Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/llvm/lib/CodeGen/ExpandMemCmp.cpp
Line
Count
Source (jump to first uncovered line)
1
//===--- ExpandMemCmp.cpp - Expand memcmp() to load/stores ----------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This pass tries to expand memcmp() calls into optimally-sized loads and
10
// compares for the target.
11
//
12
//===----------------------------------------------------------------------===//
13
14
#include "llvm/CodeGen/ExpandMemCmp.h"
15
#include "llvm/ADT/Statistic.h"
16
#include "llvm/Analysis/ConstantFolding.h"
17
#include "llvm/Analysis/DomTreeUpdater.h"
18
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
19
#include "llvm/Analysis/ProfileSummaryInfo.h"
20
#include "llvm/Analysis/TargetLibraryInfo.h"
21
#include "llvm/Analysis/TargetTransformInfo.h"
22
#include "llvm/Analysis/ValueTracking.h"
23
#include "llvm/CodeGen/TargetPassConfig.h"
24
#include "llvm/CodeGen/TargetSubtargetInfo.h"
25
#include "llvm/IR/Dominators.h"
26
#include "llvm/IR/IRBuilder.h"
27
#include "llvm/IR/PatternMatch.h"
28
#include "llvm/InitializePasses.h"
29
#include "llvm/Target/TargetMachine.h"
30
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
31
#include "llvm/Transforms/Utils/Local.h"
32
#include "llvm/Transforms/Utils/SizeOpts.h"
33
#include <optional>
34
35
using namespace llvm;
36
using namespace llvm::PatternMatch;
37
38
namespace llvm {
39
class TargetLowering;
40
}
41
42
#define DEBUG_TYPE "expand-memcmp"
43
44
STATISTIC(NumMemCmpCalls, "Number of memcmp calls");
45
STATISTIC(NumMemCmpNotConstant, "Number of memcmp calls without constant size");
46
STATISTIC(NumMemCmpGreaterThanMax,
47
          "Number of memcmp calls with size greater than max size");
48
STATISTIC(NumMemCmpInlined, "Number of inlined memcmp calls");
49
50
static cl::opt<unsigned> MemCmpEqZeroNumLoadsPerBlock(
51
    "memcmp-num-loads-per-block", cl::Hidden, cl::init(1),
52
    cl::desc("The number of loads per basic block for inline expansion of "
53
             "memcmp that is only being compared against zero."));
54
55
static cl::opt<unsigned> MaxLoadsPerMemcmp(
56
    "max-loads-per-memcmp", cl::Hidden,
57
    cl::desc("Set maximum number of loads used in expanded memcmp"));
58
59
static cl::opt<unsigned> MaxLoadsPerMemcmpOptSize(
60
    "max-loads-per-memcmp-opt-size", cl::Hidden,
61
    cl::desc("Set maximum number of loads used in expanded memcmp for -Os/Oz"));
62
63
namespace {
64
65
66
// This class provides helper functions to expand a memcmp library call into an
67
// inline expansion.
68
class MemCmpExpansion {
69
  struct ResultBlock {
70
    BasicBlock *BB = nullptr;
71
    PHINode *PhiSrc1 = nullptr;
72
    PHINode *PhiSrc2 = nullptr;
73
74
187
    ResultBlock() = default;
75
  };
76
77
  CallInst *const CI = nullptr;
78
  ResultBlock ResBlock;
79
  const uint64_t Size;
80
  unsigned MaxLoadSize = 0;
81
  uint64_t NumLoadsNonOneByte = 0;
82
  const uint64_t NumLoadsPerBlockForZeroCmp;
83
  std::vector<BasicBlock *> LoadCmpBlocks;
84
  BasicBlock *EndBlock = nullptr;
85
  PHINode *PhiRes = nullptr;
86
  const bool IsUsedForZeroCmp;
87
  const DataLayout &DL;
88
  DomTreeUpdater *DTU = nullptr;
89
  IRBuilder<> Builder;
90
  // Represents the decomposition in blocks of the expansion. For example,
91
  // comparing 33 bytes on X86+sse can be done with 2x16-byte loads and
92
  // 1x1-byte load, which would be represented as [{16, 0}, {16, 16}, {1, 32}.
93
  struct LoadEntry {
94
    LoadEntry(unsigned LoadSize, uint64_t Offset)
95
228
        : LoadSize(LoadSize), Offset(Offset) {
96
228
    }
97
98
    // The size of the load for this block, in bytes.
99
    unsigned LoadSize;
100
    // The offset of this load from the base pointer, in bytes.
101
    uint64_t Offset;
102
  };
103
  using LoadEntryVector = SmallVector<LoadEntry, 8>;
104
  LoadEntryVector LoadSequence;
105
106
  void createLoadCmpBlocks();
107
  void createResultBlock();
108
  void setupResultBlockPHINodes();
109
  void setupEndBlockPHINodes();
110
  Value *getCompareLoadPairs(unsigned BlockIndex, unsigned &LoadIndex);
111
  void emitLoadCompareBlock(unsigned BlockIndex);
112
  void emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
113
                                         unsigned &LoadIndex);
114
  void emitLoadCompareByteBlock(unsigned BlockIndex, unsigned OffsetBytes);
115
  void emitMemCmpResultBlock();
116
  Value *getMemCmpExpansionZeroCase();
117
  Value *getMemCmpEqZeroOneBlock();
118
  Value *getMemCmpOneBlock();
119
  struct LoadPair {
120
    Value *Lhs = nullptr;
121
    Value *Rhs = nullptr;
122
  };
123
  LoadPair getLoadPair(Type *LoadSizeType, Type *BSwapSizeType,
124
                       Type *CmpSizeType, unsigned OffsetBytes);
125
126
  static LoadEntryVector
127
  computeGreedyLoadSequence(uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
128
                            unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte);
129
  static LoadEntryVector
130
  computeOverlappingLoadSequence(uint64_t Size, unsigned MaxLoadSize,
131
                                 unsigned MaxNumLoads,
132
                                 unsigned &NumLoadsNonOneByte);
133
134
  static void optimiseLoadSequence(
135
      LoadEntryVector &LoadSequence,
136
      const TargetTransformInfo::MemCmpExpansionOptions &Options,
137
      bool IsUsedForZeroCmp);
138
139
public:
140
  MemCmpExpansion(CallInst *CI, uint64_t Size,
141
                  const TargetTransformInfo::MemCmpExpansionOptions &Options,
142
                  const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
143
                  DomTreeUpdater *DTU);
144
145
  unsigned getNumBlocks();
146
662
  uint64_t getNumLoads() const { return LoadSequence.size(); }
147
148
  Value *getMemCmpExpansion();
149
};
150
151
MemCmpExpansion::LoadEntryVector MemCmpExpansion::computeGreedyLoadSequence(
152
    uint64_t Size, llvm::ArrayRef<unsigned> LoadSizes,
153
187
    const unsigned MaxNumLoads, unsigned &NumLoadsNonOneByte) {
154
187
  NumLoadsNonOneByte = 0;
155
187
  LoadEntryVector LoadSequence;
156
187
  uint64_t Offset = 0;
157
394
  while (Size && !LoadSizes.empty()) {
158
207
    const unsigned LoadSize = LoadSizes.front();
159
207
    const uint64_t NumLoadsForThisSize = Size / LoadSize;
160
207
    if (LoadSequence.size() + NumLoadsForThisSize > MaxNumLoads) {
161
      // Do not expand if the total number of loads is larger than what the
162
      // target allows. Note that it's important that we exit before completing
163
      // the expansion to avoid using a ton of memory to store the expansion for
164
      // large sizes.
