Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/llvm/lib/Analysis/MemoryDependenceAnalysis.cpp
Line
Count
Source (jump to first uncovered line)
1
//===- MemoryDependenceAnalysis.cpp - Mem Deps Implementation -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements an analysis that determines, for a given memory
10
// operation, what preceding memory operations it depends on.  It builds on
11
// alias analysis information, and tries to provide a lazy, caching interface to
12
// a common kind of alias information query.
13
//
14
//===----------------------------------------------------------------------===//
15
16
#include "llvm/Analysis/MemoryDependenceAnalysis.h"
17
#include "llvm/ADT/DenseMap.h"
18
#include "llvm/ADT/STLExtras.h"
19
#include "llvm/ADT/SmallPtrSet.h"
20
#include "llvm/ADT/SmallVector.h"
21
#include "llvm/ADT/Statistic.h"
22
#include "llvm/Analysis/AliasAnalysis.h"
23
#include "llvm/Analysis/AssumptionCache.h"
24
#include "llvm/Analysis/MemoryBuiltins.h"
25
#include "llvm/Analysis/MemoryLocation.h"
26
#include "llvm/Analysis/PHITransAddr.h"
27
#include "llvm/Analysis/TargetLibraryInfo.h"
28
#include "llvm/Analysis/ValueTracking.h"
29
#include "llvm/IR/BasicBlock.h"
30
#include "llvm/IR/Dominators.h"
31
#include "llvm/IR/Function.h"
32
#include "llvm/IR/InstrTypes.h"
33
#include "llvm/IR/Instruction.h"
34
#include "llvm/IR/Instructions.h"
35
#include "llvm/IR/IntrinsicInst.h"
36
#include "llvm/IR/LLVMContext.h"
37
#include "llvm/IR/Metadata.h"
38
#include "llvm/IR/Module.h"
39
#include "llvm/IR/PredIteratorCache.h"
40
#include "llvm/IR/Type.h"
41
#include "llvm/IR/Use.h"
42
#include "llvm/IR/Value.h"
43
#include "llvm/InitializePasses.h"
44
#include "llvm/Pass.h"
45
#include "llvm/Support/AtomicOrdering.h"
46
#include "llvm/Support/Casting.h"
47
#include "llvm/Support/CommandLine.h"
48
#include "llvm/Support/Compiler.h"
49
#include "llvm/Support/Debug.h"
50
#include <algorithm>
51
#include <cassert>
52
#include <iterator>
53
#include <utility>
54
55
using namespace llvm;
56
57
#define DEBUG_TYPE "memdep"
58
59
STATISTIC(NumCacheNonLocal, "Number of fully cached non-local responses");
60
STATISTIC(NumCacheDirtyNonLocal, "Number of dirty cached non-local responses");
61
STATISTIC(NumUncacheNonLocal, "Number of uncached non-local responses");
62
63
STATISTIC(NumCacheNonLocalPtr,
64
          "Number of fully cached non-local ptr responses");
65
STATISTIC(NumCacheDirtyNonLocalPtr,
66
          "Number of cached, but dirty, non-local ptr responses");
67
STATISTIC(NumUncacheNonLocalPtr, "Number of uncached non-local ptr responses");
68
STATISTIC(NumCacheCompleteNonLocalPtr,
69
          "Number of block queries that were completely cached");
70
71
// Limit for the number of instructions to scan in a block.
72
73
static cl::opt<unsigned> BlockScanLimit(
74
    "memdep-block-scan-limit", cl::Hidden, cl::init(100),
75
    cl::desc("The number of instructions to scan in a block in memory "
76
             "dependency analysis (default = 100)"));
77
78
static cl::opt<unsigned>
79
    BlockNumberLimit("memdep-block-number-limit", cl::Hidden, cl::init(200),
80
                     cl::desc("The number of blocks to scan during memory "
81
                              "dependency analysis (default = 200)"));
82
83
// Limit on the number of memdep results to process.
84
static const unsigned int NumResultsLimit = 100;
85
86
/// This is a helper function that removes Val from 'Inst's set in ReverseMap.
87
///
88
/// If the set becomes empty, remove Inst's entry.
89
template <typename KeyTy>
90
static void
91
RemoveFromReverseMap(DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>> &ReverseMap,
92
24.2k
                     Instruction *Inst, KeyTy Val) {
93
24.2k
  typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
94
24.2k
      ReverseMap.find(Inst);
95
24.2k
  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
96
0
  bool Found = InstIt->second.erase(Val);
97
24.2k
  assert(Found && "Invalid reverse map!");
98
0
  (void)Found;
99
24.2k
  if (InstIt->second.empty())
100
19.3k
    ReverseMap.erase(InstIt);
101
24.2k
}
MemoryDependenceAnalysis.cpp:void RemoveFromReverseMap<llvm::Instruction*>(llvm::DenseMap<llvm::Instruction*, llvm::SmallPtrSet<llvm::Instruction*, 4u>, llvm::DenseMapInfo<llvm::Instruction*, void>, llvm::detail::DenseMapPair<llvm::Instruction*, llvm::SmallPtrSet<llvm::Instruction*, 4u> > >&, llvm::Instruction*, llvm::Instruction*)
Line
Count
Source
92
10.2k
                     Instruction *Inst, KeyTy Val) {
93
10.2k
  typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
94
10.2k
      ReverseMap.find(Inst);
95
10.2k
  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
96
0
  bool Found = InstIt->second.erase(Val);
97
10.2k
  assert(Found && "Invalid reverse map!");
98
0
  (void)Found;
99
10.2k
  if (InstIt->second.empty())
100
10.1k
    ReverseMap.erase(InstIt);
101
10.2k
}
MemoryDependenceAnalysis.cpp:void RemoveFromReverseMap<llvm::PointerIntPair<llvm::Value const*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value const*>, llvm::PointerIntPairInfo<llvm::Value const*, 1u, llvm::PointerLikeTypeTraits<llvm::Value const*> > > >(llvm::DenseMap<llvm::Instruction*, llvm::SmallPtrSet<llvm::PointerIntPair<llvm::Value const*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value const*>, llvm::PointerIntPairInfo<llvm::Value const*, 1u, llvm::PointerLikeTypeTraits<llvm::Value const*> > >, 4u>, llvm::DenseMapInfo<llvm::Instruction*, void>, llvm::detail::DenseMapPair<llvm::Instruction*, llvm::SmallPtrSet<llvm::PointerIntPair<llvm::Value const*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value const*>, llvm::PointerIntPairInfo<llvm::Value const*, 1u, llvm::PointerLikeTypeTraits<llvm::Value const*> > >, 4u> > >&, llvm::Instruction*, llvm::PointerIntPair<llvm::Value const*, 1u, bool, llvm::PointerLikeTypeTraits<llvm::Value const*>, llvm::PointerIntPairInfo<llvm::Value const*, 1u, llvm::PointerLikeTypeTraits<llvm::Value const*> > >)
Line
Count
Source
92
14.0k
                     Instruction *Inst, KeyTy Val) {
93
14.0k
  typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
94
14.0k
      ReverseMap.find(Inst);
95
14.0k
  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
96
0
  bool Found = InstIt->second.erase(Val);
97
14.0k
  assert(Found && "Invalid reverse map!");
98
0
  (void)Found;
99
14.0k
  if (InstIt->second.empty())
100
9.16k
    ReverseMap.erase(InstIt);
101
14.0k
}
MemoryDependenceAnalysis.cpp:void RemoveFromReverseMap<llvm::Value const*>(llvm::DenseMap<llvm::Instruction*, llvm::SmallPtrSet<llvm::Value const*, 4u>, llvm::DenseMapInfo<llvm::Instruction*, void>, llvm::detail::DenseMapPair<llvm::Instruction*, llvm::SmallPtrSet<llvm::Value const*, 4u> > >&, llvm::Instruction*, llvm::Value const*)
Line
Count
Source
92
1
                     Instruction *Inst, KeyTy Val) {
93
1
  typename DenseMap<Instruction *, SmallPtrSet<KeyTy, 4>>::iterator InstIt =
94
1
      ReverseMap.find(Inst);
95
1
  assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
96
0
  bool Found = InstIt->second.erase(Val);
97
1
  assert(Found && "Invalid reverse map!");
98
0
  (void)Found;
99
1
  if (InstIt->second.empty())
100
1
    ReverseMap.erase(InstIt);
101
1
}
102
103
/// If the given instruction references a specific memory location, fill in Loc
104
/// with the details, otherwise set Loc.Ptr to null.
105
///
106
/// Returns a ModRefInfo value describing the general behavior of the
107
/// instruction.
108
static ModRefInfo GetLocation(const Instruction *Inst, MemoryLocation &Loc,
109
25.9k
                              const TargetLibraryInfo &TLI) {
110
25.9k
  if (const LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
111
25.4k
    if (LI->isUnordered()) {
112
25.4k
      Loc = MemoryLocation::get(LI);
113
25.4k
      return ModRefInfo::Ref;
114
25.4k
    }
115
0
    if (LI->getOrdering() == AtomicOrdering::Monotonic) {
116
0
      Loc = MemoryLocation::get(LI);
117
0
      return ModRefInfo::ModRef;
118
0
    }
119
0
    Loc = MemoryLocation();
120
0
    return ModRefInfo::ModRef;
121
0
  }
122
123
501
  if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
124
76
    if (SI->isUnordered()) {
125
76
      Loc = MemoryLocation::get(SI);
126
76
      return ModRefInfo::Mod;
127
76
    }
128
0
    if (SI->getOrdering() == AtomicOrdering::Monotonic) {
129
0
      Loc = MemoryLocation::get(SI);
130
0
      return ModRefInfo::ModRef;
131
0
    }
132
0
    Loc = MemoryLocation();
133
0
    return ModRefInfo::ModRef;
134
0
  }
135
136
425
  if (const VAArgInst *V = dyn_cast<VAArgInst>(Inst)) {
137
0
    Loc = MemoryLocation::get(V);
138
0
    return ModRefInfo::ModRef;
139
0
  }
140
141
425
  if (const CallBase *CB = dyn_cast<CallBase>(Inst)) {
142
222
    if (Value *FreedOp = getFreedOperand(CB, &TLI)) {
143
      // calls to free() deallocate the entire structure
144
0
      Loc = MemoryLocation::getAfter(FreedOp);
145
0
      return ModRefInfo::Mod;
146
0
    }
147
222
  }
148
149
425
  if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
150
81
    switch (II->getIntrinsicID()) {
151
0
    case Intrinsic::lifetime_start:
152
0
    case Intrinsic::lifetime_end:
153
0
    case Intrinsic::invariant_start:
154
0
      Loc = MemoryLocation::getForArgument(II, 1, TLI);
155
      // These intrinsics don't really modify the memory, but returning Mod
156
      // will allow them to be handled conservatively.
157
0
      return ModRefInfo::Mod;
158
0
    case Intrinsic::invariant_end:
159
0
      Loc = MemoryLocation::getForArgument(II, 2, TLI);
160
      // These intrinsics don't really modify the memory, but returning Mod
161
      // will allow them to be handled conservatively.
162
0
      return ModRefInfo::Mod;
163
36
    case Intrinsic::masked_load:
164
36
      Loc = MemoryLocation::getForArgument(II, 0, TLI);
165
36
      return ModRefInfo::Ref;
166
45
    case Intrinsic::masked_store:
167
45
      Loc = MemoryLocation::getForArgument(II, 1, TLI);
168
45
      return ModRefInfo::Mod;
169
0
    default:
170
0
      break;
171
81
    }
172
81
  }
173
174
  // Otherwise, just do the coarse-grained thing that always works.
175
344
  if (Inst->mayWriteToMemory())
176
0
    return ModRefInfo::ModRef;
177
344
  if (Inst->mayReadFromMemory())
178
141
    return ModRefInfo::Ref;
179
203
  return ModRefInfo::NoModRef;
180
344
}
181
182
/// Private helper for finding the local dependencies of a call site.
