Coverage Report

Created: 2023-09-15 06:13

/src/testdir/build/lua-master/source/ltable.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
** $Id: ltable.c $
3
** Lua tables (hash)
4
** See Copyright Notice in lua.h
5
*/
6
7
#define ltable_c
8
#define LUA_CORE
9
10
#include "lprefix.h"
11
12
13
/*
14
** Implementation of tables (aka arrays, objects, or hash tables).
15
** Tables keep its elements in two parts: an array part and a hash part.
16
** Non-negative integer keys are all candidates to be kept in the array
17
** part. The actual size of the array is the largest 'n' such that
18
** more than half the slots between 1 and n are in use.
19
** Hash uses a mix of chained scatter table with Brent's variation.
20
** A main invariant of these tables is that, if an element is not
21
** in its main position (i.e. the 'original' position that its hash gives
22
** to it), then the colliding element is in its own main position.
23
** Hence even when the load factor reaches 100%, performance remains good.
24
*/
25
26
#include <math.h>
27
#include <limits.h>
28
29
#include "lua.h"
30
31
#include "ldebug.h"
32
#include "ldo.h"
33
#include "lgc.h"
34
#include "lmem.h"
35
#include "lobject.h"
36
#include "lstate.h"
37
#include "lstring.h"
38
#include "ltable.h"
39
#include "lvm.h"
40
41
42
/*
43
** MAXABITS is the largest integer such that MAXASIZE fits in an
44
** unsigned int.
45
*/
46
1.53k
#define MAXABITS  cast_int(sizeof(int) * CHAR_BIT - 1)
47
48
49
/*
50
** MAXASIZE is the maximum size of the array part. It is the minimum
51
** between 2^MAXABITS and the maximum size that, measured in bytes,
52
** fits in a 'size_t'.
53
*/
54
0
#define MAXASIZE  luaM_limitN(1u << MAXABITS, TValue)
55
56
/*
57
** MAXHBITS is the largest integer such that 2^MAXHBITS fits in a
58
** signed int.
59
*/
60
126
#define MAXHBITS  (MAXABITS - 1)
61
62
63
/*
64
** MAXHSIZE is the maximum size of the hash part. It is the minimum
65
** between 2^MAXHBITS and the maximum size such that, measured in bytes,
66
** it fits in a 'size_t'.
67
*/
68
63
#define MAXHSIZE  luaM_limitN(1u << MAXHBITS, Node)
69
70
71
/*
72
** When the original hash value is good, hashing by a power of 2
73
** avoids the cost of '%'.
74
*/
75
451
#define hashpow2(t,n)   (gnode(t, lmod((n), sizenode(t))))
76
77
/*
78
** for other types, it is better to avoid modulo by power of 2, as
79
** they can have many 2 factors.
80
*/
81
0
#define hashmod(t,n)  (gnode(t, ((n) % ((sizenode(t)-1)|1))))
82
83
84
451
#define hashstr(t,str)    hashpow2(t, (str)->hash)
85
0
#define hashboolean(t,p)  hashpow2(t, p)
86
87
88
0
#define hashpointer(t,p)  hashmod(t, point2uint(p))
89
90
91
#define dummynode   (&dummynode_)
92
93
static const Node dummynode_ = {
94
  {{NULL}, LUA_VEMPTY,  /* value's value and type */
95
   LUA_VNIL, 0, {NULL}}  /* key type, next, and key value */
96
};
97
98
99
static const TValue absentkey = {ABSTKEYCONSTANT};
100
101
102
/*
103
** Hash for integers. To allow a good hash, use the remainder operator
104
** ('%'). If integer fits as a non-negative int, compute an int
105
** remainder, which is faster. Otherwise, use an unsigned-integer
106
** remainder, which uses all bits and ensures a non-negative result.
107
*/
108
0
static Node *hashint (const Table *t, lua_Integer i) {
109
0
  lua_Unsigned ui = l_castS2U(i);
110
0
  if (ui <= cast_uint(INT_MAX))
111
0
    return hashmod(t, cast_int(ui));
112
0
  else
113
0
    return hashmod(t, ui);
114
0
}
115
116
117
/*
118
** Hash for floating-point numbers.
119
** The main computation should be just
120
**     n = frexp(n, &i); return (n * INT_MAX) + i
121
** but there are some numerical subtleties.
122
** In a two-complement representation, INT_MAX does not has an exact
123
** representation as a float, but INT_MIN does; because the absolute
124
** value of 'frexp' is smaller than 1 (unless 'n' is inf/NaN), the
125
** absolute value of the product 'frexp * -INT_MIN' is smaller or equal
126
** to INT_MAX. Next, the use of 'unsigned int' avoids overflows when
127
** adding 'i'; the use of '~u' (instead of '-u') avoids problems with
128
** INT_MIN.
129
*/
130
#if !defined(l_hashfloat)
131
0
static int l_hashfloat (lua_Number n) {
132
0
  int i;
133
0
  lua_Integer ni;
134
0
  n = l_mathop(frexp)(n, &i) * -cast_num(INT_MIN);
135
0
  if (!lua_numbertointeger(n, &ni)) {  /* is 'n' inf/-inf/NaN? */
136
0
    lua_assert(luai_numisnan(n) || l_mathop(fabs)(n) == cast_num(HUGE_VAL));
137
0
    return 0;
138
0
  }
139
0
  else {  /* normal case */
140
0
    unsigned int u = cast_uint(i) + cast_uint(ni);
141
0
    return cast_int(u <= cast_uint(INT_MAX) ? u : ~u);
