/src/llvm-project/llvm/lib/Analysis/IVUsers.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- IVUsers.cpp - Induction Variable Users -------------------*- C++ -*-===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file implements bookkeeping for "interesting" users of expressions |
10 | | // computed from induction variables. |
11 | | // |
12 | | //===----------------------------------------------------------------------===// |
13 | | |
14 | | #include "llvm/Analysis/IVUsers.h" |
15 | | #include "llvm/Analysis/AssumptionCache.h" |
16 | | #include "llvm/Analysis/CodeMetrics.h" |
17 | | #include "llvm/Analysis/LoopAnalysisManager.h" |
18 | | #include "llvm/Analysis/LoopInfo.h" |
19 | | #include "llvm/Analysis/LoopPass.h" |
20 | | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
21 | | #include "llvm/Analysis/ValueTracking.h" |
22 | | #include "llvm/Config/llvm-config.h" |
23 | | #include "llvm/IR/DataLayout.h" |
24 | | #include "llvm/IR/Dominators.h" |
25 | | #include "llvm/IR/Instructions.h" |
26 | | #include "llvm/IR/Module.h" |
27 | | #include "llvm/InitializePasses.h" |
28 | | #include "llvm/Support/Debug.h" |
29 | | #include "llvm/Support/raw_ostream.h" |
30 | | using namespace llvm; |
31 | | |
32 | | #define DEBUG_TYPE "iv-users" |
33 | | |
34 | | AnalysisKey IVUsersAnalysis::Key; |
35 | | |
36 | | IVUsers IVUsersAnalysis::run(Loop &L, LoopAnalysisManager &AM, |
37 | 27.6k | LoopStandardAnalysisResults &AR) { |
38 | 27.6k | return IVUsers(&L, &AR.AC, &AR.LI, &AR.DT, &AR.SE); |
39 | 27.6k | } |
40 | | |
41 | | char IVUsersWrapperPass::ID = 0; |
42 | 11 | INITIALIZE_PASS_BEGIN(IVUsersWrapperPass, "iv-users", |
43 | 11 | "Induction Variable Users", false, true) |
44 | 11 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
45 | 11 | INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) |
46 | 11 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
47 | 11 | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) |
48 | 11 | INITIALIZE_PASS_END(IVUsersWrapperPass, "iv-users", "Induction Variable Users", |
49 | | false, true) |
50 | | |
51 | 0 | Pass *llvm::createIVUsersPass() { return new IVUsersWrapperPass(); } |
52 | | |
53 | | /// isInteresting - Test whether the given expression is "interesting" when |
54 | | /// used by the given expression, within the context of analyzing the |
55 | | /// given loop. |
56 | | static bool isInteresting(const SCEV *S, const Instruction *I, const Loop *L, |
57 | 281k | ScalarEvolution *SE, LoopInfo *LI) { |
58 | | // An addrec is interesting if it's affine or if it has an interesting start. |
59 | 281k | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
60 | | // Keep things simple. Don't touch loop-variant strides unless they're |
61 | | // only used outside the loop and we can simplify them. |
62 | 169k | if (AR->getLoop() == L) |
63 | 167k | return AR->isAffine() || |
64 | 167k | (!L->contains(I) && |
65 | 27.5k | SE->getSCEVAtScope(AR, LI->getLoopFor(I->getParent())) != AR); |
66 | | // Otherwise recurse to see if the start value is interesting, and that |
67 | | // the step value is not interesting, since we don't yet know how to |
68 | | // do effective SCEV expansions for addrecs with interesting steps. |
69 | 2.28k | return isInteresting(AR->getStart(), I, L, SE, LI) && |
70 | 2.28k | !isInteresting(AR->getStepRecurrence(*SE), I, L, SE, LI); |
71 | 169k | } |
72 | | |
73 | | // An add is interesting if exactly one of its operands is interesting. |
