/src/llvm-project/llvm/lib/Transforms/InstCombine/InstCombinePHI.cpp
Line | Count | Source (jump to first uncovered line) |
1 | | //===- InstCombinePHI.cpp -------------------------------------------------===// |
2 | | // |
3 | | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
4 | | // See https://llvm.org/LICENSE.txt for license information. |
5 | | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
6 | | // |
7 | | //===----------------------------------------------------------------------===// |
8 | | // |
9 | | // This file implements the visitPHINode function. |
10 | | // |
11 | | //===----------------------------------------------------------------------===// |
12 | | |
13 | | #include "InstCombineInternal.h" |
14 | | #include "llvm/ADT/STLExtras.h" |
15 | | #include "llvm/ADT/SmallPtrSet.h" |
16 | | #include "llvm/ADT/Statistic.h" |
17 | | #include "llvm/Analysis/InstructionSimplify.h" |
18 | | #include "llvm/Analysis/ValueTracking.h" |
19 | | #include "llvm/IR/PatternMatch.h" |
20 | | #include "llvm/Support/CommandLine.h" |
21 | | #include "llvm/Transforms/InstCombine/InstCombiner.h" |
22 | | #include "llvm/Transforms/Utils/Local.h" |
23 | | #include <optional> |
24 | | |
25 | | using namespace llvm; |
26 | | using namespace llvm::PatternMatch; |
27 | | |
28 | | #define DEBUG_TYPE "instcombine" |
29 | | |
30 | | static cl::opt<unsigned> |
31 | | MaxNumPhis("instcombine-max-num-phis", cl::init(512), |
32 | | cl::desc("Maximum number phis to handle in intptr/ptrint folding")); |
33 | | |
34 | | STATISTIC(NumPHIsOfInsertValues, |
35 | | "Number of phi-of-insertvalue turned into insertvalue-of-phis"); |
36 | | STATISTIC(NumPHIsOfExtractValues, |
37 | | "Number of phi-of-extractvalue turned into extractvalue-of-phi"); |
38 | | STATISTIC(NumPHICSEs, "Number of PHI's that got CSE'd"); |
39 | | |
40 | | /// The PHI arguments will be folded into a single operation with a PHI node |
41 | | /// as input. The debug location of the single operation will be the merged |
42 | | /// locations of the original PHI node arguments. |
43 | 173 | void InstCombinerImpl::PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN) { |
44 | 173 | auto *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); |
45 | 173 | Inst->setDebugLoc(FirstInst->getDebugLoc()); |
46 | | // We do not expect a CallInst here, otherwise, N-way merging of DebugLoc |
47 | | // will be inefficient. |
48 | 173 | assert(!isa<CallInst>(Inst)); |
49 | | |
50 | 202 | for (Value *V : drop_begin(PN.incoming_values())) { |
51 | 202 | auto *I = cast<Instruction>(V); |
52 | 202 | Inst->applyMergedLocation(Inst->getDebugLoc(), I->getDebugLoc()); |
53 | 202 | } |
54 | 173 | } |
55 | | |
56 | | // Replace Integer typed PHI PN if the PHI's value is used as a pointer value. |
57 | | // If there is an existing pointer typed PHI that produces the same value as PN, |
58 | | // replace PN and the IntToPtr operation with it. Otherwise, synthesize a new |
59 | | // PHI node: |
60 | | // |
61 | | // Case-1: |
62 | | // bb1: |
63 | | // int_init = PtrToInt(ptr_init) |
64 | | // br label %bb2 |
65 | | // bb2: |
66 | | // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] |
67 | | // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] |
68 | | // ptr_val2 = IntToPtr(int_val) |
69 | | // ... |
70 | | // use(ptr_val2) |
71 | | // ptr_val_inc = ... |
72 | | // inc_val_inc = PtrToInt(ptr_val_inc) |
73 | | // |
74 | | // ==> |
75 | | // bb1: |
76 | | // br label %bb2 |
77 | | // bb2: |
78 | | // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] |
79 | | // ... |
80 | | // use(ptr_val) |
81 | | // ptr_val_inc = ... |
82 | | // |
83 | | // Case-2: |
84 | | // bb1: |
85 | | // int_ptr = BitCast(ptr_ptr) |
86 | | // int_init = Load(int_ptr) |
87 | | // br label %bb2 |
88 | | // bb2: |
89 | | // int_val = PHI([int_init, %bb1], [int_val_inc, %bb2] |
90 | | // ptr_val2 = IntToPtr(int_val) |
91 | | // ... |
92 | | // use(ptr_val2) |
93 | | // ptr_val_inc = ... |
94 | | // inc_val_inc = PtrToInt(ptr_val_inc) |
95 | | // ==> |
96 | | // bb1: |
97 | | // ptr_init = Load(ptr_ptr) |
98 | | // br label %bb2 |
99 | | // bb2: |
100 | | // ptr_val = PHI([ptr_init, %bb1], [ptr_val_inc, %bb2] |
101 | | // ... |
102 | | // use(ptr_val) |
103 | | // ptr_val_inc = ... |
104 | | // ... |
105 | | // |
106 | 2.75k | bool InstCombinerImpl::foldIntegerTypedPHI(PHINode &PN) { |
107 | 2.75k | if (!PN.getType()->isIntegerTy()) |
108 | 881 | return false; |
109 | 1.86k | if (!PN.hasOneUse()) |
110 | 0 | return false; |
111 | | |
112 | 1.86k | auto *IntToPtr = dyn_cast<IntToPtrInst>(PN.user_back()); |
113 | 1.86k | if (!IntToPtr) |
114 | 1.83k | return false; |
115 | | |
116 | | // Check if the pointer is actually used as pointer: |
117 | 35 | auto HasPointerUse = [](Instruction *IIP) { |
118 | 43 | for (User *U : IIP->users()) { |
119 | 43 | Value *Ptr = nullptr; |
120 | 43 | if (LoadInst *LoadI = dyn_cast<LoadInst>(U)) { |
121 | 4 | Ptr = LoadI->getPointerOperand(); |
122 | 39 | } else if (StoreInst *SI = dyn_cast<StoreInst>(U)) { |
123 | 5 | Ptr = SI->getPointerOperand(); |
124 | 34 | } else if (GetElementPtrInst *GI = dyn_cast<GetElementPtrInst>(U)) { |
125 | 18 | Ptr = GI->getPointerOperand(); |
126 | 18 | } |
127 | | |
128 | 43 | if (Ptr && Ptr == IIP) |
129 | 27 | return true; |
130 | 43 | } |
131 | 8 | return false; |
132 | 35 | }; |
133 | | |
134 | 35 | if (!HasPointerUse(IntToPtr)) |
135 | 8 | return false; |
136 | | |
137 | 27 | if (DL.getPointerSizeInBits(IntToPtr->getAddressSpace()) != |
138 | 27 | DL.getTypeSizeInBits(IntToPtr->getOperand(0)->getType())) |
139 | 0 | return false; |
140 | | |
141 | 27 | SmallVector<Value *, 4> AvailablePtrVals; |
142 | 57 | for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) { |
143 | 57 | BasicBlock *BB = std::get<0>(Incoming); |
144 | 57 | Value *Arg = std::get<1>(Incoming); |
145 | | |
146 | | // First look backward: |
147 | 57 | if (auto *PI = dyn_cast<PtrToIntInst>(Arg)) { |
148 | 20 | AvailablePtrVals.emplace_back(PI->getOperand(0)); |
149 | 20 | continue; |
150 | 20 | } |
151 | | |
152 | | // Next look forward: |
153 | 37 | Value *ArgIntToPtr = nullptr; |
154 | 92 | for (User *U : Arg->users()) { |
155 | 92 | if (isa<IntToPtrInst>(U) && U->getType() == IntToPtr->getType() && |
156 | 92 | (DT.dominates(cast<Instruction>(U), BB) || |
157 | 4 | cast<Instruction>(U)->getParent() == BB)) { |
158 | 3 | ArgIntToPtr = U; |
159 | 3 | break; |
160 | 3 | } |
161 | 92 | } |
162 | | |
163 | 37 | if (ArgIntToPtr) { |
164 | 3 | AvailablePtrVals.emplace_back(ArgIntToPtr); |
165 | 3 | continue; |
166 | 3 | } |
167 | | |
168 | | // If Arg is defined by a PHI, allow it. This will also create |
169 | | // more opportunities iteratively. |
170 | 34 | if (isa<PHINode>(Arg)) { |
171 | 18 | AvailablePtrVals.emplace_back(Arg); |
172 | 18 | continue; |
173 | 18 | } |
174 | | |
175 | | // For a single use integer load: |
176 | 16 | auto *LoadI = dyn_cast<LoadInst>(Arg); |
177 | 16 | if (!LoadI) |
178 | 16 | return false; |
179 | | |
180 | 0 | if (!LoadI->hasOneUse()) |
181 | 0 | return false; |
182 | | |
183 | | // Push the integer typed Load instruction into the available |
184 | | // value set, and fix it up later when the pointer typed PHI |
185 | | // is synthesized. |
186 | 0 | AvailablePtrVals.emplace_back(LoadI); |
187 | 0 | } |
188 | | |
189 | | // Now search for a matching PHI |
190 | 11 | auto *BB = PN.getParent(); |
191 | 11 | assert(AvailablePtrVals.size() == PN.getNumIncomingValues() && |
192 | 11 | "Not enough available ptr typed incoming values"); |
193 | 0 | PHINode *MatchingPtrPHI = nullptr; |
194 | 11 | unsigned NumPhis = 0; |
195 | 14 | for (PHINode &PtrPHI : BB->phis()) { |
196 | | // FIXME: consider handling this in AggressiveInstCombine |
197 | 14 | if (NumPhis++ > MaxNumPhis) |
198 | 0 | return false; |
199 | 14 | if (&PtrPHI == &PN || PtrPHI.getType() != IntToPtr->getType()) |
200 | 11 | continue; |
201 | 3 | if (any_of(zip(PN.blocks(), AvailablePtrVals), |
202 | 3 | [&](const auto &BlockAndValue) { |
203 | 3 | BasicBlock *BB = std::get<0>(BlockAndValue); |
204 | 3 | Value *V = std::get<1>(BlockAndValue); |
205 | 3 | return PtrPHI.getIncomingValueForBlock(BB) != V; |
206 | 3 | })) |
207 | 3 | continue; |
208 | 0 | MatchingPtrPHI = &PtrPHI; |
209 | 0 | break; |
210 | 3 | } |
211 | | |
212 | 11 | if (MatchingPtrPHI) { |
213 | 0 | assert(MatchingPtrPHI->getType() == IntToPtr->getType() && |
214 | 0 | "Phi's Type does not match with IntToPtr"); |
215 | | // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here, |
216 | | // to make sure another transform can't undo it in the meantime. |
217 | 0 | replaceInstUsesWith(*IntToPtr, MatchingPtrPHI); |
218 | 0 | eraseInstFromFunction(*IntToPtr); |
219 | 0 | eraseInstFromFunction(PN); |
220 | 0 | return true; |
221 | 0 | } |
222 | | |
223 | | // If it requires a conversion for every PHI operand, do not do it. |
224 | 11 | if (all_of(AvailablePtrVals, [&](Value *V) { |
225 | 11 | return (V->getType() != IntToPtr->getType()) || isa<IntToPtrInst>(V); |
226 | 11 | })) |
227 | 0 | return false; |
228 | | |
229 | | // If any of the operand that requires casting is a terminator |
