Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/llvm/lib/CodeGen/LiveIntervals.cpp
Line
Count
Source (jump to first uncovered line)
1
//===- LiveIntervals.cpp - Live Interval Analysis -------------------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===----------------------------------------------------------------------===//
8
//
9
/// \file This file implements the LiveInterval analysis pass which is used
10
/// by the Linear Scan Register allocator. This pass linearizes the
11
/// basic blocks of the function in DFS order and computes live intervals for
12
/// each virtual and physical register.
13
//
14
//===----------------------------------------------------------------------===//
15
16
#include "llvm/CodeGen/LiveIntervals.h"
17
#include "llvm/ADT/ArrayRef.h"
18
#include "llvm/ADT/DepthFirstIterator.h"
19
#include "llvm/ADT/SmallPtrSet.h"
20
#include "llvm/ADT/SmallVector.h"
21
#include "llvm/ADT/iterator_range.h"
22
#include "llvm/CodeGen/LiveInterval.h"
23
#include "llvm/CodeGen/LiveIntervalCalc.h"
24
#include "llvm/CodeGen/LiveVariables.h"
25
#include "llvm/CodeGen/MachineBasicBlock.h"
26
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27
#include "llvm/CodeGen/MachineDominators.h"
28
#include "llvm/CodeGen/MachineFunction.h"
29
#include "llvm/CodeGen/MachineInstr.h"
30
#include "llvm/CodeGen/MachineInstrBundle.h"
31
#include "llvm/CodeGen/MachineOperand.h"
32
#include "llvm/CodeGen/MachineRegisterInfo.h"
33
#include "llvm/CodeGen/Passes.h"
34
#include "llvm/CodeGen/SlotIndexes.h"
35
#include "llvm/CodeGen/StackMaps.h"
36
#include "llvm/CodeGen/TargetRegisterInfo.h"
37
#include "llvm/CodeGen/TargetSubtargetInfo.h"
38
#include "llvm/CodeGen/VirtRegMap.h"
39
#include "llvm/Config/llvm-config.h"
40
#include "llvm/IR/Statepoint.h"
41
#include "llvm/MC/LaneBitmask.h"
42
#include "llvm/MC/MCRegisterInfo.h"
43
#include "llvm/Pass.h"
44
#include "llvm/Support/CommandLine.h"
45
#include "llvm/Support/Compiler.h"
46
#include "llvm/Support/Debug.h"
47
#include "llvm/Support/MathExtras.h"
48
#include "llvm/Support/raw_ostream.h"
49
#include <algorithm>
50
#include <cassert>
51
#include <cstdint>
52
#include <iterator>
53
#include <tuple>
54
#include <utility>
55
56
using namespace llvm;
57
58
#define DEBUG_TYPE "regalloc"
59
60
char LiveIntervals::ID = 0;
61
char &llvm::LiveIntervalsID = LiveIntervals::ID;
62
62
INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals", "Live Interval Analysis",
63
62
                      false, false)
64
62
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
65
62
INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
66
62
INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
67
                "Live Interval Analysis", false, false)
68
69
#ifndef NDEBUG
70
static cl::opt<bool> EnablePrecomputePhysRegs(
71
  "precompute-phys-liveness", cl::Hidden,
72
  cl::desc("Eagerly compute live intervals for all physreg units."));
73
#else
74
static bool EnablePrecomputePhysRegs = false;
75
#endif // NDEBUG
76
77
namespace llvm {
78
79
cl::opt<bool> UseSegmentSetForPhysRegs(
80
    "use-segment-set-for-physregs", cl::Hidden, cl::init(true),
81
    cl::desc(
82
        "Use segment set for the computation of the live ranges of physregs."));
83
84
} // end namespace llvm
85
86
59.1k
void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
87
59.1k
  AU.setPreservesCFG();
88
59.1k
  AU.addPreserved<LiveVariables>();
89
59.1k
  AU.addPreservedID(MachineLoopInfoID);
90
59.1k
  AU.addRequiredTransitiveID(MachineDominatorsID);
91
59.1k
  AU.addPreservedID(MachineDominatorsID);
92
59.1k
  AU.addPreserved<SlotIndexes>();
93
59.1k
  AU.addRequiredTransitive<SlotIndexes>();
94
59.1k
  MachineFunctionPass::getAnalysisUsage(AU);
95
59.1k
}
96
97
59.1k
LiveIntervals::LiveIntervals() : MachineFunctionPass(ID) {
98
59.1k
  initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
99
59.1k
}
100
101
59.1k
LiveIntervals::~LiveIntervals() { delete LICalc; }
102
103
190k
void LiveIntervals::releaseMemory() {
104
  // Free the live intervals themselves.
105
8.25M
  for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
106
8.06M
    delete VirtRegIntervals[Register::index2VirtReg(i)];
107
190k
  VirtRegIntervals.clear();
108
190k
  RegMaskSlots.clear();
109
190k
  RegMaskBits.clear();
110
190k
  RegMaskBlocks.clear();
111
112
190k
  for (LiveRange *LR : RegUnitRanges)
113
38.7M
    delete LR;
114
190k
  RegUnitRanges.clear();
115
116
  // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
117
190k
  VNInfoAllocator.Reset();
118
190k
}
119
120
190k
bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
121
190k
  MF = &fn;
122
190k
  MRI = &MF->getRegInfo();
123
190k
  TRI = MF->getSubtarget().getRegisterInfo();
124
190k
  TII = MF->getSubtarget().getInstrInfo();
125
190k
  Indexes = &getAnalysis<SlotIndexes>();
126
190k
  DomTree = &getAnalysis<MachineDominatorTree>();
127
128
190k
  if (!LICalc)
129
58.5k
    LICalc = new LiveIntervalCalc();
130
131
  // Allocate space for all virtual registers.
132
190k
  VirtRegIntervals.resize(MRI->getNumVirtRegs());
133
134
190k
  computeVirtRegs();
135
190k
  computeRegMasks();
136
190k
  computeLiveInRegUnits();
137
138
190k
  if (EnablePrecomputePhysRegs) {
139
    // For stress testing, precompute live ranges of all physical register
140
    // units, including reserved registers.
141
0
    for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
142
0
      getRegUnit(i);
143
0
  }
144
190k
  LLVM_DEBUG(dump());
145
190k
  return false;
146
190k
}
147
148
0
void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
149
0
  OS << "********** INTERVALS **********\n";
150
151
  // Dump the regunits.
152
0
  for (unsigned Unit = 0, UnitE = RegUnitRanges.size(); Unit != UnitE; ++Unit)
153
0
    if (LiveRange *LR = RegUnitRanges[Unit])
154
0
      OS << printRegUnit(Unit, TRI) << ' ' << *LR << '\n';
155
156
  // Dump the virtregs.
157
0
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
158
0
    Register Reg = Register::index2VirtReg(i);
159
0
    if (hasInterval(Reg))
160
0
      OS << getInterval(Reg) << '\n';
161
0
  }
162
163
0
  OS << "RegMasks:";
164
0
  for (SlotIndex Idx : RegMaskSlots)
165
0
    OS << ' ' << Idx;
166
0
  OS << '\n';
167
168
0
  printInstrs(OS);
169
0
}
170
171
0
void LiveIntervals::printInstrs(raw_ostream &OS) const {
172
0
  OS << "********** MACHINEINSTRS **********\n";
173
0
  MF->print(OS, Indexes);
174
0
}
175
176
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
177
0
LLVM_DUMP_METHOD void LiveIntervals::dumpInstrs() const {
178
0
  printInstrs(dbgs());
179
0
}
180
#endif
181
182
5.53M
LiveInterval *LiveIntervals::createInterval(Register reg) {
183
5.53M
  float Weight = reg.isPhysical() ? huge_valf : 0.0F;
184
5.53M
  return new LiveInterval(reg, Weight);
185
5.53M
}
186
187
/// Compute the live interval of a virtual register, based on defs and uses.
188
5.18M
bool LiveIntervals::computeVirtRegInterval(LiveInterval &LI) {
189
5.18M
  assert(LICalc && "LICalc not initialized.");
190
0
  assert(LI.empty() && "Should only compute empty intervals.");
191
0
  LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
192
5.18M
  LICalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg()));
193
5.18M
  return computeDeadValues(LI, nullptr);
194
5.18M
}
195
196
190k
void LiveIntervals::computeVirtRegs() {
197
7.61M
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
198
7.42M
    Register Reg = Register::index2VirtReg(i);
199
7.42M
    if (MRI->reg_nodbg_empty(Reg))
200
2.61M
      continue;
201
4.81M
    LiveInterval &LI = createEmptyInterval(Reg);
202
4.81M
    bool NeedSplit = computeVirtRegInterval(LI);
203
4.81M
    if (NeedSplit) {
204
57.1k
      SmallVector<LiveInterval*, 8> SplitLIs;
205
57.1k
      splitSeparateComponents(LI, SplitLIs);
206
57.1k
    }
207
4.81M
  }
208
190k
}
209
210
190k
void LiveIntervals::computeRegMasks() {
211
190k
  RegMaskBlocks.resize(MF->getNumBlockIDs());
212
213
  // Find all instructions with regmask operands.
214
348k
  for (const MachineBasicBlock &MBB : *MF) {
215
348k
    std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB.getNumber()];
216
348k
    RMB.first = RegMaskSlots.size();
217
218
    // Some block starts, such as EH funclets, create masks.
219
348k
    if (const uint32_t *Mask = MBB.getBeginClobberMask(TRI)) {
220
32
      RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
221
32
      RegMaskBits.push_back(Mask);
222
32
    }
223
224
    // Unwinders may clobber additional registers.
225
    // FIXME: This functionality can possibly be merged into
226
    // MachineBasicBlock::getBeginClobberMask().
227
348k
    if (MBB.isEHPad())
228
375
      if (auto *Mask = TRI->getCustomEHPadPreservedMask(*MBB.getParent())) {
229
0
        RegMaskSlots.push_back(Indexes->getMBBStartIdx(&MBB));
230
0
        RegMaskBits.push_back(Mask);
231
0
      }
232
233
7.18M
    for (const MachineInstr &MI : MBB) {
234
22.7M
      for (const MachineOperand &MO : MI.operands()) {
235
22.7M
        if (!MO.isRegMask())
236
22.5M
          continue;
237
119k
        RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
238
119k
        RegMaskBits.push_back(MO.getRegMask());
239
119k
      }
240
7.18M
    }
241
242
    // Some block ends, such as funclet returns, create masks. Put the mask on
243
    // the last instruction of the block, because MBB slot index intervals are
244
    // half-open.
245
348k
    if (const uint32_t *Mask = MBB.getEndClobberMask(TRI)) {
246
17
      assert(!MBB.empty() && "empty return block?");
247
0
      RegMaskSlots.push_back(
248
17
          Indexes->getInstructionIndex(MBB.back()).getRegSlot());
249
17
      RegMaskBits.push_back(Mask);
250
17
    }
251
252
    // Compute the number of register mask instructions in this block.
