Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/llvm/lib/Analysis/Lint.cpp
Line
Count
Source (jump to first uncovered line)
1
//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass statically checks for common and easily-identified constructs
10
// which produce undefined or likely unintended behavior in LLVM IR.
11
//
12
// It is not a guarantee of correctness, in two ways. First, it isn't
13
// comprehensive. There are checks which could be done statically which are
14
// not yet implemented. Some of these are indicated by TODO comments, but
15
// those aren't comprehensive either. Second, many conditions cannot be
16
// checked statically. This pass does no dynamic instrumentation, so it
17
// can't check for all possible problems.
18
//
19
// Another limitation is that it assumes all code will be executed. A store
20
// through a null pointer in a basic block which is never reached is harmless,
21
// but this pass will warn about it anyway. This is the main reason why most
22
// of these checks live here instead of in the Verifier pass.
23
//
24
// Optimization passes may make conditions that this pass checks for more or
25
// less obvious. If an optimization pass appears to be introducing a warning,
26
// it may be that the optimization pass is merely exposing an existing
27
// condition in the code.
28
//
29
// This code may be run before instcombine. In many cases, instcombine checks
30
// for the same kinds of things and turns instructions with undefined behavior
31
// into unreachable (or equivalent). Because of this, this pass makes some
32
// effort to look through bitcasts and so on.
33
//
34
//===----------------------------------------------------------------------===//
35
36
#include "llvm/Analysis/Lint.h"
37
#include "llvm/ADT/APInt.h"
38
#include "llvm/ADT/ArrayRef.h"
39
#include "llvm/ADT/SmallPtrSet.h"
40
#include "llvm/ADT/Twine.h"
41
#include "llvm/Analysis/AliasAnalysis.h"
42
#include "llvm/Analysis/AssumptionCache.h"
43
#include "llvm/Analysis/BasicAliasAnalysis.h"
44
#include "llvm/Analysis/ConstantFolding.h"
45
#include "llvm/Analysis/InstructionSimplify.h"
46
#include "llvm/Analysis/Loads.h"
47
#include "llvm/Analysis/MemoryLocation.h"
48
#include "llvm/Analysis/ScopedNoAliasAA.h"
49
#include "llvm/Analysis/TargetLibraryInfo.h"
50
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
51
#include "llvm/Analysis/ValueTracking.h"
52
#include "llvm/IR/Argument.h"
53
#include "llvm/IR/BasicBlock.h"
54
#include "llvm/IR/Constant.h"
55
#include "llvm/IR/Constants.h"
56
#include "llvm/IR/DataLayout.h"
57
#include "llvm/IR/DerivedTypes.h"
58
#include "llvm/IR/Dominators.h"
59
#include "llvm/IR/Function.h"
60
#include "llvm/IR/GlobalVariable.h"
61
#include "llvm/IR/InstVisitor.h"
62
#include "llvm/IR/InstrTypes.h"
63
#include "llvm/IR/Instruction.h"
64
#include "llvm/IR/Instructions.h"
65
#include "llvm/IR/IntrinsicInst.h"
66
#include "llvm/IR/Module.h"
67
#include "llvm/IR/PassManager.h"
68
#include "llvm/IR/Type.h"
69
#include "llvm/IR/Value.h"
70
#include "llvm/Support/Casting.h"
71
#include "llvm/Support/KnownBits.h"
72
#include "llvm/Support/raw_ostream.h"
73
#include <cassert>
74
#include <cstdint>
75
#include <iterator>
76
#include <string>
77
78
using namespace llvm;
79
80
namespace {
81
namespace MemRef {
82
static const unsigned Read = 1;
83
static const unsigned Write = 2;
84
static const unsigned Callee = 4;
85
static const unsigned Branchee = 8;
86
} // end namespace MemRef
87
88
class Lint : public InstVisitor<Lint> {
89
  friend class InstVisitor<Lint>;
90
91
  void visitFunction(Function &F);
92
93
  void visitCallBase(CallBase &CB);
94
  void visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
95
                            MaybeAlign Alignment, Type *Ty, unsigned Flags);
96
97
  void visitReturnInst(ReturnInst &I);
98
  void visitLoadInst(LoadInst &I);
99
  void visitStoreInst(StoreInst &I);
100
  void visitXor(BinaryOperator &I);
101