165
0
      return {};
166
0
    }
167
207
    if (NumLoadsForThisSize > 0) {
168
415
      for (uint64_t I = 0; I < NumLoadsForThisSize; ++I) {
169
208
        LoadSequence.push_back({LoadSize, Offset});
170
208
        Offset += LoadSize;
171
208
      }
172
207
      if (LoadSize > 1)
173
187
        ++NumLoadsNonOneByte;
174
207
      Size = Size % LoadSize;
175
207
    }
176
207
    LoadSizes = LoadSizes.drop_front();
177
207
  }
178
187
  return LoadSequence;
179
187
}
180
181
MemCmpExpansion::LoadEntryVector
182
MemCmpExpansion::computeOverlappingLoadSequence(uint64_t Size,
183
                                                const unsigned MaxLoadSize,
184
                                                const unsigned MaxNumLoads,
185
0
                                                unsigned &NumLoadsNonOneByte) {
186
  // These are already handled by the greedy approach.
187
0
  if (Size < 2 || MaxLoadSize < 2)
188
0
    return {};
189
190
  // We try to do as many non-overlapping loads as possible starting from the
191
  // beginning.
192
0
  const uint64_t NumNonOverlappingLoads = Size / MaxLoadSize;
193
0
  assert(NumNonOverlappingLoads && "there must be at least one load");
194
  // There remain 0 to (MaxLoadSize - 1) bytes to load, this will be done with
195
  // an overlapping load.
196
0
  Size = Size - NumNonOverlappingLoads * MaxLoadSize;
197
  // Bail if we do not need an overloapping store, this is already handled by
198
  // the greedy approach.
199
0
  if (Size == 0)
200
0
    return {};
201
  // Bail if the number of loads (non-overlapping + potential overlapping one)
202
  // is larger than the max allowed.
203
0
  if ((NumNonOverlappingLoads + 1) > MaxNumLoads)
204
0
    return {};
205
206
  // Add non-overlapping loads.
207
0
  LoadEntryVector LoadSequence;
208
0
  uint64_t Offset = 0;
209
0
  for (uint64_t I = 0; I < NumNonOverlappingLoads; ++I) {
210
0
    LoadSequence.push_back({MaxLoadSize, Offset});
211
0
    Offset += MaxLoadSize;
212
0
  }
213
214
  // Add the last overlapping load.
215
0
  assert(Size > 0 && Size < MaxLoadSize && "broken invariant");
216
0
  LoadSequence.push_back({MaxLoadSize, Offset - (MaxLoadSize - Size)});
217
0
  NumLoadsNonOneByte = 1;
218
0
  return LoadSequence;
219
0
}
220
221
void MemCmpExpansion::optimiseLoadSequence(
222
    LoadEntryVector &LoadSequence,
223
    const TargetTransformInfo::MemCmpExpansionOptions &Options,
224
187
    bool IsUsedForZeroCmp) {
225
  // This part of code attempts to optimize the LoadSequence by merging allowed
226
  // subsequences into single loads of allowed sizes from
227
  // `MemCmpExpansionOptions::AllowedTailExpansions`. If it is for zero
228
  // comparison or if no allowed tail expansions are specified, we exit early.
229
187
  if (IsUsedForZeroCmp || Options.AllowedTailExpansions.empty())
230
20
    return;
231
232
187
  while (LoadSequence.size() >= 2) {
233
20
    auto Last = LoadSequence[LoadSequence.size() - 1];
234
20
    auto PreLast = LoadSequence[LoadSequence.size() - 2];
235
236
    // Exit the loop if the two sequences are not contiguous
237
20
    if (PreLast.Offset + PreLast.LoadSize != Last.Offset)
238
0
      break;
239
240
20
    auto LoadSize = Last.LoadSize + PreLast.LoadSize;
241
20
    if (find(Options.AllowedTailExpansions, LoadSize) ==
242
20
        Options.AllowedTailExpansions.end())
243
0
      break;
244
245
    // Remove the last two sequences and replace with the combined sequence
246
20
    LoadSequence.pop_back();
247
20
    LoadSequence.pop_back();
248
20
    LoadSequence.emplace_back(PreLast.Offset, LoadSize);
249
20
  }
250
167
}
251
252
// Initialize the basic block structure required for expansion of memcmp call
253
// with given maximum load size and memcmp size parameter.
254
// This structure includes:
255
// 1. A list of load compare blocks - LoadCmpBlocks.
256
// 2. An EndBlock, split from original instruction point, which is the block to
257
// return from.
258
// 3. ResultBlock, block to branch to for early exit when a
259
// LoadCmpBlock finds a difference.
260
MemCmpExpansion::MemCmpExpansion(
261
    CallInst *const CI, uint64_t Size,
262
    const TargetTransformInfo::MemCmpExpansionOptions &Options,
263
    const bool IsUsedForZeroCmp, const DataLayout &TheDataLayout,
264
    DomTreeUpdater *DTU)
265
    : CI(CI), Size(Size), NumLoadsPerBlockForZeroCmp(Options.NumLoadsPerBlock),
266
      IsUsedForZeroCmp(IsUsedForZeroCmp), DL(TheDataLayout), DTU(DTU),
267
187
      Builder(CI) {
268
187
  assert(Size > 0 && "zero blocks");
269
  // Scale the max size down if the target can load more bytes than we need.
270
0
  llvm::ArrayRef<unsigned> LoadSizes(Options.LoadSizes);
271
393
  while (!LoadSizes.empty() && LoadSizes.front() > Size) {
272
206
    LoadSizes = LoadSizes.drop_front();
273
206
  }
274
187
  assert(!LoadSizes.empty() && "cannot load Size bytes");
275
0
  MaxLoadSize = LoadSizes.front();
276
  // Compute the decomposition.
