/src/llvm-project/llvm/lib/CodeGen/GlobalISel/RegBankSelect.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //==- llvm/CodeGen/GlobalISel/RegBankSelect.cpp - RegBankSelect --*- C++ -*-==// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | /// \file |
9 | | /// This file implements the RegBankSelect class. |
10 | | //===----------------------------------------------------------------------===// |
11 | | |
12 | | #include "llvm/CodeGen/GlobalISel/RegBankSelect.h" |
13 | | #include "llvm/ADT/PostOrderIterator.h" |
14 | | #include "llvm/ADT/STLExtras.h" |
15 | | #include "llvm/ADT/SmallVector.h" |
16 | | #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h" |
17 | | #include "llvm/CodeGen/GlobalISel/Utils.h" |
18 | | #include "llvm/CodeGen/MachineBasicBlock.h" |
19 | | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" |
20 | | #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" |
21 | | #include "llvm/CodeGen/MachineFunction.h" |
22 | | #include "llvm/CodeGen/MachineInstr.h" |
23 | | #include "llvm/CodeGen/MachineOperand.h" |
24 | | #include "llvm/CodeGen/MachineOptimizationRemarkEmitter.h" |
25 | | #include "llvm/CodeGen/MachineRegisterInfo.h" |
26 | | #include "llvm/CodeGen/RegisterBank.h" |
27 | | #include "llvm/CodeGen/RegisterBankInfo.h" |
28 | | #include "llvm/CodeGen/TargetOpcodes.h" |
29 | | #include "llvm/CodeGen/TargetPassConfig.h" |
30 | | #include "llvm/CodeGen/TargetRegisterInfo.h" |
31 | | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
32 | | #include "llvm/Config/llvm-config.h" |
33 | | #include "llvm/IR/Function.h" |
34 | | #include "llvm/InitializePasses.h" |
35 | | #include "llvm/Pass.h" |
36 | | #include "llvm/Support/BlockFrequency.h" |
37 | | #include "llvm/Support/CommandLine.h" |
38 | | #include "llvm/Support/Compiler.h" |
39 | | #include "llvm/Support/Debug.h" |
40 | | #include "llvm/Support/ErrorHandling.h" |
41 | | #include "llvm/Support/raw_ostream.h" |
42 | | #include <algorithm> |
43 | | #include <cassert> |
44 | | #include <cstdint> |
45 | | #include <limits> |
46 | | #include <memory> |
47 | | #include <utility> |
48 | | |
49 | | #define DEBUG_TYPE "regbankselect" |
50 | | |
51 | | using namespace llvm; |
52 | | |
53 | | static cl::opt<RegBankSelect::Mode> RegBankSelectMode( |
54 | | cl::desc("Mode of the RegBankSelect pass"), cl::Hidden, cl::Optional, |
55 | | cl::values(clEnumValN(RegBankSelect::Mode::Fast, "regbankselect-fast", |
56 | | "Run the Fast mode (default mapping)"), |
57 | | clEnumValN(RegBankSelect::Mode::Greedy, "regbankselect-greedy", |
58 | | "Use the Greedy mode (best local mapping)"))); |
59 | | |
60 | | char RegBankSelect::ID = 0; |
61 | | |
62 | 62 | INITIALIZE_PASS_BEGIN(RegBankSelect, DEBUG_TYPE, |
63 | 62 | "Assign register bank of generic virtual registers", |
64 | 62 | false, false); |
65 | 62 | INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo) |
66 | 62 | INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) |
67 | 62 | INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) |
68 | 62 | INITIALIZE_PASS_END(RegBankSelect, DEBUG_TYPE, |
69 | | "Assign register bank of generic virtual registers", false, |
70 | | false) |
71 | | |
72 | | RegBankSelect::RegBankSelect(char &PassID, Mode RunningMode) |
73 | 381 | : MachineFunctionPass(PassID), OptMode(RunningMode) { |
74 | 381 | if (RegBankSelectMode.getNumOccurrences() != 0) { |
75 | 0 | OptMode = RegBankSelectMode; |
76 | 0 | if (RegBankSelectMode != RunningMode) |
77 | 0 | LLVM_DEBUG(dbgs() << "RegBankSelect mode overrided by command line\n"); |
78 | 0 | } |
79 | 381 | } |
80 | | |
81 | 13.7k | void RegBankSelect::init(MachineFunction &MF) { |
82 | 13.7k | RBI = MF.getSubtarget().getRegBankInfo(); |
83 | 13.7k | assert(RBI && "Cannot work without RegisterBankInfo"); |
84 | 0 | MRI = &MF.getRegInfo(); |
85 | 13.7k | TRI = MF.getSubtarget().getRegisterInfo(); |
86 | 13.7k | TPC = &getAnalysis<TargetPassConfig>(); |
87 | 13.7k | if (OptMode != Mode::Fast) { |
88 | 0 | MBFI = &getAnalysis<MachineBlockFrequencyInfo>(); |
89 | 0 | MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); |
90 | 13.7k | } else { |
91 | 13.7k | MBFI = nullptr; |
92 | 13.7k | MBPI = nullptr; |
93 | 13.7k | } |
94 | 13.7k | MIRBuilder.setMF(MF); |
95 | 13.7k | MORE = std::make_unique<MachineOptimizationRemarkEmitter>(MF, MBFI); |
96 | 13.7k | } |
97 | | |
98 | 381 | void RegBankSelect::getAnalysisUsage(AnalysisUsage &AU) const { |
99 | 381 | if (OptMode != Mode::Fast) { |
100 | | // We could preserve the information from these two analysis but |
101 | | // the APIs do not allow to do so yet. |
102 | 0 | AU.addRequired<MachineBlockFrequencyInfo>(); |
103 | 0 | AU.addRequired<MachineBranchProbabilityInfo>(); |
104 | 0 | } |
105 | 381 | AU.addRequired<TargetPassConfig>(); |
106 | 381 | getSelectionDAGFallbackAnalysisUsage(AU); |
107 | 381 | MachineFunctionPass::getAnalysisUsage(AU); |
108 | 381 | } |
109 | | |
110 | | bool RegBankSelect::assignmentMatch( |
111 | | Register Reg, const RegisterBankInfo::ValueMapping &ValMapping, |
112 | 366k | bool &OnlyAssign) const { |
113 | | // By default we assume we will have to repair something. |
114 | 366k | OnlyAssign = false; |
115 | | // Each part of a break down needs to end up in a different register. |
116 | | // In other word, Reg assignment does not match. |
117 | 366k | if (ValMapping.NumBreakDowns != 1) |
118 | 0 | return false; |
119 | | |
120 | 366k | const RegisterBank *CurRegBank = RBI->getRegBank(Reg, *MRI, *TRI); |
121 | 366k | const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; |
122 | | // Reg is free of assignment, a simple assignment will make the |
123 | | // register bank to match. |
124 | 366k | OnlyAssign = CurRegBank == nullptr; |
125 | 366k | LLVM_DEBUG(dbgs() << "Does assignment already match: "; |
126 | 0 | if (CurRegBank) dbgs() << *CurRegBank; else dbgs() << "none"; |
127 | 0 | dbgs() << " against "; |
128 | 0 | assert(DesiredRegBank && "The mapping must be valid"); |
129 | 0 | dbgs() << *DesiredRegBank << '\n';); |
130 | 0 | return CurRegBank == DesiredRegBank; |
131 | 366k | } |
132 | | |
133 | | bool RegBankSelect::repairReg( |
134 | | MachineOperand &MO, const RegisterBankInfo::ValueMapping &ValMapping, |
135 | | RegBankSelect::RepairingPlacement &RepairPt, |
136 | 2.10k | const iterator_range<SmallVectorImpl<Register>::const_iterator> &NewVRegs) { |
137 | | |
138 | 2.10k | assert(ValMapping.NumBreakDowns == (unsigned)size(NewVRegs) && |
139 | 2.10k | "need new vreg for each breakdown"); |
140 | | |
