Coverage Report

Created: 2024-01-17 10:31

/src/llvm-project/llvm/lib/Target/PowerPC/PPCVSXSwapRemoval.cpp
Line
Count
Source (jump to first uncovered line)
1
//===----------- PPCVSXSwapRemoval.cpp - Remove VSX LE Swaps -------------===//
2
//
3
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4
// See https://llvm.org/LICENSE.txt for license information.
5
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6
//
7
//===---------------------------------------------------------------------===//
8
//
9
// This pass analyzes vector computations and removes unnecessary
10
// doubleword swaps (xxswapd instructions).  This pass is performed
11
// only for little-endian VSX code generation.
12
//
13
// For this specific case, loads and stores of v4i32, v4f32, v2i64,
14
// and v2f64 vectors are inefficient.  These are implemented using
15
// the lxvd2x and stxvd2x instructions, which invert the order of
16
// doublewords in a vector register.  Thus code generation inserts
17
// an xxswapd after each such load, and prior to each such store.
18
//
19
// The extra xxswapd instructions reduce performance.  The purpose
20
// of this pass is to reduce the number of xxswapd instructions
21
// required for correctness.
22
//
23
// The primary insight is that much code that operates on vectors
24
// does not care about the relative order of elements in a register,
25
// so long as the correct memory order is preserved.  If we have a
26
// computation where all input values are provided by lxvd2x/xxswapd,
27
// all outputs are stored using xxswapd/lxvd2x, and all intermediate
28
// computations are lane-insensitive (independent of element order),
29
// then all the xxswapd instructions associated with the loads and
30
// stores may be removed without changing observable semantics.
31
//
32
// This pass uses standard equivalence class infrastructure to create
33
// maximal webs of computations fitting the above description.  Each
34
// such web is then optimized by removing its unnecessary xxswapd
35
// instructions.
36
//
37
// There are some lane-sensitive operations for which we can still
38
// permit the optimization, provided we modify those operations
39
// accordingly.  Such operations are identified as using "special
40
// handling" within this module.
41
//
42
//===---------------------------------------------------------------------===//
43
44
#include "PPC.h"
45
#include "PPCInstrBuilder.h"
46
#include "PPCInstrInfo.h"
47
#include "PPCTargetMachine.h"
48
#include "llvm/ADT/DenseMap.h"
49
#include "llvm/ADT/EquivalenceClasses.h"
50
#include "llvm/CodeGen/MachineFunctionPass.h"
51
#include "llvm/CodeGen/MachineInstrBuilder.h"
52
#include "llvm/CodeGen/MachineRegisterInfo.h"
53
#include "llvm/Config/llvm-config.h"
54
#include "llvm/Support/Debug.h"
55
#include "llvm/Support/Format.h"
56
#include "llvm/Support/raw_ostream.h"
57
58
using namespace llvm;
59
60
#define DEBUG_TYPE "ppc-vsx-swaps"
61
62
namespace {
63
64
// A PPCVSXSwapEntry is created for each machine instruction that
65
// is relevant to a vector computation.
66
struct PPCVSXSwapEntry {
67
  // Pointer to the instruction.
68
  MachineInstr *VSEMI;
69
70
  // Unique ID (position in the swap vector).
71
  int VSEId;
72
73
  // Attributes of this node.
74
  unsigned int IsLoad : 1;
75
  unsigned int IsStore : 1;
76
  unsigned int IsSwap : 1;
77
  unsigned int MentionsPhysVR : 1;
78
  unsigned int IsSwappable : 1;
79
  unsigned int MentionsPartialVR : 1;
80
  unsigned int SpecialHandling : 3;
81
  unsigned int WebRejected : 1;
82
  unsigned int WillRemove : 1;
83
};
84
85
enum SHValues {
86
  SH_NONE = 0,
87
  SH_EXTRACT,
88
  SH_INSERT,
89
  SH_NOSWAP_LD,
90
  SH_NOSWAP_ST,
91
  SH_SPLAT,
92
  SH_XXPERMDI,
93
  SH_COPYWIDEN
94
};
95
96
struct PPCVSXSwapRemoval : public MachineFunctionPass {
97
98
  static char ID;
99
  const PPCInstrInfo *TII;
100
  MachineFunction *MF;
101
  MachineRegisterInfo *MRI;
102
103
  // Swap entries are allocated in a vector for better performance.
104
  std::vector<PPCVSXSwapEntry> SwapVector;
105
106
  // A mapping is maintained between machine instructions and
107
  // their swap entries.  The key is the address of the MI.
108
  DenseMap<MachineInstr*, int> SwapMap;
109
110
  // Equivalence classes are used to gather webs of related computation.
111
  // Swap entries are represented by their VSEId fields.
112
  EquivalenceClasses<int> *EC;
113
114
0
  PPCVSXSwapRemoval() : MachineFunctionPass(ID) {
115
0
    initializePPCVSXSwapRemovalPass(*PassRegistry::getPassRegistry());
116
0
  }
117
118
private:
119
  // Initialize data structures.
120
  void initialize(MachineFunction &MFParm);
121
122
  // Walk the machine instructions to gather vector usage information.
123
  // Return true iff vector mentions are present.
124
  bool gatherVectorInstructions();
125
126
  // Add an entry to the swap vector and swap map.
127
  int addSwapEntry(MachineInstr *MI, PPCVSXSwapEntry &SwapEntry);
128
129
  // Hunt backwards through COPY and SUBREG_TO_REG chains for a
130
  // source register.  VecIdx indicates the swap vector entry to
131
  // mark as mentioning a physical register if the search leads
132
  // to one.
133
  unsigned lookThruCopyLike(unsigned SrcReg, unsigned VecIdx);
134
135
  // Generate equivalence classes for related computations (webs).
136
  void formWebs();
137
138
  // Analyze webs and determine those that cannot be optimized.
139
  void recordUnoptimizableWebs();
140
141
  // Record which swap instructions can be safely removed.
142
  void markSwapsForRemoval();
143
144
  // Remove swaps and update other instructions requiring special
145
  // handling.  Return true iff any changes are made.
146
  bool removeSwaps();
147
148
  // Insert a swap instruction from SrcReg to DstReg at the given
149
  // InsertPoint.
