/src/llvm-project/llvm/lib/Target/ARM/MVETailPredication.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- MVETailPredication.cpp - MVE Tail Predication ------------*- C++ -*-===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | /// \file |
10 | | /// Armv8.1m introduced MVE, M-Profile Vector Extension, and low-overhead |
11 | | /// branches to help accelerate DSP applications. These two extensions, |
12 | | /// combined with a new form of predication called tail-predication, can be used |
13 | | /// to provide implicit vector predication within a low-overhead loop. |
14 | | /// This is implicit because the predicate of active/inactive lanes is |
15 | | /// calculated by hardware, and thus does not need to be explicitly passed |
16 | | /// to vector instructions. The instructions responsible for this are the |
17 | | /// DLSTP and WLSTP instructions, which setup a tail-predicated loop and the |
18 | | /// the total number of data elements processed by the loop. The loop-end |
19 | | /// LETP instruction is responsible for decrementing and setting the remaining |
20 | | /// elements to be processed and generating the mask of active lanes. |
21 | | /// |
22 | | /// The HardwareLoops pass inserts intrinsics identifying loops that the |
23 | | /// backend will attempt to convert into a low-overhead loop. The vectorizer is |
24 | | /// responsible for generating a vectorized loop in which the lanes are |
25 | | /// predicated upon an get.active.lane.mask intrinsic. This pass looks at these |
26 | | /// get.active.lane.mask intrinsic and attempts to convert them to VCTP |
27 | | /// instructions. This will be picked up by the ARM Low-overhead loop pass later |
28 | | /// in the backend, which performs the final transformation to a DLSTP or WLSTP |
29 | | /// tail-predicated loop. |
30 | | // |
31 | | //===----------------------------------------------------------------------===// |
32 | | |
33 | | #include "ARM.h" |
34 | | #include "ARMSubtarget.h" |
35 | | #include "ARMTargetTransformInfo.h" |
36 | | #include "llvm/Analysis/LoopInfo.h" |
37 | | #include "llvm/Analysis/LoopPass.h" |
38 | | #include "llvm/Analysis/ScalarEvolution.h" |
39 | | #include "llvm/Analysis/ScalarEvolutionExpressions.h" |
40 | | #include "llvm/Analysis/TargetLibraryInfo.h" |
41 | | #include "llvm/Analysis/TargetTransformInfo.h" |
42 | | #include "llvm/Analysis/ValueTracking.h" |
43 | | #include "llvm/CodeGen/TargetPassConfig.h" |
44 | | #include "llvm/IR/IRBuilder.h" |
45 | | #include "llvm/IR/Instructions.h" |
46 | | #include "llvm/IR/IntrinsicsARM.h" |
47 | | #include "llvm/IR/PatternMatch.h" |
48 | | #include "llvm/InitializePasses.h" |
49 | | #include "llvm/Support/Debug.h" |
50 | | #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
51 | | #include "llvm/Transforms/Utils/Local.h" |
52 | | #include "llvm/Transforms/Utils/LoopUtils.h" |
53 | | #include "llvm/Transforms/Utils/ScalarEvolutionExpander.h" |
54 | | |
55 | | using namespace llvm; |
56 | | |
57 | | #define DEBUG_TYPE "mve-tail-predication" |
58 | | #define DESC "Transform predicated vector loops to use MVE tail predication" |
59 | | |
60 | | cl::opt<TailPredication::Mode> EnableTailPredication( |
