/src/llvm-project/clang/lib/Sema/SemaLookup.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===--------------------- SemaLookup.cpp - Name Lookup ------------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file implements name lookup for C, C++, Objective-C, and |
10 | | // Objective-C++. |
11 | | // |
12 | | //===----------------------------------------------------------------------===// |
13 | | |
14 | | #include "clang/AST/ASTContext.h" |
15 | | #include "clang/AST/CXXInheritance.h" |
16 | | #include "clang/AST/Decl.h" |
17 | | #include "clang/AST/DeclCXX.h" |
18 | | #include "clang/AST/DeclLookups.h" |
19 | | #include "clang/AST/DeclObjC.h" |
20 | | #include "clang/AST/DeclTemplate.h" |
21 | | #include "clang/AST/Expr.h" |
22 | | #include "clang/AST/ExprCXX.h" |
23 | | #include "clang/Basic/Builtins.h" |
24 | | #include "clang/Basic/FileManager.h" |
25 | | #include "clang/Basic/LangOptions.h" |
26 | | #include "clang/Lex/HeaderSearch.h" |
27 | | #include "clang/Lex/ModuleLoader.h" |
28 | | #include "clang/Lex/Preprocessor.h" |
29 | | #include "clang/Sema/DeclSpec.h" |
30 | | #include "clang/Sema/Lookup.h" |
31 | | #include "clang/Sema/Overload.h" |
32 | | #include "clang/Sema/RISCVIntrinsicManager.h" |
33 | | #include "clang/Sema/Scope.h" |
34 | | #include "clang/Sema/ScopeInfo.h" |
35 | | #include "clang/Sema/Sema.h" |
36 | | #include "clang/Sema/SemaInternal.h" |
37 | | #include "clang/Sema/TemplateDeduction.h" |
38 | | #include "clang/Sema/TypoCorrection.h" |
39 | | #include "llvm/ADT/STLExtras.h" |
40 | | #include "llvm/ADT/SmallPtrSet.h" |
41 | | #include "llvm/ADT/TinyPtrVector.h" |
42 | | #include "llvm/ADT/edit_distance.h" |
43 | | #include "llvm/Support/Casting.h" |
44 | | #include "llvm/Support/ErrorHandling.h" |
45 | | #include <algorithm> |
46 | | #include <iterator> |
47 | | #include <list> |
48 | | #include <optional> |
49 | | #include <set> |
50 | | #include <utility> |
51 | | #include <vector> |
52 | | |
53 | | #include "OpenCLBuiltins.inc" |
54 | | |
55 | | using namespace clang; |
56 | | using namespace sema; |
57 | | |
58 | | namespace { |
59 | | class UnqualUsingEntry { |
60 | | const DeclContext *Nominated; |
61 | | const DeclContext *CommonAncestor; |
62 | | |
63 | | public: |
64 | | UnqualUsingEntry(const DeclContext *Nominated, |
65 | | const DeclContext *CommonAncestor) |
66 | 0 | : Nominated(Nominated), CommonAncestor(CommonAncestor) { |
67 | 0 | } |
68 | | |
69 | 0 | const DeclContext *getCommonAncestor() const { |
70 | 0 | return CommonAncestor; |
71 | 0 | } |
72 | | |
73 | 0 | const DeclContext *getNominatedNamespace() const { |
74 | 0 | return Nominated; |
75 | 0 | } |
76 | | |
77 | | // Sort by the pointer value of the common ancestor. |
78 | | struct Comparator { |
79 | 0 | bool operator()(const UnqualUsingEntry &L, const UnqualUsingEntry &R) { |
80 | 0 | return L.getCommonAncestor() < R.getCommonAncestor(); |
81 | 0 | } |
82 | | |
83 | 0 | bool operator()(const UnqualUsingEntry &E, const DeclContext *DC) { |
84 | 0 | return E.getCommonAncestor() < DC; |
85 | 0 | } |
86 | | |
87 | 0 | bool operator()(const DeclContext *DC, const UnqualUsingEntry &E) { |
88 | 0 | return DC < E.getCommonAncestor(); |
89 | 0 | } |
90 | | }; |
91 | | }; |
92 | | |
93 | | /// A collection of using directives, as used by C++ unqualified |
94 | | /// lookup. |
95 | | class UnqualUsingDirectiveSet { |
96 | | Sema &SemaRef; |
97 | | |
98 | | typedef SmallVector<UnqualUsingEntry, 8> ListTy; |
99 | | |
100 | | ListTy list; |
101 | | llvm::SmallPtrSet<DeclContext*, 8> visited; |
102 | | |
103 | | public: |
104 | 22.0k | UnqualUsingDirectiveSet(Sema &SemaRef) : SemaRef(SemaRef) {} |
105 | | |
106 | 22.0k | void visitScopeChain(Scope *S, Scope *InnermostFileScope) { |
107 | | // C++ [namespace.udir]p1: |
108 | | // During unqualified name lookup, the names appear as if they |
109 | | // were declared in the nearest enclosing namespace which contains |
110 | | // both the using-directive and the nominated namespace. |
111 | 22.0k | DeclContext *InnermostFileDC = InnermostFileScope->getEntity(); |
112 | 22.0k | assert(InnermostFileDC && InnermostFileDC->isFileContext()); |
113 | | |
114 | 44.0k | for (; S; S = S->getParent()) { |
115 | | // C++ [namespace.udir]p1: |
116 | | // A using-directive shall not appear in class scope, but may |
117 | | // appear in namespace scope or in block scope. |
118 | 22.0k | DeclContext *Ctx = S->getEntity(); |
119 | 22.0k | if (Ctx && Ctx->isFileContext()) { |
120 | 22.0k | visit(Ctx, Ctx); |
121 | 22.0k | } else if (!Ctx || Ctx->isFunctionOrMethod()) { |
122 | 57 | for (auto *I : S->using_directives()) |
123 | 0 | if (SemaRef.isVisible(I)) |
124 | 0 | visit(I, InnermostFileDC); |
125 | 57 | } |
126 | 22.0k | } |
127 | 22.0k | } |
128 | | |
129 | | // Visits a context and collect all of its using directives |
130 | | // recursively. Treats all using directives as if they were |
131 | | // declared in the context. |
132 | | // |
133 | | // A given context is only every visited once, so it is important |
134 | | // that contexts be visited from the inside out in order to get |
135 | | // the effective DCs right. |
136 | 22.0k | void visit(DeclContext *DC, DeclContext *EffectiveDC) { |
137 | 22.0k | if (!visited.insert(DC).second) |
138 | 0 | return; |
139 | | |
140 | 22.0k | addUsingDirectives(DC, EffectiveDC); |
141 | 22.0k | } |
142 | | |
143 | | // Visits a using directive and collects all of its using |
144 | | // directives recursively. Treats all using directives as if they |
145 | | // were declared in the effective DC. |
146 | 0 | void visit(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { |
147 | 0 | DeclContext *NS = UD->getNominatedNamespace(); |
148 | 0 | if (!visited.insert(NS).second) |
149 | 0 | return; |
150 | | |
151 | 0 | addUsingDirective(UD, EffectiveDC); |
152 | 0 | addUsingDirectives(NS, EffectiveDC); |
153 | 0 | } |
154 | | |
155 | | // Adds all the using directives in a context (and those nominated |
156 | | // by its using directives, transitively) as if they appeared in |
157 | | // the given effective context. |
158 | 22.0k | void addUsingDirectives(DeclContext *DC, DeclContext *EffectiveDC) { |
159 | 22.0k | SmallVector<DeclContext*, 4> queue; |
160 | 22.0k | while (true) { |
161 | 22.0k | for (auto *UD : DC->using_directives()) { |
162 | 0 | DeclContext *NS = UD->getNominatedNamespace(); |
163 | 0 | if (SemaRef.isVisible(UD) && visited.insert(NS).second) { |
164 | 0 | addUsingDirective(UD, EffectiveDC); |
165 | 0 | queue.push_back(NS); |
166 | 0 | } |
167 | 0 | } |
168 | | |
169 | 22.0k | if (queue.empty()) |
170 | 22.0k | return; |
171 | | |
172 | 0 | DC = queue.pop_back_val(); |
173 | 0 | } |
174 | 22.0k | } |
175 | | |
176 | | // Add a using directive as if it had been declared in the given |
177 | | // context. This helps implement C++ [namespace.udir]p3: |
178 | | // The using-directive is transitive: if a scope contains a |
179 | | // using-directive that nominates a second namespace that itself |
180 | | // contains using-directives, the effect is as if the |
181 | | // using-directives from the second namespace also appeared in |
182 | | // the first. |
183 | 0 | void addUsingDirective(UsingDirectiveDecl *UD, DeclContext *EffectiveDC) { |
184 | | // Find the common ancestor between the effective context and |
185 | | // the nominated namespace. |
186 | 0 | DeclContext *Common = UD->getNominatedNamespace(); |
187 | 0 | while (!Common->Encloses(EffectiveDC)) |
188 | 0 | Common = Common->getParent(); |
189 | 0 | Common = Common->getPrimaryContext(); |
190 | |
|
191 | 0 | list.push_back(UnqualUsingEntry(UD->getNominatedNamespace(), Common)); |
192 | 0 | } |
193 | | |
194 | 22.0k | void done() { llvm::sort(list, UnqualUsingEntry::Comparator()); } |
195 | | |
196 | | typedef ListTy::const_iterator const_iterator; |
197 | | |
198 | 22.0k | const_iterator begin() const { return list.begin(); } |
199 | 22.0k | const_iterator end() const { return list.end(); } |
200 | | |
201 | | llvm::iterator_range<const_iterator> |
202 | 22.0k | getNamespacesFor(const DeclContext *DC) const { |
203 | 22.0k | return llvm::make_range(std::equal_range(begin(), end(), |
204 | 22.0k | DC->getPrimaryContext(), |
205 | 22.0k | UnqualUsingEntry::Comparator())); |
206 | 22.0k | } |
207 | | }; |
208 | | } // end anonymous namespace |
209 | | |
210 | | // Retrieve the set of identifier namespaces that correspond to a |
211 | | // specific kind of name lookup. |
212 | | static inline unsigned getIDNS(Sema::LookupNameKind NameKind, |
213 | | bool CPlusPlus, |
214 | 37.2k | bool Redeclaration) { |
215 | 37.2k | unsigned IDNS = 0; |
216 | 37.2k | switch (NameKind) { |
217 | 0 | case Sema::LookupObjCImplicitSelfParam: |
218 | 26.3k | case Sema::LookupOrdinaryName: |
219 | 26.3k | case Sema::LookupRedeclarationWithLinkage: |
220 | 26.3k | case Sema::LookupLocalFriendName: |
221 | 26.4k | case Sema::LookupDestructorName: |
222 | 26.4k | IDNS = Decl::IDNS_Ordinary; |
223 | 26.4k | if (CPlusPlus) { |
224 | 16.3k | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Member | Decl::IDNS_Namespace; |
225 | 16.3k | if (Redeclaration) |
226 | 2.58k | IDNS |= Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend; |
227 | 16.3k | } |
228 | 26.4k | if (Redeclaration) |
229 | 5.11k | IDNS |= Decl::IDNS_LocalExtern; |
230 | 26.4k | break; |
231 | | |
232 | 23 | case Sema::LookupOperatorName: |
233 | | // Operator lookup is its own crazy thing; it is not the same |
234 | | // as (e.g.) looking up an operator name for redeclaration. |
235 | 23 | assert(!Redeclaration && "cannot do redeclaration operator lookup"); |
236 | 0 | IDNS = Decl::IDNS_NonMemberOperator; |
237 | 23 | break; |
238 | | |
239 | 10.6k | case Sema::LookupTagName: |
240 | 10.6k | if (CPlusPlus) { |
241 | 5.38k | IDNS = Decl::IDNS_Type; |
242 | | |
243 | | // When looking for a redeclaration of a tag name, we add: |
244 | | // 1) TagFriend to find undeclared friend decls |
245 | | // 2) Namespace because they can't "overload" with tag decls. |
246 | | // 3) Tag because it includes class templates, which can't |
247 | | // "overload" with tag decls. |
248 | 5.38k | if (Redeclaration) |
249 | 0 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_TagFriend | Decl::IDNS_Namespace; |
250 | 5.38k | } else { |
251 | 5.29k | IDNS = Decl::IDNS_Tag; |
252 | 5.29k | } |
253 | 10.6k | break; |
254 | | |
255 | 0 | case Sema::LookupLabel: |
256 | 0 | IDNS = Decl::IDNS_Label; |
257 | 0 | break; |
258 | | |
259 | 0 | case Sema::LookupMemberName: |
260 | 0 | IDNS = Decl::IDNS_Member; |
261 | 0 | if (CPlusPlus) |
262 | 0 | IDNS |= Decl::IDNS_Tag | Decl::IDNS_Ordinary; |
263 | 0 | break; |
264 | | |
265 | 149 | case Sema::LookupNestedNameSpecifierName: |
266 | 149 | IDNS = Decl::IDNS_Type | Decl::IDNS_Namespace; |
267 | 149 | break; |
268 | | |
269 | 0 | case Sema::LookupNamespaceName: |
270 | 0 | IDNS = Decl::IDNS_Namespace; |
271 | 0 | break; |
272 | | |
273 | 0 | case Sema::LookupUsingDeclName: |
274 | 0 | assert(Redeclaration && "should only be used for redecl lookup"); |
275 | 0 | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member | |
276 | 0 | Decl::IDNS_Using | Decl::IDNS_TagFriend | Decl::IDNS_OrdinaryFriend | |
277 | 0 | Decl::IDNS_LocalExtern; |
278 | 0 | break; |
279 | | |
280 | 0 | case Sema::LookupObjCProtocolName: |
281 | 0 | IDNS = Decl::IDNS_ObjCProtocol; |
282 | 0 | break; |
283 | | |
284 | 0 | case Sema::LookupOMPReductionName: |
285 | 0 | IDNS = Decl::IDNS_OMPReduction; |
286 | 0 | break; |
287 | | |
288 | 0 | case Sema::LookupOMPMapperName: |
289 | 0 | IDNS = Decl::IDNS_OMPMapper; |
290 | 0 | break; |
291 | | |
292 | 0 | case Sema::LookupAnyName: |
293 | 0 | IDNS = Decl::IDNS_Ordinary | Decl::IDNS_Tag | Decl::IDNS_Member |
294 | 0 | | Decl::IDNS_Using | Decl::IDNS_Namespace | Decl::IDNS_ObjCProtocol |
295 | 0 | | Decl::IDNS_Type; |
296 | 0 | break; |
297 | 37.2k | } |
298 | 37.2k | return IDNS; |
299 | 37.2k | } |
300 | | |
301 | 37.2k | void LookupResult::configure() { |
302 | 37.2k | IDNS = getIDNS(LookupKind, getSema().getLangOpts().CPlusPlus, |
303 | 37.2k | isForRedeclaration()); |
304 | | |
305 | | // If we're looking for one of the allocation or deallocation |
306 | | // operators, make sure that the implicitly-declared new and delete |
307 | | // operators can be found. |
308 | 37.2k | switch (NameInfo.getName().getCXXOverloadedOperator()) { |
309 | 0 | case OO_New: |
310 | 0 | case OO_Delete: |
311 | 0 | case OO_Array_New: |
312 | 0 | case OO_Array_Delete: |
313 | 0 | getSema().DeclareGlobalNewDelete(); |
314 | 0 | break; |
315 | | |
316 | 37.2k | default: |
317 | 37.2k | break; |
318 | 37.2k | } |
319 | | |
320 | | // Compiler builtins are always visible, regardless of where they end |
321 | | // up being declared. |
322 | 37.2k | if (IdentifierInfo *Id = NameInfo.getName().getAsIdentifierInfo()) { |
323 | 37.2k | if (unsigned BuiltinID = Id->getBuiltinID()) { |
324 | 0 | if (!getSema().Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
325 | 0 | AllowHidden = true; |
326 | 0 | } |
327 | 37.2k | } |
328 | 37.2k | } |
329 | | |
330 | 68.3k | bool LookupResult::checkDebugAssumptions() const { |
331 | | // This function is never called by NDEBUG builds. |
332 | 68.3k | assert(ResultKind != NotFound || Decls.size() == 0); |
333 | 0 | assert(ResultKind != Found || Decls.size() == 1); |
334 | 0 | assert(ResultKind != FoundOverloaded || Decls.size() > 1 || |
335 | 68.3k | (Decls.size() == 1 && |
336 | 68.3k | isa<FunctionTemplateDecl>((*begin())->getUnderlyingDecl()))); |
337 | 0 | assert(ResultKind != FoundUnresolvedValue || checkUnresolved()); |
338 | 0 | assert(ResultKind != Ambiguous || Decls.size() > 1 || |
339 | 68.3k | (Decls.size() == 1 && (Ambiguity == AmbiguousBaseSubobjects || |
340 | 68.3k | Ambiguity == AmbiguousBaseSubobjectTypes))); |
341 | 0 | assert((Paths != nullptr) == (ResultKind == Ambiguous && |
342 | 68.3k | (Ambiguity == AmbiguousBaseSubobjectTypes || |
343 | 68.3k | Ambiguity == AmbiguousBaseSubobjects))); |
344 | 0 | return true; |
345 | 68.3k | } |
346 | | |
347 | | // Necessary because CXXBasePaths is not complete in Sema.h |
348 | 0 | void LookupResult::deletePaths(CXXBasePaths *Paths) { |
349 | 0 | delete Paths; |
350 | 0 | } |
351 | | |
352 | | /// Get a representative context for a declaration such that two declarations |
353 | | /// will have the same context if they were found within the same scope. |
354 | 0 | static const DeclContext *getContextForScopeMatching(const Decl *D) { |
355 | | // For function-local declarations, use that function as the context. This |
356 | | // doesn't account for scopes within the function; the caller must deal with |
357 | | // those. |
358 | 0 | if (const DeclContext *DC = D->getLexicalDeclContext(); |
359 | 0 | DC->isFunctionOrMethod()) |
360 | 0 | return DC; |
361 | | |
362 | | // Otherwise, look at the semantic context of the declaration. The |
363 | | // declaration must have been found there. |
364 | 0 | return D->getDeclContext()->getRedeclContext(); |
365 | 0 | } |
366 | | |
367 | | /// Determine whether \p D is a better lookup result than \p Existing, |
368 | | /// given that they declare the same entity. |
369 | | static bool isPreferredLookupResult(Sema &S, Sema::LookupNameKind Kind, |
370 | | const NamedDecl *D, |
371 | 0 | const NamedDecl *Existing) { |
372 | | // When looking up redeclarations of a using declaration, prefer a using |
373 | | // shadow declaration over any other declaration of the same entity. |
374 | 0 | if (Kind == Sema::LookupUsingDeclName && isa<UsingShadowDecl>(D) && |
375 | 0 | !isa<UsingShadowDecl>(Existing)) |
376 | 0 | return true; |
377 | | |
378 | 0 | const auto *DUnderlying = D->getUnderlyingDecl(); |
379 | 0 | const auto *EUnderlying = Existing->getUnderlyingDecl(); |
380 | | |
381 | | // If they have different underlying declarations, prefer a typedef over the |
382 | | // original type (this happens when two type declarations denote the same |
383 | | // type), per a generous reading of C++ [dcl.typedef]p3 and p4. The typedef |
384 | | // might carry additional semantic information, such as an alignment override. |
385 | | // However, per C++ [dcl.typedef]p5, when looking up a tag name, prefer a tag |
386 | | // declaration over a typedef. Also prefer a tag over a typedef for |
387 | | // destructor name lookup because in some contexts we only accept a |
388 | | // class-name in a destructor declaration. |
389 | 0 | if (DUnderlying->getCanonicalDecl() != EUnderlying->getCanonicalDecl()) { |
390 | 0 | assert(isa<TypeDecl>(DUnderlying) && isa<TypeDecl>(EUnderlying)); |
391 | 0 | bool HaveTag = isa<TagDecl>(EUnderlying); |
392 | 0 | bool WantTag = |
393 | 0 | Kind == Sema::LookupTagName || Kind == Sema::LookupDestructorName; |
394 | 0 | return HaveTag != WantTag; |
395 | 0 | } |
396 | | |
397 | | // Pick the function with more default arguments. |
398 | | // FIXME: In the presence of ambiguous default arguments, we should keep both, |
399 | | // so we can diagnose the ambiguity if the default argument is needed. |
400 | | // See C++ [over.match.best]p3. |
401 | 0 | if (const auto *DFD = dyn_cast<FunctionDecl>(DUnderlying)) { |
402 | 0 | const auto *EFD = cast<FunctionDecl>(EUnderlying); |
403 | 0 | unsigned DMin = DFD->getMinRequiredArguments(); |
404 | 0 | unsigned EMin = EFD->getMinRequiredArguments(); |
405 | | // If D has more default arguments, it is preferred. |
406 | 0 | if (DMin != EMin) |
407 | 0 | return DMin < EMin; |
408 | | // FIXME: When we track visibility for default function arguments, check |
409 | | // that we pick the declaration with more visible default arguments. |
410 | 0 | } |
411 | | |
412 | | // Pick the template with more default template arguments. |
413 | 0 | if (const auto *DTD = dyn_cast<TemplateDecl>(DUnderlying)) { |
414 | 0 | const auto *ETD = cast<TemplateDecl>(EUnderlying); |
415 | 0 | unsigned DMin = DTD->getTemplateParameters()->getMinRequiredArguments(); |
416 | 0 | unsigned EMin = ETD->getTemplateParameters()->getMinRequiredArguments(); |
417 | | // If D has more default arguments, it is preferred. Note that default |
418 | | // arguments (and their visibility) is monotonically increasing across the |
419 | | // redeclaration chain, so this is a quick proxy for "is more recent". |
420 | 0 | if (DMin != EMin) |
421 | 0 | return DMin < EMin; |
422 | | // If D has more *visible* default arguments, it is preferred. Note, an |
423 | | // earlier default argument being visible does not imply that a later |
424 | | // default argument is visible, so we can't just check the first one. |
425 | 0 | for (unsigned I = DMin, N = DTD->getTemplateParameters()->size(); |
426 | 0 | I != N; ++I) { |
427 | 0 | if (!S.hasVisibleDefaultArgument( |
428 | 0 | ETD->getTemplateParameters()->getParam(I)) && |
429 | 0 | S.hasVisibleDefaultArgument( |
430 | 0 | DTD->getTemplateParameters()->getParam(I))) |
431 | 0 | return true; |
432 | 0 | } |
433 | 0 | } |
434 | | |
435 | | // VarDecl can have incomplete array types, prefer the one with more complete |
436 | | // array type. |
437 | 0 | if (const auto *DVD = dyn_cast<VarDecl>(DUnderlying)) { |
438 | 0 | const auto *EVD = cast<VarDecl>(EUnderlying); |
439 | 0 | if (EVD->getType()->isIncompleteType() && |
440 | 0 | !DVD->getType()->isIncompleteType()) { |
441 | | // Prefer the decl with a more complete type if visible. |
442 | 0 | return S.isVisible(DVD); |
443 | 0 | } |
444 | 0 | return false; // Avoid picking up a newer decl, just because it was newer. |
445 | 0 | } |
446 | | |
447 | | // For most kinds of declaration, it doesn't really matter which one we pick. |
448 | 0 | if (!isa<FunctionDecl>(DUnderlying) && !isa<VarDecl>(DUnderlying)) { |
449 | | // If the existing declaration is hidden, prefer the new one. Otherwise, |
450 | | // keep what we've got. |
451 | 0 | return !S.isVisible(Existing); |
452 | 0 | } |
453 | | |
454 | | // Pick the newer declaration; it might have a more precise type. |
455 | 0 | for (const Decl *Prev = DUnderlying->getPreviousDecl(); Prev; |
456 | 0 | Prev = Prev->getPreviousDecl()) |
457 | 0 | if (Prev == EUnderlying) |
458 | 0 | return true; |
459 | 0 | return false; |
460 | 0 | } |
461 | | |
462 | | /// Determine whether \p D can hide a tag declaration. |
463 | 0 | static bool canHideTag(const NamedDecl *D) { |
464 | | // C++ [basic.scope.declarative]p4: |
465 | | // Given a set of declarations in a single declarative region [...] |
466 | | // exactly one declaration shall declare a class name or enumeration name |
467 | | // that is not a typedef name and the other declarations shall all refer to |
468 | | // the same variable, non-static data member, or enumerator, or all refer |
469 | | // to functions and function templates; in this case the class name or |
470 | | // enumeration name is hidden. |
471 | | // C++ [basic.scope.hiding]p2: |
472 | | // A class name or enumeration name can be hidden by the name of a |
473 | | // variable, data member, function, or enumerator declared in the same |
474 | | // scope. |
475 | | // An UnresolvedUsingValueDecl always instantiates to one of these. |
476 | 0 | D = D->getUnderlyingDecl(); |
477 | 0 | return isa<VarDecl>(D) || isa<EnumConstantDecl>(D) || isa<FunctionDecl>(D) || |
478 | 0 | isa<FunctionTemplateDecl>(D) || isa<FieldDecl>(D) || |
479 | 0 | isa<UnresolvedUsingValueDecl>(D); |
480 | 0 | } |
481 | | |
482 | | /// Resolves the result kind of this lookup. |
483 | 31.6k | void LookupResult::resolveKind() { |
484 | 31.6k | unsigned N = Decls.size(); |
485 | | |
486 | | // Fast case: no possible ambiguity. |
487 | 31.6k | if (N == 0) { |
488 | 15.5k | assert(ResultKind == NotFound || |
489 | 15.5k | ResultKind == NotFoundInCurrentInstantiation); |
490 | 0 | return; |
491 | 15.5k | } |
492 | | |
493 | | // If there's a single decl, we need to examine it to decide what |
494 | | // kind of lookup this is. |
495 | 16.1k | if (N == 1) { |
496 | 8.20k | const NamedDecl *D = (*Decls.begin())->getUnderlyingDecl(); |
497 | 8.20k | if (isa<FunctionTemplateDecl>(D)) |
498 | 0 | ResultKind = FoundOverloaded; |
499 | 8.20k | else if (isa<UnresolvedUsingValueDecl>(D)) |
500 | 0 | ResultKind = FoundUnresolvedValue; |
501 | 8.20k | return; |
502 | 8.20k | } |
503 | | |
504 | | // Don't do any extra resolution if we've already resolved as ambiguous. |
505 | 7.91k | if (ResultKind == Ambiguous) return; |
506 | | |
507 | 7.91k | llvm::SmallDenseMap<const NamedDecl *, unsigned, 16> Unique; |
508 | 7.91k | llvm::SmallDenseMap<QualType, unsigned, 16> UniqueTypes; |
509 | | |
510 | 7.91k | bool Ambiguous = false; |
511 | 7.91k | bool ReferenceToPlaceHolderVariable = false; |
512 | 7.91k | bool HasTag = false, HasFunction = false; |
513 | 7.91k | bool HasFunctionTemplate = false, HasUnresolved = false; |
514 | 7.91k | const NamedDecl *HasNonFunction = nullptr; |
515 | | |
516 | 7.91k | llvm::SmallVector<const NamedDecl *, 4> EquivalentNonFunctions; |
517 | 7.91k | llvm::BitVector RemovedDecls(N); |
518 | | |
519 | 60.1k | for (unsigned I = 0; I < N; I++) { |
520 | 52.2k | const NamedDecl *D = Decls[I]->getUnderlyingDecl(); |
521 | 52.2k | D = cast<NamedDecl>(D->getCanonicalDecl()); |
522 | | |
523 | | // Ignore an invalid declaration unless it's the only one left. |
524 | | // Also ignore HLSLBufferDecl which not have name conflict with other Decls. |
525 | 52.2k | if ((D->isInvalidDecl() || isa<HLSLBufferDecl>(D)) && |
526 | 52.2k | N - RemovedDecls.count() > 1) { |
527 | 44.3k | RemovedDecls.set(I); |
528 | 44.3k | continue; |
529 | 44.3k | } |
530 | | |
531 | | // C++ [basic.scope.hiding]p2: |
532 | | // A class name or enumeration name can be hidden by the name of |
533 | | // an object, function, or enumerator declared in the same |
534 | | // scope. If a class or enumeration name and an object, function, |
535 | | // or enumerator are declared in the same scope (in any order) |
536 | | // with the same name, the class or enumeration name is hidden |
537 | | // wherever the object, function, or enumerator name is visible. |
538 | 7.91k | if (HideTags && isa<TagDecl>(D)) { |
539 | 0 | bool Hidden = false; |
540 | 0 | for (auto *OtherDecl : Decls) { |
541 | 0 | if (canHideTag(OtherDecl) && !OtherDecl->isInvalidDecl() && |
542 | 0 | getContextForScopeMatching(OtherDecl)->Equals( |
543 | 0 | getContextForScopeMatching(Decls[I]))) { |
544 | 0 | RemovedDecls.set(I); |
545 | 0 | Hidden = true; |
546 | 0 | break; |
547 | 0 | } |
548 | 0 | } |
549 | 0 | if (Hidden) |
550 | 0 | continue; |
551 | 0 | } |
552 | | |
553 | 7.91k | std::optional<unsigned> ExistingI; |
554 | | |
555 | | // Redeclarations of types via typedef can occur both within a scope |
556 | | // and, through using declarations and directives, across scopes. There is |
557 | | // no ambiguity if they all refer to the same type, so unique based on the |
558 | | // canonical type. |
559 | 7.91k | if (const auto *TD = dyn_cast<TypeDecl>(D)) { |
560 | 0 | QualType T = getSema().Context.getTypeDeclType(TD); |
561 | 0 | auto UniqueResult = UniqueTypes.insert( |
562 | 0 | std::make_pair(getSema().Context.getCanonicalType(T), I)); |
563 | 0 | if (!UniqueResult.second) { |
564 | | // The type is not unique. |
565 | 0 | ExistingI = UniqueResult.first->second; |
566 | 0 | } |
567 | 0 | } |
568 | | |
569 | | // For non-type declarations, check for a prior lookup result naming this |
570 | | // canonical declaration. |
571 | 7.91k | if (!D->isPlaceholderVar(getSema().getLangOpts()) && !ExistingI) { |
572 | 7.91k | auto UniqueResult = Unique.insert(std::make_pair(D, I)); |
573 | 7.91k | if (!UniqueResult.second) { |
574 | | // We've seen this entity before. |
575 | 0 | ExistingI = UniqueResult.first->second; |
576 | 0 | } |
577 | 7.91k | } |
578 | | |
579 | 7.91k | if (ExistingI) { |
580 | | // This is not a unique lookup result. Pick one of the results and |
581 | | // discard the other. |
582 | 0 | if (isPreferredLookupResult(getSema(), getLookupKind(), Decls[I], |
583 | 0 | Decls[*ExistingI])) |
584 | 0 | Decls[*ExistingI] = Decls[I]; |
585 | 0 | RemovedDecls.set(I); |
586 | 0 | continue; |
587 | 0 | } |
588 | | |
589 | | // Otherwise, do some decl type analysis and then continue. |
590 | | |
591 | 7.91k | if (isa<UnresolvedUsingValueDecl>(D)) { |
592 | 0 | HasUnresolved = true; |
593 | 7.91k | } else if (isa<TagDecl>(D)) { |
594 | 0 | if (HasTag) |
595 | 0 | Ambiguous = true; |
596 | 0 | HasTag = true; |
597 | 7.91k | } else if (isa<FunctionTemplateDecl>(D)) { |
598 | 0 | HasFunction = true; |
599 | 0 | HasFunctionTemplate = true; |
600 | 7.91k | } else if (isa<FunctionDecl>(D)) { |
601 | 17 | HasFunction = true; |
602 | 7.89k | } else { |
603 | 7.89k | if (HasNonFunction) { |
604 | | // If we're about to create an ambiguity between two declarations that |
605 | | // are equivalent, but one is an internal linkage declaration from one |
606 | | // module and the other is an internal linkage declaration from another |
607 | | // module, just skip it. |
608 | 0 | if (getSema().isEquivalentInternalLinkageDeclaration(HasNonFunction, |
609 | 0 | D)) { |
610 | 0 | EquivalentNonFunctions.push_back(D); |
611 | 0 | RemovedDecls.set(I); |
612 | 0 | continue; |
613 | 0 | } |
614 | 0 | if (D->isPlaceholderVar(getSema().getLangOpts()) && |
615 | 0 | getContextForScopeMatching(D) == |
616 | 0 | getContextForScopeMatching(Decls[I])) { |
617 | 0 | ReferenceToPlaceHolderVariable = true; |
618 | 0 | } |
619 | 0 | Ambiguous = true; |
620 | 0 | } |
621 | 7.89k | HasNonFunction = D; |
622 | 7.89k | } |
623 | 7.91k | } |
624 | | |
625 | | // FIXME: This diagnostic should really be delayed until we're done with |
626 | | // the lookup result, in case the ambiguity is resolved by the caller. |
627 | 7.91k | if (!EquivalentNonFunctions.empty() && !Ambiguous) |
628 | 0 | getSema().diagnoseEquivalentInternalLinkageDeclarations( |
629 | 0 | getNameLoc(), HasNonFunction, EquivalentNonFunctions); |
630 | | |
631 | | // Remove decls by replacing them with decls from the end (which |
632 | | // means that we need to iterate from the end) and then truncating |
633 | | // to the new size. |
634 | 52.2k | for (int I = RemovedDecls.find_last(); I >= 0; I = RemovedDecls.find_prev(I)) |
635 | 44.3k | Decls[I] = Decls[--N]; |
636 | 7.91k | Decls.truncate(N); |
637 | | |
638 | 7.91k | if ((HasNonFunction && (HasFunction || HasUnresolved)) || |
639 | 7.91k | (HideTags && HasTag && (HasFunction || HasNonFunction || HasUnresolved))) |
640 | 0 | Ambiguous = true; |
641 | | |
642 | 7.91k | if (Ambiguous && ReferenceToPlaceHolderVariable) |
643 | 0 | setAmbiguous(LookupResult::AmbiguousReferenceToPlaceholderVariable); |
644 | 7.91k | else if (Ambiguous) |
645 | 0 | setAmbiguous(LookupResult::AmbiguousReference); |
646 | 7.91k | else if (HasUnresolved) |
647 | 0 | ResultKind = LookupResult::FoundUnresolvedValue; |
648 | 7.91k | else if (N > 1 || HasFunctionTemplate) |
649 | 0 | ResultKind = LookupResult::FoundOverloaded; |
650 | 7.91k | else |
651 | 7.91k | ResultKind = LookupResult::Found; |
652 | 7.91k | } |
653 | | |
654 | 0 | void LookupResult::addDeclsFromBasePaths(const CXXBasePaths &P) { |
655 | 0 | CXXBasePaths::const_paths_iterator I, E; |
656 | 0 | for (I = P.begin(), E = P.end(); I != E; ++I) |
657 | 0 | for (DeclContext::lookup_iterator DI = I->Decls, DE = DI.end(); DI != DE; |
658 | 0 | ++DI) |
659 | 0 | addDecl(*DI); |
660 | 0 | } |
661 | | |
662 | 0 | void LookupResult::setAmbiguousBaseSubobjects(CXXBasePaths &P) { |
663 | 0 | Paths = new CXXBasePaths; |
664 | 0 | Paths->swap(P); |
665 | 0 | addDeclsFromBasePaths(*Paths); |
666 | 0 | resolveKind(); |
667 | 0 | setAmbiguous(AmbiguousBaseSubobjects); |
668 | 0 | } |
669 | | |
670 | 0 | void LookupResult::setAmbiguousBaseSubobjectTypes(CXXBasePaths &P) { |
671 | 0 | Paths = new CXXBasePaths; |
672 | 0 | Paths->swap(P); |
673 | 0 | addDeclsFromBasePaths(*Paths); |
674 | 0 | resolveKind(); |
675 | 0 | setAmbiguous(AmbiguousBaseSubobjectTypes); |
676 | 0 | } |
677 | | |
678 | 0 | void LookupResult::print(raw_ostream &Out) { |
679 | 0 | Out << Decls.size() << " result(s)"; |
680 | 0 | if (isAmbiguous()) Out << ", ambiguous"; |
681 | 0 | if (Paths) Out << ", base paths present"; |
682 | |
|
683 | 0 | for (iterator I = begin(), E = end(); I != E; ++I) { |
684 | 0 | Out << "\n"; |
685 | 0 | (*I)->print(Out, 2); |
686 | 0 | } |
687 | 0 | } |
688 | | |
689 | 0 | LLVM_DUMP_METHOD void LookupResult::dump() { |
690 | 0 | llvm::errs() << "lookup results for " << getLookupName().getAsString() |
691 | 0 | << ":\n"; |
692 | 0 | for (NamedDecl *D : *this) |
693 | 0 | D->dump(); |
694 | 0 | } |
695 | | |
696 | | /// Diagnose a missing builtin type. |
697 | | static QualType diagOpenCLBuiltinTypeError(Sema &S, llvm::StringRef TypeClass, |
698 | 0 | llvm::StringRef Name) { |
699 | 0 | S.Diag(SourceLocation(), diag::err_opencl_type_not_found) |
700 | 0 | << TypeClass << Name; |
701 | 0 | return S.Context.VoidTy; |
702 | 0 | } |
703 | | |
704 | | /// Lookup an OpenCL enum type. |
705 | 0 | static QualType getOpenCLEnumType(Sema &S, llvm::StringRef Name) { |
706 | 0 | LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), |
707 | 0 | Sema::LookupTagName); |
708 | 0 | S.LookupName(Result, S.TUScope); |
709 | 0 | if (Result.empty()) |
710 | 0 | return diagOpenCLBuiltinTypeError(S, "enum", Name); |
711 | 0 | EnumDecl *Decl = Result.getAsSingle<EnumDecl>(); |
712 | 0 | if (!Decl) |
713 | 0 | return diagOpenCLBuiltinTypeError(S, "enum", Name); |
714 | 0 | return S.Context.getEnumType(Decl); |
715 | 0 | } |
716 | | |
717 | | /// Lookup an OpenCL typedef type. |
718 | 0 | static QualType getOpenCLTypedefType(Sema &S, llvm::StringRef Name) { |
719 | 0 | LookupResult Result(S, &S.Context.Idents.get(Name), SourceLocation(), |
720 | 0 | Sema::LookupOrdinaryName); |
721 | 0 | S.LookupName(Result, S.TUScope); |
722 | 0 | if (Result.empty()) |
723 | 0 | return diagOpenCLBuiltinTypeError(S, "typedef", Name); |
724 | 0 | TypedefNameDecl *Decl = Result.getAsSingle<TypedefNameDecl>(); |
725 | 0 | if (!Decl) |
726 | 0 | return diagOpenCLBuiltinTypeError(S, "typedef", Name); |
727 | 0 | return S.Context.getTypedefType(Decl); |
728 | 0 | } |
729 | | |
730 | | /// Get the QualType instances of the return type and arguments for an OpenCL |
731 | | /// builtin function signature. |
732 | | /// \param S (in) The Sema instance. |
733 | | /// \param OpenCLBuiltin (in) The signature currently handled. |
734 | | /// \param GenTypeMaxCnt (out) Maximum number of types contained in a generic |
735 | | /// type used as return type or as argument. |
736 | | /// Only meaningful for generic types, otherwise equals 1. |
737 | | /// \param RetTypes (out) List of the possible return types. |
738 | | /// \param ArgTypes (out) List of the possible argument types. For each |
739 | | /// argument, ArgTypes contains QualTypes for the Cartesian product |
740 | | /// of (vector sizes) x (types) . |
741 | | static void GetQualTypesForOpenCLBuiltin( |
742 | | Sema &S, const OpenCLBuiltinStruct &OpenCLBuiltin, unsigned &GenTypeMaxCnt, |
743 | | SmallVector<QualType, 1> &RetTypes, |
744 | 0 | SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { |
745 | | // Get the QualType instances of the return types. |
746 | 0 | unsigned Sig = SignatureTable[OpenCLBuiltin.SigTableIndex]; |
747 | 0 | OCL2Qual(S, TypeTable[Sig], RetTypes); |
748 | 0 | GenTypeMaxCnt = RetTypes.size(); |
749 | | |
750 | | // Get the QualType instances of the arguments. |
751 | | // First type is the return type, skip it. |
752 | 0 | for (unsigned Index = 1; Index < OpenCLBuiltin.NumTypes; Index++) { |
753 | 0 | SmallVector<QualType, 1> Ty; |
754 | 0 | OCL2Qual(S, TypeTable[SignatureTable[OpenCLBuiltin.SigTableIndex + Index]], |
755 | 0 | Ty); |
756 | 0 | GenTypeMaxCnt = (Ty.size() > GenTypeMaxCnt) ? Ty.size() : GenTypeMaxCnt; |
757 | 0 | ArgTypes.push_back(std::move(Ty)); |
758 | 0 | } |
759 | 0 | } |
760 | | |
761 | | /// Create a list of the candidate function overloads for an OpenCL builtin |
762 | | /// function. |
