Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/Sema/SemaExprMember.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- SemaExprMember.cpp - Semantic Analysis for Expressions -----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
//  This file implements semantic analysis member access expressions.
10
//
11
//===----------------------------------------------------------------------===//
12
#include "clang/Sema/Overload.h"
13
#include "clang/AST/ASTLambda.h"
14
#include "clang/AST/DeclCXX.h"
15
#include "clang/AST/DeclObjC.h"
16
#include "clang/AST/DeclTemplate.h"
17
#include "clang/AST/ExprCXX.h"
18
#include "clang/AST/ExprObjC.h"
19
#include "clang/Lex/Preprocessor.h"
20
#include "clang/Sema/Lookup.h"
21
#include "clang/Sema/Scope.h"
22
#include "clang/Sema/ScopeInfo.h"
23
#include "clang/Sema/SemaInternal.h"
24
25
using namespace clang;
26
using namespace sema;
27
28
typedef llvm::SmallPtrSet<const CXXRecordDecl*, 4> BaseSet;
29
30
/// Determines if the given class is provably not derived from all of
31
/// the prospective base classes.
32
static bool isProvablyNotDerivedFrom(Sema &SemaRef, CXXRecordDecl *Record,
33
0
                                     const BaseSet &Bases) {
34
0
  auto BaseIsNotInSet = [&Bases](const CXXRecordDecl *Base) {
35
0
    return !Bases.count(Base->getCanonicalDecl());
36
0
  };
37
0
  return BaseIsNotInSet(Record) && Record->forallBases(BaseIsNotInSet);
38
0
}
39
40
enum IMAKind {
41
  /// The reference is definitely not an instance member access.
42
  IMA_Static,
43
44
  /// The reference may be an implicit instance member access.
45
  IMA_Mixed,
46
47
  /// The reference may be to an instance member, but it might be invalid if
48
  /// so, because the context is not an instance method.
49
  IMA_Mixed_StaticOrExplicitContext,
50
51
  /// The reference may be to an instance member, but it is invalid if
52
  /// so, because the context is from an unrelated class.
53
  IMA_Mixed_Unrelated,
54
55
  /// The reference is definitely an implicit instance member access.
56
  IMA_Instance,
57
58
  /// The reference may be to an unresolved using declaration.
59
  IMA_Unresolved,
60
61
  /// The reference is a contextually-permitted abstract member reference.
62
  IMA_Abstract,
63
64
  /// The reference may be to an unresolved using declaration and the
65
  /// context is not an instance method.
66
  IMA_Unresolved_StaticOrExplicitContext,
67
68
  // The reference refers to a field which is not a member of the containing
69
  // class, which is allowed because we're in C++11 mode and the context is
70
  // unevaluated.
71
  IMA_Field_Uneval_Context,
72
73
  /// All possible referrents are instance members and the current
74
  /// context is not an instance method.
75
  IMA_Error_StaticOrExplicitContext,
76
77
  /// All possible referrents are instance members of an unrelated
78
  /// class.
79
  IMA_Error_Unrelated
80
};
81
82
/// The given lookup names class member(s) and is not being used for
83
/// an address-of-member expression.  Classify the type of access
84
/// according to whether it's possible that this reference names an
85
/// instance member.  This is best-effort in dependent contexts; it is okay to
86
/// conservatively answer "yes", in which case some errors will simply
87
/// not be caught until template-instantiation.
88
static IMAKind ClassifyImplicitMemberAccess(Sema &SemaRef,
89
0
                                            const LookupResult &R) {
90
0
  assert(!R.empty() && (*R.begin())->isCXXClassMember());
91
92
0
  DeclContext *DC = SemaRef.getFunctionLevelDeclContext();
93
94
0
  bool isStaticOrExplicitContext =
95
0
      SemaRef.CXXThisTypeOverride.isNull() &&
96
0
      (!isa<CXXMethodDecl>(DC) || cast<CXXMethodDecl>(DC)->isStatic() ||
97
0
       cast<CXXMethodDecl>(DC)->isExplicitObjectMemberFunction());
98
99
0
  if (R.isUnresolvableResult())
100
0
    return isStaticOrExplicitContext ? IMA_Unresolved_StaticOrExplicitContext
101
0
                                     : IMA_Unresolved;
102
103
  // Collect all the declaring classes of instance members we find.
104
0
  bool hasNonInstance = false;
105
0
  bool isField = false;
106
0
  BaseSet Classes;
107
0
  for (NamedDecl *D : R) {
108
    // Look through any using decls.
109
0
    D = D->getUnderlyingDecl();
110
111
0
    if (D->isCXXInstanceMember()) {
112
0
      isField |= isa<FieldDecl>(D) || isa<MSPropertyDecl>(D) ||
113
0
                 isa<IndirectFieldDecl>(D);
114
115
0
      CXXRecordDecl *R = cast<CXXRecordDecl>(D->getDeclContext());
116
0
      Classes.insert(R->getCanonicalDecl());
117
0
    } else
118
0
      hasNonInstance = true;
119
0
  }
120
121
  // If we didn't find any instance members, it can't be an implicit
122
  // member reference.
123
0
  if (Classes.empty())
124
0
    return IMA_Static;
125
126
  // C++11 [expr.prim.general]p12:
127
  //   An id-expression that denotes a non-static data member or non-static
128
  //   member function of a class can only be used:
129
  //   (...)
130
  //   - if that id-expression denotes a non-static data member and it
131
  //     appears in an unevaluated operand.
132
  //
133
  // This rule is specific to C++11.  However, we also permit this form
134
  // in unevaluated inline assembly operands, like the operand to a SIZE.
135
0
  IMAKind AbstractInstanceResult = IMA_Static; // happens to be 'false'
136
0
  assert(!AbstractInstanceResult);
137
0
  switch (SemaRef.ExprEvalContexts.back().Context) {
138
0
  case Sema::ExpressionEvaluationContext::Unevaluated:
139
0
  case Sema::ExpressionEvaluationContext::UnevaluatedList:
140
0
    if (isField && SemaRef.getLangOpts().CPlusPlus11)
141
0
      AbstractInstanceResult = IMA_Field_Uneval_Context;
142
0
    break;
143
144
0
  case Sema::ExpressionEvaluationContext::UnevaluatedAbstract:
145
0
    AbstractInstanceResult = IMA_Abstract;
146
0
    break;
147
148
0
  case Sema::ExpressionEvaluationContext::DiscardedStatement:
149
0
  case Sema::ExpressionEvaluationContext::ConstantEvaluated:
150
0
  case Sema::ExpressionEvaluationContext::ImmediateFunctionContext:
151
0
  case Sema::ExpressionEvaluationContext::PotentiallyEvaluated:
152
0
  case Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed:
153
0
    break;
154
0
  }
155
156
  // If the current context is not an instance method, it can't be
157
  // an implicit member reference.
158
0
  if (isStaticOrExplicitContext) {
159
0
    if (hasNonInstance)
160
0
      return IMA_Mixed_StaticOrExplicitContext;
161
162
0
    return AbstractInstanceResult ? AbstractInstanceResult
163
0
                                  : IMA_Error_StaticOrExplicitContext;
164
0
  }
165
166
0
  CXXRecordDecl *contextClass;
167
0
  if (auto *MD = dyn_cast<CXXMethodDecl>(DC))
168
0
    contextClass = MD->getParent()->getCanonicalDecl();
169
0
  else if (auto *RD = dyn_cast<CXXRecordDecl>(DC))
170
0
    contextClass = RD;
171
0
  else
172
0
    return AbstractInstanceResult ? AbstractInstanceResult
173
0
                                  : IMA_Error_StaticOrExplicitContext;
174
175
  // [class.mfct.non-static]p3:
176
  // ...is used in the body of a non-static member function of class X,
177
  // if name lookup (3.4.1) resolves the name in the id-expression to a
178
  // non-static non-type member of some class C [...]
179
  // ...if C is not X or a base class of X, the class member access expression
180
  // is ill-formed.
181
0
  if (R.getNamingClass() &&
182
0
      contextClass->getCanonicalDecl() !=
183
0
        R.getNamingClass()->getCanonicalDecl()) {
184
    // If the naming class is not the current context, this was a qualified
185
    // member name lookup, and it's sufficient to check that we have the naming
186
    // class as a base class.
187
0
    Classes.clear();
188
0
    Classes.insert(R.getNamingClass()->getCanonicalDecl());
189
0
  }
190
191
  // If we can prove that the current context is unrelated to all the
192
  // declaring classes, it can't be an implicit member reference (in
193
  // which case it's an error if any of those members are selected).
194
0
  if (isProvablyNotDerivedFrom(SemaRef, contextClass, Classes))
195
0
    return hasNonInstance ? IMA_Mixed_Unrelated :
196
0
           AbstractInstanceResult ? AbstractInstanceResult :
197
0
                                    IMA_Error_Unrelated;
198
199
0
  return (hasNonInstance ? IMA_Mixed : IMA_Instance);
200
0
}
201
202
/// Diagnose a reference to a field with no object available.
203
static void diagnoseInstanceReference(Sema &SemaRef,
204
                                      const CXXScopeSpec &SS,
205
                                      NamedDecl *Rep,
206
0
                                      const DeclarationNameInfo &nameInfo) {
207
0
  SourceLocation Loc = nameInfo.getLoc();
208
0
  SourceRange Range(Loc);
209
0
  if (SS.isSet()) Range.setBegin(SS.getRange().getBegin());
210
211
  // Look through using shadow decls and aliases.
212
0
  Rep = Rep->getUnderlyingDecl();
213
214
0
  DeclContext *FunctionLevelDC = SemaRef.getFunctionLevelDeclContext();
215
0
  CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FunctionLevelDC);
216
0
  CXXRecordDecl *ContextClass = Method ? Method->getParent() : nullptr;
217
0
  CXXRecordDecl *RepClass = dyn_cast<CXXRecordDecl>(Rep->getDeclContext());
218
219
0
  bool InStaticMethod = Method && Method->isStatic();
220
0
  bool InExplicitObjectMethod =
221
0
      Method && Method->isExplicitObjectMemberFunction();
222
0
  bool IsField = isa<FieldDecl>(Rep) || isa<IndirectFieldDecl>(Rep);
223
224
0
  std::string Replacement;
225
0
  if (InExplicitObjectMethod) {
226
0
    DeclarationName N = Method->getParamDecl(0)->getDeclName();
227
0
    if (!N.isEmpty()) {
228
0
      Replacement.append(N.getAsString());
229
0
      Replacement.append(".");
230
0
    }
231
0
  }
232
0
  if (IsField && InStaticMethod)
233
    // "invalid use of member 'x' in static member function"
234
0
    SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method)
235
0
        << Range << nameInfo.getName() << /*static*/ 0;
236
0
  else if (IsField && InExplicitObjectMethod) {
237
0
    auto Diag = SemaRef.Diag(Loc, diag::err_invalid_member_use_in_method)
238
0
                << Range << nameInfo.getName() << /*explicit*/ 1;
239
0
    if (!Replacement.empty())
240
0
      Diag << FixItHint::CreateInsertion(Loc, Replacement);
241
0
  } else if (ContextClass && RepClass && SS.isEmpty() &&
242
0
             !InExplicitObjectMethod && !InStaticMethod &&
243
0
             !RepClass->Equals(ContextClass) &&
244
0
             RepClass->Encloses(ContextClass))
245
    // Unqualified lookup in a non-static member function found a member of an
246
    // enclosing class.
247
0
    SemaRef.Diag(Loc, diag::err_nested_non_static_member_use)
248
0
      << IsField << RepClass << nameInfo.getName() << ContextClass << Range;
249
0
  else if (IsField)
250
0
    SemaRef.Diag(Loc, diag::err_invalid_non_static_member_use)
251
0
      << nameInfo.getName() << Range;
252
0
  else if (!InExplicitObjectMethod)
253
0
    SemaRef.Diag(Loc, diag::err_member_call_without_object)
254
0
        << Range << /*static*/ 0;
255
0
  else {
256
0
    if (const auto *Tpl = dyn_cast<FunctionTemplateDecl>(Rep))
257
0
      Rep = Tpl->getTemplatedDecl();
258
0
    const auto *Callee = cast<CXXMethodDecl>(Rep);
259
0
    auto Diag = SemaRef.Diag(Loc, diag::err_member_call_without_object)
260
0
                << Range << Callee->isExplicitObjectMemberFunction();
261
0
    if (!Replacement.empty())
262
0
      Diag << FixItHint::CreateInsertion(Loc, Replacement);
263
0
  }
264
0
}
265
266
/// Builds an expression which might be an implicit member expression.