61 | | "tail-predication", cl::desc("MVE tail-predication pass options"), |
62 | | cl::init(TailPredication::Enabled), |
63 | | cl::values(clEnumValN(TailPredication::Disabled, "disabled", |
64 | | "Don't tail-predicate loops"), |
65 | | clEnumValN(TailPredication::EnabledNoReductions, |
66 | | "enabled-no-reductions", |
67 | | "Enable tail-predication, but not for reduction loops"), |
68 | | clEnumValN(TailPredication::Enabled, |
69 | | "enabled", |
70 | | "Enable tail-predication, including reduction loops"), |
71 | | clEnumValN(TailPredication::ForceEnabledNoReductions, |
72 | | "force-enabled-no-reductions", |
73 | | "Enable tail-predication, but not for reduction loops, " |
74 | | "and force this which might be unsafe"), |
75 | | clEnumValN(TailPredication::ForceEnabled, |
76 | | "force-enabled", |
77 | | "Enable tail-predication, including reduction loops, " |
78 | | "and force this which might be unsafe"))); |
79 | | |
80 | | |
81 | | namespace { |
82 | | |
83 | | class MVETailPredication : public LoopPass { |
84 | | SmallVector<IntrinsicInst*, 4> MaskedInsts; |
85 | | Loop *L = nullptr; |
86 | | ScalarEvolution *SE = nullptr; |
87 | | TargetTransformInfo *TTI = nullptr; |
88 | | const ARMSubtarget *ST = nullptr; |
89 | | |
90 | | public: |
91 | | static char ID; |
92 | | |
93 | 2.47k | MVETailPredication() : LoopPass(ID) { } |
94 | | |
95 | 2.47k | void getAnalysisUsage(AnalysisUsage &AU) const override { |
96 | 2.47k | AU.addRequired<ScalarEvolutionWrapperPass>(); |
97 | 2.47k | AU.addRequired<LoopInfoWrapperPass>(); |
98 | 2.47k | AU.addRequired<TargetPassConfig>(); |
99 | 2.47k | AU.addRequired<TargetTransformInfoWrapperPass>(); |
100 | 2.47k | AU.addPreserved<LoopInfoWrapperPass>(); |
101 | 2.47k | AU.setPreservesCFG(); |
102 | 2.47k | } |
103 | | |
104 | | bool runOnLoop(Loop *L, LPPassManager&) override; |
105 | | |
106 | | private: |
107 | | /// Perform the relevant checks on the loop and convert active lane masks if |
108 | | /// possible. |
109 | | bool TryConvertActiveLaneMask(Value *TripCount); |
110 | | |
111 | | /// Perform several checks on the arguments of @llvm.get.active.lane.mask |
112 | | /// intrinsic. E.g., check that the loop induction variable and the element |
113 | | /// count are of the form we expect, and also perform overflow checks for |
114 | | /// the new expressions that are created. |
115 | | const SCEV *IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, Value *TripCount); |
116 | | |
117 | | /// Insert the intrinsic to represent the effect of tail predication. |
118 | | void InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, Value *Start); |
119 | | }; |
120 | | |
121 | | } // end namespace |
122 | | |
123 | 143 | bool MVETailPredication::runOnLoop(Loop *L, LPPassManager&) { |
124 | 143 | if (skipLoop(L) || !EnableTailPredication) |
125 | 0 | return false; |
126 | | |
127 | 143 | MaskedInsts.clear(); |
128 | 143 | Function &F = *L->getHeader()->getParent(); |
129 | 143 | auto &TPC = getAnalysis<TargetPassConfig>(); |
130 | 143 | auto &TM = TPC.getTM<TargetMachine>(); |
131 | 143 | ST = &TM.getSubtarget<ARMSubtarget>(F); |
132 | 143 | TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); |