141 | | // An empty range of new register means no repairing. |
142 | 0 | assert(!NewVRegs.empty() && "We should not have to repair"); |
143 | | |
144 | 0 | MachineInstr *MI; |
145 | 2.10k | if (ValMapping.NumBreakDowns == 1) { |
146 | | // Assume we are repairing a use and thus, the original reg will be |
147 | | // the source of the repairing. |
148 | 2.10k | Register Src = MO.getReg(); |
149 | 2.10k | Register Dst = *NewVRegs.begin(); |
150 | | |
151 | | // If we repair a definition, swap the source and destination for |
152 | | // the repairing. |
153 | 2.10k | if (MO.isDef()) |
154 | 0 | std::swap(Src, Dst); |
155 | | |
156 | 2.10k | assert((RepairPt.getNumInsertPoints() == 1 || Dst.isPhysical()) && |
157 | 2.10k | "We are about to create several defs for Dst"); |
158 | | |
159 | | // Build the instruction used to repair, then clone it at the right |
160 | | // places. Avoiding buildCopy bypasses the check that Src and Dst have the |
161 | | // same types because the type is a placeholder when this function is called. |
162 | 0 | MI = MIRBuilder.buildInstrNoInsert(TargetOpcode::COPY) |
163 | 2.10k | .addDef(Dst) |
164 | 2.10k | .addUse(Src); |
165 | 2.10k | LLVM_DEBUG(dbgs() << "Copy: " << printReg(Src) << ':' |
166 | 2.10k | << printRegClassOrBank(Src, *MRI, TRI) |
167 | 2.10k | << " to: " << printReg(Dst) << ':' |
168 | 2.10k | << printRegClassOrBank(Dst, *MRI, TRI) << '\n'); |
169 | 2.10k | } else { |
170 | | // TODO: Support with G_IMPLICIT_DEF + G_INSERT sequence or G_EXTRACT |
171 | | // sequence. |
172 | 0 | assert(ValMapping.partsAllUniform() && "irregular breakdowns not supported"); |
173 | | |
174 | 0 | LLT RegTy = MRI->getType(MO.getReg()); |
175 | 0 | if (MO.isDef()) { |
176 | 0 | unsigned MergeOp; |
177 | 0 | if (RegTy.isVector()) { |
178 | 0 | if (ValMapping.NumBreakDowns == RegTy.getNumElements()) |
179 | 0 | MergeOp = TargetOpcode::G_BUILD_VECTOR; |
180 | 0 | else { |
181 | 0 | assert( |
182 | 0 | (ValMapping.BreakDown[0].Length * ValMapping.NumBreakDowns == |
183 | 0 | RegTy.getSizeInBits()) && |
184 | 0 | (ValMapping.BreakDown[0].Length % RegTy.getScalarSizeInBits() == |
185 | 0 | 0) && |
186 | 0 | "don't understand this value breakdown"); |
187 | | |
188 | 0 | MergeOp = TargetOpcode::G_CONCAT_VECTORS; |
189 | 0 | } |
190 | 0 | } else |
191 | 0 | MergeOp = TargetOpcode::G_MERGE_VALUES; |
192 | | |
193 | 0 | auto MergeBuilder = |
194 | 0 | MIRBuilder.buildInstrNoInsert(MergeOp) |
195 | 0 | .addDef(MO.getReg()); |
196 | |
|
197 | 0 | for (Register SrcReg : NewVRegs) |
198 | 0 | MergeBuilder.addUse(SrcReg); |
199 | |
|
200 | 0 | MI = MergeBuilder; |
201 | 0 | } else { |
202 | 0 | MachineInstrBuilder UnMergeBuilder = |
203 | 0 | MIRBuilder.buildInstrNoInsert(TargetOpcode::G_UNMERGE_VALUES); |
204 | 0 | for (Register DefReg : NewVRegs) |
205 | 0 | UnMergeBuilder.addDef(DefReg); |
206 | |
|
207 | 0 | UnMergeBuilder.addUse(MO.getReg()); |
208 | 0 | MI = UnMergeBuilder; |
209 | 0 | } |
210 | 0 | } |
211 | | |
212 | 2.10k | if (RepairPt.getNumInsertPoints() != 1) |
213 | 0 | report_fatal_error("need testcase to support multiple insertion points"); |
214 | | |
215 | | // TODO: |
216 | | // Check if MI is legal. if not, we need to legalize all the |
217 | | // instructions we are going to insert. |
218 | 2.10k | std::unique_ptr<MachineInstr *[]> NewInstrs( |
219 | 2.10k | new MachineInstr *[RepairPt.getNumInsertPoints()]); |
220 | 2.10k | bool IsFirst = true; |
221 | 2.10k | unsigned Idx = 0; |
222 | 2.10k | for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { |
223 | 2.10k | MachineInstr *CurMI; |
224 | 2.10k | if (IsFirst) |
225 | 2.10k | CurMI = MI; |
226 | 0 | else |
227 | 0 | CurMI = MIRBuilder.getMF().CloneMachineInstr(MI); |
228 | 2.10k | InsertPt->insert(*CurMI); |
229 | 2.10k | NewInstrs[Idx++] = CurMI; |
230 | 2.10k | IsFirst = false; |
231 | 2.10k | } |
232 | | // TODO: |
233 | | // Legalize NewInstrs if need be. |
234 | 2.10k | return true; |
235 | 2.10k | } |
236 | | |
237 | | uint64_t RegBankSelect::getRepairCost( |
238 | | const MachineOperand &MO, |
239 | 0 | const RegisterBankInfo::ValueMapping &ValMapping) const { |
240 | 0 | assert(MO.isReg() && "We should only repair register operand"); |
241 | 0 | assert(ValMapping.NumBreakDowns && "Nothing to map??"); |
242 | | |
243 | 0 | bool IsSameNumOfValues = ValMapping.NumBreakDowns == 1; |
244 | 0 | const RegisterBank *CurRegBank = RBI->getRegBank(MO.getReg(), *MRI, *TRI); |
245 | | // If MO does not have a register bank, we should have just been |
246 | | // able to set one unless we have to break the value down. |
247 | 0 | assert(CurRegBank || MO.isDef()); |
248 | | |
249 | | // Def: Val <- NewDefs |
250 | | // Same number of values: copy |
251 | | // Different number: Val = build_sequence Defs1, Defs2, ... |
252 | | // Use: NewSources <- Val. |
253 | | // Same number of values: copy. |
254 | | // Different number: Src1, Src2, ... = |
255 | | // extract_value Val, Src1Begin, Src1Len, Src2Begin, Src2Len, ... |
256 | | // We should remember that this value is available somewhere else to |
257 | | // coalesce the value. |
258 | | |
259 | 0 | if (ValMapping.NumBreakDowns != 1) |
260 | 0 | return RBI->getBreakDownCost(ValMapping, CurRegBank); |
261 | | |
262 | 0 | if (IsSameNumOfValues) { |
263 | 0 | const RegisterBank *DesiredRegBank = ValMapping.BreakDown[0].RegBank; |
264 | | // If we repair a definition, swap the source and destination for |
265 | | // the repairing. |
266 | 0 | if (MO.isDef()) |
267 | 0 | std::swap(CurRegBank, DesiredRegBank); |
268 | | // TODO: It may be possible to actually avoid the copy. |
269 | | // If we repair something where the source is defined by a copy |
270 | | // and the source of that copy is on the right bank, we can reuse |
271 | | // it for free. |
272 | | // E.g., |
273 | | // RegToRepair<BankA> = copy AlternativeSrc<BankB> |
274 | | // = op RegToRepair<BankA> |
275 | | // We can simply propagate AlternativeSrc instead of copying RegToRepair |
276 | | // into a new virtual register. |
277 | | // We would also need to propagate this information in the |
278 | | // repairing placement. |
279 | 0 | unsigned Cost = RBI->copyCost(*DesiredRegBank, *CurRegBank, |
280 | 0 | RBI->getSizeInBits(MO.getReg(), *MRI, *TRI)); |
281 | | // TODO: use a dedicated constant for ImpossibleCost. |
282 | 0 | if (Cost != std::numeric_limits<unsigned>::max()) |
283 | 0 | return Cost; |
284 | | // Return the legalization cost of that repairing. |
285 | 0 | } |
286 | 0 | return std::numeric_limits<unsigned>::max(); |
287 | 0 | } |
288 | | |