267
ExprResult Sema::BuildPossibleImplicitMemberExpr(
268
    const CXXScopeSpec &SS, SourceLocation TemplateKWLoc, LookupResult &R,
269
    const TemplateArgumentListInfo *TemplateArgs, const Scope *S,
270
0
    UnresolvedLookupExpr *AsULE) {
271
0
  switch (ClassifyImplicitMemberAccess(*this, R)) {
272
0
  case IMA_Instance:
273
0
    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, true, S);
274
275
0
  case IMA_Mixed:
276
0
  case IMA_Mixed_Unrelated:
277
0
  case IMA_Unresolved:
278
0
    return BuildImplicitMemberExpr(SS, TemplateKWLoc, R, TemplateArgs, false,
279
0
                                   S);
280
281
0
  case IMA_Field_Uneval_Context:
282
0
    Diag(R.getNameLoc(), diag::warn_cxx98_compat_non_static_member_use)
283
0
      << R.getLookupNameInfo().getName();
284
0
    [[fallthrough]];
285
0
  case IMA_Static:
286
0
  case IMA_Abstract:
287
0
  case IMA_Mixed_StaticOrExplicitContext:
288
0
  case IMA_Unresolved_StaticOrExplicitContext:
289
0
    if (TemplateArgs || TemplateKWLoc.isValid())
290
0
      return BuildTemplateIdExpr(SS, TemplateKWLoc, R, false, TemplateArgs);
291
0
    return AsULE ? AsULE : BuildDeclarationNameExpr(SS, R, false);
292
293
0
  case IMA_Error_StaticOrExplicitContext:
294
0
  case IMA_Error_Unrelated:
295
0
    diagnoseInstanceReference(*this, SS, R.getRepresentativeDecl(),
296
0
                              R.getLookupNameInfo());
297
0
    return ExprError();
298
0
  }
299
300
0
  llvm_unreachable("unexpected instance member access kind");
301
0
}
302
303
/// Determine whether input char is from rgba component set.
304
static bool
305
0
IsRGBA(char c) {
306
0
  switch (c) {
307
0
  case 'r':
308
0
  case 'g':
309
0
  case 'b':
310
0
  case 'a':
311
0
    return true;
312
0
  default:
313
0
    return false;
314
0
  }
315
0
}
316
317
// OpenCL v1.1, s6.1.7
318
// The component swizzle length must be in accordance with the acceptable
319
// vector sizes.
320
static bool IsValidOpenCLComponentSwizzleLength(unsigned len)
321
0
{
322
0
  return (len >= 1 && len <= 4) || len == 8 || len == 16;
323
0
}
324
325
/// Check an ext-vector component access expression.
326
///
327
/// VK should be set in advance to the value kind of the base
328
/// expression.
329
static QualType
330
CheckExtVectorComponent(Sema &S, QualType baseType, ExprValueKind &VK,
331
                        SourceLocation OpLoc, const IdentifierInfo *CompName,
332
0
                        SourceLocation CompLoc) {
333
  // FIXME: Share logic with ExtVectorElementExpr::containsDuplicateElements,
334
  // see FIXME there.
335
  //
336
  // FIXME: This logic can be greatly simplified by splitting it along
337
  // halving/not halving and reworking the component checking.
338
0
  const ExtVectorType *vecType = baseType->getAs<ExtVectorType>();
339
340
  // The vector accessor can't exceed the number of elements.
341
0
  const char *compStr = CompName->getNameStart();
342
343
  // This flag determines whether or not the component is one of the four
344
  // special names that indicate a subset of exactly half the elements are
345
  // to be selected.
346
0
  bool HalvingSwizzle = false;
347
348
  // This flag determines whether or not CompName has an 's' char prefix,
349
  // indicating that it is a string of hex values to be used as vector indices.
350
0
  bool HexSwizzle = (*compStr == 's' || *compStr == 'S') && compStr[1];
351
352
0
  bool HasRepeated = false;
353
0
  bool HasIndex[16] = {};
354
355
0
  int Idx;
356
357
  // Check that we've found one of the special components, or that the component
358
  // names must come from the same set.
359
0
  if (!strcmp(compStr, "hi") || !strcmp(compStr, "lo") ||
360
0
      !strcmp(compStr, "even") || !strcmp(compStr, "odd")) {
361
0
    HalvingSwizzle = true;
362
0
  } else if (!HexSwizzle &&
363
0
             (Idx = vecType->getPointAccessorIdx(*compStr)) != -1) {
364
0
    bool HasRGBA = IsRGBA(*compStr);
365
0
    do {
366
      // Ensure that xyzw and rgba components don't intermingle.
367
0
      if (HasRGBA != IsRGBA(*compStr))
368
0
        break;
369
0
      if (HasIndex[Idx]) HasRepeated = true;
370
0
      HasIndex[Idx] = true;
371
0
      compStr++;
372
0
    } while (*compStr && (Idx = vecType->getPointAccessorIdx(*compStr)) != -1);
373
374
    // Emit a warning if an rgba selector is used earlier than OpenCL C 3.0.
375
0
    if (HasRGBA || (*compStr && IsRGBA(*compStr))) {
376
0
      if (S.getLangOpts().OpenCL &&
377
0
          S.getLangOpts().getOpenCLCompatibleVersion() < 300) {
378
0
        const char *DiagBegin = HasRGBA ? CompName->getNameStart() : compStr;
379
0
        S.Diag(OpLoc, diag::ext_opencl_ext_vector_type_rgba_selector)
380
0
            << StringRef(DiagBegin, 1) << SourceRange(CompLoc);
381
0
      }
382
0
    }
383
0
  } else {
384
0
    if (HexSwizzle) compStr++;
385
0
    while ((Idx = vecType->getNumericAccessorIdx(*compStr)) != -1) {
386
0
      if (HasIndex[Idx]) HasRepeated = true;
387
0
      HasIndex[Idx] = true;
388
0
      compStr++;
389
0
    }
390
0
  }
391
392
0
  if (!HalvingSwizzle && *compStr) {
393
    // We didn't get to the end of the string. This means the component names
394
    // didn't come from the same set *or* we encountered an illegal name.
395
0
    S.Diag(OpLoc, diag::err_ext_vector_component_name_illegal)
396
0
      << StringRef(compStr, 1) << SourceRange(CompLoc);
397
0
    return QualType();
398
0
  }
399
400
  // Ensure no component accessor exceeds the width of the vector type it
401
  // operates on.
402
0
  if (!HalvingSwizzle) {
403
0
    compStr = CompName->getNameStart();
404
405
0
    if (HexSwizzle)
406
0
      compStr++;
407
408
0
    while (*compStr) {
409
0
      if (!vecType->isAccessorWithinNumElements(*compStr++, HexSwizzle)) {
410
0
        S.Diag(OpLoc, diag::err_ext_vector_component_exceeds_length)
411
0
          << baseType << SourceRange(CompLoc);
412
0
        return QualType();
413
0
      }
414
0
    }
415
0
  }
416
417
  // OpenCL mode requires swizzle length to be in accordance with accepted
418
  // sizes. Clang however supports arbitrary lengths for other languages.
419
0
  if (S.getLangOpts().OpenCL && !HalvingSwizzle) {
420
0
    unsigned SwizzleLength = CompName->getLength();
421
422
0
    if (HexSwizzle)
423
0
      SwizzleLength--;
424
425
0
    if (IsValidOpenCLComponentSwizzleLength(SwizzleLength) == false) {
426
0
      S.Diag(OpLoc, diag::err_opencl_ext_vector_component_invalid_length)
427
0
        << SwizzleLength << SourceRange(CompLoc);
428
0
      return QualType();
429
0
    }
430
0
  }
431
432
  // The component accessor looks fine - now we need to compute the actual type.
433
  // The vector type is implied by the component accessor. For example,
434
  // vec4.b is a float, vec4.xy is a vec2, vec4.rgb is a vec3, etc.
435
  // vec4.s0 is a float, vec4.s23 is a vec3, etc.
436
  // vec4.hi, vec4.lo, vec4.e, and vec4.o all return vec2.
437
0
  unsigned CompSize = HalvingSwizzle ? (vecType->getNumElements() + 1) / 2
438
0
                                     : CompName->getLength();
439
0
  if (HexSwizzle)
440
0
    CompSize--;
441
442
0
  if (CompSize == 1)
443
0
    return vecType->getElementType();
444
445
0
  if (HasRepeated)
446
0
    VK = VK_PRValue;
447
448
0
  QualType VT = S.Context.getExtVectorType(vecType->getElementType(), CompSize);
449
  // Now look up the TypeDefDecl from the vector type. Without this,
450
  // diagostics look bad. We want extended vector types to appear built-in.
451
0
  for (Sema::ExtVectorDeclsType::iterator
452
0
         I = S.ExtVectorDecls.begin(S.getExternalSource()),
453
0
         E = S.ExtVectorDecls.end();
454
0
       I != E; ++I) {
455
0
    if ((*I)->getUnderlyingType() == VT)
456
0
      return S.Context.getTypedefType(*I);
457
0
  }
458
459
0
  return VT; // should never get here (a typedef type should always be found).
460
0
}
461
462
static Decl *FindGetterSetterNameDeclFromProtocolList(const ObjCProtocolDecl*PDecl,
463
                                                IdentifierInfo *Member,
464
                                                const Selector &Sel,
465
0
                                                ASTContext &Context) {
466
0
  if (Member)
467
0
    if (ObjCPropertyDecl *PD = PDecl->FindPropertyDeclaration(
468
0
            Member, ObjCPropertyQueryKind::OBJC_PR_query_instance))
469
0
      return PD;
470
0
  if (ObjCMethodDecl *OMD = PDecl->getInstanceMethod(Sel))
471
0
    return OMD;
472
473
0
  for (const auto *I : PDecl->protocols()) {
474
0
    if (Decl *D = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel,
475
0
                                                           Context))
476
0
      return D;
477
0
  }
478
0
  return nullptr;
479
0
}
480
481
static Decl *FindGetterSetterNameDecl(const ObjCObjectPointerType *QIdTy,
482
                                      IdentifierInfo *Member,
483
                                      const Selector &Sel,
484
0
                                      ASTContext &Context) {
485
  // Check protocols on qualified interfaces.
486
0
  Decl *GDecl = nullptr;
487
0
  for (const auto *I : QIdTy->quals()) {
488
0
    if (Member)
489
0
      if (ObjCPropertyDecl *PD = I->FindPropertyDeclaration(
490
0
              Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
491
0
        GDecl = PD;
492
0
        break;
493
0
      }
494
    // Also must look for a getter or setter name which uses property syntax.
495
0
    if (ObjCMethodDecl *OMD = I->getInstanceMethod(Sel)) {
496
0
      GDecl = OMD;
497
0
      break;
498
0
    }
499
0
  }
500
0
  if (!GDecl) {
501
0
    for (const auto *I : QIdTy->quals()) {
502
      // Search in the protocol-qualifier list of current protocol.
503
0
      GDecl = FindGetterSetterNameDeclFromProtocolList(I, Member, Sel, Context);
504
0
      if (GDecl)
505
0
        return GDecl;
506
0
    }
507
0
  }
508
0
  return GDecl;
509
0
}
510
511
ExprResult
512
Sema::ActOnDependentMemberExpr(Expr *BaseExpr, QualType BaseType,
513
                               bool IsArrow, SourceLocation OpLoc,
514
                               const CXXScopeSpec &SS,
515
                               SourceLocation TemplateKWLoc,
516
                               NamedDecl *FirstQualifierInScope,
517
                               const DeclarationNameInfo &NameInfo,
518
2
                               const TemplateArgumentListInfo *TemplateArgs) {
519
  // Even in dependent contexts, try to diagnose base expressions with
520
  // obviously wrong types, e.g.:
521
  //
522
  // T* t;
523
  // t.f;
524
  //
525
  // In Obj-C++, however, the above expression is valid, since it could be
526
  // accessing the 'f' property if T is an Obj-C interface. The extra check
527
  // allows this, while still reporting an error if T is a struct pointer.