142
0
  }
143
0
}
144
#endif
145
146
147
/*
148
** returns the 'main' position of an element in a table (that is,
149
** the index of its hash value).
150
*/
151
178
static Node *mainpositionTV (const Table *t, const TValue *key) {
152
178
  switch (ttypetag(key)) {
153
0
    case LUA_VNUMINT: {
154
0
      lua_Integer i = ivalue(key);
155
0
      return hashint(t, i);
156
0
    }
157
0
    case LUA_VNUMFLT: {
158
0
      lua_Number n = fltvalue(key);
159
0
      return hashmod(t, l_hashfloat(n));
160
0
    }
161
178
    case LUA_VSHRSTR: {
162
178
      TString *ts = tsvalue(key);
163
178
      return hashstr(t, ts);
164
0
    }
165
0
    case LUA_VLNGSTR: {
166
0
      TString *ts = tsvalue(key);
167
0
      return hashpow2(t, luaS_hashlongstr(ts));
168
0
    }
169
0
    case LUA_VFALSE:
170
0
      return hashboolean(t, 0);
171
0
    case LUA_VTRUE:
172
0
      return hashboolean(t, 1);
173
0
    case LUA_VLIGHTUSERDATA: {
174
0
      void *p = pvalue(key);
175
0
      return hashpointer(t, p);
176
0
    }
177
0
    case LUA_VLCF: {
178
0
      lua_CFunction f = fvalue(key);
179
0
      return hashpointer(t, f);
180
0
    }
181
0
    default: {
182
0
      GCObject *o = gcvalue(key);
183
0
      return hashpointer(t, o);
184
0
    }
185
178
  }
186
178
}
187
188
189
10
l_sinline Node *mainpositionfromnode (const Table *t, Node *nd) {
190
10
  TValue key;
191
10
  getnodekey(cast(lua_State *, NULL), &key, nd);
192
10
  return mainpositionTV(t, &key);
193
10
}
194
195
196
/*
197
** Check whether key 'k1' is equal to the key in node 'n2'. This
198
** equality is raw, so there are no metamethods. Floats with integer
199
** values have been normalized, so integers cannot be equal to
200
** floats. It is assumed that 'eqshrstr' is simply pointer equality, so
201
** that short strings are handled in the default case.
202
** A true 'deadok' means to accept dead keys as equal to their original
203
** values. All dead keys are compared in the default case, by pointer
204
** identity. (Only collectable objects can produce dead keys.) Note that
205
** dead long strings are also compared by identity.
206
** Once a key is dead, its corresponding value may be collected, and
207
** then another value can be created with the same address. If this
208
** other value is given to 'next', 'equalkey' will signal a false
209
** positive. In a regular traversal, this situation should never happen,
210
** as all keys given to 'next' came from the table itself, and therefore
211
** could not have been collected. Outside a regular traversal, we
212
** have garbage in, garbage out. What is relevant is that this false
213
** positive does not break anything.  (In particular, 'next' will return
214
** some other valid item on the table or nil.)
215
*/
216
0
static int equalkey (const TValue *k1, const Node *n2, int deadok) {
217
0
  if ((rawtt(k1) != keytt(n2)) &&  /* not the same variants? */
218
0
       !(deadok && keyisdead(n2) && iscollectable(k1)))
219
0
   return 0;  /* cannot be same key */
220
0
  switch (keytt(n2)) {
221
0
    case LUA_VNIL: case LUA_VFALSE: case LUA_VTRUE:
222
0
      return 1;
223
0
    case LUA_VNUMINT:
224
0
      return (ivalue(k1) == keyival(n2));
225
0
    case LUA_VNUMFLT:
226
0
      return luai_numeq(fltvalue(k1), fltvalueraw(keyval(n2)));
227
0
    case LUA_VLIGHTUSERDATA:
228
0
      return pvalue(k1) == pvalueraw(keyval(n2));
229
0
    case LUA_VLCF:
230
0
      return fvalue(k1) == fvalueraw(keyval(n2));
231
0
    case ctb(LUA_VLNGSTR):
232
0
      return luaS_eqlngstr(tsvalue(k1), keystrval(n2));
233
0
    default:
234
0
      return gcvalue(k1) == gcvalueraw(keyval(n2));
235
0
  }
236
0
}
237
238
239
/*
240
** True if value of 'alimit' is equal to the real size of the array
241
** part of table 't'. (Otherwise, the array part must be larger than
242
** 'alimit'.)
243
*/
244
379
#define limitequalsasize(t) (isrealasize(t) || ispow2((t)->alimit))
245
246
247
/*
248
** Returns the real size of the 'array' array
249
*/
250
379
LUAI_FUNC unsigned int luaH_realasize (const Table *t) {
251
379
  if (limitequalsasize(t))
252
379
    return t->alimit;  /* this is the size */
253
0
  else {
254
0
    unsigned int size = t->alimit;
255
    /* compute the smallest power of 2 not smaller than 'n' */
256
0
    size |= (size >> 1);
257
0
    size |= (size >> 2);
258
0
    size |= (size >> 4);
259
0
    size |= (size >> 8);
260
0
#if (UINT_MAX >> 14) > 3  /* unsigned int has more than 16 bits */
261
0
    size |= (size >> 16);
262
#if (UINT_MAX >> 30) > 3
263
    size |= (size >> 32);  /* unsigned int has more than 32 bits */
264
#endif
265
0
#endif
266
0
    size++;
267
0
    lua_assert(ispow2(size) && size/2 < t->alimit && t->alimit < size);
268
0
    return size;
