/src/llvm-project/llvm/lib/Analysis/ConstantFolding.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===-- ConstantFolding.cpp - Fold instructions into constants ------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file defines routines for folding instructions into constants. |
10 | | // |
11 | | // Also, to supplement the basic IR ConstantExpr simplifications, |
12 | | // this file defines some additional folding routines that can make use of |
13 | | // DataLayout information. These functions cannot go in IR due to library |
14 | | // dependency issues. |
15 | | // |
16 | | //===----------------------------------------------------------------------===// |
17 | | |
18 | | #include "llvm/Analysis/ConstantFolding.h" |
19 | | #include "llvm/ADT/APFloat.h" |
20 | | #include "llvm/ADT/APInt.h" |
21 | | #include "llvm/ADT/APSInt.h" |
22 | | #include "llvm/ADT/ArrayRef.h" |
23 | | #include "llvm/ADT/DenseMap.h" |
24 | | #include "llvm/ADT/STLExtras.h" |
25 | | #include "llvm/ADT/SmallVector.h" |
26 | | #include "llvm/ADT/StringRef.h" |
27 | | #include "llvm/Analysis/TargetFolder.h" |
28 | | #include "llvm/Analysis/TargetLibraryInfo.h" |
29 | | #include "llvm/Analysis/ValueTracking.h" |
30 | | #include "llvm/Analysis/VectorUtils.h" |
31 | | #include "llvm/Config/config.h" |
32 | | #include "llvm/IR/Constant.h" |
33 | | #include "llvm/IR/ConstantFold.h" |
34 | | #include "llvm/IR/Constants.h" |
35 | | #include "llvm/IR/DataLayout.h" |
36 | | #include "llvm/IR/DerivedTypes.h" |
37 | | #include "llvm/IR/Function.h" |
38 | | #include "llvm/IR/GlobalValue.h" |
39 | | #include "llvm/IR/GlobalVariable.h" |
40 | | #include "llvm/IR/InstrTypes.h" |
41 | | #include "llvm/IR/Instruction.h" |
42 | | #include "llvm/IR/Instructions.h" |
43 | | #include "llvm/IR/IntrinsicInst.h" |
44 | | #include "llvm/IR/Intrinsics.h" |
45 | | #include "llvm/IR/IntrinsicsAArch64.h" |
46 | | #include "llvm/IR/IntrinsicsAMDGPU.h" |
47 | | #include "llvm/IR/IntrinsicsARM.h" |
48 | | #include "llvm/IR/IntrinsicsWebAssembly.h" |
49 | | #include "llvm/IR/IntrinsicsX86.h" |
50 | | #include "llvm/IR/Operator.h" |
51 | | #include "llvm/IR/Type.h" |
52 | | #include "llvm/IR/Value.h" |
53 | | #include "llvm/Support/Casting.h" |
54 | | #include "llvm/Support/ErrorHandling.h" |
55 | | #include "llvm/Support/KnownBits.h" |
56 | | #include "llvm/Support/MathExtras.h" |
57 | | #include <cassert> |
58 | | #include <cerrno> |
59 | | #include <cfenv> |
60 | | #include <cmath> |
61 | | #include <cstdint> |
62 | | |
63 | | using namespace llvm; |
64 | | |
65 | | namespace { |
66 | | |
67 | | //===----------------------------------------------------------------------===// |
68 | | // Constant Folding internal helper functions |
69 | | //===----------------------------------------------------------------------===// |
70 | | |
71 | | static Constant *foldConstVectorToAPInt(APInt &Result, Type *DestTy, |
72 | | Constant *C, Type *SrcEltTy, |
73 | | unsigned NumSrcElts, |
74 | 1.18k | const DataLayout &DL) { |
75 | | // Now that we know that the input value is a vector of integers, just shift |
76 | | // and insert them into our result. |
77 | 1.18k | unsigned BitShift = DL.getTypeSizeInBits(SrcEltTy); |
78 | 11.9k | for (unsigned i = 0; i != NumSrcElts; ++i) { |
79 | 10.8k | Constant *Element; |
80 | 10.8k | if (DL.isLittleEndian()) |
81 | 10.7k | Element = C->getAggregateElement(NumSrcElts - i - 1); |
82 | 30 | else |
83 | 30 | Element = C->getAggregateElement(i); |
84 | | |
85 | 10.8k | if (Element && isa<UndefValue>(Element)) { |
86 | 2.04k | Result <<= BitShift; |
87 | 2.04k | continue; |
88 | 2.04k | } |
89 | | |
90 | 8.76k | auto *ElementCI = dyn_cast_or_null<ConstantInt>(Element); |
91 | 8.76k | if (!ElementCI) |
92 | 24 | return ConstantExpr::getBitCast(C, DestTy); |
93 | | |
94 | 8.74k | Result <<= BitShift; |
95 | 8.74k | Result |= ElementCI->getValue().zext(Result.getBitWidth()); |
96 | 8.74k | } |
97 | | |
98 | 1.16k | return nullptr; |
99 | 1.18k | } |
100 | | |
101 | | /// Constant fold bitcast, symbolically evaluating it with DataLayout. |
102 | | /// This always returns a non-null constant, but it may be a |
103 | | /// ConstantExpr if unfoldable. |
104 | 12.8k | Constant *FoldBitCast(Constant *C, Type *DestTy, const DataLayout &DL) { |
105 | 12.8k | assert(CastInst::castIsValid(Instruction::BitCast, C, DestTy) && |
106 | 12.8k | "Invalid constantexpr bitcast!"); |
107 | | |
108 | | // Catch the obvious splat cases. |
109 | 12.8k | if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy)) |
110 | 2.76k | return Res; |
111 | | |
112 | 10.0k | if (auto *VTy = dyn_cast<VectorType>(C->getType())) { |
113 | | // Handle a vector->scalar integer/fp cast. |
114 | 1.90k | if (isa<IntegerType>(DestTy) || DestTy->isFloatingPointTy()) { |
115 | 1.18k | unsigned NumSrcElts = cast<FixedVectorType>(VTy)->getNumElements(); |
116 | 1.18k | Type *SrcEltTy = VTy->getElementType(); |
117 | | |
118 | | // If the vector is a vector of floating point, convert it to vector of int |
119 | | // to simplify things. |
120 | 1.18k | if (SrcEltTy->isFloatingPointTy()) { |
121 | 84 | unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); |
122 | 84 | auto *SrcIVTy = FixedVectorType::get( |
123 | 84 | IntegerType::get(C->getContext(), FPWidth), NumSrcElts); |
124 | | // Ask IR to do the conversion now that #elts line up. |
125 | 84 | C = ConstantExpr::getBitCast(C, SrcIVTy); |
126 | 84 | } |
127 | | |
128 | 1.18k | APInt Result(DL.getTypeSizeInBits(DestTy), 0); |
129 | 1.18k | if (Constant *CE = foldConstVectorToAPInt(Result, DestTy, C, |
130 | 1.18k | SrcEltTy, NumSrcElts, DL)) |
131 | 24 | return CE; |
132 | | |
133 | 1.16k | if (isa<IntegerType>(DestTy)) |
134 | 1.10k | return ConstantInt::get(DestTy, Result); |
135 | | |
136 | 57 | APFloat FP(DestTy->getFltSemantics(), Result); |
137 | 57 | return ConstantFP::get(DestTy->getContext(), FP); |
138 | 1.16k | } |
139 | 1.90k | } |
140 | | |
141 | | // The code below only handles casts to vectors currently. |
142 | 8.88k | auto *DestVTy = dyn_cast<VectorType>(DestTy); |
143 | 8.88k | if (!DestVTy) |
144 | 7.96k | return ConstantExpr::getBitCast(C, DestTy); |
145 | | |
146 | | // If this is a scalar -> vector cast, convert the input into a <1 x scalar> |
147 | | // vector so the code below can handle it uniformly. |
148 | 920 | if (isa<ConstantFP>(C) || isa<ConstantInt>(C)) { |
149 | 95 | Constant *Ops = C; // don't take the address of C! |
150 | 95 | return FoldBitCast(ConstantVector::get(Ops), DestTy, DL); |
151 | 95 | } |
152 | | |
153 | | // If this is a bitcast from constant vector -> vector, fold it. |
154 | 825 | if (!isa<ConstantDataVector>(C) && !isa<ConstantVector>(C)) |
155 | 121 | return ConstantExpr::getBitCast(C, DestTy); |
156 | | |
157 | | // If the element types match, IR can fold it. |
158 | 704 | unsigned NumDstElt = cast<FixedVectorType>(DestVTy)->getNumElements(); |
159 | 704 | unsigned NumSrcElt = cast<FixedVectorType>(C->getType())->getNumElements(); |
160 | 704 | if (NumDstElt == NumSrcElt) |
161 | 44 | return ConstantExpr::getBitCast(C, DestTy); |
162 | | |
163 | 660 | Type *SrcEltTy = cast<VectorType>(C->getType())->getElementType(); |
164 | 660 | Type *DstEltTy = DestVTy->getElementType(); |
165 | | |
166 | | // Otherwise, we're changing the number of elements in a vector, which |
167 | | // requires endianness information to do the right thing. For example, |
168 | | // bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) |
169 | | // folds to (little endian): |
170 | | // <4 x i32> <i32 0, i32 0, i32 1, i32 0> |
171 | | // and to (big endian): |
172 | | // <4 x i32> <i32 0, i32 0, i32 0, i32 1> |
173 | | |
174 | | // First thing is first. We only want to think about integer here, so if |
175 | | // we have something in FP form, recast it as integer. |
176 | 660 | if (DstEltTy->isFloatingPointTy()) { |
177 | | // Fold to an vector of integers with same size as our FP type. |
178 | 26 | unsigned FPWidth = DstEltTy->getPrimitiveSizeInBits(); |
179 | 26 | auto *DestIVTy = FixedVectorType::get( |
180 | 26 | IntegerType::get(C->getContext(), FPWidth), NumDstElt); |
181 | | // Recursively handle this integer conversion, if possible. |
182 | 26 | C = FoldBitCast(C, DestIVTy, DL); |
183 | | |
184 | | // Finally, IR can handle this now that #elts line up. |
185 | 26 | return ConstantExpr::getBitCast(C, DestTy); |
186 | 26 | } |
187 | | |
188 | | // Okay, we know the destination is integer, if the input is FP, convert |
189 | | // it to integer first. |
190 | 634 | if (SrcEltTy->isFloatingPointTy()) { |
191 | 16 | unsigned FPWidth = SrcEltTy->getPrimitiveSizeInBits(); |
192 | 16 | auto *SrcIVTy = FixedVectorType::get( |
193 | 16 | IntegerType::get(C->getContext(), FPWidth), NumSrcElt); |
194 | | // Ask IR to do the conversion now that #elts line up. |
195 | 16 | C = ConstantExpr::getBitCast(C, SrcIVTy); |
196 | | // If IR wasn't able to fold it, bail out. |
197 | 16 | if (!isa<ConstantVector>(C) && // FIXME: Remove ConstantVector. |
198 | 16 | !isa<ConstantDataVector>(C)) |
199 | 0 | return C; |
200 | 16 | } |
201 | | |
202 | | // Now we know that the input and output vectors are both integer vectors |
203 | | // of the same size, and that their #elements is not the same. Do the |
204 | | // conversion here, which depends on whether the input or output has |
205 | | // more elements. |
206 | 634 | bool isLittleEndian = DL.isLittleEndian(); |
207 | | |
208 | 634 | SmallVector<Constant*, 32> Result; |
209 | 634 | if (NumDstElt < NumSrcElt) { |
210 | | // Handle: bitcast (<4 x i32> <i32 0, i32 1, i32 2, i32 3> to <2 x i64>) |
211 | 306 | Constant *Zero = Constant::getNullValue(DstEltTy); |
212 | 306 | unsigned Ratio = NumSrcElt/NumDstElt; |
213 | 306 | unsigned SrcBitSize = SrcEltTy->getPrimitiveSizeInBits(); |
214 | 306 | unsigned SrcElt = 0; |
215 | 1.69k | for (unsigned i = 0; i != NumDstElt; ++i) { |
216 | | // Build each element of the result. |
217 | 1.39k | Constant *Elt = Zero; |
218 | 1.39k | unsigned ShiftAmt = isLittleEndian ? 0 : SrcBitSize*(Ratio-1); |
219 | 4.70k | for (unsigned j = 0; j != Ratio; ++j) { |
220 | 3.31k | Constant *Src = C->getAggregateElement(SrcElt++); |
221 | 3.31k | if (Src && isa<UndefValue>(Src)) |
222 | 855 | Src = Constant::getNullValue( |
223 | 855 | cast<VectorType>(C->getType())->getElementType()); |
224 | 2.45k | else |
225 | 2.45k | Src = dyn_cast_or_null<ConstantInt>(Src); |
226 | 3.31k | if (!Src) // Reject constantexpr elements. |
227 | 0 | return ConstantExpr::getBitCast(C, DestTy); |
228 | | |
229 | | // Zero extend the element to the right size. |
230 | 3.31k | Src = ConstantFoldCastOperand(Instruction::ZExt, Src, Elt->getType(), |
231 | 3.31k | DL); |
232 | 3.31k | assert(Src && "Constant folding cannot fail on plain integers"); |
233 | | |
234 | | // Shift it to the right place, depending on endianness. |
235 | 0 | Src = ConstantFoldBinaryOpOperands( |
236 | 3.31k | Instruction::Shl, Src, ConstantInt::get(Src->getType(), ShiftAmt), |
237 | 3.31k | DL); |
238 | 3.31k | assert(Src && "Constant folding cannot fail on plain integers"); |
239 | | |
240 | 3.31k | ShiftAmt += isLittleEndian ? SrcBitSize : -SrcBitSize; |
241 | | |
242 | | // Mix it in. |
243 | 3.31k | Elt = ConstantFoldBinaryOpOperands(Instruction::Or, Elt, Src, DL); |
244 | 3.31k | assert(Elt && "Constant folding cannot fail on plain integers"); |
245 | 3.31k | } |
246 | 1.39k | Result.push_back(Elt); |
247 | 1.39k | } |
248 | 306 | return ConstantVector::get(Result); |
249 | 306 | } |
250 | | |
251 | | // Handle: bitcast (<2 x i64> <i64 0, i64 1> to <4 x i32>) |
252 | 328 | unsigned Ratio = NumDstElt/NumSrcElt; |
253 | 328 | unsigned DstBitSize = DL.getTypeSizeInBits(DstEltTy); |
254 | | |
255 | | // Loop over each source value, expanding into multiple results. |
256 | 1.05k | for (unsigned i = 0; i != NumSrcElt; ++i) { |
257 | 740 | auto *Element = C->getAggregateElement(i); |
258 | | |
259 | 740 | if (!Element) // Reject constantexpr elements. |
260 | 0 | return ConstantExpr::getBitCast(C, DestTy); |
261 | | |
262 | 740 | if (isa<UndefValue>(Element)) { |
263 | | // Correctly Propagate undef values. |
264 | 67 | Result.append(Ratio, UndefValue::get(DstEltTy)); |
265 | 67 | continue; |
266 | 67 | } |
267 | | |
268 | 673 | auto *Src = dyn_cast<ConstantInt>(Element); |
269 | 673 | if (!Src) |
270 | 16 | return ConstantExpr::getBitCast(C, DestTy); |
271 | | |
272 | 657 | unsigned ShiftAmt = isLittleEndian ? 0 : DstBitSize*(Ratio-1); |
273 | 2.85k | for (unsigned j = 0; j != Ratio; ++j) { |
274 | | // Shift the piece of the value into the right place, depending on |
275 | | // endianness. |
276 | 2.19k | APInt Elt = Src->getValue().lshr(ShiftAmt); |
277 | 2.19k | ShiftAmt += isLittleEndian ? DstBitSize : -DstBitSize; |
278 | | |
279 | | // Truncate and remember this piece. |
280 | 2.19k | Result.push_back(ConstantInt::get(DstEltTy, Elt.trunc(DstBitSize))); |
281 | 2.19k | } |
282 | 657 | } |
283 | | |
284 | 312 | return ConstantVector::get(Result); |
285 | 328 | } |
286 | | |
287 | | } // end anonymous namespace |
288 | | |
289 | | /// If this constant is a constant offset from a global, return the global and |
290 | | /// the constant. Because of constantexprs, this function is recursive. |
291 | | bool llvm::IsConstantOffsetFromGlobal(Constant *C, GlobalValue *&GV, |
292 | | APInt &Offset, const DataLayout &DL, |
293 | 4.63k | DSOLocalEquivalent **DSOEquiv) { |
294 | 4.63k | if (DSOEquiv) |
295 | 0 | *DSOEquiv = nullptr; |
296 | | |
297 | | // Trivial case, constant is the global. |
298 | 4.63k | if ((GV = dyn_cast<GlobalValue>(C))) { |
299 | 390 | unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); |
300 | 390 | Offset = APInt(BitWidth, 0); |
301 | 390 | return true; |
302 | 390 | } |
303 | | |
304 | 4.24k | if (auto *FoundDSOEquiv = dyn_cast<DSOLocalEquivalent>(C)) { |
305 | 0 | if (DSOEquiv) |
306 | 0 | *DSOEquiv = FoundDSOEquiv; |
307 | 0 | GV = FoundDSOEquiv->getGlobalValue(); |
308 | 0 | unsigned BitWidth = DL.getIndexTypeSizeInBits(GV->getType()); |
309 | 0 | Offset = APInt(BitWidth, 0); |
310 | 0 | return true; |
311 | 0 | } |
312 | | |
313 | | // Otherwise, if this isn't a constant expr, bail out. |
314 | 4.24k | auto *CE = dyn_cast<ConstantExpr>(C); |
315 | 4.24k | if (!CE) return false; |
316 | | |
317 | | // Look through ptr->int and ptr->ptr casts. |
318 | 1.89k | if (CE->getOpcode() == Instruction::PtrToInt || |
319 | 1.89k | CE->getOpcode() == Instruction::BitCast) |
320 | 469 | return IsConstantOffsetFromGlobal(CE->getOperand(0), GV, Offset, DL, |
321 | 469 | DSOEquiv); |
322 | | |
323 | | // i32* getelementptr ([5 x i32]* @a, i32 0, i32 5) |
324 | 1.42k | auto *GEP = dyn_cast<GEPOperator>(CE); |
325 | 1.42k | if (!GEP) |
326 | 930 | return false; |
327 | | |
328 | 499 | unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); |
329 | 499 | APInt TmpOffset(BitWidth, 0); |
330 | | |
331 | | // If the base isn't a global+constant, we aren't either. |
332 | 499 | if (!IsConstantOffsetFromGlobal(CE->getOperand(0), GV, TmpOffset, DL, |
333 | 499 | DSOEquiv)) |
334 | 102 | return false; |
335 | | |
336 | | // Otherwise, add any offset that our operands provide. |
337 | 397 | if (!GEP->accumulateConstantOffset(DL, TmpOffset)) |
338 | 63 | return false; |
339 | | |
340 | 334 | Offset = TmpOffset; |
341 | 334 | return true; |
342 | 397 | } |
343 | | |
344 | | Constant *llvm::ConstantFoldLoadThroughBitcast(Constant *C, Type *DestTy, |
345 | 10.3k | const DataLayout &DL) { |
346 | 11.9k | do { |
347 | 11.9k | Type *SrcTy = C->getType(); |
348 | 11.9k | if (SrcTy == DestTy) |
349 | 8.06k | return C; |
350 | | |
351 | 3.92k | TypeSize DestSize = DL.getTypeSizeInBits(DestTy); |
352 | 3.92k | TypeSize SrcSize = DL.getTypeSizeInBits(SrcTy); |
353 | 3.92k | if (!TypeSize::isKnownGE(SrcSize, DestSize)) |
354 | 1.08k | return nullptr; |
355 | | |
356 | | // Catch the obvious splat cases (since all-zeros can coerce non-integral |
357 | | // pointers legally). |
358 | 2.84k | if (Constant *Res = ConstantFoldLoadFromUniformValue(C, DestTy)) |
359 | 663 | return Res; |
360 | | |
361 | | // If the type sizes are the same and a cast is legal, just directly |
362 | | // cast the constant. |
363 | | // But be careful not to coerce non-integral pointers illegally. |
364 | 2.18k | if (SrcSize == DestSize && |
365 | 2.18k | DL.isNonIntegralPointerType(SrcTy->getScalarType()) == |
366 | 449 | DL.isNonIntegralPointerType(DestTy->getScalarType())) { |
367 | 449 | Instruction::CastOps Cast = Instruction::BitCast; |
368 | | // If we are going from a pointer to int or vice versa, we spell the cast |
369 | | // differently. |
370 | 449 | if (SrcTy->isIntegerTy() && DestTy->isPointerTy()) |
371 | 18 | Cast = Instruction::IntToPtr; |
372 | 431 | else if (SrcTy->isPointerTy() && DestTy->isIntegerTy()) |
373 | 30 | Cast = Instruction::PtrToInt; |
374 | | |
375 | 449 | if (CastInst::castIsValid(Cast, C, DestTy)) |
376 | 87 | return ConstantFoldCastOperand(Cast, C, DestTy, DL); |
377 | 449 | } |
378 | | |
379 | | // If this isn't an aggregate type, there is nothing we can do to drill down |
380 | | // and find a bitcastable constant. |
381 | 2.09k | if (!SrcTy->isAggregateType() && !SrcTy->isVectorTy()) |
382 | 485 | return nullptr; |
383 | | |
384 | | // We're simulating a load through a pointer that was bitcast to point to |
385 | | // a different type, so we can try to walk down through the initial |
386 | | // elements of an aggregate to see if some part of the aggregate is |
387 | | // castable to implement the "load" semantic model. |
388 | 1.60k | if (SrcTy->isStructTy()) { |
389 | | // Struct types might have leading zero-length elements like [0 x i32], |
390 | | // which are certainly not what we are looking for, so skip them. |
391 | 218 | unsigned Elem = 0; |
392 | 218 | Constant *ElemC; |
393 | 218 | do { |
394 | 218 | ElemC = C->getAggregateElement(Elem++); |
395 | 218 | } while (ElemC && DL.getTypeSizeInBits(ElemC->getType()).isZero()); |
396 | 218 | C = ElemC; |
397 | 1.39k | } else { |
398 | | // For non-byte-sized vector elements, the first element is not |
399 | | // necessarily located at the vector base address. |
400 | 1.39k | if (auto *VT = dyn_cast<VectorType>(SrcTy)) |
401 | 55 | if (!DL.typeSizeEqualsStoreSize(VT->getElementType())) |
402 | 0 | return nullptr; |
403 | | |
404 | 1.39k | C = C->getAggregateElement(0u); |
405 | 1.39k | } |
406 | 1.60k | } while (C); |
407 | | |
408 | 0 | return nullptr; |
409 | 10.3k | } |
410 | | |
411 | | namespace { |
412 | | |
413 | | /// Recursive helper to read bits out of global. C is the constant being copied |
414 | | /// out of. ByteOffset is an offset into C. CurPtr is the pointer to copy |
415 | | /// results into and BytesLeft is the number of bytes left in |
416 | | /// the CurPtr buffer. DL is the DataLayout. |
417 | | bool ReadDataFromGlobal(Constant *C, uint64_t ByteOffset, unsigned char *CurPtr, |
418 | 9.98k | unsigned BytesLeft, const DataLayout &DL) { |
419 | 9.98k | assert(ByteOffset <= DL.getTypeAllocSize(C->getType()) && |
420 | 9.98k | "Out of range access"); |
421 | | |
422 | | // If this element is zero or undefined, we can just return since *CurPtr is |
423 | | // zero initialized. |
424 | 9.98k | if (isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) |
425 | 1.20k | return true; |
426 | | |
427 | 8.77k | if (auto *CI = dyn_cast<ConstantInt>(C)) { |
428 | 4.41k | if ((CI->getBitWidth() & 7) != 0) |
429 | 345 | return false; |
430 | 4.07k | const APInt &Val = CI->getValue(); |
431 | 4.07k | unsigned IntBytes = unsigned(CI->getBitWidth()/8); |
432 | | |
433 | 13.8k | for (unsigned i = 0; i != BytesLeft && ByteOffset != IntBytes; ++i) { |
