/src/llvm-project/clang/lib/Sema/SemaInit.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--- SemaInit.cpp - Semantic Analysis for Initializers ----------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file implements semantic analysis for initializers. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "clang/AST/ASTContext.h" |
14 | | #include "clang/AST/DeclObjC.h" |
15 | | #include "clang/AST/ExprCXX.h" |
16 | | #include "clang/AST/ExprObjC.h" |
17 | | #include "clang/AST/ExprOpenMP.h" |
18 | | #include "clang/AST/IgnoreExpr.h" |
19 | | #include "clang/AST/TypeLoc.h" |
20 | | #include "clang/Basic/CharInfo.h" |
21 | | #include "clang/Basic/SourceManager.h" |
22 | | #include "clang/Basic/Specifiers.h" |
23 | | #include "clang/Basic/TargetInfo.h" |
24 | | #include "clang/Sema/Designator.h" |
25 | | #include "clang/Sema/EnterExpressionEvaluationContext.h" |
26 | | #include "clang/Sema/Initialization.h" |
27 | | #include "clang/Sema/Lookup.h" |
28 | | #include "clang/Sema/Ownership.h" |
29 | | #include "clang/Sema/SemaInternal.h" |
30 | | #include "llvm/ADT/APInt.h" |
31 | | #include "llvm/ADT/FoldingSet.h" |
32 | | #include "llvm/ADT/PointerIntPair.h" |
33 | | #include "llvm/ADT/SmallString.h" |
34 | | #include "llvm/ADT/SmallVector.h" |
35 | | #include "llvm/ADT/StringExtras.h" |
36 | | #include "llvm/Support/ErrorHandling.h" |
37 | | #include "llvm/Support/raw_ostream.h" |
38 | | |
39 | | using namespace clang; |
40 | | |
41 | | //===----------------------------------------------------------------------===// |
42 | | // Sema Initialization Checking |
43 | | //===----------------------------------------------------------------------===// |
44 | | |
45 | | /// Check whether T is compatible with a wide character type (wchar_t, |
46 | | /// char16_t or char32_t). |
47 | 0 | static bool IsWideCharCompatible(QualType T, ASTContext &Context) { |
48 | 0 | if (Context.typesAreCompatible(Context.getWideCharType(), T)) |
49 | 0 | return true; |
50 | 0 | if (Context.getLangOpts().CPlusPlus || Context.getLangOpts().C11) { |
51 | 0 | return Context.typesAreCompatible(Context.Char16Ty, T) || |
52 | 0 | Context.typesAreCompatible(Context.Char32Ty, T); |
53 | 0 | } |
54 | 0 | return false; |
55 | 0 | } |
56 | | |
57 | | enum StringInitFailureKind { |
58 | | SIF_None, |
59 | | SIF_NarrowStringIntoWideChar, |
60 | | SIF_WideStringIntoChar, |
61 | | SIF_IncompatWideStringIntoWideChar, |
62 | | SIF_UTF8StringIntoPlainChar, |
63 | | SIF_PlainStringIntoUTF8Char, |
64 | | SIF_Other |
65 | | }; |
66 | | |
67 | | /// Check whether the array of type AT can be initialized by the Init |
68 | | /// expression by means of string initialization. Returns SIF_None if so, |
69 | | /// otherwise returns a StringInitFailureKind that describes why the |
70 | | /// initialization would not work. |
71 | | static StringInitFailureKind IsStringInit(Expr *Init, const ArrayType *AT, |
72 | 0 | ASTContext &Context) { |
73 | 0 | if (!isa<ConstantArrayType>(AT) && !isa<IncompleteArrayType>(AT)) |
74 | 0 | return SIF_Other; |
75 | | |
76 | | // See if this is a string literal or @encode. |
77 | 0 | Init = Init->IgnoreParens(); |
78 | | |
79 | | // Handle @encode, which is a narrow string. |
80 | 0 | if (isa<ObjCEncodeExpr>(Init) && AT->getElementType()->isCharType()) |
81 | 0 | return SIF_None; |
82 | | |
83 | | // Otherwise we can only handle string literals. |
84 | 0 | StringLiteral *SL = dyn_cast<StringLiteral>(Init); |
85 | 0 | if (!SL) |
86 | 0 | return SIF_Other; |
87 | | |
88 | 0 | const QualType ElemTy = |
89 | 0 | Context.getCanonicalType(AT->getElementType()).getUnqualifiedType(); |
90 | |
|
91 | 0 | auto IsCharOrUnsignedChar = [](const QualType &T) { |
92 | 0 | const BuiltinType *BT = dyn_cast<BuiltinType>(T.getTypePtr()); |
93 | 0 | return BT && BT->isCharType() && BT->getKind() != BuiltinType::SChar; |
94 | 0 | }; |
95 | |
|
96 | 0 | switch (SL->getKind()) { |
97 | 0 | case StringLiteralKind::UTF8: |
98 | | // char8_t array can be initialized with a UTF-8 string. |
99 | | // - C++20 [dcl.init.string] (DR) |
100 | | // Additionally, an array of char or unsigned char may be initialized |
101 | | // by a UTF-8 string literal. |
102 | 0 | if (ElemTy->isChar8Type() || |
103 | 0 | (Context.getLangOpts().Char8 && |
104 | 0 | IsCharOrUnsignedChar(ElemTy.getCanonicalType()))) |
105 | 0 | return SIF_None; |
106 | 0 | [[fallthrough]]; |
107 | 0 | case StringLiteralKind::Ordinary: |
108 | | // char array can be initialized with a narrow string. |
109 | | // Only allow char x[] = "foo"; not char x[] = L"foo"; |
110 | 0 | if (ElemTy->isCharType()) |
111 | 0 | return (SL->getKind() == StringLiteralKind::UTF8 && |
112 | 0 | Context.getLangOpts().Char8) |
113 | 0 | ? SIF_UTF8StringIntoPlainChar |
114 | 0 | : SIF_None; |
115 | 0 | if (ElemTy->isChar8Type()) |
116 | 0 | return SIF_PlainStringIntoUTF8Char; |
117 | 0 | if (IsWideCharCompatible(ElemTy, Context)) |
118 | 0 | return SIF_NarrowStringIntoWideChar; |
119 | 0 | return SIF_Other; |
120 | | // C99 6.7.8p15 (with correction from DR343), or C11 6.7.9p15: |
121 | | // "An array with element type compatible with a qualified or unqualified |
122 | | // version of wchar_t, char16_t, or char32_t may be initialized by a wide |
123 | | // string literal with the corresponding encoding prefix (L, u, or U, |
124 | | // respectively), optionally enclosed in braces. |
125 | 0 | case StringLiteralKind::UTF16: |
126 | 0 | if (Context.typesAreCompatible(Context.Char16Ty, ElemTy)) |
127 | 0 | return SIF_None; |
128 | 0 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
129 | 0 | return SIF_WideStringIntoChar; |
130 | 0 | if (IsWideCharCompatible(ElemTy, Context)) |
131 | 0 | return SIF_IncompatWideStringIntoWideChar; |
132 | 0 | return SIF_Other; |
133 | 0 | case StringLiteralKind::UTF32: |
134 | 0 | if (Context.typesAreCompatible(Context.Char32Ty, ElemTy)) |
135 | 0 | return SIF_None; |
136 | 0 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
137 | 0 | return SIF_WideStringIntoChar; |
138 | 0 | if (IsWideCharCompatible(ElemTy, Context)) |
139 | 0 | return SIF_IncompatWideStringIntoWideChar; |
140 | 0 | return SIF_Other; |
141 | 0 | case StringLiteralKind::Wide: |
142 | 0 | if (Context.typesAreCompatible(Context.getWideCharType(), ElemTy)) |
143 | 0 | return SIF_None; |
144 | 0 | if (ElemTy->isCharType() || ElemTy->isChar8Type()) |
145 | 0 | return SIF_WideStringIntoChar; |
146 | 0 | if (IsWideCharCompatible(ElemTy, Context)) |
147 | 0 | return SIF_IncompatWideStringIntoWideChar; |
148 | 0 | return SIF_Other; |
149 | 0 | case StringLiteralKind::Unevaluated: |
150 | 0 | assert(false && "Unevaluated string literal in initialization"); |
151 | 0 | break; |
152 | 0 | } |
153 | | |
154 | 0 | llvm_unreachable("missed a StringLiteral kind?"); |
155 | 0 | } |
156 | | |
157 | | static StringInitFailureKind IsStringInit(Expr *init, QualType declType, |
158 | 0 | ASTContext &Context) { |
159 | 0 | const ArrayType *arrayType = Context.getAsArrayType(declType); |
160 | 0 | if (!arrayType) |
161 | 0 | return SIF_Other; |
162 | 0 | return IsStringInit(init, arrayType, Context); |
163 | 0 | } |
164 | | |
165 | 0 | bool Sema::IsStringInit(Expr *Init, const ArrayType *AT) { |
166 | 0 | return ::IsStringInit(Init, AT, Context) == SIF_None; |
167 | 0 | } |
168 | | |
169 | | /// Update the type of a string literal, including any surrounding parentheses, |
170 | | /// to match the type of the object which it is initializing. |
171 | 0 | static void updateStringLiteralType(Expr *E, QualType Ty) { |
172 | 0 | while (true) { |
173 | 0 | E->setType(Ty); |
174 | 0 | E->setValueKind(VK_PRValue); |
175 | 0 | if (isa<StringLiteral>(E) || isa<ObjCEncodeExpr>(E)) |
176 | 0 | break; |
177 | 0 | E = IgnoreParensSingleStep(E); |
178 | 0 | } |
179 | 0 | } |
180 | | |
181 | | /// Fix a compound literal initializing an array so it's correctly marked |
182 | | /// as an rvalue. |
183 | 0 | static void updateGNUCompoundLiteralRValue(Expr *E) { |
184 | 0 | while (true) { |
185 | 0 | E->setValueKind(VK_PRValue); |
186 | 0 | if (isa<CompoundLiteralExpr>(E)) |
187 | 0 | break; |
188 | 0 | E = IgnoreParensSingleStep(E); |
189 | 0 | } |
190 | 0 | } |
191 | | |
192 | | static void CheckStringInit(Expr *Str, QualType &DeclT, const ArrayType *AT, |
193 | 0 | Sema &S) { |
194 | | // Get the length of the string as parsed. |
195 | 0 | auto *ConstantArrayTy = |
196 | 0 | cast<ConstantArrayType>(Str->getType()->getAsArrayTypeUnsafe()); |
197 | 0 | uint64_t StrLength = ConstantArrayTy->getSize().getZExtValue(); |
198 | |
|
199 | 0 | if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) { |
200 | | // C99 6.7.8p14. We have an array of character type with unknown size |
201 | | // being initialized to a string literal. |
202 | 0 | llvm::APInt ConstVal(32, StrLength); |
203 | | // Return a new array type (C99 6.7.8p22). |
204 | 0 | DeclT = S.Context.getConstantArrayType( |
205 | 0 | IAT->getElementType(), ConstVal, nullptr, ArraySizeModifier::Normal, 0); |
206 | 0 | updateStringLiteralType(Str, DeclT); |
207 | 0 | return; |
208 | 0 | } |
209 | | |
210 | 0 | const ConstantArrayType *CAT = cast<ConstantArrayType>(AT); |
211 | | |
212 | | // We have an array of character type with known size. However, |
213 | | // the size may be smaller or larger than the string we are initializing. |
214 | | // FIXME: Avoid truncation for 64-bit length strings. |
215 | 0 | if (S.getLangOpts().CPlusPlus) { |
216 | 0 | if (StringLiteral *SL = dyn_cast<StringLiteral>(Str->IgnoreParens())) { |
217 | | // For Pascal strings it's OK to strip off the terminating null character, |
218 | | // so the example below is valid: |
219 | | // |
220 | | // unsigned char a[2] = "\pa"; |
221 | 0 | if (SL->isPascal()) |
222 | 0 | StrLength--; |
223 | 0 | } |
224 | | |
225 | | // [dcl.init.string]p2 |
226 | 0 | if (StrLength > CAT->getSize().getZExtValue()) |
227 | 0 | S.Diag(Str->getBeginLoc(), |
228 | 0 | diag::err_initializer_string_for_char_array_too_long) |
229 | 0 | << CAT->getSize().getZExtValue() << StrLength |
230 | 0 | << Str->getSourceRange(); |
231 | 0 | } else { |
232 | | // C99 6.7.8p14. |
233 | 0 | if (StrLength-1 > CAT->getSize().getZExtValue()) |
234 | 0 | S.Diag(Str->getBeginLoc(), |
235 | 0 | diag::ext_initializer_string_for_char_array_too_long) |
236 | 0 | << Str->getSourceRange(); |
237 | 0 | } |
238 | | |
239 | | // Set the type to the actual size that we are initializing. If we have |
240 | | // something like: |
241 | | // char x[1] = "foo"; |
242 | | // then this will set the string literal's type to char[1]. |
243 | 0 | updateStringLiteralType(Str, DeclT); |
244 | 0 | } |
245 | | |
246 | | //===----------------------------------------------------------------------===// |
247 | | // Semantic checking for initializer lists. |
248 | | //===----------------------------------------------------------------------===// |
249 | | |
250 | | namespace { |
251 | | |
252 | | /// Semantic checking for initializer lists. |
253 | | /// |
254 | | /// The InitListChecker class contains a set of routines that each |
255 | | /// handle the initialization of a certain kind of entity, e.g., |
256 | | /// arrays, vectors, struct/union types, scalars, etc. The |
257 | | /// InitListChecker itself performs a recursive walk of the subobject |
258 | | /// structure of the type to be initialized, while stepping through |
259 | | /// the initializer list one element at a time. The IList and Index |
260 | | /// parameters to each of the Check* routines contain the active |
261 | | /// (syntactic) initializer list and the index into that initializer |
262 | | /// list that represents the current initializer. Each routine is |
263 | | /// responsible for moving that Index forward as it consumes elements. |
264 | | /// |
265 | | /// Each Check* routine also has a StructuredList/StructuredIndex |
266 | | /// arguments, which contains the current "structured" (semantic) |
267 | | /// initializer list and the index into that initializer list where we |
268 | | /// are copying initializers as we map them over to the semantic |
269 | | /// list. Once we have completed our recursive walk of the subobject |
270 | | /// structure, we will have constructed a full semantic initializer |
271 | | /// list. |
272 | | /// |
273 | | /// C99 designators cause changes in the initializer list traversal, |
274 | | /// because they make the initialization "jump" into a specific |
275 | | /// subobject and then continue the initialization from that |
276 | | /// point. CheckDesignatedInitializer() recursively steps into the |
277 | | /// designated subobject and manages backing out the recursion to |
278 | | /// initialize the subobjects after the one designated. |
279 | | /// |
280 | | /// If an initializer list contains any designators, we build a placeholder |
281 | | /// structured list even in 'verify only' mode, so that we can track which |
282 | | /// elements need 'empty' initializtion. |
283 | | class InitListChecker { |
284 | | Sema &SemaRef; |
285 | | bool hadError = false; |
286 | | bool VerifyOnly; // No diagnostics. |
287 | | bool TreatUnavailableAsInvalid; // Used only in VerifyOnly mode. |
288 | | bool InOverloadResolution; |
289 | | InitListExpr *FullyStructuredList = nullptr; |
290 | | NoInitExpr *DummyExpr = nullptr; |
291 | | SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes = nullptr; |
292 | | |
293 | 0 | NoInitExpr *getDummyInit() { |
294 | 0 | if (!DummyExpr) |
295 | 0 | DummyExpr = new (SemaRef.Context) NoInitExpr(SemaRef.Context.VoidTy); |
296 | 0 | return DummyExpr; |
297 | 0 | } |
298 | | |
299 | | void CheckImplicitInitList(const InitializedEntity &Entity, |
300 | | InitListExpr *ParentIList, QualType T, |
301 | | unsigned &Index, InitListExpr *StructuredList, |
302 | | unsigned &StructuredIndex); |
303 | | void CheckExplicitInitList(const InitializedEntity &Entity, |
304 | | InitListExpr *IList, QualType &T, |
305 | | InitListExpr *StructuredList, |
306 | | bool TopLevelObject = false); |
307 | | void CheckListElementTypes(const InitializedEntity &Entity, |
308 | | InitListExpr *IList, QualType &DeclType, |
309 | | bool SubobjectIsDesignatorContext, |
310 | | unsigned &Index, |
311 | | InitListExpr *StructuredList, |
312 | | unsigned &StructuredIndex, |
313 | | bool TopLevelObject = false); |
314 | | void CheckSubElementType(const InitializedEntity &Entity, |
315 | | InitListExpr *IList, QualType ElemType, |
316 | | unsigned &Index, |
317 | | InitListExpr *StructuredList, |
318 | | unsigned &StructuredIndex, |
319 | | bool DirectlyDesignated = false); |
320 | | void CheckComplexType(const InitializedEntity &Entity, |
321 | | InitListExpr *IList, QualType DeclType, |
322 | | unsigned &Index, |
323 | | InitListExpr *StructuredList, |
324 | | unsigned &StructuredIndex); |
325 | | void CheckScalarType(const InitializedEntity &Entity, |
326 | | InitListExpr *IList, QualType DeclType, |
327 | | unsigned &Index, |
328 | | InitListExpr *StructuredList, |
329 | | unsigned &StructuredIndex); |
330 | | void CheckReferenceType(const InitializedEntity &Entity, |
331 | | InitListExpr *IList, QualType DeclType, |
332 | | unsigned &Index, |
333 | | InitListExpr *StructuredList, |
334 | | unsigned &StructuredIndex); |
335 | | void CheckVectorType(const InitializedEntity &Entity, |
336 | | InitListExpr *IList, QualType DeclType, unsigned &Index, |
337 | | InitListExpr *StructuredList, |
338 | | unsigned &StructuredIndex); |
339 | | void CheckStructUnionTypes(const InitializedEntity &Entity, |
340 | | InitListExpr *IList, QualType DeclType, |
341 | | CXXRecordDecl::base_class_const_range Bases, |
342 | | RecordDecl::field_iterator Field, |
343 | | bool SubobjectIsDesignatorContext, unsigned &Index, |
344 | | InitListExpr *StructuredList, |
345 | | unsigned &StructuredIndex, |
346 | | bool TopLevelObject = false); |
347 | | void CheckArrayType(const InitializedEntity &Entity, |
348 | | InitListExpr *IList, QualType &DeclType, |
349 | | llvm::APSInt elementIndex, |
350 | | bool SubobjectIsDesignatorContext, unsigned &Index, |
351 | | InitListExpr *StructuredList, |
352 | | unsigned &StructuredIndex); |
353 | | bool CheckDesignatedInitializer(const InitializedEntity &Entity, |
354 | | InitListExpr *IList, DesignatedInitExpr *DIE, |
355 | | unsigned DesigIdx, |
356 | | QualType &CurrentObjectType, |
357 | | RecordDecl::field_iterator *NextField, |
358 | | llvm::APSInt *NextElementIndex, |
359 | | unsigned &Index, |
360 | | InitListExpr *StructuredList, |
361 | | unsigned &StructuredIndex, |
362 | | bool FinishSubobjectInit, |
363 | | bool TopLevelObject); |
364 | | InitListExpr *getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
365 | | QualType CurrentObjectType, |
366 | | InitListExpr *StructuredList, |
367 | | unsigned StructuredIndex, |
368 | | SourceRange InitRange, |
369 | | bool IsFullyOverwritten = false); |
370 | | void UpdateStructuredListElement(InitListExpr *StructuredList, |
371 | | unsigned &StructuredIndex, |
372 | | Expr *expr); |
373 | | InitListExpr *createInitListExpr(QualType CurrentObjectType, |
374 | | SourceRange InitRange, |
375 | | unsigned ExpectedNumInits); |
376 | | int numArrayElements(QualType DeclType); |
377 | | int numStructUnionElements(QualType DeclType); |
378 | | static RecordDecl *getRecordDecl(QualType DeclType); |
379 | | |
380 | | ExprResult PerformEmptyInit(SourceLocation Loc, |
381 | | const InitializedEntity &Entity); |
382 | | |
383 | | /// Diagnose that OldInit (or part thereof) has been overridden by NewInit. |
384 | | void diagnoseInitOverride(Expr *OldInit, SourceRange NewInitRange, |
385 | | bool UnionOverride = false, |
386 | 0 | bool FullyOverwritten = true) { |
387 | | // Overriding an initializer via a designator is valid with C99 designated |
388 | | // initializers, but ill-formed with C++20 designated initializers. |
389 | 0 | unsigned DiagID = |
390 | 0 | SemaRef.getLangOpts().CPlusPlus |
391 | 0 | ? (UnionOverride ? diag::ext_initializer_union_overrides |
392 | 0 | : diag::ext_initializer_overrides) |
393 | 0 | : diag::warn_initializer_overrides; |
394 | |
|
395 | 0 | if (InOverloadResolution && SemaRef.getLangOpts().CPlusPlus) { |
396 | | // In overload resolution, we have to strictly enforce the rules, and so |
397 | | // don't allow any overriding of prior initializers. This matters for a |
398 | | // case such as: |
399 | | // |
400 | | // union U { int a, b; }; |
401 | | // struct S { int a, b; }; |
402 | | // void f(U), f(S); |
403 | | // |
404 | | // Here, f({.a = 1, .b = 2}) is required to call the struct overload. For |
405 | | // consistency, we disallow all overriding of prior initializers in |
406 | | // overload resolution, not only overriding of union members. |
407 | 0 | hadError = true; |
408 | 0 | } else if (OldInit->getType().isDestructedType() && !FullyOverwritten) { |
409 | | // If we'll be keeping around the old initializer but overwriting part of |
410 | | // the object it initialized, and that object is not trivially |
411 | | // destructible, this can leak. Don't allow that, not even as an |
412 | | // extension. |
413 | | // |
414 | | // FIXME: It might be reasonable to allow this in cases where the part of |
415 | | // the initializer that we're overriding has trivial destruction. |
416 | 0 | DiagID = diag::err_initializer_overrides_destructed; |
417 | 0 | } else if (!OldInit->getSourceRange().isValid()) { |
418 | | // We need to check on source range validity because the previous |
419 | | // initializer does not have to be an explicit initializer. e.g., |
420 | | // |
421 | | // struct P { int a, b; }; |
422 | | // struct PP { struct P p } l = { { .a = 2 }, .p.b = 3 }; |
423 | | // |
424 | | // There is an overwrite taking place because the first braced initializer |
425 | | // list "{ .a = 2 }" already provides value for .p.b (which is zero). |
426 | | // |
427 | | // Such overwrites are harmless, so we don't diagnose them. (Note that in |
428 | | // C++, this cannot be reached unless we've already seen and diagnosed a |
429 | | // different conformance issue, such as a mixture of designated and |
430 | | // non-designated initializers or a multi-level designator.) |
431 | 0 | return; |
432 | 0 | } |
433 | | |
434 | 0 | if (!VerifyOnly) { |
435 | 0 | SemaRef.Diag(NewInitRange.getBegin(), DiagID) |
436 | 0 | << NewInitRange << FullyOverwritten << OldInit->getType(); |
437 | 0 | SemaRef.Diag(OldInit->getBeginLoc(), diag::note_previous_initializer) |
438 | 0 | << (OldInit->HasSideEffects(SemaRef.Context) && FullyOverwritten) |
439 | 0 | << OldInit->getSourceRange(); |
440 | 0 | } |
441 | 0 | } |
442 | | |
443 | | // Explanation on the "FillWithNoInit" mode: |
444 | | // |
445 | | // Assume we have the following definitions (Case#1): |
446 | | // struct P { char x[6][6]; } xp = { .x[1] = "bar" }; |
447 | | // struct PP { struct P lp; } l = { .lp = xp, .lp.x[1][2] = 'f' }; |
448 | | // |
449 | | // l.lp.x[1][0..1] should not be filled with implicit initializers because the |
450 | | // "base" initializer "xp" will provide values for them; l.lp.x[1] will be "baf". |
451 | | // |
452 | | // But if we have (Case#2): |
453 | | // struct PP l = { .lp = xp, .lp.x[1] = { [2] = 'f' } }; |
454 | | // |
455 | | // l.lp.x[1][0..1] are implicitly initialized and do not use values from the |
456 | | // "base" initializer; l.lp.x[1] will be "\0\0f\0\0\0". |
457 | | // |
458 | | // To distinguish Case#1 from Case#2, and also to avoid leaving many "holes" |
459 | | // in the InitListExpr, the "holes" in Case#1 are filled not with empty |
460 | | // initializers but with special "NoInitExpr" place holders, which tells the |
461 | | // CodeGen not to generate any initializers for these parts. |
462 | | void FillInEmptyInitForBase(unsigned Init, const CXXBaseSpecifier &Base, |
463 | | const InitializedEntity &ParentEntity, |
464 | | InitListExpr *ILE, bool &RequiresSecondPass, |
465 | | bool FillWithNoInit); |
466 | | void FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
467 | | const InitializedEntity &ParentEntity, |
468 | | InitListExpr *ILE, bool &RequiresSecondPass, |
469 | | bool FillWithNoInit = false); |
470 | | void FillInEmptyInitializations(const InitializedEntity &Entity, |
471 | | InitListExpr *ILE, bool &RequiresSecondPass, |
472 | | InitListExpr *OuterILE, unsigned OuterIndex, |
473 | | bool FillWithNoInit = false); |
474 | | bool CheckFlexibleArrayInit(const InitializedEntity &Entity, |
475 | | Expr *InitExpr, FieldDecl *Field, |
476 | | bool TopLevelObject); |
477 | | void CheckEmptyInitializable(const InitializedEntity &Entity, |
478 | | SourceLocation Loc); |
479 | | |
480 | | public: |
481 | | InitListChecker( |
482 | | Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, |
483 | | bool VerifyOnly, bool TreatUnavailableAsInvalid, |
484 | | bool InOverloadResolution = false, |
485 | | SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes = nullptr); |
486 | | InitListChecker(Sema &S, const InitializedEntity &Entity, InitListExpr *IL, |
487 | | QualType &T, |
488 | | SmallVectorImpl<QualType> &AggrDeductionCandidateParamTypes) |
489 | | : InitListChecker(S, Entity, IL, T, /*VerifyOnly=*/true, |
490 | | /*TreatUnavailableAsInvalid=*/false, |
491 | | /*InOverloadResolution=*/false, |
492 | 0 | &AggrDeductionCandidateParamTypes){}; |
493 | | |
494 | 0 | bool HadError() { return hadError; } |
495 | | |
496 | | // Retrieves the fully-structured initializer list used for |
497 | | // semantic analysis and code generation. |
498 | 0 | InitListExpr *getFullyStructuredList() const { return FullyStructuredList; } |
499 | | }; |
500 | | |
501 | | } // end anonymous namespace |
502 | | |
503 | | ExprResult InitListChecker::PerformEmptyInit(SourceLocation Loc, |
504 | 0 | const InitializedEntity &Entity) { |
505 | 0 | InitializationKind Kind = InitializationKind::CreateValue(Loc, Loc, Loc, |
506 | 0 | true); |
507 | 0 | MultiExprArg SubInit; |
508 | 0 | Expr *InitExpr; |
509 | 0 | InitListExpr DummyInitList(SemaRef.Context, Loc, std::nullopt, Loc); |
510 | | |
511 | | // C++ [dcl.init.aggr]p7: |
512 | | // If there are fewer initializer-clauses in the list than there are |
513 | | // members in the aggregate, then each member not explicitly initialized |
514 | | // ... |
515 | 0 | bool EmptyInitList = SemaRef.getLangOpts().CPlusPlus11 && |
516 | 0 | Entity.getType()->getBaseElementTypeUnsafe()->isRecordType(); |
517 | 0 | if (EmptyInitList) { |
518 | | // C++1y / DR1070: |
519 | | // shall be initialized [...] from an empty initializer list. |
520 | | // |
521 | | // We apply the resolution of this DR to C++11 but not C++98, since C++98 |
522 | | // does not have useful semantics for initialization from an init list. |
523 | | // We treat this as copy-initialization, because aggregate initialization |
524 | | // always performs copy-initialization on its elements. |
525 | | // |
526 | | // Only do this if we're initializing a class type, to avoid filling in |
527 | | // the initializer list where possible. |
528 | 0 | InitExpr = VerifyOnly |
529 | 0 | ? &DummyInitList |
530 | 0 | : new (SemaRef.Context) |
531 | 0 | InitListExpr(SemaRef.Context, Loc, std::nullopt, Loc); |
532 | 0 | InitExpr->setType(SemaRef.Context.VoidTy); |
533 | 0 | SubInit = InitExpr; |
534 | 0 | Kind = InitializationKind::CreateCopy(Loc, Loc); |
535 | 0 | } else { |
536 | | // C++03: |
537 | | // shall be value-initialized. |
538 | 0 | } |
539 | |
|
540 | 0 | InitializationSequence InitSeq(SemaRef, Entity, Kind, SubInit); |
541 | | // libstdc++4.6 marks the vector default constructor as explicit in |
542 | | // _GLIBCXX_DEBUG mode, so recover using the C++03 logic in that case. |
543 | | // stlport does so too. Look for std::__debug for libstdc++, and for |
544 | | // std:: for stlport. This is effectively a compiler-side implementation of |
545 | | // LWG2193. |
546 | 0 | if (!InitSeq && EmptyInitList && InitSeq.getFailureKind() == |
547 | 0 | InitializationSequence::FK_ExplicitConstructor) { |
548 | 0 | OverloadCandidateSet::iterator Best; |
549 | 0 | OverloadingResult O = |
550 | 0 | InitSeq.getFailedCandidateSet() |
551 | 0 | .BestViableFunction(SemaRef, Kind.getLocation(), Best); |
552 | 0 | (void)O; |
553 | 0 | assert(O == OR_Success && "Inconsistent overload resolution"); |
554 | 0 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); |
555 | 0 | CXXRecordDecl *R = CtorDecl->getParent(); |
556 | |
|
557 | 0 | if (CtorDecl->getMinRequiredArguments() == 0 && |
558 | 0 | CtorDecl->isExplicit() && R->getDeclName() && |
559 | 0 | SemaRef.SourceMgr.isInSystemHeader(CtorDecl->getLocation())) { |
560 | 0 | bool IsInStd = false; |
561 | 0 | for (NamespaceDecl *ND = dyn_cast<NamespaceDecl>(R->getDeclContext()); |
562 | 0 | ND && !IsInStd; ND = dyn_cast<NamespaceDecl>(ND->getParent())) { |
563 | 0 | if (SemaRef.getStdNamespace()->InEnclosingNamespaceSetOf(ND)) |
564 | 0 | IsInStd = true; |
565 | 0 | } |
566 | |
|
567 | 0 | if (IsInStd && llvm::StringSwitch<bool>(R->getName()) |
568 | 0 | .Cases("basic_string", "deque", "forward_list", true) |
569 | 0 | .Cases("list", "map", "multimap", "multiset", true) |
570 | 0 | .Cases("priority_queue", "queue", "set", "stack", true) |
571 | 0 | .Cases("unordered_map", "unordered_set", "vector", true) |
572 | 0 | .Default(false)) { |
573 | 0 | InitSeq.InitializeFrom( |
574 | 0 | SemaRef, Entity, |
575 | 0 | InitializationKind::CreateValue(Loc, Loc, Loc, true), |
576 | 0 | MultiExprArg(), /*TopLevelOfInitList=*/false, |
577 | 0 | TreatUnavailableAsInvalid); |
578 | | // Emit a warning for this. System header warnings aren't shown |
579 | | // by default, but people working on system headers should see it. |
580 | 0 | if (!VerifyOnly) { |
581 | 0 | SemaRef.Diag(CtorDecl->getLocation(), |
582 | 0 | diag::warn_invalid_initializer_from_system_header); |
583 | 0 | if (Entity.getKind() == InitializedEntity::EK_Member) |
584 | 0 | SemaRef.Diag(Entity.getDecl()->getLocation(), |
585 | 0 | diag::note_used_in_initialization_here); |
586 | 0 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) |
587 | 0 | SemaRef.Diag(Loc, diag::note_used_in_initialization_here); |
588 | 0 | } |
589 | 0 | } |
590 | 0 | } |
591 | 0 | } |
592 | 0 | if (!InitSeq) { |
593 | 0 | if (!VerifyOnly) { |
594 | 0 | InitSeq.Diagnose(SemaRef, Entity, Kind, SubInit); |
595 | 0 | if (Entity.getKind() == InitializedEntity::EK_Member) |
596 | 0 | SemaRef.Diag(Entity.getDecl()->getLocation(), |
597 | 0 | diag::note_in_omitted_aggregate_initializer) |
598 | 0 | << /*field*/1 << Entity.getDecl(); |
599 | 0 | else if (Entity.getKind() == InitializedEntity::EK_ArrayElement) { |
600 | 0 | bool IsTrailingArrayNewMember = |
601 | 0 | Entity.getParent() && |
602 | 0 | Entity.getParent()->isVariableLengthArrayNew(); |
603 | 0 | SemaRef.Diag(Loc, diag::note_in_omitted_aggregate_initializer) |
604 | 0 | << (IsTrailingArrayNewMember ? 2 : /*array element*/0) |
605 | 0 | << Entity.getElementIndex(); |
606 | 0 | } |
607 | 0 | } |
608 | 0 | hadError = true; |
609 | 0 | return ExprError(); |
610 | 0 | } |
611 | | |
612 | 0 | return VerifyOnly ? ExprResult() |
613 | 0 | : InitSeq.Perform(SemaRef, Entity, Kind, SubInit); |
614 | 0 | } |
615 | | |
616 | | void InitListChecker::CheckEmptyInitializable(const InitializedEntity &Entity, |
617 | 0 | SourceLocation Loc) { |
618 | | // If we're building a fully-structured list, we'll check this at the end |
619 | | // once we know which elements are actually initialized. Otherwise, we know |
620 | | // that there are no designators so we can just check now. |
621 | 0 | if (FullyStructuredList) |
622 | 0 | return; |
623 | 0 | PerformEmptyInit(Loc, Entity); |
624 | 0 | } |
625 | | |
626 | | void InitListChecker::FillInEmptyInitForBase( |
627 | | unsigned Init, const CXXBaseSpecifier &Base, |
628 | | const InitializedEntity &ParentEntity, InitListExpr *ILE, |
629 | 0 | bool &RequiresSecondPass, bool FillWithNoInit) { |
630 | 0 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
631 | 0 | SemaRef.Context, &Base, false, &ParentEntity); |
632 | |
|
633 | 0 | if (Init >= ILE->getNumInits() || !ILE->getInit(Init)) { |
634 | 0 | ExprResult BaseInit = FillWithNoInit |
635 | 0 | ? new (SemaRef.Context) NoInitExpr(Base.getType()) |
636 | 0 | : PerformEmptyInit(ILE->getEndLoc(), BaseEntity); |
637 | 0 | if (BaseInit.isInvalid()) { |
638 | 0 | hadError = true; |
639 | 0 | return; |
640 | 0 | } |
641 | | |
642 | 0 | if (!VerifyOnly) { |
643 | 0 | assert(Init < ILE->getNumInits() && "should have been expanded"); |
644 | 0 | ILE->setInit(Init, BaseInit.getAs<Expr>()); |
645 | 0 | } |
646 | 0 | } else if (InitListExpr *InnerILE = |
647 | 0 | dyn_cast<InitListExpr>(ILE->getInit(Init))) { |
648 | 0 | FillInEmptyInitializations(BaseEntity, InnerILE, RequiresSecondPass, |
649 | 0 | ILE, Init, FillWithNoInit); |
650 | 0 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
651 | 0 | dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { |
652 | 0 | FillInEmptyInitializations(BaseEntity, InnerDIUE->getUpdater(), |
653 | 0 | RequiresSecondPass, ILE, Init, |
654 | 0 | /*FillWithNoInit =*/true); |
655 | 0 | } |
656 | 0 | } |
657 | | |
658 | | void InitListChecker::FillInEmptyInitForField(unsigned Init, FieldDecl *Field, |
659 | | const InitializedEntity &ParentEntity, |
660 | | InitListExpr *ILE, |
661 | | bool &RequiresSecondPass, |
662 | 0 | bool FillWithNoInit) { |
663 | 0 | SourceLocation Loc = ILE->getEndLoc(); |
664 | 0 | unsigned NumInits = ILE->getNumInits(); |
665 | 0 | InitializedEntity MemberEntity |
666 | 0 | = InitializedEntity::InitializeMember(Field, &ParentEntity); |
667 | |
|
668 | 0 | if (Init >= NumInits || !ILE->getInit(Init)) { |
669 | 0 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) |
670 | 0 | if (!RType->getDecl()->isUnion()) |
671 | 0 | assert((Init < NumInits || VerifyOnly) && |
672 | 0 | "This ILE should have been expanded"); |
673 | | |
674 | 0 | if (FillWithNoInit) { |
675 | 0 | assert(!VerifyOnly && "should not fill with no-init in verify-only mode"); |
676 | 0 | Expr *Filler = new (SemaRef.Context) NoInitExpr(Field->getType()); |
677 | 0 | if (Init < NumInits) |
678 | 0 | ILE->setInit(Init, Filler); |
679 | 0 | else |
680 | 0 | ILE->updateInit(SemaRef.Context, Init, Filler); |
681 | 0 | return; |
682 | 0 | } |
683 | | // C++1y [dcl.init.aggr]p7: |
684 | | // If there are fewer initializer-clauses in the list than there are |
685 | | // members in the aggregate, then each member not explicitly initialized |
686 | | // shall be initialized from its brace-or-equal-initializer [...] |
687 | 0 | if (Field->hasInClassInitializer()) { |
688 | 0 | if (VerifyOnly) |
689 | 0 | return; |
690 | | |
691 | 0 | ExprResult DIE = SemaRef.BuildCXXDefaultInitExpr(Loc, Field); |
692 | 0 | if (DIE.isInvalid()) { |
693 | 0 | hadError = true; |
694 | 0 | return; |
695 | 0 | } |
696 | 0 | SemaRef.checkInitializerLifetime(MemberEntity, DIE.get()); |
697 | 0 | if (Init < NumInits) |
698 | 0 | ILE->setInit(Init, DIE.get()); |
699 | 0 | else { |
700 | 0 | ILE->updateInit(SemaRef.Context, Init, DIE.get()); |
701 | 0 | RequiresSecondPass = true; |
702 | 0 | } |
703 | 0 | return; |
704 | 0 | } |
705 | | |
706 | 0 | if (Field->getType()->isReferenceType()) { |
707 | 0 | if (!VerifyOnly) { |
708 | | // C++ [dcl.init.aggr]p9: |
709 | | // If an incomplete or empty initializer-list leaves a |
710 | | // member of reference type uninitialized, the program is |
711 | | // ill-formed. |
712 | 0 | SemaRef.Diag(Loc, diag::err_init_reference_member_uninitialized) |
713 | 0 | << Field->getType() |
714 | 0 | << (ILE->isSyntacticForm() ? ILE : ILE->getSyntacticForm()) |
715 | 0 | ->getSourceRange(); |
716 | 0 | SemaRef.Diag(Field->getLocation(), diag::note_uninit_reference_member); |
717 | 0 | } |
718 | 0 | hadError = true; |
719 | 0 | return; |
720 | 0 | } |
721 | | |
722 | 0 | ExprResult MemberInit = PerformEmptyInit(Loc, MemberEntity); |
723 | 0 | if (MemberInit.isInvalid()) { |
724 | 0 | hadError = true; |
725 | 0 | return; |
726 | 0 | } |
727 | | |
728 | 0 | if (hadError || VerifyOnly) { |
729 | | // Do nothing |
730 | 0 | } else if (Init < NumInits) { |
731 | 0 | ILE->setInit(Init, MemberInit.getAs<Expr>()); |
732 | 0 | } else if (!isa<ImplicitValueInitExpr>(MemberInit.get())) { |
733 | | // Empty initialization requires a constructor call, so |
734 | | // extend the initializer list to include the constructor |
735 | | // call and make a note that we'll need to take another pass |
736 | | // through the initializer list. |
737 | 0 | ILE->updateInit(SemaRef.Context, Init, MemberInit.getAs<Expr>()); |
738 | 0 | RequiresSecondPass = true; |
739 | 0 | } |
740 | 0 | } else if (InitListExpr *InnerILE |
741 | 0 | = dyn_cast<InitListExpr>(ILE->getInit(Init))) { |
742 | 0 | FillInEmptyInitializations(MemberEntity, InnerILE, |
743 | 0 | RequiresSecondPass, ILE, Init, FillWithNoInit); |
744 | 0 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
745 | 0 | dyn_cast<DesignatedInitUpdateExpr>(ILE->getInit(Init))) { |
746 | 0 | FillInEmptyInitializations(MemberEntity, InnerDIUE->getUpdater(), |
747 | 0 | RequiresSecondPass, ILE, Init, |
748 | 0 | /*FillWithNoInit =*/true); |
749 | 0 | } |
750 | 0 | } |
751 | | |
752 | | /// Recursively replaces NULL values within the given initializer list |
753 | | /// with expressions that perform value-initialization of the |
754 | | /// appropriate type, and finish off the InitListExpr formation. |
755 | | void |
756 | | InitListChecker::FillInEmptyInitializations(const InitializedEntity &Entity, |
757 | | InitListExpr *ILE, |
758 | | bool &RequiresSecondPass, |
759 | | InitListExpr *OuterILE, |
760 | | unsigned OuterIndex, |
761 | 0 | bool FillWithNoInit) { |
762 | 0 | assert((ILE->getType() != SemaRef.Context.VoidTy) && |
763 | 0 | "Should not have void type"); |
764 | | |
765 | | // We don't need to do any checks when just filling NoInitExprs; that can't |
766 | | // fail. |
767 | 0 | if (FillWithNoInit && VerifyOnly) |
768 | 0 | return; |
769 | | |
770 | | // If this is a nested initializer list, we might have changed its contents |
771 | | // (and therefore some of its properties, such as instantiation-dependence) |
772 | | // while filling it in. Inform the outer initializer list so that its state |
773 | | // can be updated to match. |
774 | | // FIXME: We should fully build the inner initializers before constructing |
775 | | // the outer InitListExpr instead of mutating AST nodes after they have |
776 | | // been used as subexpressions of other nodes. |
777 | 0 | struct UpdateOuterILEWithUpdatedInit { |
778 | 0 | InitListExpr *Outer; |
779 | 0 | unsigned OuterIndex; |
780 | 0 | ~UpdateOuterILEWithUpdatedInit() { |
781 | 0 | if (Outer) |
782 | 0 | Outer->setInit(OuterIndex, Outer->getInit(OuterIndex)); |
783 | 0 | } |
784 | 0 | } UpdateOuterRAII = {OuterILE, OuterIndex}; |
785 | | |
786 | | // A transparent ILE is not performing aggregate initialization and should |
787 | | // not be filled in. |
788 | 0 | if (ILE->isTransparent()) |
789 | 0 | return; |
790 | | |
791 | 0 | if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) { |
792 | 0 | const RecordDecl *RDecl = RType->getDecl(); |
793 | 0 | if (RDecl->isUnion() && ILE->getInitializedFieldInUnion()) |
794 | 0 | FillInEmptyInitForField(0, ILE->getInitializedFieldInUnion(), |
795 | 0 | Entity, ILE, RequiresSecondPass, FillWithNoInit); |
796 | 0 | else if (RDecl->isUnion() && isa<CXXRecordDecl>(RDecl) && |
797 | 0 | cast<CXXRecordDecl>(RDecl)->hasInClassInitializer()) { |
798 | 0 | for (auto *Field : RDecl->fields()) { |
799 | 0 | if (Field->hasInClassInitializer()) { |
800 | 0 | FillInEmptyInitForField(0, Field, Entity, ILE, RequiresSecondPass, |
801 | 0 | FillWithNoInit); |
802 | 0 | break; |
803 | 0 | } |
804 | 0 | } |
805 | 0 | } else { |
806 | | // The fields beyond ILE->getNumInits() are default initialized, so in |
807 | | // order to leave them uninitialized, the ILE is expanded and the extra |
808 | | // fields are then filled with NoInitExpr. |
809 | 0 | unsigned NumElems = numStructUnionElements(ILE->getType()); |
810 | 0 | if (!RDecl->isUnion() && RDecl->hasFlexibleArrayMember()) |
811 | 0 | ++NumElems; |
812 | 0 | if (!VerifyOnly && ILE->getNumInits() < NumElems) |
813 | 0 | ILE->resizeInits(SemaRef.Context, NumElems); |
814 | |
|
815 | 0 | unsigned Init = 0; |
816 | |
|
817 | 0 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RDecl)) { |
818 | 0 | for (auto &Base : CXXRD->bases()) { |
819 | 0 | if (hadError) |
820 | 0 | return; |
821 | | |
822 | 0 | FillInEmptyInitForBase(Init, Base, Entity, ILE, RequiresSecondPass, |
823 | 0 | FillWithNoInit); |
824 | 0 | ++Init; |
825 | 0 | } |
826 | 0 | } |
827 | | |
828 | 0 | for (auto *Field : RDecl->fields()) { |
829 | 0 | if (Field->isUnnamedBitfield()) |
830 | 0 | continue; |
831 | | |
832 | 0 | if (hadError) |
833 | 0 | return; |
834 | | |
835 | 0 | FillInEmptyInitForField(Init, Field, Entity, ILE, RequiresSecondPass, |
836 | 0 | FillWithNoInit); |
837 | 0 | if (hadError) |
838 | 0 | return; |
839 | | |
840 | 0 | ++Init; |
841 | | |
842 | | // Only look at the first initialization of a union. |
843 | 0 | if (RDecl->isUnion()) |
844 | 0 | break; |
845 | 0 | } |
846 | 0 | } |
847 | | |
848 | 0 | return; |
849 | 0 | } |
850 | | |
851 | 0 | QualType ElementType; |
852 | |
|
853 | 0 | InitializedEntity ElementEntity = Entity; |
854 | 0 | unsigned NumInits = ILE->getNumInits(); |
855 | 0 | unsigned NumElements = NumInits; |
856 | 0 | if (const ArrayType *AType = SemaRef.Context.getAsArrayType(ILE->getType())) { |
857 | 0 | ElementType = AType->getElementType(); |
858 | 0 | if (const auto *CAType = dyn_cast<ConstantArrayType>(AType)) |
859 | 0 | NumElements = CAType->getSize().getZExtValue(); |
860 | | // For an array new with an unknown bound, ask for one additional element |
861 | | // in order to populate the array filler. |
862 | 0 | if (Entity.isVariableLengthArrayNew()) |
863 | 0 | ++NumElements; |
864 | 0 | ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, |
865 | 0 | 0, Entity); |
866 | 0 | } else if (const VectorType *VType = ILE->getType()->getAs<VectorType>()) { |
867 | 0 | ElementType = VType->getElementType(); |
868 | 0 | NumElements = VType->getNumElements(); |
869 | 0 | ElementEntity = InitializedEntity::InitializeElement(SemaRef.Context, |
870 | 0 | 0, Entity); |
871 | 0 | } else |
872 | 0 | ElementType = ILE->getType(); |
873 | |
|
874 | 0 | bool SkipEmptyInitChecks = false; |
875 | 0 | for (unsigned Init = 0; Init != NumElements; ++Init) { |
876 | 0 | if (hadError) |
877 | 0 | return; |
878 | | |
879 | 0 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement || |
880 | 0 | ElementEntity.getKind() == InitializedEntity::EK_VectorElement) |
881 | 0 | ElementEntity.setElementIndex(Init); |
882 | |
|
883 | 0 | if (Init >= NumInits && (ILE->hasArrayFiller() || SkipEmptyInitChecks)) |
884 | 0 | return; |
885 | | |
886 | 0 | Expr *InitExpr = (Init < NumInits ? ILE->getInit(Init) : nullptr); |
887 | 0 | if (!InitExpr && Init < NumInits && ILE->hasArrayFiller()) |
888 | 0 | ILE->setInit(Init, ILE->getArrayFiller()); |
889 | 0 | else if (!InitExpr && !ILE->hasArrayFiller()) { |
890 | | // In VerifyOnly mode, there's no point performing empty initialization |
891 | | // more than once. |
892 | 0 | if (SkipEmptyInitChecks) |
893 | 0 | continue; |
894 | | |
895 | 0 | Expr *Filler = nullptr; |
896 | |
|
897 | 0 | if (FillWithNoInit) |
898 | 0 | Filler = new (SemaRef.Context) NoInitExpr(ElementType); |
899 | 0 | else { |
900 | 0 | ExprResult ElementInit = |
901 | 0 | PerformEmptyInit(ILE->getEndLoc(), ElementEntity); |
902 | 0 | if (ElementInit.isInvalid()) { |
903 | 0 | hadError = true; |
904 | 0 | return; |
905 | 0 | } |
906 | | |
907 | 0 | Filler = ElementInit.getAs<Expr>(); |
908 | 0 | } |
909 | | |
910 | 0 | if (hadError) { |
911 | | // Do nothing |
912 | 0 | } else if (VerifyOnly) { |
913 | 0 | SkipEmptyInitChecks = true; |
914 | 0 | } else if (Init < NumInits) { |
915 | | // For arrays, just set the expression used for value-initialization |
916 | | // of the "holes" in the array. |
917 | 0 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) |
918 | 0 | ILE->setArrayFiller(Filler); |
919 | 0 | else |
920 | 0 | ILE->setInit(Init, Filler); |
921 | 0 | } else { |
922 | | // For arrays, just set the expression used for value-initialization |
923 | | // of the rest of elements and exit. |
924 | 0 | if (ElementEntity.getKind() == InitializedEntity::EK_ArrayElement) { |
925 | 0 | ILE->setArrayFiller(Filler); |
926 | 0 | return; |
927 | 0 | } |
928 | | |
929 | 0 | if (!isa<ImplicitValueInitExpr>(Filler) && !isa<NoInitExpr>(Filler)) { |
930 | | // Empty initialization requires a constructor call, so |
931 | | // extend the initializer list to include the constructor |
932 | | // call and make a note that we'll need to take another pass |
933 | | // through the initializer list. |
934 | 0 | ILE->updateInit(SemaRef.Context, Init, Filler); |
935 | 0 | RequiresSecondPass = true; |
936 | 0 | } |
937 | 0 | } |
938 | 0 | } else if (InitListExpr *InnerILE |
939 | 0 | = dyn_cast_or_null<InitListExpr>(InitExpr)) { |
940 | 0 | FillInEmptyInitializations(ElementEntity, InnerILE, RequiresSecondPass, |
941 | 0 | ILE, Init, FillWithNoInit); |
942 | 0 | } else if (DesignatedInitUpdateExpr *InnerDIUE = |
943 | 0 | dyn_cast_or_null<DesignatedInitUpdateExpr>(InitExpr)) { |
944 | 0 | FillInEmptyInitializations(ElementEntity, InnerDIUE->getUpdater(), |
945 | 0 | RequiresSecondPass, ILE, Init, |
946 | 0 | /*FillWithNoInit =*/true); |
947 | 0 | } |
948 | 0 | } |
949 | 0 | } |
950 | | |
951 | 0 | static bool hasAnyDesignatedInits(const InitListExpr *IL) { |
952 | 0 | for (const Stmt *Init : *IL) |
953 | 0 | if (isa_and_nonnull<DesignatedInitExpr>(Init)) |
954 | 0 | return true; |
955 | 0 | return false; |
956 | 0 | } |
957 | | |
958 | | InitListChecker::InitListChecker( |
959 | | Sema &S, const InitializedEntity &Entity, InitListExpr *IL, QualType &T, |
960 | | bool VerifyOnly, bool TreatUnavailableAsInvalid, bool InOverloadResolution, |
961 | | SmallVectorImpl<QualType> *AggrDeductionCandidateParamTypes) |
962 | | : SemaRef(S), VerifyOnly(VerifyOnly), |
963 | | TreatUnavailableAsInvalid(TreatUnavailableAsInvalid), |
964 | | InOverloadResolution(InOverloadResolution), |
965 | 0 | AggrDeductionCandidateParamTypes(AggrDeductionCandidateParamTypes) { |
966 | 0 | if (!VerifyOnly || hasAnyDesignatedInits(IL)) { |
967 | 0 | FullyStructuredList = |
968 | 0 | createInitListExpr(T, IL->getSourceRange(), IL->getNumInits()); |
969 | | |
970 | | // FIXME: Check that IL isn't already the semantic form of some other |
971 | | // InitListExpr. If it is, we'd create a broken AST. |
972 | 0 | if (!VerifyOnly) |
973 | 0 | FullyStructuredList->setSyntacticForm(IL); |
974 | 0 | } |
975 | |
|
976 | 0 | CheckExplicitInitList(Entity, IL, T, FullyStructuredList, |
977 | 0 | /*TopLevelObject=*/true); |
978 | |
|
979 | 0 | if (!hadError && !AggrDeductionCandidateParamTypes && FullyStructuredList) { |
980 | 0 | bool RequiresSecondPass = false; |
981 | 0 | FillInEmptyInitializations(Entity, FullyStructuredList, RequiresSecondPass, |
982 | 0 | /*OuterILE=*/nullptr, /*OuterIndex=*/0); |
983 | 0 | if (RequiresSecondPass && !hadError) |
984 | 0 | FillInEmptyInitializations(Entity, FullyStructuredList, |
985 | 0 | RequiresSecondPass, nullptr, 0); |
986 | 0 | } |
987 | 0 | if (hadError && FullyStructuredList) |
988 | 0 | FullyStructuredList->markError(); |
989 | 0 | } |
990 | | |
991 | 0 | int InitListChecker::numArrayElements(QualType DeclType) { |
992 | | // FIXME: use a proper constant |
993 | 0 | int maxElements = 0x7FFFFFFF; |
994 | 0 | if (const ConstantArrayType *CAT = |
995 | 0 | SemaRef.Context.getAsConstantArrayType(DeclType)) { |
996 | 0 | maxElements = static_cast<int>(CAT->getSize().getZExtValue()); |
997 | 0 | } |
998 | 0 | return maxElements; |
999 | 0 | } |
1000 | | |
1001 | 0 | int InitListChecker::numStructUnionElements(QualType DeclType) { |
1002 | 0 | RecordDecl *structDecl = DeclType->castAs<RecordType>()->getDecl(); |
1003 | 0 | int InitializableMembers = 0; |
1004 | 0 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(structDecl)) |
1005 | 0 | InitializableMembers += CXXRD->getNumBases(); |
1006 | 0 | for (const auto *Field : structDecl->fields()) |
1007 | 0 | if (!Field->isUnnamedBitfield()) |
1008 | 0 | ++InitializableMembers; |
1009 | |
|
1010 | 0 | if (structDecl->isUnion()) |
1011 | 0 | return std::min(InitializableMembers, 1); |
1012 | 0 | return InitializableMembers - structDecl->hasFlexibleArrayMember(); |
1013 | 0 | } |
1014 | | |
1015 | 0 | RecordDecl *InitListChecker::getRecordDecl(QualType DeclType) { |
1016 | 0 | if (const auto *RT = DeclType->getAs<RecordType>()) |
1017 | 0 | return RT->getDecl(); |
1018 | 0 | if (const auto *Inject = DeclType->getAs<InjectedClassNameType>()) |
1019 | 0 | return Inject->getDecl(); |
1020 | 0 | return nullptr; |
1021 | 0 | } |
1022 | | |
1023 | | /// Determine whether Entity is an entity for which it is idiomatic to elide |
1024 | | /// the braces in aggregate initialization. |
1025 | 0 | static bool isIdiomaticBraceElisionEntity(const InitializedEntity &Entity) { |
1026 | | // Recursive initialization of the one and only field within an aggregate |
1027 | | // class is considered idiomatic. This case arises in particular for |
1028 | | // initialization of std::array, where the C++ standard suggests the idiom of |
1029 | | // |
1030 | | // std::array<T, N> arr = {1, 2, 3}; |
1031 | | // |
1032 | | // (where std::array is an aggregate struct containing a single array field. |
1033 | |
|
1034 | 0 | if (!Entity.getParent()) |
1035 | 0 | return false; |
1036 | | |
1037 | | // Allows elide brace initialization for aggregates with empty base. |
1038 | 0 | if (Entity.getKind() == InitializedEntity::EK_Base) { |
1039 | 0 | auto *ParentRD = |
1040 | 0 | Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); |
1041 | 0 | CXXRecordDecl *CXXRD = cast<CXXRecordDecl>(ParentRD); |
1042 | 0 | return CXXRD->getNumBases() == 1 && CXXRD->field_empty(); |
1043 | 0 | } |
1044 | | |
1045 | | // Allow brace elision if the only subobject is a field. |
1046 | 0 | if (Entity.getKind() == InitializedEntity::EK_Member) { |
1047 | 0 | auto *ParentRD = |
1048 | 0 | Entity.getParent()->getType()->castAs<RecordType>()->getDecl(); |
1049 | 0 | if (CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(ParentRD)) { |
1050 | 0 | if (CXXRD->getNumBases()) { |
1051 | 0 | return false; |
1052 | 0 | } |
1053 | 0 | } |
1054 | 0 | auto FieldIt = ParentRD->field_begin(); |
1055 | 0 | assert(FieldIt != ParentRD->field_end() && |
1056 | 0 | "no fields but have initializer for member?"); |
1057 | 0 | return ++FieldIt == ParentRD->field_end(); |
1058 | 0 | } |
1059 | | |
1060 | 0 | return false; |
1061 | 0 | } |
1062 | | |
1063 | | /// Check whether the range of the initializer \p ParentIList from element |
1064 | | /// \p Index onwards can be used to initialize an object of type \p T. Update |
1065 | | /// \p Index to indicate how many elements of the list were consumed. |
1066 | | /// |
1067 | | /// This also fills in \p StructuredList, from element \p StructuredIndex |
1068 | | /// onwards, with the fully-braced, desugared form of the initialization. |
1069 | | void InitListChecker::CheckImplicitInitList(const InitializedEntity &Entity, |
1070 | | InitListExpr *ParentIList, |
1071 | | QualType T, unsigned &Index, |
1072 | | InitListExpr *StructuredList, |
1073 | 0 | unsigned &StructuredIndex) { |
1074 | 0 | int maxElements = 0; |
1075 | |
|
1076 | 0 | if (T->isArrayType()) |
1077 | 0 | maxElements = numArrayElements(T); |
1078 | 0 | else if (T->isRecordType()) |
1079 | 0 | maxElements = numStructUnionElements(T); |
1080 | 0 | else if (T->isVectorType()) |
1081 | 0 | maxElements = T->castAs<VectorType>()->getNumElements(); |
1082 | 0 | else |
1083 | 0 | llvm_unreachable("CheckImplicitInitList(): Illegal type"); |
1084 | |
|
1085 | 0 | if (maxElements == 0) { |
1086 | 0 | if (!VerifyOnly) |
1087 | 0 | SemaRef.Diag(ParentIList->getInit(Index)->getBeginLoc(), |
1088 | 0 | diag::err_implicit_empty_initializer); |
1089 | 0 | ++Index; |
1090 | 0 | hadError = true; |
1091 | 0 | return; |
1092 | 0 | } |
1093 | | |
1094 | | // Build a structured initializer list corresponding to this subobject. |
1095 | 0 | InitListExpr *StructuredSubobjectInitList = getStructuredSubobjectInit( |
1096 | 0 | ParentIList, Index, T, StructuredList, StructuredIndex, |
1097 | 0 | SourceRange(ParentIList->getInit(Index)->getBeginLoc(), |
1098 | 0 | ParentIList->getSourceRange().getEnd())); |
1099 | 0 | unsigned StructuredSubobjectInitIndex = 0; |
1100 | | |
1101 | | // Check the element types and build the structural subobject. |
1102 | 0 | unsigned StartIndex = Index; |
1103 | 0 | CheckListElementTypes(Entity, ParentIList, T, |
1104 | 0 | /*SubobjectIsDesignatorContext=*/false, Index, |
1105 | 0 | StructuredSubobjectInitList, |
1106 | 0 | StructuredSubobjectInitIndex); |
1107 | |
|
1108 | 0 | if (StructuredSubobjectInitList) { |
1109 | 0 | StructuredSubobjectInitList->setType(T); |
1110 | |
|
1111 | 0 | unsigned EndIndex = (Index == StartIndex? StartIndex : Index - 1); |
1112 | | // Update the structured sub-object initializer so that it's ending |
1113 | | // range corresponds with the end of the last initializer it used. |
1114 | 0 | if (EndIndex < ParentIList->getNumInits() && |
1115 | 0 | ParentIList->getInit(EndIndex)) { |
1116 | 0 | SourceLocation EndLoc |
1117 | 0 | = ParentIList->getInit(EndIndex)->getSourceRange().getEnd(); |
1118 | 0 | StructuredSubobjectInitList->setRBraceLoc(EndLoc); |
1119 | 0 | } |
1120 | | |
1121 | | // Complain about missing braces. |
1122 | 0 | if (!VerifyOnly && (T->isArrayType() || T->isRecordType()) && |
1123 | 0 | !ParentIList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()) && |
1124 | 0 | !isIdiomaticBraceElisionEntity(Entity)) { |
1125 | 0 | SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), |
1126 | 0 | diag::warn_missing_braces) |
1127 | 0 | << StructuredSubobjectInitList->getSourceRange() |
1128 | 0 | << FixItHint::CreateInsertion( |
1129 | 0 | StructuredSubobjectInitList->getBeginLoc(), "{") |
1130 | 0 | << FixItHint::CreateInsertion( |
1131 | 0 | SemaRef.getLocForEndOfToken( |
1132 | 0 | StructuredSubobjectInitList->getEndLoc()), |
1133 | 0 | "}"); |
1134 | 0 | } |
1135 | | |
1136 | | // Warn if this type won't be an aggregate in future versions of C++. |
1137 | 0 | auto *CXXRD = T->getAsCXXRecordDecl(); |
1138 | 0 | if (!VerifyOnly && CXXRD && CXXRD->hasUserDeclaredConstructor()) { |
1139 | 0 | SemaRef.Diag(StructuredSubobjectInitList->getBeginLoc(), |
1140 | 0 | diag::warn_cxx20_compat_aggregate_init_with_ctors) |
1141 | 0 | << StructuredSubobjectInitList->getSourceRange() << T; |
1142 | 0 | } |
1143 | 0 | } |
1144 | 0 | } |
1145 | | |
1146 | | /// Warn that \p Entity was of scalar type and was initialized by a |
1147 | | /// single-element braced initializer list. |
1148 | | static void warnBracedScalarInit(Sema &S, const InitializedEntity &Entity, |
1149 | 0 | SourceRange Braces) { |
1150 | | // Don't warn during template instantiation. If the initialization was |
1151 | | // non-dependent, we warned during the initial parse; otherwise, the |
1152 | | // type might not be scalar in some uses of the template. |
1153 | 0 | if (S.inTemplateInstantiation()) |
1154 | 0 | return; |
1155 | | |
1156 | 0 | unsigned DiagID = 0; |
1157 | |
|
1158 | 0 | switch (Entity.getKind()) { |
1159 | 0 | case InitializedEntity::EK_VectorElement: |
1160 | 0 | case InitializedEntity::EK_ComplexElement: |
1161 | 0 | case InitializedEntity::EK_ArrayElement: |
1162 | 0 | case InitializedEntity::EK_Parameter: |
1163 | 0 | case InitializedEntity::EK_Parameter_CF_Audited: |
1164 | 0 | case InitializedEntity::EK_TemplateParameter: |
1165 | 0 | case InitializedEntity::EK_Result: |
1166 | 0 | case InitializedEntity::EK_ParenAggInitMember: |
1167 | | // Extra braces here are suspicious. |
1168 | 0 | DiagID = diag::warn_braces_around_init; |
1169 | 0 | break; |
1170 | | |
1171 | 0 | case InitializedEntity::EK_Member: |
1172 | | // Warn on aggregate initialization but not on ctor init list or |
1173 | | // default member initializer. |
1174 | 0 | if (Entity.getParent()) |
1175 | 0 | DiagID = diag::warn_braces_around_init; |
1176 | 0 | break; |
1177 | | |
1178 | 0 | case InitializedEntity::EK_Variable: |
1179 | 0 | case InitializedEntity::EK_LambdaCapture: |
1180 | | // No warning, might be direct-list-initialization. |
1181 | | // FIXME: Should we warn for copy-list-initialization in these cases? |
1182 | 0 | break; |
1183 | | |
1184 | 0 | case InitializedEntity::EK_New: |
1185 | 0 | case InitializedEntity::EK_Temporary: |
1186 | 0 | case InitializedEntity::EK_CompoundLiteralInit: |
1187 | | // No warning, braces are part of the syntax of the underlying construct. |
1188 | 0 | break; |
1189 | | |
1190 | 0 | case InitializedEntity::EK_RelatedResult: |
1191 | | // No warning, we already warned when initializing the result. |
1192 | 0 | break; |
1193 | | |
1194 | 0 | case InitializedEntity::EK_Exception: |
1195 | 0 | case InitializedEntity::EK_Base: |
1196 | 0 | case InitializedEntity::EK_Delegating: |
1197 | 0 | case InitializedEntity::EK_BlockElement: |
1198 | 0 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
1199 | 0 | case InitializedEntity::EK_Binding: |
1200 | 0 | case InitializedEntity::EK_StmtExprResult: |
1201 | 0 | llvm_unreachable("unexpected braced scalar init"); |
1202 | 0 | } |
1203 | | |
1204 | 0 | if (DiagID) { |
1205 | 0 | S.Diag(Braces.getBegin(), DiagID) |
1206 | 0 | << Entity.getType()->isSizelessBuiltinType() << Braces |
1207 | 0 | << FixItHint::CreateRemoval(Braces.getBegin()) |
1208 | 0 | << FixItHint::CreateRemoval(Braces.getEnd()); |
1209 | 0 | } |
1210 | 0 | } |
1211 | | |
1212 | | /// Check whether the initializer \p IList (that was written with explicit |
1213 | | /// braces) can be used to initialize an object of type \p T. |
1214 | | /// |
1215 | | /// This also fills in \p StructuredList with the fully-braced, desugared |
1216 | | /// form of the initialization. |
1217 | | void InitListChecker::CheckExplicitInitList(const InitializedEntity &Entity, |
1218 | | InitListExpr *IList, QualType &T, |
1219 | | InitListExpr *StructuredList, |
1220 | 0 | bool TopLevelObject) { |
1221 | 0 | unsigned Index = 0, StructuredIndex = 0; |
1222 | 0 | CheckListElementTypes(Entity, IList, T, /*SubobjectIsDesignatorContext=*/true, |
1223 | 0 | Index, StructuredList, StructuredIndex, TopLevelObject); |
1224 | 0 | if (StructuredList) { |
1225 | 0 | QualType ExprTy = T; |
1226 | 0 | if (!ExprTy->isArrayType()) |
1227 | 0 | ExprTy = ExprTy.getNonLValueExprType(SemaRef.Context); |
1228 | 0 | if (!VerifyOnly) |
1229 | 0 | IList->setType(ExprTy); |
1230 | 0 | StructuredList->setType(ExprTy); |
1231 | 0 | } |
1232 | 0 | if (hadError) |
1233 | 0 | return; |
1234 | | |
1235 | | // Don't complain for incomplete types, since we'll get an error elsewhere. |
1236 | 0 | if (Index < IList->getNumInits() && !T->isIncompleteType()) { |
1237 | | // We have leftover initializers |
1238 | 0 | bool ExtraInitsIsError = SemaRef.getLangOpts().CPlusPlus || |
1239 | 0 | (SemaRef.getLangOpts().OpenCL && T->isVectorType()); |
1240 | 0 | hadError = ExtraInitsIsError; |
1241 | 0 | if (VerifyOnly) { |
1242 | 0 | return; |
1243 | 0 | } else if (StructuredIndex == 1 && |
1244 | 0 | IsStringInit(StructuredList->getInit(0), T, SemaRef.Context) == |
1245 | 0 | SIF_None) { |
1246 | 0 | unsigned DK = |
1247 | 0 | ExtraInitsIsError |
1248 | 0 | ? diag::err_excess_initializers_in_char_array_initializer |
1249 | 0 | : diag::ext_excess_initializers_in_char_array_initializer; |
1250 | 0 | SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) |
1251 | 0 | << IList->getInit(Index)->getSourceRange(); |
1252 | 0 | } else if (T->isSizelessBuiltinType()) { |
1253 | 0 | unsigned DK = ExtraInitsIsError |
1254 | 0 | ? diag::err_excess_initializers_for_sizeless_type |
1255 | 0 | : diag::ext_excess_initializers_for_sizeless_type; |
1256 | 0 | SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) |
1257 | 0 | << T << IList->getInit(Index)->getSourceRange(); |
1258 | 0 | } else { |
1259 | 0 | int initKind = T->isArrayType() ? 0 : |
1260 | 0 | T->isVectorType() ? 1 : |
1261 | 0 | T->isScalarType() ? 2 : |
1262 | 0 | T->isUnionType() ? 3 : |
1263 | 0 | 4; |
1264 | |
|
1265 | 0 | unsigned DK = ExtraInitsIsError ? diag::err_excess_initializers |
1266 | 0 | : diag::ext_excess_initializers; |
1267 | 0 | SemaRef.Diag(IList->getInit(Index)->getBeginLoc(), DK) |
1268 | 0 | << initKind << IList->getInit(Index)->getSourceRange(); |
1269 | 0 | } |
1270 | 0 | } |
1271 | | |
1272 | 0 | if (!VerifyOnly) { |
1273 | 0 | if (T->isScalarType() && IList->getNumInits() == 1 && |
1274 | 0 | !isa<InitListExpr>(IList->getInit(0))) |
1275 | 0 | warnBracedScalarInit(SemaRef, Entity, IList->getSourceRange()); |
1276 | | |
1277 | | // Warn if this is a class type that won't be an aggregate in future |
1278 | | // versions of C++. |
1279 | 0 | auto *CXXRD = T->getAsCXXRecordDecl(); |
1280 | 0 | if (CXXRD && CXXRD->hasUserDeclaredConstructor()) { |
1281 | | // Don't warn if there's an equivalent default constructor that would be |
1282 | | // used instead. |
1283 | 0 | bool HasEquivCtor = false; |
1284 | 0 | if (IList->getNumInits() == 0) { |
1285 | 0 | auto *CD = SemaRef.LookupDefaultConstructor(CXXRD); |
1286 | 0 | HasEquivCtor = CD && !CD->isDeleted(); |
1287 | 0 | } |
1288 | |
|
1289 | 0 | if (!HasEquivCtor) { |
1290 | 0 | SemaRef.Diag(IList->getBeginLoc(), |
1291 | 0 | diag::warn_cxx20_compat_aggregate_init_with_ctors) |
1292 | 0 | << IList->getSourceRange() << T; |
1293 | 0 | } |
1294 | 0 | } |
1295 | 0 | } |
1296 | 0 | } |
1297 | | |
1298 | | void InitListChecker::CheckListElementTypes(const InitializedEntity &Entity, |
1299 | | InitListExpr *IList, |
1300 | | QualType &DeclType, |
1301 | | bool SubobjectIsDesignatorContext, |
1302 | | unsigned &Index, |
1303 | | InitListExpr *StructuredList, |
1304 | | unsigned &StructuredIndex, |
1305 | 0 | bool TopLevelObject) { |
1306 | 0 | if (DeclType->isAnyComplexType() && SubobjectIsDesignatorContext) { |
1307 | | // Explicitly braced initializer for complex type can be real+imaginary |
1308 | | // parts. |
1309 | 0 | CheckComplexType(Entity, IList, DeclType, Index, |
1310 | 0 | StructuredList, StructuredIndex); |
1311 | 0 | } else if (DeclType->isScalarType()) { |
1312 | 0 | CheckScalarType(Entity, IList, DeclType, Index, |
1313 | 0 | StructuredList, StructuredIndex); |
1314 | 0 | } else if (DeclType->isVectorType()) { |
1315 | 0 | CheckVectorType(Entity, IList, DeclType, Index, |
1316 | 0 | StructuredList, StructuredIndex); |
1317 | 0 | } else if (const RecordDecl *RD = getRecordDecl(DeclType)) { |
1318 | 0 | auto Bases = |
1319 | 0 | CXXRecordDecl::base_class_const_range(CXXRecordDecl::base_class_const_iterator(), |
1320 | 0 | CXXRecordDecl::base_class_const_iterator()); |
1321 | 0 | if (DeclType->isRecordType()) { |
1322 | 0 | assert(DeclType->isAggregateType() && |
1323 | 0 | "non-aggregate records should be handed in CheckSubElementType"); |
1324 | 0 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
1325 | 0 | Bases = CXXRD->bases(); |
1326 | 0 | } else { |
1327 | 0 | Bases = cast<CXXRecordDecl>(RD)->bases(); |
1328 | 0 | } |
1329 | 0 | CheckStructUnionTypes(Entity, IList, DeclType, Bases, RD->field_begin(), |
1330 | 0 | SubobjectIsDesignatorContext, Index, StructuredList, |
1331 | 0 | StructuredIndex, TopLevelObject); |
1332 | 0 | } else if (DeclType->isArrayType()) { |
1333 | 0 | llvm::APSInt Zero( |
1334 | 0 | SemaRef.Context.getTypeSize(SemaRef.Context.getSizeType()), |
1335 | 0 | false); |
1336 | 0 | CheckArrayType(Entity, IList, DeclType, Zero, |
1337 | 0 | SubobjectIsDesignatorContext, Index, |
1338 | 0 | StructuredList, StructuredIndex); |
1339 | 0 | } else if (DeclType->isVoidType() || DeclType->isFunctionType()) { |
1340 | | // This type is invalid, issue a diagnostic. |
1341 | 0 | ++Index; |
1342 | 0 | if (!VerifyOnly) |
1343 | 0 | SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) |
1344 | 0 | << DeclType; |
1345 | 0 | hadError = true; |
1346 | 0 | } else if (DeclType->isReferenceType()) { |
1347 | 0 | CheckReferenceType(Entity, IList, DeclType, Index, |
1348 | 0 | StructuredList, StructuredIndex); |
1349 | 0 | } else if (DeclType->isObjCObjectType()) { |
1350 | 0 | if (!VerifyOnly) |
1351 | 0 | SemaRef.Diag(IList->getBeginLoc(), diag::err_init_objc_class) << DeclType; |
1352 | 0 | hadError = true; |
1353 | 0 | } else if (DeclType->isOCLIntelSubgroupAVCType() || |
1354 | 0 | DeclType->isSizelessBuiltinType()) { |
