/src/llvm-project/llvm/lib/Analysis/LazyValueInfo.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- LazyValueInfo.cpp - Value constraint analysis ------------*- C++ -*-===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file defines the interface for lazy computation of value constraint |
10 | | // information. |
11 | | // |
12 | | //===----------------------------------------------------------------------===// |
13 | | |
14 | | #include "llvm/Analysis/LazyValueInfo.h" |
15 | | #include "llvm/ADT/DenseSet.h" |
16 | | #include "llvm/ADT/STLExtras.h" |
17 | | #include "llvm/Analysis/AssumptionCache.h" |
18 | | #include "llvm/Analysis/ConstantFolding.h" |
19 | | #include "llvm/Analysis/InstructionSimplify.h" |
20 | | #include "llvm/Analysis/TargetLibraryInfo.h" |
21 | | #include "llvm/Analysis/ValueLattice.h" |
22 | | #include "llvm/Analysis/ValueTracking.h" |
23 | | #include "llvm/IR/AssemblyAnnotationWriter.h" |
24 | | #include "llvm/IR/CFG.h" |
25 | | #include "llvm/IR/ConstantRange.h" |
26 | | #include "llvm/IR/Constants.h" |
27 | | #include "llvm/IR/DataLayout.h" |
28 | | #include "llvm/IR/Dominators.h" |
29 | | #include "llvm/IR/InstrTypes.h" |
30 | | #include "llvm/IR/Instructions.h" |
31 | | #include "llvm/IR/IntrinsicInst.h" |
32 | | #include "llvm/IR/Intrinsics.h" |
33 | | #include "llvm/IR/LLVMContext.h" |
34 | | #include "llvm/IR/PatternMatch.h" |
35 | | #include "llvm/IR/ValueHandle.h" |
36 | | #include "llvm/InitializePasses.h" |
37 | | #include "llvm/Support/Debug.h" |
38 | | #include "llvm/Support/FormattedStream.h" |
39 | | #include "llvm/Support/KnownBits.h" |
40 | | #include "llvm/Support/raw_ostream.h" |
41 | | #include <optional> |
42 | | using namespace llvm; |
43 | | using namespace PatternMatch; |
44 | | |
45 | | #define DEBUG_TYPE "lazy-value-info" |
46 | | |
47 | | // This is the number of worklist items we will process to try to discover an |
48 | | // answer for a given value. |
49 | | static const unsigned MaxProcessedPerValue = 500; |
50 | | |
51 | | char LazyValueInfoWrapperPass::ID = 0; |
52 | 0 | LazyValueInfoWrapperPass::LazyValueInfoWrapperPass() : FunctionPass(ID) { |
53 | 0 | initializeLazyValueInfoWrapperPassPass(*PassRegistry::getPassRegistry()); |
54 | 0 | } |
55 | 0 | INITIALIZE_PASS_BEGIN(LazyValueInfoWrapperPass, "lazy-value-info", |
56 | 0 | "Lazy Value Information Analysis", false, true) |
57 | 0 | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
58 | 0 | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
59 | 0 | INITIALIZE_PASS_END(LazyValueInfoWrapperPass, "lazy-value-info", |
60 | | "Lazy Value Information Analysis", false, true) |
61 | | |
62 | | namespace llvm { |
63 | 0 | FunctionPass *createLazyValueInfoPass() { return new LazyValueInfoWrapperPass(); } |
64 | | } |
65 | | |
66 | | AnalysisKey LazyValueAnalysis::Key; |
67 | | |
68 | | /// Returns true if this lattice value represents at most one possible value. |
69 | | /// This is as precise as any lattice value can get while still representing |
70 | | /// reachable code. |
71 | 0 | static bool hasSingleValue(const ValueLatticeElement &Val) { |
72 | 0 | if (Val.isConstantRange() && |
73 | 0 | Val.getConstantRange().isSingleElement()) |
74 | | // Integer constants are single element ranges |
75 | 0 | return true; |
76 | 0 | if (Val.isConstant()) |
77 | | // Non integer constants |
78 | 0 | return true; |
79 | 0 | return false; |
80 | 0 | } |
81 | | |
82 | | /// Combine two sets of facts about the same value into a single set of |
83 | | /// facts. Note that this method is not suitable for merging facts along |
84 | | /// different paths in a CFG; that's what the mergeIn function is for. This |
85 | | /// is for merging facts gathered about the same value at the same location |
86 | | /// through two independent means. |
87 | | /// Notes: |
88 | | /// * This method does not promise to return the most precise possible lattice |
89 | | /// value implied by A and B. It is allowed to return any lattice element |
90 | | /// which is at least as strong as *either* A or B (unless our facts |
91 | | /// conflict, see below). |
92 | | /// * Due to unreachable code, the intersection of two lattice values could be |
93 | | /// contradictory. If this happens, we return some valid lattice value so as |
94 | | /// not confuse the rest of LVI. Ideally, we'd always return Undefined, but |
95 | | /// we do not make this guarantee. TODO: This would be a useful enhancement. |
96 | | static ValueLatticeElement intersect(const ValueLatticeElement &A, |
97 | 0 | const ValueLatticeElement &B) { |
98 | | // Undefined is the strongest state. It means the value is known to be along |
99 | | // an unreachable path. |
100 | 0 | if (A.isUnknown()) |
101 | 0 | return A; |
102 | 0 | if (B.isUnknown()) |
103 | 0 | return B; |
104 | | |
105 | | // If we gave up for one, but got a useable fact from the other, use it. |
106 | 0 | if (A.isOverdefined()) |
107 | 0 | return B; |
108 | 0 | if (B.isOverdefined()) |
109 | 0 | return A; |
110 | | |
111 | | // Can't get any more precise than constants. |
112 | 0 | if (hasSingleValue(A)) |
113 | 0 | return A; |
114 | 0 | if (hasSingleValue(B)) |
115 | 0 | return B; |
116 | | |
117 | | // Could be either constant range or not constant here. |
118 | 0 | if (!A.isConstantRange() || !B.isConstantRange()) { |
119 | | // TODO: Arbitrary choice, could be improved |
120 | 0 | return A; |
121 | 0 | } |
122 | | |
123 | | // Intersect two constant ranges |
124 | 0 | ConstantRange Range = |
125 | 0 | A.getConstantRange().intersectWith(B.getConstantRange()); |
126 | | // Note: An empty range is implicitly converted to unknown or undef depending |
127 | | // on MayIncludeUndef internally. |
128 | 0 | return ValueLatticeElement::getRange( |
129 | 0 | std::move(Range), /*MayIncludeUndef=*/A.isConstantRangeIncludingUndef() || |
130 | 0 | B.isConstantRangeIncludingUndef()); |
131 | 0 | } |
132 | | |
133 | | //===----------------------------------------------------------------------===// |
134 | | // LazyValueInfoCache Decl |
135 | | //===----------------------------------------------------------------------===// |
136 | | |
137 | | namespace { |
138 | | /// A callback value handle updates the cache when values are erased. |
139 | | class LazyValueInfoCache; |
140 | | struct LVIValueHandle final : public CallbackVH { |
141 | | LazyValueInfoCache *Parent; |
142 | | |
143 | | LVIValueHandle(Value *V, LazyValueInfoCache *P = nullptr) |
144 | 0 | : CallbackVH(V), Parent(P) { } |
145 | | |
146 | | void deleted() override; |
147 | 0 | void allUsesReplacedWith(Value *V) override { |
148 | 0 | deleted(); |
149 | 0 | } |
150 | | }; |
151 | | } // end anonymous namespace |
152 | | |
153 | | namespace { |
154 | | using NonNullPointerSet = SmallDenseSet<AssertingVH<Value>, 2>; |
155 | | |
156 | | /// This is the cache kept by LazyValueInfo which |
157 | | /// maintains information about queries across the clients' queries. |
158 | | class LazyValueInfoCache { |
159 | | /// This is all of the cached information for one basic block. It contains |
160 | | /// the per-value lattice elements, as well as a separate set for |
161 | | /// overdefined values to reduce memory usage. Additionally pointers |
162 | | /// dereferenced in the block are cached for nullability queries. |
163 | | struct BlockCacheEntry { |
164 | | SmallDenseMap<AssertingVH<Value>, ValueLatticeElement, 4> LatticeElements; |
165 | | SmallDenseSet<AssertingVH<Value>, 4> OverDefined; |
166 | | // std::nullopt indicates that the nonnull pointers for this basic block |
167 | | // block have not been computed yet. |
168 | | std::optional<NonNullPointerSet> NonNullPointers; |
169 | | }; |
170 | | |
171 | | /// Cached information per basic block. |
172 | | DenseMap<PoisoningVH<BasicBlock>, std::unique_ptr<BlockCacheEntry>> |
173 | | BlockCache; |
174 | | /// Set of value handles used to erase values from the cache on deletion. |
175 | | DenseSet<LVIValueHandle, DenseMapInfo<Value *>> ValueHandles; |
176 | | |
177 | 0 | const BlockCacheEntry *getBlockEntry(BasicBlock *BB) const { |
178 | 0 | auto It = BlockCache.find_as(BB); |
179 | 0 | if (It == BlockCache.end()) |
180 | 0 | return nullptr; |
181 | 0 | return It->second.get(); |
182 | 0 | } |
183 | | |
184 | 0 | BlockCacheEntry *getOrCreateBlockEntry(BasicBlock *BB) { |
185 | 0 | auto It = BlockCache.find_as(BB); |
186 | 0 | if (It == BlockCache.end()) |
187 | 0 | It = BlockCache.insert({ BB, std::make_unique<BlockCacheEntry>() }) |
188 | 0 | .first; |
189 | |
|
190 | 0 | return It->second.get(); |
191 | 0 | } |
192 | | |
193 | 0 | void addValueHandle(Value *Val) { |
194 | 0 | auto HandleIt = ValueHandles.find_as(Val); |
195 | 0 | if (HandleIt == ValueHandles.end()) |
196 | 0 | ValueHandles.insert({ Val, this }); |
197 | 0 | } |
198 | | |
199 | | public: |
200 | | void insertResult(Value *Val, BasicBlock *BB, |
201 | 0 | const ValueLatticeElement &Result) { |
202 | 0 | BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); |
203 | | |
204 | | // Insert over-defined values into their own cache to reduce memory |
205 | | // overhead. |
206 | 0 | if (Result.isOverdefined()) |
207 | 0 | Entry->OverDefined.insert(Val); |
208 | 0 | else |
209 | 0 | Entry->LatticeElements.insert({ Val, Result }); |
210 | |
|
211 | 0 | addValueHandle(Val); |
212 | 0 | } |
213 | | |
214 | | std::optional<ValueLatticeElement> |
215 | 0 | getCachedValueInfo(Value *V, BasicBlock *BB) const { |
216 | 0 | const BlockCacheEntry *Entry = getBlockEntry(BB); |
217 | 0 | if (!Entry) |
218 | 0 | return std::nullopt; |
219 | | |
220 | 0 | if (Entry->OverDefined.count(V)) |
221 | 0 | return ValueLatticeElement::getOverdefined(); |
222 | | |
223 | 0 | auto LatticeIt = Entry->LatticeElements.find_as(V); |
224 | 0 | if (LatticeIt == Entry->LatticeElements.end()) |
225 | 0 | return std::nullopt; |
226 | | |
227 | 0 | return LatticeIt->second; |
228 | 0 | } |
229 | | |
230 | | bool isNonNullAtEndOfBlock( |
231 | | Value *V, BasicBlock *BB, |
232 | 0 | function_ref<NonNullPointerSet(BasicBlock *)> InitFn) { |
233 | 0 | BlockCacheEntry *Entry = getOrCreateBlockEntry(BB); |
234 | 0 | if (!Entry->NonNullPointers) { |
235 | 0 | Entry->NonNullPointers = InitFn(BB); |
236 | 0 | for (Value *V : *Entry->NonNullPointers) |
237 | 0 | addValueHandle(V); |
238 | 0 | } |
239 | |
|
240 | 0 | return Entry->NonNullPointers->count(V); |
241 | 0 | } |
242 | | |
243 | | /// clear - Empty the cache. |
244 | 0 | void clear() { |
245 | 0 | BlockCache.clear(); |
246 | 0 | ValueHandles.clear(); |
247 | 0 | } |
248 | | |
249 | | /// Inform the cache that a given value has been deleted. |
250 | | void eraseValue(Value *V); |
251 | | |
252 | | /// This is part of the update interface to inform the cache |
253 | | /// that a block has been deleted. |
254 | | void eraseBlock(BasicBlock *BB); |
255 | | |
256 | | /// Updates the cache to remove any influence an overdefined value in |
257 | | /// OldSucc might have (unless also overdefined in NewSucc). This just |
258 | | /// flushes elements from the cache and does not add any. |
259 | | void threadEdgeImpl(BasicBlock *OldSucc,BasicBlock *NewSucc); |
260 | | }; |
261 | | } |
262 | | |
263 | 0 | void LazyValueInfoCache::eraseValue(Value *V) { |
264 | 0 | for (auto &Pair : BlockCache) { |
265 | 0 | Pair.second->LatticeElements.erase(V); |
266 | 0 | Pair.second->OverDefined.erase(V); |
267 | 0 | if (Pair.second->NonNullPointers) |
268 | 0 | Pair.second->NonNullPointers->erase(V); |
269 | 0 | } |
270 | |
|
271 | 0 | auto HandleIt = ValueHandles.find_as(V); |
272 | 0 | if (HandleIt != ValueHandles.end()) |
273 | 0 | ValueHandles.erase(HandleIt); |
274 | 0 | } |
275 | | |
276 | 0 | void LVIValueHandle::deleted() { |
277 | | // This erasure deallocates *this, so it MUST happen after we're done |
278 | | // using any and all members of *this. |
279 | 0 | Parent->eraseValue(*this); |
280 | 0 | } |
281 | | |
282 | 0 | void LazyValueInfoCache::eraseBlock(BasicBlock *BB) { |
283 | 0 | BlockCache.erase(BB); |
