/src/llvm-project/llvm/lib/IR/SafepointIRVerifier.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===-- SafepointIRVerifier.cpp - Verify gc.statepoint invariants ---------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // Run a basic correctness check on the IR to ensure that Safepoints - if |
10 | | // they've been inserted - were inserted correctly. In particular, look for use |
11 | | // of non-relocated values after a safepoint. It's primary use is to check the |
12 | | // correctness of safepoint insertion immediately after insertion, but it can |
13 | | // also be used to verify that later transforms have not found a way to break |
14 | | // safepoint semenatics. |
15 | | // |
16 | | // In its current form, this verify checks a property which is sufficient, but |
17 | | // not neccessary for correctness. There are some cases where an unrelocated |
18 | | // pointer can be used after the safepoint. Consider this example: |
19 | | // |
20 | | // a = ... |
21 | | // b = ... |
22 | | // (a',b') = safepoint(a,b) |
23 | | // c = cmp eq a b |
24 | | // br c, ..., .... |
25 | | // |
26 | | // Because it is valid to reorder 'c' above the safepoint, this is legal. In |
27 | | // practice, this is a somewhat uncommon transform, but CodeGenPrep does create |
28 | | // idioms like this. The verifier knows about these cases and avoids reporting |
29 | | // false positives. |
30 | | // |
31 | | //===----------------------------------------------------------------------===// |
32 | | |
33 | | #include "llvm/IR/SafepointIRVerifier.h" |
34 | | #include "llvm/ADT/DenseSet.h" |
35 | | #include "llvm/ADT/PostOrderIterator.h" |
36 | | #include "llvm/ADT/SetOperations.h" |
37 | | #include "llvm/ADT/SetVector.h" |
38 | | #include "llvm/IR/BasicBlock.h" |
39 | | #include "llvm/IR/Dominators.h" |
40 | | #include "llvm/IR/Function.h" |
41 | | #include "llvm/IR/InstrTypes.h" |
42 | | #include "llvm/IR/Instructions.h" |
43 | | #include "llvm/IR/Statepoint.h" |
44 | | #include "llvm/IR/Value.h" |
45 | | #include "llvm/InitializePasses.h" |
46 | | #include "llvm/Support/Allocator.h" |
47 | | #include "llvm/Support/CommandLine.h" |
48 | | #include "llvm/Support/Debug.h" |
49 | | #include "llvm/Support/raw_ostream.h" |
50 | | |
51 | | #define DEBUG_TYPE "safepoint-ir-verifier" |
52 | | |
53 | | using namespace llvm; |
54 | | |
55 | | /// This option is used for writing test cases. Instead of crashing the program |
56 | | /// when verification fails, report a message to the console (for FileCheck |
57 | | /// usage) and continue execution as if nothing happened. |
58 | | static cl::opt<bool> PrintOnly("safepoint-ir-verifier-print-only", |
59 | | cl::init(false)); |
60 | | |
61 | | namespace { |
62 | | |
63 | | /// This CFG Deadness finds dead blocks and edges. Algorithm starts with a set |
64 | | /// of blocks unreachable from entry then propagates deadness using foldable |
65 | | /// conditional branches without modifying CFG. So GVN does but it changes CFG |
66 | | /// by splitting critical edges. In most cases passes rely on SimplifyCFG to |
67 | | /// clean up dead blocks, but in some cases, like verification or loop passes |
68 | | /// it's not possible. |
69 | | class CFGDeadness { |
70 | | const DominatorTree *DT = nullptr; |
71 | | SetVector<const BasicBlock *> DeadBlocks; |
72 | | SetVector<const Use *> DeadEdges; // Contains all dead edges from live blocks. |
73 | | |
74 | | public: |
75 | | /// Return the edge that coresponds to the predecessor. |
76 | 0 | static const Use& getEdge(const_pred_iterator &PredIt) { |
77 | 0 | auto &PU = PredIt.getUse(); |
78 | 0 | return PU.getUser()->getOperandUse(PU.getOperandNo()); |
79 | 0 | } |
80 | | |
81 | | /// Return true if there is at least one live edge that corresponds to the |
82 | | /// basic block InBB listed in the phi node. |
83 | 0 | bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const { |
84 | 0 | assert(!isDeadBlock(InBB) && "block must be live"); |
85 | 0 | const BasicBlock* BB = PN->getParent(); |
86 | 0 | bool Listed = false; |
87 | 0 | for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) { |
88 | 0 | if (InBB == *PredIt) { |
89 | 0 | if (!isDeadEdge(&getEdge(PredIt))) |
90 | 0 | return true; |
91 | 0 | Listed = true; |
92 | 0 | } |
93 | 0 | } |
94 | 0 | (void)Listed; |
95 | 0 | assert(Listed && "basic block is not found among incoming blocks"); |
96 | 0 | return false; |
97 | 0 | } |
98 | | |
99 | | |
100 | 0 | bool isDeadBlock(const BasicBlock *BB) const { |
101 | 0 | return DeadBlocks.count(BB); |
102 | 0 | } |
103 | | |
104 | 0 | bool isDeadEdge(const Use *U) const { |
105 | 0 | assert(cast<Instruction>(U->getUser())->isTerminator() && |
106 | 0 | "edge must be operand of terminator"); |
107 | 0 | assert(cast_or_null<BasicBlock>(U->get()) && |
108 | 0 | "edge must refer to basic block"); |
109 | 0 | assert(!isDeadBlock(cast<Instruction>(U->getUser())->getParent()) && |
110 | 0 | "isDeadEdge() must be applied to edge from live block"); |
111 | 0 | return DeadEdges.count(U); |
112 | 0 | } |
113 | | |
114 | 0 | bool hasLiveIncomingEdges(const BasicBlock *BB) const { |
115 | | // Check if all incoming edges are dead. |
116 | 0 | for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) { |
117 | 0 | auto &PU = PredIt.getUse(); |
118 | 0 | const Use &U = PU.getUser()->getOperandUse(PU.getOperandNo()); |