434 | 9.82k | unsigned n = ByteOffset; |
435 | 9.82k | if (!DL.isLittleEndian()) |
436 | 3.86k | n = IntBytes - n - 1; |
437 | 9.82k | CurPtr[i] = Val.extractBits(8, n * 8).getZExtValue(); |
438 | 9.82k | ++ByteOffset; |
439 | 9.82k | } |
440 | 4.07k | return true; |
441 | 4.41k | } |
442 | | |
443 | 4.36k | if (auto *CFP = dyn_cast<ConstantFP>(C)) { |
444 | 1.48k | if (CFP->getType()->isDoubleTy()) { |
445 | 0 | C = FoldBitCast(C, Type::getInt64Ty(C->getContext()), DL); |
446 | 0 | return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); |
447 | 0 | } |
448 | 1.48k | if (CFP->getType()->isFloatTy()){ |
449 | 1.48k | C = FoldBitCast(C, Type::getInt32Ty(C->getContext()), DL); |
450 | 1.48k | return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); |
451 | 1.48k | } |
452 | 0 | if (CFP->getType()->isHalfTy()){ |
453 | 0 | C = FoldBitCast(C, Type::getInt16Ty(C->getContext()), DL); |
454 | 0 | return ReadDataFromGlobal(C, ByteOffset, CurPtr, BytesLeft, DL); |
455 | 0 | } |
456 | 0 | return false; |
457 | 0 | } |
458 | | |
459 | 2.87k | if (auto *CS = dyn_cast<ConstantStruct>(C)) { |
460 | 408 | const StructLayout *SL = DL.getStructLayout(CS->getType()); |
461 | 408 | unsigned Index = SL->getElementContainingOffset(ByteOffset); |
462 | 408 | uint64_t CurEltOffset = SL->getElementOffset(Index); |
463 | 408 | ByteOffset -= CurEltOffset; |
464 | | |
465 | 584 | while (true) { |
466 | | // If the element access is to the element itself and not to tail padding, |
467 | | // read the bytes from the element. |
468 | 584 | uint64_t EltSize = DL.getTypeAllocSize(CS->getOperand(Index)->getType()); |
469 | | |
470 | 584 | if (ByteOffset < EltSize && |
471 | 584 | !ReadDataFromGlobal(CS->getOperand(Index), ByteOffset, CurPtr, |
472 | 575 | BytesLeft, DL)) |
473 | 52 | return false; |
474 | | |
475 | 532 | ++Index; |
476 | | |
477 | | // Check to see if we read from the last struct element, if so we're done. |
478 | 532 | if (Index == CS->getType()->getNumElements()) |
479 | 305 | return true; |
480 | | |
481 | | // If we read all of the bytes we needed from this element we're done. |
482 | 227 | uint64_t NextEltOffset = SL->getElementOffset(Index); |
483 | | |
484 | 227 | if (BytesLeft <= NextEltOffset - CurEltOffset - ByteOffset) |
485 | 51 | return true; |
486 | | |
487 | | // Move to the next element of the struct. |
488 | 176 | CurPtr += NextEltOffset - CurEltOffset - ByteOffset; |
489 | 176 | BytesLeft -= NextEltOffset - CurEltOffset - ByteOffset; |
490 | 176 | ByteOffset = 0; |
491 | 176 | CurEltOffset = NextEltOffset; |
492 | 176 | } |
493 | | // not reached. |
494 | 408 | } |
495 | | |
496 | 2.46k | if (isa<ConstantArray>(C) || isa<ConstantVector>(C) || |
497 | 2.46k | isa<ConstantDataSequential>(C)) { |
498 | 2.41k | uint64_t NumElts, EltSize; |
499 | 2.41k | Type *EltTy; |
500 | 2.41k | if (auto *AT = dyn_cast<ArrayType>(C->getType())) { |
501 | 2.39k | NumElts = AT->getNumElements(); |
502 | 2.39k | EltTy = AT->getElementType(); |
503 | 2.39k | EltSize = DL.getTypeAllocSize(EltTy); |
504 | 2.39k | } else { |
505 | 24 | NumElts = cast<FixedVectorType>(C->getType())->getNumElements(); |
506 | 24 | EltTy = cast<FixedVectorType>(C->getType())->getElementType(); |
507 | | // TODO: For non-byte-sized vectors, current implementation assumes there is |
508 | | // padding to the next byte boundary between elements. |
509 | 24 | if (!DL.typeSizeEqualsStoreSize(EltTy)) |
510 | 0 | return false; |
511 | | |
512 | 24 | EltSize = DL.getTypeStoreSize(EltTy); |
513 | 24 | } |
514 | 2.41k | uint64_t Index = ByteOffset / EltSize; |
515 | 2.41k | uint64_t Offset = ByteOffset - Index * EltSize; |
516 | | |
517 | 5.50k | for (; Index != NumElts; ++Index) { |
518 | 5.36k | if (!ReadDataFromGlobal(C->getAggregateElement(Index), Offset, CurPtr, |
519 | 5.36k | BytesLeft, DL)) |
520 | 387 | return false; |
521 | | |
522 | 4.98k | uint64_t BytesWritten = EltSize - Offset; |
523 | 4.98k | assert(BytesWritten <= EltSize && "Not indexing into this element?"); |
524 | 4.98k | if (BytesWritten >= BytesLeft) |
525 | 1.89k | return true; |
526 | | |
527 | 3.08k | Offset = 0; |
528 | 3.08k | BytesLeft -= BytesWritten; |
529 | 3.08k | CurPtr += BytesWritten; |
530 | 3.08k | } |
531 | 135 | return true; |
532 | 2.41k | } |
533 | | |
534 | 49 | if (auto *CE = dyn_cast<ConstantExpr>(C)) { |
535 | 20 | if (CE->getOpcode() == Instruction::IntToPtr && |
536 | 20 | CE->getOperand(0)->getType() == DL.getIntPtrType(CE->getType())) { |
537 | 0 | return ReadDataFromGlobal(CE->getOperand(0), ByteOffset, CurPtr, |
538 | 0 | BytesLeft, DL); |
539 | 0 | } |
540 | 20 | } |
541 | | |
542 | | // Otherwise, unknown initializer type. |
543 | 49 | return false; |
544 | 49 | } |
545 | | |
546 | | Constant *FoldReinterpretLoadFromConst(Constant *C, Type *LoadTy, |
547 | 3.62k | int64_t Offset, const DataLayout &DL) { |
548 | | // Bail out early. Not expect to load from scalable global variable. |
549 | 3.62k | if (isa<ScalableVectorType>(LoadTy)) |
550 | 0 | return nullptr; |
551 | | |
552 | 3.62k | auto *IntType = dyn_cast<IntegerType>(LoadTy); |
553 | | |
554 | | // If this isn't an integer load we can't fold it directly. |
555 | 3.62k | if (!IntType) { |
556 | | // If this is a non-integer load, we can try folding it as an int load and |
557 | | // then bitcast the result. This can be useful for union cases. Note |
558 | | // that address spaces don't matter here since we're not going to result in |
559 | | // an actual new load. |
560 | 725 | if (!LoadTy->isFloatingPointTy() && !LoadTy->isPointerTy() && |
561 | 725 | !LoadTy->isVectorTy()) |
562 | 3 | return nullptr; |
563 | | |
564 | 722 | Type *MapTy = Type::getIntNTy(C->getContext(), |
565 | 722 | DL.getTypeSizeInBits(LoadTy).getFixedValue()); |
566 | 722 | if (Constant *Res = FoldReinterpretLoadFromConst(C, MapTy, Offset, DL)) { |
567 | 620 | if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && |
568 | 620 | !LoadTy->isX86_AMXTy()) |
569 | | // Materializing a zero can be done trivially without a bitcast |
570 | 412 | return Constant::getNullValue(LoadTy); |
571 | 208 | Type *CastTy = LoadTy->isPtrOrPtrVectorTy() ? DL.getIntPtrType(LoadTy) : LoadTy; |
572 | 208 | Res = FoldBitCast(Res, CastTy, DL); |
573 | 208 | if (LoadTy->isPtrOrPtrVectorTy()) { |
574 | | // For vector of pointer, we needed to first convert to a vector of integer, then do vector inttoptr |
575 | 6 | if (Res->isNullValue() && !LoadTy->isX86_MMXTy() && |
576 | 6 | !LoadTy->isX86_AMXTy()) |
577 | 0 | return Constant::getNullValue(LoadTy); |
578 | 6 | if (DL.isNonIntegralPointerType(LoadTy->getScalarType())) |
579 | | // Be careful not to replace a load of an addrspace value with an inttoptr here |
580 | 0 | return nullptr; |
581 | 6 | Res = ConstantExpr::getIntToPtr(Res, LoadTy); |
582 | 6 | } |
583 | 208 | return Res; |
584 | 208 | } |
585 | 102 | return nullptr; |
586 | 722 | } |
587 | | |
588 | 2.90k | unsigned BytesLoaded = (IntType->getBitWidth() + 7) / 8; |
589 | 2.90k | if (BytesLoaded > 32 || BytesLoaded == 0) |
590 | 0 | return nullptr; |
591 | | |
592 | | // If we're not accessing anything in this constant, the result is undefined. |
593 | 2.90k | if (Offset <= -1 * static_cast<int64_t>(BytesLoaded)) |
594 | 523 | return PoisonValue::get(IntType); |
595 | | |
596 | | // TODO: We should be able to support scalable types. |
597 | 2.38k | TypeSize InitializerSize = DL.getTypeAllocSize(C->getType()); |
598 | 2.38k | if (InitializerSize.isScalable()) |
599 | 0 | return nullptr; |
600 | | |
601 | | // If we're not accessing anything in this constant, the result is undefined. |
602 | 2.38k | if (Offset >= (int64_t)InitializerSize.getFixedValue()) |
603 | 0 | return PoisonValue::get(IntType); |
604 | | |
605 | 2.38k | unsigned char RawBytes[32] = {0}; |
606 | 2.38k | unsigned char *CurPtr = RawBytes; |
607 | 2.38k | unsigned BytesLeft = BytesLoaded; |
608 | | |
609 | | // If we're loading off the beginning of the global, some bytes may be valid. |
610 | 2.38k | if (Offset < 0) { |
611 | 58 | CurPtr += -Offset; |
612 | 58 | BytesLeft += Offset; |
613 | 58 | Offset = 0; |
614 | 58 | } |
615 | | |
616 | 2.38k | if (!ReadDataFromGlobal(C, Offset, CurPtr, BytesLeft, DL)) |
617 | 394 | return nullptr; |
618 | | |
619 | 1.98k | APInt ResultVal = APInt(IntType->getBitWidth(), 0); |
620 | 1.98k | if (DL.isLittleEndian()) { |
621 | 1.98k | ResultVal = RawBytes[BytesLoaded - 1]; |
622 | 9.92k | for (unsigned i = 1; i != BytesLoaded; ++i) { |
623 | 7.93k | ResultVal <<= 8; |
624 | 7.93k | ResultVal |= RawBytes[BytesLoaded - 1 - i]; |
625 | 7.93k | } |
626 | 1.98k | } else { |
627 | 1 | ResultVal = RawBytes[0]; |
628 | 8 | for (unsigned i = 1; i != BytesLoaded; ++i) { |
629 | 7 | ResultVal <<= 8; |
630 | 7 | ResultVal |= RawBytes[i]; |
631 | 7 | } |
632 | 1 | } |
633 | | |
634 | 1.98k | return ConstantInt::get(IntType->getContext(), ResultVal); |
635 | 2.38k | } |
636 | | |
637 | | } // anonymous namespace |
638 | | |
639 | | // If GV is a constant with an initializer read its representation starting |
640 | | // at Offset and return it as a constant array of unsigned char. Otherwise |
641 | | // return null. |
642 | | Constant *llvm::ReadByteArrayFromGlobal(const GlobalVariable *GV, |
643 | 170 | uint64_t Offset) { |
644 | 170 | if (!GV->isConstant() || !GV->hasDefinitiveInitializer()) |
645 | 0 | return nullptr; |
646 | | |
647 | 170 | const DataLayout &DL = GV->getParent()->getDataLayout(); |
648 | 170 | Constant *Init = const_cast<Constant *>(GV->getInitializer()); |
649 | 170 | TypeSize InitSize = DL.getTypeAllocSize(Init->getType()); |
650 | 170 | if (InitSize < Offset) |
651 | 0 | return nullptr; |
652 | | |
653 | 170 | uint64_t NBytes = InitSize - Offset; |
654 | 170 | if (NBytes > UINT16_MAX) |
655 | | // Bail for large initializers in excess of 64K to avoid allocating |
656 | | // too much memory. |
657 | | // Offset is assumed to be less than or equal than InitSize (this |
658 | | // is enforced in ReadDataFromGlobal). |
659 | 0 | return nullptr; |
660 | | |
661 | 170 | SmallVector<unsigned char, 256> RawBytes(static_cast<size_t>(NBytes)); |
662 | 170 | unsigned char *CurPtr = RawBytes.data(); |
663 | | |
664 | 170 | if (!ReadDataFromGlobal(Init, Offset, CurPtr, NBytes, DL)) |
665 | 0 | return nullptr; |
666 | | |
667 | 170 | return ConstantDataArray::get(GV->getContext(), RawBytes); |
668 | 170 | } |
669 | | |
670 | | /// If this Offset points exactly to the start of an aggregate element, return |
671 | | /// that element, otherwise return nullptr. |
672 | | Constant *getConstantAtOffset(Constant *Base, APInt Offset, |
673 | 12.4k | const DataLayout &DL) { |
674 | 12.4k | if (Offset.isZero()) |
675 | 1.74k | return Base; |
676 | | |
677 | 10.6k | if (!isa<ConstantAggregate>(Base) && !isa<ConstantDataSequential>(Base)) |
678 | 49 | return nullptr; |
679 | | |
680 | 10.6k | Type *ElemTy = Base->getType(); |
681 | 10.6k | SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); |
682 | 10.6k | if (!Offset.isZero() || !Indices[0].isZero()) |
683 | 1.98k | return nullptr; |
684 | | |
685 | 8.64k | Constant *C = Base; |
686 | 15.7k | for (const APInt &Index : drop_begin(Indices)) { |
687 | 15.7k | if (Index.isNegative() || Index.getActiveBits() >= 32) |
688 | 0 | return nullptr; |
689 | | |
690 | 15.7k | C = C->getAggregateElement(Index.getZExtValue()); |
691 | 15.7k | if (!C) |
692 | 0 | return nullptr; |
693 | 15.7k | } |
694 | | |
695 | 8.64k | return C; |
696 | 8.64k | } |
697 | | |
698 | | Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, |
699 | | const APInt &Offset, |
700 | 12.4k | const DataLayout &DL) { |
701 | 12.4k | if (Constant *AtOffset = getConstantAtOffset(C, Offset, DL)) |
702 | 10.3k | if (Constant *Result = ConstantFoldLoadThroughBitcast(AtOffset, Ty, DL)) |
703 | 8.81k | return Result; |
704 | | |
705 | | // Explicitly check for out-of-bounds access, so we return poison even if the |
706 | | // constant is a uniform value. |
707 | 3.60k | TypeSize Size = DL.getTypeAllocSize(C->getType()); |
708 | 3.60k | if (!Size.isScalable() && Offset.sge(Size.getFixedValue())) |
709 | 667 | return PoisonValue::get(Ty); |
710 | | |
711 | | // Try an offset-independent fold of a uniform value. |
712 | 2.94k | if (Constant *Result = ConstantFoldLoadFromUniformValue(C, Ty)) |
713 | 34 | return Result; |
714 | | |
715 | | // Try hard to fold loads from bitcasted strange and non-type-safe things. |
716 | 2.90k | if (Offset.getSignificantBits() <= 64) |
717 | 2.90k | if (Constant *Result = |
718 | 2.90k | FoldReinterpretLoadFromConst(C, Ty, Offset.getSExtValue(), DL)) |
719 | 2.50k | return Result; |
720 | | |
721 | 397 | return nullptr; |
722 | 2.90k | } |
723 | | |
724 | | Constant *llvm::ConstantFoldLoadFromConst(Constant *C, Type *Ty, |
725 | 16 | const DataLayout &DL) { |
726 | 16 | return ConstantFoldLoadFromConst(C, Ty, APInt(64, 0), DL); |
727 | 16 | } |
728 | | |
729 | | Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, |
730 | | APInt Offset, |
731 | 159k | const DataLayout &DL) { |
732 | | // We can only fold loads from constant globals with a definitive initializer. |
733 | | // Check this upfront, to skip expensive offset calculations. |
734 | 159k | auto *GV = dyn_cast<GlobalVariable>(getUnderlyingObject(C)); |
735 | 159k | if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer()) |
736 | 146k | return nullptr; |
737 | | |
738 | 12.6k | C = cast<Constant>(C->stripAndAccumulateConstantOffsets( |
739 | 12.6k | DL, Offset, /* AllowNonInbounds */ true)); |
740 | | |
741 | 12.6k | if (C == GV) |
742 | 12.4k | if (Constant *Result = ConstantFoldLoadFromConst(GV->getInitializer(), Ty, |
743 | 12.4k | Offset, DL)) |
744 | 12.0k | return Result; |
745 | | |
746 | | // If this load comes from anywhere in a uniform constant global, the value |
747 | | // is always the same, regardless of the loaded offset. |
748 | 648 | return ConstantFoldLoadFromUniformValue(GV->getInitializer(), Ty); |
749 | 12.6k | } |
750 | | |
751 | | Constant *llvm::ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, |
752 | 159k | const DataLayout &DL) { |
753 | 159k | APInt Offset(DL.getIndexTypeSizeInBits(C->getType()), 0); |
754 | 159k | return ConstantFoldLoadFromConstPtr(C, Ty, Offset, DL); |
755 | 159k | } |
756 | | |
757 | 20.1k | Constant *llvm::ConstantFoldLoadFromUniformValue(Constant *C, Type *Ty) { |
758 | 20.1k | if (isa<PoisonValue>(C)) |
759 | 245 | return PoisonValue::get(Ty); |
760 | 19.9k | if (isa<UndefValue>(C)) |
761 | 663 | return UndefValue::get(Ty); |
762 | 19.2k | if (C->isNullValue() && !Ty->isX86_MMXTy() && !Ty->isX86_AMXTy()) |
763 | 2.28k | return Constant::getNullValue(Ty); |
764 | 16.9k | if (C->isAllOnesValue() && |
765 | 16.9k | (Ty->isIntOrIntVectorTy() || Ty->isFPOrFPVectorTy())) |
766 | 278 | return Constant::getAllOnesValue(Ty); |
767 | 16.6k | return nullptr; |
768 | 16.9k | } |
769 | | |
770 | | namespace { |
771 | | |
772 | | /// One of Op0/Op1 is a constant expression. |
773 | | /// Attempt to symbolically evaluate the result of a binary operator merging |
774 | | /// these together. If target data info is available, it is provided as DL, |
775 | | /// otherwise DL is null. |
776 | | Constant *SymbolicallyEvaluateBinop(unsigned Opc, Constant *Op0, Constant *Op1, |
777 | 26.0k | const DataLayout &DL) { |
778 | | // SROA |
779 | | |
780 | | // Fold (and 0xffffffff00000000, (shl x, 32)) -> shl. |
781 | | // Fold (lshr (or X, Y), 32) -> (lshr [X/Y], 32) if one doesn't contribute |
782 | | // bits. |
783 | | |
784 | 26.0k | if (Opc == Instruction::And) { |
785 | 4.11k | KnownBits Known0 = computeKnownBits(Op0, DL); |
786 | 4.11k | KnownBits Known1 = computeKnownBits(Op1, DL); |
787 | 4.11k | if ((Known1.One | Known0.Zero).isAllOnes()) { |
788 | | // All the bits of Op0 that the 'and' could be masking are already zero. |
789 | 1.04k | return Op0; |
790 | 1.04k | } |
791 | 3.07k | if ((Known0.One | Known1.Zero).isAllOnes()) { |
792 | | // All the bits of Op1 that the 'and' could be masking are already zero. |
793 | 822 | return Op1; |
794 | 822 | } |
795 | | |
796 | 2.25k | Known0 &= Known1; |
797 | 2.25k | if (Known0.isConstant()) |
798 | 537 | return ConstantInt::get(Op0->getType(), Known0.getConstant()); |
799 | 2.25k | } |
800 | | |
801 | | // If the constant expr is something like &A[123] - &A[4].f, fold this into a |
802 | | // constant. This happens frequently when iterating over a global array. |
803 | 23.6k | if (Opc == Instruction::Sub) { |
804 | 3.34k | GlobalValue *GV1, *GV2; |
805 | 3.34k | APInt Offs1, Offs2; |
806 | | |
807 | 3.34k | if (IsConstantOffsetFromGlobal(Op0, GV1, Offs1, DL)) |
808 | 321 | if (IsConstantOffsetFromGlobal(Op1, GV2, Offs2, DL) && GV1 == GV2) { |
809 | 2 | unsigned OpSize = DL.getTypeSizeInBits(Op0->getType()); |
810 | | |
811 | | // (&GV+C1) - (&GV+C2) -> C1-C2, pointer arithmetic cannot overflow. |
812 | | // PtrToInt may change the bitwidth so we have convert to the right size |
813 | | // first. |
814 | 2 | return ConstantInt::get(Op0->getType(), Offs1.zextOrTrunc(OpSize) - |
815 | 2 | Offs2.zextOrTrunc(OpSize)); |
816 | 2 | } |
817 | 3.34k | } |
818 | | |
819 | 23.6k | return nullptr; |
820 | 23.6k | } |
821 | | |
822 | | /// If array indices are not pointer-sized integers, explicitly cast them so |
823 | | /// that they aren't implicitly casted by the getelementptr. |
824 | | Constant *CastGEPIndices(Type *SrcElemTy, ArrayRef<Constant *> Ops, |
825 | | Type *ResultTy, bool InBounds, |
826 | | std::optional<unsigned> InRangeIndex, |
827 | 159k | const DataLayout &DL, const TargetLibraryInfo *TLI) { |
828 | 159k | Type *IntIdxTy = DL.getIndexType(ResultTy); |
829 | 159k | Type *IntIdxScalarTy = IntIdxTy->getScalarType(); |
830 | | |
831 | 159k | bool Any = false; |
832 | 159k | SmallVector<Constant*, 32> NewIdxs; |
833 | 413k | for (unsigned i = 1, e = Ops.size(); i != e; ++i) { |
834 | 262k | if ((i == 1 || |
835 | 262k | !isa<StructType>(GetElementPtrInst::getIndexedType( |
836 | 102k | SrcElemTy, Ops.slice(1, i - 1)))) && |
837 | 262k | Ops[i]->getType()->getScalarType() != IntIdxScalarTy) { |
838 | 40.2k | Any = true; |
839 | 40.2k | Type *NewType = |
840 | 40.2k | Ops[i]->getType()->isVectorTy() ? IntIdxTy : IntIdxScalarTy; |
841 | 40.2k | Constant *NewIdx = ConstantFoldCastOperand( |
842 | 40.2k | CastInst::getCastOpcode(Ops[i], true, NewType, true), Ops[i], NewType, |
843 | 40.2k | DL); |
844 | 40.2k | if (!NewIdx) |
845 | 9.15k | return nullptr; |
846 | 31.1k | NewIdxs.push_back(NewIdx); |
847 | 31.1k | } else |
848 | 222k | NewIdxs.push_back(Ops[i]); |
849 | 262k | } |
850 | | |
851 | 150k | if (!Any) |
852 | 121k | return nullptr; |
853 | | |
854 | 29.1k | Constant *C = ConstantExpr::getGetElementPtr( |
855 | 29.1k | SrcElemTy, Ops[0], NewIdxs, InBounds, InRangeIndex); |
856 | 29.1k | return ConstantFoldConstant(C, DL, TLI); |
857 | 150k | } |
858 | | |
859 | | /// If we can symbolically evaluate the GEP constant expression, do so. |
860 | | Constant *SymbolicallyEvaluateGEP(const GEPOperator *GEP, |
861 | | ArrayRef<Constant *> Ops, |
862 | | const DataLayout &DL, |
863 | 159k | const TargetLibraryInfo *TLI) { |
864 | 159k | const GEPOperator *InnermostGEP = GEP; |
865 | 159k | bool InBounds = GEP->isInBounds(); |
866 | | |
867 | 159k | Type *SrcElemTy = GEP->getSourceElementType(); |
868 | 159k | Type *ResElemTy = GEP->getResultElementType(); |
869 | 159k | Type *ResTy = GEP->getType(); |
870 | 159k | if (!SrcElemTy->isSized() || isa<ScalableVectorType>(SrcElemTy)) |
871 | 0 | return nullptr; |
872 | | |
873 | 159k | if (Constant *C = CastGEPIndices(SrcElemTy, Ops, ResTy, |
874 | 159k | GEP->isInBounds(), GEP->getInRangeIndex(), |