277
187
  unsigned GreedyNumLoadsNonOneByte = 0;
278
187
  LoadSequence = computeGreedyLoadSequence(Size, LoadSizes, Options.MaxNumLoads,
279
187
                                           GreedyNumLoadsNonOneByte);
280
187
  NumLoadsNonOneByte = GreedyNumLoadsNonOneByte;
281
187
  assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
282
  // If we allow overlapping loads and the load sequence is not already optimal,
283
  // use overlapping loads.
284
187
  if (Options.AllowOverlappingLoads &&
285
187
      (LoadSequence.empty() || LoadSequence.size() > 2)) {
286
0
    unsigned OverlappingNumLoadsNonOneByte = 0;
287
0
    auto OverlappingLoads = computeOverlappingLoadSequence(
288
0
        Size, MaxLoadSize, Options.MaxNumLoads, OverlappingNumLoadsNonOneByte);
289
0
    if (!OverlappingLoads.empty() &&
290
0
        (LoadSequence.empty() ||
291
0
         OverlappingLoads.size() < LoadSequence.size())) {
292
0
      LoadSequence = OverlappingLoads;
293
0
      NumLoadsNonOneByte = OverlappingNumLoadsNonOneByte;
294
0
    }
295
0
  }
296
187
  assert(LoadSequence.size() <= Options.MaxNumLoads && "broken invariant");
297
0
  optimiseLoadSequence(LoadSequence, Options, IsUsedForZeroCmp);
298
187
}
299
300
380
unsigned MemCmpExpansion::getNumBlocks() {
301
380
  if (IsUsedForZeroCmp)
302
38
    return getNumLoads() / NumLoadsPerBlockForZeroCmp +
303
38
           (getNumLoads() % NumLoadsPerBlockForZeroCmp != 0 ? 1 : 0);
304
342
  return getNumLoads();
305
380
}
306
307
1
void MemCmpExpansion::createLoadCmpBlocks() {
308
3
  for (unsigned i = 0; i < getNumBlocks(); i++) {
309
2
    BasicBlock *BB = BasicBlock::Create(CI->getContext(), "loadbb",
310
2
                                        EndBlock->getParent(), EndBlock);
311
2
    LoadCmpBlocks.push_back(BB);
312
2
  }
313
1
}
314
315
1
void MemCmpExpansion::createResultBlock() {
316
1
  ResBlock.BB = BasicBlock::Create(CI->getContext(), "res_block",
317
1
                                   EndBlock->getParent(), EndBlock);
318
1
}
319
320
MemCmpExpansion::LoadPair MemCmpExpansion::getLoadPair(Type *LoadSizeType,
321
                                                       Type *BSwapSizeType,
322
                                                       Type *CmpSizeType,
323
188
                                                       unsigned OffsetBytes) {
324
  // Get the memory source at offset `OffsetBytes`.
325
188
  Value *LhsSource = CI->getArgOperand(0);
326
188
  Value *RhsSource = CI->getArgOperand(1);
327
188
  Align LhsAlign = LhsSource->getPointerAlignment(DL);
328
188
  Align RhsAlign = RhsSource->getPointerAlignment(DL);
329
188
  if (OffsetBytes > 0) {
330
1
    auto *ByteType = Type::getInt8Ty(CI->getContext());
331
1
    LhsSource = Builder.CreateConstGEP1_64(ByteType, LhsSource, OffsetBytes);
332
1
    RhsSource = Builder.CreateConstGEP1_64(ByteType, RhsSource, OffsetBytes);
333
1
    LhsAlign = commonAlignment(LhsAlign, OffsetBytes);
334
1
    RhsAlign = commonAlignment(RhsAlign, OffsetBytes);
335
1
  }
336
337
  // Create a constant or a load from the source.
338
188
  Value *Lhs = nullptr;
339
188
  if (auto *C = dyn_cast<Constant>(LhsSource))
340
77
    Lhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
341
188
  if (!Lhs)
342
111
    Lhs = Builder.CreateAlignedLoad(LoadSizeType, LhsSource, LhsAlign);
343
344
188
  Value *Rhs = nullptr;
345
188
  if (auto *C = dyn_cast<Constant>(RhsSource))
346
23
    Rhs = ConstantFoldLoadFromConstPtr(C, LoadSizeType, DL);
347
188
  if (!Rhs)
348
165
    Rhs = Builder.CreateAlignedLoad(LoadSizeType, RhsSource, RhsAlign);
349
350
  // Zero extend if Byte Swap intrinsic has different type
351
188
  if (BSwapSizeType && LoadSizeType != BSwapSizeType) {
352
20
    Lhs = Builder.CreateZExt(Lhs, BSwapSizeType);
353
20
    Rhs = Builder.CreateZExt(Rhs, BSwapSizeType);
354
20
  }
355
356
  // Swap bytes if required.
357
188
  if (BSwapSizeType) {
358
167
    Function *Bswap = Intrinsic::getDeclaration(
359
167
        CI->getModule(), Intrinsic::bswap, BSwapSizeType);
360
167
    Lhs = Builder.CreateCall(Bswap, Lhs);
361
167
    Rhs = Builder.CreateCall(Bswap, Rhs);
362
167
  }
363
364
  // Zero extend if required.
365
188
  if (CmpSizeType != nullptr && CmpSizeType != Lhs->getType()) {
366
0
    Lhs = Builder.CreateZExt(Lhs, CmpSizeType);
367
0
    Rhs = Builder.CreateZExt(Rhs, CmpSizeType);
368
0
  }
369
188
  return {Lhs, Rhs};
370
188
}
371
372
// This function creates the IR instructions for loading and comparing 1 byte.
373
// It loads 1 byte from each source of the memcmp parameters with the given
374
// GEPIndex. It then subtracts the two loaded values and adds this result to the
375
// final phi node for selecting the memcmp result.
376
void MemCmpExpansion::emitLoadCompareByteBlock(unsigned BlockIndex,
377
0
                                               unsigned OffsetBytes) {
378
0
  BasicBlock *BB = LoadCmpBlocks[BlockIndex];
379
0
  Builder.SetInsertPoint(BB);
380
0
  const LoadPair Loads =
381
0
      getLoadPair(Type::getInt8Ty(CI->getContext()), nullptr,
382
0
                  Type::getInt32Ty(CI->getContext()), OffsetBytes);
383
0
  Value *Diff = Builder.CreateSub(Loads.Lhs, Loads.Rhs);
384
385
0
  PhiRes->addIncoming(Diff, BB);
386
387
0
  if (BlockIndex < (LoadCmpBlocks.size() - 1)) {
388
    // Early exit branch if difference found to EndBlock. Otherwise, continue to
389
    // next LoadCmpBlock,
390
0
    Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_NE, Diff,
391
0
                                    ConstantInt::get(Diff->getType(), 0));
392
0
    BranchInst *CmpBr =
393
0
        BranchInst::Create(EndBlock, LoadCmpBlocks[BlockIndex + 1], Cmp);
394
0
    Builder.Insert(CmpBr);
395
0
    if (DTU)
396
0
      DTU->applyUpdates(
397
0
          {{DominatorTree::Insert, BB, EndBlock},
398
0
           {DominatorTree::Insert, BB, LoadCmpBlocks[BlockIndex + 1]}});
399
0
  } else {
400
    // The last block has an unconditional branch to EndBlock.