119 | 0 | if (!isDeadBlock(*PredIt) && !isDeadEdge(&U)) |
120 | 0 | return true; // Found a live edge. |
121 | 0 | } |
122 | 0 | return false; |
123 | 0 | } |
124 | | |
125 | 0 | void processFunction(const Function &F, const DominatorTree &DT) { |
126 | 0 | this->DT = &DT; |
127 | | |
128 | | // Start with all blocks unreachable from entry. |
129 | 0 | for (const BasicBlock &BB : F) |
130 | 0 | if (!DT.isReachableFromEntry(&BB)) |
131 | 0 | DeadBlocks.insert(&BB); |
132 | | |
133 | | // Top-down walk of the dominator tree |
134 | 0 | ReversePostOrderTraversal<const Function *> RPOT(&F); |
135 | 0 | for (const BasicBlock *BB : RPOT) { |
136 | 0 | const Instruction *TI = BB->getTerminator(); |
137 | 0 | assert(TI && "blocks must be well formed"); |
138 | | |
139 | | // For conditional branches, we can perform simple conditional propagation on |
140 | | // the condition value itself. |
141 | 0 | const BranchInst *BI = dyn_cast<BranchInst>(TI); |
142 | 0 | if (!BI || !BI->isConditional() || !isa<Constant>(BI->getCondition())) |
143 | 0 | continue; |
144 | | |
145 | | // If a branch has two identical successors, we cannot declare either dead. |
146 | 0 | if (BI->getSuccessor(0) == BI->getSuccessor(1)) |
147 | 0 | continue; |
148 | | |
149 | 0 | ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); |
150 | 0 | if (!Cond) |
151 | 0 | continue; |
152 | | |
153 | 0 | addDeadEdge(BI->getOperandUse(Cond->getZExtValue() ? 1 : 2)); |
154 | 0 | } |
155 | 0 | } |
156 | | |
157 | | protected: |
158 | 0 | void addDeadBlock(const BasicBlock *BB) { |
159 | 0 | SmallVector<const BasicBlock *, 4> NewDead; |
160 | 0 | SmallSetVector<const BasicBlock *, 4> DF; |
161 | |
|
162 | 0 | NewDead.push_back(BB); |
163 | 0 | while (!NewDead.empty()) { |
164 | 0 | const BasicBlock *D = NewDead.pop_back_val(); |
165 | 0 | if (isDeadBlock(D)) |
166 | 0 | continue; |
167 | | |
168 | | // All blocks dominated by D are dead. |
169 | 0 | SmallVector<BasicBlock *, 8> Dom; |
170 | 0 | DT->getDescendants(const_cast<BasicBlock*>(D), Dom); |
171 | | // Do not need to mark all in and out edges dead |
172 | | // because BB is marked dead and this is enough |
173 | | // to run further. |
174 | 0 | DeadBlocks.insert(Dom.begin(), Dom.end()); |
175 | | |
176 | | // Figure out the dominance-frontier(D). |
177 | 0 | for (BasicBlock *B : Dom) |
178 | 0 | for (BasicBlock *S : successors(B)) |
179 | 0 | if (!isDeadBlock(S) && !hasLiveIncomingEdges(S)) |
180 | 0 | NewDead.push_back(S); |
181 | 0 | } |
182 | 0 | } |
183 | | |
184 | 0 | void addDeadEdge(const Use &DeadEdge) { |
185 | 0 | if (!DeadEdges.insert(&DeadEdge)) |
186 | 0 | return; |
187 | | |
188 | 0 | BasicBlock *BB = cast_or_null<BasicBlock>(DeadEdge.get()); |
189 | 0 | if (hasLiveIncomingEdges(BB)) |
190 | 0 | return; |
191 | | |
192 | 0 | addDeadBlock(BB); |
193 | 0 | } |
194 | | }; |
195 | | } // namespace |
196 | | |
197 | | static void Verify(const Function &F, const DominatorTree &DT, |
198 | | const CFGDeadness &CD); |
199 | | |
200 | | namespace llvm { |
201 | | PreservedAnalyses SafepointIRVerifierPass::run(Function &F, |
202 | 0 | FunctionAnalysisManager &AM) { |
203 | 0 | const auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
204 | 0 | CFGDeadness CD; |
205 | 0 | CD.processFunction(F, DT); |
206 | 0 | Verify(F, DT, CD); |
207 | 0 | return PreservedAnalyses::all(); |
208 | 0 | } |
209 | | } // namespace llvm |
210 | | |
211 | | namespace { |
212 | | |
213 | | struct SafepointIRVerifier : public FunctionPass { |
214 | | static char ID; // Pass identification, replacement for typeid |
215 | 0 | SafepointIRVerifier() : FunctionPass(ID) { |
216 | 0 | initializeSafepointIRVerifierPass(*PassRegistry::getPassRegistry()); |
217 | 0 | } |
218 | | |
219 | 0 | bool runOnFunction(Function &F) override { |
220 | 0 | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); |
221 | 0 | CFGDeadness CD; |
222 | 0 | CD.processFunction(F, DT); |
223 | 0 | Verify(F, DT, CD); |
224 | 0 | return false; // no modifications |
225 | 0 | } |
226 | | |
227 | 0 | void getAnalysisUsage(AnalysisUsage &AU) const override { |
228 | 0 | AU.addRequiredID(DominatorTreeWrapperPass::ID); |
229 | 0 | AU.setPreservesAll(); |
230 | 0 | } |
231 | | |
232 | 0 | StringRef getPassName() const override { return "safepoint verifier"; } |
233 | | }; |
234 | | } // namespace |
235 | | |
236 | 0 | void llvm::verifySafepointIR(Function &F) { |
237 | 0 | SafepointIRVerifier pass; |
238 | 0 | pass.runOnFunction(F); |
239 | 0 | } |
240 | | |
241 | | char SafepointIRVerifier::ID = 0; |
242 | | |
243 | 0 | FunctionPass *llvm::createSafepointIRVerifierPass() { |
244 | 0 | return new SafepointIRVerifier(); |
245 | 0 | } |
246 | | |
247 | 0 | INITIALIZE_PASS_BEGIN(SafepointIRVerifier, "verify-safepoint-ir", |
248 | 0 | "Safepoint IR Verifier", false, false) |
249 | 0 | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
250 | 0 | INITIALIZE_PASS_END(SafepointIRVerifier, "verify-safepoint-ir", |
251 | | "Safepoint IR Verifier", false, false) |
252 | | |
253 | 0 | static bool isGCPointerType(Type *T) { |
254 | 0 | if (auto *PT = dyn_cast<PointerType>(T)) |
255 | | // For the sake of this example GC, we arbitrarily pick addrspace(1) as our |
256 | | // GC managed heap. We know that a pointer into this heap needs to be |
257 | | // updated and that no other pointer does. |
258 | 0 | return (1 == PT->getAddressSpace()); |