133 | 143 | SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); |
134 | 143 | this->L = L; |
135 | | |
136 | | // The MVE and LOB extensions are combined to enable tail-predication, but |
137 | | // there's nothing preventing us from generating VCTP instructions for v8.1m. |
138 | 143 | if (!ST->hasMVEIntegerOps() || !ST->hasV8_1MMainlineOps()) { |
139 | 143 | LLVM_DEBUG(dbgs() << "ARM TP: Not a v8.1m.main+mve target.\n"); |
140 | 143 | return false; |
141 | 143 | } |
142 | | |
143 | 0 | BasicBlock *Preheader = L->getLoopPreheader(); |
144 | 0 | if (!Preheader) |
145 | 0 | return false; |
146 | | |
147 | 0 | auto FindLoopIterations = [](BasicBlock *BB) -> IntrinsicInst* { |
148 | 0 | for (auto &I : *BB) { |
149 | 0 | auto *Call = dyn_cast<IntrinsicInst>(&I); |
150 | 0 | if (!Call) |
151 | 0 | continue; |
152 | | |
153 | 0 | Intrinsic::ID ID = Call->getIntrinsicID(); |
154 | 0 | if (ID == Intrinsic::start_loop_iterations || |
155 | 0 | ID == Intrinsic::test_start_loop_iterations) |
156 | 0 | return cast<IntrinsicInst>(&I); |
157 | 0 | } |
158 | 0 | return nullptr; |
159 | 0 | }; |
160 | | |
161 | | // Look for the hardware loop intrinsic that sets the iteration count. |
162 | 0 | IntrinsicInst *Setup = FindLoopIterations(Preheader); |
163 | | |
164 | | // The test.set iteration could live in the pre-preheader. |
165 | 0 | if (!Setup) { |
166 | 0 | if (!Preheader->getSinglePredecessor()) |
167 | 0 | return false; |
168 | 0 | Setup = FindLoopIterations(Preheader->getSinglePredecessor()); |
169 | 0 | if (!Setup) |
170 | 0 | return false; |
171 | 0 | } |
172 | | |
173 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: Running on Loop: " << *L << *Setup << "\n"); |
174 | |
|
175 | 0 | bool Changed = TryConvertActiveLaneMask(Setup->getArgOperand(0)); |
176 | |
|
177 | 0 | return Changed; |
178 | 0 | } |
179 | | |
180 | | // The active lane intrinsic has this form: |
181 | | // |
182 | | // @llvm.get.active.lane.mask(IV, TC) |
183 | | // |
184 | | // Here we perform checks that this intrinsic behaves as expected, |
185 | | // which means: |
186 | | // |
187 | | // 1) Check that the TripCount (TC) belongs to this loop (originally). |
188 | | // 2) The element count (TC) needs to be sufficiently large that the decrement |
189 | | // of element counter doesn't overflow, which means that we need to prove: |
190 | | // ceil(ElementCount / VectorWidth) >= TripCount |
191 | | // by rounding up ElementCount up: |
192 | | // ((ElementCount + (VectorWidth - 1)) / VectorWidth |
193 | | // and evaluate if expression isKnownNonNegative: |
194 | | // (((ElementCount + (VectorWidth - 1)) / VectorWidth) - TripCount |
195 | | // 3) The IV must be an induction phi with an increment equal to the |
196 | | // vector width. |
197 | | const SCEV *MVETailPredication::IsSafeActiveMask(IntrinsicInst *ActiveLaneMask, |
198 | 0 | Value *TripCount) { |
199 | 0 | bool ForceTailPredication = |
200 | 0 | EnableTailPredication == TailPredication::ForceEnabledNoReductions || |
201 | 0 | EnableTailPredication == TailPredication::ForceEnabled; |
202 | |
|
203 | 0 | Value *ElemCount = ActiveLaneMask->getOperand(1); |
204 | 0 | bool Changed = false; |