528
2
  if (!IsArrow) {
529
2
    const PointerType *PT = BaseType->getAs<PointerType>();
530
2
    if (PT && (!getLangOpts().ObjC ||
531
0
               PT->getPointeeType()->isRecordType())) {
532
0
      assert(BaseExpr && "cannot happen with implicit member accesses");
533
0
      Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
534
0
        << BaseType << BaseExpr->getSourceRange() << NameInfo.getSourceRange();
535
0
      return ExprError();
536
0
    }
537
2
  }
538
539
2
  assert(BaseType->isDependentType() || NameInfo.getName().isDependentName() ||
540
2
         isDependentScopeSpecifier(SS) ||
541
2
         (TemplateArgs && llvm::any_of(TemplateArgs->arguments(),
542
2
                                       [](const TemplateArgumentLoc &Arg) {
543
2
                                         return Arg.getArgument().isDependent();
544
2
                                       })));
545
546
  // Get the type being accessed in BaseType.  If this is an arrow, the BaseExpr
547
  // must have pointer type, and the accessed type is the pointee.
548
0
  return CXXDependentScopeMemberExpr::Create(
549
2
      Context, BaseExpr, BaseType, IsArrow, OpLoc,
550
2
      SS.getWithLocInContext(Context), TemplateKWLoc, FirstQualifierInScope,
551
2
      NameInfo, TemplateArgs);
552
2
}
553
554
/// We know that the given qualified member reference points only to
555
/// declarations which do not belong to the static type of the base
556
/// expression.  Diagnose the problem.
557
static void DiagnoseQualifiedMemberReference(Sema &SemaRef,
558
                                             Expr *BaseExpr,
559
                                             QualType BaseType,
560
                                             const CXXScopeSpec &SS,
561
                                             NamedDecl *rep,
562
0
                                       const DeclarationNameInfo &nameInfo) {
563
  // If this is an implicit member access, use a different set of
564
  // diagnostics.
565
0
  if (!BaseExpr)
566
0
    return diagnoseInstanceReference(SemaRef, SS, rep, nameInfo);
567
568
0
  SemaRef.Diag(nameInfo.getLoc(), diag::err_qualified_member_of_unrelated)
569
0
    << SS.getRange() << rep << BaseType;
570
0
}
571
572
// Check whether the declarations we found through a nested-name
573
// specifier in a member expression are actually members of the base
574
// type.  The restriction here is:
575
//
576
//   C++ [expr.ref]p2:
577
//     ... In these cases, the id-expression shall name a
578
//     member of the class or of one of its base classes.
579
//
580
// So it's perfectly legitimate for the nested-name specifier to name
581
// an unrelated class, and for us to find an overload set including
582
// decls from classes which are not superclasses, as long as the decl
583
// we actually pick through overload resolution is from a superclass.
584
bool Sema::CheckQualifiedMemberReference(Expr *BaseExpr,
585
                                         QualType BaseType,
586
                                         const CXXScopeSpec &SS,
587
0
                                         const LookupResult &R) {
588
0
  CXXRecordDecl *BaseRecord =
589
0
    cast_or_null<CXXRecordDecl>(computeDeclContext(BaseType));
590
0
  if (!BaseRecord) {
591
    // We can't check this yet because the base type is still
592
    // dependent.
593
0
    assert(BaseType->isDependentType());
594
0
    return false;
595
0
  }
596
597
0
  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
598
    // If this is an implicit member reference and we find a
599
    // non-instance member, it's not an error.
600
0
    if (!BaseExpr && !(*I)->isCXXInstanceMember())
601
0
      return false;
602
603
    // Note that we use the DC of the decl, not the underlying decl.
604
0
    DeclContext *DC = (*I)->getDeclContext()->getNonTransparentContext();
605
0
    if (!DC->isRecord())
606
0
      continue;
607
608
0
    CXXRecordDecl *MemberRecord = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
609
0
    if (BaseRecord->getCanonicalDecl() == MemberRecord ||
610
0
        !BaseRecord->isProvablyNotDerivedFrom(MemberRecord))
611
0
      return false;
612
0
  }
613
614
0
  DiagnoseQualifiedMemberReference(*this, BaseExpr, BaseType, SS,
615
0
                                   R.getRepresentativeDecl(),
616
0
                                   R.getLookupNameInfo());
617
0
  return true;
618
0
}
619
620
namespace {
621
622
// Callback to only accept typo corrections that are either a ValueDecl or a
623
// FunctionTemplateDecl and are declared in the current record or, for a C++
624
// classes, one of its base classes.
625
class RecordMemberExprValidatorCCC final : public CorrectionCandidateCallback {
626
public:
627
  explicit RecordMemberExprValidatorCCC(const RecordType *RTy)
628
0
      : Record(RTy->getDecl()) {
629
    // Don't add bare keywords to the consumer since they will always fail
630
    // validation by virtue of not being associated with any decls.
631
0
    WantTypeSpecifiers = false;
632
0
    WantExpressionKeywords = false;
633
0
    WantCXXNamedCasts = false;
634
0
    WantFunctionLikeCasts = false;
635
0
    WantRemainingKeywords = false;
636
0
  }
637
638
0
  bool ValidateCandidate(const TypoCorrection &candidate) override {
639
0
    NamedDecl *ND = candidate.getCorrectionDecl();
640
    // Don't accept candidates that cannot be member functions, constants,
641
    // variables, or templates.
642
0
    if (!ND || !(isa<ValueDecl>(ND) || isa<FunctionTemplateDecl>(ND)))
643
0
      return false;
644
645
    // Accept candidates that occur in the current record.
646
0
    if (Record->containsDecl(ND))
647
0
      return true;
648
649
0
    if (const auto *RD = dyn_cast<CXXRecordDecl>(Record)) {
650
      // Accept candidates that occur in any of the current class' base classes.
651
0
      for (const auto &BS : RD->bases()) {
652
0
        if (const auto *BSTy = BS.getType()->getAs<RecordType>()) {
653
0
          if (BSTy->getDecl()->containsDecl(ND))
654
0
            return true;
655
0
        }
656
0
      }
657
0
    }
658
659
0
    return false;
660
0
  }
661
662
0
  std::unique_ptr<CorrectionCandidateCallback> clone() override {
663
0
    return std::make_unique<RecordMemberExprValidatorCCC>(*this);
664
0
  }
665
666
private:
667
  const RecordDecl *const Record;
668
};
669
670
}
671
672
static bool LookupMemberExprInRecord(Sema &SemaRef, LookupResult &R,
673
                                     Expr *BaseExpr,
674
                                     const RecordType *RTy,
675
                                     SourceLocation OpLoc, bool IsArrow,
676
                                     CXXScopeSpec &SS, bool HasTemplateArgs,
677
                                     SourceLocation TemplateKWLoc,
678
0
                                     TypoExpr *&TE) {
679
0
  SourceRange BaseRange = BaseExpr ? BaseExpr->getSourceRange() : SourceRange();
680
0
  RecordDecl *RDecl = RTy->getDecl();
681
0
  if (!SemaRef.isThisOutsideMemberFunctionBody(QualType(RTy, 0)) &&
682
0
      SemaRef.RequireCompleteType(OpLoc, QualType(RTy, 0),
683
0
                                  diag::err_typecheck_incomplete_tag,
684
0
                                  BaseRange))
685
0
    return true;
686
687
0
  if (HasTemplateArgs || TemplateKWLoc.isValid()) {
688
    // LookupTemplateName doesn't expect these both to exist simultaneously.
689
0
    QualType ObjectType = SS.isSet() ? QualType() : QualType(RTy, 0);
690
691
0
    bool MOUS;
692
0
    return SemaRef.LookupTemplateName(R, nullptr, SS, ObjectType, false, MOUS,
693
0
                                      TemplateKWLoc);
694
0
  }
695
696
0
  DeclContext *DC = RDecl;
697
0
  if (SS.isSet()) {
698
    // If the member name was a qualified-id, look into the
699
    // nested-name-specifier.
700
0
    DC = SemaRef.computeDeclContext(SS, false);
701
702
0
    if (SemaRef.RequireCompleteDeclContext(SS, DC)) {
703
0
      SemaRef.Diag(SS.getRange().getEnd(), diag::err_typecheck_incomplete_tag)
704
0
          << SS.getRange() << DC;
705
0
      return true;
706
0
    }
707
708
0
    assert(DC && "Cannot handle non-computable dependent contexts in lookup");
709
710
0
    if (!isa<TypeDecl>(DC)) {
711
0
      SemaRef.Diag(R.getNameLoc(), diag::err_qualified_member_nonclass)
712
0
          << DC << SS.getRange();
713
0
      return true;
714
0
    }
715
0
  }
716
717
  // The record definition is complete, now look up the member.
718
0
  SemaRef.LookupQualifiedName(R, DC, SS);
719
720
0
  if (!R.empty())
721
0
    return false;
722
723
0
  DeclarationName Typo = R.getLookupName();
724
0
  SourceLocation TypoLoc = R.getNameLoc();
725
726
0
  struct QueryState {
727
0
    Sema &SemaRef;
728
0
    DeclarationNameInfo NameInfo;
729
0
    Sema::LookupNameKind LookupKind;
730
0
    Sema::RedeclarationKind Redecl;
731
0
  };
732
0
  QueryState Q = {R.getSema(), R.getLookupNameInfo(), R.getLookupKind(),
733
0
                  R.redeclarationKind()};
734
0
  RecordMemberExprValidatorCCC CCC(RTy);
735
0
  TE = SemaRef.CorrectTypoDelayed(
736
0
      R.getLookupNameInfo(), R.getLookupKind(), nullptr, &SS, CCC,
737
0
      [=, &SemaRef](const TypoCorrection &TC) {
738
0
        if (TC) {
739
0
          assert(!TC.isKeyword() &&
740
0
                 "Got a keyword as a correction for a member!");
741
0
          bool DroppedSpecifier =
742
0
              TC.WillReplaceSpecifier() &&
743
0
              Typo.getAsString() == TC.getAsString(SemaRef.getLangOpts());
744
0
          SemaRef.diagnoseTypo(TC, SemaRef.PDiag(diag::err_no_member_suggest)
745
0
                                       << Typo << DC << DroppedSpecifier
746
0
                                       << SS.getRange());
747
0
        } else {
748
0
          SemaRef.Diag(TypoLoc, diag::err_no_member) << Typo << DC << BaseRange;
749
0
        }
750
0
      },
751
0
      [=](Sema &SemaRef, TypoExpr *TE, TypoCorrection TC) mutable {
752
0
        LookupResult R(Q.SemaRef, Q.NameInfo, Q.LookupKind, Q.Redecl);
753
0
        R.clear(); // Ensure there's no decls lingering in the shared state.
754
0
        R.suppressDiagnostics();
755
0
        R.setLookupName(TC.getCorrection());
756
0
        for (NamedDecl *ND : TC)
757
0
          R.addDecl(ND);
758
0
        R.resolveKind();
759
0
        return SemaRef.BuildMemberReferenceExpr(
760
0
            BaseExpr, BaseExpr->getType(), OpLoc, IsArrow, SS, SourceLocation(),
761
0
            nullptr, R, nullptr, nullptr);
762
0
      },
763
0
      Sema::CTK_ErrorRecovery, DC);
764
765
0
  return false;
766
0
}
767
768
static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
769
                                   ExprResult &BaseExpr, bool &IsArrow,
770
                                   SourceLocation OpLoc, CXXScopeSpec &SS,
771
                                   Decl *ObjCImpDecl, bool HasTemplateArgs,
772
                                   SourceLocation TemplateKWLoc);
773
774
ExprResult
775
Sema::BuildMemberReferenceExpr(Expr *Base, QualType BaseType,
776
                               SourceLocation OpLoc, bool IsArrow,
777
                               CXXScopeSpec &SS,
778
                               SourceLocation TemplateKWLoc,
779
                               NamedDecl *FirstQualifierInScope,
780
                               const DeclarationNameInfo &NameInfo,
781
                               const TemplateArgumentListInfo *TemplateArgs,
782
                               const Scope *S,
783
0
                               ActOnMemberAccessExtraArgs *ExtraArgs) {
784
0
  if (BaseType->isDependentType() ||
785
0
      (SS.isSet() && isDependentScopeSpecifier(SS)) ||
786
0
      NameInfo.getName().isDependentName())
787
0
    return ActOnDependentMemberExpr(Base, BaseType,
788
0
                                    IsArrow, OpLoc,
789
0
                                    SS, TemplateKWLoc, FirstQualifierInScope,
790
0
                                    NameInfo, TemplateArgs);
791
792
0
  LookupResult R(*this, NameInfo, LookupMemberName);
793
794
  // Implicit member accesses.