269
0
  }
270
379
}
271
272
273
/*
274
** Check whether real size of the array is a power of 2.
275
** (If it is not, 'alimit' cannot be changed to any other value
276
** without changing the real size.)
277
*/
278
0
static int ispow2realasize (const Table *t) {
279
0
  return (!isrealasize(t) || ispow2(t->alimit));
280
0
}
281
282
283
155
static unsigned int setlimittosize (Table *t) {
284
155
  t->alimit = luaH_realasize(t);
285
155
  setrealasize(t);
286
155
  return t->alimit;
287
155
}
288
289
290
42
#define limitasasize(t) check_exp(isrealasize(t), t->alimit)
291
292
293
294
/*
295
** "Generic" get version. (Not that generic: not valid for integers,
296
** which may be in array part, nor for floats with integral values.)
297
** See explanation about 'deadok' in function 'equalkey'.
298
*/
299
0
static const TValue *getgeneric (Table *t, const TValue *key, int deadok) {
300
0
  Node *n = mainpositionTV(t, key);
301
0
  for (;;) {  /* check whether 'key' is somewhere in the chain */
302
0
    if (equalkey(key, n, deadok))
303
0
      return gval(n);  /* that's it */
304
0
    else {
305
0
      int nx = gnext(n);
306
0
      if (nx == 0)
307
0
        return &absentkey;  /* not found */
308
0
      n += nx;
309
0
    }
310
0
  }
311
0
}
312
313
314
/*
315
** returns the index for 'k' if 'k' is an appropriate key to live in
316
** the array part of a table, 0 otherwise.
317
*/
318
0
static unsigned int arrayindex (lua_Integer k) {
319
0
  if (l_castS2U(k) - 1u < MAXASIZE)  /* 'k' in [1, MAXASIZE]? */
320
0
    return cast_uint(k);  /* 'key' is an appropriate array index */
321
0
  else
322
0
    return 0;
323
0
}
324
325
326
/*
327
** returns the index of a 'key' for table traversals. First goes all
328
** elements in the array part, then elements in the hash part. The
329
** beginning of a traversal is signaled by 0.
330
*/
331
static unsigned int findindex (lua_State *L, Table *t, TValue *key,
332
0
                               unsigned int asize) {
333
0
  unsigned int i;
334
0
  if (ttisnil(key)) return 0;  /* first iteration */
335
0
  i = ttisinteger(key) ? arrayindex(ivalue(key)) : 0;
336
0
  if (i - 1u < asize)  /* is 'key' inside array part? */
337
0
    return i;  /* yes; that's the index */
338
0
  else {
339
0
    const TValue *n = getgeneric(t, key, 1);
340
0
    if (l_unlikely(isabstkey(n)))
341
0
      luaG_runerror(L, "invalid key to 'next'");  /* key not found */
342
0
    i = cast_int(nodefromval(n) - gnode(t, 0));  /* key index in hash table */
343
    /* hash elements are numbered after array ones */
344
0
    return (i + 1) + asize;
345
0
  }
346
0
}
347
348
349
0
int luaH_next (lua_State *L, Table *t, StkId key) {
350
0
  unsigned int asize = luaH_realasize(t);
351
0
  unsigned int i = findindex(L, t, s2v(key), asize);  /* find original key */
352
0
  for (; i < asize; i++) {  /* try first array part */
353
0
    if (!isempty(&t->array[i])) {  /* a non-empty entry? */
354
0
      setivalue(s2v(key), i + 1);
355
0
      setobj2s(L, key + 1, &t->array[i]);
356
0
      return 1;
357
0
    }
358
0
  }
359
0
  for (i -= asize; cast_int(i) < sizenode(t); i++) {  /* hash part */
360
0
    if (!isempty(gval(gnode(t, i)))) {  /* a non-empty entry? */
361
0
      Node *n = gnode(t, i);
362
0
      getnodekey(L, s2v(key), n);
363
0
      setobj2s(L, key + 1, gval(n));
364
0
      return 1;
365
0
    }
366
0
  }
367
0
  return 0;  /* no more elements */
368
0
}
369
370
371
234
static void freehash (lua_State *L, Table *t) {
372
234
  if (!isdummy(t))
373
63
    luaM_freearray(L, t->node, cast_sizet(sizenode(t)));