183
MemDepResult MemoryDependenceResults::getCallDependencyFrom(
184
    CallBase *Call, bool isReadOnlyCall, BasicBlock::iterator ScanIt,
185
174
    BasicBlock *BB) {
186
174
  unsigned Limit = getDefaultBlockScanLimit();
187
188
  // Walk backwards through the block, looking for dependencies.
189
442
  while (ScanIt != BB->begin()) {
190
372
    Instruction *Inst = &*--ScanIt;
191
    // Debug intrinsics don't cause dependences and should not affect Limit
192
372
    if (isa<DbgInfoIntrinsic>(Inst))
193
0
      continue;
194
195
    // Limit the amount of scanning we do so we don't end up with quadratic
196
    // running time on extreme testcases.
197
372
    --Limit;
198
372
    if (!Limit)
199
0
      return MemDepResult::getUnknown();
200
201
    // If this inst is a memory op, get the pointer it accessed
202
372
    MemoryLocation Loc;
203
372
    ModRefInfo MR = GetLocation(Inst, Loc, TLI);
204
372
    if (Loc.Ptr) {
205
      // A simple instruction.
206
110
      if (isModOrRefSet(AA.getModRefInfo(Call, Loc)))
207
51
        return MemDepResult::getClobber(Inst);
208
59
      continue;
209
110
    }
210
211
262
    if (auto *CallB = dyn_cast<CallBase>(Inst)) {
212
      // If these two calls do not interfere, look past it.
213
59
      if (isNoModRef(AA.getModRefInfo(Call, CallB))) {
214
        // If the two calls are the same, return Inst as a Def, so that
215
        // Call can be found redundant and eliminated.
216
59
        if (isReadOnlyCall && !isModSet(MR) &&
217
59
            Call->isIdenticalToWhenDefined(CallB))
218
53
          return MemDepResult::getDef(Inst);
219
220
        // Otherwise if the two calls don't interact (e.g. CallB is readnone)
221
        // keep scanning.
222
6
        continue;
223
59
      } else
224
0
        return MemDepResult::getClobber(Inst);
225
59
    }
226
227
    // If we could not obtain a pointer for the instruction and the instruction
228
    // touches memory then assume that this is a dependency.
229
203
    if (isModOrRefSet(MR))
230
0
      return MemDepResult::getClobber(Inst);
231
203
  }
232
233
  // No dependence found.  If this is the entry block of the function, it is
234
  // unknown, otherwise it is non-local.
235
70
  if (BB != &BB->getParent()->getEntryBlock())
236
69
    return MemDepResult::getNonLocal();
237
1
  return MemDepResult::getNonFuncLocal();
238
70
}
239
240
MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
241
    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
242
    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
243
115k
    BatchAAResults &BatchAA) {
244
115k
  MemDepResult InvariantGroupDependency = MemDepResult::getUnknown();
245
115k
  if (QueryInst != nullptr) {
246
115k
    if (auto *LI = dyn_cast<LoadInst>(QueryInst)) {
247
115k
      InvariantGroupDependency = getInvariantGroupPointerDependency(LI, BB);
248
249
115k
      if (InvariantGroupDependency.isDef())
250
93
        return InvariantGroupDependency;
251
115k
    }
252
115k
  }
253
114k
  MemDepResult SimpleDep = getSimplePointerDependencyFrom(
254
114k
      MemLoc, isLoad, ScanIt, BB, QueryInst, Limit, BatchAA);
255
114k
  if (SimpleDep.isDef())
256
22.2k
    return SimpleDep;
257
  // Non-local invariant group dependency indicates there is non local Def
258
  // (it only returns nonLocal if it finds nonLocal def), which is better than
259
  // local clobber and everything else.
260
92.7k
  if (InvariantGroupDependency.isNonLocal())
261
25
    return InvariantGroupDependency;
262
263
92.7k
  assert(InvariantGroupDependency.isUnknown() &&
264
92.7k
         "InvariantGroupDependency should be only unknown at this point");
265
0
  return SimpleDep;
266
92.7k
}
267
268
MemDepResult MemoryDependenceResults::getPointerDependencyFrom(
269
    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
270
25.4k
    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit) {
271
25.4k
  BatchAAResults BatchAA(AA, &EII);
272
25.4k
  return getPointerDependencyFrom(MemLoc, isLoad, ScanIt, BB, QueryInst, Limit,
273
25.4k
                                  BatchAA);
274
25.4k
}
275
276
MemDepResult
277
MemoryDependenceResults::getInvariantGroupPointerDependency(LoadInst *LI,
278
115k
                                                            BasicBlock *BB) {
279
280
115k
  if (!LI->hasMetadata(LLVMContext::MD_invariant_group))
281
114k
    return MemDepResult::getUnknown();
282
283
  // Take the ptr operand after all casts and geps 0. This way we can search
284
  // cast graph down only.
285
260
  Value *LoadOperand = LI->getPointerOperand()->stripPointerCasts();
286
287
  // It's is not safe to walk the use list of global value, because function
288
  // passes aren't allowed to look outside their functions.
289
  // FIXME: this could be fixed by filtering instructions from outside
290
  // of current function.
291
260
  if (isa<GlobalValue>(LoadOperand))
292
16
    return MemDepResult::getUnknown();
293
294
  // Queue to process all pointers that are equivalent to load operand.
295
244
  SmallVector<const Value *, 8> LoadOperandsQueue;
296
244
  LoadOperandsQueue.push_back(LoadOperand);
297
298
244
  Instruction *ClosestDependency = nullptr;
299
  // Order of instructions in uses list is unpredictible. In order to always
300
  // get the same result, we will look for the closest dominance.
301
244
  auto GetClosestDependency = [this](Instruction *Best, Instruction *Other) {
302
121
    assert(Other && "Must call it with not null instruction");
303
121
    if (Best == nullptr || DT.dominates(Best, Other))
304
119
      return Other;
305
2
    return Best;
306
121
  };
307
308
  // FIXME: This loop is O(N^2) because dominates can be O(n) and in worst case
309
  // we will see all the instructions. This should be fixed in MSSA.
310
488
  while (!LoadOperandsQueue.empty()) {
311
244
    const Value *Ptr = LoadOperandsQueue.pop_back_val();
312
244
    assert(Ptr && !isa<GlobalValue>(Ptr) &&
313
244
           "Null or GlobalValue should not be inserted");
314
315
1.45k
    for (const Use &Us : Ptr->uses()) {
316
1.45k
      auto *U = dyn_cast<Instruction>(Us.getUser());
317
1.45k
      if (!U || U == LI || !DT.dominates(U, LI))
318
952
        continue;
319
320
      // Bitcast or gep with zeros are using Ptr. Add to queue to check it's
321
      // users.      U = bitcast Ptr
322
503
      if (isa<BitCastInst>(U)) {
323
0
        LoadOperandsQueue.push_back(U);
324
0
        continue;
325
0
      }
326
      // Gep with zeros is equivalent to bitcast.
327
      // FIXME: we are not sure if some bitcast should be canonicalized to gep 0
328
      // or gep 0 to bitcast because of SROA, so there are 2 forms. When
329
      // typeless pointers will be ready then both cases will be gone
330
      // (and this BFS also won't be needed).
331
503
      if (auto *GEP = dyn_cast<GetElementPtrInst>(U))
332
103
        if (GEP->hasAllZeroIndices()) {
333
0
          LoadOperandsQueue.push_back(U);
334
0
          continue;
335
0
        }
336
337
      // If we hit load/store with the same invariant.group metadata (and the
338
      // same pointer operand) we can assume that value pointed by pointer
339
      // operand didn't change.
340
503
      if ((isa<LoadInst>(U) ||
341
503
           (isa<StoreInst>(U) &&
342
410
            cast<StoreInst>(U)->getPointerOperand() == Ptr)) &&
343
503
          U->hasMetadata(LLVMContext::MD_invariant_group))
344
121
        ClosestDependency = GetClosestDependency(ClosestDependency, U);
345
503
    }
346
244
  }
347
348
244
  if (!ClosestDependency)
349
125
    return MemDepResult::getUnknown();
350
119
  if (ClosestDependency->getParent() == BB)
351
93
    return MemDepResult::getDef(ClosestDependency);
352
  // Def(U) can't be returned here because it is non-local. If local
353
  // dependency won't be found then return nonLocal counting that the
354
  // user will call getNonLocalPointerDependency, which will return cached
355
  // result.
356
26
  NonLocalDefsCache.try_emplace(
357
26
      LI, NonLocalDepResult(ClosestDependency->getParent(),
358
26
                            MemDepResult::getDef(ClosestDependency), nullptr));
359
26
  ReverseNonLocalDefsCache[ClosestDependency].insert(LI);
360
26
  return MemDepResult::getNonLocal();
361
119
}
362
363
// Check if SI that may alias with MemLoc can be safely skipped. This is
364
// possible in case if SI can only must alias or no alias with MemLoc (no
365
// partial overlapping possible) and it writes the same value that MemLoc
366
// contains now (it was loaded before this store and was not modified in
367
// between).
368
static bool canSkipClobberingStore(const StoreInst *SI,
369
                                   const MemoryLocation &MemLoc,
370
                                   Align MemLocAlign, BatchAAResults &BatchAA,
371
8.21k
                                   unsigned ScanLimit) {
372
8.21k
  if (!MemLoc.Size.hasValue())
373
0
    return false;
374
8.21k
  if (MemoryLocation::get(SI).Size != MemLoc.Size)
375
3.64k
    return false;
376
4.56k
  if (MemLoc.Size.isScalable())
377
3
    return false;
378
4.56k
  if (std::min(MemLocAlign, SI->getAlign()).value() <
379
4.56k
      MemLoc.Size.getValue().getKnownMinValue())
380
549
    return false;
381
382
4.01k
  auto *LI = dyn_cast<LoadInst>(SI->getValueOperand());
383
4.01k
  if (!LI || LI->getParent() != SI->getParent())
384
3.88k
    return false;
385
130
  if (BatchAA.alias(MemoryLocation::get(LI), MemLoc) != AliasResult::MustAlias)
386
113
    return false;
387
17
  unsigned NumVisitedInsts = 0;
388
293
  for (const Instruction *I = LI; I != SI; I = I->getNextNonDebugInstruction())
389
281
    if (++NumVisitedInsts > ScanLimit ||
390
281
        isModSet(BatchAA.getModRefInfo(I, MemLoc)))
391
5
      return false;
392
393
12
  return true;
394
17
}
395
396
MemDepResult MemoryDependenceResults::getSimplePointerDependencyFrom(
397
    const MemoryLocation &MemLoc, bool isLoad, BasicBlock::iterator ScanIt,
398
    BasicBlock *BB, Instruction *QueryInst, unsigned *Limit,
399
114k
    BatchAAResults &BatchAA) {
400
114k
  bool isInvariantLoad = false;
401
114k
  Align MemLocAlign =
402
114k
      MemLoc.Ptr->getPointerAlignment(BB->getModule()->getDataLayout());
403
404
114k
  unsigned DefaultLimit = getDefaultBlockScanLimit();
405
114k
  if (!Limit)
406
114k
    Limit = &DefaultLimit;
407
408
  // We must be careful with atomic accesses, as they may allow another thread
409
  //   to touch this location, clobbering it. We are conservative: if the
410
  //   QueryInst is not a simple (non-atomic) memory access, we automatically
411
  //   return getClobber.
412
  // If it is simple, we know based on the results of
413
  // "Compiler testing via a theory of sound optimisations in the C11/C++11
414
  //   memory model" in PLDI 2013, that a non-atomic location can only be
415
  //   clobbered between a pair of a release and an acquire action, with no
416
  //   access to the location in between.
417
  // Here is an example for giving the general intuition behind this rule.
418
  // In the following code:
419
  //   store x 0;
420
  //   release action; [1]
421
  //   acquire action; [4]
422
  //   %val = load x;
423
  // It is unsafe to replace %val by 0 because another thread may be running:
424
  //   acquire action; [2]
425
  //   store x 42;
426
  //   release action; [3]
427
  // with synchronization from 1 to 2 and from 3 to 4, resulting in %val
428
  // being 42. A key property of this program however is that if either
429
  // 1 or 4 were missing, there would be a race between the store of 42
430
  // either the store of 0 or the load (making the whole program racy).