284 | 0 | } |
285 | | |
286 | | void LazyValueInfoCache::threadEdgeImpl(BasicBlock *OldSucc, |
287 | 0 | BasicBlock *NewSucc) { |
288 | | // When an edge in the graph has been threaded, values that we could not |
289 | | // determine a value for before (i.e. were marked overdefined) may be |
290 | | // possible to solve now. We do NOT try to proactively update these values. |
291 | | // Instead, we clear their entries from the cache, and allow lazy updating to |
292 | | // recompute them when needed. |
293 | | |
294 | | // The updating process is fairly simple: we need to drop cached info |
295 | | // for all values that were marked overdefined in OldSucc, and for those same |
296 | | // values in any successor of OldSucc (except NewSucc) in which they were |
297 | | // also marked overdefined. |
298 | 0 | std::vector<BasicBlock*> worklist; |
299 | 0 | worklist.push_back(OldSucc); |
300 | |
|
301 | 0 | const BlockCacheEntry *Entry = getBlockEntry(OldSucc); |
302 | 0 | if (!Entry || Entry->OverDefined.empty()) |
303 | 0 | return; // Nothing to process here. |
304 | 0 | SmallVector<Value *, 4> ValsToClear(Entry->OverDefined.begin(), |
305 | 0 | Entry->OverDefined.end()); |
306 | | |
307 | | // Use a worklist to perform a depth-first search of OldSucc's successors. |
308 | | // NOTE: We do not need a visited list since any blocks we have already |
309 | | // visited will have had their overdefined markers cleared already, and we |
310 | | // thus won't loop to their successors. |
311 | 0 | while (!worklist.empty()) { |
312 | 0 | BasicBlock *ToUpdate = worklist.back(); |
313 | 0 | worklist.pop_back(); |
314 | | |
315 | | // Skip blocks only accessible through NewSucc. |
316 | 0 | if (ToUpdate == NewSucc) continue; |
317 | | |
318 | | // If a value was marked overdefined in OldSucc, and is here too... |
319 | 0 | auto OI = BlockCache.find_as(ToUpdate); |
320 | 0 | if (OI == BlockCache.end() || OI->second->OverDefined.empty()) |
321 | 0 | continue; |
322 | 0 | auto &ValueSet = OI->second->OverDefined; |
323 | |
|
324 | 0 | bool changed = false; |
325 | 0 | for (Value *V : ValsToClear) { |
326 | 0 | if (!ValueSet.erase(V)) |
327 | 0 | continue; |
328 | | |
329 | | // If we removed anything, then we potentially need to update |
330 | | // blocks successors too. |
331 | 0 | changed = true; |
332 | 0 | } |
333 | |
|
334 | 0 | if (!changed) continue; |
335 | | |
336 | 0 | llvm::append_range(worklist, successors(ToUpdate)); |
337 | 0 | } |
338 | 0 | } |
339 | | |
340 | | namespace llvm { |
341 | | namespace { |
342 | | /// An assembly annotator class to print LazyValueCache information in |
343 | | /// comments. |
344 | | class LazyValueInfoAnnotatedWriter : public AssemblyAnnotationWriter { |
345 | | LazyValueInfoImpl *LVIImpl; |
346 | | // While analyzing which blocks we can solve values for, we need the dominator |
347 | | // information. |
348 | | DominatorTree &DT; |
349 | | |
350 | | public: |
351 | | LazyValueInfoAnnotatedWriter(LazyValueInfoImpl *L, DominatorTree &DTree) |
352 | 0 | : LVIImpl(L), DT(DTree) {} |
353 | | |
354 | | void emitBasicBlockStartAnnot(const BasicBlock *BB, |
355 | | formatted_raw_ostream &OS) override; |
356 | | |
357 | | void emitInstructionAnnot(const Instruction *I, |
358 | | formatted_raw_ostream &OS) override; |
359 | | }; |
360 | | } // namespace |
361 | | // The actual implementation of the lazy analysis and update. Note that the |
362 | | // inheritance from LazyValueInfoCache is intended to be temporary while |
363 | | // splitting the code and then transitioning to a has-a relationship. |
364 | | class LazyValueInfoImpl { |
365 | | |
366 | | /// Cached results from previous queries |
367 | | LazyValueInfoCache TheCache; |
368 | | |
369 | | /// This stack holds the state of the value solver during a query. |
370 | | /// It basically emulates the callstack of the naive |
371 | | /// recursive value lookup process. |
372 | | SmallVector<std::pair<BasicBlock*, Value*>, 8> BlockValueStack; |
373 | | |
374 | | /// Keeps track of which block-value pairs are in BlockValueStack. |
375 | | DenseSet<std::pair<BasicBlock*, Value*> > BlockValueSet; |
376 | | |
377 | | /// Push BV onto BlockValueStack unless it's already in there. |
378 | | /// Returns true on success. |
379 | 0 | bool pushBlockValue(const std::pair<BasicBlock *, Value *> &BV) { |
380 | 0 | if (!BlockValueSet.insert(BV).second) |
381 | 0 | return false; // It's already in the stack. |
382 | | |
383 | 0 | LLVM_DEBUG(dbgs() << "PUSH: " << *BV.second << " in " |
384 | 0 | << BV.first->getName() << "\n"); |
385 | 0 | BlockValueStack.push_back(BV); |
386 | 0 | return true; |
387 | 0 | } |
388 | | |
389 | | AssumptionCache *AC; ///< A pointer to the cache of @llvm.assume calls. |
390 | | const DataLayout &DL; ///< A mandatory DataLayout |
391 | | |
392 | | /// Declaration of the llvm.experimental.guard() intrinsic, |
393 | | /// if it exists in the module. |
394 | | Function *GuardDecl; |
395 | | |
396 | | std::optional<ValueLatticeElement> getBlockValue(Value *Val, BasicBlock *BB, |
397 | | Instruction *CxtI); |
398 | | std::optional<ValueLatticeElement> getEdgeValue(Value *V, BasicBlock *F, |
399 | | BasicBlock *T, |
400 | | Instruction *CxtI = nullptr); |
401 | | |
402 | | // These methods process one work item and may add more. A false value |
403 | | // returned means that the work item was not completely processed and must |
404 | | // be revisited after going through the new items. |
405 | | bool solveBlockValue(Value *Val, BasicBlock *BB); |
406 | | std::optional<ValueLatticeElement> solveBlockValueImpl(Value *Val, |
407 | | BasicBlock *BB); |
408 | | std::optional<ValueLatticeElement> solveBlockValueNonLocal(Value *Val, |
409 | | BasicBlock *BB); |
410 | | std::optional<ValueLatticeElement> solveBlockValuePHINode(PHINode *PN, |
411 | | BasicBlock *BB); |
412 | | std::optional<ValueLatticeElement> solveBlockValueSelect(SelectInst *S, |
413 | | BasicBlock *BB); |
414 | | std::optional<ConstantRange> getRangeFor(Value *V, Instruction *CxtI, |
415 | | BasicBlock *BB); |
416 | | std::optional<ValueLatticeElement> solveBlockValueBinaryOpImpl( |
417 | | Instruction *I, BasicBlock *BB, |
418 | | std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> |
419 | | OpFn); |
420 | | std::optional<ValueLatticeElement> |
421 | | solveBlockValueBinaryOp(BinaryOperator *BBI, BasicBlock *BB); |
422 | | std::optional<ValueLatticeElement> solveBlockValueCast(CastInst *CI, |
423 | | BasicBlock *BB); |
424 | | std::optional<ValueLatticeElement> |
425 | | solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, BasicBlock *BB); |
426 | | std::optional<ValueLatticeElement> solveBlockValueIntrinsic(IntrinsicInst *II, |
427 | | BasicBlock *BB); |
428 | | std::optional<ValueLatticeElement> |
429 | | solveBlockValueExtractValue(ExtractValueInst *EVI, BasicBlock *BB); |
430 | | bool isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB); |
431 | | void intersectAssumeOrGuardBlockValueConstantRange(Value *Val, |
432 | | ValueLatticeElement &BBLV, |
433 | | Instruction *BBI); |
434 | | |
435 | | void solve(); |
436 | | |
437 | | // For the following methods, if UseBlockValue is true, the function may |
438 | | // push additional values to the worklist and return nullopt. If |
439 | | // UseBlockValue is false, it will never return nullopt. |
440 | | |
441 | | std::optional<ValueLatticeElement> |
442 | | getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, Value *RHS, |
443 | | const APInt &Offset, Instruction *CxtI, |
444 | | bool UseBlockValue); |
445 | | |
446 | | std::optional<ValueLatticeElement> |
447 | | getValueFromICmpCondition(Value *Val, ICmpInst *ICI, bool isTrueDest, |
448 | | bool UseBlockValue); |
449 | | |
450 | | std::optional<ValueLatticeElement> |
451 | | getValueFromCondition(Value *Val, Value *Cond, bool IsTrueDest, |
452 | | bool UseBlockValue, unsigned Depth = 0); |
453 | | |
454 | | std::optional<ValueLatticeElement> getEdgeValueLocal(Value *Val, |
455 | | BasicBlock *BBFrom, |
456 | | BasicBlock *BBTo, |
457 | | bool UseBlockValue); |
458 | | |
459 | | public: |
460 | | /// This is the query interface to determine the lattice value for the |
461 | | /// specified Value* at the context instruction (if specified) or at the |
462 | | /// start of the block. |
463 | | ValueLatticeElement getValueInBlock(Value *V, BasicBlock *BB, |
464 | | Instruction *CxtI = nullptr); |
465 | | |
466 | | /// This is the query interface to determine the lattice value for the |
467 | | /// specified Value* at the specified instruction using only information |
468 | | /// from assumes/guards and range metadata. Unlike getValueInBlock(), no |
469 | | /// recursive query is performed. |
470 | | ValueLatticeElement getValueAt(Value *V, Instruction *CxtI); |
471 | | |
472 | | /// This is the query interface to determine the lattice |
473 | | /// value for the specified Value* that is true on the specified edge. |
474 | | ValueLatticeElement getValueOnEdge(Value *V, BasicBlock *FromBB, |
475 | | BasicBlock *ToBB, |
476 | | Instruction *CxtI = nullptr); |
477 | | |
478 | | ValueLatticeElement getValueAtUse(const Use &U); |
479 | | |
480 | | /// Complete flush all previously computed values |
481 | 0 | void clear() { |
482 | 0 | TheCache.clear(); |
483 | 0 | } |
484 | | |
485 | | /// Printing the LazyValueInfo Analysis. |
486 | 0 | void printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { |
487 | 0 | LazyValueInfoAnnotatedWriter Writer(this, DTree); |
488 | 0 | F.print(OS, &Writer); |
489 | 0 | } |
490 | | |
491 | | /// This is part of the update interface to remove information related to this |
492 | | /// value from the cache. |
493 | 0 | void forgetValue(Value *V) { TheCache.eraseValue(V); } |
494 | | |
495 | | /// This is part of the update interface to inform the cache |
496 | | /// that a block has been deleted. |
497 | 0 | void eraseBlock(BasicBlock *BB) { |
498 | 0 | TheCache.eraseBlock(BB); |
499 | 0 | } |
500 | | |
501 | | /// This is the update interface to inform the cache that an edge from |
502 | | /// PredBB to OldSucc has been threaded to be from PredBB to NewSucc. |
503 | | void threadEdge(BasicBlock *PredBB,BasicBlock *OldSucc,BasicBlock *NewSucc); |
504 | | |
505 | | LazyValueInfoImpl(AssumptionCache *AC, const DataLayout &DL, |
506 | | Function *GuardDecl) |
507 | 0 | : AC(AC), DL(DL), GuardDecl(GuardDecl) {} |
508 | | }; |
509 | | } // namespace llvm |
510 | | |
511 | 0 | void LazyValueInfoImpl::solve() { |
512 | 0 | SmallVector<std::pair<BasicBlock *, Value *>, 8> StartingStack( |
513 | 0 | BlockValueStack.begin(), BlockValueStack.end()); |
514 | |
|
515 | 0 | unsigned processedCount = 0; |
516 | 0 | while (!BlockValueStack.empty()) { |
517 | 0 | processedCount++; |
518 | | // Abort if we have to process too many values to get a result for this one. |
519 | | // Because of the design of the overdefined cache currently being per-block |
520 | | // to avoid naming-related issues (IE it wants to try to give different |
521 | | // results for the same name in different blocks), overdefined results don't |
522 | | // get cached globally, which in turn means we will often try to rediscover |
523 | | // the same overdefined result again and again. Once something like |
524 | | // PredicateInfo is used in LVI or CVP, we should be able to make the |
525 | | // overdefined cache global, and remove this throttle. |
526 | 0 | if (processedCount > MaxProcessedPerValue) { |
527 | 0 | LLVM_DEBUG( |
528 | 0 | dbgs() << "Giving up on stack because we are getting too deep\n"); |
529 | | // Fill in the original values |
530 | 0 | while (!StartingStack.empty()) { |
531 | 0 | std::pair<BasicBlock *, Value *> &e = StartingStack.back(); |
532 | 0 | TheCache.insertResult(e.second, e.first, |
533 | 0 | ValueLatticeElement::getOverdefined()); |
534 | 0 | StartingStack.pop_back(); |
535 | 0 | } |
536 | 0 | BlockValueSet.clear(); |
537 | 0 | BlockValueStack.clear(); |
538 | 0 | return; |
539 | 0 | } |
