Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/clang/lib/Sema/SemaStmtAsm.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- SemaStmtAsm.cpp - Semantic Analysis for Asm Statements -----------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
//  This file implements semantic analysis for inline asm statements.
10
//
11
//===----------------------------------------------------------------------===//
12
13
#include "clang/AST/ExprCXX.h"
14
#include "clang/AST/GlobalDecl.h"
15
#include "clang/AST/RecordLayout.h"
16
#include "clang/AST/TypeLoc.h"
17
#include "clang/Basic/TargetInfo.h"
18
#include "clang/Lex/Preprocessor.h"
19
#include "clang/Sema/Initialization.h"
20
#include "clang/Sema/Lookup.h"
21
#include "clang/Sema/Scope.h"
22
#include "clang/Sema/ScopeInfo.h"
23
#include "clang/Sema/SemaInternal.h"
24
#include "llvm/ADT/ArrayRef.h"
25
#include "llvm/ADT/StringExtras.h"
26
#include "llvm/ADT/StringSet.h"
27
#include "llvm/MC/MCParser/MCAsmParser.h"
28
#include <optional>
29
using namespace clang;
30
using namespace sema;
31
32
/// Remove the upper-level LValueToRValue cast from an expression.
33
0
static void removeLValueToRValueCast(Expr *E) {
34
0
  Expr *Parent = E;
35
0
  Expr *ExprUnderCast = nullptr;
36
0
  SmallVector<Expr *, 8> ParentsToUpdate;
37
38
0
  while (true) {
39
0
    ParentsToUpdate.push_back(Parent);
40
0
    if (auto *ParenE = dyn_cast<ParenExpr>(Parent)) {
41
0
      Parent = ParenE->getSubExpr();
42
0
      continue;
43
0
    }
44
45
0
    Expr *Child = nullptr;
46
0
    CastExpr *ParentCast = dyn_cast<CastExpr>(Parent);
47
0
    if (ParentCast)
48
0
      Child = ParentCast->getSubExpr();
49
0
    else
50
0
      return;
51
52
0
    if (auto *CastE = dyn_cast<CastExpr>(Child))
53
0
      if (CastE->getCastKind() == CK_LValueToRValue) {
54
0
        ExprUnderCast = CastE->getSubExpr();
55
        // LValueToRValue cast inside GCCAsmStmt requires an explicit cast.
56
0
        ParentCast->setSubExpr(ExprUnderCast);
57
0
        break;
58
0
      }
59
0
    Parent = Child;
60
0
  }
61
62
  // Update parent expressions to have same ValueType as the underlying.
63
0
  assert(ExprUnderCast &&
64
0
         "Should be reachable only if LValueToRValue cast was found!");
65
0
  auto ValueKind = ExprUnderCast->getValueKind();
66
0
  for (Expr *E : ParentsToUpdate)
67
0
    E->setValueKind(ValueKind);
68
0
}
69
70
/// Emit a warning about usage of "noop"-like casts for lvalues (GNU extension)
71
/// and fix the argument with removing LValueToRValue cast from the expression.
72
static void emitAndFixInvalidAsmCastLValue(const Expr *LVal, Expr *BadArgument,
73
0
                                           Sema &S) {
74
0
  if (!S.getLangOpts().HeinousExtensions) {
75
0
    S.Diag(LVal->getBeginLoc(), diag::err_invalid_asm_cast_lvalue)
76
0
        << BadArgument->getSourceRange();
77
0
  } else {
78
0
    S.Diag(LVal->getBeginLoc(), diag::warn_invalid_asm_cast_lvalue)
79
0
        << BadArgument->getSourceRange();
80
0
  }
81
0
  removeLValueToRValueCast(BadArgument);
82
0
}
83
84
/// CheckAsmLValue - GNU C has an extremely ugly extension whereby they silently
85
/// ignore "noop" casts in places where an lvalue is required by an inline asm.
86
/// We emulate this behavior when -fheinous-gnu-extensions is specified, but
87
/// provide a strong guidance to not use it.
88
///
89
/// This method checks to see if the argument is an acceptable l-value and
90
/// returns false if it is a case we can handle.
91
0
static bool CheckAsmLValue(Expr *E, Sema &S) {
92
  // Type dependent expressions will be checked during instantiation.
93
0
  if (E->isTypeDependent())
94
0
    return false;
95
96
0
  if (E->isLValue())
97
0
    return false;  // Cool, this is an lvalue.
98
99
  // Okay, this is not an lvalue, but perhaps it is the result of a cast that we
100
  // are supposed to allow.
101
0
  const Expr *E2 = E->IgnoreParenNoopCasts(S.Context);
102
0
  if (E != E2 && E2->isLValue()) {
103
0
    emitAndFixInvalidAsmCastLValue(E2, E, S);
104
    // Accept, even if we emitted an error diagnostic.
105
0
    return false;
106
0
  }
107
108
  // None of the above, just randomly invalid non-lvalue.
109
0
  return true;
110
0
}
111
112
/// isOperandMentioned - Return true if the specified operand # is mentioned
113
/// anywhere in the decomposed asm string.
114
static bool
115
isOperandMentioned(unsigned OpNo,
116
0
                   ArrayRef<GCCAsmStmt::AsmStringPiece> AsmStrPieces) {
117
0
  for (unsigned p = 0, e = AsmStrPieces.size(); p != e; ++p) {
118
0
    const GCCAsmStmt::AsmStringPiece &Piece = AsmStrPieces[p];
119
0
    if (!Piece.isOperand())
120
0
      continue;
121
122
    // If this is a reference to the input and if the input was the smaller
123
    // one, then we have to reject this asm.