150
  void insertSwap(MachineInstr *MI, MachineBasicBlock::iterator InsertPoint,
151
                  unsigned DstReg, unsigned SrcReg);
152
153
  // Update instructions requiring special handling.
154
  void handleSpecialSwappables(int EntryIdx);
155
156
  // Dump a description of the entries in the swap vector.
157
  void dumpSwapVector();
158
159
  // Return true iff the given register is in the given class.
160
0
  bool isRegInClass(unsigned Reg, const TargetRegisterClass *RC) {
161
0
    if (Register::isVirtualRegister(Reg))
162
0
      return RC->hasSubClassEq(MRI->getRegClass(Reg));
163
0
    return RC->contains(Reg);
164
0
  }
165
166
  // Return true iff the given register is a full vector register.
167
0
  bool isVecReg(unsigned Reg) {
168
0
    return (isRegInClass(Reg, &PPC::VSRCRegClass) ||
169
0
            isRegInClass(Reg, &PPC::VRRCRegClass));
170
0
  }
171
172
  // Return true iff the given register is a partial vector register.
173
0
  bool isScalarVecReg(unsigned Reg) {
174
0
    return (isRegInClass(Reg, &PPC::VSFRCRegClass) ||
175
0
            isRegInClass(Reg, &PPC::VSSRCRegClass));
176
0
  }
177
178
  // Return true iff the given register mentions all or part of a
179
  // vector register.  Also sets Partial to true if the mention
180
  // is for just the floating-point register overlap of the register.
181
0
  bool isAnyVecReg(unsigned Reg, bool &Partial) {
182
0
    if (isScalarVecReg(Reg))
183
0
      Partial = true;
184
0
    return isScalarVecReg(Reg) || isVecReg(Reg);
185
0
  }
186
187
public:
188
  // Main entry point for this pass.
189
0
  bool runOnMachineFunction(MachineFunction &MF) override {
190
0
    if (skipFunction(MF.getFunction()))
191
0
      return false;
192
193
    // If we don't have VSX on the subtarget, don't do anything.
194
    // Also, on Power 9 the load and store ops preserve element order and so
195
    // the swaps are not required.
196
0
    const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>();
197
0
    if (!STI.hasVSX() || !STI.needsSwapsForVSXMemOps())
198
0
      return false;
199
200
0
    bool Changed = false;
201
0
    initialize(MF);
202
203
0
    if (gatherVectorInstructions()) {
204
0
      formWebs();
205
0
      recordUnoptimizableWebs();
206
0
      markSwapsForRemoval();
207
0
      Changed = removeSwaps();
208
0
    }
209
210
    // FIXME: See the allocation of EC in initialize().
211
0
    delete EC;
212
0
    return Changed;
213
0
  }
214
};
215
216
// Initialize data structures for this pass.  In particular, clear the
217
// swap vector and allocate the equivalence class mapping before
218
// processing each function.
219
0
void PPCVSXSwapRemoval::initialize(MachineFunction &MFParm) {
220
0
  MF = &MFParm;
221
0
  MRI = &MF->getRegInfo();
222
0
  TII = MF->getSubtarget<PPCSubtarget>().getInstrInfo();
223
224
  // An initial vector size of 256 appears to work well in practice.
225
  // Small/medium functions with vector content tend not to incur a
226
  // reallocation at this size.  Three of the vector tests in
227
  // projects/test-suite reallocate, which seems like a reasonable rate.
228
0
  const int InitialVectorSize(256);
229
0
  SwapVector.clear();
230
0
  SwapVector.reserve(InitialVectorSize);
231
232
  // FIXME: Currently we allocate EC each time because we don't have
233
  // access to the set representation on which to call clear().  Should
234
  // consider adding a clear() method to the EquivalenceClasses class.
235
0
  EC = new EquivalenceClasses<int>;
236
0
}
237
238
// Create an entry in the swap vector for each instruction that mentions
239
// a full vector register, recording various characteristics of the
240
// instructions there.
241
0
bool PPCVSXSwapRemoval::gatherVectorInstructions() {
242
0
  bool RelevantFunction = false;
243
244
0
  for (MachineBasicBlock &MBB : *MF) {
245
0
    for (MachineInstr &MI : MBB) {
246
247
0
      if (MI.isDebugInstr())
248
0
        continue;
249
250
0
      bool RelevantInstr = false;
251
0
      bool Partial = false;
252
253
0
      for (const MachineOperand &MO : MI.operands()) {
254
0
        if (!MO.isReg())
255
0
          continue;
256
0
        Register Reg = MO.getReg();
257
        // All operands need to be checked because there are instructions that
258
        // operate on a partial register and produce a full register (such as
259
        // XXPERMDIs).
260
0
        if (isAnyVecReg(Reg, Partial))
261
0
          RelevantInstr = true;
262
0
      }
263
264
0
      if (!RelevantInstr)
265
0
        continue;
266
267
0
      RelevantFunction = true;
268
269
      // Create a SwapEntry initialized to zeros, then fill in the
270
      // instruction and ID fields before pushing it to the back
271
      // of the swap vector.
272
0
      PPCVSXSwapEntry SwapEntry{};
273
0
      int VecIdx = addSwapEntry(&MI, SwapEntry);
274
275
0
      switch(MI.getOpcode()) {
276
0
      default:
277
        // Unless noted otherwise, an instruction is considered
278
        // safe for the optimization.  There are a large number of
279
        // such true-SIMD instructions (all vector math, logical,
280
        // select, compare, etc.).  However, if the instruction
281
        // mentions a partial vector register and does not have
282
        // special handling defined, it is not swappable.
283
0
        if (Partial)
284
0
          SwapVector[VecIdx].MentionsPartialVR = 1;
285
0
        else
286
0
          SwapVector[VecIdx].IsSwappable = 1;
287
0
        break;
288
0
      case PPC::XXPERMDI: {
289
        // This is a swap if it is of the form XXPERMDI t, s, s, 2.
290
        // Unfortunately, MachineCSE ignores COPY and SUBREG_TO_REG, so we
291
        // can also see XXPERMDI t, SUBREG_TO_REG(s), SUBREG_TO_REG(s), 2,
292
        // for example.  We have to look through chains of COPY and
293
        // SUBREG_TO_REG to find the real source value for comparison.