540 | 0 | std::pair<BasicBlock *, Value *> e = BlockValueStack.back(); |
541 | 0 | assert(BlockValueSet.count(e) && "Stack value should be in BlockValueSet!"); |
542 | 0 | unsigned StackSize = BlockValueStack.size(); |
543 | 0 | (void) StackSize; |
544 | |
|
545 | 0 | if (solveBlockValue(e.second, e.first)) { |
546 | | // The work item was completely processed. |
547 | 0 | assert(BlockValueStack.size() == StackSize && |
548 | 0 | BlockValueStack.back() == e && "Nothing should have been pushed!"); |
549 | 0 | #ifndef NDEBUG |
550 | 0 | std::optional<ValueLatticeElement> BBLV = |
551 | 0 | TheCache.getCachedValueInfo(e.second, e.first); |
552 | 0 | assert(BBLV && "Result should be in cache!"); |
553 | 0 | LLVM_DEBUG( |
554 | 0 | dbgs() << "POP " << *e.second << " in " << e.first->getName() << " = " |
555 | 0 | << *BBLV << "\n"); |
556 | 0 | #endif |
557 | |
|
558 | 0 | BlockValueStack.pop_back(); |
559 | 0 | BlockValueSet.erase(e); |
560 | 0 | } else { |
561 | | // More work needs to be done before revisiting. |
562 | 0 | assert(BlockValueStack.size() == StackSize + 1 && |
563 | 0 | "Exactly one element should have been pushed!"); |
564 | 0 | } |
565 | 0 | } |
566 | 0 | } |
567 | | |
568 | | std::optional<ValueLatticeElement> |
569 | | LazyValueInfoImpl::getBlockValue(Value *Val, BasicBlock *BB, |
570 | 0 | Instruction *CxtI) { |
571 | | // If already a constant, there is nothing to compute. |
572 | 0 | if (Constant *VC = dyn_cast<Constant>(Val)) |
573 | 0 | return ValueLatticeElement::get(VC); |
574 | | |
575 | 0 | if (std::optional<ValueLatticeElement> OptLatticeVal = |
576 | 0 | TheCache.getCachedValueInfo(Val, BB)) { |
577 | 0 | intersectAssumeOrGuardBlockValueConstantRange(Val, *OptLatticeVal, CxtI); |
578 | 0 | return OptLatticeVal; |
579 | 0 | } |
580 | | |
581 | | // We have hit a cycle, assume overdefined. |
582 | 0 | if (!pushBlockValue({ BB, Val })) |
583 | 0 | return ValueLatticeElement::getOverdefined(); |
584 | | |
585 | | // Yet to be resolved. |
586 | 0 | return std::nullopt; |
587 | 0 | } |
588 | | |
589 | 0 | static ValueLatticeElement getFromRangeMetadata(Instruction *BBI) { |
590 | 0 | switch (BBI->getOpcode()) { |
591 | 0 | default: break; |
592 | 0 | case Instruction::Load: |
593 | 0 | case Instruction::Call: |
594 | 0 | case Instruction::Invoke: |
595 | 0 | if (MDNode *Ranges = BBI->getMetadata(LLVMContext::MD_range)) |
596 | 0 | if (isa<IntegerType>(BBI->getType())) { |
597 | 0 | return ValueLatticeElement::getRange( |
598 | 0 | getConstantRangeFromMetadata(*Ranges)); |
599 | 0 | } |
600 | 0 | break; |
601 | 0 | }; |
602 | | // Nothing known - will be intersected with other facts |
603 | 0 | return ValueLatticeElement::getOverdefined(); |
604 | 0 | } |
605 | | |
606 | 0 | bool LazyValueInfoImpl::solveBlockValue(Value *Val, BasicBlock *BB) { |
607 | 0 | assert(!isa<Constant>(Val) && "Value should not be constant"); |
608 | 0 | assert(!TheCache.getCachedValueInfo(Val, BB) && |
609 | 0 | "Value should not be in cache"); |
610 | | |
611 | | // Hold off inserting this value into the Cache in case we have to return |
612 | | // false and come back later. |
613 | 0 | std::optional<ValueLatticeElement> Res = solveBlockValueImpl(Val, BB); |
614 | 0 | if (!Res) |
615 | | // Work pushed, will revisit |
616 | 0 | return false; |
617 | | |
618 | 0 | TheCache.insertResult(Val, BB, *Res); |
619 | 0 | return true; |
620 | 0 | } |
621 | | |
622 | | std::optional<ValueLatticeElement> |
623 | 0 | LazyValueInfoImpl::solveBlockValueImpl(Value *Val, BasicBlock *BB) { |
624 | 0 | Instruction *BBI = dyn_cast<Instruction>(Val); |
625 | 0 | if (!BBI || BBI->getParent() != BB) |
626 | 0 | return solveBlockValueNonLocal(Val, BB); |
627 | | |
628 | 0 | if (PHINode *PN = dyn_cast<PHINode>(BBI)) |
629 | 0 | return solveBlockValuePHINode(PN, BB); |
630 | | |
631 | 0 | if (auto *SI = dyn_cast<SelectInst>(BBI)) |
632 | 0 | return solveBlockValueSelect(SI, BB); |
633 | | |
634 | | // If this value is a nonnull pointer, record it's range and bailout. Note |
635 | | // that for all other pointer typed values, we terminate the search at the |
636 | | // definition. We could easily extend this to look through geps, bitcasts, |
637 | | // and the like to prove non-nullness, but it's not clear that's worth it |
638 | | // compile time wise. The context-insensitive value walk done inside |
639 | | // isKnownNonZero gets most of the profitable cases at much less expense. |
640 | | // This does mean that we have a sensitivity to where the defining |
641 | | // instruction is placed, even if it could legally be hoisted much higher. |
642 | | // That is unfortunate. |
643 | 0 | PointerType *PT = dyn_cast<PointerType>(BBI->getType()); |
644 | 0 | if (PT && isKnownNonZero(BBI, DL)) |
645 | 0 | return ValueLatticeElement::getNot(ConstantPointerNull::get(PT)); |
646 | | |
647 | 0 | if (BBI->getType()->isIntegerTy()) { |
648 | 0 | if (auto *CI = dyn_cast<CastInst>(BBI)) |
649 | 0 | return solveBlockValueCast(CI, BB); |
650 | | |
651 | 0 | if (BinaryOperator *BO = dyn_cast<BinaryOperator>(BBI)) |
652 | 0 | return solveBlockValueBinaryOp(BO, BB); |
653 | | |
654 | 0 | if (auto *EVI = dyn_cast<ExtractValueInst>(BBI)) |
655 | 0 | return solveBlockValueExtractValue(EVI, BB); |
656 | | |
657 | 0 | if (auto *II = dyn_cast<IntrinsicInst>(BBI)) |
658 | 0 | return solveBlockValueIntrinsic(II, BB); |
659 | 0 | } |
660 | | |
661 | 0 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
662 | 0 | << "' - unknown inst def found.\n"); |
663 | 0 | return getFromRangeMetadata(BBI); |
664 | 0 | } |
665 | | |
666 | 0 | static void AddNonNullPointer(Value *Ptr, NonNullPointerSet &PtrSet) { |
667 | | // TODO: Use NullPointerIsDefined instead. |
668 | 0 | if (Ptr->getType()->getPointerAddressSpace() == 0) |
669 | 0 | PtrSet.insert(getUnderlyingObject(Ptr)); |
670 | 0 | } |
671 | | |
672 | | static void AddNonNullPointersByInstruction( |
673 | 0 | Instruction *I, NonNullPointerSet &PtrSet) { |
674 | 0 | if (LoadInst *L = dyn_cast<LoadInst>(I)) { |
675 | 0 | AddNonNullPointer(L->getPointerOperand(), PtrSet); |
676 | 0 | } else if (StoreInst *S = dyn_cast<StoreInst>(I)) { |
677 | 0 | AddNonNullPointer(S->getPointerOperand(), PtrSet); |
678 | 0 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) { |
679 | 0 | if (MI->isVolatile()) return; |
680 | | |
681 | | // FIXME: check whether it has a valuerange that excludes zero? |
682 | 0 | ConstantInt *Len = dyn_cast<ConstantInt>(MI->getLength()); |
683 | 0 | if (!Len || Len->isZero()) return; |
684 | | |
685 | 0 | AddNonNullPointer(MI->getRawDest(), PtrSet); |
686 | 0 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) |
687 | 0 | AddNonNullPointer(MTI->getRawSource(), PtrSet); |
688 | 0 | } |
689 | 0 | } |
690 | | |
691 | 0 | bool LazyValueInfoImpl::isNonNullAtEndOfBlock(Value *Val, BasicBlock *BB) { |
692 | 0 | if (NullPointerIsDefined(BB->getParent(), |
693 | 0 | Val->getType()->getPointerAddressSpace())) |
694 | 0 | return false; |
695 | | |
696 | 0 | Val = Val->stripInBoundsOffsets(); |
697 | 0 | return TheCache.isNonNullAtEndOfBlock(Val, BB, [](BasicBlock *BB) { |
698 | 0 | NonNullPointerSet NonNullPointers; |
699 | 0 | for (Instruction &I : *BB) |
700 | 0 | AddNonNullPointersByInstruction(&I, NonNullPointers); |
701 | 0 | return NonNullPointers; |
702 | 0 | }); |
703 | 0 | } |
704 | | |
705 | | std::optional<ValueLatticeElement> |
706 | 0 | LazyValueInfoImpl::solveBlockValueNonLocal(Value *Val, BasicBlock *BB) { |
707 | 0 | ValueLatticeElement Result; // Start Undefined. |
708 | | |
709 | | // If this is the entry block, we must be asking about an argument. The |
710 | | // value is overdefined. |
711 | 0 | if (BB->isEntryBlock()) { |
712 | 0 | assert(isa<Argument>(Val) && "Unknown live-in to the entry block"); |
713 | 0 | return ValueLatticeElement::getOverdefined(); |
714 | 0 | } |
715 | | |
716 | | // Loop over all of our predecessors, merging what we know from them into |
717 | | // result. If we encounter an unexplored predecessor, we eagerly explore it |
718 | | // in a depth first manner. In practice, this has the effect of discovering |
719 | | // paths we can't analyze eagerly without spending compile times analyzing |
720 | | // other paths. This heuristic benefits from the fact that predecessors are |
721 | | // frequently arranged such that dominating ones come first and we quickly |
722 | | // find a path to function entry. TODO: We should consider explicitly |
723 | | // canonicalizing to make this true rather than relying on this happy |
724 | | // accident. |
725 | 0 | for (BasicBlock *Pred : predecessors(BB)) { |
726 | 0 | std::optional<ValueLatticeElement> EdgeResult = getEdgeValue(Val, Pred, BB); |
727 | 0 | if (!EdgeResult) |
728 | | // Explore that input, then return here |
729 | 0 | return std::nullopt; |
730 | | |
731 | 0 | Result.mergeIn(*EdgeResult); |
732 | | |
733 | | // If we hit overdefined, exit early. The BlockVals entry is already set |
734 | | // to overdefined. |
735 | 0 | if (Result.isOverdefined()) { |
736 | 0 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
737 | 0 | << "' - overdefined because of pred '" |
738 | 0 | << Pred->getName() << "' (non local).\n"); |
739 | 0 | return Result; |
740 | 0 | } |
741 | 0 | } |
742 | | |
743 | | // Return the merged value, which is more precise than 'overdefined'. |
744 | 0 | assert(!Result.isOverdefined()); |
745 | 0 | return Result; |
746 | 0 | } |
747 | | |
748 | | std::optional<ValueLatticeElement> |
749 | 0 | LazyValueInfoImpl::solveBlockValuePHINode(PHINode *PN, BasicBlock *BB) { |
750 | 0 | ValueLatticeElement Result; // Start Undefined. |
751 | | |
752 | | // Loop over all of our predecessors, merging what we know from them into |
753 | | // result. See the comment about the chosen traversal order in |
754 | | // solveBlockValueNonLocal; the same reasoning applies here. |
755 | 0 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
756 | 0 | BasicBlock *PhiBB = PN->getIncomingBlock(i); |
757 | 0 | Value *PhiVal = PN->getIncomingValue(i); |
758 | | // Note that we can provide PN as the context value to getEdgeValue, even |
759 | | // though the results will be cached, because PN is the value being used as |
760 | | // the cache key in the caller. |
761 | 0 | std::optional<ValueLatticeElement> EdgeResult = |
762 | 0 | getEdgeValue(PhiVal, PhiBB, BB, PN); |
763 | 0 | if (!EdgeResult) |
764 | | // Explore that input, then return here |
765 | 0 | return std::nullopt; |
766 | | |
767 | 0 | Result.mergeIn(*EdgeResult); |
768 | | |
769 | | // If we hit overdefined, exit early. The BlockVals entry is already set |
770 | | // to overdefined. |
771 | 0 | if (Result.isOverdefined()) { |
772 | 0 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
773 | 0 | << "' - overdefined because of pred (local).\n"); |
774 | |
|
775 | 0 | return Result; |
776 | 0 | } |
777 | 0 | } |
778 | | |
779 | | // Return the merged value, which is more precise than 'overdefined'. |
780 | 0 | assert(!Result.isOverdefined() && "Possible PHI in entry block?"); |
781 | 0 | return Result; |
782 | 0 | } |
783 | | |
784 | | // If we can determine a constraint on the value given conditions assumed by |
785 | | // the program, intersect those constraints with BBLV |
786 | | void LazyValueInfoImpl::intersectAssumeOrGuardBlockValueConstantRange( |
787 | 0 | Value *Val, ValueLatticeElement &BBLV, Instruction *BBI) { |
788 | 0 | BBI = BBI ? BBI : dyn_cast<Instruction>(Val); |
789 | 0 | if (!BBI) |
790 | 0 | return; |
791 | | |
792 | 0 | BasicBlock *BB = BBI->getParent(); |
793 | 0 | for (auto &AssumeVH : AC->assumptionsFor(Val)) { |
794 | 0 | if (!AssumeVH) |
795 | 0 | continue; |
796 | | |
797 | | // Only check assumes in the block of the context instruction. Other |
798 | | // assumes will have already been taken into account when the value was |
799 | | // propagated from predecessor blocks. |
800 | 0 | auto *I = cast<CallInst>(AssumeVH); |
801 | 0 | if (I->getParent() != BB || !isValidAssumeForContext(I, BBI)) |
802 | 0 | continue; |
