/src/llvm-project/llvm/lib/Target/Hexagon/HexagonConstPropagation.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- HexagonConstPropagation.cpp ----------------------------------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | |
9 | | #include "HexagonInstrInfo.h" |
10 | | #include "HexagonRegisterInfo.h" |
11 | | #include "HexagonSubtarget.h" |
12 | | #include "llvm/ADT/APFloat.h" |
13 | | #include "llvm/ADT/APInt.h" |
14 | | #include "llvm/ADT/PostOrderIterator.h" |
15 | | #include "llvm/ADT/SetVector.h" |
16 | | #include "llvm/ADT/SmallVector.h" |
17 | | #include "llvm/ADT/StringRef.h" |
18 | | #include "llvm/CodeGen/MachineBasicBlock.h" |
19 | | #include "llvm/CodeGen/MachineFunction.h" |
20 | | #include "llvm/CodeGen/MachineFunctionPass.h" |
21 | | #include "llvm/CodeGen/MachineInstr.h" |
22 | | #include "llvm/CodeGen/MachineInstrBuilder.h" |
23 | | #include "llvm/CodeGen/MachineOperand.h" |
24 | | #include "llvm/CodeGen/MachineRegisterInfo.h" |
25 | | #include "llvm/CodeGen/TargetRegisterInfo.h" |
26 | | #include "llvm/CodeGen/TargetSubtargetInfo.h" |
27 | | #include "llvm/IR/Constants.h" |
28 | | #include "llvm/IR/Type.h" |
29 | | #include "llvm/Pass.h" |
30 | | #include "llvm/Support/Casting.h" |
31 | | #include "llvm/Support/Compiler.h" |
32 | | #include "llvm/Support/Debug.h" |
33 | | #include "llvm/Support/ErrorHandling.h" |
34 | | #include "llvm/Support/MathExtras.h" |
35 | | #include "llvm/Support/raw_ostream.h" |
36 | | #include <cassert> |
37 | | #include <cstdint> |
38 | | #include <cstring> |
39 | | #include <iterator> |
40 | | #include <map> |
41 | | #include <queue> |
42 | | #include <set> |
43 | | #include <utility> |
44 | | #include <vector> |
45 | | |
46 | 0 | #define DEBUG_TYPE "hcp" |
47 | | |
48 | | using namespace llvm; |
49 | | |
50 | | namespace { |
51 | | |
52 | | // Properties of a value that are tracked by the propagation. |
53 | | // A property that is marked as present (i.e. bit is set) dentes that the |
54 | | // value is known (proven) to have this property. Not all combinations |
55 | | // of bits make sense, for example Zero and NonZero are mutually exclusive, |
56 | | // but on the other hand, Zero implies Finite. In this case, whenever |
57 | | // the Zero property is present, Finite should also be present. |
58 | | class ConstantProperties { |
59 | | public: |
60 | | enum { |
61 | | Unknown = 0x0000, |
62 | | Zero = 0x0001, |
63 | | NonZero = 0x0002, |
64 | | Finite = 0x0004, |
65 | | Infinity = 0x0008, |
66 | | NaN = 0x0010, |
67 | | SignedZero = 0x0020, |
68 | | NumericProperties = (Zero|NonZero|Finite|Infinity|NaN|SignedZero), |
69 | | PosOrZero = 0x0100, |
70 | | NegOrZero = 0x0200, |
71 | | SignProperties = (PosOrZero|NegOrZero), |
72 | | Everything = (NumericProperties|SignProperties) |
73 | | }; |
74 | | |
75 | | // For a given constant, deduce the set of trackable properties that this |
76 | | // constant has. |
77 | | static uint32_t deduce(const Constant *C); |
78 | | }; |
79 | | |
80 | | // A representation of a register as it can appear in a MachineOperand, |
81 | | // i.e. a pair register:subregister. |
82 | | |
83 | | // FIXME: Use TargetInstrInfo::RegSubRegPair. Also duplicated in |
84 | | // HexagonGenPredicate |
85 | | struct RegisterSubReg { |
86 | | Register Reg; |
87 | | unsigned SubReg; |
88 | | |
89 | 0 | explicit RegisterSubReg(unsigned R, unsigned SR = 0) : Reg(R), SubReg(SR) {} |
90 | | explicit RegisterSubReg(const MachineOperand &MO) |
91 | 1.06M | : Reg(MO.getReg()), SubReg(MO.getSubReg()) {} |
92 | | |
93 | 0 | void print(const TargetRegisterInfo *TRI = nullptr) const { |
94 | 0 | dbgs() << printReg(Reg, TRI, SubReg); |
95 | 0 | } |
96 | | |
97 | 0 | bool operator== (const RegisterSubReg &R) const { |
98 | 0 | return (Reg == R.Reg) && (SubReg == R.SubReg); |
99 | 0 | } |
100 | | }; |
101 | | |
102 | | // Lattice cell, based on that was described in the W-Z paper on constant |
103 | | // propagation. |
104 | | // Latice cell will be allowed to hold multiple constant values. While |
105 | | // multiple values would normally indicate "bottom", we can still derive |
106 | | // some useful information from them. For example, comparison X > 0 |
107 | | // could be folded if all the values in the cell associated with X are |
108 | | // positive. |
109 | | class LatticeCell { |
110 | | private: |
111 | | enum { Normal, Top, Bottom }; |
112 | | |
113 | | static const unsigned MaxCellSize = 4; |
114 | | |
115 | | unsigned Kind:2; |
116 | | unsigned Size:3; |
117 | | unsigned IsSpecial:1; |
118 | | unsigned :0; |
119 | | |
120 | | public: |
121 | | union { |
122 | | uint32_t Properties; |
123 | | const Constant *Value; |
124 | | const Constant *Values[MaxCellSize]; |
125 | | }; |
126 | | |
127 | 1.67M | LatticeCell() : Kind(Top), Size(0), IsSpecial(false) { |
128 | 1.67M | for (const Constant *&Value : Values) |
129 | 6.68M | Value = nullptr; |
130 | 1.67M | } |
131 | | |
132 | | bool meet(const LatticeCell &L); |
133 | | bool add(const Constant *C); |
134 | | bool add(uint32_t Property); |
135 | | uint32_t properties() const; |
136 | 11.0k | unsigned size() const { return Size; } |
137 | | |
138 | 83.6k | LatticeCell(const LatticeCell &L) { |
139 | | // This memcpy also copies Properties (when L.Size == 0). |
140 | 83.6k | uint32_t N = |
141 | 83.6k | L.IsSpecial ? sizeof L.Properties : L.Size * sizeof(const Constant *); |
142 | 83.6k | memcpy(Values, L.Values, N); |
143 | 83.6k | Kind = L.Kind; |
144 | 83.6k | Size = L.Size; |
145 | 83.6k | IsSpecial = L.IsSpecial; |
146 | 83.6k | } |
147 | | |
148 | 516k | LatticeCell &operator=(const LatticeCell &L) { |
149 | 516k | if (this != &L) { |
150 | | // This memcpy also copies Properties (when L.Size == 0). |
151 | 516k | uint32_t N = L.IsSpecial ? sizeof L.Properties |
152 | 516k | : L.Size * sizeof(const Constant *); |
153 | 516k | memcpy(Values, L.Values, N); |
154 | 516k | Kind = L.Kind; |
155 | 516k | Size = L.Size; |
156 | 516k | IsSpecial = L.IsSpecial; |
157 | 516k | } |
158 | 516k | return *this; |
159 | 516k | } |
160 | | |
161 | 8.78k | bool isSingle() const { return size() == 1; } |
162 | 39.8k | bool isProperty() const { return IsSpecial; } |
163 | 640k | bool isTop() const { return Kind == Top; } |
164 | 824k | bool isBottom() const { return Kind == Bottom; } |
165 | | |
166 | 563k | bool setBottom() { |
167 | 563k | bool Changed = (Kind != Bottom); |
168 | 563k | Kind = Bottom; |
169 | 563k | Size = 0; |
170 | 563k | IsSpecial = false; |
171 | 563k | return Changed; |
172 | 563k | } |
173 | | |
174 | | void print(raw_ostream &os) const; |
175 | | |
176 | | private: |
177 | 12 | void setProperty() { |
178 | 12 | IsSpecial = true; |
179 | 12 | Size = 0; |
180 | 12 | Kind = Normal; |
181 | 12 | } |
182 | | |
183 | | bool convertToProperty(); |
184 | | }; |
185 | | |
186 | | #ifndef NDEBUG |
187 | 0 | raw_ostream &operator<< (raw_ostream &os, const LatticeCell &L) { |
188 | 0 | L.print(os); |
189 | 0 | return os; |
190 | 0 | } |
191 | | #endif |
192 | | |
193 | | class MachineConstEvaluator; |
194 | | |
195 | | class MachineConstPropagator { |
196 | | public: |
197 | 8.46k | MachineConstPropagator(MachineConstEvaluator &E) : MCE(E) { |
198 | 8.46k | Bottom.setBottom(); |
199 | 8.46k | } |
200 | | |
201 | | // Mapping: vreg -> cell |
202 | | // The keys are registers _without_ subregisters. This won't allow |
203 | | // definitions in the form of "vreg:subreg = ...". Such definitions |
204 | | // would be questionable from the point of view of SSA, since the "vreg" |
205 | | // could not be initialized in its entirety (specifically, an instruction |
206 | | // defining the "other part" of "vreg" would also count as a definition |
207 | | // of "vreg", which would violate the SSA). |
208 | | // If a value of a pair vreg:subreg needs to be obtained, the cell for |
209 | | // "vreg" needs to be looked up, and then the value of subregister "subreg" |
210 | | // needs to be evaluated. |
211 | | class CellMap { |
212 | | public: |
213 | 554k | CellMap() { |
214 | 554k | assert(Top.isTop()); |
215 | 0 | Bottom.setBottom(); |
216 | 554k | } |
217 | | |
218 | 8.46k | void clear() { Map.clear(); } |
219 | | |
220 | 460k | bool has(Register R) const { |
221 | | // All non-virtual registers are considered "bottom". |
222 | 460k | if (!R.isVirtual()) |
223 | 0 | return true; |
224 | 460k | MapType::const_iterator F = Map.find(R); |
225 | 460k | return F != Map.end(); |
226 | 460k | } |
227 | | |
228 | 831k | const LatticeCell &get(Register R) const { |
229 | 831k | if (!R.isVirtual()) |
230 | 0 | return Bottom; |
231 | 831k | MapType::const_iterator F = Map.find(R); |
232 | 831k | if (F != Map.end()) |
233 | 435k | return F->second; |
234 | 395k | return Top; |
235 | 831k | } |
236 | | |
237 | | // Invalidates any const references. |
238 | 389k | void update(Register R, const LatticeCell &L) { Map[R] = L; } |
239 | | |
240 | | void print(raw_ostream &os, const TargetRegisterInfo &TRI) const; |
241 | | |
242 | | private: |
243 | | using MapType = std::map<Register, LatticeCell>; |
244 | | |
245 | | MapType Map; |
246 | | // To avoid creating "top" entries, return a const reference to |
247 | | // this cell in "get". Also, have a "Bottom" cell to return from |
248 | | // get when a value of a physical register is requested. |
249 | | LatticeCell Top, Bottom; |
250 | | |
251 | | public: |
252 | | using const_iterator = MapType::const_iterator; |
253 | | |
254 | 0 | const_iterator begin() const { return Map.begin(); } |
255 | 0 | const_iterator end() const { return Map.end(); } |
256 | | }; |
257 | | |
258 | | bool run(MachineFunction &MF); |
259 | | |
260 | | private: |
261 | | void visitPHI(const MachineInstr &PN); |
262 | | void visitNonBranch(const MachineInstr &MI); |
263 | | void visitBranchesFrom(const MachineInstr &BrI); |
264 | | void visitUsesOf(unsigned R); |
265 | | bool computeBlockSuccessors(const MachineBasicBlock *MB, |
266 | | SetVector<const MachineBasicBlock*> &Targets); |
267 | | void removeCFGEdge(MachineBasicBlock *From, MachineBasicBlock *To); |
268 | | |
269 | | void propagate(MachineFunction &MF); |
270 | | bool rewrite(MachineFunction &MF); |
271 | | |
272 | | MachineRegisterInfo *MRI = nullptr; |
273 | | MachineConstEvaluator &MCE; |
274 | | |
275 | | using CFGEdge = std::pair<unsigned, unsigned>; |
276 | | using SetOfCFGEdge = std::set<CFGEdge>; |
277 | | using SetOfInstr = std::set<const MachineInstr *>; |
278 | | using QueueOfCFGEdge = std::queue<CFGEdge>; |
279 | | |
280 | | LatticeCell Bottom; |
281 | | CellMap Cells; |
282 | | SetOfCFGEdge EdgeExec; |
283 | | SetOfInstr InstrExec; |
284 | | QueueOfCFGEdge FlowQ; |
285 | | }; |
286 | | |
287 | | // The "evaluator/rewriter" of machine instructions. This is an abstract |
288 | | // base class that provides the interface that the propagator will use, |
289 | | // as well as some helper functions that are target-independent. |
290 | | class MachineConstEvaluator { |
291 | | public: |
292 | | MachineConstEvaluator(MachineFunction &Fn) |
293 | | : TRI(*Fn.getSubtarget().getRegisterInfo()), |
294 | 8.46k | MF(Fn), CX(Fn.getFunction().getContext()) {} |
295 | 8.46k | virtual ~MachineConstEvaluator() = default; |
296 | | |
297 | | // The required interface: |
298 | | // - A set of three "evaluate" functions. Each returns "true" if the |
299 | | // computation succeeded, "false" otherwise. |
300 | | // (1) Given an instruction MI, and the map with input values "Inputs", |
301 | | // compute the set of output values "Outputs". An example of when |
302 | | // the computation can "fail" is if MI is not an instruction that |
303 | | // is recognized by the evaluator. |
304 | | // (2) Given a register R (as reg:subreg), compute the cell that |
305 | | // corresponds to the "subreg" part of the given register. |
306 | | // (3) Given a branch instruction BrI, compute the set of target blocks. |
307 | | // If the branch can fall-through, add null (0) to the list of |
308 | | // possible targets. |
309 | | // - A function "rewrite", that given the cell map after propagation, |
310 | | // could rewrite instruction MI in a more beneficial form. Return |
311 | | // "true" if a change has been made, "false" otherwise. |
312 | | using CellMap = MachineConstPropagator::CellMap; |
313 | | virtual bool evaluate(const MachineInstr &MI, const CellMap &Inputs, |
314 | | CellMap &Outputs) = 0; |
315 | | virtual bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC, |
316 | | LatticeCell &Result) = 0; |
317 | | virtual bool evaluate(const MachineInstr &BrI, const CellMap &Inputs, |
318 | | SetVector<const MachineBasicBlock*> &Targets, |
319 | | bool &CanFallThru) = 0; |
320 | | virtual bool rewrite(MachineInstr &MI, const CellMap &Inputs) = 0; |
321 | | |
322 | | const TargetRegisterInfo &TRI; |
323 | | |
324 | | protected: |
325 | | MachineFunction &MF; |
326 | | LLVMContext &CX; |
327 | | |
328 | | struct Comparison { |
329 | | enum { |
330 | | Unk = 0x00, |
331 | | EQ = 0x01, |
332 | | NE = 0x02, |
333 | | L = 0x04, // Less-than property. |
334 | | G = 0x08, // Greater-than property. |
335 | | U = 0x40, // Unsigned property. |
336 | | LTs = L, |
337 | | LEs = L | EQ, |
338 | | GTs = G, |
339 | | GEs = G | EQ, |
340 | | LTu = L | U, |
341 | | LEu = L | EQ | U, |
342 | | GTu = G | U, |
343 | | GEu = G | EQ | U |
344 | | }; |
345 | | |
346 | 0 | static uint32_t negate(uint32_t Cmp) { |
347 | 0 | if (Cmp == EQ) |
348 | 0 | return NE; |
349 | 0 | if (Cmp == NE) |
350 | 0 | return EQ; |
351 | 0 | assert((Cmp & (L|G)) != (L|G)); |
352 | 0 | return Cmp ^ (L|G); |
353 | 0 | } |
354 | | }; |
355 | | |
356 | | // Helper functions. |
357 | | |
358 | | bool getCell(const RegisterSubReg &R, const CellMap &Inputs, LatticeCell &RC); |
359 | | bool constToInt(const Constant *C, APInt &Val) const; |
360 | | const ConstantInt *intToConst(const APInt &Val) const; |
361 | | |
362 | | // Compares. |
363 | | bool evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, const RegisterSubReg &R2, |
364 | | const CellMap &Inputs, bool &Result); |
365 | | bool evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, const APInt &A2, |
366 | | const CellMap &Inputs, bool &Result); |
367 | | bool evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, uint64_t Props2, |
368 | | const CellMap &Inputs, bool &Result); |
369 | | bool evaluateCMPii(uint32_t Cmp, const APInt &A1, const APInt &A2, |
370 | | bool &Result); |
371 | | bool evaluateCMPpi(uint32_t Cmp, uint32_t Props, const APInt &A2, |
372 | | bool &Result); |
373 | | bool evaluateCMPpp(uint32_t Cmp, uint32_t Props1, uint32_t Props2, |
374 | | bool &Result); |
375 | | |
376 | | bool evaluateCOPY(const RegisterSubReg &R1, const CellMap &Inputs, |
377 | | LatticeCell &Result); |
378 | | |
379 | | // Logical operations. |
380 | | bool evaluateANDrr(const RegisterSubReg &R1, const RegisterSubReg &R2, |
381 | | const CellMap &Inputs, LatticeCell &Result); |
382 | | bool evaluateANDri(const RegisterSubReg &R1, const APInt &A2, |
383 | | const CellMap &Inputs, LatticeCell &Result); |
384 | | bool evaluateANDii(const APInt &A1, const APInt &A2, APInt &Result); |
385 | | bool evaluateORrr(const RegisterSubReg &R1, const RegisterSubReg &R2, |
386 | | const CellMap &Inputs, LatticeCell &Result); |
387 | | bool evaluateORri(const RegisterSubReg &R1, const APInt &A2, |
388 | | const CellMap &Inputs, LatticeCell &Result); |
389 | | bool evaluateORii(const APInt &A1, const APInt &A2, APInt &Result); |
390 | | bool evaluateXORrr(const RegisterSubReg &R1, const RegisterSubReg &R2, |
391 | | const CellMap &Inputs, LatticeCell &Result); |
392 | | bool evaluateXORri(const RegisterSubReg &R1, const APInt &A2, |
393 | | const CellMap &Inputs, LatticeCell &Result); |
394 | | bool evaluateXORii(const APInt &A1, const APInt &A2, APInt &Result); |
395 | | |
396 | | // Extensions. |
397 | | bool evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits, |
398 | | const CellMap &Inputs, LatticeCell &Result); |
399 | | bool evaluateZEXTi(const APInt &A1, unsigned Width, unsigned Bits, |