294
        // If the real source value is a physical register, then mark the
295
        // XXPERMDI as mentioning a physical register.
296
0
        int immed = MI.getOperand(3).getImm();
297
0
        if (immed == 2) {
298
0
          unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
299
0
                                               VecIdx);
300
0
          unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
301
0
                                               VecIdx);
302
0
          if (trueReg1 == trueReg2)
303
0
            SwapVector[VecIdx].IsSwap = 1;
304
0
          else {
305
            // We can still handle these if the two registers are not
306
            // identical, by adjusting the form of the XXPERMDI.
307
0
            SwapVector[VecIdx].IsSwappable = 1;
308
0
            SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
309
0
          }
310
        // This is a doubleword splat if it is of the form
311
        // XXPERMDI t, s, s, 0 or XXPERMDI t, s, s, 3.  As above we
312
        // must look through chains of copy-likes to find the source
313
        // register.  We turn off the marking for mention of a physical
314
        // register, because splatting it is safe; the optimization
315
        // will not swap the value in the physical register.  Whether
316
        // or not the two input registers are identical, we can handle
317
        // these by adjusting the form of the XXPERMDI.
318
0
        } else if (immed == 0 || immed == 3) {
319
320
0
          SwapVector[VecIdx].IsSwappable = 1;
321
0
          SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
322
323
0
          unsigned trueReg1 = lookThruCopyLike(MI.getOperand(1).getReg(),
324
0
                                               VecIdx);
325
0
          unsigned trueReg2 = lookThruCopyLike(MI.getOperand(2).getReg(),
326
0
                                               VecIdx);
327
0
          if (trueReg1 == trueReg2)
328
0
            SwapVector[VecIdx].MentionsPhysVR = 0;
329
330
0
        } else {
331
          // We can still handle these by adjusting the form of the XXPERMDI.
332
0
          SwapVector[VecIdx].IsSwappable = 1;
333
0
          SwapVector[VecIdx].SpecialHandling = SHValues::SH_XXPERMDI;
334
0
        }
335
0
        break;
336
0
      }
337
0
      case PPC::LVX:
338
        // Non-permuting loads are currently unsafe.  We can use special
339
        // handling for this in the future.  By not marking these as
340
        // IsSwap, we ensure computations containing them will be rejected
341
        // for now.
342
0
        SwapVector[VecIdx].IsLoad = 1;
343
0
        break;
344
0
      case PPC::LXVD2X:
345
0
      case PPC::LXVW4X:
346
        // Permuting loads are marked as both load and swap, and are
347
        // safe for optimization.
348
0
        SwapVector[VecIdx].IsLoad = 1;
349
0
        SwapVector[VecIdx].IsSwap = 1;
350
0
        break;
351
0
      case PPC::LXSDX:
352
0
      case PPC::LXSSPX:
353
0
      case PPC::XFLOADf64:
354
0
      case PPC::XFLOADf32:
355
        // A load of a floating-point value into the high-order half of
356
        // a vector register is safe, provided that we introduce a swap
357
        // following the load, which will be done by the SUBREG_TO_REG
358
        // support.  So just mark these as safe.
359
0
        SwapVector[VecIdx].IsLoad = 1;
360
0
        SwapVector[VecIdx].IsSwappable = 1;
361
0
        break;
362
0
      case PPC::STVX:
363
        // Non-permuting stores are currently unsafe.  We can use special
364
        // handling for this in the future.  By not marking these as
365
        // IsSwap, we ensure computations containing them will be rejected
366
        // for now.
367
0
        SwapVector[VecIdx].IsStore = 1;
368
0
        break;
369
0
      case PPC::STXVD2X:
370
0
      case PPC::STXVW4X:
371
        // Permuting stores are marked as both store and swap, and are
372
        // safe for optimization.
373
0
        SwapVector[VecIdx].IsStore = 1;
374
0
        SwapVector[VecIdx].IsSwap = 1;
375
0
        break;
376
0
      case PPC::COPY:
377
        // These are fine provided they are moving between full vector
378
        // register classes.
379
0
        if (isVecReg(MI.getOperand(0).getReg()) &&
380
0
            isVecReg(MI.getOperand(1).getReg()))
381
0
          SwapVector[VecIdx].IsSwappable = 1;
382
        // If we have a copy from one scalar floating-point register
383
        // to another, we can accept this even if it is a physical
384
        // register.  The only way this gets involved is if it feeds
385
        // a SUBREG_TO_REG, which is handled by introducing a swap.
386
0
        else if (isScalarVecReg(MI.getOperand(0).getReg()) &&
387
0
                 isScalarVecReg(MI.getOperand(1).getReg()))
388
0
          SwapVector[VecIdx].IsSwappable = 1;
389
0
        break;
390
0
      case PPC::SUBREG_TO_REG: {
391
        // These are fine provided they are moving between full vector
392
        // register classes.  If they are moving from a scalar
393
        // floating-point class to a vector class, we can handle those
394
        // as well, provided we introduce a swap.  It is generally the
395
        // case that we will introduce fewer swaps than we remove, but
396
        // (FIXME) a cost model could be used.  However, introduced
397
        // swaps could potentially be CSEd, so this is not trivial.
398
0
        if (isVecReg(MI.getOperand(0).getReg()) &&
399
0
            isVecReg(MI.getOperand(2).getReg()))
400
0
          SwapVector[VecIdx].IsSwappable = 1;
401
0
        else if (isVecReg(MI.getOperand(0).getReg()) &&
402
0
                 isScalarVecReg(MI.getOperand(2).getReg())) {
403
0
          SwapVector[VecIdx].IsSwappable = 1;
404
0
          SwapVector[VecIdx].SpecialHandling = SHValues::SH_COPYWIDEN;
405
0
        }
406
0
        break;
407
0
      }
408
0
      case PPC::VSPLTB:
409
0
      case PPC::VSPLTH:
410
0
      case PPC::VSPLTW:
411
0
      case PPC::XXSPLTW:
412
        // Splats are lane-sensitive, but we can use special handling
413
        // to adjust the source lane for the splat.