875 | 159k | DL, TLI)) |
876 | 29.1k | return C; |
877 | | |
878 | 130k | Constant *Ptr = Ops[0]; |
879 | 130k | if (!Ptr->getType()->isPointerTy()) |
880 | 4 | return nullptr; |
881 | | |
882 | 130k | Type *IntIdxTy = DL.getIndexType(Ptr->getType()); |
883 | | |
884 | 346k | for (unsigned i = 1, e = Ops.size(); i != e; ++i) |
885 | 229k | if (!isa<ConstantInt>(Ops[i])) |
886 | 13.6k | return nullptr; |
887 | | |
888 | 117k | unsigned BitWidth = DL.getTypeSizeInBits(IntIdxTy); |
889 | 117k | APInt Offset = APInt( |
890 | 117k | BitWidth, |
891 | 117k | DL.getIndexedOffsetInType( |
892 | 117k | SrcElemTy, ArrayRef((Value *const *)Ops.data() + 1, Ops.size() - 1))); |
893 | | |
894 | | // If this is a GEP of a GEP, fold it all into a single GEP. |
895 | 134k | while (auto *GEP = dyn_cast<GEPOperator>(Ptr)) { |
896 | 18.5k | InnermostGEP = GEP; |
897 | 18.5k | InBounds &= GEP->isInBounds(); |
898 | | |
899 | 18.5k | SmallVector<Value *, 4> NestedOps(llvm::drop_begin(GEP->operands())); |
900 | | |
901 | | // Do not try the incorporate the sub-GEP if some index is not a number. |
902 | 18.5k | bool AllConstantInt = true; |
903 | 18.5k | for (Value *NestedOp : NestedOps) |
904 | 38.8k | if (!isa<ConstantInt>(NestedOp)) { |
905 | 1.47k | AllConstantInt = false; |
906 | 1.47k | break; |
907 | 1.47k | } |
908 | 18.5k | if (!AllConstantInt) |
909 | 1.47k | break; |
910 | | |
911 | 17.0k | Ptr = cast<Constant>(GEP->getOperand(0)); |
912 | 17.0k | SrcElemTy = GEP->getSourceElementType(); |
913 | 17.0k | Offset += APInt(BitWidth, DL.getIndexedOffsetInType(SrcElemTy, NestedOps)); |
914 | 17.0k | } |
915 | | |
916 | | // If the base value for this address is a literal integer value, fold the |
917 | | // getelementptr to the resulting integer value casted to the pointer type. |
918 | 117k | APInt BasePtr(BitWidth, 0); |
919 | 117k | if (auto *CE = dyn_cast<ConstantExpr>(Ptr)) { |
920 | 11.1k | if (CE->getOpcode() == Instruction::IntToPtr) { |
921 | 9.63k | if (auto *Base = dyn_cast<ConstantInt>(CE->getOperand(0))) |
922 | 9.63k | BasePtr = Base->getValue().zextOrTrunc(BitWidth); |
923 | 9.63k | } |
924 | 11.1k | } |
925 | | |
926 | 117k | auto *PTy = cast<PointerType>(Ptr->getType()); |
927 | 117k | if ((Ptr->isNullValue() || BasePtr != 0) && |
928 | 117k | !DL.isNonIntegralPointerType(PTy)) { |
929 | 20.9k | Constant *C = ConstantInt::get(Ptr->getContext(), Offset + BasePtr); |
930 | 20.9k | return ConstantExpr::getIntToPtr(C, ResTy); |
931 | 20.9k | } |
932 | | |
933 | | // Otherwise form a regular getelementptr. Recompute the indices so that |
934 | | // we eliminate over-indexing of the notional static type array bounds. |
935 | | // This makes it easy to determine if the getelementptr is "inbounds". |
936 | | |
937 | | // For GEPs of GlobalValues, use the value type, otherwise use an i8 GEP. |
938 | 96.1k | if (auto *GV = dyn_cast<GlobalValue>(Ptr)) |
939 | 93.9k | SrcElemTy = GV->getValueType(); |
940 | 2.18k | else |
941 | 2.18k | SrcElemTy = Type::getInt8Ty(Ptr->getContext()); |
942 | | |
943 | 96.1k | if (!SrcElemTy->isSized()) |
944 | 137 | return nullptr; |
945 | | |
946 | 96.0k | Type *ElemTy = SrcElemTy; |
947 | 96.0k | SmallVector<APInt> Indices = DL.getGEPIndicesForOffset(ElemTy, Offset); |
948 | 96.0k | if (Offset != 0) |
949 | 3.43k | return nullptr; |
950 | | |
951 | | // Try to add additional zero indices to reach the desired result element |
952 | | // type. |
953 | | // TODO: Should we avoid extra zero indices if ResElemTy can't be reached and |
954 | | // we'll have to insert a bitcast anyway? |
955 | 97.4k | while (ElemTy != ResElemTy) { |
956 | 9.56k | Type *NextTy = GetElementPtrInst::getTypeAtIndex(ElemTy, (uint64_t)0); |
957 | 9.56k | if (!NextTy) |
958 | 4.74k | break; |
959 | | |
960 | 4.81k | Indices.push_back(APInt::getZero(isa<StructType>(ElemTy) ? 32 : BitWidth)); |
961 | 4.81k | ElemTy = NextTy; |
962 | 4.81k | } |
963 | | |
964 | 92.6k | SmallVector<Constant *, 32> NewIdxs; |
965 | 92.6k | for (const APInt &Index : Indices) |
966 | 197k | NewIdxs.push_back(ConstantInt::get( |
967 | 197k | Type::getIntNTy(Ptr->getContext(), Index.getBitWidth()), Index)); |
968 | | |
969 | | // Preserve the inrange index from the innermost GEP if possible. We must |
970 | | // have calculated the same indices up to and including the inrange index. |
971 | 92.6k | std::optional<unsigned> InRangeIndex; |
972 | 92.6k | if (std::optional<unsigned> LastIRIndex = InnermostGEP->getInRangeIndex()) |
973 | 4 | if (SrcElemTy == InnermostGEP->getSourceElementType() && |
974 | 4 | NewIdxs.size() > *LastIRIndex) { |
975 | 4 | InRangeIndex = LastIRIndex; |
976 | 4 | for (unsigned I = 0; I <= *LastIRIndex; ++I) |
977 | 4 | if (NewIdxs[I] != InnermostGEP->getOperand(I + 1)) |
978 | 4 | return nullptr; |
979 | 4 | } |
980 | | |
981 | | // Create a GEP. |
982 | 92.5k | return ConstantExpr::getGetElementPtr(SrcElemTy, Ptr, NewIdxs, InBounds, |
983 | 92.5k | InRangeIndex); |
984 | 92.6k | } |
985 | | |
986 | | /// Attempt to constant fold an instruction with the |
987 | | /// specified opcode and operands. If successful, the constant result is |
988 | | /// returned, if not, null is returned. Note that this function can fail when |
989 | | /// attempting to fold instructions like loads and stores, which have no |
990 | | /// constant expression form. |
991 | | Constant *ConstantFoldInstOperandsImpl(const Value *InstOrCE, unsigned Opcode, |
992 | | ArrayRef<Constant *> Ops, |
993 | | const DataLayout &DL, |
994 | 1.66M | const TargetLibraryInfo *TLI) { |
995 | 1.66M | Type *DestTy = InstOrCE->getType(); |
996 | | |
997 | 1.66M | if (Instruction::isUnaryOp(Opcode)) |
998 | 37 | return ConstantFoldUnaryOpOperand(Opcode, Ops[0], DL); |
999 | | |
1000 | 1.66M | if (Instruction::isBinaryOp(Opcode)) { |
1001 | 845k | switch (Opcode) { |
1002 | 704k | default: |
1003 | 704k | break; |
1004 | 704k | case Instruction::FAdd: |
1005 | 65.3k | case Instruction::FSub: |
1006 | 92.5k | case Instruction::FMul: |
1007 | 117k | case Instruction::FDiv: |
1008 | 140k | case Instruction::FRem: |
1009 | | // Handle floating point instructions separately to account for denormals |
1010 | | // TODO: If a constant expression is being folded rather than an |
1011 | | // instruction, denormals will not be flushed/treated as zero |
1012 | 140k | if (const auto *I = dyn_cast<Instruction>(InstOrCE)) { |
1013 | 140k | return ConstantFoldFPInstOperands(Opcode, Ops[0], Ops[1], DL, I); |
1014 | 140k | } |
1015 | 845k | } |
1016 | 704k | return ConstantFoldBinaryOpOperands(Opcode, Ops[0], Ops[1], DL); |
1017 | 845k | } |
1018 | | |
1019 | 823k | if (Instruction::isCast(Opcode)) |
1020 | 81.8k | return ConstantFoldCastOperand(Opcode, Ops[0], DestTy, DL); |
1021 | | |
1022 | 742k | if (auto *GEP = dyn_cast<GEPOperator>(InstOrCE)) { |
1023 | 159k | Type *SrcElemTy = GEP->getSourceElementType(); |
1024 | 159k | if (!ConstantExpr::isSupportedGetElementPtr(SrcElemTy)) |
1025 | 0 | return nullptr; |
1026 | | |
1027 | 159k | if (Constant *C = SymbolicallyEvaluateGEP(GEP, Ops, DL, TLI)) |
1028 | 142k | return C; |
1029 | | |
1030 | 17.1k | return ConstantExpr::getGetElementPtr(SrcElemTy, Ops[0], Ops.slice(1), |
1031 | 17.1k | GEP->isInBounds(), |
1032 | 17.1k | GEP->getInRangeIndex()); |
1033 | 159k | } |
1034 | | |
1035 | 582k | if (auto *CE = dyn_cast<ConstantExpr>(InstOrCE)) { |
1036 | 6.53k | if (CE->isCompare()) |
1037 | 3.17k | return ConstantFoldCompareInstOperands(CE->getPredicate(), Ops[0], Ops[1], |
1038 | 3.17k | DL, TLI); |
1039 | 3.35k | return CE->getWithOperands(Ops); |
1040 | 6.53k | } |
1041 | | |
1042 | 575k | switch (Opcode) { |
1043 | 241k | default: return nullptr; |
1044 | 215k | case Instruction::ICmp: |
1045 | 278k | case Instruction::FCmp: { |
1046 | 278k | auto *C = cast<CmpInst>(InstOrCE); |
1047 | 278k | return ConstantFoldCompareInstOperands(C->getPredicate(), Ops[0], Ops[1], |
1048 | 278k | DL, TLI, C); |
1049 | 215k | } |
1050 | 385 | case Instruction::Freeze: |
1051 | 385 | return isGuaranteedNotToBeUndefOrPoison(Ops[0]) ? Ops[0] : nullptr; |
1052 | 19.3k | case Instruction::Call: |
1053 | 19.3k | if (auto *F = dyn_cast<Function>(Ops.back())) { |
1054 | 19.3k | const auto *Call = cast<CallBase>(InstOrCE); |
1055 | 19.3k | if (canConstantFoldCallTo(Call, F)) |
1056 | 12.2k | return ConstantFoldCall(Call, F, Ops.slice(0, Ops.size() - 1), TLI); |
1057 | 19.3k | } |
1058 | 7.13k | return nullptr; |
1059 | 3.68k | case Instruction::Select: |
1060 | 3.68k | return ConstantFoldSelectInstruction(Ops[0], Ops[1], Ops[2]); |
1061 | 407 | case Instruction::ExtractElement: |
1062 | 407 | return ConstantExpr::getExtractElement(Ops[0], Ops[1]); |
1063 | 559 | case Instruction::ExtractValue: |
1064 | 559 | return ConstantFoldExtractValueInstruction( |
1065 | 559 | Ops[0], cast<ExtractValueInst>(InstOrCE)->getIndices()); |
1066 | 1.03k | case Instruction::InsertElement: |
1067 | 1.03k | return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); |
1068 | 477 | case Instruction::InsertValue: |
1069 | 477 | return ConstantFoldInsertValueInstruction( |
1070 | 477 | Ops[0], Ops[1], cast<InsertValueInst>(InstOrCE)->getIndices()); |
1071 | 452 | case Instruction::ShuffleVector: |
1072 | 452 | return ConstantExpr::getShuffleVector( |
1073 | 452 | Ops[0], Ops[1], cast<ShuffleVectorInst>(InstOrCE)->getShuffleMask()); |
1074 | 29.2k | case Instruction::Load: { |
1075 | 29.2k | const auto *LI = dyn_cast<LoadInst>(InstOrCE); |
1076 | 29.2k | if (LI->isVolatile()) |
1077 | 10 | return nullptr; |
1078 | 29.1k | return ConstantFoldLoadFromConstPtr(Ops[0], LI->getType(), DL); |
1079 | 29.2k | } |
1080 | 575k | } |
1081 | 575k | } |
1082 | | |
1083 | | } // end anonymous namespace |
1084 | | |
1085 | | //===----------------------------------------------------------------------===// |
1086 | | // Constant Folding public APIs |
1087 | | //===----------------------------------------------------------------------===// |
1088 | | |
1089 | | namespace { |
1090 | | |
1091 | | Constant * |
1092 | | ConstantFoldConstantImpl(const Constant *C, const DataLayout &DL, |
1093 | | const TargetLibraryInfo *TLI, |
1094 | 329k | SmallDenseMap<Constant *, Constant *> &FoldedOps) { |
1095 | 329k | if (!isa<ConstantVector>(C) && !isa<ConstantExpr>(C)) |
1096 | 179k | return const_cast<Constant *>(C); |
1097 | | |
1098 | 149k | SmallVector<Constant *, 8> Ops; |
1099 | 420k | for (const Use &OldU : C->operands()) { |
1100 | 420k | Constant *OldC = cast<Constant>(&OldU); |
1101 | 420k | Constant *NewC = OldC; |
1102 | | // Recursively fold the ConstantExpr's operands. If we have already folded |
1103 | | // a ConstantExpr, we don't have to process it again. |
1104 | 420k | if (isa<ConstantVector>(OldC) || isa<ConstantExpr>(OldC)) { |
1105 | 49.0k | auto It = FoldedOps.find(OldC); |
1106 | 49.0k | if (It == FoldedOps.end()) { |
1107 | 38.4k | NewC = ConstantFoldConstantImpl(OldC, DL, TLI, FoldedOps); |
1108 | 38.4k | FoldedOps.insert({OldC, NewC}); |
1109 | 38.4k | } else { |
1110 | 10.6k | NewC = It->second; |
1111 | 10.6k | } |
1112 | 49.0k | } |
1113 | 420k | Ops.push_back(NewC); |
1114 | 420k | } |
1115 | | |
1116 | 149k | if (auto *CE = dyn_cast<ConstantExpr>(C)) { |
1117 | 137k | if (Constant *Res = |
1118 | 137k | ConstantFoldInstOperandsImpl(CE, CE->getOpcode(), Ops, DL, TLI)) |
1119 | 137k | return Res; |
1120 | 0 | return const_cast<Constant *>(C); |
1121 | 137k | } |
1122 | | |
1123 | 11.6k | assert(isa<ConstantVector>(C)); |
1124 | 0 | return ConstantVector::get(Ops); |
1125 | 149k | } |
1126 | | |
1127 | | } // end anonymous namespace |
1128 | | |
1129 | | Constant *llvm::ConstantFoldInstruction(Instruction *I, const DataLayout &DL, |
1130 | 147k | const TargetLibraryInfo *TLI) { |
1131 | | // Handle PHI nodes quickly here... |
1132 | 147k | if (auto *PN = dyn_cast<PHINode>(I)) { |
1133 | 1.63k | Constant *CommonValue = nullptr; |
1134 | | |
1135 | 1.63k | SmallDenseMap<Constant *, Constant *> FoldedOps; |
1136 | 3.40k | for (Value *Incoming : PN->incoming_values()) { |
1137 | | // If the incoming value is undef then skip it. Note that while we could |
1138 | | // skip the value if it is equal to the phi node itself we choose not to |
1139 | | // because that would break the rule that constant folding only applies if |
1140 | | // all operands are constants. |
1141 | 3.40k | if (isa<UndefValue>(Incoming)) |
1142 | 750 | continue; |
1143 | | // If the incoming value is not a constant, then give up. |
1144 | 2.65k | auto *C = dyn_cast<Constant>(Incoming); |
1145 | 2.65k | if (!C) |
1146 | 1.17k | return nullptr; |
1147 | | // Fold the PHI's operands. |
1148 | 1.47k | C = ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); |
1149 | | // If the incoming value is a different constant to |
1150 | | // the one we saw previously, then give up. |
1151 | 1.47k | if (CommonValue && C != CommonValue) |
1152 | 318 | return nullptr; |
1153 | 1.15k | CommonValue = C; |
1154 | 1.15k | } |
1155 | | |
1156 | | // If we reach here, all incoming values are the same constant or undef. |
1157 | 139 | return CommonValue ? CommonValue : UndefValue::get(PN->getType()); |
1158 | 1.63k | } |
1159 | | |
1160 | | // Scan the operand list, checking to see if they are all constants, if so, |
1161 | | // hand off to ConstantFoldInstOperandsImpl. |
1162 | 248k | if (!all_of(I->operands(), [](Use &U) { return isa<Constant>(U); })) |
1163 | 35.6k | return nullptr; |
1164 | | |
1165 | 110k | SmallDenseMap<Constant *, Constant *> FoldedOps; |
1166 | 110k | SmallVector<Constant *, 8> Ops; |
1167 | 176k | for (const Use &OpU : I->operands()) { |
1168 | 176k | auto *Op = cast<Constant>(&OpU); |
1169 | | // Fold the Instruction's operands. |
1170 | 176k | Op = ConstantFoldConstantImpl(Op, DL, TLI, FoldedOps); |
1171 | 176k | Ops.push_back(Op); |
1172 | 176k | } |
1173 | | |
1174 | 110k | return ConstantFoldInstOperands(I, Ops, DL, TLI); |
1175 | 146k | } |
1176 | | |
1177 | | Constant *llvm::ConstantFoldConstant(const Constant *C, const DataLayout &DL, |
1178 | 112k | const TargetLibraryInfo *TLI) { |
1179 | 112k | SmallDenseMap<Constant *, Constant *> FoldedOps; |
1180 | 112k | return ConstantFoldConstantImpl(C, DL, TLI, FoldedOps); |
1181 | 112k | } |
1182 | | |
1183 | | Constant *llvm::ConstantFoldInstOperands(Instruction *I, |
1184 | | ArrayRef<Constant *> Ops, |
1185 | | const DataLayout &DL, |
1186 | 1.53M | const TargetLibraryInfo *TLI) { |
1187 | 1.53M | return ConstantFoldInstOperandsImpl(I, I->getOpcode(), Ops, DL, TLI); |
1188 | 1.53M | } |
1189 | | |
1190 | | Constant *llvm::ConstantFoldCompareInstOperands( |
1191 | | unsigned IntPredicate, Constant *Ops0, Constant *Ops1, const DataLayout &DL, |
1192 | 370k | const TargetLibraryInfo *TLI, const Instruction *I) { |
1193 | 370k | CmpInst::Predicate Predicate = (CmpInst::Predicate)IntPredicate; |
1194 | | // fold: icmp (inttoptr x), null -> icmp x, 0 |
1195 | | // fold: icmp null, (inttoptr x) -> icmp 0, x |
1196 | | // fold: icmp (ptrtoint x), 0 -> icmp x, null |
1197 | | // fold: icmp 0, (ptrtoint x) -> icmp null, x |
1198 | | // fold: icmp (inttoptr x), (inttoptr y) -> icmp trunc/zext x, trunc/zext y |
1199 | | // fold: icmp (ptrtoint x), (ptrtoint y) -> icmp x, y |
1200 | | // |
1201 | | // FIXME: The following comment is out of data and the DataLayout is here now. |
1202 | | // ConstantExpr::getCompare cannot do this, because it doesn't have DL |
1203 | | // around to know if bit truncation is happening. |
1204 | 370k | if (auto *CE0 = dyn_cast<ConstantExpr>(Ops0)) { |
1205 | 19.8k | if (Ops1->isNullValue()) { |
1206 | 2.38k | if (CE0->getOpcode() == Instruction::IntToPtr) { |
1207 | 119 | Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); |
1208 | | // Convert the integer value to the right size to ensure we get the |
1209 | | // proper extension or truncation. |
1210 | 119 | if (Constant *C = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy, |
1211 | 119 | /*IsSigned*/ false, DL)) { |
1212 | 116 | Constant *Null = Constant::getNullValue(C->getType()); |
1213 | 116 | return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); |
1214 | 116 | } |
1215 | 119 | } |
1216 | | |
1217 | | // Only do this transformation if the int is intptrty in size, otherwise |
1218 | | // there is a truncation or extension that we aren't modeling. |
1219 | 2.26k | if (CE0->getOpcode() == Instruction::PtrToInt) { |
1220 | 460 | Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); |
1221 | 460 | if (CE0->getType() == IntPtrTy) { |
1222 | 39 | Constant *C = CE0->getOperand(0); |
1223 | 39 | Constant *Null = Constant::getNullValue(C->getType()); |
1224 | 39 | return ConstantFoldCompareInstOperands(Predicate, C, Null, DL, TLI); |
1225 | 39 | } |
1226 | 460 | } |
1227 | 2.26k | } |
1228 | | |
1229 | 19.6k | if (auto *CE1 = dyn_cast<ConstantExpr>(Ops1)) { |
1230 | 13.2k | if (CE0->getOpcode() == CE1->getOpcode()) { |
1231 | 11.5k | if (CE0->getOpcode() == Instruction::IntToPtr) { |
1232 | 2.67k | Type *IntPtrTy = DL.getIntPtrType(CE0->getType()); |
1233 | | |
1234 | | // Convert the integer value to the right size to ensure we get the |
1235 | | // proper extension or truncation. |
1236 | 2.67k | Constant *C0 = ConstantFoldIntegerCast(CE0->getOperand(0), IntPtrTy, |
1237 | 2.67k | /*IsSigned*/ false, DL); |
1238 | 2.67k | Constant *C1 = ConstantFoldIntegerCast(CE1->getOperand(0), IntPtrTy, |
1239 | 2.67k | /*IsSigned*/ false, DL); |
1240 | 2.67k | if (C0 && C1) |
1241 | 2.67k | return ConstantFoldCompareInstOperands(Predicate, C0, C1, DL, TLI); |
1242 | 2.67k | } |
1243 | | |
1244 | | // Only do this transformation if the int is intptrty in size, otherwise |
1245 | | // there is a truncation or extension that we aren't modeling. |
1246 | 8.83k | if (CE0->getOpcode() == Instruction::PtrToInt) { |
1247 | 419 | Type *IntPtrTy = DL.getIntPtrType(CE0->getOperand(0)->getType()); |
1248 | 419 | if (CE0->getType() == IntPtrTy && |
1249 | 419 | CE0->getOperand(0)->getType() == CE1->getOperand(0)->getType()) { |
1250 | 67 | return ConstantFoldCompareInstOperands( |
1251 | 67 | Predicate, CE0->getOperand(0), CE1->getOperand(0), DL, TLI); |
1252 | 67 | } |
1253 | 419 | } |
1254 | 8.83k | } |
1255 | 13.2k | } |
1256 | | |
1257 | | // Convert pointer comparison (base+offset1) pred (base+offset2) into |
1258 | | // offset1 pred offset2, for the case where the offset is inbounds. This |
1259 | | // only works for equality and unsigned comparison, as inbounds permits |
1260 | | // crossing the sign boundary. However, the offset comparison itself is |
1261 | | // signed. |
1262 | 16.9k | if (Ops0->getType()->isPointerTy() && !ICmpInst::isSigned(Predicate)) { |
1263 | 6.01k | unsigned IndexWidth = DL.getIndexTypeSizeInBits(Ops0->getType()); |
1264 | 6.01k | APInt Offset0(IndexWidth, 0); |
1265 | 6.01k | Value *Stripped0 = |
1266 | 6.01k | Ops0->stripAndAccumulateInBoundsConstantOffsets(DL, Offset0); |
1267 | 6.01k | APInt Offset1(IndexWidth, 0); |
1268 | 6.01k | Value *Stripped1 = |
1269 | 6.01k | Ops1->stripAndAccumulateInBoundsConstantOffsets(DL, Offset1); |
1270 | 6.01k | if (Stripped0 == Stripped1) |
1271 | 223 | return ConstantExpr::getCompare( |
1272 | 223 | ICmpInst::getSignedPredicate(Predicate), |
1273 | 223 | ConstantInt::get(CE0->getContext(), Offset0), |
1274 | 223 | ConstantInt::get(CE0->getContext(), Offset1)); |
1275 | 6.01k | } |
1276 | 351k | } else if (isa<ConstantExpr>(Ops1)) { |
1277 | | // If RHS is a constant expression, but the left side isn't, swap the |
1278 | | // operands and try again. |
1279 | 2.33k | Predicate = ICmpInst::getSwappedPredicate(Predicate); |
1280 | 2.33k | return ConstantFoldCompareInstOperands(Predicate, Ops1, Ops0, DL, TLI); |