763 | | /// \param Context (in) The ASTContext instance. |
764 | | /// \param GenTypeMaxCnt (in) Maximum number of types contained in a generic |
765 | | /// type used as return type or as argument. |
766 | | /// Only meaningful for generic types, otherwise equals 1. |
767 | | /// \param FunctionList (out) List of FunctionTypes. |
768 | | /// \param RetTypes (in) List of the possible return types. |
769 | | /// \param ArgTypes (in) List of the possible types for the arguments. |
770 | | static void GetOpenCLBuiltinFctOverloads( |
771 | | ASTContext &Context, unsigned GenTypeMaxCnt, |
772 | | std::vector<QualType> &FunctionList, SmallVector<QualType, 1> &RetTypes, |
773 | 0 | SmallVector<SmallVector<QualType, 1>, 5> &ArgTypes) { |
774 | 0 | FunctionProtoType::ExtProtoInfo PI( |
775 | 0 | Context.getDefaultCallingConvention(false, false, true)); |
776 | 0 | PI.Variadic = false; |
777 | | |
778 | | // Do not attempt to create any FunctionTypes if there are no return types, |
779 | | // which happens when a type belongs to a disabled extension. |
780 | 0 | if (RetTypes.size() == 0) |
781 | 0 | return; |
782 | | |
783 | | // Create FunctionTypes for each (gen)type. |
784 | 0 | for (unsigned IGenType = 0; IGenType < GenTypeMaxCnt; IGenType++) { |
785 | 0 | SmallVector<QualType, 5> ArgList; |
786 | |
|
787 | 0 | for (unsigned A = 0; A < ArgTypes.size(); A++) { |
788 | | // Bail out if there is an argument that has no available types. |
789 | 0 | if (ArgTypes[A].size() == 0) |
790 | 0 | return; |
791 | | |
792 | | // Builtins such as "max" have an "sgentype" argument that represents |
793 | | // the corresponding scalar type of a gentype. The number of gentypes |
794 | | // must be a multiple of the number of sgentypes. |
795 | 0 | assert(GenTypeMaxCnt % ArgTypes[A].size() == 0 && |
796 | 0 | "argument type count not compatible with gentype type count"); |
797 | 0 | unsigned Idx = IGenType % ArgTypes[A].size(); |
798 | 0 | ArgList.push_back(ArgTypes[A][Idx]); |
799 | 0 | } |
800 | | |
801 | 0 | FunctionList.push_back(Context.getFunctionType( |
802 | 0 | RetTypes[(RetTypes.size() != 1) ? IGenType : 0], ArgList, PI)); |
803 | 0 | } |
804 | 0 | } |
805 | | |
806 | | /// When trying to resolve a function name, if isOpenCLBuiltin() returns a |
807 | | /// non-null <Index, Len> pair, then the name is referencing an OpenCL |
808 | | /// builtin function. Add all candidate signatures to the LookUpResult. |
809 | | /// |
810 | | /// \param S (in) The Sema instance. |
811 | | /// \param LR (inout) The LookupResult instance. |
812 | | /// \param II (in) The identifier being resolved. |
813 | | /// \param FctIndex (in) Starting index in the BuiltinTable. |
814 | | /// \param Len (in) The signature list has Len elements. |
815 | | static void InsertOCLBuiltinDeclarationsFromTable(Sema &S, LookupResult &LR, |
816 | | IdentifierInfo *II, |
817 | | const unsigned FctIndex, |
818 | 0 | const unsigned Len) { |
819 | | // The builtin function declaration uses generic types (gentype). |
820 | 0 | bool HasGenType = false; |
821 | | |
822 | | // Maximum number of types contained in a generic type used as return type or |
823 | | // as argument. Only meaningful for generic types, otherwise equals 1. |
824 | 0 | unsigned GenTypeMaxCnt; |
825 | |
|
826 | 0 | ASTContext &Context = S.Context; |
827 | |
|
828 | 0 | for (unsigned SignatureIndex = 0; SignatureIndex < Len; SignatureIndex++) { |
829 | 0 | const OpenCLBuiltinStruct &OpenCLBuiltin = |
830 | 0 | BuiltinTable[FctIndex + SignatureIndex]; |
831 | | |
832 | | // Ignore this builtin function if it is not available in the currently |
833 | | // selected language version. |
834 | 0 | if (!isOpenCLVersionContainedInMask(Context.getLangOpts(), |
835 | 0 | OpenCLBuiltin.Versions)) |
836 | 0 | continue; |
837 | | |
838 | | // Ignore this builtin function if it carries an extension macro that is |
839 | | // not defined. This indicates that the extension is not supported by the |
840 | | // target, so the builtin function should not be available. |
841 | 0 | StringRef Extensions = FunctionExtensionTable[OpenCLBuiltin.Extension]; |
842 | 0 | if (!Extensions.empty()) { |
843 | 0 | SmallVector<StringRef, 2> ExtVec; |
844 | 0 | Extensions.split(ExtVec, " "); |
845 | 0 | bool AllExtensionsDefined = true; |
846 | 0 | for (StringRef Ext : ExtVec) { |
847 | 0 | if (!S.getPreprocessor().isMacroDefined(Ext)) { |
848 | 0 | AllExtensionsDefined = false; |
849 | 0 | break; |
850 | 0 | } |
851 | 0 | } |
852 | 0 | if (!AllExtensionsDefined) |
853 | 0 | continue; |
854 | 0 | } |
855 | | |
856 | 0 | SmallVector<QualType, 1> RetTypes; |
857 | 0 | SmallVector<SmallVector<QualType, 1>, 5> ArgTypes; |
858 | | |
859 | | // Obtain QualType lists for the function signature. |
860 | 0 | GetQualTypesForOpenCLBuiltin(S, OpenCLBuiltin, GenTypeMaxCnt, RetTypes, |
861 | 0 | ArgTypes); |
862 | 0 | if (GenTypeMaxCnt > 1) { |
863 | 0 | HasGenType = true; |
864 | 0 | } |
865 | | |
866 | | // Create function overload for each type combination. |
867 | 0 | std::vector<QualType> FunctionList; |
868 | 0 | GetOpenCLBuiltinFctOverloads(Context, GenTypeMaxCnt, FunctionList, RetTypes, |
869 | 0 | ArgTypes); |
870 | |
|
871 | 0 | SourceLocation Loc = LR.getNameLoc(); |
872 | 0 | DeclContext *Parent = Context.getTranslationUnitDecl(); |
873 | 0 | FunctionDecl *NewOpenCLBuiltin; |
874 | |
|
875 | 0 | for (const auto &FTy : FunctionList) { |
876 | 0 | NewOpenCLBuiltin = FunctionDecl::Create( |
877 | 0 | Context, Parent, Loc, Loc, II, FTy, /*TInfo=*/nullptr, SC_Extern, |
878 | 0 | S.getCurFPFeatures().isFPConstrained(), false, |
879 | 0 | FTy->isFunctionProtoType()); |
880 | 0 | NewOpenCLBuiltin->setImplicit(); |
881 | | |
882 | | // Create Decl objects for each parameter, adding them to the |
883 | | // FunctionDecl. |
884 | 0 | const auto *FP = cast<FunctionProtoType>(FTy); |
885 | 0 | SmallVector<ParmVarDecl *, 4> ParmList; |
886 | 0 | for (unsigned IParm = 0, e = FP->getNumParams(); IParm != e; ++IParm) { |
887 | 0 | ParmVarDecl *Parm = ParmVarDecl::Create( |
888 | 0 | Context, NewOpenCLBuiltin, SourceLocation(), SourceLocation(), |
889 | 0 | nullptr, FP->getParamType(IParm), nullptr, SC_None, nullptr); |
890 | 0 | Parm->setScopeInfo(0, IParm); |
891 | 0 | ParmList.push_back(Parm); |
892 | 0 | } |
893 | 0 | NewOpenCLBuiltin->setParams(ParmList); |
894 | | |
895 | | // Add function attributes. |
896 | 0 | if (OpenCLBuiltin.IsPure) |
897 | 0 | NewOpenCLBuiltin->addAttr(PureAttr::CreateImplicit(Context)); |
898 | 0 | if (OpenCLBuiltin.IsConst) |
899 | 0 | NewOpenCLBuiltin->addAttr(ConstAttr::CreateImplicit(Context)); |
900 | 0 | if (OpenCLBuiltin.IsConv) |
901 | 0 | NewOpenCLBuiltin->addAttr(ConvergentAttr::CreateImplicit(Context)); |
902 | |
|
903 | 0 | if (!S.getLangOpts().OpenCLCPlusPlus) |
904 | 0 | NewOpenCLBuiltin->addAttr(OverloadableAttr::CreateImplicit(Context)); |
905 | |
|
906 | 0 | LR.addDecl(NewOpenCLBuiltin); |
907 | 0 | } |
908 | 0 | } |
909 | | |
910 | | // If we added overloads, need to resolve the lookup result. |
911 | 0 | if (Len > 1 || HasGenType) |
912 | 0 | LR.resolveKind(); |
913 | 0 | } |
914 | | |
915 | | /// Lookup a builtin function, when name lookup would otherwise |
916 | | /// fail. |
917 | 19.6k | bool Sema::LookupBuiltin(LookupResult &R) { |
918 | 19.6k | Sema::LookupNameKind NameKind = R.getLookupKind(); |
919 | | |
920 | | // If we didn't find a use of this identifier, and if the identifier |
921 | | // corresponds to a compiler builtin, create the decl object for the builtin |
922 | | // now, injecting it into translation unit scope, and return it. |
923 | 19.6k | if (NameKind == Sema::LookupOrdinaryName || |
924 | 19.6k | NameKind == Sema::LookupRedeclarationWithLinkage) { |
925 | 14.0k | IdentifierInfo *II = R.getLookupName().getAsIdentifierInfo(); |
926 | 14.0k | if (II) { |
927 | 14.0k | if (getLangOpts().CPlusPlus && NameKind == Sema::LookupOrdinaryName) { |
928 | 12.5k | if (II == getASTContext().getMakeIntegerSeqName()) { |
929 | 0 | R.addDecl(getASTContext().getMakeIntegerSeqDecl()); |
930 | 0 | return true; |
931 | 12.5k | } else if (II == getASTContext().getTypePackElementName()) { |
932 | 0 | R.addDecl(getASTContext().getTypePackElementDecl()); |
933 | 0 | return true; |
934 | 0 | } |
935 | 12.5k | } |
936 | | |
937 | | // Check if this is an OpenCL Builtin, and if so, insert its overloads. |
938 | 14.0k | if (getLangOpts().OpenCL && getLangOpts().DeclareOpenCLBuiltins) { |
939 | 0 | auto Index = isOpenCLBuiltin(II->getName()); |
940 | 0 | if (Index.first) { |
941 | 0 | InsertOCLBuiltinDeclarationsFromTable(*this, R, II, Index.first - 1, |
942 | 0 | Index.second); |
943 | 0 | return true; |
944 | 0 | } |
945 | 0 | } |
946 | | |
947 | 14.0k | if (DeclareRISCVVBuiltins || DeclareRISCVSiFiveVectorBuiltins) { |
948 | 0 | if (!RVIntrinsicManager) |
949 | 0 | RVIntrinsicManager = CreateRISCVIntrinsicManager(*this); |
950 | |
|
951 | 0 | RVIntrinsicManager->InitIntrinsicList(); |
952 | |
|
953 | 0 | if (RVIntrinsicManager->CreateIntrinsicIfFound(R, II, PP)) |
954 | 0 | return true; |
955 | 0 | } |
956 | | |
957 | | // If this is a builtin on this (or all) targets, create the decl. |
958 | 14.0k | if (unsigned BuiltinID = II->getBuiltinID()) { |
959 | | // In C++ and OpenCL (spec v1.2 s6.9.f), we don't have any predefined |
960 | | // library functions like 'malloc'. Instead, we'll just error. |
961 | 5 | if ((getLangOpts().CPlusPlus || getLangOpts().OpenCL) && |
962 | 5 | Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) |
963 | 5 | return false; |
964 | | |
965 | 0 | if (NamedDecl *D = |
966 | 0 | LazilyCreateBuiltin(II, BuiltinID, TUScope, |
967 | 0 | R.isForRedeclaration(), R.getNameLoc())) { |
968 | 0 | R.addDecl(D); |
969 | 0 | return true; |
970 | 0 | } |
971 | 0 | } |
972 | 14.0k | } |
973 | 14.0k | } |
974 | | |
975 | 19.6k | return false; |
976 | 19.6k | } |
977 | | |
978 | | /// Looks up the declaration of "struct objc_super" and |
979 | | /// saves it for later use in building builtin declaration of |
980 | | /// objc_msgSendSuper and objc_msgSendSuper_stret. |
981 | 0 | static void LookupPredefedObjCSuperType(Sema &Sema, Scope *S) { |
982 | 0 | ASTContext &Context = Sema.Context; |
983 | 0 | LookupResult Result(Sema, &Context.Idents.get("objc_super"), SourceLocation(), |
984 | 0 | Sema::LookupTagName); |
985 | 0 | Sema.LookupName(Result, S); |
986 | 0 | if (Result.getResultKind() == LookupResult::Found) |
987 | 0 | if (const TagDecl *TD = Result.getAsSingle<TagDecl>()) |
988 | 0 | Context.setObjCSuperType(Context.getTagDeclType(TD)); |
989 | 0 | } |
990 | | |
991 | 0 | void Sema::LookupNecessaryTypesForBuiltin(Scope *S, unsigned ID) { |
992 | 0 | if (ID == Builtin::BIobjc_msgSendSuper) |
993 | 0 | LookupPredefedObjCSuperType(*this, S); |
994 | 0 | } |
995 | | |
996 | | /// Determine whether we can declare a special member function within |
997 | | /// the class at this point. |
998 | 0 | static bool CanDeclareSpecialMemberFunction(const CXXRecordDecl *Class) { |
999 | | // We need to have a definition for the class. |
1000 | 0 | if (!Class->getDefinition() || Class->isDependentContext()) |
1001 | 0 | return false; |
1002 | | |
1003 | | // We can't be in the middle of defining the class. |
1004 | 0 | return !Class->isBeingDefined(); |
1005 | 0 | } |
1006 | | |
1007 | 0 | void Sema::ForceDeclarationOfImplicitMembers(CXXRecordDecl *Class) { |
1008 | 0 | if (!CanDeclareSpecialMemberFunction(Class)) |
1009 | 0 | return; |
1010 | | |
1011 | | // If the default constructor has not yet been declared, do so now. |
1012 | 0 | if (Class->needsImplicitDefaultConstructor()) |
1013 | 0 | DeclareImplicitDefaultConstructor(Class); |
1014 | | |
1015 | | // If the copy constructor has not yet been declared, do so now. |
1016 | 0 | if (Class->needsImplicitCopyConstructor()) |
1017 | 0 | DeclareImplicitCopyConstructor(Class); |
1018 | | |
1019 | | // If the copy assignment operator has not yet been declared, do so now. |
1020 | 0 | if (Class->needsImplicitCopyAssignment()) |
1021 | 0 | DeclareImplicitCopyAssignment(Class); |
1022 | |
|
1023 | 0 | if (getLangOpts().CPlusPlus11) { |
1024 | | // If the move constructor has not yet been declared, do so now. |
1025 | 0 | if (Class->needsImplicitMoveConstructor()) |
1026 | 0 | DeclareImplicitMoveConstructor(Class); |
1027 | | |
1028 | | // If the move assignment operator has not yet been declared, do so now. |
1029 | 0 | if (Class->needsImplicitMoveAssignment()) |
1030 | 0 | DeclareImplicitMoveAssignment(Class); |
1031 | 0 | } |
1032 | | |
1033 | | // If the destructor has not yet been declared, do so now. |
1034 | 0 | if (Class->needsImplicitDestructor()) |
1035 | 0 | DeclareImplicitDestructor(Class); |
1036 | 0 | } |
1037 | | |
1038 | | /// Determine whether this is the name of an implicitly-declared |
1039 | | /// special member function. |
1040 | 22.0k | static bool isImplicitlyDeclaredMemberFunctionName(DeclarationName Name) { |
1041 | 22.0k | switch (Name.getNameKind()) { |
1042 | 0 | case DeclarationName::CXXConstructorName: |
1043 | 0 | case DeclarationName::CXXDestructorName: |
1044 | 0 | return true; |
1045 | | |
1046 | 23 | case DeclarationName::CXXOperatorName: |
1047 | 23 | return Name.getCXXOverloadedOperator() == OO_Equal; |
1048 | | |
1049 | 21.9k | default: |
1050 | 21.9k | break; |
1051 | 22.0k | } |
1052 | | |
1053 | 21.9k | return false; |
1054 | 22.0k | } |
1055 | | |
1056 | | /// If there are any implicit member functions with the given name |
1057 | | /// that need to be declared in the given declaration context, do so. |
1058 | | static void DeclareImplicitMemberFunctionsWithName(Sema &S, |
1059 | | DeclarationName Name, |
1060 | | SourceLocation Loc, |
1061 | 24.3k | const DeclContext *DC) { |
1062 | 24.3k | if (!DC) |
1063 | 0 | return; |
1064 | | |
1065 | 24.3k | switch (Name.getNameKind()) { |
1066 | 0 | case DeclarationName::CXXConstructorName: |
1067 | 0 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) |
1068 | 0 | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { |
1069 | 0 | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); |
1070 | 0 | if (Record->needsImplicitDefaultConstructor()) |
1071 | 0 | S.DeclareImplicitDefaultConstructor(Class); |
1072 | 0 | if (Record->needsImplicitCopyConstructor()) |
1073 | 0 | S.DeclareImplicitCopyConstructor(Class); |
1074 | 0 | if (S.getLangOpts().CPlusPlus11 && |
1075 | 0 | Record->needsImplicitMoveConstructor()) |
1076 | 0 | S.DeclareImplicitMoveConstructor(Class); |
1077 | 0 | } |
1078 | 0 | break; |
1079 | | |
1080 | 0 | case DeclarationName::CXXDestructorName: |
1081 | 0 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) |
1082 | 0 | if (Record->getDefinition() && Record->needsImplicitDestructor() && |
1083 | 0 | CanDeclareSpecialMemberFunction(Record)) |
1084 | 0 | S.DeclareImplicitDestructor(const_cast<CXXRecordDecl *>(Record)); |
1085 | 0 | break; |
1086 | | |
1087 | 23 | case DeclarationName::CXXOperatorName: |
1088 | 23 | if (Name.getCXXOverloadedOperator() != OO_Equal) |
1089 | 23 | break; |
1090 | | |
1091 | 0 | if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC)) { |
1092 | 0 | if (Record->getDefinition() && CanDeclareSpecialMemberFunction(Record)) { |
1093 | 0 | CXXRecordDecl *Class = const_cast<CXXRecordDecl *>(Record); |
1094 | 0 | if (Record->needsImplicitCopyAssignment()) |
1095 | 0 | S.DeclareImplicitCopyAssignment(Class); |
1096 | 0 | if (S.getLangOpts().CPlusPlus11 && |
1097 | 0 | Record->needsImplicitMoveAssignment()) |
1098 | 0 | S.DeclareImplicitMoveAssignment(Class); |
1099 | 0 | } |
1100 | 0 | } |
1101 | 0 | break; |
1102 | | |
1103 | 0 | case DeclarationName::CXXDeductionGuideName: |
1104 | 0 | S.DeclareImplicitDeductionGuides(Name.getCXXDeductionGuideTemplate(), Loc); |
1105 | 0 | break; |
1106 | | |
1107 | 24.2k | default: |
1108 | 24.2k | break; |
1109 | 24.3k | } |
1110 | 24.3k | } |
1111 | | |
1112 | | // Adds all qualifying matches for a name within a decl context to the |
1113 | | // given lookup result. Returns true if any matches were found. |
1114 | 24.3k | static bool LookupDirect(Sema &S, LookupResult &R, const DeclContext *DC) { |
1115 | 24.3k | bool Found = false; |
1116 | | |
1117 | | // Lazily declare C++ special member functions. |
1118 | 24.3k | if (S.getLangOpts().CPlusPlus) |
1119 | 24.3k | DeclareImplicitMemberFunctionsWithName(S, R.getLookupName(), R.getNameLoc(), |
1120 | 24.3k | DC); |
1121 | | |
1122 | | // Perform lookup into this declaration context. |
1123 | 24.3k | DeclContext::lookup_result DR = DC->lookup(R.getLookupName()); |
1124 | 24.3k | for (NamedDecl *D : DR) { |
1125 | 22.9k | if ((D = R.getAcceptableDecl(D))) { |
1126 | 16.6k | R.addDecl(D); |
1127 | 16.6k | Found = true; |
1128 | 16.6k | } |
1129 | 22.9k | } |
1130 | | |
1131 | 24.3k | if (!Found && DC->isTranslationUnit() && S.LookupBuiltin(R)) |
1132 | 0 | return true; |
1133 | | |
1134 | 24.3k | if (R.getLookupName().getNameKind() |
1135 | 24.3k | != DeclarationName::CXXConversionFunctionName || |
1136 | 24.3k | R.getLookupName().getCXXNameType()->isDependentType() || |
1137 | 24.3k | !isa<CXXRecordDecl>(DC)) |
1138 | 24.3k | return Found; |
1139 | | |
1140 | | // C++ [temp.mem]p6: |
1141 | | // A specialization of a conversion function template is not found by |
1142 | | // name lookup. Instead, any conversion function templates visible in the |
1143 | | // context of the use are considered. [...] |
1144 | 0 | const CXXRecordDecl *Record = cast<CXXRecordDecl>(DC); |
1145 | 0 | if (!Record->isCompleteDefinition()) |
1146 | 0 | return Found; |
1147 | | |
1148 | | // For conversion operators, 'operator auto' should only match |
1149 | | // 'operator auto'. Since 'auto' is not a type, it shouldn't be considered |
1150 | | // as a candidate for template substitution. |
1151 | 0 | auto *ContainedDeducedType = |
1152 | 0 | R.getLookupName().getCXXNameType()->getContainedDeducedType(); |
1153 | 0 | if (R.getLookupName().getNameKind() == |
1154 | 0 | DeclarationName::CXXConversionFunctionName && |
1155 | 0 | ContainedDeducedType && ContainedDeducedType->isUndeducedType()) |
1156 | 0 | return Found; |
1157 | | |
1158 | 0 | for (CXXRecordDecl::conversion_iterator U = Record->conversion_begin(), |
1159 | 0 | UEnd = Record->conversion_end(); U != UEnd; ++U) { |
1160 | 0 | FunctionTemplateDecl *ConvTemplate = dyn_cast<FunctionTemplateDecl>(*U); |
1161 | 0 | if (!ConvTemplate) |
1162 | 0 | continue; |
1163 | | |
1164 | | // When we're performing lookup for the purposes of redeclaration, just |
1165 | | // add the conversion function template. When we deduce template |
1166 | | // arguments for specializations, we'll end up unifying the return |
1167 | | // type of the new declaration with the type of the function template. |
1168 | 0 | if (R.isForRedeclaration()) { |
1169 | 0 | R.addDecl(ConvTemplate); |
1170 | 0 | Found = true; |
1171 | 0 | continue; |
1172 | 0 | } |
1173 | | |
1174 | | // C++ [temp.mem]p6: |
1175 | | // [...] For each such operator, if argument deduction succeeds |
1176 | | // (14.9.2.3), the resulting specialization is used as if found by |
1177 | | // name lookup. |
1178 | | // |
1179 | | // When referencing a conversion function for any purpose other than |
1180 | | // a redeclaration (such that we'll be building an expression with the |
1181 | | // result), perform template argument deduction and place the |
1182 | | // specialization into the result set. We do this to avoid forcing all |
1183 | | // callers to perform special deduction for conversion functions. |
1184 | 0 | TemplateDeductionInfo Info(R.getNameLoc()); |
1185 | 0 | FunctionDecl *Specialization = nullptr; |
1186 | |
|
1187 | 0 | const FunctionProtoType *ConvProto |
1188 | 0 | = ConvTemplate->getTemplatedDecl()->getType()->getAs<FunctionProtoType>(); |
1189 | 0 | assert(ConvProto && "Nonsensical conversion function template type"); |
1190 | | |
1191 | | // Compute the type of the function that we would expect the conversion |
1192 | | // function to have, if it were to match the name given. |
1193 | | // FIXME: Calling convention! |
1194 | 0 | FunctionProtoType::ExtProtoInfo EPI = ConvProto->getExtProtoInfo(); |
1195 | 0 | EPI.ExtInfo = EPI.ExtInfo.withCallingConv(CC_C); |
1196 | 0 | EPI.ExceptionSpec = EST_None; |
1197 | 0 | QualType ExpectedType = R.getSema().Context.getFunctionType( |
1198 | 0 | R.getLookupName().getCXXNameType(), std::nullopt, EPI); |
1199 | | |
1200 | | // Perform template argument deduction against the type that we would |
1201 | | // expect the function to have. |
1202 | 0 | if (R.getSema().DeduceTemplateArguments(ConvTemplate, nullptr, ExpectedType, |
1203 | 0 | Specialization, Info) |
1204 | 0 | == Sema::TDK_Success) { |
1205 | 0 | R.addDecl(Specialization); |
1206 | 0 | Found = true; |
1207 | 0 | } |
1208 | 0 | } |
1209 | |
|
1210 | 0 | return Found; |
1211 | 0 | } |
1212 | | |
1213 | | // Performs C++ unqualified lookup into the given file context. |
1214 | | static bool CppNamespaceLookup(Sema &S, LookupResult &R, ASTContext &Context, |
1215 | | const DeclContext *NS, |
1216 | 22.0k | UnqualUsingDirectiveSet &UDirs) { |
1217 | | |
1218 | 22.0k | assert(NS && NS->isFileContext() && "CppNamespaceLookup() requires namespace!"); |
1219 | | |
1220 | | // Perform direct name lookup into the LookupCtx. |
1221 | 0 | bool Found = LookupDirect(S, R, NS); |
1222 | | |
1223 | | // Perform direct name lookup into the namespaces nominated by the |
1224 | | // using directives whose common ancestor is this namespace. |
1225 | 22.0k | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(NS)) |
1226 | 0 | if (LookupDirect(S, R, UUE.getNominatedNamespace())) |
1227 | 0 | Found = true; |
1228 | | |
1229 | 22.0k | R.resolveKind(); |
1230 | | |
1231 | 22.0k | return Found; |
1232 | 22.0k | } |
1233 | | |
1234 | 25.1k | static bool isNamespaceOrTranslationUnitScope(Scope *S) { |
1235 | 25.1k | if (DeclContext *Ctx = S->getEntity()) |
1236 | 25.0k | return Ctx->isFileContext(); |
1237 | 53 | return false; |
1238 | 25.1k | } |
1239 | | |
1240 | | /// Find the outer declaration context from this scope. This indicates the |
1241 | | /// context that we should search up to (exclusive) before considering the |
1242 | | /// parent of the specified scope. |
1243 | 22.0k | static DeclContext *findOuterContext(Scope *S) { |
1244 | 22.0k | for (Scope *OuterS = S->getParent(); OuterS; OuterS = OuterS->getParent()) |
1245 | 4 | if (DeclContext *DC = OuterS->getLookupEntity()) |
1246 | 4 | return DC; |
1247 | 22.0k | return nullptr; |
1248 | 22.0k | } |
1249 | | |
1250 | | namespace { |
1251 | | /// An RAII object to specify that we want to find block scope extern |
1252 | | /// declarations. |
1253 | | struct FindLocalExternScope { |
1254 | | FindLocalExternScope(LookupResult &R) |
1255 | | : R(R), OldFindLocalExtern(R.getIdentifierNamespace() & |
1256 | 37.4k | Decl::IDNS_LocalExtern) { |
1257 | 37.4k | R.setFindLocalExtern(R.getIdentifierNamespace() & |
1258 | 37.4k | (Decl::IDNS_Ordinary | Decl::IDNS_NonMemberOperator)); |
1259 | 37.4k | } |
1260 | 56.8k | void restore() { |
1261 | 56.8k | R.setFindLocalExtern(OldFindLocalExtern); |
1262 | 56.8k | } |
1263 | 37.4k | ~FindLocalExternScope() { |
1264 | 37.4k | restore(); |
1265 | 37.4k | } |
1266 | | LookupResult &R; |
1267 | | bool OldFindLocalExtern; |
1268 | | }; |
1269 | | } // end anonymous namespace |
1270 | | |
1271 | 22.0k | bool Sema::CppLookupName(LookupResult &R, Scope *S) { |
1272 | 22.0k | assert(getLangOpts().CPlusPlus && "Can perform only C++ lookup"); |
1273 | | |
1274 | 0 | DeclarationName Name = R.getLookupName(); |
1275 | 22.0k | Sema::LookupNameKind NameKind = R.getLookupKind(); |
1276 | | |
1277 | | // If this is the name of an implicitly-declared special member function, |
1278 | | // go through the scope stack to implicitly declare |
1279 | 22.0k | if (isImplicitlyDeclaredMemberFunctionName(Name)) { |
1280 | 0 | for (Scope *PreS = S; PreS; PreS = PreS->getParent()) |
1281 | 0 | if (DeclContext *DC = PreS->getEntity()) |
1282 | 0 | DeclareImplicitMemberFunctionsWithName(*this, Name, R.getNameLoc(), DC); |
1283 | 0 | } |
1284 | | |
1285 | | // Implicitly declare member functions with the name we're looking for, if in |
1286 | | // fact we are in a scope where it matters. |
1287 | | |
1288 | 22.0k | Scope *Initial = S; |
1289 | 22.0k | IdentifierResolver::iterator |
1290 | 22.0k | I = IdResolver.begin(Name), |
1291 | 22.0k | IEnd = IdResolver.end(); |
1292 | | |
1293 | | // First we lookup local scope. |
1294 | | // We don't consider using-directives, as per 7.3.4.p1 [namespace.udir] |
1295 | | // ...During unqualified name lookup (3.4.1), the names appear as if |
1296 | | // they were declared in the nearest enclosing namespace which contains |
1297 | | // both the using-directive and the nominated namespace. |
1298 | | // [Note: in this context, "contains" means "contains directly or |
1299 | | // indirectly". |
1300 | | // |
1301 | | // For example: |
1302 | | // namespace A { int i; } |
1303 | | // void foo() { |
1304 | | // int i; |
1305 | | // { |
1306 | | // using namespace A; |
1307 | | // ++i; // finds local 'i', A::i appears at global scope |
1308 | | // } |
1309 | | // } |
1310 | | // |
1311 | 22.0k | UnqualUsingDirectiveSet UDirs(*this); |
1312 | 22.0k | bool VisitedUsingDirectives = false; |
1313 | 22.0k | bool LeftStartingScope = false; |
1314 | | |
1315 | | // When performing a scope lookup, we want to find local extern decls. |
1316 | 22.0k | FindLocalExternScope FindLocals(R); |
1317 | | |
1318 | 22.0k | for (; S && !isNamespaceOrTranslationUnitScope(S); S = S->getParent()) { |
1319 | 57 | bool SearchNamespaceScope = true; |
1320 | | // Check whether the IdResolver has anything in this scope. |
1321 | 57 | for (; I != IEnd && S->isDeclScope(*I); ++I) { |
1322 | 0 | if (NamedDecl *ND = R.getAcceptableDecl(*I)) { |
1323 | 0 | if (NameKind == LookupRedeclarationWithLinkage && |
1324 | 0 | !(*I)->isTemplateParameter()) { |
1325 | | // If it's a template parameter, we still find it, so we can diagnose |
1326 | | // the invalid redeclaration. |
1327 | | |
1328 | | // Determine whether this (or a previous) declaration is |
1329 | | // out-of-scope. |
1330 | 0 | if (!LeftStartingScope && !Initial->isDeclScope(*I)) |
1331 | 0 | LeftStartingScope = true; |
1332 | | |
1333 | | // If we found something outside of our starting scope that |
1334 | | // does not have linkage, skip it. |
1335 | 0 | if (LeftStartingScope && !((*I)->hasLinkage())) { |
1336 | 0 | R.setShadowed(); |
1337 | 0 | continue; |
1338 | 0 | } |
1339 | 0 | } else { |
1340 | | // We found something in this scope, we should not look at the |
1341 | | // namespace scope |
1342 | 0 | SearchNamespaceScope = false; |
1343 | 0 | } |
1344 | 0 | R.addDecl(ND); |
1345 | 0 | } |
1346 | 0 | } |
1347 | 57 | if (!SearchNamespaceScope) { |
1348 | 0 | R.resolveKind(); |
1349 | 0 | if (S->isClassScope()) |
1350 | 0 | if (auto *Record = dyn_cast_if_present<CXXRecordDecl>(S->getEntity())) |
1351 | 0 | R.setNamingClass(Record); |
1352 | 0 | return true; |
1353 | 0 | } |
1354 | | |
1355 | 57 | if (NameKind == LookupLocalFriendName && !S->isClassScope()) { |
1356 | | // C++11 [class.friend]p11: |
1357 | | // If a friend declaration appears in a local class and the name |
1358 | | // specified is an unqualified name, a prior declaration is |
1359 | | // looked up without considering scopes that are outside the |
1360 | | // innermost enclosing non-class scope. |
1361 | 0 | return false; |
1362 | 0 | } |
1363 | | |
1364 | 57 | if (DeclContext *Ctx = S->getLookupEntity()) { |
1365 | 4 | DeclContext *OuterCtx = findOuterContext(S); |
1366 | 8 | for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { |
1367 | | // We do not directly look into transparent contexts, since |
1368 | | // those entities will be found in the nearest enclosing |
1369 | | // non-transparent context. |
1370 | 4 | if (Ctx->isTransparentContext()) |
1371 | 0 | continue; |
1372 | | |
1373 | | // We do not look directly into function or method contexts, |
1374 | | // since all of the local variables and parameters of the |
1375 | | // function/method are present within the Scope. |
1376 | 4 | if (Ctx->isFunctionOrMethod()) { |
1377 | | // If we have an Objective-C instance method, look for ivars |
1378 | | // in the corresponding interface. |
1379 | 4 | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { |
1380 | 0 | if (Method->isInstanceMethod() && Name.getAsIdentifierInfo()) |
1381 | 0 | if (ObjCInterfaceDecl *Class = Method->getClassInterface()) { |
1382 | 0 | ObjCInterfaceDecl *ClassDeclared; |
1383 | 0 | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable( |
1384 | 0 | Name.getAsIdentifierInfo(), |
1385 | 0 | ClassDeclared)) { |
1386 | 0 | if (NamedDecl *ND = R.getAcceptableDecl(Ivar)) { |
1387 | 0 | R.addDecl(ND); |
1388 | 0 | R.resolveKind(); |
1389 | 0 | return true; |
1390 | 0 | } |
1391 | 0 | } |
1392 | 0 | } |
1393 | 0 | } |
1394 | | |
1395 | 4 | continue; |
1396 | 4 | } |
1397 | | |
1398 | | // If this is a file context, we need to perform unqualified name |
1399 | | // lookup considering using directives. |
1400 | 0 | if (Ctx->isFileContext()) { |
1401 | | // If we haven't handled using directives yet, do so now. |
1402 | 0 | if (!VisitedUsingDirectives) { |
1403 | | // Add using directives from this context up to the top level. |
1404 | 0 | for (DeclContext *UCtx = Ctx; UCtx; UCtx = UCtx->getParent()) { |
1405 | 0 | if (UCtx->isTransparentContext()) |
1406 | 0 | continue; |
1407 | | |
1408 | 0 | UDirs.visit(UCtx, UCtx); |
1409 | 0 | } |
1410 | | |
1411 | | // Find the innermost file scope, so we can add using directives |
1412 | | // from local scopes. |
1413 | 0 | Scope *InnermostFileScope = S; |
1414 | 0 | while (InnermostFileScope && |
1415 | 0 | !isNamespaceOrTranslationUnitScope(InnermostFileScope)) |
1416 | 0 | InnermostFileScope = InnermostFileScope->getParent(); |
1417 | 0 | UDirs.visitScopeChain(Initial, InnermostFileScope); |
1418 | |
|
1419 | 0 | UDirs.done(); |
1420 | |
|
1421 | 0 | VisitedUsingDirectives = true; |
1422 | 0 | } |
1423 | |
|
1424 | 0 | if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) { |
1425 | 0 | R.resolveKind(); |
1426 | 0 | return true; |
1427 | 0 | } |
1428 | | |
1429 | 0 | continue; |
1430 | 0 | } |
1431 | | |
1432 | | // Perform qualified name lookup into this context. |
1433 | | // FIXME: In some cases, we know that every name that could be found by |
1434 | | // this qualified name lookup will also be on the identifier chain. For |
1435 | | // example, inside a class without any base classes, we never need to |
1436 | | // perform qualified lookup because all of the members are on top of the |
1437 | | // identifier chain. |
1438 | 0 | if (LookupQualifiedName(R, Ctx, /*InUnqualifiedLookup=*/true)) |
1439 | 0 | return true; |
1440 | 0 | } |
1441 | 4 | } |
1442 | 57 | } |
1443 | | |
1444 | | // Stop if we ran out of scopes. |
1445 | | // FIXME: This really, really shouldn't be happening. |
1446 | 22.0k | if (!S) return false; |
1447 | | |
1448 | | // If we are looking for members, no need to look into global/namespace scope. |
1449 | 22.0k | if (NameKind == LookupMemberName) |
1450 | 0 | return false; |
1451 | | |
1452 | | // Collect UsingDirectiveDecls in all scopes, and recursively all |
1453 | | // nominated namespaces by those using-directives. |
1454 | | // |
1455 | | // FIXME: Cache this sorted list in Scope structure, and DeclContext, so we |
1456 | | // don't build it for each lookup! |
1457 | 22.0k | if (!VisitedUsingDirectives) { |
1458 | 22.0k | UDirs.visitScopeChain(Initial, S); |
1459 | 22.0k | UDirs.done(); |
1460 | 22.0k | } |
1461 | | |
1462 | | // If we're not performing redeclaration lookup, do not look for local |
1463 | | // extern declarations outside of a function scope. |
1464 | 22.0k | if (!R.isForRedeclaration()) |
1465 | 19.4k | FindLocals.restore(); |
1466 | | |
1467 | | // Lookup namespace scope, and global scope. |
1468 | | // Unqualified name lookup in C++ requires looking into scopes |
1469 | | // that aren't strictly lexical, and therefore we walk through the |
1470 | | // context as well as walking through the scopes. |
1471 | 36.0k | for (; S; S = S->getParent()) { |
1472 | | // Check whether the IdResolver has anything in this scope. |
1473 | 22.0k | bool Found = false; |
1474 | 44.9k | for (; I != IEnd && S->isDeclScope(*I); ++I) { |
1475 | 22.8k | if (NamedDecl *ND = R.getAcceptableDecl(*I)) { |
1476 | | // We found something. Look for anything else in our scope |
1477 | | // with this same name and in an acceptable identifier |
1478 | | // namespace, so that we can construct an overload set if we |
1479 | | // need to. |
1480 | 16.6k | Found = true; |
1481 | 16.6k | R.addDecl(ND); |
1482 | 16.6k | } |
1483 | 22.8k | } |
1484 | | |
1485 | 22.0k | if (Found && S->isTemplateParamScope()) { |
1486 | 0 | R.resolveKind(); |
1487 | 0 | return true; |
1488 | 0 | } |
1489 | | |
1490 | 22.0k | DeclContext *Ctx = S->getLookupEntity(); |
1491 | 22.0k | if (Ctx) { |
1492 | 22.0k | DeclContext *OuterCtx = findOuterContext(S); |
1493 | 36.0k | for (; Ctx && !Ctx->Equals(OuterCtx); Ctx = Ctx->getLookupParent()) { |
1494 | | // We do not directly look into transparent contexts, since |
1495 | | // those entities will be found in the nearest enclosing |
1496 | | // non-transparent context. |
1497 | 22.0k | if (Ctx->isTransparentContext()) |
1498 | 0 | continue; |
1499 | | |
1500 | | // If we have a context, and it's not a context stashed in the |
1501 | | // template parameter scope for an out-of-line definition, also |
1502 | | // look into that context. |
1503 | 22.0k | if (!(Found && S->isTemplateParamScope())) { |
1504 | 22.0k | assert(Ctx->isFileContext() && |
1505 | 22.0k | "We should have been looking only at file context here already."); |
1506 | | |
1507 | | // Look into context considering using-directives. |
1508 | 22.0k | if (CppNamespaceLookup(*this, R, Context, Ctx, UDirs)) |
1509 | 6.46k | Found = true; |
1510 | 22.0k | } |
1511 | | |
1512 | 22.0k | if (Found) { |