414
0
        SwapVector[VecIdx].IsSwappable = 1;
415
0
        SwapVector[VecIdx].SpecialHandling = SHValues::SH_SPLAT;
416
0
        break;
417
      // The presence of the following lane-sensitive operations in a
418
      // web will kill the optimization, at least for now.  For these
419
      // we do nothing, causing the optimization to fail.
420
      // FIXME: Some of these could be permitted with special handling,
421
      // and will be phased in as time permits.
422
      // FIXME: There is no simple and maintainable way to express a set
423
      // of opcodes having a common attribute in TableGen.  Should this
424
      // change, this is a prime candidate to use such a mechanism.
425
0
      case PPC::INLINEASM:
426
0
      case PPC::INLINEASM_BR:
427
0
      case PPC::EXTRACT_SUBREG:
428
0
      case PPC::INSERT_SUBREG:
429
0
      case PPC::COPY_TO_REGCLASS:
430
0
      case PPC::LVEBX:
431
0
      case PPC::LVEHX:
432
0
      case PPC::LVEWX:
433
0
      case PPC::LVSL:
434
0
      case PPC::LVSR:
435
0
      case PPC::LVXL:
436
0
      case PPC::STVEBX:
437
0
      case PPC::STVEHX:
438
0
      case PPC::STVEWX:
439
0
      case PPC::STVXL:
440
        // We can handle STXSDX and STXSSPX similarly to LXSDX and LXSSPX,
441
        // by adding special handling for narrowing copies as well as
442
        // widening ones.  However, I've experimented with this, and in
443
        // practice we currently do not appear to use STXSDX fed by
444
        // a narrowing copy from a full vector register.  Since I can't
445
        // generate any useful test cases, I've left this alone for now.
446
0
      case PPC::STXSDX:
447
0
      case PPC::STXSSPX:
448
0
      case PPC::VCIPHER:
449
0
      case PPC::VCIPHERLAST:
450
0
      case PPC::VMRGHB:
451
0
      case PPC::VMRGHH:
452
0
      case PPC::VMRGHW:
453
0
      case PPC::VMRGLB:
454
0
      case PPC::VMRGLH:
455
0
      case PPC::VMRGLW:
456
0
      case PPC::VMULESB:
457
0
      case PPC::VMULESH:
458
0
      case PPC::VMULESW:
459
0
      case PPC::VMULEUB:
460
0
      case PPC::VMULEUH:
461
0
      case PPC::VMULEUW:
462
0
      case PPC::VMULOSB:
463
0
      case PPC::VMULOSH:
464
0
      case PPC::VMULOSW:
465
0
      case PPC::VMULOUB:
466
0
      case PPC::VMULOUH:
467
0
      case PPC::VMULOUW:
468
0
      case PPC::VNCIPHER:
469
0
      case PPC::VNCIPHERLAST:
470
0
      case PPC::VPERM:
471
0
      case PPC::VPERMXOR:
472
0
      case PPC::VPKPX:
473
0
      case PPC::VPKSHSS:
474
0
      case PPC::VPKSHUS:
475
0
      case PPC::VPKSDSS:
476
0
      case PPC::VPKSDUS:
477
0
      case PPC::VPKSWSS:
478
0
      case PPC::VPKSWUS:
479
0
      case PPC::VPKUDUM:
480
0
      case PPC::VPKUDUS:
481
0
      case PPC::VPKUHUM:
482
0
      case PPC::VPKUHUS:
483
0
      case PPC::VPKUWUM:
484
0
      case PPC::VPKUWUS:
485
0
      case PPC::VPMSUMB:
486
0
      case PPC::VPMSUMD:
487
0
      case PPC::VPMSUMH:
488
0
      case PPC::VPMSUMW:
489
0
      case PPC::VRLB:
490
0
      case PPC::VRLD:
491
0
      case PPC::VRLH:
492
0
      case PPC::VRLW:
493
0
      case PPC::VSBOX:
494
0
      case PPC::VSHASIGMAD:
495
0
      case PPC::VSHASIGMAW:
496
0
      case PPC::VSL:
497
0
      case PPC::VSLDOI:
498
0
      case PPC::VSLO:
499
0
      case PPC::VSR:
500
0
      case PPC::VSRO:
501
0
      case PPC::VSUM2SWS:
502
0
      case PPC::VSUM4SBS:
503
0
      case PPC::VSUM4SHS:
504
0
      case PPC::VSUM4UBS:
505
0
      case PPC::VSUMSWS:
506
0
      case PPC::VUPKHPX:
507
0
      case PPC::VUPKHSB:
508
0
      case PPC::VUPKHSH:
509
0
      case PPC::VUPKHSW:
510
0
      case PPC::VUPKLPX:
511
0
      case PPC::VUPKLSB:
512
0
      case PPC::VUPKLSH:
513
0
      case PPC::VUPKLSW:
514
0
      case PPC::XXMRGHW:
515
0
      case PPC::XXMRGLW:
516
      // XXSLDWI could be replaced by a general permute with one of three
517
      // permute control vectors (for shift values 1, 2, 3).  However,
518
      // VPERM has a more restrictive register class.
519
0
      case PPC::XXSLDWI:
520
0
      case PPC::XSCVDPSPN:
521
0
      case PPC::XSCVSPDPN:
522
0
      case PPC::MTVSCR:
523
0
      case PPC::MFVSCR:
524
0
        break;
525
0
      }
526
0
    }
527
0
  }
528
529
0
  if (RelevantFunction) {
530
0
    LLVM_DEBUG(dbgs() << "Swap vector when first built\n\n");
531
0
    LLVM_DEBUG(dumpSwapVector());
532
0
  }
533
534
0
  return RelevantFunction;
535
0
}
536
537
// Add an entry to the swap vector and swap map, and make a
538
// singleton equivalence class for the entry.