230 | | // instruction, do not do it. Similarly, do not do the transform if the value |
231 | | // is PHI in a block with no insertion point, for example, a catchswitch |
232 | | // block, since we will not be able to insert a cast after the PHI. |
233 | 32 | if (any_of(AvailablePtrVals, [&](Value *V) { |
234 | 32 | if (V->getType() == IntToPtr->getType()) |
235 | 14 | return false; |
236 | 18 | auto *Inst = dyn_cast<Instruction>(V); |
237 | 18 | if (!Inst) |
238 | 0 | return false; |
239 | 18 | if (Inst->isTerminator()) |
240 | 0 | return true; |
241 | 18 | auto *BB = Inst->getParent(); |
242 | 18 | if (isa<PHINode>(Inst) && BB->getFirstInsertionPt() == BB->end()) |
243 | 0 | return true; |
244 | 18 | return false; |
245 | 18 | })) |
246 | 0 | return false; |
247 | | |
248 | 11 | PHINode *NewPtrPHI = PHINode::Create( |
249 | 11 | IntToPtr->getType(), PN.getNumIncomingValues(), PN.getName() + ".ptr"); |
250 | | |
251 | 11 | InsertNewInstBefore(NewPtrPHI, PN.getIterator()); |
252 | 11 | SmallDenseMap<Value *, Instruction *> Casts; |
253 | 32 | for (auto Incoming : zip(PN.blocks(), AvailablePtrVals)) { |
254 | 32 | auto *IncomingBB = std::get<0>(Incoming); |
255 | 32 | auto *IncomingVal = std::get<1>(Incoming); |
256 | | |
257 | 32 | if (IncomingVal->getType() == IntToPtr->getType()) { |
258 | 14 | NewPtrPHI->addIncoming(IncomingVal, IncomingBB); |
259 | 14 | continue; |
260 | 14 | } |
261 | | |
262 | 18 | #ifndef NDEBUG |
263 | 18 | LoadInst *LoadI = dyn_cast<LoadInst>(IncomingVal); |
264 | 18 | assert((isa<PHINode>(IncomingVal) || |
265 | 18 | IncomingVal->getType()->isPointerTy() || |
266 | 18 | (LoadI && LoadI->hasOneUse())) && |
267 | 18 | "Can not replace LoadInst with multiple uses"); |
268 | 0 | #endif |
269 | | // Need to insert a BitCast. |
270 | | // For an integer Load instruction with a single use, the load + IntToPtr |
271 | | // cast will be simplified into a pointer load: |
272 | | // %v = load i64, i64* %a.ip, align 8 |
273 | | // %v.cast = inttoptr i64 %v to float ** |
274 | | // ==> |
275 | | // %v.ptrp = bitcast i64 * %a.ip to float ** |
276 | | // %v.cast = load float *, float ** %v.ptrp, align 8 |
277 | 0 | Instruction *&CI = Casts[IncomingVal]; |
278 | 18 | if (!CI) { |
279 | 9 | CI = CastInst::CreateBitOrPointerCast(IncomingVal, IntToPtr->getType(), |
280 | 9 | IncomingVal->getName() + ".ptr"); |
281 | 9 | if (auto *IncomingI = dyn_cast<Instruction>(IncomingVal)) { |
282 | 9 | BasicBlock::iterator InsertPos(IncomingI); |
283 | 9 | InsertPos++; |
284 | 9 | BasicBlock *BB = IncomingI->getParent(); |
285 | 9 | if (isa<PHINode>(IncomingI)) |
286 | 9 | InsertPos = BB->getFirstInsertionPt(); |
287 | 9 | assert(InsertPos != BB->end() && "should have checked above"); |
288 | 0 | InsertNewInstBefore(CI, InsertPos); |
289 | 9 | } else { |
290 | 0 | auto *InsertBB = &IncomingBB->getParent()->getEntryBlock(); |
291 | 0 | InsertNewInstBefore(CI, InsertBB->getFirstInsertionPt()); |
292 | 0 | } |
293 | 9 | } |
294 | 0 | NewPtrPHI->addIncoming(CI, IncomingBB); |
295 | 18 | } |
296 | | |
297 | | // Explicitly replace the inttoptr (rather than inserting a ptrtoint) here, |
298 | | // to make sure another transform can't undo it in the meantime. |
299 | 11 | replaceInstUsesWith(*IntToPtr, NewPtrPHI); |
300 | 11 | eraseInstFromFunction(*IntToPtr); |
301 | 11 | eraseInstFromFunction(PN); |
302 | 11 | return true; |
303 | 11 | } |
304 | | |
305 | | // Remove RoundTrip IntToPtr/PtrToInt Cast on PHI-Operand and |
306 | | // fold Phi-operand to bitcast. |
307 | 5.60k | Instruction *InstCombinerImpl::foldPHIArgIntToPtrToPHI(PHINode &PN) { |
308 | | // convert ptr2int ( phi[ int2ptr(ptr2int(x))] ) --> ptr2int ( phi [ x ] ) |
309 | | // Make sure all uses of phi are ptr2int. |
310 | 5.65k | if (!all_of(PN.users(), [](User *U) { return isa<PtrToIntInst>(U); })) |
311 | 5.58k | return nullptr; |
312 | | |
313 | | // Iterating over all operands to check presence of target pointers for |
314 | | // optimization. |
315 | 22 | bool OperandWithRoundTripCast = false; |
316 | 66 | for (unsigned OpNum = 0; OpNum != PN.getNumIncomingValues(); ++OpNum) { |
317 | 44 | if (auto *NewOp = |
318 | 44 | simplifyIntToPtrRoundTripCast(PN.getIncomingValue(OpNum))) { |
319 | 0 | replaceOperand(PN, OpNum, NewOp); |
320 | 0 | OperandWithRoundTripCast = true; |
321 | 0 | } |
322 | 44 | } |
323 | 22 | if (!OperandWithRoundTripCast) |
324 | 22 | return nullptr; |
325 | 0 | return &PN; |
326 | 22 | } |
327 | | |
328 | | /// If we have something like phi [insertvalue(a,b,0), insertvalue(c,d,0)], |
329 | | /// turn this into a phi[a,c] and phi[b,d] and a single insertvalue. |
330 | | Instruction * |
331 | 7 | InstCombinerImpl::foldPHIArgInsertValueInstructionIntoPHI(PHINode &PN) { |
332 | 7 | auto *FirstIVI = cast<InsertValueInst>(PN.getIncomingValue(0)); |
333 | | |
334 | | // Scan to see if all operands are `insertvalue`'s with the same indicies, |
335 | | // and all have a single use. |
336 | 7 | for (Value *V : drop_begin(PN.incoming_values())) { |
337 | 7 | auto *I = dyn_cast<InsertValueInst>(V); |
338 | 7 | if (!I || !I->hasOneUser() || I->getIndices() != FirstIVI->getIndices()) |
339 | 0 | return nullptr; |
340 | 7 | } |
341 | | |
342 | | // For each operand of an `insertvalue` |
343 | 7 | std::array<PHINode *, 2> NewOperands; |
344 | 14 | for (int OpIdx : {0, 1}) { |
345 | 14 | auto *&NewOperand = NewOperands[OpIdx]; |
346 | | // Create a new PHI node to receive the values the operand has in each |
347 | | // incoming basic block. |
348 | 14 | NewOperand = PHINode::Create( |
349 | 14 | FirstIVI->getOperand(OpIdx)->getType(), PN.getNumIncomingValues(), |
350 | 14 | FirstIVI->getOperand(OpIdx)->getName() + ".pn"); |
351 | | // And populate each operand's PHI with said values. |
352 | 14 | for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) |
353 | 28 | NewOperand->addIncoming( |
354 | 28 | cast<InsertValueInst>(std::get<1>(Incoming))->getOperand(OpIdx), |
355 | 28 | std::get<0>(Incoming)); |
356 | 14 | InsertNewInstBefore(NewOperand, PN.getIterator()); |
357 | 14 | } |
358 | | |
359 | | // And finally, create `insertvalue` over the newly-formed PHI nodes. |
360 | 7 | auto *NewIVI = InsertValueInst::Create(NewOperands[0], NewOperands[1], |
361 | 7 | FirstIVI->getIndices(), PN.getName()); |
362 | | |
363 | 7 | PHIArgMergedDebugLoc(NewIVI, PN); |
364 | 7 | ++NumPHIsOfInsertValues; |
365 | 7 | return NewIVI; |
366 | 7 | } |
367 | | |
368 | | /// If we have something like phi [extractvalue(a,0), extractvalue(b,0)], |
369 | | /// turn this into a phi[a,b] and a single extractvalue. |
370 | | Instruction * |
371 | 197 | InstCombinerImpl::foldPHIArgExtractValueInstructionIntoPHI(PHINode &PN) { |
372 | 197 | auto *FirstEVI = cast<ExtractValueInst>(PN.getIncomingValue(0)); |
373 | | |
374 | | // Scan to see if all operands are `extractvalue`'s with the same indicies, |
375 | | // and all have a single use. |
376 | 255 | for (Value *V : drop_begin(PN.incoming_values())) { |
377 | 255 | auto *I = dyn_cast<ExtractValueInst>(V); |
378 | 255 | if (!I || !I->hasOneUser() || I->getIndices() != FirstEVI->getIndices() || |
379 | 255 | I->getAggregateOperand()->getType() != |
380 | 159 | FirstEVI->getAggregateOperand()->getType()) |
381 | 104 | return nullptr; |
382 | 255 | } |
383 | | |
384 | | // Create a new PHI node to receive the values the aggregate operand has |
385 | | // in each incoming basic block. |
386 | 93 | auto *NewAggregateOperand = PHINode::Create( |
387 | 93 | FirstEVI->getAggregateOperand()->getType(), PN.getNumIncomingValues(), |
388 | 93 | FirstEVI->getAggregateOperand()->getName() + ".pn"); |
389 | | // And populate the PHI with said values. |
390 | 93 | for (auto Incoming : zip(PN.blocks(), PN.incoming_values())) |
391 | 214 | NewAggregateOperand->addIncoming( |
392 | 214 | cast<ExtractValueInst>(std::get<1>(Incoming))->getAggregateOperand(), |
393 | 214 | std::get<0>(Incoming)); |
394 | 93 | InsertNewInstBefore(NewAggregateOperand, PN.getIterator()); |
395 | | |
396 | | // And finally, create `extractvalue` over the newly-formed PHI nodes. |
397 | 93 | auto *NewEVI = ExtractValueInst::Create(NewAggregateOperand, |
398 | 93 | FirstEVI->getIndices(), PN.getName()); |
399 | | |
400 | 93 | PHIArgMergedDebugLoc(NewEVI, PN); |
401 | 93 | ++NumPHIsOfExtractValues; |
402 | 93 | return NewEVI; |
403 | 197 | } |
404 | | |
405 | | /// If we have something like phi [add (a,b), add(a,c)] and if a/b/c and the |
406 | | /// adds all have a single user, turn this into a phi and a single binop. |
407 | 53 | Instruction *InstCombinerImpl::foldPHIArgBinOpIntoPHI(PHINode &PN) { |
408 | 53 | Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); |
409 | 53 | assert(isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)); |
410 | 0 | unsigned Opc = FirstInst->getOpcode(); |
411 | 53 | Value *LHSVal = FirstInst->getOperand(0); |
412 | 53 | Value *RHSVal = FirstInst->getOperand(1); |
413 | | |
414 | 53 | Type *LHSType = LHSVal->getType(); |
415 | 53 | Type *RHSType = RHSVal->getType(); |
416 | | |
417 | | // Scan to see if all operands are the same opcode, and all have one user. |
418 | 53 | for (Value *V : drop_begin(PN.incoming_values())) { |
419 | 53 | Instruction *I = dyn_cast<Instruction>(V); |