  void visitSub(BinaryOperator &I);
102
  void visitLShr(BinaryOperator &I);
103
  void visitAShr(BinaryOperator &I);
104
  void visitShl(BinaryOperator &I);
105
  void visitSDiv(BinaryOperator &I);
106
  void visitUDiv(BinaryOperator &I);
107
  void visitSRem(BinaryOperator &I);
108
  void visitURem(BinaryOperator &I);
109
  void visitAllocaInst(AllocaInst &I);
110
  void visitVAArgInst(VAArgInst &I);
111
  void visitIndirectBrInst(IndirectBrInst &I);
112
  void visitExtractElementInst(ExtractElementInst &I);
113
  void visitInsertElementInst(InsertElementInst &I);
114
  void visitUnreachableInst(UnreachableInst &I);
115
116
  Value *findValue(Value *V, bool OffsetOk) const;
117
  Value *findValueImpl(Value *V, bool OffsetOk,
118
                       SmallPtrSetImpl<Value *> &Visited) const;
119
120
public:
121
  Module *Mod;
122
  const DataLayout *DL;
123
  AliasAnalysis *AA;
124
  AssumptionCache *AC;
125
  DominatorTree *DT;
126
  TargetLibraryInfo *TLI;
127
128
  std::string Messages;
129
  raw_string_ostream MessagesStr;
130
131
  Lint(Module *Mod, const DataLayout *DL, AliasAnalysis *AA,
132
       AssumptionCache *AC, DominatorTree *DT, TargetLibraryInfo *TLI)
133
      : Mod(Mod), DL(DL), AA(AA), AC(AC), DT(DT), TLI(TLI),
134
0
        MessagesStr(Messages) {}
135
136
0
  void WriteValues(ArrayRef<const Value *> Vs) {
137
0
    for (const Value *V : Vs) {
138
0
      if (!V)
139
0
        continue;
140
0
      if (isa<Instruction>(V)) {
141
0
        MessagesStr << *V << '\n';
142
0
      } else {
143
0
        V->printAsOperand(MessagesStr, true, Mod);
144
0
        MessagesStr << '\n';
145
0
      }
146
0
    }
147
0
  }
148
149
  /// A check failed, so printout out the condition and the message.
150
  ///
151
  /// This provides a nice place to put a breakpoint if you want to see why
152
  /// something is not correct.
153
0
  void CheckFailed(const Twine &Message) { MessagesStr << Message << '\n'; }
154
155
  /// A check failed (with values to print).
156
  ///
157
  /// This calls the Message-only version so that the above is easier to set
158
  /// a breakpoint on.
159
  template <typename T1, typename... Ts>
160
0
  void CheckFailed(const Twine &Message, const T1 &V1, const Ts &... Vs) {
161
0
    CheckFailed(Message);
162
0
    WriteValues({V1, Vs...});
163
0
  }
Unexecuted instantiation: Lint.cpp:void (anonymous namespace)::Lint::CheckFailed<llvm::Function*>(llvm::Twine const&, llvm::Function* const&)
Unexecuted instantiation: Lint.cpp:void (anonymous namespace)::Lint::CheckFailed<llvm::ReturnInst*>(llvm::Twine const&, llvm::ReturnInst* const&)
Unexecuted instantiation: Lint.cpp:void (anonymous namespace)::Lint::CheckFailed<llvm::Instruction*>(llvm::Twine const&, llvm::Instruction* const&)
Unexecuted instantiation: Lint.cpp:void (anonymous namespace)::Lint::CheckFailed<llvm::IndirectBrInst*>(llvm::Twine const&, llvm::IndirectBrInst* const&)
Unexecuted instantiation: Lint.cpp:void (anonymous namespace)::Lint::CheckFailed<llvm::CallBase*>(llvm::Twine const&, llvm::CallBase* const&)
Unexecuted instantiation: Lint.cpp:void (anonymous namespace)::Lint::CheckFailed<llvm::UnreachableInst*>(llvm::Twine const&, llvm::UnreachableInst* const&)
Unexecuted instantiation: Lint.cpp:void (anonymous namespace)::Lint::CheckFailed<llvm::BinaryOperator*>(llvm::Twine const&, llvm::BinaryOperator* const&)
Unexecuted instantiation: Lint.cpp:void (anonymous namespace)::Lint::CheckFailed<llvm::AllocaInst*>(llvm::Twine const&, llvm::AllocaInst* const&)
Unexecuted instantiation: Lint.cpp:void (anonymous namespace)::Lint::CheckFailed<llvm::ExtractElementInst*>(llvm::Twine const&, llvm::ExtractElementInst* const&)
Unexecuted instantiation: Lint.cpp:void (anonymous namespace)::Lint::CheckFailed<llvm::InsertElementInst*>(llvm::Twine const&, llvm::InsertElementInst* const&)
164
};
165
} // end anonymous namespace
166
167
// Check - We know that cond should be true, if not print an error message.