401
0
    BranchInst *CmpBr = BranchInst::Create(EndBlock);
402
0
    Builder.Insert(CmpBr);
403
0
    if (DTU)
404
0
      DTU->applyUpdates({{DominatorTree::Insert, BB, EndBlock}});
405
0
  }
406
0
}
407
408
/// Generate an equality comparison for one or more pairs of loaded values.
409
/// This is used in the case where the memcmp() call is compared equal or not
410
/// equal to zero.
411
Value *MemCmpExpansion::getCompareLoadPairs(unsigned BlockIndex,
412
19
                                            unsigned &LoadIndex) {
413
19
  assert(LoadIndex < getNumLoads() &&
414
19
         "getCompareLoadPairs() called with no remaining loads");
415
0
  std::vector<Value *> XorList, OrList;
416
19
  Value *Diff = nullptr;
417
418
19
  const unsigned NumLoads =
419
19
      std::min(getNumLoads() - LoadIndex, NumLoadsPerBlockForZeroCmp);
420
421
  // For a single-block expansion, start inserting before the memcmp call.
422
19
  if (LoadCmpBlocks.empty())
423
19
    Builder.SetInsertPoint(CI);
424
0
  else
425
0
    Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
426
427
19
  Value *Cmp = nullptr;
428
  // If we have multiple loads per block, we need to generate a composite
429
  // comparison using xor+or. The type for the combinations is the largest load
430
  // type.
431
19
  IntegerType *const MaxLoadType =
432
19
      NumLoads == 1 ? nullptr
433
19
                    : IntegerType::get(CI->getContext(), MaxLoadSize * 8);
434
435
38
  for (unsigned i = 0; i < NumLoads; ++i, ++LoadIndex) {
436
19
    const LoadEntry &CurLoadEntry = LoadSequence[LoadIndex];
437
19
    const LoadPair Loads = getLoadPair(
438
19
        IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8), nullptr,
439
19
        MaxLoadType, CurLoadEntry.Offset);
440
441
19
    if (NumLoads != 1) {
442
      // If we have multiple loads per block, we need to generate a composite
443
      // comparison using xor+or.
444
0
      Diff = Builder.CreateXor(Loads.Lhs, Loads.Rhs);
445
0
      Diff = Builder.CreateZExt(Diff, MaxLoadType);
446
0
      XorList.push_back(Diff);
447
19
    } else {
448
      // If there's only one load per block, we just compare the loaded values.
449
19
      Cmp = Builder.CreateICmpNE(Loads.Lhs, Loads.Rhs);
450
19
    }
451
19
  }
452
453
19
  auto pairWiseOr = [&](std::vector<Value *> &InList) -> std::vector<Value *> {
454
0
    std::vector<Value *> OutList;
455
0
    for (unsigned i = 0; i < InList.size() - 1; i = i + 2) {
456
0
      Value *Or = Builder.CreateOr(InList[i], InList[i + 1]);
457
0
      OutList.push_back(Or);
458
0
    }
459
0
    if (InList.size() % 2 != 0)
460
0
      OutList.push_back(InList.back());
461
0
    return OutList;
462
0
  };
463
464
19
  if (!Cmp) {
465
    // Pairwise OR the XOR results.
466
0
    OrList = pairWiseOr(XorList);
467
468
    // Pairwise OR the OR results until one result left.
469
0
    while (OrList.size() != 1) {
470
0
      OrList = pairWiseOr(OrList);
471
0
    }
472
473
0
    assert(Diff && "Failed to find comparison diff");
474
0
    Cmp = Builder.CreateICmpNE(OrList[0], ConstantInt::get(Diff->getType(), 0));
475
0
  }
476
477
0
  return Cmp;
478
19
}
479
480
void MemCmpExpansion::emitLoadCompareBlockMultipleLoads(unsigned BlockIndex,
481
0
                                                        unsigned &LoadIndex) {
482
0
  Value *Cmp = getCompareLoadPairs(BlockIndex, LoadIndex);
483
484
0
  BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
485
0
                           ? EndBlock
486
0
                           : LoadCmpBlocks[BlockIndex + 1];
487
  // Early exit branch if difference found to ResultBlock. Otherwise,
488
  // continue to next LoadCmpBlock or EndBlock.
489
0
  BasicBlock *BB = Builder.GetInsertBlock();
490
0
  BranchInst *CmpBr = BranchInst::Create(ResBlock.BB, NextBB, Cmp);
491
0
  Builder.Insert(CmpBr);
492
0
  if (DTU)
493
0
    DTU->applyUpdates({{DominatorTree::Insert, BB, ResBlock.BB},
494
0
                       {DominatorTree::Insert, BB, NextBB}});
495
496
  // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
497
  // since early exit to ResultBlock was not taken (no difference was found in
498
  // any of the bytes).
499
0
  if (BlockIndex == LoadCmpBlocks.size() - 1) {
500
0
    Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
501
0
    PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
502
0
  }
503
0
}
504
505
// This function creates the IR intructions for loading and comparing using the
506
// given LoadSize. It loads the number of bytes specified by LoadSize from each
507
// source of the memcmp parameters. It then does a subtract to see if there was
508
// a difference in the loaded values. If a difference is found, it branches
509
// with an early exit to the ResultBlock for calculating which source was
510
// larger. Otherwise, it falls through to the either the next LoadCmpBlock or
511
// the EndBlock if this is the last LoadCmpBlock. Loading 1 byte is handled with
512
// a special case through emitLoadCompareByteBlock. The special handling can
513
// simply subtract the loaded values and add it to the result phi node.
514
2
void MemCmpExpansion::emitLoadCompareBlock(unsigned BlockIndex) {
515
  // There is one load per block in this case, BlockIndex == LoadIndex.