431
  // The paper mentioned above shows that the same property is respected
432
  // by every program that can detect any optimization of that kind: either
433
  // it is racy (undefined) or there is a release followed by an acquire
434
  // between the pair of accesses under consideration.
435
436
  // If the load is invariant, we "know" that it doesn't alias *any* write. We
437
  // do want to respect mustalias results since defs are useful for value
438
  // forwarding, but any mayalias write can be assumed to be noalias.
439
  // Arguably, this logic should be pushed inside AliasAnalysis itself.
440
114k
  if (isLoad && QueryInst)
441
114k
    if (LoadInst *LI = dyn_cast<LoadInst>(QueryInst)) {
442
114k
      if (LI->hasMetadata(LLVMContext::MD_invariant_load))
443
0
        isInvariantLoad = true;
444
114k
      MemLocAlign = LI->getAlign();
445
114k
    }
446
447
  // True for volatile instruction.
448
  // For Load/Store return true if atomic ordering is stronger than AO,
449
  // for other instruction just true if it can read or write to memory.
450
114k
  auto isComplexForReordering = [](Instruction * I, AtomicOrdering AO)->bool {
451
21
    if (I->isVolatile())
452
0
      return true;
453
21
    if (auto *LI = dyn_cast<LoadInst>(I))
454
21
      return isStrongerThan(LI->getOrdering(), AO);
455
0
    if (auto *SI = dyn_cast<StoreInst>(I))
456
0
      return isStrongerThan(SI->getOrdering(), AO);
457
0
    return I->mayReadOrWriteMemory();
458
0
  };
459
460
  // Walk backwards through the basic block, looking for dependencies.
461
1.01M
  while (ScanIt != BB->begin()) {
462
928k
    Instruction *Inst = &*--ScanIt;
463
464
928k
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst))
465
      // Debug intrinsics don't (and can't) cause dependencies.
466
2.30k
      if (isa<DbgInfoIntrinsic>(II))
467
196
        continue;
468
469
    // Limit the amount of scanning we do so we don't end up with quadratic
470
    // running time on extreme testcases.
471
927k
    --*Limit;
472
927k
    if (!*Limit)
473
134
      return MemDepResult::getUnknown();
474
475
927k
    if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst)) {
476
      // If we reach a lifetime begin or end marker, then the query ends here
477
      // because the value is undefined.
478
2.10k
      Intrinsic::ID ID = II->getIntrinsicID();
479
2.10k
      switch (ID) {
480
160
      case Intrinsic::lifetime_start: {
481
        // FIXME: This only considers queries directly on the invariant-tagged
482
        // pointer, not on query pointers that are indexed off of them.  It'd
483
        // be nice to handle that at some point (the right approach is to use
484
        // GetPointerBaseWithConstantOffset).
485
160
        MemoryLocation ArgLoc = MemoryLocation::getAfter(II->getArgOperand(1));
486
160
        if (BatchAA.isMustAlias(ArgLoc, MemLoc))
487
10
          return MemDepResult::getDef(II);
488
150
        continue;
489
160
      }
490
150
      case Intrinsic::masked_load:
491
75
      case Intrinsic::masked_store: {
492
75
        MemoryLocation Loc;
493
75
        /*ModRefInfo MR =*/ GetLocation(II, Loc, TLI);
494
75
        AliasResult R = BatchAA.alias(Loc, MemLoc);
495
75
        if (R == AliasResult::NoAlias)
496
49
          continue;
497
26
        if (R == AliasResult::MustAlias)
498
6
          return MemDepResult::getDef(II);
499
20
        if (ID == Intrinsic::masked_load)
500
3
          continue;
501
17
        return MemDepResult::getClobber(II);
502
20
      }
503
2.10k
      }
504
2.10k
    }
505
506
    // Values depend on loads if the pointers are must aliased.  This means
507
    // that a load depends on another must aliased load from the same value.
508
    // One exception is atomic loads: a value can depend on an atomic load that
509
    // it does not alias with when this atomic load indicates that another
510
    // thread may be accessing the location.
511
927k
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
512
      // While volatile access cannot be eliminated, they do not have to clobber
513
      // non-aliasing locations, as normal accesses, for example, can be safely
514
      // reordered with volatile accesses.
515
129k
      if (LI->isVolatile()) {
516
2
        if (!QueryInst)
517
          // Original QueryInst *may* be volatile
518
0
          return MemDepResult::getClobber(LI);
519
2
        if (QueryInst->isVolatile())
520
          // Ordering required if QueryInst is itself volatile
521
0
          return MemDepResult::getClobber(LI);
522
        // Otherwise, volatile doesn't imply any special ordering
523
2
      }
524
525
      // Atomic loads have complications involved.
526
      // A Monotonic (or higher) load is OK if the query inst is itself not
527
      // atomic.
528
      // FIXME: This is overly conservative.
529
129k
      if (LI->isAtomic() && isStrongerThanUnordered(LI->getOrdering())) {
530
18
        if (!QueryInst ||
531
18
            isComplexForReordering(QueryInst, AtomicOrdering::NotAtomic))
532
0
          return MemDepResult::getClobber(LI);
533
18
        if (LI->getOrdering() != AtomicOrdering::Monotonic)
534
18
          return MemDepResult::getClobber(LI);
535
18
      }
536
537
129k
      MemoryLocation LoadLoc = MemoryLocation::get(LI);
538
539
      // If we found a pointer, check if it could be the same as our pointer.
540
129k
      AliasResult R = BatchAA.alias(LoadLoc, MemLoc);
541
542
129k
      if (R == AliasResult::NoAlias)
543
70.8k
        continue;
544
545
58.5k
      if (isLoad) {
546
        // Must aliased loads are defs of each other.
547
58.5k
        if (R == AliasResult::MustAlias)
548
10.6k
          return MemDepResult::getDef(Inst);
549
550
        // If we have a partial alias, then return this as a clobber for the
551
        // client to handle.
552
47.9k
        if (R == AliasResult::PartialAlias && R.hasOffset()) {
553
72
          ClobberOffsets[LI] = R.getOffset();
554
72
          return MemDepResult::getClobber(Inst);
555
72
        }
556
557
        // Random may-alias loads don't depend on each other without a
558
        // dependence.
559
47.8k
        continue;
560
47.9k
      }
561
562
      // Stores don't alias loads from read-only memory.
563
0
      if (!isModSet(BatchAA.getModRefInfoMask(LoadLoc)))
564
0
        continue;
565
566
      // Stores depend on may/must aliased loads.
567
0
      return MemDepResult::getDef(Inst);
568
0
    }
569
570
798k
    if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
571
      // Atomic stores have complications involved.
572
      // A Monotonic store is OK if the query inst is itself not atomic.
573
      // FIXME: This is overly conservative.
574
252k
      if (!SI->isUnordered() && SI->isAtomic()) {
575
3
        if (!QueryInst ||
576
3
            isComplexForReordering(QueryInst, AtomicOrdering::Unordered))
577
0
          return MemDepResult::getClobber(SI);
578
        // Ok, if we are here the guard above guarantee us that
579
        // QueryInst is a non-atomic or unordered load/store.
580
        // SI is atomic with monotonic or release semantic (seq_cst for store
581
        // is actually a release semantic plus total order over other seq_cst
582
        // instructions, as soon as QueryInst is not seq_cst we can consider it
583
        // as simple release semantic).
584
        // Monotonic and Release semantic allows re-ordering before store
585
        // so we are safe to go further and check the aliasing. It will prohibit
586
        // re-ordering in case locations are may or must alias.
587
3
      }
588
589
      // While volatile access cannot be eliminated, they do not have to clobber
590
      // non-aliasing locations, as normal accesses can for example be reordered
591
      // with volatile accesses.
592
252k
      if (SI->isVolatile())
593
731
        if (!QueryInst || QueryInst->isVolatile())
594
0
          return MemDepResult::getClobber(SI);
595
596
      // If alias analysis can tell that this store is guaranteed to not modify
597
      // the query pointer, ignore it.  Use getModRefInfo to handle cases where
598
      // the query pointer points to constant memory etc.
599
252k
      if (!isModOrRefSet(BatchAA.getModRefInfo(SI, MemLoc)))
600
242k
        continue;
601
602
      // Ok, this store might clobber the query pointer.  Check to see if it is
603
      // a must alias: in this case, we want to return this as a def.
604
      // FIXME: Use ModRefInfo::Must bit from getModRefInfo call above.
605
10.5k
      MemoryLocation StoreLoc = MemoryLocation::get(SI);
606
607
      // If we found a pointer, check if it could be the same as our pointer.
608
10.5k
      AliasResult R = BatchAA.alias(StoreLoc, MemLoc);
609
610
10.5k
      if (R == AliasResult::NoAlias)
611
1
        continue;
612
10.5k
      if (R == AliasResult::MustAlias)
613
2.36k
        return MemDepResult::getDef(Inst);
614
8.21k
      if (isInvariantLoad)
615
0
        continue;
616
8.21k
      if (canSkipClobberingStore(SI, MemLoc, MemLocAlign, BatchAA, *Limit))
617
12
        continue;
618
8.20k
      return MemDepResult::getClobber(Inst);
619
8.21k
    }
620
621
    // If this is an allocation, and if we know that the accessed pointer is to
622
    // the allocation, return Def.  This means that there is no dependence and
623
    // the access can be optimized based on that.  For example, a load could
624
    // turn into undef.  Note that we can bypass the allocation itself when
625
    // looking for a clobber in many cases; that's an alias property and is
626
    // handled by BasicAA.
627
545k
    if (isa<AllocaInst>(Inst) || isNoAliasCall(Inst)) {
628
70.9k
      const Value *AccessPtr = getUnderlyingObject(MemLoc.Ptr);
629
70.9k
      if (AccessPtr == Inst || BatchAA.isMustAlias(Inst, AccessPtr))
630
9.19k
        return MemDepResult::getDef(Inst);
631
70.9k
    }
632
633
    // If we found a select instruction for MemLoc pointer, return it as Def
634
    // dependency.
635
536k
    if (isa<SelectInst>(Inst) && MemLoc.Ptr == Inst)
636
39
      return MemDepResult::getDef(Inst);
637
638
536k
    if (isInvariantLoad)
639
0
      continue;
640
641
    // A release fence requires that all stores complete before it, but does
642
    // not prevent the reordering of following loads or stores 'before' the
643
    // fence.  As a result, we look past it when finding a dependency for
644
    // loads.  DSE uses this to find preceding stores to delete and thus we
645
    // can't bypass the fence if the query instruction is a store.
646
536k
    if (FenceInst *FI = dyn_cast<FenceInst>(Inst))
647
0
      if (isLoad && FI->getOrdering() == AtomicOrdering::Release)
648
0
        continue;
649
650
    // See if this instruction (e.g. a call or vaarg) mod/ref's the pointer.
651
536k
    switch (BatchAA.getModRefInfo(Inst, MemLoc)) {
652
534k
    case ModRefInfo::NoModRef:
653
      // If the call has no effect on the queried pointer, just ignore it.
654
534k
      continue;
655
78
    case ModRefInfo::Mod:
656
78
      return MemDepResult::getClobber(Inst);
657
173
    case ModRefInfo::Ref:
658
      // If the call is known to never store to the pointer, and if this is a
659
      // load query, we can safely ignore it (scan past it).
660
173
      if (isLoad)
661
173
        continue;
662
173
      [[fallthrough]];
663
1.15k
    default:
664
      // Otherwise, there is a potential dependence.  Return a clobber.
665
1.15k
      return MemDepResult::getClobber(Inst);
666
536k
    }
667
536k
  }
668
669
  // No dependence found.  If this is the entry block of the function, it is
670
  // unknown, otherwise it is non-local.