74 | 111k | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
75 | 35.6k | bool AnyInterestingYet = false; |
76 | 35.6k | for (const auto *Op : Add->operands()) |
77 | 95.4k | if (isInteresting(Op, I, L, SE, LI)) { |
78 | 34.2k | if (AnyInterestingYet) |
79 | 7 | return false; |
80 | 34.2k | AnyInterestingYet = true; |
81 | 34.2k | } |
82 | 35.6k | return AnyInterestingYet; |
83 | 35.6k | } |
84 | | |
85 | | // Nothing else is interesting here. |
86 | 75.8k | return false; |
87 | 111k | } |
88 | | |
89 | | /// IVUseShouldUsePostIncValue - We have discovered a "User" of an IV expression |
90 | | /// and now we need to decide whether the user should use the preinc or post-inc |
91 | | /// value. If this user should use the post-inc version of the IV, return true. |
92 | | /// |
93 | | /// Choosing wrong here can break dominance properties (if we choose to use the |
94 | | /// post-inc value when we cannot) or it can end up adding extra live-ranges to |
95 | | /// the loop, resulting in reg-reg copies (if we use the pre-inc value when we |
96 | | /// should use the post-inc value). |
97 | | static bool IVUseShouldUsePostIncValue(Instruction *User, Value *Operand, |
98 | 165k | const Loop *L, DominatorTree *DT) { |
99 | | // If the user is in the loop, use the preinc value. |
100 | 165k | if (L->contains(User)) |
101 | 161k | return false; |
102 | | |
103 | 4.51k | BasicBlock *LatchBlock = L->getLoopLatch(); |
104 | 4.51k | if (!LatchBlock) |
105 | 0 | return false; |
106 | | |
107 | | // Ok, the user is outside of the loop. If it is dominated by the latch |
108 | | // block, use the post-inc value. |
109 | 4.51k | if (DT->dominates(LatchBlock, User->getParent())) |
110 | 3.15k | return true; |
111 | | |
112 | | // There is one case we have to be careful of: PHI nodes. These little guys |
113 | | // can live in blocks that are not dominated by the latch block, but (since |
114 | | // their uses occur in the predecessor block, not the block the PHI lives in) |
115 | | // should still use the post-inc value. Check for this case now. |
116 | 1.35k | PHINode *PN = dyn_cast<PHINode>(User); |
117 | 1.35k | if (!PN || !Operand) |
118 | 140 | return false; // not a phi, not dominated by latch block. |
119 | | |
120 | | // Look at all of the uses of Operand by the PHI node. If any use corresponds |
121 | | // to a block that is not dominated by the latch block, give up and use the |
122 | | // preincremented value. |
123 | 1.38k | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) |
124 | 1.30k | if (PN->getIncomingValue(i) == Operand && |
125 | 1.30k | !DT->dominates(LatchBlock, PN->getIncomingBlock(i))) |
126 | 1.13k | return false; |
127 | | |
128 | | // Okay, all uses of Operand by PN are in predecessor blocks that really are |
129 | | // dominated by the latch block. Use the post-incremented value. |
130 | 82 | return true; |
131 | 1.21k | } |
132 | | |
133 | | /// Inspect the specified instruction. If it is a reducible SCEV, recursively |
134 | | /// add its users to the IVUsesByStride set and return true. Otherwise, return |
135 | | /// false. |
136 | 266k | bool IVUsers::AddUsersIfInteresting(Instruction *I) { |
137 | 266k | const DataLayout &DL = I->getModule()->getDataLayout(); |
138 | | |
139 | | // Add this IV user to the Processed set before returning false to ensure that |
140 | | // all IV users are members of the set. See IVUsers::isIVUserOrOperand. |
141 | 266k | if (!Processed.insert(I).second) |
142 | 123 | return true; // Instruction already handled. |