516
2
  const LoadEntry &CurLoadEntry = LoadSequence[BlockIndex];
517
518
2
  if (CurLoadEntry.LoadSize == 1) {
519
0
    MemCmpExpansion::emitLoadCompareByteBlock(BlockIndex, CurLoadEntry.Offset);
520
0
    return;
521
0
  }
522
523
2
  Type *LoadSizeType =
524
2
      IntegerType::get(CI->getContext(), CurLoadEntry.LoadSize * 8);
525
2
  Type *BSwapSizeType =
526
2
      DL.isLittleEndian()
527
2
          ? IntegerType::get(CI->getContext(),
528
0
                             PowerOf2Ceil(CurLoadEntry.LoadSize * 8))
529
2
          : nullptr;
530
2
  Type *MaxLoadType = IntegerType::get(
531
2
      CI->getContext(),
532
2
      std::max(MaxLoadSize, (unsigned)PowerOf2Ceil(CurLoadEntry.LoadSize)) * 8);
533
2
  assert(CurLoadEntry.LoadSize <= MaxLoadSize && "Unexpected load type");
534
535
0
  Builder.SetInsertPoint(LoadCmpBlocks[BlockIndex]);
536
537
2
  const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType, MaxLoadType,
538
2
                                     CurLoadEntry.Offset);
539
540
  // Add the loaded values to the phi nodes for calculating memcmp result only
541
  // if result is not used in a zero equality.
542
2
  if (!IsUsedForZeroCmp) {
543
2
    ResBlock.PhiSrc1->addIncoming(Loads.Lhs, LoadCmpBlocks[BlockIndex]);
544
2
    ResBlock.PhiSrc2->addIncoming(Loads.Rhs, LoadCmpBlocks[BlockIndex]);
545
2
  }
546
547
2
  Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_EQ, Loads.Lhs, Loads.Rhs);
548
2
  BasicBlock *NextBB = (BlockIndex == (LoadCmpBlocks.size() - 1))
549
2
                           ? EndBlock
550
2
                           : LoadCmpBlocks[BlockIndex + 1];
551
  // Early exit branch if difference found to ResultBlock. Otherwise, continue
552
  // to next LoadCmpBlock or EndBlock.
553
2
  BasicBlock *BB = Builder.GetInsertBlock();
554
2
  BranchInst *CmpBr = BranchInst::Create(NextBB, ResBlock.BB, Cmp);
555
2
  Builder.Insert(CmpBr);
556
2
  if (DTU)
557
2
    DTU->applyUpdates({{DominatorTree::Insert, BB, NextBB},
558
2
                       {DominatorTree::Insert, BB, ResBlock.BB}});
559
560
  // Add a phi edge for the last LoadCmpBlock to Endblock with a value of 0
561
  // since early exit to ResultBlock was not taken (no difference was found in
562
  // any of the bytes).
563
2
  if (BlockIndex == LoadCmpBlocks.size() - 1) {
564
1
    Value *Zero = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 0);
565
1
    PhiRes->addIncoming(Zero, LoadCmpBlocks[BlockIndex]);
566
1
  }
567
2
}
568
569
// This function populates the ResultBlock with a sequence to calculate the
570
// memcmp result. It compares the two loaded source values and returns -1 if
571
// src1 < src2 and 1 if src1 > src2.
572
1
void MemCmpExpansion::emitMemCmpResultBlock() {
573
  // Special case: if memcmp result is used in a zero equality, result does not
574
  // need to be calculated and can simply return 1.
575
1
  if (IsUsedForZeroCmp) {
576
0
    BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
577
0
    Builder.SetInsertPoint(ResBlock.BB, InsertPt);
578
0
    Value *Res = ConstantInt::get(Type::getInt32Ty(CI->getContext()), 1);
579
0
    PhiRes->addIncoming(Res, ResBlock.BB);
580
0
    BranchInst *NewBr = BranchInst::Create(EndBlock);
581
0
    Builder.Insert(NewBr);
582
0
    if (DTU)
583
0
      DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
584
0
    return;
585
0
  }
586
1
  BasicBlock::iterator InsertPt = ResBlock.BB->getFirstInsertionPt();
587
1
  Builder.SetInsertPoint(ResBlock.BB, InsertPt);
588
589
1
  Value *Cmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, ResBlock.PhiSrc1,
590
1
                                  ResBlock.PhiSrc2);
591
592
1
  Value *Res =
593
1
      Builder.CreateSelect(Cmp, ConstantInt::get(Builder.getInt32Ty(), -1),
594
1
                           ConstantInt::get(Builder.getInt32Ty(), 1));
595
596
1
  PhiRes->addIncoming(Res, ResBlock.BB);
597
1
  BranchInst *NewBr = BranchInst::Create(EndBlock);
598
1
  Builder.Insert(NewBr);
599
1
  if (DTU)
600
1
    DTU->applyUpdates({{DominatorTree::Insert, ResBlock.BB, EndBlock}});
601
1
}
602
603
1
void MemCmpExpansion::setupResultBlockPHINodes() {
604
1
  Type *MaxLoadType = IntegerType::get(CI->getContext(), MaxLoadSize * 8);
605
1
  Builder.SetInsertPoint(ResBlock.BB);
606
  // Note: this assumes one load per block.
607
1
  ResBlock.PhiSrc1 =
608
1
      Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src1");
609
1
  ResBlock.PhiSrc2 =
610
1
      Builder.CreatePHI(MaxLoadType, NumLoadsNonOneByte, "phi.src2");
611
1
}
612
613
1
void MemCmpExpansion::setupEndBlockPHINodes() {
614
1
  Builder.SetInsertPoint(EndBlock, EndBlock->begin());
615
1
  PhiRes = Builder.CreatePHI(Type::getInt32Ty(CI->getContext()), 2, "phi.res");
616
1
}
617
618
0
Value *MemCmpExpansion::getMemCmpExpansionZeroCase() {
619
0
  unsigned LoadIndex = 0;
620
  // This loop populates each of the LoadCmpBlocks with the IR sequence to
621
  // handle multiple loads per block.
622
0
  for (unsigned I = 0; I < getNumBlocks(); ++I) {
623
0
    emitLoadCompareBlockMultipleLoads(I, LoadIndex);
624
0
  }
625
626
0
  emitMemCmpResultBlock();
627
0
  return PhiRes;
628
0
}
629
630
/// A memcmp expansion that compares equality with 0 and only has one block of
631
/// load and compare can bypass the compare, branch, and phi IR that is required
632
/// in the general case.
633
19
Value *MemCmpExpansion::getMemCmpEqZeroOneBlock() {
634
19
  unsigned LoadIndex = 0;
635
19
  Value *Cmp = getCompareLoadPairs(0, LoadIndex);
636
19
  assert(LoadIndex == getNumLoads() && "some entries were not consumed");
637
0
  return Builder.CreateZExt(Cmp, Type::getInt32Ty(CI->getContext()));
638
19
}
639
640
/// A memcmp expansion that only has one block of load and compare can bypass
641
/// the compare, branch, and phi IR that is required in the general case.