1281 | 2.33k | } |
1282 | | |
1283 | | // Flush any denormal constant float input according to denormal handling |
1284 | | // mode. |
1285 | 365k | Ops0 = FlushFPConstant(Ops0, I, /* IsOutput */ false); |
1286 | 365k | if (!Ops0) |
1287 | 0 | return nullptr; |
1288 | 365k | Ops1 = FlushFPConstant(Ops1, I, /* IsOutput */ false); |
1289 | 365k | if (!Ops1) |
1290 | 0 | return nullptr; |
1291 | | |
1292 | 365k | return ConstantExpr::getCompare(Predicate, Ops0, Ops1); |
1293 | 365k | } |
1294 | | |
1295 | | Constant *llvm::ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, |
1296 | 748 | const DataLayout &DL) { |
1297 | 748 | assert(Instruction::isUnaryOp(Opcode)); |
1298 | | |
1299 | 0 | return ConstantFoldUnaryInstruction(Opcode, Op); |
1300 | 748 | } |
1301 | | |
1302 | | Constant *llvm::ConstantFoldBinaryOpOperands(unsigned Opcode, Constant *LHS, |
1303 | | Constant *RHS, |
1304 | 1.38M | const DataLayout &DL) { |
1305 | 1.38M | assert(Instruction::isBinaryOp(Opcode)); |
1306 | 1.38M | if (isa<ConstantExpr>(LHS) || isa<ConstantExpr>(RHS)) |
1307 | 26.0k | if (Constant *C = SymbolicallyEvaluateBinop(Opcode, LHS, RHS, DL)) |
1308 | 2.40k | return C; |
1309 | | |
1310 | 1.38M | if (ConstantExpr::isDesirableBinOp(Opcode)) |
1311 | 974k | return ConstantExpr::get(Opcode, LHS, RHS); |
1312 | 405k | return ConstantFoldBinaryInstruction(Opcode, LHS, RHS); |
1313 | 1.38M | } |
1314 | | |
1315 | | Constant *llvm::FlushFPConstant(Constant *Operand, const Instruction *I, |
1316 | 1.19M | bool IsOutput) { |
1317 | 1.19M | if (!I || !I->getParent() || !I->getFunction()) |
1318 | 145k | return Operand; |
1319 | | |
1320 | 1.05M | ConstantFP *CFP = dyn_cast<ConstantFP>(Operand); |
1321 | 1.05M | if (!CFP) |
1322 | 429k | return Operand; |
1323 | | |
1324 | 621k | const APFloat &APF = CFP->getValueAPF(); |
1325 | | // TODO: Should this canonicalize nans? |
1326 | 621k | if (!APF.isDenormal()) |
1327 | 390k | return Operand; |
1328 | | |
1329 | 230k | Type *Ty = CFP->getType(); |
1330 | 230k | DenormalMode DenormMode = |
1331 | 230k | I->getFunction()->getDenormalMode(Ty->getFltSemantics()); |
1332 | 230k | DenormalMode::DenormalModeKind Mode = |
1333 | 230k | IsOutput ? DenormMode.Output : DenormMode.Input; |
1334 | 230k | switch (Mode) { |
1335 | 0 | default: |
1336 | 0 | llvm_unreachable("unknown denormal mode"); |
1337 | 0 | case DenormalMode::Dynamic: |
1338 | 0 | return nullptr; |
1339 | 230k | case DenormalMode::IEEE: |
1340 | 230k | return Operand; |
1341 | 0 | case DenormalMode::PreserveSign: |
1342 | 0 | if (APF.isDenormal()) { |
1343 | 0 | return ConstantFP::get( |
1344 | 0 | Ty->getContext(), |
1345 | 0 | APFloat::getZero(Ty->getFltSemantics(), APF.isNegative())); |
1346 | 0 | } |
1347 | 0 | return Operand; |
1348 | 0 | case DenormalMode::PositiveZero: |
1349 | 0 | if (APF.isDenormal()) { |
1350 | 0 | return ConstantFP::get(Ty->getContext(), |
1351 | 0 | APFloat::getZero(Ty->getFltSemantics(), false)); |
1352 | 0 | } |
1353 | 0 | return Operand; |
1354 | 230k | } |
1355 | 0 | return Operand; |
1356 | 230k | } |
1357 | | |
1358 | | Constant *llvm::ConstantFoldFPInstOperands(unsigned Opcode, Constant *LHS, |
1359 | | Constant *RHS, const DataLayout &DL, |
1360 | 155k | const Instruction *I) { |
1361 | 155k | if (Instruction::isBinaryOp(Opcode)) { |
1362 | | // Flush denormal inputs if needed. |
1363 | 155k | Constant *Op0 = FlushFPConstant(LHS, I, /* IsOutput */ false); |
1364 | 155k | if (!Op0) |
1365 | 0 | return nullptr; |
1366 | 155k | Constant *Op1 = FlushFPConstant(RHS, I, /* IsOutput */ false); |
1367 | 155k | if (!Op1) |
1368 | 0 | return nullptr; |
1369 | | |
1370 | | // Calculate constant result. |
1371 | 155k | Constant *C = ConstantFoldBinaryOpOperands(Opcode, Op0, Op1, DL); |
1372 | 155k | if (!C) |
1373 | 381 | return nullptr; |
1374 | | |
1375 | | // Flush denormal output if needed. |
1376 | 155k | return FlushFPConstant(C, I, /* IsOutput */ true); |
1377 | 155k | } |
1378 | | // If instruction lacks a parent/function and the denormal mode cannot be |
1379 | | // determined, use the default (IEEE). |
1380 | 0 | return ConstantFoldBinaryOpOperands(Opcode, LHS, RHS, DL); |
1381 | 155k | } |
1382 | | |
1383 | | Constant *llvm::ConstantFoldCastOperand(unsigned Opcode, Constant *C, |
1384 | 191k | Type *DestTy, const DataLayout &DL) { |
1385 | 191k | assert(Instruction::isCast(Opcode)); |
1386 | 0 | switch (Opcode) { |
1387 | 0 | default: |
1388 | 0 | llvm_unreachable("Missing case"); |
1389 | 10.1k | case Instruction::PtrToInt: |
1390 | 10.1k | if (auto *CE = dyn_cast<ConstantExpr>(C)) { |
1391 | 3.77k | Constant *FoldedValue = nullptr; |
1392 | | // If the input is a inttoptr, eliminate the pair. This requires knowing |
1393 | | // the width of a pointer, so it can't be done in ConstantExpr::getCast. |
1394 | 3.77k | if (CE->getOpcode() == Instruction::IntToPtr) { |
1395 | | // zext/trunc the inttoptr to pointer size. |
1396 | 253 | FoldedValue = ConstantFoldIntegerCast(CE->getOperand(0), |
1397 | 253 | DL.getIntPtrType(CE->getType()), |
1398 | 253 | /*IsSigned=*/false, DL); |
1399 | 3.52k | } else if (auto *GEP = dyn_cast<GEPOperator>(CE)) { |
1400 | | // If we have GEP, we can perform the following folds: |
1401 | | // (ptrtoint (gep null, x)) -> x |
1402 | | // (ptrtoint (gep (gep null, x), y) -> x + y, etc. |
1403 | 3.52k | unsigned BitWidth = DL.getIndexTypeSizeInBits(GEP->getType()); |
1404 | 3.52k | APInt BaseOffset(BitWidth, 0); |
1405 | 3.52k | auto *Base = cast<Constant>(GEP->stripAndAccumulateConstantOffsets( |
1406 | 3.52k | DL, BaseOffset, /*AllowNonInbounds=*/true)); |
1407 | 3.52k | if (Base->isNullValue()) { |
1408 | 0 | FoldedValue = ConstantInt::get(CE->getContext(), BaseOffset); |
1409 | 3.52k | } else { |
1410 | | // ptrtoint (gep i8, Ptr, (sub 0, V)) -> sub (ptrtoint Ptr), V |
1411 | 3.52k | if (GEP->getNumIndices() == 1 && |
1412 | 3.52k | GEP->getSourceElementType()->isIntegerTy(8)) { |
1413 | 723 | auto *Ptr = cast<Constant>(GEP->getPointerOperand()); |
1414 | 723 | auto *Sub = dyn_cast<ConstantExpr>(GEP->getOperand(1)); |
1415 | 723 | Type *IntIdxTy = DL.getIndexType(Ptr->getType()); |
1416 | 723 | if (Sub && Sub->getType() == IntIdxTy && |
1417 | 723 | Sub->getOpcode() == Instruction::Sub && |
1418 | 723 | Sub->getOperand(0)->isNullValue()) |
1419 | 4 | FoldedValue = ConstantExpr::getSub( |
1420 | 4 | ConstantExpr::getPtrToInt(Ptr, IntIdxTy), Sub->getOperand(1)); |
1421 | 723 | } |
1422 | 3.52k | } |
1423 | 3.52k | } |
1424 | 3.77k | if (FoldedValue) { |
1425 | | // Do a zext or trunc to get to the ptrtoint dest size. |
1426 | 257 | return ConstantFoldIntegerCast(FoldedValue, DestTy, /*IsSigned=*/false, |
1427 | 257 | DL); |
1428 | 257 | } |
1429 | 3.77k | } |
1430 | 9.87k | break; |
1431 | 9.87k | case Instruction::IntToPtr: |
1432 | | // If the input is a ptrtoint, turn the pair into a ptr to ptr bitcast if |
1433 | | // the int size is >= the ptr size and the address spaces are the same. |
1434 | | // This requires knowing the width of a pointer, so it can't be done in |
1435 | | // ConstantExpr::getCast. |
1436 | 9.50k | if (auto *CE = dyn_cast<ConstantExpr>(C)) { |
1437 | 85 | if (CE->getOpcode() == Instruction::PtrToInt) { |
1438 | 57 | Constant *SrcPtr = CE->getOperand(0); |
1439 | 57 | unsigned SrcPtrSize = DL.getPointerTypeSizeInBits(SrcPtr->getType()); |
1440 | 57 | unsigned MidIntSize = CE->getType()->getScalarSizeInBits(); |
1441 | | |
1442 | 57 | if (MidIntSize >= SrcPtrSize) { |
1443 | 14 | unsigned SrcAS = SrcPtr->getType()->getPointerAddressSpace(); |
1444 | 14 | if (SrcAS == DestTy->getPointerAddressSpace()) |
1445 | 14 | return FoldBitCast(CE->getOperand(0), DestTy, DL); |
1446 | 14 | } |
1447 | 57 | } |
1448 | 85 | } |
1449 | 9.49k | break; |
1450 | 46.4k | case Instruction::Trunc: |
1451 | 66.6k | case Instruction::ZExt: |
1452 | 138k | case Instruction::SExt: |
1453 | 141k | case Instruction::FPTrunc: |
1454 | 141k | case Instruction::FPExt: |
1455 | 142k | case Instruction::UIToFP: |
1456 | 159k | case Instruction::SIToFP: |
1457 | 159k | case Instruction::FPToUI: |
1458 | 160k | case Instruction::FPToSI: |
1459 | 160k | case Instruction::AddrSpaceCast: |
1460 | 160k | break; |
1461 | 11.0k | case Instruction::BitCast: |
1462 | 11.0k | return FoldBitCast(C, DestTy, DL); |
1463 | 191k | } |
1464 | | |
1465 | 179k | if (ConstantExpr::isDesirableCastOp(Opcode)) |
1466 | 66.1k | return ConstantExpr::getCast(Opcode, C, DestTy); |
1467 | 113k | return ConstantFoldCastInstruction(Opcode, C, DestTy); |
1468 | 179k | } |
1469 | | |
1470 | | Constant *llvm::ConstantFoldIntegerCast(Constant *C, Type *DestTy, |
1471 | 6.95k | bool IsSigned, const DataLayout &DL) { |
1472 | 6.95k | Type *SrcTy = C->getType(); |
1473 | 6.95k | if (SrcTy == DestTy) |
1474 | 5.68k | return C; |
1475 | 1.27k | if (SrcTy->getScalarSizeInBits() > DestTy->getScalarSizeInBits()) |
1476 | 376 | return ConstantFoldCastOperand(Instruction::Trunc, C, DestTy, DL); |
1477 | 898 | if (IsSigned) |
1478 | 43 | return ConstantFoldCastOperand(Instruction::SExt, C, DestTy, DL); |
1479 | 855 | return ConstantFoldCastOperand(Instruction::ZExt, C, DestTy, DL); |
1480 | 898 | } |
1481 | | |
1482 | | //===----------------------------------------------------------------------===// |
1483 | | // Constant Folding for Calls |
1484 | | // |
1485 | | |
1486 | 159k | bool llvm::canConstantFoldCallTo(const CallBase *Call, const Function *F) { |
1487 | 159k | if (Call->isNoBuiltin()) |
1488 | 222 | return false; |
1489 | 159k | if (Call->getFunctionType() != F->getFunctionType()) |
1490 | 280 | return false; |
1491 | 158k | switch (F->getIntrinsicID()) { |
1492 | | // Operations that do not operate floating-point numbers and do not depend on |
1493 | | // FP environment can be folded even in strictfp functions. |
1494 | 2.51k | case Intrinsic::bswap: |
1495 | 5.64k | case Intrinsic::ctpop: |
1496 | 12.1k | case Intrinsic::ctlz: |
1497 | 14.4k | case Intrinsic::cttz: |
1498 | 15.6k | case Intrinsic::fshl: |
1499 | 16.0k | case Intrinsic::fshr: |
1500 | 16.2k | case Intrinsic::launder_invariant_group: |
1501 | 16.3k | case Intrinsic::strip_invariant_group: |
1502 | 17.0k | case Intrinsic::masked_load: |
1503 | 17.0k | case Intrinsic::get_active_lane_mask: |
1504 | 18.3k | case Intrinsic::abs: |
1505 | 21.8k | case Intrinsic::smax: |
1506 | 25.6k | case Intrinsic::smin: |
1507 | 28.6k | case Intrinsic::umax: |
1508 | 31.7k | case Intrinsic::umin: |
1509 | 32.8k | case Intrinsic::sadd_with_overflow: |
1510 | 33.4k | case Intrinsic::uadd_with_overflow: |
1511 | 34.4k | case Intrinsic::ssub_with_overflow: |
1512 | 34.6k | case Intrinsic::usub_with_overflow: |
1513 | 34.8k | case Intrinsic::smul_with_overflow: |
1514 | 35.3k | case Intrinsic::umul_with_overflow: |
1515 | 37.3k | case Intrinsic::sadd_sat: |
1516 | 38.7k | case Intrinsic::uadd_sat: |
1517 | 40.4k | case Intrinsic::ssub_sat: |
1518 | 41.4k | case Intrinsic::usub_sat: |
1519 | 41.5k | case Intrinsic::smul_fix: |
1520 | 41.6k | case Intrinsic::smul_fix_sat: |
1521 | 42.4k | case Intrinsic::bitreverse: |
1522 | 42.4k | case Intrinsic::is_constant: |
1523 | 42.8k | case Intrinsic::vector_reduce_add: |
1524 | 42.8k | case Intrinsic::vector_reduce_mul: |
1525 | 42.9k | case Intrinsic::vector_reduce_and: |
1526 | 43.1k | case Intrinsic::vector_reduce_or: |
1527 | 43.2k | case Intrinsic::vector_reduce_xor: |
1528 | 43.4k | case Intrinsic::vector_reduce_smin: |
1529 | 43.5k | case Intrinsic::vector_reduce_smax: |
1530 | 43.7k | case Intrinsic::vector_reduce_umin: |
1531 | 43.8k | case Intrinsic::vector_reduce_umax: |
1532 | | // Target intrinsics |
1533 | 43.8k | case Intrinsic::amdgcn_perm: |
1534 | 43.8k | case Intrinsic::amdgcn_wave_reduce_umin: |
1535 | 43.8k | case Intrinsic::amdgcn_wave_reduce_umax: |
1536 | 43.8k | case Intrinsic::amdgcn_s_wqm: |
1537 | 43.8k | case Intrinsic::amdgcn_s_quadmask: |
1538 | 43.8k | case Intrinsic::amdgcn_s_bitreplicate: |
1539 | 43.8k | case Intrinsic::arm_mve_vctp8: |
1540 | 43.8k | case Intrinsic::arm_mve_vctp16: |
1541 | 43.8k | case Intrinsic::arm_mve_vctp32: |
1542 | 43.8k | case Intrinsic::arm_mve_vctp64: |
1543 | 43.8k | case Intrinsic::aarch64_sve_convert_from_svbool: |
1544 | | // WebAssembly float semantics are always known |
1545 | 43.8k | case Intrinsic::wasm_trunc_signed: |
1546 | 43.8k | case Intrinsic::wasm_trunc_unsigned: |
1547 | 43.8k | return true; |
1548 | | |
1549 | | // Floating point operations cannot be folded in strictfp functions in |
1550 | | // general case. They can be folded if FP environment is known to compiler. |
1551 | 244 | case Intrinsic::minnum: |
1552 | 1.19k | case Intrinsic::maxnum: |
1553 | 1.55k | case Intrinsic::minimum: |
1554 | 2.12k | case Intrinsic::maximum: |
1555 | 2.44k | case Intrinsic::log: |
1556 | 2.64k | case Intrinsic::log2: |
1557 | 2.80k | case Intrinsic::log10: |
1558 | 8.10k | case Intrinsic::exp: |
1559 | 9.56k | case Intrinsic::exp2: |
1560 | 9.56k | case Intrinsic::exp10: |
1561 | 13.6k | case Intrinsic::sqrt: |
1562 | 17.1k | case Intrinsic::sin: |
1563 | 17.7k | case Intrinsic::cos: |
1564 | 19.2k | case Intrinsic::pow: |
1565 | 19.9k | case Intrinsic::powi: |
1566 | 20.0k | case Intrinsic::ldexp: |
1567 | 22.3k | case Intrinsic::fma: |
1568 | 22.5k | case Intrinsic::fmuladd: |
1569 | 22.5k | case Intrinsic::frexp: |
1570 | 22.5k | case Intrinsic::fptoui_sat: |
1571 | 22.5k | case Intrinsic::fptosi_sat: |
1572 | 22.5k | case Intrinsic::convert_from_fp16: |
1573 | 22.5k | case Intrinsic::convert_to_fp16: |
1574 | 22.5k | case Intrinsic::amdgcn_cos: |
1575 | 22.5k | case Intrinsic::amdgcn_cubeid: |
1576 | 22.5k | case Intrinsic::amdgcn_cubema: |
1577 | 22.5k | case Intrinsic::amdgcn_cubesc: |
1578 | 22.5k | case Intrinsic::amdgcn_cubetc: |
1579 | 22.5k | case Intrinsic::amdgcn_fmul_legacy: |
1580 | 22.5k | case Intrinsic::amdgcn_fma_legacy: |
1581 | 22.5k | case Intrinsic::amdgcn_fract: |
1582 | 22.5k | case Intrinsic::amdgcn_sin: |
1583 | | // The intrinsics below depend on rounding mode in MXCSR. |
1584 | 22.5k | case Intrinsic::x86_sse_cvtss2si: |
1585 | 22.6k | case Intrinsic::x86_sse_cvtss2si64: |
1586 | 22.6k | case Intrinsic::x86_sse_cvttss2si: |
1587 | 22.6k | case Intrinsic::x86_sse_cvttss2si64: |
1588 | 22.7k | case Intrinsic::x86_sse2_cvtsd2si: |
1589 | 22.7k | case Intrinsic::x86_sse2_cvtsd2si64: |
1590 | 22.7k | case Intrinsic::x86_sse2_cvttsd2si: |
1591 | 22.7k | case Intrinsic::x86_sse2_cvttsd2si64: |
1592 | 22.7k | case Intrinsic::x86_avx512_vcvtss2si32: |
1593 | 22.8k | case Intrinsic::x86_avx512_vcvtss2si64: |
1594 | 22.8k | case Intrinsic::x86_avx512_cvttss2si: |
1595 | 22.9k | case Intrinsic::x86_avx512_cvttss2si64: |
1596 | 22.9k | case Intrinsic::x86_avx512_vcvtsd2si32: |
1597 | 22.9k | case Intrinsic::x86_avx512_vcvtsd2si64: |
1598 | 23.0k | case Intrinsic::x86_avx512_cvttsd2si: |
1599 | 23.0k | case Intrinsic::x86_avx512_cvttsd2si64: |
1600 | 23.1k | case Intrinsic::x86_avx512_vcvtss2usi32: |
1601 | 23.1k | case Intrinsic::x86_avx512_vcvtss2usi64: |
1602 | 23.1k | case Intrinsic::x86_avx512_cvttss2usi: |
1603 | 23.2k | case Intrinsic::x86_avx512_cvttss2usi64: |
1604 | 23.2k | case Intrinsic::x86_avx512_vcvtsd2usi32: |
1605 | 23.2k | case Intrinsic::x86_avx512_vcvtsd2usi64: |
1606 | 23.2k | case Intrinsic::x86_avx512_cvttsd2usi: |
1607 | 23.3k | case Intrinsic::x86_avx512_cvttsd2usi64: |
1608 | 23.3k | return !Call->isStrictFP(); |
1609 | | |
1610 | | // Sign operations are actually bitwise operations, they do not raise |
1611 | | // exceptions even for SNANs. |
1612 | 1.99k | case Intrinsic::fabs: |
1613 | 2.76k | case Intrinsic::copysign: |
1614 | 2.76k | case Intrinsic::is_fpclass: |
1615 | | // Non-constrained variants of rounding operations means default FP |
1616 | | // environment, they can be folded in any case. |
1617 | 3.21k | case Intrinsic::ceil: |
1618 | 3.47k | case Intrinsic::floor: |
1619 | 3.62k | case Intrinsic::round: |
1620 | 3.66k | case Intrinsic::roundeven: |
1621 | 3.94k | case Intrinsic::trunc: |
1622 | 4.30k | case Intrinsic::nearbyint: |
1623 | 4.50k | case Intrinsic::rint: |
1624 | 4.51k | case Intrinsic::canonicalize: |
1625 | | // Constrained intrinsics can be folded if FP environment is known |
1626 | | // to compiler. |
1627 | 4.51k | case Intrinsic::experimental_constrained_fma: |
1628 | 4.51k | case Intrinsic::experimental_constrained_fmuladd: |
1629 | 4.52k | case Intrinsic::experimental_constrained_fadd: |
1630 | 4.53k | case Intrinsic::experimental_constrained_fsub: |
1631 | 4.54k | case Intrinsic::experimental_constrained_fmul: |
1632 | 4.56k | case Intrinsic::experimental_constrained_fdiv: |
1633 | 4.57k | case Intrinsic::experimental_constrained_frem: |
1634 | 4.57k | case Intrinsic::experimental_constrained_ceil: |
1635 | 4.57k | case Intrinsic::experimental_constrained_floor: |
1636 | 4.57k | case Intrinsic::experimental_constrained_round: |
1637 | 4.57k | case Intrinsic::experimental_constrained_roundeven: |
1638 | 4.57k | case Intrinsic::experimental_constrained_trunc: |
1639 | 4.57k | case Intrinsic::experimental_constrained_nearbyint: |
1640 | 4.57k | case Intrinsic::experimental_constrained_rint: |
1641 | 4.58k | case Intrinsic::experimental_constrained_fcmp: |
1642 | 4.59k | case Intrinsic::experimental_constrained_fcmps: |
1643 | 4.59k | return true; |
1644 | 43.9k | default: |
1645 | 43.9k | return false; |
1646 | 43.2k | case Intrinsic::not_intrinsic: break; |
1647 | 158k | } |
1648 | | |
1649 | 43.2k | if (!F->hasName() || Call->isStrictFP()) |
1650 | 121 | return false; |
1651 | | |
1652 | | // In these cases, the check of the length is required. We don't want to |
1653 | | // return true for a name like "cos\0blah" which strcmp would return equal to |
1654 | | // "cos", but has length 8. |
1655 | 43.1k | StringRef Name = F->getName(); |
1656 | 43.1k | switch (Name[0]) { |
1657 | 11.3k | default: |
1658 | 11.3k | return false; |
1659 | 1.31k | case 'a': |
1660 | 1.31k | return Name == "acos" || Name == "acosf" || |
1661 | 1.31k | Name == "asin" || Name == "asinf" || |
1662 | 1.31k | Name == "atan" || Name == "atanf" || |
1663 | 1.31k | Name == "atan2" || Name == "atan2f"; |
1664 | 5.97k | case 'c': |
1665 | 5.97k | return Name == "ceil" || Name == "ceilf" || |
1666 | 5.97k | Name == "cos" || Name == "cosf" || |
1667 | 5.97k | Name == "cosh" || Name == "coshf"; |
1668 | 3.04k | case 'e': |
1669 | 3.04k | return Name == "exp" || Name == "expf" || |
1670 | 3.04k | Name == "exp2" || Name == "exp2f"; |
1671 | 4.82k | case 'f': |
1672 | 4.82k | return Name == "fabs" || Name == "fabsf" || |
1673 | 4.82k | Name == "floor" || Name == "floorf" || |
1674 | 4.82k | Name == "fmod" || Name == "fmodf"; |
1675 | 2.81k | case 'l': |
1676 | 2.81k | return Name == "log" || Name == "logf" || |
1677 | 2.81k | Name == "log2" || Name == "log2f" || |
1678 | 2.81k | Name == "log10" || Name == "log10f"; |
1679 | 258 | case 'n': |
1680 | 258 | return Name == "nearbyint" || Name == "nearbyintf"; |
1681 | 2.02k | case 'p': |
1682 | 2.02k | return Name == "pow" || Name == "powf"; |
1683 | 220 | case 'r': |
1684 | 220 | return Name == "remainder" || Name == "remainderf" || |
1685 | 220 | Name == "rint" || Name == "rintf" || |
1686 | 220 | Name == "round" || Name == "roundf"; |
1687 | 7.24k | case 's': |
1688 | 7.24k | return Name == "sin" || Name == "sinf" || |
1689 | 7.24k | Name == "sinh" || Name == "sinhf" || |
1690 | 7.24k | Name == "sqrt" || Name == "sqrtf"; |
1691 | 1.16k | case 't': |
1692 | 1.16k | return Name == "tan" || Name == "tanf" || |
1693 | 1.16k | Name == "tanh" || Name == "tanhf" || |
1694 | 1.16k | Name == "trunc" || Name == "truncf"; |
1695 | 2.97k | case '_': |