143 | | |
144 | 266k | if (!SE->isSCEVable(I->getType())) |
145 | 41.2k | return false; // Void and FP expressions cannot be reduced. |
146 | | |
147 | | // IVUsers is used by LSR which assumes that all SCEV expressions are safe to |
148 | | // pass to SCEVExpander. Expressions are not safe to expand if they represent |
149 | | // operations that are not safe to speculate, namely integer division. |
150 | 224k | if (!isa<PHINode>(I) && !isSafeToSpeculativelyExecute(I)) |
151 | 14.1k | return false; |
152 | | |
153 | | // LSR is not APInt clean, do not touch integers bigger than 64-bits. |
154 | | // Also avoid creating IVs of non-native types. For example, we don't want a |
155 | | // 64-bit IV in 32-bit code just because the loop has one 64-bit cast. |
156 | 210k | uint64_t Width = SE->getTypeSizeInBits(I->getType()); |
157 | 210k | if (Width > 64 || !DL.isLegalInteger(Width)) |
158 | 28.9k | return false; |
159 | | |
160 | | // Don't attempt to promote ephemeral values to indvars. They will be removed |
161 | | // later anyway. |
162 | 181k | if (EphValues.count(I)) |
163 | 75 | return false; |
164 | | |
165 | | // Get the symbolic expression for this instruction. |
166 | 181k | const SCEV *ISE = SE->getSCEV(I); |
167 | | |
168 | | // If we've come to an uninteresting expression, stop the traversal and |
169 | | // call this a user. |
170 | 181k | if (!isInteresting(ISE, I, L, SE, LI)) |
171 | 43.6k | return false; |
172 | | |
173 | 138k | SmallPtrSet<Instruction *, 4> UniqueUsers; |
174 | 265k | for (Use &U : I->uses()) { |
175 | 265k | Instruction *User = cast<Instruction>(U.getUser()); |
176 | 265k | if (!UniqueUsers.insert(User).second) |
177 | 4.72k | continue; |
178 | | |
179 | | // Do not infinitely recurse on PHI nodes. |
180 | 260k | if (isa<PHINode>(User) && Processed.count(User)) |
181 | 30.9k | continue; |
182 | | |
183 | | // Descend recursively, but not into PHI nodes outside the current loop. |
184 | | // It's important to see the entire expression outside the loop to get |
185 | | // choices that depend on addressing mode use right, although we won't |
186 | | // consider references outside the loop in all cases. |
187 | | // If User is already in Processed, we don't want to recurse into it again, |
188 | | // but do want to record a second reference in the same instruction. |
189 | 229k | bool AddUserToIVUsers = false; |
190 | 229k | if (LI->getLoopFor(User->getParent()) != L) { |
191 | 11.0k | if (isa<PHINode>(User) || Processed.count(User) || |
192 | 11.0k | !AddUsersIfInteresting(User)) { |
193 | 8.84k | LLVM_DEBUG(dbgs() << "FOUND USER in other loop: " << *User << '\n' |
194 | 8.84k | << " OF SCEV: " << *ISE << '\n'); |
195 | 8.84k | AddUserToIVUsers = true; |
196 | 8.84k | } |
197 | 218k | } else if (Processed.count(User) || !AddUsersIfInteresting(User)) { |
198 | 113k | LLVM_DEBUG(dbgs() << "FOUND USER: " << *User << '\n' |
199 | 113k | << " OF SCEV: " << *ISE << '\n'); |
200 | 113k | AddUserToIVUsers = true; |
201 | 113k | } |
202 | | |
203 | 229k | if (AddUserToIVUsers) { |
204 | | // Okay, we found a user that we cannot reduce. |
205 | 122k | IVStrideUse &NewUse = AddUser(User, I); |
206 | | // Autodetect the post-inc loop set, populating NewUse.PostIncLoops. |
207 | | // The regular return value here is discarded; instead of recording |
208 | | // it, we just recompute it when we need it. |
209 | 122k | const SCEV *OriginalISE = ISE; |
210 | | |
211 | 165k | auto NormalizePred = [&](const SCEVAddRecExpr *AR) { |