671
83.0k
  if (BB != &BB->getParent()->getEntryBlock())
672
76.3k
    return MemDepResult::getNonLocal();
673
6.74k
  return MemDepResult::getNonFuncLocal();
674
83.0k
}
675
676
92.4k
MemDepResult MemoryDependenceResults::getDependency(Instruction *QueryInst) {
677
92.4k
  ClobberOffsets.clear();
678
92.4k
  Instruction *ScanPos = QueryInst;
679
680
  // Check for a cached result
681
92.4k
  MemDepResult &LocalCache = LocalDeps[QueryInst];
682
683
  // If the cached entry is non-dirty, just return it.  Note that this depends
684
  // on MemDepResult's default constructing to 'dirty'.
685
92.4k
  if (!LocalCache.isDirty())
686
62.4k
    return LocalCache;
687
688
  // Otherwise, if we have a dirty entry, we know we can start the scan at that
689
  // instruction, which may save us some work.
690
29.9k
  if (Instruction *Inst = LocalCache.getInst()) {
691
156
    ScanPos = Inst;
692
693
156
    RemoveFromReverseMap(ReverseLocalDeps, Inst, QueryInst);
694
156
  }
695
696
29.9k
  BasicBlock *QueryParent = QueryInst->getParent();
697
698
  // Do the scan.
699
29.9k
  if (BasicBlock::iterator(QueryInst) == QueryParent->begin()) {
700
    // No dependence found. If this is the entry block of the function, it is
701
    // unknown, otherwise it is non-local.
702
4.45k
    if (QueryParent != &QueryParent->getParent()->getEntryBlock())
703
2.80k
      LocalCache = MemDepResult::getNonLocal();
704
1.64k
    else
705
1.64k
      LocalCache = MemDepResult::getNonFuncLocal();
706
25.5k
  } else {
707
25.5k
    MemoryLocation MemLoc;
708
25.5k
    ModRefInfo MR = GetLocation(QueryInst, MemLoc, TLI);
709
25.5k
    if (MemLoc.Ptr) {
710
      // If we can do a pointer scan, make it happen.
711
25.4k
      bool isLoad = !isModSet(MR);
712
25.4k
      if (auto *II = dyn_cast<IntrinsicInst>(QueryInst))
713
3
        isLoad |= II->getIntrinsicID() == Intrinsic::lifetime_start;
714
715
25.4k
      LocalCache =
716
25.4k
          getPointerDependencyFrom(MemLoc, isLoad, ScanPos->getIterator(),
717
25.4k
                                   QueryParent, QueryInst, nullptr);
718
25.4k
    } else if (auto *QueryCall = dyn_cast<CallBase>(QueryInst)) {
719
82
      bool isReadOnly = AA.onlyReadsMemory(QueryCall);
720
82
      LocalCache = getCallDependencyFrom(QueryCall, isReadOnly,
721
82
                                         ScanPos->getIterator(), QueryParent);
722
82
    } else
723
      // Non-memory instruction.
724
0
      LocalCache = MemDepResult::getUnknown();
725
25.5k
  }
726
727
  // Remember the result!
728
29.9k
  if (Instruction *I = LocalCache.getInst())
729
11.7k
    ReverseLocalDeps[I].insert(QueryInst);
730
731
29.9k
  return LocalCache;
732
92.4k
}
733
734
#ifndef NDEBUG
735
/// This method is used when -debug is specified to verify that cache arrays
736
/// are properly kept sorted.
737
static void AssertSorted(MemoryDependenceResults::NonLocalDepInfo &Cache,
738
0
                         int Count = -1) {
739
0
  if (Count == -1)
740
0
    Count = Cache.size();
741
0
  assert(std::is_sorted(Cache.begin(), Cache.begin() + Count) &&
742
0
         "Cache isn't sorted!");
743
0
}
744
#endif
745
746
const MemoryDependenceResults::NonLocalDepInfo &
747
49
MemoryDependenceResults::getNonLocalCallDependency(CallBase *QueryCall) {
748
49
  assert(getDependency(QueryCall).isNonLocal() &&
749
49
         "getNonLocalCallDependency should only be used on calls with "
750
49
         "non-local deps!");
751
0
  PerInstNLInfo &CacheP = NonLocalDepsMap[QueryCall];
752
49
  NonLocalDepInfo &Cache = CacheP.first;
753
754
  // This is the set of blocks that need to be recomputed.  In the cached case,
755
  // this can happen due to instructions being deleted etc. In the uncached
756
  // case, this starts out as the set of predecessors we care about.
757
49
  SmallVector<BasicBlock *, 32> DirtyBlocks;
758
759
49
  if (!Cache.empty()) {
760
    // Okay, we have a cache entry.  If we know it is not dirty, just return it
761
    // with no computation.
762
29
    if (!CacheP.second) {
763
11
      ++NumCacheNonLocal;
764
11
      return Cache;
765
11
    }
766
767
    // If we already have a partially computed set of results, scan them to
768
    // determine what is dirty, seeding our initial DirtyBlocks worklist.
769
18
    for (auto &Entry : Cache)
770
128
      if (Entry.getResult().isDirty())
771
10
        DirtyBlocks.push_back(Entry.getBB());
772
773
    // Sort the cache so that we can do fast binary search lookups below.
774
18
    llvm::sort(Cache);
775
776
18
    ++NumCacheDirtyNonLocal;
777
20
  } else {
778
    // Seed DirtyBlocks with each of the preds of QueryInst's block.
779
20
    BasicBlock *QueryBB = QueryCall->getParent();
780
20
    append_range(DirtyBlocks, PredCache.get(QueryBB));
781
20
    ++NumUncacheNonLocal;
782
20
  }
783
784
  // isReadonlyCall - If this is a read-only call, we can be more aggressive.
785
38
  bool isReadonlyCall = AA.onlyReadsMemory(QueryCall);
786
787
38
  SmallPtrSet<BasicBlock *, 32> Visited;
788
789
38
  unsigned NumSortedEntries = Cache.size();
790
38
  LLVM_DEBUG(AssertSorted(Cache));
791
792
  // Iterate while we still have blocks to update.
793
163
  while (!DirtyBlocks.empty()) {
794
125
    BasicBlock *DirtyBB = DirtyBlocks.pop_back_val();
795
796
    // Already processed this block?
797
125
    if (!Visited.insert(DirtyBB).second)
798
25
      continue;
799
800
    // Do a binary search to see if we already have an entry for this block in
801
    // the cache set.  If so, find it.
802
100
    LLVM_DEBUG(AssertSorted(Cache, NumSortedEntries));
803
100
    NonLocalDepInfo::iterator Entry =
804
100
        std::upper_bound(Cache.begin(), Cache.begin() + NumSortedEntries,
805
100
                         NonLocalDepEntry(DirtyBB));
806
100
    if (Entry != Cache.begin() && std::prev(Entry)->getBB() == DirtyBB)
807
13
      --Entry;
808
809
100
    NonLocalDepEntry *ExistingResult = nullptr;
810
100
    if (Entry != Cache.begin() + NumSortedEntries &&
811
100
        Entry->getBB() == DirtyBB) {
812
      // If we already have an entry, and if it isn't already dirty, the block
813
      // is done.
814
13
      if (!Entry->getResult().isDirty())
815
3
        continue;
816
817
      // Otherwise, remember this slot so we can update the value.
818
10
      ExistingResult = &*Entry;
819
10
    }
820
821
    // If the dirty entry has a pointer, start scanning from it so we don't have
822
    // to rescan the entire block.
823
97
    BasicBlock::iterator ScanPos = DirtyBB->end();
824
97
    if (ExistingResult) {
825
10
      if (Instruction *Inst = ExistingResult->getResult().getInst()) {
826
10
        ScanPos = Inst->getIterator();
827
        // We're removing QueryInst's use of Inst.
828
10
        RemoveFromReverseMap<Instruction *>(ReverseNonLocalDeps, Inst,
829
10
                                            QueryCall);
830
10
      }
831
10
    }
832
833
    // Find out if this block has a local dependency for QueryInst.
834
97
    MemDepResult Dep;
835
836
97
    if (ScanPos != DirtyBB->begin()) {
837
92
      Dep = getCallDependencyFrom(QueryCall, isReadonlyCall, ScanPos, DirtyBB);
838
92
    } else if (DirtyBB != &DirtyBB->getParent()->getEntryBlock()) {
839
      // No dependence found.  If this is the entry block of the function, it is
840
      // a clobber, otherwise it is unknown.
841
5
      Dep = MemDepResult::getNonLocal();
842
5
    } else {
843
0
      Dep = MemDepResult::getNonFuncLocal();
844
0
    }
845
846
    // If we had a dirty entry for the block, update it.  Otherwise, just add
847
    // a new entry.
848
97
    if (ExistingResult)
849
10
      ExistingResult->setResult(Dep);
850
87
    else
851
87
      Cache.push_back(NonLocalDepEntry(DirtyBB, Dep));
852
853
    // If the block has a dependency (i.e. it isn't completely transparent to
854
    // the value), remember the association!
855
97
    if (!Dep.isNonLocal()) {
856
      // Keep the ReverseNonLocalDeps map up to date so we can efficiently
857
      // update this when we remove instructions.
858
40
      if (Instruction *Inst = Dep.getInst())
859
39
        ReverseNonLocalDeps[Inst].insert(QueryCall);
860
57
    } else {
861
862
      // If the block *is* completely transparent to the load, we need to check
863
      // the predecessors of this block.  Add them to our worklist.
864
57
      append_range(DirtyBlocks, PredCache.get(DirtyBB));
865
57
    }
866
97
  }
867
868
38
  return Cache;
869
49
}
870
871
void MemoryDependenceResults::getNonLocalPointerDependency(
872
54.9k
    Instruction *QueryInst, SmallVectorImpl<NonLocalDepResult> &Result) {
873
54.9k
  const MemoryLocation Loc = MemoryLocation::get(QueryInst);
874
54.9k
  bool isLoad = isa<LoadInst>(QueryInst);
875
54.9k
  BasicBlock *FromBB = QueryInst->getParent();
876
54.9k
  assert(FromBB);
877
878
0
  assert(Loc.Ptr->getType()->isPointerTy() &&
879
54.9k
         "Can't get pointer deps of a non-pointer!");
880
0
  Result.clear();
881
54.9k
  {
882
    // Check if there is cached Def with invariant.group.
883
54.9k
    auto NonLocalDefIt = NonLocalDefsCache.find(QueryInst);
884
54.9k
    if (NonLocalDefIt != NonLocalDefsCache.end()) {
885
21
      Result.push_back(NonLocalDefIt->second);
886
21
      ReverseNonLocalDefsCache[NonLocalDefIt->second.getResult().getInst()]
887
21
          .erase(QueryInst);
888
21
      NonLocalDefsCache.erase(NonLocalDefIt);
889
21
      return;
890
21
    }
891
54.9k
  }
892
  // This routine does not expect to deal with volatile instructions.
893
  // Doing so would require piping through the QueryInst all the way through.
894
  // TODO: volatiles can't be elided, but they can be reordered with other
895
  // non-volatile accesses.
896
897
  // We currently give up on any instruction which is ordered, but we do handle
898
  // atomic instructions which are unordered.
899
  // TODO: Handle ordered instructions
900
54.9k
  auto isOrdered = [](Instruction *Inst) {
901
54.9k
    if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) {
902
54.9k
      return !LI->isUnordered();
903
54.9k
    } else if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
904
0
      return !SI->isUnordered();
905
0
    }
906
0
    return false;
907
54.9k
  };
908
54.9k
  if (QueryInst->isVolatile() || isOrdered(QueryInst)) {
909
0
    Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
910
0
                                       const_cast<Value *>(Loc.Ptr)));
911
0
    return;
912
0
  }
913
54.9k
  const DataLayout &DL = FromBB->getModule()->getDataLayout();
914
54.9k
  PHITransAddr Address(const_cast<Value *>(Loc.Ptr), DL, &AC);
915
916
  // This is the set of blocks we've inspected, and the pointer we consider in
917
  // each block.  Because of critical edges, we currently bail out if querying
918
  // a block with multiple different pointers.  This can happen during PHI
919
  // translation.
