | 0 | Self, Sema::ExpressionEvaluationContext::Unevaluated); |
5839 | 0 | Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); |
5840 | 0 | Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); |
5841 | 0 | InitializationSequence Init(Self, To, Kind, FromPtr); |
5842 | 0 | if (Init.Failed()) |
5843 | 0 | return false; |
5844 | | |
5845 | 0 | ExprResult Result = Init.Perform(Self, To, Kind, FromPtr); |
5846 | 0 | return !Result.isInvalid() && !SFINAE.hasErrorOccurred(); |
5847 | 0 | } |
5848 | | |
5849 | 0 | case BTT_IsAssignable: |
5850 | 0 | case BTT_IsNothrowAssignable: |
5851 | 0 | case BTT_IsTriviallyAssignable: { |
5852 | | // C++11 [meta.unary.prop]p3: |
5853 | | // is_trivially_assignable is defined as: |
5854 | | // is_assignable<T, U>::value is true and the assignment, as defined by |
5855 | | // is_assignable, is known to call no operation that is not trivial |
5856 | | // |
5857 | | // is_assignable is defined as: |
5858 | | // The expression declval<T>() = declval<U>() is well-formed when |
5859 | | // treated as an unevaluated operand (Clause 5). |
5860 | | // |
5861 | | // For both, T and U shall be complete types, (possibly cv-qualified) |
5862 | | // void, or arrays of unknown bound. |
5863 | 0 | if (!LhsT->isVoidType() && !LhsT->isIncompleteArrayType() && |
5864 | 0 | Self.RequireCompleteType(KeyLoc, LhsT, |
5865 | 0 | diag::err_incomplete_type_used_in_type_trait_expr)) |
5866 | 0 | return false; |
5867 | 0 | if (!RhsT->isVoidType() && !RhsT->isIncompleteArrayType() && |
5868 | 0 | Self.RequireCompleteType(KeyLoc, RhsT, |
5869 | 0 | diag::err_incomplete_type_used_in_type_trait_expr)) |
5870 | 0 | return false; |
5871 | | |
5872 | | // cv void is never assignable. |
5873 | 0 | if (LhsT->isVoidType() || RhsT->isVoidType()) |
5874 | 0 | return false; |
5875 | | |
5876 | | // Build expressions that emulate the effect of declval<T>() and |
5877 | | // declval<U>(). |
5878 | 0 | if (LhsT->isObjectType() || LhsT->isFunctionType()) |
5879 | 0 | LhsT = Self.Context.getRValueReferenceType(LhsT); |
5880 | 0 | if (RhsT->isObjectType() || RhsT->isFunctionType()) |
5881 | 0 | RhsT = Self.Context.getRValueReferenceType(RhsT); |
5882 | 0 | OpaqueValueExpr Lhs(KeyLoc, LhsT.getNonLValueExprType(Self.Context), |
5883 | 0 | Expr::getValueKindForType(LhsT)); |
5884 | 0 | OpaqueValueExpr Rhs(KeyLoc, RhsT.getNonLValueExprType(Self.Context), |
5885 | 0 | Expr::getValueKindForType(RhsT)); |
5886 | | |
5887 | | // Attempt the assignment in an unevaluated context within a SFINAE |
5888 | | // trap at translation unit scope. |
5889 | 0 | EnterExpressionEvaluationContext Unevaluated( |
5890 | 0 | Self, Sema::ExpressionEvaluationContext::Unevaluated); |
5891 | 0 | Sema::SFINAETrap SFINAE(Self, /*AccessCheckingSFINAE=*/true); |
5892 | 0 | Sema::ContextRAII TUContext(Self, Self.Context.getTranslationUnitDecl()); |
5893 | 0 | ExprResult Result = Self.BuildBinOp(/*S=*/nullptr, KeyLoc, BO_Assign, &Lhs, |
5894 | 0 | &Rhs); |
5895 | 0 | if (Result.isInvalid()) |
5896 | 0 | return false; |
5897 | | |
5898 | | // Treat the assignment as unused for the purpose of -Wdeprecated-volatile. |
5899 | 0 | Self.CheckUnusedVolatileAssignment(Result.get()); |
5900 | |
|
5901 | 0 | if (SFINAE.hasErrorOccurred()) |
5902 | 0 | return false; |
5903 | | |
5904 | 0 | if (BTT == BTT_IsAssignable) |
5905 | 0 | return true; |
5906 | | |
5907 | 0 | if (BTT == BTT_IsNothrowAssignable) |
5908 | 0 | return Self.canThrow(Result.get()) == CT_Cannot; |
5909 | | |
5910 | 0 | if (BTT == BTT_IsTriviallyAssignable) { |
5911 | | // Under Objective-C ARC and Weak, if the destination has non-trivial |
5912 | | // Objective-C lifetime, this is a non-trivial assignment. |
5913 | 0 | if (LhsT.getNonReferenceType().hasNonTrivialObjCLifetime()) |
5914 | 0 | return false; |
5915 | | |
5916 | 0 | return !Result.get()->hasNonTrivialCall(Self.Context); |
5917 | 0 | } |
5918 | | |
5919 | 0 | llvm_unreachable("unhandled type trait"); |
5920 | 0 | return false; |
5921 | 0 | } |
5922 | 0 | default: llvm_unreachable("not a BTT"); |
5923 | 0 | } |
5924 | 0 | llvm_unreachable("Unknown type trait or not implemented"); |
5925 | 0 | } |
5926 | | |
5927 | | ExprResult Sema::ActOnArrayTypeTrait(ArrayTypeTrait ATT, |
5928 | | SourceLocation KWLoc, |
5929 | | ParsedType Ty, |
5930 | | Expr* DimExpr, |
5931 | 0 | SourceLocation RParen) { |
5932 | 0 | TypeSourceInfo *TSInfo; |
5933 | 0 | QualType T = GetTypeFromParser(Ty, &TSInfo); |
5934 | 0 | if (!TSInfo) |
5935 | 0 | TSInfo = Context.getTrivialTypeSourceInfo(T); |
5936 | |
|
5937 | 0 | return BuildArrayTypeTrait(ATT, KWLoc, TSInfo, DimExpr, RParen); |
5938 | 0 | } |
5939 | | |
5940 | | static uint64_t EvaluateArrayTypeTrait(Sema &Self, ArrayTypeTrait ATT, |
5941 | | QualType T, Expr *DimExpr, |
5942 | 0 | SourceLocation KeyLoc) { |
5943 | 0 | assert(!T->isDependentType() && "Cannot evaluate traits of dependent type"); |
5944 | | |
5945 | 0 | switch(ATT) { |
5946 | 0 | case ATT_ArrayRank: |
5947 | 0 | if (T->isArrayType()) { |
5948 | 0 | unsigned Dim = 0; |
5949 | 0 | while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { |
5950 | 0 | ++Dim; |
5951 | 0 | T = AT->getElementType(); |
5952 | 0 | } |
5953 | 0 | return Dim; |
5954 | 0 | } |
5955 | 0 | return 0; |
5956 | | |
5957 | 0 | case ATT_ArrayExtent: { |
5958 | 0 | llvm::APSInt Value; |
5959 | 0 | uint64_t Dim; |
5960 | 0 | if (Self.VerifyIntegerConstantExpression( |
5961 | 0 | DimExpr, &Value, diag::err_dimension_expr_not_constant_integer) |
5962 | 0 | .isInvalid()) |
5963 | 0 | return 0; |
5964 | 0 | if (Value.isSigned() && Value.isNegative()) { |
5965 | 0 | Self.Diag(KeyLoc, diag::err_dimension_expr_not_constant_integer) |
5966 | 0 | << DimExpr->getSourceRange(); |
5967 | 0 | return 0; |
5968 | 0 | } |
5969 | 0 | Dim = Value.getLimitedValue(); |
5970 | |
|
5971 | 0 | if (T->isArrayType()) { |
5972 | 0 | unsigned D = 0; |
5973 | 0 | bool Matched = false; |
5974 | 0 | while (const ArrayType *AT = Self.Context.getAsArrayType(T)) { |
5975 | 0 | if (Dim == D) { |
5976 | 0 | Matched = true; |
5977 | 0 | break; |
5978 | 0 | } |
5979 | 0 | ++D; |
5980 | 0 | T = AT->getElementType(); |
5981 | 0 | } |
5982 | |
|
5983 | 0 | if (Matched && T->isArrayType()) { |
5984 | 0 | if (const ConstantArrayType *CAT = Self.Context.getAsConstantArrayType(T)) |
5985 | 0 | return CAT->getSize().getLimitedValue(); |
5986 | 0 | } |
5987 | 0 | } |
5988 | 0 | return 0; |
5989 | 0 | } |
5990 | 0 | } |
5991 | 0 | llvm_unreachable("Unknown type trait or not implemented"); |
5992 | 0 | } |
5993 | | |
5994 | | ExprResult Sema::BuildArrayTypeTrait(ArrayTypeTrait ATT, |
5995 | | SourceLocation KWLoc, |
5996 | | TypeSourceInfo *TSInfo, |
5997 | | Expr* DimExpr, |
5998 | 0 | SourceLocation RParen) { |
5999 | 0 | QualType T = TSInfo->getType(); |
6000 | | |
6001 | | // FIXME: This should likely be tracked as an APInt to remove any host |
6002 | | // assumptions about the width of size_t on the target. |
6003 | 0 | uint64_t Value = 0; |
6004 | 0 | if (!T->isDependentType()) |
6005 | 0 | Value = EvaluateArrayTypeTrait(*this, ATT, T, DimExpr, KWLoc); |
6006 | | |
6007 | | // While the specification for these traits from the Embarcadero C++ |
6008 | | // compiler's documentation says the return type is 'unsigned int', Clang |
6009 | | // returns 'size_t'. On Windows, the primary platform for the Embarcadero |
6010 | | // compiler, there is no difference. On several other platforms this is an |
6011 | | // important distinction. |
6012 | 0 | return new (Context) ArrayTypeTraitExpr(KWLoc, ATT, TSInfo, Value, DimExpr, |
6013 | 0 | RParen, Context.getSizeType()); |
6014 | 0 | } |
6015 | | |
6016 | | ExprResult Sema::ActOnExpressionTrait(ExpressionTrait ET, |
6017 | | SourceLocation KWLoc, |
6018 | | Expr *Queried, |
6019 | 0 | SourceLocation RParen) { |
6020 | | // If error parsing the expression, ignore. |
6021 | 0 | if (!Queried) |
6022 | 0 | return ExprError(); |
6023 | | |
6024 | 0 | ExprResult Result = BuildExpressionTrait(ET, KWLoc, Queried, RParen); |
6025 | |
|
6026 | 0 | return Result; |
6027 | 0 | } |
6028 | | |
6029 | 0 | static bool EvaluateExpressionTrait(ExpressionTrait ET, Expr *E) { |
6030 | 0 | switch (ET) { |
6031 | 0 | case ET_IsLValueExpr: return E->isLValue(); |
6032 | 0 | case ET_IsRValueExpr: |
6033 | 0 | return E->isPRValue(); |
6034 | 0 | } |
6035 | 0 | llvm_unreachable("Expression trait not covered by switch"); |
6036 | 0 | } |
6037 | | |
6038 | | ExprResult Sema::BuildExpressionTrait(ExpressionTrait ET, |
6039 | | SourceLocation KWLoc, |
6040 | | Expr *Queried, |
6041 | 0 | SourceLocation RParen) { |
6042 | 0 | if (Queried->isTypeDependent()) { |
6043 | | // Delay type-checking for type-dependent expressions. |
6044 | 0 | } else if (Queried->hasPlaceholderType()) { |
6045 | 0 | ExprResult PE = CheckPlaceholderExpr(Queried); |
6046 | 0 | if (PE.isInvalid()) return ExprError(); |
6047 | 0 | return BuildExpressionTrait(ET, KWLoc, PE.get(), RParen); |
6048 | 0 | } |
6049 | | |
6050 | 0 | bool Value = EvaluateExpressionTrait(ET, Queried); |
6051 | |
|
6052 | 0 | return new (Context) |
6053 | 0 | ExpressionTraitExpr(KWLoc, ET, Queried, Value, RParen, Context.BoolTy); |
6054 | 0 | } |
6055 | | |
6056 | | QualType Sema::CheckPointerToMemberOperands(ExprResult &LHS, ExprResult &RHS, |
6057 | | ExprValueKind &VK, |
6058 | | SourceLocation Loc, |
6059 | 0 | bool isIndirect) { |
6060 | 0 | assert(!LHS.get()->hasPlaceholderType() && !RHS.get()->hasPlaceholderType() && |
6061 | 0 | "placeholders should have been weeded out by now"); |
6062 | | |
6063 | | // The LHS undergoes lvalue conversions if this is ->*, and undergoes the |
6064 | | // temporary materialization conversion otherwise. |
6065 | 0 | if (isIndirect) |
6066 | 0 | LHS = DefaultLvalueConversion(LHS.get()); |
6067 | 0 | else if (LHS.get()->isPRValue()) |
6068 | 0 | LHS = TemporaryMaterializationConversion(LHS.get()); |
6069 | 0 | if (LHS.isInvalid()) |
6070 | 0 | return QualType(); |
6071 | | |
6072 | | // The RHS always undergoes lvalue conversions. |
6073 | 0 | RHS = DefaultLvalueConversion(RHS.get()); |
6074 | 0 | if (RHS.isInvalid()) return QualType(); |
6075 | | |
6076 | 0 | const char *OpSpelling = isIndirect ? "->*" : ".*"; |
6077 | | // C++ 5.5p2 |
6078 | | // The binary operator .* [p3: ->*] binds its second operand, which shall |
6079 | | // be of type "pointer to member of T" (where T is a completely-defined |
6080 | | // class type) [...] |
6081 | 0 | QualType RHSType = RHS.get()->getType(); |
6082 | 0 | const MemberPointerType *MemPtr = RHSType->getAs<MemberPointerType>(); |
6083 | 0 | if (!MemPtr) { |
6084 | 0 | Diag(Loc, diag::err_bad_memptr_rhs) |
6085 | 0 | << OpSpelling << RHSType << RHS.get()->getSourceRange(); |
6086 | 0 | return QualType(); |
6087 | 0 | } |
6088 | | |
6089 | 0 | QualType Class(MemPtr->getClass(), 0); |
6090 | | |
6091 | | // Note: C++ [expr.mptr.oper]p2-3 says that the class type into which the |
6092 | | // member pointer points must be completely-defined. However, there is no |
6093 | | // reason for this semantic distinction, and the rule is not enforced by |
6094 | | // other compilers. Therefore, we do not check this property, as it is |
6095 | | // likely to be considered a defect. |
6096 | | |
6097 | | // C++ 5.5p2 |
6098 | | // [...] to its first operand, which shall be of class T or of a class of |
6099 | | // which T is an unambiguous and accessible base class. [p3: a pointer to |
6100 | | // such a class] |
6101 | 0 | QualType LHSType = LHS.get()->getType(); |
6102 | 0 | if (isIndirect) { |
6103 | 0 | if (const PointerType *Ptr = LHSType->getAs<PointerType>()) |
6104 | 0 | LHSType = Ptr->getPointeeType(); |
6105 | 0 | else { |
6106 | 0 | Diag(Loc, diag::err_bad_memptr_lhs) |
6107 | 0 | << OpSpelling << 1 << LHSType |
6108 | 0 | << FixItHint::CreateReplacement(SourceRange(Loc), ".*"); |
6109 | 0 | return QualType(); |
6110 | 0 | } |
6111 | 0 | } |
6112 | | |
6113 | 0 | if (!Context.hasSameUnqualifiedType(Class, LHSType)) { |
6114 | | // If we want to check the hierarchy, we need a complete type. |
6115 | 0 | if (RequireCompleteType(Loc, LHSType, diag::err_bad_memptr_lhs, |
6116 | 0 | OpSpelling, (int)isIndirect)) { |
6117 | 0 | return QualType(); |
6118 | 0 | } |
6119 | | |
6120 | 0 | if (!IsDerivedFrom(Loc, LHSType, Class)) { |
6121 | 0 | Diag(Loc, diag::err_bad_memptr_lhs) << OpSpelling |
6122 | 0 | << (int)isIndirect << LHS.get()->getType(); |
6123 | 0 | return QualType(); |
6124 | 0 | } |
6125 | | |
6126 | 0 | CXXCastPath BasePath; |
6127 | 0 | if (CheckDerivedToBaseConversion( |
6128 | 0 | LHSType, Class, Loc, |
6129 | 0 | SourceRange(LHS.get()->getBeginLoc(), RHS.get()->getEndLoc()), |
6130 | 0 | &BasePath)) |
6131 | 0 | return QualType(); |
6132 | | |
6133 | | // Cast LHS to type of use. |
6134 | 0 | QualType UseType = Context.getQualifiedType(Class, LHSType.getQualifiers()); |
6135 | 0 | if (isIndirect) |
6136 | 0 | UseType = Context.getPointerType(UseType); |
6137 | 0 | ExprValueKind VK = isIndirect ? VK_PRValue : LHS.get()->getValueKind(); |
6138 | 0 | LHS = ImpCastExprToType(LHS.get(), UseType, CK_DerivedToBase, VK, |
6139 | 0 | &BasePath); |
6140 | 0 | } |
6141 | | |
6142 | 0 | if (isa<CXXScalarValueInitExpr>(RHS.get()->IgnoreParens())) { |
6143 | | // Diagnose use of pointer-to-member type which when used as |
6144 | | // the functional cast in a pointer-to-member expression. |
6145 | 0 | Diag(Loc, diag::err_pointer_to_member_type) << isIndirect; |
6146 | 0 | return QualType(); |
6147 | 0 | } |
6148 | | |
6149 | | // C++ 5.5p2 |
6150 | | // The result is an object or a function of the type specified by the |
6151 | | // second operand. |
6152 | | // The cv qualifiers are the union of those in the pointer and the left side, |
6153 | | // in accordance with 5.5p5 and 5.2.5. |
6154 | 0 | QualType Result = MemPtr->getPointeeType(); |
6155 | 0 | Result = Context.getCVRQualifiedType(Result, LHSType.getCVRQualifiers()); |
6156 | | |
6157 | | // C++0x [expr.mptr.oper]p6: |
6158 | | // In a .* expression whose object expression is an rvalue, the program is |
6159 | | // ill-formed if the second operand is a pointer to member function with |
6160 | | // ref-qualifier &. In a ->* expression or in a .* expression whose object |
6161 | | // expression is an lvalue, the program is ill-formed if the second operand |
6162 | | // is a pointer to member function with ref-qualifier &&. |
6163 | 0 | if (const FunctionProtoType *Proto = Result->getAs<FunctionProtoType>()) { |
6164 | 0 | switch (Proto->getRefQualifier()) { |
6165 | 0 | case RQ_None: |
6166 | | // Do nothing |
6167 | 0 | break; |
6168 | | |
6169 | 0 | case RQ_LValue: |
6170 | 0 | if (!isIndirect && !LHS.get()->Classify(Context).isLValue()) { |
6171 | | // C++2a allows functions with ref-qualifier & if their cv-qualifier-seq |
6172 | | // is (exactly) 'const'. |
6173 | 0 | if (Proto->isConst() && !Proto->isVolatile()) |
6174 | 0 | Diag(Loc, getLangOpts().CPlusPlus20 |
6175 | 0 | ? diag::warn_cxx17_compat_pointer_to_const_ref_member_on_rvalue |
6176 | 0 | : diag::ext_pointer_to_const_ref_member_on_rvalue); |
6177 | 0 | else |
6178 | 0 | Diag(Loc, diag::err_pointer_to_member_oper_value_classify) |
6179 | 0 | << RHSType << 1 << LHS.get()->getSourceRange(); |
6180 | 0 | } |
6181 | 0 | break; |
6182 | | |
6183 | 0 | case RQ_RValue: |
6184 | 0 | if (isIndirect || !LHS.get()->Classify(Context).isRValue()) |
6185 | 0 | Diag(Loc, diag::err_pointer_to_member_oper_value_classify) |
6186 | 0 | << RHSType << 0 << LHS.get()->getSourceRange(); |
6187 | 0 | break; |
6188 | 0 | } |
6189 | 0 | } |
6190 | | |
6191 | | // C++ [expr.mptr.oper]p6: |
6192 | | // The result of a .* expression whose second operand is a pointer |
6193 | | // to a data member is of the same value category as its |
6194 | | // first operand. The result of a .* expression whose second |
6195 | | // operand is a pointer to a member function is a prvalue. The |
6196 | | // result of an ->* expression is an lvalue if its second operand |
6197 | | // is a pointer to data member and a prvalue otherwise. |
6198 | 0 | if (Result->isFunctionType()) { |
6199 | 0 | VK = VK_PRValue; |
6200 | 0 | return Context.BoundMemberTy; |
6201 | 0 | } else if (isIndirect) { |
6202 | 0 | VK = VK_LValue; |
6203 | 0 | } else { |
6204 | 0 | VK = LHS.get()->getValueKind(); |
6205 | 0 | } |
6206 | | |
6207 | 0 | return Result; |
6208 | 0 | } |
6209 | | |
6210 | | /// Try to convert a type to another according to C++11 5.16p3. |
6211 | | /// |
6212 | | /// This is part of the parameter validation for the ? operator. If either |
6213 | | /// value operand is a class type, the two operands are attempted to be |
6214 | | /// converted to each other. This function does the conversion in one direction. |
6215 | | /// It returns true if the program is ill-formed and has already been diagnosed |
6216 | | /// as such. |
6217 | | static bool TryClassUnification(Sema &Self, Expr *From, Expr *To, |
6218 | | SourceLocation QuestionLoc, |
6219 | | bool &HaveConversion, |
6220 | 0 | QualType &ToType) { |
6221 | 0 | HaveConversion = false; |
6222 | 0 | ToType = To->getType(); |
6223 | |
|
6224 | 0 | InitializationKind Kind = |
6225 | 0 | InitializationKind::CreateCopy(To->getBeginLoc(), SourceLocation()); |
6226 | | // C++11 5.16p3 |
6227 | | // The process for determining whether an operand expression E1 of type T1 |
6228 | | // can be converted to match an operand expression E2 of type T2 is defined |
6229 | | // as follows: |
6230 | | // -- If E2 is an lvalue: E1 can be converted to match E2 if E1 can be |
6231 | | // implicitly converted to type "lvalue reference to T2", subject to the |
6232 | | // constraint that in the conversion the reference must bind directly to |
6233 | | // an lvalue. |
6234 | | // -- If E2 is an xvalue: E1 can be converted to match E2 if E1 can be |
6235 | | // implicitly converted to the type "rvalue reference to R2", subject to |
6236 | | // the constraint that the reference must bind directly. |
6237 | 0 | if (To->isGLValue()) { |
6238 | 0 | QualType T = Self.Context.getReferenceQualifiedType(To); |
6239 | 0 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); |
6240 | |
|
6241 | 0 | InitializationSequence InitSeq(Self, Entity, Kind, From); |
6242 | 0 | if (InitSeq.isDirectReferenceBinding()) { |
6243 | 0 | ToType = T; |
6244 | 0 | HaveConversion = true; |
6245 | 0 | return false; |
6246 | 0 | } |
6247 | | |
6248 | 0 | if (InitSeq.isAmbiguous()) |
6249 | 0 | return InitSeq.Diagnose(Self, Entity, Kind, From); |
6250 | 0 | } |
6251 | | |
6252 | | // -- If E2 is an rvalue, or if the conversion above cannot be done: |
6253 | | // -- if E1 and E2 have class type, and the underlying class types are |
6254 | | // the same or one is a base class of the other: |
6255 | 0 | QualType FTy = From->getType(); |
6256 | 0 | QualType TTy = To->getType(); |
6257 | 0 | const RecordType *FRec = FTy->getAs<RecordType>(); |
6258 | 0 | const RecordType *TRec = TTy->getAs<RecordType>(); |
6259 | 0 | bool FDerivedFromT = FRec && TRec && FRec != TRec && |
6260 | 0 | Self.IsDerivedFrom(QuestionLoc, FTy, TTy); |
6261 | 0 | if (FRec && TRec && (FRec == TRec || FDerivedFromT || |
6262 | 0 | Self.IsDerivedFrom(QuestionLoc, TTy, FTy))) { |
6263 | | // E1 can be converted to match E2 if the class of T2 is the |
6264 | | // same type as, or a base class of, the class of T1, and |
6265 | | // [cv2 > cv1]. |
6266 | 0 | if (FRec == TRec || FDerivedFromT) { |
6267 | 0 | if (TTy.isAtLeastAsQualifiedAs(FTy)) { |
6268 | 0 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); |
6269 | 0 | InitializationSequence InitSeq(Self, Entity, Kind, From); |
6270 | 0 | if (InitSeq) { |
6271 | 0 | HaveConversion = true; |
6272 | 0 | return false; |
6273 | 0 | } |