420 | 53 | if (!I || I->getOpcode() != Opc || !I->hasOneUser() || |
421 | | // Verify type of the LHS matches so we don't fold cmp's of different |
422 | | // types. |
423 | 53 | I->getOperand(0)->getType() != LHSType || |
424 | 53 | I->getOperand(1)->getType() != RHSType) |
425 | 11 | return nullptr; |
426 | | |
427 | | // If they are CmpInst instructions, check their predicates |
428 | 42 | if (CmpInst *CI = dyn_cast<CmpInst>(I)) |
429 | 0 | if (CI->getPredicate() != cast<CmpInst>(FirstInst)->getPredicate()) |
430 | 0 | return nullptr; |
431 | | |
432 | | // Keep track of which operand needs a phi node. |
433 | 42 | if (I->getOperand(0) != LHSVal) LHSVal = nullptr; |
434 | 42 | if (I->getOperand(1) != RHSVal) RHSVal = nullptr; |
435 | 42 | } |
436 | | |
437 | | // If both LHS and RHS would need a PHI, don't do this transformation, |
438 | | // because it would increase the number of PHIs entering the block, |
439 | | // which leads to higher register pressure. This is especially |
440 | | // bad when the PHIs are in the header of a loop. |
441 | 42 | if (!LHSVal && !RHSVal) |
442 | 37 | return nullptr; |
443 | | |
444 | | // Otherwise, this is safe to transform! |
445 | | |
446 | 5 | Value *InLHS = FirstInst->getOperand(0); |
447 | 5 | Value *InRHS = FirstInst->getOperand(1); |
448 | 5 | PHINode *NewLHS = nullptr, *NewRHS = nullptr; |
449 | 5 | if (!LHSVal) { |
450 | 0 | NewLHS = PHINode::Create(LHSType, PN.getNumIncomingValues(), |
451 | 0 | FirstInst->getOperand(0)->getName() + ".pn"); |
452 | 0 | NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0)); |
453 | 0 | InsertNewInstBefore(NewLHS, PN.getIterator()); |
454 | 0 | LHSVal = NewLHS; |
455 | 0 | } |
456 | | |
457 | 5 | if (!RHSVal) { |
458 | 5 | NewRHS = PHINode::Create(RHSType, PN.getNumIncomingValues(), |
459 | 5 | FirstInst->getOperand(1)->getName() + ".pn"); |
460 | 5 | NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0)); |
461 | 5 | InsertNewInstBefore(NewRHS, PN.getIterator()); |
462 | 5 | RHSVal = NewRHS; |
463 | 5 | } |
464 | | |
465 | | // Add all operands to the new PHIs. |
466 | 5 | if (NewLHS || NewRHS) { |
467 | 5 | for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { |
468 | 5 | BasicBlock *InBB = std::get<0>(Incoming); |
469 | 5 | Value *InVal = std::get<1>(Incoming); |
470 | 5 | Instruction *InInst = cast<Instruction>(InVal); |
471 | 5 | if (NewLHS) { |
472 | 0 | Value *NewInLHS = InInst->getOperand(0); |
473 | 0 | NewLHS->addIncoming(NewInLHS, InBB); |
474 | 0 | } |
475 | 5 | if (NewRHS) { |
476 | 5 | Value *NewInRHS = InInst->getOperand(1); |
477 | 5 | NewRHS->addIncoming(NewInRHS, InBB); |
478 | 5 | } |
479 | 5 | } |
480 | 5 | } |
481 | | |
482 | 5 | if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst)) { |
483 | 0 | CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), |
484 | 0 | LHSVal, RHSVal); |
485 | 0 | PHIArgMergedDebugLoc(NewCI, PN); |
486 | 0 | return NewCI; |
487 | 0 | } |
488 | | |
489 | 5 | BinaryOperator *BinOp = cast<BinaryOperator>(FirstInst); |
490 | 5 | BinaryOperator *NewBinOp = |
491 | 5 | BinaryOperator::Create(BinOp->getOpcode(), LHSVal, RHSVal); |
492 | | |
493 | 5 | NewBinOp->copyIRFlags(PN.getIncomingValue(0)); |
494 | | |
495 | 5 | for (Value *V : drop_begin(PN.incoming_values())) |
496 | 5 | NewBinOp->andIRFlags(V); |
497 | | |
498 | 5 | PHIArgMergedDebugLoc(NewBinOp, PN); |
499 | 5 | return NewBinOp; |
500 | 5 | } |
501 | | |
502 | 393 | Instruction *InstCombinerImpl::foldPHIArgGEPIntoPHI(PHINode &PN) { |
503 | 393 | GetElementPtrInst *FirstInst =cast<GetElementPtrInst>(PN.getIncomingValue(0)); |
504 | | |
505 | 393 | SmallVector<Value*, 16> FixedOperands(FirstInst->op_begin(), |
506 | 393 | FirstInst->op_end()); |
507 | | // This is true if all GEP bases are allocas and if all indices into them are |
508 | | // constants. |
509 | 393 | bool AllBasePointersAreAllocas = true; |
510 | | |
511 | | // We don't want to replace this phi if the replacement would require |
512 | | // more than one phi, which leads to higher register pressure. This is |
513 | | // especially bad when the PHIs are in the header of a loop. |
514 | 393 | bool NeededPhi = false; |
515 | | |
516 | 393 | bool AllInBounds = true; |
517 | | |
518 | | // Scan to see if all operands are the same opcode, and all have one user. |
519 | 393 | for (Value *V : drop_begin(PN.incoming_values())) { |
520 | 393 | GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V); |
521 | 393 | if (!GEP || !GEP->hasOneUser() || |
522 | 393 | GEP->getSourceElementType() != FirstInst->getSourceElementType() || |
523 | 393 | GEP->getNumOperands() != FirstInst->getNumOperands()) |
524 | 108 | return nullptr; |
525 | | |
526 | 285 | AllInBounds &= GEP->isInBounds(); |
527 | | |
528 | | // Keep track of whether or not all GEPs are of alloca pointers. |
529 | 285 | if (AllBasePointersAreAllocas && |
530 | 285 | (!isa<AllocaInst>(GEP->getOperand(0)) || |
531 | 285 | !GEP->hasAllConstantIndices())) |
532 | 285 | AllBasePointersAreAllocas = false; |
533 | | |
534 | | // Compare the operand lists. |
535 | 595 | for (unsigned Op = 0, E = FirstInst->getNumOperands(); Op != E; ++Op) { |
536 | 570 | if (FirstInst->getOperand(Op) == GEP->getOperand(Op)) |
537 | 49 | continue; |
538 | | |
539 | | // Don't merge two GEPs when two operands differ (introducing phi nodes) |
540 | | // if one of the PHIs has a constant for the index. The index may be |
541 | | // substantially cheaper to compute for the constants, so making it a |
542 | | // variable index could pessimize the path. This also handles the case |
543 | | // for struct indices, which must always be constant. |
544 | 521 | if (isa<ConstantInt>(FirstInst->getOperand(Op)) || |
545 | 521 | isa<ConstantInt>(GEP->getOperand(Op))) |
546 | 214 | return nullptr; |
547 | | |
548 | 307 | if (FirstInst->getOperand(Op)->getType() != |
549 | 307 | GEP->getOperand(Op)->getType()) |
550 | 0 | return nullptr; |
551 | | |
552 | | // If we already needed a PHI for an earlier operand, and another operand |
553 | | // also requires a PHI, we'd be introducing more PHIs than we're |
554 | | // eliminating, which increases register pressure on entry to the PHI's |
555 | | // block. |
556 | 307 | if (NeededPhi) |
557 | 46 | return nullptr; |
558 | | |
559 | 261 | FixedOperands[Op] = nullptr; // Needs a PHI. |
560 | 261 | NeededPhi = true; |
561 | 261 | } |
562 | 285 | } |
563 | | |
564 | | // If all of the base pointers of the PHI'd GEPs are from allocas, don't |
565 | | // bother doing this transformation. At best, this will just save a bit of |
566 | | // offset calculation, but all the predecessors will have to materialize the |
567 | | // stack address into a register anyway. We'd actually rather *clone* the |
568 | | // load up into the predecessors so that we have a load of a gep of an alloca, |
569 | | // which can usually all be folded into the load. |
570 | 25 | if (AllBasePointersAreAllocas) |
571 | 0 | return nullptr; |
572 | | |
573 | | // Otherwise, this is safe to transform. Insert PHI nodes for each operand |
574 | | // that is variable. |
575 | 25 | SmallVector<PHINode*, 16> OperandPhis(FixedOperands.size()); |
576 | | |
577 | 25 | bool HasAnyPHIs = false; |
578 | 75 | for (unsigned I = 0, E = FixedOperands.size(); I != E; ++I) { |
579 | 50 | if (FixedOperands[I]) |
580 | 49 | continue; // operand doesn't need a phi. |
581 | 1 | Value *FirstOp = FirstInst->getOperand(I); |
582 | 1 | PHINode *NewPN = |
583 | 1 | PHINode::Create(FirstOp->getType(), E, FirstOp->getName() + ".pn"); |
584 | 1 | InsertNewInstBefore(NewPN, PN.getIterator()); |
585 | | |
586 | 1 | NewPN->addIncoming(FirstOp, PN.getIncomingBlock(0)); |
587 | 1 | OperandPhis[I] = NewPN; |
588 | 1 | FixedOperands[I] = NewPN; |
589 | 1 | HasAnyPHIs = true; |
590 | 1 | } |
591 | | |
592 | | // Add all operands to the new PHIs. |
593 | 25 | if (HasAnyPHIs) { |
594 | 1 | for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { |
595 | 1 | BasicBlock *InBB = std::get<0>(Incoming); |
596 | 1 | Value *InVal = std::get<1>(Incoming); |
597 | 1 | GetElementPtrInst *InGEP = cast<GetElementPtrInst>(InVal); |
598 | | |
599 | 3 | for (unsigned Op = 0, E = OperandPhis.size(); Op != E; ++Op) |
600 | 2 | if (PHINode *OpPhi = OperandPhis[Op]) |
601 | 1 | OpPhi->addIncoming(InGEP->getOperand(Op), InBB); |
602 | 1 | } |
603 | 1 | } |
604 | | |
605 | 25 | Value *Base = FixedOperands[0]; |
606 | 25 | GetElementPtrInst *NewGEP = |
607 | 25 | GetElementPtrInst::Create(FirstInst->getSourceElementType(), Base, |
608 | 25 | ArrayRef(FixedOperands).slice(1)); |
609 | 25 | if (AllInBounds) NewGEP->setIsInBounds(); |
610 | 25 | PHIArgMergedDebugLoc(NewGEP, PN); |
611 | 25 | return NewGEP; |
612 | 25 | } |
613 | | |
614 | | /// Return true if we know that it is safe to sink the load out of the block |
615 | | /// that defines it. This means that it must be obvious the value of the load is |
616 | | /// not changed from the point of the load to the end of the block it is in. |
617 | | /// |
618 | | /// Finally, it is safe, but not profitable, to sink a load targeting a |
619 | | /// non-address-taken alloca. Doing so will cause us to not promote the alloca |
