Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/llvm/lib/Analysis/ConstraintSystem.cpp
Line
Count
Source (jump to first uncovered line)
1
//===- ConstraintSytem.cpp - A system of linear constraints. ----*- C++ -*-===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
9
#include "llvm/Analysis/ConstraintSystem.h"
10
#include "llvm/ADT/SmallVector.h"
11
#include "llvm/Support/MathExtras.h"
12
#include "llvm/ADT/StringExtras.h"
13
#include "llvm/IR/Value.h"
14
#include "llvm/Support/Debug.h"
15
16
#include <string>
17
18
using namespace llvm;
19
20
#define DEBUG_TYPE "constraint-system"
21
22
0
bool ConstraintSystem::eliminateUsingFM() {
23
  // Implementation of Fourier–Motzkin elimination, with some tricks from the
24
  // paper Pugh, William. "The Omega test: a fast and practical integer
25
  // programming algorithm for dependence
26
  //  analysis."
27
  // Supercomputing'91: Proceedings of the 1991 ACM/
28
  // IEEE conference on Supercomputing. IEEE, 1991.
29
0
  assert(!Constraints.empty() &&
30
0
         "should only be called for non-empty constraint systems");
31
32
0
  unsigned LastIdx = NumVariables - 1;
33
34
  // First, either remove the variable in place if it is 0 or add the row to
35
  // RemainingRows and remove it from the system.
36
0
  SmallVector<SmallVector<Entry, 8>, 4> RemainingRows;
37
0
  for (unsigned R1 = 0; R1 < Constraints.size();) {
38
0
    SmallVector<Entry, 8> &Row1 = Constraints[R1];
39
0
    if (getLastCoefficient(Row1, LastIdx) == 0) {
40
0
      if (Row1.size() > 0 && Row1.back().Id == LastIdx)
41
0
        Row1.pop_back();
42
0
      R1++;
43
0
    } else {
44
0
      std::swap(Constraints[R1], Constraints.back());
45
0
      RemainingRows.push_back(std::move(Constraints.back()));
46
0
      Constraints.pop_back();
47
0
    }
48
0
  }
49
50
  // Process rows where the variable is != 0.
51
0
  unsigned NumRemainingConstraints = RemainingRows.size();
52
0
  for (unsigned R1 = 0; R1 < NumRemainingConstraints; R1++) {
53
    // FIXME do not use copy
54
0
    for (unsigned R2 = R1 + 1; R2 < NumRemainingConstraints; R2++) {
55
0
      if (R1 == R2)
56
0
        continue;
57
58
0
      int64_t UpperLast = getLastCoefficient(RemainingRows[R2], LastIdx);
59
0
      int64_t LowerLast = getLastCoefficient(RemainingRows[R1], LastIdx);
60
0
      assert(
61
0
          UpperLast != 0 && LowerLast != 0 &&
62
0
          "RemainingRows should only contain rows where the variable is != 0");
63
64
0
      if ((LowerLast < 0 && UpperLast < 0) || (LowerLast > 0 && UpperLast > 0))
65
0
        continue;
66
67
0
      unsigned LowerR = R1;
68
0
      unsigned UpperR = R2;
69
0
      if (UpperLast < 0) {
70
0
        std::swap(LowerR, UpperR);
71
0
        std::swap(LowerLast, UpperLast);
72
0
      }
73
74
0
      SmallVector<Entry, 8> NR;
75
0
      unsigned IdxUpper = 0;
76
0
      unsigned IdxLower = 0;
77
0
      auto &LowerRow = RemainingRows[LowerR];
78
0
      auto &UpperRow = RemainingRows[UpperR];
79
0
      while (true) {
80
0
        if (IdxUpper >= UpperRow.size() || IdxLower >= LowerRow.size())
81
0
          break;
82
0
        int64_t M1, M2, N;
83
0
        int64_t UpperV = 0;
84
0
        int64_t LowerV = 0;
85
0
        uint16_t CurrentId = std::numeric_limits<uint16_t>::max();
86
0
        if (IdxUpper < UpperRow.size()) {
87
0
          CurrentId = std::min(UpperRow[IdxUpper].Id, CurrentId);
88
0
        }
89
0
        if (IdxLower < LowerRow.size()) {
90
0
          CurrentId = std::min(LowerRow[IdxLower].Id, CurrentId);
91
0
        }
92
93
0
        if (IdxUpper < UpperRow.size() && UpperRow[IdxUpper].Id == CurrentId) {
94
0
          UpperV = UpperRow[IdxUpper].Coefficient;
95
0
          IdxUpper++;
96
0
        }
97
98
0
        if (MulOverflow(UpperV, -1 * LowerLast, M1))
99
0
          return false;
100
0
        if (IdxLower < LowerRow.size() && LowerRow[IdxLower].Id == CurrentId) {
101
0
          LowerV = LowerRow[IdxLower].Coefficient;
102
0
          IdxLower++;
103
0
        }
104
105
0
        if (MulOverflow(LowerV, UpperLast, M2))
106
0
          return false;
107
0
        if (AddOverflow(M1, M2, N))
108
0
          return false;
109
0
        if (N == 0)
110
0
          continue;
111
0
        NR.emplace_back(N, CurrentId);
112
0
      }
113
0
      if (NR.empty())
114
0
        continue;
115
0
      Constraints.push_back(std::move(NR));
116
      // Give up if the new system gets too big.