168
#define Check(C, ...)                                                          \
169
0
  do {                                                                         \
170
0
    if (!(C)) {                                                                \
171
0
      CheckFailed(__VA_ARGS__);                                                \
172
0
      return;                                                                  \
173
0
    }                                                                          \
174
0
  } while (false)
175
176
0
void Lint::visitFunction(Function &F) {
177
  // This isn't undefined behavior, it's just a little unusual, and it's a
178
  // fairly common mistake to neglect to name a function.
179
0
  Check(F.hasName() || F.hasLocalLinkage(),
180
0
        "Unusual: Unnamed function with non-local linkage", &F);
181
182
  // TODO: Check for irreducible control flow.
183
0
}
184
185
0
void Lint::visitCallBase(CallBase &I) {
186
0
  Value *Callee = I.getCalledOperand();
187
188
0
  visitMemoryReference(I, MemoryLocation::getAfter(Callee), std::nullopt,
189
0
                       nullptr, MemRef::Callee);
190
191
0
  if (Function *F = dyn_cast<Function>(findValue(Callee,
192
0
                                                 /*OffsetOk=*/false))) {
193
0
    Check(I.getCallingConv() == F->getCallingConv(),
194
0
          "Undefined behavior: Caller and callee calling convention differ",
195
0
          &I);
196
197
0
    FunctionType *FT = F->getFunctionType();
198
0
    unsigned NumActualArgs = I.arg_size();
199
200
0
    Check(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs
201
0
                         : FT->getNumParams() == NumActualArgs,
202
0
          "Undefined behavior: Call argument count mismatches callee "
203
0
          "argument count",
204
0
          &I);
205
206
0
    Check(FT->getReturnType() == I.getType(),
207
0
          "Undefined behavior: Call return type mismatches "
208
0
          "callee return type",
209
0
          &I);
210
211
    // Check argument types (in case the callee was casted) and attributes.
212
    // TODO: Verify that caller and callee attributes are compatible.
213
0
    Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end();
214
0
    auto AI = I.arg_begin(), AE = I.arg_end();
215
0
    for (; AI != AE; ++AI) {
216
0
      Value *Actual = *AI;
217
0
      if (PI != PE) {
218
0
        Argument *Formal = &*PI++;
219
0
        Check(Formal->getType() == Actual->getType(),
220
0
              "Undefined behavior: Call argument type mismatches "
221
0
              "callee parameter type",
222
0
              &I);
223
224
        // Check that noalias arguments don't alias other arguments. This is
225
        // not fully precise because we don't know the sizes of the dereferenced
226
        // memory regions.
227
0
        if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) {
228
0
          AttributeList PAL = I.getAttributes();
229
0
          unsigned ArgNo = 0;
230
0
          for (auto *BI = I.arg_begin(); BI != AE; ++BI, ++ArgNo) {
231
            // Skip ByVal arguments since they will be memcpy'd to the callee's
232
            // stack so we're not really passing the pointer anyway.
233
0
            if (PAL.hasParamAttr(ArgNo, Attribute::ByVal))
234
0
              continue;
235
            // If both arguments are readonly, they have no dependence.
236
0
            if (Formal->onlyReadsMemory() && I.onlyReadsMemory(ArgNo))
237
0
              continue;
238
            // Skip readnone arguments since those are guaranteed not to be
239
            // dereferenced anyway.
240
0
            if (I.doesNotAccessMemory(ArgNo))
241
0
              continue;
242
0
            if (AI != BI && (*BI)->getType()->isPointerTy()) {
243
0
              AliasResult Result = AA->alias(*AI, *BI);
244
0
              Check(Result != AliasResult::MustAlias &&
245
0
                        Result != AliasResult::PartialAlias,
246
0
                    "Unusual: noalias argument aliases another argument", &I);
247
0
            }
248
0
          }
249
0
        }
250
251
        // Check that an sret argument points to valid memory.
252
0
        if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) {
253
0
          Type *Ty = Formal->getParamStructRetType();
254
0
          MemoryLocation Loc(
255
0
              Actual, LocationSize::precise(DL->getTypeStoreSize(Ty)));
256
0
          visitMemoryReference(I, Loc, DL->getABITypeAlign(Ty), Ty,
257
0
                               MemRef::Read | MemRef::Write);
258
0
        }
259
0
      }
260
0
    }
261
0
  }
262
263
0
  if (const auto *CI = dyn_cast<CallInst>(&I)) {
264
0
    if (CI->isTailCall()) {
265
0
      const AttributeList &PAL = CI->getAttributes();
266
0
      unsigned ArgNo = 0;
267
0
      for (Value *Arg : I.args()) {
268
        // Skip ByVal arguments since they will be memcpy'd to the callee's
269
        // stack anyway.