803 | | |
804 | 0 | BBLV = intersect(BBLV, *getValueFromCondition(Val, I->getArgOperand(0), |
805 | 0 | /*IsTrueDest*/ true, |
806 | 0 | /*UseBlockValue*/ false)); |
807 | 0 | } |
808 | | |
809 | | // If guards are not used in the module, don't spend time looking for them |
810 | 0 | if (GuardDecl && !GuardDecl->use_empty() && |
811 | 0 | BBI->getIterator() != BB->begin()) { |
812 | 0 | for (Instruction &I : |
813 | 0 | make_range(std::next(BBI->getIterator().getReverse()), BB->rend())) { |
814 | 0 | Value *Cond = nullptr; |
815 | 0 | if (match(&I, m_Intrinsic<Intrinsic::experimental_guard>(m_Value(Cond)))) |
816 | 0 | BBLV = intersect(BBLV, |
817 | 0 | *getValueFromCondition(Val, Cond, /*IsTrueDest*/ true, |
818 | 0 | /*UseBlockValue*/ false)); |
819 | 0 | } |
820 | 0 | } |
821 | |
|
822 | 0 | if (BBLV.isOverdefined()) { |
823 | | // Check whether we're checking at the terminator, and the pointer has |
824 | | // been dereferenced in this block. |
825 | 0 | PointerType *PTy = dyn_cast<PointerType>(Val->getType()); |
826 | 0 | if (PTy && BB->getTerminator() == BBI && |
827 | 0 | isNonNullAtEndOfBlock(Val, BB)) |
828 | 0 | BBLV = ValueLatticeElement::getNot(ConstantPointerNull::get(PTy)); |
829 | 0 | } |
830 | 0 | } |
831 | | |
832 | | static ConstantRange toConstantRange(const ValueLatticeElement &Val, |
833 | 0 | Type *Ty, bool UndefAllowed = false) { |
834 | 0 | assert(Ty->isIntOrIntVectorTy() && "Must be integer type"); |
835 | 0 | if (Val.isConstantRange(UndefAllowed)) |
836 | 0 | return Val.getConstantRange(); |
837 | 0 | unsigned BW = Ty->getScalarSizeInBits(); |
838 | 0 | if (Val.isUnknown()) |
839 | 0 | return ConstantRange::getEmpty(BW); |
840 | 0 | return ConstantRange::getFull(BW); |
841 | 0 | } |
842 | | |
843 | | std::optional<ValueLatticeElement> |
844 | 0 | LazyValueInfoImpl::solveBlockValueSelect(SelectInst *SI, BasicBlock *BB) { |
845 | | // Recurse on our inputs if needed |
846 | 0 | std::optional<ValueLatticeElement> OptTrueVal = |
847 | 0 | getBlockValue(SI->getTrueValue(), BB, SI); |
848 | 0 | if (!OptTrueVal) |
849 | 0 | return std::nullopt; |
850 | 0 | ValueLatticeElement &TrueVal = *OptTrueVal; |
851 | |
|
852 | 0 | std::optional<ValueLatticeElement> OptFalseVal = |
853 | 0 | getBlockValue(SI->getFalseValue(), BB, SI); |
854 | 0 | if (!OptFalseVal) |
855 | 0 | return std::nullopt; |
856 | 0 | ValueLatticeElement &FalseVal = *OptFalseVal; |
857 | |
|
858 | 0 | if (TrueVal.isConstantRange() || FalseVal.isConstantRange()) { |
859 | 0 | const ConstantRange &TrueCR = toConstantRange(TrueVal, SI->getType()); |
860 | 0 | const ConstantRange &FalseCR = toConstantRange(FalseVal, SI->getType()); |
861 | 0 | Value *LHS = nullptr; |
862 | 0 | Value *RHS = nullptr; |
863 | 0 | SelectPatternResult SPR = matchSelectPattern(SI, LHS, RHS); |
864 | | // Is this a min specifically of our two inputs? (Avoid the risk of |
865 | | // ValueTracking getting smarter looking back past our immediate inputs.) |
866 | 0 | if (SelectPatternResult::isMinOrMax(SPR.Flavor) && |
867 | 0 | ((LHS == SI->getTrueValue() && RHS == SI->getFalseValue()) || |
868 | 0 | (RHS == SI->getTrueValue() && LHS == SI->getFalseValue()))) { |
869 | 0 | ConstantRange ResultCR = [&]() { |
870 | 0 | switch (SPR.Flavor) { |
871 | 0 | default: |
872 | 0 | llvm_unreachable("unexpected minmax type!"); |
873 | 0 | case SPF_SMIN: /// Signed minimum |
874 | 0 | return TrueCR.smin(FalseCR); |
875 | 0 | case SPF_UMIN: /// Unsigned minimum |
876 | 0 | return TrueCR.umin(FalseCR); |
877 | 0 | case SPF_SMAX: /// Signed maximum |
878 | 0 | return TrueCR.smax(FalseCR); |
879 | 0 | case SPF_UMAX: /// Unsigned maximum |
880 | 0 | return TrueCR.umax(FalseCR); |
881 | 0 | }; |
882 | 0 | }(); |
883 | 0 | return ValueLatticeElement::getRange( |
884 | 0 | ResultCR, TrueVal.isConstantRangeIncludingUndef() || |
885 | 0 | FalseVal.isConstantRangeIncludingUndef()); |
886 | 0 | } |
887 | | |
888 | 0 | if (SPR.Flavor == SPF_ABS) { |
889 | 0 | if (LHS == SI->getTrueValue()) |
890 | 0 | return ValueLatticeElement::getRange( |
891 | 0 | TrueCR.abs(), TrueVal.isConstantRangeIncludingUndef()); |
892 | 0 | if (LHS == SI->getFalseValue()) |
893 | 0 | return ValueLatticeElement::getRange( |
894 | 0 | FalseCR.abs(), FalseVal.isConstantRangeIncludingUndef()); |
895 | 0 | } |
896 | | |
897 | 0 | if (SPR.Flavor == SPF_NABS) { |
898 | 0 | ConstantRange Zero(APInt::getZero(TrueCR.getBitWidth())); |
899 | 0 | if (LHS == SI->getTrueValue()) |
900 | 0 | return ValueLatticeElement::getRange( |
901 | 0 | Zero.sub(TrueCR.abs()), FalseVal.isConstantRangeIncludingUndef()); |
902 | 0 | if (LHS == SI->getFalseValue()) |
903 | 0 | return ValueLatticeElement::getRange( |
904 | 0 | Zero.sub(FalseCR.abs()), FalseVal.isConstantRangeIncludingUndef()); |
905 | 0 | } |
906 | 0 | } |
907 | | |
908 | | // Can we constrain the facts about the true and false values by using the |
909 | | // condition itself? This shows up with idioms like e.g. select(a > 5, a, 5). |
910 | | // TODO: We could potentially refine an overdefined true value above. |
911 | 0 | Value *Cond = SI->getCondition(); |
912 | | // If the value is undef, a different value may be chosen in |
913 | | // the select condition. |
914 | 0 | if (isGuaranteedNotToBeUndef(Cond, AC)) { |
915 | 0 | TrueVal = |
916 | 0 | intersect(TrueVal, *getValueFromCondition(SI->getTrueValue(), Cond, |
917 | 0 | /*IsTrueDest*/ true, |
918 | 0 | /*UseBlockValue*/ false)); |
919 | 0 | FalseVal = |
920 | 0 | intersect(FalseVal, *getValueFromCondition(SI->getFalseValue(), Cond, |
921 | 0 | /*IsTrueDest*/ false, |
922 | 0 | /*UseBlockValue*/ false)); |
923 | 0 | } |
924 | |
|
925 | 0 | ValueLatticeElement Result = TrueVal; |
926 | 0 | Result.mergeIn(FalseVal); |
927 | 0 | return Result; |
928 | 0 | } |
929 | | |
930 | | std::optional<ConstantRange> |
931 | 0 | LazyValueInfoImpl::getRangeFor(Value *V, Instruction *CxtI, BasicBlock *BB) { |
932 | 0 | std::optional<ValueLatticeElement> OptVal = getBlockValue(V, BB, CxtI); |
933 | 0 | if (!OptVal) |
934 | 0 | return std::nullopt; |
935 | 0 | return toConstantRange(*OptVal, V->getType()); |
936 | 0 | } |
937 | | |
938 | | std::optional<ValueLatticeElement> |
939 | 0 | LazyValueInfoImpl::solveBlockValueCast(CastInst *CI, BasicBlock *BB) { |
940 | | // Filter out casts we don't know how to reason about before attempting to |
941 | | // recurse on our operand. This can cut a long search short if we know we're |
942 | | // not going to be able to get any useful information anways. |
943 | 0 | switch (CI->getOpcode()) { |
944 | 0 | case Instruction::Trunc: |
945 | 0 | case Instruction::SExt: |
946 | 0 | case Instruction::ZExt: |
947 | 0 | break; |
948 | 0 | default: |
949 | | // Unhandled instructions are overdefined. |
950 | 0 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
951 | 0 | << "' - overdefined (unknown cast).\n"); |
952 | 0 | return ValueLatticeElement::getOverdefined(); |
953 | 0 | } |
954 | | |
955 | | // Figure out the range of the LHS. If that fails, we still apply the |
956 | | // transfer rule on the full set since we may be able to locally infer |
957 | | // interesting facts. |
958 | 0 | std::optional<ConstantRange> LHSRes = getRangeFor(CI->getOperand(0), CI, BB); |
959 | 0 | if (!LHSRes) |
960 | | // More work to do before applying this transfer rule. |
961 | 0 | return std::nullopt; |
962 | 0 | const ConstantRange &LHSRange = *LHSRes; |
963 | |
|
964 | 0 | const unsigned ResultBitWidth = CI->getType()->getIntegerBitWidth(); |
965 | | |
966 | | // NOTE: We're currently limited by the set of operations that ConstantRange |
967 | | // can evaluate symbolically. Enhancing that set will allows us to analyze |
968 | | // more definitions. |
969 | 0 | return ValueLatticeElement::getRange(LHSRange.castOp(CI->getOpcode(), |
970 | 0 | ResultBitWidth)); |
971 | 0 | } |
972 | | |
973 | | std::optional<ValueLatticeElement> |
974 | | LazyValueInfoImpl::solveBlockValueBinaryOpImpl( |
975 | | Instruction *I, BasicBlock *BB, |
976 | | std::function<ConstantRange(const ConstantRange &, const ConstantRange &)> |
977 | 0 | OpFn) { |
978 | | // Figure out the ranges of the operands. If that fails, use a |
979 | | // conservative range, but apply the transfer rule anyways. This |
980 | | // lets us pick up facts from expressions like "and i32 (call i32 |
981 | | // @foo()), 32" |
982 | 0 | std::optional<ConstantRange> LHSRes = getRangeFor(I->getOperand(0), I, BB); |
983 | 0 | if (!LHSRes) |
984 | 0 | return std::nullopt; |
985 | | |
986 | 0 | std::optional<ConstantRange> RHSRes = getRangeFor(I->getOperand(1), I, BB); |
987 | 0 | if (!RHSRes) |
988 | 0 | return std::nullopt; |
989 | | |
990 | 0 | const ConstantRange &LHSRange = *LHSRes; |
991 | 0 | const ConstantRange &RHSRange = *RHSRes; |
992 | 0 | return ValueLatticeElement::getRange(OpFn(LHSRange, RHSRange)); |
993 | 0 | } |
994 | | |
995 | | std::optional<ValueLatticeElement> |
996 | 0 | LazyValueInfoImpl::solveBlockValueBinaryOp(BinaryOperator *BO, BasicBlock *BB) { |
997 | 0 | assert(BO->getOperand(0)->getType()->isSized() && |
998 | 0 | "all operands to binary operators are sized"); |
999 | 0 | if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO)) { |
1000 | 0 | unsigned NoWrapKind = 0; |
1001 | 0 | if (OBO->hasNoUnsignedWrap()) |
1002 | 0 | NoWrapKind |= OverflowingBinaryOperator::NoUnsignedWrap; |
1003 | 0 | if (OBO->hasNoSignedWrap()) |
1004 | 0 | NoWrapKind |= OverflowingBinaryOperator::NoSignedWrap; |
1005 | |
|
1006 | 0 | return solveBlockValueBinaryOpImpl( |
1007 | 0 | BO, BB, |
1008 | 0 | [BO, NoWrapKind](const ConstantRange &CR1, const ConstantRange &CR2) { |
1009 | 0 | return CR1.overflowingBinaryOp(BO->getOpcode(), CR2, NoWrapKind); |
1010 | 0 | }); |
1011 | 0 | } |
1012 | | |
1013 | 0 | return solveBlockValueBinaryOpImpl( |
1014 | 0 | BO, BB, [BO](const ConstantRange &CR1, const ConstantRange &CR2) { |
1015 | 0 | return CR1.binaryOp(BO->getOpcode(), CR2); |
1016 | 0 | }); |
1017 | 0 | } |
1018 | | |
1019 | | std::optional<ValueLatticeElement> |
1020 | | LazyValueInfoImpl::solveBlockValueOverflowIntrinsic(WithOverflowInst *WO, |
1021 | 0 | BasicBlock *BB) { |
1022 | 0 | return solveBlockValueBinaryOpImpl( |
1023 | 0 | WO, BB, [WO](const ConstantRange &CR1, const ConstantRange &CR2) { |
1024 | 0 | return CR1.binaryOp(WO->getBinaryOp(), CR2); |
1025 | 0 | }); |
1026 | 0 | } |
1027 | | |
1028 | | std::optional<ValueLatticeElement> |
1029 | 0 | LazyValueInfoImpl::solveBlockValueIntrinsic(IntrinsicInst *II, BasicBlock *BB) { |
1030 | 0 | ValueLatticeElement MetadataVal = getFromRangeMetadata(II); |
1031 | 0 | if (!ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) { |
1032 | 0 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
1033 | 0 | << "' - unknown intrinsic.\n"); |
1034 | 0 | return MetadataVal; |
1035 | 0 | } |
1036 | | |
1037 | 0 | SmallVector<ConstantRange, 2> OpRanges; |
1038 | 0 | for (Value *Op : II->args()) { |
1039 | 0 | std::optional<ConstantRange> Range = getRangeFor(Op, II, BB); |
1040 | 0 | if (!Range) |
1041 | 0 | return std::nullopt; |
1042 | 0 | OpRanges.push_back(*Range); |
1043 | 0 | } |
1044 | | |
1045 | 0 | return intersect(ValueLatticeElement::getRange(ConstantRange::intrinsic( |
1046 | 0 | II->getIntrinsicID(), OpRanges)), |
1047 | 0 | MetadataVal); |
1048 | 0 | } |
1049 | | |
1050 | | std::optional<ValueLatticeElement> |
1051 | | LazyValueInfoImpl::solveBlockValueExtractValue(ExtractValueInst *EVI, |
1052 | 0 | BasicBlock *BB) { |
1053 | 0 | if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) |
1054 | 0 | if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 0) |
1055 | 0 | return solveBlockValueOverflowIntrinsic(WO, BB); |
1056 | | |
1057 | | // Handle extractvalue of insertvalue to allow further simplification |
1058 | | // based on replaced with.overflow intrinsics. |
1059 | 0 | if (Value *V = simplifyExtractValueInst( |
1060 | 0 | EVI->getAggregateOperand(), EVI->getIndices(), |
1061 | 0 | EVI->getModule()->getDataLayout())) |
1062 | 0 | return getBlockValue(V, BB, EVI); |