400 | | APInt &Result); |
401 | | bool evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits, |
402 | | const CellMap &Inputs, LatticeCell &Result); |
403 | | bool evaluateSEXTi(const APInt &A1, unsigned Width, unsigned Bits, |
404 | | APInt &Result); |
405 | | |
406 | | // Leading/trailing bits. |
407 | | bool evaluateCLBr(const RegisterSubReg &R1, bool Zeros, bool Ones, |
408 | | const CellMap &Inputs, LatticeCell &Result); |
409 | | bool evaluateCLBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result); |
410 | | bool evaluateCTBr(const RegisterSubReg &R1, bool Zeros, bool Ones, |
411 | | const CellMap &Inputs, LatticeCell &Result); |
412 | | bool evaluateCTBi(const APInt &A1, bool Zeros, bool Ones, APInt &Result); |
413 | | |
414 | | // Bitfield extract. |
415 | | bool evaluateEXTRACTr(const RegisterSubReg &R1, unsigned Width, unsigned Bits, |
416 | | unsigned Offset, bool Signed, const CellMap &Inputs, |
417 | | LatticeCell &Result); |
418 | | bool evaluateEXTRACTi(const APInt &A1, unsigned Bits, unsigned Offset, |
419 | | bool Signed, APInt &Result); |
420 | | // Vector operations. |
421 | | bool evaluateSplatr(const RegisterSubReg &R1, unsigned Bits, unsigned Count, |
422 | | const CellMap &Inputs, LatticeCell &Result); |
423 | | bool evaluateSplati(const APInt &A1, unsigned Bits, unsigned Count, |
424 | | APInt &Result); |
425 | | }; |
426 | | |
427 | | } // end anonymous namespace |
428 | | |
429 | 806 | uint32_t ConstantProperties::deduce(const Constant *C) { |
430 | 806 | if (isa<ConstantInt>(C)) { |
431 | 806 | const ConstantInt *CI = cast<ConstantInt>(C); |
432 | 806 | if (CI->isZero()) |
433 | 0 | return Zero | PosOrZero | NegOrZero | Finite; |
434 | 806 | uint32_t Props = (NonZero | Finite); |
435 | 806 | if (CI->isNegative()) |
436 | 209 | return Props | NegOrZero; |
437 | 597 | return Props | PosOrZero; |
438 | 806 | } |
439 | | |
440 | 0 | if (isa<ConstantFP>(C)) { |
441 | 0 | const ConstantFP *CF = cast<ConstantFP>(C); |
442 | 0 | uint32_t Props = CF->isNegative() ? (NegOrZero|NonZero) |
443 | 0 | : PosOrZero; |
444 | 0 | if (CF->isZero()) |
445 | 0 | return (Props & ~NumericProperties) | (Zero|Finite); |
446 | 0 | Props = (Props & ~NumericProperties) | NonZero; |
447 | 0 | if (CF->isNaN()) |
448 | 0 | return (Props & ~NumericProperties) | NaN; |
449 | 0 | const APFloat &Val = CF->getValueAPF(); |
450 | 0 | if (Val.isInfinity()) |
451 | 0 | return (Props & ~NumericProperties) | Infinity; |
452 | 0 | Props |= Finite; |
453 | 0 | return Props; |
454 | 0 | } |
455 | | |
456 | 0 | return Unknown; |
457 | 0 | } |
458 | | |
459 | | // Convert a cell from a set of specific values to a cell that tracks |
460 | | // properties. |
461 | 12 | bool LatticeCell::convertToProperty() { |
462 | 12 | if (isProperty()) |
463 | 0 | return false; |
464 | | // Corner case: converting a fresh (top) cell to "special". |
465 | | // This can happen, when adding a property to a top cell. |
466 | 12 | uint32_t Everything = ConstantProperties::Everything; |
467 | 12 | uint32_t Ps = !isTop() ? properties() |
468 | 12 | : Everything; |
469 | 12 | if (Ps != ConstantProperties::Unknown) { |
470 | 12 | Properties = Ps; |
471 | 12 | setProperty(); |
472 | 12 | } else { |
473 | 0 | setBottom(); |
474 | 0 | } |
475 | 12 | return true; |
476 | 12 | } |
477 | | |
478 | | #ifndef NDEBUG |
479 | 0 | void LatticeCell::print(raw_ostream &os) const { |
480 | 0 | if (isProperty()) { |
481 | 0 | os << "{ "; |
482 | 0 | uint32_t Ps = properties(); |
483 | 0 | if (Ps & ConstantProperties::Zero) |
484 | 0 | os << "zero "; |
485 | 0 | if (Ps & ConstantProperties::NonZero) |
486 | 0 | os << "nonzero "; |
487 | 0 | if (Ps & ConstantProperties::Finite) |
488 | 0 | os << "finite "; |
489 | 0 | if (Ps & ConstantProperties::Infinity) |
490 | 0 | os << "infinity "; |
491 | 0 | if (Ps & ConstantProperties::NaN) |
492 | 0 | os << "nan "; |
493 | 0 | if (Ps & ConstantProperties::PosOrZero) |
494 | 0 | os << "poz "; |
495 | 0 | if (Ps & ConstantProperties::NegOrZero) |
496 | 0 | os << "nez "; |
497 | 0 | os << '}'; |
498 | 0 | return; |
499 | 0 | } |
500 | | |
501 | 0 | os << "{ "; |
502 | 0 | if (isBottom()) { |
503 | 0 | os << "bottom"; |
504 | 0 | } else if (isTop()) { |
505 | 0 | os << "top"; |
506 | 0 | } else { |
507 | 0 | for (unsigned i = 0; i < size(); ++i) { |
508 | 0 | const Constant *C = Values[i]; |
509 | 0 | if (i != 0) |
510 | 0 | os << ", "; |
511 | 0 | C->print(os); |
512 | 0 | } |
513 | 0 | } |
514 | 0 | os << " }"; |
515 | 0 | } |
516 | | #endif |
517 | | |
518 | | // "Meet" operation on two cells. This is the key of the propagation |
519 | | // algorithm. |
520 | 38.3k | bool LatticeCell::meet(const LatticeCell &L) { |
521 | 38.3k | bool Changed = false; |
522 | 38.3k | if (L.isBottom()) |
523 | 0 | Changed = setBottom(); |
524 | 38.3k | if (isBottom() || L.isTop()) |
525 | 0 | return Changed; |
526 | 38.3k | if (isTop()) { |
527 | 38.3k | *this = L; |
528 | | // L can be neither Top nor Bottom, so *this must have changed. |
529 | 38.3k | return true; |
530 | 38.3k | } |
531 | | |
532 | | // Top/bottom cases covered. Need to integrate L's set into ours. |
533 | 0 | if (L.isProperty()) |
534 | 0 | return add(L.properties()); |
535 | 0 | for (unsigned i = 0; i < L.size(); ++i) { |
536 | 0 | const Constant *LC = L.Values[i]; |
537 | 0 | Changed |= add(LC); |
538 | 0 | } |
539 | 0 | return Changed; |
540 | 0 | } |
541 | | |
542 | | // Add a new constant to the cell. This is actually where the cell update |
543 | | // happens. If a cell has room for more constants, the new constant is added. |
544 | | // Otherwise, the cell is converted to a "property" cell (i.e. a cell that |
545 | | // will track properties of the associated values, and not the values |
546 | | // themselves. Care is taken to handle special cases, like "bottom", etc. |
547 | 38.3k | bool LatticeCell::add(const Constant *LC) { |
548 | 38.3k | assert(LC); |
549 | 38.3k | if (isBottom()) |
550 | 0 | return false; |
551 | | |
552 | 38.3k | if (!isProperty()) { |
553 | | // Cell is not special. Try to add the constant here first, |
554 | | // if there is room. |
555 | 38.3k | unsigned Index = 0; |
556 | 38.3k | while (Index < Size) { |
557 | 0 | const Constant *C = Values[Index]; |
558 | | // If the constant is already here, no change is needed. |
559 | 0 | if (C == LC) |
560 | 0 | return false; |
561 | 0 | Index++; |
562 | 0 | } |
563 | 38.3k | if (Index < MaxCellSize) { |
564 | 38.3k | Values[Index] = LC; |
565 | 38.3k | Kind = Normal; |
566 | 38.3k | Size++; |
567 | 38.3k | return true; |
568 | 38.3k | } |
569 | 38.3k | } |
570 | | |
571 | 0 | bool Changed = false; |
572 | | |
573 | | // This cell is special, or is not special, but is full. After this |
574 | | // it will be special. |
575 | 0 | Changed = convertToProperty(); |
576 | 0 | uint32_t Ps = properties(); |
577 | 0 | uint32_t NewPs = Ps & ConstantProperties::deduce(LC); |
578 | 0 | if (NewPs == ConstantProperties::Unknown) { |
579 | 0 | setBottom(); |
580 | 0 | return true; |
581 | 0 | } |
582 | 0 | if (Ps != NewPs) { |
583 | 0 | Properties = NewPs; |
584 | 0 | Changed = true; |
585 | 0 | } |
586 | 0 | return Changed; |
587 | 0 | } |
588 | | |
589 | | // Add a property to the cell. This will force the cell to become a property- |
590 | | // tracking cell. |
591 | 12 | bool LatticeCell::add(uint32_t Property) { |
592 | 12 | bool Changed = convertToProperty(); |
593 | 12 | uint32_t Ps = properties(); |
594 | 12 | if (Ps == (Ps & Property)) |
595 | 0 | return Changed; |
596 | 12 | Properties = Property & Ps; |
597 | 12 | return true; |
598 | 12 | } |
599 | | |
600 | | // Return the properties of the values in the cell. This is valid for any |
601 | | // cell, and does not alter the cell itself. |
602 | 818 | uint32_t LatticeCell::properties() const { |
603 | 818 | if (isProperty()) |
604 | 12 | return Properties; |
605 | 806 | assert(!isTop() && "Should not call this for a top cell"); |
606 | 806 | if (isBottom()) |
607 | 0 | return ConstantProperties::Unknown; |
608 | | |
609 | 806 | assert(size() > 0 && "Empty cell"); |
610 | 0 | uint32_t Ps = ConstantProperties::deduce(Values[0]); |
611 | 806 | for (unsigned i = 1; i < size(); ++i) { |
612 | 0 | if (Ps == ConstantProperties::Unknown) |
613 | 0 | break; |
614 | 0 | Ps &= ConstantProperties::deduce(Values[i]); |
615 | 0 | } |
616 | 806 | return Ps; |
617 | 806 | } |
618 | | |
619 | | #ifndef NDEBUG |
620 | | void MachineConstPropagator::CellMap::print(raw_ostream &os, |
621 | 0 | const TargetRegisterInfo &TRI) const { |
622 | 0 | for (auto &I : Map) |
623 | 0 | dbgs() << " " << printReg(I.first, &TRI) << " -> " << I.second << '\n'; |
624 | 0 | } |
625 | | #endif |
626 | | |
627 | 0 | void MachineConstPropagator::visitPHI(const MachineInstr &PN) { |
628 | 0 | const MachineBasicBlock *MB = PN.getParent(); |
629 | 0 | unsigned MBN = MB->getNumber(); |
630 | 0 | LLVM_DEBUG(dbgs() << "Visiting FI(" << printMBBReference(*MB) << "): " << PN); |
631 | |
|
632 | 0 | const MachineOperand &MD = PN.getOperand(0); |
633 | 0 | RegisterSubReg DefR(MD); |
634 | 0 | assert(DefR.Reg.isVirtual()); |
635 | | |
636 | 0 | bool Changed = false; |
637 | | |
638 | | // If the def has a sub-register, set the corresponding cell to "bottom". |
639 | 0 | if (DefR.SubReg) { |
640 | 0 | Bottomize: |
641 | 0 | const LatticeCell &T = Cells.get(DefR.Reg); |
642 | 0 | Changed = !T.isBottom(); |
643 | 0 | Cells.update(DefR.Reg, Bottom); |
644 | 0 | if (Changed) |
645 | 0 | visitUsesOf(DefR.Reg); |
646 | 0 | return; |
647 | 0 | } |
648 | | |
649 | 0 | LatticeCell DefC = Cells.get(DefR.Reg); |
650 | |
|
651 | 0 | for (unsigned i = 1, n = PN.getNumOperands(); i < n; i += 2) { |
652 | 0 | const MachineBasicBlock *PB = PN.getOperand(i+1).getMBB(); |
653 | 0 | unsigned PBN = PB->getNumber(); |
654 | 0 | if (!EdgeExec.count(CFGEdge(PBN, MBN))) { |
655 | 0 | LLVM_DEBUG(dbgs() << " edge " << printMBBReference(*PB) << "->" |
656 | 0 | << printMBBReference(*MB) << " not executable\n"); |
657 | 0 | continue; |
658 | 0 | } |
659 | 0 | const MachineOperand &SO = PN.getOperand(i); |
660 | 0 | RegisterSubReg UseR(SO); |
661 | | // If the input is not a virtual register, we don't really know what |
662 | | // value it holds. |
663 | 0 | if (!UseR.Reg.isVirtual()) |
664 | 0 | goto Bottomize; |
665 | | // If there is no cell for an input register, it means top. |
666 | 0 | if (!Cells.has(UseR.Reg)) |
667 | 0 | continue; |
668 | | |
669 | 0 | LatticeCell SrcC; |
670 | 0 | bool Eval = MCE.evaluate(UseR, Cells.get(UseR.Reg), SrcC); |
671 | 0 | LLVM_DEBUG(dbgs() << " edge from " << printMBBReference(*PB) << ": " |
672 | 0 | << printReg(UseR.Reg, &MCE.TRI, UseR.SubReg) << SrcC |
673 | 0 | << '\n'); |
674 | 0 | Changed |= Eval ? DefC.meet(SrcC) |
675 | 0 | : DefC.setBottom(); |
676 | 0 | Cells.update(DefR.Reg, DefC); |
677 | 0 | if (DefC.isBottom()) |
678 | 0 | break; |
679 | 0 | } |
680 | 0 | if (Changed) |
681 | 0 | visitUsesOf(DefR.Reg); |
682 | 0 | } |
683 | | |
684 | 546k | void MachineConstPropagator::visitNonBranch(const MachineInstr &MI) { |
685 | 546k | LLVM_DEBUG(dbgs() << "Visiting MI(" << printMBBReference(*MI.getParent()) |
686 | 546k | << "): " << MI); |
687 | 546k | CellMap Outputs; |
688 | 546k | bool Eval = MCE.evaluate(MI, Cells, Outputs); |
689 | 546k | LLVM_DEBUG({ |
690 | 546k | if (Eval) { |
691 | 546k | dbgs() << " outputs:"; |
692 | 546k | for (auto &I : Outputs) |
693 | 546k | dbgs() << ' ' << I.second; |
694 | 546k | dbgs() << '\n'; |
695 | 546k | } |
696 | 546k | }); |
697 | | |
698 | | // Update outputs. If the value was not computed, set all the |
699 | | // def cells to bottom. |
700 | 1.83M | for (const MachineOperand &MO : MI.operands()) { |
701 | 1.83M | if (!MO.isReg() || !MO.isDef()) |
702 | 1.31M | continue; |
703 | 519k | RegisterSubReg DefR(MO); |
704 | | // Only track virtual registers. |
705 | 519k | if (!DefR.Reg.isVirtual()) |
706 | 168k | continue; |
707 | 350k | bool Changed = false; |
708 | | // If the evaluation failed, set cells for all output registers to bottom. |
709 | 350k | if (!Eval) { |
710 | 312k | const LatticeCell &T = Cells.get(DefR.Reg); |
711 | 312k | Changed = !T.isBottom(); |
712 | 312k | Cells.update(DefR.Reg, Bottom); |
713 | 312k | } else { |
714 | | // Find the corresponding cell in the computed outputs. |
715 | | // If it's not there, go on to the next def. |
716 | 38.3k | if (!Outputs.has(DefR.Reg)) |
717 | 0 | continue; |
718 | 38.3k | LatticeCell RC = Cells.get(DefR.Reg); |
719 | 38.3k | Changed = RC.meet(Outputs.get(DefR.Reg)); |
720 | 38.3k | Cells.update(DefR.Reg, RC); |
721 | 38.3k | } |
722 | 350k | if (Changed) |
723 | 350k | visitUsesOf(DefR.Reg); |
724 | 350k | } |
725 | 546k | } |
726 | | |
727 | | // Starting at a given branch, visit remaining branches in the block. |
728 | | // Traverse over the subsequent branches for as long as the preceding one |
729 | | // can fall through. Add all the possible targets to the flow work queue, |
730 | | // including the potential fall-through to the layout-successor block. |
731 | 9.34k | void MachineConstPropagator::visitBranchesFrom(const MachineInstr &BrI) { |
732 | 9.34k | const MachineBasicBlock &B = *BrI.getParent(); |
733 | 9.34k | unsigned MBN = B.getNumber(); |
734 | 9.34k | MachineBasicBlock::const_iterator It = BrI.getIterator(); |
735 | 9.34k | MachineBasicBlock::const_iterator End = B.end(); |
736 | | |
737 | 9.34k | SetVector<const MachineBasicBlock*> Targets; |
738 | 9.34k | bool EvalOk = true, FallsThru = true; |
739 | 19.2k | while (It != End) { |
740 | 10.6k | const MachineInstr &MI = *It; |
741 | 10.6k | InstrExec.insert(&MI); |
742 | 10.6k | LLVM_DEBUG(dbgs() << "Visiting " << (EvalOk ? "BR" : "br") << "(" |
743 | 10.6k | << printMBBReference(B) << "): " << MI); |
744 | | // Do not evaluate subsequent branches if the evaluation of any of the |
745 | | // previous branches failed. Keep iterating over the branches only |
746 | | // to mark them as executable. |
747 | 10.6k | EvalOk = EvalOk && MCE.evaluate(MI, Cells, Targets, FallsThru); |
748 | 10.6k | if (!EvalOk) |
749 | 9.92k | FallsThru = true; |
750 | 10.6k | if (!FallsThru) |
751 | 730 | break; |
752 | 9.92k | ++It; |
753 | 9.92k | } |
754 | | |
755 | 9.34k | if (B.mayHaveInlineAsmBr()) |
756 | 0 | EvalOk = false; |
757 | | |
758 | 9.34k | if (EvalOk) { |
759 | | // Need to add all CFG successors that lead to EH landing pads. |
760 | | // There won't be explicit branches to these blocks, but they must |
761 | | // be processed. |
762 | 730 | for (const MachineBasicBlock *SB : B.successors()) { |
763 | 730 | if (SB->isEHPad()) |
764 | 0 | Targets.insert(SB); |
765 | 730 | } |
766 | 730 | if (FallsThru) { |
767 | 0 | const MachineFunction &MF = *B.getParent(); |
768 | 0 | MachineFunction::const_iterator BI = B.getIterator(); |
769 | 0 | MachineFunction::const_iterator Next = std::next(BI); |
770 | 0 | if (Next != MF.end()) |
771 | 0 | Targets.insert(&*Next); |
772 | 0 | } |
773 | 8.61k | } else { |
774 | | // If the evaluation of the branches failed, make "Targets" to be the |
775 | | // set of all successors of the block from the CFG. |
776 | | // If the evaluation succeeded for all visited branches, then if the |
777 | | // last one set "FallsThru", then add an edge to the layout successor |
778 | | // to the targets. |
779 | 8.61k | Targets.clear(); |
780 | 8.61k | LLVM_DEBUG(dbgs() << " failed to evaluate a branch...adding all CFG " |
781 | 8.61k | "successors\n"); |
782 | 8.61k | for (const MachineBasicBlock *SB : B.successors()) |
783 | 2.62k | Targets.insert(SB); |
784 | 8.61k | } |
785 | | |
786 | 9.34k | for (const MachineBasicBlock *TB : Targets) { |
787 | 3.35k | unsigned TBN = TB->getNumber(); |
788 | 3.35k | LLVM_DEBUG(dbgs() << " pushing edge " << printMBBReference(B) << " -> " |
789 | 3.35k | << printMBBReference(*TB) << "\n"); |
790 | 3.35k | FlowQ.push(CFGEdge(MBN, TBN)); |
791 | 3.35k | } |
792 | 9.34k | } |
793 | | |
794 | 350k | void MachineConstPropagator::visitUsesOf(unsigned Reg) { |