6274 | | |
6275 | 0 | if (InitSeq.isAmbiguous()) |
6276 | 0 | return InitSeq.Diagnose(Self, Entity, Kind, From); |
6277 | 0 | } |
6278 | 0 | } |
6279 | | |
6280 | 0 | return false; |
6281 | 0 | } |
6282 | | |
6283 | | // -- Otherwise: E1 can be converted to match E2 if E1 can be |
6284 | | // implicitly converted to the type that expression E2 would have |
6285 | | // if E2 were converted to an rvalue (or the type it has, if E2 is |
6286 | | // an rvalue). |
6287 | | // |
6288 | | // This actually refers very narrowly to the lvalue-to-rvalue conversion, not |
6289 | | // to the array-to-pointer or function-to-pointer conversions. |
6290 | 0 | TTy = TTy.getNonLValueExprType(Self.Context); |
6291 | |
|
6292 | 0 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(TTy); |
6293 | 0 | InitializationSequence InitSeq(Self, Entity, Kind, From); |
6294 | 0 | HaveConversion = !InitSeq.Failed(); |
6295 | 0 | ToType = TTy; |
6296 | 0 | if (InitSeq.isAmbiguous()) |
6297 | 0 | return InitSeq.Diagnose(Self, Entity, Kind, From); |
6298 | | |
6299 | 0 | return false; |
6300 | 0 | } |
6301 | | |
6302 | | /// Try to find a common type for two according to C++0x 5.16p5. |
6303 | | /// |
6304 | | /// This is part of the parameter validation for the ? operator. If either |
6305 | | /// value operand is a class type, overload resolution is used to find a |
6306 | | /// conversion to a common type. |
6307 | | static bool FindConditionalOverload(Sema &Self, ExprResult &LHS, ExprResult &RHS, |
6308 | 0 | SourceLocation QuestionLoc) { |
6309 | 0 | Expr *Args[2] = { LHS.get(), RHS.get() }; |
6310 | 0 | OverloadCandidateSet CandidateSet(QuestionLoc, |
6311 | 0 | OverloadCandidateSet::CSK_Operator); |
6312 | 0 | Self.AddBuiltinOperatorCandidates(OO_Conditional, QuestionLoc, Args, |
6313 | 0 | CandidateSet); |
6314 | |
|
6315 | 0 | OverloadCandidateSet::iterator Best; |
6316 | 0 | switch (CandidateSet.BestViableFunction(Self, QuestionLoc, Best)) { |
6317 | 0 | case OR_Success: { |
6318 | | // We found a match. Perform the conversions on the arguments and move on. |
6319 | 0 | ExprResult LHSRes = Self.PerformImplicitConversion( |
6320 | 0 | LHS.get(), Best->BuiltinParamTypes[0], Best->Conversions[0], |
6321 | 0 | Sema::AA_Converting); |
6322 | 0 | if (LHSRes.isInvalid()) |
6323 | 0 | break; |
6324 | 0 | LHS = LHSRes; |
6325 | |
|
6326 | 0 | ExprResult RHSRes = Self.PerformImplicitConversion( |
6327 | 0 | RHS.get(), Best->BuiltinParamTypes[1], Best->Conversions[1], |
6328 | 0 | Sema::AA_Converting); |
6329 | 0 | if (RHSRes.isInvalid()) |
6330 | 0 | break; |
6331 | 0 | RHS = RHSRes; |
6332 | 0 | if (Best->Function) |
6333 | 0 | Self.MarkFunctionReferenced(QuestionLoc, Best->Function); |
6334 | 0 | return false; |
6335 | 0 | } |
6336 | | |
6337 | 0 | case OR_No_Viable_Function: |
6338 | | |
6339 | | // Emit a better diagnostic if one of the expressions is a null pointer |
6340 | | // constant and the other is a pointer type. In this case, the user most |
6341 | | // likely forgot to take the address of the other expression. |
6342 | 0 | if (Self.DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) |
6343 | 0 | return true; |
6344 | | |
6345 | 0 | Self.Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
6346 | 0 | << LHS.get()->getType() << RHS.get()->getType() |
6347 | 0 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
6348 | 0 | return true; |
6349 | | |
6350 | 0 | case OR_Ambiguous: |
6351 | 0 | Self.Diag(QuestionLoc, diag::err_conditional_ambiguous_ovl) |
6352 | 0 | << LHS.get()->getType() << RHS.get()->getType() |
6353 | 0 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
6354 | | // FIXME: Print the possible common types by printing the return types of |
6355 | | // the viable candidates. |
6356 | 0 | break; |
6357 | | |
6358 | 0 | case OR_Deleted: |
6359 | 0 | llvm_unreachable("Conditional operator has only built-in overloads"); |
6360 | 0 | } |
6361 | 0 | return true; |
6362 | 0 | } |
6363 | | |
6364 | | /// Perform an "extended" implicit conversion as returned by |
6365 | | /// TryClassUnification. |
6366 | 0 | static bool ConvertForConditional(Sema &Self, ExprResult &E, QualType T) { |
6367 | 0 | InitializedEntity Entity = InitializedEntity::InitializeTemporary(T); |
6368 | 0 | InitializationKind Kind = |
6369 | 0 | InitializationKind::CreateCopy(E.get()->getBeginLoc(), SourceLocation()); |
6370 | 0 | Expr *Arg = E.get(); |
6371 | 0 | InitializationSequence InitSeq(Self, Entity, Kind, Arg); |
6372 | 0 | ExprResult Result = InitSeq.Perform(Self, Entity, Kind, Arg); |
6373 | 0 | if (Result.isInvalid()) |
6374 | 0 | return true; |
6375 | | |
6376 | 0 | E = Result; |
6377 | 0 | return false; |
6378 | 0 | } |
6379 | | |
6380 | | // Check the condition operand of ?: to see if it is valid for the GCC |
6381 | | // extension. |
6382 | | static bool isValidVectorForConditionalCondition(ASTContext &Ctx, |
6383 | 2 | QualType CondTy) { |
6384 | 2 | if (!CondTy->isVectorType() && !CondTy->isExtVectorType()) |
6385 | 2 | return false; |
6386 | 0 | const QualType EltTy = |
6387 | 0 | cast<VectorType>(CondTy.getCanonicalType())->getElementType(); |
6388 | 0 | assert(!EltTy->isEnumeralType() && "Vectors cant be enum types"); |
6389 | 0 | return EltTy->isIntegralType(Ctx); |
6390 | 2 | } |
6391 | | |
6392 | | static bool isValidSizelessVectorForConditionalCondition(ASTContext &Ctx, |
6393 | 2 | QualType CondTy) { |
6394 | 2 | if (!CondTy->isSveVLSBuiltinType()) |
6395 | 2 | return false; |
6396 | 0 | const QualType EltTy = |
6397 | 0 | cast<BuiltinType>(CondTy.getCanonicalType())->getSveEltType(Ctx); |
6398 | 0 | assert(!EltTy->isEnumeralType() && "Vectors cant be enum types"); |
6399 | 0 | return EltTy->isIntegralType(Ctx); |
6400 | 2 | } |
6401 | | |
6402 | | QualType Sema::CheckVectorConditionalTypes(ExprResult &Cond, ExprResult &LHS, |
6403 | | ExprResult &RHS, |
6404 | 0 | SourceLocation QuestionLoc) { |
6405 | 0 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); |
6406 | 0 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); |
6407 | |
|
6408 | 0 | QualType CondType = Cond.get()->getType(); |
6409 | 0 | const auto *CondVT = CondType->castAs<VectorType>(); |
6410 | 0 | QualType CondElementTy = CondVT->getElementType(); |
6411 | 0 | unsigned CondElementCount = CondVT->getNumElements(); |
6412 | 0 | QualType LHSType = LHS.get()->getType(); |
6413 | 0 | const auto *LHSVT = LHSType->getAs<VectorType>(); |
6414 | 0 | QualType RHSType = RHS.get()->getType(); |
6415 | 0 | const auto *RHSVT = RHSType->getAs<VectorType>(); |
6416 | |
|
6417 | 0 | QualType ResultType; |
6418 | | |
6419 | |
|
6420 | 0 | if (LHSVT && RHSVT) { |
6421 | 0 | if (isa<ExtVectorType>(CondVT) != isa<ExtVectorType>(LHSVT)) { |
6422 | 0 | Diag(QuestionLoc, diag::err_conditional_vector_cond_result_mismatch) |
6423 | 0 | << /*isExtVector*/ isa<ExtVectorType>(CondVT); |
6424 | 0 | return {}; |
6425 | 0 | } |
6426 | | |
6427 | | // If both are vector types, they must be the same type. |
6428 | 0 | if (!Context.hasSameType(LHSType, RHSType)) { |
6429 | 0 | Diag(QuestionLoc, diag::err_conditional_vector_mismatched) |
6430 | 0 | << LHSType << RHSType; |
6431 | 0 | return {}; |
6432 | 0 | } |
6433 | 0 | ResultType = Context.getCommonSugaredType(LHSType, RHSType); |
6434 | 0 | } else if (LHSVT || RHSVT) { |
6435 | 0 | ResultType = CheckVectorOperands( |
6436 | 0 | LHS, RHS, QuestionLoc, /*isCompAssign*/ false, /*AllowBothBool*/ true, |
6437 | 0 | /*AllowBoolConversions*/ false, |
6438 | 0 | /*AllowBoolOperation*/ true, |
6439 | 0 | /*ReportInvalid*/ true); |
6440 | 0 | if (ResultType.isNull()) |
6441 | 0 | return {}; |
6442 | 0 | } else { |
6443 | | // Both are scalar. |
6444 | 0 | LHSType = LHSType.getUnqualifiedType(); |
6445 | 0 | RHSType = RHSType.getUnqualifiedType(); |
6446 | 0 | QualType ResultElementTy = |
6447 | 0 | Context.hasSameType(LHSType, RHSType) |
6448 | 0 | ? Context.getCommonSugaredType(LHSType, RHSType) |
6449 | 0 | : UsualArithmeticConversions(LHS, RHS, QuestionLoc, |
6450 | 0 | ACK_Conditional); |
6451 | |
|
6452 | 0 | if (ResultElementTy->isEnumeralType()) { |
6453 | 0 | Diag(QuestionLoc, diag::err_conditional_vector_operand_type) |
6454 | 0 | << ResultElementTy; |
6455 | 0 | return {}; |
6456 | 0 | } |
6457 | 0 | if (CondType->isExtVectorType()) |
6458 | 0 | ResultType = |
6459 | 0 | Context.getExtVectorType(ResultElementTy, CondVT->getNumElements()); |
6460 | 0 | else |
6461 | 0 | ResultType = Context.getVectorType( |
6462 | 0 | ResultElementTy, CondVT->getNumElements(), VectorKind::Generic); |
6463 | |
|
6464 | 0 | LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); |
6465 | 0 | RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); |
6466 | 0 | } |
6467 | | |
6468 | 0 | assert(!ResultType.isNull() && ResultType->isVectorType() && |
6469 | 0 | (!CondType->isExtVectorType() || ResultType->isExtVectorType()) && |
6470 | 0 | "Result should have been a vector type"); |
6471 | 0 | auto *ResultVectorTy = ResultType->castAs<VectorType>(); |
6472 | 0 | QualType ResultElementTy = ResultVectorTy->getElementType(); |
6473 | 0 | unsigned ResultElementCount = ResultVectorTy->getNumElements(); |
6474 | |
|
6475 | 0 | if (ResultElementCount != CondElementCount) { |
6476 | 0 | Diag(QuestionLoc, diag::err_conditional_vector_size) << CondType |
6477 | 0 | << ResultType; |
6478 | 0 | return {}; |
6479 | 0 | } |
6480 | | |
6481 | 0 | if (Context.getTypeSize(ResultElementTy) != |
6482 | 0 | Context.getTypeSize(CondElementTy)) { |
6483 | 0 | Diag(QuestionLoc, diag::err_conditional_vector_element_size) << CondType |
6484 | 0 | << ResultType; |
6485 | 0 | return {}; |
6486 | 0 | } |
6487 | | |
6488 | 0 | return ResultType; |
6489 | 0 | } |
6490 | | |
6491 | | QualType Sema::CheckSizelessVectorConditionalTypes(ExprResult &Cond, |
6492 | | ExprResult &LHS, |
6493 | | ExprResult &RHS, |
6494 | 0 | SourceLocation QuestionLoc) { |
6495 | 0 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); |
6496 | 0 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); |
6497 | |
|
6498 | 0 | QualType CondType = Cond.get()->getType(); |
6499 | 0 | const auto *CondBT = CondType->castAs<BuiltinType>(); |
6500 | 0 | QualType CondElementTy = CondBT->getSveEltType(Context); |
6501 | 0 | llvm::ElementCount CondElementCount = |
6502 | 0 | Context.getBuiltinVectorTypeInfo(CondBT).EC; |
6503 | |
|
6504 | 0 | QualType LHSType = LHS.get()->getType(); |
6505 | 0 | const auto *LHSBT = |
6506 | 0 | LHSType->isSveVLSBuiltinType() ? LHSType->getAs<BuiltinType>() : nullptr; |
6507 | 0 | QualType RHSType = RHS.get()->getType(); |
6508 | 0 | const auto *RHSBT = |
6509 | 0 | RHSType->isSveVLSBuiltinType() ? RHSType->getAs<BuiltinType>() : nullptr; |
6510 | |
|
6511 | 0 | QualType ResultType; |
6512 | |
|
6513 | 0 | if (LHSBT && RHSBT) { |
6514 | | // If both are sizeless vector types, they must be the same type. |
6515 | 0 | if (!Context.hasSameType(LHSType, RHSType)) { |
6516 | 0 | Diag(QuestionLoc, diag::err_conditional_vector_mismatched) |
6517 | 0 | << LHSType << RHSType; |
6518 | 0 | return QualType(); |
6519 | 0 | } |
6520 | 0 | ResultType = LHSType; |
6521 | 0 | } else if (LHSBT || RHSBT) { |
6522 | 0 | ResultType = CheckSizelessVectorOperands( |
6523 | 0 | LHS, RHS, QuestionLoc, /*IsCompAssign*/ false, ACK_Conditional); |
6524 | 0 | if (ResultType.isNull()) |
6525 | 0 | return QualType(); |
6526 | 0 | } else { |
6527 | | // Both are scalar so splat |
6528 | 0 | QualType ResultElementTy; |
6529 | 0 | LHSType = LHSType.getCanonicalType().getUnqualifiedType(); |
6530 | 0 | RHSType = RHSType.getCanonicalType().getUnqualifiedType(); |
6531 | |
|
6532 | 0 | if (Context.hasSameType(LHSType, RHSType)) |
6533 | 0 | ResultElementTy = LHSType; |
6534 | 0 | else |
6535 | 0 | ResultElementTy = |
6536 | 0 | UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); |
6537 | |
|
6538 | 0 | if (ResultElementTy->isEnumeralType()) { |
6539 | 0 | Diag(QuestionLoc, diag::err_conditional_vector_operand_type) |
6540 | 0 | << ResultElementTy; |
6541 | 0 | return QualType(); |
6542 | 0 | } |
6543 | | |
6544 | 0 | ResultType = Context.getScalableVectorType( |
6545 | 0 | ResultElementTy, CondElementCount.getKnownMinValue()); |
6546 | |
|
6547 | 0 | LHS = ImpCastExprToType(LHS.get(), ResultType, CK_VectorSplat); |
6548 | 0 | RHS = ImpCastExprToType(RHS.get(), ResultType, CK_VectorSplat); |
6549 | 0 | } |
6550 | | |
6551 | 0 | assert(!ResultType.isNull() && ResultType->isSveVLSBuiltinType() && |
6552 | 0 | "Result should have been a vector type"); |
6553 | 0 | auto *ResultBuiltinTy = ResultType->castAs<BuiltinType>(); |
6554 | 0 | QualType ResultElementTy = ResultBuiltinTy->getSveEltType(Context); |
6555 | 0 | llvm::ElementCount ResultElementCount = |
6556 | 0 | Context.getBuiltinVectorTypeInfo(ResultBuiltinTy).EC; |
6557 | |
|
6558 | 0 | if (ResultElementCount != CondElementCount) { |
6559 | 0 | Diag(QuestionLoc, diag::err_conditional_vector_size) |
6560 | 0 | << CondType << ResultType; |
6561 | 0 | return QualType(); |
6562 | 0 | } |
6563 | | |
6564 | 0 | if (Context.getTypeSize(ResultElementTy) != |
6565 | 0 | Context.getTypeSize(CondElementTy)) { |
6566 | 0 | Diag(QuestionLoc, diag::err_conditional_vector_element_size) |
6567 | 0 | << CondType << ResultType; |
6568 | 0 | return QualType(); |
6569 | 0 | } |
6570 | | |
6571 | 0 | return ResultType; |
6572 | 0 | } |
6573 | | |
6574 | | /// Check the operands of ?: under C++ semantics. |
6575 | | /// |
6576 | | /// See C++ [expr.cond]. Note that LHS is never null, even for the GNU x ?: y |
6577 | | /// extension. In this case, LHS == Cond. (But they're not aliases.) |
6578 | | /// |
6579 | | /// This function also implements GCC's vector extension and the |
6580 | | /// OpenCL/ext_vector_type extension for conditionals. The vector extensions |
6581 | | /// permit the use of a?b:c where the type of a is that of a integer vector with |
6582 | | /// the same number of elements and size as the vectors of b and c. If one of |
6583 | | /// either b or c is a scalar it is implicitly converted to match the type of |
6584 | | /// the vector. Otherwise the expression is ill-formed. If both b and c are |
6585 | | /// scalars, then b and c are checked and converted to the type of a if |
6586 | | /// possible. |
6587 | | /// |
6588 | | /// The expressions are evaluated differently for GCC's and OpenCL's extensions. |
6589 | | /// For the GCC extension, the ?: operator is evaluated as |
6590 | | /// (a[0] != 0 ? b[0] : c[0], .. , a[n] != 0 ? b[n] : c[n]). |
6591 | | /// For the OpenCL extensions, the ?: operator is evaluated as |
6592 | | /// (most-significant-bit-set(a[0]) ? b[0] : c[0], .. , |
6593 | | /// most-significant-bit-set(a[n]) ? b[n] : c[n]). |
6594 | | QualType Sema::CXXCheckConditionalOperands(ExprResult &Cond, ExprResult &LHS, |
6595 | | ExprResult &RHS, ExprValueKind &VK, |
6596 | | ExprObjectKind &OK, |
6597 | 2 | SourceLocation QuestionLoc) { |
6598 | | // FIXME: Handle C99's complex types, block pointers and Obj-C++ interface |
6599 | | // pointers. |
6600 | | |
6601 | | // Assume r-value. |
6602 | 2 | VK = VK_PRValue; |
6603 | 2 | OK = OK_Ordinary; |
6604 | 2 | bool IsVectorConditional = |
6605 | 2 | isValidVectorForConditionalCondition(Context, Cond.get()->getType()); |
6606 | | |
6607 | 2 | bool IsSizelessVectorConditional = |
6608 | 2 | isValidSizelessVectorForConditionalCondition(Context, |
6609 | 2 | Cond.get()->getType()); |
6610 | | |
6611 | | // C++11 [expr.cond]p1 |
6612 | | // The first expression is contextually converted to bool. |
6613 | 2 | if (!Cond.get()->isTypeDependent()) { |
6614 | 0 | ExprResult CondRes = IsVectorConditional || IsSizelessVectorConditional |
6615 | 0 | ? DefaultFunctionArrayLvalueConversion(Cond.get()) |
6616 | 0 | : CheckCXXBooleanCondition(Cond.get()); |
6617 | 0 | if (CondRes.isInvalid()) |
6618 | 0 | return QualType(); |
6619 | 0 | Cond = CondRes; |
6620 | 2 | } else { |
6621 | | // To implement C++, the first expression typically doesn't alter the result |
6622 | | // type of the conditional, however the GCC compatible vector extension |
6623 | | // changes the result type to be that of the conditional. Since we cannot |
6624 | | // know if this is a vector extension here, delay the conversion of the |
6625 | | // LHS/RHS below until later. |
6626 | 2 | return Context.DependentTy; |
6627 | 2 | } |
6628 | | |
6629 | | |
6630 | | // Either of the arguments dependent? |
6631 | 0 | if (LHS.get()->isTypeDependent() || RHS.get()->isTypeDependent()) |
6632 | 0 | return Context.DependentTy; |
6633 | | |
6634 | | // C++11 [expr.cond]p2 |
6635 | | // If either the second or the third operand has type (cv) void, ... |
6636 | 0 | QualType LTy = LHS.get()->getType(); |
6637 | 0 | QualType RTy = RHS.get()->getType(); |
6638 | 0 | bool LVoid = LTy->isVoidType(); |
6639 | 0 | bool RVoid = RTy->isVoidType(); |
6640 | 0 | if (LVoid || RVoid) { |
6641 | | // ... one of the following shall hold: |
6642 | | // -- The second or the third operand (but not both) is a (possibly |
6643 | | // parenthesized) throw-expression; the result is of the type |
6644 | | // and value category of the other. |
6645 | 0 | bool LThrow = isa<CXXThrowExpr>(LHS.get()->IgnoreParenImpCasts()); |
6646 | 0 | bool RThrow = isa<CXXThrowExpr>(RHS.get()->IgnoreParenImpCasts()); |
6647 | | |
6648 | | // Void expressions aren't legal in the vector-conditional expressions. |
6649 | 0 | if (IsVectorConditional) { |
6650 | 0 | SourceRange DiagLoc = |
6651 | 0 | LVoid ? LHS.get()->getSourceRange() : RHS.get()->getSourceRange(); |
6652 | 0 | bool IsThrow = LVoid ? LThrow : RThrow; |
6653 | 0 | Diag(DiagLoc.getBegin(), diag::err_conditional_vector_has_void) |
6654 | 0 | << DiagLoc << IsThrow; |
6655 | 0 | return QualType(); |
6656 | 0 | } |
6657 | | |
6658 | 0 | if (LThrow != RThrow) { |
6659 | 0 | Expr *NonThrow = LThrow ? RHS.get() : LHS.get(); |
6660 | 0 | VK = NonThrow->getValueKind(); |
6661 | | // DR (no number yet): the result is a bit-field if the |
6662 | | // non-throw-expression operand is a bit-field. |
6663 | 0 | OK = NonThrow->getObjectKind(); |
6664 | 0 | return NonThrow->getType(); |
6665 | 0 | } |
6666 | | |
6667 | | // -- Both the second and third operands have type void; the result is of |
6668 | | // type void and is a prvalue. |
6669 | 0 | if (LVoid && RVoid) |
6670 | 0 | return Context.getCommonSugaredType(LTy, RTy); |
6671 | | |
6672 | | // Neither holds, error. |
6673 | 0 | Diag(QuestionLoc, diag::err_conditional_void_nonvoid) |
6674 | 0 | << (LVoid ? RTy : LTy) << (LVoid ? 0 : 1) |
6675 | 0 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
6676 | 0 | return QualType(); |
6677 | 0 | } |
6678 | | |
6679 | | // Neither is void. |
6680 | 0 | if (IsVectorConditional) |
6681 | 0 | return CheckVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); |
6682 | | |
6683 | 0 | if (IsSizelessVectorConditional) |
6684 | 0 | return CheckSizelessVectorConditionalTypes(Cond, LHS, RHS, QuestionLoc); |
6685 | | |
6686 | | // WebAssembly tables are not allowed as conditional LHS or RHS. |
6687 | 0 | if (LTy->isWebAssemblyTableType() || RTy->isWebAssemblyTableType()) { |
6688 | 0 | Diag(QuestionLoc, diag::err_wasm_table_conditional_expression) |
6689 | 0 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
6690 | 0 | return QualType(); |
6691 | 0 | } |
6692 | | |
6693 | | // C++11 [expr.cond]p3 |
6694 | | // Otherwise, if the second and third operand have different types, and |
6695 | | // either has (cv) class type [...] an attempt is made to convert each of |
6696 | | // those operands to the type of the other. |
6697 | 0 | if (!Context.hasSameType(LTy, RTy) && |
6698 | 0 | (LTy->isRecordType() || RTy->isRecordType())) { |
6699 | | // These return true if a single direction is already ambiguous. |