1355 | | // Checks for scalar type are sufficient for these types too. |
1356 | 0 | CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
1357 | 0 | StructuredIndex); |
1358 | 0 | } else if (DeclType->isDependentType()) { |
1359 | | // C++ [over.match.class.deduct]p1.5: |
1360 | | // brace elision is not considered for any aggregate element that has a |
1361 | | // dependent non-array type or an array type with a value-dependent bound |
1362 | 0 | ++Index; |
1363 | 0 | assert(AggrDeductionCandidateParamTypes); |
1364 | 0 | AggrDeductionCandidateParamTypes->push_back(DeclType); |
1365 | 0 | } else { |
1366 | 0 | if (!VerifyOnly) |
1367 | 0 | SemaRef.Diag(IList->getBeginLoc(), diag::err_illegal_initializer_type) |
1368 | 0 | << DeclType; |
1369 | 0 | hadError = true; |
1370 | 0 | } |
1371 | 0 | } |
1372 | | |
1373 | | void InitListChecker::CheckSubElementType(const InitializedEntity &Entity, |
1374 | | InitListExpr *IList, |
1375 | | QualType ElemType, |
1376 | | unsigned &Index, |
1377 | | InitListExpr *StructuredList, |
1378 | | unsigned &StructuredIndex, |
1379 | 0 | bool DirectlyDesignated) { |
1380 | 0 | Expr *expr = IList->getInit(Index); |
1381 | |
|
1382 | 0 | if (ElemType->isReferenceType()) |
1383 | 0 | return CheckReferenceType(Entity, IList, ElemType, Index, |
1384 | 0 | StructuredList, StructuredIndex); |
1385 | | |
1386 | 0 | if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) { |
1387 | 0 | if (SubInitList->getNumInits() == 1 && |
1388 | 0 | IsStringInit(SubInitList->getInit(0), ElemType, SemaRef.Context) == |
1389 | 0 | SIF_None) { |
1390 | | // FIXME: It would be more faithful and no less correct to include an |
1391 | | // InitListExpr in the semantic form of the initializer list in this case. |
1392 | 0 | expr = SubInitList->getInit(0); |
1393 | 0 | } |
1394 | | // Nested aggregate initialization and C++ initialization are handled later. |
1395 | 0 | } else if (isa<ImplicitValueInitExpr>(expr)) { |
1396 | | // This happens during template instantiation when we see an InitListExpr |
1397 | | // that we've already checked once. |
1398 | 0 | assert(SemaRef.Context.hasSameType(expr->getType(), ElemType) && |
1399 | 0 | "found implicit initialization for the wrong type"); |
1400 | 0 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1401 | 0 | ++Index; |
1402 | 0 | return; |
1403 | 0 | } |
1404 | | |
1405 | 0 | if (SemaRef.getLangOpts().CPlusPlus || isa<InitListExpr>(expr)) { |
1406 | | // C++ [dcl.init.aggr]p2: |
1407 | | // Each member is copy-initialized from the corresponding |
1408 | | // initializer-clause. |
1409 | | |
1410 | | // FIXME: Better EqualLoc? |
1411 | 0 | InitializationKind Kind = |
1412 | 0 | InitializationKind::CreateCopy(expr->getBeginLoc(), SourceLocation()); |
1413 | | |
1414 | | // Vector elements can be initialized from other vectors in which case |
1415 | | // we need initialization entity with a type of a vector (and not a vector |
1416 | | // element!) initializing multiple vector elements. |
1417 | 0 | auto TmpEntity = |
1418 | 0 | (ElemType->isExtVectorType() && !Entity.getType()->isExtVectorType()) |
1419 | 0 | ? InitializedEntity::InitializeTemporary(ElemType) |
1420 | 0 | : Entity; |
1421 | |
|
1422 | 0 | if (TmpEntity.getType()->isDependentType()) { |
1423 | | // C++ [over.match.class.deduct]p1.5: |
1424 | | // brace elision is not considered for any aggregate element that has a |
1425 | | // dependent non-array type or an array type with a value-dependent |
1426 | | // bound |
1427 | 0 | assert(AggrDeductionCandidateParamTypes); |
1428 | 0 | if (!isa_and_nonnull<ConstantArrayType>( |
1429 | 0 | SemaRef.Context.getAsArrayType(ElemType))) { |
1430 | 0 | ++Index; |
1431 | 0 | AggrDeductionCandidateParamTypes->push_back(ElemType); |
1432 | 0 | return; |
1433 | 0 | } |
1434 | 0 | } else { |
1435 | 0 | InitializationSequence Seq(SemaRef, TmpEntity, Kind, expr, |
1436 | 0 | /*TopLevelOfInitList*/ true); |
1437 | | // C++14 [dcl.init.aggr]p13: |
1438 | | // If the assignment-expression can initialize a member, the member is |
1439 | | // initialized. Otherwise [...] brace elision is assumed |
1440 | | // |
1441 | | // Brace elision is never performed if the element is not an |
1442 | | // assignment-expression. |
1443 | 0 | if (Seq || isa<InitListExpr>(expr)) { |
1444 | 0 | if (!VerifyOnly) { |
1445 | 0 | ExprResult Result = Seq.Perform(SemaRef, TmpEntity, Kind, expr); |
1446 | 0 | if (Result.isInvalid()) |
1447 | 0 | hadError = true; |
1448 | |
|
1449 | 0 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1450 | 0 | Result.getAs<Expr>()); |
1451 | 0 | } else if (!Seq) { |
1452 | 0 | hadError = true; |
1453 | 0 | } else if (StructuredList) { |
1454 | 0 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1455 | 0 | getDummyInit()); |
1456 | 0 | } |
1457 | 0 | ++Index; |
1458 | 0 | if (AggrDeductionCandidateParamTypes) |
1459 | 0 | AggrDeductionCandidateParamTypes->push_back(ElemType); |
1460 | 0 | return; |
1461 | 0 | } |
1462 | 0 | } |
1463 | | |
1464 | | // Fall through for subaggregate initialization |
1465 | 0 | } else if (ElemType->isScalarType() || ElemType->isAtomicType()) { |
1466 | | // FIXME: Need to handle atomic aggregate types with implicit init lists. |
1467 | 0 | return CheckScalarType(Entity, IList, ElemType, Index, |
1468 | 0 | StructuredList, StructuredIndex); |
1469 | 0 | } else if (const ArrayType *arrayType = |
1470 | 0 | SemaRef.Context.getAsArrayType(ElemType)) { |
1471 | | // arrayType can be incomplete if we're initializing a flexible |
1472 | | // array member. There's nothing we can do with the completed |
1473 | | // type here, though. |
1474 | |
|
1475 | 0 | if (IsStringInit(expr, arrayType, SemaRef.Context) == SIF_None) { |
1476 | | // FIXME: Should we do this checking in verify-only mode? |
1477 | 0 | if (!VerifyOnly) |
1478 | 0 | CheckStringInit(expr, ElemType, arrayType, SemaRef); |
1479 | 0 | if (StructuredList) |
1480 | 0 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1481 | 0 | ++Index; |
1482 | 0 | return; |
1483 | 0 | } |
1484 | | |
1485 | | // Fall through for subaggregate initialization. |
1486 | |
|
1487 | 0 | } else { |
1488 | 0 | assert((ElemType->isRecordType() || ElemType->isVectorType() || |
1489 | 0 | ElemType->isOpenCLSpecificType()) && "Unexpected type"); |
1490 | | |
1491 | | // C99 6.7.8p13: |
1492 | | // |
1493 | | // The initializer for a structure or union object that has |
1494 | | // automatic storage duration shall be either an initializer |
1495 | | // list as described below, or a single expression that has |
1496 | | // compatible structure or union type. In the latter case, the |
1497 | | // initial value of the object, including unnamed members, is |
1498 | | // that of the expression. |
1499 | 0 | ExprResult ExprRes = expr; |
1500 | 0 | if (SemaRef.CheckSingleAssignmentConstraints( |
1501 | 0 | ElemType, ExprRes, !VerifyOnly) != Sema::Incompatible) { |
1502 | 0 | if (ExprRes.isInvalid()) |
1503 | 0 | hadError = true; |
1504 | 0 | else { |
1505 | 0 | ExprRes = SemaRef.DefaultFunctionArrayLvalueConversion(ExprRes.get()); |
1506 | 0 | if (ExprRes.isInvalid()) |
1507 | 0 | hadError = true; |
1508 | 0 | } |
1509 | 0 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1510 | 0 | ExprRes.getAs<Expr>()); |
1511 | 0 | ++Index; |
1512 | 0 | return; |
1513 | 0 | } |
1514 | 0 | ExprRes.get(); |
1515 | | // Fall through for subaggregate initialization |
1516 | 0 | } |
1517 | | |
1518 | | // C++ [dcl.init.aggr]p12: |
1519 | | // |
1520 | | // [...] Otherwise, if the member is itself a non-empty |
1521 | | // subaggregate, brace elision is assumed and the initializer is |
1522 | | // considered for the initialization of the first member of |
1523 | | // the subaggregate. |
1524 | | // OpenCL vector initializer is handled elsewhere. |
1525 | 0 | if ((!SemaRef.getLangOpts().OpenCL && ElemType->isVectorType()) || |
1526 | 0 | ElemType->isAggregateType()) { |
1527 | 0 | CheckImplicitInitList(Entity, IList, ElemType, Index, StructuredList, |
1528 | 0 | StructuredIndex); |
1529 | 0 | ++StructuredIndex; |
1530 | | |
1531 | | // In C++20, brace elision is not permitted for a designated initializer. |
1532 | 0 | if (DirectlyDesignated && SemaRef.getLangOpts().CPlusPlus && !hadError) { |
1533 | 0 | if (InOverloadResolution) |
1534 | 0 | hadError = true; |
1535 | 0 | if (!VerifyOnly) { |
1536 | 0 | SemaRef.Diag(expr->getBeginLoc(), |
1537 | 0 | diag::ext_designated_init_brace_elision) |
1538 | 0 | << expr->getSourceRange() |
1539 | 0 | << FixItHint::CreateInsertion(expr->getBeginLoc(), "{") |
1540 | 0 | << FixItHint::CreateInsertion( |
1541 | 0 | SemaRef.getLocForEndOfToken(expr->getEndLoc()), "}"); |
1542 | 0 | } |
1543 | 0 | } |
1544 | 0 | } else { |
1545 | 0 | if (!VerifyOnly) { |
1546 | | // We cannot initialize this element, so let PerformCopyInitialization |
1547 | | // produce the appropriate diagnostic. We already checked that this |
1548 | | // initialization will fail. |
1549 | 0 | ExprResult Copy = |
1550 | 0 | SemaRef.PerformCopyInitialization(Entity, SourceLocation(), expr, |
1551 | 0 | /*TopLevelOfInitList=*/true); |
1552 | 0 | (void)Copy; |
1553 | 0 | assert(Copy.isInvalid() && |
1554 | 0 | "expected non-aggregate initialization to fail"); |
1555 | 0 | } |
1556 | 0 | hadError = true; |
1557 | 0 | ++Index; |
1558 | 0 | ++StructuredIndex; |
1559 | 0 | } |
1560 | 0 | } |
1561 | | |
1562 | | void InitListChecker::CheckComplexType(const InitializedEntity &Entity, |
1563 | | InitListExpr *IList, QualType DeclType, |
1564 | | unsigned &Index, |
1565 | | InitListExpr *StructuredList, |
1566 | 0 | unsigned &StructuredIndex) { |
1567 | 0 | assert(Index == 0 && "Index in explicit init list must be zero"); |
1568 | | |
1569 | | // As an extension, clang supports complex initializers, which initialize |
1570 | | // a complex number component-wise. When an explicit initializer list for |
1571 | | // a complex number contains two initializers, this extension kicks in: |
1572 | | // it expects the initializer list to contain two elements convertible to |
1573 | | // the element type of the complex type. The first element initializes |
1574 | | // the real part, and the second element intitializes the imaginary part. |
1575 | | |
1576 | 0 | if (IList->getNumInits() < 2) |
1577 | 0 | return CheckScalarType(Entity, IList, DeclType, Index, StructuredList, |
1578 | 0 | StructuredIndex); |
1579 | | |
1580 | | // This is an extension in C. (The builtin _Complex type does not exist |
1581 | | // in the C++ standard.) |
1582 | 0 | if (!SemaRef.getLangOpts().CPlusPlus && !VerifyOnly) |
1583 | 0 | SemaRef.Diag(IList->getBeginLoc(), diag::ext_complex_component_init) |
1584 | 0 | << IList->getSourceRange(); |
1585 | | |
1586 | | // Initialize the complex number. |
1587 | 0 | QualType elementType = DeclType->castAs<ComplexType>()->getElementType(); |
1588 | 0 | InitializedEntity ElementEntity = |
1589 | 0 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
1590 | |
|
1591 | 0 | for (unsigned i = 0; i < 2; ++i) { |
1592 | 0 | ElementEntity.setElementIndex(Index); |
1593 | 0 | CheckSubElementType(ElementEntity, IList, elementType, Index, |
1594 | 0 | StructuredList, StructuredIndex); |
1595 | 0 | } |
1596 | 0 | } |
1597 | | |
1598 | | void InitListChecker::CheckScalarType(const InitializedEntity &Entity, |
1599 | | InitListExpr *IList, QualType DeclType, |
1600 | | unsigned &Index, |
1601 | | InitListExpr *StructuredList, |
1602 | 0 | unsigned &StructuredIndex) { |
1603 | 0 | if (Index >= IList->getNumInits()) { |
1604 | 0 | if (!VerifyOnly) { |
1605 | 0 | if (SemaRef.getLangOpts().CPlusPlus) { |
1606 | 0 | if (DeclType->isSizelessBuiltinType()) |
1607 | 0 | SemaRef.Diag(IList->getBeginLoc(), |
1608 | 0 | SemaRef.getLangOpts().CPlusPlus11 |
1609 | 0 | ? diag::warn_cxx98_compat_empty_sizeless_initializer |
1610 | 0 | : diag::err_empty_sizeless_initializer) |
1611 | 0 | << DeclType << IList->getSourceRange(); |
1612 | 0 | else |
1613 | 0 | SemaRef.Diag(IList->getBeginLoc(), |
1614 | 0 | SemaRef.getLangOpts().CPlusPlus11 |
1615 | 0 | ? diag::warn_cxx98_compat_empty_scalar_initializer |
1616 | 0 | : diag::err_empty_scalar_initializer) |
1617 | 0 | << IList->getSourceRange(); |
1618 | 0 | } |
1619 | 0 | } |
1620 | 0 | hadError = |
1621 | 0 | SemaRef.getLangOpts().CPlusPlus && !SemaRef.getLangOpts().CPlusPlus11; |
1622 | 0 | ++Index; |
1623 | 0 | ++StructuredIndex; |
1624 | 0 | return; |
1625 | 0 | } |
1626 | | |
1627 | 0 | Expr *expr = IList->getInit(Index); |
1628 | 0 | if (InitListExpr *SubIList = dyn_cast<InitListExpr>(expr)) { |
1629 | | // FIXME: This is invalid, and accepting it causes overload resolution |
1630 | | // to pick the wrong overload in some corner cases. |
1631 | 0 | if (!VerifyOnly) |
1632 | 0 | SemaRef.Diag(SubIList->getBeginLoc(), diag::ext_many_braces_around_init) |
1633 | 0 | << DeclType->isSizelessBuiltinType() << SubIList->getSourceRange(); |
1634 | |
|
1635 | 0 | CheckScalarType(Entity, SubIList, DeclType, Index, StructuredList, |
1636 | 0 | StructuredIndex); |
1637 | 0 | return; |
1638 | 0 | } else if (isa<DesignatedInitExpr>(expr)) { |
1639 | 0 | if (!VerifyOnly) |
1640 | 0 | SemaRef.Diag(expr->getBeginLoc(), |
1641 | 0 | diag::err_designator_for_scalar_or_sizeless_init) |
1642 | 0 | << DeclType->isSizelessBuiltinType() << DeclType |
1643 | 0 | << expr->getSourceRange(); |
1644 | 0 | hadError = true; |
1645 | 0 | ++Index; |
1646 | 0 | ++StructuredIndex; |
1647 | 0 | return; |
1648 | 0 | } |
1649 | | |
1650 | 0 | ExprResult Result; |
1651 | 0 | if (VerifyOnly) { |
1652 | 0 | if (SemaRef.CanPerformCopyInitialization(Entity, expr)) |
1653 | 0 | Result = getDummyInit(); |
1654 | 0 | else |
1655 | 0 | Result = ExprError(); |
1656 | 0 | } else { |
1657 | 0 | Result = |
1658 | 0 | SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, |
1659 | 0 | /*TopLevelOfInitList=*/true); |
1660 | 0 | } |
1661 | |
|
1662 | 0 | Expr *ResultExpr = nullptr; |
1663 | |
|
1664 | 0 | if (Result.isInvalid()) |
1665 | 0 | hadError = true; // types weren't compatible. |
1666 | 0 | else { |
1667 | 0 | ResultExpr = Result.getAs<Expr>(); |
1668 | |
|
1669 | 0 | if (ResultExpr != expr && !VerifyOnly) { |
1670 | | // The type was promoted, update initializer list. |
1671 | | // FIXME: Why are we updating the syntactic init list? |
1672 | 0 | IList->setInit(Index, ResultExpr); |
1673 | 0 | } |
1674 | 0 | } |
1675 | 0 | UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); |
1676 | 0 | ++Index; |
1677 | 0 | if (AggrDeductionCandidateParamTypes) |
1678 | 0 | AggrDeductionCandidateParamTypes->push_back(DeclType); |
1679 | 0 | } |
1680 | | |
1681 | | void InitListChecker::CheckReferenceType(const InitializedEntity &Entity, |
1682 | | InitListExpr *IList, QualType DeclType, |
1683 | | unsigned &Index, |
1684 | | InitListExpr *StructuredList, |
1685 | 0 | unsigned &StructuredIndex) { |
1686 | 0 | if (Index >= IList->getNumInits()) { |
1687 | | // FIXME: It would be wonderful if we could point at the actual member. In |
1688 | | // general, it would be useful to pass location information down the stack, |
1689 | | // so that we know the location (or decl) of the "current object" being |
1690 | | // initialized. |
1691 | 0 | if (!VerifyOnly) |
1692 | 0 | SemaRef.Diag(IList->getBeginLoc(), |
1693 | 0 | diag::err_init_reference_member_uninitialized) |
1694 | 0 | << DeclType << IList->getSourceRange(); |
1695 | 0 | hadError = true; |
1696 | 0 | ++Index; |
1697 | 0 | ++StructuredIndex; |
1698 | 0 | return; |
1699 | 0 | } |
1700 | | |
1701 | 0 | Expr *expr = IList->getInit(Index); |
1702 | 0 | if (isa<InitListExpr>(expr) && !SemaRef.getLangOpts().CPlusPlus11) { |
1703 | 0 | if (!VerifyOnly) |
1704 | 0 | SemaRef.Diag(IList->getBeginLoc(), diag::err_init_non_aggr_init_list) |
1705 | 0 | << DeclType << IList->getSourceRange(); |
1706 | 0 | hadError = true; |
1707 | 0 | ++Index; |
1708 | 0 | ++StructuredIndex; |
1709 | 0 | return; |
1710 | 0 | } |
1711 | | |
1712 | 0 | ExprResult Result; |
1713 | 0 | if (VerifyOnly) { |
1714 | 0 | if (SemaRef.CanPerformCopyInitialization(Entity,expr)) |
1715 | 0 | Result = getDummyInit(); |
1716 | 0 | else |
1717 | 0 | Result = ExprError(); |
1718 | 0 | } else { |
1719 | 0 | Result = |
1720 | 0 | SemaRef.PerformCopyInitialization(Entity, expr->getBeginLoc(), expr, |
1721 | 0 | /*TopLevelOfInitList=*/true); |
1722 | 0 | } |
1723 | |
|
1724 | 0 | if (Result.isInvalid()) |
1725 | 0 | hadError = true; |
1726 | |
|
1727 | 0 | expr = Result.getAs<Expr>(); |
1728 | | // FIXME: Why are we updating the syntactic init list? |
1729 | 0 | if (!VerifyOnly && expr) |
1730 | 0 | IList->setInit(Index, expr); |
1731 | |
|
1732 | 0 | UpdateStructuredListElement(StructuredList, StructuredIndex, expr); |
1733 | 0 | ++Index; |
1734 | 0 | if (AggrDeductionCandidateParamTypes) |
1735 | 0 | AggrDeductionCandidateParamTypes->push_back(DeclType); |
1736 | 0 | } |
1737 | | |
1738 | | void InitListChecker::CheckVectorType(const InitializedEntity &Entity, |
1739 | | InitListExpr *IList, QualType DeclType, |
1740 | | unsigned &Index, |
1741 | | InitListExpr *StructuredList, |
1742 | 0 | unsigned &StructuredIndex) { |
1743 | 0 | const VectorType *VT = DeclType->castAs<VectorType>(); |
1744 | 0 | unsigned maxElements = VT->getNumElements(); |
1745 | 0 | unsigned numEltsInit = 0; |
1746 | 0 | QualType elementType = VT->getElementType(); |
1747 | |
|
1748 | 0 | if (Index >= IList->getNumInits()) { |
1749 | | // Make sure the element type can be value-initialized. |
1750 | 0 | CheckEmptyInitializable( |
1751 | 0 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), |
1752 | 0 | IList->getEndLoc()); |
1753 | 0 | return; |
1754 | 0 | } |
1755 | | |
1756 | 0 | if (!SemaRef.getLangOpts().OpenCL && !SemaRef.getLangOpts().HLSL ) { |
1757 | | // If the initializing element is a vector, try to copy-initialize |
1758 | | // instead of breaking it apart (which is doomed to failure anyway). |
1759 | 0 | Expr *Init = IList->getInit(Index); |
1760 | 0 | if (!isa<InitListExpr>(Init) && Init->getType()->isVectorType()) { |
1761 | 0 | ExprResult Result; |
1762 | 0 | if (VerifyOnly) { |
1763 | 0 | if (SemaRef.CanPerformCopyInitialization(Entity, Init)) |
1764 | 0 | Result = getDummyInit(); |
1765 | 0 | else |
1766 | 0 | Result = ExprError(); |
1767 | 0 | } else { |
1768 | 0 | Result = |
1769 | 0 | SemaRef.PerformCopyInitialization(Entity, Init->getBeginLoc(), Init, |
1770 | 0 | /*TopLevelOfInitList=*/true); |
1771 | 0 | } |
1772 | |
|
1773 | 0 | Expr *ResultExpr = nullptr; |
1774 | 0 | if (Result.isInvalid()) |
1775 | 0 | hadError = true; // types weren't compatible. |
1776 | 0 | else { |
1777 | 0 | ResultExpr = Result.getAs<Expr>(); |
1778 | |
|
1779 | 0 | if (ResultExpr != Init && !VerifyOnly) { |
1780 | | // The type was promoted, update initializer list. |
1781 | | // FIXME: Why are we updating the syntactic init list? |
1782 | 0 | IList->setInit(Index, ResultExpr); |
1783 | 0 | } |
1784 | 0 | } |
1785 | 0 | UpdateStructuredListElement(StructuredList, StructuredIndex, ResultExpr); |
1786 | 0 | ++Index; |
1787 | 0 | if (AggrDeductionCandidateParamTypes) |
1788 | 0 | AggrDeductionCandidateParamTypes->push_back(elementType); |
1789 | 0 | return; |
1790 | 0 | } |
1791 | | |
1792 | 0 | InitializedEntity ElementEntity = |
1793 | 0 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
1794 | |
|
1795 | 0 | for (unsigned i = 0; i < maxElements; ++i, ++numEltsInit) { |
1796 | | // Don't attempt to go past the end of the init list |
1797 | 0 | if (Index >= IList->getNumInits()) { |
1798 | 0 | CheckEmptyInitializable(ElementEntity, IList->getEndLoc()); |
1799 | 0 | break; |
1800 | 0 | } |
1801 | | |
1802 | 0 | ElementEntity.setElementIndex(Index); |
1803 | 0 | CheckSubElementType(ElementEntity, IList, elementType, Index, |
1804 | 0 | StructuredList, StructuredIndex); |
1805 | 0 | } |
1806 | |
|
1807 | 0 | if (VerifyOnly) |
1808 | 0 | return; |
1809 | | |
1810 | 0 | bool isBigEndian = SemaRef.Context.getTargetInfo().isBigEndian(); |
1811 | 0 | const VectorType *T = Entity.getType()->castAs<VectorType>(); |
1812 | 0 | if (isBigEndian && (T->getVectorKind() == VectorKind::Neon || |
1813 | 0 | T->getVectorKind() == VectorKind::NeonPoly)) { |
1814 | | // The ability to use vector initializer lists is a GNU vector extension |
1815 | | // and is unrelated to the NEON intrinsics in arm_neon.h. On little |
1816 | | // endian machines it works fine, however on big endian machines it |
1817 | | // exhibits surprising behaviour: |
1818 | | // |
1819 | | // uint32x2_t x = {42, 64}; |
1820 | | // return vget_lane_u32(x, 0); // Will return 64. |
1821 | | // |
1822 | | // Because of this, explicitly call out that it is non-portable. |
1823 | | // |
1824 | 0 | SemaRef.Diag(IList->getBeginLoc(), |
1825 | 0 | diag::warn_neon_vector_initializer_non_portable); |
1826 | |
|
1827 | 0 | const char *typeCode; |
1828 | 0 | unsigned typeSize = SemaRef.Context.getTypeSize(elementType); |
1829 | |
|
1830 | 0 | if (elementType->isFloatingType()) |
1831 | 0 | typeCode = "f"; |
1832 | 0 | else if (elementType->isSignedIntegerType()) |
1833 | 0 | typeCode = "s"; |
1834 | 0 | else if (elementType->isUnsignedIntegerType()) |
1835 | 0 | typeCode = "u"; |
1836 | 0 | else |
1837 | 0 | llvm_unreachable("Invalid element type!"); |
1838 | |
|
1839 | 0 | SemaRef.Diag(IList->getBeginLoc(), |
1840 | 0 | SemaRef.Context.getTypeSize(VT) > 64 |
1841 | 0 | ? diag::note_neon_vector_initializer_non_portable_q |
1842 | 0 | : diag::note_neon_vector_initializer_non_portable) |
1843 | 0 | << typeCode << typeSize; |
1844 | 0 | } |
1845 | |
|
1846 | 0 | return; |
1847 | 0 | } |
1848 | | |
1849 | 0 | InitializedEntity ElementEntity = |
1850 | 0 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
1851 | | |
1852 | | // OpenCL and HLSL initializers allow vectors to be constructed from vectors. |
1853 | 0 | for (unsigned i = 0; i < maxElements; ++i) { |
1854 | | // Don't attempt to go past the end of the init list |
1855 | 0 | if (Index >= IList->getNumInits()) |
1856 | 0 | break; |
1857 | | |
1858 | 0 | ElementEntity.setElementIndex(Index); |
1859 | |
|
1860 | 0 | QualType IType = IList->getInit(Index)->getType(); |
1861 | 0 | if (!IType->isVectorType()) { |
1862 | 0 | CheckSubElementType(ElementEntity, IList, elementType, Index, |
1863 | 0 | StructuredList, StructuredIndex); |
1864 | 0 | ++numEltsInit; |
1865 | 0 | } else { |
1866 | 0 | QualType VecType; |
1867 | 0 | const VectorType *IVT = IType->castAs<VectorType>(); |
1868 | 0 | unsigned numIElts = IVT->getNumElements(); |
1869 | |
|
1870 | 0 | if (IType->isExtVectorType()) |
1871 | 0 | VecType = SemaRef.Context.getExtVectorType(elementType, numIElts); |
1872 | 0 | else |
1873 | 0 | VecType = SemaRef.Context.getVectorType(elementType, numIElts, |
1874 | 0 | IVT->getVectorKind()); |
1875 | 0 | CheckSubElementType(ElementEntity, IList, VecType, Index, |
1876 | 0 | StructuredList, StructuredIndex); |
1877 | 0 | numEltsInit += numIElts; |
1878 | 0 | } |
1879 | 0 | } |
1880 | | |
1881 | | // OpenCL and HLSL require all elements to be initialized. |
1882 | 0 | if (numEltsInit != maxElements) { |
1883 | 0 | if (!VerifyOnly) |
1884 | 0 | SemaRef.Diag(IList->getBeginLoc(), |
1885 | 0 | diag::err_vector_incorrect_num_initializers) |
1886 | 0 | << (numEltsInit < maxElements) << maxElements << numEltsInit; |
1887 | 0 | hadError = true; |
1888 | 0 | } |
1889 | 0 | } |
1890 | | |
1891 | | /// Check if the type of a class element has an accessible destructor, and marks |
1892 | | /// it referenced. Returns true if we shouldn't form a reference to the |
1893 | | /// destructor. |
1894 | | /// |
1895 | | /// Aggregate initialization requires a class element's destructor be |
1896 | | /// accessible per 11.6.1 [dcl.init.aggr]: |
1897 | | /// |
1898 | | /// The destructor for each element of class type is potentially invoked |
1899 | | /// (15.4 [class.dtor]) from the context where the aggregate initialization |
1900 | | /// occurs. |
1901 | | static bool checkDestructorReference(QualType ElementType, SourceLocation Loc, |
1902 | 0 | Sema &SemaRef) { |
1903 | 0 | auto *CXXRD = ElementType->getAsCXXRecordDecl(); |
1904 | 0 | if (!CXXRD) |
1905 | 0 | return false; |
1906 | | |
1907 | 0 | CXXDestructorDecl *Destructor = SemaRef.LookupDestructor(CXXRD); |
1908 | 0 | SemaRef.CheckDestructorAccess(Loc, Destructor, |
1909 | 0 | SemaRef.PDiag(diag::err_access_dtor_temp) |
1910 | 0 | << ElementType); |
1911 | 0 | SemaRef.MarkFunctionReferenced(Loc, Destructor); |
1912 | 0 | return SemaRef.DiagnoseUseOfDecl(Destructor, Loc); |
1913 | 0 | } |
1914 | | |
1915 | | void InitListChecker::CheckArrayType(const InitializedEntity &Entity, |
1916 | | InitListExpr *IList, QualType &DeclType, |
1917 | | llvm::APSInt elementIndex, |
1918 | | bool SubobjectIsDesignatorContext, |
1919 | | unsigned &Index, |
1920 | | InitListExpr *StructuredList, |
1921 | 0 | unsigned &StructuredIndex) { |
1922 | 0 | const ArrayType *arrayType = SemaRef.Context.getAsArrayType(DeclType); |
1923 | |
|
1924 | 0 | if (!VerifyOnly) { |
1925 | 0 | if (checkDestructorReference(arrayType->getElementType(), |
1926 | 0 | IList->getEndLoc(), SemaRef)) { |
1927 | 0 | hadError = true; |
1928 | 0 | return; |
1929 | 0 | } |
1930 | 0 | } |
1931 | | |
1932 | | // Check for the special-case of initializing an array with a string. |
1933 | 0 | if (Index < IList->getNumInits()) { |
1934 | 0 | if (IsStringInit(IList->getInit(Index), arrayType, SemaRef.Context) == |
1935 | 0 | SIF_None) { |
1936 | | // We place the string literal directly into the resulting |
1937 | | // initializer list. This is the only place where the structure |
1938 | | // of the structured initializer list doesn't match exactly, |
1939 | | // because doing so would involve allocating one character |
1940 | | // constant for each string. |
1941 | | // FIXME: Should we do these checks in verify-only mode too? |
1942 | 0 | if (!VerifyOnly) |
1943 | 0 | CheckStringInit(IList->getInit(Index), DeclType, arrayType, SemaRef); |
1944 | 0 | if (StructuredList) { |
1945 | 0 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
1946 | 0 | IList->getInit(Index)); |
1947 | 0 | StructuredList->resizeInits(SemaRef.Context, StructuredIndex); |
1948 | 0 | } |
1949 | 0 | ++Index; |
1950 | 0 | if (AggrDeductionCandidateParamTypes) |
1951 | 0 | AggrDeductionCandidateParamTypes->push_back(DeclType); |
1952 | 0 | return; |
1953 | 0 | } |
1954 | 0 | } |
1955 | 0 | if (const VariableArrayType *VAT = dyn_cast<VariableArrayType>(arrayType)) { |
1956 | | // Check for VLAs; in standard C it would be possible to check this |
1957 | | // earlier, but I don't know where clang accepts VLAs (gcc accepts |
1958 | | // them in all sorts of strange places). |
1959 | 0 | bool HasErr = IList->getNumInits() != 0 || SemaRef.getLangOpts().CPlusPlus; |
1960 | 0 | if (!VerifyOnly) { |
1961 | | // C23 6.7.10p4: An entity of variable length array type shall not be |
1962 | | // initialized except by an empty initializer. |
1963 | | // |
1964 | | // The C extension warnings are issued from ParseBraceInitializer() and |
1965 | | // do not need to be issued here. However, we continue to issue an error |
1966 | | // in the case there are initializers or we are compiling C++. We allow |
1967 | | // use of VLAs in C++, but it's not clear we want to allow {} to zero |
1968 | | // init a VLA in C++ in all cases (such as with non-trivial constructors). |
1969 | | // FIXME: should we allow this construct in C++ when it makes sense to do |
1970 | | // so? |
1971 | 0 | if (HasErr) |
1972 | 0 | SemaRef.Diag(VAT->getSizeExpr()->getBeginLoc(), |
1973 | 0 | diag::err_variable_object_no_init) |
1974 | 0 | << VAT->getSizeExpr()->getSourceRange(); |
1975 | 0 | } |
1976 | 0 | hadError = HasErr; |
1977 | 0 | ++Index; |
1978 | 0 | ++StructuredIndex; |
1979 | 0 | return; |
1980 | 0 | } |
1981 | | |
1982 | | // We might know the maximum number of elements in advance. |
1983 | 0 | llvm::APSInt maxElements(elementIndex.getBitWidth(), |
1984 | 0 | elementIndex.isUnsigned()); |
1985 | 0 | bool maxElementsKnown = false; |
1986 | 0 | if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(arrayType)) { |
1987 | 0 | maxElements = CAT->getSize(); |
1988 | 0 | elementIndex = elementIndex.extOrTrunc(maxElements.getBitWidth()); |
1989 | 0 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
1990 | 0 | maxElementsKnown = true; |
1991 | 0 | } |
1992 | |
|
1993 | 0 | QualType elementType = arrayType->getElementType(); |
1994 | 0 | while (Index < IList->getNumInits()) { |
1995 | 0 | Expr *Init = IList->getInit(Index); |
1996 | 0 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { |
1997 | | // If we're not the subobject that matches up with the '{' for |
1998 | | // the designator, we shouldn't be handling the |
1999 | | // designator. Return immediately. |
2000 | 0 | if (!SubobjectIsDesignatorContext) |
2001 | 0 | return; |
2002 | | |
2003 | | // Handle this designated initializer. elementIndex will be |
2004 | | // updated to be the next array element we'll initialize. |
2005 | 0 | if (CheckDesignatedInitializer(Entity, IList, DIE, 0, |
2006 | 0 | DeclType, nullptr, &elementIndex, Index, |
2007 | 0 | StructuredList, StructuredIndex, true, |
2008 | 0 | false)) { |
2009 | 0 | hadError = true; |
2010 | 0 | continue; |
2011 | 0 | } |
2012 | | |
2013 | 0 | if (elementIndex.getBitWidth() > maxElements.getBitWidth()) |
2014 | 0 | maxElements = maxElements.extend(elementIndex.getBitWidth()); |
2015 | 0 | else if (elementIndex.getBitWidth() < maxElements.getBitWidth()) |
2016 | 0 | elementIndex = elementIndex.extend(maxElements.getBitWidth()); |
2017 | 0 | elementIndex.setIsUnsigned(maxElements.isUnsigned()); |
2018 | | |
2019 | | // If the array is of incomplete type, keep track of the number of |
2020 | | // elements in the initializer. |
2021 | 0 | if (!maxElementsKnown && elementIndex > maxElements) |
2022 | 0 | maxElements = elementIndex; |
2023 | |
|
2024 | 0 | continue; |
2025 | 0 | } |
2026 | | |
2027 | | // If we know the maximum number of elements, and we've already |
2028 | | // hit it, stop consuming elements in the initializer list. |
2029 | 0 | if (maxElementsKnown && elementIndex == maxElements) |
2030 | 0 | break; |
2031 | | |
2032 | 0 | InitializedEntity ElementEntity = |
2033 | 0 | InitializedEntity::InitializeElement(SemaRef.Context, StructuredIndex, |
2034 | 0 | Entity); |
2035 | | // Check this element. |
2036 | 0 | CheckSubElementType(ElementEntity, IList, elementType, Index, |
2037 | 0 | StructuredList, StructuredIndex); |
2038 | 0 | ++elementIndex; |
2039 | | |
2040 | | // If the array is of incomplete type, keep track of the number of |
2041 | | // elements in the initializer. |
2042 | 0 | if (!maxElementsKnown && elementIndex > maxElements) |
2043 | 0 | maxElements = elementIndex; |
2044 | 0 | } |
2045 | 0 | if (!hadError && DeclType->isIncompleteArrayType() && !VerifyOnly) { |
2046 | | // If this is an incomplete array type, the actual type needs to |
2047 | | // be calculated here. |
2048 | 0 | llvm::APSInt Zero(maxElements.getBitWidth(), maxElements.isUnsigned()); |
2049 | 0 | if (maxElements == Zero && !Entity.isVariableLengthArrayNew()) { |
2050 | | // Sizing an array implicitly to zero is not allowed by ISO C, |
2051 | | // but is supported by GNU. |
2052 | 0 | SemaRef.Diag(IList->getBeginLoc(), diag::ext_typecheck_zero_array_size); |
2053 | 0 | } |
2054 | |
|
2055 | 0 | DeclType = SemaRef.Context.getConstantArrayType( |
2056 | 0 | elementType, maxElements, nullptr, ArraySizeModifier::Normal, 0); |
2057 | 0 | } |
2058 | 0 | if (!hadError) { |
2059 | | // If there are any members of the array that get value-initialized, check |
2060 | | // that is possible. That happens if we know the bound and don't have |
2061 | | // enough elements, or if we're performing an array new with an unknown |
2062 | | // bound. |
2063 | 0 | if ((maxElementsKnown && elementIndex < maxElements) || |
2064 | 0 | Entity.isVariableLengthArrayNew()) |
2065 | 0 | CheckEmptyInitializable( |
2066 | 0 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity), |
2067 | 0 | IList->getEndLoc()); |
2068 | 0 | } |
2069 | 0 | } |
2070 | | |
2071 | | bool InitListChecker::CheckFlexibleArrayInit(const InitializedEntity &Entity, |
2072 | | Expr *InitExpr, |
2073 | | FieldDecl *Field, |
2074 | 0 | bool TopLevelObject) { |
2075 | | // Handle GNU flexible array initializers. |
2076 | 0 | unsigned FlexArrayDiag; |
2077 | 0 | if (isa<InitListExpr>(InitExpr) && |
2078 | 0 | cast<InitListExpr>(InitExpr)->getNumInits() == 0) { |
2079 | | // Empty flexible array init always allowed as an extension |
2080 | 0 | FlexArrayDiag = diag::ext_flexible_array_init; |
2081 | 0 | } else if (!TopLevelObject) { |
2082 | | // Disallow flexible array init on non-top-level object |
2083 | 0 | FlexArrayDiag = diag::err_flexible_array_init; |
2084 | 0 | } else if (Entity.getKind() != InitializedEntity::EK_Variable) { |
2085 | | // Disallow flexible array init on anything which is not a variable. |
2086 | 0 | FlexArrayDiag = diag::err_flexible_array_init; |
2087 | 0 | } else if (cast<VarDecl>(Entity.getDecl())->hasLocalStorage()) { |
2088 | | // Disallow flexible array init on local variables. |
2089 | 0 | FlexArrayDiag = diag::err_flexible_array_init; |
2090 | 0 | } else { |
2091 | | // Allow other cases. |
2092 | 0 | FlexArrayDiag = diag::ext_flexible_array_init; |
2093 | 0 | } |
2094 | |
|
2095 | 0 | if (!VerifyOnly) { |
2096 | 0 | SemaRef.Diag(InitExpr->getBeginLoc(), FlexArrayDiag) |
2097 | 0 | << InitExpr->getBeginLoc(); |
2098 | 0 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
2099 | 0 | << Field; |
2100 | 0 | } |
2101 | |
|
2102 | 0 | return FlexArrayDiag != diag::ext_flexible_array_init; |
2103 | 0 | } |
2104 | | |
2105 | | void InitListChecker::CheckStructUnionTypes( |
2106 | | const InitializedEntity &Entity, InitListExpr *IList, QualType DeclType, |
2107 | | CXXRecordDecl::base_class_const_range Bases, RecordDecl::field_iterator Field, |
2108 | | bool SubobjectIsDesignatorContext, unsigned &Index, |
2109 | | InitListExpr *StructuredList, unsigned &StructuredIndex, |
2110 | 0 | bool TopLevelObject) { |
2111 | 0 | const RecordDecl *RD = getRecordDecl(DeclType); |
2112 | | |
2113 | | // If the record is invalid, some of it's members are invalid. To avoid |
2114 | | // confusion, we forgo checking the initializer for the entire record. |
2115 | 0 | if (RD->isInvalidDecl()) { |
2116 | | // Assume it was supposed to consume a single initializer. |
2117 | 0 | ++Index; |
2118 | 0 | hadError = true; |
2119 | 0 | return; |
2120 | 0 | } |
2121 | | |
2122 | 0 | if (RD->isUnion() && IList->getNumInits() == 0) { |
2123 | 0 | if (!VerifyOnly) |
2124 | 0 | for (FieldDecl *FD : RD->fields()) { |
2125 | 0 | QualType ET = SemaRef.Context.getBaseElementType(FD->getType()); |
2126 | 0 | if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { |
2127 | 0 | hadError = true; |
2128 | 0 | return; |
2129 | 0 | } |
2130 | 0 | } |
2131 | | |
2132 | | // If there's a default initializer, use it. |
2133 | 0 | if (isa<CXXRecordDecl>(RD) && |
2134 | 0 | cast<CXXRecordDecl>(RD)->hasInClassInitializer()) { |
2135 | 0 | if (!StructuredList) |
2136 | 0 | return; |
2137 | 0 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2138 | 0 | Field != FieldEnd; ++Field) { |
2139 | 0 | if (Field->hasInClassInitializer()) { |
2140 | 0 | StructuredList->setInitializedFieldInUnion(*Field); |
2141 | | // FIXME: Actually build a CXXDefaultInitExpr? |
2142 | 0 | return; |
2143 | 0 | } |
2144 | 0 | } |
2145 | 0 | } |
2146 | | |
2147 | | // Value-initialize the first member of the union that isn't an unnamed |
2148 | | // bitfield. |
2149 | 0 | for (RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2150 | 0 | Field != FieldEnd; ++Field) { |
2151 | 0 | if (!Field->isUnnamedBitfield()) { |
2152 | 0 | CheckEmptyInitializable( |
2153 | 0 | InitializedEntity::InitializeMember(*Field, &Entity), |
2154 | 0 | IList->getEndLoc()); |
2155 | 0 | if (StructuredList) |
2156 | 0 | StructuredList->setInitializedFieldInUnion(*Field); |
2157 | 0 | break; |
2158 | 0 | } |
2159 | 0 | } |
2160 | 0 | return; |
2161 | 0 | } |
2162 | | |
2163 | 0 | bool InitializedSomething = false; |
2164 | | |
2165 | | // If we have any base classes, they are initialized prior to the fields. |
2166 | 0 | for (auto I = Bases.begin(), E = Bases.end(); I != E; ++I) { |
2167 | 0 | auto &Base = *I; |
2168 | 0 | Expr *Init = Index < IList->getNumInits() ? IList->getInit(Index) : nullptr; |
2169 | | |
2170 | | // Designated inits always initialize fields, so if we see one, all |
2171 | | // remaining base classes have no explicit initializer. |
2172 | 0 | if (Init && isa<DesignatedInitExpr>(Init)) |
2173 | 0 | Init = nullptr; |
2174 | | |
2175 | | // C++ [over.match.class.deduct]p1.6: |
2176 | | // each non-trailing aggregate element that is a pack expansion is assumed |
2177 | | // to correspond to no elements of the initializer list, and (1.7) a |
2178 | | // trailing aggregate element that is a pack expansion is assumed to |
2179 | | // correspond to all remaining elements of the initializer list (if any). |
2180 | | |
2181 | | // C++ [over.match.class.deduct]p1.9: |
2182 | | // ... except that additional parameter packs of the form P_j... are |
2183 | | // inserted into the parameter list in their original aggregate element |
2184 | | // position corresponding to each non-trailing aggregate element of |
2185 | | // type P_j that was skipped because it was a parameter pack, and the |
2186 | | // trailing sequence of parameters corresponding to a trailing |
2187 | | // aggregate element that is a pack expansion (if any) is replaced |
2188 | | // by a single parameter of the form T_n.... |
2189 | 0 | if (AggrDeductionCandidateParamTypes && Base.isPackExpansion()) { |
2190 | 0 | AggrDeductionCandidateParamTypes->push_back( |
2191 | 0 | SemaRef.Context.getPackExpansionType(Base.getType(), std::nullopt)); |
2192 | | |
2193 | | // Trailing pack expansion |
2194 | 0 | if (I + 1 == E && RD->field_empty()) { |
2195 | 0 | if (Index < IList->getNumInits()) |
2196 | 0 | Index = IList->getNumInits(); |
2197 | 0 | return; |
2198 | 0 | } |
2199 | | |
2200 | 0 | continue; |
2201 | 0 | } |
2202 | | |
2203 | 0 | SourceLocation InitLoc = Init ? Init->getBeginLoc() : IList->getEndLoc(); |
2204 | 0 | InitializedEntity BaseEntity = InitializedEntity::InitializeBase( |
2205 | 0 | SemaRef.Context, &Base, false, &Entity); |
2206 | 0 | if (Init) { |
2207 | 0 | CheckSubElementType(BaseEntity, IList, Base.getType(), Index, |
2208 | 0 | StructuredList, StructuredIndex); |
2209 | 0 | InitializedSomething = true; |
2210 | 0 | } else { |
2211 | 0 | CheckEmptyInitializable(BaseEntity, InitLoc); |
2212 | 0 | } |
2213 | |
|
2214 | 0 | if (!VerifyOnly) |
2215 | 0 | if (checkDestructorReference(Base.getType(), InitLoc, SemaRef)) { |
2216 | 0 | hadError = true; |
2217 | 0 | return; |
2218 | 0 | } |
2219 | 0 | } |
2220 | | |
2221 | | // If structDecl is a forward declaration, this loop won't do |
2222 | | // anything except look at designated initializers; That's okay, |
2223 | | // because an error should get printed out elsewhere. It might be |
2224 | | // worthwhile to skip over the rest of the initializer, though. |
2225 | 0 | RecordDecl::field_iterator FieldEnd = RD->field_end(); |
2226 | 0 | size_t NumRecordDecls = llvm::count_if(RD->decls(), [&](const Decl *D) { |
2227 | 0 | return isa<FieldDecl>(D) || isa<RecordDecl>(D); |
2228 | 0 | }); |
2229 | 0 | bool CheckForMissingFields = |
2230 | 0 | !IList->isIdiomaticZeroInitializer(SemaRef.getLangOpts()); |
2231 | 0 | bool HasDesignatedInit = false; |
2232 | |
|
2233 | 0 | llvm::SmallPtrSet<FieldDecl *, 4> InitializedFields; |
2234 | |
|
2235 | 0 | while (Index < IList->getNumInits()) { |
2236 | 0 | Expr *Init = IList->getInit(Index); |
2237 | 0 | SourceLocation InitLoc = Init->getBeginLoc(); |
2238 | |
|
2239 | 0 | if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init)) { |
2240 | | // If we're not the subobject that matches up with the '{' for |
2241 | | // the designator, we shouldn't be handling the |
2242 | | // designator. Return immediately. |
2243 | 0 | if (!SubobjectIsDesignatorContext) |
2244 | 0 | return; |
2245 | | |
2246 | 0 | HasDesignatedInit = true; |
2247 | | |
2248 | | // Handle this designated initializer. Field will be updated to |
2249 | | // the next field that we'll be initializing. |
2250 | 0 | bool DesignatedInitFailed = CheckDesignatedInitializer( |
2251 | 0 | Entity, IList, DIE, 0, DeclType, &Field, nullptr, Index, |
2252 | 0 | StructuredList, StructuredIndex, true, TopLevelObject); |
2253 | 0 | if (DesignatedInitFailed) |
2254 | 0 | hadError = true; |
2255 | | |
2256 | | // Find the field named by the designated initializer. |
2257 | 0 | DesignatedInitExpr::Designator *D = DIE->getDesignator(0); |
2258 | 0 | if (!VerifyOnly && D->isFieldDesignator()) { |
2259 | 0 | FieldDecl *F = D->getFieldDecl(); |
2260 | 0 | InitializedFields.insert(F); |
2261 | 0 | if (!DesignatedInitFailed) { |
2262 | 0 | QualType ET = SemaRef.Context.getBaseElementType(F->getType()); |
2263 | 0 | if (checkDestructorReference(ET, InitLoc, SemaRef)) { |
2264 | 0 | hadError = true; |
2265 | 0 | return; |
2266 | 0 | } |
2267 | 0 | } |
2268 | 0 | } |
2269 | | |
2270 | 0 | InitializedSomething = true; |
2271 | | |
2272 | | // Disable check for missing fields when designators are used. |
2273 | | // This matches gcc behaviour. |
2274 | 0 | if (!SemaRef.getLangOpts().CPlusPlus) |
2275 | 0 | CheckForMissingFields = false; |
2276 | 0 | continue; |
2277 | 0 | } |
2278 | | |
2279 | | // Check if this is an initializer of forms: |
2280 | | // |
2281 | | // struct foo f = {}; |
2282 | | // struct foo g = {0}; |
2283 | | // |
2284 | | // These are okay for randomized structures. [C99 6.7.8p19] |
2285 | | // |
2286 | | // Also, if there is only one element in the structure, we allow something |
2287 | | // like this, because it's really not randomized in the tranditional sense. |
2288 | | // |
2289 | | // struct foo h = {bar}; |
2290 | 0 | auto IsZeroInitializer = [&](const Expr *I) { |
2291 | 0 | if (IList->getNumInits() == 1) { |
2292 | 0 | if (NumRecordDecls == 1) |
2293 | 0 | return true; |
2294 | 0 | if (const auto *IL = dyn_cast<IntegerLiteral>(I)) |
2295 | 0 | return IL->getValue().isZero(); |
2296 | 0 | } |
2297 | 0 | return false; |
2298 | 0 | }; |
2299 | | |
2300 | | // Don't allow non-designated initializers on randomized structures. |
2301 | 0 | if (RD->isRandomized() && !IsZeroInitializer(Init)) { |
2302 | 0 | if (!VerifyOnly) |
2303 | 0 | SemaRef.Diag(InitLoc, diag::err_non_designated_init_used); |
2304 | 0 | hadError = true; |
2305 | 0 | break; |
2306 | 0 | } |
2307 | | |
2308 | 0 | if (Field == FieldEnd) { |
2309 | | // We've run out of fields. We're done. |
2310 | 0 | break; |
2311 | 0 | } |
2312 | | |
2313 | | // We've already initialized a member of a union. We're done. |
2314 | 0 | if (InitializedSomething && RD->isUnion()) |
2315 | 0 | break; |
2316 | | |
2317 | | // If we've hit the flexible array member at the end, we're done. |
2318 | 0 | if (Field->getType()->isIncompleteArrayType()) |
2319 | 0 | break; |
2320 | | |
2321 | 0 | if (Field->isUnnamedBitfield()) { |
2322 | | // Don't initialize unnamed bitfields, e.g. "int : 20;" |
2323 | 0 | ++Field; |
2324 | 0 | continue; |
2325 | 0 | } |
2326 | | |
2327 | | // Make sure we can use this declaration. |
2328 | 0 | bool InvalidUse; |
2329 | 0 | if (VerifyOnly) |
2330 | 0 | InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); |
2331 | 0 | else |
2332 | 0 | InvalidUse = SemaRef.DiagnoseUseOfDecl( |
2333 | 0 | *Field, IList->getInit(Index)->getBeginLoc()); |
2334 | 0 | if (InvalidUse) { |
2335 | 0 | ++Index; |
2336 | 0 | ++Field; |
2337 | 0 | hadError = true; |
2338 | 0 | continue; |
2339 | 0 | } |
2340 | | |
2341 | 0 | if (!VerifyOnly) { |
2342 | 0 | QualType ET = SemaRef.Context.getBaseElementType(Field->getType()); |
2343 | 0 | if (checkDestructorReference(ET, InitLoc, SemaRef)) { |
2344 | 0 | hadError = true; |
2345 | 0 | return; |
2346 | 0 | } |
2347 | 0 | } |
2348 | | |
2349 | 0 | InitializedEntity MemberEntity = |
2350 | 0 | InitializedEntity::InitializeMember(*Field, &Entity); |
2351 | 0 | CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
2352 | 0 | StructuredList, StructuredIndex); |
2353 | 0 | InitializedSomething = true; |
2354 | 0 | InitializedFields.insert(*Field); |
2355 | |
|
2356 | 0 | if (RD->isUnion() && StructuredList) { |
2357 | | // Initialize the first field within the union. |
2358 | 0 | StructuredList->setInitializedFieldInUnion(*Field); |
2359 | 0 | } |
2360 | |
|
2361 | 0 | ++Field; |
2362 | 0 | } |
2363 | | |
2364 | | // Emit warnings for missing struct field initializers. |
2365 | 0 | if (!VerifyOnly && InitializedSomething && CheckForMissingFields && |
2366 | 0 | !RD->isUnion()) { |
2367 | | // It is possible we have one or more unnamed bitfields remaining. |
2368 | | // Find first (if any) named field and emit warning. |
2369 | 0 | for (RecordDecl::field_iterator it = HasDesignatedInit ? RD->field_begin() |
2370 | 0 | : Field, |
2371 | 0 | end = RD->field_end(); |
2372 | 0 | it != end; ++it) { |
2373 | 0 | if (HasDesignatedInit && InitializedFields.count(*it)) |
2374 | 0 | continue; |
2375 | | |
2376 | 0 | if (!it->isUnnamedBitfield() && !it->hasInClassInitializer() && |
2377 | 0 | !it->getType()->isIncompleteArrayType()) { |
2378 | 0 | SemaRef.Diag(IList->getSourceRange().getEnd(), |
2379 | 0 | diag::warn_missing_field_initializers) |
2380 | 0 | << *it; |
2381 | 0 | break; |
2382 | 0 | } |
2383 | 0 | } |
2384 | 0 | } |
2385 | | |
2386 | | // Check that any remaining fields can be value-initialized if we're not |
2387 | | // building a structured list. (If we are, we'll check this later.) |
2388 | 0 | if (!StructuredList && Field != FieldEnd && !RD->isUnion() && |
2389 | 0 | !Field->getType()->isIncompleteArrayType()) { |
2390 | 0 | for (; Field != FieldEnd && !hadError; ++Field) { |
2391 | 0 | if (!Field->isUnnamedBitfield() && !Field->hasInClassInitializer()) |
2392 | 0 | CheckEmptyInitializable( |
2393 | 0 | InitializedEntity::InitializeMember(*Field, &Entity), |
2394 | 0 | IList->getEndLoc()); |
2395 | 0 | } |
2396 | 0 | } |
2397 | | |
2398 | | // Check that the types of the remaining fields have accessible destructors. |
2399 | 0 | if (!VerifyOnly) { |
2400 | | // If the initializer expression has a designated initializer, check the |
2401 | | // elements for which a designated initializer is not provided too. |
2402 | 0 | RecordDecl::field_iterator I = HasDesignatedInit ? RD->field_begin() |
2403 | 0 | : Field; |
2404 | 0 | for (RecordDecl::field_iterator E = RD->field_end(); I != E; ++I) { |
2405 | 0 | QualType ET = SemaRef.Context.getBaseElementType(I->getType()); |
2406 | 0 | if (checkDestructorReference(ET, IList->getEndLoc(), SemaRef)) { |
2407 | 0 | hadError = true; |
2408 | 0 | return; |
2409 | 0 | } |
2410 | 0 | } |
2411 | 0 | } |
2412 | | |
2413 | 0 | if (Field == FieldEnd || !Field->getType()->isIncompleteArrayType() || |
2414 | 0 | Index >= IList->getNumInits()) |
2415 | 0 | return; |
2416 | | |
2417 | 0 | if (CheckFlexibleArrayInit(Entity, IList->getInit(Index), *Field, |
2418 | 0 | TopLevelObject)) { |
2419 | 0 | hadError = true; |
2420 | 0 | ++Index; |
2421 | 0 | return; |
2422 | 0 | } |
2423 | | |
2424 | 0 | InitializedEntity MemberEntity = |
2425 | 0 | InitializedEntity::InitializeMember(*Field, &Entity); |
2426 | |
|
2427 | 0 | if (isa<InitListExpr>(IList->getInit(Index)) || |
2428 | 0 | AggrDeductionCandidateParamTypes) |
2429 | 0 | CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
2430 | 0 | StructuredList, StructuredIndex); |
2431 | 0 | else |
2432 | 0 | CheckImplicitInitList(MemberEntity, IList, Field->getType(), Index, |
2433 | 0 | StructuredList, StructuredIndex); |
2434 | 0 | } |
2435 | | |
2436 | | /// Expand a field designator that refers to a member of an |
2437 | | /// anonymous struct or union into a series of field designators that |
2438 | | /// refers to the field within the appropriate subobject. |
2439 | | /// |
2440 | | static void ExpandAnonymousFieldDesignator(Sema &SemaRef, |
2441 | | DesignatedInitExpr *DIE, |
2442 | | unsigned DesigIdx, |
2443 | 0 | IndirectFieldDecl *IndirectField) { |
2444 | 0 | typedef DesignatedInitExpr::Designator Designator; |
2445 | | |
2446 | | // Build the replacement designators. |
2447 | 0 | SmallVector<Designator, 4> Replacements; |
2448 | 0 | for (IndirectFieldDecl::chain_iterator PI = IndirectField->chain_begin(), |
2449 | 0 | PE = IndirectField->chain_end(); PI != PE; ++PI) { |
2450 | 0 | if (PI + 1 == PE) |
2451 | 0 | Replacements.push_back(Designator::CreateFieldDesignator( |
2452 | 0 | (IdentifierInfo *)nullptr, DIE->getDesignator(DesigIdx)->getDotLoc(), |
2453 | 0 | DIE->getDesignator(DesigIdx)->getFieldLoc())); |
2454 | 0 | else |
2455 | 0 | Replacements.push_back(Designator::CreateFieldDesignator( |
2456 | 0 | (IdentifierInfo *)nullptr, SourceLocation(), SourceLocation())); |
2457 | 0 | assert(isa<FieldDecl>(*PI)); |
2458 | 0 | Replacements.back().setFieldDecl(cast<FieldDecl>(*PI)); |
2459 | 0 | } |
2460 | | |
2461 | | // Expand the current designator into the set of replacement |
2462 | | // designators, so we have a full subobject path down to where the |
2463 | | // member of the anonymous struct/union is actually stored. |
2464 | 0 | DIE->ExpandDesignator(SemaRef.Context, DesigIdx, &Replacements[0], |
2465 | 0 | &Replacements[0] + Replacements.size()); |
2466 | 0 | } |
2467 | | |
2468 | | static DesignatedInitExpr *CloneDesignatedInitExpr(Sema &SemaRef, |
2469 | 0 | DesignatedInitExpr *DIE) { |
2470 | 0 | unsigned NumIndexExprs = DIE->getNumSubExprs() - 1; |
2471 | 0 | SmallVector<Expr*, 4> IndexExprs(NumIndexExprs); |
2472 | 0 | for (unsigned I = 0; I < NumIndexExprs; ++I) |
2473 | 0 | IndexExprs[I] = DIE->getSubExpr(I + 1); |
2474 | 0 | return DesignatedInitExpr::Create(SemaRef.Context, DIE->designators(), |
2475 | 0 | IndexExprs, |
2476 | 0 | DIE->getEqualOrColonLoc(), |
2477 | 0 | DIE->usesGNUSyntax(), DIE->getInit()); |
2478 | 0 | } |
2479 | | |
2480 | | namespace { |
2481 | | |
2482 | | // Callback to only accept typo corrections that are for field members of |
2483 | | // the given struct or union. |
2484 | | class FieldInitializerValidatorCCC final : public CorrectionCandidateCallback { |
2485 | | public: |
2486 | | explicit FieldInitializerValidatorCCC(const RecordDecl *RD) |
2487 | 0 | : Record(RD) {} |
2488 | | |
2489 | 0 | bool ValidateCandidate(const TypoCorrection &candidate) override { |
2490 | 0 | FieldDecl *FD = candidate.getCorrectionDeclAs<FieldDecl>(); |
2491 | 0 | return FD && FD->getDeclContext()->getRedeclContext()->Equals(Record); |
2492 | 0 | } |
2493 | | |
2494 | 0 | std::unique_ptr<CorrectionCandidateCallback> clone() override { |
2495 | 0 | return std::make_unique<FieldInitializerValidatorCCC>(*this); |
2496 | 0 | } |
2497 | | |
2498 | | private: |
2499 | | const RecordDecl *Record; |
2500 | | }; |
2501 | | |
2502 | | } // end anonymous namespace |
2503 | | |
2504 | | /// Check the well-formedness of a C99 designated initializer. |
2505 | | /// |
2506 | | /// Determines whether the designated initializer @p DIE, which |
2507 | | /// resides at the given @p Index within the initializer list @p |
2508 | | /// IList, is well-formed for a current object of type @p DeclType |
2509 | | /// (C99 6.7.8). The actual subobject that this designator refers to |
2510 | | /// within the current subobject is returned in either |
2511 | | /// @p NextField or @p NextElementIndex (whichever is appropriate). |
2512 | | /// |
2513 | | /// @param IList The initializer list in which this designated |
2514 | | /// initializer occurs. |
2515 | | /// |
2516 | | /// @param DIE The designated initializer expression. |
2517 | | /// |
2518 | | /// @param DesigIdx The index of the current designator. |
2519 | | /// |
2520 | | /// @param CurrentObjectType The type of the "current object" (C99 6.7.8p17), |
2521 | | /// into which the designation in @p DIE should refer. |
2522 | | /// |
2523 | | /// @param NextField If non-NULL and the first designator in @p DIE is |
2524 | | /// a field, this will be set to the field declaration corresponding |
2525 | | /// to the field named by the designator. On input, this is expected to be |
2526 | | /// the next field that would be initialized in the absence of designation, |
2527 | | /// if the complete object being initialized is a struct. |
2528 | | /// |
2529 | | /// @param NextElementIndex If non-NULL and the first designator in @p |
2530 | | /// DIE is an array designator or GNU array-range designator, this |
2531 | | /// will be set to the last index initialized by this designator. |
2532 | | /// |
2533 | | /// @param Index Index into @p IList where the designated initializer |
2534 | | /// @p DIE occurs. |
2535 | | /// |
2536 | | /// @param StructuredList The initializer list expression that |
2537 | | /// describes all of the subobject initializers in the order they'll |
2538 | | /// actually be initialized. |
2539 | | /// |
2540 | | /// @returns true if there was an error, false otherwise. |
2541 | | bool |
2542 | | InitListChecker::CheckDesignatedInitializer(const InitializedEntity &Entity, |
2543 | | InitListExpr *IList, |
2544 | | DesignatedInitExpr *DIE, |
2545 | | unsigned DesigIdx, |
2546 | | QualType &CurrentObjectType, |
2547 | | RecordDecl::field_iterator *NextField, |
2548 | | llvm::APSInt *NextElementIndex, |
2549 | | unsigned &Index, |
2550 | | InitListExpr *StructuredList, |
2551 | | unsigned &StructuredIndex, |
2552 | | bool FinishSubobjectInit, |
2553 | 0 | bool TopLevelObject) { |
2554 | 0 | if (DesigIdx == DIE->size()) { |
2555 | | // C++20 designated initialization can result in direct-list-initialization |
2556 | | // of the designated subobject. This is the only way that we can end up |
2557 | | // performing direct initialization as part of aggregate initialization, so |
2558 | | // it needs special handling. |
2559 | 0 | if (DIE->isDirectInit()) { |
2560 | 0 | Expr *Init = DIE->getInit(); |
2561 | 0 | assert(isa<InitListExpr>(Init) && |
2562 | 0 | "designator result in direct non-list initialization?"); |
2563 | 0 | InitializationKind Kind = InitializationKind::CreateDirectList( |
2564 | 0 | DIE->getBeginLoc(), Init->getBeginLoc(), Init->getEndLoc()); |
2565 | 0 | InitializationSequence Seq(SemaRef, Entity, Kind, Init, |
2566 | 0 | /*TopLevelOfInitList*/ true); |
2567 | 0 | if (StructuredList) { |
2568 | 0 | ExprResult Result = VerifyOnly |
2569 | 0 | ? getDummyInit() |
2570 | 0 | : Seq.Perform(SemaRef, Entity, Kind, Init); |
2571 | 0 | UpdateStructuredListElement(StructuredList, StructuredIndex, |
2572 | 0 | Result.get()); |
2573 | 0 | } |
2574 | 0 | ++Index; |
2575 | 0 | if (AggrDeductionCandidateParamTypes) |
2576 | 0 | AggrDeductionCandidateParamTypes->push_back(CurrentObjectType); |
2577 | 0 | return !Seq; |
2578 | 0 | } |
2579 | | |
2580 | | // Check the actual initialization for the designated object type. |
2581 | 0 | bool prevHadError = hadError; |
2582 | | |
2583 | | // Temporarily remove the designator expression from the |
2584 | | // initializer list that the child calls see, so that we don't try |
2585 | | // to re-process the designator. |
2586 | 0 | unsigned OldIndex = Index; |
2587 | 0 | IList->setInit(OldIndex, DIE->getInit()); |
2588 | |
|
2589 | 0 | CheckSubElementType(Entity, IList, CurrentObjectType, Index, StructuredList, |
2590 | 0 | StructuredIndex, /*DirectlyDesignated=*/true); |
2591 | | |
2592 | | // Restore the designated initializer expression in the syntactic |
2593 | | // form of the initializer list. |
2594 | 0 | if (IList->getInit(OldIndex) != DIE->getInit()) |
2595 | 0 | DIE->setInit(IList->getInit(OldIndex)); |
2596 | 0 | IList->setInit(OldIndex, DIE); |
2597 | |
|
2598 | 0 | return hadError && !prevHadError; |
2599 | 0 | } |
2600 | | |
2601 | 0 | DesignatedInitExpr::Designator *D = DIE->getDesignator(DesigIdx); |
2602 | 0 | bool IsFirstDesignator = (DesigIdx == 0); |
2603 | 0 | if (IsFirstDesignator ? FullyStructuredList : StructuredList) { |
2604 | | // Determine the structural initializer list that corresponds to the |
2605 | | // current subobject. |
2606 | 0 | if (IsFirstDesignator) |
2607 | 0 | StructuredList = FullyStructuredList; |
2608 | 0 | else { |
2609 | 0 | Expr *ExistingInit = StructuredIndex < StructuredList->getNumInits() ? |
2610 | 0 | StructuredList->getInit(StructuredIndex) : nullptr; |
2611 | 0 | if (!ExistingInit && StructuredList->hasArrayFiller()) |
2612 | 0 | ExistingInit = StructuredList->getArrayFiller(); |
2613 | |
|
2614 | 0 | if (!ExistingInit) |
2615 | 0 | StructuredList = getStructuredSubobjectInit( |
2616 | 0 | IList, Index, CurrentObjectType, StructuredList, StructuredIndex, |
2617 | 0 | SourceRange(D->getBeginLoc(), DIE->getEndLoc())); |
2618 | 0 | else if (InitListExpr *Result = dyn_cast<InitListExpr>(ExistingInit)) |
2619 | 0 | StructuredList = Result; |
2620 | 0 | else { |
2621 | | // We are creating an initializer list that initializes the |
2622 | | // subobjects of the current object, but there was already an |
2623 | | // initialization that completely initialized the current |
2624 | | // subobject, e.g., by a compound literal: |
2625 | | // |
2626 | | // struct X { int a, b; }; |
2627 | | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
2628 | | // |
2629 | | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, |
2630 | | // designated initializer re-initializes only its current object |
2631 | | // subobject [0].b. |
2632 | 0 | diagnoseInitOverride(ExistingInit, |
2633 | 0 | SourceRange(D->getBeginLoc(), DIE->getEndLoc()), |
2634 | 0 | /*UnionOverride=*/false, |
2635 | 0 | /*FullyOverwritten=*/false); |
2636 | |
|
2637 | 0 | if (!VerifyOnly) { |
2638 | 0 | if (DesignatedInitUpdateExpr *E = |
2639 | 0 | dyn_cast<DesignatedInitUpdateExpr>(ExistingInit)) |
2640 | 0 | StructuredList = E->getUpdater(); |
2641 | 0 | else { |
2642 | 0 | DesignatedInitUpdateExpr *DIUE = new (SemaRef.Context) |
2643 | 0 | DesignatedInitUpdateExpr(SemaRef.Context, D->getBeginLoc(), |
2644 | 0 | ExistingInit, DIE->getEndLoc()); |
2645 | 0 | StructuredList->updateInit(SemaRef.Context, StructuredIndex, DIUE); |
2646 | 0 | StructuredList = DIUE->getUpdater(); |
2647 | 0 | } |
2648 | 0 | } else { |
2649 | | // We don't need to track the structured representation of a |
2650 | | // designated init update of an already-fully-initialized object in |
2651 | | // verify-only mode. The only reason we would need the structure is |
2652 | | // to determine where the uninitialized "holes" are, and in this |
2653 | | // case, we know there aren't any and we can't introduce any. |
2654 | 0 | StructuredList = nullptr; |
2655 | 0 | } |
2656 | 0 | } |
2657 | 0 | } |
2658 | 0 | } |
2659 | |
|
2660 | 0 | if (D->isFieldDesignator()) { |
2661 | | // C99 6.7.8p7: |
2662 | | // |
2663 | | // If a designator has the form |
2664 | | // |
2665 | | // . identifier |
2666 | | // |
2667 | | // then the current object (defined below) shall have |
2668 | | // structure or union type and the identifier shall be the |
2669 | | // name of a member of that type. |
2670 | 0 | RecordDecl *RD = getRecordDecl(CurrentObjectType); |
2671 | 0 | if (!RD) { |
2672 | 0 | SourceLocation Loc = D->getDotLoc(); |
2673 | 0 | if (Loc.isInvalid()) |
2674 | 0 | Loc = D->getFieldLoc(); |
2675 | 0 | if (!VerifyOnly) |
2676 | 0 | SemaRef.Diag(Loc, diag::err_field_designator_non_aggr) |
2677 | 0 | << SemaRef.getLangOpts().CPlusPlus << CurrentObjectType; |
2678 | 0 | ++Index; |
2679 | 0 | return true; |
2680 | 0 | } |
2681 | | |
2682 | 0 | FieldDecl *KnownField = D->getFieldDecl(); |
2683 | 0 | if (!KnownField) { |
2684 | 0 | const IdentifierInfo *FieldName = D->getFieldName(); |
2685 | 0 | ValueDecl *VD = SemaRef.tryLookupUnambiguousFieldDecl(RD, FieldName); |
2686 | 0 | if (auto *FD = dyn_cast_if_present<FieldDecl>(VD)) { |
2687 | 0 | KnownField = FD; |
2688 | 0 | } else if (auto *IFD = dyn_cast_if_present<IndirectFieldDecl>(VD)) { |
2689 | | // In verify mode, don't modify the original. |
2690 | 0 | if (VerifyOnly) |
2691 | 0 | DIE = CloneDesignatedInitExpr(SemaRef, DIE); |
2692 | 0 | ExpandAnonymousFieldDesignator(SemaRef, DIE, DesigIdx, IFD); |
2693 | 0 | D = DIE->getDesignator(DesigIdx); |
2694 | 0 | KnownField = cast<FieldDecl>(*IFD->chain_begin()); |
2695 | 0 | } |
2696 | 0 | if (!KnownField) { |
2697 | 0 | if (VerifyOnly) { |
2698 | 0 | ++Index; |
2699 | 0 | return true; // No typo correction when just trying this out. |
2700 | 0 | } |
2701 | | |
2702 | | // We found a placeholder variable |
2703 | 0 | if (SemaRef.DiagRedefinedPlaceholderFieldDecl(DIE->getBeginLoc(), RD, |
2704 | 0 | FieldName)) { |
2705 | 0 | ++Index; |
2706 | 0 | return true; |
2707 | 0 | } |
2708 | | // Name lookup found something, but it wasn't a field. |
2709 | 0 | if (DeclContextLookupResult Lookup = RD->lookup(FieldName); |
2710 | 0 | !Lookup.empty()) { |
2711 | 0 | SemaRef.Diag(D->getFieldLoc(), diag::err_field_designator_nonfield) |
2712 | 0 | << FieldName; |
2713 | 0 | SemaRef.Diag(Lookup.front()->getLocation(), |
2714 | 0 | diag::note_field_designator_found); |
2715 | 0 | ++Index; |
2716 | 0 | return true; |
2717 | 0 | } |
2718 | | |
2719 | | // Name lookup didn't find anything. |
2720 | | // Determine whether this was a typo for another field name. |
2721 | 0 | FieldInitializerValidatorCCC CCC(RD); |
2722 | 0 | if (TypoCorrection Corrected = SemaRef.CorrectTypo( |
2723 | 0 | DeclarationNameInfo(FieldName, D->getFieldLoc()), |
2724 | 0 | Sema::LookupMemberName, /*Scope=*/nullptr, /*SS=*/nullptr, CCC, |
2725 | 0 | Sema::CTK_ErrorRecovery, RD)) { |
2726 | 0 | SemaRef.diagnoseTypo( |
2727 | 0 | Corrected, |
2728 | 0 | SemaRef.PDiag(diag::err_field_designator_unknown_suggest) |
2729 | 0 | << FieldName << CurrentObjectType); |
2730 | 0 | KnownField = Corrected.getCorrectionDeclAs<FieldDecl>(); |
2731 | 0 | hadError = true; |
2732 | 0 | } else { |
2733 | | // Typo correction didn't find anything. |
2734 | 0 | SourceLocation Loc = D->getFieldLoc(); |
2735 | | |
2736 | | // The loc can be invalid with a "null" designator (i.e. an anonymous |
2737 | | // union/struct). Do our best to approximate the location. |
2738 | 0 | if (Loc.isInvalid()) |
2739 | 0 | Loc = IList->getBeginLoc(); |
2740 | |
|
2741 | 0 | SemaRef.Diag(Loc, diag::err_field_designator_unknown) |
2742 | 0 | << FieldName << CurrentObjectType << DIE->getSourceRange(); |
2743 | 0 | ++Index; |
2744 | 0 | return true; |
2745 | 0 | } |
2746 | 0 | } |
2747 | 0 | } |
2748 | | |
2749 | 0 | unsigned NumBases = 0; |