642
/// This function also analyses users of memcmp, and if there is only one user
643
/// from which we can conclude that only 2 out of 3 memcmp outcomes really
644
/// matter, then it generates more efficient code with only one comparison.
645
167
Value *MemCmpExpansion::getMemCmpOneBlock() {
646
167
  bool NeedsBSwap = DL.isLittleEndian() && Size != 1;
647
167
  Type *LoadSizeType = IntegerType::get(CI->getContext(), Size * 8);
648
167
  Type *BSwapSizeType =
649
167
      NeedsBSwap ? IntegerType::get(CI->getContext(), PowerOf2Ceil(Size * 8))
650
167
                 : nullptr;
651
167
  Type *MaxLoadType =
652
167
      IntegerType::get(CI->getContext(),
653
167
                       std::max(MaxLoadSize, (unsigned)PowerOf2Ceil(Size)) * 8);
654
655
  // The i8 and i16 cases don't need compares. We zext the loaded values and
656
  // subtract them to get the suitable negative, zero, or positive i32 result.
657
167
  if (Size == 1 || Size == 2) {
658
0
    const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType,
659
0
                                       Builder.getInt32Ty(), /*Offset*/ 0);
660
0
    return Builder.CreateSub(Loads.Lhs, Loads.Rhs);
661
0
  }
662
663
167
  const LoadPair Loads = getLoadPair(LoadSizeType, BSwapSizeType, MaxLoadType,
664
167
                                     /*Offset*/ 0);
665
666
  // If a user of memcmp cares only about two outcomes, for example:
667
  //    bool result = memcmp(a, b, NBYTES) > 0;
668
  // We can generate more optimal code with a smaller number of operations
669
167
  if (CI->hasOneUser()) {
670
14
    auto *UI = cast<Instruction>(*CI->user_begin());
671
14
    ICmpInst::Predicate Pred = ICmpInst::Predicate::BAD_ICMP_PREDICATE;
672
14
    uint64_t Shift;
673
14
    bool NeedsZExt = false;
674
    // This is a special case because instead of checking if the result is less
675
    // than zero:
676
    //    bool result = memcmp(a, b, NBYTES) < 0;
677
    // Compiler is clever enough to generate the following code:
678
    //    bool result = memcmp(a, b, NBYTES) >> 31;
679
14
    if (match(UI, m_LShr(m_Value(), m_ConstantInt(Shift))) &&
680
14
        Shift == (CI->getType()->getIntegerBitWidth() - 1)) {
681
0
      Pred = ICmpInst::ICMP_SLT;
682
0
      NeedsZExt = true;
683
14
    } else {
684
      // In case of a successful match this call will set `Pred` variable
685
14
      match(UI, m_ICmp(Pred, m_Specific(CI), m_Zero()));
686
14
    }
687
    // Generate new code and remove the original memcmp call and the user
688
14
    if (ICmpInst::isSigned(Pred)) {
689
1
      Value *Cmp = Builder.CreateICmp(CmpInst::getUnsignedPredicate(Pred),
690
1
                                      Loads.Lhs, Loads.Rhs);
691
1
      auto *Result = NeedsZExt ? Builder.CreateZExt(Cmp, UI->getType()) : Cmp;
692
1
      UI->replaceAllUsesWith(Result);
693
1
      UI->eraseFromParent();
694
1
      CI->eraseFromParent();
695
1
      return nullptr;
696
1
    }
697
14
  }
698
699
  // The result of memcmp is negative, zero, or positive, so produce that by
700
  // subtracting 2 extended compare bits: sub (ugt, ult).
701
  // If a target prefers to use selects to get -1/0/1, they should be able
702
  // to transform this later. The inverse transform (going from selects to math)
703
  // may not be possible in the DAG because the selects got converted into
704
  // branches before we got there.
705
166
  Value *CmpUGT = Builder.CreateICmpUGT(Loads.Lhs, Loads.Rhs);
706
166
  Value *CmpULT = Builder.CreateICmpULT(Loads.Lhs, Loads.Rhs);
707
166
  Value *ZextUGT = Builder.CreateZExt(CmpUGT, Builder.getInt32Ty());
708
166
  Value *ZextULT = Builder.CreateZExt(CmpULT, Builder.getInt32Ty());
709
166
  return Builder.CreateSub(ZextUGT, ZextULT);
710
167
}
711
712
// This function expands the memcmp call into an inline expansion and returns
713
// the memcmp result. Returns nullptr if the memcmp is already replaced.
714
187
Value *MemCmpExpansion::getMemCmpExpansion() {
715
  // Create the basic block framework for a multi-block expansion.
716
187
  if (getNumBlocks() != 1) {
717
1
    BasicBlock *StartBlock = CI->getParent();
718
1
    EndBlock = SplitBlock(StartBlock, CI, DTU, /*LI=*/nullptr,
719
1
                          /*MSSAU=*/nullptr, "endblock");
720
1
    setupEndBlockPHINodes();
721
1
    createResultBlock();
722
723
    // If return value of memcmp is not used in a zero equality, we need to
724
    // calculate which source was larger. The calculation requires the
725
    // two loaded source values of each load compare block.
726
    // These will be saved in the phi nodes created by setupResultBlockPHINodes.
727
1
    if (!IsUsedForZeroCmp) setupResultBlockPHINodes();
728
729
    // Create the number of required load compare basic blocks.
730
1
    createLoadCmpBlocks();
731
732
    // Update the terminator added by SplitBlock to branch to the first
733
    // LoadCmpBlock.
734
1
    StartBlock->getTerminator()->setSuccessor(0, LoadCmpBlocks[0]);
735
1
    if (DTU)
736
1
      DTU->applyUpdates({{DominatorTree::Insert, StartBlock, LoadCmpBlocks[0]},
737
1
                         {DominatorTree::Delete, StartBlock, EndBlock}});
738
1
  }
739
740
187
  Builder.SetCurrentDebugLocation(CI->getDebugLoc());
741
742
187
  if (IsUsedForZeroCmp)
743
19
    return getNumBlocks() == 1 ? getMemCmpEqZeroOneBlock()
744
19
                               : getMemCmpExpansionZeroCase();
745
746
168
  if (getNumBlocks() == 1)
747
167
    return getMemCmpOneBlock();
748
749
3
  for (unsigned I = 0; I < getNumBlocks(); ++I) {
750
2
    emitLoadCompareBlock(I);
751
2
  }
752
753
1
  emitMemCmpResultBlock();
754
1
  return PhiRes;
755
168
}
756
757
// This function checks to see if an expansion of memcmp can be generated.
758
// It checks for constant compare size that is less than the max inline size.
759
// If an expansion cannot occur, returns false to leave as a library call.
760
// Otherwise, the library call is replaced with a new IR instruction sequence.