289 | | const RegisterBankInfo::InstructionMapping &RegBankSelect::findBestMapping( |
290 | | MachineInstr &MI, RegisterBankInfo::InstructionMappings &PossibleMappings, |
291 | 0 | SmallVectorImpl<RepairingPlacement> &RepairPts) { |
292 | 0 | assert(!PossibleMappings.empty() && |
293 | 0 | "Do not know how to map this instruction"); |
294 | | |
295 | 0 | const RegisterBankInfo::InstructionMapping *BestMapping = nullptr; |
296 | 0 | MappingCost Cost = MappingCost::ImpossibleCost(); |
297 | 0 | SmallVector<RepairingPlacement, 4> LocalRepairPts; |
298 | 0 | for (const RegisterBankInfo::InstructionMapping *CurMapping : |
299 | 0 | PossibleMappings) { |
300 | 0 | MappingCost CurCost = |
301 | 0 | computeMapping(MI, *CurMapping, LocalRepairPts, &Cost); |
302 | 0 | if (CurCost < Cost) { |
303 | 0 | LLVM_DEBUG(dbgs() << "New best: " << CurCost << '\n'); |
304 | 0 | Cost = CurCost; |
305 | 0 | BestMapping = CurMapping; |
306 | 0 | RepairPts.clear(); |
307 | 0 | for (RepairingPlacement &RepairPt : LocalRepairPts) |
308 | 0 | RepairPts.emplace_back(std::move(RepairPt)); |
309 | 0 | } |
310 | 0 | } |
311 | 0 | if (!BestMapping && !TPC->isGlobalISelAbortEnabled()) { |
312 | | // If none of the mapping worked that means they are all impossible. |
313 | | // Thus, pick the first one and set an impossible repairing point. |
314 | | // It will trigger the failed isel mode. |
315 | 0 | BestMapping = *PossibleMappings.begin(); |
316 | 0 | RepairPts.emplace_back( |
317 | 0 | RepairingPlacement(MI, 0, *TRI, *this, RepairingPlacement::Impossible)); |
318 | 0 | } else |
319 | 0 | assert(BestMapping && "No suitable mapping for instruction"); |
320 | 0 | return *BestMapping; |
321 | 0 | } |
322 | | |
323 | | void RegBankSelect::tryAvoidingSplit( |
324 | | RegBankSelect::RepairingPlacement &RepairPt, const MachineOperand &MO, |
325 | 0 | const RegisterBankInfo::ValueMapping &ValMapping) const { |
326 | 0 | const MachineInstr &MI = *MO.getParent(); |
327 | 0 | assert(RepairPt.hasSplit() && "We should not have to adjust for split"); |
328 | | // Splitting should only occur for PHIs or between terminators, |
329 | | // because we only do local repairing. |
330 | 0 | assert((MI.isPHI() || MI.isTerminator()) && "Why do we split?"); |
331 | | |
332 | 0 | assert(&MI.getOperand(RepairPt.getOpIdx()) == &MO && |
333 | 0 | "Repairing placement does not match operand"); |
334 | | |
335 | | // If we need splitting for phis, that means it is because we |
336 | | // could not find an insertion point before the terminators of |
337 | | // the predecessor block for this argument. In other words, |
338 | | // the input value is defined by one of the terminators. |
339 | 0 | assert((!MI.isPHI() || !MO.isDef()) && "Need split for phi def?"); |
340 | | |
341 | | // We split to repair the use of a phi or a terminator. |
342 | 0 | if (!MO.isDef()) { |
343 | 0 | if (MI.isTerminator()) { |
344 | 0 | assert(&MI != &(*MI.getParent()->getFirstTerminator()) && |
345 | 0 | "Need to split for the first terminator?!"); |
346 | 0 | } else { |
347 | | // For the PHI case, the split may not be actually required. |
348 | | // In the copy case, a phi is already a copy on the incoming edge, |
349 | | // therefore there is no need to split. |
350 | 0 | if (ValMapping.NumBreakDowns == 1) |
351 | | // This is a already a copy, there is nothing to do. |
352 | 0 | RepairPt.switchTo(RepairingPlacement::RepairingKind::Reassign); |
353 | 0 | } |
354 | 0 | return; |
355 | 0 | } |
356 | | |
357 | | // At this point, we need to repair a defintion of a terminator. |
358 | | |
359 | | // Technically we need to fix the def of MI on all outgoing |
360 | | // edges of MI to keep the repairing local. In other words, we |
361 | | // will create several definitions of the same register. This |
362 | | // does not work for SSA unless that definition is a physical |
363 | | // register. |
364 | | // However, there are other cases where we can get away with |
365 | | // that while still keeping the repairing local. |
366 | 0 | assert(MI.isTerminator() && MO.isDef() && |
367 | 0 | "This code is for the def of a terminator"); |
368 | | |
369 | | // Since we use RPO traversal, if we need to repair a definition |
370 | | // this means this definition could be: |
371 | | // 1. Used by PHIs (i.e., this VReg has been visited as part of the |
372 | | // uses of a phi.), or |
373 | | // 2. Part of a target specific instruction (i.e., the target applied |
374 | | // some register class constraints when creating the instruction.) |
375 | | // If the constraints come for #2, the target said that another mapping |
376 | | // is supported so we may just drop them. Indeed, if we do not change |
377 | | // the number of registers holding that value, the uses will get fixed |
378 | | // when we get to them. |
379 | | // Uses in PHIs may have already been proceeded though. |
380 | | // If the constraints come for #1, then, those are weak constraints and |
381 | | // no actual uses may rely on them. However, the problem remains mainly |
382 | | // the same as for #2. If the value stays in one register, we could |
383 | | // just switch the register bank of the definition, but we would need to |
384 | | // account for a repairing cost for each phi we silently change. |
385 | | // |
386 | | // In any case, if the value needs to be broken down into several |
387 | | // registers, the repairing is not local anymore as we need to patch |
388 | | // every uses to rebuild the value in just one register. |
389 | | // |
390 | | // To summarize: |
391 | | // - If the value is in a physical register, we can do the split and |
392 | | // fix locally. |
393 | | // Otherwise if the value is in a virtual register: |
394 | | // - If the value remains in one register, we do not have to split |
395 | | // just switching the register bank would do, but we need to account |
396 | | // in the repairing cost all the phi we changed. |
397 | | // - If the value spans several registers, then we cannot do a local |
398 | | // repairing. |
399 | | |
400 | | // Check if this is a physical or virtual register. |
401 | 0 | Register Reg = MO.getReg(); |
402 | 0 | if (Reg.isPhysical()) { |
403 | | // We are going to split every outgoing edges. |
404 | | // Check that this is possible. |
405 | | // FIXME: The machine representation is currently broken |
406 | | // since it also several terminators in one basic block. |
407 | | // Because of that we would technically need a way to get |
408 | | // the targets of just one terminator to know which edges |