253
0
    RMB.second = RegMaskSlots.size() - RMB.first;
254
348k
  }
255
190k
}
256
257
//===----------------------------------------------------------------------===//
258
//                           Register Unit Liveness
259
//===----------------------------------------------------------------------===//
260
//
261
// Fixed interference typically comes from ABI boundaries: Function arguments
262
// and return values are passed in fixed registers, and so are exception
263
// pointers entering landing pads. Certain instructions require values to be
264
// present in specific registers. That is also represented through fixed
265
// interference.
266
//
267
268
/// Compute the live range of a register unit, based on the uses and defs of
269
/// aliasing registers.  The range should be empty, or contain only dead
270
/// phi-defs from ABI blocks.
271
952k
void LiveIntervals::computeRegUnitRange(LiveRange &LR, unsigned Unit) {
272
952k
  assert(LICalc && "LICalc not initialized.");
273
0
  LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
274
275
  // The physregs aliasing Unit are the roots and their super-registers.
276
  // Create all values as dead defs before extending to uses. Note that roots
277
  // may share super-registers. That's OK because createDeadDefs() is
278
  // idempotent. It is very rare for a register unit to have multiple roots, so
279
  // uniquing super-registers is probably not worthwhile.
280
952k
  bool IsReserved = false;
281
1.99M
  for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
282
1.04M
    bool IsRootReserved = true;
283
4.51M
    for (MCPhysReg Reg : TRI->superregs_inclusive(*Root)) {
284
4.51M
      if (!MRI->reg_empty(Reg))
285
332k
        LICalc->createDeadDefs(LR, Reg);
286
      // A register unit is considered reserved if all its roots and all their
287
      // super registers are reserved.
288
4.51M
      if (!MRI->isReserved(Reg))
289
4.39M
        IsRootReserved = false;
290
4.51M
    }
291
1.04M
    IsReserved |= IsRootReserved;
292
1.04M
  }
293
952k
  assert(IsReserved == MRI->isReservedRegUnit(Unit) &&
294
952k
         "reserved computation mismatch");
295
296
  // Now extend LR to reach all uses.
297
  // Ignore uses of reserved registers. We only track defs of those.
298
952k
  if (!IsReserved) {
299
1.89M
    for (MCRegUnitRootIterator Root(Unit, TRI); Root.isValid(); ++Root) {
300
4.40M
      for (MCPhysReg Reg : TRI->superregs_inclusive(*Root)) {
301
4.40M
        if (!MRI->reg_empty(Reg))
302
321k
          LICalc->extendToUses(LR, Reg);
303
4.40M
      }
304
976k
    }
305
916k
  }
306
307
  // Flush the segment set to the segment vector.
308
952k
  if (UseSegmentSetForPhysRegs)
309
952k
    LR.flushSegmentSet();
310
952k
}
311
312
/// Precompute the live ranges of any register units that are live-in to an ABI
313
/// block somewhere. Register values can appear without a corresponding def when
314
/// entering the entry block or a landing pad.
315
190k
void LiveIntervals::computeLiveInRegUnits() {
316
190k
  RegUnitRanges.resize(TRI->getNumRegUnits());
317
190k
  LLVM_DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
318
319
  // Keep track of the live range sets allocated.
320
190k
  SmallVector<unsigned, 8> NewRanges;
321
322
  // Check all basic blocks for live-ins.
323
348k
  for (const MachineBasicBlock &MBB : *MF) {
324
    // We only care about ABI blocks: Entry + landing pads.
325
348k
    if ((&MBB != &MF->front() && !MBB.isEHPad()) || MBB.livein_empty())
326
244k
      continue;
327
328
    // Create phi-defs at Begin for all live-in registers.
329
103k
    SlotIndex Begin = Indexes->getMBBStartIdx(&MBB);
330
103k
    LLVM_DEBUG(dbgs() << Begin << "\t" << printMBBReference(MBB));
331
184k
    for (const auto &LI : MBB.liveins()) {
332
217k
      for (MCRegUnit Unit : TRI->regunits(LI.PhysReg)) {
333
217k
        LiveRange *LR = RegUnitRanges[Unit];
334
217k
        if (!LR) {
335
          // Use segment set to speed-up initial computation of the live range.
336
217k
          LR = RegUnitRanges[Unit] = new LiveRange(UseSegmentSetForPhysRegs);
337
217k
          NewRanges.push_back(Unit);
338
217k
        }
339
217k
        VNInfo *VNI = LR->createDeadDef(Begin, getVNInfoAllocator());
340
217k
        (void)VNI;
341
217k
        LLVM_DEBUG(dbgs() << ' ' << printRegUnit(Unit, TRI) << '#' << VNI->id);
342
217k
      }
343
184k
    }
344
103k
    LLVM_DEBUG(dbgs() << '\n');
345
103k
  }
346
190k
  LLVM_DEBUG(dbgs() << "Created " << NewRanges.size() << " new intervals.\n");
347
348
  // Compute the 'normal' part of the ranges.
349
190k
  for (unsigned Unit : NewRanges)
350
217k
    computeRegUnitRange(*RegUnitRanges[Unit], Unit);
351
190k
}
352
353
static void createSegmentsForValues(LiveRange &LR,
354
103k
    iterator_range<LiveInterval::vni_iterator> VNIs) {
355
128k
  for (VNInfo *VNI : VNIs) {
356
128k
    if (VNI->isUnused())
357
244
      continue;
358
128k
    SlotIndex Def = VNI->def;
359
128k
    LR.addSegment(LiveRange::Segment(Def, Def.getDeadSlot(), VNI));
360
128k
  }
361
103k
}
362
363
void LiveIntervals::extendSegmentsToUses(LiveRange &Segments,
364
                                         ShrinkToUsesWorkList &WorkList,
365
103k
                                         Register Reg, LaneBitmask LaneMask) {
366
  // Keep track of the PHIs that are in use.
367
103k
  SmallPtrSet<VNInfo*, 8> UsedPHIs;
368
  // Blocks that have already been added to WorkList as live-out.
369
103k
  SmallPtrSet<const MachineBasicBlock*, 16> LiveOut;
370
371
103k
  auto getSubRange = [](const LiveInterval &I, LaneBitmask M)
372
103k
        -> const LiveRange& {
373
103k
    if (M.none())
374
101k
      return I;
375
2.07k
    for (const LiveInterval::SubRange &SR : I.subranges()) {
376
2.07k
      if ((SR.LaneMask & M).any()) {
377
1.41k
        assert(SR.LaneMask == M && "Expecting lane masks to match exactly");
378
0
        return SR;
379
1.41k
      }
380
2.07k
    }
381
0
    llvm_unreachable("Subrange for mask not found");
382
0
  };
383
384
103k
  const LiveInterval &LI = getInterval(Reg);
385
103k
  const LiveRange &OldRange = getSubRange(LI, LaneMask);
386
387
  // Extend intervals to reach all uses in WorkList.
388
682k
  while (!WorkList.empty()) {
389
579k
    SlotIndex Idx = WorkList.back().first;
390
579k
    VNInfo *VNI = WorkList.back().second;
391
579k
    WorkList.pop_back();
392
579k
    const MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Idx.getPrevSlot());
393
579k
    SlotIndex BlockStart = Indexes->getMBBStartIdx(MBB);
394
395
    // Extend the live range for VNI to be live at Idx.
396
579k
    if (VNInfo *ExtVNI = Segments.extendInBlock(BlockStart, Idx)) {
397
461k
      assert(ExtVNI == VNI && "Unexpected existing value number");
398
0
      (void)ExtVNI;
399
      // Is this a PHIDef we haven't seen before?
400
461k
      if (!VNI->isPHIDef() || VNI->def != BlockStart ||
401
461k
          !UsedPHIs.insert(VNI).second)
402
451k
        continue;
403
      // The PHI is live, make sure the predecessors are live-out.
404
23.4k
      for (const MachineBasicBlock *Pred : MBB->predecessors()) {
405
23.4k
        if (!LiveOut.insert(Pred).second)
406
3.35k
          continue;
407
20.0k
        SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
408
        // A predecessor is not required to have a live-out value for a PHI.
409
20.0k
        if (VNInfo *PVNI = OldRange.getVNInfoBefore(Stop))
410
20.0k
          WorkList.push_back(std::make_pair(Stop, PVNI));
411
20.0k
      }
412
10.3k
      continue;
413
461k
    }
414
415
    // VNI is live-in to MBB.
416
117k
    LLVM_DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
417
117k
    Segments.addSegment(LiveRange::Segment(BlockStart, Idx, VNI));
418
419
    // Make sure VNI is live-out from the predecessors.
420
189k
    for (const MachineBasicBlock *Pred : MBB->predecessors()) {
421
189k
      if (!LiveOut.insert(Pred).second)
422
69.8k
        continue;
423
120k
      SlotIndex Stop = Indexes->getMBBEndIdx(Pred);
424
120k
      if (VNInfo *OldVNI = OldRange.getVNInfoBefore(Stop)) {
425
120k
        assert(OldVNI == VNI && "Wrong value out of predecessor");
426
0
        (void)OldVNI;
427
120k
        WorkList.push_back(std::make_pair(Stop, VNI));
428
120k
      } else {
429
0
#ifndef NDEBUG
430
        // There was no old VNI. Verify that Stop is jointly dominated
431
        // by <undef>s for this live range.
432
0
        assert(LaneMask.any() &&
433
0
               "Missing value out of predecessor for main range");
434
0
        SmallVector<SlotIndex,8> Undefs;
435
0
        LI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
436
0
        assert(LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes) &&
437
0
               "Missing value out of predecessor for subrange");
438
0
#endif
439
0
      }
440
120k
    }
441
117k
  }
442
103k
}
443
444
bool LiveIntervals::shrinkToUses(LiveInterval *li,
445
101k
                                 SmallVectorImpl<MachineInstr*> *dead) {
446
101k
  LLVM_DEBUG(dbgs() << "Shrink: " << *li << '\n');
447
101k
  assert(li->reg().isVirtual() && "Can only shrink virtual registers");
448
449
  // Shrink subregister live ranges.
450
0
  bool NeedsCleanup = false;
451
101k
  for (LiveInterval::SubRange &S : li->subranges()) {
452
1.26k
    shrinkToUses(S, li->reg());
453
1.26k
    if (S.empty())
454
0
      NeedsCleanup = true;
455
1.26k
  }
456
101k
  if (NeedsCleanup)
457
0
    li->removeEmptySubRanges();
458
459
  // Find all the values used, including PHI kills.
460
101k
  ShrinkToUsesWorkList WorkList;
461
462
  // Visit all instructions reading li->reg().
463
101k
  Register Reg = li->reg();
464
547k
  for (MachineInstr &UseMI : MRI->reg_instructions(Reg)) {
465
547k
    if (UseMI.isDebugInstr() || !UseMI.readsVirtualRegister(Reg))
466
111k
      continue;
467
436k
    SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
468
436k
    LiveQueryResult LRQ = li->Query(Idx);
469
436k
    VNInfo *VNI = LRQ.valueIn();
470
436k
    if (!VNI) {
471
      // This shouldn't happen: readsVirtualRegister returns true, but there is
472
      // no live value. It is likely caused by a target getting <undef> flags
473
      // wrong.