259 | 0 | return false; |
260 | 0 | } |
261 | | |
262 | 0 | static bool containsGCPtrType(Type *Ty) { |
263 | 0 | if (isGCPointerType(Ty)) |
264 | 0 | return true; |
265 | 0 | if (VectorType *VT = dyn_cast<VectorType>(Ty)) |
266 | 0 | return isGCPointerType(VT->getScalarType()); |
267 | 0 | if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) |
268 | 0 | return containsGCPtrType(AT->getElementType()); |
269 | 0 | if (StructType *ST = dyn_cast<StructType>(Ty)) |
270 | 0 | return llvm::any_of(ST->elements(), containsGCPtrType); |
271 | 0 | return false; |
272 | 0 | } |
273 | | |
274 | | // Debugging aid -- prints a [Begin, End) range of values. |
275 | | template<typename IteratorTy> |
276 | 0 | static void PrintValueSet(raw_ostream &OS, IteratorTy Begin, IteratorTy End) { |
277 | 0 | OS << "[ "; |
278 | 0 | while (Begin != End) { |
279 | 0 | OS << **Begin << " "; |
280 | 0 | ++Begin; |
281 | 0 | } |
282 | 0 | OS << "]"; |
283 | 0 | } Unexecuted instantiation: SafepointIRVerifier.cpp:void PrintValueSet<llvm::detail::DenseSetImpl<llvm::Value const*, llvm::DenseMap<llvm::Value const*, llvm::detail::DenseSetEmpty, llvm::DenseMapInfo<llvm::Value const*, void>, llvm::detail::DenseSetPair<llvm::Value const*> >, llvm::DenseMapInfo<llvm::Value const*, void> >::ConstIterator>(llvm::raw_ostream&, llvm::detail::DenseSetImpl<llvm::Value const*, llvm::DenseMap<llvm::Value const*, llvm::detail::DenseSetEmpty, llvm::DenseMapInfo<llvm::Value const*, void>, llvm::detail::DenseSetPair<llvm::Value const*> >, llvm::DenseMapInfo<llvm::Value const*, void> >::ConstIterator, llvm::detail::DenseSetImpl<llvm::Value const*, llvm::DenseMap<llvm::Value const*, llvm::detail::DenseSetEmpty, llvm::DenseMapInfo<llvm::Value const*, void>, llvm::detail::DenseSetPair<llvm::Value const*> >, llvm::DenseMapInfo<llvm::Value const*, void> >::ConstIterator) Unexecuted instantiation: SafepointIRVerifier.cpp:void PrintValueSet<llvm::detail::DenseSetImpl<llvm::Value const*, llvm::DenseMap<llvm::Value const*, llvm::detail::DenseSetEmpty, llvm::DenseMapInfo<llvm::Value const*, void>, llvm::detail::DenseSetPair<llvm::Value const*> >, llvm::DenseMapInfo<llvm::Value const*, void> >::Iterator>(llvm::raw_ostream&, llvm::detail::DenseSetImpl<llvm::Value const*, llvm::DenseMap<llvm::Value const*, llvm::detail::DenseSetEmpty, llvm::DenseMapInfo<llvm::Value const*, void>, llvm::detail::DenseSetPair<llvm::Value const*> >, llvm::DenseMapInfo<llvm::Value const*, void> >::Iterator, llvm::detail::DenseSetImpl<llvm::Value const*, llvm::DenseMap<llvm::Value const*, llvm::detail::DenseSetEmpty, llvm::DenseMapInfo<llvm::Value const*, void>, llvm::detail::DenseSetPair<llvm::Value const*> >, llvm::DenseMapInfo<llvm::Value const*, void> >::Iterator) |
284 | | |
285 | | /// The verifier algorithm is phrased in terms of availability. The set of |
286 | | /// values "available" at a given point in the control flow graph is the set of |
287 | | /// correctly relocated value at that point, and is a subset of the set of |
288 | | /// definitions dominating that point. |
289 | | |
290 | | using AvailableValueSet = DenseSet<const Value *>; |
291 | | |
292 | | /// State we compute and track per basic block. |
293 | | struct BasicBlockState { |
294 | | // Set of values available coming in, before the phi nodes |
295 | | AvailableValueSet AvailableIn; |
296 | | |
297 | | // Set of values available going out |
298 | | AvailableValueSet AvailableOut; |
299 | | |
300 | | // AvailableOut minus AvailableIn. |
301 | | // All elements are Instructions |
302 | | AvailableValueSet Contribution; |
303 | | |
304 | | // True if this block contains a safepoint and thus AvailableIn does not |
305 | | // contribute to AvailableOut. |
306 | | bool Cleared = false; |
307 | | }; |
308 | | |
309 | | /// A given derived pointer can have multiple base pointers through phi/selects. |
310 | | /// This type indicates when the base pointer is exclusively constant |
311 | | /// (ExclusivelySomeConstant), and if that constant is proven to be exclusively |
312 | | /// null, we record that as ExclusivelyNull. In all other cases, the BaseType is |
313 | | /// NonConstant. |
314 | | enum BaseType { |
315 | | NonConstant = 1, // Base pointers is not exclusively constant. |
316 | | ExclusivelyNull, |
317 | | ExclusivelySomeConstant // Base pointers for a given derived pointer is from a |
318 | | // set of constants, but they are not exclusively |
319 | | // null. |
320 | | }; |
321 | | |
322 | | /// Return the baseType for Val which states whether Val is exclusively |
323 | | /// derived from constant/null, or not exclusively derived from constant. |
324 | | /// Val is exclusively derived off a constant base when all operands of phi and |
325 | | /// selects are derived off a constant base. |
326 | 0 | static enum BaseType getBaseType(const Value *Val) { |
327 | |
|
328 | 0 | SmallVector<const Value *, 32> Worklist; |
329 | 0 | DenseSet<const Value *> Visited; |
330 | 0 | bool isExclusivelyDerivedFromNull = true; |
331 | 0 | Worklist.push_back(Val); |
332 | | // Strip through all the bitcasts and geps to get base pointer. Also check for |
333 | | // the exclusive value when there can be multiple base pointers (through phis |
334 | | // or selects). |
335 | 0 | while(!Worklist.empty()) { |
336 | 0 | const Value *V = Worklist.pop_back_val(); |
337 | 0 | if (!Visited.insert(V).second) |