6700 | 0 | QualType L2RType, R2LType; |
6701 | 0 | bool HaveL2R, HaveR2L; |
6702 | 0 | if (TryClassUnification(*this, LHS.get(), RHS.get(), QuestionLoc, HaveL2R, L2RType)) |
6703 | 0 | return QualType(); |
6704 | 0 | if (TryClassUnification(*this, RHS.get(), LHS.get(), QuestionLoc, HaveR2L, R2LType)) |
6705 | 0 | return QualType(); |
6706 | | |
6707 | | // If both can be converted, [...] the program is ill-formed. |
6708 | 0 | if (HaveL2R && HaveR2L) { |
6709 | 0 | Diag(QuestionLoc, diag::err_conditional_ambiguous) |
6710 | 0 | << LTy << RTy << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
6711 | 0 | return QualType(); |
6712 | 0 | } |
6713 | | |
6714 | | // If exactly one conversion is possible, that conversion is applied to |
6715 | | // the chosen operand and the converted operands are used in place of the |
6716 | | // original operands for the remainder of this section. |
6717 | 0 | if (HaveL2R) { |
6718 | 0 | if (ConvertForConditional(*this, LHS, L2RType) || LHS.isInvalid()) |
6719 | 0 | return QualType(); |
6720 | 0 | LTy = LHS.get()->getType(); |
6721 | 0 | } else if (HaveR2L) { |
6722 | 0 | if (ConvertForConditional(*this, RHS, R2LType) || RHS.isInvalid()) |
6723 | 0 | return QualType(); |
6724 | 0 | RTy = RHS.get()->getType(); |
6725 | 0 | } |
6726 | 0 | } |
6727 | | |
6728 | | // C++11 [expr.cond]p3 |
6729 | | // if both are glvalues of the same value category and the same type except |
6730 | | // for cv-qualification, an attempt is made to convert each of those |
6731 | | // operands to the type of the other. |
6732 | | // FIXME: |
6733 | | // Resolving a defect in P0012R1: we extend this to cover all cases where |
6734 | | // one of the operands is reference-compatible with the other, in order |
6735 | | // to support conditionals between functions differing in noexcept. This |
6736 | | // will similarly cover difference in array bounds after P0388R4. |
6737 | | // FIXME: If LTy and RTy have a composite pointer type, should we convert to |
6738 | | // that instead? |
6739 | 0 | ExprValueKind LVK = LHS.get()->getValueKind(); |
6740 | 0 | ExprValueKind RVK = RHS.get()->getValueKind(); |
6741 | 0 | if (!Context.hasSameType(LTy, RTy) && LVK == RVK && LVK != VK_PRValue) { |
6742 | | // DerivedToBase was already handled by the class-specific case above. |
6743 | | // FIXME: Should we allow ObjC conversions here? |
6744 | 0 | const ReferenceConversions AllowedConversions = |
6745 | 0 | ReferenceConversions::Qualification | |
6746 | 0 | ReferenceConversions::NestedQualification | |
6747 | 0 | ReferenceConversions::Function; |
6748 | |
|
6749 | 0 | ReferenceConversions RefConv; |
6750 | 0 | if (CompareReferenceRelationship(QuestionLoc, LTy, RTy, &RefConv) == |
6751 | 0 | Ref_Compatible && |
6752 | 0 | !(RefConv & ~AllowedConversions) && |
6753 | | // [...] subject to the constraint that the reference must bind |
6754 | | // directly [...] |
6755 | 0 | !RHS.get()->refersToBitField() && !RHS.get()->refersToVectorElement()) { |
6756 | 0 | RHS = ImpCastExprToType(RHS.get(), LTy, CK_NoOp, RVK); |
6757 | 0 | RTy = RHS.get()->getType(); |
6758 | 0 | } else if (CompareReferenceRelationship(QuestionLoc, RTy, LTy, &RefConv) == |
6759 | 0 | Ref_Compatible && |
6760 | 0 | !(RefConv & ~AllowedConversions) && |
6761 | 0 | !LHS.get()->refersToBitField() && |
6762 | 0 | !LHS.get()->refersToVectorElement()) { |
6763 | 0 | LHS = ImpCastExprToType(LHS.get(), RTy, CK_NoOp, LVK); |
6764 | 0 | LTy = LHS.get()->getType(); |
6765 | 0 | } |
6766 | 0 | } |
6767 | | |
6768 | | // C++11 [expr.cond]p4 |
6769 | | // If the second and third operands are glvalues of the same value |
6770 | | // category and have the same type, the result is of that type and |
6771 | | // value category and it is a bit-field if the second or the third |
6772 | | // operand is a bit-field, or if both are bit-fields. |
6773 | | // We only extend this to bitfields, not to the crazy other kinds of |
6774 | | // l-values. |
6775 | 0 | bool Same = Context.hasSameType(LTy, RTy); |
6776 | 0 | if (Same && LVK == RVK && LVK != VK_PRValue && |
6777 | 0 | LHS.get()->isOrdinaryOrBitFieldObject() && |
6778 | 0 | RHS.get()->isOrdinaryOrBitFieldObject()) { |
6779 | 0 | VK = LHS.get()->getValueKind(); |
6780 | 0 | if (LHS.get()->getObjectKind() == OK_BitField || |
6781 | 0 | RHS.get()->getObjectKind() == OK_BitField) |
6782 | 0 | OK = OK_BitField; |
6783 | 0 | return Context.getCommonSugaredType(LTy, RTy); |
6784 | 0 | } |
6785 | | |
6786 | | // C++11 [expr.cond]p5 |
6787 | | // Otherwise, the result is a prvalue. If the second and third operands |
6788 | | // do not have the same type, and either has (cv) class type, ... |
6789 | 0 | if (!Same && (LTy->isRecordType() || RTy->isRecordType())) { |
6790 | | // ... overload resolution is used to determine the conversions (if any) |
6791 | | // to be applied to the operands. If the overload resolution fails, the |
6792 | | // program is ill-formed. |
6793 | 0 | if (FindConditionalOverload(*this, LHS, RHS, QuestionLoc)) |
6794 | 0 | return QualType(); |
6795 | 0 | } |
6796 | | |
6797 | | // C++11 [expr.cond]p6 |
6798 | | // Lvalue-to-rvalue, array-to-pointer, and function-to-pointer standard |
6799 | | // conversions are performed on the second and third operands. |
6800 | 0 | LHS = DefaultFunctionArrayLvalueConversion(LHS.get()); |
6801 | 0 | RHS = DefaultFunctionArrayLvalueConversion(RHS.get()); |
6802 | 0 | if (LHS.isInvalid() || RHS.isInvalid()) |
6803 | 0 | return QualType(); |
6804 | 0 | LTy = LHS.get()->getType(); |
6805 | 0 | RTy = RHS.get()->getType(); |
6806 | | |
6807 | | // After those conversions, one of the following shall hold: |
6808 | | // -- The second and third operands have the same type; the result |
6809 | | // is of that type. If the operands have class type, the result |
6810 | | // is a prvalue temporary of the result type, which is |
6811 | | // copy-initialized from either the second operand or the third |
6812 | | // operand depending on the value of the first operand. |
6813 | 0 | if (Context.hasSameType(LTy, RTy)) { |
6814 | 0 | if (LTy->isRecordType()) { |
6815 | | // The operands have class type. Make a temporary copy. |
6816 | 0 | ExprResult LHSCopy = PerformCopyInitialization( |
6817 | 0 | InitializedEntity::InitializeTemporary(LTy), SourceLocation(), LHS); |
6818 | 0 | if (LHSCopy.isInvalid()) |
6819 | 0 | return QualType(); |
6820 | | |
6821 | 0 | ExprResult RHSCopy = PerformCopyInitialization( |
6822 | 0 | InitializedEntity::InitializeTemporary(RTy), SourceLocation(), RHS); |
6823 | 0 | if (RHSCopy.isInvalid()) |
6824 | 0 | return QualType(); |
6825 | | |
6826 | 0 | LHS = LHSCopy; |
6827 | 0 | RHS = RHSCopy; |
6828 | 0 | } |
6829 | 0 | return Context.getCommonSugaredType(LTy, RTy); |
6830 | 0 | } |
6831 | | |
6832 | | // Extension: conditional operator involving vector types. |
6833 | 0 | if (LTy->isVectorType() || RTy->isVectorType()) |
6834 | 0 | return CheckVectorOperands(LHS, RHS, QuestionLoc, /*isCompAssign*/ false, |
6835 | 0 | /*AllowBothBool*/ true, |
6836 | 0 | /*AllowBoolConversions*/ false, |
6837 | 0 | /*AllowBoolOperation*/ false, |
6838 | 0 | /*ReportInvalid*/ true); |
6839 | | |
6840 | | // -- The second and third operands have arithmetic or enumeration type; |
6841 | | // the usual arithmetic conversions are performed to bring them to a |
6842 | | // common type, and the result is of that type. |
6843 | 0 | if (LTy->isArithmeticType() && RTy->isArithmeticType()) { |
6844 | 0 | QualType ResTy = |
6845 | 0 | UsualArithmeticConversions(LHS, RHS, QuestionLoc, ACK_Conditional); |
6846 | 0 | if (LHS.isInvalid() || RHS.isInvalid()) |
6847 | 0 | return QualType(); |
6848 | 0 | if (ResTy.isNull()) { |
6849 | 0 | Diag(QuestionLoc, |
6850 | 0 | diag::err_typecheck_cond_incompatible_operands) << LTy << RTy |
6851 | 0 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
6852 | 0 | return QualType(); |
6853 | 0 | } |
6854 | | |
6855 | 0 | LHS = ImpCastExprToType(LHS.get(), ResTy, PrepareScalarCast(LHS, ResTy)); |
6856 | 0 | RHS = ImpCastExprToType(RHS.get(), ResTy, PrepareScalarCast(RHS, ResTy)); |
6857 | |
|
6858 | 0 | return ResTy; |
6859 | 0 | } |
6860 | | |
6861 | | // -- The second and third operands have pointer type, or one has pointer |
6862 | | // type and the other is a null pointer constant, or both are null |
6863 | | // pointer constants, at least one of which is non-integral; pointer |
6864 | | // conversions and qualification conversions are performed to bring them |
6865 | | // to their composite pointer type. The result is of the composite |
6866 | | // pointer type. |
6867 | | // -- The second and third operands have pointer to member type, or one has |
6868 | | // pointer to member type and the other is a null pointer constant; |
6869 | | // pointer to member conversions and qualification conversions are |
6870 | | // performed to bring them to a common type, whose cv-qualification |
6871 | | // shall match the cv-qualification of either the second or the third |
6872 | | // operand. The result is of the common type. |
6873 | 0 | QualType Composite = FindCompositePointerType(QuestionLoc, LHS, RHS); |
6874 | 0 | if (!Composite.isNull()) |
6875 | 0 | return Composite; |
6876 | | |
6877 | | // Similarly, attempt to find composite type of two objective-c pointers. |
6878 | 0 | Composite = FindCompositeObjCPointerType(LHS, RHS, QuestionLoc); |
6879 | 0 | if (LHS.isInvalid() || RHS.isInvalid()) |
6880 | 0 | return QualType(); |
6881 | 0 | if (!Composite.isNull()) |
6882 | 0 | return Composite; |
6883 | | |
6884 | | // Check if we are using a null with a non-pointer type. |
6885 | 0 | if (DiagnoseConditionalForNull(LHS.get(), RHS.get(), QuestionLoc)) |
6886 | 0 | return QualType(); |
6887 | | |
6888 | 0 | Diag(QuestionLoc, diag::err_typecheck_cond_incompatible_operands) |
6889 | 0 | << LHS.get()->getType() << RHS.get()->getType() |
6890 | 0 | << LHS.get()->getSourceRange() << RHS.get()->getSourceRange(); |
6891 | 0 | return QualType(); |
6892 | 0 | } |
6893 | | |
6894 | | /// Find a merged pointer type and convert the two expressions to it. |
6895 | | /// |
6896 | | /// This finds the composite pointer type for \p E1 and \p E2 according to |
6897 | | /// C++2a [expr.type]p3. It converts both expressions to this type and returns |
6898 | | /// it. It does not emit diagnostics (FIXME: that's not true if \p ConvertArgs |
6899 | | /// is \c true). |
6900 | | /// |
6901 | | /// \param Loc The location of the operator requiring these two expressions to |
6902 | | /// be converted to the composite pointer type. |
6903 | | /// |
6904 | | /// \param ConvertArgs If \c false, do not convert E1 and E2 to the target type. |
6905 | | QualType Sema::FindCompositePointerType(SourceLocation Loc, |
6906 | | Expr *&E1, Expr *&E2, |
6907 | 0 | bool ConvertArgs) { |
6908 | 0 | assert(getLangOpts().CPlusPlus && "This function assumes C++"); |
6909 | | |
6910 | | // C++1z [expr]p14: |
6911 | | // The composite pointer type of two operands p1 and p2 having types T1 |
6912 | | // and T2 |
6913 | 0 | QualType T1 = E1->getType(), T2 = E2->getType(); |
6914 | | |
6915 | | // where at least one is a pointer or pointer to member type or |
6916 | | // std::nullptr_t is: |
6917 | 0 | bool T1IsPointerLike = T1->isAnyPointerType() || T1->isMemberPointerType() || |
6918 | 0 | T1->isNullPtrType(); |
6919 | 0 | bool T2IsPointerLike = T2->isAnyPointerType() || T2->isMemberPointerType() || |
6920 | 0 | T2->isNullPtrType(); |
6921 | 0 | if (!T1IsPointerLike && !T2IsPointerLike) |
6922 | 0 | return QualType(); |
6923 | | |
6924 | | // - if both p1 and p2 are null pointer constants, std::nullptr_t; |
6925 | | // This can't actually happen, following the standard, but we also use this |
6926 | | // to implement the end of [expr.conv], which hits this case. |
6927 | | // |
6928 | | // - if either p1 or p2 is a null pointer constant, T2 or T1, respectively; |
6929 | 0 | if (T1IsPointerLike && |
6930 | 0 | E2->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
6931 | 0 | if (ConvertArgs) |
6932 | 0 | E2 = ImpCastExprToType(E2, T1, T1->isMemberPointerType() |
6933 | 0 | ? CK_NullToMemberPointer |
6934 | 0 | : CK_NullToPointer).get(); |
6935 | 0 | return T1; |
6936 | 0 | } |
6937 | 0 | if (T2IsPointerLike && |
6938 | 0 | E1->isNullPointerConstant(Context, Expr::NPC_ValueDependentIsNull)) { |
6939 | 0 | if (ConvertArgs) |
6940 | 0 | E1 = ImpCastExprToType(E1, T2, T2->isMemberPointerType() |
6941 | 0 | ? CK_NullToMemberPointer |
6942 | 0 | : CK_NullToPointer).get(); |
6943 | 0 | return T2; |
6944 | 0 | } |
6945 | | |
6946 | | // Now both have to be pointers or member pointers. |
6947 | 0 | if (!T1IsPointerLike || !T2IsPointerLike) |
6948 | 0 | return QualType(); |
6949 | 0 | assert(!T1->isNullPtrType() && !T2->isNullPtrType() && |
6950 | 0 | "nullptr_t should be a null pointer constant"); |
6951 | | |
6952 | 0 | struct Step { |
6953 | 0 | enum Kind { Pointer, ObjCPointer, MemberPointer, Array } K; |
6954 | | // Qualifiers to apply under the step kind. |
6955 | 0 | Qualifiers Quals; |
6956 | | /// The class for a pointer-to-member; a constant array type with a bound |
6957 | | /// (if any) for an array. |
6958 | 0 | const Type *ClassOrBound; |
6959 | |
|
6960 | 0 | Step(Kind K, const Type *ClassOrBound = nullptr) |
6961 | 0 | : K(K), ClassOrBound(ClassOrBound) {} |
6962 | 0 | QualType rebuild(ASTContext &Ctx, QualType T) const { |
6963 | 0 | T = Ctx.getQualifiedType(T, Quals); |
6964 | 0 | switch (K) { |
6965 | 0 | case Pointer: |
6966 | 0 | return Ctx.getPointerType(T); |
6967 | 0 | case MemberPointer: |
6968 | 0 | return Ctx.getMemberPointerType(T, ClassOrBound); |
6969 | 0 | case ObjCPointer: |
6970 | 0 | return Ctx.getObjCObjectPointerType(T); |
6971 | 0 | case Array: |
6972 | 0 | if (auto *CAT = cast_or_null<ConstantArrayType>(ClassOrBound)) |
6973 | 0 | return Ctx.getConstantArrayType(T, CAT->getSize(), nullptr, |
6974 | 0 | ArraySizeModifier::Normal, 0); |
6975 | 0 | else |
6976 | 0 | return Ctx.getIncompleteArrayType(T, ArraySizeModifier::Normal, 0); |
6977 | 0 | } |
6978 | 0 | llvm_unreachable("unknown step kind"); |
6979 | 0 | } |
6980 | 0 | }; |
6981 | |
|
6982 | 0 | SmallVector<Step, 8> Steps; |
6983 | | |
6984 | | // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 |
6985 | | // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), |
6986 | | // the cv-combined type of T1 and T2 or the cv-combined type of T2 and T1, |
6987 | | // respectively; |
6988 | | // - if T1 is "pointer to member of C1 of type cv1 U1" and T2 is "pointer |
6989 | | // to member of C2 of type cv2 U2" for some non-function type U, where |
6990 | | // C1 is reference-related to C2 or C2 is reference-related to C1, the |
6991 | | // cv-combined type of T2 and T1 or the cv-combined type of T1 and T2, |
6992 | | // respectively; |
6993 | | // - if T1 and T2 are similar types (4.5), the cv-combined type of T1 and |
6994 | | // T2; |
6995 | | // |
6996 | | // Dismantle T1 and T2 to simultaneously determine whether they are similar |
6997 | | // and to prepare to form the cv-combined type if so. |
6998 | 0 | QualType Composite1 = T1; |
6999 | 0 | QualType Composite2 = T2; |
7000 | 0 | unsigned NeedConstBefore = 0; |
7001 | 0 | while (true) { |
7002 | 0 | assert(!Composite1.isNull() && !Composite2.isNull()); |
7003 | | |
7004 | 0 | Qualifiers Q1, Q2; |
7005 | 0 | Composite1 = Context.getUnqualifiedArrayType(Composite1, Q1); |
7006 | 0 | Composite2 = Context.getUnqualifiedArrayType(Composite2, Q2); |
7007 | | |
7008 | | // Top-level qualifiers are ignored. Merge at all lower levels. |
7009 | 0 | if (!Steps.empty()) { |
7010 | | // Find the qualifier union: (approximately) the unique minimal set of |
7011 | | // qualifiers that is compatible with both types. |
7012 | 0 | Qualifiers Quals = Qualifiers::fromCVRUMask(Q1.getCVRUQualifiers() | |
7013 | 0 | Q2.getCVRUQualifiers()); |
7014 | | |
7015 | | // Under one level of pointer or pointer-to-member, we can change to an |
7016 | | // unambiguous compatible address space. |
7017 | 0 | if (Q1.getAddressSpace() == Q2.getAddressSpace()) { |
7018 | 0 | Quals.setAddressSpace(Q1.getAddressSpace()); |
7019 | 0 | } else if (Steps.size() == 1) { |
7020 | 0 | bool MaybeQ1 = Q1.isAddressSpaceSupersetOf(Q2); |
7021 | 0 | bool MaybeQ2 = Q2.isAddressSpaceSupersetOf(Q1); |
7022 | 0 | if (MaybeQ1 == MaybeQ2) { |
7023 | | // Exception for ptr size address spaces. Should be able to choose |
7024 | | // either address space during comparison. |
7025 | 0 | if (isPtrSizeAddressSpace(Q1.getAddressSpace()) || |
7026 | 0 | isPtrSizeAddressSpace(Q2.getAddressSpace())) |
7027 | 0 | MaybeQ1 = true; |
7028 | 0 | else |
7029 | 0 | return QualType(); // No unique best address space. |
7030 | 0 | } |
7031 | 0 | Quals.setAddressSpace(MaybeQ1 ? Q1.getAddressSpace() |
7032 | 0 | : Q2.getAddressSpace()); |
7033 | 0 | } else { |
7034 | 0 | return QualType(); |
7035 | 0 | } |
7036 | | |
7037 | | // FIXME: In C, we merge __strong and none to __strong at the top level. |
7038 | 0 | if (Q1.getObjCGCAttr() == Q2.getObjCGCAttr()) |
7039 | 0 | Quals.setObjCGCAttr(Q1.getObjCGCAttr()); |
7040 | 0 | else if (T1->isVoidPointerType() || T2->isVoidPointerType()) |
7041 | 0 | assert(Steps.size() == 1); |
7042 | 0 | else |
7043 | 0 | return QualType(); |
7044 | | |
7045 | | // Mismatched lifetime qualifiers never compatibly include each other. |
7046 | 0 | if (Q1.getObjCLifetime() == Q2.getObjCLifetime()) |
7047 | 0 | Quals.setObjCLifetime(Q1.getObjCLifetime()); |
7048 | 0 | else if (T1->isVoidPointerType() || T2->isVoidPointerType()) |
7049 | 0 | assert(Steps.size() == 1); |
7050 | 0 | else |
7051 | 0 | return QualType(); |
7052 | | |
7053 | 0 | Steps.back().Quals = Quals; |
7054 | 0 | if (Q1 != Quals || Q2 != Quals) |
7055 | 0 | NeedConstBefore = Steps.size() - 1; |
7056 | 0 | } |
7057 | | |
7058 | | // FIXME: Can we unify the following with UnwrapSimilarTypes? |
7059 | | |
7060 | 0 | const ArrayType *Arr1, *Arr2; |
7061 | 0 | if ((Arr1 = Context.getAsArrayType(Composite1)) && |
7062 | 0 | (Arr2 = Context.getAsArrayType(Composite2))) { |
7063 | 0 | auto *CAT1 = dyn_cast<ConstantArrayType>(Arr1); |
7064 | 0 | auto *CAT2 = dyn_cast<ConstantArrayType>(Arr2); |
7065 | 0 | if (CAT1 && CAT2 && CAT1->getSize() == CAT2->getSize()) { |
7066 | 0 | Composite1 = Arr1->getElementType(); |
7067 | 0 | Composite2 = Arr2->getElementType(); |
7068 | 0 | Steps.emplace_back(Step::Array, CAT1); |
7069 | 0 | continue; |
7070 | 0 | } |
7071 | 0 | bool IAT1 = isa<IncompleteArrayType>(Arr1); |
7072 | 0 | bool IAT2 = isa<IncompleteArrayType>(Arr2); |
7073 | 0 | if ((IAT1 && IAT2) || |
7074 | 0 | (getLangOpts().CPlusPlus20 && (IAT1 != IAT2) && |
7075 | 0 | ((bool)CAT1 != (bool)CAT2) && |
7076 | 0 | (Steps.empty() || Steps.back().K != Step::Array))) { |
7077 | | // In C++20 onwards, we can unify an array of N T with an array of |
7078 | | // a different or unknown bound. But we can't form an array whose |
7079 | | // element type is an array of unknown bound by doing so. |
7080 | 0 | Composite1 = Arr1->getElementType(); |
7081 | 0 | Composite2 = Arr2->getElementType(); |
7082 | 0 | Steps.emplace_back(Step::Array); |
7083 | 0 | if (CAT1 || CAT2) |
7084 | 0 | NeedConstBefore = Steps.size(); |
7085 | 0 | continue; |
7086 | 0 | } |
7087 | 0 | } |
7088 | | |
7089 | 0 | const PointerType *Ptr1, *Ptr2; |
7090 | 0 | if ((Ptr1 = Composite1->getAs<PointerType>()) && |
7091 | 0 | (Ptr2 = Composite2->getAs<PointerType>())) { |
7092 | 0 | Composite1 = Ptr1->getPointeeType(); |
7093 | 0 | Composite2 = Ptr2->getPointeeType(); |
7094 | 0 | Steps.emplace_back(Step::Pointer); |
7095 | 0 | continue; |
7096 | 0 | } |
7097 | | |
7098 | 0 | const ObjCObjectPointerType *ObjPtr1, *ObjPtr2; |