270
0
        if (PAL.hasParamAttr(ArgNo++, Attribute::ByVal))
271
0
          continue;
272
0
        Value *Obj = findValue(Arg, /*OffsetOk=*/true);
273
0
        Check(!isa<AllocaInst>(Obj),
274
0
              "Undefined behavior: Call with \"tail\" keyword references "
275
0
              "alloca",
276
0
              &I);
277
0
      }
278
0
    }
279
0
  }
280
281
0
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I))
282
0
    switch (II->getIntrinsicID()) {
283
0
    default:
284
0
      break;
285
286
      // TODO: Check more intrinsics
287
288
0
    case Intrinsic::memcpy: {
289
0
      MemCpyInst *MCI = cast<MemCpyInst>(&I);
290
0
      visitMemoryReference(I, MemoryLocation::getForDest(MCI),
291
0
                           MCI->getDestAlign(), nullptr, MemRef::Write);
292
0
      visitMemoryReference(I, MemoryLocation::getForSource(MCI),
293
0
                           MCI->getSourceAlign(), nullptr, MemRef::Read);
294
295
      // Check that the memcpy arguments don't overlap. The AliasAnalysis API
296
      // isn't expressive enough for what we really want to do. Known partial
297
      // overlap is not distinguished from the case where nothing is known.
298
0
      auto Size = LocationSize::afterPointer();
299
0
      if (const ConstantInt *Len =
300
0
              dyn_cast<ConstantInt>(findValue(MCI->getLength(),
301
0
                                              /*OffsetOk=*/false)))
302
0
        if (Len->getValue().isIntN(32))
303
0
          Size = LocationSize::precise(Len->getValue().getZExtValue());
304
0
      Check(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) !=
305
0
                AliasResult::MustAlias,
306
0
            "Undefined behavior: memcpy source and destination overlap", &I);
307
0
      break;
308
0
    }
309
0
    case Intrinsic::memcpy_inline: {
310
0
      MemCpyInlineInst *MCII = cast<MemCpyInlineInst>(&I);
311
0
      const uint64_t Size = MCII->getLength()->getValue().getLimitedValue();
312
0
      visitMemoryReference(I, MemoryLocation::getForDest(MCII),
313
0
                           MCII->getDestAlign(), nullptr, MemRef::Write);
314
0
      visitMemoryReference(I, MemoryLocation::getForSource(MCII),
315
0
                           MCII->getSourceAlign(), nullptr, MemRef::Read);
316
317
      // Check that the memcpy arguments don't overlap. The AliasAnalysis API
318
      // isn't expressive enough for what we really want to do. Known partial
319
      // overlap is not distinguished from the case where nothing is known.
320
0
      const LocationSize LS = LocationSize::precise(Size);
321
0
      Check(AA->alias(MCII->getSource(), LS, MCII->getDest(), LS) !=
322
0
                AliasResult::MustAlias,
323
0
            "Undefined behavior: memcpy source and destination overlap", &I);
324
0
      break;
325
0
    }
326
0
    case Intrinsic::memmove: {
327
0
      MemMoveInst *MMI = cast<MemMoveInst>(&I);
328
0
      visitMemoryReference(I, MemoryLocation::getForDest(MMI),
329
0
                           MMI->getDestAlign(), nullptr, MemRef::Write);
330
0
      visitMemoryReference(I, MemoryLocation::getForSource(MMI),
331
0
                           MMI->getSourceAlign(), nullptr, MemRef::Read);
332
0
      break;
333
0
    }
334
0
    case Intrinsic::memset: {
335
0
      MemSetInst *MSI = cast<MemSetInst>(&I);
336
0
      visitMemoryReference(I, MemoryLocation::getForDest(MSI),
337
0
                           MSI->getDestAlign(), nullptr, MemRef::Write);
338
0
      break;
339
0
    }
340
0
    case Intrinsic::memset_inline: {
341
0
      MemSetInlineInst *MSII = cast<MemSetInlineInst>(&I);
342
0
      visitMemoryReference(I, MemoryLocation::getForDest(MSII),
343
0
                           MSII->getDestAlign(), nullptr, MemRef::Write);
344
0
      break;
345
0
    }
346
347
0
    case Intrinsic::vastart:
348
0
      Check(I.getParent()->getParent()->isVarArg(),
349
0
            "Undefined behavior: va_start called in a non-varargs function",
350
0
            &I);
351
352
0
      visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
353
0
                           std::nullopt, nullptr, MemRef::Read | MemRef::Write);
354
0
      break;
355
0
    case Intrinsic::vacopy:
356
0
      visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
357
0
                           std::nullopt, nullptr, MemRef::Write);
358
0
      visitMemoryReference(I, MemoryLocation::getForArgument(&I, 1, TLI),
359
0
                           std::nullopt, nullptr, MemRef::Read);
360
0
      break;
361
0
    case Intrinsic::vaend:
362
0
      visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
363
0
                           std::nullopt, nullptr, MemRef::Read | MemRef::Write);
364
0
      break;
365
366
0
    case Intrinsic::stackrestore:
367
      // Stackrestore doesn't read or write memory, but it sets the
368
      // stack pointer, which the compiler may read from or write to
369
      // at any time, so check it for both readability and writeability.