2750 | 0 | if (auto *CXXRD = dyn_cast<CXXRecordDecl>(RD)) |
2751 | 0 | NumBases = CXXRD->getNumBases(); |
2752 | |
|
2753 | 0 | unsigned FieldIndex = NumBases; |
2754 | |
|
2755 | 0 | for (auto *FI : RD->fields()) { |
2756 | 0 | if (FI->isUnnamedBitfield()) |
2757 | 0 | continue; |
2758 | 0 | if (declaresSameEntity(KnownField, FI)) { |
2759 | 0 | KnownField = FI; |
2760 | 0 | break; |
2761 | 0 | } |
2762 | 0 | ++FieldIndex; |
2763 | 0 | } |
2764 | |
|
2765 | 0 | RecordDecl::field_iterator Field = |
2766 | 0 | RecordDecl::field_iterator(DeclContext::decl_iterator(KnownField)); |
2767 | | |
2768 | | // All of the fields of a union are located at the same place in |
2769 | | // the initializer list. |
2770 | 0 | if (RD->isUnion()) { |
2771 | 0 | FieldIndex = 0; |
2772 | 0 | if (StructuredList) { |
2773 | 0 | FieldDecl *CurrentField = StructuredList->getInitializedFieldInUnion(); |
2774 | 0 | if (CurrentField && !declaresSameEntity(CurrentField, *Field)) { |
2775 | 0 | assert(StructuredList->getNumInits() == 1 |
2776 | 0 | && "A union should never have more than one initializer!"); |
2777 | | |
2778 | 0 | Expr *ExistingInit = StructuredList->getInit(0); |
2779 | 0 | if (ExistingInit) { |
2780 | | // We're about to throw away an initializer, emit warning. |
2781 | 0 | diagnoseInitOverride( |
2782 | 0 | ExistingInit, SourceRange(D->getBeginLoc(), DIE->getEndLoc()), |
2783 | 0 | /*UnionOverride=*/true, |
2784 | 0 | /*FullyOverwritten=*/SemaRef.getLangOpts().CPlusPlus ? false |
2785 | 0 | : true); |
2786 | 0 | } |
2787 | | |
2788 | | // remove existing initializer |
2789 | 0 | StructuredList->resizeInits(SemaRef.Context, 0); |
2790 | 0 | StructuredList->setInitializedFieldInUnion(nullptr); |
2791 | 0 | } |
2792 | | |
2793 | 0 | StructuredList->setInitializedFieldInUnion(*Field); |
2794 | 0 | } |
2795 | 0 | } |
2796 | | |
2797 | | // Make sure we can use this declaration. |
2798 | 0 | bool InvalidUse; |
2799 | 0 | if (VerifyOnly) |
2800 | 0 | InvalidUse = !SemaRef.CanUseDecl(*Field, TreatUnavailableAsInvalid); |
2801 | 0 | else |
2802 | 0 | InvalidUse = SemaRef.DiagnoseUseOfDecl(*Field, D->getFieldLoc()); |
2803 | 0 | if (InvalidUse) { |
2804 | 0 | ++Index; |
2805 | 0 | return true; |
2806 | 0 | } |
2807 | | |
2808 | | // C++20 [dcl.init.list]p3: |
2809 | | // The ordered identifiers in the designators of the designated- |
2810 | | // initializer-list shall form a subsequence of the ordered identifiers |
2811 | | // in the direct non-static data members of T. |
2812 | | // |
2813 | | // Note that this is not a condition on forming the aggregate |
2814 | | // initialization, only on actually performing initialization, |
2815 | | // so it is not checked in VerifyOnly mode. |
2816 | | // |
2817 | | // FIXME: This is the only reordering diagnostic we produce, and it only |
2818 | | // catches cases where we have a top-level field designator that jumps |
2819 | | // backwards. This is the only such case that is reachable in an |
2820 | | // otherwise-valid C++20 program, so is the only case that's required for |
2821 | | // conformance, but for consistency, we should diagnose all the other |
2822 | | // cases where a designator takes us backwards too. |
2823 | 0 | if (IsFirstDesignator && !VerifyOnly && SemaRef.getLangOpts().CPlusPlus && |
2824 | 0 | NextField && |
2825 | 0 | (*NextField == RD->field_end() || |
2826 | 0 | (*NextField)->getFieldIndex() > Field->getFieldIndex() + 1)) { |
2827 | | // Find the field that we just initialized. |
2828 | 0 | FieldDecl *PrevField = nullptr; |
2829 | 0 | for (auto FI = RD->field_begin(); FI != RD->field_end(); ++FI) { |
2830 | 0 | if (FI->isUnnamedBitfield()) |
2831 | 0 | continue; |
2832 | 0 | if (*NextField != RD->field_end() && |
2833 | 0 | declaresSameEntity(*FI, **NextField)) |
2834 | 0 | break; |
2835 | 0 | PrevField = *FI; |
2836 | 0 | } |
2837 | |
|
2838 | 0 | if (PrevField && |
2839 | 0 | PrevField->getFieldIndex() > KnownField->getFieldIndex()) { |
2840 | 0 | SemaRef.Diag(DIE->getInit()->getBeginLoc(), |
2841 | 0 | diag::ext_designated_init_reordered) |
2842 | 0 | << KnownField << PrevField << DIE->getSourceRange(); |
2843 | |
|
2844 | 0 | unsigned OldIndex = StructuredIndex - 1; |
2845 | 0 | if (StructuredList && OldIndex <= StructuredList->getNumInits()) { |
2846 | 0 | if (Expr *PrevInit = StructuredList->getInit(OldIndex)) { |
2847 | 0 | SemaRef.Diag(PrevInit->getBeginLoc(), |
2848 | 0 | diag::note_previous_field_init) |
2849 | 0 | << PrevField << PrevInit->getSourceRange(); |
2850 | 0 | } |
2851 | 0 | } |
2852 | 0 | } |
2853 | 0 | } |
2854 | | |
2855 | | |
2856 | | // Update the designator with the field declaration. |
2857 | 0 | if (!VerifyOnly) |
2858 | 0 | D->setFieldDecl(*Field); |
2859 | | |
2860 | | // Make sure that our non-designated initializer list has space |
2861 | | // for a subobject corresponding to this field. |
2862 | 0 | if (StructuredList && FieldIndex >= StructuredList->getNumInits()) |
2863 | 0 | StructuredList->resizeInits(SemaRef.Context, FieldIndex + 1); |
2864 | | |
2865 | | // This designator names a flexible array member. |
2866 | 0 | if (Field->getType()->isIncompleteArrayType()) { |
2867 | 0 | bool Invalid = false; |
2868 | 0 | if ((DesigIdx + 1) != DIE->size()) { |
2869 | | // We can't designate an object within the flexible array |
2870 | | // member (because GCC doesn't allow it). |
2871 | 0 | if (!VerifyOnly) { |
2872 | 0 | DesignatedInitExpr::Designator *NextD |
2873 | 0 | = DIE->getDesignator(DesigIdx + 1); |
2874 | 0 | SemaRef.Diag(NextD->getBeginLoc(), |
2875 | 0 | diag::err_designator_into_flexible_array_member) |
2876 | 0 | << SourceRange(NextD->getBeginLoc(), DIE->getEndLoc()); |
2877 | 0 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
2878 | 0 | << *Field; |
2879 | 0 | } |
2880 | 0 | Invalid = true; |
2881 | 0 | } |
2882 | |
|
2883 | 0 | if (!hadError && !isa<InitListExpr>(DIE->getInit()) && |
2884 | 0 | !isa<StringLiteral>(DIE->getInit())) { |
2885 | | // The initializer is not an initializer list. |
2886 | 0 | if (!VerifyOnly) { |
2887 | 0 | SemaRef.Diag(DIE->getInit()->getBeginLoc(), |
2888 | 0 | diag::err_flexible_array_init_needs_braces) |
2889 | 0 | << DIE->getInit()->getSourceRange(); |
2890 | 0 | SemaRef.Diag(Field->getLocation(), diag::note_flexible_array_member) |
2891 | 0 | << *Field; |
2892 | 0 | } |
2893 | 0 | Invalid = true; |
2894 | 0 | } |
2895 | | |
2896 | | // Check GNU flexible array initializer. |
2897 | 0 | if (!Invalid && CheckFlexibleArrayInit(Entity, DIE->getInit(), *Field, |
2898 | 0 | TopLevelObject)) |
2899 | 0 | Invalid = true; |
2900 | |
|
2901 | 0 | if (Invalid) { |
2902 | 0 | ++Index; |
2903 | 0 | return true; |
2904 | 0 | } |
2905 | | |
2906 | | // Initialize the array. |
2907 | 0 | bool prevHadError = hadError; |
2908 | 0 | unsigned newStructuredIndex = FieldIndex; |
2909 | 0 | unsigned OldIndex = Index; |
2910 | 0 | IList->setInit(Index, DIE->getInit()); |
2911 | |
|
2912 | 0 | InitializedEntity MemberEntity = |
2913 | 0 | InitializedEntity::InitializeMember(*Field, &Entity); |
2914 | 0 | CheckSubElementType(MemberEntity, IList, Field->getType(), Index, |
2915 | 0 | StructuredList, newStructuredIndex); |
2916 | |
|
2917 | 0 | IList->setInit(OldIndex, DIE); |
2918 | 0 | if (hadError && !prevHadError) { |
2919 | 0 | ++Field; |
2920 | 0 | ++FieldIndex; |
2921 | 0 | if (NextField) |
2922 | 0 | *NextField = Field; |
2923 | 0 | StructuredIndex = FieldIndex; |
2924 | 0 | return true; |
2925 | 0 | } |
2926 | 0 | } else { |
2927 | | // Recurse to check later designated subobjects. |
2928 | 0 | QualType FieldType = Field->getType(); |
2929 | 0 | unsigned newStructuredIndex = FieldIndex; |
2930 | |
|
2931 | 0 | InitializedEntity MemberEntity = |
2932 | 0 | InitializedEntity::InitializeMember(*Field, &Entity); |
2933 | 0 | if (CheckDesignatedInitializer(MemberEntity, IList, DIE, DesigIdx + 1, |
2934 | 0 | FieldType, nullptr, nullptr, Index, |
2935 | 0 | StructuredList, newStructuredIndex, |
2936 | 0 | FinishSubobjectInit, false)) |
2937 | 0 | return true; |
2938 | 0 | } |
2939 | | |
2940 | | // Find the position of the next field to be initialized in this |
2941 | | // subobject. |
2942 | 0 | ++Field; |
2943 | 0 | ++FieldIndex; |
2944 | | |
2945 | | // If this the first designator, our caller will continue checking |
2946 | | // the rest of this struct/class/union subobject. |
2947 | 0 | if (IsFirstDesignator) { |
2948 | 0 | if (Field != RD->field_end() && Field->isUnnamedBitfield()) |
2949 | 0 | ++Field; |
2950 | |
|
2951 | 0 | if (NextField) |
2952 | 0 | *NextField = Field; |
2953 | |
|
2954 | 0 | StructuredIndex = FieldIndex; |
2955 | 0 | return false; |
2956 | 0 | } |
2957 | | |
2958 | 0 | if (!FinishSubobjectInit) |
2959 | 0 | return false; |
2960 | | |
2961 | | // We've already initialized something in the union; we're done. |
2962 | 0 | if (RD->isUnion()) |
2963 | 0 | return hadError; |
2964 | | |
2965 | | // Check the remaining fields within this class/struct/union subobject. |
2966 | 0 | bool prevHadError = hadError; |
2967 | |
|
2968 | 0 | auto NoBases = |
2969 | 0 | CXXRecordDecl::base_class_range(CXXRecordDecl::base_class_iterator(), |
2970 | 0 | CXXRecordDecl::base_class_iterator()); |
2971 | 0 | CheckStructUnionTypes(Entity, IList, CurrentObjectType, NoBases, Field, |
2972 | 0 | false, Index, StructuredList, FieldIndex); |
2973 | 0 | return hadError && !prevHadError; |
2974 | 0 | } |
2975 | | |
2976 | | // C99 6.7.8p6: |
2977 | | // |
2978 | | // If a designator has the form |
2979 | | // |
2980 | | // [ constant-expression ] |
2981 | | // |
2982 | | // then the current object (defined below) shall have array |
2983 | | // type and the expression shall be an integer constant |
2984 | | // expression. If the array is of unknown size, any |
2985 | | // nonnegative value is valid. |
2986 | | // |
2987 | | // Additionally, cope with the GNU extension that permits |
2988 | | // designators of the form |
2989 | | // |
2990 | | // [ constant-expression ... constant-expression ] |
2991 | 0 | const ArrayType *AT = SemaRef.Context.getAsArrayType(CurrentObjectType); |
2992 | 0 | if (!AT) { |
2993 | 0 | if (!VerifyOnly) |
2994 | 0 | SemaRef.Diag(D->getLBracketLoc(), diag::err_array_designator_non_array) |
2995 | 0 | << CurrentObjectType; |
2996 | 0 | ++Index; |
2997 | 0 | return true; |
2998 | 0 | } |
2999 | | |
3000 | 0 | Expr *IndexExpr = nullptr; |
3001 | 0 | llvm::APSInt DesignatedStartIndex, DesignatedEndIndex; |
3002 | 0 | if (D->isArrayDesignator()) { |
3003 | 0 | IndexExpr = DIE->getArrayIndex(*D); |
3004 | 0 | DesignatedStartIndex = IndexExpr->EvaluateKnownConstInt(SemaRef.Context); |
3005 | 0 | DesignatedEndIndex = DesignatedStartIndex; |
3006 | 0 | } else { |
3007 | 0 | assert(D->isArrayRangeDesignator() && "Need array-range designator"); |
3008 | | |
3009 | 0 | DesignatedStartIndex = |
3010 | 0 | DIE->getArrayRangeStart(*D)->EvaluateKnownConstInt(SemaRef.Context); |
3011 | 0 | DesignatedEndIndex = |
3012 | 0 | DIE->getArrayRangeEnd(*D)->EvaluateKnownConstInt(SemaRef.Context); |
3013 | 0 | IndexExpr = DIE->getArrayRangeEnd(*D); |
3014 | | |
3015 | | // Codegen can't handle evaluating array range designators that have side |
3016 | | // effects, because we replicate the AST value for each initialized element. |
3017 | | // As such, set the sawArrayRangeDesignator() bit if we initialize multiple |
3018 | | // elements with something that has a side effect, so codegen can emit an |
3019 | | // "error unsupported" error instead of miscompiling the app. |
3020 | 0 | if (DesignatedStartIndex.getZExtValue()!=DesignatedEndIndex.getZExtValue()&& |
3021 | 0 | DIE->getInit()->HasSideEffects(SemaRef.Context) && !VerifyOnly) |
3022 | 0 | FullyStructuredList->sawArrayRangeDesignator(); |
3023 | 0 | } |
3024 | | |
3025 | 0 | if (isa<ConstantArrayType>(AT)) { |
3026 | 0 | llvm::APSInt MaxElements(cast<ConstantArrayType>(AT)->getSize(), false); |
3027 | 0 | DesignatedStartIndex |
3028 | 0 | = DesignatedStartIndex.extOrTrunc(MaxElements.getBitWidth()); |
3029 | 0 | DesignatedStartIndex.setIsUnsigned(MaxElements.isUnsigned()); |
3030 | 0 | DesignatedEndIndex |
3031 | 0 | = DesignatedEndIndex.extOrTrunc(MaxElements.getBitWidth()); |
3032 | 0 | DesignatedEndIndex.setIsUnsigned(MaxElements.isUnsigned()); |
3033 | 0 | if (DesignatedEndIndex >= MaxElements) { |
3034 | 0 | if (!VerifyOnly) |
3035 | 0 | SemaRef.Diag(IndexExpr->getBeginLoc(), |
3036 | 0 | diag::err_array_designator_too_large) |
3037 | 0 | << toString(DesignatedEndIndex, 10) << toString(MaxElements, 10) |
3038 | 0 | << IndexExpr->getSourceRange(); |
3039 | 0 | ++Index; |
3040 | 0 | return true; |
3041 | 0 | } |
3042 | 0 | } else { |
3043 | 0 | unsigned DesignatedIndexBitWidth = |
3044 | 0 | ConstantArrayType::getMaxSizeBits(SemaRef.Context); |
3045 | 0 | DesignatedStartIndex = |
3046 | 0 | DesignatedStartIndex.extOrTrunc(DesignatedIndexBitWidth); |
3047 | 0 | DesignatedEndIndex = |
3048 | 0 | DesignatedEndIndex.extOrTrunc(DesignatedIndexBitWidth); |
3049 | 0 | DesignatedStartIndex.setIsUnsigned(true); |
3050 | 0 | DesignatedEndIndex.setIsUnsigned(true); |
3051 | 0 | } |
3052 | | |
3053 | 0 | bool IsStringLiteralInitUpdate = |
3054 | 0 | StructuredList && StructuredList->isStringLiteralInit(); |
3055 | 0 | if (IsStringLiteralInitUpdate && VerifyOnly) { |
3056 | | // We're just verifying an update to a string literal init. We don't need |
3057 | | // to split the string up into individual characters to do that. |
3058 | 0 | StructuredList = nullptr; |
3059 | 0 | } else if (IsStringLiteralInitUpdate) { |
3060 | | // We're modifying a string literal init; we have to decompose the string |
3061 | | // so we can modify the individual characters. |
3062 | 0 | ASTContext &Context = SemaRef.Context; |
3063 | 0 | Expr *SubExpr = StructuredList->getInit(0)->IgnoreParenImpCasts(); |
3064 | | |
3065 | | // Compute the character type |
3066 | 0 | QualType CharTy = AT->getElementType(); |
3067 | | |
3068 | | // Compute the type of the integer literals. |
3069 | 0 | QualType PromotedCharTy = CharTy; |
3070 | 0 | if (Context.isPromotableIntegerType(CharTy)) |
3071 | 0 | PromotedCharTy = Context.getPromotedIntegerType(CharTy); |
3072 | 0 | unsigned PromotedCharTyWidth = Context.getTypeSize(PromotedCharTy); |
3073 | |
|
3074 | 0 | if (StringLiteral *SL = dyn_cast<StringLiteral>(SubExpr)) { |
3075 | | // Get the length of the string. |
3076 | 0 | uint64_t StrLen = SL->getLength(); |
3077 | 0 | if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) |
3078 | 0 | StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); |
3079 | 0 | StructuredList->resizeInits(Context, StrLen); |
3080 | | |
3081 | | // Build a literal for each character in the string, and put them into |
3082 | | // the init list. |
3083 | 0 | for (unsigned i = 0, e = StrLen; i != e; ++i) { |
3084 | 0 | llvm::APInt CodeUnit(PromotedCharTyWidth, SL->getCodeUnit(i)); |
3085 | 0 | Expr *Init = new (Context) IntegerLiteral( |
3086 | 0 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
3087 | 0 | if (CharTy != PromotedCharTy) |
3088 | 0 | Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, |
3089 | 0 | Init, nullptr, VK_PRValue, |
3090 | 0 | FPOptionsOverride()); |
3091 | 0 | StructuredList->updateInit(Context, i, Init); |
3092 | 0 | } |
3093 | 0 | } else { |
3094 | 0 | ObjCEncodeExpr *E = cast<ObjCEncodeExpr>(SubExpr); |
3095 | 0 | std::string Str; |
3096 | 0 | Context.getObjCEncodingForType(E->getEncodedType(), Str); |
3097 | | |
3098 | | // Get the length of the string. |
3099 | 0 | uint64_t StrLen = Str.size(); |
3100 | 0 | if (cast<ConstantArrayType>(AT)->getSize().ult(StrLen)) |
3101 | 0 | StrLen = cast<ConstantArrayType>(AT)->getSize().getZExtValue(); |
3102 | 0 | StructuredList->resizeInits(Context, StrLen); |
3103 | | |
3104 | | // Build a literal for each character in the string, and put them into |
3105 | | // the init list. |
3106 | 0 | for (unsigned i = 0, e = StrLen; i != e; ++i) { |
3107 | 0 | llvm::APInt CodeUnit(PromotedCharTyWidth, Str[i]); |
3108 | 0 | Expr *Init = new (Context) IntegerLiteral( |
3109 | 0 | Context, CodeUnit, PromotedCharTy, SubExpr->getExprLoc()); |
3110 | 0 | if (CharTy != PromotedCharTy) |
3111 | 0 | Init = ImplicitCastExpr::Create(Context, CharTy, CK_IntegralCast, |
3112 | 0 | Init, nullptr, VK_PRValue, |
3113 | 0 | FPOptionsOverride()); |
3114 | 0 | StructuredList->updateInit(Context, i, Init); |
3115 | 0 | } |
3116 | 0 | } |
3117 | 0 | } |
3118 | | |
3119 | | // Make sure that our non-designated initializer list has space |
3120 | | // for a subobject corresponding to this array element. |
3121 | 0 | if (StructuredList && |
3122 | 0 | DesignatedEndIndex.getZExtValue() >= StructuredList->getNumInits()) |
3123 | 0 | StructuredList->resizeInits(SemaRef.Context, |
3124 | 0 | DesignatedEndIndex.getZExtValue() + 1); |
3125 | | |
3126 | | // Repeatedly perform subobject initializations in the range |
3127 | | // [DesignatedStartIndex, DesignatedEndIndex]. |
3128 | | |
3129 | | // Move to the next designator |
3130 | 0 | unsigned ElementIndex = DesignatedStartIndex.getZExtValue(); |
3131 | 0 | unsigned OldIndex = Index; |
3132 | |
|
3133 | 0 | InitializedEntity ElementEntity = |
3134 | 0 | InitializedEntity::InitializeElement(SemaRef.Context, 0, Entity); |
3135 | |
|
3136 | 0 | while (DesignatedStartIndex <= DesignatedEndIndex) { |
3137 | | // Recurse to check later designated subobjects. |
3138 | 0 | QualType ElementType = AT->getElementType(); |
3139 | 0 | Index = OldIndex; |
3140 | |
|
3141 | 0 | ElementEntity.setElementIndex(ElementIndex); |
3142 | 0 | if (CheckDesignatedInitializer( |
3143 | 0 | ElementEntity, IList, DIE, DesigIdx + 1, ElementType, nullptr, |
3144 | 0 | nullptr, Index, StructuredList, ElementIndex, |
3145 | 0 | FinishSubobjectInit && (DesignatedStartIndex == DesignatedEndIndex), |
3146 | 0 | false)) |
3147 | 0 | return true; |
3148 | | |
3149 | | // Move to the next index in the array that we'll be initializing. |
3150 | 0 | ++DesignatedStartIndex; |
3151 | 0 | ElementIndex = DesignatedStartIndex.getZExtValue(); |
3152 | 0 | } |
3153 | | |
3154 | | // If this the first designator, our caller will continue checking |
3155 | | // the rest of this array subobject. |
3156 | 0 | if (IsFirstDesignator) { |
3157 | 0 | if (NextElementIndex) |
3158 | 0 | *NextElementIndex = DesignatedStartIndex; |
3159 | 0 | StructuredIndex = ElementIndex; |
3160 | 0 | return false; |
3161 | 0 | } |
3162 | | |
3163 | 0 | if (!FinishSubobjectInit) |
3164 | 0 | return false; |
3165 | | |
3166 | | // Check the remaining elements within this array subobject. |
3167 | 0 | bool prevHadError = hadError; |
3168 | 0 | CheckArrayType(Entity, IList, CurrentObjectType, DesignatedStartIndex, |
3169 | 0 | /*SubobjectIsDesignatorContext=*/false, Index, |
3170 | 0 | StructuredList, ElementIndex); |
3171 | 0 | return hadError && !prevHadError; |
3172 | 0 | } |
3173 | | |
3174 | | // Get the structured initializer list for a subobject of type |
3175 | | // @p CurrentObjectType. |
3176 | | InitListExpr * |
3177 | | InitListChecker::getStructuredSubobjectInit(InitListExpr *IList, unsigned Index, |
3178 | | QualType CurrentObjectType, |
3179 | | InitListExpr *StructuredList, |
3180 | | unsigned StructuredIndex, |
3181 | | SourceRange InitRange, |
3182 | 0 | bool IsFullyOverwritten) { |
3183 | 0 | if (!StructuredList) |
3184 | 0 | return nullptr; |
3185 | | |
3186 | 0 | Expr *ExistingInit = nullptr; |
3187 | 0 | if (StructuredIndex < StructuredList->getNumInits()) |
3188 | 0 | ExistingInit = StructuredList->getInit(StructuredIndex); |
3189 | |
|
3190 | 0 | if (InitListExpr *Result = dyn_cast_or_null<InitListExpr>(ExistingInit)) |
3191 | | // There might have already been initializers for subobjects of the current |
3192 | | // object, but a subsequent initializer list will overwrite the entirety |
3193 | | // of the current object. (See DR 253 and C99 6.7.8p21). e.g., |
3194 | | // |
3195 | | // struct P { char x[6]; }; |
3196 | | // struct P l = { .x[2] = 'x', .x = { [0] = 'f' } }; |
3197 | | // |
3198 | | // The first designated initializer is ignored, and l.x is just "f". |
3199 | 0 | if (!IsFullyOverwritten) |
3200 | 0 | return Result; |
3201 | | |
3202 | 0 | if (ExistingInit) { |
3203 | | // We are creating an initializer list that initializes the |
3204 | | // subobjects of the current object, but there was already an |
3205 | | // initialization that completely initialized the current |
3206 | | // subobject: |
3207 | | // |
3208 | | // struct X { int a, b; }; |
3209 | | // struct X xs[] = { [0] = { 1, 2 }, [0].b = 3 }; |
3210 | | // |
3211 | | // Here, xs[0].a == 1 and xs[0].b == 3, since the second, |
3212 | | // designated initializer overwrites the [0].b initializer |
3213 | | // from the prior initialization. |
3214 | | // |
3215 | | // When the existing initializer is an expression rather than an |
3216 | | // initializer list, we cannot decompose and update it in this way. |
3217 | | // For example: |
3218 | | // |
3219 | | // struct X xs[] = { [0] = (struct X) { 1, 2 }, [0].b = 3 }; |
3220 | | // |
3221 | | // This case is handled by CheckDesignatedInitializer. |
3222 | 0 | diagnoseInitOverride(ExistingInit, InitRange); |
3223 | 0 | } |
3224 | |
|
3225 | 0 | unsigned ExpectedNumInits = 0; |
3226 | 0 | if (Index < IList->getNumInits()) { |
3227 | 0 | if (auto *Init = dyn_cast_or_null<InitListExpr>(IList->getInit(Index))) |
3228 | 0 | ExpectedNumInits = Init->getNumInits(); |
3229 | 0 | else |
3230 | 0 | ExpectedNumInits = IList->getNumInits() - Index; |
3231 | 0 | } |
3232 | |
|
3233 | 0 | InitListExpr *Result = |
3234 | 0 | createInitListExpr(CurrentObjectType, InitRange, ExpectedNumInits); |
3235 | | |
3236 | | // Link this new initializer list into the structured initializer |
3237 | | // lists. |
3238 | 0 | StructuredList->updateInit(SemaRef.Context, StructuredIndex, Result); |
3239 | 0 | return Result; |
3240 | 0 | } |
3241 | | |
3242 | | InitListExpr * |
3243 | | InitListChecker::createInitListExpr(QualType CurrentObjectType, |
3244 | | SourceRange InitRange, |
3245 | 0 | unsigned ExpectedNumInits) { |
3246 | 0 | InitListExpr *Result = new (SemaRef.Context) InitListExpr( |
3247 | 0 | SemaRef.Context, InitRange.getBegin(), std::nullopt, InitRange.getEnd()); |
3248 | |
|
3249 | 0 | QualType ResultType = CurrentObjectType; |
3250 | 0 | if (!ResultType->isArrayType()) |
3251 | 0 | ResultType = ResultType.getNonLValueExprType(SemaRef.Context); |
3252 | 0 | Result->setType(ResultType); |
3253 | | |
3254 | | // Pre-allocate storage for the structured initializer list. |
3255 | 0 | unsigned NumElements = 0; |
3256 | |
|
3257 | 0 | if (const ArrayType *AType |
3258 | 0 | = SemaRef.Context.getAsArrayType(CurrentObjectType)) { |
3259 | 0 | if (const ConstantArrayType *CAType = dyn_cast<ConstantArrayType>(AType)) { |
3260 | 0 | NumElements = CAType->getSize().getZExtValue(); |
3261 | | // Simple heuristic so that we don't allocate a very large |
3262 | | // initializer with many empty entries at the end. |
3263 | 0 | if (NumElements > ExpectedNumInits) |
3264 | 0 | NumElements = 0; |
3265 | 0 | } |
3266 | 0 | } else if (const VectorType *VType = CurrentObjectType->getAs<VectorType>()) { |
3267 | 0 | NumElements = VType->getNumElements(); |
3268 | 0 | } else if (CurrentObjectType->isRecordType()) { |
3269 | 0 | NumElements = numStructUnionElements(CurrentObjectType); |
3270 | 0 | } else if (CurrentObjectType->isDependentType()) { |
3271 | 0 | NumElements = 1; |
3272 | 0 | } |
3273 | |
|
3274 | 0 | Result->reserveInits(SemaRef.Context, NumElements); |
3275 | |
|
3276 | 0 | return Result; |
3277 | 0 | } |
3278 | | |
3279 | | /// Update the initializer at index @p StructuredIndex within the |
3280 | | /// structured initializer list to the value @p expr. |
3281 | | void InitListChecker::UpdateStructuredListElement(InitListExpr *StructuredList, |
3282 | | unsigned &StructuredIndex, |
3283 | 0 | Expr *expr) { |
3284 | | // No structured initializer list to update |
3285 | 0 | if (!StructuredList) |
3286 | 0 | return; |
3287 | | |
3288 | 0 | if (Expr *PrevInit = StructuredList->updateInit(SemaRef.Context, |
3289 | 0 | StructuredIndex, expr)) { |
3290 | | // This initializer overwrites a previous initializer. |
3291 | | // No need to diagnose when `expr` is nullptr because a more relevant |
3292 | | // diagnostic has already been issued and this diagnostic is potentially |
3293 | | // noise. |
3294 | 0 | if (expr) |
3295 | 0 | diagnoseInitOverride(PrevInit, expr->getSourceRange()); |
3296 | 0 | } |
3297 | |
|
3298 | 0 | ++StructuredIndex; |
3299 | 0 | } |
3300 | | |
3301 | | /// Determine whether we can perform aggregate initialization for the purposes |
3302 | | /// of overload resolution. |
3303 | | bool Sema::CanPerformAggregateInitializationForOverloadResolution( |
3304 | 0 | const InitializedEntity &Entity, InitListExpr *From) { |
3305 | 0 | QualType Type = Entity.getType(); |
3306 | 0 | InitListChecker Check(*this, Entity, From, Type, /*VerifyOnly=*/true, |
3307 | 0 | /*TreatUnavailableAsInvalid=*/false, |
3308 | 0 | /*InOverloadResolution=*/true); |
3309 | 0 | return !Check.HadError(); |
3310 | 0 | } |
3311 | | |
3312 | | /// Check that the given Index expression is a valid array designator |
3313 | | /// value. This is essentially just a wrapper around |
3314 | | /// VerifyIntegerConstantExpression that also checks for negative values |
3315 | | /// and produces a reasonable diagnostic if there is a |
3316 | | /// failure. Returns the index expression, possibly with an implicit cast |
3317 | | /// added, on success. If everything went okay, Value will receive the |
3318 | | /// value of the constant expression. |
3319 | | static ExprResult |
3320 | 0 | CheckArrayDesignatorExpr(Sema &S, Expr *Index, llvm::APSInt &Value) { |
3321 | 0 | SourceLocation Loc = Index->getBeginLoc(); |
3322 | | |
3323 | | // Make sure this is an integer constant expression. |
3324 | 0 | ExprResult Result = |
3325 | 0 | S.VerifyIntegerConstantExpression(Index, &Value, Sema::AllowFold); |
3326 | 0 | if (Result.isInvalid()) |
3327 | 0 | return Result; |
3328 | | |
3329 | 0 | if (Value.isSigned() && Value.isNegative()) |
3330 | 0 | return S.Diag(Loc, diag::err_array_designator_negative) |
3331 | 0 | << toString(Value, 10) << Index->getSourceRange(); |
3332 | | |
3333 | 0 | Value.setIsUnsigned(true); |
3334 | 0 | return Result; |
3335 | 0 | } |
3336 | | |
3337 | | ExprResult Sema::ActOnDesignatedInitializer(Designation &Desig, |
3338 | | SourceLocation EqualOrColonLoc, |
3339 | | bool GNUSyntax, |
3340 | 1 | ExprResult Init) { |
3341 | 1 | typedef DesignatedInitExpr::Designator ASTDesignator; |
3342 | | |
3343 | 1 | bool Invalid = false; |
3344 | 1 | SmallVector<ASTDesignator, 32> Designators; |
3345 | 1 | SmallVector<Expr *, 32> InitExpressions; |
3346 | | |
3347 | | // Build designators and check array designator expressions. |
3348 | 2 | for (unsigned Idx = 0; Idx < Desig.getNumDesignators(); ++Idx) { |
3349 | 1 | const Designator &D = Desig.getDesignator(Idx); |
3350 | | |
3351 | 1 | if (D.isFieldDesignator()) { |
3352 | 1 | Designators.push_back(ASTDesignator::CreateFieldDesignator( |
3353 | 1 | D.getFieldDecl(), D.getDotLoc(), D.getFieldLoc())); |
3354 | 1 | } else if (D.isArrayDesignator()) { |
3355 | 0 | Expr *Index = static_cast<Expr *>(D.getArrayIndex()); |
3356 | 0 | llvm::APSInt IndexValue; |
3357 | 0 | if (!Index->isTypeDependent() && !Index->isValueDependent()) |
3358 | 0 | Index = CheckArrayDesignatorExpr(*this, Index, IndexValue).get(); |
3359 | 0 | if (!Index) |
3360 | 0 | Invalid = true; |
3361 | 0 | else { |
3362 | 0 | Designators.push_back(ASTDesignator::CreateArrayDesignator( |
3363 | 0 | InitExpressions.size(), D.getLBracketLoc(), D.getRBracketLoc())); |
3364 | 0 | InitExpressions.push_back(Index); |
3365 | 0 | } |
3366 | 0 | } else if (D.isArrayRangeDesignator()) { |
3367 | 0 | Expr *StartIndex = static_cast<Expr *>(D.getArrayRangeStart()); |
3368 | 0 | Expr *EndIndex = static_cast<Expr *>(D.getArrayRangeEnd()); |
3369 | 0 | llvm::APSInt StartValue; |
3370 | 0 | llvm::APSInt EndValue; |
3371 | 0 | bool StartDependent = StartIndex->isTypeDependent() || |
3372 | 0 | StartIndex->isValueDependent(); |
3373 | 0 | bool EndDependent = EndIndex->isTypeDependent() || |
3374 | 0 | EndIndex->isValueDependent(); |
3375 | 0 | if (!StartDependent) |
3376 | 0 | StartIndex = |
3377 | 0 | CheckArrayDesignatorExpr(*this, StartIndex, StartValue).get(); |
3378 | 0 | if (!EndDependent) |
3379 | 0 | EndIndex = CheckArrayDesignatorExpr(*this, EndIndex, EndValue).get(); |
3380 | |
|
3381 | 0 | if (!StartIndex || !EndIndex) |
3382 | 0 | Invalid = true; |
3383 | 0 | else { |
3384 | | // Make sure we're comparing values with the same bit width. |
3385 | 0 | if (StartDependent || EndDependent) { |
3386 | | // Nothing to compute. |
3387 | 0 | } else if (StartValue.getBitWidth() > EndValue.getBitWidth()) |
3388 | 0 | EndValue = EndValue.extend(StartValue.getBitWidth()); |
3389 | 0 | else if (StartValue.getBitWidth() < EndValue.getBitWidth()) |
3390 | 0 | StartValue = StartValue.extend(EndValue.getBitWidth()); |
3391 | |
|
3392 | 0 | if (!StartDependent && !EndDependent && EndValue < StartValue) { |
3393 | 0 | Diag(D.getEllipsisLoc(), diag::err_array_designator_empty_range) |
3394 | 0 | << toString(StartValue, 10) << toString(EndValue, 10) |
3395 | 0 | << StartIndex->getSourceRange() << EndIndex->getSourceRange(); |
3396 | 0 | Invalid = true; |
3397 | 0 | } else { |
3398 | 0 | Designators.push_back(ASTDesignator::CreateArrayRangeDesignator( |
3399 | 0 | InitExpressions.size(), D.getLBracketLoc(), D.getEllipsisLoc(), |
3400 | 0 | D.getRBracketLoc())); |
3401 | 0 | InitExpressions.push_back(StartIndex); |
3402 | 0 | InitExpressions.push_back(EndIndex); |
3403 | 0 | } |
3404 | 0 | } |
3405 | 0 | } |
3406 | 1 | } |
3407 | | |
3408 | 1 | if (Invalid || Init.isInvalid()) |
3409 | 1 | return ExprError(); |
3410 | | |
3411 | 0 | return DesignatedInitExpr::Create(Context, Designators, InitExpressions, |
3412 | 0 | EqualOrColonLoc, GNUSyntax, |
3413 | 0 | Init.getAs<Expr>()); |
3414 | 1 | } |
3415 | | |
3416 | | //===----------------------------------------------------------------------===// |
3417 | | // Initialization entity |
3418 | | //===----------------------------------------------------------------------===// |
3419 | | |
3420 | | InitializedEntity::InitializedEntity(ASTContext &Context, unsigned Index, |
3421 | | const InitializedEntity &Parent) |
3422 | | : Parent(&Parent), Index(Index) |
3423 | 0 | { |
3424 | 0 | if (const ArrayType *AT = Context.getAsArrayType(Parent.getType())) { |
3425 | 0 | Kind = EK_ArrayElement; |
3426 | 0 | Type = AT->getElementType(); |
3427 | 0 | } else if (const VectorType *VT = Parent.getType()->getAs<VectorType>()) { |
3428 | 0 | Kind = EK_VectorElement; |
3429 | 0 | Type = VT->getElementType(); |
3430 | 0 | } else { |
3431 | 0 | const ComplexType *CT = Parent.getType()->getAs<ComplexType>(); |
3432 | 0 | assert(CT && "Unexpected type"); |
3433 | 0 | Kind = EK_ComplexElement; |
3434 | 0 | Type = CT->getElementType(); |
3435 | 0 | } |
3436 | 0 | } |
3437 | | |
3438 | | InitializedEntity |
3439 | | InitializedEntity::InitializeBase(ASTContext &Context, |
3440 | | const CXXBaseSpecifier *Base, |
3441 | | bool IsInheritedVirtualBase, |
3442 | 0 | const InitializedEntity *Parent) { |
3443 | 0 | InitializedEntity Result; |
3444 | 0 | Result.Kind = EK_Base; |
3445 | 0 | Result.Parent = Parent; |
3446 | 0 | Result.Base = {Base, IsInheritedVirtualBase}; |
3447 | 0 | Result.Type = Base->getType(); |
3448 | 0 | return Result; |
3449 | 0 | } |
3450 | | |
3451 | 0 | DeclarationName InitializedEntity::getName() const { |
3452 | 0 | switch (getKind()) { |
3453 | 0 | case EK_Parameter: |
3454 | 0 | case EK_Parameter_CF_Audited: { |
3455 | 0 | ParmVarDecl *D = Parameter.getPointer(); |
3456 | 0 | return (D ? D->getDeclName() : DeclarationName()); |
3457 | 0 | } |
3458 | | |
3459 | 0 | case EK_Variable: |
3460 | 0 | case EK_Member: |
3461 | 0 | case EK_ParenAggInitMember: |
3462 | 0 | case EK_Binding: |
3463 | 0 | case EK_TemplateParameter: |
3464 | 0 | return Variable.VariableOrMember->getDeclName(); |
3465 | | |
3466 | 0 | case EK_LambdaCapture: |
3467 | 0 | return DeclarationName(Capture.VarID); |
3468 | | |
3469 | 0 | case EK_Result: |
3470 | 0 | case EK_StmtExprResult: |
3471 | 0 | case EK_Exception: |
3472 | 0 | case EK_New: |
3473 | 0 | case EK_Temporary: |
3474 | 0 | case EK_Base: |
3475 | 0 | case EK_Delegating: |
3476 | 0 | case EK_ArrayElement: |
3477 | 0 | case EK_VectorElement: |
3478 | 0 | case EK_ComplexElement: |
3479 | 0 | case EK_BlockElement: |
3480 | 0 | case EK_LambdaToBlockConversionBlockElement: |
3481 | 0 | case EK_CompoundLiteralInit: |
3482 | 0 | case EK_RelatedResult: |
3483 | 0 | return DeclarationName(); |
3484 | 0 | } |
3485 | | |
3486 | 0 | llvm_unreachable("Invalid EntityKind!"); |
3487 | 0 | } |
3488 | | |
3489 | 14 | ValueDecl *InitializedEntity::getDecl() const { |
3490 | 14 | switch (getKind()) { |
3491 | 14 | case EK_Variable: |
3492 | 14 | case EK_Member: |
3493 | 14 | case EK_ParenAggInitMember: |
3494 | 14 | case EK_Binding: |
3495 | 14 | case EK_TemplateParameter: |
3496 | 14 | return Variable.VariableOrMember; |
3497 | | |
3498 | 0 | case EK_Parameter: |
3499 | 0 | case EK_Parameter_CF_Audited: |
3500 | 0 | return Parameter.getPointer(); |
3501 | | |
3502 | 0 | case EK_Result: |
3503 | 0 | case EK_StmtExprResult: |
3504 | 0 | case EK_Exception: |
3505 | 0 | case EK_New: |
3506 | 0 | case EK_Temporary: |
3507 | 0 | case EK_Base: |
3508 | 0 | case EK_Delegating: |
3509 | 0 | case EK_ArrayElement: |
3510 | 0 | case EK_VectorElement: |
3511 | 0 | case EK_ComplexElement: |
3512 | 0 | case EK_BlockElement: |
3513 | 0 | case EK_LambdaToBlockConversionBlockElement: |
3514 | 0 | case EK_LambdaCapture: |
3515 | 0 | case EK_CompoundLiteralInit: |
3516 | 0 | case EK_RelatedResult: |
3517 | 0 | return nullptr; |
3518 | 14 | } |
3519 | | |
3520 | 0 | llvm_unreachable("Invalid EntityKind!"); |
3521 | 0 | } |
3522 | | |
3523 | 0 | bool InitializedEntity::allowsNRVO() const { |
3524 | 0 | switch (getKind()) { |
3525 | 0 | case EK_Result: |
3526 | 0 | case EK_Exception: |
3527 | 0 | return LocAndNRVO.NRVO; |
3528 | | |
3529 | 0 | case EK_StmtExprResult: |
3530 | 0 | case EK_Variable: |
3531 | 0 | case EK_Parameter: |
3532 | 0 | case EK_Parameter_CF_Audited: |
3533 | 0 | case EK_TemplateParameter: |
3534 | 0 | case EK_Member: |
3535 | 0 | case EK_ParenAggInitMember: |
3536 | 0 | case EK_Binding: |
3537 | 0 | case EK_New: |
3538 | 0 | case EK_Temporary: |
3539 | 0 | case EK_CompoundLiteralInit: |
3540 | 0 | case EK_Base: |
3541 | 0 | case EK_Delegating: |
3542 | 0 | case EK_ArrayElement: |
3543 | 0 | case EK_VectorElement: |
3544 | 0 | case EK_ComplexElement: |
3545 | 0 | case EK_BlockElement: |
3546 | 0 | case EK_LambdaToBlockConversionBlockElement: |
3547 | 0 | case EK_LambdaCapture: |
3548 | 0 | case EK_RelatedResult: |
3549 | 0 | break; |
3550 | 0 | } |
3551 | | |
3552 | 0 | return false; |
3553 | 0 | } |
3554 | | |
3555 | 0 | unsigned InitializedEntity::dumpImpl(raw_ostream &OS) const { |
3556 | 0 | assert(getParent() != this); |
3557 | 0 | unsigned Depth = getParent() ? getParent()->dumpImpl(OS) : 0; |
3558 | 0 | for (unsigned I = 0; I != Depth; ++I) |
3559 | 0 | OS << "`-"; |
3560 | |
|
3561 | 0 | switch (getKind()) { |
3562 | 0 | case EK_Variable: OS << "Variable"; break; |
3563 | 0 | case EK_Parameter: OS << "Parameter"; break; |
3564 | 0 | case EK_Parameter_CF_Audited: OS << "CF audited function Parameter"; |
3565 | 0 | break; |
3566 | 0 | case EK_TemplateParameter: OS << "TemplateParameter"; break; |
3567 | 0 | case EK_Result: OS << "Result"; break; |
3568 | 0 | case EK_StmtExprResult: OS << "StmtExprResult"; break; |
3569 | 0 | case EK_Exception: OS << "Exception"; break; |
3570 | 0 | case EK_Member: |
3571 | 0 | case EK_ParenAggInitMember: |
3572 | 0 | OS << "Member"; |
3573 | 0 | break; |
3574 | 0 | case EK_Binding: OS << "Binding"; break; |
3575 | 0 | case EK_New: OS << "New"; break; |
3576 | 0 | case EK_Temporary: OS << "Temporary"; break; |
3577 | 0 | case EK_CompoundLiteralInit: OS << "CompoundLiteral";break; |
3578 | 0 | case EK_RelatedResult: OS << "RelatedResult"; break; |
3579 | 0 | case EK_Base: OS << "Base"; break; |
3580 | 0 | case EK_Delegating: OS << "Delegating"; break; |
3581 | 0 | case EK_ArrayElement: OS << "ArrayElement " << Index; break; |
3582 | 0 | case EK_VectorElement: OS << "VectorElement " << Index; break; |
3583 | 0 | case EK_ComplexElement: OS << "ComplexElement " << Index; break; |
3584 | 0 | case EK_BlockElement: OS << "Block"; break; |
3585 | 0 | case EK_LambdaToBlockConversionBlockElement: |
3586 | 0 | OS << "Block (lambda)"; |
3587 | 0 | break; |
3588 | 0 | case EK_LambdaCapture: |
3589 | 0 | OS << "LambdaCapture "; |
3590 | 0 | OS << DeclarationName(Capture.VarID); |
3591 | 0 | break; |
3592 | 0 | } |
3593 | | |
3594 | 0 | if (auto *D = getDecl()) { |
3595 | 0 | OS << " "; |
3596 | 0 | D->printQualifiedName(OS); |
3597 | 0 | } |
3598 | |
|
3599 | 0 | OS << " '" << getType() << "'\n"; |
3600 | |
|
3601 | 0 | return Depth + 1; |
3602 | 0 | } |
3603 | | |
3604 | 0 | LLVM_DUMP_METHOD void InitializedEntity::dump() const { |
3605 | 0 | dumpImpl(llvm::errs()); |
3606 | 0 | } |
3607 | | |
3608 | | //===----------------------------------------------------------------------===// |
3609 | | // Initialization sequence |
3610 | | //===----------------------------------------------------------------------===// |
3611 | | |
3612 | 7 | void InitializationSequence::Step::Destroy() { |
3613 | 7 | switch (Kind) { |
3614 | 0 | case SK_ResolveAddressOfOverloadedFunction: |
3615 | 0 | case SK_CastDerivedToBasePRValue: |
3616 | 0 | case SK_CastDerivedToBaseXValue: |
3617 | 0 | case SK_CastDerivedToBaseLValue: |
3618 | 0 | case SK_BindReference: |
3619 | 0 | case SK_BindReferenceToTemporary: |
3620 | 0 | case SK_FinalCopy: |
3621 | 0 | case SK_ExtraneousCopyToTemporary: |
3622 | 0 | case SK_UserConversion: |
3623 | 0 | case SK_QualificationConversionPRValue: |
3624 | 0 | case SK_QualificationConversionXValue: |
3625 | 0 | case SK_QualificationConversionLValue: |
3626 | 0 | case SK_FunctionReferenceConversion: |
3627 | 0 | case SK_AtomicConversion: |
3628 | 0 | case SK_ListInitialization: |
3629 | 0 | case SK_UnwrapInitList: |
3630 | 0 | case SK_RewrapInitList: |
3631 | 0 | case SK_ConstructorInitialization: |
3632 | 0 | case SK_ConstructorInitializationFromList: |
3633 | 0 | case SK_ZeroInitialization: |
3634 | 7 | case SK_CAssignment: |
3635 | 7 | case SK_StringInit: |
3636 | 7 | case SK_ObjCObjectConversion: |
3637 | 7 | case SK_ArrayLoopIndex: |
3638 | 7 | case SK_ArrayLoopInit: |
3639 | 7 | case SK_ArrayInit: |
3640 | 7 | case SK_GNUArrayInit: |
3641 | 7 | case SK_ParenthesizedArrayInit: |
3642 | 7 | case SK_PassByIndirectCopyRestore: |
3643 | 7 | case SK_PassByIndirectRestore: |
3644 | 7 | case SK_ProduceObjCObject: |
3645 | 7 | case SK_StdInitializerList: |
3646 | 7 | case SK_StdInitializerListConstructorCall: |
3647 | 7 | case SK_OCLSamplerInit: |
3648 | 7 | case SK_OCLZeroOpaqueType: |
3649 | 7 | case SK_ParenthesizedListInit: |
3650 | 7 | break; |
3651 | | |
3652 | 0 | case SK_ConversionSequence: |
3653 | 0 | case SK_ConversionSequenceNoNarrowing: |
3654 | 0 | delete ICS; |
3655 | 7 | } |
3656 | 7 | } |
3657 | | |
3658 | 0 | bool InitializationSequence::isDirectReferenceBinding() const { |
3659 | | // There can be some lvalue adjustments after the SK_BindReference step. |
3660 | 0 | for (const Step &S : llvm::reverse(Steps)) { |
3661 | 0 | if (S.Kind == SK_BindReference) |
3662 | 0 | return true; |
3663 | 0 | if (S.Kind == SK_BindReferenceToTemporary) |
3664 | 0 | return false; |
3665 | 0 | } |
3666 | 0 | return false; |
3667 | 0 | } |
3668 | | |
3669 | 0 | bool InitializationSequence::isAmbiguous() const { |
3670 | 0 | if (!Failed()) |
3671 | 0 | return false; |
3672 | | |
3673 | 0 | switch (getFailureKind()) { |
3674 | 0 | case FK_TooManyInitsForReference: |
3675 | 0 | case FK_ParenthesizedListInitForReference: |
3676 | 0 | case FK_ArrayNeedsInitList: |
3677 | 0 | case FK_ArrayNeedsInitListOrStringLiteral: |
3678 | 0 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
3679 | 0 | case FK_NarrowStringIntoWideCharArray: |
3680 | 0 | case FK_WideStringIntoCharArray: |
3681 | 0 | case FK_IncompatWideStringIntoWideChar: |
3682 | 0 | case FK_PlainStringIntoUTF8Char: |
3683 | 0 | case FK_UTF8StringIntoPlainChar: |
3684 | 0 | case FK_AddressOfOverloadFailed: // FIXME: Could do better |
3685 | 0 | case FK_NonConstLValueReferenceBindingToTemporary: |
3686 | 0 | case FK_NonConstLValueReferenceBindingToBitfield: |
3687 | 0 | case FK_NonConstLValueReferenceBindingToVectorElement: |
3688 | 0 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
3689 | 0 | case FK_NonConstLValueReferenceBindingToUnrelated: |
3690 | 0 | case FK_RValueReferenceBindingToLValue: |
3691 | 0 | case FK_ReferenceAddrspaceMismatchTemporary: |
3692 | 0 | case FK_ReferenceInitDropsQualifiers: |
3693 | 0 | case FK_ReferenceInitFailed: |
3694 | 0 | case FK_ConversionFailed: |
3695 | 0 | case FK_ConversionFromPropertyFailed: |
3696 | 0 | case FK_TooManyInitsForScalar: |
3697 | 0 | case FK_ParenthesizedListInitForScalar: |
3698 | 0 | case FK_ReferenceBindingToInitList: |
3699 | 0 | case FK_InitListBadDestinationType: |
3700 | 0 | case FK_DefaultInitOfConst: |
3701 | 0 | case FK_Incomplete: |
3702 | 0 | case FK_ArrayTypeMismatch: |
3703 | 0 | case FK_NonConstantArrayInit: |
3704 | 0 | case FK_ListInitializationFailed: |
3705 | 0 | case FK_VariableLengthArrayHasInitializer: |
3706 | 0 | case FK_PlaceholderType: |
3707 | 0 | case FK_ExplicitConstructor: |
3708 | 0 | case FK_AddressOfUnaddressableFunction: |
3709 | 0 | case FK_ParenthesizedListInitFailed: |
3710 | 0 | case FK_DesignatedInitForNonAggregate: |
3711 | 0 | return false; |
3712 | | |
3713 | 0 | case FK_ReferenceInitOverloadFailed: |
3714 | 0 | case FK_UserConversionOverloadFailed: |
3715 | 0 | case FK_ConstructorOverloadFailed: |
3716 | 0 | case FK_ListConstructorOverloadFailed: |
3717 | 0 | return FailedOverloadResult == OR_Ambiguous; |
3718 | 0 | } |
3719 | | |
3720 | 0 | llvm_unreachable("Invalid EntityKind!"); |
3721 | 0 | } |
3722 | | |
3723 | 0 | bool InitializationSequence::isConstructorInitialization() const { |
3724 | 0 | return !Steps.empty() && Steps.back().Kind == SK_ConstructorInitialization; |
3725 | 0 | } |
3726 | | |
3727 | | void |
3728 | | InitializationSequence |
3729 | | ::AddAddressOverloadResolutionStep(FunctionDecl *Function, |
3730 | | DeclAccessPair Found, |
3731 | 0 | bool HadMultipleCandidates) { |
3732 | 0 | Step S; |
3733 | 0 | S.Kind = SK_ResolveAddressOfOverloadedFunction; |
3734 | 0 | S.Type = Function->getType(); |
3735 | 0 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3736 | 0 | S.Function.Function = Function; |
3737 | 0 | S.Function.FoundDecl = Found; |
3738 | 0 | Steps.push_back(S); |
3739 | 0 | } |
3740 | | |
3741 | | void InitializationSequence::AddDerivedToBaseCastStep(QualType BaseType, |
3742 | 0 | ExprValueKind VK) { |
3743 | 0 | Step S; |
3744 | 0 | switch (VK) { |
3745 | 0 | case VK_PRValue: |
3746 | 0 | S.Kind = SK_CastDerivedToBasePRValue; |
3747 | 0 | break; |
3748 | 0 | case VK_XValue: S.Kind = SK_CastDerivedToBaseXValue; break; |
3749 | 0 | case VK_LValue: S.Kind = SK_CastDerivedToBaseLValue; break; |
3750 | 0 | } |
3751 | 0 | S.Type = BaseType; |
3752 | 0 | Steps.push_back(S); |
3753 | 0 | } |
3754 | | |
3755 | | void InitializationSequence::AddReferenceBindingStep(QualType T, |
3756 | 0 | bool BindingTemporary) { |
3757 | 0 | Step S; |
3758 | 0 | S.Kind = BindingTemporary? SK_BindReferenceToTemporary : SK_BindReference; |
3759 | 0 | S.Type = T; |
3760 | 0 | Steps.push_back(S); |
3761 | 0 | } |
3762 | | |
3763 | 0 | void InitializationSequence::AddFinalCopy(QualType T) { |
3764 | 0 | Step S; |
3765 | 0 | S.Kind = SK_FinalCopy; |
3766 | 0 | S.Type = T; |
3767 | 0 | Steps.push_back(S); |
3768 | 0 | } |
3769 | | |
3770 | 0 | void InitializationSequence::AddExtraneousCopyToTemporary(QualType T) { |
3771 | 0 | Step S; |
3772 | 0 | S.Kind = SK_ExtraneousCopyToTemporary; |
3773 | 0 | S.Type = T; |
3774 | 0 | Steps.push_back(S); |
3775 | 0 | } |
3776 | | |
3777 | | void |
3778 | | InitializationSequence::AddUserConversionStep(FunctionDecl *Function, |
3779 | | DeclAccessPair FoundDecl, |
3780 | | QualType T, |
3781 | 0 | bool HadMultipleCandidates) { |
3782 | 0 | Step S; |
3783 | 0 | S.Kind = SK_UserConversion; |
3784 | 0 | S.Type = T; |
3785 | 0 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3786 | 0 | S.Function.Function = Function; |
3787 | 0 | S.Function.FoundDecl = FoundDecl; |
3788 | 0 | Steps.push_back(S); |
3789 | 0 | } |
3790 | | |
3791 | | void InitializationSequence::AddQualificationConversionStep(QualType Ty, |
3792 | 0 | ExprValueKind VK) { |
3793 | 0 | Step S; |
3794 | 0 | S.Kind = SK_QualificationConversionPRValue; // work around a gcc warning |
3795 | 0 | switch (VK) { |
3796 | 0 | case VK_PRValue: |
3797 | 0 | S.Kind = SK_QualificationConversionPRValue; |
3798 | 0 | break; |
3799 | 0 | case VK_XValue: |
3800 | 0 | S.Kind = SK_QualificationConversionXValue; |
3801 | 0 | break; |
3802 | 0 | case VK_LValue: |
3803 | 0 | S.Kind = SK_QualificationConversionLValue; |
3804 | 0 | break; |
3805 | 0 | } |
3806 | 0 | S.Type = Ty; |
3807 | 0 | Steps.push_back(S); |
3808 | 0 | } |
3809 | | |
3810 | 0 | void InitializationSequence::AddFunctionReferenceConversionStep(QualType Ty) { |
3811 | 0 | Step S; |
3812 | 0 | S.Kind = SK_FunctionReferenceConversion; |
3813 | 0 | S.Type = Ty; |
3814 | 0 | Steps.push_back(S); |
3815 | 0 | } |
3816 | | |
3817 | 0 | void InitializationSequence::AddAtomicConversionStep(QualType Ty) { |
3818 | 0 | Step S; |
3819 | 0 | S.Kind = SK_AtomicConversion; |
3820 | 0 | S.Type = Ty; |
3821 | 0 | Steps.push_back(S); |
3822 | 0 | } |
3823 | | |
3824 | | void InitializationSequence::AddConversionSequenceStep( |
3825 | | const ImplicitConversionSequence &ICS, QualType T, |
3826 | 0 | bool TopLevelOfInitList) { |
3827 | 0 | Step S; |
3828 | 0 | S.Kind = TopLevelOfInitList ? SK_ConversionSequenceNoNarrowing |
3829 | 0 | : SK_ConversionSequence; |
3830 | 0 | S.Type = T; |
3831 | 0 | S.ICS = new ImplicitConversionSequence(ICS); |
3832 | 0 | Steps.push_back(S); |
3833 | 0 | } |
3834 | | |
3835 | 0 | void InitializationSequence::AddListInitializationStep(QualType T) { |
3836 | 0 | Step S; |
3837 | 0 | S.Kind = SK_ListInitialization; |
3838 | 0 | S.Type = T; |
3839 | 0 | Steps.push_back(S); |
3840 | 0 | } |
3841 | | |
3842 | | void InitializationSequence::AddConstructorInitializationStep( |
3843 | | DeclAccessPair FoundDecl, CXXConstructorDecl *Constructor, QualType T, |
3844 | 0 | bool HadMultipleCandidates, bool FromInitList, bool AsInitList) { |
3845 | 0 | Step S; |
3846 | 0 | S.Kind = FromInitList ? AsInitList ? SK_StdInitializerListConstructorCall |
3847 | 0 | : SK_ConstructorInitializationFromList |
3848 | 0 | : SK_ConstructorInitialization; |
3849 | 0 | S.Type = T; |
3850 | 0 | S.Function.HadMultipleCandidates = HadMultipleCandidates; |
3851 | 0 | S.Function.Function = Constructor; |
3852 | 0 | S.Function.FoundDecl = FoundDecl; |
3853 | 0 | Steps.push_back(S); |
3854 | 0 | } |
3855 | | |
3856 | 0 | void InitializationSequence::AddZeroInitializationStep(QualType T) { |
3857 | 0 | Step S; |
3858 | 0 | S.Kind = SK_ZeroInitialization; |
3859 | 0 | S.Type = T; |
3860 | 0 | Steps.push_back(S); |
3861 | 0 | } |
3862 | | |
3863 | 7 | void InitializationSequence::AddCAssignmentStep(QualType T) { |
3864 | 7 | Step S; |
3865 | 7 | S.Kind = SK_CAssignment; |
3866 | 7 | S.Type = T; |
3867 | 7 | Steps.push_back(S); |
3868 | 7 | } |
3869 | | |
3870 | 0 | void InitializationSequence::AddStringInitStep(QualType T) { |
3871 | 0 | Step S; |
3872 | 0 | S.Kind = SK_StringInit; |
3873 | 0 | S.Type = T; |
3874 | 0 | Steps.push_back(S); |
3875 | 0 | } |
3876 | | |
3877 | 0 | void InitializationSequence::AddObjCObjectConversionStep(QualType T) { |
3878 | 0 | Step S; |
3879 | 0 | S.Kind = SK_ObjCObjectConversion; |
3880 | 0 | S.Type = T; |
3881 | 0 | Steps.push_back(S); |
3882 | 0 | } |
3883 | | |
3884 | 0 | void InitializationSequence::AddArrayInitStep(QualType T, bool IsGNUExtension) { |
3885 | 0 | Step S; |
3886 | 0 | S.Kind = IsGNUExtension ? SK_GNUArrayInit : SK_ArrayInit; |
3887 | 0 | S.Type = T; |
3888 | 0 | Steps.push_back(S); |
3889 | 0 | } |
3890 | | |
3891 | 0 | void InitializationSequence::AddArrayInitLoopStep(QualType T, QualType EltT) { |
3892 | 0 | Step S; |
3893 | 0 | S.Kind = SK_ArrayLoopIndex; |
3894 | 0 | S.Type = EltT; |
3895 | 0 | Steps.insert(Steps.begin(), S); |
3896 | |
|
3897 | 0 | S.Kind = SK_ArrayLoopInit; |
3898 | 0 | S.Type = T; |
3899 | 0 | Steps.push_back(S); |
3900 | 0 | } |
3901 | | |
3902 | 0 | void InitializationSequence::AddParenthesizedArrayInitStep(QualType T) { |
3903 | 0 | Step S; |
3904 | 0 | S.Kind = SK_ParenthesizedArrayInit; |
3905 | 0 | S.Type = T; |
3906 | 0 | Steps.push_back(S); |
3907 | 0 | } |
3908 | | |
3909 | | void InitializationSequence::AddPassByIndirectCopyRestoreStep(QualType type, |
3910 | 0 | bool shouldCopy) { |
3911 | 0 | Step s; |
3912 | 0 | s.Kind = (shouldCopy ? SK_PassByIndirectCopyRestore |
3913 | 0 | : SK_PassByIndirectRestore); |
3914 | 0 | s.Type = type; |
3915 | 0 | Steps.push_back(s); |
3916 | 0 | } |
3917 | | |
3918 | 0 | void InitializationSequence::AddProduceObjCObjectStep(QualType T) { |
3919 | 0 | Step S; |
3920 | 0 | S.Kind = SK_ProduceObjCObject; |
3921 | 0 | S.Type = T; |
3922 | 0 | Steps.push_back(S); |
3923 | 0 | } |
3924 | | |
3925 | 0 | void InitializationSequence::AddStdInitializerListConstructionStep(QualType T) { |
3926 | 0 | Step S; |
3927 | 0 | S.Kind = SK_StdInitializerList; |
3928 | 0 | S.Type = T; |
3929 | 0 | Steps.push_back(S); |
3930 | 0 | } |
3931 | | |
3932 | 0 | void InitializationSequence::AddOCLSamplerInitStep(QualType T) { |
3933 | 0 | Step S; |
3934 | 0 | S.Kind = SK_OCLSamplerInit; |
3935 | 0 | S.Type = T; |
3936 | 0 | Steps.push_back(S); |
3937 | 0 | } |
3938 | | |
3939 | 0 | void InitializationSequence::AddOCLZeroOpaqueTypeStep(QualType T) { |
3940 | 0 | Step S; |
3941 | 0 | S.Kind = SK_OCLZeroOpaqueType; |
3942 | 0 | S.Type = T; |
3943 | 0 | Steps.push_back(S); |
3944 | 0 | } |
3945 | | |
3946 | 0 | void InitializationSequence::AddParenthesizedListInitStep(QualType T) { |
3947 | 0 | Step S; |
3948 | 0 | S.Kind = SK_ParenthesizedListInit; |
3949 | 0 | S.Type = T; |
3950 | 0 | Steps.push_back(S); |
3951 | 0 | } |
3952 | | |
3953 | | void InitializationSequence::RewrapReferenceInitList(QualType T, |
3954 | 0 | InitListExpr *Syntactic) { |
3955 | 0 | assert(Syntactic->getNumInits() == 1 && |
3956 | 0 | "Can only rewrap trivial init lists."); |
3957 | 0 | Step S; |
3958 | 0 | S.Kind = SK_UnwrapInitList; |
3959 | 0 | S.Type = Syntactic->getInit(0)->getType(); |
3960 | 0 | Steps.insert(Steps.begin(), S); |
3961 | |
|
3962 | 0 | S.Kind = SK_RewrapInitList; |
3963 | 0 | S.Type = T; |
3964 | 0 | S.WrappingSyntacticList = Syntactic; |
3965 | 0 | Steps.push_back(S); |
3966 | 0 | } |
3967 | | |
3968 | | void InitializationSequence::SetOverloadFailure(FailureKind Failure, |
3969 | 0 | OverloadingResult Result) { |
3970 | 0 | setSequenceKind(FailedSequence); |
3971 | 0 | this->Failure = Failure; |
3972 | 0 | this->FailedOverloadResult = Result; |
3973 | 0 | } |
3974 | | |
3975 | | //===----------------------------------------------------------------------===// |
3976 | | // Attempt initialization |
3977 | | //===----------------------------------------------------------------------===// |
3978 | | |
3979 | | /// Tries to add a zero initializer. Returns true if that worked. |
3980 | | static bool |
3981 | | maybeRecoverWithZeroInitialization(Sema &S, InitializationSequence &Sequence, |
3982 | 0 | const InitializedEntity &Entity) { |
3983 | 0 | if (Entity.getKind() != InitializedEntity::EK_Variable) |
3984 | 0 | return false; |
3985 | | |
3986 | 0 | VarDecl *VD = cast<VarDecl>(Entity.getDecl()); |
3987 | 0 | if (VD->getInit() || VD->getEndLoc().isMacroID()) |
3988 | 0 | return false; |
3989 | | |
3990 | 0 | QualType VariableTy = VD->getType().getCanonicalType(); |
3991 | 0 | SourceLocation Loc = S.getLocForEndOfToken(VD->getEndLoc()); |
3992 | 0 | std::string Init = S.getFixItZeroInitializerForType(VariableTy, Loc); |
3993 | 0 | if (!Init.empty()) { |
3994 | 0 | Sequence.AddZeroInitializationStep(Entity.getType()); |
3995 | 0 | Sequence.SetZeroInitializationFixit(Init, Loc); |
3996 | 0 | return true; |
3997 | 0 | } |
3998 | 0 | return false; |
3999 | 0 | } |
4000 | | |
4001 | | static void MaybeProduceObjCObject(Sema &S, |
4002 | | InitializationSequence &Sequence, |
4003 | 7 | const InitializedEntity &Entity) { |
4004 | 7 | if (!S.getLangOpts().ObjCAutoRefCount) return; |
4005 | | |
4006 | | /// When initializing a parameter, produce the value if it's marked |
4007 | | /// __attribute__((ns_consumed)). |
4008 | 0 | if (Entity.isParameterKind()) { |
4009 | 0 | if (!Entity.isParameterConsumed()) |
4010 | 0 | return; |
4011 | | |
4012 | 0 | assert(Entity.getType()->isObjCRetainableType() && |
4013 | 0 | "consuming an object of unretainable type?"); |
4014 | 0 | Sequence.AddProduceObjCObjectStep(Entity.getType()); |
4015 | | |
4016 | | /// When initializing a return value, if the return type is a |
4017 | | /// retainable type, then returns need to immediately retain the |
4018 | | /// object. If an autorelease is required, it will be done at the |
4019 | | /// last instant. |
4020 | 0 | } else if (Entity.getKind() == InitializedEntity::EK_Result || |
4021 | 0 | Entity.getKind() == InitializedEntity::EK_StmtExprResult) { |
4022 | 0 | if (!Entity.getType()->isObjCRetainableType()) |
4023 | 0 | return; |
4024 | | |
4025 | 0 | Sequence.AddProduceObjCObjectStep(Entity.getType()); |
4026 | 0 | } |
4027 | 0 | } |
4028 | | |
4029 | | static void TryListInitialization(Sema &S, |
4030 | | const InitializedEntity &Entity, |
4031 | | const InitializationKind &Kind, |
4032 | | InitListExpr *InitList, |
4033 | | InitializationSequence &Sequence, |
4034 | | bool TreatUnavailableAsInvalid); |
4035 | | |
4036 | | /// When initializing from init list via constructor, handle |
4037 | | /// initialization of an object of type std::initializer_list<T>. |
4038 | | /// |
4039 | | /// \return true if we have handled initialization of an object of type |
4040 | | /// std::initializer_list<T>, false otherwise. |
4041 | | static bool TryInitializerListConstruction(Sema &S, |
4042 | | InitListExpr *List, |
4043 | | QualType DestType, |
4044 | | InitializationSequence &Sequence, |
4045 | 0 | bool TreatUnavailableAsInvalid) { |
4046 | 0 | QualType E; |
4047 | 0 | if (!S.isStdInitializerList(DestType, &E)) |
4048 | 0 | return false; |
4049 | | |
4050 | 0 | if (!S.isCompleteType(List->getExprLoc(), E)) { |
4051 | 0 | Sequence.setIncompleteTypeFailure(E); |
4052 | 0 | return true; |
4053 | 0 | } |
4054 | | |
4055 | | // Try initializing a temporary array from the init list. |
4056 | 0 | QualType ArrayType = S.Context.getConstantArrayType( |
4057 | 0 | E.withConst(), |
4058 | 0 | llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), |
4059 | 0 | List->getNumInits()), |
4060 | 0 | nullptr, clang::ArraySizeModifier::Normal, 0); |
4061 | 0 | InitializedEntity HiddenArray = |
4062 | 0 | InitializedEntity::InitializeTemporary(ArrayType); |
4063 | 0 | InitializationKind Kind = InitializationKind::CreateDirectList( |
4064 | 0 | List->getExprLoc(), List->getBeginLoc(), List->getEndLoc()); |
4065 | 0 | TryListInitialization(S, HiddenArray, Kind, List, Sequence, |
4066 | 0 | TreatUnavailableAsInvalid); |
4067 | 0 | if (Sequence) |
4068 | 0 | Sequence.AddStdInitializerListConstructionStep(DestType); |
4069 | 0 | return true; |
4070 | 0 | } |
4071 | | |
4072 | | /// Determine if the constructor has the signature of a copy or move |
4073 | | /// constructor for the type T of the class in which it was found. That is, |
4074 | | /// determine if its first parameter is of type T or reference to (possibly |
4075 | | /// cv-qualified) T. |
4076 | | static bool hasCopyOrMoveCtorParam(ASTContext &Ctx, |
4077 | 0 | const ConstructorInfo &Info) { |
4078 | 0 | if (Info.Constructor->getNumParams() == 0) |
4079 | 0 | return false; |
4080 | | |
4081 | 0 | QualType ParmT = |
4082 | 0 | Info.Constructor->getParamDecl(0)->getType().getNonReferenceType(); |
4083 | 0 | QualType ClassT = |
4084 | 0 | Ctx.getRecordType(cast<CXXRecordDecl>(Info.FoundDecl->getDeclContext())); |
4085 | |
|
4086 | 0 | return Ctx.hasSameUnqualifiedType(ParmT, ClassT); |
4087 | 0 | } |
4088 | | |
4089 | | static OverloadingResult ResolveConstructorOverload( |
4090 | | Sema &S, SourceLocation DeclLoc, MultiExprArg Args, |
4091 | | OverloadCandidateSet &CandidateSet, QualType DestType, |
4092 | | DeclContext::lookup_result Ctors, OverloadCandidateSet::iterator &Best, |
4093 | | bool CopyInitializing, bool AllowExplicit, bool OnlyListConstructors, |
4094 | | bool IsListInit, bool RequireActualConstructor, |
4095 | 0 | bool SecondStepOfCopyInit = false) { |
4096 | 0 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByConstructor); |
4097 | 0 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); |
4098 | |
|
4099 | 0 | for (NamedDecl *D : Ctors) { |
4100 | 0 | auto Info = getConstructorInfo(D); |
4101 | 0 | if (!Info.Constructor || Info.Constructor->isInvalidDecl()) |
4102 | 0 | continue; |
4103 | | |
4104 | 0 | if (OnlyListConstructors && !S.isInitListConstructor(Info.Constructor)) |
4105 | 0 | continue; |
4106 | | |
4107 | | // C++11 [over.best.ics]p4: |
4108 | | // ... and the constructor or user-defined conversion function is a |
4109 | | // candidate by |
4110 | | // - 13.3.1.3, when the argument is the temporary in the second step |
4111 | | // of a class copy-initialization, or |
4112 | | // - 13.3.1.4, 13.3.1.5, or 13.3.1.6 (in all cases), [not handled here] |
4113 | | // - the second phase of 13.3.1.7 when the initializer list has exactly |
4114 | | // one element that is itself an initializer list, and the target is |
4115 | | // the first parameter of a constructor of class X, and the conversion |
4116 | | // is to X or reference to (possibly cv-qualified X), |
4117 | | // user-defined conversion sequences are not considered. |
4118 | 0 | bool SuppressUserConversions = |
4119 | 0 | SecondStepOfCopyInit || |
4120 | 0 | (IsListInit && Args.size() == 1 && isa<InitListExpr>(Args[0]) && |
4121 | 0 | hasCopyOrMoveCtorParam(S.Context, Info)); |
4122 | |
|
4123 | 0 | if (Info.ConstructorTmpl) |
4124 | 0 | S.AddTemplateOverloadCandidate( |
4125 | 0 | Info.ConstructorTmpl, Info.FoundDecl, |
4126 | 0 | /*ExplicitArgs*/ nullptr, Args, CandidateSet, SuppressUserConversions, |
4127 | 0 | /*PartialOverloading=*/false, AllowExplicit); |
4128 | 0 | else { |
4129 | | // C++ [over.match.copy]p1: |
4130 | | // - When initializing a temporary to be bound to the first parameter |
4131 | | // of a constructor [for type T] that takes a reference to possibly |
4132 | | // cv-qualified T as its first argument, called with a single |
4133 | | // argument in the context of direct-initialization, explicit |
4134 | | // conversion functions are also considered. |
4135 | | // FIXME: What if a constructor template instantiates to such a signature? |
4136 | 0 | bool AllowExplicitConv = AllowExplicit && !CopyInitializing && |
4137 | 0 | Args.size() == 1 && |
4138 | 0 | hasCopyOrMoveCtorParam(S.Context, Info); |
4139 | 0 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, Args, |
4140 | 0 | CandidateSet, SuppressUserConversions, |
4141 | 0 | /*PartialOverloading=*/false, AllowExplicit, |
4142 | 0 | AllowExplicitConv); |
4143 | 0 | } |
4144 | 0 | } |
4145 | | |
4146 | | // FIXME: Work around a bug in C++17 guaranteed copy elision. |
4147 | | // |
4148 | | // When initializing an object of class type T by constructor |
4149 | | // ([over.match.ctor]) or by list-initialization ([over.match.list]) |
4150 | | // from a single expression of class type U, conversion functions of |
4151 | | // U that convert to the non-reference type cv T are candidates. |
4152 | | // Explicit conversion functions are only candidates during |
4153 | | // direct-initialization. |
4154 | | // |
4155 | | // Note: SecondStepOfCopyInit is only ever true in this case when |
4156 | | // evaluating whether to produce a C++98 compatibility warning. |
4157 | 0 | if (S.getLangOpts().CPlusPlus17 && Args.size() == 1 && |
4158 | 0 | !RequireActualConstructor && !SecondStepOfCopyInit) { |
4159 | 0 | Expr *Initializer = Args[0]; |
4160 | 0 | auto *SourceRD = Initializer->getType()->getAsCXXRecordDecl(); |
4161 | 0 | if (SourceRD && S.isCompleteType(DeclLoc, Initializer->getType())) { |
4162 | 0 | const auto &Conversions = SourceRD->getVisibleConversionFunctions(); |
4163 | 0 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
4164 | 0 | NamedDecl *D = *I; |
4165 | 0 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
4166 | 0 | D = D->getUnderlyingDecl(); |
4167 | |
|
4168 | 0 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
4169 | 0 | CXXConversionDecl *Conv; |
4170 | 0 | if (ConvTemplate) |
4171 | 0 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
4172 | 0 | else |
4173 | 0 | Conv = cast<CXXConversionDecl>(D); |
4174 | |
|
4175 | 0 | if (ConvTemplate) |
4176 | 0 | S.AddTemplateConversionCandidate( |
4177 | 0 | ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, |
4178 | 0 | CandidateSet, AllowExplicit, AllowExplicit, |
4179 | 0 | /*AllowResultConversion*/ false); |
4180 | 0 | else |
4181 | 0 | S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, |
4182 | 0 | DestType, CandidateSet, AllowExplicit, |
4183 | 0 | AllowExplicit, |
4184 | 0 | /*AllowResultConversion*/ false); |
4185 | 0 | } |
4186 | 0 | } |
4187 | 0 | } |
4188 | | |
4189 | | // Perform overload resolution and return the result. |
4190 | 0 | return CandidateSet.BestViableFunction(S, DeclLoc, Best); |
4191 | 0 | } |
4192 | | |
4193 | | /// Attempt initialization by constructor (C++ [dcl.init]), which |
4194 | | /// enumerates the constructors of the initialized entity and performs overload |
4195 | | /// resolution to select the best. |
4196 | | /// \param DestType The destination class type. |
4197 | | /// \param DestArrayType The destination type, which is either DestType or |
4198 | | /// a (possibly multidimensional) array of DestType. |
4199 | | /// \param IsListInit Is this list-initialization? |
4200 | | /// \param IsInitListCopy Is this non-list-initialization resulting from a |
4201 | | /// list-initialization from {x} where x is the same |
4202 | | /// type as the entity? |