124
0
    if (Piece.getOperandNo() == OpNo)
125
0
      return true;
126
0
  }
127
0
  return false;
128
0
}
129
130
0
static bool CheckNakedParmReference(Expr *E, Sema &S) {
131
0
  FunctionDecl *Func = dyn_cast<FunctionDecl>(S.CurContext);
132
0
  if (!Func)
133
0
    return false;
134
0
  if (!Func->hasAttr<NakedAttr>())
135
0
    return false;
136
137
0
  SmallVector<Expr*, 4> WorkList;
138
0
  WorkList.push_back(E);
139
0
  while (WorkList.size()) {
140
0
    Expr *E = WorkList.pop_back_val();
141
0
    if (isa<CXXThisExpr>(E)) {
142
0
      S.Diag(E->getBeginLoc(), diag::err_asm_naked_this_ref);
143
0
      S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
144
0
      return true;
145
0
    }
146
0
    if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
147
0
      if (isa<ParmVarDecl>(DRE->getDecl())) {
148
0
        S.Diag(DRE->getBeginLoc(), diag::err_asm_naked_parm_ref);
149
0
        S.Diag(Func->getAttr<NakedAttr>()->getLocation(), diag::note_attribute);
150
0
        return true;
151
0
      }
152
0
    }
153
0
    for (Stmt *Child : E->children()) {
154
0
      if (Expr *E = dyn_cast_or_null<Expr>(Child))
155
0
        WorkList.push_back(E);
156
0
    }
157
0
  }
158
0
  return false;
159
0
}
160
161
/// Returns true if given expression is not compatible with inline
162
/// assembly's memory constraint; false otherwise.
163
static bool checkExprMemoryConstraintCompat(Sema &S, Expr *E,
164
                                            TargetInfo::ConstraintInfo &Info,
165
0
                                            bool is_input_expr) {
166
0
  enum {
167
0
    ExprBitfield = 0,
168
0
    ExprVectorElt,
169
0
    ExprGlobalRegVar,
170
0
    ExprSafeType
171
0
  } EType = ExprSafeType;
172
173
  // Bitfields, vector elements and global register variables are not
174
  // compatible.
175
0
  if (E->refersToBitField())
176
0
    EType = ExprBitfield;
177
0
  else if (E->refersToVectorElement())
178
0
    EType = ExprVectorElt;
179
0
  else if (E->refersToGlobalRegisterVar())
180
0
    EType = ExprGlobalRegVar;
181
182
0
  if (EType != ExprSafeType) {
183
0
    S.Diag(E->getBeginLoc(), diag::err_asm_non_addr_value_in_memory_constraint)
184
0
        << EType << is_input_expr << Info.getConstraintStr()
185
0
        << E->getSourceRange();
186
0
    return true;
187
0
  }
188
189
0
  return false;
190
0
}
191
192
// Extracting the register name from the Expression value,
193
// if there is no register name to extract, returns ""
194
static StringRef extractRegisterName(const Expr *Expression,
195
0
                                     const TargetInfo &Target) {
196
0
  Expression = Expression->IgnoreImpCasts();
197
0
  if (const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(Expression)) {
198
    // Handle cases where the expression is a variable
199
0
    const VarDecl *Variable = dyn_cast<VarDecl>(AsmDeclRef->getDecl());
200
0
    if (Variable && Variable->getStorageClass() == SC_Register) {
201
0
      if (AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>())
202
0
        if (Target.isValidGCCRegisterName(Attr->getLabel()))
203
0
          return Target.getNormalizedGCCRegisterName(Attr->getLabel(), true);
204
0
    }
205
0
  }
206
0
  return "";
207
0
}
208
209
// Checks if there is a conflict between the input and output lists with the
210
// clobbers list. If there's a conflict, returns the location of the
211
// conflicted clobber, else returns nullptr
212
static SourceLocation
213
getClobberConflictLocation(MultiExprArg Exprs, StringLiteral **Constraints,
214
                           StringLiteral **Clobbers, int NumClobbers,
215
                           unsigned NumLabels,
216
0
                           const TargetInfo &Target, ASTContext &Cont) {
217
0
  llvm::StringSet<> InOutVars;
218
  // Collect all the input and output registers from the extended asm
219
  // statement in order to check for conflicts with the clobber list
220
0
  for (unsigned int i = 0; i < Exprs.size() - NumLabels; ++i) {
221
0
    StringRef Constraint = Constraints[i]->getString();
222
0
    StringRef InOutReg = Target.getConstraintRegister(
223
0
        Constraint, extractRegisterName(Exprs[i], Target));
224
0
    if (InOutReg != "")
225
0
      InOutVars.insert(InOutReg);
226
0
  }
227
  // Check for each item in the clobber list if it conflicts with the input
228
  // or output
229
0
  for (int i = 0; i < NumClobbers; ++i) {
230
0
    StringRef Clobber = Clobbers[i]->getString();
231
    // We only check registers, therefore we don't check cc and memory
232
    // clobbers
233
0
    if (Clobber == "cc" || Clobber == "memory" || Clobber == "unwind")
234
0
      continue;
235
0
    Clobber = Target.getNormalizedGCCRegisterName(Clobber, true);
236
    // Go over the output's registers we collected
237
0
    if (InOutVars.count(Clobber))
238
0
      return Clobbers[i]->getBeginLoc();
239
0
  }
240
0
  return SourceLocation();
241
0
}
242
243
StmtResult Sema::ActOnGCCAsmStmt(SourceLocation AsmLoc, bool IsSimple,
244
                                 bool IsVolatile, unsigned NumOutputs,
245
                                 unsigned NumInputs, IdentifierInfo **Names,
246
                                 MultiExprArg constraints, MultiExprArg Exprs,
247
                                 Expr *asmString, MultiExprArg clobbers,
248
                                 unsigned NumLabels,
249
0
                                 SourceLocation RParenLoc) {
250
0
  unsigned NumClobbers = clobbers.size();
251
0
  StringLiteral **Constraints =
252
0
    reinterpret_cast<StringLiteral**>(constraints.data());
253
0
  StringLiteral *AsmString = cast<StringLiteral>(asmString);
254
0
  StringLiteral **Clobbers = reinterpret_cast<StringLiteral**>(clobbers.data());
255
256
0
  SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
257
258
  // The parser verifies that there is a string literal here.