7099 | 0 | if ((ObjPtr1 = Composite1->getAs<ObjCObjectPointerType>()) && |
7100 | 0 | (ObjPtr2 = Composite2->getAs<ObjCObjectPointerType>())) { |
7101 | 0 | Composite1 = ObjPtr1->getPointeeType(); |
7102 | 0 | Composite2 = ObjPtr2->getPointeeType(); |
7103 | 0 | Steps.emplace_back(Step::ObjCPointer); |
7104 | 0 | continue; |
7105 | 0 | } |
7106 | | |
7107 | 0 | const MemberPointerType *MemPtr1, *MemPtr2; |
7108 | 0 | if ((MemPtr1 = Composite1->getAs<MemberPointerType>()) && |
7109 | 0 | (MemPtr2 = Composite2->getAs<MemberPointerType>())) { |
7110 | 0 | Composite1 = MemPtr1->getPointeeType(); |
7111 | 0 | Composite2 = MemPtr2->getPointeeType(); |
7112 | | |
7113 | | // At the top level, we can perform a base-to-derived pointer-to-member |
7114 | | // conversion: |
7115 | | // |
7116 | | // - [...] where C1 is reference-related to C2 or C2 is |
7117 | | // reference-related to C1 |
7118 | | // |
7119 | | // (Note that the only kinds of reference-relatedness in scope here are |
7120 | | // "same type or derived from".) At any other level, the class must |
7121 | | // exactly match. |
7122 | 0 | const Type *Class = nullptr; |
7123 | 0 | QualType Cls1(MemPtr1->getClass(), 0); |
7124 | 0 | QualType Cls2(MemPtr2->getClass(), 0); |
7125 | 0 | if (Context.hasSameType(Cls1, Cls2)) |
7126 | 0 | Class = MemPtr1->getClass(); |
7127 | 0 | else if (Steps.empty()) |
7128 | 0 | Class = IsDerivedFrom(Loc, Cls1, Cls2) ? MemPtr1->getClass() : |
7129 | 0 | IsDerivedFrom(Loc, Cls2, Cls1) ? MemPtr2->getClass() : nullptr; |
7130 | 0 | if (!Class) |
7131 | 0 | return QualType(); |
7132 | | |
7133 | 0 | Steps.emplace_back(Step::MemberPointer, Class); |
7134 | 0 | continue; |
7135 | 0 | } |
7136 | | |
7137 | | // Special case: at the top level, we can decompose an Objective-C pointer |
7138 | | // and a 'cv void *'. Unify the qualifiers. |
7139 | 0 | if (Steps.empty() && ((Composite1->isVoidPointerType() && |
7140 | 0 | Composite2->isObjCObjectPointerType()) || |
7141 | 0 | (Composite1->isObjCObjectPointerType() && |
7142 | 0 | Composite2->isVoidPointerType()))) { |
7143 | 0 | Composite1 = Composite1->getPointeeType(); |
7144 | 0 | Composite2 = Composite2->getPointeeType(); |
7145 | 0 | Steps.emplace_back(Step::Pointer); |
7146 | 0 | continue; |
7147 | 0 | } |
7148 | | |
7149 | | // FIXME: block pointer types? |
7150 | | |
7151 | | // Cannot unwrap any more types. |
7152 | 0 | break; |
7153 | 0 | } |
7154 | | |
7155 | | // - if T1 or T2 is "pointer to noexcept function" and the other type is |
7156 | | // "pointer to function", where the function types are otherwise the same, |
7157 | | // "pointer to function"; |
7158 | | // - if T1 or T2 is "pointer to member of C1 of type function", the other |
7159 | | // type is "pointer to member of C2 of type noexcept function", and C1 |
7160 | | // is reference-related to C2 or C2 is reference-related to C1, where |
7161 | | // the function types are otherwise the same, "pointer to member of C2 of |
7162 | | // type function" or "pointer to member of C1 of type function", |
7163 | | // respectively; |
7164 | | // |
7165 | | // We also support 'noreturn' here, so as a Clang extension we generalize the |
7166 | | // above to: |
7167 | | // |
7168 | | // - [Clang] If T1 and T2 are both of type "pointer to function" or |
7169 | | // "pointer to member function" and the pointee types can be unified |
7170 | | // by a function pointer conversion, that conversion is applied |
7171 | | // before checking the following rules. |
7172 | | // |
7173 | | // We've already unwrapped down to the function types, and we want to merge |
7174 | | // rather than just convert, so do this ourselves rather than calling |
7175 | | // IsFunctionConversion. |
7176 | | // |
7177 | | // FIXME: In order to match the standard wording as closely as possible, we |
7178 | | // currently only do this under a single level of pointers. Ideally, we would |
7179 | | // allow this in general, and set NeedConstBefore to the relevant depth on |
7180 | | // the side(s) where we changed anything. If we permit that, we should also |
7181 | | // consider this conversion when determining type similarity and model it as |
7182 | | // a qualification conversion. |
7183 | 0 | if (Steps.size() == 1) { |
7184 | 0 | if (auto *FPT1 = Composite1->getAs<FunctionProtoType>()) { |
7185 | 0 | if (auto *FPT2 = Composite2->getAs<FunctionProtoType>()) { |
7186 | 0 | FunctionProtoType::ExtProtoInfo EPI1 = FPT1->getExtProtoInfo(); |
7187 | 0 | FunctionProtoType::ExtProtoInfo EPI2 = FPT2->getExtProtoInfo(); |
7188 | | |
7189 | | // The result is noreturn if both operands are. |
7190 | 0 | bool Noreturn = |
7191 | 0 | EPI1.ExtInfo.getNoReturn() && EPI2.ExtInfo.getNoReturn(); |
7192 | 0 | EPI1.ExtInfo = EPI1.ExtInfo.withNoReturn(Noreturn); |
7193 | 0 | EPI2.ExtInfo = EPI2.ExtInfo.withNoReturn(Noreturn); |
7194 | | |
7195 | | // The result is nothrow if both operands are. |
7196 | 0 | SmallVector<QualType, 8> ExceptionTypeStorage; |
7197 | 0 | EPI1.ExceptionSpec = EPI2.ExceptionSpec = Context.mergeExceptionSpecs( |
7198 | 0 | EPI1.ExceptionSpec, EPI2.ExceptionSpec, ExceptionTypeStorage, |
7199 | 0 | getLangOpts().CPlusPlus17); |
7200 | |
|
7201 | 0 | Composite1 = Context.getFunctionType(FPT1->getReturnType(), |
7202 | 0 | FPT1->getParamTypes(), EPI1); |
7203 | 0 | Composite2 = Context.getFunctionType(FPT2->getReturnType(), |
7204 | 0 | FPT2->getParamTypes(), EPI2); |
7205 | 0 | } |
7206 | 0 | } |
7207 | 0 | } |
7208 | | |
7209 | | // There are some more conversions we can perform under exactly one pointer. |
7210 | 0 | if (Steps.size() == 1 && Steps.front().K == Step::Pointer && |
7211 | 0 | !Context.hasSameType(Composite1, Composite2)) { |
7212 | | // - if T1 or T2 is "pointer to cv1 void" and the other type is |
7213 | | // "pointer to cv2 T", where T is an object type or void, |
7214 | | // "pointer to cv12 void", where cv12 is the union of cv1 and cv2; |
7215 | 0 | if (Composite1->isVoidType() && Composite2->isObjectType()) |
7216 | 0 | Composite2 = Composite1; |
7217 | 0 | else if (Composite2->isVoidType() && Composite1->isObjectType()) |
7218 | 0 | Composite1 = Composite2; |
7219 | | // - if T1 is "pointer to cv1 C1" and T2 is "pointer to cv2 C2", where C1 |
7220 | | // is reference-related to C2 or C2 is reference-related to C1 (8.6.3), |
7221 | | // the cv-combined type of T1 and T2 or the cv-combined type of T2 and |
7222 | | // T1, respectively; |
7223 | | // |
7224 | | // The "similar type" handling covers all of this except for the "T1 is a |
7225 | | // base class of T2" case in the definition of reference-related. |
7226 | 0 | else if (IsDerivedFrom(Loc, Composite1, Composite2)) |
7227 | 0 | Composite1 = Composite2; |
7228 | 0 | else if (IsDerivedFrom(Loc, Composite2, Composite1)) |
7229 | 0 | Composite2 = Composite1; |
7230 | 0 | } |
7231 | | |
7232 | | // At this point, either the inner types are the same or we have failed to |
7233 | | // find a composite pointer type. |
7234 | 0 | if (!Context.hasSameType(Composite1, Composite2)) |
7235 | 0 | return QualType(); |
7236 | | |
7237 | | // Per C++ [conv.qual]p3, add 'const' to every level before the last |
7238 | | // differing qualifier. |
7239 | 0 | for (unsigned I = 0; I != NeedConstBefore; ++I) |
7240 | 0 | Steps[I].Quals.addConst(); |
7241 | | |
7242 | | // Rebuild the composite type. |
7243 | 0 | QualType Composite = Context.getCommonSugaredType(Composite1, Composite2); |
7244 | 0 | for (auto &S : llvm::reverse(Steps)) |
7245 | 0 | Composite = S.rebuild(Context, Composite); |
7246 | |
|
7247 | 0 | if (ConvertArgs) { |
7248 | | // Convert the expressions to the composite pointer type. |
7249 | 0 | InitializedEntity Entity = |
7250 | 0 | InitializedEntity::InitializeTemporary(Composite); |
7251 | 0 | InitializationKind Kind = |
7252 | 0 | InitializationKind::CreateCopy(Loc, SourceLocation()); |
7253 | |
|
7254 | 0 | InitializationSequence E1ToC(*this, Entity, Kind, E1); |
7255 | 0 | if (!E1ToC) |
7256 | 0 | return QualType(); |
7257 | | |
7258 | 0 | InitializationSequence E2ToC(*this, Entity, Kind, E2); |
7259 | 0 | if (!E2ToC) |
7260 | 0 | return QualType(); |
7261 | | |
7262 | | // FIXME: Let the caller know if these fail to avoid duplicate diagnostics. |
7263 | 0 | ExprResult E1Result = E1ToC.Perform(*this, Entity, Kind, E1); |
7264 | 0 | if (E1Result.isInvalid()) |
7265 | 0 | return QualType(); |
7266 | 0 | E1 = E1Result.get(); |
7267 | |
|
7268 | 0 | ExprResult E2Result = E2ToC.Perform(*this, Entity, Kind, E2); |
7269 | 0 | if (E2Result.isInvalid()) |
7270 | 0 | return QualType(); |
7271 | 0 | E2 = E2Result.get(); |
7272 | 0 | } |
7273 | | |
7274 | 0 | return Composite; |
7275 | 0 | } |
7276 | | |
7277 | 0 | ExprResult Sema::MaybeBindToTemporary(Expr *E) { |
7278 | 0 | if (!E) |
7279 | 0 | return ExprError(); |
7280 | | |
7281 | 0 | assert(!isa<CXXBindTemporaryExpr>(E) && "Double-bound temporary?"); |
7282 | | |
7283 | | // If the result is a glvalue, we shouldn't bind it. |
7284 | 0 | if (E->isGLValue()) |
7285 | 0 | return E; |
7286 | | |
7287 | | // In ARC, calls that return a retainable type can return retained, |
7288 | | // in which case we have to insert a consuming cast. |
7289 | 0 | if (getLangOpts().ObjCAutoRefCount && |
7290 | 0 | E->getType()->isObjCRetainableType()) { |
7291 | |
|
7292 | 0 | bool ReturnsRetained; |
7293 | | |
7294 | | // For actual calls, we compute this by examining the type of the |
7295 | | // called value. |
7296 | 0 | if (CallExpr *Call = dyn_cast<CallExpr>(E)) { |
7297 | 0 | Expr *Callee = Call->getCallee()->IgnoreParens(); |
7298 | 0 | QualType T = Callee->getType(); |
7299 | |
|
7300 | 0 | if (T == Context.BoundMemberTy) { |
7301 | | // Handle pointer-to-members. |
7302 | 0 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Callee)) |
7303 | 0 | T = BinOp->getRHS()->getType(); |
7304 | 0 | else if (MemberExpr *Mem = dyn_cast<MemberExpr>(Callee)) |
7305 | 0 | T = Mem->getMemberDecl()->getType(); |
7306 | 0 | } |
7307 | |
|
7308 | 0 | if (const PointerType *Ptr = T->getAs<PointerType>()) |
7309 | 0 | T = Ptr->getPointeeType(); |
7310 | 0 | else if (const BlockPointerType *Ptr = T->getAs<BlockPointerType>()) |
7311 | 0 | T = Ptr->getPointeeType(); |
7312 | 0 | else if (const MemberPointerType *MemPtr = T->getAs<MemberPointerType>()) |
7313 | 0 | T = MemPtr->getPointeeType(); |
7314 | |
|
7315 | 0 | auto *FTy = T->castAs<FunctionType>(); |
7316 | 0 | ReturnsRetained = FTy->getExtInfo().getProducesResult(); |
7317 | | |
7318 | | // ActOnStmtExpr arranges things so that StmtExprs of retainable |
7319 | | // type always produce a +1 object. |
7320 | 0 | } else if (isa<StmtExpr>(E)) { |
7321 | 0 | ReturnsRetained = true; |
7322 | | |
7323 | | // We hit this case with the lambda conversion-to-block optimization; |
7324 | | // we don't want any extra casts here. |
7325 | 0 | } else if (isa<CastExpr>(E) && |
7326 | 0 | isa<BlockExpr>(cast<CastExpr>(E)->getSubExpr())) { |
7327 | 0 | return E; |
7328 | | |
7329 | | // For message sends and property references, we try to find an |
7330 | | // actual method. FIXME: we should infer retention by selector in |
7331 | | // cases where we don't have an actual method. |
7332 | 0 | } else { |
7333 | 0 | ObjCMethodDecl *D = nullptr; |
7334 | 0 | if (ObjCMessageExpr *Send = dyn_cast<ObjCMessageExpr>(E)) { |
7335 | 0 | D = Send->getMethodDecl(); |
7336 | 0 | } else if (ObjCBoxedExpr *BoxedExpr = dyn_cast<ObjCBoxedExpr>(E)) { |
7337 | 0 | D = BoxedExpr->getBoxingMethod(); |
7338 | 0 | } else if (ObjCArrayLiteral *ArrayLit = dyn_cast<ObjCArrayLiteral>(E)) { |
7339 | | // Don't do reclaims if we're using the zero-element array |
7340 | | // constant. |
7341 | 0 | if (ArrayLit->getNumElements() == 0 && |
7342 | 0 | Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) |
7343 | 0 | return E; |
7344 | | |
7345 | 0 | D = ArrayLit->getArrayWithObjectsMethod(); |
7346 | 0 | } else if (ObjCDictionaryLiteral *DictLit |
7347 | 0 | = dyn_cast<ObjCDictionaryLiteral>(E)) { |
7348 | | // Don't do reclaims if we're using the zero-element dictionary |
7349 | | // constant. |
7350 | 0 | if (DictLit->getNumElements() == 0 && |
7351 | 0 | Context.getLangOpts().ObjCRuntime.hasEmptyCollections()) |
7352 | 0 | return E; |
7353 | | |
7354 | 0 | D = DictLit->getDictWithObjectsMethod(); |
7355 | 0 | } |
7356 | | |
7357 | 0 | ReturnsRetained = (D && D->hasAttr<NSReturnsRetainedAttr>()); |
7358 | | |
7359 | | // Don't do reclaims on performSelector calls; despite their |
7360 | | // return type, the invoked method doesn't necessarily actually |
7361 | | // return an object. |
7362 | 0 | if (!ReturnsRetained && |
7363 | 0 | D && D->getMethodFamily() == OMF_performSelector) |
7364 | 0 | return E; |
7365 | 0 | } |
7366 | | |
7367 | | // Don't reclaim an object of Class type. |
7368 | 0 | if (!ReturnsRetained && E->getType()->isObjCARCImplicitlyUnretainedType()) |
7369 | 0 | return E; |
7370 | | |
7371 | 0 | Cleanup.setExprNeedsCleanups(true); |
7372 | |
|
7373 | 0 | CastKind ck = (ReturnsRetained ? CK_ARCConsumeObject |
7374 | 0 | : CK_ARCReclaimReturnedObject); |
7375 | 0 | return ImplicitCastExpr::Create(Context, E->getType(), ck, E, nullptr, |
7376 | 0 | VK_PRValue, FPOptionsOverride()); |
7377 | 0 | } |
7378 | | |
7379 | 0 | if (E->getType().isDestructedType() == QualType::DK_nontrivial_c_struct) |
7380 | 0 | Cleanup.setExprNeedsCleanups(true); |
7381 | |
|
7382 | 0 | if (!getLangOpts().CPlusPlus) |
7383 | 0 | return E; |
7384 | | |
7385 | | // Search for the base element type (cf. ASTContext::getBaseElementType) with |
7386 | | // a fast path for the common case that the type is directly a RecordType. |
7387 | 0 | const Type *T = Context.getCanonicalType(E->getType().getTypePtr()); |
7388 | 0 | const RecordType *RT = nullptr; |
7389 | 0 | while (!RT) { |
7390 | 0 | switch (T->getTypeClass()) { |
7391 | 0 | case Type::Record: |
7392 | 0 | RT = cast<RecordType>(T); |
7393 | 0 | break; |
7394 | 0 | case Type::ConstantArray: |
7395 | 0 | case Type::IncompleteArray: |
7396 | 0 | case Type::VariableArray: |
7397 | 0 | case Type::DependentSizedArray: |
7398 | 0 | T = cast<ArrayType>(T)->getElementType().getTypePtr(); |
7399 | 0 | break; |
7400 | 0 | default: |
7401 | 0 | return E; |
7402 | 0 | } |
7403 | 0 | } |
7404 | | |
7405 | | // That should be enough to guarantee that this type is complete, if we're |
7406 | | // not processing a decltype expression. |
7407 | 0 | CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
7408 | 0 | if (RD->isInvalidDecl() || RD->isDependentContext()) |
7409 | 0 | return E; |
7410 | | |
7411 | 0 | bool IsDecltype = ExprEvalContexts.back().ExprContext == |
7412 | 0 | ExpressionEvaluationContextRecord::EK_Decltype; |
7413 | 0 | CXXDestructorDecl *Destructor = IsDecltype ? nullptr : LookupDestructor(RD); |
7414 | |
|
7415 | 0 | if (Destructor) { |
7416 | 0 | MarkFunctionReferenced(E->getExprLoc(), Destructor); |
7417 | 0 | CheckDestructorAccess(E->getExprLoc(), Destructor, |
7418 | 0 | PDiag(diag::err_access_dtor_temp) |
7419 | 0 | << E->getType()); |
7420 | 0 | if (DiagnoseUseOfDecl(Destructor, E->getExprLoc())) |
7421 | 0 | return ExprError(); |
7422 | | |
7423 | | // If destructor is trivial, we can avoid the extra copy. |
7424 | 0 | if (Destructor->isTrivial()) |
7425 | 0 | return E; |
7426 | | |
7427 | | // We need a cleanup, but we don't need to remember the temporary. |
7428 | 0 | Cleanup.setExprNeedsCleanups(true); |
7429 | 0 | } |
7430 | | |
7431 | 0 | CXXTemporary *Temp = CXXTemporary::Create(Context, Destructor); |
7432 | 0 | CXXBindTemporaryExpr *Bind = CXXBindTemporaryExpr::Create(Context, Temp, E); |
7433 | |
|
7434 | 0 | if (IsDecltype) |
7435 | 0 | ExprEvalContexts.back().DelayedDecltypeBinds.push_back(Bind); |
7436 | |
|
7437 | 0 | return Bind; |
7438 | 0 | } |
7439 | | |
7440 | | ExprResult |
7441 | 20 | Sema::MaybeCreateExprWithCleanups(ExprResult SubExpr) { |
7442 | 20 | if (SubExpr.isInvalid()) |
7443 | 0 | return ExprError(); |
7444 | | |
7445 | 20 | return MaybeCreateExprWithCleanups(SubExpr.get()); |
7446 | 20 | } |
7447 | | |
7448 | 20 | Expr *Sema::MaybeCreateExprWithCleanups(Expr *SubExpr) { |
7449 | 20 | assert(SubExpr && "subexpression can't be null!"); |
7450 | | |
7451 | 0 | CleanupVarDeclMarking(); |
7452 | | |
7453 | 20 | unsigned FirstCleanup = ExprEvalContexts.back().NumCleanupObjects; |
7454 | 20 | assert(ExprCleanupObjects.size() >= FirstCleanup); |
7455 | 0 | assert(Cleanup.exprNeedsCleanups() || |
7456 | 20 | ExprCleanupObjects.size() == FirstCleanup); |
7457 | 20 | if (!Cleanup.exprNeedsCleanups()) |
7458 | 20 | return SubExpr; |
7459 | | |
7460 | 0 | auto Cleanups = llvm::ArrayRef(ExprCleanupObjects.begin() + FirstCleanup, |
7461 | 0 | ExprCleanupObjects.size() - FirstCleanup); |
7462 | |
|
7463 | 0 | auto *E = ExprWithCleanups::Create( |
7464 | 0 | Context, SubExpr, Cleanup.cleanupsHaveSideEffects(), Cleanups); |
7465 | 0 | DiscardCleanupsInEvaluationContext(); |
7466 | |
|
7467 | 0 | return E; |
7468 | 20 | } |
7469 | | |
7470 | 0 | Stmt *Sema::MaybeCreateStmtWithCleanups(Stmt *SubStmt) { |
7471 | 0 | assert(SubStmt && "sub-statement can't be null!"); |
7472 | | |
7473 | 0 | CleanupVarDeclMarking(); |
7474 | |
|
7475 | 0 | if (!Cleanup.exprNeedsCleanups()) |
7476 | 0 | return SubStmt; |
7477 | | |
7478 | | // FIXME: In order to attach the temporaries, wrap the statement into |
7479 | | // a StmtExpr; currently this is only used for asm statements. |
7480 | | // This is hacky, either create a new CXXStmtWithTemporaries statement or |
7481 | | // a new AsmStmtWithTemporaries. |
7482 | 0 | CompoundStmt *CompStmt = |
7483 | 0 | CompoundStmt::Create(Context, SubStmt, FPOptionsOverride(), |
7484 | 0 | SourceLocation(), SourceLocation()); |
7485 | 0 | Expr *E = new (Context) |
7486 | 0 | StmtExpr(CompStmt, Context.VoidTy, SourceLocation(), SourceLocation(), |
7487 | 0 | /*FIXME TemplateDepth=*/0); |
7488 | 0 | return MaybeCreateExprWithCleanups(E); |
7489 | 0 | } |
7490 | | |
7491 | | /// Process the expression contained within a decltype. For such expressions, |
7492 | | /// certain semantic checks on temporaries are delayed until this point, and |
7493 | | /// are omitted for the 'topmost' call in the decltype expression. If the |
7494 | | /// topmost call bound a temporary, strip that temporary off the expression. |
7495 | 0 | ExprResult Sema::ActOnDecltypeExpression(Expr *E) { |
7496 | 0 | assert(ExprEvalContexts.back().ExprContext == |
7497 | 0 | ExpressionEvaluationContextRecord::EK_Decltype && |
7498 | 0 | "not in a decltype expression"); |
7499 | | |
7500 | 0 | ExprResult Result = CheckPlaceholderExpr(E); |
7501 | 0 | if (Result.isInvalid()) |
7502 | 0 | return ExprError(); |
7503 | 0 | E = Result.get(); |
7504 | | |
7505 | | // C++11 [expr.call]p11: |
7506 | | // If a function call is a prvalue of object type, |
7507 | | // -- if the function call is either |
7508 | | // -- the operand of a decltype-specifier, or |
7509 | | // -- the right operand of a comma operator that is the operand of a |
7510 | | // decltype-specifier, |
7511 | | // a temporary object is not introduced for the prvalue. |
7512 | | |
7513 | | // Recursively rebuild ParenExprs and comma expressions to strip out the |
7514 | | // outermost CXXBindTemporaryExpr, if any. |
7515 | 0 | if (ParenExpr *PE = dyn_cast<ParenExpr>(E)) { |
7516 | 0 | ExprResult SubExpr = ActOnDecltypeExpression(PE->getSubExpr()); |
7517 | 0 | if (SubExpr.isInvalid()) |
7518 | 0 | return ExprError(); |
7519 | 0 | if (SubExpr.get() == PE->getSubExpr()) |
7520 | 0 | return E; |
7521 | 0 | return ActOnParenExpr(PE->getLParen(), PE->getRParen(), SubExpr.get()); |
7522 | 0 | } |
7523 | 0 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