1063 | | |
1064 | 0 | LLVM_DEBUG(dbgs() << " compute BB '" << BB->getName() |
1065 | 0 | << "' - overdefined (unknown extractvalue).\n"); |
1066 | 0 | return ValueLatticeElement::getOverdefined(); |
1067 | 0 | } |
1068 | | |
1069 | | static bool matchICmpOperand(APInt &Offset, Value *LHS, Value *Val, |
1070 | 0 | ICmpInst::Predicate Pred) { |
1071 | 0 | if (LHS == Val) |
1072 | 0 | return true; |
1073 | | |
1074 | | // Handle range checking idiom produced by InstCombine. We will subtract the |
1075 | | // offset from the allowed range for RHS in this case. |
1076 | 0 | const APInt *C; |
1077 | 0 | if (match(LHS, m_Add(m_Specific(Val), m_APInt(C)))) { |
1078 | 0 | Offset = *C; |
1079 | 0 | return true; |
1080 | 0 | } |
1081 | | |
1082 | | // Handle the symmetric case. This appears in saturation patterns like |
1083 | | // (x == 16) ? 16 : (x + 1). |
1084 | 0 | if (match(Val, m_Add(m_Specific(LHS), m_APInt(C)))) { |
1085 | 0 | Offset = -*C; |
1086 | 0 | return true; |
1087 | 0 | } |
1088 | | |
1089 | | // If (x | y) < C, then (x < C) && (y < C). |
1090 | 0 | if (match(LHS, m_c_Or(m_Specific(Val), m_Value())) && |
1091 | 0 | (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)) |
1092 | 0 | return true; |
1093 | | |
1094 | | // If (x & y) > C, then (x > C) && (y > C). |
1095 | 0 | if (match(LHS, m_c_And(m_Specific(Val), m_Value())) && |
1096 | 0 | (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)) |
1097 | 0 | return true; |
1098 | | |
1099 | 0 | return false; |
1100 | 0 | } |
1101 | | |
1102 | | /// Get value range for a "(Val + Offset) Pred RHS" condition. |
1103 | | std::optional<ValueLatticeElement> |
1104 | | LazyValueInfoImpl::getValueFromSimpleICmpCondition(CmpInst::Predicate Pred, |
1105 | | Value *RHS, |
1106 | | const APInt &Offset, |
1107 | | Instruction *CxtI, |
1108 | 0 | bool UseBlockValue) { |
1109 | 0 | ConstantRange RHSRange(RHS->getType()->getIntegerBitWidth(), |
1110 | 0 | /*isFullSet=*/true); |
1111 | 0 | if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) { |
1112 | 0 | RHSRange = ConstantRange(CI->getValue()); |
1113 | 0 | } else if (UseBlockValue) { |
1114 | 0 | std::optional<ValueLatticeElement> R = |
1115 | 0 | getBlockValue(RHS, CxtI->getParent(), CxtI); |
1116 | 0 | if (!R) |
1117 | 0 | return std::nullopt; |
1118 | 0 | RHSRange = toConstantRange(*R, RHS->getType()); |
1119 | 0 | } else if (Instruction *I = dyn_cast<Instruction>(RHS)) { |
1120 | 0 | if (auto *Ranges = I->getMetadata(LLVMContext::MD_range)) |
1121 | 0 | RHSRange = getConstantRangeFromMetadata(*Ranges); |
1122 | 0 | } |
1123 | | |
1124 | 0 | ConstantRange TrueValues = |
1125 | 0 | ConstantRange::makeAllowedICmpRegion(Pred, RHSRange); |
1126 | 0 | return ValueLatticeElement::getRange(TrueValues.subtract(Offset)); |
1127 | 0 | } |
1128 | | |
1129 | | static std::optional<ConstantRange> |
1130 | | getRangeViaSLT(CmpInst::Predicate Pred, APInt RHS, |
1131 | 0 | function_ref<std::optional<ConstantRange>(const APInt &)> Fn) { |
1132 | 0 | bool Invert = false; |
1133 | 0 | if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE) { |
1134 | 0 | Pred = ICmpInst::getInversePredicate(Pred); |
1135 | 0 | Invert = true; |
1136 | 0 | } |
1137 | 0 | if (Pred == ICmpInst::ICMP_SLE) { |
1138 | 0 | Pred = ICmpInst::ICMP_SLT; |
1139 | 0 | if (RHS.isMaxSignedValue()) |
1140 | 0 | return std::nullopt; // Could also return full/empty here, if we wanted. |
1141 | 0 | ++RHS; |
1142 | 0 | } |
1143 | 0 | assert(Pred == ICmpInst::ICMP_SLT && "Must be signed predicate"); |
1144 | 0 | if (auto CR = Fn(RHS)) |
1145 | 0 | return Invert ? CR->inverse() : CR; |
1146 | 0 | return std::nullopt; |
1147 | 0 | } |
1148 | | |
1149 | | std::optional<ValueLatticeElement> LazyValueInfoImpl::getValueFromICmpCondition( |
1150 | 0 | Value *Val, ICmpInst *ICI, bool isTrueDest, bool UseBlockValue) { |
1151 | 0 | Value *LHS = ICI->getOperand(0); |
1152 | 0 | Value *RHS = ICI->getOperand(1); |
1153 | | |
1154 | | // Get the predicate that must hold along the considered edge. |
1155 | 0 | CmpInst::Predicate EdgePred = |
1156 | 0 | isTrueDest ? ICI->getPredicate() : ICI->getInversePredicate(); |
1157 | |
|
1158 | 0 | if (isa<Constant>(RHS)) { |
1159 | 0 | if (ICI->isEquality() && LHS == Val) { |
1160 | 0 | if (EdgePred == ICmpInst::ICMP_EQ) |
1161 | 0 | return ValueLatticeElement::get(cast<Constant>(RHS)); |
1162 | 0 | else if (!isa<UndefValue>(RHS)) |
1163 | 0 | return ValueLatticeElement::getNot(cast<Constant>(RHS)); |
1164 | 0 | } |
1165 | 0 | } |
1166 | | |
1167 | 0 | Type *Ty = Val->getType(); |
1168 | 0 | if (!Ty->isIntegerTy()) |
1169 | 0 | return ValueLatticeElement::getOverdefined(); |
1170 | | |
1171 | 0 | unsigned BitWidth = Ty->getScalarSizeInBits(); |
1172 | 0 | APInt Offset(BitWidth, 0); |
1173 | 0 | if (matchICmpOperand(Offset, LHS, Val, EdgePred)) |
1174 | 0 | return getValueFromSimpleICmpCondition(EdgePred, RHS, Offset, ICI, |
1175 | 0 | UseBlockValue); |
1176 | | |
1177 | 0 | CmpInst::Predicate SwappedPred = CmpInst::getSwappedPredicate(EdgePred); |
1178 | 0 | if (matchICmpOperand(Offset, RHS, Val, SwappedPred)) |
1179 | 0 | return getValueFromSimpleICmpCondition(SwappedPred, LHS, Offset, ICI, |
1180 | 0 | UseBlockValue); |
1181 | | |
1182 | 0 | const APInt *Mask, *C; |
1183 | 0 | if (match(LHS, m_And(m_Specific(Val), m_APInt(Mask))) && |
1184 | 0 | match(RHS, m_APInt(C))) { |
1185 | | // If (Val & Mask) == C then all the masked bits are known and we can |
1186 | | // compute a value range based on that. |
1187 | 0 | if (EdgePred == ICmpInst::ICMP_EQ) { |
1188 | 0 | KnownBits Known; |
1189 | 0 | Known.Zero = ~*C & *Mask; |
1190 | 0 | Known.One = *C & *Mask; |
1191 | 0 | return ValueLatticeElement::getRange( |
1192 | 0 | ConstantRange::fromKnownBits(Known, /*IsSigned*/ false)); |
1193 | 0 | } |
1194 | | // If (Val & Mask) != 0 then the value must be larger than the lowest set |
1195 | | // bit of Mask. |
1196 | 0 | if (EdgePred == ICmpInst::ICMP_NE && !Mask->isZero() && C->isZero()) { |
1197 | 0 | return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( |
1198 | 0 | APInt::getOneBitSet(BitWidth, Mask->countr_zero()), |
1199 | 0 | APInt::getZero(BitWidth))); |
1200 | 0 | } |
1201 | 0 | } |
1202 | | |
1203 | | // If (X urem Modulus) >= C, then X >= C. |
1204 | | // If trunc X >= C, then X >= C. |
1205 | | // TODO: An upper bound could be computed as well. |
1206 | 0 | if (match(LHS, m_CombineOr(m_URem(m_Specific(Val), m_Value()), |
1207 | 0 | m_Trunc(m_Specific(Val)))) && |
1208 | 0 | match(RHS, m_APInt(C))) { |
1209 | | // Use the icmp region so we don't have to deal with different predicates. |
1210 | 0 | ConstantRange CR = ConstantRange::makeExactICmpRegion(EdgePred, *C); |
1211 | 0 | if (!CR.isEmptySet()) |
1212 | 0 | return ValueLatticeElement::getRange(ConstantRange::getNonEmpty( |
1213 | 0 | CR.getUnsignedMin().zext(BitWidth), APInt(BitWidth, 0))); |
1214 | 0 | } |
1215 | | |
1216 | | // Recognize: |
1217 | | // icmp slt (ashr X, ShAmtC), C --> icmp slt X, C << ShAmtC |
1218 | | // Preconditions: (C << ShAmtC) >> ShAmtC == C |
1219 | 0 | const APInt *ShAmtC; |
1220 | 0 | if (CmpInst::isSigned(EdgePred) && |
1221 | 0 | match(LHS, m_AShr(m_Specific(Val), m_APInt(ShAmtC))) && |
1222 | 0 | match(RHS, m_APInt(C))) { |
1223 | 0 | auto CR = getRangeViaSLT( |
1224 | 0 | EdgePred, *C, [&](const APInt &RHS) -> std::optional<ConstantRange> { |
1225 | 0 | APInt New = RHS << *ShAmtC; |
1226 | 0 | if ((New.ashr(*ShAmtC)) != RHS) |
1227 | 0 | return std::nullopt; |
1228 | 0 | return ConstantRange::getNonEmpty( |
1229 | 0 | APInt::getSignedMinValue(New.getBitWidth()), New); |
1230 | 0 | }); |
1231 | 0 | if (CR) |
1232 | 0 | return ValueLatticeElement::getRange(*CR); |
1233 | 0 | } |
1234 | | |
1235 | 0 | return ValueLatticeElement::getOverdefined(); |
1236 | 0 | } |
1237 | | |
1238 | | // Handle conditions of the form |
1239 | | // extractvalue(op.with.overflow(%x, C), 1). |
1240 | | static ValueLatticeElement getValueFromOverflowCondition( |
1241 | 0 | Value *Val, WithOverflowInst *WO, bool IsTrueDest) { |
1242 | | // TODO: This only works with a constant RHS for now. We could also compute |
1243 | | // the range of the RHS, but this doesn't fit into the current structure of |
1244 | | // the edge value calculation. |
1245 | 0 | const APInt *C; |
1246 | 0 | if (WO->getLHS() != Val || !match(WO->getRHS(), m_APInt(C))) |
1247 | 0 | return ValueLatticeElement::getOverdefined(); |
1248 | | |
1249 | | // Calculate the possible values of %x for which no overflow occurs. |
1250 | 0 | ConstantRange NWR = ConstantRange::makeExactNoWrapRegion( |
1251 | 0 | WO->getBinaryOp(), *C, WO->getNoWrapKind()); |
1252 | | |
1253 | | // If overflow is false, %x is constrained to NWR. If overflow is true, %x is |
1254 | | // constrained to it's inverse (all values that might cause overflow). |
1255 | 0 | if (IsTrueDest) |
1256 | 0 | NWR = NWR.inverse(); |
1257 | 0 | return ValueLatticeElement::getRange(NWR); |
1258 | 0 | } |
1259 | | |
1260 | | std::optional<ValueLatticeElement> |
1261 | | LazyValueInfoImpl::getValueFromCondition(Value *Val, Value *Cond, |
1262 | | bool IsTrueDest, bool UseBlockValue, |
1263 | 0 | unsigned Depth) { |
1264 | 0 | if (ICmpInst *ICI = dyn_cast<ICmpInst>(Cond)) |
1265 | 0 | return getValueFromICmpCondition(Val, ICI, IsTrueDest, UseBlockValue); |
1266 | | |
1267 | 0 | if (auto *EVI = dyn_cast<ExtractValueInst>(Cond)) |
1268 | 0 | if (auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand())) |
1269 | 0 | if (EVI->getNumIndices() == 1 && *EVI->idx_begin() == 1) |
1270 | 0 | return getValueFromOverflowCondition(Val, WO, IsTrueDest); |
1271 | | |
1272 | 0 | if (++Depth == MaxAnalysisRecursionDepth) |
1273 | 0 | return ValueLatticeElement::getOverdefined(); |
1274 | | |
1275 | 0 | Value *N; |
1276 | 0 | if (match(Cond, m_Not(m_Value(N)))) |
1277 | 0 | return getValueFromCondition(Val, N, !IsTrueDest, UseBlockValue, Depth); |
1278 | | |
1279 | 0 | Value *L, *R; |
1280 | 0 | bool IsAnd; |
1281 | 0 | if (match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))) |
1282 | 0 | IsAnd = true; |
1283 | 0 | else if (match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) |
1284 | 0 | IsAnd = false; |
1285 | 0 | else |
1286 | 0 | return ValueLatticeElement::getOverdefined(); |
1287 | | |
1288 | 0 | std::optional<ValueLatticeElement> LV = |
1289 | 0 | getValueFromCondition(Val, L, IsTrueDest, UseBlockValue, Depth); |
1290 | 0 | if (!LV) |
1291 | 0 | return std::nullopt; |
1292 | 0 | std::optional<ValueLatticeElement> RV = |
1293 | 0 | getValueFromCondition(Val, R, IsTrueDest, UseBlockValue, Depth); |
1294 | 0 | if (!RV) |
1295 | 0 | return std::nullopt; |
1296 | | |
1297 | | // if (L && R) -> intersect L and R |
1298 | | // if (!(L || R)) -> intersect !L and !R |
1299 | | // if (L || R) -> union L and R |
1300 | | // if (!(L && R)) -> union !L and !R |
1301 | 0 | if (IsTrueDest ^ IsAnd) { |
1302 | 0 | LV->mergeIn(*RV); |
1303 | 0 | return *LV; |
1304 | 0 | } |
1305 | | |
1306 | 0 | return intersect(*LV, *RV); |
1307 | 0 | } |
1308 | | |
1309 | | // Return true if Usr has Op as an operand, otherwise false. |
1310 | 0 | static bool usesOperand(User *Usr, Value *Op) { |
1311 | 0 | return is_contained(Usr->operands(), Op); |
1312 | 0 | } |
1313 | | |
1314 | | // Return true if the instruction type of Val is supported by |
1315 | | // constantFoldUser(). Currently CastInst, BinaryOperator and FreezeInst only. |
1316 | | // Call this before calling constantFoldUser() to find out if it's even worth |
1317 | | // attempting to call it. |
1318 | 0 | static bool isOperationFoldable(User *Usr) { |
1319 | 0 | return isa<CastInst>(Usr) || isa<BinaryOperator>(Usr) || isa<FreezeInst>(Usr); |
1320 | 0 | } |
1321 | | |
1322 | | // Check if Usr can be simplified to an integer constant when the value of one |
1323 | | // of its operands Op is an integer constant OpConstVal. If so, return it as an |
1324 | | // lattice value range with a single element or otherwise return an overdefined |
1325 | | // lattice value. |