374
234
}
375
376
377
/*
378
** {=============================================================
379
** Rehash
380
** ==============================================================
381
*/
382
383
/*
384
** Compute the optimal size for the array part of table 't'. 'nums' is a
385
** "count array" where 'nums[i]' is the number of integers in the table
386
** between 2^(i - 1) + 1 and 2^i. 'pna' enters with the total number of
387
** integer keys in the table and leaves with the number of keys that
388
** will go to the array part; return the optimal size.  (The condition
389
** 'twotoi > 0' in the for loop stops the loop if 'twotoi' overflows.)
390
*/
391
42
static unsigned int computesizes (unsigned int nums[], unsigned int *pna) {
392
42
  int i;
393
42
  unsigned int twotoi;  /* 2^i (candidate for optimal size) */
394
42
  unsigned int a = 0;  /* number of elements smaller than 2^i */
395
42
  unsigned int na = 0;  /* number of elements to go to array part */
396
42
  unsigned int optimal = 0;  /* optimal size for array part */
397
  /* loop while keys can fill more than half of total size */
398
42
  for (i = 0, twotoi = 1;
399
84
       twotoi > 0 && *pna > twotoi / 2;
400
42
       i++, twotoi *= 2) {
401
42
    a += nums[i];
402
42
    if (a > twotoi/2) {  /* more than half elements present? */
403
42
      optimal = twotoi;  /* optimal size (till now) */
404
42
      na = a;  /* all elements up to 'optimal' will go to array part */
405
42
    }
406
42
  }
407
42
  lua_assert((optimal == 0 || optimal / 2 < na) && na <= optimal);
408
42
  *pna = na;
409
42
  return optimal;
410
42
}
411
412
413
0
static int countint (lua_Integer key, unsigned int *nums) {
414
0
  unsigned int k = arrayindex(key);
415
0
  if (k != 0) {  /* is 'key' an appropriate array index? */
416
0
    nums[luaO_ceillog2(k)]++;  /* count as such */
417
0
    return 1;
418
0
  }
419
0
  else
420
0
    return 0;
421
0
}
422
423
424
/*
425
** Count keys in array part of table 't': Fill 'nums[i]' with
426
** number of keys that will go into corresponding slice and return
427
** total number of non-nil keys.
428
*/
429
42
static unsigned int numusearray (const Table *t, unsigned int *nums) {
430
42
  int lg;
431
42
  unsigned int ttlg;  /* 2^lg */
432
42
  unsigned int ause = 0;  /* summation of 'nums' */
433
42
  unsigned int i = 1;  /* count to traverse all array keys */
434
42
  unsigned int asize = limitasasize(t);  /* real array size */
435
  /* traverse each slice */
436
84
  for (lg = 0, ttlg = 1; lg <= MAXABITS; lg++, ttlg *= 2) {
437
84
    unsigned int lc = 0;  /* counter */
438
84
    unsigned int lim = ttlg;
439
84
    if (lim > asize) {
440
42
      lim = asize;  /* adjust upper limit */
441
42
      if (i > lim)
442
42
        break;  /* no more elements to count */
443
42
    }
444
    /* count elements in range (2^(lg - 1), 2^lg] */
445
84
    for (; i <= lim; i++) {
446
42
      if (!isempty(&t->array[i-1]))
447
42
        lc++;
448
42
    }
449
42
    nums[lg] += lc;
450
42
    ause += lc;
451
42
  }
452
42
  return ause;
453
42
}
454
455
456
42
static int numusehash (const Table *t, unsigned int *nums, unsigned int *pna) {
457
42
  int totaluse = 0;  /* total number of elements */
458
42
  int ause = 0;  /* elements added to 'nums' (can go to array part) */
459
42
  int i = sizenode(t);
460
105
  while (i--) {
461
63
    Node *n = &t->node[i];
462
63
    if (!isempty(gval(n))) {
463
42
      if (keyisinteger(n))
464
0
        ause += countint(keyival(n), nums);
465
42
      totaluse++;
466
42
    }
467
63
  }
468
42
  *pna += ause;
469
42
  return totaluse;
470
42
}
471
472
473
/*
474
** Creates an array for the hash part of a table with the given
475
** size, or reuses the dummy node if size is zero.
476
** The computation for size overflow is in two steps: the first
477
** comparison ensures that the shift in the second one does not
478
** overflow.
479
*/
480
234
static void setnodevector (lua_State *L, Table *t, unsigned int size) {
481
234
  if (size == 0) {  /* no elements to hash part? */
482
171
    t->node = cast(Node *, dummynode);  /* use common 'dummynode' */
483
171
    t->lsizenode = 0;
484
171
    t->lastfree = NULL;  /* signal that it is using dummy node */
485
171
  }
486
63
  else {
487
63
    int i;
488
63
    int lsize = luaO_ceillog2(size);
489
63
    if (lsize > MAXHBITS || (1u << lsize) > MAXHSIZE)
490
0
      luaG_runerror(L, "table overflow");
491
63
    size = twoto(lsize);
492
63
    t->node = luaM_newvector(L, size, Node);
493
210
    for (i = 0; i < cast_int(size); i++) {
494
147
      Node *n = gnode(t, i);
495
147
      gnext(n) = 0;
496
147
      setnilkey(n);
497
147
      setempty(gval(n));
498
147
    }
499
63
    t->lsizenode = cast_byte(lsize);