795 | 350k | LLVM_DEBUG(dbgs() << "Visiting uses of " << printReg(Reg, &MCE.TRI) |
796 | 350k | << Cells.get(Reg) << '\n'); |
797 | 499k | for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) { |
798 | | // Do not process non-executable instructions. They can become exceutable |
799 | | // later (via a flow-edge in the work queue). In such case, the instruc- |
800 | | // tion will be visited at that time. |
801 | 499k | if (!InstrExec.count(&MI)) |
802 | 499k | continue; |
803 | 0 | if (MI.isPHI()) |
804 | 0 | visitPHI(MI); |
805 | 0 | else if (!MI.isBranch()) |
806 | 0 | visitNonBranch(MI); |
807 | 0 | else |
808 | 0 | visitBranchesFrom(MI); |
809 | 0 | } |
810 | 350k | } |
811 | | |
812 | | bool MachineConstPropagator::computeBlockSuccessors(const MachineBasicBlock *MB, |
813 | 10.5k | SetVector<const MachineBasicBlock*> &Targets) { |
814 | 10.5k | Targets.clear(); |
815 | | |
816 | 10.5k | MachineBasicBlock::const_iterator FirstBr = MB->end(); |
817 | 555k | for (const MachineInstr &MI : *MB) { |
818 | 555k | if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) |
819 | 0 | return false; |
820 | 555k | if (MI.isDebugInstr()) |
821 | 0 | continue; |
822 | 555k | if (MI.isBranch()) { |
823 | 9.34k | FirstBr = MI.getIterator(); |
824 | 9.34k | break; |
825 | 9.34k | } |
826 | 555k | } |
827 | | |
828 | 10.5k | MachineBasicBlock::const_iterator End = MB->end(); |
829 | | |
830 | 10.5k | bool DoNext = true; |
831 | 10.5k | for (MachineBasicBlock::const_iterator I = FirstBr; I != End; ++I) { |
832 | 9.34k | const MachineInstr &MI = *I; |
833 | | // Can there be debug instructions between branches? |
834 | 9.34k | if (MI.isDebugInstr()) |
835 | 0 | continue; |
836 | 9.34k | if (!InstrExec.count(&MI)) |
837 | 0 | continue; |
838 | 9.34k | bool Eval = MCE.evaluate(MI, Cells, Targets, DoNext); |
839 | 9.34k | if (!Eval) |
840 | 8.61k | return false; |
841 | 730 | if (!DoNext) |
842 | 730 | break; |
843 | 730 | } |
844 | | // If the last branch could fall-through, add block's layout successor. |
845 | 1.93k | if (DoNext) { |
846 | 1.20k | MachineFunction::const_iterator BI = MB->getIterator(); |
847 | 1.20k | MachineFunction::const_iterator NextI = std::next(BI); |
848 | 1.20k | if (NextI != MB->getParent()->end()) |
849 | 1.20k | Targets.insert(&*NextI); |
850 | 1.20k | } |
851 | | |
852 | | // Add all the EH landing pads. |
853 | 1.93k | for (const MachineBasicBlock *SB : MB->successors()) |
854 | 1.93k | if (SB->isEHPad()) |
855 | 0 | Targets.insert(SB); |
856 | | |
857 | 1.93k | return true; |
858 | 10.5k | } |
859 | | |
860 | | void MachineConstPropagator::removeCFGEdge(MachineBasicBlock *From, |
861 | 0 | MachineBasicBlock *To) { |
862 | | // First, remove the CFG successor/predecessor information. |
863 | 0 | From->removeSuccessor(To); |
864 | | // Remove all corresponding PHI operands in the To block. |
865 | 0 | for (MachineInstr &PN : To->phis()) { |
866 | | // reg0 = PHI reg1, bb2, reg3, bb4, ... |
867 | 0 | int N = PN.getNumOperands() - 2; |
868 | 0 | while (N > 0) { |
869 | 0 | if (PN.getOperand(N + 1).getMBB() == From) { |
870 | 0 | PN.removeOperand(N + 1); |
871 | 0 | PN.removeOperand(N); |
872 | 0 | } |
873 | 0 | N -= 2; |
874 | 0 | } |
875 | 0 | } |
876 | 0 | } |
877 | | |
878 | 8.46k | void MachineConstPropagator::propagate(MachineFunction &MF) { |
879 | 8.46k | MachineBasicBlock *Entry = GraphTraits<MachineFunction*>::getEntryNode(&MF); |
880 | 8.46k | unsigned EntryNum = Entry->getNumber(); |
881 | | |
882 | | // Start with a fake edge, just to process the entry node. |
883 | 8.46k | FlowQ.push(CFGEdge(EntryNum, EntryNum)); |
884 | | |
885 | 21.4k | while (!FlowQ.empty()) { |
886 | 13.0k | CFGEdge Edge = FlowQ.front(); |
887 | 13.0k | FlowQ.pop(); |
888 | | |
889 | 13.0k | LLVM_DEBUG( |
890 | 13.0k | dbgs() << "Picked edge " |
891 | 13.0k | << printMBBReference(*MF.getBlockNumbered(Edge.first)) << "->" |
892 | 13.0k | << printMBBReference(*MF.getBlockNumbered(Edge.second)) << '\n'); |
893 | 13.0k | if (Edge.first != EntryNum) |
894 | 3.36k | if (EdgeExec.count(Edge)) |
895 | 0 | continue; |
896 | 13.0k | EdgeExec.insert(Edge); |
897 | 13.0k | MachineBasicBlock *SB = MF.getBlockNumbered(Edge.second); |
898 | | |
899 | | // Process the block in three stages: |
900 | | // - visit all PHI nodes, |
901 | | // - visit all non-branch instructions, |
902 | | // - visit block branches. |
903 | 13.0k | MachineBasicBlock::const_iterator It = SB->begin(), End = SB->end(); |
904 | | |
905 | | // Visit PHI nodes in the successor block. |
906 | 13.0k | while (It != End && It->isPHI()) { |
907 | 0 | InstrExec.insert(&*It); |
908 | 0 | visitPHI(*It); |
909 | 0 | ++It; |
910 | 0 | } |
911 | | |
912 | | // If the successor block just became executable, visit all instructions. |
913 | | // To see if this is the first time we're visiting it, check the first |
914 | | // non-debug instruction to see if it is executable. |
915 | 13.0k | while (It != End && It->isDebugInstr()) |
916 | 0 | ++It; |
917 | 13.0k | assert(It == End || !It->isPHI()); |
918 | | // If this block has been visited, go on to the next one. |
919 | 13.0k | if (It != End && InstrExec.count(&*It)) |
920 | 2.04k | continue; |
921 | | // For now, scan all non-branch instructions. Branches require different |
922 | | // processing. |
923 | 557k | while (It != End && !It->isBranch()) { |
924 | 546k | if (!It->isDebugInstr()) { |
925 | 546k | InstrExec.insert(&*It); |
926 | 546k | visitNonBranch(*It); |
927 | 546k | } |
928 | 546k | ++It; |
929 | 546k | } |
930 | | |
931 | | // Time to process the end of the block. This is different from |
932 | | // processing regular (non-branch) instructions, because there can |
933 | | // be multiple branches in a block, and they can cause the block to |
934 | | // terminate early. |
935 | 10.9k | if (It != End) { |
936 | 9.34k | visitBranchesFrom(*It); |
937 | 9.34k | } else { |
938 | | // If the block didn't have a branch, add all successor edges to the |
939 | | // work queue. (There should really be only one successor in such case.) |
940 | 1.64k | unsigned SBN = SB->getNumber(); |
941 | 1.64k | for (const MachineBasicBlock *SSB : SB->successors()) |
942 | 1.20k | FlowQ.push(CFGEdge(SBN, SSB->getNumber())); |
943 | 1.64k | } |
944 | 10.9k | } // while (FlowQ) |
945 | | |
946 | 8.46k | LLVM_DEBUG({ |
947 | 8.46k | dbgs() << "Cells after propagation:\n"; |
948 | 8.46k | Cells.print(dbgs(), MCE.TRI); |
949 | 8.46k | dbgs() << "Dead CFG edges:\n"; |
950 | 8.46k | for (const MachineBasicBlock &B : MF) { |
951 | 8.46k | unsigned BN = B.getNumber(); |
952 | 8.46k | for (const MachineBasicBlock *SB : B.successors()) { |
953 | 8.46k | unsigned SN = SB->getNumber(); |
954 | 8.46k | if (!EdgeExec.count(CFGEdge(BN, SN))) |
955 | 8.46k | dbgs() << " " << printMBBReference(B) << " -> " |
956 | 8.46k | << printMBBReference(*SB) << '\n'; |
957 | 8.46k | } |
958 | 8.46k | } |
959 | 8.46k | }); |
960 | 8.46k | } |
961 | | |
962 | 8.46k | bool MachineConstPropagator::rewrite(MachineFunction &MF) { |
963 | 8.46k | bool Changed = false; |
964 | | // Rewrite all instructions based on the collected cell information. |
965 | | // |
966 | | // Traverse the instructions in a post-order, so that rewriting an |
967 | | // instruction can make changes "downstream" in terms of control-flow |
968 | | // without affecting the rewriting process. (We should not change |
969 | | // instructions that have not yet been visited by the rewriter.) |
970 | | // The reason for this is that the rewriter can introduce new vregs, |
971 | | // and replace uses of old vregs (which had corresponding cells |
972 | | // computed during propagation) with these new vregs (which at this |
973 | | // point would not have any cells, and would appear to be "top"). |
974 | | // If an attempt was made to evaluate an instruction with a fresh |
975 | | // "top" vreg, it would cause an error (abend) in the evaluator. |
976 | | |
977 | | // Collect the post-order-traversal block ordering. The subsequent |
978 | | // traversal/rewrite will update block successors, so it's safer |
979 | | // if the visiting order it computed ahead of time. |
980 | 8.46k | std::vector<MachineBasicBlock*> POT; |
981 | 8.46k | for (MachineBasicBlock *B : post_order(&MF)) |
982 | 10.9k | if (!B->empty()) |
983 | 10.5k | POT.push_back(B); |
984 | | |
985 | 10.5k | for (MachineBasicBlock *B : POT) { |
986 | | // Walk the block backwards (which usually begin with the branches). |
987 | | // If any branch is rewritten, we may need to update the successor |
988 | | // information for this block. Unless the block's successors can be |
989 | | // precisely determined (which may not be the case for indirect |
990 | | // branches), we cannot modify any branch. |
991 | | |
992 | | // Compute the successor information. |
993 | 10.5k | SetVector<const MachineBasicBlock*> Targets; |
994 | 10.5k | bool HaveTargets = computeBlockSuccessors(B, Targets); |
995 | | // Rewrite the executable instructions. Skip branches if we don't |
996 | | // have block successor information. |
997 | 565k | for (MachineInstr &MI : llvm::reverse(*B)) { |
998 | 565k | if (InstrExec.count(&MI)) { |
999 | 557k | if (MI.isBranch() && !HaveTargets) |
1000 | 9.92k | continue; |
1001 | 547k | Changed |= MCE.rewrite(MI, Cells); |
1002 | 547k | } |
1003 | 565k | } |
1004 | | // The rewriting could rewrite PHI nodes to non-PHI nodes, causing |
1005 | | // regular instructions to appear in between PHI nodes. Bring all |
1006 | | // the PHI nodes to the beginning of the block. |
1007 | 10.5k | for (auto I = B->begin(), E = B->end(); I != E; ++I) { |
1008 | 10.5k | if (I->isPHI()) |
1009 | 0 | continue; |
1010 | | // I is not PHI. Find the next PHI node P. |
1011 | 10.5k | auto P = I; |
1012 | 565k | while (++P != E) |
1013 | 554k | if (P->isPHI()) |
1014 | 0 | break; |
1015 | | // Not found. |
1016 | 10.5k | if (P == E) |
1017 | 10.5k | break; |
1018 | | // Splice P right before I. |
1019 | 0 | B->splice(I, B, P); |
1020 | | // Reset I to point at the just spliced PHI node. |
1021 | 0 | --I; |
1022 | 0 | } |
1023 | | // Update the block successor information: remove unnecessary successors. |
1024 | 10.5k | if (HaveTargets) { |
1025 | 1.93k | SmallVector<MachineBasicBlock*,2> ToRemove; |
1026 | 1.93k | for (MachineBasicBlock *SB : B->successors()) { |
1027 | 1.93k | if (!Targets.count(SB)) |
1028 | 0 | ToRemove.push_back(const_cast<MachineBasicBlock*>(SB)); |
1029 | 1.93k | Targets.remove(SB); |
1030 | 1.93k | } |
1031 | 1.93k | for (MachineBasicBlock *MBB : ToRemove) |
1032 | 0 | removeCFGEdge(B, MBB); |
1033 | | // If there are any blocks left in the computed targets, it means that |
1034 | | // we think that the block could go somewhere, but the CFG does not. |
1035 | | // This could legitimately happen in blocks that have non-returning |
1036 | | // calls---we would think that the execution can continue, but the |
1037 | | // CFG will not have a successor edge. |
1038 | 1.93k | } |
1039 | 10.5k | } |
1040 | | // Need to do some final post-processing. |
1041 | | // If a branch was not executable, it will not get rewritten, but should |
1042 | | // be removed (or replaced with something equivalent to a A2_nop). We can't |
1043 | | // erase instructions during rewriting, so this needs to be delayed until |
1044 | | // now. |
1045 | 10.9k | for (MachineBasicBlock &B : MF) { |
1046 | 10.9k | for (MachineInstr &MI : llvm::make_early_inc_range(B)) |
1047 | 565k | if (MI.isBranch() && !InstrExec.count(&MI)) |
1048 | 0 | B.erase(&MI); |
1049 | 10.9k | } |
1050 | 8.46k | return Changed; |
1051 | 8.46k | } |
1052 | | |
1053 | | // This is the constant propagation algorithm as described by Wegman-Zadeck. |
1054 | | // Most of the terminology comes from there. |
1055 | 8.46k | bool MachineConstPropagator::run(MachineFunction &MF) { |
1056 | 8.46k | LLVM_DEBUG(MF.print(dbgs() << "Starting MachineConstPropagator\n", nullptr)); |
1057 | | |
1058 | 8.46k | MRI = &MF.getRegInfo(); |
1059 | | |
1060 | 8.46k | Cells.clear(); |
1061 | 8.46k | EdgeExec.clear(); |
1062 | 8.46k | InstrExec.clear(); |
1063 | 8.46k | assert(FlowQ.empty()); |
1064 | | |
1065 | 0 | propagate(MF); |
1066 | 8.46k | bool Changed = rewrite(MF); |
1067 | | |
1068 | 8.46k | LLVM_DEBUG({ |
1069 | 8.46k | dbgs() << "End of MachineConstPropagator (Changed=" << Changed << ")\n"; |
1070 | 8.46k | if (Changed) |
1071 | 8.46k | MF.print(dbgs(), nullptr); |
1072 | 8.46k | }); |
1073 | 8.46k | return Changed; |
1074 | 8.46k | } |
1075 | | |
1076 | | // -------------------------------------------------------------------- |
1077 | | // Machine const evaluator. |
1078 | | |
1079 | | bool MachineConstEvaluator::getCell(const RegisterSubReg &R, const CellMap &Inputs, |
1080 | 122k | LatticeCell &RC) { |
1081 | 122k | if (!R.Reg.isVirtual()) |
1082 | 25.5k | return false; |
1083 | 96.5k | const LatticeCell &L = Inputs.get(R.Reg); |
1084 | 96.5k | if (!R.SubReg) { |
1085 | 88.2k | RC = L; |
1086 | 88.2k | return !RC.isBottom(); |
1087 | 88.2k | } |
1088 | 8.31k | bool Eval = evaluate(R, L, RC); |
1089 | 8.31k | return Eval && !RC.isBottom(); |
1090 | 96.5k | } |
1091 | | |
1092 | | bool MachineConstEvaluator::constToInt(const Constant *C, |
1093 | 9.02k | APInt &Val) const { |
1094 | 9.02k | const ConstantInt *CI = dyn_cast<ConstantInt>(C); |
1095 | 9.02k | if (!CI) |
1096 | 0 | return false; |
1097 | 9.02k | Val = CI->getValue(); |
1098 | 9.02k | return true; |
1099 | 9.02k | } |
1100 | | |
1101 | 0 | const ConstantInt *MachineConstEvaluator::intToConst(const APInt &Val) const { |
1102 | 0 | return ConstantInt::get(CX, Val); |
1103 | 0 | } |
1104 | | |
1105 | | bool MachineConstEvaluator::evaluateCMPrr(uint32_t Cmp, const RegisterSubReg &R1, |
1106 | 11.7k | const RegisterSubReg &R2, const CellMap &Inputs, bool &Result) { |
1107 | 11.7k | assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); |
1108 | 0 | LatticeCell LS1, LS2; |
1109 | 11.7k | if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2)) |
1110 | 11.7k | return false; |
1111 | | |
1112 | 0 | bool IsProp1 = LS1.isProperty(); |
1113 | 0 | bool IsProp2 = LS2.isProperty(); |
1114 | 0 | if (IsProp1) { |
1115 | 0 | uint32_t Prop1 = LS1.properties(); |
1116 | 0 | if (IsProp2) |
1117 | 0 | return evaluateCMPpp(Cmp, Prop1, LS2.properties(), Result); |
1118 | 0 | uint32_t NegCmp = Comparison::negate(Cmp); |
1119 | 0 | return evaluateCMPrp(NegCmp, R2, Prop1, Inputs, Result); |
1120 | 0 | } |
1121 | 0 | if (IsProp2) { |
1122 | 0 | uint32_t Prop2 = LS2.properties(); |
1123 | 0 | return evaluateCMPrp(Cmp, R1, Prop2, Inputs, Result); |
1124 | 0 | } |
1125 | | |
1126 | 0 | APInt A; |
1127 | 0 | bool IsTrue = true, IsFalse = true; |
1128 | 0 | for (unsigned i = 0; i < LS2.size(); ++i) { |
1129 | 0 | bool Res; |
1130 | 0 | bool Computed = constToInt(LS2.Values[i], A) && |
1131 | 0 | evaluateCMPri(Cmp, R1, A, Inputs, Res); |
1132 | 0 | if (!Computed) |
1133 | 0 | return false; |
1134 | 0 | IsTrue &= Res; |
1135 | 0 | IsFalse &= !Res; |
1136 | 0 | } |
1137 | 0 | assert(!IsTrue || !IsFalse); |
1138 | | // The actual logical value of the comparison is same as IsTrue. |
1139 | 0 | Result = IsTrue; |
1140 | | // Return true if the result was proven to be true or proven to be false. |
1141 | 0 | return IsTrue || IsFalse; |
1142 | 0 | } |
1143 | | |
1144 | | bool MachineConstEvaluator::evaluateCMPri(uint32_t Cmp, const RegisterSubReg &R1, |
1145 | 8.23k | const APInt &A2, const CellMap &Inputs, bool &Result) { |
1146 | 8.23k | assert(Inputs.has(R1.Reg)); |
1147 | 0 | LatticeCell LS; |
1148 | 8.23k | if (!getCell(R1, Inputs, LS)) |
1149 | 8.23k | return false; |
1150 | 0 | if (LS.isProperty()) |
1151 | 0 | return evaluateCMPpi(Cmp, LS.properties(), A2, Result); |
1152 | | |
1153 | 0 | APInt A; |
1154 | 0 | bool IsTrue = true, IsFalse = true; |
1155 | 0 | for (unsigned i = 0; i < LS.size(); ++i) { |
1156 | 0 | bool Res; |
1157 | 0 | bool Computed = constToInt(LS.Values[i], A) && |
1158 | 0 | evaluateCMPii(Cmp, A, A2, Res); |
1159 | 0 | if (!Computed) |
1160 | 0 | return false; |