4203 | | static void TryConstructorInitialization(Sema &S, |
4204 | | const InitializedEntity &Entity, |
4205 | | const InitializationKind &Kind, |
4206 | | MultiExprArg Args, QualType DestType, |
4207 | | QualType DestArrayType, |
4208 | | InitializationSequence &Sequence, |
4209 | | bool IsListInit = false, |
4210 | 0 | bool IsInitListCopy = false) { |
4211 | 0 | assert(((!IsListInit && !IsInitListCopy) || |
4212 | 0 | (Args.size() == 1 && isa<InitListExpr>(Args[0]))) && |
4213 | 0 | "IsListInit/IsInitListCopy must come with a single initializer list " |
4214 | 0 | "argument."); |
4215 | 0 | InitListExpr *ILE = |
4216 | 0 | (IsListInit || IsInitListCopy) ? cast<InitListExpr>(Args[0]) : nullptr; |
4217 | 0 | MultiExprArg UnwrappedArgs = |
4218 | 0 | ILE ? MultiExprArg(ILE->getInits(), ILE->getNumInits()) : Args; |
4219 | | |
4220 | | // The type we're constructing needs to be complete. |
4221 | 0 | if (!S.isCompleteType(Kind.getLocation(), DestType)) { |
4222 | 0 | Sequence.setIncompleteTypeFailure(DestType); |
4223 | 0 | return; |
4224 | 0 | } |
4225 | | |
4226 | 0 | bool RequireActualConstructor = |
4227 | 0 | !(Entity.getKind() != InitializedEntity::EK_Base && |
4228 | 0 | Entity.getKind() != InitializedEntity::EK_Delegating && |
4229 | 0 | Entity.getKind() != |
4230 | 0 | InitializedEntity::EK_LambdaToBlockConversionBlockElement); |
4231 | | |
4232 | | // C++17 [dcl.init]p17: |
4233 | | // - If the initializer expression is a prvalue and the cv-unqualified |
4234 | | // version of the source type is the same class as the class of the |
4235 | | // destination, the initializer expression is used to initialize the |
4236 | | // destination object. |
4237 | | // Per DR (no number yet), this does not apply when initializing a base |
4238 | | // class or delegating to another constructor from a mem-initializer. |
4239 | | // ObjC++: Lambda captured by the block in the lambda to block conversion |
4240 | | // should avoid copy elision. |
4241 | 0 | if (S.getLangOpts().CPlusPlus17 && !RequireActualConstructor && |
4242 | 0 | UnwrappedArgs.size() == 1 && UnwrappedArgs[0]->isPRValue() && |
4243 | 0 | S.Context.hasSameUnqualifiedType(UnwrappedArgs[0]->getType(), DestType)) { |
4244 | | // Convert qualifications if necessary. |
4245 | 0 | Sequence.AddQualificationConversionStep(DestType, VK_PRValue); |
4246 | 0 | if (ILE) |
4247 | 0 | Sequence.RewrapReferenceInitList(DestType, ILE); |
4248 | 0 | return; |
4249 | 0 | } |
4250 | | |
4251 | 0 | const RecordType *DestRecordType = DestType->getAs<RecordType>(); |
4252 | 0 | assert(DestRecordType && "Constructor initialization requires record type"); |
4253 | 0 | CXXRecordDecl *DestRecordDecl |
4254 | 0 | = cast<CXXRecordDecl>(DestRecordType->getDecl()); |
4255 | | |
4256 | | // Build the candidate set directly in the initialization sequence |
4257 | | // structure, so that it will persist if we fail. |
4258 | 0 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
4259 | | |
4260 | | // Determine whether we are allowed to call explicit constructors or |
4261 | | // explicit conversion operators. |
4262 | 0 | bool AllowExplicit = Kind.AllowExplicit() || IsListInit; |
4263 | 0 | bool CopyInitialization = Kind.getKind() == InitializationKind::IK_Copy; |
4264 | | |
4265 | | // - Otherwise, if T is a class type, constructors are considered. The |
4266 | | // applicable constructors are enumerated, and the best one is chosen |
4267 | | // through overload resolution. |
4268 | 0 | DeclContext::lookup_result Ctors = S.LookupConstructors(DestRecordDecl); |
4269 | |
|
4270 | 0 | OverloadingResult Result = OR_No_Viable_Function; |
4271 | 0 | OverloadCandidateSet::iterator Best; |
4272 | 0 | bool AsInitializerList = false; |
4273 | | |
4274 | | // C++11 [over.match.list]p1, per DR1467: |
4275 | | // When objects of non-aggregate type T are list-initialized, such that |
4276 | | // 8.5.4 [dcl.init.list] specifies that overload resolution is performed |
4277 | | // according to the rules in this section, overload resolution selects |
4278 | | // the constructor in two phases: |
4279 | | // |
4280 | | // - Initially, the candidate functions are the initializer-list |
4281 | | // constructors of the class T and the argument list consists of the |
4282 | | // initializer list as a single argument. |
4283 | 0 | if (IsListInit) { |
4284 | 0 | AsInitializerList = true; |
4285 | | |
4286 | | // If the initializer list has no elements and T has a default constructor, |
4287 | | // the first phase is omitted. |
4288 | 0 | if (!(UnwrappedArgs.empty() && S.LookupDefaultConstructor(DestRecordDecl))) |
4289 | 0 | Result = ResolveConstructorOverload( |
4290 | 0 | S, Kind.getLocation(), Args, CandidateSet, DestType, Ctors, Best, |
4291 | 0 | CopyInitialization, AllowExplicit, |
4292 | 0 | /*OnlyListConstructors=*/true, IsListInit, RequireActualConstructor); |
4293 | 0 | } |
4294 | | |
4295 | | // C++11 [over.match.list]p1: |
4296 | | // - If no viable initializer-list constructor is found, overload resolution |
4297 | | // is performed again, where the candidate functions are all the |
4298 | | // constructors of the class T and the argument list consists of the |
4299 | | // elements of the initializer list. |
4300 | 0 | if (Result == OR_No_Viable_Function) { |
4301 | 0 | AsInitializerList = false; |
4302 | 0 | Result = ResolveConstructorOverload( |
4303 | 0 | S, Kind.getLocation(), UnwrappedArgs, CandidateSet, DestType, Ctors, |
4304 | 0 | Best, CopyInitialization, AllowExplicit, |
4305 | 0 | /*OnlyListConstructors=*/false, IsListInit, RequireActualConstructor); |
4306 | 0 | } |
4307 | 0 | if (Result) { |
4308 | 0 | Sequence.SetOverloadFailure( |
4309 | 0 | IsListInit ? InitializationSequence::FK_ListConstructorOverloadFailed |
4310 | 0 | : InitializationSequence::FK_ConstructorOverloadFailed, |
4311 | 0 | Result); |
4312 | |
|
4313 | 0 | if (Result != OR_Deleted) |
4314 | 0 | return; |
4315 | 0 | } |
4316 | | |
4317 | 0 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
4318 | | |
4319 | | // In C++17, ResolveConstructorOverload can select a conversion function |
4320 | | // instead of a constructor. |
4321 | 0 | if (auto *CD = dyn_cast<CXXConversionDecl>(Best->Function)) { |
4322 | | // Add the user-defined conversion step that calls the conversion function. |
4323 | 0 | QualType ConvType = CD->getConversionType(); |
4324 | 0 | assert(S.Context.hasSameUnqualifiedType(ConvType, DestType) && |
4325 | 0 | "should not have selected this conversion function"); |
4326 | 0 | Sequence.AddUserConversionStep(CD, Best->FoundDecl, ConvType, |
4327 | 0 | HadMultipleCandidates); |
4328 | 0 | if (!S.Context.hasSameType(ConvType, DestType)) |
4329 | 0 | Sequence.AddQualificationConversionStep(DestType, VK_PRValue); |
4330 | 0 | if (IsListInit) |
4331 | 0 | Sequence.RewrapReferenceInitList(Entity.getType(), ILE); |
4332 | 0 | return; |
4333 | 0 | } |
4334 | | |
4335 | 0 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); |
4336 | 0 | if (Result != OR_Deleted) { |
4337 | | // C++11 [dcl.init]p6: |
4338 | | // If a program calls for the default initialization of an object |
4339 | | // of a const-qualified type T, T shall be a class type with a |
4340 | | // user-provided default constructor. |
4341 | | // C++ core issue 253 proposal: |
4342 | | // If the implicit default constructor initializes all subobjects, no |
4343 | | // initializer should be required. |
4344 | | // The 253 proposal is for example needed to process libstdc++ headers |
4345 | | // in 5.x. |
4346 | 0 | if (Kind.getKind() == InitializationKind::IK_Default && |
4347 | 0 | Entity.getType().isConstQualified()) { |
4348 | 0 | if (!CtorDecl->getParent()->allowConstDefaultInit()) { |
4349 | 0 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
4350 | 0 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
4351 | 0 | return; |
4352 | 0 | } |
4353 | 0 | } |
4354 | | |
4355 | | // C++11 [over.match.list]p1: |
4356 | | // In copy-list-initialization, if an explicit constructor is chosen, the |
4357 | | // initializer is ill-formed. |
4358 | 0 | if (IsListInit && !Kind.AllowExplicit() && CtorDecl->isExplicit()) { |
4359 | 0 | Sequence.SetFailed(InitializationSequence::FK_ExplicitConstructor); |
4360 | 0 | return; |
4361 | 0 | } |
4362 | 0 | } |
4363 | | |
4364 | | // [class.copy.elision]p3: |
4365 | | // In some copy-initialization contexts, a two-stage overload resolution |
4366 | | // is performed. |
4367 | | // If the first overload resolution selects a deleted function, we also |
4368 | | // need the initialization sequence to decide whether to perform the second |
4369 | | // overload resolution. |
4370 | | // For deleted functions in other contexts, there is no need to get the |
4371 | | // initialization sequence. |
4372 | 0 | if (Result == OR_Deleted && Kind.getKind() != InitializationKind::IK_Copy) |
4373 | 0 | return; |
4374 | | |
4375 | | // Add the constructor initialization step. Any cv-qualification conversion is |
4376 | | // subsumed by the initialization. |
4377 | 0 | Sequence.AddConstructorInitializationStep( |
4378 | 0 | Best->FoundDecl, CtorDecl, DestArrayType, HadMultipleCandidates, |
4379 | 0 | IsListInit | IsInitListCopy, AsInitializerList); |
4380 | 0 | } |
4381 | | |
4382 | | static bool |
4383 | | ResolveOverloadedFunctionForReferenceBinding(Sema &S, |
4384 | | Expr *Initializer, |
4385 | | QualType &SourceType, |
4386 | | QualType &UnqualifiedSourceType, |
4387 | | QualType UnqualifiedTargetType, |
4388 | 0 | InitializationSequence &Sequence) { |
4389 | 0 | if (S.Context.getCanonicalType(UnqualifiedSourceType) == |
4390 | 0 | S.Context.OverloadTy) { |
4391 | 0 | DeclAccessPair Found; |
4392 | 0 | bool HadMultipleCandidates = false; |
4393 | 0 | if (FunctionDecl *Fn |
4394 | 0 | = S.ResolveAddressOfOverloadedFunction(Initializer, |
4395 | 0 | UnqualifiedTargetType, |
4396 | 0 | false, Found, |
4397 | 0 | &HadMultipleCandidates)) { |
4398 | 0 | Sequence.AddAddressOverloadResolutionStep(Fn, Found, |
4399 | 0 | HadMultipleCandidates); |
4400 | 0 | SourceType = Fn->getType(); |
4401 | 0 | UnqualifiedSourceType = SourceType.getUnqualifiedType(); |
4402 | 0 | } else if (!UnqualifiedTargetType->isRecordType()) { |
4403 | 0 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
4404 | 0 | return true; |
4405 | 0 | } |
4406 | 0 | } |
4407 | 0 | return false; |
4408 | 0 | } |
4409 | | |
4410 | | static void TryReferenceInitializationCore(Sema &S, |
4411 | | const InitializedEntity &Entity, |
4412 | | const InitializationKind &Kind, |
4413 | | Expr *Initializer, |
4414 | | QualType cv1T1, QualType T1, |
4415 | | Qualifiers T1Quals, |
4416 | | QualType cv2T2, QualType T2, |
4417 | | Qualifiers T2Quals, |
4418 | | InitializationSequence &Sequence, |
4419 | | bool TopLevelOfInitList); |
4420 | | |
4421 | | static void TryValueInitialization(Sema &S, |
4422 | | const InitializedEntity &Entity, |
4423 | | const InitializationKind &Kind, |
4424 | | InitializationSequence &Sequence, |
4425 | | InitListExpr *InitList = nullptr); |
4426 | | |
4427 | | /// Attempt list initialization of a reference. |
4428 | | static void TryReferenceListInitialization(Sema &S, |
4429 | | const InitializedEntity &Entity, |
4430 | | const InitializationKind &Kind, |
4431 | | InitListExpr *InitList, |
4432 | | InitializationSequence &Sequence, |
4433 | 0 | bool TreatUnavailableAsInvalid) { |
4434 | | // First, catch C++03 where this isn't possible. |
4435 | 0 | if (!S.getLangOpts().CPlusPlus11) { |
4436 | 0 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
4437 | 0 | return; |
4438 | 0 | } |
4439 | | // Can't reference initialize a compound literal. |
4440 | 0 | if (Entity.getKind() == InitializedEntity::EK_CompoundLiteralInit) { |
4441 | 0 | Sequence.SetFailed(InitializationSequence::FK_ReferenceBindingToInitList); |
4442 | 0 | return; |
4443 | 0 | } |
4444 | | |
4445 | 0 | QualType DestType = Entity.getType(); |
4446 | 0 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
4447 | 0 | Qualifiers T1Quals; |
4448 | 0 | QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); |
4449 | | |
4450 | | // Reference initialization via an initializer list works thus: |
4451 | | // If the initializer list consists of a single element that is |
4452 | | // reference-related to the referenced type, bind directly to that element |
4453 | | // (possibly creating temporaries). |
4454 | | // Otherwise, initialize a temporary with the initializer list and |
4455 | | // bind to that. |
4456 | 0 | if (InitList->getNumInits() == 1) { |
4457 | 0 | Expr *Initializer = InitList->getInit(0); |
4458 | 0 | QualType cv2T2 = S.getCompletedType(Initializer); |
4459 | 0 | Qualifiers T2Quals; |
4460 | 0 | QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); |
4461 | | |
4462 | | // If this fails, creating a temporary wouldn't work either. |
4463 | 0 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, |
4464 | 0 | T1, Sequence)) |
4465 | 0 | return; |
4466 | | |
4467 | 0 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
4468 | 0 | Sema::ReferenceCompareResult RefRelationship |
4469 | 0 | = S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2); |
4470 | 0 | if (RefRelationship >= Sema::Ref_Related) { |
4471 | | // Try to bind the reference here. |
4472 | 0 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
4473 | 0 | T1Quals, cv2T2, T2, T2Quals, Sequence, |
4474 | 0 | /*TopLevelOfInitList=*/true); |
4475 | 0 | if (Sequence) |
4476 | 0 | Sequence.RewrapReferenceInitList(cv1T1, InitList); |
4477 | 0 | return; |
4478 | 0 | } |
4479 | | |
4480 | | // Update the initializer if we've resolved an overloaded function. |
4481 | 0 | if (Sequence.step_begin() != Sequence.step_end()) |
4482 | 0 | Sequence.RewrapReferenceInitList(cv1T1, InitList); |
4483 | 0 | } |
4484 | | // Perform address space compatibility check. |
4485 | 0 | QualType cv1T1IgnoreAS = cv1T1; |
4486 | 0 | if (T1Quals.hasAddressSpace()) { |
4487 | 0 | Qualifiers T2Quals; |
4488 | 0 | (void)S.Context.getUnqualifiedArrayType(InitList->getType(), T2Quals); |
4489 | 0 | if (!T1Quals.isAddressSpaceSupersetOf(T2Quals)) { |
4490 | 0 | Sequence.SetFailed( |
4491 | 0 | InitializationSequence::FK_ReferenceInitDropsQualifiers); |
4492 | 0 | return; |
4493 | 0 | } |
4494 | | // Ignore address space of reference type at this point and perform address |
4495 | | // space conversion after the reference binding step. |
4496 | 0 | cv1T1IgnoreAS = |
4497 | 0 | S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()); |
4498 | 0 | } |
4499 | | // Not reference-related. Create a temporary and bind to that. |
4500 | 0 | InitializedEntity TempEntity = |
4501 | 0 | InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); |
4502 | |
|
4503 | 0 | TryListInitialization(S, TempEntity, Kind, InitList, Sequence, |
4504 | 0 | TreatUnavailableAsInvalid); |
4505 | 0 | if (Sequence) { |
4506 | 0 | if (DestType->isRValueReferenceType() || |
4507 | 0 | (T1Quals.hasConst() && !T1Quals.hasVolatile())) { |
4508 | 0 | if (S.getLangOpts().CPlusPlus20 && |
4509 | 0 | isa<IncompleteArrayType>(T1->getUnqualifiedDesugaredType()) && |
4510 | 0 | DestType->isRValueReferenceType()) { |
4511 | | // C++20 [dcl.init.list]p3.10: |
4512 | | // List-initialization of an object or reference of type T is defined as |
4513 | | // follows: |
4514 | | // ..., unless T is “reference to array of unknown bound of U”, in which |
4515 | | // case the type of the prvalue is the type of x in the declaration U |
4516 | | // x[] H, where H is the initializer list. |
4517 | 0 | Sequence.AddQualificationConversionStep(cv1T1, clang::VK_PRValue); |
4518 | 0 | } |
4519 | 0 | Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, |
4520 | 0 | /*BindingTemporary=*/true); |
4521 | 0 | if (T1Quals.hasAddressSpace()) |
4522 | 0 | Sequence.AddQualificationConversionStep( |
4523 | 0 | cv1T1, DestType->isRValueReferenceType() ? VK_XValue : VK_LValue); |
4524 | 0 | } else |
4525 | 0 | Sequence.SetFailed( |
4526 | 0 | InitializationSequence::FK_NonConstLValueReferenceBindingToTemporary); |
4527 | 0 | } |
4528 | 0 | } |
4529 | | |
4530 | | /// Attempt list initialization (C++0x [dcl.init.list]) |
4531 | | static void TryListInitialization(Sema &S, |
4532 | | const InitializedEntity &Entity, |
4533 | | const InitializationKind &Kind, |
4534 | | InitListExpr *InitList, |
4535 | | InitializationSequence &Sequence, |
4536 | 0 | bool TreatUnavailableAsInvalid) { |
4537 | 0 | QualType DestType = Entity.getType(); |
4538 | | |
4539 | | // C++ doesn't allow scalar initialization with more than one argument. |
4540 | | // But C99 complex numbers are scalars and it makes sense there. |
4541 | 0 | if (S.getLangOpts().CPlusPlus && DestType->isScalarType() && |
4542 | 0 | !DestType->isAnyComplexType() && InitList->getNumInits() > 1) { |
4543 | 0 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForScalar); |
4544 | 0 | return; |
4545 | 0 | } |
4546 | 0 | if (DestType->isReferenceType()) { |
4547 | 0 | TryReferenceListInitialization(S, Entity, Kind, InitList, Sequence, |
4548 | 0 | TreatUnavailableAsInvalid); |
4549 | 0 | return; |
4550 | 0 | } |
4551 | | |
4552 | 0 | if (DestType->isRecordType() && |
4553 | 0 | !S.isCompleteType(InitList->getBeginLoc(), DestType)) { |
4554 | 0 | Sequence.setIncompleteTypeFailure(DestType); |
4555 | 0 | return; |
4556 | 0 | } |
4557 | | |
4558 | | // C++20 [dcl.init.list]p3: |
4559 | | // - If the braced-init-list contains a designated-initializer-list, T shall |
4560 | | // be an aggregate class. [...] Aggregate initialization is performed. |
4561 | | // |
4562 | | // We allow arrays here too in order to support array designators. |
4563 | | // |
4564 | | // FIXME: This check should precede the handling of reference initialization. |
4565 | | // We follow other compilers in allowing things like 'Aggr &&a = {.x = 1};' |
4566 | | // as a tentative DR resolution. |
4567 | 0 | bool IsDesignatedInit = InitList->hasDesignatedInit(); |
4568 | 0 | if (!DestType->isAggregateType() && IsDesignatedInit) { |
4569 | 0 | Sequence.SetFailed( |
4570 | 0 | InitializationSequence::FK_DesignatedInitForNonAggregate); |
4571 | 0 | return; |
4572 | 0 | } |
4573 | | |
4574 | | // C++11 [dcl.init.list]p3, per DR1467: |
4575 | | // - If T is a class type and the initializer list has a single element of |
4576 | | // type cv U, where U is T or a class derived from T, the object is |
4577 | | // initialized from that element (by copy-initialization for |
4578 | | // copy-list-initialization, or by direct-initialization for |
4579 | | // direct-list-initialization). |
4580 | | // - Otherwise, if T is a character array and the initializer list has a |
4581 | | // single element that is an appropriately-typed string literal |
4582 | | // (8.5.2 [dcl.init.string]), initialization is performed as described |
4583 | | // in that section. |
4584 | | // - Otherwise, if T is an aggregate, [...] (continue below). |
4585 | 0 | if (S.getLangOpts().CPlusPlus11 && InitList->getNumInits() == 1 && |
4586 | 0 | !IsDesignatedInit) { |
4587 | 0 | if (DestType->isRecordType()) { |
4588 | 0 | QualType InitType = InitList->getInit(0)->getType(); |
4589 | 0 | if (S.Context.hasSameUnqualifiedType(InitType, DestType) || |
4590 | 0 | S.IsDerivedFrom(InitList->getBeginLoc(), InitType, DestType)) { |
4591 | 0 | Expr *InitListAsExpr = InitList; |
4592 | 0 | TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, |
4593 | 0 | DestType, Sequence, |
4594 | 0 | /*InitListSyntax*/false, |
4595 | 0 | /*IsInitListCopy*/true); |
4596 | 0 | return; |
4597 | 0 | } |
4598 | 0 | } |
4599 | 0 | if (const ArrayType *DestAT = S.Context.getAsArrayType(DestType)) { |
4600 | 0 | Expr *SubInit[1] = {InitList->getInit(0)}; |
4601 | 0 | if (!isa<VariableArrayType>(DestAT) && |
4602 | 0 | IsStringInit(SubInit[0], DestAT, S.Context) == SIF_None) { |
4603 | 0 | InitializationKind SubKind = |
4604 | 0 | Kind.getKind() == InitializationKind::IK_DirectList |
4605 | 0 | ? InitializationKind::CreateDirect(Kind.getLocation(), |
4606 | 0 | InitList->getLBraceLoc(), |
4607 | 0 | InitList->getRBraceLoc()) |
4608 | 0 | : Kind; |
4609 | 0 | Sequence.InitializeFrom(S, Entity, SubKind, SubInit, |
4610 | 0 | /*TopLevelOfInitList*/ true, |
4611 | 0 | TreatUnavailableAsInvalid); |
4612 | | |
4613 | | // TryStringLiteralInitialization() (in InitializeFrom()) will fail if |
4614 | | // the element is not an appropriately-typed string literal, in which |
4615 | | // case we should proceed as in C++11 (below). |
4616 | 0 | if (Sequence) { |
4617 | 0 | Sequence.RewrapReferenceInitList(Entity.getType(), InitList); |
4618 | 0 | return; |
4619 | 0 | } |
4620 | 0 | } |
4621 | 0 | } |
4622 | 0 | } |
4623 | | |
4624 | | // C++11 [dcl.init.list]p3: |
4625 | | // - If T is an aggregate, aggregate initialization is performed. |
4626 | 0 | if ((DestType->isRecordType() && !DestType->isAggregateType()) || |
4627 | 0 | (S.getLangOpts().CPlusPlus11 && |
4628 | 0 | S.isStdInitializerList(DestType, nullptr) && !IsDesignatedInit)) { |
4629 | 0 | if (S.getLangOpts().CPlusPlus11) { |
4630 | | // - Otherwise, if the initializer list has no elements and T is a |
4631 | | // class type with a default constructor, the object is |
4632 | | // value-initialized. |
4633 | 0 | if (InitList->getNumInits() == 0) { |
4634 | 0 | CXXRecordDecl *RD = DestType->getAsCXXRecordDecl(); |
4635 | 0 | if (S.LookupDefaultConstructor(RD)) { |
4636 | 0 | TryValueInitialization(S, Entity, Kind, Sequence, InitList); |
4637 | 0 | return; |
4638 | 0 | } |
4639 | 0 | } |
4640 | | |
4641 | | // - Otherwise, if T is a specialization of std::initializer_list<E>, |
4642 | | // an initializer_list object constructed [...] |
4643 | 0 | if (TryInitializerListConstruction(S, InitList, DestType, Sequence, |
4644 | 0 | TreatUnavailableAsInvalid)) |
4645 | 0 | return; |
4646 | | |
4647 | | // - Otherwise, if T is a class type, constructors are considered. |
4648 | 0 | Expr *InitListAsExpr = InitList; |
4649 | 0 | TryConstructorInitialization(S, Entity, Kind, InitListAsExpr, DestType, |
4650 | 0 | DestType, Sequence, /*InitListSyntax*/true); |
4651 | 0 | } else |
4652 | 0 | Sequence.SetFailed(InitializationSequence::FK_InitListBadDestinationType); |
4653 | 0 | return; |
4654 | 0 | } |
4655 | | |
4656 | 0 | if (S.getLangOpts().CPlusPlus && !DestType->isAggregateType() && |
4657 | 0 | InitList->getNumInits() == 1) { |
4658 | 0 | Expr *E = InitList->getInit(0); |
4659 | | |
4660 | | // - Otherwise, if T is an enumeration with a fixed underlying type, |
4661 | | // the initializer-list has a single element v, and the initialization |
4662 | | // is direct-list-initialization, the object is initialized with the |
4663 | | // value T(v); if a narrowing conversion is required to convert v to |
4664 | | // the underlying type of T, the program is ill-formed. |
4665 | 0 | auto *ET = DestType->getAs<EnumType>(); |
4666 | 0 | if (S.getLangOpts().CPlusPlus17 && |
4667 | 0 | Kind.getKind() == InitializationKind::IK_DirectList && |
4668 | 0 | ET && ET->getDecl()->isFixed() && |
4669 | 0 | !S.Context.hasSameUnqualifiedType(E->getType(), DestType) && |
4670 | 0 | (E->getType()->isIntegralOrUnscopedEnumerationType() || |
4671 | 0 | E->getType()->isFloatingType())) { |
4672 | | // There are two ways that T(v) can work when T is an enumeration type. |
4673 | | // If there is either an implicit conversion sequence from v to T or |
4674 | | // a conversion function that can convert from v to T, then we use that. |
4675 | | // Otherwise, if v is of integral, unscoped enumeration, or floating-point |
4676 | | // type, it is converted to the enumeration type via its underlying type. |
4677 | | // There is no overlap possible between these two cases (except when the |
4678 | | // source value is already of the destination type), and the first |
4679 | | // case is handled by the general case for single-element lists below. |
4680 | 0 | ImplicitConversionSequence ICS; |
4681 | 0 | ICS.setStandard(); |
4682 | 0 | ICS.Standard.setAsIdentityConversion(); |
4683 | 0 | if (!E->isPRValue()) |
4684 | 0 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
4685 | | // If E is of a floating-point type, then the conversion is ill-formed |
4686 | | // due to narrowing, but go through the motions in order to produce the |
4687 | | // right diagnostic. |
4688 | 0 | ICS.Standard.Second = E->getType()->isFloatingType() |
4689 | 0 | ? ICK_Floating_Integral |
4690 | 0 | : ICK_Integral_Conversion; |
4691 | 0 | ICS.Standard.setFromType(E->getType()); |
4692 | 0 | ICS.Standard.setToType(0, E->getType()); |
4693 | 0 | ICS.Standard.setToType(1, DestType); |
4694 | 0 | ICS.Standard.setToType(2, DestType); |
4695 | 0 | Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2), |
4696 | 0 | /*TopLevelOfInitList*/true); |
4697 | 0 | Sequence.RewrapReferenceInitList(Entity.getType(), InitList); |
4698 | 0 | return; |
4699 | 0 | } |
4700 | | |
4701 | | // - Otherwise, if the initializer list has a single element of type E |
4702 | | // [...references are handled above...], the object or reference is |
4703 | | // initialized from that element (by copy-initialization for |
4704 | | // copy-list-initialization, or by direct-initialization for |
4705 | | // direct-list-initialization); if a narrowing conversion is required |
4706 | | // to convert the element to T, the program is ill-formed. |
4707 | | // |
4708 | | // Per core-24034, this is direct-initialization if we were performing |
4709 | | // direct-list-initialization and copy-initialization otherwise. |
4710 | | // We can't use InitListChecker for this, because it always performs |
4711 | | // copy-initialization. This only matters if we might use an 'explicit' |
4712 | | // conversion operator, or for the special case conversion of nullptr_t to |
4713 | | // bool, so we only need to handle those cases. |
4714 | | // |
4715 | | // FIXME: Why not do this in all cases? |
4716 | 0 | Expr *Init = InitList->getInit(0); |
4717 | 0 | if (Init->getType()->isRecordType() || |
4718 | 0 | (Init->getType()->isNullPtrType() && DestType->isBooleanType())) { |
4719 | 0 | InitializationKind SubKind = |
4720 | 0 | Kind.getKind() == InitializationKind::IK_DirectList |
4721 | 0 | ? InitializationKind::CreateDirect(Kind.getLocation(), |
4722 | 0 | InitList->getLBraceLoc(), |
4723 | 0 | InitList->getRBraceLoc()) |
4724 | 0 | : Kind; |
4725 | 0 | Expr *SubInit[1] = { Init }; |
4726 | 0 | Sequence.InitializeFrom(S, Entity, SubKind, SubInit, |
4727 | 0 | /*TopLevelOfInitList*/true, |
4728 | 0 | TreatUnavailableAsInvalid); |
4729 | 0 | if (Sequence) |
4730 | 0 | Sequence.RewrapReferenceInitList(Entity.getType(), InitList); |
4731 | 0 | return; |
4732 | 0 | } |
4733 | 0 | } |
4734 | | |
4735 | 0 | InitListChecker CheckInitList(S, Entity, InitList, |
4736 | 0 | DestType, /*VerifyOnly=*/true, TreatUnavailableAsInvalid); |
4737 | 0 | if (CheckInitList.HadError()) { |
4738 | 0 | Sequence.SetFailed(InitializationSequence::FK_ListInitializationFailed); |
4739 | 0 | return; |
4740 | 0 | } |
4741 | | |
4742 | | // Add the list initialization step with the built init list. |
4743 | 0 | Sequence.AddListInitializationStep(DestType); |
4744 | 0 | } |
4745 | | |
4746 | | /// Try a reference initialization that involves calling a conversion |
4747 | | /// function. |
4748 | | static OverloadingResult TryRefInitWithConversionFunction( |
4749 | | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
4750 | | Expr *Initializer, bool AllowRValues, bool IsLValueRef, |
4751 | 0 | InitializationSequence &Sequence) { |
4752 | 0 | QualType DestType = Entity.getType(); |
4753 | 0 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
4754 | 0 | QualType T1 = cv1T1.getUnqualifiedType(); |
4755 | 0 | QualType cv2T2 = Initializer->getType(); |
4756 | 0 | QualType T2 = cv2T2.getUnqualifiedType(); |
4757 | |
|
4758 | 0 | assert(!S.CompareReferenceRelationship(Initializer->getBeginLoc(), T1, T2) && |
4759 | 0 | "Must have incompatible references when binding via conversion"); |
4760 | | |
4761 | | // Build the candidate set directly in the initialization sequence |
4762 | | // structure, so that it will persist if we fail. |
4763 | 0 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
4764 | 0 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
4765 | | |
4766 | | // Determine whether we are allowed to call explicit conversion operators. |
4767 | | // Note that none of [over.match.copy], [over.match.conv], nor |
4768 | | // [over.match.ref] permit an explicit constructor to be chosen when |
4769 | | // initializing a reference, not even for direct-initialization. |
4770 | 0 | bool AllowExplicitCtors = false; |
4771 | 0 | bool AllowExplicitConvs = Kind.allowExplicitConversionFunctionsInRefBinding(); |
4772 | |
|
4773 | 0 | const RecordType *T1RecordType = nullptr; |
4774 | 0 | if (AllowRValues && (T1RecordType = T1->getAs<RecordType>()) && |
4775 | 0 | S.isCompleteType(Kind.getLocation(), T1)) { |
4776 | | // The type we're converting to is a class type. Enumerate its constructors |
4777 | | // to see if there is a suitable conversion. |
4778 | 0 | CXXRecordDecl *T1RecordDecl = cast<CXXRecordDecl>(T1RecordType->getDecl()); |
4779 | |
|
4780 | 0 | for (NamedDecl *D : S.LookupConstructors(T1RecordDecl)) { |
4781 | 0 | auto Info = getConstructorInfo(D); |
4782 | 0 | if (!Info.Constructor) |
4783 | 0 | continue; |
4784 | | |
4785 | 0 | if (!Info.Constructor->isInvalidDecl() && |
4786 | 0 | Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { |
4787 | 0 | if (Info.ConstructorTmpl) |
4788 | 0 | S.AddTemplateOverloadCandidate( |
4789 | 0 | Info.ConstructorTmpl, Info.FoundDecl, |
4790 | 0 | /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, |
4791 | 0 | /*SuppressUserConversions=*/true, |
4792 | 0 | /*PartialOverloading*/ false, AllowExplicitCtors); |
4793 | 0 | else |
4794 | 0 | S.AddOverloadCandidate( |
4795 | 0 | Info.Constructor, Info.FoundDecl, Initializer, CandidateSet, |
4796 | 0 | /*SuppressUserConversions=*/true, |
4797 | 0 | /*PartialOverloading*/ false, AllowExplicitCtors); |
4798 | 0 | } |
4799 | 0 | } |
4800 | 0 | } |
4801 | 0 | if (T1RecordType && T1RecordType->getDecl()->isInvalidDecl()) |
4802 | 0 | return OR_No_Viable_Function; |
4803 | | |
4804 | 0 | const RecordType *T2RecordType = nullptr; |
4805 | 0 | if ((T2RecordType = T2->getAs<RecordType>()) && |
4806 | 0 | S.isCompleteType(Kind.getLocation(), T2)) { |
4807 | | // The type we're converting from is a class type, enumerate its conversion |
4808 | | // functions. |
4809 | 0 | CXXRecordDecl *T2RecordDecl = cast<CXXRecordDecl>(T2RecordType->getDecl()); |
4810 | |
|
4811 | 0 | const auto &Conversions = T2RecordDecl->getVisibleConversionFunctions(); |
4812 | 0 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
4813 | 0 | NamedDecl *D = *I; |
4814 | 0 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
4815 | 0 | if (isa<UsingShadowDecl>(D)) |
4816 | 0 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
4817 | |
|
4818 | 0 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
4819 | 0 | CXXConversionDecl *Conv; |
4820 | 0 | if (ConvTemplate) |
4821 | 0 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
4822 | 0 | else |
4823 | 0 | Conv = cast<CXXConversionDecl>(D); |
4824 | | |
4825 | | // If the conversion function doesn't return a reference type, |
4826 | | // it can't be considered for this conversion unless we're allowed to |
4827 | | // consider rvalues. |
4828 | | // FIXME: Do we need to make sure that we only consider conversion |
4829 | | // candidates with reference-compatible results? That might be needed to |
4830 | | // break recursion. |
4831 | 0 | if ((AllowRValues || |
4832 | 0 | Conv->getConversionType()->isLValueReferenceType())) { |
4833 | 0 | if (ConvTemplate) |
4834 | 0 | S.AddTemplateConversionCandidate( |
4835 | 0 | ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, |
4836 | 0 | CandidateSet, |
4837 | 0 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); |
4838 | 0 | else |
4839 | 0 | S.AddConversionCandidate( |
4840 | 0 | Conv, I.getPair(), ActingDC, Initializer, DestType, CandidateSet, |
4841 | 0 | /*AllowObjCConversionOnExplicit=*/false, AllowExplicitConvs); |
4842 | 0 | } |
4843 | 0 | } |
4844 | 0 | } |
4845 | 0 | if (T2RecordType && T2RecordType->getDecl()->isInvalidDecl()) |
4846 | 0 | return OR_No_Viable_Function; |
4847 | | |
4848 | 0 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
4849 | | |
4850 | | // Perform overload resolution. If it fails, return the failed result. |
4851 | 0 | OverloadCandidateSet::iterator Best; |
4852 | 0 | if (OverloadingResult Result |
4853 | 0 | = CandidateSet.BestViableFunction(S, DeclLoc, Best)) |
4854 | 0 | return Result; |
4855 | | |
4856 | 0 | FunctionDecl *Function = Best->Function; |
4857 | | // This is the overload that will be used for this initialization step if we |
4858 | | // use this initialization. Mark it as referenced. |
4859 | 0 | Function->setReferenced(); |
4860 | | |
4861 | | // Compute the returned type and value kind of the conversion. |
4862 | 0 | QualType cv3T3; |
4863 | 0 | if (isa<CXXConversionDecl>(Function)) |
4864 | 0 | cv3T3 = Function->getReturnType(); |
4865 | 0 | else |
4866 | 0 | cv3T3 = T1; |
4867 | |
|
4868 | 0 | ExprValueKind VK = VK_PRValue; |
4869 | 0 | if (cv3T3->isLValueReferenceType()) |
4870 | 0 | VK = VK_LValue; |
4871 | 0 | else if (const auto *RRef = cv3T3->getAs<RValueReferenceType>()) |
4872 | 0 | VK = RRef->getPointeeType()->isFunctionType() ? VK_LValue : VK_XValue; |
4873 | 0 | cv3T3 = cv3T3.getNonLValueExprType(S.Context); |
4874 | | |
4875 | | // Add the user-defined conversion step. |
4876 | 0 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
4877 | 0 | Sequence.AddUserConversionStep(Function, Best->FoundDecl, cv3T3, |
4878 | 0 | HadMultipleCandidates); |
4879 | | |
4880 | | // Determine whether we'll need to perform derived-to-base adjustments or |
4881 | | // other conversions. |
4882 | 0 | Sema::ReferenceConversions RefConv; |
4883 | 0 | Sema::ReferenceCompareResult NewRefRelationship = |
4884 | 0 | S.CompareReferenceRelationship(DeclLoc, T1, cv3T3, &RefConv); |
4885 | | |
4886 | | // Add the final conversion sequence, if necessary. |
4887 | 0 | if (NewRefRelationship == Sema::Ref_Incompatible) { |
4888 | 0 | assert(!isa<CXXConstructorDecl>(Function) && |
4889 | 0 | "should not have conversion after constructor"); |
4890 | | |
4891 | 0 | ImplicitConversionSequence ICS; |
4892 | 0 | ICS.setStandard(); |
4893 | 0 | ICS.Standard = Best->FinalConversion; |
4894 | 0 | Sequence.AddConversionSequenceStep(ICS, ICS.Standard.getToType(2)); |
4895 | | |
4896 | | // Every implicit conversion results in a prvalue, except for a glvalue |
4897 | | // derived-to-base conversion, which we handle below. |
4898 | 0 | cv3T3 = ICS.Standard.getToType(2); |
4899 | 0 | VK = VK_PRValue; |
4900 | 0 | } |
4901 | | |
4902 | | // If the converted initializer is a prvalue, its type T4 is adjusted to |
4903 | | // type "cv1 T4" and the temporary materialization conversion is applied. |
4904 | | // |
4905 | | // We adjust the cv-qualifications to match the reference regardless of |
4906 | | // whether we have a prvalue so that the AST records the change. In this |
4907 | | // case, T4 is "cv3 T3". |
4908 | 0 | QualType cv1T4 = S.Context.getQualifiedType(cv3T3, cv1T1.getQualifiers()); |
4909 | 0 | if (cv1T4.getQualifiers() != cv3T3.getQualifiers()) |
4910 | 0 | Sequence.AddQualificationConversionStep(cv1T4, VK); |
4911 | 0 | Sequence.AddReferenceBindingStep(cv1T4, VK == VK_PRValue); |
4912 | 0 | VK = IsLValueRef ? VK_LValue : VK_XValue; |
4913 | |
|
4914 | 0 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
4915 | 0 | Sequence.AddDerivedToBaseCastStep(cv1T1, VK); |
4916 | 0 | else if (RefConv & Sema::ReferenceConversions::ObjC) |
4917 | 0 | Sequence.AddObjCObjectConversionStep(cv1T1); |
4918 | 0 | else if (RefConv & Sema::ReferenceConversions::Function) |
4919 | 0 | Sequence.AddFunctionReferenceConversionStep(cv1T1); |
4920 | 0 | else if (RefConv & Sema::ReferenceConversions::Qualification) { |
4921 | 0 | if (!S.Context.hasSameType(cv1T4, cv1T1)) |
4922 | 0 | Sequence.AddQualificationConversionStep(cv1T1, VK); |
4923 | 0 | } |
4924 | |
|
4925 | 0 | return OR_Success; |
4926 | 0 | } |
4927 | | |
4928 | | static void CheckCXX98CompatAccessibleCopy(Sema &S, |
4929 | | const InitializedEntity &Entity, |
4930 | | Expr *CurInitExpr); |
4931 | | |
4932 | | /// Attempt reference initialization (C++0x [dcl.init.ref]) |
4933 | | static void TryReferenceInitialization(Sema &S, const InitializedEntity &Entity, |
4934 | | const InitializationKind &Kind, |
4935 | | Expr *Initializer, |
4936 | | InitializationSequence &Sequence, |
4937 | 0 | bool TopLevelOfInitList) { |
4938 | 0 | QualType DestType = Entity.getType(); |
4939 | 0 | QualType cv1T1 = DestType->castAs<ReferenceType>()->getPointeeType(); |
4940 | 0 | Qualifiers T1Quals; |
4941 | 0 | QualType T1 = S.Context.getUnqualifiedArrayType(cv1T1, T1Quals); |
4942 | 0 | QualType cv2T2 = S.getCompletedType(Initializer); |
4943 | 0 | Qualifiers T2Quals; |
4944 | 0 | QualType T2 = S.Context.getUnqualifiedArrayType(cv2T2, T2Quals); |
4945 | | |
4946 | | // If the initializer is the address of an overloaded function, try |
4947 | | // to resolve the overloaded function. If all goes well, T2 is the |
4948 | | // type of the resulting function. |
4949 | 0 | if (ResolveOverloadedFunctionForReferenceBinding(S, Initializer, cv2T2, T2, |
4950 | 0 | T1, Sequence)) |
4951 | 0 | return; |
4952 | | |
4953 | | // Delegate everything else to a subfunction. |
4954 | 0 | TryReferenceInitializationCore(S, Entity, Kind, Initializer, cv1T1, T1, |
4955 | 0 | T1Quals, cv2T2, T2, T2Quals, Sequence, |
4956 | 0 | TopLevelOfInitList); |
4957 | 0 | } |
4958 | | |
4959 | | /// Determine whether an expression is a non-referenceable glvalue (one to |
4960 | | /// which a reference can never bind). Attempting to bind a reference to |
4961 | | /// such a glvalue will always create a temporary. |
4962 | 0 | static bool isNonReferenceableGLValue(Expr *E) { |
4963 | 0 | return E->refersToBitField() || E->refersToVectorElement() || |
4964 | 0 | E->refersToMatrixElement(); |
4965 | 0 | } |
4966 | | |
4967 | | /// Reference initialization without resolving overloaded functions. |
4968 | | /// |
4969 | | /// We also can get here in C if we call a builtin which is declared as |
4970 | | /// a function with a parameter of reference type (such as __builtin_va_end()). |
4971 | | static void TryReferenceInitializationCore(Sema &S, |
4972 | | const InitializedEntity &Entity, |
4973 | | const InitializationKind &Kind, |
4974 | | Expr *Initializer, |
4975 | | QualType cv1T1, QualType T1, |
4976 | | Qualifiers T1Quals, |
4977 | | QualType cv2T2, QualType T2, |
4978 | | Qualifiers T2Quals, |
4979 | | InitializationSequence &Sequence, |
4980 | 0 | bool TopLevelOfInitList) { |
4981 | 0 | QualType DestType = Entity.getType(); |
4982 | 0 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
4983 | | |
4984 | | // Compute some basic properties of the types and the initializer. |
4985 | 0 | bool isLValueRef = DestType->isLValueReferenceType(); |
4986 | 0 | bool isRValueRef = !isLValueRef; |
4987 | 0 | Expr::Classification InitCategory = Initializer->Classify(S.Context); |
4988 | |
|
4989 | 0 | Sema::ReferenceConversions RefConv; |
4990 | 0 | Sema::ReferenceCompareResult RefRelationship = |
4991 | 0 | S.CompareReferenceRelationship(DeclLoc, cv1T1, cv2T2, &RefConv); |
4992 | | |
4993 | | // C++0x [dcl.init.ref]p5: |
4994 | | // A reference to type "cv1 T1" is initialized by an expression of type |
4995 | | // "cv2 T2" as follows: |
4996 | | // |
4997 | | // - If the reference is an lvalue reference and the initializer |
4998 | | // expression |
4999 | | // Note the analogous bullet points for rvalue refs to functions. Because |
5000 | | // there are no function rvalues in C++, rvalue refs to functions are treated |
5001 | | // like lvalue refs. |
5002 | 0 | OverloadingResult ConvOvlResult = OR_Success; |
5003 | 0 | bool T1Function = T1->isFunctionType(); |
5004 | 0 | if (isLValueRef || T1Function) { |
5005 | 0 | if (InitCategory.isLValue() && !isNonReferenceableGLValue(Initializer) && |
5006 | 0 | (RefRelationship == Sema::Ref_Compatible || |
5007 | 0 | (Kind.isCStyleOrFunctionalCast() && |
5008 | 0 | RefRelationship == Sema::Ref_Related))) { |
5009 | | // - is an lvalue (but is not a bit-field), and "cv1 T1" is |
5010 | | // reference-compatible with "cv2 T2," or |
5011 | 0 | if (RefConv & (Sema::ReferenceConversions::DerivedToBase | |
5012 | 0 | Sema::ReferenceConversions::ObjC)) { |
5013 | | // If we're converting the pointee, add any qualifiers first; |
5014 | | // these qualifiers must all be top-level, so just convert to "cv1 T2". |
5015 | 0 | if (RefConv & (Sema::ReferenceConversions::Qualification)) |
5016 | 0 | Sequence.AddQualificationConversionStep( |
5017 | 0 | S.Context.getQualifiedType(T2, T1Quals), |
5018 | 0 | Initializer->getValueKind()); |
5019 | 0 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
5020 | 0 | Sequence.AddDerivedToBaseCastStep(cv1T1, VK_LValue); |
5021 | 0 | else |
5022 | 0 | Sequence.AddObjCObjectConversionStep(cv1T1); |
5023 | 0 | } else if (RefConv & Sema::ReferenceConversions::Qualification) { |
5024 | | // Perform a (possibly multi-level) qualification conversion. |
5025 | 0 | Sequence.AddQualificationConversionStep(cv1T1, |
5026 | 0 | Initializer->getValueKind()); |
5027 | 0 | } else if (RefConv & Sema::ReferenceConversions::Function) { |
5028 | 0 | Sequence.AddFunctionReferenceConversionStep(cv1T1); |
5029 | 0 | } |
5030 | | |
5031 | | // We only create a temporary here when binding a reference to a |
5032 | | // bit-field or vector element. Those cases are't supposed to be |
5033 | | // handled by this bullet, but the outcome is the same either way. |
5034 | 0 | Sequence.AddReferenceBindingStep(cv1T1, false); |
5035 | 0 | return; |
5036 | 0 | } |
5037 | | |
5038 | | // - has a class type (i.e., T2 is a class type), where T1 is not |
5039 | | // reference-related to T2, and can be implicitly converted to an |
5040 | | // lvalue of type "cv3 T3," where "cv1 T1" is reference-compatible |
5041 | | // with "cv3 T3" (this conversion is selected by enumerating the |
5042 | | // applicable conversion functions (13.3.1.6) and choosing the best |
5043 | | // one through overload resolution (13.3)), |
5044 | | // If we have an rvalue ref to function type here, the rhs must be |
5045 | | // an rvalue. DR1287 removed the "implicitly" here. |
5046 | 0 | if (RefRelationship == Sema::Ref_Incompatible && T2->isRecordType() && |
5047 | 0 | (isLValueRef || InitCategory.isRValue())) { |
5048 | 0 | if (S.getLangOpts().CPlusPlus) { |
5049 | | // Try conversion functions only for C++. |
5050 | 0 | ConvOvlResult = TryRefInitWithConversionFunction( |
5051 | 0 | S, Entity, Kind, Initializer, /*AllowRValues*/ isRValueRef, |
5052 | 0 | /*IsLValueRef*/ isLValueRef, Sequence); |
5053 | 0 | if (ConvOvlResult == OR_Success) |
5054 | 0 | return; |
5055 | 0 | if (ConvOvlResult != OR_No_Viable_Function) |
5056 | 0 | Sequence.SetOverloadFailure( |
5057 | 0 | InitializationSequence::FK_ReferenceInitOverloadFailed, |
5058 | 0 | ConvOvlResult); |
5059 | 0 | } else { |
5060 | 0 | ConvOvlResult = OR_No_Viable_Function; |
5061 | 0 | } |
5062 | 0 | } |
5063 | 0 | } |
5064 | | |
5065 | | // - Otherwise, the reference shall be an lvalue reference to a |
5066 | | // non-volatile const type (i.e., cv1 shall be const), or the reference |
5067 | | // shall be an rvalue reference. |
5068 | | // For address spaces, we interpret this to mean that an addr space |
5069 | | // of a reference "cv1 T1" is a superset of addr space of "cv2 T2". |
5070 | 0 | if (isLValueRef && !(T1Quals.hasConst() && !T1Quals.hasVolatile() && |
5071 | 0 | T1Quals.isAddressSpaceSupersetOf(T2Quals))) { |
5072 | 0 | if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) |
5073 | 0 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
5074 | 0 | else if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
5075 | 0 | Sequence.SetOverloadFailure( |
5076 | 0 | InitializationSequence::FK_ReferenceInitOverloadFailed, |
5077 | 0 | ConvOvlResult); |
5078 | 0 | else if (!InitCategory.isLValue()) |
5079 | 0 | Sequence.SetFailed( |
5080 | 0 | T1Quals.isAddressSpaceSupersetOf(T2Quals) |
5081 | 0 | ? InitializationSequence:: |
5082 | 0 | FK_NonConstLValueReferenceBindingToTemporary |
5083 | 0 | : InitializationSequence::FK_ReferenceInitDropsQualifiers); |
5084 | 0 | else { |
5085 | 0 | InitializationSequence::FailureKind FK; |
5086 | 0 | switch (RefRelationship) { |
5087 | 0 | case Sema::Ref_Compatible: |
5088 | 0 | if (Initializer->refersToBitField()) |
5089 | 0 | FK = InitializationSequence:: |
5090 | 0 | FK_NonConstLValueReferenceBindingToBitfield; |
5091 | 0 | else if (Initializer->refersToVectorElement()) |
5092 | 0 | FK = InitializationSequence:: |
5093 | 0 | FK_NonConstLValueReferenceBindingToVectorElement; |
5094 | 0 | else if (Initializer->refersToMatrixElement()) |
5095 | 0 | FK = InitializationSequence:: |
5096 | 0 | FK_NonConstLValueReferenceBindingToMatrixElement; |
5097 | 0 | else |
5098 | 0 | llvm_unreachable("unexpected kind of compatible initializer"); |
5099 | 0 | break; |
5100 | 0 | case Sema::Ref_Related: |
5101 | 0 | FK = InitializationSequence::FK_ReferenceInitDropsQualifiers; |
5102 | 0 | break; |
5103 | 0 | case Sema::Ref_Incompatible: |
5104 | 0 | FK = InitializationSequence:: |
5105 | 0 | FK_NonConstLValueReferenceBindingToUnrelated; |
5106 | 0 | break; |
5107 | 0 | } |
5108 | 0 | Sequence.SetFailed(FK); |
5109 | 0 | } |
5110 | 0 | return; |
5111 | 0 | } |
5112 | | |
5113 | | // - If the initializer expression |
5114 | | // - is an |
5115 | | // [<=14] xvalue (but not a bit-field), class prvalue, array prvalue, or |
5116 | | // [1z] rvalue (but not a bit-field) or |
5117 | | // function lvalue and "cv1 T1" is reference-compatible with "cv2 T2" |
5118 | | // |
5119 | | // Note: functions are handled above and below rather than here... |
5120 | 0 | if (!T1Function && |
5121 | 0 | (RefRelationship == Sema::Ref_Compatible || |
5122 | 0 | (Kind.isCStyleOrFunctionalCast() && |
5123 | 0 | RefRelationship == Sema::Ref_Related)) && |
5124 | 0 | ((InitCategory.isXValue() && !isNonReferenceableGLValue(Initializer)) || |
5125 | 0 | (InitCategory.isPRValue() && |
5126 | 0 | (S.getLangOpts().CPlusPlus17 || T2->isRecordType() || |
5127 | 0 | T2->isArrayType())))) { |
5128 | 0 | ExprValueKind ValueKind = InitCategory.isXValue() ? VK_XValue : VK_PRValue; |
5129 | 0 | if (InitCategory.isPRValue() && T2->isRecordType()) { |
5130 | | // The corresponding bullet in C++03 [dcl.init.ref]p5 gives the |
5131 | | // compiler the freedom to perform a copy here or bind to the |
5132 | | // object, while C++0x requires that we bind directly to the |
5133 | | // object. Hence, we always bind to the object without making an |
5134 | | // extra copy. However, in C++03 requires that we check for the |
5135 | | // presence of a suitable copy constructor: |
5136 | | // |
5137 | | // The constructor that would be used to make the copy shall |
5138 | | // be callable whether or not the copy is actually done. |
5139 | 0 | if (!S.getLangOpts().CPlusPlus11 && !S.getLangOpts().MicrosoftExt) |
5140 | 0 | Sequence.AddExtraneousCopyToTemporary(cv2T2); |
5141 | 0 | else if (S.getLangOpts().CPlusPlus11) |
5142 | 0 | CheckCXX98CompatAccessibleCopy(S, Entity, Initializer); |
5143 | 0 | } |
5144 | | |
5145 | | // C++1z [dcl.init.ref]/5.2.1.2: |
5146 | | // If the converted initializer is a prvalue, its type T4 is adjusted |
5147 | | // to type "cv1 T4" and the temporary materialization conversion is |
5148 | | // applied. |
5149 | | // Postpone address space conversions to after the temporary materialization |
5150 | | // conversion to allow creating temporaries in the alloca address space. |
5151 | 0 | auto T1QualsIgnoreAS = T1Quals; |
5152 | 0 | auto T2QualsIgnoreAS = T2Quals; |
5153 | 0 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { |
5154 | 0 | T1QualsIgnoreAS.removeAddressSpace(); |
5155 | 0 | T2QualsIgnoreAS.removeAddressSpace(); |
5156 | 0 | } |
5157 | 0 | QualType cv1T4 = S.Context.getQualifiedType(cv2T2, T1QualsIgnoreAS); |
5158 | 0 | if (T1QualsIgnoreAS != T2QualsIgnoreAS) |
5159 | 0 | Sequence.AddQualificationConversionStep(cv1T4, ValueKind); |
5160 | 0 | Sequence.AddReferenceBindingStep(cv1T4, ValueKind == VK_PRValue); |
5161 | 0 | ValueKind = isLValueRef ? VK_LValue : VK_XValue; |
5162 | | // Add addr space conversion if required. |
5163 | 0 | if (T1Quals.getAddressSpace() != T2Quals.getAddressSpace()) { |
5164 | 0 | auto T4Quals = cv1T4.getQualifiers(); |
5165 | 0 | T4Quals.addAddressSpace(T1Quals.getAddressSpace()); |
5166 | 0 | QualType cv1T4WithAS = S.Context.getQualifiedType(T2, T4Quals); |
5167 | 0 | Sequence.AddQualificationConversionStep(cv1T4WithAS, ValueKind); |
5168 | 0 | cv1T4 = cv1T4WithAS; |
5169 | 0 | } |
5170 | | |
5171 | | // In any case, the reference is bound to the resulting glvalue (or to |
5172 | | // an appropriate base class subobject). |
5173 | 0 | if (RefConv & Sema::ReferenceConversions::DerivedToBase) |
5174 | 0 | Sequence.AddDerivedToBaseCastStep(cv1T1, ValueKind); |
5175 | 0 | else if (RefConv & Sema::ReferenceConversions::ObjC) |
5176 | 0 | Sequence.AddObjCObjectConversionStep(cv1T1); |
5177 | 0 | else if (RefConv & Sema::ReferenceConversions::Qualification) { |
5178 | 0 | if (!S.Context.hasSameType(cv1T4, cv1T1)) |
5179 | 0 | Sequence.AddQualificationConversionStep(cv1T1, ValueKind); |
5180 | 0 | } |
5181 | 0 | return; |
5182 | 0 | } |
5183 | | |
5184 | | // - has a class type (i.e., T2 is a class type), where T1 is not |
5185 | | // reference-related to T2, and can be implicitly converted to an |
5186 | | // xvalue, class prvalue, or function lvalue of type "cv3 T3", |
5187 | | // where "cv1 T1" is reference-compatible with "cv3 T3", |
5188 | | // |
5189 | | // DR1287 removes the "implicitly" here. |
5190 | 0 | if (T2->isRecordType()) { |
5191 | 0 | if (RefRelationship == Sema::Ref_Incompatible) { |
5192 | 0 | ConvOvlResult = TryRefInitWithConversionFunction( |
5193 | 0 | S, Entity, Kind, Initializer, /*AllowRValues*/ true, |
5194 | 0 | /*IsLValueRef*/ isLValueRef, Sequence); |
5195 | 0 | if (ConvOvlResult) |
5196 | 0 | Sequence.SetOverloadFailure( |
5197 | 0 | InitializationSequence::FK_ReferenceInitOverloadFailed, |
5198 | 0 | ConvOvlResult); |
5199 | |
|
5200 | 0 | return; |
5201 | 0 | } |
5202 | | |
5203 | 0 | if (RefRelationship == Sema::Ref_Compatible && |
5204 | 0 | isRValueRef && InitCategory.isLValue()) { |
5205 | 0 | Sequence.SetFailed( |
5206 | 0 | InitializationSequence::FK_RValueReferenceBindingToLValue); |
5207 | 0 | return; |
5208 | 0 | } |
5209 | | |
5210 | 0 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
5211 | 0 | return; |
5212 | 0 | } |
5213 | | |
5214 | | // - Otherwise, a temporary of type "cv1 T1" is created and initialized |
5215 | | // from the initializer expression using the rules for a non-reference |
5216 | | // copy-initialization (8.5). The reference is then bound to the |
5217 | | // temporary. [...] |
5218 | | |
5219 | | // Ignore address space of reference type at this point and perform address |
5220 | | // space conversion after the reference binding step. |
5221 | 0 | QualType cv1T1IgnoreAS = |
5222 | 0 | T1Quals.hasAddressSpace() |
5223 | 0 | ? S.Context.getQualifiedType(T1, T1Quals.withoutAddressSpace()) |
5224 | 0 | : cv1T1; |
5225 | |
|
5226 | 0 | InitializedEntity TempEntity = |
5227 | 0 | InitializedEntity::InitializeTemporary(cv1T1IgnoreAS); |
5228 | | |
5229 | | // FIXME: Why do we use an implicit conversion here rather than trying |
5230 | | // copy-initialization? |
5231 | 0 | ImplicitConversionSequence ICS |
5232 | 0 | = S.TryImplicitConversion(Initializer, TempEntity.getType(), |
5233 | 0 | /*SuppressUserConversions=*/false, |
5234 | 0 | Sema::AllowedExplicit::None, |
5235 | 0 | /*FIXME:InOverloadResolution=*/false, |
5236 | 0 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
5237 | 0 | /*AllowObjCWritebackConversion=*/false); |
5238 | |
|
5239 | 0 | if (ICS.isBad()) { |
5240 | | // FIXME: Use the conversion function set stored in ICS to turn |
5241 | | // this into an overloading ambiguity diagnostic. However, we need |
5242 | | // to keep that set as an OverloadCandidateSet rather than as some |
5243 | | // other kind of set. |
5244 | 0 | if (ConvOvlResult && !Sequence.getFailedCandidateSet().empty()) |
5245 | 0 | Sequence.SetOverloadFailure( |
5246 | 0 | InitializationSequence::FK_ReferenceInitOverloadFailed, |
5247 | 0 | ConvOvlResult); |
5248 | 0 | else if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) |
5249 | 0 | Sequence.SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
5250 | 0 | else |
5251 | 0 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitFailed); |
5252 | 0 | return; |
5253 | 0 | } else { |
5254 | 0 | Sequence.AddConversionSequenceStep(ICS, TempEntity.getType(), |
5255 | 0 | TopLevelOfInitList); |
5256 | 0 | } |
5257 | | |
5258 | | // [...] If T1 is reference-related to T2, cv1 must be the |
5259 | | // same cv-qualification as, or greater cv-qualification |
5260 | | // than, cv2; otherwise, the program is ill-formed. |
5261 | 0 | unsigned T1CVRQuals = T1Quals.getCVRQualifiers(); |
5262 | 0 | unsigned T2CVRQuals = T2Quals.getCVRQualifiers(); |
5263 | 0 | if (RefRelationship == Sema::Ref_Related && |
5264 | 0 | ((T1CVRQuals | T2CVRQuals) != T1CVRQuals || |
5265 | 0 | !T1Quals.isAddressSpaceSupersetOf(T2Quals))) { |
5266 | 0 | Sequence.SetFailed(InitializationSequence::FK_ReferenceInitDropsQualifiers); |
5267 | 0 | return; |
5268 | 0 | } |
5269 | | |
5270 | | // [...] If T1 is reference-related to T2 and the reference is an rvalue |
5271 | | // reference, the initializer expression shall not be an lvalue. |
5272 | 0 | if (RefRelationship >= Sema::Ref_Related && !isLValueRef && |
5273 | 0 | InitCategory.isLValue()) { |
5274 | 0 | Sequence.SetFailed( |
5275 | 0 | InitializationSequence::FK_RValueReferenceBindingToLValue); |
5276 | 0 | return; |
5277 | 0 | } |
5278 | | |
5279 | 0 | Sequence.AddReferenceBindingStep(cv1T1IgnoreAS, /*BindingTemporary=*/true); |
5280 | |
|
5281 | 0 | if (T1Quals.hasAddressSpace()) { |
5282 | 0 | if (!Qualifiers::isAddressSpaceSupersetOf(T1Quals.getAddressSpace(), |
5283 | 0 | LangAS::Default)) { |
5284 | 0 | Sequence.SetFailed( |
5285 | 0 | InitializationSequence::FK_ReferenceAddrspaceMismatchTemporary); |
5286 | 0 | return; |
5287 | 0 | } |
5288 | 0 | Sequence.AddQualificationConversionStep(cv1T1, isLValueRef ? VK_LValue |
5289 | 0 | : VK_XValue); |
5290 | 0 | } |
5291 | 0 | } |
5292 | | |
5293 | | /// Attempt character array initialization from a string literal |
5294 | | /// (C++ [dcl.init.string], C99 6.7.8). |
5295 | | static void TryStringLiteralInitialization(Sema &S, |
5296 | | const InitializedEntity &Entity, |
5297 | | const InitializationKind &Kind, |
5298 | | Expr *Initializer, |
5299 | 0 | InitializationSequence &Sequence) { |
5300 | 0 | Sequence.AddStringInitStep(Entity.getType()); |
5301 | 0 | } |
5302 | | |
5303 | | /// Attempt value initialization (C++ [dcl.init]p7). |
5304 | | static void TryValueInitialization(Sema &S, |
5305 | | const InitializedEntity &Entity, |
5306 | | const InitializationKind &Kind, |
5307 | | InitializationSequence &Sequence, |
5308 | 0 | InitListExpr *InitList) { |
5309 | 0 | assert((!InitList || InitList->getNumInits() == 0) && |
5310 | 0 | "Shouldn't use value-init for non-empty init lists"); |
5311 | | |
5312 | | // C++98 [dcl.init]p5, C++11 [dcl.init]p7: |
5313 | | // |
5314 | | // To value-initialize an object of type T means: |
5315 | 0 | QualType T = Entity.getType(); |
5316 | | |
5317 | | // -- if T is an array type, then each element is value-initialized; |
5318 | 0 | T = S.Context.getBaseElementType(T); |
5319 | |
|
5320 | 0 | if (const RecordType *RT = T->getAs<RecordType>()) { |
5321 | 0 | if (CXXRecordDecl *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) { |
5322 | 0 | bool NeedZeroInitialization = true; |
5323 | | // C++98: |
5324 | | // -- if T is a class type (clause 9) with a user-declared constructor |
5325 | | // (12.1), then the default constructor for T is called (and the |
5326 | | // initialization is ill-formed if T has no accessible default |
5327 | | // constructor); |
5328 | | // C++11: |
5329 | | // -- if T is a class type (clause 9) with either no default constructor |
5330 | | // (12.1 [class.ctor]) or a default constructor that is user-provided |
5331 | | // or deleted, then the object is default-initialized; |
5332 | | // |
5333 | | // Note that the C++11 rule is the same as the C++98 rule if there are no |
5334 | | // defaulted or deleted constructors, so we just use it unconditionally. |
5335 | 0 | CXXConstructorDecl *CD = S.LookupDefaultConstructor(ClassDecl); |
5336 | 0 | if (!CD || !CD->getCanonicalDecl()->isDefaulted() || CD->isDeleted()) |
5337 | 0 | NeedZeroInitialization = false; |
5338 | | |
5339 | | // -- if T is a (possibly cv-qualified) non-union class type without a |
5340 | | // user-provided or deleted default constructor, then the object is |
5341 | | // zero-initialized and, if T has a non-trivial default constructor, |
5342 | | // default-initialized; |
5343 | | // The 'non-union' here was removed by DR1502. The 'non-trivial default |
5344 | | // constructor' part was removed by DR1507. |
5345 | 0 | if (NeedZeroInitialization) |
5346 | 0 | Sequence.AddZeroInitializationStep(Entity.getType()); |
5347 | | |
5348 | | // C++03: |
5349 | | // -- if T is a non-union class type without a user-declared constructor, |
5350 | | // then every non-static data member and base class component of T is |
5351 | | // value-initialized; |
5352 | | // [...] A program that calls for [...] value-initialization of an |
5353 | | // entity of reference type is ill-formed. |
5354 | | // |
5355 | | // C++11 doesn't need this handling, because value-initialization does not |
5356 | | // occur recursively there, and the implicit default constructor is |
5357 | | // defined as deleted in the problematic cases. |
5358 | 0 | if (!S.getLangOpts().CPlusPlus11 && |
5359 | 0 | ClassDecl->hasUninitializedReferenceMember()) { |
5360 | 0 | Sequence.SetFailed(InitializationSequence::FK_TooManyInitsForReference); |
5361 | 0 | return; |
5362 | 0 | } |
5363 | | |
5364 | | // If this is list-value-initialization, pass the empty init list on when |
5365 | | // building the constructor call. This affects the semantics of a few |
5366 | | // things (such as whether an explicit default constructor can be called). |
5367 | 0 | Expr *InitListAsExpr = InitList; |
5368 | 0 | MultiExprArg Args(&InitListAsExpr, InitList ? 1 : 0); |
5369 | 0 | bool InitListSyntax = InitList; |
5370 | | |
5371 | | // FIXME: Instead of creating a CXXConstructExpr of array type here, |
5372 | | // wrap a class-typed CXXConstructExpr in an ArrayInitLoopExpr. |
5373 | 0 | return TryConstructorInitialization( |
5374 | 0 | S, Entity, Kind, Args, T, Entity.getType(), Sequence, InitListSyntax); |
5375 | 0 | } |
5376 | 0 | } |
5377 | | |
5378 | 0 | Sequence.AddZeroInitializationStep(Entity.getType()); |
5379 | 0 | } |
5380 | | |
5381 | | /// Attempt default initialization (C++ [dcl.init]p6). |
5382 | | static void TryDefaultInitialization(Sema &S, |
5383 | | const InitializedEntity &Entity, |
5384 | | const InitializationKind &Kind, |
5385 | 0 | InitializationSequence &Sequence) { |
5386 | 0 | assert(Kind.getKind() == InitializationKind::IK_Default); |
5387 | | |
5388 | | // C++ [dcl.init]p6: |
5389 | | // To default-initialize an object of type T means: |
5390 | | // - if T is an array type, each element is default-initialized; |
5391 | 0 | QualType DestType = S.Context.getBaseElementType(Entity.getType()); |
5392 | | |
5393 | | // - if T is a (possibly cv-qualified) class type (Clause 9), the default |
5394 | | // constructor for T is called (and the initialization is ill-formed if |
5395 | | // T has no accessible default constructor); |
5396 | 0 | if (DestType->isRecordType() && S.getLangOpts().CPlusPlus) { |
5397 | 0 | TryConstructorInitialization(S, Entity, Kind, std::nullopt, DestType, |
5398 | 0 | Entity.getType(), Sequence); |
5399 | 0 | return; |
5400 | 0 | } |
5401 | | |
5402 | | // - otherwise, no initialization is performed. |
5403 | | |
5404 | | // If a program calls for the default initialization of an object of |
5405 | | // a const-qualified type T, T shall be a class type with a user-provided |
5406 | | // default constructor. |
5407 | 0 | if (DestType.isConstQualified() && S.getLangOpts().CPlusPlus) { |
5408 | 0 | if (!maybeRecoverWithZeroInitialization(S, Sequence, Entity)) |
5409 | 0 | Sequence.SetFailed(InitializationSequence::FK_DefaultInitOfConst); |
5410 | 0 | return; |
5411 | 0 | } |
5412 | | |
5413 | | // If the destination type has a lifetime property, zero-initialize it. |
5414 | 0 | if (DestType.getQualifiers().hasObjCLifetime()) { |
5415 | 0 | Sequence.AddZeroInitializationStep(Entity.getType()); |
5416 | 0 | return; |
5417 | 0 | } |
5418 | 0 | } |
5419 | | |
5420 | | static void TryOrBuildParenListInitialization( |
5421 | | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
5422 | | ArrayRef<Expr *> Args, InitializationSequence &Sequence, bool VerifyOnly, |
5423 | 0 | ExprResult *Result = nullptr) { |
5424 | 0 | unsigned EntityIndexToProcess = 0; |
5425 | 0 | SmallVector<Expr *, 4> InitExprs; |
5426 | 0 | QualType ResultType; |
5427 | 0 | Expr *ArrayFiller = nullptr; |
5428 | 0 | FieldDecl *InitializedFieldInUnion = nullptr; |
5429 | |
|
5430 | 0 | auto HandleInitializedEntity = [&](const InitializedEntity &SubEntity, |
5431 | 0 | const InitializationKind &SubKind, |
5432 | 0 | Expr *Arg, Expr **InitExpr = nullptr) { |
5433 | 0 | InitializationSequence IS = InitializationSequence( |
5434 | 0 | S, SubEntity, SubKind, Arg ? MultiExprArg(Arg) : std::nullopt); |
5435 | |
|
5436 | 0 | if (IS.Failed()) { |
5437 | 0 | if (!VerifyOnly) { |
5438 | 0 | IS.Diagnose(S, SubEntity, SubKind, Arg ? ArrayRef(Arg) : std::nullopt); |
5439 | 0 | } else { |
5440 | 0 | Sequence.SetFailed( |
5441 | 0 | InitializationSequence::FK_ParenthesizedListInitFailed); |
5442 | 0 | } |
5443 | |
|
5444 | 0 | return false; |
5445 | 0 | } |
5446 | 0 | if (!VerifyOnly) { |
5447 | 0 | ExprResult ER; |
5448 | 0 | ER = IS.Perform(S, SubEntity, SubKind, |
5449 | 0 | Arg ? MultiExprArg(Arg) : std::nullopt); |
5450 | 0 | if (InitExpr) |
5451 | 0 | *InitExpr = ER.get(); |
5452 | 0 | else |
5453 | 0 | InitExprs.push_back(ER.get()); |
5454 | 0 | } |
5455 | 0 | return true; |