500
63
    t->lastfree = gnode(t, size);  /* all positions are free */
501
63
  }
502
234
}
503
504
505
/*
506
** (Re)insert all elements from the hash part of 'ot' into table 't'.
507
*/
508
113
static void reinsert (lua_State *L, Table *ot, Table *t) {
509
113
  int j;
510
113
  int size = sizenode(ot);
511
247
  for (j = 0; j < size; j++) {
512
134
    Node *old = gnode(ot, j);
513
134
    if (!isempty(gval(old))) {
514
      /* doesn't need barrier/invalidate cache, as entry was
515
         already present in the table */
516
42
      TValue k;
517
42
      getnodekey(L, &k, old);
518
42
      luaH_set(L, t, &k, gval(old));
519
42
    }
520
134
  }
521
113
}
522
523
524
/*
525
** Exchange the hash part of 't1' and 't2'.
526
*/
527
113
static void exchangehashpart (Table *t1, Table *t2) {
528
113
  lu_byte lsizenode = t1->lsizenode;
529
113
  Node *node = t1->node;
530
113
  Node *lastfree = t1->lastfree;
531
113
  t1->lsizenode = t2->lsizenode;
532
113
  t1->node = t2->node;
533
113
  t1->lastfree = t2->lastfree;
534
113
  t2->lsizenode = lsizenode;
535
113
  t2->node = node;
536
113
  t2->lastfree = lastfree;
537
113
}
538
539
540
/*
541
** Resize table 't' for the new given sizes. Both allocations (for
542
** the hash part and for the array part) can fail, which creates some
543
** subtleties. If the first allocation, for the hash part, fails, an
544
** error is raised and that is it. Otherwise, it copies the elements from
545
** the shrinking part of the array (if it is shrinking) into the new
546
** hash. Then it reallocates the array part.  If that fails, the table
547
** is in its original state; the function frees the new hash part and then
548
** raises the allocation error. Otherwise, it sets the new hash part
549
** into the table, initializes the new part of the array (if any) with
550
** nils and reinserts the elements of the old hash back into the new
551
** parts of the table.
552
*/
553
void luaH_resize (lua_State *L, Table *t, unsigned int newasize,
554
113
                                          unsigned int nhsize) {
555
113
  unsigned int i;
556
113
  Table newt;  /* to keep the new hash part */
557
113
  unsigned int oldasize = setlimittosize(t);
558
113
  TValue *newarray;
559
  /* create new hash part with appropriate size into 'newt' */
560
113
  setnodevector(L, &newt, nhsize);
561
113
  if (newasize < oldasize) {  /* will array shrink? */
562
0
    t->alimit = newasize;  /* pretend array has new size... */
563
0
    exchangehashpart(t, &newt);  /* and new hash */
564
    /* re-insert into the new hash the elements from vanishing slice */
565
0
    for (i = newasize; i < oldasize; i++) {
566
0
      if (!isempty(&t->array[i]))
567
0
        luaH_setint(L, t, i + 1, &t->array[i]);
568
0
    }
569
0
    t->alimit = oldasize;  /* restore current size... */
570
0
    exchangehashpart(t, &newt);  /* and hash (in case of errors) */
571
0
  }
572
  /* allocate new array */
573
113
  newarray = luaM_reallocvector(L, t->array, oldasize, newasize, TValue);
574
113
  if (l_unlikely(newarray == NULL && newasize > 0)) {  /* allocation failed? */
575
0
    freehash(L, &newt);  /* release new hash part */
576
0
    luaM_error(L);  /* raise error (with array unchanged) */
577
0
  }
578
  /* allocation ok; initialize new part of the array */
579
113
  exchangehashpart(t, &newt);  /* 't' has the new hash ('newt' has the old) */
580
113
  t->array = newarray;  /* set new array part */
581
113
  t->alimit = newasize;
582
213
  for (i = oldasize; i < newasize; i++)  /* clear new slice of the array */
583
113
     setempty(&t->array[i]);
584
  /* re-insert elements from old hash part into new parts */
585
113
  reinsert(L, &newt, t);  /* 'newt' now has the old hash */
586
113
  freehash(L, &newt);  /* free old hash part */
587
113
}
588
589
590
0
void luaH_resizearray (lua_State *L, Table *t, unsigned int nasize) {
591
0
  int nsize = allocsizenode(t);
592
0
  luaH_resize(L, t, nasize, nsize);
593
0
}
594
595
/*
596
** nums[i] = number of keys 'k' where 2^(i - 1) < k <= 2^i
597
*/
598
42
static void rehash (lua_State *L, Table *t, const TValue *ek) {
599
42
  unsigned int asize;  /* optimal size for array part */
600
42
  unsigned int na;  /* number of keys in the array part */
601
42
  unsigned int nums[MAXABITS + 1];
602
42
  int i;
603
42
  int totaluse;
604
1.38k
  for (i = 0; i <= MAXABITS; i++) nums[i] = 0;  /* reset counts */
605
42
  setlimittosize(t);
606
42
  na = numusearray(t, nums);  /* count keys in array part */
607
42
  totaluse = na;  /* all those keys are integer keys */
608
42
  totaluse += numusehash(t, nums, &na);  /* count keys in hash part */
609
  /* count extra key */
610
42
  if (ttisinteger(ek))
611
0
    na += countint(ivalue(ek), nums);
612
42
  totaluse++;
613
  /* compute new size for array part */
614
42
  asize = computesizes(nums, &na);
615
  /* resize the table to new computed sizes */
616
42
  luaH_resize(L, t, asize, totaluse - na);
617
42
}
618
619
620
621
/*
622
** }=============================================================
623
*/
624
625
626
121
Table *luaH_new (lua_State *L) {
627
121
  GCObject *o = luaC_newobj(L, LUA_VTABLE, sizeof(Table));
628
121
  Table *t = gco2t(o);
629
121
  t->metatable = NULL;
630
121
  t->flags = cast_byte(maskflags);  /* table has no metamethod fields */
631
121
  t->array = NULL;
632
121
  t->alimit = 0;
633
121
  setnodevector(L, t, 0);
634
121
  return t;
635
121
}
636
637
638
121
void luaH_free (lua_State *L, Table *t) {
639
121
  freehash(L, t);
640
121
  luaM_freearray(L, t->array, luaH_realasize(t));
641
121
  luaM_free(L, t);
642
121
}
643
644
645
52
static Node *getfreepos (Table *t) {
646
52
  if (!isdummy(t)) {
647
65
    while (t->lastfree > t->node) {
648
44
      t->lastfree--;
649
44
      if (keyisnil(t->lastfree))
650
10
        return t->lastfree;