620 | | /// to a register. |
621 | 109 | static bool isSafeAndProfitableToSinkLoad(LoadInst *L) { |
622 | 109 | BasicBlock::iterator BBI = L->getIterator(), E = L->getParent()->end(); |
623 | | |
624 | 176 | for (++BBI; BBI != E; ++BBI) |
625 | 119 | if (BBI->mayWriteToMemory()) { |
626 | | // Calls that only access inaccessible memory do not block sinking the |
627 | | // load. |
628 | 52 | if (auto *CB = dyn_cast<CallBase>(BBI)) |
629 | 29 | if (CB->onlyAccessesInaccessibleMemory()) |
630 | 0 | continue; |
631 | 52 | return false; |
632 | 52 | } |
633 | | |
634 | | // Check for non-address taken alloca. If not address-taken already, it isn't |
635 | | // profitable to do this xform. |
636 | 57 | if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) { |
637 | 0 | bool IsAddressTaken = false; |
638 | 0 | for (User *U : AI->users()) { |
639 | 0 | if (isa<LoadInst>(U)) continue; |
640 | 0 | if (StoreInst *SI = dyn_cast<StoreInst>(U)) { |
641 | | // If storing TO the alloca, then the address isn't taken. |
642 | 0 | if (SI->getOperand(1) == AI) continue; |
643 | 0 | } |
644 | 0 | IsAddressTaken = true; |
645 | 0 | break; |
646 | 0 | } |
647 | |
|
648 | 0 | if (!IsAddressTaken && AI->isStaticAlloca()) |
649 | 0 | return false; |
650 | 0 | } |
651 | | |
652 | | // If this load is a load from a GEP with a constant offset from an alloca, |
653 | | // then we don't want to sink it. In its present form, it will be |
654 | | // load [constant stack offset]. Sinking it will cause us to have to |
655 | | // materialize the stack addresses in each predecessor in a register only to |
656 | | // do a shared load from register in the successor. |
657 | 57 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(L->getOperand(0))) |
658 | 38 | if (AllocaInst *AI = dyn_cast<AllocaInst>(GEP->getOperand(0))) |
659 | 0 | if (AI->isStaticAlloca() && GEP->hasAllConstantIndices()) |
660 | 0 | return false; |
661 | | |
662 | 57 | return true; |
663 | 57 | } |
664 | | |
665 | 75 | Instruction *InstCombinerImpl::foldPHIArgLoadIntoPHI(PHINode &PN) { |
666 | 75 | LoadInst *FirstLI = cast<LoadInst>(PN.getIncomingValue(0)); |
667 | | |
668 | | // Can't forward swifterror through a phi. |
669 | 75 | if (FirstLI->getOperand(0)->isSwiftError()) |
670 | 0 | return nullptr; |
671 | | |
672 | | // FIXME: This is overconservative; this transform is allowed in some cases |
673 | | // for atomic operations. |
674 | 75 | if (FirstLI->isAtomic()) |
675 | 0 | return nullptr; |
676 | | |
677 | | // When processing loads, we need to propagate two bits of information to the |
678 | | // sunk load: whether it is volatile, and what its alignment is. |
679 | 75 | bool IsVolatile = FirstLI->isVolatile(); |
680 | 75 | Align LoadAlignment = FirstLI->getAlign(); |
681 | 75 | const unsigned LoadAddrSpace = FirstLI->getPointerAddressSpace(); |
682 | | |
683 | | // We can't sink the load if the loaded value could be modified between the |
684 | | // load and the PHI. |
685 | 75 | if (FirstLI->getParent() != PN.getIncomingBlock(0) || |
686 | 75 | !isSafeAndProfitableToSinkLoad(FirstLI)) |
687 | 39 | return nullptr; |
688 | | |
689 | | // If the PHI is of volatile loads and the load block has multiple |
690 | | // successors, sinking it would remove a load of the volatile value from |
691 | | // the path through the other successor. |
692 | 36 | if (IsVolatile && |
693 | 36 | FirstLI->getParent()->getTerminator()->getNumSuccessors() != 1) |
694 | 0 | return nullptr; |
695 | | |
696 | 36 | for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { |
697 | 36 | BasicBlock *InBB = std::get<0>(Incoming); |
698 | 36 | Value *InVal = std::get<1>(Incoming); |
699 | 36 | LoadInst *LI = dyn_cast<LoadInst>(InVal); |
700 | 36 | if (!LI || !LI->hasOneUser() || LI->isAtomic()) |
701 | 1 | return nullptr; |
702 | | |
703 | | // Make sure all arguments are the same type of operation. |
704 | 35 | if (LI->isVolatile() != IsVolatile || |
705 | 35 | LI->getPointerAddressSpace() != LoadAddrSpace) |
706 | 0 | return nullptr; |
707 | | |
708 | | // Can't forward swifterror through a phi. |
709 | 35 | if (LI->getOperand(0)->isSwiftError()) |
710 | 0 | return nullptr; |
711 | | |
712 | | // We can't sink the load if the loaded value could be modified between |
713 | | // the load and the PHI. |
714 | 35 | if (LI->getParent() != InBB || !isSafeAndProfitableToSinkLoad(LI)) |
715 | 14 | return nullptr; |
716 | | |
717 | 21 | LoadAlignment = std::min(LoadAlignment, LI->getAlign()); |
718 | | |
719 | | // If the PHI is of volatile loads and the load block has multiple |
720 | | // successors, sinking it would remove a load of the volatile value from |
721 | | // the path through the other successor. |
722 | 21 | if (IsVolatile && LI->getParent()->getTerminator()->getNumSuccessors() != 1) |
723 | 2 | return nullptr; |
724 | 21 | } |
725 | | |
726 | | // Okay, they are all the same operation. Create a new PHI node of the |
727 | | // correct type, and PHI together all of the LHS's of the instructions. |
728 | 19 | PHINode *NewPN = PHINode::Create(FirstLI->getOperand(0)->getType(), |
729 | 19 | PN.getNumIncomingValues(), |
730 | 19 | PN.getName()+".in"); |
731 | | |
732 | 19 | Value *InVal = FirstLI->getOperand(0); |
733 | 19 | NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); |
734 | 19 | LoadInst *NewLI = |
735 | 19 | new LoadInst(FirstLI->getType(), NewPN, "", IsVolatile, LoadAlignment); |
736 | | |
737 | 19 | unsigned KnownIDs[] = { |
738 | 19 | LLVMContext::MD_tbaa, |
739 | 19 | LLVMContext::MD_range, |
740 | 19 | LLVMContext::MD_invariant_load, |
741 | 19 | LLVMContext::MD_alias_scope, |
742 | 19 | LLVMContext::MD_noalias, |
743 | 19 | LLVMContext::MD_nonnull, |
744 | 19 | LLVMContext::MD_align, |
745 | 19 | LLVMContext::MD_dereferenceable, |
746 | 19 | LLVMContext::MD_dereferenceable_or_null, |
747 | 19 | LLVMContext::MD_access_group, |
748 | 19 | LLVMContext::MD_noundef, |
749 | 19 | }; |
750 | | |
751 | 19 | for (unsigned ID : KnownIDs) |
752 | 209 | NewLI->setMetadata(ID, FirstLI->getMetadata(ID)); |
753 | | |
754 | | // Add all operands to the new PHI and combine TBAA metadata. |
755 | 19 | for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { |
756 | 19 | BasicBlock *BB = std::get<0>(Incoming); |
757 | 19 | Value *V = std::get<1>(Incoming); |
758 | 19 | LoadInst *LI = cast<LoadInst>(V); |
759 | 19 | combineMetadata(NewLI, LI, KnownIDs, true); |
760 | 19 | Value *NewInVal = LI->getOperand(0); |
761 | 19 | if (NewInVal != InVal) |
762 | 19 | InVal = nullptr; |
763 | 19 | NewPN->addIncoming(NewInVal, BB); |
764 | 19 | } |
765 | | |
766 | 19 | if (InVal) { |
767 | | // The new PHI unions all of the same values together. This is really |
768 | | // common, so we handle it intelligently here for compile-time speed. |
769 | 0 | NewLI->setOperand(0, InVal); |
770 | 0 | delete NewPN; |
771 | 19 | } else { |
772 | 19 | InsertNewInstBefore(NewPN, PN.getIterator()); |
773 | 19 | } |
774 | | |
775 | | // If this was a volatile load that we are merging, make sure to loop through |
776 | | // and mark all the input loads as non-volatile. If we don't do this, we will |
777 | | // insert a new volatile load and the old ones will not be deletable. |
778 | 19 | if (IsVolatile) |
779 | 0 | for (Value *IncValue : PN.incoming_values()) |
780 | 0 | cast<LoadInst>(IncValue)->setVolatile(false); |
781 | | |
782 | 19 | PHIArgMergedDebugLoc(NewLI, PN); |
783 | 19 | return NewLI; |
784 | 36 | } |
785 | | |
786 | | /// TODO: This function could handle other cast types, but then it might |
787 | | /// require special-casing a cast from the 'i1' type. See the comment in |
788 | | /// FoldPHIArgOpIntoPHI() about pessimizing illegal integer types. |
789 | 5.61k | Instruction *InstCombinerImpl::foldPHIArgZextsIntoPHI(PHINode &Phi) { |
790 | | // We cannot create a new instruction after the PHI if the terminator is an |
791 | | // EHPad because there is no valid insertion point. |
792 | 5.61k | if (Instruction *TI = Phi.getParent()->getTerminator()) |
793 | 5.61k | if (TI->isEHPad()) |
794 | 7 | return nullptr; |
795 | | |
796 | | // Early exit for the common case of a phi with two operands. These are |
797 | | // handled elsewhere. See the comment below where we check the count of zexts |
798 | | // and constants for more details. |
799 | 5.60k | unsigned NumIncomingValues = Phi.getNumIncomingValues(); |
800 | 5.60k | if (NumIncomingValues < 3) |
801 | 4.94k | return nullptr; |
802 | | |
803 | | // Find the narrower type specified by the first zext. |
804 | 656 | Type *NarrowType = nullptr; |
805 | 2.19k | for (Value *V : Phi.incoming_values()) { |
806 | 2.19k | if (auto *Zext = dyn_cast<ZExtInst>(V)) { |
807 | 6 | NarrowType = Zext->getSrcTy(); |
808 | 6 | break; |
809 | 6 | } |
810 | 2.19k | } |
811 | 656 | if (!NarrowType) |
812 | 650 | return nullptr; |
813 | | |
814 | | // Walk the phi operands checking that we only have zexts or constants that |
815 | | // we can shrink for free. Store the new operands for the new phi. |
816 | 6 | SmallVector<Value *, 4> NewIncoming; |
817 | 6 | unsigned NumZexts = 0; |
818 | 6 | unsigned NumConsts = 0; |
819 | 19 | for (Value *V : Phi.incoming_values()) { |