1513 | 6.46k | R.resolveKind(); |
1514 | 6.46k | return true; |
1515 | 6.46k | } |
1516 | | |
1517 | 15.5k | if (R.isForRedeclaration() && !Ctx->isTransparentContext()) |
1518 | 1.53k | return false; |
1519 | 15.5k | } |
1520 | 22.0k | } |
1521 | | |
1522 | 14.0k | if (R.isForRedeclaration() && Ctx && !Ctx->isTransparentContext()) |
1523 | 0 | return false; |
1524 | 14.0k | } |
1525 | | |
1526 | 14.0k | return !R.empty(); |
1527 | 22.0k | } |
1528 | | |
1529 | 0 | void Sema::makeMergedDefinitionVisible(NamedDecl *ND) { |
1530 | 0 | if (auto *M = getCurrentModule()) |
1531 | 0 | Context.mergeDefinitionIntoModule(ND, M); |
1532 | 0 | else |
1533 | | // We're not building a module; just make the definition visible. |
1534 | 0 | ND->setVisibleDespiteOwningModule(); |
1535 | | |
1536 | | // If ND is a template declaration, make the template parameters |
1537 | | // visible too. They're not (necessarily) within a mergeable DeclContext. |
1538 | 0 | if (auto *TD = dyn_cast<TemplateDecl>(ND)) |
1539 | 0 | for (auto *Param : *TD->getTemplateParameters()) |
1540 | 0 | makeMergedDefinitionVisible(Param); |
1541 | 0 | } |
1542 | | |
1543 | | /// Find the module in which the given declaration was defined. |
1544 | 0 | static Module *getDefiningModule(Sema &S, Decl *Entity) { |
1545 | 0 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Entity)) { |
1546 | | // If this function was instantiated from a template, the defining module is |
1547 | | // the module containing the pattern. |
1548 | 0 | if (FunctionDecl *Pattern = FD->getTemplateInstantiationPattern()) |
1549 | 0 | Entity = Pattern; |
1550 | 0 | } else if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Entity)) { |
1551 | 0 | if (CXXRecordDecl *Pattern = RD->getTemplateInstantiationPattern()) |
1552 | 0 | Entity = Pattern; |
1553 | 0 | } else if (EnumDecl *ED = dyn_cast<EnumDecl>(Entity)) { |
1554 | 0 | if (auto *Pattern = ED->getTemplateInstantiationPattern()) |
1555 | 0 | Entity = Pattern; |
1556 | 0 | } else if (VarDecl *VD = dyn_cast<VarDecl>(Entity)) { |
1557 | 0 | if (VarDecl *Pattern = VD->getTemplateInstantiationPattern()) |
1558 | 0 | Entity = Pattern; |
1559 | 0 | } |
1560 | | |
1561 | | // Walk up to the containing context. That might also have been instantiated |
1562 | | // from a template. |
1563 | 0 | DeclContext *Context = Entity->getLexicalDeclContext(); |
1564 | 0 | if (Context->isFileContext()) |
1565 | 0 | return S.getOwningModule(Entity); |
1566 | 0 | return getDefiningModule(S, cast<Decl>(Context)); |
1567 | 0 | } |
1568 | | |
1569 | 0 | llvm::DenseSet<Module*> &Sema::getLookupModules() { |
1570 | 0 | unsigned N = CodeSynthesisContexts.size(); |
1571 | 0 | for (unsigned I = CodeSynthesisContextLookupModules.size(); |
1572 | 0 | I != N; ++I) { |
1573 | 0 | Module *M = CodeSynthesisContexts[I].Entity ? |
1574 | 0 | getDefiningModule(*this, CodeSynthesisContexts[I].Entity) : |
1575 | 0 | nullptr; |
1576 | 0 | if (M && !LookupModulesCache.insert(M).second) |
1577 | 0 | M = nullptr; |
1578 | 0 | CodeSynthesisContextLookupModules.push_back(M); |
1579 | 0 | } |
1580 | 0 | return LookupModulesCache; |
1581 | 0 | } |
1582 | | |
1583 | | /// Determine if we could use all the declarations in the module. |
1584 | 0 | bool Sema::isUsableModule(const Module *M) { |
1585 | 0 | assert(M && "We shouldn't check nullness for module here"); |
1586 | | // Return quickly if we cached the result. |
1587 | 0 | if (UsableModuleUnitsCache.count(M)) |
1588 | 0 | return true; |
1589 | | |
1590 | | // If M is the global module fragment of the current translation unit. So it |
1591 | | // should be usable. |
1592 | | // [module.global.frag]p1: |
1593 | | // The global module fragment can be used to provide declarations that are |
1594 | | // attached to the global module and usable within the module unit. |
1595 | 0 | if (M == TheGlobalModuleFragment || M == TheImplicitGlobalModuleFragment || |
1596 | | // If M is the module we're parsing, it should be usable. This covers the |
1597 | | // private module fragment. The private module fragment is usable only if |
1598 | | // it is within the current module unit. And it must be the current |
1599 | | // parsing module unit if it is within the current module unit according |
1600 | | // to the grammar of the private module fragment. NOTE: This is covered by |
1601 | | // the following condition. The intention of the check is to avoid string |
1602 | | // comparison as much as possible. |
1603 | 0 | M == getCurrentModule() || |
1604 | | // The module unit which is in the same module with the current module |
1605 | | // unit is usable. |
1606 | | // |
1607 | | // FIXME: Here we judge if they are in the same module by comparing the |
1608 | | // string. Is there any better solution? |
1609 | 0 | M->getPrimaryModuleInterfaceName() == |
1610 | 0 | llvm::StringRef(getLangOpts().CurrentModule).split(':').first) { |
1611 | 0 | UsableModuleUnitsCache.insert(M); |
1612 | 0 | return true; |
1613 | 0 | } |
1614 | | |
1615 | 0 | return false; |
1616 | 0 | } |
1617 | | |
1618 | 0 | bool Sema::hasVisibleMergedDefinition(const NamedDecl *Def) { |
1619 | 0 | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) |
1620 | 0 | if (isModuleVisible(Merged)) |
1621 | 0 | return true; |
1622 | 0 | return false; |
1623 | 0 | } |
1624 | | |
1625 | 0 | bool Sema::hasMergedDefinitionInCurrentModule(const NamedDecl *Def) { |
1626 | 0 | for (const Module *Merged : Context.getModulesWithMergedDefinition(Def)) |
1627 | 0 | if (isUsableModule(Merged)) |
1628 | 0 | return true; |
1629 | 0 | return false; |
1630 | 0 | } |
1631 | | |
1632 | | template <typename ParmDecl> |
1633 | | static bool |
1634 | | hasAcceptableDefaultArgument(Sema &S, const ParmDecl *D, |
1635 | | llvm::SmallVectorImpl<Module *> *Modules, |
1636 | 0 | Sema::AcceptableKind Kind) { |
1637 | 0 | if (!D->hasDefaultArgument()) |
1638 | 0 | return false; |
1639 | | |
1640 | 0 | llvm::SmallPtrSet<const ParmDecl *, 4> Visited; |
1641 | 0 | while (D && Visited.insert(D).second) { |
1642 | 0 | auto &DefaultArg = D->getDefaultArgStorage(); |
1643 | 0 | if (!DefaultArg.isInherited() && S.isAcceptable(D, Kind)) |
1644 | 0 | return true; |
1645 | | |
1646 | 0 | if (!DefaultArg.isInherited() && Modules) { |
1647 | 0 | auto *NonConstD = const_cast<ParmDecl*>(D); |
1648 | 0 | Modules->push_back(S.getOwningModule(NonConstD)); |
1649 | 0 | } |
1650 | | |
1651 | | // If there was a previous default argument, maybe its parameter is |
1652 | | // acceptable. |
1653 | 0 | D = DefaultArg.getInheritedFrom(); |
1654 | 0 | } |
1655 | 0 | return false; |
1656 | 0 | } Unexecuted instantiation: SemaLookup.cpp:bool hasAcceptableDefaultArgument<clang::TemplateTypeParmDecl>(clang::Sema&, clang::TemplateTypeParmDecl const*, llvm::SmallVectorImpl<clang::Module*>*, clang::Sema::AcceptableKind) Unexecuted instantiation: SemaLookup.cpp:bool hasAcceptableDefaultArgument<clang::NonTypeTemplateParmDecl>(clang::Sema&, clang::NonTypeTemplateParmDecl const*, llvm::SmallVectorImpl<clang::Module*>*, clang::Sema::AcceptableKind) Unexecuted instantiation: SemaLookup.cpp:bool hasAcceptableDefaultArgument<clang::TemplateTemplateParmDecl>(clang::Sema&, clang::TemplateTemplateParmDecl const*, llvm::SmallVectorImpl<clang::Module*>*, clang::Sema::AcceptableKind) |
1657 | | |
1658 | | bool Sema::hasAcceptableDefaultArgument( |
1659 | | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules, |
1660 | 0 | Sema::AcceptableKind Kind) { |
1661 | 0 | if (auto *P = dyn_cast<TemplateTypeParmDecl>(D)) |
1662 | 0 | return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); |
1663 | | |
1664 | 0 | if (auto *P = dyn_cast<NonTypeTemplateParmDecl>(D)) |
1665 | 0 | return ::hasAcceptableDefaultArgument(*this, P, Modules, Kind); |
1666 | | |
1667 | 0 | return ::hasAcceptableDefaultArgument( |
1668 | 0 | *this, cast<TemplateTemplateParmDecl>(D), Modules, Kind); |
1669 | 0 | } |
1670 | | |
1671 | | bool Sema::hasVisibleDefaultArgument(const NamedDecl *D, |
1672 | 0 | llvm::SmallVectorImpl<Module *> *Modules) { |
1673 | 0 | return hasAcceptableDefaultArgument(D, Modules, |
1674 | 0 | Sema::AcceptableKind::Visible); |
1675 | 0 | } |
1676 | | |
1677 | | bool Sema::hasReachableDefaultArgument( |
1678 | 0 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
1679 | 0 | return hasAcceptableDefaultArgument(D, Modules, |
1680 | 0 | Sema::AcceptableKind::Reachable); |
1681 | 0 | } |
1682 | | |
1683 | | template <typename Filter> |
1684 | | static bool |
1685 | | hasAcceptableDeclarationImpl(Sema &S, const NamedDecl *D, |
1686 | | llvm::SmallVectorImpl<Module *> *Modules, Filter F, |
1687 | 0 | Sema::AcceptableKind Kind) { |
1688 | 0 | bool HasFilteredRedecls = false; |
1689 | |
|
1690 | 0 | for (auto *Redecl : D->redecls()) { |
1691 | 0 | auto *R = cast<NamedDecl>(Redecl); |
1692 | 0 | if (!F(R)) |
1693 | 0 | continue; |
1694 | | |
1695 | 0 | if (S.isAcceptable(R, Kind)) |
1696 | 0 | return true; |
1697 | | |
1698 | 0 | HasFilteredRedecls = true; |
1699 | |
|
1700 | 0 | if (Modules) |
1701 | 0 | Modules->push_back(R->getOwningModule()); |
1702 | 0 | } |
1703 | | |
1704 | | // Only return false if there is at least one redecl that is not filtered out. |
1705 | 0 | if (HasFilteredRedecls) |
1706 | 0 | return false; |
1707 | | |
1708 | 0 | return true; |
1709 | 0 | } Unexecuted instantiation: SemaLookup.cpp:bool hasAcceptableDeclarationImpl<hasAcceptableExplicitSpecialization(clang::Sema&, clang::NamedDecl const*, llvm::SmallVectorImpl<clang::Module*>*, clang::Sema::AcceptableKind)::$_19>(clang::Sema&, clang::NamedDecl const*, llvm::SmallVectorImpl<clang::Module*>*, hasAcceptableExplicitSpecialization(clang::Sema&, clang::NamedDecl const*, llvm::SmallVectorImpl<clang::Module*>*, clang::Sema::AcceptableKind)::$_19, clang::Sema::AcceptableKind) Unexecuted instantiation: SemaLookup.cpp:bool hasAcceptableDeclarationImpl<hasAcceptableMemberSpecialization(clang::Sema&, clang::NamedDecl const*, llvm::SmallVectorImpl<clang::Module*>*, clang::Sema::AcceptableKind)::$_20>(clang::Sema&, clang::NamedDecl const*, llvm::SmallVectorImpl<clang::Module*>*, hasAcceptableMemberSpecialization(clang::Sema&, clang::NamedDecl const*, llvm::SmallVectorImpl<clang::Module*>*, clang::Sema::AcceptableKind)::$_20, clang::Sema::AcceptableKind) Unexecuted instantiation: SemaLookup.cpp:bool hasAcceptableDeclarationImpl<clang::Sema::hasVisibleDeclarationSlow(clang::NamedDecl const*, llvm::SmallVectorImpl<clang::Module*>*)::$_2>(clang::Sema&, clang::NamedDecl const*, llvm::SmallVectorImpl<clang::Module*>*, clang::Sema::hasVisibleDeclarationSlow(clang::NamedDecl const*, llvm::SmallVectorImpl<clang::Module*>*)::$_2, clang::Sema::AcceptableKind) Unexecuted instantiation: SemaLookup.cpp:bool hasAcceptableDeclarationImpl<clang::Sema::hasReachableDeclarationSlow(clang::NamedDecl const*, llvm::SmallVectorImpl<clang::Module*>*)::$_3>(clang::Sema&, clang::NamedDecl const*, llvm::SmallVectorImpl<clang::Module*>*, clang::Sema::hasReachableDeclarationSlow(clang::NamedDecl const*, llvm::SmallVectorImpl<clang::Module*>*)::$_3, clang::Sema::AcceptableKind) |
1710 | | |
1711 | | static bool |
1712 | | hasAcceptableExplicitSpecialization(Sema &S, const NamedDecl *D, |
1713 | | llvm::SmallVectorImpl<Module *> *Modules, |
1714 | 0 | Sema::AcceptableKind Kind) { |
1715 | 0 | return hasAcceptableDeclarationImpl( |
1716 | 0 | S, D, Modules, |
1717 | 0 | [](const NamedDecl *D) { |
1718 | 0 | if (auto *RD = dyn_cast<CXXRecordDecl>(D)) |
1719 | 0 | return RD->getTemplateSpecializationKind() == |
1720 | 0 | TSK_ExplicitSpecialization; |
1721 | 0 | if (auto *FD = dyn_cast<FunctionDecl>(D)) |
1722 | 0 | return FD->getTemplateSpecializationKind() == |
1723 | 0 | TSK_ExplicitSpecialization; |
1724 | 0 | if (auto *VD = dyn_cast<VarDecl>(D)) |
1725 | 0 | return VD->getTemplateSpecializationKind() == |
1726 | 0 | TSK_ExplicitSpecialization; |
1727 | 0 | llvm_unreachable("unknown explicit specialization kind"); |
1728 | 0 | }, |
1729 | 0 | Kind); |
1730 | 0 | } |
1731 | | |
1732 | | bool Sema::hasVisibleExplicitSpecialization( |
1733 | 0 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
1734 | 0 | return ::hasAcceptableExplicitSpecialization(*this, D, Modules, |
1735 | 0 | Sema::AcceptableKind::Visible); |
1736 | 0 | } |
1737 | | |
1738 | | bool Sema::hasReachableExplicitSpecialization( |
1739 | 0 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
1740 | 0 | return ::hasAcceptableExplicitSpecialization(*this, D, Modules, |
1741 | 0 | Sema::AcceptableKind::Reachable); |
1742 | 0 | } |
1743 | | |
1744 | | static bool |
1745 | | hasAcceptableMemberSpecialization(Sema &S, const NamedDecl *D, |
1746 | | llvm::SmallVectorImpl<Module *> *Modules, |
1747 | 0 | Sema::AcceptableKind Kind) { |
1748 | 0 | assert(isa<CXXRecordDecl>(D->getDeclContext()) && |
1749 | 0 | "not a member specialization"); |
1750 | 0 | return hasAcceptableDeclarationImpl( |
1751 | 0 | S, D, Modules, |
1752 | 0 | [](const NamedDecl *D) { |
1753 | | // If the specialization is declared at namespace scope, then it's a |
1754 | | // member specialization declaration. If it's lexically inside the class |
1755 | | // definition then it was instantiated. |
1756 | | // |
1757 | | // FIXME: This is a hack. There should be a better way to determine |
1758 | | // this. |
1759 | | // FIXME: What about MS-style explicit specializations declared within a |
1760 | | // class definition? |
1761 | 0 | return D->getLexicalDeclContext()->isFileContext(); |
1762 | 0 | }, |
1763 | 0 | Kind); |
1764 | 0 | } |
1765 | | |
1766 | | bool Sema::hasVisibleMemberSpecialization( |
1767 | 0 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
1768 | 0 | return hasAcceptableMemberSpecialization(*this, D, Modules, |
1769 | 0 | Sema::AcceptableKind::Visible); |
1770 | 0 | } |
1771 | | |
1772 | | bool Sema::hasReachableMemberSpecialization( |
1773 | 0 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
1774 | 0 | return hasAcceptableMemberSpecialization(*this, D, Modules, |
1775 | 0 | Sema::AcceptableKind::Reachable); |
1776 | 0 | } |
1777 | | |
1778 | | /// Determine whether a declaration is acceptable to name lookup. |
1779 | | /// |
1780 | | /// This routine determines whether the declaration D is acceptable in the |
1781 | | /// current lookup context, taking into account the current template |
1782 | | /// instantiation stack. During template instantiation, a declaration is |
1783 | | /// acceptable if it is acceptable from a module containing any entity on the |
1784 | | /// template instantiation path (by instantiating a template, you allow it to |
1785 | | /// see the declarations that your module can see, including those later on in |
1786 | | /// your module). |
1787 | | bool LookupResult::isAcceptableSlow(Sema &SemaRef, NamedDecl *D, |
1788 | 0 | Sema::AcceptableKind Kind) { |
1789 | 0 | assert(!D->isUnconditionallyVisible() && |
1790 | 0 | "should not call this: not in slow case"); |
1791 | | |
1792 | 0 | Module *DeclModule = SemaRef.getOwningModule(D); |
1793 | 0 | assert(DeclModule && "hidden decl has no owning module"); |
1794 | | |
1795 | | // If the owning module is visible, the decl is acceptable. |
1796 | 0 | if (SemaRef.isModuleVisible(DeclModule, |
1797 | 0 | D->isInvisibleOutsideTheOwningModule())) |
1798 | 0 | return true; |
1799 | | |
1800 | | // Determine whether a decl context is a file context for the purpose of |
1801 | | // visibility/reachability. This looks through some (export and linkage spec) |
1802 | | // transparent contexts, but not others (enums). |
1803 | 0 | auto IsEffectivelyFileContext = [](const DeclContext *DC) { |
1804 | 0 | return DC->isFileContext() || isa<LinkageSpecDecl>(DC) || |
1805 | 0 | isa<ExportDecl>(DC); |
1806 | 0 | }; |
1807 | | |
1808 | | // If this declaration is not at namespace scope |
1809 | | // then it is acceptable if its lexical parent has a acceptable definition. |
1810 | 0 | DeclContext *DC = D->getLexicalDeclContext(); |
1811 | 0 | if (DC && !IsEffectivelyFileContext(DC)) { |
1812 | | // For a parameter, check whether our current template declaration's |
1813 | | // lexical context is acceptable, not whether there's some other acceptable |
1814 | | // definition of it, because parameters aren't "within" the definition. |
1815 | | // |
1816 | | // In C++ we need to check for a acceptable definition due to ODR merging, |
1817 | | // and in C we must not because each declaration of a function gets its own |
1818 | | // set of declarations for tags in prototype scope. |
1819 | 0 | bool AcceptableWithinParent; |
1820 | 0 | if (D->isTemplateParameter()) { |
1821 | 0 | bool SearchDefinitions = true; |
1822 | 0 | if (const auto *DCD = dyn_cast<Decl>(DC)) { |
1823 | 0 | if (const auto *TD = DCD->getDescribedTemplate()) { |
1824 | 0 | TemplateParameterList *TPL = TD->getTemplateParameters(); |
1825 | 0 | auto Index = getDepthAndIndex(D).second; |
1826 | 0 | SearchDefinitions = Index >= TPL->size() || TPL->getParam(Index) != D; |
1827 | 0 | } |
1828 | 0 | } |
1829 | 0 | if (SearchDefinitions) |
1830 | 0 | AcceptableWithinParent = |
1831 | 0 | SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); |
1832 | 0 | else |
1833 | 0 | AcceptableWithinParent = |
1834 | 0 | isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); |
1835 | 0 | } else if (isa<ParmVarDecl>(D) || |
1836 | 0 | (isa<FunctionDecl>(DC) && !SemaRef.getLangOpts().CPlusPlus)) |
1837 | 0 | AcceptableWithinParent = isAcceptable(SemaRef, cast<NamedDecl>(DC), Kind); |
1838 | 0 | else if (D->isModulePrivate()) { |
1839 | | // A module-private declaration is only acceptable if an enclosing lexical |
1840 | | // parent was merged with another definition in the current module. |
1841 | 0 | AcceptableWithinParent = false; |
1842 | 0 | do { |
1843 | 0 | if (SemaRef.hasMergedDefinitionInCurrentModule(cast<NamedDecl>(DC))) { |
1844 | 0 | AcceptableWithinParent = true; |
1845 | 0 | break; |
1846 | 0 | } |
1847 | 0 | DC = DC->getLexicalParent(); |
1848 | 0 | } while (!IsEffectivelyFileContext(DC)); |
1849 | 0 | } else { |
1850 | 0 | AcceptableWithinParent = |
1851 | 0 | SemaRef.hasAcceptableDefinition(cast<NamedDecl>(DC), Kind); |
1852 | 0 | } |
1853 | | |
1854 | 0 | if (AcceptableWithinParent && SemaRef.CodeSynthesisContexts.empty() && |
1855 | 0 | Kind == Sema::AcceptableKind::Visible && |
1856 | | // FIXME: Do something better in this case. |
1857 | 0 | !SemaRef.getLangOpts().ModulesLocalVisibility) { |
1858 | | // Cache the fact that this declaration is implicitly visible because |
1859 | | // its parent has a visible definition. |
1860 | 0 | D->setVisibleDespiteOwningModule(); |
1861 | 0 | } |
1862 | 0 | return AcceptableWithinParent; |
1863 | 0 | } |
1864 | | |
1865 | 0 | if (Kind == Sema::AcceptableKind::Visible) |
1866 | 0 | return false; |
1867 | | |
1868 | 0 | assert(Kind == Sema::AcceptableKind::Reachable && |
1869 | 0 | "Additional Sema::AcceptableKind?"); |
1870 | 0 | return isReachableSlow(SemaRef, D); |
1871 | 0 | } |
1872 | | |
1873 | 0 | bool Sema::isModuleVisible(const Module *M, bool ModulePrivate) { |
1874 | | // The module might be ordinarily visible. For a module-private query, that |
1875 | | // means it is part of the current module. |
1876 | 0 | if (ModulePrivate && isUsableModule(M)) |
1877 | 0 | return true; |
1878 | | |
1879 | | // For a query which is not module-private, that means it is in our visible |
1880 | | // module set. |
1881 | 0 | if (!ModulePrivate && VisibleModules.isVisible(M)) |
1882 | 0 | return true; |
1883 | | |
1884 | | // Otherwise, it might be visible by virtue of the query being within a |
1885 | | // template instantiation or similar that is permitted to look inside M. |
1886 | | |
1887 | | // Find the extra places where we need to look. |
1888 | 0 | const auto &LookupModules = getLookupModules(); |
1889 | 0 | if (LookupModules.empty()) |
1890 | 0 | return false; |
1891 | | |
1892 | | // If our lookup set contains the module, it's visible. |
1893 | 0 | if (LookupModules.count(M)) |
1894 | 0 | return true; |
1895 | | |
1896 | | // The global module fragments are visible to its corresponding module unit. |
1897 | | // So the global module fragment should be visible if the its corresponding |
1898 | | // module unit is visible. |
1899 | 0 | if (M->isGlobalModule() && LookupModules.count(M->getTopLevelModule())) |
1900 | 0 | return true; |
1901 | | |
1902 | | // For a module-private query, that's everywhere we get to look. |
1903 | 0 | if (ModulePrivate) |
1904 | 0 | return false; |
1905 | | |
1906 | | // Check whether M is transitively exported to an import of the lookup set. |
1907 | 0 | return llvm::any_of(LookupModules, [&](const Module *LookupM) { |
1908 | 0 | return LookupM->isModuleVisible(M); |
1909 | 0 | }); |
1910 | 0 | } |
1911 | | |
1912 | | // FIXME: Return false directly if we don't have an interface dependency on the |
1913 | | // translation unit containing D. |
1914 | 0 | bool LookupResult::isReachableSlow(Sema &SemaRef, NamedDecl *D) { |
1915 | 0 | assert(!isVisible(SemaRef, D) && "Shouldn't call the slow case.\n"); |
1916 | | |
1917 | 0 | Module *DeclModule = SemaRef.getOwningModule(D); |
1918 | 0 | assert(DeclModule && "hidden decl has no owning module"); |
1919 | | |
1920 | | // Entities in header like modules are reachable only if they're visible. |
1921 | 0 | if (DeclModule->isHeaderLikeModule()) |
1922 | 0 | return false; |
1923 | | |
1924 | 0 | if (!D->isInAnotherModuleUnit()) |
1925 | 0 | return true; |
1926 | | |
1927 | | // [module.reach]/p3: |
1928 | | // A declaration D is reachable from a point P if: |
1929 | | // ... |
1930 | | // - D is not discarded ([module.global.frag]), appears in a translation unit |
1931 | | // that is reachable from P, and does not appear within a private module |
1932 | | // fragment. |
1933 | | // |
1934 | | // A declaration that's discarded in the GMF should be module-private. |
1935 | 0 | if (D->isModulePrivate()) |
1936 | 0 | return false; |
1937 | | |
1938 | | // [module.reach]/p1 |
1939 | | // A translation unit U is necessarily reachable from a point P if U is a |
1940 | | // module interface unit on which the translation unit containing P has an |
1941 | | // interface dependency, or the translation unit containing P imports U, in |
1942 | | // either case prior to P ([module.import]). |
1943 | | // |
1944 | | // [module.import]/p10 |
1945 | | // A translation unit has an interface dependency on a translation unit U if |
1946 | | // it contains a declaration (possibly a module-declaration) that imports U |
1947 | | // or if it has an interface dependency on a translation unit that has an |
1948 | | // interface dependency on U. |
1949 | | // |
1950 | | // So we could conclude the module unit U is necessarily reachable if: |
1951 | | // (1) The module unit U is module interface unit. |
1952 | | // (2) The current unit has an interface dependency on the module unit U. |
1953 | | // |
1954 | | // Here we only check for the first condition. Since we couldn't see |
1955 | | // DeclModule if it isn't (transitively) imported. |
1956 | 0 | if (DeclModule->getTopLevelModule()->isModuleInterfaceUnit()) |
1957 | 0 | return true; |
1958 | | |
1959 | | // [module.reach]/p2 |
1960 | | // Additional translation units on |
1961 | | // which the point within the program has an interface dependency may be |
1962 | | // considered reachable, but it is unspecified which are and under what |
1963 | | // circumstances. |
1964 | | // |
1965 | | // The decision here is to treat all additional tranditional units as |
1966 | | // unreachable. |
1967 | 0 | return false; |
1968 | 0 | } |
1969 | | |
1970 | 0 | bool Sema::isAcceptableSlow(const NamedDecl *D, Sema::AcceptableKind Kind) { |
1971 | 0 | return LookupResult::isAcceptable(*this, const_cast<NamedDecl *>(D), Kind); |
1972 | 0 | } |
1973 | | |
1974 | 194 | bool Sema::shouldLinkPossiblyHiddenDecl(LookupResult &R, const NamedDecl *New) { |
1975 | | // FIXME: If there are both visible and hidden declarations, we need to take |
1976 | | // into account whether redeclaration is possible. Example: |
1977 | | // |
1978 | | // Non-imported module: |
1979 | | // int f(T); // #1 |
1980 | | // Some TU: |
1981 | | // static int f(U); // #2, not a redeclaration of #1 |
1982 | | // int f(T); // #3, finds both, should link with #1 if T != U, but |
1983 | | // // with #2 if T == U; neither should be ambiguous. |
1984 | 194 | for (auto *D : R) { |
1985 | 194 | if (isVisible(D)) |
1986 | 194 | return true; |
1987 | 0 | assert(D->isExternallyDeclarable() && |
1988 | 0 | "should not have hidden, non-externally-declarable result here"); |
1989 | 0 | } |
1990 | | |
1991 | | // This function is called once "New" is essentially complete, but before a |
1992 | | // previous declaration is attached. We can't query the linkage of "New" in |
1993 | | // general, because attaching the previous declaration can change the |
1994 | | // linkage of New to match the previous declaration. |
1995 | | // |
1996 | | // However, because we've just determined that there is no *visible* prior |
1997 | | // declaration, we can compute the linkage here. There are two possibilities: |
1998 | | // |
1999 | | // * This is not a redeclaration; it's safe to compute the linkage now. |
2000 | | // |
2001 | | // * This is a redeclaration of a prior declaration that is externally |
2002 | | // redeclarable. In that case, the linkage of the declaration is not |
2003 | | // changed by attaching the prior declaration, because both are externally |
2004 | | // declarable (and thus ExternalLinkage or VisibleNoLinkage). |
2005 | | // |
2006 | | // FIXME: This is subtle and fragile. |
2007 | 0 | return New->isExternallyDeclarable(); |
2008 | 194 | } |
2009 | | |
2010 | | /// Retrieve the visible declaration corresponding to D, if any. |
2011 | | /// |
2012 | | /// This routine determines whether the declaration D is visible in the current |
2013 | | /// module, with the current imports. If not, it checks whether any |
2014 | | /// redeclaration of D is visible, and if so, returns that declaration. |
2015 | | /// |
2016 | | /// \returns D, or a visible previous declaration of D, whichever is more recent |
2017 | | /// and visible. If no declaration of D is visible, returns null. |
2018 | | static NamedDecl *findAcceptableDecl(Sema &SemaRef, NamedDecl *D, |
2019 | 0 | unsigned IDNS) { |
2020 | 0 | assert(!LookupResult::isAvailableForLookup(SemaRef, D) && "not in slow case"); |
2021 | | |
2022 | 0 | for (auto *RD : D->redecls()) { |
2023 | | // Don't bother with extra checks if we already know this one isn't visible. |
2024 | 0 | if (RD == D) |
2025 | 0 | continue; |
2026 | | |
2027 | 0 | auto ND = cast<NamedDecl>(RD); |
2028 | | // FIXME: This is wrong in the case where the previous declaration is not |
2029 | | // visible in the same scope as D. This needs to be done much more |
2030 | | // carefully. |
2031 | 0 | if (ND->isInIdentifierNamespace(IDNS) && |
2032 | 0 | LookupResult::isAvailableForLookup(SemaRef, ND)) |
2033 | 0 | return ND; |
2034 | 0 | } |
2035 | | |
2036 | 0 | return nullptr; |
2037 | 0 | } |
2038 | | |
2039 | | bool Sema::hasVisibleDeclarationSlow(const NamedDecl *D, |
2040 | 0 | llvm::SmallVectorImpl<Module *> *Modules) { |
2041 | 0 | assert(!isVisible(D) && "not in slow case"); |
2042 | 0 | return hasAcceptableDeclarationImpl( |
2043 | 0 | *this, D, Modules, [](const NamedDecl *) { return true; }, |
2044 | 0 | Sema::AcceptableKind::Visible); |
2045 | 0 | } |
2046 | | |
2047 | | bool Sema::hasReachableDeclarationSlow( |
2048 | 0 | const NamedDecl *D, llvm::SmallVectorImpl<Module *> *Modules) { |
2049 | 0 | assert(!isReachable(D) && "not in slow case"); |
2050 | 0 | return hasAcceptableDeclarationImpl( |
2051 | 0 | *this, D, Modules, [](const NamedDecl *) { return true; }, |
2052 | 0 | Sema::AcceptableKind::Reachable); |
2053 | 0 | } |
2054 | | |
2055 | 0 | NamedDecl *LookupResult::getAcceptableDeclSlow(NamedDecl *D) const { |
2056 | 0 | if (auto *ND = dyn_cast<NamespaceDecl>(D)) { |
2057 | | // Namespaces are a bit of a special case: we expect there to be a lot of |
2058 | | // redeclarations of some namespaces, all declarations of a namespace are |
2059 | | // essentially interchangeable, all declarations are found by name lookup |
2060 | | // if any is, and namespaces are never looked up during template |
2061 | | // instantiation. So we benefit from caching the check in this case, and |
2062 | | // it is correct to do so. |
2063 | 0 | auto *Key = ND->getCanonicalDecl(); |
2064 | 0 | if (auto *Acceptable = getSema().VisibleNamespaceCache.lookup(Key)) |
2065 | 0 | return Acceptable; |
2066 | 0 | auto *Acceptable = isVisible(getSema(), Key) |
2067 | 0 | ? Key |
2068 | 0 | : findAcceptableDecl(getSema(), Key, IDNS); |
2069 | 0 | if (Acceptable) |
2070 | 0 | getSema().VisibleNamespaceCache.insert(std::make_pair(Key, Acceptable)); |
2071 | 0 | return Acceptable; |
2072 | 0 | } |
2073 | | |
2074 | 0 | return findAcceptableDecl(getSema(), D, IDNS); |
2075 | 0 | } |
2076 | | |
2077 | 54.1k | bool LookupResult::isVisible(Sema &SemaRef, NamedDecl *D) { |
2078 | | // If this declaration is already visible, return it directly. |
2079 | 54.1k | if (D->isUnconditionallyVisible()) |
2080 | 54.1k | return true; |
2081 | | |
2082 | | // During template instantiation, we can refer to hidden declarations, if |
2083 | | // they were visible in any module along the path of instantiation. |
2084 | 0 | return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Visible); |
2085 | 54.1k | } |
2086 | | |
2087 | 0 | bool LookupResult::isReachable(Sema &SemaRef, NamedDecl *D) { |
2088 | 0 | if (D->isUnconditionallyVisible()) |
2089 | 0 | return true; |
2090 | | |
2091 | 0 | return isAcceptableSlow(SemaRef, D, Sema::AcceptableKind::Reachable); |
2092 | 0 | } |
2093 | | |
2094 | 53.9k | bool LookupResult::isAvailableForLookup(Sema &SemaRef, NamedDecl *ND) { |
2095 | | // We should check the visibility at the callsite already. |
2096 | 53.9k | if (isVisible(SemaRef, ND)) |
2097 | 53.9k | return true; |
2098 | | |
2099 | | // Deduction guide lives in namespace scope generally, but it is just a |
2100 | | // hint to the compilers. What we actually lookup for is the generated member |
2101 | | // of the corresponding template. So it is sufficient to check the |
2102 | | // reachability of the template decl. |
2103 | 0 | if (auto *DeductionGuide = ND->getDeclName().getCXXDeductionGuideTemplate()) |
2104 | 0 | return SemaRef.hasReachableDefinition(DeductionGuide); |
2105 | | |
2106 | | // FIXME: The lookup for allocation function is a standalone process. |
2107 | | // (We can find the logics in Sema::FindAllocationFunctions) |
2108 | | // |
2109 | | // Such structure makes it a problem when we instantiate a template |
2110 | | // declaration using placement allocation function if the placement |
2111 | | // allocation function is invisible. |
2112 | | // (See https://github.com/llvm/llvm-project/issues/59601) |
2113 | | // |
2114 | | // Here we workaround it by making the placement allocation functions |
2115 | | // always acceptable. The downside is that we can't diagnose the direct |
2116 | | // use of the invisible placement allocation functions. (Although such uses |
2117 | | // should be rare). |
2118 | 0 | if (auto *FD = dyn_cast<FunctionDecl>(ND); |
2119 | 0 | FD && FD->isReservedGlobalPlacementOperator()) |
2120 | 0 | return true; |
2121 | | |
2122 | 0 | auto *DC = ND->getDeclContext(); |
2123 | | // If ND is not visible and it is at namespace scope, it shouldn't be found |
2124 | | // by name lookup. |
2125 | 0 | if (DC->isFileContext()) |
2126 | 0 | return false; |
2127 | | |
2128 | | // [module.interface]p7 |
2129 | | // Class and enumeration member names can be found by name lookup in any |
2130 | | // context in which a definition of the type is reachable. |
2131 | | // |
2132 | | // FIXME: The current implementation didn't consider about scope. For example, |
2133 | | // ``` |
2134 | | // // m.cppm |
2135 | | // export module m; |
2136 | | // enum E1 { e1 }; |
2137 | | // // Use.cpp |
2138 | | // import m; |
2139 | | // void test() { |
2140 | | // auto a = E1::e1; // Error as expected. |
2141 | | // auto b = e1; // Should be error. namespace-scope name e1 is not visible |
2142 | | // } |
2143 | | // ``` |
2144 | | // For the above example, the current implementation would emit error for `a` |
2145 | | // correctly. However, the implementation wouldn't diagnose about `b` now. |
2146 | | // Since we only check the reachability for the parent only. |
2147 | | // See clang/test/CXX/module/module.interface/p7.cpp for example. |
2148 | 0 | if (auto *TD = dyn_cast<TagDecl>(DC)) |
2149 | 0 | return SemaRef.hasReachableDefinition(TD); |
2150 | | |
2151 | 0 | return false; |
2152 | 0 | } |
2153 | | |
2154 | | /// Perform unqualified name lookup starting from a given |
2155 | | /// scope. |
2156 | | /// |
2157 | | /// Unqualified name lookup (C++ [basic.lookup.unqual], C99 6.2.1) is |
2158 | | /// used to find names within the current scope. For example, 'x' in |
2159 | | /// @code |
2160 | | /// int x; |
2161 | | /// int f() { |
2162 | | /// return x; // unqualified name look finds 'x' in the global scope |
2163 | | /// } |
2164 | | /// @endcode |
2165 | | /// |
2166 | | /// Different lookup criteria can find different names. For example, a |
2167 | | /// particular scope can have both a struct and a function of the same |
2168 | | /// name, and each can be found by certain lookup criteria. For more |
2169 | | /// information about lookup criteria, see the documentation for the |
2170 | | /// class LookupCriteria. |
2171 | | /// |
2172 | | /// @param S The scope from which unqualified name lookup will |
2173 | | /// begin. If the lookup criteria permits, name lookup may also search |
2174 | | /// in the parent scopes. |
2175 | | /// |
2176 | | /// @param [in,out] R Specifies the lookup to perform (e.g., the name to |
2177 | | /// look up and the lookup kind), and is updated with the results of lookup |