212 | 165k | auto *L = AR->getLoop(); |
213 | 165k | bool Result = IVUseShouldUsePostIncValue(User, I, L, DT); |
214 | 165k | if (Result) |
215 | 3.23k | NewUse.PostIncLoops.insert(L); |
216 | 165k | return Result; |
217 | 165k | }; |
218 | | |
219 | 122k | ISE = normalizeForPostIncUseIf(ISE, NormalizePred, *SE); |
220 | | |
221 | | // PostIncNormalization effectively simplifies the expression under |
222 | | // pre-increment assumptions. Those assumptions (no wrapping) might not |
223 | | // hold for the post-inc value. Catch such cases by making sure the |
224 | | // transformation is invertible. |
225 | 122k | if (OriginalISE != ISE) { |
226 | 2.90k | const SCEV *DenormalizedISE = |
227 | 2.90k | denormalizeForPostIncUse(ISE, NewUse.PostIncLoops, *SE); |
228 | | |
229 | | // If we normalized the expression, but denormalization doesn't give the |
230 | | // original one, discard this user. |
231 | 2.90k | if (OriginalISE != DenormalizedISE) { |
232 | 43 | LLVM_DEBUG(dbgs() |
233 | 43 | << " DISCARDING (NORMALIZATION ISN'T INVERTIBLE): " |
234 | 43 | << *ISE << '\n'); |
235 | 43 | IVUses.pop_back(); |
236 | 43 | return false; |
237 | 43 | } |
238 | 2.90k | } |
239 | 122k | LLVM_DEBUG(if (SE->getSCEV(I) != ISE) dbgs() |
240 | 122k | << " NORMALIZED TO: " << *ISE << '\n'); |
241 | 122k | } |
242 | 229k | } |
243 | 138k | return true; |
244 | 138k | } |
245 | | |
246 | 123k | IVStrideUse &IVUsers::AddUser(Instruction *User, Value *Operand) { |
247 | 123k | IVUses.push_back(new IVStrideUse(this, User, Operand)); |
248 | 123k | return IVUses.back(); |
249 | 123k | } |
250 | | |
251 | | IVUsers::IVUsers(Loop *L, AssumptionCache *AC, LoopInfo *LI, DominatorTree *DT, |
252 | | ScalarEvolution *SE) |
253 | 54.1k | : L(L), AC(AC), LI(LI), DT(DT), SE(SE) { |
254 | | // Collect ephemeral values so that AddUsersIfInteresting skips them. |
255 | 54.1k | EphValues.clear(); |
256 | 54.1k | CodeMetrics::collectEphemeralValues(L, AC, EphValues); |
257 | | |
258 | | // Find all uses of induction variables in this loop, and categorize |
259 | | // them by stride. Start by finding all of the PHI nodes in the header for |
260 | | // this loop. If they are induction variables, inspect their uses. |
261 | 124k | for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) |
262 | 70.3k | (void)AddUsersIfInteresting(&*I); |
263 | 54.1k | } |
264 | | |
265 | 0 | void IVUsers::print(raw_ostream &OS, const Module *M) const { |
266 | 0 | OS << "IV Users for loop "; |
267 | 0 | L->getHeader()->printAsOperand(OS, false); |
268 | 0 | if (SE->hasLoopInvariantBackedgeTakenCount(L)) { |
269 | 0 | OS << " with backedge-taken count " << *SE->getBackedgeTakenCount(L); |
270 | 0 | } |
271 | 0 | OS << ":\n"; |
272 | |
|
273 | 0 | for (const IVStrideUse &IVUse : IVUses) { |
274 | 0 | OS << " "; |
275 | 0 | IVUse.getOperandValToReplace()->printAsOperand(OS, false); |
276 | 0 | OS << " = " << *getReplacementExpr(IVUse); |
277 | 0 | for (const auto *PostIncLoop : IVUse.PostIncLoops) { |
278 | 0 | OS << " (post-inc with loop "; |
279 | 0 | PostIncLoop->getHeader()->printAsOperand(OS, false); |
280 | 0 | OS << ")"; |
281 | 0 | } |
282 | 0 | OS << " in "; |
283 | 0 | if (IVUse.getUser()) |
284 | 0 | IVUse.getUser()->print(OS); |
285 | 0 | else |
286 | 0 | OS << "Printing <null> User"; |
287 | 0 | OS << '\n'; |
288 | 0 | } |
289 | 0 | } |
290 | | |
291 | | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
292 | 0 | LLVM_DUMP_METHOD void IVUsers::dump() const { print(dbgs()); } |
293 | | #endif |