820 | 19 | if (auto *Zext = dyn_cast<ZExtInst>(V)) { |
821 | | // All zexts must be identical and have one user. |
822 | 12 | if (Zext->getSrcTy() != NarrowType || !Zext->hasOneUser()) |
823 | 0 | return nullptr; |
824 | 12 | NewIncoming.push_back(Zext->getOperand(0)); |
825 | 12 | NumZexts++; |
826 | 12 | } else if (auto *C = dyn_cast<Constant>(V)) { |
827 | | // Make sure that constants can fit in the new type. |
828 | 7 | Constant *Trunc = getLosslessUnsignedTrunc(C, NarrowType); |
829 | 7 | if (!Trunc) |
830 | 0 | return nullptr; |
831 | 7 | NewIncoming.push_back(Trunc); |
832 | 7 | NumConsts++; |
833 | 7 | } else { |
834 | | // If it's not a cast or a constant, bail out. |
835 | 0 | return nullptr; |
836 | 0 | } |
837 | 19 | } |
838 | | |
839 | | // The more common cases of a phi with no constant operands or just one |
840 | | // variable operand are handled by FoldPHIArgOpIntoPHI() and foldOpIntoPhi() |
841 | | // respectively. foldOpIntoPhi() wants to do the opposite transform that is |
842 | | // performed here. It tries to replicate a cast in the phi operand's basic |
843 | | // block to expose other folding opportunities. Thus, InstCombine will |
844 | | // infinite loop without this check. |
845 | 6 | if (NumConsts == 0 || NumZexts < 2) |
846 | 2 | return nullptr; |
847 | | |
848 | | // All incoming values are zexts or constants that are safe to truncate. |
849 | | // Create a new phi node of the narrow type, phi together all of the new |
850 | | // operands, and zext the result back to the original type. |
851 | 4 | PHINode *NewPhi = PHINode::Create(NarrowType, NumIncomingValues, |
852 | 4 | Phi.getName() + ".shrunk"); |
853 | 16 | for (unsigned I = 0; I != NumIncomingValues; ++I) |
854 | 12 | NewPhi->addIncoming(NewIncoming[I], Phi.getIncomingBlock(I)); |
855 | | |
856 | 4 | InsertNewInstBefore(NewPhi, Phi.getIterator()); |
857 | 4 | return CastInst::CreateZExtOrBitCast(NewPhi, Phi.getType()); |
858 | 6 | } |
859 | | |
860 | | /// If all operands to a PHI node are the same "unary" operator and they all are |
861 | | /// only used by the PHI, PHI together their inputs, and do the operation once, |
862 | | /// to the result of the PHI. |
863 | 864 | Instruction *InstCombinerImpl::foldPHIArgOpIntoPHI(PHINode &PN) { |
864 | | // We cannot create a new instruction after the PHI if the terminator is an |
865 | | // EHPad because there is no valid insertion point. |
866 | 864 | if (Instruction *TI = PN.getParent()->getTerminator()) |
867 | 864 | if (TI->isEHPad()) |
868 | 7 | return nullptr; |
869 | | |
870 | 857 | Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0)); |
871 | | |
872 | 857 | if (isa<GetElementPtrInst>(FirstInst)) |
873 | 393 | return foldPHIArgGEPIntoPHI(PN); |
874 | 464 | if (isa<LoadInst>(FirstInst)) |
875 | 75 | return foldPHIArgLoadIntoPHI(PN); |
876 | 389 | if (isa<InsertValueInst>(FirstInst)) |
877 | 7 | return foldPHIArgInsertValueInstructionIntoPHI(PN); |
878 | 382 | if (isa<ExtractValueInst>(FirstInst)) |
879 | 197 | return foldPHIArgExtractValueInstructionIntoPHI(PN); |
880 | | |
881 | | // Scan the instruction, looking for input operations that can be folded away. |
882 | | // If all input operands to the phi are the same instruction (e.g. a cast from |
883 | | // the same type or "+42") we can pull the operation through the PHI, reducing |
884 | | // code size and simplifying code. |
885 | 185 | Constant *ConstantOp = nullptr; |
886 | 185 | Type *CastSrcTy = nullptr; |
887 | | |
888 | 185 | if (isa<CastInst>(FirstInst)) { |
889 | 11 | CastSrcTy = FirstInst->getOperand(0)->getType(); |
890 | | |
891 | | // Be careful about transforming integer PHIs. We don't want to pessimize |
892 | | // the code by turning an i32 into an i1293. |
893 | 11 | if (PN.getType()->isIntegerTy() && CastSrcTy->isIntegerTy()) { |
894 | 11 | if (!shouldChangeType(PN.getType(), CastSrcTy)) |
895 | 0 | return nullptr; |
896 | 11 | } |
897 | 174 | } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) { |
898 | | // Can fold binop, compare or shift here if the RHS is a constant, |
899 | | // otherwise call FoldPHIArgBinOpIntoPHI. |
900 | 165 | ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1)); |
901 | 165 | if (!ConstantOp) |
902 | 53 | return foldPHIArgBinOpIntoPHI(PN); |
903 | 165 | } else { |
904 | 9 | return nullptr; // Cannot fold this operation. |
905 | 9 | } |
906 | | |
907 | | // Check to see if all arguments are the same operation. |
908 | 128 | for (Value *V : drop_begin(PN.incoming_values())) { |
909 | 128 | Instruction *I = dyn_cast<Instruction>(V); |
910 | 128 | if (!I || !I->hasOneUser() || !I->isSameOperationAs(FirstInst)) |
911 | 8 | return nullptr; |
912 | 120 | if (CastSrcTy) { |
913 | 12 | if (I->getOperand(0)->getType() != CastSrcTy) |
914 | 0 | return nullptr; // Cast operation must match. |
915 | 108 | } else if (I->getOperand(1) != ConstantOp) { |
916 | 91 | return nullptr; |
917 | 91 | } |
918 | 120 | } |
919 | | |
920 | | // Okay, they are all the same operation. Create a new PHI node of the |
921 | | // correct type, and PHI together all of the LHS's of the instructions. |
922 | 24 | PHINode *NewPN = PHINode::Create(FirstInst->getOperand(0)->getType(), |
923 | 24 | PN.getNumIncomingValues(), |
924 | 24 | PN.getName()+".in"); |
925 | | |
926 | 24 | Value *InVal = FirstInst->getOperand(0); |
927 | 24 | NewPN->addIncoming(InVal, PN.getIncomingBlock(0)); |
928 | | |
929 | | // Add all operands to the new PHI. |
930 | 25 | for (auto Incoming : drop_begin(zip(PN.blocks(), PN.incoming_values()))) { |
931 | 25 | BasicBlock *BB = std::get<0>(Incoming); |
932 | 25 | Value *V = std::get<1>(Incoming); |
933 | 25 | Value *NewInVal = cast<Instruction>(V)->getOperand(0); |
934 | 25 | if (NewInVal != InVal) |
935 | 21 | InVal = nullptr; |
936 | 25 | NewPN->addIncoming(NewInVal, BB); |
937 | 25 | } |
938 | | |
939 | 24 | Value *PhiVal; |
940 | 24 | if (InVal) { |
941 | | // The new PHI unions all of the same values together. This is really |
942 | | // common, so we handle it intelligently here for compile-time speed. |
943 | 4 | PhiVal = InVal; |
944 | 4 | delete NewPN; |
945 | 20 | } else { |
946 | 20 | InsertNewInstBefore(NewPN, PN.getIterator()); |
947 | 20 | PhiVal = NewPN; |
948 | 20 | } |
949 | | |
950 | | // Insert and return the new operation. |
951 | 24 | if (CastInst *FirstCI = dyn_cast<CastInst>(FirstInst)) { |
952 | 11 | CastInst *NewCI = CastInst::Create(FirstCI->getOpcode(), PhiVal, |
953 | 11 | PN.getType()); |
954 | 11 | PHIArgMergedDebugLoc(NewCI, PN); |
955 | 11 | return NewCI; |
956 | 11 | } |
957 | | |
958 | 13 | if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst)) { |
959 | 9 | BinOp = BinaryOperator::Create(BinOp->getOpcode(), PhiVal, ConstantOp); |
960 | 9 | BinOp->copyIRFlags(PN.getIncomingValue(0)); |
961 | | |
962 | 9 | for (Value *V : drop_begin(PN.incoming_values())) |
963 | 9 | BinOp->andIRFlags(V); |
964 | | |
965 | 9 | PHIArgMergedDebugLoc(BinOp, PN); |
966 | 9 | return BinOp; |
967 | 9 | } |
968 | | |
969 | 4 | CmpInst *CIOp = cast<CmpInst>(FirstInst); |
970 | 4 | CmpInst *NewCI = CmpInst::Create(CIOp->getOpcode(), CIOp->getPredicate(), |
971 | 4 | PhiVal, ConstantOp); |
972 | 4 | PHIArgMergedDebugLoc(NewCI, PN); |
973 | 4 | return NewCI; |
974 | 13 | } |
975 | | |
976 | | /// Return true if this PHI node is only used by a PHI node cycle that is dead. |
977 | | static bool isDeadPHICycle(PHINode *PN, |
978 | 196 | SmallPtrSetImpl<PHINode *> &PotentiallyDeadPHIs) { |
979 | 196 | if (PN->use_empty()) return true; |
980 | 196 | if (!PN->hasOneUse()) return false; |
981 | | |
982 | | // Remember this node, and if we find the cycle, return. |
983 | 104 | if (!PotentiallyDeadPHIs.insert(PN).second) |
984 | 16 | return true; |
985 | | |
986 | | // Don't scan crazily complex things. |
987 | 88 | if (PotentiallyDeadPHIs.size() == 16) |
988 | 0 | return false; |
989 | | |
990 | 88 | if (PHINode *PU = dyn_cast<PHINode>(PN->user_back())) |
991 | 33 | return isDeadPHICycle(PU, PotentiallyDeadPHIs); |
992 | | |
993 | 55 | return false; |
994 | 88 | } |
995 | | |
996 | | /// Return true if this phi node is always equal to NonPhiInVal. |
997 | | /// This happens with mutually cyclic phi nodes like: |
998 | | /// z = some value; x = phi (y, z); y = phi (x, z) |
999 | | static bool PHIsEqualValue(PHINode *PN, Value *&NonPhiInVal, |
1000 | 1.54k | SmallPtrSetImpl<PHINode *> &ValueEqualPHIs) { |
1001 | | // See if we already saw this PHI node. |
1002 | 1.54k | if (!ValueEqualPHIs.insert(PN).second) |
1003 | 51 | return true; |
1004 | | |
1005 | | // Don't scan crazily complex things. |
1006 | 1.49k | if (ValueEqualPHIs.size() == 16) |
1007 | 0 | return false; |
1008 | | |
1009 | | // Scan the operands to see if they are either phi nodes or are equal to |
1010 | | // the value. |
1011 | 1.81k | for (Value *Op : PN->incoming_values()) { |
1012 | 1.81k | if (PHINode *OpPN = dyn_cast<PHINode>(Op)) { |
1013 | 979 | if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs)) { |
1014 | 902 | if (NonPhiInVal) |
1015 | 902 | return false; |
1016 | 0 | NonPhiInVal = OpPN; |
1017 | 0 | } |
1018 | 979 | } else if (Op != NonPhiInVal) |
1019 | 550 | return false; |
1020 | 1.81k | } |