2178 | | /// including zero or more declarations and possibly additional information |
2179 | | /// used to diagnose ambiguities. |
2180 | | /// |
2181 | | /// @returns \c true if lookup succeeded and false otherwise. |
2182 | | bool Sema::LookupName(LookupResult &R, Scope *S, bool AllowBuiltinCreation, |
2183 | 37.4k | bool ForceNoCPlusPlus) { |
2184 | 37.4k | DeclarationName Name = R.getLookupName(); |
2185 | 37.4k | if (!Name) return false; |
2186 | | |
2187 | 37.4k | LookupNameKind NameKind = R.getLookupKind(); |
2188 | | |
2189 | 37.4k | if (!getLangOpts().CPlusPlus || ForceNoCPlusPlus) { |
2190 | | // Unqualified name lookup in C/Objective-C is purely lexical, so |
2191 | | // search in the declarations attached to the name. |
2192 | 15.4k | if (NameKind == Sema::LookupRedeclarationWithLinkage) { |
2193 | | // Find the nearest non-transparent declaration scope. |
2194 | 0 | while (!(S->getFlags() & Scope::DeclScope) || |
2195 | 0 | (S->getEntity() && S->getEntity()->isTransparentContext())) |
2196 | 0 | S = S->getParent(); |
2197 | 0 | } |
2198 | | |
2199 | | // When performing a scope lookup, we want to find local extern decls. |
2200 | 15.4k | FindLocalExternScope FindLocals(R); |
2201 | | |
2202 | | // Scan up the scope chain looking for a decl that matches this |
2203 | | // identifier that is in the appropriate namespace. This search |
2204 | | // should not take long, as shadowing of names is uncommon, and |
2205 | | // deep shadowing is extremely uncommon. |
2206 | 15.4k | bool LeftStartingScope = false; |
2207 | | |
2208 | 15.4k | for (IdentifierResolver::iterator I = IdResolver.begin(Name), |
2209 | 15.4k | IEnd = IdResolver.end(); |
2210 | 17.6k | I != IEnd; ++I) |
2211 | 5.26k | if (NamedDecl *D = R.getAcceptableDecl(*I)) { |
2212 | 3.07k | if (NameKind == LookupRedeclarationWithLinkage) { |
2213 | | // Determine whether this (or a previous) declaration is |
2214 | | // out-of-scope. |
2215 | 0 | if (!LeftStartingScope && !S->isDeclScope(*I)) |
2216 | 0 | LeftStartingScope = true; |
2217 | | |
2218 | | // If we found something outside of our starting scope that |
2219 | | // does not have linkage, skip it. |
2220 | 0 | if (LeftStartingScope && !((*I)->hasLinkage())) { |
2221 | 0 | R.setShadowed(); |
2222 | 0 | continue; |
2223 | 0 | } |
2224 | 0 | } |
2225 | 3.07k | else if (NameKind == LookupObjCImplicitSelfParam && |
2226 | 3.07k | !isa<ImplicitParamDecl>(*I)) |
2227 | 0 | continue; |
2228 | | |
2229 | 3.07k | R.addDecl(D); |
2230 | | |
2231 | | // Check whether there are any other declarations with the same name |
2232 | | // and in the same scope. |
2233 | 3.07k | if (I != IEnd) { |
2234 | | // Find the scope in which this declaration was declared (if it |
2235 | | // actually exists in a Scope). |
2236 | 3.10k | while (S && !S->isDeclScope(D)) |
2237 | 27 | S = S->getParent(); |
2238 | | |
2239 | | // If the scope containing the declaration is the translation unit, |
2240 | | // then we'll need to perform our checks based on the matching |
2241 | | // DeclContexts rather than matching scopes. |
2242 | 3.07k | if (S && isNamespaceOrTranslationUnitScope(S)) |
2243 | 3.07k | S = nullptr; |
2244 | | |
2245 | | // Compute the DeclContext, if we need it. |
2246 | 3.07k | DeclContext *DC = nullptr; |
2247 | 3.07k | if (!S) |
2248 | 3.07k | DC = (*I)->getDeclContext()->getRedeclContext(); |
2249 | | |
2250 | 3.07k | IdentifierResolver::iterator LastI = I; |
2251 | 20.6k | for (++LastI; LastI != IEnd; ++LastI) { |
2252 | 17.5k | if (S) { |
2253 | | // Match based on scope. |
2254 | 0 | if (!S->isDeclScope(*LastI)) |
2255 | 0 | break; |
2256 | 17.5k | } else { |
2257 | | // Match based on DeclContext. |
2258 | 17.5k | DeclContext *LastDC |
2259 | 17.5k | = (*LastI)->getDeclContext()->getRedeclContext(); |
2260 | 17.5k | if (!LastDC->Equals(DC)) |
2261 | 0 | break; |
2262 | 17.5k | } |
2263 | | |
2264 | | // If the declaration is in the right namespace and visible, add it. |
2265 | 17.5k | if (NamedDecl *LastD = R.getAcceptableDecl(*LastI)) |
2266 | 17.5k | R.addDecl(LastD); |
2267 | 17.5k | } |
2268 | | |
2269 | 3.07k | R.resolveKind(); |
2270 | 3.07k | } |
2271 | | |
2272 | 3.07k | return true; |
2273 | 3.07k | } |
2274 | 22.0k | } else { |
2275 | | // Perform C++ unqualified name lookup. |
2276 | 22.0k | if (CppLookupName(R, S)) |
2277 | 6.46k | return true; |
2278 | 22.0k | } |
2279 | | |
2280 | | // If we didn't find a use of this identifier, and if the identifier |
2281 | | // corresponds to a compiler builtin, create the decl object for the builtin |
2282 | | // now, injecting it into translation unit scope, and return it. |
2283 | 27.9k | if (AllowBuiltinCreation && LookupBuiltin(R)) |
2284 | 0 | return true; |
2285 | | |
2286 | | // If we didn't find a use of this identifier, the ExternalSource |
2287 | | // may be able to handle the situation. |
2288 | | // Note: some lookup failures are expected! |
2289 | | // See e.g. R.isForRedeclaration(). |
2290 | 27.9k | return (ExternalSource && ExternalSource->LookupUnqualified(R, S)); |
2291 | 27.9k | } |
2292 | | |
2293 | | /// Perform qualified name lookup in the namespaces nominated by |
2294 | | /// using directives by the given context. |
2295 | | /// |
2296 | | /// C++98 [namespace.qual]p2: |
2297 | | /// Given X::m (where X is a user-declared namespace), or given \::m |
2298 | | /// (where X is the global namespace), let S be the set of all |
2299 | | /// declarations of m in X and in the transitive closure of all |
2300 | | /// namespaces nominated by using-directives in X and its used |
2301 | | /// namespaces, except that using-directives are ignored in any |
2302 | | /// namespace, including X, directly containing one or more |
2303 | | /// declarations of m. No namespace is searched more than once in |
2304 | | /// the lookup of a name. If S is the empty set, the program is |
2305 | | /// ill-formed. Otherwise, if S has exactly one member, or if the |
2306 | | /// context of the reference is a using-declaration |
2307 | | /// (namespace.udecl), S is the required set of declarations of |
2308 | | /// m. Otherwise if the use of m is not one that allows a unique |
2309 | | /// declaration to be chosen from S, the program is ill-formed. |
2310 | | /// |
2311 | | /// C++98 [namespace.qual]p5: |
2312 | | /// During the lookup of a qualified namespace member name, if the |
2313 | | /// lookup finds more than one declaration of the member, and if one |
2314 | | /// declaration introduces a class name or enumeration name and the |
2315 | | /// other declarations either introduce the same object, the same |
2316 | | /// enumerator or a set of functions, the non-type name hides the |
2317 | | /// class or enumeration name if and only if the declarations are |
2318 | | /// from the same namespace; otherwise (the declarations are from |
2319 | | /// different namespaces), the program is ill-formed. |
2320 | | static bool LookupQualifiedNameInUsingDirectives(Sema &S, LookupResult &R, |
2321 | 703 | DeclContext *StartDC) { |
2322 | 703 | assert(StartDC->isFileContext() && "start context is not a file context"); |
2323 | | |
2324 | | // We have not yet looked into these namespaces, much less added |
2325 | | // their "using-children" to the queue. |
2326 | 0 | SmallVector<NamespaceDecl*, 8> Queue; |
2327 | | |
2328 | | // We have at least added all these contexts to the queue. |
2329 | 703 | llvm::SmallPtrSet<DeclContext*, 8> Visited; |
2330 | 703 | Visited.insert(StartDC); |
2331 | | |
2332 | | // We have already looked into the initial namespace; seed the queue |
2333 | | // with its using-children. |
2334 | 703 | for (auto *I : StartDC->using_directives()) { |
2335 | 0 | NamespaceDecl *ND = I->getNominatedNamespace()->getOriginalNamespace(); |
2336 | 0 | if (S.isVisible(I) && Visited.insert(ND).second) |
2337 | 0 | Queue.push_back(ND); |
2338 | 0 | } |
2339 | | |
2340 | | // The easiest way to implement the restriction in [namespace.qual]p5 |
2341 | | // is to check whether any of the individual results found a tag |
2342 | | // and, if so, to declare an ambiguity if the final result is not |
2343 | | // a tag. |
2344 | 703 | bool FoundTag = false; |
2345 | 703 | bool FoundNonTag = false; |
2346 | | |
2347 | 703 | LookupResult LocalR(LookupResult::Temporary, R); |
2348 | | |
2349 | 703 | bool Found = false; |
2350 | 703 | while (!Queue.empty()) { |
2351 | 0 | NamespaceDecl *ND = Queue.pop_back_val(); |
2352 | | |
2353 | | // We go through some convolutions here to avoid copying results |
2354 | | // between LookupResults. |
2355 | 0 | bool UseLocal = !R.empty(); |
2356 | 0 | LookupResult &DirectR = UseLocal ? LocalR : R; |
2357 | 0 | bool FoundDirect = LookupDirect(S, DirectR, ND); |
2358 | |
|
2359 | 0 | if (FoundDirect) { |
2360 | | // First do any local hiding. |
2361 | 0 | DirectR.resolveKind(); |
2362 | | |
2363 | | // If the local result is a tag, remember that. |
2364 | 0 | if (DirectR.isSingleTagDecl()) |
2365 | 0 | FoundTag = true; |
2366 | 0 | else |
2367 | 0 | FoundNonTag = true; |
2368 | | |
2369 | | // Append the local results to the total results if necessary. |
2370 | 0 | if (UseLocal) { |
2371 | 0 | R.addAllDecls(LocalR); |
2372 | 0 | LocalR.clear(); |
2373 | 0 | } |
2374 | 0 | } |
2375 | | |
2376 | | // If we find names in this namespace, ignore its using directives. |
2377 | 0 | if (FoundDirect) { |
2378 | 0 | Found = true; |
2379 | 0 | continue; |
2380 | 0 | } |
2381 | | |
2382 | 0 | for (auto *I : ND->using_directives()) { |
2383 | 0 | NamespaceDecl *Nom = I->getNominatedNamespace(); |
2384 | 0 | if (S.isVisible(I) && Visited.insert(Nom).second) |
2385 | 0 | Queue.push_back(Nom); |
2386 | 0 | } |
2387 | 0 | } |
2388 | | |
2389 | 703 | if (Found) { |
2390 | 0 | if (FoundTag && FoundNonTag) |
2391 | 0 | R.setAmbiguousQualifiedTagHiding(); |
2392 | 0 | else |
2393 | 0 | R.resolveKind(); |
2394 | 0 | } |
2395 | | |
2396 | 703 | return Found; |
2397 | 703 | } |
2398 | | |
2399 | | /// Perform qualified name lookup into a given context. |
2400 | | /// |
2401 | | /// Qualified name lookup (C++ [basic.lookup.qual]) is used to find |
2402 | | /// names when the context of those names is explicit specified, e.g., |
2403 | | /// "std::vector" or "x->member", or as part of unqualified name lookup. |
2404 | | /// |
2405 | | /// Different lookup criteria can find different names. For example, a |
2406 | | /// particular scope can have both a struct and a function of the same |
2407 | | /// name, and each can be found by certain lookup criteria. For more |
2408 | | /// information about lookup criteria, see the documentation for the |
2409 | | /// class LookupCriteria. |
2410 | | /// |
2411 | | /// \param R captures both the lookup criteria and any lookup results found. |
2412 | | /// |
2413 | | /// \param LookupCtx The context in which qualified name lookup will |
2414 | | /// search. If the lookup criteria permits, name lookup may also search |
2415 | | /// in the parent contexts or (for C++ classes) base classes. |
2416 | | /// |
2417 | | /// \param InUnqualifiedLookup true if this is qualified name lookup that |
2418 | | /// occurs as part of unqualified name lookup. |
2419 | | /// |
2420 | | /// \returns true if lookup succeeded, false if it failed. |
2421 | | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, |
2422 | 2.29k | bool InUnqualifiedLookup) { |
2423 | 2.29k | assert(LookupCtx && "Sema::LookupQualifiedName requires a lookup context"); |
2424 | | |
2425 | 2.29k | if (!R.getLookupName()) |
2426 | 0 | return false; |
2427 | | |
2428 | | // Make sure that the declaration context is complete. |
2429 | 2.29k | assert((!isa<TagDecl>(LookupCtx) || |
2430 | 2.29k | LookupCtx->isDependentContext() || |
2431 | 2.29k | cast<TagDecl>(LookupCtx)->isCompleteDefinition() || |
2432 | 2.29k | cast<TagDecl>(LookupCtx)->isBeingDefined()) && |
2433 | 2.29k | "Declaration context must already be complete!"); |
2434 | | |
2435 | 0 | struct QualifiedLookupInScope { |
2436 | 2.29k | bool oldVal; |
2437 | 2.29k | DeclContext *Context; |
2438 | | // Set flag in DeclContext informing debugger that we're looking for qualified name |
2439 | 2.29k | QualifiedLookupInScope(DeclContext *ctx) |
2440 | 2.29k | : oldVal(ctx->shouldUseQualifiedLookup()), Context(ctx) { |
2441 | 2.29k | ctx->setUseQualifiedLookup(); |
2442 | 2.29k | } |
2443 | 2.29k | ~QualifiedLookupInScope() { |
2444 | 2.29k | Context->setUseQualifiedLookup(oldVal); |
2445 | 2.29k | } |
2446 | 2.29k | } QL(LookupCtx); |
2447 | | |
2448 | 2.29k | if (LookupDirect(*this, R, LookupCtx)) { |
2449 | 62 | R.resolveKind(); |
2450 | 62 | if (isa<CXXRecordDecl>(LookupCtx)) |
2451 | 0 | R.setNamingClass(cast<CXXRecordDecl>(LookupCtx)); |
2452 | 62 | return true; |
2453 | 62 | } |
2454 | | |
2455 | | // Don't descend into implied contexts for redeclarations. |
2456 | | // C++98 [namespace.qual]p6: |
2457 | | // In a declaration for a namespace member in which the |
2458 | | // declarator-id is a qualified-id, given that the qualified-id |
2459 | | // for the namespace member has the form |
2460 | | // nested-name-specifier unqualified-id |
2461 | | // the unqualified-id shall name a member of the namespace |
2462 | | // designated by the nested-name-specifier. |
2463 | | // See also [class.mfct]p5 and [class.static.data]p2. |
2464 | 2.23k | if (R.isForRedeclaration()) |
2465 | 0 | return false; |
2466 | | |
2467 | | // If this is a namespace, look it up in the implied namespaces. |
2468 | 2.23k | if (LookupCtx->isFileContext()) |
2469 | 703 | return LookupQualifiedNameInUsingDirectives(*this, R, LookupCtx); |
2470 | | |
2471 | | // If this isn't a C++ class, we aren't allowed to look into base |
2472 | | // classes, we're done. |
2473 | 1.53k | CXXRecordDecl *LookupRec = dyn_cast<CXXRecordDecl>(LookupCtx); |
2474 | 1.53k | if (!LookupRec || !LookupRec->getDefinition()) |
2475 | 0 | return false; |
2476 | | |
2477 | | // We're done for lookups that can never succeed for C++ classes. |
2478 | 1.53k | if (R.getLookupKind() == LookupOperatorName || |
2479 | 1.53k | R.getLookupKind() == LookupNamespaceName || |
2480 | 1.53k | R.getLookupKind() == LookupObjCProtocolName || |
2481 | 1.53k | R.getLookupKind() == LookupLabel) |
2482 | 0 | return false; |
2483 | | |
2484 | | // If we're performing qualified name lookup into a dependent class, |
2485 | | // then we are actually looking into a current instantiation. If we have any |
2486 | | // dependent base classes, then we either have to delay lookup until |
2487 | | // template instantiation time (at which point all bases will be available) |
2488 | | // or we have to fail. |
2489 | 1.53k | if (!InUnqualifiedLookup && LookupRec->isDependentContext() && |
2490 | 1.53k | LookupRec->hasAnyDependentBases()) { |
2491 | 0 | R.setNotFoundInCurrentInstantiation(); |
2492 | 0 | return false; |
2493 | 0 | } |
2494 | | |
2495 | | // Perform lookup into our base classes. |
2496 | | |
2497 | 1.53k | DeclarationName Name = R.getLookupName(); |
2498 | 1.53k | unsigned IDNS = R.getIdentifierNamespace(); |
2499 | | |
2500 | | // Look for this member in our base classes. |
2501 | 1.53k | auto BaseCallback = [Name, IDNS](const CXXBaseSpecifier *Specifier, |
2502 | 1.53k | CXXBasePath &Path) -> bool { |
2503 | 0 | CXXRecordDecl *BaseRecord = Specifier->getType()->getAsCXXRecordDecl(); |
2504 | | // Drop leading non-matching lookup results from the declaration list so |
2505 | | // we don't need to consider them again below. |
2506 | 0 | for (Path.Decls = BaseRecord->lookup(Name).begin(); |
2507 | 0 | Path.Decls != Path.Decls.end(); ++Path.Decls) { |
2508 | 0 | if ((*Path.Decls)->isInIdentifierNamespace(IDNS)) |
2509 | 0 | return true; |
2510 | 0 | } |
2511 | 0 | return false; |
2512 | 0 | }; |
2513 | | |
2514 | 1.53k | CXXBasePaths Paths; |
2515 | 1.53k | Paths.setOrigin(LookupRec); |
2516 | 1.53k | if (!LookupRec->lookupInBases(BaseCallback, Paths)) |
2517 | 1.53k | return false; |
2518 | | |
2519 | 0 | R.setNamingClass(LookupRec); |
2520 | | |
2521 | | // C++ [class.member.lookup]p2: |
2522 | | // [...] If the resulting set of declarations are not all from |
2523 | | // sub-objects of the same type, or the set has a nonstatic member |
2524 | | // and includes members from distinct sub-objects, there is an |
2525 | | // ambiguity and the program is ill-formed. Otherwise that set is |
2526 | | // the result of the lookup. |
2527 | 0 | QualType SubobjectType; |
2528 | 0 | int SubobjectNumber = 0; |
2529 | 0 | AccessSpecifier SubobjectAccess = AS_none; |
2530 | | |
2531 | | // Check whether the given lookup result contains only static members. |
2532 | 0 | auto HasOnlyStaticMembers = [&](DeclContext::lookup_iterator Result) { |
2533 | 0 | for (DeclContext::lookup_iterator I = Result, E = I.end(); I != E; ++I) |
2534 | 0 | if ((*I)->isInIdentifierNamespace(IDNS) && (*I)->isCXXInstanceMember()) |
2535 | 0 | return false; |
2536 | 0 | return true; |
2537 | 0 | }; |
2538 | |
|
2539 | 0 | bool TemplateNameLookup = R.isTemplateNameLookup(); |
2540 | | |
2541 | | // Determine whether two sets of members contain the same members, as |
2542 | | // required by C++ [class.member.lookup]p6. |
2543 | 0 | auto HasSameDeclarations = [&](DeclContext::lookup_iterator A, |
2544 | 0 | DeclContext::lookup_iterator B) { |
2545 | 0 | using Iterator = DeclContextLookupResult::iterator; |
2546 | 0 | using Result = const void *; |
2547 | |
|
2548 | 0 | auto Next = [&](Iterator &It, Iterator End) -> Result { |
2549 | 0 | while (It != End) { |
2550 | 0 | NamedDecl *ND = *It++; |
2551 | 0 | if (!ND->isInIdentifierNamespace(IDNS)) |
2552 | 0 | continue; |
2553 | | |
2554 | | // C++ [temp.local]p3: |
2555 | | // A lookup that finds an injected-class-name (10.2) can result in |
2556 | | // an ambiguity in certain cases (for example, if it is found in |
2557 | | // more than one base class). If all of the injected-class-names |
2558 | | // that are found refer to specializations of the same class |
2559 | | // template, and if the name is used as a template-name, the |
2560 | | // reference refers to the class template itself and not a |
2561 | | // specialization thereof, and is not ambiguous. |
2562 | 0 | if (TemplateNameLookup) |
2563 | 0 | if (auto *TD = getAsTemplateNameDecl(ND)) |
2564 | 0 | ND = TD; |
2565 | | |
2566 | | // C++ [class.member.lookup]p3: |
2567 | | // type declarations (including injected-class-names) are replaced by |
2568 | | // the types they designate |
2569 | 0 | if (const TypeDecl *TD = dyn_cast<TypeDecl>(ND->getUnderlyingDecl())) { |
2570 | 0 | QualType T = Context.getTypeDeclType(TD); |
2571 | 0 | return T.getCanonicalType().getAsOpaquePtr(); |
2572 | 0 | } |
2573 | | |
2574 | 0 | return ND->getUnderlyingDecl()->getCanonicalDecl(); |
2575 | 0 | } |
2576 | 0 | return nullptr; |
2577 | 0 | }; |
2578 | | |
2579 | | // We'll often find the declarations are in the same order. Handle this |
2580 | | // case (and the special case of only one declaration) efficiently. |
2581 | 0 | Iterator AIt = A, BIt = B, AEnd, BEnd; |
2582 | 0 | while (true) { |
2583 | 0 | Result AResult = Next(AIt, AEnd); |
2584 | 0 | Result BResult = Next(BIt, BEnd); |
2585 | 0 | if (!AResult && !BResult) |
2586 | 0 | return true; |
2587 | 0 | if (!AResult || !BResult) |
2588 | 0 | return false; |
2589 | 0 | if (AResult != BResult) { |
2590 | | // Found a mismatch; carefully check both lists, accounting for the |
2591 | | // possibility of declarations appearing more than once. |
2592 | 0 | llvm::SmallDenseMap<Result, bool, 32> AResults; |
2593 | 0 | for (; AResult; AResult = Next(AIt, AEnd)) |
2594 | 0 | AResults.insert({AResult, /*FoundInB*/false}); |
2595 | 0 | unsigned Found = 0; |
2596 | 0 | for (; BResult; BResult = Next(BIt, BEnd)) { |
2597 | 0 | auto It = AResults.find(BResult); |
2598 | 0 | if (It == AResults.end()) |
2599 | 0 | return false; |
2600 | 0 | if (!It->second) { |
2601 | 0 | It->second = true; |
2602 | 0 | ++Found; |
2603 | 0 | } |
2604 | 0 | } |
2605 | 0 | return AResults.size() == Found; |
2606 | 0 | } |
2607 | 0 | } |
2608 | 0 | }; |
2609 | |
|
2610 | 0 | for (CXXBasePaths::paths_iterator Path = Paths.begin(), PathEnd = Paths.end(); |
2611 | 0 | Path != PathEnd; ++Path) { |
2612 | 0 | const CXXBasePathElement &PathElement = Path->back(); |
2613 | | |
2614 | | // Pick the best (i.e. most permissive i.e. numerically lowest) access |
2615 | | // across all paths. |
2616 | 0 | SubobjectAccess = std::min(SubobjectAccess, Path->Access); |
2617 | | |
2618 | | // Determine whether we're looking at a distinct sub-object or not. |
2619 | 0 | if (SubobjectType.isNull()) { |
2620 | | // This is the first subobject we've looked at. Record its type. |
2621 | 0 | SubobjectType = Context.getCanonicalType(PathElement.Base->getType()); |
2622 | 0 | SubobjectNumber = PathElement.SubobjectNumber; |
2623 | 0 | continue; |
2624 | 0 | } |
2625 | | |
2626 | 0 | if (SubobjectType != |
2627 | 0 | Context.getCanonicalType(PathElement.Base->getType())) { |
2628 | | // We found members of the given name in two subobjects of |
2629 | | // different types. If the declaration sets aren't the same, this |
2630 | | // lookup is ambiguous. |
2631 | | // |
2632 | | // FIXME: The language rule says that this applies irrespective of |
2633 | | // whether the sets contain only static members. |
2634 | 0 | if (HasOnlyStaticMembers(Path->Decls) && |
2635 | 0 | HasSameDeclarations(Paths.begin()->Decls, Path->Decls)) |
2636 | 0 | continue; |
2637 | | |
2638 | 0 | R.setAmbiguousBaseSubobjectTypes(Paths); |
2639 | 0 | return true; |
2640 | 0 | } |
2641 | | |
2642 | | // FIXME: This language rule no longer exists. Checking for ambiguous base |
2643 | | // subobjects should be done as part of formation of a class member access |
2644 | | // expression (when converting the object parameter to the member's type). |
2645 | 0 | if (SubobjectNumber != PathElement.SubobjectNumber) { |
2646 | | // We have a different subobject of the same type. |
2647 | | |
2648 | | // C++ [class.member.lookup]p5: |
2649 | | // A static member, a nested type or an enumerator defined in |
2650 | | // a base class T can unambiguously be found even if an object |
2651 | | // has more than one base class subobject of type T. |
2652 | 0 | if (HasOnlyStaticMembers(Path->Decls)) |
2653 | 0 | continue; |
2654 | | |
2655 | | // We have found a nonstatic member name in multiple, distinct |
2656 | | // subobjects. Name lookup is ambiguous. |
2657 | 0 | R.setAmbiguousBaseSubobjects(Paths); |
2658 | 0 | return true; |
2659 | 0 | } |
2660 | 0 | } |
2661 | | |
2662 | | // Lookup in a base class succeeded; return these results. |
2663 | | |
2664 | 0 | for (DeclContext::lookup_iterator I = Paths.front().Decls, E = I.end(); |
2665 | 0 | I != E; ++I) { |
2666 | 0 | AccessSpecifier AS = CXXRecordDecl::MergeAccess(SubobjectAccess, |
2667 | 0 | (*I)->getAccess()); |
2668 | 0 | if (NamedDecl *ND = R.getAcceptableDecl(*I)) |
2669 | 0 | R.addDecl(ND, AS); |
2670 | 0 | } |
2671 | 0 | R.resolveKind(); |
2672 | 0 | return true; |
2673 | 0 | } |
2674 | | |
2675 | | /// Performs qualified name lookup or special type of lookup for |
2676 | | /// "__super::" scope specifier. |
2677 | | /// |
2678 | | /// This routine is a convenience overload meant to be called from contexts |
2679 | | /// that need to perform a qualified name lookup with an optional C++ scope |
2680 | | /// specifier that might require special kind of lookup. |
2681 | | /// |
2682 | | /// \param R captures both the lookup criteria and any lookup results found. |
2683 | | /// |
2684 | | /// \param LookupCtx The context in which qualified name lookup will |
2685 | | /// search. |
2686 | | /// |
2687 | | /// \param SS An optional C++ scope-specifier. |
2688 | | /// |
2689 | | /// \returns true if lookup succeeded, false if it failed. |
2690 | | bool Sema::LookupQualifiedName(LookupResult &R, DeclContext *LookupCtx, |
2691 | 0 | CXXScopeSpec &SS) { |
2692 | 0 | auto *NNS = SS.getScopeRep(); |
2693 | 0 | if (NNS && NNS->getKind() == NestedNameSpecifier::Super) |
2694 | 0 | return LookupInSuper(R, NNS->getAsRecordDecl()); |
2695 | 0 | else |
2696 | | |
2697 | 0 | return LookupQualifiedName(R, LookupCtx); |
2698 | 0 | } |
2699 | | |
2700 | | /// Performs name lookup for a name that was parsed in the |
2701 | | /// source code, and may contain a C++ scope specifier. |
2702 | | /// |
2703 | | /// This routine is a convenience routine meant to be called from |
2704 | | /// contexts that receive a name and an optional C++ scope specifier |
2705 | | /// (e.g., "N::M::x"). It will then perform either qualified or |
2706 | | /// unqualified name lookup (with LookupQualifiedName or LookupName, |
2707 | | /// respectively) on the given name and return those results. It will |
2708 | | /// perform a special type of lookup for "__super::" scope specifier. |
2709 | | /// |
2710 | | /// @param S The scope from which unqualified name lookup will |
2711 | | /// begin. |
2712 | | /// |
2713 | | /// @param SS An optional C++ scope-specifier, e.g., "::N::M". |
2714 | | /// |
2715 | | /// @param EnteringContext Indicates whether we are going to enter the |
2716 | | /// context of the scope-specifier SS (if present). |
2717 | | /// |
2718 | | /// @returns True if any decls were found (but possibly ambiguous) |
2719 | | bool Sema::LookupParsedName(LookupResult &R, Scope *S, CXXScopeSpec *SS, |
2720 | 2.60k | bool AllowBuiltinCreation, bool EnteringContext) { |
2721 | 2.60k | if (SS && SS->isInvalid()) { |
2722 | | // When the scope specifier is invalid, don't even look for |
2723 | | // anything. |
2724 | 0 | return false; |
2725 | 0 | } |
2726 | | |
2727 | 2.60k | if (SS && SS->isSet()) { |
2728 | 0 | NestedNameSpecifier *NNS = SS->getScopeRep(); |
2729 | 0 | if (NNS->getKind() == NestedNameSpecifier::Super) |
2730 | 0 | return LookupInSuper(R, NNS->getAsRecordDecl()); |
2731 | | |
2732 | 0 | if (DeclContext *DC = computeDeclContext(*SS, EnteringContext)) { |
2733 | | // We have resolved the scope specifier to a particular declaration |
2734 | | // contex, and will perform name lookup in that context. |
2735 | 0 | if (!DC->isDependentContext() && RequireCompleteDeclContext(*SS, DC)) |
2736 | 0 | return false; |
2737 | | |
2738 | 0 | R.setContextRange(SS->getRange()); |
2739 | 0 | return LookupQualifiedName(R, DC); |
2740 | 0 | } |
2741 | | |
2742 | | // We could not resolve the scope specified to a specific declaration |
2743 | | // context, which means that SS refers to an unknown specialization. |
2744 | | // Name lookup can't find anything in this case. |
2745 | 0 | R.setNotFoundInCurrentInstantiation(); |
2746 | 0 | R.setContextRange(SS->getRange()); |
2747 | 0 | return false; |
2748 | 0 | } |
2749 | | |
2750 | | // Perform unqualified name lookup starting in the given scope. |
2751 | 2.60k | return LookupName(R, S, AllowBuiltinCreation); |
2752 | 2.60k | } |
2753 | | |
2754 | | /// Perform qualified name lookup into all base classes of the given |
2755 | | /// class. |
2756 | | /// |
2757 | | /// \param R captures both the lookup criteria and any lookup results found. |
2758 | | /// |
2759 | | /// \param Class The context in which qualified name lookup will |
2760 | | /// search. Name lookup will search in all base classes merging the results. |
2761 | | /// |
2762 | | /// @returns True if any decls were found (but possibly ambiguous) |
2763 | 0 | bool Sema::LookupInSuper(LookupResult &R, CXXRecordDecl *Class) { |
2764 | | // The access-control rules we use here are essentially the rules for |
2765 | | // doing a lookup in Class that just magically skipped the direct |
2766 | | // members of Class itself. That is, the naming class is Class, and the |
2767 | | // access includes the access of the base. |
2768 | 0 | for (const auto &BaseSpec : Class->bases()) { |
2769 | 0 | CXXRecordDecl *RD = cast<CXXRecordDecl>( |
2770 | 0 | BaseSpec.getType()->castAs<RecordType>()->getDecl()); |
2771 | 0 | LookupResult Result(*this, R.getLookupNameInfo(), R.getLookupKind()); |
2772 | 0 | Result.setBaseObjectType(Context.getRecordType(Class)); |
2773 | 0 | LookupQualifiedName(Result, RD); |
2774 | | |
2775 | | // Copy the lookup results into the target, merging the base's access into |
2776 | | // the path access. |
2777 | 0 | for (auto I = Result.begin(), E = Result.end(); I != E; ++I) { |
2778 | 0 | R.addDecl(I.getDecl(), |
2779 | 0 | CXXRecordDecl::MergeAccess(BaseSpec.getAccessSpecifier(), |
2780 | 0 | I.getAccess())); |
2781 | 0 | } |
2782 | |
|
2783 | 0 | Result.suppressDiagnostics(); |
2784 | 0 | } |
2785 | |
|
2786 | 0 | R.resolveKind(); |
2787 | 0 | R.setNamingClass(Class); |
2788 | |
|
2789 | 0 | return !R.empty(); |
2790 | 0 | } |
2791 | | |
2792 | | /// Produce a diagnostic describing the ambiguity that resulted |
2793 | | /// from name lookup. |
2794 | | /// |
2795 | | /// \param Result The result of the ambiguous lookup to be diagnosed. |
2796 | 0 | void Sema::DiagnoseAmbiguousLookup(LookupResult &Result) { |
2797 | 0 | assert(Result.isAmbiguous() && "Lookup result must be ambiguous"); |
2798 | | |
2799 | 0 | DeclarationName Name = Result.getLookupName(); |
2800 | 0 | SourceLocation NameLoc = Result.getNameLoc(); |
2801 | 0 | SourceRange LookupRange = Result.getContextRange(); |
2802 | |
|
2803 | 0 | switch (Result.getAmbiguityKind()) { |
2804 | 0 | case LookupResult::AmbiguousBaseSubobjects: { |
2805 | 0 | CXXBasePaths *Paths = Result.getBasePaths(); |
2806 | 0 | QualType SubobjectType = Paths->front().back().Base->getType(); |
2807 | 0 | Diag(NameLoc, diag::err_ambiguous_member_multiple_subobjects) |
2808 | 0 | << Name << SubobjectType << getAmbiguousPathsDisplayString(*Paths) |
2809 | 0 | << LookupRange; |
2810 | |
|
2811 | 0 | DeclContext::lookup_iterator Found = Paths->front().Decls; |
2812 | 0 | while (isa<CXXMethodDecl>(*Found) && |
2813 | 0 | cast<CXXMethodDecl>(*Found)->isStatic()) |
2814 | 0 | ++Found; |
2815 | |
|
2816 | 0 | Diag((*Found)->getLocation(), diag::note_ambiguous_member_found); |
2817 | 0 | break; |
2818 | 0 | } |
2819 | | |
2820 | 0 | case LookupResult::AmbiguousBaseSubobjectTypes: { |
2821 | 0 | Diag(NameLoc, diag::err_ambiguous_member_multiple_subobject_types) |
2822 | 0 | << Name << LookupRange; |
2823 | |
|
2824 | 0 | CXXBasePaths *Paths = Result.getBasePaths(); |
2825 | 0 | std::set<const NamedDecl *> DeclsPrinted; |
2826 | 0 | for (CXXBasePaths::paths_iterator Path = Paths->begin(), |
2827 | 0 | PathEnd = Paths->end(); |
2828 | 0 | Path != PathEnd; ++Path) { |
2829 | 0 | const NamedDecl *D = *Path->Decls; |
2830 | 0 | if (!D->isInIdentifierNamespace(Result.getIdentifierNamespace())) |
2831 | 0 | continue; |
2832 | 0 | if (DeclsPrinted.insert(D).second) { |
2833 | 0 | if (const auto *TD = dyn_cast<TypedefNameDecl>(D->getUnderlyingDecl())) |
2834 | 0 | Diag(D->getLocation(), diag::note_ambiguous_member_type_found) |
2835 | 0 | << TD->getUnderlyingType(); |
2836 | 0 | else if (const auto *TD = dyn_cast<TypeDecl>(D->getUnderlyingDecl())) |
2837 | 0 | Diag(D->getLocation(), diag::note_ambiguous_member_type_found) |
2838 | 0 | << Context.getTypeDeclType(TD); |
2839 | 0 | else |
2840 | 0 | Diag(D->getLocation(), diag::note_ambiguous_member_found); |
2841 | 0 | } |
2842 | 0 | } |
2843 | 0 | break; |
2844 | 0 | } |
2845 | | |
2846 | 0 | case LookupResult::AmbiguousTagHiding: { |
2847 | 0 | Diag(NameLoc, diag::err_ambiguous_tag_hiding) << Name << LookupRange; |
2848 | |
|
2849 | 0 | llvm::SmallPtrSet<NamedDecl*, 8> TagDecls; |
2850 | |
|
2851 | 0 | for (auto *D : Result) |
2852 | 0 | if (TagDecl *TD = dyn_cast<TagDecl>(D)) { |
2853 | 0 | TagDecls.insert(TD); |
2854 | 0 | Diag(TD->getLocation(), diag::note_hidden_tag); |
2855 | 0 | } |
2856 | |
|
2857 | 0 | for (auto *D : Result) |
2858 | 0 | if (!isa<TagDecl>(D)) |
2859 | 0 | Diag(D->getLocation(), diag::note_hiding_object); |
2860 | | |
2861 | | // For recovery purposes, go ahead and implement the hiding. |
2862 | 0 | LookupResult::Filter F = Result.makeFilter(); |
2863 | 0 | while (F.hasNext()) { |
2864 | 0 | if (TagDecls.count(F.next())) |
2865 | 0 | F.erase(); |
2866 | 0 | } |
2867 | 0 | F.done(); |
2868 | 0 | break; |
2869 | 0 | } |
2870 | | |
2871 | 0 | case LookupResult::AmbiguousReferenceToPlaceholderVariable: { |
2872 | 0 | Diag(NameLoc, diag::err_using_placeholder_variable) << Name << LookupRange; |
2873 | 0 | DeclContext *DC = nullptr; |
2874 | 0 | for (auto *D : Result) { |
2875 | 0 | Diag(D->getLocation(), diag::note_reference_placeholder) << D; |
2876 | 0 | if (DC != nullptr && DC != D->getDeclContext()) |
2877 | 0 | break; |
2878 | 0 | DC = D->getDeclContext(); |
2879 | 0 | } |
2880 | 0 | break; |
2881 | 0 | } |
2882 | | |
2883 | 0 | case LookupResult::AmbiguousReference: { |
2884 | 0 | Diag(NameLoc, diag::err_ambiguous_reference) << Name << LookupRange; |
2885 | |
|
2886 | 0 | for (auto *D : Result) |
2887 | 0 | Diag(D->getLocation(), diag::note_ambiguous_candidate) << D; |
2888 | 0 | break; |
2889 | 0 | } |
2890 | 0 | } |
2891 | 0 | } |
2892 | | |
2893 | | namespace { |
2894 | | struct AssociatedLookup { |
2895 | | AssociatedLookup(Sema &S, SourceLocation InstantiationLoc, |
2896 | | Sema::AssociatedNamespaceSet &Namespaces, |
2897 | | Sema::AssociatedClassSet &Classes) |
2898 | | : S(S), Namespaces(Namespaces), Classes(Classes), |
2899 | 0 | InstantiationLoc(InstantiationLoc) { |
2900 | 0 | } |
2901 | | |
2902 | 0 | bool addClassTransitive(CXXRecordDecl *RD) { |
2903 | 0 | Classes.insert(RD); |
2904 | 0 | return ClassesTransitive.insert(RD); |
2905 | 0 | } |
2906 | | |
2907 | | Sema &S; |
2908 | | Sema::AssociatedNamespaceSet &Namespaces; |
2909 | | Sema::AssociatedClassSet &Classes; |
2910 | | SourceLocation InstantiationLoc; |
2911 | | |
2912 | | private: |
2913 | | Sema::AssociatedClassSet ClassesTransitive; |
2914 | | }; |
2915 | | } // end anonymous namespace |
2916 | | |
2917 | | static void |
2918 | | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType T); |
2919 | | |
2920 | | // Given the declaration context \param Ctx of a class, class template or |
2921 | | // enumeration, add the associated namespaces to \param Namespaces as described |