651
44
    }
652
31
  }
653
42
  return NULL;  /* could not find a free place */
654
52
}
655
656
657
658
/*
659
** inserts a new key into a hash table; first, check whether key's main
660
** position is free. If not, check whether colliding node is in its main
661
** position or not: if it is not, move colliding node to an empty place and
662
** put new key in its main position; otherwise (colliding node is in its main
663
** position), new key goes to an empty position.
664
*/
665
static void luaH_newkey (lua_State *L, Table *t, const TValue *key,
666
168
                                                 TValue *value) {
667
168
  Node *mp;
668
168
  TValue aux;
669
168
  if (l_unlikely(ttisnil(key)))
670
0
    luaG_runerror(L, "table index is nil");
671
168
  else if (ttisfloat(key)) {
672
0
    lua_Number f = fltvalue(key);
673
0
    lua_Integer k;
674
0
    if (luaV_flttointeger(f, &k, F2Ieq)) {  /* does key fit in an integer? */
675
0
      setivalue(&aux, k);
676
0
      key = &aux;  /* insert it as an integer */
677
0
    }
678
0
    else if (l_unlikely(luai_numisnan(f)))
679
0
      luaG_runerror(L, "table index is NaN");
680
0
  }
681
168
  if (ttisnil(value))
682
0
    return;  /* do not insert nil values */
683
168
  mp = mainpositionTV(t, key);
684
168
  if (!isempty(gval(mp)) || isdummy(t)) {  /* main position is taken? */
685
52
    Node *othern;
686
52
    Node *f = getfreepos(t);  /* get a free place */
687
52
    if (f == NULL) {  /* cannot find a free place? */
688
42
      rehash(L, t, key);  /* grow table */
689
      /* whatever called 'newkey' takes care of TM cache */
690
42
      luaH_set(L, t, key, value);  /* insert key into grown table */
691
42
      return;
692
42
    }
693
10
    lua_assert(!isdummy(t));
694
10
    othern = mainpositionfromnode(t, mp);
695
10
    if (othern != mp) {  /* is colliding node out of its main position? */
696
      /* yes; move colliding node into free position */
697
0
      while (othern + gnext(othern) != mp)  /* find previous */
698
0
        othern += gnext(othern);
699
0
      gnext(othern) = cast_int(f - othern);  /* rechain to point to 'f' */
700
0
      *f = *mp;  /* copy colliding node into free pos. (mp->next also goes) */
701
0
      if (gnext(mp) != 0) {
702
0
        gnext(f) += cast_int(mp - f);  /* correct 'next' */
703
0
        gnext(mp) = 0;  /* now 'mp' is free */
704
0
      }
705
0
      setempty(gval(mp));
706
0
    }
707
10
    else {  /* colliding node is in its own main position */
708
      /* new node will go into free position */
709
10
      if (gnext(mp) != 0)
710
0
        gnext(f) = cast_int((mp + gnext(mp)) - f);  /* chain new position */
711
10
      else lua_assert(gnext(f) == 0);
712
10
      gnext(mp) = cast_int(f - mp);
713
10
      mp = f;
714
10
    }
715
10
  }
716
126
  setnodekey(L, mp, key);
717
126
  luaC_barrierback(L, obj2gco(t), key);
718
126
  lua_assert(isempty(gval(mp)));
719
126
  setobj2t(L, gval(mp), value);