409 | | // we have to split. |
410 | | // Assert that we do not hit the ill-formed representation. |
411 | | |
412 | | // If there are other terminators before that one, some of |
413 | | // the outgoing edges may not be dominated by this definition. |
414 | 0 | assert(&MI == &(*MI.getParent()->getFirstTerminator()) && |
415 | 0 | "Do not know which outgoing edges are relevant"); |
416 | 0 | const MachineInstr *Next = MI.getNextNode(); |
417 | 0 | assert((!Next || Next->isUnconditionalBranch()) && |
418 | 0 | "Do not know where each terminator ends up"); |
419 | 0 | if (Next) |
420 | | // If the next terminator uses Reg, this means we have |
421 | | // to split right after MI and thus we need a way to ask |
422 | | // which outgoing edges are affected. |
423 | 0 | assert(!Next->readsRegister(Reg) && "Need to split between terminators"); |
424 | | // We will split all the edges and repair there. |
425 | 0 | } else { |
426 | | // This is a virtual register defined by a terminator. |
427 | 0 | if (ValMapping.NumBreakDowns == 1) { |
428 | | // There is nothing to repair, but we may actually lie on |
429 | | // the repairing cost because of the PHIs already proceeded |
430 | | // as already stated. |
431 | | // Though the code will be correct. |
432 | 0 | assert(false && "Repairing cost may not be accurate"); |
433 | 0 | } else { |
434 | | // We need to do non-local repairing. Basically, patch all |
435 | | // the uses (i.e., phis) that we already proceeded. |
436 | | // For now, just say this mapping is not possible. |
437 | 0 | RepairPt.switchTo(RepairingPlacement::RepairingKind::Impossible); |
438 | 0 | } |
439 | 0 | } |
440 | 0 | } |
441 | | |
442 | | RegBankSelect::MappingCost RegBankSelect::computeMapping( |
443 | | MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, |
444 | | SmallVectorImpl<RepairingPlacement> &RepairPts, |
445 | 212k | const RegBankSelect::MappingCost *BestCost) { |
446 | 212k | assert((MBFI || !BestCost) && "Costs comparison require MBFI"); |
447 | | |
448 | 212k | if (!InstrMapping.isValid()) |
449 | 0 | return MappingCost::ImpossibleCost(); |
450 | | |
451 | | // If mapped with InstrMapping, MI will have the recorded cost. |
452 | 212k | MappingCost Cost(MBFI ? MBFI->getBlockFreq(MI.getParent()) |
453 | 212k | : BlockFrequency(1)); |
454 | 212k | bool Saturated = Cost.addLocalCost(InstrMapping.getCost()); |
455 | 212k | assert(!Saturated && "Possible mapping saturated the cost"); |
456 | 212k | LLVM_DEBUG(dbgs() << "Evaluating mapping cost for: " << MI); |
457 | 212k | LLVM_DEBUG(dbgs() << "With: " << InstrMapping << '\n'); |
458 | 212k | RepairPts.clear(); |
459 | 212k | if (BestCost && Cost > *BestCost) { |
460 | 0 | LLVM_DEBUG(dbgs() << "Mapping is too expensive from the start\n"); |
461 | 0 | return Cost; |
462 | 0 | } |
463 | 212k | const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); |
464 | | |
465 | | // Moreover, to realize this mapping, the register bank of each operand must |
466 | | // match this mapping. In other words, we may need to locally reassign the |
467 | | // register banks. Account for that repairing cost as well. |
468 | | // In this context, local means in the surrounding of MI. |
469 | 212k | for (unsigned OpIdx = 0, EndOpIdx = InstrMapping.getNumOperands(); |
470 | 667k | OpIdx != EndOpIdx; ++OpIdx) { |
471 | 455k | const MachineOperand &MO = MI.getOperand(OpIdx); |
472 | 455k | if (!MO.isReg()) |
473 | 68.8k | continue; |
474 | 386k | Register Reg = MO.getReg(); |
475 | 386k | if (!Reg) |
476 | 12 | continue; |
477 | 386k | LLT Ty = MRI.getType(Reg); |
478 | 386k | if (!Ty.isValid()) |
479 | 20.0k | continue; |
480 | | |
481 | 366k | LLVM_DEBUG(dbgs() << "Opd" << OpIdx << '\n'); |
482 | 366k | const RegisterBankInfo::ValueMapping &ValMapping = |
483 | 366k | InstrMapping.getOperandMapping(OpIdx); |
484 | | // If Reg is already properly mapped, this is free. |
485 | 366k | bool Assign; |
486 | 366k | if (assignmentMatch(Reg, ValMapping, Assign)) { |
487 | 200k | LLVM_DEBUG(dbgs() << "=> is free (match).\n"); |
488 | 200k | continue; |
489 | 200k | } |
490 | 165k | if (Assign) { |
491 | 163k | LLVM_DEBUG(dbgs() << "=> is free (simple assignment).\n"); |
492 | 163k | RepairPts.emplace_back(RepairingPlacement(MI, OpIdx, *TRI, *this, |
493 | 163k | RepairingPlacement::Reassign)); |
494 | 163k | continue; |
495 | 163k | } |
496 | | |
497 | | // Find the insertion point for the repairing code. |
498 | 2.10k | RepairPts.emplace_back( |
499 | 2.10k | RepairingPlacement(MI, OpIdx, *TRI, *this, RepairingPlacement::Insert)); |
500 | 2.10k | RepairingPlacement &RepairPt = RepairPts.back(); |
501 | | |
502 | | // If we need to split a basic block to materialize this insertion point, |
503 | | // we may give a higher cost to this mapping. |
504 | | // Nevertheless, we may get away with the split, so try that first. |
505 | 2.10k | if (RepairPt.hasSplit()) |
506 | 0 | tryAvoidingSplit(RepairPt, MO, ValMapping); |
507 | | |
508 | | // Check that the materialization of the repairing is possible. |
509 | 2.10k | if (!RepairPt.canMaterialize()) { |
510 | 0 | LLVM_DEBUG(dbgs() << "Mapping involves impossible repairing\n"); |
511 | 0 | return MappingCost::ImpossibleCost(); |
512 | 0 | } |
513 | | |
514 | | // Account for the split cost and repair cost. |
515 | | // Unless the cost is already saturated or we do not care about the cost. |
516 | 2.10k | if (!BestCost || Saturated) |
517 | 2.10k | continue; |
518 | | |
519 | | // To get accurate information we need MBFI and MBPI. |
520 | | // Thus, if we end up here this information should be here. |
521 | 0 | assert(MBFI && MBPI && "Cost computation requires MBFI and MBPI"); |
522 | | |
523 | | // FIXME: We will have to rework the repairing cost model. |
524 | | // The repairing cost depends on the register bank that MO has. |
525 | | // However, when we break down the value into different values, |
526 | | // MO may not have a register bank while still needing repairing. |
527 | | // For the fast mode, we don't compute the cost so that is fine, |
528 | | // but still for the repairing code, we will have to make a choice. |
529 | | // For the greedy mode, we should choose greedily what is the best |
530 | | // choice based on the next use of MO. |
531 | | |
532 | | // Sums up the repairing cost of MO at each insertion point. |
533 | 0 | uint64_t RepairCost = getRepairCost(MO, ValMapping); |
534 | | |
535 | | // This is an impossible to repair cost. |
536 | 0 | if (RepairCost == std::numeric_limits<unsigned>::max()) |
537 | 0 | return MappingCost::ImpossibleCost(); |