2922 | | // in [basic.lookup.argdep]p2. |
2923 | | static void CollectEnclosingNamespace(Sema::AssociatedNamespaceSet &Namespaces, |
2924 | 0 | DeclContext *Ctx) { |
2925 | | // The exact wording has been changed in C++14 as a result of |
2926 | | // CWG 1691 (see also CWG 1690 and CWG 1692). We apply it unconditionally |
2927 | | // to all language versions since it is possible to return a local type |
2928 | | // from a lambda in C++11. |
2929 | | // |
2930 | | // C++14 [basic.lookup.argdep]p2: |
2931 | | // If T is a class type [...]. Its associated namespaces are the innermost |
2932 | | // enclosing namespaces of its associated classes. [...] |
2933 | | // |
2934 | | // If T is an enumeration type, its associated namespace is the innermost |
2935 | | // enclosing namespace of its declaration. [...] |
2936 | | |
2937 | | // We additionally skip inline namespaces. The innermost non-inline namespace |
2938 | | // contains all names of all its nested inline namespaces anyway, so we can |
2939 | | // replace the entire inline namespace tree with its root. |
2940 | 0 | while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) |
2941 | 0 | Ctx = Ctx->getParent(); |
2942 | |
|
2943 | 0 | Namespaces.insert(Ctx->getPrimaryContext()); |
2944 | 0 | } |
2945 | | |
2946 | | // Add the associated classes and namespaces for argument-dependent |
2947 | | // lookup that involves a template argument (C++ [basic.lookup.argdep]p2). |
2948 | | static void |
2949 | | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, |
2950 | 0 | const TemplateArgument &Arg) { |
2951 | | // C++ [basic.lookup.argdep]p2, last bullet: |
2952 | | // -- [...] ; |
2953 | 0 | switch (Arg.getKind()) { |
2954 | 0 | case TemplateArgument::Null: |
2955 | 0 | break; |
2956 | | |
2957 | 0 | case TemplateArgument::Type: |
2958 | | // [...] the namespaces and classes associated with the types of the |
2959 | | // template arguments provided for template type parameters (excluding |
2960 | | // template template parameters) |
2961 | 0 | addAssociatedClassesAndNamespaces(Result, Arg.getAsType()); |
2962 | 0 | break; |
2963 | | |
2964 | 0 | case TemplateArgument::Template: |
2965 | 0 | case TemplateArgument::TemplateExpansion: { |
2966 | | // [...] the namespaces in which any template template arguments are |
2967 | | // defined; and the classes in which any member templates used as |
2968 | | // template template arguments are defined. |
2969 | 0 | TemplateName Template = Arg.getAsTemplateOrTemplatePattern(); |
2970 | 0 | if (ClassTemplateDecl *ClassTemplate |
2971 | 0 | = dyn_cast<ClassTemplateDecl>(Template.getAsTemplateDecl())) { |
2972 | 0 | DeclContext *Ctx = ClassTemplate->getDeclContext(); |
2973 | 0 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
2974 | 0 | Result.Classes.insert(EnclosingClass); |
2975 | | // Add the associated namespace for this class. |
2976 | 0 | CollectEnclosingNamespace(Result.Namespaces, Ctx); |
2977 | 0 | } |
2978 | 0 | break; |
2979 | 0 | } |
2980 | | |
2981 | 0 | case TemplateArgument::Declaration: |
2982 | 0 | case TemplateArgument::Integral: |
2983 | 0 | case TemplateArgument::Expression: |
2984 | 0 | case TemplateArgument::NullPtr: |
2985 | | // [Note: non-type template arguments do not contribute to the set of |
2986 | | // associated namespaces. ] |
2987 | 0 | break; |
2988 | | |
2989 | 0 | case TemplateArgument::Pack: |
2990 | 0 | for (const auto &P : Arg.pack_elements()) |
2991 | 0 | addAssociatedClassesAndNamespaces(Result, P); |
2992 | 0 | break; |
2993 | 0 | } |
2994 | 0 | } |
2995 | | |
2996 | | // Add the associated classes and namespaces for argument-dependent lookup |
2997 | | // with an argument of class type (C++ [basic.lookup.argdep]p2). |
2998 | | static void |
2999 | | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, |
3000 | 0 | CXXRecordDecl *Class) { |
3001 | | |
3002 | | // Just silently ignore anything whose name is __va_list_tag. |
3003 | 0 | if (Class->getDeclName() == Result.S.VAListTagName) |
3004 | 0 | return; |
3005 | | |
3006 | | // C++ [basic.lookup.argdep]p2: |
3007 | | // [...] |
3008 | | // -- If T is a class type (including unions), its associated |
3009 | | // classes are: the class itself; the class of which it is a |
3010 | | // member, if any; and its direct and indirect base classes. |
3011 | | // Its associated namespaces are the innermost enclosing |
3012 | | // namespaces of its associated classes. |
3013 | | |
3014 | | // Add the class of which it is a member, if any. |
3015 | 0 | DeclContext *Ctx = Class->getDeclContext(); |
3016 | 0 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
3017 | 0 | Result.Classes.insert(EnclosingClass); |
3018 | | |
3019 | | // Add the associated namespace for this class. |
3020 | 0 | CollectEnclosingNamespace(Result.Namespaces, Ctx); |
3021 | | |
3022 | | // -- If T is a template-id, its associated namespaces and classes are |
3023 | | // the namespace in which the template is defined; for member |
3024 | | // templates, the member template's class; the namespaces and classes |
3025 | | // associated with the types of the template arguments provided for |
3026 | | // template type parameters (excluding template template parameters); the |
3027 | | // namespaces in which any template template arguments are defined; and |
3028 | | // the classes in which any member templates used as template template |
3029 | | // arguments are defined. [Note: non-type template arguments do not |
3030 | | // contribute to the set of associated namespaces. ] |
3031 | 0 | if (ClassTemplateSpecializationDecl *Spec |
3032 | 0 | = dyn_cast<ClassTemplateSpecializationDecl>(Class)) { |
3033 | 0 | DeclContext *Ctx = Spec->getSpecializedTemplate()->getDeclContext(); |
3034 | 0 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
3035 | 0 | Result.Classes.insert(EnclosingClass); |
3036 | | // Add the associated namespace for this class. |
3037 | 0 | CollectEnclosingNamespace(Result.Namespaces, Ctx); |
3038 | |
|
3039 | 0 | const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs(); |
3040 | 0 | for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I) |
3041 | 0 | addAssociatedClassesAndNamespaces(Result, TemplateArgs[I]); |
3042 | 0 | } |
3043 | | |
3044 | | // Add the class itself. If we've already transitively visited this class, |
3045 | | // we don't need to visit base classes. |
3046 | 0 | if (!Result.addClassTransitive(Class)) |
3047 | 0 | return; |
3048 | | |
3049 | | // Only recurse into base classes for complete types. |
3050 | 0 | if (!Result.S.isCompleteType(Result.InstantiationLoc, |
3051 | 0 | Result.S.Context.getRecordType(Class))) |
3052 | 0 | return; |
3053 | | |
3054 | | // Add direct and indirect base classes along with their associated |
3055 | | // namespaces. |
3056 | 0 | SmallVector<CXXRecordDecl *, 32> Bases; |
3057 | 0 | Bases.push_back(Class); |
3058 | 0 | while (!Bases.empty()) { |
3059 | | // Pop this class off the stack. |
3060 | 0 | Class = Bases.pop_back_val(); |
3061 | | |
3062 | | // Visit the base classes. |
3063 | 0 | for (const auto &Base : Class->bases()) { |
3064 | 0 | const RecordType *BaseType = Base.getType()->getAs<RecordType>(); |
3065 | | // In dependent contexts, we do ADL twice, and the first time around, |
3066 | | // the base type might be a dependent TemplateSpecializationType, or a |
3067 | | // TemplateTypeParmType. If that happens, simply ignore it. |
3068 | | // FIXME: If we want to support export, we probably need to add the |
3069 | | // namespace of the template in a TemplateSpecializationType, or even |
3070 | | // the classes and namespaces of known non-dependent arguments. |
3071 | 0 | if (!BaseType) |
3072 | 0 | continue; |
3073 | 0 | CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(BaseType->getDecl()); |
3074 | 0 | if (Result.addClassTransitive(BaseDecl)) { |
3075 | | // Find the associated namespace for this base class. |
3076 | 0 | DeclContext *BaseCtx = BaseDecl->getDeclContext(); |
3077 | 0 | CollectEnclosingNamespace(Result.Namespaces, BaseCtx); |
3078 | | |
3079 | | // Make sure we visit the bases of this base class. |
3080 | 0 | if (BaseDecl->bases_begin() != BaseDecl->bases_end()) |
3081 | 0 | Bases.push_back(BaseDecl); |
3082 | 0 | } |
3083 | 0 | } |
3084 | 0 | } |
3085 | 0 | } |
3086 | | |
3087 | | // Add the associated classes and namespaces for |
3088 | | // argument-dependent lookup with an argument of type T |
3089 | | // (C++ [basic.lookup.koenig]p2). |
3090 | | static void |
3091 | 0 | addAssociatedClassesAndNamespaces(AssociatedLookup &Result, QualType Ty) { |
3092 | | // C++ [basic.lookup.koenig]p2: |
3093 | | // |
3094 | | // For each argument type T in the function call, there is a set |
3095 | | // of zero or more associated namespaces and a set of zero or more |
3096 | | // associated classes to be considered. The sets of namespaces and |
3097 | | // classes is determined entirely by the types of the function |
3098 | | // arguments (and the namespace of any template template |
3099 | | // argument). Typedef names and using-declarations used to specify |
3100 | | // the types do not contribute to this set. The sets of namespaces |
3101 | | // and classes are determined in the following way: |
3102 | |
|
3103 | 0 | SmallVector<const Type *, 16> Queue; |
3104 | 0 | const Type *T = Ty->getCanonicalTypeInternal().getTypePtr(); |
3105 | |
|
3106 | 0 | while (true) { |
3107 | 0 | switch (T->getTypeClass()) { |
3108 | | |
3109 | 0 | #define TYPE(Class, Base) |
3110 | 0 | #define DEPENDENT_TYPE(Class, Base) case Type::Class: |
3111 | 0 | #define NON_CANONICAL_TYPE(Class, Base) case Type::Class: |
3112 | 0 | #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) case Type::Class: |
3113 | 0 | #define ABSTRACT_TYPE(Class, Base) |
3114 | 0 | #include "clang/AST/TypeNodes.inc" |
3115 | | // T is canonical. We can also ignore dependent types because |
3116 | | // we don't need to do ADL at the definition point, but if we |
3117 | | // wanted to implement template export (or if we find some other |
3118 | | // use for associated classes and namespaces...) this would be |
3119 | | // wrong. |
3120 | 0 | break; |
3121 | | |
3122 | | // -- If T is a pointer to U or an array of U, its associated |
3123 | | // namespaces and classes are those associated with U. |
3124 | 0 | case Type::Pointer: |
3125 | 0 | T = cast<PointerType>(T)->getPointeeType().getTypePtr(); |
3126 | 0 | continue; |
3127 | 0 | case Type::ConstantArray: |
3128 | 0 | case Type::IncompleteArray: |
3129 | 0 | case Type::VariableArray: |
3130 | 0 | T = cast<ArrayType>(T)->getElementType().getTypePtr(); |
3131 | 0 | continue; |
3132 | | |
3133 | | // -- If T is a fundamental type, its associated sets of |
3134 | | // namespaces and classes are both empty. |
3135 | 0 | case Type::Builtin: |
3136 | 0 | break; |
3137 | | |
3138 | | // -- If T is a class type (including unions), its associated |
3139 | | // classes are: the class itself; the class of which it is |
3140 | | // a member, if any; and its direct and indirect base classes. |
3141 | | // Its associated namespaces are the innermost enclosing |
3142 | | // namespaces of its associated classes. |
3143 | 0 | case Type::Record: { |
3144 | 0 | CXXRecordDecl *Class = |
3145 | 0 | cast<CXXRecordDecl>(cast<RecordType>(T)->getDecl()); |
3146 | 0 | addAssociatedClassesAndNamespaces(Result, Class); |
3147 | 0 | break; |
3148 | 0 | } |
3149 | | |
3150 | | // -- If T is an enumeration type, its associated namespace |
3151 | | // is the innermost enclosing namespace of its declaration. |
3152 | | // If it is a class member, its associated class is the |
3153 | | // member’s class; else it has no associated class. |
3154 | 0 | case Type::Enum: { |
3155 | 0 | EnumDecl *Enum = cast<EnumType>(T)->getDecl(); |
3156 | |
|
3157 | 0 | DeclContext *Ctx = Enum->getDeclContext(); |
3158 | 0 | if (CXXRecordDecl *EnclosingClass = dyn_cast<CXXRecordDecl>(Ctx)) |
3159 | 0 | Result.Classes.insert(EnclosingClass); |
3160 | | |
3161 | | // Add the associated namespace for this enumeration. |
3162 | 0 | CollectEnclosingNamespace(Result.Namespaces, Ctx); |
3163 | |
|
3164 | 0 | break; |
3165 | 0 | } |
3166 | | |
3167 | | // -- If T is a function type, its associated namespaces and |
3168 | | // classes are those associated with the function parameter |
3169 | | // types and those associated with the return type. |
3170 | 0 | case Type::FunctionProto: { |
3171 | 0 | const FunctionProtoType *Proto = cast<FunctionProtoType>(T); |
3172 | 0 | for (const auto &Arg : Proto->param_types()) |
3173 | 0 | Queue.push_back(Arg.getTypePtr()); |
3174 | | // fallthrough |
3175 | 0 | [[fallthrough]]; |
3176 | 0 | } |
3177 | 0 | case Type::FunctionNoProto: { |
3178 | 0 | const FunctionType *FnType = cast<FunctionType>(T); |
3179 | 0 | T = FnType->getReturnType().getTypePtr(); |
3180 | 0 | continue; |
3181 | 0 | } |
3182 | | |
3183 | | // -- If T is a pointer to a member function of a class X, its |
3184 | | // associated namespaces and classes are those associated |
3185 | | // with the function parameter types and return type, |
3186 | | // together with those associated with X. |
3187 | | // |
3188 | | // -- If T is a pointer to a data member of class X, its |
3189 | | // associated namespaces and classes are those associated |
3190 | | // with the member type together with those associated with |
3191 | | // X. |
3192 | 0 | case Type::MemberPointer: { |
3193 | 0 | const MemberPointerType *MemberPtr = cast<MemberPointerType>(T); |
3194 | | |
3195 | | // Queue up the class type into which this points. |
3196 | 0 | Queue.push_back(MemberPtr->getClass()); |
3197 | | |
3198 | | // And directly continue with the pointee type. |
3199 | 0 | T = MemberPtr->getPointeeType().getTypePtr(); |
3200 | 0 | continue; |
3201 | 0 | } |
3202 | | |
3203 | | // As an extension, treat this like a normal pointer. |
3204 | 0 | case Type::BlockPointer: |
3205 | 0 | T = cast<BlockPointerType>(T)->getPointeeType().getTypePtr(); |
3206 | 0 | continue; |
3207 | | |
3208 | | // References aren't covered by the standard, but that's such an |
3209 | | // obvious defect that we cover them anyway. |
3210 | 0 | case Type::LValueReference: |
3211 | 0 | case Type::RValueReference: |
3212 | 0 | T = cast<ReferenceType>(T)->getPointeeType().getTypePtr(); |
3213 | 0 | continue; |
3214 | | |
3215 | | // These are fundamental types. |
3216 | 0 | case Type::Vector: |
3217 | 0 | case Type::ExtVector: |
3218 | 0 | case Type::ConstantMatrix: |
3219 | 0 | case Type::Complex: |
3220 | 0 | case Type::BitInt: |
3221 | 0 | break; |
3222 | | |
3223 | | // Non-deduced auto types only get here for error cases. |
3224 | 0 | case Type::Auto: |
3225 | 0 | case Type::DeducedTemplateSpecialization: |
3226 | 0 | break; |
3227 | | |
3228 | | // If T is an Objective-C object or interface type, or a pointer to an |
3229 | | // object or interface type, the associated namespace is the global |
3230 | | // namespace. |
3231 | 0 | case Type::ObjCObject: |
3232 | 0 | case Type::ObjCInterface: |
3233 | 0 | case Type::ObjCObjectPointer: |
3234 | 0 | Result.Namespaces.insert(Result.S.Context.getTranslationUnitDecl()); |
3235 | 0 | break; |
3236 | | |
3237 | | // Atomic types are just wrappers; use the associations of the |
3238 | | // contained type. |
3239 | 0 | case Type::Atomic: |
3240 | 0 | T = cast<AtomicType>(T)->getValueType().getTypePtr(); |
3241 | 0 | continue; |
3242 | 0 | case Type::Pipe: |
3243 | 0 | T = cast<PipeType>(T)->getElementType().getTypePtr(); |
3244 | 0 | continue; |
3245 | 0 | } |
3246 | | |
3247 | 0 | if (Queue.empty()) |
3248 | 0 | break; |
3249 | 0 | T = Queue.pop_back_val(); |
3250 | 0 | } |
3251 | 0 | } |
3252 | | |
3253 | | /// Find the associated classes and namespaces for |
3254 | | /// argument-dependent lookup for a call with the given set of |
3255 | | /// arguments. |
3256 | | /// |
3257 | | /// This routine computes the sets of associated classes and associated |
3258 | | /// namespaces searched by argument-dependent lookup |
3259 | | /// (C++ [basic.lookup.argdep]) for a given set of arguments. |
3260 | | void Sema::FindAssociatedClassesAndNamespaces( |
3261 | | SourceLocation InstantiationLoc, ArrayRef<Expr *> Args, |
3262 | | AssociatedNamespaceSet &AssociatedNamespaces, |
3263 | 0 | AssociatedClassSet &AssociatedClasses) { |
3264 | 0 | AssociatedNamespaces.clear(); |
3265 | 0 | AssociatedClasses.clear(); |
3266 | |
|
3267 | 0 | AssociatedLookup Result(*this, InstantiationLoc, |
3268 | 0 | AssociatedNamespaces, AssociatedClasses); |
3269 | | |
3270 | | // C++ [basic.lookup.koenig]p2: |
3271 | | // For each argument type T in the function call, there is a set |
3272 | | // of zero or more associated namespaces and a set of zero or more |
3273 | | // associated classes to be considered. The sets of namespaces and |
3274 | | // classes is determined entirely by the types of the function |
3275 | | // arguments (and the namespace of any template template |
3276 | | // argument). |
3277 | 0 | for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) { |
3278 | 0 | Expr *Arg = Args[ArgIdx]; |
3279 | |
|
3280 | 0 | if (Arg->getType() != Context.OverloadTy) { |
3281 | 0 | addAssociatedClassesAndNamespaces(Result, Arg->getType()); |
3282 | 0 | continue; |
3283 | 0 | } |
3284 | | |
3285 | | // [...] In addition, if the argument is the name or address of a |
3286 | | // set of overloaded functions and/or function templates, its |
3287 | | // associated classes and namespaces are the union of those |
3288 | | // associated with each of the members of the set: the namespace |
3289 | | // in which the function or function template is defined and the |
3290 | | // classes and namespaces associated with its (non-dependent) |
3291 | | // parameter types and return type. |
3292 | 0 | OverloadExpr *OE = OverloadExpr::find(Arg).Expression; |
3293 | |
|
3294 | 0 | for (const NamedDecl *D : OE->decls()) { |
3295 | | // Look through any using declarations to find the underlying function. |
3296 | 0 | const FunctionDecl *FDecl = D->getUnderlyingDecl()->getAsFunction(); |
3297 | | |
3298 | | // Add the classes and namespaces associated with the parameter |
3299 | | // types and return type of this function. |
3300 | 0 | addAssociatedClassesAndNamespaces(Result, FDecl->getType()); |
3301 | 0 | } |
3302 | 0 | } |
3303 | 0 | } |
3304 | | |
3305 | | NamedDecl *Sema::LookupSingleName(Scope *S, DeclarationName Name, |
3306 | | SourceLocation Loc, |
3307 | | LookupNameKind NameKind, |
3308 | 0 | RedeclarationKind Redecl) { |
3309 | 0 | LookupResult R(*this, Name, Loc, NameKind, Redecl); |
3310 | 0 | LookupName(R, S); |
3311 | 0 | return R.getAsSingle<NamedDecl>(); |
3312 | 0 | } |
3313 | | |
3314 | | /// Find the protocol with the given name, if any. |
3315 | | ObjCProtocolDecl *Sema::LookupProtocol(IdentifierInfo *II, |
3316 | | SourceLocation IdLoc, |
3317 | 0 | RedeclarationKind Redecl) { |
3318 | 0 | Decl *D = LookupSingleName(TUScope, II, IdLoc, |
3319 | 0 | LookupObjCProtocolName, Redecl); |
3320 | 0 | return cast_or_null<ObjCProtocolDecl>(D); |
3321 | 0 | } |
3322 | | |
3323 | | void Sema::LookupOverloadedOperatorName(OverloadedOperatorKind Op, Scope *S, |
3324 | 23 | UnresolvedSetImpl &Functions) { |
3325 | | // C++ [over.match.oper]p3: |
3326 | | // -- The set of non-member candidates is the result of the |
3327 | | // unqualified lookup of operator@ in the context of the |
3328 | | // expression according to the usual rules for name lookup in |
3329 | | // unqualified function calls (3.4.2) except that all member |
3330 | | // functions are ignored. |
3331 | 23 | DeclarationName OpName = Context.DeclarationNames.getCXXOperatorName(Op); |
3332 | 23 | LookupResult Operators(*this, OpName, SourceLocation(), LookupOperatorName); |
3333 | 23 | LookupName(Operators, S); |
3334 | | |
3335 | 23 | assert(!Operators.isAmbiguous() && "Operator lookup cannot be ambiguous"); |
3336 | 0 | Functions.append(Operators.begin(), Operators.end()); |
3337 | 23 | } |
3338 | | |
3339 | | Sema::SpecialMemberOverloadResult Sema::LookupSpecialMember(CXXRecordDecl *RD, |
3340 | | CXXSpecialMember SM, |
3341 | | bool ConstArg, |
3342 | | bool VolatileArg, |
3343 | | bool RValueThis, |
3344 | | bool ConstThis, |
3345 | 0 | bool VolatileThis) { |
3346 | 0 | assert(CanDeclareSpecialMemberFunction(RD) && |
3347 | 0 | "doing special member lookup into record that isn't fully complete"); |
3348 | 0 | RD = RD->getDefinition(); |
3349 | 0 | if (RValueThis || ConstThis || VolatileThis) |
3350 | 0 | assert((SM == CXXCopyAssignment || SM == CXXMoveAssignment) && |
3351 | 0 | "constructors and destructors always have unqualified lvalue this"); |
3352 | 0 | if (ConstArg || VolatileArg) |
3353 | 0 | assert((SM != CXXDefaultConstructor && SM != CXXDestructor) && |
3354 | 0 | "parameter-less special members can't have qualified arguments"); |
3355 | | |
3356 | | // FIXME: Get the caller to pass in a location for the lookup. |
3357 | 0 | SourceLocation LookupLoc = RD->getLocation(); |
3358 | |
|
3359 | 0 | llvm::FoldingSetNodeID ID; |
3360 | 0 | ID.AddPointer(RD); |
3361 | 0 | ID.AddInteger(SM); |
3362 | 0 | ID.AddInteger(ConstArg); |
3363 | 0 | ID.AddInteger(VolatileArg); |
3364 | 0 | ID.AddInteger(RValueThis); |
3365 | 0 | ID.AddInteger(ConstThis); |
3366 | 0 | ID.AddInteger(VolatileThis); |
3367 | |
|
3368 | 0 | void *InsertPoint; |
3369 | 0 | SpecialMemberOverloadResultEntry *Result = |
3370 | 0 | SpecialMemberCache.FindNodeOrInsertPos(ID, InsertPoint); |
3371 | | |
3372 | | // This was already cached |
3373 | 0 | if (Result) |
3374 | 0 | return *Result; |
3375 | | |
3376 | 0 | Result = BumpAlloc.Allocate<SpecialMemberOverloadResultEntry>(); |
3377 | 0 | Result = new (Result) SpecialMemberOverloadResultEntry(ID); |
3378 | 0 | SpecialMemberCache.InsertNode(Result, InsertPoint); |
3379 | |
|
3380 | 0 | if (SM == CXXDestructor) { |
3381 | 0 | if (RD->needsImplicitDestructor()) { |
3382 | 0 | runWithSufficientStackSpace(RD->getLocation(), [&] { |
3383 | 0 | DeclareImplicitDestructor(RD); |
3384 | 0 | }); |
3385 | 0 | } |
3386 | 0 | CXXDestructorDecl *DD = RD->getDestructor(); |
3387 | 0 | Result->setMethod(DD); |
3388 | 0 | Result->setKind(DD && !DD->isDeleted() |
3389 | 0 | ? SpecialMemberOverloadResult::Success |
3390 | 0 | : SpecialMemberOverloadResult::NoMemberOrDeleted); |
3391 | 0 | return *Result; |
3392 | 0 | } |
3393 | | |
3394 | | // Prepare for overload resolution. Here we construct a synthetic argument |
3395 | | // if necessary and make sure that implicit functions are declared. |
3396 | 0 | CanQualType CanTy = Context.getCanonicalType(Context.getTagDeclType(RD)); |
3397 | 0 | DeclarationName Name; |
3398 | 0 | Expr *Arg = nullptr; |
3399 | 0 | unsigned NumArgs; |
3400 | |
|
3401 | 0 | QualType ArgType = CanTy; |
3402 | 0 | ExprValueKind VK = VK_LValue; |
3403 | |
|
3404 | 0 | if (SM == CXXDefaultConstructor) { |
3405 | 0 | Name = Context.DeclarationNames.getCXXConstructorName(CanTy); |
3406 | 0 | NumArgs = 0; |
3407 | 0 | if (RD->needsImplicitDefaultConstructor()) { |
3408 | 0 | runWithSufficientStackSpace(RD->getLocation(), [&] { |
3409 | 0 | DeclareImplicitDefaultConstructor(RD); |
3410 | 0 | }); |
3411 | 0 | } |
3412 | 0 | } else { |
3413 | 0 | if (SM == CXXCopyConstructor || SM == CXXMoveConstructor) { |
3414 | 0 | Name = Context.DeclarationNames.getCXXConstructorName(CanTy); |
3415 | 0 | if (RD->needsImplicitCopyConstructor()) { |
3416 | 0 | runWithSufficientStackSpace(RD->getLocation(), [&] { |
3417 | 0 | DeclareImplicitCopyConstructor(RD); |
3418 | 0 | }); |
3419 | 0 | } |
3420 | 0 | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveConstructor()) { |
3421 | 0 | runWithSufficientStackSpace(RD->getLocation(), [&] { |
3422 | 0 | DeclareImplicitMoveConstructor(RD); |
3423 | 0 | }); |
3424 | 0 | } |
3425 | 0 | } else { |
3426 | 0 | Name = Context.DeclarationNames.getCXXOperatorName(OO_Equal); |
3427 | 0 | if (RD->needsImplicitCopyAssignment()) { |
3428 | 0 | runWithSufficientStackSpace(RD->getLocation(), [&] { |
3429 | 0 | DeclareImplicitCopyAssignment(RD); |
3430 | 0 | }); |
3431 | 0 | } |
3432 | 0 | if (getLangOpts().CPlusPlus11 && RD->needsImplicitMoveAssignment()) { |
3433 | 0 | runWithSufficientStackSpace(RD->getLocation(), [&] { |
3434 | 0 | DeclareImplicitMoveAssignment(RD); |
3435 | 0 | }); |
3436 | 0 | } |
3437 | 0 | } |
3438 | |
|
3439 | 0 | if (ConstArg) |
3440 | 0 | ArgType.addConst(); |
3441 | 0 | if (VolatileArg) |
3442 | 0 | ArgType.addVolatile(); |
3443 | | |
3444 | | // This isn't /really/ specified by the standard, but it's implied |
3445 | | // we should be working from a PRValue in the case of move to ensure |
3446 | | // that we prefer to bind to rvalue references, and an LValue in the |
3447 | | // case of copy to ensure we don't bind to rvalue references. |
3448 | | // Possibly an XValue is actually correct in the case of move, but |
3449 | | // there is no semantic difference for class types in this restricted |
3450 | | // case. |
3451 | 0 | if (SM == CXXCopyConstructor || SM == CXXCopyAssignment) |
3452 | 0 | VK = VK_LValue; |
3453 | 0 | else |
3454 | 0 | VK = VK_PRValue; |
3455 | 0 | } |
3456 | |
|
3457 | 0 | OpaqueValueExpr FakeArg(LookupLoc, ArgType, VK); |
3458 | |
|
3459 | 0 | if (SM != CXXDefaultConstructor) { |
3460 | 0 | NumArgs = 1; |
3461 | 0 | Arg = &FakeArg; |
3462 | 0 | } |
3463 | | |
3464 | | // Create the object argument |
3465 | 0 | QualType ThisTy = CanTy; |
3466 | 0 | if (ConstThis) |
3467 | 0 | ThisTy.addConst(); |
3468 | 0 | if (VolatileThis) |
3469 | 0 | ThisTy.addVolatile(); |
3470 | 0 | Expr::Classification Classification = |
3471 | 0 | OpaqueValueExpr(LookupLoc, ThisTy, RValueThis ? VK_PRValue : VK_LValue) |
3472 | 0 | .Classify(Context); |
3473 | | |
3474 | | // Now we perform lookup on the name we computed earlier and do overload |
3475 | | // resolution. Lookup is only performed directly into the class since there |
3476 | | // will always be a (possibly implicit) declaration to shadow any others. |
3477 | 0 | OverloadCandidateSet OCS(LookupLoc, OverloadCandidateSet::CSK_Normal); |
3478 | 0 | DeclContext::lookup_result R = RD->lookup(Name); |
3479 | |
|
3480 | 0 | if (R.empty()) { |
3481 | | // We might have no default constructor because we have a lambda's closure |
3482 | | // type, rather than because there's some other declared constructor. |
3483 | | // Every class has a copy/move constructor, copy/move assignment, and |
3484 | | // destructor. |
3485 | 0 | assert(SM == CXXDefaultConstructor && |
3486 | 0 | "lookup for a constructor or assignment operator was empty"); |
3487 | 0 | Result->setMethod(nullptr); |
3488 | 0 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); |
3489 | 0 | return *Result; |
3490 | 0 | } |
3491 | | |
3492 | | // Copy the candidates as our processing of them may load new declarations |
3493 | | // from an external source and invalidate lookup_result. |
3494 | 0 | SmallVector<NamedDecl *, 8> Candidates(R.begin(), R.end()); |
3495 | |
|
3496 | 0 | for (NamedDecl *CandDecl : Candidates) { |
3497 | 0 | if (CandDecl->isInvalidDecl()) |
3498 | 0 | continue; |
3499 | | |
3500 | 0 | DeclAccessPair Cand = DeclAccessPair::make(CandDecl, AS_public); |
3501 | 0 | auto CtorInfo = getConstructorInfo(Cand); |
3502 | 0 | if (CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(Cand->getUnderlyingDecl())) { |
3503 | 0 | if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) |
3504 | 0 | AddMethodCandidate(M, Cand, RD, ThisTy, Classification, |
3505 | 0 | llvm::ArrayRef(&Arg, NumArgs), OCS, true); |
3506 | 0 | else if (CtorInfo) |
3507 | 0 | AddOverloadCandidate(CtorInfo.Constructor, CtorInfo.FoundDecl, |
3508 | 0 | llvm::ArrayRef(&Arg, NumArgs), OCS, |
3509 | 0 | /*SuppressUserConversions*/ true); |
3510 | 0 | else |
3511 | 0 | AddOverloadCandidate(M, Cand, llvm::ArrayRef(&Arg, NumArgs), OCS, |
3512 | 0 | /*SuppressUserConversions*/ true); |
3513 | 0 | } else if (FunctionTemplateDecl *Tmpl = |
3514 | 0 | dyn_cast<FunctionTemplateDecl>(Cand->getUnderlyingDecl())) { |
3515 | 0 | if (SM == CXXCopyAssignment || SM == CXXMoveAssignment) |
3516 | 0 | AddMethodTemplateCandidate(Tmpl, Cand, RD, nullptr, ThisTy, |
3517 | 0 | Classification, |
3518 | 0 | llvm::ArrayRef(&Arg, NumArgs), OCS, true); |
3519 | 0 | else if (CtorInfo) |
3520 | 0 | AddTemplateOverloadCandidate(CtorInfo.ConstructorTmpl, |
3521 | 0 | CtorInfo.FoundDecl, nullptr, |
3522 | 0 | llvm::ArrayRef(&Arg, NumArgs), OCS, true); |
3523 | 0 | else |
3524 | 0 | AddTemplateOverloadCandidate(Tmpl, Cand, nullptr, |
3525 | 0 | llvm::ArrayRef(&Arg, NumArgs), OCS, true); |
3526 | 0 | } else { |
3527 | 0 | assert(isa<UsingDecl>(Cand.getDecl()) && |
3528 | 0 | "illegal Kind of operator = Decl"); |
3529 | 0 | } |
3530 | 0 | } |
3531 | |
|
3532 | 0 | OverloadCandidateSet::iterator Best; |
3533 | 0 | switch (OCS.BestViableFunction(*this, LookupLoc, Best)) { |
3534 | 0 | case OR_Success: |
3535 | 0 | Result->setMethod(cast<CXXMethodDecl>(Best->Function)); |
3536 | 0 | Result->setKind(SpecialMemberOverloadResult::Success); |
3537 | 0 | break; |
3538 | | |
3539 | 0 | case OR_Deleted: |
3540 | 0 | Result->setMethod(cast<CXXMethodDecl>(Best->Function)); |
3541 | 0 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); |
3542 | 0 | break; |
3543 | | |
3544 | 0 | case OR_Ambiguous: |
3545 | 0 | Result->setMethod(nullptr); |
3546 | 0 | Result->setKind(SpecialMemberOverloadResult::Ambiguous); |
3547 | 0 | break; |
3548 | | |
3549 | 0 | case OR_No_Viable_Function: |
3550 | 0 | Result->setMethod(nullptr); |
3551 | 0 | Result->setKind(SpecialMemberOverloadResult::NoMemberOrDeleted); |
3552 | 0 | break; |
3553 | 0 | } |
3554 | | |
3555 | 0 | return *Result; |
3556 | 0 | } |
3557 | | |
3558 | | /// Look up the default constructor for the given class. |
3559 | 0 | CXXConstructorDecl *Sema::LookupDefaultConstructor(CXXRecordDecl *Class) { |
3560 | 0 | SpecialMemberOverloadResult Result = |
3561 | 0 | LookupSpecialMember(Class, CXXDefaultConstructor, false, false, false, |
3562 | 0 | false, false); |
3563 | |
|
3564 | 0 | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); |
3565 | 0 | } |
3566 | | |
3567 | | /// Look up the copying constructor for the given class. |
3568 | | CXXConstructorDecl *Sema::LookupCopyingConstructor(CXXRecordDecl *Class, |
3569 | 0 | unsigned Quals) { |
3570 | 0 | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
3571 | 0 | "non-const, non-volatile qualifiers for copy ctor arg"); |
3572 | 0 | SpecialMemberOverloadResult Result = |
3573 | 0 | LookupSpecialMember(Class, CXXCopyConstructor, Quals & Qualifiers::Const, |
3574 | 0 | Quals & Qualifiers::Volatile, false, false, false); |
3575 | |
|
3576 | 0 | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); |
3577 | 0 | } |
3578 | | |
3579 | | /// Look up the moving constructor for the given class. |
3580 | | CXXConstructorDecl *Sema::LookupMovingConstructor(CXXRecordDecl *Class, |
3581 | 0 | unsigned Quals) { |
3582 | 0 | SpecialMemberOverloadResult Result = |
3583 | 0 | LookupSpecialMember(Class, CXXMoveConstructor, Quals & Qualifiers::Const, |
3584 | 0 | Quals & Qualifiers::Volatile, false, false, false); |
3585 | |
|
3586 | 0 | return cast_or_null<CXXConstructorDecl>(Result.getMethod()); |
3587 | 0 | } |
3588 | | |
3589 | | /// Look up the constructors for the given class. |
3590 | 0 | DeclContext::lookup_result Sema::LookupConstructors(CXXRecordDecl *Class) { |
3591 | | // If the implicit constructors have not yet been declared, do so now. |
3592 | 0 | if (CanDeclareSpecialMemberFunction(Class)) { |
3593 | 0 | runWithSufficientStackSpace(Class->getLocation(), [&] { |
3594 | 0 | if (Class->needsImplicitDefaultConstructor()) |
3595 | 0 | DeclareImplicitDefaultConstructor(Class); |
3596 | 0 | if (Class->needsImplicitCopyConstructor()) |
3597 | 0 | DeclareImplicitCopyConstructor(Class); |
3598 | 0 | if (getLangOpts().CPlusPlus11 && Class->needsImplicitMoveConstructor()) |
3599 | 0 | DeclareImplicitMoveConstructor(Class); |
3600 | 0 | }); |
3601 | 0 | } |
3602 | |
|
3603 | 0 | CanQualType T = Context.getCanonicalType(Context.getTypeDeclType(Class)); |
3604 | 0 | DeclarationName Name = Context.DeclarationNames.getCXXConstructorName(T); |
3605 | 0 | return Class->lookup(Name); |
3606 | 0 | } |
3607 | | |
3608 | | /// Look up the copying assignment operator for the given class. |
3609 | | CXXMethodDecl *Sema::LookupCopyingAssignment(CXXRecordDecl *Class, |
3610 | | unsigned Quals, bool RValueThis, |
3611 | 0 | unsigned ThisQuals) { |
3612 | 0 | assert(!(Quals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
3613 | 0 | "non-const, non-volatile qualifiers for copy assignment arg"); |
3614 | 0 | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
3615 | 0 | "non-const, non-volatile qualifiers for copy assignment this"); |
3616 | 0 | SpecialMemberOverloadResult Result = |
3617 | 0 | LookupSpecialMember(Class, CXXCopyAssignment, Quals & Qualifiers::Const, |
3618 | 0 | Quals & Qualifiers::Volatile, RValueThis, |
3619 | 0 | ThisQuals & Qualifiers::Const, |
3620 | 0 | ThisQuals & Qualifiers::Volatile); |
3621 | |
|
3622 | 0 | return Result.getMethod(); |
3623 | 0 | } |
3624 | | |
3625 | | /// Look up the moving assignment operator for the given class. |
3626 | | CXXMethodDecl *Sema::LookupMovingAssignment(CXXRecordDecl *Class, |
3627 | | unsigned Quals, |
3628 | | bool RValueThis, |
3629 | 0 | unsigned ThisQuals) { |
3630 | 0 | assert(!(ThisQuals & ~(Qualifiers::Const | Qualifiers::Volatile)) && |
3631 | 0 | "non-const, non-volatile qualifiers for copy assignment this"); |
3632 | 0 | SpecialMemberOverloadResult Result = |
3633 | 0 | LookupSpecialMember(Class, CXXMoveAssignment, Quals & Qualifiers::Const, |
3634 | 0 | Quals & Qualifiers::Volatile, RValueThis, |
3635 | 0 | ThisQuals & Qualifiers::Const, |
3636 | 0 | ThisQuals & Qualifiers::Volatile); |
3637 | |
|
3638 | 0 | return Result.getMethod(); |
3639 | 0 | } |
3640 | | |
3641 | | /// Look for the destructor of the given class. |
3642 | | /// |
3643 | | /// During semantic analysis, this routine should be used in lieu of |