259
0
  assert(AsmString->isOrdinary());
260
261
0
  FunctionDecl *FD = dyn_cast<FunctionDecl>(getCurLexicalContext());
262
0
  llvm::StringMap<bool> FeatureMap;
263
0
  Context.getFunctionFeatureMap(FeatureMap, FD);
264
265
0
  for (unsigned i = 0; i != NumOutputs; i++) {
266
0
    StringLiteral *Literal = Constraints[i];
267
0
    assert(Literal->isOrdinary());
268
269
0
    StringRef OutputName;
270
0
    if (Names[i])
271
0
      OutputName = Names[i]->getName();
272
273
0
    TargetInfo::ConstraintInfo Info(Literal->getString(), OutputName);
274
0
    if (!Context.getTargetInfo().validateOutputConstraint(Info) &&
275
0
        !(LangOpts.HIPStdPar && LangOpts.CUDAIsDevice)) {
276
0
      targetDiag(Literal->getBeginLoc(),
277
0
                 diag::err_asm_invalid_output_constraint)
278
0
          << Info.getConstraintStr();
279
0
      return new (Context)
280
0
          GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
281
0
                     NumInputs, Names, Constraints, Exprs.data(), AsmString,
282
0
                     NumClobbers, Clobbers, NumLabels, RParenLoc);
283
0
    }
284
285
0
    ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
286
0
    if (ER.isInvalid())
287
0
      return StmtError();
288
0
    Exprs[i] = ER.get();
289
290
    // Check that the output exprs are valid lvalues.
291
0
    Expr *OutputExpr = Exprs[i];
292
293
    // Referring to parameters is not allowed in naked functions.
294
0
    if (CheckNakedParmReference(OutputExpr, *this))
295
0
      return StmtError();
296
297
    // Check that the output expression is compatible with memory constraint.
298
0
    if (Info.allowsMemory() &&
299
0
        checkExprMemoryConstraintCompat(*this, OutputExpr, Info, false))
300
0
      return StmtError();
301
302
    // Disallow bit-precise integer types, since the backends tend to have
303
    // difficulties with abnormal sizes.
304
0
    if (OutputExpr->getType()->isBitIntType())
305
0
      return StmtError(
306
0
          Diag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_type)
307
0
          << OutputExpr->getType() << 0 /*Input*/
308
0
          << OutputExpr->getSourceRange());
309
310
0
    OutputConstraintInfos.push_back(Info);
311
312
    // If this is dependent, just continue.
313
0
    if (OutputExpr->isTypeDependent())
314
0
      continue;
315
316
0
    Expr::isModifiableLvalueResult IsLV =
317
0
        OutputExpr->isModifiableLvalue(Context, /*Loc=*/nullptr);
318
0
    switch (IsLV) {
319
0
    case Expr::MLV_Valid:
320
      // Cool, this is an lvalue.
321
0
      break;
322
0
    case Expr::MLV_ArrayType:
323
      // This is OK too.
324
0
      break;
325
0
    case Expr::MLV_LValueCast: {
326
0
      const Expr *LVal = OutputExpr->IgnoreParenNoopCasts(Context);
327
0
      emitAndFixInvalidAsmCastLValue(LVal, OutputExpr, *this);
328
      // Accept, even if we emitted an error diagnostic.
329
0
      break;
330
0
    }
331
0
    case Expr::MLV_IncompleteType:
332
0
    case Expr::MLV_IncompleteVoidType:
333
0
      if (RequireCompleteType(OutputExpr->getBeginLoc(), Exprs[i]->getType(),
334
0
                              diag::err_dereference_incomplete_type))
335
0
        return StmtError();
336
0
      [[fallthrough]];
337
0
    default:
338
0
      return StmtError(Diag(OutputExpr->getBeginLoc(),
339
0
                            diag::err_asm_invalid_lvalue_in_output)
340
0
                       << OutputExpr->getSourceRange());
341
0
    }
342
343
0
    unsigned Size = Context.getTypeSize(OutputExpr->getType());
344
0
    if (!Context.getTargetInfo().validateOutputSize(
345
0
            FeatureMap, Literal->getString(), Size)) {
346
0
      targetDiag(OutputExpr->getBeginLoc(), diag::err_asm_invalid_output_size)
347
0
          << Info.getConstraintStr();
348
0
      return new (Context)
349
0
          GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
350
0
                     NumInputs, Names, Constraints, Exprs.data(), AsmString,
351
0
                     NumClobbers, Clobbers, NumLabels, RParenLoc);
352
0
    }
353
0
  }
354
355
0
  SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
356
357
0
  for (unsigned i = NumOutputs, e = NumOutputs + NumInputs; i != e; i++) {
358
0
    StringLiteral *Literal = Constraints[i];
359
0
    assert(Literal->isOrdinary());
360
361
0
    StringRef InputName;
362
0
    if (Names[i])
363
0
      InputName = Names[i]->getName();
364
365
0
    TargetInfo::ConstraintInfo Info(Literal->getString(), InputName);
366
0
    if (!Context.getTargetInfo().validateInputConstraint(OutputConstraintInfos,
367
0
                                                         Info)) {
368
0
      targetDiag(Literal->getBeginLoc(), diag::err_asm_invalid_input_constraint)
369
0
          << Info.getConstraintStr();
370
0
      return new (Context)
371
0
          GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
372
0
                     NumInputs, Names, Constraints, Exprs.data(), AsmString,
373
0
                     NumClobbers, Clobbers, NumLabels, RParenLoc);
374
0
    }
375
376
0
    ExprResult ER = CheckPlaceholderExpr(Exprs[i]);
377
0
    if (ER.isInvalid())
378
0
      return StmtError();
379
0
    Exprs[i] = ER.get();
380
381
0
    Expr *InputExpr = Exprs[i];
382
383
0
    if (InputExpr->getType()->isMemberPointerType())
384
0
      return StmtError(Diag(InputExpr->getBeginLoc(),
385
0
                            diag::err_asm_pmf_through_constraint_not_permitted)
386
0
                       << InputExpr->getSourceRange());
387
388
    // Referring to parameters is not allowed in naked functions.
389
0
    if (CheckNakedParmReference(InputExpr, *this))
390
0
      return StmtError();
391
392
    // Check that the input expression is compatible with memory constraint.