294 | | |
295 | 26.5k | void IVUsers::releaseMemory() { |
296 | 26.5k | Processed.clear(); |
297 | 26.5k | IVUses.clear(); |
298 | 26.5k | } |
299 | | |
300 | 34.0k | IVUsersWrapperPass::IVUsersWrapperPass() : LoopPass(ID) { |
301 | 34.0k | initializeIVUsersWrapperPassPass(*PassRegistry::getPassRegistry()); |
302 | 34.0k | } |
303 | | |
304 | 34.0k | void IVUsersWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
305 | 34.0k | AU.addRequired<AssumptionCacheTracker>(); |
306 | 34.0k | AU.addRequired<LoopInfoWrapperPass>(); |
307 | 34.0k | AU.addRequired<DominatorTreeWrapperPass>(); |
308 | 34.0k | AU.addRequired<ScalarEvolutionWrapperPass>(); |
309 | 34.0k | AU.setPreservesAll(); |
310 | 34.0k | } |
311 | | |
312 | 26.5k | bool IVUsersWrapperPass::runOnLoop(Loop *L, LPPassManager &LPM) { |
313 | 26.5k | auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache( |
314 | 26.5k | *L->getHeader()->getParent()); |
315 | 26.5k | auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); |
316 | 26.5k | auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
317 | 26.5k | auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
318 | | |
319 | 26.5k | IU.reset(new IVUsers(L, AC, LI, DT, SE)); |
320 | 26.5k | return false; |
321 | 26.5k | } |
322 | | |
323 | 0 | void IVUsersWrapperPass::print(raw_ostream &OS, const Module *M) const { |
324 | 0 | IU->print(OS, M); |
325 | 0 | } |
326 | | |
327 | 26.5k | void IVUsersWrapperPass::releaseMemory() { IU->releaseMemory(); } |
328 | | |
329 | | /// getReplacementExpr - Return a SCEV expression which computes the |
330 | | /// value of the OperandValToReplace. |
331 | 213k | const SCEV *IVUsers::getReplacementExpr(const IVStrideUse &IU) const { |
332 | 213k | return SE->getSCEV(IU.getOperandValToReplace()); |
333 | 213k | } |
334 | | |
335 | | /// getExpr - Return the expression for the use. |
336 | 213k | const SCEV *IVUsers::getExpr(const IVStrideUse &IU) const { |
337 | 213k | const SCEV *Replacement = getReplacementExpr(IU); |
338 | 213k | return normalizeForPostIncUse(Replacement, IU.getPostIncLoops(), *SE); |
339 | 213k | } |
340 | | |
341 | 679 | static const SCEVAddRecExpr *findAddRecForLoop(const SCEV *S, const Loop *L) { |
342 | 679 | if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) { |
343 | 426 | if (AR->getLoop() == L) |
344 | 426 | return AR; |
345 | 0 | return findAddRecForLoop(AR->getStart(), L); |
346 | 426 | } |
347 | | |
348 | 253 | if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { |
349 | 88 | for (const auto *Op : Add->operands()) |
350 | 253 | if (const SCEVAddRecExpr *AR = findAddRecForLoop(Op, L)) |
351 | 88 | return AR; |
352 | 0 | return nullptr; |
353 | 88 | } |
354 | | |
355 | 165 | return nullptr; |
356 | 253 | } |
357 | | |
358 | 426 | const SCEV *IVUsers::getStride(const IVStrideUse &IU, const Loop *L) const { |
359 | 426 | const SCEV *Expr = getExpr(IU); |
360 | 426 | if (!Expr) |
361 | 0 | return nullptr; |
362 | 426 | if (const SCEVAddRecExpr *AR = findAddRecForLoop(Expr, L)) |
363 | 426 | return AR->getStepRecurrence(*SE); |
364 | 0 | return nullptr; |
365 | 426 | } |
366 | | |
367 | 9.71k | void IVStrideUse::transformToPostInc(const Loop *L) { |
368 | 9.71k | PostIncLoops.insert(L); |
369 | 9.71k | } |
370 | | |
371 | 17.3k | void IVStrideUse::deleted() { |
372 | | // Remove this user from the list. |
373 | 17.3k | Parent->Processed.erase(this->getUser()); |
374 | 17.3k | Parent->IVUses.erase(this); |
375 | | // this now dangles! |
376 | 17.3k | } |