5456 | 0 | }; |
5457 | |
|
5458 | 0 | if (const ArrayType *AT = |
5459 | 0 | S.getASTContext().getAsArrayType(Entity.getType())) { |
5460 | 0 | SmallVector<InitializedEntity, 4> ElementEntities; |
5461 | 0 | uint64_t ArrayLength; |
5462 | | // C++ [dcl.init]p16.5 |
5463 | | // if the destination type is an array, the object is initialized as |
5464 | | // follows. Let x1, . . . , xk be the elements of the expression-list. If |
5465 | | // the destination type is an array of unknown bound, it is defined as |
5466 | | // having k elements. |
5467 | 0 | if (const ConstantArrayType *CAT = |
5468 | 0 | S.getASTContext().getAsConstantArrayType(Entity.getType())) { |
5469 | 0 | ArrayLength = CAT->getSize().getZExtValue(); |
5470 | 0 | ResultType = Entity.getType(); |
5471 | 0 | } else if (const VariableArrayType *VAT = |
5472 | 0 | S.getASTContext().getAsVariableArrayType(Entity.getType())) { |
5473 | | // Braced-initialization of variable array types is not allowed, even if |
5474 | | // the size is greater than or equal to the number of args, so we don't |
5475 | | // allow them to be initialized via parenthesized aggregate initialization |
5476 | | // either. |
5477 | 0 | const Expr *SE = VAT->getSizeExpr(); |
5478 | 0 | S.Diag(SE->getBeginLoc(), diag::err_variable_object_no_init) |
5479 | 0 | << SE->getSourceRange(); |
5480 | 0 | return; |
5481 | 0 | } else { |
5482 | 0 | assert(isa<IncompleteArrayType>(Entity.getType())); |
5483 | 0 | ArrayLength = Args.size(); |
5484 | 0 | } |
5485 | 0 | EntityIndexToProcess = ArrayLength; |
5486 | | |
5487 | | // ...the ith array element is copy-initialized with xi for each |
5488 | | // 1 <= i <= k |
5489 | 0 | for (Expr *E : Args) { |
5490 | 0 | InitializedEntity SubEntity = InitializedEntity::InitializeElement( |
5491 | 0 | S.getASTContext(), EntityIndexToProcess, Entity); |
5492 | 0 | InitializationKind SubKind = InitializationKind::CreateForInit( |
5493 | 0 | E->getExprLoc(), /*isDirectInit=*/false, E); |
5494 | 0 | if (!HandleInitializedEntity(SubEntity, SubKind, E)) |
5495 | 0 | return; |
5496 | 0 | } |
5497 | | // ...and value-initialized for each k < i <= n; |
5498 | 0 | if (ArrayLength > Args.size()) { |
5499 | 0 | InitializedEntity SubEntity = InitializedEntity::InitializeElement( |
5500 | 0 | S.getASTContext(), Args.size(), Entity); |
5501 | 0 | InitializationKind SubKind = InitializationKind::CreateValue( |
5502 | 0 | Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true); |
5503 | 0 | if (!HandleInitializedEntity(SubEntity, SubKind, nullptr, &ArrayFiller)) |
5504 | 0 | return; |
5505 | 0 | } |
5506 | | |
5507 | 0 | if (ResultType.isNull()) { |
5508 | 0 | ResultType = S.Context.getConstantArrayType( |
5509 | 0 | AT->getElementType(), llvm::APInt(/*numBits=*/32, ArrayLength), |
5510 | 0 | /*SizeExpr=*/nullptr, ArraySizeModifier::Normal, 0); |
5511 | 0 | } |
5512 | 0 | } else if (auto *RT = Entity.getType()->getAs<RecordType>()) { |
5513 | 0 | bool IsUnion = RT->isUnionType(); |
5514 | 0 | const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); |
5515 | 0 | if (RD->isInvalidDecl()) { |
5516 | | // Exit early to avoid confusion when processing members. |
5517 | | // We do the same for braced list initialization in |
5518 | | // `CheckStructUnionTypes`. |
5519 | 0 | Sequence.SetFailed( |
5520 | 0 | clang::InitializationSequence::FK_ParenthesizedListInitFailed); |
5521 | 0 | return; |
5522 | 0 | } |
5523 | | |
5524 | 0 | if (!IsUnion) { |
5525 | 0 | for (const CXXBaseSpecifier &Base : RD->bases()) { |
5526 | 0 | InitializedEntity SubEntity = InitializedEntity::InitializeBase( |
5527 | 0 | S.getASTContext(), &Base, false, &Entity); |
5528 | 0 | if (EntityIndexToProcess < Args.size()) { |
5529 | | // C++ [dcl.init]p16.6.2.2. |
5530 | | // ...the object is initialized is follows. Let e1, ..., en be the |
5531 | | // elements of the aggregate([dcl.init.aggr]). Let x1, ..., xk be |
5532 | | // the elements of the expression-list...The element ei is |
5533 | | // copy-initialized with xi for 1 <= i <= k. |
5534 | 0 | Expr *E = Args[EntityIndexToProcess]; |
5535 | 0 | InitializationKind SubKind = InitializationKind::CreateForInit( |
5536 | 0 | E->getExprLoc(), /*isDirectInit=*/false, E); |
5537 | 0 | if (!HandleInitializedEntity(SubEntity, SubKind, E)) |
5538 | 0 | return; |
5539 | 0 | } else { |
5540 | | // We've processed all of the args, but there are still base classes |
5541 | | // that have to be initialized. |
5542 | | // C++ [dcl.init]p17.6.2.2 |
5543 | | // The remaining elements...otherwise are value initialzed |
5544 | 0 | InitializationKind SubKind = InitializationKind::CreateValue( |
5545 | 0 | Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), |
5546 | 0 | /*IsImplicit=*/true); |
5547 | 0 | if (!HandleInitializedEntity(SubEntity, SubKind, nullptr)) |
5548 | 0 | return; |
5549 | 0 | } |
5550 | 0 | EntityIndexToProcess++; |
5551 | 0 | } |
5552 | 0 | } |
5553 | | |
5554 | 0 | for (FieldDecl *FD : RD->fields()) { |
5555 | | // Unnamed bitfields should not be initialized at all, either with an arg |
5556 | | // or by default. |
5557 | 0 | if (FD->isUnnamedBitfield()) |
5558 | 0 | continue; |
5559 | | |
5560 | 0 | InitializedEntity SubEntity = |
5561 | 0 | InitializedEntity::InitializeMemberFromParenAggInit(FD); |
5562 | |
|
5563 | 0 | if (EntityIndexToProcess < Args.size()) { |
5564 | | // ...The element ei is copy-initialized with xi for 1 <= i <= k. |
5565 | 0 | Expr *E = Args[EntityIndexToProcess]; |
5566 | | |
5567 | | // Incomplete array types indicate flexible array members. Do not allow |
5568 | | // paren list initializations of structs with these members, as GCC |
5569 | | // doesn't either. |
5570 | 0 | if (FD->getType()->isIncompleteArrayType()) { |
5571 | 0 | if (!VerifyOnly) { |
5572 | 0 | S.Diag(E->getBeginLoc(), diag::err_flexible_array_init) |
5573 | 0 | << SourceRange(E->getBeginLoc(), E->getEndLoc()); |
5574 | 0 | S.Diag(FD->getLocation(), diag::note_flexible_array_member) << FD; |
5575 | 0 | } |
5576 | 0 | Sequence.SetFailed( |
5577 | 0 | InitializationSequence::FK_ParenthesizedListInitFailed); |
5578 | 0 | return; |
5579 | 0 | } |
5580 | | |
5581 | 0 | InitializationKind SubKind = InitializationKind::CreateForInit( |
5582 | 0 | E->getExprLoc(), /*isDirectInit=*/false, E); |
5583 | 0 | if (!HandleInitializedEntity(SubEntity, SubKind, E)) |
5584 | 0 | return; |
5585 | | |
5586 | | // Unions should have only one initializer expression, so we bail out |
5587 | | // after processing the first field. If there are more initializers then |
5588 | | // it will be caught when we later check whether EntityIndexToProcess is |
5589 | | // less than Args.size(); |
5590 | 0 | if (IsUnion) { |
5591 | 0 | InitializedFieldInUnion = FD; |
5592 | 0 | EntityIndexToProcess = 1; |
5593 | 0 | break; |
5594 | 0 | } |
5595 | 0 | } else { |
5596 | | // We've processed all of the args, but there are still members that |
5597 | | // have to be initialized. |
5598 | 0 | if (FD->hasInClassInitializer()) { |
5599 | 0 | if (!VerifyOnly) { |
5600 | | // C++ [dcl.init]p16.6.2.2 |
5601 | | // The remaining elements are initialized with their default |
5602 | | // member initializers, if any |
5603 | 0 | ExprResult DIE = S.BuildCXXDefaultInitExpr( |
5604 | 0 | Kind.getParenOrBraceRange().getEnd(), FD); |
5605 | 0 | if (DIE.isInvalid()) |
5606 | 0 | return; |
5607 | 0 | S.checkInitializerLifetime(SubEntity, DIE.get()); |
5608 | 0 | InitExprs.push_back(DIE.get()); |
5609 | 0 | } |
5610 | 0 | } else { |
5611 | | // C++ [dcl.init]p17.6.2.2 |
5612 | | // The remaining elements...otherwise are value initialzed |
5613 | 0 | if (FD->getType()->isReferenceType()) { |
5614 | 0 | Sequence.SetFailed( |
5615 | 0 | InitializationSequence::FK_ParenthesizedListInitFailed); |
5616 | 0 | if (!VerifyOnly) { |
5617 | 0 | SourceRange SR = Kind.getParenOrBraceRange(); |
5618 | 0 | S.Diag(SR.getEnd(), diag::err_init_reference_member_uninitialized) |
5619 | 0 | << FD->getType() << SR; |
5620 | 0 | S.Diag(FD->getLocation(), diag::note_uninit_reference_member); |
5621 | 0 | } |
5622 | 0 | return; |
5623 | 0 | } |
5624 | 0 | InitializationKind SubKind = InitializationKind::CreateValue( |
5625 | 0 | Kind.getLocation(), Kind.getLocation(), Kind.getLocation(), true); |
5626 | 0 | if (!HandleInitializedEntity(SubEntity, SubKind, nullptr)) |
5627 | 0 | return; |
5628 | 0 | } |
5629 | 0 | } |
5630 | 0 | EntityIndexToProcess++; |
5631 | 0 | } |
5632 | 0 | ResultType = Entity.getType(); |
5633 | 0 | } |
5634 | | |
5635 | | // Not all of the args have been processed, so there must've been more args |
5636 | | // than were required to initialize the element. |
5637 | 0 | if (EntityIndexToProcess < Args.size()) { |
5638 | 0 | Sequence.SetFailed(InitializationSequence::FK_ParenthesizedListInitFailed); |
5639 | 0 | if (!VerifyOnly) { |
5640 | 0 | QualType T = Entity.getType(); |
5641 | 0 | int InitKind = T->isArrayType() ? 0 : T->isUnionType() ? 3 : 4; |
5642 | 0 | SourceRange ExcessInitSR(Args[EntityIndexToProcess]->getBeginLoc(), |
5643 | 0 | Args.back()->getEndLoc()); |
5644 | 0 | S.Diag(Kind.getLocation(), diag::err_excess_initializers) |
5645 | 0 | << InitKind << ExcessInitSR; |
5646 | 0 | } |
5647 | 0 | return; |
5648 | 0 | } |
5649 | | |
5650 | 0 | if (VerifyOnly) { |
5651 | 0 | Sequence.setSequenceKind(InitializationSequence::NormalSequence); |
5652 | 0 | Sequence.AddParenthesizedListInitStep(Entity.getType()); |
5653 | 0 | } else if (Result) { |
5654 | 0 | SourceRange SR = Kind.getParenOrBraceRange(); |
5655 | 0 | auto *CPLIE = CXXParenListInitExpr::Create( |
5656 | 0 | S.getASTContext(), InitExprs, ResultType, Args.size(), |
5657 | 0 | Kind.getLocation(), SR.getBegin(), SR.getEnd()); |
5658 | 0 | if (ArrayFiller) |
5659 | 0 | CPLIE->setArrayFiller(ArrayFiller); |
5660 | 0 | if (InitializedFieldInUnion) |
5661 | 0 | CPLIE->setInitializedFieldInUnion(InitializedFieldInUnion); |
5662 | 0 | *Result = CPLIE; |
5663 | 0 | S.Diag(Kind.getLocation(), |
5664 | 0 | diag::warn_cxx17_compat_aggregate_init_paren_list) |
5665 | 0 | << Kind.getLocation() << SR << ResultType; |
5666 | 0 | } |
5667 | 0 | } |
5668 | | |
5669 | | /// Attempt a user-defined conversion between two types (C++ [dcl.init]), |
5670 | | /// which enumerates all conversion functions and performs overload resolution |
5671 | | /// to select the best. |
5672 | | static void TryUserDefinedConversion(Sema &S, |
5673 | | QualType DestType, |
5674 | | const InitializationKind &Kind, |
5675 | | Expr *Initializer, |
5676 | | InitializationSequence &Sequence, |
5677 | 0 | bool TopLevelOfInitList) { |
5678 | 0 | assert(!DestType->isReferenceType() && "References are handled elsewhere"); |
5679 | 0 | QualType SourceType = Initializer->getType(); |
5680 | 0 | assert((DestType->isRecordType() || SourceType->isRecordType()) && |
5681 | 0 | "Must have a class type to perform a user-defined conversion"); |
5682 | | |
5683 | | // Build the candidate set directly in the initialization sequence |
5684 | | // structure, so that it will persist if we fail. |
5685 | 0 | OverloadCandidateSet &CandidateSet = Sequence.getFailedCandidateSet(); |
5686 | 0 | CandidateSet.clear(OverloadCandidateSet::CSK_InitByUserDefinedConversion); |
5687 | 0 | CandidateSet.setDestAS(DestType.getQualifiers().getAddressSpace()); |
5688 | | |
5689 | | // Determine whether we are allowed to call explicit constructors or |
5690 | | // explicit conversion operators. |
5691 | 0 | bool AllowExplicit = Kind.AllowExplicit(); |
5692 | |
|
5693 | 0 | if (const RecordType *DestRecordType = DestType->getAs<RecordType>()) { |
5694 | | // The type we're converting to is a class type. Enumerate its constructors |
5695 | | // to see if there is a suitable conversion. |
5696 | 0 | CXXRecordDecl *DestRecordDecl |
5697 | 0 | = cast<CXXRecordDecl>(DestRecordType->getDecl()); |
5698 | | |
5699 | | // Try to complete the type we're converting to. |
5700 | 0 | if (S.isCompleteType(Kind.getLocation(), DestType)) { |
5701 | 0 | for (NamedDecl *D : S.LookupConstructors(DestRecordDecl)) { |
5702 | 0 | auto Info = getConstructorInfo(D); |
5703 | 0 | if (!Info.Constructor) |
5704 | 0 | continue; |
5705 | | |
5706 | 0 | if (!Info.Constructor->isInvalidDecl() && |
5707 | 0 | Info.Constructor->isConvertingConstructor(/*AllowExplicit*/true)) { |
5708 | 0 | if (Info.ConstructorTmpl) |
5709 | 0 | S.AddTemplateOverloadCandidate( |
5710 | 0 | Info.ConstructorTmpl, Info.FoundDecl, |
5711 | 0 | /*ExplicitArgs*/ nullptr, Initializer, CandidateSet, |
5712 | 0 | /*SuppressUserConversions=*/true, |
5713 | 0 | /*PartialOverloading*/ false, AllowExplicit); |
5714 | 0 | else |
5715 | 0 | S.AddOverloadCandidate(Info.Constructor, Info.FoundDecl, |
5716 | 0 | Initializer, CandidateSet, |
5717 | 0 | /*SuppressUserConversions=*/true, |
5718 | 0 | /*PartialOverloading*/ false, AllowExplicit); |
5719 | 0 | } |
5720 | 0 | } |
5721 | 0 | } |
5722 | 0 | } |
5723 | |
|
5724 | 0 | SourceLocation DeclLoc = Initializer->getBeginLoc(); |
5725 | |
|
5726 | 0 | if (const RecordType *SourceRecordType = SourceType->getAs<RecordType>()) { |
5727 | | // The type we're converting from is a class type, enumerate its conversion |
5728 | | // functions. |
5729 | | |
5730 | | // We can only enumerate the conversion functions for a complete type; if |
5731 | | // the type isn't complete, simply skip this step. |
5732 | 0 | if (S.isCompleteType(DeclLoc, SourceType)) { |
5733 | 0 | CXXRecordDecl *SourceRecordDecl |
5734 | 0 | = cast<CXXRecordDecl>(SourceRecordType->getDecl()); |
5735 | |
|
5736 | 0 | const auto &Conversions = |
5737 | 0 | SourceRecordDecl->getVisibleConversionFunctions(); |
5738 | 0 | for (auto I = Conversions.begin(), E = Conversions.end(); I != E; ++I) { |
5739 | 0 | NamedDecl *D = *I; |
5740 | 0 | CXXRecordDecl *ActingDC = cast<CXXRecordDecl>(D->getDeclContext()); |
5741 | 0 | if (isa<UsingShadowDecl>(D)) |
5742 | 0 | D = cast<UsingShadowDecl>(D)->getTargetDecl(); |
5743 | |
|
5744 | 0 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(D); |
5745 | 0 | CXXConversionDecl *Conv; |
5746 | 0 | if (ConvTemplate) |
5747 | 0 | Conv = cast<CXXConversionDecl>(ConvTemplate->getTemplatedDecl()); |
5748 | 0 | else |
5749 | 0 | Conv = cast<CXXConversionDecl>(D); |
5750 | |
|
5751 | 0 | if (ConvTemplate) |
5752 | 0 | S.AddTemplateConversionCandidate( |
5753 | 0 | ConvTemplate, I.getPair(), ActingDC, Initializer, DestType, |
5754 | 0 | CandidateSet, AllowExplicit, AllowExplicit); |
5755 | 0 | else |
5756 | 0 | S.AddConversionCandidate(Conv, I.getPair(), ActingDC, Initializer, |
5757 | 0 | DestType, CandidateSet, AllowExplicit, |
5758 | 0 | AllowExplicit); |
5759 | 0 | } |
5760 | 0 | } |
5761 | 0 | } |
5762 | | |
5763 | | // Perform overload resolution. If it fails, return the failed result. |
5764 | 0 | OverloadCandidateSet::iterator Best; |
5765 | 0 | if (OverloadingResult Result |
5766 | 0 | = CandidateSet.BestViableFunction(S, DeclLoc, Best)) { |
5767 | 0 | Sequence.SetOverloadFailure( |
5768 | 0 | InitializationSequence::FK_UserConversionOverloadFailed, Result); |
5769 | | |
5770 | | // [class.copy.elision]p3: |
5771 | | // In some copy-initialization contexts, a two-stage overload resolution |
5772 | | // is performed. |
5773 | | // If the first overload resolution selects a deleted function, we also |
5774 | | // need the initialization sequence to decide whether to perform the second |
5775 | | // overload resolution. |
5776 | 0 | if (!(Result == OR_Deleted && |
5777 | 0 | Kind.getKind() == InitializationKind::IK_Copy)) |
5778 | 0 | return; |
5779 | 0 | } |
5780 | | |
5781 | 0 | FunctionDecl *Function = Best->Function; |
5782 | 0 | Function->setReferenced(); |
5783 | 0 | bool HadMultipleCandidates = (CandidateSet.size() > 1); |
5784 | |
|
5785 | 0 | if (isa<CXXConstructorDecl>(Function)) { |
5786 | | // Add the user-defined conversion step. Any cv-qualification conversion is |
5787 | | // subsumed by the initialization. Per DR5, the created temporary is of the |
5788 | | // cv-unqualified type of the destination. |
5789 | 0 | Sequence.AddUserConversionStep(Function, Best->FoundDecl, |
5790 | 0 | DestType.getUnqualifiedType(), |
5791 | 0 | HadMultipleCandidates); |
5792 | | |
5793 | | // C++14 and before: |
5794 | | // - if the function is a constructor, the call initializes a temporary |
5795 | | // of the cv-unqualified version of the destination type. The [...] |
5796 | | // temporary [...] is then used to direct-initialize, according to the |
5797 | | // rules above, the object that is the destination of the |
5798 | | // copy-initialization. |
5799 | | // Note that this just performs a simple object copy from the temporary. |
5800 | | // |
5801 | | // C++17: |
5802 | | // - if the function is a constructor, the call is a prvalue of the |
5803 | | // cv-unqualified version of the destination type whose return object |
5804 | | // is initialized by the constructor. The call is used to |
5805 | | // direct-initialize, according to the rules above, the object that |
5806 | | // is the destination of the copy-initialization. |
5807 | | // Therefore we need to do nothing further. |
5808 | | // |
5809 | | // FIXME: Mark this copy as extraneous. |
5810 | 0 | if (!S.getLangOpts().CPlusPlus17) |
5811 | 0 | Sequence.AddFinalCopy(DestType); |
5812 | 0 | else if (DestType.hasQualifiers()) |
5813 | 0 | Sequence.AddQualificationConversionStep(DestType, VK_PRValue); |
5814 | 0 | return; |
5815 | 0 | } |
5816 | | |
5817 | | // Add the user-defined conversion step that calls the conversion function. |
5818 | 0 | QualType ConvType = Function->getCallResultType(); |
5819 | 0 | Sequence.AddUserConversionStep(Function, Best->FoundDecl, ConvType, |
5820 | 0 | HadMultipleCandidates); |
5821 | |
|
5822 | 0 | if (ConvType->getAs<RecordType>()) { |
5823 | | // The call is used to direct-initialize [...] the object that is the |
5824 | | // destination of the copy-initialization. |
5825 | | // |
5826 | | // In C++17, this does not call a constructor if we enter /17.6.1: |
5827 | | // - If the initializer expression is a prvalue and the cv-unqualified |
5828 | | // version of the source type is the same as the class of the |
5829 | | // destination [... do not make an extra copy] |
5830 | | // |
5831 | | // FIXME: Mark this copy as extraneous. |
5832 | 0 | if (!S.getLangOpts().CPlusPlus17 || |
5833 | 0 | Function->getReturnType()->isReferenceType() || |
5834 | 0 | !S.Context.hasSameUnqualifiedType(ConvType, DestType)) |
5835 | 0 | Sequence.AddFinalCopy(DestType); |
5836 | 0 | else if (!S.Context.hasSameType(ConvType, DestType)) |
5837 | 0 | Sequence.AddQualificationConversionStep(DestType, VK_PRValue); |
5838 | 0 | return; |
5839 | 0 | } |
5840 | | |
5841 | | // If the conversion following the call to the conversion function |
5842 | | // is interesting, add it as a separate step. |
5843 | 0 | if (Best->FinalConversion.First || Best->FinalConversion.Second || |
5844 | 0 | Best->FinalConversion.Third) { |
5845 | 0 | ImplicitConversionSequence ICS; |
5846 | 0 | ICS.setStandard(); |
5847 | 0 | ICS.Standard = Best->FinalConversion; |
5848 | 0 | Sequence.AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); |
5849 | 0 | } |
5850 | 0 | } |
5851 | | |
5852 | | /// An egregious hack for compatibility with libstdc++-4.2: in <tr1/hashtable>, |
5853 | | /// a function with a pointer return type contains a 'return false;' statement. |
5854 | | /// In C++11, 'false' is not a null pointer, so this breaks the build of any |
5855 | | /// code using that header. |
5856 | | /// |
5857 | | /// Work around this by treating 'return false;' as zero-initializing the result |
5858 | | /// if it's used in a pointer-returning function in a system header. |
5859 | | static bool isLibstdcxxPointerReturnFalseHack(Sema &S, |
5860 | | const InitializedEntity &Entity, |
5861 | 0 | const Expr *Init) { |
5862 | 0 | return S.getLangOpts().CPlusPlus11 && |
5863 | 0 | Entity.getKind() == InitializedEntity::EK_Result && |
5864 | 0 | Entity.getType()->isPointerType() && |
5865 | 0 | isa<CXXBoolLiteralExpr>(Init) && |
5866 | 0 | !cast<CXXBoolLiteralExpr>(Init)->getValue() && |
5867 | 0 | S.getSourceManager().isInSystemHeader(Init->getExprLoc()); |
5868 | 0 | } |
5869 | | |
5870 | | /// The non-zero enum values here are indexes into diagnostic alternatives. |
5871 | | enum InvalidICRKind { IIK_okay, IIK_nonlocal, IIK_nonscalar }; |
5872 | | |
5873 | | /// Determines whether this expression is an acceptable ICR source. |
5874 | | static InvalidICRKind isInvalidICRSource(ASTContext &C, Expr *e, |
5875 | 0 | bool isAddressOf, bool &isWeakAccess) { |
5876 | | // Skip parens. |
5877 | 0 | e = e->IgnoreParens(); |
5878 | | |
5879 | | // Skip address-of nodes. |
5880 | 0 | if (UnaryOperator *op = dyn_cast<UnaryOperator>(e)) { |
5881 | 0 | if (op->getOpcode() == UO_AddrOf) |
5882 | 0 | return isInvalidICRSource(C, op->getSubExpr(), /*addressof*/ true, |
5883 | 0 | isWeakAccess); |
5884 | | |
5885 | | // Skip certain casts. |
5886 | 0 | } else if (CastExpr *ce = dyn_cast<CastExpr>(e)) { |
5887 | 0 | switch (ce->getCastKind()) { |
5888 | 0 | case CK_Dependent: |
5889 | 0 | case CK_BitCast: |
5890 | 0 | case CK_LValueBitCast: |
5891 | 0 | case CK_NoOp: |
5892 | 0 | return isInvalidICRSource(C, ce->getSubExpr(), isAddressOf, isWeakAccess); |
5893 | | |
5894 | 0 | case CK_ArrayToPointerDecay: |
5895 | 0 | return IIK_nonscalar; |
5896 | | |
5897 | 0 | case CK_NullToPointer: |
5898 | 0 | return IIK_okay; |
5899 | | |
5900 | 0 | default: |
5901 | 0 | break; |
5902 | 0 | } |
5903 | | |
5904 | | // If we have a declaration reference, it had better be a local variable. |
5905 | 0 | } else if (isa<DeclRefExpr>(e)) { |
5906 | | // set isWeakAccess to true, to mean that there will be an implicit |
5907 | | // load which requires a cleanup. |
5908 | 0 | if (e->getType().getObjCLifetime() == Qualifiers::OCL_Weak) |
5909 | 0 | isWeakAccess = true; |
5910 | |
|
5911 | 0 | if (!isAddressOf) return IIK_nonlocal; |
5912 | | |
5913 | 0 | VarDecl *var = dyn_cast<VarDecl>(cast<DeclRefExpr>(e)->getDecl()); |
5914 | 0 | if (!var) return IIK_nonlocal; |
5915 | | |
5916 | 0 | return (var->hasLocalStorage() ? IIK_okay : IIK_nonlocal); |
5917 | | |
5918 | | // If we have a conditional operator, check both sides. |
5919 | 0 | } else if (ConditionalOperator *cond = dyn_cast<ConditionalOperator>(e)) { |
5920 | 0 | if (InvalidICRKind iik = isInvalidICRSource(C, cond->getLHS(), isAddressOf, |
5921 | 0 | isWeakAccess)) |
5922 | 0 | return iik; |
5923 | | |
5924 | 0 | return isInvalidICRSource(C, cond->getRHS(), isAddressOf, isWeakAccess); |
5925 | | |
5926 | | // These are never scalar. |
5927 | 0 | } else if (isa<ArraySubscriptExpr>(e)) { |
5928 | 0 | return IIK_nonscalar; |
5929 | | |
5930 | | // Otherwise, it needs to be a null pointer constant. |
5931 | 0 | } else { |
5932 | 0 | return (e->isNullPointerConstant(C, Expr::NPC_ValueDependentIsNull) |
5933 | 0 | ? IIK_okay : IIK_nonlocal); |
5934 | 0 | } |
5935 | | |
5936 | 0 | return IIK_nonlocal; |
5937 | 0 | } |
5938 | | |
5939 | | /// Check whether the given expression is a valid operand for an |
5940 | | /// indirect copy/restore. |
5941 | 0 | static void checkIndirectCopyRestoreSource(Sema &S, Expr *src) { |
5942 | 0 | assert(src->isPRValue()); |
5943 | 0 | bool isWeakAccess = false; |
5944 | 0 | InvalidICRKind iik = isInvalidICRSource(S.Context, src, false, isWeakAccess); |
5945 | | // If isWeakAccess to true, there will be an implicit |
5946 | | // load which requires a cleanup. |
5947 | 0 | if (S.getLangOpts().ObjCAutoRefCount && isWeakAccess) |
5948 | 0 | S.Cleanup.setExprNeedsCleanups(true); |
5949 | |
|
5950 | 0 | if (iik == IIK_okay) return; |
5951 | | |
5952 | 0 | S.Diag(src->getExprLoc(), diag::err_arc_nonlocal_writeback) |
5953 | 0 | << ((unsigned) iik - 1) // shift index into diagnostic explanations |
5954 | 0 | << src->getSourceRange(); |
5955 | 0 | } |
5956 | | |
5957 | | /// Determine whether we have compatible array types for the |
5958 | | /// purposes of GNU by-copy array initialization. |
5959 | | static bool hasCompatibleArrayTypes(ASTContext &Context, const ArrayType *Dest, |
5960 | 0 | const ArrayType *Source) { |
5961 | | // If the source and destination array types are equivalent, we're |
5962 | | // done. |
5963 | 0 | if (Context.hasSameType(QualType(Dest, 0), QualType(Source, 0))) |
5964 | 0 | return true; |
5965 | | |
5966 | | // Make sure that the element types are the same. |
5967 | 0 | if (!Context.hasSameType(Dest->getElementType(), Source->getElementType())) |
5968 | 0 | return false; |
5969 | | |
5970 | | // The only mismatch we allow is when the destination is an |
5971 | | // incomplete array type and the source is a constant array type. |
5972 | 0 | return Source->isConstantArrayType() && Dest->isIncompleteArrayType(); |
5973 | 0 | } |
5974 | | |
5975 | | static bool tryObjCWritebackConversion(Sema &S, |
5976 | | InitializationSequence &Sequence, |
5977 | | const InitializedEntity &Entity, |
5978 | 0 | Expr *Initializer) { |
5979 | 0 | bool ArrayDecay = false; |
5980 | 0 | QualType ArgType = Initializer->getType(); |
5981 | 0 | QualType ArgPointee; |
5982 | 0 | if (const ArrayType *ArgArrayType = S.Context.getAsArrayType(ArgType)) { |
5983 | 0 | ArrayDecay = true; |
5984 | 0 | ArgPointee = ArgArrayType->getElementType(); |
5985 | 0 | ArgType = S.Context.getPointerType(ArgPointee); |
5986 | 0 | } |
5987 | | |
5988 | | // Handle write-back conversion. |
5989 | 0 | QualType ConvertedArgType; |
5990 | 0 | if (!S.isObjCWritebackConversion(ArgType, Entity.getType(), |
5991 | 0 | ConvertedArgType)) |
5992 | 0 | return false; |
5993 | | |
5994 | | // We should copy unless we're passing to an argument explicitly |
5995 | | // marked 'out'. |
5996 | 0 | bool ShouldCopy = true; |
5997 | 0 | if (ParmVarDecl *param = cast_or_null<ParmVarDecl>(Entity.getDecl())) |
5998 | 0 | ShouldCopy = (param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
5999 | | |
6000 | | // Do we need an lvalue conversion? |
6001 | 0 | if (ArrayDecay || Initializer->isGLValue()) { |
6002 | 0 | ImplicitConversionSequence ICS; |
6003 | 0 | ICS.setStandard(); |
6004 | 0 | ICS.Standard.setAsIdentityConversion(); |
6005 | |
|
6006 | 0 | QualType ResultType; |
6007 | 0 | if (ArrayDecay) { |
6008 | 0 | ICS.Standard.First = ICK_Array_To_Pointer; |
6009 | 0 | ResultType = S.Context.getPointerType(ArgPointee); |
6010 | 0 | } else { |
6011 | 0 | ICS.Standard.First = ICK_Lvalue_To_Rvalue; |
6012 | 0 | ResultType = Initializer->getType().getNonLValueExprType(S.Context); |
6013 | 0 | } |
6014 | |
|
6015 | 0 | Sequence.AddConversionSequenceStep(ICS, ResultType); |
6016 | 0 | } |
6017 | |
|
6018 | 0 | Sequence.AddPassByIndirectCopyRestoreStep(Entity.getType(), ShouldCopy); |
6019 | 0 | return true; |
6020 | 0 | } |
6021 | | |
6022 | | static bool TryOCLSamplerInitialization(Sema &S, |
6023 | | InitializationSequence &Sequence, |
6024 | | QualType DestType, |
6025 | 7 | Expr *Initializer) { |
6026 | 7 | if (!S.getLangOpts().OpenCL || !DestType->isSamplerT() || |
6027 | 7 | (!Initializer->isIntegerConstantExpr(S.Context) && |
6028 | 0 | !Initializer->getType()->isSamplerT())) |
6029 | 7 | return false; |
6030 | | |
6031 | 0 | Sequence.AddOCLSamplerInitStep(DestType); |
6032 | 0 | return true; |
6033 | 7 | } |
6034 | | |
6035 | 0 | static bool IsZeroInitializer(Expr *Initializer, Sema &S) { |
6036 | 0 | return Initializer->isIntegerConstantExpr(S.getASTContext()) && |
6037 | 0 | (Initializer->EvaluateKnownConstInt(S.getASTContext()) == 0); |
6038 | 0 | } |
6039 | | |
6040 | | static bool TryOCLZeroOpaqueTypeInitialization(Sema &S, |
6041 | | InitializationSequence &Sequence, |
6042 | | QualType DestType, |
6043 | 7 | Expr *Initializer) { |
6044 | 7 | if (!S.getLangOpts().OpenCL) |
6045 | 7 | return false; |
6046 | | |
6047 | | // |
6048 | | // OpenCL 1.2 spec, s6.12.10 |
6049 | | // |
6050 | | // The event argument can also be used to associate the |
6051 | | // async_work_group_copy with a previous async copy allowing |
6052 | | // an event to be shared by multiple async copies; otherwise |
6053 | | // event should be zero. |
6054 | | // |
6055 | 0 | if (DestType->isEventT() || DestType->isQueueT()) { |
6056 | 0 | if (!IsZeroInitializer(Initializer, S)) |
6057 | 0 | return false; |
6058 | | |
6059 | 0 | Sequence.AddOCLZeroOpaqueTypeStep(DestType); |
6060 | 0 | return true; |
6061 | 0 | } |
6062 | | |
6063 | | // We should allow zero initialization for all types defined in the |
6064 | | // cl_intel_device_side_avc_motion_estimation extension, except |
6065 | | // intel_sub_group_avc_mce_payload_t and intel_sub_group_avc_mce_result_t. |
6066 | 0 | if (S.getOpenCLOptions().isAvailableOption( |
6067 | 0 | "cl_intel_device_side_avc_motion_estimation", S.getLangOpts()) && |
6068 | 0 | DestType->isOCLIntelSubgroupAVCType()) { |
6069 | 0 | if (DestType->isOCLIntelSubgroupAVCMcePayloadType() || |
6070 | 0 | DestType->isOCLIntelSubgroupAVCMceResultType()) |
6071 | 0 | return false; |
6072 | 0 | if (!IsZeroInitializer(Initializer, S)) |
6073 | 0 | return false; |
6074 | | |
6075 | 0 | Sequence.AddOCLZeroOpaqueTypeStep(DestType); |
6076 | 0 | return true; |
6077 | 0 | } |
6078 | | |
6079 | 0 | return false; |
6080 | 0 | } |
6081 | | |
6082 | | InitializationSequence::InitializationSequence( |
6083 | | Sema &S, const InitializedEntity &Entity, const InitializationKind &Kind, |
6084 | | MultiExprArg Args, bool TopLevelOfInitList, bool TreatUnavailableAsInvalid) |
6085 | | : FailedOverloadResult(OR_Success), |
6086 | 20 | FailedCandidateSet(Kind.getLocation(), OverloadCandidateSet::CSK_Normal) { |
6087 | 20 | InitializeFrom(S, Entity, Kind, Args, TopLevelOfInitList, |
6088 | 20 | TreatUnavailableAsInvalid); |
6089 | 20 | } |
6090 | | |
6091 | | /// Tries to get a FunctionDecl out of `E`. If it succeeds and we can take the |
6092 | | /// address of that function, this returns true. Otherwise, it returns false. |
6093 | 0 | static bool isExprAnUnaddressableFunction(Sema &S, const Expr *E) { |
6094 | 0 | auto *DRE = dyn_cast<DeclRefExpr>(E); |
6095 | 0 | if (!DRE || !isa<FunctionDecl>(DRE->getDecl())) |
6096 | 0 | return false; |
6097 | | |
6098 | 0 | return !S.checkAddressOfFunctionIsAvailable( |
6099 | 0 | cast<FunctionDecl>(DRE->getDecl())); |
6100 | 0 | } |
6101 | | |
6102 | | /// Determine whether we can perform an elementwise array copy for this kind |
6103 | | /// of entity. |
6104 | 0 | static bool canPerformArrayCopy(const InitializedEntity &Entity) { |
6105 | 0 | switch (Entity.getKind()) { |
6106 | 0 | case InitializedEntity::EK_LambdaCapture: |
6107 | | // C++ [expr.prim.lambda]p24: |
6108 | | // For array members, the array elements are direct-initialized in |
6109 | | // increasing subscript order. |
6110 | 0 | return true; |
6111 | | |
6112 | 0 | case InitializedEntity::EK_Variable: |
6113 | | // C++ [dcl.decomp]p1: |
6114 | | // [...] each element is copy-initialized or direct-initialized from the |
6115 | | // corresponding element of the assignment-expression [...] |
6116 | 0 | return isa<DecompositionDecl>(Entity.getDecl()); |
6117 | | |
6118 | 0 | case InitializedEntity::EK_Member: |
6119 | | // C++ [class.copy.ctor]p14: |
6120 | | // - if the member is an array, each element is direct-initialized with |
6121 | | // the corresponding subobject of x |
6122 | 0 | return Entity.isImplicitMemberInitializer(); |
6123 | | |
6124 | 0 | case InitializedEntity::EK_ArrayElement: |
6125 | | // All the above cases are intended to apply recursively, even though none |
6126 | | // of them actually say that. |
6127 | 0 | if (auto *E = Entity.getParent()) |
6128 | 0 | return canPerformArrayCopy(*E); |
6129 | 0 | break; |
6130 | | |
6131 | 0 | default: |
6132 | 0 | break; |
6133 | 0 | } |
6134 | | |
6135 | 0 | return false; |
6136 | 0 | } |
6137 | | |
6138 | | void InitializationSequence::InitializeFrom(Sema &S, |
6139 | | const InitializedEntity &Entity, |
6140 | | const InitializationKind &Kind, |
6141 | | MultiExprArg Args, |
6142 | | bool TopLevelOfInitList, |
6143 | 20 | bool TreatUnavailableAsInvalid) { |
6144 | 20 | ASTContext &Context = S.Context; |
6145 | | |
6146 | | // Eliminate non-overload placeholder types in the arguments. We |
6147 | | // need to do this before checking whether types are dependent |
6148 | | // because lowering a pseudo-object expression might well give us |
6149 | | // something of dependent type. |
6150 | 40 | for (unsigned I = 0, E = Args.size(); I != E; ++I) |
6151 | 20 | if (Args[I]->getType()->isNonOverloadPlaceholderType()) { |
6152 | | // FIXME: should we be doing this here? |
6153 | 0 | ExprResult result = S.CheckPlaceholderExpr(Args[I]); |
6154 | 0 | if (result.isInvalid()) { |
6155 | 0 | SetFailed(FK_PlaceholderType); |
6156 | 0 | return; |
6157 | 0 | } |
6158 | 0 | Args[I] = result.get(); |
6159 | 0 | } |
6160 | | |
6161 | | // C++0x [dcl.init]p16: |
6162 | | // The semantics of initializers are as follows. The destination type is |
6163 | | // the type of the object or reference being initialized and the source |
6164 | | // type is the type of the initializer expression. The source type is not |
6165 | | // defined when the initializer is a braced-init-list or when it is a |
6166 | | // parenthesized list of expressions. |
6167 | 20 | QualType DestType = Entity.getType(); |
6168 | | |
6169 | 20 | if (DestType->isDependentType() || |
6170 | 20 | Expr::hasAnyTypeDependentArguments(Args)) { |
6171 | 13 | SequenceKind = DependentSequence; |
6172 | 13 | return; |
6173 | 13 | } |
6174 | | |
6175 | | // Almost everything is a normal sequence. |
6176 | 7 | setSequenceKind(NormalSequence); |
6177 | | |
6178 | 7 | QualType SourceType; |
6179 | 7 | Expr *Initializer = nullptr; |
6180 | 7 | if (Args.size() == 1) { |
6181 | 7 | Initializer = Args[0]; |
6182 | 7 | if (S.getLangOpts().ObjC) { |
6183 | 7 | if (S.CheckObjCBridgeRelatedConversions(Initializer->getBeginLoc(), |
6184 | 7 | DestType, Initializer->getType(), |
6185 | 7 | Initializer) || |
6186 | 7 | S.CheckConversionToObjCLiteral(DestType, Initializer)) |
6187 | 0 | Args[0] = Initializer; |
6188 | 7 | } |
6189 | 7 | if (!isa<InitListExpr>(Initializer)) |
6190 | 7 | SourceType = Initializer->getType(); |
6191 | 7 | } |
6192 | | |
6193 | | // - If the initializer is a (non-parenthesized) braced-init-list, the |
6194 | | // object is list-initialized (8.5.4). |
6195 | 7 | if (Kind.getKind() != InitializationKind::IK_Direct) { |
6196 | 7 | if (InitListExpr *InitList = dyn_cast_or_null<InitListExpr>(Initializer)) { |
6197 | 0 | TryListInitialization(S, Entity, Kind, InitList, *this, |
6198 | 0 | TreatUnavailableAsInvalid); |
6199 | 0 | return; |
6200 | 0 | } |
6201 | 7 | } |
6202 | | |
6203 | | // - If the destination type is a reference type, see 8.5.3. |
6204 | 7 | if (DestType->isReferenceType()) { |
6205 | | // C++0x [dcl.init.ref]p1: |
6206 | | // A variable declared to be a T& or T&&, that is, "reference to type T" |
6207 | | // (8.3.2), shall be initialized by an object, or function, of type T or |
6208 | | // by an object that can be converted into a T. |
6209 | | // (Therefore, multiple arguments are not permitted.) |
6210 | 0 | if (Args.size() != 1) |
6211 | 0 | SetFailed(FK_TooManyInitsForReference); |
6212 | | // C++17 [dcl.init.ref]p5: |
6213 | | // A reference [...] is initialized by an expression [...] as follows: |
6214 | | // If the initializer is not an expression, presumably we should reject, |
6215 | | // but the standard fails to actually say so. |
6216 | 0 | else if (isa<InitListExpr>(Args[0])) |
6217 | 0 | SetFailed(FK_ParenthesizedListInitForReference); |
6218 | 0 | else |
6219 | 0 | TryReferenceInitialization(S, Entity, Kind, Args[0], *this, |
6220 | 0 | TopLevelOfInitList); |
6221 | 0 | return; |
6222 | 0 | } |
6223 | | |
6224 | | // - If the initializer is (), the object is value-initialized. |
6225 | 7 | if (Kind.getKind() == InitializationKind::IK_Value || |
6226 | 7 | (Kind.getKind() == InitializationKind::IK_Direct && Args.empty())) { |
6227 | 0 | TryValueInitialization(S, Entity, Kind, *this); |
6228 | 0 | return; |
6229 | 0 | } |
6230 | | |
6231 | | // Handle default initialization. |
6232 | 7 | if (Kind.getKind() == InitializationKind::IK_Default) { |
6233 | 0 | TryDefaultInitialization(S, Entity, Kind, *this); |
6234 | 0 | return; |
6235 | 0 | } |
6236 | | |
6237 | | // - If the destination type is an array of characters, an array of |
6238 | | // char16_t, an array of char32_t, or an array of wchar_t, and the |
6239 | | // initializer is a string literal, see 8.5.2. |
6240 | | // - Otherwise, if the destination type is an array, the program is |
6241 | | // ill-formed. |
6242 | 7 | if (const ArrayType *DestAT = Context.getAsArrayType(DestType)) { |
6243 | 0 | if (Initializer && isa<VariableArrayType>(DestAT)) { |
6244 | 0 | SetFailed(FK_VariableLengthArrayHasInitializer); |
6245 | 0 | return; |
6246 | 0 | } |
6247 | | |
6248 | 0 | if (Initializer) { |
6249 | 0 | switch (IsStringInit(Initializer, DestAT, Context)) { |
6250 | 0 | case SIF_None: |
6251 | 0 | TryStringLiteralInitialization(S, Entity, Kind, Initializer, *this); |
6252 | 0 | return; |
6253 | 0 | case SIF_NarrowStringIntoWideChar: |
6254 | 0 | SetFailed(FK_NarrowStringIntoWideCharArray); |
6255 | 0 | return; |
6256 | 0 | case SIF_WideStringIntoChar: |
6257 | 0 | SetFailed(FK_WideStringIntoCharArray); |
6258 | 0 | return; |
6259 | 0 | case SIF_IncompatWideStringIntoWideChar: |
6260 | 0 | SetFailed(FK_IncompatWideStringIntoWideChar); |
6261 | 0 | return; |
6262 | 0 | case SIF_PlainStringIntoUTF8Char: |
6263 | 0 | SetFailed(FK_PlainStringIntoUTF8Char); |
6264 | 0 | return; |
6265 | 0 | case SIF_UTF8StringIntoPlainChar: |
6266 | 0 | SetFailed(FK_UTF8StringIntoPlainChar); |
6267 | 0 | return; |
6268 | 0 | case SIF_Other: |
6269 | 0 | break; |
6270 | 0 | } |
6271 | 0 | } |
6272 | | |
6273 | | // Some kinds of initialization permit an array to be initialized from |
6274 | | // another array of the same type, and perform elementwise initialization. |
6275 | 0 | if (Initializer && isa<ConstantArrayType>(DestAT) && |
6276 | 0 | S.Context.hasSameUnqualifiedType(Initializer->getType(), |
6277 | 0 | Entity.getType()) && |
6278 | 0 | canPerformArrayCopy(Entity)) { |
6279 | | // If source is a prvalue, use it directly. |
6280 | 0 | if (Initializer->isPRValue()) { |
6281 | 0 | AddArrayInitStep(DestType, /*IsGNUExtension*/false); |
6282 | 0 | return; |
6283 | 0 | } |
6284 | | |
6285 | | // Emit element-at-a-time copy loop. |
6286 | 0 | InitializedEntity Element = |
6287 | 0 | InitializedEntity::InitializeElement(S.Context, 0, Entity); |
6288 | 0 | QualType InitEltT = |
6289 | 0 | Context.getAsArrayType(Initializer->getType())->getElementType(); |
6290 | 0 | OpaqueValueExpr OVE(Initializer->getExprLoc(), InitEltT, |
6291 | 0 | Initializer->getValueKind(), |
6292 | 0 | Initializer->getObjectKind()); |
6293 | 0 | Expr *OVEAsExpr = &OVE; |
6294 | 0 | InitializeFrom(S, Element, Kind, OVEAsExpr, TopLevelOfInitList, |
6295 | 0 | TreatUnavailableAsInvalid); |
6296 | 0 | if (!Failed()) |
6297 | 0 | AddArrayInitLoopStep(Entity.getType(), InitEltT); |
6298 | 0 | return; |
6299 | 0 | } |
6300 | | |
6301 | | // Note: as an GNU C extension, we allow initialization of an |
6302 | | // array from a compound literal that creates an array of the same |
6303 | | // type, so long as the initializer has no side effects. |
6304 | 0 | if (!S.getLangOpts().CPlusPlus && Initializer && |
6305 | 0 | isa<CompoundLiteralExpr>(Initializer->IgnoreParens()) && |
6306 | 0 | Initializer->getType()->isArrayType()) { |
6307 | 0 | const ArrayType *SourceAT |
6308 | 0 | = Context.getAsArrayType(Initializer->getType()); |
6309 | 0 | if (!hasCompatibleArrayTypes(S.Context, DestAT, SourceAT)) |
6310 | 0 | SetFailed(FK_ArrayTypeMismatch); |
6311 | 0 | else if (Initializer->HasSideEffects(S.Context)) |
6312 | 0 | SetFailed(FK_NonConstantArrayInit); |
6313 | 0 | else { |
6314 | 0 | AddArrayInitStep(DestType, /*IsGNUExtension*/true); |
6315 | 0 | } |
6316 | 0 | } |
6317 | | // Note: as a GNU C++ extension, we allow list-initialization of a |
6318 | | // class member of array type from a parenthesized initializer list. |
6319 | 0 | else if (S.getLangOpts().CPlusPlus && |
6320 | 0 | Entity.getKind() == InitializedEntity::EK_Member && |
6321 | 0 | Initializer && isa<InitListExpr>(Initializer)) { |
6322 | 0 | TryListInitialization(S, Entity, Kind, cast<InitListExpr>(Initializer), |
6323 | 0 | *this, TreatUnavailableAsInvalid); |
6324 | 0 | AddParenthesizedArrayInitStep(DestType); |
6325 | 0 | } else if (S.getLangOpts().CPlusPlus20 && !TopLevelOfInitList && |
6326 | 0 | Kind.getKind() == InitializationKind::IK_Direct) |
6327 | 0 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this, |
6328 | 0 | /*VerifyOnly=*/true); |
6329 | 0 | else if (DestAT->getElementType()->isCharType()) |
6330 | 0 | SetFailed(FK_ArrayNeedsInitListOrStringLiteral); |
6331 | 0 | else if (IsWideCharCompatible(DestAT->getElementType(), Context)) |
6332 | 0 | SetFailed(FK_ArrayNeedsInitListOrWideStringLiteral); |
6333 | 0 | else |
6334 | 0 | SetFailed(FK_ArrayNeedsInitList); |
6335 | |
|
6336 | 0 | return; |
6337 | 0 | } |
6338 | | |
6339 | | // Determine whether we should consider writeback conversions for |
6340 | | // Objective-C ARC. |
6341 | 7 | bool allowObjCWritebackConversion = S.getLangOpts().ObjCAutoRefCount && |
6342 | 7 | Entity.isParameterKind(); |
6343 | | |
6344 | 7 | if (TryOCLSamplerInitialization(S, *this, DestType, Initializer)) |
6345 | 0 | return; |
6346 | | |
6347 | | // We're at the end of the line for C: it's either a write-back conversion |
6348 | | // or it's a C assignment. There's no need to check anything else. |
6349 | 7 | if (!S.getLangOpts().CPlusPlus) { |
6350 | 7 | assert(Initializer && "Initializer must be non-null"); |
6351 | | // If allowed, check whether this is an Objective-C writeback conversion. |
6352 | 7 | if (allowObjCWritebackConversion && |
6353 | 7 | tryObjCWritebackConversion(S, *this, Entity, Initializer)) { |
6354 | 0 | return; |
6355 | 0 | } |
6356 | | |
6357 | 7 | if (TryOCLZeroOpaqueTypeInitialization(S, *this, DestType, Initializer)) |
6358 | 0 | return; |
6359 | | |
6360 | | // Handle initialization in C |
6361 | 7 | AddCAssignmentStep(DestType); |
6362 | 7 | MaybeProduceObjCObject(S, *this, Entity); |
6363 | 7 | return; |
6364 | 7 | } |
6365 | | |
6366 | 0 | assert(S.getLangOpts().CPlusPlus); |
6367 | | |
6368 | | // - If the destination type is a (possibly cv-qualified) class type: |
6369 | 0 | if (DestType->isRecordType()) { |
6370 | | // - If the initialization is direct-initialization, or if it is |
6371 | | // copy-initialization where the cv-unqualified version of the |
6372 | | // source type is the same class as, or a derived class of, the |
6373 | | // class of the destination, constructors are considered. [...] |
6374 | 0 | if (Kind.getKind() == InitializationKind::IK_Direct || |
6375 | 0 | (Kind.getKind() == InitializationKind::IK_Copy && |
6376 | 0 | (Context.hasSameUnqualifiedType(SourceType, DestType) || |
6377 | 0 | (Initializer && S.IsDerivedFrom(Initializer->getBeginLoc(), |
6378 | 0 | SourceType, DestType))))) { |
6379 | 0 | TryConstructorInitialization(S, Entity, Kind, Args, DestType, DestType, |
6380 | 0 | *this); |
6381 | | |
6382 | | // We fall back to the "no matching constructor" path if the |
6383 | | // failed candidate set has functions other than the three default |
6384 | | // constructors. For example, conversion function. |
6385 | 0 | if (const auto *RD = |
6386 | 0 | dyn_cast<CXXRecordDecl>(DestType->getAs<RecordType>()->getDecl()); |
6387 | | // In general, we should call isCompleteType for RD to check its |
6388 | | // completeness, we don't call it here as it was already called in the |
6389 | | // above TryConstructorInitialization. |
6390 | 0 | S.getLangOpts().CPlusPlus20 && RD && RD->hasDefinition() && |
6391 | 0 | RD->isAggregate() && Failed() && |
6392 | 0 | getFailureKind() == FK_ConstructorOverloadFailed) { |
6393 | | // Do not attempt paren list initialization if overload resolution |
6394 | | // resolves to a deleted function . |
6395 | | // |
6396 | | // We may reach this condition if we have a union wrapping a class with |
6397 | | // a non-trivial copy or move constructor and we call one of those two |
6398 | | // constructors. The union is an aggregate, but the matched constructor |
6399 | | // is implicitly deleted, so we need to prevent aggregate initialization |
6400 | | // (otherwise, it'll attempt aggregate initialization by initializing |
6401 | | // the first element with a reference to the union). |
6402 | 0 | OverloadCandidateSet::iterator Best; |
6403 | 0 | OverloadingResult OR = getFailedCandidateSet().BestViableFunction( |
6404 | 0 | S, Kind.getLocation(), Best); |
6405 | 0 | if (OR != OverloadingResult::OR_Deleted) { |
6406 | | // C++20 [dcl.init] 17.6.2.2: |
6407 | | // - Otherwise, if no constructor is viable, the destination type is |
6408 | | // an |
6409 | | // aggregate class, and the initializer is a parenthesized |
6410 | | // expression-list. |
6411 | 0 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this, |
6412 | 0 | /*VerifyOnly=*/true); |
6413 | 0 | } |
6414 | 0 | } |
6415 | 0 | } else { |
6416 | | // - Otherwise (i.e., for the remaining copy-initialization cases), |
6417 | | // user-defined conversion sequences that can convert from the |
6418 | | // source type to the destination type or (when a conversion |
6419 | | // function is used) to a derived class thereof are enumerated as |
6420 | | // described in 13.3.1.4, and the best one is chosen through |
6421 | | // overload resolution (13.3). |
6422 | 0 | assert(Initializer && "Initializer must be non-null"); |
6423 | 0 | TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, |
6424 | 0 | TopLevelOfInitList); |
6425 | 0 | } |
6426 | 0 | return; |
6427 | 0 | } |
6428 | | |
6429 | 0 | assert(Args.size() >= 1 && "Zero-argument case handled above"); |
6430 | | |
6431 | | // For HLSL ext vector types we allow list initialization behavior for C++ |
6432 | | // constructor syntax. This is accomplished by converting initialization |
6433 | | // arguments an InitListExpr late. |
6434 | 0 | if (S.getLangOpts().HLSL && DestType->isExtVectorType() && |
6435 | 0 | (SourceType.isNull() || |
6436 | 0 | !Context.hasSameUnqualifiedType(SourceType, DestType))) { |
6437 | |
|
6438 | 0 | llvm::SmallVector<Expr *> InitArgs; |
6439 | 0 | for (auto *Arg : Args) { |
6440 | 0 | if (Arg->getType()->isExtVectorType()) { |
6441 | 0 | const auto *VTy = Arg->getType()->castAs<ExtVectorType>(); |
6442 | 0 | unsigned Elm = VTy->getNumElements(); |
6443 | 0 | for (unsigned Idx = 0; Idx < Elm; ++Idx) { |
6444 | 0 | InitArgs.emplace_back(new (Context) ArraySubscriptExpr( |
6445 | 0 | Arg, |
6446 | 0 | IntegerLiteral::Create( |
6447 | 0 | Context, llvm::APInt(Context.getIntWidth(Context.IntTy), Idx), |
6448 | 0 | Context.IntTy, SourceLocation()), |
6449 | 0 | VTy->getElementType(), Arg->getValueKind(), Arg->getObjectKind(), |
6450 | 0 | SourceLocation())); |
6451 | 0 | } |
6452 | 0 | } else |
6453 | 0 | InitArgs.emplace_back(Arg); |
6454 | 0 | } |
6455 | 0 | InitListExpr *ILE = new (Context) InitListExpr( |
6456 | 0 | S.getASTContext(), SourceLocation(), InitArgs, SourceLocation()); |
6457 | 0 | Args[0] = ILE; |
6458 | 0 | AddListInitializationStep(DestType); |
6459 | 0 | return; |
6460 | 0 | } |
6461 | | |
6462 | | // The remaining cases all need a source type. |
6463 | 0 | if (Args.size() > 1) { |
6464 | 0 | SetFailed(FK_TooManyInitsForScalar); |
6465 | 0 | return; |
6466 | 0 | } else if (isa<InitListExpr>(Args[0])) { |
6467 | 0 | SetFailed(FK_ParenthesizedListInitForScalar); |
6468 | 0 | return; |
6469 | 0 | } |
6470 | | |
6471 | | // - Otherwise, if the source type is a (possibly cv-qualified) class |
6472 | | // type, conversion functions are considered. |
6473 | 0 | if (!SourceType.isNull() && SourceType->isRecordType()) { |
6474 | 0 | assert(Initializer && "Initializer must be non-null"); |
6475 | | // For a conversion to _Atomic(T) from either T or a class type derived |
6476 | | // from T, initialize the T object then convert to _Atomic type. |
6477 | 0 | bool NeedAtomicConversion = false; |
6478 | 0 | if (const AtomicType *Atomic = DestType->getAs<AtomicType>()) { |
6479 | 0 | if (Context.hasSameUnqualifiedType(SourceType, Atomic->getValueType()) || |
6480 | 0 | S.IsDerivedFrom(Initializer->getBeginLoc(), SourceType, |
6481 | 0 | Atomic->getValueType())) { |
6482 | 0 | DestType = Atomic->getValueType(); |
6483 | 0 | NeedAtomicConversion = true; |
6484 | 0 | } |
6485 | 0 | } |
6486 | |
|
6487 | 0 | TryUserDefinedConversion(S, DestType, Kind, Initializer, *this, |
6488 | 0 | TopLevelOfInitList); |
6489 | 0 | MaybeProduceObjCObject(S, *this, Entity); |
6490 | 0 | if (!Failed() && NeedAtomicConversion) |
6491 | 0 | AddAtomicConversionStep(Entity.getType()); |
6492 | 0 | return; |
6493 | 0 | } |
6494 | | |
6495 | | // - Otherwise, if the initialization is direct-initialization, the source |
6496 | | // type is std::nullptr_t, and the destination type is bool, the initial |
6497 | | // value of the object being initialized is false. |
6498 | 0 | if (!SourceType.isNull() && SourceType->isNullPtrType() && |
6499 | 0 | DestType->isBooleanType() && |
6500 | 0 | Kind.getKind() == InitializationKind::IK_Direct) { |
6501 | 0 | AddConversionSequenceStep( |
6502 | 0 | ImplicitConversionSequence::getNullptrToBool(SourceType, DestType, |
6503 | 0 | Initializer->isGLValue()), |
6504 | 0 | DestType); |
6505 | 0 | return; |
6506 | 0 | } |
6507 | | |
6508 | | // - Otherwise, the initial value of the object being initialized is the |
6509 | | // (possibly converted) value of the initializer expression. Standard |
6510 | | // conversions (Clause 4) will be used, if necessary, to convert the |
6511 | | // initializer expression to the cv-unqualified version of the |
6512 | | // destination type; no user-defined conversions are considered. |
6513 | | |
6514 | 0 | ImplicitConversionSequence ICS |
6515 | 0 | = S.TryImplicitConversion(Initializer, DestType, |
6516 | 0 | /*SuppressUserConversions*/true, |
6517 | 0 | Sema::AllowedExplicit::None, |
6518 | 0 | /*InOverloadResolution*/ false, |
6519 | 0 | /*CStyle=*/Kind.isCStyleOrFunctionalCast(), |
6520 | 0 | allowObjCWritebackConversion); |
6521 | |
|
6522 | 0 | if (ICS.isStandard() && |
6523 | 0 | ICS.Standard.Second == ICK_Writeback_Conversion) { |
6524 | | // Objective-C ARC writeback conversion. |
6525 | | |
6526 | | // We should copy unless we're passing to an argument explicitly |
6527 | | // marked 'out'. |
6528 | 0 | bool ShouldCopy = true; |
6529 | 0 | if (ParmVarDecl *Param = cast_or_null<ParmVarDecl>(Entity.getDecl())) |
6530 | 0 | ShouldCopy = (Param->getObjCDeclQualifier() != ParmVarDecl::OBJC_TQ_Out); |
6531 | | |
6532 | | // If there was an lvalue adjustment, add it as a separate conversion. |
6533 | 0 | if (ICS.Standard.First == ICK_Array_To_Pointer || |
6534 | 0 | ICS.Standard.First == ICK_Lvalue_To_Rvalue) { |
6535 | 0 | ImplicitConversionSequence LvalueICS; |
6536 | 0 | LvalueICS.setStandard(); |
6537 | 0 | LvalueICS.Standard.setAsIdentityConversion(); |
6538 | 0 | LvalueICS.Standard.setAllToTypes(ICS.Standard.getToType(0)); |
6539 | 0 | LvalueICS.Standard.First = ICS.Standard.First; |
6540 | 0 | AddConversionSequenceStep(LvalueICS, ICS.Standard.getToType(0)); |
6541 | 0 | } |
6542 | |
|
6543 | 0 | AddPassByIndirectCopyRestoreStep(DestType, ShouldCopy); |
6544 | 0 | } else if (ICS.isBad()) { |
6545 | 0 | DeclAccessPair dap; |
6546 | 0 | if (isLibstdcxxPointerReturnFalseHack(S, Entity, Initializer)) { |
6547 | 0 | AddZeroInitializationStep(Entity.getType()); |
6548 | 0 | } else if (Initializer->getType() == Context.OverloadTy && |
6549 | 0 | !S.ResolveAddressOfOverloadedFunction(Initializer, DestType, |
6550 | 0 | false, dap)) |
6551 | 0 | SetFailed(InitializationSequence::FK_AddressOfOverloadFailed); |
6552 | 0 | else if (Initializer->getType()->isFunctionType() && |
6553 | 0 | isExprAnUnaddressableFunction(S, Initializer)) |
6554 | 0 | SetFailed(InitializationSequence::FK_AddressOfUnaddressableFunction); |
6555 | 0 | else |
6556 | 0 | SetFailed(InitializationSequence::FK_ConversionFailed); |
6557 | 0 | } else { |
6558 | 0 | AddConversionSequenceStep(ICS, DestType, TopLevelOfInitList); |
6559 | |
|
6560 | 0 | MaybeProduceObjCObject(S, *this, Entity); |
6561 | 0 | } |
6562 | 0 | } |
6563 | | |
6564 | 20 | InitializationSequence::~InitializationSequence() { |
6565 | 20 | for (auto &S : Steps) |
6566 | 7 | S.Destroy(); |
6567 | 20 | } |
6568 | | |
6569 | | //===----------------------------------------------------------------------===// |
6570 | | // Perform initialization |
6571 | | //===----------------------------------------------------------------------===// |
6572 | | static Sema::AssignmentAction |
6573 | 7 | getAssignmentAction(const InitializedEntity &Entity, bool Diagnose = false) { |
6574 | 7 | switch(Entity.getKind()) { |
6575 | 7 | case InitializedEntity::EK_Variable: |
6576 | 7 | case InitializedEntity::EK_New: |
6577 | 7 | case InitializedEntity::EK_Exception: |
6578 | 7 | case InitializedEntity::EK_Base: |
6579 | 7 | case InitializedEntity::EK_Delegating: |
6580 | 7 | return Sema::AA_Initializing; |
6581 | | |
6582 | 0 | case InitializedEntity::EK_Parameter: |
6583 | 0 | if (Entity.getDecl() && |
6584 | 0 | isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) |
6585 | 0 | return Sema::AA_Sending; |
6586 | | |
6587 | 0 | return Sema::AA_Passing; |
6588 | | |
6589 | 0 | case InitializedEntity::EK_Parameter_CF_Audited: |
6590 | 0 | if (Entity.getDecl() && |
6591 | 0 | isa<ObjCMethodDecl>(Entity.getDecl()->getDeclContext())) |
6592 | 0 | return Sema::AA_Sending; |
6593 | | |
6594 | 0 | return !Diagnose ? Sema::AA_Passing : Sema::AA_Passing_CFAudited; |
6595 | | |
6596 | 0 | case InitializedEntity::EK_Result: |
6597 | 0 | case InitializedEntity::EK_StmtExprResult: // FIXME: Not quite right. |
6598 | 0 | return Sema::AA_Returning; |
6599 | | |
6600 | 0 | case InitializedEntity::EK_Temporary: |
6601 | 0 | case InitializedEntity::EK_RelatedResult: |
6602 | | // FIXME: Can we tell apart casting vs. converting? |
6603 | 0 | return Sema::AA_Casting; |
6604 | | |
6605 | 0 | case InitializedEntity::EK_TemplateParameter: |
6606 | | // This is really initialization, but refer to it as conversion for |
6607 | | // consistency with CheckConvertedConstantExpression. |
6608 | 0 | return Sema::AA_Converting; |
6609 | | |
6610 | 0 | case InitializedEntity::EK_Member: |
6611 | 0 | case InitializedEntity::EK_ParenAggInitMember: |
6612 | 0 | case InitializedEntity::EK_Binding: |
6613 | 0 | case InitializedEntity::EK_ArrayElement: |
6614 | 0 | case InitializedEntity::EK_VectorElement: |
6615 | 0 | case InitializedEntity::EK_ComplexElement: |
6616 | 0 | case InitializedEntity::EK_BlockElement: |
6617 | 0 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
6618 | 0 | case InitializedEntity::EK_LambdaCapture: |
6619 | 0 | case InitializedEntity::EK_CompoundLiteralInit: |
6620 | 0 | return Sema::AA_Initializing; |
6621 | 7 | } |
6622 | | |
6623 | 0 | llvm_unreachable("Invalid EntityKind!"); |
6624 | 0 | } |
6625 | | |
6626 | | /// Whether we should bind a created object as a temporary when |
6627 | | /// initializing the given entity. |
6628 | 0 | static bool shouldBindAsTemporary(const InitializedEntity &Entity) { |
6629 | 0 | switch (Entity.getKind()) { |
6630 | 0 | case InitializedEntity::EK_ArrayElement: |
6631 | 0 | case InitializedEntity::EK_Member: |
6632 | 0 | case InitializedEntity::EK_ParenAggInitMember: |
6633 | 0 | case InitializedEntity::EK_Result: |
6634 | 0 | case InitializedEntity::EK_StmtExprResult: |
6635 | 0 | case InitializedEntity::EK_New: |
6636 | 0 | case InitializedEntity::EK_Variable: |
6637 | 0 | case InitializedEntity::EK_Base: |
6638 | 0 | case InitializedEntity::EK_Delegating: |
6639 | 0 | case InitializedEntity::EK_VectorElement: |
6640 | 0 | case InitializedEntity::EK_ComplexElement: |
6641 | 0 | case InitializedEntity::EK_Exception: |
6642 | 0 | case InitializedEntity::EK_BlockElement: |
6643 | 0 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
6644 | 0 | case InitializedEntity::EK_LambdaCapture: |
6645 | 0 | case InitializedEntity::EK_CompoundLiteralInit: |
6646 | 0 | case InitializedEntity::EK_TemplateParameter: |
6647 | 0 | return false; |
6648 | | |
6649 | 0 | case InitializedEntity::EK_Parameter: |
6650 | 0 | case InitializedEntity::EK_Parameter_CF_Audited: |
6651 | 0 | case InitializedEntity::EK_Temporary: |
6652 | 0 | case InitializedEntity::EK_RelatedResult: |
6653 | 0 | case InitializedEntity::EK_Binding: |
6654 | 0 | return true; |
6655 | 0 | } |
6656 | | |
6657 | 0 | llvm_unreachable("missed an InitializedEntity kind?"); |
6658 | 0 | } |
6659 | | |
6660 | | /// Whether the given entity, when initialized with an object |
6661 | | /// created for that initialization, requires destruction. |
6662 | 0 | static bool shouldDestroyEntity(const InitializedEntity &Entity) { |
6663 | 0 | switch (Entity.getKind()) { |
6664 | 0 | case InitializedEntity::EK_Result: |
6665 | 0 | case InitializedEntity::EK_StmtExprResult: |
6666 | 0 | case InitializedEntity::EK_New: |
6667 | 0 | case InitializedEntity::EK_Base: |
6668 | 0 | case InitializedEntity::EK_Delegating: |
6669 | 0 | case InitializedEntity::EK_VectorElement: |
6670 | 0 | case InitializedEntity::EK_ComplexElement: |
6671 | 0 | case InitializedEntity::EK_BlockElement: |
6672 | 0 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
6673 | 0 | case InitializedEntity::EK_LambdaCapture: |
6674 | 0 | return false; |
6675 | | |
6676 | 0 | case InitializedEntity::EK_Member: |
6677 | 0 | case InitializedEntity::EK_ParenAggInitMember: |
6678 | 0 | case InitializedEntity::EK_Binding: |
6679 | 0 | case InitializedEntity::EK_Variable: |
6680 | 0 | case InitializedEntity::EK_Parameter: |
6681 | 0 | case InitializedEntity::EK_Parameter_CF_Audited: |
6682 | 0 | case InitializedEntity::EK_TemplateParameter: |
6683 | 0 | case InitializedEntity::EK_Temporary: |
6684 | 0 | case InitializedEntity::EK_ArrayElement: |
6685 | 0 | case InitializedEntity::EK_Exception: |
6686 | 0 | case InitializedEntity::EK_CompoundLiteralInit: |
6687 | 0 | case InitializedEntity::EK_RelatedResult: |
6688 | 0 | return true; |
6689 | 0 | } |
6690 | | |
6691 | 0 | llvm_unreachable("missed an InitializedEntity kind?"); |
6692 | 0 | } |
6693 | | |
6694 | | /// Get the location at which initialization diagnostics should appear. |
6695 | | static SourceLocation getInitializationLoc(const InitializedEntity &Entity, |
6696 | 0 | Expr *Initializer) { |
6697 | 0 | switch (Entity.getKind()) { |
6698 | 0 | case InitializedEntity::EK_Result: |
6699 | 0 | case InitializedEntity::EK_StmtExprResult: |
6700 | 0 | return Entity.getReturnLoc(); |
6701 | | |
6702 | 0 | case InitializedEntity::EK_Exception: |
6703 | 0 | return Entity.getThrowLoc(); |
6704 | | |
6705 | 0 | case InitializedEntity::EK_Variable: |
6706 | 0 | case InitializedEntity::EK_Binding: |
6707 | 0 | return Entity.getDecl()->getLocation(); |
6708 | | |
6709 | 0 | case InitializedEntity::EK_LambdaCapture: |
6710 | 0 | return Entity.getCaptureLoc(); |
6711 | | |
6712 | 0 | case InitializedEntity::EK_ArrayElement: |
6713 | 0 | case InitializedEntity::EK_Member: |
6714 | 0 | case InitializedEntity::EK_ParenAggInitMember: |
6715 | 0 | case InitializedEntity::EK_Parameter: |
6716 | 0 | case InitializedEntity::EK_Parameter_CF_Audited: |
6717 | 0 | case InitializedEntity::EK_TemplateParameter: |
6718 | 0 | case InitializedEntity::EK_Temporary: |
6719 | 0 | case InitializedEntity::EK_New: |
6720 | 0 | case InitializedEntity::EK_Base: |
6721 | 0 | case InitializedEntity::EK_Delegating: |
6722 | 0 | case InitializedEntity::EK_VectorElement: |
6723 | 0 | case InitializedEntity::EK_ComplexElement: |
6724 | 0 | case InitializedEntity::EK_BlockElement: |
6725 | 0 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
6726 | 0 | case InitializedEntity::EK_CompoundLiteralInit: |
6727 | 0 | case InitializedEntity::EK_RelatedResult: |
6728 | 0 | return Initializer->getBeginLoc(); |
6729 | 0 | } |
6730 | 0 | llvm_unreachable("missed an InitializedEntity kind?"); |
6731 | 0 | } |
6732 | | |
6733 | | /// Make a (potentially elidable) temporary copy of the object |
6734 | | /// provided by the given initializer by calling the appropriate copy |
6735 | | /// constructor. |
6736 | | /// |
6737 | | /// \param S The Sema object used for type-checking. |
6738 | | /// |
6739 | | /// \param T The type of the temporary object, which must either be |
6740 | | /// the type of the initializer expression or a superclass thereof. |
6741 | | /// |
6742 | | /// \param Entity The entity being initialized. |
6743 | | /// |
6744 | | /// \param CurInit The initializer expression. |
6745 | | /// |
6746 | | /// \param IsExtraneousCopy Whether this is an "extraneous" copy that |
6747 | | /// is permitted in C++03 (but not C++0x) when binding a reference to |
6748 | | /// an rvalue. |
6749 | | /// |
6750 | | /// \returns An expression that copies the initializer expression into |
6751 | | /// a temporary object, or an error expression if a copy could not be |
6752 | | /// created. |
6753 | | static ExprResult CopyObject(Sema &S, |
6754 | | QualType T, |
6755 | | const InitializedEntity &Entity, |
6756 | | ExprResult CurInit, |
6757 | 0 | bool IsExtraneousCopy) { |
6758 | 0 | if (CurInit.isInvalid()) |
6759 | 0 | return CurInit; |
6760 | | // Determine which class type we're copying to. |
6761 | 0 | Expr *CurInitExpr = (Expr *)CurInit.get(); |
6762 | 0 | CXXRecordDecl *Class = nullptr; |
6763 | 0 | if (const RecordType *Record = T->getAs<RecordType>()) |
6764 | 0 | Class = cast<CXXRecordDecl>(Record->getDecl()); |
6765 | 0 | if (!Class) |
6766 | 0 | return CurInit; |
6767 | | |
6768 | 0 | SourceLocation Loc = getInitializationLoc(Entity, CurInit.get()); |
6769 | | |
6770 | | // Make sure that the type we are copying is complete. |
6771 | 0 | if (S.RequireCompleteType(Loc, T, diag::err_temp_copy_incomplete)) |
6772 | 0 | return CurInit; |
6773 | | |
6774 | | // Perform overload resolution using the class's constructors. Per |
6775 | | // C++11 [dcl.init]p16, second bullet for class types, this initialization |
6776 | | // is direct-initialization. |
6777 | 0 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); |
6778 | 0 | DeclContext::lookup_result Ctors = S.LookupConstructors(Class); |
6779 | |
|
6780 | 0 | OverloadCandidateSet::iterator Best; |
6781 | 0 | switch (ResolveConstructorOverload( |
6782 | 0 | S, Loc, CurInitExpr, CandidateSet, T, Ctors, Best, |