795
0
  if (!Base) {
796
0
    TypoExpr *TE = nullptr;
797
0
    QualType RecordTy = BaseType;
798
0
    if (IsArrow) RecordTy = RecordTy->castAs<PointerType>()->getPointeeType();
799
0
    if (LookupMemberExprInRecord(
800
0
            *this, R, nullptr, RecordTy->castAs<RecordType>(), OpLoc, IsArrow,
801
0
            SS, TemplateArgs != nullptr, TemplateKWLoc, TE))
802
0
      return ExprError();
803
0
    if (TE)
804
0
      return TE;
805
806
  // Explicit member accesses.
807
0
  } else {
808
0
    ExprResult BaseResult = Base;
809
0
    ExprResult Result =
810
0
        LookupMemberExpr(*this, R, BaseResult, IsArrow, OpLoc, SS,
811
0
                         ExtraArgs ? ExtraArgs->ObjCImpDecl : nullptr,
812
0
                         TemplateArgs != nullptr, TemplateKWLoc);
813
814
0
    if (BaseResult.isInvalid())
815
0
      return ExprError();
816
0
    Base = BaseResult.get();
817
818
0
    if (Result.isInvalid())
819
0
      return ExprError();
820
821
0
    if (Result.get())
822
0
      return Result;
823
824
    // LookupMemberExpr can modify Base, and thus change BaseType
825
0
    BaseType = Base->getType();
826
0
  }
827
828
0
  return BuildMemberReferenceExpr(Base, BaseType,
829
0
                                  OpLoc, IsArrow, SS, TemplateKWLoc,
830
0
                                  FirstQualifierInScope, R, TemplateArgs, S,
831
0
                                  false, ExtraArgs);
832
0
}
833
834
ExprResult
835
Sema::BuildAnonymousStructUnionMemberReference(const CXXScopeSpec &SS,
836
                                               SourceLocation loc,
837
                                               IndirectFieldDecl *indirectField,
838
                                               DeclAccessPair foundDecl,
839
                                               Expr *baseObjectExpr,
840
0
                                               SourceLocation opLoc) {
841
  // First, build the expression that refers to the base object.
842
843
  // Case 1:  the base of the indirect field is not a field.
844
0
  VarDecl *baseVariable = indirectField->getVarDecl();
845
0
  CXXScopeSpec EmptySS;
846
0
  if (baseVariable) {
847
0
    assert(baseVariable->getType()->isRecordType());
848
849
    // In principle we could have a member access expression that
850
    // accesses an anonymous struct/union that's a static member of
851
    // the base object's class.  However, under the current standard,
852
    // static data members cannot be anonymous structs or unions.
853
    // Supporting this is as easy as building a MemberExpr here.
854
0
    assert(!baseObjectExpr && "anonymous struct/union is static data member?");
855
856
0
    DeclarationNameInfo baseNameInfo(DeclarationName(), loc);
857
858
0
    ExprResult result
859
0
      = BuildDeclarationNameExpr(EmptySS, baseNameInfo, baseVariable);
860
0
    if (result.isInvalid()) return ExprError();
861
862
0
    baseObjectExpr = result.get();
863
0
  }
864
865
0
  assert((baseVariable || baseObjectExpr) &&
866
0
         "referencing anonymous struct/union without a base variable or "
867
0
         "expression");
868
869
  // Build the implicit member references to the field of the
870
  // anonymous struct/union.
871
0
  Expr *result = baseObjectExpr;
872
0
  IndirectFieldDecl::chain_iterator
873
0
  FI = indirectField->chain_begin(), FEnd = indirectField->chain_end();
874
875
  // Case 2: the base of the indirect field is a field and the user
876
  // wrote a member expression.
877
0
  if (!baseVariable) {
878
0
    FieldDecl *field = cast<FieldDecl>(*FI);
879
880
0
    bool baseObjectIsPointer = baseObjectExpr->getType()->isPointerType();
881
882
    // Make a nameInfo that properly uses the anonymous name.
883
0
    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
884
885
    // Build the first member access in the chain with full information.
886
0
    result =
887
0
        BuildFieldReferenceExpr(result, baseObjectIsPointer, SourceLocation(),
888
0
                                SS, field, foundDecl, memberNameInfo)
889
0
            .get();
890
0
    if (!result)
891
0
      return ExprError();
892
0
  }
893
894
  // In all cases, we should now skip the first declaration in the chain.
895
0
  ++FI;
896
897
0
  while (FI != FEnd) {
898
0
    FieldDecl *field = cast<FieldDecl>(*FI++);
899
900
    // FIXME: these are somewhat meaningless
901
0
    DeclarationNameInfo memberNameInfo(field->getDeclName(), loc);
902
0
    DeclAccessPair fakeFoundDecl =
903
0
        DeclAccessPair::make(field, field->getAccess());
904
905
0
    result =
906
0
        BuildFieldReferenceExpr(result, /*isarrow*/ false, SourceLocation(),
907
0
                                (FI == FEnd ? SS : EmptySS), field,
908
0
                                fakeFoundDecl, memberNameInfo)
909
0
            .get();
910
0
  }
911
912
0
  return result;
913
0
}
914
915
static ExprResult
916
BuildMSPropertyRefExpr(Sema &S, Expr *BaseExpr, bool IsArrow,
917
                       const CXXScopeSpec &SS,
918
                       MSPropertyDecl *PD,
919
0
                       const DeclarationNameInfo &NameInfo) {
920
  // Property names are always simple identifiers and therefore never
921
  // require any interesting additional storage.
922
0
  return new (S.Context) MSPropertyRefExpr(BaseExpr, PD, IsArrow,
923
0
                                           S.Context.PseudoObjectTy, VK_LValue,
924
0
                                           SS.getWithLocInContext(S.Context),
925
0
                                           NameInfo.getLoc());
926
0
}
927
928
MemberExpr *Sema::BuildMemberExpr(
929
    Expr *Base, bool IsArrow, SourceLocation OpLoc, const CXXScopeSpec *SS,
930
    SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
931
    bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
932
    QualType Ty, ExprValueKind VK, ExprObjectKind OK,
933
0
    const TemplateArgumentListInfo *TemplateArgs) {
934
0
  NestedNameSpecifierLoc NNS =
935
0
      SS ? SS->getWithLocInContext(Context) : NestedNameSpecifierLoc();
936
0
  return BuildMemberExpr(Base, IsArrow, OpLoc, NNS, TemplateKWLoc, Member,
937
0
                         FoundDecl, HadMultipleCandidates, MemberNameInfo, Ty,
938
0
                         VK, OK, TemplateArgs);
939
0
}
940
941
MemberExpr *Sema::BuildMemberExpr(
942
    Expr *Base, bool IsArrow, SourceLocation OpLoc, NestedNameSpecifierLoc NNS,
943
    SourceLocation TemplateKWLoc, ValueDecl *Member, DeclAccessPair FoundDecl,
944
    bool HadMultipleCandidates, const DeclarationNameInfo &MemberNameInfo,
945
    QualType Ty, ExprValueKind VK, ExprObjectKind OK,
946
0
    const TemplateArgumentListInfo *TemplateArgs) {
947
0
  assert((!IsArrow || Base->isPRValue()) &&
948
0
         "-> base must be a pointer prvalue");
949
0
  MemberExpr *E =
950
0
      MemberExpr::Create(Context, Base, IsArrow, OpLoc, NNS, TemplateKWLoc,
951
0
                         Member, FoundDecl, MemberNameInfo, TemplateArgs, Ty,
952
0
                         VK, OK, getNonOdrUseReasonInCurrentContext(Member));
953
0
  E->setHadMultipleCandidates(HadMultipleCandidates);
954
0
  MarkMemberReferenced(E);
955
956
  // C++ [except.spec]p17:
957
  //   An exception-specification is considered to be needed when:
958
  //   - in an expression the function is the unique lookup result or the
959
  //     selected member of a set of overloaded functions
960
0
  if (auto *FPT = Ty->getAs<FunctionProtoType>()) {
961
0
    if (isUnresolvedExceptionSpec(FPT->getExceptionSpecType())) {
962
0
      if (auto *NewFPT = ResolveExceptionSpec(MemberNameInfo.getLoc(), FPT))
963
0
        E->setType(Context.getQualifiedType(NewFPT, Ty.getQualifiers()));
964
0
    }
965
0
  }
966
967
0
  return E;
968
0
}
969
970
/// Determine if the given scope is within a function-try-block handler.
971
0
static bool IsInFnTryBlockHandler(const Scope *S) {
972
  // Walk the scope stack until finding a FnTryCatchScope, or leave the
973
  // function scope. If a FnTryCatchScope is found, check whether the TryScope
974
  // flag is set. If it is not, it's a function-try-block handler.
975
0
  for (; S != S->getFnParent(); S = S->getParent()) {
976
0
    if (S->isFnTryCatchScope())
977
0
      return (S->getFlags() & Scope::TryScope) != Scope::TryScope;
978
0
  }
979
0
  return false;
980
0
}
981
982
ExprResult
983
Sema::BuildMemberReferenceExpr(Expr *BaseExpr, QualType BaseExprType,
984
                               SourceLocation OpLoc, bool IsArrow,
985
                               const CXXScopeSpec &SS,
986
                               SourceLocation TemplateKWLoc,
987
                               NamedDecl *FirstQualifierInScope,
988
                               LookupResult &R,
989
                               const TemplateArgumentListInfo *TemplateArgs,
990
                               const Scope *S,
991
                               bool SuppressQualifierCheck,
992
0
                               ActOnMemberAccessExtraArgs *ExtraArgs) {
993
0
  QualType BaseType = BaseExprType;
994
0
  if (IsArrow) {
995
0
    assert(BaseType->isPointerType());
996
0
    BaseType = BaseType->castAs<PointerType>()->getPointeeType();
997
0
  }
998
0
  R.setBaseObjectType(BaseType);
999
1000
  // C++1z [expr.ref]p2:
1001
  //   For the first option (dot) the first expression shall be a glvalue [...]
1002
0
  if (!IsArrow && BaseExpr && BaseExpr->isPRValue()) {
1003
0
    ExprResult Converted = TemporaryMaterializationConversion(BaseExpr);
1004
0
    if (Converted.isInvalid())
1005
0
      return ExprError();
1006
0
    BaseExpr = Converted.get();
1007
0
  }
1008
1009
0
  const DeclarationNameInfo &MemberNameInfo = R.getLookupNameInfo();
1010
0
  DeclarationName MemberName = MemberNameInfo.getName();
1011
0
  SourceLocation MemberLoc = MemberNameInfo.getLoc();
1012
1013
0
  if (R.isAmbiguous())
1014
0
    return ExprError();
1015
1016
  // [except.handle]p10: Referring to any non-static member or base class of an
1017
  // object in the handler for a function-try-block of a constructor or
1018
  // destructor for that object results in undefined behavior.
