/src/llvm-project/llvm/lib/Target/X86/X86CompressEVEX.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- X86CompressEVEX.cpp ------------------------------------------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This pass compresses instructions from EVEX space to legacy/VEX/EVEX space |
10 | | // when possible in order to reduce code size or facilitate HW decoding. |
11 | | // |
12 | | // Possible compression: |
13 | | // a. AVX512 instruction (EVEX) -> AVX instruction (VEX) |
14 | | // b. Promoted instruction (EVEX) -> pre-promotion instruction (legacy/VEX) |
15 | | // c. NDD (EVEX) -> non-NDD (legacy) |
16 | | // d. NF_ND (EVEX) -> NF (EVEX) |
17 | | // |
18 | | // Compression a, b and c can always reduce code size, with some exceptions |
19 | | // such as promoted 16-bit CRC32 which is as long as the legacy version. |
20 | | // |
21 | | // legacy: |
22 | | // crc32w %si, %eax ## encoding: [0x66,0xf2,0x0f,0x38,0xf1,0xc6] |
23 | | // promoted: |
24 | | // crc32w %si, %eax ## encoding: [0x62,0xf4,0x7d,0x08,0xf1,0xc6] |
25 | | // |
26 | | // From performance perspective, these should be same (same uops and same EXE |
27 | | // ports). From a FMV perspective, an older legacy encoding is preferred b/c it |
28 | | // can execute in more places (broader HW install base). So we will still do |
29 | | // the compression. |
30 | | // |
31 | | // Compression d can help hardware decode (HW may skip reading the NDD |
32 | | // register) although the instruction length remains unchanged. |
33 | | //===----------------------------------------------------------------------===// |
34 | | |
35 | | #include "MCTargetDesc/X86BaseInfo.h" |
36 | | #include "MCTargetDesc/X86InstComments.h" |
37 | | #include "X86.h" |
38 | | #include "X86InstrInfo.h" |
39 | | #include "X86Subtarget.h" |
40 | | #include "llvm/ADT/StringRef.h" |
41 | | #include "llvm/CodeGen/MachineFunction.h" |
42 | | #include "llvm/CodeGen/MachineFunctionPass.h" |
43 | | #include "llvm/CodeGen/MachineInstr.h" |
44 | | #include "llvm/CodeGen/MachineOperand.h" |
45 | | #include "llvm/MC/MCInstrDesc.h" |
46 | | #include "llvm/Pass.h" |
47 | | #include <atomic> |
48 | | #include <cassert> |
49 | | #include <cstdint> |
50 | | |
51 | | using namespace llvm; |
52 | | |
53 | | // Including the generated EVEX compression tables. |
54 | | struct X86CompressEVEXTableEntry { |
55 | | uint16_t OldOpc; |
56 | | uint16_t NewOpc; |
57 | | |
58 | 1.57k | bool operator<(const X86CompressEVEXTableEntry &RHS) const { |
59 | 1.57k | return OldOpc < RHS.OldOpc; |
60 | 1.57k | } |
61 | | |
62 | 326 | friend bool operator<(const X86CompressEVEXTableEntry &TE, unsigned Opc) { |
63 | 326 | return TE.OldOpc < Opc; |
64 | 326 | } |
65 | | }; |
66 | | #include "X86GenCompressEVEXTables.inc" |
67 | | |
68 | 662 | #define COMP_EVEX_DESC "Compressing EVEX instrs when possible" |
69 | | #define COMP_EVEX_NAME "x86-compress-evex" |
70 | | |
71 | | #define DEBUG_TYPE COMP_EVEX_NAME |
72 | | |
73 | | namespace { |
74 | | |
75 | | class CompressEVEXPass : public MachineFunctionPass { |
76 | | public: |
77 | | static char ID; |
78 | 662 | CompressEVEXPass() : MachineFunctionPass(ID) {} |
79 | 662 | StringRef getPassName() const override { return COMP_EVEX_DESC; } |
80 | | |
81 | | bool runOnMachineFunction(MachineFunction &MF) override; |
82 | | |
83 | | // This pass runs after regalloc and doesn't support VReg operands. |