538 | | |
539 | | // Bias used for splitting: 5%. |
540 | 0 | const uint64_t PercentageForBias = 5; |
541 | 0 | uint64_t Bias = (RepairCost * PercentageForBias + 99) / 100; |
542 | | // We should not need more than a couple of instructions to repair |
543 | | // an assignment. In other words, the computation should not |
544 | | // overflow because the repairing cost is free of basic block |
545 | | // frequency. |
546 | 0 | assert(((RepairCost < RepairCost * PercentageForBias) && |
547 | 0 | (RepairCost * PercentageForBias < |
548 | 0 | RepairCost * PercentageForBias + 99)) && |
549 | 0 | "Repairing involves more than a billion of instructions?!"); |
550 | 0 | for (const std::unique_ptr<InsertPoint> &InsertPt : RepairPt) { |
551 | 0 | assert(InsertPt->canMaterialize() && "We should not have made it here"); |
552 | | // We will applied some basic block frequency and those uses uint64_t. |
553 | 0 | if (!InsertPt->isSplit()) |
554 | 0 | Saturated = Cost.addLocalCost(RepairCost); |
555 | 0 | else { |
556 | 0 | uint64_t CostForInsertPt = RepairCost; |
557 | | // Again we shouldn't overflow here givent that |
558 | | // CostForInsertPt is frequency free at this point. |
559 | 0 | assert(CostForInsertPt + Bias > CostForInsertPt && |
560 | 0 | "Repairing + split bias overflows"); |
561 | 0 | CostForInsertPt += Bias; |
562 | 0 | uint64_t PtCost = InsertPt->frequency(*this) * CostForInsertPt; |
563 | | // Check if we just overflowed. |
564 | 0 | if ((Saturated = PtCost < CostForInsertPt)) |
565 | 0 | Cost.saturate(); |
566 | 0 | else |
567 | 0 | Saturated = Cost.addNonLocalCost(PtCost); |
568 | 0 | } |
569 | | |
570 | | // Stop looking into what it takes to repair, this is already |
571 | | // too expensive. |
572 | 0 | if (BestCost && Cost > *BestCost) { |
573 | 0 | LLVM_DEBUG(dbgs() << "Mapping is too expensive, stop processing\n"); |
574 | 0 | return Cost; |
575 | 0 | } |
576 | | |
577 | | // No need to accumulate more cost information. |
578 | | // We need to still gather the repairing information though. |
579 | 0 | if (Saturated) |
580 | 0 | break; |
581 | 0 | } |
582 | 0 | } |
583 | 212k | LLVM_DEBUG(dbgs() << "Total cost is: " << Cost << "\n"); |
584 | 212k | return Cost; |
585 | 212k | } |
586 | | |
587 | | bool RegBankSelect::applyMapping( |
588 | | MachineInstr &MI, const RegisterBankInfo::InstructionMapping &InstrMapping, |
589 | 212k | SmallVectorImpl<RegBankSelect::RepairingPlacement> &RepairPts) { |
590 | | // OpdMapper will hold all the information needed for the rewriting. |
591 | 212k | RegisterBankInfo::OperandsMapper OpdMapper(MI, InstrMapping, *MRI); |
592 | | |
593 | | // First, place the repairing code. |
594 | 212k | for (RepairingPlacement &RepairPt : RepairPts) { |
595 | 165k | if (!RepairPt.canMaterialize() || |
596 | 165k | RepairPt.getKind() == RepairingPlacement::Impossible) |
597 | 0 | return false; |
598 | 165k | assert(RepairPt.getKind() != RepairingPlacement::None && |
599 | 165k | "This should not make its way in the list"); |
600 | 0 | unsigned OpIdx = RepairPt.getOpIdx(); |
601 | 165k | MachineOperand &MO = MI.getOperand(OpIdx); |
602 | 165k | const RegisterBankInfo::ValueMapping &ValMapping = |
603 | 165k | InstrMapping.getOperandMapping(OpIdx); |
604 | 165k | Register Reg = MO.getReg(); |
605 | | |
606 | 165k | switch (RepairPt.getKind()) { |
607 | 163k | case RepairingPlacement::Reassign: |
608 | 163k | assert(ValMapping.NumBreakDowns == 1 && |
609 | 163k | "Reassignment should only be for simple mapping"); |
610 | 0 | MRI->setRegBank(Reg, *ValMapping.BreakDown[0].RegBank); |
611 | 163k | break; |
612 | 2.10k | case RepairingPlacement::Insert: |
613 | | // Don't insert additional instruction for debug instruction. |
614 | 2.10k | if (MI.isDebugInstr()) |
615 | 0 | break; |
616 | 2.10k | OpdMapper.createVRegs(OpIdx); |
617 | 2.10k | if (!repairReg(MO, ValMapping, RepairPt, OpdMapper.getVRegs(OpIdx))) |
618 | 0 | return false; |
619 | 2.10k | break; |
620 | 2.10k | default: |
621 | 0 | llvm_unreachable("Other kind should not happen"); |
622 | 165k | } |
623 | 165k | } |
624 | | |
625 | | // Second, rewrite the instruction. |
626 | 212k | LLVM_DEBUG(dbgs() << "Actual mapping of the operands: " << OpdMapper << '\n'); |
627 | 212k | RBI->applyMapping(MIRBuilder, OpdMapper); |
628 | | |
629 | 212k | return true; |
630 | 212k | } |
631 | | |
632 | 213k | bool RegBankSelect::assignInstr(MachineInstr &MI) { |
633 | 213k | LLVM_DEBUG(dbgs() << "Assign: " << MI); |
634 | | |
635 | 213k | unsigned Opc = MI.getOpcode(); |
636 | 213k | if (isPreISelGenericOptimizationHint(Opc)) { |
637 | 1.10k | assert((Opc == TargetOpcode::G_ASSERT_ZEXT || |
638 | 1.10k | Opc == TargetOpcode::G_ASSERT_SEXT || |
639 | 1.10k | Opc == TargetOpcode::G_ASSERT_ALIGN) && |
640 | 1.10k | "Unexpected hint opcode!"); |
641 | | // The only correct mapping for these is to always use the source register |
642 | | // bank. |
643 | 0 | const RegisterBank *RB = |
644 | 1.10k | RBI->getRegBank(MI.getOperand(1).getReg(), *MRI, *TRI); |
645 | | // We can assume every instruction above this one has a selected register |
646 | | // bank. |
647 | 1.10k | assert(RB && "Expected source register to have a register bank?"); |
648 | 1.10k | LLVM_DEBUG(dbgs() << "... Hint always uses source's register bank.\n"); |
649 | 1.10k | MRI->setRegBank(MI.getOperand(0).getReg(), *RB); |
650 | 1.10k | return true; |
651 | 1.10k | } |
652 | | |
653 | | // Remember the repairing placement for all the operands. |
654 | 212k | SmallVector<RepairingPlacement, 4> RepairPts; |
655 | | |
656 | 212k | const RegisterBankInfo::InstructionMapping *BestMapping; |
657 | 212k | if (OptMode == RegBankSelect::Mode::Fast) { |
658 | 212k | BestMapping = &RBI->getInstrMapping(MI); |
659 | 212k | MappingCost DefaultCost = computeMapping(MI, *BestMapping, RepairPts); |
660 | 212k | (void)DefaultCost; |
661 | 212k | if (DefaultCost == MappingCost::ImpossibleCost()) |
662 | 0 | return false; |
663 | 212k | } else { |
664 | 0 | RegisterBankInfo::InstructionMappings PossibleMappings = |
665 | 0 | RBI->getInstrPossibleMappings(MI); |
666 | 0 | if (PossibleMappings.empty()) |
667 | 0 | return false; |
668 | 0 | BestMapping = &findBestMapping(MI, PossibleMappings, RepairPts); |
669 | 0 | } |
670 | | // Make sure the mapping is valid for MI. |
671 | 212k | assert(BestMapping->verify(MI) && "Invalid instruction mapping"); |
672 | | |
673 | 212k | LLVM_DEBUG(dbgs() << "Best Mapping: " << *BestMapping << '\n'); |
674 | | |
675 | | // After this call, MI may not be valid anymore. |