1326 | | static ValueLatticeElement constantFoldUser(User *Usr, Value *Op, |
1327 | | const APInt &OpConstVal, |
1328 | 0 | const DataLayout &DL) { |
1329 | 0 | assert(isOperationFoldable(Usr) && "Precondition"); |
1330 | 0 | Constant* OpConst = Constant::getIntegerValue(Op->getType(), OpConstVal); |
1331 | | // Check if Usr can be simplified to a constant. |
1332 | 0 | if (auto *CI = dyn_cast<CastInst>(Usr)) { |
1333 | 0 | assert(CI->getOperand(0) == Op && "Operand 0 isn't Op"); |
1334 | 0 | if (auto *C = dyn_cast_or_null<ConstantInt>( |
1335 | 0 | simplifyCastInst(CI->getOpcode(), OpConst, |
1336 | 0 | CI->getDestTy(), DL))) { |
1337 | 0 | return ValueLatticeElement::getRange(ConstantRange(C->getValue())); |
1338 | 0 | } |
1339 | 0 | } else if (auto *BO = dyn_cast<BinaryOperator>(Usr)) { |
1340 | 0 | bool Op0Match = BO->getOperand(0) == Op; |
1341 | 0 | bool Op1Match = BO->getOperand(1) == Op; |
1342 | 0 | assert((Op0Match || Op1Match) && |
1343 | 0 | "Operand 0 nor Operand 1 isn't a match"); |
1344 | 0 | Value *LHS = Op0Match ? OpConst : BO->getOperand(0); |
1345 | 0 | Value *RHS = Op1Match ? OpConst : BO->getOperand(1); |
1346 | 0 | if (auto *C = dyn_cast_or_null<ConstantInt>( |
1347 | 0 | simplifyBinOp(BO->getOpcode(), LHS, RHS, DL))) { |
1348 | 0 | return ValueLatticeElement::getRange(ConstantRange(C->getValue())); |
1349 | 0 | } |
1350 | 0 | } else if (isa<FreezeInst>(Usr)) { |
1351 | 0 | assert(cast<FreezeInst>(Usr)->getOperand(0) == Op && "Operand 0 isn't Op"); |
1352 | 0 | return ValueLatticeElement::getRange(ConstantRange(OpConstVal)); |
1353 | 0 | } |
1354 | 0 | return ValueLatticeElement::getOverdefined(); |
1355 | 0 | } |
1356 | | |
1357 | | /// Compute the value of Val on the edge BBFrom -> BBTo. |
1358 | | std::optional<ValueLatticeElement> |
1359 | | LazyValueInfoImpl::getEdgeValueLocal(Value *Val, BasicBlock *BBFrom, |
1360 | 0 | BasicBlock *BBTo, bool UseBlockValue) { |
1361 | | // TODO: Handle more complex conditionals. If (v == 0 || v2 < 1) is false, we |
1362 | | // know that v != 0. |
1363 | 0 | if (BranchInst *BI = dyn_cast<BranchInst>(BBFrom->getTerminator())) { |
1364 | | // If this is a conditional branch and only one successor goes to BBTo, then |
1365 | | // we may be able to infer something from the condition. |
1366 | 0 | if (BI->isConditional() && |
1367 | 0 | BI->getSuccessor(0) != BI->getSuccessor(1)) { |
1368 | 0 | bool isTrueDest = BI->getSuccessor(0) == BBTo; |
1369 | 0 | assert(BI->getSuccessor(!isTrueDest) == BBTo && |
1370 | 0 | "BBTo isn't a successor of BBFrom"); |
1371 | 0 | Value *Condition = BI->getCondition(); |
1372 | | |
1373 | | // If V is the condition of the branch itself, then we know exactly what |
1374 | | // it is. |
1375 | 0 | if (Condition == Val) |
1376 | 0 | return ValueLatticeElement::get(ConstantInt::get( |
1377 | 0 | Type::getInt1Ty(Val->getContext()), isTrueDest)); |
1378 | | |
1379 | | // If the condition of the branch is an equality comparison, we may be |
1380 | | // able to infer the value. |
1381 | 0 | std::optional<ValueLatticeElement> Result = |
1382 | 0 | getValueFromCondition(Val, Condition, isTrueDest, UseBlockValue); |
1383 | 0 | if (!Result) |
1384 | 0 | return std::nullopt; |
1385 | | |
1386 | 0 | if (!Result->isOverdefined()) |
1387 | 0 | return Result; |
1388 | | |
1389 | 0 | if (User *Usr = dyn_cast<User>(Val)) { |
1390 | 0 | assert(Result->isOverdefined() && "Result isn't overdefined"); |
1391 | | // Check with isOperationFoldable() first to avoid linearly iterating |
1392 | | // over the operands unnecessarily which can be expensive for |
1393 | | // instructions with many operands. |
1394 | 0 | if (isa<IntegerType>(Usr->getType()) && isOperationFoldable(Usr)) { |
1395 | 0 | const DataLayout &DL = BBTo->getModule()->getDataLayout(); |
1396 | 0 | if (usesOperand(Usr, Condition)) { |
1397 | | // If Val has Condition as an operand and Val can be folded into a |
1398 | | // constant with either Condition == true or Condition == false, |
1399 | | // propagate the constant. |
1400 | | // eg. |
1401 | | // ; %Val is true on the edge to %then. |
1402 | | // %Val = and i1 %Condition, true. |
1403 | | // br %Condition, label %then, label %else |
1404 | 0 | APInt ConditionVal(1, isTrueDest ? 1 : 0); |
1405 | 0 | Result = constantFoldUser(Usr, Condition, ConditionVal, DL); |
1406 | 0 | } else { |
1407 | | // If one of Val's operand has an inferred value, we may be able to |
1408 | | // infer the value of Val. |
1409 | | // eg. |
1410 | | // ; %Val is 94 on the edge to %then. |
1411 | | // %Val = add i8 %Op, 1 |
1412 | | // %Condition = icmp eq i8 %Op, 93 |
1413 | | // br i1 %Condition, label %then, label %else |
1414 | 0 | for (unsigned i = 0; i < Usr->getNumOperands(); ++i) { |
1415 | 0 | Value *Op = Usr->getOperand(i); |
1416 | 0 | ValueLatticeElement OpLatticeVal = *getValueFromCondition( |
1417 | 0 | Op, Condition, isTrueDest, /*UseBlockValue*/ false); |
1418 | 0 | if (std::optional<APInt> OpConst = |
1419 | 0 | OpLatticeVal.asConstantInteger()) { |
1420 | 0 | Result = constantFoldUser(Usr, Op, *OpConst, DL); |
1421 | 0 | break; |
1422 | 0 | } |
1423 | 0 | } |
1424 | 0 | } |
1425 | 0 | } |
1426 | 0 | } |
1427 | 0 | if (!Result->isOverdefined()) |
1428 | 0 | return Result; |
1429 | 0 | } |
1430 | 0 | } |
1431 | | |
1432 | | // If the edge was formed by a switch on the value, then we may know exactly |
1433 | | // what it is. |
1434 | 0 | if (SwitchInst *SI = dyn_cast<SwitchInst>(BBFrom->getTerminator())) { |
1435 | 0 | Value *Condition = SI->getCondition(); |
1436 | 0 | if (!isa<IntegerType>(Val->getType())) |
1437 | 0 | return ValueLatticeElement::getOverdefined(); |
1438 | 0 | bool ValUsesConditionAndMayBeFoldable = false; |
1439 | 0 | if (Condition != Val) { |
1440 | | // Check if Val has Condition as an operand. |
1441 | 0 | if (User *Usr = dyn_cast<User>(Val)) |
1442 | 0 | ValUsesConditionAndMayBeFoldable = isOperationFoldable(Usr) && |
1443 | 0 | usesOperand(Usr, Condition); |
1444 | 0 | if (!ValUsesConditionAndMayBeFoldable) |
1445 | 0 | return ValueLatticeElement::getOverdefined(); |
1446 | 0 | } |
1447 | 0 | assert((Condition == Val || ValUsesConditionAndMayBeFoldable) && |
1448 | 0 | "Condition != Val nor Val doesn't use Condition"); |
1449 | | |
1450 | 0 | bool DefaultCase = SI->getDefaultDest() == BBTo; |
1451 | 0 | unsigned BitWidth = Val->getType()->getIntegerBitWidth(); |
1452 | 0 | ConstantRange EdgesVals(BitWidth, DefaultCase/*isFullSet*/); |
1453 | |
|
1454 | 0 | for (auto Case : SI->cases()) { |
1455 | 0 | APInt CaseValue = Case.getCaseValue()->getValue(); |
1456 | 0 | ConstantRange EdgeVal(CaseValue); |
1457 | 0 | if (ValUsesConditionAndMayBeFoldable) { |
1458 | 0 | User *Usr = cast<User>(Val); |
1459 | 0 | const DataLayout &DL = BBTo->getModule()->getDataLayout(); |
1460 | 0 | ValueLatticeElement EdgeLatticeVal = |
1461 | 0 | constantFoldUser(Usr, Condition, CaseValue, DL); |
1462 | 0 | if (EdgeLatticeVal.isOverdefined()) |
1463 | 0 | return ValueLatticeElement::getOverdefined(); |
1464 | 0 | EdgeVal = EdgeLatticeVal.getConstantRange(); |
1465 | 0 | } |
1466 | 0 | if (DefaultCase) { |
1467 | | // It is possible that the default destination is the destination of |
1468 | | // some cases. We cannot perform difference for those cases. |
1469 | | // We know Condition != CaseValue in BBTo. In some cases we can use |
1470 | | // this to infer Val == f(Condition) is != f(CaseValue). For now, we |
1471 | | // only do this when f is identity (i.e. Val == Condition), but we |
1472 | | // should be able to do this for any injective f. |
1473 | 0 | if (Case.getCaseSuccessor() != BBTo && Condition == Val) |
1474 | 0 | EdgesVals = EdgesVals.difference(EdgeVal); |
1475 | 0 | } else if (Case.getCaseSuccessor() == BBTo) |
1476 | 0 | EdgesVals = EdgesVals.unionWith(EdgeVal); |
1477 | 0 | } |
1478 | 0 | return ValueLatticeElement::getRange(std::move(EdgesVals)); |
1479 | 0 | } |
1480 | 0 | return ValueLatticeElement::getOverdefined(); |
1481 | 0 | } |
1482 | | |
1483 | | /// Compute the value of Val on the edge BBFrom -> BBTo or the value at |
1484 | | /// the basic block if the edge does not constrain Val. |
1485 | | std::optional<ValueLatticeElement> |
1486 | | LazyValueInfoImpl::getEdgeValue(Value *Val, BasicBlock *BBFrom, |
1487 | 0 | BasicBlock *BBTo, Instruction *CxtI) { |
1488 | | // If already a constant, there is nothing to compute. |
1489 | 0 | if (Constant *VC = dyn_cast<Constant>(Val)) |
1490 | 0 | return ValueLatticeElement::get(VC); |
1491 | | |
1492 | 0 | std::optional<ValueLatticeElement> LocalResult = |
1493 | 0 | getEdgeValueLocal(Val, BBFrom, BBTo, /*UseBlockValue*/ true); |
1494 | 0 | if (!LocalResult) |
1495 | 0 | return std::nullopt; |
1496 | | |
1497 | 0 | if (hasSingleValue(*LocalResult)) |
1498 | | // Can't get any more precise here |
1499 | 0 | return LocalResult; |
1500 | | |
1501 | 0 | std::optional<ValueLatticeElement> OptInBlock = |
1502 | 0 | getBlockValue(Val, BBFrom, BBFrom->getTerminator()); |
1503 | 0 | if (!OptInBlock) |
1504 | 0 | return std::nullopt; |
1505 | 0 | ValueLatticeElement &InBlock = *OptInBlock; |
1506 | | |
1507 | | // We can use the context instruction (generically the ultimate instruction |
1508 | | // the calling pass is trying to simplify) here, even though the result of |
1509 | | // this function is generally cached when called from the solve* functions |
1510 | | // (and that cached result might be used with queries using a different |
1511 | | // context instruction), because when this function is called from the solve* |
1512 | | // functions, the context instruction is not provided. When called from |
1513 | | // LazyValueInfoImpl::getValueOnEdge, the context instruction is provided, |
1514 | | // but then the result is not cached. |
1515 | 0 | intersectAssumeOrGuardBlockValueConstantRange(Val, InBlock, CxtI); |
1516 | |
|
1517 | 0 | return intersect(*LocalResult, InBlock); |
1518 | 0 | } |
1519 | | |
1520 | | ValueLatticeElement LazyValueInfoImpl::getValueInBlock(Value *V, BasicBlock *BB, |
1521 | 0 | Instruction *CxtI) { |
1522 | 0 | LLVM_DEBUG(dbgs() << "LVI Getting block end value " << *V << " at '" |
1523 | 0 | << BB->getName() << "'\n"); |
1524 | |
|
1525 | 0 | assert(BlockValueStack.empty() && BlockValueSet.empty()); |
1526 | 0 | std::optional<ValueLatticeElement> OptResult = getBlockValue(V, BB, CxtI); |
1527 | 0 | if (!OptResult) { |
1528 | 0 | solve(); |
1529 | 0 | OptResult = getBlockValue(V, BB, CxtI); |
1530 | 0 | assert(OptResult && "Value not available after solving"); |
1531 | 0 | } |
1532 | | |
1533 | 0 | ValueLatticeElement Result = *OptResult; |
1534 | 0 | LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); |
1535 | 0 | return Result; |
1536 | 0 | } |
1537 | | |
1538 | 0 | ValueLatticeElement LazyValueInfoImpl::getValueAt(Value *V, Instruction *CxtI) { |
1539 | 0 | LLVM_DEBUG(dbgs() << "LVI Getting value " << *V << " at '" << CxtI->getName() |
1540 | 0 | << "'\n"); |
1541 | |
|
1542 | 0 | if (auto *C = dyn_cast<Constant>(V)) |
1543 | 0 | return ValueLatticeElement::get(C); |
1544 | | |
1545 | 0 | ValueLatticeElement Result = ValueLatticeElement::getOverdefined(); |
1546 | 0 | if (auto *I = dyn_cast<Instruction>(V)) |
1547 | 0 | Result = getFromRangeMetadata(I); |
1548 | 0 | intersectAssumeOrGuardBlockValueConstantRange(V, Result, CxtI); |
1549 | |
|
1550 | 0 | LLVM_DEBUG(dbgs() << " Result = " << Result << "\n"); |
1551 | 0 | return Result; |
1552 | 0 | } |
1553 | | |
1554 | | ValueLatticeElement LazyValueInfoImpl:: |
1555 | | getValueOnEdge(Value *V, BasicBlock *FromBB, BasicBlock *ToBB, |
1556 | 0 | Instruction *CxtI) { |
1557 | 0 | LLVM_DEBUG(dbgs() << "LVI Getting edge value " << *V << " from '" |
1558 | 0 | << FromBB->getName() << "' to '" << ToBB->getName() |
1559 | 0 | << "'\n"); |
1560 | |
|
1561 | 0 | std::optional<ValueLatticeElement> Result = |
1562 | 0 | getEdgeValue(V, FromBB, ToBB, CxtI); |
1563 | 0 | while (!Result) { |
1564 | | // As the worklist only explicitly tracks block values (but not edge values) |