1696 | | // Check for various function names that get used for the math functions |
1697 | | // when the header files are preprocessed with the macro |
1698 | | // __FINITE_MATH_ONLY__ enabled. |
1699 | | // The '12' here is the length of the shortest name that can match. |
1700 | | // We need to check the size before looking at Name[1] and Name[2] |
1701 | | // so we may as well check a limit that will eliminate mismatches. |
1702 | 2.97k | if (Name.size() < 12 || Name[1] != '_') |
1703 | 2.19k | return false; |
1704 | 784 | switch (Name[2]) { |
1705 | 331 | default: |
1706 | 331 | return false; |
1707 | 11 | case 'a': |
1708 | 11 | return Name == "__acos_finite" || Name == "__acosf_finite" || |
1709 | 11 | Name == "__asin_finite" || Name == "__asinf_finite" || |
1710 | 11 | Name == "__atan2_finite" || Name == "__atan2f_finite"; |
1711 | 27 | case 'c': |
1712 | 27 | return Name == "__cosh_finite" || Name == "__coshf_finite"; |
1713 | 77 | case 'e': |
1714 | 77 | return Name == "__exp_finite" || Name == "__expf_finite" || |
1715 | 77 | Name == "__exp2_finite" || Name == "__exp2f_finite"; |
1716 | 82 | case 'l': |
1717 | 82 | return Name == "__log_finite" || Name == "__logf_finite" || |
1718 | 82 | Name == "__log10_finite" || Name == "__log10f_finite"; |
1719 | 52 | case 'p': |
1720 | 52 | return Name == "__pow_finite" || Name == "__powf_finite"; |
1721 | 204 | case 's': |
1722 | 204 | return Name == "__sinh_finite" || Name == "__sinhf_finite"; |
1723 | 784 | } |
1724 | 43.1k | } |
1725 | 43.1k | } |
1726 | | |
1727 | | namespace { |
1728 | | |
1729 | 11.4k | Constant *GetConstantFoldFPValue(double V, Type *Ty) { |
1730 | 11.4k | if (Ty->isHalfTy() || Ty->isFloatTy()) { |
1731 | 7.31k | APFloat APF(V); |
1732 | 7.31k | bool unused; |
1733 | 7.31k | APF.convert(Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &unused); |
1734 | 7.31k | return ConstantFP::get(Ty->getContext(), APF); |
1735 | 7.31k | } |
1736 | 4.08k | if (Ty->isDoubleTy()) |
1737 | 4.08k | return ConstantFP::get(Ty->getContext(), APFloat(V)); |
1738 | 0 | llvm_unreachable("Can only constant fold half/float/double"); |
1739 | 0 | } |
1740 | | |
1741 | | /// Clear the floating-point exception state. |
1742 | 12.1k | inline void llvm_fenv_clearexcept() { |
1743 | 12.1k | #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT |
1744 | 12.1k | feclearexcept(FE_ALL_EXCEPT); |
1745 | 12.1k | #endif |
1746 | 12.1k | errno = 0; |
1747 | 12.1k | } |
1748 | | |
1749 | | /// Test if a floating-point exception was raised. |
1750 | 11.7k | inline bool llvm_fenv_testexcept() { |
1751 | 11.7k | int errno_val = errno; |
1752 | 11.7k | if (errno_val == ERANGE || errno_val == EDOM) |
1753 | 260 | return true; |
1754 | 11.5k | #if defined(HAVE_FENV_H) && HAVE_DECL_FE_ALL_EXCEPT && HAVE_DECL_FE_INEXACT |
1755 | 11.5k | if (fetestexcept(FE_ALL_EXCEPT & ~FE_INEXACT)) |
1756 | 134 | return true; |
1757 | 11.3k | #endif |
1758 | 11.3k | return false; |
1759 | 11.5k | } |
1760 | | |
1761 | | Constant *ConstantFoldFP(double (*NativeFP)(double), const APFloat &V, |
1762 | 10.3k | Type *Ty) { |
1763 | 10.3k | llvm_fenv_clearexcept(); |
1764 | 10.3k | double Result = NativeFP(V.convertToDouble()); |
1765 | 10.3k | if (llvm_fenv_testexcept()) { |
1766 | 367 | llvm_fenv_clearexcept(); |
1767 | 367 | return nullptr; |
1768 | 367 | } |
1769 | | |
1770 | 10.0k | return GetConstantFoldFPValue(Result, Ty); |
1771 | 10.3k | } |
1772 | | |
1773 | | Constant *ConstantFoldBinaryFP(double (*NativeFP)(double, double), |
1774 | 1.40k | const APFloat &V, const APFloat &W, Type *Ty) { |
1775 | 1.40k | llvm_fenv_clearexcept(); |
1776 | 1.40k | double Result = NativeFP(V.convertToDouble(), W.convertToDouble()); |
1777 | 1.40k | if (llvm_fenv_testexcept()) { |
1778 | 27 | llvm_fenv_clearexcept(); |
1779 | 27 | return nullptr; |
1780 | 27 | } |
1781 | | |
1782 | 1.38k | return GetConstantFoldFPValue(Result, Ty); |
1783 | 1.40k | } |
1784 | | |
1785 | 103 | Constant *constantFoldVectorReduce(Intrinsic::ID IID, Constant *Op) { |
1786 | 103 | FixedVectorType *VT = dyn_cast<FixedVectorType>(Op->getType()); |
1787 | 103 | if (!VT) |
1788 | 0 | return nullptr; |
1789 | | |
1790 | | // This isn't strictly necessary, but handle the special/common case of zero: |
1791 | | // all integer reductions of a zero input produce zero. |
1792 | 103 | if (isa<ConstantAggregateZero>(Op)) |
1793 | 42 | return ConstantInt::get(VT->getElementType(), 0); |
1794 | | |
1795 | | // This is the same as the underlying binops - poison propagates. |
1796 | 61 | if (isa<PoisonValue>(Op) || Op->containsPoisonElement()) |
1797 | 6 | return PoisonValue::get(VT->getElementType()); |
1798 | | |
1799 | | // TODO: Handle undef. |
1800 | 55 | if (!isa<ConstantVector>(Op) && !isa<ConstantDataVector>(Op)) |
1801 | 51 | return nullptr; |
1802 | | |
1803 | 4 | auto *EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(0U)); |
1804 | 4 | if (!EltC) |
1805 | 0 | return nullptr; |
1806 | | |
1807 | 4 | APInt Acc = EltC->getValue(); |
1808 | 140 | for (unsigned I = 1, E = VT->getNumElements(); I != E; I++) { |
1809 | 136 | if (!(EltC = dyn_cast<ConstantInt>(Op->getAggregateElement(I)))) |
1810 | 0 | return nullptr; |
1811 | 136 | const APInt &X = EltC->getValue(); |
1812 | 136 | switch (IID) { |
1813 | 130 | case Intrinsic::vector_reduce_add: |
1814 | 130 | Acc = Acc + X; |
1815 | 130 | break; |
1816 | 0 | case Intrinsic::vector_reduce_mul: |
1817 | 0 | Acc = Acc * X; |
1818 | 0 | break; |
1819 | 0 | case Intrinsic::vector_reduce_and: |
1820 | 0 | Acc = Acc & X; |
1821 | 0 | break; |
1822 | 3 | case Intrinsic::vector_reduce_or: |
1823 | 3 | Acc = Acc | X; |
1824 | 3 | break; |
1825 | 0 | case Intrinsic::vector_reduce_xor: |
1826 | 0 | Acc = Acc ^ X; |
1827 | 0 | break; |
1828 | 0 | case Intrinsic::vector_reduce_smin: |
1829 | 0 | Acc = APIntOps::smin(Acc, X); |
1830 | 0 | break; |
1831 | 0 | case Intrinsic::vector_reduce_smax: |
1832 | 0 | Acc = APIntOps::smax(Acc, X); |
1833 | 0 | break; |
1834 | 0 | case Intrinsic::vector_reduce_umin: |
1835 | 0 | Acc = APIntOps::umin(Acc, X); |
1836 | 0 | break; |
1837 | 3 | case Intrinsic::vector_reduce_umax: |
1838 | 3 | Acc = APIntOps::umax(Acc, X); |
1839 | 3 | break; |
1840 | 136 | } |
1841 | 136 | } |
1842 | | |
1843 | 4 | return ConstantInt::get(Op->getContext(), Acc); |
1844 | 4 | } |
1845 | | |
1846 | | /// Attempt to fold an SSE floating point to integer conversion of a constant |
1847 | | /// floating point. If roundTowardZero is false, the default IEEE rounding is |
1848 | | /// used (toward nearest, ties to even). This matches the behavior of the |
1849 | | /// non-truncating SSE instructions in the default rounding mode. The desired |
1850 | | /// integer type Ty is used to select how many bits are available for the |
1851 | | /// result. Returns null if the conversion cannot be performed, otherwise |
1852 | | /// returns the Constant value resulting from the conversion. |
1853 | | Constant *ConstantFoldSSEConvertToInt(const APFloat &Val, bool roundTowardZero, |
1854 | 20 | Type *Ty, bool IsSigned) { |
1855 | | // All of these conversion intrinsics form an integer of at most 64bits. |
1856 | 20 | unsigned ResultWidth = Ty->getIntegerBitWidth(); |
1857 | 20 | assert(ResultWidth <= 64 && |
1858 | 20 | "Can only constant fold conversions to 64 and 32 bit ints"); |
1859 | | |
1860 | 0 | uint64_t UIntVal; |
1861 | 20 | bool isExact = false; |
1862 | 20 | APFloat::roundingMode mode = roundTowardZero? APFloat::rmTowardZero |
1863 | 20 | : APFloat::rmNearestTiesToEven; |
1864 | 20 | APFloat::opStatus status = |
1865 | 20 | Val.convertToInteger(MutableArrayRef(UIntVal), ResultWidth, |
1866 | 20 | IsSigned, mode, &isExact); |
1867 | 20 | if (status != APFloat::opOK && |
1868 | 20 | (!roundTowardZero || status != APFloat::opInexact)) |
1869 | 16 | return nullptr; |
1870 | 4 | return ConstantInt::get(Ty, UIntVal, IsSigned); |
1871 | 20 | } |
1872 | | |
1873 | 8 | double getValueAsDouble(ConstantFP *Op) { |
1874 | 8 | Type *Ty = Op->getType(); |
1875 | | |
1876 | 8 | if (Ty->isBFloatTy() || Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) |
1877 | 8 | return Op->getValueAPF().convertToDouble(); |
1878 | | |
1879 | 0 | bool unused; |
1880 | 0 | APFloat APF = Op->getValueAPF(); |
1881 | 0 | APF.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &unused); |
1882 | 0 | return APF.convertToDouble(); |
1883 | 8 | } |
1884 | | |
1885 | 48.6k | static bool getConstIntOrUndef(Value *Op, const APInt *&C) { |
1886 | 48.6k | if (auto *CI = dyn_cast<ConstantInt>(Op)) { |
1887 | 46.7k | C = &CI->getValue(); |
1888 | 46.7k | return true; |
1889 | 46.7k | } |
1890 | 1.85k | if (isa<UndefValue>(Op)) { |
1891 | 1.85k | C = nullptr; |
1892 | 1.85k | return true; |
1893 | 1.85k | } |
1894 | 0 | return false; |
1895 | 1.85k | } |
1896 | | |
1897 | | /// Checks if the given intrinsic call, which evaluates to constant, is allowed |
1898 | | /// to be folded. |
1899 | | /// |
1900 | | /// \param CI Constrained intrinsic call. |
1901 | | /// \param St Exception flags raised during constant evaluation. |
1902 | | static bool mayFoldConstrained(ConstrainedFPIntrinsic *CI, |
1903 | 0 | APFloat::opStatus St) { |
1904 | 0 | std::optional<RoundingMode> ORM = CI->getRoundingMode(); |
1905 | 0 | std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); |
1906 | | |
1907 | | // If the operation does not change exception status flags, it is safe |
1908 | | // to fold. |
1909 | 0 | if (St == APFloat::opStatus::opOK) |
1910 | 0 | return true; |
1911 | | |
1912 | | // If evaluation raised FP exception, the result can depend on rounding |
1913 | | // mode. If the latter is unknown, folding is not possible. |
1914 | 0 | if (ORM && *ORM == RoundingMode::Dynamic) |
1915 | 0 | return false; |
1916 | | |
1917 | | // If FP exceptions are ignored, fold the call, even if such exception is |
1918 | | // raised. |
1919 | 0 | if (EB && *EB != fp::ExceptionBehavior::ebStrict) |
1920 | 0 | return true; |
1921 | | |
1922 | | // Leave the calculation for runtime so that exception flags be correctly set |
1923 | | // in hardware. |
1924 | 0 | return false; |
1925 | 0 | } |
1926 | | |
1927 | | /// Returns the rounding mode that should be used for constant evaluation. |
1928 | | static RoundingMode |
1929 | 0 | getEvaluationRoundingMode(const ConstrainedFPIntrinsic *CI) { |
1930 | 0 | std::optional<RoundingMode> ORM = CI->getRoundingMode(); |
1931 | 0 | if (!ORM || *ORM == RoundingMode::Dynamic) |
1932 | | // Even if the rounding mode is unknown, try evaluating the operation. |
1933 | | // If it does not raise inexact exception, rounding was not applied, |
1934 | | // so the result is exact and does not depend on rounding mode. Whether |
1935 | | // other FP exceptions are raised, it does not depend on rounding mode. |
1936 | 0 | return RoundingMode::NearestTiesToEven; |
1937 | 0 | return *ORM; |
1938 | 0 | } |
1939 | | |
1940 | | /// Try to constant fold llvm.canonicalize for the given caller and value. |
1941 | | static Constant *constantFoldCanonicalize(const Type *Ty, const CallBase *CI, |
1942 | 0 | const APFloat &Src) { |
1943 | | // Zero, positive and negative, is always OK to fold. |
1944 | 0 | if (Src.isZero()) { |
1945 | | // Get a fresh 0, since ppc_fp128 does have non-canonical zeros. |
1946 | 0 | return ConstantFP::get( |
1947 | 0 | CI->getContext(), |
1948 | 0 | APFloat::getZero(Src.getSemantics(), Src.isNegative())); |
1949 | 0 | } |
1950 | | |
1951 | 0 | if (!Ty->isIEEELikeFPTy()) |
1952 | 0 | return nullptr; |
1953 | | |
1954 | | // Zero is always canonical and the sign must be preserved. |
1955 | | // |
1956 | | // Denorms and nans may have special encodings, but it should be OK to fold a |
1957 | | // totally average number. |
1958 | 0 | if (Src.isNormal() || Src.isInfinity()) |
1959 | 0 | return ConstantFP::get(CI->getContext(), Src); |
1960 | | |
1961 | 0 | if (Src.isDenormal() && CI->getParent() && CI->getFunction()) { |
1962 | 0 | DenormalMode DenormMode = |
1963 | 0 | CI->getFunction()->getDenormalMode(Src.getSemantics()); |
1964 | |
|
1965 | 0 | if (DenormMode == DenormalMode::getIEEE()) |
1966 | 0 | return ConstantFP::get(CI->getContext(), Src); |
1967 | | |
1968 | 0 | if (DenormMode.Input == DenormalMode::Dynamic) |
1969 | 0 | return nullptr; |
1970 | | |
1971 | | // If we know if either input or output is flushed, we can fold. |
1972 | 0 | if ((DenormMode.Input == DenormalMode::Dynamic && |
1973 | 0 | DenormMode.Output == DenormalMode::IEEE) || |
1974 | 0 | (DenormMode.Input == DenormalMode::IEEE && |
1975 | 0 | DenormMode.Output == DenormalMode::Dynamic)) |
1976 | 0 | return nullptr; |
1977 | | |
1978 | 0 | bool IsPositive = |
1979 | 0 | (!Src.isNegative() || DenormMode.Input == DenormalMode::PositiveZero || |
1980 | 0 | (DenormMode.Output == DenormalMode::PositiveZero && |
1981 | 0 | DenormMode.Input == DenormalMode::IEEE)); |
1982 | |
|
1983 | 0 | return ConstantFP::get(CI->getContext(), |
1984 | 0 | APFloat::getZero(Src.getSemantics(), !IsPositive)); |
1985 | 0 | } |
1986 | | |
1987 | 0 | return nullptr; |
1988 | 0 | } |
1989 | | |
1990 | | static Constant *ConstantFoldScalarCall1(StringRef Name, |
1991 | | Intrinsic::ID IntrinsicID, |
1992 | | Type *Ty, |
1993 | | ArrayRef<Constant *> Operands, |
1994 | | const TargetLibraryInfo *TLI, |
1995 | 14.6k | const CallBase *Call) { |
1996 | 14.6k | assert(Operands.size() == 1 && "Wrong number of operands."); |
1997 | | |
1998 | 14.6k | if (IntrinsicID == Intrinsic::is_constant) { |
1999 | | // We know we have a "Constant" argument. But we want to only |
2000 | | // return true for manifest constants, not those that depend on |
2001 | | // constants with unknowable values, e.g. GlobalValue or BlockAddress. |
2002 | 0 | if (Operands[0]->isManifestConstant()) |
2003 | 0 | return ConstantInt::getTrue(Ty->getContext()); |
2004 | 0 | return nullptr; |
2005 | 0 | } |
2006 | | |
2007 | 14.6k | if (isa<PoisonValue>(Operands[0])) { |
2008 | | // TODO: All of these operations should probably propagate poison. |
2009 | 105 | if (IntrinsicID == Intrinsic::canonicalize) |
2010 | 0 | return PoisonValue::get(Ty); |
2011 | 105 | } |
2012 | | |
2013 | 14.6k | if (isa<UndefValue>(Operands[0])) { |
2014 | | // cosine(arg) is between -1 and 1. cosine(invalid arg) is NaN. |
2015 | | // ctpop() is between 0 and bitwidth, pick 0 for undef. |
2016 | | // fptoui.sat and fptosi.sat can always fold to zero (for a zero input). |
2017 | 257 | if (IntrinsicID == Intrinsic::cos || |
2018 | 257 | IntrinsicID == Intrinsic::ctpop || |
2019 | 257 | IntrinsicID == Intrinsic::fptoui_sat || |
2020 | 257 | IntrinsicID == Intrinsic::fptosi_sat || |
2021 | 257 | IntrinsicID == Intrinsic::canonicalize) |
2022 | 47 | return Constant::getNullValue(Ty); |
2023 | 210 | if (IntrinsicID == Intrinsic::bswap || |
2024 | 210 | IntrinsicID == Intrinsic::bitreverse || |
2025 | 210 | IntrinsicID == Intrinsic::launder_invariant_group || |
2026 | 210 | IntrinsicID == Intrinsic::strip_invariant_group) |
2027 | 84 | return Operands[0]; |
2028 | 210 | } |
2029 | | |
2030 | 14.5k | if (isa<ConstantPointerNull>(Operands[0])) { |
2031 | | // launder(null) == null == strip(null) iff in addrspace 0 |
2032 | 68 | if (IntrinsicID == Intrinsic::launder_invariant_group || |
2033 | 68 | IntrinsicID == Intrinsic::strip_invariant_group) { |
2034 | | // If instruction is not yet put in a basic block (e.g. when cloning |
2035 | | // a function during inlining), Call's caller may not be available. |
2036 | | // So check Call's BB first before querying Call->getCaller. |
2037 | 68 | const Function *Caller = |
2038 | 68 | Call->getParent() ? Call->getCaller() : nullptr; |
2039 | 68 | if (Caller && |
2040 | 68 | !NullPointerIsDefined( |
2041 | 68 | Caller, Operands[0]->getType()->getPointerAddressSpace())) { |
2042 | 17 | return Operands[0]; |
2043 | 17 | } |
2044 | 51 | return nullptr; |
2045 | 68 | } |
2046 | 68 | } |
2047 | | |
2048 | 14.4k | if (auto *Op = dyn_cast<ConstantFP>(Operands[0])) { |
2049 | 13.9k | if (IntrinsicID == Intrinsic::convert_to_fp16) { |
2050 | 0 | APFloat Val(Op->getValueAPF()); |
2051 | |
|
2052 | 0 | bool lost = false; |
2053 | 0 | Val.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, &lost); |
2054 | |
|
2055 | 0 | return ConstantInt::get(Ty->getContext(), Val.bitcastToAPInt()); |
2056 | 0 | } |
2057 | | |
2058 | 13.9k | APFloat U = Op->getValueAPF(); |
2059 | | |
2060 | 13.9k | if (IntrinsicID == Intrinsic::wasm_trunc_signed || |
2061 | 13.9k | IntrinsicID == Intrinsic::wasm_trunc_unsigned) { |
2062 | 0 | bool Signed = IntrinsicID == Intrinsic::wasm_trunc_signed; |
2063 | |
|
2064 | 0 | if (U.isNaN()) |
2065 | 0 | return nullptr; |
2066 | | |
2067 | 0 | unsigned Width = Ty->getIntegerBitWidth(); |
2068 | 0 | APSInt Int(Width, !Signed); |
2069 | 0 | bool IsExact = false; |
2070 | 0 | APFloat::opStatus Status = |
2071 | 0 | U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); |
2072 | |
|
2073 | 0 | if (Status == APFloat::opOK || Status == APFloat::opInexact) |
2074 | 0 | return ConstantInt::get(Ty, Int); |
2075 | | |
2076 | 0 | return nullptr; |
2077 | 0 | } |
2078 | | |
2079 | 13.9k | if (IntrinsicID == Intrinsic::fptoui_sat || |
2080 | 13.9k | IntrinsicID == Intrinsic::fptosi_sat) { |
2081 | | // convertToInteger() already has the desired saturation semantics. |
2082 | 0 | APSInt Int(Ty->getIntegerBitWidth(), |
2083 | 0 | IntrinsicID == Intrinsic::fptoui_sat); |
2084 | 0 | bool IsExact; |
2085 | 0 | U.convertToInteger(Int, APFloat::rmTowardZero, &IsExact); |
2086 | 0 | return ConstantInt::get(Ty, Int); |
2087 | 0 | } |
2088 | | |
2089 | 13.9k | if (IntrinsicID == Intrinsic::canonicalize) |
2090 | 0 | return constantFoldCanonicalize(Ty, Call, U); |
2091 | | |
2092 | 13.9k | if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) |
2093 | 0 | return nullptr; |
2094 | | |
2095 | | // Use internal versions of these intrinsics. |
2096 | | |
2097 | 13.9k | if (IntrinsicID == Intrinsic::nearbyint || IntrinsicID == Intrinsic::rint) { |
2098 | 339 | U.roundToIntegral(APFloat::rmNearestTiesToEven); |
2099 | 339 | return ConstantFP::get(Ty->getContext(), U); |
2100 | 339 | } |
2101 | | |
2102 | 13.5k | if (IntrinsicID == Intrinsic::round) { |
2103 | 18 | U.roundToIntegral(APFloat::rmNearestTiesToAway); |
2104 | 18 | return ConstantFP::get(Ty->getContext(), U); |
2105 | 18 | } |
2106 | | |
2107 | 13.5k | if (IntrinsicID == Intrinsic::roundeven) { |
2108 | 2 | U.roundToIntegral(APFloat::rmNearestTiesToEven); |
2109 | 2 | return ConstantFP::get(Ty->getContext(), U); |
2110 | 2 | } |
2111 | | |
2112 | 13.5k | if (IntrinsicID == Intrinsic::ceil) { |
2113 | 302 | U.roundToIntegral(APFloat::rmTowardPositive); |
2114 | 302 | return ConstantFP::get(Ty->getContext(), U); |
2115 | 302 | } |
2116 | | |
2117 | 13.2k | if (IntrinsicID == Intrinsic::floor) { |
2118 | 73 | U.roundToIntegral(APFloat::rmTowardNegative); |
2119 | 73 | return ConstantFP::get(Ty->getContext(), U); |
2120 | 73 | } |
2121 | | |
2122 | 13.1k | if (IntrinsicID == Intrinsic::trunc) { |
2123 | 138 | U.roundToIntegral(APFloat::rmTowardZero); |
2124 | 138 | return ConstantFP::get(Ty->getContext(), U); |
2125 | 138 | } |
2126 | | |
2127 | 13.0k | if (IntrinsicID == Intrinsic::fabs) { |
2128 | 88 | U.clearSign(); |
2129 | 88 | return ConstantFP::get(Ty->getContext(), U); |
2130 | 88 | } |
2131 | | |
2132 | 12.9k | if (IntrinsicID == Intrinsic::amdgcn_fract) { |
2133 | | // The v_fract instruction behaves like the OpenCL spec, which defines |
2134 | | // fract(x) as fmin(x - floor(x), 0x1.fffffep-1f): "The min() operator is |
2135 | | // there to prevent fract(-small) from returning 1.0. It returns the |
2136 | | // largest positive floating-point number less than 1.0." |