539
int PPCVSXSwapRemoval::addSwapEntry(MachineInstr *MI,
540
0
                                  PPCVSXSwapEntry& SwapEntry) {
541
0
  SwapEntry.VSEMI = MI;
542
0
  SwapEntry.VSEId = SwapVector.size();
543
0
  SwapVector.push_back(SwapEntry);
544
0
  EC->insert(SwapEntry.VSEId);
545
0
  SwapMap[MI] = SwapEntry.VSEId;
546
0
  return SwapEntry.VSEId;
547
0
}
548
549
// This is used to find the "true" source register for an
550
// XXPERMDI instruction, since MachineCSE does not handle the
551
// "copy-like" operations (Copy and SubregToReg).  Returns
552
// the original SrcReg unless it is the target of a copy-like
553
// operation, in which case we chain backwards through all
554
// such operations to the ultimate source register.  If a
555
// physical register is encountered, we stop the search and
556
// flag the swap entry indicated by VecIdx (the original
557
// XXPERMDI) as mentioning a physical register.
558
unsigned PPCVSXSwapRemoval::lookThruCopyLike(unsigned SrcReg,
559
0
                                             unsigned VecIdx) {
560
0
  MachineInstr *MI = MRI->getVRegDef(SrcReg);
561
0
  if (!MI->isCopyLike())
562
0
    return SrcReg;
563
564
0
  unsigned CopySrcReg;
565
0
  if (MI->isCopy())
566
0
    CopySrcReg = MI->getOperand(1).getReg();
567
0
  else {
568
0
    assert(MI->isSubregToReg() && "bad opcode for lookThruCopyLike");
569
0
    CopySrcReg = MI->getOperand(2).getReg();
570
0
  }
571
572
0
  if (!Register::isVirtualRegister(CopySrcReg)) {
573
0
    if (!isScalarVecReg(CopySrcReg))
574
0
      SwapVector[VecIdx].MentionsPhysVR = 1;
575
0
    return CopySrcReg;
576
0
  }
577
578
0
  return lookThruCopyLike(CopySrcReg, VecIdx);
579
0
}
580
581
// Generate equivalence classes for related computations (webs) by
582
// def-use relationships of virtual registers.  Mention of a physical
583
// register terminates the generation of equivalence classes as this
584
// indicates a use of a parameter, definition of a return value, use
585
// of a value returned from a call, or definition of a parameter to a
586
// call.  Computations with physical register mentions are flagged
587
// as such so their containing webs will not be optimized.
588
0
void PPCVSXSwapRemoval::formWebs() {
589
590
0
  LLVM_DEBUG(dbgs() << "\n*** Forming webs for swap removal ***\n\n");
591
592
0
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
593
594
0
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
595
596
0
    LLVM_DEBUG(dbgs() << "\n" << SwapVector[EntryIdx].VSEId << " ");
597
0
    LLVM_DEBUG(MI->dump());
598
599
    // It's sufficient to walk vector uses and join them to their unique
600
    // definitions.  In addition, check full vector register operands
601
    // for physical regs.  We exclude partial-vector register operands
602
    // because we can handle them if copied to a full vector.
603
0
    for (const MachineOperand &MO : MI->operands()) {
604
0
      if (!MO.isReg())
605
0
        continue;
606
607
0
      Register Reg = MO.getReg();
608
0
      if (!isVecReg(Reg) && !isScalarVecReg(Reg))
609
0
        continue;
610
611
0
      if (!Reg.isVirtual()) {
612
0
        if (!(MI->isCopy() && isScalarVecReg(Reg)))
613
0
          SwapVector[EntryIdx].MentionsPhysVR = 1;
614
0
        continue;
615
0
      }
616
617
0
      if (!MO.isUse())
618
0
        continue;
619
620
0
      MachineInstr* DefMI = MRI->getVRegDef(Reg);
621
0
      assert(SwapMap.contains(DefMI) &&
622
0
             "Inconsistency: def of vector reg not found in swap map!");
623
0
      int DefIdx = SwapMap[DefMI];
624
0
      (void)EC->unionSets(SwapVector[DefIdx].VSEId,
625
0
                          SwapVector[EntryIdx].VSEId);
626
627
0
      LLVM_DEBUG(dbgs() << format("Unioning %d with %d\n",
628
0
                                  SwapVector[DefIdx].VSEId,
629
0
                                  SwapVector[EntryIdx].VSEId));
630
0
      LLVM_DEBUG(dbgs() << "  Def: ");
631
0
      LLVM_DEBUG(DefMI->dump());
632
0
    }
633
0
  }
634
0
}
635
636
// Walk the swap vector entries looking for conditions that prevent their
637
// containing computations from being optimized.  When such conditions are
638
// found, mark the representative of the computation's equivalence class
639
// as rejected.
640
0
void PPCVSXSwapRemoval::recordUnoptimizableWebs() {
641
642
0
  LLVM_DEBUG(dbgs() << "\n*** Rejecting webs for swap removal ***\n\n");
643
644
0
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
645
0
    int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
646
647
    // If representative is already rejected, don't waste further time.
648
0
    if (SwapVector[Repr].WebRejected)
649
0
      continue;
650
651
    // Reject webs containing mentions of physical or partial registers, or
652
    // containing operations that we don't know how to handle in a lane-
653
    // permuted region.
654
0
    if (SwapVector[EntryIdx].MentionsPhysVR ||
655
0
        SwapVector[EntryIdx].MentionsPartialVR ||
656
0
        !(SwapVector[EntryIdx].IsSwappable || SwapVector[EntryIdx].IsSwap)) {
657
658
0
      SwapVector[Repr].WebRejected = 1;
659
660
0
      LLVM_DEBUG(
661
0
          dbgs() << format("Web %d rejected for physreg, partial reg, or not "
662
0
                           "swap[pable]\n",
663
0
                           Repr));
664
0
      LLVM_DEBUG(dbgs() << "  in " << EntryIdx << ": ");
665
0
      LLVM_DEBUG(SwapVector[EntryIdx].VSEMI->dump());
666
0
      LLVM_DEBUG(dbgs() << "\n");
667
0
    }
668
669
    // Reject webs than contain swapping loads that feed something other
670
    // than a swap instruction.
671
0
    else if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
672
0
      MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
673
0
      Register DefReg = MI->getOperand(0).getReg();
674
675
      // We skip debug instructions in the analysis.  (Note that debug
676
      // location information is still maintained by this optimization
677
      // because it remains on the LXVD2X and STXVD2X instructions after
678
      // the XXPERMDIs are removed.)