393
0
    if (Info.allowsMemory() &&
394
0
        checkExprMemoryConstraintCompat(*this, InputExpr, Info, true))
395
0
      return StmtError();
396
397
    // Only allow void types for memory constraints.
398
0
    if (Info.allowsMemory() && !Info.allowsRegister()) {
399
0
      if (CheckAsmLValue(InputExpr, *this))
400
0
        return StmtError(Diag(InputExpr->getBeginLoc(),
401
0
                              diag::err_asm_invalid_lvalue_in_input)
402
0
                         << Info.getConstraintStr()
403
0
                         << InputExpr->getSourceRange());
404
0
    } else {
405
0
      ExprResult Result = DefaultFunctionArrayLvalueConversion(Exprs[i]);
406
0
      if (Result.isInvalid())
407
0
        return StmtError();
408
409
0
      InputExpr = Exprs[i] = Result.get();
410
411
0
      if (Info.requiresImmediateConstant() && !Info.allowsRegister()) {
412
0
        if (!InputExpr->isValueDependent()) {
413
0
          Expr::EvalResult EVResult;
414
0
          if (InputExpr->EvaluateAsRValue(EVResult, Context, true)) {
415
            // For compatibility with GCC, we also allow pointers that would be
416
            // integral constant expressions if they were cast to int.
417
0
            llvm::APSInt IntResult;
418
0
            if (EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(),
419
0
                                                Context))
420
0
              if (!Info.isValidAsmImmediate(IntResult))
421
0
                return StmtError(
422
0
                    Diag(InputExpr->getBeginLoc(),
423
0
                         diag::err_invalid_asm_value_for_constraint)
424
0
                    << toString(IntResult, 10) << Info.getConstraintStr()
425
0
                    << InputExpr->getSourceRange());
426
0
          }
427
0
        }
428
0
      }
429
0
    }
430
431
0
    if (Info.allowsRegister()) {
432
0
      if (InputExpr->getType()->isVoidType()) {
433
0
        return StmtError(
434
0
            Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type_in_input)
435
0
            << InputExpr->getType() << Info.getConstraintStr()
436
0
            << InputExpr->getSourceRange());
437
0
      }
438
0
    }
439
440
0
    if (InputExpr->getType()->isBitIntType())
441
0
      return StmtError(
442
0
          Diag(InputExpr->getBeginLoc(), diag::err_asm_invalid_type)
443
0
          << InputExpr->getType() << 1 /*Output*/
444
0
          << InputExpr->getSourceRange());
445
446
0
    InputConstraintInfos.push_back(Info);
447
448
0
    const Type *Ty = Exprs[i]->getType().getTypePtr();
449
0
    if (Ty->isDependentType())
450
0
      continue;
451
452
0
    if (!Ty->isVoidType() || !Info.allowsMemory())
453
0
      if (RequireCompleteType(InputExpr->getBeginLoc(), Exprs[i]->getType(),
454
0
                              diag::err_dereference_incomplete_type))
455
0
        return StmtError();
456
457
0
    unsigned Size = Context.getTypeSize(Ty);
458
0
    if (!Context.getTargetInfo().validateInputSize(FeatureMap,
459
0
                                                   Literal->getString(), Size))
460
0
      return targetDiag(InputExpr->getBeginLoc(),
461
0
                        diag::err_asm_invalid_input_size)
462
0
             << Info.getConstraintStr();
463
0
  }
464
465
0
  std::optional<SourceLocation> UnwindClobberLoc;
466
467
  // Check that the clobbers are valid.
468
0
  for (unsigned i = 0; i != NumClobbers; i++) {
469
0
    StringLiteral *Literal = Clobbers[i];
470
0
    assert(Literal->isOrdinary());
471
472
0
    StringRef Clobber = Literal->getString();
473
474
0
    if (!Context.getTargetInfo().isValidClobber(Clobber)) {
475
0
      targetDiag(Literal->getBeginLoc(), diag::err_asm_unknown_register_name)
476
0
          << Clobber;
477
0
      return new (Context)
478
0
          GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
479
0
                     NumInputs, Names, Constraints, Exprs.data(), AsmString,
480
0
                     NumClobbers, Clobbers, NumLabels, RParenLoc);
481
0
    }
482
483
0
    if (Clobber == "unwind") {
484
0
      UnwindClobberLoc = Literal->getBeginLoc();
485
0
    }
486
0
  }
487
488
  // Using unwind clobber and asm-goto together is not supported right now.
489
0
  if (UnwindClobberLoc && NumLabels > 0) {
490
0
    targetDiag(*UnwindClobberLoc, diag::err_asm_unwind_and_goto);
491
0
    return new (Context)
492
0
        GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs, NumInputs,
493
0
                   Names, Constraints, Exprs.data(), AsmString, NumClobbers,
494
0
                   Clobbers, NumLabels, RParenLoc);
495
0
  }
496
497
0
  GCCAsmStmt *NS =
498
0
    new (Context) GCCAsmStmt(Context, AsmLoc, IsSimple, IsVolatile, NumOutputs,
499
0
                             NumInputs, Names, Constraints, Exprs.data(),
500
0
                             AsmString, NumClobbers, Clobbers, NumLabels,
501
0
                             RParenLoc);
502
  // Validate the asm string, ensuring it makes sense given the operands we
503
  // have.
504
0
  SmallVector<GCCAsmStmt::AsmStringPiece, 8> Pieces;
505
0
  unsigned DiagOffs;
506
0
  if (unsigned DiagID = NS->AnalyzeAsmString(Pieces, Context, DiagOffs)) {
507
0
    targetDiag(getLocationOfStringLiteralByte(AsmString, DiagOffs), DiagID)
508
0
        << AsmString->getSourceRange();
509
0
    return NS;
510
0
  }
511
512
  // Validate constraints and modifiers.
513
0
  for (unsigned i = 0, e = Pieces.size(); i != e; ++i) {
514
0
    GCCAsmStmt::AsmStringPiece &Piece = Pieces[i];
515
0
    if (!Piece.isOperand()) continue;
516
517
    // Look for the correct constraint index.