338 | 0 | continue; |
339 | | |
340 | 0 | if (const auto *CI = dyn_cast<CastInst>(V)) { |
341 | 0 | Worklist.push_back(CI->stripPointerCasts()); |
342 | 0 | continue; |
343 | 0 | } |
344 | 0 | if (const auto *GEP = dyn_cast<GetElementPtrInst>(V)) { |
345 | 0 | Worklist.push_back(GEP->getPointerOperand()); |
346 | 0 | continue; |
347 | 0 | } |
348 | | // Push all the incoming values of phi node into the worklist for |
349 | | // processing. |
350 | 0 | if (const auto *PN = dyn_cast<PHINode>(V)) { |
351 | 0 | append_range(Worklist, PN->incoming_values()); |
352 | 0 | continue; |
353 | 0 | } |
354 | 0 | if (const auto *SI = dyn_cast<SelectInst>(V)) { |
355 | | // Push in the true and false values |
356 | 0 | Worklist.push_back(SI->getTrueValue()); |
357 | 0 | Worklist.push_back(SI->getFalseValue()); |
358 | 0 | continue; |
359 | 0 | } |
360 | 0 | if (const auto *GCRelocate = dyn_cast<GCRelocateInst>(V)) { |
361 | | // GCRelocates do not change null-ness or constant-ness of the value. |
362 | | // So we can continue with derived pointer this instruction relocates. |
363 | 0 | Worklist.push_back(GCRelocate->getDerivedPtr()); |
364 | 0 | continue; |
365 | 0 | } |
366 | 0 | if (const auto *FI = dyn_cast<FreezeInst>(V)) { |
367 | | // Freeze does not change null-ness or constant-ness of the value. |
368 | 0 | Worklist.push_back(FI->getOperand(0)); |
369 | 0 | continue; |
370 | 0 | } |
371 | 0 | if (isa<Constant>(V)) { |
372 | | // We found at least one base pointer which is non-null, so this derived |
373 | | // pointer is not exclusively derived from null. |
374 | 0 | if (V != Constant::getNullValue(V->getType())) |
375 | 0 | isExclusivelyDerivedFromNull = false; |
376 | | // Continue processing the remaining values to make sure it's exclusively |
377 | | // constant. |
378 | 0 | continue; |
379 | 0 | } |
380 | | // At this point, we know that the base pointer is not exclusively |
381 | | // constant. |
382 | 0 | return BaseType::NonConstant; |
383 | 0 | } |
384 | | // Now, we know that the base pointer is exclusively constant, but we need to |
385 | | // differentiate between exclusive null constant and non-null constant. |
386 | 0 | return isExclusivelyDerivedFromNull ? BaseType::ExclusivelyNull |
387 | 0 | : BaseType::ExclusivelySomeConstant; |
388 | 0 | } |
389 | | |
390 | 0 | static bool isNotExclusivelyConstantDerived(const Value *V) { |
391 | 0 | return getBaseType(V) == BaseType::NonConstant; |
392 | 0 | } |
393 | | |
394 | | namespace { |
395 | | class InstructionVerifier; |
396 | | |
397 | | /// Builds BasicBlockState for each BB of the function. |
398 | | /// It can traverse function for verification and provides all required |
399 | | /// information. |
400 | | /// |
401 | | /// GC pointer may be in one of three states: relocated, unrelocated and |
402 | | /// poisoned. |
403 | | /// Relocated pointer may be used without any restrictions. |
404 | | /// Unrelocated pointer cannot be dereferenced, passed as argument to any call |
405 | | /// or returned. Unrelocated pointer may be safely compared against another |
406 | | /// unrelocated pointer or against a pointer exclusively derived from null. |
407 | | /// Poisoned pointers are produced when we somehow derive pointer from relocated |
408 | | /// and unrelocated pointers (e.g. phi, select). This pointers may be safely |
409 | | /// used in a very limited number of situations. Currently the only way to use |
410 | | /// it is comparison against constant exclusively derived from null. All |
411 | | /// limitations arise due to their undefined state: this pointers should be |
412 | | /// treated as relocated and unrelocated simultaneously. |
413 | | /// Rules of deriving: |
414 | | /// R + U = P - that's where the poisoned pointers come from |
415 | | /// P + X = P |
416 | | /// U + U = U |
417 | | /// R + R = R |
418 | | /// X + C = X |
419 | | /// Where "+" - any operation that somehow derive pointer, U - unrelocated, |
420 | | /// R - relocated and P - poisoned, C - constant, X - U or R or P or C or |
421 | | /// nothing (in case when "+" is unary operation). |
422 | | /// Deriving of pointers by itself is always safe. |
423 | | /// NOTE: when we are making decision on the status of instruction's result: |
424 | | /// a) for phi we need to check status of each input *at the end of |
425 | | /// corresponding predecessor BB*. |
426 | | /// b) for other instructions we need to check status of each input *at the |
427 | | /// current point*. |
428 | | /// |
429 | | /// FIXME: This works fairly well except one case |
430 | | /// bb1: |
431 | | /// p = *some GC-ptr def* |
432 | | /// p1 = gep p, offset |
433 | | /// / | |
434 | | /// / | |
435 | | /// bb2: | |
436 | | /// safepoint | |
437 | | /// \ | |
438 | | /// \ | |
439 | | /// bb3: |
440 | | /// p2 = phi [p, bb2] [p1, bb1] |
441 | | /// p3 = phi [p, bb2] [p, bb1] |
442 | | /// here p and p1 is unrelocated |
443 | | /// p2 and p3 is poisoned (though they shouldn't be) |
444 | | /// |
445 | | /// This leads to some weird results: |
446 | | /// cmp eq p, p2 - illegal instruction (false-positive) |
447 | | /// cmp eq p1, p2 - illegal instruction (false-positive) |
448 | | /// cmp eq p, p3 - illegal instruction (false-positive) |
449 | | /// cmp eq p, p1 - ok |
450 | | /// To fix this we need to introduce conception of generations and be able to |