370
0
      visitMemoryReference(I, MemoryLocation::getForArgument(&I, 0, TLI),
371
0
                           std::nullopt, nullptr, MemRef::Read | MemRef::Write);
372
0
      break;
373
0
    case Intrinsic::get_active_lane_mask:
374
0
      if (auto *TripCount = dyn_cast<ConstantInt>(I.getArgOperand(1)))
375
0
        Check(!TripCount->isZero(),
376
0
              "get_active_lane_mask: operand #2 "
377
0
              "must be greater than 0",
378
0
              &I);
379
0
      break;
380
0
    }
381
0
}
382
383
0
void Lint::visitReturnInst(ReturnInst &I) {
384
0
  Function *F = I.getParent()->getParent();
385
0
  Check(!F->doesNotReturn(),
386
0
        "Unusual: Return statement in function with noreturn attribute", &I);
387
388
0
  if (Value *V = I.getReturnValue()) {
389
0
    Value *Obj = findValue(V, /*OffsetOk=*/true);
390
0
    Check(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I);
391
0
  }
392
0
}
393
394
// TODO: Check that the reference is in bounds.
395
// TODO: Check readnone/readonly function attributes.
396
void Lint::visitMemoryReference(Instruction &I, const MemoryLocation &Loc,
397
0
                                MaybeAlign Align, Type *Ty, unsigned Flags) {
398
  // If no memory is being referenced, it doesn't matter if the pointer
399
  // is valid.
400
0
  if (Loc.Size.isZero())
401
0
    return;
402
403
0
  Value *Ptr = const_cast<Value *>(Loc.Ptr);
404
0
  Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true);
405
0
  Check(!isa<ConstantPointerNull>(UnderlyingObject),
406
0
        "Undefined behavior: Null pointer dereference", &I);
407
0
  Check(!isa<UndefValue>(UnderlyingObject),
408
0
        "Undefined behavior: Undef pointer dereference", &I);
409
0
  Check(!isa<ConstantInt>(UnderlyingObject) ||
410
0
            !cast<ConstantInt>(UnderlyingObject)->isMinusOne(),
411
0
        "Unusual: All-ones pointer dereference", &I);
412
0
  Check(!isa<ConstantInt>(UnderlyingObject) ||
413
0
            !cast<ConstantInt>(UnderlyingObject)->isOne(),
414
0
        "Unusual: Address one pointer dereference", &I);
415
416
0
  if (Flags & MemRef::Write) {
417
0
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject))
418
0
      Check(!GV->isConstant(), "Undefined behavior: Write to read-only memory",
419
0
            &I);
420
0
    Check(!isa<Function>(UnderlyingObject) &&
421
0
              !isa<BlockAddress>(UnderlyingObject),
422
0
          "Undefined behavior: Write to text section", &I);
423
0
  }
424
0
  if (Flags & MemRef::Read) {
425
0
    Check(!isa<Function>(UnderlyingObject), "Unusual: Load from function body",
426
0
          &I);
427
0
    Check(!isa<BlockAddress>(UnderlyingObject),
428
0
          "Undefined behavior: Load from block address", &I);
429
0
  }
430
0
  if (Flags & MemRef::Callee) {
431
0
    Check(!isa<BlockAddress>(UnderlyingObject),
432
0
          "Undefined behavior: Call to block address", &I);
433
0
  }
434
0
  if (Flags & MemRef::Branchee) {
435
0
    Check(!isa<Constant>(UnderlyingObject) ||
436
0
              isa<BlockAddress>(UnderlyingObject),
437
0
          "Undefined behavior: Branch to non-blockaddress", &I);
438
0
  }
439
440
  // Check for buffer overflows and misalignment.
441
  // Only handles memory references that read/write something simple like an
442
  // alloca instruction or a global variable.
443
0
  int64_t Offset = 0;
444
0
  if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, *DL)) {
445
    // OK, so the access is to a constant offset from Ptr.  Check that Ptr is
446
    // something we can handle and if so extract the size of this base object
447
    // along with its alignment.