474
0
      LLVM_DEBUG(
475
0
          dbgs() << Idx << '\t' << UseMI
476
0
                 << "Warning: Instr claims to read non-existent value in "
477
0
                 << *li << '\n');
478
0
      continue;
479
0
    }
480
    // Special case: An early-clobber tied operand reads and writes the
481
    // register one slot early.
482
436k
    if (VNInfo *DefVNI = LRQ.valueDefined())
483
8.28k
      Idx = DefVNI->def;
484
485
436k
    WorkList.push_back(std::make_pair(Idx, VNI));
486
436k
  }
487
488
  // Create new live ranges with only minimal live segments per def.
489
101k
  LiveRange NewLR;
490
101k
  createSegmentsForValues(NewLR, li->vnis());
491
101k
  extendSegmentsToUses(NewLR, WorkList, Reg, LaneBitmask::getNone());
492
493
  // Move the trimmed segments back.
494
101k
  li->segments.swap(NewLR.segments);
495
496
  // Handle dead values.
497
101k
  bool CanSeparate = computeDeadValues(*li, dead);
498
101k
  LLVM_DEBUG(dbgs() << "Shrunk: " << *li << '\n');
499
101k
  return CanSeparate;
500
101k
}
501
502
bool LiveIntervals::computeDeadValues(LiveInterval &LI,
503
5.28M
                                      SmallVectorImpl<MachineInstr*> *dead) {
504
5.28M
  bool MayHaveSplitComponents = false;
505
506
5.45M
  for (VNInfo *VNI : LI.valnos) {
507
5.45M
    if (VNI->isUnused())
508
244
      continue;
509
5.45M
    SlotIndex Def = VNI->def;
510
5.45M
    LiveRange::iterator I = LI.FindSegmentContaining(Def);
511
5.45M
    assert(I != LI.end() && "Missing segment for VNI");
512
513
    // Is the register live before? Otherwise we may have to add a read-undef
514
    // flag for subregister defs.
515
0
    Register VReg = LI.reg();
516
5.45M
    if (MRI->shouldTrackSubRegLiveness(VReg)) {
517
270k
      if ((I == LI.begin() || std::prev(I)->end < Def) && !VNI->isPHIDef()) {
518
257k
        MachineInstr *MI = getInstructionFromIndex(Def);
519
257k
        MI->setRegisterDefReadUndef(VReg);
520
257k
      }
521
270k
    }
522
523
5.45M
    if (I->end != Def.getDeadSlot())
524
5.34M
      continue;
525
116k
    if (VNI->isPHIDef()) {
526
      // This is a dead PHI. Remove it.
527
501
      VNI->markUnused();
528
501
      LI.removeSegment(I);
529
501
      LLVM_DEBUG(dbgs() << "Dead PHI at " << Def << " may separate interval\n");
530
116k
    } else {
531
      // This is a dead def. Make sure the instruction knows.
532
116k
      MachineInstr *MI = getInstructionFromIndex(Def);
533
116k
      assert(MI && "No instruction defining live value");
534
0
      MI->addRegisterDead(LI.reg(), TRI);
535
536
116k
      if (dead && MI->allDefsAreDead()) {
537
16.3k
        LLVM_DEBUG(dbgs() << "All defs dead: " << Def << '\t' << *MI);
538
16.3k
        dead->push_back(MI);
539
16.3k
      }
540
116k
    }
541
0
    MayHaveSplitComponents = true;
542
116k
  }
543
5.28M
  return MayHaveSplitComponents;
544
5.28M
}
545
546
1.41k
void LiveIntervals::shrinkToUses(LiveInterval::SubRange &SR, Register Reg) {
547
1.41k
  LLVM_DEBUG(dbgs() << "Shrink: " << SR << '\n');
548
1.41k
  assert(Reg.isVirtual() && "Can only shrink virtual registers");
549
  // Find all the values used, including PHI kills.
550
0
  ShrinkToUsesWorkList WorkList;
551
552
  // Visit all instructions reading Reg.
553
1.41k
  SlotIndex LastIdx;
554
2.76k
  for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
555
    // Skip "undef" uses.
556
2.76k
    if (!MO.readsReg())
557
0
      continue;
558
    // Maybe the operand is for a subregister we don't care about.
559
2.76k
    unsigned SubReg = MO.getSubReg();
560
2.76k
    if (SubReg != 0) {
561
1.02k
      LaneBitmask LaneMask = TRI->getSubRegIndexLaneMask(SubReg);
562
1.02k
      if ((LaneMask & SR.LaneMask).none())
563
461
        continue;
564
1.02k
    }
565
    // We only need to visit each instruction once.
566
2.30k
    MachineInstr *UseMI = MO.getParent();
567
2.30k
    SlotIndex Idx = getInstructionIndex(*UseMI).getRegSlot();
568
2.30k
    if (Idx == LastIdx)
569
9
      continue;
570
2.29k
    LastIdx = Idx;
571
572
2.29k
    LiveQueryResult LRQ = SR.Query(Idx);
573
2.29k
    VNInfo *VNI = LRQ.valueIn();
574
    // For Subranges it is possible that only undef values are left in that
575
    // part of the subregister, so there is no real liverange at the use
576
2.29k
    if (!VNI)
577
61
      continue;
578
579
    // Special case: An early-clobber tied operand reads and writes the
580
    // register one slot early.
581
2.23k
    if (VNInfo *DefVNI = LRQ.valueDefined())
582
92
      Idx = DefVNI->def;
583
584
2.23k
    WorkList.push_back(std::make_pair(Idx, VNI));
585
2.23k
  }
586
587
  // Create a new live ranges with only minimal live segments per def.
588
1.41k
  LiveRange NewLR;
589
1.41k
  createSegmentsForValues(NewLR, SR.vnis());
590
1.41k
  extendSegmentsToUses(NewLR, WorkList, Reg, SR.LaneMask);
591
592
  // Move the trimmed ranges back.
593
1.41k
  SR.segments.swap(NewLR.segments);
594
595
  // Remove dead PHI value numbers
596
1.61k
  for (VNInfo *VNI : SR.valnos) {
597
1.61k
    if (VNI->isUnused())
598
0
      continue;
599
1.61k
    const LiveRange::Segment *Segment = SR.getSegmentContaining(VNI->def);
600
1.61k
    assert(Segment != nullptr && "Missing segment for VNI");
601
1.61k
    if (Segment->end != VNI->def.getDeadSlot())
602
1.49k
      continue;
603
118
    if (VNI->isPHIDef()) {
604
      // This is a dead PHI. Remove it.
605
4
      LLVM_DEBUG(dbgs() << "Dead PHI at " << VNI->def
606
4
                        << " may separate interval\n");
607
4
      VNI->markUnused();
608
4
      SR.removeSegment(*Segment);
609
4
    }
610
118
  }
611
612
1.41k
  LLVM_DEBUG(dbgs() << "Shrunk: " << SR << '\n');
613
1.41k
}
614
615
void LiveIntervals::extendToIndices(LiveRange &LR,
616
                                    ArrayRef<SlotIndex> Indices,
617
12.0k
                                    ArrayRef<SlotIndex> Undefs) {
618
12.0k
  assert(LICalc && "LICalc not initialized.");
619
0
  LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
620
12.0k
  for (SlotIndex Idx : Indices)
621
37.1k
    LICalc->extend(LR, Idx, /*PhysReg=*/0, Undefs);
622
12.0k
}
623
624
void LiveIntervals::pruneValue(LiveRange &LR, SlotIndex Kill,
625
23.5k
                               SmallVectorImpl<SlotIndex> *EndPoints) {
626
23.5k
  LiveQueryResult LRQ = LR.Query(Kill);
627
23.5k
  VNInfo *VNI = LRQ.valueOutOrDead();
628
23.5k
  if (!VNI)
629
55
    return;
630
631
23.4k
  MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
632
23.4k
  SlotIndex MBBEnd = Indexes->getMBBEndIdx(KillMBB);
633
634
  // If VNI isn't live out from KillMBB, the value is trivially pruned.
635
23.4k
  if (LRQ.endPoint() < MBBEnd) {
636
20.7k
    LR.removeSegment(Kill, LRQ.endPoint());
637
20.7k
    if (EndPoints) EndPoints->push_back(LRQ.endPoint());
638
20.7k
    return;
639
20.7k
  }
640
641
  // VNI is live out of KillMBB.
642
2.69k
  LR.removeSegment(Kill, MBBEnd);
643
2.69k
  if (EndPoints) EndPoints->push_back(MBBEnd);
644
645
  // Find all blocks that are reachable from KillMBB without leaving VNI's live
646
  // range. It is possible that KillMBB itself is reachable, so start a DFS
647
  // from each successor.
648
2.69k
  using VisitedTy = df_iterator_default_set<MachineBasicBlock*,9>;
649
2.69k
  VisitedTy Visited;
650
4.08k
  for (MachineBasicBlock *Succ : KillMBB->successors()) {
651
4.08k
    for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
652
4.08k
         I = df_ext_begin(Succ, Visited), E = df_ext_end(Succ, Visited);
653
9.90k
         I != E;) {
654
5.82k
      MachineBasicBlock *MBB = *I;
655
656
      // Check if VNI is live in to MBB.
657
5.82k
      SlotIndex MBBStart, MBBEnd;
658
5.82k
      std::tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
659
5.82k
      LiveQueryResult LRQ = LR.Query(MBBStart);
660
5.82k
      if (LRQ.valueIn() != VNI) {
661
        // This block isn't part of the VNI segment. Prune the search.
662
3.53k
        I.skipChildren();
663
3.53k
        continue;
664
3.53k
      }
665
666
      // Prune the search if VNI is killed in MBB.
667
2.29k
      if (LRQ.endPoint() < MBBEnd) {
668
475
        LR.removeSegment(MBBStart, LRQ.endPoint());
669
475
        if (EndPoints) EndPoints->push_back(LRQ.endPoint());
670
475
        I.skipChildren();
671
475
        continue;
672
475
      }
673
674
      // VNI is live through MBB.
675
1.81k
      LR.removeSegment(MBBStart, MBBEnd);
676
1.81k
      if (EndPoints) EndPoints->push_back(MBBEnd);
677
1.81k
      ++I;
678
1.81k
    }
679
4.08k
  }
680
2.69k
}
681
682
//===----------------------------------------------------------------------===//
683
// Register allocator hooks.
684
//
685
686
112k
void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
687
  // Keep track of regunit ranges.
688
112k
  SmallVector<std::pair<const LiveRange*, LiveRange::const_iterator>, 8> RU;
689
690
4.74M
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
691
4.63M
    Register Reg = Register::index2VirtReg(i);
692
4.63M
    if (MRI->reg_nodbg_empty(Reg))
693
1.91M
      continue;
694
2.72M
    const LiveInterval &LI = getInterval(Reg);
695
2.72M
    if (LI.empty())
696
110k
      continue;
697
698
    // Target may have not allocated this yet.
699
2.61M
    Register PhysReg = VRM->getPhys(Reg);
700
2.61M
    if (!PhysReg)
701
387k
      continue;
702
703
    // Find the regunit intervals for the assigned register. They may overlap
704
    // the virtual register live range, cancelling any kills.