1019
0
  const auto *FD = getCurFunctionDecl();
1020
0
  if (S && BaseExpr && FD &&
1021
0
      (isa<CXXDestructorDecl>(FD) || isa<CXXConstructorDecl>(FD)) &&
1022
0
      isa<CXXThisExpr>(BaseExpr->IgnoreImpCasts()) &&
1023
0
      IsInFnTryBlockHandler(S))
1024
0
    Diag(MemberLoc, diag::warn_cdtor_function_try_handler_mem_expr)
1025
0
        << isa<CXXDestructorDecl>(FD);
1026
1027
0
  if (R.empty()) {
1028
    // Rederive where we looked up.
1029
0
    DeclContext *DC = (SS.isSet()
1030
0
                       ? computeDeclContext(SS, false)
1031
0
                       : BaseType->castAs<RecordType>()->getDecl());
1032
1033
0
    if (ExtraArgs) {
1034
0
      ExprResult RetryExpr;
1035
0
      if (!IsArrow && BaseExpr) {
1036
0
        SFINAETrap Trap(*this, true);
1037
0
        ParsedType ObjectType;
1038
0
        bool MayBePseudoDestructor = false;
1039
0
        RetryExpr = ActOnStartCXXMemberReference(getCurScope(), BaseExpr,
1040
0
                                                 OpLoc, tok::arrow, ObjectType,
1041
0
                                                 MayBePseudoDestructor);
1042
0
        if (RetryExpr.isUsable() && !Trap.hasErrorOccurred()) {
1043
0
          CXXScopeSpec TempSS(SS);
1044
0
          RetryExpr = ActOnMemberAccessExpr(
1045
0
              ExtraArgs->S, RetryExpr.get(), OpLoc, tok::arrow, TempSS,
1046
0
              TemplateKWLoc, ExtraArgs->Id, ExtraArgs->ObjCImpDecl);
1047
0
        }
1048
0
        if (Trap.hasErrorOccurred())
1049
0
          RetryExpr = ExprError();
1050
0
      }
1051
0
      if (RetryExpr.isUsable()) {
1052
0
        Diag(OpLoc, diag::err_no_member_overloaded_arrow)
1053
0
          << MemberName << DC << FixItHint::CreateReplacement(OpLoc, "->");
1054
0
        return RetryExpr;
1055
0
      }
1056
0
    }
1057
1058
0
    Diag(R.getNameLoc(), diag::err_no_member)
1059
0
      << MemberName << DC
1060
0
      << (BaseExpr ? BaseExpr->getSourceRange() : SourceRange());
1061
0
    return ExprError();
1062
0
  }
1063
1064
  // Diagnose lookups that find only declarations from a non-base
1065
  // type.  This is possible for either qualified lookups (which may
1066
  // have been qualified with an unrelated type) or implicit member
1067
  // expressions (which were found with unqualified lookup and thus
1068
  // may have come from an enclosing scope).  Note that it's okay for
1069
  // lookup to find declarations from a non-base type as long as those
1070
  // aren't the ones picked by overload resolution.
1071
0
  if ((SS.isSet() || !BaseExpr ||
1072
0
       (isa<CXXThisExpr>(BaseExpr) &&
1073
0
        cast<CXXThisExpr>(BaseExpr)->isImplicit())) &&
1074
0
      !SuppressQualifierCheck &&
1075
0
      CheckQualifiedMemberReference(BaseExpr, BaseType, SS, R))
1076
0
    return ExprError();
1077
1078
  // Construct an unresolved result if we in fact got an unresolved
1079
  // result.
1080
0
  if (R.isOverloadedResult() || R.isUnresolvableResult()) {
1081
    // Suppress any lookup-related diagnostics; we'll do these when we
1082
    // pick a member.
1083
0
    R.suppressDiagnostics();
1084
1085
0
    UnresolvedMemberExpr *MemExpr
1086
0
      = UnresolvedMemberExpr::Create(Context, R.isUnresolvableResult(),
1087
0
                                     BaseExpr, BaseExprType,
1088
0
                                     IsArrow, OpLoc,
1089
0
                                     SS.getWithLocInContext(Context),
1090
0
                                     TemplateKWLoc, MemberNameInfo,
1091
0
                                     TemplateArgs, R.begin(), R.end());
1092
1093
0
    return MemExpr;
1094
0
  }
1095
1096
0
  assert(R.isSingleResult());
1097
0
  DeclAccessPair FoundDecl = R.begin().getPair();
1098
0
  NamedDecl *MemberDecl = R.getFoundDecl();
1099
1100
  // FIXME: diagnose the presence of template arguments now.
1101
1102
  // If the decl being referenced had an error, return an error for this
1103
  // sub-expr without emitting another error, in order to avoid cascading
1104
  // error cases.
1105
0
  if (MemberDecl->isInvalidDecl())
1106
0
    return ExprError();
1107
1108
  // Handle the implicit-member-access case.
1109
0
  if (!BaseExpr) {
1110
    // If this is not an instance member, convert to a non-member access.
1111
0
    if (!MemberDecl->isCXXInstanceMember()) {
1112
      // We might have a variable template specialization (or maybe one day a
1113
      // member concept-id).
1114
0
      if (TemplateArgs || TemplateKWLoc.isValid())
1115
0
        return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/false, TemplateArgs);
1116
1117
0
      return BuildDeclarationNameExpr(SS, R.getLookupNameInfo(), MemberDecl,
1118
0
                                      FoundDecl, TemplateArgs);
1119
0
    }
1120
0
    SourceLocation Loc = R.getNameLoc();
1121
0
    if (SS.getRange().isValid())
1122
0
      Loc = SS.getRange().getBegin();
1123
0
    BaseExpr = BuildCXXThisExpr(Loc, BaseExprType, /*IsImplicit=*/true);
1124
0
  }
1125
1126
  // Check the use of this member.
1127
0
  if (DiagnoseUseOfDecl(MemberDecl, MemberLoc))
1128
0
    return ExprError();
1129
1130
0
  if (FieldDecl *FD = dyn_cast<FieldDecl>(MemberDecl))
1131
0
    return BuildFieldReferenceExpr(BaseExpr, IsArrow, OpLoc, SS, FD, FoundDecl,
1132
0
                                   MemberNameInfo);
1133
1134
0
  if (MSPropertyDecl *PD = dyn_cast<MSPropertyDecl>(MemberDecl))
1135
0
    return BuildMSPropertyRefExpr(*this, BaseExpr, IsArrow, SS, PD,
1136
0
                                  MemberNameInfo);
1137
1138
0
  if (IndirectFieldDecl *FD = dyn_cast<IndirectFieldDecl>(MemberDecl))
1139
    // We may have found a field within an anonymous union or struct
1140
    // (C++ [class.union]).
1141
0
    return BuildAnonymousStructUnionMemberReference(SS, MemberLoc, FD,
1142
0
                                                    FoundDecl, BaseExpr,
1143
0
                                                    OpLoc);
1144
1145
0
  if (VarDecl *Var = dyn_cast<VarDecl>(MemberDecl)) {
1146
0
    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1147
0
                           FoundDecl, /*HadMultipleCandidates=*/false,
1148
0
                           MemberNameInfo, Var->getType().getNonReferenceType(),
1149
0
                           VK_LValue, OK_Ordinary);
1150
0
  }
1151
1152
0
  if (CXXMethodDecl *MemberFn = dyn_cast<CXXMethodDecl>(MemberDecl)) {
1153
0
    ExprValueKind valueKind;
1154
0
    QualType type;
1155
0
    if (MemberFn->isInstance()) {
1156
0
      valueKind = VK_PRValue;
1157
0
      type = Context.BoundMemberTy;
1158
0
    } else {
1159
0
      valueKind = VK_LValue;
1160
0
      type = MemberFn->getType();
1161
0
    }
1162
1163
0
    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc,
1164
0
                           MemberFn, FoundDecl, /*HadMultipleCandidates=*/false,
1165
0
                           MemberNameInfo, type, valueKind, OK_Ordinary);
1166
0
  }
1167
0
  assert(!isa<FunctionDecl>(MemberDecl) && "member function not C++ method?");
1168
1169
0
  if (EnumConstantDecl *Enum = dyn_cast<EnumConstantDecl>(MemberDecl)) {
1170
0
    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Enum,
1171
0
                           FoundDecl, /*HadMultipleCandidates=*/false,
1172
0
                           MemberNameInfo, Enum->getType(), VK_PRValue,
1173
0
                           OK_Ordinary);
1174
0
  }
1175
1176
0
  if (VarTemplateDecl *VarTempl = dyn_cast<VarTemplateDecl>(MemberDecl)) {
1177
0
    if (!TemplateArgs) {
1178
0
      diagnoseMissingTemplateArguments(TemplateName(VarTempl), MemberLoc);
1179
0
      return ExprError();
1180
0
    }
1181
1182
0
    DeclResult VDecl = CheckVarTemplateId(VarTempl, TemplateKWLoc,
1183
0
                                          MemberNameInfo.getLoc(), *TemplateArgs);
1184
0
    if (VDecl.isInvalid())
1185
0
      return ExprError();
1186
1187
    // Non-dependent member, but dependent template arguments.
1188
0
    if (!VDecl.get())
1189
0
      return ActOnDependentMemberExpr(
1190
0
          BaseExpr, BaseExpr->getType(), IsArrow, OpLoc, SS, TemplateKWLoc,
1191
0
          FirstQualifierInScope, MemberNameInfo, TemplateArgs);
1192
1193
0
    VarDecl *Var = cast<VarDecl>(VDecl.get());
1194
0
    if (!Var->getTemplateSpecializationKind())
1195
0
      Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation, MemberLoc);
1196
1197
0
    return BuildMemberExpr(BaseExpr, IsArrow, OpLoc, &SS, TemplateKWLoc, Var,
1198
0
                           FoundDecl, /*HadMultipleCandidates=*/false,
1199
0
                           MemberNameInfo, Var->getType().getNonReferenceType(),
1200
0
                           VK_LValue, OK_Ordinary, TemplateArgs);
1201
0
  }
1202
1203
  // We found something that we didn't expect. Complain.
1204
0
  if (isa<TypeDecl>(MemberDecl))
1205
0
    Diag(MemberLoc, diag::err_typecheck_member_reference_type)
1206
0
      << MemberName << BaseType << int(IsArrow);
1207
0
  else
1208
0
    Diag(MemberLoc, diag::err_typecheck_member_reference_unknown)
1209
0
      << MemberName << BaseType << int(IsArrow);
1210
1211
0
  Diag(MemberDecl->getLocation(), diag::note_member_declared_here)
1212
0
    << MemberName;
1213
0
  R.suppressDiagnostics();
1214
0
  return ExprError();
1215
0
}
1216
1217
/// Given that normal member access failed on the given expression,
1218
/// and given that the expression's type involves builtin-id or
1219
/// builtin-Class, decide whether substituting in the redefinition
1220
/// types would be profitable.  The redefinition type is whatever
1221
/// this translation unit tried to typedef to id/Class;  we store
1222
/// it to the side and then re-use it in places like this.
1223
0
static bool ShouldTryAgainWithRedefinitionType(Sema &S, ExprResult &base) {
1224
0
  const ObjCObjectPointerType *opty
1225
0
    = base.get()->getType()->getAs<ObjCObjectPointerType>();
1226
0
  if (!opty) return false;
1227
1228
0
  const ObjCObjectType *ty = opty->getObjectType();
1229
1230
0
  QualType redef;
1231
0
  if (ty->isObjCId()) {
1232
0
    redef = S.Context.getObjCIdRedefinitionType();
1233
0
  } else if (ty->isObjCClass()) {
1234
0
    redef = S.Context.getObjCClassRedefinitionType();
1235
0
  } else {
1236
0
    return false;
1237
0
  }
1238
1239
  // Do the substitution as long as the redefinition type isn't just a
1240
  // possibly-qualified pointer to builtin-id or builtin-Class again.
1241
0
  opty = redef->getAs<ObjCObjectPointerType>();
1242
0
  if (opty && !opty->getObjectType()->getInterface())
1243
0
    return false;
1244
1245
0
  base = S.ImpCastExprToType(base.get(), redef, CK_BitCast);
1246
0
  return true;
1247
0
}
1248
1249
0
static bool isRecordType(QualType T) {
1250
0
  return T->isRecordType();
1251
0
}
1252
0
static bool isPointerToRecordType(QualType T) {
1253
0
  if (const PointerType *PT = T->getAs<PointerType>())
1254
0
    return PT->getPointeeType()->isRecordType();
1255
0
  return false;
1256
0
}
1257
1258
/// Perform conversions on the LHS of a member access expression.