117
0
      if (Constraints.size() > 500)
118
0
        return false;
119
0
    }
120
0
  }
121
0
  NumVariables -= 1;
122
123
0
  return true;
124
0
}
125
126
0
bool ConstraintSystem::mayHaveSolutionImpl() {
127
0
  while (!Constraints.empty() && NumVariables > 1) {
128
0
    if (!eliminateUsingFM())
129
0
      return true;
130
0
  }
131
132
0
  if (Constraints.empty() || NumVariables > 1)
133
0
    return true;
134
135
0
  return all_of(Constraints, [](auto &R) {
136
0
    if (R.empty())
137
0
      return true;
138
0
    if (R[0].Id == 0)
139
0
      return R[0].Coefficient >= 0;
140
0
    return true;
141
0
  });
142
0
}
143
144
0
SmallVector<std::string> ConstraintSystem::getVarNamesList() const {
145
0
  SmallVector<std::string> Names(Value2Index.size(), "");
146
0
#ifndef NDEBUG
147
0
  for (auto &[V, Index] : Value2Index) {
148
0
    std::string OperandName;
149
0
    if (V->getName().empty())
150
0
      OperandName = V->getNameOrAsOperand();
151
0
    else
152
0
      OperandName = std::string("%") + V->getName().str();
153
0
    Names[Index - 1] = OperandName;
154
0
  }
155
0
#endif
156
0
  return Names;
157
0
}
158
159
0
void ConstraintSystem::dump() const {
160
0
#ifndef NDEBUG
161
0
  if (Constraints.empty())
162
0
    return;
163
0
  SmallVector<std::string> Names = getVarNamesList();
164
0
  for (const auto &Row : Constraints) {
165
0
    SmallVector<std::string, 16> Parts;
166
0
    for (unsigned I = 0, S = Row.size(); I < S; ++I) {
167
0
      if (Row[I].Id >= NumVariables)
168
0
        break;
169
0
      if (Row[I].Id == 0)
170
0
        continue;
171
0
      std::string Coefficient;
172
0
      if (Row[I].Coefficient != 1)
173
0
        Coefficient = std::to_string(Row[I].Coefficient) + " * ";
174
0
      Parts.push_back(Coefficient + Names[Row[I].Id - 1]);
175
0
    }
176
    // assert(!Parts.empty() && "need to have at least some parts");
177
0
    int64_t ConstPart = 0;
178
0
    if (Row[0].Id == 0)
179
0
      ConstPart = Row[0].Coefficient;
180
0
    LLVM_DEBUG(dbgs() << join(Parts, std::string(" + "))
181
0
                      << " <= " << std::to_string(ConstPart) << "\n");
182
0
  }
183
0
#endif
184
0
}
185
186
0
bool ConstraintSystem::mayHaveSolution() {
187
0
  LLVM_DEBUG(dbgs() << "---\n");
188
0
  LLVM_DEBUG(dump());
189
0
  bool HasSolution = mayHaveSolutionImpl();
190
0
  LLVM_DEBUG(dbgs() << (HasSolution ? "sat" : "unsat") << "\n");
191
0
  return HasSolution;
192
0
}
193
194
0
bool ConstraintSystem::isConditionImplied(SmallVector<int64_t, 8> R) const {
195
  // If all variable coefficients are 0, we have 'C >= 0'. If the constant is >=
196
  // 0, R is always true, regardless of the system.
197
0
  if (all_of(ArrayRef(R).drop_front(1), [](int64_t C) { return C == 0; }))
198
0
    return R[0] >= 0;
199
200
  // If there is no solution with the negation of R added to the system, the
201
  // condition must hold based on the existing constraints.
202
0
  R = ConstraintSystem::negate(R);
203
0
  if (R.empty())
204
0
    return false;
205
206
0
  auto NewSystem = *this;
207
0
  NewSystem.addVariableRow(R);
208
0
  return !NewSystem.mayHaveSolution();
209
0
}