518
0
    unsigned ConstraintIdx = Piece.getOperandNo();
519
0
    unsigned NumOperands = NS->getNumOutputs() + NS->getNumInputs();
520
    // Labels are the last in the Exprs list.
521
0
    if (NS->isAsmGoto() && ConstraintIdx >= NumOperands)
522
0
      continue;
523
    // Look for the (ConstraintIdx - NumOperands + 1)th constraint with
524
    // modifier '+'.
525
0
    if (ConstraintIdx >= NumOperands) {
526
0
      unsigned I = 0, E = NS->getNumOutputs();
527
528
0
      for (unsigned Cnt = ConstraintIdx - NumOperands; I != E; ++I)
529
0
        if (OutputConstraintInfos[I].isReadWrite() && Cnt-- == 0) {
530
0
          ConstraintIdx = I;
531
0
          break;
532
0
        }
533
534
0
      assert(I != E && "Invalid operand number should have been caught in "
535
0
                       " AnalyzeAsmString");
536
0
    }
537
538
    // Now that we have the right indexes go ahead and check.
539
0
    StringLiteral *Literal = Constraints[ConstraintIdx];
540
0
    const Type *Ty = Exprs[ConstraintIdx]->getType().getTypePtr();
541
0
    if (Ty->isDependentType() || Ty->isIncompleteType())
542
0
      continue;
543
544
0
    unsigned Size = Context.getTypeSize(Ty);
545
0
    std::string SuggestedModifier;
546
0
    if (!Context.getTargetInfo().validateConstraintModifier(
547
0
            Literal->getString(), Piece.getModifier(), Size,
548
0
            SuggestedModifier)) {
549
0
      targetDiag(Exprs[ConstraintIdx]->getBeginLoc(),
550
0
                 diag::warn_asm_mismatched_size_modifier);
551
552
0
      if (!SuggestedModifier.empty()) {
553
0
        auto B = targetDiag(Piece.getRange().getBegin(),
554
0
                            diag::note_asm_missing_constraint_modifier)
555
0
                 << SuggestedModifier;
556
0
        SuggestedModifier = "%" + SuggestedModifier + Piece.getString();
557
0
        B << FixItHint::CreateReplacement(Piece.getRange(), SuggestedModifier);
558
0
      }
559
0
    }
560
0
  }
561
562
  // Validate tied input operands for type mismatches.
563
0
  unsigned NumAlternatives = ~0U;
564
0
  for (unsigned i = 0, e = OutputConstraintInfos.size(); i != e; ++i) {
565
0
    TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
566
0
    StringRef ConstraintStr = Info.getConstraintStr();
567
0
    unsigned AltCount = ConstraintStr.count(',') + 1;
568
0
    if (NumAlternatives == ~0U) {
569
0
      NumAlternatives = AltCount;
570
0
    } else if (NumAlternatives != AltCount) {
571
0
      targetDiag(NS->getOutputExpr(i)->getBeginLoc(),
572
0
                 diag::err_asm_unexpected_constraint_alternatives)
573
0
          << NumAlternatives << AltCount;
574
0
      return NS;
575
0
    }
576
0
  }
577
0
  SmallVector<size_t, 4> InputMatchedToOutput(OutputConstraintInfos.size(),
578
0
                                              ~0U);
579
0
  for (unsigned i = 0, e = InputConstraintInfos.size(); i != e; ++i) {
580
0
    TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
581
0
    StringRef ConstraintStr = Info.getConstraintStr();
582
0
    unsigned AltCount = ConstraintStr.count(',') + 1;
583
0
    if (NumAlternatives == ~0U) {
584
0
      NumAlternatives = AltCount;
585
0
    } else if (NumAlternatives != AltCount) {
586
0
      targetDiag(NS->getInputExpr(i)->getBeginLoc(),
587
0
                 diag::err_asm_unexpected_constraint_alternatives)
588
0
          << NumAlternatives << AltCount;
589
0
      return NS;
590
0
    }
591
592
    // If this is a tied constraint, verify that the output and input have
593
    // either exactly the same type, or that they are int/ptr operands with the
594
    // same size (int/long, int*/long, are ok etc).
595
0
    if (!Info.hasTiedOperand()) continue;
596
597
0
    unsigned TiedTo = Info.getTiedOperand();
598
0
    unsigned InputOpNo = i+NumOutputs;
599
0
    Expr *OutputExpr = Exprs[TiedTo];
600
0
    Expr *InputExpr = Exprs[InputOpNo];
601
602
    // Make sure no more than one input constraint matches each output.
603
0
    assert(TiedTo < InputMatchedToOutput.size() && "TiedTo value out of range");
604
0
    if (InputMatchedToOutput[TiedTo] != ~0U) {
605
0
      targetDiag(NS->getInputExpr(i)->getBeginLoc(),
606
0
                 diag::err_asm_input_duplicate_match)
607
0
          << TiedTo;
608
0
      targetDiag(NS->getInputExpr(InputMatchedToOutput[TiedTo])->getBeginLoc(),
609
0
                 diag::note_asm_input_duplicate_first)
610
0
          << TiedTo;
611
0
      return NS;
612
0
    }
613
0
    InputMatchedToOutput[TiedTo] = i;
614
615
0
    if (OutputExpr->isTypeDependent() || InputExpr->isTypeDependent())
616
0
      continue;
617
618
0
    QualType InTy = InputExpr->getType();
619
0
    QualType OutTy = OutputExpr->getType();
620
0
    if (Context.hasSameType(InTy, OutTy))
621
0
      continue;  // All types can be tied to themselves.
622
623
    // Decide if the input and output are in the same domain (integer/ptr or
624
    // floating point.
625
0
    enum AsmDomain {
626
0
      AD_Int, AD_FP, AD_Other
627
0
    } InputDomain, OutputDomain;
628
629
0
    if (InTy->isIntegerType() || InTy->isPointerType())
630
0
      InputDomain = AD_Int;
631
0
    else if (InTy->isRealFloatingType())
632
0
      InputDomain = AD_FP;
633
0
    else
634
0
      InputDomain = AD_Other;
635
636
0
    if (OutTy->isIntegerType() || OutTy->isPointerType())
637
0
      OutputDomain = AD_Int;
638
0
    else if (OutTy->isRealFloatingType())
639
0
      OutputDomain = AD_FP;
640
0
    else
641
0
      OutputDomain = AD_Other;
642
643
    // They are ok if they are the same size and in the same domain.  This
644
    // allows tying things like:
645
    //   void* to int*
646
    //   void* to int            if they are the same size.