676 | | // Do not use it. |
677 | 212k | return applyMapping(MI, *BestMapping, RepairPts); |
678 | 212k | } |
679 | | |
680 | 13.7k | bool RegBankSelect::assignRegisterBanks(MachineFunction &MF) { |
681 | | // Walk the function and assign register banks to all operands. |
682 | | // Use a RPOT to make sure all registers are assigned before we choose |
683 | | // the best mapping of the current instruction. |
684 | 13.7k | ReversePostOrderTraversal<MachineFunction*> RPOT(&MF); |
685 | 20.4k | for (MachineBasicBlock *MBB : RPOT) { |
686 | | // Set a sensible insertion point so that subsequent calls to |
687 | | // MIRBuilder. |
688 | 20.4k | MIRBuilder.setMBB(*MBB); |
689 | 20.4k | SmallVector<MachineInstr *> WorkList( |
690 | 20.4k | make_pointer_range(reverse(MBB->instrs()))); |
691 | | |
692 | 255k | while (!WorkList.empty()) { |
693 | 234k | MachineInstr &MI = *WorkList.pop_back_val(); |
694 | | |
695 | | // Ignore target-specific post-isel instructions: they should use proper |
696 | | // regclasses. |
697 | 234k | if (isTargetSpecificOpcode(MI.getOpcode()) && !MI.isPreISelOpcode()) |
698 | 21.2k | continue; |
699 | | |
700 | | // Ignore inline asm instructions: they should use physical |
701 | | // registers/regclasses |
702 | 213k | if (MI.isInlineAsm()) |
703 | 1 | continue; |
704 | | |
705 | | // Ignore IMPLICIT_DEF which must have a regclass. |
706 | 213k | if (MI.isImplicitDef()) |
707 | 2 | continue; |
708 | | |
709 | 213k | if (!assignInstr(MI)) { |
710 | 0 | reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", |
711 | 0 | "unable to map instruction", MI); |
712 | 0 | return false; |
713 | 0 | } |
714 | 213k | } |
715 | 20.4k | } |
716 | | |
717 | 13.7k | return true; |
718 | 13.7k | } |
719 | | |
720 | 13.7k | bool RegBankSelect::checkFunctionIsLegal(MachineFunction &MF) const { |
721 | 13.7k | #ifndef NDEBUG |
722 | 13.7k | if (!DisableGISelLegalityCheck) { |
723 | 13.7k | if (const MachineInstr *MI = machineFunctionIsIllegal(MF)) { |
724 | 0 | reportGISelFailure(MF, *TPC, *MORE, "gisel-regbankselect", |
725 | 0 | "instruction is not legal", *MI); |
726 | 0 | return false; |
727 | 0 | } |
728 | 13.7k | } |
729 | 13.7k | #endif |
730 | 13.7k | return true; |
731 | 13.7k | } |
732 | | |
733 | 14.8k | bool RegBankSelect::runOnMachineFunction(MachineFunction &MF) { |
734 | | // If the ISel pipeline failed, do not bother running that pass. |
735 | 14.8k | if (MF.getProperties().hasProperty( |
736 | 14.8k | MachineFunctionProperties::Property::FailedISel)) |
737 | 1.17k | return false; |
738 | | |
739 | 13.7k | LLVM_DEBUG(dbgs() << "Assign register banks for: " << MF.getName() << '\n'); |
740 | 13.7k | const Function &F = MF.getFunction(); |
741 | 13.7k | Mode SaveOptMode = OptMode; |
742 | 13.7k | if (F.hasOptNone()) |
743 | 0 | OptMode = Mode::Fast; |
744 | 13.7k | init(MF); |
745 | | |
746 | 13.7k | #ifndef NDEBUG |
747 | 13.7k | if (!checkFunctionIsLegal(MF)) |
748 | 0 | return false; |
749 | 13.7k | #endif |
750 | | |
751 | 13.7k | assignRegisterBanks(MF); |
752 | | |
753 | 13.7k | OptMode = SaveOptMode; |
754 | 13.7k | return false; |
755 | 13.7k | } |
756 | | |
757 | | //------------------------------------------------------------------------------ |
758 | | // Helper Classes Implementation |
759 | | //------------------------------------------------------------------------------ |
760 | | RegBankSelect::RepairingPlacement::RepairingPlacement( |
761 | | MachineInstr &MI, unsigned OpIdx, const TargetRegisterInfo &TRI, Pass &P, |
762 | | RepairingPlacement::RepairingKind Kind) |
763 | | // Default is, we are going to insert code to repair OpIdx. |
764 | | : Kind(Kind), OpIdx(OpIdx), |
765 | 165k | CanMaterialize(Kind != RepairingKind::Impossible), P(P) { |
766 | 165k | const MachineOperand &MO = MI.getOperand(OpIdx); |
767 | 165k | assert(MO.isReg() && "Trying to repair a non-reg operand"); |
768 | | |
769 | 165k | if (Kind != RepairingKind::Insert) |
770 | 163k | return; |
771 | | |
772 | | // Repairings for definitions happen after MI, uses happen before. |
773 | 2.10k | bool Before = !MO.isDef(); |
774 | | |
775 | | // Check if we are done with MI. |
776 | 2.10k | if (!MI.isPHI() && !MI.isTerminator()) { |
777 | 2.10k | addInsertPoint(MI, Before); |
778 | | // We are done with the initialization. |
779 | 2.10k | return; |
780 | 2.10k | } |
781 | | |
782 | | // Now, look for the special cases. |
783 | 0 | if (MI.isPHI()) { |
784 | | // - PHI must be the first instructions: |
785 | | // * Before, we have to split the related incoming edge. |
786 | | // * After, move the insertion point past the last phi. |
787 | 0 | if (!Before) { |
788 | 0 | MachineBasicBlock::iterator It = MI.getParent()->getFirstNonPHI(); |
789 | 0 | if (It != MI.getParent()->end()) |
790 | 0 | addInsertPoint(*It, /*Before*/ true); |
791 | 0 | else |
792 | 0 | addInsertPoint(*(--It), /*Before*/ false); |
793 | 0 | return; |
794 | 0 | } |
795 | | // We repair a use of a phi, we may need to split the related edge. |
796 | 0 | MachineBasicBlock &Pred = *MI.getOperand(OpIdx + 1).getMBB(); |
797 | | // Check if we can move the insertion point prior to the |
798 | | // terminators of the predecessor. |
799 | 0 | Register Reg = MO.getReg(); |
800 | 0 | MachineBasicBlock::iterator It = Pred.getLastNonDebugInstr(); |
801 | 0 | for (auto Begin = Pred.begin(); It != Begin && It->isTerminator(); --It) |
802 | 0 | if (It->modifiesRegister(Reg, &TRI)) { |
803 | | // We cannot hoist the repairing code in the predecessor. |
804 | | // Split the edge. |
805 | 0 | addInsertPoint(Pred, *MI.getParent()); |
806 | 0 | return; |
807 | 0 | } |
808 | | // At this point, we can insert in Pred. |
809 | | |
810 | | // - If It is invalid, Pred is empty and we can insert in Pred |
811 | | // wherever we want. |
812 | | // - If It is valid, It is the first non-terminator, insert after It. |
813 | 0 | if (It == Pred.end()) |
814 | 0 | addInsertPoint(Pred, /*Beginning*/ false); |
815 | 0 | else |
816 | 0 | addInsertPoint(*It, /*Before*/ false); |
817 | 0 | } else { |
818 | | // - Terminators must be the last instructions: |
819 | | // * Before, move the insert point before the first terminator. |
820 | | // * After, we have to split the outcoming edges. |
821 | 0 | if (Before) { |
822 | | // Check whether Reg is defined by any terminator. |
823 | 0 | MachineBasicBlock::reverse_iterator It = MI; |
824 | 0 | auto REnd = MI.getParent()->rend(); |
825 | |
|
826 | 0 | for (; It != REnd && It->isTerminator(); ++It) { |