448
0
    uint64_t BaseSize = MemoryLocation::UnknownSize;
449
0
    MaybeAlign BaseAlign;
450
451
0
    if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) {
452
0
      Type *ATy = AI->getAllocatedType();
453
0
      if (!AI->isArrayAllocation() && ATy->isSized())
454
0
        BaseSize = DL->getTypeAllocSize(ATy);
455
0
      BaseAlign = AI->getAlign();
456
0
    } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) {
457
      // If the global may be defined differently in another compilation unit
458
      // then don't warn about funky memory accesses.
459
0
      if (GV->hasDefinitiveInitializer()) {
460
0
        Type *GTy = GV->getValueType();
461
0
        if (GTy->isSized())
462
0
          BaseSize = DL->getTypeAllocSize(GTy);
463
0
        BaseAlign = GV->getAlign();
464
0
        if (!BaseAlign && GTy->isSized())
465
0
          BaseAlign = DL->getABITypeAlign(GTy);
466
0
      }
467
0
    }
468
469
    // Accesses from before the start or after the end of the object are not
470
    // defined.
471
0
    Check(!Loc.Size.hasValue() || BaseSize == MemoryLocation::UnknownSize ||
472
0
              (Offset >= 0 && Offset + Loc.Size.getValue() <= BaseSize),
473
0
          "Undefined behavior: Buffer overflow", &I);
474
475
    // Accesses that say that the memory is more aligned than it is are not
476
    // defined.
477
0
    if (!Align && Ty && Ty->isSized())
478
0
      Align = DL->getABITypeAlign(Ty);
479
0
    if (BaseAlign && Align)
480
0
      Check(*Align <= commonAlignment(*BaseAlign, Offset),
481
0
            "Undefined behavior: Memory reference address is misaligned", &I);
482
0
  }
483
0
}
484
485
0
void Lint::visitLoadInst(LoadInst &I) {
486
0
  visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(), I.getType(),
487
0
                       MemRef::Read);
488
0
}
489
490
0
void Lint::visitStoreInst(StoreInst &I) {
491
0
  visitMemoryReference(I, MemoryLocation::get(&I), I.getAlign(),
492
0
                       I.getOperand(0)->getType(), MemRef::Write);
493
0
}
494
495
0
void Lint::visitXor(BinaryOperator &I) {
496
0
  Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
497
0
        "Undefined result: xor(undef, undef)", &I);
498
0
}
499
500
0
void Lint::visitSub(BinaryOperator &I) {
501
0
  Check(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)),
502
0
        "Undefined result: sub(undef, undef)", &I);
503
0
}
504
505
0
void Lint::visitLShr(BinaryOperator &I) {
506
0
  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1),
507
0
                                                        /*OffsetOk=*/false)))
508
0
    Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
509
0
          "Undefined result: Shift count out of range", &I);
510
0
}
511
512
0
void Lint::visitAShr(BinaryOperator &I) {
513
0
  if (ConstantInt *CI =
514
0
          dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
515
0
    Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
516
0
          "Undefined result: Shift count out of range", &I);
517
0
}
518
519
0
void Lint::visitShl(BinaryOperator &I) {
520
0
  if (ConstantInt *CI =
521
0
          dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false)))
522
0
    Check(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()),
523
0
          "Undefined result: Shift count out of range", &I);
524
0
}
525
526
static bool isZero(Value *V, const DataLayout &DL, DominatorTree *DT,
527
0
                   AssumptionCache *AC) {
528
  // Assume undef could be zero.