2137 | 0 | APFloat FloorU(U); |
2138 | 0 | FloorU.roundToIntegral(APFloat::rmTowardNegative); |
2139 | 0 | APFloat FractU(U - FloorU); |
2140 | 0 | APFloat AlmostOne(U.getSemantics(), 1); |
2141 | 0 | AlmostOne.next(/*nextDown*/ true); |
2142 | 0 | return ConstantFP::get(Ty->getContext(), minimum(FractU, AlmostOne)); |
2143 | 0 | } |
2144 | | |
2145 | | // Rounding operations (floor, trunc, ceil, round and nearbyint) do not |
2146 | | // raise FP exceptions, unless the argument is signaling NaN. |
2147 | | |
2148 | 12.9k | std::optional<APFloat::roundingMode> RM; |
2149 | 12.9k | switch (IntrinsicID) { |
2150 | 12.9k | default: |
2151 | 12.9k | break; |
2152 | 12.9k | case Intrinsic::experimental_constrained_nearbyint: |
2153 | 0 | case Intrinsic::experimental_constrained_rint: { |
2154 | 0 | auto CI = cast<ConstrainedFPIntrinsic>(Call); |
2155 | 0 | RM = CI->getRoundingMode(); |
2156 | 0 | if (!RM || *RM == RoundingMode::Dynamic) |
2157 | 0 | return nullptr; |
2158 | 0 | break; |
2159 | 0 | } |
2160 | 0 | case Intrinsic::experimental_constrained_round: |
2161 | 0 | RM = APFloat::rmNearestTiesToAway; |
2162 | 0 | break; |
2163 | 0 | case Intrinsic::experimental_constrained_ceil: |
2164 | 0 | RM = APFloat::rmTowardPositive; |
2165 | 0 | break; |
2166 | 0 | case Intrinsic::experimental_constrained_floor: |
2167 | 0 | RM = APFloat::rmTowardNegative; |
2168 | 0 | break; |
2169 | 0 | case Intrinsic::experimental_constrained_trunc: |
2170 | 0 | RM = APFloat::rmTowardZero; |
2171 | 0 | break; |
2172 | 12.9k | } |
2173 | 12.9k | if (RM) { |
2174 | 0 | auto CI = cast<ConstrainedFPIntrinsic>(Call); |
2175 | 0 | if (U.isFinite()) { |
2176 | 0 | APFloat::opStatus St = U.roundToIntegral(*RM); |
2177 | 0 | if (IntrinsicID == Intrinsic::experimental_constrained_rint && |
2178 | 0 | St == APFloat::opInexact) { |
2179 | 0 | std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); |
2180 | 0 | if (EB && *EB == fp::ebStrict) |
2181 | 0 | return nullptr; |
2182 | 0 | } |
2183 | 0 | } else if (U.isSignaling()) { |
2184 | 0 | std::optional<fp::ExceptionBehavior> EB = CI->getExceptionBehavior(); |
2185 | 0 | if (EB && *EB != fp::ebIgnore) |
2186 | 0 | return nullptr; |
2187 | 0 | U = APFloat::getQNaN(U.getSemantics()); |
2188 | 0 | } |
2189 | 0 | return ConstantFP::get(Ty->getContext(), U); |
2190 | 0 | } |
2191 | | |
2192 | | /// We only fold functions with finite arguments. Folding NaN and inf is |
2193 | | /// likely to be aborted with an exception anyway, and some host libms |
2194 | | /// have known errors raising exceptions. |
2195 | 12.9k | if (!U.isFinite()) |
2196 | 86 | return nullptr; |
2197 | | |
2198 | | /// Currently APFloat versions of these functions do not exist, so we use |
2199 | | /// the host native double versions. Float versions are not called |
2200 | | /// directly but for all these it is true (float)(f((double)arg)) == |
2201 | | /// f(arg). Long double not supported yet. |
2202 | 12.8k | const APFloat &APF = Op->getValueAPF(); |
2203 | | |
2204 | 12.8k | switch (IntrinsicID) { |
2205 | 6.52k | default: break; |
2206 | 6.52k | case Intrinsic::log: |
2207 | 103 | return ConstantFoldFP(log, APF, Ty); |
2208 | 51 | case Intrinsic::log2: |
2209 | | // TODO: What about hosts that lack a C99 library? |
2210 | 51 | return ConstantFoldFP(log2, APF, Ty); |
2211 | 67 | case Intrinsic::log10: |
2212 | | // TODO: What about hosts that lack a C99 library? |
2213 | 67 | return ConstantFoldFP(log10, APF, Ty); |
2214 | 2.54k | case Intrinsic::exp: |
2215 | 2.54k | return ConstantFoldFP(exp, APF, Ty); |
2216 | 550 | case Intrinsic::exp2: |
2217 | | // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. |
2218 | 550 | return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); |
2219 | 0 | case Intrinsic::exp10: |
2220 | | // Fold exp10(x) as pow(10, x), in case the host lacks a C99 library. |
2221 | 0 | return ConstantFoldBinaryFP(pow, APFloat(10.0), APF, Ty); |
2222 | 1.59k | case Intrinsic::sin: |
2223 | 1.59k | return ConstantFoldFP(sin, APF, Ty); |
2224 | 193 | case Intrinsic::cos: |
2225 | 193 | return ConstantFoldFP(cos, APF, Ty); |
2226 | 1.21k | case Intrinsic::sqrt: |
2227 | 1.21k | return ConstantFoldFP(sqrt, APF, Ty); |
2228 | 8 | case Intrinsic::amdgcn_cos: |
2229 | 8 | case Intrinsic::amdgcn_sin: { |
2230 | 8 | double V = getValueAsDouble(Op); |
2231 | 8 | if (V < -256.0 || V > 256.0) |
2232 | | // The gfx8 and gfx9 architectures handle arguments outside the range |
2233 | | // [-256, 256] differently. This should be a rare case so bail out |
2234 | | // rather than trying to handle the difference. |
2235 | 0 | return nullptr; |
2236 | 8 | bool IsCos = IntrinsicID == Intrinsic::amdgcn_cos; |
2237 | 8 | double V4 = V * 4.0; |
2238 | 8 | if (V4 == floor(V4)) { |
2239 | | // Force exact results for quarter-integer inputs. |
2240 | 7 | const double SinVals[4] = { 0.0, 1.0, 0.0, -1.0 }; |
2241 | 7 | V = SinVals[((int)V4 + (IsCos ? 1 : 0)) & 3]; |
2242 | 7 | } else { |
2243 | 1 | if (IsCos) |
2244 | 1 | V = cos(V * 2.0 * numbers::pi); |
2245 | 0 | else |
2246 | 0 | V = sin(V * 2.0 * numbers::pi); |
2247 | 1 | } |
2248 | 8 | return GetConstantFoldFPValue(V, Ty); |
2249 | 8 | } |
2250 | 12.8k | } |
2251 | | |
2252 | 6.52k | if (!TLI) |
2253 | 0 | return nullptr; |
2254 | | |
2255 | 6.52k | LibFunc Func = NotLibFunc; |
2256 | 6.52k | if (!TLI->getLibFunc(Name, Func)) |
2257 | 0 | return nullptr; |
2258 | | |
2259 | 6.52k | switch (Func) { |
2260 | 0 | default: |
2261 | 0 | break; |
2262 | 54 | case LibFunc_acos: |
2263 | 91 | case LibFunc_acosf: |
2264 | 91 | case LibFunc_acos_finite: |
2265 | 91 | case LibFunc_acosf_finite: |
2266 | 91 | if (TLI->has(Func)) |
2267 | 91 | return ConstantFoldFP(acos, APF, Ty); |
2268 | 0 | break; |
2269 | 57 | case LibFunc_asin: |
2270 | 72 | case LibFunc_asinf: |
2271 | 72 | case LibFunc_asin_finite: |
2272 | 72 | case LibFunc_asinf_finite: |
2273 | 72 | if (TLI->has(Func)) |
2274 | 72 | return ConstantFoldFP(asin, APF, Ty); |
2275 | 0 | break; |
2276 | 37 | case LibFunc_atan: |
2277 | 40 | case LibFunc_atanf: |
2278 | 40 | if (TLI->has(Func)) |
2279 | 40 | return ConstantFoldFP(atan, APF, Ty); |
2280 | 0 | break; |
2281 | 582 | case LibFunc_ceil: |
2282 | 587 | case LibFunc_ceilf: |
2283 | 587 | if (TLI->has(Func)) { |
2284 | 587 | U.roundToIntegral(APFloat::rmTowardPositive); |
2285 | 587 | return ConstantFP::get(Ty->getContext(), U); |
2286 | 587 | } |
2287 | 0 | break; |
2288 | 571 | case LibFunc_cos: |
2289 | 1.72k | case LibFunc_cosf: |
2290 | 1.72k | if (TLI->has(Func)) |
2291 | 1.72k | return ConstantFoldFP(cos, APF, Ty); |
2292 | 0 | break; |
2293 | 22 | case LibFunc_cosh: |
2294 | 31 | case LibFunc_coshf: |
2295 | 31 | case LibFunc_cosh_finite: |
2296 | 31 | case LibFunc_coshf_finite: |
2297 | 31 | if (TLI->has(Func)) |
2298 | 31 | return ConstantFoldFP(cosh, APF, Ty); |
2299 | 0 | break; |
2300 | 215 | case LibFunc_exp: |
2301 | 355 | case LibFunc_expf: |
2302 | 375 | case LibFunc_exp_finite: |
2303 | 380 | case LibFunc_expf_finite: |
2304 | 380 | if (TLI->has(Func)) |
2305 | 355 | return ConstantFoldFP(exp, APF, Ty); |
2306 | 25 | break; |
2307 | 67 | case LibFunc_exp2: |
2308 | 508 | case LibFunc_exp2f: |
2309 | 508 | case LibFunc_exp2_finite: |
2310 | 508 | case LibFunc_exp2f_finite: |
2311 | 508 | if (TLI->has(Func)) |
2312 | | // Fold exp2(x) as pow(2, x), in case the host lacks a C99 library. |
2313 | 508 | return ConstantFoldBinaryFP(pow, APFloat(2.0), APF, Ty); |
2314 | 0 | break; |
2315 | 25 | case LibFunc_fabs: |
2316 | 470 | case LibFunc_fabsf: |
2317 | 470 | if (TLI->has(Func)) { |
2318 | 470 | U.clearSign(); |
2319 | 470 | return ConstantFP::get(Ty->getContext(), U); |
2320 | 470 | } |
2321 | 0 | break; |
2322 | 7 | case LibFunc_floor: |
2323 | 7 | case LibFunc_floorf: |
2324 | 7 | if (TLI->has(Func)) { |
2325 | 7 | U.roundToIntegral(APFloat::rmTowardNegative); |
2326 | 7 | return ConstantFP::get(Ty->getContext(), U); |
2327 | 7 | } |
2328 | 0 | break; |
2329 | 107 | case LibFunc_log: |
2330 | 190 | case LibFunc_logf: |
2331 | 206 | case LibFunc_log_finite: |
2332 | 237 | case LibFunc_logf_finite: |
2333 | 237 | if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) |
2334 | 96 | return ConstantFoldFP(log, APF, Ty); |
2335 | 141 | break; |
2336 | 141 | case LibFunc_log2: |
2337 | 110 | case LibFunc_log2f: |
2338 | 110 | case LibFunc_log2_finite: |
2339 | 110 | case LibFunc_log2f_finite: |
2340 | 110 | if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) |
2341 | | // TODO: What about hosts that lack a C99 library? |
2342 | 24 | return ConstantFoldFP(log2, APF, Ty); |
2343 | 86 | break; |
2344 | 86 | case LibFunc_log10: |
2345 | 90 | case LibFunc_log10f: |
2346 | 90 | case LibFunc_log10_finite: |
2347 | 90 | case LibFunc_log10f_finite: |
2348 | 90 | if (!APF.isNegative() && !APF.isZero() && TLI->has(Func)) |
2349 | | // TODO: What about hosts that lack a C99 library? |
2350 | 46 | return ConstantFoldFP(log10, APF, Ty); |
2351 | 44 | break; |
2352 | 44 | case LibFunc_nearbyint: |
2353 | 4 | case LibFunc_nearbyintf: |
2354 | 4 | case LibFunc_rint: |
2355 | 4 | case LibFunc_rintf: |
2356 | 4 | if (TLI->has(Func)) { |
2357 | 4 | U.roundToIntegral(APFloat::rmNearestTiesToEven); |
2358 | 4 | return ConstantFP::get(Ty->getContext(), U); |
2359 | 4 | } |
2360 | 0 | break; |
2361 | 19 | case LibFunc_round: |
2362 | 19 | case LibFunc_roundf: |
2363 | 19 | if (TLI->has(Func)) { |
2364 | 19 | U.roundToIntegral(APFloat::rmNearestTiesToAway); |
2365 | 19 | return ConstantFP::get(Ty->getContext(), U); |
2366 | 19 | } |
2367 | 0 | break; |
2368 | 313 | case LibFunc_sin: |
2369 | 1.39k | case LibFunc_sinf: |
2370 | 1.39k | if (TLI->has(Func)) |
2371 | 1.39k | return ConstantFoldFP(sin, APF, Ty); |
2372 | 0 | break; |
2373 | 20 | case LibFunc_sinh: |
2374 | 32 | case LibFunc_sinhf: |
2375 | 32 | case LibFunc_sinh_finite: |
2376 | 32 | case LibFunc_sinhf_finite: |
2377 | 32 | if (TLI->has(Func)) |
2378 | 32 | return ConstantFoldFP(sinh, APF, Ty); |
2379 | 0 | break; |
2380 | 534 | case LibFunc_sqrt: |
2381 | 570 | case LibFunc_sqrtf: |
2382 | 570 | if (!APF.isNegative() && TLI->has(Func)) |
2383 | 555 | return ConstantFoldFP(sqrt, APF, Ty); |
2384 | 15 | break; |
2385 | 42 | case LibFunc_tan: |
2386 | 59 | case LibFunc_tanf: |
2387 | 59 | if (TLI->has(Func)) |
2388 | 59 | return ConstantFoldFP(tan, APF, Ty); |
2389 | 0 | break; |
2390 | 63 | case LibFunc_tanh: |
2391 | 85 | case LibFunc_tanhf: |
2392 | 85 | if (TLI->has(Func)) |
2393 | 85 | return ConstantFoldFP(tanh, APF, Ty); |
2394 | 0 | break; |
2395 | 16 | case LibFunc_trunc: |
2396 | 16 | case LibFunc_truncf: |
2397 | 16 | if (TLI->has(Func)) { |
2398 | 16 | U.roundToIntegral(APFloat::rmTowardZero); |
2399 | 16 | return ConstantFP::get(Ty->getContext(), U); |
2400 | 16 | } |
2401 | 0 | break; |
2402 | 6.52k | } |
2403 | 311 | return nullptr; |
2404 | 6.52k | } |
2405 | | |
2406 | 557 | if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { |
2407 | 338 | switch (IntrinsicID) { |
2408 | 133 | case Intrinsic::bswap: |
2409 | 133 | return ConstantInt::get(Ty->getContext(), Op->getValue().byteSwap()); |
2410 | 125 | case Intrinsic::ctpop: |
2411 | 125 | return ConstantInt::get(Ty, Op->getValue().popcount()); |
2412 | 80 | case Intrinsic::bitreverse: |
2413 | 80 | return ConstantInt::get(Ty->getContext(), Op->getValue().reverseBits()); |
2414 | 0 | case Intrinsic::convert_from_fp16: { |
2415 | 0 | APFloat Val(APFloat::IEEEhalf(), Op->getValue()); |
2416 | |
|
2417 | 0 | bool lost = false; |
2418 | 0 | APFloat::opStatus status = Val.convert( |
2419 | 0 | Ty->getFltSemantics(), APFloat::rmNearestTiesToEven, &lost); |
2420 | | |
2421 | | // Conversion is always precise. |
2422 | 0 | (void)status; |
2423 | 0 | assert(status != APFloat::opInexact && !lost && |
2424 | 0 | "Precision lost during fp16 constfolding"); |
2425 | | |
2426 | 0 | return ConstantFP::get(Ty->getContext(), Val); |
2427 | 0 | } |
2428 | | |
2429 | 0 | case Intrinsic::amdgcn_s_wqm: { |
2430 | 0 | uint64_t Val = Op->getZExtValue(); |
2431 | 0 | Val |= (Val & 0x5555555555555555ULL) << 1 | |
2432 | 0 | ((Val >> 1) & 0x5555555555555555ULL); |
2433 | 0 | Val |= (Val & 0x3333333333333333ULL) << 2 | |
2434 | 0 | ((Val >> 2) & 0x3333333333333333ULL); |
2435 | 0 | return ConstantInt::get(Ty, Val); |
2436 | 0 | } |
2437 | | |
2438 | 0 | case Intrinsic::amdgcn_s_quadmask: { |
2439 | 0 | uint64_t Val = Op->getZExtValue(); |
2440 | 0 | uint64_t QuadMask = 0; |
2441 | 0 | for (unsigned I = 0; I < Op->getBitWidth() / 4; ++I, Val >>= 4) { |
2442 | 0 | if (!(Val & 0xF)) |
2443 | 0 | continue; |
2444 | | |
2445 | 0 | QuadMask |= (1ULL << I); |
2446 | 0 | } |
2447 | 0 | return ConstantInt::get(Ty, QuadMask); |
2448 | 0 | } |
2449 | | |
2450 | 0 | case Intrinsic::amdgcn_s_bitreplicate: { |
2451 | 0 | uint64_t Val = Op->getZExtValue(); |
2452 | 0 | Val = (Val & 0x000000000000FFFFULL) | (Val & 0x00000000FFFF0000ULL) << 16; |
2453 | 0 | Val = (Val & 0x000000FF000000FFULL) | (Val & 0x0000FF000000FF00ULL) << 8; |
2454 | 0 | Val = (Val & 0x000F000F000F000FULL) | (Val & 0x00F000F000F000F0ULL) << 4; |
2455 | 0 | Val = (Val & 0x0303030303030303ULL) | (Val & 0x0C0C0C0C0C0C0C0CULL) << 2; |
2456 | 0 | Val = (Val & 0x1111111111111111ULL) | (Val & 0x2222222222222222ULL) << 1; |
2457 | 0 | Val = Val | Val << 1; |
2458 | 0 | return ConstantInt::get(Ty, Val); |
2459 | 0 | } |
2460 | | |
2461 | 0 | default: |
2462 | 0 | return nullptr; |
2463 | 338 | } |
2464 | 338 | } |
2465 | | |
2466 | 219 | switch (IntrinsicID) { |
2467 | 116 | default: break; |
2468 | 116 | case Intrinsic::vector_reduce_add: |
2469 | 6 | case Intrinsic::vector_reduce_mul: |
2470 | 7 | case Intrinsic::vector_reduce_and: |
2471 | 8 | case Intrinsic::vector_reduce_or: |
2472 | 26 | case Intrinsic::vector_reduce_xor: |
2473 | 60 | case Intrinsic::vector_reduce_smin: |
2474 | 83 | case Intrinsic::vector_reduce_smax: |
2475 | 100 | case Intrinsic::vector_reduce_umin: |
2476 | 103 | case Intrinsic::vector_reduce_umax: |
2477 | 103 | if (Constant *C = constantFoldVectorReduce(IntrinsicID, Operands[0])) |
2478 | 52 | return C; |
2479 | 51 | break; |
2480 | 219 | } |
2481 | | |
2482 | | // Support ConstantVector in case we have an Undef in the top. |
2483 | 167 | if (isa<ConstantVector>(Operands[0]) || |
2484 | 167 | isa<ConstantDataVector>(Operands[0])) { |
2485 | 47 | auto *Op = cast<Constant>(Operands[0]); |
2486 | 47 | switch (IntrinsicID) { |
2487 | 0 | default: break; |
2488 | 1 | case Intrinsic::x86_sse_cvtss2si: |
2489 | 9 | case Intrinsic::x86_sse_cvtss2si64: |
2490 | 10 | case Intrinsic::x86_sse2_cvtsd2si: |
2491 | 14 | case Intrinsic::x86_sse2_cvtsd2si64: |
2492 | 14 | if (ConstantFP *FPOp = |
2493 | 14 | dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) |
2494 | 3 | return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), |
2495 | 3 | /*roundTowardZero=*/false, Ty, |
2496 | 3 | /*IsSigned*/true); |
2497 | 11 | break; |
2498 | 11 | case Intrinsic::x86_sse_cvttss2si: |
2499 | 25 | case Intrinsic::x86_sse_cvttss2si64: |
2500 | 32 | case Intrinsic::x86_sse2_cvttsd2si: |
2501 | 33 | case Intrinsic::x86_sse2_cvttsd2si64: |
2502 | 33 | if (ConstantFP *FPOp = |
2503 | 33 | dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) |
2504 | 17 | return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), |
2505 | 17 | /*roundTowardZero=*/true, Ty, |
2506 | 17 | /*IsSigned*/true); |
2507 | 16 | break; |
2508 | 47 | } |
2509 | 47 | } |
2510 | | |
2511 | 147 | return nullptr; |
2512 | 167 | } |
2513 | | |
2514 | | static Constant *evaluateCompare(const APFloat &Op1, const APFloat &Op2, |
2515 | 0 | const ConstrainedFPIntrinsic *Call) { |
2516 | 0 | APFloat::opStatus St = APFloat::opOK; |
2517 | 0 | auto *FCmp = cast<ConstrainedFPCmpIntrinsic>(Call); |
2518 | 0 | FCmpInst::Predicate Cond = FCmp->getPredicate(); |
2519 | 0 | if (FCmp->isSignaling()) { |
2520 | 0 | if (Op1.isNaN() || Op2.isNaN()) |
2521 | 0 | St = APFloat::opInvalidOp; |
2522 | 0 | } else { |
2523 | 0 | if (Op1.isSignaling() || Op2.isSignaling()) |
2524 | 0 | St = APFloat::opInvalidOp; |
2525 | 0 | } |
2526 | 0 | bool Result = FCmpInst::compare(Op1, Op2, Cond); |
2527 | 0 | if (mayFoldConstrained(const_cast<ConstrainedFPCmpIntrinsic *>(FCmp), St)) |
2528 | 0 | return ConstantInt::get(Call->getType()->getScalarType(), Result); |
2529 | 0 | return nullptr; |
2530 | 0 | } |
2531 | | |
2532 | | static Constant *ConstantFoldScalarCall2(StringRef Name, |
2533 | | Intrinsic::ID IntrinsicID, |
2534 | | Type *Ty, |
2535 | | ArrayRef<Constant *> Operands, |
2536 | | const TargetLibraryInfo *TLI, |
2537 | 25.3k | const CallBase *Call) { |
2538 | 25.3k | assert(Operands.size() == 2 && "Wrong number of operands."); |
2539 | | |
2540 | 25.3k | if (Ty->isFloatingPointTy()) { |
2541 | | // TODO: We should have undef handling for all of the FP intrinsics that |
2542 | | // are attempted to be folded in this function. |
2543 | 916 | bool IsOp0Undef = isa<UndefValue>(Operands[0]); |
2544 | 916 | bool IsOp1Undef = isa<UndefValue>(Operands[1]); |
2545 | 916 | switch (IntrinsicID) { |
2546 | 143 | case Intrinsic::maxnum: |
2547 | 152 | case Intrinsic::minnum: |
2548 | 394 | case Intrinsic::maximum: |
2549 | 494 | case Intrinsic::minimum: |
2550 | | // If one argument is undef, return the other argument. |
2551 | 494 | if (IsOp0Undef) |
2552 | 23 | return Operands[1]; |
2553 | 471 | if (IsOp1Undef) |
2554 | 2 | return Operands[0]; |
2555 | 469 | break; |
2556 | 916 | } |
2557 | 916 | } |
2558 | | |
2559 | 25.3k | if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { |
2560 | 889 | const APFloat &Op1V = Op1->getValueAPF(); |
2561 | | |
2562 | 889 | if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { |
2563 | 851 | if (Op2->getType() != Op1->getType()) |
2564 | 0 | return nullptr; |
2565 | 851 | const APFloat &Op2V = Op2->getValueAPF(); |
2566 | | |
2567 | 851 | if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { |
2568 | 0 | RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); |
2569 | 0 | APFloat Res = Op1V; |
2570 | 0 | APFloat::opStatus St; |
2571 | 0 | switch (IntrinsicID) { |
2572 | 0 | default: |
2573 | 0 | return nullptr; |
2574 | 0 | case Intrinsic::experimental_constrained_fadd: |
2575 | 0 | St = Res.add(Op2V, RM); |
2576 | 0 | break; |
2577 | 0 | case Intrinsic::experimental_constrained_fsub: |
2578 | 0 | St = Res.subtract(Op2V, RM); |
2579 | 0 | break; |
2580 | 0 | case Intrinsic::experimental_constrained_fmul: |
2581 | 0 | St = Res.multiply(Op2V, RM); |
2582 | 0 | break; |
2583 | 0 | case Intrinsic::experimental_constrained_fdiv: |
2584 | 0 | St = Res.divide(Op2V, RM); |
2585 | 0 | break; |
2586 | 0 | case Intrinsic::experimental_constrained_frem: |
2587 | 0 | St = Res.mod(Op2V); |
2588 | 0 | break; |
2589 | 0 | case Intrinsic::experimental_constrained_fcmp: |
2590 | 0 | case Intrinsic::experimental_constrained_fcmps: |
2591 | 0 | return evaluateCompare(Op1V, Op2V, ConstrIntr); |
2592 | 0 | } |
2593 | 0 | if (mayFoldConstrained(const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), |
2594 | 0 | St)) |
2595 | 0 | return ConstantFP::get(Ty->getContext(), Res); |
2596 | 0 | return nullptr; |
2597 | 0 | } |
2598 | | |
2599 | 851 | switch (IntrinsicID) { |
2600 | 369 | default: |
2601 | 369 | break; |
2602 | 369 | case Intrinsic::copysign: |
2603 | 13 | return ConstantFP::get(Ty->getContext(), APFloat::copySign(Op1V, Op2V)); |
2604 | 8 | case Intrinsic::minnum: |
2605 | 8 | return ConstantFP::get(Ty->getContext(), minnum(Op1V, Op2V)); |
2606 | 133 | case Intrinsic::maxnum: |
2607 | 133 | return ConstantFP::get(Ty->getContext(), maxnum(Op1V, Op2V)); |
2608 | 90 | case Intrinsic::minimum: |
2609 | 90 | return ConstantFP::get(Ty->getContext(), minimum(Op1V, Op2V)); |