827 | 0 | assert(!It->modifiesRegister(MO.getReg(), &TRI) && |
828 | 0 | "copy insertion in middle of terminators not handled"); |
829 | 0 | } |
830 | |
|
831 | 0 | if (It == REnd) { |
832 | 0 | addInsertPoint(*MI.getParent()->begin(), true); |
833 | 0 | return; |
834 | 0 | } |
835 | | |
836 | | // We are sure to be right before the first terminator. |
837 | 0 | addInsertPoint(*It, /*Before*/ false); |
838 | 0 | return; |
839 | 0 | } |
840 | | // Make sure Reg is not redefined by other terminators, otherwise |
841 | | // we do not know how to split. |
842 | 0 | for (MachineBasicBlock::iterator It = MI, End = MI.getParent()->end(); |
843 | 0 | ++It != End;) |
844 | | // The machine verifier should reject this kind of code. |
845 | 0 | assert(It->modifiesRegister(MO.getReg(), &TRI) && |
846 | 0 | "Do not know where to split"); |
847 | | // Split each outcoming edges. |
848 | 0 | MachineBasicBlock &Src = *MI.getParent(); |
849 | 0 | for (auto &Succ : Src.successors()) |
850 | 0 | addInsertPoint(Src, Succ); |
851 | 0 | } |
852 | 0 | } |
853 | | |
854 | | void RegBankSelect::RepairingPlacement::addInsertPoint(MachineInstr &MI, |
855 | 2.10k | bool Before) { |
856 | 2.10k | addInsertPoint(*new InstrInsertPoint(MI, Before)); |
857 | 2.10k | } |
858 | | |
859 | | void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &MBB, |
860 | 0 | bool Beginning) { |
861 | 0 | addInsertPoint(*new MBBInsertPoint(MBB, Beginning)); |
862 | 0 | } |
863 | | |
864 | | void RegBankSelect::RepairingPlacement::addInsertPoint(MachineBasicBlock &Src, |
865 | 0 | MachineBasicBlock &Dst) { |
866 | 0 | addInsertPoint(*new EdgeInsertPoint(Src, Dst, P)); |
867 | 0 | } |
868 | | |
869 | | void RegBankSelect::RepairingPlacement::addInsertPoint( |
870 | 2.10k | RegBankSelect::InsertPoint &Point) { |
871 | 2.10k | CanMaterialize &= Point.canMaterialize(); |
872 | 2.10k | HasSplit |= Point.isSplit(); |
873 | 2.10k | InsertPoints.emplace_back(&Point); |
874 | 2.10k | } |
875 | | |
876 | | RegBankSelect::InstrInsertPoint::InstrInsertPoint(MachineInstr &Instr, |
877 | | bool Before) |
878 | 2.10k | : Instr(Instr), Before(Before) { |
879 | | // Since we do not support splitting, we do not need to update |
880 | | // liveness and such, so do not do anything with P. |
881 | 2.10k | assert((!Before || !Instr.isPHI()) && |
882 | 2.10k | "Splitting before phis requires more points"); |
883 | 0 | assert((!Before || !Instr.getNextNode() || !Instr.getNextNode()->isPHI()) && |
884 | 2.10k | "Splitting between phis does not make sense"); |
885 | 2.10k | } |
886 | | |
887 | 2.10k | void RegBankSelect::InstrInsertPoint::materialize() { |
888 | 2.10k | if (isSplit()) { |
889 | | // Slice and return the beginning of the new block. |
890 | | // If we need to split between the terminators, we theoritically |
891 | | // need to know where the first and second set of terminators end |
892 | | // to update the successors properly. |
893 | | // Now, in pratice, we should have a maximum of 2 branch |
894 | | // instructions; one conditional and one unconditional. Therefore |
895 | | // we know how to update the successor by looking at the target of |
896 | | // the unconditional branch. |
897 | | // If we end up splitting at some point, then, we should update |
898 | | // the liveness information and such. I.e., we would need to |
899 | | // access P here. |
900 | | // The machine verifier should actually make sure such cases |
901 | | // cannot happen. |
902 | 0 | llvm_unreachable("Not yet implemented"); |
903 | 0 | } |
904 | | // Otherwise the insertion point is just the current or next |
905 | | // instruction depending on Before. I.e., there is nothing to do |
906 | | // here. |
907 | 2.10k | } |
908 | | |
909 | 8.42k | bool RegBankSelect::InstrInsertPoint::isSplit() const { |
910 | | // If the insertion point is after a terminator, we need to split. |
911 | 8.42k | if (!Before) |
912 | 0 | return Instr.isTerminator(); |
913 | | // If we insert before an instruction that is after a terminator, |
914 | | // we are still after a terminator. |
915 | 8.42k | return Instr.getPrevNode() && Instr.getPrevNode()->isTerminator(); |
916 | 8.42k | } |
917 | | |
918 | 0 | uint64_t RegBankSelect::InstrInsertPoint::frequency(const Pass &P) const { |
919 | | // Even if we need to split, because we insert between terminators, |
920 | | // this split has actually the same frequency as the instruction. |
921 | 0 | const MachineBlockFrequencyInfo *MBFI = |
922 | 0 | P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); |
923 | 0 | if (!MBFI) |
924 | 0 | return 1; |
925 | 0 | return MBFI->getBlockFreq(Instr.getParent()).getFrequency(); |
926 | 0 | } |
927 | | |
928 | 0 | uint64_t RegBankSelect::MBBInsertPoint::frequency(const Pass &P) const { |
929 | 0 | const MachineBlockFrequencyInfo *MBFI = |
930 | 0 | P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); |
931 | 0 | if (!MBFI) |
932 | 0 | return 1; |
933 | 0 | return MBFI->getBlockFreq(&MBB).getFrequency(); |
934 | 0 | } |
935 | | |
936 | 0 | void RegBankSelect::EdgeInsertPoint::materialize() { |
937 | | // If we end up repairing twice at the same place before materializing the |
938 | | // insertion point, we may think we have to split an edge twice. |
939 | | // We should have a factory for the insert point such that identical points |
940 | | // are the same instance. |
941 | 0 | assert(Src.isSuccessor(DstOrSplit) && DstOrSplit->isPredecessor(&Src) && |
942 | 0 | "This point has already been split"); |
943 | 0 | MachineBasicBlock *NewBB = Src.SplitCriticalEdge(DstOrSplit, P); |
944 | 0 | assert(NewBB && "Invalid call to materialize"); |
945 | | // We reuse the destination block to hold the information of the new block. |
946 | 0 | DstOrSplit = NewBB; |
947 | 0 | } |
948 | | |
949 | 0 | uint64_t RegBankSelect::EdgeInsertPoint::frequency(const Pass &P) const { |
950 | 0 | const MachineBlockFrequencyInfo *MBFI = |
951 | 0 | P.getAnalysisIfAvailable<MachineBlockFrequencyInfo>(); |
952 | 0 | if (!MBFI) |
953 | 0 | return 1; |
954 | 0 | if (WasMaterialized) |
955 | 0 | return MBFI->getBlockFreq(DstOrSplit).getFrequency(); |
956 | | |
957 | 0 | const MachineBranchProbabilityInfo *MBPI = |
958 | 0 | P.getAnalysisIfAvailable<MachineBranchProbabilityInfo>(); |
959 | 0 | if (!MBPI) |
960 | 0 | return 1; |
961 | | // The basic block will be on the edge. |
962 | 0 | return (MBFI->getBlockFreq(&Src) * MBPI->getEdgeProbability(&Src, DstOrSplit)) |
963 | 0 | .getFrequency(); |
964 | 0 | } |
965 | | |
966 | 0 | bool RegBankSelect::EdgeInsertPoint::canMaterialize() const { |