205 | 0 | if (!L->makeLoopInvariant(ElemCount, Changed)) |
206 | 0 | return nullptr; |
207 | | |
208 | 0 | auto *EC= SE->getSCEV(ElemCount); |
209 | 0 | auto *TC = SE->getSCEV(TripCount); |
210 | 0 | int VectorWidth = |
211 | 0 | cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements(); |
212 | 0 | if (VectorWidth != 2 && VectorWidth != 4 && VectorWidth != 8 && |
213 | 0 | VectorWidth != 16) |
214 | 0 | return nullptr; |
215 | 0 | ConstantInt *ConstElemCount = nullptr; |
216 | | |
217 | | // 1) Smoke tests that the original scalar loop TripCount (TC) belongs to |
218 | | // this loop. The scalar tripcount corresponds the number of elements |
219 | | // processed by the loop, so we will refer to that from this point on. |
220 | 0 | if (!SE->isLoopInvariant(EC, L)) { |
221 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: element count must be loop invariant.\n"); |
222 | 0 | return nullptr; |
223 | 0 | } |
224 | | |
225 | | // 2) Find out if IV is an induction phi. Note that we can't use Loop |
226 | | // helpers here to get the induction variable, because the hardware loop is |
227 | | // no longer in loopsimplify form, and also the hwloop intrinsic uses a |
228 | | // different counter. Using SCEV, we check that the induction is of the |
229 | | // form i = i + 4, where the increment must be equal to the VectorWidth. |
230 | 0 | auto *IV = ActiveLaneMask->getOperand(0); |
231 | 0 | auto *IVExpr = SE->getSCEV(IV); |
232 | 0 | auto *AddExpr = dyn_cast<SCEVAddRecExpr>(IVExpr); |
233 | |
|
234 | 0 | if (!AddExpr) { |
235 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: induction not an add expr: "; IVExpr->dump()); |
236 | 0 | return nullptr; |
237 | 0 | } |
238 | | // Check that this AddRec is associated with this loop. |
239 | 0 | if (AddExpr->getLoop() != L) { |
240 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: phi not part of this loop\n"); |
241 | 0 | return nullptr; |
242 | 0 | } |
243 | 0 | auto *Step = dyn_cast<SCEVConstant>(AddExpr->getOperand(1)); |
244 | 0 | if (!Step) { |
245 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: induction step is not a constant: "; |
246 | 0 | AddExpr->getOperand(1)->dump()); |
247 | 0 | return nullptr; |
248 | 0 | } |
249 | 0 | auto StepValue = Step->getValue()->getSExtValue(); |
250 | 0 | if (VectorWidth != StepValue) { |
251 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: Step value " << StepValue |
252 | 0 | << " doesn't match vector width " << VectorWidth << "\n"); |
253 | 0 | return nullptr; |
254 | 0 | } |
255 | | |
256 | 0 | if ((ConstElemCount = dyn_cast<ConstantInt>(ElemCount))) { |
257 | 0 | ConstantInt *TC = dyn_cast<ConstantInt>(TripCount); |
258 | 0 | if (!TC) { |
259 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: Constant tripcount expected in " |
260 | 0 | "set.loop.iterations\n"); |
261 | 0 | return nullptr; |
262 | 0 | } |
263 | | |
264 | | // Calculate 2 tripcount values and check that they are consistent with |
265 | | // each other. The TripCount for a predicated vector loop body is |
266 | | // ceil(ElementCount/Width), or floor((ElementCount+Width-1)/Width) as we |
267 | | // work it out here. |
268 | 0 | uint64_t TC1 = TC->getZExtValue(); |