647
    //   double to long double   if they are the same size.
648
    //
649
0
    uint64_t OutSize = Context.getTypeSize(OutTy);
650
0
    uint64_t InSize = Context.getTypeSize(InTy);
651
0
    if (OutSize == InSize && InputDomain == OutputDomain &&
652
0
        InputDomain != AD_Other)
653
0
      continue;
654
655
    // If the smaller input/output operand is not mentioned in the asm string,
656
    // then we can promote the smaller one to a larger input and the asm string
657
    // won't notice.
658
0
    bool SmallerValueMentioned = false;
659
660
    // If this is a reference to the input and if the input was the smaller
661
    // one, then we have to reject this asm.
662
0
    if (isOperandMentioned(InputOpNo, Pieces)) {
663
      // This is a use in the asm string of the smaller operand.  Since we
664
      // codegen this by promoting to a wider value, the asm will get printed
665
      // "wrong".
666
0
      SmallerValueMentioned |= InSize < OutSize;
667
0
    }
668
0
    if (isOperandMentioned(TiedTo, Pieces)) {
669
      // If this is a reference to the output, and if the output is the larger
670
      // value, then it's ok because we'll promote the input to the larger type.
671
0
      SmallerValueMentioned |= OutSize < InSize;
672
0
    }
673
674
    // If the smaller value wasn't mentioned in the asm string, and if the
675
    // output was a register, just extend the shorter one to the size of the
676
    // larger one.
677
0
    if (!SmallerValueMentioned && InputDomain != AD_Other &&
678
0
        OutputConstraintInfos[TiedTo].allowsRegister()) {
679
      // FIXME: GCC supports the OutSize to be 128 at maximum. Currently codegen
680
      // crash when the size larger than the register size. So we limit it here.
681
0
      if (OutTy->isStructureType() &&
682
0
          Context.getIntTypeForBitwidth(OutSize, /*Signed*/ false).isNull()) {
683
0
        targetDiag(OutputExpr->getExprLoc(), diag::err_store_value_to_reg);
684
0
        return NS;
685
0
      }
686
687
0
      continue;
688
0
    }
689
690
    // Either both of the operands were mentioned or the smaller one was
691
    // mentioned.  One more special case that we'll allow: if the tied input is
692
    // integer, unmentioned, and is a constant, then we'll allow truncating it
693
    // down to the size of the destination.
694
0
    if (InputDomain == AD_Int && OutputDomain == AD_Int &&
695
0
        !isOperandMentioned(InputOpNo, Pieces) &&
696
0
        InputExpr->isEvaluatable(Context)) {
697
0
      CastKind castKind =
698
0
        (OutTy->isBooleanType() ? CK_IntegralToBoolean : CK_IntegralCast);
699
0
      InputExpr = ImpCastExprToType(InputExpr, OutTy, castKind).get();
700
0
      Exprs[InputOpNo] = InputExpr;
701
0
      NS->setInputExpr(i, InputExpr);
702
0
      continue;
703
0
    }
704
705
0
    targetDiag(InputExpr->getBeginLoc(), diag::err_asm_tying_incompatible_types)
706
0
        << InTy << OutTy << OutputExpr->getSourceRange()
707
0
        << InputExpr->getSourceRange();
708
0
    return NS;
709
0
  }
710
711
  // Check for conflicts between clobber list and input or output lists
712
0
  SourceLocation ConstraintLoc =
713
0
      getClobberConflictLocation(Exprs, Constraints, Clobbers, NumClobbers,
714
0
                                 NumLabels,
715
0
                                 Context.getTargetInfo(), Context);
716
0
  if (ConstraintLoc.isValid())
717
0
    targetDiag(ConstraintLoc, diag::error_inoutput_conflict_with_clobber);
718
719
  // Check for duplicate asm operand name between input, output and label lists.
720
0
  typedef std::pair<StringRef , Expr *> NamedOperand;
721
0
  SmallVector<NamedOperand, 4> NamedOperandList;
722
0
  for (unsigned i = 0, e = NumOutputs + NumInputs + NumLabels; i != e; ++i)
723
0
    if (Names[i])
724
0
      NamedOperandList.emplace_back(
725
0
          std::make_pair(Names[i]->getName(), Exprs[i]));
726
  // Sort NamedOperandList.
727
0
  llvm::stable_sort(NamedOperandList, llvm::less_first());
728
  // Find adjacent duplicate operand.