967 | | // If this is not a critical edge, we should not have used this insert |
968 | | // point. Indeed, either the successor or the predecessor should |
969 | | // have do. |
970 | 0 | assert(Src.succ_size() > 1 && DstOrSplit->pred_size() > 1 && |
971 | 0 | "Edge is not critical"); |
972 | 0 | return Src.canSplitCriticalEdge(DstOrSplit); |
973 | 0 | } |
974 | | |
975 | | RegBankSelect::MappingCost::MappingCost(BlockFrequency LocalFreq) |
976 | 212k | : LocalFreq(LocalFreq.getFrequency()) {} |
977 | | |
978 | 212k | bool RegBankSelect::MappingCost::addLocalCost(uint64_t Cost) { |
979 | | // Check if this overflows. |
980 | 212k | if (LocalCost + Cost < LocalCost) { |
981 | 0 | saturate(); |
982 | 0 | return true; |
983 | 0 | } |
984 | 212k | LocalCost += Cost; |
985 | 212k | return isSaturated(); |
986 | 212k | } |
987 | | |
988 | 0 | bool RegBankSelect::MappingCost::addNonLocalCost(uint64_t Cost) { |
989 | | // Check if this overflows. |
990 | 0 | if (NonLocalCost + Cost < NonLocalCost) { |
991 | 0 | saturate(); |
992 | 0 | return true; |
993 | 0 | } |
994 | 0 | NonLocalCost += Cost; |
995 | 0 | return isSaturated(); |
996 | 0 | } |
997 | | |
998 | 212k | bool RegBankSelect::MappingCost::isSaturated() const { |
999 | 212k | return LocalCost == UINT64_MAX - 1 && NonLocalCost == UINT64_MAX && |
1000 | 212k | LocalFreq == UINT64_MAX; |
1001 | 212k | } |
1002 | | |
1003 | 0 | void RegBankSelect::MappingCost::saturate() { |
1004 | 0 | *this = ImpossibleCost(); |
1005 | 0 | --LocalCost; |
1006 | 0 | } |
1007 | | |
1008 | 212k | RegBankSelect::MappingCost RegBankSelect::MappingCost::ImpossibleCost() { |
1009 | 212k | return MappingCost(UINT64_MAX, UINT64_MAX, UINT64_MAX); |
1010 | 212k | } |
1011 | | |
1012 | 0 | bool RegBankSelect::MappingCost::operator<(const MappingCost &Cost) const { |
1013 | | // Sort out the easy cases. |
1014 | 0 | if (*this == Cost) |
1015 | 0 | return false; |
1016 | | // If one is impossible to realize the other is cheaper unless it is |
1017 | | // impossible as well. |
1018 | 0 | if ((*this == ImpossibleCost()) || (Cost == ImpossibleCost())) |
1019 | 0 | return (*this == ImpossibleCost()) < (Cost == ImpossibleCost()); |
1020 | | // If one is saturated the other is cheaper, unless it is saturated |
1021 | | // as well. |
1022 | 0 | if (isSaturated() || Cost.isSaturated()) |
1023 | 0 | return isSaturated() < Cost.isSaturated(); |
1024 | | // At this point we know both costs hold sensible values. |
1025 | | |
1026 | | // If both values have a different base frequency, there is no much |
1027 | | // we can do but to scale everything. |
1028 | | // However, if they have the same base frequency we can avoid making |
1029 | | // complicated computation. |
1030 | 0 | uint64_t ThisLocalAdjust; |
1031 | 0 | uint64_t OtherLocalAdjust; |
1032 | 0 | if (LLVM_LIKELY(LocalFreq == Cost.LocalFreq)) { |
1033 | | |
1034 | | // At this point, we know the local costs are comparable. |
1035 | | // Do the case that do not involve potential overflow first. |
1036 | 0 | if (NonLocalCost == Cost.NonLocalCost) |
1037 | | // Since the non-local costs do not discriminate on the result, |
1038 | | // just compare the local costs. |
1039 | 0 | return LocalCost < Cost.LocalCost; |
1040 | | |
1041 | | // The base costs are comparable so we may only keep the relative |
1042 | | // value to increase our chances of avoiding overflows. |
1043 | 0 | ThisLocalAdjust = 0; |
1044 | 0 | OtherLocalAdjust = 0; |
1045 | 0 | if (LocalCost < Cost.LocalCost) |
1046 | 0 | OtherLocalAdjust = Cost.LocalCost - LocalCost; |
1047 | 0 | else |
1048 | 0 | ThisLocalAdjust = LocalCost - Cost.LocalCost; |
1049 | 0 | } else { |
1050 | 0 | ThisLocalAdjust = LocalCost; |
1051 | 0 | OtherLocalAdjust = Cost.LocalCost; |
1052 | 0 | } |
1053 | | |
1054 | | // The non-local costs are comparable, just keep the relative value. |
1055 | 0 | uint64_t ThisNonLocalAdjust = 0; |
1056 | 0 | uint64_t OtherNonLocalAdjust = 0; |
1057 | 0 | if (NonLocalCost < Cost.NonLocalCost) |
1058 | 0 | OtherNonLocalAdjust = Cost.NonLocalCost - NonLocalCost; |
1059 | 0 | else |
1060 | 0 | ThisNonLocalAdjust = NonLocalCost - Cost.NonLocalCost; |
1061 | | // Scale everything to make them comparable. |
1062 | 0 | uint64_t ThisScaledCost = ThisLocalAdjust * LocalFreq; |
1063 | | // Check for overflow on that operation. |
1064 | 0 | bool ThisOverflows = ThisLocalAdjust && (ThisScaledCost < ThisLocalAdjust || |
1065 | 0 | ThisScaledCost < LocalFreq); |
1066 | 0 | uint64_t OtherScaledCost = OtherLocalAdjust * Cost.LocalFreq; |
1067 | | // Check for overflow on the last operation. |
1068 | 0 | bool OtherOverflows = |
1069 | 0 | OtherLocalAdjust && |
1070 | 0 | (OtherScaledCost < OtherLocalAdjust || OtherScaledCost < Cost.LocalFreq); |
1071 | | // Add the non-local costs. |
1072 | 0 | ThisOverflows |= ThisNonLocalAdjust && |
1073 | 0 | ThisScaledCost + ThisNonLocalAdjust < ThisNonLocalAdjust; |
1074 | 0 | ThisScaledCost += ThisNonLocalAdjust; |
1075 | 0 | OtherOverflows |= OtherNonLocalAdjust && |
1076 | 0 | OtherScaledCost + OtherNonLocalAdjust < OtherNonLocalAdjust; |
1077 | 0 | OtherScaledCost += OtherNonLocalAdjust; |
1078 | | // If both overflows, we cannot compare without additional |
1079 | | // precision, e.g., APInt. Just give up on that case. |
1080 | 0 | if (ThisOverflows && OtherOverflows) |
1081 | 0 | return false; |
1082 | | // If one overflows but not the other, we can still compare. |
1083 | 0 | if (ThisOverflows || OtherOverflows) |
1084 | 0 | return ThisOverflows < OtherOverflows; |
1085 | | // Otherwise, just compare the values. |
1086 | 0 | return ThisScaledCost < OtherScaledCost; |
1087 | 0 | } |
1088 | | |
1089 | 212k | bool RegBankSelect::MappingCost::operator==(const MappingCost &Cost) const { |
1090 | 212k | return LocalCost == Cost.LocalCost && NonLocalCost == Cost.NonLocalCost && |
1091 | 212k | LocalFreq == Cost.LocalFreq; |
1092 | 212k | } |
1093 | | |
1094 | | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
1095 | 0 | LLVM_DUMP_METHOD void RegBankSelect::MappingCost::dump() const { |
1096 | 0 | print(dbgs()); |
1097 | 0 | dbgs() << '\n'; |
1098 | 0 | } |
1099 | | #endif |
1100 | | |
1101 | 0 | void RegBankSelect::MappingCost::print(raw_ostream &OS) const { |
1102 | 0 | if (*this == ImpossibleCost()) { |
1103 | 0 | OS << "impossible"; |
1104 | 0 | return; |
1105 | 0 | } |
1106 | 0 | if (isSaturated()) { |
1107 | 0 | OS << "saturated"; |
1108 | 0 | return; |
1109 | 0 | } |
1110 | 0 | OS << LocalFreq << " * " << LocalCost << " + " << NonLocalCost; |
1111 | 0 | } |