3644 | | /// CXXRecordDecl::getDestructor(). |
3645 | | /// |
3646 | | /// \returns The destructor for this class. |
3647 | 0 | CXXDestructorDecl *Sema::LookupDestructor(CXXRecordDecl *Class) { |
3648 | 0 | return cast_or_null<CXXDestructorDecl>( |
3649 | 0 | LookupSpecialMember(Class, CXXDestructor, false, false, false, false, |
3650 | 0 | false) |
3651 | 0 | .getMethod()); |
3652 | 0 | } |
3653 | | |
3654 | | /// LookupLiteralOperator - Determine which literal operator should be used for |
3655 | | /// a user-defined literal, per C++11 [lex.ext]. |
3656 | | /// |
3657 | | /// Normal overload resolution is not used to select which literal operator to |
3658 | | /// call for a user-defined literal. Look up the provided literal operator name, |
3659 | | /// and filter the results to the appropriate set for the given argument types. |
3660 | | Sema::LiteralOperatorLookupResult |
3661 | | Sema::LookupLiteralOperator(Scope *S, LookupResult &R, |
3662 | | ArrayRef<QualType> ArgTys, bool AllowRaw, |
3663 | | bool AllowTemplate, bool AllowStringTemplatePack, |
3664 | 2 | bool DiagnoseMissing, StringLiteral *StringLit) { |
3665 | 2 | LookupName(R, S); |
3666 | 2 | assert(R.getResultKind() != LookupResult::Ambiguous && |
3667 | 2 | "literal operator lookup can't be ambiguous"); |
3668 | | |
3669 | | // Filter the lookup results appropriately. |
3670 | 0 | LookupResult::Filter F = R.makeFilter(); |
3671 | | |
3672 | 2 | bool AllowCooked = true; |
3673 | 2 | bool FoundRaw = false; |
3674 | 2 | bool FoundTemplate = false; |
3675 | 2 | bool FoundStringTemplatePack = false; |
3676 | 2 | bool FoundCooked = false; |
3677 | | |
3678 | 2 | while (F.hasNext()) { |
3679 | 0 | Decl *D = F.next(); |
3680 | 0 | if (UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(D)) |
3681 | 0 | D = USD->getTargetDecl(); |
3682 | | |
3683 | | // If the declaration we found is invalid, skip it. |
3684 | 0 | if (D->isInvalidDecl()) { |
3685 | 0 | F.erase(); |
3686 | 0 | continue; |
3687 | 0 | } |
3688 | | |
3689 | 0 | bool IsRaw = false; |
3690 | 0 | bool IsTemplate = false; |
3691 | 0 | bool IsStringTemplatePack = false; |
3692 | 0 | bool IsCooked = false; |
3693 | |
|
3694 | 0 | if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { |
3695 | 0 | if (FD->getNumParams() == 1 && |
3696 | 0 | FD->getParamDecl(0)->getType()->getAs<PointerType>()) |
3697 | 0 | IsRaw = true; |
3698 | 0 | else if (FD->getNumParams() == ArgTys.size()) { |
3699 | 0 | IsCooked = true; |
3700 | 0 | for (unsigned ArgIdx = 0; ArgIdx != ArgTys.size(); ++ArgIdx) { |
3701 | 0 | QualType ParamTy = FD->getParamDecl(ArgIdx)->getType(); |
3702 | 0 | if (!Context.hasSameUnqualifiedType(ArgTys[ArgIdx], ParamTy)) { |
3703 | 0 | IsCooked = false; |
3704 | 0 | break; |
3705 | 0 | } |
3706 | 0 | } |
3707 | 0 | } |
3708 | 0 | } |
3709 | 0 | if (FunctionTemplateDecl *FD = dyn_cast<FunctionTemplateDecl>(D)) { |
3710 | 0 | TemplateParameterList *Params = FD->getTemplateParameters(); |
3711 | 0 | if (Params->size() == 1) { |
3712 | 0 | IsTemplate = true; |
3713 | 0 | if (!Params->getParam(0)->isTemplateParameterPack() && !StringLit) { |
3714 | | // Implied but not stated: user-defined integer and floating literals |
3715 | | // only ever use numeric literal operator templates, not templates |
3716 | | // taking a parameter of class type. |
3717 | 0 | F.erase(); |
3718 | 0 | continue; |
3719 | 0 | } |
3720 | | |
3721 | | // A string literal template is only considered if the string literal |
3722 | | // is a well-formed template argument for the template parameter. |
3723 | 0 | if (StringLit) { |
3724 | 0 | SFINAETrap Trap(*this); |
3725 | 0 | SmallVector<TemplateArgument, 1> SugaredChecked, CanonicalChecked; |
3726 | 0 | TemplateArgumentLoc Arg(TemplateArgument(StringLit), StringLit); |
3727 | 0 | if (CheckTemplateArgument( |
3728 | 0 | Params->getParam(0), Arg, FD, R.getNameLoc(), R.getNameLoc(), |
3729 | 0 | 0, SugaredChecked, CanonicalChecked, CTAK_Specified) || |
3730 | 0 | Trap.hasErrorOccurred()) |
3731 | 0 | IsTemplate = false; |
3732 | 0 | } |
3733 | 0 | } else { |
3734 | 0 | IsStringTemplatePack = true; |
3735 | 0 | } |
3736 | 0 | } |
3737 | | |
3738 | 0 | if (AllowTemplate && StringLit && IsTemplate) { |
3739 | 0 | FoundTemplate = true; |
3740 | 0 | AllowRaw = false; |
3741 | 0 | AllowCooked = false; |
3742 | 0 | AllowStringTemplatePack = false; |
3743 | 0 | if (FoundRaw || FoundCooked || FoundStringTemplatePack) { |
3744 | 0 | F.restart(); |
3745 | 0 | FoundRaw = FoundCooked = FoundStringTemplatePack = false; |
3746 | 0 | } |
3747 | 0 | } else if (AllowCooked && IsCooked) { |
3748 | 0 | FoundCooked = true; |
3749 | 0 | AllowRaw = false; |
3750 | 0 | AllowTemplate = StringLit; |
3751 | 0 | AllowStringTemplatePack = false; |
3752 | 0 | if (FoundRaw || FoundTemplate || FoundStringTemplatePack) { |
3753 | | // Go through again and remove the raw and template decls we've |
3754 | | // already found. |
3755 | 0 | F.restart(); |
3756 | 0 | FoundRaw = FoundTemplate = FoundStringTemplatePack = false; |
3757 | 0 | } |
3758 | 0 | } else if (AllowRaw && IsRaw) { |
3759 | 0 | FoundRaw = true; |
3760 | 0 | } else if (AllowTemplate && IsTemplate) { |
3761 | 0 | FoundTemplate = true; |
3762 | 0 | } else if (AllowStringTemplatePack && IsStringTemplatePack) { |
3763 | 0 | FoundStringTemplatePack = true; |
3764 | 0 | } else { |
3765 | 0 | F.erase(); |
3766 | 0 | } |
3767 | 0 | } |
3768 | | |
3769 | 2 | F.done(); |
3770 | | |
3771 | | // Per C++20 [lex.ext]p5, we prefer the template form over the non-template |
3772 | | // form for string literal operator templates. |
3773 | 2 | if (StringLit && FoundTemplate) |
3774 | 0 | return LOLR_Template; |
3775 | | |
3776 | | // C++11 [lex.ext]p3, p4: If S contains a literal operator with a matching |
3777 | | // parameter type, that is used in preference to a raw literal operator |
3778 | | // or literal operator template. |
3779 | 2 | if (FoundCooked) |
3780 | 0 | return LOLR_Cooked; |
3781 | | |
3782 | | // C++11 [lex.ext]p3, p4: S shall contain a raw literal operator or a literal |
3783 | | // operator template, but not both. |
3784 | 2 | if (FoundRaw && FoundTemplate) { |
3785 | 0 | Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName(); |
3786 | 0 | for (const NamedDecl *D : R) |
3787 | 0 | NoteOverloadCandidate(D, D->getUnderlyingDecl()->getAsFunction()); |
3788 | 0 | return LOLR_Error; |
3789 | 0 | } |
3790 | | |
3791 | 2 | if (FoundRaw) |
3792 | 0 | return LOLR_Raw; |
3793 | | |
3794 | 2 | if (FoundTemplate) |
3795 | 0 | return LOLR_Template; |
3796 | | |
3797 | 2 | if (FoundStringTemplatePack) |
3798 | 0 | return LOLR_StringTemplatePack; |
3799 | | |
3800 | | // Didn't find anything we could use. |
3801 | 2 | if (DiagnoseMissing) { |
3802 | 2 | Diag(R.getNameLoc(), diag::err_ovl_no_viable_literal_operator) |
3803 | 2 | << R.getLookupName() << (int)ArgTys.size() << ArgTys[0] |
3804 | 2 | << (ArgTys.size() == 2 ? ArgTys[1] : QualType()) << AllowRaw |
3805 | 2 | << (AllowTemplate || AllowStringTemplatePack); |
3806 | 2 | return LOLR_Error; |
3807 | 2 | } |
3808 | | |
3809 | 0 | return LOLR_ErrorNoDiagnostic; |
3810 | 2 | } |
3811 | | |
3812 | 0 | void ADLResult::insert(NamedDecl *New) { |
3813 | 0 | NamedDecl *&Old = Decls[cast<NamedDecl>(New->getCanonicalDecl())]; |
3814 | | |
3815 | | // If we haven't yet seen a decl for this key, or the last decl |
3816 | | // was exactly this one, we're done. |
3817 | 0 | if (Old == nullptr || Old == New) { |
3818 | 0 | Old = New; |
3819 | 0 | return; |
3820 | 0 | } |
3821 | | |
3822 | | // Otherwise, decide which is a more recent redeclaration. |
3823 | 0 | FunctionDecl *OldFD = Old->getAsFunction(); |
3824 | 0 | FunctionDecl *NewFD = New->getAsFunction(); |
3825 | |
|
3826 | 0 | FunctionDecl *Cursor = NewFD; |
3827 | 0 | while (true) { |
3828 | 0 | Cursor = Cursor->getPreviousDecl(); |
3829 | | |
3830 | | // If we got to the end without finding OldFD, OldFD is the newer |
3831 | | // declaration; leave things as they are. |
3832 | 0 | if (!Cursor) return; |
3833 | | |
3834 | | // If we do find OldFD, then NewFD is newer. |
3835 | 0 | if (Cursor == OldFD) break; |
3836 | | |
3837 | | // Otherwise, keep looking. |
3838 | 0 | } |
3839 | | |
3840 | 0 | Old = New; |
3841 | 0 | } |
3842 | | |
3843 | | void Sema::ArgumentDependentLookup(DeclarationName Name, SourceLocation Loc, |
3844 | 0 | ArrayRef<Expr *> Args, ADLResult &Result) { |
3845 | | // Find all of the associated namespaces and classes based on the |
3846 | | // arguments we have. |
3847 | 0 | AssociatedNamespaceSet AssociatedNamespaces; |
3848 | 0 | AssociatedClassSet AssociatedClasses; |
3849 | 0 | FindAssociatedClassesAndNamespaces(Loc, Args, |
3850 | 0 | AssociatedNamespaces, |
3851 | 0 | AssociatedClasses); |
3852 | | |
3853 | | // C++ [basic.lookup.argdep]p3: |
3854 | | // Let X be the lookup set produced by unqualified lookup (3.4.1) |
3855 | | // and let Y be the lookup set produced by argument dependent |
3856 | | // lookup (defined as follows). If X contains [...] then Y is |
3857 | | // empty. Otherwise Y is the set of declarations found in the |
3858 | | // namespaces associated with the argument types as described |
3859 | | // below. The set of declarations found by the lookup of the name |
3860 | | // is the union of X and Y. |
3861 | | // |
3862 | | // Here, we compute Y and add its members to the overloaded |
3863 | | // candidate set. |
3864 | 0 | for (auto *NS : AssociatedNamespaces) { |
3865 | | // When considering an associated namespace, the lookup is the |
3866 | | // same as the lookup performed when the associated namespace is |
3867 | | // used as a qualifier (3.4.3.2) except that: |
3868 | | // |
3869 | | // -- Any using-directives in the associated namespace are |
3870 | | // ignored. |
3871 | | // |
3872 | | // -- Any namespace-scope friend functions declared in |
3873 | | // associated classes are visible within their respective |
3874 | | // namespaces even if they are not visible during an ordinary |
3875 | | // lookup (11.4). |
3876 | | // |
3877 | | // C++20 [basic.lookup.argdep] p4.3 |
3878 | | // -- are exported, are attached to a named module M, do not appear |
3879 | | // in the translation unit containing the point of the lookup, and |
3880 | | // have the same innermost enclosing non-inline namespace scope as |
3881 | | // a declaration of an associated entity attached to M. |
3882 | 0 | DeclContext::lookup_result R = NS->lookup(Name); |
3883 | 0 | for (auto *D : R) { |
3884 | 0 | auto *Underlying = D; |
3885 | 0 | if (auto *USD = dyn_cast<UsingShadowDecl>(D)) |
3886 | 0 | Underlying = USD->getTargetDecl(); |
3887 | |
|
3888 | 0 | if (!isa<FunctionDecl>(Underlying) && |
3889 | 0 | !isa<FunctionTemplateDecl>(Underlying)) |
3890 | 0 | continue; |
3891 | | |
3892 | | // The declaration is visible to argument-dependent lookup if either |
3893 | | // it's ordinarily visible or declared as a friend in an associated |
3894 | | // class. |
3895 | 0 | bool Visible = false; |
3896 | 0 | for (D = D->getMostRecentDecl(); D; |
3897 | 0 | D = cast_or_null<NamedDecl>(D->getPreviousDecl())) { |
3898 | 0 | if (D->getIdentifierNamespace() & Decl::IDNS_Ordinary) { |
3899 | 0 | if (isVisible(D)) { |
3900 | 0 | Visible = true; |
3901 | 0 | break; |
3902 | 0 | } |
3903 | | |
3904 | 0 | if (!getLangOpts().CPlusPlusModules) |
3905 | 0 | continue; |
3906 | | |
3907 | 0 | if (D->isInExportDeclContext()) { |
3908 | 0 | Module *FM = D->getOwningModule(); |
3909 | | // C++20 [basic.lookup.argdep] p4.3 .. are exported ... |
3910 | | // exports are only valid in module purview and outside of any |
3911 | | // PMF (although a PMF should not even be present in a module |
3912 | | // with an import). |
3913 | 0 | assert(FM && FM->isNamedModule() && !FM->isPrivateModule() && |
3914 | 0 | "bad export context"); |
3915 | | // .. are attached to a named module M, do not appear in the |
3916 | | // translation unit containing the point of the lookup.. |
3917 | 0 | if (D->isInAnotherModuleUnit() && |
3918 | 0 | llvm::any_of(AssociatedClasses, [&](auto *E) { |
3919 | | // ... and have the same innermost enclosing non-inline |
3920 | | // namespace scope as a declaration of an associated entity |
3921 | | // attached to M |
3922 | 0 | if (E->getOwningModule() != FM) |
3923 | 0 | return false; |
3924 | | // TODO: maybe this could be cached when generating the |
3925 | | // associated namespaces / entities. |
3926 | 0 | DeclContext *Ctx = E->getDeclContext(); |
3927 | 0 | while (!Ctx->isFileContext() || Ctx->isInlineNamespace()) |
3928 | 0 | Ctx = Ctx->getParent(); |
3929 | 0 | return Ctx == NS; |
3930 | 0 | })) { |
3931 | 0 | Visible = true; |
3932 | 0 | break; |
3933 | 0 | } |
3934 | 0 | } |
3935 | 0 | } else if (D->getFriendObjectKind()) { |
3936 | 0 | auto *RD = cast<CXXRecordDecl>(D->getLexicalDeclContext()); |
3937 | | // [basic.lookup.argdep]p4: |
3938 | | // Argument-dependent lookup finds all declarations of functions and |
3939 | | // function templates that |
3940 | | // - ... |
3941 | | // - are declared as a friend ([class.friend]) of any class with a |
3942 | | // reachable definition in the set of associated entities, |
3943 | | // |
3944 | | // FIXME: If there's a merged definition of D that is reachable, then |
3945 | | // the friend declaration should be considered. |
3946 | 0 | if (AssociatedClasses.count(RD) && isReachable(D)) { |
3947 | 0 | Visible = true; |
3948 | 0 | break; |
3949 | 0 | } |
3950 | 0 | } |
3951 | 0 | } |
3952 | | |
3953 | | // FIXME: Preserve D as the FoundDecl. |
3954 | 0 | if (Visible) |
3955 | 0 | Result.insert(Underlying); |
3956 | 0 | } |
3957 | 0 | } |
3958 | 0 | } |
3959 | | |
3960 | | //---------------------------------------------------------------------------- |
3961 | | // Search for all visible declarations. |
3962 | | //---------------------------------------------------------------------------- |
3963 | 1.59k | VisibleDeclConsumer::~VisibleDeclConsumer() { } |
3964 | | |
3965 | 0 | bool VisibleDeclConsumer::includeHiddenDecls() const { return false; } |
3966 | | |
3967 | | namespace { |
3968 | | |
3969 | | class ShadowContextRAII; |
3970 | | |
3971 | | class VisibleDeclsRecord { |
3972 | | public: |
3973 | | /// An entry in the shadow map, which is optimized to store a |
3974 | | /// single declaration (the common case) but can also store a list |
3975 | | /// of declarations. |
3976 | | typedef llvm::TinyPtrVector<NamedDecl*> ShadowMapEntry; |
3977 | | |
3978 | | private: |
3979 | | /// A mapping from declaration names to the declarations that have |
3980 | | /// this name within a particular scope. |
3981 | | typedef llvm::DenseMap<DeclarationName, ShadowMapEntry> ShadowMap; |
3982 | | |
3983 | | /// A list of shadow maps, which is used to model name hiding. |
3984 | | std::list<ShadowMap> ShadowMaps; |
3985 | | |
3986 | | /// The declaration contexts we have already visited. |
3987 | | llvm::SmallPtrSet<DeclContext *, 8> VisitedContexts; |
3988 | | |
3989 | | friend class ShadowContextRAII; |
3990 | | |
3991 | | public: |
3992 | | /// Determine whether we have already visited this context |
3993 | | /// (and, if not, note that we are going to visit that context now). |
3994 | 0 | bool visitedContext(DeclContext *Ctx) { |
3995 | 0 | return !VisitedContexts.insert(Ctx).second; |
3996 | 0 | } |
3997 | | |
3998 | 0 | bool alreadyVisitedContext(DeclContext *Ctx) { |
3999 | 0 | return VisitedContexts.count(Ctx); |
4000 | 0 | } |
4001 | | |
4002 | | /// Determine whether the given declaration is hidden in the |
4003 | | /// current scope. |
4004 | | /// |
4005 | | /// \returns the declaration that hides the given declaration, or |
4006 | | /// NULL if no such declaration exists. |
4007 | | NamedDecl *checkHidden(NamedDecl *ND); |
4008 | | |
4009 | | /// Add a declaration to the current shadow map. |
4010 | 0 | void add(NamedDecl *ND) { |
4011 | 0 | ShadowMaps.back()[ND->getDeclName()].push_back(ND); |
4012 | 0 | } |
4013 | | }; |
4014 | | |
4015 | | /// RAII object that records when we've entered a shadow context. |
4016 | | class ShadowContextRAII { |
4017 | | VisibleDeclsRecord &Visible; |
4018 | | |
4019 | | typedef VisibleDeclsRecord::ShadowMap ShadowMap; |
4020 | | |
4021 | | public: |
4022 | 0 | ShadowContextRAII(VisibleDeclsRecord &Visible) : Visible(Visible) { |
4023 | 0 | Visible.ShadowMaps.emplace_back(); |
4024 | 0 | } |
4025 | | |
4026 | 0 | ~ShadowContextRAII() { |
4027 | 0 | Visible.ShadowMaps.pop_back(); |
4028 | 0 | } |
4029 | | }; |
4030 | | |
4031 | | } // end anonymous namespace |
4032 | | |
4033 | 0 | NamedDecl *VisibleDeclsRecord::checkHidden(NamedDecl *ND) { |
4034 | 0 | unsigned IDNS = ND->getIdentifierNamespace(); |
4035 | 0 | std::list<ShadowMap>::reverse_iterator SM = ShadowMaps.rbegin(); |
4036 | 0 | for (std::list<ShadowMap>::reverse_iterator SMEnd = ShadowMaps.rend(); |
4037 | 0 | SM != SMEnd; ++SM) { |
4038 | 0 | ShadowMap::iterator Pos = SM->find(ND->getDeclName()); |
4039 | 0 | if (Pos == SM->end()) |
4040 | 0 | continue; |
4041 | | |
4042 | 0 | for (auto *D : Pos->second) { |
4043 | | // A tag declaration does not hide a non-tag declaration. |
4044 | 0 | if (D->hasTagIdentifierNamespace() && |
4045 | 0 | (IDNS & (Decl::IDNS_Member | Decl::IDNS_Ordinary | |
4046 | 0 | Decl::IDNS_ObjCProtocol))) |
4047 | 0 | continue; |
4048 | | |
4049 | | // Protocols are in distinct namespaces from everything else. |
4050 | 0 | if (((D->getIdentifierNamespace() & Decl::IDNS_ObjCProtocol) |
4051 | 0 | || (IDNS & Decl::IDNS_ObjCProtocol)) && |
4052 | 0 | D->getIdentifierNamespace() != IDNS) |
4053 | 0 | continue; |
4054 | | |
4055 | | // Functions and function templates in the same scope overload |
4056 | | // rather than hide. FIXME: Look for hiding based on function |
4057 | | // signatures! |
4058 | 0 | if (D->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && |
4059 | 0 | ND->getUnderlyingDecl()->isFunctionOrFunctionTemplate() && |
4060 | 0 | SM == ShadowMaps.rbegin()) |
4061 | 0 | continue; |
4062 | | |
4063 | | // A shadow declaration that's created by a resolved using declaration |
4064 | | // is not hidden by the same using declaration. |
4065 | 0 | if (isa<UsingShadowDecl>(ND) && isa<UsingDecl>(D) && |
4066 | 0 | cast<UsingShadowDecl>(ND)->getIntroducer() == D) |
4067 | 0 | continue; |
4068 | | |
4069 | | // We've found a declaration that hides this one. |
4070 | 0 | return D; |
4071 | 0 | } |
4072 | 0 | } |
4073 | | |
4074 | 0 | return nullptr; |
4075 | 0 | } |
4076 | | |
4077 | | namespace { |
4078 | | class LookupVisibleHelper { |
4079 | | public: |
4080 | | LookupVisibleHelper(VisibleDeclConsumer &Consumer, bool IncludeDependentBases, |
4081 | | bool LoadExternal) |
4082 | | : Consumer(Consumer), IncludeDependentBases(IncludeDependentBases), |
4083 | 0 | LoadExternal(LoadExternal) {} |
4084 | | |
4085 | | void lookupVisibleDecls(Sema &SemaRef, Scope *S, Sema::LookupNameKind Kind, |
4086 | 0 | bool IncludeGlobalScope) { |
4087 | | // Determine the set of using directives available during |
4088 | | // unqualified name lookup. |
4089 | 0 | Scope *Initial = S; |
4090 | 0 | UnqualUsingDirectiveSet UDirs(SemaRef); |
4091 | 0 | if (SemaRef.getLangOpts().CPlusPlus) { |
4092 | | // Find the first namespace or translation-unit scope. |
4093 | 0 | while (S && !isNamespaceOrTranslationUnitScope(S)) |
4094 | 0 | S = S->getParent(); |
4095 | |
|
4096 | 0 | UDirs.visitScopeChain(Initial, S); |
4097 | 0 | } |
4098 | 0 | UDirs.done(); |
4099 | | |
4100 | | // Look for visible declarations. |
4101 | 0 | LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); |
4102 | 0 | Result.setAllowHidden(Consumer.includeHiddenDecls()); |
4103 | 0 | if (!IncludeGlobalScope) |
4104 | 0 | Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); |
4105 | 0 | ShadowContextRAII Shadow(Visited); |
4106 | 0 | lookupInScope(Initial, Result, UDirs); |
4107 | 0 | } |
4108 | | |
4109 | | void lookupVisibleDecls(Sema &SemaRef, DeclContext *Ctx, |
4110 | 0 | Sema::LookupNameKind Kind, bool IncludeGlobalScope) { |
4111 | 0 | LookupResult Result(SemaRef, DeclarationName(), SourceLocation(), Kind); |
4112 | 0 | Result.setAllowHidden(Consumer.includeHiddenDecls()); |
4113 | 0 | if (!IncludeGlobalScope) |
4114 | 0 | Visited.visitedContext(SemaRef.getASTContext().getTranslationUnitDecl()); |
4115 | |
|
4116 | 0 | ShadowContextRAII Shadow(Visited); |
4117 | 0 | lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/true, |
4118 | 0 | /*InBaseClass=*/false); |
4119 | 0 | } |
4120 | | |
4121 | | private: |
4122 | | void lookupInDeclContext(DeclContext *Ctx, LookupResult &Result, |
4123 | 0 | bool QualifiedNameLookup, bool InBaseClass) { |
4124 | 0 | if (!Ctx) |
4125 | 0 | return; |
4126 | | |
4127 | | // Make sure we don't visit the same context twice. |
4128 | 0 | if (Visited.visitedContext(Ctx->getPrimaryContext())) |
4129 | 0 | return; |
4130 | | |
4131 | 0 | Consumer.EnteredContext(Ctx); |
4132 | | |
4133 | | // Outside C++, lookup results for the TU live on identifiers. |
4134 | 0 | if (isa<TranslationUnitDecl>(Ctx) && |
4135 | 0 | !Result.getSema().getLangOpts().CPlusPlus) { |
4136 | 0 | auto &S = Result.getSema(); |
4137 | 0 | auto &Idents = S.Context.Idents; |
4138 | | |
4139 | | // Ensure all external identifiers are in the identifier table. |
4140 | 0 | if (LoadExternal) |
4141 | 0 | if (IdentifierInfoLookup *External = |
4142 | 0 | Idents.getExternalIdentifierLookup()) { |
4143 | 0 | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); |
4144 | 0 | for (StringRef Name = Iter->Next(); !Name.empty(); |
4145 | 0 | Name = Iter->Next()) |
4146 | 0 | Idents.get(Name); |
4147 | 0 | } |
4148 | | |
4149 | | // Walk all lookup results in the TU for each identifier. |
4150 | 0 | for (const auto &Ident : Idents) { |
4151 | 0 | for (auto I = S.IdResolver.begin(Ident.getValue()), |
4152 | 0 | E = S.IdResolver.end(); |
4153 | 0 | I != E; ++I) { |
4154 | 0 | if (S.IdResolver.isDeclInScope(*I, Ctx)) { |
4155 | 0 | if (NamedDecl *ND = Result.getAcceptableDecl(*I)) { |
4156 | 0 | Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); |
4157 | 0 | Visited.add(ND); |
4158 | 0 | } |
4159 | 0 | } |
4160 | 0 | } |
4161 | 0 | } |
4162 | |
|
4163 | 0 | return; |
4164 | 0 | } |
4165 | | |
4166 | 0 | if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) |
4167 | 0 | Result.getSema().ForceDeclarationOfImplicitMembers(Class); |
4168 | |
|
4169 | 0 | llvm::SmallVector<NamedDecl *, 4> DeclsToVisit; |
4170 | | // We sometimes skip loading namespace-level results (they tend to be huge). |
4171 | 0 | bool Load = LoadExternal || |
4172 | 0 | !(isa<TranslationUnitDecl>(Ctx) || isa<NamespaceDecl>(Ctx)); |
4173 | | // Enumerate all of the results in this context. |
4174 | 0 | for (DeclContextLookupResult R : |
4175 | 0 | Load ? Ctx->lookups() |
4176 | 0 | : Ctx->noload_lookups(/*PreserveInternalState=*/false)) |
4177 | 0 | for (auto *D : R) |
4178 | | // Rather than visit immediately, we put ND into a vector and visit |
4179 | | // all decls, in order, outside of this loop. The reason is that |
4180 | | // Consumer.FoundDecl() and LookupResult::getAcceptableDecl(D) |
4181 | | // may invalidate the iterators used in the two |
4182 | | // loops above. |
4183 | 0 | DeclsToVisit.push_back(D); |
4184 | |
|
4185 | 0 | for (auto *D : DeclsToVisit) |
4186 | 0 | if (auto *ND = Result.getAcceptableDecl(D)) { |
4187 | 0 | Consumer.FoundDecl(ND, Visited.checkHidden(ND), Ctx, InBaseClass); |
4188 | 0 | Visited.add(ND); |
4189 | 0 | } |
4190 | |
|
4191 | 0 | DeclsToVisit.clear(); |
4192 | | |
4193 | | // Traverse using directives for qualified name lookup. |
4194 | 0 | if (QualifiedNameLookup) { |
4195 | 0 | ShadowContextRAII Shadow(Visited); |
4196 | 0 | for (auto *I : Ctx->using_directives()) { |
4197 | 0 | if (!Result.getSema().isVisible(I)) |
4198 | 0 | continue; |
4199 | 0 | lookupInDeclContext(I->getNominatedNamespace(), Result, |
4200 | 0 | QualifiedNameLookup, InBaseClass); |
4201 | 0 | } |
4202 | 0 | } |
4203 | | |
4204 | | // Traverse the contexts of inherited C++ classes. |
4205 | 0 | if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx)) { |
4206 | 0 | if (!Record->hasDefinition()) |
4207 | 0 | return; |
4208 | | |
4209 | 0 | for (const auto &B : Record->bases()) { |
4210 | 0 | QualType BaseType = B.getType(); |
4211 | |
|
4212 | 0 | RecordDecl *RD; |
4213 | 0 | if (BaseType->isDependentType()) { |
4214 | 0 | if (!IncludeDependentBases) { |
4215 | | // Don't look into dependent bases, because name lookup can't look |
4216 | | // there anyway. |
4217 | 0 | continue; |
4218 | 0 | } |
4219 | 0 | const auto *TST = BaseType->getAs<TemplateSpecializationType>(); |
4220 | 0 | if (!TST) |
4221 | 0 | continue; |
4222 | 0 | TemplateName TN = TST->getTemplateName(); |
4223 | 0 | const auto *TD = |
4224 | 0 | dyn_cast_or_null<ClassTemplateDecl>(TN.getAsTemplateDecl()); |
4225 | 0 | if (!TD) |
4226 | 0 | continue; |
4227 | 0 | RD = TD->getTemplatedDecl(); |
4228 | 0 | } else { |
4229 | 0 | const auto *Record = BaseType->getAs<RecordType>(); |
4230 | 0 | if (!Record) |
4231 | 0 | continue; |
4232 | 0 | RD = Record->getDecl(); |
4233 | 0 | } |
4234 | | |
4235 | | // FIXME: It would be nice to be able to determine whether referencing |
4236 | | // a particular member would be ambiguous. For example, given |
4237 | | // |
4238 | | // struct A { int member; }; |
4239 | | // struct B { int member; }; |
4240 | | // struct C : A, B { }; |
4241 | | // |
4242 | | // void f(C *c) { c->### } |
4243 | | // |
4244 | | // accessing 'member' would result in an ambiguity. However, we |
4245 | | // could be smart enough to qualify the member with the base |
4246 | | // class, e.g., |
4247 | | // |
4248 | | // c->B::member |
4249 | | // |
4250 | | // or |
4251 | | // |
4252 | | // c->A::member |
4253 | | |
4254 | | // Find results in this base class (and its bases). |
4255 | 0 | ShadowContextRAII Shadow(Visited); |
4256 | 0 | lookupInDeclContext(RD, Result, QualifiedNameLookup, |
4257 | 0 | /*InBaseClass=*/true); |
4258 | 0 | } |
4259 | 0 | } |
4260 | | |
4261 | | // Traverse the contexts of Objective-C classes. |
4262 | 0 | if (ObjCInterfaceDecl *IFace = dyn_cast<ObjCInterfaceDecl>(Ctx)) { |
4263 | | // Traverse categories. |
4264 | 0 | for (auto *Cat : IFace->visible_categories()) { |
4265 | 0 | ShadowContextRAII Shadow(Visited); |
4266 | 0 | lookupInDeclContext(Cat, Result, QualifiedNameLookup, |
4267 | 0 | /*InBaseClass=*/false); |
4268 | 0 | } |
4269 | | |
4270 | | // Traverse protocols. |
4271 | 0 | for (auto *I : IFace->all_referenced_protocols()) { |
4272 | 0 | ShadowContextRAII Shadow(Visited); |
4273 | 0 | lookupInDeclContext(I, Result, QualifiedNameLookup, |
4274 | 0 | /*InBaseClass=*/false); |
4275 | 0 | } |
4276 | | |
4277 | | // Traverse the superclass. |
4278 | 0 | if (IFace->getSuperClass()) { |
4279 | 0 | ShadowContextRAII Shadow(Visited); |
4280 | 0 | lookupInDeclContext(IFace->getSuperClass(), Result, QualifiedNameLookup, |
4281 | 0 | /*InBaseClass=*/true); |
4282 | 0 | } |
4283 | | |
4284 | | // If there is an implementation, traverse it. We do this to find |
4285 | | // synthesized ivars. |
4286 | 0 | if (IFace->getImplementation()) { |
4287 | 0 | ShadowContextRAII Shadow(Visited); |
4288 | 0 | lookupInDeclContext(IFace->getImplementation(), Result, |
4289 | 0 | QualifiedNameLookup, InBaseClass); |
4290 | 0 | } |
4291 | 0 | } else if (ObjCProtocolDecl *Protocol = dyn_cast<ObjCProtocolDecl>(Ctx)) { |
4292 | 0 | for (auto *I : Protocol->protocols()) { |
4293 | 0 | ShadowContextRAII Shadow(Visited); |
4294 | 0 | lookupInDeclContext(I, Result, QualifiedNameLookup, |
4295 | 0 | /*InBaseClass=*/false); |
4296 | 0 | } |
4297 | 0 | } else if (ObjCCategoryDecl *Category = dyn_cast<ObjCCategoryDecl>(Ctx)) { |
4298 | 0 | for (auto *I : Category->protocols()) { |
4299 | 0 | ShadowContextRAII Shadow(Visited); |
4300 | 0 | lookupInDeclContext(I, Result, QualifiedNameLookup, |
4301 | 0 | /*InBaseClass=*/false); |
4302 | 0 | } |
4303 | | |
4304 | | // If there is an implementation, traverse it. |
4305 | 0 | if (Category->getImplementation()) { |
4306 | 0 | ShadowContextRAII Shadow(Visited); |
4307 | 0 | lookupInDeclContext(Category->getImplementation(), Result, |
4308 | 0 | QualifiedNameLookup, /*InBaseClass=*/true); |
4309 | 0 | } |
4310 | 0 | } |
4311 | 0 | } |
4312 | | |
4313 | | void lookupInScope(Scope *S, LookupResult &Result, |
4314 | 0 | UnqualUsingDirectiveSet &UDirs) { |
4315 | | // No clients run in this mode and it's not supported. Please add tests and |
4316 | | // remove the assertion if you start relying on it. |
4317 | 0 | assert(!IncludeDependentBases && "Unsupported flag for lookupInScope"); |
4318 | | |
4319 | 0 | if (!S) |
4320 | 0 | return; |
4321 | | |
4322 | 0 | if (!S->getEntity() || |
4323 | 0 | (!S->getParent() && !Visited.alreadyVisitedContext(S->getEntity())) || |
4324 | 0 | (S->getEntity())->isFunctionOrMethod()) { |
4325 | 0 | FindLocalExternScope FindLocals(Result); |
4326 | | // Walk through the declarations in this Scope. The consumer might add new |
4327 | | // decls to the scope as part of deserialization, so make a copy first. |
4328 | 0 | SmallVector<Decl *, 8> ScopeDecls(S->decls().begin(), S->decls().end()); |
4329 | 0 | for (Decl *D : ScopeDecls) { |
4330 | 0 | if (NamedDecl *ND = dyn_cast<NamedDecl>(D)) |
4331 | 0 | if ((ND = Result.getAcceptableDecl(ND))) { |
4332 | 0 | Consumer.FoundDecl(ND, Visited.checkHidden(ND), nullptr, false); |
4333 | 0 | Visited.add(ND); |
4334 | 0 | } |
4335 | 0 | } |
4336 | 0 | } |
4337 | |
|
4338 | 0 | DeclContext *Entity = S->getLookupEntity(); |
4339 | 0 | if (Entity) { |
4340 | | // Look into this scope's declaration context, along with any of its |
4341 | | // parent lookup contexts (e.g., enclosing classes), up to the point |
4342 | | // where we hit the context stored in the next outer scope. |
4343 | 0 | DeclContext *OuterCtx = findOuterContext(S); |
4344 | |
|
4345 | 0 | for (DeclContext *Ctx = Entity; Ctx && !Ctx->Equals(OuterCtx); |
4346 | 0 | Ctx = Ctx->getLookupParent()) { |
4347 | 0 | if (ObjCMethodDecl *Method = dyn_cast<ObjCMethodDecl>(Ctx)) { |
4348 | 0 | if (Method->isInstanceMethod()) { |
4349 | | // For instance methods, look for ivars in the method's interface. |
4350 | 0 | LookupResult IvarResult(Result.getSema(), Result.getLookupName(), |
4351 | 0 | Result.getNameLoc(), |
4352 | 0 | Sema::LookupMemberName); |
4353 | 0 | if (ObjCInterfaceDecl *IFace = Method->getClassInterface()) { |
4354 | 0 | lookupInDeclContext(IFace, IvarResult, |
4355 | 0 | /*QualifiedNameLookup=*/false, |
4356 | 0 | /*InBaseClass=*/false); |
4357 | 0 | } |
4358 | 0 | } |
4359 | | |
4360 | | // We've already performed all of the name lookup that we need |
4361 | | // to for Objective-C methods; the next context will be the |
4362 | | // outer scope. |
4363 | 0 | break; |
4364 | 0 | } |
4365 | | |
4366 | 0 | if (Ctx->isFunctionOrMethod()) |
4367 | 0 | continue; |
4368 | | |
4369 | 0 | lookupInDeclContext(Ctx, Result, /*QualifiedNameLookup=*/false, |
4370 | 0 | /*InBaseClass=*/false); |
4371 | 0 | } |
4372 | 0 | } else if (!S->getParent()) { |
4373 | | // Look into the translation unit scope. We walk through the translation |
4374 | | // unit's declaration context, because the Scope itself won't have all of |
4375 | | // the declarations if we loaded a precompiled header. |
4376 | | // FIXME: We would like the translation unit's Scope object to point to |
4377 | | // the translation unit, so we don't need this special "if" branch. |
4378 | | // However, doing so would force the normal C++ name-lookup code to look |
4379 | | // into the translation unit decl when the IdentifierInfo chains would |
4380 | | // suffice. Once we fix that problem (which is part of a more general |
4381 | | // "don't look in DeclContexts unless we have to" optimization), we can |
4382 | | // eliminate this. |
4383 | 0 | Entity = Result.getSema().Context.getTranslationUnitDecl(); |
4384 | 0 | lookupInDeclContext(Entity, Result, /*QualifiedNameLookup=*/false, |
4385 | 0 | /*InBaseClass=*/false); |
4386 | 0 | } |
4387 | |
|
4388 | 0 | if (Entity) { |
4389 | | // Lookup visible declarations in any namespaces found by using |
4390 | | // directives. |
4391 | 0 | for (const UnqualUsingEntry &UUE : UDirs.getNamespacesFor(Entity)) |
4392 | 0 | lookupInDeclContext( |
4393 | 0 | const_cast<DeclContext *>(UUE.getNominatedNamespace()), Result, |
4394 | 0 | /*QualifiedNameLookup=*/false, |
4395 | 0 | /*InBaseClass=*/false); |
4396 | 0 | } |
4397 | | |
4398 | | // Lookup names in the parent scope. |
4399 | 0 | ShadowContextRAII Shadow(Visited); |
4400 | 0 | lookupInScope(S->getParent(), Result, UDirs); |
4401 | 0 | } |
4402 | | |
4403 | | private: |
4404 | | VisibleDeclsRecord Visited; |
4405 | | VisibleDeclConsumer &Consumer; |
4406 | | bool IncludeDependentBases; |
4407 | | bool LoadExternal; |
4408 | | }; |
4409 | | } // namespace |
4410 | | |
4411 | | void Sema::LookupVisibleDecls(Scope *S, LookupNameKind Kind, |
4412 | | VisibleDeclConsumer &Consumer, |
4413 | 0 | bool IncludeGlobalScope, bool LoadExternal) { |
4414 | 0 | LookupVisibleHelper H(Consumer, /*IncludeDependentBases=*/false, |
4415 | 0 | LoadExternal); |
4416 | 0 | H.lookupVisibleDecls(*this, S, Kind, IncludeGlobalScope); |
4417 | 0 | } |
4418 | | |
4419 | | void Sema::LookupVisibleDecls(DeclContext *Ctx, LookupNameKind Kind, |
4420 | | VisibleDeclConsumer &Consumer, |
4421 | | bool IncludeGlobalScope, |
4422 | 0 | bool IncludeDependentBases, bool LoadExternal) { |
4423 | 0 | LookupVisibleHelper H(Consumer, IncludeDependentBases, LoadExternal); |
4424 | 0 | H.lookupVisibleDecls(*this, Ctx, Kind, IncludeGlobalScope); |
4425 | 0 | } |
4426 | | |
4427 | | /// LookupOrCreateLabel - Do a name lookup of a label with the specified name. |
4428 | | /// If GnuLabelLoc is a valid source location, then this is a definition |
4429 | | /// of an __label__ label name, otherwise it is a normal label definition |
4430 | | /// or use. |
4431 | | LabelDecl *Sema::LookupOrCreateLabel(IdentifierInfo *II, SourceLocation Loc, |