7524 | 0 | if (BO->getOpcode() == BO_Comma) { |
7525 | 0 | ExprResult RHS = ActOnDecltypeExpression(BO->getRHS()); |
7526 | 0 | if (RHS.isInvalid()) |
7527 | 0 | return ExprError(); |
7528 | 0 | if (RHS.get() == BO->getRHS()) |
7529 | 0 | return E; |
7530 | 0 | return BinaryOperator::Create(Context, BO->getLHS(), RHS.get(), BO_Comma, |
7531 | 0 | BO->getType(), BO->getValueKind(), |
7532 | 0 | BO->getObjectKind(), BO->getOperatorLoc(), |
7533 | 0 | BO->getFPFeatures()); |
7534 | 0 | } |
7535 | 0 | } |
7536 | | |
7537 | 0 | CXXBindTemporaryExpr *TopBind = dyn_cast<CXXBindTemporaryExpr>(E); |
7538 | 0 | CallExpr *TopCall = TopBind ? dyn_cast<CallExpr>(TopBind->getSubExpr()) |
7539 | 0 | : nullptr; |
7540 | 0 | if (TopCall) |
7541 | 0 | E = TopCall; |
7542 | 0 | else |
7543 | 0 | TopBind = nullptr; |
7544 | | |
7545 | | // Disable the special decltype handling now. |
7546 | 0 | ExprEvalContexts.back().ExprContext = |
7547 | 0 | ExpressionEvaluationContextRecord::EK_Other; |
7548 | |
|
7549 | 0 | Result = CheckUnevaluatedOperand(E); |
7550 | 0 | if (Result.isInvalid()) |
7551 | 0 | return ExprError(); |
7552 | 0 | E = Result.get(); |
7553 | | |
7554 | | // In MS mode, don't perform any extra checking of call return types within a |
7555 | | // decltype expression. |
7556 | 0 | if (getLangOpts().MSVCCompat) |
7557 | 0 | return E; |
7558 | | |
7559 | | // Perform the semantic checks we delayed until this point. |
7560 | 0 | for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeCalls.size(); |
7561 | 0 | I != N; ++I) { |
7562 | 0 | CallExpr *Call = ExprEvalContexts.back().DelayedDecltypeCalls[I]; |
7563 | 0 | if (Call == TopCall) |
7564 | 0 | continue; |
7565 | | |
7566 | 0 | if (CheckCallReturnType(Call->getCallReturnType(Context), |
7567 | 0 | Call->getBeginLoc(), Call, Call->getDirectCallee())) |
7568 | 0 | return ExprError(); |
7569 | 0 | } |
7570 | | |
7571 | | // Now all relevant types are complete, check the destructors are accessible |
7572 | | // and non-deleted, and annotate them on the temporaries. |
7573 | 0 | for (unsigned I = 0, N = ExprEvalContexts.back().DelayedDecltypeBinds.size(); |
7574 | 0 | I != N; ++I) { |
7575 | 0 | CXXBindTemporaryExpr *Bind = |
7576 | 0 | ExprEvalContexts.back().DelayedDecltypeBinds[I]; |
7577 | 0 | if (Bind == TopBind) |
7578 | 0 | continue; |
7579 | | |
7580 | 0 | CXXTemporary *Temp = Bind->getTemporary(); |
7581 | |
|
7582 | 0 | CXXRecordDecl *RD = |
7583 | 0 | Bind->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
7584 | 0 | CXXDestructorDecl *Destructor = LookupDestructor(RD); |
7585 | 0 | Temp->setDestructor(Destructor); |
7586 | |
|
7587 | 0 | MarkFunctionReferenced(Bind->getExprLoc(), Destructor); |
7588 | 0 | CheckDestructorAccess(Bind->getExprLoc(), Destructor, |
7589 | 0 | PDiag(diag::err_access_dtor_temp) |
7590 | 0 | << Bind->getType()); |
7591 | 0 | if (DiagnoseUseOfDecl(Destructor, Bind->getExprLoc())) |
7592 | 0 | return ExprError(); |
7593 | | |
7594 | | // We need a cleanup, but we don't need to remember the temporary. |
7595 | 0 | Cleanup.setExprNeedsCleanups(true); |
7596 | 0 | } |
7597 | | |
7598 | | // Possibly strip off the top CXXBindTemporaryExpr. |
7599 | 0 | return E; |
7600 | 0 | } |
7601 | | |
7602 | | /// Note a set of 'operator->' functions that were used for a member access. |
7603 | | static void noteOperatorArrows(Sema &S, |
7604 | 0 | ArrayRef<FunctionDecl *> OperatorArrows) { |
7605 | 0 | unsigned SkipStart = OperatorArrows.size(), SkipCount = 0; |
7606 | | // FIXME: Make this configurable? |
7607 | 0 | unsigned Limit = 9; |
7608 | 0 | if (OperatorArrows.size() > Limit) { |
7609 | | // Produce Limit-1 normal notes and one 'skipping' note. |
7610 | 0 | SkipStart = (Limit - 1) / 2 + (Limit - 1) % 2; |
7611 | 0 | SkipCount = OperatorArrows.size() - (Limit - 1); |
7612 | 0 | } |
7613 | |
|
7614 | 0 | for (unsigned I = 0; I < OperatorArrows.size(); /**/) { |
7615 | 0 | if (I == SkipStart) { |
7616 | 0 | S.Diag(OperatorArrows[I]->getLocation(), |
7617 | 0 | diag::note_operator_arrows_suppressed) |
7618 | 0 | << SkipCount; |
7619 | 0 | I += SkipCount; |
7620 | 0 | } else { |
7621 | 0 | S.Diag(OperatorArrows[I]->getLocation(), diag::note_operator_arrow_here) |
7622 | 0 | << OperatorArrows[I]->getCallResultType(); |
7623 | 0 | ++I; |
7624 | 0 | } |
7625 | 0 | } |
7626 | 0 | } |
7627 | | |
7628 | | ExprResult Sema::ActOnStartCXXMemberReference(Scope *S, Expr *Base, |
7629 | | SourceLocation OpLoc, |
7630 | | tok::TokenKind OpKind, |
7631 | | ParsedType &ObjectType, |
7632 | 2 | bool &MayBePseudoDestructor) { |
7633 | | // Since this might be a postfix expression, get rid of ParenListExprs. |
7634 | 2 | ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base); |
7635 | 2 | if (Result.isInvalid()) return ExprError(); |
7636 | 2 | Base = Result.get(); |
7637 | | |
7638 | 2 | Result = CheckPlaceholderExpr(Base); |
7639 | 2 | if (Result.isInvalid()) return ExprError(); |
7640 | 2 | Base = Result.get(); |
7641 | | |
7642 | 2 | QualType BaseType = Base->getType(); |
7643 | 2 | MayBePseudoDestructor = false; |
7644 | 2 | if (BaseType->isDependentType()) { |
7645 | | // If we have a pointer to a dependent type and are using the -> operator, |
7646 | | // the object type is the type that the pointer points to. We might still |
7647 | | // have enough information about that type to do something useful. |
7648 | 2 | if (OpKind == tok::arrow) |
7649 | 0 | if (const PointerType *Ptr = BaseType->getAs<PointerType>()) |
7650 | 0 | BaseType = Ptr->getPointeeType(); |
7651 | | |
7652 | 2 | ObjectType = ParsedType::make(BaseType); |
7653 | 2 | MayBePseudoDestructor = true; |
7654 | 2 | return Base; |
7655 | 2 | } |
7656 | | |
7657 | | // C++ [over.match.oper]p8: |
7658 | | // [...] When operator->returns, the operator-> is applied to the value |
7659 | | // returned, with the original second operand. |
7660 | 0 | if (OpKind == tok::arrow) { |
7661 | 0 | QualType StartingType = BaseType; |
7662 | 0 | bool NoArrowOperatorFound = false; |
7663 | 0 | bool FirstIteration = true; |
7664 | 0 | FunctionDecl *CurFD = dyn_cast<FunctionDecl>(CurContext); |
7665 | | // The set of types we've considered so far. |
7666 | 0 | llvm::SmallPtrSet<CanQualType,8> CTypes; |
7667 | 0 | SmallVector<FunctionDecl*, 8> OperatorArrows; |
7668 | 0 | CTypes.insert(Context.getCanonicalType(BaseType)); |
7669 | |
|
7670 | 0 | while (BaseType->isRecordType()) { |
7671 | 0 | if (OperatorArrows.size() >= getLangOpts().ArrowDepth) { |
7672 | 0 | Diag(OpLoc, diag::err_operator_arrow_depth_exceeded) |
7673 | 0 | << StartingType << getLangOpts().ArrowDepth << Base->getSourceRange(); |
7674 | 0 | noteOperatorArrows(*this, OperatorArrows); |
7675 | 0 | Diag(OpLoc, diag::note_operator_arrow_depth) |
7676 | 0 | << getLangOpts().ArrowDepth; |
7677 | 0 | return ExprError(); |
7678 | 0 | } |
7679 | | |
7680 | 0 | Result = BuildOverloadedArrowExpr( |
7681 | 0 | S, Base, OpLoc, |
7682 | | // When in a template specialization and on the first loop iteration, |
7683 | | // potentially give the default diagnostic (with the fixit in a |
7684 | | // separate note) instead of having the error reported back to here |
7685 | | // and giving a diagnostic with a fixit attached to the error itself. |
7686 | 0 | (FirstIteration && CurFD && CurFD->isFunctionTemplateSpecialization()) |
7687 | 0 | ? nullptr |
7688 | 0 | : &NoArrowOperatorFound); |
7689 | 0 | if (Result.isInvalid()) { |
7690 | 0 | if (NoArrowOperatorFound) { |
7691 | 0 | if (FirstIteration) { |
7692 | 0 | Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
7693 | 0 | << BaseType << 1 << Base->getSourceRange() |
7694 | 0 | << FixItHint::CreateReplacement(OpLoc, "."); |
7695 | 0 | OpKind = tok::period; |
7696 | 0 | break; |
7697 | 0 | } |
7698 | 0 | Diag(OpLoc, diag::err_typecheck_member_reference_arrow) |
7699 | 0 | << BaseType << Base->getSourceRange(); |
7700 | 0 | CallExpr *CE = dyn_cast<CallExpr>(Base); |
7701 | 0 | if (Decl *CD = (CE ? CE->getCalleeDecl() : nullptr)) { |
7702 | 0 | Diag(CD->getBeginLoc(), |
7703 | 0 | diag::note_member_reference_arrow_from_operator_arrow); |
7704 | 0 | } |
7705 | 0 | } |
7706 | 0 | return ExprError(); |
7707 | 0 | } |
7708 | 0 | Base = Result.get(); |
7709 | 0 | if (CXXOperatorCallExpr *OpCall = dyn_cast<CXXOperatorCallExpr>(Base)) |
7710 | 0 | OperatorArrows.push_back(OpCall->getDirectCallee()); |
7711 | 0 | BaseType = Base->getType(); |
7712 | 0 | CanQualType CBaseType = Context.getCanonicalType(BaseType); |
7713 | 0 | if (!CTypes.insert(CBaseType).second) { |
7714 | 0 | Diag(OpLoc, diag::err_operator_arrow_circular) << StartingType; |
7715 | 0 | noteOperatorArrows(*this, OperatorArrows); |
7716 | 0 | return ExprError(); |
7717 | 0 | } |
7718 | 0 | FirstIteration = false; |
7719 | 0 | } |
7720 | | |
7721 | 0 | if (OpKind == tok::arrow) { |
7722 | 0 | if (BaseType->isPointerType()) |
7723 | 0 | BaseType = BaseType->getPointeeType(); |
7724 | 0 | else if (auto *AT = Context.getAsArrayType(BaseType)) |
7725 | 0 | BaseType = AT->getElementType(); |
7726 | 0 | } |
7727 | 0 | } |
7728 | | |
7729 | | // Objective-C properties allow "." access on Objective-C pointer types, |
7730 | | // so adjust the base type to the object type itself. |
7731 | 0 | if (BaseType->isObjCObjectPointerType()) |
7732 | 0 | BaseType = BaseType->getPointeeType(); |
7733 | | |
7734 | | // C++ [basic.lookup.classref]p2: |
7735 | | // [...] If the type of the object expression is of pointer to scalar |
7736 | | // type, the unqualified-id is looked up in the context of the complete |
7737 | | // postfix-expression. |
7738 | | // |
7739 | | // This also indicates that we could be parsing a pseudo-destructor-name. |
7740 | | // Note that Objective-C class and object types can be pseudo-destructor |
7741 | | // expressions or normal member (ivar or property) access expressions, and |
7742 | | // it's legal for the type to be incomplete if this is a pseudo-destructor |
7743 | | // call. We'll do more incomplete-type checks later in the lookup process, |
7744 | | // so just skip this check for ObjC types. |
7745 | 0 | if (!BaseType->isRecordType()) { |
7746 | 0 | ObjectType = ParsedType::make(BaseType); |
7747 | 0 | MayBePseudoDestructor = true; |
7748 | 0 | return Base; |
7749 | 0 | } |
7750 | | |
7751 | | // The object type must be complete (or dependent), or |
7752 | | // C++11 [expr.prim.general]p3: |
7753 | | // Unlike the object expression in other contexts, *this is not required to |
7754 | | // be of complete type for purposes of class member access (5.2.5) outside |
7755 | | // the member function body. |
7756 | 0 | if (!BaseType->isDependentType() && |
7757 | 0 | !isThisOutsideMemberFunctionBody(BaseType) && |
7758 | 0 | RequireCompleteType(OpLoc, BaseType, |
7759 | 0 | diag::err_incomplete_member_access)) { |
7760 | 0 | return CreateRecoveryExpr(Base->getBeginLoc(), Base->getEndLoc(), {Base}); |
7761 | 0 | } |
7762 | | |
7763 | | // C++ [basic.lookup.classref]p2: |
7764 | | // If the id-expression in a class member access (5.2.5) is an |
7765 | | // unqualified-id, and the type of the object expression is of a class |
7766 | | // type C (or of pointer to a class type C), the unqualified-id is looked |
7767 | | // up in the scope of class C. [...] |
7768 | 0 | ObjectType = ParsedType::make(BaseType); |
7769 | 0 | return Base; |
7770 | 0 | } |
7771 | | |
7772 | | static bool CheckArrow(Sema &S, QualType &ObjectType, Expr *&Base, |
7773 | 0 | tok::TokenKind &OpKind, SourceLocation OpLoc) { |
7774 | 0 | if (Base->hasPlaceholderType()) { |
7775 | 0 | ExprResult result = S.CheckPlaceholderExpr(Base); |
7776 | 0 | if (result.isInvalid()) return true; |
7777 | 0 | Base = result.get(); |
7778 | 0 | } |
7779 | 0 | ObjectType = Base->getType(); |
7780 | | |
7781 | | // C++ [expr.pseudo]p2: |
7782 | | // The left-hand side of the dot operator shall be of scalar type. The |
7783 | | // left-hand side of the arrow operator shall be of pointer to scalar type. |
7784 | | // This scalar type is the object type. |
7785 | | // Note that this is rather different from the normal handling for the |
7786 | | // arrow operator. |
7787 | 0 | if (OpKind == tok::arrow) { |
7788 | | // The operator requires a prvalue, so perform lvalue conversions. |
7789 | | // Only do this if we might plausibly end with a pointer, as otherwise |
7790 | | // this was likely to be intended to be a '.'. |
7791 | 0 | if (ObjectType->isPointerType() || ObjectType->isArrayType() || |
7792 | 0 | ObjectType->isFunctionType()) { |
7793 | 0 | ExprResult BaseResult = S.DefaultFunctionArrayLvalueConversion(Base); |
7794 | 0 | if (BaseResult.isInvalid()) |
7795 | 0 | return true; |
7796 | 0 | Base = BaseResult.get(); |
7797 | 0 | ObjectType = Base->getType(); |
7798 | 0 | } |
7799 | | |
7800 | 0 | if (const PointerType *Ptr = ObjectType->getAs<PointerType>()) { |
7801 | 0 | ObjectType = Ptr->getPointeeType(); |
7802 | 0 | } else if (!Base->isTypeDependent()) { |
7803 | | // The user wrote "p->" when they probably meant "p."; fix it. |
7804 | 0 | S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
7805 | 0 | << ObjectType << true |
7806 | 0 | << FixItHint::CreateReplacement(OpLoc, "."); |
7807 | 0 | if (S.isSFINAEContext()) |
7808 | 0 | return true; |
7809 | | |
7810 | 0 | OpKind = tok::period; |
7811 | 0 | } |
7812 | 0 | } |
7813 | | |
7814 | 0 | return false; |
7815 | 0 | } |
7816 | | |
7817 | | /// Check if it's ok to try and recover dot pseudo destructor calls on |
7818 | | /// pointer objects. |
7819 | | static bool |
7820 | | canRecoverDotPseudoDestructorCallsOnPointerObjects(Sema &SemaRef, |
7821 | 0 | QualType DestructedType) { |
7822 | | // If this is a record type, check if its destructor is callable. |
7823 | 0 | if (auto *RD = DestructedType->getAsCXXRecordDecl()) { |
7824 | 0 | if (RD->hasDefinition()) |
7825 | 0 | if (CXXDestructorDecl *D = SemaRef.LookupDestructor(RD)) |
7826 | 0 | return SemaRef.CanUseDecl(D, /*TreatUnavailableAsInvalid=*/false); |
7827 | 0 | return false; |
7828 | 0 | } |
7829 | | |
7830 | | // Otherwise, check if it's a type for which it's valid to use a pseudo-dtor. |
7831 | 0 | return DestructedType->isDependentType() || DestructedType->isScalarType() || |
7832 | 0 | DestructedType->isVectorType(); |
7833 | 0 | } |
7834 | | |
7835 | | ExprResult Sema::BuildPseudoDestructorExpr(Expr *Base, |
7836 | | SourceLocation OpLoc, |
7837 | | tok::TokenKind OpKind, |
7838 | | const CXXScopeSpec &SS, |
7839 | | TypeSourceInfo *ScopeTypeInfo, |
7840 | | SourceLocation CCLoc, |
7841 | | SourceLocation TildeLoc, |
7842 | 0 | PseudoDestructorTypeStorage Destructed) { |
7843 | 0 | TypeSourceInfo *DestructedTypeInfo = Destructed.getTypeSourceInfo(); |
7844 | |
|
7845 | 0 | QualType ObjectType; |
7846 | 0 | if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) |
7847 | 0 | return ExprError(); |
7848 | | |
7849 | 0 | if (!ObjectType->isDependentType() && !ObjectType->isScalarType() && |
7850 | 0 | !ObjectType->isVectorType()) { |
7851 | 0 | if (getLangOpts().MSVCCompat && ObjectType->isVoidType()) |
7852 | 0 | Diag(OpLoc, diag::ext_pseudo_dtor_on_void) << Base->getSourceRange(); |
7853 | 0 | else { |
7854 | 0 | Diag(OpLoc, diag::err_pseudo_dtor_base_not_scalar) |
7855 | 0 | << ObjectType << Base->getSourceRange(); |
7856 | 0 | return ExprError(); |
7857 | 0 | } |
7858 | 0 | } |
7859 | | |
7860 | | // C++ [expr.pseudo]p2: |
7861 | | // [...] The cv-unqualified versions of the object type and of the type |
7862 | | // designated by the pseudo-destructor-name shall be the same type. |
7863 | 0 | if (DestructedTypeInfo) { |
7864 | 0 | QualType DestructedType = DestructedTypeInfo->getType(); |
7865 | 0 | SourceLocation DestructedTypeStart = |
7866 | 0 | DestructedTypeInfo->getTypeLoc().getBeginLoc(); |
7867 | 0 | if (!DestructedType->isDependentType() && !ObjectType->isDependentType()) { |
7868 | 0 | if (!Context.hasSameUnqualifiedType(DestructedType, ObjectType)) { |
7869 | | // Detect dot pseudo destructor calls on pointer objects, e.g.: |
7870 | | // Foo *foo; |
7871 | | // foo.~Foo(); |
7872 | 0 | if (OpKind == tok::period && ObjectType->isPointerType() && |
7873 | 0 | Context.hasSameUnqualifiedType(DestructedType, |
7874 | 0 | ObjectType->getPointeeType())) { |
7875 | 0 | auto Diagnostic = |
7876 | 0 | Diag(OpLoc, diag::err_typecheck_member_reference_suggestion) |
7877 | 0 | << ObjectType << /*IsArrow=*/0 << Base->getSourceRange(); |
7878 | | |
7879 | | // Issue a fixit only when the destructor is valid. |
7880 | 0 | if (canRecoverDotPseudoDestructorCallsOnPointerObjects( |
7881 | 0 | *this, DestructedType)) |
7882 | 0 | Diagnostic << FixItHint::CreateReplacement(OpLoc, "->"); |
7883 | | |
7884 | | // Recover by setting the object type to the destructed type and the |
7885 | | // operator to '->'. |
7886 | 0 | ObjectType = DestructedType; |
7887 | 0 | OpKind = tok::arrow; |
7888 | 0 | } else { |
7889 | 0 | Diag(DestructedTypeStart, diag::err_pseudo_dtor_type_mismatch) |
7890 | 0 | << ObjectType << DestructedType << Base->getSourceRange() |
7891 | 0 | << DestructedTypeInfo->getTypeLoc().getSourceRange(); |
7892 | | |
7893 | | // Recover by setting the destructed type to the object type. |
7894 | 0 | DestructedType = ObjectType; |
7895 | 0 | DestructedTypeInfo = |
7896 | 0 | Context.getTrivialTypeSourceInfo(ObjectType, DestructedTypeStart); |
7897 | 0 | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); |
7898 | 0 | } |
7899 | 0 | } else if (DestructedType.getObjCLifetime() != |
7900 | 0 | ObjectType.getObjCLifetime()) { |
7901 | |
|
7902 | 0 | if (DestructedType.getObjCLifetime() == Qualifiers::OCL_None) { |
7903 | | // Okay: just pretend that the user provided the correctly-qualified |
7904 | | // type. |
7905 | 0 | } else { |
7906 | 0 | Diag(DestructedTypeStart, diag::err_arc_pseudo_dtor_inconstant_quals) |
7907 | 0 | << ObjectType << DestructedType << Base->getSourceRange() |
7908 | 0 | << DestructedTypeInfo->getTypeLoc().getSourceRange(); |
7909 | 0 | } |
7910 | | |
7911 | | // Recover by setting the destructed type to the object type. |
7912 | 0 | DestructedType = ObjectType; |
7913 | 0 | DestructedTypeInfo = Context.getTrivialTypeSourceInfo(ObjectType, |
7914 | 0 | DestructedTypeStart); |
7915 | 0 | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); |
7916 | 0 | } |
7917 | 0 | } |
7918 | 0 | } |
7919 | | |
7920 | | // C++ [expr.pseudo]p2: |
7921 | | // [...] Furthermore, the two type-names in a pseudo-destructor-name of the |
7922 | | // form |
7923 | | // |
7924 | | // ::[opt] nested-name-specifier[opt] type-name :: ~ type-name |
7925 | | // |
7926 | | // shall designate the same scalar type. |
7927 | 0 | if (ScopeTypeInfo) { |
7928 | 0 | QualType ScopeType = ScopeTypeInfo->getType(); |
7929 | 0 | if (!ScopeType->isDependentType() && !ObjectType->isDependentType() && |
7930 | 0 | !Context.hasSameUnqualifiedType(ScopeType, ObjectType)) { |
7931 | |
|
7932 | 0 | Diag(ScopeTypeInfo->getTypeLoc().getSourceRange().getBegin(), |
7933 | 0 | diag::err_pseudo_dtor_type_mismatch) |
7934 | 0 | << ObjectType << ScopeType << Base->getSourceRange() |
7935 | 0 | << ScopeTypeInfo->getTypeLoc().getSourceRange(); |
7936 | |
|
7937 | 0 | ScopeType = QualType(); |
7938 | 0 | ScopeTypeInfo = nullptr; |
7939 | 0 | } |
7940 | 0 | } |
7941 | |
|
7942 | 0 | Expr *Result |
7943 | 0 | = new (Context) CXXPseudoDestructorExpr(Context, Base, |
7944 | 0 | OpKind == tok::arrow, OpLoc, |
7945 | 0 | SS.getWithLocInContext(Context), |
7946 | 0 | ScopeTypeInfo, |
7947 | 0 | CCLoc, |
7948 | 0 | TildeLoc, |
7949 | 0 | Destructed); |
7950 | |
|
7951 | 0 | return Result; |
7952 | 0 | } |
7953 | | |
7954 | | ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, |
7955 | | SourceLocation OpLoc, |