679
0
      for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
680
0
        int UseIdx = SwapMap[&UseMI];
681
682
0
        if (!SwapVector[UseIdx].IsSwap || SwapVector[UseIdx].IsLoad ||
683
0
            SwapVector[UseIdx].IsStore) {
684
685
0
          SwapVector[Repr].WebRejected = 1;
686
687
0
          LLVM_DEBUG(dbgs() << format(
688
0
                         "Web %d rejected for load not feeding swap\n", Repr));
689
0
          LLVM_DEBUG(dbgs() << "  def " << EntryIdx << ": ");
690
0
          LLVM_DEBUG(MI->dump());
691
0
          LLVM_DEBUG(dbgs() << "  use " << UseIdx << ": ");
692
0
          LLVM_DEBUG(UseMI.dump());
693
0
          LLVM_DEBUG(dbgs() << "\n");
694
0
        }
695
696
        // It is possible that the load feeds a swap and that swap feeds a
697
        // store. In such a case, the code is actually trying to store a swapped
698
        // vector. We must reject such webs.
699
0
        if (SwapVector[UseIdx].IsSwap && !SwapVector[UseIdx].IsLoad &&
700
0
            !SwapVector[UseIdx].IsStore) {
701
0
          Register SwapDefReg = UseMI.getOperand(0).getReg();
702
0
          for (MachineInstr &UseOfUseMI :
703
0
               MRI->use_nodbg_instructions(SwapDefReg)) {
704
0
            int UseOfUseIdx = SwapMap[&UseOfUseMI];
705
0
            if (SwapVector[UseOfUseIdx].IsStore) {
706
0
              SwapVector[Repr].WebRejected = 1;
707
0
              LLVM_DEBUG(
708
0
                  dbgs() << format(
709
0
                      "Web %d rejected for load/swap feeding a store\n", Repr));
710
0
              LLVM_DEBUG(dbgs() << "  def " << EntryIdx << ": ");
711
0
              LLVM_DEBUG(MI->dump());
712
0
              LLVM_DEBUG(dbgs() << "  use " << UseIdx << ": ");
713
0
              LLVM_DEBUG(UseMI.dump());
714
0
              LLVM_DEBUG(dbgs() << "\n");
715
0
            }
716
0
          }
717
0
        }
718
0
      }
719
720
    // Reject webs that contain swapping stores that are fed by something
721
    // other than a swap instruction.
722
0
    } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
723
0
      MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
724
0
      Register UseReg = MI->getOperand(0).getReg();
725
0
      MachineInstr *DefMI = MRI->getVRegDef(UseReg);
726
0
      Register DefReg = DefMI->getOperand(0).getReg();
727
0
      int DefIdx = SwapMap[DefMI];
728
729
0
      if (!SwapVector[DefIdx].IsSwap || SwapVector[DefIdx].IsLoad ||
730
0
          SwapVector[DefIdx].IsStore) {
731
732
0
        SwapVector[Repr].WebRejected = 1;
733
734
0
        LLVM_DEBUG(dbgs() << format(
735
0
                       "Web %d rejected for store not fed by swap\n", Repr));
736
0
        LLVM_DEBUG(dbgs() << "  def " << DefIdx << ": ");
737
0
        LLVM_DEBUG(DefMI->dump());
738
0
        LLVM_DEBUG(dbgs() << "  use " << EntryIdx << ": ");
739
0
        LLVM_DEBUG(MI->dump());
740
0
        LLVM_DEBUG(dbgs() << "\n");
741
0
      }
742
743
      // Ensure all uses of the register defined by DefMI feed store
744
      // instructions
745
0
      for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
746
0
        int UseIdx = SwapMap[&UseMI];
747
748
0
        if (SwapVector[UseIdx].VSEMI->getOpcode() != MI->getOpcode()) {
749
0
          SwapVector[Repr].WebRejected = 1;
750
751
0
          LLVM_DEBUG(
752
0
              dbgs() << format(
753
0
                  "Web %d rejected for swap not feeding only stores\n", Repr));
754
0
          LLVM_DEBUG(dbgs() << "  def "
755
0
                            << " : ");
756
0
          LLVM_DEBUG(DefMI->dump());
757
0
          LLVM_DEBUG(dbgs() << "  use " << UseIdx << ": ");
758
0
          LLVM_DEBUG(SwapVector[UseIdx].VSEMI->dump());
759
0
          LLVM_DEBUG(dbgs() << "\n");
760
0
        }
761
0
      }
762
0
    }
763
0
  }
764
765
0
  LLVM_DEBUG(dbgs() << "Swap vector after web analysis:\n\n");
766
0
  LLVM_DEBUG(dumpSwapVector());
767
0
}
768
769
// Walk the swap vector entries looking for swaps fed by permuting loads
770
// and swaps that feed permuting stores.  If the containing computation
771
// has not been marked rejected, mark each such swap for removal.
772
// (Removal is delayed in case optimization has disturbed the pattern,
773
// such that multiple loads feed the same swap, etc.)
774
0
void PPCVSXSwapRemoval::markSwapsForRemoval() {
775
776
0
  LLVM_DEBUG(dbgs() << "\n*** Marking swaps for removal ***\n\n");
777
778
0
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
779
780
0
    if (SwapVector[EntryIdx].IsLoad && SwapVector[EntryIdx].IsSwap) {
781
0
      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
782
783
0
      if (!SwapVector[Repr].WebRejected) {
784
0
        MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
785
0
        Register DefReg = MI->getOperand(0).getReg();
786
787
0
        for (MachineInstr &UseMI : MRI->use_nodbg_instructions(DefReg)) {
788
0
          int UseIdx = SwapMap[&UseMI];
789
0
          SwapVector[UseIdx].WillRemove = 1;
790
791
0
          LLVM_DEBUG(dbgs() << "Marking swap fed by load for removal: ");
792
0
          LLVM_DEBUG(UseMI.dump());
793
0
        }
794
0
      }
795
796
0
    } else if (SwapVector[EntryIdx].IsStore && SwapVector[EntryIdx].IsSwap) {
797
0
      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
798
799
0
      if (!SwapVector[Repr].WebRejected) {
800
0
        MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
801
0
        Register UseReg = MI->getOperand(0).getReg();
802
0
        MachineInstr *DefMI = MRI->getVRegDef(UseReg);
803
0
        int DefIdx = SwapMap[DefMI];
804
0
        SwapVector[DefIdx].WillRemove = 1;
805
806
0
        LLVM_DEBUG(dbgs() << "Marking swap feeding store for removal: ");
807
0
        LLVM_DEBUG(DefMI->dump());
808
0
      }
809
810
0
    } else if (SwapVector[EntryIdx].IsSwappable &&
811
0
               SwapVector[EntryIdx].SpecialHandling != 0) {
812
0
      int Repr = EC->getLeaderValue(SwapVector[EntryIdx].VSEId);
813
814
0
      if (!SwapVector[Repr].WebRejected)
815
0
        handleSpecialSwappables(EntryIdx);
816
0
    }
817
0
  }
818
0
}
819
820
// Create an xxswapd instruction and insert it prior to the given point.