529
0
  if (isa<UndefValue>(V))
530
0
    return true;
531
532
0
  VectorType *VecTy = dyn_cast<VectorType>(V->getType());
533
0
  if (!VecTy) {
534
0
    KnownBits Known =
535
0
        computeKnownBits(V, DL, 0, AC, dyn_cast<Instruction>(V), DT);
536
0
    return Known.isZero();
537
0
  }
538
539
  // Per-component check doesn't work with zeroinitializer
540
0
  Constant *C = dyn_cast<Constant>(V);
541
0
  if (!C)
542
0
    return false;
543
544
0
  if (C->isZeroValue())
545
0
    return true;
546
547
  // For a vector, KnownZero will only be true if all values are zero, so check
548
  // this per component
549
0
  for (unsigned I = 0, N = cast<FixedVectorType>(VecTy)->getNumElements();
550
0
       I != N; ++I) {
551
0
    Constant *Elem = C->getAggregateElement(I);
552
0
    if (isa<UndefValue>(Elem))
553
0
      return true;
554
555
0
    KnownBits Known = computeKnownBits(Elem, DL);
556
0
    if (Known.isZero())
557
0
      return true;
558
0
  }
559
560
0
  return false;
561
0
}
562
563
0
void Lint::visitSDiv(BinaryOperator &I) {
564
0
  Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
565
0
        "Undefined behavior: Division by zero", &I);
566
0
}
567
568
0
void Lint::visitUDiv(BinaryOperator &I) {
569
0
  Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
570
0
        "Undefined behavior: Division by zero", &I);
571
0
}
572
573
0
void Lint::visitSRem(BinaryOperator &I) {
574
0
  Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
575
0
        "Undefined behavior: Division by zero", &I);
576
0
}
577
578
0
void Lint::visitURem(BinaryOperator &I) {
579
0
  Check(!isZero(I.getOperand(1), I.getModule()->getDataLayout(), DT, AC),
580
0
        "Undefined behavior: Division by zero", &I);
581
0
}
582
583
0
void Lint::visitAllocaInst(AllocaInst &I) {
584
0
  if (isa<ConstantInt>(I.getArraySize()))
585
    // This isn't undefined behavior, it's just an obvious pessimization.
586
0
    Check(&I.getParent()->getParent()->getEntryBlock() == I.getParent(),
587
0
          "Pessimization: Static alloca outside of entry block", &I);
588
589
  // TODO: Check for an unusual size (MSB set?)
590
0
}
591
592
0
void Lint::visitVAArgInst(VAArgInst &I) {
593
0
  visitMemoryReference(I, MemoryLocation::get(&I), std::nullopt, nullptr,
594
0
                       MemRef::Read | MemRef::Write);
595
0
}
596
597
0
void Lint::visitIndirectBrInst(IndirectBrInst &I) {
598
0
  visitMemoryReference(I, MemoryLocation::getAfter(I.getAddress()),
599
0
                       std::nullopt, nullptr, MemRef::Branchee);
600
601
0
  Check(I.getNumDestinations() != 0,
602
0
        "Undefined behavior: indirectbr with no destinations", &I);
603
0
}
604
605
0
void Lint::visitExtractElementInst(ExtractElementInst &I) {
606
0
  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(),
607
0
                                                        /*OffsetOk=*/false)))
608
0
    Check(
609
0
        CI->getValue().ult(
610
0
            cast<FixedVectorType>(I.getVectorOperandType())->getNumElements()),
611
0
        "Undefined result: extractelement index out of range", &I);
612
0
}
613
614
0
void Lint::visitInsertElementInst(InsertElementInst &I) {
615
0
  if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2),
616
0
                                                        /*OffsetOk=*/false)))
617
0
    Check(CI->getValue().ult(
618
0
              cast<FixedVectorType>(I.getType())->getNumElements()),
619
0
          "Undefined result: insertelement index out of range", &I);
620
0
}
621
622
0
void Lint::visitUnreachableInst(UnreachableInst &I) {
623
  // This isn't undefined behavior, it's merely suspicious.
624
0
  Check(&I == &I.getParent()->front() ||
625
0
            std::prev(I.getIterator())->mayHaveSideEffects(),
626
0
        "Unusual: unreachable immediately preceded by instruction without "
627
0
        "side effects",
628
0
        &I);
629
0
}
630
631
/// findValue - Look through bitcasts and simple memory reference patterns
632
/// to identify an equivalent, but more informative, value.  If OffsetOk
633
/// is true, look through getelementptrs with non-zero offsets too.
634
///
635
/// Most analysis passes don't require this logic, because instcombine
636
/// will simplify most of these kinds of things away. But it's a goal of
637
/// this Lint pass to be useful even on non-optimized IR.
638
0
Value *Lint::findValue(Value *V, bool OffsetOk) const {
639
0
  SmallPtrSet<Value *, 4> Visited;
640
0
  return findValueImpl(V, OffsetOk, Visited);
641
0
}
642
643
/// findValueImpl - Implementation helper for findValue.
644
Value *Lint::findValueImpl(Value *V, bool OffsetOk,
645
0
                           SmallPtrSetImpl<Value *> &Visited) const {
646
  // Detect self-referential values.
647
0
  if (!Visited.insert(V).second)
648
0
    return UndefValue::get(V->getType());
649
650
  // TODO: Look through sext or zext cast, when the result is known to
651
  // be interpreted as signed or unsigned, respectively.
652
  // TODO: Look through eliminable cast pairs.
653
  // TODO: Look through calls with unique return values.
654
  // TODO: Look through vector insert/extract/shuffle.