451 | | /// check if two values belong to one generation or not. This way p2 will be |
452 | | /// considered to be unrelocated and no false alarm will happen. |
453 | | class GCPtrTracker { |
454 | | const Function &F; |
455 | | const CFGDeadness &CD; |
456 | | SpecificBumpPtrAllocator<BasicBlockState> BSAllocator; |
457 | | DenseMap<const BasicBlock *, BasicBlockState *> BlockMap; |
458 | | // This set contains defs of unrelocated pointers that are proved to be legal |
459 | | // and don't need verification. |
460 | | DenseSet<const Instruction *> ValidUnrelocatedDefs; |
461 | | // This set contains poisoned defs. They can be safely ignored during |
462 | | // verification too. |
463 | | DenseSet<const Value *> PoisonedDefs; |
464 | | |
465 | | public: |
466 | | GCPtrTracker(const Function &F, const DominatorTree &DT, |
467 | | const CFGDeadness &CD); |
468 | | |
469 | 0 | bool hasLiveIncomingEdge(const PHINode *PN, const BasicBlock *InBB) const { |
470 | 0 | return CD.hasLiveIncomingEdge(PN, InBB); |
471 | 0 | } |
472 | | |
473 | | BasicBlockState *getBasicBlockState(const BasicBlock *BB); |
474 | | const BasicBlockState *getBasicBlockState(const BasicBlock *BB) const; |
475 | | |
476 | 0 | bool isValuePoisoned(const Value *V) const { return PoisonedDefs.count(V); } |
477 | | |
478 | | /// Traverse each BB of the function and call |
479 | | /// InstructionVerifier::verifyInstruction for each possibly invalid |
480 | | /// instruction. |
481 | | /// It destructively modifies GCPtrTracker so it's passed via rvalue reference |
482 | | /// in order to prohibit further usages of GCPtrTracker as it'll be in |
483 | | /// inconsistent state. |
484 | | static void verifyFunction(GCPtrTracker &&Tracker, |
485 | | InstructionVerifier &Verifier); |
486 | | |
487 | | /// Returns true for reachable and live blocks. |
488 | 0 | bool isMapped(const BasicBlock *BB) const { return BlockMap.contains(BB); } |
489 | | |
490 | | private: |
491 | | /// Returns true if the instruction may be safely skipped during verification. |
492 | | bool instructionMayBeSkipped(const Instruction *I) const; |
493 | | |
494 | | /// Iterates over all BBs from BlockMap and recalculates AvailableIn/Out for |
495 | | /// each of them until it converges. |
496 | | void recalculateBBsStates(); |
497 | | |
498 | | /// Remove from Contribution all defs that legally produce unrelocated |
499 | | /// pointers and saves them to ValidUnrelocatedDefs. |
500 | | /// Though Contribution should belong to BBS it is passed separately with |
501 | | /// different const-modifier in order to emphasize (and guarantee) that only |
502 | | /// Contribution will be changed. |
503 | | /// Returns true if Contribution was changed otherwise false. |
504 | | bool removeValidUnrelocatedDefs(const BasicBlock *BB, |
505 | | const BasicBlockState *BBS, |
506 | | AvailableValueSet &Contribution); |
507 | | |
508 | | /// Gather all the definitions dominating the start of BB into Result. This is |
509 | | /// simply the defs introduced by every dominating basic block and the |
510 | | /// function arguments. |
511 | | void gatherDominatingDefs(const BasicBlock *BB, AvailableValueSet &Result, |
512 | | const DominatorTree &DT); |
513 | | |
514 | | /// Compute the AvailableOut set for BB, based on the BasicBlockState BBS, |
515 | | /// which is the BasicBlockState for BB. |
516 | | /// ContributionChanged is set when the verifier runs for the first time |
517 | | /// (in this case Contribution was changed from 'empty' to its initial state) |
518 | | /// or when Contribution of this BB was changed since last computation. |
519 | | static void transferBlock(const BasicBlock *BB, BasicBlockState &BBS, |
520 | | bool ContributionChanged); |
521 | | |
522 | | /// Model the effect of an instruction on the set of available values. |
523 | | static void transferInstruction(const Instruction &I, bool &Cleared, |
524 | | AvailableValueSet &Available); |
525 | | }; |
526 | | |
527 | | /// It is a visitor for GCPtrTracker::verifyFunction. It decides if the |
528 | | /// instruction (which uses heap reference) is legal or not, given our safepoint |
529 | | /// semantics. |
530 | | class InstructionVerifier { |
531 | | bool AnyInvalidUses = false; |
532 | | |
533 | | public: |
534 | | void verifyInstruction(const GCPtrTracker *Tracker, const Instruction &I, |
535 | | const AvailableValueSet &AvailableSet); |
536 | | |
537 | 0 | bool hasAnyInvalidUses() const { return AnyInvalidUses; } |
538 | | |
539 | | private: |
540 | | void reportInvalidUse(const Value &V, const Instruction &I); |
541 | | }; |
542 | | } // end anonymous namespace |
543 | | |
544 | | GCPtrTracker::GCPtrTracker(const Function &F, const DominatorTree &DT, |
545 | 0 | const CFGDeadness &CD) : F(F), CD(CD) { |
546 | | // Calculate Contribution of each live BB. |
547 | | // Allocate BB states for live blocks. |
548 | 0 | for (const BasicBlock &BB : F) |
549 | 0 | if (!CD.isDeadBlock(&BB)) { |
550 | 0 | BasicBlockState *BBS = new (BSAllocator.Allocate()) BasicBlockState; |
551 | 0 | for (const auto &I : BB) |
552 | 0 | transferInstruction(I, BBS->Cleared, BBS->Contribution); |
553 | 0 | BlockMap[&BB] = BBS; |
554 | 0 | } |
555 | | |
556 | | // Initialize AvailableIn/Out sets of each BB using only information about |
557 | | // dominating BBs. |
558 | 0 | for (auto &BBI : BlockMap) { |