84 | 662 | MachineFunctionProperties getRequiredProperties() const override { |
85 | 662 | return MachineFunctionProperties().set( |
86 | 662 | MachineFunctionProperties::Property::NoVRegs); |
87 | 662 | } |
88 | | }; |
89 | | |
90 | | } // end anonymous namespace |
91 | | |
92 | | char CompressEVEXPass::ID = 0; |
93 | | |
94 | 31 | static bool usesExtendedRegister(const MachineInstr &MI) { |
95 | 122 | auto isHiRegIdx = [](unsigned Reg) { |
96 | | // Check for XMM register with indexes between 16 - 31. |
97 | 122 | if (Reg >= X86::XMM16 && Reg <= X86::XMM31) |
98 | 0 | return true; |
99 | | // Check for YMM register with indexes between 16 - 31. |
100 | 122 | if (Reg >= X86::YMM16 && Reg <= X86::YMM31) |
101 | 0 | return true; |
102 | | // Check for GPR with indexes between 16 - 31. |
103 | 122 | if (X86II::isApxExtendedReg(Reg)) |
104 | 0 | return true; |
105 | 122 | return false; |
106 | 122 | }; |
107 | | |
108 | | // Check that operands are not ZMM regs or |
109 | | // XMM/YMM regs with hi indexes between 16 - 31. |
110 | 176 | for (const MachineOperand &MO : MI.explicit_operands()) { |
111 | 176 | if (!MO.isReg()) |
112 | 54 | continue; |
113 | | |
114 | 122 | Register Reg = MO.getReg(); |
115 | 122 | assert(!X86II::isZMMReg(Reg) && |
116 | 122 | "ZMM instructions should not be in the EVEX->VEX tables"); |
117 | 122 | if (isHiRegIdx(Reg)) |
118 | 0 | return true; |
119 | 122 | } |
120 | | |
121 | 31 | return false; |
122 | 31 | } |
123 | | |
124 | 31 | static bool checkVEXInstPredicate(unsigned OldOpc, const X86Subtarget &ST) { |
125 | 31 | switch (OldOpc) { |
126 | 31 | default: |
127 | 31 | return true; |
128 | 0 | case X86::VCVTNEPS2BF16Z128rm: |
129 | 0 | case X86::VCVTNEPS2BF16Z128rr: |
130 | 0 | case X86::VCVTNEPS2BF16Z256rm: |
131 | 0 | case X86::VCVTNEPS2BF16Z256rr: |
132 | 0 | return ST.hasAVXNECONVERT(); |
133 | 0 | case X86::VPDPBUSDSZ128m: |
134 | 0 | case X86::VPDPBUSDSZ128r: |
135 | 0 | case X86::VPDPBUSDSZ256m: |
136 | 0 | case X86::VPDPBUSDSZ256r: |
137 | 0 | case X86::VPDPBUSDZ128m: |
138 | 0 | case X86::VPDPBUSDZ128r: |
139 | 0 | case X86::VPDPBUSDZ256m: |
140 | 0 | case X86::VPDPBUSDZ256r: |
141 | 0 | case X86::VPDPWSSDSZ128m: |
142 | 0 | case X86::VPDPWSSDSZ128r: |
143 | 0 | case X86::VPDPWSSDSZ256m: |
144 | 0 | case X86::VPDPWSSDSZ256r: |
145 | 0 | case X86::VPDPWSSDZ128m: |
146 | 0 | case X86::VPDPWSSDZ128r: |
147 | 0 | case X86::VPDPWSSDZ256m: |
148 | 0 | case X86::VPDPWSSDZ256r: |
149 | 0 | return ST.hasAVXVNNI(); |
150 | 0 | case X86::VPMADD52HUQZ128m: |
151 | 0 | case X86::VPMADD52HUQZ128r: |
152 | 0 | case X86::VPMADD52HUQZ256m: |
153 | 0 | case X86::VPMADD52HUQZ256r: |
154 | 0 | case X86::VPMADD52LUQZ128m: |
155 | 0 | case X86::VPMADD52LUQZ128r: |
156 | 0 | case X86::VPMADD52LUQZ256m: |
157 | 0 | case X86::VPMADD52LUQZ256r: |
158 | 0 | return ST.hasAVXIFMA(); |
159 | 31 | } |
160 | 31 | } |
161 | | |
162 | | // Do any custom cleanup needed to finalize the conversion. |
163 | 31 | static bool performCustomAdjustments(MachineInstr &MI, unsigned NewOpc) { |
164 | 31 | (void)NewOpc; |
165 | 31 | unsigned Opc = MI.getOpcode(); |
166 | 31 | switch (Opc) { |
167 | 0 | case X86::VALIGNDZ128rri: |
168 | 0 | case X86::VALIGNDZ128rmi: |
169 | 0 | case X86::VALIGNQZ128rri: |
170 | 0 | case X86::VALIGNQZ128rmi: { |
171 | 0 | assert((NewOpc == X86::VPALIGNRrri || NewOpc == X86::VPALIGNRrmi) && |
172 | 0 | "Unexpected new opcode!"); |