705
2.22M
    RU.clear();
706
2.51M
    for (MCRegUnit Unit : TRI->regunits(PhysReg)) {
707
2.51M
      const LiveRange &RURange = getRegUnit(Unit);
708
2.51M
      if (RURange.empty())
709
1.57M
        continue;
710
940k
      RU.push_back(std::make_pair(&RURange, RURange.find(LI.begin()->end)));
711
940k
    }
712
    // Every instruction that kills Reg corresponds to a segment range end
713
    // point.
714
4.70M
    for (LiveInterval::const_iterator RI = LI.begin(), RE = LI.end(); RI != RE;
715
2.48M
         ++RI) {
716
      // A block index indicates an MBB edge.
717
2.48M
      if (RI->end.isBlock())
718
143k
        continue;
719
2.33M
      MachineInstr *MI = getInstructionFromIndex(RI->end);
720
2.33M
      if (!MI)
721
0
        continue;
722
723
      // Check if any of the regunits are live beyond the end of RI. That could
724
      // happen when a physreg is defined as a copy of a virtreg:
725
      //
726
      //   %eax = COPY %5
727
      //   FOO %5             <--- MI, cancel kill because %eax is live.
728
      //   BAR killed %eax
729
      //
730
      // There should be no kill flag on FOO when %5 is rewritten as %eax.
731
2.33M
      for (auto &RUP : RU) {
732
1.01M
        const LiveRange &RURange = *RUP.first;
733
1.01M
        LiveRange::const_iterator &I = RUP.second;
734
1.01M
        if (I == RURange.end())
735
329k
          continue;
736
684k
        I = RURange.advanceTo(I, RI->end);
737
684k
        if (I == RURange.end() || I->start >= RI->end)
738
680k
          continue;
739
        // I is overlapping RI.
740
3.69k
        goto CancelKill;
741
684k
      }
742
743
2.33M
      if (MRI->subRegLivenessEnabled()) {
744
        // When reading a partial undefined value we must not add a kill flag.
745
        // The regalloc might have used the undef lane for something else.
746
        // Example:
747
        //     %1 = ...                  ; R32: %1
748
        //     %2:high16 = ...           ; R64: %2
749
        //        = read killed %2        ; R64: %2
750
        //        = read %1              ; R32: %1
751
        // The <kill> flag is correct for %2, but the register allocator may
752
        // assign R0L to %1, and R0 to %2 because the low 32bits of R0
753
        // are actually never written by %2. After assignment the <kill>
754
        // flag at the read instruction is invalid.
755
1.65M
        LaneBitmask DefinedLanesMask;
756
1.65M
        if (LI.hasSubRanges()) {
757
          // Compute a mask of lanes that are defined.
758
59.5k
          DefinedLanesMask = LaneBitmask::getNone();
759
59.5k
          for (const LiveInterval::SubRange &SR : LI.subranges())
760
133k
            for (const LiveRange::Segment &Segment : SR.segments) {
761
133k
              if (Segment.start >= RI->end)
762
9.02k
                break;
763
124k
              if (Segment.end == RI->end) {
764
61.8k
                DefinedLanesMask |= SR.LaneMask;
765
61.8k
                break;
766
61.8k
              }
767
124k
            }
768
59.5k
        } else
769
1.59M
          DefinedLanesMask = LaneBitmask::getAll();
770
771
1.65M
        bool IsFullWrite = false;
772
5.39M
        for (const MachineOperand &MO : MI->operands()) {
773
5.39M
          if (!MO.isReg() || MO.getReg() != Reg)
774
3.64M
            continue;
775
1.74M
          if (MO.isUse()) {
776
            // Reading any undefined lanes?
777
1.64M
            unsigned SubReg = MO.getSubReg();
778
1.64M
            LaneBitmask UseMask = SubReg ? TRI->getSubRegIndexLaneMask(SubReg)
779
1.64M
                                         : MRI->getMaxLaneMaskForVReg(Reg);
780
1.64M
            if ((UseMask & ~DefinedLanesMask).any())
781
542
              goto CancelKill;
782
1.64M
          } else if (MO.getSubReg() == 0) {
783
            // Writing to the full register?
784
90.2k
            assert(MO.isDef());
785
0
            IsFullWrite = true;
786
90.2k
          }
787
1.74M
        }
788
789
        // If an instruction writes to a subregister, a new segment starts in
790
        // the LiveInterval. But as this is only overriding part of the register
791
        // adding kill-flags is not correct here after registers have been
792
        // assigned.
793
1.65M
        if (!IsFullWrite) {
794
          // Next segment has to be adjacent in the subregister write case.
795
1.56M
          LiveRange::const_iterator N = std::next(RI);
796
1.56M
          if (N != LI.end() && N->start == RI->end)
797
12.6k
            goto CancelKill;
798
1.56M
        }
799
1.65M
      }
800
801
2.32M
      MI->addRegisterKilled(Reg, nullptr);
802
2.32M
      continue;
803
16.8k
CancelKill:
804
16.8k
      MI->clearRegisterKills(Reg, nullptr);
805
16.8k
    }
806
2.22M
  }
807
112k
}
808
809
MachineBasicBlock*
810
23.5M
LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
811
23.5M
  assert(!LI.empty() && "LiveInterval is empty.");
812
813
  // A local live range must be fully contained inside the block, meaning it is
814
  // defined and killed at instructions, not at block boundaries. It is not
815
  // live in or out of any block.
816
  //
817
  // It is technically possible to have a PHI-defined live range identical to a
818
  // single block, but we are going to return false in that case.
819
820
0
  SlotIndex Start = LI.beginIndex();
821
23.5M
  if (Start.isBlock())
822
694k
    return nullptr;
823
824
22.8M
  SlotIndex Stop = LI.endIndex();
825
22.8M
  if (Stop.isBlock())
826
926k
    return nullptr;
827
828
  // getMBBFromIndex doesn't need to search the MBB table when both indexes
829
  // belong to proper instructions.
830
21.8M
  MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
831
21.8M
  MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
832
21.8M
  return MBB1 == MBB2 ? MBB1 : nullptr;
833
22.8M
}
834
835
bool
836
27
LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
837
69
  for (const VNInfo *PHI : LI.valnos) {
838
69
    if (PHI->isUnused() || !PHI->isPHIDef())
839
66
      continue;
840
3
    const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
841
    // Conservatively return true instead of scanning huge predecessor lists.
842
3
    if (PHIMBB->pred_size() > 100)
843
0
      return true;
844
3
    for (const MachineBasicBlock *Pred : PHIMBB->predecessors())
845
4
      if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(Pred)))
846
3
        return true;
847
3
  }
848
24
  return false;
849
27
}
850
851
float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
852
                                    const MachineBlockFrequencyInfo *MBFI,
853
7.30M
                                    const MachineInstr &MI) {
854
7.30M
  return getSpillWeight(isDef, isUse, MBFI, MI.getParent());
855
7.30M
}
856
857
float LiveIntervals::getSpillWeight(bool isDef, bool isUse,
858
                                    const MachineBlockFrequencyInfo *MBFI,
859
7.30M
                                    const MachineBasicBlock *MBB) {
860
7.30M
  return (isDef + isUse) * MBFI->getBlockFreqRelativeToEntryBlock(MBB);
861
7.30M
}
862
863
LiveRange::Segment
864
0
LiveIntervals::addSegmentToEndOfBlock(Register Reg, MachineInstr &startInst) {
865
0
  LiveInterval &Interval = getOrCreateEmptyInterval(Reg);
866
0
  VNInfo *VN = Interval.getNextValue(
867
0
      SlotIndex(getInstructionIndex(startInst).getRegSlot()),
868
0
      getVNInfoAllocator());
869
0
  LiveRange::Segment S(SlotIndex(getInstructionIndex(startInst).getRegSlot()),
870
0
                       getMBBEndIdx(startInst.getParent()), VN);
871
0
  Interval.addSegment(S);
872
873
0
  return S;
874
0
}
875
876
//===----------------------------------------------------------------------===//
877
//                          Register mask functions
878
//===----------------------------------------------------------------------===//
879
/// Check whether use of reg in MI is live-through. Live-through means that
880
/// the value is alive on exit from Machine instruction. The example of such
881
/// use is a deopt value in statepoint instruction.
882
70
static bool hasLiveThroughUse(const MachineInstr *MI, Register Reg) {
883
70
  if (MI->getOpcode() != TargetOpcode::STATEPOINT)
884
69
    return false;
885
1
  StatepointOpers SO(MI);
886
1
  if (SO.getFlags() & (uint64_t)StatepointFlags::DeoptLiveIn)
887
0
    return false;
888
7
  for (unsigned Idx = SO.getNumDeoptArgsIdx(), E = SO.getNumGCPtrIdx(); Idx < E;
889
6
       ++Idx) {
890
6
    const MachineOperand &MO = MI->getOperand(Idx);
891
6
    if (MO.isReg() && MO.getReg() == Reg)
892
0
      return true;
893
6
  }
894
1
  return false;
895
1
}
896
897
bool LiveIntervals::checkRegMaskInterference(const LiveInterval &LI,
898
3.36M
                                             BitVector &UsableRegs) {
899
3.36M
  if (LI.empty())
900
0
    return false;
901
3.36M
  LiveInterval::const_iterator LiveI = LI.begin(), LiveE = LI.end();
902
903
  // Use a smaller arrays for local live ranges.
904
3.36M
  ArrayRef<SlotIndex> Slots;
905
3.36M
  ArrayRef<const uint32_t*> Bits;
906
3.36M
  if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
907
2.99M
    Slots = getRegMaskSlotsInBlock(MBB->getNumber());
908
2.99M
    Bits = getRegMaskBitsInBlock(MBB->getNumber());
909
2.99M
  } else {
910
370k
    Slots = getRegMaskSlots();
911
370k
    Bits = getRegMaskBits();
912
370k
  }
913
914
  // We are going to enumerate all the register mask slots contained in LI.
915
  // Start with a binary search of RegMaskSlots to find a starting point.
916
3.36M
  ArrayRef<SlotIndex>::iterator SlotI = llvm::lower_bound(Slots, LiveI->start);
917
3.36M
  ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
918
919
  // No slots in range, LI begins after the last call.
920
3.36M
  if (SlotI == SlotE)
921
1.88M
    return false;
922
923
1.47M
  bool Found = false;
924
  // Utility to union regmasks.
925
3.73M
  auto unionBitMask = [&](unsigned Idx) {
926
3.73M
      if (!Found) {
927
        // This is the first overlap. Initialize UsableRegs to all ones.
928
881k
        UsableRegs.clear();
929
881k
        UsableRegs.resize(TRI->getNumRegs(), true);
930
881k
        Found = true;
931
881k
      }
932
      // Remove usable registers clobbered by this mask.
933
3.73M
      UsableRegs.clearBitsNotInMask(Bits[Idx]);
934
3.73M
  };
935
1.50M
  while (true) {
936
1.50M
    assert(*SlotI >= LiveI->start);
937
    // Loop over all slots overlapping this segment.