920
54.9k
  DenseMap<BasicBlock *, Value *> Visited;
921
54.9k
  if (getNonLocalPointerDepFromBB(QueryInst, Address, Loc, isLoad, FromBB,
922
54.9k
                                   Result, Visited, true))
923
53.1k
    return;
924
1.78k
  Result.clear();
925
1.78k
  Result.push_back(NonLocalDepResult(FromBB, MemDepResult::getUnknown(),
926
1.78k
                                     const_cast<Value *>(Loc.Ptr)));
927
1.78k
}
928
929
/// Compute the memdep value for BB with Pointer/PointeeSize using either
930
/// cached information in Cache or by doing a lookup (which may use dirty cache
931
/// info if available).
932
///
933
/// If we do a lookup, add the result to the cache.
934
MemDepResult MemoryDependenceResults::getNonLocalInfoForBlock(
935
    Instruction *QueryInst, const MemoryLocation &Loc, bool isLoad,
936
    BasicBlock *BB, NonLocalDepInfo *Cache, unsigned NumSortedEntries,
937
181k
    BatchAAResults &BatchAA) {
938
939
181k
  bool isInvariantLoad = false;
940
941
181k
  if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
942
181k
    isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
943
944
  // Do a binary search to see if we already have an entry for this block in
945
  // the cache set.  If so, find it.
946
181k
  NonLocalDepInfo::iterator Entry = std::upper_bound(
947
181k
      Cache->begin(), Cache->begin() + NumSortedEntries, NonLocalDepEntry(BB));
948
181k
  if (Entry != Cache->begin() && (Entry - 1)->getBB() == BB)
949
92.3k
    --Entry;
950
951
181k
  NonLocalDepEntry *ExistingResult = nullptr;
952
181k
  if (Entry != Cache->begin() + NumSortedEntries && Entry->getBB() == BB)
953
92.3k
    ExistingResult = &*Entry;
954
955
  // Use cached result for invariant load only if there is no dependency for non
956
  // invariant load. In this case invariant load can not have any dependency as
957
  // well.
958
181k
  if (ExistingResult && isInvariantLoad &&
959
181k
      !ExistingResult->getResult().isNonFuncLocal())
960
0
    ExistingResult = nullptr;
961
962
  // If we have a cached entry, and it is non-dirty, use it as the value for
963
  // this dependency.
964
181k
  if (ExistingResult && !ExistingResult->getResult().isDirty()) {
965
91.9k
    ++NumCacheNonLocalPtr;
966
91.9k
    return ExistingResult->getResult();
967
91.9k
  }
968
969
  // Otherwise, we have to scan for the value.  If we have a dirty cache
970
  // entry, start scanning from its position, otherwise we scan from the end
971
  // of the block.
972
89.6k
  BasicBlock::iterator ScanPos = BB->end();
973
89.6k
  if (ExistingResult && ExistingResult->getResult().getInst()) {
974
480
    assert(ExistingResult->getResult().getInst()->getParent() == BB &&
975
480
           "Instruction invalidated?");
976
0
    ++NumCacheDirtyNonLocalPtr;
977
480
    ScanPos = ExistingResult->getResult().getInst()->getIterator();
978
979
    // Eliminating the dirty entry from 'Cache', so update the reverse info.
980
480
    ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
981
480
    RemoveFromReverseMap(ReverseNonLocalPtrDeps, &*ScanPos, CacheKey);
982
89.1k
  } else {
983
89.1k
    ++NumUncacheNonLocalPtr;
984
89.1k
  }
985
986
  // Scan the block for the dependency.
987
0
  MemDepResult Dep = getPointerDependencyFrom(Loc, isLoad, ScanPos, BB,
988
89.6k
                                              QueryInst, nullptr, BatchAA);
989
990
  // Don't cache results for invariant load.
991
89.6k
  if (isInvariantLoad)
992
0
    return Dep;
993
994
  // If we had a dirty entry for the block, update it.  Otherwise, just add
995
  // a new entry.
996
89.6k
  if (ExistingResult)
997
480
    ExistingResult->setResult(Dep);
998
89.1k
  else
999
89.1k
    Cache->push_back(NonLocalDepEntry(BB, Dep));
1000
1001
  // If the block has a dependency (i.e. it isn't completely transparent to
1002
  // the value), remember the reverse association because we just added it
1003
  // to Cache!
1004
89.6k
  if (!Dep.isLocal())
1005
69.5k
    return Dep;
1006
1007
  // Keep the ReverseNonLocalPtrDeps map up to date so we can efficiently
1008
  // update MemDep when we remove instructions.
1009
20.1k
  Instruction *Inst = Dep.getInst();
1010
20.1k
  assert(Inst && "Didn't depend on anything?");
1011
0
  ValueIsLoadPair CacheKey(Loc.Ptr, isLoad);
1012
20.1k
  ReverseNonLocalPtrDeps[Inst].insert(CacheKey);
1013
20.1k
  return Dep;
1014
89.6k
}
1015
1016
/// Sort the NonLocalDepInfo cache, given a certain number of elements in the
1017
/// array that are already properly ordered.
1018
///
1019
/// This is optimized for the case when only a few entries are added.
1020
static void
1021
SortNonLocalDepInfoCache(MemoryDependenceResults::NonLocalDepInfo &Cache,
1022
80.2k
                         unsigned NumSortedEntries) {
1023
80.2k
  switch (Cache.size() - NumSortedEntries) {
1024
59.6k
  case 0:
1025
    // done, no new entries.
1026
59.6k
    break;
1027
3.42k
  case 2: {
1028
    // Two new entries, insert the last one into place.
1029
3.42k
    NonLocalDepEntry Val = Cache.back();
1030
3.42k
    Cache.pop_back();
1031
3.42k
    MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1032
3.42k
        std::upper_bound(Cache.begin(), Cache.end() - 1, Val);
1033
3.42k
    Cache.insert(Entry, Val);
1034
3.42k
    [[fallthrough]];
1035
3.42k
  }
1036
13.5k
  case 1:
1037
    // One new entry, Just insert the new value at the appropriate position.
1038
13.5k
    if (Cache.size() != 1) {
1039
8.99k
      NonLocalDepEntry Val = Cache.back();
1040
8.99k
      Cache.pop_back();
1041
8.99k
      MemoryDependenceResults::NonLocalDepInfo::iterator Entry =
1042
8.99k
          llvm::upper_bound(Cache, Val);
1043
8.99k
      Cache.insert(Entry, Val);
1044
8.99k
    }
1045
13.5k
    break;
1046
7.03k
  default:
1047
    // Added many values, do a full scale sort.
1048
7.03k
    llvm::sort(Cache);
1049
7.03k
    break;
1050
80.2k
  }
1051
80.2k
}
1052
1053
/// Perform a dependency query based on pointer/pointeesize starting at the end
1054
/// of StartBB.
1055
///
1056
/// Add any clobber/def results to the results vector and keep track of which
1057
/// blocks are visited in 'Visited'.
1058
///
1059
/// This has special behavior for the first block queries (when SkipFirstBlock
1060
/// is true).  In this special case, it ignores the contents of the specified
1061
/// block and starts returning dependence info for its predecessors.
1062
///
1063
/// This function returns true on success, or false to indicate that it could
1064
/// not compute dependence information for some reason.  This should be treated
1065
/// as a clobber dependence on the first instruction in the predecessor block.
1066
bool MemoryDependenceResults::getNonLocalPointerDepFromBB(
1067
    Instruction *QueryInst, const PHITransAddr &Pointer,
1068
    const MemoryLocation &Loc, bool isLoad, BasicBlock *StartBB,
1069
    SmallVectorImpl<NonLocalDepResult> &Result,
1070
    DenseMap<BasicBlock *, Value *> &Visited, bool SkipFirstBlock,
1071
92.9k
    bool IsIncomplete) {
1072
  // Look up the cached info for Pointer.
1073
92.9k
  ValueIsLoadPair CacheKey(Pointer.getAddr(), isLoad);
1074
1075
  // Set up a temporary NLPI value. If the map doesn't yet have an entry for
1076
  // CacheKey, this value will be inserted as the associated value. Otherwise,
1077
  // it'll be ignored, and we'll have to check to see if the cached size and
1078
  // aa tags are consistent with the current query.
1079
92.9k
  NonLocalPointerInfo InitialNLPI;
1080
92.9k
  InitialNLPI.Size = Loc.Size;
1081
92.9k
  InitialNLPI.AATags = Loc.AATags;
1082
1083
92.9k
  bool isInvariantLoad = false;
1084
92.9k
  if (LoadInst *LI = dyn_cast_or_null<LoadInst>(QueryInst))
1085
92.9k
    isInvariantLoad = LI->getMetadata(LLVMContext::MD_invariant_load);
1086
1087
  // Get the NLPI for CacheKey, inserting one into the map if it doesn't
1088
  // already have one.
1089
92.9k
  std::pair<CachedNonLocalPointerInfo::iterator, bool> Pair =
1090
92.9k
      NonLocalPointerDeps.insert(std::make_pair(CacheKey, InitialNLPI));
1091
92.9k
  NonLocalPointerInfo *CacheInfo = &Pair.first->second;
1092
1093
  // If we already have a cache entry for this CacheKey, we may need to do some
1094
  // work to reconcile the cache entry and the current query.
1095
  // Invariant loads don't participate in caching. Thus no need to reconcile.
1096
92.9k
  if (!isInvariantLoad && !Pair.second) {
1097
78.6k
    if (CacheInfo->Size != Loc.Size) {
1098
2.45k
      bool ThrowOutEverything;
1099
2.45k
      if (CacheInfo->Size.hasValue() && Loc.Size.hasValue()) {
1100
        // FIXME: We may be able to do better in the face of results with mixed
1101
        // precision. We don't appear to get them in practice, though, so just
1102
        // be conservative.
1103
2.45k
        ThrowOutEverything =
1104
2.45k
            CacheInfo->Size.isPrecise() != Loc.Size.isPrecise() ||
1105
2.45k
            !TypeSize::isKnownGE(CacheInfo->Size.getValue(),
1106
2.45k
                                 Loc.Size.getValue());
1107
2.45k
      } else {
1108
        // For our purposes, unknown size > all others.
1109
0
        ThrowOutEverything = !Loc.Size.hasValue();
1110
0
      }
1111
1112
2.45k
      if (ThrowOutEverything) {
1113
        // The query's Size is greater than the cached one. Throw out the
1114
        // cached data and proceed with the query at the greater size.
1115
496
        CacheInfo->Pair = BBSkipFirstBlockPair();
1116
496
        CacheInfo->Size = Loc.Size;
1117
496
        for (auto &Entry : CacheInfo->NonLocalDeps)
1118
2.79k
          if (Instruction *Inst = Entry.getResult().getInst())
1119
1.03k
            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1120
496
        CacheInfo->NonLocalDeps.clear();
1121
        // The cache is cleared (in the above line) so we will have lost
1122
        // information about blocks we have already visited. We therefore must
1123
        // assume that the cache information is incomplete.
1124
496
        IsIncomplete = true;
1125
1.96k
      } else {
1126
        // This query's Size is less than the cached one. Conservatively restart
1127
        // the query using the greater size.
1128
1.96k
        return getNonLocalPointerDepFromBB(
1129
1.96k
            QueryInst, Pointer, Loc.getWithNewSize(CacheInfo->Size), isLoad,
1130
1.96k
            StartBB, Result, Visited, SkipFirstBlock, IsIncomplete);
1131
1.96k
      }
1132
2.45k
    }
1133
1134
    // If the query's AATags are inconsistent with the cached one,
1135
    // conservatively throw out the cached data and restart the query with
1136
    // no tag if needed.
1137
76.6k
    if (CacheInfo->AATags != Loc.AATags) {
1138
8
      if (CacheInfo->AATags) {
1139
0
        CacheInfo->Pair = BBSkipFirstBlockPair();
1140
0
        CacheInfo->AATags = AAMDNodes();
1141
0
        for (auto &Entry : CacheInfo->NonLocalDeps)
1142
0
          if (Instruction *Inst = Entry.getResult().getInst())
1143
0
            RemoveFromReverseMap(ReverseNonLocalPtrDeps, Inst, CacheKey);
1144
0
        CacheInfo->NonLocalDeps.clear();
1145
        // The cache is cleared (in the above line) so we will have lost
1146
        // information about blocks we have already visited. We therefore must
1147
        // assume that the cache information is incomplete.