720
126
}
721
722
723
/*
724
** Search function for integers. If integer is inside 'alimit', get it
725
** directly from the array part. Otherwise, if 'alimit' is not equal to
726
** the real size of the array, key still can be in the array part. In
727
** this case, try to avoid a call to 'luaH_realasize' when key is just
728
** one more than the limit (so that it can be incremented without
729
** changing the real size of the array).
730
*/
731
0
const TValue *luaH_getint (Table *t, lua_Integer key) {
732
0
  if (l_castS2U(key) - 1u < t->alimit)  /* 'key' in [1, t->alimit]? */
733
0
    return &t->array[key - 1];
734
0
  else if (!limitequalsasize(t) &&  /* key still may be in the array part? */
735
0
           (l_castS2U(key) == t->alimit + 1 ||
736
0
            l_castS2U(key) - 1u < luaH_realasize(t))) {
737
0
    t->alimit = cast_uint(key);  /* probably '#t' is here now */
738
0
    return &t->array[key - 1];
739
0
  }
740
0
  else {
741
0
    Node *n = hashint(t, key);
742
0
    for (;;) {  /* check whether 'key' is somewhere in the chain */
743
0
      if (keyisinteger(n) && keyival(n) == key)
744
0
        return gval(n);  /* that's it */
745
0
      else {
746
0
        int nx = gnext(n);
747
0
        if (nx == 0) break;
748
0
        n += nx;
749
0
      }
750
0
    }
751
0
    return &absentkey;
752
0
  }
753
0
}
754
755
756
/*
757
** search function for short strings
758
*/
759
273
const TValue *luaH_getshortstr (Table *t, TString *key) {
760
273
  Node *n = hashstr(t, key);
761
273
  lua_assert(key->tt == LUA_VSHRSTR);
762
274
  for (;;) {  /* check whether 'key' is somewhere in the chain */
763
274
    if (keyisshrstr(n) && eqshrstr(keystrval(n), key))
764
84
      return gval(n);  /* that's it */
765
190
    else {
766
190
      int nx = gnext(n);
767
190
      if (nx == 0)
768
189
        return &absentkey;  /* not found */
769
1
      n += nx;
770
1
    }
771
274
  }
772
273
}
773
774
775
105
const TValue *luaH_getstr (Table *t, TString *key) {
776
105
  if (key->tt == LUA_VSHRSTR)
777
105
    return luaH_getshortstr(t, key);
778
0
  else {  /* for long strings, use generic case */
779
0
    TValue ko;
780
0
    setsvalue(cast(lua_State *, NULL), &ko, key);
781
0
    return getgeneric(t, &ko, 0);
782
0
  }
783
105
}
784
785
786
/*
787
** main search function
788
*/
789
84
const TValue *luaH_get (Table *t, const TValue *key) {
790
84
  switch (ttypetag(key)) {
791
84
    case LUA_VSHRSTR: return luaH_getshortstr(t, tsvalue(key));
792
0
    case LUA_VNUMINT: return luaH_getint(t, ivalue(key));
793
0
    case LUA_VNIL: return &absentkey;
794
0
    case LUA_VNUMFLT: {
795
0
      lua_Integer k;
796
0
      if (luaV_flttointeger(fltvalue(key), &k, F2Ieq)) /* integral index? */
797
0
        return luaH_getint(t, k);  /* use specialized version */
798
      /* else... */
799
0
    }  /* FALLTHROUGH */
800
0
    default:
801
0
      return getgeneric(t, key, 0);
802
84
  }
803
84
}
804
805
806
/*
807
** Finish a raw "set table" operation, where 'slot' is where the value
808
** should have been (the result of a previous "get table").
809
** Beware: when using this function you probably need to check a GC
810
** barrier and invalidate the TM cache.
811
*/
812
void luaH_finishset (lua_State *L, Table *t, const TValue *key,
813
168
                                   const TValue *slot, TValue *value) {
814
168
  if (isabstkey(slot))
815
168
    luaH_newkey(L, t, key, value);
816
0
  else
817
0
    setobj2t(L, cast(TValue *, slot), value);
818
168
}
819
820
821
/*
822
** beware: when using this function you probably need to check a GC
823
** barrier and invalidate the TM cache.
824
*/
825
84
void luaH_set (lua_State *L, Table *t, const TValue *key, TValue *value) {
826
84
  const TValue *slot = luaH_get(t, key);
827
84
  luaH_finishset(L, t, key, slot, value);
828
84
}
829
830
831
0
void luaH_setint (lua_State *L, Table *t, lua_Integer key, TValue *value) {
832
0
  const TValue *p = luaH_getint(t, key);
833
0
  if (isabstkey(p)) {
834
0
    TValue k;
835
0
    setivalue(&k, key);
836
0
    luaH_newkey(L, t, &k, value);
837
0
  }
838
0
  else
839
0
    setobj2t(L, cast(TValue *, p), value);