938
4.78M
    while (*SlotI < LiveI->end) {
939
      // *SlotI overlaps LI. Collect mask bits.
940
3.73M
      unionBitMask(SlotI - Slots.begin());
941
3.73M
      if (++SlotI == SlotE)
942
457k
        return Found;
943
3.73M
    }
944
    // If segment ends with live-through use we need to collect its regmask.
945
1.05M
    if (*SlotI == LiveI->end)
946
70
      if (MachineInstr *MI = getInstructionFromIndex(*SlotI))
947
70
        if (hasLiveThroughUse(MI, LI.reg()))
948
0
          unionBitMask(SlotI++ - Slots.begin());
949
    // *SlotI is beyond the current LI segment.
950
    // Special advance implementation to not miss next LiveI->end.
951
1.05M
    if (++LiveI == LiveE || SlotI == SlotE || *SlotI > LI.endIndex())
952
1.01M
      return Found;
953
43.5k
    while (LiveI->end < *SlotI)
954
8.16k
      ++LiveI;
955
    // Advance SlotI until it overlaps.
956
51.3k
    while (*SlotI < LiveI->start)
957
20.3k
      if (++SlotI == SlotE)
958
4.39k
        return Found;
959
35.3k
  }
960
1.47M
}
961
962
//===----------------------------------------------------------------------===//
963
//                         IntervalUpdate class.
964
//===----------------------------------------------------------------------===//
965
966
/// Toolkit used by handleMove to trim or extend live intervals.
967
class LiveIntervals::HMEditor {
968
private:
969
  LiveIntervals& LIS;
970
  const MachineRegisterInfo& MRI;
971
  const TargetRegisterInfo& TRI;
972
  SlotIndex OldIdx;
973
  SlotIndex NewIdx;
974
  SmallPtrSet<LiveRange*, 8> Updated;
975
  bool UpdateFlags;
976
977
public:
978
  HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
979
           const TargetRegisterInfo& TRI,
980
           SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
981
    : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
982
1.05M
      UpdateFlags(UpdateFlags) {}
983
984
  // FIXME: UpdateFlags is a workaround that creates live intervals for all
985
  // physregs, even those that aren't needed for regalloc, in order to update
986
  // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
987
  // flags, and postRA passes will use a live register utility instead.
988
409k
  LiveRange *getRegUnitLI(unsigned Unit) {
989
409k
    if (UpdateFlags && !MRI.isReservedRegUnit(Unit))
990
207k
      return &LIS.getRegUnit(Unit);
991
202k
    return LIS.getCachedRegUnit(Unit);
992
409k
  }
993
994
  /// Update all live ranges touched by MI, assuming a move from OldIdx to
995
  /// NewIdx.
996
1.05M
  void updateAllRanges(MachineInstr *MI) {
997
1.05M
    LLVM_DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": "
998
1.05M
                      << *MI);
999
1.05M
    bool hasRegMask = false;
1000
3.42M
    for (MachineOperand &MO : MI->operands()) {
1001
3.42M
      if (MO.isRegMask())
1002
0
        hasRegMask = true;
1003
3.42M
      if (!MO.isReg())
1004
950k
        continue;
1005
2.47M
      if (MO.isUse()) {
1006
1.55M
        if (!MO.readsReg())
1007
30.0k
          continue;
1008
        // Aggressively clear all kill flags.
1009
        // They are reinserted by VirtRegRewriter.
1010
1.52M
        MO.setIsKill(false);
1011
1.52M
      }
1012
1013
2.44M
      Register Reg = MO.getReg();
1014
2.44M
      if (!Reg)
1015
5.14k
        continue;
1016
2.44M
      if (Reg.isVirtual()) {
1017
2.10M
        LiveInterval &LI = LIS.getInterval(Reg);
1018
2.10M
        if (LI.hasSubRanges()) {
1019
87.6k
          unsigned SubReg = MO.getSubReg();
1020
87.6k
          LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1021
87.6k
                                        : MRI.getMaxLaneMaskForVReg(Reg);
1022
183k
          for (LiveInterval::SubRange &S : LI.subranges()) {
1023
183k
            if ((S.LaneMask & LaneMask).none())
1024
60.0k
              continue;
1025
123k
            updateRange(S, Reg, S.LaneMask);
1026
123k
          }
1027
87.6k
        }
1028
2.10M
        updateRange(LI, Reg, LaneBitmask::getNone());
1029
        // If main range has a hole and we are moving a subrange use across
1030
        // the hole updateRange() cannot properly handle it since it only
1031
        // gets the LiveRange and not the whole LiveInterval. As a result
1032
        // we may end up with a main range not covering all subranges.
1033
        // This is extremely rare case, so let's check and reconstruct the
1034
        // main range.
1035
2.10M
        if (LI.hasSubRanges()) {
1036
87.6k
          unsigned SubReg = MO.getSubReg();
1037
87.6k
          LaneBitmask LaneMask = SubReg ? TRI.getSubRegIndexLaneMask(SubReg)
1038
87.6k
                                        : MRI.getMaxLaneMaskForVReg(Reg);
1039
183k
          for (LiveInterval::SubRange &S : LI.subranges()) {
1040
183k
            if ((S.LaneMask & LaneMask).none() || LI.covers(S))
1041
183k
              continue;
1042
0
            LI.clear();
1043
0
            LIS.constructMainRangeFromSubranges(LI);
1044
0
            break;
1045
183k
          }
1046
87.6k
        }
1047
1048
2.10M
        continue;
1049
2.10M
      }
1050
1051
      // For physregs, only update the regunits that actually have a
1052
      // precomputed live range.
1053
335k
      for (MCRegUnit Unit : TRI.regunits(Reg.asMCReg()))
1054
409k
        if (LiveRange *LR = getRegUnitLI(Unit))
1055
239k
          updateRange(*LR, Unit, LaneBitmask::getNone());
1056
335k
    }
1057
1.05M
    if (hasRegMask)
1058
0
      updateRegMaskSlots();
1059
1.05M
  }
1060
1061
private:
1062
  /// Update a single live range, assuming an instruction has been moved from
1063
  /// OldIdx to NewIdx.
1064
2.46M
  void updateRange(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1065
2.46M
    if (!Updated.insert(&LR).second)
1066
95.8k
      return;
1067
2.37M
    LLVM_DEBUG({
1068
2.37M
      dbgs() << "     ";
1069
2.37M
      if (Reg.isVirtual()) {
1070
2.37M
        dbgs() << printReg(Reg);
1071
2.37M
        if (LaneMask.any())
1072
2.37M
          dbgs() << " L" << PrintLaneMask(LaneMask);
1073
2.37M
      } else {
1074
2.37M
        dbgs() << printRegUnit(Reg, &TRI);
1075
2.37M
      }
1076
2.37M
      dbgs() << ":\t" << LR << '\n';
1077
2.37M
    });
1078
2.37M
    if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
1079
2.05M
      handleMoveDown(LR);
1080
323k
    else
1081
323k
      handleMoveUp(LR, Reg, LaneMask);
1082
2.37M
    LLVM_DEBUG(dbgs() << "        -->\t" << LR << '\n');
1083
2.37M
    LR.verify();
1084
2.37M
  }
1085
1086
  /// Update LR to reflect an instruction has been moved downwards from OldIdx
1087
  /// to NewIdx (OldIdx < NewIdx).
1088
2.05M
  void handleMoveDown(LiveRange &LR) {
1089
2.05M
    LiveRange::iterator E = LR.end();
1090
    // Segment going into OldIdx.
1091
2.05M
    LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1092
1093
    // No value live before or after OldIdx? Nothing to do.
1094
2.05M
    if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1095
8.38k
      return;
1096
1097
2.04M
    LiveRange::iterator OldIdxOut;
1098
    // Do we have a value live-in to OldIdx?
1099
2.04M
    if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1100
      // If the live-in value already extends to NewIdx, there is nothing to do.
1101
1.30M
      if (SlotIndex::isEarlierEqualInstr(NewIdx, OldIdxIn->end))
1102
452k
        return;
1103
      // Aggressively remove all kill flags from the old kill point.
1104
      // Kill flags shouldn't be used while live intervals exist, they will be
1105
      // reinserted by VirtRegRewriter.
1106
855k
      if (MachineInstr *KillMI = LIS.getInstructionFromIndex(OldIdxIn->end))
1107
44.8k
        for (MachineOperand &MOP : mi_bundle_ops(*KillMI))
1108
153k
          if (MOP.isReg() && MOP.isUse())
1109
80.2k
            MOP.setIsKill(false);
1110
1111
      // Is there a def before NewIdx which is not OldIdx?
1112
855k
      LiveRange::iterator Next = std::next(OldIdxIn);
1113
855k
      if (Next != E && !SlotIndex::isSameInstr(OldIdx, Next->start) &&
1114
855k
          SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1115
        // If we are here then OldIdx was just a use but not a def. We only have
1116
        // to ensure liveness extends to NewIdx.
1117
0
        LiveRange::iterator NewIdxIn =
1118
0
          LR.advanceTo(Next, NewIdx.getBaseIndex());
1119
        // Extend the segment before NewIdx if necessary.
1120
0
        if (NewIdxIn == E ||
1121
0
            !SlotIndex::isEarlierInstr(NewIdxIn->start, NewIdx)) {
1122
0
          LiveRange::iterator Prev = std::prev(NewIdxIn);
1123
0
          Prev->end = NewIdx.getRegSlot();
1124
0
        }
1125
        // Extend OldIdxIn.
1126
0
        OldIdxIn->end = Next->start;
1127
0
        return;
1128
0
      }
1129
1130
      // Adjust OldIdxIn->end to reach NewIdx. This may temporarily make LR
1131
      // invalid by overlapping ranges.
1132
855k
      bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1133
855k
      OldIdxIn->end = NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber());
1134
      // If this was not a kill, then there was no def and we're done.
1135
855k
      if (!isKill)
1136
44.8k
        return;
1137
1138
      // Did we have a Def at OldIdx?
1139
810k
      OldIdxOut = Next;
1140
810k
      if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1141
736k
        return;
1142
810k
    } else {
1143
733k
      OldIdxOut = OldIdxIn;
1144
733k
    }
1145
1146
    // If we are here then there is a Definition at OldIdx. OldIdxOut points
1147
    // to the segment starting there.
1148
808k
    assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1149
808k
           "No def?");
1150
0
    VNInfo *OldIdxVNI = OldIdxOut->valno;
1151
808k
    assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1152
1153
    // If the defined value extends beyond NewIdx, just move the beginning
1154
    // of the segment to NewIdx.
1155
0
    SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1156
808k
    if (SlotIndex::isEarlierInstr(NewIdxDef, OldIdxOut->end)) {
1157
756k
      OldIdxVNI->def = NewIdxDef;
1158
756k
      OldIdxOut->start = OldIdxVNI->def;
1159
756k
      return;
1160
756k
    }
1161
1162
    // If we are here then we have a Definition at OldIdx which ends before
1163
    // NewIdx.
1164
1165
    // Is there an existing Def at NewIdx?