1565 | | // we may have to call solve() multiple times, as the edge value calculation |
1566 | | // may request additional block values. |
1567 | 0 | solve(); |
1568 | 0 | Result = getEdgeValue(V, FromBB, ToBB, CxtI); |
1569 | 0 | } |
1570 | |
|
1571 | 0 | LLVM_DEBUG(dbgs() << " Result = " << *Result << "\n"); |
1572 | 0 | return *Result; |
1573 | 0 | } |
1574 | | |
1575 | 0 | ValueLatticeElement LazyValueInfoImpl::getValueAtUse(const Use &U) { |
1576 | 0 | Value *V = U.get(); |
1577 | 0 | auto *CxtI = cast<Instruction>(U.getUser()); |
1578 | 0 | ValueLatticeElement VL = getValueInBlock(V, CxtI->getParent(), CxtI); |
1579 | | |
1580 | | // Check whether the only (possibly transitive) use of the value is in a |
1581 | | // position where V can be constrained by a select or branch condition. |
1582 | 0 | const Use *CurrU = &U; |
1583 | | // TODO: Increase limit? |
1584 | 0 | const unsigned MaxUsesToInspect = 3; |
1585 | 0 | for (unsigned I = 0; I < MaxUsesToInspect; ++I) { |
1586 | 0 | std::optional<ValueLatticeElement> CondVal; |
1587 | 0 | auto *CurrI = cast<Instruction>(CurrU->getUser()); |
1588 | 0 | if (auto *SI = dyn_cast<SelectInst>(CurrI)) { |
1589 | | // If the value is undef, a different value may be chosen in |
1590 | | // the select condition and at use. |
1591 | 0 | if (!isGuaranteedNotToBeUndef(SI->getCondition(), AC)) |
1592 | 0 | break; |
1593 | 0 | if (CurrU->getOperandNo() == 1) |
1594 | 0 | CondVal = |
1595 | 0 | *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ true, |
1596 | 0 | /*UseBlockValue*/ false); |
1597 | 0 | else if (CurrU->getOperandNo() == 2) |
1598 | 0 | CondVal = |
1599 | 0 | *getValueFromCondition(V, SI->getCondition(), /*IsTrueDest*/ false, |
1600 | 0 | /*UseBlockValue*/ false); |
1601 | 0 | } else if (auto *PHI = dyn_cast<PHINode>(CurrI)) { |
1602 | | // TODO: Use non-local query? |
1603 | 0 | CondVal = *getEdgeValueLocal(V, PHI->getIncomingBlock(*CurrU), |
1604 | 0 | PHI->getParent(), /*UseBlockValue*/ false); |
1605 | 0 | } |
1606 | 0 | if (CondVal) |
1607 | 0 | VL = intersect(VL, *CondVal); |
1608 | | |
1609 | | // Only follow one-use chain, to allow direct intersection of conditions. |
1610 | | // If there are multiple uses, we would have to intersect with the union of |
1611 | | // all conditions at different uses. |
1612 | | // Stop walking if we hit a non-speculatable instruction. Even if the |
1613 | | // result is only used under a specific condition, executing the |
1614 | | // instruction itself may cause side effects or UB already. |
1615 | | // This also disallows looking through phi nodes: If the phi node is part |
1616 | | // of a cycle, we might end up reasoning about values from different cycle |
1617 | | // iterations (PR60629). |
1618 | 0 | if (!CurrI->hasOneUse() || !isSafeToSpeculativelyExecute(CurrI)) |
1619 | 0 | break; |
1620 | 0 | CurrU = &*CurrI->use_begin(); |
1621 | 0 | } |
1622 | 0 | return VL; |
1623 | 0 | } |
1624 | | |
1625 | | void LazyValueInfoImpl::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, |
1626 | 0 | BasicBlock *NewSucc) { |
1627 | 0 | TheCache.threadEdgeImpl(OldSucc, NewSucc); |
1628 | 0 | } |
1629 | | |
1630 | | //===----------------------------------------------------------------------===// |
1631 | | // LazyValueInfo Impl |
1632 | | //===----------------------------------------------------------------------===// |
1633 | | |
1634 | 0 | bool LazyValueInfoWrapperPass::runOnFunction(Function &F) { |
1635 | 0 | Info.AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); |
1636 | |
|
1637 | 0 | if (auto *Impl = Info.getImpl()) |
1638 | 0 | Impl->clear(); |
1639 | | |
1640 | | // Fully lazy. |
1641 | 0 | return false; |
1642 | 0 | } |
1643 | | |
1644 | 0 | void LazyValueInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { |
1645 | 0 | AU.setPreservesAll(); |
1646 | 0 | AU.addRequired<AssumptionCacheTracker>(); |
1647 | 0 | AU.addRequired<TargetLibraryInfoWrapperPass>(); |
1648 | 0 | } |
1649 | | |
1650 | 0 | LazyValueInfo &LazyValueInfoWrapperPass::getLVI() { return Info; } |
1651 | | |
1652 | | /// This lazily constructs the LazyValueInfoImpl. |
1653 | 0 | LazyValueInfoImpl &LazyValueInfo::getOrCreateImpl(const Module *M) { |
1654 | 0 | if (!PImpl) { |
1655 | 0 | assert(M && "getCache() called with a null Module"); |
1656 | 0 | const DataLayout &DL = M->getDataLayout(); |
1657 | 0 | Function *GuardDecl = |
1658 | 0 | M->getFunction(Intrinsic::getName(Intrinsic::experimental_guard)); |
1659 | 0 | PImpl = new LazyValueInfoImpl(AC, DL, GuardDecl); |
1660 | 0 | } |
1661 | 0 | return *static_cast<LazyValueInfoImpl *>(PImpl); |
1662 | 0 | } |
1663 | | |
1664 | 0 | LazyValueInfoImpl *LazyValueInfo::getImpl() { |
1665 | 0 | if (!PImpl) |
1666 | 0 | return nullptr; |
1667 | 0 | return static_cast<LazyValueInfoImpl *>(PImpl); |
1668 | 0 | } |
1669 | | |
1670 | 0 | LazyValueInfo::~LazyValueInfo() { releaseMemory(); } |
1671 | | |
1672 | 0 | void LazyValueInfo::releaseMemory() { |
1673 | | // If the cache was allocated, free it. |
1674 | 0 | if (auto *Impl = getImpl()) { |
1675 | 0 | delete &*Impl; |
1676 | 0 | PImpl = nullptr; |
1677 | 0 | } |
1678 | 0 | } |
1679 | | |
1680 | | bool LazyValueInfo::invalidate(Function &F, const PreservedAnalyses &PA, |
1681 | 0 | FunctionAnalysisManager::Invalidator &Inv) { |
1682 | | // We need to invalidate if we have either failed to preserve this analyses |
1683 | | // result directly or if any of its dependencies have been invalidated. |
1684 | 0 | auto PAC = PA.getChecker<LazyValueAnalysis>(); |
1685 | 0 | if (!(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>())) |
1686 | 0 | return true; |
1687 | | |
1688 | 0 | return false; |
1689 | 0 | } |
1690 | | |
1691 | 0 | void LazyValueInfoWrapperPass::releaseMemory() { Info.releaseMemory(); } |
1692 | | |
1693 | | LazyValueInfo LazyValueAnalysis::run(Function &F, |
1694 | 0 | FunctionAnalysisManager &FAM) { |
1695 | 0 | auto &AC = FAM.getResult<AssumptionAnalysis>(F); |
1696 | |
|
1697 | 0 | return LazyValueInfo(&AC, &F.getParent()->getDataLayout()); |
1698 | 0 | } |
1699 | | |
1700 | | /// Returns true if we can statically tell that this value will never be a |
1701 | | /// "useful" constant. In practice, this means we've got something like an |
1702 | | /// alloca or a malloc call for which a comparison against a constant can |
1703 | | /// only be guarding dead code. Note that we are potentially giving up some |
1704 | | /// precision in dead code (a constant result) in favour of avoiding a |
1705 | | /// expensive search for a easily answered common query. |
1706 | 0 | static bool isKnownNonConstant(Value *V) { |
1707 | 0 | V = V->stripPointerCasts(); |
1708 | | // The return val of alloc cannot be a Constant. |
1709 | 0 | if (isa<AllocaInst>(V)) |
1710 | 0 | return true; |
1711 | 0 | return false; |
1712 | 0 | } |
1713 | | |
1714 | 0 | Constant *LazyValueInfo::getConstant(Value *V, Instruction *CxtI) { |
1715 | | // Bail out early if V is known not to be a Constant. |
1716 | 0 | if (isKnownNonConstant(V)) |
1717 | 0 | return nullptr; |
1718 | | |
1719 | 0 | BasicBlock *BB = CxtI->getParent(); |
1720 | 0 | ValueLatticeElement Result = |
1721 | 0 | getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI); |
1722 | |
|
1723 | 0 | if (Result.isConstant()) |
1724 | 0 | return Result.getConstant(); |
1725 | 0 | if (Result.isConstantRange()) { |
1726 | 0 | const ConstantRange &CR = Result.getConstantRange(); |
1727 | 0 | if (const APInt *SingleVal = CR.getSingleElement()) |
1728 | 0 | return ConstantInt::get(V->getContext(), *SingleVal); |
1729 | 0 | } |
1730 | 0 | return nullptr; |
1731 | 0 | } |
1732 | | |
1733 | | ConstantRange LazyValueInfo::getConstantRange(Value *V, Instruction *CxtI, |
1734 | 0 | bool UndefAllowed) { |
1735 | 0 | assert(V->getType()->isIntegerTy()); |
1736 | 0 | BasicBlock *BB = CxtI->getParent(); |
1737 | 0 | ValueLatticeElement Result = |
1738 | 0 | getOrCreateImpl(BB->getModule()).getValueInBlock(V, BB, CxtI); |
1739 | 0 | return toConstantRange(Result, V->getType(), UndefAllowed); |
1740 | 0 | } |
1741 | | |
1742 | | ConstantRange LazyValueInfo::getConstantRangeAtUse(const Use &U, |
1743 | 0 | bool UndefAllowed) { |
1744 | 0 | auto *Inst = cast<Instruction>(U.getUser()); |
1745 | 0 | ValueLatticeElement Result = |
1746 | 0 | getOrCreateImpl(Inst->getModule()).getValueAtUse(U); |
1747 | 0 | return toConstantRange(Result, U->getType(), UndefAllowed); |
1748 | 0 | } |
1749 | | |
1750 | | /// Determine whether the specified value is known to be a |
1751 | | /// constant on the specified edge. Return null if not. |
1752 | | Constant *LazyValueInfo::getConstantOnEdge(Value *V, BasicBlock *FromBB, |
1753 | | BasicBlock *ToBB, |
1754 | 0 | Instruction *CxtI) { |
1755 | 0 | Module *M = FromBB->getModule(); |
1756 | 0 | ValueLatticeElement Result = |
1757 | 0 | getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); |
1758 | |
|
1759 | 0 | if (Result.isConstant()) |
1760 | 0 | return Result.getConstant(); |
1761 | 0 | if (Result.isConstantRange()) { |
1762 | 0 | const ConstantRange &CR = Result.getConstantRange(); |
1763 | 0 | if (const APInt *SingleVal = CR.getSingleElement()) |
1764 | 0 | return ConstantInt::get(V->getContext(), *SingleVal); |
1765 | 0 | } |
1766 | 0 | return nullptr; |
1767 | 0 | } |
1768 | | |
1769 | | ConstantRange LazyValueInfo::getConstantRangeOnEdge(Value *V, |
1770 | | BasicBlock *FromBB, |
1771 | | BasicBlock *ToBB, |
1772 | 0 | Instruction *CxtI) { |
1773 | 0 | Module *M = FromBB->getModule(); |
1774 | 0 | ValueLatticeElement Result = |
1775 | 0 | getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); |
1776 | | // TODO: Should undef be allowed here? |
1777 | 0 | return toConstantRange(Result, V->getType(), /*UndefAllowed*/ true); |
1778 | 0 | } |
1779 | | |
1780 | | static LazyValueInfo::Tristate |
1781 | | getPredicateResult(unsigned Pred, Constant *C, const ValueLatticeElement &Val, |
1782 | 0 | const DataLayout &DL) { |
1783 | | // If we know the value is a constant, evaluate the conditional. |
1784 | 0 | Constant *Res = nullptr; |
1785 | 0 | if (Val.isConstant()) { |
1786 | 0 | Res = ConstantFoldCompareInstOperands(Pred, Val.getConstant(), C, DL); |
1787 | 0 | if (ConstantInt *ResCI = dyn_cast_or_null<ConstantInt>(Res)) |
1788 | 0 | return ResCI->isZero() ? LazyValueInfo::False : LazyValueInfo::True; |
1789 | 0 | return LazyValueInfo::Unknown; |
1790 | 0 | } |
1791 | | |
1792 | 0 | if (Val.isConstantRange()) { |
1793 | 0 | ConstantInt *CI = dyn_cast<ConstantInt>(C); |
1794 | 0 | if (!CI) return LazyValueInfo::Unknown; |
1795 | | |
1796 | 0 | const ConstantRange &CR = Val.getConstantRange(); |
1797 | 0 | if (Pred == ICmpInst::ICMP_EQ) { |
1798 | 0 | if (!CR.contains(CI->getValue())) |
1799 | 0 | return LazyValueInfo::False; |
1800 | | |
1801 | 0 | if (CR.isSingleElement()) |
1802 | 0 | return LazyValueInfo::True; |
1803 | 0 | } else if (Pred == ICmpInst::ICMP_NE) { |
1804 | 0 | if (!CR.contains(CI->getValue())) |
1805 | 0 | return LazyValueInfo::True; |
1806 | | |
1807 | 0 | if (CR.isSingleElement()) |
1808 | 0 | return LazyValueInfo::False; |
1809 | 0 | } else { |
1810 | | // Handle more complex predicates. |
1811 | 0 | ConstantRange TrueValues = ConstantRange::makeExactICmpRegion( |
1812 | 0 | (ICmpInst::Predicate)Pred, CI->getValue()); |
1813 | 0 | if (TrueValues.contains(CR)) |
1814 | 0 | return LazyValueInfo::True; |
1815 | 0 | if (TrueValues.inverse().contains(CR)) |
1816 | 0 | return LazyValueInfo::False; |
1817 | 0 | } |
1818 | 0 | return LazyValueInfo::Unknown; |
1819 | 0 | } |
1820 | | |
1821 | 0 | if (Val.isNotConstant()) { |
1822 | | // If this is an equality comparison, we can try to fold it knowing that |
1823 | | // "V != C1". |
1824 | 0 | if (Pred == ICmpInst::ICMP_EQ) { |
1825 | | // !C1 == C -> false iff C1 == C. |
1826 | 0 | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, |
1827 | 0 | Val.getNotConstant(), C, DL); |
1828 | 0 | if (Res && Res->isNullValue()) |
1829 | 0 | return LazyValueInfo::False; |