1161 | 0 | IsTrue &= Res; |
1162 | 0 | IsFalse &= !Res; |
1163 | 0 | } |
1164 | 0 | assert(!IsTrue || !IsFalse); |
1165 | | // The actual logical value of the comparison is same as IsTrue. |
1166 | 0 | Result = IsTrue; |
1167 | | // Return true if the result was proven to be true or proven to be false. |
1168 | 0 | return IsTrue || IsFalse; |
1169 | 0 | } |
1170 | | |
1171 | | bool MachineConstEvaluator::evaluateCMPrp(uint32_t Cmp, const RegisterSubReg &R1, |
1172 | 0 | uint64_t Props2, const CellMap &Inputs, bool &Result) { |
1173 | 0 | assert(Inputs.has(R1.Reg)); |
1174 | 0 | LatticeCell LS; |
1175 | 0 | if (!getCell(R1, Inputs, LS)) |
1176 | 0 | return false; |
1177 | 0 | if (LS.isProperty()) |
1178 | 0 | return evaluateCMPpp(Cmp, LS.properties(), Props2, Result); |
1179 | | |
1180 | 0 | APInt A; |
1181 | 0 | uint32_t NegCmp = Comparison::negate(Cmp); |
1182 | 0 | bool IsTrue = true, IsFalse = true; |
1183 | 0 | for (unsigned i = 0; i < LS.size(); ++i) { |
1184 | 0 | bool Res; |
1185 | 0 | bool Computed = constToInt(LS.Values[i], A) && |
1186 | 0 | evaluateCMPpi(NegCmp, Props2, A, Res); |
1187 | 0 | if (!Computed) |
1188 | 0 | return false; |
1189 | 0 | IsTrue &= Res; |
1190 | 0 | IsFalse &= !Res; |
1191 | 0 | } |
1192 | 0 | assert(!IsTrue || !IsFalse); |
1193 | 0 | Result = IsTrue; |
1194 | 0 | return IsTrue || IsFalse; |
1195 | 0 | } |
1196 | | |
1197 | | bool MachineConstEvaluator::evaluateCMPii(uint32_t Cmp, const APInt &A1, |
1198 | 0 | const APInt &A2, bool &Result) { |
1199 | | // NE is a special kind of comparison (not composed of smaller properties). |
1200 | 0 | if (Cmp == Comparison::NE) { |
1201 | 0 | Result = !APInt::isSameValue(A1, A2); |
1202 | 0 | return true; |
1203 | 0 | } |
1204 | 0 | if (Cmp == Comparison::EQ) { |
1205 | 0 | Result = APInt::isSameValue(A1, A2); |
1206 | 0 | return true; |
1207 | 0 | } |
1208 | 0 | if (Cmp & Comparison::EQ) { |
1209 | 0 | if (APInt::isSameValue(A1, A2)) |
1210 | 0 | return (Result = true); |
1211 | 0 | } |
1212 | 0 | assert((Cmp & (Comparison::L | Comparison::G)) && "Malformed comparison"); |
1213 | 0 | Result = false; |
1214 | |
|
1215 | 0 | unsigned W1 = A1.getBitWidth(); |
1216 | 0 | unsigned W2 = A2.getBitWidth(); |
1217 | 0 | unsigned MaxW = (W1 >= W2) ? W1 : W2; |
1218 | 0 | if (Cmp & Comparison::U) { |
1219 | 0 | APInt Zx1 = A1.zext(MaxW); |
1220 | 0 | APInt Zx2 = A2.zext(MaxW); |
1221 | 0 | if (Cmp & Comparison::L) |
1222 | 0 | Result = Zx1.ult(Zx2); |
1223 | 0 | else if (Cmp & Comparison::G) |
1224 | 0 | Result = Zx2.ult(Zx1); |
1225 | 0 | return true; |
1226 | 0 | } |
1227 | | |
1228 | | // Signed comparison. |
1229 | 0 | APInt Sx1 = A1.sext(MaxW); |
1230 | 0 | APInt Sx2 = A2.sext(MaxW); |
1231 | 0 | if (Cmp & Comparison::L) |
1232 | 0 | Result = Sx1.slt(Sx2); |
1233 | 0 | else if (Cmp & Comparison::G) |
1234 | 0 | Result = Sx2.slt(Sx1); |
1235 | 0 | return true; |
1236 | 0 | } |
1237 | | |
1238 | | bool MachineConstEvaluator::evaluateCMPpi(uint32_t Cmp, uint32_t Props, |
1239 | 0 | const APInt &A2, bool &Result) { |
1240 | 0 | if (Props == ConstantProperties::Unknown) |
1241 | 0 | return false; |
1242 | | |
1243 | | // Should never see NaN here, but check for it for completeness. |
1244 | 0 | if (Props & ConstantProperties::NaN) |
1245 | 0 | return false; |
1246 | | // Infinity could theoretically be compared to a number, but the |
1247 | | // presence of infinity here would be very suspicious. If we don't |
1248 | | // know for sure that the number is finite, bail out. |
1249 | 0 | if (!(Props & ConstantProperties::Finite)) |
1250 | 0 | return false; |
1251 | | |
1252 | | // Let X be a number that has properties Props. |
1253 | | |
1254 | 0 | if (Cmp & Comparison::U) { |
1255 | | // In case of unsigned comparisons, we can only compare against 0. |
1256 | 0 | if (A2 == 0) { |
1257 | | // Any x!=0 will be considered >0 in an unsigned comparison. |
1258 | 0 | if (Props & ConstantProperties::Zero) |
1259 | 0 | Result = (Cmp & Comparison::EQ); |
1260 | 0 | else if (Props & ConstantProperties::NonZero) |
1261 | 0 | Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE); |
1262 | 0 | else |
1263 | 0 | return false; |
1264 | 0 | return true; |
1265 | 0 | } |
1266 | | // A2 is not zero. The only handled case is if X = 0. |
1267 | 0 | if (Props & ConstantProperties::Zero) { |
1268 | 0 | Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE); |
1269 | 0 | return true; |
1270 | 0 | } |
1271 | 0 | return false; |
1272 | 0 | } |
1273 | | |
1274 | | // Signed comparisons are different. |
1275 | 0 | if (Props & ConstantProperties::Zero) { |
1276 | 0 | if (A2 == 0) |
1277 | 0 | Result = (Cmp & Comparison::EQ); |
1278 | 0 | else |
1279 | 0 | Result = (Cmp == Comparison::NE) || |
1280 | 0 | ((Cmp & Comparison::L) && !A2.isNegative()) || |
1281 | 0 | ((Cmp & Comparison::G) && A2.isNegative()); |
1282 | 0 | return true; |
1283 | 0 | } |
1284 | 0 | if (Props & ConstantProperties::PosOrZero) { |
1285 | | // X >= 0 and !(A2 < 0) => cannot compare |
1286 | 0 | if (!A2.isNegative()) |
1287 | 0 | return false; |
1288 | | // X >= 0 and A2 < 0 |
1289 | 0 | Result = (Cmp & Comparison::G) || (Cmp == Comparison::NE); |
1290 | 0 | return true; |
1291 | 0 | } |
1292 | 0 | if (Props & ConstantProperties::NegOrZero) { |
1293 | | // X <= 0 and Src1 < 0 => cannot compare |
1294 | 0 | if (A2 == 0 || A2.isNegative()) |
1295 | 0 | return false; |
1296 | | // X <= 0 and A2 > 0 |
1297 | 0 | Result = (Cmp & Comparison::L) || (Cmp == Comparison::NE); |
1298 | 0 | return true; |
1299 | 0 | } |
1300 | | |
1301 | 0 | return false; |
1302 | 0 | } |
1303 | | |
1304 | | bool MachineConstEvaluator::evaluateCMPpp(uint32_t Cmp, uint32_t Props1, |
1305 | 0 | uint32_t Props2, bool &Result) { |
1306 | 0 | using P = ConstantProperties; |
1307 | |
|
1308 | 0 | if ((Props1 & P::NaN) && (Props2 & P::NaN)) |
1309 | 0 | return false; |
1310 | 0 | if (!(Props1 & P::Finite) || !(Props2 & P::Finite)) |
1311 | 0 | return false; |
1312 | | |
1313 | 0 | bool Zero1 = (Props1 & P::Zero), Zero2 = (Props2 & P::Zero); |
1314 | 0 | bool NonZero1 = (Props1 & P::NonZero), NonZero2 = (Props2 & P::NonZero); |
1315 | 0 | if (Zero1 && Zero2) { |
1316 | 0 | Result = (Cmp & Comparison::EQ); |
1317 | 0 | return true; |
1318 | 0 | } |
1319 | 0 | if (Cmp == Comparison::NE) { |
1320 | 0 | if ((Zero1 && NonZero2) || (NonZero1 && Zero2)) |
1321 | 0 | return (Result = true); |
1322 | 0 | return false; |
1323 | 0 | } |
1324 | | |
1325 | 0 | if (Cmp & Comparison::U) { |
1326 | | // In unsigned comparisons, we can only compare against a known zero, |
1327 | | // or a known non-zero. |
1328 | 0 | if (Zero1 && NonZero2) { |
1329 | 0 | Result = (Cmp & Comparison::L); |
1330 | 0 | return true; |
1331 | 0 | } |
1332 | 0 | if (NonZero1 && Zero2) { |
1333 | 0 | Result = (Cmp & Comparison::G); |
1334 | 0 | return true; |
1335 | 0 | } |
1336 | 0 | return false; |
1337 | 0 | } |
1338 | | |
1339 | | // Signed comparison. The comparison is not NE. |
1340 | 0 | bool Poz1 = (Props1 & P::PosOrZero), Poz2 = (Props2 & P::PosOrZero); |
1341 | 0 | bool Nez1 = (Props1 & P::NegOrZero), Nez2 = (Props2 & P::NegOrZero); |
1342 | 0 | if (Nez1 && Poz2) { |
1343 | 0 | if (NonZero1 || NonZero2) { |
1344 | 0 | Result = (Cmp & Comparison::L); |
1345 | 0 | return true; |
1346 | 0 | } |
1347 | | // Either (or both) could be zero. Can only say that X <= Y. |
1348 | 0 | if ((Cmp & Comparison::EQ) && (Cmp & Comparison::L)) |
1349 | 0 | return (Result = true); |
1350 | 0 | } |
1351 | 0 | if (Poz1 && Nez2) { |
1352 | 0 | if (NonZero1 || NonZero2) { |
1353 | 0 | Result = (Cmp & Comparison::G); |
1354 | 0 | return true; |
1355 | 0 | } |
1356 | | // Either (or both) could be zero. Can only say that X >= Y. |
1357 | 0 | if ((Cmp & Comparison::EQ) && (Cmp & Comparison::G)) |
1358 | 0 | return (Result = true); |
1359 | 0 | } |
1360 | | |
1361 | 0 | return false; |
1362 | 0 | } |
1363 | | |
1364 | | bool MachineConstEvaluator::evaluateCOPY(const RegisterSubReg &R1, |
1365 | 26.3k | const CellMap &Inputs, LatticeCell &Result) { |
1366 | 26.3k | return getCell(R1, Inputs, Result); |
1367 | 26.3k | } |
1368 | | |
1369 | | bool MachineConstEvaluator::evaluateANDrr(const RegisterSubReg &R1, |
1370 | 2.39k | const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) { |
1371 | 2.39k | assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); |
1372 | 0 | const LatticeCell &L1 = Inputs.get(R2.Reg); |
1373 | 2.39k | const LatticeCell &L2 = Inputs.get(R2.Reg); |
1374 | | // If both sources are bottom, exit. Otherwise try to evaluate ANDri |
1375 | | // with the non-bottom argument passed as the immediate. This is to |
1376 | | // catch cases of ANDing with 0. |
1377 | 2.39k | if (L2.isBottom()) { |
1378 | 1.81k | if (L1.isBottom()) |
1379 | 1.81k | return false; |
1380 | 0 | return evaluateANDrr(R2, R1, Inputs, Result); |
1381 | 1.81k | } |
1382 | 579 | LatticeCell LS2; |
1383 | 579 | if (!evaluate(R2, L2, LS2)) |
1384 | 0 | return false; |
1385 | 579 | if (LS2.isBottom() || LS2.isProperty()) |
1386 | 0 | return false; |
1387 | | |
1388 | 579 | APInt A; |
1389 | 579 | for (unsigned i = 0; i < LS2.size(); ++i) { |
1390 | 579 | LatticeCell RC; |
1391 | 579 | bool Eval = constToInt(LS2.Values[i], A) && |
1392 | 579 | evaluateANDri(R1, A, Inputs, RC); |
1393 | 579 | if (!Eval) |
1394 | 579 | return false; |
1395 | 0 | Result.meet(RC); |
1396 | 0 | } |
1397 | 0 | return !Result.isBottom(); |
1398 | 579 | } |
1399 | | |
1400 | | bool MachineConstEvaluator::evaluateANDri(const RegisterSubReg &R1, |
1401 | 4.16k | const APInt &A2, const CellMap &Inputs, LatticeCell &Result) { |
1402 | 4.16k | assert(Inputs.has(R1.Reg)); |
1403 | 4.16k | if (A2 == -1) |
1404 | 0 | return getCell(R1, Inputs, Result); |
1405 | 4.16k | if (A2 == 0) { |
1406 | 0 | LatticeCell RC; |
1407 | 0 | RC.add(intToConst(A2)); |
1408 | | // Overwrite Result. |
1409 | 0 | Result = RC; |
1410 | 0 | return true; |
1411 | 0 | } |
1412 | 4.16k | LatticeCell LS1; |
1413 | 4.16k | if (!getCell(R1, Inputs, LS1)) |
1414 | 4.16k | return false; |
1415 | 0 | if (LS1.isBottom() || LS1.isProperty()) |
1416 | 0 | return false; |
1417 | | |
1418 | 0 | APInt A, ResA; |
1419 | 0 | for (unsigned i = 0; i < LS1.size(); ++i) { |
1420 | 0 | bool Eval = constToInt(LS1.Values[i], A) && |
1421 | 0 | evaluateANDii(A, A2, ResA); |
1422 | 0 | if (!Eval) |
1423 | 0 | return false; |
1424 | 0 | const Constant *C = intToConst(ResA); |
1425 | 0 | Result.add(C); |
1426 | 0 | } |
1427 | 0 | return !Result.isBottom(); |
1428 | 0 | } |
1429 | | |
1430 | | bool MachineConstEvaluator::evaluateANDii(const APInt &A1, |
1431 | 0 | const APInt &A2, APInt &Result) { |
1432 | 0 | Result = A1 & A2; |
1433 | 0 | return true; |
1434 | 0 | } |
1435 | | |
1436 | | bool MachineConstEvaluator::evaluateORrr(const RegisterSubReg &R1, |
1437 | 1.14k | const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) { |
1438 | 1.14k | assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); |
1439 | 0 | const LatticeCell &L1 = Inputs.get(R2.Reg); |
1440 | 1.14k | const LatticeCell &L2 = Inputs.get(R2.Reg); |
1441 | | // If both sources are bottom, exit. Otherwise try to evaluate ORri |
1442 | | // with the non-bottom argument passed as the immediate. This is to |
1443 | | // catch cases of ORing with -1. |
1444 | 1.14k | if (L2.isBottom()) { |
1445 | 1.02k | if (L1.isBottom()) |
1446 | 1.02k | return false; |
1447 | 0 | return evaluateORrr(R2, R1, Inputs, Result); |
1448 | 1.02k | } |
1449 | 121 | LatticeCell LS2; |
1450 | 121 | if (!evaluate(R2, L2, LS2)) |
1451 | 0 | return false; |
1452 | 121 | if (LS2.isBottom() || LS2.isProperty()) |
1453 | 0 | return false; |
1454 | | |
1455 | 121 | APInt A; |
1456 | 121 | for (unsigned i = 0; i < LS2.size(); ++i) { |
1457 | 121 | LatticeCell RC; |
1458 | 121 | bool Eval = constToInt(LS2.Values[i], A) && |
1459 | 121 | evaluateORri(R1, A, Inputs, RC); |
1460 | 121 | if (!Eval) |
1461 | 121 | return false; |
1462 | 0 | Result.meet(RC); |
1463 | 0 | } |
1464 | 0 | return !Result.isBottom(); |
1465 | 121 | } |
1466 | | |
1467 | | bool MachineConstEvaluator::evaluateORri(const RegisterSubReg &R1, |
1468 | 1.66k | const APInt &A2, const CellMap &Inputs, LatticeCell &Result) { |
1469 | 1.66k | assert(Inputs.has(R1.Reg)); |
1470 | 1.66k | if (A2 == 0) |
1471 | 0 | return getCell(R1, Inputs, Result); |
1472 | 1.66k | if (A2 == -1) { |
1473 | 0 | LatticeCell RC; |
1474 | 0 | RC.add(intToConst(A2)); |
1475 | | // Overwrite Result. |
1476 | 0 | Result = RC; |
1477 | 0 | return true; |
1478 | 0 | } |
1479 | 1.66k | LatticeCell LS1; |
1480 | 1.66k | if (!getCell(R1, Inputs, LS1)) |
1481 | 1.66k | return false; |
1482 | 0 | if (LS1.isBottom() || LS1.isProperty()) |
1483 | 0 | return false; |
1484 | | |
1485 | 0 | APInt A, ResA; |
1486 | 0 | for (unsigned i = 0; i < LS1.size(); ++i) { |
1487 | 0 | bool Eval = constToInt(LS1.Values[i], A) && |
1488 | 0 | evaluateORii(A, A2, ResA); |
1489 | 0 | if (!Eval) |
1490 | 0 | return false; |
1491 | 0 | const Constant *C = intToConst(ResA); |
1492 | 0 | Result.add(C); |
1493 | 0 | } |
1494 | 0 | return !Result.isBottom(); |
1495 | 0 | } |
1496 | | |
1497 | | bool MachineConstEvaluator::evaluateORii(const APInt &A1, |
1498 | 0 | const APInt &A2, APInt &Result) { |
1499 | 0 | Result = A1 | A2; |
1500 | 0 | return true; |
1501 | 0 | } |
1502 | | |
1503 | | bool MachineConstEvaluator::evaluateXORrr(const RegisterSubReg &R1, |
1504 | 1.60k | const RegisterSubReg &R2, const CellMap &Inputs, LatticeCell &Result) { |
1505 | 1.60k | assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); |
1506 | 0 | LatticeCell LS1, LS2; |
1507 | 1.60k | if (!getCell(R1, Inputs, LS1) || !getCell(R2, Inputs, LS2)) |
1508 | 1.60k | return false; |
1509 | 0 | if (LS1.isProperty()) { |
1510 | 0 | if (LS1.properties() & ConstantProperties::Zero) |
1511 | 0 | return !(Result = LS2).isBottom(); |
1512 | 0 | return false; |
1513 | 0 | } |
1514 | 0 | if (LS2.isProperty()) { |
1515 | 0 | if (LS2.properties() & ConstantProperties::Zero) |
1516 | 0 | return !(Result = LS1).isBottom(); |
1517 | 0 | return false; |
1518 | 0 | } |
1519 | | |
1520 | 0 | APInt A; |
1521 | 0 | for (unsigned i = 0; i < LS2.size(); ++i) { |
1522 | 0 | LatticeCell RC; |
1523 | 0 | bool Eval = constToInt(LS2.Values[i], A) && |
1524 | 0 | evaluateXORri(R1, A, Inputs, RC); |
1525 | 0 | if (!Eval) |
1526 | 0 | return false; |
1527 | 0 | Result.meet(RC); |
1528 | 0 | } |
1529 | 0 | return !Result.isBottom(); |
1530 | 0 | } |
1531 | | |
1532 | | bool MachineConstEvaluator::evaluateXORri(const RegisterSubReg &R1, |
1533 | 0 | const APInt &A2, const CellMap &Inputs, LatticeCell &Result) { |
1534 | 0 | assert(Inputs.has(R1.Reg)); |
1535 | 0 | LatticeCell LS1; |
1536 | 0 | if (!getCell(R1, Inputs, LS1)) |
1537 | 0 | return false; |
1538 | 0 | if (LS1.isProperty()) { |
1539 | 0 | if (LS1.properties() & ConstantProperties::Zero) { |
1540 | 0 | const Constant *C = intToConst(A2); |
1541 | 0 | Result.add(C); |
1542 | 0 | return !Result.isBottom(); |
1543 | 0 | } |
1544 | 0 | return false; |
1545 | 0 | } |
1546 | | |
1547 | 0 | APInt A, XA; |
1548 | 0 | for (unsigned i = 0; i < LS1.size(); ++i) { |
1549 | 0 | bool Eval = constToInt(LS1.Values[i], A) && |
1550 | 0 | evaluateXORii(A, A2, XA); |
1551 | 0 | if (!Eval) |
1552 | 0 | return false; |
1553 | 0 | const Constant *C = intToConst(XA); |
1554 | 0 | Result.add(C); |
1555 | 0 | } |
1556 | 0 | return !Result.isBottom(); |
1557 | 0 | } |
1558 | | |
1559 | | bool MachineConstEvaluator::evaluateXORii(const APInt &A1, |
1560 | 0 | const APInt &A2, APInt &Result) { |
1561 | 0 | Result = A1 ^ A2; |
1562 | 0 | return true; |
1563 | 0 | } |
1564 | | |
1565 | | bool MachineConstEvaluator::evaluateZEXTr(const RegisterSubReg &R1, unsigned Width, |
1566 | 1.73k | unsigned Bits, const CellMap &Inputs, LatticeCell &Result) { |
1567 | 1.73k | assert(Inputs.has(R1.Reg)); |
1568 | 0 | LatticeCell LS1; |
1569 | 1.73k | if (!getCell(R1, Inputs, LS1)) |
1570 | 1.73k | return false; |
1571 | 0 | if (LS1.isProperty()) |
1572 | 0 | return false; |
1573 | | |