1166
51.3k
    LiveRange::iterator AfterNewIdx
1167
51.3k
      = LR.advanceTo(OldIdxOut, NewIdx.getRegSlot());
1168
51.3k
    bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1169
51.3k
    if (!OldIdxDefIsDead &&
1170
51.3k
        SlotIndex::isEarlierInstr(OldIdxOut->end, NewIdxDef)) {
1171
      // OldIdx is not a dead def, and NewIdxDef is inside a new interval.
1172
0
      VNInfo *DefVNI;
1173
0
      if (OldIdxOut != LR.begin() &&
1174
0
          !SlotIndex::isEarlierInstr(std::prev(OldIdxOut)->end,
1175
0
                                     OldIdxOut->start)) {
1176
        // There is no gap between OldIdxOut and its predecessor anymore,
1177
        // merge them.
1178
0
        LiveRange::iterator IPrev = std::prev(OldIdxOut);
1179
0
        DefVNI = OldIdxVNI;
1180
0
        IPrev->end = OldIdxOut->end;
1181
0
      } else {
1182
        // The value is live in to OldIdx
1183
0
        LiveRange::iterator INext = std::next(OldIdxOut);
1184
0
        assert(INext != E && "Must have following segment");
1185
        // We merge OldIdxOut and its successor. As we're dealing with subreg
1186
        // reordering, there is always a successor to OldIdxOut in the same BB
1187
        // We don't need INext->valno anymore and will reuse for the new segment
1188
        // we create later.
1189
0
        DefVNI = OldIdxVNI;
1190
0
        INext->start = OldIdxOut->end;
1191
0
        INext->valno->def = INext->start;
1192
0
      }
1193
      // If NewIdx is behind the last segment, extend that and append a new one.
1194
0
      if (AfterNewIdx == E) {
1195
        // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1196
        // one position.
1197
        //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn -| end
1198
        // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS -| end
1199
0
        std::copy(std::next(OldIdxOut), E, OldIdxOut);
1200
        // The last segment is undefined now, reuse it for a dead def.
1201
0
        LiveRange::iterator NewSegment = std::prev(E);
1202
0
        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1203
0
                                         DefVNI);
1204
0
        DefVNI->def = NewIdxDef;
1205
1206
0
        LiveRange::iterator Prev = std::prev(NewSegment);
1207
0
        Prev->end = NewIdxDef;
1208
0
      } else {
1209
        // OldIdxOut is undef at this point, Slide (OldIdxOut;AfterNewIdx] up
1210
        // one position.
1211
        //    |-  ?/OldIdxOut -| |- X0 -| ... |- Xn/AfterNewIdx -| |- Next -|
1212
        // => |- X0/OldIdxOut -| ... |- Xn -| |- Xn/AfterNewIdx -| |- Next -|
1213
0
        std::copy(std::next(OldIdxOut), std::next(AfterNewIdx), OldIdxOut);
1214
0
        LiveRange::iterator Prev = std::prev(AfterNewIdx);
1215
        // We have two cases:
1216
0
        if (SlotIndex::isEarlierInstr(Prev->start, NewIdxDef)) {
1217
          // Case 1: NewIdx is inside a liverange. Split this liverange at
1218
          // NewIdxDef into the segment "Prev" followed by "NewSegment".
1219
0
          LiveRange::iterator NewSegment = AfterNewIdx;
1220
0
          *NewSegment = LiveRange::Segment(NewIdxDef, Prev->end, Prev->valno);
1221
0
          Prev->valno->def = NewIdxDef;
1222
1223
0
          *Prev = LiveRange::Segment(Prev->start, NewIdxDef, DefVNI);
1224
0
          DefVNI->def = Prev->start;
1225
0
        } else {
1226
          // Case 2: NewIdx is in a lifetime hole. Keep AfterNewIdx as is and
1227
          // turn Prev into a segment from NewIdx to AfterNewIdx->start.
1228
0
          *Prev = LiveRange::Segment(NewIdxDef, AfterNewIdx->start, DefVNI);
1229
0
          DefVNI->def = NewIdxDef;
1230
0
          assert(DefVNI != AfterNewIdx->valno);
1231
0
        }
1232
0
      }
1233
0
      return;
1234
0
    }
1235
1236
51.3k
    if (AfterNewIdx != E &&
1237
51.3k
        SlotIndex::isSameInstr(AfterNewIdx->start, NewIdxDef)) {
1238
      // There is an existing def at NewIdx. The def at OldIdx is coalesced into
1239
      // that value.
1240
0
      assert(AfterNewIdx->valno != OldIdxVNI && "Multiple defs of value?");
1241
0
      LR.removeValNo(OldIdxVNI);
1242
51.3k
    } else {
1243
      // There was no existing def at NewIdx. We need to create a dead def
1244
      // at NewIdx. Shift segments over the old OldIdxOut segment, this frees
1245
      // a new segment at the place where we want to construct the dead def.
1246
      //    |- OldIdxOut -| |- X0 -| ... |- Xn -| |- AfterNewIdx -|
1247
      // => |- X0/OldIdxOut -| ... |- Xn -| |- undef/NewS. -| |- AfterNewIdx -|
1248
51.3k
      assert(AfterNewIdx != OldIdxOut && "Inconsistent iterators");
1249
0
      std::copy(std::next(OldIdxOut), AfterNewIdx, OldIdxOut);
1250
      // We can reuse OldIdxVNI now.
1251
51.3k
      LiveRange::iterator NewSegment = std::prev(AfterNewIdx);
1252
51.3k
      VNInfo *NewSegmentVNI = OldIdxVNI;
1253
51.3k
      NewSegmentVNI->def = NewIdxDef;
1254
51.3k
      *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1255
51.3k
                                       NewSegmentVNI);
1256
51.3k
    }
1257
51.3k
  }
1258
1259
  /// Update LR to reflect an instruction has been moved upwards from OldIdx
1260
  /// to NewIdx (NewIdx < OldIdx).
1261
323k
  void handleMoveUp(LiveRange &LR, Register Reg, LaneBitmask LaneMask) {
1262
323k
    LiveRange::iterator E = LR.end();
1263
    // Segment going into OldIdx.
1264
323k
    LiveRange::iterator OldIdxIn = LR.find(OldIdx.getBaseIndex());
1265
1266
    // No value live before or after OldIdx? Nothing to do.
1267
323k
    if (OldIdxIn == E || SlotIndex::isEarlierInstr(OldIdx, OldIdxIn->start))
1268
3.15k
      return;
1269
1270
320k
    LiveRange::iterator OldIdxOut;
1271
    // Do we have a value live-in to OldIdx?
1272
320k
    if (SlotIndex::isEarlierInstr(OldIdxIn->start, OldIdx)) {
1273
      // If the live-in value isn't killed here, then we have no Def at
1274
      // OldIdx, moreover the value must be live at NewIdx so there is nothing
1275
      // to do.
1276
169k
      bool isKill = SlotIndex::isSameInstr(OldIdx, OldIdxIn->end);
1277
169k
      if (!isKill)
1278
48.9k
        return;
1279
1280
      // At this point we have to move OldIdxIn->end back to the nearest
1281
      // previous use or (dead-)def but no further than NewIdx.
1282
120k
      SlotIndex DefBeforeOldIdx
1283
120k
        = std::max(OldIdxIn->start.getDeadSlot(),
1284
120k
                   NewIdx.getRegSlot(OldIdxIn->end.isEarlyClobber()));
1285
120k
      OldIdxIn->end = findLastUseBefore(DefBeforeOldIdx, Reg, LaneMask);
1286
1287
      // Did we have a Def at OldIdx? If not we are done now.
1288
120k
      OldIdxOut = std::next(OldIdxIn);
1289
120k
      if (OldIdxOut == E || !SlotIndex::isSameInstr(OldIdx, OldIdxOut->start))
1290
114k
        return;
1291
150k
    } else {
1292
150k
      OldIdxOut = OldIdxIn;
1293
150k
      OldIdxIn = OldIdxOut != LR.begin() ? std::prev(OldIdxOut) : E;
1294
150k
    }
1295
1296
    // If we are here then there is a Definition at OldIdx. OldIdxOut points
1297
    // to the segment starting there.
1298
156k
    assert(OldIdxOut != E && SlotIndex::isSameInstr(OldIdx, OldIdxOut->start) &&
1299
156k
           "No def?");
1300
0
    VNInfo *OldIdxVNI = OldIdxOut->valno;
1301
156k
    assert(OldIdxVNI->def == OldIdxOut->start && "Inconsistent def");
1302
0
    bool OldIdxDefIsDead = OldIdxOut->end.isDead();
1303
1304
    // Is there an existing def at NewIdx?
1305
156k
    SlotIndex NewIdxDef = NewIdx.getRegSlot(OldIdxOut->start.isEarlyClobber());
1306
156k
    LiveRange::iterator NewIdxOut = LR.find(NewIdx.getRegSlot());
1307
156k
    if (SlotIndex::isSameInstr(NewIdxOut->start, NewIdx)) {
1308
0
      assert(NewIdxOut->valno != OldIdxVNI &&
1309
0
             "Same value defined more than once?");
1310
      // If OldIdx was a dead def remove it.
1311
0
      if (!OldIdxDefIsDead) {
1312
        // Remove segment starting at NewIdx and move begin of OldIdxOut to
1313
        // NewIdx so it can take its place.
1314
0
        OldIdxVNI->def = NewIdxDef;
1315
0
        OldIdxOut->start = NewIdxDef;
1316
0
        LR.removeValNo(NewIdxOut->valno);
1317
0
      } else {
1318
        // Simply remove the dead def at OldIdx.
1319
0
        LR.removeValNo(OldIdxVNI);
1320
0
      }
1321
156k
    } else {
1322
      // Previously nothing was live after NewIdx, so all we have to do now is
1323
      // move the begin of OldIdxOut to NewIdx.
1324
156k
      if (!OldIdxDefIsDead) {
1325
        // Do we have any intermediate Defs between OldIdx and NewIdx?
1326
127k
        if (OldIdxIn != E &&
1327
127k
            SlotIndex::isEarlierInstr(NewIdxDef, OldIdxIn->start)) {
1328
          // OldIdx is not a dead def and NewIdx is before predecessor start.
1329
0
          LiveRange::iterator NewIdxIn = NewIdxOut;
1330
0
          assert(NewIdxIn == LR.find(NewIdx.getBaseIndex()));
1331
0
          const SlotIndex SplitPos = NewIdxDef;
1332
0
          OldIdxVNI = OldIdxIn->valno;
1333
1334
0
          SlotIndex NewDefEndPoint = std::next(NewIdxIn)->end;
1335
0
          LiveRange::iterator Prev = std::prev(OldIdxIn);
1336
0
          if (OldIdxIn != LR.begin() &&
1337
0
              SlotIndex::isEarlierInstr(NewIdx, Prev->end)) {
1338
            // If the segment before OldIdx read a value defined earlier than
1339
            // NewIdx, the moved instruction also reads and forwards that
1340
            // value. Extend the lifetime of the new def point.
1341
1342
            // Extend to where the previous range started, unless there is
1343
            // another redef first.
1344
0
            NewDefEndPoint = std::min(OldIdxIn->start,
1345
0
                                      std::next(NewIdxOut)->start);
1346
0
          }
1347
1348
          // Merge the OldIdxIn and OldIdxOut segments into OldIdxOut.