1148
0
        IsIncomplete = true;
1149
0
      }
1150
8
      if (Loc.AATags)
1151
8
        return getNonLocalPointerDepFromBB(
1152
8
            QueryInst, Pointer, Loc.getWithoutAATags(), isLoad, StartBB, Result,
1153
8
            Visited, SkipFirstBlock, IsIncomplete);
1154
8
    }
1155
76.6k
  }
1156
1157
91.0k
  NonLocalDepInfo *Cache = &CacheInfo->NonLocalDeps;
1158
1159
  // If we have valid cached information for exactly the block we are
1160
  // investigating, just return it with no recomputation.
1161
  // Don't use cached information for invariant loads since it is valid for
1162
  // non-invariant loads only.
1163
91.0k
  if (!IsIncomplete && !isInvariantLoad &&
1164
91.0k
      CacheInfo->Pair == BBSkipFirstBlockPair(StartBB, SkipFirstBlock)) {
1165
    // We have a fully cached result for this query then we can just return the
1166
    // cached results and populate the visited set.  However, we have to verify
1167
    // that we don't already have conflicting results for these blocks.  Check
1168
    // to ensure that if a block in the results set is in the visited set that
1169
    // it was for the same pointer query.
1170
11.5k
    if (!Visited.empty()) {
1171
1.33k
      for (auto &Entry : *Cache) {
1172
1.33k
        DenseMap<BasicBlock *, Value *>::iterator VI =
1173
1.33k
            Visited.find(Entry.getBB());
1174
1.33k
        if (VI == Visited.end() || VI->second == Pointer.getAddr())
1175
1.33k
          continue;
1176
1177
        // We have a pointer mismatch in a block.  Just return false, saying
1178
        // that something was clobbered in this result.  We could also do a
1179
        // non-fully cached query, but there is little point in doing this.
1180
0
        return false;
1181
1.33k
      }
1182
538
    }
1183
1184
11.5k
    Value *Addr = Pointer.getAddr();
1185
99.7k
    for (auto &Entry : *Cache) {
1186
99.7k
      Visited.insert(std::make_pair(Entry.getBB(), Addr));
1187
99.7k
      if (Entry.getResult().isNonLocal()) {
1188
76.4k
        continue;
1189
76.4k
      }
1190
1191
23.2k
      if (DT.isReachableFromEntry(Entry.getBB())) {
1192
23.1k
        Result.push_back(
1193
23.1k
            NonLocalDepResult(Entry.getBB(), Entry.getResult(), Addr));
1194
23.1k
      }
1195
23.2k
    }
1196
11.5k
    ++NumCacheCompleteNonLocalPtr;
1197
11.5k
    return true;
1198
11.5k
  }
1199
1200
  // Otherwise, either this is a new block, a block with an invalid cache
1201
  // pointer or one that we're about to invalidate by putting more info into
1202
  // it than its valid cache info.  If empty and not explicitly indicated as
1203
  // incomplete, the result will be valid cache info, otherwise it isn't.
1204
  //
1205
  // Invariant loads don't affect cache in any way thus no need to update
1206
  // CacheInfo as well.
1207
79.4k
  if (!isInvariantLoad) {
1208
79.4k
    if (!IsIncomplete && Cache->empty())
1209
31.5k
      CacheInfo->Pair = BBSkipFirstBlockPair(StartBB, SkipFirstBlock);
1210
47.8k
    else
1211
47.8k
      CacheInfo->Pair = BBSkipFirstBlockPair();
1212
79.4k
  }
1213
1214
79.4k
  SmallVector<BasicBlock *, 32> Worklist;
1215
79.4k
  Worklist.push_back(StartBB);
1216
1217
  // PredList used inside loop.
1218
79.4k
  SmallVector<std::pair<BasicBlock *, PHITransAddr>, 16> PredList;
1219
1220
  // Keep track of the entries that we know are sorted.  Previously cached
1221
  // entries will all be sorted.  The entries we add we only sort on demand (we
1222
  // don't insert every element into its sorted position).  We know that we
1223
  // won't get any reuse from currently inserted values, because we don't
1224
  // revisit blocks after we insert info for them.
1225
79.4k
  unsigned NumSortedEntries = Cache->size();
1226
79.4k
  unsigned WorklistEntries = BlockNumberLimit;
1227
79.4k
  bool GotWorklistLimit = false;
1228
79.4k
  LLVM_DEBUG(AssertSorted(*Cache));
1229
1230
79.4k
  BatchAAResults BatchAA(AA, &EII);
1231
303k
  while (!Worklist.empty()) {
1232
225k
    BasicBlock *BB = Worklist.pop_back_val();
1233
1234
    // If we do process a large number of blocks it becomes very expensive and
1235
    // likely it isn't worth worrying about
1236
225k
    if (Result.size() > NumResultsLimit) {
1237
      // Sort it now (if needed) so that recursive invocations of
1238
      // getNonLocalPointerDepFromBB and other routines that could reuse the
1239
      // cache value will only see properly sorted cache arrays.
1240
0
      if (Cache && NumSortedEntries != Cache->size()) {
1241
0
        SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1242
0
      }
1243
      // Since we bail out, the "Cache" set won't contain all of the
1244
      // results for the query.  This is ok (we can still use it to accelerate
1245
      // specific block queries) but we can't do the fastpath "return all
1246
      // results from the set".  Clear out the indicator for this.
1247
0
      CacheInfo->Pair = BBSkipFirstBlockPair();
1248
0
      return false;
1249
0
    }
1250
1251
    // Skip the first block if we have it.
1252
225k
    if (!SkipFirstBlock) {
1253
      // Analyze the dependency of *Pointer in FromBB.  See if we already have
1254
      // been here.
1255
181k
      assert(Visited.count(BB) && "Should check 'visited' before adding to WL");
1256
1257
      // Get the dependency info for Pointer in BB.  If we have cached
1258
      // information, we will use it, otherwise we compute it.
1259
181k
      LLVM_DEBUG(AssertSorted(*Cache, NumSortedEntries));
1260
181k
      MemDepResult Dep = getNonLocalInfoForBlock(
1261
181k
          QueryInst, Loc, isLoad, BB, Cache, NumSortedEntries, BatchAA);
1262
1263
      // If we got a Def or Clobber, add this to the list of results.
1264
181k
      if (!Dep.isNonLocal()) {
1265
53.1k
        if (DT.isReachableFromEntry(BB)) {
1266
53.0k
          Result.push_back(NonLocalDepResult(BB, Dep, Pointer.getAddr()));
1267
53.0k
          continue;
1268
53.0k
        }
1269
53.1k
      }
1270
181k
    }
1271
1272
    // If 'Pointer' is an instruction defined in this block, then we need to do
1273
    // phi translation to change it into a value live in the predecessor block.
1274
    // If not, we just add the predecessors to the worklist and scan them with
1275
    // the same Pointer.
1276
172k
    if (!Pointer.needsPHITranslationFromBlock(BB)) {
1277
135k
      SkipFirstBlock = false;
1278
135k
      SmallVector<BasicBlock *, 16> NewBlocks;
1279
214k
      for (BasicBlock *Pred : PredCache.get(BB)) {
1280
        // Verify that we haven't looked at this block yet.
1281
214k
        std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1282
214k
            Visited.insert(std::make_pair(Pred, Pointer.getAddr()));
1283
214k
        if (InsertRes.second) {
1284
          // First time we've looked at *PI.
1285
146k
          NewBlocks.push_back(Pred);
1286
146k
          continue;
1287
146k
        }
1288
1289
        // If we have seen this block before, but it was with a different
1290
        // pointer then we have a phi translation failure and we have to treat
1291
        // this as a clobber.
1292
68.7k
        if (InsertRes.first->second != Pointer.getAddr()) {
1293
          // Make sure to clean up the Visited map before continuing on to
1294
          // PredTranslationFailure.
1295
302
          for (auto *NewBlock : NewBlocks)
1296
74
            Visited.erase(NewBlock);
1297
302
          goto PredTranslationFailure;
1298
302
        }
1299
68.7k
      }
1300
135k
      if (NewBlocks.size() > WorklistEntries) {
1301
        // Make sure to clean up the Visited map before continuing on to
1302
        // PredTranslationFailure.
1303
0
        for (auto *NewBlock : NewBlocks)
1304
0
          Visited.erase(NewBlock);
1305
0
        GotWorklistLimit = true;
1306
0
        goto PredTranslationFailure;
1307
0
      }
1308
135k
      WorklistEntries -= NewBlocks.size();
1309
135k
      Worklist.append(NewBlocks.begin(), NewBlocks.end());
1310
135k
      continue;
1311
135k
    }
1312
1313
    // We do need to do phi translation, if we know ahead of time we can't phi
1314
    // translate this value, don't even try.
1315
37.1k
    if (!Pointer.isPotentiallyPHITranslatable())
1316
2.02k
      goto PredTranslationFailure;
1317
1318
    // We may have added values to the cache list before this PHI translation.
1319
    // If so, we haven't done anything to ensure that the cache remains sorted.
1320
    // Sort it now (if needed) so that recursive invocations of
1321
    // getNonLocalPointerDepFromBB and other routines that could reuse the cache
1322
    // value will only see properly sorted cache arrays.
1323
35.0k
    if (Cache && NumSortedEntries != Cache->size()) {
1324
2.54k
      SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1325
2.54k
      NumSortedEntries = Cache->size();
1326
2.54k
    }
1327
35.0k
    Cache = nullptr;
1328
1329
35.0k
    PredList.clear();
1330
85.5k
    for (BasicBlock *Pred : PredCache.get(BB)) {
1331
85.5k
      PredList.push_back(std::make_pair(Pred, Pointer));
1332
1333
      // Get the PHI translated pointer in this predecessor.  This can fail if
1334
      // not translatable, in which case the getAddr() returns null.
1335
85.5k
      PHITransAddr &PredPointer = PredList.back().second;
1336
85.5k
      Value *PredPtrVal =
1337
85.5k
          PredPointer.translateValue(BB, Pred, &DT, /*MustDominate=*/false);
1338
1339
      // Check to see if we have already visited this pred block with another
1340
      // pointer.  If so, we can't do this lookup.  This failure can occur
1341
      // with PHI translation when a critical edge exists and the PHI node in
1342
      // the successor translates to a pointer value different than the
1343
      // pointer the block was first analyzed with.
1344
85.5k
      std::pair<DenseMap<BasicBlock *, Value *>::iterator, bool> InsertRes =
1345
85.5k
          Visited.insert(std::make_pair(Pred, PredPtrVal));
1346
1347
85.5k
      if (!InsertRes.second) {
1348
        // We found the pred; take it off the list of preds to visit.
1349
1.59k
        PredList.pop_back();
1350
1351
        // If the predecessor was visited with PredPtr, then we already did
1352
        // the analysis and can ignore it.
1353
1.59k
        if (InsertRes.first->second == PredPtrVal)
1354
1.00k
          continue;
1355
1356
        // Otherwise, the block was previously analyzed with a different
1357
        // pointer.  We can't represent the result of this case, so we just
1358
        // treat this as a phi translation failure.
1359
1360
        // Make sure to clean up the Visited map before continuing on to
1361
        // PredTranslationFailure.
1362
590
        for (const auto &Pred : PredList)
1363
1.04k
          Visited.erase(Pred.first);
1364
1365
590
        goto PredTranslationFailure;
1366
1.59k
      }
1367
85.5k
    }
1368
1369
    // Actually process results here; this need to be a separate loop to avoid
1370
    // calling getNonLocalPointerDepFromBB for blocks we don't want to return
1371
    // any results for.  (getNonLocalPointerDepFromBB will modify our
1372
    // datastructures in ways the code after the PredTranslationFailure label
1373
    // doesn't expect.)