761
/// We want to transform:
762
/// %call = call signext i32 @memcmp(i8* %0, i8* %1, i64 15)
763
/// To:
764
/// loadbb:
765
///  %0 = bitcast i32* %buffer2 to i8*
766
///  %1 = bitcast i32* %buffer1 to i8*
767
///  %2 = bitcast i8* %1 to i64*
768
///  %3 = bitcast i8* %0 to i64*
769
///  %4 = load i64, i64* %2
770
///  %5 = load i64, i64* %3
771
///  %6 = call i64 @llvm.bswap.i64(i64 %4)
772
///  %7 = call i64 @llvm.bswap.i64(i64 %5)
773
///  %8 = sub i64 %6, %7
774
///  %9 = icmp ne i64 %8, 0
775
///  br i1 %9, label %res_block, label %loadbb1
776
/// res_block:                                        ; preds = %loadbb2,
777
/// %loadbb1, %loadbb
778
///  %phi.src1 = phi i64 [ %6, %loadbb ], [ %22, %loadbb1 ], [ %36, %loadbb2 ]
779
///  %phi.src2 = phi i64 [ %7, %loadbb ], [ %23, %loadbb1 ], [ %37, %loadbb2 ]
780
///  %10 = icmp ult i64 %phi.src1, %phi.src2
781
///  %11 = select i1 %10, i32 -1, i32 1
782
///  br label %endblock
783
/// loadbb1:                                          ; preds = %loadbb
784
///  %12 = bitcast i32* %buffer2 to i8*
785
///  %13 = bitcast i32* %buffer1 to i8*
786
///  %14 = bitcast i8* %13 to i32*
787
///  %15 = bitcast i8* %12 to i32*
788
///  %16 = getelementptr i32, i32* %14, i32 2
789
///  %17 = getelementptr i32, i32* %15, i32 2
790
///  %18 = load i32, i32* %16
791
///  %19 = load i32, i32* %17
792
///  %20 = call i32 @llvm.bswap.i32(i32 %18)
793
///  %21 = call i32 @llvm.bswap.i32(i32 %19)
794
///  %22 = zext i32 %20 to i64
795
///  %23 = zext i32 %21 to i64
796
///  %24 = sub i64 %22, %23
797
///  %25 = icmp ne i64 %24, 0
798
///  br i1 %25, label %res_block, label %loadbb2
799
/// loadbb2:                                          ; preds = %loadbb1
800
///  %26 = bitcast i32* %buffer2 to i8*
801
///  %27 = bitcast i32* %buffer1 to i8*
802
///  %28 = bitcast i8* %27 to i16*
803
///  %29 = bitcast i8* %26 to i16*
804
///  %30 = getelementptr i16, i16* %28, i16 6
805
///  %31 = getelementptr i16, i16* %29, i16 6
806
///  %32 = load i16, i16* %30
807
///  %33 = load i16, i16* %31
808
///  %34 = call i16 @llvm.bswap.i16(i16 %32)
809
///  %35 = call i16 @llvm.bswap.i16(i16 %33)
810
///  %36 = zext i16 %34 to i64
811
///  %37 = zext i16 %35 to i64
812
///  %38 = sub i64 %36, %37
813
///  %39 = icmp ne i64 %38, 0
814
///  br i1 %39, label %res_block, label %loadbb3
815
/// loadbb3:                                          ; preds = %loadbb2
816
///  %40 = bitcast i32* %buffer2 to i8*
817
///  %41 = bitcast i32* %buffer1 to i8*
818
///  %42 = getelementptr i8, i8* %41, i8 14
819
///  %43 = getelementptr i8, i8* %40, i8 14
820
///  %44 = load i8, i8* %42
821
///  %45 = load i8, i8* %43
822
///  %46 = zext i8 %44 to i32
823
///  %47 = zext i8 %45 to i32
824
///  %48 = sub i32 %46, %47
825
///  br label %endblock
826
/// endblock:                                         ; preds = %res_block,
827
/// %loadbb3
828
///  %phi.res = phi i32 [ %48, %loadbb3 ], [ %11, %res_block ]
829
///  ret i32 %phi.res
830
static bool expandMemCmp(CallInst *CI, const TargetTransformInfo *TTI,
831
                         const TargetLowering *TLI, const DataLayout *DL,
832
                         ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI,
833
223
                         DomTreeUpdater *DTU, const bool IsBCmp) {
834
223
  NumMemCmpCalls++;
835
836
  // Early exit from expansion if -Oz.
837
223
  if (CI->getFunction()->hasMinSize())
838
0
    return false;
839
840
  // Early exit from expansion if size is not a constant.
841
223
  ConstantInt *SizeCast = dyn_cast<ConstantInt>(CI->getArgOperand(2));
842
223
  if (!SizeCast) {
843
36
    NumMemCmpNotConstant++;
844
36
    return false;
845
36
  }
846
187
  const uint64_t SizeVal = SizeCast->getZExtValue();
847
848
187
  if (SizeVal == 0) {
849
0
    return false;
850
0
  }
851
  // TTI call to check if target would like to expand memcmp. Also, get the
852
  // available load sizes.
853
187
  const bool IsUsedForZeroCmp =
854
187
      IsBCmp || isOnlyUsedInZeroEqualityComparison(CI);
855
187
  bool OptForSize = CI->getFunction()->hasOptSize() ||
856
187
                    llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI);
857
187
  auto Options = TTI->enableMemCmpExpansion(OptForSize,
858
187
                                            IsUsedForZeroCmp);
859
187
  if (!Options) return false;
860
861
187
  if (MemCmpEqZeroNumLoadsPerBlock.getNumOccurrences())
862
0
    Options.NumLoadsPerBlock = MemCmpEqZeroNumLoadsPerBlock;
863
864
187
  if (OptForSize &&
865
187
      MaxLoadsPerMemcmpOptSize.getNumOccurrences())
866
0
    Options.MaxNumLoads = MaxLoadsPerMemcmpOptSize;
867
868
187
  if (!OptForSize && MaxLoadsPerMemcmp.getNumOccurrences())
869
0
    Options.MaxNumLoads = MaxLoadsPerMemcmp;
870
871
187
  MemCmpExpansion Expansion(CI, SizeVal, Options, IsUsedForZeroCmp, *DL, DTU);
872
873
  // Don't expand if this will require more loads than desired by the target.
874
187
  if (Expansion.getNumLoads() == 0) {
875
0
    NumMemCmpGreaterThanMax++;
876
0
    return false;
877
0
  }
878
879
187
  NumMemCmpInlined++;
880
881
187
  if (Value *Res = Expansion.getMemCmpExpansion()) {
882
    // Replace call with result of expansion and erase call.