840
0
}
841
842
843
/*
844
** Try to find a boundary in the hash part of table 't'. From the
845
** caller, we know that 'j' is zero or present and that 'j + 1' is
846
** present. We want to find a larger key that is absent from the
847
** table, so that we can do a binary search between the two keys to
848
** find a boundary. We keep doubling 'j' until we get an absent index.
849
** If the doubling would overflow, we try LUA_MAXINTEGER. If it is
850
** absent, we are ready for the binary search. ('j', being max integer,
851
** is larger or equal to 'i', but it cannot be equal because it is
852
** absent while 'i' is present; so 'j > i'.) Otherwise, 'j' is a
853
** boundary. ('j + 1' cannot be a present integer key because it is
854
** not a valid integer in Lua.)
855
*/
856
0
static lua_Unsigned hash_search (Table *t, lua_Unsigned j) {
857
0
  lua_Unsigned i;
858
0
  if (j == 0) j++;  /* the caller ensures 'j + 1' is present */
859
0
  do {
860
0
    i = j;  /* 'i' is a present index */
861
0
    if (j <= l_castS2U(LUA_MAXINTEGER) / 2)
862
0
      j *= 2;
863
0
    else {
864
0
      j = LUA_MAXINTEGER;
865
0
      if (isempty(luaH_getint(t, j)))  /* t[j] not present? */
866
0
        break;  /* 'j' now is an absent index */
867
0
      else  /* weird case */
868
0
        return j;  /* well, max integer is a boundary... */
869
0
    }
870
0
  } while (!isempty(luaH_getint(t, j)));  /* repeat until an absent t[j] */
871
  /* i < j  &&  t[i] present  &&  t[j] absent */
872
0
  while (j - i > 1u) {  /* do a binary search between them */
873
0
    lua_Unsigned m = (i + j) / 2;
874
0
    if (isempty(luaH_getint(t, m))) j = m;
875
0
    else i = m;
876
0
  }
877
0
  return i;
878
0
}
879
880
881
static unsigned int binsearch (const TValue *array, unsigned int i,
882
0
                                                    unsigned int j) {
883
0
  while (j - i > 1u) {  /* binary search */
884
0
    unsigned int m = (i + j) / 2;
885
0
    if (isempty(&array[m - 1])) j = m;
886
0
    else i = m;
887
0
  }
888
0
  return i;
889
0
}
890
891
892
/*
893
** Try to find a boundary in table 't'. (A 'boundary' is an integer index
894
** such that t[i] is present and t[i+1] is absent, or 0 if t[1] is absent
895
** and 'maxinteger' if t[maxinteger] is present.)
896
** (In the next explanation, we use Lua indices, that is, with base 1.
897
** The code itself uses base 0 when indexing the array part of the table.)
898
** The code starts with 'limit = t->alimit', a position in the array
899
** part that may be a boundary.
900
**
901
** (1) If 't[limit]' is empty, there must be a boundary before it.
902
** As a common case (e.g., after 't[#t]=nil'), check whether 'limit-1'
903
** is present. If so, it is a boundary. Otherwise, do a binary search
904
** between 0 and limit to find a boundary. In both cases, try to
905
** use this boundary as the new 'alimit', as a hint for the next call.
906
**
907
** (2) If 't[limit]' is not empty and the array has more elements
908
** after 'limit', try to find a boundary there. Again, try first
909
** the special case (which should be quite frequent) where 'limit+1'
910
** is empty, so that 'limit' is a boundary. Otherwise, check the
911
** last element of the array part. If it is empty, there must be a
912
** boundary between the old limit (present) and the last element
913
** (absent), which is found with a binary search. (This boundary always
914
** can be a new limit.)
915
**
916
** (3) The last case is when there are no elements in the array part
917
** (limit == 0) or its last element (the new limit) is present.
918
** In this case, must check the hash part. If there is no hash part
919
** or 'limit+1' is absent, 'limit' is a boundary.  Otherwise, call
920
** 'hash_search' to find a boundary in the hash part of the table.
921
** (In those cases, the boundary is not inside the array part, and
922
** therefore cannot be used as a new limit.)
923
*/
924
0
lua_Unsigned luaH_getn (Table *t) {
925
0
  unsigned int limit = t->alimit;
926
0
  if (limit > 0 && isempty(&t->array[limit - 1])) {  /* (1)? */
927
    /* there must be a boundary before 'limit' */
928
0
    if (limit >= 2 && !isempty(&t->array[limit - 2])) {
929
      /* 'limit - 1' is a boundary; can it be a new limit? */
930
0
      if (ispow2realasize(t) && !ispow2(limit - 1)) {
931
0
        t->alimit = limit - 1;
932
0
        setnorealasize(t);  /* now 'alimit' is not the real size */
933
0
      }
934
0
      return limit - 1;
935
0
    }
936
0
    else {  /* must search for a boundary in [0, limit] */
937
0
      unsigned int boundary = binsearch(t->array, 0, limit);
938
      /* can this boundary represent the real size of the array? */
939
0
      if (ispow2realasize(t) && boundary > luaH_realasize(t) / 2) {
940
0
        t->alimit = boundary;  /* use it as the new limit */
941
0
        setnorealasize(t);
942
0
      }
943
0
      return boundary;
944
0
    }
945
0
  }
946
  /* 'limit' is zero or present in table */
947
0
  if (!limitequalsasize(t)) {  /* (2)? */
948
    /* 'limit' > 0 and array has more elements after 'limit' */
949
0
    if (isempty(&t->array[limit]))  /* 'limit + 1' is empty? */
950
0
      return limit;  /* this is the boundary */
951
    /* else, try last element in the array */
952
0
    limit = luaH_realasize(t);
953
0
    if (isempty(&t->array[limit - 1])) {  /* empty? */
954
      /* there must be a boundary in the array after old limit,
955
         and it must be a valid new limit */
956
0
      unsigned int boundary = binsearch(t->array, t->alimit, limit);
957
0
      t->alimit = boundary;
958
0
      return boundary;
959
0
    }
960
    /* else, new limit is present in the table; check the hash part */
961
0
  }
962
  /* (3) 'limit' is the last element and either is zero or present in table */
963
0
  lua_assert(limit == luaH_realasize(t) &&
964
0
             (limit == 0 || !isempty(&t->array[limit - 1])));
965
0
  if (isdummy(t) || isempty(luaH_getint(t, cast(lua_Integer, limit + 1))))
966
0
    return limit;  /* 'limit + 1' is absent */
967
0
  else  /* 'limit + 1' is also present */
968
0
    return hash_search(t, limit);
969
0
}
970
971
972
973
#if defined(LUA_DEBUG)
974
975
/* export these functions for the test library */
976
977
Node *luaH_mainposition (const Table *t, const TValue *key) {
978
  return mainpositionTV(t, key);
979
}
980
981
#endif