1021 | | |
1022 | 40 | return true; |
1023 | 1.49k | } |
1024 | | |
1025 | | /// Return an existing non-zero constant if this phi node has one, otherwise |
1026 | | /// return constant 1. |
1027 | 22 | static ConstantInt *getAnyNonZeroConstInt(PHINode &PN) { |
1028 | 22 | assert(isa<IntegerType>(PN.getType()) && "Expect only integer type phi"); |
1029 | 0 | for (Value *V : PN.operands()) |
1030 | 29 | if (auto *ConstVA = dyn_cast<ConstantInt>(V)) |
1031 | 28 | if (!ConstVA->isZero()) |
1032 | 22 | return ConstVA; |
1033 | 0 | return ConstantInt::get(cast<IntegerType>(PN.getType()), 1); |
1034 | 22 | } |
1035 | | |
1036 | | namespace { |
1037 | | struct PHIUsageRecord { |
1038 | | unsigned PHIId; // The ID # of the PHI (something determinstic to sort on) |
1039 | | unsigned Shift; // The amount shifted. |
1040 | | Instruction *Inst; // The trunc instruction. |
1041 | | |
1042 | | PHIUsageRecord(unsigned Pn, unsigned Sh, Instruction *User) |
1043 | 28 | : PHIId(Pn), Shift(Sh), Inst(User) {} |
1044 | | |
1045 | 23 | bool operator<(const PHIUsageRecord &RHS) const { |
1046 | 23 | if (PHIId < RHS.PHIId) return true; |
1047 | 23 | if (PHIId > RHS.PHIId) return false; |
1048 | 23 | if (Shift < RHS.Shift) return true; |
1049 | 13 | if (Shift > RHS.Shift) return false; |
1050 | 6 | return Inst->getType()->getPrimitiveSizeInBits() < |
1051 | 6 | RHS.Inst->getType()->getPrimitiveSizeInBits(); |
1052 | 13 | } |
1053 | | }; |
1054 | | |
1055 | | struct LoweredPHIRecord { |
1056 | | PHINode *PN; // The PHI that was lowered. |
1057 | | unsigned Shift; // The amount shifted. |
1058 | | unsigned Width; // The width extracted. |
1059 | | |
1060 | | LoweredPHIRecord(PHINode *Phi, unsigned Sh, Type *Ty) |
1061 | 87 | : PN(Phi), Shift(Sh), Width(Ty->getPrimitiveSizeInBits()) {} |
1062 | | |
1063 | | // Ctor form used by DenseMap. |
1064 | 237 | LoweredPHIRecord(PHINode *Phi, unsigned Sh) : PN(Phi), Shift(Sh), Width(0) {} |
1065 | | }; |
1066 | | } // namespace |
1067 | | |
1068 | | namespace llvm { |
1069 | | template<> |
1070 | | struct DenseMapInfo<LoweredPHIRecord> { |
1071 | 136 | static inline LoweredPHIRecord getEmptyKey() { |
1072 | 136 | return LoweredPHIRecord(nullptr, 0); |
1073 | 136 | } |
1074 | 101 | static inline LoweredPHIRecord getTombstoneKey() { |
1075 | 101 | return LoweredPHIRecord(nullptr, 1); |
1076 | 101 | } |
1077 | 87 | static unsigned getHashValue(const LoweredPHIRecord &Val) { |
1078 | 87 | return DenseMapInfo<PHINode*>::getHashValue(Val.PN) ^ (Val.Shift>>3) ^ |
1079 | 87 | (Val.Width>>3); |
1080 | 87 | } |
1081 | | static bool isEqual(const LoweredPHIRecord &LHS, |
1082 | 1.22k | const LoweredPHIRecord &RHS) { |
1083 | 1.22k | return LHS.PN == RHS.PN && LHS.Shift == RHS.Shift && |
1084 | 1.22k | LHS.Width == RHS.Width; |
1085 | 1.22k | } |
1086 | | }; |
1087 | | } // namespace llvm |
1088 | | |
1089 | | |
1090 | | /// This is an integer PHI and we know that it has an illegal type: see if it is |
1091 | | /// only used by trunc or trunc(lshr) operations. If so, we split the PHI into |
1092 | | /// the various pieces being extracted. This sort of thing is introduced when |
1093 | | /// SROA promotes an aggregate to large integer values. |
1094 | | /// |
1095 | | /// TODO: The user of the trunc may be an bitcast to float/double/vector or an |
1096 | | /// inttoptr. We should produce new PHIs in the right type. |
1097 | | /// |
1098 | 297 | Instruction *InstCombinerImpl::SliceUpIllegalIntegerPHI(PHINode &FirstPhi) { |
1099 | | // PHIUsers - Keep track of all of the truncated values extracted from a set |
1100 | | // of PHIs, along with their offset. These are the things we want to rewrite. |
1101 | 297 | SmallVector<PHIUsageRecord, 16> PHIUsers; |
1102 | | |
1103 | | // PHIs are often mutually cyclic, so we keep track of a whole set of PHI |
1104 | | // nodes which are extracted from. PHIsToSlice is a set we use to avoid |
1105 | | // revisiting PHIs, PHIsInspected is a ordered list of PHIs that we need to |
1106 | | // check the uses of (to ensure they are all extracts). |
1107 | 297 | SmallVector<PHINode*, 8> PHIsToSlice; |
1108 | 297 | SmallPtrSet<PHINode*, 8> PHIsInspected; |
1109 | | |
1110 | 297 | PHIsToSlice.push_back(&FirstPhi); |
1111 | 297 | PHIsInspected.insert(&FirstPhi); |
1112 | | |
1113 | 313 | for (unsigned PHIId = 0; PHIId != PHIsToSlice.size(); ++PHIId) { |
1114 | 299 | PHINode *PN = PHIsToSlice[PHIId]; |
1115 | | |
1116 | | // Scan the input list of the PHI. If any input is an invoke, and if the |
1117 | | // input is defined in the predecessor, then we won't be split the critical |
1118 | | // edge which is required to insert a truncate. Because of this, we have to |
1119 | | // bail out. |
1120 | 695 | for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) { |
1121 | 695 | BasicBlock *BB = std::get<0>(Incoming); |
1122 | 695 | Value *V = std::get<1>(Incoming); |
1123 | 695 | InvokeInst *II = dyn_cast<InvokeInst>(V); |
1124 | 695 | if (!II) |
1125 | 695 | continue; |
1126 | 0 | if (II->getParent() != BB) |
1127 | 0 | continue; |
1128 | | |
1129 | | // If we have a phi, and if it's directly in the predecessor, then we have |
1130 | | // a critical edge where we need to put the truncate. Since we can't |
1131 | | // split the edge in instcombine, we have to bail out. |
1132 | 0 | return nullptr; |
1133 | 0 | } |
1134 | | |
1135 | | // If the incoming value is a PHI node before a catchswitch, we cannot |
1136 | | // extract the value within that BB because we cannot insert any non-PHI |
1137 | | // instructions in the BB. |
1138 | 299 | for (auto *Pred : PN->blocks()) |
1139 | 695 | if (Pred->getFirstInsertionPt() == Pred->end()) |
1140 | 0 | return nullptr; |
1141 | | |
1142 | 313 | for (User *U : PN->users()) { |
1143 | 313 | Instruction *UserI = cast<Instruction>(U); |
1144 | | |
1145 | | // If the user is a PHI, inspect its uses recursively. |
1146 | 313 | if (PHINode *UserPN = dyn_cast<PHINode>(UserI)) { |
1147 | 2 | if (PHIsInspected.insert(UserPN).second) |
1148 | 2 | PHIsToSlice.push_back(UserPN); |
1149 | 2 | continue; |
1150 | 2 | } |
1151 | | |
1152 | | // Truncates are always ok. |
1153 | 311 | if (isa<TruncInst>(UserI)) { |
1154 | 12 | PHIUsers.push_back(PHIUsageRecord(PHIId, 0, UserI)); |
1155 | 12 | continue; |
1156 | 12 | } |
1157 | | |
1158 | | // Otherwise it must be a lshr which can only be used by one trunc. |
1159 | 299 | if (UserI->getOpcode() != Instruction::LShr || |
1160 | 299 | !UserI->hasOneUse() || !isa<TruncInst>(UserI->user_back()) || |
1161 | 299 | !isa<ConstantInt>(UserI->getOperand(1))) |
1162 | 283 | return nullptr; |
1163 | | |
1164 | | // Bail on out of range shifts. |
1165 | 16 | unsigned SizeInBits = UserI->getType()->getScalarSizeInBits(); |
1166 | 16 | if (cast<ConstantInt>(UserI->getOperand(1))->getValue().uge(SizeInBits)) |
1167 | 0 | return nullptr; |
1168 | | |
1169 | 16 | unsigned Shift = cast<ConstantInt>(UserI->getOperand(1))->getZExtValue(); |
1170 | 16 | PHIUsers.push_back(PHIUsageRecord(PHIId, Shift, UserI->user_back())); |
1171 | 16 | } |
1172 | 299 | } |
1173 | | |
1174 | | // If we have no users, they must be all self uses, just nuke the PHI. |
1175 | 14 | if (PHIUsers.empty()) |
1176 | 0 | return replaceInstUsesWith(FirstPhi, PoisonValue::get(FirstPhi.getType())); |
1177 | | |
1178 | | // If this phi node is transformable, create new PHIs for all the pieces |
1179 | | // extracted out of it. First, sort the users by their offset and size. |
1180 | 14 | array_pod_sort(PHIUsers.begin(), PHIUsers.end()); |
1181 | | |
1182 | 14 | LLVM_DEBUG(dbgs() << "SLICING UP PHI: " << FirstPhi << '\n'; |
1183 | 14 | for (unsigned I = 1; I != PHIsToSlice.size(); ++I) dbgs() |
1184 | 14 | << "AND USER PHI #" << I << ": " << *PHIsToSlice[I] << '\n'); |
1185 | | |
1186 | | // PredValues - This is a temporary used when rewriting PHI nodes. It is |
1187 | | // hoisted out here to avoid construction/destruction thrashing. |
1188 | 14 | DenseMap<BasicBlock*, Value*> PredValues; |
1189 | | |
1190 | | // ExtractedVals - Each new PHI we introduce is saved here so we don't |
1191 | | // introduce redundant PHIs. |
1192 | 14 | DenseMap<LoweredPHIRecord, PHINode*> ExtractedVals; |
1193 | | |
1194 | 38 | for (unsigned UserI = 0, UserE = PHIUsers.size(); UserI != UserE; ++UserI) { |
1195 | 24 | unsigned PHIId = PHIUsers[UserI].PHIId; |
1196 | 24 | PHINode *PN = PHIsToSlice[PHIId]; |
1197 | 24 | unsigned Offset = PHIUsers[UserI].Shift; |
1198 | 24 | Type *Ty = PHIUsers[UserI].Inst->getType(); |
1199 | | |
1200 | 24 | PHINode *EltPHI; |
1201 | | |
1202 | | // If we've already lowered a user like this, reuse the previously lowered |
1203 | | // value. |
1204 | 24 | if ((EltPHI = ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)]) == nullptr) { |
1205 | | |
1206 | | // Otherwise, Create the new PHI node for this user. |
1207 | 21 | EltPHI = PHINode::Create(Ty, PN->getNumIncomingValues(), |
1208 | 21 | PN->getName()+".off"+Twine(Offset), PN); |
1209 | 21 | assert(EltPHI->getType() != PN->getType() && |
1210 | 21 | "Truncate didn't shrink phi?"); |
1211 | | |
1212 | 42 | for (auto Incoming : zip(PN->blocks(), PN->incoming_values())) { |
1213 | 42 | BasicBlock *Pred = std::get<0>(Incoming); |