883
186
    CI->replaceAllUsesWith(Res);
884
186
    CI->eraseFromParent();
885
186
  }
886
887
187
  return true;
888
187
}
889
890
// Returns true if a change was made.
891
static bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
892
                       const TargetTransformInfo *TTI, const TargetLowering *TL,
893
                       const DataLayout &DL, ProfileSummaryInfo *PSI,
894
                       BlockFrequencyInfo *BFI, DomTreeUpdater *DTU);
895
896
static PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
897
                                 const TargetTransformInfo *TTI,
898
                                 const TargetLowering *TL,
899
                                 ProfileSummaryInfo *PSI,
900
                                 BlockFrequencyInfo *BFI, DominatorTree *DT);
901
902
class ExpandMemCmpLegacyPass : public FunctionPass {
903
public:
904
  static char ID;
905
906
34.0k
  ExpandMemCmpLegacyPass() : FunctionPass(ID) {
907
34.0k
    initializeExpandMemCmpLegacyPassPass(*PassRegistry::getPassRegistry());
908
34.0k
  }
909
910
113k
  bool runOnFunction(Function &F) override {
911
113k
    if (skipFunction(F)) return false;
912
913
113k
    auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
914
113k
    if (!TPC) {
915
0
      return false;
916
0
    }
917
113k
    const TargetLowering* TL =
918
113k
        TPC->getTM<TargetMachine>().getSubtargetImpl(F)->getTargetLowering();
919
920
113k
    const TargetLibraryInfo *TLI =
921
113k
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
922
113k
    const TargetTransformInfo *TTI =
923
113k
        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
924
113k
    auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
925
113k
    auto *BFI = (PSI && PSI->hasProfileSummary()) ?
926
29
           &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI() :
927
113k
           nullptr;
928
113k
    DominatorTree *DT = nullptr;
929
113k
    if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
930
113k
      DT = &DTWP->getDomTree();
931
113k
    auto PA = runImpl(F, TLI, TTI, TL, PSI, BFI, DT);
932
113k
    return !PA.areAllPreserved();
933
113k
  }
934
935
private:
936
34.0k
  void getAnalysisUsage(AnalysisUsage &AU) const override {
937
34.0k
    AU.addRequired<TargetLibraryInfoWrapperPass>();
938
34.0k
    AU.addRequired<TargetTransformInfoWrapperPass>();
939
34.0k
    AU.addRequired<ProfileSummaryInfoWrapperPass>();
940
34.0k
    AU.addPreserved<DominatorTreeWrapperPass>();
941
34.0k
    LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
942
34.0k
    FunctionPass::getAnalysisUsage(AU);
943
34.0k
  }
944
};
945
946
bool runOnBlock(BasicBlock &BB, const TargetLibraryInfo *TLI,
947
                const TargetTransformInfo *TTI, const TargetLowering *TL,
948
                const DataLayout &DL, ProfileSummaryInfo *PSI,
949
228k
                BlockFrequencyInfo *BFI, DomTreeUpdater *DTU) {
950
2.24M
  for (Instruction &I : BB) {
951
2.24M
    CallInst *CI = dyn_cast<CallInst>(&I);
952
2.24M
    if (!CI) {
953
2.21M
      continue;
954
2.21M
    }
955
28.8k
    LibFunc Func;
956
28.8k
    if (TLI->getLibFunc(*CI, Func) &&
957
28.8k
        (Func == LibFunc_memcmp || Func == LibFunc_bcmp) &&
958
28.8k
        expandMemCmp(CI, TTI, TL, &DL, PSI, BFI, DTU, Func == LibFunc_bcmp)) {
959
187
      return true;
960
187
    }
961
28.8k
  }
962
228k
  return false;
963
228k
}
964
965
PreservedAnalyses runImpl(Function &F, const TargetLibraryInfo *TLI,
966
                          const TargetTransformInfo *TTI,
967
                          const TargetLowering *TL, ProfileSummaryInfo *PSI,
968
113k
                          BlockFrequencyInfo *BFI, DominatorTree *DT) {
969
113k
  std::optional<DomTreeUpdater> DTU;
970
113k
  if (DT)
971
113k
    DTU.emplace(DT, DomTreeUpdater::UpdateStrategy::Lazy);
972
973
113k
  const DataLayout& DL = F.getParent()->getDataLayout();
974
113k
  bool MadeChanges = false;
975
342k
  for (auto BBIt = F.begin(); BBIt != F.end();) {
976
228k
    if (runOnBlock(*BBIt, TLI, TTI, TL, DL, PSI, BFI, DTU ? &*DTU : nullptr)) {
977
187
      MadeChanges = true;
978
      // If changes were made, restart the function from the beginning, since
979
      // the structure of the function was changed.
980
187
      BBIt = F.begin();
981
228k
    } else {
982
228k
      ++BBIt;
983
228k
    }
984
228k
  }
985
113k
  if (MadeChanges)
986
187
    for (BasicBlock &BB : F)
987
192
      SimplifyInstructionsInBlock(&BB);
988
113k
  if (!MadeChanges)
989
113k
    return PreservedAnalyses::all();
990
187
  PreservedAnalyses PA;
991
187
  PA.preserve<DominatorTreeAnalysis>();
992
187
  return PA;
993
113k
}
994
995
} // namespace
996
997
PreservedAnalyses ExpandMemCmpPass::run(Function &F,
998
0
                                        FunctionAnalysisManager &FAM) {
999
0
  const auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
1000
0
  const auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F);
1001
0
  const auto &TTI = FAM.getResult<TargetIRAnalysis>(F);
1002
0
  auto *PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
1003
0
                  .getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
1004
0
  BlockFrequencyInfo *BFI = (PSI && PSI->hasProfileSummary())
1005
0
                                ? &FAM.getResult<BlockFrequencyAnalysis>(F)
1006
0
                                : nullptr;
1007
0
  auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F);
1008
1009
0
  return runImpl(F, &TLI, &TTI, TL, PSI, BFI, DT);
1010
0
}
1011
1012
char ExpandMemCmpLegacyPass::ID = 0;
1013
12
INITIALIZE_PASS_BEGIN(ExpandMemCmpLegacyPass, DEBUG_TYPE,
1014
12
                      "Expand memcmp() to load/stores", false, false)
1015
12
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
1016
12
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1017
12
INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass)
1018
12
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
1019
12
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
1020
12
INITIALIZE_PASS_END(ExpandMemCmpLegacyPass, DEBUG_TYPE,
1021
                    "Expand memcmp() to load/stores", false, false)
1022
1023
34.0k
FunctionPass *llvm::createExpandMemCmpLegacyPass() {
1024
34.0k
  return new ExpandMemCmpLegacyPass();
1025
34.0k
}