6783 | 0 | /*CopyInitializing=*/false, /*AllowExplicit=*/true, |
6784 | 0 | /*OnlyListConstructors=*/false, /*IsListInit=*/false, |
6785 | 0 | /*RequireActualConstructor=*/false, |
6786 | 0 | /*SecondStepOfCopyInit=*/true)) { |
6787 | 0 | case OR_Success: |
6788 | 0 | break; |
6789 | | |
6790 | 0 | case OR_No_Viable_Function: |
6791 | 0 | CandidateSet.NoteCandidates( |
6792 | 0 | PartialDiagnosticAt( |
6793 | 0 | Loc, S.PDiag(IsExtraneousCopy && !S.isSFINAEContext() |
6794 | 0 | ? diag::ext_rvalue_to_reference_temp_copy_no_viable |
6795 | 0 | : diag::err_temp_copy_no_viable) |
6796 | 0 | << (int)Entity.getKind() << CurInitExpr->getType() |
6797 | 0 | << CurInitExpr->getSourceRange()), |
6798 | 0 | S, OCD_AllCandidates, CurInitExpr); |
6799 | 0 | if (!IsExtraneousCopy || S.isSFINAEContext()) |
6800 | 0 | return ExprError(); |
6801 | 0 | return CurInit; |
6802 | | |
6803 | 0 | case OR_Ambiguous: |
6804 | 0 | CandidateSet.NoteCandidates( |
6805 | 0 | PartialDiagnosticAt(Loc, S.PDiag(diag::err_temp_copy_ambiguous) |
6806 | 0 | << (int)Entity.getKind() |
6807 | 0 | << CurInitExpr->getType() |
6808 | 0 | << CurInitExpr->getSourceRange()), |
6809 | 0 | S, OCD_AmbiguousCandidates, CurInitExpr); |
6810 | 0 | return ExprError(); |
6811 | | |
6812 | 0 | case OR_Deleted: |
6813 | 0 | S.Diag(Loc, diag::err_temp_copy_deleted) |
6814 | 0 | << (int)Entity.getKind() << CurInitExpr->getType() |
6815 | 0 | << CurInitExpr->getSourceRange(); |
6816 | 0 | S.NoteDeletedFunction(Best->Function); |
6817 | 0 | return ExprError(); |
6818 | 0 | } |
6819 | | |
6820 | 0 | bool HadMultipleCandidates = CandidateSet.size() > 1; |
6821 | |
|
6822 | 0 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function); |
6823 | 0 | SmallVector<Expr*, 8> ConstructorArgs; |
6824 | 0 | CurInit.get(); // Ownership transferred into MultiExprArg, below. |
6825 | |
|
6826 | 0 | S.CheckConstructorAccess(Loc, Constructor, Best->FoundDecl, Entity, |
6827 | 0 | IsExtraneousCopy); |
6828 | |
|
6829 | 0 | if (IsExtraneousCopy) { |
6830 | | // If this is a totally extraneous copy for C++03 reference |
6831 | | // binding purposes, just return the original initialization |
6832 | | // expression. We don't generate an (elided) copy operation here |
6833 | | // because doing so would require us to pass down a flag to avoid |
6834 | | // infinite recursion, where each step adds another extraneous, |
6835 | | // elidable copy. |
6836 | | |
6837 | | // Instantiate the default arguments of any extra parameters in |
6838 | | // the selected copy constructor, as if we were going to create a |
6839 | | // proper call to the copy constructor. |
6840 | 0 | for (unsigned I = 1, N = Constructor->getNumParams(); I != N; ++I) { |
6841 | 0 | ParmVarDecl *Parm = Constructor->getParamDecl(I); |
6842 | 0 | if (S.RequireCompleteType(Loc, Parm->getType(), |
6843 | 0 | diag::err_call_incomplete_argument)) |
6844 | 0 | break; |
6845 | | |
6846 | | // Build the default argument expression; we don't actually care |
6847 | | // if this succeeds or not, because this routine will complain |
6848 | | // if there was a problem. |
6849 | 0 | S.BuildCXXDefaultArgExpr(Loc, Constructor, Parm); |
6850 | 0 | } |
6851 | |
|
6852 | 0 | return CurInitExpr; |
6853 | 0 | } |
6854 | | |
6855 | | // Determine the arguments required to actually perform the |
6856 | | // constructor call (we might have derived-to-base conversions, or |
6857 | | // the copy constructor may have default arguments). |
6858 | 0 | if (S.CompleteConstructorCall(Constructor, T, CurInitExpr, Loc, |
6859 | 0 | ConstructorArgs)) |
6860 | 0 | return ExprError(); |
6861 | | |
6862 | | // C++0x [class.copy]p32: |
6863 | | // When certain criteria are met, an implementation is allowed to |
6864 | | // omit the copy/move construction of a class object, even if the |
6865 | | // copy/move constructor and/or destructor for the object have |
6866 | | // side effects. [...] |
6867 | | // - when a temporary class object that has not been bound to a |
6868 | | // reference (12.2) would be copied/moved to a class object |
6869 | | // with the same cv-unqualified type, the copy/move operation |
6870 | | // can be omitted by constructing the temporary object |
6871 | | // directly into the target of the omitted copy/move |
6872 | | // |
6873 | | // Note that the other three bullets are handled elsewhere. Copy |
6874 | | // elision for return statements and throw expressions are handled as part |
6875 | | // of constructor initialization, while copy elision for exception handlers |
6876 | | // is handled by the run-time. |
6877 | | // |
6878 | | // FIXME: If the function parameter is not the same type as the temporary, we |
6879 | | // should still be able to elide the copy, but we don't have a way to |
6880 | | // represent in the AST how much should be elided in this case. |
6881 | 0 | bool Elidable = |
6882 | 0 | CurInitExpr->isTemporaryObject(S.Context, Class) && |
6883 | 0 | S.Context.hasSameUnqualifiedType( |
6884 | 0 | Best->Function->getParamDecl(0)->getType().getNonReferenceType(), |
6885 | 0 | CurInitExpr->getType()); |
6886 | | |
6887 | | // Actually perform the constructor call. |
6888 | 0 | CurInit = S.BuildCXXConstructExpr( |
6889 | 0 | Loc, T, Best->FoundDecl, Constructor, Elidable, ConstructorArgs, |
6890 | 0 | HadMultipleCandidates, |
6891 | 0 | /*ListInit*/ false, |
6892 | 0 | /*StdInitListInit*/ false, |
6893 | 0 | /*ZeroInit*/ false, CXXConstructionKind::Complete, SourceRange()); |
6894 | | |
6895 | | // If we're supposed to bind temporaries, do so. |
6896 | 0 | if (!CurInit.isInvalid() && shouldBindAsTemporary(Entity)) |
6897 | 0 | CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); |
6898 | 0 | return CurInit; |
6899 | 0 | } |
6900 | | |
6901 | | /// Check whether elidable copy construction for binding a reference to |
6902 | | /// a temporary would have succeeded if we were building in C++98 mode, for |
6903 | | /// -Wc++98-compat. |
6904 | | static void CheckCXX98CompatAccessibleCopy(Sema &S, |
6905 | | const InitializedEntity &Entity, |
6906 | 0 | Expr *CurInitExpr) { |
6907 | 0 | assert(S.getLangOpts().CPlusPlus11); |
6908 | | |
6909 | 0 | const RecordType *Record = CurInitExpr->getType()->getAs<RecordType>(); |
6910 | 0 | if (!Record) |
6911 | 0 | return; |
6912 | | |
6913 | 0 | SourceLocation Loc = getInitializationLoc(Entity, CurInitExpr); |
6914 | 0 | if (S.Diags.isIgnored(diag::warn_cxx98_compat_temp_copy, Loc)) |
6915 | 0 | return; |
6916 | | |
6917 | | // Find constructors which would have been considered. |
6918 | 0 | OverloadCandidateSet CandidateSet(Loc, OverloadCandidateSet::CSK_Normal); |
6919 | 0 | DeclContext::lookup_result Ctors = |
6920 | 0 | S.LookupConstructors(cast<CXXRecordDecl>(Record->getDecl())); |
6921 | | |
6922 | | // Perform overload resolution. |
6923 | 0 | OverloadCandidateSet::iterator Best; |
6924 | 0 | OverloadingResult OR = ResolveConstructorOverload( |
6925 | 0 | S, Loc, CurInitExpr, CandidateSet, CurInitExpr->getType(), Ctors, Best, |
6926 | 0 | /*CopyInitializing=*/false, /*AllowExplicit=*/true, |
6927 | 0 | /*OnlyListConstructors=*/false, /*IsListInit=*/false, |
6928 | 0 | /*RequireActualConstructor=*/false, |
6929 | 0 | /*SecondStepOfCopyInit=*/true); |
6930 | |
|
6931 | 0 | PartialDiagnostic Diag = S.PDiag(diag::warn_cxx98_compat_temp_copy) |
6932 | 0 | << OR << (int)Entity.getKind() << CurInitExpr->getType() |
6933 | 0 | << CurInitExpr->getSourceRange(); |
6934 | |
|
6935 | 0 | switch (OR) { |
6936 | 0 | case OR_Success: |
6937 | 0 | S.CheckConstructorAccess(Loc, cast<CXXConstructorDecl>(Best->Function), |
6938 | 0 | Best->FoundDecl, Entity, Diag); |
6939 | | // FIXME: Check default arguments as far as that's possible. |
6940 | 0 | break; |
6941 | | |
6942 | 0 | case OR_No_Viable_Function: |
6943 | 0 | CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, |
6944 | 0 | OCD_AllCandidates, CurInitExpr); |
6945 | 0 | break; |
6946 | | |
6947 | 0 | case OR_Ambiguous: |
6948 | 0 | CandidateSet.NoteCandidates(PartialDiagnosticAt(Loc, Diag), S, |
6949 | 0 | OCD_AmbiguousCandidates, CurInitExpr); |
6950 | 0 | break; |
6951 | | |
6952 | 0 | case OR_Deleted: |
6953 | 0 | S.Diag(Loc, Diag); |
6954 | 0 | S.NoteDeletedFunction(Best->Function); |
6955 | 0 | break; |
6956 | 0 | } |
6957 | 0 | } |
6958 | | |
6959 | | void InitializationSequence::PrintInitLocationNote(Sema &S, |
6960 | 1 | const InitializedEntity &Entity) { |
6961 | 1 | if (Entity.isParamOrTemplateParamKind() && Entity.getDecl()) { |
6962 | 0 | if (Entity.getDecl()->getLocation().isInvalid()) |
6963 | 0 | return; |
6964 | | |
6965 | 0 | if (Entity.getDecl()->getDeclName()) |
6966 | 0 | S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_named_here) |
6967 | 0 | << Entity.getDecl()->getDeclName(); |
6968 | 0 | else |
6969 | 0 | S.Diag(Entity.getDecl()->getLocation(), diag::note_parameter_here); |
6970 | 0 | } |
6971 | 1 | else if (Entity.getKind() == InitializedEntity::EK_RelatedResult && |
6972 | 1 | Entity.getMethodDecl()) |
6973 | 0 | S.Diag(Entity.getMethodDecl()->getLocation(), |
6974 | 0 | diag::note_method_return_type_change) |
6975 | 0 | << Entity.getMethodDecl()->getDeclName(); |
6976 | 1 | } |
6977 | | |
6978 | | /// Returns true if the parameters describe a constructor initialization of |
6979 | | /// an explicit temporary object, e.g. "Point(x, y)". |
6980 | | static bool isExplicitTemporary(const InitializedEntity &Entity, |
6981 | | const InitializationKind &Kind, |
6982 | 0 | unsigned NumArgs) { |
6983 | 0 | switch (Entity.getKind()) { |
6984 | 0 | case InitializedEntity::EK_Temporary: |
6985 | 0 | case InitializedEntity::EK_CompoundLiteralInit: |
6986 | 0 | case InitializedEntity::EK_RelatedResult: |
6987 | 0 | break; |
6988 | 0 | default: |
6989 | 0 | return false; |
6990 | 0 | } |
6991 | | |
6992 | 0 | switch (Kind.getKind()) { |
6993 | 0 | case InitializationKind::IK_DirectList: |
6994 | 0 | return true; |
6995 | | // FIXME: Hack to work around cast weirdness. |
6996 | 0 | case InitializationKind::IK_Direct: |
6997 | 0 | case InitializationKind::IK_Value: |
6998 | 0 | return NumArgs != 1; |
6999 | 0 | default: |
7000 | 0 | return false; |
7001 | 0 | } |
7002 | 0 | } |
7003 | | |
7004 | | static ExprResult |
7005 | | PerformConstructorInitialization(Sema &S, |
7006 | | const InitializedEntity &Entity, |
7007 | | const InitializationKind &Kind, |
7008 | | MultiExprArg Args, |
7009 | | const InitializationSequence::Step& Step, |
7010 | | bool &ConstructorInitRequiresZeroInit, |
7011 | | bool IsListInitialization, |
7012 | | bool IsStdInitListInitialization, |
7013 | | SourceLocation LBraceLoc, |
7014 | 0 | SourceLocation RBraceLoc) { |
7015 | 0 | unsigned NumArgs = Args.size(); |
7016 | 0 | CXXConstructorDecl *Constructor |
7017 | 0 | = cast<CXXConstructorDecl>(Step.Function.Function); |
7018 | 0 | bool HadMultipleCandidates = Step.Function.HadMultipleCandidates; |
7019 | | |
7020 | | // Build a call to the selected constructor. |
7021 | 0 | SmallVector<Expr*, 8> ConstructorArgs; |
7022 | 0 | SourceLocation Loc = (Kind.isCopyInit() && Kind.getEqualLoc().isValid()) |
7023 | 0 | ? Kind.getEqualLoc() |
7024 | 0 | : Kind.getLocation(); |
7025 | |
|
7026 | 0 | if (Kind.getKind() == InitializationKind::IK_Default) { |
7027 | | // Force even a trivial, implicit default constructor to be |
7028 | | // semantically checked. We do this explicitly because we don't build |
7029 | | // the definition for completely trivial constructors. |
7030 | 0 | assert(Constructor->getParent() && "No parent class for constructor."); |
7031 | 0 | if (Constructor->isDefaulted() && Constructor->isDefaultConstructor() && |
7032 | 0 | Constructor->isTrivial() && !Constructor->isUsed(false)) { |
7033 | 0 | S.runWithSufficientStackSpace(Loc, [&] { |
7034 | 0 | S.DefineImplicitDefaultConstructor(Loc, Constructor); |
7035 | 0 | }); |
7036 | 0 | } |
7037 | 0 | } |
7038 | | |
7039 | 0 | ExprResult CurInit((Expr *)nullptr); |
7040 | | |
7041 | | // C++ [over.match.copy]p1: |
7042 | | // - When initializing a temporary to be bound to the first parameter |
7043 | | // of a constructor that takes a reference to possibly cv-qualified |
7044 | | // T as its first argument, called with a single argument in the |
7045 | | // context of direct-initialization, explicit conversion functions |
7046 | | // are also considered. |
7047 | 0 | bool AllowExplicitConv = |
7048 | 0 | Kind.AllowExplicit() && !Kind.isCopyInit() && Args.size() == 1 && |
7049 | 0 | hasCopyOrMoveCtorParam(S.Context, |
7050 | 0 | getConstructorInfo(Step.Function.FoundDecl)); |
7051 | | |
7052 | | // Determine the arguments required to actually perform the constructor |
7053 | | // call. |
7054 | 0 | if (S.CompleteConstructorCall(Constructor, Step.Type, Args, Loc, |
7055 | 0 | ConstructorArgs, AllowExplicitConv, |
7056 | 0 | IsListInitialization)) |
7057 | 0 | return ExprError(); |
7058 | | |
7059 | 0 | if (isExplicitTemporary(Entity, Kind, NumArgs)) { |
7060 | | // An explicitly-constructed temporary, e.g., X(1, 2). |
7061 | 0 | if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) |
7062 | 0 | return ExprError(); |
7063 | | |
7064 | 0 | TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); |
7065 | 0 | if (!TSInfo) |
7066 | 0 | TSInfo = S.Context.getTrivialTypeSourceInfo(Entity.getType(), Loc); |
7067 | 0 | SourceRange ParenOrBraceRange = |
7068 | 0 | (Kind.getKind() == InitializationKind::IK_DirectList) |
7069 | 0 | ? SourceRange(LBraceLoc, RBraceLoc) |
7070 | 0 | : Kind.getParenOrBraceRange(); |
7071 | |
|
7072 | 0 | CXXConstructorDecl *CalleeDecl = Constructor; |
7073 | 0 | if (auto *Shadow = dyn_cast<ConstructorUsingShadowDecl>( |
7074 | 0 | Step.Function.FoundDecl.getDecl())) { |
7075 | 0 | CalleeDecl = S.findInheritingConstructor(Loc, Constructor, Shadow); |
7076 | 0 | } |
7077 | 0 | S.MarkFunctionReferenced(Loc, CalleeDecl); |
7078 | |
|
7079 | 0 | CurInit = S.CheckForImmediateInvocation( |
7080 | 0 | CXXTemporaryObjectExpr::Create( |
7081 | 0 | S.Context, CalleeDecl, |
7082 | 0 | Entity.getType().getNonLValueExprType(S.Context), TSInfo, |
7083 | 0 | ConstructorArgs, ParenOrBraceRange, HadMultipleCandidates, |
7084 | 0 | IsListInitialization, IsStdInitListInitialization, |
7085 | 0 | ConstructorInitRequiresZeroInit), |
7086 | 0 | CalleeDecl); |
7087 | 0 | } else { |
7088 | 0 | CXXConstructionKind ConstructKind = CXXConstructionKind::Complete; |
7089 | |
|
7090 | 0 | if (Entity.getKind() == InitializedEntity::EK_Base) { |
7091 | 0 | ConstructKind = Entity.getBaseSpecifier()->isVirtual() |
7092 | 0 | ? CXXConstructionKind::VirtualBase |
7093 | 0 | : CXXConstructionKind::NonVirtualBase; |
7094 | 0 | } else if (Entity.getKind() == InitializedEntity::EK_Delegating) { |
7095 | 0 | ConstructKind = CXXConstructionKind::Delegating; |
7096 | 0 | } |
7097 | | |
7098 | | // Only get the parenthesis or brace range if it is a list initialization or |
7099 | | // direct construction. |
7100 | 0 | SourceRange ParenOrBraceRange; |
7101 | 0 | if (IsListInitialization) |
7102 | 0 | ParenOrBraceRange = SourceRange(LBraceLoc, RBraceLoc); |
7103 | 0 | else if (Kind.getKind() == InitializationKind::IK_Direct) |
7104 | 0 | ParenOrBraceRange = Kind.getParenOrBraceRange(); |
7105 | | |
7106 | | // If the entity allows NRVO, mark the construction as elidable |
7107 | | // unconditionally. |
7108 | 0 | if (Entity.allowsNRVO()) |
7109 | 0 | CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, |
7110 | 0 | Step.Function.FoundDecl, |
7111 | 0 | Constructor, /*Elidable=*/true, |
7112 | 0 | ConstructorArgs, |
7113 | 0 | HadMultipleCandidates, |
7114 | 0 | IsListInitialization, |
7115 | 0 | IsStdInitListInitialization, |
7116 | 0 | ConstructorInitRequiresZeroInit, |
7117 | 0 | ConstructKind, |
7118 | 0 | ParenOrBraceRange); |
7119 | 0 | else |
7120 | 0 | CurInit = S.BuildCXXConstructExpr(Loc, Step.Type, |
7121 | 0 | Step.Function.FoundDecl, |
7122 | 0 | Constructor, |
7123 | 0 | ConstructorArgs, |
7124 | 0 | HadMultipleCandidates, |
7125 | 0 | IsListInitialization, |
7126 | 0 | IsStdInitListInitialization, |
7127 | 0 | ConstructorInitRequiresZeroInit, |
7128 | 0 | ConstructKind, |
7129 | 0 | ParenOrBraceRange); |
7130 | 0 | } |
7131 | 0 | if (CurInit.isInvalid()) |
7132 | 0 | return ExprError(); |
7133 | | |
7134 | | // Only check access if all of that succeeded. |
7135 | 0 | S.CheckConstructorAccess(Loc, Constructor, Step.Function.FoundDecl, Entity); |
7136 | 0 | if (S.DiagnoseUseOfDecl(Step.Function.FoundDecl, Loc)) |
7137 | 0 | return ExprError(); |
7138 | | |
7139 | 0 | if (const ArrayType *AT = S.Context.getAsArrayType(Entity.getType())) |
7140 | 0 | if (checkDestructorReference(S.Context.getBaseElementType(AT), Loc, S)) |
7141 | 0 | return ExprError(); |
7142 | | |
7143 | 0 | if (shouldBindAsTemporary(Entity)) |
7144 | 0 | CurInit = S.MaybeBindToTemporary(CurInit.get()); |
7145 | |
|
7146 | 0 | return CurInit; |
7147 | 0 | } |
7148 | | |
7149 | | namespace { |
7150 | | enum LifetimeKind { |
7151 | | /// The lifetime of a temporary bound to this entity ends at the end of the |
7152 | | /// full-expression, and that's (probably) fine. |
7153 | | LK_FullExpression, |
7154 | | |
7155 | | /// The lifetime of a temporary bound to this entity is extended to the |
7156 | | /// lifeitme of the entity itself. |
7157 | | LK_Extended, |
7158 | | |
7159 | | /// The lifetime of a temporary bound to this entity probably ends too soon, |
7160 | | /// because the entity is allocated in a new-expression. |
7161 | | LK_New, |
7162 | | |
7163 | | /// The lifetime of a temporary bound to this entity ends too soon, because |
7164 | | /// the entity is a return object. |
7165 | | LK_Return, |
7166 | | |
7167 | | /// The lifetime of a temporary bound to this entity ends too soon, because |
7168 | | /// the entity is the result of a statement expression. |
7169 | | LK_StmtExprResult, |
7170 | | |
7171 | | /// This is a mem-initializer: if it would extend a temporary (other than via |
7172 | | /// a default member initializer), the program is ill-formed. |
7173 | | LK_MemInitializer, |
7174 | | }; |
7175 | | using LifetimeResult = |
7176 | | llvm::PointerIntPair<const InitializedEntity *, 3, LifetimeKind>; |
7177 | | } |
7178 | | |
7179 | | /// Determine the declaration which an initialized entity ultimately refers to, |
7180 | | /// for the purpose of lifetime-extending a temporary bound to a reference in |
7181 | | /// the initialization of \p Entity. |
7182 | | static LifetimeResult getEntityLifetime( |
7183 | | const InitializedEntity *Entity, |
7184 | 7 | const InitializedEntity *InitField = nullptr) { |
7185 | | // C++11 [class.temporary]p5: |
7186 | 7 | switch (Entity->getKind()) { |
7187 | 7 | case InitializedEntity::EK_Variable: |
7188 | | // The temporary [...] persists for the lifetime of the reference |
7189 | 7 | return {Entity, LK_Extended}; |
7190 | | |
7191 | 0 | case InitializedEntity::EK_Member: |
7192 | | // For subobjects, we look at the complete object. |
7193 | 0 | if (Entity->getParent()) |
7194 | 0 | return getEntityLifetime(Entity->getParent(), Entity); |
7195 | | |
7196 | | // except: |
7197 | | // C++17 [class.base.init]p8: |
7198 | | // A temporary expression bound to a reference member in a |
7199 | | // mem-initializer is ill-formed. |
7200 | | // C++17 [class.base.init]p11: |
7201 | | // A temporary expression bound to a reference member from a |
7202 | | // default member initializer is ill-formed. |
7203 | | // |
7204 | | // The context of p11 and its example suggest that it's only the use of a |
7205 | | // default member initializer from a constructor that makes the program |
7206 | | // ill-formed, not its mere existence, and that it can even be used by |
7207 | | // aggregate initialization. |
7208 | 0 | return {Entity, Entity->isDefaultMemberInitializer() ? LK_Extended |
7209 | 0 | : LK_MemInitializer}; |
7210 | | |
7211 | 0 | case InitializedEntity::EK_Binding: |
7212 | | // Per [dcl.decomp]p3, the binding is treated as a variable of reference |
7213 | | // type. |
7214 | 0 | return {Entity, LK_Extended}; |
7215 | | |
7216 | 0 | case InitializedEntity::EK_Parameter: |
7217 | 0 | case InitializedEntity::EK_Parameter_CF_Audited: |
7218 | | // -- A temporary bound to a reference parameter in a function call |
7219 | | // persists until the completion of the full-expression containing |
7220 | | // the call. |
7221 | 0 | return {nullptr, LK_FullExpression}; |
7222 | | |
7223 | 0 | case InitializedEntity::EK_TemplateParameter: |
7224 | | // FIXME: This will always be ill-formed; should we eagerly diagnose it here? |
7225 | 0 | return {nullptr, LK_FullExpression}; |
7226 | | |
7227 | 0 | case InitializedEntity::EK_Result: |
7228 | | // -- The lifetime of a temporary bound to the returned value in a |
7229 | | // function return statement is not extended; the temporary is |
7230 | | // destroyed at the end of the full-expression in the return statement. |
7231 | 0 | return {nullptr, LK_Return}; |
7232 | | |
7233 | 0 | case InitializedEntity::EK_StmtExprResult: |
7234 | | // FIXME: Should we lifetime-extend through the result of a statement |
7235 | | // expression? |
7236 | 0 | return {nullptr, LK_StmtExprResult}; |
7237 | | |
7238 | 0 | case InitializedEntity::EK_New: |
7239 | | // -- A temporary bound to a reference in a new-initializer persists |
7240 | | // until the completion of the full-expression containing the |
7241 | | // new-initializer. |
7242 | 0 | return {nullptr, LK_New}; |
7243 | | |
7244 | 0 | case InitializedEntity::EK_Temporary: |
7245 | 0 | case InitializedEntity::EK_CompoundLiteralInit: |
7246 | 0 | case InitializedEntity::EK_RelatedResult: |
7247 | | // We don't yet know the storage duration of the surrounding temporary. |
7248 | | // Assume it's got full-expression duration for now, it will patch up our |
7249 | | // storage duration if that's not correct. |
7250 | 0 | return {nullptr, LK_FullExpression}; |
7251 | | |
7252 | 0 | case InitializedEntity::EK_ArrayElement: |
7253 | | // For subobjects, we look at the complete object. |
7254 | 0 | return getEntityLifetime(Entity->getParent(), InitField); |
7255 | | |
7256 | 0 | case InitializedEntity::EK_Base: |
7257 | | // For subobjects, we look at the complete object. |
7258 | 0 | if (Entity->getParent()) |
7259 | 0 | return getEntityLifetime(Entity->getParent(), InitField); |
7260 | 0 | return {InitField, LK_MemInitializer}; |
7261 | | |
7262 | 0 | case InitializedEntity::EK_Delegating: |
7263 | | // We can reach this case for aggregate initialization in a constructor: |
7264 | | // struct A { int &&r; }; |
7265 | | // struct B : A { B() : A{0} {} }; |
7266 | | // In this case, use the outermost field decl as the context. |
7267 | 0 | return {InitField, LK_MemInitializer}; |
7268 | | |
7269 | 0 | case InitializedEntity::EK_BlockElement: |
7270 | 0 | case InitializedEntity::EK_LambdaToBlockConversionBlockElement: |
7271 | 0 | case InitializedEntity::EK_LambdaCapture: |
7272 | 0 | case InitializedEntity::EK_VectorElement: |
7273 | 0 | case InitializedEntity::EK_ComplexElement: |
7274 | 0 | return {nullptr, LK_FullExpression}; |
7275 | | |
7276 | 0 | case InitializedEntity::EK_Exception: |
7277 | | // FIXME: Can we diagnose lifetime problems with exceptions? |
7278 | 0 | return {nullptr, LK_FullExpression}; |
7279 | | |
7280 | 0 | case InitializedEntity::EK_ParenAggInitMember: |
7281 | | // -- A temporary object bound to a reference element of an aggregate of |
7282 | | // class type initialized from a parenthesized expression-list |
7283 | | // [dcl.init, 9.3] persists until the completion of the full-expression |
7284 | | // containing the expression-list. |
7285 | 0 | return {nullptr, LK_FullExpression}; |
7286 | 7 | } |
7287 | | |
7288 | 0 | llvm_unreachable("unknown entity kind"); |
7289 | 0 | } |
7290 | | |
7291 | | namespace { |
7292 | | enum ReferenceKind { |
7293 | | /// Lifetime would be extended by a reference binding to a temporary. |
7294 | | RK_ReferenceBinding, |
7295 | | /// Lifetime would be extended by a std::initializer_list object binding to |
7296 | | /// its backing array. |
7297 | | RK_StdInitializerList, |
7298 | | }; |
7299 | | |
7300 | | /// A temporary or local variable. This will be one of: |
7301 | | /// * A MaterializeTemporaryExpr. |
7302 | | /// * A DeclRefExpr whose declaration is a local. |
7303 | | /// * An AddrLabelExpr. |
7304 | | /// * A BlockExpr for a block with captures. |
7305 | | using Local = Expr*; |
7306 | | |
7307 | | /// Expressions we stepped over when looking for the local state. Any steps |
7308 | | /// that would inhibit lifetime extension or take us out of subexpressions of |
7309 | | /// the initializer are included. |
7310 | | struct IndirectLocalPathEntry { |
7311 | | enum EntryKind { |
7312 | | DefaultInit, |
7313 | | AddressOf, |
7314 | | VarInit, |
7315 | | LValToRVal, |
7316 | | LifetimeBoundCall, |
7317 | | TemporaryCopy, |
7318 | | LambdaCaptureInit, |
7319 | | GslReferenceInit, |
7320 | | GslPointerInit |
7321 | | } Kind; |
7322 | | Expr *E; |
7323 | | union { |
7324 | | const Decl *D = nullptr; |
7325 | | const LambdaCapture *Capture; |
7326 | | }; |
7327 | 0 | IndirectLocalPathEntry() {} |
7328 | 4 | IndirectLocalPathEntry(EntryKind K, Expr *E) : Kind(K), E(E) {} |
7329 | | IndirectLocalPathEntry(EntryKind K, Expr *E, const Decl *D) |
7330 | 0 | : Kind(K), E(E), D(D) {} |
7331 | | IndirectLocalPathEntry(EntryKind K, Expr *E, const LambdaCapture *Capture) |
7332 | 0 | : Kind(K), E(E), Capture(Capture) {} |
7333 | | }; |
7334 | | |
7335 | | using IndirectLocalPath = llvm::SmallVectorImpl<IndirectLocalPathEntry>; |
7336 | | |
7337 | | struct RevertToOldSizeRAII { |
7338 | | IndirectLocalPath &Path; |
7339 | | unsigned OldSize = Path.size(); |
7340 | 11 | RevertToOldSizeRAII(IndirectLocalPath &Path) : Path(Path) {} |
7341 | 11 | ~RevertToOldSizeRAII() { Path.resize(OldSize); } |
7342 | | }; |
7343 | | |
7344 | | using LocalVisitor = llvm::function_ref<bool(IndirectLocalPath &Path, Local L, |
7345 | | ReferenceKind RK)>; |
7346 | | } |
7347 | | |
7348 | 0 | static bool isVarOnPath(IndirectLocalPath &Path, VarDecl *VD) { |
7349 | 0 | for (auto E : Path) |
7350 | 0 | if (E.Kind == IndirectLocalPathEntry::VarInit && E.D == VD) |
7351 | 0 | return true; |
7352 | 0 | return false; |
7353 | 0 | } |
7354 | | |
7355 | 0 | static bool pathContainsInit(IndirectLocalPath &Path) { |
7356 | 0 | return llvm::any_of(Path, [=](IndirectLocalPathEntry E) { |
7357 | 0 | return E.Kind == IndirectLocalPathEntry::DefaultInit || |
7358 | 0 | E.Kind == IndirectLocalPathEntry::VarInit; |
7359 | 0 | }); |
7360 | 0 | } |
7361 | | |
7362 | | static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, |
7363 | | Expr *Init, LocalVisitor Visit, |
7364 | | bool RevisitSubinits, |
7365 | | bool EnableLifetimeWarnings); |
7366 | | |
7367 | | static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, |
7368 | | Expr *Init, ReferenceKind RK, |
7369 | | LocalVisitor Visit, |
7370 | | bool EnableLifetimeWarnings); |
7371 | | |
7372 | 0 | template <typename T> static bool isRecordWithAttr(QualType Type) { |
7373 | 0 | if (auto *RD = Type->getAsCXXRecordDecl()) |
7374 | 0 | return RD->hasAttr<T>(); |
7375 | 0 | return false; |
7376 | 0 | } Unexecuted instantiation: SemaInit.cpp:bool isRecordWithAttr<clang::PointerAttr>(clang::QualType) Unexecuted instantiation: SemaInit.cpp:bool isRecordWithAttr<clang::OwnerAttr>(clang::QualType) |
7377 | | |
7378 | | // Decl::isInStdNamespace will return false for iterators in some STL |
7379 | | // implementations due to them being defined in a namespace outside of the std |
7380 | | // namespace. |
7381 | 0 | static bool isInStlNamespace(const Decl *D) { |
7382 | 0 | const DeclContext *DC = D->getDeclContext(); |
7383 | 0 | if (!DC) |
7384 | 0 | return false; |
7385 | 0 | if (const auto *ND = dyn_cast<NamespaceDecl>(DC)) |
7386 | 0 | if (const IdentifierInfo *II = ND->getIdentifier()) { |
7387 | 0 | StringRef Name = II->getName(); |
7388 | 0 | if (Name.size() >= 2 && Name.front() == '_' && |
7389 | 0 | (Name[1] == '_' || isUppercase(Name[1]))) |
7390 | 0 | return true; |
7391 | 0 | } |
7392 | | |
7393 | 0 | return DC->isStdNamespace(); |
7394 | 0 | } |
7395 | | |
7396 | 0 | static bool shouldTrackImplicitObjectArg(const CXXMethodDecl *Callee) { |
7397 | 0 | if (auto *Conv = dyn_cast_or_null<CXXConversionDecl>(Callee)) |
7398 | 0 | if (isRecordWithAttr<PointerAttr>(Conv->getConversionType())) |
7399 | 0 | return true; |
7400 | 0 | if (!isInStlNamespace(Callee->getParent())) |
7401 | 0 | return false; |
7402 | 0 | if (!isRecordWithAttr<PointerAttr>( |
7403 | 0 | Callee->getFunctionObjectParameterType()) && |
7404 | 0 | !isRecordWithAttr<OwnerAttr>(Callee->getFunctionObjectParameterType())) |
7405 | 0 | return false; |
7406 | 0 | if (Callee->getReturnType()->isPointerType() || |
7407 | 0 | isRecordWithAttr<PointerAttr>(Callee->getReturnType())) { |
7408 | 0 | if (!Callee->getIdentifier()) |
7409 | 0 | return false; |
7410 | 0 | return llvm::StringSwitch<bool>(Callee->getName()) |
7411 | 0 | .Cases("begin", "rbegin", "cbegin", "crbegin", true) |
7412 | 0 | .Cases("end", "rend", "cend", "crend", true) |
7413 | 0 | .Cases("c_str", "data", "get", true) |
7414 | | // Map and set types. |
7415 | 0 | .Cases("find", "equal_range", "lower_bound", "upper_bound", true) |
7416 | 0 | .Default(false); |
7417 | 0 | } else if (Callee->getReturnType()->isReferenceType()) { |
7418 | 0 | if (!Callee->getIdentifier()) { |
7419 | 0 | auto OO = Callee->getOverloadedOperator(); |
7420 | 0 | return OO == OverloadedOperatorKind::OO_Subscript || |
7421 | 0 | OO == OverloadedOperatorKind::OO_Star; |
7422 | 0 | } |
7423 | 0 | return llvm::StringSwitch<bool>(Callee->getName()) |
7424 | 0 | .Cases("front", "back", "at", "top", "value", true) |
7425 | 0 | .Default(false); |
7426 | 0 | } |
7427 | 0 | return false; |
7428 | 0 | } |
7429 | | |
7430 | 0 | static bool shouldTrackFirstArgument(const FunctionDecl *FD) { |
7431 | 0 | if (!FD->getIdentifier() || FD->getNumParams() != 1) |
7432 | 0 | return false; |
7433 | 0 | const auto *RD = FD->getParamDecl(0)->getType()->getPointeeCXXRecordDecl(); |
7434 | 0 | if (!FD->isInStdNamespace() || !RD || !RD->isInStdNamespace()) |
7435 | 0 | return false; |
7436 | 0 | if (!isRecordWithAttr<PointerAttr>(QualType(RD->getTypeForDecl(), 0)) && |
7437 | 0 | !isRecordWithAttr<OwnerAttr>(QualType(RD->getTypeForDecl(), 0))) |
7438 | 0 | return false; |
7439 | 0 | if (FD->getReturnType()->isPointerType() || |
7440 | 0 | isRecordWithAttr<PointerAttr>(FD->getReturnType())) { |
7441 | 0 | return llvm::StringSwitch<bool>(FD->getName()) |
7442 | 0 | .Cases("begin", "rbegin", "cbegin", "crbegin", true) |
7443 | 0 | .Cases("end", "rend", "cend", "crend", true) |
7444 | 0 | .Case("data", true) |
7445 | 0 | .Default(false); |
7446 | 0 | } else if (FD->getReturnType()->isReferenceType()) { |
7447 | 0 | return llvm::StringSwitch<bool>(FD->getName()) |
7448 | 0 | .Cases("get", "any_cast", true) |
7449 | 0 | .Default(false); |
7450 | 0 | } |
7451 | 0 | return false; |
7452 | 0 | } |
7453 | | |
7454 | | static void handleGslAnnotatedTypes(IndirectLocalPath &Path, Expr *Call, |
7455 | 0 | LocalVisitor Visit) { |
7456 | 0 | auto VisitPointerArg = [&](const Decl *D, Expr *Arg, bool Value) { |
7457 | | // We are not interested in the temporary base objects of gsl Pointers: |
7458 | | // Temp().ptr; // Here ptr might not dangle. |
7459 | 0 | if (isa<MemberExpr>(Arg->IgnoreImpCasts())) |
7460 | 0 | return; |
7461 | | // Once we initialized a value with a reference, it can no longer dangle. |
7462 | 0 | if (!Value) { |
7463 | 0 | for (const IndirectLocalPathEntry &PE : llvm::reverse(Path)) { |
7464 | 0 | if (PE.Kind == IndirectLocalPathEntry::GslReferenceInit) |
7465 | 0 | continue; |
7466 | 0 | if (PE.Kind == IndirectLocalPathEntry::GslPointerInit) |
7467 | 0 | return; |
7468 | 0 | break; |
7469 | 0 | } |
7470 | 0 | } |
7471 | 0 | Path.push_back({Value ? IndirectLocalPathEntry::GslPointerInit |
7472 | 0 | : IndirectLocalPathEntry::GslReferenceInit, |
7473 | 0 | Arg, D}); |
7474 | 0 | if (Arg->isGLValue()) |
7475 | 0 | visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, |
7476 | 0 | Visit, |
7477 | 0 | /*EnableLifetimeWarnings=*/true); |
7478 | 0 | else |
7479 | 0 | visitLocalsRetainedByInitializer(Path, Arg, Visit, true, |
7480 | 0 | /*EnableLifetimeWarnings=*/true); |
7481 | 0 | Path.pop_back(); |
7482 | 0 | }; |
7483 | |
|
7484 | 0 | if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { |
7485 | 0 | const auto *MD = cast_or_null<CXXMethodDecl>(MCE->getDirectCallee()); |
7486 | 0 | if (MD && shouldTrackImplicitObjectArg(MD)) |
7487 | 0 | VisitPointerArg(MD, MCE->getImplicitObjectArgument(), |
7488 | 0 | !MD->getReturnType()->isReferenceType()); |
7489 | 0 | return; |
7490 | 0 | } else if (auto *OCE = dyn_cast<CXXOperatorCallExpr>(Call)) { |
7491 | 0 | FunctionDecl *Callee = OCE->getDirectCallee(); |
7492 | 0 | if (Callee && Callee->isCXXInstanceMember() && |
7493 | 0 | shouldTrackImplicitObjectArg(cast<CXXMethodDecl>(Callee))) |
7494 | 0 | VisitPointerArg(Callee, OCE->getArg(0), |
7495 | 0 | !Callee->getReturnType()->isReferenceType()); |
7496 | 0 | return; |
7497 | 0 | } else if (auto *CE = dyn_cast<CallExpr>(Call)) { |
7498 | 0 | FunctionDecl *Callee = CE->getDirectCallee(); |
7499 | 0 | if (Callee && shouldTrackFirstArgument(Callee)) |
7500 | 0 | VisitPointerArg(Callee, CE->getArg(0), |
7501 | 0 | !Callee->getReturnType()->isReferenceType()); |
7502 | 0 | return; |
7503 | 0 | } |
7504 | | |
7505 | 0 | if (auto *CCE = dyn_cast<CXXConstructExpr>(Call)) { |
7506 | 0 | const auto *Ctor = CCE->getConstructor(); |
7507 | 0 | const CXXRecordDecl *RD = Ctor->getParent(); |
7508 | 0 | if (CCE->getNumArgs() > 0 && RD->hasAttr<PointerAttr>()) |
7509 | 0 | VisitPointerArg(Ctor->getParamDecl(0), CCE->getArgs()[0], true); |
7510 | 0 | } |
7511 | 0 | } |
7512 | | |
7513 | 0 | static bool implicitObjectParamIsLifetimeBound(const FunctionDecl *FD) { |
7514 | 0 | const TypeSourceInfo *TSI = FD->getTypeSourceInfo(); |
7515 | 0 | if (!TSI) |
7516 | 0 | return false; |
7517 | | // Don't declare this variable in the second operand of the for-statement; |
7518 | | // GCC miscompiles that by ending its lifetime before evaluating the |
7519 | | // third operand. See gcc.gnu.org/PR86769. |
7520 | 0 | AttributedTypeLoc ATL; |
7521 | 0 | for (TypeLoc TL = TSI->getTypeLoc(); |
7522 | 0 | (ATL = TL.getAsAdjusted<AttributedTypeLoc>()); |
7523 | 0 | TL = ATL.getModifiedLoc()) { |
7524 | 0 | if (ATL.getAttrAs<LifetimeBoundAttr>()) |
7525 | 0 | return true; |
7526 | 0 | } |
7527 | | |
7528 | | // Assume that all assignment operators with a "normal" return type return |
7529 | | // *this, that is, an lvalue reference that is the same type as the implicit |
7530 | | // object parameter (or the LHS for a non-member operator$=). |
7531 | 0 | OverloadedOperatorKind OO = FD->getDeclName().getCXXOverloadedOperator(); |
7532 | 0 | if (OO == OO_Equal || isCompoundAssignmentOperator(OO)) { |
7533 | 0 | QualType RetT = FD->getReturnType(); |
7534 | 0 | if (RetT->isLValueReferenceType()) { |
7535 | 0 | ASTContext &Ctx = FD->getASTContext(); |
7536 | 0 | QualType LHST; |
7537 | 0 | auto *MD = dyn_cast<CXXMethodDecl>(FD); |
7538 | 0 | if (MD && MD->isCXXInstanceMember()) |
7539 | 0 | LHST = Ctx.getLValueReferenceType(MD->getFunctionObjectParameterType()); |
7540 | 0 | else |
7541 | 0 | LHST = MD->getParamDecl(0)->getType(); |
7542 | 0 | if (Ctx.hasSameType(RetT, LHST)) |
7543 | 0 | return true; |
7544 | 0 | } |
7545 | 0 | } |
7546 | | |
7547 | 0 | return false; |
7548 | 0 | } |
7549 | | |
7550 | | static void visitLifetimeBoundArguments(IndirectLocalPath &Path, Expr *Call, |
7551 | 0 | LocalVisitor Visit) { |
7552 | 0 | const FunctionDecl *Callee; |
7553 | 0 | ArrayRef<Expr*> Args; |
7554 | |
|
7555 | 0 | if (auto *CE = dyn_cast<CallExpr>(Call)) { |
7556 | 0 | Callee = CE->getDirectCallee(); |
7557 | 0 | Args = llvm::ArrayRef(CE->getArgs(), CE->getNumArgs()); |
7558 | 0 | } else { |
7559 | 0 | auto *CCE = cast<CXXConstructExpr>(Call); |
7560 | 0 | Callee = CCE->getConstructor(); |
7561 | 0 | Args = llvm::ArrayRef(CCE->getArgs(), CCE->getNumArgs()); |
7562 | 0 | } |
7563 | 0 | if (!Callee) |
7564 | 0 | return; |
7565 | | |
7566 | 0 | Expr *ObjectArg = nullptr; |
7567 | 0 | if (isa<CXXOperatorCallExpr>(Call) && Callee->isCXXInstanceMember()) { |
7568 | 0 | ObjectArg = Args[0]; |
7569 | 0 | Args = Args.slice(1); |
7570 | 0 | } else if (auto *MCE = dyn_cast<CXXMemberCallExpr>(Call)) { |
7571 | 0 | ObjectArg = MCE->getImplicitObjectArgument(); |
7572 | 0 | } |
7573 | |
|
7574 | 0 | auto VisitLifetimeBoundArg = [&](const Decl *D, Expr *Arg) { |
7575 | 0 | Path.push_back({IndirectLocalPathEntry::LifetimeBoundCall, Arg, D}); |
7576 | 0 | if (Arg->isGLValue()) |
7577 | 0 | visitLocalsRetainedByReferenceBinding(Path, Arg, RK_ReferenceBinding, |
7578 | 0 | Visit, |
7579 | 0 | /*EnableLifetimeWarnings=*/false); |
7580 | 0 | else |
7581 | 0 | visitLocalsRetainedByInitializer(Path, Arg, Visit, true, |
7582 | 0 | /*EnableLifetimeWarnings=*/false); |
7583 | 0 | Path.pop_back(); |
7584 | 0 | }; |
7585 | |
|
7586 | 0 | if (ObjectArg && implicitObjectParamIsLifetimeBound(Callee)) |
7587 | 0 | VisitLifetimeBoundArg(Callee, ObjectArg); |
7588 | |
|
7589 | 0 | bool CheckCoroCall = false; |
7590 | 0 | if (const auto *RD = Callee->getReturnType()->getAsRecordDecl()) { |
7591 | 0 | CheckCoroCall = RD->hasAttr<CoroLifetimeBoundAttr>() && |
7592 | 0 | RD->hasAttr<CoroReturnTypeAttr>() && |
7593 | 0 | !Callee->hasAttr<CoroDisableLifetimeBoundAttr>(); |
7594 | 0 | } |
7595 | 0 | for (unsigned I = 0, |
7596 | 0 | N = std::min<unsigned>(Callee->getNumParams(), Args.size()); |
7597 | 0 | I != N; ++I) { |
7598 | 0 | if (CheckCoroCall || Callee->getParamDecl(I)->hasAttr<LifetimeBoundAttr>()) |
7599 | 0 | VisitLifetimeBoundArg(Callee->getParamDecl(I), Args[I]); |
7600 | 0 | } |
7601 | 0 | } |
7602 | | |
7603 | | /// Visit the locals that would be reachable through a reference bound to the |
7604 | | /// glvalue expression \c Init. |
7605 | | static void visitLocalsRetainedByReferenceBinding(IndirectLocalPath &Path, |
7606 | | Expr *Init, ReferenceKind RK, |
7607 | | LocalVisitor Visit, |
7608 | 4 | bool EnableLifetimeWarnings) { |
7609 | 4 | RevertToOldSizeRAII RAII(Path); |
7610 | | |
7611 | | // Walk past any constructs which we can lifetime-extend across. |
7612 | 4 | Expr *Old; |
7613 | 8 | do { |
7614 | 8 | Old = Init; |
7615 | | |
7616 | 8 | if (auto *FE = dyn_cast<FullExpr>(Init)) |
7617 | 0 | Init = FE->getSubExpr(); |
7618 | | |
7619 | 8 | if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { |
7620 | | // If this is just redundant braces around an initializer, step over it. |
7621 | 0 | if (ILE->isTransparent()) |
7622 | 0 | Init = ILE->getInit(0); |
7623 | 0 | } |
7624 | | |
7625 | | // Step over any subobject adjustments; we may have a materialized |
7626 | | // temporary inside them. |
7627 | 8 | Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); |
7628 | | |
7629 | | // Per current approach for DR1376, look through casts to reference type |
7630 | | // when performing lifetime extension. |
7631 | 8 | if (CastExpr *CE = dyn_cast<CastExpr>(Init)) |
7632 | 4 | if (CE->getSubExpr()->isGLValue()) |
7633 | 4 | Init = CE->getSubExpr(); |
7634 | | |
7635 | | // Per the current approach for DR1299, look through array element access |
7636 | | // on array glvalues when performing lifetime extension. |
7637 | 8 | if (auto *ASE = dyn_cast<ArraySubscriptExpr>(Init)) { |
7638 | 0 | Init = ASE->getBase(); |
7639 | 0 | auto *ICE = dyn_cast<ImplicitCastExpr>(Init); |
7640 | 0 | if (ICE && ICE->getCastKind() == CK_ArrayToPointerDecay) |
7641 | 0 | Init = ICE->getSubExpr(); |
7642 | 0 | else |
7643 | | // We can't lifetime extend through this but we might still find some |
7644 | | // retained temporaries. |
7645 | 0 | return visitLocalsRetainedByInitializer(Path, Init, Visit, true, |
7646 | 0 | EnableLifetimeWarnings); |
7647 | 0 | } |
7648 | | |
7649 | | // Step into CXXDefaultInitExprs so we can diagnose cases where a |
7650 | | // constructor inherits one as an implicit mem-initializer. |
7651 | 8 | if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { |
7652 | 0 | Path.push_back( |
7653 | 0 | {IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); |
7654 | 0 | Init = DIE->getExpr(); |
7655 | 0 | } |
7656 | 8 | } while (Init != Old); |
7657 | | |
7658 | 4 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(Init)) { |
7659 | 0 | if (Visit(Path, Local(MTE), RK)) |
7660 | 0 | visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, true, |
7661 | 0 | EnableLifetimeWarnings); |
7662 | 0 | } |
7663 | | |
7664 | 4 | if (isa<CallExpr>(Init)) { |
7665 | 0 | if (EnableLifetimeWarnings) |
7666 | 0 | handleGslAnnotatedTypes(Path, Init, Visit); |
7667 | 0 | return visitLifetimeBoundArguments(Path, Init, Visit); |
7668 | 0 | } |
7669 | | |
7670 | 4 | switch (Init->getStmtClass()) { |
7671 | 4 | case Stmt::DeclRefExprClass: { |
7672 | | // If we find the name of a local non-reference parameter, we could have a |
7673 | | // lifetime problem. |
7674 | 4 | auto *DRE = cast<DeclRefExpr>(Init); |
7675 | 4 | auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); |
7676 | 4 | if (VD && VD->hasLocalStorage() && |
7677 | 4 | !DRE->refersToEnclosingVariableOrCapture()) { |
7678 | 0 | if (!VD->getType()->isReferenceType()) { |
7679 | 0 | Visit(Path, Local(DRE), RK); |
7680 | 0 | } else if (isa<ParmVarDecl>(DRE->getDecl())) { |
7681 | | // The lifetime of a reference parameter is unknown; assume it's OK |
7682 | | // for now. |
7683 | 0 | break; |
7684 | 0 | } else if (VD->getInit() && !isVarOnPath(Path, VD)) { |
7685 | 0 | Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); |
7686 | 0 | visitLocalsRetainedByReferenceBinding(Path, VD->getInit(), |
7687 | 0 | RK_ReferenceBinding, Visit, |
7688 | 0 | EnableLifetimeWarnings); |
7689 | 0 | } |
7690 | 0 | } |
7691 | 4 | break; |
7692 | 4 | } |
7693 | | |
7694 | 4 | case Stmt::UnaryOperatorClass: { |
7695 | | // The only unary operator that make sense to handle here |
7696 | | // is Deref. All others don't resolve to a "name." This includes |
7697 | | // handling all sorts of rvalues passed to a unary operator. |
7698 | 0 | const UnaryOperator *U = cast<UnaryOperator>(Init); |
7699 | 0 | if (U->getOpcode() == UO_Deref) |
7700 | 0 | visitLocalsRetainedByInitializer(Path, U->getSubExpr(), Visit, true, |
7701 | 0 | EnableLifetimeWarnings); |
7702 | 0 | break; |
7703 | 4 | } |
7704 | | |
7705 | 0 | case Stmt::OMPArraySectionExprClass: { |
7706 | 0 | visitLocalsRetainedByInitializer(Path, |
7707 | 0 | cast<OMPArraySectionExpr>(Init)->getBase(), |
7708 | 0 | Visit, true, EnableLifetimeWarnings); |
7709 | 0 | break; |
7710 | 4 | } |
7711 | | |
7712 | 0 | case Stmt::ConditionalOperatorClass: |
7713 | 0 | case Stmt::BinaryConditionalOperatorClass: { |
7714 | 0 | auto *C = cast<AbstractConditionalOperator>(Init); |
7715 | 0 | if (!C->getTrueExpr()->getType()->isVoidType()) |
7716 | 0 | visitLocalsRetainedByReferenceBinding(Path, C->getTrueExpr(), RK, Visit, |
7717 | 0 | EnableLifetimeWarnings); |
7718 | 0 | if (!C->getFalseExpr()->getType()->isVoidType()) |
7719 | 0 | visitLocalsRetainedByReferenceBinding(Path, C->getFalseExpr(), RK, Visit, |
7720 | 0 | EnableLifetimeWarnings); |
7721 | 0 | break; |
7722 | 0 | } |
7723 | | |
7724 | | // FIXME: Visit the left-hand side of an -> or ->*. |
7725 | | |
7726 | 0 | default: |
7727 | 0 | break; |
7728 | 4 | } |
7729 | 4 | } |
7730 | | |
7731 | | /// Visit the locals that would be reachable through an object initialized by |
7732 | | /// the prvalue expression \c Init. |
7733 | | static void visitLocalsRetainedByInitializer(IndirectLocalPath &Path, |
7734 | | Expr *Init, LocalVisitor Visit, |
7735 | | bool RevisitSubinits, |
7736 | 7 | bool EnableLifetimeWarnings) { |
7737 | 7 | RevertToOldSizeRAII RAII(Path); |
7738 | | |
7739 | 7 | Expr *Old; |
7740 | 8 | do { |
7741 | 8 | Old = Init; |
7742 | | |
7743 | | // Step into CXXDefaultInitExprs so we can diagnose cases where a |
7744 | | // constructor inherits one as an implicit mem-initializer. |
7745 | 8 | if (auto *DIE = dyn_cast<CXXDefaultInitExpr>(Init)) { |
7746 | 0 | Path.push_back({IndirectLocalPathEntry::DefaultInit, DIE, DIE->getField()}); |
7747 | 0 | Init = DIE->getExpr(); |
7748 | 0 | } |
7749 | | |
7750 | 8 | if (auto *FE = dyn_cast<FullExpr>(Init)) |
7751 | 0 | Init = FE->getSubExpr(); |
7752 | | |
7753 | | // Dig out the expression which constructs the extended temporary. |
7754 | 8 | Init = const_cast<Expr *>(Init->skipRValueSubobjectAdjustments()); |
7755 | | |
7756 | 8 | if (CXXBindTemporaryExpr *BTE = dyn_cast<CXXBindTemporaryExpr>(Init)) |
7757 | 0 | Init = BTE->getSubExpr(); |
7758 | | |
7759 | 8 | Init = Init->IgnoreParens(); |
7760 | | |
7761 | | // Step over value-preserving rvalue casts. |
7762 | 8 | if (auto *CE = dyn_cast<CastExpr>(Init)) { |
7763 | 5 | switch (CE->getCastKind()) { |
7764 | 4 | case CK_LValueToRValue: |
7765 | | // If we can match the lvalue to a const object, we can look at its |
7766 | | // initializer. |
7767 | 4 | Path.push_back({IndirectLocalPathEntry::LValToRVal, CE}); |
7768 | 4 | return visitLocalsRetainedByReferenceBinding( |
7769 | 4 | Path, Init, RK_ReferenceBinding, |
7770 | 4 | [&](IndirectLocalPath &Path, Local L, ReferenceKind RK) -> bool { |
7771 | 0 | if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { |
7772 | 0 | auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); |
7773 | 0 | if (VD && VD->getType().isConstQualified() && VD->getInit() && |
7774 | 0 | !isVarOnPath(Path, VD)) { |
7775 | 0 | Path.push_back({IndirectLocalPathEntry::VarInit, DRE, VD}); |
7776 | 0 | visitLocalsRetainedByInitializer(Path, VD->getInit(), Visit, true, |
7777 | 0 | EnableLifetimeWarnings); |
7778 | 0 | } |
7779 | 0 | } else if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L)) { |
7780 | 0 | if (MTE->getType().isConstQualified()) |
7781 | 0 | visitLocalsRetainedByInitializer(Path, MTE->getSubExpr(), Visit, |
7782 | 0 | true, EnableLifetimeWarnings); |
7783 | 0 | } |
7784 | 0 | return false; |
7785 | 0 | }, EnableLifetimeWarnings); |
7786 | | |
7787 | | // We assume that objects can be retained by pointers cast to integers, |
7788 | | // but not if the integer is cast to floating-point type or to _Complex. |
7789 | | // We assume that casts to 'bool' do not preserve enough information to |
7790 | | // retain a local object. |
7791 | 0 | case CK_NoOp: |
7792 | 0 | case CK_BitCast: |
7793 | 0 | case CK_BaseToDerived: |
7794 | 0 | case CK_DerivedToBase: |
7795 | 0 | case CK_UncheckedDerivedToBase: |
7796 | 0 | case CK_Dynamic: |
7797 | 0 | case CK_ToUnion: |
7798 | 0 | case CK_UserDefinedConversion: |
7799 | 0 | case CK_ConstructorConversion: |
7800 | 1 | case CK_IntegralToPointer: |
7801 | 1 | case CK_PointerToIntegral: |
7802 | 1 | case CK_VectorSplat: |
7803 | 1 | case CK_IntegralCast: |
7804 | 1 | case CK_CPointerToObjCPointerCast: |
7805 | 1 | case CK_BlockPointerToObjCPointerCast: |
7806 | 1 | case CK_AnyPointerToBlockPointerCast: |
7807 | 1 | case CK_AddressSpaceConversion: |
7808 | 1 | break; |
7809 | | |
7810 | 0 | case CK_ArrayToPointerDecay: |
7811 | | // Model array-to-pointer decay as taking the address of the array |
7812 | | // lvalue. |
7813 | 0 | Path.push_back({IndirectLocalPathEntry::AddressOf, CE}); |
7814 | 0 | return visitLocalsRetainedByReferenceBinding(Path, CE->getSubExpr(), |
7815 | 0 | RK_ReferenceBinding, Visit, |
7816 | 0 | EnableLifetimeWarnings); |
7817 | | |
7818 | 0 | default: |
7819 | 0 | return; |
7820 | 5 | } |
7821 | | |
7822 | 1 | Init = CE->getSubExpr(); |
7823 | 1 | } |
7824 | 8 | } while (Old != Init); |
7825 | | |
7826 | | // C++17 [dcl.init.list]p6: |
7827 | | // initializing an initializer_list object from the array extends the |
7828 | | // lifetime of the array exactly like binding a reference to a temporary. |
7829 | 3 | if (auto *ILE = dyn_cast<CXXStdInitializerListExpr>(Init)) |
7830 | 0 | return visitLocalsRetainedByReferenceBinding(Path, ILE->getSubExpr(), |
7831 | 0 | RK_StdInitializerList, Visit, |
7832 | 0 | EnableLifetimeWarnings); |
7833 | | |
7834 | 3 | if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) { |
7835 | | // We already visited the elements of this initializer list while |
7836 | | // performing the initialization. Don't visit them again unless we've |
7837 | | // changed the lifetime of the initialized entity. |
7838 | 0 | if (!RevisitSubinits) |
7839 | 0 | return; |
7840 | | |
7841 | 0 | if (ILE->isTransparent()) |
7842 | 0 | return visitLocalsRetainedByInitializer(Path, ILE->getInit(0), Visit, |
7843 | 0 | RevisitSubinits, |
7844 | 0 | EnableLifetimeWarnings); |
7845 | | |
7846 | 0 | if (ILE->getType()->isArrayType()) { |
7847 | 0 | for (unsigned I = 0, N = ILE->getNumInits(); I != N; ++I) |
7848 | 0 | visitLocalsRetainedByInitializer(Path, ILE->getInit(I), Visit, |
7849 | 0 | RevisitSubinits, |
7850 | 0 | EnableLifetimeWarnings); |
7851 | 0 | return; |
7852 | 0 | } |
7853 | | |
7854 | 0 | if (CXXRecordDecl *RD = ILE->getType()->getAsCXXRecordDecl()) { |
7855 | 0 | assert(RD->isAggregate() && "aggregate init on non-aggregate"); |
7856 | | |
7857 | | // If we lifetime-extend a braced initializer which is initializing an |
7858 | | // aggregate, and that aggregate contains reference members which are |
7859 | | // bound to temporaries, those temporaries are also lifetime-extended. |
7860 | 0 | if (RD->isUnion() && ILE->getInitializedFieldInUnion() && |
7861 | 0 | ILE->getInitializedFieldInUnion()->getType()->isReferenceType()) |
7862 | 0 | visitLocalsRetainedByReferenceBinding(Path, ILE->getInit(0), |
7863 | 0 | RK_ReferenceBinding, Visit, |
7864 | 0 | EnableLifetimeWarnings); |
7865 | 0 | else { |
7866 | 0 | unsigned Index = 0; |
7867 | 0 | for (; Index < RD->getNumBases() && Index < ILE->getNumInits(); ++Index) |
7868 | 0 | visitLocalsRetainedByInitializer(Path, ILE->getInit(Index), Visit, |
7869 | 0 | RevisitSubinits, |
7870 | 0 | EnableLifetimeWarnings); |
7871 | 0 | for (const auto *I : RD->fields()) { |
7872 | 0 | if (Index >= ILE->getNumInits()) |
7873 | 0 | break; |
7874 | 0 | if (I->isUnnamedBitfield()) |
7875 | 0 | continue; |
7876 | 0 | Expr *SubInit = ILE->getInit(Index); |
7877 | 0 | if (I->getType()->isReferenceType()) |
7878 | 0 | visitLocalsRetainedByReferenceBinding(Path, SubInit, |
7879 | 0 | RK_ReferenceBinding, Visit, |
7880 | 0 | EnableLifetimeWarnings); |
7881 | 0 | else |
7882 | | // This might be either aggregate-initialization of a member or |
7883 | | // initialization of a std::initializer_list object. Regardless, |
7884 | | // we should recursively lifetime-extend that initializer. |
7885 | 0 | visitLocalsRetainedByInitializer(Path, SubInit, Visit, |
7886 | 0 | RevisitSubinits, |
7887 | 0 | EnableLifetimeWarnings); |
7888 | 0 | ++Index; |
7889 | 0 | } |
7890 | 0 | } |
7891 | 0 | } |
7892 | 0 | return; |
7893 | 0 | } |
7894 | | |
7895 | | // The lifetime of an init-capture is that of the closure object constructed |
7896 | | // by a lambda-expression. |
7897 | 3 | if (auto *LE = dyn_cast<LambdaExpr>(Init)) { |
7898 | 0 | LambdaExpr::capture_iterator CapI = LE->capture_begin(); |
7899 | 0 | for (Expr *E : LE->capture_inits()) { |
7900 | 0 | assert(CapI != LE->capture_end()); |
7901 | 0 | const LambdaCapture &Cap = *CapI++; |
7902 | 0 | if (!E) |
7903 | 0 | continue; |
7904 | 0 | if (Cap.capturesVariable()) |
7905 | 0 | Path.push_back({IndirectLocalPathEntry::LambdaCaptureInit, E, &Cap}); |
7906 | 0 | if (E->isGLValue()) |
7907 | 0 | visitLocalsRetainedByReferenceBinding(Path, E, RK_ReferenceBinding, |
7908 | 0 | Visit, EnableLifetimeWarnings); |
7909 | 0 | else |
7910 | 0 | visitLocalsRetainedByInitializer(Path, E, Visit, true, |
7911 | 0 | EnableLifetimeWarnings); |
7912 | 0 | if (Cap.capturesVariable()) |
7913 | 0 | Path.pop_back(); |
7914 | 0 | } |
7915 | 0 | } |
7916 | | |
7917 | | // Assume that a copy or move from a temporary references the same objects |
7918 | | // that the temporary does. |
7919 | 3 | if (auto *CCE = dyn_cast<CXXConstructExpr>(Init)) { |
7920 | 0 | if (CCE->getConstructor()->isCopyOrMoveConstructor()) { |
7921 | 0 | if (auto *MTE = dyn_cast<MaterializeTemporaryExpr>(CCE->getArg(0))) { |
7922 | 0 | Expr *Arg = MTE->getSubExpr(); |
7923 | 0 | Path.push_back({IndirectLocalPathEntry::TemporaryCopy, Arg, |
7924 | 0 | CCE->getConstructor()}); |
7925 | 0 | visitLocalsRetainedByInitializer(Path, Arg, Visit, true, |
7926 | 0 | /*EnableLifetimeWarnings*/false); |
7927 | 0 | Path.pop_back(); |
7928 | 0 | } |
7929 | 0 | } |
7930 | 0 | } |
7931 | | |
7932 | 3 | if (isa<CallExpr>(Init) || isa<CXXConstructExpr>(Init)) { |
7933 | 0 | if (EnableLifetimeWarnings) |
7934 | 0 | handleGslAnnotatedTypes(Path, Init, Visit); |
7935 | 0 | return visitLifetimeBoundArguments(Path, Init, Visit); |
7936 | 0 | } |
7937 | | |
7938 | 3 | switch (Init->getStmtClass()) { |
7939 | 0 | case Stmt::UnaryOperatorClass: { |
7940 | 0 | auto *UO = cast<UnaryOperator>(Init); |
7941 | | // If the initializer is the address of a local, we could have a lifetime |
7942 | | // problem. |
7943 | 0 | if (UO->getOpcode() == UO_AddrOf) { |
7944 | | // If this is &rvalue, then it's ill-formed and we have already diagnosed |
7945 | | // it. Don't produce a redundant warning about the lifetime of the |
7946 | | // temporary. |
7947 | 0 | if (isa<MaterializeTemporaryExpr>(UO->getSubExpr())) |
7948 | 0 | return; |
7949 | | |
7950 | 0 | Path.push_back({IndirectLocalPathEntry::AddressOf, UO}); |
7951 | 0 | visitLocalsRetainedByReferenceBinding(Path, UO->getSubExpr(), |
7952 | 0 | RK_ReferenceBinding, Visit, |
7953 | 0 | EnableLifetimeWarnings); |
7954 | 0 | } |
7955 | 0 | break; |
7956 | 0 | } |
7957 | | |
7958 | 0 | case Stmt::BinaryOperatorClass: { |
7959 | | // Handle pointer arithmetic. |
7960 | 0 | auto *BO = cast<BinaryOperator>(Init); |
7961 | 0 | BinaryOperatorKind BOK = BO->getOpcode(); |
7962 | 0 | if (!BO->getType()->isPointerType() || (BOK != BO_Add && BOK != BO_Sub)) |
7963 | 0 | break; |
7964 | | |
7965 | 0 | if (BO->getLHS()->getType()->isPointerType()) |
7966 | 0 | visitLocalsRetainedByInitializer(Path, BO->getLHS(), Visit, true, |
7967 | 0 | EnableLifetimeWarnings); |
7968 | 0 | else if (BO->getRHS()->getType()->isPointerType()) |
7969 | 0 | visitLocalsRetainedByInitializer(Path, BO->getRHS(), Visit, true, |
7970 | 0 | EnableLifetimeWarnings); |
7971 | 0 | break; |
7972 | 0 | } |
7973 | | |
7974 | 0 | case Stmt::ConditionalOperatorClass: |
7975 | 0 | case Stmt::BinaryConditionalOperatorClass: { |
7976 | 0 | auto *C = cast<AbstractConditionalOperator>(Init); |
7977 | | // In C++, we can have a throw-expression operand, which has 'void' type |
7978 | | // and isn't interesting from a lifetime perspective. |
7979 | 0 | if (!C->getTrueExpr()->getType()->isVoidType()) |
7980 | 0 | visitLocalsRetainedByInitializer(Path, C->getTrueExpr(), Visit, true, |
7981 | 0 | EnableLifetimeWarnings); |
7982 | 0 | if (!C->getFalseExpr()->getType()->isVoidType()) |
7983 | 0 | visitLocalsRetainedByInitializer(Path, C->getFalseExpr(), Visit, true, |
7984 | 0 | EnableLifetimeWarnings); |
7985 | 0 | break; |
7986 | 0 | } |
7987 | | |
7988 | 0 | case Stmt::BlockExprClass: |
7989 | 0 | if (cast<BlockExpr>(Init)->getBlockDecl()->hasCaptures()) { |
7990 | | // This is a local block, whose lifetime is that of the function. |
7991 | 0 | Visit(Path, Local(cast<BlockExpr>(Init)), RK_ReferenceBinding); |
7992 | 0 | } |
7993 | 0 | break; |
7994 | | |
7995 | 0 | case Stmt::AddrLabelExprClass: |
7996 | | // We want to warn if the address of a label would escape the function. |
7997 | 0 | Visit(Path, Local(cast<AddrLabelExpr>(Init)), RK_ReferenceBinding); |
7998 | 0 | break; |
7999 | | |
8000 | 3 | default: |
8001 | 3 | break; |
8002 | 3 | } |
8003 | 3 | } |
8004 | | |
8005 | | /// Whether a path to an object supports lifetime extension. |
8006 | | enum PathLifetimeKind { |
8007 | | /// Lifetime-extend along this path. |
8008 | | Extend, |
8009 | | /// We should lifetime-extend, but we don't because (due to technical |
8010 | | /// limitations) we can't. This happens for default member initializers, |
8011 | | /// which we don't clone for every use, so we don't have a unique |
8012 | | /// MaterializeTemporaryExpr to update. |
8013 | | ShouldExtend, |
8014 | | /// Do not lifetime extend along this path. |
8015 | | NoExtend |
8016 | | }; |
8017 | | |
8018 | | /// Determine whether this is an indirect path to a temporary that we are |
8019 | | /// supposed to lifetime-extend along. |
8020 | | static PathLifetimeKind |
8021 | 0 | shouldLifetimeExtendThroughPath(const IndirectLocalPath &Path) { |
8022 | 0 | PathLifetimeKind Kind = PathLifetimeKind::Extend; |
8023 | 0 | for (auto Elem : Path) { |
8024 | 0 | if (Elem.Kind == IndirectLocalPathEntry::DefaultInit) |
8025 | 0 | Kind = PathLifetimeKind::ShouldExtend; |
8026 | 0 | else if (Elem.Kind != IndirectLocalPathEntry::LambdaCaptureInit) |
8027 | 0 | return PathLifetimeKind::NoExtend; |
8028 | 0 | } |
8029 | 0 | return Kind; |
8030 | 0 | } |
8031 | | |
8032 | | /// Find the range for the first interesting entry in the path at or after I. |
8033 | | static SourceRange nextPathEntryRange(const IndirectLocalPath &Path, unsigned I, |
8034 | 0 | Expr *E) { |
8035 | 0 | for (unsigned N = Path.size(); I != N; ++I) { |
8036 | 0 | switch (Path[I].Kind) { |
8037 | 0 | case IndirectLocalPathEntry::AddressOf: |
8038 | 0 | case IndirectLocalPathEntry::LValToRVal: |
8039 | 0 | case IndirectLocalPathEntry::LifetimeBoundCall: |
8040 | 0 | case IndirectLocalPathEntry::TemporaryCopy: |
8041 | 0 | case IndirectLocalPathEntry::GslReferenceInit: |
8042 | 0 | case IndirectLocalPathEntry::GslPointerInit: |
8043 | | // These exist primarily to mark the path as not permitting or |
8044 | | // supporting lifetime extension. |
8045 | 0 | break; |
8046 | | |
8047 | 0 | case IndirectLocalPathEntry::VarInit: |
8048 | 0 | if (cast<VarDecl>(Path[I].D)->isImplicit()) |
8049 | 0 | return SourceRange(); |
8050 | 0 | [[fallthrough]]; |
8051 | 0 | case IndirectLocalPathEntry::DefaultInit: |
8052 | 0 | return Path[I].E->getSourceRange(); |
8053 | | |
8054 | 0 | case IndirectLocalPathEntry::LambdaCaptureInit: |
8055 | 0 | if (!Path[I].Capture->capturesVariable()) |
8056 | 0 | continue; |
8057 | 0 | return Path[I].E->getSourceRange(); |
8058 | 0 | } |
8059 | 0 | } |
8060 | 0 | return E->getSourceRange(); |
8061 | 0 | } |
8062 | | |
8063 | 0 | static bool pathOnlyInitializesGslPointer(IndirectLocalPath &Path) { |
8064 | 0 | for (const auto &It : llvm::reverse(Path)) { |
8065 | 0 | if (It.Kind == IndirectLocalPathEntry::VarInit) |
8066 | 0 | continue; |
8067 | 0 | if (It.Kind == IndirectLocalPathEntry::AddressOf) |
8068 | 0 | continue; |
8069 | 0 | if (It.Kind == IndirectLocalPathEntry::LifetimeBoundCall) |
8070 | 0 | continue; |
8071 | 0 | return It.Kind == IndirectLocalPathEntry::GslPointerInit || |
8072 | 0 | It.Kind == IndirectLocalPathEntry::GslReferenceInit; |
8073 | 0 | } |
8074 | 0 | return false; |
8075 | 0 | } |
8076 | | |
8077 | | void Sema::checkInitializerLifetime(const InitializedEntity &Entity, |
8078 | 7 | Expr *Init) { |
8079 | 7 | LifetimeResult LR = getEntityLifetime(&Entity); |
8080 | 7 | LifetimeKind LK = LR.getInt(); |
8081 | 7 | const InitializedEntity *ExtendingEntity = LR.getPointer(); |
8082 | | |
8083 | | // If this entity doesn't have an interesting lifetime, don't bother looking |
8084 | | // for temporaries within its initializer. |
8085 | 7 | if (LK == LK_FullExpression) |
8086 | 0 | return; |
8087 | | |
8088 | 7 | auto TemporaryVisitor = [&](IndirectLocalPath &Path, Local L, |
8089 | 7 | ReferenceKind RK) -> bool { |
8090 | 0 | SourceRange DiagRange = nextPathEntryRange(Path, 0, L); |
8091 | 0 | SourceLocation DiagLoc = DiagRange.getBegin(); |
8092 | |
|
8093 | 0 | auto *MTE = dyn_cast<MaterializeTemporaryExpr>(L); |
8094 | |
|
8095 | 0 | bool IsGslPtrInitWithGslTempOwner = false; |
8096 | 0 | bool IsLocalGslOwner = false; |
8097 | 0 | if (pathOnlyInitializesGslPointer(Path)) { |
8098 | 0 | if (isa<DeclRefExpr>(L)) { |
8099 | | // We do not want to follow the references when returning a pointer originating |
8100 | | // from a local owner to avoid the following false positive: |
8101 | | // int &p = *localUniquePtr; |
8102 | | // someContainer.add(std::move(localUniquePtr)); |
8103 | | // return p; |
8104 | 0 | IsLocalGslOwner = isRecordWithAttr<OwnerAttr>(L->getType()); |
8105 | 0 | if (pathContainsInit(Path) || !IsLocalGslOwner) |
8106 | 0 | return false; |
8107 | 0 | } else { |
8108 | 0 | IsGslPtrInitWithGslTempOwner = MTE && !MTE->getExtendingDecl() && |
8109 | 0 | isRecordWithAttr<OwnerAttr>(MTE->getType()); |
8110 | | // Skipping a chain of initializing gsl::Pointer annotated objects. |
8111 | | // We are looking only for the final source to find out if it was |
8112 | | // a local or temporary owner or the address of a local variable/param. |
8113 | 0 | if (!IsGslPtrInitWithGslTempOwner) |
8114 | 0 | return true; |
8115 | 0 | } |
8116 | 0 | } |
8117 | | |
8118 | 0 | switch (LK) { |
8119 | 0 | case LK_FullExpression: |
8120 | 0 | llvm_unreachable("already handled this"); |
8121 | |
|
8122 | 0 | case LK_Extended: { |
8123 | 0 | if (!MTE) { |
8124 | | // The initialized entity has lifetime beyond the full-expression, |
8125 | | // and the local entity does too, so don't warn. |
8126 | | // |
8127 | | // FIXME: We should consider warning if a static / thread storage |
8128 | | // duration variable retains an automatic storage duration local. |
8129 | 0 | return false; |
8130 | 0 | } |
8131 | | |
8132 | 0 | if (IsGslPtrInitWithGslTempOwner && DiagLoc.isValid()) { |
8133 | 0 | Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; |
8134 | 0 | return false; |
8135 | 0 | } |
8136 | | |
8137 | 0 | switch (shouldLifetimeExtendThroughPath(Path)) { |
8138 | 0 | case PathLifetimeKind::Extend: |
8139 | | // Update the storage duration of the materialized temporary. |
8140 | | // FIXME: Rebuild the expression instead of mutating it. |
8141 | 0 | MTE->setExtendingDecl(ExtendingEntity->getDecl(), |
8142 | 0 | ExtendingEntity->allocateManglingNumber()); |
8143 | | // Also visit the temporaries lifetime-extended by this initializer. |
8144 | 0 | return true; |
8145 | | |
8146 | 0 | case PathLifetimeKind::ShouldExtend: |
8147 | | // We're supposed to lifetime-extend the temporary along this path (per |
8148 | | // the resolution of DR1815), but we don't support that yet. |
8149 | | // |
8150 | | // FIXME: Properly handle this situation. Perhaps the easiest approach |