1574 | 0 | APInt A, XA; |
1575 | 0 | for (unsigned i = 0; i < LS1.size(); ++i) { |
1576 | 0 | bool Eval = constToInt(LS1.Values[i], A) && |
1577 | 0 | evaluateZEXTi(A, Width, Bits, XA); |
1578 | 0 | if (!Eval) |
1579 | 0 | return false; |
1580 | 0 | const Constant *C = intToConst(XA); |
1581 | 0 | Result.add(C); |
1582 | 0 | } |
1583 | 0 | return true; |
1584 | 0 | } |
1585 | | |
1586 | | bool MachineConstEvaluator::evaluateZEXTi(const APInt &A1, unsigned Width, |
1587 | 0 | unsigned Bits, APInt &Result) { |
1588 | 0 | unsigned BW = A1.getBitWidth(); |
1589 | 0 | (void)BW; |
1590 | 0 | assert(Width >= Bits && BW >= Bits); |
1591 | 0 | APInt Mask = APInt::getLowBitsSet(Width, Bits); |
1592 | 0 | Result = A1.zextOrTrunc(Width) & Mask; |
1593 | 0 | return true; |
1594 | 0 | } |
1595 | | |
1596 | | bool MachineConstEvaluator::evaluateSEXTr(const RegisterSubReg &R1, unsigned Width, |
1597 | 3.42k | unsigned Bits, const CellMap &Inputs, LatticeCell &Result) { |
1598 | 3.42k | assert(Inputs.has(R1.Reg)); |
1599 | 0 | LatticeCell LS1; |
1600 | 3.42k | if (!getCell(R1, Inputs, LS1)) |
1601 | 3.42k | return false; |
1602 | 0 | if (LS1.isBottom() || LS1.isProperty()) |
1603 | 0 | return false; |
1604 | | |
1605 | 0 | APInt A, XA; |
1606 | 0 | for (unsigned i = 0; i < LS1.size(); ++i) { |
1607 | 0 | bool Eval = constToInt(LS1.Values[i], A) && |
1608 | 0 | evaluateSEXTi(A, Width, Bits, XA); |
1609 | 0 | if (!Eval) |
1610 | 0 | return false; |
1611 | 0 | const Constant *C = intToConst(XA); |
1612 | 0 | Result.add(C); |
1613 | 0 | } |
1614 | 0 | return true; |
1615 | 0 | } |
1616 | | |
1617 | | bool MachineConstEvaluator::evaluateSEXTi(const APInt &A1, unsigned Width, |
1618 | 0 | unsigned Bits, APInt &Result) { |
1619 | 0 | unsigned BW = A1.getBitWidth(); |
1620 | 0 | assert(Width >= Bits && BW >= Bits); |
1621 | | // Special case to make things faster for smaller source widths. |
1622 | | // Sign extension of 0 bits generates 0 as a result. This is consistent |
1623 | | // with what the HW does. |
1624 | 0 | if (Bits == 0) { |
1625 | 0 | Result = APInt(Width, 0); |
1626 | 0 | return true; |
1627 | 0 | } |
1628 | | // In C, shifts by 64 invoke undefined behavior: handle that case in APInt. |
1629 | 0 | if (BW <= 64 && Bits != 0) { |
1630 | 0 | int64_t V = A1.getSExtValue(); |
1631 | 0 | switch (Bits) { |
1632 | 0 | case 8: |
1633 | 0 | V = static_cast<int8_t>(V); |
1634 | 0 | break; |
1635 | 0 | case 16: |
1636 | 0 | V = static_cast<int16_t>(V); |
1637 | 0 | break; |
1638 | 0 | case 32: |
1639 | 0 | V = static_cast<int32_t>(V); |
1640 | 0 | break; |
1641 | 0 | default: |
1642 | | // Shift left to lose all bits except lower "Bits" bits, then shift |
1643 | | // the value back, replicating what was a sign bit after the first |
1644 | | // shift. |
1645 | 0 | V = (V << (64-Bits)) >> (64-Bits); |
1646 | 0 | break; |
1647 | 0 | } |
1648 | | // V is a 64-bit sign-extended value. Convert it to APInt of desired |
1649 | | // width. |
1650 | 0 | Result = APInt(Width, V, true); |
1651 | 0 | return true; |
1652 | 0 | } |
1653 | | // Slow case: the value doesn't fit in int64_t. |
1654 | 0 | if (Bits < BW) |
1655 | 0 | Result = A1.trunc(Bits).sext(Width); |
1656 | 0 | else // Bits == BW |
1657 | 0 | Result = A1.sext(Width); |
1658 | 0 | return true; |
1659 | 0 | } |
1660 | | |
1661 | | bool MachineConstEvaluator::evaluateCLBr(const RegisterSubReg &R1, bool Zeros, |
1662 | 0 | bool Ones, const CellMap &Inputs, LatticeCell &Result) { |
1663 | 0 | assert(Inputs.has(R1.Reg)); |
1664 | 0 | LatticeCell LS1; |
1665 | 0 | if (!getCell(R1, Inputs, LS1)) |
1666 | 0 | return false; |
1667 | 0 | if (LS1.isBottom() || LS1.isProperty()) |
1668 | 0 | return false; |
1669 | | |
1670 | 0 | APInt A, CA; |
1671 | 0 | for (unsigned i = 0; i < LS1.size(); ++i) { |
1672 | 0 | bool Eval = constToInt(LS1.Values[i], A) && |
1673 | 0 | evaluateCLBi(A, Zeros, Ones, CA); |
1674 | 0 | if (!Eval) |
1675 | 0 | return false; |
1676 | 0 | const Constant *C = intToConst(CA); |
1677 | 0 | Result.add(C); |
1678 | 0 | } |
1679 | 0 | return true; |
1680 | 0 | } |
1681 | | |
1682 | | bool MachineConstEvaluator::evaluateCLBi(const APInt &A1, bool Zeros, |
1683 | 0 | bool Ones, APInt &Result) { |
1684 | 0 | unsigned BW = A1.getBitWidth(); |
1685 | 0 | if (!Zeros && !Ones) |
1686 | 0 | return false; |
1687 | 0 | unsigned Count = 0; |
1688 | 0 | if (Zeros && (Count == 0)) |
1689 | 0 | Count = A1.countl_zero(); |
1690 | 0 | if (Ones && (Count == 0)) |
1691 | 0 | Count = A1.countl_one(); |
1692 | 0 | Result = APInt(BW, static_cast<uint64_t>(Count), false); |
1693 | 0 | return true; |
1694 | 0 | } |
1695 | | |
1696 | | bool MachineConstEvaluator::evaluateCTBr(const RegisterSubReg &R1, bool Zeros, |
1697 | 0 | bool Ones, const CellMap &Inputs, LatticeCell &Result) { |
1698 | 0 | assert(Inputs.has(R1.Reg)); |
1699 | 0 | LatticeCell LS1; |
1700 | 0 | if (!getCell(R1, Inputs, LS1)) |
1701 | 0 | return false; |
1702 | 0 | if (LS1.isBottom() || LS1.isProperty()) |
1703 | 0 | return false; |
1704 | | |
1705 | 0 | APInt A, CA; |
1706 | 0 | for (unsigned i = 0; i < LS1.size(); ++i) { |
1707 | 0 | bool Eval = constToInt(LS1.Values[i], A) && |
1708 | 0 | evaluateCTBi(A, Zeros, Ones, CA); |
1709 | 0 | if (!Eval) |
1710 | 0 | return false; |
1711 | 0 | const Constant *C = intToConst(CA); |
1712 | 0 | Result.add(C); |
1713 | 0 | } |
1714 | 0 | return true; |
1715 | 0 | } |
1716 | | |
1717 | | bool MachineConstEvaluator::evaluateCTBi(const APInt &A1, bool Zeros, |
1718 | 0 | bool Ones, APInt &Result) { |
1719 | 0 | unsigned BW = A1.getBitWidth(); |
1720 | 0 | if (!Zeros && !Ones) |
1721 | 0 | return false; |
1722 | 0 | unsigned Count = 0; |
1723 | 0 | if (Zeros && (Count == 0)) |
1724 | 0 | Count = A1.countr_zero(); |
1725 | 0 | if (Ones && (Count == 0)) |
1726 | 0 | Count = A1.countr_one(); |
1727 | 0 | Result = APInt(BW, static_cast<uint64_t>(Count), false); |
1728 | 0 | return true; |
1729 | 0 | } |
1730 | | |
1731 | | bool MachineConstEvaluator::evaluateEXTRACTr(const RegisterSubReg &R1, |
1732 | | unsigned Width, unsigned Bits, unsigned Offset, bool Signed, |
1733 | 560 | const CellMap &Inputs, LatticeCell &Result) { |
1734 | 560 | assert(Inputs.has(R1.Reg)); |
1735 | 0 | assert(Bits+Offset <= Width); |
1736 | 0 | LatticeCell LS1; |
1737 | 560 | if (!getCell(R1, Inputs, LS1)) |
1738 | 560 | return false; |
1739 | 0 | if (LS1.isBottom()) |
1740 | 0 | return false; |
1741 | 0 | if (LS1.isProperty()) { |
1742 | 0 | uint32_t Ps = LS1.properties(); |
1743 | 0 | if (Ps & ConstantProperties::Zero) { |
1744 | 0 | const Constant *C = intToConst(APInt(Width, 0, false)); |
1745 | 0 | Result.add(C); |
1746 | 0 | return true; |
1747 | 0 | } |
1748 | 0 | return false; |
1749 | 0 | } |
1750 | | |
1751 | 0 | APInt A, CA; |
1752 | 0 | for (unsigned i = 0; i < LS1.size(); ++i) { |
1753 | 0 | bool Eval = constToInt(LS1.Values[i], A) && |
1754 | 0 | evaluateEXTRACTi(A, Bits, Offset, Signed, CA); |
1755 | 0 | if (!Eval) |
1756 | 0 | return false; |
1757 | 0 | const Constant *C = intToConst(CA); |
1758 | 0 | Result.add(C); |
1759 | 0 | } |
1760 | 0 | return true; |
1761 | 0 | } |
1762 | | |
1763 | | bool MachineConstEvaluator::evaluateEXTRACTi(const APInt &A1, unsigned Bits, |
1764 | 0 | unsigned Offset, bool Signed, APInt &Result) { |
1765 | 0 | unsigned BW = A1.getBitWidth(); |
1766 | 0 | assert(Bits+Offset <= BW); |
1767 | | // Extracting 0 bits generates 0 as a result (as indicated by the HW people). |
1768 | 0 | if (Bits == 0) { |
1769 | 0 | Result = APInt(BW, 0); |
1770 | 0 | return true; |
1771 | 0 | } |
1772 | 0 | if (BW <= 64) { |
1773 | 0 | int64_t V = A1.getZExtValue(); |
1774 | 0 | V <<= (64-Bits-Offset); |
1775 | 0 | if (Signed) |
1776 | 0 | V >>= (64-Bits); |
1777 | 0 | else |
1778 | 0 | V = static_cast<uint64_t>(V) >> (64-Bits); |
1779 | 0 | Result = APInt(BW, V, Signed); |
1780 | 0 | return true; |
1781 | 0 | } |
1782 | 0 | if (Signed) |
1783 | 0 | Result = A1.shl(BW-Bits-Offset).ashr(BW-Bits); |
1784 | 0 | else |
1785 | 0 | Result = A1.shl(BW-Bits-Offset).lshr(BW-Bits); |
1786 | 0 | return true; |
1787 | 0 | } |
1788 | | |
1789 | | bool MachineConstEvaluator::evaluateSplatr(const RegisterSubReg &R1, |
1790 | | unsigned Bits, unsigned Count, const CellMap &Inputs, |
1791 | 0 | LatticeCell &Result) { |
1792 | 0 | assert(Inputs.has(R1.Reg)); |
1793 | 0 | LatticeCell LS1; |
1794 | 0 | if (!getCell(R1, Inputs, LS1)) |
1795 | 0 | return false; |
1796 | 0 | if (LS1.isBottom() || LS1.isProperty()) |
1797 | 0 | return false; |
1798 | | |
1799 | 0 | APInt A, SA; |
1800 | 0 | for (unsigned i = 0; i < LS1.size(); ++i) { |
1801 | 0 | bool Eval = constToInt(LS1.Values[i], A) && |
1802 | 0 | evaluateSplati(A, Bits, Count, SA); |
1803 | 0 | if (!Eval) |
1804 | 0 | return false; |
1805 | 0 | const Constant *C = intToConst(SA); |
1806 | 0 | Result.add(C); |
1807 | 0 | } |
1808 | 0 | return true; |
1809 | 0 | } |
1810 | | |
1811 | | bool MachineConstEvaluator::evaluateSplati(const APInt &A1, unsigned Bits, |
1812 | 0 | unsigned Count, APInt &Result) { |
1813 | 0 | assert(Count > 0); |
1814 | 0 | unsigned BW = A1.getBitWidth(), SW = Count*Bits; |
1815 | 0 | APInt LoBits = (Bits < BW) ? A1.trunc(Bits) : A1.zext(Bits); |
1816 | 0 | if (Count > 1) |
1817 | 0 | LoBits = LoBits.zext(SW); |
1818 | |
|
1819 | 0 | APInt Res(SW, 0, false); |
1820 | 0 | for (unsigned i = 0; i < Count; ++i) { |
1821 | 0 | Res <<= Bits; |
1822 | 0 | Res |= LoBits; |
1823 | 0 | } |
1824 | 0 | Result = Res; |
1825 | 0 | return true; |
1826 | 0 | } |
1827 | | |
1828 | | // ---------------------------------------------------------------------- |
1829 | | // Hexagon-specific code. |
1830 | | |
1831 | | namespace llvm { |
1832 | | |
1833 | | FunctionPass *createHexagonConstPropagationPass(); |
1834 | | void initializeHexagonConstPropagationPass(PassRegistry &Registry); |
1835 | | |
1836 | | } // end namespace llvm |
1837 | | |
1838 | | namespace { |
1839 | | |
1840 | | class HexagonConstEvaluator : public MachineConstEvaluator { |
1841 | | public: |
1842 | | HexagonConstEvaluator(MachineFunction &Fn); |
1843 | | |
1844 | | bool evaluate(const MachineInstr &MI, const CellMap &Inputs, |
1845 | | CellMap &Outputs) override; |
1846 | | bool evaluate(const RegisterSubReg &R, const LatticeCell &SrcC, |
1847 | | LatticeCell &Result) override; |
1848 | | bool evaluate(const MachineInstr &BrI, const CellMap &Inputs, |
1849 | | SetVector<const MachineBasicBlock*> &Targets, bool &FallsThru) |
1850 | | override; |
1851 | | bool rewrite(MachineInstr &MI, const CellMap &Inputs) override; |
1852 | | |
1853 | | private: |
1854 | | unsigned getRegBitWidth(unsigned Reg) const; |
1855 | | |
1856 | | static uint32_t getCmp(unsigned Opc); |
1857 | | static APInt getCmpImm(unsigned Opc, unsigned OpX, |
1858 | | const MachineOperand &MO); |
1859 | | void replaceWithNop(MachineInstr &MI); |
1860 | | |
1861 | | bool evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, const CellMap &Inputs, |
1862 | | LatticeCell &Result); |
1863 | | bool evaluateHexCompare(const MachineInstr &MI, const CellMap &Inputs, |
1864 | | CellMap &Outputs); |
1865 | | // This is suitable to be called for compare-and-jump instructions. |
1866 | | bool evaluateHexCompare2(uint32_t Cmp, const MachineOperand &Src1, |
1867 | | const MachineOperand &Src2, const CellMap &Inputs, bool &Result); |
1868 | | bool evaluateHexLogical(const MachineInstr &MI, const CellMap &Inputs, |
1869 | | CellMap &Outputs); |
1870 | | bool evaluateHexCondMove(const MachineInstr &MI, const CellMap &Inputs, |
1871 | | CellMap &Outputs); |
1872 | | bool evaluateHexExt(const MachineInstr &MI, const CellMap &Inputs, |
1873 | | CellMap &Outputs); |
1874 | | bool evaluateHexVector1(const MachineInstr &MI, const CellMap &Inputs, |
1875 | | CellMap &Outputs); |
1876 | | bool evaluateHexVector2(const MachineInstr &MI, const CellMap &Inputs, |
1877 | | CellMap &Outputs); |
1878 | | |
1879 | | void replaceAllRegUsesWith(Register FromReg, Register ToReg); |
1880 | | bool rewriteHexBranch(MachineInstr &BrI, const CellMap &Inputs); |
1881 | | bool rewriteHexConstDefs(MachineInstr &MI, const CellMap &Inputs, |
1882 | | bool &AllDefs); |
1883 | | bool rewriteHexConstUses(MachineInstr &MI, const CellMap &Inputs); |
1884 | | |
1885 | | MachineRegisterInfo *MRI; |
1886 | | const HexagonInstrInfo &HII; |
1887 | | const HexagonRegisterInfo &HRI; |
1888 | | }; |
1889 | | |
1890 | | class HexagonConstPropagation : public MachineFunctionPass { |
1891 | | public: |
1892 | | static char ID; |
1893 | | |
1894 | 8.48k | HexagonConstPropagation() : MachineFunctionPass(ID) {} |
1895 | | |
1896 | 0 | StringRef getPassName() const override { |
1897 | 0 | return "Hexagon Constant Propagation"; |
1898 | 0 | } |
1899 | | |
1900 | 8.46k | bool runOnMachineFunction(MachineFunction &MF) override { |
1901 | 8.46k | const Function &F = MF.getFunction(); |
1902 | 8.46k | if (skipFunction(F)) |
1903 | 0 | return false; |
1904 | | |
1905 | 8.46k | HexagonConstEvaluator HCE(MF); |
1906 | 8.46k | return MachineConstPropagator(HCE).run(MF); |
1907 | 8.46k | } |
1908 | | }; |
1909 | | |
1910 | | } // end anonymous namespace |
1911 | | |
1912 | | char HexagonConstPropagation::ID = 0; |
1913 | | |
1914 | | INITIALIZE_PASS(HexagonConstPropagation, "hexagon-constp", |
1915 | | "Hexagon Constant Propagation", false, false) |
1916 | | |
1917 | | HexagonConstEvaluator::HexagonConstEvaluator(MachineFunction &Fn) |
1918 | | : MachineConstEvaluator(Fn), |
1919 | | HII(*Fn.getSubtarget<HexagonSubtarget>().getInstrInfo()), |
1920 | 8.46k | HRI(*Fn.getSubtarget<HexagonSubtarget>().getRegisterInfo()) { |
1921 | 8.46k | MRI = &Fn.getRegInfo(); |
1922 | 8.46k | } |
1923 | | |
1924 | | bool HexagonConstEvaluator::evaluate(const MachineInstr &MI, |
1925 | 546k | const CellMap &Inputs, CellMap &Outputs) { |
1926 | 546k | if (MI.isCall()) |
1927 | 14.3k | return false; |
1928 | 532k | if (MI.getNumOperands() == 0 || !MI.getOperand(0).isReg()) |
1929 | 114k | return false; |
1930 | 417k | const MachineOperand &MD = MI.getOperand(0); |
1931 | 417k | if (!MD.isDef()) |
1932 | 29.5k | return false; |
1933 | | |
1934 | 388k | unsigned Opc = MI.getOpcode(); |
1935 | 388k | RegisterSubReg DefR(MD); |
1936 | 388k | assert(!DefR.SubReg); |
1937 | 388k | if (!DefR.Reg.isVirtual()) |
1938 | 37.5k | return false; |
1939 | | |
1940 | 350k | if (MI.isCopy()) { |
1941 | 26.3k | LatticeCell RC; |
1942 | 26.3k | RegisterSubReg SrcR(MI.getOperand(1)); |
1943 | 26.3k | bool Eval = evaluateCOPY(SrcR, Inputs, RC); |
1944 | 26.3k | if (!Eval) |
1945 | 26.3k | return false; |
1946 | 0 | Outputs.update(DefR.Reg, RC); |
1947 | 0 | return true; |
1948 | 26.3k | } |
1949 | 324k | if (MI.isRegSequence()) { |
1950 | 9.83k | unsigned Sub1 = MI.getOperand(2).getImm(); |
1951 | 9.83k | unsigned Sub2 = MI.getOperand(4).getImm(); |
1952 | 9.83k | const TargetRegisterClass &DefRC = *MRI->getRegClass(DefR.Reg); |
1953 | 9.83k | unsigned SubLo = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_lo); |
1954 | 9.83k | unsigned SubHi = HRI.getHexagonSubRegIndex(DefRC, Hexagon::ps_sub_hi); |
1955 | 9.83k | if (Sub1 != SubLo && Sub1 != SubHi) |
1956 | 0 | return false; |
1957 | 9.83k | if (Sub2 != SubLo && Sub2 != SubHi) |
1958 | 0 | return false; |
1959 | 9.83k | assert(Sub1 != Sub2); |
1960 | 0 | bool LoIs1 = (Sub1 == SubLo); |
1961 | 9.83k | const MachineOperand &OpLo = LoIs1 ? MI.getOperand(1) : MI.getOperand(3); |
1962 | 9.83k | const MachineOperand &OpHi = LoIs1 ? MI.getOperand(3) : MI.getOperand(1); |
1963 | 9.83k | LatticeCell RC; |
1964 | 9.83k | RegisterSubReg SrcRL(OpLo), SrcRH(OpHi); |
1965 | 9.83k | bool Eval = evaluateHexRSEQ32(SrcRL, SrcRH, Inputs, RC); |
1966 | 9.83k | if (!Eval) |
1967 | 9.83k | return false; |
1968 | 0 | Outputs.update(DefR.Reg, RC); |
1969 | 0 | return true; |
1970 | 9.83k | } |
1971 | 314k | if (MI.isCompare()) { |
1972 | 42.7k | bool Eval = evaluateHexCompare(MI, Inputs, Outputs); |
1973 | 42.7k | return Eval; |
1974 | 42.7k | } |
1975 | | |
1976 | 271k | switch (Opc) { |
1977 | 171k | default: |