7956 | | tok::TokenKind OpKind, |
7957 | | CXXScopeSpec &SS, |
7958 | | UnqualifiedId &FirstTypeName, |
7959 | | SourceLocation CCLoc, |
7960 | | SourceLocation TildeLoc, |
7961 | 0 | UnqualifiedId &SecondTypeName) { |
7962 | 0 | assert((FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || |
7963 | 0 | FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && |
7964 | 0 | "Invalid first type name in pseudo-destructor"); |
7965 | 0 | assert((SecondTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || |
7966 | 0 | SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) && |
7967 | 0 | "Invalid second type name in pseudo-destructor"); |
7968 | | |
7969 | 0 | QualType ObjectType; |
7970 | 0 | if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) |
7971 | 0 | return ExprError(); |
7972 | | |
7973 | | // Compute the object type that we should use for name lookup purposes. Only |
7974 | | // record types and dependent types matter. |
7975 | 0 | ParsedType ObjectTypePtrForLookup; |
7976 | 0 | if (!SS.isSet()) { |
7977 | 0 | if (ObjectType->isRecordType()) |
7978 | 0 | ObjectTypePtrForLookup = ParsedType::make(ObjectType); |
7979 | 0 | else if (ObjectType->isDependentType()) |
7980 | 0 | ObjectTypePtrForLookup = ParsedType::make(Context.DependentTy); |
7981 | 0 | } |
7982 | | |
7983 | | // Convert the name of the type being destructed (following the ~) into a |
7984 | | // type (with source-location information). |
7985 | 0 | QualType DestructedType; |
7986 | 0 | TypeSourceInfo *DestructedTypeInfo = nullptr; |
7987 | 0 | PseudoDestructorTypeStorage Destructed; |
7988 | 0 | if (SecondTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { |
7989 | 0 | ParsedType T = getTypeName(*SecondTypeName.Identifier, |
7990 | 0 | SecondTypeName.StartLocation, |
7991 | 0 | S, &SS, true, false, ObjectTypePtrForLookup, |
7992 | 0 | /*IsCtorOrDtorName*/true); |
7993 | 0 | if (!T && |
7994 | 0 | ((SS.isSet() && !computeDeclContext(SS, false)) || |
7995 | 0 | (!SS.isSet() && ObjectType->isDependentType()))) { |
7996 | | // The name of the type being destroyed is a dependent name, and we |
7997 | | // couldn't find anything useful in scope. Just store the identifier and |
7998 | | // it's location, and we'll perform (qualified) name lookup again at |
7999 | | // template instantiation time. |
8000 | 0 | Destructed = PseudoDestructorTypeStorage(SecondTypeName.Identifier, |
8001 | 0 | SecondTypeName.StartLocation); |
8002 | 0 | } else if (!T) { |
8003 | 0 | Diag(SecondTypeName.StartLocation, |
8004 | 0 | diag::err_pseudo_dtor_destructor_non_type) |
8005 | 0 | << SecondTypeName.Identifier << ObjectType; |
8006 | 0 | if (isSFINAEContext()) |
8007 | 0 | return ExprError(); |
8008 | | |
8009 | | // Recover by assuming we had the right type all along. |
8010 | 0 | DestructedType = ObjectType; |
8011 | 0 | } else |
8012 | 0 | DestructedType = GetTypeFromParser(T, &DestructedTypeInfo); |
8013 | 0 | } else { |
8014 | | // Resolve the template-id to a type. |
8015 | 0 | TemplateIdAnnotation *TemplateId = SecondTypeName.TemplateId; |
8016 | 0 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
8017 | 0 | TemplateId->NumArgs); |
8018 | 0 | TypeResult T = ActOnTemplateIdType(S, |
8019 | 0 | SS, |
8020 | 0 | TemplateId->TemplateKWLoc, |
8021 | 0 | TemplateId->Template, |
8022 | 0 | TemplateId->Name, |
8023 | 0 | TemplateId->TemplateNameLoc, |
8024 | 0 | TemplateId->LAngleLoc, |
8025 | 0 | TemplateArgsPtr, |
8026 | 0 | TemplateId->RAngleLoc, |
8027 | 0 | /*IsCtorOrDtorName*/true); |
8028 | 0 | if (T.isInvalid() || !T.get()) { |
8029 | | // Recover by assuming we had the right type all along. |
8030 | 0 | DestructedType = ObjectType; |
8031 | 0 | } else |
8032 | 0 | DestructedType = GetTypeFromParser(T.get(), &DestructedTypeInfo); |
8033 | 0 | } |
8034 | | |
8035 | | // If we've performed some kind of recovery, (re-)build the type source |
8036 | | // information. |
8037 | 0 | if (!DestructedType.isNull()) { |
8038 | 0 | if (!DestructedTypeInfo) |
8039 | 0 | DestructedTypeInfo = Context.getTrivialTypeSourceInfo(DestructedType, |
8040 | 0 | SecondTypeName.StartLocation); |
8041 | 0 | Destructed = PseudoDestructorTypeStorage(DestructedTypeInfo); |
8042 | 0 | } |
8043 | | |
8044 | | // Convert the name of the scope type (the type prior to '::') into a type. |
8045 | 0 | TypeSourceInfo *ScopeTypeInfo = nullptr; |
8046 | 0 | QualType ScopeType; |
8047 | 0 | if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_TemplateId || |
8048 | 0 | FirstTypeName.Identifier) { |
8049 | 0 | if (FirstTypeName.getKind() == UnqualifiedIdKind::IK_Identifier) { |
8050 | 0 | ParsedType T = getTypeName(*FirstTypeName.Identifier, |
8051 | 0 | FirstTypeName.StartLocation, |
8052 | 0 | S, &SS, true, false, ObjectTypePtrForLookup, |
8053 | 0 | /*IsCtorOrDtorName*/true); |
8054 | 0 | if (!T) { |
8055 | 0 | Diag(FirstTypeName.StartLocation, |
8056 | 0 | diag::err_pseudo_dtor_destructor_non_type) |
8057 | 0 | << FirstTypeName.Identifier << ObjectType; |
8058 | |
|
8059 | 0 | if (isSFINAEContext()) |
8060 | 0 | return ExprError(); |
8061 | | |
8062 | | // Just drop this type. It's unnecessary anyway. |
8063 | 0 | ScopeType = QualType(); |
8064 | 0 | } else |
8065 | 0 | ScopeType = GetTypeFromParser(T, &ScopeTypeInfo); |
8066 | 0 | } else { |
8067 | | // Resolve the template-id to a type. |
8068 | 0 | TemplateIdAnnotation *TemplateId = FirstTypeName.TemplateId; |
8069 | 0 | ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(), |
8070 | 0 | TemplateId->NumArgs); |
8071 | 0 | TypeResult T = ActOnTemplateIdType(S, |
8072 | 0 | SS, |
8073 | 0 | TemplateId->TemplateKWLoc, |
8074 | 0 | TemplateId->Template, |
8075 | 0 | TemplateId->Name, |
8076 | 0 | TemplateId->TemplateNameLoc, |
8077 | 0 | TemplateId->LAngleLoc, |
8078 | 0 | TemplateArgsPtr, |
8079 | 0 | TemplateId->RAngleLoc, |
8080 | 0 | /*IsCtorOrDtorName*/true); |
8081 | 0 | if (T.isInvalid() || !T.get()) { |
8082 | | // Recover by dropping this type. |
8083 | 0 | ScopeType = QualType(); |
8084 | 0 | } else |
8085 | 0 | ScopeType = GetTypeFromParser(T.get(), &ScopeTypeInfo); |
8086 | 0 | } |
8087 | 0 | } |
8088 | | |
8089 | 0 | if (!ScopeType.isNull() && !ScopeTypeInfo) |
8090 | 0 | ScopeTypeInfo = Context.getTrivialTypeSourceInfo(ScopeType, |
8091 | 0 | FirstTypeName.StartLocation); |
8092 | | |
8093 | |
|
8094 | 0 | return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, SS, |
8095 | 0 | ScopeTypeInfo, CCLoc, TildeLoc, |
8096 | 0 | Destructed); |
8097 | 0 | } |
8098 | | |
8099 | | ExprResult Sema::ActOnPseudoDestructorExpr(Scope *S, Expr *Base, |
8100 | | SourceLocation OpLoc, |
8101 | | tok::TokenKind OpKind, |
8102 | | SourceLocation TildeLoc, |
8103 | 0 | const DeclSpec& DS) { |
8104 | 0 | QualType ObjectType; |
8105 | 0 | if (CheckArrow(*this, ObjectType, Base, OpKind, OpLoc)) |
8106 | 0 | return ExprError(); |
8107 | | |
8108 | 0 | if (DS.getTypeSpecType() == DeclSpec::TST_decltype_auto) { |
8109 | 0 | Diag(DS.getTypeSpecTypeLoc(), diag::err_decltype_auto_invalid); |
8110 | 0 | return true; |
8111 | 0 | } |
8112 | | |
8113 | 0 | QualType T = BuildDecltypeType(DS.getRepAsExpr(), /*AsUnevaluated=*/false); |
8114 | |
|
8115 | 0 | TypeLocBuilder TLB; |
8116 | 0 | DecltypeTypeLoc DecltypeTL = TLB.push<DecltypeTypeLoc>(T); |
8117 | 0 | DecltypeTL.setDecltypeLoc(DS.getTypeSpecTypeLoc()); |
8118 | 0 | DecltypeTL.setRParenLoc(DS.getTypeofParensRange().getEnd()); |
8119 | 0 | TypeSourceInfo *DestructedTypeInfo = TLB.getTypeSourceInfo(Context, T); |
8120 | 0 | PseudoDestructorTypeStorage Destructed(DestructedTypeInfo); |
8121 | |
|
8122 | 0 | return BuildPseudoDestructorExpr(Base, OpLoc, OpKind, CXXScopeSpec(), |
8123 | 0 | nullptr, SourceLocation(), TildeLoc, |
8124 | 0 | Destructed); |
8125 | 0 | } |
8126 | | |
8127 | | ExprResult Sema::BuildCXXNoexceptExpr(SourceLocation KeyLoc, Expr *Operand, |
8128 | 0 | SourceLocation RParen) { |
8129 | | // If the operand is an unresolved lookup expression, the expression is ill- |
8130 | | // formed per [over.over]p1, because overloaded function names cannot be used |
8131 | | // without arguments except in explicit contexts. |
8132 | 0 | ExprResult R = CheckPlaceholderExpr(Operand); |
8133 | 0 | if (R.isInvalid()) |
8134 | 0 | return R; |
8135 | | |
8136 | 0 | R = CheckUnevaluatedOperand(R.get()); |
8137 | 0 | if (R.isInvalid()) |
8138 | 0 | return ExprError(); |
8139 | | |
8140 | 0 | Operand = R.get(); |
8141 | |
|
8142 | 0 | if (!inTemplateInstantiation() && !Operand->isInstantiationDependent() && |
8143 | 0 | Operand->HasSideEffects(Context, false)) { |
8144 | | // The expression operand for noexcept is in an unevaluated expression |
8145 | | // context, so side effects could result in unintended consequences. |
8146 | 0 | Diag(Operand->getExprLoc(), diag::warn_side_effects_unevaluated_context); |
8147 | 0 | } |
8148 | |
|
8149 | 0 | CanThrowResult CanThrow = canThrow(Operand); |
8150 | 0 | return new (Context) |
8151 | 0 | CXXNoexceptExpr(Context.BoolTy, Operand, CanThrow, KeyLoc, RParen); |
8152 | 0 | } |
8153 | | |
8154 | | ExprResult Sema::ActOnNoexceptExpr(SourceLocation KeyLoc, SourceLocation, |
8155 | 0 | Expr *Operand, SourceLocation RParen) { |
8156 | 0 | return BuildCXXNoexceptExpr(KeyLoc, Operand, RParen); |
8157 | 0 | } |
8158 | | |
8159 | | static void MaybeDecrementCount( |
8160 | 0 | Expr *E, llvm::DenseMap<const VarDecl *, int> &RefsMinusAssignments) { |
8161 | 0 | DeclRefExpr *LHS = nullptr; |
8162 | 0 | bool IsCompoundAssign = false; |
8163 | 0 | bool isIncrementDecrementUnaryOp = false; |
8164 | 0 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(E)) { |
8165 | 0 | if (BO->getLHS()->getType()->isDependentType() || |
8166 | 0 | BO->getRHS()->getType()->isDependentType()) { |
8167 | 0 | if (BO->getOpcode() != BO_Assign) |
8168 | 0 | return; |
8169 | 0 | } else if (!BO->isAssignmentOp()) |
8170 | 0 | return; |
8171 | 0 | else |
8172 | 0 | IsCompoundAssign = BO->isCompoundAssignmentOp(); |
8173 | 0 | LHS = dyn_cast<DeclRefExpr>(BO->getLHS()); |
8174 | 0 | } else if (CXXOperatorCallExpr *COCE = dyn_cast<CXXOperatorCallExpr>(E)) { |
8175 | 0 | if (COCE->getOperator() != OO_Equal) |
8176 | 0 | return; |
8177 | 0 | LHS = dyn_cast<DeclRefExpr>(COCE->getArg(0)); |
8178 | 0 | } else if (UnaryOperator *UO = dyn_cast<UnaryOperator>(E)) { |
8179 | 0 | if (!UO->isIncrementDecrementOp()) |
8180 | 0 | return; |
8181 | 0 | isIncrementDecrementUnaryOp = true; |
8182 | 0 | LHS = dyn_cast<DeclRefExpr>(UO->getSubExpr()); |
8183 | 0 | } |
8184 | 0 | if (!LHS) |
8185 | 0 | return; |
8186 | 0 | VarDecl *VD = dyn_cast<VarDecl>(LHS->getDecl()); |
8187 | 0 | if (!VD) |
8188 | 0 | return; |
8189 | | // Don't decrement RefsMinusAssignments if volatile variable with compound |
8190 | | // assignment (+=, ...) or increment/decrement unary operator to avoid |
8191 | | // potential unused-but-set-variable warning. |
8192 | 0 | if ((IsCompoundAssign || isIncrementDecrementUnaryOp) && |
8193 | 0 | VD->getType().isVolatileQualified()) |
8194 | 0 | return; |
8195 | 0 | auto iter = RefsMinusAssignments.find(VD); |
8196 | 0 | if (iter == RefsMinusAssignments.end()) |
8197 | 0 | return; |
8198 | 0 | iter->getSecond()--; |
8199 | 0 | } |
8200 | | |
8201 | | /// Perform the conversions required for an expression used in a |
8202 | | /// context that ignores the result. |
8203 | 0 | ExprResult Sema::IgnoredValueConversions(Expr *E) { |
8204 | 0 | MaybeDecrementCount(E, RefsMinusAssignments); |
8205 | |
|
8206 | 0 | if (E->hasPlaceholderType()) { |
8207 | 0 | ExprResult result = CheckPlaceholderExpr(E); |
8208 | 0 | if (result.isInvalid()) return E; |
8209 | 0 | E = result.get(); |
8210 | 0 | } |
8211 | | |
8212 | | // C99 6.3.2.1: |
8213 | | // [Except in specific positions,] an lvalue that does not have |
8214 | | // array type is converted to the value stored in the |
8215 | | // designated object (and is no longer an lvalue). |
8216 | 0 | if (E->isPRValue()) { |
8217 | | // In C, function designators (i.e. expressions of function type) |
8218 | | // are r-values, but we still want to do function-to-pointer decay |
8219 | | // on them. This is both technically correct and convenient for |
8220 | | // some clients. |
8221 | 0 | if (!getLangOpts().CPlusPlus && E->getType()->isFunctionType()) |
8222 | 0 | return DefaultFunctionArrayConversion(E); |
8223 | | |
8224 | 0 | return E; |
8225 | 0 | } |
8226 | | |
8227 | 0 | if (getLangOpts().CPlusPlus) { |
8228 | | // The C++11 standard defines the notion of a discarded-value expression; |
8229 | | // normally, we don't need to do anything to handle it, but if it is a |
8230 | | // volatile lvalue with a special form, we perform an lvalue-to-rvalue |
8231 | | // conversion. |
8232 | 0 | if (getLangOpts().CPlusPlus11 && E->isReadIfDiscardedInCPlusPlus11()) { |
8233 | 0 | ExprResult Res = DefaultLvalueConversion(E); |
8234 | 0 | if (Res.isInvalid()) |
8235 | 0 | return E; |
8236 | 0 | E = Res.get(); |
8237 | 0 | } else { |
8238 | | // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if |
8239 | | // it occurs as a discarded-value expression. |
8240 | 0 | CheckUnusedVolatileAssignment(E); |
8241 | 0 | } |
8242 | | |
8243 | | // C++1z: |
8244 | | // If the expression is a prvalue after this optional conversion, the |
8245 | | // temporary materialization conversion is applied. |
8246 | | // |
8247 | | // We skip this step: IR generation is able to synthesize the storage for |
8248 | | // itself in the aggregate case, and adding the extra node to the AST is |
8249 | | // just clutter. |
8250 | | // FIXME: We don't emit lifetime markers for the temporaries due to this. |
8251 | | // FIXME: Do any other AST consumers care about this? |
8252 | 0 | return E; |
8253 | 0 | } |
8254 | | |
8255 | | // GCC seems to also exclude expressions of incomplete enum type. |
8256 | 0 | if (const EnumType *T = E->getType()->getAs<EnumType>()) { |
8257 | 0 | if (!T->getDecl()->isComplete()) { |
8258 | | // FIXME: stupid workaround for a codegen bug! |
8259 | 0 | E = ImpCastExprToType(E, Context.VoidTy, CK_ToVoid).get(); |
8260 | 0 | return E; |
8261 | 0 | } |
8262 | 0 | } |
8263 | | |
8264 | 0 | ExprResult Res = DefaultFunctionArrayLvalueConversion(E); |
8265 | 0 | if (Res.isInvalid()) |
8266 | 0 | return E; |
8267 | 0 | E = Res.get(); |
8268 | |
|
8269 | 0 | if (!E->getType()->isVoidType()) |
8270 | 0 | RequireCompleteType(E->getExprLoc(), E->getType(), |
8271 | 0 | diag::err_incomplete_type); |
8272 | 0 | return E; |
8273 | 0 | } |
8274 | | |
8275 | 0 | ExprResult Sema::CheckUnevaluatedOperand(Expr *E) { |
8276 | | // Per C++2a [expr.ass]p5, a volatile assignment is not deprecated if |
8277 | | // it occurs as an unevaluated operand. |
8278 | 0 | CheckUnusedVolatileAssignment(E); |
8279 | |
|
8280 | 0 | return E; |
8281 | 0 | } |
8282 | | |
8283 | | // If we can unambiguously determine whether Var can never be used |
8284 | | // in a constant expression, return true. |
8285 | | // - if the variable and its initializer are non-dependent, then |
8286 | | // we can unambiguously check if the variable is a constant expression. |
8287 | | // - if the initializer is not value dependent - we can determine whether |
8288 | | // it can be used to initialize a constant expression. If Init can not |
8289 | | // be used to initialize a constant expression we conclude that Var can |
8290 | | // never be a constant expression. |
8291 | | // - FXIME: if the initializer is dependent, we can still do some analysis and |
8292 | | // identify certain cases unambiguously as non-const by using a Visitor: |
8293 | | // - such as those that involve odr-use of a ParmVarDecl, involve a new |
8294 | | // delete, lambda-expr, dynamic-cast, reinterpret-cast etc... |
8295 | | static inline bool VariableCanNeverBeAConstantExpression(VarDecl *Var, |
8296 | 0 | ASTContext &Context) { |
8297 | 0 | if (isa<ParmVarDecl>(Var)) return true; |
8298 | 0 | const VarDecl *DefVD = nullptr; |
8299 | | |
8300 | | // If there is no initializer - this can not be a constant expression. |
8301 | 0 | const Expr *Init = Var->getAnyInitializer(DefVD); |
8302 | 0 | if (!Init) |
8303 | 0 | return true; |
8304 | 0 | assert(DefVD); |
8305 | 0 | if (DefVD->isWeak()) |
8306 | 0 | return false; |
8307 | | |
8308 | 0 | if (Var->getType()->isDependentType() || Init->isValueDependent()) { |
8309 | | // FIXME: Teach the constant evaluator to deal with the non-dependent parts |
8310 | | // of value-dependent expressions, and use it here to determine whether the |
8311 | | // initializer is a potential constant expression. |
8312 | 0 | return false; |
8313 | 0 | } |
8314 | | |
8315 | 0 | return !Var->isUsableInConstantExpressions(Context); |
8316 | 0 | } |
8317 | | |
8318 | | /// Check if the current lambda has any potential captures |
8319 | | /// that must be captured by any of its enclosing lambdas that are ready to |
8320 | | /// capture. If there is a lambda that can capture a nested |
8321 | | /// potential-capture, go ahead and do so. Also, check to see if any |
8322 | | /// variables are uncaptureable or do not involve an odr-use so do not |
8323 | | /// need to be captured. |
8324 | | |
8325 | | static void CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures( |
8326 | 0 | Expr *const FE, LambdaScopeInfo *const CurrentLSI, Sema &S) { |
8327 | |
|
8328 | 0 | assert(!S.isUnevaluatedContext()); |
8329 | 0 | assert(S.CurContext->isDependentContext()); |
8330 | 0 | #ifndef NDEBUG |
8331 | 0 | DeclContext *DC = S.CurContext; |
8332 | 0 | while (DC && isa<CapturedDecl>(DC)) |
8333 | 0 | DC = DC->getParent(); |
8334 | 0 | assert( |
8335 | 0 | CurrentLSI->CallOperator == DC && |
8336 | 0 | "The current call operator must be synchronized with Sema's CurContext"); |
8337 | 0 | #endif // NDEBUG |
8338 | | |
8339 | 0 | const bool IsFullExprInstantiationDependent = FE->isInstantiationDependent(); |
8340 | | |
8341 | | // All the potentially captureable variables in the current nested |
8342 | | // lambda (within a generic outer lambda), must be captured by an |
8343 | | // outer lambda that is enclosed within a non-dependent context. |
8344 | 0 | CurrentLSI->visitPotentialCaptures([&](ValueDecl *Var, Expr *VarExpr) { |
8345 | | // If the variable is clearly identified as non-odr-used and the full |
8346 | | // expression is not instantiation dependent, only then do we not |
8347 | | // need to check enclosing lambda's for speculative captures. |
8348 | | // For e.g.: |
8349 | | // Even though 'x' is not odr-used, it should be captured. |
8350 | | // int test() { |
8351 | | // const int x = 10; |
8352 | | // auto L = [=](auto a) { |
8353 | | // (void) +x + a; |
8354 | | // }; |
8355 | | // } |
8356 | 0 | if (CurrentLSI->isVariableExprMarkedAsNonODRUsed(VarExpr) && |
8357 | 0 | !IsFullExprInstantiationDependent) |
8358 | 0 | return; |
8359 | | |
8360 | 0 | VarDecl *UnderlyingVar = Var->getPotentiallyDecomposedVarDecl(); |
8361 | 0 | if (!UnderlyingVar) |
8362 | 0 | return; |
8363 | | |
8364 | | // If we have a capture-capable lambda for the variable, go ahead and |
8365 | | // capture the variable in that lambda (and all its enclosing lambdas). |
8366 | 0 | if (const std::optional<unsigned> Index = |
8367 | 0 | getStackIndexOfNearestEnclosingCaptureCapableLambda( |
8368 | 0 | S.FunctionScopes, Var, S)) |
8369 | 0 | S.MarkCaptureUsedInEnclosingContext(Var, VarExpr->getExprLoc(), *Index); |
8370 | 0 | const bool IsVarNeverAConstantExpression = |
8371 | 0 | VariableCanNeverBeAConstantExpression(UnderlyingVar, S.Context); |
8372 | 0 | if (!IsFullExprInstantiationDependent || IsVarNeverAConstantExpression) { |
8373 | | // This full expression is not instantiation dependent or the variable |
8374 | | // can not be used in a constant expression - which means |