559 | 0 | gatherDominatingDefs(BBI.first, BBI.second->AvailableIn, DT); |
560 | 0 | transferBlock(BBI.first, *BBI.second, true); |
561 | 0 | } |
562 | | |
563 | | // Simulate the flow of defs through the CFG and recalculate AvailableIn/Out |
564 | | // sets of each BB until it converges. If any def is proved to be an |
565 | | // unrelocated pointer, it will be removed from all BBSs. |
566 | 0 | recalculateBBsStates(); |
567 | 0 | } |
568 | | |
569 | 0 | BasicBlockState *GCPtrTracker::getBasicBlockState(const BasicBlock *BB) { |
570 | 0 | return BlockMap.lookup(BB); |
571 | 0 | } |
572 | | |
573 | | const BasicBlockState *GCPtrTracker::getBasicBlockState( |
574 | 0 | const BasicBlock *BB) const { |
575 | 0 | return const_cast<GCPtrTracker *>(this)->getBasicBlockState(BB); |
576 | 0 | } |
577 | | |
578 | 0 | bool GCPtrTracker::instructionMayBeSkipped(const Instruction *I) const { |
579 | | // Poisoned defs are skipped since they are always safe by itself by |
580 | | // definition (for details see comment to this class). |
581 | 0 | return ValidUnrelocatedDefs.count(I) || PoisonedDefs.count(I); |
582 | 0 | } |
583 | | |
584 | | void GCPtrTracker::verifyFunction(GCPtrTracker &&Tracker, |
585 | 0 | InstructionVerifier &Verifier) { |
586 | | // We need RPO here to a) report always the first error b) report errors in |
587 | | // same order from run to run. |
588 | 0 | ReversePostOrderTraversal<const Function *> RPOT(&Tracker.F); |
589 | 0 | for (const BasicBlock *BB : RPOT) { |
590 | 0 | BasicBlockState *BBS = Tracker.getBasicBlockState(BB); |
591 | 0 | if (!BBS) |
592 | 0 | continue; |
593 | | |
594 | | // We destructively modify AvailableIn as we traverse the block instruction |
595 | | // by instruction. |
596 | 0 | AvailableValueSet &AvailableSet = BBS->AvailableIn; |
597 | 0 | for (const Instruction &I : *BB) { |
598 | 0 | if (Tracker.instructionMayBeSkipped(&I)) |
599 | 0 | continue; // This instruction shouldn't be added to AvailableSet. |
600 | | |
601 | 0 | Verifier.verifyInstruction(&Tracker, I, AvailableSet); |
602 | | |
603 | | // Model the effect of current instruction on AvailableSet to keep the set |
604 | | // relevant at each point of BB. |
605 | 0 | bool Cleared = false; |
606 | 0 | transferInstruction(I, Cleared, AvailableSet); |
607 | 0 | (void)Cleared; |
608 | 0 | } |
609 | 0 | } |
610 | 0 | } |
611 | | |
612 | 0 | void GCPtrTracker::recalculateBBsStates() { |
613 | 0 | SetVector<const BasicBlock *> Worklist; |
614 | | // TODO: This order is suboptimal, it's better to replace it with priority |
615 | | // queue where priority is RPO number of BB. |
616 | 0 | for (auto &BBI : BlockMap) |
617 | 0 | Worklist.insert(BBI.first); |
618 | | |
619 | | // This loop iterates the AvailableIn/Out sets until it converges. |
620 | | // The AvailableIn and AvailableOut sets decrease as we iterate. |
621 | 0 | while (!Worklist.empty()) { |
622 | 0 | const BasicBlock *BB = Worklist.pop_back_val(); |
623 | 0 | BasicBlockState *BBS = getBasicBlockState(BB); |
624 | 0 | if (!BBS) |
625 | 0 | continue; // Ignore dead successors. |
626 | | |
627 | 0 | size_t OldInCount = BBS->AvailableIn.size(); |
628 | 0 | for (const_pred_iterator PredIt(BB), End(BB, true); PredIt != End; ++PredIt) { |
629 | 0 | const BasicBlock *PBB = *PredIt; |
630 | 0 | BasicBlockState *PBBS = getBasicBlockState(PBB); |
631 | 0 | if (PBBS && !CD.isDeadEdge(&CFGDeadness::getEdge(PredIt))) |
632 | 0 | set_intersect(BBS->AvailableIn, PBBS->AvailableOut); |
633 | 0 | } |
634 | |
|
635 | 0 | assert(OldInCount >= BBS->AvailableIn.size() && "invariant!"); |
636 | | |
637 | 0 | bool InputsChanged = OldInCount != BBS->AvailableIn.size(); |
638 | 0 | bool ContributionChanged = |
639 | 0 | removeValidUnrelocatedDefs(BB, BBS, BBS->Contribution); |
640 | 0 | if (!InputsChanged && !ContributionChanged) |
641 | 0 | continue; |
642 | | |
643 | 0 | size_t OldOutCount = BBS->AvailableOut.size(); |
644 | 0 | transferBlock(BB, *BBS, ContributionChanged); |
645 | 0 | if (OldOutCount != BBS->AvailableOut.size()) { |
646 | 0 | assert(OldOutCount > BBS->AvailableOut.size() && "invariant!"); |
647 | 0 | Worklist.insert(succ_begin(BB), succ_end(BB)); |
648 | 0 | } |
649 | 0 | } |
650 | 0 | } |
651 | | |
652 | | bool GCPtrTracker::removeValidUnrelocatedDefs(const BasicBlock *BB, |
653 | | const BasicBlockState *BBS, |
654 | 0 | AvailableValueSet &Contribution) { |
655 | 0 | assert(&BBS->Contribution == &Contribution && |
656 | 0 | "Passed Contribution should be from the passed BasicBlockState!"); |
657 | 0 | AvailableValueSet AvailableSet = BBS->AvailableIn; |
658 | 0 | bool ContributionChanged = false; |
659 | | // For explanation why instructions are processed this way see |
660 | | // "Rules of deriving" in the comment to this class. |
661 | 0 | for (const Instruction &I : *BB) { |
662 | 0 | bool ValidUnrelocatedPointerDef = false; |
663 | 0 | bool PoisonedPointerDef = false; |
664 | | // TODO: `select` instructions should be handled here too. |
665 | 0 | if (const PHINode *PN = dyn_cast<PHINode>(&I)) { |
666 | 0 | if (containsGCPtrType(PN->getType())) { |
667 | | // If both is true, output is poisoned. |
668 | 0 | bool HasRelocatedInputs = false; |
669 | 0 | bool HasUnrelocatedInputs = false; |
670 | 0 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
671 | 0 | const BasicBlock *InBB = PN->getIncomingBlock(i); |
672 | 0 | if (!isMapped(InBB) || |