729
0
  SmallVector<NamedOperand, 4>::iterator Found =
730
0
      std::adjacent_find(begin(NamedOperandList), end(NamedOperandList),
731
0
                         [](const NamedOperand &LHS, const NamedOperand &RHS) {
732
0
                           return LHS.first == RHS.first;
733
0
                         });
734
0
  if (Found != NamedOperandList.end()) {
735
0
    Diag((Found + 1)->second->getBeginLoc(),
736
0
         diag::error_duplicate_asm_operand_name)
737
0
        << (Found + 1)->first;
738
0
    Diag(Found->second->getBeginLoc(), diag::note_duplicate_asm_operand_name)
739
0
        << Found->first;
740
0
    return StmtError();
741
0
  }
742
0
  if (NS->isAsmGoto())
743
0
    setFunctionHasBranchIntoScope();
744
745
0
  CleanupVarDeclMarking();
746
0
  DiscardCleanupsInEvaluationContext();
747
0
  return NS;
748
0
}
749
750
void Sema::FillInlineAsmIdentifierInfo(Expr *Res,
751
0
                                       llvm::InlineAsmIdentifierInfo &Info) {
752
0
  QualType T = Res->getType();
753
0
  Expr::EvalResult Eval;
754
0
  if (T->isFunctionType() || T->isDependentType())
755
0
    return Info.setLabel(Res);
756
0
  if (Res->isPRValue()) {
757
0
    bool IsEnum = isa<clang::EnumType>(T);
758
0
    if (DeclRefExpr *DRE = dyn_cast<clang::DeclRefExpr>(Res))
759
0
      if (DRE->getDecl()->getKind() == Decl::EnumConstant)
760
0
        IsEnum = true;
761
0
    if (IsEnum && Res->EvaluateAsRValue(Eval, Context))
762
0
      return Info.setEnum(Eval.Val.getInt().getSExtValue());
763
764
0
    return Info.setLabel(Res);
765
0
  }
766
0
  unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
767
0
  unsigned Type = Size;
768
0
  if (const auto *ATy = Context.getAsArrayType(T))
769
0
    Type = Context.getTypeSizeInChars(ATy->getElementType()).getQuantity();
770
0
  bool IsGlobalLV = false;
771
0
  if (Res->EvaluateAsLValue(Eval, Context))
772
0
    IsGlobalLV = Eval.isGlobalLValue();
773
0
  Info.setVar(Res, IsGlobalLV, Size, Type);
774
0
}
775
776
ExprResult Sema::LookupInlineAsmIdentifier(CXXScopeSpec &SS,
777
                                           SourceLocation TemplateKWLoc,
778
                                           UnqualifiedId &Id,
779
0
                                           bool IsUnevaluatedContext) {
780
781
0
  if (IsUnevaluatedContext)
782
0
    PushExpressionEvaluationContext(
783
0
        ExpressionEvaluationContext::UnevaluatedAbstract,
784
0
        ReuseLambdaContextDecl);
785
786
0
  ExprResult Result = ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Id,
787
0
                                        /*trailing lparen*/ false,
788
0
                                        /*is & operand*/ false,
789
0
                                        /*CorrectionCandidateCallback=*/nullptr,
790
0
                                        /*IsInlineAsmIdentifier=*/ true);
791
792
0
  if (IsUnevaluatedContext)
793
0
    PopExpressionEvaluationContext();
794
795
0
  if (!Result.isUsable()) return Result;
796
797
0
  Result = CheckPlaceholderExpr(Result.get());
798
0
  if (!Result.isUsable()) return Result;
799
800
  // Referring to parameters is not allowed in naked functions.
801
0
  if (CheckNakedParmReference(Result.get(), *this))
802
0
    return ExprError();
803
804
0
  QualType T = Result.get()->getType();
805
806
0
  if (T->isDependentType()) {
807
0
    return Result;
808
0
  }
809
810
  // Any sort of function type is fine.
811
0
  if (T->isFunctionType()) {
812
0
    return Result;
813
0
  }
814
815
  // Otherwise, it needs to be a complete type.
816
0
  if (RequireCompleteExprType(Result.get(), diag::err_asm_incomplete_type)) {
817
0
    return ExprError();
818
0
  }
819
820
0
  return Result;
821
0
}
822
823
bool Sema::LookupInlineAsmField(StringRef Base, StringRef Member,
824
0
                                unsigned &Offset, SourceLocation AsmLoc) {
825
0
  Offset = 0;
826
0
  SmallVector<StringRef, 2> Members;
827
0
  Member.split(Members, ".");
828
829
0
  NamedDecl *FoundDecl = nullptr;
830
831
  // MS InlineAsm uses 'this' as a base
832
0
  if (getLangOpts().CPlusPlus && Base.equals("this")) {
833
0
    if (const Type *PT = getCurrentThisType().getTypePtrOrNull())
834
0
      FoundDecl = PT->getPointeeType()->getAsTagDecl();
835
0
  } else {
836
0
    LookupResult BaseResult(*this, &Context.Idents.get(Base), SourceLocation(),
837
0
                            LookupOrdinaryName);
838
0
    if (LookupName(BaseResult, getCurScope()) && BaseResult.isSingleResult())
839
0
      FoundDecl = BaseResult.getFoundDecl();
840
0
  }
841
842
0
  if (!FoundDecl)
843
0
    return true;
844
845
0
  for (StringRef NextMember : Members) {
846
0
    const RecordType *RT = nullptr;
847
0
    if (VarDecl *VD = dyn_cast<VarDecl>(FoundDecl))
848
0
      RT = VD->getType()->getAs<RecordType>();
849
0
    else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(FoundDecl)) {
850
0
      MarkAnyDeclReferenced(TD->getLocation(), TD, /*OdrUse=*/false);
851
      // MS InlineAsm often uses struct pointer aliases as a base
852
0
      QualType QT = TD->getUnderlyingType();
853
0
      if (const auto *PT = QT->getAs<PointerType>())
854
0
        QT = PT->getPointeeType();
855
0
      RT = QT->getAs<RecordType>();
856
0
    } else if (TypeDecl *TD = dyn_cast<TypeDecl>(FoundDecl))
857
0
      RT = TD->getTypeForDecl()->getAs<RecordType>();
858
0
    else if (FieldDecl *TD = dyn_cast<FieldDecl>(FoundDecl))
859
0
      RT = TD->getType()->getAs<RecordType>();
860
0
    if (!RT)
861
0
      return true;
862
863
0
    if (RequireCompleteType(AsmLoc, QualType(RT, 0),
864
0
                            diag::err_asm_incomplete_type))
865
0
      return true;
866
867
0
    LookupResult FieldResult(*this, &Context.Idents.get(NextMember),
868
0
                             SourceLocation(), LookupMemberName);
869
870
0
    if (!LookupQualifiedName(FieldResult, RT->getDecl()))
871
0
      return true;
872
873
0
    if (!FieldResult.isSingleResult())
874
0
      return true;
875
0
    FoundDecl = FieldResult.getFoundDecl();
876
877
    // FIXME: Handle IndirectFieldDecl?