1349
0
          OldIdxOut->valno->def = OldIdxIn->start;
1350
0
          *OldIdxOut = LiveRange::Segment(OldIdxIn->start, OldIdxOut->end,
1351
0
                                          OldIdxOut->valno);
1352
          // OldIdxIn and OldIdxVNI are now undef and can be overridden.
1353
          // We Slide [NewIdxIn, OldIdxIn) down one position.
1354
          //    |- X0/NewIdxIn -| ... |- Xn-1 -||- Xn/OldIdxIn -||- OldIdxOut -|
1355
          // => |- undef/NexIdxIn -| |- X0 -| ... |- Xn-1 -| |- Xn/OldIdxOut -|
1356
0
          std::copy_backward(NewIdxIn, OldIdxIn, OldIdxOut);
1357
          // NewIdxIn is now considered undef so we can reuse it for the moved
1358
          // value.
1359
0
          LiveRange::iterator NewSegment = NewIdxIn;
1360
0
          LiveRange::iterator Next = std::next(NewSegment);
1361
0
          if (SlotIndex::isEarlierInstr(Next->start, NewIdx)) {
1362
            // There is no gap between NewSegment and its predecessor.
1363
0
            *NewSegment = LiveRange::Segment(Next->start, SplitPos,
1364
0
                                             Next->valno);
1365
1366
0
            *Next = LiveRange::Segment(SplitPos, NewDefEndPoint, OldIdxVNI);
1367
0
            Next->valno->def = SplitPos;
1368
0
          } else {
1369
            // There is a gap between NewSegment and its predecessor
1370
            // Value becomes live in.
1371
0
            *NewSegment = LiveRange::Segment(SplitPos, Next->start, OldIdxVNI);
1372
0
            NewSegment->valno->def = SplitPos;
1373
0
          }
1374
127k
        } else {
1375
          // Leave the end point of a live def.
1376
127k
          OldIdxOut->start = NewIdxDef;
1377
127k
          OldIdxVNI->def = NewIdxDef;
1378
127k
          if (OldIdxIn != E && SlotIndex::isEarlierInstr(NewIdx, OldIdxIn->end))
1379
0
            OldIdxIn->end = NewIdxDef;
1380
127k
        }
1381
127k
      } else if (OldIdxIn != E
1382
29.5k
          && SlotIndex::isEarlierInstr(NewIdxOut->start, NewIdx)
1383
29.5k
          && SlotIndex::isEarlierInstr(NewIdx, NewIdxOut->end)) {
1384
        // OldIdxVNI is a dead def that has been moved into the middle of
1385
        // another value in LR. That can happen when LR is a whole register,
1386
        // but the dead def is a write to a subreg that is dead at NewIdx.
1387
        // The dead def may have been moved across other values
1388
        // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1389
        // down one position.
1390
        //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1391
        // => |- X0/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1392
0
        std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1393
        // Modify the segment at NewIdxOut and the following segment to meet at
1394
        // the point of the dead def, with the following segment getting
1395
        // OldIdxVNI as its value number.
1396
0
        *NewIdxOut = LiveRange::Segment(
1397
0
            NewIdxOut->start, NewIdxDef.getRegSlot(), NewIdxOut->valno);
1398
0
        *(NewIdxOut + 1) = LiveRange::Segment(
1399
0
            NewIdxDef.getRegSlot(), (NewIdxOut + 1)->end, OldIdxVNI);
1400
0
        OldIdxVNI->def = NewIdxDef;
1401
        // Modify subsequent segments to be defined by the moved def OldIdxVNI.
1402
0
        for (auto *Idx = NewIdxOut + 2; Idx <= OldIdxOut; ++Idx)
1403
0
          Idx->valno = OldIdxVNI;
1404
        // Aggressively remove all dead flags from the former dead definition.
1405
        // Kill/dead flags shouldn't be used while live intervals exist; they
1406
        // will be reinserted by VirtRegRewriter.
1407
0
        if (MachineInstr *KillMI = LIS.getInstructionFromIndex(NewIdx))
1408
0
          for (MIBundleOperands MO(*KillMI); MO.isValid(); ++MO)
1409
0
            if (MO->isReg() && !MO->isUse())
1410
0
              MO->setIsDead(false);
1411
29.5k
      } else {
1412
        // OldIdxVNI is a dead def. It may have been moved across other values
1413
        // in LR, so move OldIdxOut up to NewIdxOut. Slide [NewIdxOut;OldIdxOut)
1414
        // down one position.
1415
        //    |- X0/NewIdxOut -| ... |- Xn-1 -| |- Xn/OldIdxOut -| |- next - |
1416
        // => |- undef/NewIdxOut -| |- X0 -| ... |- Xn-1 -| |- next -|
1417
29.5k
        std::copy_backward(NewIdxOut, OldIdxOut, std::next(OldIdxOut));
1418
        // OldIdxVNI can be reused now to build a new dead def segment.
1419
29.5k
        LiveRange::iterator NewSegment = NewIdxOut;
1420
29.5k
        VNInfo *NewSegmentVNI = OldIdxVNI;
1421
29.5k
        *NewSegment = LiveRange::Segment(NewIdxDef, NewIdxDef.getDeadSlot(),
1422
29.5k
                                         NewSegmentVNI);
1423
29.5k
        NewSegmentVNI->def = NewIdxDef;
1424
29.5k
      }
1425
156k
    }
1426
156k
  }
1427
1428
0
  void updateRegMaskSlots() {
1429
0
    SmallVectorImpl<SlotIndex>::iterator RI =
1430
0
        llvm::lower_bound(LIS.RegMaskSlots, OldIdx);
1431
0
    assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
1432
0
           "No RegMask at OldIdx.");
1433
0
    *RI = NewIdx.getRegSlot();
1434
0
    assert((RI == LIS.RegMaskSlots.begin() ||
1435
0
            SlotIndex::isEarlierInstr(*std::prev(RI), *RI)) &&
1436
0
           "Cannot move regmask instruction above another call");
1437
0
    assert((std::next(RI) == LIS.RegMaskSlots.end() ||
1438
0
            SlotIndex::isEarlierInstr(*RI, *std::next(RI))) &&
1439
0
           "Cannot move regmask instruction below another call");
1440
0
  }
1441
1442
  // Return the last use of reg between NewIdx and OldIdx.
1443
  SlotIndex findLastUseBefore(SlotIndex Before, Register Reg,
1444
120k
                              LaneBitmask LaneMask) {
1445
120k
    if (Reg.isVirtual()) {
1446
71.4k
      SlotIndex LastUse = Before;
1447
134k
      for (MachineOperand &MO : MRI.use_nodbg_operands(Reg)) {
1448
134k
        if (MO.isUndef())
1449
0
          continue;
1450
134k
        unsigned SubReg = MO.getSubReg();
1451
134k
        if (SubReg != 0 && LaneMask.any()
1452
134k
            && (TRI.getSubRegIndexLaneMask(SubReg) & LaneMask).none())
1453
2.97k
          continue;
1454
1455
131k
        const MachineInstr &MI = *MO.getParent();
1456
131k
        SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
1457
131k
        if (InstSlot > LastUse && InstSlot < OldIdx)
1458
4.58k
          LastUse = InstSlot.getRegSlot();
1459
131k
      }
1460
71.4k
      return LastUse;
1461
71.4k
    }
1462
1463
    // This is a regunit interval, so scanning the use list could be very
1464
    // expensive. Scan upwards from OldIdx instead.
1465
49.1k
    assert(Before < OldIdx && "Expected upwards move");
1466
0
    SlotIndexes *Indexes = LIS.getSlotIndexes();
1467
49.1k
    MachineBasicBlock *MBB = Indexes->getMBBFromIndex(Before);
1468
1469
    // OldIdx may not correspond to an instruction any longer, so set MII to
1470
    // point to the next instruction after OldIdx, or MBB->end().
1471
49.1k
    MachineBasicBlock::iterator MII = MBB->end();
1472
49.1k
    if (MachineInstr *MI = Indexes->getInstructionFromIndex(
1473
49.1k
                           Indexes->getNextNonNullIndex(OldIdx)))
1474
49.1k
      if (MI->getParent() == MBB)
1475
48.6k
        MII = MI;
1476
1477
49.1k
    MachineBasicBlock::iterator Begin = MBB->begin();
1478
213k
    while (MII != Begin) {
1479
213k
      if ((--MII)->isDebugOrPseudoInstr())
1480
36
        continue;
1481
213k
      SlotIndex Idx = Indexes->getInstructionIndex(*MII);
1482
1483
      // Stop searching when Before is reached.
1484
213k
      if (!SlotIndex::isEarlierInstr(Before, Idx))
1485
49.1k
        return Before;
1486
1487
      // Check if MII uses Reg.
1488
721k
      for (MIBundleOperands MO(*MII); MO.isValid(); ++MO)
1489
557k
        if (MO->isReg() && !MO->isUndef() && MO->getReg().isPhysical() &&
1490
557k
            TRI.hasRegUnit(MO->getReg(), Reg))
1491
10
          return Idx.getRegSlot();
1492
163k
    }
1493
    // Didn't reach Before. It must be the first instruction in the block.
1494
0
    return Before;
1495
49.1k
  }
1496
};
1497
1498
1.05M
void LiveIntervals::handleMove(MachineInstr &MI, bool UpdateFlags) {
1499
  // It is fine to move a bundle as a whole, but not an individual instruction
1500
  // inside it.