1374
82.9k
    for (auto &I : PredList) {
1375
82.9k
      BasicBlock *Pred = I.first;
1376
82.9k
      PHITransAddr &PredPointer = I.second;
1377
82.9k
      Value *PredPtrVal = PredPointer.getAddr();
1378
1379
82.9k
      bool CanTranslate = true;
1380
      // If PHI translation was unable to find an available pointer in this
1381
      // predecessor, then we have to assume that the pointer is clobbered in
1382
      // that predecessor.  We can still do PRE of the load, which would insert
1383
      // a computation of the pointer in this predecessor.
1384
82.9k
      if (!PredPtrVal)
1385
46.8k
        CanTranslate = false;
1386
1387
      // FIXME: it is entirely possible that PHI translating will end up with
1388
      // the same value.  Consider PHI translating something like:
1389
      // X = phi [x, bb1], [y, bb2].  PHI translating for bb1 doesn't *need*
1390
      // to recurse here, pedantically speaking.
1391
1392
      // If getNonLocalPointerDepFromBB fails here, that means the cached
1393
      // result conflicted with the Visited list; we have to conservatively
1394
      // assume it is unknown, but this also does not block PRE of the load.
1395
82.9k
      if (!CanTranslate ||
1396
82.9k
          !getNonLocalPointerDepFromBB(QueryInst, PredPointer,
1397
36.0k
                                      Loc.getWithNewPtr(PredPtrVal), isLoad,
1398
46.8k
                                      Pred, Result, Visited)) {
1399
        // Add the entry to the Result list.
1400
46.8k
        NonLocalDepResult Entry(Pred, MemDepResult::getUnknown(), PredPtrVal);
1401
46.8k
        Result.push_back(Entry);
1402
1403
        // Since we had a phi translation failure, the cache for CacheKey won't
1404
        // include all of the entries that we need to immediately satisfy future
1405
        // queries.  Mark this in NonLocalPointerDeps by setting the
1406
        // BBSkipFirstBlockPair pointer to null.  This requires reuse of the
1407
        // cached value to do more work but not miss the phi trans failure.
1408
46.8k
        NonLocalPointerInfo &NLPI = NonLocalPointerDeps[CacheKey];
1409
46.8k
        NLPI.Pair = BBSkipFirstBlockPair();
1410
46.8k
        continue;
1411
46.8k
      }
1412
82.9k
    }
1413
1414
    // Refresh the CacheInfo/Cache pointer so that it isn't invalidated.
1415
34.5k
    CacheInfo = &NonLocalPointerDeps[CacheKey];
1416
34.5k
    Cache = &CacheInfo->NonLocalDeps;
1417
34.5k
    NumSortedEntries = Cache->size();
1418
1419
    // Since we did phi translation, the "Cache" set won't contain all of the
1420
    // results for the query.  This is ok (we can still use it to accelerate
1421
    // specific block queries) but we can't do the fastpath "return all
1422
    // results from the set"  Clear out the indicator for this.
1423
34.5k
    CacheInfo->Pair = BBSkipFirstBlockPair();
1424
34.5k
    SkipFirstBlock = false;
1425
34.5k
    continue;
1426
1427
2.92k
  PredTranslationFailure:
1428
    // The following code is "failure"; we can't produce a sane translation
1429
    // for the given block.  It assumes that we haven't modified any of
1430
    // our datastructures while processing the current block.
1431
1432
2.92k
    if (!Cache) {
1433
      // Refresh the CacheInfo/Cache pointer if it got invalidated.
1434
590
      CacheInfo = &NonLocalPointerDeps[CacheKey];
1435
590
      Cache = &CacheInfo->NonLocalDeps;
1436
590
      NumSortedEntries = Cache->size();
1437
590
    }
1438
1439
    // Since we failed phi translation, the "Cache" set won't contain all of the
1440
    // results for the query.  This is ok (we can still use it to accelerate
1441
    // specific block queries) but we can't do the fastpath "return all
1442
    // results from the set".  Clear out the indicator for this.
1443
2.92k
    CacheInfo->Pair = BBSkipFirstBlockPair();
1444
1445
    // If *nothing* works, mark the pointer as unknown.
1446
    //
1447
    // If this is the magic first block, return this as a clobber of the whole
1448
    // incoming value.  Since we can't phi translate to one of the predecessors,
1449
    // we have to bail out.
1450
2.92k
    if (SkipFirstBlock)
1451
1.78k
      return false;
1452
1453
    // Results of invariant loads are not cached thus no need to update cached
1454
    // information.
1455
1.14k
    if (!isInvariantLoad) {
1456
3.22k
      for (NonLocalDepEntry &I : llvm::reverse(*Cache)) {
1457
3.22k
        if (I.getBB() != BB)
1458
2.08k
          continue;
1459
1460
1.14k
        assert((GotWorklistLimit || I.getResult().isNonLocal() ||
1461
1.14k
                !DT.isReachableFromEntry(BB)) &&
1462
1.14k
               "Should only be here with transparent block");
1463
1464
0
        I.setResult(MemDepResult::getUnknown());
1465
1466
1467
1.14k
        break;
1468
3.22k
      }
1469
1.14k
    }
1470
1.14k
    (void)GotWorklistLimit;
1471
    // Go ahead and report unknown dependence.
1472
1.14k
    Result.push_back(
1473
1.14k
        NonLocalDepResult(BB, MemDepResult::getUnknown(), Pointer.getAddr()));
1474
1.14k
  }
1475
1476
  // Okay, we're done now.  If we added new values to the cache, re-sort it.
1477
77.6k
  SortNonLocalDepInfoCache(*Cache, NumSortedEntries);
1478
77.6k
  LLVM_DEBUG(AssertSorted(*Cache));
1479
77.6k
  return true;
1480
79.4k
}
1481
1482
/// If P exists in CachedNonLocalPointerInfo or NonLocalDefsCache, remove it.
1483
void MemoryDependenceResults::removeCachedNonLocalPointerDependencies(
1484
86.2k
    ValueIsLoadPair P) {
1485
1486
  // Most of the time this cache is empty.
1487
86.2k
  if (!NonLocalDefsCache.empty()) {
1488
3
    auto it = NonLocalDefsCache.find(P.getPointer());
1489
3
    if (it != NonLocalDefsCache.end()) {
1490
1
      RemoveFromReverseMap(ReverseNonLocalDefsCache,
1491
1
                           it->second.getResult().getInst(), P.getPointer());
1492
1
      NonLocalDefsCache.erase(it);
1493
1
    }
1494
1495
3
    if (auto *I = dyn_cast<Instruction>(P.getPointer())) {
1496
3
      auto toRemoveIt = ReverseNonLocalDefsCache.find(I);
1497
3
      if (toRemoveIt != ReverseNonLocalDefsCache.end()) {
1498
0
        for (const auto *entry : toRemoveIt->second)
1499
0
          NonLocalDefsCache.erase(entry);
1500
0
        ReverseNonLocalDefsCache.erase(toRemoveIt);
1501
0
      }
1502
3
    }
1503
3
  }
1504
1505
86.2k
  CachedNonLocalPointerInfo::iterator It = NonLocalPointerDeps.find(P);
1506
86.2k
  if (It == NonLocalPointerDeps.end())
1507
77.6k
    return;
1508
1509
  // Remove all of the entries in the BB->val map.  This involves removing
1510
  // instructions from the reverse map.
1511
8.60k
  NonLocalDepInfo &PInfo = It->second.NonLocalDeps;
1512
1513
56.6k
  for (const NonLocalDepEntry &DE : PInfo) {
1514
56.6k
    Instruction *Target = DE.getResult().getInst();
1515
56.6k
    if (!Target)
1516
44.1k
      continue; // Ignore non-local dep results.
1517
12.5k
    assert(Target->getParent() == DE.getBB());
1518
1519
    // Eliminating the dirty entry from 'Cache', so update the reverse info.
1520
0
    RemoveFromReverseMap(ReverseNonLocalPtrDeps, Target, P);
1521
12.5k
  }
1522
1523
  // Remove P from NonLocalPointerDeps (which deletes NonLocalDepInfo).
1524
8.60k
  NonLocalPointerDeps.erase(It);
1525
8.60k
}
1526
1527
44.4k
void MemoryDependenceResults::invalidateCachedPointerInfo(Value *Ptr) {
1528
  // If Ptr isn't really a pointer, just ignore it.
1529
44.4k
  if (!Ptr->getType()->isPointerTy())
1530
20.7k
    return;
1531
  // Flush store info for the pointer.
1532
23.7k
  removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, false));
1533
  // Flush load info for the pointer.
1534
23.7k
  removeCachedNonLocalPointerDependencies(ValueIsLoadPair(Ptr, true));
1535
23.7k
}
1536
1537
5.09k
void MemoryDependenceResults::invalidateCachedPredecessors() {
1538
5.09k
  PredCache.clear();
1539
5.09k
}
1540
1541
107k
void MemoryDependenceResults::removeInstruction(Instruction *RemInst) {
1542
107k
  EII.removeInstruction(RemInst);
1543
1544
  // Walk through the Non-local dependencies, removing this one as the value
1545
  // for any cached queries.
1546
107k
  NonLocalDepMapType::iterator NLDI = NonLocalDepsMap.find(RemInst);
1547
107k
  if (NLDI != NonLocalDepsMap.end()) {
1548
0
    NonLocalDepInfo &BlockMap = NLDI->second.first;
1549
0
    for (auto &Entry : BlockMap)
1550
0
      if (Instruction *Inst = Entry.getResult().getInst())
1551
0
        RemoveFromReverseMap(ReverseNonLocalDeps, Inst, RemInst);
1552
0
    NonLocalDepsMap.erase(NLDI);
1553
0
  }
1554
1555
  // If we have a cached local dependence query for this instruction, remove it.
1556
107k
  LocalDepMapType::iterator LocalDepEntry = LocalDeps.find(RemInst);
1557
107k
  if (LocalDepEntry != LocalDeps.end()) {
1558
    // Remove us from DepInst's reverse set now that the local dep info is gone.
1559
19.3k
    if (Instruction *Inst = LocalDepEntry->second.getInst())
1560
10.0k
      RemoveFromReverseMap(ReverseLocalDeps, Inst, RemInst);
1561
1562
    // Remove this local dependency info.
1563
19.3k
    LocalDeps.erase(LocalDepEntry);
1564
19.3k
  }
1565
1566
  // If we have any cached dependencies on this instruction, remove
1567
  // them.
1568
1569
  // If the instruction is a pointer, remove it from both the load info and the
1570
  // store info.
1571
107k
  if (RemInst->getType()->isPointerTy()) {
1572
19.4k
    removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, false));
1573
19.4k
    removeCachedNonLocalPointerDependencies(ValueIsLoadPair(RemInst, true));
1574
88.4k
  } else {
1575
    // Otherwise, if the instructions is in the map directly, it must be a load.
1576
    // Remove it.
1577
88.4k
    auto toRemoveIt = NonLocalDefsCache.find(RemInst);
1578
88.4k
    if (toRemoveIt != NonLocalDefsCache.end()) {
1579
0
      assert(isa<LoadInst>(RemInst) &&
1580
0
             "only load instructions should be added directly");
1581
0
      const Instruction *DepV = toRemoveIt->second.getResult().getInst();
1582
0
      ReverseNonLocalDefsCache.find(DepV)->second.erase(RemInst);
1583
0
      NonLocalDefsCache.erase(toRemoveIt);
1584
0
    }
1585
88.4k
  }
1586
1587
  // Loop over all of the things that depend on the instruction we're removing.
1588
0
  SmallVector<std::pair<Instruction *, Instruction *>, 8> ReverseDepsToAdd;
1589
1590
  // If we find RemInst as a clobber or Def in any of the maps for other values,
1591
  // we need to replace its entry with a dirty version of the instruction after
1592
  // it.  If RemInst is a terminator, we use a null dirty value.
1593
  //
1594
  // Using a dirty version of the instruction after RemInst saves having to scan
1595
  // the entire block to get to this point.