673 | 0 | !CD.hasLiveIncomingEdge(PN, InBB)) |
674 | 0 | continue; // Skip dead block or dead edge. |
675 | | |
676 | 0 | const Value *InValue = PN->getIncomingValue(i); |
677 | |
|
678 | 0 | if (isNotExclusivelyConstantDerived(InValue)) { |
679 | 0 | if (isValuePoisoned(InValue)) { |
680 | | // If any of inputs is poisoned, output is always poisoned too. |
681 | 0 | HasRelocatedInputs = true; |
682 | 0 | HasUnrelocatedInputs = true; |
683 | 0 | break; |
684 | 0 | } |
685 | 0 | if (BlockMap[InBB]->AvailableOut.count(InValue)) |
686 | 0 | HasRelocatedInputs = true; |
687 | 0 | else |
688 | 0 | HasUnrelocatedInputs = true; |
689 | 0 | } |
690 | 0 | } |
691 | 0 | if (HasUnrelocatedInputs) { |
692 | 0 | if (HasRelocatedInputs) |
693 | 0 | PoisonedPointerDef = true; |
694 | 0 | else |
695 | 0 | ValidUnrelocatedPointerDef = true; |
696 | 0 | } |
697 | 0 | } |
698 | 0 | } else if ((isa<GetElementPtrInst>(I) || isa<BitCastInst>(I)) && |
699 | 0 | containsGCPtrType(I.getType())) { |
700 | | // GEP/bitcast of unrelocated pointer is legal by itself but this def |
701 | | // shouldn't appear in any AvailableSet. |
702 | 0 | for (const Value *V : I.operands()) |
703 | 0 | if (containsGCPtrType(V->getType()) && |
704 | 0 | isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) { |
705 | 0 | if (isValuePoisoned(V)) |
706 | 0 | PoisonedPointerDef = true; |
707 | 0 | else |
708 | 0 | ValidUnrelocatedPointerDef = true; |
709 | 0 | break; |
710 | 0 | } |
711 | 0 | } |
712 | 0 | assert(!(ValidUnrelocatedPointerDef && PoisonedPointerDef) && |
713 | 0 | "Value cannot be both unrelocated and poisoned!"); |
714 | 0 | if (ValidUnrelocatedPointerDef) { |
715 | | // Remove def of unrelocated pointer from Contribution of this BB and |
716 | | // trigger update of all its successors. |
717 | 0 | Contribution.erase(&I); |
718 | 0 | PoisonedDefs.erase(&I); |
719 | 0 | ValidUnrelocatedDefs.insert(&I); |
720 | 0 | LLVM_DEBUG(dbgs() << "Removing urelocated " << I |
721 | 0 | << " from Contribution of " << BB->getName() << "\n"); |
722 | 0 | ContributionChanged = true; |
723 | 0 | } else if (PoisonedPointerDef) { |
724 | | // Mark pointer as poisoned, remove its def from Contribution and trigger |
725 | | // update of all successors. |
726 | 0 | Contribution.erase(&I); |
727 | 0 | PoisonedDefs.insert(&I); |
728 | 0 | LLVM_DEBUG(dbgs() << "Removing poisoned " << I << " from Contribution of " |
729 | 0 | << BB->getName() << "\n"); |
730 | 0 | ContributionChanged = true; |
731 | 0 | } else { |
732 | 0 | bool Cleared = false; |
733 | 0 | transferInstruction(I, Cleared, AvailableSet); |
734 | 0 | (void)Cleared; |
735 | 0 | } |
736 | 0 | } |
737 | 0 | return ContributionChanged; |
738 | 0 | } |
739 | | |
740 | | void GCPtrTracker::gatherDominatingDefs(const BasicBlock *BB, |
741 | | AvailableValueSet &Result, |
742 | 0 | const DominatorTree &DT) { |
743 | 0 | DomTreeNode *DTN = DT[const_cast<BasicBlock *>(BB)]; |
744 | |
|
745 | 0 | assert(DTN && "Unreachable blocks are ignored"); |
746 | 0 | while (DTN->getIDom()) { |
747 | 0 | DTN = DTN->getIDom(); |
748 | 0 | auto BBS = getBasicBlockState(DTN->getBlock()); |
749 | 0 | assert(BBS && "immediate dominator cannot be dead for a live block"); |
750 | 0 | const auto &Defs = BBS->Contribution; |
751 | 0 | Result.insert(Defs.begin(), Defs.end()); |
752 | | // If this block is 'Cleared', then nothing LiveIn to this block can be |
753 | | // available after this block completes. Note: This turns out to be |
754 | | // really important for reducing memory consuption of the initial available |
755 | | // sets and thus peak memory usage by this verifier. |
756 | 0 | if (BBS->Cleared) |
757 | 0 | return; |
758 | 0 | } |
759 | | |
760 | 0 | for (const Argument &A : BB->getParent()->args()) |
761 | 0 | if (containsGCPtrType(A.getType())) |
762 | 0 | Result.insert(&A); |
763 | 0 | } |
764 | | |
765 | | void GCPtrTracker::transferBlock(const BasicBlock *BB, BasicBlockState &BBS, |
766 | 0 | bool ContributionChanged) { |
767 | 0 | const AvailableValueSet &AvailableIn = BBS.AvailableIn; |
768 | 0 | AvailableValueSet &AvailableOut = BBS.AvailableOut; |
769 | |
|
770 | 0 | if (BBS.Cleared) { |
771 | | // AvailableOut will change only when Contribution changed. |
772 | 0 | if (ContributionChanged) |
773 | 0 | AvailableOut = BBS.Contribution; |
774 | 0 | } else { |
775 | | // Otherwise, we need to reduce the AvailableOut set by things which are no |
776 | | // longer in our AvailableIn |
777 | 0 | AvailableValueSet Temp = BBS.Contribution; |
778 | 0 | set_union(Temp, AvailableIn); |
779 | 0 | AvailableOut = std::move(Temp); |
780 | 0 | } |
781 | |
|
782 | 0 | LLVM_DEBUG(dbgs() << "Transfered block " << BB->getName() << " from "; |
783 | 0 | PrintValueSet(dbgs(), AvailableIn.begin(), AvailableIn.end()); |
784 | 0 | dbgs() << " to "; |
785 | 0 | PrintValueSet(dbgs(), AvailableOut.begin(), AvailableOut.end()); |
786 | 0 | dbgs() << "\n";); |
787 | 0 | } |
788 | | |
789 | | void GCPtrTracker::transferInstruction(const Instruction &I, bool &Cleared, |
790 | 0 | AvailableValueSet &Available) { |
791 | 0 | if (isa<GCStatepointInst>(I)) { |
792 | 0 | Cleared = true; |
793 | 0 | Available.clear(); |
794 | 0 | } else if (containsGCPtrType(I.getType())) |
795 | 0 | Available.insert(&I); |
796 | 0 | } |
797 | | |
798 | | void InstructionVerifier::verifyInstruction( |
799 | | const GCPtrTracker *Tracker, const Instruction &I, |