269 | 0 | uint64_t TC2 = |
270 | 0 | (ConstElemCount->getZExtValue() + VectorWidth - 1) / VectorWidth; |
271 | | |
272 | | // If the tripcount values are inconsistent, we can't insert the VCTP and |
273 | | // trigger tail-predication; keep the intrinsic as a get.active.lane.mask |
274 | | // and legalize this. |
275 | 0 | if (TC1 != TC2) { |
276 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: inconsistent constant tripcount values: " |
277 | 0 | << TC1 << " from set.loop.iterations, and " |
278 | 0 | << TC2 << " from get.active.lane.mask\n"); |
279 | 0 | return nullptr; |
280 | 0 | } |
281 | 0 | } else if (!ForceTailPredication) { |
282 | | // 3) We need to prove that the sub expression that we create in the |
283 | | // tail-predicated loop body, which calculates the remaining elements to be |
284 | | // processed, is non-negative, i.e. it doesn't overflow: |
285 | | // |
286 | | // ((ElementCount + VectorWidth - 1) / VectorWidth) - TripCount >= 0 |
287 | | // |
288 | | // This is true if: |
289 | | // |
290 | | // TripCount == (ElementCount + VectorWidth - 1) / VectorWidth |
291 | | // |
292 | | // which what we will be using here. |
293 | | // |
294 | 0 | auto *VW = SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth)); |
295 | | // ElementCount + (VW-1): |
296 | 0 | auto *Start = AddExpr->getStart(); |
297 | 0 | auto *ECPlusVWMinus1 = SE->getAddExpr(EC, |
298 | 0 | SE->getSCEV(ConstantInt::get(TripCount->getType(), VectorWidth - 1))); |
299 | | |
300 | | // Ceil = ElementCount + (VW-1) / VW |
301 | 0 | auto *Ceil = SE->getUDivExpr(ECPlusVWMinus1, VW); |
302 | | |
303 | | // Prevent unused variable warnings with TC |
304 | 0 | (void)TC; |
305 | 0 | LLVM_DEBUG({ |
306 | 0 | dbgs() << "ARM TP: Analysing overflow behaviour for:\n"; |
307 | 0 | dbgs() << "ARM TP: - TripCount = " << *TC << "\n"; |
308 | 0 | dbgs() << "ARM TP: - ElemCount = " << *EC << "\n"; |
309 | 0 | dbgs() << "ARM TP: - Start = " << *Start << "\n"; |
310 | 0 | dbgs() << "ARM TP: - BETC = " << *SE->getBackedgeTakenCount(L) << "\n"; |
311 | 0 | dbgs() << "ARM TP: - VecWidth = " << VectorWidth << "\n"; |
312 | 0 | dbgs() << "ARM TP: - (ElemCount+VW-1) / VW = " << *Ceil << "\n"; |
313 | 0 | }); |
314 | | |
315 | | // As an example, almost all the tripcount expressions (produced by the |
316 | | // vectoriser) look like this: |
317 | | // |
318 | | // TC = ((-4 + (4 * ((3 + %N) /u 4))<nuw> - start) /u 4) |
319 | | // |
320 | | // and "ElementCount + (VW-1) / VW": |
321 | | // |
322 | | // Ceil = ((3 + %N) /u 4) |
323 | | // |
324 | | // Check for equality of TC and Ceil by calculating SCEV expression |
325 | | // TC - Ceil and test it for zero. |
326 | | // |
327 | 0 | const SCEV *Div = SE->getUDivExpr( |
328 | 0 | SE->getAddExpr(SE->getMulExpr(Ceil, VW), SE->getNegativeSCEV(VW), |
329 | 0 | SE->getNegativeSCEV(Start)), |
330 | 0 | VW); |
331 | 0 | const SCEV *Sub = SE->getMinusSCEV(SE->getBackedgeTakenCount(L), Div); |
332 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: - Sub = "; Sub->dump()); |
333 | | |
334 | | // Use context sensitive facts about the path to the loop to refine. This |
335 | | // comes up as the backedge taken count can incorporate context sensitive |