821
// MI is used to determine basic block and debug loc information.
822
// FIXME: When inserting a swap, we should check whether SrcReg is
823
// defined by another swap:  SrcReg = XXPERMDI Reg, Reg, 2;  If so,
824
// then instead we should generate a copy from Reg to DstReg.
825
void PPCVSXSwapRemoval::insertSwap(MachineInstr *MI,
826
                                   MachineBasicBlock::iterator InsertPoint,
827
0
                                   unsigned DstReg, unsigned SrcReg) {
828
0
  BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
829
0
          TII->get(PPC::XXPERMDI), DstReg)
830
0
    .addReg(SrcReg)
831
0
    .addReg(SrcReg)
832
0
    .addImm(2);
833
0
}
834
835
// The identified swap entry requires special handling to allow its
836
// containing computation to be optimized.  Perform that handling
837
// here.
838
// FIXME: Additional opportunities will be phased in with subsequent
839
// patches.
840
0
void PPCVSXSwapRemoval::handleSpecialSwappables(int EntryIdx) {
841
0
  switch (SwapVector[EntryIdx].SpecialHandling) {
842
843
0
  default:
844
0
    llvm_unreachable("Unexpected special handling type");
845
846
  // For splats based on an index into a vector, add N/2 modulo N
847
  // to the index, where N is the number of vector elements.
848
0
  case SHValues::SH_SPLAT: {
849
0
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
850
0
    unsigned NElts;
851
852
0
    LLVM_DEBUG(dbgs() << "Changing splat: ");
853
0
    LLVM_DEBUG(MI->dump());
854
855
0
    switch (MI->getOpcode()) {
856
0
    default:
857
0
      llvm_unreachable("Unexpected splat opcode");
858
0
    case PPC::VSPLTB: NElts = 16; break;
859
0
    case PPC::VSPLTH: NElts = 8;  break;
860
0
    case PPC::VSPLTW:
861
0
    case PPC::XXSPLTW: NElts = 4;  break;
862
0
    }
863
864
0
    unsigned EltNo;
865
0
    if (MI->getOpcode() == PPC::XXSPLTW)
866
0
      EltNo = MI->getOperand(2).getImm();
867
0
    else
868
0
      EltNo = MI->getOperand(1).getImm();
869
870
0
    EltNo = (EltNo + NElts / 2) % NElts;
871
0
    if (MI->getOpcode() == PPC::XXSPLTW)
872
0
      MI->getOperand(2).setImm(EltNo);
873
0
    else
874
0
      MI->getOperand(1).setImm(EltNo);
875
876
0
    LLVM_DEBUG(dbgs() << "  Into: ");
877
0
    LLVM_DEBUG(MI->dump());
878
0
    break;
879
0
  }
880
881
  // For an XXPERMDI that isn't handled otherwise, we need to
882
  // reverse the order of the operands.  If the selector operand
883
  // has a value of 0 or 3, we need to change it to 3 or 0,
884
  // respectively.  Otherwise we should leave it alone.  (This
885
  // is equivalent to reversing the two bits of the selector
886
  // operand and complementing the result.)
887
0
  case SHValues::SH_XXPERMDI: {
888
0
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
889
890
0
    LLVM_DEBUG(dbgs() << "Changing XXPERMDI: ");
891
0
    LLVM_DEBUG(MI->dump());
892
893
0
    unsigned Selector = MI->getOperand(3).getImm();
894
0
    if (Selector == 0 || Selector == 3)
895
0
      Selector = 3 - Selector;
896
0
    MI->getOperand(3).setImm(Selector);
897
898
0
    Register Reg1 = MI->getOperand(1).getReg();
899
0
    Register Reg2 = MI->getOperand(2).getReg();
900
0
    MI->getOperand(1).setReg(Reg2);
901
0
    MI->getOperand(2).setReg(Reg1);
902
903
    // We also need to swap kill flag associated with the register.
904
0
    bool IsKill1 = MI->getOperand(1).isKill();
905
0
    bool IsKill2 = MI->getOperand(2).isKill();
906
0
    MI->getOperand(1).setIsKill(IsKill2);
907
0
    MI->getOperand(2).setIsKill(IsKill1);
908
909
0
    LLVM_DEBUG(dbgs() << "  Into: ");
910
0
    LLVM_DEBUG(MI->dump());
911
0
    break;
912
0
  }
913
914
  // For a copy from a scalar floating-point register to a vector
915
  // register, removing swaps will leave the copied value in the
916
  // wrong lane.  Insert a swap following the copy to fix this.
917
0
  case SHValues::SH_COPYWIDEN: {
918
0
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
919
920
0
    LLVM_DEBUG(dbgs() << "Changing SUBREG_TO_REG: ");
921
0
    LLVM_DEBUG(MI->dump());
922
923
0
    Register DstReg = MI->getOperand(0).getReg();
924
0
    const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
925
0
    Register NewVReg = MRI->createVirtualRegister(DstRC);
926
927
0
    MI->getOperand(0).setReg(NewVReg);
928
0
    LLVM_DEBUG(dbgs() << "  Into: ");
929
0
    LLVM_DEBUG(MI->dump());
930
931
0
    auto InsertPoint = ++MachineBasicBlock::iterator(MI);
932
933
    // Note that an XXPERMDI requires a VSRC, so if the SUBREG_TO_REG
934
    // is copying to a VRRC, we need to be careful to avoid a register
935
    // assignment problem.  In this case we must copy from VRRC to VSRC
936
    // prior to the swap, and from VSRC to VRRC following the swap.