1214 | 42 | Value *InVal = std::get<1>(Incoming); |
1215 | 42 | Value *&PredVal = PredValues[Pred]; |
1216 | | |
1217 | | // If we already have a value for this predecessor, reuse it. |
1218 | 42 | if (PredVal) { |
1219 | 0 | EltPHI->addIncoming(PredVal, Pred); |
1220 | 0 | continue; |
1221 | 0 | } |
1222 | | |
1223 | | // Handle the PHI self-reuse case. |
1224 | 42 | if (InVal == PN) { |
1225 | 0 | PredVal = EltPHI; |
1226 | 0 | EltPHI->addIncoming(PredVal, Pred); |
1227 | 0 | continue; |
1228 | 0 | } |
1229 | | |
1230 | 42 | if (PHINode *InPHI = dyn_cast<PHINode>(PN)) { |
1231 | | // If the incoming value was a PHI, and if it was one of the PHIs we |
1232 | | // already rewrote it, just use the lowered value. |
1233 | 42 | if (Value *Res = ExtractedVals[LoweredPHIRecord(InPHI, Offset, Ty)]) { |
1234 | 0 | PredVal = Res; |
1235 | 0 | EltPHI->addIncoming(PredVal, Pred); |
1236 | 0 | continue; |
1237 | 0 | } |
1238 | 42 | } |
1239 | | |
1240 | | // Otherwise, do an extract in the predecessor. |
1241 | 42 | Builder.SetInsertPoint(Pred->getTerminator()); |
1242 | 42 | Value *Res = InVal; |
1243 | 42 | if (Offset) |
1244 | 22 | Res = Builder.CreateLShr( |
1245 | 22 | Res, ConstantInt::get(InVal->getType(), Offset), "extract"); |
1246 | 42 | Res = Builder.CreateTrunc(Res, Ty, "extract.t"); |
1247 | 42 | PredVal = Res; |
1248 | 42 | EltPHI->addIncoming(Res, Pred); |
1249 | | |
1250 | | // If the incoming value was a PHI, and if it was one of the PHIs we are |
1251 | | // rewriting, we will ultimately delete the code we inserted. This |
1252 | | // means we need to revisit that PHI to make sure we extract out the |
1253 | | // needed piece. |
1254 | 42 | if (PHINode *OldInVal = dyn_cast<PHINode>(InVal)) |
1255 | 4 | if (PHIsInspected.count(OldInVal)) { |
1256 | 0 | unsigned RefPHIId = |
1257 | 0 | find(PHIsToSlice, OldInVal) - PHIsToSlice.begin(); |
1258 | 0 | PHIUsers.push_back( |
1259 | 0 | PHIUsageRecord(RefPHIId, Offset, cast<Instruction>(Res))); |
1260 | 0 | ++UserE; |
1261 | 0 | } |
1262 | 42 | } |
1263 | 21 | PredValues.clear(); |
1264 | | |
1265 | 21 | LLVM_DEBUG(dbgs() << " Made element PHI for offset " << Offset << ": " |
1266 | 21 | << *EltPHI << '\n'); |
1267 | 21 | ExtractedVals[LoweredPHIRecord(PN, Offset, Ty)] = EltPHI; |
1268 | 21 | } |
1269 | | |
1270 | | // Replace the use of this piece with the PHI node. |
1271 | 0 | replaceInstUsesWith(*PHIUsers[UserI].Inst, EltPHI); |
1272 | 24 | } |
1273 | | |
1274 | | // Replace all the remaining uses of the PHI nodes (self uses and the lshrs) |
1275 | | // with poison. |
1276 | 14 | Value *Poison = PoisonValue::get(FirstPhi.getType()); |
1277 | 14 | for (PHINode *PHI : drop_begin(PHIsToSlice)) |
1278 | 0 | replaceInstUsesWith(*PHI, Poison); |
1279 | 14 | return replaceInstUsesWith(FirstPhi, Poison); |
1280 | 14 | } |
1281 | | |
1282 | | static Value *simplifyUsingControlFlow(InstCombiner &Self, PHINode &PN, |
1283 | 5.13k | const DominatorTree &DT) { |
1284 | | // Simplify the following patterns: |
1285 | | // if (cond) |
1286 | | // / \ |
1287 | | // ... ... |
1288 | | // \ / |
1289 | | // phi [true] [false] |
1290 | | // and |
1291 | | // switch (cond) |
1292 | | // case v1: / \ case v2: |
1293 | | // ... ... |
1294 | | // \ / |
1295 | | // phi [v1] [v2] |
1296 | | // Make sure all inputs are constants. |
1297 | 6.26k | if (!all_of(PN.operands(), [](Value *V) { return isa<ConstantInt>(V); })) |
1298 | 4.87k | return nullptr; |
1299 | | |
1300 | 262 | BasicBlock *BB = PN.getParent(); |
1301 | | // Do not bother with unreachable instructions. |
1302 | 262 | if (!DT.isReachableFromEntry(BB)) |
1303 | 0 | return nullptr; |
1304 | | |
1305 | | // Determine which value the condition of the idom has for which successor. |
1306 | 262 | LLVMContext &Context = PN.getContext(); |
1307 | 262 | auto *IDom = DT.getNode(BB)->getIDom()->getBlock(); |
1308 | 262 | Value *Cond; |
1309 | 262 | SmallDenseMap<ConstantInt *, BasicBlock *, 8> SuccForValue; |
1310 | 262 | SmallDenseMap<BasicBlock *, unsigned, 8> SuccCount; |
1311 | 318 | auto AddSucc = [&](ConstantInt *C, BasicBlock *Succ) { |
1312 | 318 | SuccForValue[C] = Succ; |
1313 | 318 | ++SuccCount[Succ]; |
1314 | 318 | }; |
1315 | 262 | if (auto *BI = dyn_cast<BranchInst>(IDom->getTerminator())) { |
1316 | 251 | if (BI->isUnconditional()) |
1317 | 101 | return nullptr; |
1318 | | |
1319 | 150 | Cond = BI->getCondition(); |
1320 | 150 | AddSucc(ConstantInt::getTrue(Context), BI->getSuccessor(0)); |
1321 | 150 | AddSucc(ConstantInt::getFalse(Context), BI->getSuccessor(1)); |
1322 | 150 | } else if (auto *SI = dyn_cast<SwitchInst>(IDom->getTerminator())) { |
1323 | 9 | Cond = SI->getCondition(); |
1324 | 9 | ++SuccCount[SI->getDefaultDest()]; |
1325 | 9 | for (auto Case : SI->cases()) |
1326 | 18 | AddSucc(Case.getCaseValue(), Case.getCaseSuccessor()); |
1327 | 9 | } else { |
1328 | 2 | return nullptr; |
1329 | 2 | } |
1330 | | |
1331 | 159 | if (Cond->getType() != PN.getType()) |
1332 | 107 | return nullptr; |
1333 | | |
1334 | | // Check that edges outgoing from the idom's terminators dominate respective |
1335 | | // inputs of the Phi. |
1336 | 52 | std::optional<bool> Invert; |
1337 | 101 | for (auto Pair : zip(PN.incoming_values(), PN.blocks())) { |
1338 | 101 | auto *Input = cast<ConstantInt>(std::get<0>(Pair)); |
1339 | 101 | BasicBlock *Pred = std::get<1>(Pair); |
1340 | 138 | auto IsCorrectInput = [&](ConstantInt *Input) { |
1341 | | // The input needs to be dominated by the corresponding edge of the idom. |
1342 | | // This edge cannot be a multi-edge, as that would imply that multiple |
1343 | | // different condition values follow the same edge. |
1344 | 138 | auto It = SuccForValue.find(Input); |
1345 | 138 | return It != SuccForValue.end() && SuccCount[It->second] == 1 && |
1346 | 138 | DT.dominates(BasicBlockEdge(IDom, It->second), |
1347 | 135 | BasicBlockEdge(Pred, BB)); |
1348 | 138 | }; |
1349 | | |
1350 | | // Depending on the constant, the condition may need to be inverted. |
1351 | 101 | bool NeedsInvert; |
1352 | 101 | if (IsCorrectInput(Input)) |
1353 | 64 | NeedsInvert = false; |
1354 | 37 | else if (IsCorrectInput(cast<ConstantInt>(ConstantExpr::getNot(Input)))) |
1355 | 34 | NeedsInvert = true; |
1356 | 3 | else |
1357 | 3 | return nullptr; |
1358 | | |
1359 | | // Make sure the inversion requirement is always the same. |
1360 | 98 | if (Invert && *Invert != NeedsInvert) |
1361 | 0 | return nullptr; |
1362 | | |
1363 | 98 | Invert = NeedsInvert; |
1364 | 98 | } |
1365 | | |
1366 | 49 | if (!*Invert) |
1367 | 32 | return Cond; |
1368 | | |
1369 | | // This Phi is actually opposite to branching condition of IDom. We invert |
1370 | | // the condition that will potentially open up some opportunities for |
1371 | | // sinking. |
1372 | 17 | auto InsertPt = BB->getFirstInsertionPt(); |
1373 | 17 | if (InsertPt != BB->end()) { |
1374 | 17 | Self.Builder.SetInsertPoint(&*BB, InsertPt); |
1375 | 17 | return Self.Builder.CreateNot(Cond); |
1376 | 17 | } |
1377 | | |
1378 | 0 | return nullptr; |
1379 | 17 | } |
1380 | | |
1381 | | // PHINode simplification |
1382 | | // |
1383 | 6.07k | Instruction *InstCombinerImpl::visitPHINode(PHINode &PN) { |
1384 | 6.07k | if (Value *V = simplifyInstruction(&PN, SQ.getWithInstruction(&PN))) |
1385 | 464 | return replaceInstUsesWith(PN, V); |
1386 | | |
1387 | 5.61k | if (Instruction *Result = foldPHIArgZextsIntoPHI(PN)) |
1388 | 4 | return Result; |
1389 | | |
1390 | 5.60k | if (Instruction *Result = foldPHIArgIntToPtrToPHI(PN)) |
1391 | 0 | return Result; |
1392 | | |
1393 | | // If all PHI operands are the same operation, pull them through the PHI, |
1394 | | // reducing code size. |
1395 | 5.60k | auto *Inst0 = dyn_cast<Instruction>(PN.getIncomingValue(0)); |
1396 | 5.60k | auto *Inst1 = dyn_cast<Instruction>(PN.getIncomingValue(1)); |
1397 | 5.60k | if (Inst0 && Inst1 && Inst0->getOpcode() == Inst1->getOpcode() && |
1398 | 5.60k | Inst0->hasOneUser()) |
1399 | 864 | if (Instruction *Result = foldPHIArgOpIntoPHI(PN)) |
1400 | 173 | return Result; |
1401 | | |
1402 | | // If the incoming values are pointer casts of the same original value, |
1403 | | // replace the phi with a single cast iff we can insert a non-PHI instruction. |
1404 | 5.43k | if (PN.getType()->isPointerTy() && |
1405 | 5.43k | PN.getParent()->getFirstInsertionPt() != PN.getParent()->end()) { |
1406 | 1.18k | Value *IV0 = PN.getIncomingValue(0); |
1407 | 1.18k | Value *IV0Stripped = IV0->stripPointerCasts(); |
1408 | | // Set to keep track of values known to be equal to IV0Stripped after |
1409 | | // stripping pointer casts. |
1410 | 1.18k | SmallPtrSet<Value *, 4> CheckedIVs; |
1411 | 1.18k | CheckedIVs.insert(IV0); |
1412 | 1.18k | if (IV0 != IV0Stripped && |
1413 | 1.18k | all_of(PN.incoming_values(), [&CheckedIVs, IV0Stripped](Value *IV) { |
1414 | 2 | return !CheckedIVs.insert(IV).second || |
1415 | 2 | IV0Stripped == IV->stripPointerCasts(); |
1416 | 2 | })) { |
1417 | 0 | return CastInst::CreatePointerCast(IV0Stripped, PN.getType()); |
1418 | 0 | } |
1419 | 1.18k | } |
1420 | | |
1421 | | // If this is a trivial cycle in the PHI node graph, remove it. Basically, if |