1830 | 0 | } else if (Pred == ICmpInst::ICMP_NE) { |
1831 | | // !C1 != C -> true iff C1 == C. |
1832 | 0 | Res = ConstantFoldCompareInstOperands(ICmpInst::ICMP_NE, |
1833 | 0 | Val.getNotConstant(), C, DL); |
1834 | 0 | if (Res && Res->isNullValue()) |
1835 | 0 | return LazyValueInfo::True; |
1836 | 0 | } |
1837 | 0 | return LazyValueInfo::Unknown; |
1838 | 0 | } |
1839 | | |
1840 | 0 | return LazyValueInfo::Unknown; |
1841 | 0 | } |
1842 | | |
1843 | | /// Determine whether the specified value comparison with a constant is known to |
1844 | | /// be true or false on the specified CFG edge. Pred is a CmpInst predicate. |
1845 | | LazyValueInfo::Tristate |
1846 | | LazyValueInfo::getPredicateOnEdge(unsigned Pred, Value *V, Constant *C, |
1847 | | BasicBlock *FromBB, BasicBlock *ToBB, |
1848 | 0 | Instruction *CxtI) { |
1849 | 0 | Module *M = FromBB->getModule(); |
1850 | 0 | ValueLatticeElement Result = |
1851 | 0 | getOrCreateImpl(M).getValueOnEdge(V, FromBB, ToBB, CxtI); |
1852 | |
|
1853 | 0 | return getPredicateResult(Pred, C, Result, M->getDataLayout()); |
1854 | 0 | } |
1855 | | |
1856 | | LazyValueInfo::Tristate |
1857 | | LazyValueInfo::getPredicateAt(unsigned Pred, Value *V, Constant *C, |
1858 | 0 | Instruction *CxtI, bool UseBlockValue) { |
1859 | | // Is or is not NonNull are common predicates being queried. If |
1860 | | // isKnownNonZero can tell us the result of the predicate, we can |
1861 | | // return it quickly. But this is only a fastpath, and falling |
1862 | | // through would still be correct. |
1863 | 0 | Module *M = CxtI->getModule(); |
1864 | 0 | const DataLayout &DL = M->getDataLayout(); |
1865 | 0 | if (V->getType()->isPointerTy() && C->isNullValue() && |
1866 | 0 | isKnownNonZero(V->stripPointerCastsSameRepresentation(), DL)) { |
1867 | 0 | if (Pred == ICmpInst::ICMP_EQ) |
1868 | 0 | return LazyValueInfo::False; |
1869 | 0 | else if (Pred == ICmpInst::ICMP_NE) |
1870 | 0 | return LazyValueInfo::True; |
1871 | 0 | } |
1872 | | |
1873 | 0 | auto &Impl = getOrCreateImpl(M); |
1874 | 0 | ValueLatticeElement Result = |
1875 | 0 | UseBlockValue ? Impl.getValueInBlock(V, CxtI->getParent(), CxtI) |
1876 | 0 | : Impl.getValueAt(V, CxtI); |
1877 | 0 | Tristate Ret = getPredicateResult(Pred, C, Result, DL); |
1878 | 0 | if (Ret != Unknown) |
1879 | 0 | return Ret; |
1880 | | |
1881 | | // Note: The following bit of code is somewhat distinct from the rest of LVI; |
1882 | | // LVI as a whole tries to compute a lattice value which is conservatively |
1883 | | // correct at a given location. In this case, we have a predicate which we |
1884 | | // weren't able to prove about the merged result, and we're pushing that |
1885 | | // predicate back along each incoming edge to see if we can prove it |
1886 | | // separately for each input. As a motivating example, consider: |
1887 | | // bb1: |
1888 | | // %v1 = ... ; constantrange<1, 5> |
1889 | | // br label %merge |
1890 | | // bb2: |
1891 | | // %v2 = ... ; constantrange<10, 20> |
1892 | | // br label %merge |
1893 | | // merge: |
1894 | | // %phi = phi [%v1, %v2] ; constantrange<1,20> |
1895 | | // %pred = icmp eq i32 %phi, 8 |
1896 | | // We can't tell from the lattice value for '%phi' that '%pred' is false |
1897 | | // along each path, but by checking the predicate over each input separately, |
1898 | | // we can. |
1899 | | // We limit the search to one step backwards from the current BB and value. |
1900 | | // We could consider extending this to search further backwards through the |
1901 | | // CFG and/or value graph, but there are non-obvious compile time vs quality |
1902 | | // tradeoffs. |
1903 | 0 | BasicBlock *BB = CxtI->getParent(); |
1904 | | |
1905 | | // Function entry or an unreachable block. Bail to avoid confusing |
1906 | | // analysis below. |
1907 | 0 | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); |
1908 | 0 | if (PI == PE) |
1909 | 0 | return Unknown; |
1910 | | |
1911 | | // If V is a PHI node in the same block as the context, we need to ask |
1912 | | // questions about the predicate as applied to the incoming value along |
1913 | | // each edge. This is useful for eliminating cases where the predicate is |
1914 | | // known along all incoming edges. |
1915 | 0 | if (auto *PHI = dyn_cast<PHINode>(V)) |
1916 | 0 | if (PHI->getParent() == BB) { |
1917 | 0 | Tristate Baseline = Unknown; |
1918 | 0 | for (unsigned i = 0, e = PHI->getNumIncomingValues(); i < e; i++) { |
1919 | 0 | Value *Incoming = PHI->getIncomingValue(i); |
1920 | 0 | BasicBlock *PredBB = PHI->getIncomingBlock(i); |
1921 | | // Note that PredBB may be BB itself. |
1922 | 0 | Tristate Result = |
1923 | 0 | getPredicateOnEdge(Pred, Incoming, C, PredBB, BB, CxtI); |
1924 | | |
1925 | | // Keep going as long as we've seen a consistent known result for |
1926 | | // all inputs. |
1927 | 0 | Baseline = (i == 0) ? Result /* First iteration */ |
1928 | 0 | : (Baseline == Result ? Baseline |
1929 | 0 | : Unknown); /* All others */ |
1930 | 0 | if (Baseline == Unknown) |
1931 | 0 | break; |
1932 | 0 | } |
1933 | 0 | if (Baseline != Unknown) |
1934 | 0 | return Baseline; |
1935 | 0 | } |
1936 | | |
1937 | | // For a comparison where the V is outside this block, it's possible |
1938 | | // that we've branched on it before. Look to see if the value is known |
1939 | | // on all incoming edges. |
1940 | 0 | if (!isa<Instruction>(V) || cast<Instruction>(V)->getParent() != BB) { |
1941 | | // For predecessor edge, determine if the comparison is true or false |
1942 | | // on that edge. If they're all true or all false, we can conclude |
1943 | | // the value of the comparison in this block. |
1944 | 0 | Tristate Baseline = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); |
1945 | 0 | if (Baseline != Unknown) { |
1946 | | // Check that all remaining incoming values match the first one. |
1947 | 0 | while (++PI != PE) { |
1948 | 0 | Tristate Ret = getPredicateOnEdge(Pred, V, C, *PI, BB, CxtI); |
1949 | 0 | if (Ret != Baseline) |
1950 | 0 | break; |
1951 | 0 | } |
1952 | | // If we terminated early, then one of the values didn't match. |
1953 | 0 | if (PI == PE) { |
1954 | 0 | return Baseline; |
1955 | 0 | } |
1956 | 0 | } |
1957 | 0 | } |
1958 | | |
1959 | 0 | return Unknown; |
1960 | 0 | } |
1961 | | |
1962 | | LazyValueInfo::Tristate LazyValueInfo::getPredicateAt(unsigned P, Value *LHS, |
1963 | | Value *RHS, |
1964 | | Instruction *CxtI, |
1965 | 0 | bool UseBlockValue) { |
1966 | 0 | CmpInst::Predicate Pred = (CmpInst::Predicate)P; |
1967 | |
|
1968 | 0 | if (auto *C = dyn_cast<Constant>(RHS)) |
1969 | 0 | return getPredicateAt(P, LHS, C, CxtI, UseBlockValue); |
1970 | 0 | if (auto *C = dyn_cast<Constant>(LHS)) |
1971 | 0 | return getPredicateAt(CmpInst::getSwappedPredicate(Pred), RHS, C, CxtI, |
1972 | 0 | UseBlockValue); |
1973 | | |
1974 | | // Got two non-Constant values. Try to determine the comparison results based |
1975 | | // on the block values of the two operands, e.g. because they have |
1976 | | // non-overlapping ranges. |
1977 | 0 | if (UseBlockValue) { |
1978 | 0 | Module *M = CxtI->getModule(); |
1979 | 0 | ValueLatticeElement L = |
1980 | 0 | getOrCreateImpl(M).getValueInBlock(LHS, CxtI->getParent(), CxtI); |
1981 | 0 | if (L.isOverdefined()) |
1982 | 0 | return LazyValueInfo::Unknown; |
1983 | | |
1984 | 0 | ValueLatticeElement R = |
1985 | 0 | getOrCreateImpl(M).getValueInBlock(RHS, CxtI->getParent(), CxtI); |
1986 | 0 | Type *Ty = CmpInst::makeCmpResultType(LHS->getType()); |
1987 | 0 | if (Constant *Res = L.getCompare((CmpInst::Predicate)P, Ty, R, |
1988 | 0 | M->getDataLayout())) { |
1989 | 0 | if (Res->isNullValue()) |
1990 | 0 | return LazyValueInfo::False; |
1991 | 0 | if (Res->isOneValue()) |
1992 | 0 | return LazyValueInfo::True; |
1993 | 0 | } |
1994 | 0 | } |
1995 | 0 | return LazyValueInfo::Unknown; |
1996 | 0 | } |
1997 | | |
1998 | | void LazyValueInfo::threadEdge(BasicBlock *PredBB, BasicBlock *OldSucc, |
1999 | 0 | BasicBlock *NewSucc) { |
2000 | 0 | if (auto *Impl = getImpl()) |
2001 | 0 | Impl->threadEdge(PredBB, OldSucc, NewSucc); |
2002 | 0 | } |
2003 | | |
2004 | 0 | void LazyValueInfo::forgetValue(Value *V) { |
2005 | 0 | if (auto *Impl = getImpl()) |
2006 | 0 | Impl->forgetValue(V); |
2007 | 0 | } |
2008 | | |
2009 | 0 | void LazyValueInfo::eraseBlock(BasicBlock *BB) { |
2010 | 0 | if (auto *Impl = getImpl()) |
2011 | 0 | Impl->eraseBlock(BB); |
2012 | 0 | } |
2013 | | |
2014 | 0 | void LazyValueInfo::clear() { |
2015 | 0 | if (auto *Impl = getImpl()) |
2016 | 0 | Impl->clear(); |
2017 | 0 | } |
2018 | | |
2019 | 0 | void LazyValueInfo::printLVI(Function &F, DominatorTree &DTree, raw_ostream &OS) { |
2020 | 0 | if (auto *Impl = getImpl()) |
2021 | 0 | Impl->printLVI(F, DTree, OS); |
2022 | 0 | } |
2023 | | |
2024 | | // Print the LVI for the function arguments at the start of each basic block. |
2025 | | void LazyValueInfoAnnotatedWriter::emitBasicBlockStartAnnot( |
2026 | 0 | const BasicBlock *BB, formatted_raw_ostream &OS) { |
2027 | | // Find if there are latticevalues defined for arguments of the function. |
2028 | 0 | auto *F = BB->getParent(); |
2029 | 0 | for (const auto &Arg : F->args()) { |
2030 | 0 | ValueLatticeElement Result = LVIImpl->getValueInBlock( |
2031 | 0 | const_cast<Argument *>(&Arg), const_cast<BasicBlock *>(BB)); |
2032 | 0 | if (Result.isUnknown()) |
2033 | 0 | continue; |
2034 | 0 | OS << "; LatticeVal for: '" << Arg << "' is: " << Result << "\n"; |
2035 | 0 | } |
2036 | 0 | } |
2037 | | |
2038 | | // This function prints the LVI analysis for the instruction I at the beginning |
2039 | | // of various basic blocks. It relies on calculated values that are stored in |
2040 | | // the LazyValueInfoCache, and in the absence of cached values, recalculate the |
2041 | | // LazyValueInfo for `I`, and print that info. |
2042 | | void LazyValueInfoAnnotatedWriter::emitInstructionAnnot( |
2043 | 0 | const Instruction *I, formatted_raw_ostream &OS) { |
2044 | |
|
2045 | 0 | auto *ParentBB = I->getParent(); |
2046 | 0 | SmallPtrSet<const BasicBlock*, 16> BlocksContainingLVI; |
2047 | | // We can generate (solve) LVI values only for blocks that are dominated by |
2048 | | // the I's parent. However, to avoid generating LVI for all dominating blocks, |
2049 | | // that contain redundant/uninteresting information, we print LVI for |
2050 | | // blocks that may use this LVI information (such as immediate successor |
2051 | | // blocks, and blocks that contain uses of `I`). |
2052 | 0 | auto printResult = [&](const BasicBlock *BB) { |
2053 | 0 | if (!BlocksContainingLVI.insert(BB).second) |
2054 | 0 | return; |
2055 | 0 | ValueLatticeElement Result = LVIImpl->getValueInBlock( |
2056 | 0 | const_cast<Instruction *>(I), const_cast<BasicBlock *>(BB)); |
2057 | 0 | OS << "; LatticeVal for: '" << *I << "' in BB: '"; |
2058 | 0 | BB->printAsOperand(OS, false); |
2059 | 0 | OS << "' is: " << Result << "\n"; |
2060 | 0 | }; |
2061 | |
|
2062 | 0 | printResult(ParentBB); |
2063 | | // Print the LVI analysis results for the immediate successor blocks, that |
2064 | | // are dominated by `ParentBB`. |
2065 | 0 | for (const auto *BBSucc : successors(ParentBB)) |
2066 | 0 | if (DT.dominates(ParentBB, BBSucc)) |
2067 | 0 | printResult(BBSucc); |
2068 | | |
2069 | | // Print LVI in blocks where `I` is used. |
2070 | 0 | for (const auto *U : I->users()) |
2071 | 0 | if (auto *UseI = dyn_cast<Instruction>(U)) |
2072 | 0 | if (!isa<PHINode>(UseI) || DT.dominates(ParentBB, UseI->getParent())) |
2073 | 0 | printResult(UseI->getParent()); |
2074 | |
|
2075 | 0 | } |
2076 | | |
2077 | | PreservedAnalyses LazyValueInfoPrinterPass::run(Function &F, |
2078 | 0 | FunctionAnalysisManager &AM) { |
2079 | 0 | OS << "LVI for function '" << F.getName() << "':\n"; |
2080 | 0 | auto &LVI = AM.getResult<LazyValueAnalysis>(F); |
2081 | 0 | auto &DTree = AM.getResult<DominatorTreeAnalysis>(F); |
2082 | 0 | LVI.printLVI(F, DTree, OS); |
2083 | 0 | return PreservedAnalyses::all(); |
2084 | 0 | } |