937
    // Coalescing will usually remove all this mess.
938
0
    if (DstRC == &PPC::VRRCRegClass) {
939
0
      Register VSRCTmp1 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
940
0
      Register VSRCTmp2 = MRI->createVirtualRegister(&PPC::VSRCRegClass);
941
942
0
      BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
943
0
              TII->get(PPC::COPY), VSRCTmp1)
944
0
        .addReg(NewVReg);
945
0
      LLVM_DEBUG(std::prev(InsertPoint)->dump());
946
947
0
      insertSwap(MI, InsertPoint, VSRCTmp2, VSRCTmp1);
948
0
      LLVM_DEBUG(std::prev(InsertPoint)->dump());
949
950
0
      BuildMI(*MI->getParent(), InsertPoint, MI->getDebugLoc(),
951
0
              TII->get(PPC::COPY), DstReg)
952
0
        .addReg(VSRCTmp2);
953
0
      LLVM_DEBUG(std::prev(InsertPoint)->dump());
954
955
0
    } else {
956
0
      insertSwap(MI, InsertPoint, DstReg, NewVReg);
957
0
      LLVM_DEBUG(std::prev(InsertPoint)->dump());
958
0
    }
959
0
    break;
960
0
  }
961
0
  }
962
0
}
963
964
// Walk the swap vector and replace each entry marked for removal with
965
// a copy operation.
966
0
bool PPCVSXSwapRemoval::removeSwaps() {
967
968
0
  LLVM_DEBUG(dbgs() << "\n*** Removing swaps ***\n\n");
969
970
0
  bool Changed = false;
971
972
0
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
973
0
    if (SwapVector[EntryIdx].WillRemove) {
974
0
      Changed = true;
975
0
      MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
976
0
      MachineBasicBlock *MBB = MI->getParent();
977
0
      BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(TargetOpcode::COPY),
978
0
              MI->getOperand(0).getReg())
979
0
          .add(MI->getOperand(1));
980
981
0
      LLVM_DEBUG(dbgs() << format("Replaced %d with copy: ",
982
0
                                  SwapVector[EntryIdx].VSEId));
983
0
      LLVM_DEBUG(MI->dump());
984
985
0
      MI->eraseFromParent();
986
0
    }
987
0
  }
988
989
0
  return Changed;
990
0
}
991
992
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
993
// For debug purposes, dump the contents of the swap vector.
994
0
LLVM_DUMP_METHOD void PPCVSXSwapRemoval::dumpSwapVector() {
995
996
0
  for (unsigned EntryIdx = 0; EntryIdx < SwapVector.size(); ++EntryIdx) {
997
998
0
    MachineInstr *MI = SwapVector[EntryIdx].VSEMI;
999
0
    int ID = SwapVector[EntryIdx].VSEId;
1000
1001
0
    dbgs() << format("%6d", ID);
1002
0
    dbgs() << format("%6d", EC->getLeaderValue(ID));
1003
0
    dbgs() << format(" %bb.%3d", MI->getParent()->getNumber());
1004
0
    dbgs() << format("  %14s  ", TII->getName(MI->getOpcode()).str().c_str());
1005
1006
0
    if (SwapVector[EntryIdx].IsLoad)
1007
0
      dbgs() << "load ";
1008
0
    if (SwapVector[EntryIdx].IsStore)
1009
0
      dbgs() << "store ";
1010
0
    if (SwapVector[EntryIdx].IsSwap)
1011
0
      dbgs() << "swap ";
1012
0
    if (SwapVector[EntryIdx].MentionsPhysVR)
1013
0
      dbgs() << "physreg ";
1014
0
    if (SwapVector[EntryIdx].MentionsPartialVR)
1015
0
      dbgs() << "partialreg ";
1016
1017
0
    if (SwapVector[EntryIdx].IsSwappable) {
1018
0
      dbgs() << "swappable ";
1019
0
      switch(SwapVector[EntryIdx].SpecialHandling) {
1020
0
      default:
1021
0
        dbgs() << "special:**unknown**";
1022
0
        break;
1023
0
      case SH_NONE:
1024
0
        break;
1025
0
      case SH_EXTRACT:
1026
0
        dbgs() << "special:extract ";
1027
0
        break;
1028
0
      case SH_INSERT:
1029
0
        dbgs() << "special:insert ";
1030
0
        break;
1031
0
      case SH_NOSWAP_LD:
1032
0
        dbgs() << "special:load ";
1033
0
        break;
1034
0
      case SH_NOSWAP_ST:
1035
0
        dbgs() << "special:store ";
1036
0
        break;
1037
0
      case SH_SPLAT:
1038
0
        dbgs() << "special:splat ";
1039
0
        break;
1040
0
      case SH_XXPERMDI:
1041
0
        dbgs() << "special:xxpermdi ";
1042
0
        break;
1043
0
      case SH_COPYWIDEN:
1044
0
        dbgs() << "special:copywiden ";
1045
0
        break;
1046
0
      }
1047
0
    }
1048
1049
0
    if (SwapVector[EntryIdx].WebRejected)
1050
0
      dbgs() << "rejected ";
1051
0
    if (SwapVector[EntryIdx].WillRemove)
1052
0
      dbgs() << "remove ";
1053
1054
0
    dbgs() << "\n";
1055
1056
    // For no-asserts builds.
1057
0
    (void)MI;
1058
0
    (void)ID;
1059
0
  }
1060
1061
0
  dbgs() << "\n";
1062
0
}
1063
#endif
1064
1065
} // end default namespace
1066
1067
62
INITIALIZE_PASS_BEGIN(PPCVSXSwapRemoval, DEBUG_TYPE,
1068
62
                      "PowerPC VSX Swap Removal", false, false)
1069
62
INITIALIZE_PASS_END(PPCVSXSwapRemoval, DEBUG_TYPE,
1070
                    "PowerPC VSX Swap Removal", false, false)
1071
1072
char PPCVSXSwapRemoval::ID = 0;
1073
FunctionPass*
1074
0
llvm::createPPCVSXSwapRemovalPass() { return new PPCVSXSwapRemoval(); }