336 | | // reasoning, and our RHS just above doesn't. |
337 | 0 | Sub = SE->applyLoopGuards(Sub, L); |
338 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: - (Guarded) = "; Sub->dump()); |
339 | |
|
340 | 0 | if (!Sub->isZero()) { |
341 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: possible overflow in sub expression.\n"); |
342 | 0 | return nullptr; |
343 | 0 | } |
344 | 0 | } |
345 | | |
346 | | // Check that the start value is a multiple of the VectorWidth. |
347 | | // TODO: This could do with a method to check if the scev is a multiple of |
348 | | // VectorWidth. For the moment we just check for constants, muls and unknowns |
349 | | // (which use MaskedValueIsZero and seems to be the most common). |
350 | 0 | if (auto *BaseC = dyn_cast<SCEVConstant>(AddExpr->getStart())) { |
351 | 0 | if (BaseC->getAPInt().urem(VectorWidth) == 0) |
352 | 0 | return SE->getMinusSCEV(EC, BaseC); |
353 | 0 | } else if (auto *BaseV = dyn_cast<SCEVUnknown>(AddExpr->getStart())) { |
354 | 0 | Type *Ty = BaseV->getType(); |
355 | 0 | APInt Mask = APInt::getLowBitsSet(Ty->getPrimitiveSizeInBits(), |
356 | 0 | Log2_64(VectorWidth)); |
357 | 0 | if (MaskedValueIsZero(BaseV->getValue(), Mask, |
358 | 0 | L->getHeader()->getModule()->getDataLayout())) |
359 | 0 | return SE->getMinusSCEV(EC, BaseV); |
360 | 0 | } else if (auto *BaseMul = dyn_cast<SCEVMulExpr>(AddExpr->getStart())) { |
361 | 0 | if (auto *BaseC = dyn_cast<SCEVConstant>(BaseMul->getOperand(0))) |
362 | 0 | if (BaseC->getAPInt().urem(VectorWidth) == 0) |
363 | 0 | return SE->getMinusSCEV(EC, BaseC); |
364 | 0 | if (auto *BaseC = dyn_cast<SCEVConstant>(BaseMul->getOperand(1))) |
365 | 0 | if (BaseC->getAPInt().urem(VectorWidth) == 0) |
366 | 0 | return SE->getMinusSCEV(EC, BaseC); |
367 | 0 | } |
368 | | |
369 | 0 | LLVM_DEBUG( |
370 | 0 | dbgs() << "ARM TP: induction base is not know to be a multiple of VF: " |
371 | 0 | << *AddExpr->getOperand(0) << "\n"); |
372 | 0 | return nullptr; |
373 | 0 | } |
374 | | |
375 | | void MVETailPredication::InsertVCTPIntrinsic(IntrinsicInst *ActiveLaneMask, |
376 | 0 | Value *Start) { |
377 | 0 | IRBuilder<> Builder(L->getLoopPreheader()->getTerminator()); |
378 | 0 | Module *M = L->getHeader()->getModule(); |
379 | 0 | Type *Ty = IntegerType::get(M->getContext(), 32); |
380 | 0 | unsigned VectorWidth = |
381 | 0 | cast<FixedVectorType>(ActiveLaneMask->getType())->getNumElements(); |
382 | | |
383 | | // Insert a phi to count the number of elements processed by the loop. |
384 | 0 | Builder.SetInsertPoint(L->getHeader(), L->getHeader()->getFirstNonPHIIt()); |
385 | 0 | PHINode *Processed = Builder.CreatePHI(Ty, 2); |
386 | 0 | Processed->addIncoming(Start, L->getLoopPreheader()); |
387 | | |
388 | | // Replace @llvm.get.active.mask() with the ARM specific VCTP intrinic, and |
389 | | // thus represent the effect of tail predication. |
390 | 0 | Builder.SetInsertPoint(ActiveLaneMask); |
391 | 0 | ConstantInt *Factor = ConstantInt::get(cast<IntegerType>(Ty), VectorWidth); |
392 | |
|
393 | 0 | Intrinsic::ID VCTPID; |
394 | 0 | switch (VectorWidth) { |
395 | 0 | default: |
396 | 0 | llvm_unreachable("unexpected number of lanes"); |