8151 | | // would be to clone the initializer expression on each use that would |
8152 | | // lifetime extend its temporaries. |
8153 | 0 | Diag(DiagLoc, diag::warn_unsupported_lifetime_extension) |
8154 | 0 | << RK << DiagRange; |
8155 | 0 | break; |
8156 | | |
8157 | 0 | case PathLifetimeKind::NoExtend: |
8158 | | // If the path goes through the initialization of a variable or field, |
8159 | | // it can't possibly reach a temporary created in this full-expression. |
8160 | | // We will have already diagnosed any problems with the initializer. |
8161 | 0 | if (pathContainsInit(Path)) |
8162 | 0 | return false; |
8163 | | |
8164 | 0 | Diag(DiagLoc, diag::warn_dangling_variable) |
8165 | 0 | << RK << !Entity.getParent() |
8166 | 0 | << ExtendingEntity->getDecl()->isImplicit() |
8167 | 0 | << ExtendingEntity->getDecl() << Init->isGLValue() << DiagRange; |
8168 | 0 | break; |
8169 | 0 | } |
8170 | 0 | break; |
8171 | 0 | } |
8172 | | |
8173 | 0 | case LK_MemInitializer: { |
8174 | 0 | if (isa<MaterializeTemporaryExpr>(L)) { |
8175 | | // Under C++ DR1696, if a mem-initializer (or a default member |
8176 | | // initializer used by the absence of one) would lifetime-extend a |
8177 | | // temporary, the program is ill-formed. |
8178 | 0 | if (auto *ExtendingDecl = |
8179 | 0 | ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { |
8180 | 0 | if (IsGslPtrInitWithGslTempOwner) { |
8181 | 0 | Diag(DiagLoc, diag::warn_dangling_lifetime_pointer_member) |
8182 | 0 | << ExtendingDecl << DiagRange; |
8183 | 0 | Diag(ExtendingDecl->getLocation(), |
8184 | 0 | diag::note_ref_or_ptr_member_declared_here) |
8185 | 0 | << true; |
8186 | 0 | return false; |
8187 | 0 | } |
8188 | 0 | bool IsSubobjectMember = ExtendingEntity != &Entity; |
8189 | 0 | Diag(DiagLoc, shouldLifetimeExtendThroughPath(Path) != |
8190 | 0 | PathLifetimeKind::NoExtend |
8191 | 0 | ? diag::err_dangling_member |
8192 | 0 | : diag::warn_dangling_member) |
8193 | 0 | << ExtendingDecl << IsSubobjectMember << RK << DiagRange; |
8194 | | // Don't bother adding a note pointing to the field if we're inside |
8195 | | // its default member initializer; our primary diagnostic points to |
8196 | | // the same place in that case. |
8197 | 0 | if (Path.empty() || |
8198 | 0 | Path.back().Kind != IndirectLocalPathEntry::DefaultInit) { |
8199 | 0 | Diag(ExtendingDecl->getLocation(), |
8200 | 0 | diag::note_lifetime_extending_member_declared_here) |
8201 | 0 | << RK << IsSubobjectMember; |
8202 | 0 | } |
8203 | 0 | } else { |
8204 | | // We have a mem-initializer but no particular field within it; this |
8205 | | // is either a base class or a delegating initializer directly |
8206 | | // initializing the base-class from something that doesn't live long |
8207 | | // enough. |
8208 | | // |
8209 | | // FIXME: Warn on this. |
8210 | 0 | return false; |
8211 | 0 | } |
8212 | 0 | } else { |
8213 | | // Paths via a default initializer can only occur during error recovery |
8214 | | // (there's no other way that a default initializer can refer to a |
8215 | | // local). Don't produce a bogus warning on those cases. |
8216 | 0 | if (pathContainsInit(Path)) |
8217 | 0 | return false; |
8218 | | |
8219 | | // Suppress false positives for code like the one below: |
8220 | | // Ctor(unique_ptr<T> up) : member(*up), member2(move(up)) {} |
8221 | 0 | if (IsLocalGslOwner && pathOnlyInitializesGslPointer(Path)) |
8222 | 0 | return false; |
8223 | | |
8224 | 0 | auto *DRE = dyn_cast<DeclRefExpr>(L); |
8225 | 0 | auto *VD = DRE ? dyn_cast<VarDecl>(DRE->getDecl()) : nullptr; |
8226 | 0 | if (!VD) { |
8227 | | // A member was initialized to a local block. |
8228 | | // FIXME: Warn on this. |
8229 | 0 | return false; |
8230 | 0 | } |
8231 | | |
8232 | 0 | if (auto *Member = |
8233 | 0 | ExtendingEntity ? ExtendingEntity->getDecl() : nullptr) { |
8234 | 0 | bool IsPointer = !Member->getType()->isReferenceType(); |
8235 | 0 | Diag(DiagLoc, IsPointer ? diag::warn_init_ptr_member_to_parameter_addr |
8236 | 0 | : diag::warn_bind_ref_member_to_parameter) |
8237 | 0 | << Member << VD << isa<ParmVarDecl>(VD) << DiagRange; |
8238 | 0 | Diag(Member->getLocation(), |
8239 | 0 | diag::note_ref_or_ptr_member_declared_here) |
8240 | 0 | << (unsigned)IsPointer; |
8241 | 0 | } |
8242 | 0 | } |
8243 | 0 | break; |
8244 | 0 | } |
8245 | | |
8246 | 0 | case LK_New: |
8247 | 0 | if (isa<MaterializeTemporaryExpr>(L)) { |
8248 | 0 | if (IsGslPtrInitWithGslTempOwner) |
8249 | 0 | Diag(DiagLoc, diag::warn_dangling_lifetime_pointer) << DiagRange; |
8250 | 0 | else |
8251 | 0 | Diag(DiagLoc, RK == RK_ReferenceBinding |
8252 | 0 | ? diag::warn_new_dangling_reference |
8253 | 0 | : diag::warn_new_dangling_initializer_list) |
8254 | 0 | << !Entity.getParent() << DiagRange; |
8255 | 0 | } else { |
8256 | | // We can't determine if the allocation outlives the local declaration. |
8257 | 0 | return false; |
8258 | 0 | } |
8259 | 0 | break; |
8260 | | |
8261 | 0 | case LK_Return: |
8262 | 0 | case LK_StmtExprResult: |
8263 | 0 | if (auto *DRE = dyn_cast<DeclRefExpr>(L)) { |
8264 | | // We can't determine if the local variable outlives the statement |
8265 | | // expression. |
8266 | 0 | if (LK == LK_StmtExprResult) |
8267 | 0 | return false; |
8268 | 0 | Diag(DiagLoc, diag::warn_ret_stack_addr_ref) |
8269 | 0 | << Entity.getType()->isReferenceType() << DRE->getDecl() |
8270 | 0 | << isa<ParmVarDecl>(DRE->getDecl()) << DiagRange; |
8271 | 0 | } else if (isa<BlockExpr>(L)) { |
8272 | 0 | Diag(DiagLoc, diag::err_ret_local_block) << DiagRange; |
8273 | 0 | } else if (isa<AddrLabelExpr>(L)) { |
8274 | | // Don't warn when returning a label from a statement expression. |
8275 | | // Leaving the scope doesn't end its lifetime. |
8276 | 0 | if (LK == LK_StmtExprResult) |
8277 | 0 | return false; |
8278 | 0 | Diag(DiagLoc, diag::warn_ret_addr_label) << DiagRange; |
8279 | 0 | } else { |
8280 | 0 | Diag(DiagLoc, diag::warn_ret_local_temp_addr_ref) |
8281 | 0 | << Entity.getType()->isReferenceType() << DiagRange; |
8282 | 0 | } |
8283 | 0 | break; |
8284 | 0 | } |
8285 | | |
8286 | 0 | for (unsigned I = 0; I != Path.size(); ++I) { |
8287 | 0 | auto Elem = Path[I]; |
8288 | |
|
8289 | 0 | switch (Elem.Kind) { |
8290 | 0 | case IndirectLocalPathEntry::AddressOf: |
8291 | 0 | case IndirectLocalPathEntry::LValToRVal: |
8292 | | // These exist primarily to mark the path as not permitting or |
8293 | | // supporting lifetime extension. |
8294 | 0 | break; |
8295 | | |
8296 | 0 | case IndirectLocalPathEntry::LifetimeBoundCall: |
8297 | 0 | case IndirectLocalPathEntry::TemporaryCopy: |
8298 | 0 | case IndirectLocalPathEntry::GslPointerInit: |
8299 | 0 | case IndirectLocalPathEntry::GslReferenceInit: |
8300 | | // FIXME: Consider adding a note for these. |
8301 | 0 | break; |
8302 | | |
8303 | 0 | case IndirectLocalPathEntry::DefaultInit: { |
8304 | 0 | auto *FD = cast<FieldDecl>(Elem.D); |
8305 | 0 | Diag(FD->getLocation(), diag::note_init_with_default_member_initializer) |
8306 | 0 | << FD << nextPathEntryRange(Path, I + 1, L); |
8307 | 0 | break; |
8308 | 0 | } |
8309 | | |
8310 | 0 | case IndirectLocalPathEntry::VarInit: { |
8311 | 0 | const VarDecl *VD = cast<VarDecl>(Elem.D); |
8312 | 0 | Diag(VD->getLocation(), diag::note_local_var_initializer) |
8313 | 0 | << VD->getType()->isReferenceType() |
8314 | 0 | << VD->isImplicit() << VD->getDeclName() |
8315 | 0 | << nextPathEntryRange(Path, I + 1, L); |
8316 | 0 | break; |
8317 | 0 | } |
8318 | | |
8319 | 0 | case IndirectLocalPathEntry::LambdaCaptureInit: |
8320 | 0 | if (!Elem.Capture->capturesVariable()) |
8321 | 0 | break; |
8322 | | // FIXME: We can't easily tell apart an init-capture from a nested |
8323 | | // capture of an init-capture. |
8324 | 0 | const ValueDecl *VD = Elem.Capture->getCapturedVar(); |
8325 | 0 | Diag(Elem.Capture->getLocation(), diag::note_lambda_capture_initializer) |
8326 | 0 | << VD << VD->isInitCapture() << Elem.Capture->isExplicit() |
8327 | 0 | << (Elem.Capture->getCaptureKind() == LCK_ByRef) << VD |
8328 | 0 | << nextPathEntryRange(Path, I + 1, L); |
8329 | 0 | break; |
8330 | 0 | } |
8331 | 0 | } |
8332 | | |
8333 | | // We didn't lifetime-extend, so don't go any further; we don't need more |
8334 | | // warnings or errors on inner temporaries within this one's initializer. |
8335 | 0 | return false; |
8336 | 0 | }; |
8337 | | |
8338 | 7 | bool EnableLifetimeWarnings = !getDiagnostics().isIgnored( |
8339 | 7 | diag::warn_dangling_lifetime_pointer, SourceLocation()); |
8340 | 7 | llvm::SmallVector<IndirectLocalPathEntry, 8> Path; |
8341 | 7 | if (Init->isGLValue()) |
8342 | 0 | visitLocalsRetainedByReferenceBinding(Path, Init, RK_ReferenceBinding, |
8343 | 0 | TemporaryVisitor, |
8344 | 0 | EnableLifetimeWarnings); |
8345 | 7 | else |
8346 | 7 | visitLocalsRetainedByInitializer(Path, Init, TemporaryVisitor, false, |
8347 | 7 | EnableLifetimeWarnings); |
8348 | 7 | } |
8349 | | |
8350 | | static void DiagnoseNarrowingInInitList(Sema &S, |
8351 | | const ImplicitConversionSequence &ICS, |
8352 | | QualType PreNarrowingType, |
8353 | | QualType EntityType, |
8354 | | const Expr *PostInit); |
8355 | | |
8356 | | /// Provide warnings when std::move is used on construction. |
8357 | | static void CheckMoveOnConstruction(Sema &S, const Expr *InitExpr, |
8358 | 7 | bool IsReturnStmt) { |
8359 | 7 | if (!InitExpr) |
8360 | 0 | return; |
8361 | | |
8362 | 7 | if (S.inTemplateInstantiation()) |
8363 | 0 | return; |
8364 | | |
8365 | 7 | QualType DestType = InitExpr->getType(); |
8366 | 7 | if (!DestType->isRecordType()) |
8367 | 7 | return; |
8368 | | |
8369 | 0 | unsigned DiagID = 0; |
8370 | 0 | if (IsReturnStmt) { |
8371 | 0 | const CXXConstructExpr *CCE = |
8372 | 0 | dyn_cast<CXXConstructExpr>(InitExpr->IgnoreParens()); |
8373 | 0 | if (!CCE || CCE->getNumArgs() != 1) |
8374 | 0 | return; |
8375 | | |
8376 | 0 | if (!CCE->getConstructor()->isCopyOrMoveConstructor()) |
8377 | 0 | return; |
8378 | | |
8379 | 0 | InitExpr = CCE->getArg(0)->IgnoreImpCasts(); |
8380 | 0 | } |
8381 | | |
8382 | | // Find the std::move call and get the argument. |
8383 | 0 | const CallExpr *CE = dyn_cast<CallExpr>(InitExpr->IgnoreParens()); |
8384 | 0 | if (!CE || !CE->isCallToStdMove()) |
8385 | 0 | return; |
8386 | | |
8387 | 0 | const Expr *Arg = CE->getArg(0)->IgnoreImplicit(); |
8388 | |
|
8389 | 0 | if (IsReturnStmt) { |
8390 | 0 | const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg->IgnoreParenImpCasts()); |
8391 | 0 | if (!DRE || DRE->refersToEnclosingVariableOrCapture()) |
8392 | 0 | return; |
8393 | | |
8394 | 0 | const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()); |
8395 | 0 | if (!VD || !VD->hasLocalStorage()) |
8396 | 0 | return; |
8397 | | |
8398 | | // __block variables are not moved implicitly. |
8399 | 0 | if (VD->hasAttr<BlocksAttr>()) |
8400 | 0 | return; |
8401 | | |
8402 | 0 | QualType SourceType = VD->getType(); |
8403 | 0 | if (!SourceType->isRecordType()) |
8404 | 0 | return; |
8405 | | |
8406 | 0 | if (!S.Context.hasSameUnqualifiedType(DestType, SourceType)) { |
8407 | 0 | return; |
8408 | 0 | } |
8409 | | |
8410 | | // If we're returning a function parameter, copy elision |
8411 | | // is not possible. |
8412 | 0 | if (isa<ParmVarDecl>(VD)) |
8413 | 0 | DiagID = diag::warn_redundant_move_on_return; |
8414 | 0 | else |
8415 | 0 | DiagID = diag::warn_pessimizing_move_on_return; |
8416 | 0 | } else { |
8417 | 0 | DiagID = diag::warn_pessimizing_move_on_initialization; |
8418 | 0 | const Expr *ArgStripped = Arg->IgnoreImplicit()->IgnoreParens(); |
8419 | 0 | if (!ArgStripped->isPRValue() || !ArgStripped->getType()->isRecordType()) |
8420 | 0 | return; |
8421 | 0 | } |
8422 | | |
8423 | 0 | S.Diag(CE->getBeginLoc(), DiagID); |
8424 | | |
8425 | | // Get all the locations for a fix-it. Don't emit the fix-it if any location |
8426 | | // is within a macro. |
8427 | 0 | SourceLocation CallBegin = CE->getCallee()->getBeginLoc(); |
8428 | 0 | if (CallBegin.isMacroID()) |
8429 | 0 | return; |
8430 | 0 | SourceLocation RParen = CE->getRParenLoc(); |
8431 | 0 | if (RParen.isMacroID()) |
8432 | 0 | return; |
8433 | 0 | SourceLocation LParen; |
8434 | 0 | SourceLocation ArgLoc = Arg->getBeginLoc(); |
8435 | | |
8436 | | // Special testing for the argument location. Since the fix-it needs the |
8437 | | // location right before the argument, the argument location can be in a |
8438 | | // macro only if it is at the beginning of the macro. |
8439 | 0 | while (ArgLoc.isMacroID() && |
8440 | 0 | S.getSourceManager().isAtStartOfImmediateMacroExpansion(ArgLoc)) { |
8441 | 0 | ArgLoc = S.getSourceManager().getImmediateExpansionRange(ArgLoc).getBegin(); |
8442 | 0 | } |
8443 | |
|
8444 | 0 | if (LParen.isMacroID()) |
8445 | 0 | return; |
8446 | | |
8447 | 0 | LParen = ArgLoc.getLocWithOffset(-1); |
8448 | |
|
8449 | 0 | S.Diag(CE->getBeginLoc(), diag::note_remove_move) |
8450 | 0 | << FixItHint::CreateRemoval(SourceRange(CallBegin, LParen)) |
8451 | 0 | << FixItHint::CreateRemoval(SourceRange(RParen, RParen)); |
8452 | 0 | } |
8453 | | |
8454 | 0 | static void CheckForNullPointerDereference(Sema &S, const Expr *E) { |
8455 | | // Check to see if we are dereferencing a null pointer. If so, this is |
8456 | | // undefined behavior, so warn about it. This only handles the pattern |
8457 | | // "*null", which is a very syntactic check. |
8458 | 0 | if (const UnaryOperator *UO = dyn_cast<UnaryOperator>(E->IgnoreParenCasts())) |
8459 | 0 | if (UO->getOpcode() == UO_Deref && |
8460 | 0 | UO->getSubExpr()->IgnoreParenCasts()-> |
8461 | 0 | isNullPointerConstant(S.Context, Expr::NPC_ValueDependentIsNotNull)) { |
8462 | 0 | S.DiagRuntimeBehavior(UO->getOperatorLoc(), UO, |
8463 | 0 | S.PDiag(diag::warn_binding_null_to_reference) |
8464 | 0 | << UO->getSubExpr()->getSourceRange()); |
8465 | 0 | } |
8466 | 0 | } |
8467 | | |
8468 | | MaterializeTemporaryExpr * |
8469 | | Sema::CreateMaterializeTemporaryExpr(QualType T, Expr *Temporary, |
8470 | 0 | bool BoundToLvalueReference) { |
8471 | 0 | auto MTE = new (Context) |
8472 | 0 | MaterializeTemporaryExpr(T, Temporary, BoundToLvalueReference); |
8473 | | |
8474 | | // Order an ExprWithCleanups for lifetime marks. |
8475 | | // |
8476 | | // TODO: It'll be good to have a single place to check the access of the |
8477 | | // destructor and generate ExprWithCleanups for various uses. Currently these |
8478 | | // are done in both CreateMaterializeTemporaryExpr and MaybeBindToTemporary, |
8479 | | // but there may be a chance to merge them. |
8480 | 0 | Cleanup.setExprNeedsCleanups(false); |
8481 | 0 | return MTE; |
8482 | 0 | } |
8483 | | |
8484 | 0 | ExprResult Sema::TemporaryMaterializationConversion(Expr *E) { |
8485 | | // In C++98, we don't want to implicitly create an xvalue. |
8486 | | // FIXME: This means that AST consumers need to deal with "prvalues" that |
8487 | | // denote materialized temporaries. Maybe we should add another ValueKind |
8488 | | // for "xvalue pretending to be a prvalue" for C++98 support. |
8489 | 0 | if (!E->isPRValue() || !getLangOpts().CPlusPlus11) |
8490 | 0 | return E; |
8491 | | |
8492 | | // C++1z [conv.rval]/1: T shall be a complete type. |
8493 | | // FIXME: Does this ever matter (can we form a prvalue of incomplete type)? |
8494 | | // If so, we should check for a non-abstract class type here too. |
8495 | 0 | QualType T = E->getType(); |
8496 | 0 | if (RequireCompleteType(E->getExprLoc(), T, diag::err_incomplete_type)) |
8497 | 0 | return ExprError(); |
8498 | | |
8499 | 0 | return CreateMaterializeTemporaryExpr(E->getType(), E, false); |
8500 | 0 | } |
8501 | | |
8502 | | ExprResult Sema::PerformQualificationConversion(Expr *E, QualType Ty, |
8503 | | ExprValueKind VK, |
8504 | 0 | CheckedConversionKind CCK) { |
8505 | |
|
8506 | 0 | CastKind CK = CK_NoOp; |
8507 | |
|
8508 | 0 | if (VK == VK_PRValue) { |
8509 | 0 | auto PointeeTy = Ty->getPointeeType(); |
8510 | 0 | auto ExprPointeeTy = E->getType()->getPointeeType(); |
8511 | 0 | if (!PointeeTy.isNull() && |
8512 | 0 | PointeeTy.getAddressSpace() != ExprPointeeTy.getAddressSpace()) |
8513 | 0 | CK = CK_AddressSpaceConversion; |
8514 | 0 | } else if (Ty.getAddressSpace() != E->getType().getAddressSpace()) { |
8515 | 0 | CK = CK_AddressSpaceConversion; |
8516 | 0 | } |
8517 | |
|
8518 | 0 | return ImpCastExprToType(E, Ty, CK, VK, /*BasePath=*/nullptr, CCK); |
8519 | 0 | } |
8520 | | |
8521 | | ExprResult InitializationSequence::Perform(Sema &S, |
8522 | | const InitializedEntity &Entity, |
8523 | | const InitializationKind &Kind, |
8524 | | MultiExprArg Args, |
8525 | 20 | QualType *ResultType) { |
8526 | 20 | if (Failed()) { |
8527 | 0 | Diagnose(S, Entity, Kind, Args); |
8528 | 0 | return ExprError(); |
8529 | 0 | } |
8530 | 20 | if (!ZeroInitializationFixit.empty()) { |
8531 | 0 | const Decl *D = Entity.getDecl(); |
8532 | 0 | const auto *VD = dyn_cast_or_null<VarDecl>(D); |
8533 | 0 | QualType DestType = Entity.getType(); |
8534 | | |
8535 | | // The initialization would have succeeded with this fixit. Since the fixit |
8536 | | // is on the error, we need to build a valid AST in this case, so this isn't |
8537 | | // handled in the Failed() branch above. |
8538 | 0 | if (!DestType->isRecordType() && VD && VD->isConstexpr()) { |
8539 | | // Use a more useful diagnostic for constexpr variables. |
8540 | 0 | S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init) |
8541 | 0 | << VD |
8542 | 0 | << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, |
8543 | 0 | ZeroInitializationFixit); |
8544 | 0 | } else { |
8545 | 0 | unsigned DiagID = diag::err_default_init_const; |
8546 | 0 | if (S.getLangOpts().MSVCCompat && D && D->hasAttr<SelectAnyAttr>()) |
8547 | 0 | DiagID = diag::ext_default_init_const; |
8548 | |
|
8549 | 0 | S.Diag(Kind.getLocation(), DiagID) |
8550 | 0 | << DestType << (bool)DestType->getAs<RecordType>() |
8551 | 0 | << FixItHint::CreateInsertion(ZeroInitializationFixitLoc, |
8552 | 0 | ZeroInitializationFixit); |
8553 | 0 | } |
8554 | 0 | } |
8555 | | |
8556 | 20 | if (getKind() == DependentSequence) { |
8557 | | // If the declaration is a non-dependent, incomplete array type |
8558 | | // that has an initializer, then its type will be completed once |
8559 | | // the initializer is instantiated. |
8560 | 13 | if (ResultType && !Entity.getType()->isDependentType() && |
8561 | 13 | Args.size() == 1) { |
8562 | 12 | QualType DeclType = Entity.getType(); |
8563 | 12 | if (const IncompleteArrayType *ArrayT |
8564 | 12 | = S.Context.getAsIncompleteArrayType(DeclType)) { |
8565 | | // FIXME: We don't currently have the ability to accurately |
8566 | | // compute the length of an initializer list without |
8567 | | // performing full type-checking of the initializer list |
8568 | | // (since we have to determine where braces are implicitly |
8569 | | // introduced and such). So, we fall back to making the array |
8570 | | // type a dependently-sized array type with no specified |
8571 | | // bound. |
8572 | 0 | if (isa<InitListExpr>((Expr *)Args[0])) { |
8573 | 0 | SourceRange Brackets; |
8574 | | |
8575 | | // Scavange the location of the brackets from the entity, if we can. |
8576 | 0 | if (auto *DD = dyn_cast_or_null<DeclaratorDecl>(Entity.getDecl())) { |
8577 | 0 | if (TypeSourceInfo *TInfo = DD->getTypeSourceInfo()) { |
8578 | 0 | TypeLoc TL = TInfo->getTypeLoc(); |
8579 | 0 | if (IncompleteArrayTypeLoc ArrayLoc = |
8580 | 0 | TL.getAs<IncompleteArrayTypeLoc>()) |
8581 | 0 | Brackets = ArrayLoc.getBracketsRange(); |
8582 | 0 | } |
8583 | 0 | } |
8584 | |
|
8585 | 0 | *ResultType |
8586 | 0 | = S.Context.getDependentSizedArrayType(ArrayT->getElementType(), |
8587 | 0 | /*NumElts=*/nullptr, |
8588 | 0 | ArrayT->getSizeModifier(), |
8589 | 0 | ArrayT->getIndexTypeCVRQualifiers(), |
8590 | 0 | Brackets); |
8591 | 0 | } |
8592 | |
|
8593 | 0 | } |
8594 | 12 | } |
8595 | 13 | if (Kind.getKind() == InitializationKind::IK_Direct && |
8596 | 13 | !Kind.isExplicitCast()) { |
8597 | | // Rebuild the ParenListExpr. |
8598 | 0 | SourceRange ParenRange = Kind.getParenOrBraceRange(); |
8599 | 0 | return S.ActOnParenListExpr(ParenRange.getBegin(), ParenRange.getEnd(), |
8600 | 0 | Args); |
8601 | 0 | } |
8602 | 13 | assert(Kind.getKind() == InitializationKind::IK_Copy || |
8603 | 13 | Kind.isExplicitCast() || |
8604 | 13 | Kind.getKind() == InitializationKind::IK_DirectList); |
8605 | 0 | return ExprResult(Args[0]); |
8606 | 13 | } |
8607 | | |
8608 | | // No steps means no initialization. |
8609 | 7 | if (Steps.empty()) |
8610 | 0 | return ExprResult((Expr *)nullptr); |
8611 | | |
8612 | 7 | if (S.getLangOpts().CPlusPlus11 && Entity.getType()->isReferenceType() && |
8613 | 7 | Args.size() == 1 && isa<InitListExpr>(Args[0]) && |
8614 | 7 | !Entity.isParamOrTemplateParamKind()) { |
8615 | | // Produce a C++98 compatibility warning if we are initializing a reference |
8616 | | // from an initializer list. For parameters, we produce a better warning |
8617 | | // elsewhere. |
8618 | 0 | Expr *Init = Args[0]; |
8619 | 0 | S.Diag(Init->getBeginLoc(), diag::warn_cxx98_compat_reference_list_init) |
8620 | 0 | << Init->getSourceRange(); |
8621 | 0 | } |
8622 | | |
8623 | 7 | if (S.getLangOpts().MicrosoftExt && Args.size() == 1 && |
8624 | 7 | isa<PredefinedExpr>(Args[0]) && Entity.getType()->isArrayType()) { |
8625 | | // Produce a Microsoft compatibility warning when initializing from a |
8626 | | // predefined expression since MSVC treats predefined expressions as string |
8627 | | // literals. |
8628 | 0 | Expr *Init = Args[0]; |
8629 | 0 | S.Diag(Init->getBeginLoc(), diag::ext_init_from_predefined) << Init; |
8630 | 0 | } |
8631 | | |
8632 | | // OpenCL v2.0 s6.13.11.1. atomic variables can be initialized in global scope |
8633 | 7 | QualType ETy = Entity.getType(); |
8634 | 7 | bool HasGlobalAS = ETy.hasAddressSpace() && |
8635 | 7 | ETy.getAddressSpace() == LangAS::opencl_global; |
8636 | | |
8637 | 7 | if (S.getLangOpts().OpenCLVersion >= 200 && |
8638 | 7 | ETy->isAtomicType() && !HasGlobalAS && |
8639 | 7 | Entity.getKind() == InitializedEntity::EK_Variable && Args.size() > 0) { |
8640 | 0 | S.Diag(Args[0]->getBeginLoc(), diag::err_opencl_atomic_init) |
8641 | 0 | << 1 |
8642 | 0 | << SourceRange(Entity.getDecl()->getBeginLoc(), Args[0]->getEndLoc()); |
8643 | 0 | return ExprError(); |
8644 | 0 | } |
8645 | | |
8646 | 7 | QualType DestType = Entity.getType().getNonReferenceType(); |
8647 | | // FIXME: Ugly hack around the fact that Entity.getType() is not |
8648 | | // the same as Entity.getDecl()->getType() in cases involving type merging, |
8649 | | // and we want latter when it makes sense. |
8650 | 7 | if (ResultType) |
8651 | 7 | *ResultType = Entity.getDecl() ? Entity.getDecl()->getType() : |
8652 | 7 | Entity.getType(); |
8653 | | |
8654 | 7 | ExprResult CurInit((Expr *)nullptr); |
8655 | 7 | SmallVector<Expr*, 4> ArrayLoopCommonExprs; |
8656 | | |
8657 | | // HLSL allows vector initialization to function like list initialization, but |
8658 | | // use the syntax of a C++-like constructor. |
8659 | 7 | bool IsHLSLVectorInit = S.getLangOpts().HLSL && DestType->isExtVectorType() && |
8660 | 7 | isa<InitListExpr>(Args[0]); |
8661 | 7 | (void)IsHLSLVectorInit; |
8662 | | |
8663 | | // For initialization steps that start with a single initializer, |
8664 | | // grab the only argument out the Args and place it into the "current" |
8665 | | // initializer. |
8666 | 7 | switch (Steps.front().Kind) { |
8667 | 0 | case SK_ResolveAddressOfOverloadedFunction: |
8668 | 0 | case SK_CastDerivedToBasePRValue: |
8669 | 0 | case SK_CastDerivedToBaseXValue: |
8670 | 0 | case SK_CastDerivedToBaseLValue: |
8671 | 0 | case SK_BindReference: |
8672 | 0 | case SK_BindReferenceToTemporary: |
8673 | 0 | case SK_FinalCopy: |
8674 | 0 | case SK_ExtraneousCopyToTemporary: |
8675 | 0 | case SK_UserConversion: |
8676 | 0 | case SK_QualificationConversionLValue: |
8677 | 0 | case SK_QualificationConversionXValue: |
8678 | 0 | case SK_QualificationConversionPRValue: |
8679 | 0 | case SK_FunctionReferenceConversion: |
8680 | 0 | case SK_AtomicConversion: |
8681 | 0 | case SK_ConversionSequence: |
8682 | 0 | case SK_ConversionSequenceNoNarrowing: |
8683 | 0 | case SK_ListInitialization: |
8684 | 0 | case SK_UnwrapInitList: |
8685 | 0 | case SK_RewrapInitList: |
8686 | 7 | case SK_CAssignment: |
8687 | 7 | case SK_StringInit: |
8688 | 7 | case SK_ObjCObjectConversion: |
8689 | 7 | case SK_ArrayLoopIndex: |
8690 | 7 | case SK_ArrayLoopInit: |
8691 | 7 | case SK_ArrayInit: |
8692 | 7 | case SK_GNUArrayInit: |
8693 | 7 | case SK_ParenthesizedArrayInit: |
8694 | 7 | case SK_PassByIndirectCopyRestore: |
8695 | 7 | case SK_PassByIndirectRestore: |
8696 | 7 | case SK_ProduceObjCObject: |
8697 | 7 | case SK_StdInitializerList: |
8698 | 7 | case SK_OCLSamplerInit: |
8699 | 7 | case SK_OCLZeroOpaqueType: { |
8700 | 7 | assert(Args.size() == 1 || IsHLSLVectorInit); |
8701 | 0 | CurInit = Args[0]; |
8702 | 7 | if (!CurInit.get()) return ExprError(); |
8703 | 7 | break; |
8704 | 7 | } |
8705 | | |
8706 | 7 | case SK_ConstructorInitialization: |
8707 | 0 | case SK_ConstructorInitializationFromList: |
8708 | 0 | case SK_StdInitializerListConstructorCall: |
8709 | 0 | case SK_ZeroInitialization: |
8710 | 0 | case SK_ParenthesizedListInit: |
8711 | 0 | break; |
8712 | 7 | } |
8713 | | |
8714 | | // Promote from an unevaluated context to an unevaluated list context in |
8715 | | // C++11 list-initialization; we need to instantiate entities usable in |
8716 | | // constant expressions here in order to perform narrowing checks =( |
8717 | 7 | EnterExpressionEvaluationContext Evaluated( |
8718 | 7 | S, EnterExpressionEvaluationContext::InitList, |
8719 | 7 | CurInit.get() && isa<InitListExpr>(CurInit.get())); |
8720 | | |
8721 | | // C++ [class.abstract]p2: |
8722 | | // no objects of an abstract class can be created except as subobjects |
8723 | | // of a class derived from it |
8724 | 7 | auto checkAbstractType = [&](QualType T) -> bool { |
8725 | 0 | if (Entity.getKind() == InitializedEntity::EK_Base || |
8726 | 0 | Entity.getKind() == InitializedEntity::EK_Delegating) |
8727 | 0 | return false; |
8728 | 0 | return S.RequireNonAbstractType(Kind.getLocation(), T, |
8729 | 0 | diag::err_allocation_of_abstract_type); |
8730 | 0 | }; |
8731 | | |
8732 | | // Walk through the computed steps for the initialization sequence, |
8733 | | // performing the specified conversions along the way. |
8734 | 7 | bool ConstructorInitRequiresZeroInit = false; |
8735 | 7 | for (step_iterator Step = step_begin(), StepEnd = step_end(); |
8736 | 14 | Step != StepEnd; ++Step) { |
8737 | 7 | if (CurInit.isInvalid()) |
8738 | 0 | return ExprError(); |
8739 | | |
8740 | 7 | QualType SourceType = CurInit.get() ? CurInit.get()->getType() : QualType(); |
8741 | | |
8742 | 7 | switch (Step->Kind) { |
8743 | 0 | case SK_ResolveAddressOfOverloadedFunction: |
8744 | | // Overload resolution determined which function invoke; update the |
8745 | | // initializer to reflect that choice. |
8746 | 0 | S.CheckAddressOfMemberAccess(CurInit.get(), Step->Function.FoundDecl); |
8747 | 0 | if (S.DiagnoseUseOfDecl(Step->Function.FoundDecl, Kind.getLocation())) |
8748 | 0 | return ExprError(); |
8749 | 0 | CurInit = S.FixOverloadedFunctionReference(CurInit, |
8750 | 0 | Step->Function.FoundDecl, |
8751 | 0 | Step->Function.Function); |
8752 | | // We might get back another placeholder expression if we resolved to a |
8753 | | // builtin. |
8754 | 0 | if (!CurInit.isInvalid()) |
8755 | 0 | CurInit = S.CheckPlaceholderExpr(CurInit.get()); |
8756 | 0 | break; |
8757 | | |
8758 | 0 | case SK_CastDerivedToBasePRValue: |
8759 | 0 | case SK_CastDerivedToBaseXValue: |
8760 | 0 | case SK_CastDerivedToBaseLValue: { |
8761 | | // We have a derived-to-base cast that produces either an rvalue or an |
8762 | | // lvalue. Perform that cast. |
8763 | |
|
8764 | 0 | CXXCastPath BasePath; |
8765 | | |
8766 | | // Casts to inaccessible base classes are allowed with C-style casts. |
8767 | 0 | bool IgnoreBaseAccess = Kind.isCStyleOrFunctionalCast(); |
8768 | 0 | if (S.CheckDerivedToBaseConversion( |
8769 | 0 | SourceType, Step->Type, CurInit.get()->getBeginLoc(), |
8770 | 0 | CurInit.get()->getSourceRange(), &BasePath, IgnoreBaseAccess)) |
8771 | 0 | return ExprError(); |
8772 | | |
8773 | 0 | ExprValueKind VK = |
8774 | 0 | Step->Kind == SK_CastDerivedToBaseLValue |
8775 | 0 | ? VK_LValue |
8776 | 0 | : (Step->Kind == SK_CastDerivedToBaseXValue ? VK_XValue |
8777 | 0 | : VK_PRValue); |
8778 | 0 | CurInit = ImplicitCastExpr::Create(S.Context, Step->Type, |
8779 | 0 | CK_DerivedToBase, CurInit.get(), |
8780 | 0 | &BasePath, VK, FPOptionsOverride()); |
8781 | 0 | break; |
8782 | 0 | } |
8783 | | |
8784 | 0 | case SK_BindReference: |
8785 | | // Reference binding does not have any corresponding ASTs. |
8786 | | |
8787 | | // Check exception specifications |
8788 | 0 | if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) |
8789 | 0 | return ExprError(); |
8790 | | |
8791 | | // We don't check for e.g. function pointers here, since address |
8792 | | // availability checks should only occur when the function first decays |
8793 | | // into a pointer or reference. |
8794 | 0 | if (CurInit.get()->getType()->isFunctionProtoType()) { |
8795 | 0 | if (auto *DRE = dyn_cast<DeclRefExpr>(CurInit.get()->IgnoreParens())) { |
8796 | 0 | if (auto *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) { |
8797 | 0 | if (!S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, |
8798 | 0 | DRE->getBeginLoc())) |
8799 | 0 | return ExprError(); |
8800 | 0 | } |
8801 | 0 | } |
8802 | 0 | } |
8803 | | |
8804 | 0 | CheckForNullPointerDereference(S, CurInit.get()); |
8805 | 0 | break; |
8806 | | |
8807 | 0 | case SK_BindReferenceToTemporary: { |
8808 | | // Make sure the "temporary" is actually an rvalue. |
8809 | 0 | assert(CurInit.get()->isPRValue() && "not a temporary"); |
8810 | | |
8811 | | // Check exception specifications |
8812 | 0 | if (S.CheckExceptionSpecCompatibility(CurInit.get(), DestType)) |
8813 | 0 | return ExprError(); |
8814 | | |
8815 | 0 | QualType MTETy = Step->Type; |
8816 | | |
8817 | | // When this is an incomplete array type (such as when this is |
8818 | | // initializing an array of unknown bounds from an init list), use THAT |
8819 | | // type instead so that we propagate the array bounds. |
8820 | 0 | if (MTETy->isIncompleteArrayType() && |
8821 | 0 | !CurInit.get()->getType()->isIncompleteArrayType() && |
8822 | 0 | S.Context.hasSameType( |
8823 | 0 | MTETy->getPointeeOrArrayElementType(), |
8824 | 0 | CurInit.get()->getType()->getPointeeOrArrayElementType())) |
8825 | 0 | MTETy = CurInit.get()->getType(); |
8826 | | |
8827 | | // Materialize the temporary into memory. |
8828 | 0 | MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( |
8829 | 0 | MTETy, CurInit.get(), Entity.getType()->isLValueReferenceType()); |
8830 | 0 | CurInit = MTE; |
8831 | | |
8832 | | // If we're extending this temporary to automatic storage duration -- we |
8833 | | // need to register its cleanup during the full-expression's cleanups. |
8834 | 0 | if (MTE->getStorageDuration() == SD_Automatic && |
8835 | 0 | MTE->getType().isDestructedType()) |
8836 | 0 | S.Cleanup.setExprNeedsCleanups(true); |
8837 | 0 | break; |
8838 | 0 | } |
8839 | | |
8840 | 0 | case SK_FinalCopy: |
8841 | 0 | if (checkAbstractType(Step->Type)) |
8842 | 0 | return ExprError(); |
8843 | | |
8844 | | // If the overall initialization is initializing a temporary, we already |
8845 | | // bound our argument if it was necessary to do so. If not (if we're |
8846 | | // ultimately initializing a non-temporary), our argument needs to be |
8847 | | // bound since it's initializing a function parameter. |
8848 | | // FIXME: This is a mess. Rationalize temporary destruction. |
8849 | 0 | if (!shouldBindAsTemporary(Entity)) |
8850 | 0 | CurInit = S.MaybeBindToTemporary(CurInit.get()); |
8851 | 0 | CurInit = CopyObject(S, Step->Type, Entity, CurInit, |
8852 | 0 | /*IsExtraneousCopy=*/false); |
8853 | 0 | break; |
8854 | | |
8855 | 0 | case SK_ExtraneousCopyToTemporary: |
8856 | 0 | CurInit = CopyObject(S, Step->Type, Entity, CurInit, |
8857 | 0 | /*IsExtraneousCopy=*/true); |
8858 | 0 | break; |
8859 | | |
8860 | 0 | case SK_UserConversion: { |
8861 | | // We have a user-defined conversion that invokes either a constructor |
8862 | | // or a conversion function. |
8863 | 0 | CastKind CastKind; |
8864 | 0 | FunctionDecl *Fn = Step->Function.Function; |
8865 | 0 | DeclAccessPair FoundFn = Step->Function.FoundDecl; |
8866 | 0 | bool HadMultipleCandidates = Step->Function.HadMultipleCandidates; |
8867 | 0 | bool CreatedObject = false; |
8868 | 0 | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Fn)) { |
8869 | | // Build a call to the selected constructor. |
8870 | 0 | SmallVector<Expr*, 8> ConstructorArgs; |
8871 | 0 | SourceLocation Loc = CurInit.get()->getBeginLoc(); |
8872 | | |
8873 | | // Determine the arguments required to actually perform the constructor |
8874 | | // call. |
8875 | 0 | Expr *Arg = CurInit.get(); |
8876 | 0 | if (S.CompleteConstructorCall(Constructor, Step->Type, |
8877 | 0 | MultiExprArg(&Arg, 1), Loc, |
8878 | 0 | ConstructorArgs)) |
8879 | 0 | return ExprError(); |
8880 | | |
8881 | | // Build an expression that constructs a temporary. |
8882 | 0 | CurInit = S.BuildCXXConstructExpr( |
8883 | 0 | Loc, Step->Type, FoundFn, Constructor, ConstructorArgs, |
8884 | 0 | HadMultipleCandidates, |
8885 | 0 | /*ListInit*/ false, |
8886 | 0 | /*StdInitListInit*/ false, |
8887 | 0 | /*ZeroInit*/ false, CXXConstructionKind::Complete, SourceRange()); |
8888 | 0 | if (CurInit.isInvalid()) |
8889 | 0 | return ExprError(); |
8890 | | |
8891 | 0 | S.CheckConstructorAccess(Kind.getLocation(), Constructor, FoundFn, |
8892 | 0 | Entity); |
8893 | 0 | if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) |
8894 | 0 | return ExprError(); |
8895 | | |
8896 | 0 | CastKind = CK_ConstructorConversion; |
8897 | 0 | CreatedObject = true; |
8898 | 0 | } else { |
8899 | | // Build a call to the conversion function. |
8900 | 0 | CXXConversionDecl *Conversion = cast<CXXConversionDecl>(Fn); |
8901 | 0 | S.CheckMemberOperatorAccess(Kind.getLocation(), CurInit.get(), nullptr, |
8902 | 0 | FoundFn); |
8903 | 0 | if (S.DiagnoseUseOfDecl(FoundFn, Kind.getLocation())) |
8904 | 0 | return ExprError(); |
8905 | | |
8906 | 0 | CurInit = S.BuildCXXMemberCallExpr(CurInit.get(), FoundFn, Conversion, |
8907 | 0 | HadMultipleCandidates); |
8908 | 0 | if (CurInit.isInvalid()) |
8909 | 0 | return ExprError(); |
8910 | | |
8911 | 0 | CastKind = CK_UserDefinedConversion; |
8912 | 0 | CreatedObject = Conversion->getReturnType()->isRecordType(); |
8913 | 0 | } |
8914 | | |
8915 | 0 | if (CreatedObject && checkAbstractType(CurInit.get()->getType())) |
8916 | 0 | return ExprError(); |
8917 | | |
8918 | 0 | CurInit = ImplicitCastExpr::Create( |
8919 | 0 | S.Context, CurInit.get()->getType(), CastKind, CurInit.get(), nullptr, |
8920 | 0 | CurInit.get()->getValueKind(), S.CurFPFeatureOverrides()); |
8921 | |
|
8922 | 0 | if (shouldBindAsTemporary(Entity)) |
8923 | | // The overall entity is temporary, so this expression should be |
8924 | | // destroyed at the end of its full-expression. |
8925 | 0 | CurInit = S.MaybeBindToTemporary(CurInit.getAs<Expr>()); |
8926 | 0 | else if (CreatedObject && shouldDestroyEntity(Entity)) { |
8927 | | // The object outlasts the full-expression, but we need to prepare for |
8928 | | // a destructor being run on it. |
8929 | | // FIXME: It makes no sense to do this here. This should happen |
8930 | | // regardless of how we initialized the entity. |
8931 | 0 | QualType T = CurInit.get()->getType(); |
8932 | 0 | if (const RecordType *Record = T->getAs<RecordType>()) { |
8933 | 0 | CXXDestructorDecl *Destructor |
8934 | 0 | = S.LookupDestructor(cast<CXXRecordDecl>(Record->getDecl())); |
8935 | 0 | S.CheckDestructorAccess(CurInit.get()->getBeginLoc(), Destructor, |
8936 | 0 | S.PDiag(diag::err_access_dtor_temp) << T); |
8937 | 0 | S.MarkFunctionReferenced(CurInit.get()->getBeginLoc(), Destructor); |
8938 | 0 | if (S.DiagnoseUseOfDecl(Destructor, CurInit.get()->getBeginLoc())) |
8939 | 0 | return ExprError(); |
8940 | 0 | } |
8941 | 0 | } |
8942 | 0 | break; |
8943 | 0 | } |
8944 | | |
8945 | 0 | case SK_QualificationConversionLValue: |
8946 | 0 | case SK_QualificationConversionXValue: |
8947 | 0 | case SK_QualificationConversionPRValue: { |
8948 | | // Perform a qualification conversion; these can never go wrong. |
8949 | 0 | ExprValueKind VK = |
8950 | 0 | Step->Kind == SK_QualificationConversionLValue |
8951 | 0 | ? VK_LValue |
8952 | 0 | : (Step->Kind == SK_QualificationConversionXValue ? VK_XValue |
8953 | 0 | : VK_PRValue); |
8954 | 0 | CurInit = S.PerformQualificationConversion(CurInit.get(), Step->Type, VK); |
8955 | 0 | break; |
8956 | 0 | } |
8957 | | |
8958 | 0 | case SK_FunctionReferenceConversion: |
8959 | 0 | assert(CurInit.get()->isLValue() && |
8960 | 0 | "function reference should be lvalue"); |
8961 | 0 | CurInit = |
8962 | 0 | S.ImpCastExprToType(CurInit.get(), Step->Type, CK_NoOp, VK_LValue); |
8963 | 0 | break; |
8964 | | |
8965 | 0 | case SK_AtomicConversion: { |
8966 | 0 | assert(CurInit.get()->isPRValue() && "cannot convert glvalue to atomic"); |
8967 | 0 | CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, |
8968 | 0 | CK_NonAtomicToAtomic, VK_PRValue); |
8969 | 0 | break; |
8970 | 0 | } |
8971 | | |
8972 | 0 | case SK_ConversionSequence: |
8973 | 0 | case SK_ConversionSequenceNoNarrowing: { |
8974 | 0 | if (const auto *FromPtrType = |
8975 | 0 | CurInit.get()->getType()->getAs<PointerType>()) { |
8976 | 0 | if (const auto *ToPtrType = Step->Type->getAs<PointerType>()) { |
8977 | 0 | if (FromPtrType->getPointeeType()->hasAttr(attr::NoDeref) && |
8978 | 0 | !ToPtrType->getPointeeType()->hasAttr(attr::NoDeref)) { |
8979 | | // Do not check static casts here because they are checked earlier |
8980 | | // in Sema::ActOnCXXNamedCast() |
8981 | 0 | if (!Kind.isStaticCast()) { |
8982 | 0 | S.Diag(CurInit.get()->getExprLoc(), |
8983 | 0 | diag::warn_noderef_to_dereferenceable_pointer) |
8984 | 0 | << CurInit.get()->getSourceRange(); |
8985 | 0 | } |
8986 | 0 | } |
8987 | 0 | } |
8988 | 0 | } |
8989 | |
|
8990 | 0 | Sema::CheckedConversionKind CCK |
8991 | 0 | = Kind.isCStyleCast()? Sema::CCK_CStyleCast |
8992 | 0 | : Kind.isFunctionalCast()? Sema::CCK_FunctionalCast |
8993 | 0 | : Kind.isExplicitCast()? Sema::CCK_OtherCast |
8994 | 0 | : Sema::CCK_ImplicitConversion; |
8995 | 0 | ExprResult CurInitExprRes = |
8996 | 0 | S.PerformImplicitConversion(CurInit.get(), Step->Type, *Step->ICS, |
8997 | 0 | getAssignmentAction(Entity), CCK); |
8998 | 0 | if (CurInitExprRes.isInvalid()) |
8999 | 0 | return ExprError(); |
9000 | | |
9001 | 0 | S.DiscardMisalignedMemberAddress(Step->Type.getTypePtr(), CurInit.get()); |
9002 | |
|
9003 | 0 | CurInit = CurInitExprRes; |
9004 | |
|
9005 | 0 | if (Step->Kind == SK_ConversionSequenceNoNarrowing && |
9006 | 0 | S.getLangOpts().CPlusPlus) |
9007 | 0 | DiagnoseNarrowingInInitList(S, *Step->ICS, SourceType, Entity.getType(), |
9008 | 0 | CurInit.get()); |
9009 | |
|
9010 | 0 | break; |
9011 | 0 | } |
9012 | | |
9013 | 0 | case SK_ListInitialization: { |
9014 | 0 | if (checkAbstractType(Step->Type)) |
9015 | 0 | return ExprError(); |
9016 | | |
9017 | 0 | InitListExpr *InitList = cast<InitListExpr>(CurInit.get()); |
9018 | | // If we're not initializing the top-level entity, we need to create an |
9019 | | // InitializeTemporary entity for our target type. |
9020 | 0 | QualType Ty = Step->Type; |
9021 | 0 | bool IsTemporary = !S.Context.hasSameType(Entity.getType(), Ty); |
9022 | 0 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary(Ty); |
9023 | 0 | InitializedEntity InitEntity = IsTemporary ? TempEntity : Entity; |
9024 | 0 | InitListChecker PerformInitList(S, InitEntity, |
9025 | 0 | InitList, Ty, /*VerifyOnly=*/false, |
9026 | 0 | /*TreatUnavailableAsInvalid=*/false); |
9027 | 0 | if (PerformInitList.HadError()) |
9028 | 0 | return ExprError(); |
9029 | | |
9030 | | // Hack: We must update *ResultType if available in order to set the |
9031 | | // bounds of arrays, e.g. in 'int ar[] = {1, 2, 3};'. |
9032 | | // Worst case: 'const int (&arref)[] = {1, 2, 3};'. |
9033 | 0 | if (ResultType && |
9034 | 0 | ResultType->getNonReferenceType()->isIncompleteArrayType()) { |
9035 | 0 | if ((*ResultType)->isRValueReferenceType()) |
9036 | 0 | Ty = S.Context.getRValueReferenceType(Ty); |
9037 | 0 | else if ((*ResultType)->isLValueReferenceType()) |
9038 | 0 | Ty = S.Context.getLValueReferenceType(Ty, |
9039 | 0 | (*ResultType)->castAs<LValueReferenceType>()->isSpelledAsLValue()); |
9040 | 0 | *ResultType = Ty; |
9041 | 0 | } |
9042 | |
|
9043 | 0 | InitListExpr *StructuredInitList = |
9044 | 0 | PerformInitList.getFullyStructuredList(); |
9045 | 0 | CurInit.get(); |
9046 | 0 | CurInit = shouldBindAsTemporary(InitEntity) |
9047 | 0 | ? S.MaybeBindToTemporary(StructuredInitList) |
9048 | 0 | : StructuredInitList; |
9049 | 0 | break; |
9050 | 0 | } |
9051 | | |
9052 | 0 | case SK_ConstructorInitializationFromList: { |
9053 | 0 | if (checkAbstractType(Step->Type)) |
9054 | 0 | return ExprError(); |
9055 | | |
9056 | | // When an initializer list is passed for a parameter of type "reference |
9057 | | // to object", we don't get an EK_Temporary entity, but instead an |
9058 | | // EK_Parameter entity with reference type. |
9059 | | // FIXME: This is a hack. What we really should do is create a user |
9060 | | // conversion step for this case, but this makes it considerably more |
9061 | | // complicated. For now, this will do. |
9062 | 0 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( |
9063 | 0 | Entity.getType().getNonReferenceType()); |
9064 | 0 | bool UseTemporary = Entity.getType()->isReferenceType(); |
9065 | 0 | assert(Args.size() == 1 && "expected a single argument for list init"); |
9066 | 0 | InitListExpr *InitList = cast<InitListExpr>(Args[0]); |
9067 | 0 | S.Diag(InitList->getExprLoc(), diag::warn_cxx98_compat_ctor_list_init) |
9068 | 0 | << InitList->getSourceRange(); |
9069 | 0 | MultiExprArg Arg(InitList->getInits(), InitList->getNumInits()); |
9070 | 0 | CurInit = PerformConstructorInitialization(S, UseTemporary ? TempEntity : |
9071 | 0 | Entity, |
9072 | 0 | Kind, Arg, *Step, |
9073 | 0 | ConstructorInitRequiresZeroInit, |
9074 | 0 | /*IsListInitialization*/true, |
9075 | 0 | /*IsStdInitListInit*/false, |
9076 | 0 | InitList->getLBraceLoc(), |
9077 | 0 | InitList->getRBraceLoc()); |
9078 | 0 | break; |
9079 | 0 | } |
9080 | | |
9081 | 0 | case SK_UnwrapInitList: |
9082 | 0 | CurInit = cast<InitListExpr>(CurInit.get())->getInit(0); |
9083 | 0 | break; |
9084 | | |
9085 | 0 | case SK_RewrapInitList: { |
9086 | 0 | Expr *E = CurInit.get(); |
9087 | 0 | InitListExpr *Syntactic = Step->WrappingSyntacticList; |
9088 | 0 | InitListExpr *ILE = new (S.Context) InitListExpr(S.Context, |
9089 | 0 | Syntactic->getLBraceLoc(), E, Syntactic->getRBraceLoc()); |
9090 | 0 | ILE->setSyntacticForm(Syntactic); |
9091 | 0 | ILE->setType(E->getType()); |
9092 | 0 | ILE->setValueKind(E->getValueKind()); |
9093 | 0 | CurInit = ILE; |
9094 | 0 | break; |
9095 | 0 | } |
9096 | | |
9097 | 0 | case SK_ConstructorInitialization: |
9098 | 0 | case SK_StdInitializerListConstructorCall: { |
9099 | 0 | if (checkAbstractType(Step->Type)) |
9100 | 0 | return ExprError(); |
9101 | | |
9102 | | // When an initializer list is passed for a parameter of type "reference |
9103 | | // to object", we don't get an EK_Temporary entity, but instead an |
9104 | | // EK_Parameter entity with reference type. |
9105 | | // FIXME: This is a hack. What we really should do is create a user |
9106 | | // conversion step for this case, but this makes it considerably more |
9107 | | // complicated. For now, this will do. |
9108 | 0 | InitializedEntity TempEntity = InitializedEntity::InitializeTemporary( |
9109 | 0 | Entity.getType().getNonReferenceType()); |
9110 | 0 | bool UseTemporary = Entity.getType()->isReferenceType(); |
9111 | 0 | bool IsStdInitListInit = |
9112 | 0 | Step->Kind == SK_StdInitializerListConstructorCall; |
9113 | 0 | Expr *Source = CurInit.get(); |
9114 | 0 | SourceRange Range = Kind.hasParenOrBraceRange() |
9115 | 0 | ? Kind.getParenOrBraceRange() |
9116 | 0 | : SourceRange(); |
9117 | 0 | CurInit = PerformConstructorInitialization( |
9118 | 0 | S, UseTemporary ? TempEntity : Entity, Kind, |
9119 | 0 | Source ? MultiExprArg(Source) : Args, *Step, |
9120 | 0 | ConstructorInitRequiresZeroInit, |
9121 | 0 | /*IsListInitialization*/ IsStdInitListInit, |
9122 | 0 | /*IsStdInitListInitialization*/ IsStdInitListInit, |
9123 | 0 | /*LBraceLoc*/ Range.getBegin(), |
9124 | 0 | /*RBraceLoc*/ Range.getEnd()); |
9125 | 0 | break; |
9126 | 0 | } |
9127 | | |
9128 | 0 | case SK_ZeroInitialization: { |
9129 | 0 | step_iterator NextStep = Step; |
9130 | 0 | ++NextStep; |
9131 | 0 | if (NextStep != StepEnd && |
9132 | 0 | (NextStep->Kind == SK_ConstructorInitialization || |
9133 | 0 | NextStep->Kind == SK_ConstructorInitializationFromList)) { |
9134 | | // The need for zero-initialization is recorded directly into |
9135 | | // the call to the object's constructor within the next step. |
9136 | 0 | ConstructorInitRequiresZeroInit = true; |
9137 | 0 | } else if (Kind.getKind() == InitializationKind::IK_Value && |
9138 | 0 | S.getLangOpts().CPlusPlus && |
9139 | 0 | !Kind.isImplicitValueInit()) { |
9140 | 0 | TypeSourceInfo *TSInfo = Entity.getTypeSourceInfo(); |
9141 | 0 | if (!TSInfo) |
9142 | 0 | TSInfo = S.Context.getTrivialTypeSourceInfo(Step->Type, |
9143 | 0 | Kind.getRange().getBegin()); |
9144 | |
|
9145 | 0 | CurInit = new (S.Context) CXXScalarValueInitExpr( |
9146 | 0 | Entity.getType().getNonLValueExprType(S.Context), TSInfo, |
9147 | 0 | Kind.getRange().getEnd()); |
9148 | 0 | } else { |
9149 | 0 | CurInit = new (S.Context) ImplicitValueInitExpr(Step->Type); |
9150 | 0 | } |
9151 | 0 | break; |
9152 | 0 | } |
9153 | | |
9154 | 7 | case SK_CAssignment: { |
9155 | 7 | QualType SourceType = CurInit.get()->getType(); |
9156 | | |
9157 | | // Save off the initial CurInit in case we need to emit a diagnostic |
9158 | 7 | ExprResult InitialCurInit = CurInit; |
9159 | 7 | ExprResult Result = CurInit; |
9160 | 7 | Sema::AssignConvertType ConvTy = |
9161 | 7 | S.CheckSingleAssignmentConstraints(Step->Type, Result, true, |
9162 | 7 | Entity.getKind() == InitializedEntity::EK_Parameter_CF_Audited); |
9163 | 7 | if (Result.isInvalid()) |
9164 | 0 | return ExprError(); |
9165 | 7 | CurInit = Result; |
9166 | | |
9167 | | // If this is a call, allow conversion to a transparent union. |
9168 | 7 | ExprResult CurInitExprRes = CurInit; |
9169 | 7 | if (ConvTy != Sema::Compatible && |
9170 | 7 | Entity.isParameterKind() && |
9171 | 7 | S.CheckTransparentUnionArgumentConstraints(Step->Type, CurInitExprRes) |
9172 | 0 | == Sema::Compatible) |
9173 | 0 | ConvTy = Sema::Compatible; |
9174 | 7 | if (CurInitExprRes.isInvalid()) |
9175 | 0 | return ExprError(); |
9176 | 7 | CurInit = CurInitExprRes; |
9177 | | |
9178 | 7 | bool Complained; |
9179 | 7 | if (S.DiagnoseAssignmentResult(ConvTy, Kind.getLocation(), |
9180 | 7 | Step->Type, SourceType, |
9181 | 7 | InitialCurInit.get(), |
9182 | 7 | getAssignmentAction(Entity, true), |
9183 | 7 | &Complained)) { |
9184 | 0 | PrintInitLocationNote(S, Entity); |
9185 | 0 | return ExprError(); |
9186 | 7 | } else if (Complained) |
9187 | 1 | PrintInitLocationNote(S, Entity); |
9188 | 7 | break; |
9189 | 7 | } |
9190 | | |
9191 | 7 | case SK_StringInit: { |
9192 | 0 | QualType Ty = Step->Type; |
9193 | 0 | bool UpdateType = ResultType && Entity.getType()->isIncompleteArrayType(); |
9194 | 0 | CheckStringInit(CurInit.get(), UpdateType ? *ResultType : Ty, |
9195 | 0 | S.Context.getAsArrayType(Ty), S); |
9196 | 0 | break; |
9197 | 7 | } |
9198 | | |
9199 | 0 | case SK_ObjCObjectConversion: |
9200 | 0 | CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, |
9201 | 0 | CK_ObjCObjectLValueCast, |
9202 | 0 | CurInit.get()->getValueKind()); |
9203 | 0 | break; |
9204 | | |
9205 | 0 | case SK_ArrayLoopIndex: { |
9206 | 0 | Expr *Cur = CurInit.get(); |
9207 | 0 | Expr *BaseExpr = new (S.Context) |
9208 | 0 | OpaqueValueExpr(Cur->getExprLoc(), Cur->getType(), |
9209 | 0 | Cur->getValueKind(), Cur->getObjectKind(), Cur); |
9210 | 0 | Expr *IndexExpr = |
9211 | 0 | new (S.Context) ArrayInitIndexExpr(S.Context.getSizeType()); |
9212 | 0 | CurInit = S.CreateBuiltinArraySubscriptExpr( |
9213 | 0 | BaseExpr, Kind.getLocation(), IndexExpr, Kind.getLocation()); |
9214 | 0 | ArrayLoopCommonExprs.push_back(BaseExpr); |
9215 | 0 | break; |
9216 | 7 | } |
9217 | | |
9218 | 0 | case SK_ArrayLoopInit: { |
9219 | 0 | assert(!ArrayLoopCommonExprs.empty() && |
9220 | 0 | "mismatched SK_ArrayLoopIndex and SK_ArrayLoopInit"); |
9221 | 0 | Expr *Common = ArrayLoopCommonExprs.pop_back_val(); |
9222 | 0 | CurInit = new (S.Context) ArrayInitLoopExpr(Step->Type, Common, |
9223 | 0 | CurInit.get()); |
9224 | 0 | break; |
9225 | 7 | } |
9226 | | |
9227 | 0 | case SK_GNUArrayInit: |
9228 | | // Okay: we checked everything before creating this step. Note that |
9229 | | // this is a GNU extension. |
9230 | 0 | S.Diag(Kind.getLocation(), diag::ext_array_init_copy) |
9231 | 0 | << Step->Type << CurInit.get()->getType() |
9232 | 0 | << CurInit.get()->getSourceRange(); |
9233 | 0 | updateGNUCompoundLiteralRValue(CurInit.get()); |
9234 | 0 | [[fallthrough]]; |
9235 | 0 | case SK_ArrayInit: |
9236 | | // If the destination type is an incomplete array type, update the |
9237 | | // type accordingly. |
9238 | 0 | if (ResultType) { |
9239 | 0 | if (const IncompleteArrayType *IncompleteDest |
9240 | 0 | = S.Context.getAsIncompleteArrayType(Step->Type)) { |
9241 | 0 | if (const ConstantArrayType *ConstantSource |
9242 | 0 | = S.Context.getAsConstantArrayType(CurInit.get()->getType())) { |
9243 | 0 | *ResultType = S.Context.getConstantArrayType( |
9244 | 0 | IncompleteDest->getElementType(), ConstantSource->getSize(), |
9245 | 0 | ConstantSource->getSizeExpr(), ArraySizeModifier::Normal, 0); |
9246 | 0 | } |
9247 | 0 | } |
9248 | 0 | } |
9249 | 0 | break; |
9250 | | |
9251 | 0 | case SK_ParenthesizedArrayInit: |
9252 | | // Okay: we checked everything before creating this step. Note that |
9253 | | // this is a GNU extension. |
9254 | 0 | S.Diag(Kind.getLocation(), diag::ext_array_init_parens) |
9255 | 0 | << CurInit.get()->getSourceRange(); |
9256 | 0 | break; |
9257 | | |
9258 | 0 | case SK_PassByIndirectCopyRestore: |
9259 | 0 | case SK_PassByIndirectRestore: |
9260 | 0 | checkIndirectCopyRestoreSource(S, CurInit.get()); |
9261 | 0 | CurInit = new (S.Context) ObjCIndirectCopyRestoreExpr( |
9262 | 0 | CurInit.get(), Step->Type, |
9263 | 0 | Step->Kind == SK_PassByIndirectCopyRestore); |
9264 | 0 | break; |
9265 | | |
9266 | 0 | case SK_ProduceObjCObject: |
9267 | 0 | CurInit = ImplicitCastExpr::Create( |
9268 | 0 | S.Context, Step->Type, CK_ARCProduceObject, CurInit.get(), nullptr, |
9269 | 0 | VK_PRValue, FPOptionsOverride()); |
9270 | 0 | break; |
9271 | | |
9272 | 0 | case SK_StdInitializerList: { |
9273 | 0 | S.Diag(CurInit.get()->getExprLoc(), |
9274 | 0 | diag::warn_cxx98_compat_initializer_list_init) |
9275 | 0 | << CurInit.get()->getSourceRange(); |
9276 | | |
9277 | | // Materialize the temporary into memory. |
9278 | 0 | MaterializeTemporaryExpr *MTE = S.CreateMaterializeTemporaryExpr( |
9279 | 0 | CurInit.get()->getType(), CurInit.get(), |
9280 | 0 | /*BoundToLvalueReference=*/false); |
9281 | | |
9282 | | // Wrap it in a construction of a std::initializer_list<T>. |
9283 | 0 | CurInit = new (S.Context) CXXStdInitializerListExpr(Step->Type, MTE); |
9284 | | |
9285 | | // Bind the result, in case the library has given initializer_list a |
9286 | | // non-trivial destructor. |
9287 | 0 | if (shouldBindAsTemporary(Entity)) |
9288 | 0 | CurInit = S.MaybeBindToTemporary(CurInit.get()); |
9289 | 0 | break; |
9290 | 0 | } |
9291 | | |
9292 | 0 | case SK_OCLSamplerInit: { |
9293 | | // Sampler initialization have 5 cases: |
9294 | | // 1. function argument passing |
9295 | | // 1a. argument is a file-scope variable |
9296 | | // 1b. argument is a function-scope variable |
9297 | | // 1c. argument is one of caller function's parameters |
9298 | | // 2. variable initialization |
9299 | | // 2a. initializing a file-scope variable |
9300 | | // 2b. initializing a function-scope variable |
9301 | | // |
9302 | | // For file-scope variables, since they cannot be initialized by function |
9303 | | // call of __translate_sampler_initializer in LLVM IR, their references |
9304 | | // need to be replaced by a cast from their literal initializers to |
9305 | | // sampler type. Since sampler variables can only be used in function |
9306 | | // calls as arguments, we only need to replace them when handling the |
9307 | | // argument passing. |
9308 | 0 | assert(Step->Type->isSamplerT() && |
9309 | 0 | "Sampler initialization on non-sampler type."); |
9310 | 0 | Expr *Init = CurInit.get()->IgnoreParens(); |
9311 | 0 | QualType SourceType = Init->getType(); |
9312 | | // Case 1 |
9313 | 0 | if (Entity.isParameterKind()) { |
9314 | 0 | if (!SourceType->isSamplerT() && !SourceType->isIntegerType()) { |
9315 | 0 | S.Diag(Kind.getLocation(), diag::err_sampler_argument_required) |
9316 | 0 | << SourceType; |
9317 | 0 | break; |
9318 | 0 | } else if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Init)) { |
9319 | 0 | auto Var = cast<VarDecl>(DRE->getDecl()); |
9320 | | // Case 1b and 1c |
9321 | | // No cast from integer to sampler is needed. |
9322 | 0 | if (!Var->hasGlobalStorage()) { |
9323 | 0 | CurInit = ImplicitCastExpr::Create( |
9324 | 0 | S.Context, Step->Type, CK_LValueToRValue, Init, |
9325 | 0 | /*BasePath=*/nullptr, VK_PRValue, FPOptionsOverride()); |
9326 | 0 | break; |
9327 | 0 | } |
9328 | | // Case 1a |
9329 | | // For function call with a file-scope sampler variable as argument, |
9330 | | // get the integer literal. |
9331 | | // Do not diagnose if the file-scope variable does not have initializer |
9332 | | // since this has already been diagnosed when parsing the variable |
9333 | | // declaration. |
9334 | 0 | if (!Var->getInit() || !isa<ImplicitCastExpr>(Var->getInit())) |
9335 | 0 | break; |
9336 | 0 | Init = cast<ImplicitCastExpr>(const_cast<Expr*>( |
9337 | 0 | Var->getInit()))->getSubExpr(); |
9338 | 0 | SourceType = Init->getType(); |
9339 | 0 | } |
9340 | 0 | } else { |
9341 | | // Case 2 |
9342 | | // Check initializer is 32 bit integer constant. |
9343 | | // If the initializer is taken from global variable, do not diagnose since |
9344 | | // this has already been done when parsing the variable declaration. |
9345 | 0 | if (!Init->isConstantInitializer(S.Context, false)) |
9346 | 0 | break; |
9347 | | |
9348 | 0 | if (!SourceType->isIntegerType() || |
9349 | 0 | 32 != S.Context.getIntWidth(SourceType)) { |
9350 | 0 | S.Diag(Kind.getLocation(), diag::err_sampler_initializer_not_integer) |
9351 | 0 | << SourceType; |
9352 | 0 | break; |
9353 | 0 | } |
9354 | | |
9355 | 0 | Expr::EvalResult EVResult; |
9356 | 0 | Init->EvaluateAsInt(EVResult, S.Context); |
9357 | 0 | llvm::APSInt Result = EVResult.Val.getInt(); |
9358 | 0 | const uint64_t SamplerValue = Result.getLimitedValue(); |
9359 | | // 32-bit value of sampler's initializer is interpreted as |
9360 | | // bit-field with the following structure: |
9361 | | // |unspecified|Filter|Addressing Mode| Normalized Coords| |
9362 | | // |31 6|5 4|3 1| 0| |
9363 | | // This structure corresponds to enum values of sampler properties |
9364 | | // defined in SPIR spec v1.2 and also opencl-c.h |
9365 | 0 | unsigned AddressingMode = (0x0E & SamplerValue) >> 1; |
9366 | 0 | unsigned FilterMode = (0x30 & SamplerValue) >> 4; |
9367 | 0 | if (FilterMode != 1 && FilterMode != 2 && |
9368 | 0 | !S.getOpenCLOptions().isAvailableOption( |
9369 | 0 | "cl_intel_device_side_avc_motion_estimation", S.getLangOpts())) |
9370 | 0 | S.Diag(Kind.getLocation(), |
9371 | 0 | diag::warn_sampler_initializer_invalid_bits) |
9372 | 0 | << "Filter Mode"; |
9373 | 0 | if (AddressingMode > 4) |
9374 | 0 | S.Diag(Kind.getLocation(), |
9375 | 0 | diag::warn_sampler_initializer_invalid_bits) |
9376 | 0 | << "Addressing Mode"; |
9377 | 0 | } |
9378 | | |
9379 | | // Cases 1a, 2a and 2b |
9380 | | // Insert cast from integer to sampler. |
9381 | 0 | CurInit = S.ImpCastExprToType(Init, S.Context.OCLSamplerTy, |
9382 | 0 | CK_IntToOCLSampler); |
9383 | 0 | break; |
9384 | 0 | } |
9385 | 0 | case SK_OCLZeroOpaqueType: { |
9386 | 0 | assert((Step->Type->isEventT() || Step->Type->isQueueT() || |
9387 | 0 | Step->Type->isOCLIntelSubgroupAVCType()) && |
9388 | 0 | "Wrong type for initialization of OpenCL opaque type."); |
9389 | | |
9390 | 0 | CurInit = S.ImpCastExprToType(CurInit.get(), Step->Type, |
9391 | 0 | CK_ZeroToOCLOpaqueType, |
9392 | 0 | CurInit.get()->getValueKind()); |
9393 | 0 | break; |
9394 | 0 | } |
9395 | 0 | case SK_ParenthesizedListInit: { |
9396 | 0 | CurInit = nullptr; |
9397 | 0 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this, |
9398 | 0 | /*VerifyOnly=*/false, &CurInit); |
9399 | 0 | if (CurInit.get() && ResultType) |
9400 | 0 | *ResultType = CurInit.get()->getType(); |
9401 | 0 | if (shouldBindAsTemporary(Entity)) |
9402 | 0 | CurInit = S.MaybeBindToTemporary(CurInit.get()); |
9403 | 0 | break; |
9404 | 0 | } |
9405 | 7 | } |
9406 | 7 | } |
9407 | | |
9408 | 7 | Expr *Init = CurInit.get(); |
9409 | 7 | if (!Init) |
9410 | 0 | return ExprError(); |
9411 | | |
9412 | | // Check whether the initializer has a shorter lifetime than the initialized |
9413 | | // entity, and if not, either lifetime-extend or warn as appropriate. |
9414 | 7 | S.checkInitializerLifetime(Entity, Init); |
9415 | | |
9416 | | // Diagnose non-fatal problems with the completed initialization. |
9417 | 7 | if (InitializedEntity::EntityKind EK = Entity.getKind(); |
9418 | 7 | (EK == InitializedEntity::EK_Member || |
9419 | 7 | EK == InitializedEntity::EK_ParenAggInitMember) && |
9420 | 7 | cast<FieldDecl>(Entity.getDecl())->isBitField()) |
9421 | 0 | S.CheckBitFieldInitialization(Kind.getLocation(), |
9422 | 0 | cast<FieldDecl>(Entity.getDecl()), Init); |
9423 | | |
9424 | | // Check for std::move on construction. |
9425 | 7 | CheckMoveOnConstruction(S, Init, |
9426 | 7 | Entity.getKind() == InitializedEntity::EK_Result); |
9427 | | |
9428 | 7 | return Init; |
9429 | 7 | } |
9430 | | |
9431 | | /// Somewhere within T there is an uninitialized reference subobject. |
9432 | | /// Dig it out and diagnose it. |
9433 | | static bool DiagnoseUninitializedReference(Sema &S, SourceLocation Loc, |
9434 | 0 | QualType T) { |
9435 | 0 | if (T->isReferenceType()) { |
9436 | 0 | S.Diag(Loc, diag::err_reference_without_init) |
9437 | 0 | << T.getNonReferenceType(); |
9438 | 0 | return true; |
9439 | 0 | } |
9440 | | |
9441 | 0 | CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); |
9442 | 0 | if (!RD || !RD->hasUninitializedReferenceMember()) |
9443 | 0 | return false; |
9444 | | |
9445 | 0 | for (const auto *FI : RD->fields()) { |
9446 | 0 | if (FI->isUnnamedBitfield()) |
9447 | 0 | continue; |
9448 | | |
9449 | 0 | if (DiagnoseUninitializedReference(S, FI->getLocation(), FI->getType())) { |
9450 | 0 | S.Diag(Loc, diag::note_value_initialization_here) << RD; |
9451 | 0 | return true; |
9452 | 0 | } |
9453 | 0 | } |
9454 | | |
9455 | 0 | for (const auto &BI : RD->bases()) { |
9456 | 0 | if (DiagnoseUninitializedReference(S, BI.getBeginLoc(), BI.getType())) { |
9457 | 0 | S.Diag(Loc, diag::note_value_initialization_here) << RD; |
9458 | 0 | return true; |
9459 | 0 | } |
9460 | 0 | } |
9461 | | |
9462 | 0 | return false; |
9463 | 0 | } |
9464 | | |
9465 | | |
9466 | | //===----------------------------------------------------------------------===// |
9467 | | // Diagnose initialization failures |
9468 | | //===----------------------------------------------------------------------===// |
9469 | | |
9470 | | /// Emit notes associated with an initialization that failed due to a |
9471 | | /// "simple" conversion failure. |
9472 | | static void emitBadConversionNotes(Sema &S, const InitializedEntity &entity, |
9473 | 0 | Expr *op) { |
9474 | 0 | QualType destType = entity.getType(); |
9475 | 0 | if (destType.getNonReferenceType()->isObjCObjectPointerType() && |
9476 | 0 | op->getType()->isObjCObjectPointerType()) { |
9477 | | |
9478 | | // Emit a possible note about the conversion failing because the |
9479 | | // operand is a message send with a related result type. |
9480 | 0 | S.EmitRelatedResultTypeNote(op); |
9481 | | |
9482 | | // Emit a possible note about a return failing because we're |
9483 | | // expecting a related result type. |
9484 | 0 | if (entity.getKind() == InitializedEntity::EK_Result) |
9485 | 0 | S.EmitRelatedResultTypeNoteForReturn(destType); |
9486 | 0 | } |
9487 | 0 | QualType fromType = op->getType(); |
9488 | 0 | QualType fromPointeeType = fromType.getCanonicalType()->getPointeeType(); |
9489 | 0 | QualType destPointeeType = destType.getCanonicalType()->getPointeeType(); |
9490 | 0 | auto *fromDecl = fromType->getPointeeCXXRecordDecl(); |
9491 | 0 | auto *destDecl = destType->getPointeeCXXRecordDecl(); |
9492 | 0 | if (fromDecl && destDecl && fromDecl->getDeclKind() == Decl::CXXRecord && |
9493 | 0 | destDecl->getDeclKind() == Decl::CXXRecord && |
9494 | 0 | !fromDecl->isInvalidDecl() && !destDecl->isInvalidDecl() && |
9495 | 0 | !fromDecl->hasDefinition() && |
9496 | 0 | destPointeeType.getQualifiers().compatiblyIncludes( |
9497 | 0 | fromPointeeType.getQualifiers())) |
9498 | 0 | S.Diag(fromDecl->getLocation(), diag::note_forward_class_conversion) |
9499 | 0 | << S.getASTContext().getTagDeclType(fromDecl) |
9500 | 0 | << S.getASTContext().getTagDeclType(destDecl); |
9501 | 0 | } |
9502 | | |
9503 | | static void diagnoseListInit(Sema &S, const InitializedEntity &Entity, |
9504 | 0 | InitListExpr *InitList) { |
9505 | 0 | QualType DestType = Entity.getType(); |
9506 | |
|
9507 | 0 | QualType E; |
9508 | 0 | if (S.getLangOpts().CPlusPlus11 && S.isStdInitializerList(DestType, &E)) { |
9509 | 0 | QualType ArrayType = S.Context.getConstantArrayType( |
9510 | 0 | E.withConst(), |
9511 | 0 | llvm::APInt(S.Context.getTypeSize(S.Context.getSizeType()), |
9512 | 0 | InitList->getNumInits()), |
9513 | 0 | nullptr, clang::ArraySizeModifier::Normal, 0); |
9514 | 0 | InitializedEntity HiddenArray = |
9515 | 0 | InitializedEntity::InitializeTemporary(ArrayType); |
