Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/llvm/lib/CodeGen/LatencyPriorityQueue.cpp
Line
Count
Source (jump to first uncovered line)
1
//===---- LatencyPriorityQueue.cpp - A latency-oriented priority queue ----===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
// This file implements the LatencyPriorityQueue class, which is a
10
// SchedulingPriorityQueue that schedules using latency information to
11
// reduce the length of the critical path through the basic block.
12
//
13
//===----------------------------------------------------------------------===//
14
15
#include "llvm/CodeGen/LatencyPriorityQueue.h"
16
#include "llvm/Config/llvm-config.h"
17
#include "llvm/Support/Debug.h"
18
#include "llvm/Support/raw_ostream.h"
19
using namespace llvm;
20
21
#define DEBUG_TYPE "scheduler"
22
23
5.14M
bool latency_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
24
  // The isScheduleHigh flag allows nodes with wraparound dependencies that
25
  // cannot easily be modeled as edges with latencies to be scheduled as
26
  // soon as possible in a top-down schedule.
27
5.14M
  if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
28
0
    return false;
29
5.14M
  if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
30
0
    return true;
31
32
5.14M
  unsigned LHSNum = LHS->NodeNum;
33
5.14M
  unsigned RHSNum = RHS->NodeNum;
34
35
  // The most important heuristic is scheduling the critical path.
36
5.14M
  unsigned LHSLatency = PQ->getLatency(LHSNum);
37
5.14M
  unsigned RHSLatency = PQ->getLatency(RHSNum);
38
5.14M
  if (LHSLatency < RHSLatency) return true;
39
4.28M
  if (LHSLatency > RHSLatency) return false;
40
41
  // After that, if two nodes have identical latencies, look to see if one will
42
  // unblock more other nodes than the other.
43
1.83M
  unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
44
1.83M
  unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
45
1.83M
  if (LHSBlocked < RHSBlocked) return true;
46
1.63M
  if (LHSBlocked > RHSBlocked) return false;
47
48
  // Finally, just to provide a stable ordering, use the node number as a
49
  // deciding factor.
50
1.19M
  return RHSNum < LHSNum;
51
1.63M
}
52
53
54
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
55
/// of SU, return it, otherwise return null.
56
5.17M
SUnit *LatencyPriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
57
5.17M
  SUnit *OnlyAvailablePred = nullptr;
58
12.6M
  for (const SDep &P : SU->Preds) {
59
12.6M
    SUnit &Pred = *P.getSUnit();
60
12.6M
    if (!Pred.isScheduled) {
61
      // We found an available, but not scheduled, predecessor.  If it's the
62
      // only one we have found, keep track of it... otherwise give up.
63
7.30M
      if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
64
2.46M
        return nullptr;
65
4.84M
      OnlyAvailablePred = &Pred;
66
4.84M
    }
67
12.6M
  }
68
69
2.71M
  return OnlyAvailablePred;
70
5.17M
}
71
72
1.91M
void LatencyPriorityQueue::push(SUnit *SU) {
73
  // Look at all of the successors of this node.  Count the number of nodes that
74
  // this node is the sole unscheduled node for.
75
1.91M
  unsigned NumNodesBlocking = 0;
76
1.91M
  for (const SDep &Succ : SU->Succs)
77
3.32M
    if (getSingleUnscheduledPred(Succ.getSUnit()) == SU)
78
1.29M
      ++NumNodesBlocking;
79
1.91M
  NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
80
81
1.91M
  Queue.push_back(SU);
82
1.91M
}
83
84
85
// scheduledNode - As nodes are scheduled, we look to see if there are any
86
// successor nodes that have a single unscheduled predecessor.  If so, that
87
// single predecessor has a higher priority, since scheduling it will make
88
// the node available.
89
896k
void LatencyPriorityQueue::scheduledNode(SUnit *SU) {
90
896k
  for (const SDep &Succ : SU->Succs)
91
1.85M
    AdjustPriorityOfUnscheduledPreds(Succ.getSUnit());
92
896k
}
93
94
/// AdjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
95
/// scheduled.  If SU is not itself available, then there is at least one
96
/// predecessor node that has not been scheduled yet.  If SU has exactly ONE
97
/// unscheduled predecessor, we want to increase its priority: it getting
98
/// scheduled will make this node available, so it is better than some other
99
/// node of the same priority that will not make a node available.
100
1.85M
void LatencyPriorityQueue::AdjustPriorityOfUnscheduledPreds(SUnit *SU) {
101
1.85M
  if (SU->isAvailable) return;  // All preds scheduled.
102
103
1.85M
  SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
104
1.85M
  if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) return;
105
106
  // Okay, we found a single predecessor that is available, but not scheduled.
107
  // Since it is available, it must be in the priority queue.  First remove it.
108
110k
  remove(OnlyAvailablePred);
109
110
  // Reinsert the node into the priority queue, which recomputes its
111
  // NumNodesSolelyBlocking value.
112
110k
  push(OnlyAvailablePred);
113
110k
}
114
115
1.80M
SUnit *LatencyPriorityQueue::pop() {
116
1.80M
  if (empty()) return nullptr;
117
1.80M
  std::vector<SUnit *>::iterator Best = Queue.begin();
118
1.80M
  for (std::vector<SUnit *>::iterator I = std::next(Queue.begin()),
119
6.94M
       E = Queue.end(); I != E; ++I)
120
5.14M
    if (Picker(*Best, *I))
121
1.54M
      Best = I;
122
1.80M
  SUnit *V = *Best;
123
1.80M
  if (Best != std::prev(Queue.end()))
124
835k
    std::swap(*Best, Queue.back());
125
1.80M
  Queue.pop_back();
126
1.80M
  return V;
127
1.80M
}
128
129
110k
void LatencyPriorityQueue::remove(SUnit *SU) {
130
110k
  assert(!Queue.empty() && "Queue is empty!");
131
0
  std::vector<SUnit *>::iterator I = find(Queue, SU);
132
110k
  assert(I != Queue.end() && "Queue doesn't contain the SU being removed!");
133
110k
  if (I != std::prev(Queue.end()))
134
61.2k
    std::swap(*I, Queue.back());
135
110k
  Queue.pop_back();
136
110k
}
137
138
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
139
0
LLVM_DUMP_METHOD void LatencyPriorityQueue::dump(ScheduleDAG *DAG) const {
140
0
  dbgs() << "Latency Priority Queue\n";
141
0
  dbgs() << "  Number of Queue Entries: " << Queue.size() << "\n";
142
0
  for (const SUnit *SU : Queue) {
143
0
    dbgs() << "    ";
144
0
    DAG->dumpNode(*SU);
145
0
  }
146
0
}
147
#endif