1259
ExprResult
1260
0
Sema::PerformMemberExprBaseConversion(Expr *Base, bool IsArrow) {
1261
0
  if (IsArrow && !Base->getType()->isFunctionType())
1262
0
    return DefaultFunctionArrayLvalueConversion(Base);
1263
1264
0
  return CheckPlaceholderExpr(Base);
1265
0
}
1266
1267
/// Look up the given member of the given non-type-dependent
1268
/// expression.  This can return in one of two ways:
1269
///  * If it returns a sentinel null-but-valid result, the caller will
1270
///    assume that lookup was performed and the results written into
1271
///    the provided structure.  It will take over from there.
1272
///  * Otherwise, the returned expression will be produced in place of
1273
///    an ordinary member expression.
1274
///
1275
/// The ObjCImpDecl bit is a gross hack that will need to be properly
1276
/// fixed for ObjC++.
1277
static ExprResult LookupMemberExpr(Sema &S, LookupResult &R,
1278
                                   ExprResult &BaseExpr, bool &IsArrow,
1279
                                   SourceLocation OpLoc, CXXScopeSpec &SS,
1280
                                   Decl *ObjCImpDecl, bool HasTemplateArgs,
1281
0
                                   SourceLocation TemplateKWLoc) {
1282
0
  assert(BaseExpr.get() && "no base expression");
1283
1284
  // Perform default conversions.
1285
0
  BaseExpr = S.PerformMemberExprBaseConversion(BaseExpr.get(), IsArrow);
1286
0
  if (BaseExpr.isInvalid())
1287
0
    return ExprError();
1288
1289
0
  QualType BaseType = BaseExpr.get()->getType();
1290
0
  assert(!BaseType->isDependentType());
1291
1292
0
  DeclarationName MemberName = R.getLookupName();
1293
0
  SourceLocation MemberLoc = R.getNameLoc();
1294
1295
  // For later type-checking purposes, turn arrow accesses into dot
1296
  // accesses.  The only access type we support that doesn't follow
1297
  // the C equivalence "a->b === (*a).b" is ObjC property accesses,
1298
  // and those never use arrows, so this is unaffected.
1299
0
  if (IsArrow) {
1300
0
    if (const PointerType *Ptr = BaseType->getAs<PointerType>())
1301
0
      BaseType = Ptr->getPointeeType();
1302
0
    else if (const ObjCObjectPointerType *Ptr
1303
0
               = BaseType->getAs<ObjCObjectPointerType>())
1304
0
      BaseType = Ptr->getPointeeType();
1305
0
    else if (BaseType->isRecordType()) {
1306
      // Recover from arrow accesses to records, e.g.:
1307
      //   struct MyRecord foo;
1308
      //   foo->bar
1309
      // This is actually well-formed in C++ if MyRecord has an
1310
      // overloaded operator->, but that should have been dealt with
1311
      // by now--or a diagnostic message already issued if a problem
1312
      // was encountered while looking for the overloaded operator->.
1313
0
      if (!S.getLangOpts().CPlusPlus) {
1314
0
        S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1315
0
          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1316
0
          << FixItHint::CreateReplacement(OpLoc, ".");
1317
0
      }
1318
0
      IsArrow = false;
1319
0
    } else if (BaseType->isFunctionType()) {
1320
0
      goto fail;
1321
0
    } else {
1322
0
      S.Diag(MemberLoc, diag::err_typecheck_member_reference_arrow)
1323
0
        << BaseType << BaseExpr.get()->getSourceRange();
1324
0
      return ExprError();
1325
0
    }
1326
0
  }
1327
1328
  // If the base type is an atomic type, this access is undefined behavior per
1329
  // C11 6.5.2.3p5. Instead of giving a typecheck error, we'll warn the user
1330
  // about the UB and recover by converting the atomic lvalue into a non-atomic
1331
  // lvalue. Because this is inherently unsafe as an atomic operation, the
1332
  // warning defaults to an error.
1333
0
  if (const auto *ATy = BaseType->getAs<AtomicType>()) {
1334
0
    S.DiagRuntimeBehavior(OpLoc, nullptr,
1335
0
                          S.PDiag(diag::warn_atomic_member_access));
1336
0
    BaseType = ATy->getValueType().getUnqualifiedType();
1337
0
    BaseExpr = ImplicitCastExpr::Create(
1338
0
        S.Context, IsArrow ? S.Context.getPointerType(BaseType) : BaseType,
1339
0
        CK_AtomicToNonAtomic, BaseExpr.get(), nullptr,
1340
0
        BaseExpr.get()->getValueKind(), FPOptionsOverride());
1341
0
  }
1342
1343
  // Handle field access to simple records.
1344
0
  if (const RecordType *RTy = BaseType->getAs<RecordType>()) {
1345
0
    TypoExpr *TE = nullptr;
1346
0
    if (LookupMemberExprInRecord(S, R, BaseExpr.get(), RTy, OpLoc, IsArrow, SS,
1347
0
                                 HasTemplateArgs, TemplateKWLoc, TE))
1348
0
      return ExprError();
1349
1350
    // Returning valid-but-null is how we indicate to the caller that
1351
    // the lookup result was filled in. If typo correction was attempted and
1352
    // failed, the lookup result will have been cleared--that combined with the
1353
    // valid-but-null ExprResult will trigger the appropriate diagnostics.
1354
0
    return ExprResult(TE);
1355
0
  }
1356
1357
  // Handle ivar access to Objective-C objects.
1358
0
  if (const ObjCObjectType *OTy = BaseType->getAs<ObjCObjectType>()) {
1359
0
    if (!SS.isEmpty() && !SS.isInvalid()) {
1360
0
      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1361
0
        << 1 << SS.getScopeRep()
1362
0
        << FixItHint::CreateRemoval(SS.getRange());
1363
0
      SS.clear();
1364
0
    }
1365
1366
0
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1367
1368
    // There are three cases for the base type:
1369
    //   - builtin id (qualified or unqualified)
1370
    //   - builtin Class (qualified or unqualified)
1371
    //   - an interface
1372
0
    ObjCInterfaceDecl *IDecl = OTy->getInterface();
1373
0
    if (!IDecl) {
1374
0
      if (S.getLangOpts().ObjCAutoRefCount &&
1375
0
          (OTy->isObjCId() || OTy->isObjCClass()))
1376
0
        goto fail;
1377
      // There's an implicit 'isa' ivar on all objects.
1378
      // But we only actually find it this way on objects of type 'id',
1379
      // apparently.
1380
0
      if (OTy->isObjCId() && Member->isStr("isa"))
1381
0
        return new (S.Context) ObjCIsaExpr(BaseExpr.get(), IsArrow, MemberLoc,
1382
0
                                           OpLoc, S.Context.getObjCClassType());
1383
0
      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1384
0
        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1385
0
                                ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1386
0
      goto fail;
1387
0
    }
1388
1389
0
    if (S.RequireCompleteType(OpLoc, BaseType,
1390
0
                              diag::err_typecheck_incomplete_tag,
1391
0
                              BaseExpr.get()))
1392
0
      return ExprError();
1393
1394
0
    ObjCInterfaceDecl *ClassDeclared = nullptr;
1395
0
    ObjCIvarDecl *IV = IDecl->lookupInstanceVariable(Member, ClassDeclared);
1396
1397
0
    if (!IV) {
1398
      // Attempt to correct for typos in ivar names.
1399
0
      DeclFilterCCC<ObjCIvarDecl> Validator{};
1400
0
      Validator.IsObjCIvarLookup = IsArrow;
1401
0
      if (TypoCorrection Corrected = S.CorrectTypo(
1402
0
              R.getLookupNameInfo(), Sema::LookupMemberName, nullptr, nullptr,
1403
0
              Validator, Sema::CTK_ErrorRecovery, IDecl)) {
1404
0
        IV = Corrected.getCorrectionDeclAs<ObjCIvarDecl>();
1405
0
        S.diagnoseTypo(
1406
0
            Corrected,
1407
0
            S.PDiag(diag::err_typecheck_member_reference_ivar_suggest)
1408
0
                << IDecl->getDeclName() << MemberName);
1409
1410
        // Figure out the class that declares the ivar.
1411
0
        assert(!ClassDeclared);
1412
1413
0
        Decl *D = cast<Decl>(IV->getDeclContext());
1414
0
        if (auto *Category = dyn_cast<ObjCCategoryDecl>(D))
1415
0
          D = Category->getClassInterface();
1416
1417
0
        if (auto *Implementation = dyn_cast<ObjCImplementationDecl>(D))
1418
0
          ClassDeclared = Implementation->getClassInterface();
1419
0
        else if (auto *Interface = dyn_cast<ObjCInterfaceDecl>(D))
1420
0
          ClassDeclared = Interface;
1421
1422
0
        assert(ClassDeclared && "cannot query interface");
1423
0
      } else {
1424
0
        if (IsArrow &&
1425
0
            IDecl->FindPropertyDeclaration(
1426
0
                Member, ObjCPropertyQueryKind::OBJC_PR_query_instance)) {
1427
0
          S.Diag(MemberLoc, diag::err_property_found_suggest)
1428
0
              << Member << BaseExpr.get()->getType()
1429
0
              << FixItHint::CreateReplacement(OpLoc, ".");
1430
0
          return ExprError();
1431
0
        }
1432
1433
0
        S.Diag(MemberLoc, diag::err_typecheck_member_reference_ivar)
1434
0
            << IDecl->getDeclName() << MemberName
1435
0
            << BaseExpr.get()->getSourceRange();
1436
0
        return ExprError();
1437
0
      }
1438
0
    }
1439
1440
0
    assert(ClassDeclared);
1441
1442
    // If the decl being referenced had an error, return an error for this
1443
    // sub-expr without emitting another error, in order to avoid cascading
1444
    // error cases.
1445
0
    if (IV->isInvalidDecl())
1446
0
      return ExprError();
1447
1448
    // Check whether we can reference this field.
1449
0
    if (S.DiagnoseUseOfDecl(IV, MemberLoc))
1450
0
      return ExprError();
1451
0
    if (IV->getAccessControl() != ObjCIvarDecl::Public &&
1452
0
        IV->getAccessControl() != ObjCIvarDecl::Package) {
1453
0
      ObjCInterfaceDecl *ClassOfMethodDecl = nullptr;
1454
0
      if (ObjCMethodDecl *MD = S.getCurMethodDecl())
1455
0
        ClassOfMethodDecl =  MD->getClassInterface();
1456
0
      else if (ObjCImpDecl && S.getCurFunctionDecl()) {
1457
        // Case of a c-function declared inside an objc implementation.
1458
        // FIXME: For a c-style function nested inside an objc implementation
1459
        // class, there is no implementation context available, so we pass
1460
        // down the context as argument to this routine. Ideally, this context
1461
        // need be passed down in the AST node and somehow calculated from the
1462
        // AST for a function decl.