8375 | | // this variable must be odr-used here, so diagnose a |
8376 | | // capture violation early, if the variable is un-captureable. |
8377 | | // This is purely for diagnosing errors early. Otherwise, this |
8378 | | // error would get diagnosed when the lambda becomes capture ready. |
8379 | 0 | QualType CaptureType, DeclRefType; |
8380 | 0 | SourceLocation ExprLoc = VarExpr->getExprLoc(); |
8381 | 0 | if (S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, |
8382 | 0 | /*EllipsisLoc*/ SourceLocation(), |
8383 | 0 | /*BuildAndDiagnose*/false, CaptureType, |
8384 | 0 | DeclRefType, nullptr)) { |
8385 | | // We will never be able to capture this variable, and we need |
8386 | | // to be able to in any and all instantiations, so diagnose it. |
8387 | 0 | S.tryCaptureVariable(Var, ExprLoc, S.TryCapture_Implicit, |
8388 | 0 | /*EllipsisLoc*/ SourceLocation(), |
8389 | 0 | /*BuildAndDiagnose*/true, CaptureType, |
8390 | 0 | DeclRefType, nullptr); |
8391 | 0 | } |
8392 | 0 | } |
8393 | 0 | }); |
8394 | | |
8395 | | // Check if 'this' needs to be captured. |
8396 | 0 | if (CurrentLSI->hasPotentialThisCapture()) { |
8397 | | // If we have a capture-capable lambda for 'this', go ahead and capture |
8398 | | // 'this' in that lambda (and all its enclosing lambdas). |
8399 | 0 | if (const std::optional<unsigned> Index = |
8400 | 0 | getStackIndexOfNearestEnclosingCaptureCapableLambda( |
8401 | 0 | S.FunctionScopes, /*0 is 'this'*/ nullptr, S)) { |
8402 | 0 | const unsigned FunctionScopeIndexOfCapturableLambda = *Index; |
8403 | 0 | S.CheckCXXThisCapture(CurrentLSI->PotentialThisCaptureLocation, |
8404 | 0 | /*Explicit*/ false, /*BuildAndDiagnose*/ true, |
8405 | 0 | &FunctionScopeIndexOfCapturableLambda); |
8406 | 0 | } |
8407 | 0 | } |
8408 | | |
8409 | | // Reset all the potential captures at the end of each full-expression. |
8410 | 0 | CurrentLSI->clearPotentialCaptures(); |
8411 | 0 | } |
8412 | | |
8413 | | static ExprResult attemptRecovery(Sema &SemaRef, |
8414 | | const TypoCorrectionConsumer &Consumer, |
8415 | 0 | const TypoCorrection &TC) { |
8416 | 0 | LookupResult R(SemaRef, Consumer.getLookupResult().getLookupNameInfo(), |
8417 | 0 | Consumer.getLookupResult().getLookupKind()); |
8418 | 0 | const CXXScopeSpec *SS = Consumer.getSS(); |
8419 | 0 | CXXScopeSpec NewSS; |
8420 | | |
8421 | | // Use an approprate CXXScopeSpec for building the expr. |
8422 | 0 | if (auto *NNS = TC.getCorrectionSpecifier()) |
8423 | 0 | NewSS.MakeTrivial(SemaRef.Context, NNS, TC.getCorrectionRange()); |
8424 | 0 | else if (SS && !TC.WillReplaceSpecifier()) |
8425 | 0 | NewSS = *SS; |
8426 | |
|
8427 | 0 | if (auto *ND = TC.getFoundDecl()) { |
8428 | 0 | R.setLookupName(ND->getDeclName()); |
8429 | 0 | R.addDecl(ND); |
8430 | 0 | if (ND->isCXXClassMember()) { |
8431 | | // Figure out the correct naming class to add to the LookupResult. |
8432 | 0 | CXXRecordDecl *Record = nullptr; |
8433 | 0 | if (auto *NNS = TC.getCorrectionSpecifier()) |
8434 | 0 | Record = NNS->getAsType()->getAsCXXRecordDecl(); |
8435 | 0 | if (!Record) |
8436 | 0 | Record = |
8437 | 0 | dyn_cast<CXXRecordDecl>(ND->getDeclContext()->getRedeclContext()); |
8438 | 0 | if (Record) |
8439 | 0 | R.setNamingClass(Record); |
8440 | | |
8441 | | // Detect and handle the case where the decl might be an implicit |
8442 | | // member. |
8443 | 0 | bool MightBeImplicitMember; |
8444 | 0 | if (!Consumer.isAddressOfOperand()) |
8445 | 0 | MightBeImplicitMember = true; |
8446 | 0 | else if (!NewSS.isEmpty()) |
8447 | 0 | MightBeImplicitMember = false; |
8448 | 0 | else if (R.isOverloadedResult()) |
8449 | 0 | MightBeImplicitMember = false; |
8450 | 0 | else if (R.isUnresolvableResult()) |
8451 | 0 | MightBeImplicitMember = true; |
8452 | 0 | else |
8453 | 0 | MightBeImplicitMember = isa<FieldDecl>(ND) || |
8454 | 0 | isa<IndirectFieldDecl>(ND) || |
8455 | 0 | isa<MSPropertyDecl>(ND); |
8456 | |
|
8457 | 0 | if (MightBeImplicitMember) |
8458 | 0 | return SemaRef.BuildPossibleImplicitMemberExpr( |
8459 | 0 | NewSS, /*TemplateKWLoc*/ SourceLocation(), R, |
8460 | 0 | /*TemplateArgs*/ nullptr, /*S*/ nullptr); |
8461 | 0 | } else if (auto *Ivar = dyn_cast<ObjCIvarDecl>(ND)) { |
8462 | 0 | return SemaRef.LookupInObjCMethod(R, Consumer.getScope(), |
8463 | 0 | Ivar->getIdentifier()); |
8464 | 0 | } |
8465 | 0 | } |
8466 | | |
8467 | 0 | return SemaRef.BuildDeclarationNameExpr(NewSS, R, /*NeedsADL*/ false, |
8468 | 0 | /*AcceptInvalidDecl*/ true); |
8469 | 0 | } |
8470 | | |
8471 | | namespace { |
8472 | | class FindTypoExprs : public RecursiveASTVisitor<FindTypoExprs> { |
8473 | | llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs; |
8474 | | |
8475 | | public: |
8476 | | explicit FindTypoExprs(llvm::SmallSetVector<TypoExpr *, 2> &TypoExprs) |
8477 | 63 | : TypoExprs(TypoExprs) {} |
8478 | 68 | bool VisitTypoExpr(TypoExpr *TE) { |
8479 | 68 | TypoExprs.insert(TE); |
8480 | 68 | return true; |
8481 | 68 | } |
8482 | | }; |
8483 | | |
8484 | | class TransformTypos : public TreeTransform<TransformTypos> { |
8485 | | typedef TreeTransform<TransformTypos> BaseTransform; |
8486 | | |
8487 | | VarDecl *InitDecl; // A decl to avoid as a correction because it is in the |
8488 | | // process of being initialized. |
8489 | | llvm::function_ref<ExprResult(Expr *)> ExprFilter; |
8490 | | llvm::SmallSetVector<TypoExpr *, 2> TypoExprs, AmbiguousTypoExprs; |
8491 | | llvm::SmallDenseMap<TypoExpr *, ExprResult, 2> TransformCache; |
8492 | | llvm::SmallDenseMap<OverloadExpr *, Expr *, 4> OverloadResolution; |
8493 | | |
8494 | | /// Emit diagnostics for all of the TypoExprs encountered. |
8495 | | /// |
8496 | | /// If the TypoExprs were successfully corrected, then the diagnostics should |
8497 | | /// suggest the corrections. Otherwise the diagnostics will not suggest |
8498 | | /// anything (having been passed an empty TypoCorrection). |
8499 | | /// |
8500 | | /// If we've failed to correct due to ambiguous corrections, we need to |
8501 | | /// be sure to pass empty corrections and replacements. Otherwise it's |
8502 | | /// possible that the Consumer has a TypoCorrection that failed to ambiguity |
8503 | | /// and we don't want to report those diagnostics. |
8504 | 63 | void EmitAllDiagnostics(bool IsAmbiguous) { |
8505 | 68 | for (TypoExpr *TE : TypoExprs) { |
8506 | 68 | auto &State = SemaRef.getTypoExprState(TE); |
8507 | 68 | if (State.DiagHandler) { |
8508 | 68 | TypoCorrection TC = IsAmbiguous |
8509 | 68 | ? TypoCorrection() : State.Consumer->getCurrentCorrection(); |
8510 | 68 | ExprResult Replacement = IsAmbiguous ? ExprError() : TransformCache[TE]; |
8511 | | |
8512 | | // Extract the NamedDecl from the transformed TypoExpr and add it to the |
8513 | | // TypoCorrection, replacing the existing decls. This ensures the right |
8514 | | // NamedDecl is used in diagnostics e.g. in the case where overload |
8515 | | // resolution was used to select one from several possible decls that |
8516 | | // had been stored in the TypoCorrection. |
8517 | 68 | if (auto *ND = getDeclFromExpr( |
8518 | 68 | Replacement.isInvalid() ? nullptr : Replacement.get())) |
8519 | 0 | TC.setCorrectionDecl(ND); |
8520 | | |
8521 | 68 | State.DiagHandler(TC); |
8522 | 68 | } |
8523 | 68 | SemaRef.clearDelayedTypo(TE); |
8524 | 68 | } |
8525 | 63 | } |
8526 | | |
8527 | | /// Try to advance the typo correction state of the first unfinished TypoExpr. |
8528 | | /// We allow advancement of the correction stream by removing it from the |
8529 | | /// TransformCache which allows `TransformTypoExpr` to advance during the |
8530 | | /// next transformation attempt. |
8531 | | /// |
8532 | | /// Any substitution attempts for the previous TypoExprs (which must have been |
8533 | | /// finished) will need to be retried since it's possible that they will now |
8534 | | /// be invalid given the latest advancement. |
8535 | | /// |
8536 | | /// We need to be sure that we're making progress - it's possible that the |
8537 | | /// tree is so malformed that the transform never makes it to the |
8538 | | /// `TransformTypoExpr`. |
8539 | | /// |
8540 | | /// Returns true if there are any untried correction combinations. |
8541 | 63 | bool CheckAndAdvanceTypoExprCorrectionStreams() { |
8542 | 63 | for (auto *TE : TypoExprs) { |
8543 | 63 | auto &State = SemaRef.getTypoExprState(TE); |
8544 | 63 | TransformCache.erase(TE); |
8545 | 63 | if (!State.Consumer->hasMadeAnyCorrectionProgress()) |
8546 | 0 | return false; |
8547 | 63 | if (!State.Consumer->finished()) |
8548 | 0 | return true; |
8549 | 63 | State.Consumer->resetCorrectionStream(); |
8550 | 63 | } |
8551 | 63 | return false; |
8552 | 63 | } |
8553 | | |
8554 | 68 | NamedDecl *getDeclFromExpr(Expr *E) { |
8555 | 68 | if (auto *OE = dyn_cast_or_null<OverloadExpr>(E)) |
8556 | 0 | E = OverloadResolution[OE]; |
8557 | | |
8558 | 68 | if (!E) |
8559 | 68 | return nullptr; |
8560 | 0 | if (auto *DRE = dyn_cast<DeclRefExpr>(E)) |
8561 | 0 | return DRE->getFoundDecl(); |
8562 | 0 | if (auto *ME = dyn_cast<MemberExpr>(E)) |
8563 | 0 | return ME->getFoundDecl(); |
8564 | | // FIXME: Add any other expr types that could be seen by the delayed typo |
8565 | | // correction TreeTransform for which the corresponding TypoCorrection could |
8566 | | // contain multiple decls. |
8567 | 0 | return nullptr; |
8568 | 0 | } |
8569 | | |
8570 | 63 | ExprResult TryTransform(Expr *E) { |
8571 | 63 | Sema::SFINAETrap Trap(SemaRef); |
8572 | 63 | ExprResult Res = TransformExpr(E); |
8573 | 63 | if (Trap.hasErrorOccurred() || Res.isInvalid()) |
8574 | 63 | return ExprError(); |
8575 | | |
8576 | 0 | return ExprFilter(Res.get()); |
8577 | 63 | } |
8578 | | |
8579 | | // Since correcting typos may intoduce new TypoExprs, this function |
8580 | | // checks for new TypoExprs and recurses if it finds any. Note that it will |
8581 | | // only succeed if it is able to correct all typos in the given expression. |
8582 | 63 | ExprResult CheckForRecursiveTypos(ExprResult Res, bool &IsAmbiguous) { |
8583 | 63 | if (Res.isInvalid()) { |
8584 | 63 | return Res; |
8585 | 63 | } |
8586 | | // Check to see if any new TypoExprs were created. If so, we need to recurse |
8587 | | // to check their validity. |
8588 | 0 | Expr *FixedExpr = Res.get(); |
8589 | |
|
8590 | 0 | auto SavedTypoExprs = std::move(TypoExprs); |
8591 | 0 | auto SavedAmbiguousTypoExprs = std::move(AmbiguousTypoExprs); |
8592 | 0 | TypoExprs.clear(); |
8593 | 0 | AmbiguousTypoExprs.clear(); |
8594 | |
|
8595 | 0 | FindTypoExprs(TypoExprs).TraverseStmt(FixedExpr); |
8596 | 0 | if (!TypoExprs.empty()) { |
8597 | | // Recurse to handle newly created TypoExprs. If we're not able to |
8598 | | // handle them, discard these TypoExprs. |
8599 | 0 | ExprResult RecurResult = |
8600 | 0 | RecursiveTransformLoop(FixedExpr, IsAmbiguous); |
8601 | 0 | if (RecurResult.isInvalid()) { |
8602 | 0 | Res = ExprError(); |
8603 | | // Recursive corrections didn't work, wipe them away and don't add |
8604 | | // them to the TypoExprs set. Remove them from Sema's TypoExpr list |
8605 | | // since we don't want to clear them twice. Note: it's possible the |
8606 | | // TypoExprs were created recursively and thus won't be in our |
8607 | | // Sema's TypoExprs - they were created in our `RecursiveTransformLoop`. |
8608 | 0 | auto &SemaTypoExprs = SemaRef.TypoExprs; |
8609 | 0 | for (auto *TE : TypoExprs) { |
8610 | 0 | TransformCache.erase(TE); |
8611 | 0 | SemaRef.clearDelayedTypo(TE); |
8612 | |
|
8613 | 0 | auto SI = find(SemaTypoExprs, TE); |
8614 | 0 | if (SI != SemaTypoExprs.end()) { |
8615 | 0 | SemaTypoExprs.erase(SI); |
8616 | 0 | } |
8617 | 0 | } |
8618 | 0 | } else { |
8619 | | // TypoExpr is valid: add newly created TypoExprs since we were |
8620 | | // able to correct them. |
8621 | 0 | Res = RecurResult; |
8622 | 0 | SavedTypoExprs.set_union(TypoExprs); |
8623 | 0 | } |
8624 | 0 | } |
8625 | |
|
8626 | 0 | TypoExprs = std::move(SavedTypoExprs); |
8627 | 0 | AmbiguousTypoExprs = std::move(SavedAmbiguousTypoExprs); |
8628 | |
|
8629 | 0 | return Res; |
8630 | 63 | } |
8631 | | |
8632 | | // Try to transform the given expression, looping through the correction |
8633 | | // candidates with `CheckAndAdvanceTypoExprCorrectionStreams`. |
8634 | | // |
8635 | | // If valid ambiguous typo corrections are seen, `IsAmbiguous` is set to |
8636 | | // true and this method immediately will return an `ExprError`. |
8637 | 63 | ExprResult RecursiveTransformLoop(Expr *E, bool &IsAmbiguous) { |
8638 | 63 | ExprResult Res; |
8639 | 63 | auto SavedTypoExprs = std::move(SemaRef.TypoExprs); |
8640 | 63 | SemaRef.TypoExprs.clear(); |
8641 | | |
8642 | 63 | while (true) { |
8643 | 63 | Res = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); |
8644 | | |
8645 | | // Recursion encountered an ambiguous correction. This means that our |
8646 | | // correction itself is ambiguous, so stop now. |
8647 | 63 | if (IsAmbiguous) |
8648 | 0 | break; |
8649 | | |
8650 | | // If the transform is still valid after checking for any new typos, |
8651 | | // it's good to go. |
8652 | 63 | if (!Res.isInvalid()) |
8653 | 0 | break; |
8654 | | |
8655 | | // The transform was invalid, see if we have any TypoExprs with untried |
8656 | | // correction candidates. |
8657 | 63 | if (!CheckAndAdvanceTypoExprCorrectionStreams()) |
8658 | 63 | break; |
8659 | 63 | } |
8660 | | |
8661 | | // If we found a valid result, double check to make sure it's not ambiguous. |
8662 | 63 | if (!IsAmbiguous && !Res.isInvalid() && !AmbiguousTypoExprs.empty()) { |
8663 | 0 | auto SavedTransformCache = |
8664 | 0 | llvm::SmallDenseMap<TypoExpr *, ExprResult, 2>(TransformCache); |
8665 | | |
8666 | | // Ensure none of the TypoExprs have multiple typo correction candidates |
8667 | | // with the same edit length that pass all the checks and filters. |
8668 | 0 | while (!AmbiguousTypoExprs.empty()) { |
8669 | 0 | auto TE = AmbiguousTypoExprs.back(); |
8670 | | |
8671 | | // TryTransform itself can create new Typos, adding them to the TypoExpr map |
8672 | | // and invalidating our TypoExprState, so always fetch it instead of storing. |
8673 | 0 | SemaRef.getTypoExprState(TE).Consumer->saveCurrentPosition(); |
8674 | |
|
8675 | 0 | TypoCorrection TC = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection(); |
8676 | 0 | TypoCorrection Next; |
8677 | 0 | do { |
8678 | | // Fetch the next correction by erasing the typo from the cache and calling |
8679 | | // `TryTransform` which will iterate through corrections in |
8680 | | // `TransformTypoExpr`. |
8681 | 0 | TransformCache.erase(TE); |
8682 | 0 | ExprResult AmbigRes = CheckForRecursiveTypos(TryTransform(E), IsAmbiguous); |
8683 | |
|
8684 | 0 | if (!AmbigRes.isInvalid() || IsAmbiguous) { |
8685 | 0 | SemaRef.getTypoExprState(TE).Consumer->resetCorrectionStream(); |
8686 | 0 | SavedTransformCache.erase(TE); |
8687 | 0 | Res = ExprError(); |
8688 | 0 | IsAmbiguous = true; |
8689 | 0 | break; |
8690 | 0 | } |
8691 | 0 | } while ((Next = SemaRef.getTypoExprState(TE).Consumer->peekNextCorrection()) && |
8692 | 0 | Next.getEditDistance(false) == TC.getEditDistance(false)); |
8693 | | |
8694 | 0 | if (IsAmbiguous) |
8695 | 0 | break; |
8696 | | |
8697 | 0 | AmbiguousTypoExprs.remove(TE); |
8698 | 0 | SemaRef.getTypoExprState(TE).Consumer->restoreSavedPosition(); |
8699 | 0 | TransformCache[TE] = SavedTransformCache[TE]; |
8700 | 0 | } |
8701 | 0 | TransformCache = std::move(SavedTransformCache); |
8702 | 0 | } |
8703 | | |
8704 | | // Wipe away any newly created TypoExprs that we don't know about. Since we |
8705 | | // clear any invalid TypoExprs in `CheckForRecursiveTypos`, this is only |
8706 | | // possible if a `TypoExpr` is created during a transformation but then |
8707 | | // fails before we can discover it. |
8708 | 63 | auto &SemaTypoExprs = SemaRef.TypoExprs; |
8709 | 63 | for (auto Iterator = SemaTypoExprs.begin(); Iterator != SemaTypoExprs.end();) { |
8710 | 0 | auto TE = *Iterator; |
8711 | 0 | auto FI = find(TypoExprs, TE); |
8712 | 0 | if (FI != TypoExprs.end()) { |
8713 | 0 | Iterator++; |
8714 | 0 | continue; |
8715 | 0 | } |
8716 | 0 | SemaRef.clearDelayedTypo(TE); |
8717 | 0 | Iterator = SemaTypoExprs.erase(Iterator); |
8718 | 0 | } |
8719 | 63 | SemaRef.TypoExprs = std::move(SavedTypoExprs); |
8720 | | |
8721 | 63 | return Res; |
8722 | 63 | } |
8723 | | |
8724 | | public: |
8725 | | TransformTypos(Sema &SemaRef, VarDecl *InitDecl, llvm::function_ref<ExprResult(Expr *)> Filter) |
8726 | 63 | : BaseTransform(SemaRef), InitDecl(InitDecl), ExprFilter(Filter) {} |
8727 | | |
8728 | | ExprResult RebuildCallExpr(Expr *Callee, SourceLocation LParenLoc, |
8729 | | MultiExprArg Args, |
8730 | | SourceLocation RParenLoc, |
8731 | 0 | Expr *ExecConfig = nullptr) { |
8732 | 0 | auto Result = BaseTransform::RebuildCallExpr(Callee, LParenLoc, Args, |
8733 | 0 | RParenLoc, ExecConfig); |
8734 | 0 | if (auto *OE = dyn_cast<OverloadExpr>(Callee)) { |
8735 | 0 | if (Result.isUsable()) { |
8736 | 0 | Expr *ResultCall = Result.get(); |
8737 | 0 | if (auto *BE = dyn_cast<CXXBindTemporaryExpr>(ResultCall)) |
8738 | 0 | ResultCall = BE->getSubExpr(); |
8739 | 0 | if (auto *CE = dyn_cast<CallExpr>(ResultCall)) |
8740 | 0 | OverloadResolution[OE] = CE->getCallee(); |
8741 | 0 | } |
8742 | 0 | } |
8743 | 0 | return Result; |
8744 | 0 | } |
8745 | | |
8746 | 0 | ExprResult TransformLambdaExpr(LambdaExpr *E) { return Owned(E); } |
8747 | | |
8748 | 0 | ExprResult TransformBlockExpr(BlockExpr *E) { return Owned(E); } |
8749 | | |
8750 | 63 | ExprResult Transform(Expr *E) { |
8751 | 63 | bool IsAmbiguous = false; |
8752 | 63 | ExprResult Res = RecursiveTransformLoop(E, IsAmbiguous); |
8753 | | |
8754 | 63 | if (!Res.isUsable()) |
8755 | 63 | FindTypoExprs(TypoExprs).TraverseStmt(E); |
8756 | | |
8757 | 63 | EmitAllDiagnostics(IsAmbiguous); |
8758 | | |
8759 | 63 | return Res; |
8760 | 63 | } |
8761 | | |
8762 | 63 | ExprResult TransformTypoExpr(TypoExpr *E) { |
8763 | | // If the TypoExpr hasn't been seen before, record it. Otherwise, return the |
8764 | | // cached transformation result if there is one and the TypoExpr isn't the |
8765 | | // first one that was encountered. |
8766 | 63 | auto &CacheEntry = TransformCache[E]; |
8767 | 63 | if (!TypoExprs.insert(E) && !CacheEntry.isUnset()) { |
8768 | 0 | return CacheEntry; |
8769 | 0 | } |
8770 | | |
8771 | 63 | auto &State = SemaRef.getTypoExprState(E); |
8772 | 63 | assert(State.Consumer && "Cannot transform a cleared TypoExpr"); |
8773 | | |
8774 | | // For the first TypoExpr and an uncached TypoExpr, find the next likely |
8775 | | // typo correction and return it. |
8776 | 63 | while (TypoCorrection TC = State.Consumer->getNextCorrection()) { |
8777 | 0 | if (InitDecl && TC.getFoundDecl() == InitDecl) |
8778 | 0 | continue; |
8779 | | // FIXME: If we would typo-correct to an invalid declaration, it's |
8780 | | // probably best to just suppress all errors from this typo correction. |
8781 | 0 | ExprResult NE = State.RecoveryHandler ? |
8782 | 0 | State.RecoveryHandler(SemaRef, E, TC) : |
8783 | 0 | attemptRecovery(SemaRef, *State.Consumer, TC); |
8784 | 0 | if (!NE.isInvalid()) { |
8785 | | // Check whether there may be a second viable correction with the same |
8786 | | // edit distance; if so, remember this TypoExpr may have an ambiguous |
8787 | | // correction so it can be more thoroughly vetted later. |
8788 | 0 | TypoCorrection Next; |
8789 | 0 | if ((Next = State.Consumer->peekNextCorrection()) && |
8790 | 0 | Next.getEditDistance(false) == TC.getEditDistance(false)) { |
8791 | 0 | AmbiguousTypoExprs.insert(E); |
8792 | 0 | } else { |
8793 | 0 | AmbiguousTypoExprs.remove(E); |
8794 | 0 | } |