173 | 0 | unsigned Scale = |
174 | 0 | (Opc == X86::VALIGNQZ128rri || Opc == X86::VALIGNQZ128rmi) ? 8 : 4; |
175 | 0 | MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1); |
176 | 0 | Imm.setImm(Imm.getImm() * Scale); |
177 | 0 | break; |
178 | 0 | } |
179 | 0 | case X86::VSHUFF32X4Z256rmi: |
180 | 0 | case X86::VSHUFF32X4Z256rri: |
181 | 0 | case X86::VSHUFF64X2Z256rmi: |
182 | 0 | case X86::VSHUFF64X2Z256rri: |
183 | 0 | case X86::VSHUFI32X4Z256rmi: |
184 | 0 | case X86::VSHUFI32X4Z256rri: |
185 | 0 | case X86::VSHUFI64X2Z256rmi: |
186 | 0 | case X86::VSHUFI64X2Z256rri: { |
187 | 0 | assert((NewOpc == X86::VPERM2F128rr || NewOpc == X86::VPERM2I128rr || |
188 | 0 | NewOpc == X86::VPERM2F128rm || NewOpc == X86::VPERM2I128rm) && |
189 | 0 | "Unexpected new opcode!"); |
190 | 0 | MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1); |
191 | 0 | int64_t ImmVal = Imm.getImm(); |
192 | | // Set bit 5, move bit 1 to bit 4, copy bit 0. |
193 | 0 | Imm.setImm(0x20 | ((ImmVal & 2) << 3) | (ImmVal & 1)); |
194 | 0 | break; |
195 | 0 | } |
196 | 0 | case X86::VRNDSCALEPDZ128rri: |
197 | 0 | case X86::VRNDSCALEPDZ128rmi: |
198 | 0 | case X86::VRNDSCALEPSZ128rri: |
199 | 0 | case X86::VRNDSCALEPSZ128rmi: |
200 | 0 | case X86::VRNDSCALEPDZ256rri: |
201 | 0 | case X86::VRNDSCALEPDZ256rmi: |
202 | 0 | case X86::VRNDSCALEPSZ256rri: |
203 | 0 | case X86::VRNDSCALEPSZ256rmi: |
204 | 0 | case X86::VRNDSCALESDZr: |
205 | 0 | case X86::VRNDSCALESDZm: |
206 | 0 | case X86::VRNDSCALESSZr: |
207 | 0 | case X86::VRNDSCALESSZm: |
208 | 0 | case X86::VRNDSCALESDZr_Int: |
209 | 0 | case X86::VRNDSCALESDZm_Int: |
210 | 0 | case X86::VRNDSCALESSZr_Int: |
211 | 0 | case X86::VRNDSCALESSZm_Int: |
212 | 0 | const MachineOperand &Imm = MI.getOperand(MI.getNumExplicitOperands() - 1); |
213 | 0 | int64_t ImmVal = Imm.getImm(); |
214 | | // Ensure that only bits 3:0 of the immediate are used. |
215 | 0 | if ((ImmVal & 0xf) != ImmVal) |
216 | 0 | return false; |
217 | 0 | break; |
218 | 31 | } |
219 | | |
220 | 31 | return true; |
221 | 31 | } |
222 | | |
223 | 0 | static bool isRedundantNewDataDest(MachineInstr &MI, const X86Subtarget &ST) { |
224 | | // $rbx = ADD64rr_ND $rbx, $rax / $rbx = ADD64rr_ND $rax, $rbx |
225 | | // -> |
226 | | // $rbx = ADD64rr $rbx, $rax |
227 | 0 | const MCInstrDesc &Desc = MI.getDesc(); |
228 | 0 | Register Reg0 = MI.getOperand(0).getReg(); |
229 | 0 | const MachineOperand &Op1 = MI.getOperand(1); |
230 | 0 | if (!Op1.isReg()) |
231 | 0 | return false; |
232 | 0 | Register Reg1 = Op1.getReg(); |
233 | 0 | if (Reg1 == Reg0) |
234 | 0 | return true; |
235 | | |
236 | | // Op1 and Op2 may be commutable for ND instructions. |
237 | 0 | if (!Desc.isCommutable() || Desc.getNumOperands() < 3 || |
238 | 0 | !MI.getOperand(2).isReg() || MI.getOperand(2).getReg() != Reg0) |
239 | 0 | return false; |
240 | | // Opcode may change after commute, e.g. SHRD -> SHLD |
241 | | // TODO: Add test for this after ND SHRD/SHLD is supported |
242 | 0 | ST.getInstrInfo()->commuteInstruction(MI, false, 1, 2); |
243 | 0 | return true; |
244 | 0 | } |
245 | | |
246 | 3.99k | static bool CompressEVEXImpl(MachineInstr &MI, const X86Subtarget &ST) { |
247 | 3.99k | uint64_t TSFlags = MI.getDesc().TSFlags; |
248 | | |
249 | | // Check for EVEX instructions only. |
250 | 3.99k | if ((TSFlags & X86II::EncodingMask) != X86II::EVEX) |
251 | 3.96k | return false; |
252 | | |