4432 | 0 | SourceLocation GnuLabelLoc) { |
4433 | | // Do a lookup to see if we have a label with this name already. |
4434 | 0 | NamedDecl *Res = nullptr; |
4435 | |
|
4436 | 0 | if (GnuLabelLoc.isValid()) { |
4437 | | // Local label definitions always shadow existing labels. |
4438 | 0 | Res = LabelDecl::Create(Context, CurContext, Loc, II, GnuLabelLoc); |
4439 | 0 | Scope *S = CurScope; |
4440 | 0 | PushOnScopeChains(Res, S, true); |
4441 | 0 | return cast<LabelDecl>(Res); |
4442 | 0 | } |
4443 | | |
4444 | | // Not a GNU local label. |
4445 | 0 | Res = LookupSingleName(CurScope, II, Loc, LookupLabel, NotForRedeclaration); |
4446 | | // If we found a label, check to see if it is in the same context as us. |
4447 | | // When in a Block, we don't want to reuse a label in an enclosing function. |
4448 | 0 | if (Res && Res->getDeclContext() != CurContext) |
4449 | 0 | Res = nullptr; |
4450 | 0 | if (!Res) { |
4451 | | // If not forward referenced or defined already, create the backing decl. |
4452 | 0 | Res = LabelDecl::Create(Context, CurContext, Loc, II); |
4453 | 0 | Scope *S = CurScope->getFnParent(); |
4454 | 0 | assert(S && "Not in a function?"); |
4455 | 0 | PushOnScopeChains(Res, S, true); |
4456 | 0 | } |
4457 | 0 | return cast<LabelDecl>(Res); |
4458 | 0 | } |
4459 | | |
4460 | | //===----------------------------------------------------------------------===// |
4461 | | // Typo correction |
4462 | | //===----------------------------------------------------------------------===// |
4463 | | |
4464 | | static bool isCandidateViable(CorrectionCandidateCallback &CCC, |
4465 | 199 | TypoCorrection &Candidate) { |
4466 | 199 | Candidate.setCallbackDistance(CCC.RankCandidate(Candidate)); |
4467 | 199 | return Candidate.getEditDistance(false) != TypoCorrection::InvalidDistance; |
4468 | 199 | } |
4469 | | |
4470 | | static void LookupPotentialTypoResult(Sema &SemaRef, |
4471 | | LookupResult &Res, |
4472 | | IdentifierInfo *Name, |
4473 | | Scope *S, CXXScopeSpec *SS, |
4474 | | DeclContext *MemberContext, |
4475 | | bool EnteringContext, |
4476 | | bool isObjCIvarLookup, |
4477 | | bool FindHidden); |
4478 | | |
4479 | | /// Check whether the declarations found for a typo correction are |
4480 | | /// visible. Set the correction's RequiresImport flag to true if none of the |
4481 | | /// declarations are visible, false otherwise. |
4482 | 199 | static void checkCorrectionVisibility(Sema &SemaRef, TypoCorrection &TC) { |
4483 | 199 | TypoCorrection::decl_iterator DI = TC.begin(), DE = TC.end(); |
4484 | | |
4485 | 398 | for (/**/; DI != DE; ++DI) |
4486 | 199 | if (!LookupResult::isVisible(SemaRef, *DI)) |
4487 | 0 | break; |
4488 | | // No filtering needed if all decls are visible. |
4489 | 199 | if (DI == DE) { |
4490 | 199 | TC.setRequiresImport(false); |
4491 | 199 | return; |
4492 | 199 | } |
4493 | | |
4494 | 0 | llvm::SmallVector<NamedDecl*, 4> NewDecls(TC.begin(), DI); |
4495 | 0 | bool AnyVisibleDecls = !NewDecls.empty(); |
4496 | |
|
4497 | 0 | for (/**/; DI != DE; ++DI) { |
4498 | 0 | if (LookupResult::isVisible(SemaRef, *DI)) { |
4499 | 0 | if (!AnyVisibleDecls) { |
4500 | | // Found a visible decl, discard all hidden ones. |
4501 | 0 | AnyVisibleDecls = true; |
4502 | 0 | NewDecls.clear(); |
4503 | 0 | } |
4504 | 0 | NewDecls.push_back(*DI); |
4505 | 0 | } else if (!AnyVisibleDecls && !(*DI)->isModulePrivate()) |
4506 | 0 | NewDecls.push_back(*DI); |
4507 | 0 | } |
4508 | |
|
4509 | 0 | if (NewDecls.empty()) |
4510 | 0 | TC = TypoCorrection(); |
4511 | 0 | else { |
4512 | 0 | TC.setCorrectionDecls(NewDecls); |
4513 | 0 | TC.setRequiresImport(!AnyVisibleDecls); |
4514 | 0 | } |
4515 | 0 | } |
4516 | | |
4517 | | // Fill the supplied vector with the IdentifierInfo pointers for each piece of |
4518 | | // the given NestedNameSpecifier (i.e. given a NestedNameSpecifier "foo::bar::", |
4519 | | // fill the vector with the IdentifierInfo pointers for "foo" and "bar"). |
4520 | | static void getNestedNameSpecifierIdentifiers( |
4521 | | NestedNameSpecifier *NNS, |
4522 | 0 | SmallVectorImpl<const IdentifierInfo*> &Identifiers) { |
4523 | 0 | if (NestedNameSpecifier *Prefix = NNS->getPrefix()) |
4524 | 0 | getNestedNameSpecifierIdentifiers(Prefix, Identifiers); |
4525 | 0 | else |
4526 | 0 | Identifiers.clear(); |
4527 | |
|
4528 | 0 | const IdentifierInfo *II = nullptr; |
4529 | |
|
4530 | 0 | switch (NNS->getKind()) { |
4531 | 0 | case NestedNameSpecifier::Identifier: |
4532 | 0 | II = NNS->getAsIdentifier(); |
4533 | 0 | break; |
4534 | | |
4535 | 0 | case NestedNameSpecifier::Namespace: |
4536 | 0 | if (NNS->getAsNamespace()->isAnonymousNamespace()) |
4537 | 0 | return; |
4538 | 0 | II = NNS->getAsNamespace()->getIdentifier(); |
4539 | 0 | break; |
4540 | | |
4541 | 0 | case NestedNameSpecifier::NamespaceAlias: |
4542 | 0 | II = NNS->getAsNamespaceAlias()->getIdentifier(); |
4543 | 0 | break; |
4544 | | |
4545 | 0 | case NestedNameSpecifier::TypeSpecWithTemplate: |
4546 | 0 | case NestedNameSpecifier::TypeSpec: |
4547 | 0 | II = QualType(NNS->getAsType(), 0).getBaseTypeIdentifier(); |
4548 | 0 | break; |
4549 | | |
4550 | 0 | case NestedNameSpecifier::Global: |
4551 | 0 | case NestedNameSpecifier::Super: |
4552 | 0 | return; |
4553 | 0 | } |
4554 | | |
4555 | 0 | if (II) |
4556 | 0 | Identifiers.push_back(II); |
4557 | 0 | } |
4558 | | |
4559 | | void TypoCorrectionConsumer::FoundDecl(NamedDecl *ND, NamedDecl *Hiding, |
4560 | 0 | DeclContext *Ctx, bool InBaseClass) { |
4561 | | // Don't consider hidden names for typo correction. |
4562 | 0 | if (Hiding) |
4563 | 0 | return; |
4564 | | |
4565 | | // Only consider entities with identifiers for names, ignoring |
4566 | | // special names (constructors, overloaded operators, selectors, |
4567 | | // etc.). |
4568 | 0 | IdentifierInfo *Name = ND->getIdentifier(); |
4569 | 0 | if (!Name) |
4570 | 0 | return; |
4571 | | |
4572 | | // Only consider visible declarations and declarations from modules with |
4573 | | // names that exactly match. |
4574 | 0 | if (!LookupResult::isVisible(SemaRef, ND) && Name != Typo) |
4575 | 0 | return; |
4576 | | |
4577 | 0 | FoundName(Name->getName()); |
4578 | 0 | } |
4579 | | |
4580 | 8.18M | void TypoCorrectionConsumer::FoundName(StringRef Name) { |
4581 | | // Compute the edit distance between the typo and the name of this |
4582 | | // entity, and add the identifier to the list of results. |
4583 | 8.18M | addName(Name, nullptr); |
4584 | 8.18M | } |
4585 | | |
4586 | 39.8k | void TypoCorrectionConsumer::addKeywordResult(StringRef Keyword) { |
4587 | | // Compute the edit distance between the typo and this keyword, |
4588 | | // and add the keyword to the list of results. |
4589 | 39.8k | addName(Keyword, nullptr, nullptr, true); |
4590 | 39.8k | } |
4591 | | |
4592 | | void TypoCorrectionConsumer::addName(StringRef Name, NamedDecl *ND, |
4593 | 8.22M | NestedNameSpecifier *NNS, bool isKeyword) { |
4594 | | // Use a simple length-based heuristic to determine the minimum possible |
4595 | | // edit distance. If the minimum isn't good enough, bail out early. |
4596 | 8.22M | StringRef TypoStr = Typo->getName(); |
4597 | 8.22M | unsigned MinED = abs((int)Name.size() - (int)TypoStr.size()); |
4598 | 8.22M | if (MinED && TypoStr.size() / MinED < 3) |
4599 | 7.74M | return; |
4600 | | |
4601 | | // Compute an upper bound on the allowable edit distance, so that the |
4602 | | // edit-distance algorithm can short-circuit. |
4603 | 485k | unsigned UpperBound = (TypoStr.size() + 2) / 3; |
4604 | 485k | unsigned ED = TypoStr.edit_distance(Name, true, UpperBound); |
4605 | 485k | if (ED > UpperBound) return; |
4606 | | |
4607 | 61.2k | TypoCorrection TC(&SemaRef.Context.Idents.get(Name), ND, NNS, ED); |
4608 | 61.2k | if (isKeyword) TC.makeKeyword(); |
4609 | 61.2k | TC.setCorrectionRange(nullptr, Result.getLookupNameInfo()); |
4610 | 61.2k | addCorrection(TC); |
4611 | 61.2k | } |
4612 | | |
4613 | | static const unsigned MaxTypoDistanceResultSets = 5; |
4614 | | |
4615 | 61.3k | void TypoCorrectionConsumer::addCorrection(TypoCorrection Correction) { |
4616 | 61.3k | StringRef TypoStr = Typo->getName(); |
4617 | 61.3k | StringRef Name = Correction.getCorrectionAsIdentifierInfo()->getName(); |
4618 | | |
4619 | | // For very short typos, ignore potential corrections that have a different |
4620 | | // base identifier from the typo or which have a normalized edit distance |
4621 | | // longer than the typo itself. |
4622 | 61.3k | if (TypoStr.size() < 3 && |
4623 | 61.3k | (Name != TypoStr || Correction.getEditDistance(true) > TypoStr.size())) |
4624 | 59.4k | return; |
4625 | | |
4626 | | // If the correction is resolved but is not viable, ignore it. |
4627 | 1.86k | if (Correction.isResolved()) { |
4628 | 62 | checkCorrectionVisibility(SemaRef, Correction); |
4629 | 62 | if (!Correction || !isCandidateViable(*CorrectionValidator, Correction)) |
4630 | 62 | return; |
4631 | 62 | } |
4632 | | |
4633 | 1.80k | TypoResultList &CList = |
4634 | 1.80k | CorrectionResults[Correction.getEditDistance(false)][Name]; |
4635 | | |
4636 | 1.80k | if (!CList.empty() && !CList.back().isResolved()) |
4637 | 0 | CList.pop_back(); |
4638 | 1.80k | if (NamedDecl *NewND = Correction.getCorrectionDecl()) { |
4639 | 0 | auto RI = llvm::find_if(CList, [NewND](const TypoCorrection &TypoCorr) { |
4640 | 0 | return TypoCorr.getCorrectionDecl() == NewND; |
4641 | 0 | }); |
4642 | 0 | if (RI != CList.end()) { |
4643 | | // The Correction refers to a decl already in the list. No insertion is |
4644 | | // necessary and all further cases will return. |
4645 | |
|
4646 | 0 | auto IsDeprecated = [](Decl *D) { |
4647 | 0 | while (D) { |
4648 | 0 | if (D->isDeprecated()) |
4649 | 0 | return true; |
4650 | 0 | D = llvm::dyn_cast_or_null<NamespaceDecl>(D->getDeclContext()); |
4651 | 0 | } |
4652 | 0 | return false; |
4653 | 0 | }; |
4654 | | |
4655 | | // Prefer non deprecated Corrections over deprecated and only then |
4656 | | // sort using an alphabetical order. |
4657 | 0 | std::pair<bool, std::string> NewKey = { |
4658 | 0 | IsDeprecated(Correction.getFoundDecl()), |
4659 | 0 | Correction.getAsString(SemaRef.getLangOpts())}; |
4660 | |
|
4661 | 0 | std::pair<bool, std::string> PrevKey = { |
4662 | 0 | IsDeprecated(RI->getFoundDecl()), |
4663 | 0 | RI->getAsString(SemaRef.getLangOpts())}; |
4664 | |
|
4665 | 0 | if (NewKey < PrevKey) |
4666 | 0 | *RI = Correction; |
4667 | 0 | return; |
4668 | 0 | } |
4669 | 0 | } |
4670 | 1.80k | if (CList.empty() || Correction.isResolved()) |
4671 | 1.80k | CList.push_back(Correction); |
4672 | | |
4673 | 1.87k | while (CorrectionResults.size() > MaxTypoDistanceResultSets) |
4674 | 73 | CorrectionResults.erase(std::prev(CorrectionResults.end())); |
4675 | 1.80k | } |
4676 | | |
4677 | | void TypoCorrectionConsumer::addNamespaces( |
4678 | 765 | const llvm::MapVector<NamespaceDecl *, bool> &KnownNamespaces) { |
4679 | 765 | SearchNamespaces = true; |
4680 | | |
4681 | 765 | for (auto KNPair : KnownNamespaces) |
4682 | 0 | Namespaces.addNameSpecifier(KNPair.first); |
4683 | | |
4684 | 765 | bool SSIsTemplate = false; |
4685 | 765 | if (NestedNameSpecifier *NNS = |
4686 | 765 | (SS && SS->isValid()) ? SS->getScopeRep() : nullptr) { |
4687 | 0 | if (const Type *T = NNS->getAsType()) |
4688 | 0 | SSIsTemplate = T->getTypeClass() == Type::TemplateSpecialization; |
4689 | 0 | } |
4690 | | // Do not transform this into an iterator-based loop. The loop body can |
4691 | | // trigger the creation of further types (through lazy deserialization) and |
4692 | | // invalid iterators into this list. |
4693 | 765 | auto &Types = SemaRef.getASTContext().getTypes(); |
4694 | 53.9k | for (unsigned I = 0; I != Types.size(); ++I) { |
4695 | 53.2k | const auto *TI = Types[I]; |
4696 | 53.2k | if (CXXRecordDecl *CD = TI->getAsCXXRecordDecl()) { |
4697 | 1.53k | CD = CD->getCanonicalDecl(); |
4698 | 1.53k | if (!CD->isDependentType() && !CD->isAnonymousStructOrUnion() && |
4699 | 1.53k | !CD->isUnion() && CD->getIdentifier() && |
4700 | 1.53k | (SSIsTemplate || !isa<ClassTemplateSpecializationDecl>(CD)) && |
4701 | 1.53k | (CD->isBeingDefined() || CD->isCompleteDefinition())) |
4702 | 1.53k | Namespaces.addNameSpecifier(CD); |
4703 | 1.53k | } |
4704 | 53.2k | } |
4705 | 765 | } |
4706 | | |
4707 | 3.17k | const TypoCorrection &TypoCorrectionConsumer::getNextCorrection() { |
4708 | 3.17k | if (++CurrentTCIndex < ValidatedCorrections.size()) |
4709 | 0 | return ValidatedCorrections[CurrentTCIndex]; |
4710 | | |
4711 | 3.17k | CurrentTCIndex = ValidatedCorrections.size(); |
4712 | 8.21k | while (!CorrectionResults.empty()) { |
4713 | 5.04k | auto DI = CorrectionResults.begin(); |
4714 | 5.04k | if (DI->second.empty()) { |
4715 | 1.64k | CorrectionResults.erase(DI); |
4716 | 1.64k | continue; |
4717 | 1.64k | } |
4718 | | |
4719 | 3.39k | auto RI = DI->second.begin(); |
4720 | 3.39k | if (RI->second.empty()) { |
4721 | 1.69k | DI->second.erase(RI); |
4722 | 1.69k | performQualifiedLookups(); |
4723 | 1.69k | continue; |
4724 | 1.69k | } |
4725 | | |
4726 | 1.69k | TypoCorrection TC = RI->second.pop_back_val(); |
4727 | 1.69k | if (TC.isResolved() || TC.requiresImport() || resolveCorrection(TC)) { |
4728 | 0 | ValidatedCorrections.push_back(TC); |
4729 | 0 | return ValidatedCorrections[CurrentTCIndex]; |
4730 | 0 | } |
4731 | 1.69k | } |
4732 | 3.17k | return ValidatedCorrections[0]; // The empty correction. |
4733 | 3.17k | } |
4734 | | |
4735 | 1.69k | bool TypoCorrectionConsumer::resolveCorrection(TypoCorrection &Candidate) { |
4736 | 1.69k | IdentifierInfo *Name = Candidate.getCorrectionAsIdentifierInfo(); |
4737 | 1.69k | DeclContext *TempMemberContext = MemberContext; |
4738 | 1.69k | CXXScopeSpec *TempSS = SS.get(); |
4739 | 1.84k | retry_lookup: |
4740 | 1.84k | LookupPotentialTypoResult(SemaRef, Result, Name, S, TempSS, TempMemberContext, |
4741 | 1.84k | EnteringContext, |
4742 | 1.84k | CorrectionValidator->IsObjCIvarLookup, |
4743 | 1.84k | Name == Typo && !Candidate.WillReplaceSpecifier()); |
4744 | 1.84k | switch (Result.getResultKind()) { |
4745 | 1.70k | case LookupResult::NotFound: |
4746 | 1.70k | case LookupResult::NotFoundInCurrentInstantiation: |
4747 | 1.70k | case LookupResult::FoundUnresolvedValue: |
4748 | 1.70k | if (TempSS) { |
4749 | | // Immediately retry the lookup without the given CXXScopeSpec |
4750 | 147 | TempSS = nullptr; |
4751 | 147 | Candidate.WillReplaceSpecifier(true); |
4752 | 147 | goto retry_lookup; |
4753 | 147 | } |
4754 | 1.56k | if (TempMemberContext) { |
4755 | 0 | if (SS && !TempSS) |
4756 | 0 | TempSS = SS.get(); |
4757 | 0 | TempMemberContext = nullptr; |
4758 | 0 | goto retry_lookup; |
4759 | 0 | } |
4760 | 1.56k | if (SearchNamespaces) |
4761 | 746 | QualifiedResults.push_back(Candidate); |
4762 | 1.56k | break; |
4763 | | |
4764 | 0 | case LookupResult::Ambiguous: |
4765 | | // We don't deal with ambiguities. |
4766 | 0 | break; |
4767 | | |
4768 | 137 | case LookupResult::Found: |
4769 | 137 | case LookupResult::FoundOverloaded: |
4770 | | // Store all of the Decls for overloaded symbols |
4771 | 137 | for (auto *TRD : Result) |
4772 | 137 | Candidate.addCorrectionDecl(TRD); |
4773 | 137 | checkCorrectionVisibility(SemaRef, Candidate); |
4774 | 137 | if (!isCandidateViable(*CorrectionValidator, Candidate)) { |
4775 | 137 | if (SearchNamespaces) |
4776 | 63 | QualifiedResults.push_back(Candidate); |
4777 | 137 | break; |
4778 | 137 | } |
4779 | 0 | Candidate.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); |
4780 | 0 | return true; |
4781 | 1.84k | } |
4782 | 1.69k | return false; |
4783 | 1.84k | } |
4784 | | |
4785 | 1.69k | void TypoCorrectionConsumer::performQualifiedLookups() { |
4786 | 1.69k | unsigned TypoLen = Typo->getName().size(); |
4787 | 1.69k | for (const TypoCorrection &QR : QualifiedResults) { |
4788 | 2.42k | for (const auto &NSI : Namespaces) { |
4789 | 2.42k | DeclContext *Ctx = NSI.DeclCtx; |
4790 | 2.42k | const Type *NSType = NSI.NameSpecifier->getAsType(); |
4791 | | |
4792 | | // If the current NestedNameSpecifier refers to a class and the |
4793 | | // current correction candidate is the name of that class, then skip |
4794 | | // it as it is unlikely a qualified version of the class' constructor |
4795 | | // is an appropriate correction. |
4796 | 2.42k | if (CXXRecordDecl *NSDecl = NSType ? NSType->getAsCXXRecordDecl() : |
4797 | 2.42k | nullptr) { |
4798 | 1.61k | if (NSDecl->getIdentifier() == QR.getCorrectionAsIdentifierInfo()) |
4799 | 0 | continue; |
4800 | 1.61k | } |
4801 | | |
4802 | 2.42k | TypoCorrection TC(QR); |
4803 | 2.42k | TC.ClearCorrectionDecls(); |
4804 | 2.42k | TC.setCorrectionSpecifier(NSI.NameSpecifier); |
4805 | 2.42k | TC.setQualifierDistance(NSI.EditDistance); |
4806 | 2.42k | TC.setCallbackDistance(0); // Reset the callback distance |
4807 | | |
4808 | | // If the current correction candidate and namespace combination are |
4809 | | // too far away from the original typo based on the normalized edit |
4810 | | // distance, then skip performing a qualified name lookup. |
4811 | 2.42k | unsigned TmpED = TC.getEditDistance(true); |
4812 | 2.42k | if (QR.getCorrectionAsIdentifierInfo() != Typo && TmpED && |
4813 | 2.42k | TypoLen / TmpED < 3) |
4814 | 132 | continue; |
4815 | | |
4816 | 2.29k | Result.clear(); |
4817 | 2.29k | Result.setLookupName(QR.getCorrectionAsIdentifierInfo()); |
4818 | 2.29k | if (!SemaRef.LookupQualifiedName(Result, Ctx)) |
4819 | 2.23k | continue; |
4820 | | |
4821 | | // Any corrections added below will be validated in subsequent |
4822 | | // iterations of the main while() loop over the Consumer's contents. |
4823 | 62 | switch (Result.getResultKind()) { |
4824 | 62 | case LookupResult::Found: |
4825 | 62 | case LookupResult::FoundOverloaded: { |
4826 | 62 | if (SS && SS->isValid()) { |
4827 | 0 | std::string NewQualified = TC.getAsString(SemaRef.getLangOpts()); |
4828 | 0 | std::string OldQualified; |
4829 | 0 | llvm::raw_string_ostream OldOStream(OldQualified); |
4830 | 0 | SS->getScopeRep()->print(OldOStream, SemaRef.getPrintingPolicy()); |
4831 | 0 | OldOStream << Typo->getName(); |
4832 | | // If correction candidate would be an identical written qualified |
4833 | | // identifier, then the existing CXXScopeSpec probably included a |
4834 | | // typedef that didn't get accounted for properly. |
4835 | 0 | if (OldOStream.str() == NewQualified) |
4836 | 0 | break; |
4837 | 0 | } |
4838 | 62 | for (LookupResult::iterator TRD = Result.begin(), TRDEnd = Result.end(); |
4839 | 124 | TRD != TRDEnd; ++TRD) { |
4840 | 62 | if (SemaRef.CheckMemberAccess(TC.getCorrectionRange().getBegin(), |
4841 | 62 | NSType ? NSType->getAsCXXRecordDecl() |
4842 | 62 | : nullptr, |
4843 | 62 | TRD.getPair()) == Sema::AR_accessible) |
4844 | 62 | TC.addCorrectionDecl(*TRD); |
4845 | 62 | } |
4846 | 62 | if (TC.isResolved()) { |
4847 | 62 | TC.setCorrectionRange(SS.get(), Result.getLookupNameInfo()); |
4848 | 62 | addCorrection(TC); |
4849 | 62 | } |
4850 | 62 | break; |
4851 | 62 | } |
4852 | 0 | case LookupResult::NotFound: |
4853 | 0 | case LookupResult::NotFoundInCurrentInstantiation: |
4854 | 0 | case LookupResult::Ambiguous: |
4855 | 0 | case LookupResult::FoundUnresolvedValue: |
4856 | 0 | break; |
4857 | 62 | } |
4858 | 62 | } |
4859 | 809 | } |
4860 | 1.69k | QualifiedResults.clear(); |
4861 | 1.69k | } |
4862 | | |
4863 | | TypoCorrectionConsumer::NamespaceSpecifierSet::NamespaceSpecifierSet( |
4864 | | ASTContext &Context, DeclContext *CurContext, CXXScopeSpec *CurScopeSpec) |
4865 | 1.59k | : Context(Context), CurContextChain(buildContextChain(CurContext)) { |
4866 | 1.59k | if (NestedNameSpecifier *NNS = |
4867 | 1.59k | CurScopeSpec ? CurScopeSpec->getScopeRep() : nullptr) { |
4868 | 0 | llvm::raw_string_ostream SpecifierOStream(CurNameSpecifier); |
4869 | 0 | NNS->print(SpecifierOStream, Context.getPrintingPolicy()); |
4870 | |
|
4871 | 0 | getNestedNameSpecifierIdentifiers(NNS, CurNameSpecifierIdentifiers); |
4872 | 0 | } |
4873 | | // Build the list of identifiers that would be used for an absolute |
4874 | | // (from the global context) NestedNameSpecifier referring to the current |
4875 | | // context. |
4876 | 1.59k | for (DeclContext *C : llvm::reverse(CurContextChain)) { |
4877 | 1.59k | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) |
4878 | 0 | CurContextIdentifiers.push_back(ND->getIdentifier()); |
4879 | 1.59k | } |
4880 | | |
4881 | | // Add the global context as a NestedNameSpecifier |
4882 | 1.59k | SpecifierInfo SI = {cast<DeclContext>(Context.getTranslationUnitDecl()), |
4883 | 1.59k | NestedNameSpecifier::GlobalSpecifier(Context), 1}; |
4884 | 1.59k | DistanceMap[1].push_back(SI); |
4885 | 1.59k | } |
4886 | | |
4887 | | auto TypoCorrectionConsumer::NamespaceSpecifierSet::buildContextChain( |
4888 | 3.12k | DeclContext *Start) -> DeclContextList { |
4889 | 3.12k | assert(Start && "Building a context chain from a null context"); |
4890 | 0 | DeclContextList Chain; |
4891 | 7.77k | for (DeclContext *DC = Start->getPrimaryContext(); DC != nullptr; |
4892 | 4.65k | DC = DC->getLookupParent()) { |
4893 | 4.65k | NamespaceDecl *ND = dyn_cast_or_null<NamespaceDecl>(DC); |
4894 | 4.65k | if (!DC->isInlineNamespace() && !DC->isTransparentContext() && |
4895 | 4.65k | !(ND && ND->isAnonymousNamespace())) |
4896 | 4.65k | Chain.push_back(DC->getPrimaryContext()); |
4897 | 4.65k | } |
4898 | 3.12k | return Chain; |
4899 | 3.12k | } |
4900 | | |
4901 | | unsigned |
4902 | | TypoCorrectionConsumer::NamespaceSpecifierSet::buildNestedNameSpecifier( |
4903 | 1.53k | DeclContextList &DeclChain, NestedNameSpecifier *&NNS) { |
4904 | 1.53k | unsigned NumSpecifiers = 0; |
4905 | 1.53k | for (DeclContext *C : llvm::reverse(DeclChain)) { |
4906 | 1.53k | if (auto *ND = dyn_cast_or_null<NamespaceDecl>(C)) { |
4907 | 0 | NNS = NestedNameSpecifier::Create(Context, NNS, ND); |
4908 | 0 | ++NumSpecifiers; |
4909 | 1.53k | } else if (auto *RD = dyn_cast_or_null<RecordDecl>(C)) { |
4910 | 1.53k | NNS = NestedNameSpecifier::Create(Context, NNS, RD->isTemplateDecl(), |
4911 | 1.53k | RD->getTypeForDecl()); |
4912 | 1.53k | ++NumSpecifiers; |
4913 | 1.53k | } |
4914 | 1.53k | } |
4915 | 1.53k | return NumSpecifiers; |
4916 | 1.53k | } |
4917 | | |
4918 | | void TypoCorrectionConsumer::NamespaceSpecifierSet::addNameSpecifier( |
4919 | 1.53k | DeclContext *Ctx) { |
4920 | 1.53k | NestedNameSpecifier *NNS = nullptr; |
4921 | 1.53k | unsigned NumSpecifiers = 0; |
4922 | 1.53k | DeclContextList NamespaceDeclChain(buildContextChain(Ctx)); |
4923 | 1.53k | DeclContextList FullNamespaceDeclChain(NamespaceDeclChain); |
4924 | | |
4925 | | // Eliminate common elements from the two DeclContext chains. |
4926 | 1.53k | for (DeclContext *C : llvm::reverse(CurContextChain)) { |
4927 | 1.53k | if (NamespaceDeclChain.empty() || NamespaceDeclChain.back() != C) |
4928 | 0 | break; |
4929 | 1.53k | NamespaceDeclChain.pop_back(); |
4930 | 1.53k | } |
4931 | | |
4932 | | // Build the NestedNameSpecifier from what is left of the NamespaceDeclChain |
4933 | 1.53k | NumSpecifiers = buildNestedNameSpecifier(NamespaceDeclChain, NNS); |
4934 | | |
4935 | | // Add an explicit leading '::' specifier if needed. |
4936 | 1.53k | if (NamespaceDeclChain.empty()) { |
4937 | | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. |
4938 | 0 | NNS = NestedNameSpecifier::GlobalSpecifier(Context); |
4939 | 0 | NumSpecifiers = |
4940 | 0 | buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); |
4941 | 1.53k | } else if (NamedDecl *ND = |
4942 | 1.53k | dyn_cast_or_null<NamedDecl>(NamespaceDeclChain.back())) { |
4943 | 1.53k | IdentifierInfo *Name = ND->getIdentifier(); |
4944 | 1.53k | bool SameNameSpecifier = false; |
4945 | 1.53k | if (llvm::is_contained(CurNameSpecifierIdentifiers, Name)) { |
4946 | 0 | std::string NewNameSpecifier; |
4947 | 0 | llvm::raw_string_ostream SpecifierOStream(NewNameSpecifier); |
4948 | 0 | SmallVector<const IdentifierInfo *, 4> NewNameSpecifierIdentifiers; |
4949 | 0 | getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); |
4950 | 0 | NNS->print(SpecifierOStream, Context.getPrintingPolicy()); |
4951 | 0 | SpecifierOStream.flush(); |
4952 | 0 | SameNameSpecifier = NewNameSpecifier == CurNameSpecifier; |
4953 | 0 | } |
4954 | 1.53k | if (SameNameSpecifier || llvm::is_contained(CurContextIdentifiers, Name)) { |
4955 | | // Rebuild the NestedNameSpecifier as a globally-qualified specifier. |
4956 | 0 | NNS = NestedNameSpecifier::GlobalSpecifier(Context); |
4957 | 0 | NumSpecifiers = |
4958 | 0 | buildNestedNameSpecifier(FullNamespaceDeclChain, NNS); |
4959 | 0 | } |
4960 | 1.53k | } |
4961 | | |
4962 | | // If the built NestedNameSpecifier would be replacing an existing |
4963 | | // NestedNameSpecifier, use the number of component identifiers that |
4964 | | // would need to be changed as the edit distance instead of the number |
4965 | | // of components in the built NestedNameSpecifier. |
4966 | 1.53k | if (NNS && !CurNameSpecifierIdentifiers.empty()) { |
4967 | 0 | SmallVector<const IdentifierInfo*, 4> NewNameSpecifierIdentifiers; |
4968 | 0 | getNestedNameSpecifierIdentifiers(NNS, NewNameSpecifierIdentifiers); |
4969 | 0 | NumSpecifiers = |
4970 | 0 | llvm::ComputeEditDistance(llvm::ArrayRef(CurNameSpecifierIdentifiers), |
4971 | 0 | llvm::ArrayRef(NewNameSpecifierIdentifiers)); |
4972 | 0 | } |
4973 | | |
4974 | 1.53k | SpecifierInfo SI = {Ctx, NNS, NumSpecifiers}; |
4975 | 1.53k | DistanceMap[NumSpecifiers].push_back(SI); |
4976 | 1.53k | } |
4977 | | |
4978 | | /// Perform name lookup for a possible result for typo correction. |
4979 | | static void LookupPotentialTypoResult(Sema &SemaRef, |
4980 | | LookupResult &Res, |
4981 | | IdentifierInfo *Name, |
4982 | | Scope *S, CXXScopeSpec *SS, |
4983 | | DeclContext *MemberContext, |
4984 | | bool EnteringContext, |
4985 | | bool isObjCIvarLookup, |
4986 | 1.84k | bool FindHidden) { |
4987 | 1.84k | Res.suppressDiagnostics(); |
4988 | 1.84k | Res.clear(); |
4989 | 1.84k | Res.setLookupName(Name); |
4990 | 1.84k | Res.setAllowHidden(FindHidden); |
4991 | 1.84k | if (MemberContext) { |
4992 | 0 | if (ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(MemberContext)) { |
4993 | 0 | if (isObjCIvarLookup) { |
4994 | 0 | if (ObjCIvarDecl *Ivar = Class->lookupInstanceVariable(Name)) { |
4995 | 0 | Res.addDecl(Ivar); |
4996 | 0 | Res.resolveKind(); |
4997 | 0 | return; |
4998 | 0 | } |
4999 | 0 | } |
5000 | | |
5001 | 0 | if (ObjCPropertyDecl *Prop = Class->FindPropertyDeclaration( |
5002 | 0 | Name, ObjCPropertyQueryKind::OBJC_PR_query_instance)) { |
5003 | 0 | Res.addDecl(Prop); |
5004 | 0 | Res.resolveKind(); |
5005 | 0 | return; |
5006 | 0 | } |
5007 | 0 | } |
5008 | | |
5009 | 0 | SemaRef.LookupQualifiedName(Res, MemberContext); |
5010 | 0 | return; |
5011 | 0 | } |
5012 | | |
5013 | 1.84k | SemaRef.LookupParsedName(Res, S, SS, /*AllowBuiltinCreation=*/false, |
5014 | 1.84k | EnteringContext); |
5015 | | |
5016 | | // Fake ivar lookup; this should really be part of |
5017 | | // LookupParsedName. |
5018 | 1.84k | if (ObjCMethodDecl *Method = SemaRef.getCurMethodDecl()) { |
5019 | 0 | if (Method->isInstanceMethod() && Method->getClassInterface() && |
5020 | 0 | (Res.empty() || |
5021 | 0 | (Res.isSingleResult() && |
5022 | 0 | Res.getFoundDecl()->isDefinedOutsideFunctionOrMethod()))) { |
5023 | 0 | if (ObjCIvarDecl *IV |
5024 | 0 | = Method->getClassInterface()->lookupInstanceVariable(Name)) { |
5025 | 0 | Res.addDecl(IV); |
5026 | 0 | Res.resolveKind(); |
5027 | 0 | } |
5028 | 0 | } |
5029 | 0 | } |
5030 | 1.84k | } |
5031 | | |
5032 | | /// Add keywords to the consumer as possible typo corrections. |
5033 | | static void AddKeywordsToConsumer(Sema &SemaRef, |
5034 | | TypoCorrectionConsumer &Consumer, |
5035 | | Scope *S, CorrectionCandidateCallback &CCC, |
5036 | 1.59k | bool AfterNestedNameSpecifier) { |
5037 | 1.59k | if (AfterNestedNameSpecifier) { |
5038 | | // For 'X::', we know exactly which keywords can appear next. |
5039 | 0 | Consumer.addKeywordResult("template"); |
5040 | 0 | if (CCC.WantExpressionKeywords) |
5041 | 0 | Consumer.addKeywordResult("operator"); |
5042 | 0 | return; |
5043 | 0 | } |
5044 | | |
5045 | 1.59k | if (CCC.WantObjCSuper) |
5046 | 0 | Consumer.addKeywordResult("super"); |
5047 | | |
5048 | 1.59k | if (CCC.WantTypeSpecifiers) { |
5049 | | // Add type-specifier keywords to the set of results. |
5050 | 1.45k | static const char *const CTypeSpecs[] = { |
5051 | 1.45k | "char", "const", "double", "enum", "float", "int", "long", "short", |
5052 | 1.45k | "signed", "struct", "union", "unsigned", "void", "volatile", |
5053 | 1.45k | "_Complex", "_Imaginary", |
5054 | | // storage-specifiers as well |
5055 | 1.45k | "extern", "inline", "static", "typedef" |
5056 | 1.45k | }; |
5057 | | |
5058 | 1.45k | for (const auto *CTS : CTypeSpecs) |
5059 | 29.0k | Consumer.addKeywordResult(CTS); |
5060 | | |
5061 | 1.45k | if (SemaRef.getLangOpts().C99) |
5062 | 796 | Consumer.addKeywordResult("restrict"); |
5063 | 1.45k | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) |
5064 | 656 | Consumer.addKeywordResult("bool"); |
5065 | 796 | else if (SemaRef.getLangOpts().C99) |
5066 | 796 | Consumer.addKeywordResult("_Bool"); |
5067 | | |
5068 | 1.45k | if (SemaRef.getLangOpts().CPlusPlus) { |
5069 | 656 | Consumer.addKeywordResult("class"); |
5070 | 656 | Consumer.addKeywordResult("typename"); |
5071 | 656 | Consumer.addKeywordResult("wchar_t"); |
5072 | | |
5073 | 656 | if (SemaRef.getLangOpts().CPlusPlus11) { |
5074 | 656 | Consumer.addKeywordResult("char16_t"); |
5075 | 656 | Consumer.addKeywordResult("char32_t"); |
5076 | 656 | Consumer.addKeywordResult("constexpr"); |
5077 | 656 | Consumer.addKeywordResult("decltype"); |
5078 | 656 | Consumer.addKeywordResult("thread_local"); |
5079 | 656 | } |
5080 | 656 | } |
5081 | | |
5082 | 1.45k | if (SemaRef.getLangOpts().GNUKeywords) |
5083 | 1.45k | Consumer.addKeywordResult("typeof"); |
5084 | 1.45k | } else if (CCC.WantFunctionLikeCasts) { |
5085 | 75 | static const char *const CastableTypeSpecs[] = { |
5086 | 75 | "char", "double", "float", "int", "long", "short", |
5087 | 75 | "signed", "unsigned", "void" |
5088 | 75 | }; |
5089 | 75 | for (auto *kw : CastableTypeSpecs) |
5090 | 675 | Consumer.addKeywordResult(kw); |
5091 | 75 | } |
5092 | | |
5093 | 1.59k | if (CCC.WantCXXNamedCasts && SemaRef.getLangOpts().CPlusPlus) { |
5094 | 115 | Consumer.addKeywordResult("const_cast"); |
5095 | 115 | Consumer.addKeywordResult("dynamic_cast"); |
5096 | 115 | Consumer.addKeywordResult("reinterpret_cast"); |
5097 | 115 | Consumer.addKeywordResult("static_cast"); |
5098 | 115 | } |
5099 | | |
5100 | 1.59k | if (CCC.WantExpressionKeywords) { |
5101 | 79 | Consumer.addKeywordResult("sizeof"); |
5102 | 79 | if (SemaRef.getLangOpts().Bool || SemaRef.getLangOpts().CPlusPlus) { |
5103 | 48 | Consumer.addKeywordResult("false"); |
5104 | 48 | Consumer.addKeywordResult("true"); |
5105 | 48 | } |
5106 | | |
5107 | 79 | if (SemaRef.getLangOpts().CPlusPlus) { |
5108 | 48 | static const char *const CXXExprs[] = { |
5109 | 48 | "delete", "new", "operator", "throw", "typeid" |
5110 | 48 | }; |
5111 | 48 | for (const auto *CE : CXXExprs) |
5112 | 240 | Consumer.addKeywordResult(CE); |
5113 | | |
5114 | 48 | if (isa<CXXMethodDecl>(SemaRef.CurContext) && |
5115 | 48 | cast<CXXMethodDecl>(SemaRef.CurContext)->isInstance()) |
5116 | 0 | Consumer.addKeywordResult("this"); |
5117 | | |
5118 | 48 | if (SemaRef.getLangOpts().CPlusPlus11) { |
5119 | 48 | Consumer.addKeywordResult("alignof"); |
5120 | 48 | Consumer.addKeywordResult("nullptr"); |
5121 | 48 | } |
5122 | 48 | } |
5123 | | |
5124 | 79 | if (SemaRef.getLangOpts().C11) { |
5125 | | // FIXME: We should not suggest _Alignof if the alignof macro |
5126 | | // is present. |
5127 | 31 | Consumer.addKeywordResult("_Alignof"); |
5128 | 31 | } |
5129 | 79 | } |
5130 | | |
5131 | 1.59k | if (CCC.WantRemainingKeywords) { |
5132 | 69 | if (SemaRef.getCurFunctionOrMethodDecl() || SemaRef.getCurBlock()) { |
5133 | | // Statements. |
5134 | 0 | static const char *const CStmts[] = { |
5135 | 0 | "do", "else", "for", "goto", "if", "return", "switch", "while" }; |
5136 | 0 | for (const auto *CS : CStmts) |
5137 | 0 | Consumer.addKeywordResult(CS); |
5138 | |
|
5139 | 0 | if (SemaRef.getLangOpts().CPlusPlus) { |
5140 | 0 | Consumer.addKeywordResult("catch"); |
5141 | 0 | Consumer.addKeywordResult("try"); |
5142 | 0 | } |
5143 | |
|
5144 | 0 | if (S && S->getBreakParent()) |
5145 | 0 | Consumer.addKeywordResult("break"); |
5146 | |
|
5147 | 0 | if (S && S->getContinueParent()) |
5148 | 0 | Consumer.addKeywordResult("continue"); |
5149 | |
|
5150 | 0 | if (SemaRef.getCurFunction() && |
5151 | 0 | !SemaRef.getCurFunction()->SwitchStack.empty()) { |
5152 | 0 | Consumer.addKeywordResult("case"); |
5153 | 0 | Consumer.addKeywordResult("default"); |
5154 | 0 | } |
5155 | 69 | } else { |
5156 | 69 | if (SemaRef.getLangOpts().CPlusPlus) { |
5157 | 38 | Consumer.addKeywordResult("namespace"); |
5158 | 38 | Consumer.addKeywordResult("template"); |
5159 | 38 | } |
5160 | | |
5161 | 69 | if (S && S->isClassScope()) { |
5162 | 0 | Consumer.addKeywordResult("explicit"); |
5163 | 0 | Consumer.addKeywordResult("friend"); |
5164 | 0 | Consumer.addKeywordResult("mutable"); |
5165 | 0 | Consumer.addKeywordResult("private"); |
5166 | 0 | Consumer.addKeywordResult("protected"); |
5167 | 0 | Consumer.addKeywordResult("public"); |
5168 | 0 | Consumer.addKeywordResult("virtual"); |
5169 | 0 | } |
5170 | 69 | } |
5171 | | |
5172 | 69 | if (SemaRef.getLangOpts().CPlusPlus) { |
5173 | 38 | Consumer.addKeywordResult("using"); |
5174 | | |
5175 | 38 | if (SemaRef.getLangOpts().CPlusPlus11) |
5176 | 38 | Consumer.addKeywordResult("static_assert"); |
5177 | 38 | } |
5178 | 69 | } |
5179 | 1.59k | } |
5180 | | |
5181 | | std::unique_ptr<TypoCorrectionConsumer> Sema::makeTypoCorrectionConsumer( |
5182 | | const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, |