2610 | 238 | case Intrinsic::maximum: |
2611 | 238 | return ConstantFP::get(Ty->getContext(), maximum(Op1V, Op2V)); |
2612 | 851 | } |
2613 | | |
2614 | 369 | if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) |
2615 | 0 | return nullptr; |
2616 | | |
2617 | 369 | switch (IntrinsicID) { |
2618 | 144 | default: |
2619 | 144 | break; |
2620 | 225 | case Intrinsic::pow: |
2621 | 225 | return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); |
2622 | 0 | case Intrinsic::amdgcn_fmul_legacy: |
2623 | | // The legacy behaviour is that multiplying +/- 0.0 by anything, even |
2624 | | // NaN or infinity, gives +0.0. |
2625 | 0 | if (Op1V.isZero() || Op2V.isZero()) |
2626 | 0 | return ConstantFP::getZero(Ty); |
2627 | 0 | return ConstantFP::get(Ty->getContext(), Op1V * Op2V); |
2628 | 369 | } |
2629 | | |
2630 | 144 | if (!TLI) |
2631 | 0 | return nullptr; |
2632 | | |
2633 | 144 | LibFunc Func = NotLibFunc; |
2634 | 144 | if (!TLI->getLibFunc(Name, Func)) |
2635 | 0 | return nullptr; |
2636 | | |
2637 | 144 | switch (Func) { |
2638 | 0 | default: |
2639 | 0 | break; |
2640 | 30 | case LibFunc_pow: |
2641 | 125 | case LibFunc_powf: |
2642 | 136 | case LibFunc_pow_finite: |
2643 | 142 | case LibFunc_powf_finite: |
2644 | 142 | if (TLI->has(Func)) |
2645 | 125 | return ConstantFoldBinaryFP(pow, Op1V, Op2V, Ty); |
2646 | 17 | break; |
2647 | 17 | case LibFunc_fmod: |
2648 | 1 | case LibFunc_fmodf: |
2649 | 1 | if (TLI->has(Func)) { |
2650 | 1 | APFloat V = Op1->getValueAPF(); |
2651 | 1 | if (APFloat::opStatus::opOK == V.mod(Op2->getValueAPF())) |
2652 | 0 | return ConstantFP::get(Ty->getContext(), V); |
2653 | 1 | } |
2654 | 1 | break; |
2655 | 1 | case LibFunc_remainder: |
2656 | 0 | case LibFunc_remainderf: |
2657 | 0 | if (TLI->has(Func)) { |
2658 | 0 | APFloat V = Op1->getValueAPF(); |
2659 | 0 | if (APFloat::opStatus::opOK == V.remainder(Op2->getValueAPF())) |
2660 | 0 | return ConstantFP::get(Ty->getContext(), V); |
2661 | 0 | } |
2662 | 0 | break; |
2663 | 1 | case LibFunc_atan2: |
2664 | 1 | case LibFunc_atan2f: |
2665 | | // atan2(+/-0.0, +/-0.0) is known to raise an exception on some libm |
2666 | | // (Solaris), so we do not assume a known result for that. |
2667 | 1 | if (Op1V.isZero() && Op2V.isZero()) |
2668 | 0 | return nullptr; |
2669 | 1 | [[fallthrough]]; |
2670 | 1 | case LibFunc_atan2_finite: |
2671 | 1 | case LibFunc_atan2f_finite: |
2672 | 1 | if (TLI->has(Func)) |
2673 | 1 | return ConstantFoldBinaryFP(atan2, Op1V, Op2V, Ty); |
2674 | 0 | break; |
2675 | 144 | } |
2676 | 144 | } else if (auto *Op2C = dyn_cast<ConstantInt>(Operands[1])) { |
2677 | 38 | switch (IntrinsicID) { |
2678 | 30 | case Intrinsic::ldexp: { |
2679 | 30 | return ConstantFP::get( |
2680 | 30 | Ty->getContext(), |
2681 | 30 | scalbn(Op1V, Op2C->getSExtValue(), APFloat::rmNearestTiesToEven)); |
2682 | 0 | } |
2683 | 0 | case Intrinsic::is_fpclass: { |
2684 | 0 | FPClassTest Mask = static_cast<FPClassTest>(Op2C->getZExtValue()); |
2685 | 0 | bool Result = |
2686 | 0 | ((Mask & fcSNan) && Op1V.isNaN() && Op1V.isSignaling()) || |
2687 | 0 | ((Mask & fcQNan) && Op1V.isNaN() && !Op1V.isSignaling()) || |
2688 | 0 | ((Mask & fcNegInf) && Op1V.isNegInfinity()) || |
2689 | 0 | ((Mask & fcNegNormal) && Op1V.isNormal() && Op1V.isNegative()) || |
2690 | 0 | ((Mask & fcNegSubnormal) && Op1V.isDenormal() && Op1V.isNegative()) || |
2691 | 0 | ((Mask & fcNegZero) && Op1V.isZero() && Op1V.isNegative()) || |
2692 | 0 | ((Mask & fcPosZero) && Op1V.isZero() && !Op1V.isNegative()) || |
2693 | 0 | ((Mask & fcPosSubnormal) && Op1V.isDenormal() && !Op1V.isNegative()) || |
2694 | 0 | ((Mask & fcPosNormal) && Op1V.isNormal() && !Op1V.isNegative()) || |
2695 | 0 | ((Mask & fcPosInf) && Op1V.isPosInfinity()); |
2696 | 0 | return ConstantInt::get(Ty, Result); |
2697 | 0 | } |
2698 | 8 | default: |
2699 | 8 | break; |
2700 | 38 | } |
2701 | | |
2702 | 8 | if (!Ty->isHalfTy() && !Ty->isFloatTy() && !Ty->isDoubleTy()) |
2703 | 0 | return nullptr; |
2704 | 8 | if (IntrinsicID == Intrinsic::powi && Ty->isHalfTy()) |
2705 | 0 | return ConstantFP::get( |
2706 | 0 | Ty->getContext(), |
2707 | 0 | APFloat((float)std::pow((float)Op1V.convertToDouble(), |
2708 | 0 | (int)Op2C->getZExtValue()))); |
2709 | 8 | if (IntrinsicID == Intrinsic::powi && Ty->isFloatTy()) |
2710 | 0 | return ConstantFP::get( |
2711 | 0 | Ty->getContext(), |
2712 | 0 | APFloat((float)std::pow((float)Op1V.convertToDouble(), |
2713 | 0 | (int)Op2C->getZExtValue()))); |
2714 | 8 | if (IntrinsicID == Intrinsic::powi && Ty->isDoubleTy()) |
2715 | 8 | return ConstantFP::get( |
2716 | 8 | Ty->getContext(), |
2717 | 8 | APFloat((double)std::pow(Op1V.convertToDouble(), |
2718 | 8 | (int)Op2C->getZExtValue()))); |
2719 | 8 | } |
2720 | 18 | return nullptr; |
2721 | 889 | } |
2722 | | |
2723 | 24.4k | if (Operands[0]->getType()->isIntegerTy() && |
2724 | 24.4k | Operands[1]->getType()->isIntegerTy()) { |
2725 | 24.2k | const APInt *C0, *C1; |
2726 | 24.2k | if (!getConstIntOrUndef(Operands[0], C0) || |
2727 | 24.2k | !getConstIntOrUndef(Operands[1], C1)) |
2728 | 0 | return nullptr; |
2729 | | |
2730 | 24.2k | switch (IntrinsicID) { |
2731 | 0 | default: break; |
2732 | 80 | case Intrinsic::smax: |
2733 | 174 | case Intrinsic::smin: |
2734 | 255 | case Intrinsic::umax: |
2735 | 298 | case Intrinsic::umin: |
2736 | | // This is the same as for binary ops - poison propagates. |
2737 | | // TODO: Poison handling should be consolidated. |
2738 | 298 | if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) |
2739 | 19 | return PoisonValue::get(Ty); |
2740 | | |
2741 | 279 | if (!C0 && !C1) |
2742 | 2 | return UndefValue::get(Ty); |
2743 | 277 | if (!C0 || !C1) |
2744 | 44 | return MinMaxIntrinsic::getSaturationPoint(IntrinsicID, Ty); |
2745 | 233 | return ConstantInt::get( |
2746 | 233 | Ty, ICmpInst::compare(*C0, *C1, |
2747 | 233 | MinMaxIntrinsic::getPredicate(IntrinsicID)) |
2748 | 233 | ? *C0 |
2749 | 233 | : *C1); |
2750 | | |
2751 | 10 | case Intrinsic::usub_with_overflow: |
2752 | 41 | case Intrinsic::ssub_with_overflow: |
2753 | | // X - undef -> { 0, false } |
2754 | | // undef - X -> { 0, false } |
2755 | 41 | if (!C0 || !C1) |
2756 | 3 | return Constant::getNullValue(Ty); |
2757 | 41 | [[fallthrough]]; |
2758 | 54 | case Intrinsic::uadd_with_overflow: |
2759 | 126 | case Intrinsic::sadd_with_overflow: |
2760 | | // X + undef -> { -1, false } |
2761 | | // undef + x -> { -1, false } |
2762 | 126 | if (!C0 || !C1) { |
2763 | 36 | return ConstantStruct::get( |
2764 | 36 | cast<StructType>(Ty), |
2765 | 36 | {Constant::getAllOnesValue(Ty->getStructElementType(0)), |
2766 | 36 | Constant::getNullValue(Ty->getStructElementType(1))}); |
2767 | 36 | } |
2768 | 126 | [[fallthrough]]; |
2769 | 120 | case Intrinsic::smul_with_overflow: |
2770 | 138 | case Intrinsic::umul_with_overflow: { |
2771 | | // undef * X -> { 0, false } |
2772 | | // X * undef -> { 0, false } |
2773 | 138 | if (!C0 || !C1) |
2774 | 5 | return Constant::getNullValue(Ty); |
2775 | | |
2776 | 133 | APInt Res; |
2777 | 133 | bool Overflow; |
2778 | 133 | switch (IntrinsicID) { |
2779 | 0 | default: llvm_unreachable("Invalid case"); |
2780 | 37 | case Intrinsic::sadd_with_overflow: |
2781 | 37 | Res = C0->sadd_ov(*C1, Overflow); |
2782 | 37 | break; |
2783 | 15 | case Intrinsic::uadd_with_overflow: |
2784 | 15 | Res = C0->uadd_ov(*C1, Overflow); |
2785 | 15 | break; |
2786 | 28 | case Intrinsic::ssub_with_overflow: |
2787 | 28 | Res = C0->ssub_ov(*C1, Overflow); |
2788 | 28 | break; |
2789 | 10 | case Intrinsic::usub_with_overflow: |
2790 | 10 | Res = C0->usub_ov(*C1, Overflow); |
2791 | 10 | break; |
2792 | 28 | case Intrinsic::smul_with_overflow: |
2793 | 28 | Res = C0->smul_ov(*C1, Overflow); |
2794 | 28 | break; |
2795 | 15 | case Intrinsic::umul_with_overflow: |
2796 | 15 | Res = C0->umul_ov(*C1, Overflow); |
2797 | 15 | break; |
2798 | 133 | } |
2799 | 133 | Constant *Ops[] = { |
2800 | 133 | ConstantInt::get(Ty->getContext(), Res), |
2801 | 133 | ConstantInt::get(Type::getInt1Ty(Ty->getContext()), Overflow) |
2802 | 133 | }; |
2803 | 133 | return ConstantStruct::get(cast<StructType>(Ty), Ops); |
2804 | 133 | } |
2805 | 197 | case Intrinsic::uadd_sat: |
2806 | 11.6k | case Intrinsic::sadd_sat: |
2807 | | // This is the same as for binary ops - poison propagates. |
2808 | | // TODO: Poison handling should be consolidated. |
2809 | 11.6k | if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) |
2810 | 39 | return PoisonValue::get(Ty); |
2811 | | |
2812 | 11.6k | if (!C0 && !C1) |
2813 | 207 | return UndefValue::get(Ty); |
2814 | 11.4k | if (!C0 || !C1) |
2815 | 313 | return Constant::getAllOnesValue(Ty); |
2816 | 11.1k | if (IntrinsicID == Intrinsic::uadd_sat) |
2817 | 115 | return ConstantInt::get(Ty, C0->uadd_sat(*C1)); |
2818 | 10.9k | else |
2819 | 10.9k | return ConstantInt::get(Ty, C0->sadd_sat(*C1)); |
2820 | 226 | case Intrinsic::usub_sat: |
2821 | 11.0k | case Intrinsic::ssub_sat: |
2822 | | // This is the same as for binary ops - poison propagates. |
2823 | | // TODO: Poison handling should be consolidated. |
2824 | 11.0k | if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) |
2825 | 140 | return PoisonValue::get(Ty); |
2826 | | |
2827 | 10.8k | if (!C0 && !C1) |
2828 | 163 | return UndefValue::get(Ty); |
2829 | 10.7k | if (!C0 || !C1) |
2830 | 407 | return Constant::getNullValue(Ty); |
2831 | 10.3k | if (IntrinsicID == Intrinsic::usub_sat) |
2832 | 68 | return ConstantInt::get(Ty, C0->usub_sat(*C1)); |
2833 | 10.2k | else |
2834 | 10.2k | return ConstantInt::get(Ty, C0->ssub_sat(*C1)); |
2835 | 168 | case Intrinsic::cttz: |
2836 | 1.11k | case Intrinsic::ctlz: |
2837 | 1.11k | assert(C1 && "Must be constant int"); |
2838 | | |
2839 | | // cttz(0, 1) and ctlz(0, 1) are poison. |
2840 | 1.11k | if (C1->isOne() && (!C0 || C0->isZero())) |
2841 | 276 | return PoisonValue::get(Ty); |
2842 | 838 | if (!C0) |
2843 | 33 | return Constant::getNullValue(Ty); |
2844 | 805 | if (IntrinsicID == Intrinsic::cttz) |
2845 | 89 | return ConstantInt::get(Ty, C0->countr_zero()); |
2846 | 716 | else |
2847 | 716 | return ConstantInt::get(Ty, C0->countl_zero()); |
2848 | | |
2849 | 29 | case Intrinsic::abs: |
2850 | 29 | assert(C1 && "Must be constant int"); |
2851 | 0 | assert((C1->isOne() || C1->isZero()) && "Must be 0 or 1"); |
2852 | | |
2853 | | // Undef or minimum val operand with poison min --> undef |
2854 | 29 | if (C1->isOne() && (!C0 || C0->isMinSignedValue())) |
2855 | 8 | return UndefValue::get(Ty); |
2856 | | |
2857 | | // Undef operand with no poison min --> 0 (sign bit must be clear) |
2858 | 21 | if (!C0) |
2859 | 8 | return Constant::getNullValue(Ty); |
2860 | | |
2861 | 13 | return ConstantInt::get(Ty, C0->abs()); |
2862 | 0 | case Intrinsic::amdgcn_wave_reduce_umin: |
2863 | 0 | case Intrinsic::amdgcn_wave_reduce_umax: |
2864 | 0 | return dyn_cast<Constant>(Operands[0]); |
2865 | 24.2k | } |
2866 | | |
2867 | 0 | return nullptr; |
2868 | 24.2k | } |
2869 | | |
2870 | | // Support ConstantVector in case we have an Undef in the top. |
2871 | 179 | if ((isa<ConstantVector>(Operands[0]) || |
2872 | 179 | isa<ConstantDataVector>(Operands[0])) && |
2873 | | // Check for default rounding mode. |
2874 | | // FIXME: Support other rounding modes? |
2875 | 179 | isa<ConstantInt>(Operands[1]) && |
2876 | 179 | cast<ConstantInt>(Operands[1])->getValue() == 4) { |
2877 | 31 | auto *Op = cast<Constant>(Operands[0]); |
2878 | 31 | switch (IntrinsicID) { |
2879 | 0 | default: break; |
2880 | 0 | case Intrinsic::x86_avx512_vcvtss2si32: |
2881 | 0 | case Intrinsic::x86_avx512_vcvtss2si64: |
2882 | 2 | case Intrinsic::x86_avx512_vcvtsd2si32: |
2883 | 2 | case Intrinsic::x86_avx512_vcvtsd2si64: |
2884 | 2 | if (ConstantFP *FPOp = |
2885 | 2 | dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) |
2886 | 0 | return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), |
2887 | 0 | /*roundTowardZero=*/false, Ty, |
2888 | 0 | /*IsSigned*/true); |
2889 | 2 | break; |
2890 | 13 | case Intrinsic::x86_avx512_vcvtss2usi32: |
2891 | 13 | case Intrinsic::x86_avx512_vcvtss2usi64: |
2892 | 13 | case Intrinsic::x86_avx512_vcvtsd2usi32: |
2893 | 20 | case Intrinsic::x86_avx512_vcvtsd2usi64: |
2894 | 20 | if (ConstantFP *FPOp = |
2895 | 20 | dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) |
2896 | 0 | return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), |
2897 | 0 | /*roundTowardZero=*/false, Ty, |
2898 | 0 | /*IsSigned*/false); |
2899 | 20 | break; |
2900 | 20 | case Intrinsic::x86_avx512_cvttss2si: |
2901 | 2 | case Intrinsic::x86_avx512_cvttss2si64: |
2902 | 2 | case Intrinsic::x86_avx512_cvttsd2si: |
2903 | 2 | case Intrinsic::x86_avx512_cvttsd2si64: |
2904 | 2 | if (ConstantFP *FPOp = |
2905 | 2 | dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) |
2906 | 0 | return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), |
2907 | 0 | /*roundTowardZero=*/true, Ty, |
2908 | 0 | /*IsSigned*/true); |
2909 | 2 | break; |
2910 | 7 | case Intrinsic::x86_avx512_cvttss2usi: |
2911 | 7 | case Intrinsic::x86_avx512_cvttss2usi64: |
2912 | 7 | case Intrinsic::x86_avx512_cvttsd2usi: |
2913 | 7 | case Intrinsic::x86_avx512_cvttsd2usi64: |
2914 | 7 | if (ConstantFP *FPOp = |
2915 | 7 | dyn_cast_or_null<ConstantFP>(Op->getAggregateElement(0U))) |
2916 | 0 | return ConstantFoldSSEConvertToInt(FPOp->getValueAPF(), |
2917 | 0 | /*roundTowardZero=*/true, Ty, |
2918 | 0 | /*IsSigned*/false); |
2919 | 7 | break; |
2920 | 31 | } |
2921 | 31 | } |
2922 | 179 | return nullptr; |
2923 | 179 | } |
2924 | | |
2925 | | static APFloat ConstantFoldAMDGCNCubeIntrinsic(Intrinsic::ID IntrinsicID, |
2926 | | const APFloat &S0, |
2927 | | const APFloat &S1, |
2928 | 0 | const APFloat &S2) { |
2929 | 0 | unsigned ID; |
2930 | 0 | const fltSemantics &Sem = S0.getSemantics(); |
2931 | 0 | APFloat MA(Sem), SC(Sem), TC(Sem); |
2932 | 0 | if (abs(S2) >= abs(S0) && abs(S2) >= abs(S1)) { |
2933 | 0 | if (S2.isNegative() && S2.isNonZero() && !S2.isNaN()) { |
2934 | | // S2 < 0 |
2935 | 0 | ID = 5; |
2936 | 0 | SC = -S0; |
2937 | 0 | } else { |
2938 | 0 | ID = 4; |
2939 | 0 | SC = S0; |
2940 | 0 | } |
2941 | 0 | MA = S2; |
2942 | 0 | TC = -S1; |
2943 | 0 | } else if (abs(S1) >= abs(S0)) { |
2944 | 0 | if (S1.isNegative() && S1.isNonZero() && !S1.isNaN()) { |
2945 | | // S1 < 0 |
2946 | 0 | ID = 3; |
2947 | 0 | TC = -S2; |
2948 | 0 | } else { |
2949 | 0 | ID = 2; |
2950 | 0 | TC = S2; |
2951 | 0 | } |
2952 | 0 | MA = S1; |
2953 | 0 | SC = S0; |
2954 | 0 | } else { |
2955 | 0 | if (S0.isNegative() && S0.isNonZero() && !S0.isNaN()) { |
2956 | | // S0 < 0 |
2957 | 0 | ID = 1; |
2958 | 0 | SC = S2; |
2959 | 0 | } else { |
2960 | 0 | ID = 0; |
2961 | 0 | SC = -S2; |
2962 | 0 | } |
2963 | 0 | MA = S0; |
2964 | 0 | TC = -S1; |
2965 | 0 | } |
2966 | 0 | switch (IntrinsicID) { |
2967 | 0 | default: |
2968 | 0 | llvm_unreachable("unhandled amdgcn cube intrinsic"); |
2969 | 0 | case Intrinsic::amdgcn_cubeid: |
2970 | 0 | return APFloat(Sem, ID); |
2971 | 0 | case Intrinsic::amdgcn_cubema: |
2972 | 0 | return MA + MA; |
2973 | 0 | case Intrinsic::amdgcn_cubesc: |
2974 | 0 | return SC; |
2975 | 0 | case Intrinsic::amdgcn_cubetc: |
2976 | 0 | return TC; |
2977 | 0 | } |
2978 | 0 | } |
2979 | | |
2980 | | static Constant *ConstantFoldAMDGCNPermIntrinsic(ArrayRef<Constant *> Operands, |
2981 | 0 | Type *Ty) { |
2982 | 0 | const APInt *C0, *C1, *C2; |
2983 | 0 | if (!getConstIntOrUndef(Operands[0], C0) || |
2984 | 0 | !getConstIntOrUndef(Operands[1], C1) || |
2985 | 0 | !getConstIntOrUndef(Operands[2], C2)) |
2986 | 0 | return nullptr; |
2987 | | |
2988 | 0 | if (!C2) |
2989 | 0 | return UndefValue::get(Ty); |
2990 | | |
2991 | 0 | APInt Val(32, 0); |
2992 | 0 | unsigned NumUndefBytes = 0; |
2993 | 0 | for (unsigned I = 0; I < 32; I += 8) { |
2994 | 0 | unsigned Sel = C2->extractBitsAsZExtValue(8, I); |
2995 | 0 | unsigned B = 0; |
2996 | |
|
2997 | 0 | if (Sel >= 13) |
2998 | 0 | B = 0xff; |
2999 | 0 | else if (Sel == 12) |
3000 | 0 | B = 0x00; |
3001 | 0 | else { |
3002 | 0 | const APInt *Src = ((Sel & 10) == 10 || (Sel & 12) == 4) ? C0 : C1; |
3003 | 0 | if (!Src) |
3004 | 0 | ++NumUndefBytes; |
3005 | 0 | else if (Sel < 8) |
3006 | 0 | B = Src->extractBitsAsZExtValue(8, (Sel & 3) * 8); |
3007 | 0 | else |
3008 | 0 | B = Src->extractBitsAsZExtValue(1, (Sel & 1) ? 31 : 15) * 0xff; |
3009 | 0 | } |
3010 | |
|
3011 | 0 | Val.insertBits(B, I, 8); |
3012 | 0 | } |
3013 | |
|
3014 | 0 | if (NumUndefBytes == 4) |
3015 | 0 | return UndefValue::get(Ty); |
3016 | | |
3017 | 0 | return ConstantInt::get(Ty, Val); |
3018 | 0 | } |
3019 | | |
3020 | | static Constant *ConstantFoldScalarCall3(StringRef Name, |
3021 | | Intrinsic::ID IntrinsicID, |
3022 | | Type *Ty, |
3023 | | ArrayRef<Constant *> Operands, |
3024 | | const TargetLibraryInfo *TLI, |
3025 | 35 | const CallBase *Call) { |
3026 | 35 | assert(Operands.size() == 3 && "Wrong number of operands."); |
3027 | | |
3028 | 35 | if (const auto *Op1 = dyn_cast<ConstantFP>(Operands[0])) { |
3029 | 8 | if (const auto *Op2 = dyn_cast<ConstantFP>(Operands[1])) { |
3030 | 6 | if (const auto *Op3 = dyn_cast<ConstantFP>(Operands[2])) { |
3031 | 6 | const APFloat &C1 = Op1->getValueAPF(); |
3032 | 6 | const APFloat &C2 = Op2->getValueAPF(); |
3033 | 6 | const APFloat &C3 = Op3->getValueAPF(); |
3034 | | |
3035 | 6 | if (const auto *ConstrIntr = dyn_cast<ConstrainedFPIntrinsic>(Call)) { |
3036 | 0 | RoundingMode RM = getEvaluationRoundingMode(ConstrIntr); |
3037 | 0 | APFloat Res = C1; |
3038 | 0 | APFloat::opStatus St; |
3039 | 0 | switch (IntrinsicID) { |
3040 | 0 | default: |
3041 | 0 | return nullptr; |
3042 | 0 | case Intrinsic::experimental_constrained_fma: |
3043 | 0 | case Intrinsic::experimental_constrained_fmuladd: |
3044 | 0 | St = Res.fusedMultiplyAdd(C2, C3, RM); |
3045 | 0 | break; |
3046 | 0 | } |
3047 | 0 | if (mayFoldConstrained( |
3048 | 0 | const_cast<ConstrainedFPIntrinsic *>(ConstrIntr), St)) |
3049 | 0 | return ConstantFP::get(Ty->getContext(), Res); |
3050 | 0 | return nullptr; |
3051 | 0 | } |
3052 | | |
3053 | 6 | switch (IntrinsicID) { |
3054 | 0 | default: break; |
3055 | 0 | case Intrinsic::amdgcn_fma_legacy: { |
3056 | | // The legacy behaviour is that multiplying +/- 0.0 by anything, even |
3057 | | // NaN or infinity, gives +0.0. |
3058 | 0 | if (C1.isZero() || C2.isZero()) { |
3059 | | // It's tempting to just return C3 here, but that would give the |
3060 | | // wrong result if C3 was -0.0. |
3061 | 0 | return ConstantFP::get(Ty->getContext(), APFloat(0.0f) + C3); |
3062 | 0 | } |
3063 | 0 | [[fallthrough]]; |
3064 | 0 | } |
3065 | 6 | case Intrinsic::fma: |
3066 | 6 | case Intrinsic::fmuladd: { |
3067 | 6 | APFloat V = C1; |
3068 | 6 | V.fusedMultiplyAdd(C2, C3, APFloat::rmNearestTiesToEven); |
3069 | 6 | return ConstantFP::get(Ty->getContext(), V); |
3070 | 6 | } |
3071 | 0 | case Intrinsic::amdgcn_cubeid: |
3072 | 0 | case Intrinsic::amdgcn_cubema: |
3073 | 0 | case Intrinsic::amdgcn_cubesc: |
3074 | 0 | case Intrinsic::amdgcn_cubetc: { |
3075 | 0 | APFloat V = ConstantFoldAMDGCNCubeIntrinsic(IntrinsicID, C1, C2, C3); |
3076 | 0 | return ConstantFP::get(Ty->getContext(), V); |
3077 | 0 | } |
3078 | 6 | } |
3079 | 6 | } |
3080 | 6 | } |
3081 | 8 | } |
3082 | | |
3083 | 29 | if (IntrinsicID == Intrinsic::smul_fix || |
3084 | 29 | IntrinsicID == Intrinsic::smul_fix_sat) { |
3085 | | // poison * C -> poison |
3086 | | // C * poison -> poison |
3087 | 12 | if (isa<PoisonValue>(Operands[0]) || isa<PoisonValue>(Operands[1])) |
3088 | 0 | return PoisonValue::get(Ty); |
3089 | | |
3090 | 12 | const APInt *C0, *C1; |
3091 | 12 | if (!getConstIntOrUndef(Operands[0], C0) || |