253 | | // Instructions with mask or 512-bit vector can't be converted to VEX. |
254 | 31 | if (TSFlags & (X86II::EVEX_K | X86II::EVEX_L2)) |
255 | 0 | return false; |
256 | | |
257 | | // EVEX_B has several meanings. |
258 | | // AVX512: |
259 | | // register form: rounding control or SAE |
260 | | // memory form: broadcast |
261 | | // |
262 | | // APX: |
263 | | // MAP4: NDD |
264 | | // |
265 | | // For AVX512 cases, EVEX prefix is needed in order to carry this information |
266 | | // thus preventing the transformation to VEX encoding. |
267 | 31 | bool IsND = X86II::hasNewDataDest(TSFlags); |
268 | 31 | if (TSFlags & X86II::EVEX_B) |
269 | 0 | if (!IsND || !isRedundantNewDataDest(MI, ST)) |
270 | 0 | return false; |
271 | | |
272 | 31 | ArrayRef<X86CompressEVEXTableEntry> Table = ArrayRef(X86CompressEVEXTable); |
273 | | |
274 | 31 | unsigned Opc = MI.getOpcode(); |
275 | 31 | const auto *I = llvm::lower_bound(Table, Opc); |
276 | 31 | if (I == Table.end() || I->OldOpc != Opc) { |
277 | 0 | assert(!IsND && "Missing entry for ND instruction"); |
278 | 0 | return false; |
279 | 0 | } |
280 | | |
281 | 31 | if (!IsND) { |
282 | 31 | if (usesExtendedRegister(MI) || !checkVEXInstPredicate(Opc, ST) || |
283 | 31 | !performCustomAdjustments(MI, I->NewOpc)) |
284 | 0 | return false; |
285 | 31 | } |
286 | | |
287 | 31 | const MCInstrDesc &NewDesc = ST.getInstrInfo()->get(I->NewOpc); |
288 | 31 | MI.setDesc(NewDesc); |
289 | 31 | unsigned AsmComment; |
290 | 31 | switch (NewDesc.TSFlags & X86II::EncodingMask) { |
291 | 0 | case X86II::LEGACY: |
292 | 0 | AsmComment = X86::AC_EVEX_2_LEGACY; |
293 | 0 | break; |
294 | 31 | case X86II::VEX: |
295 | 31 | AsmComment = X86::AC_EVEX_2_VEX; |
296 | 31 | break; |
297 | 0 | case X86II::EVEX: |
298 | 0 | AsmComment = X86::AC_EVEX_2_EVEX; |
299 | 0 | assert(IsND && (NewDesc.TSFlags & X86II::EVEX_NF) && |
300 | 0 | "Unknown EVEX2EVEX compression"); |
301 | 0 | break; |
302 | 0 | default: |
303 | 0 | llvm_unreachable("Unknown EVEX compression"); |
304 | 31 | } |
305 | 31 | MI.setAsmPrinterFlag(AsmComment); |
306 | 31 | if (IsND) |
307 | 0 | MI.tieOperands(0, 1); |
308 | | |
309 | 31 | return true; |
310 | 31 | } |
311 | | |
312 | 22.2k | bool CompressEVEXPass::runOnMachineFunction(MachineFunction &MF) { |
313 | 22.2k | #ifndef NDEBUG |
314 | | // Make sure the tables are sorted. |
315 | 22.2k | static std::atomic<bool> TableChecked(false); |
316 | 22.2k | if (!TableChecked.load(std::memory_order_relaxed)) { |
317 | 1 | assert(llvm::is_sorted(X86CompressEVEXTable) && |
318 | 1 | "X86CompressEVEXTable is not sorted!"); |
319 | 0 | TableChecked.store(true, std::memory_order_relaxed); |
320 | 1 | } |
321 | 0 | #endif |
322 | 0 | const X86Subtarget &ST = MF.getSubtarget<X86Subtarget>(); |
323 | 22.2k | if (!ST.hasAVX512() && !ST.hasEGPR() && !ST.hasNDD()) |
324 | 22.1k | return false; |
325 | | |
326 | 25 | bool Changed = false; |
327 | | |
328 | 221 | for (MachineBasicBlock &MBB : MF) { |
329 | | // Traverse the basic block. |
330 | 221 | for (MachineInstr &MI : MBB) |
331 | 3.99k | Changed |= CompressEVEXImpl(MI, ST); |
332 | 221 | } |
333 | | |
334 | 25 | return Changed; |
335 | 22.2k | } |
336 | | |
337 | | INITIALIZE_PASS(CompressEVEXPass, COMP_EVEX_NAME, COMP_EVEX_DESC, false, false) |
338 | | |
339 | 662 | FunctionPass *llvm::createX86CompressEVEXPass() { |
340 | 662 | return new CompressEVEXPass(); |
341 | 662 | } |