655
0
  V = OffsetOk ? getUnderlyingObject(V) : V->stripPointerCasts();
656
0
  if (LoadInst *L = dyn_cast<LoadInst>(V)) {
657
0
    BasicBlock::iterator BBI = L->getIterator();
658
0
    BasicBlock *BB = L->getParent();
659
0
    SmallPtrSet<BasicBlock *, 4> VisitedBlocks;
660
0
    for (;;) {
661
0
      if (!VisitedBlocks.insert(BB).second)
662
0
        break;
663
0
      if (Value *U =
664
0
              FindAvailableLoadedValue(L, BB, BBI, DefMaxInstsToScan, AA))
665
0
        return findValueImpl(U, OffsetOk, Visited);
666
0
      if (BBI != BB->begin())
667
0
        break;
668
0
      BB = BB->getUniquePredecessor();
669
0
      if (!BB)
670
0
        break;
671
0
      BBI = BB->end();
672
0
    }
673
0
  } else if (PHINode *PN = dyn_cast<PHINode>(V)) {
674
0
    if (Value *W = PN->hasConstantValue())
675
0
      return findValueImpl(W, OffsetOk, Visited);
676
0
  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
677
0
    if (CI->isNoopCast(*DL))
678
0
      return findValueImpl(CI->getOperand(0), OffsetOk, Visited);
679
0
  } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) {
680
0
    if (Value *W =
681
0
            FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices()))
682
0
      if (W != V)
683
0
        return findValueImpl(W, OffsetOk, Visited);
684
0
  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
685
    // Same as above, but for ConstantExpr instead of Instruction.
686
0
    if (Instruction::isCast(CE->getOpcode())) {
687
0
      if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()),
688
0
                               CE->getOperand(0)->getType(), CE->getType(),
689
0
                               *DL))
690
0
        return findValueImpl(CE->getOperand(0), OffsetOk, Visited);
691
0
    }
692
0
  }
693
694
  // As a last resort, try SimplifyInstruction or constant folding.
695
0
  if (Instruction *Inst = dyn_cast<Instruction>(V)) {
696
0
    if (Value *W = simplifyInstruction(Inst, {*DL, TLI, DT, AC}))
697
0
      return findValueImpl(W, OffsetOk, Visited);
698
0
  } else if (auto *C = dyn_cast<Constant>(V)) {
699
0
    Value *W = ConstantFoldConstant(C, *DL, TLI);
700
0
    if (W != V)
701
0
      return findValueImpl(W, OffsetOk, Visited);
702
0
  }
703
704
0
  return V;
705
0
}
706
707
0
PreservedAnalyses LintPass::run(Function &F, FunctionAnalysisManager &AM) {
708
0
  auto *Mod = F.getParent();
709
0
  auto *DL = &F.getParent()->getDataLayout();
710
0
  auto *AA = &AM.getResult<AAManager>(F);
711
0
  auto *AC = &AM.getResult<AssumptionAnalysis>(F);
712
0
  auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
713
0
  auto *TLI = &AM.getResult<TargetLibraryAnalysis>(F);
714
0
  Lint L(Mod, DL, AA, AC, DT, TLI);
715
0
  L.visit(F);
716
0
  dbgs() << L.MessagesStr.str();
717
0
  return PreservedAnalyses::all();
718
0
}
719
720
//===----------------------------------------------------------------------===//
721
//  Implement the public interfaces to this file...
722
//===----------------------------------------------------------------------===//
723
724
/// lintFunction - Check a function for errors, printing messages on stderr.
725
///
726
0
void llvm::lintFunction(const Function &f) {
727
0
  Function &F = const_cast<Function &>(f);
728
0
  assert(!F.isDeclaration() && "Cannot lint external functions");
729
730
0
  FunctionAnalysisManager FAM;
731
0
  FAM.registerPass([&] { return TargetLibraryAnalysis(); });
732
0
  FAM.registerPass([&] { return DominatorTreeAnalysis(); });
733
0
  FAM.registerPass([&] { return AssumptionAnalysis(); });
734
0
  FAM.registerPass([&] {
735
0
    AAManager AA;
736
0
    AA.registerFunctionAnalysis<BasicAA>();
737
0
    AA.registerFunctionAnalysis<ScopedNoAliasAA>();
738
0
    AA.registerFunctionAnalysis<TypeBasedAA>();
739
0
    return AA;
740
0
  });
741
0
  LintPass().run(F, FAM);
742
0
}
743
744
/// lintModule - Check a module for errors, printing messages on stderr.
745
///
746
0
void llvm::lintModule(const Module &M) {
747
0
  for (const Function &F : M) {
748
0
    if (!F.isDeclaration())
749
0
      lintFunction(F);
750
0
  }
751
0
}