1463
0
        if (ObjCImplementationDecl *IMPD =
1464
0
              dyn_cast<ObjCImplementationDecl>(ObjCImpDecl))
1465
0
          ClassOfMethodDecl = IMPD->getClassInterface();
1466
0
        else if (ObjCCategoryImplDecl* CatImplClass =
1467
0
                   dyn_cast<ObjCCategoryImplDecl>(ObjCImpDecl))
1468
0
          ClassOfMethodDecl = CatImplClass->getClassInterface();
1469
0
      }
1470
0
      if (!S.getLangOpts().DebuggerSupport) {
1471
0
        if (IV->getAccessControl() == ObjCIvarDecl::Private) {
1472
0
          if (!declaresSameEntity(ClassDeclared, IDecl) ||
1473
0
              !declaresSameEntity(ClassOfMethodDecl, ClassDeclared))
1474
0
            S.Diag(MemberLoc, diag::err_private_ivar_access)
1475
0
              << IV->getDeclName();
1476
0
        } else if (!IDecl->isSuperClassOf(ClassOfMethodDecl))
1477
          // @protected
1478
0
          S.Diag(MemberLoc, diag::err_protected_ivar_access)
1479
0
              << IV->getDeclName();
1480
0
      }
1481
0
    }
1482
0
    bool warn = true;
1483
0
    if (S.getLangOpts().ObjCWeak) {
1484
0
      Expr *BaseExp = BaseExpr.get()->IgnoreParenImpCasts();
1485
0
      if (UnaryOperator *UO = dyn_cast<UnaryOperator>(BaseExp))
1486
0
        if (UO->getOpcode() == UO_Deref)
1487
0
          BaseExp = UO->getSubExpr()->IgnoreParenCasts();
1488
1489
0
      if (DeclRefExpr *DE = dyn_cast<DeclRefExpr>(BaseExp))
1490
0
        if (DE->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1491
0
          S.Diag(DE->getLocation(), diag::err_arc_weak_ivar_access);
1492
0
          warn = false;
1493
0
        }
1494
0
    }
1495
0
    if (warn) {
1496
0
      if (ObjCMethodDecl *MD = S.getCurMethodDecl()) {
1497
0
        ObjCMethodFamily MF = MD->getMethodFamily();
1498
0
        warn = (MF != OMF_init && MF != OMF_dealloc &&
1499
0
                MF != OMF_finalize &&
1500
0
                !S.IvarBacksCurrentMethodAccessor(IDecl, MD, IV));
1501
0
      }
1502
0
      if (warn)
1503
0
        S.Diag(MemberLoc, diag::warn_direct_ivar_access) << IV->getDeclName();
1504
0
    }
1505
1506
0
    ObjCIvarRefExpr *Result = new (S.Context) ObjCIvarRefExpr(
1507
0
        IV, IV->getUsageType(BaseType), MemberLoc, OpLoc, BaseExpr.get(),
1508
0
        IsArrow);
1509
1510
0
    if (IV->getType().getObjCLifetime() == Qualifiers::OCL_Weak) {
1511
0
      if (!S.isUnevaluatedContext() &&
1512
0
          !S.Diags.isIgnored(diag::warn_arc_repeated_use_of_weak, MemberLoc))
1513
0
        S.getCurFunction()->recordUseOfWeak(Result);
1514
0
    }
1515
1516
0
    return Result;
1517
0
  }
1518
1519
  // Objective-C property access.
1520
0
  const ObjCObjectPointerType *OPT;
1521
0
  if (!IsArrow && (OPT = BaseType->getAs<ObjCObjectPointerType>())) {
1522
0
    if (!SS.isEmpty() && !SS.isInvalid()) {
1523
0
      S.Diag(SS.getRange().getBegin(), diag::err_qualified_objc_access)
1524
0
          << 0 << SS.getScopeRep() << FixItHint::CreateRemoval(SS.getRange());
1525
0
      SS.clear();
1526
0
    }
1527
1528
    // This actually uses the base as an r-value.
1529
0
    BaseExpr = S.DefaultLvalueConversion(BaseExpr.get());
1530
0
    if (BaseExpr.isInvalid())
1531
0
      return ExprError();
1532
1533
0
    assert(S.Context.hasSameUnqualifiedType(BaseType,
1534
0
                                            BaseExpr.get()->getType()));
1535
1536
0
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1537
1538
0
    const ObjCObjectType *OT = OPT->getObjectType();
1539
1540
    // id, with and without qualifiers.
1541
0
    if (OT->isObjCId()) {
1542
      // Check protocols on qualified interfaces.
1543
0
      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1544
0
      if (Decl *PMDecl =
1545
0
              FindGetterSetterNameDecl(OPT, Member, Sel, S.Context)) {
1546
0
        if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(PMDecl)) {
1547
          // Check the use of this declaration
1548
0
          if (S.DiagnoseUseOfDecl(PD, MemberLoc))
1549
0
            return ExprError();
1550
1551
0
          return new (S.Context)
1552
0
              ObjCPropertyRefExpr(PD, S.Context.PseudoObjectTy, VK_LValue,
1553
0
                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
1554
0
        }
1555
1556
0
        if (ObjCMethodDecl *OMD = dyn_cast<ObjCMethodDecl>(PMDecl)) {
1557
0
          Selector SetterSel =
1558
0
            SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1559
0
                                                   S.PP.getSelectorTable(),
1560
0
                                                   Member);
1561
0
          ObjCMethodDecl *SMD = nullptr;
1562
0
          if (Decl *SDecl = FindGetterSetterNameDecl(OPT,
1563
0
                                                     /*Property id*/ nullptr,
1564
0
                                                     SetterSel, S.Context))
1565
0
            SMD = dyn_cast<ObjCMethodDecl>(SDecl);
1566
1567
0
          return new (S.Context)
1568
0
              ObjCPropertyRefExpr(OMD, SMD, S.Context.PseudoObjectTy, VK_LValue,
1569
0
                                  OK_ObjCProperty, MemberLoc, BaseExpr.get());
1570
0
        }
1571
0
      }
1572
      // Use of id.member can only be for a property reference. Do not
1573
      // use the 'id' redefinition in this case.
1574
0
      if (IsArrow && ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1575
0
        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1576
0
                                ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1577
1578
0
      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1579
0
                         << MemberName << BaseType);
1580
0
    }
1581
1582
    // 'Class', unqualified only.
1583
0
    if (OT->isObjCClass()) {
1584
      // Only works in a method declaration (??!).
1585
0
      ObjCMethodDecl *MD = S.getCurMethodDecl();
1586
0
      if (!MD) {
1587
0
        if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1588
0
          return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1589
0
                                  ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1590
1591
0
        goto fail;
1592
0
      }
1593
1594
      // Also must look for a getter name which uses property syntax.
1595
0
      Selector Sel = S.PP.getSelectorTable().getNullarySelector(Member);
1596
0
      ObjCInterfaceDecl *IFace = MD->getClassInterface();
1597
0
      if (!IFace)
1598
0
        goto fail;
1599
1600
0
      ObjCMethodDecl *Getter;
1601
0
      if ((Getter = IFace->lookupClassMethod(Sel))) {
1602
        // Check the use of this method.
1603
0
        if (S.DiagnoseUseOfDecl(Getter, MemberLoc))
1604
0
          return ExprError();
1605
0
      } else
1606
0
        Getter = IFace->lookupPrivateMethod(Sel, false);
1607
      // If we found a getter then this may be a valid dot-reference, we
1608
      // will look for the matching setter, in case it is needed.
1609
0
      Selector SetterSel =
1610
0
        SelectorTable::constructSetterSelector(S.PP.getIdentifierTable(),
1611
0
                                               S.PP.getSelectorTable(),
1612
0
                                               Member);
1613
0
      ObjCMethodDecl *Setter = IFace->lookupClassMethod(SetterSel);
1614
0
      if (!Setter) {
1615
        // If this reference is in an @implementation, also check for 'private'
1616
        // methods.
1617
0
        Setter = IFace->lookupPrivateMethod(SetterSel, false);
1618
0
      }
1619
1620
0
      if (Setter && S.DiagnoseUseOfDecl(Setter, MemberLoc))
1621
0
        return ExprError();
1622
1623
0
      if (Getter || Setter) {
1624
0
        return new (S.Context) ObjCPropertyRefExpr(
1625
0
            Getter, Setter, S.Context.PseudoObjectTy, VK_LValue,
1626
0
            OK_ObjCProperty, MemberLoc, BaseExpr.get());
1627
0
      }
1628
1629
0
      if (ShouldTryAgainWithRedefinitionType(S, BaseExpr))
1630
0
        return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1631
0
                                ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1632
1633
0
      return ExprError(S.Diag(MemberLoc, diag::err_property_not_found)
1634
0
                         << MemberName << BaseType);
1635
0
    }
1636
1637
    // Normal property access.
1638
0
    return S.HandleExprPropertyRefExpr(OPT, BaseExpr.get(), OpLoc, MemberName,
1639
0
                                       MemberLoc, SourceLocation(), QualType(),
1640
0
                                       false);
1641
0
  }
1642
1643
0
  if (BaseType->isExtVectorBoolType()) {
1644
    // We disallow element access for ext_vector_type bool.  There is no way to
1645
    // materialize a reference to a vector element as a pointer (each element is
1646
    // one bit in the vector).
1647
0
    S.Diag(R.getNameLoc(), diag::err_ext_vector_component_name_illegal)
1648
0
        << MemberName
1649
0
        << (BaseExpr.get() ? BaseExpr.get()->getSourceRange() : SourceRange());
1650
0
    return ExprError();
1651
0
  }
1652
1653
  // Handle 'field access' to vectors, such as 'V.xx'.
1654
0
  if (BaseType->isExtVectorType()) {
1655
    // FIXME: this expr should store IsArrow.
1656
0
    IdentifierInfo *Member = MemberName.getAsIdentifierInfo();
1657
0
    ExprValueKind VK = (IsArrow ? VK_LValue : BaseExpr.get()->getValueKind());
1658
0
    QualType ret = CheckExtVectorComponent(S, BaseType, VK, OpLoc,
1659
0
                                           Member, MemberLoc);
1660
0
    if (ret.isNull())
1661
0
      return ExprError();
1662
0
    Qualifiers BaseQ =
1663
0
        S.Context.getCanonicalType(BaseExpr.get()->getType()).getQualifiers();
1664
0
    ret = S.Context.getQualifiedType(ret, BaseQ);
1665
1666
0
    return new (S.Context)
1667
0
        ExtVectorElementExpr(ret, VK, BaseExpr.get(), *Member, MemberLoc);
1668
0
  }
1669
1670
  // Adjust builtin-sel to the appropriate redefinition type if that's
1671
  // not just a pointer to builtin-sel again.
1672
0
  if (IsArrow && BaseType->isSpecificBuiltinType(BuiltinType::ObjCSel) &&
1673
0
      !S.Context.getObjCSelRedefinitionType()->isObjCSelType()) {
1674
0
    BaseExpr = S.ImpCastExprToType(
1675
0
        BaseExpr.get(), S.Context.getObjCSelRedefinitionType(), CK_BitCast);
1676
0
    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1677
0
                            ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1678
0
  }
1679
1680
  // Failure cases.
1681
0
 fail:
1682
1683
  // Recover from dot accesses to pointers, e.g.:
1684
  //   type *foo;
1685
  //   foo.bar
1686
  // This is actually well-formed in two cases:
1687
  //   - 'type' is an Objective C type
1688
  //   - 'bar' is a pseudo-destructor name which happens to refer to
1689
  //     the appropriate pointer type
1690
0
  if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
1691
0
    if (!IsArrow && Ptr->getPointeeType()->isRecordType() &&
1692
0
        MemberName.getNameKind() != DeclarationName::CXXDestructorName) {
1693
0
      S.Diag(OpLoc, diag::err_typecheck_member_reference_suggestion)
1694
0
          << BaseType << int(IsArrow) << BaseExpr.get()->getSourceRange()
1695
0
          << FixItHint::CreateReplacement(OpLoc, "->");
1696
1697
0
      if (S.isSFINAEContext())
1698
0
        return ExprError();
1699
1700
      // Recurse as an -> access.
1701
0
      IsArrow = true;
1702
0
      return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1703
0
                              ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1704
0
    }
1705
0
  }
1706
1707
  // If the user is trying to apply -> or . to a function name, it's probably
1708
  // because they forgot parentheses to call that function.
1709
0
  if (S.tryToRecoverWithCall(
1710
0
          BaseExpr, S.PDiag(diag::err_member_reference_needs_call),
1711
0
          /*complain*/ false,
1712
0
          IsArrow ? &isPointerToRecordType : &isRecordType)) {
1713
0
    if (BaseExpr.isInvalid())
1714
0
      return ExprError();
1715
0
    BaseExpr = S.DefaultFunctionArrayConversion(BaseExpr.get());
1716
0
    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS,
1717
0
                            ObjCImpDecl, HasTemplateArgs, TemplateKWLoc);
1718
0
  }
1719
1720
  // HLSL supports implicit conversion of scalar types to single element vector
1721
  // rvalues in member expressions.