1978 | 171k | return false; |
1979 | 26.8k | case Hexagon::A2_tfrsi: |
1980 | 32.1k | case Hexagon::A2_tfrpi: |
1981 | 32.1k | case Hexagon::CONST32: |
1982 | 33.8k | case Hexagon::CONST64: |
1983 | 33.8k | { |
1984 | 33.8k | const MachineOperand &VO = MI.getOperand(1); |
1985 | | // The operand of CONST32 can be a blockaddress, e.g. |
1986 | | // %0 = CONST32 <blockaddress(@eat, %l)> |
1987 | | // Do this check for all instructions for safety. |
1988 | 33.8k | if (!VO.isImm()) |
1989 | 3.06k | return false; |
1990 | 30.7k | int64_t V = MI.getOperand(1).getImm(); |
1991 | 30.7k | unsigned W = getRegBitWidth(DefR.Reg); |
1992 | 30.7k | if (W != 32 && W != 64) |
1993 | 0 | return false; |
1994 | 30.7k | IntegerType *Ty = (W == 32) ? Type::getInt32Ty(CX) |
1995 | 30.7k | : Type::getInt64Ty(CX); |
1996 | 30.7k | const ConstantInt *CI = ConstantInt::get(Ty, V, true); |
1997 | 30.7k | LatticeCell RC = Outputs.get(DefR.Reg); |
1998 | 30.7k | RC.add(CI); |
1999 | 30.7k | Outputs.update(DefR.Reg, RC); |
2000 | 30.7k | break; |
2001 | 30.7k | } |
2002 | | |
2003 | 0 | case Hexagon::PS_true: |
2004 | 12 | case Hexagon::PS_false: |
2005 | 12 | { |
2006 | 12 | LatticeCell RC = Outputs.get(DefR.Reg); |
2007 | 12 | bool NonZero = (Opc == Hexagon::PS_true); |
2008 | 12 | uint32_t P = NonZero ? ConstantProperties::NonZero |
2009 | 12 | : ConstantProperties::Zero; |
2010 | 12 | RC.add(P); |
2011 | 12 | Outputs.update(DefR.Reg, RC); |
2012 | 12 | break; |
2013 | 0 | } |
2014 | | |
2015 | 1.35k | case Hexagon::A2_and: |
2016 | 4.94k | case Hexagon::A2_andir: |
2017 | 5.97k | case Hexagon::A2_andp: |
2018 | 7.05k | case Hexagon::A2_or: |
2019 | 7.32k | case Hexagon::A2_orir: |
2020 | 7.39k | case Hexagon::A2_orp: |
2021 | 8.75k | case Hexagon::A2_xor: |
2022 | 9.00k | case Hexagon::A2_xorp: |
2023 | 9.00k | { |
2024 | 9.00k | bool Eval = evaluateHexLogical(MI, Inputs, Outputs); |
2025 | 9.00k | if (!Eval) |
2026 | 9.00k | return false; |
2027 | 0 | break; |
2028 | 9.00k | } |
2029 | | |
2030 | 7.57k | case Hexagon::A2_combineii: // combine(#s8Ext, #s8) |
2031 | 7.59k | case Hexagon::A4_combineii: // combine(#s8, #u6Ext) |
2032 | 7.59k | { |
2033 | 7.59k | if (!MI.getOperand(1).isImm() || !MI.getOperand(2).isImm()) |
2034 | 0 | return false; |
2035 | 7.59k | uint64_t Hi = MI.getOperand(1).getImm(); |
2036 | 7.59k | uint64_t Lo = MI.getOperand(2).getImm(); |
2037 | 7.59k | uint64_t Res = (Hi << 32) | (Lo & 0xFFFFFFFF); |
2038 | 7.59k | IntegerType *Ty = Type::getInt64Ty(CX); |
2039 | 7.59k | const ConstantInt *CI = ConstantInt::get(Ty, Res, false); |
2040 | 7.59k | LatticeCell RC = Outputs.get(DefR.Reg); |
2041 | 7.59k | RC.add(CI); |
2042 | 7.59k | Outputs.update(DefR.Reg, RC); |
2043 | 7.59k | break; |
2044 | 7.59k | } |
2045 | | |
2046 | 1.27k | case Hexagon::S2_setbit_i: |
2047 | 1.27k | { |
2048 | 1.27k | int64_t B = MI.getOperand(2).getImm(); |
2049 | 1.27k | assert(B >=0 && B < 32); |
2050 | 0 | APInt A(32, (1ull << B), false); |
2051 | 1.27k | RegisterSubReg R(MI.getOperand(1)); |
2052 | 1.27k | LatticeCell RC = Outputs.get(DefR.Reg); |
2053 | 1.27k | bool Eval = evaluateORri(R, A, Inputs, RC); |
2054 | 1.27k | if (!Eval) |
2055 | 1.27k | return false; |
2056 | 0 | Outputs.update(DefR.Reg, RC); |
2057 | 0 | break; |
2058 | 1.27k | } |
2059 | | |
2060 | 150 | case Hexagon::C2_mux: |
2061 | 155 | case Hexagon::C2_muxir: |
2062 | 239 | case Hexagon::C2_muxri: |
2063 | 43.2k | case Hexagon::C2_muxii: |
2064 | 43.2k | { |
2065 | 43.2k | bool Eval = evaluateHexCondMove(MI, Inputs, Outputs); |
2066 | 43.2k | if (!Eval) |
2067 | 43.2k | return false; |
2068 | 0 | break; |
2069 | 43.2k | } |
2070 | | |
2071 | 1.93k | case Hexagon::A2_sxtb: |
2072 | 3.42k | case Hexagon::A2_sxth: |
2073 | 3.42k | case Hexagon::A2_sxtw: |
2074 | 4.65k | case Hexagon::A2_zxtb: |
2075 | 5.15k | case Hexagon::A2_zxth: |
2076 | 5.15k | { |
2077 | 5.15k | bool Eval = evaluateHexExt(MI, Inputs, Outputs); |
2078 | 5.15k | if (!Eval) |
2079 | 5.15k | return false; |
2080 | 0 | break; |
2081 | 5.15k | } |
2082 | | |
2083 | 0 | case Hexagon::S2_ct0: |
2084 | 0 | case Hexagon::S2_ct0p: |
2085 | 0 | case Hexagon::S2_ct1: |
2086 | 0 | case Hexagon::S2_ct1p: |
2087 | 0 | { |
2088 | 0 | using namespace Hexagon; |
2089 | |
|
2090 | 0 | bool Ones = (Opc == S2_ct1) || (Opc == S2_ct1p); |
2091 | 0 | RegisterSubReg R1(MI.getOperand(1)); |
2092 | 0 | assert(Inputs.has(R1.Reg)); |
2093 | 0 | LatticeCell T; |
2094 | 0 | bool Eval = evaluateCTBr(R1, !Ones, Ones, Inputs, T); |
2095 | 0 | if (!Eval) |
2096 | 0 | return false; |
2097 | | // All of these instructions return a 32-bit value. The evaluate |
2098 | | // will generate the same type as the operand, so truncate the |
2099 | | // result if necessary. |
2100 | 0 | APInt C; |
2101 | 0 | LatticeCell RC = Outputs.get(DefR.Reg); |
2102 | 0 | for (unsigned i = 0; i < T.size(); ++i) { |
2103 | 0 | const Constant *CI = T.Values[i]; |
2104 | 0 | if (constToInt(CI, C) && C.getBitWidth() > 32) |
2105 | 0 | CI = intToConst(C.trunc(32)); |
2106 | 0 | RC.add(CI); |
2107 | 0 | } |
2108 | 0 | Outputs.update(DefR.Reg, RC); |
2109 | 0 | break; |
2110 | 0 | } |
2111 | | |
2112 | 0 | case Hexagon::S2_cl0: |
2113 | 0 | case Hexagon::S2_cl0p: |
2114 | 0 | case Hexagon::S2_cl1: |
2115 | 0 | case Hexagon::S2_cl1p: |
2116 | 0 | case Hexagon::S2_clb: |
2117 | 0 | case Hexagon::S2_clbp: |
2118 | 0 | { |
2119 | 0 | using namespace Hexagon; |
2120 | |
|
2121 | 0 | bool OnlyZeros = (Opc == S2_cl0) || (Opc == S2_cl0p); |
2122 | 0 | bool OnlyOnes = (Opc == S2_cl1) || (Opc == S2_cl1p); |
2123 | 0 | RegisterSubReg R1(MI.getOperand(1)); |
2124 | 0 | assert(Inputs.has(R1.Reg)); |
2125 | 0 | LatticeCell T; |
2126 | 0 | bool Eval = evaluateCLBr(R1, !OnlyOnes, !OnlyZeros, Inputs, T); |
2127 | 0 | if (!Eval) |
2128 | 0 | return false; |
2129 | | // All of these instructions return a 32-bit value. The evaluate |
2130 | | // will generate the same type as the operand, so truncate the |
2131 | | // result if necessary. |
2132 | 0 | APInt C; |
2133 | 0 | LatticeCell RC = Outputs.get(DefR.Reg); |
2134 | 0 | for (unsigned i = 0; i < T.size(); ++i) { |
2135 | 0 | const Constant *CI = T.Values[i]; |
2136 | 0 | if (constToInt(CI, C) && C.getBitWidth() > 32) |
2137 | 0 | CI = intToConst(C.trunc(32)); |
2138 | 0 | RC.add(CI); |
2139 | 0 | } |
2140 | 0 | Outputs.update(DefR.Reg, RC); |
2141 | 0 | break; |
2142 | 0 | } |
2143 | | |
2144 | 19 | case Hexagon::S4_extract: |
2145 | 23 | case Hexagon::S4_extractp: |
2146 | 560 | case Hexagon::S2_extractu: |
2147 | 560 | case Hexagon::S2_extractup: |
2148 | 560 | { |
2149 | 560 | bool Signed = (Opc == Hexagon::S4_extract) || |
2150 | 560 | (Opc == Hexagon::S4_extractp); |
2151 | 560 | RegisterSubReg R1(MI.getOperand(1)); |
2152 | 560 | unsigned BW = getRegBitWidth(R1.Reg); |
2153 | 560 | unsigned Bits = MI.getOperand(2).getImm(); |
2154 | 560 | unsigned Offset = MI.getOperand(3).getImm(); |
2155 | 560 | LatticeCell RC = Outputs.get(DefR.Reg); |
2156 | 560 | if (Offset >= BW) { |
2157 | 0 | APInt Zero(BW, 0, false); |
2158 | 0 | RC.add(intToConst(Zero)); |
2159 | 0 | break; |
2160 | 0 | } |
2161 | 560 | if (Offset+Bits > BW) { |
2162 | | // If the requested bitfield extends beyond the most significant bit, |
2163 | | // the extra bits are treated as 0s. To emulate this behavior, reduce |
2164 | | // the number of requested bits, and make the extract unsigned. |
2165 | 0 | Bits = BW-Offset; |
2166 | 0 | Signed = false; |
2167 | 0 | } |
2168 | 560 | bool Eval = evaluateEXTRACTr(R1, BW, Bits, Offset, Signed, Inputs, RC); |
2169 | 560 | if (!Eval) |
2170 | 560 | return false; |
2171 | 0 | Outputs.update(DefR.Reg, RC); |
2172 | 0 | break; |
2173 | 560 | } |
2174 | | |
2175 | 0 | case Hexagon::S2_vsplatrb: |
2176 | 0 | case Hexagon::S2_vsplatrh: |
2177 | | // vabsh, vabsh:sat |
2178 | | // vabsw, vabsw:sat |
2179 | | // vconj:sat |
2180 | | // vrndwh, vrndwh:sat |
2181 | | // vsathb, vsathub, vsatwuh |
2182 | | // vsxtbh, vsxthw |
2183 | | // vtrunehb, vtrunohb |
2184 | | // vzxtbh, vzxthw |
2185 | 0 | { |
2186 | 0 | bool Eval = evaluateHexVector1(MI, Inputs, Outputs); |
2187 | 0 | if (!Eval) |
2188 | 0 | return false; |
2189 | 0 | break; |
2190 | 0 | } |
2191 | | |
2192 | | // TODO: |
2193 | | // A2_vaddh |
2194 | | // A2_vaddhs |
2195 | | // A2_vaddw |
2196 | | // A2_vaddws |
2197 | 271k | } |
2198 | | |
2199 | 38.3k | return true; |
2200 | 271k | } |
2201 | | |
2202 | | bool HexagonConstEvaluator::evaluate(const RegisterSubReg &R, |
2203 | 9.01k | const LatticeCell &Input, LatticeCell &Result) { |
2204 | 9.01k | if (!R.SubReg) { |
2205 | 700 | Result = Input; |
2206 | 700 | return true; |
2207 | 700 | } |
2208 | 8.31k | const TargetRegisterClass *RC = MRI->getRegClass(R.Reg); |
2209 | 8.31k | if (RC != &Hexagon::DoubleRegsRegClass) |
2210 | 0 | return false; |
2211 | 8.31k | if (R.SubReg != Hexagon::isub_lo && R.SubReg != Hexagon::isub_hi) |
2212 | 0 | return false; |
2213 | | |
2214 | 8.31k | assert(!Input.isTop()); |
2215 | 8.31k | if (Input.isBottom()) |
2216 | 8.31k | return false; |
2217 | | |
2218 | 0 | using P = ConstantProperties; |
2219 | |
|
2220 | 0 | if (Input.isProperty()) { |
2221 | 0 | uint32_t Ps = Input.properties(); |
2222 | 0 | if (Ps & (P::Zero|P::NaN)) { |
2223 | 0 | uint32_t Ns = (Ps & (P::Zero|P::NaN|P::SignProperties)); |
2224 | 0 | Result.add(Ns); |
2225 | 0 | return true; |
2226 | 0 | } |
2227 | 0 | if (R.SubReg == Hexagon::isub_hi) { |
2228 | 0 | uint32_t Ns = (Ps & P::SignProperties); |
2229 | 0 | Result.add(Ns); |
2230 | 0 | return true; |
2231 | 0 | } |
2232 | 0 | return false; |
2233 | 0 | } |
2234 | | |
2235 | | // The Input cell contains some known values. Pick the word corresponding |
2236 | | // to the subregister. |
2237 | 0 | APInt A; |
2238 | 0 | for (unsigned i = 0; i < Input.size(); ++i) { |
2239 | 0 | const Constant *C = Input.Values[i]; |
2240 | 0 | if (!constToInt(C, A)) |
2241 | 0 | return false; |
2242 | 0 | if (!A.isIntN(64)) |
2243 | 0 | return false; |
2244 | 0 | uint64_t U = A.getZExtValue(); |
2245 | 0 | if (R.SubReg == Hexagon::isub_hi) |
2246 | 0 | U >>= 32; |
2247 | 0 | U &= 0xFFFFFFFFULL; |
2248 | 0 | uint32_t U32 = Lo_32(U); |
2249 | 0 | int32_t V32; |
2250 | 0 | memcpy(&V32, &U32, sizeof V32); |
2251 | 0 | IntegerType *Ty = Type::getInt32Ty(CX); |
2252 | 0 | const ConstantInt *C32 = ConstantInt::get(Ty, static_cast<int64_t>(V32)); |
2253 | 0 | Result.add(C32); |
2254 | 0 | } |
2255 | 0 | return true; |
2256 | 0 | } |
2257 | | |
2258 | | bool HexagonConstEvaluator::evaluate(const MachineInstr &BrI, |
2259 | | const CellMap &Inputs, SetVector<const MachineBasicBlock*> &Targets, |
2260 | 19.4k | bool &FallsThru) { |
2261 | | // We need to evaluate one branch at a time. TII::analyzeBranch checks |
2262 | | // all the branches in a basic block at once, so we cannot use it. |
2263 | 19.4k | unsigned Opc = BrI.getOpcode(); |
2264 | 19.4k | bool SimpleBranch = false; |
2265 | 19.4k | bool Negated = false; |
2266 | 19.4k | switch (Opc) { |
2267 | 226 | case Hexagon::J2_jumpf: |
2268 | 226 | case Hexagon::J2_jumpfnew: |
2269 | 226 | case Hexagon::J2_jumpfnewpt: |
2270 | 226 | Negated = true; |
2271 | 226 | [[fallthrough]]; |
2272 | 2.62k | case Hexagon::J2_jumpt: |
2273 | 2.62k | case Hexagon::J2_jumptnew: |
2274 | 2.62k | case Hexagon::J2_jumptnewpt: |
2275 | | // Simple branch: if([!]Pn) jump ... |
2276 | | // i.e. Op0 = predicate, Op1 = branch target. |
2277 | 2.62k | SimpleBranch = true; |
2278 | 2.62k | break; |
2279 | 2.19k | case Hexagon::J2_jump: |
2280 | 2.19k | Targets.insert(BrI.getOperand(0).getMBB()); |
2281 | 2.19k | FallsThru = false; |
2282 | 2.19k | return true; |
2283 | 14.5k | default: |
2284 | 17.2k | Undetermined: |
2285 | | // If the branch is of unknown type, assume that all successors are |
2286 | | // executable. |
2287 | 17.2k | FallsThru = !BrI.isUnconditionalBranch(); |
2288 | 17.2k | return false; |
2289 | 19.4k | } |
2290 | | |
2291 | 2.62k | if (SimpleBranch) { |
2292 | 2.62k | const MachineOperand &MD = BrI.getOperand(0); |
2293 | 2.62k | RegisterSubReg PR(MD); |
2294 | | // If the condition operand has a subregister, this is not something |
2295 | | // we currently recognize. |
2296 | 2.62k | if (PR.SubReg) |
2297 | 0 | goto Undetermined; |
2298 | 2.62k | assert(Inputs.has(PR.Reg)); |
2299 | 0 | const LatticeCell &PredC = Inputs.get(PR.Reg); |
2300 | 2.62k | if (PredC.isBottom()) |
2301 | 2.62k | goto Undetermined; |
2302 | | |
2303 | 0 | uint32_t Props = PredC.properties(); |
2304 | 0 | bool CTrue = false, CFalse = false; |
2305 | 0 | if (Props & ConstantProperties::Zero) |
2306 | 0 | CFalse = true; |
2307 | 0 | else if (Props & ConstantProperties::NonZero) |
2308 | 0 | CTrue = true; |
2309 | | // If the condition is not known to be either, bail out. |
2310 | 0 | if (!CTrue && !CFalse) |
2311 | 0 | goto Undetermined; |
2312 | | |
2313 | 0 | const MachineBasicBlock *BranchTarget = BrI.getOperand(1).getMBB(); |
2314 | |
|
2315 | 0 | FallsThru = false; |
2316 | 0 | if ((!Negated && CTrue) || (Negated && CFalse)) |
2317 | 0 | Targets.insert(BranchTarget); |
2318 | 0 | else if ((!Negated && CFalse) || (Negated && CTrue)) |
2319 | 0 | FallsThru = true; |
2320 | 0 | else |
2321 | 0 | goto Undetermined; |
2322 | 0 | } |
2323 | | |
2324 | 0 | return true; |
2325 | 2.62k | } |
2326 | | |
2327 | 547k | bool HexagonConstEvaluator::rewrite(MachineInstr &MI, const CellMap &Inputs) { |
2328 | 547k | if (MI.isBranch()) |
2329 | 730 | return rewriteHexBranch(MI, Inputs); |
2330 | | |
2331 | 546k | unsigned Opc = MI.getOpcode(); |
2332 | 546k | switch (Opc) { |
2333 | 512k | default: |
2334 | 512k | break; |
2335 | 512k | case Hexagon::A2_tfrsi: |
2336 | 32.1k | case Hexagon::A2_tfrpi: |
2337 | 32.1k | case Hexagon::CONST32: |
2338 | 33.8k | case Hexagon::CONST64: |
2339 | 33.8k | case Hexagon::PS_true: |
2340 | 33.8k | case Hexagon::PS_false: |
2341 | 33.8k | return false; |
2342 | 546k | } |
2343 | | |
2344 | 512k | unsigned NumOp = MI.getNumOperands(); |
2345 | 512k | if (NumOp == 0) |
2346 | 0 | return false; |
2347 | | |
2348 | 512k | bool AllDefs, Changed; |
2349 | 512k | Changed = rewriteHexConstDefs(MI, Inputs, AllDefs); |
2350 | | // If not all defs have been rewritten (i.e. the instruction defines |
2351 | | // a register that is not compile-time constant), then try to rewrite |
2352 | | // register operands that are known to be constant with immediates. |
2353 | 512k | if (!AllDefs) |
2354 | 345k | Changed |= rewriteHexConstUses(MI, Inputs); |
2355 | | |
2356 | 512k | return Changed; |
2357 | 512k | } |
2358 | | |
2359 | 44.0k | unsigned HexagonConstEvaluator::getRegBitWidth(unsigned Reg) const { |
2360 | 44.0k | const TargetRegisterClass *RC = MRI->getRegClass(Reg); |
2361 | 44.0k | if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) |
2362 | 29.2k | return 32; |
2363 | 14.7k | if (Hexagon::DoubleRegsRegClass.hasSubClassEq(RC)) |
2364 | 14.7k | return 64; |
2365 | 0 | if (Hexagon::PredRegsRegClass.hasSubClassEq(RC)) |
2366 | 0 | return 8; |
2367 | 0 | llvm_unreachable("Invalid register"); |
2368 | 0 | return 0; |
2369 | 0 | } |
2370 | | |
2371 | 19.9k | uint32_t HexagonConstEvaluator::getCmp(unsigned Opc) { |
2372 | 19.9k | switch (Opc) { |
2373 | 1.30k | case Hexagon::C2_cmpeq: |
2374 | 2.55k | case Hexagon::C2_cmpeqp: |
2375 | 2.55k | case Hexagon::A4_cmpbeq: |
2376 | 2.55k | case Hexagon::A4_cmpheq: |
2377 | 2.55k | case Hexagon::A4_cmpbeqi: |
2378 | 2.55k | case Hexagon::A4_cmpheqi: |
2379 | 4.56k | case Hexagon::C2_cmpeqi: |
2380 | 4.56k | case Hexagon::J4_cmpeqn1_t_jumpnv_nt: |
2381 | 4.56k | case Hexagon::J4_cmpeqn1_t_jumpnv_t: |
2382 | 4.56k | case Hexagon::J4_cmpeqi_t_jumpnv_nt: |
2383 | 4.56k | case Hexagon::J4_cmpeqi_t_jumpnv_t: |
2384 | 4.56k | case Hexagon::J4_cmpeq_t_jumpnv_nt: |
2385 | 4.56k | case Hexagon::J4_cmpeq_t_jumpnv_t: |
2386 | 4.56k | return Comparison::EQ; |
2387 | | |
2388 | 0 | case Hexagon::C4_cmpneq: |
2389 | 0 | case Hexagon::C4_cmpneqi: |
2390 | 0 | case Hexagon::J4_cmpeqn1_f_jumpnv_nt: |
2391 | 0 | case Hexagon::J4_cmpeqn1_f_jumpnv_t: |