9516 | 0 | return diagnoseListInit(S, HiddenArray, InitList); |
9517 | 0 | } |
9518 | | |
9519 | 0 | if (DestType->isReferenceType()) { |
9520 | | // A list-initialization failure for a reference means that we tried to |
9521 | | // create a temporary of the inner type (per [dcl.init.list]p3.6) and the |
9522 | | // inner initialization failed. |
9523 | 0 | QualType T = DestType->castAs<ReferenceType>()->getPointeeType(); |
9524 | 0 | diagnoseListInit(S, InitializedEntity::InitializeTemporary(T), InitList); |
9525 | 0 | SourceLocation Loc = InitList->getBeginLoc(); |
9526 | 0 | if (auto *D = Entity.getDecl()) |
9527 | 0 | Loc = D->getLocation(); |
9528 | 0 | S.Diag(Loc, diag::note_in_reference_temporary_list_initializer) << T; |
9529 | 0 | return; |
9530 | 0 | } |
9531 | | |
9532 | 0 | InitListChecker DiagnoseInitList(S, Entity, InitList, DestType, |
9533 | 0 | /*VerifyOnly=*/false, |
9534 | 0 | /*TreatUnavailableAsInvalid=*/false); |
9535 | 0 | assert(DiagnoseInitList.HadError() && |
9536 | 0 | "Inconsistent init list check result."); |
9537 | 0 | } |
9538 | | |
9539 | | bool InitializationSequence::Diagnose(Sema &S, |
9540 | | const InitializedEntity &Entity, |
9541 | | const InitializationKind &Kind, |
9542 | 0 | ArrayRef<Expr *> Args) { |
9543 | 0 | if (!Failed()) |
9544 | 0 | return false; |
9545 | | |
9546 | | // When we want to diagnose only one element of a braced-init-list, |
9547 | | // we need to factor it out. |
9548 | 0 | Expr *OnlyArg; |
9549 | 0 | if (Args.size() == 1) { |
9550 | 0 | auto *List = dyn_cast<InitListExpr>(Args[0]); |
9551 | 0 | if (List && List->getNumInits() == 1) |
9552 | 0 | OnlyArg = List->getInit(0); |
9553 | 0 | else |
9554 | 0 | OnlyArg = Args[0]; |
9555 | 0 | } |
9556 | 0 | else |
9557 | 0 | OnlyArg = nullptr; |
9558 | |
|
9559 | 0 | QualType DestType = Entity.getType(); |
9560 | 0 | switch (Failure) { |
9561 | 0 | case FK_TooManyInitsForReference: |
9562 | | // FIXME: Customize for the initialized entity? |
9563 | 0 | if (Args.empty()) { |
9564 | | // Dig out the reference subobject which is uninitialized and diagnose it. |
9565 | | // If this is value-initialization, this could be nested some way within |
9566 | | // the target type. |
9567 | 0 | assert(Kind.getKind() == InitializationKind::IK_Value || |
9568 | 0 | DestType->isReferenceType()); |
9569 | 0 | bool Diagnosed = |
9570 | 0 | DiagnoseUninitializedReference(S, Kind.getLocation(), DestType); |
9571 | 0 | assert(Diagnosed && "couldn't find uninitialized reference to diagnose"); |
9572 | 0 | (void)Diagnosed; |
9573 | 0 | } else // FIXME: diagnostic below could be better! |
9574 | 0 | S.Diag(Kind.getLocation(), diag::err_reference_has_multiple_inits) |
9575 | 0 | << SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); |
9576 | 0 | break; |
9577 | 0 | case FK_ParenthesizedListInitForReference: |
9578 | 0 | S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) |
9579 | 0 | << 1 << Entity.getType() << Args[0]->getSourceRange(); |
9580 | 0 | break; |
9581 | | |
9582 | 0 | case FK_ArrayNeedsInitList: |
9583 | 0 | S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 0; |
9584 | 0 | break; |
9585 | 0 | case FK_ArrayNeedsInitListOrStringLiteral: |
9586 | 0 | S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 1; |
9587 | 0 | break; |
9588 | 0 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
9589 | 0 | S.Diag(Kind.getLocation(), diag::err_array_init_not_init_list) << 2; |
9590 | 0 | break; |
9591 | 0 | case FK_NarrowStringIntoWideCharArray: |
9592 | 0 | S.Diag(Kind.getLocation(), diag::err_array_init_narrow_string_into_wchar); |
9593 | 0 | break; |
9594 | 0 | case FK_WideStringIntoCharArray: |
9595 | 0 | S.Diag(Kind.getLocation(), diag::err_array_init_wide_string_into_char); |
9596 | 0 | break; |
9597 | 0 | case FK_IncompatWideStringIntoWideChar: |
9598 | 0 | S.Diag(Kind.getLocation(), |
9599 | 0 | diag::err_array_init_incompat_wide_string_into_wchar); |
9600 | 0 | break; |
9601 | 0 | case FK_PlainStringIntoUTF8Char: |
9602 | 0 | S.Diag(Kind.getLocation(), |
9603 | 0 | diag::err_array_init_plain_string_into_char8_t); |
9604 | 0 | S.Diag(Args.front()->getBeginLoc(), |
9605 | 0 | diag::note_array_init_plain_string_into_char8_t) |
9606 | 0 | << FixItHint::CreateInsertion(Args.front()->getBeginLoc(), "u8"); |
9607 | 0 | break; |
9608 | 0 | case FK_UTF8StringIntoPlainChar: |
9609 | 0 | S.Diag(Kind.getLocation(), diag::err_array_init_utf8_string_into_char) |
9610 | 0 | << DestType->isSignedIntegerType() << S.getLangOpts().CPlusPlus20; |
9611 | 0 | break; |
9612 | 0 | case FK_ArrayTypeMismatch: |
9613 | 0 | case FK_NonConstantArrayInit: |
9614 | 0 | S.Diag(Kind.getLocation(), |
9615 | 0 | (Failure == FK_ArrayTypeMismatch |
9616 | 0 | ? diag::err_array_init_different_type |
9617 | 0 | : diag::err_array_init_non_constant_array)) |
9618 | 0 | << DestType.getNonReferenceType() |
9619 | 0 | << OnlyArg->getType() |
9620 | 0 | << Args[0]->getSourceRange(); |
9621 | 0 | break; |
9622 | | |
9623 | 0 | case FK_VariableLengthArrayHasInitializer: |
9624 | 0 | S.Diag(Kind.getLocation(), diag::err_variable_object_no_init) |
9625 | 0 | << Args[0]->getSourceRange(); |
9626 | 0 | break; |
9627 | | |
9628 | 0 | case FK_AddressOfOverloadFailed: { |
9629 | 0 | DeclAccessPair Found; |
9630 | 0 | S.ResolveAddressOfOverloadedFunction(OnlyArg, |
9631 | 0 | DestType.getNonReferenceType(), |
9632 | 0 | true, |
9633 | 0 | Found); |
9634 | 0 | break; |
9635 | 0 | } |
9636 | | |
9637 | 0 | case FK_AddressOfUnaddressableFunction: { |
9638 | 0 | auto *FD = cast<FunctionDecl>(cast<DeclRefExpr>(OnlyArg)->getDecl()); |
9639 | 0 | S.checkAddressOfFunctionIsAvailable(FD, /*Complain=*/true, |
9640 | 0 | OnlyArg->getBeginLoc()); |
9641 | 0 | break; |
9642 | 0 | } |
9643 | | |
9644 | 0 | case FK_ReferenceInitOverloadFailed: |
9645 | 0 | case FK_UserConversionOverloadFailed: |
9646 | 0 | switch (FailedOverloadResult) { |
9647 | 0 | case OR_Ambiguous: |
9648 | |
|
9649 | 0 | FailedCandidateSet.NoteCandidates( |
9650 | 0 | PartialDiagnosticAt( |
9651 | 0 | Kind.getLocation(), |
9652 | 0 | Failure == FK_UserConversionOverloadFailed |
9653 | 0 | ? (S.PDiag(diag::err_typecheck_ambiguous_condition) |
9654 | 0 | << OnlyArg->getType() << DestType |
9655 | 0 | << Args[0]->getSourceRange()) |
9656 | 0 | : (S.PDiag(diag::err_ref_init_ambiguous) |
9657 | 0 | << DestType << OnlyArg->getType() |
9658 | 0 | << Args[0]->getSourceRange())), |
9659 | 0 | S, OCD_AmbiguousCandidates, Args); |
9660 | 0 | break; |
9661 | | |
9662 | 0 | case OR_No_Viable_Function: { |
9663 | 0 | auto Cands = FailedCandidateSet.CompleteCandidates(S, OCD_AllCandidates, Args); |
9664 | 0 | if (!S.RequireCompleteType(Kind.getLocation(), |
9665 | 0 | DestType.getNonReferenceType(), |
9666 | 0 | diag::err_typecheck_nonviable_condition_incomplete, |
9667 | 0 | OnlyArg->getType(), Args[0]->getSourceRange())) |
9668 | 0 | S.Diag(Kind.getLocation(), diag::err_typecheck_nonviable_condition) |
9669 | 0 | << (Entity.getKind() == InitializedEntity::EK_Result) |
9670 | 0 | << OnlyArg->getType() << Args[0]->getSourceRange() |
9671 | 0 | << DestType.getNonReferenceType(); |
9672 | |
|
9673 | 0 | FailedCandidateSet.NoteCandidates(S, Args, Cands); |
9674 | 0 | break; |
9675 | 0 | } |
9676 | 0 | case OR_Deleted: { |
9677 | 0 | S.Diag(Kind.getLocation(), diag::err_typecheck_deleted_function) |
9678 | 0 | << OnlyArg->getType() << DestType.getNonReferenceType() |
9679 | 0 | << Args[0]->getSourceRange(); |
9680 | 0 | OverloadCandidateSet::iterator Best; |
9681 | 0 | OverloadingResult Ovl |
9682 | 0 | = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); |
9683 | 0 | if (Ovl == OR_Deleted) { |
9684 | 0 | S.NoteDeletedFunction(Best->Function); |
9685 | 0 | } else { |
9686 | 0 | llvm_unreachable("Inconsistent overload resolution?"); |
9687 | 0 | } |
9688 | 0 | break; |
9689 | 0 | } |
9690 | | |
9691 | 0 | case OR_Success: |
9692 | 0 | llvm_unreachable("Conversion did not fail!"); |
9693 | 0 | } |
9694 | 0 | break; |
9695 | | |
9696 | 0 | case FK_NonConstLValueReferenceBindingToTemporary: |
9697 | 0 | if (isa<InitListExpr>(Args[0])) { |
9698 | 0 | S.Diag(Kind.getLocation(), |
9699 | 0 | diag::err_lvalue_reference_bind_to_initlist) |
9700 | 0 | << DestType.getNonReferenceType().isVolatileQualified() |
9701 | 0 | << DestType.getNonReferenceType() |
9702 | 0 | << Args[0]->getSourceRange(); |
9703 | 0 | break; |
9704 | 0 | } |
9705 | 0 | [[fallthrough]]; |
9706 | | |
9707 | 0 | case FK_NonConstLValueReferenceBindingToUnrelated: |
9708 | 0 | S.Diag(Kind.getLocation(), |
9709 | 0 | Failure == FK_NonConstLValueReferenceBindingToTemporary |
9710 | 0 | ? diag::err_lvalue_reference_bind_to_temporary |
9711 | 0 | : diag::err_lvalue_reference_bind_to_unrelated) |
9712 | 0 | << DestType.getNonReferenceType().isVolatileQualified() |
9713 | 0 | << DestType.getNonReferenceType() |
9714 | 0 | << OnlyArg->getType() |
9715 | 0 | << Args[0]->getSourceRange(); |
9716 | 0 | break; |
9717 | | |
9718 | 0 | case FK_NonConstLValueReferenceBindingToBitfield: { |
9719 | | // We don't necessarily have an unambiguous source bit-field. |
9720 | 0 | FieldDecl *BitField = Args[0]->getSourceBitField(); |
9721 | 0 | S.Diag(Kind.getLocation(), diag::err_reference_bind_to_bitfield) |
9722 | 0 | << DestType.isVolatileQualified() |
9723 | 0 | << (BitField ? BitField->getDeclName() : DeclarationName()) |
9724 | 0 | << (BitField != nullptr) |
9725 | 0 | << Args[0]->getSourceRange(); |
9726 | 0 | if (BitField) |
9727 | 0 | S.Diag(BitField->getLocation(), diag::note_bitfield_decl); |
9728 | 0 | break; |
9729 | 0 | } |
9730 | | |
9731 | 0 | case FK_NonConstLValueReferenceBindingToVectorElement: |
9732 | 0 | S.Diag(Kind.getLocation(), diag::err_reference_bind_to_vector_element) |
9733 | 0 | << DestType.isVolatileQualified() |
9734 | 0 | << Args[0]->getSourceRange(); |
9735 | 0 | break; |
9736 | | |
9737 | 0 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
9738 | 0 | S.Diag(Kind.getLocation(), diag::err_reference_bind_to_matrix_element) |
9739 | 0 | << DestType.isVolatileQualified() << Args[0]->getSourceRange(); |
9740 | 0 | break; |
9741 | | |
9742 | 0 | case FK_RValueReferenceBindingToLValue: |
9743 | 0 | S.Diag(Kind.getLocation(), diag::err_lvalue_to_rvalue_ref) |
9744 | 0 | << DestType.getNonReferenceType() << OnlyArg->getType() |
9745 | 0 | << Args[0]->getSourceRange(); |
9746 | 0 | break; |
9747 | | |
9748 | 0 | case FK_ReferenceAddrspaceMismatchTemporary: |
9749 | 0 | S.Diag(Kind.getLocation(), diag::err_reference_bind_temporary_addrspace) |
9750 | 0 | << DestType << Args[0]->getSourceRange(); |
9751 | 0 | break; |
9752 | | |
9753 | 0 | case FK_ReferenceInitDropsQualifiers: { |
9754 | 0 | QualType SourceType = OnlyArg->getType(); |
9755 | 0 | QualType NonRefType = DestType.getNonReferenceType(); |
9756 | 0 | Qualifiers DroppedQualifiers = |
9757 | 0 | SourceType.getQualifiers() - NonRefType.getQualifiers(); |
9758 | |
|
9759 | 0 | if (!NonRefType.getQualifiers().isAddressSpaceSupersetOf( |
9760 | 0 | SourceType.getQualifiers())) |
9761 | 0 | S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) |
9762 | 0 | << NonRefType << SourceType << 1 /*addr space*/ |
9763 | 0 | << Args[0]->getSourceRange(); |
9764 | 0 | else if (DroppedQualifiers.hasQualifiers()) |
9765 | 0 | S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) |
9766 | 0 | << NonRefType << SourceType << 0 /*cv quals*/ |
9767 | 0 | << Qualifiers::fromCVRMask(DroppedQualifiers.getCVRQualifiers()) |
9768 | 0 | << DroppedQualifiers.getCVRQualifiers() << Args[0]->getSourceRange(); |
9769 | 0 | else |
9770 | | // FIXME: Consider decomposing the type and explaining which qualifiers |
9771 | | // were dropped where, or on which level a 'const' is missing, etc. |
9772 | 0 | S.Diag(Kind.getLocation(), diag::err_reference_bind_drops_quals) |
9773 | 0 | << NonRefType << SourceType << 2 /*incompatible quals*/ |
9774 | 0 | << Args[0]->getSourceRange(); |
9775 | 0 | break; |
9776 | 0 | } |
9777 | | |
9778 | 0 | case FK_ReferenceInitFailed: |
9779 | 0 | S.Diag(Kind.getLocation(), diag::err_reference_bind_failed) |
9780 | 0 | << DestType.getNonReferenceType() |
9781 | 0 | << DestType.getNonReferenceType()->isIncompleteType() |
9782 | 0 | << OnlyArg->isLValue() |
9783 | 0 | << OnlyArg->getType() |
9784 | 0 | << Args[0]->getSourceRange(); |
9785 | 0 | emitBadConversionNotes(S, Entity, Args[0]); |
9786 | 0 | break; |
9787 | | |
9788 | 0 | case FK_ConversionFailed: { |
9789 | 0 | QualType FromType = OnlyArg->getType(); |
9790 | 0 | PartialDiagnostic PDiag = S.PDiag(diag::err_init_conversion_failed) |
9791 | 0 | << (int)Entity.getKind() |
9792 | 0 | << DestType |
9793 | 0 | << OnlyArg->isLValue() |
9794 | 0 | << FromType |
9795 | 0 | << Args[0]->getSourceRange(); |
9796 | 0 | S.HandleFunctionTypeMismatch(PDiag, FromType, DestType); |
9797 | 0 | S.Diag(Kind.getLocation(), PDiag); |
9798 | 0 | emitBadConversionNotes(S, Entity, Args[0]); |
9799 | 0 | break; |
9800 | 0 | } |
9801 | | |
9802 | 0 | case FK_ConversionFromPropertyFailed: |
9803 | | // No-op. This error has already been reported. |
9804 | 0 | break; |
9805 | | |
9806 | 0 | case FK_TooManyInitsForScalar: { |
9807 | 0 | SourceRange R; |
9808 | |
|
9809 | 0 | auto *InitList = dyn_cast<InitListExpr>(Args[0]); |
9810 | 0 | if (InitList && InitList->getNumInits() >= 1) { |
9811 | 0 | R = SourceRange(InitList->getInit(0)->getEndLoc(), InitList->getEndLoc()); |
9812 | 0 | } else { |
9813 | 0 | assert(Args.size() > 1 && "Expected multiple initializers!"); |
9814 | 0 | R = SourceRange(Args.front()->getEndLoc(), Args.back()->getEndLoc()); |
9815 | 0 | } |
9816 | | |
9817 | 0 | R.setBegin(S.getLocForEndOfToken(R.getBegin())); |
9818 | 0 | if (Kind.isCStyleOrFunctionalCast()) |
9819 | 0 | S.Diag(Kind.getLocation(), diag::err_builtin_func_cast_more_than_one_arg) |
9820 | 0 | << R; |
9821 | 0 | else |
9822 | 0 | S.Diag(Kind.getLocation(), diag::err_excess_initializers) |
9823 | 0 | << /*scalar=*/2 << R; |
9824 | 0 | break; |
9825 | 0 | } |
9826 | | |
9827 | 0 | case FK_ParenthesizedListInitForScalar: |
9828 | 0 | S.Diag(Kind.getLocation(), diag::err_list_init_in_parens) |
9829 | 0 | << 0 << Entity.getType() << Args[0]->getSourceRange(); |
9830 | 0 | break; |
9831 | | |
9832 | 0 | case FK_ReferenceBindingToInitList: |
9833 | 0 | S.Diag(Kind.getLocation(), diag::err_reference_bind_init_list) |
9834 | 0 | << DestType.getNonReferenceType() << Args[0]->getSourceRange(); |
9835 | 0 | break; |
9836 | | |
9837 | 0 | case FK_InitListBadDestinationType: |
9838 | 0 | S.Diag(Kind.getLocation(), diag::err_init_list_bad_dest_type) |
9839 | 0 | << (DestType->isRecordType()) << DestType << Args[0]->getSourceRange(); |
9840 | 0 | break; |
9841 | | |
9842 | 0 | case FK_ListConstructorOverloadFailed: |
9843 | 0 | case FK_ConstructorOverloadFailed: { |
9844 | 0 | SourceRange ArgsRange; |
9845 | 0 | if (Args.size()) |
9846 | 0 | ArgsRange = |
9847 | 0 | SourceRange(Args.front()->getBeginLoc(), Args.back()->getEndLoc()); |
9848 | |
|
9849 | 0 | if (Failure == FK_ListConstructorOverloadFailed) { |
9850 | 0 | assert(Args.size() == 1 && |
9851 | 0 | "List construction from other than 1 argument."); |
9852 | 0 | InitListExpr *InitList = cast<InitListExpr>(Args[0]); |
9853 | 0 | Args = MultiExprArg(InitList->getInits(), InitList->getNumInits()); |
9854 | 0 | } |
9855 | | |
9856 | | // FIXME: Using "DestType" for the entity we're printing is probably |
9857 | | // bad. |
9858 | 0 | switch (FailedOverloadResult) { |
9859 | 0 | case OR_Ambiguous: |
9860 | 0 | FailedCandidateSet.NoteCandidates( |
9861 | 0 | PartialDiagnosticAt(Kind.getLocation(), |
9862 | 0 | S.PDiag(diag::err_ovl_ambiguous_init) |
9863 | 0 | << DestType << ArgsRange), |
9864 | 0 | S, OCD_AmbiguousCandidates, Args); |
9865 | 0 | break; |
9866 | | |
9867 | 0 | case OR_No_Viable_Function: |
9868 | 0 | if (Kind.getKind() == InitializationKind::IK_Default && |
9869 | 0 | (Entity.getKind() == InitializedEntity::EK_Base || |
9870 | 0 | Entity.getKind() == InitializedEntity::EK_Member || |
9871 | 0 | Entity.getKind() == InitializedEntity::EK_ParenAggInitMember) && |
9872 | 0 | isa<CXXConstructorDecl>(S.CurContext)) { |
9873 | | // This is implicit default initialization of a member or |
9874 | | // base within a constructor. If no viable function was |
9875 | | // found, notify the user that they need to explicitly |
9876 | | // initialize this base/member. |
9877 | 0 | CXXConstructorDecl *Constructor |
9878 | 0 | = cast<CXXConstructorDecl>(S.CurContext); |
9879 | 0 | const CXXRecordDecl *InheritedFrom = nullptr; |
9880 | 0 | if (auto Inherited = Constructor->getInheritedConstructor()) |
9881 | 0 | InheritedFrom = Inherited.getShadowDecl()->getNominatedBaseClass(); |
9882 | 0 | if (Entity.getKind() == InitializedEntity::EK_Base) { |
9883 | 0 | S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) |
9884 | 0 | << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) |
9885 | 0 | << S.Context.getTypeDeclType(Constructor->getParent()) |
9886 | 0 | << /*base=*/0 |
9887 | 0 | << Entity.getType() |
9888 | 0 | << InheritedFrom; |
9889 | |
|
9890 | 0 | RecordDecl *BaseDecl |
9891 | 0 | = Entity.getBaseSpecifier()->getType()->castAs<RecordType>() |
9892 | 0 | ->getDecl(); |
9893 | 0 | S.Diag(BaseDecl->getLocation(), diag::note_previous_decl) |
9894 | 0 | << S.Context.getTagDeclType(BaseDecl); |
9895 | 0 | } else { |
9896 | 0 | S.Diag(Kind.getLocation(), diag::err_missing_default_ctor) |
9897 | 0 | << (InheritedFrom ? 2 : Constructor->isImplicit() ? 1 : 0) |
9898 | 0 | << S.Context.getTypeDeclType(Constructor->getParent()) |
9899 | 0 | << /*member=*/1 |
9900 | 0 | << Entity.getName() |
9901 | 0 | << InheritedFrom; |
9902 | 0 | S.Diag(Entity.getDecl()->getLocation(), |
9903 | 0 | diag::note_member_declared_at); |
9904 | |
|
9905 | 0 | if (const RecordType *Record |
9906 | 0 | = Entity.getType()->getAs<RecordType>()) |
9907 | 0 | S.Diag(Record->getDecl()->getLocation(), |
9908 | 0 | diag::note_previous_decl) |
9909 | 0 | << S.Context.getTagDeclType(Record->getDecl()); |
9910 | 0 | } |
9911 | 0 | break; |
9912 | 0 | } |
9913 | | |
9914 | 0 | FailedCandidateSet.NoteCandidates( |
9915 | 0 | PartialDiagnosticAt( |
9916 | 0 | Kind.getLocation(), |
9917 | 0 | S.PDiag(diag::err_ovl_no_viable_function_in_init) |
9918 | 0 | << DestType << ArgsRange), |
9919 | 0 | S, OCD_AllCandidates, Args); |
9920 | 0 | break; |
9921 | | |
9922 | 0 | case OR_Deleted: { |
9923 | 0 | OverloadCandidateSet::iterator Best; |
9924 | 0 | OverloadingResult Ovl |
9925 | 0 | = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); |
9926 | 0 | if (Ovl != OR_Deleted) { |
9927 | 0 | S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) |
9928 | 0 | << DestType << ArgsRange; |
9929 | 0 | llvm_unreachable("Inconsistent overload resolution?"); |
9930 | 0 | break; |
9931 | 0 | } |
9932 | | |
9933 | | // If this is a defaulted or implicitly-declared function, then |
9934 | | // it was implicitly deleted. Make it clear that the deletion was |
9935 | | // implicit. |
9936 | 0 | if (S.isImplicitlyDeleted(Best->Function)) |
9937 | 0 | S.Diag(Kind.getLocation(), diag::err_ovl_deleted_special_init) |
9938 | 0 | << S.getSpecialMember(cast<CXXMethodDecl>(Best->Function)) |
9939 | 0 | << DestType << ArgsRange; |
9940 | 0 | else |
9941 | 0 | S.Diag(Kind.getLocation(), diag::err_ovl_deleted_init) |
9942 | 0 | << DestType << ArgsRange; |
9943 | |
|
9944 | 0 | S.NoteDeletedFunction(Best->Function); |
9945 | 0 | break; |
9946 | 0 | } |
9947 | | |
9948 | 0 | case OR_Success: |
9949 | 0 | llvm_unreachable("Conversion did not fail!"); |
9950 | 0 | } |
9951 | 0 | } |
9952 | 0 | break; |
9953 | | |
9954 | 0 | case FK_DefaultInitOfConst: |
9955 | 0 | if (Entity.getKind() == InitializedEntity::EK_Member && |
9956 | 0 | isa<CXXConstructorDecl>(S.CurContext)) { |
9957 | | // This is implicit default-initialization of a const member in |
9958 | | // a constructor. Complain that it needs to be explicitly |
9959 | | // initialized. |
9960 | 0 | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(S.CurContext); |
9961 | 0 | S.Diag(Kind.getLocation(), diag::err_uninitialized_member_in_ctor) |
9962 | 0 | << (Constructor->getInheritedConstructor() ? 2 : |
9963 | 0 | Constructor->isImplicit() ? 1 : 0) |
9964 | 0 | << S.Context.getTypeDeclType(Constructor->getParent()) |
9965 | 0 | << /*const=*/1 |
9966 | 0 | << Entity.getName(); |
9967 | 0 | S.Diag(Entity.getDecl()->getLocation(), diag::note_previous_decl) |
9968 | 0 | << Entity.getName(); |
9969 | 0 | } else if (const auto *VD = dyn_cast_if_present<VarDecl>(Entity.getDecl()); |
9970 | 0 | VD && VD->isConstexpr()) { |
9971 | 0 | S.Diag(Kind.getLocation(), diag::err_constexpr_var_requires_const_init) |
9972 | 0 | << VD; |
9973 | 0 | } else { |
9974 | 0 | S.Diag(Kind.getLocation(), diag::err_default_init_const) |
9975 | 0 | << DestType << (bool)DestType->getAs<RecordType>(); |
9976 | 0 | } |
9977 | 0 | break; |
9978 | | |
9979 | 0 | case FK_Incomplete: |
9980 | 0 | S.RequireCompleteType(Kind.getLocation(), FailedIncompleteType, |
9981 | 0 | diag::err_init_incomplete_type); |
9982 | 0 | break; |
9983 | | |
9984 | 0 | case FK_ListInitializationFailed: { |
9985 | | // Run the init list checker again to emit diagnostics. |
9986 | 0 | InitListExpr *InitList = cast<InitListExpr>(Args[0]); |
9987 | 0 | diagnoseListInit(S, Entity, InitList); |
9988 | 0 | break; |
9989 | 0 | } |
9990 | | |
9991 | 0 | case FK_PlaceholderType: { |
9992 | | // FIXME: Already diagnosed! |
9993 | 0 | break; |
9994 | 0 | } |
9995 | | |
9996 | 0 | case FK_ExplicitConstructor: { |
9997 | 0 | S.Diag(Kind.getLocation(), diag::err_selected_explicit_constructor) |
9998 | 0 | << Args[0]->getSourceRange(); |
9999 | 0 | OverloadCandidateSet::iterator Best; |
10000 | 0 | OverloadingResult Ovl |
10001 | 0 | = FailedCandidateSet.BestViableFunction(S, Kind.getLocation(), Best); |
10002 | 0 | (void)Ovl; |
10003 | 0 | assert(Ovl == OR_Success && "Inconsistent overload resolution"); |
10004 | 0 | CXXConstructorDecl *CtorDecl = cast<CXXConstructorDecl>(Best->Function); |
10005 | 0 | S.Diag(CtorDecl->getLocation(), |
10006 | 0 | diag::note_explicit_ctor_deduction_guide_here) << false; |
10007 | 0 | break; |
10008 | 0 | } |
10009 | | |
10010 | 0 | case FK_ParenthesizedListInitFailed: |
10011 | 0 | TryOrBuildParenListInitialization(S, Entity, Kind, Args, *this, |
10012 | 0 | /*VerifyOnly=*/false); |
10013 | 0 | break; |
10014 | | |
10015 | 0 | case FK_DesignatedInitForNonAggregate: |
10016 | 0 | InitListExpr *InitList = cast<InitListExpr>(Args[0]); |
10017 | 0 | S.Diag(Kind.getLocation(), diag::err_designated_init_for_non_aggregate) |
10018 | 0 | << Entity.getType() << InitList->getSourceRange(); |
10019 | 0 | break; |
10020 | 0 | } |
10021 | | |
10022 | 0 | PrintInitLocationNote(S, Entity); |
10023 | 0 | return true; |
10024 | 0 | } |
10025 | | |
10026 | 0 | void InitializationSequence::dump(raw_ostream &OS) const { |
10027 | 0 | switch (SequenceKind) { |
10028 | 0 | case FailedSequence: { |
10029 | 0 | OS << "Failed sequence: "; |
10030 | 0 | switch (Failure) { |
10031 | 0 | case FK_TooManyInitsForReference: |
10032 | 0 | OS << "too many initializers for reference"; |
10033 | 0 | break; |
10034 | | |
10035 | 0 | case FK_ParenthesizedListInitForReference: |
10036 | 0 | OS << "parenthesized list init for reference"; |
10037 | 0 | break; |
10038 | | |
10039 | 0 | case FK_ArrayNeedsInitList: |
10040 | 0 | OS << "array requires initializer list"; |
10041 | 0 | break; |
10042 | | |
10043 | 0 | case FK_AddressOfUnaddressableFunction: |
10044 | 0 | OS << "address of unaddressable function was taken"; |
10045 | 0 | break; |
10046 | | |
10047 | 0 | case FK_ArrayNeedsInitListOrStringLiteral: |
10048 | 0 | OS << "array requires initializer list or string literal"; |
10049 | 0 | break; |
10050 | | |
10051 | 0 | case FK_ArrayNeedsInitListOrWideStringLiteral: |
10052 | 0 | OS << "array requires initializer list or wide string literal"; |
10053 | 0 | break; |
10054 | | |
10055 | 0 | case FK_NarrowStringIntoWideCharArray: |
10056 | 0 | OS << "narrow string into wide char array"; |
10057 | 0 | break; |
10058 | | |
10059 | 0 | case FK_WideStringIntoCharArray: |
10060 | 0 | OS << "wide string into char array"; |
10061 | 0 | break; |
10062 | | |
10063 | 0 | case FK_IncompatWideStringIntoWideChar: |
10064 | 0 | OS << "incompatible wide string into wide char array"; |
10065 | 0 | break; |
10066 | | |
10067 | 0 | case FK_PlainStringIntoUTF8Char: |
10068 | 0 | OS << "plain string literal into char8_t array"; |
10069 | 0 | break; |
10070 | | |
10071 | 0 | case FK_UTF8StringIntoPlainChar: |
10072 | 0 | OS << "u8 string literal into char array"; |
10073 | 0 | break; |
10074 | | |
10075 | 0 | case FK_ArrayTypeMismatch: |
10076 | 0 | OS << "array type mismatch"; |
10077 | 0 | break; |
10078 | | |
10079 | 0 | case FK_NonConstantArrayInit: |
10080 | 0 | OS << "non-constant array initializer"; |
10081 | 0 | break; |
10082 | | |
10083 | 0 | case FK_AddressOfOverloadFailed: |
10084 | 0 | OS << "address of overloaded function failed"; |
10085 | 0 | break; |
10086 | | |
10087 | 0 | case FK_ReferenceInitOverloadFailed: |
10088 | 0 | OS << "overload resolution for reference initialization failed"; |
10089 | 0 | break; |
10090 | | |
10091 | 0 | case FK_NonConstLValueReferenceBindingToTemporary: |
10092 | 0 | OS << "non-const lvalue reference bound to temporary"; |
10093 | 0 | break; |
10094 | | |
10095 | 0 | case FK_NonConstLValueReferenceBindingToBitfield: |
10096 | 0 | OS << "non-const lvalue reference bound to bit-field"; |
10097 | 0 | break; |
10098 | | |
10099 | 0 | case FK_NonConstLValueReferenceBindingToVectorElement: |
10100 | 0 | OS << "non-const lvalue reference bound to vector element"; |
10101 | 0 | break; |
10102 | | |
10103 | 0 | case FK_NonConstLValueReferenceBindingToMatrixElement: |
10104 | 0 | OS << "non-const lvalue reference bound to matrix element"; |
10105 | 0 | break; |
10106 | | |
10107 | 0 | case FK_NonConstLValueReferenceBindingToUnrelated: |
10108 | 0 | OS << "non-const lvalue reference bound to unrelated type"; |
10109 | 0 | break; |
10110 | | |
10111 | 0 | case FK_RValueReferenceBindingToLValue: |
10112 | 0 | OS << "rvalue reference bound to an lvalue"; |
10113 | 0 | break; |
10114 | | |
10115 | 0 | case FK_ReferenceInitDropsQualifiers: |
10116 | 0 | OS << "reference initialization drops qualifiers"; |
10117 | 0 | break; |
10118 | | |
10119 | 0 | case FK_ReferenceAddrspaceMismatchTemporary: |
10120 | 0 | OS << "reference with mismatching address space bound to temporary"; |
10121 | 0 | break; |
10122 | | |
10123 | 0 | case FK_ReferenceInitFailed: |
10124 | 0 | OS << "reference initialization failed"; |
10125 | 0 | break; |
10126 | | |
10127 | 0 | case FK_ConversionFailed: |
10128 | 0 | OS << "conversion failed"; |
10129 | 0 | break; |
10130 | | |
10131 | 0 | case FK_ConversionFromPropertyFailed: |
10132 | 0 | OS << "conversion from property failed"; |
10133 | 0 | break; |
10134 | | |
10135 | 0 | case FK_TooManyInitsForScalar: |
10136 | 0 | OS << "too many initializers for scalar"; |
10137 | 0 | break; |
10138 | | |
10139 | 0 | case FK_ParenthesizedListInitForScalar: |
10140 | 0 | OS << "parenthesized list init for reference"; |
10141 | 0 | break; |
10142 | | |
10143 | 0 | case FK_ReferenceBindingToInitList: |
10144 | 0 | OS << "referencing binding to initializer list"; |
10145 | 0 | break; |
10146 | | |
10147 | 0 | case FK_InitListBadDestinationType: |
10148 | 0 | OS << "initializer list for non-aggregate, non-scalar type"; |
10149 | 0 | break; |
10150 | | |
10151 | 0 | case FK_UserConversionOverloadFailed: |
10152 | 0 | OS << "overloading failed for user-defined conversion"; |
10153 | 0 | break; |
10154 | | |
10155 | 0 | case FK_ConstructorOverloadFailed: |
10156 | 0 | OS << "constructor overloading failed"; |
10157 | 0 | break; |
10158 | | |
10159 | 0 | case FK_DefaultInitOfConst: |
10160 | 0 | OS << "default initialization of a const variable"; |
10161 | 0 | break; |
10162 | | |
10163 | 0 | case FK_Incomplete: |
10164 | 0 | OS << "initialization of incomplete type"; |
10165 | 0 | break; |
10166 | | |
10167 | 0 | case FK_ListInitializationFailed: |
10168 | 0 | OS << "list initialization checker failure"; |
10169 | 0 | break; |
10170 | | |
10171 | 0 | case FK_VariableLengthArrayHasInitializer: |
10172 | 0 | OS << "variable length array has an initializer"; |
10173 | 0 | break; |
10174 | | |
10175 | 0 | case FK_PlaceholderType: |
10176 | 0 | OS << "initializer expression isn't contextually valid"; |
10177 | 0 | break; |
10178 | | |
10179 | 0 | case FK_ListConstructorOverloadFailed: |
10180 | 0 | OS << "list constructor overloading failed"; |
10181 | 0 | break; |
10182 | | |
10183 | 0 | case FK_ExplicitConstructor: |
10184 | 0 | OS << "list copy initialization chose explicit constructor"; |
10185 | 0 | break; |
10186 | | |
10187 | 0 | case FK_ParenthesizedListInitFailed: |
10188 | 0 | OS << "parenthesized list initialization failed"; |
10189 | 0 | break; |
10190 | | |
10191 | 0 | case FK_DesignatedInitForNonAggregate: |
10192 | 0 | OS << "designated initializer for non-aggregate type"; |
10193 | 0 | break; |
10194 | 0 | } |
10195 | 0 | OS << '\n'; |
10196 | 0 | return; |
10197 | 0 | } |
10198 | | |
10199 | 0 | case DependentSequence: |
10200 | 0 | OS << "Dependent sequence\n"; |
10201 | 0 | return; |
10202 | | |
10203 | 0 | case NormalSequence: |
10204 | 0 | OS << "Normal sequence: "; |
10205 | 0 | break; |
10206 | 0 | } |
10207 | | |
10208 | 0 | for (step_iterator S = step_begin(), SEnd = step_end(); S != SEnd; ++S) { |
10209 | 0 | if (S != step_begin()) { |
10210 | 0 | OS << " -> "; |
10211 | 0 | } |
10212 | |
|
10213 | 0 | switch (S->Kind) { |
10214 | 0 | case SK_ResolveAddressOfOverloadedFunction: |
10215 | 0 | OS << "resolve address of overloaded function"; |
10216 | 0 | break; |
10217 | | |
10218 | 0 | case SK_CastDerivedToBasePRValue: |
10219 | 0 | OS << "derived-to-base (prvalue)"; |
10220 | 0 | break; |
10221 | | |
10222 | 0 | case SK_CastDerivedToBaseXValue: |
10223 | 0 | OS << "derived-to-base (xvalue)"; |
10224 | 0 | break; |
10225 | | |
10226 | 0 | case SK_CastDerivedToBaseLValue: |
10227 | 0 | OS << "derived-to-base (lvalue)"; |
10228 | 0 | break; |
10229 | | |
10230 | 0 | case SK_BindReference: |
10231 | 0 | OS << "bind reference to lvalue"; |
10232 | 0 | break; |
10233 | | |
10234 | 0 | case SK_BindReferenceToTemporary: |
10235 | 0 | OS << "bind reference to a temporary"; |
10236 | 0 | break; |
10237 | | |
10238 | 0 | case SK_FinalCopy: |
10239 | 0 | OS << "final copy in class direct-initialization"; |
10240 | 0 | break; |
10241 | | |
10242 | 0 | case SK_ExtraneousCopyToTemporary: |
10243 | 0 | OS << "extraneous C++03 copy to temporary"; |
10244 | 0 | break; |
10245 | | |
10246 | 0 | case SK_UserConversion: |
10247 | 0 | OS << "user-defined conversion via " << *S->Function.Function; |
10248 | 0 | break; |
10249 | | |
10250 | 0 | case SK_QualificationConversionPRValue: |
10251 | 0 | OS << "qualification conversion (prvalue)"; |
10252 | 0 | break; |
10253 | | |
10254 | 0 | case SK_QualificationConversionXValue: |
10255 | 0 | OS << "qualification conversion (xvalue)"; |
10256 | 0 | break; |
10257 | | |
10258 | 0 | case SK_QualificationConversionLValue: |
10259 | 0 | OS << "qualification conversion (lvalue)"; |
10260 | 0 | break; |
10261 | | |
10262 | 0 | case SK_FunctionReferenceConversion: |
10263 | 0 | OS << "function reference conversion"; |
10264 | 0 | break; |
10265 | | |
10266 | 0 | case SK_AtomicConversion: |
10267 | 0 | OS << "non-atomic-to-atomic conversion"; |
10268 | 0 | break; |
10269 | | |
10270 | 0 | case SK_ConversionSequence: |
10271 | 0 | OS << "implicit conversion sequence ("; |
10272 | 0 | S->ICS->dump(); // FIXME: use OS |
10273 | 0 | OS << ")"; |
10274 | 0 | break; |
10275 | | |
10276 | 0 | case SK_ConversionSequenceNoNarrowing: |
10277 | 0 | OS << "implicit conversion sequence with narrowing prohibited ("; |
10278 | 0 | S->ICS->dump(); // FIXME: use OS |
10279 | 0 | OS << ")"; |
10280 | 0 | break; |
10281 | | |
10282 | 0 | case SK_ListInitialization: |
10283 | 0 | OS << "list aggregate initialization"; |
10284 | 0 | break; |
10285 | | |
10286 | 0 | case SK_UnwrapInitList: |
10287 | 0 | OS << "unwrap reference initializer list"; |
10288 | 0 | break; |
10289 | | |
10290 | 0 | case SK_RewrapInitList: |
10291 | 0 | OS << "rewrap reference initializer list"; |
10292 | 0 | break; |
10293 | | |
10294 | 0 | case SK_ConstructorInitialization: |
10295 | 0 | OS << "constructor initialization"; |
10296 | 0 | break; |
10297 | | |
10298 | 0 | case SK_ConstructorInitializationFromList: |
10299 | 0 | OS << "list initialization via constructor"; |
10300 | 0 | break; |
10301 | | |
10302 | 0 | case SK_ZeroInitialization: |
10303 | 0 | OS << "zero initialization"; |
10304 | 0 | break; |
10305 | | |
10306 | 0 | case SK_CAssignment: |
10307 | 0 | OS << "C assignment"; |
10308 | 0 | break; |
10309 | | |
10310 | 0 | case SK_StringInit: |
10311 | 0 | OS << "string initialization"; |
10312 | 0 | break; |
10313 | | |
10314 | 0 | case SK_ObjCObjectConversion: |
10315 | 0 | OS << "Objective-C object conversion"; |
10316 | 0 | break; |
10317 | | |
10318 | 0 | case SK_ArrayLoopIndex: |
10319 | 0 | OS << "indexing for array initialization loop"; |
10320 | 0 | break; |
10321 | | |
10322 | 0 | case SK_ArrayLoopInit: |
10323 | 0 | OS << "array initialization loop"; |
10324 | 0 | break; |
10325 | | |
10326 | 0 | case SK_ArrayInit: |
10327 | 0 | OS << "array initialization"; |
10328 | 0 | break; |
10329 | | |
10330 | 0 | case SK_GNUArrayInit: |
10331 | 0 | OS << "array initialization (GNU extension)"; |
10332 | 0 | break; |
10333 | | |
10334 | 0 | case SK_ParenthesizedArrayInit: |
10335 | 0 | OS << "parenthesized array initialization"; |
10336 | 0 | break; |
10337 | | |
10338 | 0 | case SK_PassByIndirectCopyRestore: |
10339 | 0 | OS << "pass by indirect copy and restore"; |
10340 | 0 | break; |
10341 | | |
10342 | 0 | case SK_PassByIndirectRestore: |
10343 | 0 | OS << "pass by indirect restore"; |
10344 | 0 | break; |
10345 | | |
10346 | 0 | case SK_ProduceObjCObject: |
10347 | 0 | OS << "Objective-C object retension"; |
10348 | 0 | break; |
10349 | | |
10350 | 0 | case SK_StdInitializerList: |
10351 | 0 | OS << "std::initializer_list from initializer list"; |
10352 | 0 | break; |
10353 | | |
10354 | 0 | case SK_StdInitializerListConstructorCall: |
10355 | 0 | OS << "list initialization from std::initializer_list"; |
10356 | 0 | break; |
10357 | | |
10358 | 0 | case SK_OCLSamplerInit: |
10359 | 0 | OS << "OpenCL sampler_t from integer constant"; |
10360 | 0 | break; |
10361 | | |
10362 | 0 | case SK_OCLZeroOpaqueType: |
10363 | 0 | OS << "OpenCL opaque type from zero"; |
10364 | 0 | break; |
10365 | 0 | case SK_ParenthesizedListInit: |
10366 | 0 | OS << "initialization from a parenthesized list of values"; |
10367 | 0 | break; |
10368 | 0 | } |
10369 | | |
10370 | 0 | OS << " [" << S->Type << ']'; |
10371 | 0 | } |
10372 | | |
10373 | 0 | OS << '\n'; |
10374 | 0 | } |
10375 | | |
10376 | 0 | void InitializationSequence::dump() const { |
10377 | 0 | dump(llvm::errs()); |
10378 | 0 | } |
10379 | | |
10380 | | static void DiagnoseNarrowingInInitList(Sema &S, |
10381 | | const ImplicitConversionSequence &ICS, |
10382 | | QualType PreNarrowingType, |
10383 | | QualType EntityType, |
10384 | 0 | const Expr *PostInit) { |
10385 | 0 | const StandardConversionSequence *SCS = nullptr; |
10386 | 0 | switch (ICS.getKind()) { |
10387 | 0 | case ImplicitConversionSequence::StandardConversion: |
10388 | 0 | SCS = &ICS.Standard; |
10389 | 0 | break; |
10390 | 0 | case ImplicitConversionSequence::UserDefinedConversion: |
10391 | 0 | SCS = &ICS.UserDefined.After; |
10392 | 0 | break; |
10393 | 0 | case ImplicitConversionSequence::AmbiguousConversion: |
10394 | 0 | case ImplicitConversionSequence::StaticObjectArgumentConversion: |
10395 | 0 | case ImplicitConversionSequence::EllipsisConversion: |
10396 | 0 | case ImplicitConversionSequence::BadConversion: |
10397 | 0 | return; |
10398 | 0 | } |
10399 | | |
10400 | 0 | auto MakeDiag = [&](bool IsConstRef, unsigned DefaultDiagID, |
10401 | 0 | unsigned ConstRefDiagID, unsigned WarnDiagID) { |
10402 | 0 | unsigned DiagID; |
10403 | 0 | auto &L = S.getLangOpts(); |
10404 | 0 | if (L.CPlusPlus11 && |
10405 | 0 | (!L.MicrosoftExt || L.isCompatibleWithMSVC(LangOptions::MSVC2015))) |
10406 | 0 | DiagID = IsConstRef ? ConstRefDiagID : DefaultDiagID; |
10407 | 0 | else |
10408 | 0 | DiagID = WarnDiagID; |
10409 | 0 | return S.Diag(PostInit->getBeginLoc(), DiagID) |
10410 | 0 | << PostInit->getSourceRange(); |
10411 | 0 | }; |
10412 | | |
10413 | | // C++11 [dcl.init.list]p7: Check whether this is a narrowing conversion. |
10414 | 0 | APValue ConstantValue; |
10415 | 0 | QualType ConstantType; |
10416 | 0 | switch (SCS->getNarrowingKind(S.Context, PostInit, ConstantValue, |
10417 | 0 | ConstantType)) { |
10418 | 0 | case NK_Not_Narrowing: |
10419 | 0 | case NK_Dependent_Narrowing: |
10420 | | // No narrowing occurred. |
10421 | 0 | return; |
10422 | | |
10423 | 0 | case NK_Type_Narrowing: { |
10424 | | // This was a floating-to-integer conversion, which is always considered a |
10425 | | // narrowing conversion even if the value is a constant and can be |
10426 | | // represented exactly as an integer. |
10427 | 0 | QualType T = EntityType.getNonReferenceType(); |
10428 | 0 | MakeDiag(T != EntityType, diag::ext_init_list_type_narrowing, |
10429 | 0 | diag::ext_init_list_type_narrowing_const_reference, |
10430 | 0 | diag::warn_init_list_type_narrowing) |
10431 | 0 | << PreNarrowingType.getLocalUnqualifiedType() |
10432 | 0 | << T.getLocalUnqualifiedType(); |
10433 | 0 | break; |
10434 | 0 | } |
10435 | | |
10436 | 0 | case NK_Constant_Narrowing: { |
10437 | | // A constant value was narrowed. |
10438 | 0 | MakeDiag(EntityType.getNonReferenceType() != EntityType, |
10439 | 0 | diag::ext_init_list_constant_narrowing, |
10440 | 0 | diag::ext_init_list_constant_narrowing_const_reference, |
10441 | 0 | diag::warn_init_list_constant_narrowing) |
10442 | 0 | << ConstantValue.getAsString(S.getASTContext(), ConstantType) |
10443 | 0 | << EntityType.getNonReferenceType().getLocalUnqualifiedType(); |
10444 | 0 | break; |
10445 | 0 | } |
10446 | | |
10447 | 0 | case NK_Variable_Narrowing: { |
10448 | | // A variable's value may have been narrowed. |
10449 | 0 | MakeDiag(EntityType.getNonReferenceType() != EntityType, |
10450 | 0 | diag::ext_init_list_variable_narrowing, |
10451 | 0 | diag::ext_init_list_variable_narrowing_const_reference, |
10452 | 0 | diag::warn_init_list_variable_narrowing) |
10453 | 0 | << PreNarrowingType.getLocalUnqualifiedType() |
10454 | 0 | << EntityType.getNonReferenceType().getLocalUnqualifiedType(); |
10455 | 0 | break; |
10456 | 0 | } |
10457 | 0 | } |
10458 | | |
10459 | 0 | SmallString<128> StaticCast; |
10460 | 0 | llvm::raw_svector_ostream OS(StaticCast); |
10461 | 0 | OS << "static_cast<"; |
10462 | 0 | if (const TypedefType *TT = EntityType->getAs<TypedefType>()) { |
10463 | | // It's important to use the typedef's name if there is one so that the |
10464 | | // fixit doesn't break code using types like int64_t. |
10465 | | // |
10466 | | // FIXME: This will break if the typedef requires qualification. But |
10467 | | // getQualifiedNameAsString() includes non-machine-parsable components. |
10468 | 0 | OS << *TT->getDecl(); |
10469 | 0 | } else if (const BuiltinType *BT = EntityType->getAs<BuiltinType>()) |
10470 | 0 | OS << BT->getName(S.getLangOpts()); |
10471 | 0 | else { |
10472 | | // Oops, we didn't find the actual type of the variable. Don't emit a fixit |
10473 | | // with a broken cast. |
10474 | 0 | return; |
10475 | 0 | } |
10476 | 0 | OS << ">("; |
10477 | 0 | S.Diag(PostInit->getBeginLoc(), diag::note_init_list_narrowing_silence) |
10478 | 0 | << PostInit->getSourceRange() |
10479 | 0 | << FixItHint::CreateInsertion(PostInit->getBeginLoc(), OS.str()) |
10480 | 0 | << FixItHint::CreateInsertion( |
10481 | 0 | S.getLocForEndOfToken(PostInit->getEndLoc()), ")"); |
10482 | 0 | } |
10483 | | |
10484 | | //===----------------------------------------------------------------------===// |
10485 | | // Initialization helper functions |
10486 | | //===----------------------------------------------------------------------===// |
10487 | | bool |
10488 | | Sema::CanPerformCopyInitialization(const InitializedEntity &Entity, |
10489 | 0 | ExprResult Init) { |
10490 | 0 | if (Init.isInvalid()) |
10491 | 0 | return false; |
10492 | | |
10493 | 0 | Expr *InitE = Init.get(); |
10494 | 0 | assert(InitE && "No initialization expression"); |
10495 | | |
10496 | 0 | InitializationKind Kind = |
10497 | 0 | InitializationKind::CreateCopy(InitE->getBeginLoc(), SourceLocation()); |
10498 | 0 | InitializationSequence Seq(*this, Entity, Kind, InitE); |
10499 | 0 | return !Seq.Failed(); |
10500 | 0 | } |
10501 | | |
10502 | | ExprResult |
10503 | | Sema::PerformCopyInitialization(const InitializedEntity &Entity, |
10504 | | SourceLocation EqualLoc, |
10505 | | ExprResult Init, |
10506 | | bool TopLevelOfInitList, |
10507 | 0 | bool AllowExplicit) { |
10508 | 0 | if (Init.isInvalid()) |
10509 | 0 | return ExprError(); |
10510 | | |
10511 | 0 | Expr *InitE = Init.get(); |
10512 | 0 | assert(InitE && "No initialization expression?"); |
10513 | | |
10514 | 0 | if (EqualLoc.isInvalid()) |
10515 | 0 | EqualLoc = InitE->getBeginLoc(); |
10516 | |
|
10517 | 0 | InitializationKind Kind = InitializationKind::CreateCopy( |
10518 | 0 | InitE->getBeginLoc(), EqualLoc, AllowExplicit); |
10519 | 0 | InitializationSequence Seq(*this, Entity, Kind, InitE, TopLevelOfInitList); |
10520 | | |
10521 | | // Prevent infinite recursion when performing parameter copy-initialization. |
10522 | 0 | const bool ShouldTrackCopy = |
10523 | 0 | Entity.isParameterKind() && Seq.isConstructorInitialization(); |
10524 | 0 | if (ShouldTrackCopy) { |
10525 | 0 | if (llvm::is_contained(CurrentParameterCopyTypes, Entity.getType())) { |
10526 | 0 | Seq.SetOverloadFailure( |
10527 | 0 | InitializationSequence::FK_ConstructorOverloadFailed, |
10528 | 0 | OR_No_Viable_Function); |
10529 | | |
10530 | | // Try to give a meaningful diagnostic note for the problematic |
10531 | | // constructor. |
10532 | 0 | const auto LastStep = Seq.step_end() - 1; |
10533 | 0 | assert(LastStep->Kind == |
10534 | 0 | InitializationSequence::SK_ConstructorInitialization); |
10535 | 0 | const FunctionDecl *Function = LastStep->Function.Function; |
10536 | 0 | auto Candidate = |
10537 | 0 | llvm::find_if(Seq.getFailedCandidateSet(), |
10538 | 0 | [Function](const OverloadCandidate &Candidate) -> bool { |
10539 | 0 | return Candidate.Viable && |
10540 | 0 | Candidate.Function == Function && |
10541 | 0 | Candidate.Conversions.size() > 0; |
10542 | 0 | }); |
10543 | 0 | if (Candidate != Seq.getFailedCandidateSet().end() && |
10544 | 0 | Function->getNumParams() > 0) { |
10545 | 0 | Candidate->Viable = false; |
10546 | 0 | Candidate->FailureKind = ovl_fail_bad_conversion; |
10547 | 0 | Candidate->Conversions[0].setBad(BadConversionSequence::no_conversion, |
10548 | 0 | InitE, |
10549 | 0 | Function->getParamDecl(0)->getType()); |
10550 | 0 | } |
10551 | 0 | } |
10552 | 0 | CurrentParameterCopyTypes.push_back(Entity.getType()); |
10553 | 0 | } |
10554 | | |
10555 | 0 | ExprResult Result = Seq.Perform(*this, Entity, Kind, InitE); |
10556 | |
|
10557 | 0 | if (ShouldTrackCopy) |
10558 | 0 | CurrentParameterCopyTypes.pop_back(); |
10559 | |
|
10560 | 0 | return Result; |
10561 | 0 | } |
10562 | | |
10563 | | /// Determine whether RD is, or is derived from, a specialization of CTD. |
10564 | | static bool isOrIsDerivedFromSpecializationOf(CXXRecordDecl *RD, |
10565 | 0 | ClassTemplateDecl *CTD) { |
10566 | 0 | auto NotSpecialization = [&] (const CXXRecordDecl *Candidate) { |
10567 | 0 | auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(Candidate); |
10568 | 0 | return !CTSD || !declaresSameEntity(CTSD->getSpecializedTemplate(), CTD); |
10569 | 0 | }; |
10570 | 0 | return !(NotSpecialization(RD) && RD->forallBases(NotSpecialization)); |
10571 | 0 | } |
10572 | | |
10573 | | QualType Sema::DeduceTemplateSpecializationFromInitializer( |
10574 | | TypeSourceInfo *TSInfo, const InitializedEntity &Entity, |
10575 | 0 | const InitializationKind &Kind, MultiExprArg Inits) { |
10576 | 0 | auto *DeducedTST = dyn_cast<DeducedTemplateSpecializationType>( |
10577 | 0 | TSInfo->getType()->getContainedDeducedType()); |
10578 | 0 | assert(DeducedTST && "not a deduced template specialization type"); |
10579 | | |
10580 | 0 | auto TemplateName = DeducedTST->getTemplateName(); |
10581 | 0 | if (TemplateName.isDependent()) |
10582 | 0 | return SubstAutoTypeDependent(TSInfo->getType()); |
10583 | | |
10584 | | // We can only perform deduction for class templates. |
10585 | 0 | auto *Template = |
10586 | 0 | dyn_cast_or_null<ClassTemplateDecl>(TemplateName.getAsTemplateDecl()); |
10587 | 0 | if (!Template) { |
10588 | 0 | Diag(Kind.getLocation(), |
10589 | 0 | diag::err_deduced_non_class_template_specialization_type) |
10590 | 0 | << (int)getTemplateNameKindForDiagnostics(TemplateName) << TemplateName; |
10591 | 0 | if (auto *TD = TemplateName.getAsTemplateDecl()) |
10592 | 0 | NoteTemplateLocation(*TD); |
10593 | 0 | return QualType(); |
10594 | 0 | } |
10595 | | |
10596 | | // Can't deduce from dependent arguments. |
10597 | 0 | if (Expr::hasAnyTypeDependentArguments(Inits)) { |
10598 | 0 | Diag(TSInfo->getTypeLoc().getBeginLoc(), |
10599 | 0 | diag::warn_cxx14_compat_class_template_argument_deduction) |
10600 | 0 | << TSInfo->getTypeLoc().getSourceRange() << 0; |
10601 | 0 | return SubstAutoTypeDependent(TSInfo->getType()); |
10602 | 0 | } |
10603 | | |
10604 | | // FIXME: Perform "exact type" matching first, per CWG discussion? |
10605 | | // Or implement this via an implied 'T(T) -> T' deduction guide? |
10606 | | |
10607 | | // FIXME: Do we need/want a std::initializer_list<T> special case? |
10608 | | |
10609 | | // Look up deduction guides, including those synthesized from constructors. |
10610 | | // |
10611 | | // C++1z [over.match.class.deduct]p1: |
10612 | | // A set of functions and function templates is formed comprising: |
10613 | | // - For each constructor of the class template designated by the |
10614 | | // template-name, a function template [...] |
10615 | | // - For each deduction-guide, a function or function template [...] |
10616 | 0 | DeclarationNameInfo NameInfo( |
10617 | 0 | Context.DeclarationNames.getCXXDeductionGuideName(Template), |
10618 | 0 | TSInfo->getTypeLoc().getEndLoc()); |
10619 | 0 | LookupResult Guides(*this, NameInfo, LookupOrdinaryName); |
10620 | 0 | LookupQualifiedName(Guides, Template->getDeclContext()); |
10621 | | |
10622 | | // FIXME: Do not diagnose inaccessible deduction guides. The standard isn't |
10623 | | // clear on this, but they're not found by name so access does not apply. |
10624 | 0 | Guides.suppressDiagnostics(); |
10625 | | |
10626 | | // Figure out if this is list-initialization. |
10627 | 0 | InitListExpr *ListInit = |
10628 | 0 | (Inits.size() == 1 && Kind.getKind() != InitializationKind::IK_Direct) |
10629 | 0 | ? dyn_cast<InitListExpr>(Inits[0]) |
10630 | 0 | : nullptr; |
10631 | | |
10632 | | // C++1z [over.match.class.deduct]p1: |
10633 | | // Initialization and overload resolution are performed as described in |
10634 | | // [dcl.init] and [over.match.ctor], [over.match.copy], or [over.match.list] |
10635 | | // (as appropriate for the type of initialization performed) for an object |
10636 | | // of a hypothetical class type, where the selected functions and function |
10637 | | // templates are considered to be the constructors of that class type |
10638 | | // |
10639 | | // Since we know we're initializing a class type of a type unrelated to that |
10640 | | // of the initializer, this reduces to something fairly reasonable. |
10641 | 0 | OverloadCandidateSet Candidates(Kind.getLocation(), |
10642 | 0 | OverloadCandidateSet::CSK_Normal); |
10643 | 0 | OverloadCandidateSet::iterator Best; |
10644 | |
|
10645 | 0 | bool AllowExplicit = !Kind.isCopyInit() || ListInit; |
10646 | | |
10647 | | // Return true if the candidate is added successfully, false otherwise. |
10648 | 0 | auto addDeductionCandidate = [&](FunctionTemplateDecl *TD, |
10649 | 0 | CXXDeductionGuideDecl *GD, |
10650 | 0 | DeclAccessPair FoundDecl, |
10651 | 0 | bool OnlyListConstructors, |
10652 | 0 | bool AllowAggregateDeductionCandidate) { |
10653 | | // C++ [over.match.ctor]p1: (non-list copy-initialization from non-class) |
10654 | | // For copy-initialization, the candidate functions are all the |
10655 | | // converting constructors (12.3.1) of that class. |
10656 | | // C++ [over.match.copy]p1: (non-list copy-initialization from class) |
10657 | | // The converting constructors of T are candidate functions. |
10658 | 0 | if (!AllowExplicit) { |
10659 | | // Overload resolution checks whether the deduction guide is declared |
10660 | | // explicit for us. |
10661 | | |
10662 | | // When looking for a converting constructor, deduction guides that |
10663 | | // could never be called with one argument are not interesting to |
10664 | | // check or note. |
10665 | 0 | if (GD->getMinRequiredArguments() > 1 || |
10666 | 0 | (GD->getNumParams() == 0 && !GD->isVariadic())) |
10667 | 0 | return; |
10668 | 0 | } |
10669 | | |
10670 | | // C++ [over.match.list]p1.1: (first phase list initialization) |
10671 | | // Initially, the candidate functions are the initializer-list |
10672 | | // constructors of the class T |
10673 | 0 | if (OnlyListConstructors && !isInitListConstructor(GD)) |
10674 | 0 | return; |
10675 | | |
10676 | 0 | if (!AllowAggregateDeductionCandidate && |
10677 | 0 | GD->getDeductionCandidateKind() == DeductionCandidate::Aggregate) |
10678 | 0 | return; |
10679 | | |
10680 | | // C++ [over.match.list]p1.2: (second phase list initialization) |
10681 | | // the candidate functions are all the constructors of the class T |
10682 | | // C++ [over.match.ctor]p1: (all other cases) |
10683 | | // the candidate functions are all the constructors of the class of |
10684 | | // the object being initialized |
10685 | | |
10686 | | // C++ [over.best.ics]p4: |
10687 | | // When [...] the constructor [...] is a candidate by |
10688 | | // - [over.match.copy] (in all cases) |
10689 | | // FIXME: The "second phase of [over.match.list] case can also |
10690 | | // theoretically happen here, but it's not clear whether we can |
10691 | | // ever have a parameter of the right type. |
10692 | 0 | bool SuppressUserConversions = Kind.isCopyInit(); |
10693 | |
|
10694 | 0 | if (TD) { |
10695 | 0 | SmallVector<Expr *, 8> TmpInits; |
10696 | 0 | for (Expr *E : Inits) |
10697 | 0 | if (auto *DI = dyn_cast<DesignatedInitExpr>(E)) |
10698 | 0 | TmpInits.push_back(DI->getInit()); |
10699 | 0 | else |
10700 | 0 | TmpInits.push_back(E); |
10701 | 0 | AddTemplateOverloadCandidate( |
10702 | 0 | TD, FoundDecl, /*ExplicitArgs=*/nullptr, TmpInits, Candidates, |
10703 | 0 | SuppressUserConversions, |
10704 | 0 | /*PartialOverloading=*/false, AllowExplicit, ADLCallKind::NotADL, |
10705 | 0 | /*PO=*/{}, AllowAggregateDeductionCandidate); |
10706 | 0 | } else { |
10707 | 0 | AddOverloadCandidate(GD, FoundDecl, Inits, Candidates, |
10708 | 0 | SuppressUserConversions, |
10709 | 0 | /*PartialOverloading=*/false, AllowExplicit); |
10710 | 0 | } |
10711 | 0 | }; |
10712 | |
|
10713 | 0 | bool FoundDeductionGuide = false; |
10714 | |
|
10715 | 0 | auto TryToResolveOverload = |
10716 | 0 | [&](bool OnlyListConstructors) -> OverloadingResult { |
10717 | 0 | Candidates.clear(OverloadCandidateSet::CSK_Normal); |
10718 | 0 | bool HasAnyDeductionGuide = false; |
10719 | |
|
10720 | 0 | auto SynthesizeAggrGuide = [&](InitListExpr *ListInit) { |
10721 | 0 | auto *RD = cast<CXXRecordDecl>(Template->getTemplatedDecl()); |
10722 | 0 | if (!(RD->getDefinition() && RD->isAggregate())) |
10723 | 0 | return; |
10724 | 0 | QualType Ty = Context.getRecordType(RD); |
10725 | 0 | SmallVector<QualType, 8> ElementTypes; |
10726 | |
|
10727 | 0 | InitListChecker CheckInitList(*this, Entity, ListInit, Ty, ElementTypes); |
10728 | 0 | if (!CheckInitList.HadError()) { |
10729 | | // C++ [over.match.class.deduct]p1.8: |
10730 | | // if e_i is of array type and x_i is a braced-init-list, T_i is an |
10731 | | // rvalue reference to the declared type of e_i and |
10732 | | // C++ [over.match.class.deduct]p1.9: |
10733 | | // if e_i is of array type and x_i is a bstring-literal, T_i is an |
10734 | | // lvalue reference to the const-qualified declared type of e_i and |
10735 | | // C++ [over.match.class.deduct]p1.10: |
10736 | | // otherwise, T_i is the declared type of e_i |
10737 | 0 | for (int I = 0, E = ListInit->getNumInits(); |
10738 | 0 | I < E && !isa<PackExpansionType>(ElementTypes[I]); ++I) |
10739 | 0 | if (ElementTypes[I]->isArrayType()) { |
10740 | 0 | if (isa<InitListExpr>(ListInit->getInit(I))) |
10741 | 0 | ElementTypes[I] = Context.getRValueReferenceType(ElementTypes[I]); |
10742 | 0 | else if (isa<StringLiteral>( |
10743 | 0 | ListInit->getInit(I)->IgnoreParenImpCasts())) |
10744 | 0 | ElementTypes[I] = |
10745 | 0 | Context.getLValueReferenceType(ElementTypes[I].withConst()); |
10746 | 0 | } |
10747 | |
|
10748 | 0 | llvm::FoldingSetNodeID ID; |
10749 | 0 | ID.AddPointer(Template); |
10750 | 0 | for (auto &T : ElementTypes) |
10751 | 0 | T.getCanonicalType().Profile(ID); |
10752 | 0 | unsigned Hash = ID.ComputeHash(); |
10753 | 0 | if (AggregateDeductionCandidates.count(Hash) == 0) { |
10754 | 0 | if (FunctionTemplateDecl *TD = |
10755 | 0 | DeclareImplicitDeductionGuideFromInitList( |
10756 | 0 | Template, ElementTypes, |
10757 | 0 | TSInfo->getTypeLoc().getEndLoc())) { |
10758 | 0 | auto *GD = cast<CXXDeductionGuideDecl>(TD->getTemplatedDecl()); |
10759 | 0 | GD->setDeductionCandidateKind(DeductionCandidate::Aggregate); |
10760 | 0 | AggregateDeductionCandidates[Hash] = GD; |
10761 | 0 | addDeductionCandidate(TD, GD, DeclAccessPair::make(TD, AS_public), |
10762 | 0 | OnlyListConstructors, |
10763 | 0 | /*AllowAggregateDeductionCandidate=*/true); |
10764 | 0 | } |
10765 | 0 | } else { |
10766 | 0 | CXXDeductionGuideDecl *GD = AggregateDeductionCandidates[Hash]; |
10767 | 0 | FunctionTemplateDecl *TD = GD->getDescribedFunctionTemplate(); |
10768 | 0 | assert(TD && "aggregate deduction candidate is function template"); |
10769 | 0 | addDeductionCandidate(TD, GD, DeclAccessPair::make(TD, AS_public), |
10770 | 0 | OnlyListConstructors, |
10771 | 0 | /*AllowAggregateDeductionCandidate=*/true); |
10772 | 0 | } |
10773 | 0 | HasAnyDeductionGuide = true; |
10774 | 0 | } |
10775 | 0 | }; |
10776 | |
|
10777 | 0 | for (auto I = Guides.begin(), E = Guides.end(); I != E; ++I) { |
10778 | 0 | NamedDecl *D = (*I)->getUnderlyingDecl(); |
10779 | 0 | if (D->isInvalidDecl()) |
10780 | 0 | continue; |
10781 | | |
10782 | 0 | auto *TD = dyn_cast<FunctionTemplateDecl>(D); |
10783 | 0 | auto *GD = dyn_cast_if_present<CXXDeductionGuideDecl>( |
10784 | 0 | TD ? TD->getTemplatedDecl() : dyn_cast<FunctionDecl>(D)); |
10785 | 0 | if (!GD) |
10786 | 0 | continue; |
10787 | | |
10788 | 0 | if (!GD->isImplicit()) |
10789 | 0 | HasAnyDeductionGuide = true; |
10790 | |
|
10791 | 0 | addDeductionCandidate(TD, GD, I.getPair(), OnlyListConstructors, |
10792 | 0 | /*AllowAggregateDeductionCandidate=*/false); |
10793 | 0 | } |
10794 | | |
10795 | | // C++ [over.match.class.deduct]p1.4: |
10796 | | // if C is defined and its definition satisfies the conditions for an |
10797 | | // aggregate class ([dcl.init.aggr]) with the assumption that any |
10798 | | // dependent base class has no virtual functions and no virtual base |
10799 | | // classes, and the initializer is a non-empty braced-init-list or |
10800 | | // parenthesized expression-list, and there are no deduction-guides for |
10801 | | // C, the set contains an additional function template, called the |
10802 | | // aggregate deduction candidate, defined as follows. |
10803 | 0 | if (getLangOpts().CPlusPlus20 && !HasAnyDeductionGuide) { |
10804 | 0 | if (ListInit && ListInit->getNumInits()) { |
10805 | 0 | SynthesizeAggrGuide(ListInit); |
10806 | 0 | } else if (Inits.size()) { // parenthesized expression-list |
10807 | | // Inits are expressions inside the parentheses. We don't have |
10808 | | // the parentheses source locations, use the begin/end of Inits as the |
10809 | | // best heuristic. |
10810 | 0 | InitListExpr TempListInit(getASTContext(), Inits.front()->getBeginLoc(), |
10811 | 0 | Inits, Inits.back()->getEndLoc()); |
10812 | 0 | SynthesizeAggrGuide(&TempListInit); |
10813 | 0 | } |
10814 | 0 | } |
10815 | |
|
10816 | 0 | FoundDeductionGuide = FoundDeductionGuide || HasAnyDeductionGuide; |
10817 | |
|
10818 | 0 | return Candidates.BestViableFunction(*this, Kind.getLocation(), Best); |
10819 | 0 | }; |
10820 | |
|
10821 | 0 | OverloadingResult Result = OR_No_Viable_Function; |
10822 | | |
10823 | | // C++11 [over.match.list]p1, per DR1467: for list-initialization, first |
10824 | | // try initializer-list constructors. |
10825 | 0 | if (ListInit) { |
10826 | 0 | bool TryListConstructors = true; |
10827 | | |
10828 | | // Try list constructors unless the list is empty and the class has one or |
10829 | | // more default constructors, in which case those constructors win. |
10830 | 0 | if (!ListInit->getNumInits()) { |
10831 | 0 | for (NamedDecl *D : Guides) { |
10832 | 0 | auto *FD = dyn_cast<FunctionDecl>(D->getUnderlyingDecl()); |
10833 | 0 | if (FD && FD->getMinRequiredArguments() == 0) { |
10834 | 0 | TryListConstructors = false; |
10835 | 0 | break; |
10836 | 0 | } |
10837 | 0 | } |
10838 | 0 | } else if (ListInit->getNumInits() == 1) { |
10839 | | // C++ [over.match.class.deduct]: |
10840 | | // As an exception, the first phase in [over.match.list] (considering |
10841 | | // initializer-list constructors) is omitted if the initializer list |
10842 | | // consists of a single expression of type cv U, where U is a |
10843 | | // specialization of C or a class derived from a specialization of C. |
10844 | 0 | Expr *E = ListInit->getInit(0); |
10845 | 0 | auto *RD = E->getType()->getAsCXXRecordDecl(); |
10846 | 0 | if (!isa<InitListExpr>(E) && RD && |
10847 | 0 | isCompleteType(Kind.getLocation(), E->getType()) && |
10848 | 0 | isOrIsDerivedFromSpecializationOf(RD, Template)) |
10849 | 0 | TryListConstructors = false; |
10850 | 0 | } |
10851 | |
|
10852 | 0 | if (TryListConstructors) |
10853 | 0 | Result = TryToResolveOverload(/*OnlyListConstructor*/true); |
10854 | | // Then unwrap the initializer list and try again considering all |
10855 | | // constructors. |
10856 | 0 | Inits = MultiExprArg(ListInit->getInits(), ListInit->getNumInits()); |
10857 | 0 | } |
10858 | | |
10859 | | // If list-initialization fails, or if we're doing any other kind of |
10860 | | // initialization, we (eventually) consider constructors. |
10861 | 0 | if (Result == OR_No_Viable_Function) |
10862 | 0 | Result = TryToResolveOverload(/*OnlyListConstructor*/false); |
10863 | |
|
10864 | 0 | switch (Result) { |
10865 | 0 | case OR_Ambiguous: |
10866 | | // FIXME: For list-initialization candidates, it'd usually be better to |
10867 | | // list why they were not viable when given the initializer list itself as |
10868 | | // an argument. |
10869 | 0 | Candidates.NoteCandidates( |
10870 | 0 | PartialDiagnosticAt( |
10871 | 0 | Kind.getLocation(), |
10872 | 0 | PDiag(diag::err_deduced_class_template_ctor_ambiguous) |
10873 | 0 | << TemplateName), |
10874 | 0 | *this, OCD_AmbiguousCandidates, Inits); |
10875 | 0 | return QualType(); |
10876 | | |
10877 | 0 | case OR_No_Viable_Function: { |
10878 | 0 | CXXRecordDecl *Primary = |
10879 | 0 | cast<ClassTemplateDecl>(Template)->getTemplatedDecl(); |
10880 | 0 | bool Complete = |
10881 | 0 | isCompleteType(Kind.getLocation(), Context.getTypeDeclType(Primary)); |
10882 | 0 | Candidates.NoteCandidates( |
10883 | 0 | PartialDiagnosticAt( |
10884 | 0 | Kind.getLocation(), |
10885 | 0 | PDiag(Complete ? diag::err_deduced_class_template_ctor_no_viable |
10886 | 0 | : diag::err_deduced_class_template_incomplete) |
10887 | 0 | << TemplateName << !Guides.empty()), |
10888 | 0 | *this, OCD_AllCandidates, Inits); |
10889 | 0 | return QualType(); |
10890 | 0 | } |
10891 | | |
10892 | 0 | case OR_Deleted: { |
10893 | 0 | Diag(Kind.getLocation(), diag::err_deduced_class_template_deleted) |
10894 | 0 | << TemplateName; |
10895 | 0 | NoteDeletedFunction(Best->Function); |
10896 | 0 | return QualType(); |
10897 | 0 | } |
10898 | | |
10899 | 0 | case OR_Success: |
10900 | | // C++ [over.match.list]p1: |
10901 | | // In copy-list-initialization, if an explicit constructor is chosen, the |
10902 | | // initialization is ill-formed. |
10903 | 0 | if (Kind.isCopyInit() && ListInit && |
10904 | 0 | cast<CXXDeductionGuideDecl>(Best->Function)->isExplicit()) { |
10905 | 0 | bool IsDeductionGuide = !Best->Function->isImplicit(); |
10906 | 0 | Diag(Kind.getLocation(), diag::err_deduced_class_template_explicit) |
10907 | 0 | << TemplateName << IsDeductionGuide; |
10908 | 0 | Diag(Best->Function->getLocation(), |
10909 | 0 | diag::note_explicit_ctor_deduction_guide_here) |
10910 | 0 | << IsDeductionGuide; |
10911 | 0 | return QualType(); |
10912 | 0 | } |
10913 | | |
10914 | | // Make sure we didn't select an unusable deduction guide, and mark it |
10915 | | // as referenced. |
10916 | 0 | DiagnoseUseOfDecl(Best->FoundDecl, Kind.getLocation()); |
10917 | 0 | MarkFunctionReferenced(Kind.getLocation(), Best->Function); |
10918 | 0 | break; |
10919 | 0 | } |
10920 | | |
10921 | | // C++ [dcl.type.class.deduct]p1: |
10922 | | // The placeholder is replaced by the return type of the function selected |
10923 | | // by overload resolution for class template deduction. |
10924 | 0 | QualType DeducedType = |
10925 | 0 | SubstAutoType(TSInfo->getType(), Best->Function->getReturnType()); |
10926 | 0 | Diag(TSInfo->getTypeLoc().getBeginLoc(), |
10927 | 0 | diag::warn_cxx14_compat_class_template_argument_deduction) |
10928 | 0 | << TSInfo->getTypeLoc().getSourceRange() << 1 << DeducedType; |
10929 | | |
10930 | | // Warn if CTAD was used on a type that does not have any user-defined |
10931 | | // deduction guides. |
10932 | 0 | if (!FoundDeductionGuide) { |
10933 | 0 | Diag(TSInfo->getTypeLoc().getBeginLoc(), |
10934 | 0 | diag::warn_ctad_maybe_unsupported) |
10935 | 0 | << TemplateName; |
10936 | 0 | Diag(Template->getLocation(), diag::note_suppress_ctad_maybe_unsupported); |
10937 | 0 | } |
10938 | |
|
10939 | 0 | return DeducedType; |
10940 | 0 | } |