878
0
    FieldDecl *FD = dyn_cast<FieldDecl>(FoundDecl);
879
0
    if (!FD)
880
0
      return true;
881
882
0
    const ASTRecordLayout &RL = Context.getASTRecordLayout(RT->getDecl());
883
0
    unsigned i = FD->getFieldIndex();
884
0
    CharUnits Result = Context.toCharUnitsFromBits(RL.getFieldOffset(i));
885
0
    Offset += (unsigned)Result.getQuantity();
886
0
  }
887
888
0
  return false;
889
0
}
890
891
ExprResult
892
Sema::LookupInlineAsmVarDeclField(Expr *E, StringRef Member,
893
0
                                  SourceLocation AsmLoc) {
894
895
0
  QualType T = E->getType();
896
0
  if (T->isDependentType()) {
897
0
    DeclarationNameInfo NameInfo;
898
0
    NameInfo.setLoc(AsmLoc);
899
0
    NameInfo.setName(&Context.Idents.get(Member));
900
0
    return CXXDependentScopeMemberExpr::Create(
901
0
        Context, E, T, /*IsArrow=*/false, AsmLoc, NestedNameSpecifierLoc(),
902
0
        SourceLocation(),
903
0
        /*FirstQualifierFoundInScope=*/nullptr, NameInfo, /*TemplateArgs=*/nullptr);
904
0
  }
905
906
0
  const RecordType *RT = T->getAs<RecordType>();
907
  // FIXME: Diagnose this as field access into a scalar type.
908
0
  if (!RT)
909
0
    return ExprResult();
910
911
0
  LookupResult FieldResult(*this, &Context.Idents.get(Member), AsmLoc,
912
0
                           LookupMemberName);
913
914
0
  if (!LookupQualifiedName(FieldResult, RT->getDecl()))
915
0
    return ExprResult();
916
917
  // Only normal and indirect field results will work.
918
0
  ValueDecl *FD = dyn_cast<FieldDecl>(FieldResult.getFoundDecl());
919
0
  if (!FD)
920
0
    FD = dyn_cast<IndirectFieldDecl>(FieldResult.getFoundDecl());
921
0
  if (!FD)
922
0
    return ExprResult();
923
924
  // Make an Expr to thread through OpDecl.
925
0
  ExprResult Result = BuildMemberReferenceExpr(
926
0
      E, E->getType(), AsmLoc, /*IsArrow=*/false, CXXScopeSpec(),
927
0
      SourceLocation(), nullptr, FieldResult, nullptr, nullptr);
928
929
0
  return Result;
930
0
}
931
932
StmtResult Sema::ActOnMSAsmStmt(SourceLocation AsmLoc, SourceLocation LBraceLoc,
933
                                ArrayRef<Token> AsmToks,
934
                                StringRef AsmString,
935
                                unsigned NumOutputs, unsigned NumInputs,
936
                                ArrayRef<StringRef> Constraints,
937
                                ArrayRef<StringRef> Clobbers,
938
                                ArrayRef<Expr*> Exprs,
939
0
                                SourceLocation EndLoc) {
940
0
  bool IsSimple = (NumOutputs != 0 || NumInputs != 0);
941
0
  setFunctionHasBranchProtectedScope();
942
943
0
  bool InvalidOperand = false;
944
0
  for (uint64_t I = 0; I < NumOutputs + NumInputs; ++I) {
945
0
    Expr *E = Exprs[I];
946
0
    if (E->getType()->isBitIntType()) {
947
0
      InvalidOperand = true;
948
0
      Diag(E->getBeginLoc(), diag::err_asm_invalid_type)
949
0
          << E->getType() << (I < NumOutputs)
950
0
          << E->getSourceRange();
951
0
    } else if (E->refersToBitField()) {
952
0
      InvalidOperand = true;
953
0
      FieldDecl *BitField = E->getSourceBitField();
954
0
      Diag(E->getBeginLoc(), diag::err_ms_asm_bitfield_unsupported)
955
0
          << E->getSourceRange();
956
0
      Diag(BitField->getLocation(), diag::note_bitfield_decl);
957
0
    }
958
0
  }
959
0
  if (InvalidOperand)
960
0
    return StmtError();
961
962
0
  MSAsmStmt *NS =
963
0
    new (Context) MSAsmStmt(Context, AsmLoc, LBraceLoc, IsSimple,
964
0
                            /*IsVolatile*/ true, AsmToks, NumOutputs, NumInputs,
965
0
                            Constraints, Exprs, AsmString,
966
0
                            Clobbers, EndLoc);
967
0
  return NS;
968
0
}
969
970
LabelDecl *Sema::GetOrCreateMSAsmLabel(StringRef ExternalLabelName,
971
                                       SourceLocation Location,
972
0
                                       bool AlwaysCreate) {
973
0
  LabelDecl* Label = LookupOrCreateLabel(PP.getIdentifierInfo(ExternalLabelName),
974
0
                                         Location);
975
976
0
  if (Label->isMSAsmLabel()) {
977
    // If we have previously created this label implicitly, mark it as used.
978
0
    Label->markUsed(Context);
979
0
  } else {
980
    // Otherwise, insert it, but only resolve it if we have seen the label itself.
981
0
    std::string InternalName;
982
0
    llvm::raw_string_ostream OS(InternalName);
983
    // Create an internal name for the label.  The name should not be a valid
984
    // mangled name, and should be unique.  We use a dot to make the name an
985
    // invalid mangled name. We use LLVM's inline asm ${:uid} escape so that a
986
    // unique label is generated each time this blob is emitted, even after
987
    // inlining or LTO.
988
0
    OS << "__MSASMLABEL_.${:uid}__";
989
0
    for (char C : ExternalLabelName) {
990
0
      OS << C;
991
      // We escape '$' in asm strings by replacing it with "$$"
992
0
      if (C == '$')
993
0
        OS << '$';
994
0
    }
995
0
    Label->setMSAsmLabel(OS.str());
996
0
  }
997
0
  if (AlwaysCreate) {
998
    // The label might have been created implicitly from a previously encountered
999
    // goto statement.  So, for both newly created and looked up labels, we mark
1000
    // them as resolved.
1001
0
    Label->setMSAsmLabelResolved();
1002
0
  }
1003
  // Adjust their location for being able to generate accurate diagnostics.
1004
0
  Label->setLocation(Location);
1005
1006
0
  return Label;
1007
0
}