8795 | 0 | assert(!NE.isUnset() && |
8796 | 0 | "Typo was transformed into a valid-but-null ExprResult"); |
8797 | 0 | return CacheEntry = NE; |
8798 | 0 | } |
8799 | 0 | } |
8800 | 63 | return CacheEntry = ExprError(); |
8801 | 63 | } |
8802 | | }; |
8803 | | } |
8804 | | |
8805 | | ExprResult |
8806 | | Sema::CorrectDelayedTyposInExpr(Expr *E, VarDecl *InitDecl, |
8807 | | bool RecoverUncorrectedTypos, |
8808 | 492 | llvm::function_ref<ExprResult(Expr *)> Filter) { |
8809 | | // If the current evaluation context indicates there are uncorrected typos |
8810 | | // and the current expression isn't guaranteed to not have typos, try to |
8811 | | // resolve any TypoExpr nodes that might be in the expression. |
8812 | 492 | if (E && !ExprEvalContexts.empty() && ExprEvalContexts.back().NumTypos && |
8813 | 492 | (E->isTypeDependent() || E->isValueDependent() || |
8814 | 63 | E->isInstantiationDependent())) { |
8815 | 63 | auto TyposResolved = DelayedTypos.size(); |
8816 | 63 | auto Result = TransformTypos(*this, InitDecl, Filter).Transform(E); |
8817 | 63 | TyposResolved -= DelayedTypos.size(); |
8818 | 63 | if (Result.isInvalid() || Result.get() != E) { |
8819 | 63 | ExprEvalContexts.back().NumTypos -= TyposResolved; |
8820 | 63 | if (Result.isInvalid() && RecoverUncorrectedTypos) { |
8821 | 6 | struct TyposReplace : TreeTransform<TyposReplace> { |
8822 | 6 | TyposReplace(Sema &SemaRef) : TreeTransform(SemaRef) {} |
8823 | 6 | ExprResult TransformTypoExpr(clang::TypoExpr *E) { |
8824 | 6 | return this->SemaRef.CreateRecoveryExpr(E->getBeginLoc(), |
8825 | 6 | E->getEndLoc(), {}); |
8826 | 6 | } |
8827 | 6 | } TT(*this); |
8828 | 6 | return TT.TransformExpr(E); |
8829 | 6 | } |
8830 | 57 | return Result; |
8831 | 63 | } |
8832 | 0 | assert(TyposResolved == 0 && "Corrected typo but got same Expr back?"); |
8833 | 0 | } |
8834 | 429 | return E; |
8835 | 492 | } |
8836 | | |
8837 | | ExprResult Sema::ActOnFinishFullExpr(Expr *FE, SourceLocation CC, |
8838 | | bool DiscardedValue, bool IsConstexpr, |
8839 | 20 | bool IsTemplateArgument) { |
8840 | 20 | ExprResult FullExpr = FE; |
8841 | | |
8842 | 20 | if (!FullExpr.get()) |
8843 | 0 | return ExprError(); |
8844 | | |
8845 | 20 | if (!IsTemplateArgument && DiagnoseUnexpandedParameterPack(FullExpr.get())) |
8846 | 0 | return ExprError(); |
8847 | | |
8848 | 20 | if (DiscardedValue) { |
8849 | | // Top-level expressions default to 'id' when we're in a debugger. |
8850 | 0 | if (getLangOpts().DebuggerCastResultToId && |
8851 | 0 | FullExpr.get()->getType() == Context.UnknownAnyTy) { |
8852 | 0 | FullExpr = forceUnknownAnyToType(FullExpr.get(), Context.getObjCIdType()); |
8853 | 0 | if (FullExpr.isInvalid()) |
8854 | 0 | return ExprError(); |
8855 | 0 | } |
8856 | | |
8857 | 0 | FullExpr = CheckPlaceholderExpr(FullExpr.get()); |
8858 | 0 | if (FullExpr.isInvalid()) |
8859 | 0 | return ExprError(); |
8860 | | |
8861 | 0 | FullExpr = IgnoredValueConversions(FullExpr.get()); |
8862 | 0 | if (FullExpr.isInvalid()) |
8863 | 0 | return ExprError(); |
8864 | | |
8865 | 0 | DiagnoseUnusedExprResult(FullExpr.get(), diag::warn_unused_expr); |
8866 | 0 | } |
8867 | | |
8868 | 20 | FullExpr = CorrectDelayedTyposInExpr(FullExpr.get(), /*InitDecl=*/nullptr, |
8869 | 20 | /*RecoverUncorrectedTypos=*/true); |
8870 | 20 | if (FullExpr.isInvalid()) |
8871 | 0 | return ExprError(); |
8872 | | |
8873 | 20 | CheckCompletedExpr(FullExpr.get(), CC, IsConstexpr); |
8874 | | |
8875 | | // At the end of this full expression (which could be a deeply nested |
8876 | | // lambda), if there is a potential capture within the nested lambda, |
8877 | | // have the outer capture-able lambda try and capture it. |
8878 | | // Consider the following code: |
8879 | | // void f(int, int); |
8880 | | // void f(const int&, double); |
8881 | | // void foo() { |
8882 | | // const int x = 10, y = 20; |
8883 | | // auto L = [=](auto a) { |
8884 | | // auto M = [=](auto b) { |
8885 | | // f(x, b); <-- requires x to be captured by L and M |
8886 | | // f(y, a); <-- requires y to be captured by L, but not all Ms |
8887 | | // }; |
8888 | | // }; |
8889 | | // } |
8890 | | |
8891 | | // FIXME: Also consider what happens for something like this that involves |
8892 | | // the gnu-extension statement-expressions or even lambda-init-captures: |
8893 | | // void f() { |
8894 | | // const int n = 0; |
8895 | | // auto L = [&](auto a) { |
8896 | | // +n + ({ 0; a; }); |
8897 | | // }; |
8898 | | // } |
8899 | | // |
8900 | | // Here, we see +n, and then the full-expression 0; ends, so we don't |
8901 | | // capture n (and instead remove it from our list of potential captures), |
8902 | | // and then the full-expression +n + ({ 0; }); ends, but it's too late |
8903 | | // for us to see that we need to capture n after all. |
8904 | | |
8905 | 20 | LambdaScopeInfo *const CurrentLSI = |
8906 | 20 | getCurLambda(/*IgnoreCapturedRegions=*/true); |
8907 | | // FIXME: PR 17877 showed that getCurLambda() can return a valid pointer |
8908 | | // even if CurContext is not a lambda call operator. Refer to that Bug Report |
8909 | | // for an example of the code that might cause this asynchrony. |
8910 | | // By ensuring we are in the context of a lambda's call operator |
8911 | | // we can fix the bug (we only need to check whether we need to capture |
8912 | | // if we are within a lambda's body); but per the comments in that |
8913 | | // PR, a proper fix would entail : |
8914 | | // "Alternative suggestion: |
8915 | | // - Add to Sema an integer holding the smallest (outermost) scope |
8916 | | // index that we are *lexically* within, and save/restore/set to |
8917 | | // FunctionScopes.size() in InstantiatingTemplate's |
8918 | | // constructor/destructor. |
8919 | | // - Teach the handful of places that iterate over FunctionScopes to |
8920 | | // stop at the outermost enclosing lexical scope." |
8921 | 20 | DeclContext *DC = CurContext; |
8922 | 20 | while (DC && isa<CapturedDecl>(DC)) |
8923 | 0 | DC = DC->getParent(); |
8924 | 20 | const bool IsInLambdaDeclContext = isLambdaCallOperator(DC); |
8925 | 20 | if (IsInLambdaDeclContext && CurrentLSI && |
8926 | 20 | CurrentLSI->hasPotentialCaptures() && !FullExpr.isInvalid()) |
8927 | 0 | CheckIfAnyEnclosingLambdasMustCaptureAnyPotentialCaptures(FE, CurrentLSI, |
8928 | 0 | *this); |
8929 | 20 | return MaybeCreateExprWithCleanups(FullExpr); |
8930 | 20 | } |
8931 | | |
8932 | 0 | StmtResult Sema::ActOnFinishFullStmt(Stmt *FullStmt) { |
8933 | 0 | if (!FullStmt) return StmtError(); |
8934 | | |
8935 | 0 | return MaybeCreateStmtWithCleanups(FullStmt); |
8936 | 0 | } |
8937 | | |
8938 | | Sema::IfExistsResult |
8939 | | Sema::CheckMicrosoftIfExistsSymbol(Scope *S, |
8940 | | CXXScopeSpec &SS, |
8941 | 0 | const DeclarationNameInfo &TargetNameInfo) { |
8942 | 0 | DeclarationName TargetName = TargetNameInfo.getName(); |
8943 | 0 | if (!TargetName) |
8944 | 0 | return IER_DoesNotExist; |
8945 | | |
8946 | | // If the name itself is dependent, then the result is dependent. |
8947 | 0 | if (TargetName.isDependentName()) |
8948 | 0 | return IER_Dependent; |
8949 | | |
8950 | | // Do the redeclaration lookup in the current scope. |
8951 | 0 | LookupResult R(*this, TargetNameInfo, Sema::LookupAnyName, |
8952 | 0 | Sema::NotForRedeclaration); |
8953 | 0 | LookupParsedName(R, S, &SS); |
8954 | 0 | R.suppressDiagnostics(); |
8955 | |
|
8956 | 0 | switch (R.getResultKind()) { |
8957 | 0 | case LookupResult::Found: |
8958 | 0 | case LookupResult::FoundOverloaded: |
8959 | 0 | case LookupResult::FoundUnresolvedValue: |
8960 | 0 | case LookupResult::Ambiguous: |
8961 | 0 | return IER_Exists; |
8962 | | |
8963 | 0 | case LookupResult::NotFound: |
8964 | 0 | return IER_DoesNotExist; |
8965 | | |
8966 | 0 | case LookupResult::NotFoundInCurrentInstantiation: |
8967 | 0 | return IER_Dependent; |
8968 | 0 | } |
8969 | | |
8970 | 0 | llvm_unreachable("Invalid LookupResult Kind!"); |
8971 | 0 | } |
8972 | | |
8973 | | Sema::IfExistsResult |
8974 | | Sema::CheckMicrosoftIfExistsSymbol(Scope *S, SourceLocation KeywordLoc, |
8975 | | bool IsIfExists, CXXScopeSpec &SS, |
8976 | 0 | UnqualifiedId &Name) { |
8977 | 0 | DeclarationNameInfo TargetNameInfo = GetNameFromUnqualifiedId(Name); |
8978 | | |
8979 | | // Check for an unexpanded parameter pack. |
8980 | 0 | auto UPPC = IsIfExists ? UPPC_IfExists : UPPC_IfNotExists; |
8981 | 0 | if (DiagnoseUnexpandedParameterPack(SS, UPPC) || |
8982 | 0 | DiagnoseUnexpandedParameterPack(TargetNameInfo, UPPC)) |
8983 | 0 | return IER_Error; |
8984 | | |
8985 | 0 | return CheckMicrosoftIfExistsSymbol(S, SS, TargetNameInfo); |
8986 | 0 | } |
8987 | | |
8988 | 0 | concepts::Requirement *Sema::ActOnSimpleRequirement(Expr *E) { |
8989 | 0 | return BuildExprRequirement(E, /*IsSimple=*/true, |
8990 | 0 | /*NoexceptLoc=*/SourceLocation(), |
8991 | 0 | /*ReturnTypeRequirement=*/{}); |
8992 | 0 | } |
8993 | | |
8994 | | concepts::Requirement * |
8995 | | Sema::ActOnTypeRequirement(SourceLocation TypenameKWLoc, CXXScopeSpec &SS, |
8996 | | SourceLocation NameLoc, IdentifierInfo *TypeName, |
8997 | 0 | TemplateIdAnnotation *TemplateId) { |
8998 | 0 | assert(((!TypeName && TemplateId) || (TypeName && !TemplateId)) && |
8999 | 0 | "Exactly one of TypeName and TemplateId must be specified."); |
9000 | 0 | TypeSourceInfo *TSI = nullptr; |
9001 | 0 | if (TypeName) { |
9002 | 0 | QualType T = |
9003 | 0 | CheckTypenameType(ElaboratedTypeKeyword::Typename, TypenameKWLoc, |
9004 | 0 | SS.getWithLocInContext(Context), *TypeName, NameLoc, |
9005 | 0 | &TSI, /*DeducedTSTContext=*/false); |
9006 | 0 | if (T.isNull()) |
9007 | 0 | return nullptr; |
9008 | 0 | } else { |
9009 | 0 | ASTTemplateArgsPtr ArgsPtr(TemplateId->getTemplateArgs(), |
9010 | 0 | TemplateId->NumArgs); |
9011 | 0 | TypeResult T = ActOnTypenameType(CurScope, TypenameKWLoc, SS, |
9012 | 0 | TemplateId->TemplateKWLoc, |
9013 | 0 | TemplateId->Template, TemplateId->Name, |
9014 | 0 | TemplateId->TemplateNameLoc, |
9015 | 0 | TemplateId->LAngleLoc, ArgsPtr, |
9016 | 0 | TemplateId->RAngleLoc); |
9017 | 0 | if (T.isInvalid()) |
9018 | 0 | return nullptr; |
9019 | 0 | if (GetTypeFromParser(T.get(), &TSI).isNull()) |
9020 | 0 | return nullptr; |
9021 | 0 | } |
9022 | 0 | return BuildTypeRequirement(TSI); |
9023 | 0 | } |
9024 | | |
9025 | | concepts::Requirement * |
9026 | 0 | Sema::ActOnCompoundRequirement(Expr *E, SourceLocation NoexceptLoc) { |
9027 | 0 | return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, |
9028 | 0 | /*ReturnTypeRequirement=*/{}); |
9029 | 0 | } |
9030 | | |
9031 | | concepts::Requirement * |
9032 | | Sema::ActOnCompoundRequirement( |
9033 | | Expr *E, SourceLocation NoexceptLoc, CXXScopeSpec &SS, |
9034 | 0 | TemplateIdAnnotation *TypeConstraint, unsigned Depth) { |
9035 | | // C++2a [expr.prim.req.compound] p1.3.3 |
9036 | | // [..] the expression is deduced against an invented function template |
9037 | | // F [...] F is a void function template with a single type template |
9038 | | // parameter T declared with the constrained-parameter. Form a new |
9039 | | // cv-qualifier-seq cv by taking the union of const and volatile specifiers |
9040 | | // around the constrained-parameter. F has a single parameter whose |
9041 | | // type-specifier is cv T followed by the abstract-declarator. [...] |
9042 | | // |
9043 | | // The cv part is done in the calling function - we get the concept with |
9044 | | // arguments and the abstract declarator with the correct CV qualification and |
9045 | | // have to synthesize T and the single parameter of F. |
9046 | 0 | auto &II = Context.Idents.get("expr-type"); |
9047 | 0 | auto *TParam = TemplateTypeParmDecl::Create(Context, CurContext, |
9048 | 0 | SourceLocation(), |
9049 | 0 | SourceLocation(), Depth, |
9050 | 0 | /*Index=*/0, &II, |
9051 | 0 | /*Typename=*/true, |
9052 | 0 | /*ParameterPack=*/false, |
9053 | 0 | /*HasTypeConstraint=*/true); |
9054 | |
|
9055 | 0 | if (BuildTypeConstraint(SS, TypeConstraint, TParam, |
9056 | 0 | /*EllipsisLoc=*/SourceLocation(), |
9057 | 0 | /*AllowUnexpandedPack=*/true)) |
9058 | | // Just produce a requirement with no type requirements. |
9059 | 0 | return BuildExprRequirement(E, /*IsSimple=*/false, NoexceptLoc, {}); |
9060 | | |
9061 | 0 | auto *TPL = TemplateParameterList::Create(Context, SourceLocation(), |
9062 | 0 | SourceLocation(), |
9063 | 0 | ArrayRef<NamedDecl *>(TParam), |
9064 | 0 | SourceLocation(), |
9065 | 0 | /*RequiresClause=*/nullptr); |
9066 | 0 | return BuildExprRequirement( |
9067 | 0 | E, /*IsSimple=*/false, NoexceptLoc, |
9068 | 0 | concepts::ExprRequirement::ReturnTypeRequirement(TPL)); |
9069 | 0 | } |
9070 | | |
9071 | | concepts::ExprRequirement * |
9072 | | Sema::BuildExprRequirement( |
9073 | | Expr *E, bool IsSimple, SourceLocation NoexceptLoc, |
9074 | 0 | concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { |
9075 | 0 | auto Status = concepts::ExprRequirement::SS_Satisfied; |
9076 | 0 | ConceptSpecializationExpr *SubstitutedConstraintExpr = nullptr; |
9077 | 0 | if (E->isInstantiationDependent() || E->getType()->isPlaceholderType() || |
9078 | 0 | ReturnTypeRequirement.isDependent()) |
9079 | 0 | Status = concepts::ExprRequirement::SS_Dependent; |
9080 | 0 | else if (NoexceptLoc.isValid() && canThrow(E) == CanThrowResult::CT_Can) |
9081 | 0 | Status = concepts::ExprRequirement::SS_NoexceptNotMet; |
9082 | 0 | else if (ReturnTypeRequirement.isSubstitutionFailure()) |
9083 | 0 | Status = concepts::ExprRequirement::SS_TypeRequirementSubstitutionFailure; |
9084 | 0 | else if (ReturnTypeRequirement.isTypeConstraint()) { |
9085 | | // C++2a [expr.prim.req]p1.3.3 |
9086 | | // The immediately-declared constraint ([temp]) of decltype((E)) shall |
9087 | | // be satisfied. |
9088 | 0 | TemplateParameterList *TPL = |
9089 | 0 | ReturnTypeRequirement.getTypeConstraintTemplateParameterList(); |
9090 | 0 | QualType MatchedType = |
9091 | 0 | Context.getReferenceQualifiedType(E).getCanonicalType(); |
9092 | 0 | llvm::SmallVector<TemplateArgument, 1> Args; |
9093 | 0 | Args.push_back(TemplateArgument(MatchedType)); |
9094 | |
|
9095 | 0 | auto *Param = cast<TemplateTypeParmDecl>(TPL->getParam(0)); |
9096 | |
|
9097 | 0 | TemplateArgumentList TAL(TemplateArgumentList::OnStack, Args); |
9098 | 0 | MultiLevelTemplateArgumentList MLTAL(Param, TAL.asArray(), |
9099 | 0 | /*Final=*/false); |
9100 | 0 | MLTAL.addOuterRetainedLevels(TPL->getDepth()); |
9101 | 0 | const TypeConstraint *TC = Param->getTypeConstraint(); |
9102 | 0 | assert(TC && "Type Constraint cannot be null here"); |
9103 | 0 | auto *IDC = TC->getImmediatelyDeclaredConstraint(); |
9104 | 0 | assert(IDC && "ImmediatelyDeclaredConstraint can't be null here."); |
9105 | 0 | ExprResult Constraint = SubstExpr(IDC, MLTAL); |
9106 | 0 | if (Constraint.isInvalid()) { |
9107 | 0 | return new (Context) concepts::ExprRequirement( |
9108 | 0 | concepts::createSubstDiagAt(*this, IDC->getExprLoc(), |
9109 | 0 | [&](llvm::raw_ostream &OS) { |
9110 | 0 | IDC->printPretty(OS, /*Helper=*/nullptr, |
9111 | 0 | getPrintingPolicy()); |
9112 | 0 | }), |
9113 | 0 | IsSimple, NoexceptLoc, ReturnTypeRequirement); |
9114 | 0 | } |
9115 | 0 | SubstitutedConstraintExpr = |
9116 | 0 | cast<ConceptSpecializationExpr>(Constraint.get()); |
9117 | 0 | if (!SubstitutedConstraintExpr->isSatisfied()) |
9118 | 0 | Status = concepts::ExprRequirement::SS_ConstraintsNotSatisfied; |
9119 | 0 | } |
9120 | 0 | return new (Context) concepts::ExprRequirement(E, IsSimple, NoexceptLoc, |
9121 | 0 | ReturnTypeRequirement, Status, |
9122 | 0 | SubstitutedConstraintExpr); |
9123 | 0 | } |
9124 | | |
9125 | | concepts::ExprRequirement * |
9126 | | Sema::BuildExprRequirement( |
9127 | | concepts::Requirement::SubstitutionDiagnostic *ExprSubstitutionDiagnostic, |
9128 | | bool IsSimple, SourceLocation NoexceptLoc, |
9129 | 0 | concepts::ExprRequirement::ReturnTypeRequirement ReturnTypeRequirement) { |
9130 | 0 | return new (Context) concepts::ExprRequirement(ExprSubstitutionDiagnostic, |
9131 | 0 | IsSimple, NoexceptLoc, |
9132 | 0 | ReturnTypeRequirement); |
9133 | 0 | } |
9134 | | |
9135 | | concepts::TypeRequirement * |
9136 | 0 | Sema::BuildTypeRequirement(TypeSourceInfo *Type) { |
9137 | 0 | return new (Context) concepts::TypeRequirement(Type); |
9138 | 0 | } |
9139 | | |
9140 | | concepts::TypeRequirement * |
9141 | | Sema::BuildTypeRequirement( |
9142 | 0 | concepts::Requirement::SubstitutionDiagnostic *SubstDiag) { |
9143 | 0 | return new (Context) concepts::TypeRequirement(SubstDiag); |
9144 | 0 | } |
9145 | | |
9146 | 0 | concepts::Requirement *Sema::ActOnNestedRequirement(Expr *Constraint) { |
9147 | 0 | return BuildNestedRequirement(Constraint); |
9148 | 0 | } |
9149 | | |
9150 | | concepts::NestedRequirement * |
9151 | 0 | Sema::BuildNestedRequirement(Expr *Constraint) { |
9152 | 0 | ConstraintSatisfaction Satisfaction; |
9153 | 0 | if (!Constraint->isInstantiationDependent() && |
9154 | 0 | CheckConstraintSatisfaction(nullptr, {Constraint}, /*TemplateArgs=*/{}, |
9155 | 0 | Constraint->getSourceRange(), Satisfaction)) |
9156 | 0 | return nullptr; |
9157 | 0 | return new (Context) concepts::NestedRequirement(Context, Constraint, |
9158 | 0 | Satisfaction); |
9159 | 0 | } |
9160 | | |
9161 | | concepts::NestedRequirement * |
9162 | | Sema::BuildNestedRequirement(StringRef InvalidConstraintEntity, |
9163 | 0 | const ASTConstraintSatisfaction &Satisfaction) { |
9164 | 0 | return new (Context) concepts::NestedRequirement( |
9165 | 0 | InvalidConstraintEntity, |
9166 | 0 | ASTConstraintSatisfaction::Rebuild(Context, Satisfaction)); |
9167 | 0 | } |
9168 | | |
9169 | | RequiresExprBodyDecl * |
9170 | | Sema::ActOnStartRequiresExpr(SourceLocation RequiresKWLoc, |
9171 | | ArrayRef<ParmVarDecl *> LocalParameters, |
9172 | 0 | Scope *BodyScope) { |
9173 | 0 | assert(BodyScope); |
9174 | | |
9175 | 0 | RequiresExprBodyDecl *Body = RequiresExprBodyDecl::Create(Context, CurContext, |
9176 | 0 | RequiresKWLoc); |
9177 | |
|
9178 | 0 | PushDeclContext(BodyScope, Body); |
9179 | |
|
9180 | 0 | for (ParmVarDecl *Param : LocalParameters) { |
9181 | 0 | if (Param->hasDefaultArg()) |
9182 | | // C++2a [expr.prim.req] p4 |
9183 | | // [...] A local parameter of a requires-expression shall not have a |
9184 | | // default argument. [...] |
9185 | 0 | Diag(Param->getDefaultArgRange().getBegin(), |
9186 | 0 | diag::err_requires_expr_local_parameter_default_argument); |
9187 | | // Ignore default argument and move on |
9188 | |
|
9189 | 0 | Param->setDeclContext(Body); |
9190 | | // If this has an identifier, add it to the scope stack. |
9191 | 0 | if (Param->getIdentifier()) { |
9192 | 0 | CheckShadow(BodyScope, Param); |
9193 | 0 | PushOnScopeChains(Param, BodyScope); |
9194 | 0 | } |
9195 | 0 | } |
9196 | 0 | return Body; |
9197 | 0 | } |
9198 | | |
9199 | 0 | void Sema::ActOnFinishRequiresExpr() { |
9200 | 0 | assert(CurContext && "DeclContext imbalance!"); |
9201 | 0 | CurContext = CurContext->getLexicalParent(); |
9202 | 0 | assert(CurContext && "Popped translation unit!"); |
9203 | 0 | } |
9204 | | |
9205 | | ExprResult Sema::ActOnRequiresExpr( |
9206 | | SourceLocation RequiresKWLoc, RequiresExprBodyDecl *Body, |
9207 | | SourceLocation LParenLoc, ArrayRef<ParmVarDecl *> LocalParameters, |
9208 | | SourceLocation RParenLoc, ArrayRef<concepts::Requirement *> Requirements, |
9209 | 0 | SourceLocation ClosingBraceLoc) { |
9210 | 0 | auto *RE = RequiresExpr::Create(Context, RequiresKWLoc, Body, LParenLoc, |
9211 | 0 | LocalParameters, RParenLoc, Requirements, |
9212 | 0 | ClosingBraceLoc); |
9213 | 0 | if (DiagnoseUnexpandedParameterPackInRequiresExpr(RE)) |
9214 | 0 | return ExprError(); |
9215 | 0 | return RE; |
9216 | 0 | } |