800 | 0 | const AvailableValueSet &AvailableSet) { |
801 | 0 | if (const PHINode *PN = dyn_cast<PHINode>(&I)) { |
802 | 0 | if (containsGCPtrType(PN->getType())) |
803 | 0 | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { |
804 | 0 | const BasicBlock *InBB = PN->getIncomingBlock(i); |
805 | 0 | const BasicBlockState *InBBS = Tracker->getBasicBlockState(InBB); |
806 | 0 | if (!InBBS || |
807 | 0 | !Tracker->hasLiveIncomingEdge(PN, InBB)) |
808 | 0 | continue; // Skip dead block or dead edge. |
809 | | |
810 | 0 | const Value *InValue = PN->getIncomingValue(i); |
811 | |
|
812 | 0 | if (isNotExclusivelyConstantDerived(InValue) && |
813 | 0 | !InBBS->AvailableOut.count(InValue)) |
814 | 0 | reportInvalidUse(*InValue, *PN); |
815 | 0 | } |
816 | 0 | } else if (isa<CmpInst>(I) && |
817 | 0 | containsGCPtrType(I.getOperand(0)->getType())) { |
818 | 0 | Value *LHS = I.getOperand(0), *RHS = I.getOperand(1); |
819 | 0 | enum BaseType baseTyLHS = getBaseType(LHS), |
820 | 0 | baseTyRHS = getBaseType(RHS); |
821 | | |
822 | | // Returns true if LHS and RHS are unrelocated pointers and they are |
823 | | // valid unrelocated uses. |
824 | 0 | auto hasValidUnrelocatedUse = [&AvailableSet, Tracker, baseTyLHS, baseTyRHS, |
825 | 0 | &LHS, &RHS] () { |
826 | | // A cmp instruction has valid unrelocated pointer operands only if |
827 | | // both operands are unrelocated pointers. |
828 | | // In the comparison between two pointers, if one is an unrelocated |
829 | | // use, the other *should be* an unrelocated use, for this |
830 | | // instruction to contain valid unrelocated uses. This unrelocated |
831 | | // use can be a null constant as well, or another unrelocated |
832 | | // pointer. |
833 | 0 | if (AvailableSet.count(LHS) || AvailableSet.count(RHS)) |
834 | 0 | return false; |
835 | | // Constant pointers (that are not exclusively null) may have |
836 | | // meaning in different VMs, so we cannot reorder the compare |
837 | | // against constant pointers before the safepoint. In other words, |
838 | | // comparison of an unrelocated use against a non-null constant |
839 | | // maybe invalid. |
840 | 0 | if ((baseTyLHS == BaseType::ExclusivelySomeConstant && |
841 | 0 | baseTyRHS == BaseType::NonConstant) || |
842 | 0 | (baseTyLHS == BaseType::NonConstant && |
843 | 0 | baseTyRHS == BaseType::ExclusivelySomeConstant)) |
844 | 0 | return false; |
845 | | |
846 | | // If one of pointers is poisoned and other is not exclusively derived |
847 | | // from null it is an invalid expression: it produces poisoned result |
848 | | // and unless we want to track all defs (not only gc pointers) the only |
849 | | // option is to prohibit such instructions. |
850 | 0 | if ((Tracker->isValuePoisoned(LHS) && baseTyRHS != ExclusivelyNull) || |
851 | 0 | (Tracker->isValuePoisoned(RHS) && baseTyLHS != ExclusivelyNull)) |
852 | 0 | return false; |
853 | | |
854 | | // All other cases are valid cases enumerated below: |
855 | | // 1. Comparison between an exclusively derived null pointer and a |
856 | | // constant base pointer. |
857 | | // 2. Comparison between an exclusively derived null pointer and a |
858 | | // non-constant unrelocated base pointer. |
859 | | // 3. Comparison between 2 unrelocated pointers. |
860 | | // 4. Comparison between a pointer exclusively derived from null and a |
861 | | // non-constant poisoned pointer. |
862 | 0 | return true; |
863 | 0 | }; |
864 | 0 | if (!hasValidUnrelocatedUse()) { |
865 | | // Print out all non-constant derived pointers that are unrelocated |
866 | | // uses, which are invalid. |
867 | 0 | if (baseTyLHS == BaseType::NonConstant && !AvailableSet.count(LHS)) |
868 | 0 | reportInvalidUse(*LHS, I); |
869 | 0 | if (baseTyRHS == BaseType::NonConstant && !AvailableSet.count(RHS)) |
870 | 0 | reportInvalidUse(*RHS, I); |
871 | 0 | } |
872 | 0 | } else { |
873 | 0 | for (const Value *V : I.operands()) |
874 | 0 | if (containsGCPtrType(V->getType()) && |
875 | 0 | isNotExclusivelyConstantDerived(V) && !AvailableSet.count(V)) |
876 | 0 | reportInvalidUse(*V, I); |
877 | 0 | } |
878 | 0 | } |
879 | | |
880 | | void InstructionVerifier::reportInvalidUse(const Value &V, |
881 | 0 | const Instruction &I) { |
882 | 0 | errs() << "Illegal use of unrelocated value found!\n"; |
883 | 0 | errs() << "Def: " << V << "\n"; |
884 | 0 | errs() << "Use: " << I << "\n"; |
885 | 0 | if (!PrintOnly) |
886 | 0 | abort(); |
887 | 0 | AnyInvalidUses = true; |
888 | 0 | } |
889 | | |
890 | | static void Verify(const Function &F, const DominatorTree &DT, |
891 | 0 | const CFGDeadness &CD) { |
892 | 0 | LLVM_DEBUG(dbgs() << "Verifying gc pointers in function: " << F.getName() |
893 | 0 | << "\n"); |
894 | 0 | if (PrintOnly) |
895 | 0 | dbgs() << "Verifying gc pointers in function: " << F.getName() << "\n"; |
896 | |
|
897 | 0 | GCPtrTracker Tracker(F, DT, CD); |
898 | | |
899 | | // We now have all the information we need to decide if the use of a heap |
900 | | // reference is legal or not, given our safepoint semantics. |
901 | |
|
902 | 0 | InstructionVerifier Verifier; |
903 | 0 | GCPtrTracker::verifyFunction(std::move(Tracker), Verifier); |
904 | |
|
905 | 0 | if (PrintOnly && !Verifier.hasAnyInvalidUses()) { |
906 | 0 | dbgs() << "No illegal uses found by SafepointIRVerifier in: " << F.getName() |
907 | 0 | << "\n"; |
908 | 0 | } |
909 | 0 | } |