1722
0
  if (S.getLangOpts().HLSL && BaseType->isScalarType()) {
1723
0
    QualType VectorTy = S.Context.getExtVectorType(BaseType, 1);
1724
0
    BaseExpr = S.ImpCastExprToType(BaseExpr.get(), VectorTy, CK_VectorSplat,
1725
0
                                   BaseExpr.get()->getValueKind());
1726
0
    return LookupMemberExpr(S, R, BaseExpr, IsArrow, OpLoc, SS, ObjCImpDecl,
1727
0
                            HasTemplateArgs, TemplateKWLoc);
1728
0
  }
1729
1730
0
  S.Diag(OpLoc, diag::err_typecheck_member_reference_struct_union)
1731
0
    << BaseType << BaseExpr.get()->getSourceRange() << MemberLoc;
1732
1733
0
  return ExprError();
1734
0
}
1735
1736
/// The main callback when the parser finds something like
1737
///   expression . [nested-name-specifier] identifier
1738
///   expression -> [nested-name-specifier] identifier
1739
/// where 'identifier' encompasses a fairly broad spectrum of
1740
/// possibilities, including destructor and operator references.
1741
///
1742
/// \param OpKind either tok::arrow or tok::period
1743
/// \param ObjCImpDecl the current Objective-C \@implementation
1744
///   decl; this is an ugly hack around the fact that Objective-C
1745
///   \@implementations aren't properly put in the context chain
1746
ExprResult Sema::ActOnMemberAccessExpr(Scope *S, Expr *Base,
1747
                                       SourceLocation OpLoc,
1748
                                       tok::TokenKind OpKind,
1749
                                       CXXScopeSpec &SS,
1750
                                       SourceLocation TemplateKWLoc,
1751
                                       UnqualifiedId &Id,
1752
2
                                       Decl *ObjCImpDecl) {
1753
2
  if (SS.isSet() && SS.isInvalid())
1754
0
    return ExprError();
1755
1756
  // Warn about the explicit constructor calls Microsoft extension.
1757
2
  if (getLangOpts().MicrosoftExt &&
1758
2
      Id.getKind() == UnqualifiedIdKind::IK_ConstructorName)
1759
0
    Diag(Id.getSourceRange().getBegin(),
1760
0
         diag::ext_ms_explicit_constructor_call);
1761
1762
2
  TemplateArgumentListInfo TemplateArgsBuffer;
1763
1764
  // Decompose the name into its component parts.
1765
2
  DeclarationNameInfo NameInfo;
1766
2
  const TemplateArgumentListInfo *TemplateArgs;
1767
2
  DecomposeUnqualifiedId(Id, TemplateArgsBuffer,
1768
2
                         NameInfo, TemplateArgs);
1769
1770
2
  DeclarationName Name = NameInfo.getName();
1771
2
  bool IsArrow = (OpKind == tok::arrow);
1772
1773
2
  if (getLangOpts().HLSL && IsArrow)
1774
0
    return ExprError(Diag(OpLoc, diag::err_hlsl_operator_unsupported) << 2);
1775
1776
2
  NamedDecl *FirstQualifierInScope
1777
2
    = (!SS.isSet() ? nullptr : FindFirstQualifierInScope(S, SS.getScopeRep()));
1778
1779
  // This is a postfix expression, so get rid of ParenListExprs.
1780
2
  ExprResult Result = MaybeConvertParenListExprToParenExpr(S, Base);
1781
2
  if (Result.isInvalid()) return ExprError();
1782
2
  Base = Result.get();
1783
1784
2
  if (Base->getType()->isDependentType() || Name.isDependentName() ||
1785
2
      isDependentScopeSpecifier(SS)) {
1786
2
    return ActOnDependentMemberExpr(Base, Base->getType(), IsArrow, OpLoc, SS,
1787
2
                                    TemplateKWLoc, FirstQualifierInScope,
1788
2
                                    NameInfo, TemplateArgs);
1789
2
  }
1790
1791
0
  ActOnMemberAccessExtraArgs ExtraArgs = {S, Id, ObjCImpDecl};
1792
0
  ExprResult Res = BuildMemberReferenceExpr(
1793
0
      Base, Base->getType(), OpLoc, IsArrow, SS, TemplateKWLoc,
1794
0
      FirstQualifierInScope, NameInfo, TemplateArgs, S, &ExtraArgs);
1795
1796
0
  if (!Res.isInvalid() && isa<MemberExpr>(Res.get()))
1797
0
    CheckMemberAccessOfNoDeref(cast<MemberExpr>(Res.get()));
1798
1799
0
  return Res;
1800
2
}
1801
1802
0
void Sema::CheckMemberAccessOfNoDeref(const MemberExpr *E) {
1803
0
  if (isUnevaluatedContext())
1804
0
    return;
1805
1806
0
  QualType ResultTy = E->getType();
1807
1808
  // Member accesses have four cases:
1809
  // 1: non-array member via "->": dereferences
1810
  // 2: non-array member via ".": nothing interesting happens
1811
  // 3: array member access via "->": nothing interesting happens
1812
  //    (this returns an array lvalue and does not actually dereference memory)
1813
  // 4: array member access via ".": *adds* a layer of indirection
1814
0
  if (ResultTy->isArrayType()) {
1815
0
    if (!E->isArrow()) {
1816
      // This might be something like:
1817
      //     (*structPtr).arrayMember
1818
      // which behaves roughly like:
1819
      //     &(*structPtr).pointerMember
1820
      // in that the apparent dereference in the base expression does not
1821
      // actually happen.
1822
0
      CheckAddressOfNoDeref(E->getBase());
1823
0
    }
1824
0
  } else if (E->isArrow()) {
1825
0
    if (const auto *Ptr = dyn_cast<PointerType>(
1826
0
            E->getBase()->getType().getDesugaredType(Context))) {
1827
0
      if (Ptr->getPointeeType()->hasAttr(attr::NoDeref))
1828
0
        ExprEvalContexts.back().PossibleDerefs.insert(E);
1829
0
    }
1830
0
  }
1831
0
}
1832
1833
ExprResult
1834
Sema::BuildFieldReferenceExpr(Expr *BaseExpr, bool IsArrow,
1835
                              SourceLocation OpLoc, const CXXScopeSpec &SS,
1836
                              FieldDecl *Field, DeclAccessPair FoundDecl,
1837
0
                              const DeclarationNameInfo &MemberNameInfo) {
1838
  // x.a is an l-value if 'a' has a reference type. Otherwise:
1839
  // x.a is an l-value/x-value/pr-value if the base is (and note
1840
  //   that *x is always an l-value), except that if the base isn't
1841
  //   an ordinary object then we must have an rvalue.
1842
0
  ExprValueKind VK = VK_LValue;
1843
0
  ExprObjectKind OK = OK_Ordinary;
1844
0
  if (!IsArrow) {
1845
0
    if (BaseExpr->getObjectKind() == OK_Ordinary)
1846
0
      VK = BaseExpr->getValueKind();
1847
0
    else
1848
0
      VK = VK_PRValue;
1849
0
  }
1850
0
  if (VK != VK_PRValue && Field->isBitField())
1851
0
    OK = OK_BitField;
1852
1853
  // Figure out the type of the member; see C99 6.5.2.3p3, C++ [expr.ref]
1854
0
  QualType MemberType = Field->getType();
1855
0
  if (const ReferenceType *Ref = MemberType->getAs<ReferenceType>()) {
1856
0
    MemberType = Ref->getPointeeType();
1857
0
    VK = VK_LValue;
1858
0
  } else {
1859
0
    QualType BaseType = BaseExpr->getType();
1860
0
    if (IsArrow) BaseType = BaseType->castAs<PointerType>()->getPointeeType();
1861
1862
0
    Qualifiers BaseQuals = BaseType.getQualifiers();
1863
1864
    // GC attributes are never picked up by members.
1865
0
    BaseQuals.removeObjCGCAttr();
1866
1867
    // CVR attributes from the base are picked up by members,
1868
    // except that 'mutable' members don't pick up 'const'.
1869
0
    if (Field->isMutable()) BaseQuals.removeConst();
1870
1871
0
    Qualifiers MemberQuals =
1872
0
        Context.getCanonicalType(MemberType).getQualifiers();
1873
1874
0
    assert(!MemberQuals.hasAddressSpace());
1875
1876
0
    Qualifiers Combined = BaseQuals + MemberQuals;
1877
0
    if (Combined != MemberQuals)
1878
0
      MemberType = Context.getQualifiedType(MemberType, Combined);
1879
1880
    // Pick up NoDeref from the base in case we end up using AddrOf on the
1881
    // result. E.g. the expression
1882
    //     &someNoDerefPtr->pointerMember
1883
    // should be a noderef pointer again.
1884
0
    if (BaseType->hasAttr(attr::NoDeref))
1885
0
      MemberType =
1886
0
          Context.getAttributedType(attr::NoDeref, MemberType, MemberType);
1887
0
  }
1888
1889
0
  auto *CurMethod = dyn_cast<CXXMethodDecl>(CurContext);
1890
0
  if (!(CurMethod && CurMethod->isDefaulted()))
1891
0
    UnusedPrivateFields.remove(Field);
1892
1893
0
  ExprResult Base = PerformObjectMemberConversion(BaseExpr, SS.getScopeRep(),
1894
0
                                                  FoundDecl, Field);
1895
0
  if (Base.isInvalid())
1896
0
    return ExprError();
1897
1898
  // Build a reference to a private copy for non-static data members in
1899
  // non-static member functions, privatized by OpenMP constructs.
1900
0
  if (getLangOpts().OpenMP && IsArrow &&
1901
0
      !CurContext->isDependentContext() &&
1902
0
      isa<CXXThisExpr>(Base.get()->IgnoreParenImpCasts())) {
1903
0
    if (auto *PrivateCopy = isOpenMPCapturedDecl(Field)) {
1904
0
      return getOpenMPCapturedExpr(PrivateCopy, VK, OK,
1905
0
                                   MemberNameInfo.getLoc());
1906
0
    }
1907
0
  }
1908
1909
0
  return BuildMemberExpr(Base.get(), IsArrow, OpLoc, &SS,
1910
0
                         /*TemplateKWLoc=*/SourceLocation(), Field, FoundDecl,
1911
0
                         /*HadMultipleCandidates=*/false, MemberNameInfo,
1912
0
                         MemberType, VK, OK);
1913
0
}
1914
1915
/// Builds an implicit member access expression.  The current context
1916
/// is known to be an instance method, and the given unqualified lookup
1917
/// set is known to contain only instance members, at least one of which
1918
/// is from an appropriate type.
1919
ExprResult
1920
Sema::BuildImplicitMemberExpr(const CXXScopeSpec &SS,
1921
                              SourceLocation TemplateKWLoc,
1922
                              LookupResult &R,
1923
                              const TemplateArgumentListInfo *TemplateArgs,
1924
0
                              bool IsKnownInstance, const Scope *S) {
1925
0
  assert(!R.empty() && !R.isAmbiguous());
1926
1927
0
  SourceLocation loc = R.getNameLoc();
1928
1929
  // If this is known to be an instance access, go ahead and build an
1930
  // implicit 'this' expression now.
1931
0
  QualType ThisTy = getCurrentThisType();
1932
0
  assert(!ThisTy.isNull() && "didn't correctly pre-flight capture of 'this'");
1933
1934
0
  Expr *baseExpr = nullptr; // null signifies implicit access
1935
0
  if (IsKnownInstance) {
1936
0
    SourceLocation Loc = R.getNameLoc();
1937
0
    if (SS.getRange().isValid())
1938
0
      Loc = SS.getRange().getBegin();
1939
0
    baseExpr = BuildCXXThisExpr(loc, ThisTy, /*IsImplicit=*/true);
1940
0
  }
1941
1942
0
  return BuildMemberReferenceExpr(
1943
0
      baseExpr, ThisTy,
1944
0
      /*OpLoc=*/SourceLocation(),
1945
0
      /*IsArrow=*/!getLangOpts().HLSL, SS, TemplateKWLoc,
1946
0
      /*FirstQualifierInScope=*/nullptr, R, TemplateArgs, S);
1947
0
}