2392 | 0 | case Hexagon::J4_cmpeqi_f_jumpnv_nt: |
2393 | 0 | case Hexagon::J4_cmpeqi_f_jumpnv_t: |
2394 | 0 | case Hexagon::J4_cmpeq_f_jumpnv_nt: |
2395 | 0 | case Hexagon::J4_cmpeq_f_jumpnv_t: |
2396 | 0 | return Comparison::NE; |
2397 | | |
2398 | 2.84k | case Hexagon::C2_cmpgt: |
2399 | 4.87k | case Hexagon::C2_cmpgtp: |
2400 | 4.87k | case Hexagon::A4_cmpbgt: |
2401 | 4.87k | case Hexagon::A4_cmphgt: |
2402 | 4.87k | case Hexagon::A4_cmpbgti: |
2403 | 4.87k | case Hexagon::A4_cmphgti: |
2404 | 8.00k | case Hexagon::C2_cmpgti: |
2405 | 8.00k | case Hexagon::J4_cmpgtn1_t_jumpnv_nt: |
2406 | 8.00k | case Hexagon::J4_cmpgtn1_t_jumpnv_t: |
2407 | 8.00k | case Hexagon::J4_cmpgti_t_jumpnv_nt: |
2408 | 8.00k | case Hexagon::J4_cmpgti_t_jumpnv_t: |
2409 | 8.00k | case Hexagon::J4_cmpgt_t_jumpnv_nt: |
2410 | 8.00k | case Hexagon::J4_cmpgt_t_jumpnv_t: |
2411 | 8.00k | return Comparison::GTs; |
2412 | | |
2413 | 0 | case Hexagon::C4_cmplte: |
2414 | 0 | case Hexagon::C4_cmpltei: |
2415 | 0 | case Hexagon::J4_cmpgtn1_f_jumpnv_nt: |
2416 | 0 | case Hexagon::J4_cmpgtn1_f_jumpnv_t: |
2417 | 0 | case Hexagon::J4_cmpgti_f_jumpnv_nt: |
2418 | 0 | case Hexagon::J4_cmpgti_f_jumpnv_t: |
2419 | 0 | case Hexagon::J4_cmpgt_f_jumpnv_nt: |
2420 | 0 | case Hexagon::J4_cmpgt_f_jumpnv_t: |
2421 | 0 | return Comparison::LEs; |
2422 | | |
2423 | 2.58k | case Hexagon::C2_cmpgtu: |
2424 | 4.26k | case Hexagon::C2_cmpgtup: |
2425 | 4.26k | case Hexagon::A4_cmpbgtu: |
2426 | 4.26k | case Hexagon::A4_cmpbgtui: |
2427 | 4.26k | case Hexagon::A4_cmphgtu: |
2428 | 4.26k | case Hexagon::A4_cmphgtui: |
2429 | 7.35k | case Hexagon::C2_cmpgtui: |
2430 | 7.35k | case Hexagon::J4_cmpgtui_t_jumpnv_nt: |
2431 | 7.35k | case Hexagon::J4_cmpgtui_t_jumpnv_t: |
2432 | 7.35k | case Hexagon::J4_cmpgtu_t_jumpnv_nt: |
2433 | 7.35k | case Hexagon::J4_cmpgtu_t_jumpnv_t: |
2434 | 7.35k | return Comparison::GTu; |
2435 | | |
2436 | 0 | case Hexagon::J4_cmpltu_f_jumpnv_nt: |
2437 | 0 | case Hexagon::J4_cmpltu_f_jumpnv_t: |
2438 | 0 | return Comparison::GEu; |
2439 | | |
2440 | 0 | case Hexagon::J4_cmpltu_t_jumpnv_nt: |
2441 | 0 | case Hexagon::J4_cmpltu_t_jumpnv_t: |
2442 | 0 | return Comparison::LTu; |
2443 | | |
2444 | 0 | case Hexagon::J4_cmplt_f_jumpnv_nt: |
2445 | 0 | case Hexagon::J4_cmplt_f_jumpnv_t: |
2446 | 0 | return Comparison::GEs; |
2447 | | |
2448 | 0 | case Hexagon::C4_cmplteu: |
2449 | 0 | case Hexagon::C4_cmplteui: |
2450 | 0 | case Hexagon::J4_cmpgtui_f_jumpnv_nt: |
2451 | 0 | case Hexagon::J4_cmpgtui_f_jumpnv_t: |
2452 | 0 | case Hexagon::J4_cmpgtu_f_jumpnv_nt: |
2453 | 0 | case Hexagon::J4_cmpgtu_f_jumpnv_t: |
2454 | 0 | return Comparison::LEu; |
2455 | | |
2456 | 0 | case Hexagon::J4_cmplt_t_jumpnv_nt: |
2457 | 0 | case Hexagon::J4_cmplt_t_jumpnv_t: |
2458 | 0 | return Comparison::LTs; |
2459 | | |
2460 | 0 | default: |
2461 | 0 | break; |
2462 | 19.9k | } |
2463 | 0 | return Comparison::Unk; |
2464 | 19.9k | } |
2465 | | |
2466 | | APInt HexagonConstEvaluator::getCmpImm(unsigned Opc, unsigned OpX, |
2467 | 8.23k | const MachineOperand &MO) { |
2468 | 8.23k | bool Signed = false; |
2469 | 8.23k | switch (Opc) { |
2470 | 0 | case Hexagon::A4_cmpbgtui: // u7 |
2471 | 0 | case Hexagon::A4_cmphgtui: // u7 |
2472 | 0 | break; |
2473 | 0 | case Hexagon::A4_cmpheqi: // s8 |
2474 | 0 | case Hexagon::C4_cmpneqi: // s8 |
2475 | 0 | Signed = true; |
2476 | 0 | break; |
2477 | 0 | case Hexagon::A4_cmpbeqi: // u8 |
2478 | 0 | break; |
2479 | 3.08k | case Hexagon::C2_cmpgtui: // u9 |
2480 | 3.08k | case Hexagon::C4_cmplteui: // u9 |
2481 | 3.08k | break; |
2482 | 2.01k | case Hexagon::C2_cmpeqi: // s10 |
2483 | 5.14k | case Hexagon::C2_cmpgti: // s10 |
2484 | 5.14k | case Hexagon::C4_cmpltei: // s10 |
2485 | 5.14k | Signed = true; |
2486 | 5.14k | break; |
2487 | 0 | case Hexagon::J4_cmpeqi_f_jumpnv_nt: // u5 |
2488 | 0 | case Hexagon::J4_cmpeqi_f_jumpnv_t: // u5 |
2489 | 0 | case Hexagon::J4_cmpeqi_t_jumpnv_nt: // u5 |
2490 | 0 | case Hexagon::J4_cmpeqi_t_jumpnv_t: // u5 |
2491 | 0 | case Hexagon::J4_cmpgti_f_jumpnv_nt: // u5 |
2492 | 0 | case Hexagon::J4_cmpgti_f_jumpnv_t: // u5 |
2493 | 0 | case Hexagon::J4_cmpgti_t_jumpnv_nt: // u5 |
2494 | 0 | case Hexagon::J4_cmpgti_t_jumpnv_t: // u5 |
2495 | 0 | case Hexagon::J4_cmpgtui_f_jumpnv_nt: // u5 |
2496 | 0 | case Hexagon::J4_cmpgtui_f_jumpnv_t: // u5 |
2497 | 0 | case Hexagon::J4_cmpgtui_t_jumpnv_nt: // u5 |
2498 | 0 | case Hexagon::J4_cmpgtui_t_jumpnv_t: // u5 |
2499 | 0 | break; |
2500 | 0 | default: |
2501 | 0 | llvm_unreachable("Unhandled instruction"); |
2502 | 0 | break; |
2503 | 8.23k | } |
2504 | | |
2505 | 8.23k | uint64_t Val = MO.getImm(); |
2506 | 8.23k | return APInt(32, Val, Signed); |
2507 | 8.23k | } |
2508 | | |
2509 | 0 | void HexagonConstEvaluator::replaceWithNop(MachineInstr &MI) { |
2510 | 0 | MI.setDesc(HII.get(Hexagon::A2_nop)); |
2511 | 0 | while (MI.getNumOperands() > 0) |
2512 | 0 | MI.removeOperand(0); |
2513 | 0 | } |
2514 | | |
2515 | | bool HexagonConstEvaluator::evaluateHexRSEQ32(RegisterSubReg RL, RegisterSubReg RH, |
2516 | 9.83k | const CellMap &Inputs, LatticeCell &Result) { |
2517 | 9.83k | assert(Inputs.has(RL.Reg) && Inputs.has(RH.Reg)); |
2518 | 0 | LatticeCell LSL, LSH; |
2519 | 9.83k | if (!getCell(RL, Inputs, LSL) || !getCell(RH, Inputs, LSH)) |
2520 | 9.83k | return false; |
2521 | 0 | if (LSL.isProperty() || LSH.isProperty()) |
2522 | 0 | return false; |
2523 | | |
2524 | 0 | unsigned LN = LSL.size(), HN = LSH.size(); |
2525 | 0 | SmallVector<APInt,4> LoVs(LN), HiVs(HN); |
2526 | 0 | for (unsigned i = 0; i < LN; ++i) { |
2527 | 0 | bool Eval = constToInt(LSL.Values[i], LoVs[i]); |
2528 | 0 | if (!Eval) |
2529 | 0 | return false; |
2530 | 0 | assert(LoVs[i].getBitWidth() == 32); |
2531 | 0 | } |
2532 | 0 | for (unsigned i = 0; i < HN; ++i) { |
2533 | 0 | bool Eval = constToInt(LSH.Values[i], HiVs[i]); |
2534 | 0 | if (!Eval) |
2535 | 0 | return false; |
2536 | 0 | assert(HiVs[i].getBitWidth() == 32); |
2537 | 0 | } |
2538 | | |
2539 | 0 | for (unsigned i = 0; i < HiVs.size(); ++i) { |
2540 | 0 | APInt HV = HiVs[i].zext(64) << 32; |
2541 | 0 | for (unsigned j = 0; j < LoVs.size(); ++j) { |
2542 | 0 | APInt LV = LoVs[j].zext(64); |
2543 | 0 | const Constant *C = intToConst(HV | LV); |
2544 | 0 | Result.add(C); |
2545 | 0 | if (Result.isBottom()) |
2546 | 0 | return false; |
2547 | 0 | } |
2548 | 0 | } |
2549 | 0 | return !Result.isBottom(); |
2550 | 0 | } |
2551 | | |
2552 | | bool HexagonConstEvaluator::evaluateHexCompare(const MachineInstr &MI, |
2553 | 42.7k | const CellMap &Inputs, CellMap &Outputs) { |
2554 | 42.7k | unsigned Opc = MI.getOpcode(); |
2555 | 42.7k | bool Classic = false; |
2556 | 42.7k | switch (Opc) { |
2557 | 1.30k | case Hexagon::C2_cmpeq: |
2558 | 2.55k | case Hexagon::C2_cmpeqp: |
2559 | 5.40k | case Hexagon::C2_cmpgt: |
2560 | 7.43k | case Hexagon::C2_cmpgtp: |
2561 | 10.0k | case Hexagon::C2_cmpgtu: |
2562 | 11.7k | case Hexagon::C2_cmpgtup: |
2563 | 13.7k | case Hexagon::C2_cmpeqi: |
2564 | 16.8k | case Hexagon::C2_cmpgti: |
2565 | 19.9k | case Hexagon::C2_cmpgtui: |
2566 | | // Classic compare: Dst0 = CMP Src1, Src2 |
2567 | 19.9k | Classic = true; |
2568 | 19.9k | break; |
2569 | 22.7k | default: |
2570 | | // Not handling other compare instructions now. |
2571 | 22.7k | return false; |
2572 | 42.7k | } |
2573 | | |
2574 | 19.9k | if (Classic) { |
2575 | 19.9k | const MachineOperand &Src1 = MI.getOperand(1); |
2576 | 19.9k | const MachineOperand &Src2 = MI.getOperand(2); |
2577 | | |
2578 | 19.9k | bool Result; |
2579 | 19.9k | unsigned Opc = MI.getOpcode(); |
2580 | 19.9k | bool Computed = evaluateHexCompare2(Opc, Src1, Src2, Inputs, Result); |
2581 | 19.9k | if (Computed) { |
2582 | | // Only create a zero/non-zero cell. At this time there isn't really |
2583 | | // much need for specific values. |
2584 | 0 | RegisterSubReg DefR(MI.getOperand(0)); |
2585 | 0 | LatticeCell L = Outputs.get(DefR.Reg); |
2586 | 0 | uint32_t P = Result ? ConstantProperties::NonZero |
2587 | 0 | : ConstantProperties::Zero; |
2588 | 0 | L.add(P); |
2589 | 0 | Outputs.update(DefR.Reg, L); |
2590 | 0 | return true; |
2591 | 0 | } |
2592 | 19.9k | } |
2593 | | |
2594 | 19.9k | return false; |
2595 | 19.9k | } |
2596 | | |
2597 | | bool HexagonConstEvaluator::evaluateHexCompare2(unsigned Opc, |
2598 | | const MachineOperand &Src1, const MachineOperand &Src2, |
2599 | 19.9k | const CellMap &Inputs, bool &Result) { |
2600 | 19.9k | uint32_t Cmp = getCmp(Opc); |
2601 | 19.9k | bool Reg1 = Src1.isReg(), Reg2 = Src2.isReg(); |
2602 | 19.9k | bool Imm1 = Src1.isImm(), Imm2 = Src2.isImm(); |
2603 | 19.9k | if (Reg1) { |
2604 | 19.9k | RegisterSubReg R1(Src1); |
2605 | 19.9k | if (Reg2) { |
2606 | 11.7k | RegisterSubReg R2(Src2); |
2607 | 11.7k | return evaluateCMPrr(Cmp, R1, R2, Inputs, Result); |
2608 | 11.7k | } else if (Imm2) { |
2609 | 8.23k | APInt A2 = getCmpImm(Opc, 2, Src2); |
2610 | 8.23k | return evaluateCMPri(Cmp, R1, A2, Inputs, Result); |
2611 | 8.23k | } |
2612 | 19.9k | } else if (Imm1) { |
2613 | 0 | APInt A1 = getCmpImm(Opc, 1, Src1); |
2614 | 0 | if (Reg2) { |
2615 | 0 | RegisterSubReg R2(Src2); |
2616 | 0 | uint32_t NegCmp = Comparison::negate(Cmp); |
2617 | 0 | return evaluateCMPri(NegCmp, R2, A1, Inputs, Result); |
2618 | 0 | } else if (Imm2) { |
2619 | 0 | APInt A2 = getCmpImm(Opc, 2, Src2); |
2620 | 0 | return evaluateCMPii(Cmp, A1, A2, Result); |
2621 | 0 | } |
2622 | 0 | } |
2623 | | // Unknown kind of comparison. |
2624 | 0 | return false; |
2625 | 19.9k | } |
2626 | | |
2627 | | bool HexagonConstEvaluator::evaluateHexLogical(const MachineInstr &MI, |
2628 | 9.00k | const CellMap &Inputs, CellMap &Outputs) { |
2629 | 9.00k | unsigned Opc = MI.getOpcode(); |
2630 | 9.00k | if (MI.getNumOperands() != 3) |
2631 | 0 | return false; |
2632 | 9.00k | const MachineOperand &Src1 = MI.getOperand(1); |
2633 | 9.00k | const MachineOperand &Src2 = MI.getOperand(2); |
2634 | 9.00k | RegisterSubReg R1(Src1); |
2635 | 9.00k | bool Eval = false; |
2636 | 9.00k | LatticeCell RC; |
2637 | 9.00k | switch (Opc) { |
2638 | 0 | default: |
2639 | 0 | return false; |
2640 | 1.35k | case Hexagon::A2_and: |
2641 | 2.39k | case Hexagon::A2_andp: |
2642 | 2.39k | Eval = evaluateANDrr(R1, RegisterSubReg(Src2), Inputs, RC); |
2643 | 2.39k | break; |
2644 | 3.58k | case Hexagon::A2_andir: { |
2645 | 3.58k | if (!Src2.isImm()) |
2646 | 0 | return false; |
2647 | 3.58k | APInt A(32, Src2.getImm(), true); |
2648 | 3.58k | Eval = evaluateANDri(R1, A, Inputs, RC); |
2649 | 3.58k | break; |
2650 | 3.58k | } |
2651 | 1.07k | case Hexagon::A2_or: |
2652 | 1.14k | case Hexagon::A2_orp: |
2653 | 1.14k | Eval = evaluateORrr(R1, RegisterSubReg(Src2), Inputs, RC); |
2654 | 1.14k | break; |
2655 | 270 | case Hexagon::A2_orir: { |
2656 | 270 | if (!Src2.isImm()) |
2657 | 0 | return false; |
2658 | 270 | APInt A(32, Src2.getImm(), true); |
2659 | 270 | Eval = evaluateORri(R1, A, Inputs, RC); |
2660 | 270 | break; |
2661 | 270 | } |
2662 | 1.35k | case Hexagon::A2_xor: |
2663 | 1.60k | case Hexagon::A2_xorp: |
2664 | 1.60k | Eval = evaluateXORrr(R1, RegisterSubReg(Src2), Inputs, RC); |
2665 | 1.60k | break; |
2666 | 9.00k | } |
2667 | 9.00k | if (Eval) { |
2668 | 0 | RegisterSubReg DefR(MI.getOperand(0)); |
2669 | 0 | Outputs.update(DefR.Reg, RC); |
2670 | 0 | } |
2671 | 9.00k | return Eval; |
2672 | 9.00k | } |
2673 | | |
2674 | | bool HexagonConstEvaluator::evaluateHexCondMove(const MachineInstr &MI, |
2675 | 43.2k | const CellMap &Inputs, CellMap &Outputs) { |
2676 | | // Dst0 = Cond1 ? Src2 : Src3 |
2677 | 43.2k | RegisterSubReg CR(MI.getOperand(1)); |
2678 | 43.2k | assert(Inputs.has(CR.Reg)); |
2679 | 0 | LatticeCell LS; |
2680 | 43.2k | if (!getCell(CR, Inputs, LS)) |
2681 | 43.2k | return false; |
2682 | 0 | uint32_t Ps = LS.properties(); |
2683 | 0 | unsigned TakeOp; |
2684 | 0 | if (Ps & ConstantProperties::Zero) |
2685 | 0 | TakeOp = 3; |
2686 | 0 | else if (Ps & ConstantProperties::NonZero) |
2687 | 0 | TakeOp = 2; |
2688 | 0 | else |
2689 | 0 | return false; |
2690 | | |
2691 | 0 | const MachineOperand &ValOp = MI.getOperand(TakeOp); |
2692 | 0 | RegisterSubReg DefR(MI.getOperand(0)); |
2693 | 0 | LatticeCell RC = Outputs.get(DefR.Reg); |
2694 | |
|
2695 | 0 | if (ValOp.isImm()) { |
2696 | 0 | int64_t V = ValOp.getImm(); |
2697 | 0 | unsigned W = getRegBitWidth(DefR.Reg); |
2698 | 0 | APInt A(W, V, true); |
2699 | 0 | const Constant *C = intToConst(A); |
2700 | 0 | RC.add(C); |
2701 | 0 | Outputs.update(DefR.Reg, RC); |
2702 | 0 | return true; |
2703 | 0 | } |
2704 | 0 | if (ValOp.isReg()) { |
2705 | 0 | RegisterSubReg R(ValOp); |
2706 | 0 | const LatticeCell &LR = Inputs.get(R.Reg); |
2707 | 0 | LatticeCell LSR; |
2708 | 0 | if (!evaluate(R, LR, LSR)) |
2709 | 0 | return false; |
2710 | 0 | RC.meet(LSR); |
2711 | 0 | Outputs.update(DefR.Reg, RC); |
2712 | 0 | return true; |
2713 | 0 | } |
2714 | 0 | return false; |
2715 | 0 | } |
2716 | | |
2717 | | bool HexagonConstEvaluator::evaluateHexExt(const MachineInstr &MI, |
2718 | 5.15k | const CellMap &Inputs, CellMap &Outputs) { |
2719 | | // Dst0 = ext R1 |
2720 | 5.15k | RegisterSubReg R1(MI.getOperand(1)); |
2721 | 5.15k | assert(Inputs.has(R1.Reg)); |
2722 | | |
2723 | 0 | unsigned Opc = MI.getOpcode(); |
2724 | 5.15k | unsigned Bits; |
2725 | 5.15k | switch (Opc) { |
2726 | 1.93k | case Hexagon::A2_sxtb: |
2727 | 3.16k | case Hexagon::A2_zxtb: |
2728 | 3.16k | Bits = 8; |
2729 | 3.16k | break; |
2730 | 1.48k | case Hexagon::A2_sxth: |
2731 | 1.99k | case Hexagon::A2_zxth: |
2732 | 1.99k | Bits = 16; |
2733 | 1.99k | break; |
2734 | 0 | case Hexagon::A2_sxtw: |
2735 | 0 | Bits = 32; |
2736 | 0 | break; |
2737 | 0 | default: |
2738 | 0 | llvm_unreachable("Unhandled extension opcode"); |
2739 | 5.15k | } |
2740 | | |
2741 | 5.15k | bool Signed = false; |
2742 | 5.15k | switch (Opc) { |
2743 | 1.93k | case Hexagon::A2_sxtb: |
2744 | 3.42k | case Hexagon::A2_sxth: |
2745 | 3.42k | case Hexagon::A2_sxtw: |
2746 | 3.42k | Signed = true; |
2747 | 3.42k | break; |
2748 | 5.15k | } |
2749 | | |
2750 | 5.15k | RegisterSubReg DefR(MI.getOperand(0)); |
2751 | 5.15k | unsigned BW = getRegBitWidth(DefR.Reg); |
2752 | 5.15k | LatticeCell RC = Outputs.get(DefR.Reg); |
2753 | 5.15k | bool Eval = Signed ? evaluateSEXTr(R1, BW, Bits, Inputs, RC) |
2754 | 5.15k | : evaluateZEXTr(R1, BW, Bits, Inputs, RC); |
2755 | 5.15k | if (!Eval) |
2756 | 5.15k | return false; |
2757 | 0 | Outputs.update(DefR.Reg, RC); |
2758 | 0 | return true; |
2759 | 5.15k | } |
2760 | | |
2761 | | bool HexagonConstEvaluator::evaluateHexVector1(const MachineInstr &MI, |
2762 | 0 | const CellMap &Inputs, CellMap &Outputs) { |
2763 | | // DefR = op R1 |
2764 | 0 | RegisterSubReg DefR(MI.getOperand(0)); |
2765 | 0 | RegisterSubReg R1(MI.getOperand(1)); |
2766 | 0 | assert(Inputs.has(R1.Reg)); |
2767 | 0 | LatticeCell RC = Outputs.get(DefR.Reg); |
2768 | 0 | bool Eval; |
2769 | |
|
2770 | 0 | unsigned Opc = MI.getOpcode(); |
2771 | 0 | switch (Opc) { |
2772 | 0 | case Hexagon::S2_vsplatrb: |
2773 | | // Rd = 4 times Rs:0..7 |
2774 | 0 | Eval = evaluateSplatr(R1, 8, 4, Inputs, RC); |
2775 | 0 | break; |
2776 | 0 | case Hexagon::S2_vsplatrh: |
2777 | | // Rdd = 4 times Rs:0..15 |
2778 | 0 | Eval = evaluateSplatr(R1, 16, 4, Inputs, RC); |
2779 | 0 | break; |
2780 | 0 | default: |
2781 | 0 | return false; |
2782 | 0 | } |
2783 | | |
2784 | 0 | if (!Eval) |
2785 | 0 | return false; |
2786 | 0 | Outputs.update(DefR.Reg, RC); |
2787 | 0 | return true; |
2788 | 0 | } |
2789 | | |
2790 | | bool HexagonConstEvaluator::rewriteHexConstDefs(MachineInstr &MI, |
2791 | 512k | const CellMap &Inputs, bool &AllDefs) { |
2792 | 512k | AllDefs = false; |
2793 | | |
2794 | | // Some diagnostics. |
2795 | | // LLVM_DEBUG({...}) gets confused with all this code as an argument. |
2796 | 512k | #ifndef NDEBUG |
2797 | 512k | bool Debugging = DebugFlag && isCurrentDebugType(DEBUG_TYPE); |
2798 | 512k | if (Debugging) { |
2799 | 0 | bool Const = true, HasUse = false; |
2800 | 0 | for (const MachineOperand &MO : MI.operands()) { |