1422 | | // this PHI only has a single use (a PHI), and if that PHI only has one use (a |
1423 | | // PHI)... break the cycle. |
1424 | 5.43k | if (PN.hasOneUse()) { |
1425 | 2.75k | if (foldIntegerTypedPHI(PN)) |
1426 | 11 | return nullptr; |
1427 | | |
1428 | 2.73k | Instruction *PHIUser = cast<Instruction>(PN.user_back()); |
1429 | 2.73k | if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) { |
1430 | 163 | SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs; |
1431 | 163 | PotentiallyDeadPHIs.insert(&PN); |
1432 | 163 | if (isDeadPHICycle(PU, PotentiallyDeadPHIs)) |
1433 | 16 | return replaceInstUsesWith(PN, PoisonValue::get(PN.getType())); |
1434 | 163 | } |
1435 | | |
1436 | | // If this phi has a single use, and if that use just computes a value for |
1437 | | // the next iteration of a loop, delete the phi. This occurs with unused |
1438 | | // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this |
1439 | | // common case here is good because the only other things that catch this |
1440 | | // are induction variable analysis (sometimes) and ADCE, which is only run |
1441 | | // late. |
1442 | 2.72k | if (PHIUser->hasOneUse() && |
1443 | 2.72k | (isa<BinaryOperator>(PHIUser) || isa<UnaryOperator>(PHIUser) || |
1444 | 1.18k | isa<GetElementPtrInst>(PHIUser)) && |
1445 | 2.72k | PHIUser->user_back() == &PN) { |
1446 | 161 | return replaceInstUsesWith(PN, PoisonValue::get(PN.getType())); |
1447 | 161 | } |
1448 | 2.72k | } |
1449 | | |
1450 | | // When a PHI is used only to be compared with zero, it is safe to replace |
1451 | | // an incoming value proved as known nonzero with any non-zero constant. |
1452 | | // For example, in the code below, the incoming value %v can be replaced |
1453 | | // with any non-zero constant based on the fact that the PHI is only used to |
1454 | | // be compared with zero and %v is a known non-zero value: |
1455 | | // %v = select %cond, 1, 2 |
1456 | | // %p = phi [%v, BB] ... |
1457 | | // icmp eq, %p, 0 |
1458 | | // FIXME: To be simple, handle only integer type for now. |
1459 | | // This handles a small number of uses to keep the complexity down, and an |
1460 | | // icmp(or(phi)) can equally be replaced with any non-zero constant as the |
1461 | | // "or" will only add bits. |
1462 | 5.24k | if (!PN.hasNUsesOrMore(3)) { |
1463 | 3.97k | SmallVector<Instruction *> DropPoisonFlags; |
1464 | 3.98k | bool AllUsesOfPhiEndsInCmp = all_of(PN.users(), [&](User *U) { |
1465 | 3.98k | auto *CmpInst = dyn_cast<ICmpInst>(U); |
1466 | 3.98k | if (!CmpInst) { |
1467 | | // This is always correct as OR only add bits and we are checking |
1468 | | // against 0. |
1469 | 3.77k | if (U->hasOneUse() && match(U, m_c_Or(m_Specific(&PN), m_Value()))) { |
1470 | 58 | DropPoisonFlags.push_back(cast<Instruction>(U)); |
1471 | 58 | CmpInst = dyn_cast<ICmpInst>(U->user_back()); |
1472 | 58 | } |
1473 | 3.77k | } |
1474 | 3.98k | if (!CmpInst || !isa<IntegerType>(PN.getType()) || |
1475 | 3.98k | !CmpInst->isEquality() || !match(CmpInst->getOperand(1), m_Zero())) { |
1476 | 3.94k | return false; |
1477 | 3.94k | } |
1478 | 40 | return true; |
1479 | 3.98k | }); |
1480 | | // All uses of PHI results in a compare with zero. |
1481 | 3.97k | if (AllUsesOfPhiEndsInCmp) { |
1482 | 26 | ConstantInt *NonZeroConst = nullptr; |
1483 | 26 | bool MadeChange = false; |
1484 | 98 | for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) { |
1485 | 72 | Instruction *CtxI = PN.getIncomingBlock(I)->getTerminator(); |
1486 | 72 | Value *VA = PN.getIncomingValue(I); |
1487 | 72 | if (isKnownNonZero(VA, DL, 0, &AC, CtxI, &DT)) { |
1488 | 33 | if (!NonZeroConst) |
1489 | 22 | NonZeroConst = getAnyNonZeroConstInt(PN); |
1490 | 33 | if (NonZeroConst != VA) { |
1491 | 7 | replaceOperand(PN, I, NonZeroConst); |
1492 | | // The "disjoint" flag may no longer hold after the transform. |
1493 | 7 | for (Instruction *I : DropPoisonFlags) |
1494 | 3 | I->dropPoisonGeneratingFlags(); |
1495 | 7 | MadeChange = true; |
1496 | 7 | } |
1497 | 33 | } |
1498 | 72 | } |
1499 | 26 | if (MadeChange) |
1500 | 6 | return &PN; |
1501 | 26 | } |
1502 | 3.97k | } |
1503 | | |
1504 | | // We sometimes end up with phi cycles that non-obviously end up being the |
1505 | | // same value, for example: |
1506 | | // z = some value; x = phi (y, z); y = phi (x, z) |
1507 | | // where the phi nodes don't necessarily need to be in the same block. Do a |
1508 | | // quick check to see if the PHI node only contains a single non-phi value, if |
1509 | | // so, scan to see if the phi cycle is actually equal to that value. If the |
1510 | | // phi has no non-phi values then allow the "NonPhiInVal" to be set later if |
1511 | | // one of the phis itself does not have a single input. |
1512 | 5.24k | { |
1513 | 5.24k | unsigned InValNo = 0, NumIncomingVals = PN.getNumIncomingValues(); |
1514 | | // Scan for the first non-phi operand. |
1515 | 5.56k | while (InValNo != NumIncomingVals && |
1516 | 5.56k | isa<PHINode>(PN.getIncomingValue(InValNo))) |
1517 | 328 | ++InValNo; |
1518 | | |
1519 | 5.24k | Value *NonPhiInVal = |
1520 | 5.24k | InValNo != NumIncomingVals ? PN.getIncomingValue(InValNo) : nullptr; |
1521 | | |
1522 | | // Scan the rest of the operands to see if there are any conflicts, if so |
1523 | | // there is no need to recursively scan other phis. |
1524 | 5.24k | if (NonPhiInVal) |
1525 | 5.54k | for (++InValNo; InValNo != NumIncomingVals; ++InValNo) { |
1526 | 4.98k | Value *OpVal = PN.getIncomingValue(InValNo); |
1527 | 4.98k | if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal)) |
1528 | 4.67k | break; |
1529 | 4.98k | } |
1530 | | |
1531 | | // If we scanned over all operands, then we have one unique value plus |
1532 | | // phi values. Scan PHI nodes to see if they all merge in each other or |
1533 | | // the value. |
1534 | 5.24k | if (InValNo == NumIncomingVals) { |
1535 | 564 | SmallPtrSet<PHINode *, 16> ValueEqualPHIs; |
1536 | 564 | if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs)) |
1537 | 14 | return replaceInstUsesWith(PN, NonPhiInVal); |
1538 | 564 | } |
1539 | 5.24k | } |
1540 | | |
1541 | | // If there are multiple PHIs, sort their operands so that they all list |
1542 | | // the blocks in the same order. This will help identical PHIs be eliminated |
1543 | | // by other passes. Other passes shouldn't depend on this for correctness |
1544 | | // however. |
1545 | 5.22k | auto Res = PredOrder.try_emplace(PN.getParent()); |
1546 | 5.22k | if (!Res.second) { |
1547 | 2.32k | const auto &Preds = Res.first->second; |
1548 | 7.39k | for (unsigned I = 0, E = PN.getNumIncomingValues(); I != E; ++I) { |
1549 | 5.07k | BasicBlock *BBA = PN.getIncomingBlock(I); |
1550 | 5.07k | BasicBlock *BBB = Preds[I]; |
1551 | 5.07k | if (BBA != BBB) { |
1552 | 94 | Value *VA = PN.getIncomingValue(I); |
1553 | 94 | unsigned J = PN.getBasicBlockIndex(BBB); |
1554 | 94 | Value *VB = PN.getIncomingValue(J); |
1555 | 94 | PN.setIncomingBlock(I, BBB); |
1556 | 94 | PN.setIncomingValue(I, VB); |
1557 | 94 | PN.setIncomingBlock(J, BBA); |
1558 | 94 | PN.setIncomingValue(J, VA); |
1559 | | // NOTE: Instcombine normally would want us to "return &PN" if we |
1560 | | // modified any of the operands of an instruction. However, since we |
1561 | | // aren't adding or removing uses (just rearranging them) we don't do |
1562 | | // this in this case. |
1563 | 94 | } |
1564 | 5.07k | } |
1565 | 2.90k | } else { |
1566 | | // Remember the block order of the first encountered phi node. |
1567 | 2.90k | append_range(Res.first->second, PN.blocks()); |
1568 | 2.90k | } |
1569 | | |
1570 | | // Is there an identical PHI node in this basic block? |
1571 | 9.68k | for (PHINode &IdenticalPN : PN.getParent()->phis()) { |
1572 | | // Ignore the PHI node itself. |
1573 | 9.68k | if (&IdenticalPN == &PN) |
1574 | 5.18k | continue; |
1575 | | // Note that even though we've just canonicalized this PHI, due to the |
1576 | | // worklist visitation order, there are no guarantess that *every* PHI |
1577 | | // has been canonicalized, so we can't just compare operands ranges. |
1578 | 4.49k | if (!PN.isIdenticalToWhenDefined(&IdenticalPN)) |
1579 | 4.41k | continue; |
1580 | | // Just use that PHI instead then. |
1581 | 80 | ++NumPHICSEs; |
1582 | 80 | return replaceInstUsesWith(PN, &IdenticalPN); |
1583 | 4.49k | } |
1584 | | |
1585 | | // If this is an integer PHI and we know that it has an illegal type, see if |
1586 | | // it is only used by trunc or trunc(lshr) operations. If so, we split the |
1587 | | // PHI into the various pieces being extracted. This sort of thing is |
1588 | | // introduced when SROA promotes an aggregate to a single large integer type. |
1589 | 5.14k | if (PN.getType()->isIntegerTy() && |
1590 | 5.14k | !DL.isLegalInteger(PN.getType()->getPrimitiveSizeInBits())) |
1591 | 297 | if (Instruction *Res = SliceUpIllegalIntegerPHI(PN)) |
1592 | 14 | return Res; |
1593 | | |
1594 | | // Ultimately, try to replace this Phi with a dominating condition. |
1595 | 5.13k | if (auto *V = simplifyUsingControlFlow(*this, PN, DT)) |
1596 | 49 | return replaceInstUsesWith(PN, V); |
1597 | | |
1598 | 5.08k | return nullptr; |
1599 | 5.13k | } |