1596
107k
  MemDepResult NewDirtyVal;
1597
107k
  if (!RemInst->isTerminator())
1598
107k
    NewDirtyVal = MemDepResult::getDirty(&*++RemInst->getIterator());
1599
1600
107k
  ReverseDepMapType::iterator ReverseDepIt = ReverseLocalDeps.find(RemInst);
1601
107k
  if (ReverseDepIt != ReverseLocalDeps.end()) {
1602
    // RemInst can't be the terminator if it has local stuff depending on it.
1603
185
    assert(!ReverseDepIt->second.empty() && !RemInst->isTerminator() &&
1604
185
           "Nothing can locally depend on a terminator");
1605
1606
185
    for (Instruction *InstDependingOnRemInst : ReverseDepIt->second) {
1607
185
      assert(InstDependingOnRemInst != RemInst &&
1608
185
             "Already removed our local dep info");
1609
1610
0
      LocalDeps[InstDependingOnRemInst] = NewDirtyVal;
1611
1612
      // Make sure to remember that new things depend on NewDepInst.
1613
185
      assert(NewDirtyVal.getInst() &&
1614
185
             "There is no way something else can have "
1615
185
             "a local dep on this if it is a terminator!");
1616
0
      ReverseDepsToAdd.push_back(
1617
185
          std::make_pair(NewDirtyVal.getInst(), InstDependingOnRemInst));
1618
185
    }
1619
1620
185
    ReverseLocalDeps.erase(ReverseDepIt);
1621
1622
    // Add new reverse deps after scanning the set, to avoid invalidating the
1623
    // 'ReverseDeps' reference.
1624
370
    while (!ReverseDepsToAdd.empty()) {
1625
185
      ReverseLocalDeps[ReverseDepsToAdd.back().first].insert(
1626
185
          ReverseDepsToAdd.back().second);
1627
185
      ReverseDepsToAdd.pop_back();
1628
185
    }
1629
185
  }
1630
1631
0
  ReverseDepIt = ReverseNonLocalDeps.find(RemInst);
1632
107k
  if (ReverseDepIt != ReverseNonLocalDeps.end()) {
1633
14
    for (Instruction *I : ReverseDepIt->second) {
1634
14
      assert(I != RemInst && "Already removed NonLocalDep info for RemInst");
1635
1636
0
      PerInstNLInfo &INLD = NonLocalDepsMap[I];
1637
      // The information is now dirty!
1638
14
      INLD.second = true;
1639
1640
180
      for (auto &Entry : INLD.first) {
1641
180
        if (Entry.getResult().getInst() != RemInst)
1642
166
          continue;
1643
1644
        // Convert to a dirty entry for the subsequent instruction.
1645
14
        Entry.setResult(NewDirtyVal);
1646
1647
14
        if (Instruction *NextI = NewDirtyVal.getInst())
1648
14
          ReverseDepsToAdd.push_back(std::make_pair(NextI, I));
1649
14
      }
1650
14
    }
1651
1652
14
    ReverseNonLocalDeps.erase(ReverseDepIt);
1653
1654
    // Add new reverse deps after scanning the set, to avoid invalidating 'Set'
1655
28
    while (!ReverseDepsToAdd.empty()) {
1656
14
      ReverseNonLocalDeps[ReverseDepsToAdd.back().first].insert(
1657
14
          ReverseDepsToAdd.back().second);
1658
14
      ReverseDepsToAdd.pop_back();
1659
14
    }
1660
14
  }
1661
1662
  // If the instruction is in ReverseNonLocalPtrDeps then it appears as a
1663
  // value in the NonLocalPointerDeps info.
1664
107k
  ReverseNonLocalPtrDepTy::iterator ReversePtrDepIt =
1665
107k
      ReverseNonLocalPtrDeps.find(RemInst);
1666
107k
  if (ReversePtrDepIt != ReverseNonLocalPtrDeps.end()) {
1667
4.53k
    SmallVector<std::pair<Instruction *, ValueIsLoadPair>, 8>
1668
4.53k
        ReversePtrDepsToAdd;
1669
1670
4.86k
    for (ValueIsLoadPair P : ReversePtrDepIt->second) {
1671
4.86k
      assert(P.getPointer() != RemInst &&
1672
4.86k
             "Already removed NonLocalPointerDeps info for RemInst");
1673
1674
0
      NonLocalDepInfo &NLPDI = NonLocalPointerDeps[P].NonLocalDeps;
1675
1676
      // The cache is not valid for any specific block anymore.
1677
4.86k
      NonLocalPointerDeps[P].Pair = BBSkipFirstBlockPair();
1678
1679
      // Update any entries for RemInst to use the instruction after it.
1680
38.9k
      for (auto &Entry : NLPDI) {
1681
38.9k
        if (Entry.getResult().getInst() != RemInst)
1682
34.1k
          continue;
1683
1684
        // Convert to a dirty entry for the subsequent instruction.
1685
4.86k
        Entry.setResult(NewDirtyVal);
1686
1687
4.86k
        if (Instruction *NewDirtyInst = NewDirtyVal.getInst())
1688
4.86k
          ReversePtrDepsToAdd.push_back(std::make_pair(NewDirtyInst, P));
1689
4.86k
      }
1690
1691
      // Re-sort the NonLocalDepInfo.  Changing the dirty entry to its
1692
      // subsequent value may invalidate the sortedness.
1693
4.86k
      llvm::sort(NLPDI);
1694
4.86k
    }
1695
1696
4.53k
    ReverseNonLocalPtrDeps.erase(ReversePtrDepIt);
1697
1698
9.40k
    while (!ReversePtrDepsToAdd.empty()) {
1699
4.86k
      ReverseNonLocalPtrDeps[ReversePtrDepsToAdd.back().first].insert(
1700
4.86k
          ReversePtrDepsToAdd.back().second);
1701
4.86k
      ReversePtrDepsToAdd.pop_back();
1702
4.86k
    }
1703
4.53k
  }
1704
1705
107k
  assert(!NonLocalDepsMap.count(RemInst) && "RemInst got reinserted?");
1706
107k
  LLVM_DEBUG(verifyRemoved(RemInst));
1707
107k
}
1708
1709
/// Verify that the specified instruction does not occur in our internal data
1710
/// structures.
1711
///
1712
/// This function verifies by asserting in debug builds.
1713
0
void MemoryDependenceResults::verifyRemoved(Instruction *D) const {
1714
0
#ifndef NDEBUG
1715
0
  for (const auto &DepKV : LocalDeps) {
1716
0
    assert(DepKV.first != D && "Inst occurs in data structures");
1717
0
    assert(DepKV.second.getInst() != D && "Inst occurs in data structures");
1718
0
  }
1719
1720
0
  for (const auto &DepKV : NonLocalPointerDeps) {
1721
0
    assert(DepKV.first.getPointer() != D && "Inst occurs in NLPD map key");
1722
0
    for (const auto &Entry : DepKV.second.NonLocalDeps)
1723
0
      assert(Entry.getResult().getInst() != D && "Inst occurs as NLPD value");
1724
0
  }
1725
1726
0
  for (const auto &DepKV : NonLocalDepsMap) {
1727
0
    assert(DepKV.first != D && "Inst occurs in data structures");
1728
0
    const PerInstNLInfo &INLD = DepKV.second;
1729
0
    for (const auto &Entry : INLD.first)
1730
0
      assert(Entry.getResult().getInst() != D &&
1731
0
             "Inst occurs in data structures");
1732
0
  }
1733
1734
0
  for (const auto &DepKV : ReverseLocalDeps) {
1735
0
    assert(DepKV.first != D && "Inst occurs in data structures");
1736
0
    for (Instruction *Inst : DepKV.second)
1737
0
      assert(Inst != D && "Inst occurs in data structures");
1738
0
  }
1739
1740
0
  for (const auto &DepKV : ReverseNonLocalDeps) {
1741
0
    assert(DepKV.first != D && "Inst occurs in data structures");
1742
0
    for (Instruction *Inst : DepKV.second)
1743
0
      assert(Inst != D && "Inst occurs in data structures");
1744
0
  }
1745
1746
0
  for (const auto &DepKV : ReverseNonLocalPtrDeps) {
1747
0
    assert(DepKV.first != D && "Inst occurs in rev NLPD map");
1748
1749
0
    for (ValueIsLoadPair P : DepKV.second)
1750
0
      assert(P != ValueIsLoadPair(D, false) && P != ValueIsLoadPair(D, true) &&
1751
0
             "Inst occurs in ReverseNonLocalPtrDeps map");
1752
0
  }
1753
0
#endif
1754
0
}
1755
1756
AnalysisKey MemoryDependenceAnalysis::Key;
1757
1758
MemoryDependenceAnalysis::MemoryDependenceAnalysis()
1759
112k
    : DefaultBlockScanLimit(BlockScanLimit) {}
1760
1761
MemoryDependenceResults
1762
24.7k
MemoryDependenceAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
1763
24.7k
  auto &AA = AM.getResult<AAManager>(F);
1764
24.7k
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
1765
24.7k
  auto &TLI = AM.getResult<TargetLibraryAnalysis>(F);
1766
24.7k
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
1767
24.7k
  return MemoryDependenceResults(AA, AC, TLI, DT, DefaultBlockScanLimit);
1768
24.7k
}
1769
1770
char MemoryDependenceWrapperPass::ID = 0;
1771
1772
62
INITIALIZE_PASS_BEGIN(MemoryDependenceWrapperPass, "memdep",
1773
62
                      "Memory Dependence Analysis", false, true)
1774
62
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1775
62
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1776
62
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1777
62
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1778
62
INITIALIZE_PASS_END(MemoryDependenceWrapperPass, "memdep",
1779
                    "Memory Dependence Analysis", false, true)
1780
1781
0
MemoryDependenceWrapperPass::MemoryDependenceWrapperPass() : FunctionPass(ID) {
1782
0
  initializeMemoryDependenceWrapperPassPass(*PassRegistry::getPassRegistry());
1783
0
}
1784
1785
0
MemoryDependenceWrapperPass::~MemoryDependenceWrapperPass() = default;
1786
1787
0
void MemoryDependenceWrapperPass::releaseMemory() {
1788
0
  MemDep.reset();
1789
0
}
1790
1791
0
void MemoryDependenceWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
1792
0
  AU.setPreservesAll();
1793
0
  AU.addRequired<AssumptionCacheTracker>();
1794
0
  AU.addRequired<DominatorTreeWrapperPass>();
1795
0
  AU.addRequiredTransitive<AAResultsWrapperPass>();
1796
0
  AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
1797
0
}
1798
1799
bool MemoryDependenceResults::invalidate(Function &F, const PreservedAnalyses &PA,
1800
11.5k
                               FunctionAnalysisManager::Invalidator &Inv) {
1801
  // Check whether our analysis is preserved.
1802
11.5k
  auto PAC = PA.getChecker<MemoryDependenceAnalysis>();
1803
11.5k
  if (!PAC.preserved() && !PAC.preservedSet<AllAnalysesOn<Function>>())
1804
    // If not, give up now.
1805
11.5k
    return true;
1806
1807
  // Check whether the analyses we depend on became invalid for any reason.
1808
0
  if (Inv.invalidate<AAManager>(F, PA) ||
1809
0
      Inv.invalidate<AssumptionAnalysis>(F, PA) ||
1810
0
      Inv.invalidate<DominatorTreeAnalysis>(F, PA))
1811
0
    return true;
1812
1813
  // Otherwise this analysis result remains valid.
1814
0
  return false;
1815
0
}
1816
1817
115k
unsigned MemoryDependenceResults::getDefaultBlockScanLimit() const {
1818
115k
  return DefaultBlockScanLimit;
1819
115k
}
1820
1821
0
bool MemoryDependenceWrapperPass::runOnFunction(Function &F) {
1822
0
  auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
1823
0
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
1824
0
  auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
1825
0
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
1826
0
  MemDep.emplace(AA, AC, TLI, DT, BlockScanLimit);
1827
0
  return false;
1828
0
}