3092 | 12 | !getConstIntOrUndef(Operands[1], C1)) |
3093 | 0 | return nullptr; |
3094 | | |
3095 | | // undef * C -> 0 |
3096 | | // C * undef -> 0 |
3097 | 12 | if (!C0 || !C1) |
3098 | 2 | return Constant::getNullValue(Ty); |
3099 | | |
3100 | | // This code performs rounding towards negative infinity in case the result |
3101 | | // cannot be represented exactly for the given scale. Targets that do care |
3102 | | // about rounding should use a target hook for specifying how rounding |
3103 | | // should be done, and provide their own folding to be consistent with |
3104 | | // rounding. This is the same approach as used by |
3105 | | // DAGTypeLegalizer::ExpandIntRes_MULFIX. |
3106 | 10 | unsigned Scale = cast<ConstantInt>(Operands[2])->getZExtValue(); |
3107 | 10 | unsigned Width = C0->getBitWidth(); |
3108 | 10 | assert(Scale < Width && "Illegal scale."); |
3109 | 0 | unsigned ExtendedWidth = Width * 2; |
3110 | 10 | APInt Product = |
3111 | 10 | (C0->sext(ExtendedWidth) * C1->sext(ExtendedWidth)).ashr(Scale); |
3112 | 10 | if (IntrinsicID == Intrinsic::smul_fix_sat) { |
3113 | 6 | APInt Max = APInt::getSignedMaxValue(Width).sext(ExtendedWidth); |
3114 | 6 | APInt Min = APInt::getSignedMinValue(Width).sext(ExtendedWidth); |
3115 | 6 | Product = APIntOps::smin(Product, Max); |
3116 | 6 | Product = APIntOps::smax(Product, Min); |
3117 | 6 | } |
3118 | 10 | return ConstantInt::get(Ty->getContext(), Product.sextOrTrunc(Width)); |
3119 | 12 | } |
3120 | | |
3121 | 17 | if (IntrinsicID == Intrinsic::fshl || IntrinsicID == Intrinsic::fshr) { |
3122 | 13 | const APInt *C0, *C1, *C2; |
3123 | 13 | if (!getConstIntOrUndef(Operands[0], C0) || |
3124 | 13 | !getConstIntOrUndef(Operands[1], C1) || |
3125 | 13 | !getConstIntOrUndef(Operands[2], C2)) |
3126 | 0 | return nullptr; |
3127 | | |
3128 | 13 | bool IsRight = IntrinsicID == Intrinsic::fshr; |
3129 | 13 | if (!C2) |
3130 | 0 | return Operands[IsRight ? 1 : 0]; |
3131 | 13 | if (!C0 && !C1) |
3132 | 0 | return UndefValue::get(Ty); |
3133 | | |
3134 | | // The shift amount is interpreted as modulo the bitwidth. If the shift |
3135 | | // amount is effectively 0, avoid UB due to oversized inverse shift below. |
3136 | 13 | unsigned BitWidth = C2->getBitWidth(); |
3137 | 13 | unsigned ShAmt = C2->urem(BitWidth); |
3138 | 13 | if (!ShAmt) |
3139 | 0 | return Operands[IsRight ? 1 : 0]; |
3140 | | |
3141 | | // (C0 << ShlAmt) | (C1 >> LshrAmt) |
3142 | 13 | unsigned LshrAmt = IsRight ? ShAmt : BitWidth - ShAmt; |
3143 | 13 | unsigned ShlAmt = !IsRight ? ShAmt : BitWidth - ShAmt; |
3144 | 13 | if (!C0) |
3145 | 0 | return ConstantInt::get(Ty, C1->lshr(LshrAmt)); |
3146 | 13 | if (!C1) |
3147 | 0 | return ConstantInt::get(Ty, C0->shl(ShlAmt)); |
3148 | 13 | return ConstantInt::get(Ty, C0->shl(ShlAmt) | C1->lshr(LshrAmt)); |
3149 | 13 | } |
3150 | | |
3151 | 4 | if (IntrinsicID == Intrinsic::amdgcn_perm) |
3152 | 0 | return ConstantFoldAMDGCNPermIntrinsic(Operands, Ty); |
3153 | | |
3154 | 4 | return nullptr; |
3155 | 4 | } |
3156 | | |
3157 | | static Constant *ConstantFoldScalarCall(StringRef Name, |
3158 | | Intrinsic::ID IntrinsicID, |
3159 | | Type *Ty, |
3160 | | ArrayRef<Constant *> Operands, |
3161 | | const TargetLibraryInfo *TLI, |
3162 | 40.0k | const CallBase *Call) { |
3163 | 40.0k | if (Operands.size() == 1) |
3164 | 14.6k | return ConstantFoldScalarCall1(Name, IntrinsicID, Ty, Operands, TLI, Call); |
3165 | | |
3166 | 25.4k | if (Operands.size() == 2) |
3167 | 25.3k | return ConstantFoldScalarCall2(Name, IntrinsicID, Ty, Operands, TLI, Call); |
3168 | | |
3169 | 35 | if (Operands.size() == 3) |
3170 | 35 | return ConstantFoldScalarCall3(Name, IntrinsicID, Ty, Operands, TLI, Call); |
3171 | | |
3172 | 0 | return nullptr; |
3173 | 35 | } |
3174 | | |
3175 | | static Constant *ConstantFoldFixedVectorCall( |
3176 | | StringRef Name, Intrinsic::ID IntrinsicID, FixedVectorType *FVTy, |
3177 | | ArrayRef<Constant *> Operands, const DataLayout &DL, |
3178 | 1.34k | const TargetLibraryInfo *TLI, const CallBase *Call) { |
3179 | 1.34k | SmallVector<Constant *, 4> Result(FVTy->getNumElements()); |
3180 | 1.34k | SmallVector<Constant *, 4> Lane(Operands.size()); |
3181 | 1.34k | Type *Ty = FVTy->getElementType(); |
3182 | | |
3183 | 1.34k | switch (IntrinsicID) { |
3184 | 3 | case Intrinsic::masked_load: { |
3185 | 3 | auto *SrcPtr = Operands[0]; |
3186 | 3 | auto *Mask = Operands[2]; |
3187 | 3 | auto *Passthru = Operands[3]; |
3188 | | |
3189 | 3 | Constant *VecData = ConstantFoldLoadFromConstPtr(SrcPtr, FVTy, DL); |
3190 | | |
3191 | 3 | SmallVector<Constant *, 32> NewElements; |
3192 | 3 | for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { |
3193 | 3 | auto *MaskElt = Mask->getAggregateElement(I); |
3194 | 3 | if (!MaskElt) |
3195 | 0 | break; |
3196 | 3 | auto *PassthruElt = Passthru->getAggregateElement(I); |
3197 | 3 | auto *VecElt = VecData ? VecData->getAggregateElement(I) : nullptr; |
3198 | 3 | if (isa<UndefValue>(MaskElt)) { |
3199 | 1 | if (PassthruElt) |
3200 | 1 | NewElements.push_back(PassthruElt); |
3201 | 0 | else if (VecElt) |
3202 | 0 | NewElements.push_back(VecElt); |
3203 | 0 | else |
3204 | 0 | return nullptr; |
3205 | 1 | } |
3206 | 3 | if (MaskElt->isNullValue()) { |
3207 | 0 | if (!PassthruElt) |
3208 | 0 | return nullptr; |
3209 | 0 | NewElements.push_back(PassthruElt); |
3210 | 3 | } else if (MaskElt->isOneValue()) { |
3211 | 2 | if (!VecElt) |
3212 | 2 | return nullptr; |
3213 | 0 | NewElements.push_back(VecElt); |
3214 | 1 | } else { |
3215 | 1 | return nullptr; |
3216 | 1 | } |
3217 | 3 | } |
3218 | 0 | if (NewElements.size() != FVTy->getNumElements()) |
3219 | 0 | return nullptr; |
3220 | 0 | return ConstantVector::get(NewElements); |
3221 | 0 | } |
3222 | 0 | case Intrinsic::arm_mve_vctp8: |
3223 | 0 | case Intrinsic::arm_mve_vctp16: |
3224 | 0 | case Intrinsic::arm_mve_vctp32: |
3225 | 0 | case Intrinsic::arm_mve_vctp64: { |
3226 | 0 | if (auto *Op = dyn_cast<ConstantInt>(Operands[0])) { |
3227 | 0 | unsigned Lanes = FVTy->getNumElements(); |
3228 | 0 | uint64_t Limit = Op->getZExtValue(); |
3229 | |
|
3230 | 0 | SmallVector<Constant *, 16> NCs; |
3231 | 0 | for (unsigned i = 0; i < Lanes; i++) { |
3232 | 0 | if (i < Limit) |
3233 | 0 | NCs.push_back(ConstantInt::getTrue(Ty)); |
3234 | 0 | else |
3235 | 0 | NCs.push_back(ConstantInt::getFalse(Ty)); |
3236 | 0 | } |
3237 | 0 | return ConstantVector::get(NCs); |
3238 | 0 | } |
3239 | 0 | return nullptr; |
3240 | 0 | } |
3241 | 0 | case Intrinsic::get_active_lane_mask: { |
3242 | 0 | auto *Op0 = dyn_cast<ConstantInt>(Operands[0]); |
3243 | 0 | auto *Op1 = dyn_cast<ConstantInt>(Operands[1]); |
3244 | 0 | if (Op0 && Op1) { |
3245 | 0 | unsigned Lanes = FVTy->getNumElements(); |
3246 | 0 | uint64_t Base = Op0->getZExtValue(); |
3247 | 0 | uint64_t Limit = Op1->getZExtValue(); |
3248 | |
|
3249 | 0 | SmallVector<Constant *, 16> NCs; |
3250 | 0 | for (unsigned i = 0; i < Lanes; i++) { |
3251 | 0 | if (Base + i < Limit) |
3252 | 0 | NCs.push_back(ConstantInt::getTrue(Ty)); |
3253 | 0 | else |
3254 | 0 | NCs.push_back(ConstantInt::getFalse(Ty)); |
3255 | 0 | } |
3256 | 0 | return ConstantVector::get(NCs); |
3257 | 0 | } |
3258 | 0 | return nullptr; |
3259 | 0 | } |
3260 | 1.33k | default: |
3261 | 1.33k | break; |
3262 | 1.34k | } |
3263 | | |
3264 | 24.1k | for (unsigned I = 0, E = FVTy->getNumElements(); I != E; ++I) { |
3265 | | // Gather a column of constants. |
3266 | 68.4k | for (unsigned J = 0, JE = Operands.size(); J != JE; ++J) { |
3267 | | // Some intrinsics use a scalar type for certain arguments. |
3268 | 45.5k | if (isVectorIntrinsicWithScalarOpAtArg(IntrinsicID, J)) { |
3269 | 140 | Lane[J] = Operands[J]; |
3270 | 140 | continue; |
3271 | 140 | } |
3272 | | |
3273 | 45.4k | Constant *Agg = Operands[J]->getAggregateElement(I); |
3274 | 45.4k | if (!Agg) |
3275 | 0 | return nullptr; |
3276 | | |
3277 | 45.4k | Lane[J] = Agg; |
3278 | 45.4k | } |
3279 | | |
3280 | | // Use the regular scalar folding to simplify this column. |
3281 | 22.8k | Constant *Folded = |
3282 | 22.8k | ConstantFoldScalarCall(Name, IntrinsicID, Ty, Lane, TLI, Call); |
3283 | 22.8k | if (!Folded) |
3284 | 24 | return nullptr; |
3285 | 22.8k | Result[I] = Folded; |
3286 | 22.8k | } |
3287 | | |
3288 | 1.31k | return ConstantVector::get(Result); |
3289 | 1.33k | } |
3290 | | |
3291 | | static Constant *ConstantFoldScalableVectorCall( |
3292 | | StringRef Name, Intrinsic::ID IntrinsicID, ScalableVectorType *SVTy, |
3293 | | ArrayRef<Constant *> Operands, const DataLayout &DL, |
3294 | 0 | const TargetLibraryInfo *TLI, const CallBase *Call) { |
3295 | 0 | switch (IntrinsicID) { |
3296 | 0 | case Intrinsic::aarch64_sve_convert_from_svbool: { |
3297 | 0 | auto *Src = dyn_cast<Constant>(Operands[0]); |
3298 | 0 | if (!Src || !Src->isNullValue()) |
3299 | 0 | break; |
3300 | | |
3301 | 0 | return ConstantInt::getFalse(SVTy); |
3302 | 0 | } |
3303 | 0 | default: |
3304 | 0 | break; |
3305 | 0 | } |
3306 | 0 | return nullptr; |
3307 | 0 | } |
3308 | | |
3309 | | static std::pair<Constant *, Constant *> |
3310 | 0 | ConstantFoldScalarFrexpCall(Constant *Op, Type *IntTy) { |
3311 | 0 | if (isa<PoisonValue>(Op)) |
3312 | 0 | return {Op, PoisonValue::get(IntTy)}; |
3313 | | |
3314 | 0 | auto *ConstFP = dyn_cast<ConstantFP>(Op); |
3315 | 0 | if (!ConstFP) |
3316 | 0 | return {}; |
3317 | | |
3318 | 0 | const APFloat &U = ConstFP->getValueAPF(); |
3319 | 0 | int FrexpExp; |
3320 | 0 | APFloat FrexpMant = frexp(U, FrexpExp, APFloat::rmNearestTiesToEven); |
3321 | 0 | Constant *Result0 = ConstantFP::get(ConstFP->getType(), FrexpMant); |
3322 | | |
3323 | | // The exponent is an "unspecified value" for inf/nan. We use zero to avoid |
3324 | | // using undef. |
3325 | 0 | Constant *Result1 = FrexpMant.isFinite() ? ConstantInt::get(IntTy, FrexpExp) |
3326 | 0 | : ConstantInt::getNullValue(IntTy); |
3327 | 0 | return {Result0, Result1}; |
3328 | 0 | } |
3329 | | |
3330 | | /// Handle intrinsics that return tuples, which may be tuples of vectors. |
3331 | | static Constant * |
3332 | | ConstantFoldStructCall(StringRef Name, Intrinsic::ID IntrinsicID, |
3333 | | StructType *StTy, ArrayRef<Constant *> Operands, |
3334 | | const DataLayout &DL, const TargetLibraryInfo *TLI, |
3335 | 323 | const CallBase *Call) { |
3336 | | |
3337 | 323 | switch (IntrinsicID) { |
3338 | 0 | case Intrinsic::frexp: { |
3339 | 0 | Type *Ty0 = StTy->getContainedType(0); |
3340 | 0 | Type *Ty1 = StTy->getContainedType(1)->getScalarType(); |
3341 | |
|
3342 | 0 | if (auto *FVTy0 = dyn_cast<FixedVectorType>(Ty0)) { |
3343 | 0 | SmallVector<Constant *, 4> Results0(FVTy0->getNumElements()); |
3344 | 0 | SmallVector<Constant *, 4> Results1(FVTy0->getNumElements()); |
3345 | |
|
3346 | 0 | for (unsigned I = 0, E = FVTy0->getNumElements(); I != E; ++I) { |
3347 | 0 | Constant *Lane = Operands[0]->getAggregateElement(I); |
3348 | 0 | std::tie(Results0[I], Results1[I]) = |
3349 | 0 | ConstantFoldScalarFrexpCall(Lane, Ty1); |
3350 | 0 | if (!Results0[I]) |
3351 | 0 | return nullptr; |
3352 | 0 | } |
3353 | | |
3354 | 0 | return ConstantStruct::get(StTy, ConstantVector::get(Results0), |
3355 | 0 | ConstantVector::get(Results1)); |
3356 | 0 | } |
3357 | | |
3358 | 0 | auto [Result0, Result1] = ConstantFoldScalarFrexpCall(Operands[0], Ty1); |
3359 | 0 | if (!Result0) |
3360 | 0 | return nullptr; |
3361 | 0 | return ConstantStruct::get(StTy, Result0, Result1); |
3362 | 0 | } |
3363 | 323 | default: |
3364 | | // TODO: Constant folding of vector intrinsics that fall through here does |
3365 | | // not work (e.g. overflow intrinsics) |
3366 | 323 | return ConstantFoldScalarCall(Name, IntrinsicID, StTy, Operands, TLI, Call); |
3367 | 323 | } |
3368 | | |
3369 | 0 | return nullptr; |
3370 | 323 | } |
3371 | | |
3372 | | } // end anonymous namespace |
3373 | | |
3374 | | Constant *llvm::ConstantFoldCall(const CallBase *Call, Function *F, |
3375 | | ArrayRef<Constant *> Operands, |
3376 | 18.6k | const TargetLibraryInfo *TLI) { |
3377 | 18.6k | if (Call->isNoBuiltin()) |
3378 | 0 | return nullptr; |
3379 | 18.6k | if (!F->hasName()) |
3380 | 0 | return nullptr; |
3381 | | |
3382 | | // If this is not an intrinsic and not recognized as a library call, bail out. |
3383 | 18.6k | Intrinsic::ID IID = F->getIntrinsicID(); |
3384 | 18.6k | if (IID == Intrinsic::not_intrinsic) { |
3385 | 6.86k | if (!TLI) |
3386 | 36 | return nullptr; |
3387 | 6.82k | LibFunc LibF; |
3388 | 6.82k | if (!TLI->getLibFunc(*F, LibF)) |
3389 | 65 | return nullptr; |
3390 | 6.82k | } |
3391 | | |
3392 | 18.5k | StringRef Name = F->getName(); |
3393 | 18.5k | Type *Ty = F->getReturnType(); |
3394 | 18.5k | if (auto *FVTy = dyn_cast<FixedVectorType>(Ty)) |
3395 | 1.34k | return ConstantFoldFixedVectorCall( |
3396 | 1.34k | Name, IID, FVTy, Operands, F->getParent()->getDataLayout(), TLI, Call); |
3397 | | |
3398 | 17.2k | if (auto *SVTy = dyn_cast<ScalableVectorType>(Ty)) |
3399 | 0 | return ConstantFoldScalableVectorCall( |
3400 | 0 | Name, IID, SVTy, Operands, F->getParent()->getDataLayout(), TLI, Call); |
3401 | | |
3402 | 17.2k | if (auto *StTy = dyn_cast<StructType>(Ty)) |
3403 | 323 | return ConstantFoldStructCall(Name, IID, StTy, Operands, |
3404 | 323 | F->getParent()->getDataLayout(), TLI, Call); |
3405 | | |
3406 | | // TODO: If this is a library function, we already discovered that above, |
3407 | | // so we should pass the LibFunc, not the name (and it might be better |
3408 | | // still to separate intrinsic handling from libcalls). |
3409 | 16.8k | return ConstantFoldScalarCall(Name, IID, Ty, Operands, TLI, Call); |
3410 | 17.2k | } |
3411 | | |
3412 | | bool llvm::isMathLibCallNoop(const CallBase *Call, |
3413 | 11.2k | const TargetLibraryInfo *TLI) { |
3414 | | // FIXME: Refactor this code; this duplicates logic in LibCallsShrinkWrap |
3415 | | // (and to some extent ConstantFoldScalarCall). |
3416 | 11.2k | if (Call->isNoBuiltin() || Call->isStrictFP()) |
3417 | 0 | return false; |
3418 | 11.2k | Function *F = Call->getCalledFunction(); |
3419 | 11.2k | if (!F) |
3420 | 0 | return false; |
3421 | | |
3422 | 11.2k | LibFunc Func; |
3423 | 11.2k | if (!TLI || !TLI->getLibFunc(*F, Func)) |
3424 | 11.1k | return false; |
3425 | | |
3426 | 110 | if (Call->arg_size() == 1) { |
3427 | 0 | if (ConstantFP *OpC = dyn_cast<ConstantFP>(Call->getArgOperand(0))) { |
3428 | 0 | const APFloat &Op = OpC->getValueAPF(); |
3429 | 0 | switch (Func) { |
3430 | 0 | case LibFunc_logl: |
3431 | 0 | case LibFunc_log: |
3432 | 0 | case LibFunc_logf: |
3433 | 0 | case LibFunc_log2l: |
3434 | 0 | case LibFunc_log2: |
3435 | 0 | case LibFunc_log2f: |
3436 | 0 | case LibFunc_log10l: |
3437 | 0 | case LibFunc_log10: |
3438 | 0 | case LibFunc_log10f: |
3439 | 0 | return Op.isNaN() || (!Op.isZero() && !Op.isNegative()); |
3440 | | |
3441 | 0 | case LibFunc_expl: |
3442 | 0 | case LibFunc_exp: |
3443 | 0 | case LibFunc_expf: |
3444 | | // FIXME: These boundaries are slightly conservative. |
3445 | 0 | if (OpC->getType()->isDoubleTy()) |
3446 | 0 | return !(Op < APFloat(-745.0) || Op > APFloat(709.0)); |
3447 | 0 | if (OpC->getType()->isFloatTy()) |
3448 | 0 | return !(Op < APFloat(-103.0f) || Op > APFloat(88.0f)); |
3449 | 0 | break; |
3450 | | |
3451 | 0 | case LibFunc_exp2l: |
3452 | 0 | case LibFunc_exp2: |
3453 | 0 | case LibFunc_exp2f: |
3454 | | // FIXME: These boundaries are slightly conservative. |
3455 | 0 | if (OpC->getType()->isDoubleTy()) |
3456 | 0 | return !(Op < APFloat(-1074.0) || Op > APFloat(1023.0)); |
3457 | 0 | if (OpC->getType()->isFloatTy()) |
3458 | 0 | return !(Op < APFloat(-149.0f) || Op > APFloat(127.0f)); |
3459 | 0 | break; |
3460 | | |
3461 | 0 | case LibFunc_sinl: |
3462 | 0 | case LibFunc_sin: |
3463 | 0 | case LibFunc_sinf: |
3464 | 0 | case LibFunc_cosl: |
3465 | 0 | case LibFunc_cos: |
3466 | 0 | case LibFunc_cosf: |
3467 | 0 | return !Op.isInfinity(); |
3468 | | |
3469 | 0 | case LibFunc_tanl: |
3470 | 0 | case LibFunc_tan: |
3471 | 0 | case LibFunc_tanf: { |
3472 | | // FIXME: Stop using the host math library. |
3473 | | // FIXME: The computation isn't done in the right precision. |
3474 | 0 | Type *Ty = OpC->getType(); |
3475 | 0 | if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) |
3476 | 0 | return ConstantFoldFP(tan, OpC->getValueAPF(), Ty) != nullptr; |
3477 | 0 | break; |
3478 | 0 | } |
3479 | | |
3480 | 0 | case LibFunc_atan: |
3481 | 0 | case LibFunc_atanf: |
3482 | 0 | case LibFunc_atanl: |
3483 | | // Per POSIX, this MAY fail if Op is denormal. We choose not failing. |
3484 | 0 | return true; |
3485 | | |
3486 | | |
3487 | 0 | case LibFunc_asinl: |
3488 | 0 | case LibFunc_asin: |
3489 | 0 | case LibFunc_asinf: |
3490 | 0 | case LibFunc_acosl: |
3491 | 0 | case LibFunc_acos: |
3492 | 0 | case LibFunc_acosf: |
3493 | 0 | return !(Op < APFloat(Op.getSemantics(), "-1") || |
3494 | 0 | Op > APFloat(Op.getSemantics(), "1")); |
3495 | | |
3496 | 0 | case LibFunc_sinh: |
3497 | 0 | case LibFunc_cosh: |
3498 | 0 | case LibFunc_sinhf: |
3499 | 0 | case LibFunc_coshf: |
3500 | 0 | case LibFunc_sinhl: |
3501 | 0 | case LibFunc_coshl: |
3502 | | // FIXME: These boundaries are slightly conservative. |
3503 | 0 | if (OpC->getType()->isDoubleTy()) |
3504 | 0 | return !(Op < APFloat(-710.0) || Op > APFloat(710.0)); |
3505 | 0 | if (OpC->getType()->isFloatTy()) |
3506 | 0 | return !(Op < APFloat(-89.0f) || Op > APFloat(89.0f)); |
3507 | 0 | break; |
3508 | | |
3509 | 0 | case LibFunc_sqrtl: |
3510 | 0 | case LibFunc_sqrt: |
3511 | 0 | case LibFunc_sqrtf: |
3512 | 0 | return Op.isNaN() || Op.isZero() || !Op.isNegative(); |
3513 | | |
3514 | | // FIXME: Add more functions: sqrt_finite, atanh, expm1, log1p, |
3515 | | // maybe others? |
3516 | 0 | default: |
3517 | 0 | break; |
3518 | 0 | } |
3519 | 0 | } |
3520 | 0 | } |
3521 | | |
3522 | 110 | if (Call->arg_size() == 2) { |
3523 | 62 | ConstantFP *Op0C = dyn_cast<ConstantFP>(Call->getArgOperand(0)); |
3524 | 62 | ConstantFP *Op1C = dyn_cast<ConstantFP>(Call->getArgOperand(1)); |
3525 | 62 | if (Op0C && Op1C) { |
3526 | 0 | const APFloat &Op0 = Op0C->getValueAPF(); |
3527 | 0 | const APFloat &Op1 = Op1C->getValueAPF(); |
3528 | |
|
3529 | 0 | switch (Func) { |
3530 | 0 | case LibFunc_powl: |
3531 | 0 | case LibFunc_pow: |
3532 | 0 | case LibFunc_powf: { |
3533 | | // FIXME: Stop using the host math library. |
3534 | | // FIXME: The computation isn't done in the right precision. |
3535 | 0 | Type *Ty = Op0C->getType(); |
3536 | 0 | if (Ty->isDoubleTy() || Ty->isFloatTy() || Ty->isHalfTy()) { |
3537 | 0 | if (Ty == Op1C->getType()) |
3538 | 0 | return ConstantFoldBinaryFP(pow, Op0, Op1, Ty) != nullptr; |
3539 | 0 | } |
3540 | 0 | break; |
3541 | 0 | } |
3542 | | |
3543 | 0 | case LibFunc_fmodl: |
3544 | 0 | case LibFunc_fmod: |
3545 | 0 | case LibFunc_fmodf: |
3546 | 0 | case LibFunc_remainderl: |
3547 | 0 | case LibFunc_remainder: |
3548 | 0 | case LibFunc_remainderf: |
3549 | 0 | return Op0.isNaN() || Op1.isNaN() || |
3550 | 0 | (!Op0.isInfinity() && !Op1.isZero()); |
3551 | | |
3552 | 0 | case LibFunc_atan2: |
3553 | 0 | case LibFunc_atan2f: |
3554 | 0 | case LibFunc_atan2l: |
3555 | | // Although IEEE-754 says atan2(+/-0.0, +/-0.0) are well-defined, and |
3556 | | // GLIBC and MSVC do not appear to raise an error on those, we |
3557 | | // cannot rely on that behavior. POSIX and C11 say that a domain error |
3558 | | // may occur, so allow for that possibility. |
3559 | 0 | return !Op0.isZero() || !Op1.isZero(); |
3560 | | |
3561 | 0 | default: |
3562 | 0 | break; |
3563 | 0 | } |
3564 | 0 | } |
3565 | 62 | } |
3566 | | |
3567 | 110 | return false; |
3568 | 110 | } |
3569 | | |
3570 | 0 | void TargetFolder::anchor() {} |