5183 | | Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, |
5184 | | DeclContext *MemberContext, bool EnteringContext, |
5185 | 11.0k | const ObjCObjectPointerType *OPT, bool ErrorRecovery) { |
5186 | | |
5187 | 11.0k | if (Diags.hasFatalErrorOccurred() || !getLangOpts().SpellChecking || |
5188 | 11.0k | DisableTypoCorrection) |
5189 | 0 | return nullptr; |
5190 | | |
5191 | | // In Microsoft mode, don't perform typo correction in a template member |
5192 | | // function dependent context because it interferes with the "lookup into |
5193 | | // dependent bases of class templates" feature. |
5194 | 11.0k | if (getLangOpts().MSVCCompat && CurContext->isDependentContext() && |
5195 | 11.0k | isa<CXXMethodDecl>(CurContext)) |
5196 | 0 | return nullptr; |
5197 | | |
5198 | | // We only attempt to correct typos for identifiers. |
5199 | 11.0k | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); |
5200 | 11.0k | if (!Typo) |
5201 | 0 | return nullptr; |
5202 | | |
5203 | | // If the scope specifier itself was invalid, don't try to correct |
5204 | | // typos. |
5205 | 11.0k | if (SS && SS->isInvalid()) |
5206 | 0 | return nullptr; |
5207 | | |
5208 | | // Never try to correct typos during any kind of code synthesis. |
5209 | 11.0k | if (!CodeSynthesisContexts.empty()) |
5210 | 0 | return nullptr; |
5211 | | |
5212 | | // Don't try to correct 'super'. |
5213 | 11.0k | if (S && S->isInObjcMethodScope() && Typo == getSuperIdentifier()) |
5214 | 0 | return nullptr; |
5215 | | |
5216 | | // Abort if typo correction already failed for this specific typo. |
5217 | 11.0k | IdentifierSourceLocations::iterator locs = TypoCorrectionFailures.find(Typo); |
5218 | 11.0k | if (locs != TypoCorrectionFailures.end() && |
5219 | 11.0k | locs->second.count(TypoName.getLoc())) |
5220 | 42 | return nullptr; |
5221 | | |
5222 | | // Don't try to correct the identifier "vector" when in AltiVec mode. |
5223 | | // TODO: Figure out why typo correction misbehaves in this case, fix it, and |
5224 | | // remove this workaround. |
5225 | 11.0k | if ((getLangOpts().AltiVec || getLangOpts().ZVector) && Typo->isStr("vector")) |
5226 | 0 | return nullptr; |
5227 | | |
5228 | | // Provide a stop gap for files that are just seriously broken. Trying |
5229 | | // to correct all typos can turn into a HUGE performance penalty, causing |
5230 | | // some files to take minutes to get rejected by the parser. |
5231 | 11.0k | unsigned Limit = getDiagnostics().getDiagnosticOptions().SpellCheckingLimit; |
5232 | 11.0k | if (Limit && TyposCorrected >= Limit) |
5233 | 9.45k | return nullptr; |
5234 | 1.59k | ++TyposCorrected; |
5235 | | |
5236 | | // If we're handling a missing symbol error, using modules, and the |
5237 | | // special search all modules option is used, look for a missing import. |
5238 | 1.59k | if (ErrorRecovery && getLangOpts().Modules && |
5239 | 1.59k | getLangOpts().ModulesSearchAll) { |
5240 | | // The following has the side effect of loading the missing module. |
5241 | 0 | getModuleLoader().lookupMissingImports(Typo->getName(), |
5242 | 0 | TypoName.getBeginLoc()); |
5243 | 0 | } |
5244 | | |
5245 | | // Extend the lifetime of the callback. We delayed this until here |
5246 | | // to avoid allocations in the hot path (which is where no typo correction |
5247 | | // occurs). Note that CorrectionCandidateCallback is polymorphic and |
5248 | | // initially stack-allocated. |
5249 | 1.59k | std::unique_ptr<CorrectionCandidateCallback> ClonedCCC = CCC.clone(); |
5250 | 1.59k | auto Consumer = std::make_unique<TypoCorrectionConsumer>( |
5251 | 1.59k | *this, TypoName, LookupKind, S, SS, std::move(ClonedCCC), MemberContext, |
5252 | 1.59k | EnteringContext); |
5253 | | |
5254 | | // Perform name lookup to find visible, similarly-named entities. |
5255 | 1.59k | bool IsUnqualifiedLookup = false; |
5256 | 1.59k | DeclContext *QualifiedDC = MemberContext; |
5257 | 1.59k | if (MemberContext) { |
5258 | 0 | LookupVisibleDecls(MemberContext, LookupKind, *Consumer); |
5259 | | |
5260 | | // Look in qualified interfaces. |
5261 | 0 | if (OPT) { |
5262 | 0 | for (auto *I : OPT->quals()) |
5263 | 0 | LookupVisibleDecls(I, LookupKind, *Consumer); |
5264 | 0 | } |
5265 | 1.59k | } else if (SS && SS->isSet()) { |
5266 | 0 | QualifiedDC = computeDeclContext(*SS, EnteringContext); |
5267 | 0 | if (!QualifiedDC) |
5268 | 0 | return nullptr; |
5269 | | |
5270 | 0 | LookupVisibleDecls(QualifiedDC, LookupKind, *Consumer); |
5271 | 1.59k | } else { |
5272 | 1.59k | IsUnqualifiedLookup = true; |
5273 | 1.59k | } |
5274 | | |
5275 | | // Determine whether we are going to search in the various namespaces for |
5276 | | // corrections. |
5277 | 1.59k | bool SearchNamespaces |
5278 | 1.59k | = getLangOpts().CPlusPlus && |
5279 | 1.59k | (IsUnqualifiedLookup || (SS && SS->isSet())); |
5280 | | |
5281 | 1.59k | if (IsUnqualifiedLookup || SearchNamespaces) { |
5282 | | // For unqualified lookup, look through all of the names that we have |
5283 | | // seen in this translation unit. |
5284 | | // FIXME: Re-add the ability to skip very unlikely potential corrections. |
5285 | 1.59k | for (const auto &I : Context.Idents) |
5286 | 8.18M | Consumer->FoundName(I.getKey()); |
5287 | | |
5288 | | // Walk through identifiers in external identifier sources. |
5289 | | // FIXME: Re-add the ability to skip very unlikely potential corrections. |
5290 | 1.59k | if (IdentifierInfoLookup *External |
5291 | 1.59k | = Context.Idents.getExternalIdentifierLookup()) { |
5292 | 0 | std::unique_ptr<IdentifierIterator> Iter(External->getIdentifiers()); |
5293 | 0 | do { |
5294 | 0 | StringRef Name = Iter->Next(); |
5295 | 0 | if (Name.empty()) |
5296 | 0 | break; |
5297 | | |
5298 | 0 | Consumer->FoundName(Name); |
5299 | 0 | } while (true); |
5300 | 0 | } |
5301 | 1.59k | } |
5302 | | |
5303 | 0 | AddKeywordsToConsumer(*this, *Consumer, S, |
5304 | 1.59k | *Consumer->getCorrectionValidator(), |
5305 | 1.59k | SS && SS->isNotEmpty()); |
5306 | | |
5307 | | // Build the NestedNameSpecifiers for the KnownNamespaces, if we're going |
5308 | | // to search those namespaces. |
5309 | 1.59k | if (SearchNamespaces) { |
5310 | | // Load any externally-known namespaces. |
5311 | 765 | if (ExternalSource && !LoadedExternalKnownNamespaces) { |
5312 | 0 | SmallVector<NamespaceDecl *, 4> ExternalKnownNamespaces; |
5313 | 0 | LoadedExternalKnownNamespaces = true; |
5314 | 0 | ExternalSource->ReadKnownNamespaces(ExternalKnownNamespaces); |
5315 | 0 | for (auto *N : ExternalKnownNamespaces) |
5316 | 0 | KnownNamespaces[N] = true; |
5317 | 0 | } |
5318 | | |
5319 | 765 | Consumer->addNamespaces(KnownNamespaces); |
5320 | 765 | } |
5321 | | |
5322 | 1.59k | return Consumer; |
5323 | 1.59k | } |
5324 | | |
5325 | | /// Try to "correct" a typo in the source code by finding |
5326 | | /// visible declarations whose names are similar to the name that was |
5327 | | /// present in the source code. |
5328 | | /// |
5329 | | /// \param TypoName the \c DeclarationNameInfo structure that contains |
5330 | | /// the name that was present in the source code along with its location. |
5331 | | /// |
5332 | | /// \param LookupKind the name-lookup criteria used to search for the name. |
5333 | | /// |
5334 | | /// \param S the scope in which name lookup occurs. |
5335 | | /// |
5336 | | /// \param SS the nested-name-specifier that precedes the name we're |
5337 | | /// looking for, if present. |
5338 | | /// |
5339 | | /// \param CCC A CorrectionCandidateCallback object that provides further |
5340 | | /// validation of typo correction candidates. It also provides flags for |
5341 | | /// determining the set of keywords permitted. |
5342 | | /// |
5343 | | /// \param MemberContext if non-NULL, the context in which to look for |
5344 | | /// a member access expression. |
5345 | | /// |
5346 | | /// \param EnteringContext whether we're entering the context described by |
5347 | | /// the nested-name-specifier SS. |
5348 | | /// |
5349 | | /// \param OPT when non-NULL, the search for visible declarations will |
5350 | | /// also walk the protocols in the qualified interfaces of \p OPT. |
5351 | | /// |
5352 | | /// \returns a \c TypoCorrection containing the corrected name if the typo |
5353 | | /// along with information such as the \c NamedDecl where the corrected name |
5354 | | /// was declared, and any additional \c NestedNameSpecifier needed to access |
5355 | | /// it (C++ only). The \c TypoCorrection is empty if there is no correction. |
5356 | | TypoCorrection Sema::CorrectTypo(const DeclarationNameInfo &TypoName, |
5357 | | Sema::LookupNameKind LookupKind, |
5358 | | Scope *S, CXXScopeSpec *SS, |
5359 | | CorrectionCandidateCallback &CCC, |
5360 | | CorrectTypoKind Mode, |
5361 | | DeclContext *MemberContext, |
5362 | | bool EnteringContext, |
5363 | | const ObjCObjectPointerType *OPT, |
5364 | 10.7k | bool RecordFailure) { |
5365 | | // Always let the ExternalSource have the first chance at correction, even |
5366 | | // if we would otherwise have given up. |
5367 | 10.7k | if (ExternalSource) { |
5368 | 0 | if (TypoCorrection Correction = |
5369 | 0 | ExternalSource->CorrectTypo(TypoName, LookupKind, S, SS, CCC, |
5370 | 0 | MemberContext, EnteringContext, OPT)) |
5371 | 0 | return Correction; |
5372 | 0 | } |
5373 | | |
5374 | | // Ugly hack equivalent to CTC == CTC_ObjCMessageReceiver; |
5375 | | // WantObjCSuper is only true for CTC_ObjCMessageReceiver and for |
5376 | | // some instances of CTC_Unknown, while WantRemainingKeywords is true |
5377 | | // for CTC_Unknown but not for CTC_ObjCMessageReceiver. |
5378 | 10.7k | bool ObjCMessageReceiver = CCC.WantObjCSuper && !CCC.WantRemainingKeywords; |
5379 | | |
5380 | 10.7k | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); |
5381 | 10.7k | auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, |
5382 | 10.7k | MemberContext, EnteringContext, |
5383 | 10.7k | OPT, Mode == CTK_ErrorRecovery); |
5384 | | |
5385 | 10.7k | if (!Consumer) |
5386 | 9.20k | return TypoCorrection(); |
5387 | | |
5388 | | // If we haven't found anything, we're done. |
5389 | 1.52k | if (Consumer->empty()) |
5390 | 0 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); |
5391 | | |
5392 | | // Make sure the best edit distance (prior to adding any namespace qualifiers) |
5393 | | // is not more that about a third of the length of the typo's identifier. |
5394 | 1.52k | unsigned ED = Consumer->getBestEditDistance(true); |
5395 | 1.52k | unsigned TypoLen = Typo->getName().size(); |
5396 | 1.52k | if (ED > 0 && TypoLen / ED < 3) |
5397 | 0 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); |
5398 | | |
5399 | 1.52k | TypoCorrection BestTC = Consumer->getNextCorrection(); |
5400 | 1.52k | TypoCorrection SecondBestTC = Consumer->getNextCorrection(); |
5401 | 1.52k | if (!BestTC) |
5402 | 1.52k | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); |
5403 | | |
5404 | 0 | ED = BestTC.getEditDistance(); |
5405 | |
|
5406 | 0 | if (TypoLen >= 3 && ED > 0 && TypoLen / ED < 3) { |
5407 | | // If this was an unqualified lookup and we believe the callback |
5408 | | // object wouldn't have filtered out possible corrections, note |
5409 | | // that no correction was found. |
5410 | 0 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); |
5411 | 0 | } |
5412 | | |
5413 | | // If only a single name remains, return that result. |
5414 | 0 | if (!SecondBestTC || |
5415 | 0 | SecondBestTC.getEditDistance(false) > BestTC.getEditDistance(false)) { |
5416 | 0 | const TypoCorrection &Result = BestTC; |
5417 | | |
5418 | | // Don't correct to a keyword that's the same as the typo; the keyword |
5419 | | // wasn't actually in scope. |
5420 | 0 | if (ED == 0 && Result.isKeyword()) |
5421 | 0 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); |
5422 | | |
5423 | 0 | TypoCorrection TC = Result; |
5424 | 0 | TC.setCorrectionRange(SS, TypoName); |
5425 | 0 | checkCorrectionVisibility(*this, TC); |
5426 | 0 | return TC; |
5427 | 0 | } else if (SecondBestTC && ObjCMessageReceiver) { |
5428 | | // Prefer 'super' when we're completing in a message-receiver |
5429 | | // context. |
5430 | |
|
5431 | 0 | if (BestTC.getCorrection().getAsString() != "super") { |
5432 | 0 | if (SecondBestTC.getCorrection().getAsString() == "super") |
5433 | 0 | BestTC = SecondBestTC; |
5434 | 0 | else if ((*Consumer)["super"].front().isKeyword()) |
5435 | 0 | BestTC = (*Consumer)["super"].front(); |
5436 | 0 | } |
5437 | | // Don't correct to a keyword that's the same as the typo; the keyword |
5438 | | // wasn't actually in scope. |
5439 | 0 | if (BestTC.getEditDistance() == 0 || |
5440 | 0 | BestTC.getCorrection().getAsString() != "super") |
5441 | 0 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure); |
5442 | | |
5443 | 0 | BestTC.setCorrectionRange(SS, TypoName); |
5444 | 0 | return BestTC; |
5445 | 0 | } |
5446 | | |
5447 | | // Record the failure's location if needed and return an empty correction. If |
5448 | | // this was an unqualified lookup and we believe the callback object did not |
5449 | | // filter out possible corrections, also cache the failure for the typo. |
5450 | 0 | return FailedCorrection(Typo, TypoName.getLoc(), RecordFailure && !SecondBestTC); |
5451 | 0 | } |
5452 | | |
5453 | | /// Try to "correct" a typo in the source code by finding |
5454 | | /// visible declarations whose names are similar to the name that was |
5455 | | /// present in the source code. |
5456 | | /// |
5457 | | /// \param TypoName the \c DeclarationNameInfo structure that contains |
5458 | | /// the name that was present in the source code along with its location. |
5459 | | /// |
5460 | | /// \param LookupKind the name-lookup criteria used to search for the name. |
5461 | | /// |
5462 | | /// \param S the scope in which name lookup occurs. |
5463 | | /// |
5464 | | /// \param SS the nested-name-specifier that precedes the name we're |
5465 | | /// looking for, if present. |
5466 | | /// |
5467 | | /// \param CCC A CorrectionCandidateCallback object that provides further |
5468 | | /// validation of typo correction candidates. It also provides flags for |
5469 | | /// determining the set of keywords permitted. |
5470 | | /// |
5471 | | /// \param TDG A TypoDiagnosticGenerator functor that will be used to print |
5472 | | /// diagnostics when the actual typo correction is attempted. |
5473 | | /// |
5474 | | /// \param TRC A TypoRecoveryCallback functor that will be used to build an |
5475 | | /// Expr from a typo correction candidate. |
5476 | | /// |
5477 | | /// \param MemberContext if non-NULL, the context in which to look for |
5478 | | /// a member access expression. |
5479 | | /// |
5480 | | /// \param EnteringContext whether we're entering the context described by |
5481 | | /// the nested-name-specifier SS. |
5482 | | /// |
5483 | | /// \param OPT when non-NULL, the search for visible declarations will |
5484 | | /// also walk the protocols in the qualified interfaces of \p OPT. |
5485 | | /// |
5486 | | /// \returns a new \c TypoExpr that will later be replaced in the AST with an |
5487 | | /// Expr representing the result of performing typo correction, or nullptr if |
5488 | | /// typo correction is not possible. If nullptr is returned, no diagnostics will |
5489 | | /// be emitted and it is the responsibility of the caller to emit any that are |
5490 | | /// needed. |
5491 | | TypoExpr *Sema::CorrectTypoDelayed( |
5492 | | const DeclarationNameInfo &TypoName, Sema::LookupNameKind LookupKind, |
5493 | | Scope *S, CXXScopeSpec *SS, CorrectionCandidateCallback &CCC, |
5494 | | TypoDiagnosticGenerator TDG, TypoRecoveryCallback TRC, CorrectTypoKind Mode, |
5495 | | DeclContext *MemberContext, bool EnteringContext, |
5496 | 356 | const ObjCObjectPointerType *OPT) { |
5497 | 356 | auto Consumer = makeTypoCorrectionConsumer(TypoName, LookupKind, S, SS, CCC, |
5498 | 356 | MemberContext, EnteringContext, |
5499 | 356 | OPT, Mode == CTK_ErrorRecovery); |
5500 | | |
5501 | | // Give the external sema source a chance to correct the typo. |
5502 | 356 | TypoCorrection ExternalTypo; |
5503 | 356 | if (ExternalSource && Consumer) { |
5504 | 0 | ExternalTypo = ExternalSource->CorrectTypo( |
5505 | 0 | TypoName, LookupKind, S, SS, *Consumer->getCorrectionValidator(), |
5506 | 0 | MemberContext, EnteringContext, OPT); |
5507 | 0 | if (ExternalTypo) |
5508 | 0 | Consumer->addCorrection(ExternalTypo); |
5509 | 0 | } |
5510 | | |
5511 | 356 | if (!Consumer || Consumer->empty()) |
5512 | 288 | return nullptr; |
5513 | | |
5514 | | // Make sure the best edit distance (prior to adding any namespace qualifiers) |
5515 | | // is not more that about a third of the length of the typo's identifier. |
5516 | 68 | unsigned ED = Consumer->getBestEditDistance(true); |
5517 | 68 | IdentifierInfo *Typo = TypoName.getName().getAsIdentifierInfo(); |
5518 | 68 | if (!ExternalTypo && ED > 0 && Typo->getName().size() / ED < 3) |
5519 | 0 | return nullptr; |
5520 | 68 | ExprEvalContexts.back().NumTypos++; |
5521 | 68 | return createDelayedTypo(std::move(Consumer), std::move(TDG), std::move(TRC), |
5522 | 68 | TypoName.getLoc()); |
5523 | 68 | } |
5524 | | |
5525 | 199 | void TypoCorrection::addCorrectionDecl(NamedDecl *CDecl) { |
5526 | 199 | if (!CDecl) return; |
5527 | | |
5528 | 199 | if (isKeyword()) |
5529 | 0 | CorrectionDecls.clear(); |
5530 | | |
5531 | 199 | CorrectionDecls.push_back(CDecl); |
5532 | | |
5533 | 199 | if (!CorrectionName) |
5534 | 0 | CorrectionName = CDecl->getDeclName(); |
5535 | 199 | } |
5536 | | |
5537 | 0 | std::string TypoCorrection::getAsString(const LangOptions &LO) const { |
5538 | 0 | if (CorrectionNameSpec) { |
5539 | 0 | std::string tmpBuffer; |
5540 | 0 | llvm::raw_string_ostream PrefixOStream(tmpBuffer); |
5541 | 0 | CorrectionNameSpec->print(PrefixOStream, PrintingPolicy(LO)); |
5542 | 0 | PrefixOStream << CorrectionName; |
5543 | 0 | return PrefixOStream.str(); |
5544 | 0 | } |
5545 | | |
5546 | 0 | return CorrectionName.getAsString(); |
5547 | 0 | } |
5548 | | |
5549 | | bool CorrectionCandidateCallback::ValidateCandidate( |
5550 | 0 | const TypoCorrection &candidate) { |
5551 | 0 | if (!candidate.isResolved()) |
5552 | 0 | return true; |
5553 | | |
5554 | 0 | if (candidate.isKeyword()) |
5555 | 0 | return WantTypeSpecifiers || WantExpressionKeywords || WantCXXNamedCasts || |
5556 | 0 | WantRemainingKeywords || WantObjCSuper; |
5557 | | |
5558 | 0 | bool HasNonType = false; |
5559 | 0 | bool HasStaticMethod = false; |
5560 | 0 | bool HasNonStaticMethod = false; |
5561 | 0 | for (Decl *D : candidate) { |
5562 | 0 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D)) |
5563 | 0 | D = FTD->getTemplatedDecl(); |
5564 | 0 | if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) { |
5565 | 0 | if (Method->isStatic()) |
5566 | 0 | HasStaticMethod = true; |
5567 | 0 | else |
5568 | 0 | HasNonStaticMethod = true; |
5569 | 0 | } |
5570 | 0 | if (!isa<TypeDecl>(D)) |
5571 | 0 | HasNonType = true; |
5572 | 0 | } |
5573 | |
|
5574 | 0 | if (IsAddressOfOperand && HasNonStaticMethod && !HasStaticMethod && |
5575 | 0 | !candidate.getCorrectionSpecifier()) |
5576 | 0 | return false; |
5577 | | |
5578 | 0 | return WantTypeSpecifiers || HasNonType; |
5579 | 0 | } |
5580 | | |
5581 | | FunctionCallFilterCCC::FunctionCallFilterCCC(Sema &SemaRef, unsigned NumArgs, |
5582 | | bool HasExplicitTemplateArgs, |
5583 | | MemberExpr *ME) |
5584 | | : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs), |
5585 | 0 | CurContext(SemaRef.CurContext), MemberFn(ME) { |
5586 | 0 | WantTypeSpecifiers = false; |
5587 | 0 | WantFunctionLikeCasts = SemaRef.getLangOpts().CPlusPlus && |
5588 | 0 | !HasExplicitTemplateArgs && NumArgs == 1; |
5589 | 0 | WantCXXNamedCasts = HasExplicitTemplateArgs && NumArgs == 1; |
5590 | 0 | WantRemainingKeywords = false; |
5591 | 0 | } |
5592 | | |
5593 | 0 | bool FunctionCallFilterCCC::ValidateCandidate(const TypoCorrection &candidate) { |
5594 | 0 | if (!candidate.getCorrectionDecl()) |
5595 | 0 | return candidate.isKeyword(); |
5596 | | |
5597 | 0 | for (auto *C : candidate) { |
5598 | 0 | FunctionDecl *FD = nullptr; |
5599 | 0 | NamedDecl *ND = C->getUnderlyingDecl(); |
5600 | 0 | if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND)) |
5601 | 0 | FD = FTD->getTemplatedDecl(); |
5602 | 0 | if (!HasExplicitTemplateArgs && !FD) { |
5603 | 0 | if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) { |
5604 | | // If the Decl is neither a function nor a template function, |
5605 | | // determine if it is a pointer or reference to a function. If so, |
5606 | | // check against the number of arguments expected for the pointee. |
5607 | 0 | QualType ValType = cast<ValueDecl>(ND)->getType(); |
5608 | 0 | if (ValType.isNull()) |
5609 | 0 | continue; |
5610 | 0 | if (ValType->isAnyPointerType() || ValType->isReferenceType()) |
5611 | 0 | ValType = ValType->getPointeeType(); |
5612 | 0 | if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>()) |
5613 | 0 | if (FPT->getNumParams() == NumArgs) |
5614 | 0 | return true; |
5615 | 0 | } |
5616 | 0 | } |
5617 | | |
5618 | | // A typo for a function-style cast can look like a function call in C++. |
5619 | 0 | if ((HasExplicitTemplateArgs ? getAsTypeTemplateDecl(ND) != nullptr |
5620 | 0 | : isa<TypeDecl>(ND)) && |
5621 | 0 | CurContext->getParentASTContext().getLangOpts().CPlusPlus) |
5622 | | // Only a class or class template can take two or more arguments. |
5623 | 0 | return NumArgs <= 1 || HasExplicitTemplateArgs || isa<CXXRecordDecl>(ND); |
5624 | | |
5625 | | // Skip the current candidate if it is not a FunctionDecl or does not accept |
5626 | | // the current number of arguments. |
5627 | 0 | if (!FD || !(FD->getNumParams() >= NumArgs && |
5628 | 0 | FD->getMinRequiredArguments() <= NumArgs)) |
5629 | 0 | continue; |
5630 | | |
5631 | | // If the current candidate is a non-static C++ method, skip the candidate |
5632 | | // unless the method being corrected--or the current DeclContext, if the |
5633 | | // function being corrected is not a method--is a method in the same class |
5634 | | // or a descendent class of the candidate's parent class. |
5635 | 0 | if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) { |
5636 | 0 | if (MemberFn || !MD->isStatic()) { |
5637 | 0 | const auto *CurMD = |
5638 | 0 | MemberFn |
5639 | 0 | ? dyn_cast_if_present<CXXMethodDecl>(MemberFn->getMemberDecl()) |
5640 | 0 | : dyn_cast_if_present<CXXMethodDecl>(CurContext); |
5641 | 0 | const CXXRecordDecl *CurRD = |
5642 | 0 | CurMD ? CurMD->getParent()->getCanonicalDecl() : nullptr; |
5643 | 0 | const CXXRecordDecl *RD = MD->getParent()->getCanonicalDecl(); |
5644 | 0 | if (!CurRD || (CurRD != RD && !CurRD->isDerivedFrom(RD))) |
5645 | 0 | continue; |
5646 | 0 | } |
5647 | 0 | } |
5648 | 0 | return true; |
5649 | 0 | } |
5650 | 0 | return false; |
5651 | 0 | } |
5652 | | |
5653 | | void Sema::diagnoseTypo(const TypoCorrection &Correction, |
5654 | | const PartialDiagnostic &TypoDiag, |
5655 | 0 | bool ErrorRecovery) { |
5656 | 0 | diagnoseTypo(Correction, TypoDiag, PDiag(diag::note_previous_decl), |
5657 | 0 | ErrorRecovery); |
5658 | 0 | } |
5659 | | |
5660 | | /// Find which declaration we should import to provide the definition of |
5661 | | /// the given declaration. |
5662 | 0 | static const NamedDecl *getDefinitionToImport(const NamedDecl *D) { |
5663 | 0 | if (const auto *VD = dyn_cast<VarDecl>(D)) |
5664 | 0 | return VD->getDefinition(); |
5665 | 0 | if (const auto *FD = dyn_cast<FunctionDecl>(D)) |
5666 | 0 | return FD->getDefinition(); |
5667 | 0 | if (const auto *TD = dyn_cast<TagDecl>(D)) |
5668 | 0 | return TD->getDefinition(); |
5669 | 0 | if (const auto *ID = dyn_cast<ObjCInterfaceDecl>(D)) |
5670 | 0 | return ID->getDefinition(); |
5671 | 0 | if (const auto *PD = dyn_cast<ObjCProtocolDecl>(D)) |
5672 | 0 | return PD->getDefinition(); |
5673 | 0 | if (const auto *TD = dyn_cast<TemplateDecl>(D)) |
5674 | 0 | if (const NamedDecl *TTD = TD->getTemplatedDecl()) |
5675 | 0 | return getDefinitionToImport(TTD); |
5676 | 0 | return nullptr; |
5677 | 0 | } |
5678 | | |
5679 | | void Sema::diagnoseMissingImport(SourceLocation Loc, const NamedDecl *Decl, |
5680 | 0 | MissingImportKind MIK, bool Recover) { |
5681 | | // Suggest importing a module providing the definition of this entity, if |
5682 | | // possible. |
5683 | 0 | const NamedDecl *Def = getDefinitionToImport(Decl); |
5684 | 0 | if (!Def) |
5685 | 0 | Def = Decl; |
5686 | |
|
5687 | 0 | Module *Owner = getOwningModule(Def); |
5688 | 0 | assert(Owner && "definition of hidden declaration is not in a module"); |
5689 | | |
5690 | 0 | llvm::SmallVector<Module*, 8> OwningModules; |
5691 | 0 | OwningModules.push_back(Owner); |
5692 | 0 | auto Merged = Context.getModulesWithMergedDefinition(Def); |
5693 | 0 | OwningModules.insert(OwningModules.end(), Merged.begin(), Merged.end()); |
5694 | |
|
5695 | 0 | diagnoseMissingImport(Loc, Def, Def->getLocation(), OwningModules, MIK, |
5696 | 0 | Recover); |
5697 | 0 | } |
5698 | | |
5699 | | /// Get a "quoted.h" or <angled.h> include path to use in a diagnostic |
5700 | | /// suggesting the addition of a #include of the specified file. |
5701 | | static std::string getHeaderNameForHeader(Preprocessor &PP, FileEntryRef E, |
5702 | 0 | llvm::StringRef IncludingFile) { |
5703 | 0 | bool IsAngled = false; |
5704 | 0 | auto Path = PP.getHeaderSearchInfo().suggestPathToFileForDiagnostics( |
5705 | 0 | E, IncludingFile, &IsAngled); |
5706 | 0 | return (IsAngled ? '<' : '"') + Path + (IsAngled ? '>' : '"'); |
5707 | 0 | } |
5708 | | |
5709 | | void Sema::diagnoseMissingImport(SourceLocation UseLoc, const NamedDecl *Decl, |
5710 | | SourceLocation DeclLoc, |
5711 | | ArrayRef<Module *> Modules, |
5712 | 0 | MissingImportKind MIK, bool Recover) { |
5713 | 0 | assert(!Modules.empty()); |
5714 | | |
5715 | | // See https://github.com/llvm/llvm-project/issues/73893. It is generally |
5716 | | // confusing than helpful to show the namespace is not visible. |
5717 | 0 | if (isa<NamespaceDecl>(Decl)) |
5718 | 0 | return; |
5719 | | |
5720 | 0 | auto NotePrevious = [&] { |
5721 | | // FIXME: Suppress the note backtrace even under |
5722 | | // -fdiagnostics-show-note-include-stack. We don't care how this |
5723 | | // declaration was previously reached. |
5724 | 0 | Diag(DeclLoc, diag::note_unreachable_entity) << (int)MIK; |
5725 | 0 | }; |
5726 | | |
5727 | | // Weed out duplicates from module list. |
5728 | 0 | llvm::SmallVector<Module*, 8> UniqueModules; |
5729 | 0 | llvm::SmallDenseSet<Module*, 8> UniqueModuleSet; |
5730 | 0 | for (auto *M : Modules) { |
5731 | 0 | if (M->isExplicitGlobalModule() || M->isPrivateModule()) |
5732 | 0 | continue; |
5733 | 0 | if (UniqueModuleSet.insert(M).second) |
5734 | 0 | UniqueModules.push_back(M); |
5735 | 0 | } |
5736 | | |
5737 | | // Try to find a suitable header-name to #include. |
5738 | 0 | std::string HeaderName; |
5739 | 0 | if (OptionalFileEntryRef Header = |
5740 | 0 | PP.getHeaderToIncludeForDiagnostics(UseLoc, DeclLoc)) { |
5741 | 0 | if (const FileEntry *FE = |
5742 | 0 | SourceMgr.getFileEntryForID(SourceMgr.getFileID(UseLoc))) |
5743 | 0 | HeaderName = |
5744 | 0 | getHeaderNameForHeader(PP, *Header, FE->tryGetRealPathName()); |
5745 | 0 | } |
5746 | | |
5747 | | // If we have a #include we should suggest, or if all definition locations |
5748 | | // were in global module fragments, don't suggest an import. |
5749 | 0 | if (!HeaderName.empty() || UniqueModules.empty()) { |
5750 | | // FIXME: Find a smart place to suggest inserting a #include, and add |
5751 | | // a FixItHint there. |
5752 | 0 | Diag(UseLoc, diag::err_module_unimported_use_header) |
5753 | 0 | << (int)MIK << Decl << !HeaderName.empty() << HeaderName; |
5754 | | // Produce a note showing where the entity was declared. |
5755 | 0 | NotePrevious(); |
5756 | 0 | if (Recover) |
5757 | 0 | createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); |
5758 | 0 | return; |
5759 | 0 | } |
5760 | | |
5761 | 0 | Modules = UniqueModules; |
5762 | |
|
5763 | 0 | auto GetModuleNameForDiagnostic = [this](const Module *M) -> std::string { |
5764 | 0 | if (M->isModuleMapModule()) |
5765 | 0 | return M->getFullModuleName(); |
5766 | | |
5767 | 0 | Module *CurrentModule = getCurrentModule(); |
5768 | |
|
5769 | 0 | if (M->isImplicitGlobalModule()) |
5770 | 0 | M = M->getTopLevelModule(); |
5771 | |
|
5772 | 0 | bool IsInTheSameModule = |
5773 | 0 | CurrentModule && CurrentModule->getPrimaryModuleInterfaceName() == |
5774 | 0 | M->getPrimaryModuleInterfaceName(); |
5775 | | |
5776 | | // If the current module unit is in the same module with M, it is OK to show |
5777 | | // the partition name. Otherwise, it'll be sufficient to show the primary |
5778 | | // module name. |
5779 | 0 | if (IsInTheSameModule) |
5780 | 0 | return M->getTopLevelModuleName().str(); |
5781 | 0 | else |
5782 | 0 | return M->getPrimaryModuleInterfaceName().str(); |
5783 | 0 | }; |
5784 | |
|
5785 | 0 | if (Modules.size() > 1) { |
5786 | 0 | std::string ModuleList; |
5787 | 0 | unsigned N = 0; |
5788 | 0 | for (const auto *M : Modules) { |
5789 | 0 | ModuleList += "\n "; |
5790 | 0 | if (++N == 5 && N != Modules.size()) { |
5791 | 0 | ModuleList += "[...]"; |
5792 | 0 | break; |
5793 | 0 | } |
5794 | 0 | ModuleList += GetModuleNameForDiagnostic(M); |
5795 | 0 | } |
5796 | |
|
5797 | 0 | Diag(UseLoc, diag::err_module_unimported_use_multiple) |
5798 | 0 | << (int)MIK << Decl << ModuleList; |
5799 | 0 | } else { |
5800 | | // FIXME: Add a FixItHint that imports the corresponding module. |
5801 | 0 | Diag(UseLoc, diag::err_module_unimported_use) |
5802 | 0 | << (int)MIK << Decl << GetModuleNameForDiagnostic(Modules[0]); |
5803 | 0 | } |
5804 | |
|
5805 | 0 | NotePrevious(); |
5806 | | |
5807 | | // Try to recover by implicitly importing this module. |
5808 | 0 | if (Recover) |
5809 | 0 | createImplicitModuleImportForErrorRecovery(UseLoc, Modules[0]); |
5810 | 0 | } |
5811 | | |
5812 | | /// Diagnose a successfully-corrected typo. Separated from the correction |
5813 | | /// itself to allow external validation of the result, etc. |
5814 | | /// |
5815 | | /// \param Correction The result of performing typo correction. |
5816 | | /// \param TypoDiag The diagnostic to produce. This will have the corrected |
5817 | | /// string added to it (and usually also a fixit). |
5818 | | /// \param PrevNote A note to use when indicating the location of the entity to |
5819 | | /// which we are correcting. Will have the correction string added to it. |
5820 | | /// \param ErrorRecovery If \c true (the default), the caller is going to |
5821 | | /// recover from the typo as if the corrected string had been typed. |
5822 | | /// In this case, \c PDiag must be an error, and we will attach a fixit |
5823 | | /// to it. |
5824 | | void Sema::diagnoseTypo(const TypoCorrection &Correction, |
5825 | | const PartialDiagnostic &TypoDiag, |
5826 | | const PartialDiagnostic &PrevNote, |
5827 | 0 | bool ErrorRecovery) { |
5828 | 0 | std::string CorrectedStr = Correction.getAsString(getLangOpts()); |
5829 | 0 | std::string CorrectedQuotedStr = Correction.getQuoted(getLangOpts()); |
5830 | 0 | FixItHint FixTypo = FixItHint::CreateReplacement( |
5831 | 0 | Correction.getCorrectionRange(), CorrectedStr); |
5832 | | |
5833 | | // Maybe we're just missing a module import. |
5834 | 0 | if (Correction.requiresImport()) { |
5835 | 0 | NamedDecl *Decl = Correction.getFoundDecl(); |
5836 | 0 | assert(Decl && "import required but no declaration to import"); |
5837 | | |
5838 | 0 | diagnoseMissingImport(Correction.getCorrectionRange().getBegin(), Decl, |
5839 | 0 | MissingImportKind::Declaration, ErrorRecovery); |
5840 | 0 | return; |
5841 | 0 | } |
5842 | | |
5843 | 0 | Diag(Correction.getCorrectionRange().getBegin(), TypoDiag) |
5844 | 0 | << CorrectedQuotedStr << (ErrorRecovery ? FixTypo : FixItHint()); |
5845 | |
|
5846 | 0 | NamedDecl *ChosenDecl = |
5847 | 0 | Correction.isKeyword() ? nullptr : Correction.getFoundDecl(); |
5848 | 0 | if (PrevNote.getDiagID() && ChosenDecl) |
5849 | 0 | Diag(ChosenDecl->getLocation(), PrevNote) |
5850 | 0 | << CorrectedQuotedStr << (ErrorRecovery ? FixItHint() : FixTypo); |
5851 | | |
5852 | | // Add any extra diagnostics. |
5853 | 0 | for (const PartialDiagnostic &PD : Correction.getExtraDiagnostics()) |
5854 | 0 | Diag(Correction.getCorrectionRange().getBegin(), PD); |
5855 | 0 | } |
5856 | | |
5857 | | TypoExpr *Sema::createDelayedTypo(std::unique_ptr<TypoCorrectionConsumer> TCC, |
5858 | | TypoDiagnosticGenerator TDG, |
5859 | | TypoRecoveryCallback TRC, |
5860 | 68 | SourceLocation TypoLoc) { |
5861 | 68 | assert(TCC && "createDelayedTypo requires a valid TypoCorrectionConsumer"); |
5862 | 0 | auto TE = new (Context) TypoExpr(Context.DependentTy, TypoLoc); |
5863 | 68 | auto &State = DelayedTypos[TE]; |
5864 | 68 | State.Consumer = std::move(TCC); |
5865 | 68 | State.DiagHandler = std::move(TDG); |
5866 | 68 | State.RecoveryHandler = std::move(TRC); |
5867 | 68 | if (TE) |
5868 | 68 | TypoExprs.push_back(TE); |
5869 | 68 | return TE; |
5870 | 68 | } |
5871 | | |
5872 | 262 | const Sema::TypoExprState &Sema::getTypoExprState(TypoExpr *TE) const { |
5873 | 262 | auto Entry = DelayedTypos.find(TE); |
5874 | 262 | assert(Entry != DelayedTypos.end() && |
5875 | 262 | "Failed to get the state for a TypoExpr!"); |
5876 | 0 | return Entry->second; |
5877 | 262 | } |
5878 | | |
5879 | 68 | void Sema::clearDelayedTypo(TypoExpr *TE) { |
5880 | 68 | DelayedTypos.erase(TE); |
5881 | 68 | } |
5882 | | |
5883 | 0 | void Sema::ActOnPragmaDump(Scope *S, SourceLocation IILoc, IdentifierInfo *II) { |
5884 | 0 | DeclarationNameInfo Name(II, IILoc); |
5885 | 0 | LookupResult R(*this, Name, LookupAnyName, Sema::NotForRedeclaration); |
5886 | 0 | R.suppressDiagnostics(); |
5887 | 0 | R.setHideTags(false); |
5888 | 0 | LookupName(R, S); |
5889 | 0 | R.dump(); |
5890 | 0 | } |
5891 | | |
5892 | 0 | void Sema::ActOnPragmaDump(Expr *E) { |
5893 | 0 | E->dump(); |
5894 | 0 | } |