1501
1.05M
  assert((!MI.isBundled() || MI.getOpcode() == TargetOpcode::BUNDLE) &&
1502
1.05M
         "Cannot move instruction in bundle");
1503
0
  SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1504
1.05M
  Indexes->removeMachineInstrFromMaps(MI);
1505
1.05M
  SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1506
1.05M
  assert(getMBBStartIdx(MI.getParent()) <= OldIndex &&
1507
1.05M
         OldIndex < getMBBEndIdx(MI.getParent()) &&
1508
1.05M
         "Cannot handle moves across basic block boundaries.");
1509
1510
0
  HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1511
1.05M
  HME.updateAllRanges(&MI);
1512
1.05M
}
1513
1514
void LiveIntervals::handleMoveIntoNewBundle(MachineInstr &BundleStart,
1515
0
                                            bool UpdateFlags) {
1516
0
  assert((BundleStart.getOpcode() == TargetOpcode::BUNDLE) &&
1517
0
         "Bundle start is not a bundle");
1518
0
  SmallVector<SlotIndex, 16> ToProcess;
1519
0
  const SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(BundleStart);
1520
0
  auto BundleEnd = getBundleEnd(BundleStart.getIterator());
1521
1522
0
  auto I = BundleStart.getIterator();
1523
0
  I++;
1524
0
  while (I != BundleEnd) {
1525
0
    if (!Indexes->hasIndex(*I))
1526
0
      continue;
1527
0
    SlotIndex OldIndex = Indexes->getInstructionIndex(*I, true);
1528
0
    ToProcess.push_back(OldIndex);
1529
0
    Indexes->removeMachineInstrFromMaps(*I, true);
1530
0
    I++;
1531
0
  }
1532
0
  for (SlotIndex OldIndex : ToProcess) {
1533
0
    HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1534
0
    HME.updateAllRanges(&BundleStart);
1535
0
  }
1536
1537
  // Fix up dead defs
1538
0
  const SlotIndex Index = getInstructionIndex(BundleStart);
1539
0
  for (unsigned Idx = 0, E = BundleStart.getNumOperands(); Idx != E; ++Idx) {
1540
0
    MachineOperand &MO = BundleStart.getOperand(Idx);
1541
0
    if (!MO.isReg())
1542
0
      continue;
1543
0
    Register Reg = MO.getReg();
1544
0
    if (Reg.isVirtual() && hasInterval(Reg) && !MO.isUndef()) {
1545
0
      LiveInterval &LI = getInterval(Reg);
1546
0
      LiveQueryResult LRQ = LI.Query(Index);
1547
0
      if (LRQ.isDeadDef())
1548
0
        MO.setIsDead();
1549
0
    }
1550
0
  }
1551
0
}
1552
1553
void LiveIntervals::repairOldRegInRange(const MachineBasicBlock::iterator Begin,
1554
                                        const MachineBasicBlock::iterator End,
1555
                                        const SlotIndex EndIdx, LiveRange &LR,
1556
                                        const Register Reg,
1557
0
                                        LaneBitmask LaneMask) {
1558
0
  LiveInterval::iterator LII = LR.find(EndIdx);
1559
0
  SlotIndex lastUseIdx;
1560
0
  if (LII != LR.end() && LII->start < EndIdx) {
1561
0
    lastUseIdx = LII->end;
1562
0
  } else if (LII == LR.begin()) {
1563
    // We may not have a liverange at all if this is a subregister untouched
1564
    // between \p Begin and \p End.
1565
0
  } else {
1566
0
    --LII;
1567
0
  }
1568
1569
0
  for (MachineBasicBlock::iterator I = End; I != Begin;) {
1570
0
    --I;
1571
0
    MachineInstr &MI = *I;
1572
0
    if (MI.isDebugOrPseudoInstr())
1573
0
      continue;
1574
1575
0
    SlotIndex instrIdx = getInstructionIndex(MI);
1576
0
    bool isStartValid = getInstructionFromIndex(LII->start);
1577
0
    bool isEndValid = getInstructionFromIndex(LII->end);
1578
1579
    // FIXME: This doesn't currently handle early-clobber or multiple removed
1580
    // defs inside of the region to repair.
1581
0
    for (const MachineOperand &MO : MI.operands()) {
1582
0
      if (!MO.isReg() || MO.getReg() != Reg)
1583
0
        continue;
1584
1585
0
      unsigned SubReg = MO.getSubReg();
1586
0
      LaneBitmask Mask = TRI->getSubRegIndexLaneMask(SubReg);
1587
0
      if ((Mask & LaneMask).none())
1588
0
        continue;
1589
1590
0
      if (MO.isDef()) {
1591
0
        if (!isStartValid) {
1592
0
          if (LII->end.isDead()) {
1593
0
            LII = LR.removeSegment(LII, true);
1594
0
            if (LII != LR.begin())
1595
0
              --LII;
1596
0
          } else {
1597
0
            LII->start = instrIdx.getRegSlot();
1598
0
            LII->valno->def = instrIdx.getRegSlot();
1599
0
            if (MO.getSubReg() && !MO.isUndef())
1600
0
              lastUseIdx = instrIdx.getRegSlot();
1601
0
            else
1602
0
              lastUseIdx = SlotIndex();
1603
0
            continue;
1604
0
          }
1605
0
        }
1606
1607
0
        if (!lastUseIdx.isValid()) {
1608
0
          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1609
0
          LiveRange::Segment S(instrIdx.getRegSlot(),
1610
0
                               instrIdx.getDeadSlot(), VNI);
1611
0
          LII = LR.addSegment(S);
1612
0
        } else if (LII->start != instrIdx.getRegSlot()) {
1613
0
          VNInfo *VNI = LR.getNextValue(instrIdx.getRegSlot(), VNInfoAllocator);
1614
0
          LiveRange::Segment S(instrIdx.getRegSlot(), lastUseIdx, VNI);
1615
0
          LII = LR.addSegment(S);
1616
0
        }
1617
1618
0
        if (MO.getSubReg() && !MO.isUndef())
1619
0
          lastUseIdx = instrIdx.getRegSlot();
1620
0
        else
1621
0
          lastUseIdx = SlotIndex();
1622
0
      } else if (MO.isUse()) {
1623
        // FIXME: This should probably be handled outside of this branch,
1624
        // either as part of the def case (for defs inside of the region) or
1625
        // after the loop over the region.
1626
0
        if (!isEndValid && !LII->end.isBlock())
1627
0
          LII->end = instrIdx.getRegSlot();
1628
0
        if (!lastUseIdx.isValid())
1629
0
          lastUseIdx = instrIdx.getRegSlot();
1630
0
      }
1631
0
    }
1632
0
  }
1633
1634
0
  bool isStartValid = getInstructionFromIndex(LII->start);
1635
0
  if (!isStartValid && LII->end.isDead())
1636
0
    LR.removeSegment(*LII, true);
1637
0
}
1638
1639
void
1640
LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1641
                                      MachineBasicBlock::iterator Begin,
1642
                                      MachineBasicBlock::iterator End,
1643
0
                                      ArrayRef<Register> OrigRegs) {
1644
  // Find anchor points, which are at the beginning/end of blocks or at
1645
  // instructions that already have indexes.
1646
0
  while (Begin != MBB->begin() && !Indexes->hasIndex(*std::prev(Begin)))
1647
0
    --Begin;
1648
0
  while (End != MBB->end() && !Indexes->hasIndex(*End))
1649
0
    ++End;
1650
1651
0
  SlotIndex EndIdx;
1652
0
  if (End == MBB->end())
1653
0
    EndIdx = getMBBEndIdx(MBB).getPrevSlot();
1654
0
  else
1655
0
    EndIdx = getInstructionIndex(*End);
1656
1657
0
  Indexes->repairIndexesInRange(MBB, Begin, End);
1658
1659
  // Make sure a live interval exists for all register operands in the range.
1660
0
  SmallVector<Register> RegsToRepair(OrigRegs.begin(), OrigRegs.end());
1661
0
  for (MachineBasicBlock::iterator I = End; I != Begin;) {
1662
0
    --I;
1663
0
    MachineInstr &MI = *I;
1664
0
    if (MI.isDebugOrPseudoInstr())
1665
0
      continue;
1666
0
    for (const MachineOperand &MO : MI.operands()) {
1667
0
      if (MO.isReg() && MO.getReg().isVirtual()) {
1668
0
        Register Reg = MO.getReg();
1669
        // If the new instructions refer to subregs but the old instructions did
1670
        // not, throw away any old live interval so it will be recomputed with
1671
        // subranges.
1672
0
        if (MO.getSubReg() && hasInterval(Reg) &&
1673
0
            !getInterval(Reg).hasSubRanges() &&
1674
0
            MRI->shouldTrackSubRegLiveness(Reg))
1675
0
          removeInterval(Reg);
1676
0
        if (!hasInterval(Reg)) {
1677
0
          createAndComputeVirtRegInterval(Reg);
1678
          // Don't bother to repair a freshly calculated live interval.
1679
0
          llvm::erase(RegsToRepair, Reg);
1680
0
        }
1681
0
      }
1682
0
    }
1683
0
  }
1684
1685
0
  for (Register Reg : RegsToRepair) {
1686
0
    if (!Reg.isVirtual())
1687
0
      continue;
1688
1689
0
    LiveInterval &LI = getInterval(Reg);
1690
    // FIXME: Should we support undefs that gain defs?
1691
0
    if (!LI.hasAtLeastOneValue())
1692
0
      continue;
1693
1694
0
    for (LiveInterval::SubRange &S : LI.subranges())
1695
0
      repairOldRegInRange(Begin, End, EndIdx, S, Reg, S.LaneMask);
1696
0
    LI.removeEmptySubRanges();
1697
1698
0
    repairOldRegInRange(Begin, End, EndIdx, LI, Reg);
1699
0
  }
1700
0
}
1701
1702
7.67k
void LiveIntervals::removePhysRegDefAt(MCRegister Reg, SlotIndex Pos) {
1703
12.7k
  for (MCRegUnit Unit : TRI->regunits(Reg)) {
1704
12.7k
    if (LiveRange *LR = getCachedRegUnit(Unit))
1705
11.3k
      if (VNInfo *VNI = LR->getVNInfoAt(Pos))
1706
11.3k
        LR->removeValNo(VNI);
1707
12.7k
  }
1708
7.67k
}
1709
1710
90.1k
void LiveIntervals::removeVRegDefAt(LiveInterval &LI, SlotIndex Pos) {
1711
  // LI may not have the main range computed yet, but its subranges may
1712
  // be present.
1713
90.1k
  VNInfo *VNI = LI.getVNInfoAt(Pos);
1714
90.1k
  if (VNI != nullptr) {
1715
90.1k
    assert(VNI->def.getBaseIndex() == Pos.getBaseIndex());
1716
0
    LI.removeValNo(VNI);
1717
90.1k
  }
1718
1719
  // Also remove the value defined in subranges.
1720
1.18k
  for (LiveInterval::SubRange &S : LI.subranges()) {
1721
1.18k
    if (VNInfo *SVNI = S.getVNInfoAt(Pos))
1722
1.17k
      if (SVNI->def.getBaseIndex() == Pos.getBaseIndex())
1723
1.17k
        S.removeValNo(SVNI);
1724
1.18k
  }
1725
90.1k
  LI.removeEmptySubRanges();
1726
90.1k
}
1727
1728
void LiveIntervals::splitSeparateComponents(LiveInterval &LI,
1729
441k
    SmallVectorImpl<LiveInterval*> &SplitLIs) {
1730
441k
  ConnectedVNInfoEqClasses ConEQ(*this);
1731
441k
  unsigned NumComp = ConEQ.Classify(LI);
1732
441k
  if (NumComp <= 1)
1733
426k
    return;
1734
15.6k
  LLVM_DEBUG(dbgs() << "  Split " << NumComp << " components: " << LI << '\n');
1735
15.6k
  Register Reg = LI.reg();
1736
33.4k
  for (unsigned I = 1; I < NumComp; ++I) {
1737
17.8k
    Register NewVReg = MRI->cloneVirtualRegister(Reg);
1738
17.8k
    LiveInterval &NewLI = createEmptyInterval(NewVReg);
1739
17.8k
    SplitLIs.push_back(&NewLI);
1740
17.8k
  }
1741
15.6k
  ConEQ.Distribute(LI, SplitLIs.data(), *MRI);
1742
15.6k
}
1743
1744
8.07k
void LiveIntervals::constructMainRangeFromSubranges(LiveInterval &LI) {
1745
8.07k
  assert(LICalc && "LICalc not initialized.");
1746
0
  LICalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
1747
8.07k
  LICalc->constructMainRangeFromSubranges(LI);
1748
8.07k
}