2801 | 0 | if (!MO.isReg() || !MO.isUse() || MO.isImplicit()) |
2802 | 0 | continue; |
2803 | 0 | RegisterSubReg R(MO); |
2804 | 0 | if (!R.Reg.isVirtual()) |
2805 | 0 | continue; |
2806 | 0 | HasUse = true; |
2807 | | // PHIs can legitimately have "top" cells after propagation. |
2808 | 0 | if (!MI.isPHI() && !Inputs.has(R.Reg)) { |
2809 | 0 | dbgs() << "Top " << printReg(R.Reg, &HRI, R.SubReg) |
2810 | 0 | << " in MI: " << MI; |
2811 | 0 | continue; |
2812 | 0 | } |
2813 | 0 | const LatticeCell &L = Inputs.get(R.Reg); |
2814 | 0 | Const &= L.isSingle(); |
2815 | 0 | if (!Const) |
2816 | 0 | break; |
2817 | 0 | } |
2818 | 0 | if (HasUse && Const) { |
2819 | 0 | if (!MI.isCopy()) { |
2820 | 0 | dbgs() << "CONST: " << MI; |
2821 | 0 | for (const MachineOperand &MO : MI.operands()) { |
2822 | 0 | if (!MO.isReg() || !MO.isUse() || MO.isImplicit()) |
2823 | 0 | continue; |
2824 | 0 | Register R = MO.getReg(); |
2825 | 0 | dbgs() << printReg(R, &TRI) << ": " << Inputs.get(R) << "\n"; |
2826 | 0 | } |
2827 | 0 | } |
2828 | 0 | } |
2829 | 0 | } |
2830 | 512k | #endif |
2831 | | |
2832 | | // Avoid generating TFRIs for register transfers---this will keep the |
2833 | | // coalescing opportunities. |
2834 | 512k | if (MI.isCopy()) |
2835 | 62.4k | return false; |
2836 | | |
2837 | 450k | MachineFunction *MF = MI.getParent()->getParent(); |
2838 | 450k | auto &HST = MF->getSubtarget<HexagonSubtarget>(); |
2839 | | |
2840 | | // Collect all virtual register-def operands. |
2841 | 450k | SmallVector<unsigned,2> DefRegs; |
2842 | 1.63M | for (const MachineOperand &MO : MI.operands()) { |
2843 | 1.63M | if (!MO.isReg() || !MO.isDef()) |
2844 | 1.21M | continue; |
2845 | 423k | Register R = MO.getReg(); |
2846 | 423k | if (!R.isVirtual()) |
2847 | 132k | continue; |
2848 | 290k | assert(!MO.getSubReg()); |
2849 | 0 | assert(Inputs.has(R)); |
2850 | 0 | DefRegs.push_back(R); |
2851 | 290k | } |
2852 | | |
2853 | 450k | MachineBasicBlock &B = *MI.getParent(); |
2854 | 450k | const DebugLoc &DL = MI.getDebugLoc(); |
2855 | 450k | unsigned ChangedNum = 0; |
2856 | 450k | #ifndef NDEBUG |
2857 | 450k | SmallVector<const MachineInstr*,4> NewInstrs; |
2858 | 450k | #endif |
2859 | | |
2860 | | // For each defined register, if it is a constant, create an instruction |
2861 | | // NewR = const |
2862 | | // and replace all uses of the defined register with NewR. |
2863 | 450k | for (unsigned R : DefRegs) { |
2864 | 290k | const LatticeCell &L = Inputs.get(R); |
2865 | 290k | if (L.isBottom()) |
2866 | 282k | continue; |
2867 | 7.59k | const TargetRegisterClass *RC = MRI->getRegClass(R); |
2868 | 7.59k | MachineBasicBlock::iterator At = MI.getIterator(); |
2869 | | |
2870 | 7.59k | if (!L.isSingle()) { |
2871 | | // If this a zero/non-zero cell, we can fold a definition |
2872 | | // of a predicate register. |
2873 | 0 | using P = ConstantProperties; |
2874 | |
|
2875 | 0 | uint64_t Ps = L.properties(); |
2876 | 0 | if (!(Ps & (P::Zero|P::NonZero))) |
2877 | 0 | continue; |
2878 | 0 | const TargetRegisterClass *PredRC = &Hexagon::PredRegsRegClass; |
2879 | 0 | if (RC != PredRC) |
2880 | 0 | continue; |
2881 | 0 | const MCInstrDesc *NewD = (Ps & P::Zero) ? |
2882 | 0 | &HII.get(Hexagon::PS_false) : |
2883 | 0 | &HII.get(Hexagon::PS_true); |
2884 | 0 | Register NewR = MRI->createVirtualRegister(PredRC); |
2885 | 0 | const MachineInstrBuilder &MIB = BuildMI(B, At, DL, *NewD, NewR); |
2886 | 0 | (void)MIB; |
2887 | 0 | #ifndef NDEBUG |
2888 | 0 | NewInstrs.push_back(&*MIB); |
2889 | 0 | #endif |
2890 | 0 | replaceAllRegUsesWith(R, NewR); |
2891 | 7.59k | } else { |
2892 | | // This cell has a single value. |
2893 | 7.59k | APInt A; |
2894 | 7.59k | if (!constToInt(L.Value, A) || !A.isSignedIntN(64)) |
2895 | 0 | continue; |
2896 | 7.59k | const TargetRegisterClass *NewRC; |
2897 | 7.59k | const MCInstrDesc *NewD; |
2898 | | |
2899 | 7.59k | unsigned W = getRegBitWidth(R); |
2900 | 7.59k | int64_t V = A.getSExtValue(); |
2901 | 7.59k | assert(W == 32 || W == 64); |
2902 | 7.59k | if (W == 32) |
2903 | 0 | NewRC = &Hexagon::IntRegsRegClass; |
2904 | 7.59k | else |
2905 | 7.59k | NewRC = &Hexagon::DoubleRegsRegClass; |
2906 | 7.59k | Register NewR = MRI->createVirtualRegister(NewRC); |
2907 | 7.59k | const MachineInstr *NewMI; |
2908 | | |
2909 | 7.59k | if (W == 32) { |
2910 | 0 | NewD = &HII.get(Hexagon::A2_tfrsi); |
2911 | 0 | NewMI = BuildMI(B, At, DL, *NewD, NewR) |
2912 | 0 | .addImm(V); |
2913 | 7.59k | } else { |
2914 | 7.59k | if (A.isSignedIntN(8)) { |
2915 | 0 | NewD = &HII.get(Hexagon::A2_tfrpi); |
2916 | 0 | NewMI = BuildMI(B, At, DL, *NewD, NewR) |
2917 | 0 | .addImm(V); |
2918 | 7.59k | } else { |
2919 | 7.59k | int32_t Hi = V >> 32; |
2920 | 7.59k | int32_t Lo = V & 0xFFFFFFFFLL; |
2921 | 7.59k | if (isInt<8>(Hi) && isInt<8>(Lo)) { |
2922 | 1.12k | NewD = &HII.get(Hexagon::A2_combineii); |
2923 | 1.12k | NewMI = BuildMI(B, At, DL, *NewD, NewR) |
2924 | 1.12k | .addImm(Hi) |
2925 | 1.12k | .addImm(Lo); |
2926 | 6.46k | } else if (MF->getFunction().hasOptSize() || !HST.isTinyCore()) { |
2927 | | // Disable CONST64 for tiny core since it takes a LD resource. |
2928 | 6.46k | NewD = &HII.get(Hexagon::CONST64); |
2929 | 6.46k | NewMI = BuildMI(B, At, DL, *NewD, NewR) |
2930 | 6.46k | .addImm(V); |
2931 | 6.46k | } else |
2932 | 0 | return false; |
2933 | 7.59k | } |
2934 | 7.59k | } |
2935 | 7.59k | (void)NewMI; |
2936 | 7.59k | #ifndef NDEBUG |
2937 | 7.59k | NewInstrs.push_back(NewMI); |
2938 | 7.59k | #endif |
2939 | 7.59k | replaceAllRegUsesWith(R, NewR); |
2940 | 7.59k | } |
2941 | 7.59k | ChangedNum++; |
2942 | 7.59k | } |
2943 | | |
2944 | 450k | LLVM_DEBUG({ |
2945 | 450k | if (!NewInstrs.empty()) { |
2946 | 450k | MachineFunction &MF = *MI.getParent()->getParent(); |
2947 | 450k | dbgs() << "In function: " << MF.getName() << "\n"; |
2948 | 450k | dbgs() << "Rewrite: for " << MI << " created " << *NewInstrs[0]; |
2949 | 450k | for (unsigned i = 1; i < NewInstrs.size(); ++i) |
2950 | 450k | dbgs() << " " << *NewInstrs[i]; |
2951 | 450k | } |
2952 | 450k | }); |
2953 | | |
2954 | 450k | AllDefs = (ChangedNum == DefRegs.size()); |
2955 | 450k | return ChangedNum > 0; |
2956 | 450k | } |
2957 | | |
2958 | | bool HexagonConstEvaluator::rewriteHexConstUses(MachineInstr &MI, |
2959 | 345k | const CellMap &Inputs) { |
2960 | 345k | bool Changed = false; |
2961 | 345k | unsigned Opc = MI.getOpcode(); |
2962 | 345k | MachineBasicBlock &B = *MI.getParent(); |
2963 | 345k | const DebugLoc &DL = MI.getDebugLoc(); |
2964 | 345k | MachineBasicBlock::iterator At = MI.getIterator(); |
2965 | 345k | MachineInstr *NewMI = nullptr; |
2966 | | |
2967 | 345k | switch (Opc) { |
2968 | 1.49k | case Hexagon::M2_maci: |
2969 | | // Convert DefR += mpyi(R2, R3) |
2970 | | // to DefR += mpyi(R, #imm), |
2971 | | // or DefR -= mpyi(R, #imm). |
2972 | 1.49k | { |
2973 | 1.49k | RegisterSubReg DefR(MI.getOperand(0)); |
2974 | 1.49k | assert(!DefR.SubReg); |
2975 | 0 | RegisterSubReg R2(MI.getOperand(2)); |
2976 | 1.49k | RegisterSubReg R3(MI.getOperand(3)); |
2977 | 1.49k | assert(Inputs.has(R2.Reg) && Inputs.has(R3.Reg)); |
2978 | 0 | LatticeCell LS2, LS3; |
2979 | | // It is enough to get one of the input cells, since we will only try |
2980 | | // to replace one argument---whichever happens to be a single constant. |
2981 | 1.49k | bool HasC2 = getCell(R2, Inputs, LS2), HasC3 = getCell(R3, Inputs, LS3); |
2982 | 1.49k | if (!HasC2 && !HasC3) |
2983 | 809 | return false; |
2984 | 685 | bool Zero = ((HasC2 && (LS2.properties() & ConstantProperties::Zero)) || |
2985 | 685 | (HasC3 && (LS3.properties() & ConstantProperties::Zero))); |
2986 | | // If one of the operands is zero, eliminate the multiplication. |
2987 | 685 | if (Zero) { |
2988 | | // DefR == R1 (tied operands). |
2989 | 0 | MachineOperand &Acc = MI.getOperand(1); |
2990 | 0 | RegisterSubReg R1(Acc); |
2991 | 0 | unsigned NewR = R1.Reg; |
2992 | 0 | if (R1.SubReg) { |
2993 | | // Generate COPY. FIXME: Replace with the register:subregister. |
2994 | 0 | const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg); |
2995 | 0 | NewR = MRI->createVirtualRegister(RC); |
2996 | 0 | NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) |
2997 | 0 | .addReg(R1.Reg, getRegState(Acc), R1.SubReg); |
2998 | 0 | } |
2999 | 0 | replaceAllRegUsesWith(DefR.Reg, NewR); |
3000 | 0 | MRI->clearKillFlags(NewR); |
3001 | 0 | Changed = true; |
3002 | 0 | break; |
3003 | 0 | } |
3004 | | |
3005 | 685 | bool Swap = false; |
3006 | 685 | if (!LS3.isSingle()) { |
3007 | 456 | if (!LS2.isSingle()) |
3008 | 0 | return false; |
3009 | 456 | Swap = true; |
3010 | 456 | } |
3011 | 685 | const LatticeCell &LI = Swap ? LS2 : LS3; |
3012 | 685 | const MachineOperand &OpR2 = Swap ? MI.getOperand(3) |
3013 | 685 | : MI.getOperand(2); |
3014 | | // LI is single here. |
3015 | 685 | APInt A; |
3016 | 685 | if (!constToInt(LI.Value, A) || !A.isSignedIntN(8)) |
3017 | 229 | return false; |
3018 | 456 | int64_t V = A.getSExtValue(); |
3019 | 456 | const MCInstrDesc &D = (V >= 0) ? HII.get(Hexagon::M2_macsip) |
3020 | 456 | : HII.get(Hexagon::M2_macsin); |
3021 | 456 | if (V < 0) |
3022 | 209 | V = -V; |
3023 | 456 | const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg); |
3024 | 456 | Register NewR = MRI->createVirtualRegister(RC); |
3025 | 456 | const MachineOperand &Src1 = MI.getOperand(1); |
3026 | 456 | NewMI = BuildMI(B, At, DL, D, NewR) |
3027 | 456 | .addReg(Src1.getReg(), getRegState(Src1), Src1.getSubReg()) |
3028 | 456 | .addReg(OpR2.getReg(), getRegState(OpR2), OpR2.getSubReg()) |
3029 | 456 | .addImm(V); |
3030 | 456 | replaceAllRegUsesWith(DefR.Reg, NewR); |
3031 | 456 | Changed = true; |
3032 | 456 | break; |
3033 | 685 | } |
3034 | | |
3035 | 1.35k | case Hexagon::A2_and: |
3036 | 1.35k | { |
3037 | 1.35k | RegisterSubReg R1(MI.getOperand(1)); |
3038 | 1.35k | RegisterSubReg R2(MI.getOperand(2)); |
3039 | 1.35k | assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); |
3040 | 0 | LatticeCell LS1, LS2; |
3041 | 1.35k | unsigned CopyOf = 0; |
3042 | | // Check if any of the operands is -1 (i.e. all bits set). |
3043 | 1.35k | if (getCell(R1, Inputs, LS1) && LS1.isSingle()) { |
3044 | 1 | APInt M1; |
3045 | 1 | if (constToInt(LS1.Value, M1) && !~M1) |
3046 | 0 | CopyOf = 2; |
3047 | 1 | } |
3048 | 1.35k | else if (getCell(R2, Inputs, LS2) && LS2.isSingle()) { |
3049 | 50 | APInt M1; |
3050 | 50 | if (constToInt(LS2.Value, M1) && !~M1) |
3051 | 0 | CopyOf = 1; |
3052 | 50 | } |
3053 | 1.35k | if (!CopyOf) |
3054 | 1.35k | return false; |
3055 | 0 | MachineOperand &SO = MI.getOperand(CopyOf); |
3056 | 0 | RegisterSubReg SR(SO); |
3057 | 0 | RegisterSubReg DefR(MI.getOperand(0)); |
3058 | 0 | unsigned NewR = SR.Reg; |
3059 | 0 | if (SR.SubReg) { |
3060 | 0 | const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg); |
3061 | 0 | NewR = MRI->createVirtualRegister(RC); |
3062 | 0 | NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) |
3063 | 0 | .addReg(SR.Reg, getRegState(SO), SR.SubReg); |
3064 | 0 | } |
3065 | 0 | replaceAllRegUsesWith(DefR.Reg, NewR); |
3066 | 0 | MRI->clearKillFlags(NewR); |
3067 | 0 | Changed = true; |
3068 | 0 | } |
3069 | 0 | break; |
3070 | | |
3071 | 1.07k | case Hexagon::A2_or: |
3072 | 1.07k | { |
3073 | 1.07k | RegisterSubReg R1(MI.getOperand(1)); |
3074 | 1.07k | RegisterSubReg R2(MI.getOperand(2)); |
3075 | 1.07k | assert(Inputs.has(R1.Reg) && Inputs.has(R2.Reg)); |
3076 | 0 | LatticeCell LS1, LS2; |
3077 | 1.07k | unsigned CopyOf = 0; |
3078 | | |
3079 | 1.07k | using P = ConstantProperties; |
3080 | | |
3081 | 1.07k | if (getCell(R1, Inputs, LS1) && (LS1.properties() & P::Zero)) |
3082 | 0 | CopyOf = 2; |
3083 | 1.07k | else if (getCell(R2, Inputs, LS2) && (LS2.properties() & P::Zero)) |
3084 | 0 | CopyOf = 1; |
3085 | 1.07k | if (!CopyOf) |
3086 | 1.07k | return false; |
3087 | 0 | MachineOperand &SO = MI.getOperand(CopyOf); |
3088 | 0 | RegisterSubReg SR(SO); |
3089 | 0 | RegisterSubReg DefR(MI.getOperand(0)); |
3090 | 0 | unsigned NewR = SR.Reg; |
3091 | 0 | if (SR.SubReg) { |
3092 | 0 | const TargetRegisterClass *RC = MRI->getRegClass(DefR.Reg); |
3093 | 0 | NewR = MRI->createVirtualRegister(RC); |
3094 | 0 | NewMI = BuildMI(B, At, DL, HII.get(TargetOpcode::COPY), NewR) |
3095 | 0 | .addReg(SR.Reg, getRegState(SO), SR.SubReg); |
3096 | 0 | } |
3097 | 0 | replaceAllRegUsesWith(DefR.Reg, NewR); |
3098 | 0 | MRI->clearKillFlags(NewR); |
3099 | 0 | Changed = true; |
3100 | 0 | } |
3101 | 0 | break; |
3102 | 345k | } |
3103 | | |
3104 | 341k | if (NewMI) { |
3105 | | // clear all the kill flags of this new instruction. |
3106 | 456 | for (MachineOperand &MO : NewMI->operands()) |
3107 | 1.82k | if (MO.isReg() && MO.isUse()) |
3108 | 912 | MO.setIsKill(false); |
3109 | 456 | } |
3110 | | |
3111 | 341k | LLVM_DEBUG({ |
3112 | 341k | if (NewMI) { |
3113 | 341k | dbgs() << "Rewrite: for " << MI; |
3114 | 341k | if (NewMI != &MI) |
3115 | 341k | dbgs() << " created " << *NewMI; |
3116 | 341k | else |
3117 | 341k | dbgs() << " modified the instruction itself and created:" << *NewMI; |
3118 | 341k | } |
3119 | 341k | }); |
3120 | | |
3121 | 341k | return Changed; |
3122 | 345k | } |
3123 | | |
3124 | | void HexagonConstEvaluator::replaceAllRegUsesWith(Register FromReg, |
3125 | 8.04k | Register ToReg) { |
3126 | 8.04k | assert(FromReg.isVirtual()); |
3127 | 0 | assert(ToReg.isVirtual()); |
3128 | 0 | for (MachineOperand &O : |
3129 | 8.04k | llvm::make_early_inc_range(MRI->use_operands(FromReg))) |
3130 | 8.05k | O.setReg(ToReg); |
3131 | 8.04k | } |
3132 | | |
3133 | | bool HexagonConstEvaluator::rewriteHexBranch(MachineInstr &BrI, |
3134 | 730 | const CellMap &Inputs) { |
3135 | 730 | MachineBasicBlock &B = *BrI.getParent(); |
3136 | 730 | unsigned NumOp = BrI.getNumOperands(); |
3137 | 730 | if (!NumOp) |
3138 | 0 | return false; |
3139 | | |
3140 | 730 | bool FallsThru; |
3141 | 730 | SetVector<const MachineBasicBlock*> Targets; |
3142 | 730 | bool Eval = evaluate(BrI, Inputs, Targets, FallsThru); |
3143 | 730 | unsigned NumTargets = Targets.size(); |
3144 | 730 | if (!Eval || NumTargets > 1 || (NumTargets == 1 && FallsThru)) |
3145 | 0 | return false; |
3146 | 730 | if (BrI.getOpcode() == Hexagon::J2_jump) |
3147 | 730 | return false; |
3148 | | |
3149 | 0 | LLVM_DEBUG(dbgs() << "Rewrite(" << printMBBReference(B) << "):" << BrI); |
3150 | 0 | bool Rewritten = false; |
3151 | 0 | if (NumTargets > 0) { |
3152 | 0 | assert(!FallsThru && "This should have been checked before"); |
3153 | | // MIB.addMBB needs non-const pointer. |
3154 | 0 | MachineBasicBlock *TargetB = const_cast<MachineBasicBlock*>(Targets[0]); |
3155 | 0 | bool Moot = B.isLayoutSuccessor(TargetB); |
3156 | 0 | if (!Moot) { |
3157 | | // If we build a branch here, we must make sure that it won't be |
3158 | | // erased as "non-executable". We can't mark any new instructions |
3159 | | // as executable here, so we need to overwrite the BrI, which we |
3160 | | // know is executable. |
3161 | 0 | const MCInstrDesc &JD = HII.get(Hexagon::J2_jump); |
3162 | 0 | auto NI = BuildMI(B, BrI.getIterator(), BrI.getDebugLoc(), JD) |
3163 | 0 | .addMBB(TargetB); |
3164 | 0 | BrI.setDesc(JD); |
3165 | 0 | while (BrI.getNumOperands() > 0) |
3166 | 0 | BrI.removeOperand(0); |
3167 | | // This ensures that all implicit operands (e.g. implicit-def %r31, etc) |
3168 | | // are present in the rewritten branch. |
3169 | 0 | for (auto &Op : NI->operands()) |
3170 | 0 | BrI.addOperand(Op); |
3171 | 0 | NI->eraseFromParent(); |
3172 | 0 | Rewritten = true; |
3173 | 0 | } |
3174 | 0 | } |
3175 | | |
3176 | | // Do not erase instructions. A newly created instruction could get |
3177 | | // the same address as an instruction marked as executable during the |
3178 | | // propagation. |
3179 | 0 | if (!Rewritten) |
3180 | 0 | replaceWithNop(BrI); |
3181 | 0 | return true; |
3182 | 730 | } |
3183 | | |
3184 | 8.48k | FunctionPass *llvm::createHexagonConstPropagationPass() { |
3185 | 8.48k | return new HexagonConstPropagation(); |
3186 | 8.48k | } |