397 | 0 | case 2: VCTPID = Intrinsic::arm_mve_vctp64; break; |
398 | 0 | case 4: VCTPID = Intrinsic::arm_mve_vctp32; break; |
399 | 0 | case 8: VCTPID = Intrinsic::arm_mve_vctp16; break; |
400 | 0 | case 16: VCTPID = Intrinsic::arm_mve_vctp8; break; |
401 | 0 | } |
402 | 0 | Function *VCTP = Intrinsic::getDeclaration(M, VCTPID); |
403 | 0 | Value *VCTPCall = Builder.CreateCall(VCTP, Processed); |
404 | 0 | ActiveLaneMask->replaceAllUsesWith(VCTPCall); |
405 | | |
406 | | // Add the incoming value to the new phi. |
407 | | // TODO: This add likely already exists in the loop. |
408 | 0 | Value *Remaining = Builder.CreateSub(Processed, Factor); |
409 | 0 | Processed->addIncoming(Remaining, L->getLoopLatch()); |
410 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: Insert processed elements phi: " |
411 | 0 | << *Processed << "\n" |
412 | 0 | << "ARM TP: Inserted VCTP: " << *VCTPCall << "\n"); |
413 | 0 | } |
414 | | |
415 | 0 | bool MVETailPredication::TryConvertActiveLaneMask(Value *TripCount) { |
416 | 0 | SmallVector<IntrinsicInst *, 4> ActiveLaneMasks; |
417 | 0 | for (auto *BB : L->getBlocks()) |
418 | 0 | for (auto &I : *BB) |
419 | 0 | if (auto *Int = dyn_cast<IntrinsicInst>(&I)) |
420 | 0 | if (Int->getIntrinsicID() == Intrinsic::get_active_lane_mask) |
421 | 0 | ActiveLaneMasks.push_back(Int); |
422 | |
|
423 | 0 | if (ActiveLaneMasks.empty()) |
424 | 0 | return false; |
425 | | |
426 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: Found predicated vector loop.\n"); |
427 | |
|
428 | 0 | for (auto *ActiveLaneMask : ActiveLaneMasks) { |
429 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: Found active lane mask: " |
430 | 0 | << *ActiveLaneMask << "\n"); |
431 | |
|
432 | 0 | const SCEV *StartSCEV = IsSafeActiveMask(ActiveLaneMask, TripCount); |
433 | 0 | if (!StartSCEV) { |
434 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: Not safe to insert VCTP.\n"); |
435 | 0 | return false; |
436 | 0 | } |
437 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: Safe to insert VCTP. Start is " << *StartSCEV |
438 | 0 | << "\n"); |
439 | 0 | SCEVExpander Expander(*SE, L->getHeader()->getModule()->getDataLayout(), |
440 | 0 | "start"); |
441 | 0 | Instruction *Ins = L->getLoopPreheader()->getTerminator(); |
442 | 0 | Value *Start = Expander.expandCodeFor(StartSCEV, StartSCEV->getType(), Ins); |
443 | 0 | LLVM_DEBUG(dbgs() << "ARM TP: Created start value " << *Start << "\n"); |
444 | 0 | InsertVCTPIntrinsic(ActiveLaneMask, Start); |
445 | 0 | } |
446 | | |
447 | | // Remove dead instructions and now dead phis. |
448 | 0 | for (auto *II : ActiveLaneMasks) |
449 | 0 | RecursivelyDeleteTriviallyDeadInstructions(II); |
450 | 0 | for (auto *I : L->blocks()) |
451 | 0 | DeleteDeadPHIs(I); |
452 | 0 | return true; |
453 | 0 | } |
454 | | |
455 | 2.47k | Pass *llvm::createMVETailPredicationPass() { |
456 | 2.47k | return new MVETailPredication(); |
457 | 2.47k | } |
458 | | |
459 | | char MVETailPredication::ID = 0; |
460 | | |
461 | 62 | INITIALIZE_PASS_BEGIN(MVETailPredication, DEBUG_TYPE, DESC, false, false) |
462 | 62 | INITIALIZE_PASS_END(MVETailPredication, DEBUG_TYPE, DESC, false, false) |